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Am TRACT 

If' e and "!are saturated :formations, we say that e is strongly 

contained in 1 i:f for any solvable group G with ~-subgroup, E, and 

1-subgroup, F, some conjugate o:f E is contained in F. In this paper, 

we investigate the problem of finding the formations which strongly 

contain a fixed saturated formation e. 
Our main results are restricted to :formations,e, such that 

~ = [Gj G/F(G) E'f'}, where 1 is a non-empty formation of solvable 

groups, and F(G) is the Fitting subgroup of G. Ir"r consists only 

of the identity' then ~ = n' the class of nilpotent groups' and for 

any solvable group, G, the 'n-subgroups of G are the Carter subgroups 

of G. 

We give a characterization of strong containment which depends 

only on the f'ormations e' and 1. . From this characterization, we 

prove: 

If~ is a non-empty formation of solvable groups, i = {GjG/F(G) ET}, 

and 2 is strongly contained in '1-, then 

(1) there is a formation 4.1 such that '1= fGIG/F(G) E1J}. 

(2) If for each prime p, we assume that 1' does not contain the class, 

i ,, of all solvable p'-groups, then either ~ = 1, or 1 contains all 
p ' 

solvable groups. 

This solves the problem for the Carter subgroups. 
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We prove the following result to show that the hypothesis of 

(2) is not redundant: 

If (R= (GIG/F(G) E ~r1 }, then there are infinitely many for­

mations which strongly contain ~. 
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Chapter I 

Introduction 

In 1961, Roger Carter [2] discovered the interesting result 

that a .finite solvable group contains a nilpotent subgroup which 

is its own normalizer. These subgroups are now called Carter sub­

groups. In the same paper, Carter showed that a:ny two Carter sub­

groups are conjugate, and that they possess certain interesting 

cover-avoidance properties. 

Since the discovery of the Carter subgroups, several papers, 

devoted to the investigation of relations between the system nor­

malizers of a finite solvable group and its Carter subgroups, have 

been published. In another direction, Gaschtttz [5] has discovered 

a quite general theory from which most of the properties of Carter 

subgroups follow as a special case. One consequence of this theory 

is that there are many types of subgroups of a finite solvable 

group, G, which possess properties analogous to the properties of 

Carter subgroups; a subgroup of G which satisfies the necessary 

conditions is called a generalized Carter subgroup. 

We shall, f'rom now on, assume that all groups under discussion 

are finite and solvable. To describe our results we need 

Definition 1. A formation, ""f, is a collection of groups which 

satisfies: 
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(1) If G E 1, and N is norma1 in G, then G/N E 1. 

(2) If N1 ,N2 are norma1 _i n G, and G/Ni E 1, then G/N1 n N
2 

E 1. 
A formation 1 is saturated if it satisfies, in addition to (1) and 

(2), 

(3) If G/D(G) E1, and D(G) is the Frattini subgroup of G, then 

G E 1. 
The generalized Carter subgroups may be defined as foll.ows: 

Definition 2. Let G be a group, and "f. a formation. A subgroup, F, 

of G is called an 1-subgroup of G provided 

(4) F E "J 

(5) If U is any subgroup of G containing F, and if N is a norma1 

subgroup of_ U such that U/N E °.J, then FN = U (i.e., F covers U/N). 

One of the basic results on formations is that if 'is any 

saturated formation, and if G is any solvable group, then 1-subgroups 

of G always exist, and all. such groups are conjugate (Gaschtttz, [5]). 

In this thesis we shall investigate the behaviour of the 

e-subgroups of a solvable group G with respect to the 1-subgroups 

of G for two saturated formations e,and 1. 

Definition J. Let ~ and "J be saturated formations. i is strongly 

contained in 1 (written ~<< '1) provided 

(6) If G is any solvable group which has £-subgroup, E, and 1-sub-

group, F, than soma conjugate of E is contained in F. 

We shall be concerned with the problem: Given a saturated formation 
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i, find all formations 1 such that e<< 1. From the definition, it 

is clear that there are always two formations, °f., which strongly 

contain~, viz. e, and..8, the formation of all solvable groups. 

We comment that the relation << forms a partial ordering of the 

collection of all saturated formations. It is a consequence of 

the definition that if e<< 1, then e is contained in 1. 
The two main results of this thesis appear in Chapter V. The 

first of these shows that if "f is a non-empty formation, and 

2 = (GIG/F(G) E<7f} (F(G) is the Fitting subgroup of G), then a:ny 

formation '1 which strongly contains f!. has essentially the same 

structure as e in that there is a non-empty formation 'V such that 

1 = (GI G/F(G) E lJJ. We then appl.y this result to find a large 

class of formations which are maximal in the partial ordering << • 

In particular, if ~ denotes the formation of groups of nilpotent 

length at most i, then 'Ii is maximal in .the ordering<<. It is 

easily shown that for 'h = \, the 'n-subgroups of a group G are 

the Carter subgroups of G, so the problem is solved for the Carter 

subgroups. 

The machinery for proving these results is developed in 

Chapter r.v. We begin by developing a characterization of strong 

containment which depends only on the two f'orma.tions e and 1. This 

. characterization depends on the knowledge that if' e is a saturated 

formation, then ~ is a locally defined formation (s~e Chapter II), 

a result proved by Lubeseder in [10]. In certain cases, we are able 
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to strengthen our characterization of strong containment so that 

it gives a complete description of the minimal local definition 

for ~ as a necessary condition for strong containment. 

In Chapter VI, we present an example which shows that Hypo­

thesis II of our main theorem is not redundant. The formation 

which gives the example is <M. = fGI G/F(G) is a.n r•-group}. It is 

apparent from Theorem 11 that (R, is not maximal in the partial 

ordering<<. In fact, there is . an infinite number of formations 

which strongly contain lX. 
In Chapter III, we give some preliminary results which are 

used throughout the paper. In particular, we give a cover-avoidance 

characterization of the 1-subgroups of a solvable group. In 

Theorem 5, we find the'1-subgroups of a certain type of semi-direct 

product. We also show how these subgroups are embedded in the 

product.; The remaining results in Chapter III are known, but 

their proofs are included for the sake of completeness. 

In Chapter II, we give notation along with the results quoted 

.from previous papers. Some of the results in this chapter are 

proved because we have found no suitable reference to them in the 

literature. 
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Chapter II 

Notation and Quoted Results 

We shall use the following notation: 

G - A finite solvable group 

!GI - The order of G 
H .S: G - H is a subgroup of G (proper if H < G) 

H <l G - H is normal. in G 

c - A subset of (proper subset if c) 

D(G) - The Frattini subgroup of G, the intersection of all 

maximal subgroups of G 

F(G) - The Fitting subgroup of G, the maximal. normal nil-

potent subgroup of G 

F1 (G) - The inverse image in G of F(G/F1_1(G)) 

Aut(G) - The automorphism group of G 

E - A field 

Z - The field of integers mod p, p a. prime 
p 

E(G) - The group ring of G over the field E 

::!. E(G) - Is E(G) - isomorphic to 

TI - A set of primes 

n' - The complementary set of primes 

O (G) - The maximal norma1 TI-subgroup of G TI 
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0 · (G) - The inverse ima.ge in G of 0 (G/O (G)) 
TT1' • • • 'TTn rrn TT1' • • • ,rrn-1 . 

OTT(G) - The smallest normal subgroup N of G such that G/N 

is a n-group 

TT1 , ••• ,TTn TT TT1, ••• ,TT 1 0 ( G) - 0 n( 0 . n- ( G) ) • 

If H ~ K, and H~ K ~ G, then K/H is a section of G. K/H is 

· a TT-section if K/H is a TT-group. If L~ G, then L covers the section 

K/H provided (L n K)H = K, and avoids K/H if K n L :::_ H. 

If F acts on G (i.e., every element of F induces an automor-

phism of G), and F fixes both H and K, then K/H is an F-invariant 

section of G. If F acts irreducibly on K/H, then K/H is an F-composi-

tion factor of G. An F-composition series of G is a series, 

G = G0 > G1·> ••• > Gn = 1,such that G1/Gi+i is an F-composition 

factor of G for each i. The F-composition length of G is n, the 

length of any F-composition series of G. 

If F = G, then K/H is a chief factor of G, and the series, 

G = G0 > G1 > ••• > Gn = 1,is a chief series of G. 

If K/H is an F-invariant section of G, then CF(K/H) denotes 

the kernel of the representation of F on K/H. CK/H(F) denotes 

the elements of K/H fixed by every element of F. 

If F acts on G, and K/H is an F-invariant sect ion of G which 

is also an elementary abelian p-group, then we may look at K/H as 

a vector space over Z , hence also as a Z (F)-module with the action p p 
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(Hk):r = ml for f E F, Hk E K/H. 

I:f M is a right Z (G)-module, we may :form the semi-direct 
p . 

product GM, where the action o:f G on M by conjugation is 

:for m E M, g E G. 

We shall frequently switch back and forth between additive and 

multiplicative notation. 

I:f M and N are right E ( G )-modules, then M ~ N will denote the 

direct sum o:f these modules, and Hom E(G)(M,N) will denote the 

collection of all E(G)-linear homomorphisms from M into N. 

I:f H is a second group, and T is a E(G)-module, then the tensor 

product M ®ET (sometimes written M ® T) is a E(G X H)-module under 

the canonical action 

(m® t)(g x h) =mg® th 

A principal indecomposable E(G)-module is an indecomposable 

component of the regular E(G)-module. I:f M is a completely reducible 

E(G)-module, and M = I 1 @ .. •~Is is a decomposition of M as a direct 

sum of irreducible submodules, ~' then for each k we let Mr be 
k 

the direct sum of all copies of Ik which appear in this decomposition 

of M. ~ is called a prima~ component o:f M. ~ 

The dual E(G)-module to M will be denoted by M. We recall tha.t 
... 
M is the collection of all E-linear f'unctionals from M into E, and 

tha.t M becomes a right E(G)-module if we let G operate on ~ so that 
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... 
for g in G, and µ in M, µg is the functional defined by 

for m E M 

If N is a ~(G)-submodul.e of M, we set *1- = (µ E Ml(N)µ = O}; we note 

that the following relations hold if we assume M is finitely gener-

ated and idantify M with its second dual. 

(7) (~)1 = N, (o)l = M, vJ. = (o) 

If N, U are ~(G)-submodul.es of M such that N s; U, then J s; J, 
(8) ~JJ~ E(G)(WN), and 

(9) 
~ 

CG(U/N) = CG((U/N)). 

Furthermore, if I 1 and I 2 are submodules of M, then 

(10) 

Suppose H <t G, and U is a E(H)-module. For a fixed g in G, 

we can define a new E(H)-modul.e Ug by looking at U as a E-vector 

space and specif'ying a new action for H, 

for h E H 

The module Ug is called the conjugate of U by g. 

If F,::; G, and Mis a E(G)-modul.e, then MjF denotes the S(F)-modul.e 

obtained from M by restriction to E(F). If U is a E(F)-module, then 

ujG is the E:(G)-module induced from u. One of the most convenient 

ways to define UIG is presented in Green's paper [8]. 
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Set UIG = U @E(F)E(G), then UjG can be written as a direct 

sum of E-subspaces in the following way: Let 1 = g1,g2,•••,g
8 

be 

a complete set of coset representatives for F in G. Then 

This decomposition does not depend on the choice of coset represen­

tatives. The action of G on UIG is characterized by giving the 

action of G on each element m © gi: 

(11) (m ® g. )g = mf ® gj 
J. g 

and f E F~ g 

where g.g = f gj' 
J. g 

Using (11), one can show that U is canonically embedded as a 

submodule of UIGIF by the mapping 

(12) 6: u-+ u ® 1 for u E u. 

