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ABSTRACT

PULSED NEUTRON MEASUREMENTS

IN TWO ADJACENT FINITE MEDIA

by Georges P. Giraudbit

The pulsed neutron technique has been used to investigate the
decay of thermal neutrons in two adjacent water-borated water finite
media. Experiments were performed with a 6 x6x 6 inches cubic
assembly divided in two halves by a thin membrane and filled with pure
distilled water on one side and borated water on the other side.

The fundamental decay constant was measured versus the boric
acid concentration in the poisoned medium. The experimental results
showed good agreement with the predictions of the time dependent
diffusion model. It was assumed that the addition of boric acid in-
creases the absorption cross scction of the poisoned medium without
affecting its diffusion propertics: In these conditions, space-energy.
separability and the concept of an "effective' buckling as derived from
diffusion theory were introducc«. Their validity was supported by the
experimental results. =

Measurements were performed with the absorption cross
section of the ﬁoisoned medium increasing gradually up to 16 times its
initial value. Extensive use of the IBM 7090-7094 Computing facility
was made to analyze properly the decay data (Frantic Code). Attention
was given to the count loss correction scheme and the handling of the

statistics involved. Fitting of the experimental results into the
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analytical form predicted by the diffusion model led to

Zav = 4721 see™t (£150)
Do = 35972 cznzsec_1 (£800) for water at #1%
C (given) = 3420 crn45ec_1

These values, when compared with published data, show that the

diffusion model is adequate in describing the experiment.
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I INTRODUCTION

The behavior of a neutron-density field is described in the most
general way by means of the well-known Boltzmann equation. Theo-
retically, this equation together with the adequate initial and boundary
conditions is sufficient to defi. 2 the neutron density in time, space and
energy. However, the analytical treatnqent_of the transport equation
itself is so difficult in most cases that approximations have to be made.
A standard treatment which has been used successfully in many
insta.nc;es is the so-called diffusion theory. In particular, diffusion
theory has been used extensively to describe pulsed neutrons experi-
ments. A pulsed neutron situation is one of the time-dependent prob-
lems which arises first, and therefore is of considerable interest.

In this situation, diffusion theory gives results of variable
quality, according to the extent to which the underlying assumptions
are met. Since the time when the diffusion model was first used,
some improvements have been added to it,‘ such as '"diffusion cooling"
effects. However, the basic approach remains the same.

Alternate treatments of the transport equation have been sug-
gested, such as Fourier transforms techniques. In recent years, a
complete rethinking of our interpretations of pulsea neutron experi-
ments has been attempted, by trying to deal directly with the transport

equation (see N. Corngold (1)).

(1) Noel Corngold: Theoretical Interpretation of Pulsed
Neutron Phenomena - IAEA Symposium - Karlsruhe, Germany,
May 1965. :
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Diffusion theory gives valuable results in two classes of
problems:

a) Steady state for thermal homogeneous or heterogeneous sys-
tems. In the case of heterogeneous systems, diffusion theory is
applicable in regions far from highly localized strong sources or sinks
(such as boundaries or strong absorbers).

b) Time-dependent problem for homogeneous systems, in
particular pulsed neutron experiments.

In these situations, boundary conditions can be introduced for
use in finite size systems.

Since good results were obtained for these two problems, it was
thought to test the diffusion model against one higher degree of diffi-

culty, i.e. the time-dependent problem for a non multiplying finite

heterogeneous system.

The practical way to evaluate diffusion theory in these condi-
tions is to compare experimental results with the predictions of the
theoretical model. Still, we have to define what.we mean by "com-
pare', "experimental results', and "predictions'. To do so, we must
select the physical system to be investigated and the methods of in-
vestigation.

It is known that the pulsed neutron technique is one of the
simplest and most flexible methods of studying a time-depeﬁdent
neutron field in a non multiplying medium. For convenience, relative
simplicity and reliability, it has been chosen as method of investiga-

tion.
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The choice of the physical system itself depends upon:

a. Its ability to be invcstigated by use of diffusion theory in
order to predict the behavior of measurable quantities,

b. The simplicity of the experimental set-up, in order to
isolate at best the quantities we¢ want to measure, and

c. The possibility of checking the results against previously
published data.

These conditions called for:

a. A simple geometry. We chose a cubic assembly made of
two adjacent parallelepipeds of equal thickness.

b. A moderator of well known (absorption and diffusion)
properties, for which diffusion theory gives reliable results in less
complicated situations, such as pulsing of an homogeneous assembly
(it would be quite inconsistent to check the validity of diffusion theory
in a difficult situation when it does not give good results in a simpler
one). Becaﬁse of the amount of published data on water, it was de-
cided to use water and water-boron solutions in the experiment.

c. A simple heterogeneity situation: Given two media, one
can vary the absorption or diffusion properties or both. Here again,
it is important to know a priori the characteristiés of the two mecxllia.
We chose pure distilled water in one medium against a boric acid

agueous solution in the other. Therefore, the heterogeneity lies

essentially in the absorption properties of the two media. It is believed

that the addition of a very strong absorber such as boric acid in very
small quantities does not introduce a significant change in the diffusion

properties of the poisoned medium.
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It is then necessary to define what we meant by ''compare the
experimental results with the predictions of the theoretical model'.

In our situation, diffusion theory leads to the existence of time eigen-
values which describe the time decay of the neutron flux. It will also
prediet the dependence of the Oigenvalue‘s upon the degree 0f hetero-
geneity between the two media, i.e. the difference in absorption cross-
sections resulting from the poisoning. When the poisoning is varied,
the eigenvalues will changé accordingly.

This is exactly what wis done experimentally, i.e. investigate
the decay of the neutron flux with respect to different poison concentra-
tions in one of the two media. Since the theory leads to the existence
of eigenvalues, we will seek the presence of such eigenvalues, in
particular the fundamental mode. In fact, the "experimental results"
should provide an answer to the two questions:

- Is there a fundamental mode?

- If a fundamental mode is reached, what is its decay constant?

Then, it is easy to "compare' the measured values of the funda-
mental decay constant with the predictions of the theory.

For consistency in the approach, it is important to note that we
do not assume a priori the existence of discrete modes and asso;iated
eigenvalues, because a rigorous treatment using transport theory was
not made to support this assumption. Therefore, we first look at ﬁhe
experimental time decay, and then identify a fundamental mode if the
experimental data show one. On the other hand, to assume a priori
the existence of such discrete modes would be to make a concession to

diffusion theory, which is logically an inconsistent attitude.
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II THE THEORETICAL MODEL: DIFFUSION THEORY

II.1. The time dependent neutron transport theory.

The classical equation relating the behavior of a system con-
taining many neutrons (i.e. from a statistical standpoint) to the intér-
. action properties between the neutrons and the bulk media (such as
absorption, scattering, etc.) can be written as follows, for a non-
multiplying isotrépic medium.
aébﬁ (Zuflt) = - vIL.IN - ()N
" Sd.v'v'jcs; (&, ") P (T, T8 —= D) NE T E)d !

5 SQE,Uﬁ,t) (IL 1. 1)

t = time

- . .

r = position vector of a neutron

— — b N = .

¥V = velocity vector of a neutron; v = vf2, £ = unit direction vector for

the velocity ‘
N(F, vb:, t) dV dv df2 = probable number of neutrons at time t in the
volume element dV about T, with speed in dv about v in the direction
d f2 about Q.
ct(;, v) = .Macroscopic cross-section (probability of interaction per
unit path length), which is assumed to depend upon position and energy
only. Similarly, Gs and o, are the rﬁacroscopic cross sections for
scattering and capture interactions respectively. o, = B to .
f(?, v".-fi -avﬁ.)dvdﬂ. = Probability fhat a neutron, if it collides in

dV about T with original velocity v’f1’: will scatter into dv about v and

e
df2 aboat f2.
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s(r, vﬁ,t) dV dv df2dt : Probable number of neutrons emitted
by independent sources in dV about T, with speed dv about v in the
direction dﬂabout?z, in the interval of time t, t + dt.

The neutron balance equation states that the time rate of change
of the neutron density %_Eé_g(;l r ﬂ.}'fi, *&) is equal to the rate of re-
moval of neutrons by leakage (—%’fiVN) or capture and ''scattering
out! QW@EN) plus the rate of supplying by "scattering in'' or ex-
ternal source term.

Classical boundary conditions are: ,

1. At the surface of a nonreentrant system, N(—"?:j’\.v’ﬁ} t) =0
for all 3 entering the system.

2. The number of neutrons coming directly (without collision)
from infinity is zero.

3. At a point on an interface between two media, the number
of neutrons leaving one medium with a certain velocity will enter the
next medium with this velocity unchanged.

These can be simplified in most cases to:

1. N (T": ,'\)‘ﬁ)t) =0 for ¥ on the surface and ?i entering the
system. |

2. lel N(i,'lfﬁ,tj -3 % if the sources are

T—> o0
located in a finite region of spuce.

3. NGE/ Uﬁ/t) is continuous at the interface.

We finally include the following assumptions:
The medium is homogeneous:

o (L v) =6 (v)
F(_fi,mfﬁ_,vﬁ) = F(v’ﬁ'*’f\rﬁ)



For a system containing sev.

assumptions hold within each

The general problem

difficult, in particular since

~

al diiferent homogeneous media, these

aedium.

-entioned above turns out to be very

is a time and energy dependent problem.

One can think to remove the time dependence by applying a Laplace

transform method, and the encrgy dependence by assuming a one-

velocity model. Even under these circurnstances, the problem re-

mains very difficult, and further assumptions have to be made. These

are the bases for the time-dependent diffusion approximation.
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II. 2. The time-dependent diffusion approximation for the one velocity

model.

In this section, we shall outline the kind of approximations
leading to the time-dependent diffusion equation in the case of one
velocity neutrons.

1. Neutrons are assumed to be monoenergetic.

Flodt =) = F(—-0).8 (u-) (I . T)
From the definition of the frequency function, it follows that
J'F(ﬁ:»ﬁ) 4 =1

2. Since one of the fundamental assumptions in this analysis

is that the medium is homogeneous and isotropic, it follows that
F(ﬁ'ﬁﬁ) can be a function only of the angle between the directions
ﬁ- and —fi‘

We write E’. ﬁ =Y‘

V(rja)ﬂ)d,\.] ': Probability that a neutron moving in direction
.n. 5 when scattered, emerges with a new direction whose cosine lies
in leo about M
Thus F(f_i'—'-ﬁ)
Equation (II. 1. 1) becomes

AN_(_"Z,.H,!'.) = - YN —‘U'O';;N
ot

rl(vo,ﬁ) (I1. 2. 2)

2
—p A
+S (T',H;t) 0. 2.3
We furthermore introduce the neutron flux

q)(—iiﬁ;t) =N _’E,ﬁ:t) leading to

= Jva‘ G ) N, 2, tydn!



;1,- %@,m}: -Avd -6 O
5 57(P°-jﬁl) ST, 1,L)an’
+ S(R,4,t) (IL. 2. 4)

1I.2.1 The Expansion in Spherical Harmonics method.

_ A classical treatment of the transport equation, as des-
cribed by many authors, (Meghreblian and Holmes (2), Davison (3)),
consists in expanding the scattering function F(ﬁ'—h_ﬁ) » the neutron
density N(ilvﬁ,t) and the source term S in spherical harmeonics.

Our purpose is not to give a detailed analysis of this rather
complicated procedure. An extensive discussion can be found in the-
references previously mentioned (Meghreblian and Holmes, Davison).

Flux and source terms are expanded according to

[\/]8
M

dTat)- Cb (Z,L) Y, (12) (1T, 2, 1.1}

3
1]
Q
3
[
'.'l

s 3

S(Z,ib)= S, (T,b) Y': (12) (I1. 2. 1. 2)

N

n=0

8

-n

—
where the ani (f1) are a complete orthonormal set of complex functions

such that:

()Y (2) = &8,

b

(IL. 2. 1. 3)

(2) Meghrebliaﬁ and Holmes - Reactcr Aralysis - McGraw Hill
(1960) :

(3) B. Davison: Neutron Transport theoryv - Oxford Press
(1957). :
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The scattering probability function is expanded into:

E

F-N) = Z Z 7Y (ﬂ.) YP (2 (1. 2.1.4)

=0 p=-d

The transport equation (II. 2.4) can now be expressed in terms

of the expansions. By furthermore using the orthogonality property

(II. 2. 1.3), one gets

RACS {(:{r 2 89,6 - )FEY-SEY }: B "L

This infinite set is separated into coupled equations in the
harmonics ¢ and ™ by multiplying through by YB and integrating
over all & with the aid of the orthogonality property.

The set of equations (II. 2. 1.5) finally reduces to:

_ _:T%t_q{(z,t)- )+ SaY o L=
,o ax ¢o«1—4( ‘h)

+ F 3 ol (T.t)

‘0

@G- e, o -F, 90

dy 0z 41 Tded +4q
i + 1 '
(2 . L_@H) q)p ; e (1T, 2, 1. 8)
L] by1 dZ ” o
where r, = 0,1, ... aind gtakes all valuzes from -gto o. The F's

are furctions of ¢ and P only.
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" The diffusion approxir.ation is based upon the assumption that
the neutron-flux distribution C‘iﬁi‘ (r,& ,t) is nearly isotropic. Analytically,
this assumption is equivalent to the requirement that the series expan-
sion for the flux (II. 2.1.1) be truncated to the first two terms, i.e.
that g =0, 1 in (I1.2.1.8).
@ o= ) . 4
Therefore, (II.2.1.6) will involve only di) 4 q} ,C:) and (?1
=} 4 4
all coefficients with higher indices being taken identically equal to
zero. For consistency, we aluo require the source term to be isotropic,
ice. SB = 0 except for s°,
o 0 -
The sys tem of equations (II. 2. 1.6) reduces to four coupled
partial differential equations, in which appear
s, =
np= ’\'j;' = average value of the cosine of the scattering angle.

These equations can be greatly simplified in the following cases.

a) Steady state. (All derivatives with respect to time are set

equal to zero.)

We define the total track length QD () of all neutrons at speed

¢ (%) = | PED)d0
Similarly : 4 S (’_i) = SS ('—Z.‘)fi) cla

Substituting into the reduced system of equations leads to

- V.DVQD("'{%O‘; ('P@) = 5(72.’) | (II. 2. 1.7)

with

D — i (I1. 2. 1. 8)

REICE AN

which is the classical diffusion equation for the steady state.
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b) One dimensional problems,

In the one dimensional problem, the space dependence can be
described by means of a single variable x, therefore reducing very
much the complexity of the expansions and of the system of equations.

The expansions of the flux and source term are:

D) = 2_(222) €. (59 (y)
5(x)lult) i(z'ﬂ_;i) S, (x,t) Pa( }J)

n=0
where the Pn(]_!) are the usual Legendre Polynomials leading to the

I

system of coupled equations

“%%%‘de'oquu"’su +O;qd.¢u

_[a+1)d _- S )é_
"(Zc<+1)ax 42»1 (2m+1 OX q)d-" (I1. 2. 1.9)

G':O’ L. ,2-

Here again, the diffusion approximation whichassumes the flux
to be isotropic is equivalent to truncating the system of equations

(II. 2. 1. 9) by restricting q)u. to be non zero only for o = 0, 1, i.e.

_4 30 5 _ 39,
'U'SE—Q q¢°+ ° T dx
_4 a(ba___ G U _bd)o"
var TR =503

or, setting CPO: C}) and Sn-—'-' 5



( 4+3D0"¢)B¢+3_Qaz_t%:5_0;(p+0229

(1. 2. 2.0)

Equation (II. 2. 2.0) is in its general form th;a so-called "telegraphist"
equation. Its unique feature is that it describes physical phenoména
which exhibit both wavelike characteristics and residual disturbance
effects. The wavelike behavior is accounted for by the second order
term in t) ie ég %i%) . Wave effects propagate with a finite
velocity, which is consistent with the fact that a perturbation cannot
propagate faster than v, the velocity of the neutrons, since it is asso-
ciated with the neutrons themselves.

However, after the passage of a ''wave', the disturbance re-
mains, and its effect is naturally described by the fi;‘st—order term.

On the other hand, a pure diffusion phenomena which, by
definition, involves only a first order term, will exhibit an "infinite"
velocity of propagation of the perturbations. This is also an under-
lying character of the approximate diffusion equation for neutrons.

We wish to evaluate the circumstances under which the hybrid
telegraphist equation (II. 2. 2.0) reduces to the more trivial diffusion
one. To do so, we must impose the condition that v - « (to meev the
infinite velocity condition) while both vD and oV remain finite.

