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ABSTRACT

In 1964 A. W. Goldie [1] posed the problem of determining all
rings with identity and minimal condition on left ideals which are
faithfully represented on the right side of their left socle. Goldie
showed that such a ring which is indecomposable and in which the left
and right principal indecomposable ideals have, respectively, unique
left and unique right composition series is a complete blocked
triangular matrix ring over a skewfield. The general problem
suggested above is very difficult. We obtain results under certain
natural restrictions which are much weaker than the restrictive
assumptions made by Goldie.

We characterize those rings in which the principal indecomposable
left ideals each contain a unique minimal left ideal (Theorem (4.2) ). It
is sufficient to handle indécomposable rings (Lemma (1.4) ). Such a
ring is also a blocked triangular matrix ring. There exist r positive
integers Kl’ ws w3 Kr such that the i, jt—h block of a typical matrix is a
Ki X K]. matrix with arbitrary entries in a subgroup Dij of the additive
group of a fixed skewfield D. Each Dii is a sub-skewfield of D and
Dri = D for all i, Conversely, every matrix ring which has this form is
indecomposable, faithfully represented on the right side of its left socle,
and possesses the property that every principal indecomposable left ideal
contains a unique minimal left ideal.

The principal indecomposable left ideals may have unique compo-
sition series even though the ring does not have minimal condition on
right ideals. We characterize this situation by defining a partial ordering
p on {1, I r} where we set ipj if Dij 0. Every principal inde-
composable left ideal has a unique composition series if and only if the
diagram of p is an inverted tree and every Dij is a one-dimensional left -

vector space over D.. (Theorem (5. 4) ).
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We show (Theorem (2. 2) ) that every ring A of the type we are
studying is a unique subdirect sum of less complex rings Al’ ou g AS
of the same type. Namely, each Ai has only one isomorphism class
of minimal left ideals and the minimal left ideals of different Ai are
non-isomorphic as left A-modules. We give (Theorem (2.1) ) .
necessary and sufficient conditions for a ring which is a subdirect sum
of rings Ai having these properties to be faithfully represented on the
right side of its left socle. We show ( (4. F), p. 42) that up to technical

trivia the rings Ai are matrix rings of the form

.

. Bach Qj com'es‘from fhe faithful irreducible

- ’] |
matrix representation of a certain skewfield over a fixed skewfield D.
The bottom row is filled in by arbitrary elements of D,

In Part V we construct an interesting class of rings faithfully
represented on their left socle from a given partial ordering on a
finite set, given skewfields, and given additive groups. This class of
rings contains the ones in which every principal indecomposable left
ideal has a unique minimal left ideal.‘ We identify the uniquely
determined subdirect summands mentioned above in terms of the given
partial ordering (Proposition (5. 2) ). We conjecture that this technique
serves to construct all the rings which are a unique subdirect sum of
rings each having the property that every principal -indecomposable left

ideal contains a unique minimal left ideal.
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I. Preliminaries

Unless otherwise specified A will be a ring with identity and
minimal condition on left ideals. All left and right A-modules,
when they come into consideration, are assumed to be unitary; By
the radical N of A we mean the Jacobson radical. That is, - |
N = { acA | aM = 0 for every irreducible left A-module M} If
I is a left and T a two-sided ideal of A, .we define the right quotient
(LT) of T in Itobe {acA | TacI}. (IT) is a left ideal of A
and is a two-sided ideal of A if I is two-sided.

‘In the above terminology, the left socle S (or S(A) if it is
necessary to specify the ring A) is simply O:N. S is a two-sided
ideal and is the largest completely reducible left ideal contained in A.

The rings in which we are primarily interested, are rings A
in which 0:5(A) = 0. In other words, rings which act on the right
side of their left socle faithfully. If this is the case, we shall say
that the ring is faithfully represented on its left socle.

A commutative ring which is faithfully represented on its
socle must be a direct sum of fields: 0 =NS = SN so N = 0,

The first lemma is basic and will be used repeatedly:

Lemma (1.1). Suppose 0:S = 0 and that T is a two-sided ideal of
A contained in S and satisfying T N (0:T) = 0. Then TI = T NI for
any left ideal I of A.

Proof. Since T is a two-sided and I a left ideal, TIS T NI Now

let L be a minimal left ideal contained in T N I, Since L & T,

L £0:T. So TL # 0. Since L is minimal, this implies: L = TLE TL
But TNISSNI<SS. Hence T N1Iis completely reducible as a left



A-module., It follows that T N I as a sum of minimal left ideals,

each of which is contained in TI by the above argument, is contained

- in TIL

(1. A) Note that lemma (1. 1) certainly holds for T =S, We shall
see later (1. D) that it also holds for any T having a complement in
S, i.e., having a two-sided ideal Q suchthat S=T + Q.

(1. BL At this time it is convenient to recall some facts and
definitions pertaining to rings A with identity and minimal condition
on left ideals. Recall that idempotents €15 €gsese, € of A are
called mutually orthogonal if e;e; = 0 for i 4 j. Note: we do not
consider 0 (either the element or the ideal) to be idempotent, If
e=e;+ey o oot e, then e is an idempotent and Ae = Ae1 F Ae2
Feosd Aen. Hence, if Ae is indecomposable, then n=1 and e
cannot be written as a sum of more than one orthogonal idempotent.
Such an idempotent e is called primitive and the corresponding
ideal Ae a (left) principal indecomposable ideal. Thus A is a
finite direct sum of principal indecomposables corresponding to a
decomposition of 1 as a sum of primitive idempotents. Although
1 can be written in many ways as a sum of primitive idempotents,
the non-isomorphic P. I 's (principal indecomposables) are finite
in number and uniquely determined by the ring A. Moreover, if
A= 1 siéSrAeion where the Aeia are P.IL 's and Aem: AejB iff
1<as Ki
i=1j, then Aell’ Ae21, o Aer1 constitute a full set of non-
isomorphic P.I 's and the numbers Kl’ KZ’ I Kr and r are

uniquely determined by A.



Recall that if Ae is a P.IL, where e is a primitive idem-
potent, then Ne © Ae is the uniqu'é maximal subideal of Ae. Thus,
if M is a left A-module possessing a composition series, then
eM # 0 iff M has a composition factor isomorphic to Ae/Ne. Two
P.L's Ae and Af are isomorphic iff Ae/Ne ~ Af/Nf. Also, Ae is
a minimal left ideal iff Ne = 0. On the other hand, if L is any
minimal left ideal, then either L2 =0 or L2 = L. In the latter case
L contains (as does any non-nilpotent left ideal) an idempotent e.
Obviously L = Ae, and since L is a fortiori: indecomposable, e is
a primitive idempotent. Thus, the idempotent minimal left ideals
are precisely the minimal left ideals which are at the same time

principal indecomposables.

(1.C). As a.particular example, suppose that the}ring A contains a
uhique P.I. Then A itself must be this P.1. Since A/N is a ring,
A/N must be a skewfield by the discussion in (1. B). Recall that such
a ring A is called a completely primary ring. If A contains an idem-
potent minimal left ideal, then this ideal must be A, A is a skewfield,
and 0:S= 0:A =0. Conversely, if A contains no idempotent minimal
left ideal, then A is not a skewfield and 52 S NS =0 so that 0:8 $ 0.
Thus, a compietely primary ring is faithfully represented on its 1eft
socle iff it is a skewfield.

It will be important to remember that if A is any ring (with
identity and minimal condition on left ideals) and e an idempotent of

A, then Ae is a P.IL iff eAe is completely primary.

We will now prove a theorem which is at the same time a
generalization of (1. C) and an alternate characterization of rings

which are faithfully represented on their left socle:



Theorem (1.2). A is faithfully represented on its left socle iff
every minimal left ideal is module-isomorphic to an idempotent

minimal left ideal of A.

Proof. Let L be a minimal left ideal. Since eL # 0 for somé
primitive idempotent e, L is isomorphic to Ae/Ne (see (1. B)).

If 0:S=0, then SL # 0 so that S(Ae/Ne) + 0. That is, SAe & Ne.
Therefore SAe = Ae since Ne is the unique maximal subideal of
Ae. But S is two-sided. So we have Ae S S. Therefore Ne = NAe
S NS=0. Le., Ae is an idempotent minimal left ideal.

For the converse, suppose that 0:S 4 0. Then there is a
minimal left ideal L such that SL =0. If L is isomorphic to an
idempotent minimal left ideal L', then L'L # 0 (because L'L = 0
implies L':2 = 0 since L and L' are isomorphic). But L'L S SL,

a contradiction.

As an application of theorem (1. 2) we may show that a quasi-
Frobenius ring cannot be represented faithfully on its left socle unless
it is semi-simple. By a quasi- Frobenius ring we mean a ring with
identity and minimal condition on left ideals with the property that
every left ideal is the left-annihilator of its right-annihilator and
every right ideal is the right-annihilator of its left-annihilator (by
the léft (right) annihilator of a subset we just mean the set of all
elements of the ring which act on the left (right) side of the subset
as zero).

It is known ([ 2 1 - p. 401) that if A is a quasi- Frobenius
ring, then every irreducible left A-module is isomorphic to a
minimal left ideal of A. Let e be a primitive idempotent and

suppose that A is faithfully represented on its left socle. Then,



since Ae/Ne is irreducible, Ae/Ne is isomorphic to an idempotent
minimal left ideal L by theorem (1.2). But L isa P.L (1.B), say
L = Ae' where e' is a primitive idempotent. Hence, Ae/Ne ~ Ae'
so Ne = 0 (again by (1. B)). It follows that N =0 and A is semi-

simple.

We now restrict our attention to rings which are faithfully
represented on their left socle. For these rings the socle itself has

nice properties reminiscent of semi-simple rings.

Theorem (1.3). Let Ly,..., L be a full set of non-isomorphic,
idempotent, minimal left ideals of A. Let Si be the sum of all
minimal left ideals isomorphic to Li' Then Si = LiA and

S = S1 S Sr is the unique decomposition of S as a direct sum of

two-sided, indecomposable ideals of A.

Proof. Since Lig Si and Si is two-sided, LiAS Si‘ Let Ei‘ be
any minimal left ideal isomorphic to Li' Since Li is non-nilpotent,
L,L; £ 0, Therefore, L,L = L. so that L, < LA, We have shown that
Si = LiA'

Now §=8; oo u S.. follows from theorem (1. 2) and the fact
that S is completely reducible as a left A-module.

Let §=T, S — TS where the T, are indecomposable two-
sided ideals of A, For any Ti’ we have by lemma (1. 1) that
Ti =80 Ti = STi = JZ Sj Ti' It follows from the indecomposability of
'I‘i that Tig Sj’ some j. On the other hand, let Lj = Aej where
ej is a primitive idempotent. We can express ej uniquely as

ik ik
mutually annihilate each other from which it follows that the ejk

ej = 12{ e.. where e., ¢ Tk‘ Since the Tk are two-sided ideals they_



form a set of mutually orthogonal idempotents. But e]. is a
primitive idempotent. So there can only be one e].k, say ej = ejk*'
We have L]. = Aej S Tpx SO that Sj = LjAE Tk*AS Ty x by the

first part of the proof. The desired result follows.

Corollary, If T is any two-sided ideal of A such that 0:T = 0,
then T2S and TS =S,

Proof. Let L be any minimal left ideal. Since 0:T = 0, we have -
TL =L, Thus, LS T, Hence, S&T. But then, since
0:TS = (0:T):8=0:3=0 and TS < S, we must have TS = S,

Note that the above corollary essentially says that the left
socle representation is the faithful representation of smallest degree
that one may achieve by representing A (on the right) on its two-
sided ideals.

(1. D). By theorem (1. 3), the promise made in (1. A) will be fulfilled

if we can show that (0: £ S.) N I S, =0 for any subset I of
: iel ¥ jerl
{1, oS- r}. It (O:iEISi) n iglsi # 0, there exists a minimal left

ideal L such that L& igISi and (iielISi)L = 0. But (1% Isi)L =0

£s, =0:8=0,

i = B8, c (0: © 8.)Nn(0: ) =0:
since Lgielsl Hence L < ( ieISl) ( iiISl) 228

a contradi_ction.

At this point it is natural to inquire into the relationship
between the socle of A and the socles of the indecomposable rings
which occur when A is written as a direct sum of indecomposable

two-sided ideals.



It is easy to prove:

Lemma (1. 4). Let A= BI-F B, ook B_ be the decomposition of A
into indecomposable two-sided ideals Bi‘ Then

0:5(4) = O:S(Bl) i O:S(BZ) Foood O:S(Bn) where the quotients O:S(Bi) ‘
are understood as being taken in Bi’ In particular, A is faithfully
represented on its left socle iff every Bi is faithfully represented on

its left socle.

Proof. Since B, B] =0 if 14 i, we get from the decomposition

A= E_IB a decomposition S = 213 SN B, E S(B. ) and a decomposition
0:8 = Z(OS)”B Now O = S(OS)—ZS(B)((OS)HB)SO

S(B. ) ((O S) N B, ) = 0 for every i. (O S) N B, S 0 S(Bl), all i,
and 0:S¢c 2} O.S(Bi) follows. But S(O:S(Bi)) = S(Bi)(O:S(Bi)) = 0 for

all i, Hence O:S(Bi) € 0:8, all i, and the lemma follows.

