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Abstract 

In a 1955 paper, Ky Fan, Olga Taussky, and John Todd presented 

discrete analogues of inequalities of Wirtinger type, and by taking 

limits they were able to recover the continuous inequalities. We 

generalize their techniques to mixed and higher derivatives and 

inequalities with weight functions in the integrals. We have also 

considered analogues of inequalities of MUller and Redheffer and 

have used these inequalities to ·derive a necessary and sufficient 

condition on ordered pairs of numbers so that the first number is 

the square norm of the kth derivative of some periodic function 

and the second number is the square norm of the mth derivative of 

the same periodic function. 
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Introduction 

In 1955 [7] Ky Fan, Olga Taussky, and John Todd discovered 

discrete ana1ogues of certain integral inequalities involving 

functions and their derivatives. They considered inequalities 

[
211 2 l21T 2 of the Wirtinger type: x(t) dt ::S. x•(t) dt, where x has 

211 ·-o o 
period 2n and J

0 
x(t)dt = o. By taking limits they were able 

to derive continuous inequalities by matrix techniques and avoided 

the differential equations of the calculus of variations. At 

the suggestion of Professor Todd we have attempted to generalize 

the techniques o:f [7] to polynomials in the derivatives of x 

and inequalities with weight f'unctions -in the integrals. We 

have also considered analogues of inequalities of Mill.ler [11] 

and Redheffer [1J] and have used these inequalities to derive 

a necessary and sufficient condition on ordered pairs of numbers 

so that the first number is the square norm of the kth derivative 

of some periodic f'unction and the second number is the square 

norm of the mth derivative of the same periodic function. This 

last result is the L2 analogue of a result of Kolomogoroff [10] 

on the uniform norm. 
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I. General Technique 

The following is the basic technique of Fan, Ta.ussky, and 

Todd [7] and will be ussd to derive most of our inequalities. 

Let S be a real symmetric n x n matrix with eigenvalues 

'A 1 :::_ A.2 :::_ • • • ~ Xn and let v 1, v 2, • • • , v n be the corresponding 

linearly independent eigenvectors: 

Svi = A..v. (i=1,2,•••,n) • 
J. J. 

If P is a polynomial with real coefficients, then P(S) is a 

real symmetric n x n matrix and we know that P(S) ha.s eigenvalues 

P(A.1),P(X2),•••,P(Xn) with 9orresponding eigenvectors v1,v2,•••,vn 

. so that P(S)vi = P(Xi)vi (i=1,2,•••,n). 

By a well-known property of symmetric :ma.trices 

min max 
[1$i~n(P(x1)}] • (x,x) S (x,P(S)x) S [1:S:i~n(P(x1)}] • (x,x) 

for every n-vector x, where (x,y) = xTy for n-vectors x and y. 

Now we must have 

inf min 
X~t:s:A. 1 (P(t)} $ 1SiSn (P(A.i)} 

and 
sup max 

Xn5, t.::;X 1 (P(t)} ~ 1,:Si,:SnfP(Xi)}, 

hence 
inf . sup 

('A~t~X 1 (P(t)}]• (x,x) $ (x,P(S)x) $ rx~t-s_x1 (P(t)}J• (x,x) 

for f/!Nery n-vector x. 
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We note that equality is possible in the last expression if' 
sup 

and only if' P(A.i) = A.xtSt-;S.A.1(P(t)} for some i between 1 and nor 

inf 
P(A.1 ) = "'A.xtS t,$ A. 1 (P(t)} for some i between 1 and n. I:f equality 

does occur then the set of extremal vectors mu.st be the space 

spanned by the eigenvectors corresponding to A.i • 

For reasons of simplioi ty we will only consider vectors with 

real components and real symmetric ma.trices . In all oases the 

extension 'to complex vectors and Hennitian matrices will be 

apparent. 
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II. Periodic Boundary Conditions 

Because of the absence of troublesome boundary conditions 

the periodic case is easiest to handle. We may periodically 

T 
extend any n-vector x = (x1,x2,···,xn) be setting xi+rn =xi 

for i = 1,2,•·•,n and r any integer. 

Definition: If xis a periodically extended n-vector then for · 

m = O, 1,2,.• • • 

where 
m 

6mxi = l (-1)m-r(~)xi-[m/2J+r (i=1,2,•••,n). 
r=O 

We call x(m) the mth difference of the n-vector x. 

It is clear that x(r+s) = (x(r))(s) for r,s = 0,1,2,••• • 

The following lemma, which is crucial for our inequalities, 

was proved by Fan-Taussky-Todd [17] for m = 0,1,2. 

Lemma 1. If x is a periodically extended n-vector, then 

(x(m),x(m)) = (x,¥'1x) (m=0,1,2,•••), where Pis then x n 

symmetric circulant 

2 -1 

-1 2 

• 

• • 

• 
-1 0 

0 ••• -1 

-1 • • • 0 

• 

• • 
• • . • -1 2 • 
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Proof: 

-~ + 2xi - ~ 
• 

Px = • 
• 

-:xi + ~ - ~-1 

By partial summation 
n n 

(x,x(Z)) = l "k("k~1-~+"k+1>= - I (~+1-"k)2 
k=1 k=1 

= -(x(1) ,x(1))' 

yielding 

( (j+1) (j+1)) x ,x • 

Thus if m is even we have 

while if m is odd 

Rutherford [ 14] has shown that P has eig~nvalue$ 

4 sin2(krrn) (k=1,2,•••,n), hence A = O, A 1 =A 2 = 4 sin2 (-nn), n n- n-

• ••,A 1 = 4 sin2([~] f;). The eigenvector corresponding to An is 

(1,1,•••,1)T. 

