GEOMETRICAL EFFECTS ON THE

RESONANCE ABSORPTION OF NEUTRONS

Thesis by

Hans Ludewig

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California
1966

(Submitted November 11, 1965)



-ii-
ACKNOWLEDGEMENT S

The author wishes to extend his sincere thanks to his advisor,
Professor H. Lurie, for his invaluable help and encouragement at all
times. Several significant suggestions regarding this research were
made by Dr. E. R. Cohen, to whom the author is deeply indebted. The
interest expressed by Professor J. L. Shapiro and Dr. C. J. Heindl
as well as the time they gave in helpful discussion, is also appre-
ciated.

Mr. W. R. Bunton, who programmed the numerical aspects of the
problem, is gratefully acknowledged for his helpful cooperation and
patience. - |

The author is thankful for the financial assistance rendered
to'him,by the Division of Engineering and Applied Science of the
California Institute of Technology. The numerical computations were
supported financially by Contract N.A.S. 7-100. Also the author
wishes to thank the administrators of the Union Scholarship; whose
award partially financed his first year.

Finally, Mrs. H. Melickian is to be acknowledged for her time

spent in typing this thesis.



“1id=

ABSTRACT

GEOMETRICAL EFFECTS ON THE RESONANCE

ABSORPTION OF NEUTRONS
by Hans Ludewig

An investigation was conducted to estimate the error when

the flat-flux approximation is used to compute the resonance
_integral for a single absorber elément embedded in a neutroﬁ source.

The investigation was initiated by assuming a parabolic flux
distribution in computing the flux-averaged escape'probability which
occurs in the collision density equation. Furthermore, also gssﬁmed
were both wide resonance and narrow resonance expressions for the
resonance integral. The fact that this simple model demonstrated
a decrease in the resonance integral motivated the more detailed
investigation of the thesis.

An integral equation describing the collision density as a
function of energy, position and angle is constructed and is subse-
quently specialized to the case of energy and spatial'dependence.
This equation is further simplified by expanding the spatial depend;
ence in a series of ILegendre polynomials (since a one—dimensionai
case is considered). 1In this form, the effects of slowing-down and

flux depression may be accounted for to any degree of accuracy
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degired. The resulting integral equation for the energy dependence
is thus solved numerically, considering the slowing down model and
the infinite mass model as separate cases.

From the solution obtained by the above method, the error
ascribable to the flat-flux approximation is obtained. In addition
to this, the error introduced in the resonance integral in assuming
no slowing down in the absorber is deduced. Results by Chernick
for bismuth rods, and by Corngold for uranium slabs, are compared
to the latter case, and these agree to within the approximations

made.
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CHAPTER T

INTRODUCTION

An important element in the balance relationship describing
the fate of neutrons in a chain reactor cycle is resonance absorption.
This refers to the radiative capture of neutrons having energies
within a band in which the absorption probability, or cross-section,
fluctuates strongly for many materials common to nuclear reactors

(e.g. U238)

. The accepted definition of the resonance escape
probability, P, is (Wl)*: "the ratio of the number of neutrons which
reach the 1/v region during slowing down, fo the number which reach
the resonance region." The 1/v region is the energy band beiow the
lowest resonance.

The probability P-is not énly important in the determination
of reactivity (a measure of the amount of "imbalance" in the chain
reaction), but in the conversion factor as well. The latter factor
describes the amount of fissionable.material transmuted from fertile
material. The reactivity is proportional to P while 30% to 50% of
the conversion factor is proportional to (i-P). For example if P
were of the order of 0.85, a 10% uncertainty in (1-P) would cause a
1.5% uncértainty in‘réactivity and a 3% to 5% uncertainty in the
conversion factor. Both these factors are of considerable importance

in the economics of power reactors.

*_ '
Refer to Bibliography
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Following convention we will consider for the most part, the

resonance integral I, which may be written (ML):

F(Z,E') Za(E') av
I=1‘P=ffq(%,E')zt(E')dE v -
T B

where
F(%,E)dE = neutron collision density at energy dE about
E and at position F
= }Zt(E) g(T,E). .
a(¥,E) = neutron slowing down density past E, at ¥, which
would cbtain in the pure, infinite moderator.
#(T,E)dE = neutron flux at an energy dE about E and at
-position'?.
Et(E) = macroscopic total cross-section as a function of
energy.
b¥ (E) = macrbscopic absorption cross-section as a function

energy.

<
1]

volume of absorber material.

The first significant calculations of resonance integrals were
semi-empirical formulas (W3, GlL). Improvements over these methods
made use of:

(1) more detailed cross-section vs. energy information,
(ii) dincreased knowledge of flux as a function of energy

and position.‘
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The functional dependence of the cross-section on energy was
determined by Wigner and Breit (WQ) and sﬁbsequently, using a d4if-
ferent method, by Blatt et al. (Bl), Vogt (V1), and Lane et al. (Ll):
The derivation of the latter method appears in Appendix A. The
resonance cross-section as computed by the above méthods appears to
be satisfactory for the purpose of determining the resonance integral.
Therefore increasing the accuracy of the calculation of I should
result mainly from improving the detefmination of ﬂ(?,E).

In early approaches the flux was assumed to be spatially con-
stant. This simplifies the resonance integral and the equation used
to determine the flux. This model is known as the.flat flux approxi-
mation; and is physically valid only under certain conditions, to be
discussed in Chapter II.

On intuitive grounds, Chernick (Cl) proposed an equation for
determining the flux of neutrons, independent of position, in a
single lump of absorbing material surroﬁnded by a source of ﬁeutrons.

The equation has the following form:

B/ ymr) 5, (B')
0(8) 2 (B) =[1 -p®] [ gy & +5E) (2)
E
where
p(E) = average neutron escape probability from the

absorber lump, at energy‘E
S(E) = independent source of neutrons in the lump at

energy E
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=
I

nuclear mass

neutron mass

5.
I

An equation of the above form was also constructed for a

lattice of absorber lumps in a source of neutrons (R1).

| In spite of the fact that Eq. (2) 1s considerably simplified
by neglecting the detailed spatial effects, it is still rather
dgifficult tolsolve. Thus further approximations are necessary. As
an iqitial simplification, only one resonance will be considered at
& time. The cross-section is thus described by a constant scatter-
ing cross-section for all energies, to which is added the resonant
scatterihg and absorption components at the appropriate energy. The
cross-section of the absorber appears as in Fig. 1.

The width of the resonances usually considered varies over a
large range (BNL~325). In view of this fact two assumptions which
permit approximation of the integral term in Eq. (2) are (Cl, D1, ML):

(1) The resonance width is narrow compared to the maximum
energy-loss-per-collision of neutrons with absorber
nuclei. In other words, the resonance is narrow com=-
“pared to the range of integration in Eq. (2). This
is known as the narrow resonance approximation, and
will be subsequently referred to as the N.R.

approximation.
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(ii) The resonance width is wide compared to the maximum’
energy loss per collision of neutrons with absorber
huclei, i.e., the resonance is wide compared to the
range of integration in Eq. (2). This is known as
the wide resonance approximation, and will be sub-
sequently referred to as the W.R. approximation.

In the case of the N.R. approximation the width of the resonance
is considered to be so small that it has a negligible effect on the
energy distribution of neutrons, To obtain the first order solution
to Eq. (2) in this case, it is thus permissible to substitute the
asymptotic flux solution into the integrand. The asymptotic flux
may be obtained from the integral equation by setting ZS(E') equal
. to the potential cross-section, shown in Fig. 2, and letting the flux
in the integrand vary as l/E (Mlj. The integral can now be evaluated,
and the resulting solution for the flux may now be used to calculate
the resonance integral.

In the W.R. approximation, the resonance is considered to be so
large that it is impossible for a neutron to scatter out of its range
when colliding with absorber nuclei. 1In this case, the assumption is
made that the product #(E) ZS(E) is constant over the range of inte-
gration, and as a first order approximation the integrand is
evaluated for convenience, at the lower limit. Physically, the fql—
lowing meaning may be ascribed to the approximation: the absorber
nucleus is assumed to have an infinite mass éompared to the mass of

the neutron, and thus allows no change in energy during a collision.
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In view of this, the W.R. approximation is alsoc known as the infinite
mass approximation.  In this case, the flux is represented by a linear
equation which may be solved. The resulting flux may then be used

to compute the resonance integral. The approximations outlined

above have also been-used by Dresner (D1) and Blisser (B2, B3) to
compute the resonance integral. The validity of the N.R. and W.R.
approximations is diécussed at the end of Chapter II.

Chernick et al. (CE) subseguently refined the above procedure
by iterating once the N.R. and W.R. solutions to the flux equation.
This iterated result is a more realistic solution to the integral
equaﬁion, since it is of the Fredholm type (C9). Using this improved
flux, a more realistic estimate of the resonance integral may be
obtained. Thus by comparing the more realistic N.R. and W. R.
approximation to the unaltered N.R. and W.R. approximation for the
resonance integral, 1t is possible to obtain an estimate of the
error involved. PFurthermore, it is of interest to note that the dif-
ference between the improved W.R. approximation and the unaltered
W.R. approximation is a measure of the error introduced in neglect-
-ing energy changes of the ﬁeutron when colliding with absorber
nuclei, i.e., in neglecting slowing down of the neutron. A further
discussion of this slowing-down effect appears in Chapter III.

Muller (M2), using an iteration method similar to Chernick's; has
carried out an analogous computation of the resonance integral and

an estimate of the corresponding errors.
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The method outlined above, due to Chernick, was extended by
Levine (LE), and the results of this extension were compared with
the results of Monte Carlo calculations. A perturbation scheme was
constructed by Chernick et al. (03) to solve an equation similar
to Eq. (2) for the case where the absorbing nucleus is Bi209. In
computing the flux by this method, the absorption of the nucleus
was neglected. This flux was then used to compute an improved
resonance integral. The values of the resonance integral for the
N.R. and W.R. approximations were also computed. In addition to
this, the resonance integral was computed by a Monte Carlo method.
Assuming that the Monte Carlo estimate of the resonance integral
is closer to the true value; the corresponding errors introduced by
the approximation could be estimated, including the error intro-
duced by neglecting slowing down, i.e., a comparison with the W.R.
approximation. In an analysis by Corngold (CL4), the error intro-
duced by assuming infinite absorbe: mass has been estimated for a
uranium-water lattice. The equation used for this analysis was.
similar to Eq. (2). This error is idéntical to the error introduced
-by assuming a W.R. approximation, or no slowing down.

Finally, a method which was first applied to a homogeneous
case by Goldstein and Cohen (G2), and subsequently to a hetero-
geneous case by Forti (Fl), has been used for cases where the
resonance is neither wide nor narrow. In this method, a linear combi-
nation of the N.R. and W.R. approximations is iterated once in the

integral equation. This results in an improved solution for the
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flux which may then be used to compute a resonance integral for a -
resonance of intermediate width. The proportion of N.R. and W.R.
solution used in the initial solution is determined by the width of
the resonance under consideration.

In all the ;bove heterogenecus cases éonsidered, no detailed
account was taken of the spatial flux variations within the absorber
element. The spatial effects were integrated out, and it will be
shown in Chapter II that Eg. (2) is a volume-averaged transpo:t
equation. Equation (2) may be derived from the general transport
equation by neglecting angular effects, integrating out the volume
effects, and by assuming that the flux is spatially flat. This is
thus commonly known as the flat flux equation, as pointed out
previously.

Corngold and Takahashi (C5, Tl, T3) were among the first tb
consider the effect of including a spatial variation in the computa-
tion of the resonance integral. The geometrical éonfigurations con-
sidered were slab and rod latiices, respectively. In both cases the
~starting point was the exact transport equation. This equation was
simplified, by neglecting angular effects and evaluating the integral
term which accounts for slowing down of the neutrons by collisions with
absorber nuclei, by means of the W.R. approximation, i.e., no slowing
down in the absorber lump was considered in this approach. By com-
paring the W.R. approximation using the solution to the flat flux
equation, to the W.R. approximation using the solution of the equa-

tions developed in (C5) and (T1), it was. possible to estimate the
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error introduced by neglecting spatial variation of the neutron flux
within the absorber lump.

Further estimates of the error introduced in the resonance
integral by the flat flux approximation have been made by Dresner
(D1), Goldstein (G3), and Berg (B6). Dresner's estimates of the
error considered only the cases where Et(E)T >> 1 and Et(E)? <<=,
where ? = mean chord length of the lump. However, there is a large
range of practical interest between these two limits. - In the compu-
tation by Goldstein and Berg, a variational method was utilized to
" estimate the error. Goldstein expressed the error in closed form as
a function of mean chord length of the absorber lump. The computation
carried out by Berg was based on a numerical technique. The methods
. of Goldstein and Berg, together with the general problem of the érror
associated with the flat flux appfoximation, will be considered in
greater detail in Chapter III. In these error estimates no account
was taken of the slowing down effects, i.e., in all cases the W.R.
approximation was used. |

In all the above calculations, except those appearing in

(c5), (T1), (M2), (G2) and (B6), the Wigner rational approximation
was used for the average escape probability p(E). This approximation
is given by (ML): |
i,
1+ 7§ z.()

p(E) = (3)
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The use of this expression introduces further errors. However it
simplifies the analysis to the point where purely analytical methods
are possible. Furthermore, certain convenient similarities between
heterogeneous and homogenecus computations for the resonance integral
exist when this approximation is used — these will be poihted out
‘iﬁ Chapter II. Efforts to improve the accuracy of the Wigner rational
approximation, while still retaining its basic structure, were made
by Bell (B4), Nordheim (N1), Sauer (S1) and Otter (Ol).

Finally, it should be noted that the resonance integral can
be obtained directly by a variational technique. All approximations
are then introduced in the functional. This approach has been used
by Goldstein and Cohen (G2) for homogeneous systems, and by Gast (Gk)
. for heterogeneous systems. In the computation carried out by Gast,

a volume averaged functional was'used, thus neglecting spatial effects.

It is evident from the foregoing discussion that all past
theoretical estimates of the resonance integral have included at
least one, and in some cases two, of the following approximations:
| (1) Neutrons do not slow down when colliding with

absorber nuclei, i.e., W.R. approximation.

(ii) The neutron distribution within the absorber
elements has no spatial structure (flat flux
approximation); 7

(iii) The average escape probability may be approxi-

mated by the Wigner rational approximation.
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In thié thesis the resonance integral is computed for a slab
of absorbing material in a source of neutrons, without resorting to
any of the above approximationsﬂ From this computation, the effect
ﬁhich these approximations have on the resohance integral is
evaluated. In Chapter III a rough approximation is made of the error
introduced in the resonance integral by neglecting the spatial varia-
tion of the flux. An exact collision density equation is formulated
in Chapter IV. In Chapter V the resonance integral and fractiocnal
errors in the resonance integral are formulated. Chapter VI is
devoted to a discussion of the numerical methods used to solve the
integral equation and resonance integrals. A discussion of the

results and conclusions follows in Chapter VII.
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CHAPTER II

BASIC PHYSICAL CONCEPTS

It has been pointed out that the problem of accurately com-
puting the resonance integral is two-fold:

(i) The cross-sections have to be known as a function
of energy.

