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ABSTRACT 

Two new phenomena have been observed in Mossbauer spectra: 

a temperature-dependent s h ift of the center of gravity of the 

spectrum, and an asymmetric broadening of t h e spectrum peaks. Both 

phenomena were observed in thulium salts. In the temperature range 

1°K < T < S°K the observed shift has an approximate inverse tempera-

ture dependence. We explain this on the basis o f a Van Vleck type of 

interaction b e tween the magnetic moment of two nearly degenerate 

e lectronic levels and the magnetic moment of the nucleus . From the 

size of the shift we are able to deduce an "effective magnetic field" 

H = (6.0 ± 0.1) x 10
6 

Gauss, which is proportional to (r-
3

)M(G j1jE) 

where (r-
3

)M is an effective magnetic radial inte gral for the 4f 

electrons, and jG) and jE) are the lowest 4f electronic states in 

Tm c1
3

·6H
2
0. From the t e mperature dependence of the shift we have 

-1 
derived a preliminary value of 1 cm for the splitting of these two 

states. The observed asymmetric line broadening is independent of 

temperature in the range 1°K :S, T :S, S°K, but is dependent on the 

concentration of thulium ions in the crystal. We explain this 

broadening on the basis of spin-spin i nteractions between thul i um ions. 

From the size and concentration dependence of the broadening we are 

able to deduce a spin-spin relaxation time for Tm c1 3 ·6~0 of the 

-11 
order of 10 sec. 
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INTRODUCTION 

Two new phenomena have been observed in Mossbauer spectra: 

a new, temperature-dependent shift of the center of gravity of the 

spectra, and an asymmetry of the line shape due to spin-spin inter­

actions. Both of these phenomena have been observed in salts of 

thulium, but are expected to occur in other salts as well. 

The shift of the center of gravity reported in this thesis 

occurs at temperatures in the liquid helium range and below. We ex­

plain this shift on the basis of an interaction of the nuclear dipole 

moment between two nearly degenerate 4f electronic levels, i.e., a 

Van Vleck type of interaction between the nuclear and electronic 

moments. Several other types of shifts of the center of gravity of 

the spectrum have been reported in the literature: 1. the isomer 

shiftl), 2. the second order Doppler shift2 ), and 3. shifts due to a 

reduction of the areas of some of the spectrum lines caused by effects 

such as an anisotropic Debye-Waller factor (the Karyagin effect)
3
). 

The shift which we observe does not have the temperature dependence 

to ·be expected from 1. and 2., and the areas of our observed spectrum 

lines are not reduced, eliminating 3 . as a possible cause of the 

shift we observe. 

The second phenomenonreported in this thesis is an asymmetry 

of the line widths, which at low temperatures is independent of 

temperature, but varies as a function of the concentration of thulium 

ions in the crystal. The importance of the phenomenonis that 

information can now be extracted not only from the positions of the 
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ganuna lines, determined by the hyperfine interactions, but also from 

the line shapes, affected by interactions of the central ion with its 

surroundings (e.g., spin-spin and spin-lattice interactions). The 

scope of Mossbauer spectroscopy is thereby advanced to cover an area of 

study similar to that covered by NMR and EPR spectroscopy, where 

information is deduced both from the shapes and the positions of 

the lines. 

We have studied spectra of three salts which show one or both 

of these phenomena: Tm c1
3 

• 6H
2

0, Tm
2

(so
4

)
3 

• 8H
2

0, and Tm 0 I. 

Our main emphasis is on the chloride results since information is not 

presently available on the electronic level structures of the 

sulphate and the oxy-iodide but is available indirectly on the 

chloride. 
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THEORY 

The Shift of the Center of Gravity of Mossbauer Spectra4 ) 

The main requirement for a temperature dependent shift such as 

we observed is that the electronic levels have a state IE) located at 

-1 
k8, about 1 cm or less, above the ground electronic state [G) . In 

rare earth salts for example, this condition can be satisfi ed if 

the lowest levels of the 4f electrons are n early degenerate, or by 

applying a magnetic field i f the lowest level is degenerate. If we 

consider the hyperfine interactions of the nucleus with the electrons 

we now have two P'<.rts to take into account. First there is the usual 

part of the interaction which involves matrix elements like 

(G, e\1\.iflG,e'), where e,e' refer to the nuclear substates. Here, e 

refers to the nuclear excited state and g will refer to the nuclear 

ground state. These matrix e lements are diagonal elements with respect 

to the electronic states , though they may also contain cross terms, 

like (G, ell\.if\G',e') , between degenerate electronic states. This 

part of the hyperfine interaction produces the usually-observed hyper-

fine spectrum (e.g., the quadrupole splitting) with no shift in the 

center of gravity of the spectrum. This will be referred to as the 

"diagonal" part of the i nteraction. The second part (or "off-

diagonal" part) of the hyperfine interaction involves off-diagonal 

terms like {G, ell\.if[E, e') between .!!Q!!-degenerate electronic states . 

In our case, these are magnetic interactions. As is well known, thi s 

type of term caus es the energy levels to repel each other so that the 

states IG, e) are shifted down in energy while the states jE , e) are 



- 4 -

Figure 1 

Hyperfine Energy Levels and Spectrum Lines in Tm c1
3

· 6H
2

0 

lA. The two lowest electronic levels jE) and jG) are shown with 

and without hyperfine interactions . For the purposes of this 

drawing it was assumed that the field gradients of the two CEF 

levels were identical , as this is nearly true for Tm Cl
3 

· 6H
2
0. 

lB , The Mossbauer spectrum which is associated with Figure lA 

is shown. The notation a ~ c refers to gamma transitions between 

levels marked a and c in Figure lA. The lines are also labeled 

1 - 4 for comparison with the transitions in Figure 2 . The 

small line at E
0 

is the center of gravity of lines 2 and 3. 
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shifted up (see Figure 1). Now, of course this consideration applies 

to both the nuclear ground state and the nuclear excited state, though 

the shifts will generally be different for the nuclear ground state 

than for the nuclear excited state. It is just this difference which 

will be observed in a gannna-ray spectrum. 

Let us say that the shift of the center of the levels 

associated with the nuclear ground states and electronic ground state 

\G,g) is -E (for thulium, which is illustrated in Figure lA, the 
g 

nuclear ground state is unsplit so that - E is just the shift 
g 

of this level). Similarly, the shift of the center of the levels 

associated with the nuclear excited states and the electronic ground 

state, IG,e), is -Ee (for thulium the nuclear excited state is split 

into two levels, the center of which is halfway in between, as 

illustrated in Figure lA). The shift of the center of the spectrum 

lines associated with the ground electronic level is: 

E 
g E • e 

(1) 

Similarly, the shift of the center of the spectrum lines associated 

with the excited electronic level is - E
0 

(see Figures lB and 2). 

At high temperatures both electronic levels are equally populated so 

that both sets of spectrum lines are equally weighted, and no shift 

is observed. At a temperature T comparable toe, the intensity of 

the spectrum lines associated with the excited electronic state is 

-S/T 
decreased by a factor e .. It is then easy to show that the center 

of gravity of the spectrum is shifted by 
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Figure 2 

Transitions in the Presence of Axially Symmetric Hyperfine Interactions. 

Shown are the principle gamma transitions. As mentioned in the text, 

there are four other possib~e gamma transitions, but these are of 

negligible intensity. Also shown are the electronic relaxation 

transitions. Any other relaxation transition, which would involve 

simultaneous nuclear and electronic spin flips are "forbidden". 
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EC = Eo Tanh 8/2T. (2) 

It should be emphasized here that the net shift of all the energy 

levels is zero. It is only the center of gravity of the spectrum 

that is changing due to temperature dependent Boltzmann factors. 

One added result of the "off-diagonal" hyperfine interaction 

is that it mixes the electronic wave functions so that nuclear transi-

tions accompanied by simultaneous electronic transitions are no 

longer forbidden. The spectrum lines due to these transitions will be 

decreased in intensity, and are located at energies of ± kB (+hyperfine 

energies) away from the center of the spectrum. Also,e may vary, due 

to distortions, from ion to ion in the crystal, causing the lines to be 

broadened. Hence, it may be difficult to observe these lines except 

in the most favorable cases (for example, where e is comparable to the 

-1 
hyperfine interactions - about 0.2 cm or less in rare earths). 

These lines have not been observed in thulium. 

The 4f Electronic States of Thulium 

The trivalent ions of the Lanthanide series of rare earths 

consist of a xenon core plus a partially filled 4f shell. The 4f shell 

lies inside the 5s and Sp closed shells. Consequently the 4f electrons 

are shielded somewhat from interactions with the surrounding ions. 

