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Charles August Greenhall 

Lq Estimates for Rearrangements 

of Fourier Series 
ABSTRACT 

This work is concerned. with estimating the upper envelopes s* 

of the absolute values of the partial sums of rearranged trigonomet-.. . . . 

ric sums. A. M. Garsia [Annals of Math. ?9 (1964), 634-9] gave an 

estimate for the L2 norms of the s*, averaged over all rearrangements 

of the original (finite) sum. This estimate enabled him to prove 

that the Fourier series of any :t'unction in 12 can be rearranged so 

that it converges a.e. The main result of this thesis is a similar 

estimate of the L norms of the s*, for all even integers q. This 
q 

holds for finite linear combinations of functions which satisfy a 

condition which is a generalization of orthonormality in the ~ case. 

This estimate for finite sums is ext.ended to Fourier series of L 
q 

:functions; it is shown that there are functions to which the · 

Men'shov-Paley Theorem does not apply, but whose Fourier series can 

* nevertheless be rearranged so that the S of the rearranged series 
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I. Presentation of Resu1ts 

A. M. Garsia [2] has recently proved that eveey L2 Fourier 

series can be rearranged so that it converges almost everywhere. 

His proof rests on an estimate for the upper envelopes of the 

absolute va1ues of the parti~ .sums of a rearranged finite sum 

T= z;,a,,c/.>v are orthonormal functions on 

a. measure space, and a.,,. .. , an are rea1 munbers. I£ <r = (er, l ··· 1 <r'n) 

is a. permutation of { 1, ... , n} write 

S*(", 0"1 T) = S" (k ,er) = ?rtax 
lsm~n 

His estimate is 

• Here A is a constant not depending on rt or 

(I. I) 

(l, 2) 

the particular system (i;b,,) used. (We will use the notation i\ 1 A{li,s,. .. ) 

for positive constants, not necessarily the same at each occurrence, 

which depend only on the indicated parameters.) The sum is over all 

n! permutations. Garsia. uses (1.2) to show that the Fourier series 

of any i in L~ can be partitioned into f'ini te b1ocks of terms, each 

of which can be rearranged in such a way that the entire rearranged 

series converges a.a. 

Theorem 1 of this work is an estimate of the l\ norms of the 
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S11('1f.1<t) :for all even C\, • It holds for a di:ff'erent class of <l>v than 

Garsia's result, and the right-hand side of (1.2) is replaced by a 

stronger norm of T than II T ll't • The property of the ¢>. that we v 

need is the following generalization of orthonormality: 

( 1. 3) Definition. Let IL be · a )?osi ti ve integer. ~ ( ~) be a system 

of complex-valued !'unctions on a measure space. We will say ( ~) 

is a P-system for 1l if for all indices v,, · · ·, v11 > f IJ ... >flt we have 

(J.Lt) 

(Here and elsewhere in this work we assume that all integrals written 

down exist.) Any orthonormal system is a P-system for 1. The systems 

b) ¢y(x):= cos(v-l)X (v=l,i.,- ·· ) 

c) the Rademacher !'unctions Ryl"x):: s9n sin 2v'1Tx Cv=1,.t, ··· ; osxs-J) 

are P-systems for all 't. In example (a), the integrals (1.4) are 

(1. 5") 

either 0 or 2 'Ir • Then write and use 

tha.t (a) is a P-system to see that (1.4) holds for (b). Ex.ample (c) 

is taken care 0£ by the :facts that the Rademacher £'unctions are 

independent random variables and that f R~ ::. 1 

or odd, respectively. 

or 0 if °' is even 

H~ever, (sin lfX : \/ = 1,a1···) is not a P-system for a:ny 1' > 1 since 
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r2'7T . <1t-1 . 
j 51>1 -"Slt1(.21t-l)dx = - 7r / 11/f.• I (It - 2 "{ ' "•) /, -,,)) 

0 

s.
<'11' 21t-.2. ' 

('iin .2x) sin x si., ('l//.-S)x. d.x = 
0 

From now on we will refer to {1.5)(a) and (b), with this particular 

indexing, as the expo,nential and cosine systems. 

Theorem 1. Let ¢. . ·. ¢? 
- /1 I. >t 

be a P-system for .ft • 

/\ rt, 

T = L,, I av I ~ 1 
where a.1,. • ., a" are complex numbers. 

rt
1
! ~ J [s*cx,a-,T)]"'dx < A" J ITl 2

1t (1,6) 

for all n and a
1 

, .. . ,an. 

Curiously enough, no other special property of the 'i'v is needed. 

h 1 l L ul ( 1 ) I IT I .i -- J J TA 1
2
• T eorem inc udes Garsia' s 2. res t • 2 since 

Corollary 1. There is a a> {which may depend on T) such that 

(1 . 7) 

The spaces X
2

'l- • Theorem 2 will be a statement analogous to 

(1.6) about trigonometric Fourier series of certain functions in 

l .(It ( O 1 ,('7T) • For a given positive integer Jt , the functions we will 

consider are those f""' .[~00 av et'vx such that L~oc lavl eivx 

" is the Fourier series of a function f in L .Zit • This class of func-

tions will be denoted by X .2-'L • In this definition we may replace 
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(e0 '"> by another complete orthonormal. system(~) , in which case 

we will write xitt (¢) • 

Observe first that xl = L 2 ' :ror if f E x,, then its Fourier 

" coef'ficients are square-summable, and vice versa. Also II f /I :z. = II f 11.'.l. 

(Thus ItayJeitlX.-v ~ E: Ll't im~es. that "La" eivl(, is an L2 Fourier 

series.) We will establish the :following facts about the classes X2tz. 

(1.7) Theorem. a) EQr. 'Z=21 3J· ·· the class X21t is strictly contained 

.!!'.! L1" ~ 

(I. 8) 

:for all f c- X2 't. • 

b) For all '1. the functional N(f) = llf//
2

'£ is a norm on 

X4tt )~ X.zii is a Banach space under this norm. 