(II. 2. 2.0) can be written



Yk

[+ 2D + 2002
Y (u-c‘)n (UD)_;’_EG - (il.2.2.1)

where n = ~—¢ is the neutron density.

Note that as v~«, the terms —32— (Gav)(vD) and —32— (vD) tend

1 v v
towards zero as — , leading to:
v
bn,_s dﬂﬂ.+DUan
2L ox? | (IL 2. 2. 2)

or 422 _s_so D
v 2L °‘¢+ o x*

which is immediately identified as the classical time-dependent
diffusion equation.
An alternate approach to reduce equation (II. 2. 2. 0) into (IIL. 2. 2. 2)

is to assume that the term 292.3_“_.2 is small compared to the other terms

3d s
5 is of negligible order) and that 3Dga is «<1. In the case of
ot

water, when averages over the energy spectrum are taken:

(i._e.

0.0192 c1rn-1

Q
I

a
D=0.144 cm
3Doa =0,00832 «1

Note that the one-dimensional problem mentioned above is in
no way restricting the features of the first-order approximation. A
complete treatment could have been carried out for the 4 equations
truncated system (II. 2. 1. 6) which would have led to the same con-

clusions.
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11.2.2. The approximations of time-dependent diffusion theory:

(one velo city model)

We write the elementary one velocity time-dependent diffusion

equation for the total neutron flux q)(_ft:, t) as:

u at (rr. t) = DVAP(T,L) -0 d(EL) + S(L,E)

Dzm . , (IL. 2. 2. 3)
The underlying assumptions are

a. Homogeneous isotropic medium

b. Monoenergetic neutrons

—

¢. The neutron-flux distribution Cb(rf.‘,.o.} t) is nearly iso-
tropic, allowing us to truncate the series expansion for the flux (II. 2. 1.1)
to the first two terms.

d. The source term S(E)ﬁ)t) is also isotropic.

e. The diffusion medium must have vanishingly small absorb-
tion cross section (vcya remains finite when v increases).
This condition is well met for water which has a small% dependent
absorption cross section.

The diffusion medium must have a very large transport cross
section O = 0— s F° in order to get D = . N small

te 30'|-r.

with Dv remaining finite when v becomes very large.



-16-

II.3 The time-dependent diffusion approximation for thermal neutrons

II. 3.1 Introduction:

The next step in the treatment of the neutron transport
equation is to include energy dependence of the neutrons. To do so,
one must go back to the general form of the Boltzmann equation in an
homogeneous isotropic non-multiplying medium:

_‘3: Z?—t QLAY =-0; (v) (Tl L) — AvOE L, t)
+S Xo; () (v v ) OfF, wit t) dn' d
+ S(EJUﬁ)t) |
(I1.3, L. 1)
One can then proceed in the same way described in Section (II. 2. 1),
i.e. expand ¢ , S and f in space-energy spherical harmonics. If one
is interested in the slowing down diffusion problem, the isotropic
scattering in the center of mass system has to be assumed. Depending
upon the extent of the approximations, one can derive the elementary
slowing down and Fermi Age equations.
However, we shall not discuss the slowing dpwn or the thermal-
ization problems, because we deal essentially with_a pulsed neutron
situation where no sources are present during the decay, and the

neutrons have reached thermal energies.

11.3.2. The case of thermal neutrons:

If the energy distribution of neutrons in a medium does
rot depend on position or direction ol the rentrons, it is possible to
describe the diffusion process by an energy inderendent one-group
equation on which the cross-sections are suitable averages over the

spectrum distributic-.n. This space-energy separability will be
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particularly valid at points far away from sources or localized sinks.

Therefore, we can write:

$(Tlk) = R, t) F () (L. 3.2.2)

The situation described by (II.3.2.2) is approximately realized in the
case of thermal neutrons. For, if capture and escape are negleéted,
and no sources are present, then the neutrons will be in strict thermal
equilibrium with the medium. It is known from the kinetic theory of
gases that, regardless of the scattering law and the variations of the

mean free path with energy, the neutron spectrum will be Maxwellian,

i.e. mv?
Fv) = Fu* e 28T (IL 3.2.3)
where m = mass of the neutroﬁ
T = Temperiature of the medium

k = Boltzmann's constant

The energy spectium is normalized, i.e.
S F(’U‘) dv =1

This spectorumis independent ofthe position or direction of motion.

If the absorption of the neutrons and their escape from the
medium are taken into account, then they will not be in strict thermal
equilibrium, and (IL. 3. 2. 3) will require modifications. However, two
cases may cccur:

a. If the absorption is very large, assumptions {II. 3. 2. 2) and
(II.3.2 2) are no Io.f.ger legitimate butt, on the other hand, the thermal

neutron population will be so small that its determination is of no

interest.
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b. If absorption ié weiik, the correction required for (IL 3. 2. 3)
will be small. In addition, thc escape of neutrons from the system can
be regarded as a highly localized capture. Hence, except in the im-
mediate vicinity of the boundaries, the effect of escape on the system
will Be like that of a weak absorber (i, e. the coxrection to (IL. 2.2.3)
will be small). Near the boundaries, this effect will be more impor-
tant, and the extent of corrections to (IL. 3. 2.2) and(II. 3. 2. 3) will
depend mainly on the rate of approach to thermal equilibrium from a
distribution in the thermal encirgy range.

Since no exact results are available for a general configuration,
it is hoped that (II. 3. 2. 2) and (II.3. 2. 3) will hold even near the
boundaries. Thus, thermal n2utrons can be treated by one-group
theory, even ‘if o, and O, may vary appreciably with energy.

The second interesting character of a thermal neutron popula-
tion applies to the scattering function F(’U"ﬁ."—»ﬂj‘ﬁ)

The effects which should be taken into account are the molecu-
lar binciing and the thermal motion of the atomic nuclei. They will both
tend to make the scattering isotropic in the laboratory system, since
the thermal motion is random, and the molecular binding can be
accounted for in first approximation by asc.ribing to the nucleus a\

mass greater than its real mass. Isotropic scattering in the L-system

leads to

(II. 3. 2.4) will be valid for most neutron-nuclei interactions, except

collisions with very light nuclei such as protons or deuterons.
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For isotropic scattering in the L-system, rc , average cosine

—

——
of the scattering angle L. Ll should be equal to zero, i.e. (1-?:)
should be equal to 1. A first approximation to the treatment of
scattering leads to Fo = 2 where A is the atomic weight of
3A

the moderator. Such typical values (4) are given, showing the extent

of the approximation of isotropic scattering.

Atomic weight A Element (4 _P'o )
1 - H 0.3386
18 H,0 0.676
20 DZO | 0.884
4 ~ He 0.8334
7 Li 0. 9047

All values above Zn (A = 65) are above 0. 990, leading to fairly good
isotropic scattering in the laboratory system for '"heavy moderator',

II.3.3. One group time dependent diffusion equation for

thermal neutrons.

We first introduce the space energy separability assumption

(IX. 3. 2. 2) into the transport equation.

The general time-dependent transport equation is

:r_ %%_(E;vfi,t): -L9EEY) - o) P(LTL L)

+| o @) B A—vR) PE T, ) dade ar3.3.1

% S(Elvfi/t)

(4) Reactor Physics Constanfts. ANL 5&0C (1963).
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The space-energy separability (IL 3.2.2) is writtén:
¢(€,vﬁ,t) =PER,AL) . Fv) |
S(i,vﬂl‘.) =S@.LY . 6(v) , (IL. 3. 3. 2)
c; (V') F(vﬁ"»qrﬁ) =0, (viev) F(IE-11) |

where os(v'—*v) is the energy scattering kernel
F(v) and G(v) are normalized energy spectra.

(II.3.3.1) becomes:

fw 30 @44)=-Fe)AVGEAE) -0 )P GRLY)

; J 5 (v*v)Fcu')d«r'ﬁ(ﬁ‘*ﬁ)d?(i!‘zt) da

+B@)S(L,LL)

(X 3.3 3)

Integrating (II. 3. 3. 3) over all energies, i.e. all v's, we get

&y -0y SCEAL)
i XF(E—:ﬁ)q)(ijﬁ’z t) do

— —» ‘ (II. 3. 3.4)
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where

F(o) dar

*

53 (V) Fw) ch’ ohr

|
¢ *j () P v
i)

Equatlon : 3. 4) is immediately identified with equation

(II. 2. 4) applying to the monoenergetic case.

1

v
and SC’L ﬂ- \Z) designate thermal flux and source.

«© oo

s Gt*’ Os"g are averages over the energy spectrum, while d;)(fz, n t)

Note that 3%

o = SSO‘J (wte) Fle) dv'dy

rF D) dv’ gwg; C\J'-'--.v) av

rF(ﬁ’) ACHE

@
with js; (v—v)dv =6 (v)
Itois now possible to treat equation (II. 3. 3.4) in exactly the
same way equation (II.2.4) was studied. In particular, we derive the

one group time-dependent diffusion equation for thermal neutrons

according to section (II. 2. 1).
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_%1_ D' VO (EL) - o *P(TL) + SEL)

(A
u*

D* = ! ‘ ' (I1. 3. 3. 5)

\ 3(ot" - 07;*?0)

where q) (¥,t) and S(?, t) are total thermal neutron flux and source term.

Equation (II. 3.3.5) is valid under exactly the same conditions
mentioned in Section (II. 2.2), to which should be added the space-
energy separability conditions (II. 3. 3. 2).

Note that we did not introduce directly condition (II 3.2.4) of

isotropic scattering, requiring
P (ﬂ.’-—»ﬂ): A, (1. 3. 2. 4)
‘ 4

We shall see how this condition compares with the more general pro-
cedure ofytruncating the system of equations (II. 2. 1. 6) to the first two-
terms. This_is equivalent to keeping only the first two terms in the
Legendre polynomial expansion of F(ﬂ'“’ﬂ)

We recall that we wrote (II. 2. 2)
F(ﬂ.’———ﬂ) s _2'_T_T " ( r.'cjﬂ')
We expanded Q(l-’g)ﬁ‘) into i (-2—%:—‘_—4) r,n Ph (Yc)
n=0 &

leading to the first two terms

7°:"i
%=
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)= §[1+opp]

F(ﬁf_._ﬂ); _4_-1_&_[1—1- 3F°.TJ°] (I1. 3. 3. 6).

which is what was really used in the derivation of (II.3.3.5). We see
that the L-system isotropy condition (II.3.2.4) is more restricting
than (II.3.3.6), since it assumes F; =0

II.3.4 Time and energy dependent diffusion equation.

In (II. 3. 3), we introduced space energy separability and nearly
isotropic scattering in the laboratory system (i.e. we wrote
y] O o ey . t _-l_-
oz (v) F(’Ufl. 'u'D.) = o;('\f —»'U) F(I)_ Ti) where
— —s
F(ﬂ.’—-ﬂ) was truncated to the first two terms).
Here, we assume isotropic scattering only, i.e. condition

(IT. 3. 2. 4) which is written
5; () F(v'ﬁ’—»u_ﬁ):# Ay (IL. 3. 4. 1)

With this assumption, and under the general conditions of (IL 2. 2), we

are led to the following time ar}d energy dependent diffusion equation:
2 (572 8 = - (E) P(EZY + DE)V P(ETL)

+Ld +S(ER 0 -
with L = f 0L (ERE)P(ETY E - o B)PERL) (3. 4.2)

0

vat
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where:
-v has béen replaced by the energy variable E for convenience
-L¢ is the thermalization operator,.

Because of the a;.ssumption of isotropic scéttering, F° =0 and

D(E:)._ . (II. 3. 4. 3)
30’&(5)

Furthermore, we can assume space-energy separability, i.e.
DELL) = PE)PELY

- - (I1. 3. 4. 4)
S(ELL) =5(E) S(LE)
where ¢ (E) and S(E) are normalized energy spectra.

Integrating equation (II. 3. 4. 2) over all energies leads to

130 (8- P GEER) + DITRGEL) + SEY

p*_ 4

3ot
equivalent to equation (II. 3. 3. 5).

(II. 3. 4. 5)

ot 1 . ;
Similarly, = oa=-= and ot* denote averages over the spectrum

(E), and we used the fact that JQGO'/. (E‘_'—;-E) dE = O';QE:)

o
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II.4. The thermal neutron energy spectrum.

II.4.1. General considerations:

So far, we introduced the concept of a neutron energy
spectrum through the assumption of space-energy separability. In
this section, we shall survey briefly and qualitatively some of the
classical qualities of energy spectra:

We first refer to the ideal case of an infinite homogeneous non-
absorbing medium: No absorption, no leakage and no sources are
present. The neutrons are in thermal equilibrium with the nuclei of
the moderator. As seen in Section (II. 3. 2), the neutron spectrﬁm will

be Maxwellian, i.e.

Fev) = Fu? e 2RTs (IL. 3. 2. 3)

where To is the temperature of the moderator.
We mention briefly some of the properties of this spectrum
which will be useful in the future.

a) Energy variable:

dN = ~number of neutrons per unit volume with energies in
(E, E+dE)
_ - E
dN = N(E)dE = 20N ¢ kT [E de
) ( h‘f;)‘si J—
N -_-j N (E)dE |
0 (I1.4.1.1)

- E
N(E)dE _ 2 ek |[E dE
N \fﬁ— hnru I'lﬁi‘q




-26-
Average energy

T SEN(E)dE. _ 3hT,

N 2

Most probable energy ET = kTO

For the flux ¢(E) = ’\IchE-)

E
Cb(E:)dE_ E e-ﬁ dE
¢  E2
To

b) Velocity variable:

3 -nve
N@)dw - & (M Va2 g 2RT
N JT \RT

Most probable velocity: '\J‘T = 2RT

e m
Average velocity: Ve 2 V.
o
_— g e 2
(-\r)z: X V)= 3 W
o _To 2 To
Example:
T = 293. 6°K (20.4°C)
E =kT =0.0253¢eV
To o
Vp = 2200 m/s = v,

(II. 4. 1. 2)

av

This spectrum is an equilibrium spectrum, i.e. from a macro-

scopic standpoint, the net statistical nverage change in energy of the

neutrons is zero. This is move aconrately exp

ressed by the principle
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of detailed Balance which says that in equilibrvium as many neutrons
make transitions from the energy E to the energy E' as make tran-
sitions from the enérgy E' to the energy E.
If we call M(:E) the Maxwellian normalized probability distribu-
tion function, and remembering that energy transfer takes place

through collisions with the nuclei of the moderator, we request:
M(E') o, (E=E) = M(E)c; (E~E) (I1.4.1.3)

The Maxwellian spectrum will suffer alterations from the non-
ideal case when neutrons are removed (by absorption or leakage) or
added (source term), according to the way the amounts deducted or
added are distributed over the spectrum. However, when the distri-
butions from a Maxwellian spectrum are small, one can use a small
perturbations approach, and assume that the neutron energy spectrum
is Maxwellian with a shifted effective neutron temperature Tn'

The concept of effective neutron temperature has been proven
useful in many circumstances, and gives an easy evaluation of the
average energy of a given spectrum. By reference to the ideal case
of the true equilibrium where the effective neutron temperature Tn is
equal to the moderator temperature To’ it will be proper to talk of
""heated" (Tn> TO) or '"cooled! (Tn< To) spectrum.

Obviously, the spectrum is unaffected if the rate of removal
or addition of neutrons per unit neutron density does not depend upon
the energy of these neutrons. The only effect is to change the total

,
neutron population normalization factor, without altering the spectrum
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itself. In particular, this property is independent of the '""shape' of
the spectrum.

However, if the removal or addition processes discriminate
neutrons with respect to their energy, the average energy (i.e. the
effective neutron temperature Tn) will change accordingly. "Two cases
are of practical importance.

- Non-stationary case:

When no sources are present, the rates of removal of
neutrons per unit neutron density are classically given by:

R
a

R

Vo, (v) for absorption

d vD(v)B2 where B2 = —v;?:_,(i’;t) for diffusion leakage.
In most cases, B2 is assumed to be a constant, i.e. it is space
independent. |
In the case of water, or boron, the absorption cross section

Ua(v) is well describéd by a% law over the thermal range of energies.
Hence, vo‘a(v) is constant, and the absorption term does not alter the
spectrum.

