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.ABSTRACT 

GEOMETRICAL EFFECTS ON THE RESONANCE 

.ABSORPI'ION OF NEUTRONS 

by Hans Ludewig 

An investigation was conducted to estimate the error when 

the flat-flux approximation is used to compute the resonance 

integral for a single absorber element embedded in a neutron source. 

The investigation was initiated by assuming a parabolic flux 

distribution in computing the flux-averaged escape probability which 

occurs in the collision density equation. Furthermore, also assumed 

were both wide resonance and narrow resonance e.xpressions for the 

resonance integral. The ~act that this simple model demonstrated 

a decrease in the resonance integral motivated the more detailed 

investigation of' the thesis. 

An integral equation describing the collision density as a 

function of energy, position and angle is constructed and is subse

quently specialized to the case of energy and spatial dependence. 

This equation is further simplified by expanding the spatial depend

ence in a series of Legendre polynomials (since a one-dimensional 

case is considered). In this form, the effects of slowing-down and 

flux depression may be accounted for to any degree of accuracy 
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desired. The resulting integral equation for the energy dependence 

is thus solved numerically, considering the slowing down model and 

the infinite mass model as separate cases. 

From the solution obtained by the above method, the error 

ascribable to the flat-flux approximation is obtained. In addition 

to this, the error introduced in the resonance integral in assuming 

no slowing down in the absorber is deduced. Results by Chernick 

for bismuth rods, and by Corngold for uranium slabs, are compared 

to the latter case, and these agree to within the approximations 

made. 
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CHAPTER I 

INTRODUCTION 

An important element in the balance relationship describing 

the fate of neutrons in a chain reactor cycle is resonance absorption. 

This refers to the radiative capture of neutrons having energies 

within a band in which the absorption probability, or .cross-section, 

fluctuates strongly for many materials common to nuclear reactors 

238 (e.g. U ). The accepted definition of the resonance escape 

* probability, P, is (Wl) : "the ratio of t he number of neutrons which 

reach the l/v region during slowing down, to the number which reach 

the resonance region." The l/v region is the energy band below the 

lowest resonance . 

The probability P is not only important in the determination 

of reactivity (a measure of the amount of "imbalance" in the chain 

reaction), but in the conversion factor as well. The latter factor 

describes the amount of fissionable material transmuted from fertile 

material. The reactivity is proportional to P while 30% to 50% of 

the conversion factor is proportional to (1-P). For example if P 

were of the order of 0.85, a 10% uncertainty in (1-P) would cause a 

1.5% uncertainty in reactivity and a 3% to 5% uncertainty in the 

conversion factor. Both these factors are of considerable importance 

in the economics of power reactors. 

* Refer to Bibliography 
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Following convention we will consider for the most part, the 

resonance integral I, which may be written (Ml): 

where 

ff F(~,E') I= 1 - ·P = q(t,E') 
L::a(E') 

dE' dV 
L::t (E') V 

(1) 
V E' 

F(~ , E)dE = neutron coll.ision density at energy ·dE about 

q(f: ,E) 

0(r,E)dE 

E and at position r 
= !:t (E) 0(~,E). 

-+ neutron slowing down density past E, at r, which 

would obtain in the pure, infinite moderator. 

neutron flux at an energy dE about E and at 

position 1. 

macroscopic total cr oss- section as a function of 

energy. 

macroscopic absorption cross-section as a function 

energy. 

V =volume of absorber material. 

The first significant calculation s of resonance integrals were 

semi- empiric&L f ormulas (W3, Gl ). Improvements over these methods 

made use of: 

( i) more detailed cross- section vs . energy information, 

(ii) increased knowledge of flux as a function of en ergy 

and position. 
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The functional dependence of the cross-section on energy was 

determined by Wigner and Breit (W2) and subsequently, using a dif-

ferent method, by Blatt et al. (Bl), Vogt (Vl), and Lane et al. (Ll). 

The derivation of the latter method appears in Appendix A. The 

resonance cross-section as computed by the above methods appea~s to 

be satisfactory for the purpose of determining the resonance integral. 

Therefore increasing the accuracy of the calculation of I should 

result mainly from improving the determination of 0(t,E). 

In early approaches the flux was assumed to be spatially con-

stant. This simplifies the resonance integral and the equation used 

to determine the flux. This model is known as the flat flux approxi-

mation, and is physically valid only under certain conditions, to be 

discussed in Chapter II. 

On intuitive grounds, Chernick (Cl) proposed an equation for 

determining the flux of neutrons, independent of position, in a 

single lump of absorbing material surrounded by a source of neutrons. 

The equation has the following form: 

[

E/a 0(E') ~ (E') 

(l - p(E)) (1 - a) E' 
E 

dE' + S(E) (2) 

where 

p(E) =average neutron escape probability from the 

absorber lump, at energy E 

S(E) =independent source of neutrons in the lump at 

energy E 
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a = ( A _ 1 )
2 

A+l 

A M/m 

M nucl ear mass 

m = neutron mass 

An equati on of the above form was also constructed for a 

lattice of absorber lumps in a source of neutrons (Rl) . 

In spite of the fact that Eq. (2) is considerably simplified 

by neglecting the detailed spatial effects, it is still rather 

difficult to solve. Thus further approximations are necessary. As 

an initial simplification, only one resonance will be considered at 

a time. The cross-section is thus described by a constant scatter-

ing cross- section for all energies, to which is added the resonant 

scattering and absorption components at the appropriate energy. The 

cross-section of the absorber appears as in Fig. 1. 

The width of the resonances usually considered varies over a 

large range (BNL- 325). In view of this fact two assumptions which 

permit approximation of the integral term in Eq. (2) are (Cl, Dl, Ml): 

( i) The resonance width is narrow compared to the maximum 

energy- loss- per- collision of neutrons with absorber 

nuclei . In other words, the resonance is narrow com-

pared to the range of integration in Eq . (2) . This 

is known as the narrow resonance approximation, and 

will be subsequently referred to as the N.R. 

approximation. 
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(ii) The resonance width is wide compared to the maximum · 

energy loss per collision of neutrons with absorber 

nuclei, i.e., the resonance is wide compared to the 

range of integration in Eq. (2). This is known as 

the wide resonance approximation, and will be sub-

sequently referred to as the W.R. approximation. 

In the case of the N.R. approximation the width of the resonance 

is considered to be so small that it has a negligible effect on the 

energy distribution of neutrons . To obtain the first order solution 

to Eq. (2) in this case, it is thus permissible to substitute the 

asymptotic flux solution into the integrand. The asymptotic flux 

may be obtained from the integral equation by setting L (E') equal 
s 

to the potential cross-section, shown in Fig. 2, and letting the flux 

in the integrand vary as l/E (Ml) • The integral can now be evaluated, 

and the resulting solution for the flux may now be used to calculate 

the resonance integral. 

In the W.R. approximation, the resonance is considered to be so 

large that it is impossible for a neutron to scatter out of its range 

when colliding with absorber nuclei. In this case, the assumption is 

made that the product 0(E) L (E) is constant over the range of inte
s 

gration, and as a first order approximation the integrand is 

evaluated for convenience, at the lower limit. Physically, the fol-

lowing meaning may be ascribed to the approximation: the absorber 

nucleus is assumed to have an infinite mass compared to the mass of 

the neutron, arid thus allows no change in energy during a collision. 
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In view of this, the W.R. approximation is li\J.so known ~~ th@ in£init~ 

mass approximation. In this case, the flux is represented by a linear 

equation which may be solved. The resulting flux may then be used 

to compute the resonance integral. The approximations outlined 

above have also been used by Dresner (Dl) and Bl~sser (B2, B3) to 

compute the resonance integral. The validity of the N.R. and W.R . 

approximations is discussed at the end of Chapter II. 

Chernick et al. (C2) subsequently refined the above procedure 

by iterating once the N.R. and W.R. solutions to the flux equation. 

This iterated result is a more realistic solution to the integral 

equation, since it is of the Fredholm type (C9). Using this improved 

flux, a more realistic estimate of the resonance integral may be 

obtained. Thus by comparing the more realistic N.R. and W.R. 

approximation to the unaltered N.R. and W.R. approximation for the 

resonance integral, it is possible to obtain an estimate of the 

error involved. Furthermore, it is of interest to note that the dif

ference between the improved W.R. approximation and the unaltered 

W.R. approximation is a measure of the error introduced in neglect

-ing energy changes of the neutron when colliding with absorber 

nuclei, i.e., in neglecting slowing down of the neutron. A further 

discussion of this slowing-down effect appears in Chapter III. 

M~ler (M2), .using an iteration method similar to Chernick's , has 

carried out an analogous computation of the resonance integral and 

an estimate of the corresponding errors. 
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The method outlined above, due to Chernick, was extended by 

Levine (L2), anq the results of this extension were compared with 

the results of Monte Carlo calculations. A perturbation scheme was 

constructed by Chernick et al. (C3) to solve an equation similar 

to Eq. (2) for the case where the absorbing nucleus is Bi209. In 

computing the flux by this method, the absorption of the nucleus 

was neglected. This flux was then used to compute an improved 

resonance integral. The values of the resonance integral for the 

N.R. and W~R. approximations were also computed. In addition to 

this, the resonance integral was computed by a Monte Carlo method. 

Assuniing that the Monte Carlo estimate of the resonance integral 

is closer to the true value, the corresponding errors introduced by 

the approximation could be estimated, including the error intro

duced by neglecting slowing down, i.e., a comparison with the W.R. 

approximation. In an analysis by Corngold (C4) , the error intro

duced by assuming infinite absorber mass has been estimated for a 

uranium-water lattice. The equation used for this analysis was 

similar to Eq. (2). This error is identical to the error introduced 

-by assuming a W.R. approximation, or no slowing down. 

Finally, a method which was first applied to a homogeneous 

case by Goldstein and Cohen (G2), and subsequently to a hetero-

. geneous case by Forti (Fl), has been used for cases where the 

resonance is neither wide nor narrow. In this method, a linear combi

nation of the N.R. and W.R. approximations is iterated once in the 

integral equation. This results in an improved solution for the 
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flux which may then be used to compute a resonance i~tegral for a · 

r e sonance of intermediate width. The proportion of N.R. and W. R. 

solution used in the initial solution is determined by the width of 

the resonance under consideration. 

In all the above heterogeneous cases considered, no detailed 

account was taken of the spatial flux var i ations within the absorber 

element. The spatial effects were integrated out , and it will be 

shown in Chapter II that Eq. (2) is a volume-averaged transport 

equation. Equat~on (2) may be derived from the general transport 

equation by neglecting angular effects , integrating out the volume 

effects, and by assuming that the flux is spatially flat. This is 

thus commonly known as the flat flux equation, as pointed out 

previously. 

Corngold and Takahashi (c5, Tl, T3) were among the first to 

consider the effect of including a spatial variation in the computa

tion of the resonance integral. The geometrical configurations con

sidered were slab and rod lattices, respectively. In both cases the 

starting point was the exact transport equation. This equation was 

simplified, by neglecting angular effects and evaluating the integral 

term which accounts for slowing down of the neutrons by collisions with 

absorber nuclei, by means of the W.R. approximation, i.e. , no slowing 

down in the absorber lump was considered in this approach. By com

paring the W.R. approximation using the solution to the flat flux 

equation, to the W.R. approximation using the solution of the equa

tions developed in (C5) and (Tl), it was. possible to estimate the 
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error introduced by neglecting spatial variation of the neutron flux 

within the absorber lump. 

Further estimates of the error introduced in the resonance 

integral by the flat flux approximation have been made by Dresner 

(Dl), Goldstein (G3), and Berg (B6). Dresner's estimates of the 

-+ ~ 

error considered only the cases where ~t(E)£ >> 1 and ~t(E)£ << ·l, 
~ 

where £ =mean chord length of the lump. However, there is a large 

• range of practical interest between these two limits. ·In the compu-

tation by Goldstein and Berg, a variational method was utilized to 

estimate the error. Goldstein expressed the error in closed form as 

a function of mean chord length of the absorber lump. The computation 

carried out by Berg was based on a numerical technique. The methods 

. of Goldstein and Berg, together with the general problem of the error 

associated with the flat flux approximation, will be considered in 

greater detail in Chapter III. In these error estimates no account 

was ta.ken of the slowing down effects, i.e., in all cases the W.R. 

approximation was used. 

In all the above calculations, except those appearing in 

(~5), (Tl), (M2), (G2) and (B6), the Wigner rational approximation 

was used for the average escape probability p(E). This approximation 

is given by (Ml): 

l 
p(E) = ------

1 + 7 ~t(E) 
(3) 
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The use of this expression introduces further errors. However it 

simplifies the analysis to the point where purely analytical methods 

are possible. Furthermore, certain convenient similarities between 

heterogeneous and homogeneous computations for the resonance integral 

exist when this approximation is used --- these will be pointed out 

in Chapter II . Efforts to improve the accuracy of the Wigner rational 

approximation, while still retaining its basic structure, were made 

by Bell (B4), Nordheim (Nl), Sauer (Sl) and Otter (01). 

Finally, it should be noted that the resonance integral can 

be obtained directly by a variational technique. All approximations 

are then introduced in the functional. This approach has been used 

by Goldstein and Cohen (G2) for homogeneous systems, and by Gast (G4) 

for heterogeneous systems. In the computation carried out by Gast, 

a volum~ averaged functional was used, thus neglecting spatial effects. 

It is evident from the foregoing discussion that all past 

theoretical estimates of the resonance integral have included at 

least one, and in some cases two, of the following approximations: 

(i) Neutrons do not slow down when colliding with 

absorber nuclei, i .e., W.R. approximation. 

(ii) The neutron distribution within the absorber 

elements has no spatial structure (flat flux 

approximation). 

(iii) The average escape probability may be approxi-

mated by the Wigner rational approximation. 
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In this thesis the resonance integral is computed for a slab 

of absorbing material in a source of neutrons, without resorting to 

any of the above approximations. From this computation, the effect 

which these approximations have on the resonance integral is 

evaluated. In Chapter III a rough approximation is made of the error 

introduced in the resonance integral by neglecting the spatial varia

tion of the flux. An exact collision density equation is formulated 

in Chapter DI. In Chapter V the resonance integral and fractional 

errors in the resonance integral are formulated. Chapter VI is 

devoted to a discussion of the numerical methods used to solve the 

integral equation and resonance integrals. A discussion of the 

results and conclusions follows in Chapter VII. 
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CHAPTER .II 

BASIC PHYSICAL CONCEPTS 

It has been pointed out that the problem of accurately com-

puting the resonance integral is two- fold: 

(i) The cross-sections have to be known as a function 

of energy . 

(ii) The flux has to be known as a function of energy 

and pos i tion. 

In this chapte~ the energy dependence of the cross-sections 

involved is discussed and the basic transport equation, which will 

subsequently be used to determine the f l ux, is derived . In addition, 

· the flat flux equation is der ived, and the N.R. and W.R. approxima-

tions to the resonance integral are discussed. Finally the validity 

of the N.R. and W.R. approximations is considered . 