(ii) The flux has to be known as a function of energy
and position.

In this chapter the energy dependence of the cross-secticns
involved is discussed and the basic transport equation, which will
subsequently be used to determine the flux, is derived. 1In addition,
- the flat flux equation is derived, and the N.R. and W.R. approxima-
tions to the resonance integral a?e discussed. Finally the validity

of the N.R. and W.R. approximations is considered.

A. BSingle Level Breit-Wigner Line Shape for Low Energy Resonances

- The total, absorption, and scattering resonance cross-

sections for the nuclei involved are given by (Ml);

_ A . T _(E-E_)
o (E) = J% gy i 7 * u;R iy, e + iR®
K (E—Er) + (I/2) (E—Er) + (r/2)
7 Fnry
o (E) =5 ¢
% ol (E-Er)2 + (1“/2)2
2 :
(T ) T (E-E_)
o (E) =55 g - + 4B == + R® (k)

el (E—Er)2 & fofoy=  E Kl (E-Er)2 + (T/2)?
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where
k = wave number of the neutron in the neutron-nucleus center
of mass system

g = statistical spin factor é%%fiii%j

J = spin gquantum number ‘of compound nucleus

I = spin quantum number of target nucleus

R = potential scattering radius

E = neutron energy in center of mass system
Er = resonance enefgy
Pn = neutron resonance width (in units of energy)
Fy = radiative resonance width

I’ = total resonance width.
Equations (h) may be simplified somewhat by defining the

following quantities:

o <hm In
o k2 J T
2
Oy = Lx R
2‘ 2
x == (E-E
I‘( o (5)
where Oy is the potential scattering cross~section — actually a
measured constant from which R may be determined — and oo is the

maximum value of the resonance cross-section at B .= Er'
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Substituting definitions (5) into Eqs. (4) gives:

I’\ lé
g +2x |0 0 g 2
__° op>d I

g + 0
% 1+ x2 P
OOP
Ua = £ 2
r (1 +x7)
o 2]
ol 2x |0 o =
o, = SR T 2 p2I1 * oy (6)
' (L +x) 1+ x

A derivation of these formulae appears in Appendix A.

B. The Transport Equation

To determine the energy and space dependence of the neutron
flux.we use a form of the general transport equgtion. This has been
described’éften in the literature (D2, Ml, wh). It will be useful
to outline the assumptions involved and discuss the construction of
. the equation. |

The following assumptions will be made regarding the motion
of neutrons through matter :

(1) The motion of neutrons is described in terms of
point collisions with nuclei. This results from
disregarding all but the short-range nuclear
forces. Neutron-neutron collisions are neglected
sincé the néutron dénsities are many orders of

magnitude lower than densities of the nuclei. This

linearizes the transport equation.
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(ii) Between collisions, the neutrons travel in straight
lines at a constant speed.

(iii) Since atomic radii are large compared to nuclear
radii (the ratio being approximately lO-h), the
neutron will, on the average, pass through a large
number of atomic systems between collisions. Hence
for neutrons traveling at a given speed through a
given medium, the interaction probability per unit
path length is independent of position and direction.

The above assumptions are all physicaliy reasonable, and a
mathematical model based on them describes the motion of neutrons in
a nuclear reactor quite well.

With the abové assumptions in mind, we construct an integral
equation, which describes the coliision density in a non-reentrant
lump of absorbing material, surrocunded by & neutron source. The

following notation will be used:

; = the position vector of a neutron within
the lump.
- g = the unit vector in the direction of motion
of the neutron within the lump.

E = the energy of the neutron considered.

F(7,%,E)dVARAE = the total collision rate in the volume
element 4V about point ;, for neutrons
traveling in a direction dﬁ about 3, and

having an energy dE about E.
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1l

A < -
%m)MLmMWmm

R o
,E)dVAQdE

R
o4

s(r, that part of the total collision rate in the
volume element 4V abopt point ;, for neutrons
traveling in a direction df about 3, and
having an energy dE about E, which arises
from an independent source, inside or out-
side the lump.

Two factors contribute to the collision rate of neutrons with-
in the lump in the volume element dV about ;, traveling in direction
dﬁ about 5, and having energy dE about E:

(i) a contribution from the collision rate within the
lump from dV' about position r', traveling in
direction a%' about §' and having an energy dE'
about E' (slowing down source), and

(i1) a contribution in the volume element dV about
position ;, ﬁraveling in a direction dﬁ about 5,
and having energy dE about E, from the independent
source. In our case the independent source is
entirely external to the lump.

The general tranéport equation in the form that is useful

here, is simply the combination of these two contributions. Thus:

F(I‘ Q E)dVdﬂd_E = S(I‘ Q E)dVdﬂd.E +Uf F(I" 0! El) S( ’)
o 3 5 (E';
pALS ] LS '

Qv
) .
. " Zt(E)exp("Zt(E}lr'r1) > x
K(E'R — EQ) ———=dV'dQ"' dE ' dVAQdE
‘hﬂ|;~;'l2 5

(7)
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where

]

K(E',E‘ —0E3)dE probability that as a result of a scattering
| event, a neutron will change from a direction
dﬁ; about 3}, and an energy dE' about E', to
a direction dﬁ about 5 and an energy dE about

E.

. (E) = total macroscopic cross-section at energy E.
=N ot(E)

N = density of nuclei

Ot(E) = .total micrbscbpic cross-section at energy E.

ZS(E) macroscopic scattering cross-section at energy
E.
We have used assumption (iii) to write the probability that

a neutron having energy in dE about E will travel from dV' about T

to dV about ; and undergo a collision in 4V, as

Z%(E) exp(;zt(E)[;-;'D

b |7 - 7|7

Equation (7) is perfectly general, and with the assumptions stated -

gives an exact description of the total neutron collision density.

C. The Flat Flux Approximation

Developing the flat flux approximation from Eq. (7) enables
us to show the restrictions implied by the assumption. The following

procedure is followed:
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(i) Equation (7) is integrated over the lump. A
volume averaged collision density is defined.
By this step the direct spatial dependence is
removed from the flux.

(ii) The scattering is assumed to be isotropic in the
center mass system. Then by integrating over 5
all angular effects are removed from the equation.

(iii) Finally the flux is assumed to be spatially flat.

Assuming isotropic scattering the following averaged

quantities are now introduced.

£(E) = ﬂ%ﬁf fF(;,ﬁ,E)dVdﬁ
8y

e
s(E) u%vffS(r_,a,E)dVda
+
gy

The probability that a neutron in dV will not have a collis-

collision rate averaged

over volume and angle

]
]

source rate averaged over

volume and angle.

ion in volume element dV', integrated over the lump is dencted by

->
by P(r,E) and is given by:

P(r,E) = 1 - f < exp(-Zt(E)‘r-r'l) av'

b |7 - 70 |8

vl

P(;,E) is thus the probability of a neutron escaping from the lump
-»>
at an energy dE about E, from a volume element dV about r. The col-

lision density equation now becomes
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. z (E') - >
f(E) = '\]—; f -:(-E,—y F(r'E ) k( -'-E)[l - P(r',E)]dr'd_El + S(E)
v o ®)
where
F(T,E) = T%E -[F(;,a,E)da
b

Now introducing the volume-averaged escape probability

p,(E) = 5 fP(RE)dV '

\'

adding and subtracting this quantity from the term in brackets in

Eq. (8), it is seen that it may be written as:

2, (E")
£(8) = [1 - p,(®)] m £(E') k(E'—E)AE' + s(E)

- _f f E:—('E_')' F(r'E ) k(E'—E) [P(r'E) -pv(E)] dr'aE"
T (9)
| From the definition of pv(E) it is seen that the third term
on the right hand side of Eq. (9) vanishes in the case of a spatially
flat flux disfribution.
| Thus the remainder of this equation constitutes the flat
flux equation. To proceed further we assume that outside the lump
the neutron flux is spatially flat. We may then make use of the
fact that the spatially-flat flux inside the lump,'produced by a .

spatially-flat flux outside the lump, is equal to the product of
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the average escape probability and the flux outside the lump

(ML, C6). Since s(E) is a collision density, it may thus be written

s(E)

1l

%, (E) 0_(E) p (E)

where

ﬂO(E)dE the spatially-flat flux outside the lump

in energy dE about E.

For the sake of convenience, the energy variable is changed

to‘a lethargy variable, where lethargy is defined by:

E*
u = fn B

where

E* = reference energy

Fuithermore, the assumption is made that the spatially-flat
flux in the moderator is that which would result from slowing down
in an infinite, non-absorbing moderator. Since this asymptotic dis-
tribution in terms of lethargy variables is a constant, the flux in
the moderator is constant with respect to both lethargy and spatial
variables. In lethargy>variables k(E'~ E) can be shown to be given
Qy (M1):

u'-u

' ¥ = B
k(E'->E)dE' = -

du'

Thus, Eq. (9) can be written

Yoz (u) - u'-u
fu) = [l- pv(u)] f | %'u—.y £in*) %1_-6)' an' + go Zt(u) Pv(u)
u~A
: (10)
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where

Equation (10) is of the same form as Eq. (2), which was
proposed on intuitive grounds by Chernick. The assumptions which were
necessary to derive Eq. (10) restrict its applicability in the
following manner (MLl):

(i) The absorbing lumps must be widely spaced relative
to the slowing down distance in the moderator.
(ii) The size of the absorbing lump must be larger than

the mean free path in the moderator.

D. The W.R. and N.R. Approximations

To compute the resonance integral, Eq. (10) has to be solved
to obtain the flux. This may be done either by a numerical method,
or by an approximate analytic method. The approximations used are
usually the N.R. or the W.R. approximations defined in Chapter I
(ML, D1, €1). The cross-sections used are described by the single
level Breit-Wigner relation, given by Eq. (6). The use of this
cross-section implies that only one resonance will be considered at
é time.

Finally, the volume-averaged escape probability pv(u) may be
obtained by evaluating the integral defining it. However, even for
the simplest geometrical shapes, this leads to a complicated function,
and it is not possible to calculate the resonance integral in closed

form.
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An approximation, developed by Wigner (W3) is introduced.

This is known as the Wigner rational approximation, as defined in

Chapter I:
T :
B fo B vt (11)
- 1+ £ Z(u)
t
where
7 = mean chord length = L % (c6)
V = volume of lump
S = surface area of lump

It is possible to use this approximate relation for all geometrical'
shapes, singe the dependence of pv(u) on geometry is not strong. It
is particularly good for small values of ? Et(u) and for large values
of I Zt(u). The maximum error is of the order of 10% (Ml). It is
thus possible £o obtain analytic solutions for all geometrical shapes.

Using this technique the resulting resonance integrals are

(M1):
ﬂo ™o T
Ig = Z 7 (narrow resonance approximation)
l .
‘ 2Er[l+8(l'5)]
ﬂo n o I
I = .2 (wide resonance approximation) . (12)
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where
g + 0
B = ~Bs
W 1
G e
IN

It is of interest to note that by merely including the con-
stant o the heterogenoﬁs resonance integral may be deduced from the
~hompgéneous resonance integral (Ml). This equivalence is useful
for p:edicting resonance integrals from measurements or calculations.
However, it should be nbted that the equivalence is only true
within the assumptions stated regarding the flat flux equation and
the Wigner rational approximation.

An attempt has been made (G2, F1) to include resonances
which are neither narrow nor wide. The salient idea used in this
approach is to make a linear combination of tﬁe N.R. and W.R. sclu-

tions to the collision density equation; i.e.
£(u) = & fpu) + (1 - 2) £.(a) (13)

The above solution is iterated once more in the integral

equation (10), and since it is of the Fredholm type, the iterated

solution is closer to the exact solution than the first approximation

(09). The resonance integrals are now computed using both solutions
and equated to obtain a transcendental equation for the value of A.
This value for A, which is a function of the resonance parameters,

is then used to compute the resonance integral.
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E. Validity of the W.R. and N.R. Approximations

Generally, as indicated in the definition in Chapter I, the
total resonance width is compared with the maximum-energy-loss per
neutron collision. It has been pointed out recently (Clo) that this
approach is not quite correct. For some isotopes the total Widtﬁ
is lérge whereas the absorption width is small., Therefore a better
comparison is the "absqrption probability width" measured by
a(E) = £ (E)/Z, (E). This is called the "practical width." This
praCtical~width is different from that suggested in the literature
(M, N2).

The value of a(E) varies with energy, as shown in Fig. 3. To
find the half-width at half-maximum, first the value of x = E/F(E-Er)_
_ié computed at which the maximum value of a(E) occurs. Using this
value of x, it is possible to detérmine the value of the half-maximum
value of a(E), amax/e. Since the half width at the half-maximum
value is desired, the value of amax/e is equated to a(E) and from
this the value of x at half-maximum ﬁay be obtained. From this value
of x the practical half-width may be defined.

Proceeding thus inrthe above manner, the absorption prob-
ability is giﬁen by:

o, (E) g I
o, (E) - > EZ -

flo v el

a(E) =

w |
+
| L
W
-+
a
) |U|
no
"UQ
N,
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where

™
]

£ (2 -x,)

r %
o0 g -
opdJ T

The maximum value of a(E) occurs when x = —b/cp, thus the half-

L}

maximum value is given by

o
I
no
H
Q
L]
+
Q
o
1
Qld
i} o
e

To find the width at half-maximum amax/g is equated to a(E),
and the corresponding value for x is determined. From this the energy
at half-maximum can be obtained, and with this relation the practical

width at half-maximum may be defined, i.e.,

X ~g + O b27é b 5 E
max C o+ P o _ _bh _= max _ E
UP 2 T : r

2 o )
b pJ
_ %
E g + 0 2
mex .| p o b | L TIb .
2 . o o 2 20 r
B D P P

Thus by definition

00 I‘n yz
Pprac =T |1 + 'E; (l - gJ T (15)

It is thus seen that Pprac > I' since in most practical cases the

term in brackets is greater than unity. Since the maximum energy loss
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for neutrons when colliding with nuclei at energy dE about E is
(1 - a)E, the criterion for a resonance to be narrow or wide at a

TN
resonance energy Er is

iy < (1 - a)E narrow resonance
prac x

B >> (1 - Q)E wide resonance (16)
prac : 2 .