(1. E). To get better results along the same lines as the preceding ,
we must say what we mean by ''block theory'. First of all, two
principal indecomposables Ae and Af (e, f idempotents) of any

ring A with identity and minimal condition on left ideals are said

to be linked if there exist primitive idempotents €)= € €45000; en=f
such that Aei_1 and Aei have a common composition factor for

1 <i<n. Linking is then an equivalence relation on the set of all
principal indecomposables of A. By a block we mean the sum of
all principal indecomposables in an equivalence class. If Bl’ R -
are the distinct blocks, then A = B, fooed B_, is the unique
representation of A as a direct sum of two-sided indecomposable

ideals.

m



In the light of the above considerations, it is trivially true
that any ring with identity and minimal condition on left ideals
containing only one isomorphism class of minimal left ideals is
indecomposable. The converse is hardly true even for rings which

are faithfully represented on their socle.

Example (1.1). Consider the ring of all matrices of the form

a o0 o
b, d o | wherea, b, ¢, d, e are arbitrary elements of some
c o e ‘

fixed ékewfield D. This ring has an identity and minimal condition
on both left and right ideals. Its left socle S consists of everything

: 0O 0 O
of the form {ib d OJ so that 0:S = 0., The idempotents
c o

e
0O 0O O 0O O O
o 1 o|and {o o o/ generate (as left modules over the ring)
o o 1

two idempotent minimal left ideals which are non-isomorphic since
they annihilate each other,

However, this ring is indecomposable. One may easily see
this by either calculating its center, observing that all its minimal
right ideals are isomorphic, or using block theory. If one takes the
last course of action, one quickly notices that the principal

indecomposables (these are just the left ideals generated by

1 o o 0o o o] 0o o o
o o o, jo 1 oj{and {0 o o are "'linked by minimal
o 0 o 0O 0 O o o 1

left ideals'. This is effectually what we will prove next.
Going back to our standard assumption that A is faithfully

represented on its left socle, we have:



Lemma (1.5). Two P.L 's (principal indecomposables) I and J are
linked iff there exists a sequence I= IO’ Il’ ¥a 9 g In =J of P.L's
such that some minimal left ideal of Ij—l is isomorphic to some

minimal left ideal of Ij for 1<j=<n.

Proof. The sufficiency is trivial. To prove the necessity it is
sufficient to prove that, given P.I1.'s I and J having a common
composition factor, there exists a P.I. K such that I has a
minimal left ideal isomorphic to a minimal left ideal of K and K
has a minimal left ideal isomorphic to a minimal left ideal of J.
Suppose then that I and J are P. L 's having a common
composition factor isomorphic to Ae/Ne where e is a primitive
idempotent. This means that eI 4 0 and eJ # 0. By lemma (1. 1)
and the hypothesis that 0:S = 0, we have (SN Ae)I= Sel# 0 and
(SN Ae)J = SeJ 4 0. Since SN Ae # 0 is completely reducible, it
follows that there exists a minimal left ideal L < Ae and an element
ielsuchthat Lis$ 0. Therefore L is isomorphic to the minimal
left ideal Li in I. Similarly, there exists a minimal left ideal L'
in Ae isomorphic to a minimal left ideal in J. Hence, K = Ae does

the job and we are done.

Lemma (1.6). Let A= B, Foeod B, and S =8; Feeod S, be the
decompositions of A and S respectively into two-sided indecomposa-
ble ideals of A, Then S(B,) = JZSJ- o |

sj 0N Bi=l= 0
Proof. On one hand, we have a decomposition

1) S= % SsB) .
) 1515n<1)
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On the other hand, S = TS, is, according to theorem (1. 3),
1<j<m

the unique decomposition of S into two-sided indecomposables of

A, and hence must refine the decomposition in 1),

We now give an example which shows that P. I 's may be

linked in a rather complicated way in spite of lemma (1.5). -

Example (1.2). Let A be the ring of all matrixes of the form

a;q O ) o) 0 o o |
0 dg9 O o) o 0 o
a3y 8g9 agg O 0 ) 0

0 o) ) a44 © ) o

o agg O agy Aps. O o
o) 0 0 0 0 ags O
agy O o o) o ang 3774

where the aij are elements of a skewfield D. Let eij be the matrix
units of this ring. We see that Ae33, Ae55 and Ae77 are the idem-
potent minimal left ideals and that every minimal left ideal is
isomorphic to one of them., Hence 0:S = 0 by theorem (1.2). Infact,
we see that the socle breaks up into the direct sum of three
indecomposables: S = 834- S5 + S,7 where Si = eiiA’ We may
convince ourselves, keeping lemma (1.5) in mind, that A is really

indecomposable.

The way, in the previous example, in which the indecom-
posable constituents of the socle are generated by idempotents

suggests a theorem (compare with [ 1] - theorem (8. 2)).
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Theorem (1.7). Let A= Aey +ee 4 Aes + ALy o o= -+Af1K1
teeed Af , 4e..+ Af . be a decomposition of A into P.L 's Ae.,

t1 th %
Afij where the Afij are idempotent minimal left ideals and arranged

so that Afij ~ Afi'j' iff i = i' and where none of the Aei are minimal.
Define idempotents g, 81> 8gre-- by gy = fll oot flK seees 8y
i
= ftl oot fth 38=g et gy and let Si = A:EilA. Then
S = gA and Si= giA for 1<is<t.

Proof, Note that by theorem (1.3), S= S4 4'- S, fooodt St is just the

decomposition of S into indecomposable two-sided ideals of A.
Now we have arranged things so that of all the given primitive

idempotents €qreees €43 fll’ —— flKl;' el fﬂ’ PR

 f f only the idempotents fil’ fiZ’ oy fiKi fail

T A e it e R 9
i t

to annihilate Afi1 on the left (see 1. B). It follows that

Alyy = TipAfyy + Ty oo+ fig
ever L is a minimal left ideal isomorphic to Afil‘ Therefore,

K.
i

T Af,
a=1 1o
gAS S, (Si is two-sided). We have: S; = g8, & gA S S;, and we

f

+eoot £, Afil = giAfil. Hence giL = L when-

g;8; = 8; by theorem (1.3). Since Ag; = S8S;, g ¢85 So

are done.
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II, The Subdirect Sum Representation

Recall that A is a subdirect sum of the rings Aa, ae Q, if
AC OLeé)QAOL and the natural projection: A - AOL is onto. I
T, = Ker (A —’Aa), then QTa= 0 and AOL:: A/Ta’ I T('x, aeQ is
a collection of two-sided ideals of A such that QT& = 0, then A is
a subdirect sum of the rings A/ sz, a € . By the minimal
condition, there exist Gps Ogreee; @ € Q such that 0 = iﬁ 1Tmi. That
is, A is a subdirect sum of a finite subset of the A o We may
assume that this last intersection is irredundant - i. e., that
Tocl Pl e £ 'fi‘ai e T TOLn 20 for every i. So in what follows,
when we say that A is a subdirect sum of certain rings, we shall
always mean that A is a finite subdirect sum of these rings which
is irredundant in the above sense,

We start in by giving three examples.

Example (2.1). Let A be the ring of all matrices of the form

a o o
0o a o| wherea, b, ¢, dare arbitrary elements of some

b ¢ d
division ring D. This ring is faithfully represented on its left socle
and has only one isomorphism class of minimal left ideals. The
left ideals generated by the matrix units €31 and egy are, in fact,
two-sided. They give rise as explained in the first paragraph of
this section to a representation of A as a subdirect sum of rings
A1 and A2 having the properties:
1) Both A1 and A2 are ring isomorphic to the ring of all matrices

oftheformg Z sy a, b, c eD,
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2) A1 and A2 are faithfully represented on their left socles and
both contain only one isomorphism class of minimal left ideals.
3) The minimal left ideals of A1 and A2 are isomorphic as left

A-modules.

Example (2.2). A is the ring of all matrices

Ta o o o
b ¢ o o 3
6 o0 a o where a, b, ¢, d, e, £ ¢ D, D a skewfield. The
|o d e f__J
product of two elements of A is given by:
'a o o o a' 0 0 o ~aa' 0 o o
b ¢ o o b'" ¢' o o ba' + cb' ce’ o o
O O a o o o a' o o o} aa' o {
Lo d e ,f4 o d e' f' o) de' + fd' ea' + fe' f{f'

The kernel of the

socle representation is obviously A921' Ae21 and e44A are two-

A is not faithfully represented on its left socle.

sided and Ae21 N e44A = 0. Hence we have a representation of A

as a subdirect sum of the rings A, and A, where A1 o~ A/Ae21 ~

[N)

s
the ring of all matrices of the form |o

o}
o|;a, c,d, e, £feD
d f

o ® O

and A, =~ Ale 44 = the ring of all matrices of the form
a o
b ¢

their left socles and both contain only one class of minimal left

;a, b, ceD,

The rings A1 and A2 are both faithfully represented on
ideals. Thus a subdirect sum of rings faithfully represented on
their left socles need not itself be faithfully represented on its

left socle. However, the minimal left ideals of A1 and A2 are non-
isomorphic as left A-modules. One can see that A is even a unique

subdirect sum of rings possessing these two properties.
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Example (2.3). The ring of example (1. 1) can be shown to be the
subdirect sum of two rings each ring-isomorphic to the ring of all
matrices of the form l:% 2 ;a, b, ¢ € D, Note that this ring has

only one isomorphism class of minimal left ideals.

Theorem (2. 1). Suppose A is a subdirect sum of rings Ai having
the properties
(i) Ai contains only one isomorphism class of minimal left ideals.
(ii) The minimal left ideals of different Ai are non-isomorphic as
left A-modules.

Then A is faithfully represented on its left socle iff every
minimal left ideal of each Ai is isomorphic as a left A-module to
an idempotent minimal left ideal of A. This being the case, each

Ai is faithfully represented on its left socle.

Proof. Set T, = Ker (A —'Ai), 1<i<q, and let Lijseees Lp be a
full set of non-isomorphic minimal left ideals of A.

If L is minimal and L & T,, some i, then L~ L + Ti/Ti ~
every minimal left ideal of Ai‘ Furthermore, every minimal left
ideal of A fails to be contained in some Ti since P Ti = 0, There-
fore, every L, fails to be contained in a unique Tj by (ii). We may
assume L, $Ty,..., L, e T, Therefore, T, 28 if i>p. But
then, S N ( ﬂ.T.)ETi n( Q0 T.)=0 so that A

jFi ] il
the irredundancy. Therefore, q = p.

If 0:5=0, theorem (1.2) says that each L, is isomorphic to

T = (0 which contradicts
i

an idempotent minimal left 1dea1 L' of A, In th1s case, the image
L' of L' in A satisfies ZL’S = L' Applying theorem (1. 2) once
more, we see that each Ai is falthfully represented on its left socle

and that any minimal left ideal of an Ai is isomorphic to an idem-
potent minimal ideal of A.
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Suppose that 0:S+ 0. Let Si be the sum of all minimal left
ideals of A isomorphic to L;. Clearly T, 28 +---+ éi Senad S,
Therefore Ti N Si = 0 since Q Ti = 0. Hence TiE O:Si. If Ti = O:Si
for all i, then 0:S = O:i'ZSi = ?(O:Si) = 9Ti =0, a contradiction.‘
Hence T, + 0:8;, for some i. Say T, < 0:S,.
Now there exists a left ideal I such that T1 clc O:S1 and
such that I is a minimal left ideal of A where A = A/ T,. Since T
is a left A-module, there exists a primitive idempotent e, ¢ A such
that el'\f 10, T~ Ael/Ne1 since T is an irreducible left A-module.
We shall assume that Ne1 = 0 and show that this leads to a
contradiction., If Ne1 =0, Ae]L is a minimal left ideal of A so that
Ae; c 8, some i. Then e; €NSi.N So eqIS8.ICSS; Tj for j & i.
But e11$ T, as otherwise :311: 0. Therefore eq € 8. So e I= 0
since IC O:Sl. That is, ell = 0 which gives the desired contradiction
We have shown that A, ~ A/ T, has a minimal left ideal which
is not isomorphic to an idempotent minimal left ideal of A, which

proves the theorem.

Theorem (2.2). X A is faithfully represented on its left socle, then
A is a unique subdirect sum of rings Ai having the properties

(1) A; is faithfully represented on its left socle and has only one
isomorphism class of minimal left ideals.

(2) The minimal left ideals of different Ai are non-isomorphic as
left A-modules.

Proof. Let S = S1 SR & Sr be the decomposition of the socle into
indecomposable two-sided ideals of ‘A. Then: fiW(O:Si) = 0:§Si = 0:S
= 0, Furthermore jQi(O:Sj) = 0:j isi 28,. So the intersection

q (O:Si) = 0 is irredundant. Therefore, A is a subdirect sum of the
rings A/(O:Si).
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Let L be a minimal left ideal of A where A= A/ (O:Si).
Then L =1 where I is a left ideal of A such that I> O:Si. Let
Ae & Si where e is an idempotent and Ae is a minimal left ideal.
Using lemma (1. 1) (see also 1. A) and theorem (1. 3), we have
S;eI= S.AeAl = (8;8)I= (5, N S)I= 8140, since I (0:5,). Hence
eL=el #0. Now Ae isa P.L of A and N=N + (O:Si)/(O:Si) is
the radical of A, Therefore L~ Ae/Ne ~ Ae. It now follows by
theorem (1. 2) that the rings B, = A/ (O:Si) satisfy properties (1)
and (2) of the statement of the theorem we are proving,

On the other hand, suppose that A is a subdirect sum of
rings A, satisfying (1) and (2). Set T, = Ker (A - Ai)' We may
prove as in theorem (2. 1) (only it is even easier now) that
TiS O:Si. Now Si contains an idempotent e suph that Ae is a
" minimal left ideal of A. e 4 Ti since e ¢ O:Si. Hence it follows
by theorem (1. 3) that Si = S(A/Ti) (mod Ti)' Therefore x € O:Si
implies that $;x = 0 (mod Ti) so that x ¢ T, since A/Ti is faithfully
represented on its left socle by hypothesis. We have that Ti = O:Si,

all i, which proves the uniqueness.

