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ABSTRACT 

TIME-DEPENDENT MONOENERGETIC NEUTRON TRANSPORT 

IN TWO ADJACENT SEMI-INFINITE MEDIA 

_by Robert C. Erdmann 

An exact solution to the monoenergetic Boltzmann equation is 

obtained for the case of a plane isotropic burst of neutrons introduced 

at the interface separating two adjacent, dissimilar, semi-infinite 

media. The method of solution used is to remove the time dependence 

by a Laplace transformation, solve the transformed equation by the 

normal mode expansion method, and then invert to recover the time 

dependence. 

The general result is expressed as a sum of definite, multiple 

integrals, one of which contains the uncollided wave of neutrons 

originating at the source plane. It is possible to obtain a simplified 

form for the solution at the interface, and certain numerical calcula­

tions are made the re. 

The interface flux in two adjacent moderators is calculated and 

plotted as a function of time for several moderator materials. For 

each case it is found that the flux decay curve has an asymptotic slope 

given accurately by diffusion theory. Furthermore, the interface cur­

rent is observed to change directions when the scattering and absorp­

tion cross sections of the two moderator materials are related in a 

certain manner. More specifically, the reflection process in two 

adjacent moderators appears to depend initially on the scattering 

properties and for long _ times on the absorption properties of the 
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media. · 

This analysis contains both the single infinite and semi­

infinite metj.ium problems as special cases. The results in these 

two special !==ases provide a check on the accuracy of the general 

solution sine~ they agree with solutions ·of these problems obtained 

by separate arialyses. 
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I. STATEMENT OF THE PROBLEM 

In this thesis the effect of a discontinuity' in material properties 

on a neutron distribution in time is investigated. An exact solution to 

one specific problem is obtained, and certain conclusions are made 

from an investigation of the behavior exhibited by this solution. 

When a pulse of neutrons is initiated in a finite homogeneous 

body,. the long-term flux decay is found to be that of a single mode 

decaying exponentially in time. The exponential decay constant is 

found to depend to a large extent on the absorption cross section, to 

a lesser extent on the diffusion coefficient and buckling, and to a still 

lesser degree on t~e spectrum of the thermal neutrons. 

If the assembly is composed of two adjacent homogeneous regions 

rather than a single region, the decaying flux will be some function of 

the properties of both regions. Exactly how the decaying neutron flux 

is affected by the discontinuity is unknown, both as to the magnitude 

of the effect and to its explicit dependence on the nuclear pr ope rtie s 

of the system. The answer to this question was the major objective 

of the research summarized in this thesis. 

In attempting to analyze a time-dependent heterogeneous system 

to determine neutron flux behavior, the related problem of reflection 

at an interface also can be critically examined. In fact, an exact 
. . 

solution of a time-dependent heterogeneous problem provides one 

with an exact description of the mechanism of reflection. Hence 
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an attempt to gain some insight into the reflection of neutrons was 

made the secondary objective of this re search. 

For several years prior to the initiation of the resea,rch des-

cribed in this thesis, .there had been appearing in the literature exact 

solutions to certain monoenergetic, single-region, ·time-dependent 

and time-independent problems in plane geometry. Several mono-

energetic, two-region, time-in~ependent problems had also been 

analyzed in this geometry. So it appeared that if a monoenergetic, 

two-region, time~dependent probl~m were properly posed in plane 

geometry, its exact solution could perhaps b~ obtained. Furthermore, 

the exact solution to .a time-dependent, two-region problem would in 

itself be a contribution to neutron transport theory, since it would 

demonstrate that the analytical techniques used could be successfully 

applied to this type of problem. 

The· problem as initially conceived consisted of two thick slabs 

of dissimilar material somewhere in which a point burst of high energy 

neutrons is introduced. An accurate mathematical description of 

this system requires that the neutron distribution, subsequent to the 

' 
burst, satisfy a Boltzmann equation. This Boltzmann equation has as 

-
independent·variables space, time, and velocity (speed and direction). 

However, the analysis of the physical proble.m was restricted to a 

one-speed study to reduce the complexity of tl?.e Boltzmann equation, 

and to identify this work as closely as possible with those problems 

successfully treated in the literature. 
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Through this literature study, it also became apparent that the 

mathematical model of the physical problem would have to be made 

dependent on only one spatial dimension (slab geometry) if an exact 

solution were desired. Thus, the point source in the analysis was 

replaced by .a plane source parallel to the interface separating the two 

slabs. 

In an actual system, a point source can be made to approximate 

a plane source by physically relocating the point source or detector 

after each of a series of bursts, or· by using a set of detectors 

judiciously spaced for each burst. Thus: the point source system can 

be physically integrated to obtain the pl?-ne source results. 

As the investigation of the literature proceeded, it became clear 

that problems having finite geometries had solutions of a more compli­

cated nature than those having geometries of infinite extent. More 

exactly, the coefficients in the normal mode expansion for problems 

of finite geometry we re not obtained explicitly in the literature, 

whereas those coefficients in infinite geometry problems could be, 

and usually were, written. down completely. Hence, the physical 

problem c9nsisting of two dis similar slabs was replaced by one of two 

adjacent, , dissimilar, semi - infinite media. 

Several further simplifications were made in the mathematical 

model to decrease certain anticipated analytical difficulties but 

which in no way restrict the applicability of the analysis . The plane 

source was located at the interface separating the two media, thereby 
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effectively reducing the problem from a three to a two-region study. 

'Making the source isotropic was another slight modification employed. 

The final mathematical simplification was to assume isotropic 

scattering in the laboratory system for both materials. This is a good 

approximation only in scattering collisions between neutrons and very 

heavy nuclei. However, anisotropic scattering effects can be included 

in an exact solution of the two-region problem and were omitted here 

again simply to reduce the complexity of the analysis. 

In summary, this thesis contains an analysis of the decay of a 

monoe'nergetic neutron population in two adjacent, semi-infinite media 

following a plane isotropic burst of neutrons at the interface. Further­

more, this analysis can be expected to yield both the single half-

space and full- space solutions as special cases. 

The method of solution can be briefly stated as the removal of 

the time dependence by a Laplace transformation, followed by the 

solution of the transformed equation, and concluded by an inversion 

to recover the time dependence. An exact solution as well as two 

approximate ones (diffusion and P-1) are developed and compared for 

certain moderator materials. 

The exact solution to this problem contains the uncollided beam 

of neutrons which never interacts, and which travels at speed v 

through the two media. In addition, because of the infinite .extent of 

the system, no discrete spatial modes appear in the result. 
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The detailed solution to this problem is discussed in the 

remainder of this thesis. First, ~owever, a brief r eview of the 

literature is given to .provide additional background to the problem. 
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II. REVIEW OF THE LITERATURE 

This chapter is divided into four sections. Section A contains 

a brief discussion of the Boltzmann equation, the foundation upon 

which the remainder of the work in this thesis is based. Section B is 

a review of the development of the normal mode expansion (NME) 

method for solving the Boltzmann equation in slab geometry. 

Section C covers work done by several authors on time-dependent 

problems, utilizing the NME method. Section Dis a brief review 

of the steady- state, two-media problem. 

A. Discussion of the Boltzmann Equation 

The mathematical development of neutron transport theory has 

the Boltzmann equation as its basis(l, 
2

). This equation relates the 

behavior of a system containing many neutrons to the interaction 

properties between the neutrons and the bulk media, and it takes into 

account these changes in the system by their effect on a neutron 

distribution function. The assumptions ·used in deriving the 

Boltzmann equation are listed below. 

1. Neutrons are considered as stable particles since their 

13-minute half-life is much longer than their average lifetime in an 

assembly. 

2. Neutrons interact only through nuclear forces, which are 

short ranged. The atomic nuclei are assumed stationary. 

3. Neutrons move at constant velocity between collisions. 

4. Neutron-neutron collisions are neglected. 
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5. Collisions between neutrons and atomic nuclei are well 

defined events and take place instantaneously. As the result 0£ a. 

collision, a neutron may be captured, it may cause fission, or it 

may be scattered (elastically or inelastically) . 

6. At a given speed, the probability of collision per unit 

path length is constant. 

7. The neutron density is assumed to be continuous in both 

position and velocity, and givena neutron distribution at any time 

it should be possible to determine its behavior uniquely at any 

subsequent time. 

Using these assumptions, it is possible to write down a general 

transport equation for the neutron distribution. The following symbols 

are used: 

t = time . 

..... 
r = position vector of a neutron. 

v = velocity vector of a neutron; ; = v 0 , 0 = unit direction 

vector for the velocity· 

..... _, 
N(r, v 0, t) dVdvd 0 = probable number of neutrons at time t in 

_, 
the volume element dV about r, traveling with speed dv about v 

in the direction dO about 0 . 
..... 

at (r, v) = macroscopic cross section (probability of interaction 

per unit path length), which is assumed to be a function of position and 

energy only. Similarly as, a c, af are the macroscopic cross sec­

tions for scattering, capture, and fission interactions, respectively. 
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Hence, we can write at= as+ ac + af. 

..... ..... 
f 

1 
(r, v'O' ..... vO) dvdO = probability that a neutron, if it collides 

in dV about -; with original velocity v'O', will scatter into dv 

about v, and dO about 0 . 

..... ..... ..... 
f
2 

(r, v'O' .... vO) dvdC'l = probability that a neutron, arising from 

a fission collision in dV about ;, between a neutron of velocity 

v'O' and a nucleus, will be emitted in dv about v, and dO about O . 

..... 
et.(r, v) = average number of secondary neutrons produced per 

fission collision between a neutron with speed v and a nucleus in dV 

..... 
about r. 

S(r, vO, t) dVdvdOdt = probable number of neutrons emitted by 

..... 
independent sources in the volume element dV about r , with 

~. speed dv about v, and in the direction dO about ~ ~ at time t to 

t + dt. Independent sources imply sources whose existence and 

strength are independent of the neutron population of the system. 

Considering the flow of neutrons ~nto and out of a differential 

:volume of phase space then yields the following neutron transport 

equation: ( 1 ) 

..... --+ 

aN (r, v (l, t) + vO · V'N + v a t(r, v) N = at 

I dv'v' I dO' [ (J s(r, v') fl (r, v'O' .... vO) + 

a.(Z:, v') a /t:. v')f2(r, v'O' ..... ·vfo J N(r, v'O'' t) + S(r, vn, t). 

(1) 
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In neutron transport theory one is concerned with the description 

of neutrons having energies from a few MEY (fission) to approximately 

1/40 ev (thermal equilibrium with the surrounding medium). 

Equati~n (1) is valid over this energy range(!). Furthermore, since 

neutron-neutron collisions are neglected and since the neutrons are 

assumed to have no major effect on the containing medium, the 

neutron transport equation is linear. 

Boundary conditions to Equation ( 1) follow from the physical 

interpretation of N(;, vr!, t). A few are listed below. 

1. At the surface of a system which is nonreentrant, 

N(-:;, vO, t) = o for all rl entering the system. 

2. The number of neutrons coming directly (without collision) 

from infinity is zero. 

3. At a point on an interface between two media, the number 

of neutrons which leave one medium with a certain velocity will enter 

the next medium with this velocity unchanged. 

These can be simplified in most problems to: 

1. N(-:;, vO, t) = 0 for -:; on the surface and 0 entering the 

system. 

2. (a) lim ..... 
..... .... 

N(r, vO, t) = 0 if the sources are located in a 
r ..... co 

finite region of space. 

(b) lim ..... N(X:, vO, t) = Ke +r/ 1 if a source at infinity is 
r .... co 

considered (Milne problem). 

3. N(X:, vO, t) is continuous at interfaces. 
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We shall now make several additional assumptions, consistent 

with our problem, in order to reduce Equation (I) to a simpler form. 

First, assuming that the medium is homogeneous results i n the follow-

ing simplifications: 

.... 
ot(r,v) = ot(v), 

..... 
O.(r , v) = cx.(v)' 

.... ..... .... 
f 1 (v'o' -f 1(r,v 10 1 .... v O) = .... vo ), 

f (-; v'O' 
2 ' 

.... -vO) = £
2
(v'o' .... .... 

vO ) . 

For a system containing several different homogeneous media, 

these assumptions hold within each medium. 

Next, the neutrons are assumed to be monoenergetic; thus, 

£
1

(v 1f! 1 ..... vO) = £
1
(0 1 

..... 0)5(v' -v), 

f (v' O ' .... vO) = f (0 1 
..... 0) 6(v ' - v) . 2 2 

Finally , the scattering function is assumed to be independent 

of angle - isotropic in the laboratory system. To maintain the proper 

normalization of 

we set accordingly, 

1 
47T. 
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Substituting these relati.Ons into Equation ( l) and simplifying 

yields 

aN(-;, O, t) + vO · ~N + vo N = 
at . t 

(_as + ex.of) J .... .... 
- 4rr -v N(:r, O ', t)dO' 

I 
(2) 

0 
........ + S(r, 0, t). 

Since the work in this thesis is restricted to proble.rns having 

plane symmetry in space and azimuthal symmetry in angle, let us 

define µ E co~O ; hence 
x 

aN(x, µ, t) · aN 
at + vµ ax + votN 

+l 
v J N(x, µ', t)dµ 1 

-1 

+ S (x, µ, t). · 

(3) 

The last change in the basic equation is brought about through 

the definitions 

c a 

and 

o s + a.of 

at 

.. 

o = o, 
t 

'l.'(x, µ, t) == vN(x, µ, t). 

Thus, Equation (3) becomes 

1 8'l.'(x, µ, t) 
v at 

+ 8'¥ + µax 
+l 

o't' = ~o J'±'(x,µ',t)dµ' 

-1 

+ S (x, µ, t). 

It is the solution to this equation which is sought for two 

adjacent, semi-infinite media in which a plane isotropic burst of 

neutrons is introduced at the interface. The remainder of this · 

(4) 
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chapter contains a summary of several investigations which have been 

made of Equations (3) and· (4), both in their time-dependent and time-

independent forms. 

B. The Normal Mode Expansion Method 

If Equation (4) is reduced to the time-independent and homo-

geneous form, one is led to an equation which was considered by 

Case in l9p0(31
); 

where 

µ B'f(y, µ) + 
~y 

. +l 
'l' = ~ s 'l'(y,µ')dµ', 

-1 

y = crx. 

(5) 

In Reference (3) a new method for solving Equation (5) is presented. 

Based on work done previously in the field of plasmas(4 , 5 ), 

Case finds that both regular and singular - in the sense that they be 

distributions - solutions to Equation (5) are physically admissible 

and, in fact, necessary if a complete solution to Equation (5) is 

desired. 

Solutions to Equation (5) are assumed to have the form 

= e-y/vc+> (µ). 
v 

Substituting Equation (6) into Equation (5) and requiring 
+l 

J Cf>v(µ)dµ = 1, 

-1 

yields 

CV 

z· 

(6) 

(7) 
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Prior to the Case paper(
3

), to obtain cp\J(µ) one. simply divided 

by the factor (\J - µ), thereby implicitly assuming \Jt [ -1, 1 J. This 

operation results in the two solutions to Equation (7) given by 

where 

1 = 

c = 2 

-1 1 
C\J tanh -

0 \)0 

(\J
0 

is real and greater than 1 for c < l, and is 'pure imaginary 

for c > 1). 

What Case observed was that not all of the solutions to 

(Ba) 

(8b) 

Equation (7) are given by Equation (8a). Permitting \J to lie in the 

interval [-1, 1 J, Case obtained, as another solution to Equation (7), 

where 

\.(v) = 

c2 P \J + \.(\J) o (µ - \J), \) - µ 

-1 
1-c\Jtanh v, 

( 9a) 

(9b) 

and where the P in Equation (9a) indicates principal value integration. 

An important property of the solutions to Equation (7), as given 

by the functions cp ±(µ) and cp (µ), is that these functions are 
0 \) 

found to be orthogonal over the range -1sµs+1 with a weight 

function µ. That is 

+l 

s µcp\),(µ)cp\)(µ)dµ = 0 

-1 

\) =f:. \)'. ( 10) 



-14-

Also the normalization integrals for \) = \J 1 are presented in 

Reference (3). 

A second and more important property of the cp's is that 

certain of them form a complete set of functions along any portion 

of the [-1, I] range over which µ is defined. Moreover, from the 

proof of completeness provided in Reference (3), a procedure . is 

outlined for determining the coefficients in an expansion of the form 

(valid for -1 s: µ s:+ l) 
+l 

f(µ) = a +cp + (µ) + a cp (µ) + J A(\J)cp\J(µ)d\J. 
0 0 o- o-

-1 

This procedure can be used as an alternative of, and an extension to, 

the full-range orthogonality property. 

Hence, the general solution to Equation ( 5) can be written as 

+l 

'¥ ( y' µ) = a o+ ~ o+ ( y' µ) + a o - ~ o - ( y ' µ) + J A ( \J) ~ \) ( y' µ) d \), ( 1 1 ) 

-1 

where the coefficients, in principle, can be obtained. In Reference (3), 

the author applies this method of solution to several time-independent 

problems of interest in plane geometry; the Green's function for a 

uniform infinite medium, and several half-space problems including 

the Milne problem. In addition, the solution to the time-dependent 

equation in an infinite medium is discussed, and this is presented in 

more detail in Section C. 

However, except for the cases where the full-range orthogonality 

relations are used, s.imple forms for the expansion coefficients are 

not determined in Reference (3). The derivation of simple forms for 
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these coefficients in less than full range problems (e.g., for 

os; µ s;l) is included in a second paper by Case (
6), published in the 

form of a report in 1961. 

For a co he rent account of how expansion coefficients in partial 

µ- 1:1pacc problems arc obtained and subsequently simplified, it is 

necessary to look at the results of the completeness prool3 > in more 

detail. In addition, since most time -independent problems are similar 

in their sequence of analysis, the work done on only one problem in 

this reference will be reviewed - the Milne problem. 

In the Milne problem one must solve Equation (5) in the right 

half plane subject to the boundary conditions; 

(a) 'l'(o,µ) = 0 µ ~ 0, 

(b) 'l'(y,µ) .... 1\r
0

(y,µ) as y .... oo, 

where 

1\r (y, µ) = eyl'Vor:+> (µ). 
o- o-

The solution to Equation (5) which satisfies condition (b) is 

1 

'l'(y,µ) = 1\r
0

_(y,µ) + a
0

+1\r
0

+(y,µ) + J A('Vl1\r)y,µ)d\J. (12) 

0 

Applying condition (a) yields 

1 

-q> o- (µ) = a o+ r:+> o+ (µ) + J A(\J)q>)µ)d\J. 

0 

(13) 
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<3) "d h f 11 . Now the completeness proof prov1 est e o owing pre scrip-

tion for obtaining these coefficients. 

A(v) = c~ [ N+ (v) - N-(v)], 

N (z) 
1 Jl J'.(l:!: 1lf~µ')d~' = 2rriX
1 

(z) (µ' - z) c 
0 

1 I y(µ'}W'(µ')dµ' = o r c(z) 
= e ' 

0 
(14) 

r . (z) 1 Jl 2iQ(µ)dl:!; 
Q(µ) + = 2rri = arg /\ (µ) c µ-z 1 

0 

J+l dl:!: 
x1- (µ) 

J\(z) 1-
CZ 

y(µ) 
cµ = -2- = T z-µ J\ - (µ) 

-1 

By means of these formulae, both a
0

+ and A(v) are com­

pletely determined - if not explicitly, . .at least in theory. In fact, 

from the third relation in Equation (14), the expression for a
0

+ is 

given in Reference (6) as well as in Reference (3), by 

1 -J y(µ')cpo_(µ')dµ' 
0 

ao+ = 1 

S !:p (µI )y (µI) dµ I 
o+ 

0 

( 15) 

It is at this point that Case introduces several identities con-

cerning x
1 
(z), based on Cauchy's integral formula. He had 
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previously( 3 ) obtained an identity for the X(z) found in the full- space 

completeness theorem, but the general applicability of these identities 

in determining simple forms for the expansion coefficients did not 

become known until his 1961 report(6 ) was published. 

For the problem reviewed here, the X(z) identity used to 

reduce Equation (15) is given as 

Hence, Case obtains 

y(µ')dµ' 
µ'-z 

Xl(-\!o) 

ao+ = Xl (\! o) 

and a similar result for N(z) , thus permitting A(\!) to be written 

down in a simple form as well. In fact, at x = 0, the emerging 

angular flux is found to be 

'i'(o,µ) = 
2 

C\) Xl(-\! ) 
0 0 

Once the identities in X(z) were observed to be vital in the 

( 16) 

( 17) 

( 18) 

simplification of these problems, a number of them were obtained, 

in addition to those presented in Reference (6). For each problem 

solved by the NME method and published in the literature, relations 

for X(z) were usually determined immediately and applied in the 

simplification of the solution. 



-18-

In addition to the reductions brought to light due to the X(z) 

identities, Case also notes, in Reference (6), some possible exten-

sions of the NME method to slightly more complicated problems, all 

of a time-independent nature. He examines the problem of a critical 

slab in some detail and discusses the generalization of the NME 

method to include anisotropic scattering. Finally, he considers the 

Milne problem for two adjacent half-spaces, which is related quite 

closely to the work described in this thesis, and certain aspects of 

which are de scribed in more detail in Section D. 

While the usefulness of the NME method was being demonstrated 

by its application to a variety of problems in slab geometry, and while 

the method itself was being generalized to include energy, time, 

anisotropic scattering effects, and changes in geometry, it was not 

until April 1964(7 ) that the necessity of using the completeness proof 

to obtain the expansion coefficients was shown to be unnecessary. The 

orthogonality relations first proved in the full µ-space by Case had been 

extende d to any fraction of the µ-space by the suitable choice of a 

weighting function. 

In Reference (7) orthogonality r e lations are developed and 

applied in the steady- state solution of both half- space and two 

adjacent half- spac e problems. Our discussion centers on the d e velop­

ment of the two-media orthogonality relations found in R e ference (7). 

Although the complete ness proof is no longer neede d to obtain 

the coe ffi.cients in an expansion such as Equation (13), certain results 

from the completeness proof are needed to obtain the proper weig ht 

functions. Hence, the orthogonalization method of obtaining the 
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expansion coefficients is not entirely divorced from the completeness 

proof. 