We shall use the following results: 

(13) ([1], p.8) Let M = I 1 E9 ••• ~In be a decomposition of the 

E(G)-module M into a direct sum of irreducible g(G)-submodules. 

Let ~ be the primary component of M associated with Iit• 
is a:ny g(G)-submodule of M isomorphic to lie' then Ws; ~· 

If w 

(14) ([4], p.75) I:f' Eis a £ield of characteristic p, G is a 

group, and M is an irreducible E(G)-modul.e, then Op(G) lies in the 

kernel of the representation of G on M. 
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Let H be a p'-subgroup of G, and let M be the z (G)-module 
p 

which gives the permutation representation of G on the cosets of H, 

1 HI G. If M = J 1 ~ • • • @ Jn is any decomposition of M into a direct 

sum 0£ indecomposable Zp(G)-modules, then each Jk is a principa1 

indecomposable Z (G)-module. . p 

Proof. If R is the regular Zp(H)-module, then RIG is the regular 

Z (G)-module. Since H is a p'-group, R is completely reducible to 
p 

a direct sum of Zp(H)-irreducible submodules, one of which is the 

identity Z (H)-module, I. We have, therefore, a decomposition 
p 

R =I IPL. Thus RIG= IIG e LIG, so because M = IIG, each Jk is 

a direct summand of the regular Z (G)-module. 
p 

(16) ([3], p. 372) Let G be a group, and J a principal indecomposable 

E(G)-module for some field E. Then J has a unique maximal proper 

E(G)-submodule which we shall denote by/J. 

(17) (cf. [7], Theorem 1) Suppose A is a group of automorphisms of 

the group G, and C!Aj,jGj) = 1. If H/K is an A-invariant section of 

G, then CG(A) covers CH/K(A). 

The next three results are well-known elementary facts that 

prove to be quite useful. Their proofs will be included in an appen-

dix. 

(18') If N ~ G, and n1,•••,nn are sets of primes, then 
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Let G be a group, then 0 , (G) = n CG(K), where the inter­p ,p 

section is taken over all p-chief factors , K, of G. 

(19) Let G be a group, then F(G) = n O , (G), where the intersec­p ,p 

tion is taken over all primes p. 

We shall give a short summary of the theory of formations which 

is found in the papers of Gaschtttz, and Uibeseder ([5],[6], and [10]). 

Let ~ be the collection of all solvable groups. 

Definition 4. 

"J = G E,.& 

For each prime p, let ';/- be a formation. Let 
p 

(a) If t is non-empty, and K is a p-ohief factor 
p 

of G, then G/CG(K) E "J.P. 

(~) If ~ is empty, then G is a p'-group. 
p 

dJ'. is a formation which is called the formation locally defined by 

the family {e7J.p}. In gener~, a formation,'), is locally defined 

if there exists a family, (''JP}, of formations such that °:f is locally 

defined by the family {1 p). 

Because of (18) and the fact that '1 is a formation, (2) is 
p 

equivalent to the condition: 

(a') If "J. is non-empty, then G/ 0 , ( G) E 1. • p p ,p p 

The :family, {1 p}, of :formations which locally defines ~ is 

usually not unique. If, however, {".f ) and {'.ft ) are two families 
p p 

of formations which locally define the same formation1, then the 

.family {1{ IW = 1. n 1' ) also de.fines '1. Thus there is a unique 
p"p p p 
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minimal local definition for any locally defined formation "!. For 

example, the minimal local definition of the formation of all p-groups, 

'?{, is 

;i-t = (1} 
p 

'/-{ = empty if q '/:. p 
q 

(20) ([5], p. 302; [6], p. 198) If 7 is locally defined, then 1 is 

saturated. 

(21) ([10]) If tis saturated, then1 is locally defined. 

From now on, we shall use the terms saturated and locally defined 

interchangeably. 

Definition 5. If '1 is a formation, and G is a group, then 

Cl.= n N whero f = {Nj N <l G, and G/N E 1). 
'f NE~ 

Using this definition, a subgroup, F, of G is an 1-subgroup of G if, 

and only if, 

(22) F E 1, and 

(2'.3) if F $. U $. G, then F covers U/U'f. 

(24) ([5], p. '.301) If the formation, 1, is saturated, then every sol­

vable group G has an 1-subgroup. All the 1-subgroups of G are conjugate. 

(25) ([5], P. J01) Let 1 be a formation, and G a group. Let F be 

an element of 1 such that F $. G. Then 

(a) If F is an 1-subgroup of G, and F $. U $. G, then F is an 1-subgroup 

of U. 
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(b) If N <J G, and F is an 1-subgroup of G, then FN/N is an 1-subgroup 

of G/N. 

(c) I:f N <J G, F1/N is an 1-subgroup of G/N, and F is an 1-subgroup 

of F 1, then F is an 1-subgroup of G. 
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Chapter III 

Preliminary Results 

The first theorem of this chapter is a result similar to 

Clifford's theorem. 

Theorem 1. Let H be a normal p'-subgroup of G, E a field of 

characteristic p, and Man indecomposable E(G)-module. Then MIH 

is a completely reducible S(H)-module whose irreducible components 

form a single class, C, of conjugate E(H)-modules under conjugation 

by elements of G. Let L, J be two E(G)-submodules of M such that 

Le J. Then the distinct E(H)-irreducible components of (J/L)IH 

are precisely the elements of c. 

Proof. The complete reducibility of MIH follows directly from the 

theorem of complete reducibility. Let MIH = I 1 ~ ••• e Is be a 

decomposition of M as a direct sum of irreducible E(H)-submodules, 

and for each k = 1,•••,s, let~ be the primary component of MIR 

associated with Ik. Consider the module Ik g for some g in G. 

The action of H on this module is the same as the action of H on 

the conjugate module ~ because of the formula: 

(i0)h = ik(ghg-1)g • 

Now I k·g is isomorphic to some Ij, hence ·by (13), I k g s:; Mj. 

Clearly I j g -l is isomorphic to Ik' so I j g -l S ~· Therefore 
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~ := Mk g = Mj, so G permutes the primary components of Ml H by 

conjugation. 

Let c1 ,•••,Cr be the conjugacy classes of primary components 

of Ml H under the action of G. Set Ti = l ~Mic• Because Ml H is 

MicE Ci 
the direct sum of its primary components, Ml H = T1 ~ ••• ~Tr• But 

each Ti is a E(G)-submodule of M, so we contradict the indecompos­

ability of M unless r = 1. Let C be the conjugacy class of irreducible 

components of MjH. 

Obviously, all of the irreducible E(H)-submodules of (J/L)IH 

lie in c. Since G is transitive on the elements of C, and J/L is 

a E(G)-module (non-zero), every element of C must appear as a 

component of (J/L)jH. 

Lennna 1. Let G be solvable, and M be a Z (G)-module. M is :f'aith:f'u.l 
p 

if, and only i:f', ' MIF(G) is faith:f'u.l. 

Proof. The lemma follows a fortiori from the statement that 1:f' 

1 < N ~ G, then 1 < N n F(G). Now 1 < N, and N is solvable, so 

1 <.F(N) = N n F(G), so the lemma holds. 

The second theorem in this chapter is the "Frobenius reciprocity 

theorem" for modules. It is one of the main tools used in this 

paper. For ordinary representations, the usua1 reciprocity theorem 

may be derived from this isomorphism by noting that 1:f' µ., and Tl are 

tha characters of two E(G)-modules, M and N, then the scalar product 
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(~,1)) is the E-dimension of Hom E(G)(M,N). 

Theorem 2. Let G be a group, and H S G. Let M be a ?.(H)-module, 

and Na E(G)-module. Then Hom E(G)(MIG,N), and Hom E(H)(M,NjH) are 

·isomorphic as vector spaces over E. 

Proof. We define a map El, from Holll,s(G)(MIG,N) into Hom E(H)(M,NjH) 

by 

where A is the cn.nonical map defined by (12). El is clearl.y well 

defined. If' m E M, and h E H, then 

[mh]®(1)) = [mh ® 1J111 M ® 1 = [ (m © 1 )hJTJI M ® 1 

= {[ m ® 1J11IM ® 1}h = ([m]El(Tj)}h • 

In this computation, we have used (11) and the fact that TJIM ® 1 

is an element of Hom_ E(H)(M ® 1,N). Both t:. and 11IM ® 1 are E-linear 

maps, so e(T)) is a E(H)-:homomorphism from M into NIH • Since restric­

tion is a E-linear operation, it follows that El is a :?:-linear map 

from Hom E(G)(MjG,N) into Hom E(H)(M,NIH). 

Suppose ®(11) = o. Then 11IM@ 1 = O, so using (11) we have 

(m@ g.i)1) = ((m ® 1)g_e)il = {(m ® 1)T))g; = Og,{ . = O, 

since 1) is a E(G)-homomorphism. Therefore ® is a 1-1 map. 

Letµ be an arbitrary element of Hom E(H)(M,NjH). We set 
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s s 

( l (mA ® g' ))µ,* = l (m;)µ,gi, where g1 = 1, g2,•••,g
5 

are a set 
~=1 1=1 

of coset representatives for H in G, and [G:H] = s. Since N is 

a E(G)-moduJ.e, µ* is a well defined map from MIG into N. If 
s 

g E G, and v = l m~ ® g~ lies in MIG, then 

J=1 
s s 

(vg)µ.* ZS r l (me @ g, )g 1 µ.• = {I m,1hg ® gy(~ ,}µ.• 
~=1 i=1 

s 

= l Cm,thg)µ~a > 
)=1 

s 

= [I cm,)µ.g.e]g 

R=1 

s 

= l (m,e )µ.hggy(~) 
1=1 

= (v)µ•g ' 

where y is the permutation of the cosets Hg1 induced by multiplication 

on the right by g. We have used the fact that µ. is a ~(H)-homomor-

phism, as well as equation (11). Becauseµ. is :;:-linear, µ,• is E-linear, 

henceµ• lies in Hom E(G)CMIG,N). 

If m E M, then 

[m]®(µ*) = (m ® 1)µ•j M ® 1 = · (m)jAo ~ = (m)µ., 

therefore ®(µ*) = µ. This shows that e maps Hom E(G)(MjG,N) onto 

Hom E(H)(M,NjH), and completes the proof. 

We shall begin a discussion of the properties of 1'-subgroups 

of solvable ·groups. It is useful. to know the behavior of G7 

(cf. Def. 5) under homomorphisms, so we prove 
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Lemma 2. Let 1 be a formation, G a group, and H a normal subgroup 

of G. Then 

(G/H)"J = "'JH/H 

Proof. Let F be the inverse image, in G, of (G/H)'J. Then G/F 

is isomorphic to (G/H)/(G/H)1 , hence G/F lies in 1. Therefore, 

GyHs;F. 

Since G1 $ G1H, G/G1H is an element of 1. Furthermore, G/G1H 

is isomorphic to (G/H)/(G1H/H). Therefore F/H s; G1H/H, so we also 

have F $: ~H. This shows that F = G1H, and completes the proof. 

The next two theorems give cover-avoidance properties of 

1-subgroups. They generalize a remark made by Carter in [2]. 

