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Abstract

In a 1955 paper, Ky Fan, Olga Taussky, and John Todd presented
discrete analogues of inequalities of Wirtinger type, and by taking
limits they were able to recover the continuous inequalities, We
generalize their techniques to mixed and higher derivatives and
inequalities with weight.functions in the integrals. We have also
considered analogues of inequalities of MUller and Redheffer and
have used these inequalities to derive a necessary and sufficient
condition on ordered pairs of numbers so that the first number is
the square norm of the kth derivative of some periodic function
and the second number is the squaré norm of the mth derivative of

the same periodic function,



Introduction

In 1955 [7] Ky Fan, Olga Taussky, and John Todd discovered
discrete analogues of certain integral inequalities inveolving
functions and their derivatives, They considered inequalities
of the Wirtinger type: Lfﬁi(t)zdt S_ISﬁi'(t)zdt, where x has
period 2m and ijk(t)dt = 0, By taking limits they were able
to derive continuous inequalities by matrix techniques and avoided
the differential equations of the calculus of variations, At
the suggestion of Professor Todd we have attempted to generalize
the techniques of [?] to polynomials in the derivatives of x
and inequalities with weight functions in the integrals., We
have also considered analogues of inequalities of Mitller (11]
and Redheffer [13] and have used these inequalities to derive
a necessary and sufficient condition on ordered pairs of numbers
so that the first nmumber is the square norm of the kth derivative
of some periodic funection and the second number is the square

norm of the mth

derivative of the same periodic function, This
last result is the L, analogue of a result of Kolemogoroff [10]

on the uniform norm,
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I. General Technique ‘

The' following is the basic technique of Fan, Taussky, and
Todd [7] and will be used to derive most of our inequalities,
Iet S be a real symmetric n x n matrix with eigenvalues
A2 A2t 2y and let VisVos® sV, be the corresponding

linearly independent eigenvectors:

Sv

3 = Agvy (371,250005m)

If P is a polynomial with real coefficients, then P(S) is a

real symmetric n x n matrix and we know that P(S) has eigenvalues

P(Ai),P(Az),-;-,P(ln) with corresponding eigenvectors v, ,v,,*+«,v

"so that P(S)vi — P()\i)vi (i=1,2,°**,n), |
By a well-known property of symmetric matrices

min max
[1£ign{P(\)H » (x,x) £ (x,P(8)x) < [<i<n{P(A)}] * (x,%)

for every n-vector x, where (x,y) = xTy for n-vectors x and y,

Now we must have
inf m;._n
Nty (B(9)) < 12120 {P(A))
and
sup ’ max
ApS t2hy (P(9)} 2 12120 {POY)],
hence
inf
Iy sty (P(4)3]e (o) < (x,P(3)x) < M <t<11{1>(t,)}]. (x,%)

for every n-vector x,



We note that equality is possible in the last expression if

sup
and only if P(xi) = lns_tf_Al{P(t)} for some i between 1 and n or

P(Ai) = lﬁgﬁﬁil]_{P(t)} for some i between 1 and n, If equality
does occur then the set of extremal wvectors must be the space
spanned by the eigenvectors corresponding to Xi "

For reasons of simplicity we will only consider vectors with
real components and real symmetric matrices. In all cases the
extension to complex vectors and Hermitian matrices will be

apparent,
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II., Periodic Boundary Conditions

Because of the absence of troublesome boundary conditions
the periodic case is easiest to handle, We may periodically
. T =
extend any n-vector x = (xl,x g ,xn) be setting x, . =x;

for i = 1,2,**°,n and r any integer,

Definition: If x is a periodically extended n-vector then for’
m= 0,1,2y°¢°

x(m) = (Amxl,Amx?,"',Amxh)T,

where
m
m = - m=r(nm S — eoe
A = E:( 1) (r>xi-[m/2]+r (1=1,2,°++,n).
r=0

We call x(m) the ﬁth difference of the n-vector x,
¥ 4p dlenr Yk 078 5 (x(r))(s) for mys = 0,1,2,°°° .
The following lemma, which is crucial for our inequalities,

‘was proved by Fan-Taussky-Todd [17] for m = 0,1,2,

lemma 1, If x is a periodically extended n-vector, then
(x(m),x(m)) = (x,me) (m=0,1,2,%+¢), where P is the n x n

symmetric circulant

y

2 =1 0., ..-1
=L 2 =1l s W 0




Proof':
f__xn 5 2:.{1 - x, wy |
Px = = o= -x(z), hence Px(j) = -x(j+2).
| T P T My
By partial summation
n ) n
Gx®)) = ) m o -2mam )= - ) G5
k=1 k=1
'= *(X(l)sx(l))’

yielding
(3), 3Dy = (o) (3405

(x
Thus if m is even we have
G,y o (B mBe) = (2, P%),

while if m is odd

m=1 m=-1
(X(m)’x(M)) - (x(m'l),Px(m"l)) i (PTJ:,P . PTJC) - (X,me).

Rutherford [14] has shown that P has eigenvalues

L sinz(%) (k=1,2,***4n), hence Ay = 0s A = L4 gin® (—g—),

n-1 = 7\n--z
ceesdy =4 sinz([%] I), The eigenvector corresponding to A, is
I TEEE b oA

At this point we have two alternatives open to us, If F
is a polynomial with real coefficients then we may use the

method that we have described in Section I or else we may also
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n

add the auxiliary condition in = 0, which is equivalent to
k=1 m
the requirement (x,e) = 0, where e = (1,1,°**,1)". Since e is

the eigenvector corresponding to An = 0, the auxiliary orthog-
onality condition implies that we need only take our maximum
and minimm over {F(}\i)’F(AZ)’...’F(An-i)}.