Corollary. If A is faithfully represented on its left socle and
contains a unique minimal two-sided ideal, then A contains only

one isomorphism class of minimal left ideals.

Proof, The hypothesis just means that 0 is a meet irreducible of
the lattice of two-sided ideals of A.

Of course this was obvious earlier from the point of view
that if S = {? Si is the decomposition of S into two-sided indecom-

posables Si’ then each Si contains a minimal two-sided ideal.
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It follows from lemma (6. 3) and theorem (6. 4) of [1] that
any ring satisfying property (1) of our previous theorem (2.2) is a
subdirect sum of rings which also satisfy property (1), but have the
added property of containing a unique two-sided minimal ideal. We
conjecture that such a subdirect sum representation is also urﬁque.
Of course, the number of subdirect summands is uniquely

determined.

Theorem (2.3). If T, Q are two-sided ideals such that A=T + Q,
then T is a subdirect sum of a subset of the uniquely determined
(by theorem 2. 2) set of rings of which A is a subdirect sum
(assuming, of course, that 0:S = 0).

Proof. It is clearly sufficient to prove this for a block B of A.
Let Sl’ 593, St be the indecomposable two-sided direct summands
of the socle which are contained in B. Then S(B) = 84 N | St by
lemma (1.6). Since B is faithfully represented on its left socle
(lemma (1, 4)), it follows that 0:S(B) is just the sum of all blocks
of A which are different from B. Therefore B~ A/0:5(B) = A. By
lemma (1. 1), we have (0:3(B)):S(B) = 0:3(B)S(B) = 0:5(B) and .
(O:S(B)):Si = 0:5(B)S; = 0:5, for all i. Hence 0="0:5(B) = 3:%‘3_5‘?;

= Q(G:'S"i) = Q(O_S-ly . This intersection is clearly irredundant, so
we have that B is a subdirect sum of the rings

K/((T.TS_—if: A/(0:3(B) + O:Si) = A/O:Si and we are done,

From theorem (2. 2) we see that it would behoove us to study
more closely rings which have only one isomorphism class of

minimal left ideals.
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III, Some Rings Which Have Only One Isomorphism Class of
Minimal Left Ideals

It follows trivially from lemma (1. 5) that an indecomposable
ring which is faithfully represented on its left socle and in which
every (left) P. I contains a unique minimal left ideal has only one
isomorphism class of minimal left ideals. Goldie [1] has shown
this by a different method. A particular case of this is an indecom-
posable ring in which every left P.I. possesses a unique composition
series (and in which 0:S = 0). Goldie [1] has characterized such
rings in which every right P.I. also possesses a unigue composition
series. They are just the blocked-triangular matrix rings with
entries in a skewfield. _

For completeness, we shall give an example of an indecom-
posable ring in which both the left and right P. I 's have unique
composition series and which is not faithfully represented on its
left socle. It is a factor ring of a ring of Goldie's characterization

theorem.

Example (3.1). Let A be the ring of all matrices of the form

a o o
‘:b e o} ; where a, b, ¢, d, e, f are arbitrary elements of a
d e f

skewfield D.
By the above remarks, it is sufficient to show (except for the
indecomposability) that some factor ring of A is not faithfully
represented on its left socle.
Set T = AeSl’ I= Ae21 + Ae
(N is the radical of A) and e = e

317 N= Ae21 + Ae31 + Ae32

where the e.. are matrix units.
22 i]
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Clearly I is a ieft ideal and T is a two-sided ideal (in fact, T
happens to be the unique minimal two-sided ideal of A).

Now eI T and Ne & T. Therefore eI$0 and Ne 40
where A = A/T. But I is obviously minimal so that T ~ Ae/Ne
(since N is the radical of A and Ae isa P.L of A). By theorem
(1, 2) A is not faithfully represented on its left socle. It is clear

by block theory (see (1. E)) that A is indecomposable.

(3. A). Before we give more examples it is convenient to define what

we mean by Loewy length. By the Loewy length £(I) of a left ideal

I of A we just mean the length of the series I NI > NZI ... 20,

This is the same as the length of the series 0 <(0:N) N IC(O:Nz) NI
We call T(A) the exponent of the radical. Observe that

1S (0:NS) NI for 0 <K <() is trivial. In particular, if

I has a unique minimal left ideal, lemma (1. 1) implies that it is
si=NW-1g

C.. CI.

N0 - K

We shall now give some examples of indecomposable rings
in which 0:S = 0 and every left P, 1. has a unique minimal left ideal.
We shall not try to really prove any of our assertions about these
examples since we shall eventually have general theorems which will
easily handle all of them, |

(3. B). First, since all of our examples will be matrix rings, let us
establish a convention about matrices which will make our work much
R.11 R12 _ Rln
Bot Hog =+~ By, .
easier. Namely, . . . where the Rij are n
‘, 3 3




20

rings (some of them may be the null-ring), shall stand for the set
of all n x n matrices whose i, jJcil entry is an arbitrary element of
R For example o o

ij" e E E
E 2D is just the ring of all matrices of the form E; g:l where
acD and b, c € E,

'where D and E are skewfields and

RSl wi
ogo
oo
=R

Example (3.2). The ring A = ; D a skewfield.

D D DD
A has four P. I 's given by Aell’ Aezz, Ae33, Ae44 where the
e;; are matrix units., The radical N is given by
0 0 0 O 0 0 0 O

‘58 , 888 and N” = 0, Hence
D 0 0 0

oo
oo

T(A) = 3 = t(Aeu), ﬂ(Aezz) =2= %(Ae33). Note that the number of
non-isomorphic left P.1.'s = 4 > 3 = exponent of the radical. Note
33Ael1 + 0 and ejohey = 0.

It is true that in this ring every left P.I. has a unique compo-

also that e

sition series. By Goldie's characterization theorem mentioned
above, some right P.I. must have at least two different composition
series. Indeed, it is easy to see that the right P.1. e 4 4:A has two

non-isomorphic minimal right ideals.

D 0 0 O
. D D 0O O
Example (3.3). The ring A = D o D ol Here *(Aell) = 3
D D D D '
and t(Aezz) = 7C(Ae33) =2 but egoAe;y % 0 and ezerll% 0. Aeyy

fails to have a unique composition series.
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D 0 O
Example (3.4). The ring |E E O} where D, E and F are
F F F

skewfields such that 2 E 2D, Every left P.I. of this ring has
a unique composition series. This ring has minimal condition on
right ideals iff F is finite dimensional as a right vector space

over D.

Example (3.5). Let K be a field and let K(x) be the field generated
over K by the algebraic element x of degree n> 1. Set H= Kx.
We have K(x) 2 H K and H is one-dimensional as a left vector
space over K. Then every left P, I of the ring

K 0 0
H K 0 has a unique composition series. This
Kix) KE Kx) -

example would not work if [H:K] > 1,

We now prove two technical lemmas (we are again assuming
0:8 =0):

Lemma (3.1). If I is a left ideal of A containing a unique minimal
left ideal and f is an A-homomorphism: I - A, then f is either zero

or a monomorphism.

Proof. By lemma (1.1), the unique minimal left ideal of I must be
SI. If Ker f 4 0 where f:I - A, then Sf(I) = £(SI) < f(Ker £) = 0 which
implies £(I) = 0. '

Lemma (3.2). Let A be a ring in which every P.1 has a unique
‘minimal left ideal. Suppose that Ae is a P.1. (e idempotent) and
that I is any left ideal. Then
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(1) Ael# 0 iff there exists a subideal J of I such that Ae is
isomorphic to J. In particular, Ael= 0 if T(Ae) > T(I).
(2) If t(Ae) < £(I), then eN° W = lae)+1;_ 4

Proof. (1) If Aei # 0, there exists i ¢ I such that Aei # 0. Therefore
X ¢ Ae — Xi gives a non-zero A-homomorphism of Ae onto Aei <I

(< means ""subideal of'"). By lemma (3. 1) this must be an iso-
morphism. The converse is obvious.

@) SeNf(I) - £(Ae) + 11 _ N’C(Ae) - 1eN£(I) - T(Ae) + 11 c N7C(I)I -0
The first equality sign is a consequence of the discussion in (3. A).

An immediate consequence of (2) is that eAe is a skewfield
for any primitive idempotent e. Hence, if M is any left A-module
possessing a composition series, then eM is a left vector space
over eAe of dimension equal to the number of composition factors
of M isomorphic to Ae/Ne (see [3] - theorem 9, 5A).

We now give a lemma which shows why the one-dimensionality

was necessary in example (3. 5):

Lemma (3. 3). Suppose that every P.I. of A has a unique minimal
left ideal. Let I be a left ideal and Ae a P.I.. Then

(1) Every subideal of I isomorphic to Ae is of the form Aex for
some x € L

(2) Ael is an irredundant (but not necessarily direct) sum of sub-
ideals of I isomorphic to Ae, the number of irredundant summands
being uniquely determined as thé number of composition factors of I
isomorphic to Ae/Ne.

(3) If Ae is minimal and I contains a unique minimal left ideal, then

el is a one-dimensional left vector space over eAe.
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Proof. (1) follows from lemma (3. 1) and the fact that every left
ideal has finite composition series length.

To prove (2), we write el = eAex1 o 3 e eAexn where
x; ¢ el. Then Ael= Aex; +...+ Aex and Aex; ~ Ae since Aex, g,
Now Aex. & .EiAe Xj implies eAe x1 = ]_ZieAe xj which is impossible
since el was the direct sum of the eAe XJ.. Hence the sum
Ae Xy oot Ae X is irredundant.

To prove uniqueness, assume that Ael is the irredundant
sum of I, Ip,..., Ip where Ij:Ae and ij I, 1£§i=2p. Byl
there exists y. g Ij such that I]. = Ae y].. Therefore,

Ael = glAey so that el = eAel = =1

dlrect then there exists i such that eAey c ZeAey so that

eAey If this last sum is not

Aey1 c _}f_AeyJ But this contradicts the 1rredJunda.ncy of
i

I Ip. Hence we must have p = n.,

18 Tonovas
(3) is a direct consequence of (2). In fact, from the proof
in (2), we can see that (3) holds in any ring with minimal condition

on left ideals and an identity.

It is trivial that any ring with identity and minimal condition
on left ideals contains a P.I. of Loewy length p where p is the
exponent of the radical. It is easy to see that the rings of examples
(3. 2) through (3. 5) contain P. L 's of every possible Loewy length.

On the other hand, we shall give later (example (3. 6)) an example

of a very simple ring which is faithfully represented on its left socle,
contains only one isomorphism class of minimal left ideals, but
which does not possess P. L 's of every possible Loewy length.

Nevertheless, we can prove:
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Lemma (3.4). If every P.L of A has a unique minimal left ideal,
then A contains P.L 's of Loewy length 1, 2, ..., p where p = exp(N).

Proof., Let A= ig‘IAei be a decomposition of A into P.L's Ae;
(the ei's are idempotents). Fix K, 1 <K <p. Then

Bd . s Kd . K-1 .
N jeZJN e where J = {1»6 I|N ei% 0}. J % @ since
K-1<np.

Suppose that NKej # 0 for every j € J. Then

SNK'Iej cSe < NKej for all § & J. Therefore,
sNE 1o pan®le c 3 NKe K. since, for 1 eI, SNE L, 4 0
jed J jed 1

K-1

Kei 0 iff i e J. But SN = N implies

iff NK_lei Lo e W

sNE NP K o NENPK ghich implies SN 1 <0 so that N1 = 0,
a contradiction. Hence there exists j € J such that NKeJ. = (
whence fJ(Aej) = K,

Lemma (3. 4) is a generalization of lemma (8. 1) in [11.

Lemma (3.5). Let Aey, ..., Ae_ be a full set of non-isomorphic

P.L's of A. Then there exists a permutation il’ eee, i of

r
1,..., r suchthat Ae, Ae, =0 if a<B, I ji,..., j_ is any
i, i 1 r
such permutation, then Aej must be minimal.
xr

Proof. By lemma (3.2) - (1), 7C(Aei) > t(Aej) implies AeiAej =0
if i4 j. So all we have to do is order the Ae; by letting the Ae,
of Loewy length p come first (in any order) followed by the ones
of Loewy length p - 1 (also in any order) finally ending up with the

minimal P. 1 's coming last.
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To prove the last statement of the lemma, we must only
observe that given any P.I. Af there exists a minimal P.I, Ae
such that AeAf ¥ 0. Namely, take Ae ~ Sf (theorem (1. 2)).

Example (3.6). Let A be the ring of all matrices of the form

a o o
l'b a o‘} ; a, b, ¢, d, e € D, D a skewfield. A is faithfully
c d e

represented on its left socle and has only one isomorphism class

_ 1 o o O 0O O
of minimal left ideals. Set e1= o 1 o{and €y= {0 0 Of.

o o0 o] o 1

®)

o)
. Hence

o ol
[

elAe1 is ring-isomorphic to the ring of all matrices

elAe1 is completely primary but not a skewfield (see 1.C). It is
easy to see that ’U(Ael) = 3 and %(Aez) = 1 so that lemma (3. 3) fails
in this case. Notice that A/S is isomorphic to elAe1 so that A/S
is not faithfully represented on its left socle.

