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Abstract 

The propagation of waves in an extended, irregular medium 

is studied under the "quasi-optics" and the ''Markov random process" 

approximations. Under these assumptions, a Fokker-Planck equation 

satisfied by the characteristic functional of the random wave field is 

derived. A complete set of the moment equations with different trans­

verse coordinates and different wavenumbers is then obtaine d from the 

characteristic functional. The derivation does not require Gaus s ian 

statistics of the random medium and the result can be app lied to t he 

time-dependent problem. We then solve the moment equations for the 

phase correlation function, angular broadening, temporal pulse smearing, 

intensity correlation function, and the probability distribution o f the 

random waves. The necessary and sufficient conditions for strong 

scintillation are also given. 

We also consider the problem of diffraction of waves by a 

random, phase-changing screen. The intensity correlation function is 

solved in the whole Fresnel diffraction region and the temporal pulse 

broadening function is derived rigorously from the wave equation. 

The method of smooth perturbations is applied to interplane tary 

scintillations . We formulate and calculate the effects of the s olar-

wind velocity fluctuations on the ob s erved intensity power spectrum and 

on the ratio of the observed "pattern" velocity and the true velocity 

of the solar wind in the three-dimensional spherical model. The r.m. s. 
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solar-wind velocity fluctuations are found to be ~ 200 km/sec in the 

region about 20 solar radii from the Sun. 

We then interpret the observed interstellar scintillation 

data using the theories derived under the Markov approximation, which 

are also valid for the strong scintillation. We find that the 

Kolmogorov power-law spectrtnn with an outer scale of 10 to 100 pc 

fits the scintillation data and that the ambient averaged electron 

densi ty in the interstellar meditnn is about 0.025 cm-
3

. It is also 

found that there e x ists a region of strong electron density fluctuation 

-3 
with thickness ~ 10 pc and mean electron density ~ 7 cm between the 

PSR 0833-45 pulsar and the earth. 



Chapter 

1. 

2. 

3. 

4. 

v 

Table of Contents 

Title 

Introduction 

I. Phenomena in Astrophysical Scintillations 

II. The Wave Equation in the Plasma Medium 

III. Power Spectra of the Turbulent Plasmas 

IV. Previous Work on the Theory of Wave 

Propagation in a Random Medium 

v. Outline of the Thesis 

Theories of Wave Propagation in a Random Medium 

I. The Wave Equation 

II. Hierachy Equations and Equations for 

Characteristic Functionals 

III. Methods of Approximation 

General Thin Screen Diffraction Theory 

I . Introduction 

II. New Method 

III. Numerical Results 

IV. Analytic Solutions 

The Markov Random Process Approx imation (A) 

Page 

1 

1 

4 

9 

14 

17 

19 

19 

21 

25 

38 

38 

47 

51 

66 

71 

I. Introduction 73 

II . Fokker-Planck Equation for the Characteristic 73 

Functional of the Wave Field 

III. Moment Equations 76 



Chapter 

5. 

vi 

Title 

IV. Applications 

V. Second Moment and Others 

VI. Validity of the Markov and Quasi-optics 

Approximation 

The Markov Random Process Approximation (B) 

I. Introduction 

II. Angular Power Spectrum 

III. Phase Fluctuations Induced by the Medium 

IV. Pulse Broadening 

V. Spatial Intensity Correlation Function 

VI. The Probability Distribution of the Random 

Wave 

Page 

76 

78 

81 

88 

88 

89 

102 

106 

128 

146 

VII. Intensity Correlation Function with Different 178 

Frequencies 

6. Selected Applications to the Problem of Interplanetary 185 

Scintillations 

I. Introduction 

II. Formulation 

185 

192 

III. Effects on the Ratio between Pattern Velocity and 201 

Mean Wind Velocity 

IV. Effects on the Frequency Power Spectrum 211 



Chapter 

7. 

Appendix 

Appendix 

Appendix 

Appendix 

Appendix 

A 

B 

c 

vii 

Title 

Interstellar Scintillations 

Page 

217 

I. Introduction 217 

II. Strong Scintillation in the Interstellar Medium 219 

III. Analysis of the Data for CP 0328, PSR 0833-45, 246 

and NP 0532 

271 

273 

278 

D 282 

E 284 

References 286 



1 

Chapter 1 

Introduction 

1. Phenomena in Astrophysical Scintillations 

In many situations of astrophysical interest the electromagnetic 

waves from a radio star propagate through a region of turbulent plasmas 

and are scattered. The radio waves scattered by the turbulent plasmas 

are superimposed on the transmitted waves and lead to amplitude and phase 

fluctuations of the resultant wave field. This produces a wide variety 

of observed phenomena such as intensity variations, angular broadening 

and temporal pulse smearing of the radio waves. 

The inte rplanetary medium and interstellar medium are two kinds 

of medium of astrophysical interest that scatter radio waves. These 

two media may be characterized respectively by their distances from the 

13 20 23 . 
earth, ~ l.5xl0 cm and 10 -10 cm; their typical electron density 

3 -2 -4 3 
fluctuations , ~ 1 electron/cm and 10 -10 e lectron/cm ; the size of 

their irregularities important for the scintillations, ~ 107cm 

11 14 
and 10 -10 cm; and the typical velocities of the plasma media trans-

verse to the line of sight, 350 Ian/sec, and ~ 50 km/sec. The phenomena 

of scattering of radio waves by these two media are termed "interplanetary 

scintillations" (IPS) and "interstella r s c intillations" (ISS) , 

respectively. 
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In interplanetary scintillations, the root mean square of the 

intensity variation is usually much smaller than the mean intensity 

and the scintillations are weak. However, interstellar scintillations 

are strong and the intensity fluctuation is of the same order as mean 

intensity. The observed data for interplanetary and interstellar 

scintillations are respectively : transverse scale of intens ity fluctu­

ations, 100-200 km and 10
9

-10
10

cm; the correlation time scale of intensity 

scintillations , ~ 0.5 sec and several minutes; and the characteristic 

-5 -7 
angular broadenings, ~ 10 radian and ~ 10 radian. 

An example of interstellar scintillations is shown in Figure 

(1 - 1) for the CP 0328 pulsar observed by Rickett (1970). This figure 

is a display of the wave intensity averaged over about 70 pulses as a 

function of time and frequency. As shown in the figure, the correlation 

time scale of intensity fluctuations is aboutl2 minutes and the decorre-

lation frequency of intensity fluctuations is about 1 30 kHz. 

The objects of this thesis are (a) to deve lop a theory of wave 

propagation in a random medium that relates the properties of turbul ent 

plasmas to the observed phenomena of the scattered radio waves , and (b) 

to study the characteristics of the turbulent plasmas in the inter-

pla netary medimn and i nterstellar medium b y utilizing the observed 

effects. 
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CP 0328 

408 MHz 

------2· 5MH;;: 

Spectra from CP 0328 at 408 MHz integrated over about 70 pulses, plotted at 
successive 50 second intervals. The frequency resolution is about 60 KHz and the spectra 
include the receiver bandpass, which gives a gradual cut-off at the edges of the diagram. 

(from Rickett 1970) 

Figure (1-1) 
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II. Wave Equation in the Plasma Meditnn 

The problems of wave propagation in a random meditnn can be studied 

by considering the scattering of waves due to each small voltnne of irregu-

larities in the medium, summing up all the waves scattered by each irregu-

larity and then calculating the statistical properties of the scattered 

waves. However , a more convenient way to tackle the problem is first to 

derive a basic macroscopic equation governing the wave propagation in 

the random medit.nn and then to solve the basic equation and calculate the 

statistical properties of the scattered waves. The second method will be 

used in this thesis. In this section we will derive a basic equation 

governing the propagation of waves with frequency ru » ru , the plasma 
p 

frequency of the meditnn, in the plasma meditnn. This wave equation applies 

to the propagation of the radio waves in the ionosphere, interplanetary 

space, or the interstellar medium. 

We start from the Maxwell equations 

E. 
ol! 

\J x E + 
ot 

= 0 (1-1) c 

€ o~ 4nJ 
0 

\J x H - -- (1- 2) 
c ot c 

':::/ . e E = 4np 
o rv e (1- 3) 

\J . ~ 0 (1 - 4) 

Here ~ is the electric field, ~ the magnetic field , {the current d ensity , 

µthe p e rmeability, e the dielectric cons tant of the medium, and c the s pe ed 
0 

of light. Gaussian units are us e d here. I n our case , µ = e = 1. 
0 
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From Eqs. (1-1) and (1-2), we innnediately have 

'V x ( Y'X)2_) + 

2 
1 0 ~ 
---+ 

2 '.:>. 2 
c ut 

0 (1-5) 

The relation between the current density ~ and the electric field E 

depends on the properties of the medium. A simple model for calculating 

the current density l in a plasma medium is presented as follows. In the 

presence of electric field ~' the electrons will be accelerated by the 

field and one has, neglecting the collision effect and magnetic forc e, 

dv 

m dt e E 

where ;:[_, m and e are the velocity, mass, and charge of an electron 

(1-6 ) 

respectively. Suppose N is the electron density in the plasma medium. 
e 

Then one has the current density 

J = N e v 
rv e (1- 7) 

In Eq. (1-7), we have neglected the ion motion and the electron thermal 

motions since the mass of an ion is much greater than that of an electron 

and since the wave velocity we consider is much greater than the electron 

thermal velocity. From Eqs. (1-6) and (1-7) we have 

OJ 

~= 

N e
2 

e ---
m 

E 

Inserting Eq. (1-8) into Eq. (1-5), one has 

1 

[

o 
2

.!2, 47tN e 
2
EJ +- --+ e rv 

2 '.:>. 2 m c ut 

(1-8) 

0 (1-9) 
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-iwt 
Take the Fourier transform in time t of Eq. (1-9) and let f(~, m)e 

be the Fourier component of ~(~, t). Then one has 

2 
v x (7Xf) - m2 e:m(~) f (~,m) = 0 

c 

where the refractive index 

Here 

e: (r) -
m "' 

1 -

2 
4ri:N e 

e 
2 mm 

- 1 -

2 
m 
___Q_ 

2 
m 

is the plasma frequency of the medium. 

From Eqs. (1-2), (1-3) and (1- 8), one also has 

(1-10) 

(1-11) 

v · (e: (r) f (r, m)) = 0 (1-12) (1) rv ,......, ,..._, 

Note that Eq. (l-10) is a vector equation. However, using the 

vector relation V x (V'X~)= - v2~ + V(V ·~) and Eq. (1-12), we can write 

Eq. (1-10) as 

(1-13) 

In our case N (r) and e (r) fluctuate irregularly. Let < > denote an 
e rv ill "-' 

average over an ensemble of propagation volumes. Then define 

<e: >=e m m 
0 

e: + 6e m m 
0 

(1-14) 

N (r) 
e "' 

<N (r)> + 6N (r) e ,......, e ,....., 

2 2 
~(~)= - 4rre 6N (r)/mc 

·- e "' 
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k 
(1) 

e: 
c (1) 

0 

and e:k<r) = (3 (r) /k
2 

"' 
6 eJ e:w << 1 

0 

to obtain from Eq. (1-13) 

0 (1 - 15) 

where now ~(~) is a random variable with z ero mean . Note that e:
1 

(r) 
< "' 

is d ifferent f r om e: (r) a nd that (3(~) is a wave-frequency inde pendent 
(1) "' . -

random variab l e . 
f· 'ile:k 

Now consider the term 'i7 (l+e:k ). We show that if the smallest scal e 

1 1 ( 2rr ) of the f l uctuation in e:k is much arger than the wave engt h A = k , this 

term is neglig ible (see also Tatarskii 1961, 1971). 

Define a scale ~ e: such that 1 \7 ~1 ~ e:k/ ~ e: and assume k£ e: >::> 1 (this 

is equivalently to as suming the smalles t scale of e:k t o be much larger than 

A). Then it is c l ear t hat 

(1-16) 

s i nce t he smallest vari a t i on s cale o f f i s l/k. The magnitude of t h i s term 

is much smaller than the ma gnitude o f k
2

e:kf sinc e k ~ >> 1 . And for e ach 
"' e: 

component ~ (r) of the vec tor field ~ ' it is a very good approx imation 
(1) "' . -

to consider only t he scalar equation 

0 (l-l 7a) 

Let ~k(~) _ ~ (r). 
(1) "' 

Eq . (1-1 7 a) becomes 

0 (l-l 7b) 
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or, 

0 (l-17c) 

This equation will reveal the effects of diffraction and refraction, 

but will not yield information concerning polarization. These effects 

are small if k£€ >> 1 and 8k << 1, but should be included in a future, 

1 more complete treatment. Eq. (1-17) is the basic equation for the theory 

of wave propagation in a random plasma medium from which all the statistical 

properties of the observed random wave may be related to the statistical 

properties of the med i um ( in particular, the refractive index €k(~) or 

1we also neg l ect here the effect of Faraday rotation due to any 
ambient magnetic field. This is justifiable i f the difference in 
Faraday rotation between any optical paths which contribute to the ob­
served intensity is small. Hence even though the Faraday rotation of a 
ty~ical meter wavelength wave in interstellar space is not small (of order 
10 radians), the angular spread of the beam is also found below to be 
small (less than about lo-6 radians) and hence the differe nce in Faraday 
rotation between contributing ray paths is very small (less than about 
3xlo-3 radians if the magnetic field va r ies by about lo-6 Gauss over a 
scale of 30 pc). Hence the negl ect of Faraday rotation i s justifiable 
for the range of parameters considered here. 
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III. Power Spectrum of the Turbulent Plasmas 

Eq. (1-17) gives the relation between the two random functions 

~k(£) and €k(£) (or~(£)). In order to calculate the statistical proper-

ties of the random wave ~k(£), one must know the statistical properties 

of €k(£)· The complete statistical properties of €k(_r) are uniquely 

specified by the joint probability distribution of the €
1 
(r)'s, or <. ~ 

equivalent by a complete set of the moment functions of €k(£). By definition 

the first moment of €k(£), (~<. ) , is equal to zero. As will be shown later 

in the thesis , the relevant statistical property of ~1<.(£) that affects the 

random wave g?k (~) is usually only the second moment (or the two-point 

correlation) of €k ' (€k(£),€k(r')). 

We will assume in this thesis that the medium is statistically 

homogeneous, in which case the correlation function (€k(£)€k(~') ) depends 

And it is most convenient to specify the spatial power 

spectrum of the fluctuations, which is related to the correlation function 

through 

Note that the mean square fluctuation in Ek is given by 

2 f 3 ( €k ) = d 51, 
3 

P (q) I (2rc) 
€ 

(1-18) 

(1-19) 

A simple and very commonly used form of the power spectrum P (q) 
€ 

is the Gaussian 

p (q) 
€ 

B e 

2 2 
-q /q 

0 (1-20) 
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where L = l/q is the coherence scale of the fluctuations. 
0 

However, observations of the solar wind and other turbulent media 

indicate a more realistic form is given by the modified power-law spectrum 

defined through 

p (q) 
€ 

B e 

2 2 
-q /q 

1 
(1-21) 

This spectrum is flat for q < q , is a power law with 
0 

index -a for q
0
< q < q

1
, and is cut off for q > q

1
• Here again L = l/q 

0 

is the coherence scale (or correlation length) and i = l/q
1 

is termed 

the inner scale. 
11 

Usually 3 < ex < 4, and a = 3 corresponds to the 

Kolmogorov spectrum. 

Evidence that the spectrum in the solar wind is essentially of the 

form in Eq. (1-21) is presented in Jokipii (1973). Prior to about 1970, 

the published papers on interplanetary scintillation all assumed a 

Gaussian spectrmn for the electron density fluctuation (corresponding to 

e:k(~), or ~(~)),and in many the data were used uncritically to infer a 

"dominant" density scale, which turned out to be of the orde r of 100 km. 

(See, e.g., Hewish & Symond 1969.) This is many orders of magnitude l e ss 

6 
than the directly observed dominant scale of 10 km (Jokipii & Coleman 

1968). But the discrepancy went unchallenged until nearly simultaneously 

Cronyn (1970b),Lovelace et al. (1970), and J okipii & Hollweg (1970) all 

converged on this question and pointed out the previous discus s .ions we re 

in error. These a uthors pointed out that a power-law d ensity spectrmn 

was also consistent with the then-available data and that a dominant sca l e 
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of 10
6 

lan or so was consistent with the scintillation data. A more de-

tailed analysis of the problem by Cronyn (1972) and the direct observation 

of the power spectrum by Unti et al. (1973) also show that the plasma 

density spectrum is of the form given by Eq. (1-21). Chapter 7 of this 

thesis shows that the power-law spectrum is also consistent with the 

interstellar scintillation data. Throughout this thesis we will use both 

the power-law spectrum and the Gaussian spectrum in calculating the 

statistical properties of the random wave. The Gaussian spectrum is used 

mainly for comparison. 

Carrying out the integrals in Eq. (1-19) and using the relations 

in Eq. (1-14), one can write the constant B in Eq. (1-20) or Eq. (1-21), 

in terms of the mean square electron density fluctuations and one finds 

that 

B 8 3/2 -3< 2> 
re qo ek 128rc 

7 
2 

2 
r 

(-e-) 
k4 

q -3 (6N 2) 
o e 

(1-22) 

for the Gaussian spectrum in Eq. (1-20), and 

for power-law spectrum with a > 3. Note that r 
e 

electron radius. In obtaining Eq. (1-23), q « 
0 

(1- 23) 

2 
(~) is the classical 
me 

q
1

, is assumed. 
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The following function defined by 

(1- 24) 

-CO 

will be used extensively later in this thesis. By Eqs. (1-14) and (1-18) , 

this function can be written as 

(1- 25) 

where ~l = (q ,q ) and £ = (x,y). Note that the z-dependence of AR(~) is 
X1 Y1 t' 

not explicitely expressed for convenie nce. 

For Gaussian spectrlilil, we have from Eq. (1-20) 

Bk4 
A ( o ) = -

13 ~ 8rc e 
( 2 2)/4 - qo p 

(1- 26) 

Consider the power-spectrtnn in Eq. (1-21). For \£\ »£, we neg lect the 

effect of the cut-off at q > q
1 

so that 

p <5!) 
€ 

From Eq. (1-24) it follows that 

Bk4 qo2(qop )µ Kµ(qop) 

22+µ 1( f(µ-t-1) 

(1-27) 

a 3 
where µ = 2 - 1, 2µ + 2 > O, and K denotes a modified Bessel func tion of 

µ 

the second kind. One can further show that for L >> p >> £, 



However f or p 

where 

and 

A!3 (~) 

~ f, , 

A!3(p ) 

A "(O) 
13 

13 

4 2 

t-Bk q 
0 

4rc(ex- 2) 

A 11 (0 ) 
~ A!3 (O) + ~ 

2 

4rc(ex-2) 

p=O 

We a lso def ine for l a ter uses 

and 

4 
A ( p ) = ArJe)/k 

E: ~ I-' 

B _ Bk4 
E: 

ex a-2] f ( 2-- ) qop 2 ( - ) 
f(g) 2 

2 

(1 - 28) 

2 p (l - 29a) 

(l- 29b) 

= .:JL k 4 ex 4-ex f(4 -ex) 
1 6rc qo q l 2 (l - 29c) 

(l - 30a) 

( l -30b) 
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IV. Previous Work on the Theory of Wave Propagation in a Random Medium 

Since 1950, many papers and books have been published discussing 

the problem of wave propagation in a random medium. Due to the complexity 

of the problem, various methods of approximation were employed to solve 

the problem. The first approach is the "single-scattering " theory. in 

which perturbation method is used to solve the stochastic wave equation 

in Eq. (1-17). (Booker & Gordon 1950, Chernov 1960, Tatarskii 1961, 

Keller 1962, Hoffman 1964, Budden 1965a, 1965b.) Another approach is the 

"geometric-optics" theory, in which the propagation of rays is considered 

and used to calculate the various statistical properties of the random 

waves, such as the angular distribution of the scattered power, the mean 

ray displacement , the intensity fluctuation and the pulse profile of the 

random waves . (Chandrasekhar 1952, Chernov 1960, Tatarskii 1961, Keller 

1962, Salpeter 1967, Lovelace 1970 and Williamson 1972.) 

However "single-scattering " theory is valid only wh en the scintil­

lation is weak, i.e. , the root mean square intensity fluctuation is much 

less than the mean intensity. For strong scintillation, the "multiple­

scattering " effect is important and must be considered. The range of 

validity of geometrical optics is also quite limited. The method of g eomet­

rical optics breaks down when the interference of the rays cannot be ne­

g lected . In the interstellar meditnn and many other situations the scin til­

lations are strong , and both the "sing le-scattering" theory and the "geo­

metrical optics" method cannot be applied. Therefore, a theory dealing with 

the "multiple-scattering" effect is needed . 
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The angular distribution of the random wave for the case when 

multiple-scattering must be taken into account has been discussed by 

Fejer (1953) and Howells (1960). Basic mathematical treatments of 

multiple scattering have been given by many authors including Foldy (1945) , 

Keller (1964), Twersky (1964), Tatarskii (1964), but much of this work 

is of a formal nature and is difficult to evaluate in practical cases. 

A new method called the ''Markov approx imation" has been developed 

recently. This method is valid for most strong scintillation cases , includ­

ing interstellar scintillations. A set of the moment equations for the 

random waves with ~ frequency has been derived under this approximation 

by many authors (Ho & Beran 1968, Tatarskii 1969, 1971, Beran & Ho 1969 , 

Molyneux 1971 , and Brown 1972a). However, only the first and second moment 

equations were solved. The equatiQn of the fourth~mmnent~ which directly 

relates to the intensity correlation function, has not completely been s o lved. 

Dagkesamanskaya & Shishov (1970) and Brown (1972b) gave numerical s olutions of 

the fourth-moment , but it is hard to draw qualitative properties of 

the intensity correlation scale from the above numerical calculations . 

Strohbehn & Wang (1972) and Wang & Strohbehn (1974a, 1974b) calculated 

the intensity correlation function assuming that the probability function 

of the rE1ndom waves is "log-normal" and got "paradox" results. 

In this thesis , the fourth-moment will be solved analytically and 

the probability distribution of the random wave will also be determined. 

We also extend the ''Markov approximation" to time-dependent cases and derive 
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a complete set of the moment equations with different frequencies , whic h 

is applied to the calculation of the pulse profile in the interste lla r 

scintillations. 

We also mention here the "thin screen diffraction" theory , in 

which the diffraction of the e lectromagnetic waves b y a "thin" layer of 

random medium is studied. (Mercier 196Z , Salpete r 196 7, Scheuer 1968, 

Jokipii 1970, Lovelace 1970, Torrieri & Taylor 1971, Tay lor 1972, Tay lor 

& Lekhyanada 1973.) However, for strong scintillation, the int ensity 

correlation function still has not been solved in the region of Fresnel 

diffraction. In Chapter 3 of this thesis, we will solve this problem 

using a new method. 
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V. Outline of the Thesis 

Chapter 1 is a general introduction to the thesis , in which we 

also derive the basic stochastic wave equation, discuss the density power 

s pectrum of the plasma medium, and g ive some conunents on the previous 

work on scintillation theory. 

Chapter 2 gives a discussion of various theorie s on the wave 

propagation in a random medium. In this chapter we present an e xact 

formulation of the problem and briefly discuss various method s of approx i­

mation, including thin phase scree n approximation , quasi-optic approx imation, 

Born approximation, method of smooth perturbation, geome tric - optics approxi­

mation, perturbation of stochastic operator, and the Ma rkov approx imation. 

Chapter 3 treats the "thin screen diff raction" theory . Previous 

works on this problem are discussed and the intensity correlation f unction 

in the region of Fresnel diffraction is calculated. However, the analytic 

solution of the pulse broadening within the "thin screen diffraction" 

theory is given in Chapter 5, where the pulse broadening in a continuous 

random medium is presented. 

In Chapter 4, we derive a complete s e t o f t h e moment equatio n o f the 

random wave field wi th different wave-number s under the "quas i-optics " 

and the ''Markov random process " approx imations. The validity of these t wo 

assumptions applied to the interstellar scintillat i o n is als o g iven. 

In Chapter 5 , we obtain and discuss the phase correlation function , 

angular broadening , pulse smearing , intens ity correlation and the probability 

distribution f unction o f the r andom waves from the mome n t e quation s der i ved 

in Chapter 4. 
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Chapter 6 is an application of the method of smooth perturbation 

to the interplanetary scintillation. We formulate and calculate the effects 

of the solar~wind velocity fluctuations on the observed intensity corre­

lation function and on the ratio of the observed "pattern" velocity and the 

true velocity of the solar wind in the three-dimensional spherical model. 

In Chapter 7 we apply the results of Chapter 5 to interstellar 

scintillations and find that the power-law spectrum of the interstellar 

medium also fits the observed data. 
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Chapter 2 

Theories of Wave Propagation in a Random Medium 

I. The Wave Equation 

We consider the propagation of a monochromatic wave E (r,t) obeying 
(l) ~ 

the scalar wave equation 

2ili 
2 

(r) 
(l) 

0 'V - + 2 e (r)qi (r) 
(l) ~ (l) ~ (l) rv 

( 2-1) 
c 

with 
-imt 

E (r , t) q; (r) e . 
(l) rv m ~ 

(2-2 ) 

Here we treat E (r,t) as a complex wave field. The boundary condition 
(l) rv 

for equation (1) is q; (r) on the surf ace S which enc ircles the volume we 
(l) rv 

considered. Usually in an actual situation, the surface S is c omposed of 

some surface s
1 

relative ly n ear the observer and a surface s
2 

at i nfinity . 

The boundary condition of q; (r) is given on surface s
1 

whi le the Sommerfeld 
(l) rv 

radiation condition is applied on the surface s
2 

at infinity. 

q; (r) may be regarded as a Fo urier component in time o f a general 
(l) rv 

wave function. 
(l) 

Here (
2
n:) is the frequency of the monochromatic wave, c 

is the speed of light and 8 (r) is the refractive index of the medium in 
(l) rv 

which the wave propagates. Let A 
2n:c 

be the wavelength. 
(l) 

The refractive index e (r) is taken to be a random function and 
(l) rv 

depends on both the pos i tion ~ and the wave frequency m. We will consider 

in this thesis the propagation of the high frequency waves with m >> w , 
p 

the plasma frequency of the medium, in the plasma me dium. This applies 

to the propagation of the radio waves in the ionosphere, t h e interplane -

tary space or the inters tellar medium. If N is the electron density, 
e 
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then from Chapter 1 we have by assuming the variation in N is small for 
e 

a distance of the order of the wavelength ~ 

(j) 2 
e: (r) 1 - ..J.?_ 

(j) rv 2 
(j) 

(2- 3) 

and 4rrN e 
2 

2 e 
(j) 

p m 
(2-4) 

where m is the mass and e is the charge of an electron. 

Now N and e: (r) fluctuate irregularly. Let < >denote an average e (j) rv 

over an ensemble of propagation volumes. Then using the notations in 

Eq. (1-14), we have (c.f. Eq. (1-17)) 

2 
\l ~k (~) + k

2
(1 + 

j3 (~) 

k2 
) ~k(~) 0 (2-5a) 

or 
2 2 

\l ~k < .~) + k (1 + E:k (£)) ~k(~) 0. (2-Sb) 

Consider an initial plane· wave propagating in the + z - direction imping-

ing on our medium at z = 0. It is useful to define 

u(k,£) 
ikz 

e 

from which we obtain 

2ik 
ou(k, ~) 

oz 
2 2 2 

( .2_+L+o + 2 2 - 2 ) u(k,£) + 13(£) u(k, £ ) 
oz oy oz 

(2-6) 

0 (2- 7) 

where£= (x,y,z). We also define £= (x,y), s = ( £ ,k) for later use. 

Equation (2-5) is a stochastic equation connec ting the refraction 

index and the wave field ~k(£) · The problem at hand is the determination 
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of the probability distribution of ~k' or of various statistical 

properties of ~k' such as its expectation value, its variance and its 

higher moments, in terms of the statistical properties of the refractive 

index of the medium. 

II. Hierachy Equations and Equations for Characteristic Functionals 

In this. section we will present two formulations for obtaining the 

statistical properties of the wave field ~k(£) from equation (2-5) without 

any approximation. One of these two formulations involves a set of 

equations for the hierarchy of moments of the wave field. The other uses 

a functional equation for the characteristic (or generating) functional 

of the wave field. 

Consider the wave field ~k(£) satisfying the stochastic equation 

(2-5b). In order to get an equation for the first moment (~k(£) ) , we 

take the ensemble average of equation (2-5b) and find 

where the Laplacian operator v 2 
r 

(€k(r)~ (r) ) appears in Eq. (2-8) , 
rv k rv 

02 02 
--+ --+ 
ox2 oy2 

we must find 

(2-8) 

Since the quantity 

an equation for this 

quantity. We multiply equation (2-5) by €k(£
1

) and take ensemble average 

to get 

0 (2-9) 

Once the quantity (~k(£)€k(£1 ))is found from Eq. (2-9) we may evaluate 

it at £1 
£and use it in Eq. (2-8) to compute (~k(~) ). Since Eq. (2-9) 
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involves a new moment (€k(~1)€k(~) ~k(~)) we must obtain another equation 

for it, etc. Thus we find that the equation for a moment of any order 

involves moments of higher order. Therefore an infinite system of 

equations must be considered for the simultaneous determination of all 

moments. If we want to determine higher moments of ~l (r), we are led to 
C rv 

the following infinite set of equations by noting that ~k(~) is treated 

as a complex quantity 

(2-10) 

for i,j,i = 0,1 , 2, ... ' 

where * denotes complex conjugate. Keller (1964) derives an equation 

similar to equation (2-10) . 

Thus the complete statistical properties of the wave field ~k(~) 

requires simultaneous solution of all the moments given by the hierarchy 

Eq. (2-10). This is an impossible job. The same s ort of difficulty occurs 

in statistical mechanics and in plasma kinetic theory. Various approxi-

mations made in order to solve the problems will be presented in the 

nex t section. 

An alternative way to describe the complete statistical properties 

of a random field is to introduce the "characteristic functional", which 

g enerate s the infinite set o f moments appearing in Eq. (2-10). It was 

introduced into s tatistical mechanics in 1947 by Bogolyubov (195 9) and 

into the theory of turbulence in 195 2 by Hopf (195 2) , and was first use d 
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to describe the random wave by Keller (1964). 

where 

and 

The characteristic functional ~ can be defined as 

IA,Bl -
3 f A(~)B(~) d !, 

v 

(2-11) 

( 2-12) 

(2-13) 

Here V is the whole space bounded by the surface S where the boundary 

conditions for ~k(£) are given. We note that ~k(£) is treated as a 

complex variable, and an alternative way to define ~ is to let 

R 

where v 1 and v 2 are real independent variables, and where Re~k and 

( 2-14) 

Im ~k denote the real and the imaginary parts of ~k respectively. We f ind 

Mathematically it is more convenient to treat V and v* as independent 

variables, therefore we will use the f orm of ~ given by Eq. (2-11). 

Functional differentiation (Volterra 1930, Beran 1968) of Eq. (2-11) 

yields 

"+m+ o J n~ ( v , \J1', TI) 

ov( r )·•·ov(r.) ov*( r . )···ov*(r. ) o~(r. )···oTI(r. ) 
~l ~J ~J+l ~J+m ~J+m+l ~J+m+n 

j+m+n * iR 
(i) (~k (£1)··· ~k(~j) ~k*(£j+l)··· ~k (£j+m) €k (£j+m+l)··· €k (£j+m+n) e ) 

( 2-15) 
Evaluation of Eq. (2-15) at v(~) _ O,TI(~) _ 0 leads to the moments 
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in Eq. (2-10) and we have 

[ 

.,j+m+n,,,( .... Tl) ] U I 'J,'IJ .. , 

o'Y (r )···o'V(r.)o'Y*(r. )···oTl(r. ) 
"'l "'J J+l · "'J+m+n 

r. 
J ,m, n (2-16) 

Conversely the characteristic functional '!' can be e xpressed as a 

functional Taylor series in term of the moments f. 
J ,m,n 

(i)j+m+n 
I: fr. \i(r )•••\)(r.)\)-l•(r. )···\)~':(r. ) 

j!m!n! J,m,n "'l "'J "'J+l "'J+rn j,m,n 

~(r.+m+1)··· ~(r .+m+) dr1 ···dr.+m+ 
"'] "'] n "' "'] n 

( 2-1 7) 

From Eq. (2-5), one can deduce the following equation satisfied by 

the functional 'i'('V,'V*,~) 

0 (2-18) 

We note that with the Taylor expansion g iven in Eq. (2-17) , Eq. (2-18) 

yields the hierarchy equations in Eq. (2-10). In fact, Eq. (2-18) 

can be considered as a compact form for the hierarchy equations in 

Eq. (2-10). We also note that Eq. (2-18) can be considered as an equation 

for o'!' since '!' does not occur. The boundary conditions for '!' can be 
o'V(~) 

obtained from the wave properties on the surface S. 
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III. Methods of Approximation 

Since the exact solution of the moment equations derived in the last 

section is impossible, methods of approximation must be employed in order 

to solve the problem. Each method of approximation has a certain range 

of validity. 

Before discussing various methods of approximation, we will write 

the wave Eq. (2-5) in the following three forms: 

\72~k < :~) + 
2 

k (l+ek(0) ~k(~) 0 (2-19a) 

'Ou(k,~) 2 02 02 2 
2ik 

oz 
+ <L+ --+ -) u(k,~) + k ek (~)u (k, ~) 0 

oz
2 

ox
2 oy2 

(2-19b) 

and 2 2 02 
2ik ~ + <L+L+ 2 2 

0 -) cp + (~ · cp ) + k €k(~) 
ax2 oy2 oz

2 (2-19c) 

where in (2-19c) we define cp as 

~k <~) 
ikz 

u(k,~) 
ikz cp (k , r) = e - e e "' . (2-20) 

In t his thesis, we are interested in plane waves propagating initially 

· ·h d. · . h ( ) i(kz-rnt). in t e + z irection wit E ~' t = e 

Below we discuss various methods of approx imation. 

(A) Thin Phase Screen Approximation 

2 2 
If the terms \7 cp and ( V · cp ) in Eq. (2-19c) are negl ected , then 

one gets 

0 ( 2-21) 
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from which one immediately obtains 

z 

cp (k, ;() f i k ( I I 2 e:k x,y,z )dz (2-22) 

0 

assuming at z = O, cp (k,~) = O. Note that (cp/i) is the random phase of 

the wave field ~k(~). Equation (2-21) is valid only when the scattering 

is weak and when the diffraction effect is small (very thin region of 

turbulence). This approximation is very crude. 

