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ABSTRACT

1f @ and ¥ are saturated formations, we say that @ is strongly
contained in 7 if for any solvable group G with £-subgroup, E, and
4—5ubgroup, F, some conjugate of E is contained in F., In this paper,
we investigate the problem of finding the formations which strongly
contain a fixed saturated formation e.

Our main results are restricted to formations,g s such that
¢ = {G]6/F(G) é’r}, where 7T is a non-empty formation of solvable
groups, and F(G) is the Fitting subgroup of G, If 7 consists only
of the identity, then 2:7'1, the class of nilpotent groups, and for
any solvable group, G, the N-subgroups of G are the Carter subgroups
of G,

We give a characterization of strong containment which depends
only on the formations Q, and'q. From this characterization, we
prove:

If ar is a non-empty formation of solvable groups, ¢ = {G|G/F(G) €7},
and ! is strongly contained in q;’ then
(1) there is a formation U such that “F= {c|a/F(c) €V},

(2) If for each prime p, we assume that ‘T does not contain the class,
XP,, ?f all solvable p'-groups, then either 9 '-'—'”}, or ?contains all

solvable groups,

This solves the problem for the Carter subgroups.
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We prove the following result to show that the hypothesis of
(2) is not redundant:
r R= {G|G/F(G) Egr.}, then there are infinitely many for-

mations which strongly contain R.
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Chapter I

Introduction

In 1961, Roger Carter [2] discovered the interesting result
that a finite solvable group contains a nilpotent subgroup which
is its own normalizer., These subgroups are now called Carter sub-
groups, In the same paper, Carter showed that any two Carter sub-
groups are conjugate, and that they possess certain interesting
cover-avoidance prbperties.

Since the discovery of the Carter subgroups, several papers,
devoted to the investigation of relations between the system nor-
malizers of a finite solvable group and its Carter subgroups, have
been published, In another direction, Gaschfitz [5] has discovered
a quite general theory from which most of the properties of Carter
subgroups follow as a special case, One consequence of this theory
is that there are many types of subgroups of a finite solvable
group, G, which possess properties analogous to the properties of
Carter subgroups; a subgroup of G which satisfies the necessary
conditions is called a generalizéd Carter subgroup;

We shall, from now on, assume that all groups under discussion

are finite and solvable, To describe our results we need

Dofinition 1, A formation, ¥, is a collection of groups which

satisfies:
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(1) IfGe%, and N is normal in G, then G/N ¢ 7.
(2) If Ni,N, are normal in G, and G/N, € %, then G/N; NN, € 4.

A formation 9 is saturated if it satisfies, in addition to (1) and
(2),

(3) If 6/D(G) €7, and D(G) is the Frattini subgroup of G, then
G €7,

The generalized Carter subgroups may be defined as follows:

Definition 2, Let G be a group, and ¥ a formation, A subgroup, F,

of G is called an Z-subgroup of G provided

) Fe¥

(5) If U is any subgroup of G lcontaining F, and if N is a normal

subgroup of U such that U/N € %, then FN = U (i.e., F covers U/N).
Bes G 1 Baste pesnlis sn Sovwaiohn Ba thak 48T le sy

saturated formation, and if G is any solvable group, then #-subgroups

of G always exist, and all such groups are conjugate (Gaschitz, [5]).
In this thesis we shall investigate the behaviour of the

 ~subgroups of a solvable group G with respect to the ’:T-suﬁgroups

of G for two saturated formations 9, and %,

Definition 3. ILet ¢ and ¥ ve saturated formations, g is strongly
contained in 9 (written £<<%) provided

(6) If G is any solvable group which has £-subgroup, E, and ¥-sub-
group, F, then some conjugate of E is contained iﬁ F.

We shall be concerned with the problem: Given a saturated formation
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8, find all formations % such that g<<‘?. From the definition, it
is clear that there are always two formations,ﬁ;, which strongly
contain 8, viz., 8, and,g, the formation of all solvable groups,
We comment that the relation << forms a partial ordering of the
collection of all saturated formations., It is a consequence of
the definition that if £<< %, then ¢ is contained in 7.

The two main results of this thesis appear in Chapter V., The
first of these shows that if % is a non~-empty formation, and
¢ = {G|G/F(G) €T} (F(G) is the Fitting subéroup of G), then any
formation % which strongly contains € has essentially the same
structure as ¢ in that there is a non-empty formation Y such that
4 = {G|6/F(G) €}. We then apply this result to find a large |
class of formations which are maximal in the partial ordering << ,
In particular, if‘ni denotes the formation of groups of nilpotent
length at most i, then ‘ni is maximal in the ordering << ., It is
easily shown that for 6ﬂ= %1, the n-subgroups of a group G are
the Carter subgroups of G, so the problem is solved for the Carter
subgroups,

The machinery for proving these results is developed in
- Chapter IV, We begin by developing a characterization of strong
containment which depends only on the two formations g and‘?. This
" characterization depends on the knowledge that if'g is a saturated
formation, then ¢ is a locally defined formation (sée Chapter II),

a result proved by Lubeseder in [10]., In certain cases, we are able



to strengthen our characterization of strong containment so that
it gives a complete description of the minimal local definition
for61 as a necessary condition for strong containment.

In Chapter VI, we present an example which shows that Hypo-
thesis II of our main theorem is not redundant, The formation
which gives the example is R = {G|G/F(G) is an r'-group}. It is
apparent from Theorem 11 that ® 1s not maximal in the partial
ordering <<, In fact, there is an infinite number of formations
which strongly contain Q.

In Chapter III, we give some preliminary results which are
used throughout the paper. In particular, we give a cover-avoidance
characterization of the'?—subgroups of a solvable group, In
Theorem 5, we find the‘?-subgroups of a certain type of semi-direct
product, We also show how these subgroups are embedded in the
product, The remaining results in Chapter III are known, but
their proofs are included for the sake of completeness,

In Chapter II, we give notation along with the results quoted .
from previous papers, Some of the results in this chapter are
proved because we have found no suitable reference to them in the

literature,
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|G|
H<G
HdaG

in
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Chapter II

Notation and Quoted Results

use the following notation:

A finite solvable group

The order of G

H is a subgroup of G (proper if H < G)

H is normal in G

A subset of (proper subset if <)

The Frattini subgroup of G, the intersection of all
maximal subgroups of G

The Fitting subgroup of G, the maximal normal nil-
potent subgroup of G

The inverse image in G of F(G/Fi_i(G))

The automorphism group of G

A field

The field of integers mod p, p & prime

The group ring of G over the field E

Is 2(G) - isomorphic to |

A set of primes

The complementary set of primes

The maximal normal m-subgroup of G
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0“1""’“n(G) - The inverse image in G of oﬂn(G/ome,nn_l(G))

0"(G) - The smallest normal subgroup N of G such that G/N
is a m-group

gy - oo gy,

If H< K, and H< K < G, then K/H is a section of G, K/H is

0

- a g-section if K/H is a m-group., If L < G, then L covers the section
K/H provided (L N K)H = K, and avoids K/Hif KN L< H

If F acts on G (i.e., every element of F induces an automor-
phism of G), and F fixes both H and K, then K/H is an F-invariant
section of G, If F acts irreducibly on K/H, then K/H is an F-composi-

tion factor of G, An F-composition series of G is a series,

G=G,>G > s >G =1,uch that Gi/Gi+1 is an F-composition

factor of G for each i, The F-composition length of G is n, the

length of any F-composition series of G,

If F = G, then K/H is a chief factor of G, and the series,

G = Go > G1 > eee > Gn = 1,is a chief series of G.
If K/H is an F-invariant section of G, then CF(K/H) denotes

the kernel of the representation of F on K/H, (F) denotes

Ck/u
the elements of K/H fixed by every element of F,

If F acts on G, and K/H is an F-invariant section of G which
is also an elementary abelian p-group, then we may look at K/H as

a vector space over Zp, hence also as a Zp(F)-modnle with the action
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(Hk)f = Hkh for £ € F, Hk € K/H.

If M is a right Zp(G)-module, we may form the semi-direct

product GM, where the action of G on M by conjugation is

md = g-img =(m)g ‘ forméeM, g € G,

We shall frequently switch back and forth between additive and
multiplicative notation,

If M and N are right E(G)-modules, then M & N will denote the
direct sum of these modules, and Hom =(6) (M,N) will denote the
collection of all E(G)-linear homomorphisms from M into N.

If H is a second group, and T is a E(G)-module, then the temsor
product M @ _T (sometimes written M @ T) is a E(G x H)-module under

the ca.nonicél action
(m®t)(g x h) = mg @ th

A principal indecomposable E(G)-module is an indecomposable

component of the regular =(G)-module, If M is a completely reducible

E(G)~module, and M = Il Deos @IS is a decomposition of M as a direct
sum of irreducible submodules, Ik’ then for each k we let MI be
k

the direct sum of all copies of Ik which appear in this decomposition

of M, MIk‘is called a primary component of M,
~
The dual E(G)-module to M will be denoted by M, We recall that

M is the collection of all E-linear functionals from M into E, and

that M becomes a right E(G)-module if we let G operate on M so that
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for g in G, and p in ﬁ, ug is the functional defined by
(mdug = (mg™ 1) form € M

If N is a E(G)-submodule of M, we set N-I- = {p € ﬁl (Mu = 0}3 we note
that the following relations hold if we assume M is finitely gener-

ated and identify M with its second dual,

(7) . o =w, b =8, o = (0)

If N, U are 2(G)-submodules of M such that N < U, then U-L c N-L,
(®) whjoke | @, and

(9) Co(U/N) = cG((tflﬁ)).

Furthermore, if Ii and 12 are submodules of M, then

: Ll Renpesg 7 — l l
(10), M=L, @l <=>N=L eIl -,
Suppose H < G, and U is a E(H)-module, For a fixed g in G,
we can define a new &{H)-module U® by looking at U as a E-vector

space and specifying a new action for H,
uehs= u(ghg‘l) for he€ H

The module U® is called the conjugate of U by g.

If F< G, and M is a =(G)-module, then MiF denotes the =(F)-module
obtained from M by restriction to E(F), If U is a E(F)-module, then
U|G is the E(G)-module induced from U, One of the most convenient

ways to define U{G is presented in Green's paper [8],
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Set U[G =T @E(F)E(G), then UIG can be written as a direct
sum of E-subspaces in the following way: ILet 1 = 819859°°* 18, be

a complete set of coset representatives for F in G, Then
u=velevog 0 @V og,

This decomposition does not depend on the choice of coset represen-
tatives. The action of G on U|¥ is characterized by giving the

action of G on each element m ® gi:
(11) (m® gi)g = mfg ® g where g.g = fggj,

Using (11), one can show that U is canonically embedded as a

submodule of U]G]F by the mapping
(12) » A: u—u®l for u € U,
We shall use the following resultss:
(13) ([1], p.8) Let M = I, ® <+ ® I be a decomposition of the
5(G)-module M into a direct sum of irreducible =(G)-submodules,

Let MIk be the primary component of M associated with Ik' If W
is any £(G)-submodule of M isomorphic to I, then Wg M:Lk.

