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ABSTRACT
TIME DEPENDENT MONOENERGETIC NEUTRON TRANSPORT
IN TWO ADJACENT SEMI INFINITE MEDIA

by Robert C. Erdmann

An exact solution to the monoenergetic Boltzmann equation is
obtained for the case of a plane isotropic burst of neutrons introduced
at the interface separating two a.>djaCent, dissimilar, semi-infinite
media. The method of solution used is to remove the time dependence
by a Laplace transformation, solve the transformed equation by the
normal mode expansion method, and then invert to recover the time
dependence. |

The general result is expressed as a sum of definite, multiple
integrals, one of which contains the uncollided wave of neutrons
originating at the séurce plane. It is possible to obtain a simplified
form for the solution at the interface, and certain numerical calcula-
tions are made there.

The interface flux in two adjacent moderators is calculated and
plotted as a function of time for several moderator materials. For
each case it is found that the flux decay curve has an asymptotic slope
given accurately by diffusion theory. Furthermore, the interface cur-
rent is observed to change directions when the scattering and absorp-
tioh cross sections of the two moderator materials are related in a
certain manner. More specifically, the reflection process in two
adjacent moderators appears to depend initially on the scattering

properties and for long times on the absorption properties of the
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media. -

This analysis contains both the single infinite and semi-
infinite medium problems as special cases. The results in these
two special icasés provide a qheck on the accuracy of the general
solution since they agi‘ee wifh solutions of these problems obtained

by separate analyses,
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I. STATEMENT OF THE PROBLEM

In this thesis the effect of a discontinuity in material properties
on a neutron distribution in time is investigated. An exact solution to
one specific problem is obtained, and certain conclusions are made
from an investigatiop of the behavior exhibited by this solution.

When a pulse of neutrons is initiated in a finite homogeneous
body, the long-term flux decay is found to be that of a single mode
decaying exponentially in time. The exponential decay constant is
found to depend to a large extent on the absorption cross section, to
a lesser extent on the diffusion coefficient and buckling, and to a still
lesser degree on the s'pe‘ctrum of the thermal neutrons.

If the assembly i‘s composed of two adjacent homogeneous regions
rather than a single r'egion, the dejcaying flux will be some function of
the properties of both regions. Exactly how the decaying neutron flux
is affected by the discontinuity is unknown, both as to the magﬁitude
of the effect and to its explicit dependence on the nuclear properties
of the system. The answer to this question was the major objective
of the research summarized in this thesis.

In attempting to analyze a time-dependent heterogeneous system
to determiﬁe neutron flux behavior, the related problem of reflection |
at an interface also can be critically examined. In fact, an exact
solution of a time-dependent heterogeheous pr‘oblem provides one

with an exact description of the mechanism of reflection. Hence
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an attempt to gain some insight into the reflection of neutrons was
made the secondary objective of this research.

For several years prior to the initiation of the research des-
cribed in this thesis, there had been appearing in the literature exact
solutions to certain monoenergetic, single-region, 'time-dependent
and time-independent problems in plane geometry. Several mono-
energetic, two-region, time-independent problems had also been
analyzed in this geometry. So it appeared that if a monoenergetic,
two-region, time-dependent problem we re.prope rly posed in plane
geometry, its exact solution could perhaps be obtained. Furthermore,
the exact solution 1‘;0 a time-dependent, two-region problem would in
itself be a c_ontribuﬁion to neutron transport theory, since it would
demonstrate that thé analytical techniques used could be successfully
applied to this type of problem.

The problem as iﬁitially conceived consisted of two thick slabs
~of dissimilar material somewhere in which a point burst of high energy
neutrons is introduced. An accurate mathematical description of
this system requires that the neutron distribution, subsequent to the
burst; satisfy a Boltzmann equation. This Boltzmann ‘equation has as
‘independént'variables space, time, apd velbcity (speed and direction).
However, the analysis of the physical problem was restricted to a
one-speed study to reduce the complexity of the Boltzmann equétion,
and to identify this work as cloéely as possib;le with those problems

successfully treated in the literature.
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Through this literature study, it also became apparent that the
mathematical model of the physical problem would have to be made
dependent on only one spatial dimension (slab geometry) if an exact
solution were desired. Thus, the p‘oint source in the analysis was
replaced by a piane source parallel to the interface separating the two
slabs.

7 In an actual system, a point source can be made to approximate
‘a plane source by physically relocating the point source or detector
after each of a series of Bursts, or-by using a set of detectors
judicioﬁsly spg.céd for each burs;c. Thus, the point source system can
be physically integrated to obtain the plane source results.

| As the investigation of the literature procéeded, it became clear
that problems h’a.ving finite geometries had solutions of a more compli-
cated nature than those having geometries of infinite extent. More
exactly, the coefficients in the normal mode expansion for problems
of finite geometry were not obtainéd expl’icitly in the literature,
whereas those Coefficienté in infinite geometry problems could be,
and usually were, written down completely. Hence, the physical
problem consisting of two dissimilar slabs was replaced‘by one of two
édjacent, ‘dissimilar, semi-infinite media.

Several further simplifications were made in the mathematical
modewl to decrease certain anticipated analytical diffiCulties but
which in no way res‘trict the ;;pplicability of the analysis. The plane

source was located at the interface separating the two media, thereby
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erffectively reducing the problem from a three to a two-region study.
‘'Making the source isotropic was another slight modification employed.

The final mathematical simplification was to assume isotropic
scattering in the laboratory system for both materials. This is a good
approximation only in scattering collisions between neutrons and very
heavy nuclei. However, anisotropic scattering effects can be included
in an exact solution of the two-region problem and were omitted here
again simply to reduce the complexity of the analysis.

In surhmary, this thesis contains an analysis of the decay of a
monoenergetic neutron population iﬁ two adjacent, semi-infinite media
following a pia.ne isotropic burst of neutrons at the interface. Further-
more, this analysis can be expected to yield both the single half-
space and full-space solutions as special cases.

The method of solution can be briefly stated as the removal of
the time dependence by a Laplace transformation, followed by the
solution of the transformed equation, and concluded by an inversion
to recover the time dependence. An exact solution as well as two
approximate ones (diffusion and P-1) are developed and compared for
certain moderator materials.

The exact solution to this problem contains the uncollided beam
of neutrons which never interacts, and which travels at speed v
through the two media. In addition, because of the .infinite extent of

the system, no discrete spatial modes appear in the result.
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The detailed solution to this problem is discussed in the
remainder of this thesis. First, however, a brief review of the

literature is given t‘ovprovide additional background to the problem.
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II. REVIEW OF THE LITERATURE

This chapter is divided into four sections. Section A contains
a brief discussion of the Boltzmann equation, the foundation upon
which the remainder of the work in this thesis is based. Section B is
a review of the development of the normal mode expansion (NME)
method for solving the Boltzmann equation in slab geometry.
Séction C covers work done by several authors on time-dependent
‘prob_lems, utilizing the NME method. Section D is a brief review
of the steady-state, two-media problem.

A. Discussion of the Boltzmann Equation

The mathematical development of neutron transport theory has
the Boltzmann equation as its basis(l’ 2). This equation relates the
behavior of a system containing many neutrons to the interaction
properties between the neutrons and the bulk media, and it takes into
account these changes in the system by their effect on a neutron
‘distribution function. The assumptions used in deriving the
Boltzmann equation are listed below.

| 1: Neutrons are considered as stable particles since their
13 -minute half-life is much longer than their average lifetime in an

assembly.

2. Neutrons interact only through nuclear forces, which are
short ranged. The atomic nuclei are assumed stationary.
3 Neutrons move at constant velocity between collisions.

4. Neutron-neutron collisions are neglected.
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5. Collisions between neutrons and atomic nuclei are well
defined events and take place instantaneously. As the result of a
collision, a neutron may be captured, it may cause fission, or it
may be scattered (elastically or inelastically).

6. At a given speed, the probability of collision per unit
path length is constant.

7. The neutron density is assumed to be continuous in both
position and velocity, and givena neutron distribution at any time
it should be possible to determine its behavior uniquely at any
subsequent time.

Using these assumptions, it is possible to write down a general
transport equation for the neutron distribution. The following symbols

are used:

t = time,

= - .

r = position vector of a neutron.

= . =¥ -2 - . -

v = velocity vector of a neutron; v = -vﬁ , {1 = unit direction

vector for the velocity-

N(;, v, t) dVdvdQ = probable number of neutrons at time t in
the volume element dV about T, traveling with speed dv about v
‘in the direction dQ about Q.
r, v) = macroscopic cross section (probability of interaction
per unit path length), which is assumed to be a function of position and
energy only. Similarly U'S R Gf are the macroscopic cross sec-

o

tions for scattering, capture, and fission interactions, respectively.
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Hence, we can write Gt = OS + OC + Gf.

f(r,v'd' = vQ)dvdQ = probability that a neutron, if it collides
in dV about r with original velocity v'(i', will scatter into dv

about v, and dQ? about a.

fz(;, v'@' - vQ)dvdQ = probability that a neutron, arising from
a fission collision in dV about ;, between a neutron of velocity

v'ﬁ' and a nucleus, will be emitted in dv about v, and dQ about a.

cx,(?, v) = average number of secondary neutrons produced per
fission collision between a neutron with speed v and a nucleus in dV

-
about .

S(T, v{,t)dVvdvdQdt = probable number of neutrons emitted by
independent sources in the volume element dV about T, with
speed dv about v, and in the direction d{2 about ﬁ at time t to
t + dt. Independent sources imply sources whose existence and

strength are independent of the neutron population of the system.

Considering the flow of neutrons into and out of a differential

volume of phase space then yields the following neutron transport

(1)

equation:

ON(r, vl t) | 8. yN+ vo (T,vIN =
ot t
Jdv'v’ Jdﬂ' [Us(;,v')fl(?,v'ﬁ' - v{l) + (1)

T, v') o7, N, (F, v'a' - vﬁ):] N(T, v'Q',t) + S(T, v{i, t).
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In neutron transport theory one is concerned with the description
of neutrons having energies from a few MEV (fission) to approximately
1/40 ev (thermal equilibrium with the surrounding medium).
Equation (1) is valid over this energy range(l). Furthermore, since
neutron-neutron collisions are neglected and since the neutrons are
assumed to have no major effect on the containing medium, the
neutron transport equation is linear.

Boundary conditions to Equation (1) follow from the physical
interpretation of N(;, vﬁ, t). A few are listed below.

1. At the surface of a system which is nonreentrant,
N(?, vii,t) = 0 for all a entering the system.

2. The number of neutrons coming directly (without collision)
from infinity is zero. |

3. At a point on an interface between two media, the number
of neutrons which leave one medium with a certain velocity will enter

the next medium with this velocity unchanged.

These can be simplified in most pfoblems to:

1. N(?, vﬁ, t) = 0 for T on the surface and entering the
system.
2. (a) lim N(;, v, t) = 0 if the sources are located in a

r = oo
finite region of space.

e+r/1

K if a source at infinity is

I}

(b)  lim N(7, vi3, t)
r = ‘

considered (Milne problem).

3. N(?, vﬁ, t) is continuous at interfaces.
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We shall now make several additional assumptions, consistent
with our problem, in order to reduce Equation (1) to a simpler form.
First, assuming that the medium is homogeneous results in the follow-

ing simplifications:

AT, v) = alv),
£(r,v'@" »v@) = £(v'3' = va),

fz('r', vi31 ~ i) fz(v'h" - vil).
For a system containing several different homogeneous media,

these assumptions hold within each medium.

Next, the neutrons are assumed to be monoenergetic; thus,

£ o i) £,(0 - dys(v' - v),

£,(v'T ~ v £, =+ ) 3(v' - v).

Finally, the scatte ring function is assumed to be independent
of angle — isotropic in the laboratory system. To maintain the proper
normalization of
-
Jf1,z(ﬁ' - J)ydo' =1
we set accordingly,

fl(ﬁ' — Q) = fz(ﬁ' —¢Q) =t



= Xf =
Substituting these relations into Equation (1) and simplifying

vields

7l + Q,O' - - e
—g-l-\”—r{;?’—t) + vQ VN + voN = -(———) XN(r, Q' t)d' (2)
]
Q
+ 5(7, 0, t).

Since the work in this thesis is restricted to problems having

plane symmetry in space and azimuthal symmetry in angle, let us

define pu = cos{l ; hence
s o_+ a0,
SO b} 4 gy ON 3 ey o S8 D VIN(X u's t)du (3)
ot ox t 2 '
' -1
+ S (x,\,t).

The last change in the basic equation ig brought about through

the definitions

f
c & 5 G, B O
0't t
a.nd
¥(x, 4, t) = vN(x,u,t).
Thus, Equation (3) becomes
+1
1 9 shks & oY a :
+ Bl 2 ov = S [ven naw (4)
-1
+ S (x, 4, t).

It is the solution to this equation which is sought for two
adjacent, semi-infinite media in which a plane isotropic burst of

neutrons is introduced. at the interface. The remainder of this
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chapter contains a summary of several investigations which have been
made of Equations (3) and (4), both in their time-dependent and time-

independent forms.