At this point we have two alternatives open to us. If' F 

is a polynomial with real coe:fficients then we may use the 

method that we have described in Section I or else we may also 
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n 

add the auxiliary condition l xi = O, which is equivalent to 
k=1 

the requirement (x,e) = o, where e = (1,1,•••,1)T. Since e is 

the eigenvector corresponding to An = O, the auxiliary orthog

onality condition implies that we need only take our :m.a.ximum 

and minimum over {F(A1 ),F(A2),•••,F(An-i)}. 

The following example should illustrate the differences 

in the two app~oaches. 

Let P(t) = tm for m > 1. Since P(t) is increasing for 

non-negative t and since 0 = A < A 1 < • • • < A. 1, we have n n- - -
min min 

1$i~n{P(A.1)} = 0 and 1$i<S.n-1{P(A1 )} = P(A.n_1) = 4m sin2m(~i). 

Thus if x is a periodically extended n-veotor then we have 

the trivial inequality (x(m),x(m)) ~ O(x,x) = O; however if we 
n 

add the auxiliary oondi tion l xi = 0, then we obtain 
i=1 

(x(m) ,x(m)) ~ 4m sin2m(!i) (x,x). 

We note that the above inequalities are best possible and 

we include a discussion of the possibility of equality. For 

brevity this will be the only case where we discuss equality 

in the discrete case, 

If (x(m) ,x(m)) = o, then x must be :µi the subspa.ce spanned 

by the eigenvectors corresponding to "-n = 0. Thus x = a• (1, 1, • • •,1)T, 

where a is a real number. 
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n 

If i~ ~ = 0 and (x(m) ,x(m)) = 4m sin2m(;f){x,x), then x 

must be ~ the :;ubspace spanned by the eigenvectors corresponding 

to An-l = Xn_2 = 4 sin2(ii). It is known, [7], that this subspace 

is spanned by the vectors u = (u1,u2,•••,un)T and w = (w1 ,w2,••·,~T, 
. 2 . £uj 

where uj = cos( ~.1) and ~j = sin( n ). Thus x = a• u + b • w, 

where a and b are real numbers. 

Hence we have established the following extension of Theorem 

10 of [7]. 

Theorem 1. If x is a periodically extended n-vector and if' 
n lxi = o, then 

i=1 

F.qu.ality holds if and only if xis the periodic extension of -a 

vector of the form a• u + b • w. 

Corollary 1,1, If x(t) E ~ra,b], x(t) has period b-a, and 

~x(t)dt = O, then 
a 

jh{x(m)(t)} 2dt 2: (~a)2m ~{x(t)}2dt. 
a · a 

Proof: 
n 

b-a ( ) If we let 6 = n+i and Yi = x ti l x(tj), where 

t. = a + it., then 
J. 

j=1 

(y(m),y(m)) 

62m . 

4m . 2m(TI) 
• 6 > sinn • (y,y){). • 

- 62m 
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The result now follows when we let n ~ oo. 

A careful inspection of the proof of Theorem 1 will show 

that we only used the periodic extension property of the n-vector 

x on x1_[~J'x2_[~]'•••,x0 and xn+l'xn+2,•••,xn+m-[~J· Hence we 

may weaken our requirement x(t) has period b - a to a condition 

on the end points, namely x(a) = x(b), x•(a) = x'(b),····,)m;.::1 .. \ ::a) 

= x(m~1) (b) • 

Halperin and Pitt [8], Mttller [11], Nirenberg [12], and 

Redheffer [13] have developed inequalities of the form: 

.b 2 Jb 2 j 'b 2 j (x•(t)) dt :5. a (x"(t)) dt + H(a) (x(t)) dt, 
a a a 

2 where x(t) E C [a,b], a> o. Redheffer obtained the best possible 

value of H(a). We will now develop generalizations of the form: 

Jb(x(k)(t)}2dt :5. aJ b(x(m)(t)}2dt + ~ m(a) J b fx(t)}2dt, -
a a ' a 

1 :5. k < m under the f'urther restriction that x(a) = x(b), 

x•(a) = x'(b),•••,x(m-l)(a) = x(m-l)(b). These inequalities will 

be established by taking limits of the appropriate discrete inequal

ities. Incidentally we observe that Hi,2(a ) for our periodic case 

1 12 is much smaller than Redheffer's general value of - + 
2 

• 
a (b-a) 

This inequality will also appear in Sections IV and V, where 

it ~11 serve as a model to illustrate our techniques. 
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If we let P(t) = ektk - aemtm, then we wish to maximize P(t) 

on [An'A1] = [0,4 sin2([~]E)l. Since P'(t) = kektk-l - Jll0'9mtm-1, 

if we assume that e > 0 then the maximum value of P(t) on t ~ 0 

1 k 1/m-k sup 1 k 1/m-k 
occurs at t = e (me;;) • Thus An~ "t$,.A 1 f. P( t)} $ P(efmo;} ) = 

k k/ni-k k 
(m~ (1-m:). 

An inspection of the graph of P(t) will yield the following 

cases: 

1 k 1/m-k 
If Ai ~ e<m~ then 

sup 1 k 1/m-k · k k/m-k k 
An-£t~A1[P(t)1 = P(lr[ijiY] ) =(nm) (1-'ffi). 

1 k 1/m-k 
If A 1 ~ tr< iilct) then 

( ). 4k k[ 1,m-k ni-k } If n is even then P A1 = e .1-Lf' e a • 

Hence we have the following result. 

Theorem 2. If x is a periodically extended n-vector,a and e are 

positive constants, 1 $ k < m then we have the f'ollowing inequa.J.ity: 

k (k) (k) . ( ) ( ) k k/m-k 
e (x ,x ) ~ aem (x m ,x m ) + (~) (1-k/m)(x,x). 

