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ABSTRACT

The structure of the setfzz(A) of all eigenvalues of all complex
matrices (elementwise) equimodular with a given n X n non-negative
matrix A is studied. The problem was suggested by 0. Taussky Aand
some aspects have been studied by R.S. Varga and B.W. Levinger.

If every matrix equimodular with A 1is non-singular, then A
is called regular. A new proof of the P. Camion-A.J. Hoffman char-
acterization of regular matrices is given.

The set Q(A) consists of m < n closed annuli centered at the
origin. Each gap, T , in this set can be associated with a class of
regular matrices and with a (unique) permutation, 7V (7). The associa-
tion depends on both the combinatorial structure of A and the size
of the aj5 » Let A Dbe associated with the set of r permutations,
TCys T2, e0ey Tl , where each gap in Q(A) is associated with one of
the 7t} . Then r < n , even when the complement of g;kA) has n+1
components. Further, if TT(7) is the identity, the real boundary
points of | are eigenvalues of real matrices equimodular with 4 .

In particular, if A 1is essentially diagonally dominant, every real
boundary point of [{(A) is an eigenvalue of a real matrix equimodular
with A . |

Several conjectures based on these results are made which if
verified would constitute an extension of the Perron-Frobenius Theoren,
and an algebraic method is introduced which unites the study of
regular matrices with that of (A(A) .



I. INTRODUCTION,

We shall call two n x n complex matrices B = (bij) and
C = (cij) equimodular if Ibijl = lcijl 5 Yed = LB yuvuall
Clearly the relation "B equimodular with C" establishes an equival-
ence on the set of all n x n complex matrices, and we shall denote
by gJ(B) the class of 8ll n x n complex matrices equimodular with
a given matrix B . We shall denote by (;(B) the set of all eigen-
values of all matrices in;J(B) . When we discuss certain genersl
features of (;2(8) which do not depend on B , it will often be con=
venient to refer to this set as the eigenvalue set of B or even as
the eigenvalue set of a general matrix. It is the purpose of this
thesis to investigate such eigenvalue sets,

In this introductory section, we shall review what is already
known about eigenvalue sets and conduct a heuristic survey of problems
Atoward whose solution we may profitably direct the course of our
investigations. We shall also introduce definitions and notational cone
ventions which recur throughout our work, and we shall state without
proof several well-known results which we shall need in later sections.

Not a great deal is known about the eigenvalue set of a general
matrix. O. Taussky [2] asked for a characterization of this set, and
perhaps the best response to this request is found in.a paper by Varga
and Levinger [3] s in which the authors characterize the eigenvalue

set in terms of minimal Gerschgorin sets [h,S] . This characteriz=-
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ation is particularly elegant for the eigenvalue set of an essentislly
diagonally dominant matrix, but becomes more complex in the general
case, In Section IV, we shall once again have cause to refer to this
paper, for one of the main results of that section is quite simlilar to
a conjecture of Varga and Levinger, although the approach we use is
completely different from the method of minimal Gerschgorin sets.

Aside from the paper of Varga and Levinger, the most important
guides we have for the investigation of the eigenvalue sets are the
many results in the literature which deal with bounds on the set of
eigenvalues of a‘given matrix, Perhaps the most important of these
results are the Gerschgorin Disk Theorem and the Perron-Frobenius
Theorem. These two results are stated in their entirety at the close
of this section, but‘rcughly speaking, the most important evidence
they provide isrthat the eigenvalue set of a diagonally dominant matrii
does not contain the origin and that if A 1is a non-negative matrix,
then the largest non-negative boundary point of (;Q(A) is an eigen-
‘value of A ., |

At this point, we can say very little about the eigenvalue set of
a general matrix. However, we can prove that every such set has a

certain basic form.

Theorem O. Let B be an n xn complex matrix. Then C2(B) is

symmetric about the origin of the complex plane. Furthermore, (2 (B)

is a closed set which has at most n components, snd every component

of (9(B) contains the same number of eigenvalues (counting multipli-

cities) of each matrix in J(B) .
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Proof: First of all, if o< is a positive number in G(B) ,
then ¢ is an eigenvalue of some matrix C in XJ(B) . If © is

any real number such that 0<© <2T , then xot®

is an eigenvalue
of 2 , and since o is in J(B) , it follows that (2(B)
contains every complex number on the circle |z | = o¢.

Now, let R be any matrix in 4 (B) other than B . Tt is well-
known -- e.g. [ 4 ] -~ that the eigenvalues of an n x n complex matrix

regarded as a function of né

complex variebles are continuous
functions of those variables. Since the domain of these functions --
i.e. zg(B) -= 1s a compact, connected set in complex En2 space, it
follows that (;E(B) is closed and that every component of {R(B) must
contain exactly the same number of eigenvalues of R (including multi-
plicities) as it does those of B . Since B can have at most n
distinct eigenvalues and since R was chosen arbitrarily from XJ(B) »

this completes the proof of the theorem.

Except for the basic form described in Theorem O , none of the
features of the eigenvalue set of a general matrix is  immediately dis-
cernible, In fact, matrices which are very "similar" can have com-

pletely different types of eigenvalue sets. For example, if I 1is the
jdentity matrix, then ({(I) is the unit circle. Iet k be a positive
number, and let Dy = diag (1/k, l/kg,r..., 1/k™) . Then for each such
Dy » CR(Dk + I) consists of the union of n distinct circles. Thus,
we see that two matrices which are '"close" in the topological sense can
have eigenvalue sets which do not even have the same number of compon-
ents. It is just as obvious that two algebraically similar matrices

may have entirely different types of eigenvalue sets. For example,
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let J be the matrix all of whose entries are equal to one, Then J
is orthogonally similar to the diagonal matrix D = diag (0,0, ..'., 7y s
' We shall see later that ((J) is the disk |z|<n , but Q(D) is
‘clearly the union of the origin and the circle Iz | =n . Therefore,
it appears that if we are to find a general technique for analyzing the
eigenvalue set of a matrix, then very little can be gained by regard-
ing a ﬁatrix as a linear transformation or as a point in complex E“2
space,

Mindful of these preliminary observations, we shall begin our
investigations of (;Q(A) with a view toward answering the following
questions :

1., TIs every real boundary point of CQ(A) an eigenvalue of

some real matrix in J(A) ?

2. If A and B are non-negative matrices such that B > A ,

under what conditions is it true that (AB)_D((a) ?

3. Is there any essentiel difference between the case when ﬁ;E(A)

contains the origin and the case when it does not ?

Li. What causes the gaps between components in (J(A) ?

Ts it possible to predict whether a gap will appear in (2(A)
without having precise knowledge of Q(A) itself ?

5. Under what conditions is one of the annuli which comprise

Q(A) actually a circle ?

In addition to the above questions, there are several other import-
ant issues with which we shall deal in our investigations., However, it

is difficult to motivate or even describe these problems until we have
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introduced a certain amount of basic terminology. Therefore, each
section will begin with a paragraph which describes and motivates the -
main ideas and results contained in the section, and in Section VI, at
“the end of our investigations, we shall summarize the main results of
our work,

It is convenient at this point to introducé a few basic defini-
tions, notational conventions, and background results which will be
uéed throughout our work.

First of all, a complex matrix B will be called regular if every
matrix in zg(B) is non-singular, Equivalently, B is regular if
(;E(B) does not contain the origin.

Italic capital letters such as A,B,C, ... will be used to denote
n xn complex matrices., The letter A will be reserved for non-
negative matrices. Script letters with subindices -~ e.g. UAﬁj’ dBij,
;§kj, ﬁf;j, iy;j’ -~ will be used to denote the determinant of the
n-1 x n-1 submatrix formed by deleting the 1th row and jth column

‘from the n x n complex matrix denoted by the corresponding italic
capital letter -- e.g. A,B,C,T,V . Aithough sceript letters are also
used in the symbols RX(A) N C;{(A) as well as in the symbols for
certain other sets which will be 1ntfoduced later, there should be no
difficulty in deducing from the context in which a script letter
appears whether it denotes a set or a determinant. If B = (bij) is a
complex matrix, the symbol | B I will denote the non-negative matrix
- (i,j)th entry is [bijl . This symbol should not be confused
with the symbol sometimes used in the literature to denote the determin-

ant of B , We shall always denote the determinant of B by (det B) .
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The symbol " |" will be used to indicate the end of the proof
of a theorem or a lemma.
A set of n matrix positions which includes exactly one position

from every row and every column will be called a generalized diagonal.

For example, three of the 31 generalized diagonals of a 3 x 3 matrix
are {11, 2,2), 3,9} 5 {@D, 2,9, 3,2} 5 ena

{(1,2), £2.9); (3,1)} . A matrix whose only non-zero elements lie

along a generalized diagonal will be called a generalized permutation

matrix, Where we speak of such a matrix, we shall tacitly assume it to

be non-singular -- i.e. we assume it has n non-zero terms.
A matrix A will be called reducible if there exists a permuta-

tion matrix Q such that

where Al and A3 are square submatrices of A and 0 is a block
of zerces. If A 1is not reducible, it will be called irreducible.
Iet A = (aij) be an n x n non ~negative matrix. Then by the
52222 2£ é. we mean the directed graph on n nodes which has an edge
directed from node #k to node #4 if and only if 8, # 0, For
example, consider the following matrix :
1 0 3
A= L 0O
0 2 1
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Then the following is the graph of A :

node node

#1 node #2 #3

A sequence of edges in the graph of A which begins at node #r and
ends at node #s will be called a path from node #r +to node #s .

The graph of A 1is said to be strongly connected if there exists at

least one path from each node in the graph to every other node.
Equivalently, the graph of A 1is strongly connected if there exists a

closed path in the graph which passes through each and every node.

/ ™

The symbol Z:: will denote the deleted summation ZE: . A
& # i=1
1#d

complex nxn matrix B = (bij) will be called diagonally dominant

if we have the following inequalities for k = 1,2,..., n :
’
Ibkk' >ﬂ2:|bkj| ‘
J#k

A complex matrix B will be called essentially diagonally dominant

if there exists a positive diagonal matrix D such that BD is diagon-

ally dominant.
let B = (bij)‘ be an n x n complex matrix. Then the disk in

the complex plane described by the inequality

? 7
PN

J#K

will be called the kP Gerschgorin disk of B . We say that this

disk is isolated if its intersection with the union of the other (n-1)
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Gerschgorin disks of B is void. Thus, it follows that an isolated
Gerschgorin disk contains one and only one diagonal element of B .

| Finally, if B is an n x n complex matrix, then by the spectral
‘radius of B we shall mean the maximum of the moduli of the eigenvalues
of B . Thus, if j\l, ﬁ2, ...,An are the eigenvalues of B , the

spectral radius of B 1is equal to max |7\ |
1<ksn' Kk

We conclude this introductory section by stating without proof

five basic results which are used throughout our work.

i) Iet f be a continuous, real-valued function whose domain is
a connected set in a finite-dimensional metric space. Then if the
range of f includes both positive and negative numbers, it must also
include zero, If the domain of f is also compact, then its range is

a closed segment of the real line,

ii) Gerschgorin Disk Theorem, Iet B be a complex n x n matrix.