B. The Normal Mode Expansion Method

If Equation (4) is reduced to the time-independent and homo-
geneous form, one is led to an equation which was considered by

Case in 19,60(3"‘);
+1

YLy, |
u——g—”—) + Y = -g—‘l‘_‘yl(y,u')du', (5)
where
¢ = o

In Reference (3) a new ﬁethod for solving Equation (5) is presented.
Based on work done previously in the field of plasmas(4’ 5),
Case finds that both regular and singular — in the sense that they be
distributions — solutions to Equation (5) are physically admissible
-and, in fact, necessary if a complete solution to Equation (5) is

desired.

Solutions to Equation (5) are assumed to have the form

= oYV
bew = e Ve (. (6)
Substituting Equation (6) into Equation (5) and requiring
+1
f o (wdp = 1,
-1

yields

| C
(v-meo 1) = 5 . . (7)
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Prior to the Case paper(3), to obtain cpv(u) one simply divided
by the factor (v-u), thereby implicitly assuming \)é[ -1,1 ] This

operation results in the two solutions to Equation (7) given by

Vv
P (M) = 5 —— (8a)
ox 2 V, FH
where
1 = ecv_ tanh 1 - (8b)
o VO

(vo is real and greater than 1 for c¢ < 1, and is pure imaginary
for ¢ > 1).

What Case observed was that not all of the solutions to
Equation (7) are given by Equation (8a). Permitting v to lie in the

interval [-1, 1 ] , Case obtained, as another solution to Equation (7),

o ) = F P grg + A=), (9a)

where
T .
A(v) = l-cvtanh v, (9b)

and where the P in Equation (9a) indicates principal value integration.
An important property of the solutions to Equation (7), as given

by the functions cpoi(p) and tp\)(p), is that these functions are

found to be orthogonal over the range -1lsu<+l with a weight

function p. That is
+1
Jucav,(u)cpv(u)du =0 , v # V. (10)
-1
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Also the normalization integrals for v = V' are presented in
Reference (3).

A second and more important property of the ®'s is that
certain of them form a complete set of functions along any portion
of the [-ll, 1] range over which p is defined. Moreover, from the
proof of completeness provided in Reference (3), a procedure.is
outlined for determining the coefficients in an expansion of the form

(valid for -l<p <+1)
: +1

o, (1) + IA(v)cpv(u)dv.
wl

fw) = aj o (W) +a_

This procedure can be used as an alternative of, and an extension to,

the full-range orthogonality property.

Hence, the general solution to Equation (5) can be written as
+1

Vo vow) + [AG (yamdv,  (11)
-1

Y(y,u) = ao+¢0+(y’“) + aO"

where the coefficients, in principle, can be obtained. In Reference (3),
the author applies this method of solution to several time-independent
problems of interest in plane geometry;‘ the Green's function for a
uniform infinite medium, and several half-space problems including
the Milne problem. In addition, the solution to the time-dependent
equation in an infinite medium is discussed, and this is presented in
more detail in Section C.

However, except for the cases where the full-range orthogonality
relations are used, simple forms for the expansion coefficients are

not determined in Reference (3). The derivation of simple forms for
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these coefficients in less than full range problems (e. g., for

(6)

o<u <l) is included in a second paper by Case' ’, published in the
form of a report in 1961.

For a coherent account of how expansion coefficients in partial
p-space problems are obtained and subsequently simplified, it is
necessary to look at the results of the completeness proof(3) in more
detail. In addition, since most time-independent problems are similar
in their sequence of analysis, the work done on only one problem in
this reference will be reviewed — the Milne problem.

In the Milne problem one must solve Equation (5) in the right

half plane subject to the boundary conditions;

v

(a) ¥{o,pn) = O |8 0,

(b)  ¥(y,p) = ¥ _(y,u) as y~ oo,

where

Ity = e Vg ().

The solution to Equation (5) which satisfies condition (b) is

1
Hyow) = b (o) + g b (v + [ AGY (v, wdv. (12)
_ | .

Applying condition (a) yields

1
“o_ () = a0 +] A (wdv. (13)
0
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(3)

Now the completeness proof provides the following prescrip-

tion for obtaining these coefficients.

A) = = [N+(\)) . N'(v)],
1
) 1 Y)Y () dp!
Hgtm) = 2miX, (z) I (L'-2) =
1 Xlo(z) Lol
Jyvniwman = o, xpm = 22—, x (@)= P,
v (14)
1 ¢! 2i0(au +
R .o = arght)
0
+1 X (1)
Mz) = 1- —<Z N T L e L
2 i z-| 2 A (1)
UM = -l (W) - a e (W)

By means of these formulae, both a, and A(v) are com-

-+

pletely determined — if not explicitly,. at least in theory. In fact,

from the third relation in Equation (14), the expression for o is

given in Reference (6) as well as in Reference (3), by

1
-j YD _(1')du!
0 (15)

R
jcoo+(u')v(u‘)du'
0

ao+

It is at this point that Case introduces several identities con-

cerning X'l(z.), based on Cauchy's integral formula. He had
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previously(3) obtained an identity for the X(z) found in the full-space
completeness theorem, but the general applicability of these identities

in determining simple forms for the expansion coefficients did not

(6)

become known until his 1961 report’ ‘' was published.

For the problem reviewed here, the X(z) identity used to

reduce Equation (15) is given as
' y(u')du!
Xl(z) = J Woz : (16)
0

Hence, Case obtains

X.(-v)
_ 1 o
ot T XV (17)

and a similar result for N(z), thus permitting A(v) to be written
down in a simple form as well. In fact, at x = 0, the emerging

angular flux is found to be
C\)o2 Xl(-\)o)
¥(o. ) = — - (18)
X)) (v =17)

Once the identities in X(z) were observed to be vital in the
simplification of these problems, a number of them were obtained,
in addition to those presented in Reference (6). For each problem
solved by the NME method and published in the literature, relations
| for X(z) were usually determined immediately and applied in the

simplification of the solution.
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In addition to the reductions brought to light due to the X(z)
identities, Case also notes, in Reference (6), some possible exten-
sions of the NME method to slightly more complicated problems, all
of a time-independent nature. He examines the problem of a critical
slab in some detail and discusses the generalization of the NME
method to include anisotropic scattering. Finally, he considers the
Milne problem for two adjacent half-spaces, which is related quite
closely to the work described in this thesis, énd certain aspects of
which are described in more detail in Section D.

While the usefulness of the NME method was being demonstrated
by its application to a variety of problems in slab geometry, and while
the method itself was being generalized to include energy, time,
anisotropic scattering effects, and changes in geometry, it was not

until April 1964(7) that the necessity of using the completeness proof
to obtain the expansion coefficients was shown to be unnecessary. The
orthogonality relations first proved in the full p-space by Case had been
extended to any fraction of the p-space By the suitable choice of a
weighting function.

In Reference (7) orthogonality relations are developed and
applied in the steady-state solution of both half-space and two
adjacent half-space problems. Our discussio.n centers on the develop-
ment of the two-media orthogonality relations found in Reference (7).

Although the completeness proof is no longer needed to obtain
the coefficients in an expansion such as Equation (13), certain results
from the completeness proof are needed to obtain the proper weight .

functions. Hence, the orthogonalization method of obtaining the
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expansion coefficients is not entirely divorced from the completeness
proof.
From the two-media problem, described in Reference (7), the
‘following formulae are obtained for a geometry where subscript 1

implies x < 0 and subscript 2 impliex x > 0 in Equation (5).

“nVon 1 o1
= 1 = t k 1 _
cp;,_’],:l:(“"') 2 \)On:F Tl ’ Cn\).on an \Jon , n 1,2,

(h) = vel) P + L(v)é(v-p) c(v) = <C2 70 19a)
tp\) M) = 2 V= V- » = Cl & p ( a
L(v) = 1-vec(v) tanh-l\) , Ll::(v) = W i ivvgg\)l ,

_.1._
%. (=} = X, (=6} X, [2) T () He(u) X, (1)
z) = -z z Y b = ——— .
- : 2 k 2L (1)

The Xn(z) are the appropriate hali-space functions obtained
from the completeness proof, and the angular dependence is described
in terms of cpli(p.), ch:n:(“)' cplv(p.), CPZ\)-(“)’ in the appropriate half-
spaces. ' |

Again, -the basis for the method is linked directly to several
X(z) identities. The identities of interest for the two-media problem

are given in Reference (7) as

+1
: d
Illu”rk(m H_ - Px(a) . n=0,1
(19b)
+1 .
2 du _ 2 _
ka(U)—u_—z =z X (z)-1

-1
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Based on these identities, the three linearly independent
functions, unI‘k(u), n=0,1,2, can be combined to include any two of
the four discrete eigenfunctions in the orthogonality relations. Kuscer,

et al., chose cpl_(u) and cpz_l_(u) by using the weight function

Some of the resulting integrals obtained were

+1

[ wiwe (e = WL (V)L (W s(v-v1),

-1

+1 +1

f¢2+(u)mv(u)wk(u)du o j 0 (W, (MW, (Wdp = 0,

o 23
+1
[ o, e, (w, mas = o, (22)
-1

+1 T

2 2°02 :
[0y, Zwwmdn ==(2-2)" (vy, + vg,) X (vg,),
-

+1

Cc,V 2
[ oo 2w = (52 (v, + vgp) X l-vgy)-
1

Thus, the coefficients in steady-state, two-region problems can be
obtained with the orthogonality re'lations listed above. Also, these
results contain as special cases both the full and half-space ortho-
gonality relations, as noted in Reference (7), and they can be obtained

by a suitable choice of constants.
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To summarize then, Equation (5) has been looked at in some
detail within the framework of the NME method, and exact solutions
have been found to a variety of problems based on this equation.
Simplifications to the method of solution have come through the appli-
cation of identities in X(z) both to expressions for the expansion
coefficients obtained from the completeness proof and to the develop-
ment of certain orthogonality relations.

Extensions of the NME method to include anisotropic scattering
effects have been successful and can be found in the literature
(Mika(s), Zelazny(g), et al., Shure(lo), et al).

The addition of energy dependence to Equation (5) has been

examined in some detail for several simple models including both

(11,12) (13)

constant cross sections and energy-dependent cross sections
A study of the time-dependent thermalization problem using the NME
method has also been made (see for instance, Reference 14),
However, attempts to extend the NME method to other geometries
: : (15)

have met with little success ;

Three time-dependent problems have been solved and their
results published in the literature. They will be discussed in the

next section.

& Three Time-Dependent Problems

The additional dependence of the neutron flux on time increases
the complexity of solutions to Equation (4) as compared to the com-
plexity of the time-independent solutions discussed in the previous

section. Two methods of time removal have been applied successfully
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to Equation (4), and both methods are described in this section.

1. The Single Infinite Medium

In this problem the units are chosen such that v =0 =1,

reducing Equation (4) to

+1
9Y(x, 1, t oV
-J%P—) P Op—— ¥ = g_jlw(x,u', t)du' + S(x, U, t). (21)

In Reference (3), Case solves Equation (21) in a uniform

infinite medium with

S:(X, s t) = 5(X'X0)5(¥1'P~0)- (22)

Assuming solutions of the form

ikx _-(L+iok)t

o, t) = e’ Py, 1M (23)

Case states — based on his work in Reference (5) — that the Py k(p.)
are orthogonal and complete for ue[—l, 1]. Hence, the solution

can be written down almost immediately as

+0oo

; -iko t
-t ik(x-x,) o (L )p (W) e oo "
et =G fo o Ca |l ek {10+ ) - 10 T}

=00 o,
. (24)
+1 -ikat
N j Dy, k{Ho) Py, k(M) © dcn-] ’
1 Na, k

where all the terms are defined explicitly in Reference (3).
This problem differs from the thesis problem in that in the

- problem above the material properties are uniform throughout space
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and the source is angularly dependent, whereas in the thesis problem
the mater'ial properties are not the same on the two sides of the
source plane nor is the source angularly dependent. Although the
angular dependence of the source is not a major obstacle in applying
this methodto the thesis problem, the difference in material properties
precludes the use of the type of solutions assumed here (Equation 23),
wifhout some additional modifications.

2.  The Single Slab

A time-dependent solution to the neutron transport equation
in a finite slab was reported by Bowden in 1963(2). This problem
is physically quite different from the thesis problem. Also, due
to the finiteness of the geometry, one expects a fundamental mode
and higher harmonics tb be set up in a slab problem as compared to an
absence of modes in the case of two semi-infinite media. However,
many similarities in the method of analysis compel us to look in some
detail at this work(z). Both this problem and the one following are
summarized in Reference (16). k

Based on assumptions of isotropic scattering and a mono-
energetic system ofneutrons, Bowden gives as the governing equation
within a slab, extending from -a'<x <+ a', the homogeneous form of

Eqﬁation (3), with the accompanying conditions

N(#a',p,t) =0 , pso0,t>0,

N(x, u, 0) = £f'(x, ).
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By the change of variables

y = ox , t' = ovt, fly.u) = fix,u) ,

u(y, 4, t) = N(x, u, t) e“t¥ | a =o',

Bowden obtains from Equation (3) and the related boundary conditions

listed above,

+1
ausz:u:tl ¥ L .a—u = —; JU(Y,U-',t')du' ’

at! oy
=l

u(xa,u,t'y =0 , puz20, t'>0, (25)

u(y,u, 0) = £(y,n).

