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Charles August Greenhall
Lq Estimates for Rearrangements

of Fourier Series
ABSTRACT

This work is concerned with estimating the upper envelopes s*
of the absolute values of the partial sums of rearranged trigonomet-
ric sums, A, M. Garsia [Annals of Math, 79 (1964), 634-9] gave an |
estimate for the L, norms of the S*, averaged over all rearrangements
of the original (finite) sum, This estimate enabled him to prdve
that the Fourier series of any function in 12 can be rearranged so
that it comierges a,0, The main result of this thesis is a similar
estimate of the Lq norms of the S*, for all even integers q. This
holds for finite linear combinations of functions which satisfy a
condition which is a generalization of orthonormality in the Lz case,
This estimate for finite sums is extended to Fourier series of ZI'.-q
functions; it is shown that there are functions to which the
Men'shov=-Paley Theorem does not apply, but whose Fourier series can
nevertheless be rearranged so that the S* of the rearranged series

isin L .
s q
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I. Presentation of Results

A. M, Garsia [2] has recently proved that every L, Fourier
series can be rearranged so that it converges almost everywhere,
His proof rests on an estimate for the upper envelopes of the

absolute values of the partial sums of a rearranged finite sum
n
T= Z v=i ‘zv‘#v where ?5, § sy ‘ié,, are orthonormal functions on
a measure space, and a,,,d, are real nmumbers, If ¢ = (071"')0"1:.)
is a permutation of {I,-,n} write

m
S¥(e, e T) = 5*00) = max | g, Pr ()] (1)

lsm<n  v=1I

His estimate is

2 2 .
Lz [rs*eomira < A 1T (1.2)

for all a4,,4, . Here A is a constanit not depending on n or

the particular system(®) used, (We will use the notation A, A(r5,)
for ﬁqsitive constants, not necessarily the same at each occurrence,
which depend only on the indicated parameters,) The sum is over all
n! permutations, Garsia uses (1.2) to show that the Fourier series
of any § inl, can be partitioned into finite blocks of terms, each
of which can be rearranged in such a way that the entire rearranged
series converges a,e.

Theorem 1 of this work is an estimate of the L1 norms of the -



5%k,¢) for all even q . It holds for a different class of ¢, than
Garsia's result, and the right-hand side of (1,2) is replaced by a
stronger norm of T than HT”% . The property of the ¢;, that we
need is the following generalization of orthonormality:

(1.3) Definition, Let n be a positive integer. Let (9%,) be 2 system

of complex-valued functions on a measure space. We will say (%)

is a P-system for 2z if for all indices V;)"'Jvn)/"t)"')/"/z we_have

Ay : .4
jqé’l ¢Vrz q{/;% q/&‘a = 0' ()

(Here and elsewhere in this work we assume that all integrals written
. down exist,) Any orthonormal system is a P-system for 1, The systems

a) =1, g&I= e"”, % (x) = £ k)= A
(05x$2T)

b) qg,(x).-;- cos (,M)x (v=1,2,") (.5)

¢) the Rademacher functions R,(X)= s4n sin 2'Mx (v=i2,; 05x5))

are P-systems for all 7, In example (a), the integrals (1.4) are
either O or 2 ., Then write cosvx = (e‘.’”‘—t— e-ivx)/z and use
that (a) is a P-system to see that (1,4) holds for (b), Example (c)
is taken care of by the facts that the Rademacher functions are
independent random variables and that J‘RS = 1 orQ if « is even
or odd, respectively,

Hort}rever, (sinvx: V=10,2") is not a P-system for any 72> = since
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am

N T 2
S sza x sin (2a-1)dx = --n'/q’“ (r;,.—.z,q,e)---))
(4]
zTr . 2!“1 1 . )L’l | )
J (sin 2x) sinx sin(#2-8)x dx = -T/4  (n=3,5,7,-),

.0

From now on we will refer to (1.5)(a) and (b), with this particular

indexing, as the exponential and cosine systems,

n
Theorem 1, Let 4‘5,---, ¢;1 be a P-system for 1, let [= Z’a,é’)

-T- = Z:‘Lmy[ 93 ; where a,--,a, are complex numbers, Then °
n A~
== 2, [[8*0, ] ax < A, leI“ (1.6)
2

for all n and a,,a,
Curiously enough, no other special property of the #{) is needed,

2
Theorem 1 includes Garsia's LZ result (1,2) since J}T]zz J}'}ﬂ .

Corollary 1. There is a ¢ (which may depend on T ) such that

n "
J‘[5*(x,0'7T)] dx < A J.ITIM. (1.7)

The spaces )(_z n Theorem 2 will be a statement analogous to
(1.6) about trigonometric Fourier series of certain functions in
L M(O) ATM) ., For a given positive integer n , the functions we will
consider are those f~ Zicave{vx such that Zio (a,| e"”‘
is the Fourier series of a function ;c\ in L.le . This class of func-

tions will be denoted by X w In this definition we may replace
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(eV*) by another complete orthonormal system () , in which case
we will write X, (#) .

Observe first that X;=L, , for if f€¢X, +then its Fourier
coefficients are square-summable, and vice versa, Also [Ifll,= ”? Tl o
(Thus Jlajle"~gel,, implies that 7 a,e™ is an L, Fourier
series,) We will establish the following facts about the classes )(.2':'

(1.7) Theorem, a) For 7=2,3- the class X, is_strictly contained

inl, and

I$1,, < 171, (.8)
for a11 fe X,,.

b) For all~n the functional N(f)= ”?“M is a norm on

X,,,20d X, 3is a Banach space under this norm,

2,25

Part (b) is proved in Appendix 1, Part (a) is a special case

of a well-known result, which we now state, First let us adopt a

notation of Hardy and Littlewood [3]., We will say that the series
o0 . 00 .