Part (b) is proved in Appendix 1~ Part (a) is a special case 

of a well-known result, which we now state. First let us adopt a 

notation o:t Hardy and Littlewood [ 3] • We will say that the series 

~00 1:11x. 
is a ma..iorant of the series . ~ _ eo av e if 

la11I ~A.., for all v, and we will write [,a.11 ei)lx.-< I A.,,e<v". If 

these are Fourier series we use the same terminology :for the respec-

tive functions. In Appendix 1 we use the same notation for more 

general series L a11 </>,, , 
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(1.9) 1! )oo iv" F 
LA A,, e /'\J ~ L.vi -- . 

(l. IO) 

We present a proof of (1.9) which gives a simple example of 

calculation with P-srstems. First we establish (1.9) for trigonometric 

polynomials: 

'» 

L av,··· a:vlL a"; .. al'tt f e xp[i cv,+ ··+ v!t-f,- ···-,.un)J dx 
v1 ... VIL f, · · 'fn = -n 

(1. I I) 

Here we ha.ve used only that the exponential system is a P-system 

for 't • Passing to the case of infinite series, we note that FE L.z.ti 

implies F € L .2, • Hence L la..., la.~ LA~ < oc, and so I all et\ix.,.,, i € Ll,. 

Let 0"'1f.. ("' , f) and er"'-(K 
1 
F ) be the Cesaro means o:f f and F • The 

relation 1-< F implies ~ (·, t) -< ~ (·, F) for all >1. • Thusby (1.11), 

S
l"ll' r.2.'TT' .2'1 

lcr"'(x1i)J.21ia'x < l jO">i(x,F)I dx. 
0 0 

(1.12) 
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But O",,,(x,F) ~ F(x) strongly in L.z-i and <r>i.(;ic,f)~ f(~) a.e~, f"rom 

which Fatou•s Lemma. implies that f E l.z't and (1.10) holds. 

To prove X.lll c l .ZJt. strictly; for ti.= 2, ~, • • · , we choose 

with positive coef'f'icients (:for example, see (5.11). 

There are sign changes of these coefficients which put the resulting 

series in Li for all ~ < o0 [ 1, vol. I, p. 215]. 

Statement of' Theorem 2. We will consider rearrangements of 

"" L; 
1 
a" ¢v , where ¢, , ~' · · · is the exponential or cosine system 

(1.5)(a) or (b). Let 0 = ?t0 < n, < n.t < · · · be a sequence o:f integers 

such that nk•I /rtk > O£ > 1 (~=I, iJ ... ) for some fixed Dl • We will make 

a probability space {J1.,J11) from the permutations er= ('t,,O'.z.J ···) o:f 

{1,2.,· ··} which permute the indices in each block {v: n~+I ~ V ~ h'+ 1} 

(ft:: 0,1,.t, ···) among themselves. The permutations in each block will 

be independent random variables, with each permutation of the k+J.i 

block having probability J/(11k•l- nk) ! . Given f "J L,~a.,,¢..., and 

a O"E:fi set 
l1. 

S *(x,<r,.;) = S* (x.,o-) = s~p J f /l41"v q}v (x)}. 

Theorem 2. ~ ff Xv, • ~ s*(·,-,f) E L2tz(.O.x (0,2.'ITJ) -~ . 

( lW 1~ 

J f [ s*<",o-,f)]2 '1xdcr s A(«,ri) l j?/21
• (t.13) 

A o . o 
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Corollary 2. • The £unction belongs to 

(l.l'f) 

holds for all er in a set of positive measure in 11. 

Comparison with the Men'shov-Paley Theorem. This result 

[1, vol. II, p. 189-92] gives a condition which guarantees that 

S*E LI) without rearrangement. Let 4>= (¢j ,~, .. ) be a uniformly 

bounded orthonormal. system ( l~I ~ M (""I,~, ... )) • If a= (a,, a.p ... ) 

. * "' is a sequence of complex numbers tending to zero let a 1 , a..z. ) · · · 

denote the sequence obtained by rearranging tlie sequence I a, I J / a1 I,-· · 

(excluding the av which are zero) in nonascending order. If 

several lavl are equal then there is a corresponding .repetition in 

* the av • Then write 
oo I /ct 

B~ (a) = ( I a~ 't v ~ -2
) • 

y:q 

If'\? 2. we always have La~ vi-..z. ~ La:~ v~-2 • If 

write 

Denote by H Li(</>)= HL't (for Hardy and Littl.ewood) the set o:f 

co * "Q-f"' I,av'A such that B't(a)<oo. We will then write Bq, (f) 

for a: (4.) • (For ~~2, it can easily be shown that if s; (a) (PO. 

and hence [avcit is an L,t. Fourier series. 
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We will suppose that ( <k,) is complete . in L 2 • ) The Men'shov-Pal.ey 

Theorem is stated in (1.15)(b). 

(1.15)a) Ir 'b~ 2. ~ HL~ £ Li ~ 

JI i /Ii ~ -~ ( i, M) 8~ (f) 

for all f € H Li • 

b) rri>.t ~ fc:HL't ~ S*(·,:f)EL'b and 

llS*lli 5 A(~>M) B~(f). 

(1.16) 

(1.17) 

(1.15)(a) is due to Hardy, Littlewood, and Paley [1, vol. II, 

p. 121], and is a weaker form of (1.15)(b). Applying (1.15)(a) to 

· f for & in HL
2
/¢) gives 

(1.18) Let(~) be a uniformly bounded(ls6\ll~M) orthonormal system • 

. Then HL.21t (~) ~ X1,,, (¢) and 

II f II.Zit ~ A (tt) M) B~ (f) (1.1q) 

for all f €- HL2't. 

However, the following theorem shows that more than (1.18) is true. 

Theorem 3. ~ ~., ~, · · · be a uniformly bounded orthonormal P-system 

:for an '1..2 ~ on a bounded interval.. Ih!m HL,i'°' (¢) is strictly 

contained in X i1t ( <fo). 

Hence Theorem 2 applies to a wider class of trigonometric Fourier 

series in L.ztz (It ~ 2) than the Men'shov-Paley Theorem (1.-15)(b). 
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Of course in Theorem 2 a rearrangement is required to put S 1l in 

L2~ , whereas this is ·not necessary in (1.15)(b). 