From theorems proved by Lehner and Wing(17), Bowden

concludes that the solution to Equation (25) can be written as

Y1+iw
N .
s CoL St 1 st!
aly, ) = ) (58 Yag(yim) e I+ lim o [R(y,we®tds,  (26)
j=0 | R yq-iw '

where the ‘i’aj (v,1) satisfy the equation and boundary conditions

ava.(y,
o.(y,u)

_u ay

+1 .
+ g [ eyt = o5 e (o)
-1 :

"}’a.j (ta,u) =0 , n20.
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The ‘F: (y.u) satisfy

J

udYy (y.u) +1
aj = [y ar e v (v
By 3 1antu du zﬂ.j qu’U- ’

*
Yaj(ia,u) =0 ,uz0.

Rs(y, u) satisfies

8R, <o
S - ' =
s Ro(y,u) + u—py > j Ry(y,uf)du’ = iy, u),
-1
Rs(ﬂ:a-su) =0, Ll§ 0,
and +a +1

(h: g) F J‘ dY J‘ h(Y: U) g(YrU.)du_

-a -1

Bowden notes that although Lehner and Wing(17) suggest the form
that the solution will assume (Equation 26, et seq.), they do not
suggest the shape of the eige'nf_unctions nor the eigenvalue distribution.
To learn of the solution in more detail, Bowden applies the NME
method to Equation (25). |

Removing the time dependence by a Laplace transformation

converts Equations (25) to

aus(YnLl) c > ) a
p—fy—* eu, = [mnua ¢ s (27)

uB(:I=a.,p,) T ¢ [ |.12 o,
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where '

0o
-at! i
US(Y,U-) = Ie " U-(Y:u,t')dt' .
0

Bowden first solves the homogeneous part of Equation (27),

+1
oY (v, u) ” '
9] _-_B_y_—_ + S‘:l’s = 7 J‘k’s(y.u )dLl' s (28)
-1

and then solves the inhomogeneous equation by the use of a Green's

function. In the homogeneous equation, he assumes solutions of the

/\), and the \)-pla.ne is broken up into

form ‘i’s(y,u) = CPs(urV)e-sY
two regions, \)6[-1,1] and v¢[-1,1]. For ve[-1,1], the expected

continuous solution which holds for all s,

) = o we Y,
P V) = TP+ A BV (29)
A V) = s - cvtanh_lv ;

is obtained. Also, for vg[-1,1], there appear the discrete solu-
tions,

CPS(U-:V) = 'z_ T

- ESP
s = cvtanh ~ s

(30)

as anticipated.

However, because s and v are complex, both the number of
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discrete solutions and the region of the s-plane where they exist
are unknown. Bowden solves both these problems by looking in

detail at

n

Q_(v) T (—%—-) . (31)

A discrete solution will exist for that v which makes Qs(v)
vanish, provided vé[-1,1].

To de‘termine the number of zeroes of Qs(\)) , for a fixed s,
in the v-plane with a branch cut from -1 to +1, Bowden applies a
theorem from complex variable theory, the principle of the argument
(see for instance, Copson, pg. 119)(18), which has also been applied
in neutron transport theory by Ze}.azny(g). The theorem states that
if a function f(V) is regular within and on a closed conf:our C,
except for poles, none of which lie on .C, and if f(V) is non-zero
on C but has zeroes within C, then the excess of the number of
zeroes over the number of poles of f(v) within C is -—2-111_— times the
increase in argument of f(\))‘ as V goes once around C (an nth
order pole is counted as n first order poles and similarly for the
zeroes).

’The contour chosen by Bowden in the v-plane is shown in

Figlire 1, where p -0 and R oo . Along CR, Bowden notes

that llllinoo QS(\)), = s-c . He also notes that if s =c, the only two
solutions of Equation (31) are Vg = T s £ ¢ was assumed in

the remainder of the analysis. Now, there is no change in the
argument of QS(\J) along Cg » nor is there any change in the argu-

ment observed by traversing the contours Cp- and Cp+‘ Thus,
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all changes in the argument of Qs(v) occur along Ci'- and CI ;

Above and below the branch cut, QS(\)) has the functional form

Qd; (4) = s-cutanh lu + imcu/2 . (32)

Bowden writes s = 0'+ip' and obtains

B'Emweu/2 }

argﬂi(u) = tan_l{ <
% a'-cutanh Ty

Investigating this expression, the aﬁthor finds that the argument
of QS(\)) changes by 4w — and hence indicates two zeroes since
there are no poles — only within a certain region of the s-plane.

- Qutside this region, the argument does not change by a factor of

' 2w indicating that no zeroes of QS(\)) occur there. By a slight
modification of the contour shown in Figure 1, it is also noted that
if s lies on the boundary separating these two regions, Qs(\))

has two zeroes.

The fegion where Qs(v) vanishes, or where the two discrete
solutions exist, is defined as Si' That region where QS(\)) does not
vanish is defined as Se. These regions are shown in Figure 2.

The equation for C, (see Figure 2) is given as
1 = T
a,' = ELta_nh 1 %&
T mC

By inspection of Equation (31), one can easily see that if M is
a zero, then -V is also zero. Choosing ¥, to have a positive

real part, two discrete solutions can then be written:



Ve = o (W) e -

O] = — "
st 2 \)O_"-_LJ.
-1 1
s = cv_tanh — , Rev >0.
o \)o o

‘Here for sE:Si , the two discrete solutions defined by Equation (33)

and the continuous solution defined in Equation (29) are known to exist,

while for seSe , only the continuous solution, Equation (29), exists.
Bowden next proves that for seSi the functions Cpsi(u) and

cps(u,\)) form a complete set over the space -1=u=+1. For

seSe, cps(u, V) is itself complete over thelsarrie space. In addition,

full-range orthogonalization and normalization integralslare obtained

in Reference (2). Thus, the form of solution found for se:Si is

'different from that found for se:Se and i.s characterized by the

' presence 6r absence of discrete solutions.

The remainder of the slab problem will be summarized rather

briefly. For sE:Si, Bowden then solves Equation (28) subject to the

boundary conditions

Y (+a,u) = 0 , us 0.

. £
A similar analysis for the adjoint Ys(y. 1) leads to the conclu-
sion that the eigenvalues of the transformed angular flux and its

adjoint are found to be identical, and that

%

Yo, reu) = Y, (you)
J j
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where the bar denotes complex conjugate. Next, the solution to the

inhomogeneous problem, Equation (27), is solved in both Si and Se
with the aid of a Green's function. It is observed(z), based on the
work of Lehner and Wing(l'”, that the solutions in Si and Se are
representations of a function which is analytic in the right half
complex plane of s, save for eigenvalues of the homogeneous prob-
‘lem which lie on the real axis. Hence, by shifting the inversion
path to the left but not past the imaginary axis, the author obtains as
a final result Equation (26), where now the quantities involved are
completely specified.

3. The Single Semi-Infinite Medium

In April 1964, a paper(lg)

was published on the solution to the
tirﬁe—dependent monoenergetic Boltzmann equation for a single semi-
infinite medium. The source applied to the half-space was a burst
‘of neutrons entering the surface of the medium in some preferred
direction at t = 0. Although there are obvious differences between
this single half-space proble;m and the thesis problem, one can
expect many similarities in the a.nalyéis of the two problems, since
a two adjacent half-space analysis contains a certain single half-
space problem as a special case. These similarities in the analysis
are discussed in this section.

Starting with the homogeneous form of Equation (4) for x> 0,

‘the transformations vOt =t' , Ox=y , vyield

' ~
BY¥(y, W, t' v .
R Mg + Y= < J ¥(x, 1, t)du’ . (34a)

-1
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Boundary conditions for the problem are given in Reference (19)

as

YO, 1t = B{u-k)B(E) , w, >0,
(34b)
lim  ¥(y,u,t'y = 0 , t'Z0
¥y~ oo
Kuscer and Zweifel also note that when
5 - — 1
x' = ey 7 t" = ct', and ¥(y,u,t') = e i C)tx(y,p.,t'),
Equation (34a) becomes
+1
9 o7 x 1 '
X8y w8 = [ xeabtman . (35a)
-1
and the boundary conditions are transformed into
X(0, 1.t = S(u-u )8 (E"), ug >0,
i (35b)

lim  y(x',u,t") = 0,, t"'= 0

x'"" 0

Removing the time dependence from Equations (35a,b) by a

Laplace transformation, where

0o
‘i’s(x',u) = I e(l-s)tux(x',u,t”)dt”
' 0
results in ‘
BYS(X',H) "t +1
U = e +s‘i’s s = I L (x',u')du' ,

4 (36)

lim V¥ (x',u) = 0
x' oo °

, ¥ (0,u) = 8(p-u) » p,>0.
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Kuscer and Zweifel, when solving Equation (36) by the NME
method, also note the existence of two regions in the s-plane where
the allowed solutions in Equation (36) are characterized by the
- presence or absence of discrete terms. A study of the Si and Se
regions for this problem would yield a picture quite similar to that
shown in Figure 2. In this problem, because of the slightly different
transformations from those made in the previous problem, one should
set ¢ =1 (in Figure 2) to get the correct description of the boundary
between the two regions Si and Se.

In addition to this small normalization difference, it is observed
in Reference (19) that a branch point appears at s =1 and a branch‘
cut in the s-plane exists along the real s-axis for 0 < s < 1. As
explained in Reference (19), this can be thought of as a limiting case

(2)

of the slab problem treated earlier' ', in which a finite number of
poles occur along the real s-axis. We note that as the slab thickness
is‘increased, an incu:easing number of poles fill the interval on the
real s-axis more and more dc;_nsely and in the limit become a branch
cut.

A physical reason for the appearance of the ;r)ranch cut in the
semi-infinite medium problem as opposed to the finite number of
poleé for the slab is that in the finite medium one expects standing
modes to be set up, whereas in the unbounded geometry no standing
modes are expected.

Kuscer and Zweifel write down the solution to Equation (36) in

each region of the s-plane (again the presence and absence of discrete

terms is apparent), and they also note some important simplifications
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Which occur in the transformed angular flux at x' = 0. To perform
the inversion, it is necessa'i'y' to helwe a function analytic in some right
half plane. It ié known that such a function exi'sts since the trans-
formed Equation (36) has a continuous solution along‘the real s-axis
for l<s< oo. Also, it can bé seen that in Si .and Se the two repre-
sentations ofA“i’S(x',u)l are a’nal‘ytic: What Kuscer and Zweifel
show is that there are no singularities of \L’s(x', ) aloﬁg the
border(zo) between the two regions, and that' the values assumed by
the solution along the border are the same when the border is
approached from either side. Hence, fhe function represented by
Ys(x', M) in both re.gions of the s-plane is analytic in the right half
s-plane except for a branch éut from 0 to 1. Thus, the inversion
path can be shifted to that shown in Figure 3.

The te chhique sketched ,in the last paragraph to prove that the
solutions to Equation (36) in each region of the s-plane are analytic
continuations of each other Willjalso be used, v&ith the same objective
in mind, in the thesis problem.

‘ The final form of the solution (not shown hevrt_a) contains the four
:integrals Il, 5 5 5 14, and the solﬁtion can be reduced still further at
x' = 0. A final point of interest can be found in their discussion of
the results,where Kuscer and Zweifel note the appearance of an
uncollided beam of neutrons which also can be expected in the two-
media problem.

Several papers have been published which deal with the steady-
state, angular flux distribution in two adjacent, semi-infinite media,

The next section contains a review of this work.
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D. The Steady-State, Two Adjacent Semi-Infinite Media Problem

Prior to the discovery of thé NME method, the solutions to
problems involving half-spaces were derived with the aid of Fourier
transforms in general, and by the use of the Weiner-Hopf method in
particular. This method is applied to the two-media problem in
References (1) and (21). Another discussion of the two-media problem,
utilizing this method, can be found in a paper published in 1957 by
K. M. Case(zz), where the two media Green's function is obtained for
an isotropic plane source.

In apl.)lying the NME ‘method to this geometry, one stérts with

an equation of the form
' c
y<o0

1
- +1
: 2
p BB oy = \j ¥(y, u')dp!
cz/-l y>0,

—

2

with boundary and source conditions appropriate to the problem under
consideration. Again,both discrete and continuous solutions are

~ obtained, and they can be shown(6) to be complete in p-space. In
fact, the X(z) function for this problem is founc_i to be the prdduct

of the two separate half-space functions:
X(z) = X,(z) X(-2)

Hence the expansion coefficients can be determined from either the
completeness proof or the orthogonality relations and in principle

these problems are solvable.
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A more complete examination of the steady-state, two-media
problem than that given in Reference (6) can be found in a paper by
Mendelson and Summerfield(zg). After a brief review of the com-
pléteness proof obtained previously(G) for this geometry, the
authors discuss the solutions to several problems of interest - the
Milne problem, a uniform source in one half-space, and the Green's
function (angularly dependent).

In solving these problems, the authors obtain reductions in
the complexity of certain of the solutions at the interface separating
the two media through the evaluation of the integrals over the con-
tinuous eigenfunctions in v-space. This appears to be a type of
reverse Hilbert problem and its success seems to depend heavily
on a ''"feel' for the problem under consideration. From the brief
discussion of this technique provided in Reference (23), major
reductions in the complexity of the solution at the interface in the
thesis problem are achieved.