Zﬁm Ayewx is a majorant of the series _Z_Na,,e”" b if

fa,) € Ay  for all v, and we will write J a,0%"* < T A,e™* 1If

these are Fourier series we use the same terminology for the respec-

tive functions, In Appendix 1 we use the same notation for more
general series ) a,%,.



(1.9) If Z” A e~ F e L, 2nd J™ ae"* g Z“’Aveivx
- . o »

then J a,e9*~ fel,, and
e 2T '
j £1% < j IFI*", (1.10)
o . Yo ‘

We present a proof of (1,9) which gives a simple example of
calculation with P-systems., First we establish (1,9) for trigonometric

polynomials: o . 2
j !Zave-wx, i
o v=-n
- _ :
= Z al’,l...avna/*'..,a/‘ﬂ J\eXP[{(\)’.’....{.yq'-_/uq_...._/“ﬂ)de
Vi Vg bt =

A

DA Ay Ay Ay fexp [iopsee vy e ) ]
= [1Z Ay |"ax. i

Here we have used only that the exponential system is a P-system

forn ., Passing to the case of infinite series, we note that F€L,,
s .

implies F€L, , Hence } |a,|*¢ A, < o0, and so J a,e"*~ fel,.

Let O;be,-F) and o‘n(x,F) be the Cesaro means of § and F , The

relation §=< F implies @, (,f)=< o,(,F) for all n, Thus by (1.11),

AT P AT i
6D s < [l Pl (12>

o
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But 0, &,F) > F(x) strongly in L,, and @ (x,f) f&) a.e., from
which Fatou's Lemma implies that f€ L, and (1,10) holds.

To prove Xz,t & le strictly, for 7=2,3,.., we choose
g€ L,~L,y,  with positive coefficients (for example, see ( 5.,11).
There are sign changes of these coefficients which put the resulting

series in L, for all q< e [1, vol. I, p. 215].

Statement of Theorem 2, We will consider rearrangements of

ZTQ" ®,, where qﬁw,,grg(, -+ is the exponential or cosine system
(1.5)(a) or (b). Let O0=m,<n<n,<:+ be a sequence of integers
such that nkf-l/"k > (ﬁ=i,2.J---) for some fixed & . We will make
a probability space (I,4v) from the permutations ¢ = (0 By ) of
{1,2,-+} which permute the indices in each block {V:ng+| v < LT ¥
(k=0,1,2,) among themselves, The permutations in each block will
be independent random wvariables, with each permutation of the k“‘
block having probability 1/(n,~n,)| . Given f~7 2,4,  and
a cef)l set o '

¥x,0,8) = §* 00 = sup | é{“rﬁ?r,fx)} ,

Theorem 2. let fEXM o Then 5*(‘,',‘” € LG(ﬂx [0,2m]) and

2T 2T
[ [Is0nnl s < dbn {32 (113
L o : (=]



s

Corollary 2. Let f€ X;, . [The function Sﬁ(-,cr‘,.f ) Dbelongs to
L,,€0,2m)  for almost all o in() , and

AT A
| [5%,m] 2 < Algyn) j:wlfl"‘ (L14)

holds for all ¢ in a set of positive measure in ().

Comparison with the Men'shov-Paley Theorem, This result

[1, vol, II, p., 189-92] gives a condition which guarantees that
S*E Lq without rearrangement, ILet #= (95”452,) be a uniformly

bounded orthonormal system (I${<M (v=1,2,)) . If a=(a,a,, ")

+ X

is a sequence of complex numbers tending to zero let ay,a,,'

denote the sequence obtained by rearranging the sequence la;l, [a,l )
(excluding the @, which are zero) in nonascending order, If

several |ﬂ,1 are equal then there is a corresponding repetition in
*

the a4, . Then write
* e *q -2 l/%
= (5 ane)™
vz
Ichzz, we always have Za“f’v%""g ZQ’:% V%-l. If

f"‘Z,N“vq%, write 5*(7‘;'5:) = S*(") = BlhPy ’Z:ﬂ“v qu",(x)}.

Dencte by H L%(¢)=HL% (for Hardy and Littlewood) the set of
£ Z:oa,,sz%, such that 8}:(4)< ©0 , We will then write BZ (f)
for 8%*(4) . (For @22, it can easily be shown that if B;(a)( o0

then Z[Qv|2< oo and hence Zauqé, is an L"Z/ Fourler series.
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We will suppose that (Cé,) is complete in L 2 «) The Men'shov-Paley
Theorem is stated in (1.15)(b).

(1.15)a) 1£q22 then HL, < L, and
X
Il s Algy™M) By (9) (1.16)
for all f¢€ HL% 2
b) Ifq>2 and feHL%',gh_iq S*(-,f)eL% and
I5*ll, s AGM) Bg (£). 1.17)

(1.15)(a) is due to Hardy, Littlewood, and Paley [1, vol., II,
pP. 121], and is a weaker form of (1,15)(b). Applying (1.15)(a) to
T for § in HLM(‘#) gives

(1.18) Let (%) be a uniformly bounded (/4(<M) orthonormal system,
- Ihen HL, (#)€ X, (¢) and

131, < AGMBLG )

for a1l feé HLZ'L .

However, the following theorem shows that more than (1.18) is true,

Theorem 3. Let ¢,%,~ be a uniformly bounded orthonormal P-system

for ann> 2 on_a bounded interval, Then H Ll)z () is strictly
contained in x.?fc (?5).

Hence Theorem 2 applies to a wider class of trigonometric Fourier
series in L.le (22)  than the Men'shov-Paley Theorem (1,15)(b).



-G

Of course in Theorem 2 a rearrangement is required to put S* in
LM , whereas this is not necessary in (1.15)(b).