Then all the eigenvalues of B are contained in the union of the n
Gerschgorin disks of B . Furthermore, if the koh Gerschgorin disk
of B is isolated, then this disk contains exactly one of the eigen-

values of B .

Tt follows from ii) +that a diagonally dominant matrix B must
be regular, since the union of the Gerschgorin disks of any matrix in

‘,5(B) cannot contain the origin.

iii) Perron-Frobenius Theorem, Let A be a non-negative, irreduc-

ible matrix, Then A has a simple, positive eigenvalue < which is
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equal to the spectral radius of A and which is associated with a
positive eigenvector. Furthermore, if B 1is any complex matrix such
that A é;lBI s then o is greater than the spectral radius of B
with the sole exception of the case when there exists a unitary diagon-
al matrix D and a real number © such that A = (eie)DBD'1 ; in

which case B has a simple eigenvalue of modulus o« ,

Clearly, this result implies that the largest positive boundary
point of 'QQ(A) is an eigenvalue of A , since every matrix B in

J(4) 1is such that A > |B| .

iv) Let B be a complex matrix. Then the matrix power series
I+B% +8 + ... converges to (I--B)'-1 if and only if the spectral

radius of B 1s less than one,

v) A matrix is irreducible if and only if its graph is strongly

connected.
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II. REGULAR MATRICES

The main purpose of this section is to introduce and develop a
technique which will prove to be the crux of all our mein results.
Using this technique, we shall establish a natural means of associat=-
ing each regular matrix with a permutation matrix, and as a by-product
of this result, we give a new proof of a theorem of Camion and Hoffman
which completely characterizes regular matrices. Finally, we obtain a
property of non-negative regular matrices which will be used to a
great extent in Section IV .

We begin this section with a lemma which expresses analytically
the obvious fact that m line segments can be laid out in the form of
a closed m-gon if and only if the length of no single one of them

exceaeds the sum of the lengths of the rest.

Lemma }”J; I_.e_t_ xl?xza ces Z2X

numbers. Then it is possible to find real numbers © 62,...,9

1.2 m

» 2 & ”
T ij 6193 = 0 1if and only if X, € Yx,
iy Jra J

Proof: Suppose for real numbers 61,92,...,9m we have

m o)
Z}xj e®) = 0. This can be written as =Xy 0101 - Z:xj e1®J and it
J=i m 5 m 1=2
8 b
follows that x. = . g ;
& IJ);aXJ ° | S}:;xj
To prove the converse, we use induction on m . For m=2 , if

X3 € X, , we must have x; - X, =0 since xq » x, by assumption.
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In the genersl case, suppose we have the inequality xl\ ij .

m-t

Then if we have x, X Z x, we may apply the inductive hypothesis

to the m-1l numbers x-+ s goaii to obtain the desired result.
12 Xoseees¥y .

- However, suppose x1+xm>JZ j ®° that x, > (J;; xj) -x,20.

Let z(8) = (ij) - X, . Then z(0) varies continuously between

iz2
=i

ij and (Zx ) x as © varies between M and 0 . Since we
j Ji=
have (ZZ:x ) = X < X Z:x it follows that Iz(el)\ = x; for

J=1 J=|

some 61 with O < ©; £ 7. Therefore, there exists a number 6,

m=|

with 62 2 Tr such that

z(el)=x =(Zx)-xmel.

J=i
This can be re-written as
=i

‘ 8 i ie
x112+J2;xe +xmel=0,

and the proof of the lemma is complete. ‘

It may appear that we can gain little insight into the nature of
. elgenvalue sets of general matrices by concentrating on regular
matrices, for "most" matrices are not regular. However, as we shall
show in Section III, if A 1is a complex matrix and A is a positive
number not in GQ(A) , then the translated matrix A - AI must be
regular., This indicstes that a characterization of regular matrices
is of basic importance in discussing many of the features of the
eigenvalue set of a general complex matrix. The following lemma is

the first step in the derivatlion of such a characterization.
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Lemma lg . }_XE nxn non-negative matrix A is regular if and only

if for each (row) index k and every matrix B 1in RS(A) , Wwe have

“Z‘lbkj ”@kj Je ") #0 for any n real numbers 815605000,0,
. -'

Proof: Suppose A 1is not regular. Then there exists a singular
matrix B = (bij) in ig(A) . Let k be a (row) index. Then since

B 1is singular, we must have

h
1= jI
J2:'(-1) by @kj = dok B = 0.

Clearly th;i implies the existence of real numbers 91,92,...,9

‘ iB 3
such'bhatj;|bkj||@kjle e
Conversely, suppose A 1is regular., Let k be a (row) index and

n

let B be an arbitrary element of ,B(A) . Suppose there exist real
n

i
numbers 91,92,...,9n such that J;]kal lﬁkj | e Jd =90 .
For j = 1,2,...,n , 1let Xj be the argument of the complex number

b, 03

k3 Kj * .-Then we have

S 1(05 - 74)
2.y @iy 0 a0
Clearly, this implies the existence of a singular matrix C which
Kbh

differs from B only in the signs of the elements of the row.

Therefore, this matrix C is in KY(A) , and this contradicts the
fact that A 1is regular. Hence, it is impossible to find numbers
n
ie
015855...,08, such that j,Z'lbij@kﬂe J =0, Since k was an

arbitrary (row) index and since B was chosen arbitrarily from zg(A)

this completes the proof of the lemma. l

Lemms 1.2 indicates that we can obtain valuable information about
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regular matrices by investigating the set of complex numbers
b b ces 3 b
{ k1l le ? Tk @kz ? ’ “kn @kn}
for a fixed row index k . We shall now combine the results of
Lemma 1.1 and Iemma 1.2 to demonstrate an important property of this
set, but in anticipation of this and later results, it is convenient

to first introduce a function which proves to be a valuable tool in

our investigations.

Definition 1, Let B = (bij) be a complex n x n matrix, Iet r be
an arbitrary (row) index and s , an arbitrasry (column) index. Then
Frg(B) will denote the following fynction:
Frs(B) = Ibrsl lﬁrsI "J_Z;st brj Il &‘?rj |
Clearly, for fixed r and 's ’ Frs(B) is a continuous, real-
valued function of the elements of B if B 1s regarded as a point
in complex En2 space, One reason why this function is so useful is

contained in the following lemma.

Lemma 1.3. Ist B Dbe a complex matrix. If there exist two indices

r and s such that FrS(B) =0, then B is not regulsr. If there

exist two indices k and £ such that Fkﬂ(c) > 0 for every

matrix C in J(B) , then B is regular.

Proof: The first statement is an obvious consequence of
Lemma 1.2. Now let k and £ be two indices such that FkL(C) >0
for every matrix in of (B) . Suppose B 1is not regular. Then there
exists a matrix C in xg(B) which is singular, and we must have

= Ik=jl
'Z:(-l) Cg Sy =06 C =0,
J‘:



From this it follows that

Ickﬂl ngjlgzickgl lcle )

J#L
and we must have sz(c) < 0 . However, this contradicts the assump-
tion that Fk£(C) >0, and we conclude that B 1is regular, as

desired. I

Now we prove a converse Lo the second part of Lemma 1.3 .

Lemma 1.4, Iet A Dbe a regular matrix. Then for each (row)

index k , there exists one and only one (column) index Jf =_£(k)

such that Fkﬂ,(B) >0 for all matrices B in JJ(A)

Proof: ILet k be a (row) index which will remain fixed through-
out the prcof. Since A is regular, we conclude from Lemma 1.2 that

it is impossible to find resl numbers 61’62""’911 such that
n

Z: bes| | B3| 2% = 0.

Choose £ so that l kﬂll@k,a’ = max Ib li@k I . Then it follows

I< <n

from Lemma 1.1 that we must have

Ibkﬂll@kg[>2‘{bkj} ‘@kjl &

JFEK
Moreover, A is unique in the sense 'bha"t for m # /) we must have

km]l@km Z' k l 1@k3| :

jEm
Thus, we conclude that T, L(B) >0, bub we still must show that this

index £ depends only on k and not on the choice of B from ;J(A) v

Assume that there exists a matrix C in gf(A) such that
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Fk‘(c) €< 0. Since F,, 1is a continuous,.real-valued function on
J () , and since J(A) is a connected set in complex g’ space
which contains both B and C , it follows that F_ L(T) =0 for
some matrix T in gg(A) . Howesver, this contradicts the fact that
A 1is regular, and we conclude that sz(c) > 0 for every matrix C
in kB(A) . Therefore, the (column) index .£ depends only on the
(row) index k and not on the choice of B from zy(A) , as

desired. l

As a consequence of Lemma 1.L, we can now define the important

concept of a pivotal position for a class of regular matrices.

Definition 2. Let A be a regular matrix and suppose that (k,2)
is en ordered pair of indices such that F,,(A) > 0 . Then we say

that (k,2) 1is a pivotal position for matrices in _zg(A) , and if

B = (bij) is any matrix in .kg(A) , the element b will be called

ke
the pivotal element in the k" row of B .

It follows from Lemma 1.l that every row of a regular matrix con-
tains exactly one pivotal element and that the position of this element
is an invariant of the class ‘zy(A) . Moreover, we shall show in
Lemma 1.5 that the set of pivotal positions of the class J(A) is
actuslly an invariant of a much larger class of regular matrices,

which we shall now define.

Definition 3. Let B = (bij) be a regular n x n matrix. We shall

denote by A/(B) the set of all complex matrices C = (Cij) whose
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elements satisfy the following inequalities for k = 1,2,...,n :

lckzl > Ibkz | where b is the pivotal

h th
element in the k row of B (2.1)
lckslslbksl for s = 1,2,...,n 8 £ 4
i.e. such a matrix C is obtained from B by increasing (in modulus)
the pivotal.elemen‘bs in B and by decreasing (in modulus‘) the others.