On the basis of this brief survey of problems treated by the
NME method, it is expected that several factors appearing in these
problems should also appear in the solution for the time-dependent
flux in the two-media system. First, removing the time by a
Laplace transformation should result in a transformed equation which
can be solved by thé NME method. Next, there should be several
regions in the s-plane, whei'e the forms of solution are different but
which describe an analytic function in some right half s-plane, save
for a portion of the real axis. This portion of the real axis should

be a branch, due to the unbounded geometry of the two media.
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Finally, some reduction in the complexity of the solution at the inter-

face between the two media should occur.
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III. TIME-DEPENDENT NEUTRON TRANSPORT IN TWO

ADJACENT SEMI-INFINITE MEDIA

A. Summary

With the assumptions of a monoenergetic neutron spectrum, a
system of two homogeneous regions, and isotropic scattering in the
laboratory system, the governing equation for the angular flux in

each spatial region is (see Equation 4),

+1
L 2aib, 2y oy = L v nda +Seomt) . (37)

2
-1
The geometry for this problem is shown in Figure 4. An isotropic

burst of neutrons of strength s [in units of neutrons/unit area x time]

is assumed to occur at the interface at t = 0. That is
S(x, 4, t) = sd(x)6(t).

A minor simplification to Equation (37) can be made by setting
vt =T and vs =q. Thus the equation, whose solution we seek, is
written as

.
ﬂx_“’_) + U 8 + o(x)Y = _C_(E)ZE(ELI Y(x,u', T)du'
K (38)

+ qd(x)8(T) .

c({x) and o(x) imply that the cross sections may be different in

each half space. Y¥(x,H,T) is required also to .sa'.tisfy the boundary
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and initial conditions,

lim ¥(x,u,7) =0
X > o0 ]
‘y(xs.u) 0") =0 (39&)
and from Equation (38) the jump condition,
w [¥(0+, 1, 7) = ¥(0-,1, )] = qb(T). . ~ (39b)

The method of solution to be used is given in sequence below:
1. Remove the T dependence by a Laplace transformation.
2. Solve the transformed equation in some right_ half s-plane
by thé NME method.
3. Determine the properties of the solution there.
4., Invert the solution from s to 7T, deforming the path of
‘integration in a suitable manner.
5. Simplify the solution where possible (at the interface).
Steps 1 and 2 are covered in this chapter, Steps 3 and 4 in Chapter IV,
and Step 5 in Chapter V.
Once "l’(.x, U, T) is determined, both the flux and current can be

obtained by simply applying the usual definitions
+1
B, ) = | vix,w U,
' -1

and (40)
+1 '

Tee,m) = [t mids .
-1
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B. Time-Removal

If we define Ts(x, u) by

oo
¥ eou = | e % ¥, mar (41)
0

then to recover the T dependence we use

Y+i oo
1 T—
Y(x, L, T) = ZTTJ e® ¥_(x,1)ds . (42)
Y=-ioo

Hence, it will be .necessary to obtain Ts(x,u) at least along the path
given in the inversion integral(42) where Yy is a real number
greater than the real parts of the locations of all singularities and
branch cuts of Ts(x, u). It will be observed later that from a know-
ledge of the behavior of _‘Fs(x, 1) in some right half s-plane we shall
be able to deform the inversion path, through the use of Cauchy's
theorem, and obtain a simpler form than Equation (42) for our final
result.

ST

Multiplying Equation (38) by e and integrating over T from

0 to oo yields
v +1

[s+o(x) TT e ) + 2 = 590 [y unant + ase) . (43)
sk

The transformed boundary conditions (39a) become

lim Y _ (x,u) =0, (44a)
8
x— % 00
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and the initial condition (39b) transforms into the jump condition

.

LI (04,0 - ¥ 0-,00] = q . (44b)

C. General Solution of the Transformed Equation

For x < 0, Equation (43) becomes

- +1
_x B‘i’s €10y 5
(s4-01)Ys(s,u)+ B g = > I YS(S,quU' i (45a)
«l
and for x > 0, 7
_ BTS czcz +1_
(s+0,) T (5,1) + 0 —5 = =55 | ¥ teunan . (45b)
-1

To solve Equation (45a) one assumes a solution of the form

¥ o) = oy eT(E ORIV,

(46)
Substituting Equation (46) into (45a) yields
+1
“¥9 B iad
(s+ay) Iv-uloy () = —5L v] o (whau' .
-1

+1
Assuming J cplv(p')dp' = (s+ol) , permits us to write this last
-1

equation in the simple form
. C]_O'I\)
(v-p) 9y W) = —5— . (47)
Since -1 =u =+ 1, when v is in this range, one should expect

a form of solution different from that which occurs when vé[-1,1].
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We shall look for solutions in both these regions of the v-plane.
ve[-1,1]. Here the solution to Equation (47) is written in the

form
€191

P, M) = —— P

V-H

+ A (V)d(v-u) , (48)

where P indicates principal value integration.

This form is an extension of the work of Dirac(24) and has been

applied successfully in transport theory by Case(3). To obtain )‘1(\’)’
one uses the normalization relation; hence

+1 : C,0,V
1-1 1+
(s+oy) =] o mau = a0 + S tm PR,

wd

(49)

or

C,0;V
g 153 1+v
M) = {ad gy} = =5 a1

vé[-1,1]. Here we write the solution to Equation (47) simply as

Cc,0
e Luil v
P M = — ik (50)

Requiring the same normalization as in Equation (49) imposes the

following relationship between s and wv:

C,0,V
1.=1
S+Gl— > in

Nt 1 1

—1 = clolvtanh_‘ (51)

|~

So our discrete solutions place a restriction on the values of

v, relating them to s in a manner similar to that found in Bowden's

st+o
work(z). In fact, if we let 1 be replaced for the moment by just
5, P y
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s, the results of Bowden can be carried over to this problem.
Figure 5 shows the region of the s-plane where a solution to
Equation (51) exists.

The two solutions to Equation (51) which exist for s¢ Sli
are defined as Vo1 and “Vo1 (the second solution is the negative of
the first) where Vo1 has a real part > 0. The dependence of Vo1l
on s is sketched in Figure 5,

Since for v real and greater than one, the value of s was

01
chosen real, thereby fixing the branch of the logarithm in Equation (51),
we note the exiétence of two series of values of Vo1 corresponding to
a given s when s is real and between -0y and -Ol(l—cl). Thgs,
there exists a branch in the s-plane along the real axis from -0, to
-ol(l-cl). This keeps Equation (51) single-valued. A similar condi-
tion was encountered in Reference (19)‘.

Summarizing these discrete solutions to Equation (45a), we have

"¥i+(x:u, S) = cp1+(“) e-(S+G1)-XI\)01

(52)
b () = o (et EVor
where
P14 (M) = Cfl v:lo;lu s (53)
and
s+o, = C—lf—é—\:-% In ::Ol—ti ; Re Vo1 z0. (54)

01
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The continuous solution to Equation (45a) is given by Equation (46)
with cplv(u') and )\1(\))~ being deﬁn‘ed by Equations (48) and (49)
respectively.

A general solution to Eqﬁation (45a) can now be written in

both S,. and S, . For se S,.,
11 le 1i

+1 (55a)

WB(S’U-) = _al+¢1+(xau: s) "al_ d’l_(xs U, 8) —J'A].(\))‘!Il'\)(x’“’ s)dv .

For s¢ Sle’

+1 |
Y 0om = - [ A b e e)dy (55b)
-1

The Al(\)) used in (55a) and (55b) may be different since the regions
of the s-plane where each is defined do not overlap. Also, the minus
signs are used to simplify certain equations which appear later.

Equation (45b) can be solved in a manner identical to that used
to solve Equation (45a); only the subscripts are changed. Hence,

‘ for Ve ['13111

‘ﬁzv(xspﬂ S) = CPZ\)(“) e‘(5+0'2) XI\)

., fih = Bl B Gy A (56)
2v ) v -1 2 ,
C,0,V
2 2 1+wv
hpkk = BR oy ~ —gr e 509
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Also for se¢ SZi — adjusting Figure 5 for x > 0 - the following
discrete solutions occur;

_ -(s+o,)x/v R
Uy (M, 8) = o, (W) e 2™ Yoz
(57)
Iy o s) = o, () e(8F 20 Vg,
where
Ppuli) = g2 02
B 2 Vga3¥ :
and
C,0,V LB B |
, 272702 02 i
s+ o0, = in s, Rev,, 20. (59)
2 2 Vo2 - 1 | 02
Thus, the general solution to Equation (45b) is written for
se SZi )
(60a)
_ +1
_YS(X’ U) = 32+¢2+(x: M 5) + az_ll’z_(x’ ”-,,5) +I Az(\))‘kzv(x’ My S)d\) N
-1
and for se S, ,
: 2e
+1
"Fs(x, u) = [ Az(\))\llz\)(x,u,‘s)d\) 5 _ (60Db)
-1

D. Application of the Boundary Conditions at x = + o

The general solutions, Equations (55a,b) and (60a, b) must be

modified to insure that they vanish as x —~ * oo.

First let us consider
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sE Sli’ which implies x < 0. From an inspection of the discrete
terms (Equation 52)

wli(xl s S) = Cp].:':(u) e-}(s+01)x/v01

L]

we note that the x-dependence is exhibited only in the exponential

factor.” If v is real and greater than one, (s+dl)/\)01 is always

01
positive and the behavior of lllli(x,u, s) is readily seen for large x.

To learn of the behavior of |, (x,u,s) for any se Sli » we must look

more closely at

From Equation (54), this can be written as

Clcl \)01+1
= 1

{ = —— in S (61)

Letting v, = c(,"l + i[3'1' and taking only the real part of (, since
the imaginary part does not contribute to the magnitude of the

exponential, gives

c, O -
Re( = __1_2_1...Ln‘/1+ 4%‘ 2,0,”2—1-}3”2>1 .
(d,”-l) +,ﬁ” ; ,
B, 0 =
Re { = l—zl—anJl-i- 4;‘ 2,(3,”2+[3”2<1 ‘
(1_G‘H) + Bll
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So for @' >0 the Re( > 0, and the behavior of ¥y4(x, 1, 8) for
large x is the same as it was for Vol real and greater than one.

=0 since 1!:1+(x,|.1, g) does

Based on this result, we set ary

not tend to zero as x = -o00. A similar argument holds for x > 0,

thereby requiring a,_= 0 for se SZi'

For x < 0, to make the continuous solution
by s) = W) M CLCOT o A |
satisfy the boundary condition as x = -00, we require
Re s>'—Gl , and Al(v)=0 s DLyl
A similar argument for x> 0 requires
Re s> -0, s and Az(\))=0 s, =1 =v<O.

Thus the solutions to Equations (45a, b) which vanish at x = * oo are:

for x< 0 and Re s > -01,

-0 |
?S(x,u) = -alxbl_(x,u, s) - [ Al(\))\blv(x, M, s)dv , se Sli’
1
" (62)
¥ ow == [ AW (L edy o se s s

-1
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for x>0 and Re s> -02 i

|
Ts(x’ U-) = a2+-¢2+(x’ M, S) + J- Az(\))‘-‘,-'z\)(xl My S)d\) s B8E€ SZi ’
0
(63)

1
Ts(s,u) =J Az(v)\llzv(x, M, s)dv , se S, .
0»

E. Relationship Between the Regions in the s-Plane and the

Properties of the Half-Spaces

If the two half-spaces had the same properties, then the regions
S1i and SZ'r ‘would be identical, and of course so would Sie and sZe'
However, since the choice of material properties (c and 0) is quite
arbitrary, we cannot expect the regions in the s-plane to remain
identical for x> 0 and x < 0. By permitting the c and 0 for each
half space to take on physically réalizable values, and by super-
imposing the s-plane for x > 0 onto the s-plane for x < 0, one can
show that the resultant s-plane structure falls into only two general
cases.

Without loss of generality, one can require 9, = Oy Then
the two general cases which include all choices of ¢ and O are
shown in.Figures 6a and 6b, and are defined aé Case I and Case II.
From Figures 6a and éb, we see that in Case I, c,0, > czcz,'
whereas in Case II, clcrl < 0202‘

1i

replace it with the (a), (b), (c), (d), designation shown in

It will be convenient to discard the notation S etc. and

Figures 6a and 6b. - The connection between these notations is given
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For Case I

S -PLANE
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Figure 6b - Superimposed s-Plane Regions

For Case 11
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below:
New Designation Old Designation
Case I Case II
(a) se By; » -8€ Sy =g By o BE By
(b) ' s€E S1i » 8€ SZe se Sli s SE SZe
'(c) s¢ Sle , Bg SZe se Sle , BSE SZe
7 se Sle s, BE SZi

Hence, in region (a) of the s-plane, the transformed solutions
(62, 63) contain discrete terms for all x in Cases I and II, whereas
in region (b) the transformed solutions contain discrete terfns only
for x < 0 in Cases I and II. Regions (c) and (d) can be discussed
in a similar manner.

For Cases I and II, the solutions to Equations (45a, b) are
defined in all of region (a) and in at least part of regions (b) and (c).
In Case 1I, the solutions to Equations (45 a,b) are also defined in all
of region (d). Hence, the solutions must be determined explicitly
in at least a portion of each of these regions. Thisis done throughthe
utilization of the jump condition (44b) at the interface separating
the two media.

It is found later that the distinction between Cases I and II
is unnecessary in that the final form of solution becomes the same
for both cases.

F. Application of the Jump Condition, Equation (44b), to the

Solution

Let us write out the solutions for Cases I and II. The solutions
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in regions (a), (b), and (c) are the same for both Cases I and II.