(14) ([#], p.?5) If = is a field of characteristic p, G is a
group, and M is an irreducible E(G)-module, then Op(G) lies in the

kernel of the representation of G on M,
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(15) Let H be a p'-subgroup of G, and let M be the Zp(G)—module
which gives the permutation representation of G on the cosets of H,
1H|G. If M=J, &+ &@J is any decomposition of M into a direct
sum of indecomposable ZP(G)-modules, then each J, is a principal

indecomposable Zp(G)-module.

Proof., If R is the regular ZP(H)-module, then RIG is the regular
Zp(G)-module. Since H is a p'-group, R is completely reducible to
a direct sum of Zp(H)-irreducible submodules, one of which is the
identity Zp(H)—module, I. We have, therefore, a decomposition

R=I®L Thus R|% = I)% & L|%, so because M = I|Y, each J_ is

k
a direct summand of the regular Zp(G)—module.
(16) (3], P. 372) Let G be a group, and J a principal indecomposable
2(G)-module for some field E, Then J has a unique maximal proper
2(G)-submodule which we shall denote by /J .
(17) (ef. [7], Theorem 1) Suppose A is a group of automorphisms of
the group G, and (JA],|G|) = 1. If H/K is an A-invariant section of
G, then CG(A) covers CH/K(A)‘

The next three results are well-known elementary facts that
prove to be quite useful, Their proofs will be included in an appen-
dix,

(18') If N< G, and Tys®ee,T, are sets of primes, then

oﬂi,o'-o,'ﬂn(N) = N n oﬂl,---,ﬂn(G).
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(18) Let G be a group, then Op,’p(G) =N CG(K), where the inter-
section is taken over all p-chief factors, K, of G.
(19) Let G be a group, then F(G) = N op',p(G)’ where the intersec-
tion is taken over all primes p.

We shall give a short summary of the theory of formations which
is found in the papers of Gasch#tz, and Lubeseder ([5],[6], and [10]).

Let A be the collection of all solvable groups,

Definition 4, For each prime p, let ?p be a formation, Let
(o) I ’;p is non-empty, and K is a p-chief factor
b ={cel of G, then G/C4(K) € 7.
(g) If 'jp is empty, then G is a p'-group,

% is a formation which is called the formation locally defined by

the family {":‘D] . In general, a formation,’, is locally defined

if there exists a family, {’}p}, of formations such that 4 is locally
defined by the family {‘}fp}.

Because of (18) and the fact that "}rp is a formation, (2) is
equivalent to the condition:

(a*) Ifa;p is non-empty, then G/Op, ’p(G) S ?p'

The family, {?p}, of formations which locally defines ¥ is
usually not unique, If, however, {"}p} and {?‘p} are two families
of formations which locally define the same formation ¥, then the

family {le?(p = 7p n?'p} also defines 7, Thus there is a unique
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minimal local definition for any locally defined formation ’:7: For
example, the minimal local definition of the formation of all p-groups,
X, is

7—£p = {1}

7—£q= empty if q # p

(20) ([5], p. 302; [6], p. 198) TIf % is locally defined, then 7 is
saturated, |
(21) ([10]) 1If 7T is saturated, thenq is locally defined,

From now on, we shall use the terms saturated and locally defined

interchangeably,

Definition 5, If a; is a formation, and G is a group, then

ng N N where ¥ = {N|N < G, and G/N €71.
NEX

Using this definition, a subgroup, F, of G is an ‘7-subgroup of G if,

and only if, |

(22) Fe%, and

(23) if F< U< G, then F covers U/Up}.

(24) ([5], p. 301) If the formation,agt, is saturated, then every sol-
vable group G has an 4—subgroup. All the ’f-—subgrbups of G are conjugate,
(25) ([5], P. 301) Let ‘1 be a formation, and G a group., Let F be

anr lanant o T such that F < G, Then

(a) If Fis an ‘] -subgroup of G, and F < U < G, then F is an §-subgroup

N

of U,
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(b) If N< G, and F is an F-subgroup of G, then FN/N is an 7-subgroup
of G/N.
(¢) If NG, F1/N is an %-subgroup of G/N, and F is an F-subgroup

of F;, then F is an 4 -subgroup of G,
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Chapter III
Preliminary Results

The first theorem of this chapter is a result similar to
Clifford®s theorem,

Theorem 1, Iet H be a normal p'-subgroup of G, E a field of
characteristic p, and M an indecomposable E(G)-module. Then M| H

is a completely reducible E(H)-module whose irreducible components
form a single class, C, of conjugate E(H)-modules under conjugation
by elements of G, Let L, J be two E(G)-submodules éf M such that
Lc J., Then the distinet E(H)-irreducible components of (J/ L)IH

are precisely the elements of C,

Proof. The complete reducibility of M| q follows directly from the
theorem of complete reducibility., ILet MIH =1, @I _bea
decomposition of M as a direct sum of irreducible =(H)-submodules,
and for each k = 1,¢**,s, let M be the primary component of M| -

ﬁssocia‘ted with T Consider the module Ikg for some g in G,

k‘
The action of H on this module is the same as the action of H on

the conjugate module %gé because of the formula:

-1
(1,8)h = 1, (ghg™ g .
Now I, g dis isomorphic to some I, hence by (13), I,e < M.

Clearly I ;8 L 45 isomorphic to I, so I 58 o € M. Therefore
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k
conjugation,

ME ~ M g=M 40 SO G permutes the primary components of MIH by

Let C:'_,"',Cr be the conjugacy classes of primary components

of M| under the action of G, Set T, = Z ® M. Because M|, is

i
MeECy

the direct sum of its primary components, MIH =T, ®-** T, But
each Ti is a E(G)-submodule of M, so we contradict the indecompos-
ability of M unless r = 1, Let C be the conjugacy class of irreducible
components of M| H*

Obviously, all of the irreducible E(H)-submodules of (J/L)| H
lie in C, Since G is transitive on the elements of C, and J/L is
a E(G)-module (non-zerc), every element of C must appear as a

component of (J /L)IH .

Lemma 1, Let G be solvable, and M be a Zp(C-)-module. M is faithful
if, and only if, M| ) is faithful,

Proof, The lemma follows a fortiori from the statement that if
1<N<G, then 1 < NN F(G)., Now 1 < N, and N is solvable, so
1 < F(N) = Nn F(G), so the lemma holds,

The second theorem in this chapter is the "Frobenius reciprocity
theorem"® for modules, It is one of the main tools used in this
paper. For ordinary representations, the usual reciprocity theorem
may be derived from this isomorphism by no'l;..ing that if u, and 7 are

the characters of two =(G)-modules, M and N, then the scalar product
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(usT) is the E-dimension of Hom -:(G)(M'N)-

Theorem 2. Let G be a group, and H< G, Let M be a =(H)-module,
and N a 2(G)-module, Then Hom E(G)(MIG,N), and Hom E(H)(M’N‘ H) are

"isomorphic as vector spaces over E,

Proof., We define a map 8, from Hom=(G)(H|G,N) into Hom o (4, )

by

8: 1 = 4 o My g4 = O, for 1 € Hom E4:((})(MIG,1\1),

where A is the canonical map defined by (12). @ is clearly well

defined, If m € M, and h € H, then
(mhle(m) = [mh @ 110y g 4 = [m@ 1)BI0|y o 4

= {Em ® 1]T]IM® 1}h= {[m]@J(ﬂ)}h .

In this co:gputation, we have used (11) and the fact that T]lM ®1
is an element of Hom =(H) (M ® 1,N). Both A and T]IM @1 &Te E-linear
maps, so ©(M)isa E(H)-homomorphism from M into NIH . Since restric-
tion is a E-linear operation, it follows that ® is a E-linear map
from Hom =(G) (MIG,N) into Hom = (H) (M, N| H)'
Suppose ®@(N) = 0, Then ’T]IM g1 = 0, so using (11) we have
(m@gIN=((m®1)gy)N ={(m@1)n}gy = 0gy -~ =0,

since 1 is a E(G)-homomorphism, Therefore ® is a 1-1 map,

Let u be an arbitrary element of Hom =(H) (M, N| H)' We set
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’ S
( Z (my @ g, )du* = z (mgJugy » where g, = 1, g,,°*,g_ are a set
! 1-.._.1
of coset representatives for H in G, and [G:H] = s, Since N is

a E(G)-module, p* is a well defined map from MIG into N, If
s

g € G, andv'=2mz ® g, lies inM|G, then

A=1
s s
(vglu* = {Z (m; ® g, )g} pr = {2 mh, ® € (p )}u"
R 1 p=1

S
Z PRy 121“"1 MWrgBy ()
= -
{ E mp)ugj}g

where y is the permutation of the cosets Hg, induced by multiplication
i

(v *2

on the right by g, We have used the fact that y is a E(H)-homomor-
_ phism, as well as equation (11), Because p is E-linear, p* is H-linear,
hence u* lies in Hom ..;(G)(MIG,N)

If m € M, then
(m]o(u*) = (m @ ¥y o 4 = @il = (mu,
therefore @(u*) = u, This shows that ® maps Hom E(G)(MI G,N) onto
Hom (M,NIH), and completes the proof,
We shall begin a discussion of the properties of ’f-subgroups
of solvable groups. It is useful to know the behavior of G?-

(ef, Def, 5) under homomorphisms, so we prove
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Lemma 2, Let dai be a formation, G a group, and H a normal subgroui:
of G, Then

(G/H)gj = GgH/H

Proof. Let F be the inverse image, in G, of (G/H)ey. Then G/F
is isomorphic to (cg/H)/(G/ H)ot , hence G/F lies in %, Therefore,
GrH < F.
since Go < GgH, G/GyH is an element of 7. Furthermore, G/GgH
is isomorphic to (G/H)/(GqH/H), Therefore F/H < GgH/H, so we also
have F < GS(H. This shows that F = G4H, and completes the proof,
The next two theorems give cover-avoidance properties of

';-subgroups. They generalize a remark made by Carter in [2],

Theorem 3. Let ’7 be a formation locally defined by the family

{"}fp}, G be a group, F a subgroup of G which lies in ’}r, and K an

F-composition factor of G, Then
(a) F either covers, or avoids K;
(b) if F covers K, and p||k|, then F/Cp(K) € ’511;);

(¢) if F is an %-subgroup of G, and Vpl |K|, then
(C) F/cy(K) € "}p => F covers K.