The situation is different for the leakage term. D(v) is not
% dependent; the over-all removal term VD(V)B2 depends upon the
spectrum and B2 itself. The situation is such that the more energetic
neutrons preferentially leak out of the medium. This preferential

leakage leads to a 'cooling' of the spectrum which is more pronounced

the weaker the energy coupling of .he neutron gas to the moderator.
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- Stationary case:

Here, sources are present. They are generally slowing
down sources distributed usually according to a 1/E law above thermal
energies. When coupled with the diffusion effect of those (above fhermal
energies) neutrons, they produce a 'heating' of the spectrum because
the average energy of the neutrons arriving into each volume element

is larger than that of the neutrons being absorbed there.

1I.4. 2. Elementary treatment of diffusion cooling or diffusion
heati.ng.
We consider the time and energy dependent diffuéion
equation(Il. 3. 4. 2) without source term, i.e.

‘%CEE (E';;Eat): - Zq (E) CP(E/FE)E) E D(E)v2¢ (E;Tf/t) + Lq)

k)
y

o (I1.4.2.1)
L = j Z,(E~E) p(ELY e - Z EELY)
o
Note: In the remainingpart of this work, we will write
g = Microscopic cross section
Z: Macroscopic cross section
We follow a classical approach described by Beckurts (5), i.e.

we assume space energy separability

G(ER,L) = de) P (T.L) (IL 4. 2. 2)

Integrating (II.4.2.1) over all energies, and makiag use of (II. 4. 2. 2)

(5) K. H. Berckurls and K. Wirtz: Neutron Physics (1964).
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4 3 (7 )-.T $(Lt) -DVEPCLL) (L 4.2.3)
T ot st |
where Z; and D are averages over the spectrum.

We introduce a balance equation for the energy density

o?
n(Et) E :S A (e b)EdE (IL. 4. 2. 4)
Q

Multiplying (II. 4. 2. 1) by E and integrating over all energies gives:
E 3P mE)-_T T L)+ DE_V*P (L
EX@EN--TEPLYDETOEY) .,
by SE | Sz,, (E'*E)dP(E‘)dE'"ZAE)q’(E)}dE

o Q

where

jazqoi)d)(a)dz

Z(B) P(E)dE

-]

|
. }E’D(E)(\)(E)dfi

o
Q

K D(EYP(E) JE

-]

For -‘l?‘absorption, E, = E (11. 4. 2. 6)

We also have:
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NE { J Z (E~E) PE)JE’ - 4 (E)q)(E) dE
Jo - )

= P m(a ~ENZ, (éi—-Ej d(E') dE dE’
JO e

combining (II. 4. 2. 3) and (II. 4. 2.5), we get

¢

a) ¥ V2

¢

right hand side of (II.4.2.7) to vanish. This is accomplished if qD (E)

pRA (Es E) = T ZE"- E)L (E-E)P(E)dE JE’ (1L 4.2.7)

o Yo

©

0 (no diffusion), we request the double integral on the

is a Maxwellian spectrum.

£

P (E) = Qlj‘)‘ e . M(E) (i1.4.z. 8)

where TO correspond to the neutron temperature in an infinite, -‘17
absorber, source-free medium. According to Section (II.4.1), the
neutron temperature is equal to the moderator temperature.

2 ; -
b) If M¢Q , and remembering that (E_-E) # 0 (otherwise, D

D
would be —‘1; dependent), the left hand side of (II.4.2.7) is different from

2
zero. Depending on the sign of v d) , each volume element either

loses or gains energy through diffusion. This energy must be gained
or lost through collisions with the atoms of the moderator, i.e. (!) (E)

must depart from an equilibrium spectrum.
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We now make the fundamental assumption that the new spectrum

is Maxwellian with a shifted effective neutron temperature T # To'

Then:
E-FE = 3RT »
* 2 . (I1. 4. 2.9)
» _E_ '
E :_i_j ED(E)E_ e RT dE
D D . (hT)Z

as

- L -E. "
dD jo(a)i-?-_f- ehr . E E eﬁ'}az

dT GUMNE (RT)?* RT?2
_ 2D, 1. DO
=T R

E = kT2 [_?:_+ db 1
- T D dr

E-E- KT kT2 d.(Log D)
s daT

—

2
:TT{”?‘ d (LogD) }
-E= kT 4

2

{ i d (LegD) (IT. 4. 3. 0)
d(LegT)}
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As T ~ TO, we can make a linear Taylor expansion of the

shifted spectrum around To:

P (E)= M(E)+ Tt

E _2)M(E (II. 4.3.1)
== (8

RT.

with M(E) given by (II. 4. 2. 8).

The right hand side of (II. 4. 2. 7) becomes

| Bj(x-:.'— £) Z, (e'—E) P(E)JEYE

Q0

- TE ([ et nzgeameE) e . 4.3.2)

as HZEL E)Z, (E~E)M(E)dE'E =0

o /0
The new double integral is expressed in terms of the mean square

energy loss M, defined as:

M. =_1 e-£Y M(E) o (EXE)JE dE (II. 4. 3. 3)
e || e e

o Yo

UA_ ZJS(E’Z -2EE+E)M(ED o;(Ei—E.) dE’dE

1 E/(E-E) M(E’ E:‘--é dE' d
Ty H (- E) W(E) o7 (E-8) 4" dE

+ ” E(E-E) ME")s, (E~E)dE'dE (I1. 4. 3. 4)

-
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We now make use of the principle of detailed balance intro-

duced in Section (II.4. 1):
1l 1 . ‘
M(E) 6 (BRE) = M(E)G(E-E)
The second integral in (II.4. 3.4) becomes:

J | E(E-2)M(E') o; (E~E) dE'dE

= j E(E-E) M(E )G, (E~E") dE'dE

J. J' E’(E_'.E) M(EDG; (E'u-.-E,)dEi dE. by interchanging E and E'.
o

Finally M,=_2 E/(E-E)M(E')s; (EE) dE'JE (IL 4. 3.5)
(KTo)*
By writing Zs: NG: where N = number of atoms per unit volume,

(I1.4.2.7) becomes:

Bv;d> kT [4 L2 %%%]:% k(T-T,) NM, (1L 4.3.6)

By setting T ~ 4 in the left hand side of (II.4.3.6) leads to

| d (Log D)
I;I?..: DYVED i+2 d(log T) (LA 3. 95
To ¢ NM, '

Study of - *_ leads to two interesting cases:
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a) Non-stationary case:

We seek solutions to (II. 4. 2.3) in the form
N L. =it
P =RE®@e | (IL. 4. 3. 8)

R(?) must then satisfy V2R+B2R = 0 with the condition that the flux

vanishes at some extrapolated boundary. B2 is called "buckling' and

describes the geometrical dependence of the medium.

The time eigenvalue X is given by -
A=T .+DvT B? (1. 4. 3. 9)

v corresponds to the average rate of removal of neutrons
a

by absorption. For a %’absorber, quz vl = "lJ"°Z('U'°)_—_ CONSTANT.
Q Q
. Dv describes the average rate of removal of neutrons by
2

diffusion out of the medium. It depends on the spectrum and B

(through II.4.3.7). In particular:

' =ea 142 d(logD)
T-To _ _DB? a(LogT) i e 2, B}
To NMl '
B (T)= DU (To)+(T-T,) 9LDW)
adT
We set:
DU (T) = D,
( ) 2 d Log-m |
¢ -=TL3 2L L (LogT) (1. 4. 4.1)
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leading to: |
DT = D,-CB?
L (I1. 4. 4. 2)
A =L T +D,6*-Ch*
Differentiating (II.4.4.0) with respect to T, and making use of

definition (II.4.4. 1) gives

=2 DY\2
c_vD (4+2§(_Lf:°52)_ | (L. 4. 4. 3)

' C is called the "diffusion cooling' factor. Its significance is

seen through equation (II.4.4.0) which can be written

T-T,=—cp? _dT_ (IL. 4. 4. 4)
d (Dv)

P t4 - exp DU | (II. 4. 4.5)
cp?

If C =0, it is seen that T = To : No cooling.
fC>0, T < To : Diffusion cooling occurs.

The interpretation of the diffusion cooling effect follows from
Section (II 4.1). Since Dv depends on the spectrum and BZ, it is found
that the rate of removal of neutrons with large velocities is larger than
for tnose with small velocities. The equilibrium spectrum is no longer
conserved-'as neutrons leak out. When the new spectrum is c@mpare-d
to a Maxwellian one, the effective net;tron temperature T is less than

e micderator temperature TO.



B
Beckurts (6) gives some values of C calculated for water ac-
cording to the method of effective neutron temperature. MZ was com-

puted from various scattering models.

d(Log D) ‘D C
d(Log T) {cm) (cm? sec'l) M, from
3400 Nelkin Model
= 0.144 2650 A= 1
‘ Monoatomic gas
4250 A =18

As will be seen later in Chapter III, these results are

reasonably consistent with published experimental values.

d(Log D)
Note that the value d(Cog T) comes from the elementary
formula
E=Y 1
Q_z(l)z | (I1.4.4.6)
D, VT |

This was considered by Antonov (7) who refers to a description
given by Von Dardel where he assumes that the transport mean free
path )‘t is independent of the neutron energy. Von Dardel and
Sjostrand‘(S) put Kt ~ }‘s_ and get

E _ ( T )-5: As (T)
D. \To Ns (T0) (I1. 4. 4. 7)

(6). K. H. Beckurts and K. Wirtz: Neutron Puysics (1964).

(7) Antonov and al: Vol. V, P/661, USSR.

(8) Von Dardel and Sjostrand: Phys. Rev. 94, 1272, (1954).
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Antonov points out that the last approximation may be inaccurate in
many cases,

The energy dependence of the diffusion coefficient D given by
(II.4.4.6) is a first approximation for water, which has strongly energy

dependent scattering properties. On the other hand, for graphite or

. . d(Log D) _ . g
beryllium, D(E) is nearly constant, so that W = 0, leading to
c_¥D
B ZNMZ

b) Stationary case:

Here, q)(i?, 1 = R(;) only, and (II. 4. 2 3) leads to

V*R_-R -0
LZ
(11. 4. 4. 8)
(2__D
Z,
,(H' 4.3.8) becomes:
d.(LogD
4+ 2 d(legD) |
TL _T. d.(LegT) (IL. 4. 4. 9)
T NM,
By analogy with (II. 4. 4. 2), we write
Dv = Do+ G ' (1. 4. 4. 10)

L?.

i.e. diffusion heating occurs, as mentioned in Section (II. 4. 1).

I1.4.3. Other treatments.

So far, we described the clacsical approach through the
concept of effective neutron temperature. This concept has been often
criticized, and should be considered as elenicntazy. The weakness of

the scheme is its a priori assumption on the shape of the spectrum.
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However, most authors agree that it gives valuable information in the
case of water, where the absorption is near % and the leakage can be
kept ;‘easonable as long as the medium is not too small. The situation
is less ideal in the case of graf:hite, where it is even difficult to
separate space and energy. variables.

Alternate methods have been suggested which give a more com-
plete description. Without details, we mention;

- The method of Laguerre Polynomials:

It carries out the expansion of ) to higher powers of Bz.
It is verified that the method of effective neutron temperature gives
consisitent results with the polynomial method when the last is carried
to order B4 only.

- Direct treatment of the transport operation:

The transport equation in a homogeneous, source free,

isotropically scattering medium in plane geometry is:

o
i ,553;3 (E,0,%,5) __ZEQE)CbCE - p 22 20 g, )
0 ~ed
+ _|2_ Z 0P, )J')x)t)dﬁ'd‘\" (IL. 4. 5.0)
e Jed
where r = cos® (8 = scattering angle).

In th= non-stationary case, we seek solutions in the form:

C}?(E,y)x)\l):q)(ﬁ, rJ,x) e_&t \ (1L 4.5. 1)
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and

(Zt(E)—%) (Ep)

< _4)

=~ %%:r _;_ ”‘Zs (E%E) q>g-;;r", ;«)dE'dr’

(IL. 4. 5. 2)

which is an eigenvalue equation for the time decay parameter ¢ .

We shall not enter into the mathematical argumen;cs used to
describe the set of eigenvalues. To describe the energy spectrum,
itself, we follow a procedure described by Beckurts and Wirtz (9), i.e.

introduce the Fourier transform

cb(E)r,B) = cp(F_)Y,x)e:indx ({1, 4, 5.3)

satisfying

(Zt (- 2) $(Ep® (
1 I1.4.5.4)
L, (E~E) 4>(E’)I): B) ds’ar'

0J-i

P
TJCPC P+ 2
Integrating (II. 4.5.4) over all rJ and introducing

+1

cfp(E/B):.S (F_,\),B)c\v' (I1. 4.5.5)

(9) Beckurts end Wirtz - Mewutron Physics (1964).



leads to:

_H_E’___’_‘ | Z (\:+E)¢(E BYdE' (11.4.5.6)
Z\-.(E)-%Zj

d}) (E, E‘))- Arctan

o

The last integral equation has been solved namerically for ¢ and the
spectrum Cb(E, B) by Honeck (10), whose results will be reported later.

However, it can be shown that d? (E, B) can be expanded into the follow-

ing power series:

& (E,B)= M(E) + B P, (E)+ B*D, (E) - .- -

(I1.4.5.7)
A = A, +D,B%* -CB* +FB°
which, when substituted into equation (II.4.5,6) leads to: -
X_.i_.._ M(E)JE
L AE
D, = . o) (1. 4. 5. 8)
4 M(E)dE
Ay
o0 od
Do 1 (E)E A { 4 E)lE,
, J ¥ 325('5)) P2 > 57‘2(5) 155,(E) "J D
AT g
A M(E)dE A ME)
Yv (=) X 1 mMeE)de
=} Q
' (I1. 4. 5. 9)
j N — ~ — -~
CID Ct

(10) Honeck, H., BNL719, 1186 (1962).
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The fir.st term (CD) is identical with the result found by the method of
Laguerre Polynomials mentioned earlier. It describes a diffusion
c.ooling effect.

The second term (Ct) represents a purely theoretical correction to the
results of elementary diffusion theory. For a heavy gas (A>>1),
CD>>ct which makes the transport correction a negligible factor.

The calculations carried out by Honeck for water at 20°C give:

D = 37,460 sz sec—1
o
4 -1 Ct
C =C_+C, = 2878 cm "~ sec with — = - 0.057
D Tt CD
F = 270 cm6 sec_l

All calculations were performed according to the Nelkin model for

scattering in water.
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II.5. The two media problem:

II.5.1. Introduction.

We finally give a description of the experimental situa-
tion we encountered:

We are eoncerned with a cubie assembly divided in twe
halves (see Fig. II.5.1). One of them contains pure distilled water.
The other contains pure distilled water poisoned with small amounts of

boric acid (BogH ) whose effect is essentially to increase the absorp-

3
tion coefficient._ Relying on experimentally measured cross sections
(11), it is reasonable to assume that water and boric acid solutions
have % dependeﬁt absorption cross sect.ions.

A fast neutron source is placed near the assembly (see Fig.
IL. 5: i). The assembly is surrounded by a cadmium shielding allowing
only fast neutrons to enter, and a very absorbing medium (borated
water) to minimize back scattering effects. These fast neutrons (14 Mev)
are thermalized within the assembly and provide pulsed slowing-down
sources distributed within the medium.
In half assembly I : Properties Z,1 ‘,:D,1
In half assembly II : Properties Zz IDZ
it is assumed that D" ‘:".:Dz , and Zzz (44—0() 2_.1 where o is the
""poisoning'' factor,

Theoretically, the situation described above is a very difficult
problem if one attempts to find an analytical solution to the transport

equations in the two media. Since no such solution exists to our

(1‘1) Reactor Physics Handbook - ANL 5800.
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knowledge, it is the exact purpose of this work to test experimentally
the predictions- of an approximate theory which, because it is simpli-
fied, does not pretend to give a priori a detailed picture of the
phenomena.

It is of interest to locok briefly upon the work of R. C. Erdmann
(12), who derived an exact solution for the time dependent mono-
energetic neutron transport in two adjacent semi-infinite media. Iso-
tropic scattering in the L-syStem, was assumed, and an isotrqpic
plane source placed at the interface (x = 0) was delivering nonenergetic
neutrons in a short burst at time t = 0.

Although this situation is quite different from ours, the evolu-
tion of the neutron current at the interface, and the flux shape near the
interface pointed out two areas of investigation: On a short time scale,
the scattering process is initially dominant, i.e. neutrons will travel
from the medium with the larger to the region with the smaller cross
section. On the other hand, the absorption is a long term effect, i. e.
after some time, the neutrons travel from the region with small to the
region with large absorption cross-section. Hence, if absorption and
scattering cross section are larger in one medium then in the other, a
reversal of the neutron current at the interface will occur.