"
I (a), V000 = a4 (o) - [ Ap(W s s)dv, x < 0 5
! (64)
1
T{TS(K: M) = a2+¢2+(xs M, 8) + I Az(\))\"zv(xs M, s)dv, x > 0.
' 0
—_ 0 - o
In (), Y (eu)=-a; ¥, (i) - [ A /(W (= 8)dv, x<0;
-1
t(es)
_ 1
¥ (en) = [ AL (W, (xs)dy , x>0,
0
B 0
In(e), ¥ em = - [ A o edy , x<0;
- | (66)
. |
Y (s,m) = | Ay(0¥, (i s)dy , x> 0.
A _
In addition, for Case II we have
. .
in (@), TV xw=-[ A0y, x<0;
- ((67)
_ 1
\vs(x, W) = a2+ll12+(x,p,s) + I Az(\))\bz\,(x, M, s)dv , x> 0.

0

Again we note that although the coefficients have the same designations
in different regions of the s-plane, their functional form may be,

and indeed will be, different.
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Utilizing Equations (64) through (67), the jump condition (44b)

is now written in each region of the s-plane.

. . |
In (2), q=u[a,e,M+a; o M+] A M, (Wdv

= (68)

+ [ Ay, wav ]
0

0 1
I (b), a=ula; @ _(W+] A Mo v+ ][0, wdv ] (69)
-1 0 s

0 1
m(c), a=ul [ A0, (mav+ [ A, 000, (wav]. (70)
| B » .

. 0 1
In (), q=nfa,,e, 0+ [ Ao (v +I0 Ay (Mo, (Wdv |- (71)
-1
Note that the jump condition is the same in each of the regions (a),
" (b), and (c) for Cases I and II. For Case II there exists the jump
condition in region (d) given by Equation (71).

G. Completeness and Evaluation of the Coefficients

In Appendix I, it is proved that for an arbitrary function
¥'"(n), satisfying relatively weak conditions on the interval

-1=p =+ 1, the functions
cPé_;_(U-) 3 CDI_(LI) ’ CP]_\)(U-) »=12v<0 , CPZV(U): O0<vx<l, for se(a),

P ) 5 @), ~lsv<0, @y (W), 0<vs<l, for se(b),
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Cplv(u)_ , ~lsv<O0 , qnz\,(u) , 0<vsl , for se(c) ,'
®y,(H) 5 Py (M), -1=V<0 , o, (W) , 0<vs=1, for se(d),

when multiplied by |, form complete sets,

So an expansion of the form
0 1

Rt =|:a2+‘cp2+(u)+ a; Py (W) + f Ay (Vi (L)dv +I Az(v)tpz\,(u)dv]u
-1 0

exists, for example, in region (a) of the s-plane, Similarly, the

right-hand éides of Equations (69), (70), and (71) can be used to

'repre sent an arbitrary function on the interval -1=u=+1. Hence,

the NME method of solution has yielded a set of eigenfunctions which

are complete in p- space.

Another extremely useful fact, aside from completeness but
obtained from the completeness proofras well, is that a method for
obtaining the coefficients is provided. This method is utilized in
Appendix II to Pbtain the coefficients in IL’Equations (68) through (71).

The results are summarized below, where

| 0 x(W)Himy' g, ol X, (u)+imp!
_ 1 1 dp! : 2 dy'
Xo(z)“exP[zTi {J- - (V) I VLR VL +J N (VU B TTy u'-z}]’
i '

KO = T ) R0 = e

and where )\1(\)) and AZ(\)) are given by Equations (49) and (56)

respectively.



Region (a):

Py

a2+ ~

Alv) =

Ay (V) =

X (z) =

Region (b):

al =

Ag(v) =

A,(v) =

.

29X _(0)

ccrl(\) -I-vl)}'1 X(\Jl)*

-2gX_(0)

czoz(vo2 + \)01)

|
Vo1 Xa(FVpa ) !

~ 2qX_(0)v51Vop

clcle‘ (v) (‘k (V) +iwv) (v- voz)(v+ ”01)

-29X,(0)vg1 V02

czozvX “(v) ('kz(v) +imV) (vwvozf(\ﬁ v01)

X (2)
T2) (-1-2)

29X, (0)

€191V91%p{"Vo1!

Ulv(v+ vOI)Xb‘(v) (kl(v)+i-n-v) . =1=y<o0
29X, (0) vy, 7
S50, 9V F vy 1Ky (9 (i, () F 179) Hpsl

Xo(2)

Xp(2) = =Ty

-1=v<0

O<v=+1

(72)

(73)
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Region (c):
29X _(0) ]
Aplv) = ¢ 0 VE_(VI(x; (V)Himy) ~lEy< @
74
29X (0) i
AZ(\J)‘ = _czozvX;(\))(kz(vHiw\)) O<w=l
XC(Z) = XO(Z)
Region (d): T~
-Zqu(U) -
Bds = CZGZVOZXd(VOZ)
-Zqu(O)\)OZ
AI(V) = clclv‘(v—voz)xc'l(v)(k1(y)+iwv) ~hEYED
(75)
29X 4(0)v,,
420 = o NV R, oY) < VEL
X . (z)
0]
sgted. = N

If one accepts the completeness of the functions cpl_(u), cp2+(u),
cplv(u), -1<v<0, cpzv(u), 0<wv=l, or certain of them, then an
alternative method of obtaining the coefficients is available, based on
the orthogoné.lity properties of these functions('7). This alternative
method is employed to obtain several of the coefficients in Section C
of Appendix II. Of course, the final results are identical in the two
approaches but the intermediate steps are quité dissimilar.

H. Final Form of the Transformed Solution

Now that the coefficients have be-en evaluated, one need only

substitute them into the general solutions, Equations (64) through (67),
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to obtain the final form of the transformed solution in each region

of the s-plane for arbitrary x. These solutions are written out

below.
Region (a);
+(s+d y</v
_ -2aX_(0) vg,ep (e - O
Ys(x: U) c O' [ 1(\)02 + Vol)xa(‘\’oﬂ
(76)
-(s+01)x/v
_J‘O Vo1Vo2®1y(H) © dv ] —_—
4 v(v-v 02] (v+ Vol)X-;;,(V) (kl_(v)+i~rrv) # 1
-{st+0,)x/v
_ -2gX_(0) vy @y (e - 02
el S w 95 [ oz(\’oz“’m)x (Vo2)
(77)
. " —(s+02)x/\)
volvoszv;; e dv
* .[ v(\)—voz)(v+ VOI)X;,W)(’CZ(\’)"'“\’) ] g W 0,
Region (b):
.l i [ CPl-(l-l)fa(swl)x/v01
- Tl = ey Ty Vo1 ¥pl-vo1!
(78)
- - —(s+015x/vd
Vo1®P1y\H) €
+.[ viv+ v 1)Xb(\)) (?c (v)+11r\))] TR
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. -(s+02)x/\)
Zqu(O) V1P, (M) e dv -
¥ W) = % [I V(v + VOI)Xg(v)(kz(vHim})] o
Region (c):
‘ -(s+o,)x/v
-2qX_(0) (0@, (1) e RN
¥ xop) = 10, I SR, (V) F 17) g, B0
il
e_(s+02)x/\)
_ 29X _(0) 1 o, (W)e dv
TglmH) = —o J S OIROEETY I O
Region (d):
- —(s+01)x/v
_ Zqu(O) 0 \)Ochlv(u)e dv
Tgala B pmy j RV DI ESTY B -
: -(S+02)x/\)02
» -29X (0) ~ o, () e
¥ x4 = d [ 2+
8’ 80y Vo2 Xa(Vg2)
-(s+0,)x/V
1 v 0, (b)e dv
02%2y _
¥ f S(vv Z)Xd(v)(kz(v)-l-mv) ]+ =>o.

Hence the solutions to the transformed Equationé (45a, b)

(79)

(80)

(81)

(82)

(83)

satisfying the boundary and interface conditions (44a, b) have been

found in those parts of regions (a), (b), and (c) of the s-plane in

‘Case I, and in those parts of régions (a), (b), (c), and (d) of the



™
s-plane in Case II, having Res> -01 for x< 0 and Res >-02
for x>0.
In order to invert these solutions and recover the time
dependence, we must study the behavior of the transformed solutions
in detail. This investigation is done in the next chapter where the

subsequent inversion is performed.
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IV. BEHAVIOR OF THE TRANSFORMED SOLUTIONS IN THE

s -PLLANE AND THE INVERSION FROM s TO T

A. Behavior of Ts(x, {) in the s-Plane

In the last chapter, the solutions to the transformed Equations
(45a,b), which satisfy the proper boundary and interface conditions,
were obtained in certain regions of the s-plane. These regions are
shown in Figures 7a,b for Case I and in Figures 8a,b for Case II

In order to ;aatisfy the boundary conditions for large x, it is
necessary to keep Res to the right of -0, for x> 0, and to the
- right of -0y for x < 0; hence the dashed line boundary to the regions
where the solutions exist.

Let us first investigate the behavior of the solutions within each
region of the s-plane for both Cases I and II; In regions (a), (b), and

(d) there exist certain relationships between Vv and s, and v

0l 02
and s (Equations (54) and (59));
€19 . v01+ 1
S+Ul = —r Vol'{;n\")-a“i"":’r ’ (843)
c,0, ) Vo2 T 1
S+02- = Vozfﬂn ey i (84b)

Vo2

where Re Vo1’ \)02 =z 0. It is stated in Section C of the last chapter

that when Vv is real and greater than one, s is real. As a conse-

0l
quence of this, a branch is drawn in the s-plane from -0, to
_Gl(l"ci) along the real axis, in order to keep Equation (84a) one

to one. Similarly a branch is drawn from -0, to -Oz(l-cz) to
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keep Equation (84b) single-valued.

The branches from -0, to -Gl(l—cl) and from -0, to
-Uz(l-cz) occur in regions (a) and (b) of the s-plane. It is necessary
to look at the transformed solutions in these regions to see if the
_ branches rquired in Equations (84a,b) are carried over into the
s-plane where the solutions are described. By inspection of
Equations (76) through (79) (Tl’-s(x, i) in regions (a) and (b)) it is
easily seen, due 1I:o the discontinuous nature of Vo1 and Vo2 along
the lengths of the real s-axis defined above, that Ts(x, M) is itself
discontinuous there. Hence, branches exis£ in the s-plane for the
functions -‘i’_s(x, u) from -0, to -o0,(l-c;) and from -0, to
-02(1-02). These two branches overlap in many problems of
. physical interest.

Aside from the existence of these two branches along the real
s-axis, Equations (76) through (83) appear to. have no other singu-
larities or branches anywhe fe within the regions of the s-plane where
they are defined.

In Appendix III, it is shown (partially) that the solutions are
continuous along the boundaries between adjacent regions of the
s-plane and that they take on identical values along these borders,
when the borders are approached from either region. Hence, it
can be concluded that the solutions to the transformed Equations
(45a, b) of the previous chapter are analytic in the right-half planes
Re s>-01 for x<0, and Re s>~-c2 for x> 0, save for two braﬁch

cuts along the real s-axis from -0, to —ol(l-cl) and from
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-0, to -cz(l-cz) for x< 0, or from -0, to 'Gl(l'cl) and from

-0, to -Oz(l—cz) for x> 0, in both Cases I and II.

2
When x = 0, the region of analyticity in the s-plane can be

extended because the restraining factor e-(s+c)x/v

is no longer
present. It is easy to show for this case that the solutions to Ithe
transformed equations (either x = 0+ or x =0 -) are analytic

in the entiz;e s-plane save for the two branches on the real s-axis
.from -0y tb -Gltl-cl) and from -0, to -Gz(lacz).

Since the inversion integral of the Liaplace transformation only
fequires a knowledge of the transformed function along a line parallel
to the imaginaryAs-axis and to the right of all discontinuities of
?S(x, (), we are in a position to recover the time dependence.
Because of our more detailed knowledge of ?s(x, ), we shall be
able to change the inversion path and obtain a solution which more
clearly depicts the properties of the time-dependent flux. The
actual inversion will be carriéd out next.

B. Inversion Path Related to Media Properties

The original inversion path for a typical éa.se is shown in
Figure .9. Because of our knowledge of Ts(x,p), we can shift this
path to thé left, picking up the contributions along the branches,
2,. depending upon whether x>0 or x <0,
The new path for x < 0 is sketched in Figure 9 as well for the

until Re s = —01 or -0

case 01 > 0’2 > ay 01 > az 02.
One can conclude from this shift in the inversion path that the
distinction between Cases I and II is no longer necessary. Now

let us look at the inversion in detail.
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The two branches defined along the real s-axis from -0, to

e

-a,04 and from -0, to -a,0, where a; = l-c:1 y 8y = l-cz .
are dependent on the cross sections of the half-spaces. It is
necessary that 9, EGZ, but this in no way rest‘ricts the generality of
the solution. A summary of the possible locations of these branches
is given in Figure 10.

C. Example of the Inversion for x< 0

As an examiale of how the inversion is carried out let us look at
two half-spaces having properties which correspond to branch (c) in
Figure 10;‘that is oy > 02 >a,0, >va20'2. Many actual moderator com-
_binations wbuld fall into this case. A detailed sketch of the inversion

path is given in Figure 11,

We know from Equation (42) that .

y+ioo
_ 1 e
Y(x,u, T) = 1 I e ‘i’s(x,p.)ds -
or that
Y wT) = I (T,
* K T 2wl o' °
where IO(TFS) is shown in Figure 11. But our knowledge of

-‘?S(x,u) as a function of s permits us to write

L LT = Iy_( V)+I_+I,_+ 191- 15 + 192-+ I,_+1
(85)
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where the I's correspond to the path integrals sketched in Figure 11.
It can bel shown that many of these integrals vanish.