The following example should illustrate the differences
in the two approaches,

Let P(t) = t" for m > 1., Since P(t) is increasing for
non-negative t and since 0 =% <A 4 £ ec¢ < Ay, we have

min min & St
1=1<n{P(x;)} = 0 and 1<i<n-1{P(x;)} = P(X_4) = & sin (3.

Thus if x is a periodically extended n=vector then we have

the trivial inequality (x(m) ,x(m)) > 0(xyx) = 0; however if we
n ;

add the a.u:ﬁ.liary condition in = 0, then we obtain
, i=1

(x(m),x(m)) > 4" sinzm(%) (x9x%).

We note that the above inequalities are best possible and
we include a discussion of the possibility of equality, For
brevity this will be the only case where we discuss equality
in the discrete case,

I (x(m) ,x(m)) = 0, then x must be in the subspace spanned
by the eigenvectors corresponding to kn = 0, Thus x= a-(i,i,-..,l)T,

where a is a real mumber,
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- .
If lel =0 and (x(m),x<m)) = 4" sinzm(g)-(x,x), then x
i=

mst be in the subspace spanned by the eigenvectors corresponding

to A = e n S L sinz({l-r). It is known, [7], that this subspace

n-1
is spamned by the vectors u = (ui,uz,---,un)T and w = (Wi’wz’""wn)T’
where uy = cos(—z—gﬂ) and Wy = sin(-z%i).. Thus x=a-+u+b-w,
where a and b are real numbers.

Hence we have established the following extension of Theorem
10 of (7],

Theorem 1, If x is a perdiodically extended n-vector and if
n
le = 0, then

i=1

() o (m)y S 52Ty L (o),

Equality holds if and only if x is the periodic extension of a

vector of the form a.u + b+ w,

Corollary 1,1, If x(t) € C"a,b], x(t) has period b-a, and

fbx(t)dt = 0, then
a

[P %a > @™ Pxtoiat,
a . ’ a

Proof':
b~ 1 L
If we let A = -ﬁ;—% and y, = x(ti) -5 z x(tj), where
ti = a + iA, then J=1
m(m) x(m)) Cas B8 1520 e T -
Azm' - — Azm‘ y’y .
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" The result now follows when we let n - ®,
A careful inspection of the proof of Theorem 1 will show
that we only used the periodic extension property of the n-vector

and x Hence we

=T el 2 S e[
may weaken our requirement x(t) has period b - a to a condition
on the end points, namely x(a) = x(b), x'(a) = x'(b),°";x(m;%)ég)
- x(mfi)(b). '

Halperin and Pitt [8], MHller [11], Nirenmberg [12], and

Redheffer [13] have developed inequalities of the form:

b b b
] (%' (£)}%4t < of {x"(t)}%dt + Hle) J {x(t)}?dt,
a a a

where x(t) € Cz[a,b], « > 0, Redheffer obtained the best possible

value of H(o), We will now develop generalizations of the form:

b N -b i
J e 1% < of = ™0)Pas + B (o) [ 1xe))%as,

"1 < k < m under the further restriction that x(a) = x(b),

x*(a) = x'(b), e, x ™ (a) = (™1 (LY, These inequalities will
be established by taking limits of the appropriate discrete inequal-
ities., Incidentally we observe that Hi,z(a) for our periodic case

is much smaller than Redheffer's general value of §'+ 1z > .
- " (b-a)

This inequality will also appear in Sections IV and V, where

it will serve as a model to illustrate our techniques,



ke - v0™t™, then we wish to maximize P(t)

on [\ ,7\1] = [0,4 sin? (['z] )1. Since P'(t) = kektk-i Tiord tm'i

If we let P(t) =

if we assume that 6 > 0 then the maximum value of P(t) on t > 0

1/m-k sup 1/m-k
k
ocours at t = () . Tms Stk (K(6)] < PGGlER )=

e/
-5,

An inspection of the graph of P(t) will yield the following

cases:

1/m=k k/m-k K
Ay <1—,<x {P(m = P(las] ) = (@) (1-m).

1/m-k
If Ay 511;(-%‘3.) i then _
A <E<l1{P(t)} = P(xl) P(4 s:.nz(['z'lﬂ))

= "-J—kek sinZk( [-%]-H-) { 1_4m-kem-ka sin2m-2k( [121]_;11) j o

If n is even then P()\i) = ‘l'kek{i-b»m'kem"ka,].

Hence we have the following result,

Theorem 2, If x is a periodically extended n-vector,o and 6 are

positive constants, 1 < k < m then we have the following inequality:

k/m-k
ek(x(k),x(k)) < oo™ (x(m) ,x(IH)) + ('n'lic"a') / (1-k/m)(x,x).