Actually, for the exponential system, the fact that Hli~ is 

strictly contained in X:a (It ~ l) is a consequence of the f'ollowing 

well-lmown theorem [ 1, vol. I, p. 215]: Let 0 < n1 < n.l < 11.3 < · · · 

be a sequence of integers such that nhl /"1.t) « > / (I<= I, l, · ·) • 1! 

00 • ' l (a~e1.n•x+ a_,e-tn*x) 

' 
is the Fourier series of a ~ which belongs to Li for all 't < oo • 

co :l 
Thus for 't >I if we choose positive numbers aft such that E_0oa~ < 00 

* but B.2'l (a)= 00 ' the resulting 'a will belong to x,H but not to 

H L .Zit • . For ex.ample, a~ = ( k I/~ 109 k. )- 1 (k 2.' 1). 

However, we have discovered a proof of Theorem 3 which does 

not use the above~mentioned result on gap series and which works 

for more general orthonormal systems ¢> • Furthermore, it produces 

examples of functions in X2>t ( ¢) - H L.zii ( ¢) whose coeff'icients are 

a1l nonzero. · 

Interpolation of' Theorems 1 and 2 between adjacent values of !"(., • 

We would like to lmow whether 

l~ l~ ff [s"'('X)cr,f)]icixdO' < A(O(,~) J If)~ 
.n. 0 " 

(1.20) 

holds for non-even~ • (The notation of Theorem 2 is used here.) 
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We do not believe that this problem admits an easy solution. Even 

the apparently simpler Majorant Problem of Hardy and Littlewood [J] 

remains unsolved. They produced an analytic trigonometric polynomial 

T . such that .IJT/1
3 

> llT/13 , and posed the problem of whether (1.8) can 

be extended to read 

(I. 2.1) 

for non-even 'b • 

Actually, (1.21) would follow from (1.20). For if :f is a 

trigonometric polynomial then lf(x)j ~ s*c~, cr, f) for all Cr' • Hence 

(1.21) would hold for trigonometric polynomials. Applying it to the 
I\ 

Cesaro sums of ;f and ;f and using Fatou's Lemma. would give (1.21) 

in general. 

However, there is another kind of connection between (1.20) and 
~ m 

(1.21). I:C J"' l, av ¢v let 5 (x,tr, f) = r a ¢.. (x) • We 
J m '~~ 

observe tha.t (1.20) holds i:f and only if 

l'TT . iir 

J f IS ( >(x,o-,f )j%dxd<r ~ A(«1i)S /fli 
A. o '>It x., rr o 

(l.ll) 

for all positive integer-valued functions m (x,<r) (such tha.t 

5ni.cx,1r> (")a-) is measurable on .ax [o,.z7TJ) , where AC0(1~> does 

not depend on the choice o:f m(x;a') • Let m.(x,cr) be a fixed :function. 

The mapping M such that M(f) is the function sm(~,o") (x,cr, f) on 

.Q.x [o,.2'1T] is a linear transformation from L1(H) (H=[o,nrJ) into 
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the measurable :functions on ..(l X H • Theorem 2 implies that M is 

bounded .from X .Vt to L ,ii? ( 12 x H) • . It is tempting to ask whether 

M can be interpolated between n and Jc+ I • By this we mean that 

.for 'b between l'i and itr+.2, there may be Banach spaces Xz and ~ 

such that X2tz 2 Xi 2 X.t.1t+J. 7 _ ~ ~ (.Qx H) 2 >t 2 Li1t+i (fl x H) and 

M is bounded .from Xi to ~ with norm depending on ~ • We wou1d 

expect that ~ wou1d be L% (Il.x H) , and that Xi wou1d be the set o.f 
/\ 

J which have an f in Li ( H) • We hope that the norm on Xi wou1d 

be equivalent to /I f II i • 

Observe that the Majorant Problem can be looked at in the same 

way; here we consider the identity trans.formation J' as a bounded 

linear trans.format.ion .from X21 to L2ti (H) with norm 1, and we 

ask whether J is bounded .from the proposed space x~ to 
/'. 

Li (H) (~ti< i < .ZIC+:Z) with norm!£ 1 • The example of /IT[(3 > llT[/
3 

shows that with this point o.f view we do not expect that the norm 
.t\ 

on X<& will be precisely II f Iii 
/\ 

• In .f aot, IJ f Iii may not 

even be a norm. 

The remaining sections may be read in any order. They consist 

o.f proofs and discussions of Theorems 1, 2, and 3 of this section. 
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II. froof of Theorem 1 

The initial step in this proof is essentially the same as for 

the case 't = 1 , treated by Garsia. The basic tool is the 

Bohnenblust-Spitzer Theorem [7] which we state for convenience. 

Let x, ) .. . ) "~ be real numbers. For a permutation er:: (0"1,-· ·,<T'n) 

of { I 1 • • · , n } let 

S(<1) = ma.X 
/sm~n 

• I£ O' is the product of the disjoint 

cycles C ·· · C l ) , p write 

(2.1) There is a 1-1 mapping V of the set of alln! permutations 

onto itself such that 

R(V(a-))= 5(cr) (.Z • .i) 

for all (]' • 

Thus we can replace sums over all o' involving S by corresponding 

sums involving R • 

Returning to Theorem 1 d.efj.ne the £our :f'unctions 

+ 5- (x,cr) 
R 
t 

5-(x,c-) 
I 

R.e -m )T ( L a~ ¢crv (x.) -
Im v=t • 
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Then 

5'1t(x ,cr) ~ 5+(x,cr) + 5-(x1(]") + 5+ (x,(f) + 5
1 

(x,<T'), 
R R 1 

[Slt(x,a'JJi 5 'i~- 1 (s:~ + s;i + s;i + s;i) Ci= .h)} 

....!. lCs*(xcr)]Z s '-f'b-' L[.s+i.,..5-i+s+~+s-iJ 
')t! rt ' '>t! o- R. R. I I • 

We use (2.1) to rewrite the sum over cf • To enable us to reverse 

order of summation a little later let Le denote . a sum over fil 

cycles C = ( v 1 , .. • > Vt ) of indices Vt' ( / ~ V.£ S n.) , and define 

Xe (a-) - 1 if' C is a cycle of er 

- 0 otherwise. 