Proof, Let K = L/M be the F-composition factor in question,
Statement (a) follows from the fact that F acts irreducibly on K,

and (L N F)M/M is an F-invariant subgroup of K,
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If F covers K, thenL/M = (L n F)M/M. If we look at F as a
set of operators on K, then K is operator isomorphic to L'n F/M N F,
a p-chief factor of F. Therefore the kernel of the representation
of FonLNn F/MN F is CF(K). Because F lies in ’rr, it follows that
F/CF(K) € "}p. This proves (b).

Now suppose F is an ?[—subgroup of G, and K is a p-section of
G such that F/Cp(K) lies in ?p. To show F covers K, it suffices
to show that F covers the larger section FL/M., But by (25a), F
is an ‘f—subgroup of FL, hence it is sufficient to show F = FL/M is
an slement of g since F, by definition, covers any such factor of
FL,

If q # p, then K, as a normal q'-subgroup of I“-, is contained
in oq,('ﬁ). Therefore oq,,q(F)L/M < oq.,q('ﬁ), 50 -F-qu,’q(-f‘) is
isomorphic to a quotient group of FL/Oq,,q(F)L. FL/Oq,’q(F)L is
-isomorphic to F/Oq,'q(F)(F N L), a factor of F/Qq,,q(F). Since
F E':rf, F/0 ' (F) E’f s hence F/O ¥ (f) is also an element of ‘;{1.

Let U = F,; Since F € 7, F/O o(F) € '3‘ , hence U< 0_, (F).
since F/CL(K) € ‘? U < Cp(K), hence K is contained in the center
of UL/M., Therefore UL/M has a normal p-complement, By (18'),
UL/M is contained in Op, ’p(-F-), thus ‘F-‘/()p, ,p(ﬁ) is a factor group
of FL/UL = F/U(F N L). Therefore, 'f/OP, ,p('i"‘-) € 71:' Bacause 7 is
locally defined, F lies in ?'.
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Qur next theorem will‘show that property (C) characterizes
the'g-subgroups of a solvable group G, In order to obtain as weak
an hypothesis as possible, we prove two lemmas, Property (C)
actually applies only to specific F-composition factors of G, so
when we say that property (C) holds for an F-composition series,
G=G,>G

0 1
property for all factors, Gi/Gi+1’ of the series for which the

> eee > Gn = 1, of G, we mean that F satisfies this

hypothesis of property (C) holds,

Lemma 3. Suppose % is a formation locally defined by {ifp}; Fe?,

" and F < G, Let A/B be an F-invariant section of G such that

A > C > B defines a fixed F-composition series of A/B, If property
(C) holds for this series, then property (C) holds for every F-com-

position series of A/B.

Proof, We may assume that a second F-composition series of A/B
exists and is defined by A > D > B where D # C. Then we must have
CD>C>CnN D, so the fact that C and D are F-invariant shows that

A=CD, and B=Cn D, Therefore
(26) A/B= /B x D/B, A/C = D/B, A/D = ¢/B,

where the decomposition is an operator decomposition, and the iso-
morphisms are operator isomorphisms,
Suppose the decomposition (26) is unique, If F/CF(A/D) lies in

‘?p, it follows from (26) that F/CF(C/B) lies in‘qb. Since property
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(C) holds for the series A > C > B, F covers C/B. Therefore
(FNAD>(FNn C)D>CD = A, soF covers A/D, Suppose F/CF(D/B)_
lies in ‘Z}'q, then F/CF(A/C) lies in ']q. By property (C), F covers
A/C, Because of the uniqueness of the decomposition, and the fact
that F N A is not contained in C, either A = (F N A)B, or D = (F n A)B,
In the former case, F covers all of A/B, hence F covers the subgroup
D/B, In the latter case, FN A=Fn D since FN A< D, so
D= (FNn D)B., Therefore, in either case, F covers D/B.

The decomposition (26) is unique if (|A/C|,|C/B|) =1, so we
may assume A/B is an elementary abelian p-group fpr some prime p.
This means that we can look at A/B as a Zp(F)-module. If A/C and
C/B are distinct Zp(F)-modules, then it follows from (13) that the
decomposition is unique. Thus we may assume that D/ B =g (F)C/B'
In this case, it follows from property (C) for A> C> B 1'?,l'mt_ F either

covers, or avoids A/B, Therefore Lemma 3 holds in all cases,

Lemma 4, Assume F € J, H< G, and F < NG(H). If property (C) holds
for a fixed F-composition series of H, then it holds for every F-com- -

position series of H,

Proof, Let H = Ho > H1 > eee > Hn = 1 be the fixed F-composition
series of H for which property (C) holds, We use induction on n,
The lemma is. true if n =1,

Let H=K > K, > vee > K, =1 be a second F-composition series

for H, If = H,, property (C) holds for the series
1
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Ko > Kl > 00 > Kn = 1 by induction,
Suppose K, # Hy, and let i be the smallest integer such that
K, N H = H. Because H < Kl NH_y<H_45 we have H =K nH_,

so that we have the following lattice diagram;

Hi-s

Since H1 is part of an F-composition series for H, F < NG(HI.)" Be-
cause of the isomorphisms indicated in the diagranm,
H1>K10H1>--.>K10H11 H >Hii>-">Hn==lisan
F-composition series for }{1 which has length n-1, By induction,
property (C) holds for this series, Therefore, property (C) holds
for the F-composition series of H/ H) N K, defined by the series
H>H >H NK . By lemma 3, property (C) holds for the F-composi~
tionseriesH>K1>KlnHl>"°>K1n11=H >--->H =1
of H, In particular, property (C) holds, by induction, for any

F-composition series of K Therefore property (C) holds for the

1.
series KO > K1 > eee > Kn =1,
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Theorem &, Let % be a formation locally defined by {7})]. Let G be
a group, F< G, and F € ¥, 1Ir property (C) holds for a fixed
F-composition series G = G0 > G1 S eee > Gn =1 of Gy then F is

an ”f—subgroup of G,

Proof, We use induction on IGI. By Lemma 4, we may assume that
the series G = Go > G1 > eee > Gn = 1 1s a refinement of the chief
series G = Hy > H > eoe >H , > H = 1, Then H 4 =G for some
k. Hm-i is a minimal normal subgroup of G, so we set Ei = Gi/Gk
Our first step is to

for i = 0,1,°++,k, F = FG,/G,, and G = G,.

show that F is an ’f—subgroup of G,
Ifm=1, then G = F = 1, so the result is trivial, If m> 1,

then Hm— < G, and G =G, > 51 > eee > Ek =1 is an F‘-compos:\.tion

1 0
series of G, By induction, to show that F is an“f-subgroup of G,

it is sufficient to verify property (C) for the series

G0>G1>“'>Gkﬁl.

For each i, set K, = Gi/G Since G, < G

i+l +1° k i+l
for i < k, Gk centralizes the section Ki for i < k, Therefore,

, snd K, =G, /G,

Cp(K,) = CR(K, )6, /G, for all i <k, Thus,
F/Cp(K,) = FG, /CR(K, )G = F/CL(K, )(F 0 G).

But F N G, < Cp(K;), so we have

(27) , F/ci.-(ii) = F/Cp(Ky) for 1 < k,
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Suppose Ki is a p-section of G such that F/OF(K:L) Ea}p « By
(27), F/CF(Ki) € qp s so F covers Ki . Therefore,
(F‘Gk n Gi)Gi+1 = (Fn Gi)GkGi+1 = (F n Gi)Gi+1 = Gi « By taking

homomorphic images, and noting that FG, N G:\./Gk =Fn 3_1, we get

(F n Ei) 444 =Gy o Thus F covers K; . Therefore property (c)

holds for the F-composition series G = Gy > 0280,

Now that we know F is an q—subgroup of E, it follows from

=Iof§.

(25¢) that we can complete our proof by showing that F is an

#f-subgroup of FGy .

Suppose Nk < G, We consider the series F‘Gk = DO 2By 3 v ansl,

where Di = FGk N Gi for each i, Suppose Di > Di+1 for some i, Then
Dy/Dy g = (PG N G3)Gy /Gy p 1

This is an operator isomorphism, hence because F is irreducible on

Ki’ we have

(28) Di/D =G

141 = 03/Cy

Therefore the distinct terms of the series, Dy > D, > *** 2D =1,

form an F-composition series for F‘Gk which passes through Gk. Since
F covers FGk/Gk’ and since D; = G, for 1 > k, property (C) holds
for this composition series, By induction, F is an "?-subgroup of

FG, .

Suppose G = FG,, Since Gk is a minimal normal subgroup of G,

F acts irreducibly on Gk. Therefore F either covers, or avoids Gk'
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If F covers G, then F = G, so F is an ?-subgroup of FG, . Suppose F
avoids Gy, and G, (=G_,) is a p-group, Then F’lecmk((}k)':.' F‘/CF(Gk)
cannot lie in ?p since property (C) holds for Gy . Therefore
(FGy )y > G. Since FG,/G, lies in 7, (FG ) = Gye

IfF<U< FGk, then U=F, or U = FGk' The above remarks
show that F covers U/U:; in both cases, Therefore F is an 'rr-subgronp
of F‘Gk, and the proof is complete,

As one application of Theorem 4, we prove

Theorem 5, Let 7 be a formation locally defined by [?p], HeF, and
let I be a finitely generated Zp(H)-module. Let G = HI be the
semi-direct product of I by H where the action of H on I by conjuga-
tion is the canonical action given in Chapter II, Then,

(a) F = HCI(OP'(H?p)) is an'zl-subgroup of G,
(b) As a Zp(H)-module, I= Cx(op'(H'fp)) ® G,

 Proof. Let W= CI(op'(H'i )). Our first task is to show HW lies in
P

7., Suppose q # p, then W is a q'-group, so Oq,’q(F) = Oq,’q(H)W.

Therefore,

F/Og o(F) = /0 , (B),

i lies in 7, F/O i
Since H és s F/ q',q(F) € ';q
Let U = Hy . Then Op,(U) centralizes W, Since H/Op,’p(H) lies
p
in S(p, U< Op' ’p(U). Therefore Op, ’p(UW) = UN, UW is normal in F,

so by (18'), W< 0 (F). Therefore F/Op,’p(F) is isomorphic to

P'sp
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a quotient group of H/U, Since H/U ¢ a;Ip, F/Op, P(F) € 7p. Therefore,
]

F lies in ’J{.

Now let G = G0 > By > eve > i, = 1 be an F-composition series
for G such that G g = I for some {. In order to check property (C),
we need only consider K, = G,/G, , for 1 > {, since F covers G/I.

