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ABSTRACT

Let F(®) be a separable extension of degree n of a field F.
Let A and D be integral domains with quotient fields F(®) and
F respectively. Assume that A D D. A mapping & of A into the
n Xxn D matrices is called a A/D rep if (i) it is a ring iso-
morphism and (ii) it maps d onto dI_~ whenever d e D. If the
matrices are also symmetric, & is a A/D symrep.

Every A/D rep. can be extended uniquely to an - F(©)/F rep.
This extension is completely determined by the image of €. Two
A/D reps are called eguivalent if the images of © differ by a
D unimecdular similarity. There is a one-to-cne correspondence between
classes of A/D reps and classes of A ideals having an n elemeﬁt
basis over D. |

The conditiop that a given A/D rep class contain a A/D  symrep
can be phrased in various ways. Using these formulations it is
possible to (i) bound the number of symreps in a giveﬁ class,
(ii) count the number of symreps if F is finite, (iii) establish
the existence of an F(8)/F symrep when n is odd, F is an
algebraic number field, and F(8) is totaily real if T is formally
real (for n =3 see Sapiro, "Characteristic polynomials of symmetric
matrices" Sibirsk. Mat. Z. 3 (1962) pp. 280-291), and (iv) study the
case D =Z, the integers (see Taussky, "On matrix classes correspond-

ing to an ideal and its inverse" Illinois J. Math. 1 (1957) pp. 108-113
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and Faddeev, "On the characteristic equations of rational symmetric
matrices” Dokl. Akad. Nauk SSSR 58 (1947) pp. 753-754).

The case D =2 and n =2 1is studied in détail. et A
be an integral domain also having quptieht field F(®) and suéh that
A* DA. Iet ® be a A/Z symrep. A —— given for finding a
A'/Z symrep @ such that the A' ideal class corres@onding to the
class of @ 1is an extension to A’y of the A ideal class correspond-

ing to the class of @&. The problem of finding all A/Z symreps

equivalent to a given one is studied.
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INTRODUCTION

Let F(9O) ﬁe a separable extension of a fieid F. It is
clear that there is a set M of square F matrices isomorphiﬁ
to F(®) with f e F corresponding to fI; one need onl& con-
sider the extension generated by the companion matrix of 6. We
wish the elements of M S e symmetric matrices. Krakowski [10]
has shown that this can always be done if F is not formally real,
and that for formally real ‘F' it is necessary and sufficient that
F(6) be totally real®. The minimum possible dimension of the
symmetric matrices in such a set M is not known. We shall study
the case when this dimensién is [F(®) : Fl.

Related problems deal with the characteristic polynomials of
matrices. Let D be an integral domain with quotient field F.
Let p(x) be an nth degrée monic D polynomial irreducible over F.
When D is the integers, the n Xn D matrix roots of p(x) =0
have been studied by

(i) Latimer and MacDuffee [11] who established a correspondence

between classes of ideals and classes of such matrices under similarity

via a unimodular mabrix,

(1i) Taussky [16-19] who found the class corresponding to A!

% ' L

Whenever F 1is formally real ' and HDOF, H is said to be totally
real if and only if HCMR (R e R) where R is the set of real
closures of F 1lying in the algebraic closure of H.
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in terms of the class corresponding to A, and studied the classes
containing symmetric matrices when n =2, and
 (iii) Faddeev [3] who studied the existence of symmetric roots

when n < 7.

For D an algebraic nunber field and n = 3, Sapiro [1L] used
4¢-adic enelysis to show that p(x) =0 has a symmetric 3 x 3
D matrix root if and only if Krakowski's condition holds.

We shall generalize the above questions and results. Suppose
A is an integral domain with subdomain D and quotient field G,
a separable extension of degree n of F, the quotient field of D.
A representation of A over D (ebbreviated A/D rep) is a ring
isomorphism of A onto a ring of n X n matrices oﬁer D such that
d e D goes into dIn. If the matrices are symmetric, we speak of a
A/D symrep.

Section I discusses the basic nature of A/D reps and general-
izes the Latimer-MacDuffee and Taussky correspéndences (Theorem 1.5).

" The nature of A/D symreps is studied in Section II.‘ Theorem
2.2 reformulates the quesfion of existence of symreps in a given
class of A/D reps in a variety of ways. These depend on the
orthogonality of the characteristic vectors éf a symmetric matrix.
This leads to a formulation in terms of quadratic forms. TLet ot
be in the class of ideals corresponding to the given rep class. By
Theorem 1.5 there is an n element basis al,...,an for ot over

D. There is a strep in the given class if and only if for some.
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N € G the quadratic form Z(trG/F %aiaj)xixjr is eduivéient/over
D to a sum of n squares (see [L4] where D =F and G is re-
placed by a direct sum of fields, also see t5] where D =2Z). In
Theorem 2.5 we bound the nunber of symreps in a class by the
cardinality of the group of orthogénal nXn D matrices times
the cardinality of a gquotient group of units in a suitable extension
of A which depends on the symrep class. |

In Section III the existence of G/F symreps is guaranteed
when F 1is finite. The nunber of symreps is computed.

In Section IV we take F; to be an algebraic number field.
Theorem 4.1 generalizes a method of Sapirc to all odd n: the
quadratic form problem of Section II mentioned above-has a solution
if and only if the corresponding problems do for all 1F—adic
completions of F. The infinite spots yield Krakowski's condition.
A series of lemmas deals with the finite spots. This results in
Theorem 4.2 which states that Krakowski's condition is necessary
and sufficient for the existence of G/F symreps when n is odd.

Section V briefly considers D = Z.

The easiest case in which D # F is the case D = Z “and
n =2. This 18 dealt with in Section V-I. We start by applying the
results of Sections II and V (Theorems 6.2 and 6.3)

(i) to show that a class containing symreps contains four
(resp. eight) if there exisfs (resp. does not exist) a unit of norm

-1 in an appropriate extension of A which depends on the symrep
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class (tﬁe same one as in Section II), and

(ii) to characterize classes with symreps when A is the
ring of integers in G. Nearly all of Theorem 6.3 is -contained
in Taussky's work [18,19]. The remainder of the section uses
special properties available when D =2Z and n =2 in order to
deal with two questions. Iet A bg an integral domain also having
guotient field G and such that A' DA. ITet C be an ideal class
of A corresponding to the class of a A/D symrep; if C is
extended to an ideal class C' of A', exhibit a symrep (if any
exist) in the corresponding ciass of A‘/D reps. This is solved
by Theorem 6.4 and we find that such a symrep always exists if A!
is contained in the ring of integers of G. In the second problem
we are given a A/D symrep and asked to. find all equivalent ones.
This is only partially solved. We introduce a function called the
conjugator. A complete knowledge of its values would simplify the
problem. All we can provide is a partial description of its nature

(Theorem 6.6).
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I. REPRESENTATIONS IN GENERAL

Throughout this thesis .A will be an integral domain with
subdomein D. The quotient fields will be G and F respectively.
We assume that G 1is a separable extension of F of finite degree
n. Thus G is a simple extension of F and we may write G = F(8)

for some 6.

Definition 1.1. A mapping &(x) taking every o € A onto an

nXn matrix over D is a representation of A in D if

(i) ©® 4is a ring isomorphism-and

(ii) whenever d € D we have @(d) = dI_. We abbreviate this
to A/D rep. If the matrices are symmetric, & is called a A/D
symrep. Let @ and ¥ be two A/D reps. If there exists a D
unimodular matrix T (i.e., a matrix over D whose determinant is
a D unit) such that T@Q])T-l = ¥{(x) for all o € A, then we say

® is equivalent to VY.

ILemma 1.1. The above definition leads to an equivalence rela-

tion. Further, if T dis an n Xn D unimodular matrix and ¢ is

a A/D rep, then T® (oz)T-l = ¥(a) defines another ‘A/D  rep.

Proof. If A is a D matrix and T is a D unimodular

matrix and both are n X n, then TAT—l is a D matrix. Since
[TS] =_]T| -|S] and the units in D form a group, the n X n

D unimcdular matrices form a group. Write T(®) =¥ if
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T o@)T™t = ¥(@) for all o e A. Then we have (T8)(8) = T(S(a)).
The lemma follows from the closure and inverse properties of a

group.

When we specialize A to G and D to F, we have one of the
gquestions mentioned in the Introduction. The problem of Symmetfic
D matrix roots of irreducible characteristic polyncmials over D
is also included. To see this, take A = D[6], where © 1is a root

of the polynomial in question, then apply the following lemma.

Lemma 1.2. Let ® be a A/D rep and let & e A. If p(x) is
a D polynomial, then &(p(x)) = p(¢(x)). Further, the character-

istic roots of ©®(x) are the conjugates of « over F.

Proof. Write p(x) = Zakxk. Then

2(p(@)) = o(Za,0) = Te(z )o@ = Za L, ¢(@)* = p(2(@) .

Iet a(x) be an irreducible F polynomial for . Since F is
the quotient field of D, there is an m # O in D such that
p(x) = mg(x) is a D polynomial. Now O = @(p(x)) = p(e(x)).

Hence every characteristic root of &(x) is a root of p(x) = O.

From the lemma we see that if there is a A/D rep, then every
element in A 1is a zero of an nth degree monic D polynomial, the
characteristic polynomial of its image. If A = D[e], this con-

dition on elements of A 1is sufficient to guarantee a A/D rep
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(but not a A/D symrep), for we may take &(©) to be the com-
panion matrix for ‘t:-he monic D polynomial for 8. Iﬁ general it is
not known if the condition that the elements of A satisfy monic nth
degree D polynomials is sufficient to guarantee a A/D rep. The
corollaries fo Theorem 1.5 will give additional results on this
question. Sometimes it is useful to note that if A' is an integral
domain such that A/A' and A'/D reps (symreps) exist, then there
is a A/D rep (symrep). To see this, let ® and & be the

A/A* and AYD reps respectijely apd define Y(a) = ((I)(a.ij)) where
(aij) =08(x) and o ¢ A.

The lemma is also useful in showing

Theorem 1.1l. Every [_\./D rep © can be extended to a G/F rep
in exactly one way. We shall refer to this exteﬁsion as ¢ also.
The image of o™l is the matrix inverseof o). If ® is a
symrep, so is the extension. A partial converse is true: given D
and a G/F rep &, there is a A with quotient field G such

that ® is an extension of a A/D rep.

Proof. If a # 0, Vthen ®(}) has no characteristic roots
Iéqual to zero by the lemma. Thus &(x) :\_s nonsingular. The quotient
field of ®(A) under matrix inverse provides a G/F rep which is an
extension of ®. ILet ¥ be an extension of & to G. If o ¢ %,
Cthen I =o(1) = ¥(1) = ¥(@@ )E(@) = ¥(@ o). Hence ¥(@1) =

@(a)‘—l and so ¥ is uniquely determined on G, the quotient field
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of A. We prove the partial converse. Suppose ©&(8) = (Gxij/Bij))

.. € D. Let a=<H a..)e. Then @ 1is the
2d i,

extension of a D[a]/D rep.

where aij’a

Corollary 1.1.1. The nature of a A/D rep is completely
determined by’tbe image of © +under the extension to a G/F .rep.
The A/D rep is a symrep if and only if the image of © is symmetric.
Two A/D reps ® and Y are equivalent if and only if for some

D unimodulér matrix T
=1
T0(0)T ~ = ¥(©) .

Proof. The result is clear since G =F(®) and for f e F,

the image is fIn.

We shall find it convenient to deal with () rather than o.
: o
The above corollary shows that this is possible.

Definition 1.2. Let ¢ be a A/D rep (symrep) with @(8) = A.

We shall speak of the A/D rep (symrep) A and the equivalence

class C{A) = {B : ¥(0) =B and ¥ is equivalent to @&}.

Ey Corollary 1.1.1, C(A) = (B : B = map Tt for some D unimodular

"matrix T].

In the proof of Lemma 1.2 the condition @(d) = dI  for deD
was essential. It is also of central importance in our later work.

The following example shows that much of our work would not hold if
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we removed the condition @(d) = dIn. It is suggested that the
reader refer to it later if any question as to the usefulness of
the condition arises. Let D' be an integral domain, x an in-
determinate, D = D'[x"], and A =D'[x]. Iet & be a finite set
of positive integers. Let a matrix Ek be defined for each k ¢ §
such that

(1) Ei =E  all ke$8

(i) 2 dim E, = n (sum over k e 8)

(iii) for some k € 8§ we have B, # 0.
For p(x) e A define o(p(x)) =3 @)p(xkn)Ek (direct sum over
k € 8). Then ¢ satisfies all the conditions for a A/D rep except

possibly o@(d)

If

dIn whenever . d ¢ D. We can even extend it to a
ring isomorphism on G. As an example let n =2 and El = (O) and
E, = (1)-

The fact that F is not a finite extension of its prime field
is essential in this type of example. We shall see that @&(d) = dIn
is redundant when F 1is its prime field and nearly redundant when

F is a finite extension of its prime field.

Theorem 1.2. If F dis @Q or the integers modulo a prime and
® is a ring isomorphic map of A onto a set of n X n matrices

~

over D, then ® is a A/D rep.

Proof. Tet kX and m be integers and let (1) = E. Then

o(k) = (1) + ++- + ®(1) = kE and, when k/m e D,
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md(k/m) = inq>(1)q>(k/m) = 0o(m)®(k/m) = ¢(k) = kE. Since F is its

own prime field, ®(d) = d& for d e D. We must show that E =-In
We may choose o € A so that G =F(x) and ¢(x) is a D matrixf
Ilet p(x) = Zaixi be the characteristi? polynomial of @(x). Then

0 = p(e(@))E = ZaBo () = 50(s,)0(@’) = 9(a,0’) = 0(p(@)). Since
p(@) e A and @ is an isomorphism, p(a) = 0. The monic irreducible
F polynomial g for <« has degree [F(@) : F] = n and g divides
p which is of degree n. Thus P = gq. Hence zero is not a root of
p = 0. Thus ©(x) is nonsingular. Since o(@) = ®(a)E, it follows

that E =1 .
n

When F 1is a finite extension of its prime field we cannot
hope to get a result as strong as Theorem 1.2 since automorphisms
of G need not be trivial on F. The best we can hope for is that
dIn will be the image of od where o is an I(somorphism of

F into the field G. This is in fact true.

Theorem 1.5. Iet F be a finite extension of its prime field
II. Iet ©® map A ring isomorphically into n X n D .matrices.
Then there is a unique extension of © to a ring.isdmorphism e*
of G dinto nXn F matrices. There is an isomorphism ¢ of G
into its normal completion such that ©* is a UﬂlG/F rep where

% (a) = 8*(c(a)) for a e & G,
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Proof. In the course of the proof we shall develop the

diagram shown here.

AN

M{y') <—= G =1(¥)

=
=
I
=
N
S
S~

over over

A1l finite extensions of I are separable so we may write G = II(V¥)
and F = I(p) for some ¥ ¢A and @ e F. Let m=[F : Il. ILet
'@ Dbe the algebraic closure of G. Let ¢ be the F/I rep de-
‘Eermined by mapping ¢ onto its companion matrix.

Define ¥Y(@) for a el tobe (o (aij)) where (aij) = o(x).
By Theorem 1.2, V¥ is a /_\/T[ rep. By Theorem 1.1, ¥ can be
extended uniquely to a G/I rep. We have ¥Y(a) = ((D(aij @)))
for all o € G since‘ ¥ is extended to G by operations that can
be performed blockwise. Let e*(@) = (aij (@)). This is clegrly an
extension of @ to all of G since ¥ is a G/ rep. It is unique
since if %% is an extension with €**(a) #@*(cx) with o ¢ G,

the correslaonding' ¥'s are unequal on Q, contradicting the
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uniqueness of the extension of ¥ to a G/H rep. We have

= _ : -
Tl = T(ﬁ) (@(aij)) for 7 ¢ I where (aij) @ (r). Thus

@(aii) =1 and @(aij) =0 for i # J. Since ® is an F/I

rep we have a,, =T and‘ aij =0 for i # j. Thus G*CT) = 7L

The roots of &(p) are the conjugates of ¢ over I. By
Lemma 1.2 applied to the G/ rep ¥, the roots of ¥(¥) are the.
conjugates of ¥ over I. We have Y(¥) = (@(aij)) = (pij(é(@))
where O(¥) = (aij) and P 5 is a 1T polynomial such that
pij(¢)7= 85 50 By Williamson's theorem [21] the roots of Y¥(¥) are
the roots of -(Pij(¢(k))) for 1 < k ¢ m. In particular, the roots
of ©(y) = (pij(@)) are roots of Y(¥). Thus the roots of o)
are conjugateé of ¥ over II. Iet one such root be V¥*'. Since
@(W) is an n Xn F matrix, ¥' has at most n conjugates over
F. Thus [F(¥') : 1] = [F(¥') : Flom < nom = [M(y') : 1] < [F(y')-ml.
Hence F{') =I(¥') and ¥' has n conjugates over F and
FCI().

et K= {a : ®(a) is a scalar matrix snd o e G}. Since
©(¥) has distinet roots there is an @ matrix § such that
S@(w)S_l = diag(¥',...) where the entries are the conjugatés of
¥ ovér F. For any & € G there is a II polynomial By such
that pa(\[l) = ¢, Thus we have that ©*() is scalar if and only if
SE*Gl)S—l = diag(Ra(W‘),...) is scalar. Thus K = {p({{) : p{¥') ¢ F
and p is a 1 polynomial}. As II(y') DF, there is an iso-

morphism o : F»>»K such that o(p(¥')) = p{(¥). Consequently
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we may exbend ¢ 1o an isomorphism of G. Consider ©%gr. Iet
p be a II polynomial. If p(¥') e F, then &*c(p{')) =

o*(p(¥)) = 87 p(se*(¥)s s = sT(r)I S = p(¥')I,.