In spite of examples (3. 6) and (3. 1) we can prove:

Theorem (3.6). Suppose A is a ring such that every P.I. has a
unique minimal left ideal. Let Ael, - Aer be a full set of non-
isomorphic P.L 's of A of Loewy length K where 1 <K < p = exp(N).
Set A = A/O:NK- 1. Then 'A?l, N A—e'; constitute a full set of non-
isomorphic minimal left ideals of A. In particular, A is faithfully
represented on its left socle (by theorem 1. 2).

Proof, NK_ 1Nei = NKei =0 so Ne; S (O:NK_ 1) N Ae; S Ae; ; but

(O:NK_ 1) N Ae; = Ae, implies Ae; S 0:N5"1 g0 that NE- 1ei =0, a

contradiction. Therefore (0N~ 1) N Ae, = Ne. It follows that
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Aei = Aei/ Nei. Hence the Aei are certainly minimal and distinct
from one another.
Let L be a minimal left ideal of A, Then L =1 where I

K-1

is a left ideal of A containing O:N . Since T is an irreducible

left A-module, there exists a primitive idempotent e € A such that

el + 0. Hence there exists i € I such that Aei $ O:NK—1 whence

I=Aei+ 0:N° L Then NS 11 = N¥"1aei 4 0 (since T 4 ) so that
1(I) = ¥(Aei). Since N is the radical of A, NI = 0 which implies
NoL = N 1NI = 0. Therefore T(Aei) = £(I) = K. But since Ae
contains a unique minimal left ideal, Ae ~ Aei so that, in particular,
©(Ae) = K. Hence Ae Aej, some j suchthat 1 <j<r. Since

L =T is irreducible and eL # 0, we now have L ~ Ae/Ne ~ Aej/Ne:i

which proves the theorem.

Corollary, If Af isa P.I. of Loewy length K+ 1 where 1<K=<op-1,
then there exists a P.I. Ae of Loewy length K such that AeAf # 0,

Proof. For K= 1, this is a consequence of 0:S = 0. Hence we
assume that K> 2, Set A = A/O:NK_ 1. Now Af 4 0, since

Z(Af) = K+ 1. Hence there exists a minimal left ideal L of A such
that L€ Af. By the theorem, L~ Ae/Ne where Ae is a P.I of
Loewy length K. But Af ~ Af/Af N (O:NK_
AeAf &4 0.

1) and this just means that

In the rest of this section we assume that every P.1. of A
has a unique minimal left ideal (and that 0:S = 0). We now give some
material which will eventually lead to a sort of classification of

rings in which every P. 1. has a unique composition series.
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(3.C). If T(Ae) = K, the corollary to theorem (3. 6) provides us with
left ideals Il’ IZ’ 5 B35 g IK such that Ae = IK 2 IK_1 P62 I1 >0

with the further property that Ij is isomorphic to a P. 1. of Loewy
length j. II Ae has a composition series without repeated factors,
then the Ij are uniquely determined according to lemma (3. 3) - (2).

In this case one can show that Ij o NP,

In what follows we denote by 4(I) the composition series
length of the left ideal I of A.

Lemma (3.7). The P.1. Ae of Loewy length K has a unique
composition series iff it has a composition series of the form
Ae = I, =2 L, ;=...21; 20 where each I;i is isomorphic to a
P.L of Loewy length j.

Proof. If Ae has a unique composition series, then it is obviously
given by Ae D Ne D+«.> N2 = 0. Then the series described in
(3.C) does the job since it has length K.

On the other hand, let Ae = Le2Ip 20002 I1 20 bea
composition series such that Ij & Aej where ’B(Aej) = j. Then,
of course, &(Aej) = j. Since Ij/Ij]-l is irreducible, the restriction
of @j to I}._1 gives an isomorphism of Ij-l onto Nej, Hence
Ij/Ij-l ~ Aej/Nej. Therefore the Aej/Nej are the only composition
factors of Ae and they are, furthermore, all different.

Now let I be any subideal of Ae and, say, 4(I) =i. Then
there must be i different Aej such that AejI# 0. Since AejI=} 0
implies Ae]. ~J < 1, these must be Ael, Aez, o mwy Aei. Therefore,
Ae, AeiI by lemma (3. 3) - (2). Hence AeiI = I since Ae.I<TI and

'?/(AeiI) = &(Aei) = ’C(Aei) =1i=4(I). Butthen I= I, since I, is the
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unique subideal of Ae isomorphic to Aei (because Ae has a

composition series without repeated factors).

Theorem (3.8). Ifa P.I. Ae of A has a composition series without
repeated factors, then it has a unique composition series iff there
exist no two non-isomorphic P.I.'s Af and Ag such that

fAe # 0, gAe £ 0 and T(Af) = T(Ag).

Proof. Suppose that Af/Nf and Ag/Ng are composition factors of
Ae where Af and Ag are P.L 's and T(Af) = ©(Ag). Then
Af ~I< Ae and Ag~J < Ae. II Ae has a unique composition series,
then either IS J or JC1I, say ICJ. But (A2 4 0=AfI4 0
> AfJ § 0 >AfAg 4 0. Therefore, Af~ Ag since T(Af) = T(Ag),
which proves the necessity.

For the sufficiency, we construct the series Ae = IK = IK_1
DeeeD I1 20 where I, is isomorphic toa P.L Ae:i of Loewy
length j (see 3.C). Then Aej/Ne]. is a composition factor of Ae
for 1 <j<K. Suppose Af/Nf is also a composition factor. Then
2(Af) = p for some p such that 1 <p <K since Af is isomorphic
’ so that Af/Nf ~ Aep/ Nep.

Hence the Aej/ Nej are the only composition factors of A. Since Ae

to a subideal of Ae. By hypothesis, Af ~ Ae

has no repeated composition factors Ae = IK > IK_1 Deeo>D I1 20 is

indeed a composition series and we are done by the previous lemma.

Corollary. If every P.L has a composition series without repeated
factors and if the exponent of the radical is equal to the number of
non-isomorphic P.L 's, then every P.I. has a unique composition

series.
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Proof. This follows directly from the theorem together with

lemma (3. 4).

Note that the rings of examples (3. 4) and (3. 5) have the
property of the corollary whereas the ring of example (3. 2) does
not. However, by using theorem (3. 8) it is now trivial to prove that
every P. 1. of the ring of example (3. 2) has a unique composition
series. :

The rings which we are considering have many special right
A-module properties even though they may well not have minimal
condition on right ideals (example (3.4)). For instance, we may

prove a lemma for right ideals analogous to lemma (3. 1).

Lemma (3.9). ¥ Ae isa P.I and I a right ideal, then IeA # 0

implies that eA is isomorphic to a subideal of I.

Proof. IeA % 0 implies that there exists x € I such that xeA # 0,
Hence &:y € eA — xy is an A-homomorphism eA — xeA <1 Since
xe + 0, 0 Sxe S Se whence Sxe = Se (Se is the unique minimal left
ideal of Ae). Therefore, if xy = 0 for y € eA, then

Sxy = Sxey = Sey = Sy = 0 so that y = 0. Therefore @ must be an

isomorphism.

Let us agree to call a P.I. Ae dominant if Ae is isomorphic
to every P. 1. which has a compdsition factor isomorphic to Ae/Ne
(compare with the definition in [1] - p. 283). Clearly, every left
ideal is isomorphic to a subideal of some dominant P.I. Also, every
P. 1 of Loewy length p = exp(N) is dominant, In fact, if T(Ae) = p,
then SeN = N" leN NP =0 so that eN =0 and eA is minimal.
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Hence we can meaningfully define the right socle S' of A'to be the
sum of all minimal right ideals. By the left annihilator of a left
ideal I we mean (I),L= {a eAlal'= 0}.

Lemma (3.10). Let e be a primitive idempotent of A. Then eA
is a minimal right ideal iff Ae is dominant., Every minimal right
ideal is isomorphic to an idempotent minimal right ideal and,

furthermore, (S')& = 0,

Proof. Suppose Ae is dominant., If eA is not minimal, then eN% 0
so that eNf § 0 for some primitive idempotent f. But Ae ~ Af since
Ae is dominant and we contradict lemma (3. 2) - (2).

Conversely, if eA is minimal, then eN = 0. Let Af be any
P.I Then AeAf 4 0 >e(Af/Nf) 4 0 =>Ae/Ne ~ Af/Nf =>Ae ~ Af
whence Ae is dominant.

Now let I4 0 be a right ideal. . Then Ig 4 0 for some
primitive idempotent g. By lemma (3.9) I contains a right ideal
isomorphic to gA. There exists a dominant P.I. Ah such that
gAh # 0. Again by lemma (3. 9), gA contains a subideal isomorphic
to hA. Hence I contains a subideal isomorphic to hA; i.e., we
have shown that every right ideal contains a right ideal isomorphic
to an idempotent minimal right ideal. The rest of the proof is

exactly like the proof of theorem (1.2) so that we omit it.

This lemma does not go through without all the special

assumptions. For instance, the dual of the ring in example (3. 6)

B _ a o o
is the ring of all matrices of the form (b ¢ o |;a, b, ¢, d, e € D,
d € ¢

D a skewfield. This ring is not faithfully represented on its left
socle.
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(3.B). With regard to dominant P.L 's one can show that (Ae), =0
for some dominant P.I. Ae iff all the minimal right ideals of A are
isomorphic iff A contains a unique (up to isomorphism) dominant
principle indecomposable. We shall explain later (4. B) what this
means in terms of matrix representations. For now note that in
example (3. 2) Aeq is the unique P.I. of maximal Loewy length

but that Ae22 is dominant whereas the unique (when there is one)

dominant P. 1. must have maximal Loewy length.
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IV. Matrix Representations of Rings Which Are Faithfully

Represented on Their Left Socle

(4. A). We proceed to construct a large class of examples which,
in fact, turn out to be typical of indecomposable rings which are
faithfully represented on their left socle and in which every P. 1.
(principal indecomposable) contains a unique minimal left ideal.
Let D be a skewfield and let Dij be r2 subgroups of the
additive group of D with the properties:
(1) Dij=0 if i<j.
(2) Diijk S D, foralli,jk (under the natural multiplication in D).
(3) For every i, D, is a skewfield and D_, = D.
(4) Dij is finite dimensional as a left vector spg,ce over D.., for
every i, j.
Note that (2) implies that every Dij is a left Dii' module as
well as a right Djj-module. Hence, by (3), the statement in (4)
makes sense. Another consequence of (2) is that Dik =0 for i>k
= 0.

implies that either D.. =0 or D,
i ik

EIRE L oy ¢ Dij}' (2) together with the fact

that every Dii is a skewfield imply that A is a ring and that the

set A = {(a;,)

11 o
r x r matrix | 5 ° . , where 1 is the identity of D,
Y N

is the identity of A. The assumption (in (3)) that Dri = D for every
i is a key one. It will be clear that without this hypothesis it would

not be true that every P. I, contains a unique minimal left ideal.
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Let e be the matrix with 1 in the i, i position and 0 every
place else. Then A = Aey + Ae, S Aer. Each eiAei is
obviously isomorphic to the skewfield Dii' Furthermore, the set
N of all matrices in A having no non-zero elements on their main
diagonal is clearly the largest left ideal of A possessing the property
that all of its elements are nilpotent. Hence every Aei will be a
P.L and N will be the (Jacobson) radical of A if we can only show
that A has minimal condition on left ideals.

It is convenient at this time to introduce the simple ring [D] o
of all r X r matrices with arbitrary entries in D. The rule
d- (dij) = (ddij) forde D and (dij) € [D]r makes [D ]r into a
~ D-module. Let € be the matrix units of [D] . Then, since

e; = e for 1 <i<r, we have: e.Ae. =D.. - for every i, j.

ij 1]

Now let X1, X > X be a bas1s ior D as a left vector

2,0-.

space over D... Then D.. ¥ D;:X;, SO eAe =D,. e..
B i p<k<it ¥ ij - ij

= i(D iXp) - € 2 (Dy;- €)%, - €)= ZeAe {F e €.
1<k<n K J 1<k<n ke 4 1<k<n 1

Hence the dimension of eiAe:i as a left vector space over eiAei is
the same as the dimension of Dij as a left vector space over Dii'
Similarly, the dimension of eiAej as a right vector space over
e.Ae. is the same as the dimension of Dij as a right vector space
over Djj (whether this dimension is finite or not).

We proceed to show that A has minimal condition on left
ideals by showing that each Aej has a composition series. To this

end, set f, =e; + ey --+erf0ri—1 .,randfr+1=0.

ir1t

Keeping in mind that f. Ae is just E D k" kj’ we let Mi be the
k=i ‘

left A-factor module fiAej/fi+1Aej for 1<ix<r. M, is isomorphic

to Dij as an additive group. For t,s such that t>s>1i,
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e, Ae f.Ae. S e, Ae. & f

phe LAe, pAe i+1Aej' Therefore, since N = 2 e;Aeg,

t>s
l=xg,t<r

Mi = 0. Ience Mi is a left-module over the semi-simple ring
A/N, Now clearly, the action of A/N on M. is the same as the
action, by left multiplication, of Dii on Dij' But, since Dii is
a ring-homomorphic image of A/N, this just means
that M, is a direct sum of p irreducible A-modules(where p is
the left dimension of Dij over Dii)’ all of them isomorphic to
Aei/Nei. In particular, by (3), erAeJ. is isomorphic as a left
A-module to Aer, an idempotent minimal left ideal of A.