1k 1/m=k
If & 2 Si==) s then we may improve the above inequality to:

| ek(x(k) ,x(k)) - .qvem(x(m) ,x(m)) < l&kek[ 1-4m'kem"kof} e (xyx).
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Proof':
g, 8 1/m=k

We note that 4 < 'é-(-fn— . certainly implies that

2/rn 1,k 1/m-k
4 sin®([5 D) < ) and P(t) is increasing on the interval

1/m=k
1,k

[0,5(7a 5

2
If we take 6 = (%"%) and let n -+ « then we obtain a contimuous

analogue of Theorem 2,

Corollary 2,1, If x(t) ¢ C™a,b], 1 < k < m, x(a) = x(b),
x'(a) = x'(b),---,x(m-l)(a) = x(m-i)(b), and if o > 0 then we have

the following inequality:
b b k/m=k b
P e 072 < of W02 + (0 Caetfmy [0,
a a a ‘

If we let k = 1, m = 2 then our constant has the value -qia

as compared to the Redheffer value of % + -E--l—sz- .
- b-a

One may now inquire about the possibility of equality in
Corollary 2,13 by our previous discussion we see that this is

possible if and only if
Max ' k/m-k
5 : k k k
lim [1<i<n{o - 0™} = (5) (1- 5.
n-$ .
However a brief investigation shows that the above expression is
not always sa;‘bisfied, hence Corollary 2.1 is in general not best
possible, A little more work will yield the best inequality,
We notice that the smaller eigenvalues of P approach zero as

k. k

1 / 2 and that the positive root of 671" = oo™™ exhibits a similar
n

behaviors
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2
= 2,1 ~ _.......4'
-1 = 4 gin (n) nz Y )\n_

A= 0, A

n n

3

2 1/m-k
root = Lp:élg . (%) m '
(n+1)

Hence if we set /
: 1/m-k
L= [e=2. (_l_) ,

2m /; 15

2
=4 sinz('-zﬁu): 8

TT L N
2 ’

n

where [ ] is the greatest integer function, then L is the limiting

number of distinct eigenvalues of P which are greater than

less than or equal to the root,
: il 2m-2k
If L = 0, which occurs when o > (-—2? s then

L= k- M, -
lim [1515::{91&{ «6™\J1] = 0,

n+e

yielding the best possible result:

Corollary 2,2. Let x(t),k,m be as in Corollary 2,1 and let

b b
[ fx (49124 < o | (=™ (4)}2at.
“a a
- b
If we add the auxiliary conditionf x(t)dt = 0, then
. a
Max

0 and

lin [1gi<n-1{6" f-0e™}] = (B%.E)Zk - “(E%E)zm <0

n-+

and we obtain the best possible result:

Corollary 2,3, Let x(t),k,my» be as in Corollary 2,2 and let x

b
also satisfy r x(t)dt = 0, then
“a
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b b , b
[ 1) Pat <ol =™ 0)1%0 + (ED™ - 02D + [ ()12,
a a a

If L > 1 then there are limiting eigenvalues between zero

and the positive root, Hence if we set

1/m-k
b-a k
i= (2 (),
then J is the limiting number of distinct eigenvalues of P which

are greater than 0 and less than or equal to the maximum of

ok - ae™™,

Thus if

B (B (B

then

M k/m-k
1im [15?;:1{9‘&‘;-@9%‘;}] =&y (1ok/m)

n+e

and C7rollary 2.1 is best possible, Otherwise we may replace
k/m-k

B (1ek/m) by max{ (I oI, (2EHm  2A(THImy

We may summarize the above results by the following best

possible inequalities,

Corollary 2.4, If x(t) € c™a,b]l, 1 £ & < myxia) = xlb),
x'(a) = x'(b),"°,x(m-1)(a) — x(m"l)(b), and if o > 0 then

b b 5
[ e < o m™anfar +n L0 [ x)1%at, here

2m=-2k
0 for o > (:9;2'% g 5

k/m-k
Gy

e ()
Fie ()

1/m-k
(1-k/m) if bz;'né . (/%) is a positive

integer, and otherwise
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H ae) = max (B, o207, (B 2(gtny =

Corollary 2,5. Let x(t),k,myo be as in Corollary 2.4 and let x
b
also satisfyj x(t)dt = 0, then

J £x (£)12at < o {x(m)(t)} &t + G, (a)J {x(t)} 244,

a a
where

_ 21 2k .21.1. 2m E:é 2m-2k
Gk,m(”) = e - a(b_a for o > ( o "

and otherwise

@) = B ().

It is not difficult to see that Hk,m(a) and Gk’m(a) are
piecewise linear functions of o, which are monotonic decreasing,
and that the jumps in the derivatives of Hk and G occur for

- s kym

’

those positive numbers oy which yield

2mid2 21+
By o, @ - e ™, 2miien™
where i is a non-negative integer, We have = > oy >0y > e > 0
and lim oy = 0. Note that
ide

jb{sin(k)(zﬂlt)1 dt = aj sin(m) (ZTLy12q4

+ B (o) Ja{sm(%%)} dt,

for o, S o< oy This accounts for the piecewise linearity of

i-1°

Hy and G and will be of great importance in Section III.
oM k,m
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At this stage it is apparent that there is an unlimited
number of possible inequalities. In fact every polynomial will
give discrete inequalities and polynomials in 6t yield continuous
analogues,

It is known, see for example [17, that if f(t) is represented
by a power series with real coefficients and if A is a real
symmetric matrix with eigenvalues 7\1,7\2, il ',ln which lie strictly
within the circle of convergence of the power series for f(t),
then f(A) is real symmetric and has eigenvalues f(xi),f(kz),"',f(lnl
This result enables us to extend our polynomial inequalities to
discrete inequalities on analytic functions,

Theorem 3. If x is a periodically extended n-vector and if

w

£(t) = E amtm, where the a_ are real numbers and the series
m=0

converges on a set containing [0,4] in its interior - if n is
odd then we need only require convgrgehce on a set containing

[0,4 sinz([%] %)] in its interior - then
sl S o (e L (my 2P
[ost<H (1) 10ex) < ) a (=™, x'™) < [0zt <M £(£)}1(xyx).
m=0
The following inequalities are examples of the application

of Theorem 3.

