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ABSTRACT

This study concerns the longitudinal dispersion of fluid particles
which are initially distributed uniformly over one cross section of a
uniform, s-teady, turbulent open channel flow. The primary focus is on
developing a method to predict the rate of dispersion in a natural stream.

Taylor's method of determining a dispersion coefficient, pre-
viously applied to flow in pipes and two-dimensional open channels, is
extended to a class of three-dimensional flows which have large width-
to-depth ratios, and in which the velocity varies continuously with
lateral cross-sectional position. Most natural streams are included.
The dispersion coefficient for a natural stream may be predicted from
measurements of the channel cross-sectional geometry, the cross-
sectional distribution of velocity, and the overall channel shear velocity.
Tracer experiments are not required.

Large values of the dimensionless dispersion coefficient D/rUs*
are explained by lateral variations in downstream velocity. In effect,
the characteristic length of the cross section is shown to be proportional
to the width, rather than the hydraulic radius. The dimensionless dis-
persion coefficient depends approximately on the square of the width to
depth ratio,

A numerical program is given which is capable of generating the
entire dispersion pattern downstream from an instantaneous point or
plane source of pollutant. The program is verified by the theory for
two-dimensional flow, and gives results in good agreement with

laboratory and field experiments.



Both laboratory and field experiments are described. Twenty-
one laboratory experiments were conducted: thirteen in two-dimensional
flows, over both smooth and roughened bottoms; and eight in three-
dimensional flows, formed by adding extreme side roughness to produce
lateral velocity variations. Four field experiments were conducted in
the Green-Duwamish River, Washington.

Both laboratory and flume experiments prove that in three-
dimensional flow the dominant mechanism for dispersion is lateral
velocity variation. For instance, in one laboratory experiment the
dimensionless dispersion coefficient D/rU%* (where r is the hydraulic
radius and U* the shear velocity) was increased by a factor of ten by
roughening the channel banks. 1In three,-dimensional laboratory flow,
D/rU%* varied from 190 to 640, a typical range for natural streams.

For each experiment, the measured dispersion coefficient agreed with
that predicted by the extension of Taylor's analysis within a maximum
error of 15%. For the Green-Duwamish River, the average experi-
mentally measured dispersion coefficient was within 5% of the pre-

diction.
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CHAPTER I

INTRODUCTION

This study seeks an understanding of the mechanics of longi-
tudinal dispersion in flow conditions similar to those found in natural
streams. Longitudinal dispersion is the action by which a flowing
stream spfeads out and dilutes a mass o'f pollutant. Rather than mov-
ing downstream as a slug, such a mass will be distributed along the
length of the stream, some parts traveling faster and some slower than
the mean flow velocity., The rate at which the cloud spreads out, the
decrease in peak concentration, and the resulting concentration pattern
along the stream are of great importance in pollutioﬁ control. The
dispersion characteristics of natural streams have been observed to
vary greatly from stream to stream; preparation of a rational pollution
control program for a particular stream requires knowledge of the
stream's individual dispersion characteristics.

Accelerated programs to end pollution of individual streams
are being proposed by President Lyndon Johnson and members of
Congress. Impressive economics are involved; Fortune maga=zine (1)
has proposed a three billion dollar per year program of ]_:;’ollutiOn
control, and the State of New York has passed a $100 million bond
issue to clean up the Hudson River. Thus considerable p.ractical im-
portance attends estimation of rates of dispersion. In this study, a
method has been sought to link the dispersion characteristics of any
channel to other flow parameters, such as the width, depth, and

distribution of flow velocity.
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The first important study of dispersion in turbulent shear flow
was published by G. I. Taylor (2) in 1954. Taylor asserted, for
reasons given in the next chapter, that although the primary mechan-
ism for dispersion in shear flow is the variation in convective velocity
within the cross section, the entire process could be described by a
one-dimensional Fickian diffusion equation, written in the direction of
flow. Taylor restricted his analysis to a long, straight circular pipe,

and found that the coefficient in the diffusion equation would be,
D =10.1a Ux* (1)

w
in which a is the pipe radius, and U%* is the shear velocity ( ’_p_o_ i

where Tt is the wall shear and p is the density). D is called the dis-
persion coefficient, to distinguish from classical diffusion. Using the

same reasoning, Elder (3) found for an infinitely wide open channel,
D=5.,9dU* (2)

in which d is the depth of flow. Since the geometric radius of a pipe

is twice its hydraulic radius, and since natural streams are geo-
metrically some cross between a-n infinitely wide channel and a pipe,
these two equations seemed to many workers to define the entire range
of dispersion coefficients.