It was mentioned in the introduction that the study of A/D
rep classes is related to ideal classes. We shall establish this

correspondence in precise terms after we have formulated the concept

of an M-ideal.

Definition 1.3. A fractional ideal ¢z of A is a nonempty

subset of G such that 0t + ot C ¢z and ARCoz, and for
some A el we have OLCA/N. If or has an n element basis

when regarded as a module over D we say that ¢gr 1s an M-ideal

(of A over D) and call such a basis a module basis.

Ideals of orders in algebraic number fields need not be M-ideals;
however, it is well known that when D = Z every ideal ig an M-ideal.
There is only one M-ideal of G over F, namely G itself with
l,@,...,Sn-l as a basis. These ocbservations will be useful later.

Theorem 1.4. ILet & be a colummn vector whose components form
a module basis for the M-ideal ¢z . We call o an mbv for gz
(module basis vector). Let C(eoz) = {hgz : N € G}, the class of
ideals equivalent to ¢z . Let M(@) be the n X n matrix
@, " mewe @ s tme wth sonjupste of . Thess

notations will be used throughout the thesis. We have
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(1) C(gz) contains only M-ideals;
(2) £ is another mbv for oz if and only if Ty =B for
some D -unimodular matrix T;
G) @) # o -
) M(g)"l = M(B) where B is an mbv for o0z° the complementary

ideal (@?={NeG:trMeD forall ueo}).

Proof.

(1) If N e G, then Aoe has mbv 7\9&_.-

(2) If Tg =B where T is- D unimodular, then B, € 0t. Thus
b= (61,-.-,Bn) C - Since 70 isa D matrix, considering
Q= T—lg gives a, el so <l . Thus ® =V . Con-
versely, if B is an mbv for gz , T =8 and 8B =¢ for
D matrices T and S. Thus ST =1I so |S]|-]|T] = 1. Since
ISI, |T] € D, they are D units.

(3) Clearly o is an mbv for G over F. Since the extension is
separable, |M(a)| # 0.

(4) By the cofactor formula for inverses, the entries in the jth
column of M(q)'—l are symmetric functions in
o) . oG 1) () oM s they 1ie in F(eW)y;
in fact, if aij and a;, are entries, they are conjugates
lying in F(G(J)) and F(© (k)) respectively. This gives us
M(g)'_l = M(Q) for soms B, € G. It is clear that o2% is

an ideal since A,n ¢ ot® gives tr(A + n)u e D for all

Legl, and B e A gives tr(dA\)u = tr A(Bu) € D for all
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L e oz - since Aol C gz . We have

o

/4 {%eG:-trNJ,eD for all pe ot }

I

(e G : tr 7\aieD i=1,2,...,n} since ¢ is an nbv

]

{(AeG: M@nm=4d where m, = ?\(l)_ apd d, € D} .
Now M(g)m = 4 if and only if m' = d' M@)' * = a'M(B).
This is equivalent to A ¢ (Bl’BE""’Bn)' Thus B8 is an mbv

for the M-ideal o2 .

We can now establish the basiec link between M-ideals and A/D

reps. The proof follows Tauss;k_y [16, 19] where the result is es-

tablished for D = Z.

Theorem 1.5. For a given A and D there is a one-to-one
correspondence between all classes of M-ideals and all classes of
A/D reps. One such correspondence ‘is given by C(ot) «—>C{(a)
where A = M(g)J(G)M(g_)-l, the matrix J(©) = diag(e(l),...,e(n)),
and o 1s an mbv for ov . We shall use this correspondence through-
out the thesis. If C(ot) corresponds to C(A), then c(02®)

corresponds to C(A').

Proof. The equation A = M(g)J(e)M(g_)'l is equivalent to
Ag(i) = e(i)g(i) for 1 =1,2,...,n., Thus A is an F matrix.
Further, an nxn F matrix A is a G/f rep if and only if it
has a rootl 6. Then Ay =6 for some o # O with ay e G. Then
_ Ag_(i): G(i)g_(i). Such a matrix A is a A/D rep if and only if

p(A) is a D matrix whenever p(®) e A and p is an F polynomial.
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Since p(A)x = p(6)a, it follows that A is a A/D rep if and

only if ¢ is an mbv for the ideal (ocl,. , .,ozn).

It remains to show that the correspondence is a well defined
mapping of classes in both directions. Since M) = M(@)J(A) |
for N e G, we have A = M(’)\g)J(G)M(?\g_)-l. Thus 7\ai and 07_
give rise to the same A/D reps under the correspondence of the
theorem. If Q is one nbv for Ot, then by Theorem 1.4 (2),
we have that P is another if and only if Tg =g for some D
unimodular T. Then TAT T m-M(g)J(e)M(g)"l so that C(ez) »C(A)
is well defined. We now must show that C(A) -»C(er) is well defined.
If T isa D unimodular matrix, A = M(e)T(0)M(@) ™Y, and
AT = M()I(@)M(B) T, then it suffices to show that
M) = ™(x)T(A) for some A e G. ILet B = M(g)'lTM(g). Since
()T (0) (TM(e)) ™t = TAT! = M()T(6M(B) ™Y, we have that B and
J(@) commute. Since J(8@) is diagonal and the conjugates of .9
are distinct, B is diagonal. By Theorem 1.4 (4) there is a Y

with components in G such that M(@_)_l = M(y)'. Thus

P (1) . _
By = Zj,k ('yjtjkak) and so B = J(A) for some X\ € G.

Finally we have A' = M(g)'-lJ(G)M(Qt_)' = .M(Q)J(G)M(Q)—l where

B is an mbv for ¢2° by Theorem 1.4 (4).

Corollary 1.5.1. There is a A/D rep if and only if there is

an M-ideal of A over D.
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Corollary 1.5.2. If D=2 and I' is the ring of algebraic

integers in G, +then there is a A/Z rep if and only if A cC .

Proof. Suppose @ €A and a ¢ I. Then « satisfies no
monic Z polynomial. However, o safisfies the characteristic
polynomial of its image under any A/Z rep. Thus no A/Z reps can
exist if A Q i Suppc;se ACT. It suffices to consider the case
A =T since the case A CT follows by restricting a T'/Z rep.

There are M-ideals of I' over 2.

Corollary 1.5.3. If A is a A/D symrep and B e C(A), then

B ¢ €(h),

Proof. Since _C(A) =C(B), we have C(B') =cC(aA') =C(A).
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IT. SYMMETRIC REPRESENTATIONS IN GENERAL

One might hope that the most naive conjecture is true: whenever
A" ¢ C(A) then C(A) contains a‘ A/D -symrep. This is false. A
counterexample can easily be constructed as follows. Assume that the
monic irreducible F polynomial for © is a D polynomial. ILet
A = D[e]. Since (1) is an M-ideal, A/D reps exist, and since
(1)° € ¢((1)) by Lemma 2.1, the rep class corresponding to C((1))
contains its transposes by Theorem 1.5. If F 1is formally real
and G 1is not tétally real, Krakowski's conditimn[lO], mentioned in
the Introduction, assures us that no A/D symreps exist. Theorem
6.3 (2) enables us to construct examples in which A/D symreps
" exist and for C(A) corresponding to C({(1)) we have A' e C(A)
but C(A) has no symreps (see [18]).

One may then ask what conditions beyond A' € C(A) are needed.
There seems to be no natural answer in terms of M-ideal classes unless

D has further properties. One such property is that defined below.

Definition 2.1. We say that 8(G,D) holds if (a) if F is

formally real, G is totally real and (b) for all W such that
(1) W is a syﬁmetric n Xn D unimodular matrix,
(ii) |w] 4is a square in D,
(iii) W is positive definite if F is formally real, and
(iv) W = TT' 4is solvable for aﬁ nXn matrix T over the

algebraic closure of F, if F is of characteristic 2,
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we have that W = TT' is solvable over D.

The following theorem gives some cases in which 8S(G,D) holds.

It will prove guite useful later.

Theorem 2.1. (1) S(G,D) holds for finite D.

(2) 5(G,Z) holds for n g7 and G totally real.

Proof. (1) Since D is a finite integral domain, D = F. Ilet
W be as in the definition for $(G,D). If F does not have charac-
teristic 2, then S(G,D) holds since the class of a quadratic form
x'Wx over F with [W]| # O is determined 5y IWI-FQ and n
31, %« 1571 _ |

We agsume that F has characteristic 2. If W is as in the
definition for S(Qﬂb), we shall show that some w,. # 0. Then
two F transformations will be given which can be combined to éut

W din diagonal form over ¥. This will be sufficient since every

element in a finite field of characteristic 2 is a square.

Iet W = TT' over the algebraic closure of F. If § = T-l,
2
then I = SWS'. Thus 1 =3, . s .W,.s.., =2, 8_.W,, +
. i, TEL A A M - D
. . S,.8,.(w..+w,.) =2, et mlgee W =W. s scue
i3 1T Agtag Ji MG b il i

Vg # 0.

We may suppose W, # 0. Let B, = Wlk/wll and
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0
%
R = 1. 0 .
c 0 4.
n

It is easily verified that [R] =1 and FRWR' = Wi Ly @V where

V isan (n=~-1) X (n - 1) symmetric F matrix. We may repeat
the above procedure on V. Eventually we arrive at the case

SWS' =A@V where A = diag(al,...,ak), S is an F matrix with
Is] =1 and (a) V is a symmetric F matrix with Yoy =.O for
all i or (b)V is of dimension zero. In the latter case the
proof is complete. In the former case we shall exhibit an F
transformation Q with sts'Q'=A®B, Q] # 0, ana b, 7 O.

We can then proceed as above using B. Since ISWS'I # 0, we have
|aA] # 0 ana |V| # 0. Since all v,y = 0, we may assume v, # O.

Iet E be the dimV X dimA matrix with e

o1 = 1 the only nonzero

entry. Let

T g
o= (=)
veat | 1

Then since A =A' and V =V' and F has characteristic 2:

Qa ®@v)Q'

(mrpna) (o)
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L ; =1 !
Then (VE)ij = ﬁleiE gives (VE)A (VE)' = (allviEVjE) so that
bll # 0. Expansion of IQI by minors using successively the
2nd,3rd,...,dimAth rows gives
1 Q L Q eee O
Vip/%
vEE/kll £ .
lol =1 .

d,t
oh 4 h,5th’_ t

Expansicn using successively the esydimB + 1°

columns gives
1 1 £ L

IQI i = =1 5
V22/k11 o s S

since the Vs = 0 by assumption.
(2) This well known result in the theory of quadratic forms

can be found in [12, p. 330].

The‘reéult of Krakowski mentioned in the Introduction indicates
a fundamental difference between the formally real and not formally
real cases. At times we shall make a statement such as "if G is
totally real, A is totally positive." 1In ViEW‘Of Krakowski's
result, such a condition on A would then apply whenever F 1is

formally real and G/F symreps exist.
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Many of the results in this thesis depend on beingrable to
view the concept of symreps in terms of other ideas. The following
theorem lists a variety of conditions which are equivaleﬁt to the
existence of a symrep in a given class. The conditions can be
Pennd scattered in the literature [3,4,14,17], some impiicitiy,.some
expliéitly, but not as general as in the theorem. By the inner

product (o,B) we shall mean 0B -

Theorem 2.2. ILet A be a A/D rep with C(A) corresponding

to C(or). The following conditions are equivalent.

(1) c(A) contains a A/D symrep.

(2) For every B e C(A) there is a D unimodular matrix T such
that T'TB = B'T'T. |

(3) There is anmbv o for O and a W e G such that
M@)M(@) = 3(w). A A/D symrep in C(a) is M@)JI(eM(@) 7t
further 02 = pot® and, if F is formally real, G is
“totally real and y is totally positive.

(4) There is anmbv o for gz and a A e G such that
M(@)T(A\)M{a)! = I. We may take N =1 and @ as in (3).

(5) For some A e G and every mbv P for ¢r , there igs a D

unimodular matrix T such that M(B)J(A\M(B)' = TT'.
We may replace "every" by "some" in (2) and (5).

Proof. (1)= (2). We may assume A = A'. If TRT T = A

where T is a D wunimodular matrix, themn T'TB = T'AT = T'A'T =
DU,
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(@)= ({1). If T'IR = R'E'T, Izt B = BTt = o lgiyr = g

(1)< (3). By Theorem 1.5, A has the form M(g)J(e)M(g)_l,
where @ 18 an mbv for ot and a characteristic vector for A.
Since A has distinet roots e(i)-, its characteristic vectors are
g(i) (L < i<n). Since a matrix with ciistinct characteristic roots
is symmetric if and only if its characteristic vectors are orthogonal,
we have A = A' if and only if M(x)'M(2) = J((2,2)) = J(u). From
M(a) = M(g)'—lJ(p,) and Theorem 1.4 (4), we have gL = pot® . Since

[t = Zai, Krakowski's theorem completes the proof.

(3) <= (4) Both statements are equivalent to M(Qé_)_l =

JMM() "

(3)<=> (5) The mbv's for O are related by n X n D uni-
modular matrices according to Theorem 1.4 (2). Hence if
M{@)J(A\)M(@)! =I and B is another mbv, then B = Ta for some
B enlwsdiler T and M(B)T(AM(B)' = TT'. Conversely, if

ME)TOOMEB)' = TT' we set o = T 1B.

The replacement of "every" by "some" follows from the proof of

(2)= (1) and (5)= (4).

Corollary 2.2.1. {(Generalizes a result of Faddeev [3].) If F

does not have characteristic 2 and if A is a A/D rep with
C(A) «-»C(g7) and if Q is an nbv for 0T, then there is a A/D
symrep in C(A) 4if and only if there is a N € G such that the

quadratic form trG/F%(gc_,g)e, where x 1s an indeterminate, is
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equivaient over D to a sum of n squares.

Procf. We may write the quadratic form condition as
x'M{@)T(A)M{@)'x = y'y where y =T'x and T is a D unimodular
matrix. Hence M{@)J(AM(@)' = TT' is equivalent to the guadratic

form condition. Now apply (1) and (5) of the theorem.

Corollary 2.2.2. Assume that S(G,D) holds and that A is a
A/D rep with C(A) corresponding to C(egr). The following con-

ditions are equivalent.

(1) Cc(A) contains a A/D symrep.
(2) There is an mbv @ for gt and a AN e G which is totally
positive if F is formally real such that M(Q)T(\M(Q)' is

a D matrix whose determinant is the square of a D unit.

_Proof. {1)= (2) Use parts (1), (5), and (3) of the theorem.
(2)= (1) We use Definition 2.1 with W = M(@)J(A\)M(x)' and
T =M(@)NJ(A). Suppose F is formally real, then T is over the

real closure of F and x'Wx = (T'x,T'x) >0 if x # 0.

Corollary 2.2.3. If S(G,D) holds and every D wunit (totally
positive D unit if F is formally real) is a square in D, then
there is a A/D symrep whose class coi‘responds to C(ot) if and
only if 0t°= Aot for some A e G (with G totally real and A

totally positive if T is formally real).
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Proof. 1In matrix notation @¢2°= Aoz gives TMQ;)'_l
M{a)T(A) where o is annbv for 02 and T is a D unimodular

matrix. This is T = M(x)J(A\)M(@)'. Use the previous corollary.

Corollary 2.2.4. (Generalizes a theorem of Gorshkov [4].)

There is a G/F symrep if and only if for some ai""’an e G we
have @1(1),gﬁ3)) =0 for i#J and (@,@) # 0. If F is formally

real, (o,0) # O may be weakened to a # O.

Proof. The first part follows from (1) and (3) in the theorem.
To prove the weakened form it suffices to show that G is formally
real. Suppose G is not formally real. Iet R be a real closure
éf F such that R(i) contains G. Since R does not contain G5
we cammot have © ¢ R. Thus ) % ® where denotes eonjugateriﬁ
R(i) over R. Since FC R we have that © and ) are conjugate

over F. By assumption (,2) = 0. Thus o = O.

We have been dealing exclusively with a field extension‘of F;
however, similar problems exist when G is éh algebra over F. When
G is a direct sum ofrfields, we can work componentwise to some
extent. ILet p(x) be an F polynomial ﬁith distinct roots and let
G =F[x]/(p(x)). Then G is a direct sum of fields. Using this
Sapiro [14, Lemma 1.1] has generalized Corollary 2.2.1 when D = F.
Latimer and MacDuffee [11] héve established the equivalent of

Theorem 1.5 when D = Z.

The next theorem deals with the existence of symreps
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corresponding to the principal'ideal class.

Lermma 2.1. If A = D[6] and © satisfies a monic F

irreducible D polynomial f, then (1) = f£*'(8)(1)°.

Proof. Iet X = (xg-l). Then |X| is a vender Monde
determinant and will be written vdm(xl,. » .,xn). We wish to consider

X‘-l. Notice that the cofactor Xi v§nishes whenever XK =X

i m

and k¥ #m and k,m # 1. Thus vdm(xg,...,xn) divides X, .. Since
Xy =~k vdm(xg,...,xn) we have that X . divides X, . Now let
Xy = 6(3). By Theorem 1.4 (4) we have that

@) = (van(e®,...,e®) pane), ...,y = /e (o).

