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ABSTRACT 

LetJ:'.. be the algebra of all linear transformations on 

an n-dimensional vector space V over a field ca=: and let 

A, BE...£. Let Ai·+1 = A.B - BA., i = 0 ,1, 2, ••• , with A= A • 
i i . K o 

Let fk(A , B ; ~) = A2K+1 - '01A2K-1 + ~2A2K-3 - ••• +(-1 ) bKA1 
where 'o = ('o1 , 'o2 , •• • ,'oK), 'Oi belong to ~ and K = k(k-1 )/2. 

Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 

732-73~ showed that fn(A,B;'o) = 0 if 'oi is the illi elemen

tary symmetric function of ( ~r - f3s) 2 , 1 E;; r c::::s ~n, i = 1, 

2, ••• ,N, with N = n(n-1)/2, where fr are the characteristic 

roots of B. In this thesis we discuss relations invol

ving fk(X , Y;"o) where X,Ye:land 1~ k<n. We show: 

1 • If °3"' is infinite and if for each Xc:t:. there exists 'o so 

that fk(A,X;'o) = 0 where 1~ k<n, then A is a scalar trans

formation. 2. If (Fis a lgebraically closed, a necessary 

and sufficient condition that there exists a basis of V with 

respect to which the matrices of A and B are both in block 

upper triangular form, where the blocks on the diagonals 

are either one- or two-dimensional, is that certain products 

x1x2 ••• Xr belong to the radical of the algebra generated by 

A and B over'T , where Xi has the form f2 (A,P(A,B);~), for 

all polynomials P(x,y). We partially generalize this to 

the case where the blocks have dimensions~k. 3. If A and 

B generate..C, if the characteristic of "'.Fdoes not divide n 

and if there exists 'O so that fk(A,B;"o) = O, for some k with 

1 ~k <n, then the characteristic roots o:f B belong to the 
. . . ( '-) 2K+1 2K-1 2K-3 splitting field of gk w;v = w - o1w + 'o2w - •• 

• • +(-1 )K 'oKw over 'J='. We use this result to prove a the-0-

rem - involving a generalized form of property L [cf. Motz

kin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-

114]. 4. Also we give mild generalizations of results of 

McCoy [Amer. Math. Soc. Bull. , 42(1936), 592-600] and 

Drazin [Proc. London Math. Soc., 1(1951), 222-231]. 
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INTRODUCTION 

Let X be the algebra of all linear transformations on 

an n-dimensional vector space V over a field -=.F- and let 

A,B s;l. It is well-known [9f. Jacobson, 4 pp. 120-121] 

that there exists a basis of V with respect to which the 

matrices of A and B are in block upper triangular form 

where corresponding blocks are of the same dimensions, the 

blocks on the diagonal are square and corresponding diag

onal blocks cannot be reduced furth er by a simu ltaneous 

similarity. Most of .this thesis is devoted to the problem 

of determining how certain properties of A and B are 

reflected in properties of the diagonal blocks. In [ 1] 
McCoy showed t hat , if Tis algebraically closed, all the 

diagonal blocks are one-dimensional if and only if 

P(A,B)(AB - BA) is nilpotent for every polynomial P(x,y) in 

the non-commuting variables x and y with coefficients in~. 

In Chapter I we prove a generalization of McCoy's theorem 

when the field cg=- is quite arbitrary. We also generalize a 

theorem of Drazin which is related to McCoy's result. 

To a ssist with the investigation of the diagonal 

· blocks we introduce what we call " KTW commutator expressions" 

fk(A ,B;n). Let Ai+1 = AiB - BAi , i = 0 ,1, 2, ••• , with 

A
0 

= A. Let k be an integer, 1 ~ k ~n,and K = k(k-1 )/2, 

then define 

whe:re o = (0 1 ,-02 , ••• ,'t>K) with 'oi c;J= , i = 1,2, ••• ,K. We 

note f 1 (A , B;o) =AB - BA. The Kato-Taussky-Wielandt (KTW) 

commutator relation [cf. 12] then says that fn(A,B;b) = 0 

if oi is the illi elementary symmetric function of (pr - fs)~ 
1 ~r..:: s ~n, where Pr are the characteristic roots of B. 

In Chapter II we prove that, if '!F is infinite and if for 
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each X £L there exists 'o so that, fk(A ,X;'o) = 0 for some k 

with 1~k<n, then A is a scalar transformation. We also 

show that if J=°is algebraically closed then there exists a 

basi s of V with respect to which the matrices of A and B 

are in block upper triangular form, where the diagonal 

blocks have dimensions~k ? if, for each polynomial P(x , y), 

there exists 'o so that fk(A ,P (A ,B);'o) belongs to the 

radical J of the algebra generated by A and B over "J= • 
In Chapter III we characterize those A,B for which 

there exists a basis of V with respect to which the matri

ces have block upper triangular forms where the diagonal 

blocks are one- or two-dimensional. The necessary and 

sufficient condition we give is, essentially, that certain 

products x1x2 ••• Xr belong to}, where Xi has the form 

f 2 (A , P(A ,B );'o), for every polynomial P(x , y). 

Now f 1 (A,B;'o) = AB - BA and the Kato-Taussky-Wielandt 

commutator relation says that there exists ~ so that 

fn(A,B;n) = 0. So in Chapter IV we examine what happens 

if there exists 'o so that fk(A,B;'o) = 0 f or some k with 

1 ~ k <. n. We show that if A and B generate J:, , if the 

characteristic of ~does n ot divide n and if there exists 

'o so that fk(A,B;'o) = O, for some k with 1:;;;.k<n, then the 

chara cteristic roots ~r of B belong to the splitting field 

of gk ( w ; 'o) over c:a=', where 

= . . . 
Moreover if k = 2 and B has at least two di stinct charac

teristic roots then there exists an ordering ~1 ,p2 , ••• ,pr 

of the distinct characteristic roots of B so that 

f1 - P2 = P2 - p3 = ••• = Pr-1 - Pr satisfies g 2 (w;b) = O. 
Now f 1 (A ,B;'o) = 0 means AB= BA and t his in turn implies A 

and B have property P, which means A and B have property L 

[cf . 16]. Property L demands that xA + yB have all its 

chara cteristic roots of the form x~ + yp, for all x,yc;F. 
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We employ the main theorem of Chapter IV to prove a result 

which says that if A and B satisfy a certain KTW commutator 

equation then they have a generalized property L. 
The results which are, perhaps, of most interest are 

Theorems 2.10, 2.11, 2.13, 3.1, 4.2, 4.9 and Corollary 4.6. 
Note: throughout this thesis the symbol O denotes the 

end of a proof. 
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CHAPTER I 

ON THEOREMS OF McCOY AND DRAZIN. 

In this chapter we prove some theorems which generalize 

results of McCoy and Drazin on matrix commutators. Ration

al methods are used except in part of Theorem 1.9 and in 

Lemma 1 .12. 

Let A and B be linear transformations on an n-dimensio

nal vector space V over a field cg:- • To set the stage we 

introduce the so-called "P-propertyrr and state the main 

theorem about it. 

1 .1 Definition [cf. McCoy , 1] • If J= is algebraically 

closed then A and B have property P if and only if there 

exist orderings <Xi , ~, ••• , ~ and p1 , µ2 , ••• , f3n of the char

acteristic roots of A and B, respectively , so that the 

characteristic roots of P(A,B) are P(o<i'~i), i = 1,2, ••• ,n, 

for every polynomial P(x,y) in the non-commuting variables 

x and y, with coefficients in "3=' • 

Unless otherwise stated, " polynomial P(x , y) " in this 

thesis will always mean a polynomial in the non-commuting 

variables x and y with coefficients in "::F • 

1 • 2 Theorem [McCoy, 1] • Assume ZF is algebraically closed. 

Then the following three conditions are equivalent. 
(i) A and B have property P. 

(ii) P(A,B)(AB - BA) is nilpotent for every polynomial 

P(x,y). 

(iii) There exists a basis of V with respect to which 

the matrices of A and B are in upper triangular form, i.e. 

all the elements below the main diagonal s are zeros. 

We aim to prove a generalization (Theorem 1.9) of this 
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theorem where we do not assume that the field ct:= is 

. algebraically closed. 

We shall need the well-known concept given in the 

following definition. 

1 .3 nefinition [Sf. Herstein, 2, p.±J Let ti? be a ring, 

Man irreducible left'R-module, O(M) =[rt:</?: rM = (o)J. 
Then the (Jacobson) radical of ~ is () O(M), where this 

intersection is taken over all irreducible ~-modules M. 

The followi~g result is well-known • . 

1 • 4 Theorem [cf. McCoy, 3, pp. 113, 12QJ • The radical of 

Cl( contains every nil left (or right) ideal of~ • If ~ 

satisfies the descending chain condition on left ideals, 

then the radical of~ is nilpotent. 

In particular, this theorem applies if </?is a finite

dimensional algebra over a field. 

Now let 5{ be the algebra of polynomials P(A,B) in A 

and B (including I, the identity transformation) and let~ 

be the radical of~. We denote AB - BA by [A,B]. 

1.5 nefinition. A and B have property Q if and only if 

[A,B] f }· 

1. 6 Lemma ~f . McCoy ? 1]. Let C e<f<.. Then Cc j.-if and 
only if P(A , B)C is nilpotent for every polynomia l P(x,y ). 

· Proof. If Ce} then P(A?B )C -e:j- f or every polynomial P(x,y). 

Hence P(A,B)C is nilpotent, by Theorem 1.4. 

Conversely, if P(A,B)C is nilpotent for every poly

nomial P(x,y), then the left ideal <f(.c is nil and hence is 

contained in}, by Theorem 1 • 4. Thus C e j- since I c ~. CJ 

We note that essentially the same result was proved in 

McCoy[1] in a somewhat different manner. 
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1. 7 Lemma. If A and B have property Q and Vis irreduc
ible as a left~ -module , then AB = BA. 

Proof. [A,B] e }and hence acts as 0 on all irreducible 
'1\-modules. Hence AB = BA. O 

The following definition is a natural analog of (iii) 

of Theorem 1.2. 

1.8 Definition~ A and B have property T if and only if 
there exists a basis of V with respect to which the matr-i

c es of A and B have the following block forms 

A11 A12 . . . 
0 A22 . . . 

0 0 ' ... 

A1t 

A2t 
and 

Att 

B 11 : ~ l 2 • • • >B 1 t 

O B22 ••• B2t 

0 0 ••• Btt 

respectively, where Aii and Bii are square blocks of dimen
sion ni' i = 1, 2 , ••• , tp and there are zeros below the main 

block diagonals. Also Ai iBii = BiiAii and the minimum 
polynomials of Aii and Bii are irreducible over~ , for 
i = 1,2, ••• ,t . 

We prove now the promised generalization of Theorem 
1.2 . 