This shielding prevents the 4f electrons from playing an appreciable 

part in chemical interactions, consequently, all the rare earths have 

quite similar chemical properties. The shielding also has the rather 

important physical consequence that the interaction of the 4f shell with 

the Crystalline Electrical Field (CEF) is reduced. Unlike the iron 
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transition elements, the spin-orbit interaction is stronger than the 

CEF interaction in the rare-earths. The spin-orbit interaction splits 

the 4f levels into multiplets for which the total angular momentum, 

J, is a "good" quantum number. The multiplets (called "J multiplets") 

-1 are separated by several thousand cm These multiplets are split 

-1 by the CEF into levels which span several hundred cm . We will 

be concerned only with the lowest few of these CEF levels. 

The lowest J-multiplet of 'Ilu
3+, which is designated 

3
H

6
, with 

J = 6, has 13 non-degenerate levels in Tm Cl
3 

· 6H
2

0 and 'Iln
2

(so
4

)
3

·8H
2

0 

since the synunetry is only c
2 

(a two-fold axis of rotation). 

Unfortunately, little is known about these levels from direct 

observation. Apparently the lowest two levels are nearly degenerate in 

both compounds, as Hufner
5

) has studied an optical Zeeman splitting 

of these levels and has obtained an upper limit for the separation 

-1 
of the levels of about 1 cm • 

In spite of the lack of any other direct information on 

Thulium, we do have some indirect infonnation. The crystal structure 

of both Gd c1
3 

• 6H 0 
6

) and Eu Cl · 6H 0 ?) have been worked out. 
2 3 2 

Both of these are typical of an isostructural series which includes 

3+ 3+ 
all the rare earths from Pr to Lu • The spectra of a number of the 

rare earth hydrated chlorides has been measured and CEF parameters 

have been determined from these spectra. A large number of optical 

transitions in Er c13 · 6H
2

0 have been observed, and from the positions 

of these lines Harrop
8

) has calculated the CEF interaction produced by 

the surrounding lattice. If it is assumed that the same fi'elds interact 
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with the Thulium ion, then we can get a fair description of the CEF 

levels for 'Iln c1
3 

· 6H
2
0. Harrop has extended this idea to all the 

rare earths from Gadolinium to Ytterbium. He obtains reasonable agree-

ment with the observed spectra of the Kramer's ions (odd number of 

electrons - Er, Dy, Yb, Gd) and fair agreement for non-Kramer's ions 

(Tb, Ho, 'Iln) • 

The level scheme calculated for 'Iln c1
3 

· 6H
2

0 is shown in 

Figure 3. The principle features of the levels are: there are two 

sets of nearly degenerate levels, one of which contains the ground 

state; 
-1 

furthermore, the pair of lowest levelslies about 240 cm 

below the n ext lowes t level s o that at low temperatures only the 

lowes t two levels need be considered. The calculated splitting of 

-1 
these two levels is about 0.6 cm Using Harrop's crystal field 

parameters we have calculated the wavefunctions of these two levels 

(see Appendix I). Using these wavefunctions we have calculated matrix 

169 
elements for the hyperfine interactions with the 'Iln nucleus. We 

wil l denote the lowest CEF state by IG) and the first excited state 

by IE). Since both of these states are non-degenerate and there is 

presumably, no magnetic field from othe r ions; symmetry under time-

· r eversal implies that: 

0 = (EIJ\E) • (3) 

There is, however, an off-diagonal matrix element of 1which does 

produce a magnetic hyperfine interaction: 

j(Gj1jE)!
2 

= 34.8. (4) 
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Figure 3 

3 
Calculated Crystal Field Levels of Tm Cl

3 
· 6HzO, H

6
. 

These levels were calculated using CEF parame ters from Harrop8) 

listed in Table II. 
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The matrix elements relevant to the electr ic field gradient tensor 

are of the form 1/2 (G!J.J . + J.J . \G) where i,j = x,y,z (see 
1 J J 1 

Appendix II). In the principal axes coordinate system of this tensor 

we calculate that: 

J 2 2.3 z 

for the ground state , and 

J 
2 

2.6 = z 

J 2 
y 

J 2 
y 

4 .6 

4.2 

J 
2 

35.1 x 

J 
2 

= 35 .2 x 

0) 

(6) 

for the excited state . We note in particular that the field gradients 

are nearly identical for the two states. This seems to be a 

situation peculiar to the ground state in thulium chloride, for in 

general, in both Kramer's and non-Kramer's salts nearly degenerate 

levels will not necessarily have similar f _ield gradient tensors. For 

example, the field gradients of the other nearly degenerate pair of 

levels in thulium chloride are not nearly so similar. 

We should note, however, that the synnnetry of the crystal 

(a 2-fold axis of rotation) requires onl y that one of the principal 

axes of each of these tensors (the z axis) coincide with the synnnetry 

axis. As it happens , the x axes of the tensors of the two CEF states and 

the direction of the vector (cjJ1E) all coincide to within about 1° 

of arc. 

If J 
2 = J 

2 we would have axial synnnetry around the ax is of the 
y z 

electric field gradient and the magnetic dipole fi eld. Since this is 

nearly the ca se , we will assume axial synnnetry of the hyperfine inter -
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actions in some of the following discussion in order to get a good 

qualitative understanding of what is happening. Most of our calcula-

tions, however, did not use this assumption. 

The surrounding ions in the lattice also contribute to the 

field gradient tensor, but we have calculated that the main effect is 

to make the field gradient more n early axially symmetric, reduce 

the strength of the field gradient somewhat, and change the direction 

of the x and y axes slightly. 

In our case, the magnetic interaction between nuclear and 

electronic moments is much stronger than the "off-diagonal" quadrupole 

- interaction. The electronic moment is similar to the Van Vleck magnetic 

moment, since it comes from a term of the form (Gj"1JE). The hyperfine 

interaction (see. Appendix III) is then given by 

(7) 

where M = 2~ (r-
3

)M(Jj jNj jJ), g is the nuclear g factor, ~' ~N are the 

Bohr and nuclear magnetons, respectively. We may use perturbation 

theory to calculate the shifts of the levels under the assumption that 

the hyperfine interactions are small, compared to kB. For the 

detailed derivation, see Appendix IV. The net shift of the spectrum 

lines is given by 

E 
c 

lg 
21 (I + 1) - g 

2I (I 
~ g g g g e e 

If we write the "effective field" as 

H=M(Gj1jE) 

+ l~ Tanh ~T. 
(8) 

(9) 



and the nuclear moment as 

we may rewrite (8) as 

E 1/3 
c 

In the region e < 2T, Tanh 

which is independent of e. 
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~ (µg 
2 2 

Tanh - µ ) kB e 

(8/2T) ~ e /2T, and 

1 
6kT 

(9) 

Shape of the Spectrum Lines -- Relaxation Effects 

(10) 

e 
2T 

(11) 

becomes 

(12) 

In this section we will be concerned with relaxation between 

the electronic levels and its effect on the shape of Mos.sbauer 

spectrum lines. Figure 4A shows the position of the spectrum lines 

that would result from the situation illustrated in Figure 1. If the 

relaxation between the electronic levels were very slow, the spectrum 

of Figure 4B would result. On the other hand if the relaxation 

between the two electronic levels were very fast) the magnetic field 

would in eff ec t average out) leaving only the average quadrupole 

interaction, so that the spectrum of Figure 4C would result. A mor e 

interesting situation occurs when the relaxation rate is intermediate 

be tween these two extremes. It is this case which we now wish to 

consider in more detail. 

For the purpose of this section we will assume, as mentioned 

previously, that the electric field gradient is axia lly synunetric and 
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Figure 4 

Mossbauer Spectra for Slow and Fast Electronic Relaxation 

These graphs show how the Mossbaue r spectra would appear for 

Tm Cl3 • 6H
2

0 at a temperature T ~ B in the limits where the electronic 

relaxation is either infinitely slow or infinitely fast. 
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that the vector (GIJIE) lies along this axis. As a result of this 

assumption the nuclear states are eigenfunctions of I if x is the 
x 

symmetry axis. This assumption is convenient for two reasons: 

1. the wavefunctions and energies are easy to compute, 2. more 

important, relaxation between the electronic states does not cause 

relaxation between nuclear states (i.e., nuclear spin flips). 

Figure 2 shows the possible transitions between the various 

energy levels; Figure 4A shows the relaxation transitions between the 

spectrum lines. As can be s een , we are only concerne d with pairs of 

spectrum lines. Anderson
9

) has worked out a method of calculating the 

effect of relaxation on spectrum line shapes which he. calls the random 

frequency-modulation model. We have used his model to calculate the 

shape of our spectra. (See Appendix V for the d e tails of the 

derivation.) We hypothesize two M~ssbauer spectrum lines located at 

± m
0

, each with a width (FWHM) in the absence of relaxation of 2r . 