Theorem 2.3. Assume A = D[©]. If C((1)) corresponds to a
class with a A/D symrep, then there is a A unit 'n with
(-l)n(n_l)/eNn a square in D and, if F is formally real, G is
totally real and f'(©)n totally positive where £ is the monic
irreducible F polynomial for ©. If $(G,D) holds, the converse

~is true.

Proof. By Theorem 2.2 (3) and the previous lemma we have
(1) = p@)° = (u/£'(®)) fora peG with G totally real and p
“totally positive' if F is formally real. Write w =nf'(6). By.
Theorem 2.2 (5) we have M(g_)J(LLFl)M(g_)_' = IT' for some D uni-

medular T with ¢ = (l,6,...,en-l)'. Thus

712 = @) P = (P e @) = ()22,
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We must show that 7 is a A unit. Since (1) = (n/£r(8)) =n(1)
we have that 17 and n_l lie in (1) =A. - ‘
Suppose S(G,D) holds. ILet R = n£'(8). We may use Corollézy

2.2.2 since |M(g)|2- s = (*l)n(n_l)/E/Nq, a square in D, and
A1) = (1)° whence M(@) J(A) =T M@;)"l for a D unimodular

matrix T by Theorem 1.4 (2) and (4).

Corollary 2.3.1. (See [EQ; Theorem 3] for a more general result.)
If n=2 (mod 4) and a G/F symrep exists, there is an n € G and

a ke F suchthat -1 keNq.

Il

fl

Proof. We have G =F[6]. Take 17 as in the theorem.

If we consider other values of n, the result is trivial: for
odd n, we replace -1 by (_l)(n-l)/E and let k =1 and
- 2
n = (—l)(n 1)/ ; for n=0(4), we replace -1 by +1 and let

x =1 =1.

The following result gives a method for finding all G/F symreps

when n = 2. For general n we cannot do this.

Theorem 2.4%. Iet n =2. If the characteristic of F is not
2, +then we may assume that G = F(wc ) for some c ¢ F. There
are G/F symreps if and only if ¢ is the sum of two squares in F.

M1 G/F symreps then have the form
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VW

(-u v) <——->~fc where c=u2+v2.

If F has characteristic 2 and 62 + a0 +b =0, where a,b e F,

then there is a é/F symrep if and only if a f 0. A1l G/F Symreps

then have the form

( (v2 +b)/a v + (v2 +.b)/a

5 5 ‘> «> 6 vwhere v e F 1is arbitrary .
v+ (v +Db)/a a+ (v- +D)/a

4

Proof. Assume the characteristic of F is not 2. ILet

A« Je. Then |a - 1] = A - trA-h + |A] . By Temms 1.2,

2 - = =
A - ¢I = 0. Thus all = a22' Put u = a22 all and
v o= al2 = aEl' Then c¢ = u? + ve. Now assume F has characteristic

2. If a =20, we may apply the above analysis and conclude that if
. 2
there are G/F symreps then b =u + vo. But then 6 = Vb =

u+veF, acontradiction. ILet A ¢«»9©. As in the above case,

trA =tr® =a and |A] = -N6 =b. Thus we have the equations

all + a22 = a and alla22 + a21a12 =D and al2 = a21' Let all =1
" ‘ 2

and a;, =u+v. Then a,, =u+a and u(u+a) + W+ v)" =b

so that u = (b + Vg)/a since a # O.

The remainder of this section is devoted to structure properties
rather than existence questions. The next theorem bounds the number
of symreps in a given class. We begin by’defining a concept which is

necessary here and in the study of conjugators in Section VI.
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Definition 2.2. Let A = &(8) be a A/D .rep which has been

extended to a G/F rep. Let R(A) be the inverse image of the set
of D matrices in @(G). In other words, R(A) is the largest

subset of G for which A is an R(A)/D rep.

Lemma 2.2. R(A) is an integral domain containing A. If C(ov)
corresponds to C(A), then R(A) = (@:0?) where (:) =

(NeG:AV¥PCoe}. If Be C(A), then R(A) = R(B).

Proof. Clearly R(A) co;atains A and is a subring of G.
Observe that (@r:0%) 1is a class invariant. By Theorem 1.5, we may
choose @ to be a char#cteristic vector for A and an wmbv for oz .
Then (oz:ot) ={AeG: M ez for 1<i<n} ={AeG:N=T
for some D matrix T}. Since 6x = A%, we have &(A) =T where o
is the rep corresponding to A. Hence (Qr:0t) ={he G : ®(7) is a
D matrix} = R(A). Since R(A) = (pr:¢r) it is clear that B ¢ C(A)

implies R(A) = R(B).

We shall make a brief observation before proceeding to thé
theorem. The correspondence between rep classes and M-ideal classes
depends on.characteristic vectors and mbv's. However, all equivalént
matrices arise through ‘D unimodular transformations of one
characteristic vector and all equivalent M-ideals arise through
multiples over G of one mbv. Hence all equivalent M-ideals are

generated by taking the characteristic vectors of a fixed rep and all
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equivalent reps by taking all bases of a fixed M-ideal. The proof
of the theorem takes a fixed M-ideal and studies the set of bases

giving symreps after partitioning it in a suitable fashion.

Theorem 2.5. Let A be a A/D symrep, u the group of those
units in R(A) which (1) have norms that are squares in D and
(2) are totally positive if F is formally real. Let U? be the
subgroup consisting of the squares of the units in R(A). If On(D)
is the (possibly infinite) group of D unimodular n X n matrices
T such that TI' =1, let g = |0 (D)| if F has characteristic
2 and let g = lon(D)I/E otherwise. Then the number of A/D
symreps in C(A) is a multiple of g and is bounded above by
wt

g (U : ug]. If 8(G,D) holds, the bound is actually equal to the

number of A/D symreps in C(A).

Proof. Fix an o¢¢ such that C(A) corresponds to C(oZ). By
the remark preceding the theorm it suffices to study the, mbﬁ‘s of oOt.
Wi%h each p ¢ G we may associate the (possibly empty) set
M(p) = {mbv's a for ot : M@)*' M(@) = J(u)}. By the proof of
(1) & (3) in Theorem 2.2, it is clear that a - M(@) J(e) M(QD_l
maps elements of U}h(u) (O #p e G) onto the A/D. symreps in C(A).
Define the function f(up) = {(M(a) J(8) M(g)-l : e M(p)}. Iet

X =, be a solution of A e f(x). We will show

. . . 2
(1) f£(p) n £() is ponempty if and only if p e AU,
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(2) f(u) and f£(\) are equal or disjoint,
() |t =0 or g |
(&) if Mm(p) is nonempty, then e p,ou+; if 8(G,D) holds, the

converse is true.

The theorem easily follows from these four results. :

(1). Assume o e M(u) and B e M(3) and M(@) J(6) M@) ™t =
M(B) J(e) M(B) L _B. By Theorem 1.k {é) there is a D unimodular
matrix T such that & = TB. "Since TB =BT and B is an F
matrix ﬁith distinct characteristic roots, T = -p(B) where p is
some F polynomial. Iet m =p(®). Since T is D unimodular, 7
is a wnit in R(A). Since BM(B) = M(@_)'J(e), weqhave TM(B) =

M(g) J(n). Thus

I

M(@) " M(@) = (TM(B))*' (TM(B))

(M(g) J(n))' (M) J(n)) =J(n) M(B)' M(B) J(n)
I() IO I(n) o

T0q°) .

I (1)

1l

1l

1l

Conversely, if p € .7\1,1.2 we may write = 7\1]2 where 1 is a
unit in R(A). Iet B eMm(A) and T correspond to n under the
A/D symrep B = M(B) J(8) M(@_)_l. Then T 4is D unimodular and

a =18 satisfies

(i) o is an mbv,
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(19) @) @) = (ME) (UE) = ME) ) (u(E) I) =
J(na) = J(u), and

(1i1) m(@) J(0) M@ ™

ma(g) (0) M)

M) I(n) J(0) M@
u(g) J(e) (@) 3(n) ™t
u(g) J(e) u(e)™ .

n

1

(). 1 £(\) and f(u) are not disjoint, then uemg. In
the second half of the proof of (1) we constructed for any B & M(A)

an ¢ M(w) such that M) J(O) M(g)—l = M(B) J(©) M(@)_l. Hence

IR

£f(\) C £(u). By symmetry f£(u) € £(7)-

(3). Iet a2eMm(n) and let T be a D unimeodular matrix.
Then T e M() if and only if (mM(2@))' (TM(Q)) = J(W) = M(@)' M(x).
Hence, for a D matrix T, the equation TT' = In is equivalent to
™ € m(g). Since o is an nmbv, T =S¢ if and only if T = 8.
Thus we have that |n(n)]| = |On(D)|. Suppose that ,B e M(y)
yield the same symrep under the correspondence of Theorem 1.5. By
thg first part of the proof of (1) we see that B = T and neu =L
where 17 1is the preimage of T wunder the symrep corresponding to

& and B. Thus n =x1 and so T =% L. When F has character-

istic 2 we have I = - I . Thus It ] = ea.
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(4). Iet mM(W) be nonempty. Then g—lcﬂ: ot = ”—l
. o ot
by Theorem 2.2 (3). Thus (p,/p,o)o'l = gL and so p,/p.o is a unit
of (ot:ot) =R(A). If G is totally real, p and p, are
totally positive since they are sums of squares in F(G(l),...,e(n))'_ o

Furthermore, if o e M(n) and B e m(p,o), there is a D matrix T

such that o = T8 and then

' M
W e u@l o

Mg @)t u)]
Hence e p,ou+.

Now suppose S(G,D) holds and p e uou+. et e m(uo) and

let W =M(@) J(uY) M(@)'. Then
(i) W 4is a D unimodular matrix since uo/u corresponds to

a D unimodular matrix T under the rep M(a) J(8) M(q)_l
and then W = M(@) J(u/) J(ugh) M@)* =
() J(ugt) M@)' = T;

(11) [w] = ]7] = N(U«O/LL) which is a square in D;

(iii) if G is totally real, then W is positive definite since
L is totally positive and x'Wx = (V'x,V'x) > O when
x # 0 where V = M(Q) J-J_(Ef) lies over the real cloéure
of G;

(iv) W =vV' where V is as in (iii).
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By 8(G,D), there is a D unimodular matrix U such that
M(a) 'J(p"l) M(@)' =UU'. Let B =U*l(_)£_. ‘Then B is an umbv for g

and M(B)' M(B) = J(i).

Corollary 2.5.1. If x2 + ye =1 has infinitely many solutions

in D or n>1L4 and 2= & y2 R =1 hes infinitely many
solutions in D, then every A/D rep class has no symreps or in-

finitely many.

Proof. Since

. v u v
XY ler: or = ¥ 8
W X n-2 i
u -y -x

@I )

< g M

lies in On(D), we have g = o.

The previous theorem studies the number of symreps in a given
class. In the next theorem we shall establish some results on the .
different classes of symreps. We actually study a set of ideal classes
under the assumption that inverses exist. A group operation is in-
troduced with identity C(H ) where H  is somewhat arbitrary. The
arbitrariness of K 1is useful in Corollary 2.6.2. These results
prove usgeful in studying the case D = Z. These results do not depend

on the existence of M-ideals.

Temms 2.3. Iet ¢r and 3 Dbe ideals in A which have
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inverses. Then

(1) (?)° =¢2° Zr_l = m,_lzrd and so ¢Lot® = & & ° and
(2 D™ = o (27

(2) if feC(o) and gz° =02, then for some T € G we have .
Ko =1qf and if G is totally real we may take T to be

totally positive.

Proof. Recall that 1‘3° ={7\€G:tr7\fye_D for all ryet_‘}.
Thus (2 &)° 2 %_(57\ :B el and Ae G and tr(X,B.N) € D
for all @; eot and 5163’)
C(@BN:NeG .and traph e D for all O <oz)

=(L:LeG and troue D forall & egr) =o2°.

Furthermore o°& © = (2 % ?;l)° Z,—l C (2 &)° by the above. Hence
(1) is true. To prove (2) let Ol =Nf and T = 7\2. Then

T =00 = he® = (A Ta)° =0 by (1).

Theorem 2.6. Assume that whenever ¢z is an ideal in A with
gt° ~or , then dz-l exists. Fix an #M such that # ~ #°. Iet
(1) J ={c(m) : oz~ 071°} and |
(2) clo)ec(Z) =cloe2 /7).

The operation "o" makes .J into an abelian group of exponent 2
in the semigroup of all ideal clasées of A under "o, If the ideal
classes of A form a group under ordinary product, fhey do so under

"o If G is totally real, define
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P ={C(ar) : gz° = T0L for some totally positive T e G} (by
Lemma 2.3 (2), if e C(m) ¢ P, then &° =o & for some
totally poéitive o). If P 1is nonempty let

2

(1) & 7be a maximal subset of {gt: ¢~ ~ (1)} such that ¢2,% ¢ 8§

and m2 = TZ—E for some totally positive T e G implies
=2,

(2) cln) P ={c(erld) : C(F) e P}.

Then 3 = U C(s2) P where the components are disjoint, the square
e 8
under '"o" of any component lies in that component containing C(#),

and this component is a subgroup of J.

Proof. The group properties are easily proved:

(i) associativity by ordinary ideal class product associativity
(i1) closure follows since if C(ege), C( %) € 3, we have
ot~ o0t° and UV~ F° and

(o Z»f[l)" = oz"(?f_/[l)"l by Lemma 2.3 (1)

or° (b°(#°)™) by Lemma 2.3 (1)
~a (i)
(iii) didentity - clearly C(#) works
(iv) dmverse - C( g p2) e cl(ae) =C(A)
(v) abelian - clear
(vi) exponent - C(ot) o C(o) =C(ao# ) and " #H L ~

o)t = ()™t = n° ~ e (by Lemma 2.3 (1)).



2

We now assume that G is totally real and £ is nonempty.-
Iet us show that the components are disjoint. Suppoée O'Zl,}d‘lg e 8§
and c(Ll), c(z—z) e P and c(al&l) =C(m:22,-2). let B ,B, € G
be totally positive and Zr; = ﬁizr—i. Choose € so that /4 =¢e#°.
Then by assumption and by (vi) we have (Oll?rl) (o e?rE)ft-l ~

2 = 2 2 2 2 2.2

(0113-1) # ~ ~ A whence azl o, Z’l 2'-2 = (AR")" for some AreG.
2 & I ° o
ET(# A°) =€ (}1&1) (74-2'02) by Lemma 2.3 (1)

5 2,2
BBy &1 Uy

However #A

Thus 0t ) = slsg(xs)z, a totally positive element of G. By the
definition of & we have ml = 0t,. Hence C(&-l) = C(?’E)'

The union is contained in 3T since if C(%) e and ote §
we have (¥ )° = 2t 3o ~ Olnlz- ~ ovlr. The reverse inclusion is
more complicated. We first show that if 2° =g, then o ? - (8T)
for some oz ¢ 8 and some totally positive T. ILet C(£) ¢ P and
£° =+« where v is totally positive. Then ( ?,a.c-l)a =
/BT o)/ (£ £°) = (v/B) by Lemma 2.3 (1). By the definition of
8, we have e 8§ with n° - (BT) for some totally positive T.
Now Z—nﬂl) e P since (Zvaz,_l)" = -’ =|32T ot mus

c(%) =c(ee) C(2 m,_l) is in the union.

We now suppose that ¢z e & is such that C(#) e C(oz) P. Iet
C(&l), C(ZE) e P and ' € 8. We must show that
C{o’ ’[.-l) o C(a’ 2—2) e C(or)P. Thus we must show that

(C(m_'zrl) o ¢(gz 32)) C(oz_l) e P. Let # =025'3 where



-38-

0(255) ¢ P. Choose Bi totally positive so that BiZfi = 2~; for
1 = 1,25, Db B - (@) and 01‘2 = (@'). We have

(C(ou &) o Cloe' ) Cloe™) =cla b 4,85 /) and
(2,2,250° = 552, 25 by Tema 2.3 (1)

Z'JO_ (2-5(7/%)—1) by Lemma 2.3 (1)

Il

il

<1 e . ,

Eﬁ%ﬁi(alagaj) and the BiSEMetMRMy
positive by assumption.

Clearly C(ot) P 1is a group under "o" if C(A) e C(gz) P since

J is of expornent 2.

Corollery 2.6.1, Assume the classes in 4 have ordinary
inverses, G is totally real, and § is nonempty. A component in

the expression for & 1is a group under ideal class product if and

ondy Af 3t cenbaine CL(1)).

Proof. We have C((1)) ¢ J. Since all concepts in the corollary

are independent of A , we may let # = (1).

Corollary 2.6.2. ILet H be the set of ideal classes with

ordinary inverses. Then M is a group under ideal class product.
Iet ¥ Tbe a maximal subgroup of exponent 2 of ¥H. Then

x| = 1s].

Proof. We can alsoc make the classes in H into a group under

ton
o .