Investigating the behavior of ?S(x, p) from Equation (80) for
large s — at the extremiities of Io -~ yields the following asymptotic

'~ form which is defined as Tlfunc(x, L, 8) 3

-(S+0.1)x[u ‘
vs(x: M) ~ B _.!J; i) = Wunc(x’ M, 8) -, (86)
where
1., p=0
-~
I(-p) =
\ 0 - W=0.,

The next term in the asymptotic expans‘ion of Tlf-s(x, g) has a -i—

Ly

behavior, etc. Thus, for large s ,

_ LN : 1
¥ (k1) ~ T (o s) ~0(2 ).

Before proceeding, we observe that

. -0.x/u
+ico 1°
N 5 qe L(-p)s(7- %)
Yot = [ T e s) e%7ds = - . (87)
y=-i oo :

which will be shown later to be the uncollided angular flux (hence the
notation). Also, one can conclude, by an inspection of Equations (76)

through (83), that

Y(x,1,7T) =0 when T< |x]|. (88)

This is physically plausible and is demonstrated mathematically by

setting ]3'0 = 16 (see Figure 12) and observing that 16 -0 as R —o0,
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after the §-function behavior is factored out.

Equation (42) can now be written as

y+ioo

' ’ 1
Hoe s ™ - Yoo M = o3 [ &[T o) -V, o g]ds . (89)
Y

unc
-jco

Also, Equation (85) again holds for the new integrands;

o TV ) =1, (T -F

s e LBy unc) T +1Y+(YS-W 15 (90)

unc
But now we see that IY='= -0 as y ~oo.

In addition, since Wunc(x,u, s) is analytic within the region
. about which we are integrating, its contribution above and below the

cuts cancels. Hence, defining -

11-(Ts—_ﬁunc) * I1+H’78 - ‘yunc) 3 (91)

1 (T (x0) =T, (x,18)

we can write

Il(TS(xn U-) = Wunc(x: H, S)) = I].(TS(X" I-l)) . : (923-)
Similarly,

IZ (Ts-wunc) 3 12(?5) i - ' ‘(92b)

1 (T;Wunc) = I, (Ts) " (92¢)
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Considering next the integrals around the small semicircles
having radii Pys pz, and around the circle with radius p3, it can
be shown that as Py pz, p3 -+ 0, these integrals vanish.

So Equation (90) becomes

IO( Ys-Wunc) = Il( ‘ys) ¥ IZ( Ts) + 13(YS) + I (TB:‘Func)’ (93)
where I = I, +1I; . Hence the result for this example can be

expressed as

(94)

'. Y(x: M, T) : \yunc(xs M T) + 2_1'1-.;_ [Il(?s) + IZ (T‘s)+13(‘?s)+Il5(TB-WunC)].

Exact expressions for the I;;...,Ig have not been written down yet;
| they will be included in the general case considered next.

D. Inversion in the General Case (x< 0)

All of the cases shown in Figure 10 can be done at once by
utilizing step functions appropriately. The integrals along the
branches are identified by the termindlogy shown in Figure 10. Thus,

the complete solution can be written, for x< 0, as

¥, 1) =Y (1, )+ [ (T )+ L (F,) +1,(F,) +1,(T)
| (95)
(YT, 0],

‘'anc

where :
alcll(alal-oz)-czl(cz-alcl)

II(TS) = fesTdS{?s(xs U)-’Ts(xs |~J~)+} ’

-0‘1

(96)
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-a,0, l(alcl-ozaz)-azczl(azoé-alol)

1,(T,) = (0,-2,0) [ e®Tds T, (x) -T o |, (97)
=y
"Rt \
13('&78) = l(alol-az'o‘z) feSTds {Ts(x, p.)--Ts(‘x, |J.)+} 5 (98)

-oyla 0y-0,) -a,0,1(0,-2,0;)

Py 1
I4(TS) =l1(a202-a101)[e57ds {?S(xs U)-'Ys(x! U-)+ } ) (99)
~Hplg
—ol+ioo ; ‘
IS(TS_WU.HC) = f eSTdB {.‘:Fs(x’ ) '_‘Func(xn K S)} ’ (100)
-o'l-ioo

and \k’unc(x, M, T) is given by Equation (87).

In these expressions we have used Ts(x, W)~ to denote that the
function is to be considered below the branch cut, and Ts(x, p.)+

implies that s is above the branch. Also, we note that

/1 y R E
1(x-a) =<-%— s X=a ‘ (101)
0 2 x<0.

Let us obtain explicit expressions now for II(TS) through

15(Ts -—q’-unc)'
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11( ‘1’5): This integration is contained entirely in region (b) of the
s?plane. For this region 1l"s(x, H) is given expliciﬂy by Equation (78).
We know from Equation (84a) that

€0,V v+ 1

0l 01
: in i
1 2 vol-l

s+0

and that when s is above the cut Vo1 is a negative imaginary num-
ber. Similarly, for s below the cut, Vol is a positive imaginary

number. So we can write

c,0 0< E< o
sto, = lzlg['tr+tan1-g-2-.5—-], - (102)
E%-1 0>tan” "> -m

"~ where
-i€ above cut

N
FEOL T TS

+i& below cut.

With these simplifications, it is easy to obtain the following
expression for II(TS) from Equation (96), where the notation

cpl:(u) implies that the function is evaluated below the cut.

-alcll(alclacz)nazl(oz—alcl)

| 2X. (0)e®"ds o, " (u) e Eto)x/T
. b 1 §c
1,(¥,) = z‘q.[_ 10, {g =] X, (-18) (%)
1
Ay §P 1y (1) o P IEI Y,

- 1 (v2+ e‘éz)xg(v)(kl(y)ﬁw\;)



<

T y-

2( 's)' This integration is contained in region (a) of the s-plane, and

Ts(x, M) isbgiven by Equation (76). Here Vo1 is again pure imaginary
and can be expressed in terms of € (see Equation (102)). Similarly,

v ., exhibits a discontinuity when the branch is approached.

02
Paralleling the analysis leading to Equation (102) let us define 0

su(:'h that

-in above cut

Vo2 e

+in below cut.

Then from Eqﬁation (84b),

3 0<mn<ow
Sl -1 2n
,S-_l—0'2_= S i [ T + tan T———] ’ =1 (104)
n -1 0>tan = > -q
After some further algebraic manipulation on Equation (97), one
obtains
| 7alcll(a1°1'a202)' azczl(azcz—alcl)
B zxa(O)e*STds' , '
Lol T B, & 4myagiy ) { co; }
; -0, ; _
cpl-(u)e-i(s+cl)x/€ : (105)

{EifgfﬁT'Re[ X_(-18)

0 : —(s-HJl)x/\)
j Entn-8)e,, (L)e dv

1 VO (W) O (V) +HiTY)



.

13(71’_5): Here Vo1 is real and greater than one, and we can use
Equation (84a) to obtain it. However, Equation (104) is still necessary
for m. With this in mind and utilizing Equation (76) for Ts(x, W), we

can write 13(72'8) from Equation (98) as

n72%2 - A (s+01)x/v01
" ZXa(O)e ds -'r\cpl_(p.)e
L, (¥,) = 2iql(a;0,-a,0;) o P
171 (\Jo1

2
+n )Xa(-vol)
-011(a101-02)+a1011(02-a101 )

(106)
-(s+cl)x/v

Vo1, (He 5
o gy o
(Vv NV N )X (V) (g (V)+HiTY)

14(‘_4!'5)5 Here Vo1 is‘imaginary and will be replaced by iE , whereas

Vo2 is real, greater than one, and obeys (Equation (84b))
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Hence, with Equation (76) for Ts(x, (), Equation (99) becomes

-alol
' " _ -i(sto)x/E
. ZXa(O)e ds Vo2 cpl_(u)e
1LY )= 2iql(a,0,-2,0,) e 07 g RY(Sg,7 1OX,(-15) ]
s
(107)
0 -(s+01)x/\)
o f B2y, (He dv
(VHEZ) (V- )X (V) (V) +imv)
-1

IS(VS_Wunc): This integration occurs in region (c) of the s-plane;
Equation (80) is the representation for Ts(x, M) in this region. Writing

Equation (100) explicitly yields

A0 tioo : ., 0 -(s+0,)x/v
—— B -2X _(0) Py, (He dv
IB(YS-%nc) =9 e .ds - €19, \)XC'(\))(‘kl(\))+iTr\))
‘ "]
-0,-i% ' (108)
-(s+0‘1)x/u.
_ & 1(-u)
. =

Thu_s, the complete solution for x < 0 has been obtained.
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E. Inversion inthe General Case (x > 0)

To carry out the inversion for x > 0, we cannot shift the path to

Re s = -9, but must be content with a shift to Re s = -0,. As a result
11(?5) will not appear in this case. For the special case discussed
previously (branch (¢) of Figure 10) the inversion path corresponding
to Figuré 11 for x <0 is given in Figure 13 for x >0. From this
figure we can see that Il(_-fs-) does not appear, é.nd also that 15 travels
through two regions in the s-plane, rather than just through region (c), |
as was the case prgviously.' |

| Using Figure 13 as a guide, the complete solution can be written

down for x >0, using the notation developed for x < 0.

YW, T) = (X, T) 5 [IZ(Y WI (T )+14w M (T, unc)] (109)

. (110)
-o,x/u
ge qe Z1(ua(r-E)
(x, p‘,"s) = ] Wunc(x- M, T) = u .

-alcll(alcl-azcz)-azczl(azc'z-alo’l)( ,
ST k .- i 8+02)x /1
2X_(0)e” 'ds 2 E [@2+(u)e 't]

L(¥,) = 2iql(cy-2;9))

<30, e e | X
(111)
12 -(s+0,)x/v
f Enm-g)cpz\,(u)e ' dv ‘
+ .
(V242 (w24 B2 K (v) (ry (V) Himv)
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S-PLANE
- Faee
IY"‘ yHiy
15+'
Io
IY-
—
y=iY

Figure 13 « Inversion Path for Branch (c) of
Figure 10 for x>0
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-a,0
ke _— Y i(s+cz)x/nf
- 8 : ZXa(O)e dg Vol cp2+(u)e
I3(¥,) = 21q(a101fa202) c,9, n i (Vg FIMX_(in)

\ '°zl(al°1‘°2)'ai°11(°-2'a1°1)

E -(S+Oz)x/v‘

s ML P, : d
- [ Mo1%2y ;)ez : N . } . -
(vivg)v4n )Xa(\))(‘)(z(\))+11r\))

0

-a101

-(s+dz)x/\)02

e 72Xa_(0)e=;“ds - By, (W)e
14(‘1’.5.) = 21q1(a202-a101) {

c,0 2 2, .
s Voa * 51X, (vg5)

(113)

1 -(Is+02)x'/1)'

gvozmzv(“)e y ‘ dv
¥ e )
(V'voz)(v +E)X_ (V) (X, (V)+imy)

0



-8] =

G,-iwy
(0 Lo, ) (eroghely
J 2X e
- . 8T c 2V dy
I(¥g-¥yne) = f  a° ds iczcz j; SHOICAMETY
=gy~ | -
—(s+cz)x/u
& lms
v
i ( /
-(sto,)x/v N
st 2X,.(0) 1"01“92\)(“)e U (B+Gz)xm1(u)
+ gqe ds ; 50, .[J v(v+v0l)X];(v)(kz(vH'inv) 9 M
=0 =10
(114)
-o’z+iw0
, 1 -(s+0,)x/V = :
o, (2Xp0) [ Vo rBp e A e ‘”F’z’xl“l(w
T e gcz"z 0 VIV K G, (ViFEm) u
-02+iO '
i ‘-_-02_+‘i00 - | . . . 7
’ 1 - =(sto,)x/v 3 |
‘ 8T AR A0 _[ qJZ\)(me , & e (S+QZ)X/H1(IJ) :
* ga" ds ;czoz 0 vXE(v)(kz(v)va) - W ‘



83

In 15, wo is determined By the relation
c.0g,mV :
_ 1717701
T R o 0<\'J01<1’
since UJO is on the boundary between regions E(b) and (c) in the
s-plane.

So we h"ave written down the solution fbr x >0 as well as

for x< 0. This comﬁlete solution has been obtained as a sum of
several,- defiﬁite, multiplé integrais. . .’I‘hat'-this solution satisfies
the original equation can be shown in e;. straightforward manne r- by
substitution. ‘ . .

| In Appendix IV, it is shown that the solution to Equation (37) |
subject to theboundary conditions that ‘i’(‘x,p., 'r) vanish at x = £ 00 #
if it exists, is unique.  Since we have a soiution to this equation
satisfying the{requisife boundary conditions, we can state that it is
the unique soiution.

F. The Uncollided Angular Flux

If one were to derive an equation to describe only the uncollided

flux, it would take the form

B'Wunc(x’ M, T) aYunc
5T + R . + O’I(x)‘func = qd(x)8(T). ; (1.15)

But the quanti;:y we have previously called the uncollided flux —
that quantity whose Laplace transform does not vanish as 's- co —
can be shown to satisfy Equation (115). Thus, it is indeed the

’

‘uncollided flux.