For example, consider the matrix

3 2 3
B = 2 8 3
1 6 15

We shell see that B 1is regular and that the pivotal positions of
B are (1,1); (2,2); and (3,3) . Therefore, a typical member of
«/U(B) is the following complex matrix:
5 0 i 8
C= | 2 91 2
0 2+21 15

Lemma 15 Let A be a regular n xn matrix, Every matrix in

M) is regular and has the same pivotal positions as matrices in

S(h) .

Proof: To simplify notation, we shall assume that A is the
non-negative matrix in J (A) . We shall first prove the lemma for a
subset of J{/(A)' and then proceed recursively to the completely

general case., Let k be a fixed (row) index, end let :/Vk(A) be the
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set of all complex matrices B = (bij) whose elements satisfy the

following inequalities for k = 1,2,...,n @

b a where a is the pivotal
| il 2% ) #

element in the kth row of A
lbij( ey i, = 1,25...4n 1Ak

In other words, c/Vk(A) is the subset of (/V(A) which contains those

matrices which differ from certain matrices in /) (A) only in the

elements of the 0 row., let B = (b_j) be an arbitrary matrix in
5

Nk(A) , and let C = (cij) be the corresponding matrix in ,J (&) ==

i.e. B and C are identical except for the elements of the kth

row 3 for Jj=1,2,...,n , the modulus of the complex number ckj

satisfies the inequalities (2.2) , and its argument is equal to the

argument of bk j°

fact that Fk‘(C) >0, imply that sz(B) > 0, since the minors of

Then the inequalities (2.2) , together with the

_the elements of the k"N row of B are identical with the minors of
the corresponding elements of the kth row of C == i,e, we have
@kj = ‘:kj s J=1,2,...,n « Therefore, since B was chosen
arbitrarily from (/LQ(A) s it follows from Lemma 1.3 that every
matrix in Wk(A) is regular and has (k,L) as a pivotal position,
Now suppose (r,s) is a pivotal position for matrices in J (A)
but not for matrices in J (B) . Then we must have FrS(A) >0 zand
Frs(B)< 0 . Since ‘/Vk(A) is a connected subset of complex EY

space which contains both A and B , it follows that there exists a
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matrix T in ¢&4KA) such that Frs(T) = 0 . However, this implies
that T 1is not regular, and this contradicts the already established
fact that every matrix in u&i(A) is regular. Hence, we conclude
" that Frs(B):> 0, and (r,s) must be & pivotal position for all
matrices in u@ﬁ(A) . Therefore, every matrix in J@L(A) is regular.
and has the same pivotal positions as matrices in gg(A) i
Now, let U = (uij) be ean arbitrary matrix in C/VQA) . We

define the following sequence of matrices {?Vs} :

= () (5) o =
v (vij ) , where ¥ u PEE = LBusensB

and v{j’ = aij i>s J = 1s2sesesl

Since U 1is in JL«A) , we know that vy is in u4é(A) , and by what
we have glready proved, it follows that Vl is regular and has the
same pivotal positions as matrices in zg(A) . Then V, is in
u&é(Vi) , and V2 is regular and has the same pivotal positions as
matrices in _Kf(vl) and RJ(A) . Proceeding in like fashion, we con-
" clude that Vn is regular and has the same pivbtal positions as
matrices in ZY(VD_I), kf(vn_z), ...,)kal) and ;X(A) , and since

Vn = U Dby construction, this completes the proof of the lemma. I

Now we are in a position to prove our first main result, which
says that if A 1is regular, then the pivotal positions of the class
zB(A) lie slong a generalized disgonal, In anticipation of future
applications, this result will be stated in s slightly different,:

although equivalent form.
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Theorem 1. Let A be a regular matrix. Then there exists a permuta-

tion matrix P such that PA is a regular matrix sll of whose

pivotal positions lie along the main diagonal.

Proof: First we shall show that the pivotal positions of the
class gY(A) lie along a generalized diagonal. For this purpose, we
consider the matrix B = (bij) whose elements satisfy the following

conditions for k = 1,2,...,n ¢

bkz = akz if a, 1is the pivotal element
in the k' row of A
b =0 s =1,2,...,n 5 b £

Clearly Bb is in 04/(A) . Therefore, by Lemma 1.5, B must be
regular and have the same pivotal positions as matrices in xf(A) ’
However, each row of B has exactly one non-zero element, and such a
matrix can be non-singular if and only if it is actually a generalized
permutation matrix. Therefore, the pivotal positions of the class
23(3) and hence of the class xX(A) 1lie along a generalized
disgonal., Let ’Q - (qij) be that permutation matrix whose elements

satisfy the following conditions for k = 1,290 0nyti ¢

%y = 1 if B, #£0
qks =0 1if bks =0

-1
Let P = Q . It is clear that PA is s regular matrix, and since
pre-multiplication by a permutation matrix merely permutes the rows

of a matrix, we conclude that if (r,s) 4is a pivotal position in A

b
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then (s,s) 1is a pivotal position in PA. Therefore, all the pivotal

positions of PA 1lie along the main diagonal, as desired. I

Corollary 1.1. If A and P are as in Theorem 1, then AP is also

& regular matrix whose pivotal elements all lie along the main

diagonal,

Proof: It is clear that AP 1is regular, and the location of the
pivotal elements of AP follows from the fact that BP is s diagonal

matrix, where B is the matrix defined in the proof of Theorem 1. l

Since the pivotal positions of a regular matrix A 1lie along a

generalized diagonal, it is clear that if P1 and P, are permuta-

2
tion matrices such that P;A and P,A both have all their pivotal

positions along the main diagonal, then we must have Pl = P2 . This

fact allows us to make the following definition.

Definition L. Let A be a regular matrix, and let P be that

(unique) permutation matrix such that PA has all its pivotal
positions along the main diagonal. Then we say that A is associated

‘with P . If A 1is associated with I s ‘the identity matrix, we say

that A 1is s regular matrix in normal form.

The results of Theorem 1 and Lemma 1.5 indicate that a regular
matrix in normal form behaves in many ways like a diagonsl matrix.
Indeed, we shall show that a regulsr matrix in normal form is actually
essentially diagonally dominant, end this fact when combined with

Theorem 1 gives the characterization of regular matrices which con-
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stitutes Theorem 2. The following lemma is used primarily in Theorem 2
to provide a connection between Theorem 1 and the concept of diagonal

dominance, but it is also a rather interesting result in itself.

Lemma 2,1. Let A be an n xn non-negative regular matrix in

normal form, and let B = (bij) be any matrix in ,/l/(A) such that

bkk> 0 for k =1,2,...,n . Then the real parts of all the eigen-

values of B are positive.

Proof: Let A be an eigenvalue of B , and suppose that the
real part of A 1is non-positive. ‘Write A as A=ReA + 1 ImA .
Then for k = 1,2,...,n , we have by - ReA = by, + [ Re?\} Z o
since by, >a, ad ReA < 0. It follows that B - AI is in
/V(A) , since B 1is in (/V(A) and we have for k = 1,2,...,n :

1

oy AL = [ (et 1ReA1)? + (mA)?] 25 e,

Therefore, it follows from Lemma 1.5 that B = AI 1is regular, and we
* conclude that B - AI cannot be singular. This contradicts the
assumption that A 1is an eigenvalue of B , and we conclude that the

real part of A must be positive, as desired. I

Tn a recent paper, Camion and Hoffman [1] proved that a
matrix A is regular if and only if there exists a permutation
matrix P and a positive diagonal matrix D such that PAD 1is
diagonally dominant. 1In Theorem 2, we obtain the same characterizsation
as a consequence of Theorem 1 and Lemma 2.1, although in order to

demonstrate the existence of a suitable positive diagonal matrix D ,
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we are forced to use a technique which has little in common with the

rest of the work in this section.

. Theorem 2, Let A be an n x n non-negative matrix. Then A is

regular if and only if there exists a permutation matrix P and a

positive diagonal matrix D such that PAD 1is diagonally dominent.

Proof: Suppose PAD is diagonally dominant. Let B be any
matrix in ZX(A) . Then PBD 1is diagonally dominant and must there-
fore be non-singular. Hence, B 1is non-singular, and since B was
chosen arbitrarily from QJ(A) , we conclude that A 1is regular.

Conversely, suppose A 1is regular. Let P be the permutation
matrix assoclated with A , and let B = PA ., We must show that B
is essentially diagonally dominant., Let C = (cij) be the matrix

whose elements satisfy the following conditions:

c; 5 " -bij 1, = 1,2,...,n i ¥ j

We shall first show that C'l is a non-negative matrix, and then we
shall use this fact to show that B is essentially diagonally

dominant.

Choose © >0 so small that the‘matrix S = I-0C 1is non-negative.
Let p(S) be the largest non-negative resl boundary point of 5<(S) .
Then it follows from the Perron-Frobenius Theorem that p(S) is
actuslly an eigenvalue of S , and we must have the following:

0 = det ( S= p(S)I ) = det [ (I-5C) = p(S)T | = det ( [1-p(S)] I ~cC).
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Consequently, [l—p(S)] o=t is a real eigenvalue of C , and it
follows from Lemma 2.1 that this eigenvalue must be positive. Since
o~ is positive, we conclude that 1>p(S)>0 , and this inequality
insures the convergence of the matrix series I + S + 2 ...

to the matrix (I-S)":L = (ct'C)":L . Since S and all its powers are
non-negative matrices, we conclude that (c’C)'l = olc"l s also non-

negative, and since O >0 , it follows that ¢l

is a non-negative
matrix,

Let e denote the transpose of the row vector (1,1,...,1) ,.
and consider the vector x = C-len . Since C-1 is non-negative, we
kmow that x >0 . ILet D be the positive diagonal matrix such that
X = Dan . Then the vector CDen is positive, and this means we have,
for i =1,2,...n ¢

/
djoss = 2558520
J#IL
Clearly, this is equivalent to the statement that C 1is essentially

diagonally dominant, and this completes the proof of the theorem. I

Corollary 2,1. Let A be a non-negative regular matrix, and let P’

and D be as in Theorem 2. If B }_g_'any matrix in A(2) , then

PBD 1is also diagonally dominant.

Proof: This is a simple consequence of the inequalities (2,1) ,

which arise in the definition of (/V(A) . I

Corollary 2.2. A diagonaliy dominant matrix is a regular matrix in

normal form, I
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With Theorem 2, it is eaéy to see why the matrix

which appeasred on page 16 is regular. Let D = diag (1, 1/2, 1/3) .

Then we have

3 1 il
BD= |2 ly 7 8
i 9 5

Since BD 1is diagonally dominant, it follows from Corollary 2.2

that B 1is a regular matrix in normal form.