Note that the "thin screen" approximation given in Eq. (2-21) is 

different from the usual "thin screen diffraction theory" (Mercier 1962, 

Salpeter 1967). In the "thin screen diffraction theory", the random 

meditnn is assumed to be concentrated in a "thin slab". Inside the "thin 

slab", the "thin screen" approximation in Eq. (2-21) is applied, while be-

yond the slab diffraction theory is used for the propagating wave. This 

problem is discussed in detail in Chapter 3. 

(B) Quasi-Optic Approx imation 

Consider the initial wave propagating in the + z direction. When 

the smallest scale of the fluctuating medium is much larger than the 

wavelength A. of the propagating wave, 

In this case, one can neglect the term 

the term (ik£_ u), and one obtains 

the scattering angle is small. 

02 
(~) in Eq. (2-19b) compared to 
oz 

oz 

21..k~ozu(k,~)+ " 2u(k,r) + k2 ( ) (k ) \) Ve, ~ €k ~ U )£ 0. (2 - 23) 
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This is called the "quasi-optic" approximation or "parabolic-equation" 

approximation since Eq. (2-23) is parabolic . . 

Insight into the parabolic approx imation can be obtained as follows. 

Note that if we define the operator L as, 

L 
0 2 2 0 2 

2ik~z + (-o- + _o_ + -2)' 
0 oz 2 oy 2 

Ox 

then Eq. (2-19b) becomes 

L u(k,E_) = 

from which we get 

u(k, ~) 

f 
where L-l is the inverse operator of Land the Green's function G 

G( ') -ik(z-z ') r r = e 
~' ~ 

ik I r-r' I -e rv rv 

4rr 1 E:,-E:,, I 

(2-24) 

(2-25) 

( 2-26 ) 

Physically, the value of u(k,E_) in Eq. (2-25) can only be appreciably 

affected by the inhomegeneities included in a cone with vertex at the 

observation point (E_), with axis directed towards the wave source , and 

with angular aperture e, which is asstnned to be small. In most of this 

region 

\z-z' I >> ~ (y-y' ) 2 + (x-x') 2 • 



Therefore we expand \ r-r' \ 
"' "' 

as, 

(z-z') ~1+ 
(z-z') + 

28 

2 2 
(x-x ') + (y-y') 

2 
(z -z ') 

+ 

(2-27) 

2(z-z') 

ik\r-r' \ 
Using this expression in e "' ~ , and retaining only the first term of 

the expansi on in the denominator of Eq. (2-26), we obtain the approximate 

G (r, ~,') -e 

ik\ 12,- 12.'\
2 

2(z-z ') 

4:rr(z-z') 
( 2- 28) 

which is the exact Green's function of Eq. (2-23). Thus the "quasi-optics " 

approximation is e quivalent to the approx i mation of the Green's function 

in Eq. (2-28). 

In what follows in this thesis, the "quasi-op tics" approxi!QB.tii.on will al-

ways be assumed. However , Eq. (2-23) is still no t easy to solve , hence 

further assumptions must. be made to solve the problem. 

(C) Born Approx imation 

I f the fluctuating part €k(~) of the refractive index is small , 

and t he fluctuation of the wave is smal 1_ compared t o the unperturbed 

wave , then one can e xpand u(k , ~) as a perturbation series 

u 

from which we have 

u 
0 

0 

(2- :C:7) 

( 2-30) 
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We nonnalized u such that 
0 

29 

u (r) = u (z=O p ) = 1 0 ,...., 0 , ,...., 

0 (2-31) 

(2- 32) 

This is equivalent to plane wave of unit amplitude being incident from 

-~ on a meditnn beginning at z = 0. Then Eq. (2- 31) gives 

Note that Eq. (2-33) is valid only when 

u 
1-11 << 1 
u 

0 

0 

Define the amplitude A and phase S of the perturbed wave u as 

u =A 
iS 

e 

where A and S are real quantities. Then we have to f irst order, 

log u 

Thus 

log A+ iS log u 
0 

ul 
+ u 

0 

u 
log u +log (l+-1). 

0 u 
0 

(2-33) 

(2-34) 

( 2- 35) 

Let u 
0 

A e 
0 

iS 
0 where A is the unperturbed amplitude and S 

0 0 
the phase. 
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We have 

log (_A_) 
ul 

- x Re(-) 
A u 

0 0 

(2-36) 

and ul 
s - s sl Im(-) 

0 u ( 2-3 7) 
0 

Thus we see that Born approximation is valid only if \x\ << 1 and \s
1

\ << 1. 

In addition to the fluctuation in amplitude being small, the fluctuation 

in phase must be small. 

(D) Method of Smooth Perturbation (MSP) 

If one uses Eq. (2-19c) instead of Eq. (2-19b) and neglects 

2 
the non-linear term (v·~) , one gets under the quasi-optic approximation, 

~m (-o 2 
+ _o 2 

) 2 2~1,~oz + + k ( ) 
-L'- 2 2 ~ €k ~ 

ox 'dy 
0 (2-38) 

Equation (2-38) is called the method of Smooth Perturbation (MSP). This 

method was first used by Rytov (1937) and Tatarskii (1961) gives a detailed 

discussion. Since the quantities in Eq. (2-19c) involve only the 

derivative of ~ instead of ~ itself , the linearization of Eq. (2-19c) is 

valid if the derivative of cp is small. 

Again define the amplitude A and phase S as in Eq. (2-35) 

It is easy to show that 

iS u = e~ = A e 

X _ log A Re~ 

S Im ~ 

(2-39a) 

(2-39b) 
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Since the smallness of cp is not required, the fluctuation on S is not 

limited to be small. Tatarskii (1971) has discussed the validity of 

MSP and found that MSP is valid if 

(2-40) 

2 (x ) can be related to the intensity fluctuation by noting that 

x = log A = t log I. 

We note that Eqs. (2-33) and (2-38) are identical if we put u
1 

= cp . 

If lcp \<< 1, u=ecp=l+cp+cp
2
+. · ·=l+u

1
+u

2
+· • ·. Thus cp=u

1 
in the case \cp \<< 1 , 

and the Born approximation and MSP are equivalent. Clearly MSP has a 

broader range of validity then the Born approximation. 

We will discuss MSP in detail when we apply this approximation to the 

interplanetary scintillation in Chapter 6. 

(E) Geometrical Optics 

When the diffraction tenn (\lcp) in Eq. (2-19c) is small, we 

negelct this tenn and obtain the equation of geometrical optics, 

0 (2-41) 

Define 
i e - ikz + q; (2-42) 

and ( 2-43) 

where 8 can be regarded as the generalized phase of the wave and n(k, ~) 

the index of refraction. From Eq. (2-41), we obtain the following 

Eikonal equation in geometrical optics 

2 2 2 
( ~ 8 ) - n k = 0 (2-44) 
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From Eq. (2-41), one obtains the following "ray equation" 

dr 
d (n --::::) 

ds ds (2-45) 

where the position £ of a light ray is parametrized by s, which is the 

wave path, or ds ={id£ 1
2

. The ray equation is equivalent to the famous 

"Fermat's Principle", which states the following quantity I is stationary 

along the ray path, 2 
' dr 
(d;) · n(k, E,) 

I=/--
c 

ray path 

ds 

Thus Eqs. (2-41), (2-44), (2-45) and OI 0 are all equivalent. 

The ray equation has been applied to calculate many quantities 

(2-46) 

for random wave propagation, such as the angular distribution of rays , 

the mean ray displacement, the intensity fluctuation of the random wave 

and the phase fluctuation of wave and the pulse broadening due to the 

random medium. (Chandrasekhar 1952, Chernov 1960, Tatarskii 1961, Keller 

1962, Salpeter 1967, Hollweg 1970 Lovelace 1970, and Williamson 1972. ) 

However, the range of validity of geometrical optics is quite limited. 

Let the scale of the fluctuation medium be L. The angle B due to 

f... diffraction of the meditml will be of the order of L . Also let the trans-

verse characteristic scale of the rays be a. Then when the wave propagates 

a distance z , with 

Bz >a (2-4 7) 
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two neighbor rays will intersect. Thus geometrical optics breaks down at 

In Chapter 5 we will find a ~ (L/~ ) where ~ is the root mean 
0 0 

square phase fluctuation of the wave. Geometrical optics is valid only when 

L2 
z << A~ (2-48) 

0 

The condition in Eq. (2-48) for the validity of geometrical optics 

is the same as that obtained by Salpeter (1967). 

(F) Perturbation of Stochastic Operator (PSO) 

All methods of approximations discussed above involve approxima-

tions made on the wave equation, which must be valid all the way through 

the volume in which the random wave propagates if the methods of approx i-

mations are applicable. The criterion for the validity of approximations 

is not easily met when the propagation distance is large, or when the 

scattering is strong, or both. This is true especially for the thin screen 

approximation, geometric optics and linearization approximations (i.e. 

Born approximation and MSP). 

In this and the next sections, we will present two methods of 

approx imation, in which the approximations are made locally. If the 

approx imations are valid in each step, then one can integrate the results 

of each step and get the solution of the problem considered. In t his 

section, a method proposed by Keller (1962,1964) will be discussed. 

We call this method "perturbation of stochastic operator" (PSO). The 

Markov random process approximation, which is a special case of 

"perturbation of stochastic operator", will be g iven in the nex t section. 
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Following Keller, we consider the following linear stochastic 

equation for <Ii, 

M(o:)ip = g (2-49) 

where M(o:) is a linear stochastic operator depending upon a random variable 

a: and g is a given function independent of a: . The solution of equation 

(2-49) can be written as 

-1 
M (a:)g 

'lllen take ensemble average of (2-50) , 

-1 (<Ii) = (M (a:) )g 

1 (M-1) -1 to from which we multip y obtain 

-1 
(M-1) (<Ii) = g 

(2-50) 

(2-51) 

(2-52) 

This is an exact equation satisfied by ( <Ii) , although in this form it is 

not yet useful. 

To make Eq. (2-54) useful we assume that M is the sum of a non-random 

oper ator L
0 

and a small random operator OL1 , where ~ is a small parameter . 

Thus we write 

From Eq. (2-53) , we have 

M-l = (L (1+6L - lL
1
))-l 

0 0 

Therefore by expansion, 

(2-53) 
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from which we obtain 

(2-54) 

Assume (L
1

) = 0 without any loss of generality. Eq. (2-54) then gives 

(2-55) 

Now back to our problem, we compare Eq. (2-19a) with Eqs. (2-49) and 

(2-53) 

and 

Al s o -1 
L (r)f (r) 

O rv rv 

where 

L 
0 

g - 0. 

~G(r,r')f(r')dr' 
""-'""-' rv rv v 

-eiklt-t' \ 

4rc \E,-~' \ 

Thus Eq. (2-55) gives to second order of o , 

(V2+k2)( ~k(£)} - k4 ~d3~, G(£,£') (ek(£)~(£') )(~ (£') ) 
v 

0 

Eq. (2-59) is an integral equation for (~k(~) ) and can be solved for 

(2-56a) 

(2-5 6b) 

(2-5 7) 

(2-58) 

(2-59) 

(~ (£) } if ( €k(£)€k(E_') ) is known. The same technique can be used to derive 

an equation for a higher moment . I call this method "perturbation of 

stochastic operator" (PSO). 
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The asstnnption made by Keller that o is small is not stated precisely. 

As we can see clearly, the magnitude of the second term in equation (2-59) 

depends not only on the magnitude of €k(~), but also on the correlation 

scale of €k(£)· Thus the smallness of €k(~) is not the criterion of the 

validity of the expansion of the stochastic operator. The criterion can 

roughly be stated as "the change of the wave field due to the scattering 

of the random meditml within the scale size of the medium is small". This 

criterion is a local property as we pointed out at the beginning of this 

section. 

If in particular, the correlation scale of €k(~) approaches zero, 

then Eq. (2-59) is exact. This is just the Markov random process approxi-

mat ion in method (G). (In fact, if the "quasi-optic" apporoximation is used, 

only the correlation scale in the propagation direction must be assumed 

zero, for the Markov approximation to be valid.) 

(G) Method of Markov Random Process Approximation and Quasi-Optic 
Approximation (MQA) 

Mathematically, if the following two assmnptions are made 

(i) Quasi-optic approximation is valid, i.e. equation (2-23) is 

used. 

(ii) The correlation scale of €k(~) or p(~) in the z-direction is 

zero, i.e. 

2o(z-z')1\(12,-e_') (2-60) 
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then a complete set of the moment equations of the random field u(k,£) 

without coupling between different moments can be derived. This is worked 

out and discussed completely in Chapter 4. The assumption made in Eq. 

(2-60) is called the Markov random process approximation. 

We will derive the equation for the first moment under the above 

two assumptions using the result of Keller's method. 

Under the assumption (i), we have 

(2ikooz + 
2 2 

L V' £ ) ' o L = k E:k(£) 0 1 
(2-6la) 

and 
ikl Q-.R,1

2 

G(r , r') 
-1 2 \z-z' I 
4rc\z-z' \ 

x e 
rv rv 

(2-6lb) 

Note that 

lim G(~>£') 
-i 

6 (£-£') 
z 1-+z 4k 

(2-62) 

We then have from Eqs. (2-60), (2-61), (2-62) and (2-59) 

[ 2ik;z + V' n 
2 + _!__ 1\(0)] (u(k, z,~)) 

>;., 2k 
0 (2-63) 

which is exactly the same as we derived in Chapter 4. The higher order 

term can be shown to be zero if E:k(£) is a Gaussian variable or the 

assumption made in Eq. (4-2lb) is valid. 

Note that MQA method can be applied to strong scintillation cases 

2 
where the scintillation index m rv 1. The scintillation index m is de-z z 

fined to be the ratio between the root mean square intensity fluctuation 

and the mean intensity of the random wave. 
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Chapter 3 

General Thin Screen Diffraction Theory 

I. Introduction 

Before considering the full problem of propagation of waves in a 

random medium, consider the diffraction by a random, phase-changing screen. 

The problem of diffraction of electromagnetic wave by a layer of random 

medium has been studied. (Mercier 1962, Salpeter 1967, Jokipii 1970, 

Lovelace 1970, Torrieri & Taylor 1971, Taylor 1972, Taylor & Lekhyanada 

1973.) They used a "thin, phase-changing screen approximation", in whic h the 

random phase fluctuations of the wave are produced by the random medium 

and the intensity fluctuations inside the medium are neglected. This is 

a reasonable approximation if the medium is "thin". Suppose the complex 

amplitude of the signal at the plane z = 0 , where the screen is located, 

( 0 ) e -imt. is E x,y,z = Under the "thin screen approximation" , we have 

E(x,y,z = 0) = A(x,y , z = O) ei~(x,y) (3-1) 

where A(x,y,z = 0) = 1, and ~(x,y) is the phase fluctuations at the plane 

z = 0. A schematic sketch of the problem is presented in Figure (3-1). 

Let D be the thickness of the thin slab. From Eq. (2-22) we have 

0 

~(x,y) I kek(x,y,z')dz' 

-D 

(3-2) 

from which we have (~(x,y)) 0. One defines the two-point correlation 

function 

(3-3a) 
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Figure (3-1) 

A schematic sketch of the thin screen diffraction problem. 

The random medium is confined to a thin layer of thick­

ness D (from z = -D to z = 0). The plane wave ei(kz-mt) 

hits the "thin screen" from the -z direction. After 

passing the screen, the phase of the wave is randomized 

and is characterized by the function ~(x,y). 
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Figure (3-1) 
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with Pqi(O) = 1. Here P qi (£ ) is the nonnalized phase correlation function 

and qi is the root-mean-square phase fluctuation. In equation (3-3a) we 
0 

have assumed that the two-point correlation depends only on the distance 

between the two points in the initial plane z = 0. If the thickness D is 

greater than the correlation scale of the medium in the z-direction, then 

by Eqs. (1-14), (1-24), (3-2) and (3-4), one has 

and 

qi 2 
0 

(3-3b) 

(3-3c) 

(3-3d) 

The intensity fluctuations of the electromagnetic wave are then built 

up by interference as the wave propagates to the observers. The object of 

the diffraction theory is to calculate the intensity fluctuation at a 

distance from the screen. AssLmting the radiation conditions hold at large 

distances, the Helmholtz formula g ives without approximation the complex 

amplitude E(x,y, z) in front of the screen (z > 0) 

E(x,y,z) 

where 

Also, l et 

1 
4n 

co co 

0 eikr 
E(x ' y' z=O)~(--) dx'dy ' 

' ' oz r 

ikr 

I I (-e--) oE(x' ,y' ,z=O) 
. r oz 

-co -co ( 3 - 4) 

1 
2 2 2 2 

r = [(x-x ') +(y-y') + ( z -0) 1 

E(x,y ,z) 
ikz u(x,y, z )e . 
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Assuming kz >> 1, one can use the stationary phase approximation, 

putting (c.f. Eq. (2-27) . 
k ~ 2 2 I 

kr = kz + 2z 1(x-x') +(y-y') ~ (3-5) 

. K. h.h ff . . oE(x,y,z=O) "k ( O) Then using the ire o approximation oz = i E x,y, , one has 

CXI CXI 

u(x,y,z) ;!~ J Ju(x',y' ,z~O) exp { ;~ [x-x' )
2
+(y-y' J2J} dx 'dy' . (3-6) 

-= _.,, 

The approximation made in Eq. (3-5) is called Fresnel approximation 

(Born & Wolf , 1959) or quasi-optics approximation (Chapter 2, Section III). 

A sufficient condition for the validity of Eq. (3-5) can be obtained by 

noting the higher order tenn in the expansion of (kr) be smaller than l. 

kz [ 

2 2 
(x-x': /(y-y') r << 1. 

Thus we have 

Noting that for the important region of the integrals in Eq.(3-6) 
1 

we have 

\x-x ' \, \y-y' \ :;: z (8
2

)
2 

z << __ 1 __ 

k ( e2>2 

-1 -1 
In interstella~ scintillation, using k = 10 cm and the observed 

( 3 - 7) 

(e2
) lo-

14 
Eq. (3-7) becomes z << l0

27
cm , which is true for all cas es. 

When the distance z is at such a position where the approx imation 

made in Eq. (3-5) or Eq. (3-6) is accurate, the obse rver is 

said to be in the region of Fresnel diffraction (Born & Wolf, 1959). Note 

t hat the criterion f or the vali dity of Fre snel approx imation in Eq. (3 - 7) 

is different from that of classical diffraction theory . 
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Assuming ~ (x ,y) is a Gaussian random variable and using Eqs. (3-1) , 

(3-3) and (3-6), one finds 

( I(x,y ,z) ) 

and 

* (E(x,y,z) E (x,y, z) ? 

where I is the i ntensity of the wave and 

1 

* * f = ( E(£1 - £ ,z=0) E (£ 2- £ ,z=O) E( £ 3 , z=O) E (124,z=O) ) 

= e xp [- ~ 2 ~ 2-P ( p - p ) - P (p - p ) + P ( p - p -p ) 
0 1 ~ ~1 ~2 ~ ~3 ~ ~ ~1 ~ ~3 

The purpose of the diffraction theory is to carry out the integ ration 

2 
appearing in Eq. (3-9) for the intensity correlation function Mz ( £ ) · 

The scintillation inde x m is defined as z 

m = M (0), z z 

which is the ratio of root mean square intensity fluctuation and mean 

intensity. 

It is hard to carry out the integration appearing in Eq. ( 3 - 9) . 

(3-8 ) 

(3- 9 ) 

( 3-10) 

Various asymptotic forms of the intensity correlation function have been 

obtained (Mercier 1962 , Salpeter 196 7, Jokipii 1970). Mercier (196 2) has ob-

tained an asymptotic formula for the intens ity fluctuation at a g reat d i s tance 

from the random screen. Under the assumption that the correlation function 
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P~(Q) in Eq. (3-3) is Gaussian, Mercier found 

exp~ - 2~ · 2 [1-P (p)ll - exp [-2~ 2
] I o ~ "' ~ o 

(3-11) 

L2 
if z »-:;: where Lis the correlation scale of P~(£) . 

L2 
When z »-:;: , 

the observer is said to be in the region of Fraunhofer diffraction. 

Salpeter (1967) found a fonnula 
2 

f o r M (p ) for the case ~o << 1. 
Z rv 

The results are expressed in terms of 
" 2 " 
M

2 
(~and P~ (~ which are the 

2 
Fourier transfonn of M ( p ) and P ( p ), respectively, 

z rv q;rv 

(3-12) 

co 00 

and 

If (3-13) 

One finds that 

(3-14) 

Lovelace (1970) presented a heuristic physical model considering 

the propagation of each ray to calculate the intensity correlation. 

However, his result is not rigorous. 

Jokopii (1970) found that for P~ (~) with a power-law spectrlllll, 

Eq. (3-14) can be valid even when ~ 2 >> 1. He found the sufficient 
0 

conditions for the validity of Eq. (3-14) as 

(a) z ~ kLt where L and i are the outer scale and inner scale 

of the phase correlation function P~(Q) , respectively. 
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(b) iP 2 
2 = 

1 

q* 
(~)2 
z 

2 
(c) z << kL 

iP 
0 

45 

J " 
p iP <~) dq << 1 where 

~ 

1~1 z q* 

Condition (b) is equivalent tom<< 1 (weak scintillation). 
z~ 

(3-15) 

Furthermore, one can easily show that for Pifi(£ ) with a power law 
- 2 

spectrtnn, Eq. (3-11) of Mercier's result also holds if z >>I:_ where 
t.. 

Lis the outer scale of P~ (£). 

Salpeter (1967) shows that in the case of Gaussian spectrtnn of 

P~(~), geometric-optics applies when 

L2 
and z ~ ~~ = ~ (focal length) 

f..(fi - 0 
-0 

~o is called the focal length. From geometric-optics, one obtains 

or 

It can be shown from Eq. (3-17) that the scintillation index m << 1 
z 

when the conditions in Eq. (3-16) are a pplied . 

(3-16) 

(3-l 7a) 

(3-17b) 

Thus in conclusion, we find that the problem of strong scintillations 

in the whole Fresnel diffraction region has not been solved. In this 
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chapter we, instead of carrying out the integral in Eq. (3-9) , will use 

a new method to obtain the intensity correlation function M 
2

(p ). 
z 

In the interstellar s cintillation, the scintillation is s trong and 

14-15 
one has that for Gaussian spectrum L ~ 10 cm (Salpeter 1969, Scheuer 

19 68) and for power-law spectrum, the outer s c ale L >> lo
17

-
18

cm . There -

fore, for 1021-24cm and A ~ l0 2crn, 

L2 
z << ~ 

A 

one has 

Thus the scintillations are always not in the Fraunhofer diffraction 

region and Mercier's result of Eq. ( 3-11) cannot be applied. 
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II. New Method 

A new method of solving the diffraction problem may be developed 

by noting that the wave function u(x,y,z) in Eq. (3-6) satisfies the 

following differential equation, 

ou(z J Q) 

C:'lz 
i 

2k 

2 o2 _o2 
where £ = (x,y) and V

0 
= ~- + 

iv - ox2 oy2 

Define 

and 

We note that 

and 
(I(z,f2)I ( z,f2_ 1

) ') 

2 
M

2 
( f2_-Q_ 1

) + 1 

From Eq. (3-18), we can obtain a differential equation for 

r 2 (z ,f2_1 , f2_2) . We take the complex conjugate of Eq. (3-18) and obtain 

* ou (z , f2, ') 

oz 

(3-18) 

(3-19) 

(3-20) 

(3-21) 

(3-22) 

<3-18> 
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of: 
Multiply Eq. (3-18) by u (z,Q_') and Eq. (3-18') by u(z, Q_), and then take 

the ensemble average of the sum to get 

(3-23) 

Eq. (3-23) is the differential equation for the second moment r 2 Cz, £ , £ '). 

Similarly one can obtain the following differential equation for the 

(3-24) 

Eqs. (3-23) and (3-24) can be greatly simplified if the initial 

condition is invariant relative to shifts and rotations in the initial 

plane which we assume to be true in our problem. Thus, r 2(z ,£, £ ') depends 

2 2 
only on \£-£ '\and (V£ - v£ , )f2 = 0. One obtains from (3-23) 

0 ( 3-25) 

or 
(3-26) 

In particular, r2 (z,~, £) = (I(z)) = (I(O) ) = 1 (3- 26 I) 

For r4 (z, £1(2_2, £3'~), we change the variables p 1 , 12,2, £3 and RL+. to the 

new variables f2a' £~, £y and £0 by defining 

and 

f2a = £ 1-£ 2 

£~ = f2.2- R,3 

£1-£2+£3-~ 
1 
4 (£1+£ 2+£ 3+Rq) 

(3-27) 
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Then Eq. (3-24) becomes 

( 3-28) 

Since r
4 

is invariant to the shift and rotations in the plane z constant, 

the function r4 is independent of £5• 0 and 

:!:. (\l 
k Ra (3-29) 

The fact that Eq. (3-29) does not contain any differential with respect 

to the variable Ey allows us to simplify this equation further by equating 

to zero. In effect, this means that we consider the case in which the 

four points p .(i=l,4) are located at the corners of a parallelogram. 
~i. 

With£ = 0 in mind, we will write Eq. (3-29) as 
y 

(3-29') 

where the dependence of r
4 

on the variable p has been dropped. We note 
~y 

that the correlation function Mz
2

( £ ) is related to r
4 

by 

Our new method to solve the diffraction problem is to solve Eq.(3-29')in-

stead of carrying out the integral in Eq. (3-9). 

The initial condition for r4 (z, f2a, £~) can be obtained as 
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(3-31) 

The appropriate boundary condition is 

r 4 (z, f2a,£13) \ 
Pa, 13=o:i 

( 3-32) 

where the notation £ l3 ,a:' ~, l3 means that when f2a is infinite, £ l3 appears 

on the right side of the equation and vice versa. Eq. (3-32) means that 

when ~ = o:i, the two pairs (u(£1,z),u(RLi.,z)) and (u(£ 2,z),u(£ 3, z)) are 

uncorrelated , and similarly for £ l3 = o:i . From Eq. (3-26) we have 

(3-33) 

Thus 
(3-34) 

In the next subsections we will present the analytic and the 

numerical result of the integration of Eq. (3-29) with the initial condition 

(3-31) and boundary condition (3-34). 
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III. Numerical Results 

In this section, we will solve Eq. (3-29) numerically for two cases, 

namely, (a) the phase correlation function P~(~) being Gaussian, and (b) 

the phase correlation function having a Kolmogorov spectrum. For simplicity 

of the calculation, we will consider only a "one-dimensional phase screen" 

at z = 0 (Salpeter 1967), so that the transverse variables f?a' £~ in 

Eq. (3-29) reduce to xa,x~ and Eq. (3-29') becomes 

ar4 
oz 

(A) Gaussian Spectrum 

For the Gaussian spectrum in Eq. (1-26) 

2 2 
qo x 

4 
2 

~o exp( - ) 

(3-35) 

(3-36) 

-1 2 
where L = q is the correlation scale of the phase function and ~ 

0 0 

is the mean square of the phase fluctuation. From Eq. (3-11), we have 

in the Fraunhofer diffraction region, the intensity correlatit,n scale 

VzL xJ= ~~- for ~ > 1. For this we will introduce the following 
•( ~ 0"-' 

0 

dimensionless variables. 

(3-37a) 

(3-37b) 

(3-37c) 
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Then Eq. (3-35) becomes 

We also note that the boundary condition (3-34) for large ~ becomes 
0 

00 

exp ~ - s~,a f 

(3-38) 

(3-39) 

In practice, of course, we cannot apply the boundary condition g iven 

in Eq. (3-34) as it stands because this would r e quire an infinite number 

of mesh points. We will truncate the sa, s~ at appropriately large values 

of Sa'S~ · The truncated boundary, sB .C. (or xB .C.) must satisfy the 

following conditions: 

(i) Since the correlation scale of P~(£) is L, we must have 

P B.C. > L (or (B .C. > ~0 ) (3-40) 

(ii) Since the mean scattering angle e for such a s c reen is 
0 

e 
0 

ip 
0 

2kL 

(see Chapter 5) and the transverse spreading of the ray after propaga ting 

a distance z is z e ' we must have 
0 

or s B.C. > C • 

z ~ 
_o_ 
2kL 

In the Fraunhofer diffraction region C > ~ 2
• 

0 

(3 -41) 
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The numerical results for © -o 1,2,5 are shown in Figures 

(3-2),(3-3),(3-4) and (3-5). We find that in the Fresnel region 

(a) For ~ = 5, strong scintillation is developed somewhere be­
o 

tween C = 1 and ~ = ~0 • At C = 1, the scintillation is still weak. And 

the peak of scintillation index occurs near z = focal length (C = ~0 ). 

(b) For ~ = 1, the results are about the same as those predicted 
0 

by ,weak scintillation theory (Eq.(3-14)) when the scintillation is weak. 

(c) When the scintillation is strong, the correlation scale of 

intensity fluctuation is about the same as that in the Fraunhofer region. 

The numerical result here is consistent with the asymptotic analytic 

solution in the next subsection. 

B. Kolmogorov Spectrum 

For Kolmogorov Spectrum, 

2 D 
~ p (p) = - Af3( p ) 

0 ~ 2k2 

where Af3(p) is given in Eq. (1-28) or Eq. (1-29) with a 

dimensional phase screen, we have 

and 2 
~o 

D 
- 2 Af3(x) 
2k 

D 
- 2 Af3(0) 
2k 

Introducing the following dimensionless variables, 

sa xa /x,.< 

e: 13 = x
13
/ x,., 

c 2 
z/ (kx ic) 

11 
3 

(3-42) 

For one-

(3-43) 

(3 - 44) 

(3-45a) 

(3-45b) 

(3-45c) 
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Figure Captions 

Figure (3-2). This figure shows the ntnnerical results of the scintil-

2 
lation index m 

z 
2 

M (0) as a function of the normalized propagating 
z 

distance C for the meditnn with a Gaussian spectrum . In curve (1), 

<Ji 
0 

l; in curve (2), <Ji = 2; and in curve (3), ~ 
0 0 

root mean square of phase fluctuation. 

5 . <Ji is the 
0 

F igure (3-3). For Gaussian spectrum with <Ji = 1 , the intensity corre ­
o 

lation function M 
2 (~) is plotted as a function of the normalized z ·-

transverse coordinate E for various values of the normaliz ed distance C· 

Figure (3-4). As in Figure (3-3) with <Ji = 2 . 
0 

Figure (3-5). As in Figure (3-3) with ~o 5 . 
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where x* L(~ 2
/0.6)-

0
· 6 

we have - o ' 

(3-46) 

and 

0.6y-5 / 3A(x)/A(O) 
0 

( 3-4 7) 

where 

Define 

(3-48) 

For L >> x >> f,, we have from Eq. (1-28) 

D(~) ~ 1.115 ls\513
• (3-49) 

In the Fraunhofer diffraction region, we have 

For L » x >> £, 

M 
2

(p) ~ exp [ - 2.230\ ~1 513J z (3 - 50) 

So the characteristic scale of the intensity correlation function in 

Fraunhofer region is about x*. 

In the case L >> x, the boundary condition ( 34) becomes 

~ 5/3 l 
= exp i -2.30 s ~ , a \ 

00 

(3 -51) 
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and the initial condition (31) becomes 

(3-5 2) 

Again the boundary condition (51) is truncated at appropriately 

The results for ~ = 1,5,~ are shown in Figures 
0 

(3-6),(3- 7) ,(3-8) , and (3-9). 

From the Figures (3-6,7,8,9) we find that in Fresnel regions, 

(a) For ~ ~ 1, the scintillation becomes strong and the 
0 

scintillation index is about 1.0 as C > 1. 

(b) When the scintillation is weak (m << 1), the correlation zrv-v 

scale xI of intensity fluctuation increases as the propagation distance 

z increases. This is consistent with that predicted by Eq. ( 3-14). 

(c) The intensity correlation scale xI for strong scintillation 

is x*' which is the same as the scale in the Fraunhofer region. There-

fore the analytic solution of Mercier (1962) in the Fraunhofer region 

can also approximately to be applied to Fresnel diffraction region. 

This is also consistent with the asymptotic analytic solution in the next 

subsection. 
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Figure Captions 

Figure (3-6). The scintillation index m 
2 = M 

2
(0) is plotted as a z z 

function of the nonnalized propagating distance ' for the medium with 

a Kolmogorov spectrum. In curve (1), ~ = l; in curve (2) , ~ 
0 0 

5; and 

in curve (3) , ~o c:o ~o is the root mean square of the phase fluctu-

ation. 

Figure (3-7). For Kolmogorov spectrtml with ~ = 1 , the intensity corre­
o 

lation function M 
2

(s) is plotted as a function of the normalized trans­
z 

verse coordinate s for various values of the normalized distance s· 

Figure (3-8). 

Figure (3-9). 

As in Figure (3-7) with ~ = 5. 
0 

As in Figure (3-7) with ~o c:o. 
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IV. Analytic Solutions 

An asymptotic analy tic solution of Eq. (3-29') can be obtained 

by noting that Eq (3-29') i s a diffusion-like equation for r
4

(z, f2o:'f?. '3). 

The solution of r
4 

in Eq. (3-29 ') can be written immedia tely in terms 

of the inital value r
4

(z=O, f2a·£'3) as 

x d p ' d p ' 
n.o: "'13 

(3-53) 

Eq. (3-53) shows that for z > O, the value s of r4 (z=O,~,£) are re -

distributed among different transverse coordinates. The mechanism of 

re-distribution (or "diffusion") is c ontinued unti l r4(z, f2a, £13) reaches 

1 
a steady-state . For steady-state, we have from Eq. ( 3- 29 ') 

.i. 
k 

(3-54) 

from which we find that for large z, r4 must be of the fol lowing form 

(3 - 55) 

1
one can easily show the exis tence o f a steady-state fo r r 4 (z, £2a, £ '3) 

at large z by the same argument as in Mercier (1962) in 
obtaining the ~symp ~otic f~rm fo r (R2R ,2 ) /(AA*)2 , whi c h corresponds to 
r 4 Cz, f2a ,£'3=0) in this thes is. 
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where f 1 , f
2 

are arbitrary functions of 2a and £~ respe ctively and c
0 

is 

a constant. By applying the boundary conditions in Eq. (3- 32), one 

easily finds that from Eq. (3-55), 

(3-5 6 ) 

By Eq. ( 3-33), Eq. (3-56) can be written as 

( 3-5 7) 

Combining Eqs . (3-30) and (3-57) , we have the intensity correlation 

function 

( 3-58 ) 

for large z. Note that Eq. (3-58) is the same as Eq. (3-11) derived by 

Mercier (1962). 