Actually, for the exponential system, the fact that HL,, is
strictly contained in X;, (722) is a consequence of the following

well-known théorem [1, vol, I, p. 215]: Let 0< n, <M, <’Vt3<"'

be_a_sequence of integers such that nk;l/n£>u>l (4=1,2,>) . Xt

0o 2
2, fa,] < e then
i\ —M

| i (ake{n‘x_}_ a, e—z’nﬁx)
|

is _the Fourier series of a 9 which belongs to L% for all q<oo .

| o 2
Thus for 2> | if we choose positive numbers a, such that b Hg % 52

but BZ’: (@)= 0o , the resulting g will belong to X,, but not to
HL.Z': . For example, af= (&Vzr{’ogﬁ)—l (1'<2»2>

Howevér, we have discovered a proof of Theorem 3 which does
not use the above-mentioned result on gap series and which works
for more general orthonormal systems b . Furthermore, it produces
examples of functions in XM (#)~ HL,, () whose coefficients are

all nonzero,

Interpolation of Theorems 1 and 2 between adjacent values of . .
W_e would like to know whether

- ar
ffzrfs*(%,ﬁ,f)J%dxdo‘ < Ax,g) J; I?I‘B (1.20)\

{1

holds for non-even % . (The notation of Theorem 2 is used here,)
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We do not believe that this problem admits an easy solution., Even
the apparently simpler Majorant Problem of Hardy and littlewood [ 3]
remains unsolved, They produced an analytic trigonometric polynomial

T such that ”THB > “'T'Ha , and posed the problem of whether (1.8) can
be extended to read

Hf!l%s A% “f(lqo | (l.21)

for non-even q -

Actually, (1.,21) would follow from (1,20), For if f is a
trigonometric polynomial then [f(x)| < 5*(x,r,f) for all o* . Hence
(1,21) would hold for trigonometric polynomials, Applying it to the
Cesaro sums of f and :IF\ and using Fatou's Lemma would give (1.21)
in general, |

However, there is another kind of connection between (1,20) and

(1.21), 1 $~272,% Lot S (0 H)=2a b (). Ve

observe that (1.20) holds if and only if
m 2 : 27!’/\ .
‘L ‘YO lsm(qu')(x’a..‘f)l dxde < A("‘)‘Z) L [§] FARE ]

for all positive integer-valued functions m(x,tr) (such that
Sm(x,o-) ("‘)CT} is measurable on () x [0,27]) , where A(x,q) does
not depend on the choice of m(x,0") . Let m(x,¢) be a fixed function,

(x,0)
0 x [0,2T] 4s a linear transformation from L (H) (H=[0,2m]) dinto

The mapping M such that M(f) is the function Sm (X,(T, f) on



L s

the measurable functions on (LXH ., Theorem 2 implies that M is
bounded from Xlk to LG QxH) . It is tempting to ask whether
M can be interpolated between 2 and %4+/ , By this we mean that
for q between A% and 2n+21 there may be Banacﬁ spaces 'Xﬁ and )%
such that X, 2 Xg2 X, .., sz‘,z(ﬂ”H) 2 XL 2 Ly (2xH) and

M 4is bounded from X% to X% with norm depending on q + We would
expect that Xg would be. L%(ﬂxH) s and that X, would be the set of

¥ which have an ? in L%CH) . We hope that the norm on X% would
be equivalent to l‘?llz .

Observe that the Majorant Problem can be looked at in the same
waj; here we consider the identity transformation J as a bounded
linear transformation fromv.Xiq to T_IQ(H) with norm 1, and we
ask whether J 4is bounded from the proposed space X% to
L%(H) (a2 <9<2%+2) with norm<! . The example of ”THS > H'/I\‘[/S
shows that with this point of view we do not expect that the norm
on X% will be precisely I[?]% « In Laok, ,‘$“i may not

even be a norm,

The remalning sections may bé read in any order., They consist

of proofs and discuséions of Theorems 1, 2, and 3 of this section,
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II. Proof of Theorem 1

The initial step in this proof is essentially the same as for
the case 1=1 , treated by Garsia., The basic tool is the
Bohnenblust-Spitzer Theorem [7] which we state for convenience,

et %, X, be real numbers, For a permutation ¢ = (0},--,03,)

)
of {I,~,n} let

5@)= max (2 xg, )

[smen 7

(x*= max (x,0), x"= (-x)T ) . If o is the product of the disjoint

cycles Cl)'",cp write
R@)= 2 (Zx)
% | PEC&

(2,1) There is a 1-1 mapping V of the set of all n ! permutations
onto itself such that

R(V(r) = 5@) ‘ .2)

for all o .

Thus we can replace sums over all 0 involving 5 by corresponding

sums involving R .
Returning to Theorem 1 define the four functions

Ve, oo)

Im v=i

5 6, 0) (

P = max
S:-E (X,O’) lEmen



Then
5*0) € 56o0) + S o) + STG0) + S (6,

[S*(,1% < 437 (576 + 5%+ 554+ 5 %) (3=20),

4 wr, )8 < 457 ot 0% . g% o4
M;[S (x,@?] < L ?[SR + 5,5+ 55+ 8 V],

We use (2,1) to rewrite the sum over ¢ , To enable us to reverse
order of summation a little later let ZC denote a sum over all

cyeles (= (v;,yYy)  of indices Vo (Isvgsn) , and define

XC(O') = 1 if C is a cycle of 0
= () otherwise,.