Then & is a subgroup of exponent 2 of H. We show that

it is meximal. Assume C(at) o C(oz) =C(#). Thus 012¢{—1 o L
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and so 07-2 ~ ﬂg' Finally o‘z‘,° = f(ﬂ"ﬂl_l by Lemma 2.3 (1)
~HER T o2

Define @(C(,)) =C(oz#). We shall show that ¢ is an isomorphism

from ¥ under ideal class product to ¥ wunder "o". Clearly ¢ is

one-to-one onto. We have o(C(ae %)) =C(otd#) = C((mﬂ)(zfﬂ)fc.—l)

=p(C(ax)) o o(C(2Z)). Since ¢ is an isomorphism it maps ¥ onto
dJ.
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IITI. - THE FINITE FIELD CASE

When F is a finite field, D =F and so there can be only one

class of symreps. The two main questions when D = T are

(1) do G/F symreps exist?

(2) If G/F symreps exist, how many are there?

The next theorem answers both questions.

Theorem 3.1. Iet F be a finite field. If |F| is even let
€ = 0; otherwise let € =+ 1= |F| (mod 4). The number of G/F
symreps is exactly |F|(|F|® - l)lF|3(|FlL = Vpesl [FI=% = 1) For
n odd ana [F[([F|® - 1), [r[PP(|E|T - 1) (Jr P e2/PYp| (/270

for n even.

Proof. The existence of G/F symreps. By Theorem 2.1 (1) and
Theorem 2.3, it suffices to find 1 € G for which (_l)n(n—l)/E‘Nn
is a nonzero square in F. Suppose & generates the multiplicative
group of‘ G. Let IF! =g, then N = a-aqaqg...aqn—l = a(qn~l)/(q-l)L
Thus NX has o?der g - 1 and so generates the multiplicative group

of F. Let (_l)n(n-l)/2= (Na)k. Tt suffices to take 1 = @,

The number of G/F symreps. We shall use Theorem 2.5. There is

only one class of G/F reps and S(G,F) holds. Hence there are

+

+
glu

: u2] symreps. We shall show that [u u2] =1l. ILet a be



as gbove. We have

+

B = (ak : (N&)k is a square in F}
= [agk} since N generates the multiplcative group of F
2

=U.

When |F] is odd, the value of IOn(F)! can be found in Dickson

[2, p.160] and leads to the expression stated in the theorem.

We NOW . SUppose that ‘IFI -is even. Then F has characteristic 2.
‘Clearly the number of sclutions to XX' =1 is the number of ortho-
normal bases (counting order) for the n dimensional vector space over
F with inner product (a,B) =& @.B;- We shall count the nuﬁber of
bases by an inductive process. Assume al Skl ak ., are orthonormal.
How many d can be found which preserve orthonormallty? Let

g & [Tlyswsyll®s Bines ’ ,/ (Z a, ) a;, the vector

gk preserves orthonormality if and only i

. (oc @) =0 for 1<i<k ~1
k — | —
and
(ngk) =L -
Since gl""’qk~l are independent, these equations are independent

i they are consistent. The equations are inconsistent if and only if

kl-' e e o -
1 N&; for some ), ¢ F. This gives N, = (g,gi) =1 by

orthbnormality. Thus the equations are inconsistent if and only if
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e = zi;i gi. From this discussion it follows that if any such gk

: n-k ; ‘ : ‘
exists, exactly |F| ~ exist. TFurthermore, we can have incon-.

sistency only if

k-1 _ )
n = (E_JE_) = Z (Ql,g_l) =k -1 in F ;
i=1

i.e. only if n=k - 1(mod 2). In this case we have

k-2

¢ _ .

(g 4 ngf%)=@ﬁ9+(%@g=o Por LE4 4Lk =8
i=1

and

: k_—_‘g k-2

(e + }; a.,e) = (e,e) + E: (e,2,) =n+k-2=1.
i=1 1=1

Hence, if & ,...,Q , are orthonormal and n =k - 1 (mod 2), there

such that « ""’gk—l are orthonormal and the

is exactly one @ &
equations for Q  are inconsistent. Let Ai be the number of se-
quences O, ...,0 of n dimensional orthonormal vectors over F. We

have shown that AE satisfies the recursion

n

=&y P
(A = Aep) IFIP™ ar

{n-k if n=% (med 2) ;

s

k -1 (mod 2) .

A

Since A? = IFln_l and, for n odd, Ag = (IFln_l = 3] ]Fln—g: the

recursion leads to the result stated in the theorem.
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IV. THE ALGEBRAIC NUMBER FIELD CASE

We now assume that F i1s an algebrdic number field. Of the two
basic questions - existence of symreps and number of symreps - it is
far easier to find the number when at least one symrep exists. By
Corollary 2.5.1 and the fact the F has RO elements, we see that it
any G/F symreps exist, then there are exactly Ro symreps. We make

the following conjecture regarding existence.

When F is an algebraic number field, G/F symreps exist
if and only if

(i) 4if F is formally real, G is totally real and,
(ii) if n=2 (mod 4), there isa Ae G anda keF

such that -1 = k2 NA.

The necessity of these conditions follows easily from Theorem 2.2 (3)

and Corollary 2.3.1. We now show that condition (ii) is sufficient

when n = 2. By Theorem 2.1 we have G =F(~e¢ ) and G/F symreps
__— 2 2 a2 2

exist if ¢ =x + ¥y for some x,y € F. The condition x +y =c¢

is equivalent to (l/y)2 N(x - Je ) = -1 since we cannot have

y = 0. Sapiro [14] established our conjecture for n = 3. The

remainder of this section is devoted to establishing the conjecture

for all odd n."

One of the major difficulties with the study of the algebraic

number Tield case is that, unlike the study of the finite field case,
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it is not clear how to choose A 1in Theorem 2.2. When n 1is odd,

a slight genefalization of Sapiro's method [14] enables us to reduce
the problem to ﬁzfadic considerations f?r_all spots ag on F. The
choice of A 1s easier in the local case than in the global; however,
spoté which divide 2 present difficulties. These can be disposed of

by considering cases.

We shall make use of quadratic form theory, local field theory,
and local class field theory. Needed theorems can be found in the
Appendix and are referred to with roman capitals, e.g. Theorem B. To
read the remainder of this section it suffices to have a basic knowl-

edge of local fields such as that found in [12, Part One].

Definition 4.1. The following notation is to be used for the

rest of this section.

(1) f,g,h are quadratic forms.

(2) A,B,C are the symmetric matrices associated with gquadratic
forms, thus f = x'Ax.

(3) - =~ - (-) is equivalence of forms. Thus A ~ B(F) means that -
for some nonsingular F matrix P we have PAP' =B. We may
omit (+) if the meaning is clear.

(1) (-,-/-)=>il,the Hilbert symbol. Thus (@,B/H) =+ 1 if and only
if oxe + Bj2‘= 1 has a solution x,y € H. We may omit /. if
the meaning is clear.

(5) c(./.)‘ is the Hasse symbol. Thus c(A/H) is Higj Gli,aj/H)
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where A~ = @ai (B). We may omit /- if the meaning is clear.
(6) ow® = (o :weW. |
(N W* ={weW:w#O0}.
(8) N(-*/-) is the norm group. Thus N(X¥/H) = {NK/H a:ae K¥.
(9) 8(-/-) 1is the discriminant. Thus for an algebraic number field
H we have ®(K/H) is the ideal generated by all |M((_3£_)|2 where
@ 1is an mbv for X over H eand O has algebraic integers for
components.
(10) £ =f(-/-) 4is the index of inertia of an extension of one local
field over another and e' =e(-/+) is the index of ramification.
(11) If H is an algebraic number field with prime spot 4¢ , ‘then
H is the completion of H at .se . Further, if p is a

7
zero of an irreducible H polynomial p(x), then H(p;.sg) =

Hﬁe[x]/(p(x)). |

We shall now generalize Sapiro's technique for reduction to the

local case. The main points of the proof follow [14].

Theorem 4.1. Iet F be an algebraic number field. Assume that
n is odd. There is a G/F symrep if and only if
(i) for every local prime spot ¢ on F there is a

7\(%) ¢ F(654) and a basis Q@ .-5@,  for F(e;¢) over

1

F such that for an indeterminate x we have

() @07 = wn) (Fg)
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where the trace is from F(S;y) to F? §

(ii) if F is formally real, G is totally real.

Proof. The necessity is clear since we may take 7\(%?) to be

the A of Corollary 2.2.1.

The proof of sufficiency involves three main parts;
(1) preliminary remarks,
(2) choice of A for Corollary 2.2.1,

(3) proof that A has the required property.

(1). Without loss of generality, we may assume that © 1is an
algebraic integer.- Iet p(x) = O be the monic irreducible F
polynomial for ©. All mbv's for F(e;.?) over F? are related
by nonsiﬁgular F$ transformations. Hence we can choose for O in
(i) of the theorem any mbv for F(e;se) over F$ y Qne such mbv
is a, = e (mod p(x)), which corresponds to the mnbv (1,8,. ..,en‘l)=
for G over F. Thus we can choose the same @ for all 4 and in

such a way that the components are algebraic integers. Fix Q to be

as above.

Let A(v) corréspond to the form tr(v(g_,gg)e) where v is in
G or F(e,?) If P is a prime divisor of « over G,V leﬁ AP
be the component of 7\(?) in the L(P) of Theorem G. Let (7) =
Since (i) holds for 7\(?) if and only if it holds for 1r2°7\(¢) for

every integer ¢, we may assume that A{(P) is a P-adic integer for
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all P dividing lf .

Since every quadratic form over F @ is equivalent to a diagonal
form, we can choose a nonsingular matrix. T(se) with {‘2 -adic integer

- 1 _

components in F‘; such that T((j’) A(?\(?)) T(y) r® B, for
some nonzero Bi’.s in F? Let J %be such that l'r%;?H Bi divides
?2‘]. ILet P be a prime spot on G dividing 42 . Define k(P) =
j'e(L(ﬂB)/Fg). We will show that if for all prime spots P on G

dividing »ge. we have

WP = AP @od TP, then
(%) . |
c(Alu(g))Fag) =+ 1 .

Let T(?) be as above. Then we have that

c(A(ulg))/Feg) = c(T(g)a(ulep))T(g)") Ty Theorem B (1)

il

c(T(;;g)A(?\(,g;))T(,@)') by Theorems B (6) and

A (6) and the fact that Oy es@ s AMP) are

. _ 3
P -adic integers and u(,sg) = ?\(ﬁ"’) (mod 2*)

c(A(?x(%))) =+ 1 by condition (i) of the

the orem;

(2). Iet 4 = |M(q)|2 and Q@ ={9Q : 9 is a prime divisor of
(2d) over G}. Iet m = max, k(Q) where k is as defined in the

previous paragraph. Iet B = (IEIQ Q)m. By Theorem H there is a
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by € G such that

{*%) o = A(D) (mod g4 for all De :

Any pe G with p =y (mod B) is also a solution. If G is
totally real, there is @ P e G such that B =1 (mod 8) and HoP
is totally positive. By condition (ii) of the theorem we may assume

that Ko is totally positive whenever F is formally real.

Tet £(D) be the highest power of © dividing by Let
€ = IIQ Sz(ﬂ) . Apply Theorem M with U = (p,o)/@ and B as above.
et p = ;,LO/Oz. Then | = T (mod B) and (u) =€ P, and p is

totally positive if F is formally real. Let A = pd Nu.

(3). We nave |A(A)]| = |MQ§)|2 lg(n) ] = a mA. SSwen B 18 0dd,

am = (a m)™t e 2.

If F is formally real, p and d = IM(Qt_)I2 are totally
positive. Thus c(A(?\)/Fl;) =+ 1 whenever 4 is an infinite prime

. spot on F.

Let 4¢ be a finite prime spot on F which is prime to 24 ’.ﬁo.
Then .éé is prime to 2(d N(€ ,.130))n+l =2(la(»)|). By Theorem B (5)

we have c(A(?\)/F?) =+ 1 for such « .

“Assume that .ﬁg is not prime to 2d. Thus ,% divides 2d. By
equation (**) and the definition of . pu, it follows that

w= AP (moa ‘Dm) for all prime spots P on G which divide L .
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Thus we have IC(A(p,)/F?)’ =>+ 1 by the result (%). Also
Nu/m(?) =1 (mod he). Since 4 () = IA(ML;))] e P* by
(i) of the theorem, it follows that d Ny € F* by Theorem A (6).
Hence c(A(?\)/F,y) = c(A(pud M) = c(a(u)) =+ 1.

We have shown that IA(?\)' € F*2

and that c(A(%)/F,?) =+1
for all prime spots 42 on F except possibly the one which $b
divides. By Theorems C and D, we have A(\) = In(F). Application

of Corollary 2.2.1 completes the proof.

We shall now deal with the local problems that arise as'a result
of Theorem 4.1 (i). The division into cases is as follows.
% (¢,2) = 1. Done in Lemma 4.2.
T« (4/,2) Ap .

A. For ‘Dl and ‘}32 distinct prime divisors of % we have

N(L(P,)*/Fp ) € F2Z. Done in Lemma k.3.
i > 2 pd y
B. For at most one prime P dividing 4f we have
N(L(‘p)*/Fxf) Z ij Reduced to II C by Lemma 4.5,
C. The field H 1is a local field with prime spot ﬁﬂ' and ex-

tension K of odd degree. By Theorem F it suffices to

consider the following cases.

1. e(X/H) =1. Done in Lemma 4.6.

2., #£E/H)

1. Let a = (e(k/H)2 - 1)/8.

a. (-1,-1/H)%

I

+ 1. Done in Lemma 4.7.

b. (-l,—l/H)a = - 1. Done in Lemma 4.8.
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Lemma 4.1. ILet H be a local field at the spot 4p and let
K be a finite extension of H. There isa Ae K and an mbv QO
for K over H such that M(a) J(A) M(@)' = A(A) has ¢ -adic

integer entries and ﬁp—adic unit determinant.

Proof. By Theorem F, there is an mbv & for the integers in
K over the integers in H. Let (II) be the prime spot on K.
Since every ideal of K 1is a power of (1) we have (1)° = (1)
for some integer m. Since @ is an mbv for (1), the matrix

M(a) J(I™) M()' has the desired form by Theorem 1.4 (2) and (k).

Lemma 4.2. Condition (i) of Theorem 4.1 can be satisfied

when fﬁ is prime to 2.

Proof. lLet F(G;tg) =3 & L(P) be the decomposition by Thecrem
G and let A =32 @ A(kﬁ) where A(K$) ig the matrix over F52
derived by applying Lemma 4.1 to L(PB) and Fg . Then
C(A/Fjg) =+ 1 by Theorem B (5). ILet B = |A| A. Then |[B] e F_f |
and c¢(B) = ([Al, + 1) =+ 1 by Theorems B (3) and A (5).

We now turn to the case in which ﬁ? divides 2. The following
lemma, however, does not require this restriction on 42 for its

method of proof.
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Lemma 4.3. If F(@;‘bg) =H@K®G where ‘H and K are fields,
G is a (possibly empty) algebra, [H : Ff ] is odd, and

N(K*/Fli ) & F*2; then condition (i) of Theorem 4.1 can be satisfied.

Proof. Let (i) m=(n-[H: Fy /2,

(ii) @ be an mbv for G over F‘,',
(iii) B be an nbv for K over Fog 5 and
(iv) v be an nbv for H over Fg s

Iet A correspond to trG

Nk g/Ff. it (-1)" ]AHM(@)I2 € F;a, let | =k; otherwise let

/5 : (_O_i,_}g)e. Let k € K be such that

= 2 '
p=1. ILet B correspond to trK/F, (u(B,x)7). Then

(-1)™ |a]- ]3] #F# Let c = IAIIBIIM('_]{_”E and let C correspond

2 _ ; *
to ¢ trH/F,, (f}/_,_}g) and let D(a) = aA ® aB € C where a ¢ F#'
Then |D(a)| = |A|-[B]-aZ™ fM(x)]E P where h o= [H : F#] is odd.

Hence |D(a)]| e F;E We have

c(D(a))

c(aa ® aB) c(c) ([c]|, [p(a)]/|c]) »y Tﬁeore_mB (2)

il

c(a@B) c(c) (lc], [c]) (a,(-1)" |a]-]B])
by Theorem B (3). Theorem A (3) shows that an appropriate choice of

a will make c¢(D(2)) =+ 1.

We now wish to study a field H for which N(H*/Fg }y € Fi This

will then be applied in Lemma T

TLemma 4.4. Tet g be a prime spot on F which divides 2. Iet

H be an extension of T, such that N(H*/F,f ) C;F,;. Then
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(1) there is a field E = F¢ (Na, VB, \/:y ) for some
By € Py such that HD E and e'(H/Fse) =4 and

:E‘(E/F,se) =2, and

(ii) for any mbv @ of H over Fg we have ' lm(g_)|2 € F;e

Proof. ILet K be the maximum abelian su;oextension of H and
let L be the maximum abelian subextension of H of type (2,2,...,2).
Iet X ©be the Galois group of K over F‘; and &£ +the Galois groﬁp
of L over Fg . We shall show that £ ~ F;/F;E where ~ 1is group
isomorphism. By Theorem L we have X ~ F;/N(K*/F? | Theorem K gives

N(K*/F_, ) = N(H"/Fg ). Thus

£~ U - (53 /N(K* [ )}/ (B /M(K¥/r g 1)

Il

(g /(g )/ /(% mg 0)P = B3 f

since N(H*/F‘;) C Ff"_z by assumption. We shall show that

f(L*/F’ ) =2 and e(lfﬂ‘*/Fsg ) > 4. From this (i) will follow by
taking for E an appropriate subfield of L. ‘Since inertial ex-
tensions are cyclic and & is of type (2,2,...,2), we have that >f
is 1 or 2. We also have F;/N(L*/Fg ) ~ £ by Theorem L so that
N(L*/F,; ) = Fff and we cannot have f = 1. Hence f = 2. Since

ef = [L : Fgl = |&] = [Fj; : Ff] > 8 by Theorem J, it follows that

e > L,

To establish (ii) it suffices by Theorem 1.4 (2) to chocse a
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particular Q. Iet H =F?(cp) and k = [H : F‘f] and p(x) be

the monic irreducible F? polynomial for ¢ and Q = (1,0, -..,q)k-l)'-

Then we have

|M(2) |2 = (—l)k(k-l)/E_NH p'(p) by the formula for s

[Ty
van der Monde determinant
- 1
€ Ff since 4 divides [E : F¢] which divides

[H : Fg] by (i) and N(H*/F,;) c_:Fff by assumption.