Next we determine how large the propagating distance z must be in 

order that Eq. ( 3-57) is a valid solution f o r r
4

. Suppos e the transv erse 

characteristic scale of r4Cz ,i2a,£~) with respect to i2a (or k~) i s Pc· 

Then from Eq. ( 3-29 ') , we find that the "transient scale" z of the prop­
c 

agating distance z is given by 

2 z =- k p • 
c c 

(3 - 59 ) 



68 

r4(z, f2a, £~) reaches the steady-state solution in Eq. (3 -57) when z > zc. 

The transverse characteristic scale p c of r4 (z ,f2a,£~) can be determined 

from the initial condition for r4 in Eq . (3- 31). We consider two cases. 

Case 1. 
2 

q; < 1 
0 

2 
For q;

0 
< 1, it is easy to show that from Eq. (3-31) the character-

i s tic scale pc of r4 is equal to L, the correlation scale of the phase 

function with a Gaussian spectri.nn or a Kolmogorov spectrum. Thus 

C 2 ;;, 2 > 1 ase • ~ 
0 

z 
c 

2 
for i6 < 1 . 

- 0 (3-60) 

We f irst consider the phase function with a Gaussian spectrum. 

From Eqs. (1-26) and (3-3), we 

and 
q; 2 

0 

q; 2 e 
0 

have 
2 2 

P qo 

4 

pqo 
< 1, p q; (p) be expanded For (-) can as 2 

2 2 4 

Pq;(p ) = 1 -
P qo 

+ 
P qo 

4 32 

4 

+ 

Using Eq . ( 3-62), we can write r4 (z=O,f2a,£~) in Eq . (3- 31) as 

f rom which we find pc= L/...ji;;. Thus 

z """ kL 
2 

/ q; 
c 0 

f, 
0 

( 3- 6 l a ) 

(3-6lb) 

(3-62) 

( 3-63 ) 

( 3-64) 
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Here ~o is the focal length in Eq. (3-16). 

Similarly, we find from Eq. (3-52) that for Kolmogorov s pectrum, 

and 
z 

c 
kL 2 P. -2.4 

·o 

3 

5 "" Lei? -1. 2 
"" 0 

(3-65a) 

(3-65b) 

From the above discussions , we find that the intensity correlation 

function M 
2

(p) given by Eq. (3-11) or Eq. 
z '""' 

Fraunhofer diffraction region for P. 
2 < 1. 

0 

(3-58) is valid only in the 

H f iD 
2 > 1 the Mz

2
( fl ) in owever or .. 

0 
, ·-

Eq . (3-11) or Eq . (3-58) is valid not only in the Fraunhofer region, but 

also in the Fresnel region as can be seen from Eqs. (3- 64) and (3-65). 

Finally we will show that for ci? 
2 

> 1 the condition that 
0 

z > z 
c 

( 3 -66) 

for the validity of Eq. (3-58) is also the criterion for strong scintil-

2 
lation (m ""' 1). 

z 
From Eq. ( 3-58), we have the scintillation index m 

2 
z 

2 
1 r- 2 <p 

21 1 for 
2 

> 1. ( 3 - 6 7) rn = - exp iD 
z 0 . ·o 

the scintillation is for ii? 
2 

1 Thus strong > and z > z . For z < z c' 0 c 

Eq. (3-16) is satis fied for the phase function with a Gaussian s pectrum 

and Eq. (3-17') can be used to calculate the intensity correlation , from 

which we find 

z a> 2 
""' (~) 

k 
(~) 2 ~ < 1. z ( 3 - 6 8) 

c 
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Similarly for Kolmogorov spectrum, when z < z , Eq. (3-15) is valid 
c 

and Eq.( -14) can be applied. One then finds for z << z 
c 

2 
m << 1 

z 
(3-69) 

Combining Eqs. (3-67), (3-68) and (3-69), we conclude that the criterion 

for strong scintillation is that 

(i) 

and 

(ii) 

2 
<Po > 1 

z > z 
c 

2 
kL /~ ,for Gaussian spectrum 

0 

(3- 70a) 

(3-70b) 
2 12/5 

kL /<!? , for Kolmogorov spectrum . 
0 

2 
When ~o < 1 and/or z < zc' the scintillation is weak. The solution for 

strong scintillation is given by Eq. (3-58) while Eq. (3-14) or Eq. (3-17) 

is the solution for weak scintillation (m << 1). We also note the 
z 

numerical solutions in the last subsection are in good agreement with the 

analytic asymptotic solution here. 
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Chapter 4 

The Markov Random Process Approximation (A) 

As mentioned in Chapter 1, most of the theories of wave propa-

gation in a random medium are based either on the "single-scattering" 

theory (e.g. Born approximation, and M.S.P.), or on the geometric-optics 

approximation. (Booker & Gordon 1950, Chandrasekhar 1952, Chernov 1960 , 

Tatarskii 1961 , Keller 1962, Hoffman 1964, Budden 1965a, 1965b , Salpeter 

196 7, Lovelace 1970, and Williamson 1972.) However , single-scattering 

theory is valid only when the scintillation is weak or the scintillation 

index m << 1 and geometric-optics breaks down when the interference of 
z 

the rays cannot be neglected. For strong scintillation where m 
2 ~ 1 , 

z 

the multiple-scattering effect is important and neither the sing le- s cattering 

theory nor the geometric-optics approx imation can be applied. A theory 

dealing with the strong scintillations is needed. 

In this and next chapters, we will develop a theory, which i s 

valid for strong scintillations, under the ''Markov random process" and 

the "quasi-optics" approximations. In this chapter , a complete set o f the 

moment equations of the random wave fields with different frequencies 

is derived and the validity of the two approximations applied to the 

interstellar scintillation is discussed. In Chapter 5, we apply - he 
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moment equations to solve the phase correlation function, angular 

broadening,
1 

pulse smearing, intensity correlation and the probability 

distribution function of the random waves. 

Most of the text of this chapter is a published paper (Lee, 1974), 

and for clarity the paper is presented in its entirety. In this paper, 

A(£) corresponds to A~(£) in other places of this thesis. 

1 
Discussions of the validity of the Markov and quasi-optic approximations, 

the phase correlation function and the angular broadening in this and the 
following chapters come mostly from Lee & Jokipii (to be published in 
the March 15th, 1975 issue of the Astrophysical Journal). 
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Wave propagation in a random medium: A complete set of the 
moment equations with different wavenumbers 

L. C. Lee 

Downs Laboratory of Plty.<ics, California Institute of J'cch110/ogy, Pasadena. Colifomia 9Jl09 
(Received 7 March 1974) 

Prop3gation of waves in a random medium is studied under the "'qu~sioptks" and lhc " M adwv 
random process .. approximations. lJnder these 3S~umpt ions, a Fokkcr-PJi'.lrick equation satisfied by the 
charac teristic func tional of the random wave fo~ld is derived. A complete set of the moment 
cqui\tions with different transverse coordinates anc.J diffcrefU wavenumber~ is then obtained from the: 
Fokker- Planck equation of the characteristic fun..:tion:il. The applicBtions of our results to the pulse 
smearing of the pulsar signal and the frequency correlation function of the wave intensity in 
intcrstcHnr scintillation nrc briefly discussed. 

I. INTRODUCTION 

Phenomena such as the twinkling of starlight and the 
ionospheric, interplanetary, . and interstellar radio wave 
scintillations involve the propagation of an electromag­
netic wave in a r a ndom medium. A comple te s ta tistical 
description of the wave field r equires the solution of a ll 
moments of the wave field with different positions and 
different wavcnumbers. 

A complete set of the momc.nt equations of the wave 
field with different transverse coordinates but the same 
wavenumbers has been derived under the "quas!optics" 
and the "Markov random process" approximations, 1•

2 

which can b e applied to both weak and s trong s catterings. 
However, such a set of the moment equations with the 
same wavenumbers Is not sufficient to describe all lhc 
s tatistical properties of the random wave field . Some ob­
served quantitlns in interstell?.r scintillations, such as 
the pulse s mearing and the correlation function of the 
intensity fluctuation with different wavenumbers, :>-5 need 
the solution of the mome nt equations with different wave ­
numbers. It is the purpose of this paper to derive a com~ 
ple te set of the moment equations with differe nt trans­
verse positions and differcnl wavenumbers under the 
quasioptics and the Markov random process approxima­
tions. The r esults reduce to those of Tatar skii1 •2 in the 
case of the same wavenumbers. It is not ed that the meth~ 

od of the derivation used here l s new, and simpler than 
that by TatarskH. 1 • 2 

It is the idea of Hopf" to introduce the "characteristic 
functiona l " as an alternative way to describe the com­
;;lcte statistic:tl j.lroperli.,,, uf a ramiuw iit:iu . In Sec . n, 
we will de rive a Fokker-Planck equation for the charac­
teris tic funcllona l or the r a ndom electromagnetic field. 
In Sec. III, a complete set of the moment equations will 
be de rived from the Fokker-Planck equation satisfied 
by the characteristic functional. Some applications of the 
results will be briefiy discussed in Sec. IV. 

11. FOKKER- PLANCK EQUATION FOR THE 
CHARACTERISTIC FUNCTIONAL OF THE WAVE 
FIELD 

We consider the propagation of a monochromatic wave 
Ew(r, t) obeying the scalar wave equation 

(1) 

where 

(2) 

<flw(r) m ay be regarded a s a Fourier component in time 
of a general wavefunction. Herc (w/21T) is lhe frequency 
of the monochromatic wave, c is the speed of lip;ht, a nd 
Ew(r) is the refractivP. indr.x of the medium in which the 
wave propagates. 

The refractive index Ew(r) is a random function and 
depends on both the position r and the wave frequency w. 
As an example, we will consider in this paper the pro­
paga tion of the high frequency waves with w » '"'P• the 
plasma frequency of th e medium , in the plasma mcdlum. 
This applies to the propaga tion of the radio waves in the 
ionosphere, the interplanetar y space, or the inters tellar 
medium. If N, is the electron density, then we h:we 

Ew(r) = 1-w~ w2 (3) 

and 

(4) 

where m is the mass and e is the c harp;e of a n electron . 

Now N, and E w(r) fluctua te Irregula rly. Let ( } denote 
an average ove r an ensernble of propagation volumes. 
Then define 

(e.,(r)} = E,.0(r), 

N.(r) = (N,(r)) + liN,(r), 

P(r) = -41Tc26N,(r)/mc 2
• 

We have. 

V'.;..,(r) + ii[l + P(r)/i<=h.,iri = u, (5) 

where now P(r) ls a wave-frequency indepe ndent random 
variable with zero mean a nd where the wavenumber 
k = (w/c)~. 

It is useful to define 

<f>.,(r) = u(k,r)el>•, 

from which we obtain 

ilu(k r) { a• il2 il') 
2ik---a}-+ \V?+w+ay' u(k,r) +P(r)u(k,r) = O. 

Let 

r = (z,p), p=(x,y), and s=(p,k). 

(6) 

('l) 

In order to proceed fu r ther, we will make two assump­
tions about the wave equation and the properties o f the 
medium. 

1431 Journal o f Mathematical Physics. Vol. 15, No. 9, September 1974 Copyright~ 1974 American lli.litute of Physics 1431 
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First, we as sume that the term 'iJ 711/~z' In Eq. (7) can 
be neglected. This is called the "quasioptics"' approxi­
mation or "parabolic" approximation. Physically tliis 
assumption is equivalent to ne r;lcct the reflected wave 
since the equa tion has been reduced to one with a first­
order derivative Jn z from the one with a second - order 
derivative. Thus we have 

a: u(z,p,k)+ 2~k V!11(z,p,k)+ 2~kfJ(z,p)tt(z,p,k) = 0, (8) 

where 

V! = a2/ax2 + a2/ay2. 

Second, we a ssume U1a t fJ(z, p) Is delta-correla ted In 
z direction. This is called the Markov random process 
approximation. As we can ·sec later, this Is equivalent 
to assume that the correlation scale of fJ(z, p) in z direc­
tion is much less than the correlation scale or the wave 
field u In z direction. We then have 

(ll(z,p)fJ(z',p'))=26(z -z')A(p-p') (9a) 

and 

A(p - p') = J..: (f3(z, p) fJ(z', p')) dz'. (9b) 

Note that the z dependence of A(p) is not explicitly ex­
pressed for convonlence. 

The validity of the above two assumptions has been 
discussed. 2• 7 We will only note that the "quasioptics" 
approximation and the "Markov" approximation can be 
applied In the strong scattering cases. 

It is known that the probability distribution function at 
time I of a random variable x(I) that satisfies a differen­
tial equation of the first order in time with a delta - cor­
related external random force satisfies the Fol:ker­
Planck equation. IR our case, z plays the role of t\me. 
However, for a fixed value of z, the random field 
u(z, p, k) does not have jus t a discrete value but has an 
infinite number of values and Is a function of p and k. It 
is the idea of Hopf"' to introduce a characteristic func­
tional '1' to describe the statistical properties of a ran­
dom field. One defines the characteristic functional as 

'1-(z, I', v•) = (exp(iR,)) 

=(exp{i J j[u(z, p, k)v (p, k) 

+ u*(z, p, k)11*(p, k)] <Pp dk}), (10) 

where • denotes complex conjugate and the range or in­
tegration i" over all the allowed values of p and '' · Herc 
v and v* are treated as Independent functions of p and k . 

It Is the purpose of this section to derive a Fokkcr­
Planck equation for the characte!'istic functional '1< de­
fined above. 'l'atarskii 1 derived an equatlvn for the cha­
racteristic functional with constant wavenumber k. It Is 
noted that we treat in Eq. (10) the wavenumber k as a 
variable. 

Using s = (p, k), we write Eq. (10) as 

.Y(z. "• v*) = (exp{i J [u(z. s)v(.~) + u*(z. s)v*(s)] tls}) . (10') 

We differentiate Eq. (10) with respect to z and obtain 
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by Eq. (8) 

a 
oz '1-(z, '" ,,•) 

== (e >."P(iR,)ij [ (;;~) [ V~u(z , s ) + f3(z , p)11(z, s)]v(s) 

1432 

+ (2:k) [ V!11* (z, s) + f3(z, p)11•(z , s )]11* (s)J ds )· (11) 

Firs t we calculate th e t erms (cxp(iR,)V~11(z , s )) and 
(exp(iR,)V!11•(z , s)) in Eq. (l 1). From Eq. (10), we have 

and 

6'1-(z , v, v* ) 
tlr-(s) 

i (11(z, s)exp(iR,)) (12a) 

6~-(z , "• v*) _ ' ( *( ) ('R)) (12b) -6~-111 z , s exp 1 , • 

The operators 6/ Gv(s) and 6/ 61,•(s) de no tr func tional de­
rivatives.•.• Operating V~ on Eqs. (12a ) and (12b), we 
have respectively 

(v• ( ) ('R )) - 1 V ' 6"1(z, v, v•) .'' z ,s exp 1 , . -· -y • 6v(s) (13a) 

and 

(V211*(l! s) exp(iR)) = .!._.,,, 6"1{z, ''• v*) 
• ' • i • 6,,•(s) (13b) 

Next we consider the other terms in Eq. (11), namely, 
(exp(iR,)fJ(z,p)11(z , s)) and (e xp(iR,)fJ(z,p)11*(z , s)). We 
define 

g(•', 1••, z, s) = (cxp(iR,)fJ(z , p)). 

Expand exp(iR,) In power s eries as follows: 

exp(iR,) 

(14) 

~ 1 . 
= B 1 {i {lu(z, s )I'(.~ ) + u*(z, s)11*(s)] ds}m . (15) 

"'"on; . . 

Then we have 

g(v, v•, z, s) =f; J.;<lJ (111 111 + ut,,tl ds,] 
m.om. 

x[j '"•''• + ur v;l ds, l · ·• [ J (11.,v .. + 1t!v'!) ds m],3(z, p)), 

(16) 

where we define s 1 = (p1, k1), ''• = v(s 1), u1 =11(z, s,), and 
etc. foric: l ,2,3 , '" '. Inthc expansionofEq. (16), the 
existence of moments of all orders is assumed . 

Consider now the tcrm in Eq. (16) like (11f>11~2 · .. u:mfJ), 
where 11~ 1 denotes eithe r u 1 or "i. From Eq. (Bl, we 
may write 11(z , s) as · 1· 1 u(z,s)=11(0, s )+i 

0 
k 

x[ v;11(z', s) + fJ(z', r)11(z', s)] dz '. (17) 

Note that u(z, s ) does not depend on f3(z ', s) for z ' > z. 
Let Az he an Increment in z , which i s !arr.er than the 
correlation scale of fJ(z, p) in z direction, and write 

ii' i 11(z, s)~~11(?.-Az ,s)+ 2 k 
•-A• 

x [ v;u(z', s ) + fJ(z' , p)u(z ', s)] dz •, (18) 
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where u(z - t>z, s) has no correlation with f3(z, p). Sup­
pose t>z is small, anrl expand u(z, s) as 

u(z,s)=•u(z -t>z, s )+f (~'=)"1~11(z-t>z,s) 

+-2i u(z~'!:>.z,s)f' f3(z',p)dz'+O(t.•z). 
• ~-fl.~ 

(19) 

Under the Markov approximation, the correlation !'<c;ile 
of f3(z,p) in z direction is zero . Therefore, we l<~t t>z 
- o. we'note that 

and 

lim u(z -t>z, s) =ou(z, s) 
6z--O 

(f3(z, p') J.~,.. f3(z', p) dz'} =A(p - p'). 

For higher moments such as 

T 1 =(f3(z,p)f,_,f3(z1,p1)dz1 ••• 

(20) 

(21a) 

we will assume as in the derivation of ordinary Fokker­
Planck equation° 

lim T, = o, i~2. 
o~ ... o 

(21b) 

This assumption can be satisfied if the random function 
/3(z, p) has a G.aussian, or normal statistics. However, 
the assumption made in (2lb) is more general and does 
not require the Gaussian statistics of /3(z, p) in general. 

It follows directly from Eqs . (16), (19), (20), (21a), 
and (2lb) that, as Az- 0, 

(u(z, s 1)P(z, p)} = (i/2k1)(u(z, s1 ))A(p - p,) 

and, in general, 

((u1111 + ut11J') ···(um11., + u!,v!,)/3(z , p)} 

=t, A(p -p) (2~) ((u,111 +utvt) ... 
J•l I 

(22) 

by noting that (u(z-Az,s)!l(z,p')) = O. other than the as­
sumption made in (21b), Eq. (22) is exact under the 
delta-correlation assumption. But we sec that really we 
only require the existence of an intermediate scale t>z 

'vhich is larger than the coherence scale of f3(z, p) but 
smaller than the scale of variation of u such th;it 
u(z - t>z, s)"' u(z, s). The existence cf the intermediate 
scale and Eq. (21) are the essence of the Fokker-Planck 
equation. 

Substituting Eq. (22) into (16) and notin~ that all the 
s 1' s arc dummy variables, we then have 

g(v, v•, z, s) 

=~1 G~!) (2~J(m) / ·· · f A(p - pm)((111111 +uf11t) ... 

J. Math. Phys .• Vol. 15. No. 9. September 1974 

1433 

(23) 

We can also write Eq. (23) as 

g(v, v•, z, s ) 

~ i""
1 

( 1)/ f 1 =I:~ -- ••· -A(p-p' )((11'v' -11* 'v*') 
md (111 - 11! 2 k' 

where s' = (p', k'), u' '~ u(z, s '), and v' == v(s'). 

Setting m - 1 = n, we have 

g(v, v•, z, s) 

=:t (i)"(-l) J· .. fi.A(p-p') ((11 ' 11 ' -11* 1v••) 
•• o ,,, 2 ,,, 

X(111v1 +utvt) ... (11""" +11!•,!) )ds'ds , ··· ds •. 

From Eq. (25) it is easy t o show 

(24) 

(25) 

g(i,,v•,z,s}= (~ 1 ) J di,'A(p-p')[ v(s 1)(11(z,s ' )rxp(iR.)) 

- v•(s')(u*(?., s')exp(iR,})]. (25') 

By Eqs. (12a) and (12b), we write gas 

g(v, 11•, z, s) 

(i)jds' ~ 61' 61') = - -A(p-p') 11(s')T':T:7:-11•(s')--. 
2 11' 6v1s'1 611*(s'} 

Define the operator i1(s} as 

• 6 6 
M(s}= ll(s) ov(s) -1'*(.~) 6v•(s)' 

We then have 

(i) jds' • g(11, v•, z, s) = '2 k'A(p -p')M(s'}>lt(z , ''• v*). 

We also note that 

(/3( ) ( ) ( ·n )} 1 6g(v,v*,z,s} 
z, p 11 z , s exp • , = i - liv(s) 

and 

(/3( ) •(- ) (-R ))- 1 og(v,11•,z,s). 
z ,pu , ,s exp1, _ 7 ov•(s) . 

(26) 

(27) 

(28) 

(29a) 

(29b} 

By Eqs. (11}, (13a), (13b), (28), (29a), and (29b), we 
obtain 

M1 (~, v, v•) 

6z (f) f ~s (v(s)V! 6~ts) - v•(s)V! li:~s)) 
- !_ JJ dsds' A(p-p')llf(s).U(s')>lt (30) 

4 kk' • 

This is the Fokker-Planck equation for the characteris­
tic functional >It of the random electromagnetic field 
u(z, p, k) . Since the characteristic functional is the 
Fourie r transform of the probability functional, Eq. (30) 
is in fact the Fourier transform of the Fokker-Planck 
equation. Our t echnique used here can also b e applied to 
the de rivation of the Fokker-Planck equation for the or -
dinary ch:tracteristic function of a random func tion x(I). 
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111. MOMENT EQUATIONS 

We want to derive a comple te set of moment equat ions 
in this section. First, we expand ~·(~, v , v•) as a power 
series 

~'(z,11 , v•)=B B i~'"1 (f u(z , s)11(z,s)ds) m 
rrn:O n .O 'II• n. 

x (f u•(z , s')11*(z,s')ds )" 

e> • im•n 
=6 L, - 1- 1 K (z , v, 1,+), 

,,, .o n•O 111•11. m,n 

where 

Km,,,(z, v , v•) = J ... .r r 1h,,, (z, Su . .. 'sm;s[, · ~·, s~) 

XP1 ···11'"vt' · ·· v:' ds1 ••• ds'"ds: ··• ds~ 

and 

{31 ) 

(32) 

r i s them-11th m oment of the ranclom field 11(2,s). 
The" object of this section is to dcrivi! a differential equa­
tion satisfied by rm, •. 

We note that, for any function /(s) of .< , we ha ve 

J f(s}il(s) ov~s) K,.,.(z, v , v•) ds 

=/·"/ 't r (zs ••• s·s' ••· s')lf(s ) m,11 t J J '"' l' J n i ,., 
(33a) 

and 

f f{s)11*(s) ov2 (s) K,,,,.(z, v, v•) ds 

= J···j t r (z s .. . 5 ·s' · · ·s')f(s~) m,n t .. 1 m' .. l n. 1 ,_, 

Since v(s) and v•(s) arc arbitrarily defined, the quant ity 
inside the bracket in Eq. (36) must be zer o. We have 
the n the following d ifferential equation for the mom0nt 
f unct ion r .... : 

2.!::.w..(z s ··· s s'· ··<') Oz ' i '"• t .. " 

{37) 
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From {33a) and (33b) \>'C obtain 

1 f I d,rl,· - -- 4 -1;i;- A(r> - p').H (s).H(s ')K,,,,.(z , v , v•) 

Xds, ... ds,,,ds ; ··· Js~ . 

We a l so note that 

f 61( 
v(s )v 2 ---llW:. ds 

• (w(s) 
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(33b) 

{34) 

= J ··· J (v2 + v' + · • · + v' )r v .. · v v• ' · •· v•' 1 2 m m,n 1 m 1 11 

{35a) 

and 

J •( ) 2 oK,,,,. 
v .~ v.(,,,•(s)<ls 

=f·"J{v'0 +'V;'+ .. ·+V'')r v ... v v• 1 · ·· v"' 1 2 n m,n 1 m l n 

x ds 1 ••• tls,,/ls{ · ·· ds~, (35b) 

where V~ == V!J and V'/=V~r · 

By Eq~ . (31), (34), (35a), and (35b), we can wri t e 
Eq. {30) a s 

(36) 

It is noted that we can also derive the m oment equa­
tion {37) directl y from the wave e>quatinn (8), using the 
same technique in obtaining Eq. (22). Equation (37) thus 
gives us a complete> set of the moment equations of the 
random wave field with diffe r ent tr:rnsverse coordinates 
and diffm·c11l •,;::wcnumbers. 

IV. A PPLICATIONS 

First we nok that we have dcrh·ed a complete set of 
the moment cqualions with diffc r cmt transverse cnordi ­
nates and differ<'11I wavenumbers for the hi gh-frequency 
waves p ropagatin[! in a pl asm a medium. However , we 
can easily extend the a r gument to the olher cases when 
the i ndex of refraction c~{r) has a different frequency 
depe ndence. 
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Next we consider some appl ications. 

A. Ide ntical wave numbe rs 

Whe n all the wavenumbcrs arc identical , Eq. {37) 
becomes 

a r "'" (z P ··· p p'···p') 
Oz ' 

1 
""' 

1 
" 

-Et [A(p, -pj) + A (pj-p,)] 
••l Jal 

+ttA(pj-p)r "'•"' 
••• J-l ') 

77 

(38) 

which is identical to that obtained by Tatarskii. 2 How ­
ever , the derivation by Tatarskii requires that the re­
fraction index fluctuations possess Gauss ian s t atistics 
while we do not r equir e the assumption of Gaussian sta­
tis tics in our derivation in general. 

B. r 1 • 1 (z,s 1 ,s2 } 

When m = 1 , and n = 1, Eq . (37) gives 

ar1 ' (z, p.,k.,r>,, k,) 
iJz 

i (v• v') 1 [( 1 1 ) = - -1. - -1- r 1 , 1 - - 7'" + 7'" A(O) 
2 k, k, 4 "i ,,, 

_ 2A(p, -p,)Jr 
k,k, '·" 

where r.,,{z' p., k" p,, k,) = ( u(z, p., k,)u• (z . fJ,, k,}) . 

(39) 

Equation (39) can be used to calculate the mean inten­
sity profile (/(r, /))at position r. Consider the random 
wave observed by a detector with a bandwidth function 
fs(k). Then we have the total observed wave amplitude 
h(z,p, t) a t position z,p and time I 

h(z, p, I) = J:U<z, ,_,, ;,j/8 (k~ exv\:i[i<, - c..\ki1}f dk. {40i 

The average intensity profile is then 

(!{r, t)) = (h(z, p, l)/1*(z , p, I)) 

= J J: (u(z , p, k1)u* (z , (J, k2))/ 8 (/l1)fs(k,) 

xexp{i[k,z - «•(k1 ) t)} exp{ -i(k2z - w(/:2) t]} dk1 <ll12 • 

(41) 

Thus r, 1 is related to the average intens ity profile 
(/{r, I)) by Eq. (41). Equal.ions {39) and (41) have been 
applied to cal culate the puls e profile of pulsar in inter­
stellar scintilla tion. The details will be gi\•en in a later 
paper. 
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c. f'2, 2 

When 111=2, ~tnd 11=2, Eq . {39) becomes 

- ~((2..- + .;.. + .;. + -ir)A(O) + 2-A-'(p~,._--'-P=2) 
4 k; k> k; k, k,k, 

- 2 :4(fJ, - fJ,) - 2 A(p2 - p.)] r 
k,k3 k,k. .. .. 

(42) 

whe re 

r 2,.(z, s., .~,, s,. s.) = (u{z, s.)11(z, s,)11* (z , s ,)11* (z, .<., )) • 

(43) 

If one sets s 3 = s., s. == s 2 , and p 1 = p,, then 

r,,.(z, S1, S2, s,, .~,) 

= (I 11(z , flu k.) I' I 11(z , Pu k,) J 2> = (/(z, p., k, ), 

/(z, p,, k2 )) = P 1(1.'i - k2). (44) 

Herc/ Is the inte nsity and P1 is the correlatio n func tion 
of lntcnr.ity a t different frequencies. Thus r , 2 gives in 
this s pecial case the i ntcnsity correlation fut;ctio n 
P1(1,, - k,} a t a J;>. ivca ol>serv;1tion point with different 
wavem1ml>ers . The intensity correlation function has 
been measured in interstellar scintilla tions,>-• . •0 and 
Eq . (42) provides a theoretical base of interpretation . 
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V. Second Moment and Others 

For the moment equations with~ wavenumbers in Eq. (4-38) , 

we will consider in particular r 1 O' r 1 l' r 2 O and r 2 2 which satisfy, 
' ' ' J 

respectively, the following equations 

and 

ar 2,o<z, £1'£2) 

Oz 

(4-45) 

(4-4 7) 

(4-48) 

We assume throughout this thesis that ek of the random 

medium is statistically homogeneous in the transverse plane and that u is 

homogeneous in the initial plane. Therefore rl o<z, £ ) does not depend on 

' 
£and rl l(Z,£1'£2) depends only on z and the difference of the arguments 

J 

£1 and 12,2 , \ 12,1 - 12,2 \. Thus we have 9£
2 r 1 , 0 (z, 12,) = 0 and 

2 2 (v
1 

-v
2 

)r
1 1

Cz, 12,
1

,12,2 ) = O. Eqs. (4-45) and (4-46) can be written 
' 
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respectively as 

= - (4-49) 

and 
1 

- 2 [AA(O)-AA(f2_)] r l l (z,£) 
2k I-' I-' ' 

(4-50) 

where in Eq. (4-49), £=£1-£2 and r 1 , 1 (z,£) = r 1 , 1 (z,f2_1,f2_2). Since we 

have nonnalized our incident wave such that u(z=O,£)= 1, we have 

immediately upon integrating Eqs. (4-49) and (4-50) the general results 

rl o<z,£) = e 
' 

(4-51) 

and 
r11<z,f2)=e 

' 
(4-5 2) 

rl o<z,£) = (u(z,f2_)) is called the "mean wave" or the "coherence 
' 

wave", which describes the coherent part of the random wave. Eq. (4-51) 

shows that the "mean wave" decays as wave propagates in the random medium. 

rl 1 (z,f2) is called the ''mutual coherence function" and is the quantity 
' 

that describes the loss of coherence of an initial coherent wave propagating 

in a random medium. r
1 

l (z,O) = (I(z ,f2_)) is the mean intensity observed at 
' 

z and from Eq . (4-52), (I(z, £)) = 1 for all z. r 1 , 1 (z, f2_) is directly re-

lated to the angular spectrum of the random waves, which will be discussed 

in detail in Chapter 5. Whitman & Beran (1970) have solved r 1 l for the 
' 

beam spread of laser light propagating in a random medium where u is 

2 2 
initially inhomogeneous and in Eq. (4-45), (71 -72 )r1 1 ~ 0. 

' 
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Eq. (4-52) is very similar to the expression for the angular 

spectrtnn discussed by Fejer (1953) , Bramley (1954) and Ratcliffe(l95 6), 

who use "angular spectrum method" which can only be applied for the homo-

geneous cases. Eq. (4-45) is the general equation describing the second 

moment r
1 1 for both homogeneous and inhomogeneous cases. 

' 
r 2 O and r 2 2 will be discussed in Chapter 5. We note t hat r 2 2 ' ' ' 

is directly related to the intensity correlation function of the random 

wave. 
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VI. Validity of the Markov and Quasi-optics Approximation 

The limits of validity of the Markov and parabolic approximation 

for r
1 

l are discussed thoroughly by Tatarskii (1971) and we simply quote 
' 

his results here. 
2 2 

He shows that incorporating the term o / oz which is 

neglected in the parabolic approximation leads to a second-order approxi-

mat ion 

(4-53) 

Clearly, for f(l) to be a good approximation, the second term in curly 1,1 

brackets must be small compared with unity . That is, we require 

k2A€ (0) 2 [ z ..... k2z 
- -"-3-161{ z << 1. (4-53

1
) 

Tatarskii derives this condition assuming Gaussian refractive index fluctu-

ations, but it is readily generalized to non-Gaussian statistic s by the 

techniques used in Section II of this chapter. 

Tatarskii also derives the criterion for assuming that the coherence 

length of the fluctuations is short (the Markov approximation) and finds 

that it is effectively the same as that given in Eq . (4-53'). 

In what follows , representative calculation will b e presented for 

both types of spectra given in Chapter 1 , Section III. In order to apply 

the above results we must first ascertain the limits on the parameters for 

which the correlation terms in Eq. (4-53) are small . Clearly this will not 

be satisfied for z larg e enough. In addition, the condition al s o d e pends 

on the value of p , and may break down for large enough p . 
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For the Gaussian spectrum given in Eq. (1-21) we have 

A (p) 
e: "' 

in which case we require 

+ 

B 
81t' 

e 

2 2 
-(p qo ) /4 

2 2 ' 2 2 

( 
qo P ) - p qo I 4] 

- 2+--- e 
2 << 1 

(4-54) 

(4- 55) 

For the power law spectrum in Eq. (1-21) the expression for A(£) cannot 

be evaluated exactly. However, it will be sufficient to consider only 

1 intennediate values of p, L >> p >> £ or q << - << q in which case one 

may show that 

0 p l' 

[ 

1 - 1(2-~) {qop). a-2 J 
l(a / 2) \ 2 

(c. f. Eq. (1-28)) so that our condition (4-53')becomes 

Bk
2 2 

2 { 2•k
2

z [B a 
a 

Pa-3] 1(2--) qo 1 ~ 2 2 

64rc
2 a:-2 z 3 

20'.rc 1(g) 
2 

a a 

} 
Bq 1(2--) a:-4 0 2 ( a:-2) << 1. + 
2a - 11(g) 

p 

2 

(4-56) 

(4-57) 
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Now, it is desirable to remove the dependence on p from Eqs. (4-55) 

and (4-57) in order to find the max imum value of z, the propagation 

distance , for which these equations are valid. First we note from Eq . 