With these conventions, —i'— Z {:S*(x,cr)]%
n T

44! 1 ' 1% o)V F
-19%
+[Z Xcar)(lmécavqsyw)*}‘_‘ + [ Zxo (Imvzgca,qé(x)) 1%}

< T (DX ®|Z avqé,(x)[)q’,
n! ¢ ¢ vel

Integrating, expanding the gqth power, and exchanging orders of

surmation, we have

s % kil X, @ X, @ 3) -
s fisue ¢ 2 2, Tk [an-Zusl, o3

ve C%
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We now classify the nonzero terms in the right hand side of
(2.3). In order that Zo‘ XC,(‘T)'”XC%CU-) be nonzero for a given
(Cryy C%) y any two Cj must be identical as cycles or have
disjoint sets_of indices, otherwise the C,,---, c% couldn't all
belong to the same permutation. Each such (C ‘ C‘i) determines
a partition P of {l,---,‘g} in‘t.o p disjoint classes such that
C{=C3' if < anda' are in the same class, C{GCJ—S{) if ¢ and
g are in different classes. Let Sft (I k< P) be the set of
indices of the cycle Ci where { is in the k™ = class of P. Let

£;  be the number of indices in Oy . Write

5L [ 6mIta < 8 L1, (2.4)
s = L L L Z* L Ke (@ Kc(tr)ijczv , @9)
We t-gy Sy Cpolg @ v, veci
where ffe?.l (ﬁﬂ,"‘,F), L detLp L 0, lsﬂ]: [k . Z—P

runs over all ( R C‘i.) which determine the partition P and
the disjoint sets S5,,'ySp .

For given (§,, -, SF) the number ‘of (C,,---, Cg) which can be
chosen is E, i--'.ff,!/(,(’...fp)’ since there are f”/f cycles
corresponding to a given set,  The number Zu- X c () - Xct(o-') of

i ;
‘0" containing C,,"',C% is Just (n-l,—---—,(f:)! since we are
lD
free to permute {I,~,n}— Uy, 5, . The integrals in (2,5)

depend only on P and Sl,"', SP « Therefore



Z U 4 ([,J)P:]-. -g)} lea»#’ Z"‘v‘” (2.6)

VEC VGCq

By HYlder's inequality for (‘ functions, the last integral is not

more than

(TTfIZaM)

i=1 vel;

The concavity of the cL root then gives

Z_(ﬂﬂzwl)

vee;
- 3 q /3
£ <§;F)‘ a(ﬂ;ﬁﬂ“é‘:ﬂ‘vé ) . (2.7)

But 2,1 , the number of .(51,---, SP)' such that ]5',‘[=[k (-(:})-..Jr)

ittty
. iy T
1< 6o g i) (2, T 7)) 0
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f}:j;zav = [ ayhoofa

veC; NEC,x-x (g

—"-Z J’TTaa. ¢¢d1r (2.9)

Ny M, MECx xC

Here N = (V,;---,V%) ) X = (x'l)me‘i): 0[1}' = dx'.., dxz y aN= ay’...av i

- ¢(x)“¢ 95(90% . Then
%
Z'Wf{

S""SP =1 VEC‘-
n . —
s (N, Ny M 5 4 & dv
all Ny Ny M, My =i 49N

where é'(N,’ )NMM )M,_L) is the number of (S5,, ", 5,
such that |5, | =4y (k=! ,---,faJ, and  Npyoy Ny, My M, are all
in the Cl X X C% determined by the partition P and by
(s').“) SP )n

The crucial step in the proof comes now-— we use the fact that

qé 5 Pk an is a P—system for & ., This gives us that

jﬂ' , (X R, (X)dv 2 0,

this integral being a product of int.egrals of form (1.4), Hence

Z Trflz;a

stl vec,




A

< (max Q)Z JW[aNaM)¢

all NN MMy ¥ =
= rexs) ([ | D iniae's) (2.10)

where & is maximized over all (N, Ny M, - M) with
f,,---,lp fixed, This maximum is easy to obtain, The requirement

that Ny Ny, M M, all belong to  x--X C% is, when

written out (letting Nﬂ (ff’ ’VI%)) M£= (/u!“...,/uig) ([:;’..,7,[)))

iy ) Vaiy friy s fai € C; (i=1,,9).

For each K (ﬁ= l,"',P) choose an i in the k™ class of P
and let Ny be one of the V!i"")/"-/zt' . Define N = (V“-") V%)’
where vl- = nk if { is in the k'th class, Then

{N,,"', Ny, Ml)"}M/;} € (, xx CQ implies N € C x-X C% . Hence
q(Nu"':Mn) g §(N,---,N) » which is simply the number of (S, S%).
such that ny € SE’ [5“: Zk (ﬁ: IJ'")P) » and the SK’. are
disjoint, This mumber is

n -
( P : ) = max &,
é’,-l,--',ﬂp-ljn-.ﬂ,"""fp
Putting this in (2,10) and referring to (2.8) gives

Tp € [ne=)repen] 7 ) (l."'fpﬁ-fji'?ﬂ, (2.11)
R
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where the sum is over all (/ ,

0y 4p)  such that 21 (k=1 p)
and LA+t dp <

To complete the proof of (1.6), the crude estimate

) U zP“} (i v 'P§ ( Lz"i"dz) = (qn'8)

¢ ,CP
is good enough, (It turns out that

T P
j (4,4p)3 ’ﬂfl’."'dlf - [r(/s)] nm
F(1+p/g)
020,24 <n

~ () as qeol)

Now

W/ [n(n-1)- (n-p+1)] < PP/F!
since N 2 P and the left side is a decreasing function of n.
Finally

I, < ¢’ (D)™ 1318
< ¥ (@) [1Fs

since psg . This, together with (2.4), gives (1.6), and Theorem 1

is proved.,
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IIT., Discussion of Theorem 1.

"
In this section we will write | = Zv=| Qy B, as before,

where the 9‘&) will be specified as needed, Given the ¢ we will
denote the expression ({/’n.')j[s*(x,q‘, T)]%dx by J.% ).

Theorem 1 says that

T.(T) € A, [ITR (3.1)

if (9’3) is a P-system for n ., We would like to know whether we
can replace _f[‘/l\'{“ by a "smaller" quantity. The obvious

candidate is J [T|?  but we do not know whether
2
Jy (1)< Ay [IT] (3.2) .

holds or not for trigonometric polynomials if ¢>2. Theorem 1 would

be ¥best possible” and (3.2) could not hold if we could prove that
=19
J%(T) 2 AZ JITI ; (3.3)

but we will see later that (3.3) is false for q= 2n>2 ., However

if the Q, are real it is easy to see that

(3.4) For some o (depending on T and tz?,!