Now let I be any minimal left ideal contained in Aej. Since
e;Ae, SN if i + k, Ae, ~ Ae_ iff i=k. Hence, since I is minimal,
there exists a unique e; such that eiI =’eiAI 4 0. It follows that
eiI is a left ideal and hence that eiI = I Therefore, I= eiAIejS eiAej.
But the action, by left multiplication, of erAei on e_iAej is the same
as the action by left multiplication of Dri =D on Dij' In
particular, erAeiI# 0. Therefore, erAeiI = I since erAei is a left
ideal. We must have i=r, But I= erAerIej < erAeJ.. Since erAej
is minimal, I= erAej.

Since every minimal left ideal is isomorphic to a minimal
left ideal contained in some Aei, theorem (1. 2) implies that A is
faithfully represented on its left socle. That A is indecomposable
is trivial. Furthermore, since by lemma (1.1) S = % Se;I

2 (S N Ae. ) (S is the left socle of A), we have shown directly that
S = 1 2 e Ae =e A Notice that, ‘on the other hand, S= e A is a
| dlregzt consequence of theorem (1. 7).

By the same argument as above, one can show that A has
minimal condition on right ideals iff Dij .is finite dimensional as a

right vector space over Djj for all i, j, that is, iff erAei is finite
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dimensional as a right vector space over eiAei for all i, Note that
Dij =D for all Dij + 0 iff erAei is a one-dimensional right vector
space over eiAei for all i. On the other hand, as in example (3. 5),
D.. can well be a one-dimensional left vector space over Dii for

ij
all Dij + 0 without having Dij =D for every Dij % 0.

(4. B). Let us investigate, momentarily, what it means for a P. L
Aei to be dominant, Clearly the dominance of Aei means that
D, =0 for 1<k<i Hence, if D 4 0 for every i, Aey is the
unique dominant P, I. of A and all the minimal right ideals are
isomorphic even though a given eiA may contain an infinite direct
sum of them.

On the other hand, if there exists a unique dominant P.I., let
us assume inductively that D;; = 0 and Dy, 40 if k <i. But then
Dy = 0 for k <i by (2) and Ae, is dominant. This is a contradiction
if i 1, since Ae1 is dominant. Hence the existence of a unique
dominant P. I just means that Dy; % 0 for all i. Note also that if
D., =0 and if j is minimal such that Dij £ 0, then e;.LAej is a direct

il
sum of minimal right ideals.

(4.C). We wish now to investigate what it means for A to have the
following property (P): '
(P) If i and i' are two distinct indices satisfying:
{kIDy; 4 0}] = l{leki, 4 07|, and j is another index with j <1,
then either Dij‘ =0 or Di’j =0. .
t follows from what has been shown above that the composition

series length of Ae, is given by E [Dki:Dkk] where [Dki:Dkk] is

' Dy; 70

the left dimension of D, over D, . Hence, if [Dki:Dkk] =1
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whenever D, . 4 0, lemma (3. 7) implies that I{k\Dki = O}I = t(Ae;)
(see (3. A) for the notation) iff Ae; has a unique composition series.
On the other hand, if Aei has a unique composition series, it is
clear that [D,.:D,, 1=1 for every D, $ 0,

ki""kk
We are now in a position to prove:

Proposition (4. 1). Every P.I. of A has a unique composition series
iff (P) holds and [Dij:Dii] = 1 for every i, j such that D;; £ 0,

Proof. We use induction on r for both the necessity and the
sufficiency. The case r =1 is trivial.

Let A* be the subring of A consisting of all (r - 1) x(r - 1)
matrices formed by deleting the first column and the first row of
every matrix in A, In other words, A* is just the ring

2<i,jsr
{@y)*= b= lay
natural way in A. Note that A* is a direct sum of the P.L 's Aez,
Ae

€ Dij; i,j 1} considered as imbedded in the

greees Aer which are equal in the same order to A*ez, PR A*er.
Suppose now that every P.I. of A has a unique composition
series. Then the same thing clearly holds for every P.1. of A¥*,
Hence we may assume by induction that (P) holds for j3 1. I (P)
fails, then by lemma (3. 7) there exist P.L 's Aei and Aei, such that
15, TAe,) = t(Ae;), Aejhey 4 0 and Ae, Aey 4 0. But this is
in direct violation of theorem (3. 8). v

Conversely, assume that (P) holds. Since (P) certainly holds
in A*, we may assume by induction that Aez, Ae3, By Aer each
have a unique composition series. I Ae1 does not have a unique
composition series, then there exist by theorem (3.8) i and i' such
that Ae Ae; 4 0 and Ae; Aey 4 0 where i,i'>1, i$i' and
f(Aei) = i(Aei,). But then it follows from lemma (3. 7) that (P) is

violated.
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- (4.D). Consider the series 0 = T,cT{STy<...c T =8 where
S is the left socle and T, = e Ae, 4— e Ay dee et e Ae. Itis
obvious that each T, is a two sided ideal. Also, Ti/Ti—l is
isomorphic as a leit A-module as well as a left erAer- module.
to e Ae Hence 0 C Tl = T2 C...C ’I‘r = S is a two-sided compo-
51t10n series for the socle and T. / T 1 is a one dimensional left
vector space over erAer for 1 <1 < s

Let u, 0c¢ e Ae,. Then, since u, ¢ T, - T, ;, u, isa
basis of Ti as a left vector space over erAer moaulo Ti- 1° Hence
Ug, Ugyenn, U form a basis for S as a left vector space over
erAer. If we consider the socle as a left erAer and a right A
representation module, it is not hard to see that the faithful matrix

representation of A obtained by using the above basis is just the

ring A.

(4.E). Let K, K.
1x3,ix%
1<as<K;

E={@)15esK |af ¢
iU

WhereaB {lifoa=oc=6.and1=1=]}. Then by the
0 otherwise ”
construction in (0. B) (see the appendix) and by lemma (0.7) - (3) A

is a ring with identity and minimal condition on left ideals and

%3 Kr be any r positive integers and set

/\

D. } Let e be the matrix (a )

A= 1 BAe. isa decomposition of A into P.IL 's Ae. such that
1<i<r =
1<ax< Ki

Kem: KejB iff i=j. Lemma (0.6) - (2) implies that every P.I. of
A contains a unique minimal left ideal. Theorem (0. 9) - (2) and (3)
imply that A is faithfully represented on its left socle and

indecomposable. So, by the corollary to theorem (0.8), A is the
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unique indecomposable ring with identity and minimal condition on
left ideals which is faithfully represented on its left socle, in which
every P.I contains a unique minimal left ideal, whose reduced ring
is A, and which has the set of multiplicities Kl’ KZ’ “wyy Kr. where
Ki is the multiplicity corresponding to the primitive idempotent
€; (see (0.C)).

At this point we perhaps ought to interpret the previous
results obtained for A in terms of A, But this is so trivial using

the more general lemmas of the appendix that we omit doing so.

We now prove the statement made in the first sentence of
(4. 4):

Theorem (4. 2). Suppose that A is an indecomposable ring with
identity and minimal condition on left ideals which is faithfully
represented on its left socle and possesses the property that every
principle indecomposable left ideal contains a unique minimal left
ideal. Then there exist positive integers Kl’ Kz, - o Kr and a
skewfield D whose additive group has r:2 subgroups Dij satisfying
(1) For every i,k, j, Dikaj c Dij (under the natural multiplication
in D) and Dij=O it 1 %19,

(2) For every i, D, isa sub-skewfield of D and Dri = D,

(3) Dij is finite dimensional as a left vector space over Dii for
every i, j.

such that A is isomorphic to the ring of r X r blocked triangular
matrices in which the i, jg[3 block of a typical matrix is a Ki X Kj

matrix with arbitrary entries in Dije
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Proof. Write A = Aey - Ae, doeod Ae_ where the Ae, are P.L's
and the e, are idempotents. Now in the language of the appendix,
the reduced ring of A (see (0.C) in the appendix) has all the
properties of A stated in the first sentence of the statement of the
theorem plus the added property of being a direct sum of non-
isomorphic P.I 's. This is an immediate consequence of lemma
(0.7) - (8), theorem (0.9) - (2) and (3) and lemma (0. 6) - (2).
Hence, from the discussion in (4. E), we see that we may assume
that Aei:% Aej if i # j. By lemma (3.5) we may assume eiAej =0
if i <j. From the construction in (0. B) we may further assume
that A = {(aij)ISi’ jfr\aij € eiAej}.

Again by lemma (3. 5) Ae, is a minimal left ideal. Hence,
for 1 <i<r, there exists u; € erAei such that. erAei = erAerui
(lemma (3. 3) - (3)).

We define r2 Z-homomorphisms (Z is the ring of integers)
&.. by @ij:ai' € eiAe. B B erAer where a'..u, = u.a, Clearly,

ij ] j ij S R N )
@ij is a ring-homomorphism for i=j. Set D, = @ij(eiAej) and

]
D= erAer. We have so far that every Dij is a subgroup of the
additive group of D, Dij =0 if i <j, and every Dii is a skewfield
(because every eiAei is a skewfield - see the remark following
lemma (3. 2).) Also, since u. ce Ae, we have: erAerui = erAei
=u_e_Ae.. It follows that D_. = D for all i.
rri i

Since A is indecomposable, lemma (1.5) implies that A has
only one isomorphism class of minimal left ideals. Therefore,
O:_erA = O:AerA = 0:8 = 0 so that every @ij is a monomorphism.
Hence the map (aij) - (a'ij) is a Z-monomorphism. We must prove
that this map is a ring-monomorphism. But the equation

= ' = q! ' s = s
uiaikbkj a ikukbkj a ikb k].u]. is precisely what we need to do this.
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. : vhARL jEe
That is, A~ {(a e U Dij}. That Dy Dy
from the fact that the matrices (a'i].) form a ring. So the proof is

< Dij follows
completed.

The matrix representations so far achieved have been by
(4. D) or the proof of theorem (4. 2) just the representation of the
ring on its left socle. On the other hand, it is easy to produce a
ring of matrices which does not come from the representation of

the ring on any two-sided ideal:

a o o
Example (4. 1). Consider the ring [b c oi{ of example (1.1)
d o e

(a,b,c,d, e are elements of a skewfield D). If this ring came from
the faithful representation of the ring on some two-sided ideal,
then the socle representation would, by the corollary to theorem

(1. 3), have to have degree < 3. But

0 0 O 0 0 O 0 0 O 0 0 O
0c DO 0} |{DDO{<c |{D D Ojc (DD 0}j=8
0 0 O 0 0 O D 0 O D 06 D

is a two-sided composition series for the socle of length 4 (see(3.B
for the notation).

(4. D) shows that the rings considered previously in this
section which are a direct sum of non-isomorphic P. L 's have the
pleasant property that a two- sided composition series for the socle
has the same length as the left A-module length of the socle, This

is hardly true in general:
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Example (4. 2). Consider the ring of all matrices of the form

a b o
[—b a o} where a,b,c,d,and e are elements of the set R of
c d e

real numbers., Clearly S is a direct sum of the isomorphic

6 0 0 0 0 O 0 0 O
minimal left ideals {0 O 0}, 0 0 Of{and (O 0 O
R O O 0 R O 0 0 R

whence the left composition series length of the socle is 3 (in
particular, we see that this ring is faithfully represented on its

left socle). But neither the minimal left ideal

0 0 O 0 0 O
G 0 0§ {nor the minimal left ideal O 0 O} is two-sided.

R 0 O 0 RO
( 0 0 O |
Hence the two-sided ideal | 0 0 01! is a two-sided composition
IR R O _

factor of the socle. So we see that the length of a two-sided
composition series for the socle is 2.

More generally, if D, E and F are skewfields such that
FS D and E~— E' is an irreducible representation of E over F as
matrices of degree d,then the ring

DD...D D

d
composition series length of the socle is d + 1, and the two-sided

[ E! O] is faithfully represented on its left socle, the left

composition series length of the socle is 2.

We now endeavor to see what the faithful socle representation

of general rings looks like.



42

(4. F). Suppose A = & Ae; where the Ae; are P.L 's and Ae, % Aej
it 145 Let f, fy,..
that Aei is minimal and let Di be the skewifield fiAfi. By theorem

- fn be the distinct e having the property

(1. 7) we may assume that S, = A where §=8; + S, Foood S, is
the decomposition of the socle into indecomposable two-sided ideals

of A. TFinally, let OCT11 CT12C...C TlalcTZICTZZ c...cTzOL

2
CeeeC Tn = S be a two-sided composition series

C...CT
(04

nl < Tn2

for the socle such that T. =8, + S, +¢e«+ S. for 1 <i<n.
i, 1 2 i

Now T.

i, ai'l contains fl’ f2, g fi—l' It Ti, ai'l also

contains f. it follows, since T. is two-sided, that T. 2T
i is i—-l 1,@1-1 ia,
which is absurd. Hence, since S1 oo et Si-l < Ti, a- 1 < Tioci’ we
have T, . 4+ 8., N N. Butas left A-modules,
i,0.- 1 i-1 i

T, “i/ (Sy #++-+ 8, ;+ 8, NN)=85,/8, NN Af,. It follows that

S S, .-+ 8
1

ih S, +++++S. NN and that T, /T. is a one-dimensional
i ia,” 7i, oni—i

i,a.-1 = g

left vector space over Di’ Note that fi e Tia whereas fi does not
i

belong to any qu properly below Tmi.

if

For 1P sa, Tig/Ti, 8-1 (we set Ti, B-1" Ty Lo, g

B = 1) is clearly isomorphic to a left A-submodule of Si = fiA. Hence
each TiB/ Ti, 5-1 is a leit vector space over Di of dimension, say,
Tip® . 2 P ;

Now the series S2SN>8SN" 2--+«D SN" = 0 may be refined toa
two-sided composition series for S. Hence (TiB/Ti, B-l)N =0, So
each TiB/ Ti, g_1 is a right A-module where A is the semi-simple
ring A/N. By the assumption that A is the direct sum of non-
isomorphic P.L 's Ae,, A is actually the direct sum (as two-sided
ideals) of the skewfields —ék—AEk' Since TiB/ Ti, g.q is irreducible
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as a leit Di and a right A representation module, there exists a
unique By such that (TiB/Ti, B_1)ej # 0, that is, a unique e such
that Ej?@j is faithfully represented on Tg /Ti, 5.1 On the right.

