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ABSTRACT

Two new phenomena have been observed in Mossbauer spectra:
a temperature-dependent shift of the center of gravity of the
spectrum, and an asymmetric broadening of the spectrum peaks. Both
phenomena were observed in thulium salts. 1In the temperature range
1°k <T S_SOK the observed shift has an approximate inverse tempera-
ture dependence. We explain this on the basis of a Van Vleck type of
interaction between the magnetic moment of two nearly degenerate
electronic levels and the magnetic moment of the nucleus. From the
size of the shift we are able to deduce an "effective magnetic field"
H= (6.0 £ 0.1) x 106 Gauss, which is proportional to (r-3)M(G|3ﬁE)

where (r-B) is an effective magnetic radial integral for the 4f

M
electrons, and |G) and |E) are the lowest 4f electronic states in

Tm 013‘6H20. From the temperature dependence of the shift we have
derived a preliminary value of 1 cm'1 for the splitting of these two
states. The observed asymmetric line broadening is independent of
temperature in the range 1°x < T S_EOK, but is dependent on the
concentration of thulium ions in the crystal. We explain this
broadening on the basis of spin-spin interactions between thulium ions.
From the size and concentration dependence of the broadening we are
able to deduce a spin-spin relaxation time for Tm 013'6H20 of the

order of 10-11 sec.
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INTRODUCTION

Two new phenomena have been observed in MOssbauer spectra;

a new, temperature-dependent shift of the center of gravity of the
spectra, and an asymmetry of the line shape due to spin-spin inter-
actions. Both of these phenomena have been observed in salts of
thulium, but are expected to occur in other salts as well.

The shift of the center of gravity reported in this thesis
occurs at temperatures in the liquid helium range and below. We ex-
plain this shift on the basis of an interaction of the nuclear dipole
moment between two nearly degenerate 4f electronic levels, i.e., a
Vaﬁ Vlieck type of interaction between the nuclear and electronic
moments. Several other types of shifts of the center of gravity of
the spectrum have been reported in the literature: 1. the isomer
shift1>, 2. the second order Doppler shiftz), and 3. shifts due to a
reduction of the areas of some of the spectrum lines caused by effects
such as an anisotropic Debye-Waller factor (the Karyagin effect)a).
The shift which we observe does not have the temperature dependence
to be expected from 1. and 2., and the areas of our observed spectrum
lines are not reduced, eliminating 3. as a possible cause of the
shift we observe.

The second phenomenonreported in this thesis is an asymmetry
of the line widths, which at low temperatures is independent of
temperature, but varies as a function of the concentration of thulium
ions in the.crystal. The importance of tﬁe phenomenon is that

information can now be extracted not only from the positions of the



gamma lines, determined by the hyperfine interactions, but also from
the line shapes, affected by interactions of the central ion with its
surroundings (e.g., spin-spin and spin-lattice interactions). The
scope of MOssbauer spectroscopy is thereby advanced to cover an area of
study similar to that covéred by NMR and EPR spectroscopy, where
information is deduced both from the shapes and the positions of
the lines.

We have studied spectra of three salts which show one or both
of these phenomena: Tm Cl

* 6H,0, Tm, (SO 8H.0, and Tm O I.

W3 8,

Our main emphasis is on the chloride results since information is not

3

presently available on the electronic level structures of the
.sulphate and the oxy-iodide but is available indirectly on the

chloride.



THEORY

The Shift of the Center of Gravity of Mdssbauer Spectraa)

The main requirement for a temperature dependent shift such as
we observed is that the electronic levels have a state |E) located at
k6, about 1 crn"1 or less, above the ground electronic state IG). In
rare earth salts for example, this condition can be satisfied if
the lowest levels of the 4f electrons are nearly degenerate, or by
applying a magnetic field if the lowest level is degenerate. If we
consider the hyperfine interactions of the nugleus with the electrons
we now have two parts to take into account. First there is the usual
part of the interaction which involves matrix elements like
{e, ethflG,e'), where e,e' refer to the nuclear substates. Here, e
refers to the nuclear excited state and g will refer to the nuclear
ground state. These matrix elements are diagonal elements with respect
to the electronic states, though they may also contain cross terms,
like (6, e]thlG',e'), between degenerate electronic states. This
part of the hyperfine interaction produces the usually-observed hyper-
fine spectrum (e.g., the quadrupole splitting) with no shift in the
center of gravity of the spectrum. This will be referred to as the
"diagonal" part of the interaction. The second part (or "off-
diagonal' part) of the hyperfine interaction involves off-diagonal
terms like (G, eIthlE, er> between non-degenerate electronic states.
In our case, these are magnetic interactions. As is well known, this
type of term causes the energy levels to repel each other so that the

states |G, e) are shifted down in energy while the states |E, e) are



Figure 1

Hyperfine Energy Levels and Spectrum Lines in Tm 013'6H20

iA. The two lowest electronic levels lE) and lG) are shown withl
and without hyperfine interactions. For the purposes of this
drawing it was assumed that the field gradients of the two CEF
levels were identical, as this is nearly true for Tm Cl3 . 6H20.
1B._ The MOssbauer spectrum which is associated with Figure 1A

is shown. The notation a —c refefs to gamma transitions between
levels marked a and c¢ in Figure 1A. The lines are also labeled

1 - 4 for comparison with the transitions in Figure 2. The

small line at E0 is the center of gravity of lines 2 and 3.
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shifted up (see Figure 1). Now, of course this consideration applies
to both the nuclear ground state and the nuclear excited state, though
the shifts will generally be different for the nuclear ground state
than for the nuclear exciﬁed state. It is just this difference which
will be observed in a gamma-ray spectrum.

Let us say that the shift of the center of the levels
associated with the nuclear ground states and electronic ground state
|G,g) is -E, (for thulium, which is illustrated in Figure 1A, the
nuclear ground state is ﬁnsplit'so that - Eg is just the shift
of this level). Similarly, the shift of the center of the levels
associated with the nuclear excited states and the glectronic ground
state, |G,e), is -E (for thulium the nuclear excited state is split
into two levels, the center of which is halfway in between, as
illustrated in Figuré 1A). The shift of the center of the spectrum

lines associated with the ground electronic level is:
E.=E_-E . (L

Similarly, the shift of the center of the spectrum lines associated

with‘the excited electronic level is - EO (see Figures 1B and 2).

At high temperatures both electronic levels are equally populated so

that both sets of spectrum lines are equally weighted, and no shif£

is observed. At a temperature T comparable to 9, the inteﬁsity of

the spectrum lines associated with the excited electronic state is
8/T

decreased by a factor e . It is then easy to show that the center

of gravity of the spectrum is shifted by



Figure 2

Transitions in the Presence of Axially Symmetric Hyperfine Interactions.

Shown are the principle gamma transitions. As mentioned in the text,

there are four other possible gamma transitions, but these are of
negligible intensity. Also shown are the electronic relaxation
transitions. Any other relaxation transition, which would involve

simultaneous nuclear and electronic spin flips are "forbidden".

~
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E, = E, Tanh 02T , (2)

It should be emphasized here that the net shift of all the energy
levels is zero. It is only the center of gravity of the spectrum
that is changing due to temperature dependent Boltzmann factors.

One added result of the "off-diagonal' hyperfine interaction
is that it mixes the electronic wave functions so that nuclear transi-
tions accompanied by simultaneous electronic transitions are no
longer forbidden. The spectrum lines due to these transitions will be
decreased in iﬁtensity, and are located at energies of * k@ (+ hyperfine
energies) away from the center of the spectrum. Also,f may vary, due
to distortions, from ion to ion in the crystal, causing the lines to be
broadened. Hence, it may be difficult to observe these lines except
in the most favorable cases (for example, where 6 is comparable to the
hyperfine interactions - about 0.2 cm-l or less in rare earths).

These lines have not been observed in thulium,

The 4f Electronic States of Thulium

The trivalent ions of the Lanthanide series of rare earths
consist of a xenon core plus a partially filled 4f shell. The 4f shell
lies inside the 5s and 5p closed shells. Consequently the 4f electrons
are shielded somewhat from interactions with the surrounding ions,
This shielding prevents the 4f electrons from playing an appreciable
part in chemical interactions, consequently, all the rare earths have
quite similar chemical properties. The shielding also has the rather
important physical consequence that the interaction of the 4f shell with

the Crystalline Electrical Field (CEF) is reduced. Unlike the irom
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transition elements, the spin-orbit interaction 1is stronger than the
CEF interaction in the rare-earths. The spin-orbit interaction splits
the 4f levels into multiplets for which the total angular momentum,
J, is a "good" quantum number. The multiplets (called "J multiplets'")
are seéarated by several thousand cmﬂl. These multiplets are split
by the CEF into levels which span several hundred cm_l, We will
be concerned only with thé lowest few of these CEF leyels.

