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ABSTRACT

Let £ be the algebra of all linear transformations on
an n-dimensional vector space V over a field T and let
A.B el Ld;A_’_.I =A.B—BA., i=O‘!,2,...,withA=Ao.
Lot £, (A,B50) = Ay s = Dphop o + Ophoy o = et (=150
where © = (b1 ,bz,...,‘oK), o; belong to F and K = k(k-1 YA 2.
Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962),
7%2- 755:[ showed that f, (A,B;0) = 0 1f o, is the ith glemen-
tary symmetric f.unctlon of (Fr éss , s r<s<n, i =1,
2,...,N, with N = n(n-1)/2, where f, are the characteristic
roots of B. In this thesis we discuss relations invol-
ving fk(X,Y;‘o) where X,YeSl and 1< k<n. We show:
1. If<F is infinite and if for each X&eX there exists o so
that fk(A,X;*o) = 0 where 1<k<n, then A is a scalar trans-
formation. 2. If F is algebraically closed, a necessary
and sufficient condition that there exists a basis of V with
respect to which the matrices of A and B are both in block
upper triangular form, where the blocks on the diagonals
are either one- or two-dimensional, is that certain products
X11(2...Xr belong to the radical of the algebra generated by
A and B overF , where X; has the form fQ(A,P(A,B);‘o),
all polynomials P(x,y). We partially generalize this 1o
the case where the blocks have dimensions=k. 3. If A and
B generated. , if the characteristic of “F does not divide n
and if there exists o so that fk(A,B;‘o) = 0, for some k with
1=k <n, then the characteristic roots of B belong to the
splltt:},ng field of gk(w 0] = wob+l ‘01W2K_1 + ‘02WZK—3 -
e +(- 1) *o w over F. We use this result to prove a theo=
rem - 1nvolv1ng a generalized form of property L |:cf. Motz-
kin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-
114] s 4., Also we give mild generalizations of results of
McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and
Drazin [Proc. London Math. Soc., 1(1951), 222-231] .



Chapter

1l

i

Iv

-] -

TABLE OF CONTENTS

Introduction
On theorems of McCoy and Drazin

The Kato-Taussky-Wielandt commutator
relation

The two-dimensional blocks
The relation fk(A,B;b) = 0, when k<n

Bibliography

18

23

42

59



i
INTRODUCTION

Let £ be the algebra of all linear transformations on
an n-dimensional vector space V over a field “Fand let
A,BeX . It is well-known [ef. Jacobson, 4 pp. 120-121]
that there exists a basis of V with respect to which the
matrices of A and B are in block upper triangular form
where corresponding blocks are of the same dimensions, the
blocks on the diagonal are sguare and corresponding diag-
onal blocks cannot be reduced further by a simultaneous
similarity. Most of this thesis is devoted to the problem
of determining how certain properties of A and B are
reflected in properties of the diagonal blocks. In 1]
McCoy showed that, if F is algebraically closed, all the
diagonal blocks are one-dimensional if and only if
" P(A,B)(AB - BA) is nilpotent for every polynomial P(x,y) in
the non-commuting variables x and y with coefficients inF,
. In Chapter I we prove a generalization of McCoy's theorem ‘
when the field F is quite arbitrary. We also generalize a

theorem of Drazin which is related to McCoy's result.
' To assist with the investigation'of the diagonal
"blocks we introduce what we call "KTW commutator expressions®
fk(A,B;b). Let A, = AiB - BAi, 1 =3 0,1;25ssx5 With

i+1

A, =A. et k be an integer, 1=k =n,and K = k(k-1)/2,

then define

£, (4,B50) = App g = Dqhop g + Ophor =z = «oe + (=1 0pa,

where © = (‘01,‘62,...,‘0K) witho;e¥F , i =1,2,...,k. We
note f1(A,B;b) = AB - BA. The Kato-Taussky-Wielandt (KTW)
commutator relation [bf. 1@] then says that fn(A,B;b) = 0

if o, is the it elementary symmetric function of (pr - Fb)?
1<r<s <n, where g, are the characteristic roots of B.

In Chapter II we prove that, if F is infinite and if for
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each X e£ there exists b so that, fk(A,X;b) = 0 for some Xk
with 1<k <n, then A is a scalar transformation. We also
show that if & is algebraically closed then there exists a
basis of V with respect to which the matrices of A and B
are in block upper triangular form, where the diagonal
blocks have dimensions <k, if, for each polynomial P(x,y),
there exists © so that fk(A,P(A,B);b) belongs to the
radical } of the algebra generated by A and B over F .

In Chapter III we characterize those A,B for which
there exists a basis of V with respect to which the matri-
ces have block upper triangular forms where the diagonal
blocks are one- or two-dimensional. The necessary and
sufficient condition we give is, essentially, that certain
products X,X,...X, belong to J-, where X; has the form
fa(A,P(A,B);b), for every polynomial P(x,y).

Now f1(A,B;b) = AB - BA and the Kato-Taussky-Wielandt
comnutator relation says that there exists © so that
£ (A,B50) = 0.  So in Chapter IV we examine what happens
if there exists © so that fk(A,B;b) = O for some k with
1<k<n. We show that if A and B generated, if the
characteristic of F does not divide n and if there exists
v so that fk(A,B;b) = 0, for some k with 1<k <n, then the
characteristic roots By of B belong to the splititing field

of g, (w;v) over &, where

gk(w;b) = wlk+l _ b1w2K_1 > +(—1)Kwa.

Moreover if k = 2 and B has at least two distinct charac-
teristic roots then there exists an ordering P1’Fb""’ﬁr,
of the distinct characteristic roots of B so that

By = Br=Fp - Pr = «e0 = p&_1 - p,. satisfies g2(w;b) = O,
Now f1(A,B;b) = 0 means AB = BA and this in turn implies A
and B have property P, which means A and B have property L
[@f. 16]. Property L demands that xA + yB have all its '
characteristic roots of the form x« + yg, for all x,y'EEF.
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We employ the main theorem of Chapter IV to prove a result
which says that if A and B satisfy a certain KTW commutator
equation then they have a generalized property L.

The results which are, perhaps, of most interest are
Theorems 2.10, 2.11, 2.13, 3.1, 4.2, 4.9 and Corollary 4.6.

Note: throughout this thesis the symbol @ denotes the
end of a proof.



4=
CHAPTER I
ON THEOREMS OF McCOY AND DRAZIN.

In this chapter we prove some thedrems which generalize
results of McCoy and Drazin on matrix commutators. Ration-
al methods are used except in part of Theorem 1.9 and in
Lemma 1.12. _

Let A and B be linear transformations on an n-dimensio-
nal vector space V over a field F . To set the stage we
introduce the so-called "P-property" and state the main
theorem about it.

1.1 Definition [ef. MeCoy, 1] . If Fis algebraically
closed then A and B have property P if and only if there
exist orderings O 9Chr e essOf and F1’32"“’Pn of the char-
acteristic roots of A and B, respectively, so that the
characteristic roots of P(A,B) are P(Of,pl), 1 1,2,s0ns1
for every polynomial P(x,y) in the non-commuting varlables
x and y, with coefficients in &F .

Unless otherwise stated, "polynomial P(x,y)" in this
thesis will always mean a polynomial in the non-commuting
variables x and y with coefficients in F .

1.2 Theorem [McCoy, f] . Assume o is algebraically closed.
Then the following three conditions are equivalent.

(i) A and B have property P.
(ii) P(A,B)(AB - BA) is nilpotent for every polynomial
Pyl

(E54) There exists a basis of V with respect to which
the matrices of A and B are in upper triangular form, i.e.
all the elements below the malin diagonals are geros.

"We aim to prove a generalization (Theorem 1.9) of this
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theorem where we do not assume that the field I is
~algebraically closed.

| We shall need the well-known concept given in the
following definition.

1.3 Definition [cf. Herstein, 2, p.4d . Let % be a ring,
M an irreducible left R-module, O(M) = {re®R: M = (0)§.
Then the (Jacobson) radical of Ris N 0(M), where this
intersection is taken over all irreducible K-modules M.

The following result is well-known.

1.4 Theorem [@f. MceCoys 55 PBs 113, 12@]. The radical of
& contains every nil left (or right) ideal of &. If &
satisfies the descending chain condition on left ideals,
then the radical of ¥ is nilpotent. |

In particular, this theorem applies if £ is a finite-
dimensional algebra over a field.

Now let X be the algebra of polynomials P(A,B) in A
and B (including I, the identity transformation) and letgL
be the radical of §. We denote AB - BA by [A,B].

1.5 Definition. A and B have property Q if and only if

[A,B] sg,.

1.6 ZLemma [cf. McCoy, 1]. Let Ce®. Then Cefif and
only if P(A,B)C is nilpotent for every polynomial P(x,y).
Proof. If Ce§ then P(A,B)Gsé} for every polynomial P(x,y).
Hence P(A,B)C is nilpotent, by Theorem 1.4.

Conversely, if P(A,B)C is nilpotent for every poly-
nomial P(x,y), then the left ideal ®Cc is nil and hence is
contained in g/, by Theorem 1.4, Thus C €4 since I =%. @

We note that essentially the same result was proved in
McCoyl1] in a somewhat different manner,
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1.7 Lemma. If A and B have property Q and V is irreduc-
ible as a left R -module, then AB = BA.
Proofs [A,ﬁ]sﬁzand hence acts as 0 on all irreducible
R -modules. Hence AB = BA. &

The following definition is a mnatural analog of (iii)
- 0f Theorem 1.2.

1.8 Definition. A and B have property T if and only if

there exists g basis of V with respect to which the matri-

Leces

— ' = .

Aqq B eer B B11:Bgg oo Byg
O A—22 . @ 9 A2t O B22 *® 9 & B2,t

& & " and . ” W
B B s g | 0 0 ... By |

of A and B have the following block forms

respectively, where Aii and Bii are sqguare blocks

sion n,

block diagonals.

1= 1,25¢00,5%,

Also AiiBii

b o s

1

and there are zeros bhelow
= B..A.

of dimen-
the main

and the minimum

polynomials of A,, and B;, are irreducible over¥ , for
i = 1',2,00.,to

We prove now the promised generalization of Theorem

1.2,

1.9 Theorem.

alent.