W centralizes every Ki’ so we have ‘
F/CF(ICi) = B/Cy(K, ).

If 1 > f, and F/Cy(K,) € ‘_-’,fp, then Cy(K;) > U. In particular,
op' (U) centralizes Ki' I is a p-group, so by the covering lemma,
(17), W covers K;. Therefore F covers K., so property (C) holds
> G

for the series G > eee > Gn =1, By Theorem 4, F is an

0 1

"rr-subgroup of G.

We shall prove ‘ﬁhe next assertion by induction on the length
of a Zp(H)-—composition series of I, Since H = G/I, Gg © I. Since
F covers G/Gg, it follows that, as a Zp(H)-module, I=W+ Gy s0
the major difficulty is to show that the sum is direct, If I is
irreducible, one of the two summands must be the zero subspace, so
the theorem is true if n = 1,

Supposé I=Iy2 1,2 ««2I = (0) is a Zp(H)-composition
series for I, and n> 1, In-l is a minimal normal subgroup of G,
and HIn-J./ I, acts on the quotignt module I = I/ I 4 in the same
way that H acts on TI. Therefore G = G/ In_1 is isomorphic to the



2

semi-direct product HI where the action of H by conjugation is the

module action, By induction,

(29) I =07(0,,(0) @ ().

CaSE 1. (0) < og(0,(V)) ¢ T.

Set T/In—i = (G)y. By the covering lemma, (17),
CI(OP,(U))' = WIn_l]In_i. By (29), T N W is a normal subgroup of G
contained in In-l’

IfTNW=(0), then I =T & W, and reverting to multiplicative
notation, we have FN T = 1, Therefore, T is clearly the smallest
normal subgroup of G whose factor group is covered by F, Since Fr
is an ¥-subgroup of G, it follows that T = Gy,

Suppose T N W =~*_In_1. The hypothesis of CASE I states that
Tc I, so the theorem is true, by induction, for the semi-direct

product G, = HT, Therefore, T = CT(OP,(U)) ® T,, where T, = (Gi)?.

NowI , = CT(OP.(U)), and because I is abelian, T, < G. Therefore,
as a ZP(H)-module,

As before,this forces T1 = Ga; since G/Tl = F is the largest possible

factor of G covered by F, Therefore, the theorem holds in CASE I.'

CasE II. (0) = c50,(0)),

By assumption, WC I . Op,(U) is normal in H, so W is normal
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in G, If W= (0), then H is an%-subgroup of G, and I = Gge We
may, therefore, assume that W = In-i‘
Lot I be the dual of I, By (8)

~ 11l ! avile™
=I/T. - » and I = = (I/T ,

-~

In-i

)

Since OP' (U) centralizes I no1? it follows from (9), that Op,(U)
centralizes in-l‘ By the covering lemma, (17), Ci(Op,(U)) covers
I/T L

n-1°
‘ 1
Now Op,(U) < H, so CIﬁLI(Op,(U)) is a Zp(H)-submodnle of I~

1.
By (8),
/\
1/te; L o1t = e L (o_,o))1.
n-1 P n-1 P
Since op,(U) centralizes Cr 1 (op,(u)). it follows from (9), that
‘ n-1
0_,(U) centralizes I/[CI 1 (o ,(U))}L . Thus using the covering
p n=l P
lemma again, we know that W covers the factor I/[CI 1 (o ,(U))Jl .
n-1 P
Bat Cp L (0,,(0) ¢ 1l,s0w=1_, ¢ [cln{-l(op.(u))]l , hence
we must have
I=1[c,l (o_,(u ik
§ In~1( . (o))] :

Therefore C. | (0_,(u)) = (0), so €2(0_,(U)) avoids I.L,, These
In—i P I'Y'p ng-l

statements show that
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I=cyo,(0)erl .

But by (10), this splitting induces a splitting in I,
o [ 18
I=[eglo (M-I

As before, it follows from the fact that F = HIn-l is an
“J-subgroup of G, that Gep = [ci(op.(U))}L . This completes the

proof in all cases,

Remark, This result cannot be extended to the case where I is a
p-group of class 2 because of the following example, Let I be the
quaternion group, I has an automorphism,‘h, of order 3 such that
h acts fixed-point free on I/D(I), and centralizes D(I), Let H
be the cyclic group of order 3 generated by h, and let G = HI,

A Carter subgroup of G is H x D(I), but D(I) has no complement in

I, so no splitting is possible,
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Chapter IV

Strong Containment

In this chapter, we shall characterize strong containment, In
certain cases, we can make our characterization more precise by
giving generating sets for certain of the formations d’fp in the min-
imal local definition of %, The results of this chapter form the

basis for our results in Chapter V,

lemma 5, let € and A be two non-empty saturated formations; let &
be locally defined by {Ep}. Let G be a group of minimal order

satisfying

(P) An {-subgroup of G is not contained in any 7-subgroup
of G, ,

If F is an J-subgroup of G, and E is an -subgroup of F, then

(a) Gey = M is a minimal normal subgroup of G; G is the semi-direct
product of M by F; F acts faithfully and irreducibly on M.

(b) If M is a p-group, then E* = ECM(OP,(Egp)) is an {-subgroup

of G, and 1 < CM(°p'(E8p)) < M.

Proof, If G €%, thenG=F -cont‘ains every {-subgroup of G, hence
G does not satisfy (P). Therefore G ¢ J; in particular, G is not
the identity, Iet M # 1 be a minimal normal subgroup of G. By
(25b), FM/M is an %-subgroup of G/M. Because of the minimality

of |G| with respect to the property (F), some {-subgroup of G/M is
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contained in FM/M, Since all {-subgroups of G/M are conjugate, we
can find an E—subgroup, f, of G such that EM < FM. , as an
f-subgroup of G, is also an {-subgroup of FM., Because G satisfies
(P), no conjugate of E under FM can be contained in F., Therefore
FM < G, and satisfies (P), so G = FM,

G/M 1lies in %, but G does not lie in %, so Go =M., Since
FNMis a normal subgroup of G, properly contained in M, FN M = 1,
so G is the semi-direct _product of M by F. Since M was arbitrary to
begin with, and we showed M = GoJ s M is the unique minimal normal
subgroup of G, Therefore F acts faithfully and irreducibly on M,
This proves (a).

G/M is isomorphic to F, so EM/M is an {-subgroup of G/M, By
(25¢), an #-subgroup of EM is also an {-subgroup of G, By Theorem 5,
E* = ECM(OP'(ESP)) is an {-subgroup of EM, Since E* is not contained

inF, 1 < CM(OP.(Eg )) <M,
P

Before stating the characterization, we introduce some notation,

Definition 6, If ¢ and Vfrare two saturated formations, and (_0, is |
locally defined by {gp}, set |

(a) n(l) = {p Ep is non-empty}. w(l) is called the characteristic
of &,

(b) If p € m(d), set
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‘ H has a faithful irreducible Z (H)-modula, M, such
8, =(H €% | that if E is an {-subgroup of H, then
1< CM(op'(EEp ) < M,

(¢) If p e n(l), set

o =(i € g _|There is at least one faithful irreducible Z (H)-module,
P P M, such that 1 < C'M(O '(Eg )) < M,

Theorem 6, Suppose ¢ and % are two saturated formations locally

defined by {8p] and {7p} respectively. Then

T <= 8, S ‘?p for each p € n(f).

Proof, Suppose §p e ‘,’rfp for each p € m({), and ¢ is not strongly

contained in a.:r’. Then the class of groups satisfying properﬁy (P)

is non-empty, so we choose G to be an element of minimal order in
this class, By lLemma 5, if G.y is a p-group, then p divides the
order of an {-subgroup of G, hence p € m(!), By lemma 5, if F
is an ‘Sf-subgroup of G, then F lies in @p. Therefore, F is an
element of ’Jp.

Since G? is the unique minimal normal subgroup of G,
G? =0

(G). Therefore F = G/Gq=G/0_, (G) lies inP . If

P'sp P'sP
q # py then Gg < Oq,(G), 50 Oq, ’q(G) = quq,,q(F). Therefore,
G/o O4%,q (G) = F/o )

Since F € %, it follows that G/Oq, q(G) € ?q. By (a'), G lies in
9
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4, a contradiction to the fact that Gp} > 1, Therefore 8« ?,
Suppose f<<7, p € n(f), and F € 8, Let M be the faithful

irreducible Zp( F)-module mentioned in the definition of @p. Set

G = FM, where the action of F on M by conjugation is the module

action, By Theorem 5, an ¥-subgroup of G is F* = FcM(op,(F‘?- ),
P

hence G = F*M, Iet E be an {-subgroup of F, Since EM/M is an
{-subgroup of G/M, it follows from (25¢) and Theorem 5, that
E*¥ = ECM(OP, (Ee )) is an {-subgroup of G, E* does not avoid M,
and because 8<2VJ(, E* is contained in some ";’-subgroup of G, hence
F¥ does not avoid M, Since 0, (F? Y aPF, CM(OP,(F,,J )) is normal
p p

in G, hence F* = G,

Since G is an element of 7,and F acts faithfully on the
p-chief factor, M, of G, we have F =~ G/ CG(M) € ‘Sfp. Therefore
8, € Tpe

Because of this characterization, if ¢ <<, and p € (¢,
then Qp c ?p for any 7p which lies in some local definition, This
leads naturally to the question: Suppose {’;fp} is the unique minimal
local definition for 4. If p € n(f), is ”’ip the smallest formation
generated by the set @p? The answer to this question is yes, pro-
vided ep is non-empty for at least two primes, We have not been
able to relax the hypothesis on the Bp's. In the next few lemmas,
we shall investigate properties of the @p's and ep's as a prelude

to giving a partial answer to this question,
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Lomma 6, Let £ and 7 be non-empty saturated formations with loecal
definitions {E‘,] and {%) respectively. Suppose £ << 7, and G is
an element of '; with E-subgroup, E,

(a) Suppose G € By G lies in eq if, and only if, Oq,(Eg Y 4,
q
(b) If qc€ 'rr(E), Oq(G) = 1, and the permutation representation,

(& )lG, is faithful, then G lies in <@q> , the smallest for-
Tt

mation generated by the set & qQ°
(¢) Let M be a faithful irreducible Zp(H)-—module. If G = HM, and

10 (E )|G is faithful for some q in n(ﬂ) - {p}, then G € Qq'
q'
q
(d) For each r,s in n(f), i e <§ >

Proof, Suppose G € @q. Then G has a faithful irreducible Zq(G)-mod-—

ule, I, such that 1 < CI(oq'(EE )) <I. IfJ is any such module,
q
J=0C.(0 ,(E, )) if, and only if, 0 ,(Ep ) = 1 since J is faithful,
CAN q Eq
This proves (a).

let G be a group satisfying the hypothesis of (b), Let T be

the Zq(G)-module which gives the representation 10 ‘ (Eg )|G. By (15),
L
q
we can write T as a direct sum of principal indecomposable zq(G)-mai;ﬂss,
= Ti D ece Q Ts. )

For each k = 1,¢¢¢,8, it follows from (16) that T, has a unique
maximal proper Zq(G)-submod.ulo, JTk . We set J k/./'— "
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Since Oq(G) = 1, F(G) is a normal q'-subgroup of G, hence by
Theorem 1, the distinct irreducible components of Jle(G) are
exactly the same as the distinct irreducible components of TkIF(G)'
Therefore, since T is falthful, it follows that if J = J1 D e @ Js’
then JIF(G) is faithful, By Lemma 1, J is a faithful Zq(G)—module.