The lowest J-multiplet of Tm3+, which is designated 3H,6, with
] =.6, has 13 non-degenerate levels in Tm Cl, - 6H_ 0 and TmZ(SOA)B-SHQO

3 2

since the symmetry is only C, (a two-fold axis of rotationmn).

Unfortunately, little is known about these levels from direct

2

observation. Apparently the lowest two levels are nearly degenerate in

5)

both compounds, as Hﬁfner has‘studied an optical Zeeman splitting
of these levels and has obtained an upper limit for the separation
of the levels of about 1 cm_l.

in spite of the lack of any other direct information on
Thulium, we do have some indirect information. The crystal structure
of both Gd Cl3 ¢ 6H20 e and Eu Cl3 > 6H20 4 have been worked out.
Both of these are typical of an isostructural series which includes
all the rare earths from Pr3+ to Lu3+. The spectra of a number of the
rare earth hydrated chlorides has been measured and CEF parameters
havebbeen determined from these spectra. A large number of optical
transitions in Er Cl3 J 6H20 have been observed, and from the positions

of these lines Harrops) has calculated the CEF interaction produced by

the surrounding lattice, TIf it is assumed that the same fields interact
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with the Thulium ion, then we can get a fair description of the CEF
levels for Tm Cl3 d 6H20. Harrop has extended this idea to all the
rare earths from Gadolinium to Ytterbium. He obtains reasonable agree-
ment with the observed spectra of the Kramer's ions (odd number of
electrons - Er, Dy, Yb, Gd) and fair agreement for non-Kramer's ions
(Tb, Ho, Tm).

The level scheme calculated for Tm 013 . 6H20 is shown in
Figure 3. The principle features of the lgvels are: there are two
sets of nearly degenerate levels, one of which contains the ground
state; furthermore, the pair of lowest levels lies about 240 cm_1
below the next lowest level so that at low temperatures only the
~lowest two levels need be considered. The calculated splitting of
these two levels is about 0.6 cm-l. Using Harrop's crystal field
parameters we have calculated the wavefunctions of these two levels
(see Appendix I). Using these wavefunctions we have calculated matrix
elements for the hyperfine interactions with the Tml69 nucleus. We
will‘denote the lowest CEF state by [G) and the first excited state
by lE). Since both of these states are non-degenerate and there is

presumably, no magnetic field from other ions, symmetry under time-

"reversal implies that:
{c|T)e) = 0 = (&|TE) . 3)

-l
There is, however, an off-diagonal matrix element of J which does

produce a magnetic hyperfine interaction:

l(GlZﬂE)[Z = 34.8. %)
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Figure 3

Calculated Crystal Field Levels of Tm Cl, + 6H,0, 3H

3 2 6

These levels were calculated using CEF parameters from Harrops)

listed in Table II.
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The matrix elements relevant to the electric field gradient tensor
are of the form 1/2 (G[JiJj + JjJi|G) where i,j = x,y,2z (see
Appendix II). In the principal axes coordinate system of this tensor

we calculate that:

J =23 3 =46 J°=35.1 (5)

o
[}
N
o
o
1]
~
™
[
Il

35.2 (6)

for the excited state. We note in particular that the field gradients
are nearly identical for the two states. This seems to be a
situation peculiar to the ground state in thulium chloride, for in
general, in both Kramer's and non-Kramer's salts nearly degenerate
levels will not necessarily have similar field gradient tensors. For
example, the field gradients of the other nearly degenerate pair of
levels in thulium chloride are not nearly so similar.

We should note, however, that the symmetry of the crystal
(a 2-fold axis of rotation) requires only that one of the principal
axes of each of these tensors (the z axis) coincide ﬁith the symmetry
axis. As it happens, the x axes of the tensors of the two CEF states and
the direction of the vector (GIE1E) all coincide to within about 1°
of arc.

If J = Jz2 we would have axial symmetry around the axis of the
electric field gradient and the magnetic dipole field., Since this is

nearly the case, we will assume axial symmetry of the hyperfine inter-
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actions in some of the following discussion in order to get a good
qualitative understanding of what is happening. Most of our calcula-
tions, however, did not use this assumption.

The surrounding ions in the lattice also contribute to the
field gradient tensor, but we have calculated that the main effect is
to make the field gradient more nearly axially symmetric, reduce
the strength of the field gradient somewhat, and chaﬁge the direction
of the x and y axes slightly.

In our case, the magnetic interaction between nuclear and
electronic moments is much stronger than the "off-diagonal' quadrupole
interaction. The electronic moment is similar to the Van Vleck magnetic
moment, since it comes from a term of the form.(G]ﬁﬂE). The hyperfine

interaction (see Appendix III) is then given b&

Hy = & Bt(T-D) )

where M = 2B (r_3)M(Jl|N||J), g is the nuclear g factor, 8, are the

BN
Bohr and nuclear magnetons, respectively. We may use perturbation
theory to calculate the shifts of the levels under the assumption that
the hyperfine interactions are small, compared to k6. For the
detailed derivation, see Appendix IV, The net shift of the spectrum

lines is given by

2 2 2
By | (o] I
g

ko

2 2 8
E, = 1/3 L4 41y = Bg I (I, + 1ﬂ Tanh =——

g '8 '8 i
(8)

If we write the "effective field" as

H = M{(c|7|E) (9
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and the nuclear moment as

2 2. 2
B =g BN (I + 1) (10)
we may rewrite (8) as
E =1/3 .@E.( 2 - 2) Tanh 9..... (11)
c ko ug He Sl T

In the region 6 < 2T, Tanh (0/2T) — 6/2T, and (9) becomes

2 2 2 1 :
E_= (0 GRS S B (12)

which is independent of 6.

Shape of the Spectrum Lines -- Relaxation Effects

‘In this section we will be concerned with relaxation between
the electronic levels and its effect on the shape of M8ssbauer
spectrum lines., Figure 4A shows the position of the spectrum lines
that would result from the situation illustrated in Figure 1. If the
relaxation between the electronic levels were very slow, the spectrum
of Figure 4B would result. On the other hand if the relaxzation
between the two electronic levels were very fast, the magnetic field
would in effect average out, leaving only the average quadrupole
interaction, so that the spectrum of Figure 4C would result. A more
interesting situation occurs when the relaxation rate is intermediate
between these two extremes. It is this case which we now wish to
consider in more detail.

For the purpose of this section we will assume, as mentioned

previously, that the electric field gradient is axially symmetric and



= P =

Figure &4

Mossbauer Spectra for Slow and Fast Electronic Relaxation

These graphs show how the Mdssbauer spectra would appear for
Tm C13 . 6H20 at a temperature T = € in the limits where the electronic

relaxation is either infinitely slow or infinitely fast.
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Figure 4

A. Spectrum Line Positions
B. Spectrum with Slow Relaxation
C. Spectrum with Fast Relaxation
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that the vector (GljﬁE) lies along this axis. As a result of this
assumption the nuclear states are eigenfunctions of IX if x is the
symmetry axis. This assumption is convenient for two reasons:

1., the wavefunctions and energies are easy to compute, 2. more
important, relaxation between the electronic states does not cause
relaxation between nuclear states (i.e., nuclear spin flips).

Figure 2 shows the possible transitions between the various
energy levels; Figure 4A shows the relaxation transitions between the
spectrum lines. As can be seen, we are only concerned with pairs of
spectrum lines. Andersong) has worked out a method of calculating the
effect of relaxation on spectrum line shapes which he calls the random
frequency-modulation model. We have used his model to calculate the
shape of our spectra. (See Appendix V for the details of the
derivation.) We hypothesize two Mgssbauer‘spectrum lines located at
+ ®gs each with a width (FWHM) in the absénce of relaxation of 2T.
(Note, this is not the usual definition). One_line will be the
spectrum line emitted (or absorbed) when the electrons are in the
ground state |G) and the other line when in the excited state |E). We
define wadt as the probability that the electrons are in the excited
state at time t + dt, given that they were in the ground state at

time t. We similarly define w, for the reverse transition. We will

b

not require that W= From these we define the auxiliary quantities

g
1

@na +(Db)/2

W - (13)

G).b+(1)a
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In the limit W, >>(DO (fast, but not infinitely fast,
relaxation) we have a single line which is nearly Lorentzian with its

center at - wOB and with a width (FWHM) of 21" + (1 - Bz)mozﬁme.