A. Single Level Breit-Wigner Line Shape for Low Energy Resonances 

. The total, absorption, and scattering resonance cross-

sections for the nuclei involved are given by (Ml); 

r r 4:n:R r (E- E ) 2 
ot (E ) 

:n: n n r 
2 gJ 

(E-E )
2 

+ (r/ 2 / 
+k gJ 

(E- Er)
2 

+ (r/2)
2 + ·4:n:R 

k r 

r r 
o (E) :n: n l = - g 

(E- Er )
2 

+ (r/2)
2 a k2 J 

:n: 
(r )2 

4:n:R 
~ · r(E-E) 

2 o (E) n n r 
(4) = - g 

(E- E )2 + (r/ 2 )2 +k gJ 
(E-E )

2 
+ (r/ 2)2 + 4:n:R s k2 J 

r r 
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where 

k = wave number of the neutron in the neutron-nucleus center 

g 

of mass system 

(2J + 1) 
statistical spin factor 2 (2I + l) 

J = spin quantum number 'of compound nucleus 

I spin quantum number of target nucleus 

R potential scattering radius 

E = neutron energy in center of mass system 

E resonance energy 
r 

r neutron resonance width (in units of energy) 
n 

r radiative resonance width 
')' 

r total resonance width. 

Equations (4) may be sim~lified somewhat by defining the 

following quantities: 

(5) 

where cr.'p is the potential scattering cross-section - actually a 

measured constant from which R may be determined --- and er is the 
0 

maximum value of the resonance cross-section at E = E • 
r 
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Substituting definitions (5) into Eqs. (4) gives: 

(J 
a 

(J 
s 

a r 
0 7 

r (1 + x
2

) 

CJ r 
o n 

r (1 + x
2

) 

+ CJ p 

(6) 

A derivation of these formulae appears in Appendix A. 

B. The Transport Equation 

To determine the energy and space dependen.ce of the neutron 

flux .we use a form of the general transport equation. This has been 

described often in the literature (D2, Ml, W4). It will be useful 

to outline the assumptions involved and discuss the construction of 

the equation. 

The following assumptions will be made regarding the motion 

of neutrons through matter : 

(i) The motion of neutrons is described in terms of 

point collisions with nuclei. This results from 

disregarding all but the short-range nuclear 

forces. Neutron-neutron collisions are neglected 

since the neutron densities are maµy orders of 

magnitude lower than densities of .the nuclei. This 

linearizes the transport equation. 
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(ii) Between collisions, the neutrons travel in straight 

lines at a constant speed. 

(iii) Since atomic radii are large compared to nuclear 

( -4 radii the ratio being approximately 10 ), the 

neutron will, on the average, pass through a large 

number of atomic systems between collisions. Hence 

for neutrons traveling at a given speed through a 

given medium, the interaction probability per unit 

path length is independent of position and direction. 

The above assumptions are all physicaliy reasonable, and a 

mathematical model based on them describes the motion of neutrons in 

a nuclear reactor quite well. 

With the above assumptions in mind, we construct an integral 

equation, which describes the collision density in a non-reentrant 

lump of absorbing material, surrounded by a neutron source. The 

following notation will be used: 

-+ 
r = the position vector of a neutron within 

the lump. 

-+ n the unit vector in the direction of motion 

of the neutron within the lump. 

E = the energy of the neutron considered. 

-+ -+ -+ 
F(r,D,E)dVdDdE = the total collision rate in the volume 

-+ 
element dV about point r, for neutrons 

-+ -+ 
traveling in a direction an about n, and 

having an energy dE about E . 
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+ + + 
S(r,n,E)dVdildE that part of the total collision rate in the 

+ 
volume element dV about point r, for neutrons 

+ + 
traveling in a direction dn about n, and 

having an energy dE about E, which arises 

from an independent source, inside or out-

side the lump. 

Two factors contribute to the collision rate of neutrons with-

+ 
in the lump in the volume element dV about r, traveling in direction 

+ + a.n about n, and having energy dE about E: 

(i) a contribution from the collision rate within the 

+ 
lump from dV' about position r', traveling in 

+ + 
direction dD' about D' and having an energy dE ' 

about E' (slowing down source), and 

(ii) a contribution in the volume element dV about 

+ + + 
position r, traveling in a direction dD about n, 

and having energy dE about E, from the independent 

source . In our case the independent source is 

entirely external to the lump . 

• The general transport equation in the form that is useful 

here, is simply the combination of these two contributions. Thus: 

f 
L (E') 

++ + ++ + f[ ++ s F(r,D,E)dVdildE = S(r,n,E)dVdildE + + F(r!,n',E') L (E') 
E' D' V' t 

+ -+ L (E)exp(-L (E) r;-~J) + + 
K(E'D'-En) t t · . dV'dD'dE'dVdDdE 

. + + · 2 
4rrj r-r 1 I 

(7) 
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+ + 
K(E' ,n' -En)d.E =probability that as a result of a scattering 

event, a neutron will change from a direction 

+ + an I about n I, and an energy dE' about EI' to 

+ + 
a direction dn about n and an energy d.E about 

E. 

Lt(E) =total macroscopic cross-section at energy E. 

N crt (E) 

N density of nuclei 

crt(E) =total microscopic cross-section at energy E. 

Ls(E) macroscopic scattering cross-section at energy 

E. 

We have used assumption .(iii) to write the probability that 

+ 
a neutron having energy in dE about E will travel .from dV' about r' 

+ 
to dV about r and undergo a collision in dV, as 

Lt (E) exp (-Lt (E) ,;_;, D 
+ + 2 

4rt / r - r' I 

Equation (7) is perfectly general, and with the assumptions stated · 

gives an exact description of the total neutron collision density . 

C. The Flat Flux Approximation 

Developing the flat flux approximation from Eq. (7) enables 

us to show the restrictions implied by the assumption. The following 

prpcedure is followed: 
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(i) Equation (7) is integrated over the lump. A 

volume averaged collision density is defined. 

By this step the direct spatial dependence is 

removed from the flux. 

(ii) The .scattering is assumed to be isotropic in the . 

-+ 
center mass system. Then by integrating over n 

all angular effects are removed from the equation. 

(iii) Finally the flux is assumed to be spatially flat. 

Assuming isotropic scattering the following averaged 

quantities are now iptroduced. 

f(E) = 4;V !.. f F(;,n,E)dVcll 

n v 

s(E) 4~V !.. f S(;_,n,E)dVdQ 

n v 

collision rate averaged 

over volume and angle 

source rate averaged over 

volume and angle. 

The probability that a neutron in dV will not have a collis-

ion in volume element dV', integrated over the lump is denoted by 

-+ 
by P(r,E) and is given by: 

->-
P(r , E) 1 - f 

V' 

L:t (E) exp(-L:t (E) I;_;, I) 
41( I ; - ':· / 2 

dV' 

-+ 
P(r,E) is thus the probability of a neutron escaping from the lump 

-+ 
at an energy dE about E, from a volume element dV about r. The col-

lision density equation now becomes 
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f(E) =~If 
V' E' (8) 

where 

-+ 11-+-+ -+ F(r,E) = 4n ~ F(r,n,E)dn . 

n 

Now introducing the volume-averaged escape probability 

I\r(E) = ~ f P(;,E)dV , 

v 

adding and subtracting this quantity from the term in brackets in 

Eq. (8), it is seen that it may be written as: 

f(E) = [1 - J?v(E)] f I: (E') 
I:s(E ') f(E') k(E'--E)dE' 

E' t 

+ s (E) 

I: (EI ) -+ 
I::(E') F(;;E') k(E'-+E) [P(;;E) -Py(E)] dr'dE' 

(9) 

From the definition of p (E) it is seen t hat the third term v 

on the right hand side of Eq. (9) vanishes in the case of a spatially 

flat flux distribution. 

Thus the remainder of this equation constitutes the flat 

flux equation. To proceed further we assume that outside the lump 

the neutron flux is spatially flat. We may then make use of the 

fact that the spatially-flat flux inside the lump, produced by a . 

spatially-flat flux outside the lump, is equal to the product of 
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the average escape probability and the flux outside the lump 

(Ml, C6). Since s(E) is a collision density, it may thus be written 

where 

0 (E)dE 
0 

the spatially-flat flux outside the lump 

in energy dE about E. 

For the sake of convenience, the energy variable is changed 

to a lethargy variable, where lethargy is defined by: 

where 

u £ 
. E* n

E 

E* = reference energy 

Furthermore, the assumption is made that the spatially-flat 

flux in the moderator is that which would result from slowing down 

in an infinite, non-absorbing moderato~. Since this asymptotic dis-

tribution in terms of lethargy variables is a constant, the flux in 

the moderator is constant with respect to both lethargy and spatial 

variables. In lethargy variables k(E '-·4 E) can be shown to be given 

by (Ml): 

k(E'-+E)dE' 

Thus, Eq. (9) can be written 

u 

f(u) = [1- pv(u)] f . 
u~l!. 

u'-u 
e du' 
l - a 

(10) 
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1 
t:::. = Ln -a 

Equation (10) is of the same form as Eq. (2), which was 

proposed on intuitive grounds by Chernick . The assumptions which were 

necessary to derive Eq. (10) restrict its applicability in the 

following manner (Ml) : 

(i) The absorbing lumps must be widely spaced relative 

to the slowing down distance in the moderator. 

(ii) The size of the absorbing lump must be larger than 

the mean free path in the moderator. 

D. The W.R. and N.R. Approximations 

To compute the resonance integral, Eq. (10 ) has to be solved 

to obtain the flux. This may be done either by a numerical method, 

or by an approximate analytic method. The approximations used are 

usually the N.R. or the W.R. approximations defined in Chapter I 

(Ml, Dl, Cl). The cross-sections used are described by the single 

level Breit-Wigner relation, given by Eq. (6). The use of this 

cross -section implies that only one resonance will be considered at 

a time. 

Finally, the volume-averaged escape probability Pv(u) may be 

obtained by evaluating the integral defining it . However, even for 

the simplest geometrical shapes, this leads to a complicated function, 

and it is not possible to calculate the resonance integral in closed 

form. 
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An approximation, developed by Wigner (W3) is introduced. 

This is known as the Wigner rational approximation, as defined in 

Chapter I: 

p (u) 
. v 

1 (11) 

where 

+ 4 :y (c6) l = mean chord length = s 
v volume of lump 

s = surface area of lump 

It is possible to use this approximate relation for all geometrical 

shapes, since the dependence of p (u) on geometry is not strong. It 
v 

+ 
is particularly good for small values of l l:t (u) and for large values 

+ 
of l l:t(u). The maximum error is of the order of 10% (Ml). It is 

thus possible to obtain analytic solutions for all geometrical shapes. 

Using this technique the resulting resonance integrals are 

(Ml): 

0 :r( CJ r 
INR = Q 0 2'. 

2E [ 1 + _! (1 - ~~ o) 
r ~ 

(narrow resonance approximation) 

0 :r( CJ r 

1wR 
0 0 2: 

2Er [ 1 (° r Jr + 0 7 
CJ r 

(wide resonance approximation) (12) 
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where 
a + a 

13 
p 0 = [' 

0 
1 

a - -+ 

E gJ rn 
LN a 

5 = (a + a)r 
p 

It is of interest to note that by merely including the con-' 

stant a the heterogenous resonance integral may be deduced from the 

homogeneous resonance integral (Ml). This equivalence is useful 

for predicting resonance integrals from measurements or calculations. 

However, it should be noted that the equivalence is only true 

within the assumptions stated regarding the flat flux equation and 

the Wigner rational approximation. 

An attempt has been made (G2, Fl) to include resonances 

which are neither narrow nor wide. The salient idea used in this 

approach is to make a linear combination of the N.R. and W.R. solu-

tions to the collision density equation; i.e. 

(13) 

The above solution is iterated once more in the integral 

equation (10), and since it is of the Fredholm type, the iterated 

solution is closer to the ex~ct solution than the first approximation 

(c9). The resonance integrals are now computed using both solutions 

and equated to obtain a transcendental equation for the value of ~. 

This value for ~, which is a funct i on of the resonance parameters, 

is then used to compute the resonance integral. 
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E. Validity of the W.R. and N.R. Approximations 

Generally, as indicated in the definition in Chapter I, the 

total resonance width is compared with the maximum-energy-loss per 

neutron collision. It has been pointed out recently (ClO) that this 

approach is not quite correct • For some isotopes the total width 

is large whereas the absorption width is small. Therefore a better 

COmpariSOn iS the ti absorption probability Width II ffieaSUred by 

a(E) = i:a (E)/i:t (E). This is called the "practical width. •t This 

practical width is different from that suggested in the literature 

(Ml, N2). 

The value of a(E) varies with energy, as shown in Fig. 3 . To 

find the half-width at half-maximum, first the value of x = 2/r(E-E ) r . 

. is computed at which the maximum value ~f a(E) occurs. Using this 

value of x, it is possible to determine the value of the half-maximum 

value of a(E), a /2. Since the half width at the half-maximum max 

value is desired, the value of a /2 is equated to a(E) and from max 

this the value of x at half-maximum may be obtained. From this value 

of x the practical half-width may be defined. 

Proceeding thus in the above manner, the absorption prob-

ability is given by: 

a(E) 
a (E) a 

a r 
0 (14) 
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where 

The maximum value of a(E) occurs when x 

maximum value is given by 

a max 
2 

a r 
0 

-b/cr , thus the half
p 

To find the width at half-maximum a /2 is equated to a(E), max 

and the corresponding value for x is determined. From this the energy 

at half-maximum can be obtained, and with this relation the practical 

width at half-maximum may be defined, i.e., 

r [ J 
x 

± ["p + a 
b2 - .£ = g Emax - E max 0 

2 = a a 2 r 2 r p p . . 

E ~ ± [ap + a 2r rb max 0 b r 
+ E - -2 a a 2 2cr r p p p 

Thus by .definition 

It is thus seen that r > r since in most practical cases the prac 

(15) 

term in brackets is greater than unity. Since the maximum energy loss 
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for neutrons when colliding with nuclei at energy d.E about E is 

(1 - a)E, the criterion for a resonance to be narrow or wide at a 
. \ 

resonance energy Er is 

r << (1 prac a)E 
r 

narrow resonance 

r >> (1 - a)E prac r wide resonance (16) 

Between these two limits a numerical solution of the collision 

density equation should be carried out, or an intermediate resonance 

formulation used. 
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CHAPTER III 

THE SPATIALLY FLAT-FLUX AND JNFINITE MASS APPROXIMATIONS 

In the previous chapter, approximate solutions to the col

lision density equation are outlined, and these solutions may be used 

to determine the resonance integral • . The approximations made are 

concerned with the spatial structure of the neutron flux and the 

mass of the absorbing nucleus. In the former approximation, the flux 

is considered spatially flat, and in the latter the mass of the absorb

ing nucleus is assumed to be infinite. 