As far as we are concerned, the short-time investigation is of
no interest, since we change only the absorption properties in our

experiment. Moreover, the evolution of the neutron current at the

(12) R. C. Erdmann: Time dependent monoenergetic neutron
transport in two adjacent semi-infinice media. 7Thesis - California
Institute of Technology {1966).
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interface will certainly be masked by the finite length of the burst, the
thermalization time, the fact that the sldwing down sources are dis-
tributed over the assembly, and the over-all difficulties of measuring
directional neutron current. At best, we could detect wave effects due-
to the relative position of the source and defector, under non-idealized
and poor conditions.

Hence, as mentioned previously, we focused our attention on
the long time range investigation, i.e. the die-away of the thermal
neutron flux.

II. 5. 2 Solution in the diffusion approximation:

We first assume that diffusion theory holds in the two
media I and II to describe the decay of a thermalized flux in the ab-
sence of sources. ‘

Mednm1 @, (EXE), Z, (E),D,(E),B, el
Medtum 1, (E,LE),Z, (E),D,(E), B, Wel
B = External boundary of the assembly = El +ﬁz

o)

We assume isotropic scattering, and write (II.3.4.2) in-each

1

interface.

i

medium.. .

Lo} (E,%8)=-Z, (), EXL)+D,(E) V2, (E,TE)+ L, b,

ot
2% (2 0)=-7 (D), (ELH+D, E)V'D,ELH+, b,

(I1.5.2.1)

L q) = Thermalization operator



_47-

1,2

b = REEDELYE - 2 ©0, Y

-}
(IL. 5. 2.2)

11.5.2.2. The assumptions.

a) The space energy separability:
. The energy spectrum is space and time independent in each

medium, 1i.e.

$ELL) = PE) QLY
jwkf(E) dE_ _ 4 (I1. 5. 2. 3)

)
As mentioned previously in Section (II. 3. 2), space-energy separability

is valid for thermal neutrons far away from localized sources or sinks
such as external boundaries where the Milne condition applies (i.e. no
neutrons return into the medium). Williams (13) showed th‘ét, for
water slabs, the spectrum is strongly distc;rted near the surface owing
to the different leakage probabilities for neutrons at different energies.
Nevertheless, William's results show that, if the assembly is large
with respect to the transport mean free path of neutrons at different
energies, space-énergy separability is valid in most of the interior.

We extend it into all the medium.

{13} M. R. Williams: Space energy separability in pulsed
neutron systems. 2Brookhaven Conference on Neutron Thermalization
(1962) - Reactor Science and Technology 1963, Vol. 17, pp. 55 to 66,
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b) External boundary condition:
A classical derivation from the Milne problem
is the concept of an extrapolated distance d at which the "extrapolated"
flux vanishes. For monoenergetic neutrons or o, = constant:
d =0.7104 x, A . = transport mean free path.
The energy dependent Milne problem is very difficult because

of the space dependence of the energy spectrum mentioned above. For

1 ;
= dependence of O4p.» Tigorous treatment leads to d = 0. 76 }\tr (VO).

Gelbard and Davis (14) numerically solved the problem for

¢(E, x) and the fundamental decay constant ) in the case of water slabs

of variable thickness a. By fitting ) into the form ) = )\O+DO}32—CB4
. 2 T \2 _1 T " .
with B —(m), they solved for d = 5 (,—B— = ) leading to:
_— 2
d =0.76 )\tr for B =0
— = 2 e
d:0,757\tr B =0.1 cm
d:O,Mi‘tr BZ:O,Z ——

which shows good agreement with Kiefhaber's (15) results. These
results are classically used in the calculation of the geometrical
buckling B2 for pulsed neutron work on water. We therefore assume
that there exists an extrapolated boundary at which the extrapolated

thermal fluxes vanish, i.e.

q)rx,?_ (—6:2 )t) =0 | (I1.5. 2. 4)

t

(14) Geibard and Davis: NSE 13, 237 (1962).

(15) Kiefhaber, E.: NSE 18, 404 (1964)
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c¢) The interface (C) conditions.

(i) The flux is continuous at the interface (o)

¢4 (F_,'c;t) . CPz (Ef,\:) (II. 5. 2. 5)

Assuming that assumption (a) is still valid at the interface, we

request:

¢ E)P,EH=FE)P,EL)

(1. 5. 2. 6)

which leads to

P, (E) = P, ()
CPA (E/ t) = q)z (E'E)

(ii) The net neutron current is continuous:

{I1. 5. 2. T)

In the framework of diffusion theory, the net neutron
current is J= - D. V¢
Hence: (I1. 5. 2. 8)
D,(E) VP, (ESE) = D, (E) Vv, (ECE)
or
D, (&) %,(E)-v,(E,1) = D,(B)P(E). VS, @b
It is seen that a corollary of assumption (a) and conditions (c) is the

indentity of the two energy spectra in media I and II, i.e.

(?4(E) Z(Pz(_ﬁ) (I 5. 2. 9)

d) In both media I and ’I, the abso»ption cross-sections
are —1‘; dependent. This ic 2 <lassicel assumption for both water and

boron,
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e) The diffusion properties in both media are identical,

D4(E) = Dz({-:) (II. 5. 3.0)

This assumption is justified since we are doing a poisoning
experiment by adding a very strong absorber {(boric acid) in very small
quantities. It hardly affects the scattering cross section while arastic-
ally increasing the absorption cross section.

f) The common spectrum ‘*? (E) may be described by a
Maxwellian distribution with an effective neutron temperature T. The
éhift of T from the moderator temperature T0 is accounted for by
introduction of a diffusion cooling term C. The fact that there is a
common energy spectrum coupled with assumption (e) is sufficient to
insure C to be independent of the poisoning, since it involves only the
variations of the diffusion coefficient with energy.

This assumption is quite valid since the spectrum does not
depend on the absorption properties because they are % dependent
(hence if does not depend upon the poisoning). As about the scattering
properties, they do not depend on the poisoning because of assumption
(e}). Therefore, as long as thé spectra in I and Il are concefned, the
medium appears homogeneous from a scattering properties standpoint,
which reinforces the‘needed condition \E'(E) = L?2.(E) and helps fulfill
the space energy separability at the interface.

While these assumptions have to be stated independently, the
validity of one of them depends upon the others. For instance, the
validity of (f) is reinforced by (d), (e) and corollary (II.5.2.9). We

will say that, in our case, the assumptions are very wcil ceaditioned.
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 This explains the over-all validity of the diffusion model which was
demonstrated later by the experimental results.

Note that if we had introduced a change in the diffusion proper-
ties of the media, it would have been practically imposéible to retain
assumption (a), because the energy spectra had to be different in each
half far from the interface and external boundaries, while being equal
at the interface. In such conditions, space-energy separability is very
likely to fail.

II.5.2.3. Analytical solution:

With the assumptions mentioned in (II. 5. 2. 2}, and by

integrating (II.5.2.1) over all energies, we get:

Bch(*t) = DUVATY) - vZ §, (TE)
(II.5.3.1)

_%%12 (TY)= DuV2d,(EY - vZ ¢, ()

where all values refer to averages over the common energy spectrum

we assume separation of variables.

B, Go,E) = Xy ()N()- Z,2) T, ()
z(x,y, z)\:) = Xz (%) .Yz(y).Zz(z). 2(&)

' 2a

‘[<

\
0
26

Ve




B
where a, b, c denote extrapolated boundaries.

Interface conditions:

i) Flux must be continuous for all y, .z, t

¢4 (OJYJZ/t) = ¢2 (O))’)Z)t) -. '

(X,00) = X, () |
Y4(y) = ,Yz ()’) Same y dependence
! Zq (Z.) — 'Zz(z) Same z dependence
T4 (t) — TZ (t) Same t dependence
So we can write
¢, = x,vZT
d)z = XZYZT
ii) T = —DVC‘) must be continuous at the interface, i.e.
Xm dX2

% O = O

Outer boundaries.

X,(-a) =0
X2(+a) =0
Y (£b) =0
Z (b)) =0

With these conditions, (II.5.3.1) becomes

t

X1 Y Z
x" i
T . F 2 X5 A
~ T A ALY - Dy == by b
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Thus, because of the separation of variables:

(2
Xl 1
X2 2

£ B s
" 2
—Y- =-|J
AL 2
——— :—\)

9 Z

We solve easily for T, Y, Z

T(t) = g M
mm 2 (mwr) 2
Y(y) = cos ZbY M 2(‘23)
_ nmz 2 /nm\ 2
Z(z) = cos 5c . v —%E) |

The eigenvalue equations are:

Z1 !X”]_ Y Zn"

1l

Xll -
sz - Dv{____2 +.¥__ +£.I}

>
1

XZ Y Z

For 'Xl and XZ’ we have the following problem

n

1 _ 2 B
E- A I £y ba) = 0
P N e
Xz— w, X2(+a)_70

i

X, (0)

X' (0)

(II. 5. 3. 2)
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while (II.5.3.2) requires

w2 2 Zl ‘Zz

1~ Yz D (11.5.3.3)

Now, the physical situation guides us to understand the nature of W .

1
and UJZ '
a) If the two media are the same, i.e. Z4 :Zz :Z
2 _ 2 _In
i Uy T3
%l = B, [5) = copiis
1 2 2a
2
)\lmn —Z:V + Dv B —
2 1w 2 Y s 2 + (BT 2
with B =l 2a 2b 2c (II.5.3.4)
1lmn :
The fundamental mode is given by
\,.. =2v+DvB> | (1. 5.3.5)
111 111 = Rl
q)(x z,t) = Z A s X cons L. cog 2B o Ayl
# ¥ i 1, m, n 2a Zb Zc
l,m,n=>1

The x-.dependence of the fundamental mode of the flux is shown in

Fig. (II.5.3.a).

b) It is now clear that, by continuity, a slight increase in ZZ

for instance will lead to trigonometric solutions for Xl(x) and Xz(x)

of the form

Xl(x) &, sin w, (x+a)

XZ(X) a, gin w, (x-a)
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FIG.Il 53a

Y\ O0<a <a,
TRIGONOMETRIC Xl = OI sin w (x +a)
SOLUTION X2 =d, sin wz(x—o)-
‘\
\
FIG.IL 53b
\
1.0 I ac < a
HYPERBOQOLIC Xl =Gl sin wi(x +a)
SOLUTION X2 = 02 sinh wz(x -a)
FIG. I 53¢
1 I a — ¢o
X =a sin — {x+a)
| | Qte
Ne
=T

FIG II 53d
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The x dependence of the flux is shown in Fig. (IL. 5.3.b).

We define a poisoning factor g such that

ZZ :Zl (1 +a) i.e. Z(boron) = Q,Z

i

One sees that, as Z:'z increases, the flux shape becomes so asymmetric
that it is no longer possible to fulfill the equality of slopes at x = 0 with
a trigonometric solution in region II. This is because w22< 0, i.e.

w

2 is imaginary, leading to a hyperbolic solution of the form

X. = a, sinh

e g
c) Hyperbolic solution: See Fig. (IL.5.3.c).

(x+a)

d} For very large boron concentrations,
region II becbmes a black absorber, i.e. no neutron return from
medium II.

We then approach the situation of Fig. (IL. 5.3.d), with a
vacuum condition at the interface.

1I.5.2.3.1 Trigonometric solution.

Formulas for Xl(x) and X’z (x) satisfying external

> (+a) = 0 are

X1 (x) = a; sin ®; (x+a) x <0

boundary conditions Xl(—a) = X

Xz(x) =a, sin W, (x-2a) x >0

2 2 Z'-l "ZZ

with W3 =] + —p—
2 _ 2, . # L1 2z
wz - wl g r " ""_—5—
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Continuity of flux at the intérface:

Xl(O) = X, (0)— a, sinw,;a = -a, sin w,a (1L, 5. 3. 6)

Continuity of current:

1 — 1 =
X 1(0) = X% 2’(0)—» a Wy cos w a = a,w, COs w,a (I1I. 5. 3. 7)

{1I. 5. 3. 6).and (II. 5. 3. 7) give:

12 ' ) ,y (II. 5. 3. 8)

Assume ZZ >Z:1
ZZ = (1 + a)Zl

introduce the auxiliary variable 1= awy

and solve for w; VS'a

fan 2 _ fan VN2 +p
n Ve

hLoh 2
i p=- Dd a (IL.5.3.9)
L .Q:CILU.,




=5 R
. _ . 2 )
This solution is possible as long as 1%+ F> 0 corresponding
to « SCLC where C(.c denctes a critical concentration for
; 2
which [1° +p =0,

If ﬂ2+p=0

N (0)
or tgﬂ = -{1
) =2.0288
o = (2.0288)2D

c Zl aZ

I1.5.2.3.2. Hyperbolic solution:

For o > o » we have an hyperbolic solution

in the poisoned medium

2
> i
W, 0 X, (x)

a; sinml(x+a) x <0

1]

2 2 . '
Wy = +p<0 — XZ (x) a, s1nhlw2‘ (x-a) x>0

Continuity of flux and current at the interface give
a, sin wa = - a, sinh ‘mZ‘ a

w; @) €OS w;a = a, w, cosh Iwzl a

leal =y - (o +7)
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leading to:
(fenl _ _ tanh /-(2%p)
Q B 3

V(2% p)

| p=-244 g ' (I1. 5.4.0)
P D _ - :

11.5.2.3.3. Numerical solutions:

Solutions (II.'5.3.9) and (II. 5.4.0) were solved
numerically, giving wl vs g for selected values of Z:4 , a, D. Itis

then trivial to derive the decay constant ) by writing

2 2 2 2
B = Wy + ({—b-) * (-2116) = "effective bu'ckling”

in region I

» = Z, v +DvB®- cB
when the cooling factor C has been introduced to take into account the
distortion from the pure Maxwellian spectrum. This addition is
legitimate by assumption (f).

Small perturbations calculations around ¢ = 0 were performed

in the trigonometric range. When g =0, W . = w_ =

™
i 2 Z_a- We then

introduce perturbed eigenvalues

m 4
Wy E(l+€1)
) _m
wp =g (1tep)
z Lty 2

|

' » +75 W
A= —5—— v + Dv
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It was found

)\:zl._;_ziz‘_v-f-DV{_z_(l_i_j: (-2%)2.!.(%’&_)2}

K = Z ZZ (Za)
if 22:24 (44'0()

for small poisonings o <1

'OLZI (Za) -

e Ly a9 DV{(%) ") g ) ch

1t 22

dx oy L 2y ¥
a‘" (OL—O)"- 7

For small poison concentration, )\ varies linearly with the average
absorption cross section. The slope at the origin ¢ = 0 was verified

with the numerical calculations.

I1.5.2.3.4. Validity of the use of the diffusion cooling

term.

Essentially, the mathematical problem has been

to solve for effective buckling B2

1.2 in regions I and II. We wrote
>



o o

5 = Wi (D ()
Bz_—_ w§+(%>z+(%z

and derived an expression connecting (1)'12' and wzz by requiring the

same decay constants in the two regions,i.e.

A= Zq-u’ + D Bf = Z?_'U'+Dv5:
wi: U_)f + vZ-'IqZZ
D

One may ask what happens if, for consistency with the final calculations,

one adds the cooling factor CB4, i.e.: What is the influence of the

diffusion cooling on the effective bucklings Bl2 and BZZ 2

Writing >\ = Z4U'+ D de - CB? o= ZZ'U' + D'U‘B; - CB:

gives

(Z-Z)+D(ef-03)- & 1@_- W)+ 2w} ) 21} -0
( Cw:+ 2=éuu3_+. =0
ViG] e -

4 2 N
| d=-|Cw, + ?;wﬁ(z_,_—zu‘:]




Q2=
Since the expansion is carried towards the B4 term, and B2 is always
small (0.1 to 0.3 cm_z), we see that the cooling factor CB4 is not
zzequation. In particular,

going to perturb significantly the wlZ Vs W

if we write

2y

4
EC% v D(ir o 1 and, a posteriori T?-%wz<< wp_z
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IIT NUMERICAL SOLUTIONS

Numerical calculations ofthe ) vs o law (i. e. decay constant of
the fundamental mode versus poisoning factor) were performed using

different sets of published data and the analysis given in Chapter II.

I11.1. Experimental parameters.

. In our experiment, we pulsed a 6 x 6 x 6 inches assembly,

divided in its center by a thin membrane.
. The extrapolation distance d was chosen according to the

Gelbard and Davis calculations. See Section (I 5. 2. 2) for

0.12<B2<O.22 (in Cm_z)

d =0.75 ktr
Xpp = 0.434 £0.001 cm at 21°C is recommended by

Berkurts {(16).

d =0.325 cm

. Water temperature = 21°c = 1%¢.