15%¢, e, D

a2 7Tl (35)
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. PR oo -
We merely write | = T=-T 5 T=T+T » where
T-i—: Zdjgé} . T_= Z a, C,‘LB | . We may suppose
T 2T, . mme Tl s ITT TG S 20T

< 2”5*<.’0-)T) ”% s where ¢’ is any permutation which puts the
terms of T first, (There are at least (%/2)| of these ¢ .) 1In
the complex case, a basically similar argument (see Appendix 2) gives
HS*("‘,O",-I_)”J,1 2 An ”%”m - for some T , provided that
(7%’) is a P-system for © . |
Returning to the problem of whether (3.1) is best possible in
some sense, we can obtain some definite results by comparing ") q (T)

to expressions N‘L ( (a]) which depend only on the absolute value

sequence |a|= ((a,l , lagl )---) . The trivial observation
5*(x,cr,'r) 2 | TX)] for all 0" gives

Jo (M 2 [IT1%, (3.6)
which in turn yields
(3.7) Theorem 1 is the best result of the form

Jo (T) £ N, (lal) (3.8)

within a factor A‘Z "
For if (3.7) holds then N%(iai) > J%('T') 2 Jl?l%) i,0., -

J’“’-\-[‘i is the smallest Ni(la.l) such that (3.8) can hold,
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The observation (3.6) easily gives us a result of form

J% (T) 2 N%(mn) - (3.9)

in the opposite direction, Assume that the QSV are orthonormal on’

an interval of length #1<° , so that for ¢>2 we have
AR 2 T = 0= (ZTRat) L m
ﬁt % - 2 == ’T [l"‘ ( i v . en

(3.6) gives .
- n q |
J (T) 2 h 1&( g: ENL (3.10)

(3.11) Let q=2~ . If (%) is a uniformly bounded (|4 |< M)

orthonormal system on an interval of length $ then (3,10) is the

best inequality of form (3,9), within a factor A (2,M,4%).

To prove this it will be sufficient to show

(3.12) For any positive integer 7 and nonnegative 6-' y G'n

n
there 4sa T =), @,  with |a,/=§, (v={,~,n) such that
|

s n
LM< A [ (ZGISI1F). (313)
For then under the assumptions of (3,11) we have

n 2 n
J.f/z (T) € Anﬁ.M (Z Ia-pl ) for this | .
In (3.12) the C;é are arbitrary, The method of proof will be

to average (3.1) over sign changes of coefficients, In the case of

real functions and coefficients let R,(‘U), 5 5 R_u (W) (0sw<|) be
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the first n Rademacher functions., In the complex case let
R.(w)) "y Rn (w) be independent random variables each of which
takes on the values exp [i Z'le(/('tH)] (k= 0,1,“')4)  with

equal probability, The latter R, have been contrived so that
& = K-8 . p. _
ij Rvp - j Ry f = 804/3 (dlﬁ:: 0,1y, 2;v= ‘)“';n)- @.14¢)

In the real case we have

erS = 1 « even

. o (v=1,n), (3.14R)
= o ©

These properties ensure that the functions %(w,x) = Rv (w)%(")
form a P-system for 7 on { (w,x)} . {The complex RV are needed

only if the ?3 are not themselves a P-system.) We can thus apply

Theorem 1 to U(wx) = ZT{’v q’v(w,x) B GCw,x) . This gives

;—L(-! Z fdwjdx [S*Cw,xscr,-U)JMS An J.dwfdx |ﬁ'(w,x)|2'," (3.15)

In the real case, [1] chap, V, theorem 8.4 gives

“Z%ﬁqﬁ,("”{v(“ﬂ)u"‘“ s A, (ZT.—: lf;,%(x)lz) (3.16)
v=i vel

n
J
and the same is true in the complex case, For if ¢, = ﬁ-v Sé,(x)

(v= l;---,n,. x fixed) then
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[1Z ¢ Ry () [Pde

= Z (2 ) 0, et g gf
ol

(P (5

where &; 2 0, 3,20 (i=1,ym), o 4+ &, =it By = A,

By (3.14c) this expression becomes

Z (dl ’L ;‘n)l IC’IZO"_"' 'Cn'Zd. < A/z (f [Cuiz))l;
Vel

where

ax (L% )
n («;) o By /o

From (3.15) and (3.16) we obtain

j‘er(U(“’:'”d“’ < A f(iéf{é@)}")"dx.

Hence (3.13) holds with Tix) = U(w,x) for appropriate w ,
A consequence of (3,11) is that (3,3) cannot hold for the
trigonometric system, For if g> 2 there is no upper bound on

”:\r“g/“T”z  as n->o00 . (Lot T be the n™ Féjir
kernel,) In fact it is easy to show that the last statement holds
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for any complete orthonormal P-system for n ( %= An?> l) on a
bounded interval,

The behavior of .Jim(T') under sign changes of coefficients
as revealed by (3.1), (3.6), (3.10), and (3.12) gives us reason to
believe that (3.2) may be true for systems satisfying the require-
ments of (3,11), say. For if we keep ﬁl fixed and vary the signs
of the coefficients of | the quantities [ J,, (T)]'/M and ”T”“
both run between the extremes H %“2”’ and | :,\-”2. (within
constants not depending on % ), and furthermore both quantities

reach these two extremes (within constants) for the same sign changes,
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IV. Proof of Theorem 2,