(Note, this is!!.£!:. the usual de f inition). One line wi ll b e the 

spectrum line emitted (or absorbed) when the electrons are in the 

ground state IG) and the othe r l ine when i n the excite d state \E). We 

define m dt as the probability that the elec trons are in the excit~d 
a 

state at time t + dt , given that they wer e in the ground state at 

time t. We similarly define wb for the r everse trans ition. We will 

!!£E. require that ma = wb. From these we define the auxil iary quantities 

(13) 
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In the limit me >> m0 (fast , but not infinitely fast, 

relaxation) we have a single line which is nearly Lorentzian wi th i ts 

2 2 
center at - m05 and with a width (FWHM) of 2r + (1 - 5 )m

0 
/me. 

Due to the requirement of detailed balancing we must· have 

1 -e/T 
m , m = e 

a b 

where ke is the difference in energy of the ground and excited 

electronic states. Hence we have that 

(14) 

5 = Tann (e/2T) (15) 

independent of the details of the relaxat:ion process . Consequently , 

we see tha t the center is a t - m
0 

Tanh (e/2T) in agreement with t he 

previous section , and a width of 2r + (m0
2

/me) [l - (Tanh ~r) 21 . 

As can be seen from the above , the details of the r e laxation 

are embodied in m • If the relaxation is due to a spin lattice "direct" 
e 

process where the transition IG) --+ IE) is caused by the absorption 

of a phonon of energy ke, then m is proportional to the number of 
a 

phonons of energy ke. Hence the temperature dependence can be 

inunediately written down with the help of the Planck distribu t ion 

mSL 
m = e /T a 

- 1 e 

e/T (16 ) 

·m 
mSL e 

b e/r e - 1 

where m8L is a constant. Hence 

(17) 
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from which we get the width 

(Tanh ~T )~}· (18) 

In particular, we notice that the second term is proportional to l/T 

at temperatures T >> e, has a maximum at Tanh (e/2T) = (1/3) 112 or 

T = 0.76 e, the~ decreases to zero at T = 0 (where only jG) is 

populated). 

For the case of spin - spin relaxation we will assume a model 

where the spins of the ions are flipped in pairs, that is, we have 

transitions of the form jE.)IG.) 
l. J 

BIG. IE.) where IE
1
.) means that the 

l. J 

ion at site i is in the excited state, etc. If we assume that the 

. th 
probability for the i ion to flip is the sum of the probabilities 

for pair flips, sunnned over j, we find that the probability is given by 

for j Gi) ~ 

jGi)\Ej) ~ 

states IGi) 

(J) 
a I 

j 

. ~ 

(J) (r .• ) p(E .) 
l.J J 

(19) 

\E
1
.) where (1)(1 .. ) is the probability for the transition 

. l.J 

jEi)IGj), given that the ions at sites i and j are in the 

and IE . ), respectively. 
J 

p(E.) is the probability that the 
J 

ion at site j is in the state jE.). For a dilute crystal p will be 
J 

given by 

f . 
J 1 + 

-e/T 
e 

-8/T 
e 

(20) 

where f. is the probability that the ith site is occupied by an ion of 
J 

169 the right type (in our case, 'l\n . ). For random population of the 

lattice sites, f. = f, the fractional concentration. Consequently, 
J 
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where 

Similarly 

then 

(.l) 
e 

from which we get the 

wss = 

(.l) = 
a 

- 22 -

-8/T 
f (.l)ss e 

1 + e -8/T 

--7 
m(r . . ) • 

J..] 

= 1/2 (ma +rob) = 112 ro88 f 

width 

2 

[1 - (Tanh ~ T ) 
2
] • 2r + 2 

mo 

f ross 

(21) 

(22) 

(23) 

(24) 

(25) 

For T >> 1/2 8 the width is independent of temperature; as T --70, 

ro
88 

--72r. We see also that the second term varies inversely as the con-

centration. 

Finally, we might consider the effect that the neighboring 

atoms niay have direct.ly on the hyperfine structure. That is, the 

magnetic moments on the neighboring ions may in e ffect change m
0

. 

If this were the case, then roughly both ro0 and me would be pro­

portional to the concentration so that the second term in Eq. (25) 

would vary directly, instead of inversely, as the concentration. We 

have made rough calculations which indicate that this type of 

broadening becomes appreciable only near 100% 1in in 1inC13 ·6H20, and is 
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still small compared to r. It does seem important for the sulphate. 

In order to estimate m88, we will use a simple model. We 

take two ions which are separated by a distance r12 ,and which have 

two states jE) and jG). The states have the matrix elements: 

(GIJI G) = 0 

(G!JI E) I= 0 

The states of the combined system can be written 

\A) = IE1,G2) 

I c) = I Gl' G2 ) 

I B) = I Gl ' E2 ) 

ID) = I El' E2) 

(26) 

(27) 

States A and B are degenerate while C and D lie above and below with 

a total separation of 2kB. If we now let the ions interact through the 

dipole-dipole interaction we have only two non-zero matrix elements: 

11 m dd 
(28) 

Here we are interested only in the first of these matrix elements, 

since these are the only pair transitions which conserve energy. The 

eigenstates now become: 

11> - 1/12 (\A) + I B)) 1'i mdd 

(29) 

12> = 1/12 <IA) - I B)) 
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If we now require that at t = 0 our system be in state IA), we have the 

following time-dependent wavefunction 

1jr(t) 
:imddt 

e + 
-imddt 

\ 2) e ) 

(30) 

We may interpret this as a relaxation between A and B with a 

relaxation time l/mdd" 

Th d . 1 d. 1 . . b . lO) e ipo e- ipo e interaction may e written as : 

(31) 

Since we are interested only in an order of magnitude estimate we will 

drop the second term. We then get 

(32) 
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EXPERIMENTAL EQUIPMENT 

The 8.4 keV gamma transition in 1ID 169 was used for all the 

M~ssbauer experiments. Er 169 decays with a half life of about nine 

days by beta decay to the first excited level of 1ID 169, which is 3/2+. 

The ground state of 1ID 169, which is the only stable thulium isotope, 

is 1/2+. 

Our absorbers were made of 1ID Cl3 • 6H
2
0, 1ID

2
(so

4
)

3 
• 8H

2
0, 

and 1ID 0 I as well as thulium chloride and sulphate diluted with 

the corresponding salt of yttrium. Yttrium was used because Y3+ is 

diamagnetic: it has only closed shells of electrons. Furthermore, 

it is chemically very similar to Thulium: the difference in ionic 

radius between 'IID
3+ and y

3+ is about 2%. To prepare the chloride 

absorbers, measured amounts of 1ID
2

03 and Y
2
o3 were dissolved in 

warm 3N HCl. The acid solution was then placed in a desiccator 

containing P
2
o

5 
as a desiccant. The solution was dried overnight with 

a forepump keeping the desiccator evacuated. In this period small 

white crystals were formed. These crystals were observed to be 

slightly deliquescent; that is, on humid days , when the relative 

humidity was above 60% or so, the crystals condensed enough water 

vapor in which to dissolve themselves. When the humidity dropped to 

40% or so, the crystals dried out again. It was also observed that 

crystals left in the desiccator for several days lost some of their 

crys tal water: when such crystals were allowed to stand in the air 

(relative humidity about 40%) they would gain weight for about half an 

hour, after which the weight r emained constant. Before they regained 
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their crystal water, such crystals also showed broadened MOssbauer 

spectra lines with a smaller quadrupole splitting. 

The sulphate absorbers were prepared by dissolving mixtures 

of conunercially available yttrium and thulium sulphates in water and 

then drying the resulting solution. The Tm 0 I was prepared according 

to procedures described by AspreylOa~ The chloride and sulphate 

absorbers themselves were made by mixing about 100 mg of the finely 

ground powder with an equivalent weight of .wax and pressing the 

mixture into a one-inch diameter disc between mylar films. The oxy-

iodide absorbers were made by dispersing the powdered TmOI with about 

200 mg of diamond dust. This mixture was then clamped between two 

thin beryllium discs. 

The source, velocity transducer, and ~lectronics are 

essentially the same as those described elsewherell). For most of the 

experiments a parabolic velocity reference signal (a twice-integrated 

square wave) was used. The error signal, which is the difference 

between the actual velocity of the source and the reference signal is 

shown in Figure 5. for the chloride experiments. 