With these conventions
1 

_.!.._ l [ S'*(x,cr)] i 
'>!. ! ir 

~ ~' E { [L Xc(cr) (1?e1'av¢tCx))+Ji+ [Z:Xe(a-)(~eI>~veft(x)rJi 
11! <t c vfC e vEc 

+ [ z Xc(cr) (lm L tly¢:,(x)) t] i + [ L Xe (v) (I~ r "v ~(x>)-J ~ } 
c l1EC . c VfC 

~ !Li I ( E Xc(i!) ! L lZv~(x) I )'b. 
'h.! '1 C vEC 

Integrating, expanding the qth power, and exchanging orders of 

summation, we have 
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We now classify the nonzero terms in the right hand side of 

(2.3). In order that r Xe (rr) ' ' .Xe (rr/ be nonzero f'or a given 
a' I . 't 

(C1 > •· • > Cq,) , any two Ct·, Ci must be identical as cycles or have 

disjoint sets . of' indices, otherwise the C,, .. -, Ci couldn't all. 

belong to the same permutation. Each such ( C" .. '> Ci ) determines 
- .. 

a partition P of {1,. .. ,iJ into p disjoint classes such that 

C.;= C~ it -i and j are in the same class, CinCj = ¢ it i and 

d are in dif':f'erent classes. .let s~ ( 15 k ~ p) be the set of' 

indices of the cycle Ci where i . is in the ~ +k · class of P. Let 

f ~ be the number of indices in 5fc • Write 

_I I J [ s* (x I <T) Ji dx ~ 1 i r I "D ) (2. t/) 
lt.) If p ~ 

runs over all. ( C, > • • · , C1 ) which determine the parti ti.on E and 

the disjoint sets S,, .. '> Sp • 

For given ( S, ,. .. , S,,) the number ·of (C,,···> Ci) which can be 

chosen is £1 ! · · · 1 p ! / (11 • • • f. p ) , since there are f !/ i cycles 

corresponding to a given set • . The number lrr Xe (<r>- ·· Xe (er) of 
, I \ . 

er containing C1 > • .. > Cq, is just ( n-J,- · · · -,lr) l since we are 

p 
free to permute {1, .. .,x.}- U~=I s, . The integrals in (2.5) 

depend only on P and S 1 , • • · , SP • Theref'ore · 
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By H8lder's i~equa11ty for i !'unctions, the last integral is not 

more than 

The concavity of the'{,+" root then gives 

I, (fr J IL 4.s0, Ii ti 
S ... 5 t=t v'C; 

I p 

But L 1 ' the number of (Sp· .. ) s,) such that I S'k I= if< (-K.:: I) ... ) r) 

is equal to 

(b ... L :-i-.. ·-tp) ~I> 1 P > I 

and SO I 

• 1 ( n )_ ..!.. ( [ i j i)1 Ip~ L (f,· .. fp) (. ... L n-1-· .. -t 1 n /[avil 
l .. . ,(. p ) ,, I f s ... s i=/ VEC,,. , 

I p I r • 
(l.8) 

Now write 
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where ~ (N,,- .. >N"',M'J ... >M1t) is the number of (S,, .. . 7 Sp) 

such that /S~I =i* (-A.=l, .. ·,rJ, and N1, ... , NIL> M1>'·'> MIL 

in the cl')( ... )( c't determined by the partition p and by 

(s,, .. -,5p). 

are al1 

The crucial step in the proof comes now - we use the fact that 

is a P-system for It • This gives us that 

It. s TT ~. (X) ¢M.(X)dv- z OJ 
j: I ~ a 

this integral being a product of integrals of form (1.4). Hence 

L fr J I Z a, 4t I ~ 
5 ... s t= I Vf c. 

1 ,, t 
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(2..JO) 

where~ is maximized over all (N1 ,. .. ,N1t>M1>"··1 M,J with 

111 .. . > lp fixed. This maximum is easy to obtain. The requirement 

that Np···, Nit, Ml> ... , MJt all belong to C1 x · ··x Ci is, when 

written out (letting Np-= (vt,, ... ,v1'b), M.e= (f1.,, ... ,fi~) (l=l,-··,n)), 

Vii) ... , Vtti > fti >'">f!Z.i E Ci (i= I,-··, 1) • 

For each ~ ( f<. = I ) .. > p ) choose an i in the k Ht. class o:f P 

and let 11.k be one of the Vti> '" 'fni. • Define N = (v1 ,. .. ')vi), 

where Vi = 'Yl'k if i is in the f<. th. class. Then 

{ N ... N M ... M } c c, X"·X Co implies Ne c,x ... x Ca • Hence 
I) ) ft) I) / /I, - 1' II 

s(N,, .. ·,M1t) ~ s(N,···,N) , which is simply the number of (50 · .. ,Si) . 

such that n.~ESkl IS~l=fk C'-= ,, .. ·,p) , and the sk are 

disjoint. This number is 

( 

11.-P ) 1 . ::::: max t; · 
i - I · ·· .R. - I n-£ - .. ·- l . I) 1p) I f 

Putting this in (2.10) and referring to (2.8) gives 

- ll'fi l ..!.. - I J "" Ip~ [n(n-1) .. ·(n-p+I)] (.f, ... fp)°& /T}i J 

l,· .. .tp 

(i. JI) 
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where the sum is over all (.f p .. '> f p) such that ,R{: ~ I ( ~ = I,-··> p) 

and f 1 + · · · + £ P ~ n . 

To complete the proof of (1.6), the crude estimate 

is good enough. (It turns out that 

J 
.!.-1 [r(1/i)JP pii 

(f I.'· l p ) 'f. df. ... d f p - n 

Rf<~ o) L.J* ~ n 
r (I+ pli) 

Now 

since n ~ p 
Finally 

r-.r ( ~ n 11'b ) P tt ~ 'b ~ oo • ) 

and the left side is a decreasing function of -n. 

Ip 5. q,f (pP/p!)vi f /Tli 

~ ~1+/ (q,!f tli f 1f1i 

since p ~ q, • This, together with (2.4), gives (1.6), and Theorem 1 

is proved. 
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III. Discussion of Theorem 1. 

'11. 