(1)

The following three conditions are equiv-

A and B have property Q.

(ii) A and B have property T.

(1iii) There exist orderings G4 5 O p 00 ey O andﬁ1,p2 s eeesfn

n

of the characteristic roots (which are contained in some
extension of ¥ ) of A and B, respectively, so that P(4,B)
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has characteristic roots P(a&,ﬁi), 1 = T8y weeylly TGF
every polynomial P(x,y).

Proof. We shall prove that (i)=>(ii)==>(iii)==(i). Let A
and B have property Q. Let

V= VDV, D eee DV = (o_.)

be an R-composition series for V. In the usual manner
[éf. Jacobson, 4, p. 12@] choose a basis for V so that the
matrices of A and B have the same block forms as the
matrices in 1.8, where A . (resp. Bii) is the matrix of A
(resp. B) restricted to the quotient space vi/vi+1, with

i 2 Telyssng b Now Vi/vi+1 is irreducible as an R-module.
Since A and B have property Q, the matrices Aii and Bii
have property Q for i = 1,2,...,%. Hence AiiBii = BiiAii
by Lemma 1.7.

Now the minimum polynomial of Aii (resp. Bii) is
irreducible over ¥, for each i = 1,2,¢..,%. .. Suppose
the minimum polynomial p(x) of A,; is reducible for some i.
Then p(x) = q(x)r(x), where g(x) and r(x) are non-constant
polynomials with coefficients inF. Let W = Vi/vi+1'
Let W, = Jwe Ws r(Aii)w = 0}. Now W, is clearly a sub-
- space of W and also Aiiw1 C W1. Now Biiw1 = W1 since, -

ol 4 r(Aii)w = 0 then

0 = Br(Aii)w = r(Aii)Bw

because A; B, = ByiA, .. Thus W, is an R-submodule of W.
But W is irreducible. Hence W, = (0) or W, = W. Now

W, # W, since, then, p(x) would not be the minimum poly-
nomial of 4,.. Hence W, = (0). But then r(Aii) is non-
singular and, since 0 = q(Aii)r(Aii), we have q(Aii) = Oy
This contradicts the fact that p(x) is the minimum poly-
nomial of Aii' Hence p(x) must be irreducibdble. In a
similar fashion it can be shown that the minimum polynomi-
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al’  of Bii'is irreducible. (We note that the discussion
of this paragraph is contained in Jacobson [4, p. 133] ).
Thus A and B have property T, so (i) = (ii).

Now suppose A and B have property T. We have A..B.

e 4
= Bishiss 1=1,2,000,%.  Tet ¢ be the algebraic closure
of‘?f Let‘R be the algebra of all polynomials P(All’Bll)

where P(x,y) 1s a polynomial in the non-commuting variables
x and y with coefficients in § . Then E}ii’ Bii
to the radical of‘ﬁi. Now consider A.. and Bii as matrices

i e 4
with elements in & and apply the fact that (i) = (ii) in =

belongs

~ the present theorem. Hence there exists a non-singular
-1 -1
AllUl and U B U

are both in upper triangular form (i.e. there are only

matrix U; with elements in §- so that UJ

zeros below the main diagonals), i = 1,2,ecee,%. So, if
A1 and B1 denote the matrices in 1.8, there exists a non-
51ngular nxn matrix U with elements in § so that U™ A1U
and U~ B1U are both in upper triangular form. The matrix
U 1A1U (resp. T ~1
Oh s OhyeeeyC (resp. BqsPor ...,gn) of A (resp.B) on the
main diagonal. Thus P(A,B) has characteristic roots

B1U) has the characteristic roots

P(oi, 5i), i=1,2,...,0n for every polynomial P(x,y) in
the non-commuting variables x and y with coefficients in -
G. Then (iii) follows as an immediate consequence.

We now show (iii) = (i). Assume (iii). Then
P(A,B)[ﬁ,ﬁ]has only O as a characteristic root, and hence
is nilpotent, for every polynomial P(x,y). Thus A and B
have property Q by Lemma 1.6. 3 |

1.10 Corollary [Jacobson, 4, p.13%] . If AB = BA, then
A and B have property T.

1.11 Corollary Let A and B be nxn matrices with elements
in F ., Then each of the statements (i), (ii) and (iii)
in Theorem 1.9 is equivalent to the fact that A and B
have property P, considered as matrices with elements in
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§, where § is the algebraic closure of & .
Proof. If there are orderings of, Ohj...,cf and 31,'
F2""’?n of the characteristic roots of A and B, respect-
ively, so that P(A,B) has characteristic roots P(o&,si),
i=1,2,e0.,0, for each polynomial P(x,y) in the non-
commuting variables x and y with coefficients in g, then -
this statement is clearly true for those P(x,y) with co-
efficients inF. Hence A and B satisfy (iii) of Theorem
1:9:

The converse is contained in the proof given above
that (ii) = (iii) in Theorem 1.9. O

We remark that if Fis algebraically closed in Theorem
1.9, we get Theorem 1.2. '

The following lemma gives an example of a pair of lin-
ear transformations with property Q.

1.172 Lemma. Let A and B be linear transformations on an
n-dimensional vector space V over a field F, where the .
characteristic of F does not divide n. If each poly-
nomial P(A,B) has only one characteristic root then A and
B have property Q.

Proof. All the characteristic roots of [A,ﬁ] are equal

~ equal c¢,say. Thus O = trace‘[A,ﬁj = NC. Hence ¢ = 0.
Now P(A,B)EA,B] has all its characteristic roots equal,
for each polynomial P(A,B). But O is a characteristic
root, since [A,B] is nilpotent. Hence P(4,B) [A,B] is
nilpotent and thus A and B have property Q. O

McCoy's formulation of property Q is that P(4,B)[A,B]
is nilpotent for each polynomial P(A,B). We raise the
question here whether it is possible to assume P(A,B)[A,B]
nilpotent for a smaller class of polynomials P(A,B) and ’
still get property Q. Williamson.[B] has shown that if F
is the complex numbers and if A is non-derogatory (i.e.
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if the minimum polynomial of A equals its characteristic
polynomial) and if we assume h(A)[A,B] nilpotent for cer-
tain polynomials h(A) of degree =n -~ 2, then A and B have
property Q. )
We should at least like to bound the degrees of the
P(A,B). If &F is algebraically closed, then a careful
examination of the proof of Drazin et al. [ 6 | of McCoy's
theorem (Theorem 1.2) gives the result that if P(A,B)[A,E]
is nilpotent for each polynomial P(A,B) of degree =
n(a + b - 1) -~ 2 where a and b are the degrees of the
~minimum polynomials of A and B, respectively, then A and
B have property P. This bound seems much too large. We
prove the following result for some small values of n and
conjecture its validity in general.

113 Theorem. Let A and B be linear transformations on

V of dimension n(n=2) over a field F so that P(4,B)[A,B]

is nilpotent for each polynomial P(x,y) of degree=sn - 2
then for n = 2,3 the transformations A and B have property
Q. , '
Proof. Case 1. n = 2, We assume [A,B] is nilpotent.
Hence either [A,B] = O or the rational canonical form

matrix of [A,B] is [8 g):j If [A,B]= 0, the result is true.

Otherwise replace A and B by matrices, again called A and
B, so that [A,H] =[? ﬂ. There should be no confusion caus-
00

ed by the new meanings for A and B. We have A[},E] =
[A,AB] and also B[A,B| = [BA,B]. Hence A[A,B]and B[A,5]
are nilpotent (since each matrix has its determinant and
~its trace equal to zero). If X = (xij) then

0 x4,
X[A,B] = O %o

and, if this matrix is nilpotent, Xoq = 0. Hence if
A= (aij) and B = (bij) we get a,, = b,, = 0 and thus the
matrices A and B are in upper triangular form. Hence A
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and B have property Q.

Case 2. We assume that (xA + yB + zI)[A,B] is nilpotent
for all x,y,z €¢¥F. and V is three-dimensional overF. As
above assume that A and B are matrices so that [A,B] is in
rational canonical form. Hence

\ 010 010
[A,B] =0 or |001] or |[000O0
000 000

If [A,B]= 0, the result is true. Assume

_ 010
CAB) = [5 0 1}

O 0 04.
IP X~ (xij), then
0 X491 %43
x[a,8 = 0 X1 Xoo
0 x31 x32 .

Now let X = xA + yB + zI, where A = (aij) and B = (bij).
Then XEA,@] is nilpotent, and thus X514 xzé' is nilpotént.
| | 31 *32]
Thus we have
Xayq + Ybyy Xas, + by, + z |
Xa31 + yb31 xa32 + yb32 |
nilpotent. Thus both the trace and the determinant are
Also

Zero. Hence a32 = =854 and b32 = —b21.

_(xa21 + yb21)2 - (xa22 + ¥y, + z)(xa31 £ yb31) = 0.

0q = 0. Thus A and B
are both in upper triangular form, and property Q follows
immediately.

010
1f [A,8] = |0 0 O, then

00O

This gives a31 = b31 = 0 and apq = b
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0 X119 0
X[A,B] = [0 x,, O
0 x31 ¢

where X = (xij) = XA + yB + ?I with A = (aij) and B = (bijj;
Then X[4,B] nilpotent gives x,, = 0, which leads to a,, = 0
and b21 = Qe If both 8z
are in block upper triangular form, and we can apply Case 1
to the 2x2 blocks to prove the result.

So assume as, # 0, Then let bz, = has,. Tha (2;1)
element of [A,B] is haz 8,5 - byzaz, end this is zero.
Hence b,; = hayz, since as, £ 0. Thus

21
and b31 are zero then A and B

819 819 243 byq Pyp bys
A = 0 a22 a23 and B = 0 b22 ha23
Az By By hazy . P3p bgg ||

% o 8oz = 0, then, by means of a permutation similarity,
simultaneously interchange the first and second rows and
the first and second columns of A and B. The matrices
obtained are in block lower triangular form and, once again,
we can apply Case 1 to the 2x2 blocks to prove the result.
So assume'a23 # 0. The (1,1) element of [A,B]gives

b

aqqbqq + hagzagy - bygayy - byzaz, = 0.