The cryostat design, the essential parts of which are shown 

in Figure 6, was used primarily because of the accuracy with which the 

temperature of the absorber could be determined and controlled. 

Since the absorber was immersed directly in the liquid Helium, the 

temperature of the absorber could easily be determined by measuring 

the vapor pressure of the Helium. The temperature could be reduced 

to l.0°K by pumping on the helium bath. One added convenience of the 

cryostat design was that the absorber holder could be easily removed 
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Figure 5 

Velocity Reference Signal and Error Signal 

This Figure shows the time dependence of these signals, which charac­

terize the operation of the velocity transducer. These were the · 

signals recorded for the chloride experiments. The signals for the 

other experiments were similar. The zero point of the velocity 

scale of the error signal may not be exactly correct. 
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Figure 6 

Cryostat Schematic 

This figure illustrates schematically the construction of the cryostat 

used for the low temperature experiments. The upper part, including 

the helium and nitrogen reservoirs, is a modular dewar built by 

Andonian Associates. 
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or inserted from the top of the cryostat without warming the cryostat 

itself. above 4.2°K. Consequently, absorbers could be interchanged in 

a few minutes with a loss of only a few c.c's of liquid helium. 

For the high temperature TmOI experiments, an oven was used 

which permitted the absorber to remain immersed in an inert gas, 

since contact with the atmosphere would decompose the oxyiodide. The 

temperature was measured with a Chromel-Alumel thermocouple. The 

oven was heated by a coil of Nichrome wire surrounding the region 

occupied by the absorber. 

In some of the experiments a problem arose which we believe 

to be due to some time constants in the pulse height analysing 

circuits and the associated amplifiers. We believe we can correct 

for this. The non-resonant background is not a flat function of 

velocity but slants. By measuring the background in the absence of 

the absorber - indeed, in the absence of everything but the source 

and the proportional counter - we found that the background was a 

linear function of velocity , though the amount of slant varied from 

exper iment to experiment. If this problem does not otherwise affect 

the spectrum, then it is easy enough to correct for it in our least 

squares analysis of the data. 

The analysis of the data was greatly facilitate d by using a 

least squares fitting program. As an illustration, the standard 

deviation of the position of a spectrum line 2 cm/sec wide was 

typically 0.01 cm/sec. If the position were determined "by eye" the 

er~or limit would be at least 0.1 cm/sec - ten times l a rger. 

The data from each experiment were fit to two Lorentzians o f 
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equal area with a slanting background. Explicitly, the function is: 

f(v) = r -L {3W\ 2] (1 + y v). (33) 
. _

1 2 
(v - v.) + W. 

l.- ' ]. ]. 

The variable parameters are: 

a the non-resonant background at zero velocity 

{3 proportional to the area of the peak; it is equal to 

the he ight multiplied by the half-width W. 
]. 

y proportional to the slope of the background 

v . 
]. 

w. 
]. 

center of the ith peak 

half-width of the ith peak (1/2 FWHM). 

In particular, it should be noticed that the areas of both peaks 

were constrained to be equal. This was done since the broadening 

should not affect areas of the peaks . The results of least squares 

analysis are presented in Table I for the chloride and sulphate spectra. 
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TABLE I 

The results of the least-squares analysis of selected chloride and 

sulphate data are presented here. See the text for an explanation 

of the parameters (the parameter y is not tabulated). Tii.e velocity 

units are cm/sec. Tii.e temperature T is in degrees Kelvin; the 

concentration f is the atomic fraction of thulium; the thickness 

of the absorber T is in mg/cm
2 

of thulium. "fig~' refers to the 

figure where the data are plotted. Single line sour~es of Tm in Er F
3 

he~ted to about 27S 0 c13
) were used for all of the experiments. Tii.ere 

was some variation of the width of the line for different sources. 

Tii.is is reflected in the,..,, 60~ larger value of w1 for Tm Cl3 •6Hz0 

0 
. 

0 195°K. at 1.13 K, 130 K, 
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T f 'T I fig. a 13 W1 W2 Vl V2 2 
x106 xl03 OK mg/cm cm/sec cm/sec cm/sec cm/sec 

1.13 1.0 6.0 7A 0.97 67 1.5 7 1.64 -7.21 6.06 
1.85 1.0 6.0 7B 3.38 I 154 1.01 1.13 -7.22 6.47 
4.2 0 . 06 4.6 9A 18 . 7 i 101 0.86 1.5 -7.35 7.0 
4.2 .0.09 1.5 9B 3.15 55 0.88. 1.28 - 7.38 6.97 
4.2 0.17 1..6 4.63 82 0.89 1.16 -7.33 6.97 
4.2 0.25 2.1 9C 3. 95 69 0.90 1.01 -7.30 6.95 
4.2 0.33 3.7 2.09 60 0.90 0.93 -7.36 7.01 
4.2 0.50 4.6 2.20 llO 0.94 0.95 -7.34 7.01 
4.2 1.0 6.0 7CJ9D 7.13 299 o. 95 1.04 -7.30 6 . 97 
130 1.0 6.0 llC 2.83 162 1.64 2.5 -6.62 6. 71 
195 1.0 6.0 llB 2.45 124 1.69 3.3 -4.13 4.0 
295 0.17 1.6 5.61 79 1.05 1.66 -2 .13 2.12 
295 0.33 3.7 3.23 146 1.11 1.52 -2.12 2.16 
295 1.0 6.0 llA 2.24 95 1.02 1.44 -2.12 2.15 

Table I B Tm in Y2 (so
4

)
3

·8H
2

0 

1.2 0.048 1.3 2 .59 19 1.0 2.7 -7.36 5.3 
1.2 0.18 3.9 12B 2.09 48 1.07 2.3 -7.30 6.2 
4.2 0.048 1.3 12A 4.15 24 0.9 2.8 -7.4 6.2 
4.2 0.18 3.9 12C 2. 35 53 1.08 2.6 -7 .44 7.0 
4.2 1.0 11.0 12D 2.93 175 1. 7 10 -7.46 6 

80 1.0 9,3 13B 8.98 414 1.84 9.5 -7.18 5.8 
295 1.0 9.3 13A 8.66 245 1.22 1.47 -1. 72 1. 75 
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EXPERIMENTAL RESULTS 

Shift of the Center of Gravity 

Figure 7 shows Mossbauer spectra of Tm c1
3 

• 6H
2

0 at various 

0 0 
temperatures between 1 K and 4.2 K. The solid line is the result of 

the least-squares fit. The center of gravity of the spectrum was 

then taken to be halfway between the centers of the two peaks. The 

positions of the centers of gravity have been plotted versus tempera-

ture in Figure 8. The solid lines are plots of Eq. (2) for several 

values of e, adjusting E
0 

in each case to obtain the best fit to the 

data. The best fit is obtained withe= l.6°K ± 0.25 = 1.1 cm-l ± 0.17, 

-3 -1 -3 
and E

0 
= 2.1 x 10 cm ± 0 . 3 x 10 • The error quoted here is 

purely statistical; as can be seen from the graph any appreciable 

systematic errors could throw this off considerably. If we wished 

to determine e more accurately we should extend the measurements to 

lower temperatures , where the curves are more sensitive to e. 

However, this is not possible with our present equipment. We can, 

however, determine with good accuracy the quantity 

j \E
0

kB\
1

= 0.0480 cm-l ± 0.0007. From Eq. (8) we get 

1/3 M
2 

\ (Gi1\ E) i 2 ~g2Ig (lg + 1) - ge 
2

re (le + l)J . 
( 34) 

If we use the magpetic field measured in Tm metal
12

) to obtain 

values for gM, assuming that the field comes entirely from the 4f 

electrons with J = 6 we get 
z 
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Figure 7 

'Dn c1
3

•6Hz0 at Low Temperatures 

This figure illustrates the shift of the center of gravity of the 

spectra of the chloride absorbers at low temperatures. The solid 

curves are the least-squares fit to the data. The parameters for 

these curves are in Table I. The straight slanted line represents 

the non-resonant background computed in the least-squares analysis. 