Theorem 3. Let 1 be a formation locally defined by the family 

£1 } , G be a group, F a subgroup of G which lies in 'f, and K an 
p 

F-composition factor of G. Then 

(a) F either covers, or avoids K; 

(b) if F covers K, and pl jKj, then F/CF(K) E 1~; 

(c) if Fis an 1-subgroup of G, and .pl IKI, then 

(C) F/CF(K) E 1P -=-> F covers K. 

Proof. Let K = L/M be the F-composition factor in question. 

Statement (a) follows from the fact that F acts irreducibly on K, 

and (L n F)M/M is an F-invariant subgroup of K. 
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If F covers K, then L/M = ( L n F)M/M. If we look at F as a 

set of operators on K, then K is operator isomorphic to L1n F/M n F, 

a p-chief fantor of F. Therefore the kernel of the representation 

of' F on L n F/M n F is CF(K). Because F lies in'/, it :f'ollows that 

F/CF(K) E "JP. This proves (b). 

Now suppose F is an 1-subgroup of' G, and K is a p-section of · 

G such that F/CF(K) lies in 1 . To show F covers K, it suffices 
' p 

to show that F covers the larger section FL/M. But by (25a), F 

is an 1-subgroup of FL, hence it is sufficient to show F = FL/M is 

an element o:f' 1 since F, by definition, covers any such factor of 

FL. 

If q # p, then K, as a normal q'-subgroup of F, is contained 

in 0 , (F). Therefore 0 , (F)L/M S 0 , (F), so F/O , (F) is q q ,q q ,q q ,q 

isomorphic to a quotient group of FL/O , (F)L. FL/O , (F)L is q ,q q ,q 

-isomorphic to F/O , (F)(F n L), a factor of F/O , (F). Since q ,q q ,q 

F E 1, F/O , (F) E 1 , hence F/O , (F) is also an element of 1_. q ,q q q ,q q 

Let U = Ferr • Since F E f, F/O , (F) E '1 ·, hence U < O , (F). 7p p ,p p - p ,p 

Since F/CF(K) E 1p' U $_ CF(K), hence K is contained in the center 

of UL/M. Therefore UL/M has a normal p-complement. By (18'), 

UL/Mis contained in 0, (F), thus F/O, (F) is a factor grou. p p ,p p ,p 

of' FL/UL~ F/U(F n L). Therefore, F/O • (F) E 1p. Because "J is p ,p 

locally defined, F lies in 1-. 
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Our next. theorem will show that property (C) characterizes 

the 1-subgroups of a solvable group G. In order to obtain as weak 

an hypothesis as possible, we prove two lemmas. Property (C) 

actually applies only to specific F-composition factors of G, so 

when we say that property (C) holds for an F-composition series, 

G = G0 > G1 > ••• > Gn = 1, of G, we mean that F satisfies this 

property for all factors, Gi/Gi+i' of the series for which the 

hypothesis of property (C) holds. 

Lemma 3. Suppose 1 is a formation locally defined by {1P), F E 1, 
and F ~ G. Let A/B be an FLinvariant section of G such that 

A > C > B defines a fixed F-composition series of A/B. If property 

(C) holds for this series, then property (C) holds for every F-com­

position series of A/B. 

Proof. We may assume that a second F-composition series of A/B 

exists and is defined by A> D > B where D I: c. Then we must have 

CD > C > C n D, so the fact that C and D are F-invariant shows that 

A = CD, and B = C n D. Therefore 

(26) A/B ::: C/B x D/B, A/C ::: D/B, A/D -:::. C/B, 

where the decomposition is an operator decomposition, and the 1so-

morphisms are operator isomorphisms. 

Suppose the decomposition (26) is unique. If F/CF(A/D) lies in 

1p' it follows from (26) that F/CF(C/B) lies in "J.P. Since property 
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(C) holds for the series A> C > B, F covers C/B. Therefore 

(F n A)D ~ (F n C)D ~ CD = A, so F covers A/D. Suppose F/CF(D/B) 

lies in 1. , then F/CF(A/C) lies in 1. • By property (C), F covers q q 

A/C. Because of the uniqueness of the decomposition, and the fact 

that F n A is not contained in c, either A = (F n A)B, or D = (F n A)B. 

In the former case, F covers all of A/B, hence F covers the subgroup 

D/B. In the latter case, F n A = F n D since F n A ~ D, so 

D = (F n D)B. Therefore, in either case, F covers D/B. 

The decomposition (26) is unique if CIA/cj,jc/Bj) = 1, so we 

may assume A/B is an elementary abelian p-group for some prime p. 

This means that we can look at A/B as a Z (F)-module. If A/C and 
p 

C/B are distinct Z (F)-modules, then it follows from (13) that the p 

decomposition is unique. Thus we may assume that D/B ~ z · (F)9/B .• 
. p . 

In this case, it f'ollows from property (C) f'or A> C > B that F either 

covers, or avoids A/B. Therefore Lemma 3 holds in all cases. 

Lennna 4. Assume F E 1, H:: G, and F ~ NG(H). If' property ( C) holds 

for a fixed F-composition series of H, then it holds for every F-com- • 

position series of H. 

Proof. Let H = H0 > H1 > • • • > Hn = 1 be the f'ixed F-composi tion 

series of H for which property (C) holds. We use induction on n. 

The lemma is. true if' n = 1. 

Let H = K0 > Ki > .~. > Kn= 1 be a second F-composition series 

f'or H. If' Ki = H1, property ( C) holds for the series 
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K0 > Ki > • • • > Kn = i by induction. 

Suppose Ki # Hi, and let i be the smallest integer such that 

K1 n Hi = Hi. Because Hi ~ K1 n Hi-l < Hi-l' we have Hi = IC1 n H1_1, 

so that we have the f o11owing lattice diagram; 

H 

i 

Since H1 is part of an F-composition series for H, F :S NG(H1). Be­

cause of the isomorphisms indicated in the diagram, 

Hi > Ki n Hi > • • • > K1 n Hi-l = Hi > Hi+i > • • • > Hn = 1 is an 

F-composition series for Hi which has ·length n-1. By induction, 

property (C) holds for this series. Therefore, property (C) holds 

for the F-composition series of H/Hi n K1 defined by the series 

H > Hi > H1 n K1 • By Lemma J, property (C) holds for the F-composi­

tion series H > K1 > 'i n Hi > • •• > K1 n Hi-l = Hi > ••• > Hn = 1 

of H. In particular, property (C) holds, by induction, for any 

F-composition series of K1• Therefore property (C) holds for ~he 

series K0 > K1 > • • • > Kn = 1. 
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l'heorem 4. · I.et 1 be a formation locally defined by f1 ) . Let G be 
p 

a group, F $. G, and F EC!f. If property (C) holds for a fixed 

F-composition series G = G0 > G1 > 

an 1-subgroup of G. 

••• > G = 1 of G, then Fis n 

Proof. We use induction on !GI. By Lemma 4, we may assume that 

the series G = G0 > G1 > ••• > Gn = 1 is a refinement of the chief 

series G = ffo > H1 > • • • > Hm-l > Hm = 1. Then Hm-l = Gk for some 

k. l\n-l is a minimal normal subgroup of G, so we set Gi = Gi/Gk 

for i = o,1,•••,k, F = FGk/Gk, and G =Go· Our first step is to 

show that F is an 1-subgroup of G. 
- - -If m = 1, then G = F = 1, so the resul.t is trivial. If m > 1, 

then Hm-1 < G, and G = G0 > G1 > • • • > Gk = I is an F-composition 

series of G. By induction, to show that F is an 1-subgroup of G, 
it is sufficient to verify property (C) for the series 

- - -G0 > G1 > • • • > Gk = 1. 

For each i, set Ki= Gi/Gi+l' and Ki= Gi/Gi+l• Since Gk$. Gi+l 

for i < k, Gk centralizes the section K1 for i < k. Therefore, 

C,(Ki) = CF(~)Gk/Gk for all i < k. Thus, 

F/CF(i1 ) =:: FGk/cF(Ki)Gk::: F/CF(K1 )(F n Gk). 

But F n Gk ·s CF(K1 ), so we have 

(27) F/c,<ii) =:: F/CF(Ki) for i < k. 
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Suppose Ki is a p-section of G such that F/°f(K1) E "JP • By 

(27), F/CF(Ki) E "JP , so F covers Ki • Therefore, 

(FGk n Gi)Gi+1 = (F n Gi)GkGi+1 = (F n Gi)Gi+1 = Gi • By taking 

homomorphic images, and noting that FGk n Gi/Gk = F n Gi, we get 

- -Thus F covers Ki • Therefore property (C) 

holds for the F-oomposition series G = G0 > ••• >Gk= I of G. 

Now that we know Fis an°1-subgroup of G, it follows from 

{2.5o) that we can complete our proof by showing that F is an 

1-subgroup of FGk • 

Suppose FGk < G. We consider the series FGk = D0 ~ D1 ~ • •• ~Dn =1, 

where Di = FGk n G1 for each i. Suppose Di > Di+i tor some i. Then 

This is an operator isomorphism, hence because F is irreducible on 

Ki' we have 

{28) 

Therefore the distinct terms of the series, D0 ~ D1 ~ ••• ;::. Dn = 1, 

form an F-composition series for FGk which passes through Gk. Since 

F covers FGk/Gk' and since Di = Gi for 1 ~ k, property (C) holds 

for this composition series. By induction, F is an 1-subgroup of 

Suppose .G = FGk. Since Gk is a minimal normal subgroup of G, 

F acts irreducibly on Gk. Therefore F either covers, or avoids Gk. 
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If F covers Gk' then F = G, so F is an 1-subgroup of FGk. Suppose F 

avoids Gk' and Gk(=Gn_1 ) is a p-group. Then FGk/CFG (Gk~ F/CF(Gk) 
k 

cannot lie in "fp since property (C) holds for Gk. Therefore 

(FGk)'f 2::, Gk. Since FGk/Gk lies in 'f-, (FGk)'} = Gk. 

If F :SU :S FGk' then U = F, or ·u = FGk. The above remarks 

show that F covers U/U1 in both cases. Therefore F is an 1-subgroup 

of FGk' and the proof is complete. 

As one application of Theorem 4, we prove 

Theorem 5. Let 1 be a formation locally defined by £1 ) , H E 7, and 
p 

let I be a finitely generated Z (H)-module. Let G = HI be the p 

semi-direct product of I by H where the action of H on I by conjuga-

tion is the canonical action given in Chapter II. Then, 

(a) F = HC1(o ,(H1 )) is an 1-subgroup of G. 
p p 

(b) As a Z (H)-module, I= CI(O ,(H1 )) 19 G. 
p p p 

Proof. Let W = c
1

(o ,(Hn )). Our first task is to show HW lies in 
p Tp 

1. Suppose q # p, then W is a q•- group, so 0 , (F) = 0 , (H)W. q ,q q ,q 

Therefore, 

F/Oq,,q(F) Qt H/Oq,,q(H). 

Since H lies in 1, F/oq,,q(F) E 1-q. 

Let U = H7 • Then 0 , (U) centralizes W. Since H/O , (H) lies 
p p p ,p 

in 1 , U < 0 ·, (U). Therefore 0 , (UW) = UW. UW is norma1 in F, p - p ,p p ,p 

so by (18'), UW < 0 , (F). Therefore F/O , (F) is isomorphic to - p ,p p ,p 
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a quotient group of H/U. 