Corollary 3,1, If x is a periodically extended n-vector then
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Er'nl" (x(m)’x(m)) < (e™-1)(x,x).

m=1

Corollary 3,2, If x is a periodically extended n-vector and

6 > 0 then
2m

g 0 1
-(xyx) < Z (-1)" (G—Zm;;ﬁ (x(2m+1),x(2m+1)) £ Geyxd.
m=0

Proof: o
' B bl S
sin t = ZTLZE%FT' and |sin t] <1,
m=0

Corollary 3,3. If x(t) € C"[b-a] and x(t) has period b ~ a then

b - m b b
- [ () Par < ) il (2m+1) (14241 £)}3dt.
[ o <nzor§m;%r [ = )Pae < [ {x(]
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III. Inequalities of Kolmogoroff Type

In analysis one frequently wants to obtain inclusion regions
for the norms of functions; i,e,, if M is in the ineclusion region,
then there exists a function f, from a certain set of functions,
with norm of f equal to M, Kolmogoroff [107 established a result
of this type using the uniform norm over the function set C'[0,=],
If we set Mk(x) = Osifzﬁ’{lx(k)(t)]} (l=0,142,***ym), then
Kolmogoroff [10] gave a necessary and sufficient condition "in
order that to a triple of positive numbers MO’Mk’Mm(O < k < m)

there should correspond a function x(t) for which

My = My(x), M =M (x), M =M (x)."

In this section we will establish a similar result on a
triple of positive numbers relative to the square norm, where
our set of functions will be C'[a,b] N {xlx(a) = x(b),x'(a)
= x'(b),"',x(m’l)(a) = x(m’i)(b)}. We will also add the restric-

b _
tionj x(t)dt = 0 in order to eliminate the constant function,
a

If x(t) is an element of our function class, then we set

a0 = [P 0))Zat (om0, 1,20+ .
a

We may assume without loss of generality that we have normalized

x so that Ao(x) = 1, We will establish the following result:

Theorem 4, In order that to a pair of numbers a»a there should
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correspond a function x(t) € Cm[a,b] n {xlx(a) = x(b),

b
x1(a) = x'(b) o+, x " (@) = X" D), [ x(t)at = 0]
for which *

Ay(x) =1, & (x) = 2, A (x) = a

it is necessary and sufficient that

2k 2m
a2 EZ), 8> (ED)7, and

3 - oa < Gk’m(cx) for all o > 0,

Proof of Theorem 4:

The necessity of the conditions is a direct consequence
of Corollaries 1.1 and 2.5,

The proof of the sufficiency will be divided into several
cases and we will use the notation of Section II throughout, We
will denote the normalized sin (%ﬂi_—z) by S i(t). We recall that

‘on the interval o; < o < oy j We haveA Ak(Si)-cr A (8,)= Gk,m(a)'

Case 1: & - oa, = Gk (o) for at least two values of o, say
’m

We immediately have that a -oa = Gk,m(cv) for all ¢ € [ti,tz].
Since we know that the Si are maximizing functions there is an
integer i with o, <t, <t, <oy ; and a -oa = Gk’m(a)
= Ak(si) - arAm(Si) for o; <o < o _qe Thus a, = Ak(si)’

a = Am(Si).
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Case 2% a -oa = Gk’m(ce) for only one value of o, say o = tl'
We immediately have that t, = o, for exactly one integer i.

Thus

g - ogay = G (og) = A (Sy) - oyh () =

m

B (Sy49) - 034,054 040,

Also since a - oa < G m(oz) for all & > 0 we must have
9

Am(Si) <a < Am(si+1)' Thus there exist bi’bi+ with 0<b,,b., .<1,

1 i? +1

3 ).

b * b:'1.+1 1, and % = A (bisl+bi+1 1+1) bj.Am(S:i.)"'bl-l-i‘ﬂL (51+1

[Note that the last equality follows from the orthogonality of

S: and all its derivatives to S and all its derivatives], Now,

i i+1

Ak(bi i i+l i+1) T @y =
Ak(bls +b:|.+1 i+1) iAm(b S +bi+1 1+1)

bitAk(Si)-oiAm(Si)] i b§+1[Ak(Si+1) -y A (85,407 =

2.2
a2,
Hence a, = A, (b,S,-+b; S, ).

Lyqr. 2m .
Case 3: a, - oa < Gk’m(a') for all o > 0 and a 2 (b—a —Am(Sz).