1.9 Theorem. 
alent. 

The following three conditions are equiv-

(i) A and B have property Q. 

(ii) A and B have property T. 

(iii) There exist orderings Ol1 , °'2 , ••• , cxn and {!>1 , [32 , ••• , Pn 
of the characteristic roots (which are contained in some 
extension of ~ ) of A and B, respectively, so that P(A,B) 



-7-
has characteristic roots P(<Yi'~i), i = 1 ,2, ••• ,n, for 

every polynomial P(x,y). 

Proof. We shall prove that (i)=9(ii)~(iii)"""(i). Let A 

and B have property Q. Let 

:> v t+1 = ( O) 

be an1\.-composition series for V. In the usual manner 

[gf. Jacobson, 4, p . 120] choose a basis for V so that the 

matrices of A and B have the same block forms as the 

matrices in 1.8, where Aii (resp. Bii) is the matrix of A 

(resp. B) restricted to the quotient space Vi/Vi+1 ' with 

i = 1,2, ••• , t. Now Vi/Vi+1 is irreducible as anR-module. 

Since A and B have property Q, the matrices Aii and Bii 

have property Q for i = 1,2, ••• ,t. Hence AiiBii = BiiAii 

by Lemma 1.7. 

Now the minimum polynomial of Aii (resp. Bii) is 

irreducible over'J=" , for each i = 1,2, ••• ,t . Suppose 

the minimum polynomial p(x) of Aii is reducible for some i. 

Then p(x) = q(x)r(x) , where q(x) and r(x) are non-constant 

polynomials with coefficients inc;f". Let W = Vi/Vi+1 • 

Let w1 = {we W: r(Aii)w = o}. Now w1 is clearly a sub

space of W and also Aii W1 C w1 • Now Bii w1 C w1 since, 

if r(Aii)w = 0 then 

because AiiBii = BiiAii" Thus w1 is an ~-submodule of W. 
But W is irreducible. Hence w1 = (0) or w1 = W. · Now 

w1 I W, since, then, p (x ) would not be the minimum poly

nomial of Aii" Hence w1 = (0). But then r(Aii) is non

singular and, since 0 = q(Aii)r(Aii), we have q(Aii) = 0. 
This contradicts the fact that p(x) is the minimum poly

nomial of Aii" Hence p(x) must be irreducible. In a 

simila r fashion it can be s h own that the minimum polynomi-
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al of Bii is irreducible. (We note that the discussion 

of this paragraph is contained in Jacobson [4, p. 133] ). 
Thus A and B have property T, so ( i) => (ii) • 

Now suppose A and B have property T. We have AiiBii 

= B . . A . . , i = 1 , 2, ••• ,t. Let c_ be the algebraic closure 
11 ii a 

of J=". Let <f{i be the algebra of all polynomials P(Aii 9 Bii) 

where P(x,y) is a polynomial in the non-commuting variables 

x and y with coefficients in S.-- Then [Aii ' Bii] belongs 

to the radical of </Zi. Now consider Aii and Bii as matrices 
with elements in S-- and apply the fact that (i) => (ii) in \ ' 

. the present theorem. Hence there exists a non-singular 

matrix Ui with elements in ~ so that Ui
1

Aiiui and Ui
1
Biiui 

are both in upper triangular form (i.e. there are only 

z eros below the main diagonals), i = 1,2, ••• , t. So, if 

A1 and B1 denote the matrices in 1.8, there exists a non

singu lar nxn matrix U with elements in J-- so that u-1 A1 U 

and u-1B1U are both in upper triangular form. The matrix 

u-1A1U (resp. u-1B1U) has the characteristic roots 

~ , °2' •·. ,cxn (resp. 13 1 , p2 , ••• ,pn) of A (resp . B) on the 
main diagonal. Thus P(A , B) has characteristic roots 

P(~i ' ~i) , i = 1 , 2 , ••• , n for every polynomial P(x,y) in 

the n on-commuting variables x and y with coefficients in 

5-· Then (iii) follows as an immediate consequence. 

We now show (iii) :::> (i). Assume (iii). Then 

P(A,B)[A, B]has only O as a characteristic root , and hence 

is nilpotent, for every polynomial P(x,y). Thus A and B 

have property Q by Lemma 1 .6. CJ 

1.10 Corollary Q'acobson, 4, p.13:D • 

A and B have property T. 

If AB = BA, then 

1.11 Corollary Let A ahd B be nxn matrices with elements 

in ':F". Then each of the statements (i), (ii) and (iii) 

in Theorem 1.9 is equivalent to the fact that A and B 

have prop.erty P, considered as matrices with elements in 
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~, where ~ is the algebraic closure of -=a:- • 
Proof. If there are orderings °<i , ~, ••• , °'.h and ~ 1 , 

p2 , ••• ,pn of the characteristic roots of A and B, respect

ively, so that P(A,B) has characteristic roots P(~,~i), 

i = 1 , 2, ••• ,n , for each polynomial P(x,y) in the non

commuting variables x and y with coefficients in~ ' then 

this statement is clearly true for t h ose P(x,y) with co

efficients in"F. Hence A and B satisfy (iii) of Theorem 

1 • 9. 
The converse is contained in the proof given above 

that (ii)~ (iii) in Theorem 1.9. 0 
We remark that if "'.:Fis algebraically closed in Theorem 

1.9, we get Theorem 1.2. 

The following lemma gives an example of a pair of lin

ear transformations with property Q. 

1.12 Lemma. Le t A and B be linear transformation s on an 

n~dimensional vector space V over a field ".F , where the 

characteristic of '3=°does not divide n . If each poly

n omial P(A , B) has only one characteristic root then A and 

B have property Q. 

Proof . All t h e characteristic roots of [A,B] are equal 

- equal c , say . Thus 0 = trace [A , B] = nc. Hence c = O. 

Now P( A, B)[A , B] has all its characteristic roots equal, 

for each polynomial P(A , B). Bu t 0 is a characteristic 

root, since [A , B] is nilpotent. Hence P(A,B) [A,B] is 

nilpotent and thu s A and B have property Q. 0 

McCoy ' s formulation of property Q is that P(A,B)[A,B] 

is nilpotent for each polynomial P(A,B). We raise the 

question here whether it is possible to assume P(A,B)[A,B] ; 

nilpotent for a smaller class of polynomials P(A,B) and 

still get property Q. Williamson [5] has shmm that if 7F' 

is the complex numbers and if A is non-derogatory (i.e. 
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if the minimum polynomial of A equals its characteristic 
polynomial) and if we assume h(A)[A,B] nilpotent for cer 
ta:i.11 polynomials h(A) of degree :!in - 2, then A and B have 
property. Q. 

We should at least like to bound the degrees of the 

P(A,B). If 'a=" is algebraically closed, then a careful 
examination of the proof of Drazin et al. [6] of McCoy's 
theorem (Theorem 1.2) gives the result that if P(A,B)[A,B] 
is nilpotent for each polynomial P(A,B) of degree ~ -

n(a + b - 1) - 2 where a and bare the degrees of the 
minimum polynomials of A and B, respectively, then A and 
B have property P. This bound seems much too large. We 
prove the following result for some . small values of n and 
conjecture its validity in general. 

1.13 Theorem. Let A and B be linear transformations on 
V of . dimension n(n~2) over a field J='so that P(A,B)[A,B] 
is nilpotent for each polynomial P(x,y) of degree :$n - 2 

then for n = 2,3 the transformations A and B have property 
Q. 
Proof. Case 1. n = 2. 

Hence either [A,B] = 0 or 

matrix of [A,B] is [g ~] · 

Otherwise replace A and B 

B, so that [A,B] = [g ~· 

We assume [A,B] is nilpotent. 
the rational canonical form 

If [A,B]= O, the result is true. 

by matrices, again called A and 
There should be no conf usion caus-

ed by the new meanings for A and B. 
[A,AB] and also B[A,B] = [BA , B]. 

We. have A [A,B] = 

Hence A[A,B]and B[A,B] 
are nilpotent (s'ince each matrix has its determinant and 
its trace equal to zero). If X = (x . . ) then 

-- ~o x11J1J X(A,B] 
. 0 x21 

and, if this matrix is nilpotent, x21 = O. Hence if 

A= (aij) and B = (bij) we get a 21 = b 21 = O and thus the 
matrices A and B are in upper triangular form. Hence A 
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and B have property Q. 

Case 2. We assume that (xA + yB + zI ) [A,B] is nilpotent 

for a l l x, y, z e :Fi . and V is three- dimensional over~. As 

above assume that A and B are mat r ices s o that [A,B] is in 

r ational canonical f orm. Hence 

~ci 1 OJ IT , 11 [A,B] = 0 or 0 0 1 or 0 0 0 
0 0 0 0 0 0 

If [A,B] = O, the result is true. Assume 

rn 1 OJ (.A,B] = 0 1 
0 0 • 

If X = (xij ) , then 

X[A , B] = [~ ::~ :~~ 
0 X31 X3~ • 

Now let X = xA + yB + zI, where A= ( a
1
. J. ) and B = (b . . ). lJ . 

Then X[.A,B] is nil potent, and thus [x21 x 221 is nilpotent. 

X31 X3~ 
Thus we have 

[
xa 21 + yb21 xa22 + yb22 + z J 
xa31 + yb31 xa32 + yb32 

nilpotent. Thus both the trac e and the determinant are 

zero. Hence a 32 = -a2 1 and b32 = -b21 • Al s o 

This gives a 31 = b31 = 0 and a 21 = b 21 = O. Thus A and B 
are both in upper triangul ar f orm, and p r operty Q fo l lows 

immediately. 

If [A,B] = [g 6 gl, then 
0 0 ~J 
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X[A,B] = [~ :~~ ~] 
where X = (x .. ) = xA + yB + zI with A= (a .. ) and B = (b . . }. 

J.J J.J J.J 
Then X [A, If! nilpotent gives x 21 = 0, which leads to a 21 = O 

and b 21 = O. If both a 31 and b 31 are zero then A and B 

are in block upper triangular form, and we can apply Case 1 

to the 2x2 blocks to prove the result. 

So assume a 31 IO. Then l et b31 = ha31 • The (2,1) 

element of [A,B] is ha31 a 23 - b 23 a 31 and this is zero. 

Hence b 23 = ha23 , since a 31 I O. Thus 

A = and B 

If a 23 = O, then, by means of a permutation similarity, 

simultaneously interchange the first and second rows and 

the first and second columns of A and B. The matrices 

obtained are in block lower triangular form and, once again, 

we can apply Case 1 to the 2x2 blocks to prove the result. 

So assume a 23 IO. The (1,1) element of [A,~gives 

a11b11 + ha13a31 - b1 1 a 1 1 - b13a31 = o. 