Due to the requirement of detailed balancing we must have

o fo, = o i (14)

where kO is the difference in energy of the ground and excited

electronic states. Hence we have that
® = Tann (6/2T) (15)

independent of the details of the relaxation process. Consequently,

we see that the center is at - ®q Tanh (6/2T) in agreement with the

previous sectibn, and a width of 2T" + Qbozﬁbe) [1 - (Tanh %T) ]

As can be seen from the above, the details of the relaxation
are embodied in w_ . If the relaxation is due to a spin lattice "direct"
process where the transition |6} —> |E) is caused by the absorption
of a phonon of energy k8, then ma is proportional to the number of
phonons of energy k6. Hence the temperature dependence can be

immediately written down with the help of the Planck distribution

_ _OsL
a e9/‘1‘ o1
0/T (16)

Bt

ee/T -1

b

where wSL is a constant. Hence

il
6
w, = 1/2 ﬁba + mb) = Wgr (2 Tanh Eﬁ) (17)
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from which we get the width

“o0
WSL =240 + uT; (Tanh E) |: (Tanh ):l (18)

In particular, we notice that the second term is proportional to 1/T
at temperatures T >> 6, has a maximum at Tanh (8/2T) = (1/3)1/2
T = 0.76 6, then decreases to zero at T = 0 (where only IG) is
populated),

For the case of spin - spin relaxation we will assume a model
where the spiné of the ions are flipped in pairs, that is, we have
transitions of the form lEi)IGj) e»]Gi[Ej) where IEi> means that the
ion at site i is in the excited state, etc., If we assume that the

probability for the.ith ion to flip is the sum of the probabilities

for pair flips, summed over j, we find that the probability is given by

® = :g: (»(E;j) p(E) (19)

for ]Gi) —>|Ei) where w(flj) is the probability for the transition
|Gi)\Ej) - lEi)lGj), given that the ions at sites i and j are in the
states IGi) and lEj), respectively. p(Ej) is the probability that the
ion at site j is in the state [Ej). For a dilute crystal p will be
given by
o~6/T

p(Ej) = £, '1—:::575 (20)

where fj is the probability that the ith site is occupied by an ion of
169

the right type (in our case, Tm. ~). For random population of the

lattice sites, fj = f, the fractional concentration. Consequently,
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(19) becomes

f wSS -0/T
ma e 2D
1+ e-e/T
where
1
®gg = Z @(ry ). (22)
]
Similarly
fw
SS
W = =577 (23)
LY oofT
then
w, = 1/2(u>a +wb) = 1/2 Wga f 24)
from which we get the width
woz g 2
WSS=2F+2f(DSS l: -(Tanhz—T-):I. (25)

For T >> 1/2 9 the width is independent of temperature; as T — 0,
wSS — 2I'. We see also that the second term varies inversely as the con-
centration,

Finélly, we might consider the effect that the neighboring
atoms may have directly on the hyperfine structure. That is, the
magnetic moments on the neighboring ions ﬁa& in effect change wo.

If this were the case, then roughly both w_, and ® would be pro-

0
portional to the concentration so that the second term in Eq. (25)
would vary directly, instead of inversely, as the concentration. We

have made rough calculations which indicate that this type of

broadening becomes appreciable only near 100% Tm in TmClB-GHZO, and is
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still small compared to I'. It does seem important for the sulphate.

In order to estimate Wggs We will use a simple model. We

t ake two ions which are separated by a distance riz,and which have

two states lE) and lG). The states have the matrix elements:

{c|T|e) = 0 (E|T|E) = 0
: . (26)
(c|T|E) # 0
The states of the combined system can be written
|A) = |E1,G2) |B) = [Gl,Ez)
(27)
jc) = \Gl,cz) |D) = ]El,EZ)

States A and B are degenerate while C and D lie above and below with
a total separation of 2k6. If we now let the ions interact through the

dipole-dipole interaction we have only two non-zero matrix elements:

%

aa = (AlHz,|B)
(28)

]

Aow!

ha = O[Hgg [Tk .

Here we are interested only in the first of these matrix elements,

since these are the only pair transitions which conserve energy. The

eigenstates now become:

|1) = 14/2 (JA) + |B)) E, =%o

1 dd

(29)

|2) = 14/Z (|A) - |B))  E, =-%o

dd



- 24 -

If we now require that at t = 0 our system be in state |A), we have the
following time-dependent wavefunction

-im

in, Lt £
¥(e) = /7 (1) e M 4|2y e 9

(30)

[A) cos w. .t + |B) sin w t.

dd dd

We may interpret this as a relaxation between A and B with a

relaxaglon time 1ﬁndd.

10)

The dipole-dipole interaction may be written as 2

Haa 5

5 A 3 G F T T )
=uoBz (J”A||J>z[132_3 i 12]. GL)
12 12

Since we are interested only in an order of magnitude estimate we will

drop the second term. We then get

2
Lo, = uOBZ (3| iA||J)2 iﬂ%_E)_ - (32)

b))
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EXPERIMENTAL EQUIPMENT

The 8.4 keV gamma transition in Tm 169 was used for all the
MOssbauer experiments., Er 169 decays with a half life of about nine
days by beta decay to the first excited level of Tm 169, which is 3/2+.
The ground state of Tm 169, which is the only stable thulium isotope,
is 1/2+.

Our absorbers were made of Tm C13 e 6H20, Tm2(504)3 . 8H20,
and Tm 0 I as well as thulium chloride and sulphate diluted with
the corresponding salt of yttrium. Yttrium was used because Y3+ is
diamagnetic: it has only closed shells of electrons. Furthermore,
it is chemically very similar to Thulium: the difference in ionic
radius between Tm3+ and Y3+ is about 2%. To prepare.the chloride
absorbers, measured amounts of Tm203 and Y203 were dissolved in
warm 3N HCl. The acid solution was then placed in a desiccator
containing P205 as a desiccant. The solution was dried overnight with
a forepump keeping the desiccator evacuated. In this period small
white crystals were formed, These crystals were observed to be
slightly deliquescent; that is, on humid days, when the relative
humidity was above 60% or so, the crystals condensed enough water
vapor in which to dissolve themselves. When the humidity dropped to
40% or so, the crystals dried out again. It was also observed that
crystals left in the desiccator for several days lost some of their
crystal water: when such crystals were allowed to stand in the air

(relative humidity about 40%) they would gain weight for about half an

hour, after which the weight remained constant. Before they regained
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their crystal water, such crystals also showed broadened Mossbauer
spectra lines with a smaller quadrupole splitting.

The sulphate absorbers were prepafed by dissolving mixtures
of commercially available yttrium and thulium sulphates in water and
then drying the resulting solution. The Tm 0 I was prepared according

to procedures described by Aspreyloaz

The chloride and sulphate
absorbers themselves were made by mixing about 100 mg of the finely

ground powder with an equivalent weight of wax and pressing the
mixture into a one-inch diameter disc between mylar films. The oxy-
iodide absorbers were made by dispersing the powdered TmOI with about
200 mg of diamond dust. This mixture was then clamped between two
thin beryllium discs.

The source, velocity transducer, and glectroqics are

11)

essentially the same as those described elsewhere For most of the
éxperiments a parabolic velocity reference signal (a twice-integrated
square wave) was used. The error signal, which is the difference
between the actual velocity of the source and the reference signal is
shown in Figure 5. for the chloride experiments.