Hénce b,y = ha,y, since as, #£ 0. The (2,2) element of
[4,B] gives

8oplpp + 853055 = byoasy - hagzas, = 0

and hence by, = hag,, since a,s # 0. The (3,1) element
gives
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‘331b11 + ha33a31 - ha31a11 - b33a31 = 0

and hence by, = Dy = n(ay, - a33), since a,, £ 0. The
(2,3) element gives

ha'22a23 + a23b33 - b22a23 - h323a33 =

and hence by, = b33 = h(a22 - 333). The (1,3) element
gives

ha“a13 + ha12323 + a13b33 - b11a13 - b12a23 - ha13a33 = 0

which is the same as

[{b33 - byq) -'h(a33 - an):]a13 + a23(ha12 - by,) =0

which gives 512 = ha12 on applying the equation derived from
the (3,1) element, and using the fact that 853 # 0.
Then the (1,2) element of [4,B] is

haijaq5 + 245055 + hayzaz, - byja4, = hagsa,, - hagzasz,

which equals a12[_h(a11 - a22) - (b11 - b22i1. This last
expression equals

aqp[hlayy = azz) = (byq = bg3) + hlazz -"ay,)
- (b33 = Dppl]

which is zero, by the identities derived from the (3,1)
and (2,3) elements. But the (1,2) element of [A,B] is 1.
This contradiction shows that at least one of azq and 253
is zero and thus the result is true, by the arguments
given above for these cases. &
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Drazin [ 7] has proved a generalization of McCoy's
theorem (Theorem 1.2) when the field Fis algebraically
closed of characteristic zero. We shall now generalize
Drazin's results to an arbitrary fieldF (insofar as they
do generalize). OQur proofs, of course, are completely .
different.

1.174 Definition.

fo = {A!B} » f'] - {EA;B]}r
fk+1 =U{ I:-A-tck]’ I:B,ij} for k=171,

'where the union is over all linear transformations Ck in fk.
We remark that there are at most 2k—1 linear trans-

formations in.ﬁk, k=1,

1.15 Definition. [Drazin, 7]. A and B have property
Q, for some k=1 if and only if P(A,B)Ck is nilpotent for
every C, in ¢, and for all polynomials BlE,)s

It is clear, by Lemma 1.6, that A and B have property
Qk if and only if 8k:<:}n Property Q1 is thus property Q.

1.16 Definition. [Drazin, 7}. A and B are quasi k-
commutative for some k=1 if and only if £ = jof.

We shall need the following lemma which is due 1o
Jacobson.

1.17 Lemma.[8] Iet Ot be an associative algebra over a
field F and let x,y ¢ot. Assume that x commutes with [x,y]
and that x is algebraic over ¥ with minimum polynomial of
degree T. Then if & has characteristic O or p=>=r, the
commutator[x,y] is nilpotent.

Proof. Jacobson stated this theorem for characteristic 0O
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and there is a slight error in his proof (a fact which was
pointed out by Drazin [unpublished]). We present a re-
paired version of Jacobson's proof. Let m(z) be the
minimum polynomial of x over ¥. Then m(x) = 0. The
mapping X—= x'=[X,y] is a derivation. Hence m' (x)x' = 0.
Assume that

k
m(k)(x)(x')2 =1 - 0, for some k=1.

Hence K X
1) () (22 + 2 (x) (x)2 Ny = 0.

k
ok
) 1

Multiply on the left by (x' and use the fact that

[(x,x7] = 0. Hence

k+_1_1

() (x) (x1)2 % B

Thus, by .induction,
k
m(k)(x)(x')2 1 20 for x = ladsnnse =

Now m(r)(x) o A Hence

T T
r!(x')2 -1 = 0 ana (X')2 | 0,

since the characteristic of ¥ does not divide r!:., ©@
We apply this lemma in proving the following result.

1.18 Lemma. Let & have characteristic 0 or p=n = dim.V.
Suppose A and B are quasi k-commutative for some k=1 and
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that V is irreducible as anqe—module, then AB = BA.
Proof. The proof is by induction on k. Assumesz = io&.
If k = 1, then AB = BA and the resuli is proved. Assume
the lemma is true for some k=1. Suppose €k+1 = {O}, k=1.
- Then ACK = CkA and BCk = CkB for all Ck in £k. Now each
C, in ¢y is of the form [A,C, ;7] or [B,0,_; ] for some Cy_,
in¢, 4. Suppose X = CAy Ck-—1] # 0 for some Crq in€, ;-
Then. X is nilpotent by Lemma 1.17. We see that v, = XV is
an invariant subspace of V for both A and B, since A and B
commute with X. Hence either V, =V or V, = (0), since V
is an irreducible R -module. But v, # (0), since X # 0. .
Hence V1 = V and thus X is nonsingular. But X is nil-
potent and this gives a contradiction. Thus we must have
[A,Ck_1] = 0. By similar reasoning [?,Ck_1] = 0. Thus
fk = {03 and, by the induction hypothesis, this means
AB = BA. &

The theorem we now prove is our generalization of
Drazin's main theorem[7].

1.19 Theorem. IfF has characteristic O or p=>n, then A
and B have property Qk for some k=1 if and only if they
have property T.
Proof. It is clear (as in the proof of Theorem 1.9) that,
if A and B have property T, we can find a basis of V so
that the matrix of each P(A,B)Ok, with respect to that
basis, has zero blocks on and below the main block diag -
onal. Hence P(A,B)Ck is nilpotent for all polynomials
P(x,y) and for each Ck in ﬁk. Thus A and B have property
Qk, Ka 1i85uaa =

Conversely, let A and B have property Qk for some k=1,
Use the composition series argument of Theorem 71.9.
Then Aii and Bii of that theorem are gquasi k-commutative

here, and, since Vi/V is an irreducible X -module, we

i+1
actually have AiiBii = BiiAii’ i=1,25¢0e,t, by Lemma 1.718.
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The minimum polynomial of Aii(xespp Bii) is irreducible as
in Theorem 1.9, 1 = 1,2,.44,%. Hence A and B have prop-
erty T. @

1.20 Corollary. If F has characteristic O or p>n then
the properties Qk are equivalent, k = 1,2,¢e4+ =«

1.21 Corollary. If F has characteristic O or p>n, and if
A and B are quasi k-commutative for some k=1, then they
have property Q.

Finally we shall give a counter-example to Theorem
1.19, when the conditions on the characteristic of F are
not satisfied. In order to construct the example we
shall need the following well-known result.

1.22 Theorem. [ﬁhoda, 9; Albert and Muckenhoupt, 1@].
" Let Z be an nxn matrix with elements in a field F. Then
there exist nxn matrices X and Y, with elements inF, so

that 2 = [X,Y], if and only if trace Z = O.

1.2% Example. Let F have characteristic p=0 and let
I be the pxp identity matrix. Then trace I = 0 and hence
there exist pxp matrices A and B with elements in F so
that I =[4,B], by Theorem 1.22, Then A and B are guasi-
2-commutative, but they do not have property Q, since e.g.
[A,B] is not nilpotent.

FPor n=p we construct a counter-~example by "filling -
out® the above matrices with zeros.
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CHAPTER II
THE KATO-TAUSSKY-WIELANDT COMMUTATOR RELATION

In the first chapter we considered a generalization
of matrix commutativity (property Q) and extended known
results by considering an arbitrary field F, From here

"on we shall seek to generalize property Q itself, and thus
to generalize the notion of commutativity. The kind of
generalizations we want are stated as Problem 2.1.

So let A and B be linear transformations on an n-

dimensional vector space V over a field F.. Again let ®
" be the algebra generated by A and B and g—the radical of4% .
By applying the composition series argument cited in
Theorem 1.9 to V as an K-module we get the matrices

~ - -
Ajq Aqp wee Agy Byq Byg =+- Byy
O A22 * 8 @ Azt O B22 s e @ th
(*) e ® P - and - 3 ®
_O O . *® & » -A._t_td _O O * & & Btt_

of A and B with respect to a suitable basis of V where Aii
and Bj 4 (which are square blocks of dimension ni) cannot be
reduced further by a simultaneous similarity , i = 1,2,..
R When F is algebraically closed McCoy's theorem
(Theorem 1.2) characterizes those A,B for which

n;, = T, & &8 1;:250%5 o Actually, for McCoy's theorem to
hold, it is only necessary to assume that & contains the
‘characteristic roots of A and B. We now raise the
following general question.

2.1 Problem. How can property Q be generalized so as to
characterize those A and B for which the matrices in (%)
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have diagonal blocks Aii and Bii of specific dimensions,
i= 1,2, -Voo,t?

In this chapter and the next we partially answer this
question (cf. Theorems 2.13 and 3.1).

If we wish ‘o have Aﬂ and B”, say, of dlmen51on k,
then somehow we must introduce a relation satisfied identic-
ally by kxk matrices. This leads us to a commutator |
relation which was proved by Kato and Taussky [11] in the
two~-dimensional case, and by Taussky and Wielandt |:1 2:] in
the general case.

Let A and B be linear transformations on V. Let
Ajiq =[Ai,ﬁ]for i=0,1,2,..., where A = A. Let K =
= k(k - 1)/2, where k is a positive integer and let 04,05y
...,‘oK be K arbitrary elements inF.

2.2 Definition.
£1{hsB50) = Moy = Bydop e # Bphoy z = ses +(=1)%,A,

where © = (‘01,...,DK).

2.3 Theorem [11,12].
fn(A:B;b) =

if ‘oi, i=1,25ee0.,N, are the elementary symme’cri_c func-
tions of (pr - ps)z, 1=r=<s=n, where g, are the character-
istic roots of B, i = 1,2,...,0, and N = n(n - 1)/2.

Note.

By = 1;sn (B ﬁs Z(Pr S)Q(Ft - Pu)2etc'_’

where the second sum is taken over Is=r<s=n, 1<t<u=<n
and (r,s)=<=(t,u), and this last ordering is lexicographic.

We shall call expressions of the type fk(A,B;‘o)
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"Kato~Taussky-Wielandt commutator expressions®™ or "KTW
commutator expressions”™, for short. Theorem 2.3 is then
the Xato-Taussky-Wielandt commutator relation.