Lemma 4.5. ILet .? be a prime spot of F whi.ch divides 2.
Assume that F(S;¢) =G @K where G 1is an algebra and X is a
field such that N(K*/F’) - Fg To satisfy (i) of Theorem %.1 it
suffices to find an mbv & for G over Fg anda Ace G such

st g (M20®) = x) (Fg).

Proof. Let A be the matrix of the form trG (7\(9’_,31_)2)

/Fe

mentioned in the statement of the lemma. ILet w e K¥, 1let E Dbe an
mbv for K over F,, and let B correspond to tr (m(_ﬁ_,x)z).
¥ K/Fy . =

Then c(A ®@B) =c(a) ¢(B) (]a], |B]) = c(B) by Theorem B (2) since
A~ TI. Also la@B| = |a]-]|B]| ¢ F;E since A _~____ I and since

|B| e sz by Lemma 4.4 (ii). Thus it suffices to choose w so that
c(B) =+ 1. We do not know enough about the structure of X over Fy
to do this directly. ‘The idea of the proof is to apply the structure

properties given in Lemma 4.4 and Theorem F and the formulas for

calculation of the Hasse invariant given in Theorems A 'and B to reduce
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the problem to fields between K and F$ with simpler structure.
Iet T be the inertial field of X over F.ge . Since the Galois
group of ‘T over F,sg is cyclic (Theorem F), we may construct the

tower F? =TOCT C +**CT CT where [T, : T ]l =2 for

3 k= o
l<j<k and [T: Tk] is odd. By Lemma 4.4 (i) we have
2 : : *
* +
N(K /Tk) ¢ T, . Hence we can choose 1 <Xk such that N(x /Ti) i T?L

2
%
and N(K7/T, ,) €T

: . Let o be an nmbv for K over T. agnd T
= Ti+l = s iy

an mbv for Ti over th,' Then £ =g ® 1T 1s an mbv for K over.

FL; . If trK/T (w(g,x)7) =~ (x,x) (Ti)’ then let B correspond to

Ty T =
trK/F w(E,y) ) As trK/Fﬁe wcrg = ) 1/F o K/T wo o )),
we have Bel, @ B, where B corresponds to tr T, /8 (5 Z) and

m= [K : Ti:f. Since 8 divides m by Lemma 4.4 (i), an application of
Theorem B (4) gives c¢(B) =+ 1 since the only factors which can have
odd powers are c(I ) =+ 1 and (-l,lIml) =+ 1 and (IIm|,|Bl!) =
+ 1. This shows that F? can be replaced by Ti to prove the lemma.
2
: *
Let B be an mbv for K over T . . Since N(K /Ti+l) Z Tyeq2
we can choose vy € K so that the matrix C asscclated with

2 e 55 2 : 2 .
trK/Ti_'_l(v(@_,_}_c_) ) satisfies |c| ¢ T o (The reasoning is like

that used in choosing B in Lemma 4.3.) By Theorem E we have

* - 2 *
C=Cl®s®t where s,teTi+l and Cy I®-1. Let e e T, De
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such that T,,, = Ti(\/_e ). Tet vy = (1,Ne ) and ¢ =g @y.

Iet w =ry where r e T?; will be chosen later. For q e Ti+

1 1

let E(g) correspond to tr (qﬁy,x)g). Then tr (m(q,y)e)
By o T L KT, V=L
i+ll 71 i

correspends to
(Cl ® E(r)) ©® E(rs) @ E(rt) .

Call this D(r). We will show how to choocse r so as tc make

e(D(r)) =+ 1.

We now compute c(D(r)) in terms of simpler expressions. This
requires Theorem B in many places. c(D(xr)) = c(Cl ® E(r))
c(E(rs) ® E(rt)) (ICl ® E(r)|, |E(rs) ® E(rt)]|). Since

dim C, =dimC -2 and dimC =0 (4) by Lemma k. (i),
*2

it It therefore follows

we have Ecl @ EB(r)] e T )
that c(D(z)) = c(c:L ® E(r)) c(E(rs) ® E(rt)). From dim c, =2 (M
and Theorem B (%) we have

= (-1, ]c, ) (-1, B D) (e, [E@)])

= (-1,-1) (-1, [E(®)]) (-1,[E(x)])
= [<le=1)s

C(Cl ® E(r))

Thus c(D(r)) = (-1,-1) c(E(rs)) c(B(rt)) (|E(xs)|, [E(xt)]).

Furthermore |E(rt)]| e |E(rs)]| Tig since |D(r)]| e T?E by Ierma 4.4

(i1) end !cl ® E(r)]| € Ti‘e

Any ©p e Ti has the form a + b JE. Write = a and by = b.

P1
Suppose py # 0. Then by Theorem B (6) we have
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e(B(2)) = (2p,, - [E(@)]) (-1, [B(R)]). Ir (rs), #0 and (xt), #0,

then

c(D(r))

(-1,-1) (2(xs)y, - [E(zs)]) (-1, |E(xs)])
“(2(rt), - [B(s)]) (-1, |E(xs)])
~(|E(r) |, [E(xs)])

(-1,-1) ((ws); (xt)y, - [E@)]) ([E(s)], -1)

(-(rs), (xt)y, - |B(zs)]).

I

i

To make c{D{(r)) =+ 1 it suffices to show how to choose r so that
(rs), (xt), £ O and - [B(xs)| e Ti. Let v{a) =8> [a® +ve)® e
for ae T,. Then - |E(v(a)s))]| = lksag(alxL - e)2 € T?. We show that

v(a) /v(b) e T, if and only if 8 =57, Clearly

v(a) fr(6) = iTa” + o) 2tale VB & <) & 25 e

2-(alL + ¢). This

which lies in T, if and only if i (blL +e) =2b
gives a2b2(a2 - bg) = (a2 - bg)e and so a2 = b2 since e ¢ Ti.
This will be used to prove the existence of the desired 1r. By the
above, (S-v(a))l #0 for at least two of a = 0,1,2 and
(t-v(a))l #0 for at least two of a = 0,1,2. Thus

(s'v(a))l (t-v(a))l # 0 for at least one of a = 0,1,2.

This lemma reduces us to the situation in which- ﬁ? divides 2
and K is an extension of odd degree of th. We break the extension

.into interial and ramified parts. First we consider the inertial case.
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Temma 4.6. ILet "ﬁ be a prime spot on F which divides 2.
Let H be an inertial extgnsioﬁ of F? of odd degree. There is

an H/F$ symrep.

Proof. ILet & be an mbv for H over F? . Define
= |mM(e) |2 M@)M(@)'. Clearly [A] e Ff Since inertial extensions .
are cyclic, Qt_(l) € H. Thus A = I(H). By Theorem B (7) we have

c(A/Fg) = c(A/H) =+ 1. By Corollary 2.2.1 there is an H/F" Symrép.

Lemma 4.7. If 4 divides 2 and H is local at ¢ , and K

is a pure ramified extension of H of odd degree e, and

(-1,-1/H)% =+ 1 where a = (e2 - 1)/8; then there is a K/H symrep.

Proof. By Theorem F we can choose II € K such that (1) is the
prime spot on K and 1I° =7 e H. Let « = (l,]I,...,He-l) and let

A =e (@) M(@)'. Then

~1® (Ik® (1®-1)) where k = (e - 1)/2

%2}
jut
3
0
(]
¥
4
I

x‘2 - y'2 under the substitution x = (x‘ + y‘)/2rr
and y =x' -y'. Let B = ("l)k A. Then |B| e H*2 and
e(a) (-5, (-1)™/2) 1y meoren B (3)

BlEL ) -1, 1)k(e+l)/2
c(I ) ( il ( l)k(k+l)/2) (-1, l)k(e+l)/2

- =1 l) where we have

(¢
-
o
Ty
==
1]

I

Hi



b =x(k+1)/2+k(e +1)/2 =a+ 2a =3a. Thus Bz I(H) and we

apply Corollary 2.2.1.

Lemma 4.8. Tet 2 ,H,K,e,a be as in the previous lemma. If

(-l,—l/H)a = -1, then there is a K/H symrep.

Proof. Since a is odd, e = % 3(8). Since (-1,-1/H) = -1
and -((1 - -3 )/2)2 - ((1+ V-3 )/2)2 =1, it follows that J5 ¢ H
by Theorem A (6). ILet 7w, II, @ be as in the previous lemma and let

A=(1 + e lm‘e-)/e. Put A=M(@) J(A) M(@)'. We have

1 b 0
el )-I-O 18
A = 4 T

D

o7 7w 4w O

Let B = ]Ai-A. Clearly [B[ € H*E. It suffices to show that
c(B) =+ 1. We have c(B) = (|a], (-l)(e+l)/2) c{A). We shall use
Theorem B (6) to evaluate c(B). The cases e =3, 5 will be con-

sidered separately. If E is a matrix, let B, = (ejk) 1L 4% % X,

When e =3 we have

It

Tl -7 - br3/7r) .

L
T 5 4l
T

=
n

=

3 &=
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Thus c(B)

e(a) = (1,73) (3,78) (re,-1)

where € =11 - 17 - hj/v is a Ag-adic unit

1l

(-5,-me) (-1,-7€) (-1,-1) Dby Theorem A (6)

(5: ”TTS) ('lJ "l)

+ 1 since (5,-m€) = -1 by Theorem A (4).

When e =5 we have

1 1 4% o o
A IS T BT Y B
A= ¥ 0 0o v w| , Al =1, |A,| =3, |A] =-%
O O w7 T 47 ’ & ’ 2 ’ > ’
O 7w Wr o
IAhl = 5W2(1 +1+5/3v), IASI =‘F5€ for a -adic unit E.
Hence c(B) = (|A],-1) c(a)

1

(-1, 1817 @,-3) 3,¥%) (-¥%,-1a, 1) (Uayl, - la])
(-1,=1a, 1) (la,l, -1al) = (-1,-1)([a, ], 1a])

= (5,’A|) by Theoren A (6)

1l

i

+ 1 by Theorem A (4).

Assume that e > 5. BSince e = % 3(8), we have e > 11. ILet
e =8+ 3 or 8 + 5 determine the integer b. Iet X be the
e X e transformation such that premultiplication by X adds Wﬂl
times the (e - k + E)nd row b ke 50 pew for & = L, 6,8,...,

4 4+ 2 and leaves the remaining rows unchanged. Then
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, | "
‘ T
O :
2 1 bk : Yr
1 0 0
b o2 1 &
1 0 0
Y o {2 -
0 C

// 0

OvTTrLLTr

where the block C is given by ( ¥ indicates the center element of

XAX')
2 1 4
(a) C= |1 o* 7 if e =8 +5,
L7
2 1 b 0 0
1 @ 0 6] T
) c=l4% 0 C+77) 7T+1 7T+4 if e =8 +3.
0 0 T+1 T b
O 7T T+ 4 Lar 0
Let 4, = I(XAX')iI. We now show that each d, e H* and evaluate

certain of the di' We easily have
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(1) a, =1, _
{14) 8, = 3,‘
(iii) az = 0 e —H*E,

(iv) agy,y = -y € (1S E® for S5<2k+1< (e +1)/2,
(v) a, = a4 F0 for h<2k< (e+1)/2
(vi) ey, = (@+7 ) 8y, FO for e =8 + 3.

When e -2>2i +1> (e +1)/2 we have

=1 1 1 “L _
(Kpyan) ~OBX")pg0y (s
1.1 %
1 4 0 \
Y 0 o
2 1 k4
(e~21)th o TE R 1 0.0
Y o T
b
()/lwr
\ ‘ T T M O 1

(viij Thus d d (~n2)(hi—e+l)/2 3 (-l)i-H*2.

o1+l - %e-21

Combining (i), (iii), (iv), and (vii) gives

(viii) d, . € (=15% H*2_ for 1<2k+1<e -2.

' In a similar fashion to the derivation of (vii),

(ix) 4

Ei'+27£0 when (e +1)/2<2i+2<e - 3.
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We also have

(x) 2, = IAel = € for some ﬁg—adic it €.
1 1 b 0
14 0
) (:) T
Finally, d__; = lAe_lI = T
///:::::MW
o 0 1 T br @)

_ 5(dn_E)(e—5)/2.+ m43 ve—h

for some integer m.
(xi) Thus de_q € (_l)(e—l)/E 5 1% by Theorem A (6).

We now evaluate c¢(B) from the above. Since

((~l)k,4b)(b,—(—l)k+l) = ((-1)k,-1) = (—1)k when b e H, Theorem B

(6) gives
(e-5)/2
c(B) = (de,—l)(e+l)/2. I[ (—1)k.(de_2,- o (8 g w8, D {d 1)
k=0
However, 7 7
(8, ps 2, a0 = (1] (6-5)/2; (-1) (e—3)/25)

= (—l,-l)(e_B)/E (_1’5)(6"5)/2

= (- pines ~(1° + ST S i om
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(a

i
o
St

|

= ()25
(-0 (e D/25 ) (—1,de)(e'l)/2 (5,d;)
(-1,-1) /2 (5,1) (-21,a)( ¢/ (561

e-1’ e

]

i

= (-1) (e-1)/2 (-1,de)(e"l)/2 (-1) by Theorem A (4).

s o(s) = (-1) (&7 (/8 () (@2)/2 (gy(eD)/2 ()

+1 since (e - 5)(e - 3)/8 = 0 (mod 2).

We shall now establish the result mentioned at the beginning of

this section.

Theorem 4.2. Iet T be an algebraic number field and let n be
odd. There is a G/F symrep if and only if
(i) F is not formally real, or

(ii) F is formally real and G is totally real.

Proof. It suffices to consider (i) of Theorem 4.1. Iet gg' be
a local prime spot of F. If gg is prime to 2, then Theorem 4.1 (1)
can be satisfied by Lemma L.2. Suppose 4 divides 2. If Lemma 5.3
does not apply, it suffices, by Lemma h.S, to find a K/Fbe symrep
wheneve? X : F? ] is odd. As remarked before Theorem 1.1, if
KD H:QZFy and ‘K/H and H/F? symreps exist, then there is a
K/F? symrep. Let H be the maximal inertial subextension of F? .

Apply Iemmas 4.6, 4.7, and 4.8.
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V. THE RATIONAL INTEGRAL CASE

We now assume that D = Z, the integers. This case is more
complex than the two previous special cases since D 1is no.longer s

field. Even when n = 2 many interesting questions arise. These

are taken up in the next section.

+ 2
Theorem 5.1. Iet L and WU be defined as in Theorem 2.5.
The number of A/Z symreps in any given class is a multiple of
012% 1  and is bounded sbove by ni2P Tutall < atd®l, 1 n<7

and & given class contains a A/Z symrep, then it contains exactly
n-1, + 2 § i
(W : u"]l. The total number of A/Z symreps is a finite

multiple of n!2" T,

nt2

Proof. We shall apply Theorem 2.5. Iet us determine On(Z).

Since X € On(Z) if and only if XX' = I =X'X, we have 3 = 1

1J
where the sum is over i or J. Since the elements of X lie in
Z, every row and column of X has one nonzero entry, and this is
#1. Clearly every such X 1is in On(Z). Hence |On(Z)| = ni2®,
If m is the numbef of generators of infinite order of U,  the
group of units of R(A), then TR ug} < o™, By the Dirichelet
Unit Theorem, m<n - 1. If n<7, then S(G,Z) holds (Theorem
2.1 (2)) and we may apply Theorem 2.5. The final statement is a

consequence of the following:
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(i) the number of symreps in each class is a finite multiple
of nlen_l,
(ii) the nunber of symrep classes does not exceed the nunber

of ideal classes in the order A,

(iii) +the number of ideal classes in A is finite [1].

Iet T be the ring.of integers in G. When n =2 there‘is
a T/Z symrep if and only if there is a G/Q symrep (Corollary
6.1.1). It is natural to ask if this is true for all n. We do not
know. Faddeev [3] has derived a partial result in this direction.
(We rederive if below vith a bound on the number of symreps.) The
previous theory provides some tools for seeking a counterexample.
Suppose that n is odd, G is totally real, the class number is-
odd, and T =2Z [6]. By Theorem 4.2 a G/Q symrep exists. By
Corollary 2.6.2 we have |J| = 1. By Lemma 2.1 it follows that
c((1)) e 3. There is a I/Z symrep if and only if C((1)) e P. By
.Theorem 2.5 the existence of a F/Z symrep implies that there is
a unit Me I' with MNf'(8) totally positive where f(x) is the

monic irreducible Q polynomial for ©.