The vertical dotted lines are the computed centers of the spectrum 

peaks. The statistical standard deviation of the position of the 

center of a peak was typically 0.01 cm/sec or less; this is about 

the size of one of the small dots. Single line sources of 'Dn in 

Er F
3 

heated to about 275°C were used for all of the these experi­

ments. Both peaks in 7C are about 50% broader than the peaks of 

Figures 7A and 7B. This is due to using a source with a broader 

line width for Figure 7C. The same source was also used for the · 

data shown in Figures llB and C. 
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Figure 8 

Center of Gravity of Mossbauer Spectra of Tm c1
3 

· 6H
2

0 as a Function 

of Temperature 

The experimental points shown here include some results from thulium 

diluted by yttrium. The solid lines represent curves of E
0

Tanh(8/2T) 

for several values of 8; in each case E
0 

was chosen to fit the experi­

-1 
mental points best. The curve for B = 1.1 cm represents the best 

fit to the experimental points. 
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For Tiu
169

, we find: 

gM 
g 

gM 
e 
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- 1.23 x 10-
2 -1 

cm 

0.94 x 10-2 cm-l 

(35) 

(36) 

This should be compared with the value of 34.8 calculated from the 

CEF data. This is fairly good agreement, considering the approxi-

mations and assumptions made in both calculations. 

Although the shape of the spectrum lines was affected by 

diluting the thulium with yttrium, as we shall see in the next 

section, the shift of the center of gravity is not affected by the 

dilution within the accuracy of our measurements. In fact, the 

points in Figure 8 contain results not only of the undiluted thulium 

chloride but also of the thulium chloride diluted by yttrium chloride. 

Asyrrunetric Line Broadening 

Figure 9 shows Mossbauer spectra of 'Tul in Y c1
3 

· 6H
2

0 for 

several different concentrations of 'Tul. Since m
0

, the separation of 

the component spectrum lines in the absence of relaxation, in 

Eq. (25) is different for the two observed peaksJthe difference in 

width of the observed peaks is assumed to be due to relaxation. In 

Figure 10 the difference in widths of the two peaks is plotted 

against l/f, the fractional concentration. The solid line is the best 

fit of the data to a straight line. In Eq. (25) (Tanh 8/2T)
2 

is 

. . 0 
less than 0.05 at 4.2 K and is more likely to be about 0.01; 
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Figure 9 

Tm 

This figure illustrates the asymmetrical broadening of the spectrum 

peaks with decreasing thul£um concentration. 
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F igur e 10 

Line Width Asymmetry as a Func tion of Thulium Concentration 

The difference of the widths (FWHM) of the two asymmetrical lines in 

Figure 9 is plotted versus the reciprocal of the fractional atomic 

concentration of Tm in Y c1
3 

· 6H
2

0. The experimental points were 

all measured at 4.2°K. The solid line is the best fit of the data 

to a straight line. 
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consequently we can neglect it. The best fit is then obtained with 
2 2 

(1)0 - (1) 
1 02 

(8.6 ± 1.1) 10-S -1 
(37) = cm 

211: c mss 

where the subscripts · l and 2 refer to the two spectrum peaks. Using 

perturbation theory to compute m0 in a manner similar t o Appendix IV 

we get 

(38) 

Using our value of if computed from the shift of the center of gravity, 

-1 
and ke = 1.0 cm we may compute a value for w

8
S: 

or 

mSS 1 
~ = (0.27 ± 0.04)cm-
2rt c 

-11 
l/mss = 2.0 x 10 sec. 

(39) 

The error quoted here is the s tatis tical error in the measurement of 

the e ffective internal field and of the line broadening; it does not 

include . any error in e ; -1 
kB may be as small as 0.1 cm • 

-1 - ~1 
(kB = 0.5 cm would make mss/21Cc = f cm .) 

For Tm.3+ (JI IAI \J) = 7/6 lO); from previous results we know 

('1') 2 = 30; for r we will use the dis tance to the neares t neighbor , 
0 

r = 6.5 A. Hence , from Eq. (32) we get 

-1 cm (40) 

When the second term of Eq. (31) is included and the result sununed 

over the s i x nearest thulium neighbors, which form a rough octahedron, 
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the result in Eq. (40) is increased by a factor between 4 and 8, 

depending on the exact orientation of (GIYI E ). Surrunation over the 

rest of the lattice will increase this further. In any case, the 

value in (40) is increased so that it is the same order of magnitude 

as (39). 

Thulium Chloride at Higher Temperatures 

In Figure 11 some Mossbauer spectra at higher temperatures are 

13) ' 
shown. As exp~cted , the quadrupole splitting decreases as the 

t emperature increases. The more striking result is that the broadening 

of the spectrum lines become s more asyrrunetrical as the temperature 

increases. We attribute this phenomena to the magnetic interaction 

of the nucleus with the higher lying, nearly degenerate pair of 

levels mentioned in the description of the 4f levels. The calculated 

-1 
splitting of these levels is smaller (,..; 0.1 cm ) than for the 

lowest pair so that the interaction is correspondingly larger . 

However, because the size of the splitting of the higher pair is 

relatively more sensitive to the variation of the CEF parameters, we 

have not tried to use Anderson's theory to calculate the shape of the 

spectrum, also the situation is complicated considerably by the fact 

that all of the 13 CEF levels are populated. At these temperatures , 

the electronic relaxation will be primarily spin-lattice relaxation, 

which is independent of concentration. This independence was verified 

by our experiments. 

Thulium Sulphate Results 

are shown in Figures 12 and 13. In a general sense these spectra are 
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Figure 11 

'l\n c13 ·6H
2

0 at Higher Temperatures 

This figure illustrates the temperature dependence of the asynnnetrical 

broadening of the spectrum peaks (compare also Figure 7). 
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Figure 12 

This figure illustrates both the concentration dependence of the 

asymmetrical broadening (A,B,D) and the temperature dependent shift of 

the center of gravity, which is best seen in the diluted absorbers (B,C). 
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Figure 13 

This figure shows the temperature dependence of the asynunetrical 

broadening in the absorbers of thulium sulphate. Note that at low 

temperatures the broadening is much more pronounced than in the 

thulium chloride. 
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similar to those of the chloride. In particular, as can be seen by 

comparing Figures 12B and 12C, there is a shift of the center of 

gravity nearly the same as in the chloride. This shows that the 

matrix element (El1jG) is about the same size in the sulphate as in 

the chloride . On the other hand the asymmetry of the line broadening 

is much more pronounced and shows a different concentration dependence. 

For high concentration the difference in line widths increases with 

increasing concentration, whe reas in the chloride the opposite is 

true. We attribute this to be evidence that the magnetic moments of 

the surrounding ions are directly influencing the hyperfine structure. 

That is, due to the magnetic inte raction with the surrounding ions, 

the hyperfine levels , in the absence of relaxation effects, are spread 

into a band of levels and m
0 

in Eq. (25) can now be replaced by m~, 

the width of this band. Since the width of this band is proportional 

to the concentration we would ex pect that the diffe rence of the 

spectrum line widths would be proportional to the concentration 

until the concentration decreases enough to where m~ ~ m0 • At this 

concentration m
0 

becomes more impor tant and the line width dif ference 

increases inversely as the concentration decreases, similar to the 

chloride behavior. 

We have made some rough calculations which indicate that the 

difference between the concentration dependence of the chloride and 

sulphate Mossbauer spectra can be ex plained if the CEF splitting, kB, 

of the two lowest sulphate electronic levels is smaller than that o f the 

chlor i de, and the magnetic dipole interaction be tween thulium ions is 

stronger in the sulphate than in the chloride. 
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Thulium Oxyiodide Results 

Mdssbauer spectra of thulium oxyiodide at several temperatures 

ar.e shown in Figure 14. Since the symmetry of the oxyiodide is c
4

v 

(a four-fold axis of rotation with parallel mirror planes) there 

will be three degenerate levels (not just nearly degenerate) in the 

4f level structure. Consequently we would expect stronger magnetic 

hyperfine interactions, producing a more asyrrnnetric line broadening. 
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Figure 14 

Tm OI 

This Figure shows Mossbauer spectra of Tm OI absorbers at several 

temperatures. A least-squares fit to these curves has not yet been 

attempted. Howeve r we interpret the room temperature spectrum (C) as 

consisting of two peaks located at about ± 3 cm/sec with the peak at 

+ 3 cm/sec being two or three times broader. At higher temperatures 

the splitting of these peaks decreases. The small dip on the left 

side of the room temperature spectrum is probably a fluke, since it 

did not appear in other room temperature spectra. 



A 

B 

c 

- 56 

....... ' . ·. .. . . , -. .:, "'· ·. . ....... . · .... . .. . . ·. . ,,. . . .. . ........ . . 

.••:I•• .. •. 

. . ·.. . . : . . ·· .. . . . . . 

.. 
. . 

. -· ·.,·1 
. ... . . . ...... -.·.·." .· ..... , ·;· .-:. . .~. · .. , .... . . . .. .. . . 

68!5• c 

.. . 
• • .• <4 . . . ., ..... , ·.\ . . : .... .,, ·····. . . . .......... . .. . . . . ··· .... 