Assuming a Maxwellian distribution at the water temperature

(219

‘v, = 2200 m/sec at T_ = 293. 6°K (20.4°C)
=2.485 % 0.003 10° cm/sec

<|

(16) Beckurts: Neutron Physics, Page 374.
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. Extrapolated dimensions

a=>b 7.62 cm

g=r

i
1}

{ 94

7.945 cm

~
C

III. 2. Absorption and diffusion properties for water.

In this compilation, we used the basic data Z:q’U‘ 5 D° (:13"&)

and C as published by several authors rather than partial data like

Zq or D . This is because these parameters are directly derived

from )= Zav s DOBZ i CB4 in pulsed neutron measurements, We
assume
Z -T .%
B =D«vw
o
to derive Za and "ﬁ » and take into account eventual temperature

corrections for Do and C only.

There exist many formulaegiving the dependence of D, with
respect to the moderator temperature. As we are interested only in
a small variation with respect to published data at 220, we use the

formula given by Dio and Schoffer (17)

D_= 3.505.10% + (T-19) (130230) cmZsec”!

between 19 and 75°C. It gives an increase of 130 ct‘n2 sec per &

or 0.37 (£0.09)% per OC from f.he value at 19°C. This formula agrees

(17) W. H. Dio and E. Schoffer. Nuclear Phys. 6: 175-176
(1958).
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with measurements by Kuchle (18) at ZZOC, .who found a temperature
coefficient of 0.37%/°C.
Selected values taken [-om literature are reproduced in Table
II1. 2, together with their corui..cted values at 21°C. Since we take v

rather than Zq as refevonce in the produet, }:;U' » we give the

resulting values of Z — Laly and g, (2200 m/sec) derived from
L =
.. ¢

It is interesting to note that these Oa’s agree quite well with
the best published value ¢_(2200) = 0. 654 (0.006) barns (Beckurts (19)).

a

We feel that the last published data (Kuchle, Lopez and Beyster,
Beckurts) are the most reliablc up to date. The range of buckling in-
cluded in these data makes a good basis for comparison., Fig. (III. 2.2

abc) shows the results in the form of curves fitted to these sets of data.

III. 3. Boron dosimetry.

Boric acid (BO3H3) in crystalline form was used for poisoning.
We took the following data.

. Molecular weight of BO;H, = 61.84 gr.

Sol\ibility in water at 21°C: 51.5 g per liter.
Since a poisoning corresponding to a = 1 requests 3 g/liter of
Hzo,the maximum possible poisoning ratio is: ¢ s o Al
v : maxi — %

a) Poisoning doses: In first approximation, we took

-0, (HZO) = 0. 66 barns
at 2200 m/sec
o, (BO3I—I3) (i ca(B) = 755 bairns

(18) Kuchle: NSE 8, No. 1, 88, (1960).

(19) Beckurts and Wirtz. Neutron Physics, Page 408 (1964).



MEASURED VALUES OF ABSORPTION AND DIFFUSION

PROPERTIES OF WATER AT 21°C (v = 2,485 m/sec)

i/}gglifn | zj I (6 e 22°% Corrected 21°C

2 . . _1,| 9at2200) Z - g -1 - -
Authors (B inem ") |Year|(sec ") in barns Do(cm sec )|C(cm sec ') Do(cm sec )| D (cm)
@ Sjostrana| 0153707 195l asoz | (UL D000 P, Dag!t | 0 e
(O [Dhelsbem Jiess| gt | LML) 300 | 0035000 o
pesce 2 o onentennss |rone] a0 oip| 20 | 2%, | 20 [
Dio 1959| 4808 (16'955438) e e i 0.14213
S . loeo| aras | LS| s | 200 | ssam g,
L"gz}f;‘;f 0.02<B%<0.42 | 1962] 4768 (15_9;5;; e i;;éé aip IoE 0.1479
pecans (St sl 1z el mew | mm | s Lo,

at 20°C

TABLE III. 2
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ASYMPTOTIC VALUES ‘

|

_LEAST _ SQUARE FIT OF EXPERIMENTAL DATA

FIGII.2.2.0
CALCULATED X VS. o :
a KUCHLE: E,v =4785 Dj =35270 C=4200
e LOPEZ AND BEYSTER: £,v=4768 D= 36,762 C=5I6
0 BECKURTS : Z,v =4782 D = 35760 C=3420
{ EXPERIMENTAL DATA
1 1 1 | 1 1 1 1 | L 1 1 1 I |
o 1 2 3 4 5 6 7T 8 9. 10 W 12 1B K4 I B 17 18 B

Oe

bOe

_L9_
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LOPEZ AND BEYSTER

o
T

B2 VS o USING: KUGHLE Z,v =4785 D, 35,270

LOPEZ AND BEYSTER z g ¥ 4768
Dy = 35,762 v =2485 m/sec

A
'l% L asymprotic valua

“ | i el | 1 i 1 | | 1

| | | |
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B? (cm‘z)
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T s
as referenced in (20).

with HZO =18

BO3H3 = 61.84
This leads to a poisoning addition of
o B 063269 mg/cm3 for @ =1
The volume to poison is V = 1786.1097 cm3, i.e. requiring
M =5.364169 g of BO;H, for a=1.
Poisoning was performed on this basis with g varying by
steps of 0.5 from 0 to 6.5, then for g = 10 and g = 16.
b) More accurate data was later introduced with:
HZO = 1B.016 Ga(HZO) = 0.654 £ 0. 006 barn.
BO,H, = 61.84 o (B) = 760.8 + 1.9 barn for natural
boron (19.81% of BI®) (21)

These new values lead to:

760.8 _ 18.016 _ 0.660 _
755 X—18  Xp ggz - 1-01783

for M = 5.364169 g of BO,H, as added.

a=1%

These corrections have been taken into account in the data processing.

(20) Meghreblian and Holmes: Nuclear reactor theory.
(20) Reactor Physic Constants: ANL 5800, Page 30 (1963).

{21) Prasdocimi and Deruytter: The Abscrption cross section
of Boron. J. Nucl. Energy A & B, 17,83 (1963).
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IV DESCRIPTION OF THE EXPERIMENTAL SET-UP

A conventional source of 14 MeV neutrons was used to pulse
the assembly, which was surrounded with cadmium and boron. A
thermal neutron scintillation detector (1/4" in diameter) was connected
to proper amplifiers and discriminator before feeding a 256 channel
analyzer.

IV.1l. The pulsed neutron generator:

In this experiment, wc used the Model 9505 Neutron Generator
manufactured by the Texas Nu:lear Corporation of Austin, Texas.
Neutrons are produced by bornbarding deuterium or tritium targets
with deuterons, according to ihe following reactions:

+ Dy + Dy = n, + Hea +3.267 MeV

« Dy 4 Ty=n +He, +17.577 MeV

2 3 1
For the '"thick' targets supplied with the accelerator, the D-D reaction
will yield neutrons of 2,86 MeV energy and the D-T reaction will yield
neutrons of 14.74 MeV at 0° with respect to the incident neutron beam.
Since the targets supplied with the accelerator are ''thick' relative to
the range of the incident deuterons, deuterons of all energies frqm zero
to the incident bombarding energy will yield neutrons which will intro-
duce an energy spread of the neutrons. In all our experiments, we
"used the (D-T) reaction.

The accelerator produces ion beams (deuterons) up to 1500
microamperes under 150 kilovults, (continuous beam). In the pulsed
mode, the beam is deflected by means of a pulser and chopper moni-
tored from an external console, where the frequency and the pulse width

may be adjusted.



.

As far as this experiment is concerﬁed, the accelerator, when
operating under normal conditions, was able to produce a sufficiently
strong neutron flux with very small background between pulses (i.e.
when the beam is deflected). This last feature was particularly appre-
ciated, since it is known that certain pulsed neutron facilities may pro-
duce unwanted neutrons due to secondary interactions when the beam is
turned off. This situation was not detected in our experiments.

IV.2. General configuration of the experimental set-up.

The general pulsed neutron source and pulsed assembly con-
figuration is described below.

a) The water container:

The water container is made of aluminum, with
walls 3 mm thick and a dividing foil (0. 8 mm thick) whose absorption
effects were neglected.

The internal dimensions are 6 x 6 x 7 inches (£0.2 mm)
allowing a 6 x 6 x 6 inches water volume. It is internally coated with a
protective spray to minimize corrosion by water.
The container, open at the top, is entirely coated externally
(top included) with cadmium (1 mm thick) whose role is to absorb most
incoming or outcoming thermal neutrons, thus minimizing the hazardi
of slow reflected neutrons.

b) The surrounding shielding:

When an experiment is performed, the whole
assembly is shielded with highly absorbing boron everywhere, except
on the boitom face which is closely exposed to fast neutrons. A large

thickrces of borated water surrounds the ensemble. This configuration

minimizes backscattering effects.
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IV.3. The scintillation detector.

The Model DS8-10 Neutron scintillation detector set manufac-
tured by the Nuclear Chicago Corporation was used in all experiments.

IV.3.1. The neutron probe:

The SN-6 neutron probe cénsists of an aluminium hous-
ing, 5/16" outside diameter and 42'" long, a light pipe, a thermal
neutron crystal, and a probe adapter cap. The light pipe is a polished
lucite rod for optical coupling between the crystal and the photomulti-
plier tube.

The thermal neutron crystal is a disc of plastic >1 /4" in .diameter
and 3/16" thick. The plastic contains 95% enric}.w.ed boron-10 and silver-
activated zinc sulfide (ZnS(Ag)). The phosphor is also coated on the
grooved front face of the disc.

When a capture takes place, g particles are emitted through
the standard {n, @) reaction, causing in turn the nearby phosphor to
scintillate.

The counting efficiency and discrimination against y rays of
such crystals is described by W. J. Price (22). The crystal responds
to fast neutrons and gammas. Fast neutrons will create recoil protons,
while gammas may strip orbital electrons. Both may cause the
phosphor to scintillate. However, since the ionization effect is much
greater for g particles than for other particles, it is possible to dis-

criminate against fast neutrons and gamma rays.

(22) W. J. Price: Nuclear Rudiation Detection, Page 298
(1958).
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' < 10
The energy dependence of the cross section ¢ for the B™ (n, a)
reaction is found to have the % dependence up to about 100 eV and is
commonly written

O"(’U'): o, ”L’LE (IV.3,.1: 1)

Price (23) gives o = 4010 barns at v, = 2 210° cm/sec.
10

The reaction rate (reactions per sec) in B is

00
R=( Z@) $(e)de
o
iqu(E) is assumed to be constant inside the crys4ta1.
If the neutron spectrum lies within 0-100 eV, (IV.3.1.1) is
valid, and we get
100eV
R=| Z(E)P(E)JE
4 400 eV
.—.Zau’° n(E)dE
°
R = ZO’U'Q N

N is the total number of neutrons per unit volume.
Such a detector measures effectively a neutron density, inde-
pendently of energy. Assuming a Maxwellian spectrum with average

velocity v, the total flux is

{23) W. J. Price: Nuclear Radiation Detection (1958).
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In our experiment, the flux is assumed to be Maxwellian, with
v held constant corresponding to the moderator temperature. There-
fore, the output of the detector can be interpreted as either neutron
density or neutron flux.

It is reasonable to assume, in our case, the following:

a) The extra absorption introduced into the system by
the detector is negligible, because of the size of the crystal and prop-
erties of the casing which are very close to that of water.

b} The probe itself has practicallir no dead-time. This
is because the principal decay component of ZnS (Ag) has a decay
constant of approximately 0.04 \ sec. There is a significant advantage
for very sho.rt resolving times.

c) We are able to make a fair gamma discrimination.
It is known that fast neutrons may induce secondary y-rays in water,
thus affecting the measurements. We did not find any such significant
effect in all the experiments.

d) The crystal does not get saturated at high counting
rates.

IV. 3.2 Position of the neutron probe:

The probe was located in the assembly in a way such that the
effect of higher harmonics was minimized.
It was placed in the half-tank containing the pure distilled water,

at the center of the Y and Z coordinates (see Fig. 11.4.1) i.e. Y=Z=0,
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The position of the probe along the X axis was adjusted ac-
cordingly with the boron poison concentration in the opposite half-tank,
in such a way that it was always positioned approximately where the
first spatial harmonic of the flux in the pure water was maximum. (See
the schematic x-dependence vs poisoning on Fig, II. 4.2 abcd). This
means practically that the probe is placed at X = 0 for no poison (g =0)

a s . :
and placed at X == for the maximum poison concentration.

In general, X (¢maxi) =%— (% - ) where LUl vs. g was known
1

approximately from the theoretical calculations.

IV.3.2. The photomultiplier:

The photomultiplier (Nuclear Chicago Part number
VTK-1692) consists of 10 stages, cesium-antimony dynodes. The
current gain is approximately 300, 000 at the final dynode.

IV.3.3. The preamplifier:

The preamplifier, directly connected to the photo-
multiplier, consists of 3 transistor stéges. The positive pulse frorﬁ
the photomultiplier tube is coupled to an emitter-follower connected
transistor, which deli{rers a 7 to 10 ysec positive pulse with low im-
pedance (150 ohms). This first stage output is A-C coupled to a common
emitter amplifier which is direct coupled to an emitter—folloﬁer.

The output of the amplifier has an overall gain of 20 and an

output impedance of 150 ohms.

IV.4. The count-recording appararmis.

The output from the pre-amplifier is connected to the apparatus

described in Fig. (IV.2.1).
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Pulses are fed into the amplifier of the Model 181-A Decade
Scaler (Nuclear-Chicago) which is used also as a power supply for the
scintillation detector. The outpﬁt of the 181-A is sent to a discrimina-
tor and ultimately to the model CN-110 transistorized multi-channel
pulse analyzer system (Technical Measurement Co;rporation), equipped
with the Time of Flight Logic Unit Model 211.

Dead time of the scintillation detector~- Model 181-A - Dis-
criminator set was measured and found to be close to 5 ysec. This is
in agreement with the value given by the constructor for the 181-A.

I—Iowevér, this equipment had a very important disadvantage:.
The amplifier was found to be unable to handle reliably the high count-
ing rate that occurs immediately after the neutron pulse. This effect
introduced unwanted changes in the over-all efficiency of the apparatus
which was difficult to take into account by a standard correction. .Thefe-
fore, we had to limit the length and strength of the neutron bﬁrsts to
minimize this saturation effect. This also '"diluted'" any short-time
phenomena right after the end of the pulse, and contributed to the
failure of its investigation.

The CN 110 equipped with the Model 211 Time of flight logic
unit was used as follows:

- 256 adjacent channels

- channel width = 8 i sec

- No delay

Characteristics of the pulse generator were:

- Frequency = 450 or 475 cps

- Pulse width = 50 or 75 ysec
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This provided a good picture of the pulse, and insured that
eac'h pulse decayed to the background level before another pulse was
generated.

The total number of pulses (N) in a given experiment was also

recorded.
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V THE ANALYSIS OF EXPERIMENTAL

DECAY CURVES

V.1l. The Frantic Code:

The Frantic Program for Analysis of Experimental Growth-and
decay curves, developed at the Laboratory for Nuclear Science of the
Massachusetts Institute of Techhology, was used extensively through-
out the experiments. (IBM 7090-7094)

Many authors make reference of methods to perform least

square analysis of multlcomponent exponentlally decaying data in the

assumed form F(t) ZA

L=
Among them, the Behrens' method (24) gives good results for one com-

ponent + unknown background. Howe&rer, it was felt that, to improve
the flexibility of the code, a real mu.iticornponent scheme should be
used. - The Frantic code, modified for our specific use (including new
count losses correctiéns) was shown to give fairly consistent and re-
liable results. It has been tested under many conditions, the most
difficult arrising with the 4 component analysis of a pulsed flux in graph-
ite. Because it is based on an iterative method, there are times when
convergence is not reached, and the method fails. However, this
occurs essentially in the analysis of components with very close decay
constant, or very slowly decaying components.

A short description of the iterative procedure is given in Appen-

dix Al, together with ways of estimating the goodness of fit.

(24) D. J. Rechrens - The fitti;ng of exponential decay curves to
the rousults of counting experiments. AERE T/R.629.
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V.2. Corrections for count losses.

Two kinds of dead times were accounted for in the analysis:

T DETECTOR SET Ci CN 40 4
DEAD TIME = Spsec ANALYZER

e o= Recorded counts in channel i at the output of the
analyzer (known)

C'i' = Expected number of incoming counts in channel i

C. = Expected number of counts

1

The CN110 Analyzer and the detector set (probe + amplifiers + dis-
criminator) have quite different types of count losses processes.