In this section we will write T.::. L v = 1 ct v if>v as before, 

where the ¢., will be specified as needed. Given the A. we will v . "1'V 

denote the expression (l/?t! )_f _~ S *(:x,0"
1 
T)]'i>dx by J't (T), 

Theorem 1 says that 

(3. 1) 

if ( ~) is a P-system for 1t • We would like to know whether we 

can replace f IT l..i-t 
candidate is J IT/i1t, 

by a "smaller" quantity. The obvious 

but we do not know whether 

holds or not for trigonometric polynomials if ~ > 2 . Theorem 1 would 

be "best possible" and (3.2) could not hold if we could prove that 

but we will see later that (3.3) is false for ~ = l't. > 2 

if the cty are real it is easy to see that 

(3.4) For some a' (depending on T .!!:E 't~ I ), 

• 

(3. 3) 

However 

(3.S) 
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+ -
We merely write T= T - T > , where 

, T-= L, t:i~ ~ • We may suppose rt= Ia:<fi 
l/T+llcr, ~ ll T- llo,, • Thus l/T/I~ ~ /IT+lli + ur-11., 5 2 llT+I/" 

~ 2115*(·,0',T)il't 
terms of -r+ first. 

, where O' is any permutation which puts the 

(There are ·at least (-x./l) l of these O" • ) In 

the complex case, a basically similar argument (see Appendix 2) gives 

11 s * c~, <1, T) 112't ~ Alt 11T-112ti for some <:r , provided that 

( A. ) is a P-system for "L • 'tV 
Returning to the problem of whether (J.1) is best possible in 

some sense, we can obtain some definite results by comparing J't (T) 

to expressions Ni (I Gt I ) which depend only on the absolute value 

sequence lo.I= (ra.1 1, [a.~I, · · ·) • The trivial observation 

S*Cx ,<7', T) ~ I T(x)j for all er gives 

(3 . b) 

which in turn yields 

(J.7) Theorem 1 is the best result of the form. 

J't (T) :5 N~ (la.I) (3. g) 

within a factor Ai . 
For if (J.7) holds then Ni(l~I) ~ J\(T) ~ JITI'~» i.e., 

is the smallest N~ (/a.I) such that (J.8) can hold. 
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The observation (J.6) easily gives us a result of form 

J~ (T) ~ Ni (lo.I) (3.9) 

in the opposite direction~ Assume that the ¢ are orthonormal on v 

an interval of length h < 00 . _, _ so that for q. ~ .2. we have 

fi.l/t-1/q, JITJ/i ~ /ITll.z = llT/1
1 

= ( Z:~lavl~ }'12 
• Then 

(3.6) gives 

(3. 10) 

(J.11) ~ °b = 2Jt • If ( ~) is a uniformly bounded ( l ¢ti S M) 

orthonormal system on an interval of length h then (3.10) is the 

best ineguali ty of form ( 3. 9), within a factor A (ft> M, 'k) • 
To prove this it will be sufficient to show 

(J.12) For any positive integer fl, and nonnegative -6; > ... , 6->t. 
n 

there is a T= I, ~..,<Pv !E:.!:h la. 11 1= (,.11 (v=l1··,n) 
I 

such that 

J 
')\.. 1 ~)n, Ji't (T) ~ An ( i;- ~v J ¢y I . 

. 'II - ' · 
( ~. f 3) 

For then under the assumptions of (J.11) we have 

J,z"(T) 5 An~M2"(L:la."1 1 / for this T. 
In (J.12) the ck, are arbitrary. The method of proof will be 

y 

to average (3.1) over sign changes of coefficients. In the case of 

real functions and coefficients let R.1(w), ···, R~ (w) (0 ~ w -S I) be 
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the first n Rademacher f'unctions. In the complex case let 

be independent random variables each of which 

takes on the values exp [ t 2 'TT k / ( IZ + !) J ( f< = 0, 1) · · /l- ) with 

equal probability. The latter Ry have been contrived so that 

In the real case we have 

= 1 °' even 
(v=I ··· n) ) ) . (3. / 'i R.) 

- O °' odd 

These properties ensure that the functions ~(w,x.) = Rv(w)~(x) 
£orm a P-system for It on { (w,x)} • (The complex Rv are needed 

only if the </> are not themselves a P-system.) We can thus apply 
v 

'>\. A. . 

Theorem1 to Tl(w,x) = L,-G.v'l.fv(w,x) = tT(w,x) • This gives 

~ I J dCA1Jdx [5'\w,x;cr; 1J )J2
't S An f dw Jdx IVC'4>,x.)J 2~ (3.15) 

'>'i.. (/' 

In the real case, [1] chap. V, theorem 8.4 gives 

(3.1 ') 

. and the same is true in the complex case. For if cv = tv cft ('X.) 

( v = I ... n . , ) ' x fixed) then 
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J IL Cv R
11 

('V) I.Zif. dw 
'V: I 

o.:1 _A «r\. - A 
C C n • · • C C t""n 

I I h. 1't 

where oti2 O, ~i~O (i==l, .. ·,'>t.), Oi:'. 1+···+«:" =f1+···+(3'H. = "· 
By (3.14c) this expression becomes 

L ( ot, .~. «l'Ly· I c,1 "°'• ··· IC'tliof. !5. All (L 1Cvl2. yi 
V= I ) 

where 

From (3.15) and (3.16) we obtain · 

Hence (J.13) holds with T(x} = U(w,") for appropriate w • 

A consequence of (J.11) is that (3.3) cannot hold for the 

trigonometric system. For ii" i > 1., there is no upper bound on 

as n~ co • 

kernel.) In fact it is easy to show that the last statement holds 
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for · ury complete orthonormal P-system for n. · ( i = )Ji > 2) on a 

bounded interval~ 

The behavior of J211.. (T) under sign changes of coefficients 

as revealed by (J.1), (J.6), (J.10), and (J.12) gives us reason to 

believe that (J.2) may be true for systems satisfying the require-

"' ments of (J.11), say. For if we keep T 

of the coefficients of T, the quantities 
A 

both run between the extremes I/ T II 24 

fixed and vary the signs 

[J.M. (T)]l/ltt and II T 111't 

and l/T /11 (within 

constants not depending on n ) , and furthermore both quantities 

reach these two extremes (within constants) for the same sign changes. 
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rv. Proo£ 0£ Theorem 2. 