. . :.. : ... :· ....... ... . . . 234• c 
~"\1o•,"" • 
"r:" . 

. . ....... .· ... .... . .......... ,..... . . . .. . 
'._:~··:· .. 

-30 

.. 
.. 

. . 

.. 
········ 

0 

Figure 14 

Tm OI 

. . . · ... · .. ·. .... . .·. '~ ..... . ....... , ...... ~ . .. . . : .· ' 

. ... 
20• c .. 

cm/aec 30 

680,000 

670,000 

590,000 

5 70,000 

8950,000 

8900,000 

Coun Is 



- 5 7 -

SOURCES OF SYSTEMATIC ERROR 

Since our experiments involve measuring positions and widths 

of lines to an accuracy of a fraction ( ,_, 5%) of the line width, or 

for that matter, a fraction of the instrumental "resolving power", 

we should devote some attention to possible sources of error in our 

measurements. Some typical velocities were: the range of velocities 

covered was usually from - 10 cm/sec to + 10 cm/sec; the separation be­

tween the two peaks was about 15 cm/sec; the width of a peak was about 

2 cm/sec (FWHM); the instrumental resolving power (velocity increment 

per channel of the multi-channel analyser) in the region of a peak was 

about 0.2 cm/sec. 

There were several sources of error which may be generally 

called velocity errors- errors associated with the motion of the source: 

The most obvious is the calibration of the drive itself. The drive is 

calibrated by measuring the spectrum of metallicFe
57 

at room tempera­

ture. This method, we feel, is accurate to about 1/2 %. Experience 

has shown that the calibration changes by less than 1/4 % per month , 

which is a typical span for a series of experiments. Since this error 

is the same for a series of experiments we may account for its effect 

by quoting a 1/2 % error in our end results; other sources of non­

systematic error are generally several times larger. A second type of 

velocity error is due to the fact that the motion of the source is not 

exactly what it is thought to be. The source does not follow the 

reference signal exactly. Assuming that the source is rigidly 

connected to the pick-up coil, then we can measure this error; a 
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typical error signal is shown in Figure 5. Also, due to the fact 

that the integratingcircuits used to produce the reference signal 

do not integrate perfectly, there is a certain amount of error in 

the reference signal. From our measurements of Fe
57 

calibration 

spectra we believe this error to be rather small. One important 

point to realize about these errors is that they are all symmetric: 

If the two peaks were symmetric, these errors would not produce any 

asymmetry. Consequently, in our measurements of the difference of 

the widths of the peaks or of the center of gravity, these errors 

cancel out in lowest order; their effect will be a (small) percentage 

of the result. 

A second type of error arose, as mentioned before, due to the 

slanted non-resonant background. We believe that this was not an 

appreciable source of error in the center-of-gravity measurements due 

to the internal consistency of a number of measurements on absorbers 

which should have in other respects given identical results. On the 

other hand, there is some evidence that the measurement of the widths 

was affected. For this reason the error limits on these measurements 

were increased over the statistical limits by an additional 0.1 cm/sec 

to account for this error. 
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APPENDICES 

r 
The first three appendices contain resumes of the theory of 

the various interactions with which this thesis is concerned. They are 

not meant to be complete derivations of the various results that are 

obtained, but are presented here in order to round out our theoretical 

treatment and to clarify our notational conventions where necessary. 

The last two contain the detailed derivation of several formulas used 

in the text. 
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APPENDIX I 

THE CRYSTALLINE ELECTRICAL FIELD INTERACTION 

In this section we are concerned with describing the interaction 

of the crystalline electrical field (CEF) with the 4f electrons of a 

rare earth ion. As mentioned before, the CEF interaction is weak 

compared to the spin orbit interaction so that the CEF interaction 

can be treated as perturbing a manifold of states for which J, the 

total angular momentum, is a good quantum number. We therefore, treat 

here only the interaction with a single J-multiplet and do not consider 

the mixing of states of different J. The potential energy of an 

electron located at the position (r, e, 0) due to the surrounding ions 

may be expanded in a series as 

+n 

- e V(r,B,0) = L I 
n rn=-n 

(41) 

where ~ m and ~-m are the real and imaginary parts of the spherical 
n n 

harmonics .y m, but with different normalization. Specifically, we use 
n 

h 1
. . 13) 

t e norma 1za t1on 

with 

~o 
2n 

~±m 
n 

= 2n I n. P2n(cos B) 

, (n _ m) • m {cos m0} 
m. ( + ); p (cos e) x . ~ m > 0 n m • n sin mv 

p rn(x) = (1 - x2)rn/2 (L) m p (x) 
n dx n 

(42) 

where P is a Legendre polynomial. In particular, for n = 2 we have 
n 
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cl> 0 2 
- 1 (3z

2 2 2 
= 3 cos e = - r )/r 2 

cl> 1 sin e cos e cos 0 = z x 1r2 2 

-1 
cI>2 sin e cos e sin 0 z y/r 

2 
(43) 

cl> 2 . 2e cos 20 
·2 

y2)/r2 sin (x -2 

-2 . 2e 20 
2 

cl>2 sin sin = 2 x y/r • 

The direct interaction with the 4f electrons is, in effect, partially 

shielded by the closed electron shell. That is, the CEF will distort 

the closed shells so that an additional potential is produced, which 

may be expanded as 

- e V' (r,S,0) 
..,...--. 

= \ Ams (r) cl>m(S,0). 
~ n n n 

(44) 

n,m 

Consequently, the Hamiltonian for the 4f electrons is 

H~~F .- L L An m Gk n + Sn (rk)J cl>n m(ek,0k) . (45) 

k n,m 

Since we are concerned only with a single J-multiplet we may use 

. 1 14) . h" · 1 . operator equiva ents to rewrite t is Hami tonian as 

L Anm(rn)E(JI 1en\ \J) OI1m(1) (46) 

n,m 

where 
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the· symbol (rn)
4

f denotes the matrix element of rn for the radial 

part of the 4f wavefunction. The expressions (JI [Bnl !J) are reduced 

mat~ix elements which have been tabulated in the literaturelO). The 

usual notation is e = a,~,y for n = 2,4,6. 
n 

m~ 
The 0 (J) are the 

n 

operator equivalents 
th 

n order polynomials in J, J , J+' and J • 
z -

The relevant operator equivalents are tabulated in reference 13. In 

particular for n = 2 they are 

0 0 3J 2 - ; 
2 z 

= l/2(J J + J J ) z x x z 

-1 l/4i J (J - J_) (J - J )J 1/2 (J J + J J ) (47) 02 + = 
z + + - z z y y z 

0 2 1/2 (J 2 + J_2) J 2 J 2 
2 + x y 

-2 
l/2i(J 

2 
- J_2) J J + J J 02 = + x y y x 

For the case of a two-fold synunetry axis only n = 2,4,6 with even m 

need be considered when the z axis is taken along the two-fold axis. 

In principle , it is possible to calculate both Am and (rn), 
n 

but in practice it is difficult to do so. Consequently, the CEF 

parameters are introduced since it is these that are deduced from 

the optical spectra: 

(These are also denoted B m .in the literature.) The CEF parameters for 
n 

Thi c13 • 6H20 were obtained by modifying Harrop's Er c1
3 

• 611z0 

parameters8) , using the calculated (rn) of Freeman and Watson15) and 
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m 
assuming the A were unchanged. Using these CEF parameters the 

n 

wavefunctions were calculated in the form 

where [m) 

6 

Ii)= L amijm) (49) 

m=-6 

are eigenstates of J • 
z 

i The coefficients a are tabulated 
m 

in Table II for the two lowest states jG) and jE). Also tabulated 

are the matrix elements of (Gj02m[G), (Ejo2mjE), (Ejo
2

mjG), and 

(Ej1jG), which are the ones relevant to the hyperfine interactions. 
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TABLE II 

Wave Functions and Matrix Elements of the Two Lowest CEF Levels 

The wavefunctions are wri t ten in t he form 

Ii) = I i 
a 

m 
jJ,m) with J = 6 and 

i i~'<" 
a = a -m m 

i 
The coefficients a are 

m 
m 

tabulated here for m 2: 0 . 

These wavefunct i ons were calcul ated from CEF parameters f rom 

Harrop8): c 0 = 111, c 2 152 ' 
- 2 252, c 0 = 82, = c = - -2 2 2 4 

c 2 179, -2 = 320, c 4 = 308, 
-4 146 , c 0 = 9 = - c4 c4 -4 . 4 6 

2 
62 , 

- 2 
126, c 4 212 , -4 106, c 6 212, c6 c6 c6 = -6 6 

-6 
.10. c6 = -

The reduced ma trix elements used were : (JI ja j IJ) = 1 . 02 x 10- 2 , 

(Jl\~1 1 3 > = i.59 
-6 

(JllY \I J) = - 5 . 53 x 10 . 