F lies in "f. 

Since H/U E 1_ , F/O , (F) E 1 . p p ,p p Therefore, 

Now let G = G0 > G1 > ••• > Gn = 1 be an F-composition series 

for G such that G~ =I for some J. In order to check property (C), 

we need only consider Ki= Gi/Gi+l for i ?;.}., since F covers G/I. 

W centralizes every K
1

, so we have 

If i?::. J., and F/CF(K1 ) E 1p' then CH(Ki) ~ U. In particular, 

Op1 (U) centralizes Ki. I is a ,p-group, so by the covering lemma, 

(17), W covers Ki. Therefore F covers Ki' so property (C) holds 

for the series G0 > G1 > ••• > Gn = 1. By Theorem 4, F is an 

1-subgroup of G. 

We shall prove the next assertion by induction on the length 

of a Zp(H)-composition series of I. Since H =:: G/I, G1 s; I. Since 

F covers G/G1, it follows that, as a Z (H)-module, I = W + G1, so p . 

the major difficulty is to show that the sum is direct. If I is 

irreducible, one of the two summands must be the zero subspace, so 

the theorem is true if n = 1. 
I 

Suppose I = I 0 ::> I 1 :::> • • • ::::>In = ( O) is a ZP ( H)-composi ti on 

series for.I, and n > 1. I 1 is a minima1 normal subgroup of G, n-
and Hin_1/In-l acts on the quoti~nt module I = I/In-l in the same 

wa:y that H acts on I. Therefore G = G/In-l is isomorphic to the 
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semi-direct product HI where the action or H by conjugation is the 

module action. By induction, 

(29) i = Cy(Op' (U)) ~ (G)"J • 

cASE r. (o> c eycoP, cu» s r. 
Set T/In-l = (G)1• By the covering lemna, (17), 

C...(O ,(U)) =WI 1/I 1• By (29), T n Wis a norma1 subgroup of G 
-~ p n- n-

contained in I 1• n-

I.f T n W = (0), then I = T ~ W, and reverting to multiplicative 

notation, we have F n T = 1. Therefore, T is clearl:y the smallest 

normal subgroup of G whose factor group is covered by F. Since F 

is an 1-subgroup or G, it follows that T = G1• 

Suppose T n W = In-i• The hypothesis or CASE I states that 

T c I, so the theorem is true, by induction, for the semi-direct 

product G1 = Hr. Therefore, T = CT(OP1 (U)) E9 T1, where T1 = (G1liq. 

Now In-i = CT(OP1 (U)), and because I is abelian, T1 <l G. Therefore, 

as a zp(H)-module, 

AB before, this forces T1 = G1 since G/T1 Cl Fis the largest possible 

factor of G covered by F. Therefore, the theorem holds in CASE I, 

By assumption, Ws; In_1• OP1 (U) is normal in H, so Wis normal 
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in G. If' W = (0), then His an"'l-subgroup of G, and I a G1• We 

may, therefore, assume that W = I 1• n-,. 
Let I be the dual of I. By (8) 

,. ,. l l /."'-
In-1 ~ I/In-1 ' and In-1 ~ (I/In-1) 

Since Op,(U) centralizes In-l' it follows from (9), that Op9 (U) 
,. 

centralizes I 1• By the covering lemma, (17), CI"(O ,(U)) covers n- P 

I/In~1 • 
Now Op1 (U) ~ H, so CI l (0 ,(U)} is a Z (H)-submodule of I 11• 

~1 p p ~ 

By (8)' 

I/[CI 1 (0 ,(U))]l ~ [~]. 
n-1 P . n-1 P 

Since 0 ,(U) centralizes CI 1 (0 ,(U)}, it follows from (9), that 
· P · n-1 P 

0 ,(U) centralizes I/[CI l (0 ,(U})Jl • Thus using the covering 
P n-1 P 

lemma. again, we lmow that W covers the factor I/[CI 1 (0 ,(U)}]l • 
n-1 p 

But CI l (OP, ( U)} S In~ 1' so W = In-l £; [CI l ( 0 , ( U)} ]1 , hence 
n-1 . n-1 P 

we must have 

I :: [CI 1 (0 ,(U))]l • 
n-1 P 

Therefore CI l (0 , (u)) :r (O}, so C"'I(O , (U)) avoids I 11• These 
n-1 P P n-

statements show that 
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But by (10), this splitting induces a splitting in I, 

I = [cI~(o ,(U))]l EJ) I 1 p n-

As before, it follows from the fact that F = HI 1 is an 
n-

1' -subgroup of G, that G1 = [CI(Op,(U))~ • This completes the 

proof in ail cases. 

Remark. This result cannot be extended to the case where I is a 

p-group of class 2 because of the following example. Let I be the 

quaternion group. I has an automorphism, h, of order ) such that 

h acts fixed-point free on I/D(I), and centralizes D(I). Let H 

be the cyclic group of order ) generated by h, and let G = HI. 

A Carter subgroup of G is H x D(I), but D(I) has no complement in 

I, so no splitting is possible. 
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Chapter IV 

Strong Containment 

In this chapter, we shall characterize strong containment. In 

certain cases, we can make our characterization more precise by 

giving generating sets for certain of the formations 1. in the min­
p 

imal local definition of "J. The results of this chapter form the 

basis for our results in Chapter V. 

Lemma 5. Let e and 1- be two non-empty saturated formations; let. e 
be locally defined by [ epJ. Let G be a group of minimal order 

satisfying 

(P) An e-subgroup of G is not contained in any1-subgroup 
of G. 

If F is an '1-subgroup of' G, and E is an e-subgroup of F, then 

(a) G1 = M is a minimal normal subgroup of G; G is the semi-direct 

product of M by F; F acts faithf'ully and irreducibly on M. 

(b) If Mis a p-group, then E* = ~(op,(E e. P)) is an £-subgroup 

of G, and 1 < CM(Op,(Eep)) ~ M. 

Proof. If G E "/, then G = F contains every t-subgroup of G, hence 

G does not satisfy (P). Therefore G ~ ~; in particular, G is not 

the identity. Let M f. 1 be a minimal normal subgroup of G. By 

(2.5b), FM/Mis an 1-subgroup of G/M. Because of the minimality 

of IGI with respect to the property (P), some e-subgroup of G/M is 
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contained in FM./M. Since all £-subgroups of G/M are conjugate, we 

can find an ~-subgroup, E, of G such that 'EM· ~ FM. E, as an 

f-subgroup of G, is also an t-subgroup of FM. Because G satisfies 

(P), no conjugate of E under FM can be contained in F. Therefore 

FM~ G, and satisfies (P), so G =FM. 

G/M lies in 1, but G does not lie in 1, so G "J. = M. Since 

F fl M is a normal subgroup of G, properly contained in M, F n M = 1, 

so G is the semi-direct product of M by F. Since M was arbitrary to 

begin with, and we show9d M = G"l, M is the unique minimal normal 

subgroup of G. Therefore F acts faithfully and irreducibly on M. 

This proves (a). 

G/M is isomorphic to F, so FJII./M is an C-subgroup of G/M. By 

(25c), an 2-subgroup of FJII. is also an e-subgroup of G. By Theorem 5, 

E* = E~(Op,(Ee )) .is an e-subgroup of EM. Since E* is not contained 
p 

in F, 1 < ~(op,(E£ )) ~ M. 
p 

Before stating the characterization, we introduce some notation. 

Definition 6. If e and 1 are two saturated formations, and e is 

locally defined by ( ep) , set 

(a) n(l) = (pje is non-empty}. n(e) is called the characteristic p 

of e. 
(b) If p E n(l), set 
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H has a faith£ul. irreducible Z (H)-module, M, such 
p 

that if E is an e-subgroup of H, then 

1 < ~(OP,(E~)) SM. 

(c) If p E n(l), set 

0 =jH E t There is at le•st one faithful irreducible ZP(H)-module, 
P · p M, such that 1 < ~(O ,(Ee )) < M. 

p p 

Theorem 6. Suppose ! and 1 are two saturated formations locally 

defined by { e ) and { 1 ) respectively. Then p p 

~ << 1 <=> t c 1 for each p E n(e). p- p 

Proof. Suppose tp S u.f.p for each p E n(e), and e is not strongly 

contained in 1. Then the class of groups satisfying property (P) 

is non-empty, so w~ choose G to be an element of minimal order in 

this class. By Lemma 5, if GU/ is a p-group, then p divides the 

order of an e-subgroup of G, hence p E n<e). By Lemma 5, if F 

is an 1-subgroup of G, then F lies in t • Therefore, F is an p 

element of 'J. • 
p 

Since G'J is the unique minimal normal subgroup of G, 

G~ = 0 , (G). There:f'ore F z G/Gn = G/O 1 (G) lies in 1. • If' 
1 p ,p t p ,p p 

q # p, then G~ < 0 ,(G), so 0 1 (G) = G~O , (F). Therefore, 
. 1- q q ,q q ,q 

G/O 1 (G) z F/O 1 (F) q ,q q ,q 

Since FE"}, it follows that G/O , (G) E 1. By (O''), G lies in q ,q q 
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1, a contradiction to the £act that G'1 > 1. Therefore e << 1. 
Suppose ~<< 1, p E n(e}, and F ~ tp. I.et M be the faithful. 

irreducible Z (F)-module mentioned in the definition of t • Set p p 

G = FM, where the action 0£ F on M by conjugation is the module 

action. By Theorem 5, an1-subgroup of G is F* = F~(O ,(F1.- )), 
p p 

hence G = F"'M. I.et E bll an e-subgroup 0£ F. Since EM/M is an 

e-subgroup 0£ G/M, it follows from (25c) and Theorem 5, that 

E* = E~(O ,(Ee )) is an e-subgroup of G. E* does not avoid M, 
p p 

and because r << "J, E* is contained in some '/-subgroup of G, hence 

F* does not avoid M. Since 0 ,(F~ ) ~ F, ~(O ,(Fn )) is normal 
p tp p 3p 

• in G, hence F = G. 

Since G is an element of 'J,and F acts faithtul1y on the 

p-chief factor, M, of G, we have F:::: G/CG(M) E "JP. Therefore 

tp s: 1p· 
Because of this characterization, if e << 1, and p E n(e), 

then tp £ 1p for a:ny "Ip which lies in some local definition. This 

leads naturally to the question: Suppose ("/PJ is the unique minimal 

local. definition for 1. If p E n(e), is 1P the smallest formation 

generated by the set t ? The answer to this question is yes, pro-
p 

vided e is non-empty for at least two primes. We have not been p 

able to relax the hypothesis on the ep•s. In the next few 1emmas, 

we shal1 investigate properties or the tp's and ep•s as a prelude 

to giving a partial answer to this question. 



-34-

Lemma 6. Let e and 1 be non-empty saturated format:ia:ls with local 

definitions {er) and {11p) respectively. Suppose e << 1, and G is 

an element of 1 withe-subgroup, E. 

(a) Suppose GE ~ • G lies in 0 if, and only if, 0 ,(E0 ) > 1. 
q q q ~q 

(b) If q E n(e), Oq(G) = 1, and the pennutation representation, 

10 (E ) I G, is faithful, then G lies in (t ) , the smallest for-
q• t q 

q 
mation generated by the set t • q 

(c) Let M be a faithful irreducible Z (H)-module. If G = HM, and p 

10 (E )IG is faithful for some q in n(l) - {p), then GE t • 
q' e q 

q 
(d) For each r,s in n(e), er s (ts). 