The first section of the present chapter will be devoted to a 

discussion of the error introduced in the resonance integral by the 

approximation concerning the nuclear mass of the absorber. This 

approximation is known as the inf~nite mass approximation. As pre- , 

. viously noted it is identical to the W.R. approximation. 

The second· section of this chapter . contains a discussion of 

the error introduced in the resonance integral by the spatial approxi

mation to the flux distribution . This approximation is known as the 

f lat flux approximat i on. 

A: Inffnite Mass Approximation 

The infinite mass appr oximation affects the collision density, 

and thus the resonance integral, in two different ways. These depend 

upon whether the resonance is primarily absorbing, or primarily 

scattering. 
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To investigate these effects, let us conside~ a lump of 

absorbing material which is larger than the total mean free path of 

neutrons A.i{· l/Lt' at resonance energy. Near the resonance energy 

two sources of neutrons exist in the lump: 

(i) Neutrons in the resonance energy range may enter 

the lump from a spatially external source . These 

neutrons are absorbed, primarily, in a thin layer 

close to the surface of the lump. This layer is 

the depth of penetration, and is of the order of a 

mean free path in the predominantly absorbing case. 

I t is therefore seen that the nuclei inside this 

layer have a low probability of reacting with the 

neutrons from a source external to the lump. The 

nuclei within the boundaries of this layer are thus 

shielded from the neutron flux. This effect is 

known as self-shielding . 

(ii) Neutrons of higher energy may also enter into the 

resonance energy range by collisions with nuclei 

inside the lump. These neutrons appear, with equal 

probability, throughout the volume of the absorbing 

lump. 

A closer consideration of the scattering and absorbing 

resonance types will now be undertaken. 
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(a) Absorbing Resonance 

In the case of a predominantly absorbing resonance the absorp-

tion half-width is larger than the scattering half-width, i.e., 

r > r . 
l n 

With the above two source terms in mind, the infinite mass 

approximation will be considered. In this case only the first 

source contributes to the neutron flux. This follows from the fact 

that the nuclear mass is assumed infinite, and thus no neutrons 

·lose energy when colliding with a nucleus. Neutrons which contri-

bute to the flux in the resonance energy range originate from 

outside the lump. Thus, due to the self-shielding effect pointed 

out above, the volume of absorber in the central region, which is 

subjected to a low neutron flux, plays a relatively unimportant 

part in the absorption of neutrons. 

In actual fact neutrons enter the resonance energy range from 

both sources mentioned above . Hence one should expect that the 

collision density, and thus the resonance integral, will be under-

estimated by the infinite mass approximation . This conclusion 

holds only for primarily absorbing resonances. 

(b) Scattering Resonances 

If the resonance is primarily scattering, the scattering half-

width is larger than the absorbing half-width (r > r ). 
n l 

Again only the first source term contributes to the neutron 

flux in the infinite mass approximation. Since neutrons are per-

·mitted to remain at the energy at which they enter the lump, they 
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undergo a large number of collisions in this case. In the real 

case a collision with an absorbing nucleus lowers the energy of 

the neutron. After. a certain number of collisions the neutron 

may be _completely removed from the resonance energy range. 

The collision density is over-estimated in this case by the 

infinite mass approximation. Thus the resonance integral will be 

over-estimated. This result is only true for primarily scattering 

resonances. 

Approximate computational investigations of the above effects 

have been carried out for several resonances in u238 (c4), and for 

one resonance in Bi209 (C3). These computations confirm the above 

conclusions. 

It should be pointed out that the flat flux approximation was 

used in the above mentioned computations. Furthermore, in the case 

of the Bi209 computation, neutron absorption was neglected in the 

collision density equation. 

B. The Geometrical Approximation 

The geometrical approximation which is introduced in the col-

lision density equation is known as the flat flux approximation, and 

follows from the fact that the flux is assumed spatially flat. This 

assumption has the effect of over-estimating the collision density, 

and thus over estimates the resonance integral. Three methods exist, 

· by which the fractional error introduced in the resonance integral 

may be estimated: 
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(i) The first approach is based on the last term of 

Eq. (9) of Chapter II. This term is zero when the 

flux is. flat, and positive when the flux is depressed 

in the interior. Since this term is positive the col'

lision density is reduced in the case where a spatial 

variation is taken into account. This consequently 

reduces the resonance in.tegral. 

Investigations by Goldstein (G3) and Berg (B6), 

using this approach, have indicated that the flat-flux 

approximation over-estimates the resonance integral. 

They consider a single absorber element surrounded by 

a neutron source . The absorbing nucleus is assumed 

to have a single resonance described by the Breit

Wigner single resonance line shape. Use is ma.de of 

the infinite mass approximation to solve the energy 

integral in the collision density equation. A varia

tional technique is used to determine the magnitude of 

the correction term. With this correction, the correc

tion to the resonance integral is determined. 

Goldstein (G3) makes use of the Wigner rational 

approximation to evaluate the correction to the 

resonance integral in closed form. The following rela

tion is obtained for the fractional error introduced, 

by a flat flux approximation, in the resonance integral~ 
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rf [~l + LP1)
3 (I + J. ( L 

]y. 
€ = E 

+ Lo))_ 2 

- 1 r 

[1 d '.:r J 
·n + -1 
r - 2L r 1. r 

1 -
)' + 

[~ + 1 ~ r r r -
1 r o r 

0 )' 
. . ~ 

(17) + ( Lo + L ) J. p ' 
,, 

Berg(B6) uses an exact expression for the average 

escape probability, and consequentl y is unabl e to 

determine the desired fractional error in cl osed form . 

In this case a numerical estimate of the combined 

f ractional error f or a number of resonances in u238 was 

computed . The resonances included were at 6 ev, 6 .8 ev, 

21 ev, 36 .8 ev, 66 .3 ev, 102.8 ev and 190 ev. The geo-

metrical configuration assumed, was a slab of thickness 

0.5 cm. This computation indicated that the flat - flux 

approximation over- estimates the combined resonance 

integral, for these r esonances, by 1.6%. 

(ii ) A second approach has been formulated by Corngold (C5) 

and Takahashi (Tl ). In this approach an infi nite lat-

tice of slabs, in Corngold ' s investigation, and of rods 

in Takahashi's investigation is considered . Equations 

defining the neutron flux, as a function of energy, 

p~sition and angle, in these systems are set up . They 

are solved by an appropriate choice of polynomial 

expansion . In both cases the angular variable i s 
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removed by expanding it in Legendre polynomials. The. 

spatial dependence is expressed by an appropriate 

Legendre polynomial series in the case of the slab lat-

tice, and a Bessel function series in the case of the 

rod lattice. Finally, the equation for the energy-

dependent expansion coefficient is solved by using the 

infinite mass approximation. The neutron flux is then 

determined to any desired degree of accuracy, depending 

on how many spatial and anguiar terms, are retained in 

the series. Thus the resonance integral may be com-

puted for either a spatially flat or varying flux 

distribution. From these result·s it is possible to 

compute the fractional error introduced in the reso-

nance integral when a spatially flat flux is assumed. 

These investigations indicated that the resonance 

integral computed using a spatially varying flux is 

larger than the resonanqe integral computed using a 
I 

flat flux approximation. This resul t is contrary to the 

results obtained by Goldstein (G3) and Berg (B6). 

(iii) Finally the third approach may be explained physically 

by considering the spatial distribution of neutrons. In 

an actual absorber element a spatial variation of the 

neutron flux is present, and a large proportion of the 

neutron flux will be close to the surface. Due to this 

spatial distribution of the neutron flux, the average 
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escape probability per neutron is larger in the actual 

case than in the case where a flat flux approximation is 

assumed. This may be seen by noting that the average 

escape probability for a neutron from a lump is dependent 

on its distance from the surface of the lump. 

In this method, a flux averaged escape probability 

pf(E) is determined, as opposed to the usual volume 

averaged escape p (E). It is thus possible to determine 
v 

f the escape probability for a flat flux pf (E) and a 

v v . f 
spatially varying flux pf (E). Since Pr (E) >pf (E), 

more neutrons can· escape from the lump and . avoid 

resonance absorption. Thus the resonance integral com-

puted using a spatially varying flux is less than the 

resonance integral computed using a spatially flat flux . 

To determine the order of magnitude of this error 

the following fractional error will be determined. 

or oI 1 
T dP" r . op 

Q op (18) 

where 

I = resonance integral 

p = average escape probability 
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A one-dimensional slab of thickness "a" will be considered, 
. 

as shown in Fig. 2. The value of op will be determined by 

using a flux with a quadratic spatial dependence for computing 

pfv(E). This is the simplest physically reasonable shape that 

deviates from a flat flux for a symmetric problem. No energy 

dependence will be taken into account when computing op; which 

will·be determined at resonance energy. Q is determined by 

using approxima~e expressions for the resonance integral as a 

function of p (Ml). Once op and Q have been determined, oI/I 

may be estimated. 

The flux averaged escape probability is given by (C6): 

1 fa 2 0(x) 
0 

ja 0(x) dx 
0 

where 

0(x) neutron flux as.a function of position 

E (S) 
n 

oo -u~ 

exponential integral function = ~ eun du. 

For a spatially flat flux the average escape probability is 

given by (c6) 

(19) 

(20) 

(21) 
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Now assume that t he flux i s given by the followi ng quadratic 

distribution 

0(x) =A (x - ~)
2 

+ B (22) 

where A and B are constants which determine the flux shape. 

Substituting Eq . (22) into Eq . (19), and evaluating the 

integrals, the foll owing expression is obtained for the average 

escape probability ; 

{Aa3 } 1 { ~ - E3 [ai:t]} 
p v 

= -2 + 2Ba - aL t 

f 
[ Aa3 J 

31 1
6[: 2Ba 

(a~)] - 1 
[ } + E4 (-zt) JI 4Aa 3 3 4 - E5 2 2.L: 2 

.+ 
a .L:t a t 

[ A 3 J ~ + 2Ba 
(23 ) 

To compute Bp, the difference between Eq. ( 23) and Eq. (21) 

i s taken, i.e. 

Bp Equation ( 23) - Equation ( 21) (24) 

The determination of Q (Eq . 18) will now be carried out. ·. 

Q may be determined for both the W.R. and N.R. approximations, depend-

ing on which approximation is chosen for the evaluation of I . 

Considering the N.R. case first, the resonance integral is 

given by (Ml ) 

I 0
0 
J p(u) .L:t (u ) + [l - p (u)J .L:P 

o (u) 
a du 

ot (u) 
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Hence 

(25) 

In the case of the W.R. approximation, the resonance integral 

is given by (Ml): 

I 

Thus f crt(u) [cra(uJ)2 
du 

[aa(u ) + p(u ) <rs(u)J
2 

~ 
oI 1 

= op I r p(u ) cr (u ) cr (u ) a s du 
[aa(u) + p(u ) as(u )J 

The integrals in Eqs. (25) and (26) are taken over the 

effective range of the resonance. 

It is desirable to evaluate ~ and ~R in closed form . To 

make this possible the Wigner rational approximation is used for 

the average escape probability p(u). (An exact value of p(u) 

would necessitate a numerical solution.) . The integration variable 

is changed from lethargy to energy, and is further modified by the 

following substitution: 

(26) 
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The Breit-Wigner single resonance line shapes are used ~or 

the cross-section. They are given by Eq. (6) in Chapter II. No 

interference scattering .is included in this calculation. The scatter-

ing cross-section is therefore given only by the potential scattering 

term a and the resonance scatteriµg term crs (x) • . Equations (25) and 
p 

(26) now reduce to : 

CX) 

L [1 + x2] [<;+ ~) 2 + x2J a 

~ 
0 (27) a *a· L" [x2 p p dx 

+ (1 + ~)] 

and 
CX) 2 

J [~~ + DJ dx 

13 r/ +A .~ · + x2][x2 
+ c] 

~ 
-00 (28) = - -

l"' r 
dx 

2 (x +A) 

where 
a 

13 
0 

=-a p 

a* 
1 

= a +-
p p + .rn 

A = l 
r 

+ a
0 

lN T 
B = 1 + a 

+ 
lN 

0 
+ 

+ a ) D = 1 + lN(a 
p 0 

c = 1 + 13 
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With the range of integration extending from -co to -too, 

the integrals may be evaluated by integrating around a .suitable 

contour in the complex plane. 

On evaluating the integrals, the following results are 

obtained for Q.: 

and 

{ 

[l + pJ~ ~ l } . 

[l + t3]~ 

= t3 s_ [B ]~ { . (D-A) 
2 

+ __ ...._(D_-_A_C._) 
2
_--:--

r (B-1)
2 (C~l) (B-C)2 (1-C) [CJ~ 

2~D-AB)2 [B]Ui [ 2A 1 1 
+B-1) (B-C) (D-AB) + 4B + (B-1) 

Thus with the value of op given by Eq. (24) and the values 

of QNR and ~ given by the above two equations, the value of 

(29) 

(30) 

5I/I may be estimated for both the W.R. and N.R. approximations. In 

view of all the approximations included in this particular computa-

tion of 5I/I, it should not be expected to indicate more than a 

very rough estimate of the error. 

The value of 5I/I for the 104 ev resonance in uranium is 

.shown in Fig. 21 by the dotted line. Only the N.R~ approximation is 

shawn, ·as the W.R. approximation indicated errors which seem to be 

reasonable only for extremely thin slabs. 
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The estimate of the fractional error, giYen by Goldstein, 

is expressed by Eq. (l 7) . However, since this formula is only 

good for extremely thin slab sizes, it is not shown on Fig. 21. 

In the range of practical interest, Goldstein's formula grossly 

.over~estimates the error. This indicates a positive f r actional 

error for the range investigated . 
• 
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CHAPTER IV 

THE COLLISION DENSITY EQUATION 

The following two factors motivate a further study of the 

fractional errors introduced in the resonance integral by the infinite 

mass and the flat flux approximations: 

(i) The results obtained by various investigators, when 

estimating the effect of the flat flux approximation on 

the resonance integral are contradictory. These esti

mates are discussed in Chapter III. 

(ii) The infinite mass approximation has an important effect 

on the resonance integral; over-estimating it when the 

resonance is primarily scattering, and under-estimating 

it when the resonance is primarily absorbing. The 

physical. background to this phenomenon is also discussed 

in Chapter III. 

This chapter is devoted to the reduction of the general trans

port Eq. (7) into a form more suitable for our purpose. From this 

equation the collision density of neutrons in an absorbing lump of 

material may be determined to various degrees of accuracy, depending 

upon the approximation made in its solution. It is therefore possible 

to obtain an infinite mass or a flat flux approximation to the col

lision density as well as various more accurate approximations. 
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In order to simplify the analytical method while maintaining 

the heterogeneous configuration of the problem, a slab geometry is 

selected. As shown in Fig. 4, an infinite slab of thickness "a", 

containing an absorber, is assumed to be embedded in a neutron source. 