The cryostat design, the essential parts of which are shown
in Figure 6, was used primarily because of the accuracy with which the
temperature of the absorber could be determined and controlled.
Since the absorber was immersed directly in the liquid Helium, the
temperature of the absorber could easily be determined by measuring
the vapor pressure of the Helium. The temperature could be reduced

to 1.0°K by pumping on the helium bath. One added convenience of the

cryostat design was that the absorber holder could be easily removed
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Figure 5

Velocity Reference Signal and Error Signal

This Figure shows the time dependence of these signals, which charac-
terize the operation of the velocity transducer. These were the -
signals recorded for the chloride experiments. The signals for the
other experiments were similar. The zero point of the velocity

scale of the error signal may not be exactly correct.
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Figure 6

Crvostat Schematic

This figure illustrates schematically the construction of the cryostat
used for the low temperature experiments., The upper part, including
the helium and nitrogen reservoirs, is a modular dewar built by

Andonian Associates.
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or inserted from the top of the cryostat without warming the cryostat
itself above 4.2°K. Consequently, absorbers could be interchanged in
a few minutes with a loss of only a few c.c's of liquid helium.

For the high temperature TmOI experiments, an oven was used
which permitted the absorber to remain immersed in an inert gas,
since contact with the atmosphere would decompose the oxyiodide. The
temberature was measured with a Chromel-Alumel thermocouple. The
oven was heated by a coil of Nichrome wire surrounding the region
occupied by the absorber.

In some of the experiments a problem arose which we believe
to be due to some time constants in the pulse height analysing
circuits and the associated amplifiers. We believe_we can correct
for this. The non-resonant background is mnot a flat function of
velocity but slants. By measuring the background in the absence of
the absorber - indeed, in the absence of everything but the source
and the proportional counter - we found that the background was a
linear function of velocity, though the amount of slant varied from
experiment to experiment. If this problem does not otherwise affect
the spectrum, fhen il is‘easy enough to correct for it in our least
squares analysis of the data.

The analysis of the data was greatly facilitated by using a
least squares fitting program. As an illustration, the standard
deviation of the position of a spectrum line 2 cm/sec wide was
typically 0.01 cm/sec. If the position were determined 'by eye" the
error limit would be at least 0.1 cm/sec - ten times larger.

The data from each experiment were fit to two Lorentzians of
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equal area with a slanting background. Explicitly, the function is:

tw = [o- ) s Fla+ym. o
im1,2 (v - v, ) + W

The variable parameters are:

o the non~resonant background at zero velocity

B proportional to the area of the peak; it is equal to

the height multiplied by the half-width Wi

Y proportional to the slope of the background
A center of the ith peak
Wi half-width of the ith peak (1/2 FWHM).

In particular, it should be noticed that the areas of both peaks
were constrained to be equal. This was done since the broadening
should not affect areas of the peaks. The results of least squares

analysis are presented in Table I for the chloride and sulphate spectra.
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TABLE I

The results of therieast-squares analysis of selected chloride and
sulphate data are presented here. See the text for an explanation
of the parameters (the parameter y is not tabulated). The velocity
units are cm/sec., The temperature T is in degrees Kelvin; the
conceﬁtration f is the atomic fraction of thulium; the thickness

of the absorber + is in mg/cm2 of thulium. "fig!' refers to the
figure where the data are plotted. Single line sources of Tm in Er F3
heated to aboqt 2750013) were used for all of the experiments. There

was some variation of the width of the line for different sources.

This is reflected in the ~ 60% larger value of Wl for Tm C13'6H20

at 1.13°k, 130°k, 195°%.
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Table TA Tm in Y Cl,"6H,0

T 3 i fig.| « B Wy Wy vy v,
= mg/cm }«:106 xlO3 cm/sec |cm/sec | cm/sec | cm/sec
1.13| 1.0 6.0 7A 0.97 | 67 1.57 1.64 | -7.21 6.06
185 1.0 6.0 7B 3.38 | 154 1.01 1.13 | -7.22 6.47
4.2 | 0.06 4.6 9A |18.7 | 101 0.86 1.5 -7.35 7.0
4,2 | 0.09 1.5 9B 3151 55 0.88. | 1,28 | -7.38 6.97
442 | Ou17 1.6 4.63 | 82 0.89 1.16 | -7.33 6.97
4.2 [ 6.25 2.1 9¢ 3.95 | 69 0.90. | 1,01 | -7.30 6.95
4.2 | 0.33 3.7 2.09 | 60 0.90 0.93 | -7.36 7.01
4,2 | 0.50 4.6 2.20 | 110 0.94 0.95 | -7.34 7.01
4.2 | 1.0 6.0 |7¢,9D | 7.13 | 299 0.95 1.04 | -7.30 6.97
130 | 1.0 6.0 11C | 2.83 | 162 1.64 2.5 -6.62 6.71
195 | 1.0 6.0 11B | 2.45 | 124 1.69 3.3 -4.13 4.0
295 | 0,17 1.6 5.61] 79 | 1.05 1.66 | -2.13 212
295 | 0,33 3.7 3.23 | 146 T.%1 1.52 | -2.12 2.16
295 | 1.0 6.0 11A 1 2,241 95 1.02 .44 | =2,12 213

Table I Tm in Y2 (SOQ)B.SHZO

1.2 | 0.048] 1.3 2.59 | 19 1.0 2.7 -7.36 5
1.2 | 0,18 3.9 12B | 2.09 | 48 1407 2.3 -7.30 6.2
4,2 | 0.048) 1.3 124 | 4.15 | 24 0.9 2.8 -7.4 6.2
4.2 | 0,18 3.9 128 | 2.85 | 58 1.08 2.6 -7 .44 1.0
4,2 | 1.0 11.0 12D | 2.93 {175 1.7 10 -7.46 6

80 | 1.0 9.3 13B | 8.98 | 414 1.84 9.5 -7.18 5.8
295 | 1.0 9.3 13A | 8.66 | 245 1.22 L.47 | =1.72 175
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EXPERIMENTAL RESULTS

Shift of the Center of Gravity

Figure 7 shows Mossbauer spectra of Tm 013 . 6H20 at various
temperatures between 1°K and 4.2°K. The solid line is the result of
the least-squares fit. The center of gravity of the spectrum was .
then taken to be halfway between the centers of the two peaks. The
positions of the centers of gravity have been plotted versus tempera-
ture in Figure 8. The solid lines are plots of Eq. (2) for several
values of 6, adjusting EO in each case to obtain the best fit to the
data. The best fit is obtained with 0 = 1.6°K = 0.25 = 1.1 em * + 0.17,
and EO = 2.1 x 10-3 cm_l * 03 x 10-3. The error quoted here is
purely statistical; as can be seen from the graph any appreciable
systematic errors could throw this off comsiderably. If we wished
to determine € more accurately we should extend the measurements to
lower temperatures, where the curves are more sensitive to 6.

However, this is not possible with our present equipment., We can,

however, determine with good accuracy the quantity

’lEoke‘ = 0.0480 cm—1 + 0.0007. From Eq. (8) we get

2 2 2 2
Ep k6 =1/3M | (6| T E)| [gg LI, + 1) - g T (I, + 1)] .
(34)
. If we use the magnetic field measured in Tm metallz) to obtain
values for gM, assuming that the field comes entirely from the 4f

electrons with Jz = 6 we get
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Figure 7

Tm 013'6H20 at Low Temperatures

This figure illustrates the shift of the center of gravity of the
specfra of the chloride absorbers at low temperatures. The solid
curves are the least-squares fit to the data. The parameters for
fhese curves are in Table I. The straight slanted line represents.
the non-resonant background computed in the least-squares analysis.
The vertical dotted lines are the computed centers of the spectrum
peaks. The statistical standard deviation of the position of the
cénter of a peak was typically 0.01 cm/sec or less; this is about
the size of one of the small dots. Single line sources of Tm in
Er F3 heated to about 275°C were used for all of the these experi-
ments. Both peaks in 7C are about 50% broader than the peaks of
Figures 7A and 7B. This is due to using a source with a broader
line width for Figure 7C. The same source was also used for the-

data shown in Figures 11B and C.
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Figure 8

Center of Gravity of Mossbauer Spectra of Tm Cl3 : 6H20 as a Function

of Temperature

The experimental points shown here include some results from thulium
diluted by yttrium. The solid lines represent curves of EOTanh(QIZT)

for several wvalues of €; in each case E, was chosen to fit the experi-

0

mental points best., The curve for 6 = 1.1 cm-1 represents the best

fit to the experimental points.
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Center of Gravity vs. Temperature
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ggM - w T80 g 00 @
. (35)
g M= 0.94 x 167" e " .
For Tml69, we find:
=2
|{c|J|E}|" = 30.1. (36)

This should be compared with the value of 34.8 calculated from the
CEF data. This is fairly good agreement, considering the approxi-
mations and assumptions made in»both calculations.