While the characterization of regular matrices given in Theorem 2
provides an excellent means of constructing examples of various types
of regular matrices, it would be desirable for certain purposes to
have a more tractsble test for non-regularity. For example, it is

obvious that the matrix

5 | 1 1
J = [ 1 5 &
i & 1l 1

is not regular, but this is not an immediate consequence of Theorem 2,

and using Theorem 2 alone, it is quite difficult to see why the matrix

is not regular. However, in Theorem 3 we obtain a necessary condition



25.

for the regularity of a matrix which is usually much easier to apply

than Theorem 2.

Theorem 3. Let A Dbe an n X n non-negative, regular matrix. Then

the product of the pivotal elements of A 1is greater than the product

of the elements of A which lie along any other generalized diagonal.

Proof: Because of Theorem 1, it suffices to prove the theorem
for regular matrices in normal form. Therefore, we assume that the
pivotal elements of A are all diagonal elements.

Let (1,44), (2,£2),+¢+, (n,n) be any generalized diagonal which
contains at least one off-diagonal position, and let B = (bij) be
that non-negative matrix whose elements satisfy the following con-

ditions. for k = 1,2,...,1‘1 :

Pre = akk
by k= 2kl
bkj= 0 j=1,2,...,n j#k,/Lk

Thus, B has non=-zero elements along only the main diagonal and the
generalized diagonal under consideration. Furthermore, B 4is in J/A)
and is therefore a regular matrix in normal form, by Lemma 1.5 . If
the permutation k<>{, 1is not cyclic of order n , then B 1is red-
ucible, and the theorem follows by induction, since each diagonal block
of a block trianéular regular matrix must be regular. Hence, we may
assume that k<>l 1is cyclic of order n . Suppose we have

n n n n
[ l b g = i I ak Ly > | | apg = | I brik -
B K=l K=t :

K=j
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Then since the generalized diagonal under consideration contains at
least one off-diagonal position, it follcws that by decreasing only
the off-diagonal elements of B , we can construct a non-negative
matrix C = (cyj) which is in A/(B) and for which we have

[ Clegy = [ [ckk l By = akk

K= K=}
Since ke, is cyclic of order n, there exists a permutation matrix

P such that
c! c!
11 144
. c.C)
22 2£2
PCP! = @ S
nn1,j£_1
]
ng, ®n

However, the matrix C cannot be regular, for we have

det(PCP') —. 'ckk * ' |th ‘ Ckk * \ Crk i

H=| K= |

This contradicts the fact that all matrices in A/(B) are regular, and

we conclude that the theorem holds in all cases. |

We conclude from Theorem 3 that if the product of the elements
along no single generalized diagonal of A exceeds the product of the
elements along every other generalized diagonal, then A cannot be

regular. For example, consider the following matrix:

1 2 1
A = 2 0 1
1 1 0

No generalized diagonal product exceeds 2, but two different such

products equal 2. Thus, no single generalized diagonal product



27.

of A dominates the rest, and A cannot be regular. Unfortunately,
as one might suspect, even if this condition is satisfied, it is in

general not enough to guarantee that a matrix be regular. For example,

 the matrix
2 1 0
A= 1 2
1 1 1

is equimodular with the singular matrix

2 =1
B=| <1 2 1

@]

1 1 1
even though the product of the diagonal elements of A is greater than
the product of the elements along eny other generalized diagonal.
Despite its limitations, Theorem 3 will nevertheless prove to be the

key to all our investigation in Section IV,

We conclude this section with several results which are interest=
ing in themselves but are isolated from the main body of our investi-

gations.

Theorem L, Let A be an n x n non-negative regular matrix in

— Com———

normal form. Let P be an n x n permutation matrix and let

D = diag (dl’d2""’dn) 'be 8 positive diagonal matrix. Then

PAP' , DA, AD, and pap~1 are all regular matrices in normal

form.
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Proof: It is clear that each of these four product matrices is

regular. We shall use Theorem 3 to prove they are all in normal form.

Let (l,fl), (2,[2), ceey (ngﬂn) be any generalized diagonal.

Then the elements 8, 31’ 8, £2’ ceey anﬂn also lie on a generalized

diagonal of PAP' . In particular, the product of the diagonal
elements of A equals that of pap’ » and every other product of
elements of PAP’ - which lie along a generalized diagonal is equal
to a product of elements of A which lie aloﬁg a generalized diagonal.
Therefore, since A 1is in normal form, it follows from Theorem 3 +that
no such generalized diagonal product of elements of PAP’ is as great
as the product of the diagonal elements of PAP’ , and PAP’ must be
in normal form.

Now let us consider the matrices DA = (di aij) and

D= (dj aij) . Let (1,11) % (2,£2) x mownh (n,ln) be any generalized

diagonal which contains at least one off-diagonal position. Then
- since A is in normal form, we have

T—Td By = de) (Wakzk) < (de) (ﬂakk) ‘Tl—dkakk

k=1 k=1 k=1 k=1 k=1
Since (1,21) ’ (Q,Ié) 3 eees (n,in) was an arbitrary generalized
diagonal, it follows from Theorem 3 that DA is in normal form.

Similarly, we can show that

-l—l_dlkak2<-]—|-£kll,k ’
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and this allows us to conclude that AD 1is in normal form. Finally,.

since D"1 is also a positive diagonal matrix, it follows from what

1

we have already proved that (DA)D"1 = DAD™™ 4s in normal form. l

Theorem 5. Let A 23 a non-negative regular n x n matrix in normal

form, and let B be a principal submatrix of A -- i.e. B is a sub-

matrix of A all of whose diagonal elements are also diagonal elements

g£ A . Then B is a regular matrix in normal form.

Proof: TLet k be an integer such that l<k<n , and let B
be a k x k principal submatrix of A . Then there exists a permuta-
tion matrix P such that

PAP =

where A3 is an (n-k) x (n-k) principal submatrix of A , and Al
and A, are k x (n~k) and (n-k) x k submatrices of A , respect-
- ively. Therefore, since A 1s in normal form, it follows from
Theorem L1 that PAP’ is in normal form, and we see that it suffices
to prove the theorem for the case when B = (bij) is the submatrix

of A whose elements satisfy bij = a. for i, = 1s2y4 0k

i3 ?

Now, let C be the n x n non-negative block diagonal matrix

which has the following form:
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where 0, , and 0, are k x (n=k) and (n-k) x k blocks of
zeroes, respectively, and D = diag (ak+1,k+l P B ap v et ann) ,
Then C is in JA/(4) , and it follows from Lemma 1.5 that C is a

‘regular matrix in normal form. Suppose B 1is not regular, and let

U be a singular matrix inljg(B). Then the singular matrix

is in J(C) , and this contradicts the fact that C is reguler.
Therefore, B must be regular. Because of the block diagonal form of
c y 1t follows from Theorem 3 that the product of the diagonal
elements of B must be greater than the product of the elements of

B which lie along any other generalized diagonal, and B must be in |
normal form. Since k was an arbitrary integer such that 1< k<n
and since B was an arbitrary k x k principal submatrix of A ,

this completes the proof of the theorem.

Theorem é. Iet A be an n x n non-negative regular matrix, and

let P be the permutation matrix associated with A . Let B

be any real matrix in J(A) such that all the pivotal elements of B

are positive. Then we have det B>0O if det P = +1 and det B< O

if det P = -1 .

Proof: Let C = PB ., Since C 1is a regular matrix in normal

form such that c113>0 for 1 =1,2,...,n, it follows from Lemma 2.1

that all the real eigenvalues of C are positive, and since C 1is
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real, its complex eigenvalues occur in conjugate pairs. Hence, the
product of the eigenvalues of C 1is positive, and since B = p'c s We
must have det B = (det P’) (det C) >0 if det P'>0 , and

"det B<O 1if det P< O . Since P is a permutation matrix, we have
det P = det P’ = + 1 , and we conclude that det B has the same sign
as det P . I

Corollary él Let A P_g_ an n x n non-negative regular matrix in

normal form, and let B = (bi,,j) be any real matrix in J (1) such

that b, >0 for k =1,2,...,n . Then det B >0 . |

Corollary 6.2. Let B = (bij) be a real symmetric regular matrix in

normal form. E bkk>0 for k =1,2,...,n , then B 1is positive

definite.

Proof: It follows from Theorem 5 +that the principal submatrices
of B of all orders are regular matrices in normal form. Since the
~ diagonal elements of B are all positive, it follows from Corollary6.1
that the determinant of each such principal submatrix must be positive,

Therefore, B is positive definite, as desired. I
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III; NORMAL GAPS IN THE EIGENVAIUE SET OF A GENERAL COMPLEX MATRIX

In Section II, we established a natural means of associating each
" regular matrix with a permutatioﬁ matrix, and we shall use this result
to show that each gap between components of the eigenvalue set of a
general complex matrix may be associated with a permutation matrix in
a meaningful fashion. In this section we shall be mainly interested
in gaps which are associated with the identity matrix; such gaps will
be called normel gaps. We shall ﬁrove that the unbounded gap of every
eigenvalue set is nofmal, and we shall show that certain interior gaps
in the eigenvalue sets of special types of matrices are normal. We
also prove that if A = (aij) is a non-negative régular matrix in
normal form and B = (bij) is a matrix in ML) such that

| b = a for k =1,2,...,n , then the eigenvalue set of B is

kkl kk

. contained in that of A .

For several of the following results, it will be convenient to
have a simple means of referring to the geps in the eigenvalue set of

a matrix.

- Definition g. Let B be an n xn complex matrix, and let A be
any non—negétive number which is not in.IZZ(B) . Then we shall denote
by G(B,A) the entire gap in (X (B) which contains ‘A . The
unbounded gap in (;B(B) will always be denoted by G(B,o0) . If B

is regular, the gap which contains the origin will a2lways be denoted
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by G(B,0) . If 7\120 is in one gap of Q(B) and 7\2 > ?\1
is in another, then we say that G(B, ?\1) is the more interior of the

two gaps and that G(B, ?\2) is the more exterior.

The following diagram illustrates how Definition 5 is used in

both the regular and non-regular cases:

Regular Case

G(A,0)

Non-Regular Case

G(A,29)
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Our first goal in this section is to show that each gap in the
eigenvalue set of a general complex matrix may be associated with a
permutation matrix. To obtain this result, we consider the following
‘set of matrices, which is closely related to a certain gap in the

eigenvalue set of a given matrix.