A necessary condition for this to happen is that Si n Aej + 0. But
no e, can right annihilate every two-sided composition factor of

the socle (because 0:S = 0) so every ey, with Si n Aep % 0 has the
property that (TiB'/Ti, B'—l)ep £ 0 for some B',

1.2 iB : .
Choose u , u., € 118 forming a left Di-ba51s for

ipr Yigrerr Y ‘
TiB modulo Ti 8-1 and such that each u., = u..e. where
J

iB iB7j

g - ,
(TiB/Ti, B—l)ej 5 0. Then, of course, the set of all ;g form a

basis for S as the direct sum of the left vector spaces Si’ Note,

. 1 . k
in fact, that u~, S8=8S.,= £ D.u,, (mod T, ) and that
’ ¥ 1 1<psa P 3, %y
§ 1<k=< YiB
Wg =8 it B 5 a (for every i).
Let p; be the left A-module length of Si‘ Using the prescribed
basis, we can now see that the socle representation of A produces a

ring of ';1 X n blocked matrices of the form

P 1
1 Pz O
. where Pi isa pi- X pi’ matrix with entries 1n Di
O - p :
x Bl o 't
Q41 &
i2 O
having the form o QiB
. Qioc.
: i
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where QiB is a Yig X Yig matrix belonging to the faithful
representation of e.Ae, on T../T. . The bottom row is just
777 B 7i,B-1

filled in by arbitrary elements of Di (recall that Vog ™ i).
i

For each fixed i, a € A~ Pi(a) is obviously the representation
of A on S,. Hence the n rings {Pi(a) la e A} are just the uniquely
determined subdirect summands of theorem (2. 2),

If Ej_AEj is also faithfully represented on T, g

. /Ty g1

1 "1

i R 4 S /T. (these obviously don'tin ¢ al
i,B," "10,Bom17""? i, B/ i, Beya-l JSOITL I genex
2°2 "2z &) o3 "Iy )

need to be equivalent representations) where 11 = i, Bl = B, we have
8(j) ring isomorphisms @ =1, @,..., @6@) such that in every

matrix, @k(QiB) = Qikﬁk' t can easily be true that i_ 4 i, some

k, i.e., - this is précisely the sort of thing that happens when A is
indecomposable. In fact, by what was said above plus lemma (1. 5)

we can theoretically tell whether or not the ring is indecomposable

just by looking at the diagonal blocks Q,g. Note that if ‘é"].”AEj

1o then 8(3) = 8(k) = 1.

I S has a two-sided composition series whose length is

happens to be some D

equal to the left A-module length of the socle, then every Yig is
equal to one. In this case it is not hard to see that 8(j) is just the
left A-module length of Sej =8N Aej . Also in this case, we have
that every Ej'AEj is imbedded irreducibly as a sub-skewfield in at
least one, but at most 6(j) different Dk‘

We now give an example which shows why it is in general so

hard to say anything about the off-diagonal elements.
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Example (4.3). Let K be a field of characteristic 2 for which
there exists an element 6 ¢ K such /6 ¢ K (for instance we could
take K = GF, (X), 6=X) and set E = K(/6). Let A be the finite

by 7 1 fX)K E 0 A '

dimensional K-algebra given by E®. . E E®. 1l ° Note that
K K

A is faithfully represented on its left socle, the socle being given by

0 0
E (X)K E E ®K 1] and that E CX)K E is isomorphic as a K-algebra

to E[X 1/(X- fe)z, a ring with radical.
Since E ®K E is a two-dimension left vector space over
E ®1 as well as a two-dimensional right vector space over 1 ®E,

the socle of A has a two-sided composition series of the form

0 0 0 0 o 0
b [Tl o]c E«:@KE o]c EE@K.E E(X)l]’WhereTl

is an ideal in E ®KE . This is also a left composition series. We
pick a basis by taking u, £0c¢ Ty, Uy ¢ E @ E- T, and

ug =l= 0 ¢ E ®1. This basis gives us a representation of A on its

left socle as 3 x 3 triangular matrices with entries in E® 1. The

2 x 2 triangular blocks in the upper left hand corner belong to the

left E® 1, right 1 @ E representation module E ®K E. Hence,

this 2 X 2 representation is not diagonalizable since E ®K E is not

a completely reducible left (E ® 1)®K (1®E)-= E@E module (i. e.,
E®KE is hardly semi-simple). It follows that the socle representation
of A will always contain off diagonal elements which in given matrices,

are related in some way to the diagonal elements.

On the other hand, the material in (4. F) gives us many clues

as to how to construct all sorts of examples. For instance:
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Example (4.4). The ring of all matrices of the form

et

a2 o o o o o

b a o o o0 o

c d e o o o . : .
here a,b,... € D and D is a skewfield, is

o o oa o of” > L *

o o o b . f o

0o o o g h 1]

indecomposable and faithfully represented on its left socle (and has
minimal condition on both left and right ideals).
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V. Some Rings Defined by Partial Orderings
There are many ways of defining a ring by a partial order
on the first n integers. Even the most naive approach is a natural

one for certain types of examples:

Example (5. 1). Consider the partial ordering p given by the

3 %o
diagram 0 \O 9 . Corresponding to it we consider the ring
\
01
D 0 0 0]
D DO © | : . X .
A= 0 0D 0| where D is a skewiield. That is, the ring of all
D DD D

4 x 4 matrices obtained by putting an arbitrary element of D in the
i, i position if i p j and putting 0 in the i,j™® position if i,

By (4. A), A is an indecomposable ring with identity and
minimal condition on left and right ideals which is faithfully
represented on its left (and right) socle. By proposition (4. 1) every
left P.I. of A even has a unique composition series. We shall
show later that any labeling of the above diagram merely gives us a
ring isomorphic to A. In particular, there are eXactly two more
ways of labeling the diagram such that the natural > order

corresponds to the p-order, namely
4

4
0 0 D 0 6 0
2(}/ \O 3 and 10/ \0 3 giving us rings D _ o o and
\ \ D 0 D 0
01 02 D D D D
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D 0 0 O

0 D O O . : ;

O DD 0 which are both isomorphic to A even though all
D D DD

three "look different". Actually, this just reflects the fact that the
socle of A has three distinct two-sided composition series (and

also that the permutation in lemma (3. 5) is not unique).

Other approaches are also possible:
2 0 0 3
Example (5.2). Consider the diagram \O/ . If we take the
1
same tack as in the previous example, we just get the by now
familiar ring of example (1. 1). Instead, we take three skewfields

D E

D, E, and F whose inclusion lattice looks like \/ and we
F

construct corresponding to the diagram the ring A given by

E 0 E
identity and minimal condition on left ideals which is also faithfully

F 0O O
E) D 0} . We shall see that this is an indecomposable ring with

represented on its left socle.
29

The sub-partial order \ gives a ring
0 .
3

3 .
F O O 0 F O O

F O . ) P
D D 0} =~ [b and givesaring {0 O O :[ ]
&) 0 o} = 4 \o E o g LF E

1
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Note that by (4. A), these latter riﬁgs have the property'that every
P.L contains a unique minimal left ideal. Furthermore it is easy.

to see that A is isomorphic to the ring of matrices of the form -

a o0 0 o
Ei ‘g 2 g where a ¢ F, b, ce D, d, e € E and that.this ring
o o d e

is actually the ring produced by representing A on its left socle.
From the general left socle representation obtained in (4. F) we
see that the unique subdire‘ct summands (in the sense of theorem

. F O F O
(2. 2)) of A are given by E) D] and [E E:]

Now let p be a partial ordering of the set {1, 2yuinns r}

and let my, My, «.. , M be a full set of distinct p-max-

imal elements. Let Py, be the restriction of p to the set

{ j lmapj } Each Pa is a sub - partial order on {1, Bywwns r}.
Let Dl’ 92+
that whenever ipj the following properties hold:
(a) Dij 40
(b) DﬁgDanDBﬁ(LﬁepaﬂpB-
(¢) D., D _.SED

i Dn be skewiields and Dij be r2 Z-modules such

ik ki = ] \
(@ D, isa skewfield and Dij is a finite dimensional left vector
space over D, ‘
(e) D =D
m m o .
We notice that since p= U p w every Dij such that ipj is

a=1
contained, by (b), in some D . We are tacitly assuming that in
this case Di’ has the multiplicative structure of Da. It follows
from (b) that the multiplication in (c) is well defined (where, of
course, Dikaj is jgst the 0 of Dij if ik or k#j).
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By the ring defined by ¢, D,, and Dij we mean the set

_ 154, j<r T _ o
Ap = {(gij) lai]. € Dij if ipj and ai]. = 0 otherwiser. The
verification that Ap is a ring with identity given by

. s Wwhere the 1 in the i,1i position is the

| identity of D i is trivial
Now 1f @ is a permutation on {1 . r}, it is clear that

J.<1 <rla

a(a()” @(i)cl'n(j)

=0 otherwise}. Therefore, since every

Ap is isomorphic to the ring {(a@(i)@(j))

i 2l e o) and ag;)q ;)
partial order on {'1 2, r} can be extended to a total order on
{1 . S }, we may, and do assume that igj if i <j. That is,
we assume that the ring A ” is a triangular matrix ring.

Set e; equal to the matrix with 1 in the i,i position and 0
~every place else. Then, exactly as in (4. A), we show that the
radical N of A g = A is iE&ziAgaJ. and that the left A-factor module
(ei + € 1t er)Aej/(e-:_l oot er)Aej is the direct sum of
[Dij:Dii] irreducible left A-modules all of which are isomorphic to
Aei/ Ne, (provided that ipj).

Now if i is p-maximal, Ae, Ae = %{ekAe AeJ = e, Ae AeJ eiAe_j
and elAeJ is a left ideal. Hence 1f i 1s maximal and ip]j, eiAej is
a direct sum of [Dij :Dﬁ] minimal left ideals isomorphic to Aei since
Nei = 0,

On the other hand, if I is a minimal left ideal contained in

Aej, there exists (as in (4. A)) a unique e, such that e I=1I, whence
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I& ekAe We pick i such that i is maximal and ipk. Since D. k% 0

(by (2)), it follows that e, Ae L + 0. But e, Aek is an ideal as we saw

k —
potent minimal left 1dea_1 Aei.

above. Hence I= e, Ae I c eiAej and I is isomorphic to the idem-

We summarize:

Proposition (5. 1). The following hold:

(1) A=A 5 is a ring with identity and minimal condition on left

ideals and is the direct sum of the non-isomorphic P.L 's Ae].. The

left composition series length of an Aej is given by

’L(Aej) = ? [Dij:Dii] where [Dij :Dii] is the left dimension of Dij
ipj

as a vector space over Dii’ The radical N of A is the set of all

matrices of A which have no non-zero elements on their main

diagonal.

(2) A is faithfully represented on its left socle S. emAej is a left
a
ideal and is the direct sum of [Dm j:Da] minimal left ideals. If
o
we set Sa = JE emaAej, then S = S1 + S2 oot Sn is the unique
m pj
decomposition of the socle into two-sided indecomposable ideals of

A. TFurthermore, %(Sa) = j’Z[Dmaj;Da].
mapJ

‘We prove:
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Proposition (5. 2).

(1) ¥D_;isa skewfield whenever m pi, then m_pi implies

i
a
(= c it 3 i
that Da‘vaai and also that Dij = Dmaj if ipj.
(2) A is indecomposable iff the diagram of p is connected.

(3) The n rings A‘p ‘where Ap is the ring determined by Py
a a
Dd’ and the rz Z-modules Dij are the uniquely determined subdirect

summands of A of theorem (2. 2).

4) o D ;=D whenever m pi, then every P.L of Apa contains
a unique minimal left ideal,

\Proof. (1) This follows by DmaiDij c Dmaj and (.';1).
(2) Two P.L's Ae, and Aej are linked iff there exist e_ ,
1
B smsng © and e B aeang B where e = e. and
Gy e Bl’ 82’=rL P B q a; 1 o
e =e, suchthat e, Ae 0 and e, Ae 30 for 1 <k <m-1.
“m ] B1«: Y Bk k1
So (2) follows.
(3) By proposition (5. 1) - (2), S, = z e Aei. Hence
i o
mapi _
0:5,= T eiAej. Therefore A/O:SOL =~ Ap both as a ring and a left
Ty : o
m,m
&
A-module, since By is a sub- partial ordering on {1, Pis eq 3 r} .
(4) Pq, has only one maximal element, namely m . Hence, as we

saw above, every minimal left ideal of Ap ej, where mapaj, is
o
contained in the left ideal m A e.. But [D_ .:D 1= 1 means
ap 7] m "o
that maAp e is minimal. The rest follows by (1) and (4. A).
a _
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From now on we assume that Dm i = Doc whenever map i.
" ;

We can then prove:

Proposition (5.3). (1) The socle of A = Ap has a two-sided compo-
sition series of length equal to the length of a left composition series
for the socle.
(2) Every P.L of A contains a unique minimal left ideal iff
‘A=A +A_ ...+ A, thatis, iff the A are the two-sided
p P p P

1 2 n o :

blocks of A (see (1. E)).