We now apply the Frobenius reciprocity theorem for modules, For

each k = 1,**+,53,
(0) ¢ Ho (T,J,) = Ho (1,0 ], )
mzq(c;) k “’zq(oq.(an)) Jelo q.(an)

Therefore 1 < C; (-OQ'(EQ )) < Ji» for each k,

k q
Set G, = G/C;(J,). Then E = EC(J,)/Cs(J,) is an f -subgroup of
G.. By Lemma 2, (Ek)ﬁq = EﬂqCG(Jk)/CG(Jk)' Therefore Oq'“Ek)eq) =

Since G lies in aﬁt, q € m(®), and Jy is a faithful irreducible
Zq(Gk)-module, G, lies in @q for each k, Therefore G = G/E CG(Jk)
lies in <@q> s the smallest formation generated by the set §q. This
proves (b). _

The proof of (¢) is essentially the same as the proof of (b).
Let G = HM be the group mentioned in the hypothesis of (c), ILet T

be the Zq(G)—module which gives the faithful representation 1

&, )"
-oq, qu)
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Once again, T has a decomposition into a direct sum, T = T1 B e B Ts’
of principal indecomposable Zq(G)—modules. Because of faithfulness
it follows that M is non-trivial on some Tk’ say T1. Since M is
minimal normal in G, M must act faithfully on Ty. Since M is a
q'-group, it follows from Theorem 1, that if J = Tj-/.\/T_1 s then J |M

is faithful, But M is the unique minimal normal subgroup of G,

and by (14), OP(H) =1, so F(G) = M., By Lemma 1, J is a faithful

irreducible Zq(G)-—module. By Frobenius reciprocity,
< < J,
1 CJ(oq'(Eﬂq»— J

Therefore, the fact that q € m(l) says that G is, by definition, an
element of r_ﬁq. This proves (c).

~ Part (d) is the only statement in Lemma 6 which requires the
assumption 9<<”}. Suppose H € Gr, E is an 9-subgrou1$ of H, and
M is a faithful irreducible Zr(H)-module such that 1 < CM(or'(EE )) <M,

r
Set G = HM. By Theorem 5, F = HCy(0,,(Hy )) 1s an J-subgroup of G,
r ¥

and since E = EM/M is an {-subgroup of G/M, E* = ECM(Or,(Ee )) is
s of

an f_‘-subgroup of G, Since ﬂ<<’}, F cannot avoid M, hence F = G
is an element of ”}.

Let N be the intersectign of all the conjugates of Os,(E*es) in
G. Then NG, and NN M< E*n M = C\y(0,,(Eg )) <M. Therefore

NN M=1, This shows that 1 (e, )IGIM is faithful, Because
s! :
[} -]
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M = F(G), it follows from Lemma 1 that 1) (o )]G is faithful,
]
s Qs
By part (c), G € 3, for s € n(f)- {r}, Therefore H= G/M is an

element of <§S>' , for s € m()-{r}. Since 0. C 8., it follows
that 6, C <<I>s> for each s in w({). This proves (d).

The next lemma has an elegant proof. This proof was told to
me by Dr, E., C., Dade, and it shortens this part of the original

proof of the next theorem considerably.

Lemma 7. Let A, B be two groups and assume Z(A) = 1, If M is a
faithful Zp(A)-module, and T is a faithful Zp(B)-modnle, then M® T
is a faithful ZP(A x B)-module,

Proof, If V is a vector space over Zp, we let GL(V) denote the
general linear group on V. Then A X B < GL(M) x GL(T) = C, so we
examine the kernei, K, of the representation of Con M® T. IlLet
mys®e®m, be a Zp—basis for M, and tl,---,ts be a Zp-basis for T, |
Then {m; ® tjllg i<r,1<j<s}isa Zp—basis for M® T, Suppose

fxg€k, and

mif = Z Py for each i

tjg = Z ngtﬂ ’ for each jJ,.
Then my @ t, = my ® t,(f x &) = ) @ym) ® () vytg)e So
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mi® t’j = ZwikyjﬂkatX’ hence we have
0 if (i,3) # (k,4)

PkY38 =
1 4if (4,3) = (k,X)

Therefore mif = om, for each i, and tjg = cp-lt 3 for each jJ,

Suppose a x b € (A x B) N K, Since Z(A) = 1, and our results
show that K < Z(GL(M)) x Z(GL(T)), we must have a = 1, But this
means that the comstant, ¢, is the identity, so b = 1, Therefore _
A X B acts faithfully on M® T,

Lemma 8, Suppose A € g, ~ Bp, Be€ ep, and either Z(A), or Z(B) is
the identity, Then A X B € <6p> s the smallest formation generated

by the set 6_,
¥ P

Proof. Iet E be an e-subgroup of A, and E an fmsubgroup of B, Since
A€ @ - ep, it follows from Lemma 6a that O '(E8 ) =1, But E lies

in ¢, so E/O (E) is an element of 8 » consequently Eg <0 p(E).

Therefore E is a p-group, Since B€ 6_, 0_,(E,) > 1,
Y p’ p' &

Now E x ¥ is an {'-subgroup of A x B, We wish to examine

OP'((E‘ X ﬁ)gp). Since(E X'E)/(Egp X 'Eep) € Ep,r (E x 'E‘)e is a normal

subgroup of E x E contained in EE X 'EE « We define a subgroup, W,

of Bp bys: W={ecEyj|Jt e (ExE), 31 t =dxe, and d € E, ].
‘gp E‘p | E'p ’ 8p



-39~

In other words, W is just the collection of all elements of E

2

which appear as components of elements of (E x E) g W is clearly
P
a subgroup of E’e , and since (E X 'E‘)é, is normal in E x ¥, W is
P p
normal in E. By construction, (E x ﬁ)e < E x Wy hence
p
W =E &)/ (E x W)1lies in gp. Therefore W = 'ﬁg i
p
Now if e is any element of Op,(ﬁ'g ), then there is an element
P , o
d in Eg , such that t =dxe lies in (E x ﬁ)g . Bt Ep is a
P P p
p-group, hence by taking an appropriate power of t, we see that e
lies in (E x iﬁg . Therefors,
P

(30) 0 ,(Bp)<0 (ExE)p)<0 (E; xEp) =0 (),
p E'P p £'p Py é’p P Qp

By assumption, A has a faithful irreducible Zp(A)-modula, M,
and B has a faithful irreducible Zp(B)-module, T, such that
cT(op,(’E’e )) <T. By Lemma 7, M@ T is a faithful Zp(A x B)-module,
Y
Since M ® T]B is isomorphic to a multiple of T, if we let U

‘be any ZP(A x B)-composition factor of M @ T, then U] g is also a

multiple of T, so because of (30) we have
(31) 1< Cy0_,(Ey )) = Cyl0,((E x By )) < U,
U p ?p, v p! £’p

for each U,
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Let G =(A xB)/C, (U), then E = (E x E)chB(U)/chB(U) is an

{ —subgroup of G, By Lerma 2, 'égp = (E x 'E)QpchB(U)/chB(U), and
by (31), 0_,((E x 'Ef)g ) does not centralize U, hence 0 ,(ﬁe )y > 1,
E P A
Since 1 < CU(OP,((E X ﬁ)g )), and G is an element of ”;, it follows
p

from Lemma 6a J‘c,hat G lies in 9p.

Let V be the direct sum of all Zp(A X B)-composition factors
occurring in a composition series of M®T. By (14), F(A x B) = F(A) x F(B)
is a p'-group, so the fact that M® T is faithful implies v'F(A x B)
is faithful, By lemma 1, V is a faithful completely reducible

ZP(A X B)-module, Therefore(A xB) /% CAxB(U) lies in <ep> s where

the intersection is taken over the irreducible components of V. .

Since V is faithful this intersection is the identity, hence

axBe(e).

Corollary 1, If €<<q, and there is an element B in Gp such that
Z(B) = 1, then <¢>p> c <<15q>for each q in m({).

Proof, By lemma 8, if A € §p - Bp, then A x B € (9p> . Therefore
A€ <9p> s SO <§p> = <9P> . By Lemma 6d, if q € 'n(g), then
h : .
op € (3g) » Bence (&) € <§q>
Theorem 7. Suppose 9<< 'JI, and 6 x Gr are non-empty for two primes

psr in the characteristic of (_'. let ('Srq} be the unique minimal local
definition of %. Then
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”]q = <§q> for each q in n(f).
Proof, We define a new formation,?j.‘ s locally by setting

<¢(§ = v;;q for q € m(f)
(32) o
”fq= “a for q € m(f)*

Since E’ <<T7[, "‘;fq c ‘_;fq for each q, by Theorem 6, Therefore<Z C 7.

Let E’S be the set specified in Definition 6 for the formation
7. Since §c %, T ce ¢ :j‘s for each s in n(¢), Therefore
§ <<, by Theorem 6,

Suppose "f c ’}', If G is an element of minimal order in 7- ’?,
then G is a semi-direct product, G = M, where ¥ is an?—subgroup of
G, and acts faithfully and irreducibly on the elementary abelian
t-group M, Since G lies in F-F, Fx G/CG(M) lies in 71:. ot A
For t in m({ )" this contradicts the definition of 5}1, hence t € n(f).

since £ <<%, ¥, as an F-subgroup of G, must contain some
ﬂ-subgroup, E, of G, Thus for any prime q, the permutat;l.on represen-
tation 10q'(E€ )[G is faithful, By Lemma 6c, G lies in §_ for each

q in n(€) - {t].