Both Taylor and Elder verified their results experimentally for
the conditiond under which they were derived, Taylor using a 3/8-inch
diameter pipe and Elder a flow 1 cm. deep down a wide water table.
Experimental results in natural streams, however, have not been
within the expected range; dispersion coefficients have varied from

50 to 700 r U* (see Section [I-E), where r is the hydraulic radius.
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Nor have previous investigators been able to obtain any correlation
between the dispersion coefficient and any group of bulk channel para-
meters. Moreover, the shape of experimental curves measured in
natural rivers has been distinctly non-Gaussian, implying that the
whole concept of Fickian diffusion might be in error.

The next chapter gives first the basic equation for convective
turbulent diffusion. Attempts at solution by various workers are ex-
plained, the most important of which is Taylor's concept of one-
dimensional dispersion. The results of previous experiments on
longitudinal dispersion are summarized, and turbulent diffusion co-
efficients for transverse mixing are discussed.

In Chapter III a qualitative explanation is given for the appear-
ance of non-Gaussian concentration distributions in natural rivers.
Fickian diffusion is shown to be a correct description of dispersion
only after an initial convlective period, whose length may be estimated
from a dimensionless parameter. Finally, a method is given for pre-
dicting dispersion coefficients in natural rivers, which satisfactorily
explains the large measured values of the dispersion coefficient in'
rivers, and the reason why they do not fall in the range of equations
1 and 2.

Chapter IV describes a typical experiment on longitudinal dis-
persion, and details how a dispersion coefficient is calculated from
experimental data. Chapter V presents laboratory experiments, both
for conditions under which Elder's analysis should apply and conditions
resembling natural streams. Chapter VI describes a series of experi-

ments in a natural stream. In Chapter VII the hydraulic conditions of
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some of the experiments described in Chapters V and VI are used in

conjunction with a numerical program developed in Chapter III, and

the numerical and experimental results are compared. Chapter VIII

discusses the results and summarizes the experimental conclusions.
Chapter IX is a self-contained unit recapitulating what is known

about dispersion in natural streams, what has been contributed by this

study, and what requires further research. The reader wishing a brief

summation may turn first to Chapter IX.
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CHAPTER II

PREVIOUS STUDIES

This chapter gives the results of previous studies of dispersion
in turbulent shear flow. Analytical studies of the basic differential
equation are described, followed by experimental results reported in

the literature.

II-A The Conservation of Mass Equation

The motion of a solute in a turbulent flow is described by an
equation for fhe conservation of mass, which may be derived from the
instantaneous conservation of mass equation by a procedure given by
Holley and Harleman (4). In this procedure, the instantaneous equa-
tion is averaged over a time period long enough to average short-time
turbulent fluctuations, but short enough so that one may speak of long-
term changes in the time-averaged values. Two types of mass trans-
port result-: convection by the time-averaged velocities, and diffusion
by turbulent fluctuations (by use of the Boussinesq assumption as dis-
cussed below). The resulting equation is:
3¢

(e, 25) +2

- 9¢ o el
>t ax "V 3y 5z ~ 3% Ex 3x ) T3y &y Sy t3z ! 1

ay’ "3z ‘fz 3z
In this equation:
c = time-averaged value of concentration;

t = time;

X, ¥y, z = cartesian coordinates;
u, v, w = time-averaged velocities in the x, y, and z

directions, respectively; and
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€t €0 €, F turbulent mixing coefficients in the x,y, and z

directions, respectively.

The left hand side of equation 3 describes convection along a
streamline, and the right hand side diffusion between streamlines.
Molecular diffusion has been neglected, its effect being much less than
that of the turbulent motion. Turbulent transport has been assumed to
be proportional to the gradient of mean concentration, a suggestion
made by Boussineéq (5) for momentum transport and applied to mass
transport according to the Reynolds analogy (6). The mass transport
coefficient should actually be written as a two-dimensional tensor,

T 4

ac _ 1 J‘ ;
-€.. — = wm ur. e dt (4)
ij axj Fdy i

in which ¢'" and u" are instantaneous values of concentration and
velocity, the subscripts i and j refer to the coordinate axes in usual
tensor notation, and T* is the period required for time averaging. °If
the principal axes of the tensor are assumed to be the coordinate axes
the non-diagonal terms are zero, i.e. eij = 0 for i # j, and the notation
may be abbreviated to € - This assumption is untrue if there is a p.re'—
ferred direction of motion diagonal to the coordinate axes, as in the
vicinity of a sloping wall, but it is usual for convenience.