Froni the two-media problem, described in Reference (7), the 

· following formulae are obtained for a geometry where subscript 1 

implies x < 0 and subscript 2 impliex x > 0 in Equation (5). 

c nvOn 1 
cpn±(µ) = 2 1 = 

von'=Fµ 

cp\)(µ) = \)C~V} p __ 1_ + 
.t(v) o(v-µ) 

2 v-µ 

t (v) 
-1 = 1-vc(v) tanh v 

-1 1 
c v

0 
tanh -n n vOn 

Cz 

c (v) = (c 
1 

+ 
µc(µ) Xk(µ) 

ZLt (µ) 

• n = 1, 2, 

\) > 0 

\) < 0 • l 9a) 

The X (z) are the appropriate half- space functions obtained 
n 

from the completeness proof, and the angular dependence is described 

in terms of cp1±(µ), cp2 ±(µ), cp 1 v(µ), cp2 )µ), in the appropriate half-

spaces. 

Again, ·the basis for the method is linked directly to several 

X(z) identities. The identities of interest for the two-media problem 

are given in Reference (7) as 

+l 

J µ~k(µ) i~z = 
-1 · 

dµ 
µ-z 

n = 0, 1 

( l 9b) 

= 
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Based on these identities, the three linearly independent 

functions, µ°r k(µ), n = 0, 1, l, can be combined to include any two of 

the four discrete eigenfunctions in the orthogonality relations. Kuscer, 

et al. , chose cp1 _ (µ) and cpl+(µ) by using the weight function 

Some of the resulting integrals obtained were 

+l 

s w k(µ)cp)µ)cp\),(µ)dµ 

-1 

+l 

s cpl+ (µ)cpv(µ)Wk(µ)dµ = 
-1 

+l 

J cp1 _(µ)cp)µ)Wk(µ)dµ = 0, 

-1 

+l s cpl_(µ)cpz+(µ)Wk(µ)dµ = O' 

-1 

. +l 

I cpl+ 2(µ)W k(µ)dµ 

-1 

+l 

s cpl- l(µ)Wk(µ)dµ = 
:- 1 

(l l) 

(ll) 

T hus, the c oefficients in ste ady-state , two-region problems can be 

obtained with the orthogonality relations listed above. Also, these 

results contain as special cases both the full and half-space ortho-

gonality relations, as noted in Reference (7), and they can be obtained 

by a suitable choice of constants. 
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To summarize then, Equation (5) has been looked at in some 

detail within the framework of the NME method, and exact solutions 

have been found to a variety of problems based on this equation. 

Simplifications to the method of solution have come through the appli­

cation of identities in X(z) both to expressions for the expansion 

coefficients obtained from the completeness proof and to the develop­

ment of certain orthogonality relations. 

Extensions of the NME method to include anisotropic scattering 

effects have been successful and can be found in the literature 

(Mika(B>, Zelazny( 9 >, et al., Shure(lO>, et al). 

The addition of energy dependence to Equation (5) has been 

examined in some detail for several simple models including both 

constant cross sections(ll, 12) and energy-dependent cross sections(l 3 )_ 

A study of the time - dependent the rmalization problem using the NME 

method has also been made (see for instance, Reference 14) . . 

However, attempts to extend the NME method to other geometries 

have met with little success(
15>. 

Three time-dependent problems have been solved and their 

results published in the literature. They will be discussed in the 

next section. 

C. Three Time-Dependent Problems 

The additional dependence of the neutron flux on time increases 

the complexity of solutions to Equation (4) as compared to the com­

plexity of the time-independent solutions discussed in the previous 

section. Two methods of time removal have been applied successfully 
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to Equation (4). and both methods are described in this section. 

I. The Single Inf.init~ Meditt,m 

In this problem the units are chosen such that v = a = 1, 

reducing Equation (4) to 

a'i'(x, µ, t) + 
at 

µ .a'JI 
ax 

+l 
+ '¥ = ~ J 'i'(x, µ', t)dµ' + S(x, µ, t). 

-1 

In Reference (3), Case solves Equation (21) in a uniform 

infinite medium with 

S(x, µ, t) = o(x-x
0

)o(µ-µ
0

). 

Assuming solutions of the form 

~(x, µ, t) = ikx - ( l+icx.k)t ( ) 
e e cpcx.,k µ, 

(21) 

(22) 

(23) 

Case states - based on his work in Reference (5) - that the cp k(µ) a., 

are orthogonal and complete for µe [-1, 1]. Hence, the solution 

can be written down almost immediately as . 

+oo "k 

I 
. -1 ex. t 

-t ik(x-x ) cp (µ )cp (µ) e o 
'l:'(x,µ,t)=~tr e . Odk[ o,kNo o,k {l(k+tr~)-l(k-tr~)J 

o,k . 
"'00 

(24) 

where all the terms are defined explicitly in Reference (3). 

This problem differs from the thesis problem in that in the 

·problem above the material properties are uniform throughout space 
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and the source is angularly dependent, whereas in the thesis problem 

the material properties are not the same on the two sides of the 

source plane. nor is the source angularly dependent. Although the 

angular dependence of the source is not a major obstacle in applying 

this method to the thesis problem, the difference in material properties 

precludes the use of the type of solutions assumed here (Equation 23}, 

without some additional modifications. 

2. The Single Slab 

A time-dependent solution to the neutron transport equation 

in a finite slab was reported by Bowden in 1963(2 ). This problem 

is physically quite different from the thesis problem. Also, due 

to the finiteness of the geometry, one expects a fundamental mode 

and higher harmonics to be set up in a slab problem as compared to an 

absence of modes in the case of two semi-infinite media. However, 

many similarities in the method of analysis compel us to look in some 

detail at this work(
2

). Both this problem and the one following are 

summarized in Reference (16). 

Based on assumptions of isotropic scattering and a mono­

energetic system of neutrons, Bowden gives as the governing equation 

within a slab, extending from -a'~ x ~ + a', the homogeneous form of 

Equation (3), with the accompanying conditions 

N( :l::a', µ, t) = 0 µ~ 0, t > 0 • 

N(x, µ, 0) = £' (x, µ). 
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By the change of variables 

y = a x t t' = crtvt , f(y, µ} ::::: f'(x,µ) 

a vt u(y, µ, t) = N(x, µ, t} e t , a=cra', 
t 

] 
Bowden obtains from Equation (3) and the relat.ed boundary conditions 

listed above, 

+I 
au(y, µ, t) 

at' 
+ c 

2 J u(y,µ',t')dµ' 

-1 

u(±a, µ, t'} = 0 µ ~ 0, t' > 0, 

u(y, µ, 0) = f(y, µ) . 

. . (17) 
From theorems proved by Lehner and Wing , Bowden 

concludes that the solution to Equation (25) can be written as 

u(y, µ, t') 

N I \ * a..t I 
= L.. (f, 'fo} 'fo.. (y', µ) e J + lim 21Ti 

• .J w~ oo 
J=O 

Y1 +iw 

J Rs(y, µ)est'ds, 

Y1 -iw 

where the 'l'a.j (y, µ) satisfy the equation and boundary conditions 

0'1'a..(y, µ) 
-µ _....,....J __ 

ay + 
+l 

~ s '±'et/Y• µi)dµ' = etj '1'a.j (y, µ) , 

-1 

'!'o. . (±a,µ} = 0 , µ ~ 0. 
J 

(25) 

(26) 

] 
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* The 'l:'cx. . (y,µ) satisfy 
J 

+l µa'¥~. (y,µ) 

ay c s * ' * + T '¥a..<Y· µ') dµ' ~ a.j 'l:'a..<Yt1.1) 
-1 J J 

Rs(y,µ) satisfies 

and . +a +l 

* 'l:' (±a, u) = O , µ ~. O • cx.. 

c 
- 2 

J 

+l 

s Rs(y,µ')dµ' = f(y,µ), 

-1 

(h, g) == S dy. I h(y.µ) g(y.µ)dµ . 

-a -1 

Bowden notes that although Lehner and Wing(l 7 ) suggest the form 

that the solution will assume (Equation 26; et seq. ), they do not 

suggest the shape of the eige~functions .nor the eigenvalue distribution. 

To learn of the solution in more detail, Bowden applies the NME 

method to Equatio.n. (25 ). 

Removing the time dependence by a Laplace transformation 

converts Equations (25) to 

au (y, µ) 
s u _...,,... __ 
ay + su' 

s 
c 

= 2 

+l 

J us(y, .µ')dµ' + f(y,µ) 
-1 ' 

u (±a,µ) = 0 , µ ~ 0 , 
s 

(27) 



where ' 
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00 

us(y,µ) = J e·•t'u(y,u,t')dt' 

0 

Bowden first solves the homogeneous part of Equation (27), 

µ 
B'l' s (y, u) 

ay 

+l 

+ s'l's = ~ J 'l's(y,u')dµ' 

-1 

(28) 

and then solves the inhomogeneous equation by the use of a Green's 

function. In the homogeneous equation, he assumes solutions of the 

-sy/v form 'l' (y, µ) = cp (u, v) e , and the v-plane is broken up into s . s . 

two regions, ve[-1, l] and v¢[-l, l]. For vt:[-1, l], the expected 

continuous solution which holds for all s, 

-sy/v 
1jls(y,µ) = cps(u,v)e , 

( ) CV p _l_ + A ( )o( ) cps µ, v = 2 · v-µ s v v-µ ' (29) 

A (v) 
s 

-1 = s - cvtanh v 

is obtained. _ Also, for vt [-1, 1] , there appear the discrete solu-

tions ·, 

(30) 

s = cv tanh -
1
( ~ ) , 

as anticipated. 

However, because s and v are complex, both the number of 
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discrete solutions and the region of the s-plane where they exist 

are unknown. Bowden solves both these problems by looking in 

detail at 

-1 ( 1 ) Os(v) = s-cvtanh v . (31) 

A discrete solution will exist for that v which makes 0 (v) 
s 

vanish, provided vt [-1, 1] . 

To determine the number of zeroes of 0 (v), for a fixed s, 
s 

in the v-plane with a branch cut from -1 to + 1, Bowden applies a 

theorem from complex variable theory, the principle of the argument 

(see for instance, Copson, pg. 119)(1S), which has also been applied 

in neutron transport theory by Zelazny(9>. The theorem states that 

if a function f(v) is regular within and on a closed contour C, 

except for poles, none of which lie on .c, and if f(v) is non-zero 

on C but has zeroes within C, then the excess of the number of 

zeroes ov.er the number of poles of f(v) within C is 2~ times the 

increase in argument of f(v) as v goes once around C (an nth 

order pole is counted as n first order poles and similarly for the 

zeroes). 

The contour chosen by Bowden in the v-plane is shown in 

Figure 1, where p --o and R .... oo . Along CR, Bowden notes 

that o (v). = s 
s-c . He also notes that if s = c, the only two 

solutions of Equation (31) are v 0 = ± oo; s I= c was assumed in 

the remainder of the analysis. Now, there is no change in the 

argument of Os(v) along CR , nor is there any change in the argu­

ment observed by traversing the contours Gp- and Gp+' Thus, 
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all changes in the argument of Os(v) occur along c: and Ci 

Above and below the branch cut, 0 (v) has the functional form s 

± -1 
0 (µ) = s - cµtanh µ ± itrcµ/ 2 . 

s 

Bowden writes s = O. '+ij3' and obtains 

± 
arg 0 (µ) 

· S 
= tan -1 { (3'±rrcu/2 } 

-1 
a.'-cµ tanh µ 

(32) 

Investigating this expression, the author finds that the argument 

of 0 (v) changes by 4'T!" - and hence indicates two zeroes since 
s 

there are no poles '-- only within a certain region of the s-plane. 

· Outside this region, the argument does not change by a factor of 

2'TI" indicating that no zeroes of 0 (v) occur there. By a slight 
s 

modification of the contour shown in Figure 1, it is also noted that 

if s lies on the boundary separating these two regions, O (v) 
s 

has two zeroes. 

The region where 0 (v) vanishes, or where the two discrete 
s . 

solutions exist, is defined as s .. 
1 

That region where 0 (v) does not 
s 

vanish is defined as S . These regions are shown in Figure 2. 
e 

The equation for C (see Figure 2) is given as 
s 

2R 1 -1 a. 1 = -=.L- tanh 
'Tl" 

By inspection of Equation (31), one can easily see that if v is 
0 

a zero, then -v is also zero. Choosing v to have a positive 
0 0 

real part, two discrete solutions can then be written: 
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+ 
sy/'J 

0 

1jl s±(y, µ) = cps±(µ) e 

ev l (33) 
cps±(µ) 

0 = -2- \) 
o+ 

µ 

-1 l 
Re \J >O s = C \) tanh 

0 \)0 0 

Here for s e S . , the two discrete solutions defined by Equation (33) 
. 1 

and the continuous solution defined in Equation (29) are known to exist, 

while for seSe , only the conti.nuous solution, Equation (29) , exists. 

Bowden next proves that for s e S. the functions cp ±(µ) and 
1 S 

cp (µ, \J) form a complete set over the space -1~µ ~+ l. For 
s 

seS , cp (1-1, v ) is itself complete over the same space. In addition, 
·e s 

full-r.ange ·orthogonalization and normalization integrals are obtained 

in Reference (2). Thus, the form of solution found for s e S. is 
1 

different from that found for seS and is characterized by the 
e 

.presence or absence of discrete .solutions . . 
The remainder of the slab problem· will be summarized rather 

briefly . . For sE:S. , Bowden then solves Equation (28) subject to the 
1 

boundary conditions 

'¥ (±a,µ) = 0 
s µ ;; 0 • 

* A similar analysis for the adjoint '¥ (y, µ) leads to the conclu-
s 

:Sion that the eigenvalues of the transformed angular flux and its 

adjoint are found to be identical, and that 

* 'fa. . (y, µ) = 
J 

'±'a.. (y, µ) 
J 



-31-

where the bar denotes complex conjugate. Next, the solution to the 

inhomogeneous problem, Equation (27), is solved in both S. and S 
i e 

with the aid of a Green's function. It is observed(
2

), based on the 

work of Lehner and Wing(l ?) , that the solutions in S. and S 
i e 

are 

representations of a function which is analytic in the right half 

complex plane of s, save for eigenvalues of the homogeneous prob-

· lem which lie on the real axis. Hence, by shifting the inversion 

path to the left but not past the imaginary axis, the author obtains as 

a final result Equation (26), where now the quantities involved are 

completely specified. 

3. The Single Semi-Infinite Medium 

In A~ril 1964, a paper( 19) was published on the solution to the 

time-dependent monoenergetic Boltzmann equation for a single semi-

infinite medium. The source applied to the half-space was a burst 

·of neutrons entering the surface of the medium in some preferred 

direction at t = 0. Although there are obvious differences between 

this single half-space probl~m and the :the sis problem, one can 

expect many similarities in the analysis of the two problems, since 

a two adjacent half-space analysis contains a certain single half-

space problem as a special case. These similarities in the analysis 

are · discussed in this section. 

Starting with the homogeneous form of Equation (4) for x > 0, 

· the transformations vat = t' ax= y yield 

a'i'(y, µ,t') 
at' 

+l 

+ µ :~ + '¥ = ~ . J 'i'(x, µ 1 ,t')dµ' 

-1 

(34a) 



as 
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Boundary conditions for the problem are given in Reference ( 19) 

'i'{O,µ,t') = 6(µ-µ ) 6 (t') 
0 

'i'(y,µ,t') = 0 

µ > 0, 
0 

, t' ~ 0 • 

Kuscer and Zweifel also note that when 

x' = cy t" = ct', and 'i'(y, µ, t') 

(34b) 

-( 1-c)t' = e X(Y, µ, t') , 

Equation (34a) becomes 

+l 
ax(x', µ, t'' 

at'' + -~x µ 1JXl = + s x(x', µ', t")dµ' 

-1 

(35a) 

and the boundary conditions are transformed into 

X(O, µ,t") = 6(µ-µ
0

) 6 (t"), u
0 

> 0, 

lim x(x', µ,t") = 0. , t" ~ 0 
x'--oo 

(35b) 

Removing the time dependence from Equations (35a, b) by a 

Laplace transformation, where 

00 

I (1-s)t" 
'¥s(x',µ.) = e x(x',µ,t")dt" 

results in 

a'!! (x',µ) 
s µ------,--
ax' 

0 

+ s'i' s 

lim 'l' (x',µ) = 0 
x''-* oo s 

+l J 'i's (x',µ')dµ' 

-1 I (36) 

µ > 0. 
0 
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Kuscer and Zweifel, when· solving Equation (36) by the NME 

method, also note the . existence of two regions in the s-plane where 

the allowed solutions in Equation (36) are characterized by the 

presence or absence of discrete terms. A study of the S . and S 
i e 

regions for this problem would yield a picture quite similar to that 

shown in Figure 2. In this problem, because of the slightly different 

transformations from those made in the previous problem, one should 

set c = 1 (in Figure 2) to get the correct description of the boundary 

between the two regions S . and S . 
· 1 e 

In addition to this small normalization difference, it is observed 

in Reference ·( 19) that a branch point appears at s = 1 and a branch 

cut in the a-plane exists along the real s-axis for 0 ~ s ~ 1. As 

explained in Reference ( 19), · this can be thought of as a limiting case 

of the slab problem treated earlier(Z), in which a finite number of 

poles occur along the real s-axis . We note that as the slab thickness 

is increased, an increasing number _of poles fill the interval on the 

real s-axis more and more densely and in the limit become a branch 

cut. 

A physical reason for the appearance of the bl,"anch cut in the 

semi-infinite medium problem as opposed to the finite number of 

poles for the slab is that in the finite medium one expects standing 

modes to be set up, whereas in the unbounded geometry no standing 

modes are. expected. 

Kuscer and Zweifel write down the solution to Equation (36) in 

each region of the s-plane (again the presence and absence of discrete 

terms is apparent), and they also note some important simplifications 
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which occur in the transformed angular flux at x' = 0. To perform 

the inversion, it· is necessary' to have a function analytic in ·some right 

half plane. It is known that such a function exists since the trans-

formed Equation (36) has a continuous solution along the real s-axis 

for l< s < oo. Also, it can be seen that in S. arid S the two re pre-
. i e 

sentations of , '¥ s (x', µ), are. analytic. What Kuscer and Zweifel 

show is that th.ere are no singularities of '¥ s(x', µ) along the 

(20) ' ' . . 
border between the two· regions, and that the values assumed by 

the solution along ·the border are the same when the border is 

approached from either side. Hence, the function: represented by 

'¥ (x', µ) in both regions of the s-piane is analytic in the right half s . . ' 

s-plane except (or a branch cut from 0 t'o 1. T.hus, the inversion 

path can be shifted to that shown in Figure 3. 

The technique sketched ,in the last paragraph to prove that the 

solutions to Equation (36) in each region of the s.-plane are a.nalytic 

continuations of each other will also be used, with the same objective 

in mind, in the the sis problem. 

The final form of the solution (not shown he re) contains the four 

. integrals 11 , ..• , 14 , and the solution can be reduced still further at 

x' = 0. A final point of interest can be found in their discussion of 

the results,where Kuscer and Zweifel note th,e appearance of an 

uncollide·d beam of neutrons which also can be expected in the two-

media problem. 

Several papers have been published which deal with the steady-

state, angular flux distribution in two adjacent, semi-infinite media, 

The next secti.on contafns a review of this work. 
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D. The Steady-State, Two Adjacent Semi-Infinite Media Problem 

Prior to the discovery of the NME method, the solutions to 

problems involving half-spaces were derived with the aid of Fourier 

transforms in general, and by the use of the Weiner-Hopf method in 

particular. This method is applied to the two-media problem in 

References (1) and (21). Another discussion of the two-media problem, 

utilizing this method, can be found in a paper published in 1957' by 

K . M. Case(ZZ>, where the two media Green's function is obtained for 

an isotropic plane source. 

In applying the NME method to this geometry, one starts with 

.an equation of the form · 

µ 81!.'(y,µ) + 1i' 
By 

c 

. / ~ ~ +l 

= I 1!.'(y,µ')dµ' 

""' c2 / -1 
2 

y<O 

y > 0 ' 

with boundary and source conditions appropriate to the problem under 

consideration. Again, both discrete and continuous solutions are 

obtained, and they can be shown(6) to be complete in µ-space. In 

·fact, the X(z) function for this problem is found to be the product 

of the. two separate half- space functions: 

Hence the expansion coefficients can be determined from either the 

completeness proof or the orthogonality relations and in principle 

these problems are solvable. 
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A more complete examination of the steady-state, two-media 

problem than that given in Reference (6) can be found in a paper by 

Mendelson and Summerfield(~3 >, After a brief review of the com­

pleteness proof obtained previously(6) for this geometry, the 

authors discuss the solutions to several problems of interest - the 

Milne problem, a uniform source in one half- space, and the Green's 

function (angularly dependent). 

In solving these problems, the authors obtain reductions in 

the complexity of certain of the solutions at the interface separating 

the two media through the evaluation of the integrals over the con-

tinuous eigenfunctions in v-space. This appears to be a type of 

reverse Hilbert problem and its success seems to depend heavily 

on a "feel" for the problem under consideration. From the brief 

discussion of this technique provided in Reference (23), major 

reductions in the complexity of the solution at the interface in the 

the sis problem are achieved. 

On the basis of this brief survey ·of problems treated by the 

NME method, i t is expected that several factors appearing in these 

problems should also appear in the solution for the time-dependent 

flux in the two-media system. First, removing the time by a 

Laplace transformation should result in a transformed equation which 

can be solved by the NME met.hod. Next, there should be s e veral 

regions in the s-plane, where the forms of solution are different but 

which describe an analytic function in some right half s-plane, save 

for a portion of the real axis. This portion of the real axis should 

be a branch, due to the unbounded geometry of the two media. 
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Finally, some reduction in the complexity of the solution at the inter­

face between the two media should occur. 
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III. TIME-DEPENDENT NEUTRON TRANSPORT IN TWO 

ADJACENT SE:Ml·INFINI'l'lt MEDIA 

A. Summary 

With the assumptions of a monoenergetic neutron spectrum, a 

system of two homogeneous regions, and isotropic scattering in the 

laboratory system, the governing equation for the angular flux in 

each spatial region is (see Equation 4), 

+l 
1 a'±'<~;µ, t> + µ aax'f + (Jtl/ - ~I tll<x µ' t)dµ' + s (x µ t) I- 2 I J J J J (37) v 

-1 

The geometry for this problem is shown in Figure 4. An isotropic 

burst of neutrons of strength s [in units of neutrons/unit area x time] 

is assumed.to occur at the interface at t = 0. That is 

S(x, µ, t) = so(x)o(t). 