\ By lemma 6d, Gq = as for each g,s in m(f), hence if G € Qq for
some q in m({) - {t}, G € :ft’ Suppose, therefore, that G € §q - eq
for each q in w(f) - {t}. One of the primes p,r is unequal to t, .

say p. Then G is an element of &, - Gp such that Z(G) = 1, Since
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ep is non-empty there is a group H in ep, so by Lemma 8, G x H € <ep> "
By Lemma 6d, G x H € 7 4» hence in each case ¥, as a factor group of
G, must lie in 'Et, a contradiction,
Therefore ?‘J; =7, Since {%f‘q} forms a local definition for 7, we
have éq = "}q e ;}Jq for q € w({), so the proof of Theorem 7 is complete;
Because we couid not relax the hypothesis on thé Bp's, we thought

it appropriate to include

Theorem 8, Suppose 8<<'1' s and p € 'rr(g). Bp is empty if, and only
if, for each element F of ?, an ﬂ—subgroup, E, of F either covers,

or avoids each p-chief factor of F,

Proof. Suppose an f’ -subgroup of F either covers or avoids each
p-chief factor of F for every F inJ, Iet F € 3 and let E be an
§ -subgroup of F. Let M be a faithful irreducible Zp(F)-module such

that CM(OP,(ECP)) > 1, By Theorem 5, and the fact that {<<7,
= FCM(Op'(Fq )) is an J-subgroup of FM, acts irreducibly on M, and
P

does not avoid M. Therefore F* =FM; M is a p-chief factor of G= FM
which is not avoided by the f -subgroup, E* = ECM(Op'(Eﬂp))’ of G,
Therefore M= CM(O (Ef‘ )), so SP is empty.
Suppose ep is empty, Fe ”J, and E is an e-subgroup oi‘ F which
does not avoid the p-chief factor K = L/N of F, let F = F/CF(K).
Our first assertion is that the semi-direct product FK lies in
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4 (the action of F on K is the action induced by the action of F on
K). By Theorem 5, F* = FCK(OP'@“;( }) is an 7. -spbgroup of FK. There-
fore F* acts irreducibly on K, and F*/ Cf,..(K) ~TF, Since F € %,

F e '¥p by definition, By Theorem 3, T* covers K, hence FK lies in 7.

E= ‘ECF(K)/CF(K) is an {-subgroup of F. By lemma 2,
E{,p = Ep CF(K)/CF(K). Because Op,,p(Eg ) = Eg » it follows that

Opo(Egp) = Op.(Egp)CF(K)/CF(K). Therefore CK(OP.(Egp)) = CK(Op'(E£’ 1%
op'(EQ ) centralizes every p-section of E, hence Op,(E 2 ) centralizes
(L n E)N/N, a non-identity subgroup of K. Therefore,

1< CK(Op,(Eep)) <K
Thus F lies in @P. ep is empty, so it follows from Lemma 6 that

'-E.Q is a p-group, If U is any E-composition factor of K, then

- P — —
Ef’ centralizes U since Ef‘ <0 (E). Upon taking inverse images in

E, we see that Cy(U) > Eg , so that E/CL(U) lies in Pp. By Theorem 3,

E covers U, hence E also covers all of K,
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Chapter V

Structure Theorems

Throughout this chapter we shall make the followlng assumptions:
Hypothesis I, § and ¥ are saturated formations such that
(a) Nl <<Ts |
(b) there is a non-empty formation, T, such that {= {G €} |a/F(G) €T3.
Our first theorem say that the structure of 7 is essentially the
same as the structure ofg in that we can show the existence of a
formation, U, such that 7= {a €} ]c/F(c) €V},

We first prove two lemmas,

Lemma 9. ILet ‘] be a non-empty formation, ILet Y be the formation
Jocally defined by setting }JP =T for each p. Let {= {G ¢f |G/F(G) T}

Then B=2]-

Proof. Suppose G €. Because 0,0 (G) 2 F(8), G/F(G) € T implies
. 9
that, for each p, G/Op, P(G) lies in T, By (o'), G lies in J.
b}
Suppose G € J, Then, for each p, 6/0,, (@) € T. since T is
]

a formation, and F(G) =N 0, (G), G/F(G) lies in T. Therefore
P ]
cel, sof=4.

Lemma 10, Suﬁpose 8, i satisfy Hypothesis I,

(a) If G is a group with {-subgroup, E, and E €, then E = G,
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(b) If {"qu} is any local definition for 7, and G is an element of |
such that Oq(G) = 1, then G lies in ”Iq'

Proof. We prove (a) by induction on the nilpotent length of G, If
G is nilpotent, there is nothing to prove. Since E lies in CT,
EF(G) lies inf, Since E is an {-subgroup of G, E covers U/Up for
any subgroup, U, of G which contains E, Therefore E > F(G), Set
G = G/F(G), then E = E/F(G) is an {-subgroup of G. By induction,
E= 5, hence E = G,

Let {‘;fq} be any local definition for %, Suppose G €T, and
OP(G) = 1, let M be the regular Zp(G)-module, and form G, = GM,
Since G lies in 7T, G1 lies in e. It is a2 simple consequence of
strong containment that { ¢, hence G, €7. Since 0,(¢) = 1, and

G acts faithfully on My, M = 0p (Gi)' Therefore G1/M € ';‘p. Since

P
G = G1/M’ G lies in d}p. This proves (b),

Theorem 9. Suppose { and ’;f satisfy Hypothesis I, Then there is a
formation, {/, céntaining T ,such that 7!—': {¢ €f]a/F(G) 11,

Proof, If (, = ’I, the formation ‘T satisfies the requirements of the
theorem, Assume E c 7. By Lemma 9, we know that the family,

{QP| f'p =T for each p}y of formations is a local definition for 2.
We shali use this family for the local definition of 9 throughout
the remainder of the proof, Let {7q] be the unique minimal local
definition of 4. A second application of lermma 9 says that we need
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only show "}r = ‘;ts for each pair of primes, r,s. In view of Theorem
7 and Corollary 1, we begin by examining the set 9s for various
primes s, Since ﬂ € £ 5 ‘n(ﬂ) contains all primes, so Gs and és

are defined for each s,

Let G be an element of minimal order in ?- 8. By minimality,
if N is any normal non-identity subgroup of G, then G/N lies in £.
Therefore Ge is the unique minimal normal non-identity subgroup
of G, If E is an e-subgroup of G, then EGp =G, and EN Gg =1,
Furthermore, E acts falthfully and irreducibly on Gg . We set
M = Gp , and note that M is an elementary abelian p-group for some
‘prime p,

Since G is not in £ . E cannot lie in 7. Therefore F(E) > Eq> 1,
But it follows from (14) that F(E) is a p'-group, so for some prime
r # p, Eq ﬁas a non-identity normal Sylow r-subgroup, R, If s #r,
then

Os-(Egs) = Os.(E‘.r) >R>1,

Because M is the unique minimal normal subgroup of G, and EN M = 1,

1 (e I is faithful for each s. By Lemma 6, G lies in 0  for
s! '
S

each prime s # r,p. Since E is faithful and irreducible on M,
Z(G) = 1,
We now choose a prime s # r,p. Then G € 6,» so there exists
a faithful irreducible zs(G)-modnlo, J, such that'l < °J(°s'(Eg;)) < J,
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Set Gy = GJ. Since E is isomorphic to an e--subgroup 6f"GI/J, it
follows from (25c) and Theorem 5 that E* = ECJ(OS,(Ee }) ‘is an
s

E-subgroup of Gl' An 'Jt—subgroup of Gl covers G1/J since G € 7;

it cannot avoid J because 8<< 7. Therefore Gy lies in ?‘. ' Because
E is a quotient group of E* which does not 1ie in T, E* cannot lie
in ‘T, hence

1< (BN = (E*)ep < E;TCJ(OS',(Egs)).

(E*)rr is a p'-group because Eoq is a subgroup of the p'-group, F(E),
: G
and s # p. 1(E*)’I" 1 is faithful since J is the unique minimal

normal subgroup of G, and (E*)"l’” J< CJ(OS'(EE )) < Jd., It follows
S

from parts (a) and (c¢) of Lemma 6 that G € Bp. By constructiop, ‘
Z(Gi) = '1, »hance we have established
(33) If s # r, then there is a group, X, in 6, such that 2(X) = 1,
We now apply the results of Chapter IV. m(l) contains all

primes, so it follows from Theorem 7, and (33) that qs = <§s> for
each prime s, By Corollary 1, we have '

";fs--”}fq for syq in r!'
(34) |

qs =3 % for each s,
For & # r, we set ‘;ls =, The final step in the proof will be to
show - E'U.

By part (d) of Lemma 6, 0. S 1s for each s, so0 0 EU. Suppose



H € Er_ - Gr, and E is an e-subgroup of H, Then Or,(Ear) =1, so
Ecr = E, is an r-group,

Suppose Es = 1, then E lies in "F. By Lemma 10, E = ﬁ, and
if s is any prime not dividing r|H|, OB(H) =1, so He€ 45 =7,

Suppose Eq > 1. By (14), Or(H) =1, s0 1 is faithful,

l H
Eq
Since H € I H also lies in 4}!. Thus if s is a prime which does
not divide |H|, it follows from part (b) of Lemma 6 that H € <§s> "

Therefore.
s,clct =(s).
since U=7_ for each s, Lemma 9 says that F= {6 €§|a/F(c) V1.
The fact that ‘U contains ‘T is a consequence of part (b) of Lemma 10,
We are interested in finding formations which are maximal in
the partial ordering <<, Since f< 1 implies g c 7, we shall
assume [ 7, as well as Hypothesis I, Since {={c GX la/F(a) €T3,
" we shall fix our local definition for { by setting Ep =" for each
p. We shall assume that {7p} is the minimal local definition for 7,
By the proof of- Theorem 9, there is a foma.tion,‘U s containing T,
such that ’IP = oU for each p, Since ec ";, we must have ‘Tc U.
Before stating our main theorem, we prove several lemmas, The
proof of Lemma 12 contains the essential constructions used in the

proof of our main theorem,

Iemma 11, Iet G be a group, and 1 < H < G, Assume that the permu-~
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tation representation, 1HI G, is faithful, If M is the ZP(G)-modulo

which gives 1 IG, set U= N CM(H)g. Then U is a Z_(G)-submodule
e geG p

of M, and M/U is a faithful ZP(G)-module.