Equation 3, a linear partial differential equation with Neumann
boundary conditions, is the basic description of convective turbulent
diffusion on which the remainder of this study is based. Solution is

difficult only because of its variable coefficients. In channel flow the

coefficients v and w are often zero, and the mixing coefficients g; may
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be assumed constant without introducing much error, but the variation
of u is of paramount importance. Some workers have tried to avoid
the problem by substituting for u the mean flow velocity u; however,
as will be seen in the next section, the cross-sectional variation of u
is the primary mechanism for longitudinal dispersion, and must not be
neglected. Because of this, no complete solution to equation 3 at
present exists; various workers have devised approximate or asymp-

totic solutions, which will be examined next.

I1I-B Taylor's Concept of One-Dimensional Dispersion

An important approximate solution of equation 3 has been given
by G. I. Taylor (2), who studied the case of uniform flow in a long,
straight pipe. Adopting his theory of diffusion by continuous movements
(7), he reasoned that in a coordinate system moving with the mean
velocity of the flow the spread of the cross-sectional mean value of

concentration must follow a Fickian diffusion equation:

T _ &
92 - D23 (5)
og
in which g = x - ut,
x = direction of the mean flow,
u = cross-sectional mean velocity of flow,
T =

Fl\'jj c dA, and
A

A = area of flow cross section.
Here, and in all that follows, an overbar indicates a cross-sectional

average as shown, rather than a temporal average. It must be
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emphasized that all of the temporal averaging normally connected with
turbulence analysis has been carried out in the derivation of equation 3.
Taylor obtained the coefficient, D, in equation 5 by making

certain simplifications in equation 3. Let

and

define the spatial variations of concentration, c¢', and velocity, u',

from the cross-sectional mean values. Taylor's assumptions were:

(1) c' =c'(y,z);

B_ o¢
(2) the term, e (eX L

turbulence, may be neglected;

» the longitudinal transport due to

Dc _3c |, — d¢c . . .
(3) the term Dt - 5t + u % which is the time rate of change

of concentration at a point moving at the mean velocity, may also be
neglected; and
4) v=w=0,

Equation 3 becomes:

2

o B 8L 9. 98
iy (ey ) + (e ) (8)

Q/
um

with the condition that the normal derivative of ¢' vanishes on the
boundary. This is a linear, second-order, inhomogeneous Neumann

problem for c¢'; it has the general solution,
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c! = £(P) a; ; (9)

Q/

in which f is a function depending only on the flow parameters and
shape of the cross section, and P is any point on the cross section.
The coefficient in a diffusion equation is a measure of the local mass

transport, M, defined by:

IOJ
al

M :J u'c'dA =-AD
A

(10)

Q/
Uy

Substituting the value for ¢' given by equation 9 into equation 10 gives:

Dz -4%2 . (11)

To obtain values of £, Taylor used the universal velocity dis-
tribution for pipes given by Nikuradse, and assumed the Reynolds
analogy (discussed in section F). Since only radial variations need to
be considered, equation 8 can be written in radial coordinates in terms
of radial distance only, and a solution obtained by integration. Taylor's

result, given as equation 1 in Chapter I, was

D =10.1 a Usx.

II-C Applications of Taylor's Concept

The first use of Taylor's concept in other than pipe flows was

presented by 1. E., Thomas (8) as a Ph. D. dissertation at Northwestern
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University in 1958. Thomas considered unidirectional flow in an
infinitely wide open channel, in which variations are in the vertical (y)

direction only. He assumed a power law velocity distribution. ‘
w=(4), (12)

and obtained ey from the Reynolds analogy. Equations 8 and 11 com-

bine to give:

D=~d2J 'dyj wdyj u' dy’, (13)

in which y' = y/d. The integration gives a complicated function of n,
which for smooth channels can be plotted as a function of Reynolds
number, as shown on page 232 (Appendix II).