Between these two limits a numerical solution of the collision

density egquation should be carried out, or an intermediate resonance

formulation used.
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CHAPTER IIT

THE SPATTALLY FLAT-FLUX AND INFINITE MASS APPROXIMATIONS

In the previous chapter, approximate solutions to the col=-

- lision density equation are outlined, and these sclutions may be used
to determine the resonance integrél.. The approximations made are
concerned with the spatial structure of the neutron flux and the

mass of the absorbing nucleus. In the fdrmer approximation, the flux
is considered spatially flat, and in the latter the mass of the absorb-
ing‘nucleus is assumed to be infinite.

The first section of the present chapter will be devoted to a
discussion of the error introduced in the resonance integral by the
approximation concerning the nuclear mass of the absorber._ This
‘approximation is known as the infinite mass approximation. As pre- .
viously noted it is identical to the W.R. approximation.

The second section of this chapter contains a discussion of
the error introduced in the resonance integral by the spatial approxi~
mation to the flux distribution. This approximation is known as the
flat flux approximation.

A. Infinite Mass Approximation

The infinite mass approximation affects the collision density,
and thus the resonance integral, in two different ways. These depend
upon whether the resonance is primarily absorbing, or primarily

scattering.
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To investigate these effects, let us consider a lump of

absorbing material which is larger than the total mean free path of

neutrons kﬂ{ = 1/2%, at resonance energy. Near the resonance energy

two sources of neutrons exist in the lump:

(1)

(11)

Neutrons in the resonance eﬁergy range may enter
the lump from a spgtially external source. These
neutr&ns are absorbed, primarily, in a thin layer
close to the surface of the lump. ‘This layer is
the depth of penetration, and is of the order of a
mean free path in the predominantly absofbing case.
It is therefore seen that the nuclei inside this
layer have a low probability of reacting with the
neutrons from a source external to the lump. The
nuclei within the boundaries of this layer are thus
shielded from the neutron flux. This effect is
known as self-shielding.

Neutrons oflhigher energy may also enter into the
resonance energy range by co}lisions with nuclei
inside the lump. These neutrons appear, with equal

probability, throughout the volume of the absorbing

luﬁp.

A closer consideration of the scattering and absorbing

resonance types will now be undertaken.
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(a) Absorbing Resonance

In the case of a predominantly absorbing resonance the absorp-
tion half-width is larger than the scattering half-width, i.e.,

Fy > Fn.

With the above two source terms in mind, the infinite mass
approximation will ﬁe considered. In this case only the first
source contributes to the neutron flux. This follows from the fact
that the nuclear mass is assumed infinite, and thus no neutrons
lose energy when colliding with a nucleus. Neutrons which contri-
bute to the flux in‘the resonance energy range originate from
outside the lump. Thus, due to the self-shielding effect pointed
out above, the volume of absorber in the central region, which is
subjected to a low neutron flux, plays a relatively unimportant
part in the absorption of neutrons.

In actual fact neutrons enter the resonance energy range from
both sources mentioned above. Hence one should expect that the
collision density, and thus the resonance integral, will be under-
estimated by the infinite maés approximation. This conclusion

holds only for primarily absorbing resonances.

(b) Scattering Resonances

If the resonance is primarily scattering, the scattering half-
width is larger than the absorbing half-width (Pn >-F7).

Again only the first source term contributes to the neutron
flux in the infinite mass approximation. Since neutrons are per-

'mitted to remain at the energy at which they enter the lump, they
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undergo a large number of collisions in this case. In the real

case a collision with an absorbing nucleus lowers the energy of

" the neutron. After a certain number of collisions the neutron

B.

may be completely removed from the resonance energy range.

The collision density is over-estimated in this caée by the
infinite mass approximation. Thus the resonance integral will be
over-estimated. This result is only true for primarily scattering
resonances.

Approximate computational investiga£ions of the above effects
have been carried out for several resonances in U238 (ck), and for
one resonance in B1209 (CB). These computations confirm the above
conclusions. ‘

It should be pointed out that the flat flux approximation was
used in the above mentioned coﬁputations. Furthermore, in the case

of the B1209 computation, neutron absorption was neglected in the

collision density equation.

The Geometrical Approximation

The geometrical approximation which is introduced in the col-

lision density equation is known as the flat flux approximation, and

follows from the fact that the flux is assumed spatially flat. This

assumption has the effect of over-estimating the collision density,

and thus over estimates the resonance integral. Three methods exist

by which the fractional error introduced in the resonance integral

may be estimated:
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The first approach is based on the last term of

Eg. (9) of Chapter II: This term is zero when the

flux is flat, and positive when the flux is depressed
in the interior. Since this term is positive the col- -
lision density is reduced in the case where a spatial
variation is taken into account. This consequently
reduces the resonance integral.

Investigations by Goldstein (G3) and Berg (Bé),
using this approach, have indicated that the flat-flux
approximation over-estimates the resonance integral.
They consider a single absorber element surrounded by
a neutron source. The absorbing nucleus is assumed

to have a single resonance described by the Breit-

~ Wigner single resonance line shape. Use is made of

the infinite mass approximation to solve the energy
integral in the collision density equation. A varia-
tional technigue is uéed to determine the magnitude of
the correction term. With this correction, the correc-
tion to the resonance integral is determined.

Goldstein (G3) makes use of the Wigner rational
approximation to evaluate the correction to the
resonance integral in closed form. The following rela-
tion is obtained for the fractional‘error introduced,

by a flat flux approximation, in the resonance integral:?



(ii)

wH D

Py , 2\3 _ %
- (} + X 4 | + 2 (Z + ))
€ = . B P 2 = 4
?
n = -1
- i Tr -2 T 2 P
Ar+z i) - e e
ZOP L r =
1+ - L - d
L+ (%, +E) 1 (17)

Berg(B6) uses an exact expression for the average
eScape probability, and consequently is unable to
determine the desired fractional error in closed form.
In this case a numerical estimate of the combined
fractional error for a numbef of resonances in U238 was
computed. The resonances included were at 6 ev, 6.8 ev,
21 ev, 36.8 ev, 66.3 ev, 102.8 ev and 190 ev. The geo-
metrical configuration assumed, was a slab of thickness
0.5 cm. This compﬁtation indicated that the flat-flux
approximation over-estimates the combined resonance
integral, for these resonances, by 1.6%.

A second approach has been formulated by Corngold (C5)
and Takahashi (T1). In this approach an infinite lat-
tice of slabs, in Corngold's investigation, and of rpds
in Takahashi's investigation is considered. Equations
defining the neutron flux, as a function of energy,
position and angle, in these systems are set up. They
are solved by an appropriate choice of polynomial

expansion. In both cases the angular variable is
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removed by expanding it in Legendre polynomials. The.
spatial dependence is expressed by an appropriate
Legendre polynomial.series in the case of the slab lat-
tice, and a Bessel function series in the case of the
rod lattice. Finally, tﬁe equation for the energy-
dependent expansion coefficient is solved by using the
infinite mass approximation. The neutron flux is then
determined to any desired degree of accuracy, depending
on how many spatial and angular terms, are retained in
the series. Thus the resonance integral may be com-
puted for either a spatially flat or varying flux
distribution. From these results it is possible to
compute the fractional error introduced in the reso-
nance integral wheﬁ a spatially flat flux is assumed.
These investigations indicated that the resonance
integral computed using a spatially varying flux is
larger than the resonén?e integral computed using a
flat flux'approximation. This result is contrary to the
results obtained by Goldstein (G3) and Berg (B6).
(iii)‘ Finally the third approach may be explained physically
by considering the spatial distribution of neutrons. In
an actual absorber element a spatial variation of the
neutron flux is present, and a large.proportion of the
neutron flux will be close te the surface. Due to this

spatial distribution of the neutron flux, the average
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escape probability per neutron is larger in the actual
"case than in the case where a‘flat flpx approximation is
assumed . Tﬁis may be seen by noting that the average
escape probability for a neutron from a lump is dependent
on its distance from the surface of the lump.

In this method, a flux averaged escape probability
pf(E) is determined, as oppcosed to the usual volume
averaged escape pv(E). It is thus possible to determine
the escape probability for a flat flux pff(E) and a
spatially varying flux pfv(E). Since pfv(E) > pff(E),
more neutrons can escape from the Jump and avoid
resonance absorption. Thus the resonance integral com-
puted using a spatially varying flux is less fhan the
resonance integral computed using a spatially flat flux.

To determine the order of magnitude ofjthis errof

the following fracticnal error will be determined.

8T _3I 1 ¢
T "9 T P

Q Bp : (18)

where

I = resonance integral

ho! average escape probability

50 = p,' (E) - p, (E)



~35~

A one-dimensional slab of thickness "a" will be considered,
as shown in Fig. 2. The value of Bp will be determined by
using a flux with a quadratic spatial dependence for coméﬁting
pfv(E). This is the simplest physically reasonable shape that
deviates from a flat flux for a symmetric problem. No energy
dependence will be taken into account when computing dp; which
will -be determined at resonance energy. Q is determined by
using approximate expressions for the resonance integral és—a
function of p (ML). Once 5p and Q have been determined, 5I/I
may be estimated.

The flux averaged escape probability is given by (C6):

_32: fa #(x) {Eg[xzt(E)] + 32[(a->i) Zt(E)]}dx |

fa Bl B (19)

(e]

Pp(B) =

where

#(x) = neutron flux as.a function of position

o0 -uf
En(g) = exponential integral function =.f — du. (20)
E u

For a spatially flat flux the average escape probability is

given by (C6)

; lpff ) E%; {% - E, [azt]} (21)
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Now assume that the flux is given by the following gquadratic

distribution
5 \E
7(x) =A( 'E) + B (22)

where A and B are constants which determine the flux shape.
Substituting Eq. (22) into Eq. (19), and evaluating the
integrals, the following expression is obtained for the average

escape probability :

p = L
£ Aa3 + 2Ba
' M‘@f
hAa3 L E_f(ax = i L % E (aZ )
a5 4 [E 7 ( t)] pafx 213 TH\TH
t t _
3 _ ]
[f%%- + 2Ba] . ' ’

(23)

To compute ®p, the difference between Eq. (23) and Eq. (21)

is taken, i.e.
S5p = Equétion (23) - Equation (21) (2k)

The determination of Q (Bq. 18) will now be carried out.
Q may be determined for both the W.R., and N.R. approximations, depend-
ing on which approximation is chosen for the evaluation of T.
Considering the N.R. case first, the resonance integral is

given by (ML)

_ o, (u)
1= ﬁo.j{.p(u) Et(u) + [1 - p(u)] ZP EETET du
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Hence

g (u '
f[%(“) o] 5 &
f{p(u) o (u) +[1 - p(u] }—(—J——({l—- du (25)

In the case of the W.R. approximation, the resonance integral -

QNR =

gl
-
] L

is given by (ML):

p(u) = (u) 2 (u)

[Z (u) + p(u) Z (u) ]

Thus . | (u)] .
. J[ >+p(u)o<u)]

U B(a) 0, (1) o_(u)
[[G (u) o p(u o (u)] (26)

The integrals in Egs. (25) and (26) are taken over the
effective rahge of the rescnance.

Tt is desirable to evaluate Qg 204 Qe in closed form. To
make this possible the Wigner rational approximation is used for
ghe average escape probability p(u). (An exact value of p(u)

- would necessitate a numerical solution.)  The inﬁegration variable
is changed from lethargy to energy, and is further modified by the

folloWing substitution:

=2 (E -
X—P(E EI')
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The Breit-Wigner single resonance line shapes are used for
the cross-section. They are given by Eq. (6) in Chapter II. No
interference scattering is included in this calculation. The scatter-
ing cross-section is therefore given only by the potential scattering
term-op and the resonance scattering term os(x). Equations (25) and

(26) now reduce to:

dx
£

b [w[“xe]ﬁ +6) + ]
D =

“NR g4 ' (éT)
' Ly

.l.'[ﬁxg + D] dx
BL, J = % & _ﬁf+ xe:”:x2 + C]

and

(28)

where
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With the range of integration extending from - to +wo,
the integrals may be evaluated by integrating aroundAajsuitable
contour in the complex plane.

On evaluating the integrals, the fdllowing reéults arel

obtained for Q:

. g 2 |/2

[1 +p]" -1 |-

Q, = |1 + == : (29)
R [ GP%] (1 + 5]4

and

(-0)° (D-AC)Z
(B-1)% (c-1)  (2-0)% (1-C) [c]”

fF '
o - B (B

(30)

‘2 p-a8)° (814 [ 2a 1 1 1 l
¥ gB—l))(B—c) (®-a8) "B T E1) ¢ (B-Ci]

Thus with the value of &p given by Egq. (24) and the values
of QNR and QWR given by the above two equations, the value of
8I/I may be estimated for both the W.R. and N.R. approximations. In
view of all the approximations included in this particular computa-
tion of 8I/I, it should not be expected to indicate more than a |
very rough estimate of the error.

The value of BI/I for thé 104 ev resonance in uranium is
.shown in Fig. 21 by the dotted liﬂef Only the N.R. approximation is
shown, as the W.R. approximation indicated errors. which seem to be

reasonable only for extremely thin slabs.
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The estimate of the fractional error, gfven by Goldstein,
is expreSSAed by Eq. (17) . However, since this formula ié only
good for extremely thin slab sizes, it ié no“l:. shown on Fig. 21.
In the range of practical interest, Goldstein's formula grossly
over-estimates the error. This indicates a positive fractional

error for the range investigated.
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CHAPTER IV

THE COLLISION DENSITY EQUATION

The following two factors motivate a further study of the

- fractional errors introduced in the resonance integral by the infinite

mass and the flat flux approximations:

(1)

(41)

The results obtained by various investigators, when
estimating the effect of the flat flux approximation on
the resonance integral are contradictory. These esti-
mates are discussed in Chapter III.

The infinite mass approximation has an impbrtant effect
on fhe resonance integral; over-estimating it when the
resonance is primarily scattering, and under-estimating
it when the resonance is primarily absorbing. The
physical background to this phenomenon is aiso discussed

in Chapter IIT.

This chapter is devoted to the reduction of the general trans-

port Eq. (7) into a form more suitable for our purpose. From this

equation the collision density of neutrons in an absorbing lump of

material may be determined to various degrees of accuracy, depending

upon the approximation made in its solution. It is therefore possible

Vto obtain an infinite mass or a flat flux approximation to the col-

lision density as well as various more accurate approximations.
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In order to simplify the analytical method while maintaining
the heterogeneous‘configuration of the problem, a slab geometry is
selected. As shown in Fig. 4, an infinite slab of thickness "a", .
containing an absorber, is assumed to be embedded in a neutron source.

The general collision density Eq. (7), will be modified for

this geometry, in which

,;;;}12 (x—x')2 + y'2 = Te(x, x'y ¥')

av'

ox y'dy'dx’ ‘ (31)

Equation (7) now becomes:

a “)Z (E')
F(x,8,E)dxd0dE = . F(x',8',E') K(E'S' - ED)
PR ! N EETETY 2 2
! 'Vvodo .