Given (n~) and er' , set 

'11. 

50 = 0 > 511. = L av <;f>v ) 
\I: I 

s"" (x) = sU.p I Sn (x)j 
" fc l ) 

* . 
E,fc.(x,<r) =max / 5 (k 1 ct)- 5 (x (J")I 

hl<,,. s nk-rl .,, l'lk ' ) 

n (~= 0
1 

t) .. .y 
A f<.T-/ 

oft == L I a) <f?, • 
v:nfc.+I 

Notice that 5)1 (x,<r) = Sn (x.) for all ft , X, and rr since a' preserves 
k f< 

the blocks Cnk) '>1.k+-IJ • Hence for n~ +I $ 'Vt ~ f'tk+ I .we write 

S (x,cr) = S'k (x> + ( S (" 1cr)- SI\ (x 10-))
7 

)1. tc 1' "' 

Hence 

(4.1) 
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* Theorem 1 applied to the 6~ (x, er) can be stated as 

2'11" 

A j IS l.i4 

I? 0 fc • 

Therefore 

( tf. 2.) 

The theory of .Littlewood and Paley [1, chap. XV] on Fourier series 

of l p functions for p > I yields 

l'Tl' ~rr oo ,i'IT' .nr J s:ft ~ A(rx,'l) s /11'2'\ L J /Skl:Z'l. s A(tt,tt) s )fl.lit 
o o 'k.::o o o 

which with (4.2) proves (1.13). 

A slight1y weaker form of Theorem 2 in which the sequence (nk) 
A 

may depend on f can be proved by using the following special case 

of M. Riesz• theorem on partial sums of Fourier series of functions 

in LP (p.>1) instead of the deep Littlewood-Paley theory. 

(4.3) Let f E xlJf. • . The partial sums Sn. and 
I\ 
S of the 

'l1. 
I\ 

Fourier series of' J and j satisfy 

a) 
/\ I\ 

II s')\ fl i>t ~ II S11 l12tt ~ II f ll.z1t 

b) " "' II t- sn 111:''1. !S II 5 - S-n.112't ~ o a.s n-+ oo. 

I\ 

Part (a) follows f'rom (1.10) and the f'act that 5 -< S -< :f 
. ')\ 'h • 
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. " I\ /"'-.. 
For part (b) we note similarly that f - Sn= j - Sn ; thus we need 

I'\ I\ 

onl.y prove that Sn-+ f strongly in L i.1t • We proceed as in 

M. Riesz' theorem. Given f > 0 let T(x) be the Cesko mean 
i\ I\ I' 

o'N (x, f) , where N is chosen so that ll f - o'N(•Jf )Jl~'t < f, • Letting 

5 (T) and 5 ( f - T) denote _the. partial sums o:f the Fourier series n '>'\. 
A 

o:f T and f - T , we have 

I\ 

S = . ')t 

/\ 
S (T) + 5 (5-T) 

")t ')1, ) 

/\ A A I\ 

Sn. - i = Sn (T) - f + Sn (f ~ T) 

I\ /\ 

T- f + 5 (i-T) 
)1. 

" i:f n~ N • But ~-T has nonnegative coe:ffioients. By (a), 

We now prove our weak form of Theorem 2. 

S (x, a-) 
i'I. 

write 

= f (x) + (S>\ (x.) - f(x)) + ( S,_Jx,O') - S>i (x,cr)). 
~ k 
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This decomposition leads to 

Integrating over .Cl and using Theorem 1 gives 

/\.. 

and the partial sums S '1. of the 
,,... I' 

Fourier series of f tend to -f in Li 't • Hence we can make 

increase so fast that 
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say. (We may assume that :f is not a.e. zero; al1 we are saying is 

that this . sum may be made arbitrarily small.) Then also 

"° :nr 2 7r 

) r 1 s - f 1"'t ~ J 1f'12
't Li Jr )ii 0 ) 

~=I o it 

,.... /\. 

since :f - SA majorizes sit - f 
" . f.. 

A 

and 6k • Hence (1.13) follows 

with A(ct,tt.) rep1aced by Alt • 
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V. Proof of Theorem 3. 

00 

We are to show that there exists a function g "" L 
1 

a11 sbv 

with positive . coe:f:f1o1ents av such that J I~ i 21t < oo but 

* B.2rz. (a.)= oo • The pr~o~ . is carried out in two st.ages. First 

. we obtain an estimate on the L2't. norm of finite sums with nonnegative 

coefficients, averaged over al1 rearrangements of the coefficients. 

Next, such sums will be pieced together to form the function ~ • 

The arguments are due jointly to the author and Professor Garsia. 

Rearrangements of coefficients in finite sums. Given a sum 

with 6v ~ 0 (v = I) ·,· Jn) we will establish an upper 

bound on the expression 

J 
')1, 2tt 

I = n' ! ~ I ~1 tcrv 'k, } , (S-.1) 

where It. is a positive integer. As usual, ~<7' sums over all permu­

tations a' = ( 0"1 , • • ·, <T'n) of { I) · · · > n} • Expanding the 2ti th power 

gives 

(5~ 2) 

We classify the (v,, .. ·7V11,;fi;"·Jµ1r,) 

r = LL ~(«, f3) L ti 
~ o<J(3 N • 

. J cf:/·' ¢?_ (31 . . . ¢?. «s ¢... f3s 
)'I.I '1.1 '11.5 n~ ) 

(s. 3) 
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where· 1 ~5 ;5 m1n(2-'l1 n)) C(: (ot,,· .. ;.xs), (3= ((31 ,- ··y/35 )
1 

°'. > 0 'A. > 0 y, = 0(. + (3. (1. = I . . . ~) I < '\/ < v < ... < '\/ 
1 - J /"'I. - ) t 'I. t ) J ) - , , - , i - - 1'3 ) 

0<'.
1 
+ · · · f' « 5 = (3 1 + ... + /3s = If., N = ( n 1 ,. • · J l1.s) where the ni 

are distinct, and ~(«J~) is a positive combinatoria1 factor bounded 

above by an An. • 

The sum over rr in (5.3) does not depend on the exact identity 

(S. l.f) 

where M = (>'1 1 , ... J rn.5 ) , the mi distinct. Now since t;_? 0 , and 

the cf> form a P-system for lZ , we will remove the restriction that 
v 

M andN consist of distinct ind.ices. This adds only nonnegative 

terms to the right side of (5.4). Thus 

I 11. Y'. )I. Y. 
L L {c(ot,f) {n-,s). ~ e,.v' ... [ f,.lls 
5 ot, f ')t . v=I v ::.1 

I5 

• s l-K- 1/'1 ¢ (3, •• ·• t cj:/"s ¢._ /1s 
v V v II 

v=1 v=1 

(S'. S) 
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We will estimate the various U (c<.,p) (which are nonnegative). 