The general collision density Eq. (7), will be modified for · 

this geometry, in which 

I++ 12 2 2 2 r-r' = (x-x') +y ' ==T (x, x', y') 

dV' 2rt y'dy'dx' (31) 

Equation (7) now becomes: 

-+ + 
F(x,n,E)dxdDdE 

+ -+ + 
F(x' ,n• ,E') K(E'O' __.En) 

L:t(E) e-L:t(E) jT(x,x' ,y') I + -+ 

x ~------------ 2rty'dy'dx'dD'dE ' dxdOdt 
4rt T

2 (x,x' ,y') 

+ + 
+ S(x,n,E)dxdOdE 

The expression for T(x,x' ,y') may be re-written by defining 

an angle 0, i.e. 

Setting 

it is seen that 

T(x,x',y') == Ix' - xi 
cos 0 

l 
t ----

cos 0 

T(x,x':,y') == t Ix - x' I . 

(32) 

(33) 
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By substituting Eq. (33) in Eq. (3l), an expression is obtained for . 

y '. This expression will be a function oft, x' and x, i.e. 

y' = '1 t 2 - 1 jx - x' I (34) 

The new expression for dy' is 

dy' Ix - x' It dt 
= '1 2 t - 1 

(3 5) 

Substituting Eqs . (33), (34) and (35 ) into Eq. (32), it is. seen that 

the integral over y' is replaced by an integral over t. The limits of 

integration for t range from 1 to oo, as can be seen from the definition 

oft. The following equation resi.ilts: 

-+ -+ ·= _121 i Jaj ·oo. L:t(E)e- L.tt(E)tjx-x' I + 
F(x,n,E)dxd!LdE ~ F(x' ,n' ,E') 

E' n' o 1 

I 

L: (E') . ..., + + + 
x s K(E'!L' ~ E!t)dtdx'd!L'dE'dxd!LdE L: (EI) 

t 

+ + 
+ s(x,n,E)dxd!LdE (36) 

Now by making use of expression (20), the i ntegral over t is 

written as an exponential integral function . Equation (36) becomes: 

. ..._ L: (E) 11·1 a I: (E') . , -+ 
F (x !i,E)dxd!LdE = t s F(x ' ,ti• ,E') K(E ' n' -t En) · 2 L: (E'J . 

E' n• o t . 

+ + 
+ s(x,n,E)dxd!LdE .(37) 
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We now consider the case of a slab which is a uniform mixture 

of several nuclear species. The appropriate equation for describing 

the collision density in a slab of several nuclear species is obtained 

from a generalization of Eq. (37). The only change required involves 

the integral term, which is the contribution of neutrons from a posi-

+ + 
tion dx' about x', traveling in a direction dn' about n', and having 

an energy dE' about E' . For the mixture, this term must include the 

contributions from collisions with all the various nuclear types 

present. It is necessary then, to add a scattering integral for each 

nuclear species i. 

Defining i = 1, 2, ... N species, 

~(i)(E) =macroscopic scattering cross-section of ith 
s 

species. 

(") + + th 
K i (E'n 1 -+En) =scattering kernel for the i species. 

N 
+ + ~ ~t(E) 

F(x,n,E)dxdndE = ~·~2~ 
i=l 

11 fa ~~i(E') + ,.i "'t. + + 
-~-~ F(x' ,n' ,E' )l\' \ E'n' -+En) 
~t(E') 

E' n' ·o · 

+ + 
+ S(x,n,E)dxdDdE (38) 

For a given S(x,n,E), the collision .density i s completely 

specified by Eq. (38). 

The collision density and source terms are now expanded. 

Legendre polynomials are postulated for the spatial variation, and 

spherical harmonics for the angular variation. The energy dependence 
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of the collision density is expressed by an expans ion coefficient, 

i.e.' 

where 

. Y 1(n) = [(2n + l)(n - £)!]~ P 1( ) Hw 
n 4n(n + l)I J n · µ e (41) 

+ 
and µ = cos 0. The direction n in which the neutron is traveling is 

defined by the polar coordinates 0 and 1jr. 

The following orthogonality relations hold (82, Ml) 

i y Len) 
+ n o .• f3 0 

.c.' na (42) 

n 

(43) 

In general, the values of n and .min Eqs . (39) and (40) cover 

all positive integers, n = O, l, 2, However, for cases involving 

a symmetric source distribution, the odd coefficients of m will vanish. 

The following assumptions will now be made regarding the slab 

and the neutron slowing down process: 

(i) The slab is made up of an isotropic homogeneous 

medium. 
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(ii) The neutron slowing down is due only to elastic 

scattering. 

(iii) All nuclei of the medium are stationary. 

With these assumptions in mind,. it follows that the final 

direction of motion will depend only on the scattering angle between 

the initial and final directions. The following function will now be 

defined: 

.where 

1 (i)(E µ ·E•n 1)dµ dE 
' o' ' o 

= cos 0 , 0 
0 0 

probability that a neutron with energy 

dE' about E', traveling in direction 

-+ -+ 
dD' about n•, is scattered through an 

angle d µ
0 

about µ
0 

and has final 

energy dE about E, 

angle between incoming and outgoing 

neutron direction. 

In the case of an azimuthally symmetric collision, 

K(i)(E'D' ... ED) and .t(i)(E,µ0 ;E~D') are connected in the following 

manner: 

( •) -+ 1 ( " ) -+ 
'K 

1 (E'D' _.En) -= - .t 
1 (E µ ·E'D') .: 

2rc ' o' > 

-+ 
The assumption is now made that .t(E,µ ;E~n') may be expressed 

0 

by the following expansion: 

(44) 
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where . 

(45) 

Expansion (44) will now be written in terms of the directions 
. -+ -+ n' and n, which describe the respective directions before and after 

the collision. Using the addition formula for Legendre polynomials, 

expression (44) becomes 

Expressions (46), ( l~o) and ( 39 ) are now substituted in Eq. (38), 

and by using the orthogonality relation (42) to evaluate the integral 

-+ 
ov~r n', the integral term of Eq. (38) reduces to 

I L:(i)(E') 
...m (E ') E [~ (E)/ • ·/] s L(i)(E·E'Q')dx'dE'dxdQdE rn l L,,t x - x L:t (E' ) n ' > 

Equation (38) may now be written 

11 l~n Y! (n) ( 2ma+ 
1) Pm ( !x - i)r:(E) axdiidE 

co 

=L 
n=o 

i; y!(ii)[~ (2m : 1) pm (
2
ax - 1) s:(E)dxdE 

L--n m-o 
- . 

+ tl ~~9 (2m' +2~)Et(E) £..f:m•(2~' - i)"i_(Et(E) Jx- x' J]~' (E') 

(47) 
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Multiplying Eq. (47) by y~*(n) Ps(2x/a-l) and integrating 

+ . 
over n and x, the foll owing equation is obtained : 

+ s m(E)dE 
n 

L(i)(E·E' ~')d.E'd.E 
n ' ' . 

(48) 

The integration over x i s carried out by using the orthogon-

+ 
ality relation (43). The integral over n is performed by using 

Eq. (42). 

Reconsidering the scattering kernel, expression (44) may be 

rewritten by defining two conditional probabilities, i.e., 

(i) h(i)(µ
0

;E,E;n')dµ
0 

=probability that, given a neutron 

+ with initial .energy E' direction il' 

and final energy E, it has been 

scattered through an angle of 8 
0 

(ii) g ( i )(E;E ' ,n ' )dE =probabil ity that given a neutron 

with initial energy E' and direction 

+ n' , it has final energy dE about E. 

The scattering kernel thus becomes 

L(i)(E µ ·E ' n1 )dEdµ 
' o ' ' o 
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Since there is a unique angle ~(i)[E,E'] through which 

the neutron can be scattered elastically, it is seen that 

h (i)(µ ·EE' D') is a delta function, i e o' ' ' .. , 

(50) 

Substituting (50) into (47) and the resulting expression into Eq. (45), 

it is seen that 

(5l) 

Finally, making the assumption that the scatt ering is iso-

tropic in the center of mass system, an expression may be formulated 

for g(i)(E;E',D ') (Ml) . The following expression results for 

L(i)(E;E',D'): 
n 

1(i)(E·E' D') 
n ' ' 

== 0 otherwise 

for E < E ' <>: E/a. 
l 

(52) 

Assuming now that there is no angular dependence present in 

the collision density, i.e., n == 0 (this implies isotropic scat-

-tering in the laboratory system) 

1(i)(E E'D') == ..,-l--.---... for E < E' < E/a. 
o ' ' (l-ai) E' - i 

(53) 

= 0 otherwise 



Using Eq. 

follows: 

f 
0

(E) 
0 

=: 

f m(E) 
0 

+ 

where 

( 53) as the 

a (E) 
00 

a (E) mo 

s 
0

(E) 
0 

X Pc ( !x -1) dxdx' 
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kernel, Eq. (48) may be written as 

t[/ai ~ ( i )(E')f 0 (E')dE ' 
a (E) s 0 

om (1- ai )L:t (E' )E' 
i=l E 

tf/ai L: (i) (E ' )f m(E' )dE' 
a (E) 

s 0 

mm (1-ai )L:t (E' )E' 

( 54) 

· ( 55a) 

[ pc(2
: - i) S(x,E) dx (55b) 

The source of neutrons from outside the slab has not yet been 

specified. In this problem the assumption is made that the source 

of neutrons external t o the slab has an energy dependence that varies 

as l/E, no spatial dependence, and no angular dependence . Inside the 

sl ab ; the collision density distributio~, due to this external source, 
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will be determined from first-flight transport theory. S(x,E) is 

thus given by (Ml, c6) 

L:t (E) 
S(x ,E) = --

2E 

The first m terms of the collision density expansion are 

determined in the following manner: 

(i) 

(ii) 

Evaluate a (E) 
00 

from Eq. (47). 

a (E), and s 0 (E) ... s m(E) mm o o 

Substitute these in Eq. (46) and solve it for f 0 (E) ... 
0 

. f m(E). 
0 

(iii) These may then be substituted into expression Eq. (39), 

and F(x,E) may be determined: to the desired degree 

of accuracy. 

From Eq. (39) it i s seen that if m = O, the resulting col-

lis ion density is the flat flux approximation for this problem. If 

m = 2, quadratic terms are included i n the collision density. As 

the value of m is increased, better approximations to the spatial 

distribution of the collision density are obtained. 

The infinite ·mass approximation may also be obtained from 

Eq. (54). In this approximation, use is made of the fact that 

neutrons lose no energy when colliding with a nucleus. By evaluat-

ing the scattering collision density under the integrals of Eq. (54) 
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at the l ower limit, i. e .' E' E, Eq. (54 ) reduces to 

f 
0

(E) 
N f o (E) I:( i) (E) 

s 
0

(E) a (E) a (E) . L o s 
0 00 om . I:t (E) 0 

J.:=ll I 

+ 
I · 

N . f m(E)I:(i ) (E ) 
f m(E) a (E) a (E) L o s s m(E) (57 ) 

0 mo mm . I:t (E ) 0 

i=l 

The three steps outl ined above, for obtaining the colli s i on 

density f rom Eq. (54), also apply to Eq. (57) . 

I t i s of i nterest to observe : 

(i ) The i nfinite mass approximation may be made 

without making any assumptions regarding the 

spatial distributi.on. 

(ii ) The flat f l ux approximation may be made without 

making any assumption regarding the mass of the 

nucl eus. 

( iii) Finally, both assumptions may be made, resul ting 

in the usual W.R. approximation. 

In the analysis of the actual probl em, nine matrix el ements · 

and the corresponding three source terms are evaluated. This makes 

i t poss i bl e t o i ncl ude quartic ef fects i n t he spatial distributi on 

of the collision dens i t y. The method f or evaluating the i ntegr als 



-53-

is illustrated in Appendix B. The nine matrix elements and three 

source terms are given below: 

a (E) = 1 -~ (.!_ - E [r(E)]\ 
oo r,EJ 2 3 1

} 

s 
0 (E) == - .tifil.ra (E)- 11 

o E l' oo J 

a20 (E) = X(E); s 
2

(E) = - ~ X(E) 
o E 

. . _:L_ (1 ~ 60E4[r(E)] 300 (1 ) 
a22(E) == 1 - r(E) 2-E3[r(E)] + 2 + 3 20+E5[r(E)] 

r (E) r (E) . 

720E6[r(E)] 

+ r 4(E) 
- 720 (1 - E [r(E) ]) 

r5(E) 6 7 

. a4o (E) = Y(E); a04 (E) = 9Y(E); s 4(E) = - .dfil. Y(E) 
o E 

a44 (E) "1 - r(E) (~ - E3[r(E)]) + )~~) E4[r(E)] 

+ ~84o (% + E5[r(E ) ]) + 7G920 E6[r(E)] 
r (E) r (E) 

+ 33g64oo Eg[r (E)] _ 624~40 (
5
i

8 
_ E

7
[r(E)]) 

. r (E) · r 

+ 11793600 ( 1 + E [r(E)]) + 25401600 
r7 (E) 104 o r9(E) 
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1 ( 1 ( ) 2 0 ( 1 ) 180 (1 ) Y(E)=r(E) 2-E3[rE)] + 2 3+E4[r(E)] - 3 4 -E
5
[r(E)] 

r (E) r (E) . 

840 ( 1 ) ' 1680 ( 1 ) . + 4 5 + E6 [ r ( E) ] - 5 6 - E7 [ r ( E) J 
r (E) r (E) 

Z(E) = - r(E) (~ - E3[r(E) ]) + 2 26 (I9 + E4[r(E) ~- ~12 (~2 - E5[r(E) ]) 
r (E) J r (E) 

where 

2160 8880 ( 5 ) + 4 E6[r(E)] + 5 222 + E7[r(E)] 
r (E) r (E) 

+ 
20160 

[r(E) E8 [r(E)] - ~ + E9[r(E) J] 
r7(E) 

r(E) =a I:t(E) 

a = slab thickness 

I:t(E) =total macroscopic cross-section as a 

function of energy 

E [r(E)] = exponential integral function, as 
n 

defined by Eq. (20). 

(58) 
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CHAPTER V 

FRACTIONAL ERRORS INTRODUCED IN THE RESONANCE INTEGRAL 

In the previous chapter a method is derived for determin ing 

the collision density of neutr ons in a slab of absorbing material. 

In this chapter, the col lision density is u sed to determi ne : 

( i ) the resonance integral to various approxi-

mations, and 

( i i ) the fractional changes or errors introduced 

in the resonance i ntegral by the f l at f l ux 

and infinite mass approximation. 

The resonance integral was defined by (1). Assuming a source 

· of one neutr on per unit volume per unit time, we can ·re-write t his 

definition in the form 

(59) 

for the slab case in whi ch we are presently interested. N i s the 

number density of absorber nuclei . The doubl e integral can be thought 

of as an effective microscopic resonance i ntegral (e .g . barns per 

nucle~s). This parameter (I/N) is the one that is calculated here • 
.... 