Hence b13 = ha13' since a 31 I o. The (2,2) element of 
[A,B] gives 

a22b22 + a23b32 - b22a22 - ha23a32 = 0 

and hence b 32 = ha32 , since a 23 I 0. 

gives 

The (3,1) element 
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a31 b11 + ha33a31 - ha31a11 - b33a31 = O 

and hence b 11 - b 33 = h(a11 - a
33

), since a 31 ,£ O. The 

(2,3) element gives 

and hence b 22 - b33 = h(a22 - a 33 ). 

gives 

The (1,3) element 

which is the same as 

which gives b12 = ha12 on applying the equation derived from 

the (3 , 1) element, and using the fact that a 23 IO. 
Then the (1,2) element of [A,B] is 

which equals a 1 2 [h(a11 - a 22) - (b
11 

- b 22 )]_. 

expression equals 

This last 

which is zero, by the identities derived from the (3,1) 

and (2 , 3) elements. But the (1,2) element of [A,B] is 1. 

This contradiction shows that at least one of a 31 and a 23 
is zero and thus the result is true, by the arguments 

given above for these cases. O 
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Drazin [7] has proved a generalization of McCoy ' s 

theorem (Theorem 1.2) when the field'3=°is algebraically 

closed of characteristic zero. We shall now generalize 

Drazin's results to an arbitrary field~(insofar as they 

do generalize). Our proofs, of course, are completely 

different. 

1.14 Definition. 

where the union is over all linear transformations ck in ek. 

We remark that there are at most 2k-1 linear trans

formations in ek, k :;::::.1. 

1 .15 Definition. [Drazin, 7] • A and B have property 

Qk for some k~1 if and only if P(A,B)Ck is nilpotent for 

every Ck in ek and for all polynomials P(x,y). 

It is clear , by Lemma 1.6, that A and B have property 

Qk if and only if e k c }• Property Q1 is thus property Q. 

1.16 Definition. [Drazin, fr. A and Bare quasi k

commutative for some k~1 if and only if Ck= fof. 

We shall need the following lemma which is due to 

Jacobson. 

1 .17 Lemma.[8] Let C>l- be an associative algebra over a 

field~ and let x,y ce>t.. Assume that x commutes with [x,yJ_ 

and that x is algebraic over ":Fwith minimum polynomial of 

degree r. Then if "3=' has characteristic O or p ~r, the 

commutator[x,y] is nilpotent. 

Proof. Jacobson stated this theorem for characteristic ·O 
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and there is a slight error in his proof (a fact which was 

pointed out by Drazin [unpublished]). We present a re

paired version of Jacobson's proof. Let m(z) be the 

minimum polynomial of x over c.F. Then m(x) = O. The 

mapping x- x'= [x,y] is a derivation. Hence. m' (x)x' = O. 

Assume that 

k 
m(k)(x)(x•) 2 - 1 = o, for some k~1. 

Hence k k 
m(k+1 )(x)(x9 )

2 + m(k)(x)((x•) 2 - 1 )' = o. 

2k-1 . 
Multiply on the left by (x') and use the fact that 

[x,x~ = O. Hence 

( ) k+1 
m k+1 (x) (x' )2 -1 = o. 

Thus, by induction, 

k 
m(k)(x)(x 9 )

2 - 1 = 0 fork= 1,2, ••• • 

Now m(r)(x) = r!. Hence 

r r 
r!(x•) 2 - 1 = 0 and (x•) 2 - 1 = O, 

since the characteris tic of c.:F' does not di vi de r ! • Cl 

We apply this lemma in proving the following result. 

1 .18 Lemma . Let "'J= have characteristic 0 or p :>.n = dim. V. 

Suppose A and B are quasi k-commutative for some k~1 and 
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that V is irreducible as an 'R -module, then AB = BA. 

Proof. The proof is by induction on k. Assume ek = ~O~. 
If k = 1, then AB= BA and the result is proved. Assume 

the lemma is true for some k~1. Suppose £k+1 = {O~, k~1. 

Then ACk = CkA and BCk = CkB for all Ck in ek. Now each 

Ck in ek is of the form [A,Ck_1] or [B,Ck_1 J for some Ck_1 
in e k-1 • Suppose X = [A, Ck_1 J ~ 0 for some Ck_1 in -e k-1 • 
The~ Xis nilpotent by Lemma 1.17. We see that v1 =XV is 

an invariant subspace of V for both A and B, since A and B 

commute with X. Hence either v1 = V or v1 = (0), since V 

is an irreducibleq\-module. But v1 -f (0), since X ~ O. 

Hence v1 = V and thus X is nonsingular. But X is nil

potent and this gives a contradiction. Thus we must have 

[A,Ck_1] = o. By similar reasoning [B,Ck_1] = o. Thus 

ek = f 01 and, by the induction hypothesis, this means 
AB ·;,;; BA. 0 

The theorem we now prove is our generalization of 

Drazin's main theorem[?]. 

1 .1 9 Theorem. IfJhas characteristic 0 or p >n, then A 

and B have property Qk for some k~1 if and only if they 

have property T. 

Proof. It is clear (as in the proof of Theorem 1.9) that, 

if A and B have property T, we can find a basis of V so 

that the matrix of each P(A,B)Ck' with respect to that 

basis, has zero blocks on and belov1 the main block diag -

onal. Hence P(A,B)Ck is nilpotent for all polynomials 

P(x,y) and for each Ck in ek. Thus A and B have property 

Qk' k = 1 '2' ••• 
Conversely, let A and B have property Qk for some k~1. 

Use the composition series argument of Theorem 1.9. 

Then Aii and Bii of that theorem are quasi k-commutative 

here, and, since Vi/Vi+1 is an irreducible ~-module, we 

actually have AiiBii = BiiAii' i = 1,2, ••• ,t, by Lemma 1.18. 
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The minimum polynomial of A .. (resp~ B .. ) is irreducible as 

J_l. . J.1. 

in Theorem 1.9, i = 1,2, ••• ,t. Hence A and B have prop-

erty T. o 

1. 20 Corollary. If T has characteristic 0 or p:;:.. n then 

the properties Qk are equivalent, k = 1 ,2, ••• 

1.21 Corollary. If '"F has characteristic 0 or p~n, and if 

A and Bare quasi k-commutative for some k~1 , then they 

have property Q. 

Finally we shall give a counter-example to Theorem 

1 • 1 9, when the conditions on the characteristic of °3=' are 

not satisfied. In order to construct the example we 

shall need the following well-known result. 

1. 22 Theorem. [shoda, 9; Albert and Miickenhoupt, 1~. 
Let z be an nxn matrix with elements in a field T. Then 

there exist nxn matrices X and Y, with elements in CF, so 

that z = [X, Y], if and only if trace z = o. 

1 .23 Example. Let -.F have characteristic p ;;.o and let 

I be the pxp identity matrix. Then trace I = 0 and hence 

there exist pxp matrices A and B with elements in J= so 

that I= [A,BJ, by Theorem 1.22. Then A and Bare que.si , 

2-commutative, but they do not have property Q, since e.g. 

[A , B] is not nilpotent. 
For n;;:::.p we constru ct a counter-example by "filling 

out" the above matrices with zeros. 
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CHAPTER II 

THE KATO-TAUSSKY-WIELANDT COMMUTATOR RELATION · 

In the first chapter we considered a generalization 

of matrix commutativity (property Q) and extended known 

results by considering an arbitrary field J=". From here 

on we shall seek to generalize property Q itself, and thus 

to generalize the notion of commutativity. The kind of 

. generalizations we want are stated as Problem 2.1. 

So let A and B be linear transformations on an n

dimensional vector space V over a fields:-. Again let 'R 
be the algebra generated by A and B and ~the radical of~ • 

By applying the composition series argument cited in 

Theorem 1.9 to Vas an~-module we get the matrices 

A11 A12 A1t 
0 A22 ... A2t 

(*) and 

0 0 . . . Att 0 0 

of A and B with respect to a suitable basis of V where A .. 
J.J. 

and Bii (which are square b locks of dimension ni). cannot be 

reduced further by a simultaneous similarity, i = 1, 2, • • 

•• ,t. When '3= is algebraically closed McCoy's theorem 

(Theorem 1.2) characterizes those A,B for which 

n . = 1, i = 1 ,2,. .. Actually, for McCoy's theorem to 
l 

hold, it is only necessary to assume that c:Fcon tains the 

characteristic roots of A and B. 

following general question. 

We now raise the 

2.1 Problem. How can property Q be generalized so as to 

characterize those A and B for which the matrices in (*) 
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have diagonal blocks Aii and Bii of specific dimensions, 
i = 1,2,. ·~.,t? 

In this chapter and the next we partially answer this 
question (cf. Theorems 2.13 and 3.1). 

If we wish to have A11 and B11 , say, of dimension k, 
then somehow we must introduce a relation satisfied identic
ally by kxk matrices. This leads us to a commutator 

relation which was proved by Kato and Taussky [11] in the 
two-dimensional case, and by Taussky and Wielandt [12] in 
the general case. 

Let A and B be linear transformations on V. Let 
Ai+1 =[Ai,B] for i = O, 1,2, ••• , where A

0 
= A. Let K = 

= k(k - 1)/2, where k is a positive integer and let 'o1 ,b2 , • 
• • • , 'oK be K arbitrary elements inc;:-. 

2.2 Definition. 

fk(A,B;'o) = A2K+1 - 'o1A2K-1 + 'o2A2K-3 - ••• +(-1 )1S,KA1 

2.3 Theorem [11,12]. 

if bi' i = 1,2, ••• ,N, are the elementary symmetric func~ 
tions of ( f> - p ) 2 , 1 ~ r < s ~n, where Pr are the character-. r s 
istic roots of B, i = 1,2, ••• ,n, and N = n(n - 1)/2. 

Note. 

'o1 = 1E>{<s61.n (f3r - f>s)
2

, 'o2 = 'L_(f3r - t3s)
2

(Pt - f3u)
2
etc., 

where the second sum is taken over 1-.:;;; r < s ~n, 1 ~ t <u E;.n 
and (r,s)c:::(t,u), and this last ordering is lexicographic. 

We shall call expressions of the type fk(A,B;o ) 
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"Kato-Taussky-Wielandt commutator expressions" or "KTW 
commutator expressions", for short. Theorem 2.3 is then 
the Kato-Taussky-Wielandt commutator relation. 

We 
Let 

We remark that Theorem 2.3 is independent of A. 
can express the result in a somewhat different form. 
TB be the linear transformation on the space of all 

transfor mations on V defined by TB(X) = [X,B], then 

linear 

Theorem 2.3 becomes 

2.4 Theorem [Taussky and Wielandt, 12; Khan, 13]. 

We do not need to assume that (J3r - Ps) 2~ CS:, 
1 ~ r < s ~n, in either Theorem 2. 3 or Theorem 2. 4. 