We know that there is exactly one integer i > 2 with
2m 3 2m
ED™ ¢ o <« EEM™ op g (s,) <8 < A (S

b-a - "m b-a m 1+1) If we

repeat the construction of Case 2 we can find bi and bi 1

= A (bi . i+1 +1) and since a - o;a < Gk m(ai) =

Ak(b 8303 418541) = g A (DS, +by Sy )= A (BySs+0; 8s )= asan

with
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we have
3y < My (b38;+0; 455 4).
By our conditions on ay and a there is an integer j> i + 1
and an 7 > 0 such that Ak(Sj) - '&Am(Sj) = Ak(sl') - '&Am(sl)
< &y -®a . Now Am(si) < Am(si) <a < Am(si+1) < Am(sj), hence

there are bi’bj with 4 Am(b151+bjsj) and since

a, - oa > Gk,m(or) = Ak(b181+bjsj) - arAm(b181~i-bij)

we have
a, > Ak(bisi+bjs J.).
By the orthogonality of b.S., + bjS and bisi + b, .S there

11 j i+174+1
are constants ¢ and d with 02 + c12 = 1 for normalization and

™ Am(cl:)lsl+ch.Sj + db,S, + db, 154 +1),
a = Ak(cbisl +cb3.sj +db;5, +d i+1si+1).

) Ly 2m
Case 4: a - oa < Gk’m(cx) for all o and a_ < (‘g_;) = Am(Sz).

If we repeat the process of Cases 2 and 3 we can find b,,b

1772

such that a_ = Am(bisi+b232) and a, < Ak(bisl+bzsz).

We cannot simply repeat the process of Case 3 because

. T 1
b:l.S1 + ‘025z will not be orthogonal to blsi + bzs o However we

note that the normalized multiple of cos (-12;{%), which we denote
by Ci(t), also satisfies Ak(cl) - aAm(Cl) for oy < o < @, and is

orthogonal to all the Si. Hence we can find cl,cj such that
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a, = Am(clciﬂjsj) and
a, > A,k(clci-l-cjsj)
and we continue as in Case 3,

Thus we have proven Theorem 4,
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IV. Zero Boundary Conditions

We extend the n-vector x = (xl,x ,"-,x:n)T to an ni2-vector

X with zero boundary conditions by setting Xg = X4 = 0 (X is
called the zero extension of the n-vector x), If we set
n+1
&3 = ) x.°
i=0
=(1) =(1)y _ E
&%) = ) (k- i)
i=0

n
@222y = ) oy e )?

then Fan-Taussky-Todd [7] have shown that

(_(m) —(m)) = (x,2™) = x Lol (m=0,1,2),

where Z is the n x n tridiagonal matrix =

- e

2 -1 0 L] L] L]
-1 2-1 0
0 . . . ®

L * b o

Rutherford [14] has shown that Z has eigenvalues
2

4 cos ) (k=1,2,°°**,n), hence the eigenvalues of Z lie in the

2(E— &

2 +2
interval [un,uij = [4 sin

4 cos This immediately

Zni2)? 2n+2)]'

yields the following:
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Theorem 5. If X is the zero extension of the n-vector x and

(%) = at® + bt + ¢, a,b,c real, then:
6 € T, 1EIER < a@2,5D) + o@D 2Dy + ox,5)

max
< € [, 1E(E)}(E>R).

If we let f£(t) = ot - aeztz then we can derive an analogue

of Theorem 2 for the zero boundary condition case, A brief
reference to Section IT will show that we have the following three

cases to consider,

max '
(1) 4if py = U cos (2n+2) < 1/208 then t€Tugou JH{F(E) = £(u,)
= 6p,{1-06u,],
2 ; maxg
(1) if u =4 sin (2n+2 > 1/206 then t € [uy,u {£(£)} = £lu )
= ou {1-o0u ],
(iii) © in all cases f(t) < £(1/200) = 1/bo.
Coroll 1, If X is the zero extension of the n-vector x and

®s8 > 0, then we have:
o 1) =1y < 0022 %2y 4 1/10(x,%).
If 4 cos (

2n+2) < 1/200 then the 1/Ux may be replaced by

46 cos ( Y{1-40® cos ( =

2n+2 2n+2)}'
If 4 sin®( =—=) > 1/206 then the 1/le may be replaced by

2nﬁ2
1o sin®(=S=){1-bad sin®(=T—

2n+2 2n+2)}'
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Before we pass to the limit we must investigate cases (i)

and (ii) when 6 = (n+1) and n + o,

(1) 4 cos?(zZ

) < 1/200 5 4 cosZ(5Z 1/2a(b“1)

2nt2 2n+2

(L

O’..<.'31§(b_1) sec )s i.0, o =0,

2n+2
(i1) &4 sinz(

2n+2 > 1/200 => 4 sin (2n+2 1/20/( )

z
)/:an("-——).ie.a»%)—.
21

v

l
8 n+1

Corollary 5,2, If x(t) € Cz[a,b],x(a) = x(b) = 0, o > 0 then we

have:

b b b
j {x'(t)}%4t < oaJ {x'7(£)}%dt + 1/uaj {x(t)}%dt.
a a a

2
If we also have o > (Lh:%l— then the 1/4o may be replaced
2n

2
b L) 1= __QE__
g Lo L

If we take limits carefully letting a = 0, b = /n and

6 = (2% tien we obtein
n

Corollary 5.3. If x(t) € C2T0,»], x(0) = 0, @ > 0, and all

integrals exist then

[o=] o0
j (x'(t)}2at < arf [x'*(£)}%dt + 1/l4af {x(t)}%at.
0 0 0
We note that it is possible to derive best possible analogues
of Corollaries 5,2 and 5,3 in the same spirit as the extensions of