(4-51) that the transverse coherence scale of r 1 1 may be much smaller 
' 

than the coherence scale of e. It is also clear that we are not interested 

in p much larger than the transverse scale of r
1 1

. Hence we may evaluate 
' 

this scale and substitute it in Eqs. (4-55) and (4-57) to obtain equations 

giving the allowed value of z in tenns of B, q and a . 
0 

From Eq. (4-51) , we see that the transverse scale of r 1 1 is simply 

' 
that value of p f or which 

[A (0) - A (o) J =>< 1 e e i:;, 
(4-58) 

For our Gaussian spectrtnn this become s for the cases of interes t where 

<< _!_ 
p q ' 

0 

2 4 
( p qo ) ""' 1. 

Defining p as the transverse scale , we have 
c 

( 
64~) 1/2 

Bzk 

(4-59) 

(4-60) 

Substitut ing this f or p in Eq. (4-55 ) and r emembering t hat q p << 1 , 
0 c 

we have 

<< 1 . (4-61) 
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This limit on z is illustrated in Figure (4-1) for typical values of the 

parameters. 

Proceeding similarly for the power law spectrum, we obtain 

(if p > p,) 
c 

2 B 2 
zk _l 
-2- • 41t 

or 

a rc2--) 
2 

a re-) ca-2) 
2 

In this case our condition on z becomes 

2 
64(a:-2) 1t 

. 2 
2 21!k z 

z 3 

1 
a -2 

a:-4 • p, 

= 1 

« 1 

(4-6 2) 

(4 -63) 

(4 -64) 

where we have noted that the second term on the left is always less than 

its value where p = P, , the inner scale. The limitation on z, as a function 

of L = 

Figure 

...L , provided by Eq. (4-64) for a power-law spectrum is plotted in 
q 

0 11/ 
(4-2) for a = 3, corresponding to the Kolmogorov spectrum, for 

parameters of interest for the interstellar medium. It is readily seen 

2 -4 -6 8 
that if <.On > "' 10 cm and € > 10 hz , one may apply our equation at 

e 

typical galac tic distances. 
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Figure Captions 

Figure (4-1). Upper limits on z for the validity of the Markov approxi-

mation, for the Gaussian refractive index spectrum given by Eq. (1-20). 

The maximum value of z is plotted as a function of electromagnetic wave 

. 2 -4 -6 
frequency f. Curve (1) is for <oN > = 10 cm and curve (2) is for e 

<oN 2> = l0-5cm-6 . Note that the value of z ~ (<ON 2>)-l f 3 . 
e e 

Figure (4-2). As in Figure (4-1) for the power-law refractive index 

spectrum given in Eq. (1-21) with the Kolmogorov value for a = 11/3. 

The maximum value 

various values of 

f = 108 Hz , curve 

2 -4 -6 <oN > = 10 cm 
e 

of z is plotted 

2 <ON >and f. 
e 

as a function of outer scale L for 

Curve (1) is for <ON 2> = l0-4cm-6 
e 

(2): <ON 
2
> = 

e 
-5 -6 8 

10 cm and f = 10 Hz, curve (3): 

8 and f = 3xl0 Hz and curve (4): <oN 2> = l0- 5 cm-6 
e 

f = 3x108 Hz. Note that the value of z scales ~ (<oN 2>)-1 L -2/11 
e 

f 32/11. 

and 

and 
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1026 

1025 -

z (cm) 

1024 

1023 

1022 

108 109 1010 

f (Hz) 
Figure (4-1) 
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Chapter 5 

The Markov Random Process Approximation (B) 

I. Introduction 

In Chapter 4, we have derived a complete set of the moment equations 

of the random waves with different frequencies under the Markov and the 

quasi-optics approximations, which are valid for both strong scintillations 

(m """' 1) and weak scintillations (m << 1). In this chapter, 
z z 

we will apply the moment equations to study the various statistical prop-

erties of the waves propagating in a thick random medium. The multiple-

scattering effect, which is important for strong scintillations and for a 

thick medit.nn, is included in our treatment here. 

In Section II of this chapter, we discuss the angular distribution 

of the scattered wave and calculate the root mean square scattering angle 

and the characteristic scattering angle. Section III gives the spectrum 

of phase fluctuations. In Section IV, we calculate and discuss the temporal 

smearing of pulses propagating in the turbulent plasmas. In Section v, 

the spatial intensity correlation function is calculated. In Section VI, 

we discuss the probability distribution of the random wave. Finally in 

Section VII, we calculate the intensity correlation function of the waves 

observed at the same point but with different frequency-bands, and 

determine the decorrelation bandwidth of the random waves. 



89 

II. Angular Power Spectrum 

In this section, we will derive an expression for the angular 

broadening of waves scattered by a random medium. Before proceeding we 

recall the result that the angular distribution of radiation is essentially 

the Fourier transform of the r 1 1 (z,Q) in Eq. (4-46) with respect to the 
' 

transverse coordinate £ (Booker & Clemmow 1950, Booker, Ratcliffe & Shinn 

1950, Ratcliffe 1956). Suppose we regard our wave field as being a super-

position of plane waves which are propagating at a small angle relative to 

the z axis. For these waves, define the angles e =k /k, e =k /k and x x y y 

e =-fe2 + e2
. It may be shown that for waves with random phases, the ., x y 

distribution of intensity over angle, w<e e) is related to rl 1 (z,x,y) 
x, y ' 

by the relationship 

4
krc22 ff w(e ,e ) = rl l(z,x,y) exp [-ik(xe +ye )] dxdy 

x y ' x y 
(5-1) 

with the inverse relationship 

rl,l(z,x,y) = f de Jae* (8 ,e ) exp [+ik(xe +ye )] . x y x y x y 
(5-2) 

w<e ,e ) is connnonly called the "angular power spectrum", and gives the 
x y 

intensity as a function of angle. Thus the average total intensity at any 

given point is 

(I) f de J de w ( e , e ) x y x y 
(5-3) 
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and the mean square angular deviation is 

(5-4) 

Using the expression in Eq. (4-52) for r 1 l we have immediately for an 

' 
extended, homogeneous medium, 

•1•(e ,e) ., x y 

and, after some manipulation 

(5-5) 

(5-6) 

2 4 4 Note that the mean square angle (e) is always proportional to ~ (or k- ). 

We now consider the functional form of the angular spectrum for our 

two representative refractive index power spectra. We note that the 

angular spectrtun as given in Eq. (5-5) is illU. in general a Gaussian. 

However, as z becomes large it asymptotically approaches a Gaussian and 

we now derive the conditions under which this occurs. 

It is most convenient to discuss the two angles 

(for isotropic 

clear from Eq. 

spectra the distributions 

(5-5) that the moments of 

w<e , e )de de x y x y 

of e and e 
x y 

e are given 
x 

e and e separately 
x y 

are equal). It is 

by 

i 2n 
(-) 
k [{•xp (- ~2 [vo>-A~<£>J)}j (5 - 7) 

p=O 
~ 
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h 1 f <e 2n) . wit an ana ogous expression or 
y Consider now the second and 

fourth moments. 

and 

z 

2k
4 (:)) 

£2,=0 

(5-8) 

z ff 4 2 2 
dq dq q P (q =O,q ,q )+3((8 ) )· (5-9) x y x € z x y x 

Now, if the distribution of e is a Gaussian it is necessary that the 
x 

moments satisfy the relation 

(2n)! 

2nn~ 
(5-10) 

It is apparent from Eqs. (5-9) and (5-10) that a necessary condition for 

(e 4 ) to satisfy the Gaussian relation (5-10) is that the first term on 
x 

the right in Eq. (5-9) be much smaller than the second term on the right. 

Thus we require 

.ff dqxdqyqx
4

Pe(qz=O,qx,qy) 

[J J dqxdqyq/P_<q.=O,qx''ly)] 
2 (5-11) 
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in order that the fourth moment satisfies the Gaussian condition . The 

corresponding conditions for the higher moments of e are essentially 
x 

equivalent to (S-10) for Gaussian spectrum and power law spectrum with 

0 < a < 4. So we take Eq . (S-10) as the condition for ~ (e ,e ) to be 
x y 

approximately Gaussian. 

This condition can be written explicitly for our representative 

refractive index spectra given in Eqs . (l-20) and (1-21). For the 

Gaussian spectrum we have 

and for the power law spectrum 

r(3-g) 
2 

(5-12) 

(5-13) 

The conditions (5-12) and (5-13) are plotted for various values of the 

parameters in Figures (5-la,b) . It is clear that rather extreme values 

of the parameters are required for ~(e , e ) to be Gaussian , and that for a x y 

power law spectrum we do not expect a Gaussian angular distribution for 

reasonable values of the parameters. 
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Figure Captions 

Figure (5-la). The value of z , beyond which the angular spectrtml is 

approximately Gaussian, plotted versus the correlation scale L, for the 

Gaussian refractive index spectrmn in Eq. (1- 20) curve (1) is for 

-4 -6 8 2 -4 -6 10 cm and f = 10 Hz ; curve (2): (oN ) = 10 cm and 
e 

( oN 
2

) = 
e 

8 f=3x10 Hz, curve (3): (oN 
2

) = l0-5cm-
6 

and f = 108 Hz, and curve 
e 

Figure (5-lb). As in Figure (5-la) for the Kolmogorov power-law refractive 

index spectrmn. In all curves (oN 
2

) = 
e 
-1 

sensitive to the inner scale t = q1 

t = l06crn; curve (2): f = 3 x 10
8 

Hz and 

5 8 and t = 10 cm and curve (4) : f = 3 x 10 

z scales ~ ((oN 2))-l f 2t-5 / 3L+213 • 
e 

-4 -6 
10 cm . Here the result is 

In curve (1), f 108 Hz and 

t 6 
(3): f = 10

8 = 10 cm, curve 

Hz and t = 5 10 cm. Note that 

Hz 
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z (cm) 

10 11 

1osL-,,~~~-L,-2~~~__J-,3~~~~-~,-4~~~--'--,5~~~~,6 
10 10 10 10 10 10 

L (cm) 

Figure (5-la) 
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\ . 

z (cm) 

1023.__~~~-'-~~~~-'-~~~__.~~~~-'-~~~----J 
102 1 1o'7 10 19 10 20 1022 

L (cm) 

Figure (5 - lb) 
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We now compute the mean angular broadening as a function of the 

parameters for our representative spectra. This is represented by 

( e 2
) + ( e 2

) = ( e2
). We have for the Gaussian spectrum 

x y 
4 

zBq 
0 

161T 

and for our power law (if a > 4 and q 1 << q
0

) 

a 4 -a.... a q q 1 (2--) 
0 1 2 

2 1/2 
Again, the value of ( e ) for various values of the parameters is 

illustrated in Figures (5-2a,b). 

(5-14) 

(5-15) 

Finally, we note that observations of angular broadening usually 

refer to a l/e power angle, or some other angle characteristic of the fall­

off of the angular spectrlllll with increasing \el. We define a characteristic 

angle e such that if p is the characteristic scale of r
1 1 (see Eq. (4-58) 

c c ' 

and following discussion) then 

e 
c 

(kp.c) -1 

1 h f e <e2>112, It is readi y s own that or a Gaussian spectnnn, "" 
c 

a power-law spectrum, e may differ considerably from (e
2
) 112

. 
c 

Eqs. (4-63) and (5-16) we have for a power law 

1 

e 
c 

= qo 
2k 

2 2 

[

Bzk q 

81T(a-~) 
r(2-~) J a -2 

r(a /2) 

(5-16) 

but that for 

Using 

(5-17) 
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Note that e for a power law is independent of ql and is proportional to 
a c 

<a-2) 2 
~ in contrast to (e ). 

(5-3) for Kolmogorov spectrum. 

The value of e is illustrated in Figure 
c 
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Figure (5-2a). The root-mean-square scattering angle (8
2

)
112 

plotted 

versus the correlation scale L for a Gaussian refractive index spectrum. 

2 -4 -6 3 8 
In both cases (oN ) = 10 cm and z = 10 PC. In curve (1) f = 10 Hz 

e 

and in curve (2) f = 3 x 10
8 

Hz. The value of (e 2
) 1 /

2 scales~ (( oN 2
) )

1
1

2 
e 

1/2 -1/2 -2 
z L f . 

Figure (5-2b). 

index spectri.nn. 

As in Figure (5-2a) for a Kolmogorov power-law refractive 

8 6 
In curve (1) f = 3 x 10 Hz and the inner scale t = 10 cm, 

curve (2): f = 10
8 

Hz and Z = 10
6

cm and curve (3) : f = 10
8 

Hz and ~ = 10
5

cm. 

Figure (5-3). 

length L for a 

(1) 
8 

f = 10 Hz 

-4 -6 3 2 1/2 
10 cm and z = 10 PC. The value of (e ) scales 

Characteristic half-power angle e plotted versus correlati on 
c 

Kolmogorov power - law refractive index spectrum. In curve 

(2) 
8 3 

and in curve f = 3 x 10 Hz. In both cases z = 10 PC 

and 
2 -4 

(oN ) = 10 cm 
-6 

The value of e scales ~ 
3/5 (oN 2 ) 3/5f-ll/5L-2/5. z 

e c e . 
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III. Phase Fluctuations Induced by the Medium 

An interesting and useful result concerning the phase fluctuat i ons 

induced by the medium may be derived using the results for r l 1 derived 
' 

in Eq. (4-52). We express the wave function u (z, £) in the fonn 

u(z, f2) A(z,p) exp ris(z, p ) ] 
rv · rv · 

(5-18) 

(c . f. Eq. (2-39))where the (non-negative)amplitude A and the phase S 

are real functions of z and £· 

If the medium is thick enough that the phase fluctuation induced 

is large compared with unity (strong scattering ) then it is expected that 

the correlation between the amplitude and phase is negligible. Then we 

may express rl 1 (z, ~) in the fonn 
' 

(A(z.O) A(z,Q_)) ( exp {i [S(z,Q) - S(z, f?)J}) 

Since r
1 

l (z,Q) = 1, we have also 
' 

(A(z, O) A(z,O)) = (A(z,p) A(z,p)) = 1. 
~ ~ 

(5-19) 

(5-20) 

It will be shown in Section V that in strong scintillations the fluctuation 

in intensity is approximately equal to the mean, 

4 
(A (z,O) '> = 1 + m 

z 
2 

""" 2 

2 
(m ~ 1) , so that 

z 

Further , the phase S is the result of a large number of independent, 

(5-21) 

randrnn increments, so that by the central limit theorem S (z,£) has a 

Gaussian probability distribution. Hence if the f luctuation of S about 

its mean (S) is denoted by 6S, we have 
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(exp (iS)) = exp(i(S ))exp (- ~ (os 2
)). 

Now define the correlation function of the phase function S as 

Eqs. (5-19); (5-22) and (5-23) yield immediately 

From our solution for r
1 

l in Eq. (4-52), we then have 

' 

or z [ (A(z,O)A(z,12)) ] 
- 2 Ar>.( f?) - ln ( ) Zk t-' · - A(z,O)A(z,oo) · 

where we have made use of the fact that c
8 

(z,00 ) = 0 . Eq. (5-26) 

(5 - 22) 

(5-23) 

( 5 -24) 

(5-25) 

(5- 26) 

is quite s imilar to earlier results obtained by Bramley (1954) and Ratcliffe 

(1956) who used a thin screen approximation to obtain the phase f luctuations. 

(c. f. Eqs. (2-22), (3-3) .) Little and Matheson (1973) used a similar ex-

pression. Indeed, if the second term on the right in Eq. (5-26) were zero, 

we would have prec ise ly the previous result for the phase. 

In fact, this term is !!Q!_ in general zero. However , some general 

consideration s u gges ts that itmay be quite small for strong scintillations. 

This may be s e en as follows . We note from Eq. (5-20) and the fact that 

A is non-negative, that 

0 ~ (A(z,O) A ( z,Q_,)) < 1. (5 - 2 '7) 



104 

Now for (f2) small, we have seen in Eq. (5-20) that ln r(A(z,O)A(z, f2) )J 

approaches zero. For ( £ ) large , this term is 

ln [ (A(z,O) A(z,£) ) ] """' 2 ln (A(z,O) ) (5- 28) 

But the probability distribution of A, P(A), must satisfy the cons t raints 

co 

J P(A)dA = 1 (5-29a) 

0 

00 

A 
2
P(A)dA I 1 (5- 29b) 

0 

cc 

J A 
4

P(A)dA l+ m 
2 

::>.< 2 
z 

(5-29c) 

0 

It is possible to demonstrate that for any P(A) such that Eq. (5-29) i s 
2 1/2 2 

satisfied , (A(z,O) ) ~ (l+m ) """' .707 form """ 1 and that probably z z 

(A(z , O) ) is even closer to unity. A proof of this lower bound on ( A) 

is given in Appendix A. For example, if P(A) were log normal (A) """' .915 

and if A had a Rayleigh distribution, (A)"""' .89. Hence, 

(5-30) 

whe r e 0 s d s . 69. Since in most cases of interest the quantity 

( z / 2k
2

)Ap(O) is v ery large , Eq. (5- 30) neg lecting d is in fact a ve ry 

good approx imation for c8 (z , O). For the same reason, we expect that 
2 c

8
(z, £ ) is also approx imately given by (z/2k )Ap(£) , although we have been 

unable to find a rigorous proof. 
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2 
It is clear from the above that identifying (z/2k )Ap(£) with 

the phase correlation function is not always correct , but that within 

the Markov approximation 

an accident that setting 

Eq. (4-52) for r 1 l is exact. It appears to be 

' 2 c
5

(z ,£) = (z/2k )Ap(£) , and then neglecting 

the fluctuations in A entirely, leads to the correct expression for 



IV. Pulse Broadening 

( §1). Introduction 
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It has been observed that the pulses received from pulsars are tempo­

rally broadened at low frequencies. (Staelin & Sutton 1970; Rankin et al. 

1970; Counselman & Rankin 1971; Ables et al. 1970; Lang 1971; Sutton 1971.) 

The theoretical works about pulse broadening have been based on "thin 

screen" model (Scheuer 1968; Cronyn 1970; Lovelace 1970) and on ray optics 

(Williamson 1972; Mathews & Jokipii 1972). The thin screen approximation is 

not necessarily realistic in interstellar scintillation since the fluctu­

ating electron density may not be confined to a small region between source 

and observers, and the ray optics approximation is not justified in s trong 

scintillation. Furthermore the calculations of the pulse broadening 

within the thin screen model by Scheuer (1968), Cronyn (1970) and Lovelace 

(1970) are not rigorous. The estimations by Scheuer (1968) and Cronyn 

(1970) are based on ray optics. Lovelace (1970) calculates the pulse 

broadening function using a heuristic physical model in which the prop­

agation of rays is also considered. 

In this section, we will consider the broadening of pulses prop­

a gating in a thick medium and through a thin phase-changing screen. First 

we will calculate the pulse broadening for the waves propagating i n a thick 

meditnn in which the multiple-scattering effect is important. Then we will 

derive the pulse br oadening function rigorously from the wave equation 

for the thin screen case. 
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(§2). Some General Consideration 

Suppose the source emits a pulse in the initial plane z = 0. Let 

h(z=O, £ ,t) be the wave function in the plane z = 0. As the wave prop-

agates through the turbulent medium, the wave function becomes h(z, £ ,t) 

in the observing plane z = z. We write h(z=O, £ ,t) and h(z, £ ,t) in terms 

of their Fourier components in time, <Pa/z=O,£) and <Pro(z, £ ) respectively. 

We have then 
co 

h(z=O, £ ,t) 
1 L -irot 

2:rc <Pro(z=O, £ ) e dro (5-31) 

co 

1 L -irot 
2:rc 

<P (z,p) e dro 
(l) ~ 

and 

(5-32) 

We note that each Fourier component <P (z ,p ) propagates independently 
(l) ~ 

and is described by Eq. (1-17) or (2-1). 

The quantity h(z,£,t) will be observed only if the receiver has an 

infinite bandwidth. In practice, the receiver has a finite bandwidth and 

the "observed" wave function is given by 

co 

11._s (z, £, t) 2~ J 
-= 

(5- 33) 

where fB(ro) is the bandpass func t ion of the receiver. In what follows we 

a ssllllle that fB{a>) can be characterized by a mean frequency ro
0 

and a band­

width 26, and that it can be written in the form 

(S - 34) 
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We suppose that the initial wave function is a delta function, (l) 

h(z=0, 2 ,t) = o(t) 

Then we have ~ (z=O,p) = 1. We note that the argument below can be 
(j) ~ 

e asily generalized to cases with any other pulse shape. 

Following Eq. (4-6), we write 

ikz 
~ (z ,p ) = u(k,z , e) e 

(j) ~ ·-

where u(k,z, £ ) is the fluctuating part of ~m(z, £). 

Suppose first that the medium is free space , then u(k , z,£) = 1 

and k = m/c. We have 

h(z, e_, t) o (~ 
c - t) 

{ - ( z>2 2} and t:, t-- t::. 
c 

hB(z, e,,t) = 2:rr 
exp 2 

(5 -35) 

(5-36) 

(5-37a) 

(5-37b) 

as expected. The finite width (~) of hB is just an example of the uncer­

tainty principle. 

Now consider the case where the medium through which the wave prop-

a gate s i s a pla sma with a uniform electron density N • The dispe rsion 
e 

r e lation is 

k(m) 

2 1/2 
(j) 

~ (1-+) 
(1) 

(5-38) 

whe r e m is given by Eq . (4-4) . If the bandwidth t::. is narrow, we may write 
p 

k (m) ( (J)- (j) ) 2 (d 2ic) 
0 d 2 (j) (j) 

+ . (5..:39) 

0 

(1) 
In f a ct it is the intensity that has the d e lta function . But the 

d i f f erence is just a matter of normalization. 



109 

Assuming that the third and high-order terms in Eq. (5-39) are 

small and can be neglected, we find from Eq. (5-33) that for h(z=O,t)=o(t) , 

1 ( z ) 2 2 

• exp { -

t--;;- 6 l ~rt (l+R 
2 

6 2) 
-2 g 

(l+R 
2 

t.
4

) t (5-40) 

1 2 
where v --- is the group velocity and R zl<4) I· g (dk) dill ill 

dill ill 0 

It is readily 

0 

demonstrated that the neglect of the third order term in Eq. (5-40) for the 

expansion of exp(ikz) requires 

<< 1 (5-41) 

which is generally well satisfied in astrophysical problems. 

Wl..th h d" . . b E (5 38) d h f h 2 << 2 
t e ispersion given y q. - an t e act t at ill ill , 

p 

we have 

and R""" 

v 
g 

C(J) 
0 

= c ~1- illp: 
ill 

0 

(J) 2 
:::... c (1-....JL) 

Zill 
2 

0 

(5-42a) 

(5-42b) 

From Eq. (5-41), we find that 

(a) The reception time (~) of pulse from pulsar depends on the 
v 

g 
obsL' rving frequency m

0
• If t 1 and t 2 clcno tc th e r e c eptio n t ime s of a pulse 

•l' (()') 
at frcq1ie11 c :l.es (-;--).I) 111ul (-:-->·· ) rL'SIH~clivtd .y , t:hc11 

- J( - 1( 
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2 

zro 1 (__£_) (- -
Zc 2 

°1. 
_l_) 

2 
roz 

This effect has been observed (Counselman & Rankin, 1971). 

(5-43) 

(b) Even in the absence of scattering, a pulse is broadened 

upon passing through a dispersive mediwn such as a plasma. The character-

istic time for the broadened pulse is t
1 

in the interplanetary and interstellar gas it appears certain that the 

broadening indicated in Eq. (5-40) is not large enough to be interesting. 

We next go on to the cases of present interest in which the electron 

density (and hence the index of refraction) varies randomly. In this 

case ek(z_. 1,') also varies randomly and it is most useful to consider the 

average of the various quantities over an ensemble of P.ropagation volumes. 

Let ( ) denote an ensemble average. We have f rom Eqs . (5-33) and (5-36), 

00 

i [kz-rot] - i[k'z-ro't] 
x e d ro dro ' 

(5-44) 

where k k(ro) and k' k(ro '). 

Now we have to calculate the frequency correlation function 
.,. 

( u(k,z, £ ) u ' (k' .z,~) ) . This correlation depends on both ro (or ro ' ) and 

the differences ( ro- ro') in general. But if the bandwidth of the receiv er 

is narrow, then the dependence of this correlation function on ro within 

the bandwidth can be neglected and one has irmnediately 
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(5-45) 

where-+c represents the convolution of P
1 

and P
2 

with respect tot, and 

where 

and 

1 
2:rr 

o:> 

L 

z 2 2 
(t--) 6 

v 

-is (t-~) 
v 

g 

(5-46) 

. (5-4 7) 

Note that P1 (z,t) is identical to IB in Eq. (5-40) and represents the 

pulse profile due to dispersion. P2 is then the pulse profile due to the 

random index of refraction. Eq. (5-47) can be written in terms of k 

= ~ -P.~ ~ c l 1-j- c 
(l) 

where k 

-ick (t-~) 
1 v 

g dk 
1 

is used in the transformation from ru to k. 

order to proceed further, we must determine fl 1 (z, £ 1 ,k
1
, £2 ,k2) 

' 

(5-48) 

In 

.. k 
~ ( u(k1 ,z, ~1 )u (k2 .z, ~2) ), which satisfies the differential Eq. (4-39). 

(\fl,l 

Oz 

2Af3 (£1 - £2 J 
k

1
k

2 
11,1 · 

(5-49) 
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For a statistically homogeneous medium, fl,l depends on p = 1£
1

-£
2

\ instead 

2 2 2 
of £i and £2, and one has v1 =v2 =V£ Eq. ( 5 -49) becomes 

orl,l(z, ~,kl,k2) 
oz 

where 

De fine 

and 

Also write 

i 1 (-
2 kl 

k + l'ik 
2 

k - /l,k 
2 

1 [ 1 1 - - (- + -)A (0)-
4 k 2 k 2 13 

1 2 

Expanding k
1 

and k 2 in Eq.(5-49')in terms of k and 6k, we have 

''.:> 2 2 
o re N<) + !. .6.k !::. r + 1 Ck2 + l::.k ) r co) co)J 
oz z ' £' 2 k 2 Q 2k 4 4 A f3 - A f3 f 

+ 1 
4 

0 

(5-49') 

(5-50a) 

(5-50b) 

(5-51) 

(5 - 5 2) 

We assume /j{.. is small and \t.k\ << k and neglect terms of order 6k
3 

2 
In addition we put (k

2 + ~~ ) ~ k
2 

in the third term of Eq. (5-52) since 

l~c\ << 1 as assumed. We must keep the fourth t e rm which is proportional 

') 

ro f\k- , because at I!. = 0 the third term vanishes. Note that if we n egl ect 
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the diffraction tenn , (i~) 6 
2 r, one obtains 

2k e. 

(5-53) 

which can be termed the "pure refraction" effect and gives the effect of 

the differing transit times due to the varying index of refraction. In 

this case, Eq. (5-53) gives the spread due to this effect as 

1/2 
( 2rrAl3 (0)) 

exp 

which is a symmetric Gaussian with width 

A (O)z l/Z 
1 ( @ ) 

k2c 2 

2(t-_£)~4c 2 
v I · (5-54) 

(5-55) 

The effect of diffraction can be found by defining a new fD(z, £ ,61<.) by 

The equation for fD is then obtained by substituting Eq . (5-56) into 

Eq. (5-54). One obtains 

~r 
_D_ 

oz 

with its associated 

c 
2rr 

co 
-i6kc (t-_£) 

v 
g 

0 

d(/\k) 

(5-56) 

(5-5 7) 

(5 -58) 
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PD(z,t) gives the pulse profile due to the pure "diffraction" term. We 

have, finally, the convolution 

(5-59) 

The equation for fD cannot be solved analytically, and we defer its dis-

cussion until later. 

We note that from Eqs. (5-45) and (5-59), the time dependence of 

(IB) is given by the convolution of three functions, each one of which 

is related to a specific physical effect. This simplifies the discussion 

considerably, and if (as is usually the case) one effect gives a much 

larger spread than the others, the temporal profile is dominated by the 

P f unction for that e ffect. Thus, in most cases of inter est, the 

convolution need never be carried out. This is par ticularly valuable 

since the functional form f o r f D i s not simple and carrying out the full 

convolution would b e difficult. 

We will find that the dominant effect on the observed temporal 

pulse smearing is given by the pure diffractive effect , represented by 

f D and P
0

. Unfortunately , as has already been noted, the e quation for 

r D cannot be solved analytically. It is possible , however, to develop 

scaling laws which permit a discussion of how the pulse smearing scales 

with frequency, etc. Let the transverse characteristic scale for fD 

be pc. The development depends critically on the behavior of A~(p) for 

p < p , and thi s i s a strong function of the power spectrum of the 
c 

refractive-index i rregularities. In all cases of interest we may write 



for p < p , 
c 

\) 
~ 13 p 

0 

ll5 

(5-60) 

where \) s 2. If the spectrum at large wavenumber falls off more rapidly 

-4 
than q , (this includes Gaussian spectrt.nn) then the value of v is the 

same and equals to 2 in all cases. However, if the spectrum is less steep 

-4 q-11/3) than q , (and this includes the Kolmogorov spectrum then v is 

les s than two. If the spectrtnn is given as q -ct with 2 < o: < 4, we have 

f.l (a -2) 
1-'o P 

Thus if for p < pc' n
13

( p ) is given by Eq. (5-60), we may write 

Eq. (5-5 7) as 

0 

For t,k f. 0 , we introduce the dimensionless variables 1l and f, throu g h 

z = 

p 

2 

2k 
2 

( l15:.) 2+'1) 1l 
fY;:. 13 0 

1 
2+\) 

(~) s 
130 

in which case the equation for I'D becomes 

1 a L.J \) 
i [--+ r0 + s rD s os os2 0 

(5-61) 

(5-62) 

(5-63) 

(5-64) 

(5-65) 
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This equation must be solved only once for each value of the power law 

index \!, since the dependence of fD at £ = 0 on both t}.c and z have been 

collapsed into one variable 11· Techniques for numerical solution for 

Eq. (5-65) are discussed in Appendix (B). 

Before discussing the shape of the smearing introduced by the 

diffraction (given by PD(z,t))we note that from the computer results in 

Appendix (B) we see that for t}.c ~ O, the characteristic scale of r D as 

a function of~ for£= 0 is at 11 ~ 0(1). Hence from Eq. (5-65) we see 

that for a given z, the characteristic value of t}.c, 

Eq. (5-63) with 11~1. Thus we have 

or 

2k
2 6k 

""'_ (-c) 2+\! 
z 6k Q 

2 

c 1-'o 

2 2 (\!+2) 
\) k \) 

<'*2) 
\) 

t,k is given by 
c 

(5-66) 

Eq. (5-58) and the nature of Fourier transform then tell us innnediately 

that the characteristic time for smearing of the pulse due to diffraction 

is 

that 

k 
c 

Since 13 is independent of the wave number k, 
0 

(5-6 7) 

we have from Eq. (5-67) 

. <{- + 2) 
tD is proportional to A . For Gaussian spectrum, v = 2 and 

It can be shown that for both Gaussian and power-law spectra, 

2 
zG /2c 

c (5-67') 
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Figure Captions 

Figure (5-4a). This figure shows the numerical values of the function 

fD as a function of the frequency difference !Y.JJ for the Gaussian re-

fractive index spectrum in Eq. (1-20). Note that the subscript 
1 

D for 

r 
D 

is omitted in the figure, and that the abscissa is ( !Y.JJ/ ill ) "Z .. where 
c 

ill 
c 

Re(f) and Im(f) are respectively the real and the 

imaginary parts of fD. 

Figure (5-4b). The pulse profile PD(t.,.) due to the "diffraction effect" 

is plotted as a function of the normalized time t,.( 

medium with a Gaussian spectrlU11. The scal e for PD 

= (t- 2-)/t for 
v c 

g 
is arbitrary. 

Figure (5-5a). As in Figure (5 -4a) for a Kolmogorov spectrum in Eq . 

(1-21). h • f' k -- cA0-1.2k4.4 (~2)-2.2• In t is igure ill = c ~ 
c c 

Figure (5-5b). As in Figure (5-4b) for the medium with a Kolmogorov 

spectrum. 

the 
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where 8 is given by Eq. (5-16). 
c 

122 

We thus have three characteristic broadening times given by Eqs. 

(5-46), (5-55) and (5-67), which represent the various physical effects. 

In any given observational situation, the longest time will dominate the 

pulse profile. 

Finally, we discuss the effect of these various effects on the 

pulse shape. The dispersion effect (Eq. (5-46)) and the pure refraction 

effect (Eq. (5-55)) produce syrm:netrical Gaussian pulses centered on the 

mean time of propagation of the pulse. The diffraction effect must be 

computed numerically and is not a Gaussian function. The results for 

a Gaussian spectrum (or any spectrum with index v = 2) are shown in 

Figure (5-4a , b) and the results for a Kolmogorov power law spectrum 

(a = 
1J, v = 5/3) are given in Figure (5-5a,b). The c urves are quite 

similar and suggest that the pulse shape is not sensitive to the precise 

form of the power spectrum . The shape is surprisingly similar to that 

derived by Williamson (1972) on the basis of a statistical , geometrical 

optics calculation (compare , e.g., with his figure (9)). 

~ Pulse Broadening in the Thin Screen Approximation 

Scheuer (1968), Lovelace (1970) and Cronyn (1970) have calculated 

the pulse broadening for waves propagating through a thin phase-changing 

screen. However , t heir calculations are not rigorous. Scheuer (1968) and 

Cronyn (1970) e stimated the pulse broadening by considering the propagation 

of rays. Lov e l ac c(l9 70) derived the pulse bro adening function using a 

he uristic physical model in which the propagation of wave ray s is considered. 
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But ray optics breaks down for strong scintillation (m ~ 1) . In this 
z 

section we will calculate the pulse broadening function rigorously 

from the wave equation. We also find a "pure refraction effect" on the 

pulse broadening, which cannot be found and is neglected in the calculations 

by the authors mentioned above. 

Figure (3-1) is a schematic sketch for the thin screen model. The 

random medium is concentrated in a thin screen with thickness D at z O. 