We remark that Theorem 2.3 is independent of A. We
can express the result in a somewhat different form. Let

TB be the linear transformation on the space of all linear
transformations on V defined by TB(X) = [X,B], then
Theorem 2.3 becomes

2.4 Theorem [@aussky and Wielandt, 12; Khan, 15].

v, LI(e2 - (s, - g)%1) = O.
- We do not need to assume that (pr - ps)%:EF,

1=r<s=sn, in either Theorem 2.3 or Theorem 2.4. .
We note that f£,(4,B;0) = [A,B]and thus, if there exist

elements ©q,0yy e« s0p in F so that f,.(4,B;0) = O for some

k with 1=k<n, we might suppose this to be a "good®

generalization of commutativity, in that it might give a

partial answer to the question raised in 2.1. However

the condition turns out to be a bit too weak for this.

This is borne out by Example 2.6.

2.5 Definition. If X1,X2,...,Xk are linear transformations
on V then

[ s wae ahed 1 L6 B0 con o s tely]

- X, X

where, as usual,[X;,X,] = XX, oXq

2.6 Example. Let F have characteristic # 2 or 3 and
assume -3 £7. Let A and B be matrices,
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0 01 b4 . X pd
A=l010 and B = | x -(1+x)/2 (1-x)/2
100 x (1-x)/2 -(1+x)/2

where x = 1/J3. Now

£,(4,B50) = [A,B,B,B] - o, [4,EB].

2

We have A =,B2

I and this gives

EAsByByEﬂ = 4[;,3].

Hence fz(A,B;b) = 0, where o, = 4. ' Incidentally, we

also have fg(B,A;b) = 0, where o, = 4. But even with both
f2(A,B;b) and fz(B,A;b) zero, we cannot transform A and

B to the form (*) by a simultaneous similarity,(even if
we extend the field F) where the diagonal blqcks A;; and
Bii have dimensions<2. This comes from the fact that

A and B have neither a row characteristic vector nor a
column characteristic vector in common. Since A and B
are symmetric, it is only necessary to verify this 1asf
statement for row vectors. The characteristic vectors

of A are (2,0,~a) where a €¢¥, corresponding to the
characteristic value -1; and (a,b,a) where a,bed,
corresponding to the characteristic value +1. Clearly B
cannot have (a,0,-a) as a characteristic vector. Suppose
B has a characteristic vector of the form (a,b,a).

Hence (a,b,a)B = + 1(a,b,a). Thus

(x(2a + b), (a - D)1 + x)/2, (a2 - B)(1 - x)/2)
= i(afb’a)-
Hence
x(2a + b) =+ a or b = -a(2x ¥ 1)/x.
Also
(a2 =Db)(1 +x) =+ 2bor b=a(l+x)/(1+x+ 2).
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But since x = 1/J3, these equations contradict each other

unless a = b = 0. Hence A and B have no characteristic
vectors in common. &

We shall, in Chapter IV, discuss a result concerning
linear transformations A and B which satisfy
fk(A,'B;‘o) = 0 for some k with 1<k<n. But the result
in this chapter (Theorem 2.13) which sheds some light on
Problem 2.1 involves KTW expressions of the type
fk(A,P(A,B);b), where P(x,y) is a polynomial in x and y.

Before we can prove any results about KTW commutator
expressions we need some preliminary results. The
following well-known theorem will be of use to us.

2.7 Theorem [cf. Jacobson, 14, p.112]. Let F be an

infinite field and g(x1,x2,...,xr) a non-zero polynomial.
in the polynomial domain3rﬁx1,x2,...,xrj, where the X,
are algebraically independent, then there exist elements

01702,'00’03: in ?SO that g(01 ’02,...’01') ?! 0.
We need this to prove the next lemma.

2.8 Lemnma., Let F be an infinite field and n a positive
Al F

so that the n(n - 1)/2 elements (xi - xj)z, with 1=i<j<n,
are all distinet and non-zero.

Proof. Let

integer, then it 1s possible to choose Xi9XpreeasX

E(F19Ypreees¥y) = ﬂ{(yi - yj)2 - (¥p = ys)Q}.‘

where the product is taken over T=i<j<n and 1sr<ss=<n
with (i,j) # (r,s). Since g(y1ay21~'-’yn) # Ovrby
Theorem 2.7 there exist X, ,Xprees;Xy £ Fso that
g(x1,x2,...,xn) £ 0, This proves the result. &
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2.9 Lemma. Let J be any field and X an nxn matrix with
elements in Fso that, for every non-singular matrix U
with elements in F, the matrix U-1XU is diagonal, then X
is a scalar matrizx. :
Proof. Let X = diag(xy,Xpr+«.,% ). Let U, = [(1) 1:]

Let U = U1 ifn=2and U= Uﬁ C)Inm2 otherwise, where
I,.o 1s the (n-2)x(n-2) identity matrix. Then

X.] X.}-Xz OoooO
0 X, 0...0
XU = * O * .

- L] * L

& B BasaXy,

and, since this matrix must be diagonal, we get Xq = Xoe
By a simultaneous permutation of rows and columns (using
a permutation similarity) we can replace X by any Xy for
i=3. Hence x, = x;, i = 2,3,... and thus X = x,I. [

The result we prove next will be applied to prove a
theorem about KTW commutator expressions, but it is of some
infterest in itself.

2.10 Theorem. Let 3 be an infinite field and X an

nxn matrix with elements in “3F ., If X is not a scalar
matrix, then there exists a non-singular matrix U with
clements in F so that U™ 'XU has none of its elements zero.
Proof. Let X = (x..) be the given matrix. We shall

1
subject X to a succession of similarity transformations
to put it in the required form. To avoid cumbersome

notation, after each similarity we shall still refer to the
new matrix as X = (Xij). Since X is not a scalar matrix,
by Lemma 2.8 we may assume it has at least one off=-

diagonal element which is non-zerec (transform X by a
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similarity transformation, if necessary). By a simul-
taneous permutation of rows and columns (using a permu-
tation similarity) put this element in the (1,2) place of
X. Thus we may assume X = (x ) with x,, # 0.

Let 8 = I + yE; 140 with i # j, where I is the nxn
identity matrix, Ela has 1 in the (i,j) place and zeros

elsewhere and yed. Then §~' = T - yEij and hence

s™1xs = X + yXE,

2
i~ yEin -y EinE.

< e

Thus the effect of the similarity S~1XS is to add y times

the i column of X to the j® column, subtract y times the
j® row from the i® row and change the element X 5 to

2 — ;
Xy ¥ y(xi1 xjj) - ¥xy4e Call such a similarity trans-

formation an elementary similarity.

Now consider the matrix X with Xqo £ 0. By means of
an elementary 31m11ar1ty add T times the second column of
X to the i® column, for each i # 2, where y; = 0 if x1l¥ 0
and'yi = 1 if Xy = 0. We have possibly changed some rows
of X, but, in any case, we now have a new matrix X = (x:.)

1J

with Xqq9Xqp900esX all non-zero.

We shall prov;? by induction, that we can transform X
by a similarity so that the first n - 1 rows of the matrix
obtained contain no zeros. If n = 2, we have already
proved this statement. If n>2, let us assume that we
have succeeded in transforming X by a similarity so that
the first k rows contain no zeros, where T=tk<=n - 1. So
now we assume X = (x ) where the first k rows contain no
zZeros. If Xt ,ler2 # 0 we can proceed as in the next
paragraph. Otherw1se, by means of an elementary simil-
arity subtract y times the k® row from the (k+1)St Tow.
This adds y times the (k+1)St column to the k% column and
changes the value of the element in the (k+1,k) place.

Let
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g(Y) = yj;1(xik + yxi,k+1)'

since g(y) £ 0, by Theorem 2.7 we can choose y ¢ & so that
g(y) is not zero (because I is an infinite field). We
thus get a matrix X = (x, J) whose first k rows contain no
zeros and for which Tyer1 b2 # 0, _

For each i # k + 2 2da y; times the (k + 224 ¢ olumn
to the i, by means of an elementary similarity. This
operation subtracts y, times the i% row from the (k + 2)nd
row and changes the value of the element in the (k + 2,1i)
place. So for each i # k + 2 let

g(yi) = g= (in ¥ XJ k+2)

Since g(y;) £ 0, choose yE.ETFso that g(y;) # 0.  Thus,by
induction, we have shown that the given matrix can be
transformed by a similarity transformation so that the
first n - 1 rows of the matrix obtained contain no zeros.

So now we have a matrix X = (xij) with zeros, perhaps,
only in the last row. By means of an elementary simil-
arity subtract y times the (n - 1)St row from the n™ row.

This adds y times the n™ column to the (n - 1)St column

: 2
and changes Xy -1 to Xn,n-1+y(xnn'xn-1,n-1)‘y Xp-1,n*
Let
_ 2
&(v) =[xy noq + ¥(®gn = Xp_q qog) = T Hn g o]0

n Vs -—

where the prime means that the term containing i = n - 1

is omitted. Since g(y) £ O we can choose y £F so that

g(y) # 0. Thus we have obtained an X = (xij) where none
of the elements is zero, and this proves the theorem. =
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We shall now prove our first result involving KTW
commutator expressions. It supports the idea that we
can use the Vanishing'of a KTW commutator expression as a
generalization of commutativity. The theorem we prove
generalizes the fact that the center of the algebra of
linear transformations on a finite-dimensional vector
space over a field is the scalar transformations.

2.11 Theorem. Let V be an n-dimensional vector space
over an infinite field 3:, A a linear transformation on V
and k an integer with 1=s=k<n. Suppose that for each
linear transformation X on V there exist elements

04,055 000,0p inF, where K = k(k - 1)/2, so that

£, .(4,X5%) = 0,

then A is a scalar transformation.

Proof. ’Let B be fhe matrix of A with respect to some
basis of V. Then for each nxn mairix Y with elements in
F there exist elements 030590 e s Op in F so that
fk(BgY;b) = 0, Tet Y = diag(y1,y2,...,yn) where the

vy e & are such that (yi - yj)2 are distinct and non-zero
for 1=i<j=n (by Lemma 2.8). If B = (bij), we get

bijyji(yK - b1yK“1 ¥ eee +(—1)KbK) =
wvhere y = Y?i and yji = yj - Vs Since thgre are N =
= n(n - 1)/2 distinct non-zero values for Y34 with
i=i<<j=n and N>K, we get bij = 0 for some i, j. Thus
the matrix of A with respect to any basis of V has at
- least one element zero. Hence A is a scalar transform-

ation, by Theorem 2.10. &

We use the following known result in proving one of
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the main theorems of this chapter.