V.2.1. Dead-time of the CN110 Analyzer:

When fitted with the Model 211 Time of Flight Logic
Unit, the analyzer has a basic dead time of 16 szec for recording of a
count. In fact, the inoperative period may vary, since the recording
of a count triggers an advance in the address of the next available
channel. A complete description of the process is given in Appendix A2.
Assuming that the distribution of incoming counts in channel i
is a Poisson distribution characterized by an average Xi’ the formula

for the expected number of incoming counts in channel i is:

C’i':——N Llog |4 - L \ 21 1)

T

N—Zc} J

d'r =i-n
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N = Number of pulses

C”i = Number of recorded counts in channel i after N pulses
C’i = Expected number of incoming counts in channel i after
N pulses
16

fio= where E is the channel length in microseconds.

(g KL16 ].)sec)

This formula was first published without proof by Mills, Allen, Selig
and Cadwell (25). A proof is given in Appendix AZ.

As a channel length of 8 rsec was used in all experiments,

n =2, and formula (V. 2.1.1) becomes

[ .
Ci= - NL"S q— C: - (V.2.1.2)
' N - (Cf.-z + CL—A
where C”:.L_2 and C”i.-l are the recorded counts in channels i-2 anci i-1
respectively.

V.2.2. Dead-time of the detector.

v

As mentioned alreédy, the dead-time of the detector
amplifier set was found to be approximately 5 l.)sec. An accurate treat-
ment of the dead time correction connecting Ci to C‘i is very difficult
because:

. The source has a rapidly changing strength
We know only the recorded counts C”i in the analyzer, and
this information is related to C'i through the approximate assumption
that the output pulses from the detector follow a Poisson distribution

over a channel length.

(25) Mills, Allen, Selig, Cadwell - Neutrecn and gainma ray die-
away in an heterogeneous system. Nuclear Applications Vol.1, 4 (Aug-
ust 65).
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It is clear that, as in the case for the CN110 Analyzer, a prob-
lem arises when the dead time of the detector is of the same order of
magnitude than the measuring time (channel length). For a dead time

G=5 ‘Jsec and a measuring time Q =8 tjsec, the maximum number of
detected counts will be 2, regardless of the total number of generating
counts. In addition, what happens in a given channel depends strongly
on the detected events in the previous one.

However, it is felt that this problem arises mostly when the
count-rate is extremely high. In most of our experiments, the peak
count rate was voluntarily limited in order to give a maximum of 105
counts for 107 }.aulses, i.e. 10_2 counts per channel per pulse or
1. 25105 cps for a 8 rsec channel length.

In such conditions, we believe it is legitimate to make a stand-
ard dead time correction as follows:

N = number of pulses {e. g. 107)

E = channel length B & 10»--6 sec)

N‘E: Total measuring time (e.g. 80 sec)

© = Dead time of the detector (e.g. 5 10_6 sec)

J
= Ci
L /
1- Ci g
N
For C'i = 105 counts, and our indicative values, we get
= 5

il

% 167 (1 + 0.00625) i.e. a correction less than 1% at worst.
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These two dead-time corrections were taken into account by
the modified Frantic Code. Their effect is to give a better exponential
behavior over the first channels. The analysis was carried over the
Ci's.

V.2.4. Validity of the Poisson distribution assumption.

This treatment relies on the assumption that the counts
‘incoming into the analyzer follow a Poisson distribution over a channel
width. The physical process involved may be compared to radiocactive
disintegrations. By looking at the works of D. J. Behrens (26),
R. Peierls (27), A. Ruark and L. Dévol (28), it appears that such an
aSSuﬁption is legitimate if:

a) The source strength does not vary appreciably over a channel
length of time. The total number N of neutrons which may give raise to
a count is very large with respect to n, the number of counts appéaring
over a channel length., Therefore, we may apply the Poisson approxi-
mation to the binomial distribution of appearing counts.

b) The detector has zero aead-time.

Assumptio'n {a) deals with the statistical model used.

When we look at a multichannel picture, this is as if we were to assume

(26) D. J. Behrens. Notes on the nature of experiments, the
statistics of counting and the fitting of exponential decay curves to the
results of counting experiments. A.E.R.E. T/R.629 (1951)

(27) R. Peierls. Statistical Error in Counting Experiments,
Proc. Roy. Society (London) Al149 (1935).

{28} A. Ruark and L. Devol., General theory of fluctuations in
Radioactive Disintegrations. Phy. . Review 49 (1936).
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that the smooth exponential decay curve is broken into steps, each step
corresponding to an individual constant source over a channel length.
Since after all we deal only with a correction term, it may be assumed
that the variations of the source strength over the channel length intro-
duced a higher order error that was not taken into account.

Assumption (b) is felt to be legitimate, for while the detector
has a finite dead time, the maximum count-rate is so small (10_2
counts per channel) that it is not expected to affect in a sensible way
the overall correction.

Some remarks on the probability distribution functions in decay

processes are given in Appendix A3.

V.3. The fundamental decay mode analysis,

We feel that one of the critical points of every pulsed neutron
experiment lies in a proper selection of the portion of the decay data
to be analyzed. Assuming that a proper numerical analysis method and
a correct count losses correction scheme are available, it is frequent
to find m(;re than 5% variation in the determination of the fundamental
decay mode.-. This uncertainty lies in the selection of the part of data
to be analyzed. Thus, given a set of data, the critical questions are:

. Where should the analysis start? (i. -e. with respect to the
end of the burst).

. Where should the analysis end?

It turns out that sor:.= ch the discrepancies between
published results may be attributed to the dirfferent individual ansv&ers
given by each author. It is difficult ‘o .derive a’1C0% effective criterion
to recognize '"best firs' for some cf these criteria may lead to conta-

dictory answers.
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We first selected a basic amount of data as follows:

All our experiments were performed with 256 (8 \J-SEC)
channels and no delay time. As decay goes on, we selected data
starting at the first channel containing less than 105 counts. The ex-
periments were carried long enough and in such a way that this channel
number lies between 30 and 40, providing an approximate waiting time
of 190 to 270 ‘Jsec for a pulse width of 50 ’Jsec. Then, all the data were
taken up to channel 256.

This usually provided a decay over 5 decades and 100 channels,
leaving approximately 100 channels of background. This background
measurement, besides providing an accurate estimation of the back-
ground level (of very little interest), was essentially used to check
that no slowing decaying or increasing component of small amplitude
was present, such as accelerator generated background.

Fig. (V.3.a) is a typical example of such data for o = 0.508.

These basic data were then numerically least-squares fitted to one
decaying component and a constant background () = 0) of unknown ampli-
tude. The starting channel was changed by steps of 5, and the end
channel was adjusted over the background range. In this way, we
analyzed different portions of the basic data, keeping track of 3, g()\),
and the variance of the fit (VAR). From many experiments, we ob-
served:

a) The selection of the end point is of no significant

importance:
Fig. (V.3.b) shows the change in ) and VAR when the

?_.
end channel was reduced by steps of 5 over the background range. As
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can be seen, this change never exceeded 0. 15% for ) , which is quite
reasonable. - Including more background data does not affect ), but
improves the accuracy‘in the background level, in which we are not
interested. However, since there is no disadvantage in including very
much background data, we did so in all the analys'is, i.e. included all
the background data.

b) The selection of the starting point is very important.

As can be seen in Fig. (V.3.a), it takes a
relatively long time for the fundamental mode to be truly established,
i.e. for the background corrected decay curve (on semi-log plot) to be
a true .straight line, with statistical fluctuations evenly scattered as
time goes on. Fig. (V.3.a) shows also the effect of the count-loss
correction factor. However, this "straightening' of the curve is in-
sufficient to provide a real straight line all over the decay curve.

Thus, we believe strongly in the need for a complete detailed
picture of the decay process from the end of the burst down to the
background level. We believe it is also important to gather sufficient
informatibn on the background itself (i.e. at least 50 channels)i in order
to make sure that it is reached and does not vary slowly because of
backscattering or improper shut off of the beam of the accelerator.
This calls for a truly multichannel analyzer with at least 100 channels,
If these qonditions are not met, the experimenter using a simplified
analyzer (as *hose with 20 channels) will analyze an jncomplete portion
of the decéy,. and therefore be unable to decide whether the fundamental
mode has ?i)eén reached or not. (For iinstance, one could be tempted to

analvze the first 3 decades of the typical decay shown in Fig, (V.3.a),
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and would derive a wrong result.)

Assuming that we have the necessary detailed picture of the
decay process, itis thén necessary to select the proper starting point
where the fundamental rriode_ is believed to be reached. The best way
to do it is to perform many analysis by varying the starting point, and
keep track of ), o()) and the variance of fit (VAR). When the funda-
mental mode is reached, ) should not vary whatever posterior portion
of the data is analyzed.

Fig. (V.3.c) shows how A and VAR change when this method
was applied to data in Fig. (V.3.a). If the analysis is begun too soon,
Xis underestimated, and the weighted variance of the fit relatively
large. When the beginning of the analysis is delayed more and more
A increases while the closeness of fit improves (i.e. the weighted
variance of the fit decreases). Ultimately, ) reaches an equilibrium
level from which it does not change. From there, we can say that the
fundamental mode has been reached. The variance of fit has also im-
proved by reaching a minimum.

This behavior allows us to select the ""best fit', i.e. the one
leading to a minimum variance when the fundamental mode has been
reached. From Fig. (V.3.c), it can be seen that the fundamental mode
was reached at about channel 84, i.e. 620 l.lsec after the end of the
burst. The calculated decay curve has been plotted on Fig. (V.3.a),
and shows that the statistical variations ar= evenly distributed along it.

Fig. (V.3.c) also sho.ws that, after the fundamental mode has
been reached, the decay constant mav suffer some fluctuations (in this

particular case, it dvopped). Thic rmay occur when the starting
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channel is so delayed that only a very small portion of the end of the
decay is analyzed against a long tail of background. These random
fluctuations should be charged to poor statistics, since they result
from analysis covefing less than 1 decade, on counts subject to rela-
‘tively large statistical fluctuations. This is why the best fit is often
chosen as the first occurring after reaching of the fundamental mode.

In all our experiments, such an analysis was performed. Data
were analyzed using 13 to 15 starting points, depending how fast the
decay was. The last starting point was fixed by the fact that the re-
maining data should cover one decade at least (from 300 to 30 counts
for inStance). The average time required to reach the fundamental
mode was of the order of 600 ‘Jsec, and often more.

From there, the '""best fit'"" was chosen according to the follow-
ing criteria:

- The fundamental mode has been reached (i.e. ) does not

change appreciably as the starting point is more delayed)

- The variance of the fit is minimum

- The standard deviation g ( A) is the smallest available.

The two first criteria were weighted equally and were given
priority to select the proper decay constant. If these were insufficient
to choose from the different potentially eligible, A , then the lé.st
criterion was applied to make the final decision.

In the case given in Fig.. (V.3.c), the situation happened to be
ideal, i.e. the different criteria led to compatible answers. There
were cases when the choice was not so clear, and a careful weighting

1
of these factors had to be made. Most of the time, the reaching of
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the fundamental mode criterion was given final priority.

From all the experiments, it appears that )\ could be deter-
mined within 0. 7% for -10 out of 16 cases, and the overall accuracy is

of the order of 1%.



=D~

VI RESULTS

VI.1l. Experimental results:

Table VI.1 shows the experimental results obtained for different
values of the poisoning parameter g . These experimental results were
derived in the following conditions:

a) Determination of a: The poisoning factor ¢ was taken

"a priori" according to section III. 3.

b) Determination of A\ : The fundamental mode decay constant
"was chosen according to the numerical analysis described
in Chapter 5. -The "best fit" was chosen by optimizing the
following cr‘iteria:

- Variance of the fit

- .Behavior of A versus the portion of data to be -

analyzed

- Good statistical distribution of the deviations

between calculated and experimental curve.
The apparent numerical accuracy of these results is purely fictitious,
and should be attributed to the data processing method.

c) Determination of the standard deviation g ( \ ):

This result is generated by the Frantic (;ode, and givés
only an evaluation of how well the calculated curve fits the data when
statistical weights are used. Thus, this standard deviation describes
how much confidence should be put in the fit. We believe that the
standard deviation associafed with the experiment and the fit should

be taken larger than ¢ given in Table VI. 1.
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TABLE VI. 1

Least-square fit:

\ = 4792 + 34, 800 B2 eff.

Experimental c (\) Calculated Calculated

— A (sec_l) (sec—l) A (sec_l) i (cm_z)

0 8824. 83 8873. 0.11726
0.509 9903. 64 9845 0.14519
1.018 10256 141 10395 0.16100
1.527 10613 76 10740 ©0.17091
2,036 10900 126 10971 0.17756
2.545 11333 134 11136 0.18230
3.054 11188 130 11268 0.18608
3.562 11437 46 11372 0.18908
4,071 11559 7 11458 0.19154
4.580 11585 59 11530 0.19362
5.089 11571 38 11592 0.19540
5.598 11620 63 11646 0.19695
6.107 11691 113 11689 0.19819
6.616 11826 71 11734 0.19948
10.178 11850 47 11942 0.20546
16.285 12151 97 12135 0.21101
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In Table VI. 1, an experimental value has been omitted:
e %= FI488 see™ o= 84 4% soc™r. This value falls go
much under the generai curve' that its deviation can be explained only
- by an experimental inconsistency. We believe that, in this case, the
relatively large amount of boric acid was not fully dissolved in the
water. As a consequence, the boron concentration suffered a large
error.

This value was not considered in the data evaluation.

VI.2. The data evaluation.

We first plot A versus ¢, and expect to find a curve similar to
those obtained using a priori values for 'Zav, DO and C taken in the
literature. This appears to be the case, and we can estimate roughly
the experimental scattering of points to be within 1% of the M\ value.

However, we would like to have a better estimation of the good-
nese: of data, i.e. we would like to find the best parameters Zav and
D, which, when used to generate the )\ versus a curve according to the

analysis given in Section 152, minimize the quantity:

n
2 2
X = Z g._y"_."__.YL)__. where
L=1 0‘12

n = number of data points
Y. = experimental value of )
o. = standard deviation associated with Yi

y. = calculated value of A
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Here, the Gils enter as weighting factors. Thus, their absolute
value is not of primary importance; it is rather their relative ampli-
tude which counts. This relative amplitude is given by the Frantic
Code, and tabulated iﬁ Table VI. 1. |

The general accuracy of the results leads us to believe that the
introduction of an unknown cooling factor C in the fit is purely artificial,
since this correction term is of the same order that the experimental

error (i.e. 2100 sec_l). We will attempt a two parameter fit, and

write
ZaV - Ao
Do = Al
A =Yy

For a given amount of boric acid added, the poisoning factor ¢ depends

on the ratio of the absorption cross sections of water and boric acid.

if (Zav)H o is allowed to vary in the fit, ¢ will vary accordingly. How-
5 :

ever, since (Za)H o is not expected to vary in large proportions in the
2

(3)
course of the fit, we take as constant reference the ratio A Hagt

) (Za)BO3H3

rather than (Za)B03H3 alone. Thus, o is taken constant a priori.

VI.2.1. Two parameter fit without the introduction of the cooling

factor:

We attempt the following fit

y o((AQ)JAo),i\,‘) = Aot AB () ALA,)
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where BZ denotes the effective buckling as calculated in Section
2 2 2 2
I1.4.2.3. Because D = (ol AD A4>+(._TI_)+(E.
AR 2b 2¢

is NOT linear in AO and Al, we cannot make a unique least-squares
analysis as in the case of polynomial fitting.

With @ held constant whehn ,AO ane :\1 are allowed to vary, we

have
¥ (Ao, A) = Aot A B (,AA)

We chose to perform an iterative least square analysis as follows:

a) We give first guesses for A and Al denoted by Aéo) and

o)

A(O), and compute Bz(a, A((D

1 g Aio)) which is then known and denoted

by B%o) (). It is then irivial to make a least square analysis of the

experimental data in the form
: 2
y(u); At AB (o)

This least-square analysis leads to an improved set of coefficients

: /
A(()l) and A(ll), and a given )\,(21). This is known as an iteration.