Theorem 5.2. Assume that G is totally real, that A is the
ring of integers in G, that n < 7, and that for any nonzero & € A
we have a totally positive T and an ideal ot with o® - (a 1).

n+k-1

Then the number of A/Z symreps is ni2 where k > O and 2k 

divides the class number.



A

Proof. We shall use the notation of Theorems 2.5 and 2.6.

Since the class of the field different has a square root [7, Thm. 1761,
-1,2 L : g :

we have (ot 7)” ~ (@’ &) for some ideal o . Thus gt~ ~ ¢gt° gz
and so oL~ ot°. Let o0v° =aocv. Choose & and T such.that T
3 e 2 i
is totally positive and 3 = (@ T). Then C(ot?d) € P since
(rd)® =o1° Z-l =02 & /T by Lemma 2.3 (1). Since every ideal is
an M-ideal and since $(G,Z) holds (Theorem 2.1 (2)), it follows
from Corollary 2.2.3 that every class in P corresponds to a A/Z
rep class containing symreps. For any A/Z rep A we have R(A) = A.
Since |P| = |3|/|8], application of Theorem 4.1 shows that the
number of symreps is o " u?}-lsl/lsl. By Corollary 2.6.2
we have [3‘ = 2k, the order of the maximum subgroup of type
(2,2,444,2) of the ideal class group. Thus 2% divides the class
number.

We must show thet [

: uEJ = |8]. ILet sgny be the vector

% - . " . : . (1)
whose i~ component lies in GF(2) and is O if and only if ' />0.
Since the units U of A form a group, sgnUW is a subspace of
GF(2)®, say of dimension m. If t is the maximum number of
generators of U which can be chosen totally positive, then

gt = o UE}. However, t + m is the number of generators of \u,

namely 1n by the Dirichelet Unit Theorem. Hence [uf : u2] = g™,
For a principal ideal (y) let sgn(y) = {sgnd : (8) = (y)}.

By the assumption of this theorem,
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U sgn(ae) = gr(2)" .
ote §
| 2 2 2 2
If ot,2- e & and sgn(ot”) N sgn(%°) #¢, then " =71%° for
some totally positive T and so @t =% . Hence ot = IGF(E)nI =

3

o [sgn(a2)| = |8|+|sgnu| since sgn(y) = (sguy + sgul : N e ul.

This gives 8] = 2" = wh - u2J
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VI. THE 2 X 2 RATIONAL INTEGRAL CASE

In view of Théorem 2.1 and Theorem 2.4, it is to be expected phat
when D =72 and n = 2 the theory would be simpler} This is correct;
in fact, completely new tools are available. One of these is con-
tinued fractions which can be used to study equivalence of idéals.

By this means, previous results can be rederived for this special case.
Our main use has been in a computer program, some results of which are
given at the end of this sectign. A more fruitful tool is the

Gaussian integers. They are suggested by the equation c¢ = u2 + v2

in Theorem 2.4 and turn out to be a convenient device for stating

results developed at the end of this section.

The first part of this section deals with concepts developed
earlier and their application in the present case. Next Theorem 6.4
answers the_following question. Let Al(; A2 both have the same
quotient field, quadratic over the rational numbers. Iet -A be a
Al/Z symrep and Cl(az) the corresponding ideal class. Extending

ov to a A, ideal gives a new class C (). Let Ce(ﬁ) cor-

2
respond to CE(B)' Does CE(B) contain a AE/D symrep? If so,

how does it relate to A% The final part of this section deals with
a related problem: Iet A be a A/D symrep. Find all symreps in

C(A). A complete answer is not known, but sSome general results are

given which reduce the necessary calculations.



_69_

Temma 6.1. If A/Z reps exist, then we may choose © so

that A =7Z[6] and © is a real algebraic integer.

-Proof. The ring of integers in G has 1 and w as a module
basis with © = &m or 3 + i+m. If any A/Z reps exist,
AC Z[w] by Corollary 1.5.2. If no A/Z reps exist there is
nothing to study. For any Qe A, & =a + bw where a and b are
integers. Thus a + bw e A if and only if bw e A. Let k be the
greatest common divisor of all’ b's such that bw € A. We have

A =2Zkow]. Let ® = kw. By Krakowski's condition, © is real.

Because of this we shall assume that A = Z[8] where 6 is a real

algebraic integer.

Definition 6.1. Let T(c) be the nunber of ordered pairs of

integers (u,v) such that PR =

The value of T(c) is well known in elementary number theory.
’ a,
Assume ¢ 1s a nonsquare. Write c¢ = 2dgx  where £ =1 pi1 and
the p; are distinct primes congruent to 1 mod 4 and k is a

product of primes congruent to 3 mod 4. If k 1is a nonsquare,

T(c) = 0. If k 1is a square, T(c) = Aﬂ(ai o

Theorem 6.1. ILet © satisfy x2 + ax + b = 0. The number of
A/Z symreps is

T(a2 - ) if a is even T(a2 - k) /2 if a is 0dd..
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Proof. Write m = a® -Mb. Since 6 1is a real integer,
m>0 and a,b e Z. By Theorem 2.4 there are T(m) AR 1/2
symreps. Since A D Z[Wm ] it suffices to determine which
z[ Nm 1/Z symreps can be extended to A/Z symreps. Let the Z
matrix A ¢« &En. Then B = (A - aI)/2 <> 0. It suffices to
determine when B has integer entries. If a is even, g =~ b
is a multiple of 4. By Theorem 2.#, A has even entries. Thus B
is a Z matrix. If a i1is odd so is a2 - Y. Then B is integral
if and only if A: has even off-diagonal elements. -Since u? + v2 =

7= & u2, this is true for exactly half of the 2z[~m 1/Z  symreps.
If existence is the only question we may use the following.

Corollary 6.1.1. There is a A/Z symrep if and only if.there

is a G/Q symrep.

Proocf. Necessity follows from Theorem 1.1. To prove sufficiency
let m be as above. 'By Theorem 2.4, m is the sum of two rational
squares. It is known by elementary nurber theory that if an integer
is the sum of two rational squares, then it is the sum of two in-

tegral squares. Hence T(m) # O.

We now turn our attention to the number of symreps in a given

class. This uses the concept of R(A) given in Definition 2.2,
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. Theorem 6.2. Let C(A) be a class of A/Z reps such that

A' € C(A).

(1) If R(A) has a unit of norm -1, then C(A) contains four
Symreps .

() 1f R(A) has no unit of norm -1, then C(A) contains zero or

eight Symreps .

Proof. Recalling that the units group is the direct product of
a group of order 2 and an infiﬁite eyelie group; and using Theorem
5;1 we see that it suffices to show that C(A) contains at least one
symrep in case (1). Iet T be a unit of norm -1 in R(A). ILet
C() correspond to C(A). Since T is a wnit in R(A) = (or: 0t ),
we have TOC =g . Since A' e C(A), it follows by Theorem 1.5 that
ot=An° vwhere AN e G.  One 5f + A, £ TN is totally positive.
Call it 7. Then O = T®. By Corollary 2.2.3, C(A) containé'a

A/Z symrep.

When A is the ring of integers in G we can characterize the
classes containing A/Z symreps since Theorem 2.6 applies. This is
done in the following theorem, which can be found in Taussky's work

[18,19].

Theorem 6.3. Assume A is the ring of integers in G, Tet I
and P be as in Theorem 2.6. Every‘class in § corresponds to a

class containing a A/Z symrep. The set J is a group under ideal
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(1) If b has a unit of norm =1, then 3‘= .

(2) If A has no unit of norm -1, then P=¢ or J -P is a
subgroup of J of index 2. In fact. 3 - P consists precisely

of those classes containing self conjugate ideals.

Proof. By Corollary 2.2;5 every class in P corresponds to a
class with a A/Z  symrep. By Lemmas 6.1 and 2.1, we have
¢((1)) € 3. Letting A = (1) in Theorem 2.6 shows that T is a
group under idgal class product. By Theorem 1.5, we may apply the

previous theorem to get that & =§ if there is a unit of norm -1.

Suppose A has no unit of norm -1. Assume that P #¢. By
Theorem 2,3 it follows that C((1)) ¢ . Since |8| in Theorem 2.6
cannot exceed the number of diétinct signatures of elemenég of G
begirming +, we have |8] <2 as (+, +) and (+, - ) are the
only possible such signatures. As P # 3 we have |g] > 1. Hence

|$| = 2. By the union expression of Theorem 2.6 and by Corollary 2.6.1,

the properties of J - follow except the last.

Assume that R(A) has no unit of norm =-1. If ¢2=gZ, then

022 = gtz = Nov ~ (1). Thus we have

I

o = (gror°/(1)°) by Lemma 2.3 (1)

(Noz /(1)°) oz° = ((& - E—)’)Naz) oe® by Lenﬁna 2.1,

Since N((® - B)N&) = - (6 - 8)°(Wa)® < 0 “and A contains no unit
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of norm =1, it follows that C(gt) € 3 - P. Conversely, suppose

c{or) e 3 -P. Let w=7rAa’. Then

a/m

701,2/015'1 = 01.7\‘01°/N0‘L = (A/Nar) (l)° by Lemma 2.3 (1)

1

N((e - 8)N ) by Lemma 2.1.

Since G is real a.nd' Clor) ¢ § - li;, we have NA < O and

N(e -8) =- (6 - 5)2 < 0. Hence for some totally positive e G,

we have ot/gt = (L). Since Not = Noz, it follows that Ny = + 1s
et G=a(Ne). Tet @ = e (1 -u), then G/ =- (1 - p)/(1-p)=
L. Let Y =oaor. Since ot /o = | =a/06, it follows that =V-Z .

Clearly & e C(o2).

This concludes our spécialization of the general theory. We now
develop the Gaussian integers as a tool. They provide a more detailed
correspondence than ideals - instead of class correspondence we have
a correspondence of individual symreps to individual complex numbers

which are Gaussian integers or half integers.

Definition 6.2. Let G be generated by Jr -over Q where r

is a nonsquare rational nurber. Assume that T =g +r , with
g€ Q, is an integer in G. Assume that a Z[N]/Z symrep exists
and let \/_r > < ;:‘ .g’) ‘in the extension of this representation.

Then we say that the symrep corresponds to & = a + bi.

For example, if T = (1 +5 )/2 <$ i) , then

-
JS/E — < 12 _1:) and @ =1+ i/2. Note that the correspondence
)
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is one-to-one since specification of ¢ determines the image of 'J_r

and hence the symrep.

Lemma 6.2. The complex number O corresponds to a Z[11/z

symrep for some T if and only if

(1) Re(@) e 2,
(2) 2m(@) € Z, and

(3) Mx is not a rational square. We have

We have that T =k + 2N(@) + ~VN(@) for some k e Z.

Proof. If @ =a + bi satisfies (1) ~ (3), then <2 2{';)
is a Z rlnatrblc corresponding to b + '\/'I\H. It determines a symrep.
Conversely, suppose 1T =g + Nr . Then 2+r e z[M] and so
oTm(ct) € Z. Since T =q +~r and g > ql,, we have Re(a) e Z.

Finally, N =r so NX cannot be a rational square. Since N& = r,

we have T =g +~Nx . Since 1T is an integer, gq - 2N(a) e Z.

Lemma 6.3. ILet @ correspond to a A/Z symrep A. The
symre@s equivalent to A under the elements of 02(2) correspond to

= 1 0 o 1
o, <, &, . To get these symreps we may use ( o l)’ <l O> p
< _g (l) > , and < é _g ) respectively. '

Proof. By Theorem 5.1 we have ]OQ(Z)I = 8.

-

Theorem 6.4%. Let 6 be a nonrational integer in G and p- a
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rational prime. ILet Al::Z[e] and A2=Zipe]. Assume A is a

AZ/Z gymrep and let it. correspond to . Determine £ as follows.

(1) 1f Re(ct/p) € Z, then B =0a/p.
(11) If (i) does not apply, then there is a Gaussian prime T

such that Nr =p and Re(oz/n'e) € Z. let B =Ol/'n'2.

This B corresponds to a Al/Z symrep B. Furthermore, if
C(A) «»C(pr) and C(B) «»C(B), then C(B) is the extension of °

clot) to a A, ideal class. -

Proof. We shall use small German letters for ideals in A, and
capitals for ideals in Al. Let YU be the extension éf oL to a _'Al
ideal. We shall let & =x+ iy and B =u -+ iv and 6 =1t +~/_s
wheré X, ¥,u,v,8,t ¢ Q. IFf (i) applies, the theorem is clear. Assume
that Re(@/p) ¢ Z. We shall consider p =2 and p odd separately.

Assume p = 2. Since (i) does not apply, =x = 1(2) by Lemma 6.2
(1). Since © is an algebraic integer, 4%s =1 or 0O(4). However,
bs =N =1 + yg(ll-). Thus y is even and 4s is odd. Then «/2i
satisfies Lemma 6.2 (1) - (3) and so corresponds to a Al/Z symrep.
Since 2i = (1 + i)2, we have that B = + q/Ei. By Lemma 6.3 we may

assume p =0/2i = (y - ix)/2. Under the symrep A we have

2 \/_s > ( _}; ;) . A characteristic vector for this matrix is

(x,y+2-fs). By Theorem 1.5 we may assume 02,=(x,y+2-\/—s Yo Id

a similar fashion we have B = (yy-x + 2 Vs ). Since



-T76-
Vs + (x +y)/2e b, it follows that

U

(x,(Ns + (x +¥)/2)2) = (x,Vs + (x +¥)/2) as x is odd

~(x(x+y -24s), (W(x+y+2s))/2)

(x(x +y - 2+s ),xy) since = + y2 = kg

22 ) = (y, x+Js) =8 .

= (y':x + ¥y

Assume that p # 2. We will show that 7 as described in (ii)
exists. Since 20 is a Gaussian integer and N(2x) = Ms-pe, there
is é Gaussilan integer vy such.that 20/y is a Gaussian integer and
Ny = pe. We may assume that v = 1(2) since Ny is odd. Then
2ofy = 20(2). By Lemma 6.2 we have that B = 0/y corresponds to a
Al/Z, symrep. Since +y = 1(2) and (i) does not apply, 7y # pif  for

any k e Z. Thus, for some Gaussian prime 7, we have v W2 ik

Il

for some k € Z. Since ﬁe = 1(2), either Y o= HQ or « ek
By'Lemma.é.i we may assume that y = vg.

We must show that C(8) =C(¥). As in the case p =2, we have

il

ot = (x,y +pNs ) and B (u,v +s ). Our first goal is to show

that we may assume (x,2y) = 1. It is known [8, p.v] that if w is
a quadratic integer over Q and a,b,c € Z, then (a,b + cw)' is
an mov for a Zlw] ideal over Z if and only if N(b + cw) = 0(ac)
and c divides (a,b). We shall use this below. Since (i) does not

apply and p # 2, we can choose f,me Z such that Lp + omx = 1.

Then (x,%y + Ns )' is an mbv for Y since
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(1) ;;y +s =m(2Ns )x + 2(y + pNs )
(@) v +pvs =ply +Vs ) + n(ey)x
) )2 -sez
B ()® -5 = (1 - 20055/0° - s
= (7 - o5 + me(mx - 1) (29)%) 50

= (—x2 + mx(mx - 1) (23’)2)/9.2

0 (mod x) as (x,p) =1 and 2y,xe Z .

let k = (x,2y) and c = s/ke, Since ¢ = (X/k)e + (y/k)z, the sum
of two squares, and Uc e Z, one of Ne and e + 1/2 is integral.

Call it . Then

I8y

= (x/k, %y /k + Ne )' is an mbv for a Zlpl ideal
since (,Ey/k)2 -

(ey/K)% - ¢

e Z and

(-(x/%)® + m(x/x) (m(x/x)-1) (25)% /7 by (4)

0 (mod x/k).

n o

We shall show that w = (u/k,v/k +Ne ) is an mbv for a Zlep] |
ideal. Since a/k satisfies Lemma 6.2 (1) - (3) and (k,p) =1, it
follows that PB/k satisfies Temma 6.2 (1) - (3). Thus B/k corres=
ponds to a Z[cp]/Z symrep E. A characteristic vector of E is w.
By Theorem 1.5 we have that w is an mbv for a Z[p] ideal. Since

z and w are mbv's, the corresponding ideals are equivalent over
Zlp]l if and only if z = U»TE for some | e G and some Z unimodular
matrix T. Multiplying By k we see that this implies the result
stated in the tﬁeorem. Hence, it suffices to consider the case

(x,2y) = 1. ! : :
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Assume (x,2y) =1. Clearly (u,2v) =1 alsc. We will show
that YU~ (1) and B U~ (1). Then B~ BU T~ U, which will
prove the theorem. First,

I

2 2
(x ,x;y+xp-fs, xy—xpx/—s, v -ps=—x2)

x(x,2y,y + pvs ) =x(L,y + ps )

= (x since y+p'\/—seA..
1

Iet m=c¢c+di and 7P =a + bi where a,b,c,d € Q. Define
= " P ; - ’ = : 2, o
A =a-d~s. Since a =uc - vd =vd (mod 1) and d°s =
2,2 2y _ 2 '
d"(u" +v") = (&v)” (mod 1) and de Z, we have X ¢ A . We shall

show that B U = (A\). We have

3 YU

(x,y = p\/—s ) (u,v +s )

(xu_,:x:(v +s ), uly - ps ), (v - ps ) (v +s ))
OXA® + c Vs ), - cs ),25).