Zt(E) e-Zt(E)fT(x,x',y')f

x 5 oxy 'dy'dx'dR ' dE' dxdOdt
be T (x;x"y')

+ 8(x,0,E)dxd0dE | | (32)

The expression for T(x,x',y') may be re-written By.defining

an angle @, i,e.

T ALY
T(x,x",y") = g
Setting = coi P

it is seen that

Bl,hy') =% |k = w'] . . | (33)
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By substituting Eq. (33) in Eq. (31), an expression is obtained for

¥y'. This expression will be a function of t, x' and x, i.e.
y'=\lt2—l |x - x'"| . (3k)
The new expression for dy' is

- x'|t dt
dy' = e . 3 ' (35)
v t -1
Substituting Egs. (33), (34) and (35) into Eq. (32), it is_ seen that
the integral over y' is replaced by an integral over f. The limits of
integration for t range from 1 to 0, as can be seen from the definition

of t. The following equation results:

[l

o 1
Zg{E') K(E'Q' - EQ)dtdx'dD'dE' dxdd
* I E) : dE

F(x',a',E')

fw Zt(E)e—Zt(E)t [x-x"]
; t

F(x,8,E)dxd0dE = —;— f

El

+ 8(x,8,E)dxd0dE (36)

Now by making use of expression (20), the integral over t is

written as an exponential integral function. Equation (36) becomes :

, - % 15 2 5 (B') | N
F(x,?i,E)dxdﬁdE - ot f/f —-(—-).S - F(X',ﬁ',E') K(E'S - EQ)
c E'"0"% Zt g

‘ > ->
x El[zt(E) [x - x!' |] dx'dQ'dE' dxddE

+ 8(x,8,E)dxdQdE (37)
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We now consider the case of a slab which is a uniform mixture
of several nuclear species. The sppropriate equation for describing
the collision density in a slab of several nuclear species is obtained
from a generalization of EHEg. (37). The only change reduired involves
the integral term, which is the contribution of neutrons from a posi-
tion dx' about x', traveling in a direction 4@’ about 5', and having
an energy dE' about E'. For the mixture, this term must include thé
contributions from collisions with all the various nuclear types
present. It is necessary'then, to add a scattering integral for each
nuclear species i.

" Defining 1

) ()

I

1, 2, ... N species,

s ; . .th
macroscopic scattering cross-section of i

Species.

() (@3 E)

N
> >
F(x,9,E)dxdQdE = 2
4=

scattering kernel for the ith species.

F(xl )31 )EI )K(i{E'a' e E-ﬁ)

Z E

. > ->
x B [z, (®) |x - x'[J dx'all' dE ' dxdldE
+ 8(x,0,E)dxdlaE * ' (38)

For a given'S(x,Q,E), the collision density is completely
specified by Eq. (38).

The collision density and source terms are now expanded.
- Legendre polynomials are postulated for the spatial variation, and

spherical harmonics for the angular variation. The energy dependence
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\

of the collision density is expressed by an expansion coefficient,

I T

PGB = Y i f (%“a—*i)Y @) » (-—-l) £.4®)  (39)

m=0 n=0 [=-n

1l

- 8(x,9,E) i i IZ‘ (2‘”1) Ynﬁ(ﬁ) P (?El) s "(E) (ko)

=

where

. > | % i
1) - [ Copr Ll I p 1) (100 )

-+
and p = cos @, The direction  in which the neutron is traveling is
defined by the polar coordinates # and V.

The following orthogonality relations hold (S2, ML)

f’x‘ (Q) Y (Q)dﬂ = BEB - (42)
8

[ulE)uE ) o

" In general, the values of n and m in Egs. (39) and (40) cover
all positive integers,‘n =0, 1, 2, ... . However, for cases involving
a symmetric source distribution, the odd coefficients.of m will vanish.

The folloﬁing assumptions will now be made regarding the slab
and the neutron slowing down process:
(i) The slab is made up of an isotropic homogeneous

medium.
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(ii) The neutron slowing down is due only to elastic
scattering.

(iii) All nuclei of the medium are stationary.

With these assumptions in mind, it follows that the final
direction of motion will depend only on the scattering angle between
the initial and final directions. The following function will now be
defined: '

z(i)(E,uo;E;ﬁ ')dp.od.E = probability that a neutron with energy

) dE' about E', traveling in direction
a8 about 5', is scattered throuéh an
angle d g about Ko and has final
energy dE about E,

-Where

B, = cos ﬁo, d = angle between incoming and outgoing
neutron direction.
In the case of an azimuthally symmetric collision,
K(i)(E'a’ a»Ea) and l(i)(E,uO;ELa') are connected in the following
manner :

A

D e
K (B'Q ~ EQ) = £

i ->
z( )(E,uO;E;Q')

5
The assumption is now made that Z(E,uo;E;ﬂ') may be expressed

by the following expansion:

(g, smili) = S (ﬁlé—-i) M) (@EE) B ,) (k)
=0 :
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where
- g - f+l (P (e, 5w ) P (0, )au (u5)
no (1 ot i

Expansion (L4) will now be written in terms of the directions
- ->

Q' and @, which describe the respective directions before and after
the collision. Using the addition formula for Legendre polynomials,

expression (L44) becomes

(l)(E,u SEIQ') = 2n Z: Z

(D gmdy @) @y (46)
n=o B=-1 LI -

|

 Expressions (46), (40) and (39) are now substituted in Eq. (38),
and by using the orthogonality relation (42) to evaluate the integral

over 3', the integral term of Eg. (38) reduces to

=@® ,, [ ! i
= Yfl(ﬂ)[ [ Pm'(ea -1)(2“1 . l) x
5 E'Yo ‘

(1)
f‘r'i E' ) E [z, (B) |x- x* ]]_Z_-(E(:_))— (l)(E SE!Q! )dx ' dE' dxdOdE

(NE

N 0 00
&y &5 L

i=]l m'=0 n=o0 [

Equation (38) may now be written

Z Z Z Y (n)(g’m”) (%-1)1“2(3:) axdGdE

. mM=0 nN=0 £=-n

£ £ o[£ (En(z ) o

n=o0 f=-n m=o
N (2m'+1)}z (E) .

o5 @ RO ﬁm-(?— )y (3,80 - x (2 @)
i=]l m'=p E'Jo
2 @)

=) 1(1) (B;E!Q' )ax'dE'dxaE | a8 . | | (u7)
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o .
Multiplying Eq. (47) by Yg ) P_(2x/a-1) and integrating

over 5‘and x, the following equation is obtained:

£ "(E)dE = :?:i }: (2m ) 5 (E)ff ———-l) l[zt(F)IX-x'l]

w{1)
xf%l(%é-%)dxdx' ,_u_gﬁ_; £ (B') z(l)(E JE',8' )R aE

snm(E)dE - (48)

The integration over x 1s carried out by using the orthogon-
ality relation (43). The inteéral over ) is performed by using
(k2).
Reconsidering the-scattefing kernel, expression (44) may be

rewritten by defining two conditional probabilities, i.e.,

I

i h(l) 'E,E'ﬁ' probability that, given a neutron
ﬂo: ’ o

with initial ‘energy E' direction 4'

and final energy E, it has been

scattered through an angle of 90.

It

(ii) g(l)(E;E',E')dE probability that given a neutron
with initial energy E' and direction

5’, it has final energy dE about E.

The scattering kernel thus becomes

!B (e, w8, = 0 smE 8 6 (msE 8 )aman, (b9) -
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Since there is a unique angle g(l)[E,E'] through which
the neutron can be scattered elastically, it is seen that

h(i)(uo;E,E',E') is a delta function, i.e.,
n e g =s, - (M e (50

Substituting (50) into (47) and the resulting expression into Eq. (45),

it is seen that
ln(i)(E,E;ag)___ g(i)(E,E;-ﬁ') Pn [C(l)(E’E')] (51)

Finally, making the assumption that the scattering is iso-
tropic in the center of mass system, an expression may be formulated
(i) - ) . .
for g /(E;E',Q') (ML). The following expression results for
. 5 '
zr(ll)(E;E',n' ):

= '(l-ai)E'

P [p(‘i)(E' m)|

1l

z]gi)(E;E',ﬁ') for E < E'< Efo, (52)

O otherwise

I

Assuming now that there is no angular dependence present in
the collision density, i.e., n =0 (this implies isotropic scat-

-tering in the laboratory system)

zéi)(E,E;ﬁ') ﬁﬁ for E<XE' < E/cxi (53)

]

0 otherwise
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Using Eq. (53) as the kernel, Eq. (48) may be written as

follows:
_- N Fio M . 1§ PR ,-
- - iz (B )fo (E')dE
|“foo(E) aoo(E) e aom(E) (1-c, )=, (EN)E’
' i E . E
' ( ) /oy Zs(i)(E')f "™(E')aE"
fom(E) a_ (E) a (E) (i-a. ZO(E' '
J | mo JLi=l ke a, )z, (E")E |
rSoo(E) ‘
a%
m ;
Lso (E{_ | (54)
_where
L (B) - (21' 2iYs (E)[ f — - 1) El[Z‘.t(E)]x-x' I]
X P, (% " l) axdx' ' _ . (55a)

SOC(E) = f (— - l) S(x,E) ax | (55b)

The source of neutrons from outside the slab has not yet been

specified. In this problem the assumption is made that the source
of neutrons external to the slab has an energy dependence that varies
as l/E, no spatial dependence, and no angular dependence. Inside the

slab, the collision density distribution, due to this external source,
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will be determined from first-flight transport theory. 8(x,E) is

thus given by (ML, C6)

T, (E)
S(x,E) = —%ﬁ?“ [;2 [Zt(E)x] + E, [Et(E)(a-x)]] (56)

The first m terms of the collision density expansion are
determined inlthe following manner:
(i) Beausie a (E) . . . a (E), and s °(E) . . . s "(E)
from Eq. (47). |
(ii) Substitute these in Eg. (h6) and solve it for fOO(E)...
fom(E).
(iii) These may then be substituted into expression Eg. (39),
and F(x,E) may be determined, to the desired degree
of accuracy.
From Eq. (39) it is seen that if m = 0, the resulting col-
lision density is the flat flux approximation for this problem, If
m =2, quadratic terms are included in the collision density. As
the value of m is increased, better approximations to the spatial
distribution of the collision density are obtained.
The infinite'mass approximation may also be obtained from
Eq. (54). 1In this approxiﬁation, use is made of the fact that
neutrons losé no energy when colliding with a nucleus. By evaluat-

ing the scattering collision density under the integrals of Eq. (5&)
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at the lower limit, i.e., E' = E, Eq. (54) reduces to

-fOO(E§1

The three steps outlined above, for obtaining the collision

ey

- N LA O(E)z(i)(ﬁ)
g JBY e aom(E] 2 Zt(é) Fso°<E)

' ' i=1 ] '

t ) 1 + 1

' N ¢ m(E)z(i)(E) '

QO S m
Lmo(E) mm(E)_ ; Zt(E) | © (E)
- -

density from Eq. (54), also apply to Egq. (57).

It is of interest to observe:

(1)

(i1)

(iii)

The infinite mass approximation may be made
without making any assumptions regarding the
spatial distribution.

The flat flux approximation may be made without
making any assumption regarding the mass of the
nucleus. |

Finally, both assumptions may be made, resulting

in the usual W.R. approximation.

(57)

In the analysis of the actual problem, nine matrix elements:

" and the correéponding three source terms are evaluated.
it possible to include quartic effects in the spatial distribution

of the collision density. The method for evaluating the integrals

This makes



is illustrated in Appendix B. The nine matrix elements and three

source terms are given below:

a (E) =1 - ?(lﬂ(-é : E3[r(E)]) s °(E) = - -rlEﬁl[aOO(E)- 1]
250 (E) = X(B); 8,0 (E) = SK(E) 3 5,2(e) = - 2B x(z)
a5 (E) = L= ?(SE—)(%-E3[I‘(E)])+ 6OE2£1;;?)] + rg(()g) (20+E [r(E)])
% 7eoi:iE;§E)] i rg;(z;) (% - E7[r(E)])
ey (B) = Y(E); 2, (E) = 9X(E); ot = - 2 y(m)
0, (8) = 92(8); a0 (E) = 5z(E)

ahh(E) = W ;i%ﬁ'(% - E [ (E)}) 360 Eu[r(E)]

(E)

_6840 l+E[(E])+7 20 g [r(E)]
’ r3(E) (73 k50 ;%25_ 6l (%)

, 3326400 B, [x(E i 62&21;0( - & [+(s) ])
ré(E) ) 5 \518

.. 11793600 ( o [T(E)]) 25401600
T(E) 10k o 9(E)

x [r(m) L= ()] - % * Eulr@®])

1

X(E) = ;(E—)'(l B, [x(E) ) %E)@ + Eh[r(E)])- —3*(2—(%—%[1-(;)1)

E)



z(E) =

where

=54

5 ?J(-E_)(% - E3[r(E)]) + ';“ée"é')" ("]'3-," * E!J,[T(E)]) - rl?;):) (711 = [r(E)])

, 8o (;+E[TE])-_ 1680( )
m 5+ EBglr(E) @ \6 E,[r(E)]

. HlE_)( - K [r(E)]) ?6 (39+Eu[r(E)]) ;3::—2) (52 E [r(E)])

2160 8880
+ in 6[ (E)] ! trm——— 25 + E-{[I'(E)])
r (E)
+ B [x(®) Bylr(a)) -%+E9[r(ﬂ>,]] (58)
() |
r(E) = a 2, (E)
a = slab thickness
Zt(E) = total macroseopic cross-section as a
function of energy
En[r(E)} = exponential integral function, as

defined by Eg. (20).
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CHAPTER V

FRACTIONAL ERRORS INTRODUCED IN THE RESONANCE INTEGRAL

- In the previous chapter a method is derived for determining
the collision density of neutrons in a slab of absorbing material.

In this chapter, the collision density is used to determine:

(i) the resonance integral to various approxi-
mations, and

(ii) . the fractional changes or errors introduced
in the resonaﬁce integral by the flat flux

and infinite mass approximation.

The resonance integral was defined by (1). Assuming a source
- of one neutron per unit volume per unit time, we can re-write this

definition in the form

[ F(xE) o (8) (’
I=N dEdx

for the slab case in which we are presently interested. N is the

number density of absorber nuclei. The double integral can be thoughf

of as an effective microscopic resonance integral (e.g. barns per

nuéleus). This parameter (I/N) is the one that is calculated here.
Substituting Eq. (39) which defines F(x,ﬁ,E) for the case

n = 0 into Eq. (59), using the orthogonality relation (43), the

resonance integral becomes
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o0 (o] g
£ °(H)

s = =E o_(E) a&’ (60)
TR

from which we observe that the resonance integral depends only on the
first coefficient of the collision density expansion.