'b) These improved values Aél) and Agl)
1)

into Bz(oc, A((Dl), A§ ) leading to a new B?l)(cg). A polynomial fitting

are then substituted

-

is performed with

)/(ok) = A_+A, Béf)(a)

leading to new improved values A((DZ) and Aiz)
2

(2)

of the coefficients,

together with a new improved X
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c) The iterative process is continued (i.e. put Ac()z) and Aiz) in
BZ, derive B%Z)V, find improved A((DB), A§3), Xé) and éo on) until both
A(()i), A(li) and X(zl) do not vary by more than 10_6 from one iteration to
another. Then, convergence is achieved.

Theoreticaliy, this process offers nb guarantee of convergence
and stability. We cannot influence any of them, for they are contained
in the non-linear function BZ of o, Ao, Al. However, one can get a
crude idea'of the convergence feasibility by looking at the dependence
1 Whenrcl) decreases, B2 decreases (see
Fig. IIL 2. 2.b) while ) increases (Fig. III.2.2.a). This reverse

of ) and B?' vS A0 and A

effect is believed to provide the necessary convergence and stability.
Numerical calculations were performed on the IBM 7090-7094,

and led to the following results: |

. Number of iterations needed to satisfy the convergence criterion = 6.

. Ao = év ‘

D 34,800(1800)crn25ec_1

.o

[a)

L -Ya 2

. XZ :Z-(y"—zL— = 18.22 for 16 points.
1 oy

The values given in parentheses give estimates of the standard devia-

1]

4792 (x150) sec”

1l

tion of the parameters as computed from the least-squares analysis.
They are relatively large. This is due mainly to the rather small
range o£>buckling values available, rather than to the over all accuracy
of the experimental results (in which ¢ (X)) =100 sec_l).

Dividing X_Z by the number of degrees of freedom =Number of
points — number of unknown parameters = 14
leads to a variance of fit

2

- = ; i 1
VAR = NE 1.30 which is reasonable,
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We were therefore able to represent our experimental data in the best

analytical form.
A = 4792 + 34800 B*(«,4792,34800) (VL. 2.1)

Fig. (VI.2.a) and (VI. 2.b) show ) (o) and ) (Bz) as determined experi-
mentally and fitted by formula (VI.2.1). Local values as calculated are
given in table (VI.1l). We can see that the agreement is very good
between the experiment and the idealized curve.

It is of interest to compare this two parameter fit with Qalues
given for water in literature. We found
Zy
D_

]

4792  (£150) gec™

-1

il

34,800 (+£800) c:mz sec
It is clear that the value Z:v = 4792 sec—l agrees pretty well with the
value found by Kuchle ( Z;v = 4785 sec_l) and Beckurts (fa.v = 4782
sec—l‘).

On the other hand, f); is consistently underestimatéd. This is
b.ecause, in first approximation, we did not take into account the cool-
ing factor C. Therefore, when fitting a parabola with a straight-line
as we did, we had to reduce the slope cérresponding to B2 = 0

However, the result on D, can be improved by the following
first order approximation:

Suppose we write A= ZQ’U %-(DO—CSZD B2
Since the range of buckling is very small {from 0.12 to 0,21 cm“z), it

2
can be expected that (DO - CB ) will not vary appreciably over this

range. We may then izke the vooliug factor C a priori as given in the



LEAST-SQUARE FIT

EXPERIMENTAL X VS. a
LEAST-SQUARE FIT: T_v = 4792 sec™!

fm
b—

a
5; =34800 cm?2 sec™!
Ma)=T_v + D, B (a)

=TOT =




EXPERIMENTAL X (B2 EFFECTIVE)

Fig¥.2.b

FITTED BY X =4792 + 34,800 BZ

1 1 L

on

15 16 k4

B2 (EFFECTIVE) IN cm-2

.20

2l

=201~
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literature, and identify z v and (D0 - CB") with AO and A1 respective-

a
ly. :
a) | . C =4200 -::rn4 sec_l (Kuchle)
(DO = CBZ) = Al = 34, 800
B = 0,12 em ™" — D_ = 35,300 cmaee”
B2 =0.21 crn—2 — D;) = 35,680 cmzsec_
to be compared with D_ = 35,270 crnzsec‘:l given
by Kuchle
b) ., C = 3420 cm4sec-1 (Beckurts)
B®=0.12cm >  — D_=35,210 cm®sec” !
B2 = 0.21 Crn_2 — Do = 35,500 cmzsec_1
to be compared with B, = 35, 760 szsec- given

by Beckurts
These values are well within 1% of the published values.

VI.2.2. Two-parameter fit with introduction of the cooling

factor:

In order to get a better estimate of the effect of
a given cooling factor C (taken from the literature, and held constant)
introduced in a two parameters fit, least-squares analysis of experi-

mental data was performed using the iterative procedure introduced

earlier. Given C, the problem is then to fit the quantity y = 3+ CZB4

into the form AIO + A1B2, where AO and A1 ére unknown.

The iterative process is the following:
(o)
v

2 2
. Compute B(o) as B~ (a, Aéo), Ago))

. Give first estimates Ac(jo) 3
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: (o) _ ’ 1 4 (1) (1) .2
. Fity = A (expenmenta..) + CB(O) into AO + A1 B(o)'
Extract A((Dl) and A(l“‘
. Reset, i.e. plug the new estimates AS) and A(ll) into BZ(Q,ALL),

2
(1)

When XZ, Ao and Al reach a stable value, convergence is

Agl)) = B and continue along the same line.
achieved.
Table VI. 2.2 shows the results obtained by this method, using

selected values of C taken froin literature.

Table VI. 2. 2.

REFERENCE DATA LEAST-SQUARE FIT
OF EXPERIMENTAL DATA
Author Zav Do Commeon C év Do >
- s 4 =1 & ~ X
(sec 7)|cm sec cm’ sec (sec ) (cm sec 7)
0 4792 (£150) |34, 800 (£800)| 18. 22
Beckurts 4782 35760 3420 4722 (+£150) |35,972 (:800)119.04
(£15) (+80) (£170) (-1.25%) (+0. 60%)
Kuchle 4785 35270 4200 14710 (£150) |36, 207 (£800)(19.24 |-
(+700) | (+£800) (-1.55%) (+2. 65%)
ILopez 4768 | 36762 5116 4698 (£150) [36,488 (£800)| 19.59
and (2400} | (£780) (-1.45%) (+2. 0%)
Beyster

Reference data: See Table III. 2. Values in parentheses give published

error estimates on the parameters.
Experimental data: Values in parentheses give standard deviations and

deviations (in %) of the least-squares fitted para-

meters from published corresponding parameters.



-105

As could have been expected, the introduction of a fixed cooling
factor in the fitting of our given experimental data had the following
effects:

(1) Increase ’DO as C increases

(2) Decrease Zav as C increases

(3) Increase Xz as C increases: This is because the experiment-
al data do not exhibit a '"cooling' component, i.e. a flattening of the
A VS Bz curve as B2 increases. On the contrary, it would rather show
the inverse effect on the rather small range of buckling which was in-
vestigated. This contradictior.l should probably be charged to experi-
mental errors.

Table VI. 2.2 also shows that except in the fitting without cooling
factor, Zav is underestimated (-1.5% at worse) while Dé is over-
estimated (+2.65% maxi).

Again, it is likely that no physical reason is responsible for
that, but rather the lack of experimental data on a wider range of
buckling.

We- are inclined to think that, considering the extent of the
approximations which were made and the many factors entering in the
experiment, such results, which are purely indicative of the goodness
of the method, are reasonably good and consistent. In particular, it
is worth pointing out that the range of available bucklings (0.12 to . 21
cm-z) is very small compared with the much larger ranges over which
absorption and diffusion parameters are usually determined (~ 0 up to

0.8 cm-z, i.e. 8 times more).
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VI.3. Interpretation of the experimental results.

So far, it can be said that the overall experimental results are
in good agreement wnich theoretical predicticns based on a simple
diffusion model. Our data evaluation consisted of two steps, which are
closely related:

a) Set up a theoretical model, derive predictions using pre-
viously published data on absorption and diffusion properties of water,
and compare the results of the experiment with these predictions: The
maximum deviation whicﬂ was observed was of the order of 2% on ),
and is believed to be a reasonable order of accuracy for such an experi-
ment. (In fact, most experimental points lie within 1% of the announced
values.‘)

b) Starting from the experimental data, assume a priori that
they follow the diffusion model, and derive the '"best' absorption and
diffusion parameters which should be "plugged in'" the model to des-
cribe them. It waé shown that this analysis led to values of év and
I.)O quite close to those given in reference (within a tolerance of 1 to 2%).

This leads to more confidence that the theory itself matches the
experimental results.

However, it should be remembered that the primary purpose of
this work is not to determinebneutron properties for water, but to check
a theoretical model. This method is believed to be undesirable for the
determination of absorption or diffusion properties, since the range of
available bucklings is limited, and the results require a rather com-

plicated mathematical scheme for the analysis.
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VII CONCLUSION

Before summarizing the evaluation of results, we feel that it
is of value to point out several remarks concerning pulsed neutron
measurements in general which have been learned through the experi=
ence of this work:

It appears that the pulsed neutron technique, when used with
appropriate care, is able to provide valuable and reliable information.
To do so, we believe that thé following conditions must be met:

‘1. The experimental set-up:

a) The neutron source should be strong and should provide
adequate flexibility for proper selection of pulse width and repetition
rate. In pal_'ti'cular, it should not produce unwanted backgroﬁnd when
the beam is turned off: This can be accomplished by pulsing the extrac-
tion voltage of the ion source together \%:ith the beam deflecting plates.

b) The detector set must be able to handle high count rates
occurring during the pulse, i.e. have a nearly constant efficiency
regardless of the count rate. Its dead time should be kept as small as
possible, in particular when small channel widtﬁs are used.

‘¢) The analyzer should have enough channels to cover all the
time history -of a pulse. It is recommended to gather information on
the background itself in order to make sure that it has been reached
and that no significant backscattering effects take place.

2. The decay analysis:
The selection of the portion of data to be analyzed (correspond-

ing to the reaching of the fundamental mode) is an extremely critical
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factor and calls for an adequate data processing facility. Care should
be taken in the count-loss correction scheme and in the use of a numeri-
cal code for experimental decay analysis. We believe that the data
interpretation is on"e- of the most important points of the pulsed neutron
technique. Therefore, it is abselutely necessary te define a consistent
and reliable method for data analysis, in order to get comparable and
consistent results. Under these éonditions, and assuming that the raw
data are of good quality the fundamental decay constant can be deter-
mined within 0.5%.

As far as the diffusion model is concerned, we believe that its
use is valid under the present circumstances, i.e. when the absorption
properties only are changed. The experimental results agree fairly
well with the predictions of our model within experimental errors.
When fitted into the form predicted by diffusion theory, the measure-
ments lead to

pag

D
o

I

4721 see > (£150)

35972 t:mzsec_1 (800 for water at 21
-1

1

C (given) = 3420 cm4 sec

1l

which, when compared to published data, reinforce the confidence in
the adequacy of the theoretical model.

We believe that the accuracy of our measurements could be im-
proved by further refinements in the evaluation of the poisoning factor
and, eventually, by a two components decay analysis.

The validity of diffusion theory in the actual experiment is not
surprising since we changed éssentially the absorption properties

} ¥
- without altering the diffusion ones. In addition, a % dependence of the
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absorption cross-sections does not affect the energy spectrum, allow-
ing us to assurre with reason a unique energy spectrum for the whole
assembly, | The diffurion theory underlying assumptions have not been
violated; this explains the agreement between the experiment and the
theory.

Possible extensions of this investigation would be to introduce
- a change in the scattering properties of the two media (for instance:
water against hydrocarbon). Such a situation is more difficult, be-
cause one cannot assume identical energy spectra in both media. More-
over, it is doubtful that the space-energy separability condition would
be valid, because the interface condition asks for identical spectra
while the interior conditions requires different spectra. To treat
this case, it will be useful to refer to the work of R. C. Erdmann
mentioned earlier to evaluate the qualitative effects of scattering and

absorption heterogeneities.
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APPENDIX Al. THE FRANTIC CODE

This code processes raw counting data and fit to these data, by
fhe least-squares techuiques, =quations for multiple exponential growth
and decay.

If one forces a set of data to assume the form
F(t) = %1 Ajepkjt, the problem is then to determine the optimum Aj's

3=

:'s minimizing the "variance of the fit"

J

N k
_ 1 Z _ -3t 12
VAR = NE W, [Yi ;1 Aje j 1]

i=1

and X

where
k = number of components
N = number of data points
NF = number of degrees of freedom = N - number of unknown
parameters
y. = data to be analyzed
W. = weighting factors

A., ). = unknown parameters

. Several options are available to compute W.. ~As customary

in least-squares methods involving data obeying nuclear statistics,

1

we chose the option calculating the weight according to Wi =

. One or more parameters can be held constant in the course
of the analysis. In particular, a constant background of unknown
strength is entered with } = 0.

The signs of parameters may be held constant.
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In order for a least-squares analysis to be applicable, there
must exist a set of simultaneous equations which are linear in the
parameters which arc to be Jetermined. The number of equations in
the set must be at least as large as the number of unknown parameters.
When these conditions are met, a unique solution exists and the values
of the parameters can be determined by a Unique Least-Squares
Analysis. |

F}Sr instance, in trying to fit experimental data into the form
F(t) = Z Aje_}\jt, the resulting equations are linear in Aj‘s while
they a:r'eJ n}c;t linear with respect to the decay constants xj*s. There~
fore, the least-squares method is NOT directly applicable to the
determination of the \'s, and there ma.y'. exist a series of minima in
the variance of fit.

In order to use the least-squares method, the equations must
be made linear. One method of linearization consists of expanding each
expression in a first-order Taylor series about the point defined by
previous estimates of the parameters. Keeping only first order terms
provides a set of simultaneous equations which are linear in the first
power of the A terms (i.e. differences between the estimates of the
parameters and the actual values), but not necessarily linear in the
original parameters themselves. However, this set of eguations can
be least-zguares analyzed and leads to a unique solution for the incre-
ments A for which the previous estimates must be corrected in order

to minimize the variance.
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Of course, since ali higher-order terms of the Taylor expansion
are neglected cne cannot expect fo find immediately the correct Aterms
which will lead to the best j's. It is necessary to repeat the process
many times until some convergence criterion is met. This process is
known as an Iterative Least-Squares Analysis. |

In the Frantic Code, original estimates can be supplied as
initial data, or calculated by the code itself (Subroutine GUESS).V Then,
the Code begins the iteration process, and keeps track of the evolution
of the variance of the fit VAR. The convergence criterion is that the
variance VAR should not vary by more than 10"6 from its previous
value. Then, results of the last iteration are printed, together with
statistical data such as XZ, an histogram of the durations between cal-
culated and experimental data, standard deviations on the parameters,
etc.

The Code is able to accommodate 400 data points with a maxi-
mum of 10 components.

Note: Statistical weights.

In the code, we use the following local weight:

1
Wy s
oy
with
2 2 2 2 2
o, =0 (C); +o (B), +o (Zd)i +0”(DT),
2
o] (C)i =\ oF uncertainty in count rate (Ci = number of counts
i
DTi = counting time)
2 B 3 :
o (B). = uncertainty in background B

i DT.
i
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02 (Zd)i from uncertainty in dead time factocr ¢ (& d)
.2 ”

G (DT)i from uncertainty in counting interval.

-Interpreta*tion of the results.

The goodness of fit:

The goodness of fit is described mainly by the calculated
values of the weighted variance of fit (VAR) and XZ. The variance of
fit is the sum of the weighted squares of the residuals divided by the
degrees of freedom, where each weigh"céd residual is gxpressed in 7
units of its individual g. The g values include uncertainty in the ob-
served count-rate, background, dead-time, and counting interval (see
above).

The value of (VAR) is also the square of the standard deviation
of the distribution of residuals about zero (i.e. describe the standard
devié.tion of the plotted histogram of deviations). Therefore, for data
having only statistical deviations, the expectation value of VAR is
unity, and the 2g level of confidence (i.e. value where an identical
measurement has 97.73% chance of having a smaller VAR) is approxi-
mately (1 + 3/ [DF).

- In most experiments, the variance was found to lie around unity.

Chi-square (XZ) is similar to VAR except that the sum of fhe
weighted squares of residuals is not divided by DF, and the weighting
factors include only uncertainty in the calculated count rates (not
observed count-rates). In our experiments, background (i.e. constant
amount fo be subtracted from the initial data) was taken equal to zero,

since it was to be directly determined, and uncertainty in dead time and
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counting interval was set equal to zero. Thereforre, one should expect

to find VAR x DF ~ XZ, which was the case.

. How well does the calculated curve compare with the data?