Proof. (1) I we fix o, every mOLAe]. is minimal. We order the j
such that mapj; say jl S j2 <ese< jp. Then it is easy to show by

induction that 0 < . Ae. < B Ae. + . Ae. C...C e Ae.

o J1 a 1 o J2 « N
+e_ Ae. +-+e-+e_ Ae. =S _ is atwo-sided composition series

m j m j a
o4 2 o P
for Sa.
(2) I we fix j, the different mO:Aej give all the minimal left ideals
of A contained in Ae}.. Hence (proposition (5. 1) - (2)), every P.L
n
of A has a unique minimal left ideal iff = \{] lmapj} | = v ifE
a=1 ‘

by NP0g = @ for o+ B and (2) follows.

By the proof of proposition (5. 3) - (2), we see that

A= Apl Fooot Abn iff 4(S) = r. Hence, by (1) of the same proposition,
we must have A = A 3 doeet Apn if A is in its faithful socle
representation. But if A = Apl. foeod Apn, it is completely obvious

that A is in its socle representation. On the other hand, if 4(S) # r,
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that is, if 4(S) > r, then A cannot come from any faithful
representation on a two-sided ideal of A (see example (4. 1)) by

the corollary to theorem (1. 3).

Let p'  be the partial order on {1 2 onsy US )}, induced
in the natural way by Py In other words, p'_ is defined by i p ] .
where 1<1,J'<m'='f5(S )n ip j where i,je {k|m k} Then, it

is a matter of calculation to show that A is isomorphic to

;, 1<e,Psn ¢ i i1
{(a ):llz;'zﬁs aaB=aij1fa=B,1pa],(aij)eAandaaB=O

otherwise} and that Ap is isomorphic to the subring given by
<i'<m' @
{(a 1 <]' <m'

representation of A. On comparison with the general socle

} The former ring clearly gives the socle

representation obtained in (4. F) it seems not unreasonable to
conjecture that the rings A 5 give all the rings with identity and
minimal condition on left ideals, which are a direct sum of non-
isomorphic P. L 's and faithfully represented on their left socle,
and which are a unique subdirect sum in the sense of theorem (2. 2)
of rings which, besides all the above properties, have the added
properties of being indecomposable and being such that every P. L

contains a unique minimal left ideal. However, we cannot prove this.

We now set out to determine, in a sense to be made specific,
the rings which are faithfully represented on their left socle and
which possess the property that every left P. I. has a unique

composition series.



55

Set G(j) = ]{ilip j} . Then, in terms of p, property (P)
of (4.C) just says:
(P") ¥ i>j and G(@i) = G(i") for i4 i', then i#j or i'#j.

Then if p has a greatest element, (P') is equivalent to:

(P') No two non-p comparable elements have a lower bound.

Proof, If (P') fails, (P'") obviously fails.

On the other hand, assume that (P") fails. Then there
exist i, j,k such that i#j, jei, but ipk and jpk., Let m be
minimal such that mpei and mpj (m exists since p has a greatest
element).

If m covers i and m covers j, then G(i) = G(j) for i+ j,
ipk, jpk and i >k so that (P') fails. Hence, there exists s such
that m covers s and, say, spi where s 4 i. Since m is minimal,
s#j. By the same argument as before, there exists t such that m
covers t and tp j, t4 j. Butthen, G(s) = G(t), s # t (by the
minimal property of m), spk, tek and s >k, Hence (P") is

violated and we are done.

Thus we have shown by propositions (4. 1) and (5. 3) - (2)
that if [Dij:Dii] = 1 whenever ipj, then Ap is indecomposable
and every P.I of A ” has a unique composition series iff p has a

greatest element and (P'") holds. -
Note that P'" just says that the diagram of p is an inverted

tree (provided, of course, that p has a greatest element).

We have now, with the aid of theorem (4. 2) and the appendix

shown more than enough to prove:
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Theorem (5.4). Let A= £ Ae._ be a decomposition of the
1sisr |
1< OL_<Ki

indecomposable ring A with identity and minimal condition on left
- such that Aeia o~ AejB iff
i=j. Suppose that A is faithfully represented on its left socle and

ideals into a direct sum of P. L 's Aei

that every P. I. contains a unique minimal left ideal. Let p be the
partial ordering on {1, 2,..., T} defined by ipj if emﬂAem1 10,
Then every P.L of A has a unigque composition series iff p Jsa’cisfies
(P") and every P.1I. of A has a composition series without repeated

factors.
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Appendix

Suppose that A is a simple ring, That is, a ring with
identity and minimal condition on left ideals possessing no proper
two-sided ideals. Such a ring A is a finite direct sum of minimal
left ideals. Ii A contains only one minimal left ideal, then A is
obviously a skewfield, One feels that Wedderburn's structure
theorem should follow automatically - that is, that the most general
simple ring is a complete matrix ring over a skewfield. This is
actually true in a much broader sense.

In order to proceed we need some technical facts:

Lemma (0.1). If A is any ring and e and f are idempotents of A,
then Hom A(Ae, Af) = {RXIX € eAf} where by R_ is meant the map of
Ae into Af induced by right multiplying by an element x of eAf,

Proof. I a € A, b e Ae, x € eAf; Rx(ab) = abx = aRX(b) e Af so
8 =~ RX is a Z-homomorphism (Z = ring of integers):
eAf - HomA(Ae, Af). Also, @ce I—IomA(Ae, Af) - @(e) = q:(ez)
= ed(e) € eAf is a Z-homomorphism,
Now x € eAf ~ R~ Rx(e) =ex=x and @€ HomA(Ae, Af)
- @(e) - R@(e) = @ since, if y € Ae, R@(e)(y) = yd(e) = a(ye) = cI:(Ef).

Lemma (0.2). If Ae~ Af and I is a right ideal, then &(lIe) = If.
0

Proof. There exist a, b ¢ A such that .ci‘v(e) = af and c;f:_l(f) = be.
Hence, @&(le) = I@(e) = Taf S I, But Ie & q;l(If) = Iin—l(f) = Jbe S Ie.
Therefore, dl(lf) = Ie so If = &(le).
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Lemma (0.3). I J is a left ideal and Ae ~ Af, then AedJ = AfJ.

Proof. By lemma (0. 1), there exist u ¢ eAf and v € fAe such that
Aeu = Af and Afv = Ae. Hence AfJ = Aeud & Aed and AeJ
= AfvJ © AfJ.

Lemma (0.4). If Ae~ Ae' and Af ~ Af' then eAf ~ e'Af'
@ v &3 a0y

(as Z-modules) where by @—l(e')zp is meant the map

X € eAf - @—l(e')l//(x) € e'Af' of eAf into e'Af'.

Proof. By lemma (0.1), corresponding to the sequence of natural

isomorphisms eAf - HomA(Ae, Af) — HomA(Ae', Af') —» e'Af', we
have the sequence x » R_ ~ gboRXocI:_l = ¢0RX0®_1(e') = @_l(e')w(x)

since yoR_o @_l(e') = z,b(c‘_@_l(e')x) = qJ_l(e')zp(x).

- Lemma (0.5). Suppose that Ae ~ Ae', Af ~ Af', and Ag~ Ag'. Then
a B Y
the diagram eAf x fAg - eAg

o 1(e')B [B—,l(f')vl oc'l(e')vi
e'M" xjerAgv - e'Ag'

commutes with respect to the multiplication in A.

Proof. Let x ¢ eAf and y € fAg. Then X~ X' = a_l(e')B(x),
yoy = B'l(f")Y(Y), and xy - (xy)' = on—l(e’)Y(Xy). We calculate:
x'y' = & enp@p e vE) = o« e B Y)

= o Hens LE@)v(y) = o Henxvly) = < enviy) = &y).
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(0. A). Suppose that A = % Ae. where 1= T e, , the e.
1<i<r ¢ 1<i<p 17 10
1506_5Ki ISG,SK'i

form a set of mutually orthogonal idempotents, and Aei g AejB if

i=j (there is always one such decomposition, namely, A = Al). In

this section we shall use the notation Z to mean z
i, o 1<i,§,0.0 S
i, B 1< asK;
' 1< B_SKJ.

’
.
.

Since A= & emA, we have A= 3 eia( - Ae.B) = emAe.B
i, a 1,0 i, B ] 1, ]
1, B

(direct sum as Z-modules). We now construct an additive subgroup

H

A' of the additive group of A by setting A'= X e.lAe.l. Note
1=i, j=r
1 — T 3 1 2 ,' ! 3
that eilA €1 = eilAejl’ It is clear that (A')“ < A', whence A' is

4
a ring, and that A' has an identity 1' given by 1'= % €1 Therefore,
i=1
A'= T A'e., since the e., form a set of mutually orthogonal
1<i<yp it i
idempotents in A'. Let us note here that if we fix integers

., D, where n, < K., then the ring A" = _2 ein.Aejn.
i1 j
3, B

is ring-isomorphic to A'. This follows easily from lemmas (0. 4)

and (0. 5).

Ny, Ngyee

We now see how we can recover the ring A from the ring A':

/
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(0. B). For each ordered pair (i,j), 1<i,j<r, we set A™ Pe &
mr15a<K.wdlfBSKTV%ddmea%mmMeKby&ﬂmg

A=a e 1AOL’ Bej1 That is, A is the external direct sum
i,0 v
i, B 5 8
[ e. A% Pe._ of the Z-modules e.. A% "e... We define a
1<ij<ril e} il i1 |
1<ax K1
1<B=x K]
multiplication in A by setting ab= & ( T afg b;iB) where a = @ aoLB
1]
i, K;¥ i,a
3 o R J', B J', B
and b= @ a; 3 al 5 bt e e.lAa’ Be.l. It is a routine matter to
i, iy * "ij ij i j
5, B
verify that Aisa ring with identity =01 ]B where
i,a
i, 8

f;ij= {eil if i=j and a= B} . We see that A is just the ring of all

0 otherwise

124 j2r
matrices (aOLB) 1ok yhere %P 5 e;;Ae. .. Thatis, the ring of
U'1<82K, oL
J - 2
Bll B12 o Blr

all r X r blocked matrices‘ le“ B22 Bzr where Bij is

. 3

g, gt Brrj

the Ki X Kj matrix
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-
11 12 R
Baw www sy
1] 1] 1]
21 22 2K,
a Bew soy 3
ij  “ij 1j
. . aB
. . ) 45 © Cj1h85 e
K.1 K2 KK,
i i ij
U oy wss B
2 I AR AT B .
B e., if i'=i=] and a'=B=qa
a a'B a'B _ il
TR i'®oc' 8y where g;,5 = { 0 otherwise } .
b
iy B
Then the e(im1 form a set of mutually orthogonal idempotents in A and
= % ecﬁ. Hence A= & Keial (internal direct sum as left A-modules)
i,a i,a
and A= T e?lxegl (internal direct sum as Z-modules). We clearly
i«
J, B

can and do identity eglx e].l1 with eilAejl as subrings of A for every

i,].
e., if a'=1, B=a, and i'=j=1
a _ a'pB a'B _ il ’ .
Set 1; = @ Py where By = %6 st
2
JsP

Th e A L o 12 § A-isomorphism Xel ~ Ae ~ 0 for

en X e;; ~ X1, is an A-is p i1 il
1sa =<K, Bylemmas (0. 4) and (0. 5) there exist Z-module

isomorphisms
_aB
"4
ap 11 = awp
wij 'eilAejl eilAejl 0

:eio,AejB = eilAejl -0
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such that the diagrams e, AekY X e.kYAejB = eiocAejB commute

Y l Y8 ap
Dy | @y @y;
eilAekl X eklAejl = eilAejl

with respect to multiplication in A and such that the diagrams

1~ 1 1~1 1~ 1 .
e: lAekl klAe 1 e1 iA.eJ1 commute with respect to
ay ' af
B . mg B
e;rheg; * eyihe s T 0!
multiplication in A, If we put wa = f;B @OLJB then it is obvious
that the map a= T a, ]B e A (where ai]B ¢ e; Ae; B) -as= Zw (a1J )-i8

10L 10(.
J,B J,B

a Z-isomorphism, A - A - 0. That this map is actually a ring

isomorphism follows from the fact that the diagrams

emAekY X ekYAe.B = emAe.B commute with respect to
ay Y8 2P
“ik | Yk \I/ “ij l
> B B
a ~
oj Aeyy x epyRely ~ ejher

multiplication in A in the top row and multiplication in A in the

bottom row.

We now prove some lemmas which relate the properties of
A and A':

Lemma (0.6). Let A and A' be the rings defined in (0. A). Then
the following statements hold:
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(1) eilA'ej1 = eilAejl
(2) I-INA'=TI gives a lattice isomorphism between the lattice
of left ideals of A contained in Aejl and the lattice of left ideals

of A' contained in A'ejl. The inverse is given by I' = AI'.