Note that the spatial depehdence seemingly eliminated in (60)
is actually included in the determination of fOO(E) via Egs. (54) and

'(55). The accuracy with which the spatial effect is acéounted for
increases as m increases.

. The infinite mass approximation to the resonance integral may
also be computed from Eq. (60) by employing Eq. (57) to determine
fOO(E). Furthermore the W.R. approximation (infinite-mass plus

,fi;t-flux) is obtainable from Eq. (60) by simply using Eq. (57) with
m = 0. .

Thus we can estimate the errors involved. Specifically, to
calculate the error due to the flat flux assumption, we first find
fOO(E) from (54%) with m = 0, for a given set of resonance parameters.

" Then this value of fOO(E), substituted into (60) gives what we shall
call IO/N. For the seame parameters, recalculating fOO(E) for higher
values of m (éven values for symmetric problems) gives the more

accurate value Im/N. Then the fractional error is given by

i D | (61)

This may be computed for various slab thicknesses and for various

values of m.
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Similarly, the error dﬁe to the infinite mass assumption may
be estimated for any desired value of m. Equation (57) is used in -
this case to determine f °(E) which, when substituted in turn into

(60) gives what we shall call Imlm/N. Then the error is given by

im
&I _ Im - Im (6
s AN 2)
m

where Im is the same as calculated for (61). Again this may be per-
formed for various slab sizes and values of m.

- Finally, the error due to the W.R. approximation is found

from

WR K - I ‘
m

and as before, may be found to any degree m and for various slab

sizes.
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CHAPTER VI

NUMERICAL METHODS

In the previous two chapters, equations are set up to deter-
mine the collision density, resonance integral, and fractional
errors introduced in the resonance integral. In solving these equa-
tions we can.use either an approximate analytical technique, or a
numerical technique, utilizing computing machines,

The approximafe analytical technique of solution would sub-
stantially reduce the accuracy of the fractional errors in the
resonance integral. This reduction in accuracy would defeat the
purpose of the investigation. Therefore in view of the complexity of
the equation, and the accuracy desired, a numerical technique of
-solution was adopted.

In the first part of this chapter the method of computing the
matrix elements, given by Eq. (58), is considered. Part two is con-
cerned with the method used for solving the set of connected linear
integral equations, (54). The evaluation of the resonance integral,
and the fractional errors introduced in the resonance integral, is
also dealt with in the second part. Finally, part three is devoted
to the errors and limitations of the method ﬁsed for solviﬁg Ba. (54).

A. Computation of the Matrix Elements

Particular difficulties are encountered in computing the
matrix elements aoh(E) s ahh(E)’ using the expressions given by

Eq. (58). These difficulties are due to numerical instabilities,
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introduced by taking the difference of two large numbers with insuf-
ficient accuracy. This can be seen from the expressions given by
Eq. (58). In the limit of small r(E), round-off errors in the dif-
ference ferms are highly magnified and lead to erroneous results,
These difficulties may be overcome by computing the elements
in double precision. However this leads to further computational
difficulties. 1In a certain range, it is difficult to determine the
exponential integral function'in double precision. This range is
given by 4 (|x|( 50, where x is the argument of the exponential
integral function.
| A Taylor series may be used to compute the exponential integral

function in the range 1{|x|(4. The Taylor series takes the form

. 5

where

¥ = 0.5772157 = Eulers constant

Exponential integral functions of higher order may be determined from

the recursion relation (C6):

E (x) = Ei_l [e_x - x En_l(x)] (65)

In the case where |x|) 50, the following asymptotic form may

be used (P1, C6):

e ™ n -2x  - (6x° - 8ux + n°)
B ;;;;[1. (x+n)2 ’ ?iini e (x+n)6 ) ] B .
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where R(n,x), the remainder, is given by an integral (C6, P1).

With Egs. (6%), (65) and (66), it is possible to compute the
value of En(x) to as many decimal places as is desirable, in the
ranges indicated. Thus the matrix elements may be computed with as
much accuracy as is necessary, to give reasonable results in these
ranges. However, in the range 4 (|x|{ 50, a complicated, time
consuming method (HL, M3), is required to determine‘En(x) in double

precision. The range 4 (|x|{ 50 cannot be ignored, st 1 we-
stitutes an important part of the solution. Since the matrix
elements are energy-dependent they have to be re-calculated at every
.point'considered, thus aggravating the situation. It is thus desir-
able to re-write the matrix elements in a different form. This form
must be such that a sufficiently accufate estimate of the matrix
elements is obfainable within a ?elatively short period of time, for
all values of the argumeht X.

The new form is obtained by using the recursion relation
7(65). With the help of Eg. (65) all the exponential integral func-
tions in the matrix elements are expressed in terms of E3(x). The
details of thié substitution are shown in Appendix B. In all cases,
except aOO(E), the E3(x) functions cancel out. Therefore the remain-
ing matrix elements and source terms are expressed in terms of
exponential functions only. Written in this way the matrix elements
and source terms can be obtained with sufficient éccuracy, since it
is relatively easy to obtain the exponential functions in double

precision. aOO(E) can be determined with sufficient accuracy without
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the help of double precision, since it does not contain any large
numbers. The transformed matrix elements, and corresponding source

terms are:
a'oo(E) atabe ;%Ej'(% - E3 [r(E)]) SOO(E) =T I%;l (;oo(E) - l)

20p(B) = X(®) ey (m) = k() s 2(m) = - ZE x(g)

-r(E) -r(E)
_ ad 1. e 3 ae
"2 *5['5' EE T2 Bm Sm

+ —%E—— (e-r(E) [x(®) + 1] - l)]
r” (E)

ay(®) = (@) o (®) =ox®) s (E) = - ZE y(g)

oy, (B) = 52(8)  © ay,(E) = 92(E)
' -r(E) -r(E) -r(E)
N e 10, 37e , 6lee
w®) 9[9 ® 2w Bm Sm )

_ 360 5820 (F) 5 3uihoe™ (E) 4 12600
CP@E) (E) 2(x) 1 (x)

, 128520e %) o82ai0 (e‘r(E> [r(E) +1] - 1)]

r' (E) ()
) = 20 e-r(E) o 3e-r(E)
X(®) = - mm HE PE om o



B2

-r(E) -r(E)
OB = - 1 20 e _ 45 17e = 77
B E® T e T Rm 3@ o)
R e e
r (E) r (E) r’ (E) r”(E)
- _-r(E) g -r(E)
_ 1 lll'. e _ 18 & 23e
z(E) 2r (E) +‘3r2(E) ¥ r?(E) r(E) ()
. EEO N goo " 1o6ge‘r(E)
r (E) r (E) r (E)
+ f?ri—;) (e'r(E) [r(B) +1] - 1) _(67)
where
r(E) = a.Z%(E)
a = slab thickness

total macroscopic cross~sections as a function

o+
—
=
s
Il

of energy.
With the above expressions for the matrix elements and source
térms, it is possible to obtain a stable numerical representation of
the matrix in Egs. (54) and (57).

B. Solution of the Integral Eguation

This section deals with the solution of Eg. (54). In addi-
tion, the evaluation of the resonance integral and the fracticnal
errors introduced in the resonance integral are discussed.

Since Eq. (54) is of the Fredholm type, it is expected that
iterating the source term would eventually converge to the solution

(C9). Tt is found, however, that the rate of convergence is much
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too slow. All'efforts to increase the rate of convergence proved
to be ineffective. These efforts included;
(i) wusing the infinite mass approximation as a
starting point, instead of the source.term.
This was attempted since it was felt that the
infinite mass approximation is closer to the
actual solution than the source term. And,
ol emplbiing'thé Aitkens &° process (T2) to
accelerate the convergence.

In view of the failure to solve the equation by conventional
means, & new approach was necessary. Two such approaches were
devéloped. The details of the first approach appear in Appendix C.

- This method was not followed to completion but a result, which was
derived from-this first approach,.was instrumental in the success

of the second approach in solving Eq; (54). This result is the
solution for the energy dependent expansion coefficients, defined

by Eq. (38), for the case of energy independent‘cross-sections. This
solution-is exact in the case where the source, external to the
absorbing element, has an energy dependence which varies as l/ﬁ.

This solution, derived in Appendix C, is given by

—

eiogg) = 1 %—%ﬁl‘ﬁ | G



Bl

where

e
1

ol
I

——

fi‘m('E)

T

T

1
fO

L 1.

The above results hold for any éeometrical configuration; Equation
(68) is used as a starting point in the numerical method to be
described below.

" The second method, which is the one actually used for solving
Eq. (54) will now be described. In this method all spatial modes,
—i.e. m=0, %2, 4, ..., have to be considered separately; However,
the methods are similar in principle.

First the flat flux case m = O 1s considered. To avoid undue
complication the case with a-single nuclear type présent is dis-

cussed in detail. The method is then generalized to the case where

a mixture of nuclear species is present. The equation describing
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the flat flux approximetion to foo(E) may be obtained from Eq. (54),

and is given by

y oz () 2.0 (m) :
fo (E) = 8'oo(E) Zt(E') (L-o)E’ e’ * o (E) (69)

The solution to %;O(E) is determiﬁed at discrete points as
shown on Fig. 5. It takes the form foo(Ei),. where i =1, 2,...B,
1 and B being the terminal points considered. The terminal points
are deterﬁined in general by the total cfoss-section of the nucleus.
All energy dependence of the cross-section is assumed to be negli-
gible beyond thelﬁth point. _

Equation (69) will now bé considered for the ﬁth point. It

is given by

. B sy s ) |
_fo (EB) - aoo(Eﬁ) f Zt(E')(l-ct)E'_d'E T % (EB) (70)
E
P

The integration interval in Eq. (70), E, to Eg/a is now .

B
divided into k sub-intervals. Using a quadrature formula (T2), the

integral of Egq. (70) will be written as a sum, becoming
(o} B+k o
£ o) = o (x| B ps ) S S ey (Ry)
o ‘B 00\ B (1-oz)Eth(Eﬁ) (La)EJ.:»:t(Ej)—

J=p+l

+ 8, (Eg) - ()
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This equation may be written in the more convenient form,

foo(Es) = B(EB) Cy fOO(EB) + U+ soo(Eﬁ) - (72)
where}
aOO(E ) ZS(EB)
B(Eg) = 1T q) BT (Bg) (73)
B™ o £ %(E.) =_(E,)
Ug = 20(Eg) Z %1-3) Ej Zt?Ejg | (74)
J=p+L

From Eq. (72) it is possible to solve for the desired quantity
o i
£, (EB), c
U+ s O(E
o

)
£ O(E ) = ﬁ ﬁ
o VPR 1 - B(EB) CB

(75)

In Eq. (75) the quantities sOO(EB) and B(Eﬁ) are known. The

unknown quantities are U_ and C_, and, if these two quantities could

P P
be determined, fOO(EB) could be determined explicitly.

The values of CB o CB+k depeﬁd upon the quadrature formula
used. Since the function being integrated does not have any rapid
changes in slope, Simpson's method is used. The reason for the
relatively smooth variation of fOO(E) with energy is that it has the
same energy dependence as the collision density which is the product
of flux and cross-section. When there is a peak in the absorption

cross-section, there is a depression in the flux. The product of the

two however, remains relatively smooth. The values of C, ... C

B B+k
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are thus clearly defined, and are given by (TQ):

_h
¢ =3
_L4h
C[3+l - ?;_
_ln
Cp+(x-1) = 73
_h
Cork = 3 ('76)

where h is the size of sub-interval into which the integral is divided.

E_ is the terminal point beyond which the cross-sections are

B

considered to be energy independent. It is therefore permissible to

assume that the solution beyond E, is given by Eq. (68) which is based

g

on energy independent cross-sections. Therefore the foO(E5+l)r';'

O
o] (EB+k

Although this is an approximation, it is rather good, and it may

i ) can be determined explicitly and the sum.U‘3 may be computed.

therefore be used to determine fOO(Eﬁ) explicitly.

The value of foo(Eﬁ-l) can be computed in an analogous fashion,

and is given by
- o

£ °(E, .) = %p-1 * S0 (Fpy)
o “'p-1/ ~ 1 - B(E g

) (77)
p-17 "p-1

In this case the value of foo(EB) determined previously' is used

to evaluate the sum U Thus one less solution to Eq. (68) is

B-1’
necessary to determine the sum Uﬁ—l’ than was necessary to find Uﬁ'

o ‘ o o _ o :
The values of f_ (Eg-g)’ £, (Eﬁ-3)"'fo (EE),IO (E,) may be computed
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in the same way. As more and more solution points are defermined,
fewer and fewer values of the assumed solution are necessary in the
sum given by Eq. (74). Eventually a point is reached where Eq. (7k4)
contains only the computed values of fdo(Ej).

In the case where a mixture of N nuclear species is present,
the same method of solution applies. N separate integrals exist in
this case, one for each species and each one hasrto be written in
terms of a quadrature formula. These N integrals all have different
ranges of integration, i.e. E to E/O:l, s B £0 E/Q/N. In this method
all these integration ranges are divided into the same number of sub-
divisions, k, in spite of the fact that they ﬁave differeqt ranges.
With this assumption in mind, Eqs. (73) and (74) may be rewritten to

- take all the nuclear species into accoﬁﬁt. This is done by summing ‘
over all the nuclear species presént, since for each specile there

exists a B(Eﬁ) and a U B(EB) and U, become

B B
e (2 M) .
= co' B’"s B
B(Eg) “iZl(l-ai) Ey % (By) (78)
N +k c.f O(E.) 5 (i)(E.)
= dJ o J s J
Ug “;aoo(Ea) J:; (T-a,) E; Z,(E)) (79)

foo(EB) for the mixture may be determined by substituting Eq. (78)
and (79) into Eq. (75). In a manner identical to that outlined above

) o Bipey 11 o & ‘ .
£, (Eﬁ~l)’ £ (EB-Q)’ cen £ (EE)’ i (El) may be determined.
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The accuracy of the solutions obtained for fOO(Ei) by this
method may be increased by iterating it in the original Eg. (69).
This iteration process may be continued, until a satisfactory solution
is obtained.