2.12 Theorem ["Burnside's theorem", cf.4, p.276]. IfR
is an irreducible algebra of linear transformations on a
finite-dimensional vector space V over an algebraically
closed field, then R is the complete algebra of linear
transformations on V.

The next theorem is a generalization of part of
McCoy's theorem on property Q (Theorem 1.2) and it gives
some information about a solution to Problem 2.1.

2.13 Theorem. Let A and B be linear transformations on
an n-dimensional vector space V over an algebraically
closed fieldF. Let k be an integer with 1<<k<n. Sup-
pose that for each polynomial P(x,y), there exist b?’b2"’
.20y inF, where K =.k(k-1)/2, so that

£,.(4,P(4,B)50) € j/

then there exists a basis of V with respect to which the
matrices of A and B have the forms (*), where
fk(Aii,P(Aii,Bii);b) = 0 and dim.A. . = dim.Bifsik.

Proof. By the usual composition series argument we can
find a basis of V so that the matrices of A and B have the
forms (%) where A;; and By, cannot be reduced any further
by a simultaneous similarity and fk(Aii,P(Aii,Bii);b) = 0
with 1 = 1,2,c0e3F. We claim that dim.Aii = dim.Bifglc
TOT 4 = 152 50 m b For suppose dim.Ai:.L = ni>.k for some
i. Since Aii and Bii cannot be reduced by the same similear-
ity, . the algebra Ri of polynomials in Aii and Bii is ..
irreducible and hence by "Burnside's theorem" (Theorem
202 ¢ QKi is the complete algebra of n;xn. matrices

with elements inJF .  Hence, given any n;xn; matrix X

;]
with elements in F , we can find X elements CP-PYRR
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. e 3Dy in <F so that £ (A;59X50) = 0.  Since k<mn, this
means Aii is a scalar matrix, by Theorem 2.10. But then
Bii can be reduced to upper triangular form by a similar-
ity - (since T is algebraically closed) and this leaves
Aii ﬁnchanged. This contradicts the fact that Aii and
Bii cannot be reduced by the same similarity transform-
ation. Thus niégk and this completes the proof of the
theorem. =

Remark. This theorem does not characterize those A,B

for which the matrices in (%) have dim.Aii(resp. dim.Bii)
k. The exact conditions on A and B for this character-
ization would appear to be quite complicated. However,
in Chapter III we give necessary and sufficient conditions
on A and B that the matrices in (x) have dim.Aii = dim.Bii
£2.

We close this chapter with some remarks on the Kato-
Taussky-Wielandt commutator relation. When V is two-
dimensional the relation is

EAaBrBrBj = (P‘l - P2)2[A,B_] = 1B

or
P15 - (By - B)T) = O

wherep1 and;32 are the characteristic roots of B and TB
is the linear transformation defined on the space of all
‘linear transformations on V by Tp(X) = [X,B]. The Kato-
Taussky-Wielandt commutator relation is not the most gen-
eral commutator relation between A and B in the two-dimen-
sional . case. We prove the following generalization. |

2.174 Theorem. Let A and B be linear transformations on
a two-dimensional vector space V over a field T and let
the linear transformation Ty be defined by TX(Y) =[v,x]
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where X and Y are linear transformations on V. Then

TBTATB - xT = 0

where x = trace Atrace B + 2detA + 2detB - 2det(A + B)#.
- Proof. Replace A and B by matrices, again called A and B,

We let A = (aij) and B = (bij)' Then
[0 -a,, a2, O 0 =b;, by O
“fgy Pz P B oy Pra 0 By
T = mn =
A 20 0 oy -ay, 7 7B bio 0 By -byy
| 0 a4y -ayy O | | 0 Byp =byy O]

where o |

il

> as4 = ajj.and ﬁij = bii - bjj' We gre using
the fact that , if X is any square matrix, then TX =

= XU @I - I® X, where "t" means transpose and " & " is
the tensor product sign [cf. 13]. Let I be the 4x4
identity matrix, then

TATB - xI

7 The notation "detX"™ means "the determinant of the linear
transformation X".
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[a

b

12921 T 891
P

%5101

2

o

b

21

- 8

b12 -

21212

X

~212P2
2859095 + O4ofo = X
K PLIP

212f12

251Po1

=225, by,

2819054 + 0o Pyy — X

~251F21

=2150p9 = 859D,
L PLPY

"°&1b12

b

a12b21 + a21 19 = xd
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Let y = 2a21b12 -+ 2:5112“021 + °‘12P12 - x.. Then

4 “D1g¥ by O
ror,mn - xpy _ | “P21Y Pea¥ O LFI
| B b,y O Boq¥y =bq,o¥
12 21 12
0 by =byey O
where, in computing, We use the facts that o = =0y and
P12 = —1821. Thus y = 0 gives
This happens 1if
E B SRyt * SR * Ypliee

Now

traceAtraceB + 2detA + 2detB - 2det(A+B)

= (agq *+ ay)(byq + byo) + 2(agq855 - a5qa4,) +

+2§b11b22 = boibip) - 2(agq855 = 8pq895) +
~2(b

; 11022 = PoqPqp) = 2(ay 0y = a5 bi5) +
-2(b

11822 = Ppq2qp)
= (agq = ap)(byq = 2y5) + 2apybyy + 224,05,
X L ] k

i

This éomple‘bes the proof of the theorem. K

2.15 Corollary. Let A, B and C be linear transformations
on a two-dimensional vector space over a field. Then

[c,B,4,8 - x[E,B] = 0

where x = traceAtraceB + 2detA + 2detB - 2det(A + B).
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The Kato-Taussky-Wielandt commutator relation for the
two-dimensional case follows from this corollary on putting
A = B.

We note that we do mot use the generalized form of the
Kato-Taussky-Wielandt commutator relation (Theorem 2.14)
in this thesis. We also remark that we have not succeeded
in generalizing Theorem 2.14 when the dimension of V is
greater than 2. ’
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CHAPTER III
- THE TWO-DIMENSIONAL BLOCKS

In Theorem 2.1% we gave a condition on A and B suf-
ficient to guarantee that dim.A;; = dim.B,,<k in (%),

_ However this does not characterize matrices of the form (x)
with dim.Aifsik, I = M132)0esste In this chapter we
‘characterize those linear itransformations A and B on V for
which dim.A i, = dimBifé.Q in (%) for 4 = 1;8;0essbs The
characterization is in terms of two-dimensional KTW com-
mutator expressions.

Again we have linear transformations A and B on an
n-dimensional vector space V over a field F. ?2 is the
algebra generated by A and B overﬁF'and‘}—is the radical
of K.

We have the following main theoren.

Biw 1 Theorem. Let F be algebraically closed. Then the
following statements are equivalent.

(a) For each polynomial P(x,y) there exist an integer r
= r(A,B,P(A,B)) and distinect elements h1,h2,...,hr{f?:so
that : .

Xn(1)y¥m2) Fn(z) €4

fOT eVeI‘y Permut&tion n(1), TT(2),-.-,TT(I.) Of 1,2,...,1‘,‘
where

X = [a,P,P,P] - hsEA,P:I,

S

s =1,2,...,7 and P = P(A,B).
(b) There exists a basis of V with respect to which the
matrices of A and B have the forms
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Ayq Aqg oo Mgy Bi1 Byg oo By

o A22 e ° @ .A-2.t v | O B22 ® o th
(*) . . . and . . . )

,_o O" e e e e -Au_t_tJ _o O * e B_tt_

respectively, where A, and Bii are either 1x1 or 2x2
matrices which cannot be reduced further by a simultaneous
similarity, 1 = 1,2,4ee,5t.

Proof. Assume (b) holds. Let A' and B' denote the matri-
ces in (b) (since we do not refer to transposes in this
theorem, the notation is unambiguous). The block diag-
onal of P(AY,B') has blocks P(Aii,Bii),-i = 1585005405

Let Aj,_Bj be the 2x2 blocks on the diagonals of A', BY,
respectively, J = 1,25¢44459. Let xjj and x2j be thg
characteristic roots of P(Aj,Bj). Form (x1j = xzj) "

i o= 1525 56s50 BNE let h1, h2,...,hr be the distinct ele -
ments among these. If we let Pj = P(Aj,Bj), then we have

2 -

If we form X! = [A',P',P',P/] - b [A',P7] for s = 1,2,...,r,
i = ¥ 9 9 v e edXt

where P P(A',B'), we see that Xﬂ(1)Xﬂ(2) Xn(r) has

zero blocks on and below the main diagonal, for each per-
muteation TH1)sT(2)YsensaPlT) Of 158500650 This is also

¥ v ¥ {7 v h i
true of Q(A',B )Xﬂ(1§Xn(2)...XH(r) for a?l pélynomlals
st o P Thus Q(A,B XH{T)XH(2)f"Xn(r) is nilpotent for

all Q(A,B) and hence Xn(T)Xn(2)"'Xﬂ(r)£<} by Lemma 1.6.
Hence (a) holds.

It is clear, from this part of the proof, why we must
take a product of XS'S, instead of a single one.

Conversely, let (a) hold. By the usual argument,
there exists a basis of V with respect to which the
‘matrices of A and B have the forms (%), where A;; and By
cannot be reduced any further by a simultaneous similarity,
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1= 1,2500eyt, Let Aii and Bii be n,xn, matrices. We
wish to show that nis;2.