A minor simplification to Equation (37) can be made by setting 

vt = T . and vs = q . Thus the equation, whose solution we seek, is 

written as 
+l 

8'±'(x, µ, T) + 8'±' + cr(x)t11 arr µ ax l = c(x~(x) J '±'(x, µ,, T)dµ, 

-1 
(3 8) 

+ qo(x)o(T) 

c(x) and cr(x) imply that the cross sections may be different in 

each half space. '±'(x, µ, T) is required also to satisfy the boundary 
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and initial conditions, 

lim '!'(x, µ, 'T) = 0 

'¥ (x,µ, 0-) = 0 (39a) 

and from Equation (38) the jump condition, 

µ ['!'(o+,µ,'f) - '!'(O-,µ,,.>J = qo('f). (39b) 

The method of solution to be used is given in sequence below: 

1. Remove the 'f dependence by a Laplace transformation. 

2. Solve the transformed equation in some right half s-plane 

by the NME method. 

3. Determine the properties of the solution there. 

4. Invert the solution from s to 'f , deforming the path of 

integration in a suitable manner. 

5 . Simplify the solution where possible (at the interface). 

Steps 1 and 2 are covered in this chapter, Steps 3 and 4 in Chapter IV, 

and Step 5 in Chapter V ;. 

Once 'l'(x, µ, 'f) is determined, both the flux and current can be 

obtained by simply applying the usual definitions 

+l 

~(x, 'f) = J 'l.'(x, µ, 'f)dµ 

-1 

· and (40) 
+l 

J(x,'f) = J µ'f(x,µ,'f)dµ. 

- 1 



B. Time-Removal 

If we define ~ (x, µ) by 
s 

co 
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'fs(x,µ) = J e-s'f'±'(x,µ,T)dT 

0 

then to recover the T dependence we use 
y+i co 

'±'(x,µ, T) = 2;i J esTYs(x,µ)ds 

y-ico 

( 41) 

(42) 

Hence, it will be necessary to obtain 'f (x, µ) at least along the path 
. s 

given in the inversion integral(42) where y is a real number 

greater than the real parts of the locations of all singularities and 

branch cuts of '¥ (x, µ). It will be observed later that from a know­
s 

ledge of the behavior of If (x, µ) in some right half s-plane we shall 
s 

be able to· deform the inversion path, through the use of Cauchy's 

theorem, and obtain a simpler form than Equation (42) for our final 

result. 

Multiplying Equation (38) by - s 'f e and integrating over T from 

0 to co yields 

a'f 
[s+cr(x)]\f (x,µ) + µ ~ = 

S vX 

+l 

c(~)cr(x) J \fs(x,µ')dµ' + q5(x). 

-1 

The transformed boundary conditions (39a) become 

lim '±' (x, µ) = 0 , 
x-+ ±co 6 

(43) 

(44a) 
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and the initial condition (39b) transforms into the jump condition 

C. General Solution of the Transformed Equation 

For x < 0 , Equation ( 43) be comes 

a'f s 
ax 

and for x > 0, 

= 
+l 

J If S ( S' µI) dµ I 

- 1 

To solve Equation (45a) one assumes a solution of the form 

,,, ( ) rf\lv(µ) e~(s + ol)x/'Y. "'lv x,µ, s = 't' 

Substituting Equation (46) into (45a) yields 

+l 
clal J 

( S + 0 1 ) [ \) - µ J cp 1 v< µ) = 2 \)' cp 1 v< µI ) dµ I 

-1 
+l 

Assuming J_
1
cp1)µ')dµ' = (s+a 1), permits us to write this last 

equation in the simple form 

(44b) 

(45a) 

(45b} 

(46) 

(47) 

Since -1 :§µ.:§+I, whenv is in this range, one should expect 

a form of solution different from that which .occurs when v t [-1, 1 ]. 
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We shall look for solutions in both these regions of the \J-:plane. 

ve[-1, l]. Here the solution to Equation (47) is written in the 

form 

+ A. 1(\J)5(\J-µ) , (48) 

where P indicates principal value integration. 

This form is an extension of the work of Dirac(Z4 ) and has been 

applied successfully in transport theory .by Case <3 >. To obtain ),_ 1 (\J), 

one uses the normalization relation; hence 

+l 
(s+crl) = J <+>1)µ')dµ' = 

-1 

or 

1 +\I 
1 - \I 

(49) 

\Jt [- l, 1 ]. Here we write the solution to Equation (47) simply as 

\) 
(50) 

v-µ 

Requiring the same normalization as in Equation ( 49) imposes the 

following relationship between s and v: 

s + cr = 1 
\) + 1 
\) - 1 

-1 1 = c 1cr1 \Jtanh \J (51) 

So our discrete solutions place a restriction on the values of 

\I, relating them to s in a manner similar to that. found in Bowden 1 s 

(2) s+crl 
work . In fact, if we let 

01 
be replaced for the moment by just 
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s, the results. of Bowden can be carried over to this problem. 

Figure 5 shows the region of the s-plane where a solution to 

Equ,ation (51) @xil!lh. 

The two solutions to Equation (51) which exist for se Sli 

are defined as v 01 and -v01 (the second solution is the negative of 

the first) where v
01 

has a real part > 0. The · dependence of v
01 

on s is sketched in Figure 5. 

Since for v
01 

real and greater than one, the value of s was 

chosen real, thereby fixing the branch of the logarithm in Equation (51), 

we note the existence of two series of values of v 01 corresponding to 

a given s when s is real and between -a1 and -a1(1-c 1). Thus, 

there exists a branch in the s-plane along the real axis from -a 1 to 

-a1(1-c 1). This keeps Equation (51) single-valued. A similar condi­

tion was encountered in Reference ( 19). 

Summarizing these discrete solutions to Equation (45a), we have 

,1, ( ) () -(s+a1)x/v01 · '!' l+ x, µ, s = cpl+ µ e . 

(52) 

where 

cpl± (µ) = (53) 

and 

s.+ cr1 = tn (54) 
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The continuous solution to Equation (45a) is given by Equation (46) 

with cp1\I(µ) and A. 1 (\I) · being defined by Equations (48) and (49) 

respectively. 

A general solution to Equation (45a) can now be written in 

+l (55a) 

-J A 1(\IH 1 \l(x, µ, s)d\I 

. For se Sle' 

+l 

J A 1(v) ~'lv(x,µ, s)dv. 

-1 

-1 

(55b} 

The A 1 (v) used in (55a) and (55b) may be different since the regions 

of the s-plane where each is defined do not overlap. Also, the minus 

signs are used to simplify certain equations which appear later. 

Equation (45b) can be solved in a manner identi cal to that used 

to solve Equation (45a); only the subscripts are changed. Hence, 

for ve: [-1, l ], 

P _..;..v_ 
\) - µ 

.in 
1 + \) 
1 - \) 

(56} 
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Also for se: S2 i - adjusting Figure 5 for x > 0 - the following 

discrete solutions occur; 

where 

and 

Thus, the general solution to E;quation ( 45b) is written for 

SE: 52 . , 
. 1 

(57) 

(59) 

. . (60a) 
+1 

'fs(x,µ) = a2+~z+(x,µ, s) + a2 _~ 2 _<x,µ •. s) + J A 2 (vH2)x,µ, s)dv 

-1 

and for SE: Sze, 

+1 

'!' s(x, µ) = J A2(v)~2\)<x• µ, s)dv 

-1 

D. Application of the Boundary Conditions at x = ± oo 

(60b) 

The general solutions, Equations (55a, b) and (60a, b) must be 

modified to insure that they vanish as x-+ ± oo. First let us consider 
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se: Sli, which implies x < 0. From an inspection of the discrete 

terms (Equation 52) 

we note that the x-dependence is exhibited only in the exponential 

factor. · If v 01 is r eal and greater than one, (s+cr1 )/v
01 

is always 

positive and the behavior of $ l±(x, µ, s) is readily seen for large x . 

To learn of the behavior of $±(x, µ, s) for any se: Sli , we must look 

more closely at 

- c. 

From Equation (54), this can be written as 

(. = (61) 

Letting v 01 = a.'i + il3'} and taking only .the real part of C , since 

the imaginary part does not contribute to the magnitude of the 

exponential, gives 

c 1 cr 1 
Re C tn 1 + 

4 ex.". 
' a."2 + j3 .. 2 > 1 = 2 (a."-1)2 + j3 .. 2 

:J clcrl 
·, 

Re C tn~l + 
4cr. rr 

, a,"2+13"2 < 1 = 2 ( 1-o.")2 + j3 .. 2 
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So for a." > 0 the Re~ > 0, and the behavior of w l±(x, µ, s) for 

large x is the same as it was for v01 real and greater than one. 

Based on this result, we set a 1+ = 0 since W l+ (x, µ, s) does 

not tend to zero as x - - oo. A similar argument holds for x > 0, 

thereby requiring a
2

_ = 0 for se: s
2

i. 

For x < 0, to make the continuous solution 

( ) ( ) 
-(s+a 1)x/v 1 1 *1vx,µ,s = cplvµ e , - s:vs: ,+ 

satisfy the boundary condition as x ... - oo, we require 

Re s > ;..o 
1 and A 1 (v) = 0 , 0 < v s 1. 

A similar argument for x > 0 requires 

Re s > -a2 -1 s: v < o. 

Thus the solutions to Equations (45a, b) which vanish at x = ± oo are: 

for x < 0 and Re s > - a 1 • 

0 

'!'s(x,µ) = -a1 w1 _<x,µ, s) - J A 1 (v)w 1)x,µ, s)dv 

-1 

0 

'fs(x,µ) = J A 1(v)w 1v(x,µ, s)dv 

-1 
\ 

(62) 
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for x > 0 and Re s> -cr
2 

, 

. 1 
'¥ s(x, µ) = a 2+'11z+(x, µ, s) + J A2(\>)~ 2)x, µ, s)dv 

0 
(63) 

1 
"W°s(s, µ) = J A 2 (v)Wzv(x, µ, s)dv 

O · 

E. Relationship Between the Regions in the s - Plane and the 

Properties of the Half-Spaces 

If the two half-spaces had the same properties, then the regions 

s 11. and s
2

. would be identical, and of course so would S. and s
2 

. r · 1e e 

However, since the choice of material properties (c and cr) is quite 

arbitrary, we canriot expect the regions in the s-plane to remain 

identical for x > 0 and x < 0. By permitting the c and a for each 

half space to take on physically realizable values, and by super-

imposing the s-plane for x > 0 onto the s-plane .for x < 0, one can 

show that the resultant s-plane structure falls into only two general 

cases. 

Without loss of generality, one can require a 1 ~ cr
2

. Then 

the two general cases which include· all choices of c and a are 

shown in Figures 6a and 6b, and are defined as Case I and Case II. 

From Figures 6a and 6b, we see that in Case I, . c 1 a 1 > c 2 a 2 , 

whereas in Case II, c 1a 1 < c 2 a 2 . 

It will be convenient to discard the notation Sli etc. and 

replace it with the (a), (b), (c), (d), designation shown in 

Figures 6a and 6b. · The connection between these notations is given 
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New Designation 

(a) 

(b) 

(c) 

(d) 

SE: 

SE: 

s e: 
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Old Designation 

Case I Case 

sli ' 
. se; 8zi SE: sli ' 

sli SE: Sze s E: sli 

sle ' SE: 5 ze se: sle ' 
- - - - - s e: sle 

II 

se: szi 

SE: Sze 

SE: Sze 

SE: Szi 

Hence., in region (a) of the s-plane, the 'transformed solutions 

(62, 63) contain discrete terms for all x in Cases I and II, whereas 

in region (b) the transformed solutions contain discrete terms only 

for x < 0 in Cases I and II. Regions (c) and (d) can be discussed 

in a similar manner. 

For Cases I and II, the solutions to Equations (45a, b) are 

defined in all of region (a) and in at least part of regions (b) and (c). 

In Case II, the solutions to Equations ( 45 a, b) are also defined in all 

of region (d). Hence, the solutions mu!;lt be determined explicitly 

in at least a portion of each of these regions. This is done through the 

utilization of the jump condition (44b) at the interface separating 

the two media. 

It is found later that the distinction between Cases I and II 

is unnecessary in that the final form of solution becomes the same 

for both cases. 

F. Application of the Jump Condition, Equation (44b), to the 

Solution 

Let us write out the solutions for Cases I and II. The solutions 
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in regions (a), (b), and (c) are the same for both Cases I and II. 

In (a), 

In (b), 

0 

'Ys(x,µ) = -a1w1_(x,µ,s) -J A 1 (v)iJr 1)x,µ,s)dv, x< O; 

-1 

1 
.°f s(x, µ) = a 2+ 1lrz+(x, µ, s) + J Az(v)~zv(x, µ, s)dv, x > O. 

0 

0 -
'i's(x,µ)=-a 1 _~ 1 _(x,µ, s) - J A 1(v)ijr 1v(x, ·µ, s)dv, x < O; 

I (64) 

1 -1 1(65) 
if s(x, µ) = J A

2
(v)l\1

2
v(x, µ, s)dv , x > o . 

0 

0 
In ( c ) , 'Y 

8 
( x, µ) = J A 1 ( \J )1\1 1 ) x, µ, s ) d v x < 0 ; 

-1 

1 . 

'i!s(s,µ) = J A 2 (v)iJr 2)x,µ,s)dv, x>O. 

0 

In addition, for Case II we have 

0 

I (66) 

in (d), ifs(x,µ) = - J A 1 (v) ijr 1v(x,µ, s)dv " x < O; · 

-1 1 1(67) 
°¥

8
(x,µ) = a 2+1lrz+(x,µ, s) + J A2(v)~zv(x,µ, s)dv , x > o. 

0 

Again we note that although the coefficients have the same designations 

in different regions of the s-plane, their functional form may be, 

and indeed will be, different. 
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Utilizing Equations (64) through (67), the jump condition (44b) 

is now written in each region of the s-plane. 

. . 0 

In (a), q = µ [ a 2+ cp2+ (µ) + a 1 _ cp 1 _(µ) + J A 1 (v)cp1 v(µ)dv 

-1 

1 
+ J A 2 (v)cp2 "(µ)dv J . 

0 

(68) 

0 1 
In (b), q = µ[ a 1 _cp1 _(µ) + J A.1(v)cp1)µ)dv + J A 2 (v)cp2)µ)dv J. (69) 

-1 0 

0 1 
In (c), q = µ [ J A 1(v)cp 1\l(µ)dv + J A 2 (v)cp2 \l(µ)dv J (70) 

-1 0 

0 1 
In (d), q = µ[ a 2+cpz+<li> + J A 1(v)cp1"(µ)dv + J

0 
A 2 (v)cp2)µ)dv J. (71) 

-1 

Note that the jump condition is the same in each of the regions (a), 

(b), and (c) for Cases I and II. For Case II there exists the jump 

condition in region (d) given by Equation (71). 

G. Completeness and Evaluation of the Coefficients 

Iri Appendix I, it is proved that for an arbitrary function 

'11"(µ), satisfying relatively weak conditions on the interval 

-1 ~ µ ~ + 1, the functions 

" 
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O<V~ I , for se(c} , 

~z+(µ) , ~1 )µ) , .. 1 :e; v < O , . ~zv(µ) , O<v!l: 1, to r 8e(d), 

when multiplied by µ, form complete sets. 

So an expansion of the form 

0 l 

W"(µ) =[ az+Cl'z+(µ)+ al-cpl_(µ)+ J A1(v}cp1v(µ)dv + J Az(v)cpzv(µ)dv]µ 

-1 0 

exists, for example, in region (a) of the a-plane, Similarly, the 

right-hand sides of Equations (69), (70), and (71) can be used to 

rep re sent an arbitrary function on the interval -1 ~ µ ~ + 1 . Hence, 

the NME method of solution has yielded a set of eigenfunctions which 

are complete in µ-space. 

Another extremely useful fact, aside from completeness but 

obtained from t:~1e completeness proof as well, is that a method for 

obtaining the coefficients is provided. This ·method is utilized in 

Appendix II to pbtain the coefficients in .Equations (68) through (71 ). 

The results are summarized below, where 

1. 1:: 2 (µ 1
) + iTrµ 1 d I 

+ J -tn ?i: (µ 1)"'" hrµ' µ¥-z} J' 
0 2 . 

2 
- -

0
- 'A2 (v) Cz 2 

and where 'A
1 

(v) and 'A
2

(v} are given by Equations (49) and (56) 

respectively. 
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Region (a): 

Al(\!)= c a \IX- (\I) (~1( \1)+ i1T\I) (\1-\102) (\I+ \101) 
l l a 

- l~\1 < 0 

Region (b): 

= (1-z) (-l-z) 

. x 0 (z) 

Xb(z) = (-1-z) 

0 < \1 :§ + l 

-1 :§\)< 0 

0 <\):§ 1 

(72) 

(7 3 ) 



Region (c): 
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2qXc(O) 
= ~~--,==,...,..-.....,..,~:--:--..,.~. 

c I cr l \JX~ (\J) (~ l (\J)+iTr\J) 
-1;:! \)< 0 

0<\)~l 

Region (d): · 

-2qXd(O) 
= 

czcrz \)02xd<\)02> 

Az(\J) . = c
2

cr
2 

\J(\J-v
02

)Xd(V)(1'1:
2

(v)+iTr\J) 

x
0

(z) 

Xd(z) . = 1-z 

(7 4) 

(7 5) 

If one accepts the completeness of the functions cp1 _ (µ), cp2+ (µ), 

cp1 )µ), -1 ~ v < 0, cp2 )µ), 0 < v ~ I, or certain of them, then an 

alternative method of obtaining the coefficients is available, based on 

the orthogonality properties of these functions(.7 ). This alternative 

method is employed to obtain several of the coefficients in Section C 

ofAppendix II. Of course, the final results are identical in the two. 

approaches but the intermediate steps are quite dissimilar. 

H. Final Form of the Transformed Solution 

Now that the coefficients have been evaluated, one need only 

substitute them into the general solutions, Equations (64) through (67), 
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to obtain the final form of the tl'ansformed solution in each region 

of the s-plane for arbitrary x. These solutions are written out 

below. 

Region (a); 

-2qX (0) . a 
1f S (x, µ) = C (J 

1 1 

Reg1o~ (b) : 

-2qX (0) 
a 

+ s 1 

0 

-(s+cr
2
)x/\) . 

\)01 \)02cp2\)(µ) e d\) ] 

\)(\)-\)02H\)+ \)o 1 >x;.(\))(~2(\)) + i1T\)) 

CJ)1 _(µ) e (s+cr 1 )x/ \)01 

[ \JOlXb(-\)01) 

, x> 0. 

(76) 

(77) 

(78) 



Region (c): 

Region (d): 

'¥ (x, µ) = 
s 
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. -(s+o2)x/v 

[ JI vo1'Pz)µ) e dv _l 
v( v + v 01 )Xb ( v)(~2 ( v) + irrviJ' 

0 

, x< 0. 

-,.(s+o2 )x/v 
'Pzv(µ)e dv 

vX~ (v)(~2 (v) + irrv) 
, x> O. 

-(s+o 1 )x/ v 

x> 0. 

v02cplv(µ)e dv 

(v-v02)vXd(v)(~ 1 (v) + irrv) 
, x< 0. 

-1 

Hence the solutions to the transformed Equations (45a, b) 

(79) 

(80) 

(81) 

(82) 

(83) 

satisfying the boundary and interface conditions (44a, b) have been 

found in those parts of regions (a), (b), and (c) of the s-plane in 

·Case I, and in those parts of regions (a), (b), (c), and (d) of the 
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s-plane in Case II, having Res> -cr 1 for x < 0 and Res> -cr2 

for x> 0. · 

In order to invert these solutions and recover the time 

dependence, we must study the behavior of the transformed solutions 

in detail. This investigation is done in the next chapter where the 

subsequent inversion is performed. 

\. . 
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IV. BEHAVIOR OF THE TRANSFORMED SOLUTIONS IN THE 

s -PLANE AND THE INVERSION FROM Iii TO ,-

A. Behavior of '¥ (x, µ) in the s-Plane s 

In the last chapter, the solutions to the transformed Equations 

(45a, b), which satisfy the proper boundary and interface conditions, 

were obtained in certain regions of the s-plane. These regions are 

shown in Figures 7 a, b for Case I and in Figures Sa, b for Case II. 

In order to satisfy the boundary conditions for large x, it is 

necessary to keep Res to the right of -cr2 for x> 0, and to the 

right of -cr
1 

for x < O; hence the dashed lirie boundary to the regions 

where the solutions exi st. 

Let us first investigate the behavior of the solutions within each 

region of the s-plane for both Cases I and II. In regions (a), (b), and 

(d) there exist certain relationships between "ol and s, and "o2 

and s (Equations (54) and (59)); 

clcrl "01+ 1 

= -Z- \J 0 1 -tn \J 01 - l . ' (84a) 

' "02 + 1 

"02-tn - 1 ' 
"02 

(84b) 

where Re v 01 , "o2 ?: 0 . It is stated in Section C of the last chapter 

that when "ol is real and greater than one, s is real. As a conse­

quence of this, a branch is drawn in the s-plane from -cr1 to 

-a 
1
(1-c 1) along. the real axis, in order to keep Equation (84a) one 

to one. Similarly a branch is drawn from -cr2 to -cr2(1-c2 ) to 
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Figure 7a • Regions Where Solutions Exist in Case I 
for x>O 

I 

Figu-re 7b • Regions Where Solutions Exiat in Case I 
.. . for x<O 
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Figure Sa - Regions Where Solutions Exist in 
· Case II for x>O 

Figure Sb - Regions Where Solutions Exist in 
· . . . Case II for x<O · 
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keep Equation (84b) single-valued. 