I

In a similar fashion to showing X € Al, we can show that

b+c~/—seAl. Iet & =3 U/\. Then

(1) 2 €2 ((2a,2b),a + aVs, b + cVs ) |
O ((2,2y),a+ dNs, b+ cNs ) since 7(27B) = 20 shows
that (2a,2b) divides (2x,2y) = [P D).
(a) (1) if yd 2

) 2(2,a+dNs, b+ecs) if ye zZ.

We consider case (b). Since @ =x + iy is a Gaussian integer and

P f 2, 1it follows by assumption that p = 01/17'2 is a Gaussian integer.
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Since 1 = (u,2v), we have that u is odd. Since Nr is odd,

exactly one of ¢ and d is odd.

]

(b-1) If ¢ is odd, b=ud=d=1 (mod 2) and so &2 (2,b)

{1},
(1).

(b-2) If 4 is odd, a

Il
il
o]
il

uc 1 (mod 2) and so €D (2,a)

1l

Thus €& = (1).

We now turn our attention to the problem of find equivalent

Symreps.

Definition 6.3. If B = AT 1 for some T e 02(2), we say that

A and B are trivially eguivalent.

et A be a symrep. There are four symreps trivially equivalent
to A. They are given by Lemma 6.3. Let R(A) be as in Definition
2.2. If R(A) has a unit of norm -1, there are only these four
frivial solutions to our problem by Theorem 6.2. On the other hand,
if R(A) has no unit of norm -1, there are eight symreps equivalent
to A. We may divide these into two sets ml -and m2 such that
Ae ml and the symreps in mi are all trivially equivalent for
i =1,2., Thus it suffices to find a B ¢ me. For this purpose we
will introduce an R(A) invariant called the conjugator. At present
no method is known for finding it in all cases, except by éolving the
original problem., .We shall list properties of the conjugator which
meke its speedy déterminétion possible in many cases. A table of

conjugators would be useful when a digital computor is not available.
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The fact that the correspondence A «—»@ does not always lead
to Gaussian integers is somewhat troublesome. We can elimiﬁate the

problem by the following lemma.

Temma 6.4, ILet A and B be symreps corresponding to o - and
B respectively. Assume that R(A) = Z[(1 +~s )k] where s e Z.
Then g = 2i¢ and BO = 2iB determine symreps AO and BO which

are equivalent if and only if A and B are equivalent and one

equivalence is trivial if and only if the other is. TFurthermore,

R(A,) = 2l Js 1.

Proof. We can assume A and B are images of (1 ++s )/2.
Since R(A) =2z[(1 ++s )/2] we must have Im(x) ¢ Z. Hence
Re(2i0) is odd. Thus R(C) = z[~s 1. By Lemma 6.3, the trivial
equivalences arise from multiplication by +1 and -1 and conjugation
followed by such multiplication. Since + 2i® =2i(+ &) and
£ 215 = 2i(¥ 8) we see that A ~ B is a trivial equivalence if and
only if Ay~ By is. If A, ~ By, then application of Theorem 6.4

gives A ~ B.

It remains to eliminate one possibility: A ~ B is nontrivial
and A, + B,. Suppose this is the case. By Theorem 6.2, R(A) has

no unit of norm -1. Since R(Ao)fg R(A), it follows that R(AO)

has no unit of norm -1. Thus there is a symrep E_ which is non-

0

trivially equivalent to _AO. If EO corresponds to 80,' then by
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" Theorem 6.4 80/21 corresponds to a symfep. E equivalent to A.

Since AO ~ EO is nontrivial, A ~ E is nontrivial by the previous

paragraph. Hence B ~ E 1is trivial. Thus B0 o EO and so

Ay ~ Ey ~ By,

a contradiction.
The method of applying Theorem 6.4 which we used above will
prove useful in discussing the conjugator later. We now develop

what is nearly a canonical form for .

Lemma 6.5. Assume that the. symrep A corresponds to a Gaussian
integer «@. If R(A) has no unit of norm -1, there are Gaussian
integers P and v and a rational integer Xk such that

(1) o =k,
(ii) (Np,Nv) =1,
(iii) kuy corresponds to a symrep nontrivially equivalent to VA,

(iv) no rational prime divides pve.

If k'p'y' 1is another such decomposition, then k =+ k' and either
p/p' and v/v' are Gaussian units or p/v' and vy/u' are Gaussian

units.

a,
Proof. Iet O = iak-ﬂ WjJ where ij are distinect rational

primes and k € Z. Let A~ B Dbe a nontrivial equivalence and let
B correspond to P = ibm.H wjbj. Without loss of generality m,k > O.
If Wry =2, we can assume a; =0 or 1 since (L + i)% =2i. The
same remark applies to B. Under these conditions we shall shéw that
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k =m. Since (1/k)A is a Z matrix equivalent to (1/k)B, we
b.
have that B/k is a Gaussian integer. As 1II Fé J is divisible by

no rational prime, k divides m. Similarly m divides k. Hence

k =m, Sinee W=~ |&] =~ [B] =58, 1t follows that the ™
can be arranged so that Nﬁj = Nvé and aj = bj' Since the Gaﬁssian
units are powers of i, we may adjust b so that 7! = Wj of ;3.
Now let
HL = i® II W?j and vy = II, W.aj .
Ty ']Tj 'FJ.= Tr;j J

Then all properties but.(iii) are satisfied. We have kuv = ia'—.b B =
i°B. Since v =¥ (mod 2) we have that ia;bﬁ/k =a/k # 0 (mod 2);
As R(A) = R(B), an application of Lemma 6.2 to a/2k and B/2k
gives o/k = B/k(mod 2). Thus we have two possibilities:

(8) a-Db=o0 (2) |

() a-1

il

1(2) and =1+ i (mod 2).

We temporarily assume that the latter occurs. Then 1 + i divides
py and hence p or v. If 1 + i divides u, replaée L by
w/(1 + i) and v by v(l+i). Since @+ = 15(1'+ i), this
reduces case (b) to case (a). If 1 + i divides v, the situation
is similar. In case (b) we have ku; =+ B and we are done by

TLemma 6.3.

The unigqueness question remains. By using (iv) and an argument
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similar to the cne on m and k above, we see that k' divides k
and k divides k'. Hence k =x k'.. Thus H'y' is one of % uv
and + puv by Lemma 6.3 since there are only eight symréps equivalent

to A.

Suppose p'v' =+ puv. Since p'v' =+ py, we have u‘ENv' =
+ pENv. By (iv) no rational primes divide p or p*. Hence no odd
rational primes divide ug or ‘p'z. Thus r = Nv'/Nv is a power of
two. Byr(iv), we have r = Et_ for t = -1,0, of +1 . Suppose Nv

is odd and Ny' is even. Then Np' is odd and we have

— u’e (mod 2)

'_..l
]

= p2/2 = (p/(1 + i))2 i=1i (mod 2), a contradiction.

Similarly, t # -1, Hence t = O. Thus u2 = 4 u'e and so p/p'

is a unit. Also, v/v' =% u'/n is a unit.
Suppose p'v' =+ UV =+ gy, then the roles of u and vy are
reversed and we get that p/v' =+ p'/v, a unit.

The following lemma makes it possible to define the conjugator,.:

Lemma 6.6. Let A and B be inequivalent A/Z symreps such
that R(A) = R(B), a ring with no unit of norm -1, and ‘A cor-
responds to a Gaussian integer O = kpy where k,u,v are as in the
previocus lemma. ILet B correspond to B. Then we may write

B = kugvg where Np = Ny and Ny = Ny satisfy

0

and k,po,vo

the previous lemma.
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Proof. In general B =kou,v,. Since R(A) = R(B), we may
take kj =k by combining the % with ”-O' We may work with Afk -
and B/k, ‘so it can be assumed that k = 1. Let- po= M]- and
v = oT be such that B = i™\ToT (This can be done since N = NB.).
By an argument like that of the previous lexﬁna‘s proof we can show that

A,M,0,T can be chosen so that i~ =+ 1. Since R(A) = R(B), the

norms of A,T,0,T are pairwise prime.

" By (y,€) we shall mean that for two symreps C and E cor-
responding to < and € we hé.ve C ~E. We shall show that if
p,P,¥ are Gaussian integers with pairwise prime norms then
(poV,pq¥) implies (o@¥,0p¥). The desired result follows since
(uv,uy) implies (AMv,\Tv) implies (AT ,M]———; = 'ﬂvi)- implies

(AToT,NoTr) implies (& ATMoT, % ANoT) and we may let By = AT

—

= ¢T. Define

_ Re o -Imo 1
f(G)"(Imcr Rec> e ( O)'

The matrix f(o) is a common means of representing the complex nmnbér

and VO

-

g. The following properties are easily shown.
(a) £(oT)
(b)
() ¥ =1
(d)‘- f(cr)K-= (—Im o Re 0'>.

(o) f(1) and f(o) = £(o)"

il

k£ (o)

L]
N
q
R
=
1]



Properties (a) - (c) will be used to establish identities. Property
(d) 1links X and f %o the correspondence between Gaussian integers
and symreps (Definition 6.2). 1In terms of f and K our goal be-

comes: . "

if p,e,¥ are Gaussian integers with pairwise prime
nerms and T is a Z unimodular matrix and

(%) | Tf (pp¥)K = £(pp¥)KT , -
then for some 7 unimodular matrix S we have

ST(pp¥)K = £(pp¥)KS .

We shall show that 8 = £(p)Tf(p)/N¢ is a solution. Clearly

|s| =|T] =1 ana

i

£(9) T£ () £ (pp¥) K
£(p) L (pp¥)XE(p) Dby (a) and (b)
£(@) (b KIE(p) by (%)

No-£(pp¥)KS by (a) and (v)-

N« ST (pp¥) K

Il

We must show that S is a 2 matrix. We have
N(p¥)S = N(p¥)£ () T () /N

£() T (po) £ (PV) /T By (a)

£(9) £ (pp¥) KKE (o¥) /Mo by (c)

£(9) £ (po¥) KIKE (oF) /Mp Dy (%)

£(o¥)KTKE (oY) by (a).

]

Il
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Thus N(py)S and N(¢)S are Z matrices. Since N(p¥) and Nop

are relatively prime, S 1is a  Z matrix.

.Suppose that s € Z and that for some symreé A we have
z[Ns ] =R(A). Assume that R(A) has no unit of norm -1l. Iet
A «>Q =Xkuy vwhere k,u,v satisfy Lemma 6.5 (i) - (iv). Then
s =-Ns = - |A/x| = Npv. By Lemmas 6.5 and 6.6, the set {Nu,Nv)
is a unique function of s. Since (Np,Nv) =1, this set is de- |
termined by s and the primes- dividing Nu. We are thus led to make

the following definition.

Definition 6.4. Iet s e Z and suppose Z[ Ne 1 =R(A) for

some symrep A. Then the conjugator of s, written k(s), is de-
a,
fined as follows. Write s =1 Pil where a, > O and the p, are

distinct rational primes. Iet c¢ =1 =P

(1) 1If R(A) has a unit of norm -1, then k(s) is the set (1,c}.
(2) If R(A) has no unit of norm -1, let A «—»Q = kuv where
k,u,v sabtisfy Lemma 6.5 (i) - (iv). Then k(s) is the set

((c,Mu), (c,1v)] .

By fhe discussion preceding the definition, k(s) depends only
on s and not on A. We wish to know when k(s) is defined. By
Lemma 6.5 (iv) and the faét that s = Npv, it is clear that k(s) is
defined if and only if s is the sum of two relatively prime sqﬁares.

As (1 + i)2 = 2i and rational primes congruent to 3 mcdulo 4 are
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Gaussian primes, it follows that k(s) is defined if and only if
s is a product of primes cbngruent to 1 modulo 4 or twice such a-.

product.

If a table of Kk(s) were available for s of the above form,
then for a given symrep A one could find all equivalent symreps.
Later we shall determine properties of k(s) which would be useful

in the construction and extension of such tables.

The following procedure illustrates the use of such tables. Iet

A be the given symrep.

l. Tet t =trA and h = (Ealg,all - a,,) and B = (24 - +I) /h.

(We have that R(A) is isomorphic to Z[B] or z[(B + I)/2].

In the latter case, Lemma 6.4 can be used.)

5 + 1b22.

3. If 1 e k(s), the only equivalences are the trivial ones. These

2. Iet s =-[B] and o =1b;

are given by Lemma 6.3.
b, Assume 1 ¢ #(s). ILet Py +e-Py € K(s). It is usually best to
choose the element of Kk(s) with the lesser number of prime
factors.
; : 2 2 il
5. For each Pj find x,y € 2 with x +y = Pj' If pj divides
XblE + ybll, let Fj =X + 1iy; otherwise, let Wj = =~ Ay I
the highest power of p

2n, n.Y
f+ig=al Fj J/II ij.

dividing s is the njth, define

6. Leﬁ B

I

( ;%. §j> . Then (nE + tI)/2 is nontrivially
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equivalent to A.

A knowledge of the conjugator and the factorization of & into
Gaussian primes is sufficient to find equivalent symreps. In order
to find the unimodular transformation used to achieve the equivalence,
it is also necessary to solve a dicophantine equation. The next theorem

proves this.

Theorem 6.5. Iet A be a symrep corresponding to a Gaussian
integer O = kpy where k,u,v satisfy Lemma 6.5 (i), (ii), and (iv).

Condition (iii) of Lemma 6.5 is satisfied if and only if

(Np)x2 - (Nv)yg e ¥ B oS % € B

where t =1 if R(A) dis of the form Z[ N ], and t =2 other-

wise. The matrix
T = X ~Impu Re p a2 Re v Imy
g5 Re p Imp t -ITm v .Re v

is Z unimodular and TAT-l corresponds to: ku;.

Proof. ILet f and K be as in the proof of Lemma 6.6. Then

A = f(kuy)K. ILet T be a nonsingular Q matrix. We have
-l =
(%) . TAT & = kf(uy)K

if and only if (P yia = f(vjkf(p)Kf(v)T = A(f(v}T). Thus (%) holds
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if and only if f(v)T is a polynomial in A. Iet A correspond to
! 2

r + g where r,g € Q. Then (A - rI)” is scalar. Hence (%)

holds if and only if f(¥)T = uA + vI for some u,v € Q. This is

equivalent to

H
]

E) 2K + (v/m)E(v)

wi(W)K + z£(v) for some w,z e Q.

r

We have |[T| = (Nv)22 - (Nu)wg. Thus T is a Z unimodular matrix
“such that TAT—l corresponds to kp; if and only if
(1) T ==xf(WK/AE +yt(W) /6,
(31} (Nu)xe - (Nv)y2 =+ t2, and

(iii) x,y e Q@ and T is a Z matrix.
We must show that (iii) is eguivalent to x,y € Z.

Suppose X,y € Z. If t =1, then (iii) holds; If £ = 2,
then R(A) is of the form z[(1 ++s )/2]. By Lemma 6.2 and
(uv,2) =1 (Temma 6.5 (iv)) we have pyv = i(2). Hence pv2 = iy(2).
Since v2 =Ny =1 (2), we have u = iv(2). As Np amil Ny are

odd, (ii) gives x =1y (2). Thus 2T = 0 (2) and so (iii) holds.

Suppose (iii) holds. Then
(£ x-Im p + y*Re v)/t ¢ Z and (xRe p + y-Imv)/t € Z .

Hence 2x.Im p/t € Z and 2x-Re p/t € Z. By Lemma 6.5 (iv), we have

2x/t € Z. Similarly, Ey/t € Z. If t =2, we are done. Suppose
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t =1, Then 2x,2y € Z. If xe Z, then y:Re vy € Z and
y*ImveZ and so y € Z. Similarly, if y e Z then x c Z.

Im p + Re.v

i

Assume x,y ¢ Z. Then 0 =2 (x-Impu + y-Re v) (mod 2)

I

and O=Re p + Imv (mod 2). Thus Re(pv) = Re peRe v - Im peTm v
0 (mod 2). Hence by Lemma 6.5 (iv) we have py = i(2). Thus R(A)

is of the form Z[(1 ++s )/2] by Lemma 6.2. This contradicts t = 1.

It is interestihg to note that the uniqﬁeness of H(s) shows
that x?d - yg(s/d) . with t as in the theorem and 4 a
divisor of s with d <ws is solvable for d =1 and at most one‘
other d. Actﬁally, it can be shown (by means of the fact that
i e k(s) if and only if there is a wnit of norm -1 in Z[+s 1) that
exacfly wo of * x-d - yE(s/d) =+ 1 are solvable where d ranges |

over all divisors of s.

This theorem provides one means of finding the conjugator, but it
seems rather hard to use. The next theorem lists some properties:of

k(s) which would be useful in generating a table of s versus k(s).

Theorem 6.6. ILet m,s € Z be such that K(mgs) and k(s) are

defined.

(1) If 1e k(mos), then 1 e k(s).

() ®(w’s) = %(ms).

(3) If p is a prime congruent to 1 modulo 4 and .p does ﬁot divide
é, and k(s) = {a,b}, then R(pes) is one of {ab,p}, {a,pb},

{b,ap}.
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(4) 1f k(s) = {ab,c} where the prime factors of a divide s
exactly to an odd power and those of b divide s exactly to
an even power, fhen (a|p) =+ 1 for all odd primes p dividing
Ce

(5) 1 e k(s) if and only if the continued fraction forrlJé has odd

period.