1 k 1/m-k 
If 4 ~ e<nn> , then we may improve the above inequality to: 

.. ek(x(k) ,x(k)) - aem(x(m) ,x<m>, ~ 4kek[1-4m-kem-ka} • (x,x). 
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Proo£: 
1 k 1/m-k 

We note that 4 $: e<m~ . certainly implies that 

2 1 k 1/m-k 
4 sin ([~]~) .:S e-(mo;) and P(t) is increasing on the interval. 

1 k 1/m-k 
[o,9(mc) J • 

2 
If' we take e = <{)!!> and let n ~ co then we obtain a continuous 

analogue of' Theorem 2. 

Corollary 2.1. If x(t) E d'1ra,b], 1 .:S k < m, x(a) = x(b), 

x'(a) = x'(b),•••,x(m-l)(a) = x(m-l)(b), and i£ ~ > 0 then we have 

the following inequality: 

J
b (k) 2 j'b ( ) 2 k k/m-k J b 2 (x (t)} dt::;: ~ (x m (t)} dt + (iiiQi) (1-k/m) (x(t)} dt. 
a a a 

1 If' we let k = 1, m .= 2 then our constant has the value 'ZkY 
1 12 as compared to the Redheff er value of a + 2 • 

(b-a) 

One may now inquire about the .possibility o:f equality in 

Corollary 2.1; by our previous discussion we see that this is 

possible i£ and only i£ 

Max 
lim [1Si~n(ekx~- ~1\~}] = 
n-t co 

k k/m-k k 
<nn> ( 1- iii) I 

However a brief' investigation shows that the above expression is 

not always satisfied, hence Corollary 2.1 is in general not best 

possible. A little more work will yield the best inequality. 

We notice that the smaller eigenvalues of P approach zero as 

1/ 2 and that the positive root of ektk - ~emtm exhibits a similar 
n 

behavior: 
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4 2(n)....., 4n
2 

4 2(2n) 8n
2 

A = 0, A = sin - ~ - , X = sin - ~ -- • • • n n-1 n 2 n-3 n 2 ' n n 

root = (b-a)
2 

(n+1)2 

Hence if we set 

1 1/m-k 
(;:y) 

[b-a 
L = - • 2n 

1 1/m-k 
(.[; ) ], 

where [ ] is the greatest integer function, then L is the limiting 

number of distinct eigenvalues of P which are greater than 0 and 

less than or equal to the root. 
b-a 2m-2k 

If L = O, which occurs when a > (~) , then 

yielding the best possible result: 

Corollary 2.2. Let x(t),k,m be as in Corollary 2.1 and let 
b 2m-2k 

a > ( ;~) , then 

b . b J fx(k)(t)1 2dt S: a J [x(m)(t)} 2dt. 
a a 

. b 
If we add the auxiliary condition J x(t)dt = O, then 

a 
Max 

lim [1S:i5_n-1lekx~-ae~~}] = 
n-+ oo 

(~)2k - a(~)2m < 0 
b-a b-a -

and we obtain the best possible result: 

Corollary 2.3. Let x(t),k,m,~ be as in Corollary 2.2 and let x 
b 

also satisfy J x(t)dt = O, then 
a 
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If L ::::_ 1 then there are limiting eigenvalues between zero 

and the positive root. Hence if we set 

- [~ • ( /12)1/m-kJ 
J - 2n /~ ,, 

then J is the limiting number of distinct eigenvalues of P which 

are greater than 0 and less than or equal to the maximum of 

ektk - 0'9mtm. 
Thus ·if 

[
b-a • (Jf:)1/m-k1 = b-a • (~\ 1/m-k 
2n mer 2n maJ 

then 

k k/m-k 
= <mo) (1-k/m) 

and Corollary 2.1 is best possible. Otherwise we may replace 

<mk_\ k/m-\1 ... k/m) by max[ (b2Jn) 2k - a(b2Jn/m' (2(t1)n)2k-a(2(~+1)n) 2m} • 
otl -a -a a -a 

We may summarize the above results by the following best 

possible inequalities. 

Corollary 2,4, If x(t) E cfl\a,b], 1 $, k < m,x(a) = x(b), 

x•(a) = x'(b),•••,x(m-i)(a) = x(m-i)(b), and if a> 0 then 

Jb(x(k)(t)l 2dt s_ aJb(x(m)(t)} 2dt + Hk m(a) Jb{x(t)} 2dt, where 
a a ' a 

b 2m-2k 
Hk,m(a) = 0 for a > ( 2~). , 
l\:,m(a) = (~)k/m-k(1-k/m) if ~a • (~)l/m-k is a positive 

integer, and otherwise 
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Corollary 2.5. Let x(t),k,~,a be as in Corollary 2,4 and let x 
b 

also satisf'y J x(t)dt = o, then 
a 

where 
2TT 2k 2TT 2m b-a 2m-2k 

Gk,m(a) = (b-a) - a(~) for a> ( 2 TT) , 

and otherwise 

Gk,m(a) = ~,m(a), 

It is not difficult to see that R (a) and Gk (a) are -1<:,m ,m 

piecewise linear functions of a, which are monotonic decreasing, 

and that the jumps in the derivatives of R and Gk occur -for · -1<:,m ,m 

those positive numbers a . which yield 
1 

(2ni)2k _a. (~/m = (2TTi+2n) 
2
k _a. (2ni+2n) 2m' 

b-a 1 b-a b-a 1 b-a 

where i is a non-negative integer, We have oo > a
0 

> et1 > • • • > 0 

and lim ai = o. Note that 
i-too· 

Jb{sin(k)(2nit)l2dt = aJbfsin(m)(2TTit)}2dt 
· b-a · b- a 

a a 

+ R (a) j'bfsin(2bnit)}2dt, 
--k,m - a 

. a 

for a. < a < a. 1• This accounts for the piecewise linearity of 
1 - - 1-

Hk and Gk and will be of great import·an.ce i n Section IIJ~ ,m ,m 
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At this stage it is apparent that there is an unlimited 

number of possible inequalities . In fact every polynomial will 

give discrete inequalities and polynomials in et yield continuous 

analogues~ 

It is known, see for example [11, that if f(t) is represented 

by a power series with real coefficients and if A is a real 

symmetric matrix with eigenvalues A 1, 'A 2, • • • , 'An which lie strictly 

within the circle of convergence of the power series for f(t), 

then f(A) is real synnnetric and has eigenvalues f(A. 1),f(A.2),••·,f('Ank 

This result enables us to extend our polynomial inequalities to 

discrete inequalities on analytic functions. 