The branches from -cr 1 to -cr1(l-c1) and from -cr2 to 

-cr2 (1-c2 ) . occur in regions (a) and (b) of the a-plane. It is necessary 

t .o look at the transformed solutions in these regions to see if the 

branches required in Equations (84a, b) are carried over into the 

s-plane where the solutions are described. By inspection of 

Equations (76) through (79) (1f (x, µ) in regions (a) and (b)) it is s 

easily seen, due to the discontinuous nature of . v01 and v
02 

along 

the lengths of the real s-axis defined above, that Y (x, µ) is itself s 

discontinuous there. Hence, branches exist in the a-plane for the 

functions "¥ 
8 

(x, µ) from -cr 
1 

to -cr 1 ( 1- c 1) and from -cr
2 

to 

-cr
2

(1-c
2

). · These two branches overlap in many problems of 

physical interest. 

Aside from the existence of these two branches along the real 

s-axis, Equations (76) through (83) appear to have no other singu-

larities or branches anywhere within the regions of the s-plane where 

they are defined. 

In Appendix Ill, it is shown (partially) that the solutions are 

continuous along the boundaries between adjacent regions of the 

s-plane and that they take on identical values along these borders, 

when the horde rs are .approached from either region. Hence, it 

can be concluded that the solutions to the transformed Equations 

(45a, b) of the previous chapter are analytic in the right-half planes 

Res>-o1 for x<O, and Res>-cr2 for x>O, savefortwobranch 

cuts along the reals-axis from -cr 1 to -cr1(I-c1) and from 
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-o
2 

to -o2 (1-c2 ) for x< 0, or from -o
2 

to -o 1 ( 1-c 1) and from 

-o2 to -o2 (1-c2 ) for x> 0, in both Cases I and II. 

When x = 0, the region of analyticity in the s-plane can be 

extended because the restraining factor e -(s+o)x/v is no longer 

present. It is easy to show for this case that the solutions to the 

transformed equations (either x = o+ or x = 0 -) are analytic 

in the entire s-plane save for the two branches on the real s-axis 

Since the inversion integral of the Laplace transformation only 

requires a knowledge of the transformed function along a line parallel 

to the imaginary s-axis and to the right of all discontinuities of 

if (x, µ), we are in a position to recover the time dependence. s 

Because of our more detailed knowledge of '!! (x, µ), we shall be s . 

able to change the inversion path and obtain a solution which more 

clearly depicts the properties of the time-dependent flux. The 

actual inversion will be carried out next. 

B. Inversion Path Related to Media Properties 

The original invers i on path for a typical case is shown in 

Figure 9. Because of our knowledge of if (x, µ), we can shift this s 

path to the left, picking up the contributions along the branches, 

until Res = -a1 or -a
2

, depending upon.whether x> 0 or x < O. 

The new path for x < 0 is sketched in Figure 9 as well for the 

case o 1 > o 2 > a 1 o 1 > a 2 o 2 . 

One can conclude from this shift in the inversion path that the 

distiincti()n between Cases I and II is no longer necessary. Now 

let us look at the inversion in detail. 
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ORIGINAL 
INVERSION 
PATH 

. - J"i'"•'>'>'>'>.:>~'1a1 -cf2'<"<'<'<','<'<Yt~g 2(0 i I I 2 14 

•>'>'>'>'>'>'>'>'>'' '~~ ;';'>';';';';'>'>• Ce} 
I I I 3 - a1 - a 2 - a 2 a 2 - a I a, 

I , « « 1 , « « « , < ' c 4 > > > > ) ' t t I > ) > > > ) ' Cb) 
-crj" ""'!a; ai·-~~" """ :O'a~ 'o-2 I 2 1 3 

I X:)()(>6e00()9()00(~(;)99 '<'<'<'<'\'<'<'<'<'<'<"d (f) 
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The two branches defined along the real a-axis from -o
1 

to 

-alol and from -02 to -azoz where al = 1-cl az = 1 - cz , 

are dependent on the cross sections of the half-spaces. It is 

necessary that o 1 ~o2 , but this in no way restricts the generality of 

the solution. A summary of the possible locations of these branches 

is given in Figure 10. 

C. Example of the Inversion for x < 0 

As an example of how the inversion is carried out let us look at 

two half-spaces having properties which correspond to branch (c) in 

Figure 10; that is o 1 > o 2 > a 1o 1 > a 2 o 2 . Many actual moderator com­

binations would fall into this case. A detailed sketch of the inversion 

.path is given in Figure 11 . 

We know from Equation (42) that 

. IJ:'(x, µ, T) = 

y+ ioo 

2 rr\ I esT 'f (x, µ)ds 
. 8 

or that 

'i'(x, µ, T) = 
1 

2Tri 

y ".'ioo 

I ('f ) 
0 s 

where l ( 'l:' ) is shown in Figure 11. 
0 s But. our knowledge of 

'J.f (x, µ) as a function of s pe rrnits us to write 
s 

' 
l ( 1¥ ) = l (if ) + 15 + 11 + In + 12 · + Ip + 13 + In 

0 s y.- s - - t-"1- - 2- - t-"3 
(85) 
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where the I's corre spon.d to the path integrals sketched in Figure 11. · 

It can qe shown that many of these integrals vanish. 

Investigating the behavior of 'f. (x, µ) from Equation (80) for 
. s 

large s - at the extremdties of I
0 

- yields the following asymptotic 

form which is defined as f (x, µ, s) unc 

-(s+q1)x/µ 
- . q e · 1(-µ) -
1fs(x,µ) ,.._, -µ s ~unc(x,µ,s) (86) 

where 

_/1 
1(-µ) - " 

0 

µ < O 

µ>0 

The next term in the asymptotic expansion of 1¥ (x, µ) has a 
1 

S S 

behavior, etc. Thus, for large s , 

'¥ (x, µ) 
8 

Before proceeding, we observe that 

y+ioo 

iyunc(x, µ, 'T ) = 2!i J func(x, µ, s) es'f ds = 
y-i 00 

-·a 1 x/µ 
qe · 1(-µ) o('f - ~) 

-µ 
(87) 

which will be shown later to be the uncollided angular flux (hence the 

notation). Also, one can conclude, by an inspection of Equations (76) 

through ( 83), that · 

1f(x, µ, 'T) =· 0 when 'T < I x I · (88) 

. This is phys~cally plausible and is demonstrated mathematically b y 

setting r
0 

= I 6 (see Figure 12) and observing that I 6 .... 0 as R -+oo, 
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after the 6-function behavior is factored out. 

Equation ( 4Z) can now be written as 

IJ!(x, µ, 'f) - '¥ (x, µ, 'f) 
unc 

1 y+ioo · 

= 21Ti s \ e S'f [If (x, µ) - f (x, µ, sJ]ds . . . s unc (89) 

y-iOO 

Also, Equation (85) again holds for the new integrands; 

I 0( 'f -f ) = Iy ( '!' -Tr ) + . • . + I ( 'f --:r. ) • . s unc - s 't'unc y+ s 'f'unc (90) 

But now we see that Iy± -+ 0 as y -+ oo . 

In addition, since "f (x, µ, s) is analytic within the region 
unc 

about which we are integrating, its contribution above and below the 

cuts cancels. Hence, defining · 

we can write 

(92a) 

Similarly, 

I Cf -l ) 2 s unc = (92b) 

I ("¥ .... -:r. ) 
3 a · 'f'unc = (92c) 



-72-

Considering next the integrals around the small semicircles 

having radii p 1 , p
2

, and around the circle with radius p
3

, it can 

be shown that as p 1 , p
2

, p
3 

,.... 0 , these integrals vanish. 

So Equation (90) becomes 

I 0 ( 'Y - "f. ) = I l ( 'Y ) + I 2 ( 'Y ) + I 3 (if ) + Ii:. (if -"f ) , . s unc s s s ;.J s unc (93) 

where I5 = I5_ + Is+· Hence the result for this example can be 

expressed as 
(94) 

'!'(x, µ,Tl = '!' (x, µ, 1") + 2_!.. [I1(¥ ) + I 2 ( 'f . ) + I3 ("¥ ) + I 5( 'Y -"f >]· unc rr1 s s s s unc 

Exact expressions for the I 1 , ... , Is have not been written down yet; 

they will be included in the general case considered next. 

D. Inversion in the General Case (x< 0) 

All of the cases shown in Figure 10 can be done at once by 

utilizing. step functions appropriately. The integrals along the 

branches are identified by the terminology shown in Figure 10. Thus, 

the complete solution can be written, for x < 0 , as 

'l'(x,µ,'r)='l' (x,µ,T)+ 2
1

. [I1(Y )+I
2

('l' )+I3 ('l' )+I4 ("¥) unc rr1 s s s s 

+I('f-"i >] 5 s · unc 

where 
-a1cr 1 l(a1cr1 -cr

2
)-cr

2
l(cr

2
..:.a

1
cr

1
) 

II n· .> = J. ST ds { 'f .<x. µ)- -! .<x. µ)+} • 

-crl . 

(95) 

(96) 
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-al cr 1 1<a1 cr I -crzaz)-az crz l (azcrz-a1 cr I) 

Iz(V8) = l(crz-a1cr1) /•BT ds {v 8 (x, µ)- -V 8(x, µ)+ } , . (97) 

-crz 

-azcrz 

r3 f¥ 
8

) = l(a1 cr1 -azcrzl J·•T ds {v 
8
(x, µ)- -v 

8
<_x, µ)+} , (98) 

-cr
2

I(a1 cr1 -cr
2

) -a
1

cr1 I(cr
2
-a

1
cr

1
) 

Ii¥ 
8

) =. l(az"z-a1 cr1) 1:~~~. { V
8
(x, µf -Y 

8
(x, µ)+ } , (99) 

-azcrz 

1s<f s -Wunc> = l ~:iT:. { f s(x, µ) -lunc(x, µ, •)} 

-cr
1
-ico 

( 100) 

and '!' (x, µ, T) is given by Equation (87). 
unc 

In these expressions we have used '¥ (x, µ) to denote that the 
s 

function is to be considered below the branch cut, and '¥ (x, µ)+ 
s 

implies that s is above the branch. Also, we note that 

. l 

l(x-a), =<~ 
0 

x>a 

x < o. 

Let us obtain explicit expressions now for 11 (ifs) through 

I5('l's-~unc>· 

( 101) 
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11 (ifs): This integration is contained entirely in region (b) of the 

s-plane. For this region 'Y (x, µ) is given explicitly by Equation (78). s 

We know from Equation (84a) that 

and that when s is above the cut v01 is a negative imaginary num-
I 

ber. Similarly, for s below the cut, v 01 is a positive imaginary 

number. So we can write 
\. 

where 

J , 

-is above cut 

\) - ---01 - -........_ +1' ""· '":> below ·cut. 

( lOZ) 

With these simplifications, it is easy to ob_tain the following 

expression for r1(ifs) from Equation (96). where .the notation 

cp 1 = (µ) implies that the function is evaluated below the cut. 

(103) 
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This integration is contained in region (a) of the s-plane, and 

'F
5
(x,µ) is given by Equation (76). Here \IOl is again pure imaginary 

and can be expressed in terms of i; (see Equation (102)). Similarly, 

\1
02 

· exh~bits a discontinuity when the branch is approached. 

Paralleling the analysis leading to Equation (102) let us define T) 

such that 

-iT) above cut 
/ 

\)02 =""' 
+i T) below cut. 

Then from Equation (84b), 

[ 
-1 

'TT + tan 2T) J -2""-- , 
T) -1 

-1 
0 >tan > -'TT 

After some further algebraic manipulation on Equation (97), one 

obtains . 

{ 
'!] 

;( ~ + '!]) 

- -i(s+cr1 )x/I; 

[ 
cpl_(µ)e J 

Re X (-i~) 
. a 

(104) 

( 105) 
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I 3 (if s): Here \JOl is real and greater than one, and we can use 

Equation (84a) to obtain it. However, Equation (104) is still necessary 

for 11 • With this in mind and utilizing Equation (76) for "if (x, µ), we s 

can write 13 (1!:' s> from Equation (98) as 

-cr2cr2 
2X (O)e 5 1"ds 

a 

( 106) 

I
4

("if s): Here v
01 

is imaginary and will be replaced by i s , whereas 

v
02 

is real, greater than one, and obeys (Equation (84b)) 

\ 



-77-

Hence, with Equation (76) for 'f s(x, µ), Equation (99) becomes 

0 

+j 
-1 

-al CJ 1 

2X (O}es'f ds 
a 

_ -i( s+CJ 
1 
)x/ i; 

\)02 rcp1_(µ}e J 
T Re~.-'V-0_2_+..,..i .... ~),..,,X""'a....,(,..._..,..i=s}.-----J 

(107) 

-(s+cr1)x/'V 
S'Vozcp1 )µ}e d'V 

r5 {"¥
8

-\Vunc}: This integration occurs in .region (c} of the a-plane; 

Equation (80) is the representation for '.if (x, µ} in this region. Writing 
s . 

Equation (100) explicitly yields 

S'T"d e s 

• O - ( s+ cr 1 }x/ \) 

f 
cp1)µ}e d\J 

\)x;c\)><11:
1 

('V}+iir\J} 

-1 

( 108) 

- ( s+ CJ 1 )x/µ· 
e l:<_-µ) } -------µ 

' 
Thus, the complete solution for x < 0 has been obtained. 
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E . Inversion in .the General Case (x > 0) 

To carry out the inversion for x > 0, we cannot shift the path to 

Re s = -cr1 but must be content with a shift to Res= -cr
2

. As a result 

11 ('±' } will not appear in this case. For the special case discussed 
s . 

previously (branch (t) of Figure 10) the inversion path corresponding 

to Figure 11 for x < 0 is given in Figure 13 for x >O. From this 

figure we can see that 11 (°¥s) does not appear, and also that 1
5 

travels 

through two regions in the s-plane, rather than just through region (c}, 

as was the case p:ceviously. · 

Using Figure 13 as a guide, the complete solution can be written 

down for X > 0 I Using the notation developed for X <: o. 

'f (X, µ, T) -'V (x,µ,T)+ ·2
1

. [1
2

(W )+1
3
. (°¥ }+14 ('±' )+I

5
('f - t\r >] 

~nc · rr1 s S · . s s unc (109) 

-(s+cr
2

)x/µ · 
- qe l(JJ.) 
'!' (x, µ, s} = --------'--unc · µ 

(110) 
-cr2X./µ x 

qe 1(µ)5(T- -) 
~ (x,µ,T)=~~~~~~~_._-
unc . µ 

(111) 

1 

+ J 



y-IV 

Figure 13 • lnver•ion Path for Branch (c) of 
Figure 10 for x>O 
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S'T" . 
-2X (O)e ds 

a -

(112) 

(113) 



I ('f - ,,, ) -
5 s "'unc -

+ 

+ 

+ 

-cr -iO 2 . 

-6 -iw 
2 0 

qe 8 Tds 

\. 
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-(s+cr
2

)x/µ 
_ e µ l(µ) ~ 

-(s+cr
2

)x/µ 

e µ l(µ) ~ 

(114} 

·-(s+cr2 )x/µ 
e · µ l(µ)~ 

-(s+cr2 )x/µ . 
e · 1(µ) l 

µ } . 
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In I5' WO is determined by the relation 

clcrlrrvOl 
O<'Jol<l, WO = 2 

since w
0 

is on the boundary between regions (b) and (c) in the 

s-plane. 

So we hp.ve written down the solution for x > 0 as well as 

for x < O. This complete solution has been obtained a ·s a sum of 

several, defirtite, multiple .integrals. That this solution satisfies 

the original equation .can be shown in a straightforwar<;l manner by 

substitution. 

In Appendix IV, it is shown that the · solution to Equation (37) 
. .. 

subject to the . boundary conditions that 'i'(x, µ, 'f ) vanish at x = ± oo , 

if it exists, is unique. Since we have a solution to this equation 

satisfying the , requisite boundary conditions, we can ·state that it i s 
.• _t 

the unique solution. 

F. The Uncollided Angular Flux 

If one were to derive an equation to describe only the uncollided 

flux, it would take the form 

a.'i' (x,µ,'T) · unc + µ 
aw · unc 
ax + cr(x) 'i'unc = q o(x ) o('T). (115) 

But the quantity we have previously calle d the uncollided flux 

that quantity whose Laplace transform does not vanish as ·s- oo -

can be shown to satisfy Equation (115). Thus, it is indeed the 

· uncollided flux. 
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V. SIMPLIFICATION OF THE SOLUTION 

A. The Angular Flux at the Interface (x· = 0) · 

When x = 0, the solution written out in the previous chapter can 

be greatly simplified. Even though .x ne~d approach zero from only 

one side, it Will be necessary later to have expressions for both 

x = o+ and x = 0- • 

For x = 0- (;;tpproaching the interface from region .{ 1)), we know 

from Equation (95) that 

'1'{0-,µ,r)'= 'I'· (O-,µ,r)+
2

1 . [L{'i! )+ ••• +I
4
(\f )+1

5
('¥ -~ ·)]. (116) 

unc , 71"1 J. s s s · unc 

It can be shown for this case that .'I' (x, µ) is analytic for Re s ~ -a-
1 . s 

and that I
5

{'1' - l ) behaves as Is 1-l for larg.e s • . Hence, we can 
s unc · -

set 15 equal to zero when x = 9- ~ 

Letting x = O+ (approaching the interface from region (2)) allows 

us to. write Equation (109) as 

'l'{O+,µ,r)= 'I' {O+,µ,r) + 2
1 .[I2{'f )+ ••• +I4 {'¥ )+I

5
('¥ -l )].(117) 

unc 71"1 s · s s unc 

In this case-we note that 'Ws(x,µ) is analytic for Res~ -a-2 save for 

IS 1-1 
a branch from -a-

1 
to -a-2 along the .real axis, and I

5 
behaves as 

.for larges. Hence we can set 

I 5 { if - l ) = I l { "if ) s unc s 
{ l 17a) 

for x = o+. 

Thus the solution.for both x = O+ and x = 0- has the same general 

form: 
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'f(O±,µ,'T) = '¥ (0±,µ,T)+ .,
1

.(L('f. )+ ••• +I4 (°W )] • (118) unc '-1fl J. s s 

In Equation (118) we know, from Equations (87) and (110), that 

( ) ..... q.__o__,_( T_..)_l ...... ( ±_,,µ....._) '±' 0±,µ,'T = 
unc ± µ • (119) 

From Equations (103) and (l l 7a), 

- al G" 11 (al G" 1 - G" Z) - <T Z 1 ( G" Z -al <T 1) 
1 

"'z v (µ)d v 

0 

(IZO) 

0 

;"' 1 v (µ)d v }· 
z z -

(v + ; )X~(v)(~1 (v)+i?rv) 

.. 1 

From Equations (105) and (111), 
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-al 0-1 1 (al o-l -a2o-2>-a20-2 I (a2o-2-al <T 1) 

-0"2 
I 

511C11-5>'P2 v(µ)dv . } 

( v 2 +112)( v2+ 52)X~ ( v)(~2C v)+i7rv) , 

2X (O)e 57 ds a 

511(11-5>"'1v(µ)dv } 

( v2+112)( v2+ 5 2)X~ ( v)(\ ( v)+i7rv) • 

(I 21) 
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From Equations (107) and (113), 

-al <Tl 

I4('i' s(o+,µ)) = 2iql(a2a-2-ala-l) s 
-a2<T2 

(123) 
- a a-

l 1 2X (O)es'T ds { - ( 
14('i's(O-,µ)) = Ziql(az<rz-a1a-1>S a vo2 R j "'1- µ) l 

cla-1 T e1(v02+i~)Xa(-i~)~ -a2<T2 

• 

It is of cours~ necessary that the solution be the same at the 

interface no matter how it is approache.d; that is, 

In Appendix V, the expressions (120) through (123) are simplified 

through the evaluation of the integrals over v and through some sub-

sequent algebraic manipulations. Thei r simplified forms, listed as 



where 

and 

2 
b = -- (s + IT ) , n c a- n 

n n 1 

XnO(z) = exp {z!i s 
0 

-87-

n = 1, 2 , 

.i\. (µ' )+i1Tp.' 
J.n n 

~ (µ' )-i1Tµ' 
n 

B. The Interface Flux and Current 

~l µ -z r , n=l,2. 

The flux and current can be separated into an uncollided and a 

collided portion for arbitrary x. To obtain the uncollided flux and 

current for any x, we know, from Equations (87) and (110), that 
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-rr2x/µ 
.9.e l(µ)o(?' a ~) :;,t>O 

·/ ~ ~ 
'l' (x, µ, 7') = 

unc - "" a -a-lx/µ 1(-µ)o(r - ~), x < 0 
-~e µ 

µ 

( 128) 

• 

Hence from the definitions of flux and current [Equations (40)] , we 

obtain, making use of Equation (128), 

+I / 
~ (x,r) = S '¥ (x, µ, T)dµ =~ unc unc 

-1 . 

-fT 2 T 

S. e l(r-x) 
'T 

-IT 'T 

S. e 1 l(T+x) 
'T 

-IT T 
~ 2 

+l 

J (x, T) = s /r 
µ 'f (x, µ, T)dµ =~ 

2 e l(T-x) 

unc 
-1 

unc -rr _ 
. l' S.Z e 1 (·T+x) 

T 

x>O 

(I 29) 

x < 0, 

x>O 

(130) 

x < 0 • 

By inspection, there exists no uncollided current at the inter -

face (as expected) and there is an ambiguity in the uncollided flux. 

This ambiguity exists because of the abrupt discontinuity in total 

cross section at the interface. 
ITl=frr z 

-'T( 2 ) 

~ (O,r)=S.e unc · T 

To solve this difficulty we define 

'T > 0 • (131) 

Both the collided interface flux and current can be written in 

simple forms. How these simple forms are obtained is discussed 

in Appendix V. The resultant expressions for the total interface 

flux and current are given below. 
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From Equations (A107), 

From Equation (Al 14), 

From Equation (All5), 

S'Td e s 
g 

(132) 

(133) 

(134) 

(135) 

(136) 

{137) 

• (138) 
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From Equation (All 7), 

From Equation (Al 18), 

• (139) 

From Equation (Al19), 

• (140) 

C. Simplifications for x -:J:. 0. 

For x :f; 0, there seem to be no simplifications comparable to 

those made when x = O. However, to obtain the total flux from the 

general results (Equations (95) and (109)), it is necessary only to 

integrate out the µ dependence, where we note from Section C of 

Chapter Ill, 

+l S rpn(µ)dµ = s + <Tn, n = 1,2. 