At first, one may look at the printed histogram of the
residuals which should be Gaussian with standard deviation equal to
VAR. This gives an over all picture of how the deviations between the
data and the calculated curve are statistically distributed.

However, it is the detailed study of the residuals as they appear
in the time sequence which indicates how well the calculated curve fits
the data. There should be statistical variations in the signs of the
residuals, i.e., alternate positive and negative values with no long
series of residuals having the same sign. In our experiments, it was
clear that if we made a one decaying component + background analysis
of data too early after the end of the burst, somerhigher decaying com-
ponents were present, and the fesiduals would show a long sequence of
- signs followed by + signs.

Ultimately, one can make a statistical analysis of the residuals
versus time, and derive a randomness estimate of this distribution.

There have been numerous codes based on this iterative
scheme. For reference, we mention:

. A Fortran Il Program for Analysis of radioactive decay
curves. John L. Need and T. E. Fessler, NASA TN D-1453 (1962).

. Frenic code. Los Alamos Scientific Laboratory.

G. R. Keepin, T. F. Winnett, and R. K. Zeigler,

J. Nuclear Energy 6, 1 (1957).
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APPENDIX A2. DERIVATION OF THE DEAD-TIME CORRECTION

FORMULA FOR THE CN110 ANALYZER AND

MODEL 211 LOGIC UNIT

1. Description of operation:

The CN 110 Analyzer equipped with the Model 211 I.ogic Unit
is a 256 channels analyzer with channel widths varying between 0. 25
U sec anci64 usec (0.25-0,5-1-2-4-8-16 - 32 - 64 micro-
seconds).

The analyzer has a basic dead-time of 16 ysec for recording of
a count.in the memory cells - While most analyzers can store a count
in the proper channel right é.fter the end of their inoperative period,
the Model 211 operates in a quite different way: The channels are
adjacent, and gated. To be able to record counts, a given channel
must have its gate open (GATE = 1).

A gate is op-en if the address system activated it. In general,
the advance (increment) of the address is a number of channels equal
to 16 usec divided by the channel length. This gives advances from
1 to 64 channels and allows more than one event per address cycle
to be stored (if the channel length is larger than 16 ysec). In case of
a channel length less or equal to 16 ysec, and after one count has been
recoréed, the address of the next open channel ready to record a count
is changed and defined as the closest one after elapse of the basic dead-
time (16 usec).

Hence, it is the recording of a count which triggers the change

of address. A typical sequence goes as follows:
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- Channel length - 1 < 16 psec.
- A count is recorded at At after the beginning of a channel. It is
stored . the proper channel.
- The address of the next activated channel is changed to 16 +1- At =
beginning of the next channel able to record a count.

It appears that the unit has a variable dead-time =16 +1- At
which depends on the time At of apparition of the address triggering
‘count. Since the appearance of a count changes the address to the next
available channel, it follows that the analyzer can record a maximum
of ONE count only per channel and per cycle in the case where
1 <16 pysec. If a basic cycle (i.e. a burst and decay for a pulsed
neutron experiment) is repeated N times, and the recorded counts of
a given channel added at each time, the .maximum total number of
recorded counts is N (ONE per cycle). It must be realized that the

output of a given channel is a non-linear process: It is a 0 or 1 event.

2. Statistical analysis:

2.1. Statistical distribution of incoming counts.

It is assumed, at first, that the incoming count-rate does
not vary apprgciably during a length‘ of time equal to the channel length
l.. Therefore, it is a reasonable assumption to assume, because of the
physical process involved, a Poisson distribution for incoming counts

associated with a given channel i. We define

N = Number of experiments
Ci = Total e:%pected number of incoming counts associated with
channel i for N experiments
C'. = Total number of recorded counts in channel i.
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A general Poisson distribution describing of probability of

arrival of k counte in a length of time € is

ok
P (c, t) = M L

It the experiment is repeated a large number of times, the expected - -
value of the Poisson wvariable is xit.
For our particular case, t =1 = channel length. Since the counts

-are equally distributed over the N trials, we can set the average to

S
~ TNt
Therefore, we have Ci k
-G (W)
Pillo D=ew %1
= Probability of having k incoming counts in channel i
C. -
-7
Pl (0, 1)—- e —N.'—
= Probability of NO incoming count in channel i.
!
l—Pi(o,l):l—e N

.Probability of one or more incoming counts
appearing in channel i.
2.2. Statistical distribution of recorded coﬁnfs.
The probability of RECORDING ONE count (and one only) in
channel i is governed by two independent events:
The gate of channel i is OPEN (Gi = 1)
. One or more counts appear in channel i.

~ Ther efore
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P'i = Proballity of recording 1 count in channel i
=Py (G. = 1. Gate is open) x (Probability that 1 or more
+
counts zppear in channel i)
= pl (Gl = 1)' {1 - pl (O, 1)}
-C;
1 - - =S o
Pi—pi(Gi—l)(l e I

If the experiment is repeated N timeé, the expected value of the total
number of recorded counts is
C.
=i
[ I - e Ll
Ci—NPi"NPi(Gi"l) (1 -e N)
The gate(}i will be open if, and only if no count has been RECORDED
in the preceding channels which span a length of time of 16 ysec before

beginning of channel i. Two situations arise:

2.2.1. Channel length less or equal to the basic dead-time.

16 rsec 2 M|

; 1 <16 psec
i-1 L :

The nat>ure of the channel lengths makes them a rational fraction of the
dead time.

A number n = —11—6 channels span the 16 | sec basic dead time.

| j=i-1
A total number C'j of counts has been recorded during N

j=i-n
experiments.
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Since the total time spanning of these channels is 16 psec, the
total possible number of counts they could have recorded is N (1 at a

time). Each time they recurded a count, ilic gate for channel i was

closed.
i-1
C'j = Number of times the gate of i was closed
i-n
N = Total number of experiments
i-1
N - C' = Number of times the gate of i was open
i-1
N ZC'
N = Probability that the gate of i ié open
N- T
B (G, = 1) = i-n
i N

Therefore, we have

N 7 C
ci=N\—12

) 6o

C.
(N—Z c'j) (1 ~ e-ﬁl) (2.2.1.1)
l1-n

Solving for Ci, we get

Ci=—NLOg 1 -
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This formula is identical with the one derived by W. R. Mills, Jr.,

1. S. Allen, F. Selig and R. L. Cadwell (23).

C.
If-ﬁf is small, we have
Gy
RS (G
€ N ZN
with C; '~ C'., we get (l-e N ) ~ -1\-]-(1 _T)
i-1
i-1
C. . (G .ZCIJ'
e (- 5 - ) = ® b __in -
Cicw U-5x) ch) C;l--x) O N )
i-n
1 Z ZC
M 1]
~C; |1-5 ( o,
C'..ZC‘.
& J s of higher order, and is not taken into account.
2N -
- i-1
1 c!, ]
. ) ? '
C'I: C1 1 5 5— + Cj)
L i-n .
i-1
o -1
i = gt 1 1
C1:C1 1 i > +§ Cj
L .i-n i

Thus, the correction formula is identical with the standard dead time
correction formula, provided that the dead time is taken equal to

(16 + % 1) usec.

(29) Mills, Allen, Selig, Cadwell - Neutron and Gamma-Ray
die-away in an heterogeneous system - Nuclear Applications Vol. I, 4
(August 65) : ‘
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2.2.2. Channel length I 16 L sec.

In this case, the unit acts as if the channel were divided

]
into an integer number n of ''subchannels' of length E =16 ysec

X
" ET6

The process is the same: If a-count is recorded at At (At <16) in the
first subchannel, then the next available subchannel for recording
begins at 16 + E' - At =32 - At psec.

The indetermination arises as the distribution of the recorded
counts in each subchannel is unknown. Only the total number of counts
is known. In first approximation, we will assume that the recorded

counts are equally distributed over the channel length, i.e. in each

subchannel.
If we have n subchannels in channel i, and G'i is the total
number of recorded counts in channel i, We' define.the fraction
. .

C'i ] = n—l = Assumed number of recorded counts in the jth subchannel
H

of channel 1i.

The poisson distribution associated with a subchannel has

xf-f—ichan edi'.nto)\ £~1Ci
i TN g in -

n N
Then, C'i . = number of recorded counts in jth fraction of

channel i is given according to (2.2.1.1)

For all subchannnels

c,
Vo . , ; - i
Ci Z Gi,j with Ci,j = j=1y n
1=1
! ! = Q! (last fract?{on
i, o i-1,n ;
C of previous
i-1 channel)

1]
Bl=
1




C.
- L
=1~ L om-a@, 1
j=1 g
Ci
- C'.
" _ . BN e T
Cl.=1l -8 ) (N — C';)
Gt
C. = - nN Log 1- c :
R e ., B,
n i
Example:
P. = 32 usec
n=2
C'.
C;=-2NLog |[1- =

1
2N - 5 (C';_+C")

Check for n = 1

C; = - N Log {1 : -N-_-—é,— } identical with (2.2.1.1)
i-1

(2.2.2.1)
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APPENDIX A3. SOME REMARKS ON THE DISTRIBUTION

OF COUNTS IN DECAY PHENOMENA

These notes :é.urvey briefly some of the conclusions reached by
A. Ruark and L. Devol (30) and their implications.

Wn(tl, t:z) = probability that n counts will appear in the interval
(t1 3 tz).

fr (t) dt = Probability that a count will appear in dt around t after
r counts have appeared in (o, t).
By analogy with a disintegration process, we call N the initial strength
of the source at t = 0.

1) Constant source:

If the diminution of the source during the experiment
" can be neglected, we have a Poisson distribution (known as Bateman

formula).

n
W :e-ft (ft)™~ .

n n! (1.1)

where f is the average number of counts(or disintegrations) per unit
time.

2) Decaying source:

Bortkiewicz gave the formula for a decaying source.
However, one may derive a general scheme leading to both formulas.

Suppose we know a priori ft{t}). We derive a differential

equation for Wn(o, t)

(30) A. Ruark and L. Devol - General theory of Fluctuations
in Radioactive Disintegrations - Phys. Review 49 (1936). .

foms — - —
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(W0, t+dt) =W __,(0,8) £ | dt + W_(0, ) (1 - £ dt) (2.1)
W - =f W -fW n=1,2... (2.2)
dt n-1 n-1 n n
which gives:
t
W# = exp { [ £ dt . S £ (W, qexp andt dt (2. 3)
& (e}

If f is a known function £(t) of t only :

Ll S

5 n
’ (o]

In the case of a decaying source
By (t)dt = (N - n) X dt

and we get

w_(0, 1) = 7 (1) ¢ NAT (2. 4)
n ‘ n
N_ NI
Chn " nT ™-n)1
n
W_(t), £, 4t,) = cljl @Mz - e NAlE ) [1 L M2 (e)\tl_l)] N-n (2.5)

.

We may apply this result to a pulsed neutron experiment, where the
time scale is divided into intervals (0, t), (t, 2t), ... t being the channel
length.

In the jth-chaﬁnel, the probability of courﬂ:ingr n particles is
Wn [(j—l) t, jt] . For fixed values of n and t, these probabilities
. depend only' on the channel index j.
It should be pointed out that these calculations assume that

fn(t), i.e. the decay constant ) is known. In the analysis of



i,
experimental data, ) is unknown but can be approximated locally, or
over the entire range of data.
For the case 2 a coiwn=tant source, we make
N- @, ) —» 0 while N} = f remains finite (constant "average''). Then,

(2.4) leads to the Poisson distribution (1. 1).

3) Effect of detector efficiency with a detector of negligible

recovery time.

Assuming there is no detector-source space dependence,
and that the detector has efficiency g, Ruark and Devol showed that
the probability of recording n counts in the interval (tl, tl-l-tz) is:

. n
P_(t, t +t,) = CI:I o DRN FE L N2 gy B,

i |
[1 r ez (M) 4 (- g) (M2 -1)] Hn
The mean number of counts in the interval TZ is
n = Ne_)‘tl (1 - e“-’\tz) g

The mean square deviation is

2% - @2 = Ne M1 1-e7¥2) ¢ [Le-ltl (1-e"1f2) g]

The interesting fact about the distribution of recorded counts
from such a detector is that when N- « with N) remairiing finite, we
find a Poisson distribution

_ n -Njgt
Pn(TZ) = (N)rg tz) e 2

n!
which means that the limit Poisson approximation is unaffected by the

efficiency of the detector.
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4) Effect of finite recovery time of the detector.

Ruark and Devol treated the case of a detector with
idealized recovery time & and a constant source such that the counter

receives f counts per second on the average.

Let Pn(O, t) the probability that n counts occur in the interval (0, t).
(4.1). Counter not clogged att =0,

P_(0,t)=F_(t) - F__ () (4.1.1)

Fn(t) = e'f(t'nz’ ) {1 + -8B )+ %as F [f(t_nz )] n} (4.1.2)
n!

for t = nG

Choosing a value of t between (s-1)G and sG gives

s-1
E:sFS- 2 Fj (4. 1.3)
j=0 ‘
We check that, if G =0
-ft ()"
nl!

Pn(O, t) = e Initial Poisson distribution.

The.question arises now in computing the first order effect of the
dead-time G over the distribution function Pn (0, t) and comparing the
average n with respect to the average ft of t]:;e incoming Poisson
distribution.

. Ift> nG , one may expect to find an average

n~ ft (1 - n3) standard dead-time correction.




.

. Kft~7% , i.e. the measuring time is not very large with respect to
the dead timme, we just have to apply formula (4.1.3).
For instance, :;ssume:

t =8y sec.

=5 | sec. .

ie. B<t<2G
gives

n=2F, - F; -F,

We can record a maximum of 2 counts. The individual probabilities

for recording 0, 1 or 2 counts are:

e

o |

P o= t0) [hige-g)] -

= o~ HE-25) [1+f(t-2’6) y F2lt-27) 5;23)] - W8 b 4 e )

=F, - (P,+P )

o)
[

o
!

We want to compare this finite distribution with the incoming Poisson

distribution
n
I (ft')
n ni
T
o
w, = e )
2
ot (ft)
Wiy m & S

We see that, when § ~1t, there may be significant differences.
4.2, Count occurs att =0,
A similar analysis can be made of the probability

P'n(O, t) of n counts in (0, t) after an initial count at t = O.
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At time & , conditions are the same as att = 0

t Sn?: ) P! =0
n
nG < t <(n+l)3 Pl o= 1- (Pt + Pl )
t = (n+1)3 . Pln 253 Gn+1 _ Gn . % ?é 0
{P:} ,= e‘f(t‘“t )
n-1
& e RS 11—f(t—n3 ¥ s s .+[f(t'fz ) }
- m-1) !

The aver;ige n for sT <t <(s+1)%  is:
s
n=-=s —Z Gn
1

The last possible case takes place when a count appears in the interval
of time (- &6, 0) beforet = 0. A similar treatment may be made by

making a translation of the time scale.

5) Application to our experiment.

So far, we described the following cases

. Decaying source - Effect of the efficiency of a detector

with zero recovery time.
Constant source: Effect of the recoveryr time of a perfectly
efficient detector,

We want to find the probability d'istribution. function of counts
as they are fed within the CN 110 Analyzer. We may describe it over
the channel length in two ways:

'5. 1) 'Decaséing source - Detector with zero dead—time.
Let Pn(k) the pl_‘obability-' that n .counts will

appear in channel k of length 1.
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P k) =P, [(k—l)l, kl]
= che MR ALy g
[1+ oM (ex(k-l)ﬁ_l) & g (e”-n} N-n
7 = Ne M- Ay

LT

Number of pulses

By identifying n with (C‘k = unknown average per
pulse incoming into channel k of the CN 110 Analyzer. See Ch. V.1)
one may express N as a function of C'k. (g is assumed known. )

| Then, one has to feed this distribution function into the scheme
described in Appendix A2,

A problem arises as N enters into Clz . In addition, one must
have an estimate of the decay constant. Finally, the dead-time of the'
detector is not taken into account.

5.2) Constant source over the channel length. Deaa time of the
detector is included.

This analysis is also equally complicated, for the
question arises whether or not the detector is clogged at the opening

of the channel. Therefore, one has to make a similar dependent event

analysis as in Appendix AZ.
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6. Conclusion.

We hope that this brief treatment has pointed out the kind of
problems which arise in a rational treatment of dead-time losses. The
ideal situation would be to examine the case of a decaying source with
a detector of finite recovery time. We believe that this analysis is
quite difficult to apply practically, thus it has not been done. However,
we believe that care and circumspection should be used every time one
attempts to describe count-losses for fast varying sources and channel

lengths of comparable size with the recovery time of the detector.
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