Proof. Suppose G E t • Then G has a faithful irreducible Z (G)-mod-
q q 

ule, I, such that 1 < CI(oq,(Ee )) s I. If J is any such module, 
q 

J = CJ(o ,(E~ )) if; and only if, o ,(Ee ) = 1 since J is faithful.. 
q C.q q q 

This proves (a). 

Let G be a group satisfying the hypothesis of (b). Let T be 

the z (G)-module which gives the representation 10 (E )IG. By (15), 
q q• t 

q 
we can write T as a direct sum of principal indecomposable Z (G)-mcrltiln, q 

For each k = 1,•••,s, it follows from (16) that Tk has a unique 

maximal proper Zq(G)-submodule, ~ • We set Jk = Tk/.r:r;, • 
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Since 0 (G) = 1, F(G) is a normal q'-subgroup of G, hence by 
q 

Theorem 1, the distinct irreducible components of JklF(G) are 

exactly the same as the distinct irreducible components of TklF(G)• 

Therefore, since Tis faithful, it follows that if J = J 1 ~ ••• $ Js' 

then JjF(G) is faithful. By Lemma 1, J is a faithful Zq(G)-module. 

We now apply the Frobenius recipr?city theorem for modules. For 

each k = 1,•••,s, 

(0) c Holllz (G)(T,Jk) :: Holllz (O (E ))(1,'klo . (E )) 
q q q' ~ q• e q q 

Therefore 1 < CJ (0 ,(E0 )) ~ Jk' for each k. 
k q Cq 

Set Gk= G/CG(Jk). Then ~ = ECG(Jk)/CG(Jk) is an e-subgroup of 

Gk. By Lemma 2, (~)~ = Ee cG(Jk)/cG(Jk). Therefore oq,«Eic>e ) • 
q q q 

O ,(Et )CG(Jk)/CG(Jk), so 
q q . 

1 <CJ (0 ,(Ee )) = CJ (0 ,((~)e )) ~ Jk. 
k q q k q q 

Since G lies in "f., q E n(e ), and Jk is a faithful irreducible 

Zq(Gk)-module, Gk lies in 4>q for each k. Therefore G = G/Q CG(Jk) 

lies in (t~ , the smallest .formation generated by the set tq• This 

proves (b). · 

The proof of (c) is essentially the same as the proof of (b). 

Let G = HM be the group mentioned in the hypothesis of {c). Let T 
- G 

be the Z (G)-module which gives the faithful. representation 10 (E )I • 
q . . . . q' ; 
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Once again, T has a decomposition into a direct sum, T = T1 EP ••• E& T
8

, 

of principal indecomposable Z (G)-modu1es. Because of faithfulness q . 

it follows that Mis non-trivial on some Tk' say T1• Since Mis 

minimal normal in G, M must act faithfUlly on T1• Since M is a 

q•-group, it follows from Theorem 1, that if J = T1/JT";,_ , then JIM 

is faithful. ~t M is the unique minimal normal subgroup of G, 

and by (14), 0 (H) = 1, so F(G) = M. By Lemma 1, J is a faithful 
p . 

irreducible Z (G)-modu1e. By Frobenius reciprocity, 
q 

1 < cJcoq,<Ee »s J. 
q 

Therefore, the fact that q E n(e) says that G is, by definition, an 

element of ~ • This proves (c). 
q 

Part (d) is the only statement in Lemma 6 which requires the 

assumption e << 1. Suppose H E er' E is an e-subgroup of H, and 

M is a fai thfu1 irreducible Z (H)-modu1e such that 1 < CM( 0 , (E0 ) ) < M. 
r r ir 

Set G = HM. By Theorem 5, F = H~(Or' (~ ) ) is an 1-subgroup of G, 
r . 

and since E:::: FYJ./M is an e-subgroup of G/M, E"' = EX:M(Or,(Ee )) is 
. r 

an e-subgroup of G. Since e << 1, F cannot avoid M, hence F = G 

is an element of 1. 
Let N be the intersection 0£ al.l. the conjugates of os,(E"'e ) in 

. s 
G. Then N ~ G, and N n MS E"' n .M = ~(Or,(E~r)) < M. Therefore 

N n M = 1. This shows that 10 (E* ,1 GIM is faithful.. Because 
s' e . 

8 

I 
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M = F(G), it follows from Lemma 1 that 10 (E• )IG is faithful. 
s' 2, s 

By part ( c), G f t 
5 

for s E n(e ) - { r). Therefore H :::: G/M is an 

element of (ts) , for s E n(e)- { r). Since er S tr' it follows 

that er S (ts) for each s in n(e). This proves (d). 

The next lemma has an elegant proof. This proof was told to 

me by Dr. E. C. Dade, and it shortens this part of' the original 

proof of the next theorem considerably. 

Lemma z. Let A, B be two groups and assume Z(A) = 1. If M is a 

faithful Z (A)-module, and T is a faithf'ul. Z (B)-module, then M@ T p p 

is a faithf'ul. Z (A x B)-module. 
p 

Proof. If V is a vector space over ZP, we let GL(V) denote the 

general linear group on V. Then A x B $_ GL(M) x GL(T) = C, so we 

examine the kernel, K, of the representation of Con M® T. Let 

m1,•••,m be a Z -basis for M, and t 1,•••,t be a Z -basis for T. r p s p 

Then{~© tjl1 $. i $. r, 1 $. j $. s} is a Zp-basis for M ®T. Suppose 

f x g E K, and 

for each i 

tjg = l YjitR; for each j. 

Then m1 ® tj = m1 ® tj(f' x g) = (l cpiklllic) ® (l y jRt.e ). So 
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mi® tj = l cpiky jJ ~ ® t..f, hence we have 
k,~ 

o if (i,j) # (k,R) 

cpiky jR = 
1 if (i,j) = (k,~) 

-1 Therefore m1f = cpmi for each i, and tjg = cp tj for each j. 

Suppose a x b E (A x B) n K. Since Z(A) = 1, and our results 

show that K ~ Z(GL(M)) x Z(GL(T)), we must have a = 1. But this 

means that the constant, cp, is the identity, so b = 1. Therefore 

Ax B acts faithfu.lly on M® T. 

Lemma 8, Suppose A E ~ - 0 , B E 0 , and either Z(A), or Z(B) is . p p p 

the identity. Then A x B E (ep) , the sma11est formation generated 

by the set e • 
p 

Proof. Let E be an C-subgroup of A, and E an C-subgroup of B. Since 

A E ~ - 0 , it follows from Lemma 6a that O ,(Eo ) = 1. But E lies 
p p p c.p 

in 2, so E/O , (E) is an element of 8 , consequently Ee, < O , . (E). 
p ,p p p - p ;:P' 

Therefore E () is a p-group. Since B E e , 0 , (l!' E. ) > 1. 
tp p p p . 

Now E x }' is an e-subgroup of A x B. We wish to examine 

0 ,((Ex mo). Since(E x"NJ/(¥.0 x ~n) E g, (Ex ~)e is a · normal. 
p C.p C.p c;p p p 

subgroup of Ex 'I contained in Ee x 'le. we ·def'ine a subgroup, W, 
p p 

of E'ep bys W = {e E E'ep13t E (EX }')ep ~1 t = dxe, . and d E Elp}. 



-39-

In other words, W is just the collection of al1 elements of IE. 
p 

which appear as components of elements of (E x I)£ • W is clearly 
p 

a subgroup of le , and since (Ex l)g is normal in Ex~' Wis 
p p 

normal in 1. By construction, (E x l>e ~ E x w, hence 
p 

l/w ~(E it)/ (E x w) lies in ep. Therefore w = I£ • 
p 

Now if e is any element of 0 ,(It,), then there is an element 
p p . 

din E~, such that t = dxe lies in (Ex ~>e. Ent Ee is a 
p p p 

p-group, hence by taking an appropriate power of t, we see that e 

lies in ( E x ~ e • Therefore, 
p 

<JO> o ,<'Ell > !S: o ,C<E x l>e > !S: o ,(En x le > =. o ,Cl~ > • 
P c.P P P P cp P P P 

By assumption, A has a .faithful irreducible Z (A)-module, M, . p 

and B has a faithful irreducible Z (B)-module, T, such that p 

1 < CT(O ,(lf't )) < T. By Lemma 7, M ® T is a faithful Z (Ax B)-module. 
p tp p 

Since M ® TIB is isomorphic to a multiple o.f T, if we let U 

be any Zp(A x B)-composition factor of M® T, then UjB is also a 

multiple of T, so because of (JO) we have 

(31) 1 < Cu(O ,Cln )) = Cu(O ,((E x ~n )) < u • . 
p (p p (p 

for each u. · 
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Let G =(A xB)/CAxB(U), then E =(Ex l)cAxB(U)/CAxB(U) is an 

~-subgroup of G. By Lemma 2, iep = (Ex 'r.)ePCAxB(U)/CAxB(U), and 

by (31), O ,((Ex E)e ) does not centralize u, hence O ,(Ee)> 1. 
p p p p 

Since 1 < c0(o ,((Ex l)e )), and G is an element of "f., it follows 
p p 

from Lemma 6a that G lies in e • p 

Let V be the direct sum of all Z (A x B)-composition factors 
p 

occurring in a compa;iti.on series of M®T. :av- (14), F(A x B) = F(A) x F(B) 

is a p'-group, so the fact that M ® T is faithful implies VI F(A X B) 

is faithful. By Lemma 1, V is a faithful completely reducible 

ZP(A x B)-module. Therefore(A xB)/~ CAxB(U) lies in (ep) , where 

the intersection is taken over the irreducible co~ponents of V. 

Since V is faithful this intersection is the identity, hence 

A x B E (ep) • 

Corollary 1. If e << 1, and there is an element B in 0 such that 
p 

Z(B) = 1, then (tp) s (t~for each q in n(e) • 

. Proof. By Lemma 8, if A E tp - ep, then A x B E (ep) • Therefore 

A E (eP) , so (tp) = (eP) . By Lemma 6d., if q E TT(e), then 

ep S (~q) , hence (tp) S (tq) • 

Theorem 7. . Suppose e << 1, and ep'. 0 r are . non-empty for two primes 

p,r in the characteristic of e. Let (1. } be the unique minima] local q . 

definition of 1. Then 
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for each q in ncl). 

Proof. We define a new forma.tion,1 , locally by setting 

(32) 

for q E n(E)• 

Since e << J, f}q S 1q for each q, by Theorem 6. Therefore~ S 1• 

Let i be the set specified in Definition 6 for the formation s 

ff. Since 'j S ~ , is S ~ s S 1s for . each s in n(e). Therefore 

e << P/, by Theorem 6. 

Suppose 1c1. If G is an element of minimal order in 'J. - ?, 
then G is a semi-direct product, G = 1l'M, where 'i1 is an '7-subgroup of 

G, and acts faithfully and irreducibly on the elementary abelian 

t-group M. Since .G lies in 1- 7, 'i1:::: G/CG(M) lies in 'Jt - 7t • 

Fort in n(e)• this contradicts the definition of ~t' hence t E ncE). 

Since e << tJ, 1:", as an ~-subgroup of G, must contain some 

e-subgroup, E, ~f G. Thus for any prime q, the permutat:-on represen­

tation 10 (E ) I G is faithfu.1. By Lemm.a 6c, G lies in tq for each 
. q' eq 

q in n(r) - {t}. 