We note that f 1 (A , B;"o) = [A,B] and thus, if there exist 
elements "o 1 ,"o 2 , ••• ,-oK in3="so that fk(A,B;'o) = 0 for some 
k with 1:::;; k <n, we might suppose this to be a "good" 
generalization of commutativity, in that it might give a 
partial answer to the question raised in 2.1. However 
the condition turns out to be a bit too weak for this. 
This is borne out by Example 2.6. 

2.5 Definition. If x1 ,x2 , ••• ,Xk are linear transformations 
on V then 

2.6 Example. Let '3'='.have characteristic f 2 or 3 and 
assume · "3 £~. Let A and B be matrices, 
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and -(1+:)/2 (1-=)/2] 
(1-x)/2 -(1+x)/2 

where x = 1/'13. Now 

f 2 (A , B ; 'o ) = [A , B , B , B] - 'o 1 [A , B] • 

We have A2 - B2 = I and this gives 

[A,B , B , B] = 4[A,B]. 

Hence f 2(A,B ; b) = O, where ~ 1 = 4. Incidentally, we 

also have f 2 (B , A;b) = O, where "o1 = 4. But even with both 

f 2 (A , B;"O) and f 2 (B , A;"o) zero , we cannot transform A and 

B to t h e form ( -x· ) by a simultaneous similarity , (even if 

we extend the f i eld 3="') where the diagonal blocks A. . and 
. 11 

Bii have dimensions~ 2. This comes from the f act that 

A and B have n eith er a row characteristic vector nor a 

column characteristic vector in common. Since A and B 

are symmetric , it is only necessary to verify this last 

statement for row vectors. The characteristic vectors 

of A are (a , O, -a) wher e a £7F , corresponding to the 

characteri stic value -1 ; and (a , b,a) where a , be::F, 

correspon ding to the characteristic value +1. Clearly B 

cannot have (a,O , -a) as a characteristic vector. Suppose 

B has a characteristic vector of the form (a,b,a) . 

Hence (a , b,a)B = ± 1 (a,b , a). Thus 

Hence 

Also 

(x(2a + b), (a - b)(1 + x)/2, -(a - b)(1 - x)/~ 

= .:t.Ca,b , a). 

x(2a + b) =+a orb= -a(2x + 1)/x. 

(a b)(1 + x) = + 2b orb= a(1 + x)/(1 + x + 2). 
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But since x = 1//3, these equations contradict each other 

unless a = b = O. Hence A and B have no characteristic 

vectors in common. a 

We shall, in Chapter IV, discuss a result concerning 

linear transformations A and B which satisfy 

fk(A,B;'b) = 0 for some k with 1 S:::k<n. But the result 

in this chapter (Theorem 2.13) which sheds some light on 

Problem 2.1 involves KTW expressions of the type 

fk(A,P(A,B);b), where P(x,y) is a polynomial in x and y. 

Before we can prove any results about KTW commutator 

expressions we need some preliminary results. The 

following well-kno~m theorem will be of use to us. 

2. 7 Theorem [cf. : Jacobson, 14, p.11 ~. Let ~be an 

infinite field and g(x1 ,x2 , ••• ,xr) a non-zero polynomial . 

in the polynomial domain::F'[x1 ,x2 , ••• ,xr]' where the xi 

are algebraically independent, then there exist elements 

c 1 ,c2 , ••• ,cr in j='so that g(c1 ,c2 , ••• ,cr) IO. 

We need this to prove the next lemma •. 

2.8 Lemma. Let ".:Fbe an infinite field and n a positive 

integer, then it is possible to choose x 1 ,x2 , •• • ,xn _in ·:F 
so that the n(n - 1 )/2 elements (xi - xj) 2 , with 1 ~ i <. j ~n, 
are all distinct and non-zero. 

Proof. Let 

n.rc:v. _ y.)2 _ (y _ y )2J. 
~ i J r s 

where the product is taken over 1 ~ i < j ~n and 1 ~ r < s ~n 

with (i,j) I (r,s). Since g(y1 ,y2 , ••• ,yn) i O, by 
Theorem 2.7 there exist x 1 ,x2 , ••• ,xn E'3=so that · 

g(x1 ,x2 , ••• ,xn) IO. This proves the result. Q 
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2. 9 Lemma. LetJ=°be any field and X an nxn matrix with 

elements in 'S"so that, for every non-singular matrix U 

with elements in~, the matrix u-1xu is diagonal, then X 

is a scalar matrix. 

Let U = u1 if n = 2 and U = u1 @ In_2 otherwise, where 

In_2 is the (n-2)x(n-2) identity matrix. Then 

0 o ••• o 
u-1xu = 

• 
0 0 

and, since this matrix must be diagonal, we get x 1 = x 2 • 

By a simultaneous permutation of rows and columns (using 

a permutation similarity) we can replace x 2 by any xi for 

i~3. Hence x 1 =xi' i = 2,3, ••• and thus X = x 1I. 0 

The result we prove next will be applied to prove a 

theorem about KTW commu tator expressions, but it is of some 

interest in itself. 

2.10 Theorem. Let d=°be an infinite field and X an 

nxn matrix with elements in J= • If X is not a scalar 

matrix , then there exists a non-singular matrix U with 

e lements in :Fso that u-1xu has none of its elements zero. 

Proof. Let X = (xij) be the given matrix. We shall 

subject X to a s u ccession of similarity transformations 

to put it in the required form. To avoid cumbersome 

notation, after each similarity we shall still refer to the 

new matrix as X = (xij). Since Xis not a scalar matrix, 

by Lemma 2.8 we may assume it has at least one off

diagonal element which is non-zero (transform X by a 
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similarity transformation., if necessary). By a simul

taneous permutation of rows and columns (using a permu

tation similarity) put this element in the (1,2) place of 

X. Thus we may assume X = (xij) with x 12 I 0. 

Let S =I+ yEij' with if j, where I is the nxn 

identi~y matrix, Eij 

elsewhere and y e'3=. 
has 1 in the (i,j) place and zeros 

. -1 
Then ·s = I - yE .. and hence 

1J 

s-1
xs = x + yXEij - yEijx - y

2
EijXEij" 

Thus the effect of the similarity s-1xs is t o add y times 

the ith column of X to the jth column, subtract y times the 

jth row from the i th row and change the element x .. to 
2 1J 

xij + y(xii - xjj) - y xji. Call such a similarity trans-
formation an elementary similarity. 

Now consider the matrix X with x 12 I O. By means of 

an elementary similarity add yi times the second column of 

X to the ith column, for each if 2 , where yi = 0 if x 1il 0 · 

and y. = 1 if x 1 . = o. We have possibly changed some rows 
1 1 

of X, but , in any case , we now have a new matrix X = (x .. ) . 1J 
with x 11 ,x12 , ••• ,x1n a ll non-zero. 

We shall prove , by indu.ction, that we can transform X 

by a similarity so t hat the first n - 1 rows of the matrix 

obtained contain no zeros. If n = 2, we have already 

proved this statement. If n~· 2, let us assume that we 

have succeeded in transforming X by a similarity so that 

the first k rows contain no zeros, where 1 ~·k <n - 1 • So 

now we assume X = (xij ) where the first k rows contain no 

zeros. If xk+1 ,k+2 I 0 we can proceed as in the next 
paragraph. Otherwise, by means of an elementary simil
arity subtract y times the kth row from the (k+1)st row. 

This adds y times the (k+1)st column to the kth column and 

changes the value of the element in the (k+1,k) place. 

Let 
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k 

g(y) = y n(xik + yxi,k+1) • . 
J.=1 

Since g(y) i O, by Theorem 2.7 we can choose y fj= so that 

g( y) is not zero (because cg: is an infinite field). We 

thus get a matrix X = ( x .. ) whose first k rows contain no 
J. J 

zeros and for whi ch xk+ 1 ,k+2 I O. 
For each i I k + 2 add yi times the (k + 2)nd column 

to the illi , by means of an elementary similarity. This 

operation subtracts yi times the illi row from the (k + 2)nd 

row and changes the value of the element in the (k + 2,i) 

place. So for each 1 I k + 2 let 

= -M(x .. + y.x. k 2). 
~=i Jl. J. J, + 

Since g (yi) i O, choose yi t: c;f" so that g(yi) I O. Thus, by 

induction, we have shown that the given matrix can be 

transformed by a similarity transformation so that the 

first :n - 1 rows of the matrix obtained contain no zeros. 

So now we have a matrix X = (xij) with zeros, perhaps, 

only in the last row. By means of an elementary simil

arity subtract y times the (n - 1)st row from the nlli row. 

This adds y times the nlli column to the (n - 1)st column 

and changes xn,n-1 to xn,n-1+y(xnn-xn-1,n-1)-y2xn-1,n· 
Let 

where the prime means that the term containing i = n - 1 

is omitted. Since g(y) i 0 we can choose y ~:Fso that 

g(y) I O. Thus we have obtained an X = (xij) where none 

of the elements is zero, and this proves the theorem. 0 



-26-

We shall now prove our first result involving KTW 

commutator expressions. It supports the idea that we 

can use the vanishing of a KTW commutator expression as a 

generalization of commutativity. The theorem we prove 

generalizes the fact that the center of the algebra of 

linear transformations on a finite-dimensional vector 

space over a field is the scalar transformations. 

2.11 Theorem. Let V be an n-dimensional vector space 

over an infinite field 7F , A a linear transformation on V 

and k an integer with 1 ~ k < n . Suppose that for each 

linear transformation X on V there exist elements 

~ 1 ,~2 , ••• ,~K in7.F, where K = k(k - 1)/2, so that 

then A is a scalar transformation. 

Proof. Let B be the matrix of A with respect to some 

basis of V. Then for each nxn matri·x Y with elements in 

'3=" there exist elements o 1 ,~2 , ••• '~K in "3::' so that 

f1/B~Y;'o) = O. Let Y = diag(y1 , y 2 , ••• ,yn) where the 

yi e ':Fare such t hat (yi - yj)2 are distinct and non-zero 

for 1~i-<j~n (by Lemma 2.8). If B = (bij), we get 

bijyji(yK - 'o1yK-1 + ••• +(-1)~K) = 0 

2 where y = Y:.. a nd y . . = y . - y . • Since there are N = 
Jl. Jl. J J. 2 

= n(n - 1 )/2 distinct non-zero values for yji with 

1~i<j~n and N>K, we get bij = O for some i, j. Thus 

the matrix of A with respect to any basis of V has at 

least one element zero. Hence A is a scalar transform

ation, by Theorem 2.10. C 

We use the following known result in proving one of 
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the main theorems of this chapter. 

2.12 Theorem ["Burnside's theorem", cf.4, p.276]. IfS\' 

is an irreducible algebra of linear transformations on a 

finite-dimensional vector space V over an algebraically 

closed field, then~ is the complete algebra of linear 

transformations on V. 