So assume, for some 1, that ni=’2. Under this
hypothesis we shall show that Aii is actually a scalar
matrix. As in Theorem 2.13 this means Aii and Bii can be
reduced by a simultaneous similarity, which is a contra-
diction. Hence nisgz fori=1;2,scs9%s

We proceed to show that ni:>2 implies Aii is a scalar
matrix. For simplicity, let Aii = C, Bii = D and P =
= P(C,D). Then, if Y, = [C,P,P,F] - hSI:C,P:l, we have
Yn(T)Yn(2)"'Yn(r) = 0 for all permutations n(1),n(2)f..
euplile) O 14Bsain sy

Since C and D cannot be reduced by the same similarity
transformation, the algebra of all polynomials in C and D
'_with‘coefficients in F is irreducible. Hence, by "Burn-
side's theorem® (Theorem 2.12), this algebra is the com-
plete algebra of nyxn, matrices with elements in &F . 'Thus,
if X is any n;xn, matrix with elements inF , for some
integer r (depending on X) there exist distinct elements
hyshp,ee.,h, ¢ F so that,if X = [c,X,X,X] - b [C,X], then
Xn(1)Xn{2)"'XTﬁr) = 0 for all permutations of 1,2,...,T

Without loss of generality, assume C is in Jordan
canonical form.

m

G = j=1e>cj where Cj = cﬁIj + Ej’ J o= 1325w 00
where Ij is an identity matrix and Ej is a matrix of the
same dimension as Ij’ with 1's on the superdiagonal and
zeros elsewhere, i.e. the Cj are Jordan blocks. We wish
to show C is a scalar matrix. This we do in three stages.

Stage 1. ZEach Jordan block Cj has dimension=<2.
Proof. Suppose some block, C1say, has dimension =3. Then
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We may ignore the diagonal, since we shall be taking com-
mutators. Thus we consider E,. Let ‘ '

010
E = Q1
0 02Q

i.e. the leading 3x3% diagonal block of E1. Since we may

consider any n,Xn, matrix X in the expression [@,X,X,X]

- hS[C,X], we shall now consider only those matrices X which

have arbitrary 3x3 blocks Z in the place corresponding to
the block E and zeros elsewhere. Thus we may restrict
ourselves to 3x3 matrices. Let

000
72 = 100/,
01 1
then
M0 0
EE9ZJ= 00 1},
00 =1
O 0 O
[B,2,2] = -1 1 1
0 ~1 =

and



0 0 O
[(&,z,2,Z2] = |1 1 1].
s s |
Hence
-h, 0 O
z, = Io,2,.2,.4] -hs[E,Z] =1 1 1 T-hg

0 =1 =(1-h)
which is in block lower triangular form. We have

zn(”zn(z)...zn(r) = 0, for each permutation of 1,2,...,T.
Hence some hs is zero, say h1 = Q. Let

I [1 1-hs],
& -1 =(1-h,)

then Hqu = h H l=su,v<r,. Hence

wv?
= (TrTh )H,', otherwise.
Thus H_H__,...H, # 0 since H [4 _1:] andl:th £ o, 3

r=2. This is a contradiction. Hence dim.cj-{ 8y § =
= 1,2,...,H1.

Stage 2. C is a diagonal matrix. _
Proof. Suppose for some Jj that d:‘Lm.Gj = 2, Let C‘j =
= [c( ;l By simultaneous permutations of rows and

0

columns, if necessary, we may assume C. is not the leading
block on the diagonal of C (since dim.C = ni_:aB). Thus
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oo 0p0O

Cj-'l@cj — 0 o 1 or 00 o1
| 0 0 o 000

Since dim.cl~<~_2’ 1. = 1,2,...,111. Ile't

B0 O
G'= 0“10
0 0 ¢

It Cj-—1 @Cj is 4x4, it equals

which is in block upper triangular form. We shall be
multiplying C by matrices which have zeros everywhere
except in the place corresponding to G, so again we
restrict ourselves to 3x3 matrices. Let

1 01
7 = 000
0 x O

where x is chosen in F so that x # 0 and x # - o Then

00 p-a 0 x(p-c) =z-(p-c)
[6,Z] =|0x 0O |, 6,2,2] = |© 0 0
00 -x 0o -2x° 0

and
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0 3x2-2x(p-o0 (B-oq) =x

¢,z2,z2,721 = 0 0 ‘ 0 .
0 0 0
Hence
0 3X2-2(p-00x g —ox~h_(p-ox)
z = [6,2,2,2] - n [6,7] = |0 -h_x 0

0 0 hsx

r ; :
2y g
Now Zy(1y2m(2)++Zr(p) = O and thus (th)x = 0. This
means some hS is zero, say h1 = 0. Thus
2
0 3x°-2(p-9x PB-o-X
Z = 0 0 0 .

0 0] 0
The (1,3) element of Z4%peeely, is (p-o@x)cxr-1, vhere ¢ =
=14if r = 1 and ¢ = hyhg...h, # 0, otherwise. But this
gives a contradiction, since x # O and x # B - Hence
g = diag(Oﬁ,o%,...,ohi).

Stage 3. C is a scalar matrix.

Proof. Since we may put any three of m1,02,...,ohi in the

first three places on the diagonal of C (by simultaneous
row and column permutations), we may as well assume that
¢ = diag(ca,o%,cg). Let

We have, on letting o = O = 0% .



0 0 0413 20(.‘3 0 031
e, = 10 0ops 1,  [L,Z,Z] = | opsrogy 0 o4y
031 00 031 | 0 2031
and
0 0 504,3
[6,2,%,2] = 4y 0 2053+30¢5 |
Oy - |
Hence :
0 0 (5=n )0‘13
Zy = [c,2,2,Z] - hS[C,Z:] = 4 5 0 (2-h )o<23+30<13 2
(5-h )og, O

* 00
The product of an even number of Z 's has the form [(% O f}
OO*

and the product of an odd number has the form [f
*

where x denotes an element not necessarily equal to zero.
The (1,3) element (if r is odd) or the (1,1) element (if
r is even) of the product Z1Z2...Zr gives co{3 = 0, where

ey }
¢ = s]:[l(s—hs)' If no hs = 5 we get & = Oge Otherwise
h, (say) = 5. Thus

0O 0 0
Zy = |o4p 0309, -
0 0 0

The (2,1) (if r is o0dd) or (2,3) (if r is even) element
v r-1 _ _ : _
of ZTZz"'Zr gives °°ﬁ2°ﬁ3 = 0 where ¢ = 1 if r» = 1 and

c = giE(S-hs) otherwise. Hence o4 = o, Or oy = c%. Now
this last statement is true whether or not some hS = 5,
If e = 0%, put o in the (1,1) place (by a simultaneous
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row and column permutation) and repeat the argument.

Thus % = @ OT o = ay i.e. oy = O = O Similarly

& = implies ¥ =0 = o%. Hence C is a scalar matrix

i.e. A is a scalar matrix.

ii
Thus nis;2 and the result is proved. &

We make some remarks about the above theorem. Note,
in the course of the proof, we did not use all the products
XH(T)Xﬁ(2)"'Xﬂ(r)' It seems likely that it should be
possible to consider even fewer of these products than were
used in the course of the proof; we do not have an example
which contradicts this surmise. '

It should be noted that the proof that (a) =>(b) does
‘'not guarantee that the constants h1,h2,...,hr are of the
form (x1 - X2)2 where Xq9%y are characteristic roots of
P(A,B). It .is clear, for example, that if A and B have
property Q, then the constants h1,h2,...,hr may be guite
arbitrary. :

Pinally, it seems likely that a similar theorem should
characterize those matrices (%) with dim.A; <Xk, if we
replace the two-dimensional KTW commutator expressions by
k-dimensional ones. But we have made no progress with this
problem.
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CHAPTER IV
THE RELATION fk(A,Bro) = 0, WHEN k<n

Example 2.6 indicates that the relation fk(A,B;b) = O{
with 1<k <=<n is not a "good" generalization of commutativ-
ity in that it does not help us to solve Problem 2.1.
However, it seems reasonable to ask what the relation
fk(A,B;b) = 0 does imply. We might hope to prove that if
"o =f(b1,b2,...,bK) then 01’b2""?bK gre elementary sym-
metric functions of some of (Pr - ps) y 1==r,s=n, where
Pr are the characteristic roots of B. When k = 2 we do
get a result like this (c¢f. 4.6)but, in general, the
result we obtain is not quite this strong (cf. Theorem 4.2).

We begin the investigation with a definition.

4.1 Definition. Let fk(X,Y;b) be a KTW commutator expres-
sion, with o = (b1,b2,...;nK) where K = k(k - 1)/2. Then

gk(w;b) o el b1w2K"1+ b2w2K"3— g +(~1)Kwa.

The main theorem in this chapter is

4.2 Theorem. Let< be the algebra of linear transforms.-
_'@E:iji_l . on an n-dimensional vector space V over a field &F
and let A,Be .l . Suppose A and B generate £ i.e. every
linear transformation in £ has the form P(A,B) where

P(x,y) is a polynomial.  If the characteristic of F does
not divide n and if there exist v,,05,...,0, in F so that

fk(A,be) = 0

where 1<<k<n and o = (b1,b2,...bK), then the characteristic
roots of B belong to the splitting field of gk(wrn) over F,
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We shall prove this theorem presently, but first we
introduce some well-known facts from the Theory of Graphs
which we shall employ in the course of the proof. A
general reference for the graph theoretical material we
use is Varga [15].

4.3 Definition. Let X be an nxn matrix with elements in

a fieldF, then X is P-irreducible if it cannot be trans-

formed by a permutation similarity to the form

Y Z
O W
where Y and W are square matrices.

Note. The "P" in "P-irreducible"” stands for "permutation™.
Our "P-irreducible™ is the same as the "irreducible™ or
"indecomposable™ of the Perron-Frobenius theory of non-
negative matrices [cf. 15]. |

We associate a directed graph G(X) with an nxn matrix
X = (xij) in the following way. G(X) consists of vertices
numbered 1,2,...,n and there is an edge from i to j, i.e.
i—»j, if and only if Xy 5 = Oy

The following well-known theorem is stated in Varga
[15]. We include a proof since there does not seem to be
one in the literature.

4.4 Theorem. Let X be an nxn matrix with elements in a
fieldaT, Then X is P-irreducible if and only if G(X) is

- strongly connected.