Definition 6. Iet B be a complex n xn matrix, and let A be a
non-negative number not in Q.(B) . Then we denote by # (B, A ) the
set of all matrices of the form C~-0I , where C 1is a matrix in

z?(B) and o 1is a non-negative number in the gap G(B,A) .

We shall show in Theorem 7 that all the matrices in #{ (B, A)
are regular and are associated with the same permutation matrix in
the sense of Definition L , but first we must show that a non-regular
matrix B 1s equimodular with a singular matrix which has the same

diagonal elements as B ,

. Lemma 7.1. Iet B = (bi,j) be a complex n x n matrix which is not

regular. Then there exists a singular matrix C = (cij) in ;(?(B)

such that Cric ™ bkk sy for k=1,2,00e,01 &

Proof: Since B 1is not regular, there exists a singular matrix
U=(u, in J(B) . For k =1,2,...,n , let 6  and ot be
ij : k k
the arguments of the complex numbers W and bkk s respectively,

and consider the unitary diagonal matrix :

-e -
D = diag (ei("l 1), ..., ¢1Cn n)) .
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Then the matrix C = UD is singular, and we have for k = 1,2,..., n @

c - Iu Iei[ek + (O(k —ek)] - ]b e'j_ak
kk

Kk * Bhgp +

e
"Since D 1is unitary, it follows that C is in xX(B) , and this

completes the proof of the lemma. I

Theorem 7. Let B be a complex n xn matrix, and let A be a

positive number not in Q(B) . Then all the matrices in H (B, A)

are regular and are associated with the same p_gi‘mutation matrix.

Proof: Let C-0I be an arbitrary matrix in (B, A) , where
C 1is in ;(? (B) and o 1is a non-negative number in the gap G(B,A) .
Suppose C-6T1 1is not regular. Then there exists a singular matrix
U= (uij) in J(C-GI) , and because of Lemma 7.1 , we may assume
that u,, =c

kk
in ;X(B) , and since U 1is singular, it follows that o 1is an

kk-GI sy k=1,2,...,m . Let V=U+061I . Then V is

eigenvalue of V . However, this contradicts the fact that o is
" not in Q(B) , and we conclude that C-oI must be regular. Since
C-o0I was chosen arbitrarily from o (B,A) , it follows that every
matrix in H (B, A) is regular.

Now we shall show that every matrix in M (B, A) has the same
pivotal positions as B-AI . Once again let C-6I be an arbitrary
matrix in Q’f(B, A) . Lét k be an arbitrary index and let (k,1)

th

be the pivotal position in the k™ row of B-AI . Suppose we have

sz(B-aI)>O and sz(c-crx)so .
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'Since ?’f(B, A) 1is a connected set in complex. En2 space which con-
tains both B-AI and C-gI , :it follows that there exists a

matrix T in H(B,A) such that Fy,(T) = 0 . However, this contra-
" dicts the fact that every matrix in } (B, A) is regular, and we con-
clude that FkL(C-dI)>O . Since C-oI was chosen arbitrarily from
H(B,A) , and since k was an arbitrary (row) index, it follows
that every matrix in (B, A) has the same pivotal positions as

B~ AI and hence is associated with the same permutation matrix as

B-AI , and this completes the proof of the theorem. l

The value of Theorem 7 lies rin the fact that if we know A >0
is not in the eigenvalue 'set of a given matrix B , and if we also
know that one matrix in ‘;H'(B,?\) is associated with a certain
permutation matrix P , then every matrix in 2f(B,A) must be

associated with P . Therefore, we make the following definition:

Definition 7. Let B be an n x n complex matrix, and let A be a
' non-negative number not in Q(B) . Then the pivotal positions shared
by all the matrices in H (B,A) | ﬁll be called the pivotal positions
of the gap G(B,A) . If P is the permutation matrix associated
with every matrix in M (B;A) , then we say that the gap G(B,A)

is associated with P . A gap which 4is associated with the identity

matrix will be called s normal £3ap.

It will be seen that normal gaps play an important part in our
investigations, One reason for the importance of such gaps is found

in the following result, which states that the unbounded gap of any
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eigenvalue set is normal.

Theorem 8. Let B be an nxn " cbmplex matrix. Then G(B,00) is

_é normal gap.

Proof: Let C be the matrix in .58(]3) which has all non-
negative off-diégonal elements and all non-positive diagonal elements,
/
and let X = max Z"ck;1 . If A 1is any positive number greater
IS kgn 7K
than both (X and the largest non-negative boundary point of Q(B) .
then C-ATI 1is diagonally dominant, and it follows from Corollary 2.2

that C-AI 1is a regular matrix in normal form. Since A 1is in

G(B,00) , we conclude that G(B,00 ) 1is a normal gap. l

Theorem 8 guarantees that at least one gap in every eigenvalue
set is normal. In Theorem 9, we show that if a certain gap in an
eigenvalue set is normal, then every gap exterior to this normal gap
is also normal. 1In particular, every gap in the eigenvalue set of a

regular matrix in normal form is normal.

Theorem 9. Let B be an n x n complex matrix, and let A be &

non-negative' number in a normal gap in Q(B) . Then if /O > is not

in Q(B) » the gap G(B,©) must be normal.

Proof: Let C = (ci'j) be that matrix in _;A (B) which has all
non-negative off-diagonal elements and all non-positive diagonal
elements. Since G(B,A) 1is a normal gap, it follows from Theorem 7

that C- AT 1is a regular matrix in normal form. Furthermore, C-,0 I
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is in ,)V(C-;\I) since we have for k = 1,2,...,n :
lewe =21 = Il +P 2ol + A= [ege = 2| -

. Therefore, it follows from Lemma 1.5 that C-poI is a regular matrix
in normal form, and we conclude from Theorem 7 that the gap G(B, p)

is normal. I

Corollary 9.1. Let B be a regular matrix in normal form. Then

every gap in Q(B) is normal.

Proof: Since the gap G(B,0) is normal, the corollary follows

from Theorem 8. I

The following result is perhaps the most interesting in this
section, for it shows, in particular, that if A = (aij) is an n x n
non-negative essentially diagonally dominant matrix and B = (bij) is
a non-negative matrix such that A ) B and a9 = Pk for

k=1,2,...,n , then the eigenvalue set of B 1is contained in that

.of A .

Theorem 10, Let A = (aij) be an n x n non-negative matrix such

that every gap in £R(A) is no?mal, and let B (bij) be a complex

matrix whose elements satisfy the following conditions for

k -1,2’0..,n :

1Pyl = 2

Ibkjl < a3 J=1,2,..0n JFAKk (3.1)

Then we have Q(A) __D Q(B) ;
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Proof: Let A bav any non-negative number which is not in Q(A) 3
and let C = (cij) be an arbitrary matrix in ,j (B) . Because of
inequalities (3.1) the elements of ‘G satisfy the following condi-
tions, for k = 1,2,...,n :

logsl € 8y 3 =L,2,0.0m JFk
lag =Al < |ope = A

Since every gap in Q(A) is normal, it follows that A-AI is a
regular matrix in normal form. Therafore,. C-AI 1is in ,/V(A- AT)

and we conclude from Lemma 1.5 that C-AI is regular. Hence, A
cannot be an eigenvalue of C , and since C was chosen arbitrarily
from J(B) , A cannot be in (R(B) . Since A was any non-negative
number not in Q(A) ; wWe conclude that every number which is not in
Q(A) also cannot be in (R(B) , and this means that Q(A)QQ(B)

Corollary 10.1. Let B (bij) be an n x n regulsr matrix in

normal form, and let C be a2 k x k principal submatrix of B . Then

(R(B) 2 (R(c) .

Proof: Let A be a positive number not in (X(B) , and let T
be any matrix in J(C) + To simplify notation, suppose B can be

pertitioned as follows:

(3.2)
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Iet S Dbe the following n x n partitioned matrix:

Then S is in ,J(B) , and it follows from Theorem 10 that S-AT

is & regular matrix in normal form, Hence, it follows from Theorem 5
that T= AL 1is a regular matrix in normal form, and since T was
chosen arbitrarily from xf(c) , and since A was any positive number
not in ({(B) , we conclude that ({(B) DJL2(C) . If B is not in

form (3.2) , then we proceed exactly as in Theorem 5, l

Corollary 10.2. Iet B = (bij) be an n xn regular matrix in normal

form. Then each diagonal element of B is contained in R (B) . l

Actually, using a continuity argument similar to that used in
Theorem O ; we can show that the eigenvalue set of any matrix in
94/(3) whose diagonal elements equal those of B must have at least as
‘many components as Q%(B) . This fact can be used to show that each
component of J;E(B) must contain at least one diagonal element of B ,
Clearly, this result is not necessarily true unless B is a regular

matrix in normal form.

If a non~-negative matrix A has an isolated Gerschgorin disk,
then it follows from thé Gerschgorin Disk Theorem that the annulus
formed by rotating this disk about the origin must contain at least
one component of L;Z(A) . In Theorem 11, we obtain another fact

about the eigenvalue set of a matrix with an isolated Gerschgorin disk.
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Theorem 11, Let A = (aij) P_g a non-negative n x n matrizx. E‘_ the

kth Gerschgorin disk of A 1is isolated and at least one of the

diagonal elements of A 1is less than a,, , then every gap in Q(A)

" which contains numbers greater than 8y Mmust be normal.

Proof: Let A > a, be in a gap in Q(A) . Let B = (bij) be
that matrix in J (A) which has all non-negative off-diagonal elements
and all non-positive diagonal elements. We shall show that B-AT
- 1s diagonally dominant.

Let r be any index such that - > 3k and s ,
agg< 8y - Since the k" Gerschgorin disk of A 1s isolated, we

such. that

have

’ /
8pp = ;rar,j 2 e * Zakj
J

itk

; i and p
By = Z“kj > 8gg * Zasj (3.3)

K J#s

Therefore, we must have

/ !
Ibrr -ﬁ[ =8t 7\>Zarj - Zbrj
itr Jzr
and ' /
|bss -7([ = B +A > 8.g + akk> .Zasj = stj
J#5 its
Finally, since at least one diagonal element of A is less than A s
it follows from inequality (3.3) that
/ /
By = Al = B *A > ) g + A > ) ey 3a)
J#K J#K
Therefore, B-AI is diagonally dominant, and it follows from
Corollary 2.2 that B-7AI 1is in normal form. Hence, we conclude from

Theorem 7 that the gap G(B,A) must be normal‘, and since [\ was
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any positive number not in j;l(A) and greater than ay), , this com-

pletes the proof of the theorem. |

In Theorem 11, the condition that at least one diagonal element
of A Dbe less than ay, may be removed if we require that A be in
a gap in CR(A), which includes numbers greater than the larger of the

/
two numbers a and 2: akj s for this is enough to guarantee that

J#K

inequality (3.4) will hold. On the other hand, if is the

Ak
smallest diagonal element of A , then it is possible for numbers
greater than a,, to lie in a gap in CR(A) which is not normsl.