By Lemma. 6d, eq s'Js for each q,s in n(e), hence if GE eq for 

some q in n(r) - (t), GE 1't• Suppose, therefore, that GE ~q - eq 

for each q in n(C) - {t}. One of the primes p,r is unequal tot, 

say p. Then G is an element of ~P - ep such that Z(G) ~. 1. Since 
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e is non-empty there is a group H in 9 , so by lemma 8, G x H E /9 ) • p p \'p 

By Lemma 6d, G x H E 7t' hence in each case 'r, as a factor group of 

G, must lie in 'f.t' a contra.diction. 

Therefore 'f = 1. Since {'j } forms a local definition for 1, we 
q 

have ~q £ 1q £PJq for q En(£), so the proof of Theorem 7 is complete. 

Because we could not relax the hypothesis on the e 's, we thought p 

it appropriate to include 

Theorem 8. Suppose e << 1 , and p E n(t). ep is empty if, and only 

if, for each element F of 1, an e-subgroup, E, of F either covers, 

or avoids each p-chief factor of F. 

Proof. Suppose an f-subgroup of F either covers or avoids each 

p-chief factor of F .for every Fin 1. Let FE tp' and let Ebe an 

~-subgroup of F • . Let M be a faithful irreducible Zp(F)-module such 

that ~(Op1 (E;)) > 1. By Theorem 5, and the fact that e<<1, 

F* = F~(O ,(F111 )) is an 1-subgroup of FM, acts irreducibly on M, and · 
. p 1p 

does not avoid M. Therefore F* =FM; M is a P-chief factor of G= FM 

which is not avoided by thee-subgroup, E* = E<1i(Op,(E~)), of G. 

Therefore M = ~(O ,(Ea )),. so e is empty. 
p Cp . p 

Suppose ep is empty, F E 'J, and E is an e-subgroup of F which 

does not avoid the p-chief factor K = L/N of F. Let F = F/CF(K). 

Our first assertion is that the semi-direct product 'FK lie.s in. 



-43-

1 (the action of F on K is the action induced by the action of F on 

K). By Theorem 5, F* = FCK(O ,(F..,,. )) is an 1-subgroup of FK. There-
P -t.P. . 

fore 'F* acts irreducibly on K, and F*/CF*(K) ::::'F. · Since FE 1, 
F E '1 p by definition. By Theorem ) , F* covers K, hence FK lies in 1. 

E = ECF(K)/CF(K) is an e-subgroup of F. By Lemma 2, 

Ee = Ee cF(K)/cF(K). Because o , (El1 ) = Ee , it follows that 
p p p ,p p p 

0 ,<'Er ) = 0 ,(Ee )CF(K)/CF(K). Therefor~ CK(O ,(Ee )) = CK(O ,(El' )). 
p p p p p p p p 

O ,(Ee ) centralizes every p-section of E, hence O ,(Ee ) centralizes 
p p p p 

(L n E)N/N, a non-identity subgroup of K. Therefore, 

1 < CK( op, (E~)) !S, K 

Thus F lies in ~ • e is empty' so it follows from Lemma. 6 that 
p p -

Ee is a p-grou~. If U is any E-composition factor of K, then 
- p - -Eo centralizes U·since Er ~ 0 (E). Upon taking inverse images in 
'p p p 

E, we see that CE(U) 2:, Er , so that E/CE(U) lies in ep• By Theorem J, 
. p . 

E covers U, hence E also covers all of K. 
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Chapter V 

Structure Theorems 

Throughout this chapter we shall make the following assumptions: 

HYpothesis I. e and 1 are saturated f Grmations such that 

(a) "il s e <<1; 

(b) there is a non-empty formation,~' such that e= fG E _g I G/F(G) tf}. 
Our first theorem saJlS that the structure of 1 is essentially the 

same a.s the structure of E in that we can show the existence of a 

formation, 'IJ , such that 1 = ( G E J I G/F( G) E lJ}. 
We first prove two lemmas. 

Le™ 9. I.et °I be a non-et11pty formation. I.et~ be the formation 

loca.lJ.sr defined by setting JJ = 1 for each p. I.et E = ( G. E J I G/F( G) E1J. 
p 

Then e =JJ. 

Proof. Suppose GE e. Because 0 , (G) 2:. F(G), G/F(G) E ~implies p ,p . 

that, for e'ach p, G/O , (G) lies in 'f. By (cr'), G lies in JJ. p ,p 

Suppose G E J,J. Then, for each p, G/O , (G) E 'f: Since 'f is p ,p 

a formation, and F(G) = n O , (G), G/F(G) lies inf. Therefore 
p p ,p 

a E e , so e = JJ • 

Lemma. 10. Suppose e, 'J. satisfy Hypothesis I. 

(a) If G is a group with f-subgroup, E, and E E1, then E = G. 
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(b) If f1q} is any local definition for 1, and G is an element of T 
such that 0 (G) = 1, then G lies in 1. 

q q 

Proof. We prove (a) by induction on the nilpotent length 0£ G. I:r 

G is nilpotent, there is nothing to prove. Since E lies in 'f, 

EF(G) lies in!. Since Eis an e-subgroup of G, E covers U/U~ for 

any subgroup, u; of G which contains E. Therefore E > F(G). Set 

G = G/F(G)' then E = E/F(G) is an e-subgroup of 'G. By induction, 

E = G, hence E = G. 

Let f 1 } be any local definition for 1. Suppose G E '(, and q 

Op(G) = 1. Let M be the regular Zp(G)-module, and form G1 = GM. 

Since G lies in 'i, G1 lies in e • It is a simple consequence of 

strong containment that e S 1, hence G1 E 1. Since Op(G) = 1, .and 

G acts faithfully on M, M = 0 , (G1). Therefore G1/M E 1 . Since p ,p p 

G ~ G1/M, G lies in 1p• This proves (b). 

Theorem 9. Suppose f and 1 satisfy Hypothesis I. Then there is a 

f orma.tion, 1J , c~ntaining °1"' ,such that 1 = f G E J I G/F( G) E V}. 

Proof. If t =1, the formation 'Y satisfies the requirements of the 

theorem. Assume e c 1. By Lemma 9, we know that the .family, 

re Ir = "r for each p}, of formations is a local definition :ror t 
p p . 

We shall use this family for the local definition of e throughout 

the remainder of the proof. Let £1 } be the wlique minimal local 
q 

definition of 1. A second application of Lemma 9 says that we need 
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only show 1. = 1 for each pair of primes, r,s. In view of Theorem r s 

7 and Corollary 1, we begin by examining the set e for various 
s 

primes s. Since'1.se , n(e) contains a11 primes, so e and~ s s 

are defined for each s. 

Let G be an element of minimal order in ct/- t. By minimaBty, 

if N is any norma1 non-identity subgroup of G, then G/N lies in e. 
Therefore Ge is the unique minimal normal non-identity subgroup 

of G. If E is an e-subgroup of G, then Ene = G, and En Ge = 1. 

Furthermore, E acts faithfully and irreducibly on Ge • We set 

M = Ge_,, and note that M is an elementary abelian p-group for some 

·prime p. 

Since G is not in e, E cannot lie in 'f. Therefore F(E) ~ E'r> 1. 

But it follows from (14) that F(E) is a p'-group, so for some prime 

r I: p, E'l' has a no~-identity normal Sylow r~subgroup, R~ If s '/: r, 

then 

Because M is the unique minimal normal subgroup of G, and E n M = 1, 

10 (E )IG is faithful for each s. By Lemma 6, G lies in e for 
s' e ' 6 

s 

each prime s I= r,p. Since E is .faithfu1 and irreducib1e on M, 

Z(G) = 1. 

We now choose a prime s ~ r,p. Then G E es, so there exists 

a faithful irreducible Z
6

(G)-module, J, such that 1 < CJ(0
8
,(Et

8
)) < J. 
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Set G1 = GJ. Since Eis isomorphic to an e-subgroup ~f 'G1/J, it 
follows from (25c) and Theorem 5 that E* = ECJ(Os 1 (Ee )) ·is an 

. s 

e-subgroup of G1• An ~-subgroup of G1 covers G1/J since GE 1; 
it cannot avoid J because f!,<< 1. Therefore G1 lies in 1. Because 

Eis a quotient group of E* which does not lie in 'f, E* cannot lie 

in "r, hence 

1 < (E*~= (E*>e ~ Ei.rcJ(o
9

,(Ee )). 
p s 

(E*):y is a p'-group because ~is a subgroup of the p'-group, F(E), 
. G1 
and s '/: p. 1(E*~I is faithful since J is the unique minimal 

normal subgroup of G1, and (E*)"l'n J ~ CJ(o
9
,(Ets)) < J. It follows 

from parts {a) and (c) of Lemma 6 that G1 E ep. By construction, 

Z(G1) = 1, hence we have established 

(33) If s i= r, t~en there is a group, X, in es such that Z(X) = 1. 

We now apply the results of Chapter r:v. n(e) contains all 

primes, so it follows from Theorem 7, and (33) .that 1s = (t
5

) for 

each prime· s. By Corollary 1, we have 

(34) 

for s,q in r' 

Qf c: 1 £or each s. ts - r 

For s i= r, we set 1 = 'lJ. The final step in the proof will be to s 

show ~ c:'\}. r-

By part (d) of Lemma 6, er S 1s for each s, so er s;1J. Suppose 
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H E t - e , and E is an e-subgroup of H. r r 

E ~ = E"r is an r-group. 

<Ii' Suppose E'I = 1, then E lies in l • By Lemma 10, E = H, and 

if s is any prime not dividing rl HI, 0 (H) = 1, so H E 1. = iJ. s s 

Suppose Er> 1. By (14), Or(H) = 1, so 1&,-IH is faithful. 

Since H E 'r' H also lies in 1. Thus if s is a prime which do.es 

not divide I HI , it follows from part (b) of Lemma 6 that H E (ts) • 

Therefore 

tr s'V ~1r =(tr). 
Since 1J= 1 for each s, Lemma 9 says that 1-= {G Ei IG/F(G) EV). s 

The fact that V contains 1 is a consequence of part (b) of Lemma 10. 

We are interested in finding formations which are maximal in 

the partial ordering <<. Since e << 1 implies l S 1, we shall . 

assume e c 1, as ~ell as Hypothesis I. Since e::: {G Ei I G/F(G) E 'TJ' 
we shall fix our local definition fore by setting e =1 for each ' p 

p. We shall assume that { 1, ) is the minimal local definition for 1. 
p 

By the proof of Theorem 9, there is a formation, lJ, containing 'f, 
such that 1 = \) for each p. Since e c 1, we must have 1 c 1J. p 

Before stating our main .theorem, we prove several lemmas. The 

proof· of Lemma 12 contains the essential. constructions used in the 

proof of our main theorem. 

Lemma 11. Let G be a group, and 1 < H ~ G. Assume that the permu-
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tation representation, 1HIG, is faithful. If Mis the Zp(G)-module 

which gives 1HjG, set U = n ~(H)g. Then U is a Zp(G)-submodule 
gEG 

of M, and M/U is a faithful ZP(G)-modu1e. 

Proof. We can choose the cosets of H in G to be a Z -basis for M, 
p 

i.e., M = Z ·H ~ Z .Hg2 ~ ••• ~ Z .Hg , where s = [G:H], and the oper-p . p p s 

ation of G on M is by right multiplication. 