-83 -

V. SIMPLIFICATION OF THE SOLUTION

A, The Angular Flux at the Interface (x = 0) E,

When x = 0, the solution written out in the previous chapter can
be greatly simplified. Even though x need approach zero frbm only
ane side, it W:I.ll be necessary later to have expressions for both
x = 0+ and x = 0-.

For x = 0- (approaching the interface from region (1)), we know

from Equation (95) that
¥ (O—Dp-’ 'T) = ‘i’unc(oubp! T)LFZ_'}Ti[H(TS)-{-'..+I4(TS)+I5(?S-WUHC)]. (116)

It can be shown for this case tﬁat ."i"_s(x,p.) is analytic for Re s= -0,
g <3 :

and that IS(‘YS- wunc) behaves as l‘s! for large s.. Hence, we can

set 15 equal to zero when x = 0-,

Letting x = 0+ (approaching the interface from region (2)) allows

us to write Equation (109) as
: _ I » s o ‘
¥ (O, p,7)= ¥ (O+,p,7) + m[Iz“’ e o tLAY I (Y - wunc)]’(llj)

In this case we note that Ts(x, 1) is énalytic for Re s = -0, save for
a branch from <o, to -0, along the real axis, and 15 behaves as Is| E
for large s. Hence we can set

15 (?S'— -‘1’_

unc) " Il(vs) ‘ (117a)

for x = 0+,

Thus the solution for both x = 0+ and x = 0- has the same general

form:
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v(0%p,7) = v o (O%p,7)+ ZLﬂi[Il(?s) ¥ wwn ¥ 14(71?8)] . (118)

In Equation (118) we know, from Equations (87) and (110), that

YOk p,7) = SO (119

From Equations (103) and (117a),

,.a_lo'll (alcrl- 0'2) -0, 1 (0'2-3.10‘1)

1
- ' 26X, (0)e®"ds ¢, (v
1,(¥_(0+,1)) = 2iq — s ,
) 2 2 (vO+E )Xb(v)(hz(v)+i7rv)

0

2) o 1(0‘ -altrl)

l(a
2X (O)es’"ds (D)

Erplv(u)dv }
(V +§ )X (V)(h (V)+11TV)

From Equations (105) and (111),



.1,

-a,0; 1 (a.lo'l—azo'z) -azn‘zl (azo“z-alo-l)

+aT =
_ 2X_(0)e*5Tas 5 (1)
i a £ 2+
12(_Y5(0+’p‘)) = 21q1(0‘2—a10'1) 5%, {n(nﬂ.:f) Re g Xa(iﬁ)_g

+

En(m-£Ele, , (p)dv | }

(v 5+ n°) (VP4 EXX (MR, (W+iny)
; : (121)
-alcrll (alo'l-e?,za‘z) —aza‘zl (azo‘z-alo'l)

o _ zxa(O)eS"’ds 5 ()
IZ(YS(O—,H)) = 21q1(0‘2—a10‘l) ,Clo_l g(n_!_g) Re gm) :
..0'2
0

En(n-E)e; , (Wdv }
R L

) -1
- From Equations (106)7 and (112}, ,~2n85 —_—

ST =
2X_(0)e™"ds ( vg, e 2 ? 4. (1) ;
ok o 4

I3(Y5(0+’Hn = A Ham 2y (vorFin)X, (in)
1 -0‘21(ala-l—crz)-alwll(o'a-alo-l)
o122, Mgy

(vv g, (v 2+ 'nz)X;(‘v)(hz(vHiﬂv)} ;

= T
. 7272 2% _(0)e" ds - ey (1)
(v

(122)

I.(Y_(0-,p)=2iql(a 0, -a,0,) ,
aE 11 7272 2, 2
01t ¥, (-vg;)

-0, 1 (alwl—crz) -a,0y 1 (0‘2 -altrl)

Y01n Py K1Y }
| v YRRy i) |

g it

4
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From Equations (107) and (113), e

-2x_(0)e®*Ta Ee,, (1)
LY _(0+,p) = 2iql(a,0,-a, GI)S' 2 Ue s{ ¢Z+ i
3 ¥y (v oot X (v,,)
1
) v 0292, 1)V }
) v ) P ELX (W, (v)+iay)
(123)
i T
2X_(0)e®'ds (v, @, (1)
14(Ts(0-,p)) = Ziql(a,zo'z«-al.lcr1 ac = { 3 Re{ 1-
; ” e _azo_z 11 (V02+i§)xa("ig)
+ SO Evo2 71,3V } |
Y WA v X Wy ) |

It is of course necessary that the solution be the same at the

. interface no matter how it is approached; that is,
L (Y (0+,p)) = 1, (¥ _(0-,p)) , etc.

In Appendix V, the expressions (120) through (123) are simplified
through the evaluation of the integrals over v and through some sub-
sequent algebraic manipulations. Their simplified forms, listed as

Equations (A102), (A104) (AIOS s (A106), are given below:
-alu-l a,0,-0,)- oyl(op 2,0
Xiolm)

o [b1-2 1
e /Vb -2 1

-1< p<0

Tl:'“ (Os ))-‘— 2i
L( o e iq .
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0'11 (altrl-aztrz) -azo'zl(aza'z-alu-l)

e |
by-2 1 Xyl ~1<p<0
(n-EWBb, e*Tds f P22 p¥n? X20)

L(¥ (0, ))=2iql(s,-a,0y )] - 5,5, (125)
' \[b -2 Xs50(-1) i
-0 Fl.<1 ’
2 leo(-T
b =2 p-vgy X0 yr
VoD, e bz poen s Xzo( DR
3(‘1’ (0 p))= Zlql(al 122 2) W\ (126)
2-b, (-p)
%20 0<p<1 ,
1'7‘ ‘”" “10¢"#
—Uzl(alrrl-crz)-al 1(o 272 1)
-a., 0.
11 : ’2 b ’_1 10(["-)
P -1<p,<0
By 2 P Vg X20(p)
1,(Y (0, p)=2iql(a,0,-a,0)) 1bz o \ (127)
’b 2 pt Voz 20('}1') 0<|J.<1
-a o‘ ’
where b_= | (s + 0.) n=1,2
n c o n ] ] ?
nn

A (p!)imp!
" 1 dp.! _

and xno(z)_exp{zﬁsl kTp):urp- p_z} » n=l,2,

0

B. The Interface Flux and Current
The flux and current can be separated into an uncollided and a
collided portion for arbitrary x. To obtain the uncollided flux and

current for any x, we know, from Equations (87) and (110), that
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~o,x/p
d, 2 o X
o e 1(p)6(r H) ’ x>0

/

¥ lapat) = (128)
unc
. \ ﬂe-ﬂ‘lx/}l 1(“}’-)6(7’—- %)’ %«<0 .

M

Hence from the definitions of flux and current [Equations (40)] , we
obfain. making use of Equation (128),

-0,
%e I(r-x) x>0

+1
3 o (x,7) = S' ¥ Gk, TN =< (129)

-1 %e 1 I{(r+x) x< 0,

+1 i-%ce I(t-x) x>0

J c(x. T) = S‘ p‘l’unc(x,li, T)dp = (130)

un
-1

/\

-c%e . 1(r+x) x< 0.

By inspection, there exists no uncollided current at the inter-
face (as expected) and there is an ambiguity in the uncollided flux.
This é,mbiguity exists because of the abrupt discontinuity in total

cross section at the int%_rﬁ_a‘trce. To solve this difficulty we define
i 1z 2.)

' =94
§unc(0,7) =xe , T>0, (131)

Both the collided interface flux and current can be written in
simple forms. How these simple forms are obtained is discussed
in Appendix V. The resultant expressions for the total interface

flux and current are given below.
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From Equations (A10T7),

8(0,7)= % _ (0,7)+ -51;1.-[11(0.'r)+12(0.7)+13(0'.'r)+14(0.'r)] ' (132)

3(0,7) = 51 [3,(0,7)+3 (0,743, (0, T} (0,7)] . (133)

From Equation (Al10),
191 l(a G —o-z)-crzl(trz-alo-l)

'blbz T

1,(0,7) = 2ig 6,5, ¢ " (134)

-0.

1 A

From Equation (A113),

-a; ll(a a 0‘2)—a20'21(a20'2—a10‘1)
b bz (E-T]) e5Tds
(0 Ty = 21q1(0' -a; )S (b b En e (135).

From Equation (All4),

‘az“z
ST 4 ;
I (o 7)_ Zlql(a o -a az)j eq - (136)
-0 l(a.1 1" ) -a, 1(0'2 1 1)
From Equation (A115),
-a.o
: lble esTds
14(0,7) = 21q1(a262-a1§1) S bz'bl E s ' (137)
~Ba%a
From Equation (Al116),
a, 1I(a o, -0 ) o 1(0‘2—3}?:1
V blbzd(z bz)(Z -b ) e
J,(0,7) = 2iq : . (138)

- o‘l
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From Equation (Al117),
JZ(O,T) =0,

From Equation (A118),

Rty
Vvb,b, V(b -2)(2-b,) e®7ds
J3_(0,'r) = Ziql(ala'l-aztrz) - - (139)
-(rzl(alo-l-trz)-alwll(trz-alu'l)
From Equation (A119),
i .
| Vb b, V2-b,)(b,-2) e° " ds
J4(O,'T) = Ziql(azu‘z—altrl) 5 (140)
-a,0,

C. Simplifications for x # 0.

For x# 0, there seem to be no simplifications comparable to
those made when x = 0. However, to obtain the total flux from the
general results (Equations (95) and (109.)), it is necessary only to
integrate out the p dependence, where we note from Section C of

Chapter III,
41
qon(p.)dp: ste , n= 1,2,
i | '

‘Thus when x >0, for example, Equation (109) is integrated over

i from -1 to +1 to obtain

Bam) = B G, T) + oz (LG TH g T)] (141)



-91-

where éunc(x,'r) is given by Equation (129) and the In(x,'r) are the
In(Ts(x. 1)) with the rpn(p.) replaced by’(+crn).

D. Two Special Cases '

The two adjacent media problem contains both the single-infinite
medium problem and the single semi-infinite medium problem as
spécial cases. Let us obtain these results now. .

1. The Single Infinite Medium Problem

From an inspection of the general solution for x < 0, given by

Equations (95) through (100), one can see that

for the single infinite medium. Furthermore, from Equation (105),

-ac .
2% (O)GSTdS _ -i(st+o)x/&
T i a 1 ?_(p)e
T o | —o {?ERe { X (-15) é}
- . (142)
x<0,

The subscripts have been dropped since there is only one medium.
Also, no changes are needed in I5(YS- unc) and Yuﬁc(x’u'ﬂ other

than the dropping of subscripts. Hence, we obtain
oW 1 ¥ V.7
i (X, i.!.,'T') = \yunc(xs P-!T) + 2_7‘_1' [12(Y5)+15( YS_ 'll’unc)] ? (143)

withv 15("?8—Wunc) given by Equation (108) and ¥ u‘nc(x,p,':") by Equa-
tion (87).
We also note that for x > 0, the general solution can be written

in exactly the same form (Equation (143))where now IZ(T{‘-S) becomes,



Y-

from Equai:ion (111),

i(s+0‘)x/§
ATy . 'aUZXa(O)eSTds I ga_l__(p)e
B . # ‘

where the 15( Ty_s—m-unc) of Eﬁuatioh (114) becomes (region (b) being

absent)
. —gtioo -(sto)x/v
' : 1 - (sto)x/
.5_ 5 unc s co OvX(':(v)(?t(V)Jri?TV) V5
. (145)
& - x>0,

and where the uncollided angular flux is given by Equation (110),

The single infinite medium problem can be solved in an alterna-
tive manner quite easily by applying the full-range orthogonality
relations developed by Case 3 to obtain the expansion coefficients
in the transformed solution. When this is done and the final solution
compared to that given above, the two methods are found to yield
identical expressions fdr Y(x,p,7)e | |

At the source plaﬁe, we can again obtain a simple form for the
flux (the current is zéro) either directly from ,Equé.tion (143), or by
a siﬁplﬂication of the genefal result for the interface ﬂﬁx, Equation

(132), Either method yields
" ' -ao

-aoT

. o sT :
3 (0,T)=q eT' + WSO“S‘ e (sto) dsz —t (146)
; (sto)(1+n )




o
2. The Single Semi-Infinite Medium Problem

(This problem was done with angular source dependence in
Reference (19).)

Since “}e have required o = 0‘2, let us assume that the left half

1
space contains the semi-infinite medium. The right half space can

be -either vacuum or a pure absorber, Hence, we set
c,=0, Vo2 = 1,
and observe that

Xzo(z) =31 %

This choicel of constants reduces the two-region solution to that of
the half space.

If we now 1001; at the general form for the solution, Equations
(95) through (100), we find that these equations become, for the semi-

infinite medium (x < 0),

Vo™ = Y G T) e [UT) +15(T, - Tyl » (147)

unc
where : ; /g
-i(sto)x
‘ S o _(0Ye” 'ds " )
=y e 10 1 _(p)e(-1+i§)
?(_Ys) Ly ZIq;g; =By {ERe z%’i—f
0 —(s+cr)x/v (148)
S- §¢v(u)e (-1-v) dv }
I (v ZEAXT (v )(v )+ Y) ’
: -(s+o)x/v
ke ax) o Qe dv G
15(71? - c)=qS‘ es'rds{ 10, S' v+ = A [ }
L s, 171 Y, X (=) (i ) +imv) -p

(149)
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and ‘l’unc(x,p,'r) is given by Equation (87j7 -

The single half space problem can be solved independent of the
two media problem. When this is done and the results compared,
they are again found to be identical.