Proof. If P is a permutation matrix then G(P"1XP) is
obtained by relabeling the vertices of G(X). Suppose G(X)
is strongly connected. Then X is P-irreducible. For
suppdse otherwise; then there exists a permutation matrix
P so that



11 ¥z s T Fryrer 00 Fp
gy Xgg wen Zpu To pyy  eée Foy
-1 - L ] . L ] L ]
? (#) P XP = Xr1 Xr2 ee e xrr Xr,I’+1' o xrn
0 0 +ee O Frvt,r+1 " F*re,n
_-0 0 *® & ® O Xn’r+1 L B BN xnn -

where r<n. Now G(P-1XP) is not strongly connected since
there does not exist a path from r+1 to 1. This contra-
diction shows X is P-irreducible.

Conversely, let X be P-irreducible. Then G(X) is
strongly connected. ~ Suppose it is not. Then there
exists a vertex i to wiwva at least one other vertex is not
connected. By renumbering the vertices we get i = 1. Let
2,3,.;.,r be the vertices which are connected to 1 by some
path in G(X) (again by renumbering). It is clear that r>2,
since we cannot have Xj1 =0, J=2,3,...,01, because this
would contradict the fact that X is P-irreducible. It is
also clear that r==n, since we have assumed G(X) is not
strongly connected. These renumberings of the vertices of -
G(X) correspond to a permutation similarity P~TxP of X.

We claim that P—1XP has the form (#) above, because there
does not exist a path in G(P"1XP) from j to i where r=3j<n
and 1< i<r. Since, if j can be connected to i, then j can
be connected to 1, because i can be connected to 1. This
is a contradiction of the fact that 2,3,...,r are the only
vertices that can be connected to 1 by a path in G(X).

Hence X is P-reducible (i.e. not P-irreducible). This
contradicts the initial assumption. Hence G(X) is strongly
connected. &

4.5 Proof of Theorem 4.2, Pirstly, we dispose of two easy
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cases. If X = 1, then AB = BA and since A and B generate
X this means n = 1 and the theorem is then obvious. The
second easy case is when B has only one characteristic
r00t B . Then traceB = nped. Hence pge, since the
characteristic of F does not divide n. So the result is
trivial in this case also.

So assume that there exist D1y 0pyees Oy in Fso that
fk(A,B;b) = 0 where 1<k<n and where B has at least two
distinct characteristic roots. Replace A and B by
matrices, again called A and B and extend T to a field &
which contains the characteristic roots of B. Let U be
a non-singular matrix with elements in & so that N = U_1BU
is the Jordan canonical form of B with N = ; @ Bi where
Bi is a direct sum of Jordan blocks all of which have the
same c§?racteristic root B, and.pi-# P when i # j. Let
A1 = U AU, then

£,.(4,,N50) = oO.

Let A, = (Aij) be the partition of A, corresponding to that

of N = ﬁi ) By . We shall prove the following statements.
i=1
1. If Ay # 0, then g - p; satisfies the equation
gk(W;b) = 0.

2. Ay = (Aij) is P-irreducible as a block matrix.

If we assume Statements 1 and 2 we can complete the
proof of the theorem in short order. For let G(AT) be the
graph of A1 considered as a block matrix, i.e. i—j if and
only if Aij # O Then Statement 2 and a modification of
Theorem 4.4 (for block matrices) imply that G(A1) is
strongly connected. Thus, if ﬁi, ﬁ% are distinct char-
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acteristic roots of B, there exists a sequence i,i1,12,..

o-’iu,j S0 that Pi — pi»]’ ?i" o pizll-o’Fiu o Fj Satisfy

gk(wfb) = 0. Let & be the splitting field of gk(w;b)
over ¥.  Thus

i~ f5 = (P1 - Pi1) +lpy - (312)+...+(Fiu " Fj)gj{,f

- Let nj be the multiplicity of ?j as a characteristic root
of B, jJ = 1525400, Then

}i;njﬁi - gi;njpjsji.

Hence np; - traceBeX. Thus Piej{’ 1 2 1,8;use25 sizce
_the characteristic of X does not divide n.

I+t remains to prove Statements 1 and 2 to complete
the proof of the theorem.

Proof of Statement 1. We employ the relation fk(A1,N;b) =
= 0. Suppose Aij £ 0. TLet a . be the "first" non-zero

element of Aij in the following sense: 1if the lower left-
hand corner element of Aij is non-zero, let this be a

st;
otherwise let 8y be a non-zero element of Ai' so that

8,y = 0 if u=s end v<t and (u,v) # (s,t) where, of-
course, we only consider those elements 8uv in Aij' Thus
* *
O * @ o O ast
Aij = O e 8 @ O O
. . . *
L @ sss @ 0O o)

where % denotes elements which make up the rest of Aij‘
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If a . is the (a,b) element of A; ., we shall calculate the.
(a,b) element of the (i,j) block of fk(A1,N;b). To
simplify calculations assume that Bj has characteristic
root O and B, has characteristic roo.‘bﬂij =g - /Bj (Sub-
tract ﬁjI from N. Since we take commutators, this
operation does not affect the end result of the calculas-
thohs. . )e The matrix fk(A1,N;b) is a linear combination
of matrices of the type £A1,N,N,...,ﬂ]. The (i,j) block
of L'A1,1\T_] is Aiij - BjA;4. The (i,3) block of
[A1,N,N,...,N] only involves Aij’ By and Bj; it consists
of a linear combination of matrices of the type BzAing,
where ¢ + d is the number of times the commutator operation
is applied in [h1,N,N,...,ﬁj. The (a,b) element of
BZA, jB? is obtained by multiplying the b column of Aiqu
by the a® row of Bg. Those elements in the b® column o
AijB% from the a® element down are all that matter here.
But these elements are zeros, except when d = 0, since B,
has zeros on and below the main diagonal. Thus the (a,b) .
element of EA1,N,N,...,ﬁ], where the commutator operation
is performed m times, is (-1)35?jast. Since the monomials
in gk(w;b) are of odd degree, the equation fk(AT,N;b) = 0
gives gk(Pij;b)ast = 0 and hence gk(pij;b) = 0 since
ay # 0. Thus we have shown that if Asy # 0, then
ﬁi - Pj satisfies the equation gk(w;b) = 0.

Proof of Statement 2. We now show that A1 = (Aij) is
P~irreducible as a block matrix. For suppose there exists
a2 block permutation matrix P, _parti“tidne.d.6011f‘93;_-113:}]:}g;‘§11€h

Ay = (Aij)’ so that P-1A1P has the form
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_0 ® & o 0 Ar,m+1 e e @ Arr J

where m <r, then A1 and N may be reduced by a simultaneous .
similarity, since the block permutation matrix P simply
permutes the blocks on the diagonal of N. Thus the

- algebra of matrices of the form P(A1,N) is reducible, where
P(x,y) is a polynomial in the non-commuting variables x and
.y with coefficients in.gu But the matrices A and B
generate the complete algebra of nxn matrices with coef-~
ficients in F.  Hence A, and N generate the complete
algebra of nxn matrices with coefficients in g-which is
irreducible.’ This contradicts the assumption that A1 =
2 (Aij) is not P-irreducible as a block matrix. Thus A
is P-irreducible as a block matrix. L

1

4.6 Corollary. Let A and B satisfy the conditions of
Theorem 4.2 with k = 2 and let B have at least two distinct
characteristic roots. Then there exists an ordering
P1,?2,...,ﬁr of the distinct characteristic roots of B so

tgat?‘t :]32 =Bo ~Ffz = -0 =P - Py satisfies
w -\01 —r Oo
Proof. Consider the matrix Ay = (Aij) defined in 4.5.

.We have
fz(AT,N;b) = 0 whered = (b1).

We claim thaf A1 cannot have more than two off-diagonal
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blocks in each row or column which are non-zero.
BSuppose, for example, that Aij’ Aik and AiL are non-zZero
off-diagonal blocks, where j,k and £ are distinct. Then
Bi - pj, Py~ Pk and Py = P, all satisfy £ 0, = 0, by
Statement 1 of 4.5. Hence at least two of Fj’ Brr P2
must be equal, and this contradicts the fact that the g's
are distinct. We also note that if Aij and A, (resp.Aji
and Aki) are non-zero off-diagonal blocks, where j ¥ k,
then an argument similar to the one just given shows that
if Asi (resp. Ais) is a non-zero off-diagonal block then
s = J or s = k.

Let G(A1) be the graph of A1
BiE, We shall write i~j if i—j or j—i. The dis -

considered as a block mat-

cussion of the last paragraph shows that if i~ j and i~k,
where i,j,k are distinct, then i~ 1 implies that 1 must be
either j or k. We claim that by renumbering the vertices
of G(A1) we get the subgraph

.00

1 2 3 r-1

where i~i+1, for i = 1,2,40.,7=1, For let

f'(‘= D S S —

be a maximal "path" in G(A1) (on renumbering vertices)
where i~i+1, for i = 1,2,...,5-1 and suppose s # r. If

j is a vertex #p&, then neither j~1 nor j~s can hold,
since M is maximal. Since G(A1) is strongly connected
there exists an internal vertex i e and a vertex j fﬁc S0
that i~j. But i~ i+l and i~i-1, and since j # i-1 and.
j # i+1, this is a contradiction. Thus G(A;) contains the
required subgraph. Hence, on renumbering the distinct
characteristic roots Bi of B, we see that /31 - /92, [52 - ,33,
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ey Prf1 - B, satisfy w= - o, = O, Now we must have

Pl-ﬁi+1 =Pi+1 -Fi+2’ 1 =1,25000y

sines By = Pyyq = Pisg = Piyq Implies that g, =B, o
This is impossible, since the Pi's are distinct. &

4.7 Remarks on Theorem 4.2. Example 2.6 illustrates

. Theorem 4.2 in a trivial fashion. Later on in this chap-
ter we shall give a non-trivial example (Example 4.12)
which illustrates Theorem 4.2, Corollary 4.6 and a theorem
we have yet to state (Theorem 4.9). We note that Theorem
4.2 says that if g is a characteristic root of B, then it
satisfies an equation of degree at most k(k - 1)! over J .
At first sight this statement does not look too promising,
but if k is "small" compared to n it says something about
the reducibility of the characteristic polynomial of B
over F. We shall return to this fact in a moment when
we discuss a generalization of the so-called "L-property”.
We note one more fact about Theorem 4.2: it is, that the
condition on the characteristic of F is necessary. We
give a counterexample to the theorem later (Example 4.13)
where this condition is not satisfied.