For each g in G, CM(H)g = ~(~), hence U = n ~(~) = ~( U ~). 
gEG gEG 

In other words, if N is the normal closure of Hin G, then U = ~(N). 
Since N < G, U is a Z (G)-submodule of M. 

p 

For i = 1,•••,m, letLJi denote one of the orbits of the cosets 

H, Hg2,,••,Hgs under a~tion by N. Since N < G, G permutes these 

orbits transitively, thus all orbits have the same number of elements. 

The number of elements in a:ny orbit is [N:H], and since 1HIG is 

faithful, H cannot be normal in N, so [N:H] ~ J. For each i, we 

set LJ1 = (~1,•••,Hg1r} where r = [N:H]. 
r 

Let u1 = l Hgik' for i = 1,···,m. Our first assertion is that 

k::1 
u1, ••• ,u form a Z -basis for c.._(N). The elements u1,•••,u are m p -M m · 

clearly linearly independent, and since ()i is an orbit of N, the 

ll:i's satisfy u1n = u1 for each n in N. Therefore~,·•·,~ span a 

subspace of ~(N). 
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m r 

Suppose w = l l a1kHgik lies in <11(N). Then 
i=1 k=1 

m r 

l l (aikHgik - O'ikHgikn} = O 
i=1 k=l 

for each n in N. Now N acts as a transitive permutation group on 

each orbit, hence for each i, and each k,j such that 1 :$. i :$. m, and 

1 ~ k,j :$. r, there is an element nikj of N such that 

If we use this relation in the sum above, as well as the fact that 

nijk permutes the cosets of Ci' it follows that, for each i, 

m 

Thus W = I a1u1 , so the u1 span CM(N). 
1=1 

M/U is the collection of cosets: 

Therefore, a Z -basis for 
p 

u + Hg11 = u + H, u + Hg12'•••,u + Hg1,r-1 

(35) 
u + Hg21 

• • .. 
u + Hgm1 

• • • 

Suppose x lies in the kernel of the representation of G on 

M/U. Then, for 1 :$. i :$. m, and 1 :$. j :$. r - 1, . we have 
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m 

Hgijx - Hgij = l ak'\: 
k=l 

where the ak are suitably chosen elements of ZP. Since Hgijx is ~ coset, 

and each '1c is a sum of at least three distinct cosets, we must have 

each ak = o. Since x permutes the ~rbits of N, it follows from the 

fact that x fixes Hgil that x fixes each orbit, (Ji. Therefore 

r-1 

Hgirx = (ui - l Hgik)x = Hgir' 
k=1 

so x lies in the kernel of the representation of G on the cosets of H. 

Therefore x = 1, hence M/U is faithful. 

Lemma 12. Suppose e, 1 satisfy Hypothesis I, e c 1, and there is an 

element, H, in ·V n e -°\"such that 0 (H) = 1. Then p 

'lJ ~ {G Et I F(G) is a p-group). 

Proof. Let G be an element of' 1 such that F(G) is a p-group. Let 

Ebe an e-subgroup of G, and assume Op,(E'f) > 1. Since F(G) is a 

p-group, 0 ,(G) = 1, hence 10 (E )IG is faithful. Let M be the 
p p' ~ 

Zp(G)-module which gives the permutation representation on the cosets 

of 0 ,(E ); let U = n CM(O ,(E..r)g). By Lemma 11, the Z (G)-module, 
p gEG p · p . 

M1 = M/U, is faithful. 
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Set X = GMi,then F(X) = F(G)Mi,so X/F(X) ::::: G/F(G). Since G lies 

in 1, X/F(X) E 'V, hence X lies in '/. By (2.5c) and Theorem .5, 

E* = E~ (Op,(~) is an e-subgroup of X. But ~(Op,(~)) 2 U, hence 

'(Op'(E ))=~(Op' (E~ )/U. !st T be the intersection of all con­

jugates of E* in X. Since E* n M1 = ~1 (Op' (&r')), it follows that 

T n Ml = n ~ (0 • (E~g) = 1. 
gEX 1'11. p · 

But if K ~ x, and Kn Ml = 1, then K:::: cx<M1>· ~(Ml) = CG(Mi)Mi_, 

so the fact that G is faithf'ul on M1 says that Mi is self-centra­
X 

. li.zing in X, consequently, K = 1. Therefore T = 1, so 1E*I is 

faithf'ul. It is clear, now, that 1E* IX is also faithful, so if .,, 
t is any prime which does not divide the order of X, then 

XE {~t) = 1-t =V, by Isnuna 6. Therefore G, as a factor group 

of X, also lies in ti. · 

We may now assume Op,(Ei') = 1, so ~is a p-group. It is time 

to use H. If R = I 1 e • • • e It is a decomposition of the regular 

Z (H)-module into its principal indecomposable constituents, we 
p . 

set K.e = I.t /,/r1 for~= 1, • • •, t. Since R is faithful, and F(H) is 

a p'-group, it follows from Theorem 1 and Ismma 1 that R* = K1 e ••.~Kt. 
is .f'ai thful. Since H does not lie in "r, it .follows that for some 

i, B = H/ CH{K,e) does not lie. in S. Ist K = K,e, then B is an element 

of °'Jn e - ~which has K as a faithful irreducible Zp(B)-modu1e. 
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Let Ube the regular Z (G)-module, and set W =(Bx G)(K ®U), p 

where the action of B x G on K ® U by conjugation is the canonical 

action given in Chapter II. To show G E"lJ, it is sufficient to 

show W E iJ, sine~ G is a factor group of W. 

By (14), F(B) is a p'-group, and by assumption, F(G) is a 

p-group. Therefore if N is the kernel of the representation of 

F(B x G) on K ® U, then N = N n F(B) X N n F(G). Since B and G 

act faithfully on K ® U, K ® UI F(BxG) is faith.f'u1. By Lemm.a 1, 

K ® u is a faith.f'uJ. Zp(B x G)-module. Therefore op,(W) = 1, so 

F(W) = F(G)(K ® U). Since W/F(W) ::: B x G/F(G), W/F(W) E 1J, so W 

lies in 1. 
An e-subgroup of Bx G is Bx E, so by (25c) and Theorem ·5, 

E* = (B x E)CK ® 0(op1 ((B x E~) is an e-subgroup of W. Since 

B E '\Jn e -'I, 1 < ~ S F(B), so ~ is a p'-group. By assumption . 

E'I is a p-group. Let V be the collection of elements of B'r which 

appear as components of elements of (Bx E)~. Since (Bx E)-r~ Bx E, · 

V ~ B, and_ it is clear that (B X Ehr S V X E. Therefore 

B/V ~ (B x E)!...V x E) lies in "r, hence V = Br• If v E V, then there is 

an element u in E such that v X u E (B x El.r• Since ~is a 

p'-group, and Ei' is a p-group, v is equal to a power of v x u. There­

fore 

(J6) 
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Now K ® Uj ~is a multiple of Kj ~ so it follows from Theorem 1 that 

CK® u(Rr) = 1. By (36), B x Eis an e-subgroup of W. 

Let t be a prime which does not divide IWI. The fact that 
w . w . 

1BxEI is faithful. implies that 1(BxE~I is faithf.Ul, so by part (b) 

of Lemma 6, Wis an element of (~t) = 1t = 'U. Therefore G lies in V 
in every case, so Lemma 12 has been proven. 

Because of the preceeding lemma, we give 

Definition 7. · Set il = (pj Vne -'T contains a group, H, with o (H) = 1}. 
p 

We call a prime, p, special i£ p E il'. 

Lennna 13. If e, 1 satisfy Hypothesis I, and ec 1, then there is at 

most one special pl"ime. 

Proof. Let G be an element of minimal order in 1- e • Then G is the 

semi-direct product, EM, where E is an e-subgroup of G, and M is the 

unique minimal normal subgroup of G. 

Since E acts faithfully and irreducib~ on M, M = F( G). By Lemma 

10, Eis not an element oft, and since GE 1, G/F(G) lies in'V, hence 

E E Vn £ - 'r. 
Since 0 (E) n 0 (E) = 1 for two distinct primes r,s, E/Ot.(E) .r s 

can lie in 'T for at most one prime t. If s # t, then E/O (E) E '\J ne -'!', s 

hence il' s; {t}. 
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Remark. If general, we cannot control the choice of G enough to be 

certain that there are no special primes. This is the basis for the 

example in Chapter VI, and the reason behind 

liypothesis II. Let G = EM be a fixed element of minimal order in 

1- e... If r is any prime such that E/O (E) lies in 'T, we assume that r . 

Jr' is not contained in 1". (Such a prime does not necessarily exist.) 

Theorem 10. Suppose E and 1 satisfy Hypotheses I and II. If e c 1, 
then 1 = 1 , the collection of all solvable groups. 

Proof. Our first step is to show that 1J contains the collection, 

ill' of all solvable Tl-groups. By Lemma 12, the fact that 11.. s e s "I 
shows tha.t '\J contains the collection of all nilpotent 'fl-groups. 

Proceeding by induction, we assume that °U contains the collection, 

'1..~ , of all solvable Tl-groups of nilpotent length at most i. But 

'rt~+!= [GE~ jG/F(G) Ef'l~ }, thus 1 contains all solvable 11-groups 

of nilpotent length at most i + 1. 

Let G E '¥\.i;l, and F(G) = P1 X • • • x P
8

, where P1 is the 

Sylow pi-subgroup of F(G). Set Ni= ~Pk, and let R1 be the 

regular Z (G/Ni)-modul.e for i = 1,•••,s. We allow G to act on pi . 

R = R1 X ••• X Rs by conjugation according to the ru1e 
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_Then we form the semi-direct product X =GR. By construction, Ni 

centralizes the pi-group, Ri' hence the group, F(G)R, is nilpotent. 

Since F(X)/R is a normal nilpotent subgroup of X/R, and X/R::::: G, 

F(X) ~ F(G)R. Therefore F(X) = F(G)R, so X/F(X) z G/F(G). 

G/F(G) E 'V, it follows that X lies in 1. 

For each i, set xi= X/Ni(~Ric), Ri = NiR/Ni(~Ric), 

Gi = G(~ 1ic)/N1 (~ l\:)• By modularity 

Thus xi is the semi-direct product of Ri by Gi, hence 

Since 

and 

Because 'G1 acts faith.f'ully on Ri' it follows that R1 is a self-centra­

lizing normal pi-subgroup of xi. Therefore op~(Xi) = 1, so F(Xi) is 

a pi-group. But pi lies in TJ, so by Ismma. 12, Xi is an element of C\J 

for each i. Since n{Ni( TI~)}= 1, X lies in 'lJ also. Therefore 
i k:/:i 

G E ~. By induction, JTJ S 1.J. 
By Ismma 13, if 1i.M is the minimal element of '/--e mentioned in 

lies in 1, thus Tl contains r0 •· Therefore, 

Hypothesis II, then there is at most one prime, r 0 , such that E/O (E) 
ro 
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Suppose e does not contain Jr~, and let G1 = E1~ be an element 

of minimal order in J • -e . By Lemma. 10, Ei is an element of . ro 
'V n {. - f, and since E1 E J. • , 0 ( E1) = 1. Therefore T] contains ro ro 
a1J. primes. 

Suppose l contains ) , • 
ro 

so we can choose Hin J , .:.1. ro 

By assumption 'T does not contain J. • , 
ro 

Since ,Sr• S 1J, H is an element of 
0 

1J n ~ - "f with 0 ( H) = 1. . ro Therefore Tl contains all primes in every 

case, so we have 

which completes the proof of Theorem 10. 