-1 

Thus when x > 0, f~r example, Equation (109) is integrated over 

µfrom -1 to +I to obtain 

t (x ,T ) = t (x, 'T ) + J-:. [ L (x, 'T )+ • • • + I 5 (x, 'T)] unc &.71'1 l. · 
(141) 
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where ~ (x,'T) is given by Equation (129) and the I (x,T) are the unc n 

T (if (x, IJ.)} with the cp (!J.) replaced by (s+cr ) • ""n s n n 

D. Two Special Cases 

The two adjacent media problem contains both the single-infinite 

medium problem and the single semi-infinite medium problem as 

special cases. Let us obtain these results now. 

1. The Single Infinite Medium Problem 

From an inspection of the general solution for x < 0, given by 

Equations (95) through (100), one can see that 

for the single infinite medium. Furthermore, from Equation (105), 

_ -i(s+<T)x/£ } i '1'_ (µ)e l 
l . x c-is> ~ , 

a (142) 

x < 0. 

The subscripts have been dropped since there is only one medium. 

Also, nochangesareneededinI5 ("¥ -i )and 'I' (x,µ,T)other 
s unc unc 

than the dropping of subscripts. Hence, we obtain 

'l' (x, !J.,T) = '!' · (x, !J.,T) + 2
1 . [12 ("¥ )+15 ( '¥ - iii )] , unc ?Ti s s unc (143) 

with 15 ('!' -iii ) given 'by Equation (108) and 'i' (x,µ,.r) by Equa-. s unc unc 

tion (8 7). 

We also note that for x > 0, the general solution can be written 

in exactly the same form (Equation (143))where now 12('!' 
8

) becomes, 
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from Equation (111), 

i(s+a-)x/ s 

1 
<p ~ (µ)e ~} 
. x (ig) I 

a 
x>O I (144) Re 

where the 15 ( 'l' -1 ) of Equation (114) becomes (region (b) being 
s unc 

absent) 

-a-+ioo 
1 

-(s+a-)x/v - - . . .. s sT . {-2-X_~_(O_)_s <pV(µ.)e . dV 
15 ( '!:' - 111 ) :t: . q. e ds 
. . s unc . . ;..a--ioo ca- ovX~ (v )(;\(v )+i?rV) 

-(s+a-)x/µ} 
e . l(µ) 

- I 

µ· 

{145) 

X > 0 I 

and where the uncollided angular flux is given by Equation (110). 

The single infinite medium problem can be solved in an alterna-

tive manner quite easily by applying the full-range orthogonality 

(3) . 
relations developed by Case . : to obtain the expansion coefficients 

in the transformed solution. When this is done and the final solution 

compared to that given above, the two methods are found to yield 

identical expressions for 'l' (x, µ, T). 

At the source plane, we _can again obtain a simple form for the 

flux (the current is zero) either directly from .Equation {143), or by 

a simplification of the general result for the interface flux, Equation 

(132). Either method yields 
-a<T 

~ {0,'T) = qje-<!'7 +~s 
'T .11'C<T 

. -<T 

S'T 
e {s+a-) ds (146) 

- 2 
{

1- C<T!J } ,, 2 · 
(s+.,-)( 1+11 ) 
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2. The Single Semi-Infinite Medium Problem 

(This problem was done with angular source dependence in 

Reference (19).) 

Since we have required a-
1 
~ a-2 , let us assume that the left half 

space contains the semi-infinite medium. The right half space can 

be :either vacuum or a pure absorber. Hence, we set 

and observe that 

This choice of constants reduces the two-region solution to that of 

the half space. 

If we now look at the general form for the solution, Equations 

(95) through (100), we find that these equations. become, for the semi­

infinite medium (x < 0), 

(147) 

where 

. -a<T ST _ . s 2X 10(0)e ds {l ~ 
I ( 1¥ ) = 21q .. -c Re 

s . -c 1a-1 s 
. - -er 

-i(s+a-)x/ g 

f 
0 

-(s+a-)x/v 

S g<p v (µ)e (-1- v) d v }· 
- 2 2- + -

- l ( v +g )X) O (- v )(it( v )+i1rv) 

(148) 

. -a-+oo . 0 -(s+a)x/v -(s+a1)x/µ} - - s sT {-2.XIO(O)s <pv(µ)e .dv - e . 1(-µ), 
I ( 1¥ - 1lt )=q e ds _ --,-------

5 . s unc . - cl al vX+ (-v)(Mv)+i7rV) -µ 
-a-100 -1 I 0 

(149) 
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and 'I' (x,µ,T) is given by Equation (87)~. 
unc 

The single half space problem can be solved independent of the 

two media problem. When this is done and the results compared, 

they are again found to be identical. 

At the boundary of the half space, certain simplifications can be 

made to Equations (147) thr.ough (149) which lead to 

. . -a<T -{b": S'T 
'l'(O,µ,T) =q l(µ)o(T) +.9..S _· _I_ - 1-µ e ds 

µ 7r ~ 2+s2 XlO(-µ) 
-IT I µ . 

-IT l'T 
~ (O•r) = .9.. e-2- + .9.. 

'T 7f 

-alT 

-IT 
I 

J(O,'T) = ;S e
8

'T ~ v'2-b 1 ds 

-CT 

(150) 

(151) 

(152) 

So when the general two region problem is reduced to the single 

infinite or semi-:-infinite region problems, the results obtained agree 

with those derived by alternative, but related, methods. 

E. Integration of 'I' (x, µ,T) over all T 

00 - S'T 
Since '¥ (x, µ) = f e 'I' (x, µ, T )dT, we can write 

s 0 

lim s~s'T'I' (x,µ,T)dT = s00

'1' (x,µ,T)d'T ='i'o(x,µ), for c <I. 

s -o 0 0 

But s = 0 is a point in region (a) of the a-plane. Thus from the trans-

formed solutions given by Equations (76) and (77), we can write 
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00 s t (x, µ,T)d'T = 
0 

0 

-s 
-1 

-<r1x/v 

vo1voz'P1v(µ)e dv I --, 
v(v-v 02)(v+v Ol )X~ (v)()tl (v)+i7rV) 

00 

s :'l!(x, µ,T)d'T = 
0 

1 -<rzx/v 

+ S v 01 v oz'Pz)µ)e dv I 
O v(v-v 02){v+v Ol )X~ {v){1t2 (v)+i7rV) 

(153) 

x< 0 , 

( 154) 

, x > 0 • 

In Equations (153) and (154), for the evaluation of v01 , Xa (-v 01 >. etc., 

· we must set s = O. 

This work can be extended by noting that 

CX) s 'Tn 'i' (x, µ, 'T) d'T 

0 

(155) 

Thus expanding '!' (x, µ) in a power series about s = 0 will give the s 

moments of the neutron angular distribution in time. 
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VI. NUMERICAL ANALYSIS AND CONCLUSIONS 

The exact solution to the problem 0£ finding the time-de pendent, 

monoenergetic neutron distribution in two adjacent, semi-finite media 

has been obtained in closed form. This exact solution was written as 

a combination of multiple, definite integrals, one of which is improper. 

At the interface (source plane) it was possible to reduce this solution 

and write it as a sum of simple, definite integrals, all having finite 

limits. 

Rather than approximating these solutions for short and long 

tirnes, possibly by the use of expansions, an exact numerical evalua-

tion was made with the intention of exhibiting the system pr ope rtie s £oi:: 

all time. Also, beca~se of the simplicity in the structure of the solu-

tion at the source plane as compared to x f. 0, the numerical work 

was done for x = 0 . 

Three different cases were investigated and are described in 

sequence. In all cases, the total flux ar1.d current were the quantities 

calculated. 

A. One infinite Medium 

For a single medium with a plane isotropic burst of neutrons 

appearing at x = 0 when t = 0, the total flux is given by Equation (146); 

t(o,T) = q[e-crT +-.-2-1-aa e"'(s+a)ds ]· (156) 

'I" '- 1T c CY _: (J . . ~ C(J 1'12 J 
,., 1 - -------. 

(s+cr) ( l+Ti
2

> 
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Equation (104) relates 11 to s. 

Using P-1 theory(Z 5) (see Appendix VI for approximate solu-

tions), it can be shown that (Equation (Al51)) 

~(o, 'f) = ~ (o, 'f) = 
0 

..J3" qo('f) + 

-aa 

~ J e s'f~ s+CT ds . 
~ -s-aa 

-a 

From diffusion theory (Equation (Al65) ), we can write 

-aa'f 
-- qe . ~(o, 'f) -
~~'fD 

(157) 

( 158) 

An infinite medium of pure carbon was considered and the flux 

at the source plane calculated as a function of time utilizing Equations 

(156), (157), and (158) - the total current at the interface is zero. 

The results are shown in Figure 14. 

For long times ('f > 20), we see that both the diffusion and P-1 

theory representations of the flux become almost identical to that 

given by exact theory. In fact for c R:J 1, Equations (156) and (157) 

have as asymptotic forms Equation (158) for large 'f . 

The analysis in this thesis was made on monoenergetic systems, 

presumably in the thermal energy range. In many experimental 

situations where thermal neutron decay is being measured, high 

energy neutrons are introduced into the system and slowing down 

occurs. Since the slowing-down time in graphite is approximately 

150 µ-sec, the short-time deviations shown in Figure 14 would then 

be obscured. However, one can expect diffusion theory to be 

accurate soon after the slowing down time has elapsed. 
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From Figure 14, it can be seen that the source plane flux is 

more accurately represented by diffusion than by P-1 theory for short 

times. The diffusion approximation results froin. making several 

simplifying assumptions in the P- 1 equations [see Appendix VI]. 

However, it does not necessarily foll'ow that these assumptions must 

make diffusion theory less accurate than P-1 theory-in fact at the 

source plane j;ust the opposite effect is seen to occur. The second 
: 

order equatioq which results from P-1 theory is given by Equation 

(Al55 ). For c ~ 1, the major difference between P-1 and diffusion 

theory is cont~ined in the term 

2 · 
1 8 cp(x, T) 
a 8 ,.2 

which is neglected in diffusion theory. If a is very large, this term 

becomes negligible and one then expects the two approximate solutions 
.~ ..... -

to converge. This can be seen by observing that for c ~ 1 and large a 

Equation (157) reduces to Equation (158). 

Hence the m .athematical reason for the deviation .between P-1 

and diffusion theory shown in Figure 14 is that the term containing 

the second derivative in time is not negligible for carbon for short 

times. 

This second derivative in time introduces a delta function in 

time (which can be thought of as an approximation to the uncollided 

flux) and other modifications into the diffusion solution for the flux. 

The net effect of these modifications must be to initially remove 

neutrons from the source plane. Thus one can expect diffusion 

theory, which does not take into account this initial loss of neutrons 

from the source plane, to have a higher neutron flux at x = 0 
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for short times. This ordering of the two approximations is 

expected to hold for all moderator materials. 

B. Two ·,Adjacent Semi-Infinite Media (Actual Materials) 

Three different physical systerris, containing half spaces of 

carbon, wafer, and beryllium, were examined; the data used are 

' (26) 
shown be~pw , . 

. . , ' 

Mate:rial 

c 

HzO < 
Be 

a[CM]- l 

0 . 385 

3.63 

0 . . 869 

c 

I. 0 

0. 9945 

0.9988 

a 

5. 9(10- 4 ) 

5. 37(10- 3 ) 

I. 265(10- 3 ) 

For the material properties noted above, we must evaluate the 

expressions listed below, which were .obtained from Equations· (131) 

through (140). 

J(O, '1") 

-cr2 

I 1 (0, '1") = 2iq J 
-al 

-al al 

I 2 (0, '1") = 2iq J 
-a 2 

ds 
T 

( s- !)} 
s11 

S'l"d e s 
11 

( 159) 

( 160) 

( 161) 

S'l" e ds. (162) 

( 163) 
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,. . 

- 2 <cr1 + cr2> 

~ (0, 1") = .9.. .e 
unc ,-

-cr2 ...)-b1b2 
Jl(0,1") = 2iqJ 

-cr 1 

-a2cr2 

J3(0, 1") = 2iq s 
-alcrl 

~ '1<b 1 -2) (2-b2 ) es'T" ds 

(b2-bl) 

( 164) 

( 165) 

( 166) 

Keeping in mind the convention of placing the mate rial with the 

larger total cross section to the left, the flux given by Equation ( 159) 

was numerically evaluated for two adjacent half spaces of ( 1) carbon 

and beryllium, (2) water and c.arbon, and (3) water and beryllium. 

The results are plotted on log-log paper for short times (Figures 15a, 

16a, 17a) and on semi-log paper for long times (Figures 15b, 16b, 

17b). 

For short times the two- region flux decay curves lie below 

their single region counterparts having the larger total, i.e., 

scattering, cross sections (since absorption is w e ak). A material 

with a high scattering scross section acts to retain the neutrons 

near their initial positions as opposed to a material with a lower 

scattering cross section. Hence one would expect, for example , 

on the basis of the scattering cross sections involved, that neutrons 

would remain at the · source plane longer in pure water than they 

would in carbon and water. 
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For long times one can show that the two-region flux decay is 

asymptotically given by 

K e 3/2 
'T 

which is quite similar to the single region asymptotic form given by 

Equation (158). Hence on semi-log paper the two-region flux decay 

curve will become parallel to the weaker-absorbing, single-region 

decay for large 'T. Thi.s asymptotic trend is clearly shown in 

Figures 15b, 16b and l 7b. 

During intermediate times the smoothly decaying flux curves 

indicate a rather complicated dependence on half- space properties. 

It was hoped that the net interface current behavior would shed some 

light on this dependence. Therefore, Equation (160) was numerically 

evaluated. The results of this calculation are exhibited in Figure 18 

for the three problems studied. 

Because we are investigating the behavior of the current at 

the source plane, we expect the current to start and remain at zero 

when both regions are identical. If the regions have different 

scattering properties, the interface current may assume a non-zero 

finite value immediately after the burst of neutrons is initiated. 

From Figure 18, we see that for short times ('T < 2) the current 

is positive, and the neutrons flow from the region with the larger 

to the region with the smaller total cross section. However, for 

long times ('T > 10), the curves indicate that the net flow of neutrons 
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has changed direction and that they now flow from the region with the 

lower to the region with the higher absorption cross section. An 

inspection of the equation describing the current (Equation ( 160)) 

indicates that the current will never again become positive. 

Hence when a plane isotropic burst of neutrons is initiated 

at the interface separating two dissimilar semi-infinite moderators, 

the interface flux is found to decay smoothly in time, and the inter-

.face current is seen to change directions once, at most. To obtain 

additional data on the interface current behavior, another problem 

was studied. The results are noted in the next section. 

C. Two Adjacent Semi-Infinite Media (Fictitious Cross Sections) 

In this problem, the net current at the source plane was 

calculated for a series of values of (a), ' (c), and (cr) in each half-

space. Starting with two pure scatterers (note that J
3

(0, '!") 

vanishes), both having scattering cross sections of a = 0. 5 [CM] - l, 

the scattering cross section in the left half plane was increased in 

-1 J-1 steps of 0. 1 [CM] to a final value of a 1 = 1. 0 [CM , keeping 

cr
2 

in the right half plane at its initial value. The net interface 

current was calculated as a function of time at each step. The 

results are shown in Figure 19. 

Next, keeping the right half plane as a pure scatterer of cross 

section cr
2 

= O. 5 [CM]- l and the total cross section in the left half 

plane at cr1 = 1. 0 [cMr 
1

, the absorption cross section in the left 

half plane was increased in steps of 0.1 (cMr
1 

from 0 to 0. 5 (CM]-~ 
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The interface current was again evaluated as a function of time at 

each step. The results are given in Figure 20. 

An inspection of Figures 19 and 20, together with an examina­

tion of the interface current and flux expressions brings to light the 

following explanation for changes in the interface current and flux 

in two adjacent moderator materials. 

If there are no differences in the cross sections of the two half­

spaces, there will of course be no interface current and the interface 

flux will be smoothly decaying in time (no reverse curvature). When 

there is a difference in the scattering but no difference in the absorp­

tion cross section, there will be a net flow of neutrons, for all 'f > 0, 

from the half- space with the larger to the half- space with the smaller 

scattering cross section. Similarly, if the scattering cross section 

is the same on both sides but the absorption cross section is greater 

on the left than on the right, there will be a net flow of neutrons to 

the left for all 'T > 0. 

Letting both scattering and absorption be different on each side 

yields two further variations in the description of the current, 

If c 1a 1 > c 2 a2 and a 1a 1 < a 2 a
2

, there will always be a net current 

from the left to the right. However, if cl cr l > c 2cr z and 

a 1cr1 > a
2

a 2 , the current may change directions after a certain time. 

Initially, the neutrons will travel from the region of high to that of 

low scattering probability. However, after a certain time there will 

be a net flow of neutrons from the region of low to high absorption 

probability. It appears then that the scattering process is initially 
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dominant and that the absorption mechanism is a long-term one . . 

Corresponding to these currents, small bumps in the flux versus 

time curves will appear. 

The calculations discussed in this section were based on pure 

moderator half-spaces. However, the only mathematical restriction 

on the solution is c ·~ 1. Recalling the definitions of c and a, 

we have 

c = a= 1-c . 

Hence fissionable materials could also be considered in the numerical 

work and were not included simply as a matter of convenience. 

D. Summary 

It has been shown in this thesis that the NME method can be 

applied successfully to two- region, time-dependent, monoenergetic 

neutron transport in one spatial dimension. Although only one 

problem was specifically solved here, there appear to be no restric-' 

tions in extending this method to other time-dependent, two-region 

problems. 

The exact solution to the two adjacent, semi-infinite media 

problem exhibited here also describes explicitly certain physical 

. effects which one would expect. First the existence of uncollided 

waves traveling through the two media was shown and the form of 

these waves was given explicitly, Next, the lack of a fundamental 

mode due to the infinite extent of the system was observed. Further, 

some insight into the mechanism of reflection at an interface was 
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gained through the numerical calculations. 

The magnitude of flux deviations due to differences in the 

properties of the two media appeared, however, to be rather small 

.at the interface. In contrast to this, the .current.was seen to depend 

markedly on the difference in properties of the two media. 

Although flux determinations away from the interface were not 

numerically made, the expressions, though involved, could be 

evaluated to determine flux as a function of time at any distance 

from the source plane. Also, expressions for < tn > are obtainable 

from the analysis, although they were not determined by the author. 

Finally, the semi-infinite and infinite medium solutions were 

obtained as special cases of the general two-media result. 

E . Possible Extensions 

Although an isotropic source was assumed in this analysis, an 

angularly dependent source could be used with only minor changes, 

and with no complications occurring in the subsequent analysis. 

However, adding in anisotropic scattering would lengthen and compli­

cate the analysis considerably, as would energy dependence. 

However, without changing the basic equation or the physics of 

the source , two slightly different extensions could be made to the 

thesis problem, thereby obtaining additional information on time­

dependent neutron fluxes . First, the geometry could be changed to 

that of a reflected slab. Because of the finite thickness and conse­

quently the possibility of discrete modes being set up, one would 

then be able to compare the properties of these decaying modes with 
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those found in experiments and with predictions made by less exact 

theories. However, the coefficients in the normal mode expansion 

for this problem are not as easily obtainable as in the pre sent 

instance. and this could reduce the apparent utility of the method in 

the reflected slab problem. 

Alternatively, if one were to place the source off axis, but 

retain the two semi-infinite media, the two-region problem solved in 

this thesis wo'Uld become conceptually a three-region problem. 

However, this does not seem to be an insurmountable difficulty. 

Further, the solution to this problem would clearly exhibit the 

effect of an interface on a traveling neutron wave front and may be 

of some value in this regard. 

As a final extension, suppose now that the source (off axis in 

the two semi-infinite media problem) is of an oscillatory nature 

(eiwt). It seems possible that some type of waves could be set up 

in the region between the source plane and the interface. One might 

then be . able to relate w to the properties and geometry of the 

system. This perhaps would be of some -use in determining the 

nuclear properties of materials. 
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APPENDIX I - COMPLETENESS PROOF 

In this appendix it is proved that certain of the functions 

ip
1 

_ {µ) • 'Pz+ (µ), <Plv (µ), and 'Pz)µ) are complete in the space 

-1~ µ ~ + 1 for a given function lJI'{µ). There also occurs, as a result 

of this proof, a prescription for obtaining the coefficients in the expan­

sion which is used to represent the function lJI'{µ). 

To carry out the proof presented here, the restrictions needed 

on lJI'{µ) are 

where 

{b) $'{µ) - 1 

"+ J!-i) 

as µ - +I, -1 respectively . 

and 

"+ < 1 "'' {µ) -
I 

)' 

lµ+rl -
"- < 1 

Condition {a) is termed the Holder condition in the literature, and 

* conditions {a) and {b) together, the H conditions. 

More specifically, utilizing the notation shown in Figures 6a and 

6b to designate certain regions of the s-plane corresponding to Cases I 

and II , we shall find that, when multiplied by µ , 

"'z+(µ) , 11'1-{µ) ' <P1 v~> ,-1 < v < o , "zv{µ) ,o < v < 1 

a1:"e complete for -1 ~ µ ~ + 1 in (a), 
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are complete for -1 ~ µ ~ + 1 in (b), 

tp l v (µ), - I< v < 0 , tp 2 v (µ), 0 < v < I 

are complete for -1 ~ µ ~ +l in (c), 

'Pz+(µ) , <P 1 )µ),-1<v<0 , <Pz)µ),O < v < 1 

are complete for -1 ~ µ ~ +l in (d). 

The procedure used here parallels closely that of Case ( 
3

• 6) 

which itself leans heavily on the solution to the Hilbert problem as 

presented in Muskhelishvili(Z?). First, we attempt to show that one 

can express 'is'(µ) in. the form · 

(Al) 

where the 4''(µ) satisfies the H* conditions and the A(v) are as yet 

unspecified but are required to have properties similar to those of 4''(µ). 

If the expressions for 'Pl v(µ) am,i 'Pzv(µ), Equations(48) and (56), 

are substituted into Equation (A 1), and the following notational changes 

are made, 

(A2) 

then Equation (Al) becomes 
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. ~I(µ) : µ [s 0 

-1 

vB(v)dv 
v-µ 

A( )d /B(µ)~l (µ) ' µ < OJ v v v + 
v-µ " 

A(µ)~ 2(µ) µ > 0 

, (A3) 

where the integrations are principal value, whenever necessary. 