Assume for the moment that the characteristic roots of
A and B belong to F . We recall that A and B have prop-
erty P if there exist orderings o POy eeey & and P1,p2,..
--» B, of the characteristic roots of A and B respectively
so that P(A,B) has characteristic roots P(Qi’ﬁi)’ 1 = 1,254
..,n, for each polynomial P(z,w). Now a weak form of
property P is property I (a term due to Kac) which demands
that property P only hold for linear polynomials P(z,w) =
= xz + yw, where x,y £ & [Motzkin and Taussky, 16].
Property L then says that the characteristic polynomial
p(x,y,2) of XA + yB splits into linear factors, i.e.
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p{x,y:%) I_I(XQ& + ¥p; - z)

where =4 and pj_sEF, i= 1,2,...,n. We shall use Theorem
4.2 to prove a result about a pair of linear transform-
ations A and B which implies they have a property very
much like that of property L (instead of only linear fac~
tors in p(x,y,z) we get both linear and quadratic factors).
To prove the result we need a preliminary lemma. We
denote by F[X,y] the integral domain of polynomials P(x,y)
and by F(x,y) the quotient field of this integral domain. -
(We assume, of course, that the indeterminates commute, in
contradiction to the convention on page 4). '

4.8 TLemma. Let p(x,y,z) be a homogeneous polynomial in
X,y and z with coefficients in a field &. Suppose

ks
P(X’sz) = ipil
i=

where each Py is an irreducible polynomial in z over
“FHx,y), then each p; is a homogeneous polynomial in X,y
and z with coefficients inF.
Proof. F[x,y] is a Gaussian domain (unique factorization
domain) [bf. Jacobson 14, p.12é]. Since a Gaussian
domain is integrally closed [ibid. p.184], the coefficients
of the powers of z in Py must be polynomials in x and y.
Suppose Py is not homogeneous in x,y and z. Define
M(q) (resp. m(q)) to be the maximum (resp. minimum) degree
of the monomials in a polynomial q. Now M(pi)>.m(pi) and
M (resp. m) has the property that M(qr) = M(q) + M(r)
(m(qr) = m(q) + m(r)), for polynomials q and r. Hence
M(p)> m(p) where p = p(x,y,2). But this is false. Hence
M(pi) = m(pi) and thus p; is homogeneous.

4.9 Theorem. Let L be the algebra of linear‘transformap
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tion  on an n~dimensional vector space V over an infinite
field Fwhose characteristic does not divide n. Assume A
and B eX are such that A and B generate & and suppose that
for each X,y € & there exists v, € ¥ so that '

£,(4,xA + yBs®) = 0

where 0 = (b1). Then the characteristic polynomial
p(x,y,z) of XA + yB splits into linear and quadratic homo-
geneous factors in x,y and z with coefficients in F.
Proof. 'We may assume that n=3%, since the result is triv-
ial otherwise. Replace A and B by matrices. Let

XA + yB = X, Then

(%) = (L5 - v, 3,4,

If [A,X]= O then AB = BA and this implies n = 1. So the
result is trivial in this case. So assume [A,X] # O.

Then the equation fg(A,X;b) = 0 says that o, is a rational
function of x and y. Replace x and y by two algebraically
independent indeterminates, again called x and y, respec tive=
i I, Then the equation f2(A,X;b) = 0 still holds, by
Theorem 2.7, since & is infinite. A and X clearly gen-
erate the algebra of nxn matrices with elements in?}fx,y),
so we may apply Theorem 4.2. Now gz(w;b) =W - o w. So
each characteristic root of X = xA + yB satisfies an equa-
tion of degree at most 2 over?th,y). The theorem then
follows on applying Lemma 4.8.

4.10 Corollary. Let A and B be linear transformations on
an n-dimensional vector space V over an algebraically closed
' field ‘F whose characteristic is either zero or greater

than n. If, for each x,y ¢F, there exists b1€f?fso that
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£f,(A,xA + yB3v) € ﬂ/

where }-is the radical of the algebra generated by A and B
overJ, then the characteristic polynomial p(x,y,z) of

XA + yB splits into linear and quadratic homogeneous fac-
tors in x,y and z with coefficients in TF.

- Proof. Apply the usual composition series argument to V
to get matrices for A and B in block upper triangular form.
nBurnside's theorem" (Theorem 2.12) shows that simultane-
ously : irreducible blocks A, and Bj, (ef. (%) on p.18)
generate a complete matrix algebra, and the condition on
the characteristic guarantees that it does not divide the
dimension of any diagonal block. The result follows
immediately on applying Theorem 4.9 to the diagonal blocks.

The above results do not guarantee that p(x,y,z)
actually has a linear factor, but part of the next result
does.

4.11 Theorem. Let A and B be nxn matrices with elements
in a field F whose characteristic is either zero or greater
than n. Suppose A and B generate the complete algebra of
nxn matrices and let X,y be algebraically independent
indeterminates. If there exists‘o1sfFTx,y) so that

fz(A,xA + yBso) = 0

where o = (b1), then the characteristic polynomial p(x,y,z)
of xA + yB splits into linear and gquadratic nomogeneous
factors in x,y and z with coefficients inF. Moreover

if xA + yB has an o0dd number of distinct characteristic
roots then p(x,y,z) has at least one linear factor.

Proof. The first part of this theorem is almost a re-
petition of Theorem 4.9 and is proved in the same manner
(Note: +the field T need not be infinite here). So assume
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XA + yB has r distinct characteristic roots, where r is odd.
"If r = 1, the result is trivial. S0 assume r=5. By
Corollary 4.6 there exists an ordering ZisZnreceyZy of the
distinct characteristic roots of xA + yB so that

o = Fp satisfies w2 - b1_= 0.
Now the irreducible factors of p(x,y,z) are separable,

since the characteristic of F is either zero or greater than
n. Hence

Z.] -22=22"23= e e = 2

j_; Zi‘ E?:(Xry) .

Now
D - 7. = JEI’ i=1,2,.,.,r—1.

Hence

;i% z; = r{zr +((r-1)/2)J5;}.

Thus z, + ((r—1)/2)$5; eF (x,y). TNow (r-1)/2 = s is an
integer, since r is odd and z_ + ((r~1)/2)$§? = 2 ..
Hence zr_ss;?F(x,y). By Lemma 4.8 Z, o = XX + yp where

x%pedF . =

Finally we give two examples to illustrate the results
of this chapter.

4.12 ZExample. This example illustrates Theorems 4.9 and
4.11 (and a fortiori Theorem 4.2 and Corollary 4.6). Let
TF be a field whose characteristic # 2 or 3. Let

100 110
A = 0220 and B = 1111
003 011
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If E,. is the 3x3% matrix with 1 in the (i,j) place and

ij
zeros elsewhere, then

Hys = (1/2) (A% - 34 + 21), B,y = “A2 4 4 - 31,
By = I =Epy - By Eyp = E(B - 1),
E32 = E33(B - I), Eyq = (B - I)E11,
Bys = (B =~ I)Eggy Byy = ByoByyy  Byy = ByoByye

Hence A and B generate the complete algebra of 3x3 matrices
with elements in&F . Let x,y be two algebraically inde-
pendent indeterminates over F and let X = xA + ¥yB.

Clearly A and X generate the algebra of all 3x3 matrices
with elements in Ssz,y). We have

x+y vy 0.
X = xA +yB = y 2xX+y ¥y .
0 y 3x+y

O -y .0 —2y2 -Xy 0
Ca, X1 = |y 0 -y, [a,x,X] = =Xy 0 -Xy
0 y O 0 -Xy 2y2
and
0 ~2y3~x2y 0
CA,X,X,X] = | 2y7+x°y 0 -2y°-x°y
0 2y3+x2y 0
- (2 2
= (x° + 2y )[A,X].
Hence
fz(A,xA + yB;(x2+2y2)) = Oy
X+y-2z y : 0
p(x,y,2) = det(X - z2I) = v 2X+y =2 v .

0 N 3X+y-2



-56-
Expand the determinant by the second row to give

p(x,y,2) = (2x + 5y - z)(22 - (4x + 2y)z + 3x2 + 4xy - y2)

(c¢f. Theorem 4.9). Hence the characteristic roots of X
are : ‘

z2, = 2X + Y,
24 = 2X + y + Jx2 - 2y2, 2oy = 2X + § -'Jx2 + 2y2.

Clearly

[ >
Zz = x° + 2y
(ef. Corollary 4.6). We see that

z1,zz,z381F(x,y,Vx2 + 2y2 )

(¢f. Theorem 4.2). Since X = xA + yB has an odd number of
distinct characteristic roots, p(x,y,z) has a linear factor
(cf. Theorem 4.11).

4,13 Example. The example we give here is a counter-

- example to Theorems 4.2 and 4.9 when the condition on the
characteristic of F is not satisfied. Let I have
characteristic 3 and let

010 0 -1 -1

A = (001| anda B = {1 0o 1/.
000 1 -1 0.
" Then
E,. = A%, E,. = E,.B° - E,.B
13 ’ 11 13 135»
B 2 _
Bip = BygB" & ByueBy Bpg = & = By



= = "

a2 11’

""BE """E .

11 11 11

- Hence A and B generate the complete algebra of %x% matrices
with elements in & . As usual let x,y be indeterminates
‘and X = XA + yB. Then A and X generate the complete
algebra of 3x% matrices with elements ianTx,y). We have

0 ==y =~y ¥ 9 =~y
X =1y 0 X+y|, [(A,X] = J ¥ 01,
¥F. =¥ 0 G =F 3
and
-Xy 0 0
a,x,X] = 0O -xy O {.
| 0 0 -Xy
Hence
:X: %X = 0 = O[A, %]
Therefore
£f,(A,xA + yBso) = O, where o = (0).
. Now
gp(wid) = W’
and
' -z X-y =y
P(XDY!Z). = det(xA + yB - zI) = v -7  X+y
' y -y -z
2 3

= X y o] .z .
Now
X%y - 20 = ((ny)VB - z)°

and hence the characteristic roots of xA + yB do not be-
long to the splitting field of g,(wio) over F(x,y) (ef.
Theorem 4.2). Also xzy - z7 has no linear factors over



Tz
,¥) (cf. Theorem 4.9) ~
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