Substituting Eq . (39) which defines F(x,n,E) for the case 

n = O into Eq. (59), using the orthogonality relation (43 ), the 

resonance integral becomes 
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f 
0 (i) 

~t (E') o a (E) aE' (60) 

from which we observe that the resonance integral depends only on the 

first coefficient of the collis.ion density expansion. 

Note that the spatial dependence seemingly eliminated in (60) 

is actually included in the determ~ation of f 0 (E) via Eqs. (54) and 
0 

(55). The accuracy with which the spatial effect is accounted for 

increases · as m increases. 

The infinite mass approximation to the resonance integral may 

also be computed from Eq. (60) by employing Eq. (57) to determine 

f 0 (E). Furthermore the W.R. approximation (infinite-mass plus 
0 

. flat-flux) is obtainable from Eq. (60) by simply using Eq. (57) with 

m = O. 

Thus we can estim.ate the errors involved. Specifically, to 

calculate the error due to the flat flux assumption, we first find 

f 0 (E) from (54) with m = o, for a given set of resonance parameters. 
0 

Then this value of f 
0

(E), substituted into (60 ) gives what we shall 
0 

call I /N. For the same parameters, recalculating f 
0

(E) for higher 
0 0 

values of m (even values for symmetric problems) gives the more 

accurate value InfN. Then the fractional error is given by 

oI y= 
I 

0 
- I m 
I 

m 

This may be computed for various slab thicknesses and for various 

values of m. 

~61) 
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Similarly, the error due to the infinite mass assumption may 

be estimated for any desired value of m. Equation (57) is used in 

this case to determine f 
0

(E) which, when substituted in turn into 
0 

(60) gives what we shall call I im/N. Then the error is given by 
m 

8I 
T 

im 
I I m m 

I 
m 

(62) 

where I is the .same as calculated for (61). Again this may be per
m 

formed for various slab sizes and values of m. 

from · 

Finally, the error due to the W.R. approximation is found 

oIWR 
-I-= 

and as before, may be found to any degree m and for various slab 

sizes. 

(63) 
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CHAPTER V:E 

NUMERICAL METHODS 

In the previous two chapters, equations are set up to deter

mine the collis ion density, resonance integral, and fractional 

errors introduced in the resonance integral. In solving these equa

tions we can use either an approximate analytical technique, or a 

numerical technique, utilizing computing machines. 

The approximate analytical technique of solution would sub

stantially reduce the accuracy of the fractional errors in the 

resonance integral. This reduction in accuracy would defeat the 

purpose of the investigation. Therefore in view of the complexity of 

the equation, and the accuracy desired, a numerical technique of 

-solution was adopted. 

In the first part of this chapter the method of computing the 

matrix elements, given by Eq. (58), is considered. Part two is con

cerned with the method used for solving the set of connected linear 

integral equations, (54). The evaluation of the resonance integral, 

and the fractional err ors int roduced in the resonance integral, is 

also dealt with in the second part. Finally, part three is devoted 

to the errors and limitations of the met hod used for solving Eq. (54). 

A. Computation of the Matrix Elements 

Particular difficulties are encountered in computing the . 

matrix elements a04 (E) •·• a44 (E), using the expressions given by 

Eq. (58). These difficulties are due to numerical instabilities, 
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introduced by taking the difference of two large numbers with insuf-

ficient accuracy. This can be seen from the expressions given by 

Eq. (58). In the limit of small r(E), round-off errors in the dif-

ference terms are highly magnified and lead to erroneous results. 

These difficulties may be overcome by computing the elements 

in double precision. However this leads to further computationa1 

difficulties. In a certain range, it is difficult to determine the 

exponential integral function in double precision. This range is 

given by 4 ( jxj( 50, where x is the argument of the exponential 

integral function . 

. A Taylor series may be used to compute the exponential integral 

function in the range 1( jxj(4. The Taylor series takes the form 

x2 x3 
= y +£nix! + x + 2.21 + 3.31 + ··· (64) 

where 

y = 0.5772157 = Eulers constant 

Exponential integral functions of higher order may be determined from 

the recursion relation (c6): 

(65) 

In the case where !xi) 50, the following asymptotic form may 

be used (Pl, C6): 

E (x) = ~ l -x [ 
n x+n 

n + n(n-2x) + n(6x
2 

- 8nx
6 

+ n
2
)] + R(n,x) 

(x+n)2 (x+n)4 (x+n) 
(66) 
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where R(n,x), the remainder, is given by an integral (c6, Pl). 

With Eqs. (64), (65) and (66), it is possible to compute the 

value of E (x) to as many decimal places as is desirable, in the 
n 

ranges indicated. Thus the matrix elements may be computed with as 

much accuracy as is necessary, to give reasonable results in these 

ranges. However, in the range 4 ( jxj( 50, a complicated, time 

consuming method (Hl, M3), is required to determine E (x) in double 
n 

. precision. The range 4 (jxl( 50 cannot be i gnored, since it con-

stitutes an important part of the solution. Since the matrix 

elements are energy-dependent they have to be re-calculated at every 

point considered, thus aggravating the situation. It is thus desir-

a~le to re-write the matrix elements in a different form. This form 

must be such that a sufficiently accurate estimate of the matrix 

elements is obtai nable within a relatively short period of time, for 

all values of the argument x. 

The new f orm is obtained by using the recursion relation 

(65). With the help of Eq. (65 ) all the exponential integral func-

tions in the matrix elements are expressed in terms of E
3

(x). The 

details of this substitution are shown i n Appendix B. In all cases, 1• 

except a (E), the E
3

(x) functions cancel out . Therefore the remain-
oo . 

ing matrix elements and source terms are expressed in terms of 

exponential functions only. Written in this way the matrix elements 

and source terms can be obtained. with sufficient accuracy, since it 

is relatively easy to obtain the exponential functions in double 

precision. a (E) can be determined with sufficient accuracy without 
00 
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the help of double precision, since it does not contain any large 

numbers~ The transformed matrix elements, and corresponding source 

terms are: 

a (E) = 1 - -::k (_! - E [r(E)]) oo r,E; 2 3 

a02 (E) = X(E) s 
2 (E) = - ti!2. X(E) o E 

= 5 [~ - 1 -r(E) 
3 

-r(E) 
a22(E) 

e 
+ + ae 

2r(E) + 
r 2(E) r 3 (E) r 3 (E) 

+ 24 ( e-r(E) (r(E) + l] -i)] 
r 5(E) 

ao4(E) = Y(E) a4o(E) = 9Y(E) s 
4(E) = - ti!2. Y(E) 

o E 

a 24 (E) = 5Z(E) 

612 -r(E) 
+ e 

r
4(E) 

360 5820e-r(E) 3444oe-r(E) + 12600 

r 5 (E) + r 5(E) + r 6(E) r 7(E) 

X(E) 

+
. 128520e - r(E) + 28221~0 (e·r(E) 

r 7 (E) r 9 (E) 

1 . 20 
2r (E) + 3r2(E) 

-r(E) 
+-e __ 

r 2 (E) 

[r(E) + l] 

3 -r(E) 
+ e 

r 3 (E) 
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1 20 -r(E) 45 17 -r(E) 
Y(E) + e + e = - 2r(E) + 

3r2 (E) r 2 (E) r3(~) r 3 (E) 

168 112 -r(E) 280 + 28oe-r(E) 
+ 

r
4

(E) 

+ e _ 
. r 4 (E) r 5 (E) r 5(E) 

1 14 - r(E) 18 + , 23e -r(E) 
Z(E) e = - 2r(E) + + 

3r
2

°cE) r 2 (E) r 3 (E) r 3 (E) 

+ 220 + 
200 + l060e-r(E) 

r
4

(E) r 5 (E) r 5 (E) 

+ 2520 (e-r(E) [r(E) 
r 7 (E) 

+ l] - 1) 

a = slab thickness 

~ (E) =total macroscopic cross- sections as a function 

of energy. 

(67 ) 

With the above expressions for the matrix elements and sour ce 

terms, it is possible to obtain a stable numerical representation of 

the matrix in Eqs. (54) and (57). 

-
B. Solution of the Integral Equation 

This section deals with the solution of Eq. (54). In addi-

tion, the evaluation of the resonance integral and the fractional 

errors introduced in t he resonance integral are discussed. 

Since Eq. (54) is of the Fredholm type, it is expected that 

iterating the source term would eventually converge to the solution 

(c9). It is found, however, that the rate of convergence is much 
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too slow. .All efforts to increase the rate of convergence proved 

.to be ineffective. These efforts included; 

(i) using the infinite mass approximation as a 

starting point, inste.ad of the source . term. 

This was attempted since it was felt that the 

infinite mass approximation is closer to the 

actual solution than the source term. And, 

(ii) empl~yi.ng the Aitkens o2 process (T2) to 

accelerate the convergence. 

In view of the failure to solve the equation by conventional 

means, a new approach was necessary. Two such approaches were 

developed. The details of the first approach appear in Appendix C • 

. This method was not followed to completion but a result, which was 

derived from this first approach , was instrumental in the success 

of the second approach in solving Eq. (54). This result is the 

solution for the energy dependent expansion coefficients, defined 

by Eq. (38), for the case of energy independent cross-sections. This 

so·lution is exact in the case where the source, external to the 

~bsorbing element, has an energy dependence which varies as l/E. 

This solution, derived in Appendix C, is given by 

adj [BJ -+-

1131 D 
(68) 



where 

B = 

_,. 
D = 

a mo 

s 
0 

. ' 

0 

m 
s 

0 

f 
0 (E) 

0 
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-a om 

- - - - - l -

The above results hold for any geometrical conf~guration. Equation 

(68) is used as a starting point in the numerical method to be 

described below. 

· The second method, which is the one actually used for solving 

Eq. (54) will now be described. In this method all spatial modes, 

i.e. m = O, ·2, 4, ... , have to be considered separately. Howev~r, 

the methods are similar in principle. 

First the flat flux case m = O is considered. To avoid undue 

complication the case with a single nuclear type present is dis -

cussed in detail. The method is then generalized to the case where 

a mixture of nuclear species i s present. The equation describing 
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the flat flux approximation to f
0
°(E) ma;y be obtained from Eq, (54), 

and is given by 

f 
0 (E) 

0 

E/a L: (E,) f o (E) 

= aoo (E) f L: s (E') (~-a)E' 
E t 

dE' + s 
0 (E) 

0 

The solution to f 0 (E) is determined at discrete points as 
0 

shown on Fig. 5. It takes the form f 
0

(E.), where i = 1, 2, ... ~, 
0 l 

l and ~ being the terminal points considered. The terminal points 

(69) 

are determined in general by the total cross-section of the nucleus. · 

.All energy dependence of the cross-section is assumed to be negli-

•bl b d th A th • t gi e . eyon e I-' pain • 

Equation (69) will now be considered for the ~th point. It 

is given by 

a (EA) 
00 I-' 

(70) 

The integration interval in Eq. (70), E~ to Etia is now . 

divided into k sub-intervals . Using a quadrature formula (T2 ), the 

integral of Eq. (70) will be written as a sum, becoming 

(71) 
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This equation ma.v be written in the more convenient form, 

(72) 

where,:. 

(73) 

ul3 

13+k 0( ( ) 

L
C . f E.) I: E. 

~ 
0 J . s } a (EA) -oo ~ · 1-a) E. I:t(E. 

j=13+1 J J 

(74) 

From Eq. (72) it is possible to solve for the desired quantity 

f 
0 

o (Ef3), i.e. 

In Eq. (75) the quantities s
0
°(E

13
) and B(E

13
) are known. The 

unknown quantities are ul3 and cl3 and, if these two quantities 

be determined, f
0
°(E

13
) could be determined explicitly. 

could 

The values of c
13 

••• Cl3+k depend upon the quadrature formula 

used. Since the function being integrated does not have any rapid 

changes in slop~, Simpson's method is used. The reason for the 

relatively smooth variation of f 
0

(E) with energy is that it has the 
0 

same energy dependence as the collision density which is the product 

of flux and cross-section. When there is a peak in the absorption 

cross-section, there is a depression in the flux. The product of the 

two however, remains relatively smooth. The values of Cf3 ••• Cf3+k 
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are thus clearly defined, and are given by (T2): 

h 
cf3 = 3 

4h 
cf3+1 = 3 

I I 

I I 

I I 

4h 
cf3+(k-l) = 3 

(76) 

where h is the size of sub-interval into which the integral is divided. 

Ef3 is the terminal point beyond which the cross-sections are 

considered to be energy independent. It is therefore permissible to 

. assume that the solution beyond Ef3 is given by Eq. (68) which is based 

on energy independent cross-sections. Therefore the f 
0 (Ef3 1 ) .; . 

0 + . 

f
0

°(Ef3+k) can be determined explicitly and the sum u
13 

may be computed. 

Although this is an approximation, it is rather good, and it may 

therefore be used to determine f
0
°(E

13
) explicitly. 

The value of f
0
°(E

13
_1 ) can be computed in an analogous fashion, 

and is given by 

- Uf3-l + soo(Ef3-l) 
- 1 - B(Ef3 l) C 

- (3-l 
(77) 

In this case the value of f
0
°(E

13
) determined previously' is used 

to evaluate the sum u
13

_1 . Thus one less solution to Eq. (68) is 

necessary to determine the, sum u
13

_1 , than was necessary to 

0( ) 0( ) 0( ) 0 . The values of f
0 

E
13

_2 , f
0 

E
13

_
3 

••• f
0 

E2 , f
0 

(E
1

) ma;y be 

find u
13

• 

computed 
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in the same way. As more and more solution points are determined, 

fewer and fewer values of the assumed solution are necessary in the 

sum given by Eq. (74). Eventu8.lly a point is reached where Eq. (74) 

contains only the computed values off .0 (E.). 
0 J 

In the case where a mixture of N nuclear species is present, 

the same method of solution applies. N separate integrals exist in 

this case, one for each species and each one has to be written in 

terms of a quadrature formula. These N integrals all have different 

ranges of integration, i.e. E to E/Q1 , ..• E to E/~. In this method 

all these integration ranges are divided into the same number of sub-

divisions, k, in spite of the fact that they have different ranges. 

With this assumption in mind, Eqs. (73) and (74) may be rewritten to 

· take .all the nuclear specie s into account. This is done by summing 

over all the nuclear species present, since for each specie there 

,(78) 

I: (79) 
j=l)+l 

r0°(E~) for the Illixture may be determined by substituting Eq. (78) 

and (79) into Eq. (75). In a manner identical to that outlined above 

r0°(E~_1 ), f0°(E~_2 ), ••• f
0
°(E2 ), f

0
°(E1 ) may be determined. 
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The accuracy of the solutions obtained for f 0 (E.) by this 
0 1 

method may be increased by iterating it in the original Eq. (69). 