Next, a new function N(z) is defined; 

N(z) :: . I . [S 0 
vB(v)dv + s 1 

vA(v)dv] 
"Zin" -1 v-z . 0 v-z 

(A4) 

From the conditions on A
1

(v) , A 2(v) and thus on A(v), B(v), 

we note that 

1 . N(z) is analytic in the z-plane cut from -1 to +I 

2. liTn N(z) 
Z~Oo 

3. 

K - .-z 

1 N(z),.,,. 
. Y+ Jz::.1 I 

"+ < 1 as z -+ 1, and similarly for z -+ -1 

4. N±(~) ~[s_: vB(v)dv +·s 1 vA(v)dv 
. r<µ),µ > 0] 

= ± 11T\ v-µ v-µ 
0 

· B(µ),µ < 0 

Hence 

N°t(µ) - N-(µ) 

and 

=µ/A(µ). µ > 0 

"'B(µ), µ < 0 

N+( ) + N-( ) = _.;.. [S 0 
vB(v)dv + s 1 

vA(.v)d,v ·] 
µ µ 1Tl v-µ v-µ 

. -1 0 . 

(AS) 

Substituting Equations (AS) into Equation (A3) yields, after some 

rearranging, 

?t(µ)+iirµ + - ) "1 1(µ) 
'll:(µ}-iirµ N (µ)-N . (µ = ?t(µ)-iirµ (A6) 
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where the subscripts on 'k(µ) have been dropped since ')t(µ) ='k 1 (µ) for 

µe[-1,0], and Mµ) =k2(µ) for µe[O,+lJ. So the requirement of a 

solution to Equation (Al) has been transformed into the requirement of 
I 

a solution to Equation (A.6). 

Equation (A6) is designated as an inhomog_eneous Hilbert prob-

lemon an open contour, and is ·one of a class of such problems discus·­

sed in Muskhelishviii(Z?). However, the method of solution to Equa-

tion(A9)carried out here, though using some of the notation of 

Muskhelishvili is based on a variation of this work which was introduced 

by Case(
3
). Following. Case, let us partially define two new functions 

F(z) and X(z) by the relation . 

- . ; . 1 s +l 'i''(µ')X-(l:t)dµ' 
F(z) - X{z)N{z) - -z:n:r _

1
. ('k(µ,-iirµ')(µ'-z} . (A7) 

We seek the properties which must be as'sumed by X(z) in 

order to make F(z) vanish everywhere. Furthermore, we must deter-

" 
mine this X(z) explicitly. If this can be accomplished, then complete-

ness will have been proved. 

a ' . 
If X(z) "' z fpr' large z, then F(z) 

a-1 
-- z So in order to 

make F(z) vanish as · z - oo , we require Re a < 1. Also if X(z) is 

analytic in the cut plane, the~ F(z) will be as well. As z - 1, if we 

assume X(z) --11-z'I 0+' th~n F(z) will be 'bounded provided o+ >"+ 

and similarly as z - -1,' o > y _. 

Considering the jump in F(z) as one crosses the cut 

-1 ~ z ~ +l, one obtains 
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Setting this discontinuity equal to zero yields 

-( ) - "'I(µ) 
N µ - -'It(µ) -i irµ 

Comparing Equations (AB) and (A6) we see that . 

_ ~(µ)+iirµ 
- k(µ)-1irµ 

(AB) 

(A9) 

Hence we have constructed a £unction F(z) which is analytic in 

the z-plane cut from -1 to +l., vanishes at infinity, and has no dis­

continuity across the cut. By Liou ville 's 'theorem this function must be 

zero. If we assume further that X(z) is nonvanishing in the cut plane, 

Equation (A.7) becomes 

. l s +l lJl'(~')X-(µ')dµ' 
N(z) = 2mX(z) _

1 
(~(µ)·iirµ') (µ 1-z) · (AlO) 

Let us investig~te Equatio~ (Al 0) .to see i£ it satisfies the con­

ditions on N(z). It is certainly analytic' in the cut plane. Now z -+ 1, 

I 
we kno.wthat N(z)"' ----

lz-1 j Y+ 
where . Y+ < 1. For the same condition 

to hold in Equation (Al 0) it is necessary that 6 + < 1 ; simifa.rly as 

z - -1, . we require ·6 _ < 1 to make N('z) have the proper behavior. 

F~nally~ as z -.,, · _we find from Equation (AlO), 

;..l-a ·5+
1 

"''(µ'>x-<u ' >dµ ' [ µ' µ'
2 

] 
N(z)"" z . ~( ) , µ"T 1 +- + --r- + .... (Al 1) 
. -1 µ-1Tr, . . z z" 

But we require N(z) "' ! as z - ao . To reconcile these conditions 
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we require the following, depending upt>n the choice of a. First, a 

must be an integar from 0 to -oo. Then if a = 0 no further require-

ment is necessary, and if a = -n, we require 

. s +1 lJl'(µ')X-(µ')µ'ldµ ' = 0 
~{µ 1)-brµ I -1 . 

l = 0,1, ... ,n-1 (Al 2) 

This last equation seems to put an additional restriction on the 

lJI'(µ) ·allowed. However, it will be seen later that this is indeed not the 

case, and that it is just this apparent restriction (Equation (Al 2) ) 

which will permit us to determine all the coefficients. 

The next step in this proof is to obtain a X(z) function satisfy-

ing the conditions summarized below. 

1. X(z) is analytic and nonvanishing in the z-plane cut from 

-1 to +l. 

2. a X:(z)"'z as z-oo, where a=0,-1,-2,. 

3. 
6+ 

As z - +l, X(z) j 1-z I where 6 + < 1, and similarly 

for z - -1. 

4. = ~(µ)+iTrµ 
~{µ)-hrµ -1 ~µ~+l 

This is a homogeneous Hilbert problem and has been handled 

. . h l" <27) D f " . many times llJ.. t e 1terature . e 1n1ng 

where 

r( ) = 1 s +1 .fnG(µ')dµ' 
. z "'Zin"" . ' µ'-z . 

- 1 

I _ . x (µ1 +i irµ I 
G(µ ) - ~(Ji')-iirµ 1 

it is easily seen that . 

., 

(Al 3) 
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x (z) = er(z) 
0 

(Al4) 

satisfies conditions (1) and (4), 

Let us next look at the behavior of X (z) as z - ±1. We shall 
0 

find that this behavior depends upon the value of s chosen, and that it 

will differ depending only on whether s is in (a), (b), (c), or (d) of 

Figures 6a and 6b. 

As z - 1, r(z) -
1 z~(l) ln(l-z), and as z - -1, 

r(z) - 1z~-l) ln(-1-z). Thus .X
0

(z) -(1-zfnG(l}/Ztrias z -+l, and 

X
0

(z) -(-1-zflnG(-l)/Ziri as z --1. Writing lnG(µ'} = lnlRI +HJ(µ'). 

wenotethatonlytheimaginarypartis importaritsince .lnd'(±l) is divided 

by i. 

To obtain G(±l) we start at µ'= 0, where we assume zero 

phase (lnG( o) = 0), and travel along the path of integration to µ' = ±1, 

treating the argument of lnG(µ '} as a continuous variable. 

The values of 0(±1) so obtained for each region of the s-plane 

. are listed below, together with the . X (z') 
' 0 ' 

behavior . 

Region 6(+1J X (z) 0(-1) X (z} 
0 (z~-1) (z-+l) 

(a) 2.11" (1-z)+l - 2n (-1-z) +l 

(b) 0 - (l •z) 0 
- 2n ( - 1-z) 1 

(c) o_ ( 1-z) 0 0 (-1-z) 0 

(d) 2iT ( 1-z) 
1 

0 ( ' 0 -1-z) 

From this behavior for X (z) 
0 

we construct a X(z) which 

satisfies the four conditions required, by suitably multiplying X (z) 
0 

Y1 Yi 
by (1-z) (-1-z) , where y 1 and Yz are 0 or -1. More 
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·specifically, we find as suitable X(z) 's, 

[ 
-1 

in (a), X (z) = (-1-z)(l-z)] X (z) a o a= -2 

in (b), a= -1 

(Al 5) 

in (c), X (z) = X (z) 
c 0 . 

a = 0 . , 

in (d) ~ a= -1 

The value of a corresponding to each region in the s-plane is 

also listed, and this implies that Equation (Al 2) must be satisfied in 

regions (a), (b), and (d). 

Let us apply these results to the solution of the equations ob-

tained from the jump condition at the interface, Equations (68) through 

(71), which are rewritten below. 

[s
o · 1 

In (a), q-µ[a 2+C1'z+(µ)+a 1 _'P1 _(µ)] =µ _ 1A}(v)~lv(µ)dv + ~ A2(v)rp2 v(µ~j. 
(Al 6) 

In (b), q-µ[ a1 _<Pi_(µ)] = µ [~ 
0 

A 1 ( v)<p111(µld v + ~I AzC v)<p2 )µ)d v l (Al 7) 

(Al8) 

Defining the left hand side of each of these equations by -¥'(µ), 

. * they are seen to satisfy the H conditions and they also contain, in 

cases (a), (b) and (d), unspecified quantities. Investigating Equation 

{Al6)first(region (a) of the s-plane), we can apply the completeness 
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theorem provided, since a = - 2, 

l = O, 1 

This set of two inhomogeneous equations completely define a
1 

_ and 

a 2+. Thus Equation (Al 2) does not restrict the functioD: \j.1 1(µ) but pro­

vides for the determination of the discrete coefficients . Once the 

discrete cqefficients are obtained, both A 1 (v) and A 2(v) . can be 

obtained through the machinery used in completeness proof. 

A similar sequence can be. used to obtain the coefficients in the 

other regions of the s-plane. Thus Equation (Al2) provides just 

enough of a requirement to determine the discrete coefficients in each 

region . 

Hence completeness has been proved in each region of the 

s-plane for both Cases I and II, and .a prescriptfon for obtai ning the 

coefficients has been determined. The actual evaluation of these co-

efficients is the subject of the next appendix. 
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APPENDIX II - OBTAINING THE COEFFICIENTS 

IN Tf{E NOR.MAL MODE EXPANSION 

The e:>tplicit form of the coefficients a 1 _, a 2+' 1) (v) and A 2(v) 

in each region of the s-plane are evaluated in this appendix. They 

result from the completeness proof with the help of several identities 

in the X(z). · As a check, several of these coefficients are extracted 

from the jump conditions, Equations (68) through (71),by the applica-

tions of certain orthogonality relations. 

A. Identities in X(z) 

Before applying the machinery of the completeness proof to 

obtain the coefficients, let us obtain several identities which are useful 

in the simplification of the resulting expressions for the coefficients. 

These expressions are all based on Cauchy's theorem, and· similar 

expressions can be found in the literature. 

Consider region (a). Here Xa (z) is analytic in the planE;: cut 

-2 
from -1 ~ z ~ +l, and behaves asymptotically as z Hence 

X (z')dz' 
a 

z 1-z (Al 9) 

where c is the contour shown in Figure 21. Noting that the contribu-

tion of the large circle to the integral tends to zero as the radius of 

this circle tends to 001 and that the contributions of the small circles 

' about :t:l also .vanish as their radii tend to zero ,we are left with 

This can be further simplified to 
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Z
1
-PLANE 

Figure 21 • Contour for Integral Equation ln X(z) 
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S 
+1 µ'X -(µ')dµ' 

xa (z) =- -1 ("'le(µ 1)-f irµ ')(µ 1-z) (A20) 

From a derivation identical in every detail to this, one can also 

obtain 
2 -

S +l µ' Xa (µ')dµ' 

zXa(z) = -1 (~(µ')-iirµ')(µ'-z) (A21) 

Based on a partial fraction expansion, making use of Equation 

(A20),it can be shown that 

Xa (z2)-Xa (zl) 

z2-zl 

= s +l µ•x;(µ')dµ' 

- 1 (X. (µI )-i irµ I)(µ I - Z 1 ) (µI - Z 2) 

(A22) 

Let us next consider Xb(z) · in region (b). Formula (Al 9) and 

Figure 21 are still valid, and the figure will so remain throughout this 

-1 
s.ection. In this region Xb(z) "' z • Hence Formula (A20) remains 

valid here; 

S 
+l µ~x;(µ')dµ' 

x z = ' b( ) _
1 

()t(µ)-.iirµ 1)(µ 1-z) (A23) 

An expression similar to Formula (A21) is presently not needed,- but 

Formula (A22) is identical in this region; that is, 

Xb (zz)-Xb(zl) 

z2-zl 
(A24) 

In region (c), the: evaluation of Formula (Al9) over the contour 

shown in Figure 2.1 yields, in addition to the integral from -1 to + 1, 

a contribution over the large circle. Hence 
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s +l µ'X -(µ')dµ' 

Xc(z) = 1 + -1 {µ'-z)(~{µ')-i1Tµ') 

The form of Equation (A24) is retained in this region however; 

Xc(z2)-Xc(zl) 

z2-zl 

(A25) 

(A26) 

In region (d), the Formulae for Xd(z) are identical to those in 

region (b) and are not written out here . 

B. Evaluation of the Coefficients 

From the completeness proof, the following list of formulae 

will yield the coefficients, after some algebra, in terms of known 

functions . 

+ -N (µ)-N (µ) 
µ > 0 

(A27) 

µ < 0 

1 s+l "1'( ')X-( ')dµ' · 
N(z) = 2mX{z) _

1 
(~(µ 1 r-i1Tµ 1 )tµ'-z) • (A28) 

1 = 0, 1, . . • , -·a-1 ., (A29) 

where a= -1,-4, . . 

Region in a "'I(µ) 
a-plane 

q-µ[a2+"'2+<µ) +al- ·cpl __ (µ)] (a) -2 

(b) -1 q-µ [a1-"'1_(µ)] 

(c) 0 q 

(d) -1 q - µ [ a 2+ '1' 2+ (µ) l 
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The coefficients in each region of the s-plane are evaluated separately. 

1. Region (a.): Let us first obtain a 1 ... and a 2+ through the 

use of Equation (A29). Substituting -ts'(µ) into Equation (A29) yields the 

following two equations for 1. = 0 and l = 1; 

S 
+l x -(µ')dµ' 

= q ~(µa 1)-iirµ 1 
-1 . 

· S +1 . µ.Zx -(µ')'P (µ')dµ' 
a 1-

+ az+ 

·s +l =q 
-1 

µ'X -(µ')dµ' 
a 

}t (µ I ) ..;, i 'ITµ I 

S+l 

-1 

2 -
µ 1 x (µ')<P (µ')dµ' 

a 2+ . 
1':{µ')-i'ITµ' 

These two simultaneous equations can be simplified first by 

exhibiting the functional forms of <pl_(µ) and <Pz+(µ), _and then by 

applying the identities given in Section A for X (z). The result is 
. a ' 

cl al .czaz 
al- 2 ve1Xa(-vo1>-a2+ 2 vozXa(voz> = qXa(o) 

Solving yields 

vor-Xa(-vo1> 

vol 
(A30) 
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Next we obtain A 1(µ} .and A 2(µ}. Substituting ljl'(µ} into 

Equation (A28} gives the following expression for N(z}; 

N(z} 
: 1 [ s + 1 X; (µI )dµ I 

ZmXa (z) q _ 1 (~(µ 1)-i-rrµ?(µ'-z) S +l µ'rp (µ')X-(µr}dµ' 
2+ a 

-al- s +l µ'<Pdµ')X;(µ'}dµ' ] 
. - 1 Ot(µ I )- i 1Tµ I )(µ I - z) 

Using Identity (A22) of Section A and substituting for a
2

+ and 

a
1

_ from Equation (A30} reduces this to 

N(z} - q -
[

l xa (o) 

- "Zin"" z zXa (z) 

Finally, after some additional simplifications, we obtain 

Thus the continuous coefficients can be expressed as 

- 2qXa (o} vol v02 

Al(µ) = cl (J" 1 µx; (µ)(~(µ)+i1Tµ)(µ- VozHµ+vol) 
.µ < 0 

. (A31) 

µ >O 

2. Region(b): Substituting the appropriate +'(µ) into 

Equation (A29) yields the following expression for the coefficient a
1 

_, 
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S +l µ''PiJµ')Xb(µ')dµ' = q s +l Xb(µ')dµ' 
al- _

1 
· ic(µ')-in-µ 1 _

1 
-,C(µ')-in-µ' 

Applying Identity (A23) to this equation gives 

(A32) 

The expression for N(z) in region (b) becomes, from 

Equation (A28). 

. [ 5+1 
N(z) = 2riX

1 
(z) q 

b -1 

Xb(µ')dµ' s +i µ'cp1iµ')Xb(µ')dµ'l 
Ot(µ 1)-i1Tµ 1)(µ 1-z) .-al- _1 (~(µ 1 )-i1Tµ 1 )(µ'-ztl· 

Applying Identity (A24) to this expression and replacing a
1 

_ 

by Equation {A32) yields 

With this expression we can obtain 

Hence the continuous coefficients in region (b) are 

µ<O 

·(A33) 

c 2a zP- (µ+v oi )Xb (µ)(~(µ)+i 1Tµ) 
µ >O 

3. llegion (c): In this region no discrete coefficient is defined, 

nor is there a requirement to obtain on'e since Equation (A29) does not 
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apply here (a = 0). So we need only determine the continuous coef-

ficients A 1 (µ) and A 2 (µ). 

The expressioh for N(z) in this case is 

. s +1 X~(µ')dµ' . 
N z - q 

( ) - 2trix (z) 1 ('JC(µ')-iirµ 1)(µ'-z) 
c -

Evaluating the integral through the use of Identity (A26) gives 

Hence 

x - (µ)('X(µ)+i1Tµ) 
c . 

and the continuous coefficients in region (c) are 

ZqX (o) 
c = Al(µ) 

c I a 1 µx ~ (µ)()t(µ)+i 1Tµ) 
. µ < 0 

ZqX (o) 
c = Az(µ) 

c 2a 2µx~ (µ)(lt(µ)+i1Tµ) . 
.. µ >O 

4.- Region (d): . Here the expression for the discrete coef-

ficient is 

S +1 µ'<Pz+(µ')X~(µ')dµ ' 
a 2+ -1 ~(µ ')-i1Tµ I 

= q S +1 x~ (µ')dµ' 
'lt(µ')- i1Tµ' -1 

. This yields, when the integrals are evaluated, 

For N(z), the following expression must be evaluated; 

(A34) 

(A35) 
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X~(µ')dµ' 
-a2 S 

+l 

+ -1 

µ 1"'2+ (µ,' )Xci (µ ';1.µ J. 
(ii:(µ ')-hrµ 1)(µ 1-z) J 

Once the integtals are evaluated, and the results simplified, one obtains 

Thus 

and the continuous coefficients are found to be 

Al (#l) 
-2qXd(o) v 02 µ<O = 

c 1 a 1µ{µ - v02)Xd (µ){k(µ)+iirµ) 

(A36) 

A2(µ) 
-2qXd(o) v02 

µ >O = 
c 2a 2µ(µ-v02)Xd (µ){-k(µ)+iirµ) 

C. Obtaining Several Coefficients by Orthogonality Relations 

In Section B of Chapter II a meth~d(?) to obtain the expansion 

coefficients by orthogonality relations was discussed for the steady-

state two-media problem. This method is used in the thesis problem 

to obtain some of the coefficients in region (a) of the s-plane, hence . 

providing a check on the results obtained from the completeness proof. 

The formulae u .sed here ar.e quite similar to those employed in 

Reference (7), differing only by constant factors. 

From the jump condition in region ~a), Equation ( 68), we s .eek 

the coefficients in the e.qu'ation 
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Utilizing Identities (AZO) and (A21) as well as 

--s+l z
2x (z)..:1 

a -1 

3 -µ' . x (µ')dµ' 
a 

(~(µ 1) -hrµ')(µ' - z) 
(A38) 

and following closely the work in Reference (7), we define a weight 

function 

< voz-µH vol +µ)x; (µ) 
W(µ) = ---...-r-....,....,...---­?t.(µ) +itrµ (A39) 

such that when Equation (A37) is multiplied by W(µ)q.i (µ) and integrat­
n 

ed over µ, only one term has a non-zero value on the right hand side 

of Equation (A37). 

Based on this brief sketch of the method let us evaluate az+• 

A
1

(v), and A 2(v). First a 2+ will be obtained. 
. . 

. We multiply Equation (A37) by W(µ)tpz+(µ) and integrate over µ 

from -1 to +l. It is relatively easy to· show that (see Equations (22) 

for comparison) 

S+l 
µW(µ)<Pl _ (µ)<Pz+(µ)dµ = 0 

-1 

s_:1 µW(l'l"'z~)dµ[I: A1<•>"'i)"ldv+ t AzM<Pz.(l')dv] = 0 
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Hence 

(A40) 

which is identical to the result obtained from the completeness theorem. 

To .obtain A 1 (v) and A 2(v) by this method we define 

-1<v<0 -l<v<O 

A(v) 

O<v<l 0 < v < 1 

and .write Equation (A37) as 

(A41) 

Now we multiply Equation (A41) by W(µ)rpv~,(µ) and in~egrate 

over . . µ. Here we find 

S +l s +l 
µW(µ)<P ,(µ)dµ A(v)rp (µ)dv = 

. v -1 v 
-1 

1 
(C( V 1 )0"( V 1 ) )

2 ' 2 
1
2 2 I r VQ2- v'){ VQl +v') v•x; ( v') l 

A(v) 2 [ 1T v +~ {v >t (~(v')-iirv') . ] 

The last integral is done with the aid of the Poincare-Bertrand theorem{ 2
7). 

Hence, we cart w.rite \ 
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2qXa(o)voi voz 
A{v) = 

c( v)a( v)[ ( v02- v)( v 01 +v) vX~ ( v)(~(v)+i1rv)] 

-1 < v < 0 

c(v)a(v) 

0 < v < 1 

(A42) 

This result is again identical to the A(v) obtained from the complete-

ness proof. 
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APPENDIX III -ANALYTIC CONTINUATION OF THE 

TRANSFORMED SOLUTIONS 

This appendix contains a summary of a proof that the '¥ (x, µ) 
s 

obtained for Case I in regions (a), (b), (c) of thE;l s-plane and given 

by Equations (76) through (81) are the sectional representations of 

a function which is analytic in some right half s-plane, except for 

singularities or branches which occur within each s -plane region. 