-1 
are sepa rated in energy by 0,63 cm 

The two levels 
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~ 
0 1 2 3 4 5 6 

State 

Re(a ) 0 0.373 0 -0.222 0 0.081 0 
I G) 

m 

Im(a ) -0 .542 -0.098 0.033 m 

Re(a ) o. 722 0 -0.133 0 -0.065 0 0.059 
IE) 

m 

Im(a ) 0 0.452 0.078 -0.060 m 

Table IIA Wavefunctions 

Matrix Elem~ -2 -1 0 1 2 

(c\o2m\G) 28.9 0 -35 .o 0 - 9 .9 

(G\02miE) 0 0.23i 0 -0.22i 0 

(E\02m\E) 29.4 0 -35.2 0 -9.9 

J J J 
y z x 

(c\:TiE) 4.78 0 3.46 

Table IIB Matrix Elements 
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APPENDIX II 

THE NUCLEAR ELECTRIC QUADRUPOLE INTERACTION 

The electric quadrupole interaction of the nucleus with the 

d h b 
. 16) 

surroun ing c arges may e written 

2I(2I - I) 
"\"' 
L 1/2 q .. (I. I. + I.I. 

1] 1 J J J 
213 -r.20 .. ) 

1J 
i,j 

(50) 

with i,j = x,y,z. Q is the nuclear quadrupole moment, I , I , I are 
x y z 

~ ~2 
components of the nuclear spin operator, I, and I = I(I + 1). 

The tensor q .. is the field gradient tensor of the surrounding charges. 
1J , 

The diagonal terms of Eq. (50) may be written as 

(I 
2 

- 1/3 °fl + q __ (I 
2 

- 1/3 °fl + (I 
2 

- 1/3 "f 2 ) <I-xx x -yy y qzz z 
(51) 

1/2 q (3I 
2 

- t 2
) + (q - q__ ) (I 

2 
- T 2 ) zz z J{X -yy x y 

~2 I 2 · 2 2 
where we have used I = + I + I and Laplace's equation x y z ' 

q +q +q =O. xx yy zz 
(52) 

Since the tensor (q .. ) is symmetric, there will be a coordinate system 
1J 

in which it is diagonal. In this case we see from Eq. (51) that 

the field gradient can be characterized by two numbers, (q ) and 
zz 

~ = (<I-xx - <lyy)/{q
22

), the latter being a measure of the departure 

from axial symmetry~ 

Combining the equations (47), (50) and (51) we may make use 

of the Onm operators introduced in Appendix I 
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(53) 

where we define 

0 
q = qzz 

1 
2 (qzx + qxz) 4 ~z q = = 

-1 
2 (qzy + qyz) 4 ~z q = (54) 

2 
(~x - qyy) q 

-2 
(~ + q ) = 2 ~-q y yx 

The electric field gradient which interacts with a rare earth 

nucleus in an ionic crystal has four significant sources: (1) The 

field gradient produced at the nuclear site by the surrounding ions; 

(2) The field gradient produced at the nuclear site by the partially 

filled 4f shell of the ion containing the nucleus in question; 

(3) The 
11
la ttice" Sternheimer effect whereby source (1) introduces a 

distortion in the closed electron shells, producing a shielding of 

source (l); (4) The "atomic" Sternheimer effect, which shields the 

4f contribution to the field gradient. Collecting the different 

contributions, we have for the total field gradient tensor 

(55) 

where y
00 

and RQ are the lattice and atomic Sternheimer shie lding 

factors, respectively. Source (1) is usually small compared to the 
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other sources; source (3) in rare earths is usually a large anti-

shielding term, i.e., 
2 y is a large negative number (...., - 10 ) so 

CX> 

that source (3) is comparable to (2) and (4). 

For the contribution from the lattice (the surrounding ions) 

we can use the potential in Eq. (41). The quadrupole tensor is then 

given by 

q . . = [o2v(r)/ox. ox.1 0 
iJ i J r= 

(56) 

hence, after a little alge bra we find that 

2 i i 
e q(lat) = - 4 A2 (5 7) 

i 
where the q were defined in Eq. (54). 

For the 4f electrons we may use the method of operator 

14) 
equivalents to obtain 

q~~f) = - 3{Jl \al !J){r-3)4f[l/2 (JiJj + JjJi) - 1/3 ~5ij] 

(58) 

combining these contributions, we obtain after a little more algebra 

-1 o-\J) - 4(1 -
-1 2 

(59) q = -12 p yoo)A2 /e 2 

2 0 2 (°J) 2 2 
q - 3 p 4(1 - YO')A;_ /e 2 

-2 
- 3 P 0;

2 (°J) -2 2 
q - 4(1 - y

00
)A2 /e 
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where P (J[\a:[[J) (r-
3

)Q' and 

(r-3)Q = (1 - RQ)(r-3)4f' (60) 

For Tm c13 • 6H20 only a few of these operators have non-zero 

matrix elements. Due to the two-fold synnnetry the matrix elements 

(p\Onm[p) = 0 for odd m, where ·[p ) is a CEF state. On the other 

hand (E\Onm[G) = 0 for even m while (E[o~1 \G) are both quite small. 

The latter matrix elements will produce a slight shift of the center of 

gravity at low temperatures, but this is negligible compared to the 

magnetic interaction. (see next section). So, for our purposes that 

leaves us with only qo, q
2

, and q-
2 

In the principal axis 

coordinate system of the tensor (q .. ), (q-
2

) is zero by definition; 
1J 

this does not imply, however, that the principal axes will be the 

same for each of the CEF levels. To put this another way, we may 

-2 
choose our coordinate system to be the one for which A

2 
= O, say, 

then it will~ be true in general that (p\o;
2

\p) = 0 when the 

lattice has only two-fold symmetry17 ). As can be seen from Table II the 

field gradients from the two lowest CEF states of Tm c1
3 

• 6H
2

0 are 

( -2 ,-7 ) nearly identical. The coordinate systems for which o
2 

(J) vanishes 

are nearly coincident, they are rotated with respect to each other 

by only 
0 -2 ,.., 0.2 , while the coordinate system for which A2 0 

differs by N 6°. 
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APPENDIX III 

THE NUCLEAR MAGNETIC DIPOLE INTERACTION 

The magnetic hyperfine interaction between the nucleus and 

the surrounding 4f shell is
18

) 

(61) 

where ~ is the Bohr magneton, g the nuclear g factor, I the nuclear 

spin, r. the radius vector of the ith electron, and£ and s the 
l. 

orbital and spin angular momenta, and where we have left out the so-

called Fermi contact term, which is negligible for the 4f electrons. 

. 10, 14) 
Again , using operator equivalents we may also write 

(62) 

where M = 2~ (J\ \NI IJ)(r-
3

)M and 

(r-3)Q' (r-3)M = (1 - ~)(r-3)4f 

(r -3)M is defined analogously to 

(Eq. (46)). 

The only non-zero matrix elements of :lin Tm c13 • 61S.0 are 

between CEF states, e.g . , (E\JjG). Due to symmetry under time­

reversal, the diagonal matrix elements of "1, e.g. (G\ 1\ G), must 

vanish for non-degenerate states in the absence of an external 

magnetic interaction. In this case "external" means anything 

outside the ion in question, including magnetic interactions with 

surrounding ions; these are excluded, by definition, in the CEF theory. 

As it happens the direction of (El1\G) lies parallel, within about 

1°, to a principle axis of the field gradient tensor. 
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APPENDIX IV 

CENTER OF GRAVITY SHIFT DUE TO THE MAGNETIC HYPERFINE INTERACTION 

In this section we will derive a general formula for the 

shift of the center of gravity of the MOssbauer spectrum due to a · 

magnetic hyperfine interaction between two nearly degenerate 4f 

levels. To do thisJ we will use second order perturbation theoryJ so 

that we will need to assume that the magnetic hyperfine interaction 

is smaller than the CEF splitting, kBJ of the nearly degenerate 4f 

levels. 

For the states of the combined nuclear~electronic system we 

write 

jG,k) =I 
m 

(63) 

jE,£ ) = I 
m 

where jG,k) and jE,£ ) are the eigenstates of the quadrupole hyperfine 

interaction (not including. terms like (Ejo2m(1) jG) - see Appendix III). 

We will neglect the quadrupole hyperfine energies in the energy 

denomina tors since they cons titute a third order term. The second 

th order shift of the energy of the k level of the ground sta te is 

given by 
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(64) 

where we write K = (El 1\ G). 