Corollary 2. Let?'l.1 be the collection of groups of nilpotent length . 

at most i. If 11.1 << 1, then 1 = f1 i, or 1 = j. 

Proof. If we set ?10 = (1}, then for i ~ 1, 1l1 =(GE~ IG/F(G) Ef11_1). 

For each prime, p, A p' is not contained in ?f1_1 , hence the hypothesis 
r 

of Theorem 10 is satisfied. The result follows from Theorem 10. 
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Chapter VI 

An Eicample · 

Let r be a prime. Throughout this chapter, we shall set 

~= {G EJIG/F(G) E ,&r,}• For each p, we set ~p = ,&r,; (~) forms 

a local definition for ~ by Lemma 9. In this chapter, we shall 

characterize the formations which strongly contain~. The for­

mation ~ provides an example which shows that Hypothesis II is not 

redundant. 

Lemma 14. Let G be a group with Sylow r-subgroup R. Then NG(R) 

is an~-subgroup of G. 

Proof. Because R is a Sylow r-subgroup of G, NG(R)/R is an r'-group. 

Therefore NG(R) lies in ~. 

Suppose NG(R) ;S U ~ G. We wish to show NG(R) covers U/Ua,• 

r' r r' r' Clearly UCP-_ = 0 ' (U). Since R ~ 0 (U), it follows that 0 (U) 

r' .acts transitively on the Sylow r-subgroups of U, hence U ~ 0 (U)NG(R). 

Since R covers every r-section of U, it follows that NG(R) covers 

r' r' r / r'r 0 (U)/O ' (U). Therefore NG(R) covers U 0 ' (U). By definition, 

NG(R) is an ~-subgroup of G. 

Suppose 1 >>&, and 1;:,~. If £1. } is the minimal local def'in­
q 

ition of 1, it follows from Theorem 9 that 1 = 1 for each q,s.· 
. q s 

We set dlJ = 'f. • If H lies in "IJ n ~ , then H has a normal Sylow 
q 
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r-subgroup, so H/O (H) lies in~ ,. Therefore, Hypothesis II is r r 

violated for the prime r. It follows from lemma. 13 that r is 

the unique special prime associated with 1 and~. The next 

theorem gives a cl.ass of formatiohs which strongly containd<. 

Theorem 11. I.st"\ be a non-empty formation. I.st 

"U= (GEA \G/O ,(G) E'I}, then '1J is a formation. If r 

·1= (GEA IG/F(G) E'U}, then "J>>@... 

Proof. Suppose G E°U, and N ~ G. Then Or1 (G)N/N .:S: Or,(G/N). 

Since G/Or' (G) E j', we also have (G/N)/Or' (G/N) E °I. Therefore, 

G/N lies in ~. 

Suppose N1,N2 are two normal subgroups of G such that G/Ni E~ 

for i = 1,2. For each i, let Mi/N1 = Or1(G/N1), then G/Mi E "r for 

each i, hence G/Mi n ~ E "f. For each i, (M1 n ~)N1/Ni is an 

r'-group, hence M1 n ~/Ni n Mi n ~ is an r'-group for each i. 

Therefore M1 n ~/N1 n N2 is an r'-group, so it follows that the 

factor group of G/N1 n N2 by Or' (G/N1 n N2) lies in 'f. Th~refore 

G/N1 n N2 .E 1J, thus iJ is a formation. 

To show CX<<'1, it is sufficient to show that ~PS 'tJ for 

each prime p. Suppose G E fr' then G has a faithful. irreducible 

Z (G)-modu1e. By (14), this means that 0 (G) = 1. Since G E 'f, r r 

G/F(G) E\). Since Or(G) = 1, F(G) is an r'-group, so G/Or 1 (G) E '1. 
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Therefore G lies in 'lJ. 

Suppose G E ~p for p F r. .An ~-subgroup of G is NG(R) where 

Since p # r, 0 ,((NG(R))_g ) = R. R is a Sylow r-subgroup of G. 
p r' 

Therefore G has a faithful irreducible Z (G)-module, J, such that p 

1 < CJ(R) .::;:: J. By Theorem 1, either CJ(Or(G)) = J, or it is the 

identity. The latter possibility cannot occur because 

1 < CJ(R).::;:: CJ(Or(G)). Therefore the fact that J is · faithful says 

that Or(G) = 1, so F(G) is an r'-group. G E1, so the same argument 

as in the preceeding paragraph shows that G/Or1 (G) E°f'. Therefore 

G E tJ. By Theorem 6, !'.K<< 1. 
Since our choice of 'I is arbitrary, it follows that we can . 

choose an infinite number of distinct formations which strongly 

contain fR. 

Theorem 12. 

ition for 1. 

Our next theorem is the converse to Theorem 11. 

Suppose 1 >> ~ , and £1 J is the minimal local defin- ; 
q 

Then there is a non-empty formation °I such that 

'1-q = (G El I G/Or' (G) E 'fJ. 

Proof. Suppose '1=>~. 

that 1 = 1J for each q. 
q 

By Theorem 9, there is a formation 'lf such 

Our first step is to show that 6lJ is the 

smallest formation generated by {H E"f lor(H) = 1}. Let 'tJ' be the 

smaJ.lest formation generated by this set. 

Sup:Pose HE 7, and Or(H) = 1. Let K ~ I 1 ~ ••• e Is be the 

decomposition of the regular Zr(H)-module, K, into principal 
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indecomposable submodules. By Theorem 1, Lemma 1, and the fact 

that F(H) is an r'-group, it follows that H acts faithfully on 

J 1 @ ••• ~ Js' where Jk = Ik~~ for each k. For each k, set 

~ = H/CH(Jk). Then Jk is a faithful irreducible Zr(Hk)-modu1e. 

If~ is a Sylow r-subgroup of~' then NHic(~) is an!R-subgroup 

of Hie' and (NHic(~)~r' =(NI\:(~))~=~· Therefore 

Or,((NHic(~))Qr) = 1. B-3 definition, Hie E tr for each k, so 

~ << t implies Hie E 1r = lJ • . Therefore H lies in V. Since the 

generators of 1)' all lie in 'U, ~ is contained in(]. We know that 
.. · 

'\J is the smallest formation generated by t , from the proof of 
r 

,..,, ,._ 
Theorem 9. Thus if we show tr S 'LJ , we have shown 'ti S LJ. If G E tr, 

then G has a faithful irreducible Z (G)-modu1e, and G E 7. By (14), 
r 

Or(G) = 1 so by definition, G E tf. Therefore lJ = '1. 

Let 'I' be the smallest formation generated by the set 
.r 

(H/Or,(H)IH E1J}. Set 111 = (G El IG/Or,(G) Eer}. We want to show 

1) = 1)1• By construction, 1) S 1)1• 

Since the generators of l1f are elements of d)), we must have 

"f £ l). Therefore, if G E iJ1, then G/Or' (G) lies in 'U • . To show G 

lies in'U, we use induction on the nilpotent length of Or,(G). I£ 

0 , (G) . is nilpotent, then G/O , (G) E 'U forces G/F(G) EV. Therefore r r 

G is an ele~ent of 1. By our first paragraph, G/Or(G) lies in 'U, so 

· G also lies in~ since Or(G) n or,(G) = 1. 



-62-

We note that 0 ,(G/F(O ,(G))) = 0 ,(G)/F(O ,(G)), hence by r r r r 

induction, if GE 4\)1 , then G/F(Or1 (G)) E~. Therefore G lies in 

1. By our first paragraph G/O (G) lies in ILJ, so G/O (G) n F(O ,(G)) • G r r r 

also lies in \I. Therefore V = tJ1• This completes the proof in 

the case when Ole 1. 
If~--= 1, we let l be the fonnation consisting only of the 

identity. We must then show that {~} is the minimal local defin­

ition for~. 

Let {(jl } be the minimAl local definition for IR.. Suppose p is 
q 

an arbitrary prime, G E ,8 , = (R_ , and t is a prime which does not 
r P 

divide rplGI. Let K be the regular Zt(G)-module. Set G1 =GK. 

Let K1 be the regular ZP(G1)-module. Set G2 = G1K1 • Since G 

acts faithfully on K, and G1 acts faithfully on K1' op,,p(G2 ) = K1• 

Depending on the choice of p, G2 is either an r'-group, or has K1 

as a normal Sylow r-subgroup. Therefore G2 E ~' hence 

GiO , (G
2

) = G2/K1 E ( • Since G is a factor group of G1 , .it p ,p . p . 

follows that G E Olp• Therefore ,gr' ~ [p. This completes the proof. 
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Appendix 

In this appendix, we shall give proofs to (18'), (18), and 

(19). 

(18') If N ~ G, and n1,•••,nn are sets of primes, then 

Proof. Use induction on N. If n = 1, and TT = n1, then On(G) is the 

unique maximal normal TT-subgroup of G, hence 0 (G) is .characteristic TT 

in G. Therefore, 0 (N), as a characteristic subgroup of the normal TT 

subgroup N, is normal in G. Thus O (N) < 0 (G) n N. TT - TT But N n 0 (G) TT 

is a normal n-subgroup of N, hence is contained in 0 (N). TT 

We may assume that T = O (N) = O (G) n N. 
TT1,•••,TTn-1 TT1,•••,TTn-1 

Then 0 (N)O (G)/O (G) is a norma1 
n1,•••,nn n1,•••,TTn-1 TT1,•••,TTn-1 · 

TT -subgroup of G = G/O ••• (G), and must be contained in 
n TT1' 'TTn-1 

O (G). Therefore O (N) < O ••• (G) n N. But 
TTn n1,•••,TTn - TT1' ,nn 

0 ••• (G) n N/T is a normal TTn-subgroup of N/T, hence 
TT1' ,nn 

OTT ••• TT (G) n N s OTT ••• TT (N). This proves (18'). 
1' ' n 1' ' n 

(18) . Let G be a group. Then 0 , (G) = n CG(K), where the inter-p ,p ' 

section is taken over all p-chief factors, K, of G. 

Proof. By looking at a chief series of G which passes through 

O , (G), it is clear that 0 , (G) centralizes every p-chief factor p ,p p ,p 

of G. Let P = 0 , (G)/O ,(G), and E = P/D(P). Then G is represented p ,p p 
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on E, and the kernel of this representation is 0 , (G) (cf. [9],p. 7). p ,p 

Ii' g is a:ny p'-element of n CG(K), then g centralizes E, since it 

centralizes every p-chief factor of G. Therefore g lies in Op,(G). 

This shows that n CG(K) has a normal p-complement, so by (18'), 

n CG(K) :s op,,p(G). 

(19) If G is a group, then F(G) = n 0 , (G), where the intersection p p ,p 

is taken over al1 primes p. 

Proof. Since F(G) is nilpotent, it has a normal p-complement for 

every p. By (18'), F(G) ~ n 0 , (G). Therefore it is sufficient 
. p p ,p 

to show that n 0 , (G) is nilpotent. But look at a:ny chief series 
' p p ,p 

of G passing through n O , (G). By (18), n O , (G) centralizes 
. p p ,p p p ,p 

every factor in this series, hence the part of this. chief series 

covered by n O , ( G) forms 
p p ,p 

so n 0 , (G) is nilpotent. 
p p ,p 

a central series for n 0 , . ( G), 
. p p ,p 

This proves (19). 
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