Theorem 3. If x is a periodically extended n-vector and if 

f(t) = \ a tm, where the a are real numbers and the series L m m 
~o 

converges on a set containing [0,4] in its interior - if n is 

odd then we need only require convergence on a set containing 

[0,4 sin2([~] ii)J in its interior - then 

inf 
[O~t:s_4(f(t)}](x,x) < 

co 

I am(x(m) ,x(m)) ~ [O~~p~4{f(t)}](x,x). 
m=O 

The following inequalities are examples of the application 

of Theorem 3. 

Corollary 3.1. If xis a periodically extended n-vector then 
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I~ (x(m),x(m)) :s, (e4-1)(x,x). 
:m:::1 

Corollary 3.2. If x is a periodically extended n-vector and 

e > 0 then 
<X> 

-(x,x) :S. \ ' (-l·)m e2
m+l ( (2m+1) (2m+1)) < ( ) L (2m+1): x ,x - x,x • 

Proof: 

m=b 

<XI 

sin t = l (~~!f ~ ! t
2

m+i and I sin t l :s_ 1 , 
:m:::O 

Corollary 3.3. If x(t) E c""[b-a] and x(t) has period b - a then 

b 
00 

m b b -J (x(t)}
2
dt :s, l. (~~!f): J (x(2m+i)(t)}2dt :s_ J (x(t)}2dt, 

a . :m:::O a a 
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III. Inequalities of Kolmogoroff Type 

In analysis one frequently wants to obtain inclusion regions 

for the norms of functions; i.e., if Mis in the inclusion region, 

then there exists a function f, from a certain set of functions, 

with norm of f equal to M. Kolmogoroff [10] established a result 

of this type using the uniform norm over the function set d'1(o,co]. 
sup (k) 

·rr we set l\(x) = CS,t~co fix (t)IJ (k=0,1,2,··•,m), then 

Kolmogoroff [10] gave a necessary and sufficient condition "in 

order that to a triple of positive numbers M0,l\:,Mm(O < k < m) 

there should correspond a function x(t) for which 

In this section we will establish a similar result on a 

triple of positive numbers relative to the square norm, where 

our set of functions will be Cm[a,b] r. (xlx(a) = x(b),x'(a) 

= x'(b),···,x(m-l)(a) = x(m-i)(b)}. We will also add the restric
b 

tion J x(t)dt = 0 in order to eliminate the constant function. 
a 

If x(t) is an element of our function class, then we set 

Aic(x) = ·J blx(k)(t)}2dt (k=o,1,2,···,m). 
a 

We may assume without loss of generality that we have normalized 

x so that A0(x) = 1. We will establish the f'ollowing result: 

Theorem 4. In order that to a pair of numbers ~'am there should 
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correspond a function x(t) E C~a,b] n {xlx(a) = x(b), 

b 
x'(a) = x'(b),•••,x(m-l)(a) = x(m-l)(b), J x(t)dt = O} 

a 
for which 

it is necessary and sufficient that 

2TI 2k . 2TI 2m 
~ 2:. (~) , am 2:, (b=a) , and 

Proof of Theorem 4: 

The necessity of the conditions is a direct consequence 

of Corollaries 1.1 and 2.5. 

The proof of the sufficiency will be divided into several 

cases and we will use the notation of Section II throughout. We 

will denote the normalized sin (2bnit) by S. (t). We recall that 
-a l. 

on the interval 01. < O' < Q'. 1 we have A. (S. )-01 A (S. )=Gk (01). 
l. - - l.- --k l. m l. m 

. ' 
Case 1: a.. - aa = Gk (a) for at least two values of a, say 

K m ,m 

a = t 1 and a = t 2• 

We innnediately have that~ -aam= Gk,m(O') for all aE [t1,t2]. 

Since we know that the Si are ma:ximizing functions there is an 

integer i with a. < t 1 < t 2 < et. 1 and a. - aa = Gk (a) 
l. - - 1- K m ,m 

= J\(Si) - a Am(Si) for ai $ a $. ai_1• Thus ~ = J\(Si), 

a = A (s1 ). m m 
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Case 2: ~ - er am= Gk,m(cr) for only one value of CY, say a = t 1• 

We immediately have that t 1 = CY1 for exactly one integer i. 

Thus 

a. - CY.a =Gk (a.)=~ (S.) - CY.A (S.) = 
K 1 m ,m 1 -1<: 1 1 m 1 

Also since a. - O'a < Gk (er) for all a> 0 we must have 
K m - ,m 

~(Si) < am< Am(s1+1). Thus there exist bi,bi+l with O<bi,bi+i< 1, 

2 2 ( ) 2 2 
bi + bi+1 = 1, and am= Am biSi+bi+1Si+1 =biAm(Si)+bi+1Am(Si+1). 

[Note that the last equality follows from the orthogonality of 

s1 and all its derivatives to Si+l and all its derivatives]. Now, 

~(biSi+bi+15i+1) - criam = 

~(bisi+bi+15i+1) - criAm(bisi+bi+181+1> = 

bi[~(Si)-aiAm(Si)J + b~+1[~(Si+1)-criAm(Si+1)] = 

(b~+bi+1)[~-CYiam]• 
Hence ~ = ~(bis1+b1+1s1+1 ). 