Given (nﬁ) and 0" , set

5=0, § = Za¢,,) S, (x,0) = Za, ) (n=1,2,),

S, (%) = S:P IS,H‘,‘(x)]J

6k(x r) = hr::z - | sno;,ﬂ = Shk(x,cr)l)
M (k= 0,1,)
5,= ). lalé
v:ﬂi-f-l
Notice that 5"2(7(,0')= Snk(x) for all % ,X, and © since ¢ preserves
the blocks (nk>nk+lj . Hence for 'nk+l s ng M we write

Sn(x,a') = S.nk(x) + ( Sn(x,a') - Sni(x,o-))y

5, s 27 15, 0"+ 15,60 = 5, G03[)
: k

< (s, 1+ (6 2l )

Hence

[§%,m)™ < 277 (5 + *Z [6xal*"), (HD
=0
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%
Theorem 1 applied to the 5& (x,(r) can be stated as
aT | 27'
an ~ I
jala- jdx [5:@,0‘)] < A, j |5f¢|2 .
o} 0 o
Therefore

277 ; ”_ 2 - am
[do [ ax [s%x0] < 2% (lsr+ 2] l&klz") (4.2)
‘o 0 ) - (4 k=o “© .

The theory of Littlewood and Paley [1, chap, XV] on Fourier series
of L p Tfunctions for P>i yields

2T T — ar ZTI'A
Jo 5:"—S Ax,z) jo[flzn7 igo Jo H.*IZ'LS A(ﬁ,m)L lefe

which with (4.2) proves (1,13).

A slightly weaker form of Theorem 2 in which the sequence (n&)
~
may depend on ¥ can be proved by using the following special case
of M. Riesz' theorem on partial sums of Fourier series of functions

in LP (p>1) instead of the deep Littlewood-Paley theory.

A
(4,3) let fe Koy . The partial sums Sn and S% of the
Fourier series of f and ;,f\ satisfy

&) 15,0, < 18,1, < %1,
b) llf—SnHM g ”?-gnllmé 0 as n->o0,

A
Part (a) follows from (1,10) and the fact that Sn-< S%-< 3.
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For part (b) we note similarly that ?-§n= f/-}n 3 thus we need
only prove that ,5\,“-> /f\ strongly in LZ"t « We proceed as in

M. Riesz' theorem, Given £>0 1let T(X) be the Cesaro mean

7y (x,;?) , where N is chosen so that ”?" UN("?)ll;iq< £ . letting
Sn(T) and Sn(-?--T ) ~ denote the partial sums of the Fourier series
of T and §-T , we have |

5, = S5, +5 (§-1),

§-F=8,M-F+5aG-T

It

T’-f + 5 (F-T)

A
if n3 N . But#-T has nonnegative coefficients, By (a),

18,- I, < 1F-Tl, + 15-T1,, < 26 (n2N),

We now prove our weak form of Theorem 2,

it nk+I$’n5‘H.kH (‘k=f,2)~") wri‘l;e

%067 = £+ (8,60 = §6) + (8,069 5, o)),
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This decomposition leads to

2 2
[$¥%,0] < [6fm]

(!f(x)l + Z s, cx)— fool™ + Z [&(xc’)] “).
k=1 k=1

Integrating over {1 and using Theorem 1 gives

am |
[ do [ ax (8%, < A jm;ﬁ,ﬁ"
o L %
gsig P8 o an o A ,
S 2 [is o 4 L [IRT), 6)
° b=l k=1 ©

A n AAn ~
By (4.3), Jl&,! < f!ﬂ and the partial sums S, of the
~ ~
Fourier series of f tend to f in L 24 + Hence we can make

Comy, ‘n“ . inerease so fast that
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say., (We may assume that f is not a,e., zero; all we are saying is
that this sum may be made arbitrarily small,) Then also
o0 ar I3 am '
2 o A j a1
<
Zfls fl jm ij&l < [
[0} . a 0
k=1 ' ‘
AN
since f- Sn majorizes S, -?f and 5& . Hence (1.13) follows
k
with A(N,ﬂ-) replaced by A/; "
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V. Proof of Theorem 3.

g oo
We are to show that there exists a function g~ Z' av¢v
with positive coefficlents g, such that J‘lgl‘z"< oo but

B;:_ (a)= o0 . The proof is carried out in two stages. First

. we obtain an estimate on the L 2 horm of finite sums with nonnegative
coefficients, averaged over all rearrangements of the coefficilents,
Next, such suﬁs will be pieced together to form the function g

The arguments are due Jjointly to the author and Professor Garsia,

Rearrangements of coefficients in finite sums, Given a sum

-
Z ' 4 ‘FSV with ¢ 2 0 (v=1,- -,m) we will establish an upper

bound on the expression '

——%Z“Zé ¢f (5.1)

where /L 1is a positive integer, As usual, Z o Sums over all permu-
tations ¢ = (7, a,) of {l)---')n}' . Expanding the Zfz,ﬂ" power

gives

I= ;T';JZ Z U{r,.qg. 6 & . (52

We classify the (v,,-», gy .)/un : writing
I ZZ ﬂc“)p) Z T’L‘ Z 6’
s %, Y s
(MO s T
jq?"l qf'?"l qé”.’i q%"s ) (5.3)
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where | <5< min(lfr.}'n)) o = (0«’“"‘}“;)) /3: CPU“'N@S))
°‘1'.>..0}ﬁ{20) Yi = &; +ﬁi (’i:l)--»,S)J ISY‘S Yz_<_--'5 Ye 5

X ooty =B+t B =a, N=(n,,ng) where the n;
are distinet, and é(a " p) is a positive combinatorial factor bounded

above by an A .

The sum over ¢ in (5.3) does not depend on the exact identity
of the n; ; thus

ol
I=Z Z hep) B gt g
y}P n - M I

S

. JZ ﬁtx; (%:ﬁt‘” ¢as %"pg : (54)
N

where M= (m,,---)ms) y the m; distinct, Now since 6;,2 0 s and

the Qé} form a P-system for n , we will remove the restriction that

M and N consist of distinct indices. This adds only nonnegative

terms to the right side of (5.4). Thus

5 % s v
. ji %“lqsﬂl '_Z-cé“s%'ﬁs

= 2. X kp)TEp), - (55)
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We will estimate the various U(d,ﬂ) (which are nonnegative).