The observer is located at z. We want to calculate the average pulse 

profile (~(z,£,t))observed at z. Again we have from Eq. (5-45) that 

(5-68) 

where~ represents the convolution of P
1 

and P
2 

with respect tot, a nd where 

P1 (z,t), representing the effects of instrument and dispersion, is given 

by Eq. (5-46) and 

co 
-is (t-~) •/( v 

ds (u(k(m),z,£)u (k(illl-s),z, ~) ) e g .(5-69) 

Again · let 

(5- 70) 

f l l (z, £ 1,k1 ,£ 2,k2) is governed by Eq. (5-49). However , within the thin 
' 

screen with thickness D, the diffraction effect can be neglected and we 

have from Eq. (S-49) 

1 
4 

1 1 (-+-)A (0)-
k 2 k2 13 

1 2 

2A13(£ ( £2) ] 
klk 2 . 

(5- 71) 
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For homogeneous case, r 1, 1 depends on \£1-£2 1 instead of Ql and £2 and 

Eq. (5- 71) becomes as in Eq. (5-49') 

In the free space between z = 0 and z = z, we have from Eq. (5-49 1
) 

(5- 73) 

From Eq. (5-73), we have innnediately 

-i~: £ ' 
x e dQ' d~ (5- 74) 

where r 1 l (z=0, R_,k1 ,k2) is given by Eq. (5-72). 
' 

Again define k 1= k + ~ and k 2 = k - ~ . Then one has 

-l~ DA[3(0) - ~ D 2 (l~)[A,/0)-AR(p)l l. 
= e 4k ~ e l 2k 4k I-' 1-' ~ 

and 

2 
to the order of ( l\lc) . 

(5- 75) 

(5- 76 ) 

l\lc2 
For ~ << 1 as assumed the case , we set 

k 
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2 
2 - 6k DA (0) 

(1 + L'lk ) = 1 in Eq. (5-75), while we keep the factor e 4k4 13 
4k

2 

since at £ = O, A(O)-A(p) = 0 and the second factor in the right-hand 

side of Eq. (5-75) equals to 1 . Then we have 

- J !~ DA!3(0)I -12:2 [A!3(0)-A!3( p)]~ 
r 1 , 1 (z=O,£,k1 ,k2) = e x e (5- 77) 

Combining Eqs. (5-69), (5-76) and (5-77), it is easy to show that 

where 

and 

PR(z,t) 

2 
2ck 

PR (z, t) *PD (z, t) 

co 

.1_ l cd ( L'lk) e 
21£ -co 

~ 
4 DA!3(0) -ic6k(t-~) 

4k X e Vg 

exp 

1 
3 rrr cd(t,k)d£'d~ e 

(21t) ))J 

z it,kg
2

z 
- [ic t,k(t--)- -- + icl • o '] 

V g 2k2 ;e FV 

D 
- - 2 [A 1/0)-AA(p~J 

Zk I' I' 
x e 

(5- 78) 

(5 - 79) 

(5-80) 

We note that the second moment with same wavem.unber k, r 1 , 1 (z, Q) 

given in Eq. (4-50),is invariant in the free space from z = 0 to all 

z > 0, and one has 
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= e 

By setting~= k~ in Eq . (5-80), we have 

where e \ ~ \ and 

'!'(~) ~ 4:22 ff di:; e 

is angular distribution function of the random wave observed at z, 

(c . f. Eq. (5-1)). Since in our case,'¥(~)= '1'(8), Eq. (5-82) can be 

written as 

0 

Note that from Eq. (5-82), we have 

Thus PD(z,t) is nonnalized. 

z (t--) ;;::: 0 
v 

g 

z 
for (t--) < 0 

v 
g 

(5-81) 

(5-82) 

(5 -83) 

(5-84) 

(5-85) 

Eq. (5-84) shows that if '1'(8) has a characteristic angle 8 , then 
c 

the characteristic ti.me scale tc of PD is 



t 
c 

ze 2 
c 

2c 
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(5-86) 

The fact that PD(z,t) = 0 for 

rays are delayed. Since ~(8) 

(t-~) < 0 indicates that all the scattered 
v 

g 
usually has a peak at 8 = O, PD(z,t) will 

z 
also have a peak at t' = (t-~) = 0. If ~ (8) is a Gaussian function, 

v 
g 

then PD(z,t) is an exponential function for t';:::::: 0. Section II of this 

chapter shows that in the interstellar scintillation with a Gaussian 

spectrum, ~(8) is Gaussian, but with a power-law-spectrum, ~(8) is not 

Gaussian for reasonable values of the parameters in the interstellar 

medium. 

In conclusion, we compare the results of pulse broadening for both 

scattering all t he way (thick medium) case and thin screen case. The 

dispersion and "pure refraction" effects are the same in both cases. For 

the "diffraction" effect, the pulse shapes in these two cases are different. 

In the thin screen case, the peak of PD(z,t) is at t' = t - vz = O, 
g 

while P
0
(z,t) has its peak at t' ~ tc > o for thick medium case. 
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V. Spatial Intensity Correlation Function 

§(1) Introduction 

In order to calculate the intensity correlation function , one has 

to solve Eq. (4-48) for the 4th moment r 2 2 . However, no analytic 
' 

solution fo r Eq. (4-48) has been given since the derivation of this 

differential equation. Tatarskii (1971) gives an analytic solution for 

r
2 2 

under the "single-scattering approximation", but his results are not 
' 

satisfactory s ince his result for correlation scale does not agree 

with the interstellar scintillation data·. Dagkesamanskaga & 

Shishov (1970) have obtained a numerical solution of Eq. (4-48) for an 

initially plane wave propagating in a random medium which has a Gaussian 

correlation function. Brown(l972b) solved numerically this equation for 

a "two dimensional" medium with Kolmogorov spectrum . Since the propagating 

distance for numerical calculations is limited due to the accumulation of 

numerical errors, it is hard to draw qualitative properties of the 

intensity correlation scale from the numerical calculations mentioned 

above. 

In this section, an analytic asymptotic solution o f r 2 2 fo r strong 
' 

scintillation will he presented and the properties of the spatial intensity-

correlation function obtained from r2 2 will also be dis cus sed. 
' 

Analytic Asymptotic Solution for r 2 2 
' 

From Eq. (4-48), we have for r 2 2 
' 
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[2Ap(O)+Ap(£1-£2)+Ap(£i-£z) - Ap(£1-£{)-Ap(£1-£z) -Ap(£2-£{)-Ap(£2-£2) J 

(5-8 7) 

where 

(5-88) 

Suppose that the random medium is statistically homogeneous in the trans-

verse direction and that the problem has a homogeneous initial condition; 

then Eq. (5-87) can be r e duced to (c.f. Eq. (3-29')) 

(5-89) 

where 

* * ( u(z,p )u ( z,p +p )u(z,p +p +pn)u (z, p +pa)) 
·'-0 "-0 :.-a "-0 "-a ~I' "-0 ~ IJ 

(5-90) 

We note that for ~~= 0 (or ~ = 0) , 

( I(z ,p )I(z p +p ) ) 
""'() "-<() r..a (5-91) 

whe re P
1

(z, Ra) is the spatial intensity correlation function. Thus the 

solution of Eq. (5-89) for r
4 

gives immediately the intensity correlation 
I 

function P1 (z, £) · 
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We nonnalize the wave function such that at z o, u 1. Then we have 

the following initial condition for f 4 

at z 1 (5-92) 

The boundary condition for large \£~1 can be obtained by noting that for 

large 1 £~1, Eq. (5-90) becomes 

where r
1

,
1

(z, £ ) is the second moment given by Eq. (5-58). Thus we have 

(5-93a) 

Similarly, we have 

(5-93b) 

From Eq. (4-52), we have 

(5-94) 

Le t the correlation scale of A~(f2. ) be L. (c.f. Eqs. (1-20) and (1-21) .) 
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We define 
1 

and 

The n 

where 

" 

13A = - A (0) 
2k2 13 

y= 13 kL
2 

A 

I\ = 13 z A 

~ = La 
"' 

~13 L.@. 

H(~) ~ Ap(£ ) / Ap(O). 

Eq. (5-89) can b e wri tten as 

A A A A 

f(~,~) - 2 - 2H(~)-2H(~)+H(Q-~)+H(~-~) 

(5-95) 

(5-96) 

(5 - 9 7) 

and H(a ) _ H(~) and etc . . We call y the "diffraction parameter" s ince it 

determines the impor~ance of the diffraction term (~) ~a · ~13r4 for unit 

propagating distance ( 61'\ = 1). For y >> 1, the effect of the diffraction 

t e rm i s small for A] = 1, while for y $5 1, the effect is large . The 

initial condition is 

(5-98) 

The boundary conditions in Eq. (5-93) become 

a t \S2;1 _, = 
J 

- 21'\[ l -H(£) J 
(5-99a ) 
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and 

= e (5-99b) 

We now consider the properties of the function f(£ ,£) in Eq. (5-97). 

We find that f(£,~) is of the order of 1 everywhere except near a = 0 

and/or £ = 0. We have 

at a = 0 and /or £ = O, f(£,~) O, 

and 

at \ ~ I » 1, 1£\ » 1, 

A 

\ : , for \£-£1 << 1. 

, for 1£ -£1 >> 1 

The numerical calculation of f(£ ,£), for both Gaussian and Kolmogorov 

spectra, also shows that f (£ ,£) is of order of 1 , except near £ = 0 and/or 

£ = 0. Note that in all cases f(£,£) 2':: 0. 

We next discuss the properties of Eq. (5-89) for r
4

. The term 

(-f(£,~)r4) in the right-hand side of Eq, (5-89) tends to make the function 

r4 decay. 
i 

Without the diffraction term (y v£·v£r4 ), we have 

(5-100) 

or 
(5-100 I) 
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From the properties of f(£,~) discussed above, we see that r
4 

will decay 

-1 
to about e of its initial value when 6~ = 1 for all points (£ ,£), 

except near £ = 0 and/or ~ = O. 

The diffraction term (~ \7£·v~r4 ) in Eq. (5-89) tends to diffuse 

the value of r4 (~,£,~) among different transverse coordinates (£,~). 

Without the decay term (-ff
4
), Eq. (5-89) can be written as 

(5-101) 

The solution of the above equation can be written immediately as 

(5-102) 

Thus at~> O, the values of r4 (~, £,~) are re-distributed as described 

by the above equation. For example, if we set r4 (~0,£,£)=6(S9o(£), 

then we have 

(5-102 1
) 

However, if r4 (~, £,£) is of the following form 

(5-103) 

where f 1 , f 2 are arbitrary functions of ( 11,~) and ( ~,£), respectively, and 

c
0

(1\) is a function of ~' then the diffraction term (~ V'~ · V'J{4) is zero and 

r4 (~. £,£) is not re-distributed as wave propagates. In this case, 
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r4(~'~'~) keeps the same value for all ~ if the decay term is neglected. 

We also note that Eq. (5-103) is the only form of r
4 

for which the 

diffraction term is zero. 

Physically, Eq. (5-96) for r
4 

can be considered as the combination 

of Eq. (5-100) and Eq. (5-101). Consider the following ''multiple-thin-

screen" model for the wave propagation in the random medium as shown 

in Figure (5-6). One divides the random meditnn between the incoming wave 

and the observer into N thin layers where the i-th layer has thickness 

6z. for i = 1,2, ••. ,N. In the ''multiple-thin-screen" model, the total 
1 

random medilllll in the i-th layer is considered to be concentrated in the 

- + + -"thin screen" between z. and z. where (z -z . ) << 6z . . Within the "thin-
1 1 1 1 1 

screen" between z. and z'. , the diffraction effect can be neglected and 
]_ 1 

r
4 

is described by Eq. (5 - 100). Let the normalized quantities~' 1( 
+ and /::,~ correspond to zi' zi and /::,zi respectively . We then have 

(5-104) 

Outside the "thin screen" is a free space without random medium and for 

+ -
~between 1\t and ~i , r4 (~,£,£) is described by Eq. (5-101). Thus in the 

"multiple-thin-screen" model, r
4 

is alternatively described by Eq. (5-100) 

a nd Eq. (5-101), which give respectively the decay effect and the dif-

fraction effect. In the limit that the thickness /::,z of each layer is 

very small, the "multiple'-thin-screen" model must correspond to the actual 

s ituation where the random medium is evenly distributed over the whole 

layer, since in the "multiple-thin-screen" model the position of the 

random medium within each layer is just slightly shifted from that in the 

actual situation. 
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Figure (5-6) 

In the 'multiple-thin-screen" model, the total random 

meditnn is divided into N thin layers where the i-th 

layer has thickness 6z. for i = 1,2, .. . ,N . The random 
1 

meditnn of the i-th layer is concentrated in the "thin 

- + + -
screen" between zi and zi where (zi - zi) << 6zi. Be-

tween two thin screens is a free space. 



j_ 

136 

INCOMING WAVE 

+ t t 
-'iit~~~,-e~c-o~...,-o ...... o~o...,,a..--.-2P-t>"b&"'~'"-a:-'""'o::....,.o ...... :; : =----=- ~ i 

I 

• • 
• 

- -- - z'j o ea-1 t;> i:..? c ... c :::::>cs , 2 cuca;, ;;u L.,.I _ _ _ _ ·+ 
Zj 
z-:-

.... G' <Cf i;p <PC &9 £) C::0 CJ tc C» .:»5 = :: = = z t: : 
• 
• 

•OBSERVER 

Figure (S-6) 

z 



137 

From the above considerations, we find that due to the decay term, 

r4 (~,~, £) will decay to zero when ~ >> 1 , for all ~ and£ except near 

~ = 0 and/or £ = 0. However due to the diffraction effect the values of 

r4 (~, ~,£) near~= 0 and/or~= 0 will be re-distributed to all other 

points except if r4 (~,~,£) is of the form given by Eq. (5-103). Once 

the values of r4 (~, ~,£) near £ = 0 and/or £ = 0 are distributed to all 

other points <z,£) where f(~,£) F O, r4 (~,~,£) will again decay to zero 

because of the decay tenn (-fr
4
). Thus we see that for large~' r4 (TI, ::::, ~) 

will decay to zero except if r 4 is of the fonn given by Eq. (5-103). 

Therefore for large 'Tl, we can write r4(~. 2,£) as the following fonn , 

(5-103 I) 

In order to satisfy the boundary conditions in Eqs. (5-99a) and (5-99b), 

we must have 

Therefore , 

co) - c (~) 
0 

and r4 can be written as 

From Eq. (5 · 99b ), we have 
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from which we obtain the following expression 

2 2 2 
r4(1\,£,~) = 11 , 1 ( 1\, £ ) + 11,1 (1\,~) - 11,1 ( 1\,~) (5 - 105) 

By Eqs. (5-99a,b), we write the above equation as 

-21\[l-H(£ ) ] -21\l l-H(,19 l -21\ 

r 4(11, 0:,13) = e + e - e (5-105 I) 

Eq. (5-105) or (5-105') is the asymptotic fonn for r
4 

at large 1\· 

In Appendix (C), we will show that the asymptotic solution for r
4 

in Eq . (5-105) satisfies the partial differential equation in Eq. (5-96) 

to terms 1 
of order (~, and 

1 
the order of ('11). 

that the error of the asymptotic solution for 

Finally, we determine how large 1\ must be in order that Eq. (1-105) 

is a valid solution f or r
4

. We consider two cases 

(i) When y ~ 1 , we see that the diffraction term is effective 

to dif fuse the f unction r
4 

as 1\ propagates a unit dis tance. We expect that 

Eq. (5 -105 ) is valid for 1\ ;::: 1. 

(ii) When y > 1, the e ffec t of the diff raction term 

(~ V£· v~r4 ) is still small as 1\ propagates a unit distance and the re­

distribution of r4 is not large enough to make Eq. (5-105) a valid solu­

tion for 1\ near or just greater than 1 . Consider the case that the random 

medilml has a Kolmogorov spectrlml, with the correlation scale L and the 

inner scale t . For t << \eal (and \Q
13

\) << L, the f unction f(£, ~) can be 

written as 

(5-106 ) 

Define 

(5 -107) 
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wher e a 1 
5/11 _ y and b

1 
- 3/11 

- y • Then we c a n write Eq. (5-96) as 

(5 -108) 

with r
4 
(t=O,~'~l3)=1. Note that t he yin Eq . (5-96) no longer appears in 

Eq. (5-108) . We expect that for t ~ 1 , the diffraction effect will be 

large enough to make Eq. (5-105) a good approximation for r 4 . 

From Eqs. (5-105) and (5-91), we hav e fo r intensity correlation 

function, 

by noting (I) 

P1 (z,~) = r1 , 1
2 (z, ~) - utz) 

-2 
1 and u = r 1 l (z,z-+co) . For T\ » 1, 

' 

From the above discussions, we conclude that Eq. (5-109) is a valid 

solution for the me dium with a Kolmogorov spectrum when 

(i) T\ 
zA~ (O) 

2::: 1 , for 
A~(O) 

< 1 
2k

2 y= 2 
2kq 

0 

and zA~(O) 5 / 11 A~(O) 
5/11 

A~(O ) 
(ii) T\ 2 > y ( 2) for y = 2 

2k 2kq 2kq 
0 0 

Similarly, for a Gaussian s p ectrum in Eq. (1-20), the cond itions for 

Eq . (5-109) to be valid are 

(5-109) 

(5-110) 

(5-llla) 

(5-lllb) 
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(i) 1l 
zA[3 (0) > 

2k
2 1, for y (5-112a) 

and 

(ii) 
A[3 (0) ~ 
(-----) , for y 
2k 

2 
qo 

> 1. (5-112b) 

When the conditions in Eq. (5-111) for Kolmogorov spectrum, 

or in Eq. (5-112) for Gaussian spectrum, are satisfied, the scintillation 

2 
is strong and the scintillation index m 

z 

§(3). Discussion and the Properties of P1 (z ,£) 

In the last subsection, we found t hat when the conditions in Eq. 

(5-111) for Kolmogorov spectrum, or in Eq. (5-112) for Gaussian spectrum 

are satisfied, the spatial intensity correlation function P
1

(z,£) is 

given by Eq. (5-109) and the scintillation is strong (m 
2 ~ 1) . However 

z 

we still do not know whether the conditions in Eq. (5-111) (or in Eq •. 

(5-112)) are the necessary conditions for strong scintillations. The method 

of Smooth Perturbation (MSP) (Tatarskii 1961, 1971) gives the weak 

scintillation result, which is valid when the mean square l ogarithmic 

-2 2 amplitude x (or m ) is smaller than unity. From the results of Tatarskii 
z 

-2 
(1961, 1971), one finds that x is smaller than 1 when 
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(i) T\ ~ 1, for y ~ 1 (5-113a) 

and (ii) T\ < (5/11) . 
rv Y ' for y >1 (5-113b) 

for Kolmogorov spectrlllll, and when 

(i) Tl ~ 1, for y ~ 1 (5-114a) 

and 2/3 
(ii) T\ ~ y ' for y ~ 1, (5-114b) 

for Gaussian spectrlllll. 

Comparing Eqs. (5-111), (5-112), (5-113) and (5-114), one finds 

that the conditions in Eq. (5-111) for Kolmogorov spectrum, or in Eq. 

(5-112) for Gaussian spectrum , are both the necessary and the sufficient 

conditions for strong scintillation. We conclude that from Eq. (5-109) , 

for strong scintillation, the intensity correlation function is 

(5-115) 

The characteristic scale of P
1

(z, p), p can be obtained by 
rv C.S. 7 

noting that for Kolmogorov spectrlllll, when /, < p < L, 

l.86A~(O)z 513 exp [- 2 ( pq
0

) J _ exp 
k 

and for Gaussian spectrum, when p < L 
1 
q ' 

0 

2 

exp \- '= exp r-cp-2-)J. 
c . s 

(5-116) 

(5-117) 
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Thus for strong scintillation the correlation scale is 

Pc.s(z) 
-0.6 

[l .86zA~(O) J 

for Kolmogorov spectrum, and is 

-0.5 1 
2 [zA~(O)] q~ k 

(5-118) 

(5-119) 

for a Gaussian spectrum. H ( ) . . 1 k1 • 2 f ence p z is proportiona to or a c.s 

Kolmogorov spectrum and proportional to k for the Gaussian spectrum, in 

the strong scintillation region. 

For the Kolmogorov spectrum, the correlation scale p as a function 
c.s 

of z is plotted in Figure ~5-7). In the weak scintillation region we 

have p (z) = '12rrz/k for the case where y > 1 or. /2rrz/k < L (Tatarskii c.s v 
1961). The scale p for weak scintillation is plotted on curve (1) of c.s 

Figure (5-7) where 

p (z) = '12rrz/k c.s. (5-120a) 

Curve (2) shows the correlation scale for strong scintillation where 

-0.6 
l.86zA

13
(0) 

( 2 ) 
k 

The intersection of the two curves is at P(z,~, £~·) where 

(5-120b) 
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Figure (5- 7) 

For y > 1, the intensity correlation scale p as a 
c.s. 

p (z) = 21(z/k 
c .s. 

function of z is shown in solid lines. 

is shown in curve (1), and p ( z ) = 
c .s. 

l.86zA~(O) -0.6 - l 
[ 2 1 x qo 

k 
is shown in curve (2). P(z,'<', P.,.) is the point where curve 

(1) and curve (2) intersect. This curve is plotted f or 

the medium with a Kolmogorov spectrtnn. 
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1 

2rrz* 2 
(-) 

k 
We note that 

5/11 
at z = z , where p (z) has its peak value , 11 """ y and that near .,, c. s. 

z = z~._, the intensity correlation scale p makes the transition c.s. 

from curve (1) to curve (2). 

Eq. (5-108) is the same normalized equation used by Brown (1972), 

who employed numerical method to solve the 4-th moment equation. The 

results of Brown show that as t ~ 1, the scintillation is strong and 

m 
2

""" 1 , which is consistent with our result here. Concerning the 
z 

correlation scale , Brown finds that near t "'"' 1 (from t = 0.5 to t """ 5 ) , 

the correlation scale is relatively insensitive to the propagating distance 

z, which is consistent with the result shown in Figure (5-7) since near 
.,, 

t = 1 (corresponding to z = z ), the s lope of the correlation scale is 

nearly zero. 

Finally we note that our result about the intensity correlation 

function is . consistent with that derived by Yura (1974), who generalized 

Tatarskii's geometric-optics model to include both diffraction and the loss 

of spatial coherence of wave as it propagates through the turbulent medium . 
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VI. The Probability Distribution of the Random Wave 

§ (1) Introduction 

As pointed out in Chapter 4, a complete statistical description 

of the random wave requires the solution of all moments of the wave field. 

However if the additional assumption is made that probability distribution 

of the wave field is known, then usually only some few lowest-order 

moments of the wave field are sufficient to describe all the statistical 

properties of the wave field. For e xample, if the random wave has a 

log-normal probability distribution (Strohbehn & Wang, 1972) or a joint-

normal distribution (Uscinskii 1968a, b) (detailed definitions are given in 

subsection 9 (2)), then only the moments r1 O' r 1 l' and r 2 O of Eq. 
' ' ' 

(4-37) are sufficient to describe all the statistical properties of the 

random field. All the higher moments of the random wave can be written 

in terms of these three moments. 

In this section, we will discuss, in particular, two kinds of 

probability distribution, namely , the log-normal distributi~n and the joint-

normal distribution. Log-normal distribution is of interest because in 

the weak scattering cases the probability is log-normal (Tatarskii 1971, 

Young 1971). However Rice (1954) shows that the probability distribution 

of noise plus s ine wave ha s a Rice distribution, which is a particular case 

o f joint-normal distribution. Mercier (1962) shows that the probability 

distribution in the Fraunhofer diffraction region, of a wave passing 

through a random phase-modulation screen (see also Chapter 3) also has 

a Rice-distribution. 
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Under the log-nonnal assumption, Strohbehn & Wang (1972, 1974a, 

1974b) have derived a relation between the intensity correlation function 

and the lowest moments r 1 O' r1 l and r 2 O' and have calculated the 
' ' , 

intensity correlation function when the diffraction parameter y (see 

Section V) is small. In this section we will calculate, under the log-

normal asstnnption, the intensity correlation function for both small and 

large values of the diffraction parameter y and will give a more complete 

discussion of the log-normal assumption. 

In this section, we will also give a relation between intensity 

correlation function and the three lower moments r1 O' r1 l and r 2 O 
' ' ' 

under joint-normal distribution and calculate the intensity correlation 

function through these three lower moments. Our results are compared 

to those of Uscinskii (1968a, 1968b), who calculated the intensity 

correlation through complicated physical arguments under the joint-

normal assumption. 

Finally we will show that the joint-normal distribution is valid 

for strong scintillation in predicting the spatial intensity correlation 

function. 

§(2) Relation Between Intensity Correlation Function and Lower Moments 

(a) Log-normal Distribution 

The random wave u(z,k,£) can be written as 

u(z,k,£) ~ u(z,s) _ e ~(z,s)= e x+iS =A eiS (5-121) 

(see Chapter 2, Eq. (38'))where s = (k,£), A is amplitude of the wave 

and S is the phase measured relative to the free space value, kz. Let 
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x = (x) + X1' s = (s) + s1 (5-122) 

Under the assumption that u has a log-normal probability distribution, 

~ is a Gaussian variable and therefore x1 and s 1 are joint Gaussian 

random variables with zero mean . If y is a Gaussian random variable 

with zero mean, then it is easy to show that 

(5-123) 

Define the correlation functions between x and S as 

(5-124a) 

(5-124b) 

and (5-124c) 

Using the formula in Eq. (5-123), one can express all the 

moments of u, r , in terms of (x), (S), P , Ps and P . The first 
m,n X xS 

three moments, namely, 

(u(z,s)) = u 

and 

determine the values of (x), (s), PX, PS and Pxs 

show that (Strohbehn & Wang, 1972) 

(5 - 125a) 

(5-125b) 

(5-125c) 

It is easy to 
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(x(z,s)) 
1 

=Re [2 J;n (u,(z,s)) - 2 .Rn f 2 0 (z,s,s)J 
' 

(5-126a) 

( S(z,s) ) Im [2 ~n ( u(z,s)) - ~ J;n r2 o<z,s,s) J 
' 

(5-126b) 

(5-126c) 

(5-126d) 

and 

PX8 (z,s1 , s 2) = ~ [..enr 1 , 1 (z,s1 , s 2) + ..enr2, 0 (z,s1,s 2) - 2 .Rn(u(z,s1 ) )1 

(5-126e) 

where Re and Im denote, respectively, the real part and the imaginary 

part of the quantity following. Once the above five quantities in 

Eq. (5-126) are known, all the higher moments can be determined from 

these five quantities. For example, the normalized spatial intensity 

correlation function PI is given as follows, 

(I(z,£1)I(z,£2)) - (I(z,£1))(I(z,£2)) 

(I(z,£1)>(r(z,£2)) 

= exp [4P (z,p
1

,p
2
)J - 1, 

X rv rv 

where we have put k
1 

= k 2• 

(b) Joint· normal Distribution 

Let 

u(z,s) (u(z,s)) + u
1

(z,s) 

(5-127) 

(5-128a) 
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and 
(5-128b) 

where ulc(z,s) is the component of u1 "in phase" with (u(z,s)) and 

u1s(z,s) is the component of u 1 "out of phase" with (u(z,s)). 

Under the joint-normal assumption, u is a Gaussian random 

variable, or u1c and u1s are joint-normal random variables with zero 

mean. When u is a normal random variable, all the higher moments can be 

expressed in terms of the three lower moments r 1 O' r 1 l and r 2 0 given 
' ' ' 

by Eqs. (5-125a,b,c). It is easy to show that the normalized intensity 

correlation function is given by 

(I(z,s1) I(z,s 2)) - (I(z,s1))(I(z,s2)) 

(I(z,s1))(I(z,s 2)) 

2 . 2 2 2 
\r1 1 <z,sl's 2) \ +\r2 0 <z,sl's2) \ - 2 <u<z,s1)) <u<z,s 2)) 

r1 , 1<z,s1,s1) r1,1<z,s2,s2) (5-129) 

Consider two special cases of Eq. (5-129): 

(a) When k1=k 2, we have the normalized spatial intensity 

correlation function 

2 I 2 2 2 
1r1 1<z,£1' £ 2) I+ f2o<z,£1,£2)1 - 2 (u(z,£1)) (u(Z,£2)) 

r1,1<z,£1'£1) r1,1<z,£2' £ 2) 

(b) When £i=£2, we have the normalized intensity 

correlation function with different frequencies 

(5-129a) 
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(5-129b) 

where each quantity is measured at the same point. 

§ (3) Results for the Log-normal Assumption 

Throughout this thesis we consider the case that the incoming 

wave is a plane wave and the medium is statistically homogeneous. 

Then (u(z, £) ) is independent of the transverse coordinate £ and 

fl,l(z,£1,£2) and f 2, 0 (z,£1 ,£2) depend only on Zand 1£1 = \£1 - £ 2 \. We 

also normalize u such that u(z=O, £ ) = 1. Then Eqs. (4-45) , (4-46) and 

(4-47) reduce to 

(5-130) 

(5-131) 

and 

From Eqs. (5-130) and (5-131), we obtain innnediately 

Al3 (O)z 

(u(z) ) = e 4k2 (5 - 133) 

and 
- ~-[A (0)-A (p)l 

2k 2 13 13 . 
= e 

(5-134) 
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The second moment r 1 1 (z, £ ) is also called the mutual coherence function 

' 
(MCF), and is the quantity that describes the loss of coherence of an 

initial coherent wave propagating in the random medium . 

Eqs . (5-127) and (5-126c) can then be written respectively as 

P1 (z, £ ) = exp [ 4Px (z ,Q)J - 1 (5-135) 

and 
= 1 

rlzl(z, £ ) r220(z, e, ) 
p (z, p ) 1,n I (5-136) 

X rv 2 _4 
u 

Eq. (5-132) cannot be solved analytically. Writing r 2 0 (z, £) 
' 

as 

'= e r (z, p) 
C rv ' 

we obtain from Eq. (5-132) an equation for fc(z ,£), 

The initial condition for r (z, p) is 
C rv 

1, 

and the boundary condition is 

and 

For Gaussian spectrum, we have from Eq. (1-26) 

H(Q) = e 

2 2 
-(qo P / 4) 

(5-137) 

(5-138) 

(5-139) 

(5-140) 

(5-141) 

(5-142) 
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Define the following new variables (c.f. Eq. (5-95)) , 

and 

2 
p = -

c qo 

z = k p 
2 

c c 

Tl = z/z 
c 

Then Eq. (5-138) can be written as 

(5-143) 

0 i 2 
o'Tl fc(Tl, ~) = y V~ fc( Tl, ~) - H(~)fc(z ,~) (5-144) 

- sz 
where H(~) = e y is the diffraction parameter, which determines 

the importance of the diffraction term (~ vS2
rc). From Eqs. (5-133)­

(5-137), we have 

and 
exp [4P (~,~)l - 1 x "' -· 

(5-145a) 

exp 12TjH(~)] x lrc\ 2 
- 1. 

(5-145b) 

Techniques for numerical solution of Eq. (5-144) are given 

in Appendix (D). The numerical results for PI and PX are presented in 

Figures (S-8a,b,c). In the following we will also give some approximate 

analytic solutions for r . c 
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Figure Captions 

Figure (5-8a). 
2 

This figure shows the log-amplitude variance crx v.s. 

the normalized propagating distance 1l = ~Az under the log-normal 

assumption. Curve (1) is the theoretical curve for the diffraction 

parameter y = O. Curves (2-5) are the numerical results for y = 0.1, 

1.0, 5.0 and 10.0 respectively. Curve (6) is the MSP variance for 

y = 10. In the region 1l < 1, curves (5) and (6) are about the same. 

Note that cr 
2 

grows without a saturation value for all curves. 
x 

Figure (5-8b). This figure shows the scintillation index m 
2 

as a 
z 

function of 1l for y = 0,0.1, 1 and 10. Curve (1) is the theoretical 

curve for y 

Figure (5-8c). 

0 and curves (3), (4), and (5) are the numerical results. 

2 
For y = 100 , the computed log-amplitude variance cr 

x 

as a function of 1l is shown in curve (3). Curve (1) is the MSP variance 

cr 
2= ~ r1- ..::t_ tan-1(4t)] and curve (2) is the theoretical variance 

T 3 411 1l 
cr 2 ~ ~ r1- ]] under large y approximation. The peak of crx

2 
is at x 3 2 4-

y 2 
~ = 3 and cr goes to negative value for ~ > 4. 

. x 
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(a) Method of Smooth Perturbation (MSP) 

We let 

and obtain an equation for'¥ (~, ~) from Eq. (5-144), 
c '"" 

Under the method of smooth perturbation, the non-linear term 

is neglected and one has 

The initial condition for '¥c(~, ~) is 

'¥ (1')=0' t;) = 0 
c "' 

We then have from Eqs. (5-148) and (5-149) 

tt<~) ff - 2- (1 - e 

. 2 
~ 

y i~·~ 2 
) e d 9, 

where 
..L 
2tr 

-co q 

co 

f J 
-CO 

For Gaussian spectrwn, we have 

H(~) 
- s2 

1 = e and H(~) = 2 e 

2 
- .9..... 

4 

(5-146) 

(5-14 7) 

(5-148) 

(5-149) 

(5-150) 

(5-151) 

(5-152) 



from which we obtain 

'l' (Tl, s=O) 
c 

Eqs. (5-136) and (5-153) give us 

2 
cr ('T)) 
x 
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[ l 11 tan -l(~) -4 'I y -fz 1,n(l-1 ~2~ 2] . 

(5-153) 

(5-154) 

crx
2

('Tl) is the variance of the log-amplitude and crT2('Tl) is called the 

MSP variance (or Rytov variance) . 

(411) 2 8 .n: Ar;, «- 1 , cr (Tl) ~ 3 y x 2 
y 

(5-155a) 

As (~) » 1, cr 2(11) ~ ] - 2lY 
y x ~ 2 16 (5-155b) 

From Eq. (5-150) we also find that 

0 2 ; . 
as Tl ~ l, l os 'l'('Tl,OI ~Iv~ (1),S) I (5-156) 

and method of smooth perturbation is no longer valid. As shown in 

Figure (5-8), Eq. (5-154) 

results only when Tl :5- 1. 

2 
for cr (11) is consistent with the ntnnerical x 

cr 
2 

(Tl) given in Eq. (5-154) is the same as x 

obtained by MSP without us ing the log-normal assumption (Tatarskii 1961.) 