For example, consider the following 2 x 2 matrix:

1 ©

Clearly A 1is a regular matrix associated with the permutation matrix
0 1
P =
10
~ but both Gerschgorin disks of A are isolated, and one component of
QR(A) must be contained in the disk |%Z| < 1 . Therefore, there

exist numbers greater than a,, = O which 1lie in the non-normal gap

22
in CQ(A) which is associated with P . However, we can obtain a
result similar to Theorem 11 even if A is the smallest diagonal

element of A .
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Theorem 12, Let A = (aij) be a non-negative n x n matrix, and let

th

the k Gerschgorin disk of A be isolated, where a,, 1s in the

smallest diagonal element of A . If ap 1is in a component of An)

' then every gap in _C?(A) which contains numbers greater than ay is

— - —— V—

which is exterior to the gap G(A,akk) is normal.

th

Proof: Since the k Gerschgorin disk of A is isolated, it

follows that elements of only one component of ﬁ;e(A) can be contained

in the annulus (or disk) formed by rotating the disk

/
|z - akkl 5;_Zjakj
J #K
about the origin.

Therefore, if a, lies in a component of (2(8) , it follows

that any gap in (A) which contains numbers greater than LI must

/
also contain numbers greater than 8 * z:akj s for the greatest
' JEK
positive boundary point of the o Gerschgorin disk of A must lie

" in the more exterior of the gaps which bound the component of C;E(A)

/
containing By - If A is greater than 3 *+ Zf 8kj o then
JRK

inequality (3.L) holds, and the proof that G(A,A ) is normal
follows exactly as in Theorem 11.

Similarly, if a,, 1is in a gap in &2(A) , then the "next" gap
contains ay, + .zjlakj ; and it follows as before that this gap and
every other gap ;;:erior to G(A,akk) must be normal, I

We conclude this section with a result which concerns the eigen-

value set of a positive definite matrix. Although this result is
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interesting, it is included mainly to illustrate the method by which
the technique which we developed in Section II may be used to obtain

results which are basically combinatorial in nature.

Theorem 13. Let B be an n xn positive definite real symmetric

matrix. Then every gap in ({(B) is normal.

Proof: We shall use inductionon n . Let n =2 ., Since
B = (bij) is positive definite, we must have byq > O ; byp >0 ; and
by bop > byp byq = (b12)2 . Therefore, B must actually be a 2 x 2
regular matrix in normal form, and it follows from Theorem 9 that
every gap in CR(B) is normal.

Now, for a general n xn matrix B, let A be a positive
number which is not in (Q(B) , and let A be the non-negative matrix
in J(B) . It follows from Theorem 7 that -A-AI 1s a regular
matrix. Let S = A +AI ., We shall prove that S is in normal form.

Consider the non-negative matrix C = (cij) whose elements

' satisfy the following conditions:

®kk © Skk

ez ™ Biy if Sy is the pivotal element
in the kth row of S

ckj =0 otherwise

Then C 1is in c/I/(S) and it follows from Lemma 1.5 that C is
regular with the same pivotal positions as S . We shall now show

that C 1is reducible.
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A matrix is irreducible if and only if its graph is strongly
connected. However, since S 1is symmetric, C must be symmetric,
and furthermore, C has at most n non-zero off-diagonal elements.
"If C has less than n non-zero off-diagonal elements, it is clearly
reducible. On the other hand, if C has exactly n non-zero off-
diagonal elements, it follows from the symmetry of C that n must
be even, and the graph of C consists of n/2 closed paths of length
two. Thus, for n >2 , C must be reducible,
Since C 1is reducible, there exists a perhutation matrix P
such that
Cp | G2
PCP'= "
0 C’-l
where for some integer m with 1 m<n, 0 is an (n-m) xm
block of zeroes; C, is an m x (n-m) submatrix of C ; and C, and
C, are mxm and (n=m) x (n-m) submatrices of C , respectively.
Now consider the matrix U = PBP’. Partition U conformally with

PCP’ — i.e. regard U as the partitioned matrix

where Ul’ UE’ UB’_Uh héve the same dimensions as Cl’ 02, 03’ Ch’

respectively. Since B 1is positive definite, it follows that U is
positive definite, and the principal submatrices U; and Uh must
also be positive definite. Moreover, since (A (B) = A(V) , and since

A is not in CR(B) , 1t follows from Corollary 10.1l that A is not
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in either Q (Ul) or 'Q(Uh) . Therefore, by the inductive
hypothesis, A must be in'a normal gap in both Q(Ul) and-@(Uh) 5
and Ul + AT and Uh + AI must be regular matrices in normal form.

'Let V be the following block disgonal n x n matrix:

Since the matrix V + A I is in A/(PSP’) , it follows that V + A I
has the same pivotal positions as Psp’. However, since both Ul + A1
and Uh + AI are in normal form, it follows that V + AI is in
normal form, and this in turn implies that PSP’ is in normal form.
rThereforé, we conclude that S 1is in normel form, and it follows from
Theorem 7 that the gap G(B,A) is normal. Since A was an
arbitrary positive number not in (2 (B) s we conclude that every gap

in (2(B) 1is normal, as desired. I
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IV. THE ANAIOGUE OF A CONJECTURE OF VARGA AND LEVINGER.

In their characterization of the eigenvalue set, Varga and
Levinger proved that at most (n+l) permutétions are needed to char-
acterize the eigenvalue set of a general n xn matrix A in terms of
the minimal Gerschgorin sets of matrices related to A by these per-
‘mutations. Furthermore, they conjectured that actually only n such
permutations are needed to characterize (;Q(A) . Although we do not
actually obtain an analytic characterization of Q;KA) s, we can still
show that ﬁ;Q(A) may be associated with at most (n+l) permutations
in a meaningful fashion, for it follows from Theorem O that there
exist at most (n+l) gaps in ﬁ;Q(A) , and each of these gaps is
associated with a permutation matrix in the sense of Definition 7.
Therefore, motivated by the analagous conjecture of Varge and Levinger,

we make the following conjecture:

- Conjecture h.l. ILet A be a non-negative n x n matrix. Then there

can exist at most n different permutation matrices associated with

gaps in ﬁ;Q(A) g

In this section, we shall verify this conjecture, and in addition,
we shall develop a new means of classifying gaps which is more refined
than the one provided by Definition 7. It will be seen that this new
gap classification system actually yields a certain amount of inform-

ation about the components of ﬁ;Q(A) .
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In constructing a proof of Conjecture L.l , we shall depend
mainly on a comparison technique which utilizes the results of
Theorem 3 and Theorem 7. The following example illustrates this

technique:

Example L.1.
Let A = (aij) be a general L x LI non-negative matrix. Suppose
that a certain gap in (;Q(A) «~ say G(A, A ) == is associated with the

permutation matrix

QOoOOH
OHQO
HQOQOO
OOHO

Then the non-negative matrix A- A I wust be a regular matrix whose
pivotal positions are (1,1); (2,3); (3,4); eand (L,2) , and it
follows from Theorem 3 that, among others, the following inequalities

hold:
211 = Al2ps a3 3y > 855 2y5 a3 3,
231 = Al2p3 23, 20> 295 = Aleyy 8y 2y (L.1)
221 = Alo23 23y 20 > |"11.' Mlagz - Alas), 25

Consider the following matrix:

90 %y MK
=850 853 8y,
932 "%33 %3

b2 ®u3 "%
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Then B is in .KJ(A) , and we conclude from Theorem 7 that B-AI
is a regular matrix associated with P ., Therefore, in addition to
inequalities (L.1l) , it follows from Theorem 3 +that, among others,

we have the following inequalities:
]811 - A| a23 th ah2:>|-322 -2 Ial3 th a,
|23 - 7\|823 23 %o lo - A =25, -2 | ki %1 (L.2)
lajy = Al Bag Bqp "u2>!*’11 - Al -2 =All-a33 A || -3, - |

Inequalities such as (4.1l) and (L.2) occur for each and every
gap in (R(A) . Thus, if there exists a second gap in ﬁ;?(A) which
is not associated with P , the "difference" between this gap and
G(A,A) must be due to a fundamental change in the above inequalities.

Howevér, suppose /O is in a second gap in L;?(A) whose pivotal
positions are (1,1); (2,L); (3,2); ~and (L,3) . Then we have the

following pair of inequalities:
2y - Al ay5 25, aL‘2>| ay - 4| B2 #32 %13
and
|*'11 o |2y 23 ay3>|a)y -0 855 84, 8
These two inequalities are clearly incompatible. We shall now show

that this dilemma results from the fact that two gaps can be associated

with different permutation matrices only 1f they do not have the same

diagonal pivotal positions.
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Theorem 1}, Iet A be an n x n non-negative matrix and let

Pa= (pij) and Q = (qij) '32 permutation matrices which are associated

- with two different gaps in i) . If P ™ Lo for k = 1,2,,..4n ,

then P = Q ,

Proof: Let ﬂ, and ;Kz be any positlve numbers in the gaps which

are associated with P and Q , respectively, and assume A, > A, .

Iet A, = A - ﬂlI and let A2 = LA - ﬂzI . It follows from Theorem 7

2 !
that PAl and QA2 are regular matrices in normal form, and it is
clear that Al and A2 have the same diagonal pivotal positions,

since py = qp for k =1,2,...,n .

let C = (cij) be the non-negative matrix whose elements satisfy

the following conditions, for k = 1,2,...,n ¢

O™ Ma ¥y AL Prge ™ Gy ™ 4

Crk = O f Py ™ Qg = 0
Crg ™ g if (k,s) is a pivotal position
: in the kP row of either A. or A

1 2
ckj = 0 otherwise

Tt is clear that C is in A/(A)) . Since 2, > A, and since A,
has the same diagonal pivotal positions as Al s 1t follows that C
is in C/L&Az) also. Therefore, both PC and QC are regular

matrices in normal form; and we conclude from Theorem 1 that P = Q .I

It is not hard to see that we could prove Conjecture L.l at this
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point if we could only show that any two gaps with the same number of
diagonal pivotal positions must be associated with the same permutation
matrix, for no n x n matrix can have‘exactly (n-1) diagonal pivotal
positions, However, this is not the case, as the following example

illustrates:

Example L.2. Consider the following 3 x 3 matrix:

0 1 o
A= 1 0 1
0 5 1

Then, ﬁsing Theorem 2, 1t is easy to see that A 1is a regular matrix

-assoclilated with

Furthermore, the number 1 1lies in a gap in C;E(A) which is associated

with the permutation matrix

Therefore, both G(A,0) and G(A,1) have one diagonal pivotal position,

but P and Q are not identical.