This iteration process may be continued, until a satisfactory solution 

is obtained. 

The above discussion is limited to the flat-flux case, i.e. 

m = o. The case where a parabolic spatial distribution (m = 2) 

is taken into account will now be considered. In this case Eq. (54) 

for the case of a single nuclear specie, becomes: 

E/a . L (E') 
f 

0
(E) a (E) .a02(E) I foo(E') 

s 
0 . 00 . Lt (E') 

E 
= 

E/a 2 L (Er) 
f 

2
(E) I fo . a20(E) a22(E) (E') L: (Er) 0 . 

E 

dE' 
(1-a)E' 

+ 

dE' 
(1-a)E' 

s 0 (E) 
0 

s 
2

(E) 
0 

(80) 

Equation (80) gives rise to the two-coupled linear integral equations, 

f 
0 (E) = a (E) 

0 00 

E/a I: (E') dE' 

f foo(E') _s __ ~-~ 
Lt (E' ) (1-a)E' 

E 

E/a ( 

I 2 I:s E') dE' 
+ a02(E) fo (E') -.,---..,.. + s o(E) 

I:t (E' ) (1-a)E' o 
E 

(81) 

(82) 
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Because of the relatively small cross-section at an energy 

outside of the resonance range, there is very little spatial 

structure to the collision density. Therefore f 
2

(E) is negligibly 
0 

small, except in the region close to the resonance peak. Thus the 

solution to f 
0

(E) obtained from Eq. (81) will not be very different 
0 

from f 0 (E) obtained by solving Eq. (69). 
. 0 

. It will now be assumed that Eq. (69) has been solved and all 

the corresponding f 0 (E.) are known accurately. The value off 0 (E) 
0 1. 0 

. 0 
in Eq. (82) is approximated by the value.off (E) obtained by solving 

. 0 

Eq. (69). It is seen that f 
2

(E) may now be determined from Eq. (82). 
0 

The second .integral in Eq. (82) is known approximately, and may be • 

added to the source terms 
2

(E), to make up a modified source C 
2

(E). 
0 0 

· Equation (82) may thus be written as follows: 

E/a L (EI ) 
f 2 (E) a22(E) 1 fo2(E') 

s dE' 
+ C 

2
(E) = 

Lt (EI) (1-a)E' 0 0 

E 

(83) 

where 
E/a l: (E') 

C 
2

(E) a20(E) 1 foo (EI) z:: (EI) 
dE' 

+ s 
2

(E) = (l-a)E' 0 0 

E 

(84) 

By comparing Eqs. (8"3) and (69) it is seen that they have the 

same form. Hence a method of solution may be used to determine 

f 
2 (E), identical to that used to determine f 0 (E). This value of 

0 0 

f 2 (E) is not the true value, since an approximate form of f 0 (E) was 
0 . 0 

used. To obtain a better solution, the approximate solution of 

f 
2 (E), obtained from Eq. (83), and the flat flux solution obtained 

0 
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from Eq. (69) are substituted in the right hand side of Eq. (Bo) . 

New values of f 0 (E) and f 
2(E) are obtained. These new values may be 

0 0 

iterated again in Eq. (Bo) until satisfactory solutions are obtained. 

In the case where a mixture of nuclear species is present, 

the B(E
13

) and u
13 

used in solving Eq. (B3) have to be modified. · The 

modification is identical to that used in the flat flux case. 

Finally in the case where quadratic and quartic spatial 

variat ions are taken i nto account (m = 4), Eq. (54), for a single 

nuclear species becomes: 

f 
0 (E) 

0 

= 

+ 

s 0 (E) 
0 

E/a 2: (E') 

[ 
foo (E' ) _s r--:-...

I:t (EI) 
E 

. dE' 
(1-a)E' 

E/a 2: (E,) 

[ 
fo2 (E) _s ~-.- ...,.._dE_,_' -

I:t (E') (1-a)E' 
E 

(B5) 
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The equation analogous to Eq. (83) for this case is given by 

where 

E/a 

I 4 l: (E') dE' 4 
f (E') s + C (E) 

o l:t(E') (l-a)E' o 
E 

E/a l: (E') dE' 

I foo (E' ) _s .,--..,... ..... --.--
l:t (E' ) (l-a)E' 

E 

It is now assumed that the case for m = 2 has been solved. 

(86) 

(87) 

Hence f 0 (E) and f 2 (E) are known functions. By applying the same 
0 0 

reasoning as before, it is assumed that the values of f 
0 

(E) and 
0 

f
0

2 (E) given by the solution to . the case where ,m = 2 _will not change 

much in the case where m = 4. The only range in which a change will 

take place is in the resonance range. 

Therefore , using the two values of f 
0

(E) and f 
2

(E) obtained 
0 0 

from the case where m = 2, C 4 (E) is complet ely speci fied. Equation 
0 

(86) is thus analogous to Eq . (69), and the same method used to 

solve Eq. (69) may be used to solve. Eq. (86). Hence a first 

approximation may be obtained to f 4(E). This first approx imation 
0 

to f 4 (E), together with the solution to the case where m = 2, i.e. 
0 

f 0 (E) and f 2 (E), are then iterated in Eq. (85) until a satisfactory 
0 0 

solution is obtained. 
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In the case where a mixture of nuclear species is present 

the same procedure is followed as outlined above for the cases 

m = O and m = 2. The values of B(E~) and U~ have to be suitably 

modified as indicated by Eqs. (78) and (79). 

From the previous discussion it should be clear how the value 

of f 0 (E) can be determined for the cases m = O, 2, 4. Therefore, 
0 

flat flux, spatially quadratic, or spatially quartic terms may be 

included in the solution off. 
0

(E). These solutions are designated 
0 

oo( o2( o4( . by f E), f E) and f E), respectively. From these values of 
0 0 0 . 

the expansion coefficients the resonance integral corresponding to 

them is determined. From Eq. (60) the respective resonance integrals 

a.re 

(88) 

a (E) dE a (89) 

(90) 

The limits on the integrals are determined primarily by the 

absorption cross-section. Evaluating_ these integrals poses no spec-

ial difficulties. 
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The fractional errors introduced in the resonance integral 

given by Eq. (62) may now be computed. For the infinite mass 

approximation we must solve the set of linear equations (57). This 

is a relativel y straight forward procedure and will hot be detailed 

here. The solutions are f~~(E), f~~(E) and f~~(E), depending on 

whether no spatial structure, a quaa.i-atic spatial structure, or a 

quartic spatial structure is considered, respectively. The respective 

resonance integr als, as defined by Eq. (60), are given by 

I 
im J r0~ (E) 0 Olill 

o (E ) dE (91) -N- ::: 

aLt (E) a 
E . 

I im J fo2 (E) 
2 01Ill a (E ) dE (92) . ::: 

al::t (E) N a 
E 

I i m 

=I 
f0~ (E) 4 Olm. 

a (E) dE (93) N aLt(E) a 
E 

The l imits of integration are again determined by the absorption 

cross-section. 

C. Errors and Limitations of the Solution to the Integral Equation 

In addition to the errors introduced by round- off, which are 

characteristic of numerical procedures, t he approximati ons are among 

the major contributors to inaccuracies. Five sources of errors are 

discussed. 
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(i) It is found that the solution is critically dependent 

on the approximation used in evaluating the sum U~, 

given by Eq. (74). This necessitates the commencement 

of the process of solution sufficiently far from the 

resonance peak such that the cross-sections may be 

considered energy-independent. Since Eq. (68) gives 

an exact solution for constant cross-sections the 

closer the cross-sections are to a constant value, 

the better is the starting solution given by Eq. (68). 

Thus by assuming a value of E~ sufficiently far from. 

the resonance energy, the error due to an incorrect 

starting solution is reduced . 

. (ii) The type of quadrature formula used for the integrati on 

introduces another source of error. The Simpson formula 

which is used, introduces the following error (T2 ): 

where 

h integration step size 

o4 =averaged fourth difference (T2) . 

This error can be reduced by using a different 

.· quadrature formula. 

(iii) The crit.erion used for determining when a solution for 

f 0 (E) is satisfactory, may also introduce an error . 
0 

Sinc.e the r esonance integral is of prime interest here, 
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it is used as the criterion. The resonance integral 

is evaluated after each iteration, and compared to 

that of the previous iteration. Wh~n the agreement 

between the two resonance integrals is close, the 

solution is considered acceptable and the iteration 

process is terminated. It is seen that the solutions 

are not necessarily exact, al.though in most cases it 

was found that a satisfactory r esonance integral. al.so 

results in a satisfactory solution for f 0 (E). 
0 

(iv) In the case where a mixture of nuclear species is con-

sidered the different integration ranges are all 

divided into the same number of intervals. This means 

that some sub-intervals are larger than others and 

thus the errors are larger, since they are proportional 

to the step size (T2). This error is unavoidable in 

the method used . 

(v) Finally it is of interest to note that the atomic 

masses A of the nuclei affect the accuracy . This is 

due to the fact that for light nuclei .the i ntegration 

range is larger than for heavy nuclei. For hydrogen 

the range is .from E to oo. Thus for lighter nuclei the 

approximate solution used to evaluate U~ initially, 

affects more points than in the case of heavier nuclei. 

This makes the computed soluti.on more dependent on the 
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initial assumption for light nuclei than for heavier 

nuclei. This may be overcome by iterating the 

solution more times. 

I . 
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CHAPTER VII 

RESULTS AND CONCLUSIONS 

In this chapter the formal~sm for obtaining the col lision 

density, the resonance integral, and the fractional errors introduced 

in the resonances integral is applied to sl abs of bismuth, uranium, 

thorium, and thor ium oxide . In all the computations considered, the 

absorbing nucleus is assumed to have a single resonance, with cross-

secti ons which are described by Eq. (6 ) . Where a mixture of nuclei 

is assumed, it wi ll be made up of absorbing and moderating nuclei . 

' In this case the moderating nuclei are cons i dered to have const~t, 

purely scattering cross-sections. 

A. Description of Problems Solved 

Tabl e I gives the pertinent nuclear .properties of the 

resonances considered. 

TABLE I 

E a a r r r.,. r /r r 0 p n .,. 
(ev) (barns) (barns ) (ev} (ev) (ev) 

Bismuth (L3) 784 l82l l0.4 4.34 4.30 o .o4 0.092 

Thorium (D2) 70 17700 l 2 .0 0 .082 0.039 0.043 0.524 

Thorium 
Oxide (D2) 70 17700 19.7 0 .082 0.039 0 .043 0.524 

Uranium (C4 ) l04 18000 lO.O 0 .095 . 0 .07 0.025 0.263 

Various slab thicknesses are also considered. · These thick-

nesses are shown in Table II 
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TABLE II 

Slab thickness "a" in cm. 

Bismuth 0.5 2.5 7.5 35 

Thorium 0.1 0.5 2.5 7.5 

Thorium oxide t : 0 .5 2.5 7,5 

Uranium 0.1 0.5 o.8 2.5 7.5 

For all the materials, Eqs. (54) and (57) were solved .for 

m = O and m = 2 with thicknesses "a" of 0 .5 cm, 2 .5 cm, ·and 7 ;5 cm. 

For thorium an additional set of problems was solved for m = 4 for 

the same thicknesses. The solutions mentioned above were then applied 

to the calcul ation of the resonance integrals using both the flat 

flux and infinite mass approximations. 

For the other thicknesses mentioned in Table II Eqs . (54) and 

(57) were solved only for m = o. These results are used only to 

estimate the fractional error introduced in the resonances integral 

by the infinite mass approximation. 

B. Results Obtained for f 
0

(E) 
0 

The expansion coefficient f 
0

(E) of the collision density 
0 

defined by Eq. (39) is illustrated in Figs. 9 to 20. In each 

figure the f 
0

(E) solution form= 0 and m = 2 in Eqs. (54) and (57) 
0 

is shown, except in the case of thorium. In thi~ case f 0 (E) is 
0 

shown form= o, and m = 4. The slab thickness and resonance para-

meters are held constant for each figure. 
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c. Evaluation of Resonance Integrals 

The values of the resonances integrals, defined by Eq. (60)' 

are shown in Tables III, IV, V and VI in barns/hucleus. 

T.A.BLE III - Bismuth 
. ( 

a=0.5 a=2 .5 a=7.5 a=35 

Iim/N 
0 

0.1246 0.0807 . 0.0510 0.0236 

I /N 
0 

0.0547 0.0403 0.0363 0.0397 

I~/N 0.1039 0.0533 0.0339 

I 2/N 0.0530 0.0378 0 .0332 

T.A.BLE II/ - Uranium 

a=O.l a=0.5 a=o.8 a=2. 5 a=7.5 

Iim/N 
0 

1.2933 -o.4724 0.3720 0.2092 0.1181 

I /N 
0 

0.7718 o.4069 0.3429 0.2246 0.1526 

I~/N ·o.4683 0.1995 o.4069 

. I 2/N o.4000 0.2168 0.1450 

T.A.BLE V - Thorium 

a=O.l a=o.2 a=2 .5 a='1·2 
Iim/N 

0 
3.1731 l.0993 o.4915 0.2809 

I /N 2.7290 1.1628 0.5929 0.3664 
0 

I~/N 1.0943 o .4822 0.2678 

r 2/N 1.1555 0 .5827 0 .3540 

If:1/N Lo876 o .4817 0.2665 

t 4/N .1;1527 0.5815 0.3522 
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TABLE VI - Thorium. Oxide 

a=0.5 a=2.5 a=7 .5 

Iim/N 
0 

1.2669 0.5645 0.3228 

I /N 
0 

1.3792 0.8037 0.6257 

r;m/N 1.2594 0 . 5527 0.3048 

I 2/N 1.3716 0.7957 0.6182 

From these results the fractional errors in the resonance integrals 

were computed. 

D • . Fractional Error Introduced in Resonance Integral 
by Flat Flux Approximation 

Figure (21) illustrates the fractional error introduced in 

the resonance integral by neglect~ng the spatial variation in the 

neutron flux (oI/I). This fractional error is defined by Eq. (61) 

form= 2. As can be seen from Fig. (21) this fractional error 

increases monotonically with increasing slab size, in the range of 

slab thicknesses investigated. It is also clear that it is always 

po~itive in this range. This general result i ndicates that the flat 

flux approximation is better for thinner slabs • 

. It is interesting to note that the flat flux approximation 

seems to be best for a nucleus with a high absorption component in 

its resonance. This phenomenon may be explained by considering the 

neutron sources which contribute to the flux at resonance energy. Two 

• · .. 
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sources exist, one from the source external to the slab, and the 

other from neutrons slowing down within the slab. 