Although the shape of the spectrum lines was affected by
diluting the thulium with yttrium, as we shall see in the next
section, the shift of the center of gravity is not affected by the
dilution within the accuracy of our measurements. In fact, the
points in Figure 8 céntain results not only of the undiluted thulium

chloride but also of the thulium chloride diluted by yttrium chloride.

Asymmetric Line Broadening

Figure 9 shows Mossbauer spectra of Tm in Y C13 e 6H20 for‘
several different concentrations of Tm. Since wO, the separation of
the component spectrum lines in the absence of relaxation, in
Eq. (25) is different for the two observed peaks,the difference in
width of the observed peaks is assumed to be due to relaxation. In
Figure 10 the difference in widths of the two peaks is plotted
against 1/f£, the fractional concentration. The solid line is the best

fit of the data to a straight line. In Eq. (25) (Tanh 9/2T)2 is

less than 0.05 at 4.2°K and is more likely to be about 0.01;
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Figure 9

Tm in Y Cl,-6H,0 at 4.2°x

This figure illustrates the asymmetrical broadening of the spectrum

peaks with decreasing thulium concentration.
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Figure 10

Line Width Asymmetry as a Function of Thulium Concentration

The difference of the widths (FWHM) of the two asymmetrical lines in
Figure 9 is plotted versus the reciprocal of the fractional atomic
concentration of Tm in ¥ Cl3 E 6H20. The experimental points we?e
all measured at 4.2°K. The solid line is the best fit of the data

to a straight line.
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consequently we can neglect it. The best fit is then obtained with

(1)2—032
2

27 ¢ wSS

= (8.6 + 1.1) TR ha (37)
where the subscripts'l and 2 refer to the two spectrum peaks. Using
perturbation theory to compute ®q in a manner similar to Appendix IV

we get

@2, 2 2 2 2
Ao = L I g m ). (38)

Using our value of ﬁ?computed from the shift of the center of gravity,

and k@ = 1.0 cm.-1 we may compute a value for w

ss®
W
Ss wl
52— = (0.27 + 0.04)em 69
or
1/w =2.0 x 10~11 sec.

SS

The error quoted here is the statistical error in the measurement of

the effective internal field and of the line broadening; it does not

include any error in € ; k8 may be as small as 0.1 cm-l.

(k8 = 0.5 c:m_1 would make wSS/Zﬂc i cm;l.)

For MuoT (3 |al|a) = 7/6 10); from previous results we know

(332 = 30; for r we will use the distance to the nearest neighbor,

o
r =6.5A. Hence, from Eq. (32) we get

wdd/Zﬂc = 0.064 cm-l. 40)

When the second term of Eq. (3l) is included and the result summed

over the six mnearest thulium neighbors, which form a rough octahedron,
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the result in Eq. (40) is increased by a factor between 4 and 8,
depending on the exact orientation of (GiﬁﬂE). Summation over the
rest of the lattice will increase this further. In any case, the
value in (40) is increased so that it is the same order of magnitude
as (39).

Thulium Chloride at Higher Temperatures

In Figure 11 some Mossbauer spectra at higher temperatures are
shown. As expectedlé), the quadrupole splitting decreases as the
temperature increases. The more striking result is that the broadening
of the spectrum lines becomes more asymmetrical as the temperature
increases. We attribute this phenomena to the magnetic interaction
of the nucleus with the higher lying, nearly degenerate pair of
levels mentioned in the description of the 4f levels., The calculated
splitting of these levels is smaller (~ 0.1 cm-l) than for the
lowest pair so that the interaction is correspondingly larger.
However, because the size of the splitting of the higher pair is
relatively more sensitive to the variation of the CEF parameters, we
have not tried to use Anderson's theory to calculate the shape of the
spectrum, also the situation is complicated considerably by the fact
that all of the 13 CEF levels are populated., At these temperatures,
the electronic relaxation will be primarily spin~lattice relaxation,
which is independent of concentration. This independence was verified
by our experiments.

Thulium Sulphate Results

- Mbssbauer spectra of Tm2(504)3 8H20 and Tm in Y2(504)3 . 8H20

are shown in Figures 12 and 13, In a general sense these spectra are
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Figure 11

Tm 013’6H20 at Higher Temperatures

This figure illustrates the temperature dependence of the asymmetrical

broadening of the spectrum peaks (compare also Figure 7).
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Figure 12

Tm in Y2(804)3'8H20 at Low Temperatures

This figure'illustrates both the concentration dependence of the
asymmetrical broadening (A,B,D) and the temperature dependent shift of

the center of gravity, which is best seen in the diluted absorbers (B,C).
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Figure 13

TmZ(SOA)S'SHZO at Various Temperatures

This figure shows the temperature dependence of the asymmetrical
broadening in the absorbers of thulium sulphate. Note that at low
temperatures the broadening is much more pronounced than in the

thulium chloride.
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similar to those of the chloride. In particular, as can be seen by
comparing Figures 12B and 12C, there is a shift of the center of
gravity mearly the same as in the chloride. This shows that the
matrix element (Elij) is about the same size in the sulphate as in
the chloride. On the other hand the asymmetry of the line broadening
is much more pronounced and shows a different concentration dependence.
For high concentration the difference in line widths increases with
increasing concentration, whereas in the chloride the opposite is
true. We attribute this to be evidence that the magnetic moments of
the surrounding ions are directly influencing the hyperfine structure.
‘That is, due to the ﬁagnetic interaction with the surrounding ioms,
the hyperfine levels; in the absence of relaxation effects, are spread
into a band of levels and w, in Eq. (25) can now be replaced by w/,
the width of this band. Since the width of this band is proportional
to the concentration we would expect that the difference of the
specgrum line widths would be proportional to the concentration

until the concentration decreases enough to where o' =~ w At this

0 0’ ‘
concentration ®4 becomes more important and the line width difference
increases inversely as the concentration decreases, similar to the
chloride behavior,

We have made some rough calculations which indicate that the
differeﬁce between the concentration dependence of the chloride and
sulphate Mossbauer spectra can be explained if the CEF splitting, k€,
of the two lowest sulphate electronic levels is smaller than that of the

chloride, and the magnetic dipole interaction between thulium ions is

stronger in the sulphate than in the chloride.
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Thulium Oxyiodide Results

Mdssbauer spectra of thulium oxyiodide at several temperatures
a:é shown in Figure 14, Since the symmetry of the oxyiodide is CLW
(a four-fold axis of rotation with parallel mirror planes) there
will be three degenerate levels (not just mearly degenerate) in the

4f level structure. Consequently we would expect stronger magnetic

hyperfine interactions, producing a more asymmetric line broadening.
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Figure 14

Tm OI

This Figure shows MOssbauer spectra of Tm OI absorbers at several
temﬁeratures. A least-squares fit to these curves has not yet been
attempted . However we interpret the room temperature spectrum (C) as
consisting of two peaks located at about + 3 cm/sec with the peak at
+ 3 cm/sec being two or three times broader. At higher temperatures
the splitting of these peaks decreases. The small dip on the lefﬁ
side of the room temperature spectrum is probably a fluke, since it

did not appear in other room temperature spectra.
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SOURCES OF SYSTEMATIC ERROR

Since our experiments iﬁvolve measuring positions and widths
of lines to an accuracy of a fraction ( ~ 5%) of the line width, or
for that matter, a fraction of the instrumental 'resolving power',
we should devote some attention to possible sources of error in our
measurements. Some typical velocities were: the range of velocities
covered was usually from - 10 cm/sec to + 10 cm/sec; the separation be-
tween the two peaks was about 15 cm/sec; the width of a peak was about
2 Em/sec (FWHM) ; the instrumental resolving power (velocity increment
per channel of:the multi-channel analyser) in the region of a peak was
about 0.2 cm/sec.