One feature of the preceding example merits further investigation.

Namely, in the gap G(A,0) , the (3,3) position is pivotal, and we
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have - 0=1>03; however, in the gap G(A,1) , where (1,1)

®33
is the diagonal pivotal position, we have all -1l=.1<0.
Furthermore, if A is a general n x n non-negative matrix, and
if (k,k) 1s a pivotal position for a certain gap G(A,A) , then it
follows from Theorem 7 that 8 cannot lie in the gap G(A,A) , for
(k,k) cannot be a pivotal position of A = akkI . Therefore, we cone
clude that every positive number in G(A,A) must either be strictly

greater than, or strictly less than akk . This observation enables us

to make the following definition:

Definition B, Iet A be an n x n non-negative matrix, and let A
be a non-negative number not in £R(8) . Iet (k,k) be a pivotal
position for the gap G(A,A) . Then the (k,k) position will be

called subordinate if every non-negative number in G(A,A) 1is strictly

greater than 8 If every non-negative number in G(A, A) is

strictly less than akk » then (k,k) will be called non-subordinste.
Furthermore, the gap G(A,A) 1is said to be of type <r,s>
if it has r diagonal pivotal positions, exactly s of which are

‘subordinate.

For example, if A 1is the matrix in Example L.2 , the gap
G(A,O) is of type <<1sQ> s since A has no negative diagonal
pivotal elements, and the‘gap G(A,1) 1is of type <§,i> s since
the (1,1) position is inotal in this gap and we have 1 > 811 =0 ,

Thus, at least in the ﬁreceding'example, we see that this new

method of classifying gaps enables us to distinguish between two gaps
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which have the same number of diagonal pivotal positions but are
associated with different permutation matrices. Actually, this
phenomenon is quite general, for we shall show in Theorem 15 that if
‘A 18 a non-negative matrix such that two gaps in Q(A) have the same
number of subordinate diagonal pivotal positions, then these gaps must
be associated with the same permutation matrix, However, we shall
first prove a lemma which will enable us to use an inductive technique

in the proof of Theorem 15.

Lemma 1_5.1. Iet A _‘r_)g 8 non-negative n x n matrix, and let there be

a gap in ((A) of type <r,s> which has (k,k) as a pivotal
position. Iet A, denote the (n=1) x (n-1) submatrix formed from A

by deleting the Kth row and k™ column. Then if (k,k) is non-

subordinate, there exists a gap in Q(Ak) of type <r-1,8> , and

if (k,k) 1is subordinate, there exists a gap in ((A,) of type

<r-1,s-1> .

Proof: First of all, we note that it is impossible to have r = s
.in the first case or s = 0 1n the second case because of the way the
lemma is worded.

We shall assume that k =n . It will be seen that this involves
no real loss of generality but merely facilitates the construction
used in the proof. |

Iet A be any positive number in the given gap in £2(8) . We
shall show that A is in '.gap in Q(An) of type <r-1,s> - g
(n,n) 1is non-subordinate, and of type <r-1,s-2> if (n,n) is

subordinate.
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Iet B = (bij) ‘be an arbitrary matrix in ,J(An) , and let C

be the following n x n block diagonal partitioned matrix:

where 0, and 0, are 1x (n=1) and (n-1) x 1 blocks of zeroes,
respectively. Since (n,n) is a pivotal position for the gap G(A,2A),
it follows that A-AI is regular and that C- AT is in JAA-2AI) .
Therefore, C~ ﬂi is non-singular, and ‘A cannot be an eigenvalue

of B. Since B was chosen arbitrarily from zf (4,) 5 we conclude
that A 1is in a gap in Q(An) .

Furthermore, C-AT has the same pivotal positions as A-ATI ,
and from this we conclude that except for the (n,n) position, which
is excluded, the diagonal pivotal position of the gap G(An,’)\) are
either subordinata or non-subordinate according to their status in
G(A,A) . If (n,n) is non-subordinate in G(A,A) , then the gap
'G(An,’,\) has the same number of subordinate positions as the gap
G(A,A) , but it has one less diagonal pivotal position than G(A,7A),
since (n,n) is not included. Hence, in this case, the gap G(An,’/\)
is of type <r-1,s> . Similarly, if (n,n) is subordinate, then
G(An, A) contains one less subordinate position -- namely, (n,n) --
and one less .diagonal pivotal position than the gap G(A,A) . Hence,

in this case, G(An, A) is of type <r-1,s-]> . I

Now we are in a position to prove Theorem 15.
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Thecrem 15. Iet A be an n x n non-negative matrix. Then any two

gaps in Q(A) which have the same number of subordinate diagenal

pivotal positions must be associated with the same permutation matrix.

Proof: We shall proceed by induction on n .

For n =1, the theorem is obviously true. Now assume the
theorem holds for all matrices of order not greater than n-1l .

Suppose there exist two gaps in Q(A) which have the same number
of subordinate diagon.al pivotal positions. ILet ?(1 > 0 be in the
more interior of these gaps and let 7{2 > 7\1 be in the other.
Suppose that G (4, A, is of type <r,s> and that G(4, 7\2)' is of
type <t,s> . Naturslly, we must have O < s r,bt <n, but other-
wise, s,r and T are completely arbitrary. Before proceeding to the
main part of the proof, we shall make a few simplifying observations and
assumptions,

First, suppose there exists an index ’Ll such that (’El’ ,&1) is
non-subordinate for both gaps. It follows from Lemma 15.1 that
ﬁl and 7[2 are in gaps in Q(A Ll) o types <r-1, s> and
<t-l, s> , respeculvely. By the inductive hypothesis, we conclude
that G(A,gl, 21) and G(A,gl, 712) ..are both associated with the same
permutation matrix, say Q . Then it follows that G (A, 711) and
G (4, 7(2) are both associated with the permutation matrix P = (Pij) -

where P 2,4 =1 and P Iy =Q ., A similar argument shows that the

thecrem holds if a diagonal pivotal position is subordinate for both

gaps. Furthermore, if (k,k) is subordinate for G (A,ﬂl) , then

it is subordinate for G(A,?\E) , since 21 > A implies 7\2>akk.
Therefore, it suffices to consider the case in which the only

diagonal positions which are pivotal for both gaps are non-subordinate

for the gap G (4, 7\1) and subordinate for G (A, ?\2) . Suppose there
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are precisely p such diagonal positions, where 0 p s . Clearly
we must elso have r +t - p < n ,

In the proof that follows, we shall need to be sble to index the
'diagonal pivotal positions of both gaps, and in order to avoid confusing
the proof with a complicated, albeit completely general indexing scheme,
iwe shall make a few assumptions concerning the location of these diag-
onal pivotal positions. Since the calculations used in the proof
involve only arithmetic inequalities among products of elements along
certain generalized diagonals, it will be seen that this assumption
involves no real loss of generality. Accordingly, we will assume that
the p common diagonal pivotal positions for the two gaps are
(1,1); (2,2)3 vee3 (psp) 3 that the (r-s)-p other non-subordinate
and s subordinate diagonal pivotal positions for the gap G(A, 7\1)
are (p+l,p+l); .ee: (r-s,r-s) , and (r-s+l,r-s+l); ...; (r,r) ,

" respectively; and finally that the (s-p) other subordinate and
(t-s) non-subordinate diagonal pivotal positions for G(A, A,) are
‘(r+1,r+1); eoej (r+s-p,r+s-p) and (r+s-p+l,r+s-p+l); ...; and
(r+t-p,r+t-p) , respectively.

Moreover, let O« denote the product of the off-diagonal pivotal
elements of the gap G(A, '/\1) , and let /3 denote the product of the
off-diagonal pivotal elements of the gap G(A,?\a) . If a(a, 7\1) is
normal, then let & equal one, and similarly, if G(A, 7\2) is normal,
we take [3 equal one. Clearly <X and ﬁ are invariants of the two

gaps and depend in no way on the choice of 7\1 and 7\2 . Finally,
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we shall need the following two matrices B = (bij) and C = (cij)

whose elements satisfy the following conditions:

bij ™ aij 1, = 1,2, ...n 1£3
bii - aii .1 - 1,2’ eoeyT
bii = -a54 i = rel,r+2, ...,n

and

i3 =835 L, =12, ceon 1]

Cc = a 1 - 1,2, eeespPs r+1’ csey I‘+’b-p

ii ii

c = -3

i1 i = ptl,p+2, ...,r; r+t-p+l, ...,n

ii

Clearly both B and C are in kJ(A) . Furthermore, B 1is such that
the product of the pivotal elements of the matrix ‘ B-JllI | is no
greater than the product of the pivotal elements of any other matrix
of the form |R-A,;I| , where R is in J(A) . The matrix ¢
has an analagous connection with the gap G(A, 12) .

Now suppose the two gaps are not associated with the same permuta-
tion matrix, If we apply Theorem 3 +to the regular matrix IB- R11| N
we obtain the following inequality, since the terms on the right lie on

a generalized diagonal of IB- Rlil

Yrt-p
(Waii - Ao >(TT|511 - 7‘1”(—[_“'811 -2 D 3 (L.3)
i=i i iz 7T+

In the gap G(A, A]) s the positions (1,1); (2,2); vuv3 (r=s,r=s)
are non-subordinate, and the positions (r-s+l,r-s+1); ...; (r,r) are

subordinate., Therefore, we conclude from Definition 8 +that we have
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the following:
|811-A|’8 _A 181’2, LN ] I'=3
and

Iaii-ﬁl-]\-aii 1 = ragtl, .o, T

Thus, we may rewrite inequality (L.3) as follows:

h_[(a-i M][ﬂ(an ﬂl]hTm -ah)] X >

1=P+) 13T-54| .
P r+(s-pr) Y+t-p '
ool [T
=l 12141 1= +5-pP+l

As it stands, this inequality gives us little information, but we may

weaken it to obtaj.n the following useful inequality:

T+t-p

n (T[a oo > Ay (] [eg)8 (L. 1)

i=p+t 12X +5-P+!