(3) Aeil

(4) T~-TNA'=T' gives a lattice isomorphism between the lattice
of two-sided ideals of A and the lattice of two-sided ideals of A',

Aej1 NA'= A'eilA'ejl

The inverse is given by T' -~ AT'A.

(5) H P isa left and @ a two-sided ideal of A, then

(P:Q NA'"=(PNA"(QN A" where the quotient on the right hand
side of the equality is taken in A' (and the quotient in the left hand
side is taken, of course, in A).

(6) I P and Q are both two-sided ideals of A, then
PQNA'=(PNANQNA. |

Proof. (1) This is immediate by the definitions.
(2) Suppose I<Ae;;. Then it is clear that TN A' = Ze; 1< A'ey,.
i
But then, AIN A'") = ZAeilI = Z Ae, I= AI=1 by lemma (0. 3).
i i, a
On the other hand, suppose J < A'ejl. Since AJ = Aejl’
ATNA'=Te ,AT=Ze. . ( Z Ae, )J=7%e, (T Ae, ,J) =T e..Ae, . J
i il ; llk,oc ka " 11k k1l i,kll k1
=A'J=J.
= ' t = A '
(3) AeilAejl NA'= 13 eklAeilAejl 1’2{1 eklA eilA €51 A'e (A ejl“
(4) Let T be a two-sided ideal of A, Then clearly, T N A’

= 3 —ay s 1 n 1 = E . .
-E_eﬂTe:.|1 is a two-sided ideal of A'. A(T N A")A _ .Ae11Te]1A
1,] 1]

c z AeiocTejBA = ATA = T. Now by lemma (0. 1), Aele contains

i,
3, B



64

AejB for 1<B =< Kj' Therefore, Tele = Te].B by lemma (0. 2)
since T is a right ideal. Also, since T is a left ideal,
T m

Ae, T2e, T, 1saxK, bylemma (0. 3). Hence Aeiliele
2e. Te.,A2e, Te., for 1<i=<K. and 1<j<K.. Thus, it

ic” i1 ian™7jB i ] 3 A
follows that A(T N A")A =T.

Conversely, assume that U is a two-sided ideal of A’

Since AU A is a two-sided ideal of A, AUANA' = izjeilA U Aeyy |
)
= i,gj e; Al Uej’lAejl =A'UA' =T,
g .
(5) The inclusion from left to right is trivial.
Let a'¢e PN A"QNA' where a' ¢ A'. Then Qa'= AQa'
' lemma (0. 3) '

= i,zocAeerjla = i;EjAeilerla =A@QNAYa"SA(PNAY

< AJP < P which proves the inclusion from right to left.
lemma (0.3)

6) PQNA'= .Z.eiIPerl =2 .eiIPAekaerl = _ ?eﬂPAeleejl
1] 11’3 i,j,k
k,a

= Zej1Pq Qe (T e;3Pe;)( 2 e;,1Qe;q) = (P NANQNAY.
Ljk . 3xd 13

b b

Lemma (0.7). I A and A' are the rings defined in (0. A), then
(1) A has minimal condition on left ideals iff A' has minimal
condition on left ideals.

(2) If either A or A' has minimal condition on left ideals, then
every AeiOL isa P.L of A ifi Aeil isa P.I. of A iff A'ei:l isa
P. L of 4%
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(38) If A has minimal condition on left ideals, Ae.q 4 Ae;y for
i j, and Ae;  isa P.L of A for every i, then A' has minimal

condition on left ideals and A' = ‘z'JA'eﬂ is a decomposition of A'
i
into non-isomorphic P.L 's A'eil. Conversely if A' has minimal

condition on left ideals and A' = .jA'eil is such a decomposition

of A', then A has minimal condiltion on left ideals and A = - 5 Aeioc
is a decomposition of A into P.I 's Aem with the property ;lii“lgt
Aeia:: AejB if i=j.

Proof: (1) This is immediate from (2) of the preceding lemma.
(2) First of all, it follows from the proof of lemma (0, 1) that the
eiaAeia are isomorphic rings for 1 <a < Ki‘ Thus by (1), the
eiaAeia are completely primary for 1 <a =< Ki iff eilAeil is
completely primary iff eilA'e:.l1 is completely primary (since
eilAeil = eﬂA'eil) and (2) follows.

(3) By (2), we must only show that Aei1 ~ Aejl iff A'eil o A'ejl.
But this follows from lemma (0. 6) - (3). ’

(0.C). Suppose now that A is a ring with identity and minimal
condition on left ideals. Let Ael, Aez, . Aer be a full set of
non-isomorphic P.IL 's of A where the e form a set of mutually
orthogonal idempotents. In this section we call the ring

z eiAe. the reduced ring of A. We may make this definition
1s5ij=>r
since lemmas (04)and (0. 5) imply that any two such subrings of A
are isomorphic. Since Zei is an idempotent of A, ZAei =A% e;
i i i
is a direct summand of A as a left A-module. Hence the Aei may

be included in a set of P, L. 's of A whose direct sum is A and
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everything said above for A and A' holds for A and its reduced
ring.

I we write A = 13 2 Af - where the Af are P.L 's and

1<as K

Afm_ Af. i8 iff i = j, then the unordered set Kl’ K2 , Kr is
uniquely determined by the ring A. In this section we shall call
Kl’ K " Kr the set of multiplicities of A, Two rings with
1dent1uy and minimal condition on left ideals possessing the same -
set of multiplicities are called equivalent if they have isomorphic
reduced rings. Now each integer K:.1 is uniquely determined by
the P. 1. A;f.1 and hence by the primitive idempotent f.l We shall
say that K is the multiplicity corresponding to the primitive idem-

potent f. i1°
With this terminology we can state:

Theorem (0.8). There is a one-to-one correspondence between the
set of equivalence classes of all rings with identity and minimal
condition on left ideals having a given, fixed set of multiplicities
and the set of isomorphism classes of rings with identity and
minimal condition on left ideals which are a direct sum of non-
isomorphic P.1 's. This correspondence is given by A - the

reduced ring of A,

Proof. This follows from the definitions in (0. C) together with the

construction in (0. B) and lemma (0. 7) - (3).
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Corollary. Suppose that the ring A' with identity and minimal
condition on left ideals is a direct sum of the non-isomorphic P. L 's
A'el, A’ez, vesy A'er. Then there exists, up to isomorphism, a
unique ring A with identity and minimal condition on left ideals whose
reduced ring is A' having the set of multiplicities Ky» Kz, PP . 5

1
where Ki is the multiplicity corresponding to the primitive idempotent e,

Prooi. In view of the theorem, we must only observe that by
lemma (0. 7) - (2), every e, may be regarded as a primitive idem-

potent of A.

Example (0.1). Let A be the ring of all matrices of the form

a o o o
o b o o ;

B2 A B o where a, b,... are arbitrary elements of a
e f g h

skewfield D. A is a ring with identity and minimal condition on
left ideals. Set fl = €41+ €33 f2 = €99 and f3 = €44 where the
e;; are matrix units of the complete ring of 4 X 4 matrices with
entries in D. Then A is a direct sum of the non-isomorphic P.L 's
Afl, Afz, Af3.

We wish to construct the ring with identity and minimal
condition on left ideals having the set of multiplicities 2, 3, 1
-whose reduced ring is A and whe-re 2 is the multiplicity corre-
sponding to fl, 3 corresponds to fz, and 1 corresponds to f3.
We could proceed by employing the construction of (0. B). However,
it is easier to make a ''good guess', namely, let A* be the ring of

all matrices of the form



[a; a, 0 0 0 0 0 0

ag a, 0 0 0 0 0 0

0 0 by b, by 0 0 0

b4 b5 b6 . e where a., b, € D..

0 b, bg by 0 0 0 v

¢y ©y d1 dz d3 a; ag 0

cg ¢ d4 d5 d6 ag Ay 0

e e % I 13 g & by

Clearly A* is a ring with identity. Let 811 = e’11 + e'66’
812 = C'gp * €'y 891 = €'33: By = €4y, 8p3 = €55 831 7 €'gg
where the e’ii are matrix units of the complete ring of 8 x 8
matrices with entries in D, Then A* = A*gll + A*glz + A*g21+A*g22
+ A*g23 + A*g31.. But the ring gllA*gll £ gllA*gZI"‘L glliA*g31
8o A%8 g + 8y Aty F 89 ATy F 831 A%E ) + 85 A%y T 85 A% ey

(2, 00 000 00
0O 00 000 00O
0 0b, 000 00

is the ring of all matrices 6 00 000 00

06 00 000 00 .
¢cg 0d; 00a; 00
0 00 000 00O

AL SE L T

which is isomorphic to A. Hence, by the corollary to theorem (0. 8)

and lemma (0.7) - (3), A* is the desired ring.

Theorem (0.9). Suppose that A is a ring with identity and minimal
condition on left ideals and that A' is the reduced ring of A. Then
the following hold:
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(1) If N is the radical of A, then N'= N N A' is the radical of
A' and AN'A = N,
(2) A is indecomposable iff A' is.
(3) I S isthe socle of A, then S'= S8 N A' is the socle of A' and
AS'A = 8. TFurthermore, A is faithfully represented on its left
socle iff A' is faithfully represented on its left socle.
(4) X S= S4 oo & S, is the decomposition of S into indecomposable
two-sided ideals of A, then S'= S'y Feood 4 where S’i = Si naA
is the decomposition of the socle of A' into indecomposable two-
sided ideals of A' and AS'.A = 8, (see theorem (L. 3)). /
(5) T(A) =T(A') and if A = Y Ae. where the Ae. are P.L's
1= izt *® e
1<a=x Ki
such that Aem: AejB iff i=j and A’fl, " % A'fr are a complete
set of non-isomorphic P, L 's of A' where Afi o~ Aeil’ then
7U(Aem) = ’E(A'fi) for 1 <i<tand 1<a=< K. (see 3. A).
(6) If T is atwo-sided ideal of A, then A'/T N A' is isomorphic
to the reduced ring of A/T. |

Proof, Let A= Aeioc where the AeiOL are P.L 'sof A and
T

Ae. ~ Ae.. iff i=j. We may take (see (0.C)) A; = T e.qAe.
6™ " 3F ] Y 1<1 it L

(direct sum as Z-modules). Then A' = B A'e., is a decompo-
L1y
sition of A' into the direct sum of non-isomorphic P.L 's A'eil of

A' (lemma (0.7) - (3)).
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(1) Let N be the radical of A and N' be the radical of A'. That
NN A'S N' is clear. On the other hand, since N‘e:.ll < A'eil, we
have by lemma (0. 8) - (2) that AN'e 4
AN'eil < Ne11 so that AN' = ZAN'e, i1 < N. Hence N'S N Whence
N'=NNA'. Lemma (0,6) - 1(4) implies that N = AN'A.

(2) By lemma (0. 6) - (2) and (3), AeilAejl =0 iff A'eilA'eJ.1 = 0,
It follows that Aeil and Aejl have a common composition factor
iff A'e,; and A’
(1. E)).

(3) This is a simple consequence of (1) together with lemma (0. 6) -
(4) and (5).

(4) This is immediate from (3) plus lemma (0. 6) - (4).

(5) Since A'nN Te; = (A'n ’I‘)ejL1 for any two-sided ideal T of A,
(5) follows from (1) together with lemma (0. 6) - (2), (4) and (5).

(6) Let A= A/T. " Then % Ae is a decomposition of A into

c Ae.l. Therefore,

i1 €51 do. Thus (2) is implied by block theory (see

1<isr?’
1<a=< K
the direct sum of P.L 's Ae. - of A. Since e;; ¢ T implies

e, ¢ T for 1sasK (lemma (0. 3)), _Aé——il =0 iff -AE_ =0 for

every a such that 1 <a <K.. Hence % 6. Ae.. is the reduced
i i1 jl
L2118y

l I/\I/\

ring of A, But the ring A'/T N A' is isomorphic to the ring
(A'+ T)/T = A' so that (6) follows.
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Index of Notations

N: radical of the ring A, 1

(I:T): right quotient of the two-sided ideal T in the left ideal I, 1

S: left socle of the ring A, 1 |

P.I: principal indecomposable left ideal, 2

Z(I): Loewy length of the left ideal I, 19

exp(N): Loewy length of A, 19

J <1I. J is a subideal of the left ideal I

4(I): composition series length of the left ideal I

(I),:  left annihilator of I, 30

< right socle of the ring A, 30

[V:D1: left dimension of the vector spabe V over the skewfield D

GFZ(X): field generated over the Galois field of two elements by the
indeterminate X

E[X]: ring generated over the field E by X

®_.: - denotes tensor product over K

A ring defined by the partial ordering p, etc., 49, 50

Z: ring of integers
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Index of Terms

Block, 17

Block theory, 7

Completely primary ring, 3

Dominant ideal, 29

Exponent of the radical, 19

Faithfully represented on left socle, 1

Left annihilator of an ideal, 30

Left socle, 1

Linking, 7

Loewy length, 19

Multiplicity corresponding to a primitive idempotent, 66
Mutually orthoganol idempotents, 2 |
Primitive idempotent, 2

Principal indecomposable left ideal (P.L ), 2
Quasi- Frobenius ring, 4

Radical, 1 _

Reduced ring, 65

Right quotient of two ideals, 1

Right socle, 30

Ring defined by a partial ordering, 49, 50
Set of multiplicities, 66

Subdirect sum of rings, 12
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