Similarly the '¥ obtained for Case II in regions (a), (b), (c), (d) of 
s 

the s-plane and given by .Equations (76) through (83) are shown to be 

representations of a function analytic in some right half a-plane, 

save for discontinuities within each s-plane region. · 

The basis of this proof is a theorem (Z8 ) which follows from 

Cauchy' s Integral Formula and which can be stated in the following 

manner. If f 1 (z) is analytic in D, and fz(z) is analytic in DZ, where 

D
1 

and Dz are adjacent regions having a common border y, and if 

the values off 1 (z) and fz(z) are continuous on y, and are identical 

for each value of z on y, then there exists a function analytic in 

D 1 UDzUY which coincides .with f 1 (z) in D 1 and with fz(z) in Dz• 

Let us show, for Case I and x < 0, that the solutions in each 

region of the s-plane are indeed analytic continuations of each other. 

Figure ZZ contains the information needed. 

The solution within each region of the s -plane and given by 

Equations (76), (78), (80) is written out below. 
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S-PLANE 

I Y1+ (c) 

I (b) 

(o) 

_,, - " I 2 
(o) 

r,_ 
(b) 

(c) 

Figure Z2 - Sketch of the a-Plane for Case I, x< 0 



l' (x,..,.)• s 

Y (x, µ) = 
s 

0 

-s 
-1 

0 s 
-1 

-2qX (O) 
c 

c 1er1 
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(A43) 

(A44) 
-(s+cr1)x/ v 

] v 01'P1 v (µ)e d v 
v(v+v 01 )xb(v)(X1 (v)+i?rv) • s € (b). 

0 -(s+a-i)x/ v 

s 'P 1 v (µ) ~ dv 

v x ~ ( v )( x 1 ( v )+ i 7r v) 
-1 

, s e (c). (A45) 

We shall look first at the border between regions (b) and (c) in 

the lower half s-plane and prove that Equations (A44) and (A45) both 

de scribe the same continuous function along '}' 
1 

_. Approaching ,,· 
1 

_ 

from region (c), we note that (X 1 (v)-i?rv) has a zero somewhere 

· within -1 < v < 0, since on 'Y 1 _, 0 < v 01 < 1. In fact, based on 

Equation (49), it can b~ shown that 

'X ( v )-i7rv = 
1 
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The appearance of this zero requires that a branch point and an 

accompanying branch cut be considered in the integrals contained in 

X(z). For convenience X 0 (z) (Equation (A14»is written out below: 

1 ~ so .)tl (µI )+ i 1T}-L I du. I sl ){.2 (µI )+i 1T}-L I 
X 0 (z) = exp -2 . l.n Xi( 1) • 1 :-:-T"'-:: + 1.n )t ( , ) . 1 71"1 µ -1nµ µ -z µ -1nµ 

-1 0 2 
~l 
µ' -z ~. 

(A46) 

In the plane of integration (µ ' -plane), the location of the branch 

point as a function of s, for s near y1_, is shown in Figure 23. 

The branch cuts are chosen as shown, and the phase atµ' = 0 

is zero as required. Hence, the paths of integration in the µ'-plane 

for the function x
0

(z) are shown in Figures 24a and .24b as s-y
1

_ 

from regions (b) and (c) respectively. 

Thus we obtain, for s - y1 _ from region (c),. 

1/2 1 
- ( VOl+z) 27ri rvo1 (z) x 0 (z) - l+z e 

where rv
01 

(z), obtained from Equation (A46), implies the principal 

value integral with respect to v 01 , 

r (z) 
vOl 

)tl (µ' )+i7rµ' 
.fh ..,.--,-..,...........,..-~ 

X1 {µ ' )-i?Tµ' ~ µ -z S
I A2(µ' )+i?Tµ' 

+ .fn------
0 X2(µ')-i7rµ' 

Finally, for z = v, where -1 < v < 0, we obtain 

+ (vOl+v )1/2 ( )tl (v)+i?TV )1/. 2 . e 2~i rVOl (v) 
Xo(v) = 1 +v )t

1 
(v)-i?Tv 

~ 
µ' -z 

(A47) 

a:nd the integration in the µ'-plane is O<?W principal value with respect 

tov, aswellasv01 • · 
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14
1 
-PLANE 

0 

+I 

Figure 23 • Location of Branch Point and Line 
for • near y 1_ ·:;~·: .,._. 

p. ' - PLANE 

-I - "OI +I 

Figure 24a • Path of Integration 
in X 0 (z).- for • - v1• 
from (b) 

' ... . . 

p.' -PLANE 

- I - "01 +I 

I 
4 

_... - ...... _J 

Figure Z4b • Path of Integration 

~01~0~~~ for •-y1_ 
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It n)ight seqm that when z = -v 01 , X 0 (z) is undefined, in the 

sense that it ie unbounded. However, this ia not the case since an 

alternative path of integration may be chosen {shown as a dotted 

line in Figure 24b) along which the integrals exist. So we can con-

elude that X 0 (z) is defined for all values of z, even for s along 

y 1_. Also I'v (-v01 ) exists. 
01 

Utilizing Equation (A47) permits one to write 'l! (x, µ) for 
s 

s-+ y
1

_ from (c), as follows: 

-Zq~ 
'l! (x, µ) = a-

s cl I 

-
1
- r (0) 0 

eZ1Ti v 01 s { 
-1 . 

{ 
1 }{cllTl 1 } . . I/Z -.-2 - vP y:- + x1 (v)o (v-µ) dv • 

(1t
1

(v)-11rv) µ . . 

(A48) 

The path of integration in Equation (A48) (for that part of the 

integrand not containing the o-function) is similar to that shown in 

Figure Z4b, and is shown in Figure Z5a. No branch is needed this 

time, and the principal value integration about µ is indicated for 

· µ¢-vo1· 

Forµ¢ - v 01 then, Equation (A48) can be written as 
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., -PLANE .,-PLANE 

-I -I p.= - "Ot 

0 

Figure 25a:-.• Pa~}?. of Integrati~ ; 

, -in 'Y 8~x, µ) for • .... ~!'.~. 
from (c) with µ. #:~"JU 

Figure Z5b - Path of Integration 
in T (x, µ.) for • ... Yi ·· 

. \~/!~~, , fror:. (c) withµ = -v~ 1 

..... ...... 

., -PLANE 

- .,01 0 

-I 

Figure 26 .. Path of Integration U•ed in Defining 
the &•Function 



-142-

- i ~ 2q~~~; 
"¥ (x,µ)= <T 

s cl 1 

1 . . . 
raI'v (Q)I 

01 e 

-(s+<Tl)x/v - 2
1

. r (v) 

l 
0 1/2 7Tl VOl 

S 
e (l+v) e c

1
<T

1 
dv 

p µ p - v 01 - 1 -(-v+_v_O_l_)_l/--2~(-~-(-v )_2_+_7T_2_v_2_) l_/_2_2_( v---µ-) 

-(s+<T 1 )x/µ - 2!i r v (µ) 

1 (-µ)i\.l (µ)e ( 1+µ)1/2 e 01 

+--~<~-+~>1~7~2-<-~-<___,>2-+~z-z_>_1/~2~~-
µ vo1 µ lµ 7Tµ 

(s+o-l)x/vOl - 2~i rv
01

<-vo1> 
. (l )1/2 17Te -v 01 e c 1 <Tl 

+ 
. . 1/2 l+vOl 

(-2i7TV01) 2(-vOl-µ)[Ln 1-vOl + 

(A49) 

· Whenµ= -v
01

, the path of integration in Equation (A48) (exclud­

ing the a-function portion) becomes slightly less complicated and is 

shown in Figure 25b by the solid line. 

It can be shown that Y s (x, µ) is bounded when µ = -v 01 , or that 

the singularity which seems apparent at this point is actually 

removable, and hence nonexistent. Defining 

and 

0 

11 sP - s VOl 
-1 

-(s+<Tl)x/v - 2
1

. r (v) 
1/2 7Tl VOl 

e -. (l+v) e vc 1<T 1dv 

v(v+v 01) 1/ 2(°'lf (v)+7T2V2) 1/ 22(v+ v 01) 
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-(s+CTI)x/v - 2
1

. rv (v) 
0 

Io :: s 
c -1 

e 
1/2 ' '/Tl 01 

(l+v) e ~1 (v)o(v+v 01 )dv 

Equation (A48) becomes, for v 01 = -µ, 

-2q°'1v 01 
'i' (x, µ) = --.--

s c I CTI 

-
1
- r (O) 

21Ti VOI 
e • (A50) 

. Due to the analyticity of the integrand in the v-plane we can 

write 

. I 1 + Ip = I 2 + I 3 + 14 = bounded functions (B. F.) 

since 12 through 14 are easily seen to exist. Hence · 

But it can be shown that 

I -p [ 

(s+CTl)x/vOl - _21. r (-vOl) ] 
1/2 1Tl v 01 . 

2 e (l-vo1> e clCTl 

p ·(- 2. )1/ 2 2 r1 I+ v 0 I + Z v 0 1 . _ . ].1/ 2 
17T:V 0 1 t n 1 - V 2 111" 

01 1-v
01 

where p = Iv + v 01 I 

Hence 

I = 2-
1 p 

+ B.F., 



-144-

So 11 does have a first order pole with the behavior near v = -v 
01 

shown above. 

where 

0 

. K(p) = s 
-1 

o(v+v
01

)dv 

v+vo1 

From Figure 26, and the property of the a-function 

0 s. 
-1 
~ 

F(v)dv 
v+vOl 

0 
= p s F(v)dv 

v+vOI 
-1 . 

0 

+ i1T S F(v)o(v+v 01 )dv 

-1 

K(p) I 

(AS Ob) 

we set F(v) = (v+v01 )-l and observe that the left~and side of this 

expression is bounded. This yields 

2 - -. - + B.F. = K(p) 
11Tp 

for the behavior of K(p) near v = -v 01 • Hence, one can write 

=+I +B.F. 
p 

Thus both parts of Equation (A50) (1
1 

and 1
0 

) are singular at · 
c 

v = -v 01 but their sum is bounded, implying that '¥s_(x, µ) is itself 

bounded for µ = -v 01 and hence for all f.L when s is on y 1 _. 
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So we have obtained expressions for if (x, µ) as s - y 1 from 
s -

s e c, which indicate that if 
9 

(x, µ) is continuous along y 1.. .. Let us 

obtain expressions similar to these for s - y 1 _ from s e b. 

and 

Here, based on Figure 24a, we learn that 

1/2 i-- rvo1 (z) 
X(z)=(l+z) e1Ti 

O _ _v 01+z ' . 

_ l+v 1/2 Jt1 (v)-i7Tv 1/2 
Xo(v) = (v +v) ( }t (v)+i7TV ) e 

. 01 1 

1 
"'>""T' rv ( v ) 
c.11'1 01 . 

• 

Another obscure but important fact is that X(-v01 ) = X-(-v 01) 

along y
1

_. With these formulae in mind we can write for 

11' s(x,µ) as s -y1_ from (b), 

. 1 
+ z-:- r (o) 

- 1-2qe 11'1 vOl w-;;;I 
'f (x,µ) = ----------

s . Cl CTI 

{ASl) 

where the non-delta function integration is carried out over the paths 

shown in Figure. 27a for µ-::/; -v01 and in Figure 27b forµ =-v
01

• 
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., - PLANE 

-I 0 

Figure 27a • Path of Integration in Y 
8

(x, µ.) for 
· .... y 1_ from-.(b) with µJt ·v

01 

-I 

., -PLANE 

,.. ·- ., 
01 

0 

Figure Z7b • Path of Integration in Y (x, µ) for 
a-y1_ from· (bJ with µ: ."Ol 
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If one expands Equation (AS 1) for µ:/: - v 01 , the result is identical 

to that given by Equation {A49). Also, ii one notes that in. the discrete 
0 o(v+v

01
)dv 

term the factor I Av 01+µ) can be replaced by f + when 
-1 v VOI 

µ-+ -v 01 , then one finds that if {x, µ) is bounded here as well. 
s . 

To prove that the ifs {x, µ) at the border of the two regions are 

identical for µ = - v 01 requires an additional step. First we write 

the solutions at µ = - v 01 when approached from both regions (b) and (c): 

'¥ s (x • µ) = H ( v 0 I ) [I I + Io ] 
c 

, s € c • 

'fs(x~µ) = H(v 01 ) [I
1 

+ D.T. + I0 ].s e b. 
b 

where H( v 01 ) is obtained from Equation (ASO)', and D. T. indicates 

the discrete term in Equation {AS I). Thus we must prove that 

lo = D. T. + Io • (A52) 

c b . 0 o(v+v
01

)dv 
Now Ii: = M(v 01 )11rf + • where M{v 01 ) is given by 

uc -1 v vOI 
compar~son with Equation (ASOb). This can be rewritten as 

0 0 

Io =M{vo1>[PS dv -s . dv 2] 
c -1 (v+vo1>2 -1 (v+vo1> 

~-
In a similar manner we can write 

D.T. 

0 

But s 
-1 
~ 

= 
0 

S .. 
-1 
~-

an9- Equation {A52) is proved. 

Thus If {x, µ) is continuous along y 1 and takes on the same set 
s -

of values there when y
1

_ is approached from either region {c) or (b) • 

. So the if (x, µ) in regions (c) and (b) describe a function which is 
s 
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analytic in a region which includes y
1 

_ and adjacent sections of 

regions (b) and (c). 

An investigation of the solutions along Yz_ between regions (a) 

and (b) proceeds in a manner similar to that carried out along y
1

_ 

except that no apparent singularity appears here since v 01 is 

always complex for s along Yz_• 

The methods applied in the y 1 _ and Yz_ study were also applied 

to the boundaries separating all the various regions in both Cases I . 

and II with the results always being the same. Hence we can· state 

in both Cases I and II for x > 0 that the '!' (x, µ) represent a function 
s 

which is analytic in the right half plane Re s > -er 2 , save for two 

branch cuts (possibly overlapping) along the real s-axis from -er2 

to -er2 (1-c2 ), and from -er2 to -er1 (l-c 1). For x < 0, the if s(x,µ) 

represent a function analytic in .the right half plane Re s >-er l save 

for two branch cuts (possibly overlapping) along the real a-axis 
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APPENDIX IV - UNIQUENESS OF SOLUTION 

The uniqueness of the solution to Equation (38) 

+l 

. 8 'i' ~X; µ,T) + µ ~~ + o-(x)'i' = c(xl<r(x) s 'i' (x, µ'' T)dµ' +qo(x) 0 (T) 

· subject to the boundary conditions 

lim 'i' (x, µ, -r) = 0 , 
x-±oo 

-1 (A53) 

(A54) 

is proved in this appendix. The method used is quite standard and 

can be found, for instance, in Churchill (Z9). Both the notation and 

the geometry are shown in Figure 2.8. 

Let us assume two solutions to Equation (A53), 'i' 
1 

(x, µ, T) and 

'i' z(x, µ, 'T). Then their difference 

must satisfy the homogeneous equation 

a'i' d(x, µ, -r) a 'Yd ( ) ( ) 
+ -- + ( )\I/ - c x (J" x 

"(}'T µ ax 0-X Id - 2, 

and the boundary conditions 

lim 
x-+ ±oo 

+l s 'i' d(x, µ'' 'T)dµ', 

-1 

(A55) 

(A56) 

Assume further that 'i' d(x, µ, O) = 0, or that the two solutions 

l are identical for 'T = O. 

Multiplying Equation (ASS) by 'f d (x, µ, 'T) and integrating over all 

space and angle yields 
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' / , 

c <x> •c 1 

~ 
C(x) • c2 

O' (x) =er 
1 

CT (x) :1 CT 
2 

~ 
REGION (I) ~ REGION (2) 

~ 
~ 

~ 

Figure 28 • Geometry and Notation U•ed in 
Uniquene•• Proof 
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+oo +l +oo +l :,. { S dx S 'I' !<x, µ, T)dµ} + S a-(x)cbc S 'I' ~(x, µ, T)dµ 

•m = l ·~ • l 
(A57) 

+l +l 

dx S 'l'd(x, µ, T)dµ S '¥ d(x, v, r) dv • = s+co c(x~O"(x) 
-oo -1 -1 

Let us rewrite this equation in the more suitable form 

+oo +l 0 

d~ { s dx s 'f!(x, µ, T)dµ} = s 
-oo -1 -oo 

(A58) 

0 +l oo +l -S a-1dx S 'l'~(x, µ, T) dµ - S o-zdx S 'I'~ (x,µ, r) dµ • 

-oo -1 0 . -1 

From the Schwartz inequality 

b b [b jz S £2
(x)dx S g 2

{x)dx ~ S f(x)g(x)dx 

a a a 

where f{x) and g{x) are real quantities, we can conclude that 

+l [ +l 12 I V ~(x, IL• T) dµ ;:; , {- ~! V d (x, µ, T)dµJ • 

Substituting this result into Equation {A58) yields 
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+CD +l 0 +1 

~ { s d>e s l' !(Ke f.1• .-)dµ} ~ 
-oo -1 

o-1 (e 1-l) S dx S 'l.'~(x,µ,'T)dµ 
-oo -1 

(A59) 
00 +l 

+ <T z ( C z - 1 ) s dx s '!' ! {x, µ, T) dµ • 
0 -1 

. Since 'l.' !(x, µ, T) ~ 0 for all x, µ, and r, we can write 

+oo +l 

d~{S dx S 'Y!(x,µ,T)dµ}~ 0 for 0 < c 1 ,c 2 ~ 1. 

- oo -1 

This implies (since 'l.'d(x, µ, 0) = O) that 'l.' d(x, µ, T) = 0 for T ~ O. 

Hence 'Y 1 (x, µ, T) = 'Y2(x, µ, T), and the solution to Equation (A53) 

satisfying the accompanying conditions (A54), if it exists, is unique. 
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APPENDIX V - EVALUATION OF 

THEINTERFACEINTEORALS 

The simplifications found in this appendix are based mainly on 

the work of Mendelson and SummerfieldC
23>. As in Appendix II, we 

shall need several identities in X(z), and these will be obtained first. 

A. Several Identities in X(z) 

An inspection of the interface integrals - Equation (120) through 

(123) - indicate that identities in X(z) are needed only in regions (a) 

and (b) of the a-plane. We expect different identities to hold in each 

region. 

Define 

X10Cz.):: exp .2ml' Cl ln ~l(µ?+hrµ ' J_ k (µ')-hrµ' 
0 1 . 

dµ' 
µ'-z (A60) 

where the subscript 1 on x 10(z) corresponds to the subscript 1 on 

k 1 . Then 

and 

Then 

X (z) 
a 

1 = (l-z)(-1-z) X10C-z)X20Cz) 

. Let us define, in addition, 
' 

= 1 r 1 ')t1 <µ')+iirµ' ~ 
. r1'(z) - -z;rr Jo ln ~l (µ')-iirµ' µ , -z 

(A61) 

(A62) 

(A63) 
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1 s 0 'ki (µ')+hrµ' d I 

rl'(-z) = -z:n:r -1 1.n ftl (µ ')-i 'lfJL I µ t~z (A64) 

and hence 

1 s +l ~l (µ')+inµ' d I . 

r1'(z)+r1'(-z) = -z:n:r -1 1.n kl(µ')-iirµ' µ'~z (A65) 

Let us evaluate the integral in Equation (A65). We note that 

2 ~+I ~ 1 (µ
1 ):1:hrµ' = -- (s+a1)-µ' 1.n :1: inµ' 

ClO'l ~µ 
(A66) 

But, if we think of µ' as Rez', Equation (A66) takes the form 

.. ( 1) • t l 2 ( ) ,1 z'+l) 
/\.1 µ :1:1 nµ = \ c 1 a 1 s +a 1 - z n zr:-r :I: (A67) 

Hence Equation (,A65) can be written in the alternative form 

1 s ( 2 Z I+ 1) dz I r.1
1(z)+r.1

1(-z) = ""'J""""!"" ln -- (s+a1)-z'l.n -::-r-,- -:::.-= , 
.~m c c 1 a 1 z·-i z -z (A68) 

where the contour c is shown in Figure 29. The integral over the 

small circles around z' = :1:1 can be added since in the limit as their 

radii tend to zero their contributions also tend to zero. 

Observing that 

lim 1.n(-
2

- (s+a1)-z'1n z/~{J = 1.n(-
2
- ·- (s+a1)-2), 

zl~ ClO'l . Z 7 ClO'l 

and forcing the integrand in Equation (A68) to vanish as z 1-00, we 

write Equation {A68) as ·. f 
2 

z '+l 
. -- (s+a1)-z'ln ~ 

1 cl al z·-i 
r1'{z)+r1'(-z) = :z;n s ln . 

. ' c --· {s+a1)-2 
cl <71 

since contributions above and below the cut cancel. 

dz' 
z 1-z (A69) 
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z' - PLANE 

Figure 29 • Contour Used in Con•truction of 
Integral Equation in r'(a) 

Figure 30 - Final Contour U•ed to Obtain r'(•) 
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In both regions (a) and (b) the argument of the logarithm has a 

zero of first order at z 1 = :1:v01 . To remove this we divide by the 

factor (z'

2

;vo() , where the (z 12-l) is added to keep the desired 
z' -1 

behavior at infinity. Hence 

[{
-

2
- (s+a1)-z'ln z;+~}(z 12 

-1 )j 
- 1 r cl al z -

rl' ( z )+ rl ' ( - z) = '°'ZiTr J. ,1 n { 2 }{ ' 2 2 } 
c -- (s+a1)-2 z -v01 cl al 

dz' 
z 1-z 

(A70) 

where now c' is shown in Figure 30 (the integral over the large circle 

vanishes as R -oo). 