Let |%]< M (v=1,2,+) and let the length of the interval be % .

First observe
n

J1z#) = [z 24

vzl

-4

< (M) E [Tl = Mt (5.

if £22 , (This is a primitive form of (1.16).) Also note that
~ayl
(n-s): < AIL _‘;. .

Case 1: Yl">' 2 . We simply estimate )ql;l £ M and thus

Tep) < Ar 7 g0 565 Mmoo Mo
. ns

e Y ¥ -
= ARM LG )6 = T (5.7.1)

Case 2: V,=+=Y,=1 22, and Y, >2 in case [< 5,
Here (using 5.6) '
o, TR & TP
PSS
-2
< M. MY p I‘Z"‘ézf MY s

Y. Y
Ue,p) s A M2 (Z4) Te™ T e =T1. (s

n
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Case 3, )(!= 1 )3_ in case s22 ., By Schwarz' Inequal-
Ay %, 7B &2 7P % =
(2" (28 g L 4°%")
- +fe 2 9
[SI1ZaF J1zasg™ 247 8™ ]
< [n (M M’gn)gfﬂ_'/z: B M '/2',

Piecine together finite sums, Our function g will be obtained

by modifying the series Zv:;v 2¢y , where A=I-1/2n ,n being

an integer greater than 1, If O0=n,<n <N, <:-- is a
sequence of integers (to be determined later) let o = (0, 7 )

be a permutation of { h2, } which rearranges the terms in each

block {nk+ !J S ?'1),“"_l }o(k= o4 2)...) among themselves. Write
" h
ki
- ~A
§ﬁ(x’0’) - Z 0:, Qé(x))
VIR, -+ ‘
(k=0,1,)
n ) n
fe+ | _1he -3 fe+1 ‘
B, = Z v Vv = e
k =n,+| N+ | v~
* k
' “B, = Z°° = 5 &0 Ch ity
Then Z o Ok < ‘ y @ = . 00sSe pos Ve convergence

(>~
factors €,2£ 2 2+  such that ) £, <0 . The factor
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€, will multiply the £ block of ZV"A?%, . Make (n;) increase
so fast that

1
' = OO, 4
) & B (5:8).
k=1
Let Im,n be the expression ] of (5,1) associated with
n - *
> v ‘ We will

show later that I, ,,< A(nM%) for all m and n. Since

- (Here n—m replaces n in (5.1).).

n _
fy B is the average of jf@k(x,o’)’ dx over all o ,

there exists ¢ such that

J léé(x,v)lzfxx < AGMR)

for all X, Then Z,:oeﬁ I %k(-,a') ”2!:< 00

and hence

(>4]
Z Efé cj’_ﬁk(x,a') s when written out, is the Fourier series of a
o

ge L‘sz whose coefficients are a,= EQO;-A for

> _ -A
a,= €,V

s with decreasing rearrangement

. (This is why we took & §  .) Thus (5.8)
states that B;:L (a) = o0,

It remains to be proved that Im,n < A(ﬂ-} M}'ﬁl.) . By

(5.5) and (5.7.1, 2, 3) we need only prove that the expressions

; . n -3
U, » U, s U; associated with Z )

2, are all bounded by
m+| _
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4 L V]
an A(r,M,h) . Evidently Lt & Zmﬁv < A

» N
absolute constant greater than 1, if Y22 and Z2 2 ., Since
552,
T, s AAMTA® s ALK MEAT
Then to prove the assertion for U_:Z. we observe that
| L f
1 (re) ( )
“rL'-m(Z N
n V4 l/an Yan £
| -y _ {n" -m'7")
< - (59‘ alx) = (&) n-m
‘ m
¢ =1 (1-x)° _ (m)l7#
=) a W (x = ('n) )
‘ —yyh- L L=l
o (M)lﬂmm—t (I=x) _ < (W'n " < ()"

[+ 4%

since [< 2n . Similarly for UB consider



I 5 & x I /an 1/
(n=-m)"2 ' (n~m)"*
‘ 1/2 55
= 20" R 2"”/“_'/&[,:;;’5":;37.]
g PR, o

- )

since 21 > 2.

If we form a probability space {) from the " as in Theorem 2,

we can see that there are many ¢ which give a ‘ge LM, . The

H#‘nkﬂg A(IL)M);.,) ' becomes

statement I

L;[afd% I@k(x,cr))zf < Al,M 1),

By convexity of ‘l.;,he Qnth power, we have ‘{[L” ék(v,a‘) ”‘ZILO‘U' < A[”;M;ﬂ)v
also,

Then

go 6 | 18,6000, dr < oo
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Hence for a.,e, 0 in () , Z:Eﬁ. Hi’k(',a‘)ﬂu < 60 and
gc,m Za Ef( @k(')o') is in LQ’L .

g A
A corollary of the proof of Theorem 3 is that ”;F fl 24 is
‘ *
a "smaller" expression for finite sums than Bl'b(a') H
(5.9) - Let qi?)qé)--o be a uniformly bounded ([q%] <M (v:l)l)---))

orthonormal P-system for an 23 2 on an interval of length £ < co ,

n
Then for each n there is a sum T =Z’ avq?) with

av>0 (v: |>---J‘n) such that

(ogn) [ITI*® < AGM B B (@),  (5.10)

= -
The relation (5,10) holds for T(X)= $ (x,¢)  if we set m,=m

and choose ¢ so that 5 ]é&(x,a‘)}zmdx < A(fL,M,'fy,) .
Always Boz log n, .