Let I 'k, I 5 M ( V = I 1 2 J • • ·) and let the length of the interval be Ii, • 

First observe 

M R.-2. .f-1 . 
n > (S. 6) 

if £ ~ 2. • (This is a primitive form of (1.16) . ) Also note that 

('n.-s)! < A -' 
nl - fl ns • 

Case 1: Y, ? 2. • We simply estimate I~ I ~ M and thus 

A Y. Y. y, Y. 
v("',(3) ~ -1!:. L fr,/ ... L .fr./ M In ... M ~n ft 
. ?ts 

= A -ei M24 > & Y. . .. ) t-Ys = U .-
n. '-'v L.tv 1 

(G". 7. 1) 

Case 2: Y1 .::: • • • = ){ = 11 1~2., 1 and ){+.I 2 2.., 

Here (using 5.6) 

in case f.< S. 
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Case 3. )'1 = 1 and ~ ~ 2 in case s ~ 2. By Schwarz' Inequal-
ity, J (;: ~°'· ~(J,) C L <ft~'" ~ti4 .. · L 'k,«s ~(3,) 

~ [ Si I:~ /2 JI Z: ~«.i tfi 13~ .. · l ~txs if3i0 It t1
a. 

< [ (. Ya. MYs ):L.P J 1/2. _ , '/4 M21t-1 s-1/..2. 
n M n · · · n -ri - n n . - . ) 

pj_ecin~ together finite sums. Our function ~ will be obtained 

. by modifying the series '
00 

v -~ ¢:. 
L..,v::.t " 

, where A= 1-1/.Z'l. , n. being 

an integer greater than 1. I£ 0 = n0 < >t1 < n 1 < · · · is a 

sequence of integers (to be determined later) let rt = ( 0"1 , <1'
2

, • • • ) 

be a permutation of {I> 2 J .. ·} which rearranges the terms in each 

block { n~ +I) . .. ) nk-+- I} ( "-= 0' I) 2 J ... ) among themselves. Write 

")1.ft~l 
pl (x, a') = ) a---">. cl?. (x) 

IC ~ y y J 

V: '>lie+ I 
( ~ = O, I> ... ) 

Then 
00 ..., 

L 8 = ') y-1 = 00 
0 ~ L.,, • Choose positive convergence 

00 

such that l 
0 

Ere < oc • The factor 
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e ~ will multi ply the . ..f<. th block . of L v ~A <It • Make ( 'l'l*) increase 

so fast that 
00 

(s. B) . 

Let Im n be the expression I .of (5.1) associated with 
I 

L n. -).,,.1.. 
V 'f'7 • (Here n-m replaces n in (5.1).). We will 

h1+- I v 

show later that Imn$; A(tt.,M1{) for all m. andn. Since 
I 

is the average of J / Pk (x, a') j 2 'd'x over all er , 

there exists ct such that 

and hence 

00 L c Ek 'frt(x1tr) , when written out, is the Fou:r-ier series of a 

L . ~A 
~ E ).'1,, whose coeff'icients are a.v = E.ft ~ for 

nK. + I ~ \l S 11~+I , with decreasing rearrangement 

c:z~ = ef<. v-A • (This is why we took EA ~ • ) Thus (5.8) 

states that B~ (a.)= oO. 

It remains to be proved that Im, n $ A (1z,1 M1 h) . By 

(5.5) and (5.7.1, 2, J) we need only prove that the expressions 

. z;')1.. ~ 
associated with v- cf? 

m+I v 
are all bounded by 
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an A(,rz,1M,h) 
y ')"11. -3/.2. 

Evidently L &Y S L...-l!i+I V 5 A , an 

absolute constant greater than 1, if' Y ~ 2. and Ji. ~ Z. • Since 

SS 2,-t, 

Then to prove the assertion f'or -a;_ we obserye that · 

< 

R. 
1. 1/21(, - I ( I - x) 

(i~) n 2~ 1-x 

l "' (l-x)i-1 
(21?.) 'Y1M.21t- I -----

1 +x +· " +X..vz.-I 

1. 1./1."' - I . .z 
< (21t) n . ::: (.Zll) tt 

since f ~ 2. 'L Similarly f'or 1T3 consider 



. l/H-1/.2.. 
- 2n. n 

-)6-

1-x 

1/.Ztz. - 1/.i < ·2;i n < 2 /"f , I. ) 

since 21'[, > 2... 

If we form a probability space fl from the er as in Theorem 2, 

we can see that there are many er which give a . ~ E Ll't . • The 

becomes 

By convexity o:f the 'IL +I. power, we have J II A:. I' "')II J ... < A I M J) ~ 41 ':t'k"''" 21-""" - er., ,11. 

also. 

Then 
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00 

Hence for a.e. lT in il., L 0 E1c, l!<}k(·,C')//,i't < 00 and 

is in L.1.ri • 

A corollary of the proof of Theorem 3 is that 

* a "smaller" expression :for :finite sums than B,(tz, (a.) . . 
is 

(5.9) .· Let ¢ cl?. ••• . 
- /) ,2.) 

be a uniformly bounded (lcitl 5 M (v=I,~, .. -)) 

orthonormal P-system for an 'l.. ~ 2.. on an interval of length ~ <. oo • 

l\. 