Proof, We can choose the cosets of H in G to be a Zp—basis for M,
i, 0.y M= ZP-H @ Zp-ng D eee @ Zp-HgS, where s = [G:H], and the oper-

ation of G on M is by right multiplication,

N (Hg) = ( U Hg)t
gGGCM CM geG
In other words, if N is the normal closure of H in G, then U = CM(N)'

For each g in G, CM(H)g = CM(Hg), hence U

Since N< G, U is a Zp(G)-submodule of M,

For 1 = 1,°°*,m, let O;L denote one of the orbits of the cosets
H, ng,u.,Hgs under action by N, Since N < G, G permutes these
orbits transitively, thus all orbits have the same number of’ elements,
The number of elements in any orbit is [N:H], and since iHlG is
faithful, H cannot be normal in N, so [N:H] > 3, For each i, we

set O = {Hg, s+ ,He, } where r = [N:H].
r

Let u, = 2 Hgik’ for i =1,***,m, Our first assertion is that

k=1
Ugyrecyu, form a Zp—basis for CM(N). The elements u,,*¢+,u are

clearly linearly independent, and since Oi is an orbit of N, the
ui's satisfy un = u, for each n in N, Therefore Uyyeee,u Span a
subspace of CM(N).
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m o r
Suppose w = Z Zaingik lies in CM(N). Then
i=1 k=1

n r
Z 2 log Heyy = oy Hegyn} = 0
3=1 k=1

for each n in N, Now N acts as a transitive permutation group on
each orbit, hence for each i, and each k,j such that 1 < i < m, and

1 <kyj <r, there is an element n

ikj of N such that

Hgy ) Miycy = Hey 4o
If we use this relation in the sum above, as well as the fact that

n, 3k permutes the cosets of 0 s it follows that, for each i,

%31 T %2

= ese = (¥

ir =@

- 4
m

Thus W = E @;u,, so the u, span CM(N). Therefore, a Zp-basis for

i=1
M/U is the collection of cosets:

U+ Hgii =U+H U+ I-Ig12,°”,U + Hgl,r-l

Y By » U+ Hepys™*yU + Hep oy
(35) . .
ﬁ"'Hgmi ) U+Hgm2’.“’U+Hgm,r-1

Suppose x lies in the kernel of the representation of G on

M/U, Then, for 1<i<m, and 1< j<r - 1, we have
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m
Hg; yx - Hey gy = Xakuk
k=1

where the @) are spitably chosen elements of Zp. Since Hgijx is a coﬁet,
and each uk‘is a sum of at least three distinct cosets, we must have
each o = 0. Since x permutes the orbits of N, it follows from the
fact that x fixes Hgii that x fixes each orbit, C&f Therefore

r-1

Beyxo= (o - ) gy )x = Hey

k=1

so x lies in the kernel of the representation of G on the cosets of H,

Therefore x = 1, hence M/U is faithful,

lemma 12, Suppose f, ? satisfy Hypothesis I, ﬁ Cf?, and there is an
element, H, in UNf -°T such that op(n) =1, Then

Y= {6 €7 |F(G) is a p-group].

Proof., Let G be an element of ”] such that F(G) is a p-group. Let
E be an g—subgroup of G, and assume Opv(EqD > 1, Since F(G) is a

p-group, 0_,(G) = 1, hence 1 ]G is faithful, let M be the
P °p| (Eq—)

ZP(G)-module which gives the permutation representation on the cosets

of 0 ,(E ); let U= n CM(OP,(E,r)g). By Lemma 11, the Z (G)-module,

geG
M = M/U, is faithful,
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Set X = GM,,then F(X) = F(G)M‘l,so X/F(X) = G/F(G)., Since G lies
in "I, x/F(x) €U, hence X lies in ?. By (25c) and Theorem 5,
E* = ECM1(OP,(E,})) is an e-subgroup of X, But CM(op'(E'F)) 2 U, hence

CMl(op' (E ) )=CM( OI‘" (ET) )/U., let T be the intersection of all con-

jugates of E* in X, Since E* N M, = cMI(op,(ET)), it follows that
TAM = n (0_,(EB) =1,
. geX ch B

But if K< X, and KN M; =1, then K < Cx(Mi). 'cx(Ml) = CG(Ml)Mi,
so the fact that G is faithful on I-I1 says that Ml is self—cer_itra-
1lizing in X, consequently, K = 1, Therefore T =1, so 1E,..|X is
faithful, It is clear, now, that lp |¥ is also faithful, so if
t is any prime which does not divide the order of X, then
X € <§ t} = '}t ='U, by Lemma 6. Therefore G, as a factor group
of X, also lies in 1),

~We may now assume Op,(E.r) =1, so E, is a p-group, It is ti:{le
to use H, If R = I:I. D e D It is a decomposition of the regular
Zp(H)-module into its principal indecomposable constituents, we
set Ky = If/ﬁf; for f= 1,+¢¢,t, Since R is faithful, and F(H) is
a p'-group, it follows from Theorem 1 and Lemma 1 that R* = K1 D oeed Kt.
is faithful, Since H does not lie in "I’, it follows that for some
!y B = B/Cy(Kg) does not 1ie in T, Let K = Ky, then B is an element
of UNE - 7 which has X as a faithful irreducible Zp( B)-module,
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Let U be the regular zp(G)'-moduJ.e, and set W= (B x G)(K ® U),
where the action of B x G on K @ U by conjugation is the canonical
action given in Chapter IT, To show G € 1), it is sufficient to
show W € U, since G is a factor group of W.

By (14), F(B) is a p'-group, and by assumption, F(G) is a
p-group, Therefore if N is the kernel of the representation of
F(BX G) on K® U, then N=Nn F(B) x NN F(G). Since B and G
act faithfully on K@ U, K@ vl F(BXG) is faithful, By Lemma 1,
K® U is a faithful ZP(B X G)-mc;dule. Therefore Op,(W) =1, so
F(W) = F(G)(K ® U)., Since W/F(W) = B x G/F(G), W/F(W) €V, sow
lies in ”;t.

An £ -subgroup of B X G is B X E, so by (25¢) and Theorem 5,
E* = (B x E)C

K®U
Be Unf -7, 1< By < F(B), so By is a p'-group, By assumption

(Op,((B X E}y) is an {-subgroup of W, Since

En is a p-group., Let V be the collection of elements of B, which
appear as components of elements of (B x E)y, Since (B x E)y < B x E, -
V 4 B, and it is clear that (B x E)"T < V X E, Therefore

B/V =(B XE)AV X E)lies in 7, hence V = By. If v €V, then there is

an element u in E such that v X u € (B x El., Since Byis a
p*-group, and E,ris a p-group, Vv is equal to a power of v X ﬁ. There-

fore

(36) By = 0_,((B x Elyp).
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Now K ® U| Ber is a multiple of K| B, 5° it follows from Theorem 1 that
Cx ® U(Br) =1, By (36), Bx E is an g—subgroup of W,

Let t be a prime which does not divide |W|. The fact that

W : . W ” '
1BXE' is faithful implies that 1(BxE)¢r| is faithful, so by part (b)
of Lemma 6, W is an element of { & t} = 'It =7U. Therefore G lies in U
in every case, so Lemma 12 has been proven, L '

Because of the preceeding lemma, we give

Definition 7, Set M = {pl'Ung -Tcontains a group, H, with OP(H) =1},

We call a prime, p, special if p € 7', .

lemma 13, If 2, 'I satisfy Hypothesis I, and ﬁc '}r, then there is at

most one special prime,

Proof, Let G be an element of minimal order in 7-f . Then G is the

semi-direct product, EM, whexfe E is an g-subgroup of Gy, and M is the
unique minimal normal subgroup of G, |

Since E acts faithfully and irreducibly on M, M =F(G). -By Lemma
10, E is not an element of ’r, and since G € 7, G/F(G) lies in ‘U, hence
ge UnC-7T.

Since Qr(E) n OS(E) = 1 for two distinct primes r,s, E/Ot(E)
can lie in T for at most one prime t, If s # t, then E/OS(E) € "Unf il

hence M' < {tl.
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Remark, If general, we cannot control the cholce of G enough to be
certain that there are no special primes, This is the basis for the

example in Chapter VI, and the reason behind

Hypothesis IT, let G = EM be a fixed element of minimal order in

74-f. If ris any prime such that E/Or(E) lies in ‘T, we assume that

’?r' is not contained in rr‘ (Such a prime does not necessarily exist,)

Theorem 10, Suppose £’ and ? satisfy Hypotheses I and II, If gc: ‘_-7,

then ¥ = {, the collection of all solvable groups,

Proof, Our first step is to show that U contains the collection,
XT]’ of all solvable T-groups, By Lemma 12, the fact that Hc f < 7
shows that U contains the collection of all niipotent T-groups,
Proceeding by induction, we assume that U contains the collection,.

1+ , of all solvable T-groups of nilpotent length at most i, But
i

tn:';.ri = §6 € j | 6/F(G) enj{] }, thus ? contains all solvable T-groups

of nilpotent length at most i + 1,

i

Sylow pi-subgroup of F(G), Set Ni = kiipk’ and let Ri be the |

let G G‘Yli:n"i, and F(G) = P1 X eee X Ps’ where P, is the

regular Zp (G/Ni)-module for i = 1,°++,5, We allow G to act on
i
R = R1 X eee X Rs by conjugation according to the rule

(37) (rlgrzy""rs)g = ([1‘13}113" l:rzjﬂzg,---,[rs]ng).'
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Then we form the semi-direct product X = GR, By construction, Ni
centralizes the Py ~EToup, R:’L’ hence the group, F(G)R, is nilpotent,
Since F(X)/R is a normal nilpotent subgroup of X/R, and X/R = G,
F(X) < F(G)R, Therefore F(X) = F(G)R, so X/F(X) = G/F(G). Since
¢/F(G) €V, it follows that X lies in 7,

For each i, set 'ii = xjNi(kziRk)’ iii = NiR/Ni(kgiRk), and

Gy = G( kr;i By )/, ( k;[q R ). By modularity

G(OR)NNR=(6N NR(OR) =((GNRN) TR)=N(IR).
k;éiRk i 1 k#iRk i k#Rk i k#iRk
Thus 'il is the semi-direct product of i’i by Ei, hence
R,) = 0z (R )R,
Gii(Ri) Gi( 1Ry

Because G, acts faithfully on Ei, it follows that R, is a self-centra-

lizing normal p,-subgroup of X.. Therefore 0_+(X.) = 1; so F(X,) is
¢ Py i i

a py-group, But Py lies in T, so by Lemma 12, ii is an element of U

for each i, Since ﬂ{Ni( Il Rk)] =1, X lies in V also. Therefore
i T kA
G € aU. By induction, 2'” E‘[).
By Lemma 13, if EM is the minimal element of ',i-Q mentioned in
Hypothesis II, then there is at most one prime, r,, such that E/Or (E)

0

lies in7T, thus 7 contains ra . Therefore,

Xragﬁn' eV ¢t



-57-

Suppose gdoes not contain Jr. s and let G1 = 1!{1 be an element
0 .
of mimimal order in v -{. By Lemma 10, Ey is an element of
0

Vnf -T, and since E, € Lo, 0 (B) =1, Therefore T contains
L s 1
all primes,

Suppose E contains Jrg . By assumption T does not contain er ’
0 0

so we can choose H in /Yr. ~“T. Since A?r' _C;‘D, H is an element of
0 0

Vnt - T with 0, (H) = 1, Therefore 7 contains all primes in every
: 0

case, 50 we have

£ =Xn<_:"Us‘7§X,

which completes the proof of Theorem 10,

Corollary 2. ILet %’i be the collection of groups of nilpotent length
at most i, Ii"ni <<%, then ‘7:7’[1, or F=4.