Theorem 3 for the trigonometric system., In case that 9%,?%,"'

is the exponential or cosine systsm, we can staie Theorem 3 in
a different form by using the following theorem of Hardy and
Littlewood [4](1, vol, II, P, 129]:

(5.11) Let a, > azz asz decrease to zero. The series

o ,
Z’ a, R, is the Fourier series of an f € LP’ P>l y 5F
and only if

=] F -2
2 ay v < oo
y=0
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and in this case the ratio
2 :
-2
wlf /X el of

(excluding ﬁ: 0 a,e.) lies between two positive constants which

depend_ only on P -
| WQ immediately deduce modified forms of Theorem 3 and (5.9)

when 42?, q'ﬁz g o is the exponential or cosine system,

(5.12) For each integer 7> 2 there is a function g ~ Z: Q, ;ﬁ
v

with Q) 2 a;>a 204 0 such that
T .
w 2!&
a) J 1@ o0
LI 4

b) there is a rearrangement Ay, oF Ay @y yee
) oo
such that Z‘ avsé, is the Fourier series of a ge le,

(5.13) For each 1 and n there is a trigonometric polynomial
n : A
T=2 a,%  with a >0 (v=l,n)  such that

2T AT m 5
(bogm) | 1717 < A, [ ]élafczglz, (5.14)

We do not know whether the log# 'may be replaced by something
larger,

Hardy and Littlewood [5] and Gabriel [6] proved that if
%>1 and Z ~9g GL then Z,“u‘fi"’ﬁfl-% and
‘ n W kiax
fo 917 < Ag [ T1g*1 % (5.15)



where Am: [ ~if n 1is an integer. But we have never seen any
strengthening of this result in the direction of (5.12) or (5.13).
The rearrangement of (af) which gives (5.14) was not explicitly
constructed; we might ask whether this would be possible for the
case of the cosine system, Perhaps the nondecreasing rearrangement

of the coefficients gives the least value of | T || n

.
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Appendix 1

tAl.i) a) If (SZZ) is a linearly independent P-system for 24 then

A
NT) = ITH " is a norm on the space of finite linear combinations
of th ”
of the q%)

°°' .
b) The set in.g L w & f~)  ay, 2  suoh that
L - 00 S S s

= 1yx ~
Z ja,le is the Fourier series of an § € L-Z'L is a Banach

A
space_under the norm ”5— “2’L "

Proof., a) We need only show the triangle inequality. Recall
that (1.9) is true for trigonometric polynomials with no assumptions

on the e“’“

(1.9) hore, 1t T=L" 2,4, U=]" 6¢ then

other than that they form a P-system, Thus we may use

)

T+0 < T+0,

N A a
|1T+UMM$ IT+Tl,

ITH + HUIIM, (A1.2)
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b) Applying (1.9) to two elements of X-‘l‘t exactly as in

(A1,2), we have that XZ'L is a linear space and “A“ is a

an
it, T v Lleten i =
norm on o prove completeness, g:x..ven :j‘:w € X‘M (TL— l).Z) )

satisfying
”fh'fmum-é 0 as nm—>o0 (AL, 3)
we will first identify the element of X2 »  ‘to which ('fn) will
7
converge., Since fu_ ,fm is a majorant of both fn-' . 0 and
A A ) A
. Nt > (A1.3) and (1.9) imply that (f,) and (1)
are both Cauchy sequences in L i . Thus there are
~
f, 9 € Ly, such that || &n—-ﬂ]%—-av 0, Ilf-g l}%ﬁ 0.

This also implies convergence of the Fourier coefficients of these
A
functions, Thus g = &y F B X,v; p

To prove “:\C/_\ Fll s =0 s Tirst observe that
N " 'L N
an-f“Z:: ”..)cﬂ_ac”l» 0 as 100 , and that ,:thfm
. ﬁ i m for all myn , Then for each ‘n)

I g_\fm = @“; < “5_\];”2’_;. 0 as m=>00 , Hence there

is a subsequence ('fmk) (depending on m ) such that

m’"k.—) ff‘\\‘f ' a.e./as\ﬁ'aw . By Fatou's Lemma,
e ) .
“fh— .'FHQQ S EIWI mfk-)oo ” fn"’ Jcmknzr[ 9 which tends

"to 0 as ‘n—)OO by (Alcs)o
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Appendix 2

(42,1) let (¢,) be a complex-valued P-system for n , and

T= Z:” a, ?5, y @, Eﬂﬂﬂ_@s- Then there is a ¢ such that
% - Jan :
[(s* oDl e 2 4, [if7, (a2

Proof, Divide up the unit circle of the complex plane into
? Em-l
= {e": (k-{)/m<xs (ktg)/m} ., and

1arg a,
classify Q, according to which segment @

m equal segments Eo,-v- s Where

falls into,
Thus write T= 7;+"'+Tm s where Tf‘= 2:(‘%9?,3 et¥i% ¢ Ek)
N
(ﬁ: 0?-'-, m—-1) . As an approximation to | write
| mol i k/m
U=/ e T
k=0

n
= 7 lelet® &
=]

V=

where ~T/m < 9), < T/m . Then

n_ . ' ((9-1- +9V 5'“""5#) "”_"“
(101"= Fia,~a, 0,0, le T (b &2

= Jlay-aya o a, [cos(Oyt+6,-6,-8, ) (g8 & B, (a23)
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If we make 24+T/m = T/3 , M=6n , then the cosine is 2 I/2,

The integrals in (A2.3) are all nonnegative, Hence

Jtmifz 1 Z1ayay @, a, | (¢4 -
=+ (171",

Now we may assume with no loss of generality that the largest of
the ”T}(”u 15 ”T"“‘ch « Then
-1

171, ¢ 2" 1oL, < 27 2 um
: 4=0

< 2%%nIml, < 2% lIs%o Tl

for all ¢" which put the terms of T, first,
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3.

7.
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