The next theorem is a generalization of part of 

McCoy's theorem on property Q (Theorem 1 .2) and it gives 

some information about a solution to Problem 2.1. 

2.13 Theorem. Let A and B be linear transformations on 

an n-dimensi onal vector space V over an algebraically 

closed field °.F. Let k be an integer with 1~ k< n. Sup

pose that for each polynomial P(x,y), there exist ~1 ,~2 , •• 

•• ,~K in"'a=", where K = .k(k-1)/2, so that 

then there exists a basis of V with respect to which the 

mat rices of A and B have the forms (*), where 

fk(A .. ,P(A .. ,B . . ) ;'t>) = 0 and dim.A .. = dim.B .. E;;; k. 
ll 11 ll ll ll 

Proof. By the usual composition series argument we can 

find a basis of V so that the matrices of A a nd B have the 

forms (*) where Aii and Bii cannot be reduced any further 

by a simultaneous similarity and fk(A .. ,P(A .. ,B .. );~) = O 
ll ll ll 

with i = 1,2 , ••• ,t. We claim that dim.Aii = dim.Bii~k 

for i = 1 ,2, ••• ,t. For suppose dim.Aii = ni>k for some 

i. Since Aii and Bii cannot be reduced by the same simil,ar
i ty, _ · the algebra ~1. of polynomials in A .. and B . . is . . 

-· ~ l.1. 1.1 

irred.ucible and hence by "Burnside's theorem" (Theorem 

2.12), q\i is the complete algebra of nixni matrices ' 

with elements in~. Hence, given any nixni matrix X 

with elements in c::F' , we can find K elements 'o 1 ,'o2 , •• 
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•• ,'oK in ca=- so that fk(Aii'X;'o) = O. Since k<ni this 

means Aii is a scalar matrix, by Theorem 2.10. But then 

Bii can be reduced to upper triangular form by a similar

:i ~y _ (since '3= is algebraically closed) and this leaves 

Aii unchanged. This contradicts the fact that Aii and 

Bii cannot be reduced by the same similarity transform

ation. Thus ni~k and this completes the proof of the 

theorem. Cl 

Remark. This theorem does not characterize those A,B 

for which the matrices in(*) have dim.Aii(resp. dim.Bii) 

~k. The exact conditions on A and B for this character

ization would appear to be quite complicated. However, 

in Chapter III we give necessary and sufficient conditions 

on A and B that the matrices in (*) have dim.Aii = dim.Bii 
:::;; 2 • 

We close this chapter with some remarks on the Kato

Taussky-Wielandt commutator relation. When V is two

dimensional the relation is 

or 

[A,B,B,B] - ({3 1 - p2 )
2 [A,B] = O 

TB(T~ - (~1 - P2)2I) = 0 

where ;B1 and J3 2 are the characteristic roots of B and TB 

is the linear transformation defined on the space of all 

linear transformations on V by TB(X) = [x,B]. The Kato
Taussky-Wielandt commutator relation is not the most gen

eral commutator relation between A and B in the two-dimen- · 

s iona l ~ ca~e. We prove the following generalization. 

2.14 Theorem. Let A and B be linear transformations on 

a two-dimensional vector space V over a field c:a=:and · let 

the linear transformation TX be defined by Tx(Y) = [Y,X] 
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where X and Y are linear transformations on V. Then 

= 0 

where x = trace Atrace B + 2detA + 2detB - 2det(A + B)#. 
Proof. Replace A and B by matrices, again called A and B. 
We let A = (a .. ) and B = ( b . . ) • Then 

J.J J.J 

0 -a12 a21 0 0 -b12 b21 0 

-a21 °12 0 a21 .,.b21 /3>1 2 0 b21 
TA = 0 ' TB = 

b12 0 µ21 -b12 a12 °'21 -a12 

0 a12 -a21 0 0 b12 -b21 0 

where 0( = a . . - a .. and ~ .. = b .. - b . . • We are usi'i'lg i. ii JJ riJ 11 JJ 
the factJthat , if X is any :squa r e matrix, then TX = 

= X t ® I - I ® X, where " t " means transpose and " @ " is 
the tensor product sign [cf. 13]. Let I be the 4x4 
identity matrix, then 

= 

# Th e notation "detX" means "the determinant of the linear 
transformation X". 



a12~21 + a21b12 - x - a1 2 P12 a21 P21 - a12b21 - a21b12 

I 
-cx; 2b21 2a21 b1 2 + °12P12 - x - 2a21b21 C><J 2 b21 

0 
!'<\ 
I I °21b12 - 2a12b12 2a12b21 + ~1P21 - x -~1b12 

- a12b21 - a21b12 a1 2~12 - a21P21 a12b21 + a21b12 - x 
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Let y = 2a21 b12 + 2a12b 21 + °'1 2 1312 - x. Then 

= 

where, in computing, we 

f312 = - f3 21 • Thus y = 

This happens if 

Now 

0 

-b21Y 

b12y 
0 

use the 

0 gives 

-b12Y 

f>12Y 
0 

b12y 

facts 

= o. 

b21y 0 

0 b21y 

f>21 y -b12Y 

-b21Y 0 

that ~ 2 = -~1 

traceAtraceB + 2detA + 2detB - 2det(A+B) 

and 

= (a11 + a22)(b11 + b22) + 2 <a11a22 - a21a12) + 
+2 (b11b22 - b21b12) - 2 <a11a22 - a21a12) + 

- 2 (b11b22 b21b12) 2 <a11b22 a21b12) + 

- 2 (b11a22 - b21a12) 

= (a11 - a22)(b11 - b22) + 2a21b12 + 2a12b21 
= x. 

This completes the proof of the theorem. 0 

2.15 Corollary. Let A, Band C be linear transformations 

on a two-dimensional vector space over a field. Then 

[C , B , A, B] - x [Q , B] = 0 

where x = traceAtraceB + 2detA + 2detB - 2det(A + B). 
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The Kato-Taussky-Wielandt commutator relation for the 

two-dimensional case follows from this corollary on putting 

A = B. 
We note that we do not use the generalized form of the 

Kato-Taussky-Wielandt commutator relation (Theorem 2.14) 

in this thesis. We also remark that we have not succeeded 

in generalizing Theorem 2.14 when the dimension of V is 

greater than 2. 
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CHAPTER III 

THE TWO-DIMENSIONAL BLOCKS 

In Theorem 2.13 we gave a condition on A and B suf

ficient to guarantee that dim.A . . = dim.B . . ~ k in ( *). 
ll 11 

However this does not characterize matrices of the form (*) 
with dim.Ai~ k, i = 1 , 2, ••• , t. In this chapter we 

characterize those linear transformations A and B on 

which dim.Aii = dimBi~ 2 in (*) for i = 1,2 , ••• ,t. 

characterization is in terms of two-dimensional KTW 

mutator expressions. 

V for 

The 

com-

Again we have linear transformations A and B on an 

n-dimensional vector space V over a field':F. f< is' the 

algebra generated by A and B over a=-' and ~ is the radical 

of~. 
We have the following main theorem. 

3 . 1 Theorem. Let :f' be algebraically closed. Then the 

following statements are equivalent. 

(a) For each polynomial P(x,y) th.ere exist an integer r 

= r(A,B,P(A,B)) and distinct elements h 1 ,h2 , ••• ,hrc:<=.:fso 

that 

for every permutation n(1), TT(2), ••• ,n(r) of 1 ,2, ••• ,r, 

where 

= U,P,P,P] - h [A,P'], s 

s = 1,2, ••• ,r and P = P(A,B). 
(b) There exists a basis of V with respect to which the 

matrices of A.and B have the forms 
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A11 A12 . . . A1 t B11 B12 • • • B1t 
0 A22 A2t 0 B22 . . . B2t 

(*) and • • 

• 
0 .. . ~ .. ••• Att 0 0 . . . Btt 

r espectively , where Aii and Bii are either 1x1 or 2x2 
matrices which cannot be reduced further by a simultaneous 
similarity, i = 1 , 2, ••• ,t. 
Proof. Assume (b) holds. Let A' and B' denote the matri
ces in (b) (since we do not refer to transposes in this 
theorem, the notation is unambiguous). The block diag

onal of P(A ' ,B ' ) has blocks P(Aii ' Bii), i = 1,2, ••• ,t. 
Let Aj, Bj be the 2x2 blocks on the diagonals of A', B•, 
respectively, j = 1 , 2 , ••• ,q. Let x1 . and x 2 . be the 

J J 2 
characteristic roots of P(Aj,Bj). Form (x1 j - x 2 j) , 

. j = 1 ,2, ••• ,q and let h1 , h 2 , ••• ,hr be the distinct ele -
ments among these. If we let P. = P(A.,B . ), then we have 

J J J 

[A . , P. , P . , P. J - ( x1 . - x 2 . ) 
2 [A . , P. J = O. 

J J J J J J J J 

If we form X~ = [A ' , P ' , P ' , PQ - hs [A' , P '] for s = 1 , 2, ••• , r, 

where p t = P(A' , B• ), we see that XTI( 1 )Xn( 2 )•••Xrr(r) has 
zero blocks on and below the main diagonal, for each per
mutation rr(1) , rr(2), ••• ,rr(r) of 1,2, • •• ,r. This is also 

true of Q(A 9 ,B')XIT( 1 )Xn( 2 ) ••• Xn(r ) for all polynomials 
Q(x,y). Thus Q(A,B)XTT( 1 )Xrr( 2 ) ~ •• xrr(r) is nilpotent for 
all Q(A,B) and hence X11( 1 )XTT( 2 ) •• • Xn(r) €} by Lemma 1 .6. 
Hence (a) holds. 

It is clear , from this part of the proof, why we must 
take a product of Xs's , instead of a single one. 

Conversely, let (a) hold. By the usual argument, 
there exists a basis of V with respect to which the 
matrices of A and B have the forms (*),where A .. and B . . 

l. l. l.l. 

cannot be reduced any further by a simultaneous similarity, 
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i = 1,2, ••• ,t. Let Aii and Bii be nixni matrices. We 

wish to show that ni ~ 2. 

So assume, for some i, that ni~2. Under this 

hypothesis we shall show that Aii is actually a scalar 

matrix. As in Theorem 2.13 this means Aii and Bii can be 

reduced by a simultaneous similarity, which is a contra

diction. Hence ni~2 for i = 1,2, ••• ,t. 