Case J: 

We know that there is exactly one integer i ~ 2 with 

(2in) 2m < a < (2(i+l)n/m or A (S. ) < a < A (S. ) IT we 
b-a - m b-a m 1 - m m 1+1 • 

repeat the construction of Case 2 we can find bi and bi+l with 

am = Am(bisi+bi+isi+l) and since ak - cr1am < Gk,m(ai) = 

Ak(biSi+bi+18i+1) ~ aiAm(bisi+b1+18i+1>= ~(biSi+bi+181+1)- aiam 
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we have 

By our conditions on ~ and am there is an integer j > i + 1 

and ari a> 0 such that 1ic(Sj) - QiAm(Sj) = 1ic(S1) - OiAm(s 1) 

< a. - C57am• Now A (s 1) <A (S . ) < a < A (Si+!) < A (S .), hence K m m l. - m m m J 

there are b1,bj with am = ~(b1s 1+bjSj) and since 

~ - CY.am> Gk,m(CY.) = 1ic(b1s 1+bjSj) - Qi'Am(b1s 1+bjSj) 

= 1ic(b1s 1+bjSj) - CY.am 

we have 

By the orthogonality of b1s1 + bjSj and biSi + bi+lsi+l there 

are constants c and d with c2 + d2 = 1 for normalization and 

Case 4: 

am= Am(cb1s1 +cbjSj + dbiSi + dbi+isi+l), 

~ = ~(cb1s1 + cbjSj + db1si + dbi+lsi+l). 

· J.m 2m 
a. - aa <Gk (a) for all et and a < (-b ) = A (s2). 
· K m ,m m -a m 

If we repeat the process of Cases 2 and 3 we can find b1,b
2 

such that am= ~(b1s1+b2s2) and ~ < ~(b1s 1+b2s2). 
We cannot simply repeat the process of Case 3 because 

b1s 1 + b2s 2 will not be orthogonal to b~s1 + b~S 2• However we 

note that the normalized multiple of cos (b2nt), which we denote 
-a 

by c1(t), also satisfies ~(c1) - aAm(c1) for et1 ::5. a ::5. a0 and is 

orthogonal to all the Si. Hence we can find c1,cj such that 
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am= Am(c1c1+cjS) and 

~ > Aic(c1C1+cjSj) 

and we . continue as in Case J. 

Thus we have proven Theorem 4. 
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IV. Zero Boundary Conditions 

T We extend then-vector x = (x1,x2,•••,xn) to an n+2-vector 

x with zero boundary conditions by setting x0 = xn+l = 0 (x is 

called the zero extension of the n-vector x). If we set 
n+1 

(i,x) = l xi2 

i=O 
n 

(-(1) -(1)) . \ ( )2 
x ,x = L xi+1-xi 

i=O 
n 

(-(2) -(2)) \ ' ( 2x )2 
x ,x = L xi-1- i+xi+1 

i=1 

then Fan-Taussky-Todd [7] have shown that 

where Z is the n x n tridiagonal matrix 

2 -1 0 

-1 2 -1 0 

0 

• 

Rutherford [14] has shown that Z has eigenvalues 

4 cos2(~~2 ) (k=1,2,•••,n), hence the eigenvalues of Z lie in the 

interval [µ.n,µ 1] = [4 sin2(~), 4 cos2(2;+2)J. This immediately 

yields the following: 
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Theorem 5. If x is the zero extension of the n-vector x and 

f(t) = at2 + bt + c, a,b,c real, then: 

max 
:s: tE [µ,n,µ 1Jff(t)}(x,x). 

If we let f(t) = et - ae2t 2 then we can derive an analogue 

of Theorem 2 for the zero boundary condition case. A brief 

reference to Section II will show that we have the following three 

cases to consider. 
max 

(i) if µ, 1 =4cos2(2;+2)~1/2.cte then tErµ,1'µ,n][f(t)} = f(µ. 1) 

= eµ. 1 [ 1-aeµ. 1}. 

max 
(ii) if µ,n = 4 sin2(2;._2) 2: 1/2ct9 then tE [µ1'µ.nJ[f(t)} = f(µ.n) 

= 9µ.n[1-a9µ, .n}. 

(iii) · in all cases f(t) ~ f(1/2ct9) = 1/4a. 

Corolla;rx 5.1. If xis the zero extension of then-vector x and 

a,e > O, then we have: 

e(x<1>,x<1>) :s: ae2cx<2>,x<2>) + 1/LK::t(x,x). 

If 4 cos2(2n1:.2) :S: 1/2ct9 then the 1/4a may be replaced by 

4e cos
2<Z:+2)[1-4ae cos2( 2~2)}. 

If 4 sin2(2:..2) :2;: 1/2ct9 then the 1/lkx may be replaced by 

4e sin2(2;._2)[1-4ae sin2( 2~+2)}. 
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Before we pass to the limit we must investigate cases (i) 
n+1 2 

and (ii) when e = (b-a) and n -+ co. 

(i) 4 cos2
(2n:2) ~ 1/2.ae => 4 cos2(2X:.2) ~ 1/2o-(~~~)2 => 

1 b-a 2 2 TT 
QI~ 8 (n+1) sec (2n+2)' i.e. ry = o. 