Proof. If we set 7{0 = {1}, then for i > 1, %i = {G GX |G/F(G) eﬂi_l}_

For each prime, p, X ' is not contained in 7{1_1, hence the hypothesis
of Theorem 10 is satisfied, The result follows from Theorem 10,
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Chapter VI

An Example-

let r be a prime, Throughout this chapter, we shall set
R= {a GX-]G/F(G) @ 21_.}. For each p, we set (Rp =/gr.3 {(Kp] forms
a local definition for & by Lemma 9, In this chapter, we shall
characterize the formations which strongly contain Q. The for-
mation 0\ provides an example which shows that Hypothesis II is not

redundant,

Lomma 14, Iet G be a group with Sylow r-subgroup R, Then NG(R)

is an (R-subgroup of G,

Proof, Because R is a Sylow r-subgroup of G, NG(R)/R is an r'-groupf
Therefore NG(R) lies in Q.

Suppose NG(R) < U< G, We wish to show NG(R) covers U/U,.
Clearly Uy = 0¥ *¥(U). Since R < 0" (U), it follows that o""(U)
acts transitively on the Sylow r-subgroups of U, hence U = 0 (U)N (R).
Since R covers every r-section of U, it follows that NG(R) covers
0™"(0)/0™"*T(U). Therefore Ny(R) covers U/0"?"(U), By definition,
N (R) is an (\~subgroup of G,

Suppose T >>®R, and fofl, If {",7 } is the minimal local defin-
ition of ?, it follows from Theorem 9 that 7q 75 for each q,s.

We setl JU=’;[q. If H lies in 0\}!’\6{, then H has a normal Sylow



r-subgroup, Sso H/Or(H) lies in Xr" Therefore, Hypothesis II. is
violated for the prime r, It follows from Lemma 13 that r is
the unique special prime associated with ’1 and Q. The next

theorem gives a class of formations which strongly contain (Q.

Theorem 11, ILet T be a non-empty formation, Let
Y= {a e} 16/0_,(G) €T3, then Y is a formation, If
1= {6 €f|6/F(G) €V}, then T>>R.

Proof. Suppose G €7, and N @ G. Then 0_,(G)N/N < 0_,(G/N).
Since G/0_,(G) €T, we also have (G/N)/0_,(G/N) €T. Therefore,
G/N lies in .

Suppose N;,N, are two normal subgroups of G such that G/Ni el
for i = 1,2, For each i, let Mi/Ni = or,(G/Ni), then G/Mi € for
each i, hence G/M; N M, €T, For each i, (M; N M,)N,/N; is an
r'-group, hence M1 n MZ/N:L n M1 N Mz is an r'-group for each i,
Therefore M, N 142/1\11 N N, is an r'-group, so it follows that the
factor group of G/N, N N, by 0_,(G/N, N N,) lies in T. Therefore
G/N1 NN, € U, thus U is a formation,

To show K<<, it is sufficient to show that 8, S 4 for
each prime p, Suppose G € L then G has a faithful irreducible
2 (G)-module, By (14), this means that 0_(G) = 1, Since G €%,

G/F(G) €. Since Or(G) =1, F(G) is an r'—group,l so G/Dr.(G) &Y.



Therefore G lies in dU.
| Suppose G € @p.for P#r. An Ox—subgroup-of G is NG(R) where

R is a Sylow r-subgroup of G, Since p # r, Op'((NG(R)),g ) =R,
r'

Therefore G has a faithful irreducible Zp(G)-module', J, such that
1< CJ(R) < J. By Theorem 1, either cJ(or(G)), = J, or it is the
identity, The latter possibility cannot occur because
1< CJ(R) < CJ(Or(G)). Therefore the fact that J is faithful says
that Or(G) =1, so F(G) is an r'-group, G €7, so the same argument
as in the preceeding paragraph shows that G/Or, (G) €. Therefore
G €1). By Theorem 6, R << rrr.

Since our choice of T is arbitrary, it follows that we can
choose an infinite number of distinct formations which strongly

contain (P\_ Qur next theorem is the converse to Theorem 11,

Theorem 12, Suppose a} >>ﬁ, and {‘}rq} is the minimal local defin-’

ition for ?. Then there is a non-empty formation T such that
T, = (c efla/o,, (@) eTh.

Proof, Suppose ";’:(R. By Theorem 9, there is a formation Y such
that "Zq =U for each q, Our first step is to show thatGU is the
smallest formation generated by {H é’}fior(ﬂ) =1}, Let 4] ve the
smallest formation generated by this set,

Suppose H € ¥, and Or(H) =1, Let K=1, @ <+ ® I_ be the

decomposition of the regular Zr(H)-module, K, into prineipal



bl

indecomposable submodules, By Theorem 1, Lemma 1, and the fact
that F(H) is an r'-group, it follows that H acts faithfully on

I
J, @B ee° @ Js, where Jk = k/,/Ik for each k, For each k, set

1
H, = B/Cy(J,). Then J, is a faithful irreducible 2 (Hy)}-module,

If R, is a Sylow r-subgroup of H_, then NHk(Rk) is an f-subgroup

of H , and (NH]((Rk))’gr' = (NHk(Rk))W\r = R, Therefore
or'((NHk(Rk))G\r) =1, By definition, H_€ & for each k, so

R <<l implies H € "fr =‘U. Therefore H lies in |, Since the
generators of ‘Yf all lie in cU, 3 is contained in U, We know that

4) is the smallest formation generated by .. from the prbof of
Theorem 9. Thus if we show & _C_"U, we have shown?) g_sﬂ. If G e g,
then G has a faithful irreducible 2 (G)-module, and G € 7/, By (14),
0.(G) = 1 so by definition, G € {, Therefore U= 7,

Let r’T’be the smallest formation generated by the set
(u/o_,(®)|H eV}, setU, = {ael|e/o_,(@) €T}. We want to show
V=1)y. By construction, Y c ;.

Since the generators of T are elements of ")), we must have
T <. Therefore, if G €1,, then G/0_,(G) lies inY. To show G
lies inl, we use induction on the nilpotent length of 0_,(G). If
Or'(G)' is nilpotent, then G/Or' (6) € forces G/F(G) €. Therefore
G is an element of q. By our first paragraph, G/Or(G) lies in VU, so

G also lies in %) since Or(G) N Or.(G) =1,
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We note that Or,(G/F(Or,(G))) = Or,(G}/F(Or,(G)), hence by
induction, if G € ‘Ui, then G/F(Or,(G)) GaU. Therefore G lies in
“f. By our first paragraph G/0,(G) lies in Y, 5o G/0,(6) N F(0_,() = G
also lies in'). Therefore U=7),. This completes the proof in
the case when (RC ’}.

If @\,=a}, we let aTbe the formation consisting only of the
identity, We must then show that {Qq} is the minimalr local defin-
ition for (R.

Let {R o} Pe the minimal local definition for R. suppose p is
an arbitrary prime, G € 'gr' = &p’ and t is a prime which does not
divide rp|G|. Let K be the regular 2,(G)-module, Set G, = GK,

Let K, be the regular Zp(Gl)—module. Set G, = G,K Since G

2 im1*

acts faithfully on K, and G, acts faithfully on K,, Op,’p(Gz) = K.
Depending on the choice of p, (.‘r2 is either an r~group, or has K1
as a normal Sylow r-subgroup. Therefore G2 G(R_, hence
GZ/OP.’p(Gz) = G,/K, € oz'p. Since G is a factor group of Gy, it

follows that G € (}‘{’p. Therefore ’gr' c ﬁp. This completes the proof,
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Appendix

In this appendix, we shall give proofs to (18'), (18), and
(19).

(18') If N< G, and Tys®**,m_ are sets of primes, then

0 N)=NNO (G).
Tl'l’---,'n’n( ) N 'n'l,co-,-n-n( )

Proof, Use inductionon N, If n=1, and m = nl-, then 0_(G) is the
unique maximal normal m-subgroup of G, hence Oﬂ(G) is characteristic
in G, Therefore, Oﬂ(N), as a characteristic subgroup of the normal
subgroup N, is normal in G, Thus 0 (N) <0 (G) N N. Bat Nn o (G)

is a normal m-subgroup of N, hence is contained in 0"(N).

W that T = 0 N) =0 G) N N,
e may assume tha = "1""’ﬂn—1( ) ﬂl’..”ﬂn-l( )n
Then 0"1""’"n(m0" '"""n—l{G)/o"J.'""ﬁn-i(G) is a normal

M -subgroup of G = G/OTT (G), and must be contained in

LN ]
T
4 ] n-1

oﬂn(c;). Therefore 0"1""’”n(N) < 0"1""’“n<G) N N, But

0 swa o (B 1 N/T is a normal m -subgroup of N/T, hence
1¥ "y

0 n(G)”NSOn

N). Thi 181).
11'1’-.-’-” 1’...’ﬁn( ) . 5 proves ( )

(18) Let G be a group, Then 00 p(G) = N C4(K), where the inter-
’ :

section is taken over all p-chief factors, K, of G,

Proof., By looking at a chlief series of G which passes throughv 

Op. p(G), it is clear that Op, p(G) centralizes every p-chief factor
’ ’

of G, Let P = Op,’p(G)/Op,(G), and E = P/D(P), Then G is represented
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on E, and the kernel of this representation is Op,,ﬁb) (ef. [9],p. 7).
If g is any p'-element of N CG(K), then g centralizes E,.since it
centralizes every p-chief factor of G. Therefore g lies in Op,(G).
This shows that N CG(K) has a normal p-complement, so by (18'),

N C(K) < op.,p(G).

(19) If G is a group, then F(G) = n 0
p

p',p(G)’ where the intersection

is taken over all primes p,

Proof., Since F(G) is nilpotent, it has a normal p-complement for

every p. By (18%'), F(G) <n op, p(G). Therefore it is sufficient
P s

to show that n Op, p(G) is nilpotent, But look at any chief series
p b

of G passing through n 0_, (G). By (18), n 0_, _(G) centralizes
_ p P'sP p PP
every factor in this series, hence the part of this chief serles

covered by N 0_, _(G) forms a central series for N 0_,  (G),
pP’P PPQP

so N Op, p(G) is nilpotent, This proves (19).
p * "
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