We proceed to show that ni-::>2 implies Aii is a scalar 

matrix. For simplicity, let Aii = C, Bii = D and P = 
= P(C,D). Then, if Ys = [C , P,P,P] - hs[C,P], we have 

YTI( 1 )Yn( 2 ) ••• Yn(r) = 0 for all permutations n(1),n(2), •• 
•• ,n(r) of 1,2, ••• ,r. · 

Since C and D cannot be reduced by the same similarity 

transformation, the algebra of all polynomials in C and D 

with coefficients in '3=' is irreducible. Hence, by "Burn

side's theorem" (Theorem 2.12), this algebra is the com

plete algebra of nixni matrices with elements in '3="". Thus, 

if X is any nixni matrix with elements in::F" , for some 

integer r (depending on X) there exist distinct elements 

h 1 ,h2 , ••• ,hr s T so that, if xs = [c ,x,x,x] - hs [9 ,x], then 

Xn( 1 )Xn( 2 )•••Xn(r) = 0 for all permutations of 1,2, ••• ,r. 
Without loss of generality, assume C is in Jordan 

canonical form. 

m 

C = jl=-1© C j where C j = O<j I j + E j , j = 1 , 2, ••• , m, 

where I. is an identity matrix and E. is a matrix of the 
J J . 

same dimension as Ij, with 1•s on the superdiagonal and . 

zeros elsewhere, i.e. the Cj are Jordan blocks. We wish 

to show C is a scalar matrix. This we do in three stages. 

Stage 1. Each Jordan block C j has dimension~ 2. 

Proof. Suppose some block, c1 say, has dimension;::::.3. Then 
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~ 1 0 • • • 0 

0 °"I 1 0 

01 = • • • 

• • 
0 0 0 ••• 0<1 

We may ignore the diagonal, since we shall be taking com- . 

mutators. Thus we consider E1 • Let 

i.e. the leading 3x3 diagonal block of E1 • Since we may 

consider any nixni matrix X in the expression [9,X,X,X] 
- hs[c ,x] , we shall now consider only those matrices X which 

have arbitrary 3x3 blocks Z in the place corresponding to 

the block E and zeros elsewhere. Thus we may restrict 

ourselves to 3x3 matrices. Let 

[o o ~J z = 1 0 

0 1 

then 

[ 0 ~ [E ,Z] = 0 0 1 ' 
0 0 -1 

[E,Z,Z] = [-~ ~ ~l 
0 -1 -~J 

and 
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[E, Z, Z, Z] 
= [! _: ~l. 

-J 

[E, z , z , z] - hs [E, z] -= [-h

0

1 s ~ ~ -h J 
~1 -(1-h:) 

which is in block lower triangular form . We have 

Zn( 1 )zn( 2 ) ••• zrr(r) = o, for each permutation of 1,2, ••• ,r. 
Hence some h

6 
is zero, say h 1 = O. Let 

since 

= 

Hence 

H1 if r = 1, 

(nhs)H1 , otherwise. 
s=2 

r 
H1 = [ 1 1] and n hs -/= 

-1 - 1 s=2 
o, : 

r?2. This is a contradiction. Hence dim.CJ~ 2, j = 
= .1,2, ••• ,m. 

Stag e 2. C is a diagonal matrix. 

Proof. Suppose for some j that dim.Cj = 2. Let Cj = 

= [6 ~· By simultaneous permutations of rows and 

columns, if necessary, we may assume Cj is not the leading 

block on the diagonal of C (since dim.a = ni-:;;::::.3). Thus 
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ff O OJ 0. 1 0)0. = 0 0( 1 or 
J- J 

0 0 C( 

since dim.01:::=;;2, 1 = 1,2, • • • ,m. Let 

G = r:: ~J. 
L~ o ~ 

If O . 1 t+'i 0 . is 4x4, it equals 
J - \;!.:/ J 

[3 1 0 0 

0 

0 G 
0 

(3 1 0 0 

0 {!> 0 0 

0 0 ~ 1 

0 0 0 Ol 

which is in block upper triangular form. We shall be 

multiplying 0 by matrices which have zeros everywhere 

except in the place corresponding to G, so again we 

restrict ourselves to 3x3 matrices . Let 

z = [~ ~ ~] 
where x is chosen in "".F- so that x I 0 and x I (3 - 0(. 

[G,Z] 
· [o o p-cxj 

= 0 x 0 ' 
0 0 -x 

and 

(9-,z,~ = 
x (p -ex) · 

0 

-2x2 

Then 
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3x2- 2x ([3 -~ 

0 

0 

((3-oV-XJ 
0 • 

0 

Z8 = W,z,z,Z] - h 8 [9-,z] = [~ 
r 

Now zn(1)Zn( 2) • • • zn(r) = 0 and thus ( qhs )xr = o. 
means some hs is zero , say h1 = o. ~hus 

G 
2 

3X -2 (~-oVX ~-~1 
z1 = 0 0 • 

0 0 

This 

( ) ( ) r-1 The 1 ,3 element of z 1z 2 • • • zr is ~-o<-x ex , where c = 
= 1 if r = 1 and c = h 2h 3 •• • hr IO, otherwise . But this 

gives a contradiction, since x I 0 and x I p-o<. Henc e 

C = diag ( °1 , ~ , .•. , e><n . ) • 
J. 

Stage 3. C is a sca lar matrix. 

Proof . Since we may put any three of °'1, ~, ••• ,oh. in the 
]. 

fir s t thr e e places on the diagonal of C (by simultaneous 

row and column p e rmutations), we may as wel l assume that 

C = diag(~,~'°3) . Let 

z = [~ ~ ~]· 
1 0 0 

We have, on letting <X_j_ - °'j = O<ij , 
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[~, 
0 ~3] [ 2~3 0 °31] [c,zJ = 0 ~3 , 

[9, Z, ZJ = °23~~ 3 0 °32 , 
0 °'.31 . 0 2°)1 

and 

[a 0 5~3 J [c, Z, Z, Z] = ~2 0 2~3~3°'J 3 • 
5<><-;1 0 

Hence 

z s = [c, z, z, Z] - hs [C, Z] = [ ~ 2 

(5-hs)°31 

0 
The product of an even number of z 's s has the form ~ 0 :J 0 

[: 
0 

~J and the product of an odd number has the form 0 
' 0 

where * denotes an element not necessarily equal to zero. 

The (1,3) element (if r is odd) or the (1,1) element (if 
r is even) of the product z1z2 ••• zr gives c~3 = O, where 

r . 
c = JJ ( 5-hs) • If no hs = 5 we get <Xi = ex,. Otherwise 
h1 (say) = 5. Thus 

= 

The (2,1) (if r is odd) or (2,3) (if r is even) element 
r-1 of z1z2 ... Zr gives c<Xi 2<Xi 3 = O where c = 1 if r = 1 and 

c = ~J2 ( 5-hs) otherwise. Hence <><t = °2 or <Xi = ex,. Now 
this last statement is true whether or not some h

8 
= 5. 

If ~ = . ~, put ~ in the ( 1 , 1) place (by a simultaneous 
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row and column permutation) and repeat the argument. 

Thus ~ = C¥1 or C¥2 = a-3 i.e. 0<1 = °'2 = °'3. Similarly 

a-1 = Q'2 implies 0(1 = ~ = ~. Hence C is a scalar matrix 

i.e. Aii is a scalar matrix. 

Thus ni~2 and the result is proved. O 

We make some remark s about the above theorem. Note, 

in the course of the proof, we did not use all the products 

X11( 1 )Xn( 2 )•••Xn(r)• It seems likely that it should be 
possible to consider even fewer of these products than were 

used in the cours e of the proof; we do not have an example 

which contradicts this surmise. 

It should be noted that the proof that (a) ==;>(b) does 

not gu arantee that the constants h 1 , h 2 , ••• ,hr are of the 

form (x1 - x 2 ) 2 where x 1 , x 2 are characteristic roots of 

P(A,B). It .is clear, for example, that if A and B have 

property Q, then the constants h 1 ,h2 , ••• ,hr may be quite 

arbitrary. 

Finally, it seems likely that a similar theorem should 

characterize those matrices (* ) with dim.Aii~k, if we 

replace the two-dimensional KTW commutator expressions by 

k - dimensional ones. 

problem. 

But we have made no progress with this 
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CHAPTER IV 

THE RELATION f k (A, B ;'"o) = 0 , WHEN k <n 

Example 2.6 indicates that the relation fk(A,B;"t>) = O, 

· with 1~k<n is not a " good" generalization of commutativ

ity in that it does not help us to solve Problem 2.1. 

However, it seems reasonable to ask what the relation 

fk(A , B; b) = 0 does imply. We might hope to prove that if 

'O = ·'.1(t>1 ,'0 2 , ••• ,"OK) then t>1 ;o2 , ••• ,'OK are elementary sym

metric functions of some of (~r - Ps) 2 , 1~r,s:s:;;n, where 

fr are the characteristic roots of B. When k = 2 we do 

get a result like this (cf. 4.6)but, in general, the 

result we obtain is not quite this strong (cf. Theorem 4.2). 

We begin the investigation with a definition. 

4.1 Definition. Let fk(X,Y;"t>) be a KTW commutator expres

sion, with '"O = ('o1 ,-o 2 , ••• ,"oK) where K = k(k - 1 )/2. Then 

= . . . 
The main theorem in this chapter is 

4. 2 Theorem. Let X. be the algebra of linear transform~~

_tion on an n-dimensional vector space V over a field '3=' 

and let A,BeZ. Suppose A and B generate~ i.e. every 

linear transformation in£.. has the form P(A , B) where 

P(x,y) is a polynomial. If the characteristic of :F does 

not divide n and if there exist "01 ,'02 , ••• ,'oK in <J=' so that 

where 1 ~k<n and "O = (u1 ,'0 2 , ••• "'OK), then the characteristic 

roots of B belong to the splitting field of gk(w;"o) over~. 
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We shall prove ·this theorem presently, but first we 

introduce some well-known facts from the Theory of Graphs 

which we shall employ in the course of the proof. A 

general reference for the graph theoretical material we 

use is Varga [15]. 

4.3 Definition. Let X be an nxn matrix with elements in 

a fieldc:T, then X is P-irreducible if it cannot be trans

formed by a permutation similarity to the form 

where Y and W are square matrices. 

Note. The " P" iri " P-irreducible" stands for "permutation". 

Our " P-irreducible" is the same as the " irreducible" or 

" indecomposable" of the Perron-Frobenius theory of non

negative matrices [cf. 15]. 
We associate a directed graph G(X) with an nxn matrix 

X = (xi j ) in the following way. G(X) consists of vertices 

numbered 1,2 , ••• , n and there is an edg e from i to j, i.e. 

i--:>j, if and only if xij IO. 
The following well-known theorem is stated in Varga 

[ 15]. We include a proof since there does not seem to be 

one in the literature. 

4.4 Theorem. Let X be an nxn matrix with elements in a 
field .cg::--. Then X is P-irreducible if and only i f G(X) is 

. strongly connec ted. 