(ii) 4 sin2(2:+2 ) 2: 1/2o-e => 4 sin2(2~+2) 2: 1/2o-(~~)2 ::) 
1 b-a 2/ . 2 11 1 (b-a)2 

QI 2: 8 <n+1) sin (2 • n+i'), i.e. a> 2 
2TT 

Corollary 5.2. If x(t) E c2[a,b],x(a) = x(b) = o, QI > 0 then we 

have: 

b b b 
J {x'(t)}2dt ::s,aJ {x••(t)}2dt + 1/4ct J {x(t)}2dt • . 

a a a 

2 
If we also have QI> ((b-a) then the 1/4ct may be replaced 

2TT2 
2 2 

by TT 2 {1- qrr } 
(b-a) (b-a) 2 • 

e = 
If we talce limits caref'ully letting an = o, bn = [n and 
n+1 2 . 
(-) then we obtain rn 

Corollary 5.3. If x(t) E c2ro,co], x(O) = o, QI> o, and all 

integrals exist then 

Jco[x•(t)J 2dt :s a[ [x"(t)J2dt + 1/4a Jco[x(t)}2dt. 
0 0 0 

We note that it is possible to derive best possible analogues 

of Corollaries 5.2 and 5.3 in the same spirit as the extensions of 

Corollary 2.1. .Also we may derive a Kolmogorof.f type necessary and 
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sufficient condition for .this zero boundary case in the same manner 

as we did in Section III. 
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V. Free Boundary Conditions 

If x = (x0,x1,···,xn+t) is an n+2-vector, then we define a 

new n+2-vector h by: 
x -x 

h_ = n+1 O k + 
-ic n+1 :>co (k=o,1,···,n+1). 

Notice that h0 = x0 , hn+l = ~+l and ~ is on the line between 

~ and xn+l' hence the vector y = x - h is an n+2-vector with 

Yo = Yn+l = 0 or y is the zero extension of some n-vector y. 

Therefore we may apply Theorem .5 to y, obtaining: 

t E~,µ.1][f(t)}(y,y) $. a(y(2) ,y:C2)) + b(y(1) ,y:C1)) + c(y,y) 

max 
$. t Erµ.n,µ 1l[f(t)}(y,y), 

where f(t) = at2 + bt + c and [µn,µ 1] is as before. 

find 

We must now try to relate (y(i),y.(i)) to (x(i),x(i)). We 

n 

(y( 2),y.(Z)) = I. [yi-1-2'Yi+Yi+1l2 

i=1 
n 

I 2 = [x. 1-h. 1-2x.+2h. +x.+1-h·+1} 1- i- 1 1 i 1 

i=1 
n 

= L: (xi-1-2xi+xi+1}2 = (x(2) ,x(2)), 
i=1 
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n n 2 
( 1) ( 1) \ {- .:.... }2 - xn+1-:xn 

(y ,y ) = L yi-Yi+1 = l. {xi-xi+1 + n+1 } 
i=O i=O 

n _ n _ 2 n 
\ ' 2 xn+1 XO \ ' xn+1 XO \ ' = L {xi -xi+1} + 2 n+1 L {xi -xi+1 }+{ n+1 } L I 

i=O i=O i=O 

' 
and 

(y,y) = (x-h,x-h) = (x,x) - 2(x,h) + (h,h), 

which is not very convenient to use. Substitution of these 

expressions into the previous inequality yields the free boundary 

analogue of Corollary 5.1. 

Theorem 6. Let x be an n+2-vector, let y be the n+2-vector 
xn+1-:XU 

obtained by setting yk = xk - n+i k - x0 , and let a,e > 0 

then we have: 

e(x(1),x(1)) 5 ae2(x(2),x(2)) + ~ (y,y) + e{x~!~~)2 • 

We may replace 1/4a by the same coefficients as in Corollary 5.1. 

Tald.ng 1imi t s yields the continuous case. 

Corollary 6.1. If x(t) E c2[a,b] and <Y > 0 then we have: 

Jb{x'(t)}2dt$a-Jbfx"(t)}2dt + L J bfy(t)}2dt + fx(b£=~(a)}2 , 
a a a 

2 
where y(t) = x(t) - x(a) - x(~~:x(a) • (t-a). If a> le.-~) 

2TT 
2 2 

then the 1/4a may be replaced by n 2 {1- Q'!T } 
(b-a) (b-a) 2 • 
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As one can see the free boundary case is untidy because of 

the presence of an auxiliary function which is used to reduce 

the problem to the case of zero boundary conditions. However, 

this technique can be used to extend many of the results of r7J 

to the free boundary case; for example: 

Theorem 7. (analogue of Theorem 9 of r7J). If x0,x1,···,xn+l 

are a:ny real numbers, then 

n 
\ 2 2 ,,. L {xi-xi+i} ~ 4 sin (2n+2) 

i=O 

Theorem 8. (analogue of Theorem 11 of [7]). If x0,x1,•••,xn+i 

are any real numbers, then 

n n+1 2 4 x -x l {xi-1-2xi+xi+1}2 ~ 16 sin <2~+2) l {xi-~-i n~!1 O} • 
i=1 i=O 
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VI. E>ctension to General Inner Products 

In I-V we have considered inequalities with the usual inner 
. b . . 

product (f,g) = J f(t)g(t)dt, or with various discrete analogues 
a. 

of this inner product. If w(t) is a positive integrable function 

b 
on [a,b], then (f ,g)w = J f(t)g(t)w(t)dt is also an inner product 

a 
on C[ a, b J, [ 6]. A number of authors has investigated discrete 

and continuous inequalities in these general inner products, see 

Beesack [2]; Block [3],[4] and Coles [5]. 

Beesack used the properties of the Riccati equation 

x' + -z?. + p = o, to develop inequalities between 1·b(x'(t)}2dt 
Va 

b 2 
and J (x(t)} p(t)dt. We will attempt to use a discrete variational 

a 
technique to produce our inequalities. For reasons of simp~city 

we will restrict ourselves to the case of zero-boundary conditions. 