The average shift of the levels associated with the ground 

electronic state is 

1 I (65) 
2I + 1 

k 

Using closure: 

I k k~'c 
5 a a 

ml ~ ml m2 
k 

(66) 

I b£ £"le 
5 b = 

m3 m4 m3m4 
£ 

We get from (64) and (65) 

213 2 2 g '..M. I N 
((mli\m') • i{)((m'li\m) • it'c). 

kB (2I + 1) 
Ill J Ill I (67) 

At this point we might note that neglecting the quadrupole hyperfine 

energies in the denominators amounts to assuming that a ll the IG,k) 

are degenerate. Hence, we could have just as well chosen our s tates 

to be \ G) I I ,m) and written down (67) almost innnediately. Proceeding, 
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we may writer· 1= IzJz + l/2(I+J- + I_J+)' then (67) becomes 

[1Jzl
2I I (ml 1 zlm>l

2 
+ t<l 3+1

2 
+ IJ_l

2
) 

m 

I I (ml I+lm - 1) 12] 
m 

It is easy to show that 

1/3 I(I + 1) (2I + 1) 

2/3 I(I + 1)(2I + 1) 

m 

and 

Gathering everything together we get 

g213 2M2 
E =1 /3 . NkB I(I+l)l(G\JjE)l

2
• shift 

(68) 

(69) 

(70) 

(71) 

For Tm Cl3 • 6H
2

0 it happens that the third order term of the 

perturbation expansion is nearly zero. The magnetic interaction has 

only even order terms since odd order terms all involve matrix 

elements of (GiJlE) or (EjJjE) which are zero . Cons equently, the only 

third order term comes from neglecting the quadrupole energies in 

the energy denominator. 

Assuming that the field gradients are axially synunetric and 

(G\J\E) lies parallel to this synunetry ax is, the unperturbed states are 
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E = E 
m 

E = kB+ E' 
m 

E±l/Z the third order term is then 

m 

(72) 

(73) 

For Tm c1
3 

• 6H
2

0 the f ield gradients of the two nearly degenerate 

CEF levels are almost the same. Consequently E~/2 ~ E
312 

and 

E(3),...., O. 
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APPENDIX V 

" SHAPE OF MOSSBAUER SPECTRAL LINES INFLUENCED BY ELECTRONIC RELAXATION 

In this section we derive the shape of Mossbauer spectral 

lines influenced by relaxation between the electronic states. In 

the limit of very long relaxation times we would expe·ct to see a 

superposition of the.hyperfine spectra o f each of the electronic 

states, weighted with the appropriate Boltzman factors. On the other 

hand if the relaxation times are very short, we would expect to see a 

hyperfine spectrum appropriate to the thermally averaged electric and 

magnetic fields. Here we will be interested in the intermediate 

region where the relaxation times are neither particularly fast nor 

particularly slow. This treatment uses Anderson's "random frequency­

modulation model11 9) as a basis. The relevant sections of his pap·er 

are sections 1 and 2 and section 4 up to equation (50) near the 

bottom of page 326 (there is another equation labeled (50) on the 

preceding page). Since this is a fairly lengthy derivation we will 

not repeat it all here . We will, however, indicate several minor 

adaptations needed for our problem. 

For our case, the parts of the Hamiltonian are: 

H
0 

includes the interactions of the free ion except for the 

hyperfine interactions. H includes the hyperfine interactions and 
p 

the static CEF interactions . H includes the interaction which 
m 

causes relaxation between the CEF levels. 

We wish to include explicitly the fact that our spectrum 
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lines have a finite width in the absence of relaxation. This can be 

done by making the spectral frequencies complex: we replace /:s)) .. by 
l.J 

~- . + ir. This has the effect of adding - r to all the diagonal 
l.J 

elements of the matrix ~ + IT. This has no effect on the matrix 

eigenvectors, which are the columns of the transformation matrix 1· 

It does, however, have the effect of adding - r to all the eigenvalues 

of the matrix. Consequently the autocorrelation function cp (T) in 

A d 1 • 1 . l" db -I'T . 1 1 n erson s paper is mu tip ie y e , or equiva ent y, our spectrum 

will be obtained from Anderson's_ I(ru) by convolution with a 

Lorentzian of width (FWRM.) Zr. 

Anderson implicitly assumes in his derivation that T is 

positive. It is quite straightforward to show from the definition 

of cp(T), 
00 

cp(T) = f µ(t)µic (t + T)dt (74) 

- 00 

that 

(75) 

we then get for the spectrum 
00 

I(ru) = fcp(T)e-imTdT 
- 00 

00 ()() 

J -lmT f. ~·c lmT = cp(T)e dT + cp (T)e dT 
0 0 

(76) 

00 

= 2 Re (j~(T)e -im-r d-r) 

where Re(x) means the real part of x. 

From Anderson's equation (50) on page 326 we have that 
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and hence 

I (ru) 2 Re (I 
k 

where 

-1 ) (T )kj 

so that we have finally 

I(ru) = 2 I 
k 

Im(Ck)[ru - Im("K) ] + Re(Ck)[r - Re("K) ] 

[ru - Im("K)l
2+ [r - Re("K)]

2 

Im(x) denotes the imaginary part of x . 

(77) 

(78) 

(79) 

? (80) 

The case we are interested in can be described in the 

following fashion: we have two hyperfine spectrum l i nes separated in 

the spectrum by 2ru
0

; for convenience we will take ru = 0 to be hal fway 

in between t hese lines. We will denote the transition probabilities 

by ru and rub where ru is defined by assuming that at t == 0 the electrons 
a a 

are in the s tate associated with the line at - ru
0

, then rua is the 

probability that at t = dt they are in the s tate associated with t he 

line at ru0, rub is similarly defined for the reverse transition. For 

convenience we will also define 

(81 ) 
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We then have the following matrices: 

(82) 

w
1

. is the (steady state) probability that state i is occupied. The 
l. 

eigenvalues of (iw + 11) are t ile solutions of 

w + (w 2 
e e 

The un-normalized eigenvectors are: 

[aJ and l~J 
2 

where D = iw
0 

- w 5 + (m 
e e 

transformation matrix is 

T = 

2 
- (\)0 

[

m n J a 

n -wb 

(83) 

(84) 

One possible 

(85a) 



and 

2 
wi th N = illaillb + 0 

we find that 

1/2[1 + (1 

- 79 -

ixo) (1 

1/2[1 - (1 - ixo)(l - 2ixo - x2) 112] 

(85b) 

(86) 

In particular, we note that Im (C
1

) = - Im(C
2
). This is particularly 

2 
important as it ensures that I(ill) drops off as l/ill for large ill . 

Using Eq. (78) we write 

-iC 1c* -iC ic; 
I (ill) 

1 + 
1 

·"-* + 
2 + = 

if...~ (l) - ir + iA.l ill + i r - l. 1 ill - ir + iA.2 (l) + ir -

(87) 

This form is particulary useful for finding the center of gravity of 

the spectrum, ill, by the me thod of residues. 

00 

-(l) f mI (m) cm 
-oo 

(88) 

- 00 

Strictly speaking the integral in the numerator diverges logarithmically 

if the limits to infinity are taken separately . Consequently, a 

certain amount of sophistication must be used in the handling of 

the residues. Evaluating the integrals, we find that 

co 

f I(m)d:JJ = 21((C1 + c2) = 2n (89) 
- 00 
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- 00 (90) 

hence 

(91) 

which is just the weighted average of the two spectrum line positions 

We will be particularly interested in the case where me >> m
0 

(fast relaxation) or x << 1 in which case we get 

Re(l-.
2

) = -2m 
e 

(92) 

(93) 



- 81 -

cl 1/2 [l + (1 - ixo)(l - 2ix5 - x
2

)
1 12

] 

(94) 

. 3 2 
Im(C1) ~ 1/4 x 5(3 - 5 5 ) 

c2 1/2 [l - (1 - ixo)(l - 2ix5 - x
2

)
1 12 ] 

(95) 

We can regroup the terms in Eq. (72) to get 

(96) 

The term in the first bracket is simply a Lorentzian with area _, 2 rc, 

For our case r and m
0
. are of the same order of magnitude (m

0 
may be 

slightly larger) , so that we may write r- m
0 

= x me. Hence, the 

height is ...., l/:xm . On the other hand the largest that any of the 
e 

other terms in the second bracket becomes in the region m _, ± m
0 

is 
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2 
of the order of x /m . Consequently the terms in the second bracket 

e 
3 

are of the order of x smaller than the first term. 
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