Proof. If P is a permutation matrix then G(P-1XP) is 

obtained by rela beling the vertices of G(X). Suppose G(X) 

is strongly connected. Then X is P-irreducible. For 

suppose otherwise; then there exists a permutation matrix 

P so that 



strongly connected. ·-.. _ .. - Suppose it is not. Then there 

exists a vertex i to ~~·~c~ at least one other vertex is not 

connected. By renumbering the vertices we get i = 1. Let 

2,3, ••• ,r be the vert~ces which are connected to 1 by some 

path in G(X) (again by renumbering). It is clear that r::>2, 

since we cannot have xj 1 = O, j = 2,3, ••• ,n, because this 

would contradict the fact that X is P-irreducible. It is 

also clear that r<::::.n, since we have assumed G(X) is not 

strongly connected. These renumberings of the vertices of 

( ) 
-1 . 

G X correspond to a permutation similarity P XP of X. 

We claim that P-1xP has the form (# ) above, because there 

does not ex ist a path in G(P-1 XP) from j to i where re:: j "n 

and 1:;;; i<.r. Since , if j can be connected to i, then j can 

be connected to 1, because i can be connected to 1. This 

is a contradiction of the fact that 2,3, ••• ,r are the only 

vertices that can be connected to 1 by a path in G(X). 

Hence Xis P-reducible (i.e. not P-irreducible). This 

contradicts the initial assumption. Hence G(X) is strongly 

connected. Q 

4.5 Proof of Theorem 4.2. Firstly, we dispose of two easy 
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cases. If k = 1, then AB= EA and since A and B generate 

Xthis means n = 1 and the theorem is then obvious. The 

second easy case is when B has only one characteristic 

root f3 • Then traceB = npt:-Y. Hence f3e~, since the 

characteristic of '3=" does not divide n. So the result is 

trivial in this case also. 

So assume that there exist '01 , '0 2 , ••• ,'OK in -=:F so that 

fk(A,B;'O) = 0 where 1-<k<n and where B has at least two 

distinct characteristic roots. Replace A and B by 

matrices, again called A and B and extend 7F to a field ~ 

which contains the characteristic roots of B. Let U be 

a non-singular matrix with elements in ~so t_hat N = u-1 BU 

is the Jordan canonical form of B with N = 'i: $ B. where 
i=1 J. -

Bi is a direct sum of Jordan blocks all of which have the 

same characteristic root pi and f>i -l /3j when i I j. Let 
-1 A1 = U AU, then 

Let A1 = (Aij) be the partition of A1 corresponding to that 

r 
of N = L (±)Bi. 

i=1 
We shall prove the following statements. 

1. If Aij Io, then Pi - pj satisfies the equation 

gk(w;'o) = O. 

2. A1 = (Aij) is P-irreducible as a block matrix. 

If we assume Statements 1 and 2 we can complete the 

proof of the theorem in short order. For let G(A1 ) be the 

graph of A1 considered as a block matrix, i.e. i~j if and 

only if A .. I O. Then Statement 2 and a modification of 
J.J -

Theorem 4.4 (for block matrices) imply that G(A1 ) is 

strongly connected. Thus, if pi' pj are distinct char-
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acteristic roots of B, there exists a sequence i,i1 ,i2 , •• 

•• ,iu,j so that Pi - ~i1' ~i1 - Pi2'···'Piu - rj satisfy 

gk(w;'o) = o. Let 1\.. be the splitting field of gk(w;'o) 

over '3=". Thus 

~ . - B . = ( 13 . - 6 . ) + (a · 
r i r J r i r i.1 f . 1 1 

- e,. )+ ••• +(8. - B.)e:'.1t. 
ri.2 riu r J . 

Let nj be the multiplicity of fj as a characteristic root 

of B, j = 1,2, ••• ,r. Then 

r r 
) n. A. - ) n. ~.e.X . 
j;;; Jrl. J:?i JIJ 

Hence n~i - traceB&j{. Thus fiE-:l{, i = 1,2, ••• ,r, since 

. the characteristic of j{, does not divide n. 

It remains to prove Statements 1 and 2 to complete 

the proof of the theorem. 

Proof of Statement 1. We employ the relation fk(A1 ,N;n) = 
= O. Suppose Aij ~ O. Let ast be the " firsttt non-zero 

element . of Aij in the following sense: if the lower left

hand corner element of Aij is non-zero, let this be ast; 

otherwise let ast be a non-zero element of Aij so that 

auv = 0 if u;;;ai:s and v ~t and (u,v) ~ (s, t) where, of · 

course, we only consider those elements auv in Aij" Thus 

* * 
0 0 ast 

Aij = 0 0 0 

* 
• 

0 . . . 0 0 

where * d enotes elements which make up the rest of A .. • 
J. J 
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If ast is the (a,b) element of Aij' we shall calculate the . 

(a,b) element of the (i,j) block of fk(A1 ,N;b). To 

simplify calculations assume that Bj has characteristic 

root 0 and Bi has characteristic root (3 ij = Pi - fj (Sub

tract fjI from N. Since we take commutators, this 

operation does not affect the end result of the calcula 

tions • . ). The matrix fk(A1 ,N;~) is a linear combination 

of matrices of the type [A1 ,N,N, ••• ,N]. The (i,j) block 

of [A1 ,:rl] is AijBj - B1Aij• The (i,j) block of 

[A1 ,N,N, ••• ,N] only involves Aij' Bi and Bj; it consists 
of a linear combination of matrices of the type B~A . . B~, 

. J.. 1.J J 
where c + d is the number of times the commutator operation 

is applied in [A1 ,N,N, ••• ,N']. The (a,b) element of 

B~AijB~ is obtaine~ by multiplying the blli column of AijB~ 
by the alli row of Bi. Those elements in the blli column of 

A . . B~ from the ath element down are all that matter here. 
J..J J 

But these elements are zeros, except when d = O, since Bj 

has zeros on and below the main diagonal. Thus the (a,b) . 

element of [A1 ,N,N , ••• , N], where the commutator operation 

is performed m times , is (-1)mp~jast• Since the monomials 

in gk(w;~) are of odd degree, the equation fk(A1 ,N;~) = 0 

gives gk(f3ij ;'o)ast = 0 and hence gk(f>ij ;~) = 0 since 

ast I 0. Thus we have shown that if Aij I O, then 

~i - f3j satisfies the equation gk(w;'o) = o. 

Proof of Statement 2. We now show that A1 = (A .. ) is 
J..J 

P-irreducible as a block matrix. For suppose there exists 
a block permutation matrix P, .Parti t ioned conformaliy,_ ~r;\ th 
A

1 
= (Aij), so that P-1 A

1 
P has the form . -- - '--·--:. ·. .. 
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A11 A1m A1 ,m+1 . . . A1r 

• 

Am1 Amm Am,m+1 Amr 
0 . . . 0 Am+1 ,m+1 • • • Am+1,r 

0 0 

where m<r, then A1 and N may be reduced by a simultaneous 

· similarity , since the block permutation matrix P simply 

permutes the blocks on the diagonal of N. Thus the 

algebra of matrices of the form P(A1 ,N) is reducible, where 

P(x,y) is a polynomial in the non-commuting variables x and 

y with coefficients in~· But the matric e s A and B 

generate the complete algebra of nxn matrices with coef~ 

ficients in ::F. Hence A1 .and N generate the complete 

algebra of nxn matrices with coefficients in ~which is 

irreducible. This contradicts the assumption that A1 = 
= (A .. ) is not P-irreducible as a block matrix. Thus A1 J. J 
is P-irreducible as a block matrix. c:r 

4.6 Corollary. Let A and B satisfy the conditions of 

Theorem 4.2 with k = 2 and let B have at least two distinct 

characteristic root s. Then there exists an ordering 

~ 1 ,r2 , ••• ,pr of the distinct characteristic roots of B so 

that 13 1 - 13 2 = ~ 2 - p3 = ••• = Pr_1 - Pr satisfies 
2 

w - 'o1 = 0. 

Proof. Consider the matrix A1 = (A .. ) defined in 4.5. 
J. J 

. We have 

We claim that A1 cannot have more than two off ~diagonal 
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blocks in each row or column which are non-zero. 

Suppose, for example, that Ai j ' Aik and AiL are non-zero 
off-diagonal blocks, where j,k and~ are distinct. Then 

~i - ~j' Pi - fk and Pi - f~ all satisfy x
2 

- ~1 = o, by 
Statement 1 of 4.5. Hence at least two of Pj' ~k' r~ 
must be equal, and this contradicts the fact that the p's 

are distinct. We also note that if Aij and Aik (resp.Aji 

and Aki) are non-zero off-diagonal blocks, where j I k, 

then an argument similar to the one just given shows that 

if A
8

i (resp. Ai
6

) is a non-zero off-diagonal block then 

s = j or s = k. 
Let G(A1 ) be the graph of A

1 
considered as a block mat

rix. We shall write i..-vj if i~j or j~i. The dis -

cuss ion of the last _paragraph shows that if i .-v j and i ........ k, 

where i,j , k are distinct, then 

either j or k. We claim that 

of G(A1 ) we get the subgraph 

i ~ 1 implies that 1 must be 

by renumbering the vertices 

------· ... 
1 2 3 r-1 r 

where i""i+1, for i = 1,2, ••• ,r-1. For let 

= 
1 2 3 s-1 s 

be a maximal "pathn in G(A1 ) (on renumbering vertices) -

where i"""'i+1, for i = 1,2, •• ·• , s-1 and suppose s Ir. If 
j is a vertex ff'v, then n e ither j......., -1 nor j..-vs . can hold, 

since f-<. is maximal. Since G(A1 ) is strongly connected 

there exists an internal vertex i e f"- and a vertex j 1 I-'- so 

that i.......,j. But i..vi+1 and i.-vi-1, and since j I i-1 and . 

j I i+1 , this is a contradiction. Thus G(A1 ) contains the 

required subgraph. Hence, on renumbering the distinct 

characteristic roots fi of B, we see that f 1 - p2 , (->2 - p3 , 
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Pr-1 - ~r satisfy w
2 

- o1 = o. Now we must have 

~i - ~i+1 = Pi+1 - ~i+2' i = 1 ,2, ••• , 

since pi"'." Pi+1 = ri+2 - Pi+1 implies that pi =Pi+2 • 
This is impossible, since the Pi's are distinct. C 

4.7 Remarks on Theorem 4.2. Example 2.6 illustrates 

Theorem 4.2 in a trivial fashion. Later on in this chap

ter we shali give a non-trivial example (Example 4.12) 

which illustrates Theorem 4.2, Corollary 4.6 and a theorem 

we have yet to state (Theorem 4.9). We note that Theorem 

4.2 iays that if ~ is a characteristic root of B, then it 

satisfies an equation of degree at most k(k - 1)! over 'S". 
At first sight this statement does not look too promising, 

but if k is "small" compared to n it says something about 

the reducibility of the characteristic polynomial of B 

over J=". We shall return to this fact in a moment when 

we discuss a generalization of the so-called "L-property". 