The Euler equation for the functional 

F[x] = J b[(x•(t)}2q(t) - c(x(t)} 2p(t)]dt is (qx•)' + cpx = O. 
a 

Therefore c will be the smallest eigenvalue of the Sturm-Liouville 

' problem (qx') + Apx = O, x(a) = x(b) = o. Our task will be to 

discretize this problem and produce estimates for the relevant 

eigenvalues. 

We let x be the zero extension of the n-vector x = (x1,x2,- • •,xn)T 

and q
1

,p
1 

(i=0,1,•••,n+1) be 2n + 4 positive numbers. An application 
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of Theorem 7 yields 
n min n 

l {xi+1-xi)
2
qi ~ O~j~n qj l {xi+1-xi}

2 

i=O i=O 
min n 

~ 4 sin
2

( 2:+2 ) • 0 ~j~n qj l xi 
2 

i=1 

> 4 sin2 (_!L_) • 
- 2n+2 

A simple passage to the limit n ~ oo yields 
b min b J {x'(t)}2q(t)dt ~ TT

2 

2
· • st=~b] g(s) • J ·fx(t)} 2p(t)dt. 

a · (b-a) rE[a,b]p(r) a 

At this point we find that a great deal of work is involved 

in obtaining sharper inequalities. We introduce the vector y, 

. with Yi =JP;_ xi. Then 

n n 2 
\ 2 \ Yi+1 Yi 
L {xi+1-xi) qi = L { r::-- - j ) qi 

i=O i=O ~Pi+1 . pi 

T = y Qy, 
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where Q is the n x n real symmetric tridiagonal matrix 

~+q! -q1 
0 

P1 lP1P2 

-q1 q1+q~ -q2 
0 

JP1P2 P2 JPzP3 

0 • • • 

• • • 

0 
-qi-1 qi-1+qi -qi 

0 

f P1-1P1 
pi f P1P1+1 

• • • . 

• • • 

0 
-~-1 qn-1+q 

jpn-1Pn Pn 
• 

Hence we have the following inequality. 

Theorem 9. If x is the zero-extension of the n-vector x and if 
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where Xmin and Xmax are respectively the smallest and largest 

eigenvalues of the matrix Q. 

Because of the rather complicated nature of Q it seems hopeless 

to attempt to directly evaluate the eigenvalues of Q. Therefore we 

will consider diagonal similarity transformations of Q in the hope 

of obtaining a more tractable matrix which will have the same 

eigenvalues as Q. 

Let D be the n x n matrix diagf 0'1JPi , 0'2f'P;, , • • •, an/'P;), with 

a 1 ~ 0 (i=1,2,•••,n) and all a1 of the same sign. Then D-1QD has 

the same eigenvalues as Q. 
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O+q1 -0'2q1 
0 

P1 a1p1 

0'1q1 q1+q2 -aJq2 
0 

a2p2 P2 a2p2 

0 • 

D-~ 

• 

-O'i-1qi-1 qi-1+qi -O'i+1qi 

aipi pi O'ipi 

• 

0 
-an-1qn-1 qn-1fin 

anpn Pn 

I£ A = (a1 j) is an n x n matrix, then the Theorem of Gerschgorin 

[15] tells us that the eigenvalues of A lie within the union of the 

discs: 

where 

(1=1,2,•••,n), 

n 

R1 (A) = L I aij I. 
j=1 
j-/:i 
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In our problem 

R
1

(D-lQD) = a2q1 
al pl 

Ri (D-lQD) 
Q'i-1qi-1 Q'i+1qi 

= + 
aipi aipi 

(i=2,3,•••,n-l) 

Rn(D-lQD) 
Q' n-lqn-1 = anpn 

Therefore the Theorem of Gerschgorin yields 

Now for i = 2,3,•••,n-l we have 

1 
= ;;-;;- (-qi-1(ai-1-2ai+ai+1)-(qi-qi-1)(ai+1-ai)}. 

i i 

-qi-1 2 1 
=-60'--f:..q "!JCY a1p1 i a1p1 i-1 i• 

We may describe the·cases i = 1 and n in either of two ways. 

We may treat i = 1 and n as special cases or we may observe that 

for the special choices O'O = an+l = 0 we have 
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and 

-q n-1 A2 1 A A 
: Ll (Y - - L.10 LIO/ 

01 p n a p "'11-1 n • nn nn 

Hence the use of Gerschgorin Circles yields the following: 

Theorem 10. If x is the zero-extension of the n-vector x; if 

pi'~ (i=0,1,•••,n+1) are positive numbers; and if er is the 

zero-extension of then-vector a , where ai(i=1,2,•••,n) are all 

of the same sign and non-zero, then 
n . n 
\ 2 mJ.n -qi 1 2 1 \ 2 
L {~+Cxi} qi;:::, 1:S,i:S,n [ r:t ~ 6 ai - ;:p- 6qi-1 • 6ai} • L xjpj • 

i=O i i 1 i j,,,;1 

If we take limits we find 

Corollary 10,1. If x(t) E c•[a,b], x(a) = x(b) = O and the following 

conditions are satisfied: 

(i) p(t) E C[a,b], p(t) > 0 on a< t < b 

(ii) q(t) E c•[a,b], q(t) > o on a < t < b 

(iii) a(t) E c2[a,b], a(t) # 0 on a< t < b, 

then 
b min · J (x'(t)}

2
q(t)dt;:::, a<s<b (a(s)!(s) • 

a 
(qa•)'}• Jb(x(t)} 2p(t)dt. 

a 
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n+1 2 qO+q1 1 
Note: (~) [ Pi - R1(D- QD)} ~ oo as n ~ oo unless a(a) = o, 
similarly for 'a(b). Hence the boundary conditions on a are 

automatically taken into account. 

Since, p,q, and x are independent of a, we have 

Jb{x'(t)}
2
q(t)dt ~ M Jb{x(t)}2p(t)dt, 

a · a 

where 
max min 

{ -1 ( )'} M = a a<s<b a(s)p(s) • q&' • 

It seems ' remarkable that the constant M, which we' derived 

£rom the Gerschgorin Circle bound, is actually best possible. 