Elder (3}, a year later, presented a study identical except in

assuming a logarithmic velocity profile,
U
{ e 1
W = (1 +logey), (14)

in which  is the von Karman constant. Equation 13 was integrated to

yield:
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The effect of turbulent diffusion was assumed to be additive, and equal

to the cross-sectional average of gy,

E;:%dU*. (16)

Assuming that » = 0.41, Elder presented the result given in chapter I:
D =5.93 dU* (17)
The figure on page 232 shows that Thomas's and Elder's results
are quite similar. Elder's has been used more frequently, partly

because it is simpler and has no Reynolds number or friction factor

dependence, and partly because it is the only one published.

I1I-D Other Solutions of the Basic Equation

Aris (9) considered uniform flow in a long straight tube of
arbitrary cross section and velocity distribution, and obtained a solu-
tion of equation 3 which does not neglect any of the terms except those
containing secondary mean velocities (i.e. v = w = 0). By taking

moments in the direction of flow (x), he obtained sets of equations for

the pth moment,

e fys 2 =[xy, mP ax, (18)
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and its cross-sectional average, E;, which could be solved to any
desired value of p. In practice, only the first three moments are
required, since for a finite source the distribution can be shown to tend
to normality. Aris's solution can be applied to the flows considered by
Taylor and Elder, and yields identical results in both cases.

Saffman (10), in extending Aris's method to include flow between
parallel planes, noted that Taylor's approach yields only an asymptotic
solution, which should not be expected to apply for short times. Aris's
equation for the zeroth moment is the diffusion equation in the cross
section:

aco

P V'(E:VCO) 3 (19)
in which ¢ is an isotropic turbulent Aiffusion coefficient. Saffman
reasoned that the characteristic times for diffusion within the cross
section and application of Taylor's solution would be the same; hence
he limits Taylor's solution to times much greater than £2/2¢, where
4 is a characteristic length and ¢ a characteristic mixing coefficient
for the cross section.

A more conventional approach to equation 3 has been given by
Farrell and Leonard (11), who investigated convective diffusion of a
point source on the centerline of laminar flow in a pipe. They were
able to solve the Laplace transform of the equation with initial and
boundary conditions, but experienced difficulty in inverting the trans-
formed results., Their work is difficult to extend to more complicated

initial, boundary, or flow conditions.
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Yotsukura and Fiering (12) have given a numerical solution to
equation 3, valici for the same flow conditions as studied by Thomas
and Elder. In a published discussion (13, Appendix II) the writer has
pointed out that, although their solution seemed to represent the dis-
persion process correctly, the asymptotic dispersion coefficient ob-
tained was not in agreement with the work of Thomas, Elder, or Aris.
In their closing discussion (14), Yotsukura and Fiering report discovery
of their error, and claim to have a workable solution. Their method
requires 1. 75 hours of computation by an IBM 7090 computer to reach
a value of 15 on a dimensionless time scale(to be defined in chapter III).

Bugliarello and Jackson (15), also using a high-speed computer,
have presented a random walk solution. A large number of individual
particles originate motion from one point in the flow. During each time
increment, there are two steps: first, in the plane of the cross section
a step of given length but random direction; secondly, in the direction
of mean flow, a step of length corresponding to the velocity at that
cross-sectional point at which it is located after the first step. An
experiment was conducted simulating laminar flow in a straight pipe,
using 3000 particles. After a certain period, the longitudinal variance
was observed to grow linearly at approximately the rate predicted by
Taylor's analysis for laminar flow (16).

One other suggestion must be included for completeness.
Patterson and Gloyna (17), basing their work on experiments by
Yotsukura (18) and Godfrey and Frederick (19), proposed an experi-

mental formula,



il s

Deky [—2]" (20)

in which: b

il

width of channel;

k

1 0. 258 (laboratory flumes), or 229 (natural streams);and

1]

k, = 0.830 (laboratory flumes), or 0.269 (natural streams).
The suggestion is not dimensionally homogeneous, is not claimed to
apply equally to laboratory and field conditions, and is even a poor fit

to the data on which it is based.

II-E Longitudinal Dispersion Experiments

Table 1 summarizes a literature search for experimental values
of the longitudinal dispersion coefficient. As much descriptive infor-
mation is included as possible; blanks indicate that the data were not
available. The dimensionless time span, t' = t/T, where T is a time
scale for the channel as defined in chapter III, is for the passége of the
mean from the first to the last measuring station; in most cases,