There were several sources of error which may be generally
called velocity errors- errors associated with the motion of the.source:
The most obvious is the calibration of the drive itself. The drive is
calibrated by measuring the spectrum of m.etallicFe57 at room tempera-
ture. This method; we feel, is accurate to about 1/2 %. Experience
has shown that the calibration changes by less than 1/4 % per month,
which is a typical span for a series of experiments. Since this error
is the same for a series of experiments we may account for its effect
by quoting a 1/2 % error in our end resulté; other sources of non-
systematic error are generally several times larger. A second type of
velocity error is due to the fact that the motion of the source is not
exactly what it is thought to be. The source does not follow the
reference signal exactly., Assuming that the source is rigidly

connected to the pick-up coil, then we can measure this error; a
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typical error signal is shown in Figure 5. Also, due to the fact
that the integratingcircuits used to produce the reference signal
do not integrate perfectly, there is a certain amount of error in
the reference signal, From our measurements of Fe57 calibration
spectra we believe this error to be rather émall. One important
point to realize about these errors is that they are all symmetric:
If the two peaks were symmetric, these errors would not produce any
asymmetry. Consequently, in our measurements of the difference of
the widths of the peaks or of the center of gravity,:these errors
cancel out in 16West order; their effect Willlbe a (small) percentage
of the result.

A second type of error arose, as mentioned before, due to the
slanted non-resonant background. We believe that this was not an
appreciable source of error in the center-of-gravity measurements due
to the internal consistency of a number of measurements on absorbers
which should have in other respects given identical results. On the
other hand, there is some evidence that the measurement of the widths
was affected. For this reason the error limits on these measurements
were increased over the statistical limits by an additional 0.1 cm/sec

to account for this error.
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APPENDICES

The first three appendices contain resumes of the theory of
the various interactions with which this thesis is concerned. They are
not meant to be complete derivations of the wvarious results that are
obtained, but are presented here in order to round out our theoretical
treatment and to clarify our notational conventions where necessary.
The last two contain the detailed derivation of several formulas used

in the text.
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APPENDIX I

THE CRYSTALLINE ELECTRICAL FIELD INTERACTION

In this section we are concerned with describing the interaction
of the crystalline electrical field (CEF) with the 4f electrons of a
rare earth ion. As mentioned before, the CEF interaction is weak
compared to the spin orbit interaction so that the CEF interaction
can be treated as perturbing a manifold of states for which J, the
total angular momentum, is a good quantum number. We therefore, treat
here only the interaction with a single J-multiplet and do not comsider
the miiing of states of different J. The potential energy of an
electron located at the position (r, 6, @) due to the surrounding ions

may be expanded in a series as

-+n
- e V(x,8,0) = Z z A "o "(0,0) (41)

n m=-=n

where @nm and @;m are the real and imaginary parts of the spherical

harmonics Yn ,» but with different normalization. Specifically, we use

13)

the normalization

0 _ . n _,
an = 27 Tl PZn(COS 0) |

5 i e cos m@

= b s : 2 >

@n 2" m ok m) ] Pn(cos 8) x s, il m 0 42)

With
3 m
2 "G = (1 - x2y™/2 (%;) P_(x)

where Pn is a Legendre polynomial. In particular, for n = 2 we have
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@20 = 3 cosze -1 = (3z2 - rz)/r2
1 .
@2 = gin O cos 8 cos ¥ =z x [t
-1 2 . 2
¢, = sin 0 cos 6 sin § = z y/r (43)
@22 = sin29 cos 20 = (#2 - yz)/r2
@;2 = sinze sin 20 =2 x y/rz.

The direct interaction with the 4f electrons is, in effect, partially
shielded by the closed electron shell, That is, the CEF will distort
the closed shells so that an additional potential is produced, which
may be expanded as
C eV (me,H = > AT (r) 00,8 (44)
L n n n v AT
n,m

Consequently, the Hamiltonian for the 4f electrons is

H:;F a Z Z A" Ekn + Sn(rk):] 2 (0, ,8,). (45)
k n,m

Since we are concerned only with a single J-multiplet we may use

14)

operator equivalents to rewrite this Hamiltonian as

Mo = > ATE)p(al 16, 119) 0P (46)
n,m

where

(rn)E = {1 -9 ) (rn)4f

Un(rn>l+f = <Sn (r) )l‘.f,



w G2 =

the symbol (rn) denotes the matrix element of r'" for the radial

4LE
part of the 4f wavefunction. The expressions (JllGnI]J) are reduced
- matrix elements which have been tabulated in the literaturelo). The
usual notation is Gn = C,B,y for n = 2,4,6. The Onm(jé are the
operator equivalents - nth order polynomials in J, Jz’ J+, and J .

The relevant operator equivalents are tabulated in reference 13, 1In

particular for m = 2 they are

a.” = BJZZ -

0," =1/ J (I +J)+ (@ +J)J =1/2(3,J +JJ)

0;1 =104 3 (3, =3y + (I «3)I = 1/2(Jsz + JyJZ) &7
022 = 1/2 (J+2 =3 J_z) = sz - Jy2

0;2 = 1/?.;(:[_1_2 - J_2) = JXJy - Jny s

For the case of a two-fold symmetry axis only n = 2,4,6 with even m
need be considered when the z axis is taken along the two~fold axis.
In principle, it is possible to calculate both Anm and (rn),
but in practice it is difficult to do so. Consequently, the CEF
parameters are introduced since it is these that are deduced from

the optical spectra:

Cnm = Anm(rn). (48)

(These are also denoted Bnm in the literature,) The CEF parameters for
Tm Cl3 v 6H20 were obtained by modifying Harrop's Er‘Cl3 . 6H20

parameters8 , using the calculated (rn) of Freeman and Watsonls) and
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assuming the Aﬁm were unchanged. Using these CEF parameters the

wavefunctions were calculated in the form

6

|i) = :g: amilm) (49)

==6
where ]m) are eigenstates of JZ. The coefficients ami are tabulated
in Table ITI for the two lowest states IG) and lE). Also tabulated
are the matrix elements of (G|02m1G), (E]OZmlE), (E]OZm]G>, and

(E{jjc), which are the ones relevant to the hyperfine interactions,



- Gl =

TABLE II

Wave Functions and Matrix Elements of the Two Lowest CEF Levels

of Tm 013-6H20

The wavefunctions are written in the form

L. ’ - .

li> = :E: at lJ,m) with J =6 and a = = 317. The coefficients a~ are
m -m m m

_ = ,

tabulated here for m > O.

These wavefunctions were calculated from CEF parameters from
8) 0 2 -2 0

Harrop ': G, =111, G,” =152, €, = - 252, C, = - 82,
2 =2 4 -4 0

c, S 179, ¢,” =320, ¢, =308, C, =146, C, = -9

(:62 = - 62, 0;2 = 126, c64 = 212, 0;4 = - 106, 066 = 212,

-6

C, = - 10.

The reduced matrix elements used were: <Jk|al|3) = 1.02 x 10_2,

(3] |8] ]3> = 1.59 x 0™, (3] 1v]]3) = - 5.53 % 107°. The two levels
5 :

are separated in energy by 0.63 cm~
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m 0 1 2 3 4 5 6
State

Re(a ) 0 0.373 0 -0.222 0 0.081 0]
|6 s

Im(am) -0.542 -0,098 0.033

Re(am) 0,722 0 -0.133 4] -0.065 0 0.059
E)
I Im(am) 0 0.452 0.078 -0.060

Table ITA Wavefunctions

m| -2 | -1 0 1 2
Matrix Element
(¢]0,|6) 28,9 0 |-35.0 0 |-9.9
(G\OZmlE) 0 |0.231] o0 -0.22i| 0
- :
(E|0,"|E) 29.4 | 0 | -35.2 0 |-9.9
ki I 3
v Z X
(| T|E) 4.78 0 3.46

Table IIB Matrix Elements
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THE NUCLEAR ELECTRIC QUADRUPOLE INTERACTION

The electric quadrupole interaction of the nucleus with the

surrounding charges may be written16>

2
— 9
. = —eQ N 172 6. CT.T. % T.5. = 2/3
QT TGS D L Y2 Uy (I v LT - 23T
s 5% |

(50)
with i,j = x,y,z. Q is the nuclear quadrupole moment, IX, I, Iz are
, . = =2
components of the nuclear spin operator, I, and T~ = I(I + 1).
The temnsor qij is the field gradient tensor of the surrounding charges.