This follows from the fact that the eigenfunction u(t) belonging 

to the smalle$t eigenvaiue c of the Sturm-Liouville Problem 

' (qx') + A.px = O, x(a) = x(b) = 0 does not vanish on a< t < b, [9]. 

Hence setting a(t) = u(t) yields M = c. 

An additional dividend of this technique is that we have 

derived computable lower bounds for the smallest eigenvalue of 

the Sturrn-Liouville Problem. 

A natural question to ask is: How close is 

min -~-1 2 1 
1 <i< n [ 6 a. - -- •. 6q. 

- - a1p1 1 aipi 1-1 

eigenvalue of Q, for a particular choice of a1 

In order to answer this question we will use the techniques 

of non-negative matrices and matrices whose inverses are 

non-negative. Varga [16] provides a rather complete account of 
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these techniques. Our estimates will be derived from the following 

result, which appears to be of independent interest. 

Theorem 11. If A = (aij) is an irreducibly diagonally dominant 

n x n matrix with aij:::;, 0 for all i # j, and aii > 0 (i=1,2,•••,n), 

n max 
then A has an eigenvalue A with 0 < A $. 1$.i$.n ( l aij). 

j=1 

Corollary 11, 1. F.quality holds in Theorem 11 if and only if 

(lc::1,2,•••,n). 

Proof of Theorem 11: 

The irreducible diagonal dominance of A tells us that 

Hence 
n max 

1$, i"S._n f l aij) > O. 

j=1 

By Corollary 1, P. 85, [16] we have that .A is non-singular and 

A-1 > o. If >.. is an eigenvalue of A with minimum modulus, then 

p(A-1) = 1/f>..I, where p(M) is the spectral radius 0£ M. 

Since A-l > O, Lemma 2.6, P. 4o r16] tells us that A-1 is 

-1 primitive, hence A has exactly one eigenvalue whose modulus is 

equal to p(A-1) and this eigenvalue is positive. Therefore 
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1/A = o(A-1) > 0 and A > o. 

th Let B = A + K, where K is the n x n diagonal matrix whose i 

diagonal entry is 

Thus K is a non-negative matrix and A ~ A + K = B. 

If µ is an eigenvalue of minimum modulus of B, then the Theorem 

of Gerschgorin yields 
n max 

lµj ~ 1;:si~n( l aij}. 
j=1 

However if we let e be the n-vector [ i] · then 

max n_ 
Be = 1;:Si ;:sn[ l a1 j} • e. 

j=1 
max n 

Thus 1 ;:Si~ n ( l aij} is the eigenvalue of minimum modulus of B, 

j=1 

yielding 

Also by Corollary 1, P. 85 [161 

B-l > O. 

A and B satisfy Varga's definition of an M-matrix, hence 

[ 6] -1 -1 
A ;:s B and Ex:eroise 9, P. 87, 1 yield 0 < B ~A • 
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Thus Theorem 2.1 (J), P. JO, [16] yields 

( B-1) < (A-1) p - p 

n 
max 

1/1~is_n[ l aij} ~ 1/>.. 
j=1 

n 
max 

X ~ 1~is_n[ l a1j}. 
j=1 

Proof of Corollary 11. 1: 

Thus 

K = 0 if and only if 

max ln. ln, 
1S,i$.ll( a .. }= ~· (k=1,2,•••,n) . 

J.J ··' "" 
j=1 .t=1 -1 -1 A = B if and only if equality holds for all k, hence A = B 

if and only if equality holds for all k. Theorem 2.1(3), p. 30, 

[16] completes the proof of the corollary. 

We are now in a position to give upper bounds for Xmin, the 

least eigenvalue of Q, for a particular choice of a. 

We will restrict ourselves to the case 

qi-~~i - R1 (D-1QD) ~ 0 (i=l,2,•••,n), with strict inequality for 

some i. This case is attainable since the choice a1=1(i=1,2,•••,n) 

yields 

Clo-ki1 
- Ri (D-1QD) = Clo 

P1 P1 

qi-1~ - Ri (D-1QD) = 0 (i=2, J, • • • ,n-1) 
pi 

~-1~ R (D-1QD) 
qn - =- • 

Pn n Pn 
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-1 With this restriction D QD is strictly diagonally dominant 

and. satisfies the other conditions of Theorem 11. Therefore we 

have the following inequalities. 

Theorem 12. If A.min is the smallest eigenvalue of Q and a is 

~-f•-qi ( -1 ) 
chosen so that pi - Ri D QD ~ 0 (i=1,2,•••,n) with strict 

inequality for some i then 

Corollary 12.1. Equality holds in Theorem 12 if and only if 

min qi-1+qi 1 
1 <i<nl - Ri (D- QD)} = 

- - pi 

If we take limits we find 

Corollary 12.2. 2 If a(t) E C [a,b], a(t) # 0 on a< t < b, 

a(a) = a(b) = O, and the following conditions are satisfied 

(i) p(t) E C[a,b], p(t) > 0 on a< t < b 

(ii) q(t) f C{a,b], q(t) > 0 on a < t < b 

(iii) (-qry•)'/py > 0 on (a,b) 

then 
min _

1 
max 

a<s<bfp(s)a(s) • (qa•)') ;Sc ;S a<s<b(p(s)!cs) • (qa•)'), 

where c is the smallest eigenvalue of the Sturm-Liouville Problem 

(qx•)' + A.px = O, x(a) = x(b) = o. 
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Note: We must add the condition a(a) = a(b) = 0 in order to avoid 

the trivial estimate c $ + oo which arises as the 

unless a(a) = a(b) = O. 
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