2 
Using the .notation b 1 = -- (s+a1), and applying Cauchy's 

cl al 
. integral formula to Equation (A 70)"yields 

Thus 

[

(b1-zln =~~")(z 2-l)J 
r1'(z)+r1'(-z) = ln 2 2 

(b1 -2)(z -v01 ) . 

z+l 2 
(b1 -z Ln Z-T )(z -1) 

2 2 
(b1 - Z)(z ·- v01 ) 

(A71) 

, se(a)U(b) . (A72) 

In region (a), through a similar derivation, it can be shown that 

z+l 2 
(b 2-z Ln Z-T )(z -1) 

2 2 
(b 2-2)(z -v02 ) 

sea (A73) 

However, the argument ~f the logarithm in the equation for region (b) 
I 

corresponding to Equation (A69) has no zero. Hence for this case 
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( ) Z z-1 
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s € b • (A74) 

B. Additional Identities Useful in the Current and Flux Integrals 

From Equations (AZO), (AZl), and (AZ3), we have 

+I 

Xb(z) = s 
-1 

+1 

zXa(z)=S 

-1 

(~(µ 1 ).:.i?Tµ')(µ' -z) 

µ'X- (µ' )dµ' 
a 

(}t(µ' )-i?Tµ' )(µ ' -z) 

z -µ' x (µ' )dµ' 
a 

(:>t(µ' )-i?Tµ' )(µ' -z) 

(A75) 

(A 76) 

(A 77) 

With derivations similar to that described for Equation (AZS), we 

can obtain the following additional identities: 

+1 ,3X-( ')d I 
Z s. µ aµ µ 

z X (z)-1 = 
a . _ 1 (X(µ' )-i?Tµ' )(µ ' -z) 

+l 2 -
= S. µ' xb~µ' )dµ' 

Xb(z)+ 1 .. 
_ 1 (}t(µ' )-i?Tµ 1 )(µ' -z) 

• 

(also given as 
.Equation (A38)) 

(A 78) 

(A 79) 

Manipulating Equations (A 75) through (A 79), where use is made ' . -
of Equations (A 7Z) through (A 74), provides us with the following set 

of identities, corresponding to Equations (A 75) through (A 79): 
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(A80) 

(A81) 

(A82) 

(A83) 

. 0 2 1 2 
. - 1 . S µ (1-µ)Xzo(µ)dµ 1 S µ x10<-µ)dµ 

zXb(z)+l - b -2 2 2 +b -2 . • 
1 -1. (µ -v

01
)x

10
(µ)(µ-z) . 2 0 (-1-µ)x 20(-µ)(µ-z) 

C. Sirnplif ication of I (if ( 0 ±, µ)) n s 

· (A84) 

_I. 1
1
(fs(O,µ)). 'An inspection of Equation (120) reveals the fact 

-
that by judiciously choosing the range of µ, we can remove the prin-

cipal value signs from the integration over v. Thus 
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-1<µ<0, 

0 < µ < 1 , 

(A85) 

where 

-1< µ < 0 ' (A86) 

and 

0 
ca s · 1 1 vdv 

K_(µ,s)=-z- 2 2 -
. -1 (v-µ)(v +~ )Xb(v)(\(v)+brv) 

0 < µ < 1 • (A87) 

We shall now perform the integrations over v in Equations (A86) 

and (A87). Considering Equation (A86) first, we define 

1 

I ( ) -s vdv + z = 2 2 -
0 (v-z)(v +~ )Xb(v)(~2(v)+brv) 

(A88) 

where we note that for z real and equal to µ, (-1 < µ< O), 

(A89) 

From Equation (A88) it is seen that l+(z) is analytic in the z-plane 

. - -1 
cut along the real axis from 0 ~ z ~ 1, and that I+ (z) is of order z 

as z tends to infinity. Also for 0 < µ < I, 
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(A90) 

It is easy to prove that the I+ (z) satisfying the conditions stated 

in the last paragraph is unique, if it exists. The procedure used in 

this uniqueness proof is to assume two solutions, take the difference 

and note that this difference is analytic everywhere and vanishes at 

infinity; hence is zero. Thus the solution is unique, if it exists. 

To obtain this solution, we start by substituting for Xb (µ), utilizing 

Equations (A 72.) and (A 74). Hence · 

(A91) 

where we note that 

O< µ < 1 • (A92.) 

Following closely the work of M~ndelson and Surnmerfield(2.3), we 

consider X 
10

(z) 

L+ (z) = .Xz.oCz) • (A93) 

Now L+(z) is analytic in the z-plane cut from 0 to I, and has a jump 

across the cut given by 

+ _ . (µ 2 -I)(b2 -2.)(2.11'iµ)(b 2 -b1) x 20(-µ) 
L+(µ)-L+(µ) = 2' · 2' · · · z+l · z+l 

(µ - VOI )(bl -2.)(bz.-Z .fn 'Z=T>+ (bz-Z .tn z-1) - x 1 o(-µ) • 

. (A94) 

Hence 
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(A95) 

has the proper discontinuity across_ the b1'anch. Also either side of 

Equation (A95) is analytic in the remainder of 'the z-plane and behaves 

as .!. for z - oo. z 

Therefore, we can write 

(A96) 

and when this is substituted into Equation (A89), 

To obtain K (µ, s) we start with 

0 . 

I_(z) = s Z zvd~ 
-1 ( v-z)(v +£ )Xb(v)(lt2 (v)+i?Tv) 

Proceeding as . above we can show 

(-l-z)(b2 -z) 
L (z) = . . z 2 

(bl -b2){z +£ ) 

. Xzo(-z) 

XIO(-z) 

has the proper discontinuity for z e [ - I, O] 

for large z, but certain poles exist at 

z=±is. ' 

(A97) 

• (A98) 

(A99) 

• It also behaves as .!. 
z 

We remove these poles by adding appropriate terms to obtain 



(-I -isHb2 -2>x20 (-is> 

(b1 -b2)2is(z-ig)x10(-is) 

Thus K _ (µ) has the form 
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<-1+igX~2-z>x20Cis> 

(b1 ·b2HHC(a+iC>X10(t.i) 
. . . 

.. 
(AIOO) 

< - 1+is>x20 (is> 

Zis(µ+is)X 10(is) 

(AI 01) 

O<µ<l. 

Substituting Equations (A97) and (AIOI) into Equation (ASS) and 

where we have used 

(AI03) 

2. The Remaining Integrals 

The procedure used to simplify 11( 'lrs(O,µ)) was applied to 

12 , 1
3

, an~ 14 (Y s(O, µ)) as well. Since the method is similar to 
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that described for I 1 , it is not presented here; only the f.inal results 

.are shown. For Expressions {lZl), {lZZ), (123) we find 

-1<µ<0 

0 < µ < 1 • 

{Al04) 

-1<µ<0 

O<µ<l, 

(Al05) 

-1 < µ < 0 

, O<µ<l . 

(Al06) 

D. The Flux and Current Integrals 

Since we are interested in obtaining simplified expressions for 



+l 

~ ( 0. 'T) = s '±' ( 0. µ. 'T)dµ. 

-1 
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+l 

and J(O~ T) = S µ ~(~, µ, T)dµ 

-1 

it is necessary to evaluate 

+l 

In(O,T) = s In(Vs(O,"µ))dµ, n = 1,2.,3,4, 

-1 

and 

+l 

" I 

J (0,T) = s µI('¥ (O,µ))dµ, n = 1,2.,3,4 • n n s 
..: 1 

(Al07) 

(Al08) 

(Al 09) 

The I (O, T) integrations can be done by two alternative methods .. 
n 

Integrating Equation (Al OZ) in a straightforward manner over µ, and 

making use of Equation (A81) yields 

-al CJ"l l(al (J" 1-(J" 2) -(J" z1 ( (J" 2 -al (J"l) 

S -blbZ es'Tds 
11(0,T) = Ziq bl-bZ g • (AllO) 

-(J"l 

Alternatively, we can start with I 1( '±'s(O+,µ)) given by Equation 

(120), integrate this over· µ (which merely replaces 'Pzv(µ) bys+ CT
2

), 

at;ld then evaluate the integral over v. This integral over v is defined 

as 

I 

I'= s +- • (Al 11) 

0 

By inspection then 

I~ = (s+CT z>I+ (O) , (All 2.) 
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where I+(~) is given by Equation (A96). Hence we arrive again at 
- -

-Equation (Al 10) as a final result but by an alternative method. 

Applying either of these methods to the remaining I (O, T) integrals 
n 

[(Al04), (AlOS) , (Al06)] yields 

-al <T 11 (al a-1 -aza-z>-az<r z 1 (a z<r z-al 0-1> 
b b . 

· 12 (0, T) = 2iql(o-2 -a
1

a-
1
)s b 1_; i-,,TJ. esT ds , (All3) 

' · l 2 
-a-z 

(Al 14) 

S'Td e s 
g (AllS) 

The first of the two methods described above was used to obtain 

the currents in Equation (Al09). The results are listed below, where 

we again make use of Equations (Al02), (Al04), (AlOS), (Al06). 

-al <rl 1 (al (J"l -(J" z>-a-z 1 (a-z-al<rl) 

. S v'-b1 bz 
Jl (0, T) = 21q .J(Z-bl )(2-b2 )· es'r ds a 

bl-b2 
-IT I 

(All6) 

· \ 

(A 117) 

(All8) 
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APPENDIX VI - DIFFUSION AND P-1 THEORY 

In this appendix the two-region, time-dependent problem is 

solved in an approximate manner by the use of Legendre polynomials 

and by diffusion theory. 

A. Legendre Polynomial Expansion Method 

The basic equation, source, and boundary conditions, as given 

by Equations (38) and (39a,b), are written below. 

+l 

a'Y (~~ µ, 'T) + µ ~: + o-(x) 'Y = c(x~o-(x) s 'l' (x, µ'. 'T)dµ' + q6(x)6( 'T) 

lim 1i' (x, µ, 'T) = 0 , for ..,. ~ 0. 
x-±oo 

µ('±' (O+,µ,T) - '1'(0-,µ,..,.)] = qo(T). 

-l (Al20) 

(A 121) 

(Al22) 

By multiplying Equation (Al20) by e-S'T and integrating over 'T 

from zero to infinity we obtain 

a'f (x, µ) 
s + (s + «T(x)) 'Y = c (x)«T(x) 

µ ax s 2 

+l s 
-1 

'Y (x, µ' )dµ'+qo(x) • 
s 

(A 123) 

Now the assumption is made that if (x, µ) can be written as 
s 

follows: 

00 2n+ 1 -'¥ (x,µ) = :E. (-2 -) <p (x, s) P (µ) • 
s n=O ' · n n 

(Al24) 

Substituting this expression into Equation (Al23) and recalling that 

n+ 1 n ( ) 
µPn(µ) = Zn+l pn+l(µ) + Zn+l pn-1 µ • n = O, l, 2 • ••• • (Al25) 
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provides for th·e following change in form of Equation (Al23): 

~ (Zn+l) p ( ) {-1-
n=O 2 n tJ. 2n+l 

nd<p (x, s) d<p + 1 (x, s) 
~ +(n+l) n dX 

(Al 26) 

+ ( + ( ))- ( >}. c(x)a-(x) - ( )+ i:c) s a- x <Pn x , s = 2 <Po x, s q u x 

Multiplying Equation (Al26) by P 0 (p.), P 1 (p.), ••• , and integrating 

from -1 to + 1 over tJ. after each multiplication yields the following 

infinite set of coupled differential equations : 

d<f'l (x, s) 
dx + [s+o-(x)] <P 0 (x, s) = c(x)a-(x)<P0 (x, s)+Zqo(x) 

1 d<p0 (x, s) + ~ d<P2 (x, s) 
3 dx 3 dx + [s+a-(x)] "'1 (x, s) = 0 

(Al27) 

• 

From an inspection of Equations (Al27) and the original boundary 

conditions it can be seen that the boundary conditions (and source 

condition) become, for Equation (Al 27), 

lim 
x -:1:00 

<p (x, s) = 0 
n . 

, n=0,1,2, ••• , 

cp (0-,s) = cp (O+, s) , n # 1, 
n n 

' 
<P

1
(o+ , s)- <p

1
(o-,s) = Zq 

(Al28) 

It is usually assumed that a finite number of terms in the expan-

sion of the angular flux, Equation (AlZ4), will accurately represent 
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the true angular neutron distribution. With this in mind we use as 

our approximation, only the first two terms in the expansion (P-1 

approximation). Hence we assume 

dcp
1

(x, s) 
dX + [s+o-(x)] cp0 (x, s) = c(x)o-(x)cp

0
(x, s) x:/:O, 

1 
dcp

0
(x, s) 

3 dx + [s+o-(x)] cpl (x, s) = 0 

(Al29) 

where 

lim cp0 1 
(x, s) = O 

x-±oo ' 

<p O ( O+ , s ) = <p O ( 0 - , s ) (A 13 0) 

If Equation (Al24) is integrated over µ, one obtains 

+I 

cp0 (x, s} = S ·ys(x,µ)dµ, 

- 1 

implying that <p0 (x, s) is the transformed flux. 

(Al31) 

Let us obtain an explicit expression for this quantity through the 

solution of Equat:ions (Al29). The details are omitted and only the 

result exhibited because of the simplicity of the calculations; thus 

x>O 

(Al32) 

x < 0. 
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To recover the time dependence we use 

y+ioo 

~ o<x, .,.) = 2;i S 
y-ioo 

s 'T 

<P0 (x, s) e ds • (AI33) 

First let us look at the inversion in detail for x > O. An examination 

of <P0 (x, s) reveals the existence of two branches along the real axis 

in the s-plane, from -<T1 to -a1<T1 and from -<T2 to -a
2

<T
2 

(identical 

to those found in the exact solution). The function <P0 (x, s) is analytic 

everywhere e l see The behavibr of cp0 (x, s) is. found to be, for large s, 
r::: (o-z+azo-z) .r::: . 

-V-' X z -V3 XS 

<Po (x, s) ""' .J3 q e e 

which we have suitably defined as 'I' (x, s). unc 

By inspection, 

= cp (x, s), unc 

~ (x,7') = ../3 q e unc 
o ( T-..f3 x) • 

Equation (Al33) can now be writte~ as 
y+ioo 

~0(x, T) = ~ (x, T) + ~ S unc "-?n 
e 

s.,. 
[<P0 (x, s)-cp (x, s)] ds. unc 

y-ioo 

(AI34) 

(AI35) 

(Al36) 

- 1 - 'I' (x, s) = 0(-) for l arge s, the original inversion 
unc s 

path can be changed, as shown in Figure 31. Of course this figure 

depicts oniy ·one speci~l case (<T1><T2 >a1 a-1>a2 <T2). However, with 

t his as a guide the general solution can be written do.vn • 

Many simplifications can be noted in the general solution to 

this problem, some of which parallel those made in the exact solu-

tion. They are listed below. 



-171-

0 

S-PLANE 

I - -. o < ~o-«>unc > 

ORIGINAL 

PATH 

y-IY 

Figure 31 - Typical Path of Inversion for 
P-1 Solution 

0 

y+IY 

S- PLANE 

0 1O'I> 0 2 O' 2 

y-IY 

Figure 32 - Inver•ion Path for Diffu•ion Solution 
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1. The solution exists only for rr > .f3 x; for rr < ../3 x, the flux 

is zero. 

2. The integrals Iy _, Iy+, and IR vanish. 

3. The integrals Ip , ••• , I vanish. 
o+ P 3 

4 • Il_(-;,DO-cpunc) + Il+(cpo-cpunc) = Il_(cpo)-Il+(cpo)= Il(cpo), etc.' 

since the uncollided flux is continuous across the branches. 

We can now write the general solution for the flux as 

if1o(x, 'T) = if1unc(x, 'T) + 2!i [ \(cpo)+Iz.<'Po)+I3(cpo)+I4(cpo)] l(T-../3x), (x > O), 

(Al37) 

. where the explicit forms for Il •••• , I4 are given below .• 

-al o-l l(alo-l -o-2)-o-2l(o-2-alo-l) . 

I 
s'T ../3xv'(-s-o-2)(-s-a20"2 ) 

Im e _ e 
.. /..---s---a-2_0"_2 - i.../ -s -a 1<J"1 

1 -S-0"2 " ~+<J"l 

(Al38) 

(Al39) 
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aT i.J3x.V(s+a!
2

)(-a.:a.
2

cr
2

) 
.I

3
(<t>

0
)=4iv'3q l(a

1
cr

1
-a

2
cr

2
) Im _e __ e ________ _ 

s+a 1cr1 -i _J-s-a2 cr2 

<ls. (Al40) 

s+cr 
1 

.,. s+a 
2 

-cr Z l (a I cr I - cr Z )-al crl I ( cr Z -a I cr 1) 

-alcrl 

sT -v'3x.if(s+cr2 )(s+a2 cr2 ) 

e · ds Im{----1----~. 
~ ~2 2 -i .... / - s -al <TI 
1~ 1· s+<Tl 

(A 141) 

For x< 0, the details of the inversion are similar to those 

mentioned above. The final form of the solution is written out below. 

~o(x, 'T) = ~unc(x, 'T)+ Z~i[I1<<Po>+Iz<<Po)+I3\qjo)+I4<<Po>1 l(T+v'3x), x < o. 

(Al42) 

(Al43) 

-al cr 1 (al a 1 - er 2) - a 2 1 (CT 2 - a l <T 1 ) 

\ 

!'r 
1

1 
('qi0 ) = 4iq .../3 e ds Im (Al44) 
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-al a-1 l (al a-1-a Za-2 )-a Za-2 I (aza-z-al a-1) 

S'T 

• (AI45) 

-al a-1 

14 (.,0 ) = 4iq ../31 (a2.-2 -a1a-1) :
7

ds Im! 

-azo-2 

-i..f3x " ( s+o-1 )(- s -a1 o-1) 
e 

(Al47) 

Further slig:P.t simplifications can be made at x = O. However, 

it is of more interest to this thesis to obtain the results when the two . 1 

adjacent media are identical so that they can be compared to the exact 

solution for the single infinite medium. Setting <r 1 = <r 2 = <r, and 

a 
1

a-
1 

= a 2a-2 = aa- , we obtain, for all x, 

~ i i - r;::; r ·1 (x, T) + -
2 

. 12 (<p
0

) 1 (T-v3 x ), unc 1Tl · 
(Al48) 

where 

-../3 Ix I a+a<r 
~ (x,T)=q../3o(T-../31xl)e 2 
unc 

(AI49) 
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and 

-a CT 

Ii(<p0 ) = 2iq ../3 S es.,. ~-=~:CT ds coslv'31xl~(s+CT)(-s-aCT)}.(Al50) 
\ 

Finally, at x = 0, we obtain, for the single infinite medium, 

-a CT 

~0(0, 'T) = v'3 q 6 ('T) + -r; q S es'T ~-~~:CT ds • (Al5 l) 

-CT 

B. Diffusion Theory 

Consider Equation (Al20) with an arbitrary soµrce, 

+l 
a'f(x,p.,'T) + a'i' + ( )\l/_c(x)CT(x) s \II( I )d I S( ) a'T tJ. ()x CTX r - 2 I X,f.L ,'( , fJ. + X,'T . ' 

and assume -1 (A 152) 
00 2n+l 'i'(x, p., 'T) = ~ cp (x, T)P (µ) (-2 -) • 

n=O n n 

When this series is terminated at n = 1, Equation (Al52) can be written 

as two coupled equations: 

8
"'1 I 

8"'o -- + --- + CT(x)<p 1 = 0. o'T 3 ox 

(Al53a) 

(Al53b) 

Differentiating Equation (Al53a) with respect to .,-, Equation 

-
(Al53b) with respect to x (recalling that CT(x) and c(x) are constant 

within a region), and subtracting the results yields, after some 

simplifications, 



-176-

(Al54) 

' 
Recalling that 'T = vt, and that <p0 (x, T) = vn(x, T), we can write 

Equation (Al54) as · 

2 
v a n(x, t) + avcrn = 

- 3o- ax2 

· 2 

v~ :t~ - (l+a) :~ + 2S + :u ~~ . (AISS) 

To reduce this to the diffusion equation it is assumed that (see, 

for instance, Meghreblian and Holmes< 26 )) 

lim 
v -oo 

and 

v 
0-

lim aav 
v -oo 

.Hence Equation (AISS) reduces to 

is finite, 

is finite. 

a
2

[ vn(x, t}] an 
---,....--- + aavn = - - + 2S 

ax2 at 
.(Al56) 

or in a more familiar notation, with the source noted explicitly, 

2 
-D(x) a~(~,.,.)+ a(x)u(x)~ = - ~~.,. + 2qo(x)o(T). 

ax 
(Al57) 

I 
Here D = 3u(x) , and the geometry is again that of two-adjacent half 

spaces. 

Let us now solve Equation (Al57). Removing the time dependence 

by s, L~pl~e~ tl"~U~!=lt().J"m§.ti~n yl~lda 

2-
-D(x) d cp(~, s) + (a(x)o-(x)+s)<p(x, s) = 2qo(x) 

dx 
(Al58) 
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The boundary and. source conditions can be written as 

lim <P(x, s) = 0 , 
x-±oo 

D dp(O-, s) ~D ·dp(O+, s) _ z 
I dx a · dx . -q. 

(Al59) 

(Al60) 

Solving Equation (Al58) subject to conditions (Al59) and (AI60) 

provides us with 

x < 0, (Al6 l) 

· <p(x, s) = x > 0. (Al62) 

To invert when x< 0, we note that ·-a11r
1 

and -a21r2 are branch 

points, and we assume that a
1

1r
1 

> a 21r2 • Hence, we can write, based 

on Figure 32, 

ds 

(AI63) 

x < o. 

Similarly, 

. ' 
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ti x .J- s -azcrz 

j saz<Tz e S'T e - ..fD2 ds I] 
-~1a 

1

a-

1 

_v_D_
1
_(_s_+_a_

1 
a-_

1
_)_+_i_.../_D_

2
_( ___ s ___ a_

2
_cr_

2
_) ~ ' 

(AI64) 

x > 0. 

A simplification of these results occurs for the special case of 

..,( ) _ Zqe-ao-T / 
'j! x, T - ----"~----

-{;T ~ + rn;.>~ 

Furthermore, we note that 

00 

s 
0 

Hence, 

ip (x, T) d'T = lim q>(x, s) 
s-0 

2 
x 

- 4DzT 
e 

e 

2 
x 

- 4D
1

T 

x > 0 ' 

• (Al65) 

x<O 

(Al66) 

' x < 0 

• (Al67) 

,x>O 

In addition, using the same technique in P-1 theoi:y yields 
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x>O 

~0(x, T)dT = 2q 

If +(j ~ +../3al <J'" x 
e I x < 0 0 

(AI68) 
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