Corollary 2.1. Also we may derive a Kolmogoroff type necessary and
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sufficient condition for this zero boundary case in the same manner

as we did in Section III,
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V. Free Boundary Conditions

It == (x T ,xn+1) is an n+2-vector, then we define a

new nt2-vector h by:

e R s

Notice that h 39 n+1 = X and hk is on the line between
and x hence the vector ¥y = x - h is an n+2-vector w:i.th
*0 n+l?

yo = 'fn 31 = 0 or y is the zero extension of some n-vector Ve

Therefore we may apply Theorem 5 to ¥, obtaining:

min
£ €lu_ou, JEWIED < aG 2,572 + G171 4 oG,

max — ——
oI €run,u11{f(t)}(y,y),

where £(t) = at® + bt + ¢ and [u_,u,] is as before,

We must now try to relate (Fci),'i(i)) to (x(i) ,x(i)). We

find
n
27 = ) By )
i=1
= Z{xi—i ?‘x:|.+2 Xiwl™ 1+1}
i=1

n :
= ) D gmaxgw ) = () =2y,



~26-~

n ‘ n
(?(1):;?(1)) = Z{-ii‘—i.l.i}z = Z (-0 + n:iixo}
i=0 1_0
n
W X i
= ) ixy-xy 402 +2—n§ Z{ “xy g W Dl 0} § l
i=5 s R
(1) (1)y _ ff@%§%i;1_ ,
and

(7,¥) = (x=h,x-h) = (x,x) - 2(x,h) + (h,h),

which is not very convenient to use, Substitution of these
expressions into the previous inequality yields the free boundary

analogue of Corollary 5.1.

Theorem 6, ILet x be an n+2-vector, let ¥ be the n+2-vector
x -
nt+l 0

obtained by setting Vi ™ B, = T

k - Xq9 and let we0 > 0
then we have: "

2
o(x{) 1)y < 002(x(2),x(2)) + L}_q (7,5) + i 0)

(n+1)

We may replace 1/Uw by the same coefficients as in Corollary 5.1,

Taking limits yields the continuocus case.

Corollary 6,1, If x(t) € ¢*[a,b] and @ > 0 then we have:
b b T 5
) {X'(t)}zdtsaj fxn(t)}%at + 74-15] fy(t)}%at + ix(bl)):::(a)L ,
" “a

a a

2
where y(t) = x(t) - x(a) - x(b)-x(a) | (t-a). If o > .C‘Z'.%l.

b-a
2m

2
._._QIL._}.

then the 1/4¢ may be replaced by 5
(b-a)

(b-a)2 ik
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As one can see the free boundary case is untidy because of
the presence of an auxiliary function which is used to reduce
the problem to the case of zero boundary conditions, However,
this technique can‘be used to extend many of the results of 7]

to the free boundary case; for example:

Theorem 7. (analogue of Theorem 9 of [7]). If X% st 9K g

are any real numbers, then

n n+l x "‘xo 2 (X _xo)z
X 2 2/ T e . el n+1

Z fogmx; 4 15 2 4 sin®(555) Z {-%g-1 =57 M CT™Y) .
i=0 i=0

Theorem 8, (analogue of Theorem 11 of [7]). If XysXys " taX, Ly

are any real numbers, then
n+l

i {x. ,=2x.+x }2 > 16 sinb( ey Z {x,~x -1 xn+1-xo}2
i-1"% "N = nt+2 1% n+l
i=1 i=0
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VI. Extension to General Inner Products

In I-V we have considered inequalities with the usual inner

: b "
product (f,g) =‘J £(t)g(t)dt, or with various discrete analogues

a .
of this inner product, If w(t) is a positive integrable function

on [a,b], then (f,g)w = jbf(t)g(t)w(t)dt is also an inner product
on Cla,b], [6]. A numberaof authors has investigated discrete
and continuous inequalities in these general inner products, see
Beesack [2]; Block [37,[4] and Coles [5].

Beesack used the properties of the Riccati equation

b
x' + x° + p = 0, to develop inequalities between I {x'(t)}zdt
Ya

and.Jb{x(t)}zp(t)dt. We will attempt to use a discrete variational

technzque to produce our inequalities, For reasons of simplicity

we will restrict ourselves to the case of zero-boundary conditions,
The Euler equation for the functional

fx) = [ Tix0(£))2a(6) - ofx(t)1Zp()dt 15 (ax")' + opx = O,
Therefor: ¢ will be the smallest eigenvalue of the Sturm-Liouville
problem (gx')' + Apx = 0, x(a) = x(b) = 0. Our task will be to
discretize this problem and produce estimates for the relevant
eigenvalues,

We let X be the zero extension of the n-vector x = (xl,xz,"‘,xn)T

and qsP; (i=0,1,°°*4n+1) be 2n + 4 positive numbers. An application
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of Theorem '? yields

Z{ Xi41” Yo% °<j<n qy Z{ X 41" i}z

i=0

min
> 4 sin (2n+2) ¢+ 0<j<n ay Zx
i=1

min

0<j<nqi a

5 %2,

1£k5n Py i=1

2, ™
> 4 sin (2.n+2)