(b) Approximation for large y 

When y >i> 1, the diffraction term is not important. For a 

Gaussian spectrt..ttn, we have from Eq. (5-144) 



where B 

and set 

Inserting 

or c (T\, ~) 

o'T) 

160 

- e (5-15 7) 

1 
y 

We then expand re in term of the small parameter 6 as 

(5-158) 

re (TpO, C:) = 1 and r1 ('T)=O,~) = r2 (1')=0,~) = o. 

Eq. (5-158) into Eq. (5-157) , we have 

oro ('T),0 - sz 
o'T) = - e ro (5 - 159a) 

or 1 <11, s) 2 2 - s r 
a11 

i vi:: r - e 1 
,.,_, 0 

(5-159b) 

or 2<11, i::) 2 2 

o'T) i vi:: r 1 - e - i; r 
2 

"' 

(5-l59c) 

and etc ..• We solve Eq. (5-159) and obtain to second order in B, 

3 
§JI.. (1- ]4). 
3y2 

(5-160) 

2 8 11
3 

2 
For 11<1, cr (1\) """ -~and cr (1\) is the same as given by the method "' x 3 2 x y 
of smooth perturbation. 

i 2 
But as 11 2'. 1, the non-linear term -( 'V't') in 

y 
2 

Eq. (S-147) cannot be neglected and Eq . (5 - 160) gives the correct crX ( 1\). 

2 
The peak of crx (1\) is 

cr2 =~i. 
x (max) 3 2 

y 

18 2 , at 11 = 3 (5-16la) 
y 
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We also note that 2 
a (~) = o, at ] = 4 x I\ . ' 

(5-16lb) 

2 
and a (11) goes to negative when 1l > 4. Figure (5-8c) shows that at 

x. 
y = 100, the approximate analytic solution is consistent with the 

numerical results. a 
2

(11) has its peak near 1l = 3 and goes to negative x. 
2 

near 1l = 4. Eq. (5-160) for a (]) also fits very well the numerical 
x 

5 
solution at y""" l.429xl0 in Figure (7) of Wang & Strohbehn (1974a). 

The series expansion for f in Eq. (5-158) is valid only when 
c 

from which we get 
2 

(~) << 1 
y (5-162) 

2 
If we require the solution for a (W in Eq. (5-160) to be valid for 

x. 
1l ~ 4, then we have from Eq . (5-162) 

y ~ 32 . (5-163) 

The results in Figure (5-8) are consistent with our prediction in Eq. 

(5-163). For y = 100 > 32, cr 
2

(11) is about the same as given by Eq. 
x. 

(5-160), while for y = 10 < 32, the numerical result is completely 

different from that given by Eq. (5-160). 

In the extreme case that y = ~, the diffraction tenn can be 

neglected and 

and we have P 
x 
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(c) Approximation for Small y 

When y << 1, we have 

or (t,0 c 
~ (5-164) 

where t = Tl,/y and re (t, ~ f (Tl,,~). Expand f in terms of y as 
C rv C 

(5-165) 

and set f0 (t=O,~) = 1 and r1 (t=O,~) = r2 (t=O,~) 

Eq . (5-165) into Eq. (5-164), we have 

0. Inserting 

or (t, ~) 
0 "' 

~ l.• 2 ( ) vr: rt, ~ 
..... 0 ""' rv 

(5-166a) 

- e 
2 -s r 

0 
(5-166b) 

and etc .•• We solve Eq. (5-166) and obtain to first order in y, 

2 .] 'V -1 4'1"1 
o (T\) = \1- .....L tan (.:!...!..1)1 x. 2 4TI, y . (5-167) 

It is also easy to show that the expansion in Eq . (5-165) for fc is 

valid only when 
yt = T\ :5 1. (5-168) 

2 We note that the result f or o ( T\) here is the same as that given by 
'X. 

method of smooth perturbation, which is also valid for Tl :5 1. 

In the ex treme case when y - O, the diffraction term in Eq. 

2 
(5-164) dominates and r ('1"1,~) = r = 1 , from which we have ox. (T\) C 'I . 0 

and M 
2 

= (e 2T\-l), which is also shown in Figure (5-8). z 

] 
2 
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From the ntnnerical results shown in Figure (5-8) and the above 

approximate analytical solutions we find that 

(i) For ~ = ~Az :5 1, MSP is valid and the calculated log­

arnplitude variance aX
2 

is consistent with the MSP variance aT
2

• When 

MSP is valid, it can be shown that the probability distribution of 

intensity (or amplitude) is log-nonnal (Tatarskii 1971, Young 1971). We 

conclude that for ~ = ~Az ~ 1, the probability of the random wave is 

log-normal. 

(ii) For ~ = ~Az ~ 1, MSP is no longer valid. Under the 

log-nonnal assumption numerical calculations show that for large y, 

2 2 2 
a becomes negative when ~ > 4 and for small y, m (or a ) becomes x z x 
much larger than unity when ~ ~ 1. A negative variance is physically 

2 
impossible and the fact that m goes to infinity without a saturation z 

value is inconsistent with experiment results (Tatarskii 1971) and the 

theoretical prediction in last section. We conclude that for ~ = ~Az 2:'.: 1, 

the probability distribution of u can !!2!. be log-nonnal. 

(iii) The criterion here for the validity of MSP is different 

from that given by Tatarskii (1971). Our condition for MSP is~= ~Az ~ 1 

2 
while Tatarskii's condition is the log-amplitude a < 1. As shown in 

x. 
Figure (5-8c) , for y = 100 at ~Az = 3, MSP is no longer valid but the 

log-amplitude cr 
2 

is still much less than 1. 
x 

2 -3 
(cr = l.8xl0 << 1). x 

The numerical results of Wang & Strohbehn (19 74a) for Kolmogorov 

spec trum also show that MSP is not valid even when cr 
2 << 1. Figure (3) 

x 
of Wang & Strohbehn (1974a) shows that the calculated cr 

2 
deviates from 

x 
the MSP variance crT

2 
for crX

2 
2:'.: 0 . 05. Our condition that ~Az ::=.: 1 is 
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equivalent to the condition that the mean square phase fluctuation is 

much less than unity. When y :s: 1, the condition that ~Az :i;::S: 1 is 

equivalent to cr 
2 

:i;::s: 1. But for y > 1, our condition is more stringent 
x 

than that of Tatarskii. 

9 (4). Results of the Joint-normal Distribution 

In this subsection we consider the spatial intensity correlation 

function PI(z, £1,£2) under the joint-normal asstnnption. Using the 

notation of the last subsection (&(3)), we have 

(5-169) 

where£= £1-£2 • And using the normalized coordinates as given Eq. 

(5-143), we have 

A 

The numerical calculation for re in Appendix (D) gives PI( 'f1,p . The 

results are shown in Figures (5-9a,b,c,d,e,f). The scintillation index 

2 
m is given by 

z 

2 
m 

z . 
(5-171) 

2 
The calculated m vs the normalized propagating path ~ is 

z 

shown in Figure (9a) for various values of the diffrac t ion pa rameter y. 

2 
Also shown in the figure are two theoretical curves for m in the extreme 

z 

cases that y = 0 and y = oo. In the case that y = O, r = 1 and we have 
c 
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= e 
-21\[l-H(s)J _ e -21\ (5-l 72a) 

and 
2 

1 
-21\ 

m - e z (5-172b) 

,.. 

Similarly for y t;1:>' r = e -w<s) and we have 
c 

[e -T)(l-H(s))_ e -1\(l+H(s))J (5-173a) 

and 
m 2 = (1- e -2~ 2 

z 
(5-l 73b) 

2 
For all other values of y, numerical curves for m lie between these two 

z 

theoretical curves. Eqs. (5-172a) and (5-173a) are the same as those de-

rived by Uscinskii (1968a, 1968b), who employed a complicated physical 

model under the joint-normal assumption. The numerical result in Figure 

(5-9) shows that for T\ >> 1, m 
2 = 1. We note that since \r I :s: 1 for all ,....,,.,., z c 

y, Eq. (5-170) gives us for T\ >> 1, ,...,,,_, 

,.. 

PI(T),s) ~ e -21\[l-H(s)l 2 
and m = 1 

z ' 

(5-174) 

which check with the numerical results. For I\>> 1, Eqs . (5-172) and 

(5-173) also reduce to Eq. (5-174). 

Figure 

lation function 

(9b) gives 

(N) 
PI (z, Q) 

us the normalized spatial intensity corre-

distance T\ for y = 1. The normalized intensity functions are presented 

in Figures (5-9c), (5-9d) , (5-9e) and (5-9f) for other values of the 

parameter y. As shown in the figures, P
1

(z,£) is essentially equal to 

\r1 1 (z,R,)\
2 

for ~Az ? 2 .0 , which checks with Eq . (5-174), The corre-
' 

lation scale p shown in Figure (5-9) is c .s. 
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Figure Captions 

Figure (5-9a). This figure shows the scintillation index m 
2 

vs the 
z 

propagating distance ~ = PAz under joint-normal assumption for various 

values of the diffraction parameter y. Curve (1) is the theoretical 

curve for y = =, where m 
2 

= (1- e - 2~) 2 . For y = 5 and 10 , the 
z 

computed index m 
2 

is essentially on curve (1). Curves (2), (3), and 
z 

(4) are the computed curves for y = 1, 0.5 and 0.1 , respectively. Curve 

2 
(5) is t he theoretical curve for y = O, where m 

z 
2 

that for ~ ~ 2, m = 1. z 

(1- e - 2~). Note 

Figure (5-9b). This figure shows the computed normalized intensity 

correlation function P
1 

(N)( p) vs the normalized transverse coordinate 

p / p under joint-normal assumption for various values of distance 
c 

~ = pAz. The diffraction parameter y is set equal to 1. The correlation 

scale of PI (N)(p) is nearly constant for pAz ~ 1 and decreases as (~Az) 

increases for PAz > 1. 

Figures (5-9c,d,e, & f). 
(N) 

The computed PI (p ) 's are shown in these 

figures under the joint-normal asslll1tption for various values of (pAz) and 

y. We note that for~= PAz ~ 2, the computed curves for P1 (N)(p) are 

e s sentially the same as the theoretical curve P3 (p) = exp { -2~[1-H(p)J } . 
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1 

x ~2pAz 

(5-175a) 

(5-l 75b) 

Under the joint-nonnal assumption, the scintillations are st~ong 

(mz
2 

""" 1) for pAz > 1, which is different from the result of last 

section for y > 1. Clearly the criterion here for strong scintillation 

under the joint-normal assumption is not correct. In particular , in 

the limit y = ~ , the diffraction term is zero and there is no amplitude 

fluctuation. Thus for y > 1, and 1 < pAz < y
213 

for Gaussian spectrum 

(or 1 < pAz < yS/ll for Kolmogorov spectrum), the probability distribution 

of the random wave cannot be joint-normal. In subsection § (3), we have 

showed that for pAz ~ 1, the probability distribution is log-normal , so 

that for pAz ~ 1, the distribution is not joint-nonnal either. In next 

subsection we will show that the log -normal assmnption is valid in the 

strong scintillation region in predicting the spatial intensity corre-

lation function. 

§(5). Validity of Joint-normal Assumption 

In order to prove the validity of a certain kind of probability 

distribution, one must check the result of the distribution with every 

moment of the random wave, which is an impractical work. Instead, we 

will check the joint-normal assumption only with the 4-th moment r4 • 

From Eq. (5-96), we have for the 4-th moment r4 , 



and 

where 

and 
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-i 
L(~,Q) = ~ V · V - f(Q, ~) 

y £ ~ 

~ * ( u(T] , a )u" (''f1, a +a)u( \1_, CX +at-R)u ( T], a +B)) 
rv() rv() rv rv() rv K, rv() rv 

(5-176) 

(5-177) 

(5-178) 

(5-179) 

Under the joint-normal assumption, it is easy to show that 4-th moment 

r4 is given by 

(5-180) 

where r1 l' r 2 O and u are g iven by Eqs. (5-130) , (5-131) , and (5-180). 
' ' 

We call r
4 

(J)(TlJ £, £) the 4-th moment under joint-normal assumption. 

It is easy to show that 

where 

(5-181) 

(5-182a) 

EA - [ 2~(J~)-~(£+.@)-~(£-£)] •exp {- 21)[1 -~(£) J} , (5-182b) 

EB - l2~ (£)-~ (s;:i-!~)-~(£-~)J·exp{-2TJ[l-~(£)]} , (5-182c) 

(5 -182d) 
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and (5-182e) 

S
. _4 
ince u = e - 21l and lr

2 0
\ ~ e - 2~, the last two terms in the right­

' 
hand side of Eq. (5-182a), EC and ED' can be neglected for large 'Tl· 

C "d th E · E (5 182b) W th t E is of order of e - 211, onsi er e A in q. - . e see a A 

which is small for large 11, except for \~\ << 1, since [1-H(~)l in the 

exponential of Eq. (5-182b) is of order of 1 except near \~ \ = 0. For 

\~ \ « 1, it is easy to demonstrate that \ EA(~~,£) \ has its rnaximtml 

value at ~ = O. Thus 

Similarly, EB can be shown to be of the order of, or less than 
-1 

e <--:n>· Thus 

(5-183) 

(5-184) 

and for 1l >> 1, f4 (J)satisfies the differential equation for r4 in 

Eq . (5-176). Furthermore, we have from Eq. (5-105) for strong scintil-

lat ion 

2 2 
"""'r1 1 <'Tl,~) + r1 1 <'Tl,~) 

' ' 

_4 
- u 

(5-185) 

The criterion for strong scintillation is given by Eq. (5-113) and Eq. 

(5-114). For 1l >> 1 , we have f rom Eq. (5-180) 

(5-186) 
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by noting that \f 2 0 1 ~ e -~. Comparing Eqs. (5-185) and (5-186), 
' 

we find that r
4 

(J)' the 4-th moment under the joint-normal assumption, 

is the same as the true 4-th moment r4 for strong scintillation. Thus 

the joint-normal assumption is valid in strong scintillation region in 

predicting spatial intensity correlation function. 

cuss ion 

Finally we draw the following conclusions from the above dis-

(i) For ~Az ~ 1 , the probability distribution is log-normal. 

(ii) For strong scintillation, the distribution is joint-normal 

as far as the intensity correlation function is concerned. The criterion 

for strong scintillation is given by Eqs. (5-113) and (5-114). 

(iii) For y > 1 and 1 < ~Az < y5 /ll for Kolmogorov spectrum 

2/3 
(or 1 < ~Az < y for Gaussian spectrum), the distribution is not log-

normal, nor is joint-nonnal. 

(iv) It can be shown that for large ~' the joint-normal 

distribution goes to Rice-distribution. Since (u) is real, let 

u = (u) + u + i u 
c s (5-187) 

where u and u are real. Under joint-normal assumption, u and u are 
c s c s 

joint-normal with zero mean. From Eq. (5-187) we have 

f l l(Z,£=0) = (u u*) = (u)
2 + (u 2

) + (u 2
) (5-188a) 

' c s 

and 2 2 2 (u) + (uc ) - (us ) + 2i (u1u2) 

(5-188b) 



we note (u ) = e 

] 
2 
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lr2 ol ~ e -1\and rl l(z , 12,=0) 
' ' 

we then have from Eq. (5-188) that 

1. For I\ >> 1, 

1 
-2 , and (u u ) "'"' 0 . c s (5-189) 

Thus for strong scintillation, u and u are two independent Gaussian 
c s 

variable with same variance. Therefore the random wave u has a Rice-

distribution (Rice 1954) . 
.] 

Furthennore, since for strong scintillation (u) = e 2 << 1 , 

2 2 . 1 
and from Eq. (5-189), (uc ) = (u

9 
) = 2' Rice distribution reduces to 

Ray l e i gh distribution where we have for the probability distribution 

P(l), 

P(l} = e 1/(1) I ( 1) (5-190) 

where (1 ) is the mean intensity and (I) = 1 for normalized incoming 

wave . 

The above discussions are for waves propagating in a thick 

medium. Similarly, for the thin screen case (see Chapter 3), one can 

also show that the joint-nonnal assumption is valid in predicting the 

spatial intensity correlation function and the probability distribution 

f or intens ity l is given by Eq. (5-190) in the strong scintillation 

r egi on. 
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VII. Intensity Correlation Function with Different Frequencies 

§ (1). Introduction 

In interstellar scintillations, the intensity correlation function 

with different frequencies has been measured (Scott & Collins 1968, 

Komesaroff et al. 1971, Rickett 1969, Lang 1971, Sutton 1971 . ) In partic-

~ 
ular, the decorrelation frequency f 1 = (2rt) of the intensity correlation 

function can be determined. The decorrelation frequency f
1 

is defined as 

the frequency difference of two observing frequency-channels, beyond which 

the intensities measured at these two channels are nearly uncorrelated. 

Many authors (Salpeter 1969, Lang 1971, Cronyn 1970a ,Sutton 1970) have 

tried to relate the decorrelation frequency f
1 

to the characteristic time 

tc of pulse broadening and they found 2nfitc=l under geometrical optics. 

But as pointed out in Chapter 2, the region of validity of the geometrical 

optics is limited. In Section IV of this chapter, we found that it ilil the 
m ck 

decorrelation frequency 2~ (= 2:) of the second moment r
1 1 

that relates 
' 

directly to the charac teristic pulse broadening time t and that m t ~ 1. 
c c c 

It is the purpose of this section to find the intensity correlation 

function and the decorrelation frequency f
1

• 

§ (2). Intensity Correlation Function in the Strong Scintillation Region 

The intensity correlation function can be obtained by solving 

Eq . (4-44) of the general 4-th moment r 2 2 . However , it is a formidable 
' 

job to solve the complicated equation of r 2 2• In Section VI of this 

' 
chapter, we pointed out that the joint-normal distribution of the random 

wave is valid for strong scintillation in predicting the spatial intensity 

correlation function , which leads us to believe the probability distribu-

tion of the random wave is joint-normal. Therefore we will find i n this 
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section the intensity correlation function with different frequencies 

under the joint-normal assumption. 

For simplicity, we will assume in the initial plane 

u(z=O, Q_, k) = 1 for all k and £· It follows from Eqs. (5-129b) and (5-133) 

that the intensity correlation function measured at (z,£1 ) between two 

wavenumbers k
1 

and k 2 

A (O)z 
- 6 (-1- + ....L) 

2 k 2 k 2 
1 2 (5-191) - 2 e 

The function f l , l in Eq. (5-191) has been solved and discussed in 

Section IV. The last term in the right-hand side of Eq. (5-191) is 

Small and can be neglected for strong scintillation. We now consider 

r
2 0

. From the complete set of moment equations in Eq. ( 37), we have 
' 

in particular for r 2 0 , 
' 

A@(£1-£2 ) 
+ 2 k k J r2 o 

1 2 ' 

(5-192) 

Since the initial condition is homogeneous and the random medium 

is also statistically homogeneous in the transverse plane, r2 0 depends 
' 

I I I I 2 2 2 . d 
on £ = £i - 12,2 only . Therefore v1 = v2 'V £ where £ = £1 -£2 an 

Eq. (5-192) can be written as 
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(5-192 1
) 

Again, for small difference between k
1 

and k
2

, we set as in Eq. (5-50) 

of Section IV, 

k =k+& k =k-& 
1 2 ' 2 2 

(5-193) 

from which we obtain to the order of <lf) 2, 

2 f { 2 A12(0) 
i [1+ LJt, 2r _ ...bQ [l+ 3& ~ 
k 4k2 ~ 2,0 2 4k2 J k2 

2 

11+ ~l} 
4k 

(5-194) . 

Suppose that \~I << 1, which is always true in interstellar scintil­

lation. Then we have for r 2 O 
' 

(5-195) 

which shows that r 2 0 (z;k1 ,k2 ;~) is about the same as the function 
' 

r 2,o<z,k,e,) in Eq. (5-132), where the wave numbers are equal. From the 

discussions in Section VI, we know lr2 o<z,£) I ~ e 
' 

Ap(O)z 

2k2 << 1 
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for strong scintillations. Therefore we have for strong scintillation 

(5-196) 

It follows from Eqs. (5-56) and (5-53) that 

PI (z,k, tk) 

where 

(5-198a) 

and 
(5-198b) 

PIR is the intensity correlation function where only "pure refraction" 

exists and PID is caused by the diffraction of the wave by the random 

medium. The total intensity correlation PI is simply the multiplication 

of these two functions PIR and PID" PIR has a decorrelation frequency 

1 
2 

(Al3(0)z) (5-199) 

The numerical solution off has been given in Section IV. From the re-
D 

sults of rD' we can easily compute PID" Figure (5-10) shows the numerical 

result of PID(z, k, llk) for the medium with Kolmogorov spectrum. We note 

that the decorrelation frequency fID = ro1D/2rr of PID is the same as that 

of fD and is given from Eq. (5-66) by 

bl<. • c = c 13 - 2 N k 2 C \l-l-2) I\) { z I 2) - (\I+ 2) I "' 
c 0 

(5-200) 
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Figure (5-10) 

The frequency decorrelation function P1D(~w) is 

plotted as a function of frequency difference ~ill for a 

Kolmogorov spectrum. Cl\n is the decorrelation 

given by Eq. (5-200). Note that the abscissa is 

frequency 
1 

( tffi/ illID f'l . 
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where ~ is given by Eqs. (B-3') and (B-18), and y = 2 and 5/3 for the 
0 

Gaussian and the Kolmogorov spectra respectively. We also note that 

Thus for strong scintillation, the decorrelation frequency 

(~/ 2rc) of intensity correlation function is the same as the decorre­

lation frequency of the second moment r
1

,
1

, which is directly related 

to the characteristic pulse broadening time t . The relation between 
c 

~(or f
1

) and tc can be written as 

= 1 (5-201) 

or 
1 (5 -202) 

The above discussions are for waves propagating in a thick medium. 

Similarly one can show that Eq. (5-202) also holds for the decorrelation 

frequency f
1 

of intensity and the width tc of pulse-broadening in the 

thin screen case (see Chapter 3) . 
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Chapte~ 6 

Selected Applications to the Problem of Interplanetary Scintillations 

1. Introduction 

Interplanetary scintillations of radio waves provide an inexpensive 

and sensitive probe which can determine many of the properties of the 

solar wind. Since t he discovery of these effects a decade or so ago 

there have been a large number of papers concerning observations and 

interpretation in terms of solar-wind fluctuations . (Clarke 1964, 

Hewish et al. 1964, Cohen et al. 1967, Dennison & Hewish 1967,Salpeter 

1967, Hollweg 1968, Cronynl970b, Hollweg 1970, Jokipii 1970, Jokipii & 

Hollweg 1970, Eke rs .& Little 1971, Little & Ekers 1971, Lovelace et al. 

1970, Young 1971 , Armstrong & Coles 1972, Jokipii & Lee 1972, 1973.) The 

scintillations are the manifestation of the diffraction and refraction of 

radio waves by electron-density fluctuations in the interplanetary plasma. 

Observations of interplanetary scintillations are one of two kinds, 

they either refe r to the correlation of the fluctuations in intensity at 

one point as a function of time, or they refer to observations at more than 

one point and measure the correlation as a function of position and time. 

As the plasma turbulence is convected outward from the sun, a stationary 

observer on the earth will see temporal fluctuations of the radio waves 

and will be able to calculate the correlation of the fluctuations in 

intensity as function of time. The frequency power spectrum of intensity 

fluctuations can then be obtained from the Fourier transform of the 

correlation function in time. For two-station observations, one d efines 
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the "pattern velocity" of the solar wind as the distance between the two 

stations divided by the correlation time at which the cross-correlation 

function between the two stations gains its maximum value. (Jokipii & Lee, 

1973.) (See Figures (6-1) and (6-2).) The measured "pattern velocity" 

is, in general, different from the true mean wind velocity. Thus in 

probing the solar-wind velocity by two-station (or multi-station) ob­

servations, one has to determine the relation between the "pattern 

velocity" and the true wind velocity. 

The fluctuations in the solar-wind velocity affect the shape of the 

frequency power spectrurn of intensity fluctuations and the ratio between 

"patte rn velocity" and the wind velocity because in the existence of the 

velocity fluctuations, different parts of the plasma turbulence is convected 

past at different velocity and the fluctuations of velocity can destroy the 

fluctuation pattern of the plasma turbulence. It is the purpose of this 

chapter to study the effects of velocity fluctuations on the frequency 

power spectrum and on the ratio between pattern velocity and true wind 

velocity in three-dimensional model of interplanetary scintillations 

(Young 1971; Rytov 1971; Jokipii & Lee, 1972, 1973). 

The effects of velocity fluctuations on the frequency power spectrurn 

and on the ratio between pattern velocity and mean wind velocity has been 

estimated under "thin screen" model, in whic h the scattering medium is 

replaced by a "phase-changing screen" at some "mea n" distance ~ f rom the 

observer (Little & Ekers 1971, Ekers ·& Little 1971, Armstrong & Coles 

1972) .. Although the thin screen model provides a first-order estimate of 

the effects of velocity fluctuations, it is not realistic in interplane-
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Figure Captions 

Figure (6-1). Schematic representation of the parameters used in the 

c alculations. The y - axis is chosen normal to the ray path in the plane 

formed by the source, sun and observer. L is the distance along the ray 

path from the point of closest approach to the sun to the observer. A 

and B are two observing points that determine the cross-correlation 

Ck(x=O, y ,z=L,T). 8 is the elongation angle. 

Figure (6-2). Schematic representation of observations at two points 

* A and B and the cross correlation. The parameter y/T is related to the 

wind speed, as discussed in the text. 



188 

SOURCE 

B(x=O,y=y,z=L) 
A(x=O,y=O,z=L) 

Figure (6-1) 
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t = 0------------------ t 

at 8 
t = 0 .___ _______________ t 

(a) 

CK{x= 0, y, z = L, r) 

T =O T* 

( b) 
Figure (6-2) 



190 

tary scintillations for the following reasons. 

(a) 
2 

In the case of weak scattering, let Mz (~) be the power spectrum 

of intensity fluctuation contributed by a thin layer of plasma turbulence 

2 
at a distance z from the observer, and let ~o P~(z;~) be the two-dimensional 

Fourier transform of the phase fluctuation caused by the thin layer of 

plasma turbulence. Then one can show that 

(6-1) 

(c.f., Eq. (3-14» and that the total power spectrum Mr 2 (~) of the intensity 

fluctuation is the sum of the power spectrum contributed by each layer 

(Salpeter 1967, Young 1971, Jokipii & Lee 1972, 1973). Since there is 

only one thin screen in "thin screen" model, the total power spectrum 

would be the same as given by Eq . (6-1) with z replaced by the mean 

distance z. 

turbulence 
2 

2(~) sin 2k 

But in interplanetary scintillation, each layer of the 

has a different z and, therefore, a different modulation factor 

2 
for the power spectrum Mz (~). The spread of z gives us the 

2 
total power spectrum ~ (~) different from that predicted by the thin 

screen model. Furthermore, the determination of the mean distance z is 
2 

complicated by the modulation factor sin 
2 (9 2~). 

(b) Since the solar wind flows radially outward from the sun, each 

layer of turbulence perpendicular to the line of sight has different drift 

velocity over the observer. This structure of the solar wind will reduce 

the ratio between the pattern velocity and the wind velocity. Jokipii & 

Lee (1972, 1973) have calculated the ratio in the absence of velocity 

fluctuations when the radio source is at a position with small solar 
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elongation angle (see Fig. (6-1)). In this chapter, we will also cal­

culate the ratio at large elongation angle. Thin screen model is not 

able to calculate this effect. 

(c) Little & Ekers (1971) found that the velocity fluctuations 

have the effect of smearing the frequency power spectrum of intensity 

fluctuations. In three-dimensional model, different drift velocity of the 

turbulence layer has the same effect of smearing the frequency p0wer 

spectrum as do the velocity fluctuations. Thus if one uses "thin screen" 

model to predict the velocity fluctuations, then one tends to overestimate 

the magnitude of velocity fluctuations. 

It is the purpose of this chapter to study the effects of wind­

velocity fluctuations on the shape of intensity power spectrum and on the 

ratio between the "pattern" and the true wind-velocity in the three­

dimensional model of interplanetary scintillation. 
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II. Formulation 

In this section, we will generalize the three-dimensional model 

of interplanetary scintillation to take the velocity fluctuations into 

account. The three-dimensional model has been presented by Young (1971), 

Rytov (1971), and Jokipii & Lee (1972, 1973). The model is based on the 

method of smooth perburbations (MSP) (see Chapter 2, Section III) presented 

by Tatarskii (1961). For completeness, we will repeat the derivations 

of Tatarskii (1961) and Jokipii & Lee (1972, 1973), and then generalize 

the formulation to include the effects of velocity fluctuations. 

and 

From Eqs. (3-38), (3 - 39a) and (3-39b) of Chapter 2, we have 

2ik 

log A 

Im cp 

iS A e 

Re cp 

0 

Following Tatarskii (1961) , we define d~(z,~), d~(z,~), da(z,~) and 

(6-2) 

(6-3) 

(6-4a) 

(6-4b) 

ds(z,~) as the two-dimensional Fourier components of cp (~), ek(~), x(~) 

and S(~), respectively. We have 
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(6-5a) 

(6-5b) 

(6-Sc) 

and 
(6-5d) 

where ~ = (x, y) and~= (q1 ,q 2). Take the Fourier transfonn (two-dimen­

sional) of Eq. (6-3) and get 

If the perturbations are 

z 

d'i'(z,~) ik 1 
0 

zero at z = z , 
0 

e 

ig2cz-z') 
2k 

then Eq. (6-6) gives us 

From Eqs. (6-4a), (6-4b) and (6-7), we can easily get 

z 

dak (z, !l) k J dz' sin [g
2
(z-z')] d ( , ) 2k \)Z,~ 

z 
0 

and z 

!. [9
2

~~-z')] d'J(z' ,~) dsk(z,~) k dz' cos 

0 

2 2 2 
where q ql + q2 . 

(6-6) 

(6- 7) 

(6-8) 

(6-9) 
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Typically, one is interested in Fk(z,~), the two-dimensional 

power spectrwn of the fluctuations in x in the plane z = constant. By 

the Wiener-Khinchine theorem, this may be obtained by considering 

* Eq. (6-8) and the product (d~d~). We generalize this result to the case 

where the statistical properties of the mediwn vary with position, so that 

we may apply the results to the solar wind. Such a generalization is 

particularly simple if, as in the solar wind, the scale of variation of 

the means is large compared with the correlation scale. This can be shown 

to be true in the solar wind. If this condition of gradual variation is 

satisfied, one may define a local spectrum d~k(z,~) precisely as above 

since the random function is approximately stationary or homogeneous. 

In this case, we may define a power spectrum as a function of position 

. (6-10) 

Then one can readily obtain the following result from Eq. (6-8) assuming 

jz-z
0

j is much greater than the correlation scale of ek(~), 

z 

1 
0 

(6-11) 

where pk is to be evaluated along the line of sight, which is in the z 

direction. 
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A similar result may be obtained for the spectrum of fluctuations 

in phase, 

One can measure the spatial power spectrum given by Eq. (6-11) by 

simultaneously recording the intensity of radio wave at a large number of 

stations. But this kind of observation is not practical. As mentioned 

above, observations of interplanetary scintillations are either to measure 

the correlation of fluctuations in intensity at one point as a function 

of time, or to measure at two (or more) stations the correlation as a 

function of position and time. For this reason, it is useful to compute 

the two-point, two-time correlation of the intensity. This may be done as 

follows. Let V be the plasma velocity and assume the wind velocity is 
~ 

much larger than any wave velocities, so we may treat the density fluctu-

ations as being frozen into the solar wind. Then we have the frozen-in 

condition as 

(6-13) 

which is true over distances small compared with the mean .density variations. 

There is one more requirement for Eq. (6-13) to be true, namely, within the 

region with radius lv T\, the 
"-W 

velocity V must be nearly constant. This 
"-W 

condition cannot be satisfied if the fluctuations of velocity exist within 

the scale size we are interested in. However, one can divide the plasma 

turbulence into many classes. In each class, the plasma has the same wind 
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velocity. Then Eq. (6-13) is still correct for each class of plasma 

turbulence with same velocity. Since MSP is a linear approximation: 

the total power spectrum can be written as the sum of the power spectrum 

contributed by each class of plasma turbulence with same velocity provided 

there is no correlation between different classes. In the following 

approach, we will assume the density fluctuations and turbulent velocity 

1 fluctuations are uncorrelated. 

For each class, we have 

€k V (:N-V 'i", t+T) 
' "" ""W rVW 

(6-14) 

where the subscript ~ denotes the class of turbulence convected at 

velocity Xw· This can be shown to imply for the instantaneous spatial 

Fourier transfonn of ek,V (~,t) 
rV.N 

(6-15) 

Of interest is d~k V (z,q1,q2,t), which is the two-dimensional transform 
'rvw 

of ek V , as a function of z and t. Manipulation of Eq. (6-15) yields 
'"+/ 

where V 
~w 

exp (-iq 2V2T-iq1V2,-)d~k V (z-v3,-,q1 ,q 2,t) (6-16) 
'"+/ 

1
This is a reasonable assumption since in the solar wind the density 

scales that are important in producing scintillations (i "" 100-200 Ion) 
are small compared with the scales that contribute to fluctuations in V • 

rVW 



197 

From Eq. (6-11), we may write the time-dependent amplitude 

contributed from the class of velocity V 
"'W 

z 

a"k,Y,,(z,ql,q2,t) = k ~ dz' sin [q 2(~z')] a,k,Y,, 
z 

0 

Using Eqs. (6-16) and (6-17), one may write 

z 

f z 
0 

Next make the following arguments: 

(6-17) 

( 6-18) 

(i) Following the argument of Tatarskii (1961, p.135), we see that 

* since (d\lk V (z',q1 ,q 2)d\lk V (z",q1 ,q 2)) is important only for q\z'-z" I ~ l, 
'"'W '"'W 

we may replace z" by z'-v3z in the sine function provided qc/k << 1 which 

is true in interplanetary trubulence. 