Proof. (1). Since 1 e ®k(t) if and only if Z[~t ] has a unit

of norm -1 and since Z[~NmPs ] C zZ[Ws 1, the result is clear.

We shall apply Theorem 6.4k. Suppose K(pgs) = {a,bp} with
a #1. If p divides s, Theorem 6.4 shows that {a,bp} = k(s). If

p is prime to s, then K(s) ={a,b} or b =1.

(&) If 1le n(a?s), use (1). If 14 K(a3s), the previous
paragraph applies.

(3} I 1= h‘»(pgs), use (1). If 1¢ H(pas), the above
paragraph applies. |

(4). We use Theorem 6.5. Since (Nu,Ny) = i and (-1]p) =+ 1
the result easily follows.

(5). It is well known that:the continued fraction for ~s has

0dd period if and only if Z[ s ] has a unit of nomm -1.

When s < 10,000, a table of the continued fraction expansion

for s is available [13]. By this table and (5) of the theorem, it

can be determined if 1 e k(s).
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Let Dy,.-.,p De distinct primes congruent to 1 modulo L4 and
prime to s e Z. Assume K(s) is defined. We shall discuss the

possibility of determining K(pi...pis) in terms of the £ sets

IA

R(pi...pis/pi) (L<1i<4#). The discussion relies on (1) - (3) of the

theorem. When £ =3 (and hence when £ > 3), the value of

R(pi...pis) can be uniquely determined. As a matter of fact, two of -
H(pipgs), R(pipgs) and R(pgpgs), appropriately chosen, suffice. to
determine K(pipgpgs). Our table is organized accordingly. When
£ =2, an ambiguity arises in one of the six possible cases. An
example shows that this ambiguity cannot be resolvea only by knowing
the fdfm of R(pis) and K(pgs). When £ =1, we cannot decide any
of the cases. Examples are given. At times Theorem 6.6 (%) may be
used to resolve such embiguities; for exemple, since (17/29) = -1
and K(13-17) = {13,17}, we have R(292-l3f17) = {29.17,13}. Theorem
6.6 (5) can also be used; for exsmple, we see from [13] that the
continued fraction for *J§§T§§ has even period and so H(52-29) =
| {5,209} . Maﬁy of the examples given below were found by an IBM TO9k
using the continued fraction approach to ideal equivalence (see [8]).
The program's running time per case is on the order of one second or
less. OQur main examplesvcome from two distinet G's in Which various

integral domains were used. They are
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s = 5. g8 = 15-17
o= {5,4) {13,17}

/NN

13%.5.0 177500 | 26P413.17  55.13-17  37°.13-17
{13,5-41}  {17,5-M} | {29.17,13} {5,13-17} {37,13-17}

\ / \/

132.172.5.0 ' 52.372.13.17
{17,13-5-1} {5:57,13+17}

In what follows we shall let Pl =D, Py = Q and p3 =r. We

shall assume that a,b,c are all different from 1.

42 =1

k(s) 5 (o°s) example

{1,pa} 52.13
1 e = - o mm =i

[P,a} 52'29

{p,ab} | 5°-13.17

{a,b} {pa,b} "
- - - - 201317
{Pb’a}_
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| L =2
(%) | k(ePs) || k(%) |
{1,pa} {1,qa} {1,pqal
{1,pa} {q,a} | {pa,q} |
(pa,al ex. 554370.13.17
{p,al {q,a} ~
{p,qa} > o
------ ex. 137-17 +5-41
{q,pal
{p,al {ab,c} {p,aa} | bec =a
{pa,bl {qa,b} {pqa,b}
{pa,b} {qv,a} {pa,ab}

The table for R(pgs) clearly lists all possibilities which
agree with Theorem 6.6(3). The table for K(pgqgs) lists all possible
Htpes), R(q?s) pairs except K(pes) = {gb,c} with ﬁc = a. This
cannot occur; for suppose K(pgqgs) = {ax,y}. Then {x,y} = K(pgs)
or {1,pa} bleheorem 6.6 (3). Since K(pgs) = {1,pa}, we have
x=1,y =pa or x =pa, ¥y =1. The former gives R(peq?s) =
{q,pal, so R(qes) = {q,a} which is impossible. The latter gives
K(peqes) = {pga,1} which is impossible by Theorem 6.6 (1). To
evaluate R(pgqgs) for the remaining entries proceed as in the
following example. Let R(pgs) = {l,pai, R(q?s) = {q,a}. By
Theorem 6.6 (3) one of the elements in K(pgqes) is divisible by
pa. Thus R(pgqes) = (1,pga} or {pa,q}.' The former contradicts

Theoren 6.6 ().
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w(e2e%) | w(ePrs) | £(s%a%%s) | n(@Pr2s)* | case
{1,pqa} {1,pra} {1,pqra} {1,qra} - I
{1,pqa) {pa,z} {r,pqa} {r,qa} L
{p,qal | {p,ra} {p;qra} = 1I
{p,qa}r _ {pr,al {pr,qal {r,qa) T
(p,as) | (pa,r) {paa,r} {r,qa} II
(pe,a0} | (pa,m) | (pa,ard) | fa,are) | ¥
(ve, @) | (pra,p) | (pre,d} | (ve,) | I
{pg,al {pr,a} {par,a} {qr,a) I1I
{pga,b} | (pre,b] {para,b} {qra,b] v

22

* V .
determined from K(peq r"s)

The calculations for £ = 3 are more complicated than for

£ =1,2; therefore they are presented in detail. . The procedure is
2

to use Theorem 6.6 and K(pzq s) to determine all possible values

for K(pgrgs). Those values which can be listed under a previous

case by permuting p, q, and r are then rejected. For each value

of K(peres) that results, Theorem 6.6 is used to determine

222
k(p~a"rTs).

i I 1e s(poas) .

Let K((pqr)gs) = {rx,y}. Then 1€ {x,y} by Theorem 6.6 (3). 1If

y =1, then 1l R(pzrgs) by Theorem 6.6 (1). If y #1, then
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x =1 and K(peqeres) = {r,paa} and so R(pgrzs) = {r,pa}.
| 22 . :
II k(pqs) ={p,ga} .
22 : 2 <
Iet k(p°r"s) = {px,y}. Since k(p7s) ={p,a}, dividing r out of
{px,y} gives {l,pa} or {p,a}. In the former case, y =1 (cas I)
or r. In the latter case y =a or ra. Let K(pqr)es) = {pu,v}.
Using H(pgqgs) gives v =1 (impossible), r, ga, or qra. This -
gives the following array of K((pqr)es) possibilities versus R(peras)

possibilities.

& ((par)s)
{paa,r} | {pr,qa} | {p,qra}
{pa,r} out out
k(p°r°s) | (pr,a} out out
{p,ral out out

We have eliminated cases by using K((pqr)gs) fo get H(peres). The
remaining cases are listed in the table for £ = 3.

IIT  k(p°q's) = (pa,al) .
Iet K(pgrzs) = {px,y}. Since K(pgs) = {p,a} we have y =1
(cagse I), r (case II), a, - ra (case II). Thus K(pErgs) = {pr,a}.
Let R((PQT)ES) = {pu,v}. Using R(pgqes) gives v =1 (impossible),
a, v, ra. Using K(p2r25) similarly gives v =a,q, or ga. Thus
v =a and so K((pqr)gs) = {par,a}.

22
w  k(p7q”s) = {paa,b} .
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& B : 2 .
Let K(pr s) ={px,y}. Using k(p7s) = {pa,b} gives y =1 (case I),

o .
r (case II), b, rb. Let k(pgr)~s) = {pu,v}. Using W(qugs) gives

v =1 (impossible), r,b,rb.

2
he If K(per s) = {pra,b}, then v

l,é,b,gb. By the above values
for v, we have VvV =Dh.
B. If n(pzrgs) = {pa,rb}, then v =1,q,rb,qrb. By the above values
for w, 'we have v = 7rb.
v K(p°q"s) = {pa,q} .
Let “(PETES) = {px,y}. We get y =1 (case I), r (case II),

222
qgrs) =

b (case IV), or vb. Thus K(peres) = {pa,rb}. Iet k(p
{pu,v}. Then v =1 (impossible), r,gb, or rgb and also Vv =1,

q,¥b, or rgb. Thus y = rgb.
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APPENDIX

The notatioﬁ is that given in ﬁefinition b1, The purpose of
the Appendix is to collecf the theorems needed in Section IV. In
all cases procfs or references are given; however, the results can
be found in other places as they are rather well known in the aréas

to which they belong.

Theorem A (Hilbert symbol). ILet H be a local field at the
prime spot 4 = () and let a,b,ce H*. Then

(1) (a,be) = (a,b)(a,c) by t12,57:10];

(2) (a,ab)

Il

(a,-v) vy [12,57:10];

(3) if a¢ H°, there is an x e H¥ such that (a,x) = -1 by
[12,63:131;

(4) ir f@(Na )/H) =2, then (a,m) = -1 by [12,63:3 and
63:11al; |

(5) if m is prime to 2 and a and b are Toesl umits then
{s,b) =+ 1 by [2,65:12];

(6) if afo
[12,63:1].

1]

1 (mod 4 m), then ae Wi ana (a,c) = (b,e) by

Theorem B (Hasse symbol). Iet A and B be nonsingular
symmetric matrices over a local field H. Iet A.be a Xa and-

B be © X'B. Then



(1)

(2)
(3)
(¥)

(5)

(6)

(7

and

A

n
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A~B if and only if c(A) =c(B) and a =b and |AB| ¢ T
by [12, 63:20];

c(a ®B) =c(a)e(B)(]a],]B]) by [12,58:31;

a(a+l) /2, 18+l

c(ca) = c(4a) (e, (-1) ) when c¢ e H¥ by [12,58:3];
c(A®B) = c(A)bc(E)a(-l,[Al)b(b'l)/e(_l,|B|)a(a"l)/2 .

(lAl b IBl )ab+15

4]

if the prime spot of the field does not divide 2|A| and the
elements of A are local integers, then c(A) =+ 1 by
[12,92:1];

if A = (ay), 123, k<4, then o(A) = (la]-la,, D)
(|Aa|,—l) if no |Ai] =0 by [9: p.32];

*2

if K is an extension of H of odd degree and |A] ¢ H*,

then c(A/H) = c(A/K).

Proof. (4). Write (i,j) < (i',3') if i< i', or i =it

o o _
j £3'. Then c(p ® B) H(i,j)s(k,ﬂ) (aibj’akb,@) where

>z ® a, and B g z@® b,. By Theorem A (1) we have (aibj’akb,?,)

(ai,ak) (ai,bz) (ak,bj) (bj’bz) . Splitting the product into the parts

i<kand 1 =k gives

. | 2 : b
cen = @I o™ (1 Gpleh (o))

3

(CIRE e
I apep®®H/2 - TL e (el - o)™

i i<
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By Theorem A (2) we get

c(a ®38) = c(a)® (-1,]a])® (|A|:lB|)Fa'l)b (_l’lBl)a(a-l)/E

(-1,1a))P /2 (4], [2)P* e (m)® .

(7). ILet B =A @;15. By (2) of this theorem, c(a) = c(ﬁ).
By Theorem E we have two possibilitiés:

(i) BxI®-e@®n@-¢€mn (H where (Tr)=,¢ is the prime
ideal of H and .s is a 4g-adic wnit with H(WE ) quadratic
unramified over Hj

(ii) BPxI©®-1®1® -1 (H).

In these cases we have over any field containing H
(1) «<(®)

(11) <(B) = (-1,-1).

(-, m)(-€ m,-1)(1,-1) = foly =1y (&,-m);

By Theorem A (4) we have (€,-m/H) = -1. Since f(K/H) is odd,
f(K(NEe )/K) =2. Let e =e(K/H) and let I be a prime of K,
then (m) = ()¢ over X. By Theorem A (4) we have (e,-m/K) =

(E,]I/K)e = (-1)® = -1 since e 1is odd. Thus

(1) e(B/H)
(i1) c(B/H)

I
I

- (~1,-1) < (B/K)
(=1;-2) c(B/K)

- (-1,-1)3

]

(-1,-1).

li

Since C(II,L) =+ 1, whichever of (i) and (ii) covers B = Ty

shows that (-1,-1/H) = (-1,-1/K).
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Theorem C. Iet A be a symmetric matrix over a global field
H. Assume !AI 74 O. Then I c(A/H$) = + 1 where the product runs
over all prime spots ? on H (including the infinite ones).

[12, p.190]. .

_Theorem D (Hasse-Minkowski). ILet A and B be s;qunetrié

matrices over a global field H. Assume A and B have the same

dimensions and |AB| # O. Then A ~ B (H) if and only if

1) |2l e ¥,

(2) c(A/H_") = c(B/H‘.i) for all local prime spots 4 on H,

(3) ind(A/H‘,;) = :‘Lnd(B/H¥) at all real prime spots « on H

. where ind(A/Hy) 1is the mumber of a, >0 in Az 2 ®a (Hg).
(12, p.189].

Theorem E. Let H be a local field with prime spot 42 = (m).
et € be a unit in H such that fF(H(NE )/H) = 2. Exactly one of
the following holds for a nonsingular symmetric H matrix A of

dimension at least 3.

(1) AI®-e®-1®Em.

(2) AxI®-1@a®p for some O,B ¢ H.

If (2) applies and |[A| e ]-12, it may be assumed that o =1, B = -1.

Proof. We have c(I® -1 ®a @) = (-1,a)(-x,08)(-08,-1)

(-1,-1)(@¢,-2B). By Theorems A (3) and B (1), we can put A in the
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form (2) unless -0p = |A| . Suppose |A] e . Tt is easily
seen that c¢(I® -1 @1 @ -1) = (-1,-1) and c(I® -€e@ -1 @E 7) =
(- €,-em)(e m-1) = (-1,-1)(E,€ m) = - (-1,-1). An application

of Theorem B (1) completes the proof.

Thecrem F. Iet H be a local field with prime spot <2 and
let K be a finite algebraic extension of H. Then e(K/H)f(XK/H) =
[K : H]. Further, K is a pure ramified extension of H(w) where
w is a primitive (P® - 1)st root of unity, AP divides the
rational prime p, and g = f(K/Qp) If (e) is prime to 2 |

then for w as above and some prime 7 of H(w) we have K = H(wﬂrl/e) -

There is a basis for the integers of K over those of H. [5, p.21+l,
3651,

Theorem G. Let H be a global field with fihite algebraic
extension K = H(p) and local prime spot 2 . Suppose 42 =1 ‘Iﬁe(m
is the decomposition of ¢ as powers of distinct primes over K.

; o i 6B il =
Determine f(P) by NK/H P =< . Then H(p;4) = zq3 @ L(P)
vhere L(P) is complete at P, and e(L(?)/H?) =e(P), and
f(L(T})/H") = £(P) and Z‘-IS e(P)£(P) = [K : H]. Furthermore

BB /i) = 4¢P ana

seemy = 111 S(L(0) /igy)
g Sy

where a(P) =e'(PF(P), and e'(P) =e(P) -1 1f e(P) is prime

to B, =and e'(P) > e(P) otherwise. [5 pp.lag,li31].
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Theorem H. TLet egl""’ﬁzk be distinct local prime spots on

a global field H. Let a L be integers and let @, ,...,Q e H.'

12 L k

" The k congruences

have a solution x ¢ H. [12, 11:8].

Theorem J. Let H be a loecal field with prime spot & If.@
is prime to 2, then [H¥ : H*z] =k,  1If 42 1is not prime to 2,

then [H” : H*2J = 4.0% yhere a = [H : Q2]. [12, 63:9].

Theorem K (Limitation Theorem). If K is a finite separable

extension of the local field H and L is the maximum gbelian

subextension, then N(X*/H) = N(L¥/H). [15, p.1801].

Theorem I (Reciprocity Theorem). If K is a finite abelian

extension of the local field H, then the Galois group of K over

B is isomorphic to H¥/N(x*/H). [15, p.177];

Theorem M' (Qeneralizéd Arithmetic Progression Theorem). Let H
be an algebraic number field with two relativély‘prime ideals Y and
B, There is a prime ideal $O of H and an O ¢ H® gsuch that
U=a P and =1 (mod 8B). If H is formally real, we may choose

o to be totally positive. [6, Satz 13].
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NOTATION

o =2 IR

N

Re

tr

{3

a matrix with entries a ;.3 A= (a..)
a vector with components ai

norm

rational numbers
rational integers
imaginary part
real part

trace

complement of the ideal 6L; 01° ={Ae G : tr A& e D
for all C e ot}

class of

diég (%(l),%(e),...,h(n)); see Theorem 1.5
the matrix (g(l),...,g‘n)); see Theorem 1.4
see Definition 2.3

the ith conjugate of ).

see Definition 2.1

airect sum

direct product

complex coﬂjugate

transpose -

determinant, absolute value, cardinality

set
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~ ideal equivalence.

(a,8) za.B,

[k : HI index of H in K

mbv module basis vector; see Theorem 1.k
M-ideal see Definition 1.3

rep see Definition 1.1

symrep see Definition 1.1

The symbols D, A, F, G, ©, n have a special meaning throughout
the thesis. See the beginning of Section I. The special notation

used in Section IV is not listed here. See Definition 4.1.
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