The diagonal terms of Eq. (50) may be written as

2 2 -
q  (I° - 1/3 5 & ag (L7 - 1/3 T 4 qzz(xz2 113 7%

(51)

_ 2 =2 g 2 =22

= Tf2 qzz(3Iz -IT7) + (qxx - qyy)(Ix - Iy )
where we have used 5?2 = IX2 + iyz + IZZ, and Laplace's equation
. + qyy g, = 0. (52)

Since the temnsor (qij> is symmetric, there will be a coordinate system
in which it is diagohal. In this case we see from Eq. (51) that
the field gradient can be characterized by two numbers, (qzz) and
n = (qxx - qyy>/<qzz>’ the latter being a measure of the departure
from axial symmetry,

Combining the equations (47), (50) and (51) we may make use

of the On[n operators introduced in Appendix T
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2 -
- —eQ z it
B =101 - D @ 0D 3
i
where we define
0
q =q,
1
q = Z(qzx % qxz) = 4 qxz

-1
§ FA,, T =R, (54)

2
qg = (qXx - qyy)

q-2= (qu * qyx) =2 Gt

The electric field gradient which interacts with a rare earth
nucleus in an ionic crystal has four significant sources: (1) The
field gradient produced at the nuclear site by the surrounding ions;
(2) The field gradient produced at the nuclear site by the partially
filled 4f shell of the ion containing the nucleus in question;

3 The 'lattice" Sternheimer effect whereby source (1) introduces a
distortion in the closed electron shells, producing a shielding of
source (1); (4) The W bomiet Bt effect, which shields the
4f contribution to the field gradiemt. Collecting the different

contributions, we have for the total field gradient tensor

q.. = (1 ~ yw) éi?t)+ 1-R) qg%f)

1] Q o=

where Yo and R

Q

factors, respectively. Source (1) is usually small compared to the

are the lattice and atomic Sternheimer shielding
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other sources; source (3) in rare earths is usually a large anti-
shielding term, i.e., Y, is a large negative number (~ - 102) so
that source (3) is comparable to (2) and (4).

For the contribution from the lattice (the surrounding ions)
we can use the potential in Eq. (41). The éuadrupole tensor is then

given by
5 = {BZV(;3/5xi axj]r=0 (56)

hence, after a little algebra we find that

2 i ~ i |
e q(lat) = - 4 AZ (57)

where the ql were defined in Eq. (54).
For the 4f electrons we may use the method of operator

14)

equivalents to obtain

qiﬁf) = - 3{a]ja| | )=, f172 (I3, +3,3)) - 1/3 stij]

(58)

combining these contributions, we obtain after a little more algebra

@ =-20°@- 4@ - v 4,7

gt = -13 P 021(33 - A1 - ym)Azl/ez

a7 = -12 P 0N(D - 40T - y Ay /e (59)
& =-320,°@ - 40 -y )a’/e

2 -2 -2, 2
Q= =3P 0 (@) -4 -y A e
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where 2 = (3|]af[3) (™), and

(x™>) (60)

-3
= (1 - RQ)(r -

Q

For Tm 013 . 6H20 only a few of these operators have non-zero
matrix elements., Due to the two-fold symmetry the matrix elements
(plonmlp) = 0 for odd m, where 1p) is a CEF state. On the other
hand (EiOnm1G) = 0 for even m while (ElO;llG) are both quite small.

The latter matrix elements will produce a slight shift of the center of
gravity at low temperatures, but this is negligible compared to the
magnetic interaction.(see next section). So, for our purposes that
leaves us with only qo, q2, and q_z. In the principal axis

coordinate system of the tensor <qij)’ (q-2> is zero by definition;

this does not imply, however, that the principal axes will be the

same for each of the CEF levels. To put this another way, we may

choose our coordinate system to be the one for which A;z = 0, say,

then it will not be true in general that (p[052¥p) = 0 when the

lattice has only two~fold symmetryl7). As can be seen from Table II the

field gradients from the two lowest CEF states of Tm Cl '_6H20 are

3
-2 =

nearly identical. The coordinate systems for which (OZZ(J)) vanishes

are nearly coincident, they are rotated with respect to each other

by only ~ 0.20, while the coordinate system for which A;z =0

differs by ~ 6°.
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THE NUCLEAR MAGNETIC DIPOLE INTERACTION

The magnetic hyperfine interaction between the nucleus and

18)

the surrounding 4f shell is

3 5].?

(61)

I N CA A AR A A AT
i

where B is the Bohr magneton, g the nuclear g factor, I the nuclear

spin, T, the radius vector of the ith electron, and 4 and s the

orbital and spin angular momenta, and where we have left out the so-

called Fermi contact term, which is negligible for the 4f electrons.

. ; .. 10,14
Again, using operator equivalents we may also write

HM=gBNM?-T’ (62)

where M = 2B (JllNllJ}(r-3}M and (r-B)
)

M is defined analogously to

¢ T m @R G, Ean 6.

The only non-zero matrix elements of 7 in Tm Cl3 . 6H20 are
between CEF states, e.g., (EljﬂG). Due to symmetry under time=-
reversal, the diagonal matrix elements ofji e.g. (G\jﬂG), must

vanish for non-degenerate states in the absence of an external

magnetic interaction. In this case ''external' means anything

outside the ion in question, including magnetic interactions with
surrounding ions; these are excluded, by definition, in the CEF theory.

As it happens the direction of (ElﬁﬂG) lies parallel, within about

lo, to a principle axis of the field gradient tensor.
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APPENDIX IV

CENTER OF GRAVITY SHIFT DUE TO THE MAGNETIC HYPERFINE INTERACTION

In this section we will derive a gemeral formula for the
shift of the center of gravity of the Mossbauer spectrum due fo a
magnetic hyperfine interaction between two nearly degenerate 4f
levels. To do this, we will use second order perturbation theory, so
that we will need to assume that the magnetic hyperfine interaction

is smaller than the CEF splitting, k6, of the nearly degenerate &4f

levels.
For the states of the combined nuclear=electronic system we
write
|G,k) = a k]c)11 m.)
s m i
m
(63)
)
|E,2) = z b |E}| T,m )
m

where lG,k) and IE,E)‘are the eigenstates of the quadrupole hyperfine
interaction (not including terms like (ElOzm(ESIG)— see Appendix III).
We will neglect the quadrupole hyperfine energies in the energy
denominators since they constitute a third order term. The second
order shift of the energy of the kth level of the ground state is

given by
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%=ié§:I@JmBNM?-?m¢H2
y/

= % z IZ amk bﬁ’ngNM(EI?IG) . (m'lﬂm)lz (64)

_ -’

k k¥ _g g% ; "
k0 ; z an ? amz bm3 bm4 ®: <m4mm1>)(<mzmm3> - )
m ,mz

my,m,
where we write K = (E131G).

The average shift of the levels associated with the ground

electronic state is

1 %
Bt "I #1 Z Ba (65)
K

Using closure:

ZE: ak I s}
= h B b
(66)
z bﬂ b/g“ = Wy
my m, mym,
£
We get from (64) and (65)
gZB 2
N ry . ' T
Bnite " W0GIF D) Z (m|Tn') * B (' [Tm) * ©).
‘ m,m" 67)

At this point we might note that neglecting the quadrupole hyperfine
energies in the denominators amounts to assuming that all the \G,k)
are degenerate., Hence, we could have just as well chosen our states

to be lG)II,m) and written down (67) almost immediately. Proceeding,
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we may write T - j’; IZJZ + 1/2(I+J_ + I_J+), then (67) becomes

Eshige = k9(2]‘.+ i¥) DJ | Z ](mlI m) 2+ Lo, + 12D
2, lfelnfm - 1)1 (55
where ]JZ|2 = |<G|JZIE)|2 etc,

It is easy to show that

| z l(mIIzlm)lz =B IE4+1) Qe D

m

(69)
Z ||, |m - 1| = 2/3 (T + 1) @I + 1)
. ‘
and
2 2 2 2
|3 17 + 1917 = 2o, 47 + 15| . (70)
Gathering everything together we get
2. 22
2
E ... =1/3 Iz + 1| {c|T]E}|". (71)

For Tm Cl3 : 6H20 it happens that the third order term of the
perturbation expansion is nearly zero. The magnetic interaction has
only even order terms since odd order terms all involve matrix
elements of (GljﬂE) or (EljﬁE) which are zero. Consequently, the only
third order term comes from neglecting the quadrupole energies in
the energy denominator.

Assuming that the field gradients are gxially symmetric and

(G\ENE) lies parallel to this symmetry axis, the unperturbed states are



|G)|I,mI) E=E_
(72)
- 1
-IE)II,mI) . E=K0 +E
for I = 3/2’E+3/2 = - E+1/2 the third order term is then
2
g B M
E(3)= 2Zm(E"-E)
ke e 2T + 1) &
(73)

Gy 4By .
£ =k9(21+1) [(EB/Z Es/z)/kg} .