At the boundary of the half space, certain simplifications can be
made to Equations (147) through (149) which lead to

-ao A

sT
¥ (0,p,T) = l(g)ﬁ(’r +g -l-p e ds : (150)
th gﬂ w2t €2 Xy gl-+)

-G"r —aa‘

b ds
@(0,7):,?_- e 2 +9~S' ‘—g‘—" } , (151)

-a0 .
J(O,T):%S eSTw/b_l vZ-b, ds . ; (152)

-0

So when the general two region problem is reduced to the single
infinite or semi-infinite region problems, the results obtained agree

with those derived by alternative, but related, methods.

E.  Integration of Y(x,p,7) over all T

[es)
Since '@S(x,p.) = £ 5o ¥ (x, |, T)dT, we can write

00

&5 :
lim S‘es'r‘i'r (x, p, 7)dT =S. Vs pa THAT =T0 (x,p), forc< 1.
S -0 0 0

But s = 0 is a point in region (a) of the s-plane. Thus from the trans-

formed solutions. given bjr eqJ:ations (76) and (77), we can write
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o.x/v
L ~-2qX (0) VOZ(PI_(P-)G . A
5”’"“'”‘” 2 Sl & e e v
e ol 0102 012" o1
o —0‘1x/v (153)
_S‘ V01¥02%1v(M)e H - o
K v(v-voz)(v+v01)X;(v)(?tl(v)+i1rv)
g
3 29X, (0) | vgieplme ©7 0
‘ S Wi, p,THT = —2 _
2 272 vo2tYozto11%, V2!
(154)
1 -0"2x/v
Vo Vaoo,. (p)e dv
" 01¥02%2v o Sl

0 v(v-voz)(v+v01)X;(V)(hz(v)+i7rv)

In Equations (153) and (154), for the evaluation of Vo1’ Xa (—v01), etc. ,
‘ We must set s = 0, l

This work can be extended by noting that

o0 3

o= ' 00 _\ya_n

¥ (x,p) = 3z A2A)s S ™Y (x,p,7) dT . (155)
= n=0- 1 5 ) 7

Thus expanding Ts(x, p) in a power series about s = 0 will give the

moments of the neutron angular distribution in time.
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VI. NUMERICAL ANALYSIS AND CONCLUSIONS

The exact solution to the problem of finding the time-dependent,
monoenergetic neutron distribution in fwo adjacent, semi-finite media
has been obtained in closed form. This exact solution was written as
a combination of multiple, definite integrals, one of which is improper.
At the interface (source plane) it was possible to reduce this solution
and write it as a sum of simple, definite integrals, all having finite
limits.

Rather than approximating tl;ese solutions for short and long
times, possibly by the use of expansions, an exact numerical evalua-
tion was made with the intention of exhibiting the system prope rties for
all time. Also, because of the simplicity in the structure of the solu-
tion at thé source plane as compared to x # 0, the numerical work
was done for x = 0.

Three different cases were investigated‘and are described in
sequence. In all cases, the total flux and current were the quantities
~ calculated.

A. One Infinite Medium

For a single medium with a plane isotropic burst of neutrons

appearing at x = 0 when t = 0, the total flux is given by Equation (146);

| o7 730 st
§(o,T) = qf = .+.2[ B __Kety)ds ‘“ (156)

T N wco
o _—
e~
(s+0) (1+m")
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Equation (104) relates m to s.
Using P-1 theory(zs) (see Appendix VI for approximate solu-

tions), it can be shown that (Equation (Al51))
: -ag
- - \133 sT,| s+0
8(o, 1) =2 (0, 7T) = \ﬁ; g8(T) + = I e ‘Eg:?ﬁjds' (157)
: Slo)

From diffusion theory (Equation (A1675) ), we can write
o~ 20T

&(o, T) =
‘\/TTTD

(158)

An infinite medium of pure carbon was considered and the flux
at the source plane calculated as a function of time utilizing Equations
(156), (157), and (158) — the total current at the interface is zero.
The results are shown in Figure 14.

For long times (T > 20), we see that both the diffusion and P-1
theory representations of the flux become almost identical to that
given by exact theory. In fact for c o~ 1, Equations (156) and (157)'
have as asymptotic forms Equation (158) for large 7.

The analysis in this thesis was made on monoenergetic systems,
presumably in the thermal energy range. In many experimental
situations where thermal neutron decay is being measured, high
energy neutrons are introduced into the system and slowing down
occurs. Since the slowing-down time in graphite is approximately
150 p~-sec, the short-time deviations shown in Figure 14 would then
be obscured. However, one can expect diffusion theory to be

accurate soon after the slowing down time has elapsed.
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From Figure 14, it can be seen that the source plane flux is
more accurately represented by diffusion than by P-1 theory for short
times. The diffusion approximation results from making several
simplifying assumptions in the P-1 equations [see Appendix VI].
However, it does not necessarily follow that these assump?ions must
make diffusion theory less accurate than P-1 theory—in fact at the
source plane just the opposite effect is seen to occur. The second
order equatio;} which results from P-1 theory is given by Equation
(Al155). For c% 1, the major difference between P-1 and diffusion

théory is conté}ined in the term
£
0]

which is neglected in diffusion theory. If o is very large, this term
becomes negléigible and one then expects the two approximate solutions
to converge. "i‘his can be seen by observing that for ¢ o 1 and large ¢
Equation (157) reduces to Equation (158).

Hence the mathematical reason for the deviation between P-1
and diffusion theory shown in Figure 14 is that the term containing
the second derivative in time is not negligible for carbon for short
times. 7

This second derivative in time introduces a delta function in
time (which can be thought of as an approximation to the uncollided
flux) and other modifications into the diffusion solution for the flux.
The net effect of these modifications must be tb initially remove
neutrons from the source plane. Thus one can expect diffusion
theory, which does not take into account this initial loss of neutrons

from the source plane, to have a higher neutron flux at x = 0
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for short times. This ordering of the two approximations is
expected to hold for all moderator materials.

B. Two Adjacent Semi-Infinite Media (Actual Materials)

Three different physical systems, containing half spaces of

carbon, water, and beryllium, were examined; the data used are

shown be:l’gw;(Zé’).
Material U[CM]"1 ' c o a
g ¥ 0. 385 1.0 5.9(10” %
H,O . - 3. 63 0. 9945 5. 37(10™%)
Be . 0. 869 0.9988 1.265(10°2)

For the material properties noted above, we must evaluate the

expressions listed below, which were obtained from Equations (131)

through (140).

1 1
80, 7) =8 _ (0,7) + 5= [ I1,{0, 1)+ 1,(0, ) + I;(0, 7)].
H0,7) = 5=— [T,(0,7) + 3,5(0, 7)1, | (160)
“02 -b.b :
e 172 sT ds
11(0, Ty = Zlq.[ W e -—g—- . (161)
& «#y
a.g
1°1 b.b
_ 1°2 (E-m) _sT
I,(0,7) =2
2( T} IqJ 5,5, En e d
_cz
-a o-
1,(0, 1) = 2iq | vt Bk cTds (163)
30, =.¢1q (bl_sz m :

(159)

(162)
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”
-3 {op +0,)

. |
@unC(O,T) - e : (164)

g NS \ﬂZ—bl)(Z-bz)eSTds

7.(0,7) = 2iq . (165)
1 { (5,-b,)
G
“dzvy \l sT
bib, +J(b,-2) (2-b,)e®" ds
7500, 7) = 2iq | L= \/(blz—bl) - (166)
"2101

Keeping in mind the convention of placing the material with the
larger total cross section to the left, the flux given by Equation (159)
was numerically evaluated for two adjacent half spaces of (1) carbon
and beryllium, (2) water and carbon, and (3) water and beryllium.
The results are plotted on log-log paper for short times (Figures 15a,
l6éa, 17a) and on semi-log paper for long times (Figures 15b, 16b,
17b).

For short times the two-region flux decay curves lie below
their single region counterparts having the larger total, i.e.,
scattering, cross sections (since absorption is weak). A material
with a high scattering scross section acts to retain the neutrons
near their initial positions as opposed to a material with a lower
scattering cross section. Hence one would expect, for example,
on the basis of the scattering cross sections involved, that neutrons
would remain at the source plane longer in pure water than they

would in carbon and water.
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For long times one can show that the two-region flux decay is

asymptotically given by

D e E
q e 3]z 4

which is quite similar to the single I:egion asymptotic form given by
Equation (158). Hence on semi-log paper the two-region flux decay
curve will become parallel to the weaker-absorbing, single-region
decay for large 7. This asymptotic trend is clearly shown in
Figures 15b, 16b and 17b.

During intermediate times the smoothly decaying flux curves
indicate a rather complicated dependence on half-space properties.
It was hoped that the net interface current behavior would shed some
light on this dependence. Therefore, Equation (160) was numerically
evaluated. The results of this calculation are exhibited in Figure 18
for the three problems studied.

Because we are investigating the behavior of the current at
the source plane, we expect the current to start and remain at zero
when both regions are identical. If the regions have different
scattering properties, the interface current may assume a non-zero
finite value immediately after the burst of neutrons is initiated.

From Figure 18, we see that for short times (T < 2) the current
is positive, and the neutrons flow from the region with the larger
to the region with the smallér total cross section. However, for

long times (T > 10), the curves indicate that the net flow of neutrons
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has changed direction and that they now flow from the region with the
lower to the region with the higher absorption cross section. An
inspection of the equation describing the current (Equation (160))
indicates that the current will never again become positive.

Hence when a plane isotropic burst of neutrons is initiated
at the interface separating two dissimilar semi-infinite moderators,
the interface flux is found to decay smoothly in time, and the inter-
face current is seen to change directions once, at most. To obtain
additional data on the interface current behavior, another problem
was studied. The results are noted in the next section.

C. Two Adjacent Semi-Infinite Media (Fictitious Cross Sections)

In this problem, the net current at the source plane was
calculated for a series of values of (a), (c), and (o) in each half-
space. Starting with two pure scatterers (note that J3(0, T)
vanishes), both havi'ng scattering cross s‘ections of 0 =0.5 [CM]_I,
the scattering cross section in the left half plane was increased in
steps of 0.1 [CM'_\-1 to a final value of ¢, = 1.0 [CM]-I, keeping
0, in the right half plane at its initial value. The net interface
current was calculated as a function of time at each step. The
results are shown in Figure 19.

Next, keeping the right half plane as a pure scatterer of cross
section O, = 0.5 l:CM]_1 and the total cross section in the left half

plane at g, = 1.0 [CM]_I, the absorption cross section in the left

half plane was increased in steps of 0.1 [CM]—I from 0 to 0.5 [CM]_I.
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The interface current was again evaluated as a function of time at
each step. The results are given in Figure 20.

An inspection of Figures 19 and 20, together with an examina-
tion of the interface current and flux e:.cpre.ssions brings to light the
following explanation for changes in the interface current and flux
in two adjacent moderator materials.

If there are no differences in the cross sections of the two half-
spaces, there will of course be no interface current and the interface
flux will be smoothly decaying in time (no reverse curvature). When
there is a difference in the scattering but no difference in the absorp-
tion cross sectién, there will be a net flow of neutrons, for all T > 0,
from the half-space with the larger to the half-space with the smaller
scattering cross section. Similarly, if the scattering cross section
is the same on both sides but the absorption cross section is greater
on the left than on the right, there will be a net flow of ﬁeutrons to
the left for all 7 > 0.

Letting both scattering and absorption be different on each side
yields two further variations in the description of the current,

If €104 > c,0, and a0, < a,0,s there will always be a net current
from the left to the right. However, if €101 > €50, and

ajoy > 2a,0,, the current may change directions after a certain time.
Initially, the neutrons will travel from the region of high to that of
low scattering probability. However, after a certain time there will
be a net flow of neutrons from the region of low to high absorption

probability. It appears then that the scattering prdcess is initially
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dominant and that the absorption mechanism is a long-term one.
Corresponding to these currents, small bumps in the flux versus
time curves will appear.

The calculations discussed in this section were based on pure
moderator half-spaces. However, the only mathematical restriction
on the solution is ‘c'é 1. Recalling the definitions of ¢ and a,

we have

c = —— , a=l-e,

Hence fissionable materials could also be considered in the numerical
work and were not included simply as a matter of convenience.
D. Summary

It has been shown in this thesis that the NME method can be
applied successfully to two-region, time-dependent, monoenergetic
neutron transport in one spatial dimension. Although only one
problem was specifically solved here, there appear to be no restric-
tions in extending this method to other time-dependent, two-region
problems. |

The exact solution to the two adjacent, semi-infinite media
problem exhibited here also describes explicitly certain physical
effects which one would expect. First the existence of uncollided
waves traveling through the two media was shown and the form of
these waves was given explicitly, Next, the lack of a fundamental
mode due to the infinite extent of the system was observed. Further,

some insight into the mechanism of reflection at an interface was
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gained through the numerical calculations.

The magnitude of flux deviations due to differences in the
properties of the two media appeared, however, to be rather small
at the interface. In contrast to this, the current was seen to depend
markedly on the difference in properties of the two media.

Although flux determinations aWay from the interface were not
numerica