The above discussion is limited to the flat-flux case, i.e.
m = 0. The case where a parabolic spatial distribution (m = 2)
is faken into account will now be considered. In this case Eq. (54)

for the case of a single nuclear specie, becomes:

- | - - - E/a v Z (E ) 2 B - g
£, (E) 350(E)  ag(E) f £, (E) z &) (1(355)}3' 5o (E)
; i E ' "
R : E/Of Z (E ) ! 2
Lfo (E)- ‘ LaQO(E) a‘ez(E)- f (E ) Z (E ) (l-C{)E' LSO (E)_
- L X, ; (80)
Equatioh (80) gives rise to the two-coupled linear integral equations,
o g E(E') g
s (£) = aoo(E) s (E ) z (E'j (L-)E’
E
E/a BABY e . o
r o, (®) f 20 S g * e @)
E
E/a
z (B') ;
fog(E) = 8,,(E) o (=) Fe (E ) (1%)3:'
) : E
E/oz z (B')
dE' 2
aEO(E) (E ) E (E ) (l O!)E' * SO (E) (82)

E
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Because of the relatively small cross-section at an energy
outside of the resénance range, there is very little spatial
structure to the colliéion density. Therefore fOE(E) is negligibly
small, except in the region close to the resonance peak. Thus the
solution to fOO(E) obtained from Eq. (81) will not be very different
from foo(E) obtained by solving Eq. (69).

It will now be assumed that Eq. (69) has been solved and all
the corresponding foo(Ei) are known accurately. The value of foO(E)
in‘Eq. (82) is approximated by the value.of fOO(E) obtained by solving
Eq; (69). It is seen that fOE(E) may now be determined from Eq. (82).
 The sééond.integral in Eq. (82) is known approximately, and may be *
added to the source term SOE(E), to make up a modified source COQ(E).
" Equation (82) may thus be written as follows:

E/a

= (E') '
f 2@ - @ [ 2E) Sy g o) (83)
‘ E
- where ‘
2 E/a o) ZS(EY) . 2
02 = apo® [ £ Sy ey o ® (8t)
E .

By comparing Egs. (83) and (69) it is seen that they have the
same form. Hence a method of solution may be used to determine
fog(E), identical to that used to determine foo(E). This value of
fOQ(E) is not the true value, sincé an approximate form of fOO(E) —_
used.  To obtain a befter soluﬁion, the approximate solution of

fOE(E), obtained from Eq. (83), and the flat flux solution obtained



w T

from Eq. (69) are substituted in the right hand side of Eq. (80).

New values of fOO(E) and fOE(E) are obtained. These new values may be

iterated again in Eq.l(BO) until satisfactory solutiong are obtained.
In the case where a mixture of nuclear speciés is present,

the B(Eﬁ) and U, used in solving Eq. (83) have to be modified. The

g

modification is identical to that used in the flat flux case.
Finally in the case where quadratic and quartic spatial

variations are taken into account (m = 4), Eq. (54), for a single

nuclear species becomes:

- - b E/o
-

F s z (E") .
£ (E) aoo(E) aoE(E) aO}_I_(E)

L, (E)Z(E)(la)E'

~

=

/e Z(B) g
o @) = | app(®) ay(E) ay,(®) f £, (8) z: &) T-E
| | E

E/a
" z (E") )
| 5o @) |Puo(E) 2(E) &y, (B) | f £, @) 5. T-oyE
= '
EAG)
+| 5,5 @®)
|5, (®) ] I (85)
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The eguation analogous to Eq. (83) for this case is given by

oy A 5 E) g 3
£ “(E) = o, (®) f £ E) Sy T O @ (86)
E

" where
" Ba 3 @) 4
cO (E) = a‘ho(E) fO (E‘) E—t—@rj (l-»OL)E'
E
B/o EAEY e
+'au2(E) fOE(E') Zi(Er) (l?g)E' + Soh(E) (87)
E

It is now'assumed that the case for m = 2 has been solved.
Hence fOO(E) and fOE(E) are known functions. By applying the same
reasoning as before, it is assumed that the values of fOO(E) and
foe(E) given by the solution to the case where m = 2,Wi;l not change
much in the case where m = 4. The only range in which a change will
take place is in the resonance range.
Therefore, using the two values of foo(E) and fOE(E) obtained
.from the case where m = 2, Cou(E) is completely specified. Equation
(86) is thus analogous to Eq. (69), and the same method used to
‘solve Eg. (69) may be used to so}vé Eg. (86). Hence a first
approximation may be obtained to fou(E). This first approximation
to foh(E), together with the solution to the case where m = 2, i.e.
foo(E) and foe(E), are then iterated in Eq. (85) until a satisfactory

solution is obtained.
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In the case where a mixture of nuclear species is pfeSent
the same procedure is followed as outlined above for the cases

m=0andm=2. The values of B(Eﬁ) and U, have to be suitably

p
modified as indicated by Egs. (78) and (79).
From the previous discussion it should be clear how the value
- of fOO(E) can be determined for the cases m = 0, 2, 4. Therefore,
flat flux, spatially quadratic, or spatially quértic terms may be
included in the solution of fOO(E). These solutions are designated
| by‘ng(E), ng(E) and,fzh(E), respectivgly. From these values of
the expansion coefficients the_resonance integral corresponding to

them is determined. From Eg. (60) the respective resonance integrals

are

I ’ fOOO(E) :
- m da(E) dE . (88)
o
, [£%m
¥ ) = E o (E) dE (89)
E
I, fool*(E)
. ) =m o (E) dE (90)

The limits on the integrals are determined primarily by the
absorption cross-section. Evaluating these integrals poses no spec-

ial difficulties.
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The fractional errors introduced in the resonance integral
givén by Eq. (62) may now be computed. For the infinite mass
approximation we must solve the set of linear equations (57). This
is a relatively straight forward procedure and will hot be detailed

. 00 o2
here. The solutions are foim(E)’ £ im

ok ;
(E) and foim(E), depending on
whether no spatial structure, a quadratic spatial structure, or a
quartic spatial structure is considered, respectively. The respective

resonance integrals, as defined by Eq. (60), are given by

L” [aw®
B .
Igim £°2 (E)

N agl?E) ca(E) i - {=2).
E

im ‘ fzgm(E

il I n o (E) dE ‘ (93)
E

The limits of integration are again determined by the absorption

cross~-section.

C. Errors and Limitations of the Solution to the Integral Eqﬁation
In ad@ition to the errors introduced by round-off, which are

characteristic of numerical procedures, the approxﬁmatiohs are among

the major contributors to inaccuracies. ‘Five sources of errors are

discussed.
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(1) It is found that the solution is critically dependent
on the approximation used in evaluating the sum Uﬁ’
given by Eq. (74). This necessitates the commencement
of the process of solution sufficiently far from the
resonance peak such that the cross-sections may be
considered energy-independent. Since Eq. (68) gives
an exact solution for constant_cross-sectiéns the -
closer the cross-sections are to a constant value,
the better is the starting solution given by Eg. (68).

Thus by assuming a value of E_, sufficiently far from .

p
the resonance energy, the error due to an incorrect
starting solution is reduced.

- (ii) The type of quadrature formula used for the integration

introduces another source of error. The Simpson formula

which is used, introduces the following error (T2):

90
where
h = integration step size
g = averaged fourth difference (T2)

This error can be reduced by using a different

guadrature formula.
(iii) The criterion used for determining when a solution for -
foo(E) is satisfactory, may also introduce an error.

Since the resonance integral is of prime interest here,



(iv)

(v)
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it is used as the criterion. The resonance integral
is evaluated after each iteration, and compared to
that of the previous iteration. When the agreemenﬁ
between the two resonance integrals is close, the
solution is considered acceptable énd the iteration
process is terminated. It is seen that the soiutiéns
are not necessarily exact, although in most cases it
was found that a satisfactory resonance integral also |
results in a satisfactory solution for fOO(E).

In the case where a mixture of nuclear species is con-
sidered the different integration ranges are all
divided into the same number of intervals. This means
that some sub-intervals are larger than others and
thus the errors aré largér, since they are proportional
to the step size (T2). This error is unavoidable in
the method used.

Finally it is of interest to note that the atomic’
masses A of the nuclei affect the accuracy. This is
due to the fact that for light nuclei the integration
range is larger than for heavy nuclei. For hydrogen
the range is from E to . Thus for lighter nuclei the
approximate solution used to evaluate UB initially,

affects more points than in the case of heavier nuclei.

This makes the computed solution more dependent on the
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initial assumption for light nuclei than for heavier
nuclei. This may be overcome by iterating the

solution more times.
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CHAPTER VII

RESULTS AND CONCLUSIONS

In this chapter the formalism for obtaining the collision
density, the resonance integral, and the fractional errors introduced
in the resonances integral is applied to slabs of bismuth; uranium,
thorium, and thorium oxide. In all the computations considered, the
absorbing nucleus is assumed to have a single resonance, with cross:
sections which are described by Eq. (6). Where a mixture of nuclei
is assumed, it will be made up of absorbing and moderating nuclei.
"In this case the moderating nuclei are considered to have constant,
purely scattering cross~sections.

A. Description of Problems Solved

Table I gives the pertinent nuclear properties of the

resonances considered.

TABLE I
E, o, ap T Pn Py P7/P
(ev) (barns) (barns) (ev) (ev) (ev)
Bismuth (L3) 784 1821 10.4° 4.3k L4.30 0.04 0.092
Thorium (D2) 70 17700 12.0 0.082 0.039 0.043 0.524
Thorium :
Oxide (D2) 70 17700 19.7 0.082 0.039 0.043 0.524L
Uranium (ch) 10k 18000 10.0 0.095. o._o7 0.025 0.263

Various slab thicknesses are also considered. These thick-

nesses are shown in Table II
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TABLE II

Slab thickness "a'" in cm.

Bismuth 05 2.5 7.5 35

Thorium 0.1 0.5 2.5 7.5
Thorium oxide ¥ 0.5 2.5 7.5
Uranium 0.1 0.5 6.8 B.5 .5

For all the materials, Egs. (54) and (57) were solved for
m=0andm-=2 with thickneéses "a" of 0.5 em, 2.5 cm, and 7.5 cm.
For thorium ﬁn additional set of problems was solved for m = L for
the same thickneéses; The solutions mentioned above were then applied
to the calculation of the resonance integrals using both the flat
_ fiux and infinite mass approximations.

For the other thicknesses mentioned in Table II Egs. (54) and
(57) were solved only for m = 0. These results are used only to
estimate the fractional error introduceéd in the resonances integral

by the infinite mass approximation.

B. Results Obtained for foO(E)

9 The expansion coefficient fOO(E)'of the collision density
defined by Eé. (39) is illustrated in Figs. 9 o 20. In each
figure the fOO(E) solution for m = 0 and m = 2 in Egs. (54) and (57)
is shown, except in the case of thorium. In this case fOO(E) is
shown for m = 0, and m = L. The slab thickness - resonance parsa-

meters are held constant for each figure.
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C. Evaluation of Resonance Integrals

The values of the resonances integrals, defined by Eq. (60),

are shown in Tables III, IV, V and VI in barns/hucleus.

TABLE III - Bismuth

a=2.5

a=0.5 a=T7.5 a=35
/N  0.1246  0.0807 0.0510  0.0236
I_/N 0.0547  0.0403  0.0363  0.0397

im
I /N 0.1039 0.0533 0.0339 -
I,/N  0.0530  0.0378  0.0332 -
TABLE IV - Uranium

aéo.l a=0.5 a=0.8 a=2.5 a=7.5
Iim/N 1.2933 ©0.4724  0.3720  0.2092  0.1181
IO/N 0.7718 0.4069 0.3429  0.2246 0.1526 .

im ‘
1 /N - 0.4683 - 0.1995 0.4069
I/N . 0.14000 . 0.2168  0.1450
TABLE V - Thorium

8=0.1 a=0.5 a=2.5 8=7.9
I;m/N' 3.173L  1.0993  0.4915  0.2809
IO/N' 2.7290 1.1628 0.5929 0.3664
Iém/N - 1.0943 0.4822 0.2678
12/N - 1.1555 0.5827 0.3540
I."/N - 1.0876  0.4817  0.2665
I,/N - 0.5815 0.3522

L3527
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TABLE VI - Thorium Oxide

: a=0.5 a=2.5 a=T.5
I%/N . 1.2669  0.5645  0.3228

e}

I/N 1.3792 0.8037 0.6257

O

im

I,/N  1.259%  0.5527  0.3048

L,/N 1.3716  0.7957 0.6182

From these results the fractional errors in the resonance integrals
were computed.

" D. . Fractional Error Introduced in Resonance Integral
by Flat Flux Approximation

Figure (21) illustrates the fractional efror introduced in
the resonance integral by neglecting the spatial variation in the
neutron flux (8I/I). This fractional error is defined by Eq. (61)
for m = 2. As can be seen from Fig. (21) this fractional error
increases mcnotohically with increasing slab size, in the range of
slab thicknesses investigated. It is also clear that it is always
poéitive in this range. This general result indicates that the flat
flux approximation is better for thinner slabs.

It is interesting to note that the flat flux approximation
‘seems to be best for a nucleus with a high absorption component in
its resonance. This phenomenon may be explained by considering the

neutron sources which contribute to the flux at resonance energy. TIwo



_8p-

sources exist, one from the source external to the slab, and the
other from neutrons slowing down within the slab.

First we consider the case where the nuclei have large
absorption components, i.e. F7/Pularge. In this case, neutrons which-
enter the slab from an external source at resonance energy penetrate
a relatively small distance into the slab. -They are primarily
absorbed close to tﬁe surface of the slab. The resonance flux inside
the slab due to slowing down is expected to be relatively flat. This
lack of spatial variation is due to the fact that the cross-sections
above the resonance are constant and non-absorbing. The resonance
flux thus tends t§ be spatially flat inside the slab, and peaked near
the surface. These source terms are illustrated schematically in

_Fig. 6.

It is thus seen that the neutron flux in this case can be
approximated, with good accuracy, by a flat flux. Therefore the
fractional errors introduced by a spatially flat flux are small.

- Where the slab is made up of nuclei having a smal; absorption
component,'the same two sources exist. However, in this case the
external source neutrons penetrate much deeper into the slab. The

~ source due tovslowing down of neutrons within the slab is unchanged.
Figure.7 illustrateé schematically how the resonance flux is made‘up
in this case. Here the overall spatial structure of the flux cannot
be approximated accurately by a spatialiy flat flux. Therefore the

fractional error is larger than in the previous case.
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The results for thorium oxide indicate that this resonance

- integral is least affectéd by the flat flux approximation. This may
- be attributed td the reduced density of thorium which increases the
transparency to external source neutrons, and to the increased
slowing-down ability due to the presence of oxygen. Figure 8 shows
schemagtically the structure of the two sources.

In addition, illustrafed on Fig. 21 is the fractional error
computed using the approximate technique of Eg. (23), assuming the
N.ﬁ. approximation. Values of A =2 and B = 1 are assumed, and the
"comparison is to be made with the U238 results. It can be seen that
the coﬁparison is not very good, merely indicating the existence
of a fractionalrerror which has a positife sign and increases mono=-
tonically.