A simple passage to the limit n - « yields
min

b 2 . b
[ e Patdar » —— .+ sflasblale) . [Fre))Pp(e)at.,
2 - T ela,bIp(r)

At this point we find that a great deal of work is involved

in obtaining sharper inequalities. We introduce the vector y,

with y, =JE’ x,. Then

2 1
Z{:LH. i}q Z{EEI 93

i=0 Py

: n-1
2 i W - W o 2 Y1t Z (5.2 G391  FVipy :
PR e, TP = A /Py

p:|.+1

T
=y W,
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where Q is the n X n real symmetric tridiagonal matrix
B

%" Y 0
PL J/ppp,
""ql q1+q_24 'qz 0
p
Jp1p2 2 Jp2p3
o L] * L ] L ]

“9.1 0 %47 Y

VPy_ 1Py S T

“9n-1 Gp-1t9y
/ P
. Pp.1Pp n J

Hence we have the following inequality.

Theorem 9, If X is the zero-extension of the n-vector x and if

Py »qy (i=0, 1,"-;n+1) are positive numbers, then

"‘“i“z pi—z{iﬂl £ Amsx Zx
1=1 420 =



=5

where Amin and )max are respectively the smallest and largest
eigenvalues of the matrix Q.

Because of the rather complicated nature of Q it seems hopeless
to attempt to directly evaluate the eigenvalués of Q. Therefore we
will consider diagonal similarity transformations of Q in the hope
of obtaining a more tractable matrix which will have the same
elgenvalues as Q.

Let D be the n X n matrix diag{alfl-)z : c«z@ e o'n\ﬁ);}, with
oy # 0 (i=1,2,***,n) and all @; of the same sign. Then D_iQD has

the same eigenvalues as Q,
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Aoty ~%9 4
Py “1P1
M O s T 5
5Py P 2Ps
0 . & é
D"1QD=
e T T R T W W B
W B Yy
0 ~Cn-19%-1 n-139
anpn pn
L e

If A= (aij) is an n X n matrix, then the Theorem of Gerschgorin
[15] tells us that the eigenvalues of A lie within the union of the
dises:
0< laii-zl < Ri(A) (1=1,2,°**,n),

where

n

Ry (4) = Z a4
5=1
A
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In our problem
agql

-1
R, (D”7QD)
1 oDy

i K R £ K
%Py %Py

Ri(D-lQD) = (i=2!3s'..!n‘1)

-1 %191
Ry(D77QD) = 0= .
nn

Therefore the Theorem of Gerschgorin yilelds

min

q;_4Ha
Mﬂngig}gn(ékl—l

i

max g, .+q

Amax < 1<i<n { -1 3
Py

Now for i = 2,3,***,n~1 we have

- Ry(07'aD)}

+ R, (0" aD)}.

————qi;iﬂi - &, (07'aD) —
= c_r;lp: {aiqi-lmiqi‘ai-1qi-1-ai-§-1qi}
E ailpi {ay_gloy _g-2eydy g )dey gay g-oyay g4oya4-04 40,]
= cyilpi (may_q(oy_g-2et0y,4)-(a5-05 4)(oy 4-0y)].
= :-gﬁ 20’1 - ;;15; qu__1 . Aori.

We may describe the'cases 1 = 1 and n in either of two ways.
We may treat i = 1 and n as special cases or we may observe that

for the special choices e 0 we have



M R N
Py Py Py

{aqg o=y )-q, (o= )]

9 52 1
= Dy - Moy ’
4Py 1 o4 P4 q0 1
and
-1 netInt %1 2 o
P, o P, o P, n o P n-1"n

Hence the use of Gerschgorin Circles yiélds the following:

Theorem 10, If X is the zero-extension of the n-vector x; if
Py 99y (i=041,°**,n+l) are positive numbers; and if & is the
zero-extension of the n-vector o, where ai(i=1,2,"',n) are all

of the same sign and non—zero, then

Z x40 )70y 2 1<1<n{

~95_1
1=0 "1

2 . ¥ 2

Py o3Py

If we take limits we find

Corollary 10,1, If x(t) € C'[a,b], x(a) = x(b) = 0 and the following

conditions are satisfied:
(1) p(t) € Ccla,b], p(t) >0 ona<t<b
(11) q(t) € c*[a,b], q(t) >0 ona<t<b
(111) o(t) € C%[a,b], a(t) £ 0 on a < t < b,
then

j {x'(t)}%q(t)dt > a<s<b[-z—')—(-5' (qu*)'}e j {x(t)}%p(t)dt.
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2 95t N
Note: (21 (2L _ p (0"1gD)) + = a8 n =+ = unless a(a) =
b-a Py 1

similarly for o(b)., Hence the boundary conditions on «o are
automatically taken into account,

Since, p,q, and x are independent of o, we have

b 2 «b 2
J = (0)1 atedat > w0 i) ¥Pp(t)at,
a ' a

where
max min 5
M= o a<sg<b {—7=5=7— (s)p(s) * (qe') 1.

It seems remarkable that the constant M, which we derived
from the Gerschgorin Circle bound, is actually best possible.
This follows from the fact that the eigenfunction u(t) belonging
to the smallest eigenvalue ¢ of the Sturm-Liouville Problem

qx') + Apx = 0, x(a) = x(b) = 0 does not vanish on a < t < b, (9].
Hence setting o(t) = u(t) yields M = e, -

An additional dividend of this technique is that we have
derived computable lower bounds for the smallest eigenvalue of
‘the Sturm-Liouville Problem,

A natural question to ask is: How close is
- 1

Sy - oo

%Py 1Py

elgenvalue of Q, for a particular choice of «?