Then for each n there is a sum T = L 
1 
a 11 cf:, ~ 

a.,, > O ( v = I, .. ·, n ) such that 

(S.10) 

The relation ( 5 .10) holds for T (X) = «}
0

(x.
1 
<i) if we set n 1 = n 

and choose a' so that S lcf>0 (~1 0')j.Z~x ~ A(tt,M,h) • 

.Always 8
0 
~ log YI 1 • 

Theorem 3 for the trigonometric system. In case that ¢, , ~ l · · · 
is the exponential or cosine system, we can state Theorem 3 in 

a different form by using the following theorem of Hardy and 

Littlewood [4][1, vol. II, P. 129]: 

(5.11) Let a,~ a"~ a~z .. · decrease to zero. The series 

00 L
1 

a.v 1>v is the Fourier series of an ~ E L p > p > / '1! 
and only if' 
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and in this case the ratio 

27T . L If.IP/ L, a~ ,r-2 

(excluding -ft.::: 0 a,e,) lies between two positive constants which 

depend only on p , 
We innnediately deduce modified forms of ~heorem 3 and (5.9) 

when ¢. , ¢_ , · • • 
I }. 

is the exponential or cosine system, 

(5.12) For each integer Jt z Z 

* * * 
'* 00 '* there is a function a ~ L a,,¢ 

d I v 

with a, ~ a~ ~ a3 ~ • ·, t o such that 

J 2.'Jr . 'A' /.I"(, 
a) o J ~ I . = oo 

b) there is a rearrangement a., , a..a, ) •. • * * of (l a, ..• 
- J' .2..] 

00 

~uch that L a.v ~ 
. I 

is the Fourier series of a ~· E L J.'i. 

(.5.13) For each It and n there is a trigonometric polynomial 
?\, 

T = ~ a. ~ with a. > 0 (v = I · · · n) .L...-, y v - JI ) ) 
such that 

S
.2.1£" :2 s~'lr f1, * ~It 

( fo~ n) /Tl IL 5 A/I. / l av~ I . 
O 0 '1::. t 

( 5.1 lf) 

We do not know whether the log n ·may be replaced by something 

l.arger, 
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where A ).tz. = I if n. is an integer. But we have never seen a:ny 

strengthening of this result in the direction of (5.12) or (5.1J). 

The rearrangement of (a.t) which gives (5.14) was not explicitly 

constructed; we might ask whether this would be_ possible for the 

case of the cosine system. Perhaps the nondecreasing rearrangement 

of the coefficients gives the least value of JI T 11
2
/t • 
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Appendix 1 

CA1.1) a) 11: (ck,) is a linearly independent P-system for 't 1hml 
A 

N (T) = II T 11.z~ is a norm on the space of finite linear combinations 

of the cft • 
b) The set X C L 

21t - ;,It 
such that 

L
~ 'x ~ 

-
,..,.la,,le"v · th F · ri r f L ...,.., , is e ourier se es o an f i~ is a Banach 

space under the norm fl f 11
2

'Z. • 

Proof. a) We need only show the triangle inequality. Recall. 

that (1.9) is true £or trigonometric polynomials with no assumptions 

on the e".v"' other than that they form a P-system. Thus we may use 
')t. YI. 

(1.9) here. If T= rv=/"y~) V= Ly-::1 e-v~ then 

~ /'- A 

T+U ~ T+U> 

I ~ /\. A 

J T + 1T 11-lri < JI T + U /J~t 

(Al.2.) 



-41-

b) Applying (1.9) to two elements 0£ Xi~ exactly as in · 

(A1.2), we have that X2't is a linear space and II'' 11
2
't is a. 

norm on it. To prove completeness, given :f">t € Xi-i (n= IJ.2.)• .. ) 

satis£ying 

(Al.3) 

we will £irst identi£y the element 0£ X 24 to which ( f 1't.) will 
~ 

converge. Since f - f is a majorant 0£ both f - fm and n -~ n 

/\. A ( ) ("f_ ) :f,,_ - fm , (A1.3) and (1.9) imply that ;fJIL and ,. 

are both Cauchy sequences in L2~ • Thus there are 
/\. r, ~ E L.Vt such that II .flt - f lli'l-~ 0) II i~ - ~ 11.2.ri, ~ 0. 

This also implies convergence 0£ the Fourier coe££icients of these 
/\ 

:functions. Thus ~ = f , :f € X 2,,, • 
~ 

To prove Jl f"' - f /l~'L ~ 0 
~ 

, first observe that 
/""-.. 

II f"' - f 11.i = ll :f n - f Iii. ~ O as n -:r oo , and that fn - ;fm 
.,,.-.... ~ 

- :f n. - -;f -( Jm - f 

II ~ . ............... !!< ;f?l-f»l-:f?t.-:f )..,-

£or all m., n • Then for each n) 
~ . 

JI f ?1(.-f Ila,~ 0 as m~ o0 • Hence there 

is a subsequence (:f m. ) (depending on n. ) such that 

~ ~ * . i - :f. ~ f .. - ;f · a.a. as *.~oo • By Fatou•s Lemma, n. ,,,, )\. 

110112't ~ ej WI inf k ~00 u 0m 11,i't ' which tends 
It 

to 0 as n..!)>oo by (A1.J). 
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Appendix 2 

(A2.1) Let (¢.,,) be a complex-valued P-system for It , !!E 

, a. complex. Then there is a er such that v 

(A2.2) 

Proof. Divide up the unit circle of the complex plane into 

M equal segments E 0 >- · · · 7 Em- 1 , where 

Ek= {€i": (i-f)/m< X5 (k+i)/m} , and 

l if a. din t hi h t e i a,..g a,,. ~alls into. c ass y Y accor g o w c segmen ~ 

Thus . write T = ~ + ... +Tm , where Tf< = L (a...,~ ; e c' 4.rg a.,, € Ek ) 

• 
A 

As an approximation to T write 

n 

L lavle£9
v ~ 

Y:::I 

• Then 

= Y1a .. . a a. .. . a I cos(e + .. +e -t;.- .. ·-B ) J¢.. .. ·<k ~ ··· ¢, (A2.3) 
/...J V, VJ\ ;4ll "f'-/l YI VII. 1'41 f'11o V, '11.ll f'1 f'A 



I:f we make 2JL • 'IT/m = 'Tr/ 3 , m::. 611, , then the cosine is 2:. 1/2., 

The integrals in (A2.'.3) are all nonnegative. Hence 

Now we may asswne with no loss of generality that the largest of 

• Then 

:for all O' . which put the terms of T1 first. 
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