First we consider the case where the nuclei have large 

absorption components, i.e. r /r large. In this case, neutrons which 
7 

enter the slab from an external source at resonance energy penetrate 

a relatively small distance into the slab. They are primarily 

absorbed close to the surface of the slab. The resonance flux inside 

the slab due to slowing down is expected to be relatively flat. This 

lack of spatial variation is due to the fact that the cross-sections 

above the resonance are constant and non-absorbing . The resonance 

flux thus tends to be spatially flat inside the slab, and peaked near 

the surface . These source terms are illustrated schematically in 

Fig. 6 . 

It is thus seen that the neutron flux in this case can be 

a~proximated, with good accuracy, by a flat flux . Therefore the 

fractional errors introduced by a spatially flat flux are small. 

Where the slab is made up of nuclei having a small absorption 

component, the same two sources exist. However, in this case the 

external source neutrons penetrate much deeper into the slab . The 

source due to slowing down of neutrons within the slab is unchanged~ 

Figure 7 illustrates schematically how the resonance flux is made up 

in this case. Here the overall spatial structure of the flux cannot 

be approximated accurately by a spatially flat flux. Therefore the 

fractional error is larger than in the previous case. 
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The results for thorium oxide indicate that this resonance 

integral is least affected by the flat flux approximation. This may 

be attributed to the reduced density of thorium which increases the 

transparency to external source neutrons, and to the increased 

slowing-down ability due to the presence of oxygen. Figure 8 shows 

schematically the structure of the two sources. 

In addition, illustrated on Fig . 21 is the fractional error 

computed using the approximate technique of Eq. ( 23), assuming the 

N .R. approximation. Values of A = 2 and B = 1 are assumed, and the 

comparison is to ~e made with the u2 38 results. It can be seen that 

the comparison is not very good, merely indicating the existence 

of a fractional error which has a positive sign and increases mono-

· tonically. 

As discussed in Chapter III previous attempts to calculate 

this 5I/I have been made. Berg's results (B6) are qualitatively 

similar but cannot be compared closely with these results because 

they include a number of resonances. Corngold and Takahashi (C5, Tl), 

on the other hand, obtained one value which gave a negative oI/I. 

They used an infinite mass approximation, but this in itself cannot 

account for the negative 5I/I. Reference to Table N gives a oI/I for 

this case as (o.4724 - o.4683)/0.4683, which is still positive. Thus 

Corngold's results cannot be explained by any of the results presented 

here. 
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. E. Fractional Error Introduced in the Resonance 
Integral by the Infinite Mass Approximation 

Figure 22 shows the fractional error introduced in the 

resonance integral by the infinite mass approximation, which neglects 

neutron slowing down when colliding with nuclei. This fractional 

error is defined by Eq. (62) form= o. It is seen that the fractional 

error decreases monotomically with increasing slab size, and at a 

certain thickiiess changes sign. The thickness at which the change of 

sign occurs is a function of the absorption probability a(E), 

increasing as the value of a(E) decreas~s. 

A positive fractional error indicates that the resonance 

integral computed using the infinite mass approximation (Iim) is 
. 0 

larger than the resonance integral computed taking slowing down into 

· account (I ) . 
0 

. '"im 
A negative f ractional error results from I < I . 

0 0 

The variation of the fractional error with thickness may be explained 

bJ considering the resonance neutron flux and the mechanisms by 

which neutrons can escape resonance absorp_tion. Two mechanisms exist 

by means of which neutrons can escape resonance absorption. First, 

they can escape from the slab. by scattering across the boundaries. 

Second, they _can collide with a nucleus thereby losing enough energy 

to scatter out of the resonance range . In the case of the infinite 

mass approximation, only the source of neutrons external to the slab 

contributes to the neutron flux. Furthermore, the only mechanism by 

which neutrons can escape resonance absorption is by scattering out 

of the slab, since neutrons cannot lose energy. 
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Consider now a slab of absorbing material made up of nuclei 

with given resonance parameters. We start by letting the slab be 

relatively thin. In this case the external source neutrons can 

penetrate deeply into the slab. In the infinite mass model, these 

neutrons undergo many collisions. until they are either absorbed or 

scattered out of the s l ab. In the case where slowing down of neutrons 

is accounted for, the external source neutrons, together with those 

from slowing down in the slab, undergo fewer collisions to escape 

the resonances. They either leak out of the slab or slow down ~ast 

the resonance. For the thinner slab then, the collision density 

computed using the infinite mass model is larger than that determined 

from the model which takes neutron slowing-down into account. There

fore for relatively thin slabs, I < rim and the fractional error 
0 0 ' 

is positive. 

As the slab size increases, the slowing-down source remains 

constant while the external source (per unit volume) decreases. 

Hence the infinite mass model predicts a larger reduction. in average 

collision density than does the slowing-down model. Thus rim 
0 

begins to approach r . 
0 

im Where I = I , it may be inferred that the 
0 0 

effect of slowing-down of .neutrons into the resonance is balanced 

exactly by the effect of slowing-down out of the resonance. For 

greater thicknesses, slowing-down into the resonance is more important 

than slowing-down out of the resonance, and the sign of the error 

reverses. 
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estimates of the effect of the infinite mass approximation on the 

resonance integral. The details of these approaches are given in 

Chapter III. Agreement with these estimates is seen to be reasonably 

good, as shown on Fig. 22. 

F. The Fractional Error Introduced in the Resonance 
Integral by the W.R. Approximation 

Shown on Fig. 23 is the fractional error which is introduced 

in the resonance integral by the W.R. approximation. This fractional 

error is defined by Eq. (63) for m = 2. Since the W.R . approximation 

is a combination of the flat flux and infinite mass approximations, 

the explanation for the results presented on Fig. 23 is a combination 

of the effects explained in sections D and E. 

Using Eq. (15) to compute· r , and the criterion expressed prac 

by Eq. (16) it is evident that the resonances responsible for a 

large proportion of the resonance absorption in u238 and Th232 are. 

relatively wide, as opposed to relatively narrow. The W.R. approxi-

mation is thus useful in estimating the resonance escape probability 

in reactor calculations. To correct the overall resonance integral, 

the results shown on Fig. 23 would have to include all the absorbing 

resonances. 

G.. Possible Extensions 

Real nuclei usually have a number of important resonances. 

The above computations are therefore not sufficient, since only a 

single resonance was considered. Furthermore each resonance of any 
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nucleus has different parameters. It is evident from the results 

that for a given slab size the fractional errors either add to each 

other or subtract from each other, depending on the resonance para

meters. It is thus conceivable that the total fractional error 

introduced in the resonance integral for a given slab size is either 

positive, zero or negative. 

An interesting extension to this work would be the inclusion 

of a number of resonances in the computation. Kelber (Kl) has 

carried out an investigation of this aspect. 

It is usual in computations of the resonance integral to 

assume that the neutron flux outside of the absorbing lump is asymp

totic in nature. This assumption is not entirely valid for 

. resonances at low energies, since the resonances at the higher energies 

disturb the asymptotic distribution. Including the effect of the 

higher resonances would modify the energy dependence of the source 

term. Instead of it merely being l/E it would be some function of 

energy, which would account for the depletion of neutrons due to the 

resonances at higher energies. Work on this aspect has be done by 

a_ number of authors (K2, B8). 

Finally a different method may be considered to determine 

the neutron flux as a function of position, angular direction, and 

. energy. A method developed by Case (C6) for solving the mono

energetic transport equation in one dimension has been generalized 

to include energy as a variable by Fuchs et al. (F2). By using 
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the method developed by Fuchs et al. to solve the transport equation, 

the neutron flux for a one-dimensional slab may be determined as a 

function of position, angular direction and energy . The resonance 

integral may be computed with great accuracy using this solution. 
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APPENDIX A 

THE SINGLE LEVEL BREIT-WIGNER LINE SHAPE 
FOR WW ENERGY RESONANCES 

A derivation of the Breit-Wigner resonance line shape is 

outlined in this appendix. The outline is based on published results 

(Bl, Vl and Ll). It is divided into two parts, as will be described 

below. 

The derivation of nuclear cross-section may be divided into 

two distinct steps~ 

( i) The asymptotic part of the wave function is connected 

to the cross-section by means of the collision matrix. 

Asymptotic implies "far removed from the compound 

nucleus." The connection is a general one; that is, 

it has nothing to do with the nuclear problem in 

particular, and deals merely with the geometry of 

particle beams and the detection equipment. 

(ii) The collision matrix is expressed in terms of the 

R-matrix, which contains the parameters of the nuclear 

resonant states. This step contains all the nuclear 

physics. 

Reaction of the following type are considered: 

a + X -+ b + Y (i. a) 



-109-

Particle a collides with nucleus X. After the collision 

particle b emerges at an angle e, and the result+ng nucleus recoils 

in the appropriate direction. Before the collision the system is 

described by the following three quantum numbers: 

a = channel index, which defines the type of 

incoming particle 

s channel spin which is the total spin of the 

channel, and is the vector addition of the 

spin i of the incoming particle, and the 

spin I of the nucleus 
... ... ... 

(2. a) s = i + I 

... 
l = the orbital angular momentum. quant\im number, · 

of the two particles in the center of mass 

system 

The states of the system after the collision are described 

by a', s', and L'. 

Two invariant quantities of the reaction may be defined: 

(i) The total angular momentum J, which is the vector 

sum of the orbital angular momentum. l, and the 

channel spin s, i.e. 

... ... ... 
J = l + s (3.a) 

(ii) The second invariant quantity for reaction (la) is 

the parity :re. 
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The term channel is a convenient notation used to represent 

a collection of quantum numbers describing the motion of two particles, 

i.e. 

where 

C = (a, l, s, J, M) 

M = z-component of J = J • 
z 

(4.a) 

Thus the term channel refers collectively to the five quantum 

numbers in the right hand side of identity (4a)~ 

I. The Relation Between the Scattering Matrix, and 
the Cross-Sections 

'lhe following approach has been outlined by Blatt et al. 

(Bl): 

Consider a nuclear state .with total angular momentum J, 

which has a z-component M = J . 
z The channel wave number is ka' 

and the relative speed is .Va. let ~ be a product of the wave funcas 

tion, of the nucleus and the particle a. Th.us the most general wave 

function in channel a consists of a superposition of an ingoing and 

outgoing spherical wave . F.a.ch of these waves has spin and angular 

dependence . . At distances large compared to the channel radius, i.e. 

radius of compound nucleus, the asymptotic wave function may be 

expressed by 

'fcrs = j JM [ l; J ~as 1Aasl exp -i(kcEcx - 2) (5 .a) 



-111-

where 

· M 
a1 - spin and angle dependent wave function with total 
-.., JLs 

angular momentum J, oribital angular momentum L, 

and channel spin s. 

M 
Q/ JLs (6.a) 

Ms,ML = z-component of s and L respectively 

(LsM
1
M

6
jLsJM) = Clebsch- Gorda n coefficient (CB) 

r;i(e,~) spherical harmonic 

X = spin wave function 
s,M

5 

Since l/~ is different in every channel, the coefficients 

correspond to an amplitude of probability flux. The coefficients 

JM JM ' 
Aas! and BasL are not independent, and the relation between them is 

the scattering matrix 

JM ~ Ba's'L' = 
as 

(7.a) 

It should be noted that the coefficients of the scattering matrix are 

independent of M, since different values of M may be obtained by 

merely rotating the co-ordinate system. 

B~L will now be determined. 

JM 
The coefficients AasL and 



-112-

Consider now an incoming plane wave of the form 

exp(i.k Z ) X . ~l'V..,• Using the asymptotic form of the Bessel er a s , ms """" 

functions involved, this expression may be written as follows: 

oo J ( J+s) 

=L: E I: 
. J=O M=-J l=jJ- ~ I 

k
iv; ~ (lsOM j lsMJ) . 

_r as s aa . 

x il -'+) 2l+l Q/.~l s lexp[-i(kef a- l2Jt)] 

+ exp[i(kcf a - l2Jt)] } 

Comparing this expression to Eq_. (5a.) and using Eq_. (7a) 

the coefficients are seen to be given by 

JM 
Bosl . 

(J+'s ) 

~ i(l+l) ~a'1Va1t(al+l) 
l=jJ-sj 

Eq_uation (9a) holds in the as channel. 

JM 
Basl 0 

Eq_uation (lOa) holds in ali other channels. 

(8a) 

(9a) 

(lOa) 

It will be of interest now to determine the wave function due 

to any reaction, and the corresponding differential cross-section • 

. For a.s = a' s' the part of the wave f' unction due to a reaction is of' 

interest. 'f the total wave function may thus be split up into an 



-113-

i~coming and reaction component, i.e. 

'¥-='¥. +'¥ inc reac 

Thus by substituting fbr the coefficients in Eq. (5a) from 

Eqs. (9a) and (lOa), and comparing this to Eq. (8a) .an e)cpression 

may be extracted for'¥ , . i.e. reac 

'J! (a:' SI ) 
reac . 

(11~) 

(l2a) 

However, since detectors usually cannot select particles of 

total angular momentum J and orbital angular momentum l, it is 

necessary to change Eq. (12a) to a system in which the measurements 

can be made. The assumption is made that the detectors can distingu.:. 
M, 

ish between particles of different spin Ms. Q/·J·' 
1 

, i3- , is decomposed 

by means of Clebsch-Gordan coefficients, and · ~ may be written reac 

as follows: 

"ljr (a:' s') reac 

ika: , r a:' 
e 

:? I 

qa:' s 'M_ ·asM (e,cp )x s ' M 
s" . S. ' .s' 

M ::::-S' 
s' . 

(l3a) 
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The angular dependent quantity q(e,~) is known as the react1on 

amplitude for the reaction a's'M,--+ asM. The differential cross-
s s 

section for this reaction corresponding to known spins Ms and M~,, 
+ + 

is measured in a detector at an angle dD about n, and is given by 

The cross-section for an unpolarized beam of particles is 

obtained by averaging out the initial spin states and summing over 

the final state 

dcra, s' · ds 
. ' 

1 
2JS+l do ' 'M • <!¥BM as .s" s 

(14a) 

(15a) 

An explicit expression for q(e )~) is given in (Bl). The total 

cross-section may be obtained by integrating over all angles in 

Eq. (14a), substituting this expression in Eq. (15a), and suitably 

modifying q(e,~), an expression for aa' s ';a~ is obtained. The 

details of the.modification are given in (Bl). The expression is 

2 co J+s 

0 a 1 s 1 as = . :~~l 2: 2: 
J=O L= IJ- S j 

. 12 
~'s'L';asl (16a) 

In the case where a' = a and s ' == s , the total cross-section 

from a to a' is given by summing overs' and averaging over ·s . The 

total number of states of channel a is (2Jx-tl)(2Jy+l) . (2s+l ) of 
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these have channel spin s. 

Hence 

CT Ql'.:X I = TC ;>,. 2 
a L . (17a) 

J,l,l','ss' 

In the case where a = a' the same summing and averaging 

procedure is used. The elastic scattering cross-section is thus 

given by: · 

cra,o: = 1C A.0:22: g,/ 4; [ l-2Re u;, i:li '.t',cx&.t + f;1~'s'L',o:s1l2] 
J . . 

where · 

2J + 1 
= (2Jx + i)(2JY + 1) 

JX and Jy = the total spins of nuclei X and Y. Re denotes the 

real part. 