As discussed in Chapter III previous attempts to calculate
this 8I/I have been made. Berg's results (B6) are qualitatively
similar but cannot be compared closely with these results because
they include a number of resonances. Corngold and Takahashi (05; T1),
on the other hand, obtained one value which gave a negative BI/I.
They used an infinite mass approximation, but this in itself cannot
account for the negg.‘tiVe 5I/I. Reference to Table IV gives a ®I/I for
-this cése as (0.4724 -‘0.4683)/0.h683, which is still positive. Thus
Corngold's results cannot be explained by any of the results presented

here.
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_E. Fractional Error Introduced in the Resonance
Integral by the Infinite Mass Approximation

Figure 22 shows the fractional error introduced in thg
resonance integral by the infinite mass approximation, which neglects
neutron slowiﬁg down whenlcolliding with nuclei. This fractional
error is defined by Eg. (62) for m = 0. It is seen that the fractional
error decreases monotomically with increasing slab size, and at a
certain thickness changes sign. The thickness at which the change.of
sign occurs is a function of the absorption probability a(E),
incfeasing as the value of a(E) decreasgs; :

A positive fractional error indicates that the resonance
integrél computed using the infinite mass approximation (Iim) is‘
iarger than the resonance integral computed taking slowing down into

“account (IO). A negative fractional error results frém iim < Io.

Tﬁe variation of the fractional error with thickness may be explained
by considering the resonance neutron flux and the mechanisms by
which neutrons can escape resonance absorption. Two mechanisms exist
by means of which neutrons can escape resonance absorption. First,
they can escape from the slab by scattering across the boundaries.
Second, they_can'collide With a nucleus thereby losing enough energy
to scatter out of the resonance range. In the éase of the infinite
mass approximation, only the source of neutrons external to the slab
contributes to the neutron flux. Furthermore, the only mechanism by
which neutrons can eécape resonance absorption is by scattering out

of the slab, since neutrons cannot lose energy.
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Consider now a slab of absorbing material made up of nuclei
with given resonance parameters. We start by letting the slab be
relatively thin. In this case the external source neutrons can
penetrate deeply into the slab. 1In the infinite mass model, these
neutrons undergo many collisions until they are either absorbed or
scattered out of the slab. In the case where slowing down of neutrons
is accounted for, the external source neutrons, together with thosé
from slowing down in the slab, undergo fewer collisions to escape
the resonances. They either leak out of the slab or slow down past
the resonance. For the thinner slab then, the collision density
computéd using the infinite mass model is larger than that determined
from the model which takeé neutron slowing-down into account. ‘Thére-
fore for relatively thin slabs, IO < Ii'm, and the fractional error
is positive.

As the slab size increases, the slowing-down source remains
constant Whiie the external source (per unit volume) decreases.

Hence the infinite mass ﬁgdel pfedicts a larger reduction in average
collision density than does the slowing-down model. Thus Iim

begins to approach I_. Where I." = I, it may be inferred that the
effect of slowing-down of neutrons into the resonance is balanced
exactly by the effect of slowing-down out of the resonance. For
greater thicknesses, slowing~down into the resonance is more important

than slowing-down out of the resonance, and the sign of the error

reverses.
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Chernick et al., (C3) and Corngold (Ck) have also carried out
estimates of the effect of the infinite mass gpproximation on the
resonance integral. The details of these approaches are given in
Chapter III. Agreement with these estimates is seen to be reasonably
good, as shown on Fig. 22.

F. The Fractional Error Introduced in the Resonance
Integral by the W.R. Approximation

Shown on Fig. 23 is the fractional error which is introduced
in the resonance integral by the W.R. approximation. This fractional
error is defined by Eq. (63) for m = 2. Since the W.R. approximation
A8 B combination of the flat flux and infinite mass approximations,
the explanation for the results presented on Fig. 23 is a combination
of the effects explained in sections D and E.

Using Eq. (15) to compute-PPrac, and the criterion expresse&
by Eq. (16) it is evident that the resonances responsible for a

3 and Th232 a.re"

large proportion of the resonance absorption in U2
relatively wide, as opposed to relatively narrow. The W.R. approxi-
mation is thus useful in estimating the resonance escape probability
in reactor caiculations. To correct the overall resonance integral,
the results shoﬁn on Fig. 23 would have to include all the absorbing

resonances.

'G. Possible Extensions

Real nuclei usually have a number of important resonances.
Thé above computations are therefore not sufficient, since only a

single resonance was considered. Furthermore each resonance of any
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nucleus has different parameters. It is evident from the results
that for a given slab size the fractional errors either add to each
other or subtract from each other, depending on the resonance para-
meters. It is thus conceivable that the total fractional-error
introduced in the resonance integral for a given slab size is either
positive, zero or negative.

An interesting extension to this work would be the inclusion
of & number of resonances in the computation. Kelber (K1) has
carried out an investigation of this aspect.

It is usual in computations of the resonance iﬁtegral to
assume that the neutron flux outside of the absorbing lump is aéymp-
totic in nature. This assumption is not entirely valid for

,résonances at low energies, since the resonances at the higher energies
disturb the asymptotic distributibn. Including the effect of the
higher resonances would modify the energy dependence of the source
term. Instead of it merely being l/E it would be some function of
energy, which would account for the depletion of neutroné due to the

. resonances at higher energies. Work on this aspect has be done by ‘
a number of authors (K2, B8).

Finally a different method may be considered to determine
the neutron flux asla function of position, angular direction, and

. energy. A method developed by Case (C6) for solving the mono-
energetic transport equation in one dimension has been generalized

to include energy as a variable by Fuchs et al. (F2). By using
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the method developed by Fuchs et al. to solve the transport equation,
the neutron flux for a one-dimensional slab may be determined as a
function of position, angular direction and energy. . The resonance

integral may be computed with great accuracy using this solution.
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APPENDIX A

THE SINGLE LEVEL EREIT-WIGNER LINE SHAFE

FOR LOW ENERGY RESONANCES 3

A derlvation of the Breit-Wigner resonance line shape is

outlined in this appendix. The outline is based on published results

(Bl, V1 and Ll). It is divided into two parts, as will be described

below.

The derivation of nuclear cross-section may be divided into

two distinct steps:

(1)

(11)

The asymptotic part of the wave function is connected
to the cross-section by means of the collision matrix.
Asymptotic implies "far removed from the compound
nucleus.” The connection is a general one; that is,
it has nothing to do with the nuclear problem in
particular, and deals merely with the geometry of
particle beams and the detection egquipment.

The collision matrix is expressed in terms of the
R-matrix, which contains.the parameters of the nuclear
resonant states, Thie step contains all the nuclear

physics.

Reaction of the following type are considered:

a+tX->b+ Y. , (1.4)
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Particle a collides with nucleus X. After the collision
particle b emerges at an angle 6, and the resulting nucleus recoils
in the appropriate direction. Before the collision the system is

described by the following three quantum numbers:

a channel index, which defines the type of

incoming particle

8 = channel spin which 1s the total spin of the
channel, and is the vector addition of the 7
spin 1 of the incoming particle, and the
spin I of the nucleus

- -+

=i+1I ' (2.a) -

=~y Oy

= the orbital angular momentum quantum number, -
of the two particles in the center of mass
system
Tﬁe‘states of the system after-the collision are describéd
‘by a', 8', a.n& A
Two inverilant quantities of the reaction may be defined:
(1) The total anguler momentum J, which is the vector
sum of the orbital dngular momentum !, and the
channel spin s, i.e.
F=T+5s (3.a)
(11) The second invariant quantity for reaction (la) is

the parity .
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The term channel is a convenient notation used to represent

a collection of quantum numbers describing the motion of two particles,
c= (a, 2, s, J, M) o (k.a)

M = z-component of J = Jz'

Thus the term channel refers collectively to the five quantum

numbers in the right hand side of identity (La).

I. [The Relation Between the Scattering Matrix, and
the Cross-Sections

The following approach has been outlined by Blatt et al.
(BL): |

Consider a nuclear state with total angular momentum J,
which has & z-component M = Jz' ' The channel wave number is ka’
~and the relative speed is-Va. Iet ®os be g product of the wave func-
tion, of the nucleus and the particle a. Thus the most general wave
function in channel a consists of a superposition of an ingoing and
outgoing spherical wave. Each of these waves has spin and angular
dependence. At distances large compared to the channel radius, i.e.
radius of compound nucleus, the asymptotic wave function may be
expressed by

-
i

1 M JM
¥ = P51s %as fAOBI e“*’['i(koFa "'5-)] (5.3)

ranJVa

=
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where

tq'§18'= spin and angle dependent wave function with total

angular mdmentum J, oribital angular momentum £,

~and channel spin s.

M J 8 YMI i
Ygre = :E: M}E: (lSMtMslszM) 1 (0,9) XB,M (6.2)
Ml—-l g 7B \ 8
MS,M! = z-component'of s and I respectively
USM‘MBllSJM) = (lebsch-Gordan coefficient (C8)

; Y¥1(9)@)

sphericel harmonic

XS,MB

spin wave function

Since 1/1’Va is different in every channel, the coefficlents
" correspond to an amplitude of probability flux., The coefficients
Agzl and ngl are not independent, and the relation between them is

the scattering matrix

JM . L JIM '
Bdtslll 2;; Ug's'z',asl AQSI (7.&)

It should be noted that the coefficients of the scattering matrix are
independent of M, since different values of M may be obtained by

merely rotating the co-ordinate system. The coefficients Agzl and
JM

Bast will now be determined.
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Consider now an incoming plane wave of the form !
exp(ikaza) xs,ms (Das' Using the asymptotic form of the Bessel
functions involved, this expression may be written as follows:

J (J+s)

exp(idea) xB Ms - L Z Z l%gr%was(zsousjzsm)

J=0 M=-J f= ]J-s]

[} "21+qu§ts gexp[-i(kgra- %’-f)]

+ exp[i(kara - %)]z (8a)
Comparing this expression to Eq. (5a8) and using Eq. (T7a)

the coefficierits are seen to be given by

M _ L (1+1) \]-————— ‘
Ko =1 Ay Vaﬁ(al+l) (zsmslz.am)

(J+3)
JM z+1
B, = E 1 ,’v (a1 +1) (.CSOMS]ISJM)UJ,S,!, _—
I=IJ-BI
(9a) -
Equation (9a) holds in the oS channel.
JM
Ay = ©
JM .
By = © ‘ (108)

Equé.tion (10a) holds in all other channels.

It will be of interest now to determine the wave function due
to any reé.ction, and the corresponding differential cross-section.
For as = a's' the part of the wave function due to é reaction is of

interest. Y the total wave function may thus be split up into an



G
incoming and reaction component, i.e.
= + x
E ?inc Yreac (lla)-

Thus by substituting for the coefficients in Eq. (5a) from

Eqs. (9a) and (10a), and comparing this to Eq. (8a) an expression

may be extracted for Yreac"i‘e'
0 J J+8° J+8'!
. xVa Qa'S'
\EI‘ ((I'S') = l?&.a T B
eac ‘ - g

J=0 M=-J f=|J-s| L'=[J-5"]

. A M . I
X (.ESOMS IE&TM) l. 2L + :.LQJJ.@I"S'eXP[l(kara- 5—)]

x [éoa' Osgr Oiypr - Ua's'z';osz] © (122)
However, since detectors usually cannot select particles of
total angular momentum J and orbital angular momentum £, it is
necessary to change Eq. (lEa) to a system in which the measurgments
can be made. Tﬁe assumptién is made that the detegtors can distingu-
ish between particles of different spin M. q’fil'S' is decompésed

by means of Clebsch-Gordén coefficients, and'\]rrea may be written

as follows:

: v ika,ra, st :
v (a's') = i rqf- £ "B q 8,0)X ., .-
reac i VC‘t' ra' a's! ‘a'slM‘s,;asMs‘( y(P) S"Mg'

M_,=-8'
S :

(13a)
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The angular dependent quantity q(@,9) is known as the reaction
amplitude for the reaction a's'MS, - asMs. The differential cross-
section for this reaction corrésponding to known SPins‘Ms and'Ms,,

L > > '
is measured in a detector at an angle df2 about Q, and is given by

. .2 2 =+
Wyl 0y = Mol lqa's'MS,_asMS(e’m)] a (1ba)
The cross-section for an unpolarized beam of particles is
obtained by averaging out the initial spin states and summing over
the final state
s st
do | " . do | (1
a's';ds T 2841 arsM sesMg . (158)

Mg=-8 Mg, =-8"

An explicit expression for q(8,9) is given in (Bl).. The total
cross-section may be obtained by integrating over all angles in
Eq. (1lhka), substituting this expression in Eq. (15a), and suitably

modifying q(6,p), an expression for ot s s is obtained. The
Ho%

details of the modification are given in (Bl). The expressicn is

o © J+8 J+5'
nka . _
} Sa's' as ='2's1+12 . (2TH1) |8 Bggr Byy
: J=0 L=|J-8| £'=|J-5"|
2
- a's'l';o_tsil (162)
In the case where ' = @ and s' =8, the total cross-section

. from & to &' is given by summing over s' and averaging over 's. The

total number of states of channel « is (2fol)(2JY+l). (28+l) of



these have channel spin s{

‘Hence

J 2 |
i JUalslzl:’alsl.lzl (173')
s Tyl 0" 88!

In the case where @ = @' the same summing and averaging

procedure is used., The elastic scattering cross-section is thus

given by:- ) , .
. - J _ g | : 2
- Al Mo z &q Z; [l e Ua'a'l',assz # ;S:.lUi'S't',dﬂt] ]

J‘ ' 3

i ‘ . ' (18a) .
where

0/ 2J + 1 .
& ~Tar, + D2, + 1) (19a)

Jy and J, = the total spins of nuclei X and Y. Re denotes the
real part.
Equations (17a) and (19a) express the cross-section in terms

of the collision matrix, These relations are purely geometrical,

since no mention of the physics involved has been made,

- II. Relation Between the Nuclear Properties and
the Collision Matrix

The following approach has been considered by Vogt (V1) and
Lane, et al, (Ll).  In this part the notation of a channel c¢ will be
used, since the geometrical section has been completed. As defined

e = (a,1,s8,IJM).



M o

The assumptioﬂ is now made that the total wave function inside

1
the nucleus satisfies the same Schrsdinger.equation as that for the

resonant states, i.e.

He

Iy - BZ, (200)

Eo

n

where
H = Hamiltonian
6 = totél wave function inside nucleus
Zh = wave function for resonant states
In order to give resonant states, the functions Zx have to
satisfy the following boundary condition:
7. = i b Z ’ (21
AT e dr. T Pe X &)

where
r, = channel radius, which is equivalent .

to the radius of the compound nucleus

Equation (2la) is evaluated at the surface of the compound
nucleus SC which is defined by the channel fa@ius T,

The assumption is now made that the wave function 6 can be
written as a product. One element of the product describes QPe

radial variation of the wave function, while the other élement will

be a‘function of all other variables. This product is summed over
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all the channels, i.e.

a=3 7.(r)u, (228)
c |

This decomposition is only useful, if and only if, the following
orthogonality relation holds:
* = :
u/‘ Moot dsc 6cc' (232)

S
e .