For Tm Cl3 . 6H20 the field gradients of the two mnearly degenerate'

CEF levels are almost the same., Consequently B ~ & and

3/2 3/2

g3 o o.
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APPENDIX V

SHAPE OF MOSSBAUER SPECTRAL LINES INFLUENCED BY ELECTRONIC RELAXATION

In this section we derive the shape of Mossbauer spectral
lines influenced by relaxation between the electronic states. In
the limit of very long relaxation times we would expect to see a
superposition of the.hyperfine spectra of each of the electronic
states, weighted with the appropriate Boltzman factors. On the other
hand if the relaxation times are very short, we would expect to see a
hyperfine spectrum appropriate to the thermally averaged electric and
magnetic fields, Here we will be interested in the intermediate
region where the relaxation times are neither particularly fast nor
particularly slow. This treatment uses Anderson's ''random frequency=-
modulation model" 2 as a basis. The relevant sections of his paper
are sections 1 and 2 and section 4 up to equation (50) near the
bottom of page 326 (there is another equation labeled (50) on the
preceding page). Since this is a fairly lengthy derivation we will
not repeat it all here. We will, however, indicate several minor
adéptations needed for our problem.

For our case, the parts of the Hamiltonian are:
HO includes the interactions of the free ion except for the
hyperfine interactions. HP includes the hyperfine interactions and
the static CEF interactioms. H_m includes the interaction which
causes relaxation between the CEF levels.

We wish to include explicitly the fact that our spectrum
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lines have a finite width in the absence of relaxation. This can be
d one by making the sﬁectral frequencies complex: we replace Amij by
Aﬂ&j + i This has the effect of adding - I' to all the diagonal
elements of the matrix iAw + JI. This has no effect on the matrix
eigenvectors, which are the columns of the transformation matrix T.
It does, however, have the effect of adding - I' to all the eigenvalues
of the matrix. Consequently the autocorrelation function @(r) in
Anderson's paper is multiplied by e—PT, or equivalently, our spectrum
will be obtained from Anderson's I(®w) by convolution with a
Lorentzian of width (FWHM) 21.

Anderson implicitly assumes in his derivation that 7 1is
positive. It is quite straightforward to show from the definition

of @(T) g

ple) = [ wOW (& + )t (74)
that o
O(-1) = @ (1) (75)

we then get for the spectrum
1@) = [otreTar
- moo o0
-1 % i
=fq>(«r)e Ty +[<p°<v)edeT (76)
0 0

= 2 Re(j;P(T)e—ind-r)
0

where Re(x) means the real part of x.

From Anderson's equation (50) on page 326 we have that
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. _ N, - D)7 :
pr) = z (z WliTik)(Z (T l)kj)e " 77
k j .

af

and hence

k
"'""“f"?‘x‘;) (78)

C
I) = 2 Re (ZE: -
k
where

¢, = (z Wl.Tik)(Z (T'll)kj) | (79)

: i .
L J

so that we have finally

mm(c ) - Im(?xk)] + Re(C [T - Re(kk)]
Iw) =2 :i: > 5
[w - Im(xk)] + [ - Re(?\k)]

» (80)
k

Im(x) denotes the imaginary part of x.
The case we are interested in can be described in the
following fashion: we have two hyperfine spectrum lines separated in

the spectrum by 2w for convenience we will take w = 0 to be halfway

0?

in between these lines, We will denote the transition probabilities

by ma and mb where ma is defined by assuming that at t = 0 the electrons

are in the state associated with the line at - ® then wa is the

OJ
probability that at t = dt they-are in the state associated with the

line at s O is similarly defined for the reverse transition. TFor

convenience we will also define

a, - 1/2 @ba + wb)

o]
|

@, - o)/, + o) (81)

b
1}

mO/we.
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We then have the following matrices:

—-a)o 07
oo =
Lo ol
’-(Da wa_}
I = (82)
L+ ©
1
b3
1 - 5

Wl is the (steady state) probability that state i is occupied. The
i

eigenvalues of (i&w + 1) are the solutions of

(n + @, + umo)(h + Wy = nno) - 0w, = 0
B 2 2 . _1/2 (83)
Kl =-w  + Qne - @y - Zubéboa)
N = -0 - (@ ? . w 4 . 2iw W 8)1/2
2 e e 0 e 0 :
The un-normalized eigenvectors are:
w Q
5 , ;
and (84)
Q W,

o " 2 2 . 1/2 .
where Q = iwy - we6 + Qbe -®y - Zubéuoﬁ) . One POSSlble
transformation matrix is

@ Q
a
T = (85a)
Q i)



= 19 =

and

w Q
S s P
T =N (85b)
Q L)
a
with N = mamb + 92 = Zﬁbez - woz - Zﬂbéboa)llzﬂ. After some algebra

we find that

¢, = 1/2[1 + (1 - x8) (1 - 21x5 - ) /2]
' (86)
¢, = 1/2[1 - @ - ix9)( - 21x6 - )2 |
In particular, we note that Im (Cl) = - Im(CZ). This is particularly

2
important as it ensures that I(®w) drops off as l/w~ for large w.

Using Eq. (78) we write

-iC ic* < ic”
I) = L + L + £ + 2
& ® - if + i m+ir-i>ef ® - il + ik, a)-!-i]‘-i?\g'
(87)

This form is pérticulary useful for finding the center of gravity of

the spectrum, &, by the method of residues.
oD

f;mIQn)&b

T . (88)
[ I(w)dw

-
Strictly speaking the integral in the numerator diverges logarithmically
if the limits to infinity are taken separately. Consequently, a
certain amount of sophistication must be used in the handling of
the residues. Evaluating the integrals, we find that
@

[ I@an = 21r(c:1 +6,) = 2= , (89)

- o0



fu) L)dv = 2x Im{Cl(?x1 -+ 02(7\.2 - 1")]
-8 (90)
= - 27 cuOB
hénce
® = - ®,B (91)

which is just the weighted average of the two spectrum line positions
(+@O, «DO).
We will be particularly interested in the case where W, >>wm

0

(fast relaxation) or x << 1 in which case we get

N o= [-1+ (1 - 2ixd - xz)l/zl

N = [-ix6 + 1/2 # (65> - )]

1
(92)
2 2
Re(?x.l) ~ -(wo /Zme) {1 - B7)
Im(?xl) = -0506
Ny =0 [<1 =~ €1 ~ 3ixh - x2)1/2]
N, s [=2 & ixsl :
2 e (93)

Re (7\2) = -ZLDe

Im(?x.z) = - Im(}\l) ~ W5

0]
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¢, =1/2 [1+ (1 - ix8) (1 - 2ix5 - <2312

C. =1+ 1/2 x°(1 - 1/2 &%) + 1/4 ix°5(3 - 58%)

1
(94)
Re (Cl) s ]
In(C,) ~ 1/4 83 - 5 %)
¢, =1/2 [1 - (- ix8)(L - 2ixb - x2y1/2]
C, =~ 1/2 0 = 118 BYY « LA 15083 = 585
| (95)
- 2 2
Re(Cz) =~ - 1/2 x(1 - 1/2 &)

In(C,) ~ - 1/4 603 - 5 8.

We can regroup the terms in Eq. (72) to get

( [- Re(C) (' - Re(h)) ] [; In(C,) (@ - In(r)))
Iw) = +
e - Im(hl))z + (@ - Re(hl))z (st = Im(Kl))z + (T - Re(hl))z

+

Im(CZ)(a) - Im(?x.z)) + Re(CZ)(I‘ - Re(?\.z))‘J -

@ - IO )+ (@ - ke

The term in the first bracket is simply a Lorentzian with area ~ 2,
height ~1/( - Re(r;)) and width T' - Re(r)) = T + 1/2 @ 2/ ) (1 - &%),
For our case I’ and Wy are of the same order of magnitude (u)o may be
slightly larger), so that we may write I'~ Wy = X O, Hence, the
height is ~ llxme. On the other hand the largest that any of the

other terms in the second bracket becomes in the region @ ~ +* W

0 lS.
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of the order of xzk»e. Consequently the terms in the second bracket

3 .
are of the order of x° smaller than the first term.
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