(ii) f 

q is the characteristic scale of 
c 



198 

_,_ 

(iii) ( z ' q 1 ' q 2 ' t+ T) d~ V ( z ' q 1 I ' q 2 I ' t ) ) 
'~ 

These allow us to write innnediately 

= 2rck
2 

z 

f 
z 

0 

dz' sin 
2 2 I 

[
g (z-z')J . [q (z-z -V3'T')J 

2k sin 2k 

(6-19) 

2 
Since we are interested in cases where (qc v3,./k) << 1 we can drop 

(V 3'T') in the sine factor of the integral in Eq. (6-19). Thus we have 

z 

2rck
2

. f 
z 

0 

(6-20) 

The total power Ck(q1 ,q 2,z,'T') is the integration of Ck V (q1 ,q 2,z ,T) over 
'~ 

all velocity space if we treat Pk V as the power density in velocity space 
'~ 

(see footnote 1). Since velocity fluctuations and density fluctuations 

are independent, we may write 

(6-21) 



where 

z 

f z 
0 

(exp ( -iq 
1
v 

1
'1"-iq

2 
V 

2 
T)) 

z' V 
''""W 

interpretation over v
3

, and write 

where 

Thus 
z 

l 
0 
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(6-22) 

(6-23) 

(6-24) 

(6-25) 
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Here Ck(q1, q 2,z,'T) may be interpretated as the contribution to the cross­

correlation of fluctuations in intensity at z from wavenumbers q
1 

and q
2 

at time-lag 'T. Thus, the actual cross correlation for two points in the 

(x,y) plane separated by x and y at lag 'T is given by 

ck (x 'y' z' 'T) 

(6-26) 

This is the desired result. 

Consider some limiting cases. In the absence of the velocity 

fluctuations, Eqs. (6-25) and (6-26) reduce to that obtained by Jokipii 

& Lee (1972, 1973). In the thin screen case, we replace the integral 

over z' by some function G(q1 ,q 2) and Eq. (6-25) becomes 

Eq. (6-27) is just the equation used by Little & Ekers (1971) . 

Regarding to the validity of the MSP approximation, we will quote 

from Tatarskii (1961, 1971) that MSP is valid if \9S\ << k, €k << 1, 

z - z 
0 

<< t 41 3 t.. and <l> << 
'' where 

t is the smallest scale of the 

fluctuations. For weak scattering where the scintillation index 

m 2 ~ ( x 2) ~ \, these conditions are well 
z 

for k 
-2 -1 22 

~ 10 cm and z-z << 10 cm. 
0 

satisfied in the solar wind 
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III. Effects on the Ratio between Pattern Velocity and Mean Wind Velocity 

From Eqs. (6-25) and (6-26) obtained in the last section, we can 

calculate the ratio between pattern velocity and mean wind velocity pro-

vided the velocity distribution function F(V
1

, v 2) and the electron density 

power spectrum Pk(z',q
1

,q 2 ,q 3 ) are known. Eqs. (6-25) and (6-26) are 

quite general. Consider now a spherically symmetric solar wind and the 

specific geometry illustrated in Figure (6-1). Let the mean velocity 

of the solar wind V be radial and constant and assume that the density 
~ 

spectrum is separable in the form 

(6-28) 

We note that in Figure (6-1), the mean drift velocity perpendicular to 

the line of sight is in the y-direction and the mean velocity in the 

x -direction vl is zero. 

For demonstration , we assume that the velocity distribution 

- - 2 2 
F

2
(V

1
,v2) is Gaussian with mean velocity v

1
,v

2 
and variances cr

1 
and cr2 . 

Refe rring to Figure (6-1) , we express z' in terms of p , the distance 

from the Sun. Clearly, v
1
=0 and v

2
(z') = Vwp

0
/ p , where p

0 
is the distance 

2 2 
of closest approach. Note that cr

2 
and a

3 
are in general functions of the 

position z'. Then we have 

T 
2 

(6-29) 
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Po n 
g(z') = g(p ) =A (-) 

0 p (6-30) 

From Eqs . (6-25), (6-26), (6-28), (6-29) and (6-30), one obtains 

2 
<L> 2n: 

A 
0 

2 

[ 
2 J p n 

sin g (~~z') ( ;) · e 
iq/y-V2 (z')'i] 'i [ 2 2 t 2 2 2 q2 oz (z )+ql ol (z') l 

e 

(6-31) 

The observation of Ck(O,y,L,'i) is illustrated schematically in 

* Figures (6-2). We are interested in the time-lag 'i for which the cross 

correlation is a maximum, for a given separation of stations y. One de-

fines the pattern velocity V 
p 

The computation of V from Eq. 
p 

(6-31) using a computer is quite straightforward. One calculates Ck for 

different 'T and finds "~"" for which Ck gets maximum value. Then V = y/ ,., .... 
p 

For simplicity we put a1=0. The ratio y ; V /V depends in general on w p 

a 2 (z), the separation y, the solar elongation angle e, the index n, and 

the power spectrum h (51).. Assume Kolmogorov spectrum for h(q), 

and asst.nne 

Define also 

h(q) 
-11/3 

Bo q 

p 
, o)m a ~-2o P 

11 _ o
2 

/v 
0 w 

(6-32) 

(6-33) 

(6-34) 
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The computer results are shown in Figures (6-3a,b,c,d,e,f). 

Computer calculations also show that y is insensitive to the separation 

y. In Figure (6-3) we put y = 75 km and m = 1. Form= 1, (a
2
/v

2
) is 

constant for all p(or z). The figures show the ratio y as a function of 

crzo 
elongation angle e, the index n and the parameter ~ = 

v w 
From the results, we can see the following features. 

(1) For small elongation angle e, and ~ = O, the ratio y is about 

the same as given by Jokipii & Lee (1973) under analytic approximation. 

(2) 
0 0 

For elongation angle e near 90 or greater than 90 , the 

ratio y increases rapidly as the angle e increases. In this region, thin 

screen model works very poorly. 

(3) The larger the random velocity , the smaller the ratio y. 



Figure (6-3a). 
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Figure Captions 

The ratio y between the mean wind velocity V and the 
w 

pattern velocity V is plotted as a function of the elongation angle e 
p 

for various value of the index n (N is used in the figure). In this 

figure , the velocity fluctuation is assumed to be zero (~=0). 

Figure (6-3b). The figure shows the ratio y vs sine (8 is the elonga-

tion angle ) for various value of the velocity-fluctuation parameter 

~ when the index n 3. Note that the parameter ~ = cr
20

/vw. 

Figure (6-3c). As in Figure (6-3b) when n 4. 

Figure (6-3d). As in Figure (6-3b) when n 5. 

Figure (6-3e). As in Figure (6-3b) when n = 6. 

Figure (6-3f). The ratio y is plotted as a function of the parameter ~ 

at sin e = 0.5 for various values of the index n. 
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IV. Effects on the Frequency Power Spectrum 

The frequency power spectrum observed at one station can be ob-

tained from Eq. (6-31) by taking the Fourier transform in time, 

x e 

1 
21! 

iq
2
f y-V

2
(z ') ,.] 

e 

-CO 

2 
'f' [ 2 2( 1 ) 2 2 I I - 2 q 2 cr 2 z +ql crl (z ) -' 

Carrying out the integration in T, one obtains 

L co co 

J dz' Jaq1J dq2 

-CO _co _co 

1 x e 

(6-35) 

( 6-36) 

Eq. (6- 36) gives the frequency power spectrum observed at one station with 

the effect of velocity fluctuations considered. Although the integration 

is con1plicated , the calculation is very straightforward. We will not do 
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the integration here. Instead we will consider an example to demonstrate 

the effect of velocity turbulence on the frequency power spectrum of wave 

intensity. 

Young (1971) has carried out the numerical computation of the 

frequency power spectrum Ck(O , O,L,m) when the velocity fluctuations do 

not exist. In the case cr1 ,cr2 - o, Eq. (6-36) becomes 

(0) 
ck (O,O,L , m) 

(6 -3 7) 

For large solar e longation angle, the Ck(O)(O,O,L,m) in Eq. (6-37) fits 

the observation data quite well for radial solar velocity of 300-350 km/sec . 

0 
However, for small elongation angles (S ~ 5 ), Young found that there 

exists a commonly observed discrepancy between computed and observed spectra: 

the observed spectra are stronger than the computed at high and low fre-

quencies , and weaker in the region of the knee as shown in Figure (6-4). In 

Figure (6-4), there is no way to fit the data by varying the wind velocity. 

The observed data in Figure (6-4) is published by Cohen & Gundermann (1969) 

for 3c 279 at A = 11 cm. 

The discrepancy between computed and observed spectra can be ex-

plained by the existence of velocity fluctuation. Let cr1=cr2=cr in Eq. (6-36). 

We try to f ind the best fit by varying cr for a given mean wind ve locity 

v using an approximate method, which is presented in Appendix (E). The 
w 
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Figure Captions 

Figure (6-4). Computed (solid) and observed (dashed) power spectra at 

0 e = S. 55, A = 11 cm, and m (scintillation index) = 0.20, for three z 

different values of V • The computed curves are based on the asstnnption w 

that there is no velocity fluctuation. (From Young 1971.) 

Figure (6-5). Theoretical (dashed and dotted) and observed (solid) power 

0 spectrtnn at e = S. 55, A= 11 cm. The observed spectrum is the same as 

that in Figure (6-4). Curve (2) is the theoretical curve for v 20 = Vw 

200 Ian/sec and ] = 1.13, and curve (3) is for v20 = Vw = 300 Ian/sec and 

~ = 0.7 
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results for 3c 279 data (Cohen & Gundennann 1969) are shown in Figure 

(6-5) with V = 200 and 300 km/sec. For V = 200 km/sec, the best fit w w 

is at cr10=cr20= 210 km/sec and for Vw = 300 km/sec, cr10=0 20= 226 km/ sec. 

The curves in Figure (6-5) show that the discrepancy as pointed out by 

Young (1971) no longer exists . From Figure (6-5), we expect that at 

Vw = 230 km/ sec and cr 10=cr 20= 220 km/ sec, the computed pewer spec tn.nn would 

fit the observed one more or less exactly. 

Thus our result predicts that the velocity turbulence exists even 

in the three-dimensional model of interplanetary scintillation. And we 

find that the data presented by Cohen & Gundermann (1969) show that near 

the Sun the wind velocity is about 230 km/sec and the velocity fluctuation 

is near 220 km/ se c . 
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Chapter 7 

Interstellar Scintillations 

Interstellar scintillations of the radio waves from pulsars 

provide a probe of the characteristics of the turbulent plasmas in the 

interstellar meditnn (Hewish et al. 1968 , Pilkington et al. 1968, Lyne 

& Rickett 1968, Scheuer 1968, Salpeter 1969, Rickett 1969, 1970, Lang 

1969 , 1971, Huguenin & Taylor 1969_, Cronyn 1970, Ables et al. 1970, 

Rankin et al. 1970, Ewing et al . 1970, Sutton 1971, Counselman & Rankin 

19 71 , Downs & Reichley 1971, Higgins et al. 19 71, Komesaroff et al. 

1971 , 1972, Komesaroff 1971, Williamson 1972, Shitov 1972, Rankin & 

Counselman 1973, Little & Matheson 1973, Backer 1974, Mutel et al. 1974, 

and Cohen & Cronyn 1974.) The observed phenomena include intensity 

fluctuations, angular broadening, temporal pulse smearing and decorre­

lation frequency. The scintillations of the r adio waves in the inter­

stellar medium are strong (mz""' 1) and the correct theory must take the 

multiple-scattering effect into account. The geometrical optics and 

the single-scattering theorv are not valid for interstellar scintil­

lations. 

In this chapter, we try to interpret the observed interstellar 

scintillation data using the theories developed in Chapters 3,4 and 

5, which are valid for strong scintillation. In Section I I , we summarize 

the results of the strong scintillation theory and compare them with the 

observed data of interstellar scintillations. We also plot the values 

of the correlation scale of intensity fluctuation, the characteristic 
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time of pulse broadening and the condition for strong scintillation for 

various values of the parameters in interstellar scintillations. In 

Section III, we will analyze the data of three pulsars, namely, CP 0328, 

PSR 0833-45 and NP 0532. We find that the Kolmogorov spectrum of the 

turbulent medium fits the observed data. 
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II. Strong Scintillation in the Interstellar Medium 

In this section, we will summarize the results of the strong 

scintillation theory developed in the previous chapters and compare them with 

the observed data in interstellar scintillations when possible. First 

we rewrite the parameters B and A~(O) in terms of the properties of the 

propagating wave and the plasma medium. For a medium with a Gaussian 

spectrum in Eq. (1-20), we have 

B 128n7/2r ~-4 -3(5N 2) 
e qo e (7-la) 

and 

8n (7-lb) 

-1 
where q = L is the correlation scale of the random medium. For the 

0 

power-law spectrum in Eq. (1-21), 

and 

4n(a:-2) 

(For a Ko lmogorov spectrum, a: 

(A) Scintillation Index 

ll) 3 . 

(7-2a) 

(7-2b) 

For strong scintillations, the scintillation index is 

m """1 . 
z 

( 7-3) 
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(See Eq. (3-67) and Chapter 5, Section V.) In interstellar scintil-

lations, it has been observed that the scintillation index is unity 

for most pulsars (Rickett 1969, 1970, Downes & Reichley 1971). 

(B) Probability Distribution of Intensity 

For strong scintillations, the probability distribution 

of the random wave is a Rayleigh-distribution (special case of a Rice-

distribution), and the probability distribution of intensity is expo-

nential, 

P(I) = 1 
(I) 

-I/ (I) 
e . (7-4) 

(See Eq. (5-190).) Eq. (7-4) fits the data in interstellar scintil-

lations for most pulsars (Rickett 1969, 1970, Downes & Reichley 1971). 

The exponential distribution in Eq. (7-4) is different from the log-

normal distribution for the weak scintillation (Tatarskii 1971, Young 

1971). 

(C) Phase Fluctuations 

The mean square phase fluctuation 

by the random medium is approximately 

~ 2 = 
0 

z 
- 2 AJ3(0) 
2k 

~ 2 
for waves scattered 

0 

(7-5) 

where A
13
(0) is given by Eqs. (7-1) and (7-2) for the Gaussian and the 

Kolmogorov spectra respectively. Eq. (7-5) can be used to estimate the 

phase fluctuations in interstellar scintillations. 

is one of the conditions for strong scintillati~ns. 

2 
Note that ~ > 1 

0 
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(D) Spatial Correlation Scale and Decorrelation Time of 

Intensity Fluctuations 

The spatial intensity correlation function, P1 (z, ~) , for 

strong scintillations is given by 

(7-6) 

(See Eq. (5-110) or Eq. (5-115).) The correlation scale Pc.sis simply 

tha t value of p for which 

~ [Ar:i(O) - Ar:i(p ) ] 
k2 I' I' 

1 (7-7) 

For our Gaussian spectrum in Eq. (l- 20) this becomes 

1 (7-8a) 

1 
for p << 

c .s. q
0 

L (equivalent to ~ 2 
>> 1), which is always true for 

0 

the strong scintillations. Eq. (7-8a) gives immediately 

2 4 Bzk q 
0 

( 32rc ) 

1 - 2 
(7-8b) 

The value of p in Eq. (7-8b) for various values of the parameters 
c.s. 

in interstellar scintillations is plotted in Figure (7-la). 

Proceeding similarly for the power law spectrum in Eq. (1-21), 

we expand Al3(p) as in Eq. (1-28) for .R, < p < L, and obtain 



222 

Figure Captions 

Figure (7-la). The correlation scale p , of intensity fluctuation 
c.s. 

plotted versus the coherent scale L for a Gaussian refractive index 

spectrmn. In all cases f = 3 x 108Hz and z = 103
pc. In curve (1) 

-8 -6 = 10 cm , in curve (2) (oN 
2

) 
e 

-6 -6 = 10 cm , and in curve (3) 

10-4cm-6 . The value of p c.s. 
scales cr f LO.Sz-0 ·5 ( oNe 2)-o.s. 

Figure (7-lb). As in Figure (7-la) for a Kolmogorov power-law re­

fractive index spectrum with t < p(O) <L . In curve 
c.s. (1) ( oN 

2
) = 

e 
-8 -6 2 -6 10 cm , in curve (2) (oN ) = 10 , and in curve (3) . e (oN 

2
) = 10-4 . 

e 

In all cases ~ f = 3 x 108Hz and z = 10
3
pc . The 

Note that 

value of p 
1 c.s. 

~ = (oN 
2)'~ . 

e 

scales 

Figure (7-lc). The correlation scale p of intensity fluctuation 
c. s. 

plotted versus the mean square electron density fluctuation (oN 2) 
e 

for the Kolmogorov spectrum with t > p(O) In curve (1) t = lo
12

cm 
c. s. 

19 12 18 
and L = 10 cm, in curve (2) t = 10 cm and L = 10 cm, in curve (3) 

t = 10
10

cm and L = 1018
cm, in curve (4) ~ = 108cm and L 1018cm, in 

12 15 10 
curve (5) t = 10 cm L = 10 cm, and finally in curve (5) t = 10 cm 

' 
15 8 3 

and L 10 cm. In all cases f = 3 x 10 Hz and z = 10 pc . The value 
1 1 

of p scales cr f z-0 ·5 (oN 2) -0. 5L ~ t b. 
c.s. e 
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-1 
(cx-2) 

(O) 
- Pc.s. (7-9a) 

for 2 < a < 4. 

i, < p (0) < L. 
c.s 

However Eq. (7-9a) is correct only for the case where 

The condition p (O) < L (corresponding to ~ 2 > 1) is 
c.s 0 

always satisfied for the strong scintillation. However when p(O) < £, 
c.s. 

we must use the expansion in Eq. (1-29) and we obtain 

Again, the value of 

Kolmogorov spectrum 

1 
2 

(1) 
pc. s • (7-9b) 

p in Eq. (7-9a) and Eq. (7-9b) for the 
c.s 

(cx- 1J) is illustrated in Figures (7-lb,c) for various 

values of the parameters . We note that for the Kolmogorov spectrum, 

(0) 
Pc.s 

and 
(1) 

Pc.s 

The condition 

is plotted in Figure 

(7-lOa) 

1 l -0 5 -0.5 
cc f L 3 £ 6 ( oN 2 ) . z 

e 
(7-lOb) 

that n (O) = £ for the Kolmogorov spectrmn (cx- 1
3
1) 

c. s. 

(7-2), in which p (O) < £ is on the upper side of 
c.s. 

each curve and p (O) > i, is on the lower side. 
c.s 

The correlation scale p is related to the decorrelation c . s. 

time 'i by 
c. s. 

,. x v 
c.s. (7-lOc) 
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Figure (7-12._ 

The relation p = t is plotted on the t - z plane for c . s. 

the Kolmogorov power-law index spectrum. In all curves f = 3 x 10
8 

z 

and L = l018
cm. From curve (1) to curve (6) (oN 2 ) = 10- 2 10-3 10-4 

' e ' ' ' 

10-s 10-6 
' 

cc f
2
L 213 

t 

- 7 -6 
and 10 cm 
.5.. 
3(oN 2)-1. 

e 

respectively. Note that the value of z scales 
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for the turbulent plasmas move at a velocity v, transverse to the line 

of sight to the pulsar (frozen-in condition being assumed). Lang 

(1969) has shown that the decorrelation times T for the three c.s. 

pulsars considered varies as fo. 7- 1 ·
3

• Rickett (1970) has also presented 

data which indicate that T a: fn, where n lies in the range 
c .s. 

0.3 ~ n ~ 1 .5 for all observations be made. The data for PSR 0833-45 

(Backer 1974) show that T a: fl.O-l. 3 • The observation data are in 
c .s. 

general consis tent with that predicted by Eq. (7-8b) or Eqs. (7-lOa,b). 

(E) Characteristic Scattering Angle 

The angular power spectrum of the random waves, '!'(~), is 

given by Eq. (5-5). From the angular power spectrum, one can calculate 

the characteristic scattering angle, e , due to the random medium and has 
c 

(i) for the Gaussian spectrum, 

e 
c 

1 
2 Bz 2 

qo (64n) = 

(ii) for the power-law spectnnn with 2 < a < 4, 

1 

e 
c 

qo [Bzk2qo 21(2-~)] a -2 

Zk 8n(a -2)f (~) 

(0) 
(if £, < Pc.s. < L) , 

1 
1 

2<a - 2) kp 

1 

c.s. 

0 
c 

1 
k 

2 (4-n ) 4 ] 2 a -a 

[

zBk qo ql r<-2-) 

6Lnr 

1 

... G1cr, 
, - c . s. 

(7-lla) 

(7-llb) 

(7-llc) 
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(if i, > P (O) ) • 
c.s. 

11 
For the Kolmogorov spectrum (c:x=-:J), one has 

-2.2 -0 .4 0.6 2 0.6 
e 0: f L z (5N ) c e (7-12a) 

(if J, < p (0) 
c.s. < L)' 

1 1 0.5 2 0.5 
f- 2L 

-
3 J, 6 (5N ) e 0: z e 

c (7-12b) 

(if J, > p (O) ) • 
c .s. 

In the interplanetary and the interstellar scintillations, it 

has been observed e 
c 

-n 
0: f ' where n = 2.05 ± 0 . 25, which checks in general 

with that given by Eq. (7-lla) or (7-12a,b) (Erickson 1964) , Readhead & 

Hewish 1972, Mutel et al. 1974, Cohen & C~onyn 1974). 

(F) Pulse Broadening and Decorrelation Frequency 

From the results of Chapter 5, Section V, we learned that 

the pulse emitted from a pulsar is broadened by the turbulent inter-

stellar medimn. There are three physical effects causing the broadening 

of the pulse: a dispersion effect, a pure refrac tion effect and a diffraction 

effect. The characteristic broadening times for these three effects are 

respectively t 1 , tR and tD where 

~l+R2t:,.4/t:,.""" Rt:, 

1 
l A

13
(0)z 2 

k2c ( 2 ) 

zN r ct:, 
e e ( 7-13a) 

(7-13b) 



and 
t = 

D 

ze 2 
c 

2c 
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( 7-13c) 

where ( 2~) is the bandwidth of measurement instrument , and where 

e is given by Eqs. (7-lla,b, c) for various cases. 
c 

Let t be the characteristic time of the temporal pulse broaden­
c 

ing due to the combination of pure refraction and the diffraction effects. 

Then the decorrelation frequency f
1 

for strong scintillation 

to t by 
c 

(See Eq. (5-202) .) 

1 (7-14) 

Since the observation time for a pulse profile is short (usually 

less than 1 day), the pure refraction effect (tR) can not be detected 

and we will neglect this effect. Thus tc ""'tD. We then have for the 

Gaussian s pectrum, 

_l_ 
2:n:fl 

For a Kolmogorov s pectrum, we have 

(i) when .R, < p < L 
c. s. 

and 
(ii) when Pc .s. < .R,' 

2 
1 

ex: f - 4 L 3 ..R, 
tD 2nf

1 

(7-15a) 

(7-15b ) 

1 
3 2 2 

z ( oN ) . e (7 - 15c) 
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'lhe value of tD(and f 1 ) for various values of the parameters 

in interstellar scintillations is illustrated in Figures (7-3a,b,c). 

The "dispersion measure", DM, of the plasma medium from the 

radio star to the observer is defined as 

=!observer 

star 
DM N (z ')dz' 

e 

Suppose that for all interstellar plasma media, 

1 

( oN 2) 2 
o: (N ) 

e e 

(N )z. 
e 

(7-16) 

(7-17) 

We then have for the Gaussian spectrtnn and the Kolmogorov spectrum 

(0) 
with pc • s . < f,, 

1 
o: (DM) 

2 
(7-18a) 

(0) 
and for the Kolmogorov spectrum with i < Pc.s. < L, 

1 o: (DM)2.2-2.4 (7-18b) 

The measurements of the decorrelation frequency f
1 

and the pulse 

4±1 -1 .p. 
broadening tD show that f 1 o: f and f 1 o: (DMJ where n = 1.6-3.6 

(Lang 1971 , Sutton 1971 and Backer 1974), which are also in general 

consistent with those given above. 
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Figure Captions 

Figure (7-3a). The characteristic time of pulse broadening , tD' 

versus the correlation scale L for a Gaussian refractive index spectrum 

with f 300 MHz and z = 1000 pc. From curve (1) to curve (4), 

4 5 -6 - 7 -6 
10- , 10- , 10 and 10 cm respectively. The value of tD 

scales cr f-
4

z
2
L-

1
(oN 

2
). Also shown in the figure is the decorrelation 

e 

frequency f . 
I 

Figure (7-3b)_. As in Figure (7-3a) for the kolmogorov spectrum with 

n (O) 3 
N < p < L. In all cases, f = 00 MHz and z = 1000 pc. From curve 

c.s. 

(1) to curve (5), (oN 
2

) = 10-2 , 10-
3

, 10-4 , 10-5 and l0-6cm- 6 
e 

spective ly. The value of tD scales cr f-4 •4 z 2 • 2(&Ne 2 ) L-0 -8 • 

re-

Figure (7- 3c) . As in Figure (7-3a) for the Kolmogorov spectrum with 

£, > p (O) . From curve 
c .s . 

2 -2 -3 -4 
(1) to curve (4), (oNe) = 10 , 10 , 10 and 

-5 -6 
10 cm respectively. In all cases, f = 300 MHz, z = 1000 pc and 

2 1 
18 f-4 z2(~N 2, L- J n - J . L = 10 cm. The value of tD scales cr u e / N 
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Gaussian Spectrum 
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For the 11thin screen" case e and p are the same as given in 
c c.s. 

this section with z replaced by the thickness of the thin layer D. 

The characteristic broadening time tD and the decorrelation frequency 

f
1 

are related to the scattering angle ec by the same relation as 

Eq. (7-13c) 

ze 2 
c 

2c 

where z is the distance between the thin screen and observers. 

(G) Conditions for Strong Scintillation 

Let 

a nd 

(7-19) 

(7-20a) 

(7-20b) 

From Eqs. (5-llla,b) and (5-11 2a,b) we f ind that the conditions for 

s trong scintillation a r e 

and 

(i) for the Gaussian spectrmn, 

(ii) 

iP 
2 

> 1 
0 

11 > y2/ 3 
' 

(7-21a) 

(7-2lb) 

and for the Kolmogorov spectrum wi th J, < (i (O) < L , 
c . s . 

2 
11 = <fl > 1 

0 
(7-22a) 
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and 
'\'\ 5/11 
'I> y (7-22b) 

Using the same arguments as in obtaining Eq. (5-111), we find 

that 

(iii) for the Kolmogorov spectrum with 

the conditions for strong scintillations are 

and 

whe re 

A (4 ) (0) 
13 

z > k 
1 

( 48k )3 
A (4 )(0) 

13 

d
4

A(3 (0) 

d p
4 

p=O 

(7-23) 

(7- 24a) 

(7- 24b) 

( 7- 25) 

The condition ~0
2 > 1 in Eqs. (7-2la), (7-22a) and (7-24a), 

for both the Gaussian and the Kolrnogorov s pectra is illustrated in 

Figures (7-4a,b) for various values of the parameters in interste llar 

scintillations. We note that for the Kolmogorov spectrum, the c ondition 

~ 2 > 1 is always satisfied for r easonable values o f the parame t e r s 
0 

in i nterstellar scint illations . 

The c onditions in Eqs. (7-2lb), (7-22b) and (7-24b) are resp e c -

tively plotted in Figures (7-5a,b and c). We note that our r esults a r e 

valid only for the point radio sourc e. 



Figure (7-4a). 
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Figure Captions 

The value of z, beyond which the condition ~ 2 > 1 is 
0 

satisfied, is plotted versus the root mean square electron density 

2 1 
fluctuation &i (oN )2, for the Gaussian refractive index spectrum. 

e 

In curve (1) L l0
11

cm and in curve (2) L = l0
10

cm . In both curves 

f = 300 MHz. 

Figure (7-4b). 

2 -1 2 -1 The value of z scales ~ f L (oN ) . 
e 

The value of z, beyond which the condition ~ 2 
> 1 

0 

is satisfied, is plotted versus the correlation scale L, for the 
1 

Kolmogorov refractive index spectrum. In curve (1) &i = (oN 2 )7 
e 

- 6 -3 
10 cm , in curve (2) 6N 

In all cases f = 300 MHz. 

-4 -3 -2 - 3 
10 cm a nd in curve (3) &i = 10 cm . 

2 -1 2 -1 
The value of z scales ~ f L (oN ) . 

e 
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Gaussian Spectrum 
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Figure Captions 

Figure (7-5a). The value of z, beyond which the strong scintillation 

d . · T\ 213 · · f. d .h 1 . 1 L f h con ition > y is satis ie , versus t e corre ation sea e , or t e 

Gaussian refractive index spectrum. 

. 2 
and in curve (2) (oN ) 

e 4 
value of z scales ~ f j L 

2 -4 - 6 
In curve (1) (oN ) = 10 cm , 

e 

The 

Figure (7-5b). The value of z, beyond which the strong scintillation 

d . · ~ 5/ll · · f 0 d h 1 . 1 L f con ition ,, > y is satis ie , versus t e corre ation sea e , or 

the Kolmogorov spectrum (t < p(O) <L case) . 
c.s. 

From curve (1) t o curve 

2 -4 -6 -8 -6 (3), (oN ) = 10 , 10 and 10 cm 
e 

respectively. In all cases 
6 

The value of z scales cr f l 7/nL4/l\oN 2 ) - IT f = 300 MHz. 
e 

Figure (7-5c). The value of z , beyond which the strong scintillation 

condition in Eq. (7-24b) is satisfied, versus the inner scale £, fo r 

the Kolmogorov spectrum ( t > p (O) case). From curve (1) to curve (5), c.s. 
2 -8 -6 -4 -2 -6 

(oN ) = 10 , 10 , 10 , 10 and 1.0 cm 
e 

L = 1018 
cm and f = 300 MHz. The value of z 

respectively. In all cases 
~ 2 1 2 7 

scales ~ f 3 ( oN ) - ~ L~ t~. 
e 
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Kolmogorov Spectrum (.t<p~()!s . < L case) 
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III. Analysis of the Data for CP 0328, PSR 0833-45 and NP 0532 

In this section, we will analyze in detail the data of three 

pulsars, namely, CP 0328, PSR 0833-45 and NP 0532. 

(A) CP 0328 

The CP 0328 pulsar has been observed by Rickett (1970). The 

dispersion measure is 

DM = 26.7 pc cm 
-3 19 -2 

8.01 x 10 cm . (7-25) 

The decorrelation frequency f
1 

and the characteristic broadening time 

tc are related to the measured half-visibility bandwidth Bh by 

(Lovelace 1970). From the result of Rickett (1970), one has 

5 
Bh(408 MHz) = 8 x 10 Hz. Therefore 

and 

5 fI(408 MHz) = 1.27 x 10 Hz 

t (408 MHz) = 1.25 x l0-6sec. 
c 

(7-26) 

(7-27a) 

(7-27b) 

The decorrelation time T at 408 MHz can be obtained from 
c.s. 

Figure (11) of Rickett (1970) and one has 

T (408 MHz)"""' 720 sec. ( 7-28) 
c .s. 

Setting the propagating distance 

21 z = 1000 pc = 3 x 10 cm (7-29) 



~7 

(c.f. Rickett 1970, Lang 1971), one has from Eq. (7-25) 

(N ) = DM 
e z 

0 . 0267 
-3 

cm (7-30) 

Using the relations between p , 8 and tD in Eqs. (7-11) and (7-13c), 
c.s. c 

one obtains from Eqs. (7-28) and (7-29) the correlation scale 

9 = 1.7 x 10 cm (7-31) 

T and p in Eqs. (7-28) and (7-31) give us the relative transverse 
c.s. c.s. 

velocity of the plasma medium 

v""" 24 km/sec (7-32) 

which is of the correct order for interstellar space. 

Assume that the turbulent plasmas have a Gaussian power spe ctrum 

and are statistically evenly distributed between the pulsar and the e arth. 

Figure (7-6a) is a logarithmic plot of the Lill, L plane as plotted by 
2 1/2 

Scheuer (1968) and Rickett (1970), where 6N = (oN ) is the root mean 
e 

square electron density fluctuation and L is the coherent scale of 

electron density fluctuation in the interstellar medium between the CP 

0328 pulsar and the earth. Curve (1) of Figure (7-6a) is the constraint 

for 6N and L from the observed value of t in Eq. (7-27b) at f = 408 MHz 
c 

21 
and z = 3 x 10 cm. The values of 6N and L must lie on the line of curve 

(1). Since the scintillation is s trong for CP 0328 pulsar a t 408 MHz 

(Rickett 1970), the conditions for strong scintillation in Eqs. (7-2la,b) 

for 
21 

f = 408 MHz, z = 3 x 10 cm, 

(2) is ~ = y
213 

and curve (3) is 

are also plotted in the Figure. 

~ = ~ 2 = 1. 
0 

The fact that at 

Curve 

f = 610 MHz the scintillation is still strong will have a stronger re-

striction on the range of 6N and L. From Figure (7-6a), we see that 
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Figure Captions 

Figure (7-6a). Conditions for the interstellar scintillation of 

CP 0328. Curve (1) is the pulse broadening (or decorrelation frequency) 

2/3 
relation in Eq. (7-27). Curve (2) is the condition ~> y and curve 

(3) is the condition ~ 2 
> 1 for f 

0 
408 MHz. This figure is for the 

Gaussian refractive index spectrum. 

Figure (7-6b). As in Figure (7-6a) for the Kolmogorov spectrum with 

t < p (O) < L. Curve (1) is the pulse broadening relation. Curve ( 2) 
c. s. 

'T1 5/11 is the condition for strong scintillation, ,1 > y . The values of 

~and L must lie on curve (1). 

Figure (7-6c). As in Figure (7- 6a ) for the Kolmogorov spectrum witl1 

t > p (O) Curve (la) is the pulse broadening relation for L = lo
20

cm. 
c. s . 

Curve (lb) is the condition of strong scintillation in Eq. (7-24b) and 

(le) the condition 
(0) 

for L = 20 20 
curve is Pc.s. < 2, 10 cm. For L = 10 cm, 

the values of ~and t must be on the section of curve (la) between 

(lb) and (le). 
19 18 

the constraints curve For L = 10 and 10 cm, are 

plotted respectively in curves (2a,b,c) and (3a,b,c). 
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(7-33a) 

and 
(7-33b) 

for the turbulent meditnn between CP 0328 pulsar and the earth. 