(18a) . 

(19a) 

Equations (17a) and (19a) express the cross-section in terms 

of the collision matrix. These relations are purely geometrical, 

since no mention of the physics involved has been made. 

II. Relation Between the Nuclear Properties and 
the Collision Matrix 

The following approach has been 'considered by Vogt (Vl) and 

Lane, et al. (Ll). In th~s part the notation of a channel c will be 

used, since the geometrical section has been completed. As defined 

c = (a,.t,s~JM). 
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The assumption is now made that the total wave function inside 

" the nucleus satisfies the same Schrodinger equation as that for the 

resonant st~tes, i. e,' 

He = Ee · 

(20a) 

where 

H = Hamiltonian 

e = total wave function inside nucleus 

ZA = wave function for resonant states 

In order to give resonant states; the functions ZA have to 

satisfy the following boundary condition: 

where 

I 

ZA 
dZA. 

= re dr = be z"' 
c 

r channel radius, which is equivalent 
c 

to the radius of the compound nucleus 

Equation (2la) is evaluated at the surface of the compound 

nucleus S which is defined by the channel radius r . c . c 

The assumption is now made that the wave function e can be 

written as a product. One element of the product describes the 
.... 

(2la) 

radial variation of the wave func.tion, while the other element will 

be a function of all other variables. This product is summed over 
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all the channels, i.e. 

e = z 
c 

(22a) 

This decomposition is only useful, · if and only if, the foll0wing 

orthogonality relation holds: 

(23a) 

The functions ZA also form a complete orthonormal set, the orthogo

nality relation being: 

(24a) 

where V = volume of compound nucleus 

It is possible to expand ~he actual wave function e, in 

terms of the function ZA, i.e. 

(25a) 

using the orthogonality r elation (24a) 

An expression for the radial part of e is now derived. The 

first equation of Eq. (20a) is multiplied by ZA.*, and the complex 

conjugat~ of the second equation of Eq. (20a) is multiplied by e. 

The resulting two equations are subtracted and integrated over the 

volume of the compound nucleus. The volume integrals are reduced 
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to surface integrals by Green's theorem. Using boundary conditions 

(2la) : Eqs .. (22a), (25a), and (26a), .the following expression 

results for e 

z1.? A.c, 

(E,..-E) 
(27a) 

where 

. (28a) 

E~ : level energy 

Using Eq. (23a), Eq. (27a) become_s 

T} (r) c (29a) 

where 

Rec' = Wigners R-matrix 

(3oa) 

An expression for the radial part of the general wave function, 

T} (r) in terms of an incoming I wave function, an outgoing wave c 

f'unction O, and the collision matrix is now derived. Equating the 

· result to Eq. (29a) will ' then yield the desired connection between 

the R-matrix and the collision matrix U. This expression of U may 

in turn be used in Eqs. (l7a) and (l8a) to determine the cross-sec., 

tions. 
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· The most general expression for the wave function e is a 

combination of an incoming wave I, and an outgoing wave o . Using 

the definition of the collision matrix, Eq. (22a), and the ortho-

gonality relation (23a), the radial part of the wave function may be 

written as 

fl (r) = -
1

- [A I 
. c \)vc . cc c' 

u I A I oc] cc c (3la) 

Now equating Eqs. (3la) and (3oa), writing the resulting expression 

in matrix form, the following relation between the R-matrix and the 

U-matrix is obtained. 

~ -1 1 i 
U = (ka)2 0 [1-RL]- [1-RL~] I(ka)-2 (32a) 

The coefficients of A are arbitrarily set equal to unity 

0 I 

L c 
b s + iP = -- - -c 0 c c c c 

I I 

L * c b s iP =y- - -c c c· c c 

In principle Eq ( 32a) would be the desired result,; It is more 

convenient though to introduce t he concept of the level matrix 

DA.A.' which connects level A. to level A.'. 

We define 

f(l-RLf1 (1-RL*~ = 5 L ~ cc I cc I + ·A.~ I 2iP c I r A.c r A. I c I DA.A. I 

(33a) 



where 

-120-

Mul tiplying Eq. (33a) by (1-RL) 

2iP I c 

7 A.c 'YA. ' c ' [ 
E"'A.-E BA.A.' -(EA~E) DA,A + 

=~ 
c" 

0 

The term in· the brackets of Eq. (34a) must be zero inde-

(34a) 

pendently, for it to be independent Of r~ and 7~ I 1 , This defines 
· . AC A C 

the level matrix, i.e. 

Since the matrices I and 0 are diagonal, the combination 

~ 1 -~ 
(k r ")2 0- I ,(k ,r ,) 2 may be ~valuated together. The incoming 

c c c c c c 

and outgoing waves may be written as a combination of a regular 

solution F and an irregular solution G of the Schrgdinger equation, 
c c 

i.e. 

I 
c 

The functions f and G are normalized by the Wronskian 
c c 

F 
c 

G - G I F 
c c c 

k r 
c c 

It is now possible to compute (kcr c )~ 0 c -l I c, (kc, r c, )-~ . 

1 1 -i(e +e ,) 1 1 

( k r )·a 0 -l I , (k ,r , )-8 = e c c P 2 p-2 
cc c c c c c c' 

where the e 's are the s-wave hard sphere phase shifts. c 

(36a) 

(37a) 

(38a) 
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Hence by combining Eqs .. (38a), (35a), (33a) and (32a) the 

relation for Ucc' for a single level is given by 

-2ie . -i(e +e , ){r 
c ie c c A.c 

= occ' e + 
(E +A - E) -A. A. (39a) 

To obtain the relation cross-section Eq. (39a) is substituted 

into Eq. (l7a). For s-wave scattering, i.e. £ = 0 the cross-section 

is given by 

CJ . I a,a 

where 

CJ r I 
0 c (4oa) 

r' r c ·' ,r c total reaction, and scattering half widths, 

at the half-maximum cross-section, 

r = r , + r , if only one reaction is allowed. crrv-v , has a maximum at c c .._....... 

_E E , the resonance energy. 
r 

The s.cattering cross-section is obtained by substituting 

Eq. (39a) into. Eq.(18a). In addition, since the energies involved 

are low, only S-wave scattering will be considered. In this case 

e << l, and this allows simplification regarding the exponential 
c 
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functions in Eq. (39a). The scattering cross-section .is given by . 

oo:,o: 

where 

system. 

a r 
0 c 

a = potential scattering cross-section = 2~ R
2 

p 

R = radius of nucleus X 

Equ~tion (4la) consists of the following three terms: 

(i) The first describes the resonance scattering, which 

has a maximum at E = E . 
r 

(ii) The second term is a measure of the intereference 

scattering. 

(iii) The third term is the constant, energy independent 

background scattering. 

The ·energies E and E are measured in the center of mass 
r 

r, r I and r are physical parameters Which have the units 
c c 

of energy. These parameters are called total width, r and partial 

width r , r , , r ", one width existing for· each mode of decay. c c c 
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APPENDIX B 

COMPUTATION OF a44 (E) 

The method used for computing the matrix elements will be 

outlined here, and as an example the a44 (E) element .will be 

considered-. 

From the definition, Eq. (55)(a) the element is given by 

Making use of the definition of the exponential integral 

function, interchanging the order of integration in such a manner 

that the integrals over x' and x are evaluated first, and introducing 

a new set of variables defined by: 

~ = (2~· -l) 
e = (~x _ l) 

the matrix element becomes 

98.L: (E) Jex:> f +l 1·+l 
a44(E) t . du . P (8) = . 8 u 4 

. l -l -l . 

(2.b) 
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Substituting for P4 (e) and P4 (~) and evaluating the integral over 

~ first, the following value for the matrix element is obtained: 

. 98.l:t, (E) loo du f+l . [ 4 
a44(E) = 512 l -u (3584 - 3oe2 + 31 . 140 e 

-l J au Lt(E) . 

120 e
2 

+ 12 6,720 e
2 

960 + 53760 J 
au Lt(E) au Lt(E) + a3u3 Lt3(E) a3u3 Lt3(E) a5u5Lt5(E) 

- A(u,Et (E),a J (exp[- aue Et~E)J + exp t aue Et~E)]) 
where 

A[u Et (E) a] . 

· f. au ( J[ 16 = exp c 2 Lt E) auLt (E) 

The integral over e may now be evaluated, in a similar 

fashion as the one over ~' i.e. 

= 98.l:t (E) Joo du [ 512 512 ( -a.l:t (E)u) 
a44 (E) 512 

1 
u 98.l:t (E) - a2u22:t 2(E) 

1 
- e 

389120 e-uaL:t(E) 

+ a4u4Et 4(E) 

+ 189235200 + 67og:48oo + 1445o688oo [e -auL:t (E) (l+auL (E»-l~ 
7 7 7( ) 8 8( ) alOulO~ lO(E) t ,· a u Et E a u Et E ~t . 
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In evaluating the integral over u, use is made of the 

definition of the exponential integral function. ·. Finally then, the 

matrix element is given by: 

a44 (E) = l 

(4.b) 

Now since it is desired to express the expression (4.b) in 

terms of exponentials and a single exponential integral function, 

the following recursion relation is used (c6): 

E (x) = -2:_ [e-x - x E (x)~ 
n n-1 n-1 J 

Thus 
E4 (x) = } [e -x - x E3 (x)J 

E5(x) = t [e-x - x~-~ + x">:~(x)] 
etc . (5.b) 

. - .::> :-•,., ' 
. . ' . 
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In this way all the . exponential integral functions occuring 

in the various matrix elements could be expressed in terms of 

E
3 

[al:t (E)] and e -a.L:t (E). The following result was obtained for 

a44 (E) . 

[

l 1 e-a.L:t(E) 10 + 37e- aL:t(E) 
a44(E) = 9 -9 - 2aL:t(E) + a2~t2(E) + 3 3 3 3 

,;.., a L:t (E) a L:t (E) 

(6. b) 

The above mentioned substitution could have been carried out 

as part of the computer program. However, in an effort to minimize 

the round-off error which might be introduced and which would grow 

with increasing order of the exponential integral functions, it was 

decided to change the matrix elements by hand. 
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APPENDTIC C 

AN ALTERNATE METHOD FOR SOLVING THE INTEGRAL EQUATION 

A method of solving Eq. (54), which yields an exact solution 

in the case of constant cross-sections, will now b.e outlined. This 

exact solution is important in the method used to solve Eq. (54) and 

is given by Eq. ( 68) . Equation (54) may be re-writt~n in the follow-

ing manner for the case of one nuclear type: 

where 

-......+ ,..., · E/a 2::s (E , ) 

f(E;) = A(E) f 2:: (EI) 
E t 

f 
0

(E) 
0 

-+ 
f(E) 

'· 

-+ dE' -+ 
f(E') (l-a)E' + s(E) 

a (E) ...... a (E) om 00 

,..., 
A(E) =: 

a (E) mo a (E) 
Illlll 

0 
s

0 
(E) 

-+ 
s(E) = 

s m(E) 
0 

(1. c) 
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From Eq. (l. c), the infinite mass approximation may be derived by . 

evaluating the scattering collision density at the lower limit of 

the integral i.e. 

(2. c) 

Solving for fim(E) from this equation, we get 

where I is the unit matrix. 

Equati on (l.c) may be r e-written in the following manner 

-+ 
+ s(E) (4 .c ) 

The following assumption is now made ~ 

i(i) = ~(E) + t ~ (E) €n (5. c) 

- --;+ 

0 (E) 
n 

t . t t f 1 m(E), d n t are correc ion erms o an € are param.e ers. Giving 

the bracket i n Eq. (4. c ) a weight €, since it is assumed to be 

· small compared to the rest of the right hand side of Eq. (4.c), 

Eq. (5.c) is substituted into Eq. (4.c), and terms of equal order 
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in e are equated i.e. 

-r-+ CX) · · [ E/ a . L: (E, ) -+ 
:un ~~ - n "' J s . :un dE' 

f (E) + L.J 0n (E)e = EA(E) . . L:t (E') f (E) (l-a)E ' 
n=l E 

L: (E) -:+ ~ CX) . [ Eja L: (E') 
. s :un ~ n+l"" J s 
- (E)' f (E) + L..J e A(E) :E (E') 
. i:t, n=l E t -

~ 

+ s(E) 

Using Eq. (a. c ) and solving for 7 (E), the following equation · 
n 

results:· 

~ [."' ....., L: (E)]-+ 
. ~en I - A(E) L::(E) 0n(E) 

·1 

, [JE/a :E (E,) ~ . . :E (E) ~ ~ 
_, S im( t · dE S 1Jll( 

= € A(E) L: (E') f E) (1-a)E ' . - L:t(.E) f E) . 
E t . 

E/a :Es (E') -+ dE :Es (E) -+ . J . f :E (E ' ) 0n(E') (1-a )E ' - :Et(E) 0n(E) 
E t 

(7.c) 

o6 

+ 2:en+1 A(E{ 
n=l 

'\ .. 
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Now by equating equal orders in €, it is seen that 

I 

~ " "' S ,.... S n-1 I S .-+ . I: (E)J-l [ E/~ (E') 0 (E') I: (E)· ~ 
0 n (E) = [ I-A(E) "t (E) A(E) .( . Et (E' ) (l-a)E' dE - Et (E )"'0 n-l (E) 

(8.c) 

The value of e; in Eq. (5.c) is now equated to .unity, since 

€ is arbitrary, 'and the solution is given by 

--+ 
f(E) 

-+ co -+ 
fim(E) + I: 0 (E) 

n=l n 

Thus to solve the equation the following method should be 

used: 
-+ 

. (i) Using Eq. (3.c), the value of fim(E) is determined. 

(ii) Using Eq. (8.c), 
-+ 
01 (E) 

-+ . . . 0 (E) are determined . n 

(iii) These values are then substituted into Eq. ( 9. c)' 

and the solution is obtained. 

The case where the cross-sections are assumed to be constant 

yields a result of particular interest. In this case the only energy 
--:+ 

dependence of fllll(E) is due to the external source. In this par-

ticular case this varies as l/E. This makes it possible to evaluate 
-+ 

the integrals of Eq. (8. c). It is found that 01 (E) = o, and thus all 
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- -the other ~(E)'s a.re zero, since they all depend on ~1 (E). The 

solution to the case of constant cross-section is thus given 

exactly by the infinite mass approximat ion 

Set 

Then 
-.. 1 
f(E) = E adj [BJ ..... 

IBI D 
(lo. c) · 

Equation (10.c) is identical to Eq. (68) . . 

This solution seems to be physically reasonable, since the 

infinite mass approximation and the wide resonance approximation 

are analogous. In the limit of an energy independent cross-section 

the wide resonance cr oss- s ection is exact, since this case may be 

thought of as an i nfinitely wide resonance. 
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