The functions Zl also form a complete orthonormal set, the orthogo-

nality relation being:

¥
f 7,7, af = 5, (2ba)
A |

1

where V = volume of compound nucleus
It is possible to expand the actual wave function 8, in -

terms of the function 7 s 1

)‘)

8 =% C,Z ‘ , (25a)

using the orthogonality relation (2la)
B B *
, , C, = f z,* o av (26a)
v
An expression for the radial part of 0 is now derived. The

first equatidn of Eq. (20@) is multiplied by Z *, and the complex

A
conjugate of the second equation of Eg. (20a) is multiplied by 6.
The resulting two equations are subtracted and integrated over the

volume of the compound nucleus. The volume integrals are reduced



-118-

to surface integrals by Green's theorem. Using boundary conditions

(21a). Eqs. (22a), (25a), and (26a), .the following expression

results for &

DILTIE 35 o<1 =4 | IR
c A af S

W=

where . v
1
n° .
© o= *
Ly = [E.m 7 _[Zx i, 48, : (28a) .
e G ; ,
EX = level energy
Using Eq. (23a), Eq. (27a) becomes
1 :
. T n2 8 ‘ :
[2m =< | f lx) = E [5—;—] Rt [ngr = Poimg: (29a)
cc - c'"e!
where
R , = Wigners R-matrix
ce . /

Yo Ve '

Ac “Ac

B E) : (30a)
Z E)\"E o _

]

A
An expression for the radial part of the general wave function,
qc(r) in terms of an incoming I wave function, an outgoing wave
function 0, and the collision matrix is now derived. Equ;ting the
result to Eg. (29a) will then yield the desired connection between
the R-matrix and the éollision matrix U, This expression of U may
in turn be used in Egs. (17a) and (18a) to determiﬁe the cross-sec-

tions.
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-The most generai expression for the wave function @ is a

' combina£i§£.af an incoming wave I, and an outgoing wave 0. Using
the definition of the collision matrix, Eg. (22a), and the ortho-
gonality relation (23&), the radial part of the wave function may be

written as .

1o(r) = ——;7-[Ab1c - I U, A, oc] (31a)

¢
Now equatiﬁg Eqs. (3la) and‘(30a), writing the resulting expression
in matrix form, the following relation between the R-matrix and the
U-matrix is obtained.
i 3 -1 1
U = (ka)® 07" [1-RL]™™ [1-RL¥] I(ka)™® ~ (32a)

The coefficients of A are arbitrarily set equal to unity

O 1
L == -Db =8 + ip
c Oc c c c

I ]
L*¥=-="0.p =8 - ip
c - I c c c

In principle Eq (32&) would be the desired result, It is more

convenient though to introduce the concept of the level matrix

DXX' which connects level A to level A'.
We define
Bl-RL)"l (1-RL*ﬂ = 5 + & 2iP , y. 7 D
. ce'! cc' hk' ce' “Ac “A'e! AAT

(332)
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Multiplying Eq. (33a) by (1-RL)

7 Yy 10
¢ Ac “A'c
Pt TEE [axx' B PE) Diug #
AL
where

£ Dxx“_—] -0 (3ta)
A" .

i
57\.7\." = ; 7KC" 77\."(:” LC” = 3 P)\.J\'rr - A)\.)\,"

The term in-the brackets of Eg. (34a) must be zero inde-

pendently, for it to be independent of Yre and 7h‘c" This defines

the level matrix, i.e.

(Dlx r

lrkl'
2

Since the matrices I and O are diagonal, the combination

1
-1

B
(kcrc) 0c

2
Ic'(kc'rc') 2 may be evaluated together. The incoming

‘and outgoing waves may be written as a combination of a regular

solution Fc and an irregular solution Gc of the Schrgdinger equation,

i.e.

e S ’
FC . Gc Fc

It is now possible to compute (kcrc)

.% a1
(kcrc) Oc Ic'(kc'rc

]

i}

25
2

)'§

The functions fc and Gc are normalized by the Wronskian

iF (36a)
kr° (372)
e e
< -L
Op: TyrlEaT,n)
g sie+d.,) 1 _i
=g = P PRER (382)

where the ec's are the s~-wave hard sphere phase shifts.
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Hence by combining Egs. (38a), (35a), (33a) and (32a) the
relation for Ucc' for a single level is given by
: ' 1
219 'l(9c+9c'){r r }E
e ie Ac “Ac'
Uu , =8, e + T
A

By ®iky = B) =g~  (399)

To obtain the relation cross-section Eq. (39a) is substituted
into Eq. (lTa). For s-wave scattering, i.e. £ = O the cross-section
is given by

P t

. ‘ o
oa,a' = r {l +(§ [Er # E])E} | (k0a)

where
g =5 o EE A 2
g~ TEr T M
Er = Ek +-Ax

s Pc"Pc = total reaction, and scatterihg half widths,

‘

at the half-maximum cross-sectipn,

' = Fc, + Pc, if only one reaction is allowed. L— has a maximum at

=
!

= E_, the resonance energy.

’The écattering cross-section is obtained by substituting
Eq. (392) into Eq.(18a). In addition, since the energies involved
are low, only S-wave scattering will be considered. In this case

gc << 1, and this allows simplification regarding'tﬁe exponential
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functions in Eq. (39a). The scattering cross-section is given by.

, : & By
a0 T :o"-rc By * 2(‘joglﬁgJ "I';‘E) ?Er 2 2yt %
o F - folfaem])
. | ' o (L1a)
where -
cp = potential scattering cross-section = 2= R2
"R = radius of nucleus X

Equation (hia) consists of the‘following three terms:
(i) The first describes the résonance scattering, which
has a maximum at E = Er'
(ii) The second term is a measure of the intereférence :
scattering. |
(iii) The third term-is the constant; energy independent
background scattering.
The energies E and Er arermeasurnd in the center of mass
éystem. ;s Pc' and Pé are physical parametérs which have the units
of energy. These parameters are called total width, I' and partial

width Pc, Fc" Fc“’ one width existing for each mode of decay.
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APPENDIX B ‘ : .

COMPUTATION OF aM(E)

The method used for computing the matrix elements will be
outlined here, and as an example the ahh(E) element will be
considered.

From the definition, Eq. (55)(a) the element is given by

a, (B) = 9>: (E) ff 2% _ ) [z; (E) |x-x" I]Pu(——l)dxd.x' (1.v)

Making use of the definition of the exponential integral 7
function, interchanging the order of integration in such a manner
that the integrals over x' and x are evaluated first, and introducing

a new set of vafiables defined by:

e=(%’5 -1) | | (2.b)

- _ 9an (E) | il - uaz, () |
_ 2 .

x B, (¢) do dp | ' (3.1)
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Substituting for Ph(a) and Ph(w) and evaluating the integral over

¢ first, the following value for the matrix element is obtained:

| 925 (E) gy 140 6"
2, (B) = —535— f f 36" - 300° + 3][a.u T (E)

120 6° 12, _67206° %0 53760

a’u’'x

- * i %
au Et(E) au Et(E) a3u3 Zt3(E) a3u3 Z‘b3(E) 5.5

' s (E =
» A[u,zt(E),a] (exp[- aud t2 )] + exP[* aué t;E)])

Afu Et(E) ]

where

320 . 2880 — 31+u0

o ex_p[ z (E)][auz & * th(E) ’ a3u32t3(E) a.huhz ®)

26880
T 555
a’u’z, ()

The integral over 6 may now be. evaluated, in a similar

fashion as the one over ¢, i.e.

| (&) = 9a2t(E) w.gg 512 512 (l -azt(E)u)
o), (E) = —535 f u |9az, (E) - 22 E(E) " c
= l N

20&80 o8zt (E) . 2011,80 , 389120 e -uaZy (E)
adu3s, 3(E) g l*z (E) ah'uhz (E)

, boheseo < U9 Zt(E) 1105000 . 35512320 o *Ee(E)
a2u’s, 5(E) a6u€zt6(E) g® 62: (E)

b | GRS

Ty 7(E) 10,10 10(E)

z(E) a u s

|

, 189235200 670921*800 + —LHl5068800 ["auEb(E)(1+auzt(E)11\
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In evaluating the integral over u, use is made of the
definition of the exponential integral function. Finally then, the.
matrix element is given by:

\ 360E, l'a,z (E)]

L, 680 (1 [azt (E)]) - 7_99?0E6'[a.zt(£:)]

3z, 3() \16 a'z, ()
IO e (4 )
" ESMoliSZjé?SZt(E)} . li?i;? (léa 4 E9[5’Zﬁ(E)])!
) %% (1% = Ell[zt(E)a]) N o

Now since it is desired to express the expression (4.b) in
terms of exponentials and a single exponential integral function,

the following recursion relation is used (06):

_ En(x) ;i'—l- [e_X - x En_l(x)]

Thus 1 [ —x
E)_I_(x) 3 [e - x E3(x)]

E, (x)

ete., : {5.b)
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In this way all thé,exponential integral functions occuring
in the various matrix elements could be expressed in terms of

E3 EQ%(EH and e-azt(E). The following result was obtained for

ahh(E)°
—aZt(E) 1 ; —aZt,(E) V
a (E =9 L . L o o + 2 + 3le
() [9 2ar, (E) aEZtE(E) o’z 3@®) ot 3(m)
4 612e"aZt(E) _ %0 5820e'azt(E) o 3341»09."&21‘@)
al‘ztl* (E) a52t5 (E) a5>:t5 (B) a62t§(E)
+ 12600 128520e'aEt(E)
aTZtT(E) a7>:t7(E')
_.?_8% _—a.):‘.t(E) ay (E + 1 - l% 6.b-
' ) %e ( %) | | e

The above'mentioned substitution could heave been carried out

as part of the computer program. However, in an effort to minimize

the round-off error which might be introduced and which would grow

with increasing order of the exponential integral functions, it was

decided to change the matrix elements by hand.
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APPENDIX C

AN ALTERNATE METHOD FOR SOLVING THE INTEGRAL EQUATION

A method of solving Egq. (54), which yields an exact solution
in the case of constant cross-sections, will now be outlined. ' This
exact solution is important in the method used to solve Eg. (S&) and
is given by Eq. (68). Equation (54) may be re-written in the follow-

ing manner for the case of one nuclear type:

¥z (=)

_f.:-(-i?) = I(E) f _(E'_)' f(E ) m Hy S(E) ’ (l.C)
E

where - }
fo"_(E)
£f(E) = )
£ () '
4. e
TAOO(E) b aom(E)_
‘ ae) |
a (B) ..... a (E)
,@OO(E)
a(®) =|
"(z)
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From Eq. (l1.c), the infinite mass approximation may be derived by,
evaluating the scattering collision density at the lower limit of

the integral i.e.

~ 2 (E) g
£ (E) = A(R) ETTET f (E) + s(E) _ ,(2.c)l

Solving for flm(E) from this equation, we get

T o~ ZS(E) —
5 i (E) =|I - A(E) m S(E) ‘(-3.0)

where I is the unit matrix.

Equation (l.c) may be re-written in the following manner

. E (E ) —_—> ZS(E) — ~ ZS(E) —
f(E) A(E)[U/n ETTETS £(") i- a)E' " T (E) f(gﬂ + A(E) f;zﬁj £(E)

+ S(E) _ (b.c)
The following assumption is now made:

P

7(E) = 27(m) + Y BE) & (5.c)

ﬁn(E) are correction terms to flm(E), and € are parameters. Giving

the bracket in Eq. (4.c) a weight €, since it is assumed to be
-small compared to the rest of the right hand side of Egq. (k.c),

Eq. {5.c) is substituted into Eq. (4.c), and terms 6f equal order
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in € are equated i.e.

| = (B')
£ (E) +Z g (E)E = EA(E)[f -—(E—,—y f (E) W

n=1
_% ;ﬁ(Ei, +HZ: ﬁ+1A(E)[ EE/az_ts((;)y
x 0, (E") e fg iigi E;(E)]
i € A(E) 7—5 /) (E) + A(E) m £ (E)
n=1
+ 5(8)

Using Eq. (2.c) and solving for.E;(E), the following equation

results:
zw: [ A(E) - g (m)
‘ad ) E_(ET]
n=1 5 .
T @) o= w Z® @
= e A(E)[ —CE-,—)- f (E ) T-)E". ~ %, (E) i (E)]
o .
i E/C s (gry _, s () _,
+z€n+l K(E)[ f _((ET'—; 2 (E ) = a)E' - ESEE; gn(E)]
n=1 E
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Now by equating equal orders in €, it is seen that

e s @ T S ) Fg, 5@
B, (E) =[I“A(E);E:;TE—)] ‘-“‘(E{ J = - N ) fm(E)]

- e ZE)TL Bor (&) 7. (&) 5 (B) -
g (E) = [I'A(E) m] A(E)[ f T (&) (L-0)E" dE' 'W"ﬂn-i(ﬂ:):l
E : :
o (8.c) .

The value of € in Eq. (5.c) is now eqguated to .unity, since

€ is arbitrary, ‘and the solution is given by

EZE) = fim(E) + Z E;(E) (9.c)
n=1

Thus to solve the equation the following method should be

used:
—

(i) Using Eq. (3.c), the value of £ (E) is determined.
-— =
(ii) Using Eq. (8.c), ﬂl(E) . ﬁn(E) are determined.
(iii) These values are then substituted into Eg. (9.¢),
and the solution is obtained.
The case where the cross-sections are assumed to be constant
yields a result of particular interest. In this case the only energy
.
dependence of flm(E) is due to the external source, In this par-

ticular case this varies as 1/E. This makes it possible to evaluate

% —
the integrals of Eq. (8.c). It is found that ﬁl(E) = 0, and thus all
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— -
the other #(E)'s are zero, since they all depend on ﬂl(E). The
solution tolthe case of constant cross-section is thus given

exactly by the infinite mass approximation

— i - 5 ot
£(E) = £7E) = [I " KE—S] % 4 _
t
Set N ~' NES
B = [Iﬁ- A.Eq;J
Then

(&) -1 ﬂlj—]g%i‘ﬁ - | (10.¢)

Equation (10.c) is identical to Eq. (68)..

_ This solution seems to be physically reasonable, since the
infinite mass approximation and the wide resonance approximation
are analogous. In the limit of an enérgy independent éross-section
the wide resonance cross-section is exact, sincé this case may be

thought of as an infinitely wide resonance.
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