1':i<11{ P 'Aai] to Amin, the smallest

In order to answer this question we will use the techniques

of non-negative matrices and matrices whose inverses are

non-negative, Varga [16] provides a rather complete account of
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these techniques, Our estimates will be derived from the following

result, which appears to be of independent interest,

Theorem 11, If A = (ai ;)) is an irreducibly diagonally dominant

n X n matrix with a,, < 0 for all i # j, and a,, > 0 (i=1,2,°**,n),

13 i
n
max
then A has an eigenvalue A with 0 < A < 1<i<n { Z aij}'
J=1

Corollary 11,1, Equality holds in Theorem 11 if and only if

n n
max
1ignl ) ag) = ) &, (=1,2,7n),
=1 A=l

Proof of Theorem 11:

The irreducible diagonal dominance of A tells us that

max - i
1<i<n {laii! - Z 'aijl} > 0,
J=1
JH
Hence
n
max :
i<i<n | Z aij} > 0,
J=1
By Corollary 1, P, 85, [16] we have that A is non-singular and
-1

A~ >0, If A is an eigenvalue of A with minimum modulus, then
p(A'i)rz 1/151, where p(M) is the spectral radius of M,

since A% > 0, Lemma 2.6, P. 40 [16] tells us that A™' is
primitive, hence A-:L has exactly one eigenvalue whose modulus is

equal to p(A-l) and this eigenvalue is positive, Therefore
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1 = o(A-l) > 0 and A > 0.

Let B= A + K, where K is the n X n diagonal matrix whose ith
diagonal entry is
n n
1< j<nf z ajk} = Z ase
k=1 =1
Thus K is a non-negative matrix and A< A + K = B,
If p is an eigenvalue of minimum modulus of B, then the Theorem

of Gerschgorin yields

max n
lu] > tgi<n{ ) 3, 51

J=1
1
However if we let e be the n-vector !’ s then
1
. max 2
Be = 1<i<n{ z ai,j} * e,
J=1
n
max
Thus 1<i<n{ z a'i,j} 1s the eigenvalue of minimum modulus of B,
J=1

yielding

n
max
o(B1) = [1<ign i ) o 3170
J=1
Also by Corollary 1, P, 85 [161

i & 0.

A and B satisfy Varga's definition of an M-matrix, hence

A < B and Exercise 9, P. 87, [16] yield 0 < B+ < a1,
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Thus Theorem 2,1 (3), P. 30, [16] yields

K € ofa™H

or n
max
igisnl ) 2y} < 1A
3=1
or n
max
A < tgignl ) syl
J=1

Proof of Corollary 11.1:

K =0 if and only if

max o i
1_<_1.<_n{ Z al,]} = EJ ak'f, (k=1,2,---,n).
J=1 el § o
Thus A = B if and only if equality holds for all k, hence A" = B
if and only if equality holds for all k, Theorem 2,.1(3), p. 30,
[16] completes the proof of the corollary. a
We are now in a position to give upper bounds for Amin, the

least eigenvalue of Q, for a particular choice of o,

We will restriet ourselves to the case

95-1%9
Py
some i, This case is attainable since the choice ai=1(i=1,2,--',n)

- Ri(D_lQD) > 0 (i=1,2,°**,n), with strict inequality for

yields
Aoty
Py
951193
Py

] 99
- R, (D7°QD) = -p—l

- Ry(07laD) =0 (1=2,3,°*,n-1)

n-1

-1 an
- RAD - .
Lo p o) - 32
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With this restriction D-iQ,D is strictly diagonally dominant
and satisfies the other conditions of Theorem 11, Therefore we

have the following inequalities.

Theorem 12, If )Amin is the smallest eigenvalue of Q and o is

931194 i g
chosen so that —-p———' - Ri(D Q) > 0 (i=1,2,°++,n) with strict
i
inequality for some i then
min q. ,+4q.
1<icn (== _ p (07'aD)} < Amin < 1<1<1n{qjL - R, (0" aD)}.

i :L

Corollary 12,1, Equality holds in Theorem 12 if and only if

min q +q max +q
1<ign-+12 g (07lon)) = 1<1<n{i%—-i - &y (0" taD)3.

i i
If we take limits we find

Corollary 12,2. If ot) € Cz[a,b], a{t) # 0ona< t <b,
o{a) = o(b) = 0, and the following conditions are satisfied

(1) p(t) € cla,b], p(t) >0 ona<t<b
(1) ot) eola,b], qlt) > Cena<t <b

(111) (~go")'/po > 0 on (2,b)

then
min

max
-1 ] ], v
a<s‘<b{p P (qa') } < e < e.<s<'b{p(s - (qo*) 1,
where ¢ is the smallest eigenvalue of the Sturm-ILiouville Proble:ri

(ax')' + Apx = 0, x(a) = x(b) = 0,
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Note: We must add the condition o(a) = o(b) = 0 in order to avoid

the trivial estimate ¢ < + » which arises as the

+1,2.9979 = +1,2. 9119 =1
Ln(rg) (57 - R0} = BnGR) =R - R (07 )]

unless o(a) = o(b) = 0,
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