We note one more fact about Theorem 4.2: it is, that the 

condition on the characteristic of~ is ne.cessary. We 

give a counterexample to the theorem later (Example 4.13) 

where this condition is not satisfied • 

. Assume for the moment that the characteristic roots of 

A and B belong to~. We recall that A and B have prop

erty P if there exist orderings 0<1 , ot2 , ••• , cxn and g3 1 , 132 , •• 

•• ,~n of the characteristic roots of A and B respectively 

so that P(A,B) has characteristic roots P(~i'~i)' i = 1,2, • 
•• ,n, for each polynomial P(z,w). Now a weak form of 

property P is property L (a term due to Kac) which demands 

that property P only hold for linear polynomials P(z,w) = 
= xz + yw, where x,ye~[Motzkin and Taussky, 1~. 
Property L then says that the characteristic polynomial 

p(x,y,z) of xA + yB splits into linear factors, i.e. 
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n 

p(x,y,z) = r-T(xQj_ + yp1 - z) 
i=1 

where ~ and f3i E ;f', i = 1, 2, ••• ,n. We shall use Theorem 
4.2 to prove a result about a pair of linear transform
ations A and B which implies they have a property very 
much like that of property L (instead of only linear fac~ 
tors in p(x,y,z) we get both linear and quadratic factors). 
To prove the result we need a preliminary lemma. We 
denote by j:"°[1c,y] the integral domain of polynomials P(x,y) 
and by':F(x,y) the quotient field of this integral domain. 
(We assume, of course, that the indeterminates commute, in 
contradiction to the convention on page 4). 

4.8 Lemma. Let p(x,y,z) be a homogeneous polynomial in 
x, y and z with coefficients in a field et. Suppose 

p(x,y,z) = t k· 
p.l. 

. 1 l. l.= 

where each pi is an irreducible polynomial in z over 
j=(x,y), then each pi is a homogeneous polynomial in x,y 
and z with coefficients inc.F". 
Proof. d=[x,y] is a Gaussian domain (unique factorization 
domain) [cf. Jacobson 14, p.126]. Since a Gaussian 
domain is integrally closed Q..bid. p.184:) , the coefficients 
of the powers of z in pi must be polynomials_ in x and y. 

Suppose pi is not homogeneous in x,y and z. Define 
M(q) (resp. m(q)) to be the maximum (resp. minimum) degree 
of the monomials in a polynomial q. .Now M(pi )"> m(pi) and 
M (resp. m) has the property that M(qr) = M(q) + M(r) 
(m(qr) = m(q) + m(r)) , for polynomials q and r. Hence 
M(p),:::::,. m(p) where p = p(x,y,z). But this is false. Hence 
M(pi) = m(pi) and thus pi is homogeneous. 

4. 9 Theorem. Let 1:, be the algebra of linear transform:;;.-
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ti on on an n-dimensional vector space V over an infinite 

field CJ=whose characteristic does not divide n. Assume A 

and B e;I:. are such that A and B generate£.. and suppose that 

for each x,y £ d=' there exists 'o1 t: S:- so that 

where u = (~ 1 ). Then the characteristic polynomial 

p(x , y,z) of xA + yB splits into linear and quadratic homo

geneous factors in x,y and z with coefficients inO::. 

Proof. We may assume that n~3, since the result is triv

ial otherwise. Replace A and B by matrices. Let 

xA + yB = X. Then 

If [A,:x]= 0 then AB= BA and this implies n = 1. So the 

result is trivial in this case. So assume [A,X] I o. 
Then the equation f 2(A,X;'o) = 0 says that ~1 is a rational 

function of x and y. Replace x and y by two algebraically 

independent indeterminates, again called. x and y, respec t:tve

ly. ~ Then the equation f 2 (A,X;'o) = 0 still holds, by 

Theorem 2. 7, since '3=" is infinite. A and X clearly gen

erate the algebra of rucn matrices with elements in 'dix,y), 
3 . 

so we may apply Theorem 4.2. Now g 2 (w;'o) = w - ~ 1 w. So 

each characteristic root of X = xA + yB satisfies an equa

tion of degree at most 2 over ~(x,y). The theorem then 

follows on applying Lemma 4.8. 

4.10 Corollary. Let A and B be linear transformations on 

an n-dimensional vector space V over an algebraically closed 

field C:S:whose characteristic is either zero or greater 

than n. If, for each x,y ec:a=:, there exists 'o1 ~ r so that 
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f 2(A,xA + yB;o) E }-

where } is the radical· of the algebra generated by A and B 

overc:F, then the characteristic polynomial p(x,y,z) of 

xA + yB splits into linear and quadratic homogeneous fac

tors in x,y and z with coefficients in~. 

Proof. Apply the usual composition serie s argument to V 

to get matrices for A and B in block upper triangular form. 

"Burnside's theorem~' (Theorem 2 .12) shows that simul tane

ously .. : irreducible blocks Aii and Bii (cf. (*) on p.18) 
generate a complete matrix algebra, and the condition on 

the characteristic guarantees that it does not divide the 

dimension of any diagonal block. The result follows 

immediately on applying Theorem 4.9 to the diagonal blocks. 

The above results do not guarantee that p(x,y,z) 

actually has a linear factor·, but part of the . next result 

does. 

4.11 Theorem. Let A and B be nxn matrices with elements 

in a fields whose characteristic is either zero or greater 

than n. Suppose A and B generate the complete algebra of 

nxn matrices and let x,y be algebraically independent 

indeterminates. If ther~ exists 'o1 ~ -=.F(x,y) so that 

where~= (~ 1 ), then the characteristic polynomial p(x,y,z) 

of xA + yB splits into linear and quadratic homogeneous 

factors in x,y and · z with coefficients in~. Moreover 

if xA + yB has an odd number of distinct characteristic 

root a then p(x,y,z) has at least one linear factor. 

Proof. The first part of this theorem is almost a re

petition of Theorem 4.9 and is proved in the same manner· 

(Note: the field 'fF need not be infinite here). So assume 
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xA + yB has r distinct characteristic roots, where r is odd. 

If r = 1 , the result is trivial. So assume r ~. By 

Corollary 4.6 there exists an ordering z 1 ,z2 , ••• ,zr of the 

distinct characteristic roots of xA + yB so that 

z 1 - z 2 = z 2 - z3 = ••• = zr_1 - zr satisfies w2 - 'ol = o. 
Now the irreducible factors of p(x,y,z) are separable, 

since the characteristic of'3=°is either zero or greater than 

n. Hence 

Now 

z i - z i + 1 = ~ , i = 1 , 2 , ••• , r-1 • 

Hence 

:&, zi = r{zr +( (r-1 )/2)~J. 

Thus zr + ((r-1)/2)J~ 1 ES'(x,y). Now (r-1)/2 =sis an 

integer, since r is odd and zr + ((r-1)/2)~~ 1 = z • r-s 
Hence zr-s£d=°(x,y). By Lemma 4.8 zr-s = XOI'+ Yf5Where 
ex, f3 £ :F" • c 

Finally we give two examples to illustrate the results 

of this chapter. 

4.12 Example. This example illustrates Theorems 4.9 and 

4.11 (and~ fortiori Theorem 4.2 and Corollary 4.6). Let 
:Tbe a field whose characteristic I 2 or 3. Let 

= [~ ~ ~J-
o 1 1 
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If Eij is the 3x3 matrix with 1 in the (i,j) place and 

zeros elsewhere, then 

= 

= ( 1 /2 )(A 2 - 3A + 2I) , 

E11 = I~ E22 - E33' 
E32 = E33(B - I), 

(B - I)E33' E13 = 

E22 = -A2 + 4A - 3I, 

E12 = E11(B - I), 

E2 1 = (B - I )E11 ' 

E12E23' E3 1 = E32E21· 

Hence A and B gen erate the complete algebra of 3x3 matrices 

with elements in~. Let ·x,y be two algebraically inde~ · 

pendent indeterminates overc.f and let X = xA + yB. 

Clea rly A and X generate the algebra of all 3x3 matrices 

with elements in T{x,y). We have 

[7 
y 

0 J x = xA + yB = 2x+y y ' 
y 3x+y 

[~ 
-y 

OJ 
[-2y2 -xy 

-~y J [A,X] = 0 -~ , [A,X,X] = -~y 0 

y - xy 2y2 

and 

[ 0 

3 2 

0 J -2y -x y 

[A,x, x, x] 2y3~x2y 0 3 2 = -2y

0

-x y 
2y3+x2y 

= (x2 + 2y2 )[A,X]. 

Hence 

f 2(A,xA + yB; (x2+2y2 )) = o. 

x+y-z y 0 

p(x,y,z) = det( X - z I) = y 2x+y-z y 

0 y 3x+y-z 
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Expand the determinant by the second row to give 

p(x,y,z) = (2x + y - z)(z2 - (4x + 2y)z + 3x2 + 4xy - y 2 ) 

(cf. Theorem 4.9). Hence the characteristic roots of X 

are 

z2 = 2x + y, 

-z 1 = 2x + y + J x 2 + 2y2 , z 3 = 2x + y - Jx2 + 2y2 • 

Clearly 

= = 

(cf. Corollary 4.6). We see that 

(cf. Theorem 4.2). Since X = xA + yB has an odd number of 

distinct characteristic roots, p(x,y,z) has a linear factor 

(cf. Theorem 4.11). 

4.13 Example. The example we give here is a counter

example to Theorems 4.2 and 4.9 when the condition on the 

characteristic of 0: is not satisfied. Let "=.Fhave 

characteristic 3 and let 

· Then 

E13 A2, E11 
2 

- E13B' = = E13B 

E12 
2 

E13B' E23 A - E12' = E13B + = 

E33 = BE13 - E23' E22 = I - E11 - E33• 
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E21 = 

Hence A and B generate the complete algebra of 3x3 matrices 

with elements in c:y. As usual let x ,y be indeterminates 

and X = xA + yB. Then A and X generate the complete 

algebra of 3x3 matrices with elements in~(x,y). We have 

~ 
x -y 

-YJ [~ 
0 -:] x = 0 x+~ , [A,X] = y 0 , 

-y -y y 

and [xy 0 

OJ [A,X,X] = 0 -xy 0 • 

0 0 -xy 

Hence 

[A,X,X,X] = 0 = O[A,XJ. 

Therefore 

f 2 (A,xA + yB;u) = o, where~ = (0) • 

. Now 

= 
and 

-z x-y -y 
p(x,y,z) = det(xA + yB - zI) = y -z x+y 

y -y -z 

= x2y . 3 
z • 

Now 
x2y - z3 = ((x2y) 1/3 - z)3 

and hence the characteristic roots of xA + yB do not be

long to the splitting field of g2 (w;~) over J='(x,y) (cf. 

Theorem 4 .2). Also x 2y - z 3 has no linear factors over 
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"J= (x, y) (cf. Theorem 4.9). 
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