The results in Eqs. (7-33a,b) are about the same as obtained 

by Rickett (1970). However as mentioned in Chapter 1, the Gaussian 

spectrum is rather artificial in interpreting the scintillation data 

and the power-law spectrum is a more realistic form. Observed turbulent 

plasmas tend to have power spectra (e .g . Jokipii 1973). Figure (7-6b) 

is a s imilar plo t a s Figure (7-6a) for the turbulent me dium having a 

Kolmogorov spectrtnn with f, < p (0) < L. Again curve (1) is 
c. s. 

(408 MHz) = 1.25 
-6 

(2) of t x 10 sec. Curve shows one the two condi-
c 

'T'l 5/11 tions for strong scintillation, ,1 > y . The other condition for 

strong scintillation ( ~ 2 
= 'Tl> 1) is well satisfied for reasonable 

0 

values of the parameters, ~N and L , and is not shown in the figure. The 

values of ~and L must lie on curve (1). We note that in Figure (7-6b), 

the condition ~ > yS/ll has no constraint on the values of 6N and L since 

curve (1) and curve (2) are parallel. This is phys ically expectable for 

the following reason. We note that the turbule nt inhomogeneities 

(eddies ) with a scale of size much greater than t h e Fresnel s c ale 

pf =~have very little effect on the scintillations of the radio wave. 

Therefore the scintillation pattern of the radio wave must remain the 

same if one adds inhomogeneities of larger size (equivalent to increase 

the value of the largest scale L) while keeping constant the magnitude 

of the turbulent inhomogeneities which are important for the scintil-
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lations of the radio wave by increasing the value of tJ.i(. Thus from the 

scintillation data, one can not set an upper limit on L and the strong 

. · 11 . d. . T] S/ll h i . h 1 scinti ation con 1t1on, > y must ave no restr ction on t e va ues 

of liN and L. 

In the interstellar medium, we expect that the largest scale 

size of the turbulent inhomogeneities will be of the order of 10 pc to 

100 pc (Jokipii and Lerche, 1969). For demonstrations, we choose 

20 
L = 10 cm(""" 33 pc). (7-34) 

Then from Figure (7-6b), we f ind that 

1 

(6N 2) 2 
e 

- 2 -3 = liN = 2 x 10 cm ""' 0 . 75 (N ) 
e (7- 35) 

We note that the Kolmogorov spectrum gives a higher value of l'.iN, the 

root mean square of the e lectron density fluctuations, than the Gauss ian 

spectrum. The value of ~ in the artificial Gaussian spectrum gives only 

the density fluctuation of those inhomogeneities which are important in 

causing the scintillation pattern. 

We consider the other case in which the interste llar medium has 

a Kolmogorov s p ectrum with p (O) < ~ - Figure (7-6c) is a plot of ~2 
c.s. 

vs the smallest scale £ (inner scale or cut-off scale) for various value 

of t he outer scale L. 

at f = 408 MHz and z 

20 6 
For L = 10 cm, curve (la) is t = 1 .25 x 10- sec 

c 
21 

3 x 10 cm, curve (lb) is the condition of strong 

scintillation in Eq. (7-24b) and curve (le) is the condition p(O) < ~. 
c.s. 

The condition ~ 2 > 1 is s atisfied and is not shown in the figure. For 
0 
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20 2 
L = 10 cm, the values of ~ and P, must lie on the section of curve (la) 

between curves (lb) and (le). Similarly, the constraints are shown 

respectively in curves (2a,b,c) and (3a,b,c) for L = lo19
cm and 

18 
L = 10 cm. For all values of L , we have from Figure (7-6c) , 

(7-36) 

within a factor of 4. It is of interest to note that the value of the 

cut-off scale P, in Eq. (7-36) for the Kolmogorov spectrum is about the 

same as the coherent scale L in Eq. (7-33a) for the Gaussian spectrum. 

20 
For L = 10 cm , we have from Figure (7-6c) 

-2 -3 
NI """ 2 x 10 cm ( 7-37) 

which is the same as in Eq. (7-35) for the case without a cut-off at 

10 
P, """ 5 x 10 cm, since for the Kolmogorov spectrum, the value of 6N comes 

mostly from the large scale inhomogeneities . We also note that the 

conditions for strong scintillation, in the case of a Kolmogorov spectrum 

(0) 
with p < £., do not give L an upper limit either. The increase of 

c. s. 

the value of L corresponds to an increase of 6N while keeping constant 

the strength of the inhomogeneities which are important for scintillation. 

Comparing the above two cases (p(O) < P, and P, < p (O) < L) for the 
c.s. c.s. 

Kolmogorov s p ectrum, we see that it is not necessary for the power 

spectrum to have a cut-off at P, """ 5 x lo
10

cm to fit the scintillation 

data. 

Little and Ma theson (1973) also considered the c ase (J (O) < P,, 
c .s. 

but t heir results are incorrect because they used an incorrect condition 

f or the strong scintillation. They used the condition zB > L, for c 
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strong scintillation which is too strong since the largest scale 

inhomogeneities have nearly no effect on the scintillations of the 

radio wave. 

In conclusion, we point out that both the Gaussian and the 

Kolmogorov spectra fit the data of CP 0328 pulsar and that the Gaussian 

spectrtnn. is quite artificial and gives only the density of those in-

homogeneities which are important for the scintillation. 

(B) PSR 0833-45 

The average pulse profile of the pulses from the PSR 0833-45 

pulsar has been measured for several frequencies between 300 and 1410 

MHz (Ables et al. 1970, Komesaroff et al. 1972). Backer (1974) measured 

the decorrelation frequency f
1 

and the decorrelation time T for the 
c.s. 

same pulsar with frequencies ranging from 837 to 8085 MHz. The above 

results are combined and plotted in Figure (7-7). f 1 at 300 MHz is from 

the pulse-broadening measurement (Komesaroff et al. 1972) by using the 

relation 2nf1 tc = 1 in Eq. (7-14). At f = 300 MHz, 

and therefore 

t = 9.4 msec , 
c 

f
1 

= 17 Hz 

(7-38) 

(7-39) 

All other points in Figure (7-7) are from the measurement of Backer 

(1974). We note that the decorrelation bandwidth B used by Backer 
s 

corresponds to £
1

/2. 

For the frequency dependence of the decorrelation time in 

Figure (7-7) , curve (la) is the best fit for T ~ f, corresponding c.s. 
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Figure (7-7) 

Estimates of the decorrelation bandwidth f
1 

(I symbol and 

left axis) and of the decorrelation time T (+ symbol and right axis) 
c.s. 

of interstellar scintillation for the PSR 0833-45 pulsar. The length 

of the I-symbol indicates the spread of measurements . For the d ecorre-

lation time, curve (la) is the best fit for T cr f and curve (lb) c.s. 
. f ~ f 1.2 is or T ~ 

c.s. 
For the decorrelation frequency, curve (2a) is 

the fit for f
1 

cr f
4

·
0 

and curve (2b) is for f cr f 4 · 4 . 
I 
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to the Gaussian spectnnn and curve (lb) is for ~ a f 1 ·
2

, 
c.s. corre-

sponding to the Kolmogorov spectrtnn (£ < p (O) < L case). Note that c.s. 

curve (lb) fits better than 1(la). For the decorrelation frequency of 

fI' curve (2a) is the best fit with a slope +4 (fI a f
4

) for the 

Gaussian spectrum, and curve (2b) is with a slope +4.4 (fI~ f
4

' 4 ) for 

the Kolmogorov spectrum. As shown in Figure (7-7), both the Gaussian 

and the Kolmogorov spectra fit the data and the relation 2nfitc = 1 

is satisfied. 

From Figure (7-7), we have the decorrelation time at 

f 300 MHz (by extrapolation), 

~ (300 MHz) = 2.0 sec c.s. 

The dispersion measure, DM, for PSR 0833-45 is 

DM = 69.2 ± 0.1 pc 
-3 

cm 
' 

(7-40) 

(7-41) 

(Ables et al. 1970). If we set the distance of the pulsar from the 

earth to be 

21 
z = 500 pc = 1.5 x 10 cm, (7-42) 

(c.f. Komesaroff et al. 1972) then one has for the mean electron density 

along the propagation path, 

( N ) = 0.138 e cm -3 
( 7-43) 

Again using the relations between p , 8 and tD in Eqs. (7-11) c.s. c 

and (7-13c), one obtains from Eqs. (7-38) and (7-42) the corre lation 

scale 

p (300 MHz) c .s. 
9 1. 7 x 10 cm, (7-44) 
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which combining with the T in Eq. (7-40) gives the transverse velocity 
c .s. 

of the interstellar medium relative to the line between the pulsar and 

the earth, 

v = 30 km/sec, (7-45) 

which shows that the distance z in Eq. (7-42) is of the correct order. 

For the turbulent plasmas with a Gaussian power spectrum, the 

relation t (300 MHz) = 9.4 msec and the strong scintillation conditions 
c 

are plotted in Figure (7-8), similar to Figure (7-6a). From Figure 

(7-8), we find that 

and 

13 
L """10 cm 

-3 
6N """ 0.1 cm :::... 0.7 (N) 

e 

( 7-46a) 

(7-46b) 

For the Kolmogorov spectrrnn with i < p(O) < L, the relation 
c.s. 

t (JOO MHz) = 9 .4 msec and the strong scintillation condition, 'Tl > .f 111 , 
c 

are respectively plotted on curves (la) and (lb) in Figure (7-9) , similar 

to Figure (7-6b). From the plot in Figure (7-9), we find that if we set 

the outer scale of the turbulent plasmas to be 

then we have 

L 10 pc 
19 

3 x 10 cm, 

-3 
6N "'" 0.85 cm """ 6 (N ) . 

e 

(If we set L > 10 pc, then 6N > 6 ( N ). ) e 

Since the electron density N is always 
e 

positive, the 

between ~and (N ) ~ ~ 6) for the Kolmogorov spectrtnn in 
e «N ) e 

(7-47) 

(7-48) 

high ratio 

Eq. (7-48) 

is very unusual and we do not expect to have such a high ratio . The 
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Figure Captions 

Figure (7-8). As in Figure (7-6a) for the PSR 0833-45 pulsar. 

Figure (7-9). As in Figure (7-6b), conditions for the interstellar 

scintillation with the Kolmogorov refractive index spectrum 

(£, < p(O) 
c.s. < L case). Curve (la) is the pulse broadening relation 

. 5/11 and curve (lb) is the condition~> y for PSR 0833-45 . Curve (2) 

is the pulse broadening relation for NP 0532. 

Figure (7-10). As in Figure (7-6a) for the NP 0532 puisar. 
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ratio(~)""" 0.7 in Eq. (7-46b) for the Gaussian spectrum is also very 
e 

unusual since ~N in the Gaussian case measures only those inhomo-

geneities which are important for the scintillation. We note that we 

obtain such a high ratio of (~)because we have assumed the random 
e 

medium is unifonnly distributed between the pulsar and the observer . 

If we assume the random medium to be concentrated in a thin layer with 

thickness D, then we can use the thin-screen diffraction theory in 

Chapter 3 (or in Eq. (7-19)) to fit the data of PSR 0833-45 . We find that 

for the thickness of the layer 

D = 10 pc 

and the outer scale of the Kolmogorov spectrum 

we have 

and 

L = 10 pc, 

(N ) =-- 7 
e D 

cm 
- 3 

(7-49a) 

(7-49b) 

(7-50a) 

(7-50b) 

where the subscript D in Eqs. (7-50a,b) denotes the average of the 

quantity over the plasma layer o f thickness D. We note that if we re-

quire (6N)D ~ (Ne)D' L ~ 10 pc and D ~L, the values of D, L, (NJ)D and 

(Ne)D in Eqs. (7-49a ,b ) and (7-50a,b) are unique. Similarly for t he 

Gaussian spectrum with D """' 10 pc, we have 

(7- 51) 

Thus if we want to avoid a high ratio of Afl/(N ), there must 
e 

exis t a region of strong e l ectron density f luctuation with thickness 

-3 
D ~ 10 pc and mean electron density (Ne)D"""' 7 cm • 
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It is interesting to consider the mean shape of the pulse 

profile from the PSR 0833-45 pulsar. The mean pulse shape at the point 

just passing the plasma layer with thickness D is of the form shown in 

Figure (5-4b) or (5-5b) with a characteristic time 

ne 2 
c (layer) 

t = c 
(7-52) 

2c 

(c.f. Eq . (5-67 1
).) However as the pulse propagating a distance z 

in the (relatively) free space, a mean pulse shape of truncated ex-

ponential form for the Gaussian spectrum, (or nearly exponential form 

for the Kolmogorov spectrlllll) with a characteristic time 

(free space) 
t 

c 

ze 2 
c ---
2c 

(7-5 3) 

will develop. (See Eqs. (5-84) and (5-86).) The resulting pulse shape 

is approximately the convolution of the two mean pulse shape with 

h · t• ti·me·s t (layer) and t (free space). c aracteris ic It is noted that the 
c c 

observed pulse shape can in general determine the ratio of D and z. In 

z 
particular, in the case D >> 1, the pulse shape is of truncated ex-

ponential form, and in the case D = z (i.e. the wave is scattered all 

the way), the pulse shape is of the form given by Figure (5-4b) or (5-5b) 

ze 2 
with a rise time of the order of t 

c For the PSR 0833-45 
c 2C 

z """' 50 and 
(free space) 

dominates. Thus the pulse of pulsar, D t mean 
c 

PSR 0833-45 due to the scattering of the interstellar meditllll will have an 

exponential (or nearly exponential) form. The above analysis is con-

si s tent with the observation of Komesaroff et al. (1972). They found 

that an exponential f orm for the broadened pulse fits best the observed 

data . 
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The above method of analysis can be used to probe the density 

and the structure of the interstellar meditnn between the pulsars and 

the earth. For the interstellar space between CP 0328 and the earth, 

-3 
the mean electron density is about (N ) """ 0.0267 cm and there is 

e 

probably no region of strong electron density fluctuation. However , 

for the interstellar medium between PSR 0833-45 and the earth, there 

exis ts a region of strong e lectron density fluctuation with thickness 

-3 
D "'"' 10 pc and mean e lectron density (Ne)D """ 7 cm . 

(C) NP 0532 

The dispersion, the temporal pulse smearing and the angular 

broadening of the NP 0532 pulsar have been measured. (Rankin et al . 

1970 , Counselman & Rankin 1971, Rankin & Counselman 1973, Mutel et al . 

1974). The results are sununarized as follows. The dispersion measure 

is 

DM = 58.2 pc -3 
cm 

the characteristic time of pulse smearing at f 

t (300 MHz) = 1.8 x 10-4 
c 

300 MHz is 

sec, 

and the characteristic scattering angle at 300 MHz is 

(7-54a) 

(7-54b) 

e (300 MHz) 
c 

-8 
0.01 arc sec = 4.83 x 10 radians. 

From the measured t and e , and the relation t 
c c c 

obtain the distance between NP 0532 and the earth, 

21 z = 4.5 x 10 cm = 1500 pc. 

( 7-54c) 

z ec2 

2c 
, we 

(7-55 ) 
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It follows from the dispersion measure DM in Eq. (7-54a) that the mean 

electron density between the pulsar and the earth is 

(N ) =:.. 0.039 
e 

-3 
cm (7-56) 

Note that the values of z and (N ) given above come directly from the 
e 

observation without any further asstnnption. 

For the turbulent plasmas with a Gaussian spectrum, the relation 

-4 
t (300 MHz) = 1.8 x 10 sec and the strong scintillation conditions are 

c 

plotted in Figure (7-10), similar to Figures(7-6a) and (7-8), assuming 

the random medium is evenly distributed between the pulsar and the earth. 

We find that the coherent scale 

cm (7-57a) 

and the root mean square of electron density fluctuation 

-2 -3 
§:'l ""' 10 cm =>< 0. 25 (N ) . 

e 
(7-57b) 

(O) 
For the Kolmogorov spectrtnn with £ > pc.s. < L, the relation 

t (300 MHz) 
c 

-4 
1.8 x 10 sec is plotted in curve (2) of Figure (7-9). 

The conditions for the strong scintillation are satisfied and are not 

shown in the Figure. From Figure (7-9), we find, by setting the outer 

scale of the turbulent medium 

L = 1020 cm ~ 33 pc, 

the mean electron density 

-3 
!'IN = 0.09 cm """' 2.3 (N ) • e 

( 7-58a) 

(7-58b) 
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The relatively high value of 6N in Eq. (7-57b) or (7-58b) 

indicates that there exists a layer of relatively strong electron density 

20 l:J:il 
If we require L = 10 cm and ZN-; ""' 1 for the Kolmogorov 

e 
fluctuation. 

spectrum, then we obtain the thickness of the plasma layer 

D = 282 pc (""' 0.2z), 

the mean electron density inside the layer 

(N ) """ 0.212 
e D 

and the electron density fluctuation 

-3 
cm 

(l:J:il)D """ 0.212 
-3 

cm 

For the Gaussian spectrum with D 282 pc, we have 

(7-59a) 

(7-59b) 

(7-59c) 

(7-60) 

Using the same argument as for PSR 0833-45, we find that for 

the observed mean pulse shape of NP 0532, the ratio of the two character-

istic times due to respectively the propagation in the layer and the 

propagation in the (relatively) free space is 

t (layer)/t (free space) ,,,. D ""' 0. 2 
c c z 

(7-61) 

We note that t (free space) . . d th 1 h i is more impor tant an e pu se s ape s 
c 

close to the exponential form. But since t (layer)is not very small 
c 

(t (layer) =-- 0 _2 t (free 
c c 

space)) (layer) t , t can no completely be neg-
c 

lected and the c orrect pulse shape can be obtained by the convolution 

of these two effects. 
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Note that in the above discussions, we have, for simplicity, 

assumed a single layer of strong electron density fluc tuation between 

the pulsars and the earth. The existence of many regions of strong 

fluctuation is possible but it will complicate the analysis. 

In conclus i on, we summarize in Table (7-1) the properties of the 

interstellar media be twe en the earth and the three pulsars discussed 

above in this section assuming a Kolmogorov spectrum. Fr om Table ( 7- 1 ), 

- 3 
we believe that the mean e l ectron density ( ( N ) """' 0.026 7 cm ) be t ween 

e 

the CP 0328 pulsar and the earth is the ambient electron density in the 

interstellar medium . For PSR 0833-45, the mean electron density 

((N ) """' 0.138 cm-
3) is much higher than the ambient density, whi c h 

e 

indicates the existence o f a plasma layer of very high electron density 

(with thickness D ""' 10 pc and (Ne ) D """ 7 cm-
3

) i n the interstellar s pace 

between PSR 0833-45 and the earth. For NP 0532, ( N ) (""' 0.039 cm- 3) 
e 

is slightly higher than the ambient density and there also ex ists a 

pla sma layer of r e latively high electron density (D ~ 280 pc and 

- 3 (N) ""' 0 . 21 cm ). 
e D 
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Table (7-1) 

The Characteristics of the Interstellar Media between the 

Earth and three Pulsars 

Pulsar CP 0328 PSR 0833-45 NP 0532 Properties 

(pc 
-3 

DM cm ) 26. 7 69.2 58 .2 

z (pc) 1000 500 1500 

(N ) 
-3 

0.026 7 0.138 0.039 (cm ) 
e 

A layer of strong not needed strongly needed needed 
fluctuation 

D (thickness of layer) - 10 282 
(pc) 

(Ne)D 
-3 

7 0 .2 (cm ) -
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Appendix A 

Given a probability distribution P(A) which satisfies Eq. (5-29) 
co 

in the text, we wish to find a lower bound on (A) = ~ AP(A)dA. Define 

M 
n 

J AnP(A)dA, 

0 

so that our constraints are M 
0 

lower bound on M
1

• 

1 + 

(A-1) 

2 
m and we look for a 

z 

Now, M
0 

and M2 can always be built up for any P(A) out of in-

crements dm whose total must be 1 and which are added in such a way that 

dM
0

= dm and dM
2
= dm. To do this add a drn at x

1 
~ 1 and (1-u ) dm at x

2 
~ 1 

where x
2 

and x
1 

are otherwise arbitrary and where 

a= (A-2) 

The contribution of each increment to M1 is then 

where 
(A-3) 

Similarly, 

where 
(A-4) 
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It is readily demonstrated that Ok1/ex
1 
~ 0 and Ok

1
/ox2 ~ o, so that the 

minimum value of k
1 

(and hence M1) occurs when x1 = 0 and x 2 is as large 

2 
as possible. From Eq. (A-4) and the constraints M4 l+mz , we see that 

2 2 
the average value of x 2 over all the increments dm must be l+mz But 

2 2 
also, if x1=0, k1=1/x2 and k4=x2 =l/k1 . For this relationship between 

k
1 

and k
4 

it is readily seen that the minimtnn value of k1 averaged ove r 

the increments dm occurs when x2=~l+mz
2 

for each increment dm. To s ee 

this clearly , the reader should plot k
4 

vs. k
1 

and note that since the 

curve is concave and since the average k
4 

over the distribution of dm 

is fixed, the minimtnn of the mean of k1 occurs when all increments are 

Hence, the minimum value of M
1 

is given by 

1 
(A-5 ) 

'11-1-m 2 
z 
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Appendix B 

In this appendix, we employ a numerical method to solve the following 

equation, 

(B-1) 

For a Gaussian spectrum, we have from Eq. (5-52) 

2 2 
4 2 P qo 

B~rt' q
0 

[l - exp ( - -
4
-) J • (B-2) 

Let the transverse scale of fD(z, p,tik) be Pc · We expect p to be 
c 

qf the order of the characteristic scale of fl 1 (z , f2) given by Eq . (l~ -60) , 

' -1 
which can be shown to be smaller than L = q Thus for p << L, we 

0 c 

can expand D~(p ) in Eq. (B-2) in powers of Cf) 2 
and we have to firs t order 

D(p) 
Bk4 4 2 

~op 
2 

""' -- qo p -32n 

where 
Bk4 4 

~o 
qo 

32n 

We introduce the dimensionless variables 11 and s 

and 

2k
2 

z = ___ l_/_2 11 

p 

(tik~o) 

(~) 1 s 
~o 4 

(B- 3) 

(B-3 1
) 

(B-4) 

(B-5) 
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and have 

0 (B-6) 

Note that in Eq. (B-6), the dependences of f D on (tik) and z have 

been collapsed into one variable~· The quantity we need is fD(z,£=0,t,k). 

For a given ( t,k), 

(tik.13 ) 112
z 

we solve Eq. (B-6) and obtain r at z by setting 
D 

0 
~ = ~~---~.....,,.-. For another value (t,k)', the equation to 

2k.2 

exactly Eq. (B-6) and we get rD(z,R_=O,tik') by setting~= 

be solvv~s 
(fik I 13 ) Z 

0 

Therefore it is enough to solve Eq. (B-6) only once t o obtain the whole 

spectrum of fD(,z,p=O,t,k) at position z with all different tik by varying 

We employ the implicit schemes of numerical difference method to solve 

Eq. (B-6) (Richtmyer & Morton, 1967). The initial condition is that 

The boundary condition at s ~ ro is fD = O. In practice, we cannot apply 

this boundary condition because this would require an infitite number of 

mesh points. The boundary condition that we use is 

at s 
o2r 

5, -f = 0 
oi; 

(B-8) 

The sensitivity of the solution of Eq. (B-6) to this assumption was tested 

by extending the truncation point to F = 10 and by setting 

at s 
or 
_D_ 

5
' cs 0 1. (B-9) 
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No significant difference in the solutions was detected for all these 

variations. 

The boundary condition at s 0 is 

0 (B-10) 

as can be seen from Eq. (B-6) by requiring (~ 0~ fD) be finite at s 0. 

1 0 
In order to calculate the value of (~ os f D) at s = O, we note that 

2 

~ fD' at S = O, 
os 

(B - 11) 

Eq. (B-11) is obtained by assuming that l ~ f S cs D 

02 
and ~- r are finit e at 

oi:2 D _, 

s = o. 

The result is shown in Figure (5 -·4a) for i; = 0 . The characteristic 

wavenumber k is obtained by setting~= 1 in Eq. (B-4). We get 
c 

k 
c 

1 2k
2 2 

13
0 

(-z-) 

The characteristic correlation frequency f c 

From Eq . (B-1), it can be shown that 

(.l) k c 
c c 

= 21( = 21( 

Next step is to calculate PD(z,t) as defined in Eq. (5 -58). 

(B-12) 

(B-13) 
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Let 
"{( 

[t ..£.1 / t t - - v ~ c 
g 

(B-14) 

13 z 
2 

1 0 
where t :;;: - -4 c (j) 

c 4ck 
(B-15) 

Then we have 

x Tl dTJ (B - 16) 

The numerical result is shown in Figure (5 - 4b). 

For Kolmogorov spectrum with L ";:;..> p >> £, one has from Eq. (1-28) 

D j3 (p) Ar/0 ) -Ap(p ) 

Bk 4 u f(2-g_) qo 2 a.-2 !3 Pv 
2Ca -2)r(g_) 

p 
4rr (o:- 2) 

0 

2 

(B-17) 

where 
11 

a -2 5 a = ' v = - and 
3 3 

11 
Bk4 3 rel) 

13 0 

qo 6 
= 

4rr x(~) x 2C5 / 3)rc11) 
3 6 

(B-18) 

The numerical results are shown in Figure (5-5a,b). The characteristic 

time scale t and the characteristic wavenumber k are given by 
c c 

t 
c 

1 

k c 
c 

1.2 
k 

-4.4 2 . 2 
(!.) 

2 
(B-19) 
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It can be shown from Eqs. (B-15) and (B-16) that for both 

Gaussian and Kolmogorov spectra, 

t 
c 

2 ze /2c 
c 

~-W) 

where e is given by Eq. (5-16). Eq. (B-20) can be inte rpreted as 
c 

follows . For a ray travelling a distance z and having a scattered-

angle e , the additional ray path relative to the unscattered ray i s 
c 

2 
z O /2, and therefore the delayed tline for such a ray is t 

c c 
2 ze / 2c . 

c 
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Appendix C 

Defi ne the operator L as 

(C-1 ) 

where f(£ ,£) is given by Eq . (5 - 97) . Then Eq. (5-96) can be written as 

Le t 

be the 

where 

and 

-21'1 - 2T]fl-H(£:) ] - 2T]ll -H(£) ] 

f (A) ( 11 G ~) =:: e + e - e 4 ' ....,, 

asymptotic solution of r4 at large 1) in Eq. (5-105 I). 

We 

E 
a 

Eb 

E 
c 

obtain inunediately from Eqs. (C-1) and (C - 3) 

,... 
,.. ,.. - 2T]fl-H(~) 1 

- r2H(£) H(£f-£) H (~-~)l e 

,... 
,... ,.. A -2T][l-H(.(3)] 

- \2H(~) - H(~_@) -H(£-~) J e 

A A A A 

r2H(~) + 2H(~) - H(~£) - H(~-£)1 
- 2T] 

e . 

(C-2) 

(C-3) 

(C-4) 

(C-5) 

(C-6a) 

(C-6 b) 

(C- 6c) 

The term E is of order o f e- 2Tl and can be neglected f or l arge T] . Con ­
e 

s ide r E in Eq . (C-6a) . 
a 

- 21'1 
We see tha t Ea( 'T) , ~,~) is o f order of e , 
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,... 

which is small for large ~' except for 1£\<< 1, since [ l -H(£)] in the 

exponential of Eq. (C-6a) is of order 1 except nea~ 1£\ = o.. For 

1£1<< 1 , it is easy to demonstrate that IEa(T\,~,£) \ has its maximum 

value at£= 0. 1hus for 1£1<< 1, 

,... 

,... -211[1-H(a )] -1 
2[l-H(£) ]e -· ~ s:: (~) 

11 
(C- 7) 

-1 
Similarly \Eb\ can be shown to be of the order of, or less than (e

11 
). 

Therefore, 

(C-8) 

and for 11 :>::> 1, r4 (A) satisfies the differential equation for r4 in 

1 
Eq. (C-2) or (5-96) to terms of order (1i). 

Next we estimate the error of the asymptotic solution for r4 . 

Define the difference function 

6(11,~,~) = r
4 

- r4 (A) 

We then have from Eqs. (C-2) and (C-4), 

The boundary condition for 6 ( 11,~,~) is 

at 1£1 = co and/or \~ \ = co, 6 ( 1\,£,£) 

i h b d f' = f' (A) s nee at t e oun ary 4 4 
· 

0 

1 
From Eq. (C-8), we c an write to order (1i), 

(C-9) 

(C-10) 

(C-11) 
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+(higher order terms). (C-12) 

0 
From the properties of the operator (

0
T\ + L) discussed in 

Chapter 5, Section V, we find that r
4 

does not g row as T\ increases , and 

we expect that r
4 

will not oscillate as a function of 11- Thus for r
4 

(A)in 

Eq. (C-3), the difference function o(T\,~,£)(= r
4
-r

4 
(A)) will not g row 

and will not oscillate as 11 increases. Therefore we can estimate the 

difference function by expanding o( ],£, ~) 
1 

as 

co 
I: 

n =O 'Tln 
, for T\ » 1. (C-13) 

Substituting Eq. (C-12) and Eq. (C-13) into Eq. (C-10), we 

have 

and etc .. 

L o (a ,A) = 0 
0 "" J::'., 

The boundary condition for o (a, A) are n "' ,c, 

co, and Io r I £ \ O, for n 

With the boundary condition in Eq. (C-15), we find that 

o (a ,A) = 0 
0 "' J::'., 

(C-14a) 

(C-14b) 

0,1,2,···. 

(C-15) 

(C-16) 

i s a solution of Eq. (C-14a). From Eq. (C-14b), we see that o1 (£, ~) is 

of order of unity re lative to 11 since o 1 (£,~) is independent of 11· Thus 

1rn writing o(T\, CX,~) as given by Eq. (C-13), we have neglected the 
e rror which decays "'"' exponentially as 11 increases. 
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to the order of <-:n), 
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For large ~' the error 6 (~,~,£) is small and can be neglected . 

(C - 17) 
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Appendix D 

We write Eq. (5-144) for a Gaussian spectrum as 

0 i o2 1 0 - t: 2 
o1'1 r c <11, s) <-2 +~cs) r -e .. r (D-1) y c c cs 

The initial conditions at 1'] = 0 are 

re (1']=0, s ) = 1 (D-2) 

The boundary condition at E: = 00 is 

r c (1'1, c: co) 1 (D-3) 

The boundary condition at s 0 is 

or 
c 

\s=O ~ = 0 (D-4) 

as can be seen from Eq. (D-1) by requiring 
1 0 
(~ oi; re) to be finite at 

s = o. In order to calculate the value of 
1 0 

f. = 0 ' (~ or; re) at we note 

that 

1 0 
Toi; re 

1 0 
b y a ssuming that f. oi; re and 

, at E: = 0 

are finite near ~ = O. 

We employ the implici t schemes of numerical differenc e method 

to solve Eq . (D-1) (Richtmyer & Morton, 1967). Again the boundary 

cond ition at f. = 00 in Eq. (D-3) is truncated (c.f. Appendix B). The 
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boundary condition that we use for large s is 

at s 5, r = 1 
c 

(D-6) 

The numerical results of f are then applied to calculate 
c 

the functions PX and PI in Eqs. (5-145a), (5-145b), and (5-170). The 

numerical values of PX and PI are shown in Figures (5-8) and (5- 9) . 
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Appendix E 

The power spectrum Ck(O,O,L 7 m) in Eq. ( 6-36) can b e obtained for 

various values of the parameters v
2

, o
2 

and o
1 

by direct integration. 

However, direct integration is very time-consuming. Instead we will use 

an approximate method, in which the power spectra for o
1

=o
2

=0 already 

computed by Young (1971) are employed to calculate the new Ck (O , O,L, m). 

First we note that if we put o1=o2=o=~ v2 in Eq. (6- 36) for a 

constant ~' we have at (J.)=0, 

Ck(O,O,L,(J.)=0) 

(0) 
Ck (O, 0, L , (J.)=0) 

e I (-1-) 
0 4~2 

(E -1 ) 

where I
0 

is t he modified Bessel function of the first kind and Ck (O) i s 

the power spectrum in Eq. (6-37) without velocity fluctuation (o
1

=o
2
=0). 

0 - (0) 
For B = 5 .55 and Vw = 200,300 or 400 km/sec, Ck (O,O , L ,m) is shown 

in Figure (6-4) . 

0 2 
Next if we assume that o

1 
=0 and :::---

V z 
then the Ck in Eq . (6-36) can be written as 

CIO 

constant f or all z , 

f dw ' Gc ( m, m') Ck(O)(O _,O,L, m') (E -2 ) 

_co 

where the weighting function G (w, w') is g ive n by 
c 

G (m, m') 
c 

1 

'12rr 
1 

m' ~ 
(E - 3 ) 
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Thus the desired power spectrum Ck(O,O,L,m) is easily obtained by 

averaging the old one, Ck (O)' with the weighting function G (m, m'). 
c 

Unfortunately the Ck(O,O,L, m) in Eq. (,E-2) is divergent at m = O. 

Physically the divergence at m = 0 is caused by the fact that there exist 

some plasmas which are stationary (V2=v2+oV2=0) since the velocity prob-

ability distribution function is assumed Gaussian. Note that the divergence 

at m = 0 exists for both the thin screen model and the three-dimensional 

spherical model. For cr
1
# 0 and cr 2~ O, there is no divergence 

in Ck(O , O,L, m) at <D=O . In particular, if we put cr1=cr2=~ v 2, Ck(O,O,L,<D=O) 

is given by Eq. (E-1). 

Our approximation scheme is to put cr 1=cr2=cr=~ in calculating 

2 2 2 2 
Ck(<D=O) and put q 1 cr1 q 2 cr 2 in Eq. (6-36) for Ck(m!O), which is 

equivalent to put cr1= 0 and cr2= ..JZcr in calculating Ck(m) for m!O. Thus 

the power spectrum in Eq. (6-36) with cr1 =cr2=cr=~ v 2 can be calculated 

from the old spectrum Ck (O) using Eqs. (E-1) and (E-2). For the 3c 279 

data (Cohen & Gundermann, 1969) shown in Figure (6-4), we calculate the 

power spectrum Ck(m) from the Ck(O) also shown in the figure for Vw= 200 

and 300 km/sec and for various values of ~- For V = 200 km/sec, the 
w 

best fit is at ~ = 1.13 (or cr10=cr20= 226 km/sec and for Vw= 300 km/sec, 

~ = 0 . 7 (or a
10

=cr20= 210 km/ sec). The r esults a re shown in Fi gure (6-5 ). 
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