If we apply similar arguments to the matrix I C- AoI l s Wwe obtain the
‘following inequality:

Y+t-P

(Waﬂ"\ | ﬂ_ﬂe 11 = %113 >
P
(Haﬁ )(Tﬂ-aﬂ - A1 VX (L.S)

.:P'Pl

Following exactly the same procedure as before, we obtain the weaker

in 1lity:
equality T

7 .(ﬂaﬁ)p > (TTanxx o (L.6)

iz res-pe1 i=ph



590

Combining inequalities (L.4) and (L.6) , we obtain the inequality

Y-S Y-s
A ([ Tagdoc >Ah [ Teggdex (1.7)
i=P+| 1=p+t

Since all the quantities in inequality (L.7) are positive numbers,

we conclude that 7\; 77\; . However, 7\2 >7\1 by assumption, and
since this contradiction is & logical result of the existence of
inequalities (L.3) and (L.5) , we conclude that at least one of
these two inequalities cannot hold. This means that the gaps must have
exactly the same pivotal position so that the two sides of (L.3) and
(4L.5) are identical, and this is equivalent to the statement that the

two gaps correspond to the same permutation matrix. l

With the results of Theorem 1, we are now in a position to prove

Conjecture l.1.

Theorem 16. Iet A be a regular n x n non-negative matrix for which

there exist (n+l) gaps in (:Q(A) . Then at least two of these gaps

are associated with the same permutation matrix.

Proof: Suppose that no two gaps in (R2(A) are associated with
the same permutation matrix. It follows from Theorem 15 that there
exists one and only one gap with exactly s subordinate diagonal
pivotal positions for each s =0, 1,2,...,n . However, if s = (n-1)
for a certain gap, then that gap must have either (n-1l) or n diagonal
pivotal positions, and since no n x n permutation matrix has (n-1)
non-zero diagonal elements, it follows that any gap with (n-l) or

n subordinate diagonal pivotal positions must be associated with the



60.

identity. Thus, in any case at least two gaps in ﬁ;Z(A) must be

associated with the same permutation matrix. l

Corollary 16.1. Iet A be an n xn non-negative matrix. Then there

can exist at most n different permutation matrices associated with

geps in (2(a) .

Proof: It is clear that (n+l) different permutation matrices
may be needed only if there are (n+l) gaps in (CA(A) , and in this
case, it follows from Theorem 16 that at least two of the gaps in

(A(A) must be associated with the same permutation matrix. l

The resulté of Theorem 15 and 16 seem to indicate that gaps may
be distinguished from one another by the number of subordinate diagonal
pivotal positions which they determine. However, there is still the
possibility that two gaps may have the same number of subordinate
positions if they are assoclated with the same permutation matrix, and

.we would like to femove this gualification if possible., We shall prove
in TheoremIIY that two gaps which are associated ﬁith the same permutae
tion matrix camnot have the same number of subordinate diagonal pivotal
positions, Tt will be seen that the proof of this result for a general
non-negative matrix A dépends almost entirely on the fact that the
result holds for a non-negative generalized permutation matrix. Before
we proceed to the proof of Théorem 17, 1let us analyze the eigenvalue

set of a specific generalized permutation matrix.
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Example L.2.

" Congider the following matrix:
211 0 0 0

822 0 0

0 0 8’-13 0

1
= o ay, . Then (A (n) consists of the

Suppose we have a;q > (th ah3)
il
_ three circles |z| = 8qy |z| = a,, 3 and |z | = (th am)z .

Clearly the gap G(A,0) 1is associated with

M . 2
and is of type <2,0> . lLet ?\l s satisfy P < 7\1< (th ahB) .
Then the gap G(A, 7\1) is associated with

QooH
QOO
HOOO
OHHOO

¥
and is of type <2,1> . Let A, satisfy a;; > A, >(33u ahj)z 5
Then 7\22 > a3 83, and the gap G(A, A,) 1is associated with the
identity and is of type <h,3> . The gap G(A,00) 1is clearly

associated with the identity and is of type <l,L> .

The reasoning used in this example may be applied to any general-
ized permutation matrix A to show that if two gaps in Q(A) are
assoclated with the same permutation matrix, then these gaps cannot

have the same number of subordinate diagonal pivotal positions.
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However, before we prove this result, we shall need to define the
concept of a cyclic matrix and to show that every generalized permuta-

tion matrix can be combinatorially decomposed into a direct sum of

‘cyclic submatrices.

Definition 9. For k 22 , let A be a k x k non-negative general-

ized permutation matrix., Then A will be called cyclic of order k

if the permutation related to A 1is cyclic of length k . Alternat-
ively, A 1is cyclic of order k if Ak is a positive diagonal matrix
but any smaller power of A has positive off-diagonal elements. If
A 1is cyclic of order k , +the positive k' root of the product of
the positive elements of A will be called the radius of A , and

we shall denote this number by (rad A) .

If A 1is cyclic of order k , the significance of the radius
of A 1lies in the fact that f;e(h) consists entirely of the circle
Iz] = (rad A) .

Lemma 17.1. Iet A be an n x n non-negative generalized permutation

matrix. Then there exists a permutation matrix Q such that

[0
uQ’ = ’ (4.8)
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where Ao is a positive diagonal submatrix of A and Al’Az’ eoey Am

are all cyclic submatrices of A of various orders.

Proof: This result is well known and is en immediate consequence
of the fact that a permutation may be written as the composition of
'disjoint orbital cycles. The cycles of length one correspond to non-
zero dlagonal elements of A , and the cycles of length k correspond

to k x k submatrices of A which are cyclic of order k . l

Therefore, if A 1is a generalized permutation matrix, it follows
™
from Lemma 17.1 that (:Q(A) = LJJQQ(Ai) , and it is easily seen that
1=0
CQ(A) consists of a set 'of circles., These circles fall into two

fundamentally different categorles,

Definition 10, Tet A be an n x n non-negative generalized permuta-

tion matrix. If a, #0 , then the circle |z| = 8y Will be

called a primary component of CQ(A) « TF A, 1is a cyclic submatrix

of the standard decomposition (4.8) of A given in Lemma 17.1 ,

then the cirecle |z | = (rad %g) wlll be called a cyclic component

of (2(a) .

ILemma 17.2, Let A be an n x n non-negative generalized permutation

matrix, and let two gaps in (2(4) be associated with the same permuta-

tion matrix. Then these gaps can be separated by only primary compon-

ents 33 C;P(A)'. Furthermore, the two gaps cannot have the same number

of subordinate diagonal pivotal positions.
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Proof: We shall assume that A is in the block diagonal form
(4L.8) of Lemma 17.1. Let 7\1 be a positive number in the more
interior of the lgaps in question, and let A 5 > ?\l be in the other.
‘Suppose the gaps are separated by a cyclic component of Q(A) . Then
there is a cyclic submatrix of A , say A,& s such that

Ap >(rad A)) > Ay

Since G(A, 7\1) and G(A, A;) are both associated with the same
permutation matrix, it follows from Theorem 7 that A= 7\11' and
A 7\21 ére regular and have the same pivotal positions. From the
block diagonal form of A , it follows that -A, - 7&11 and -A, - ?\21
are also regular and have the same pivotal positions ~= namely, the
pivotal positions of G(A, )1) and G(A, ?\2) which lie in the sub-
matrix A, . Since A, is cyclic, it follows that -A, - AqI and
"A,t - 7\21 have non-zero elements along only the main diagonal and one
-other generalized diagonal, which includes no diagonal positions,
Since A, ié cyclic, each diagonal element of -A, - 7L_LI is equal to
- 7\1 s &and each diagonal element of ---A'c - 7121 is equal to = 7\2 "
Suppose that A 1is cyclic of order k . Then the product of the
diagonal elements of "Ag =~ 7&11 is equal to (-Al)k 5 and the pro~
duct of the elements along the only other generalized diagonal of
)k

« 3Since we have

-A, - ?\1:[ is equal to _-:(rad A,

k k
(rad 4, )~ > AL s
it follows from Theorem 3 +that the pivotal elements of -AL - }\lI are

_the off-diagonalr elements of -A'& - 7&1 . On the other hand, since

k k
Ap >(rad 4,)"
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we conclude that the pivotal elements of - y - R2I are the disgonal
elements of '&L -‘RZI , ‘and this contradicts the statement that
-A, -'ﬂlI and 'AL - AQI have the same pivotal positions.

Hence, we conclude that no cyclic component of CR(A) cen
separate"G(A, ﬂl) and G(A,Zﬂz) » eand since these two gaps were
assumed to be distinct, they must.be separated by a primary component
of (H(a) .

Thus, there exists a diagonal element of A , say a.. which
satisfies |

A 7 lg P 7\1 :
Since - is the only non-zero element in the rth row and rth
columm of A , it follows that (r,r) must be a pivotal position for
both gaps, and it is clearly subordinate for G(A, 7\2) and non-
 subordinate for G(A, 7\1) . Hence, the two gaps cannot have the same
number of subordinaste diagonal pivotal positions, and in fact, if the
gaps are separated by exactly s primary components of C;z(A) , then

"the gap G(A,Zﬂe) has exactly s more subordinate positions than
(s, Ay) - |

This result, coupled with Theorem 15, allows us to conclude that
ne two gaps in the eigenvalue set of a generalized permutation matrix
can have the same number of subordinate diagonal pivotal positions.

In order to prove that this result can be extended to the general
case, we shall now establish a connection between the gaps in the
eigenvalue set of a general matrix A and gaps in the eigenvalue sets

of certain generalized permutation matrices which are closely related
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to A .

Definition }_3:_. let A Dbe an n xn non-negative matrix, and let
P = <pij) be a permutation matrix. Then we shall denote by ..'ﬂP,A)
the sev of all n xn complex matrices C = (cij) whose elements
satisfy the following conditions, for k = 1,2,...,n :

el = 2y L R

Ickjl S i Pa ™ 0

Lemma 17.3. Iet A be an n X n non-negative matrix, and let

P o= (Pij) be associated with a certain gap in Q(A) . Let C be any

matrix in J(P,A) . Then the gep in ({(A) which is associated with

Proof: ILet A be any positive number in the given gap in LA, .
Iet R = {rij) be any matrix in J(C) . Iet B = (bij) be the matrix

whose entries satisfy the following conditions, for k = 1,2,...,n :

bkk =a i P ™ .
Py = -ty AL B, =0

= 7 == s of
bkj akj J = Ly 2yawesh J7 Ak

Then B belongs to J(A) , and it follows from Theorem 7 that B=AT
is a regular matrix associated with P ., ZFurthermore, R-AI belongs
to AAB-AT) , since we have the following inequalities for

k = 1,2,.0.,0 3

A= oy - 23l -al 1 p, =0

lajg=Al =IPemal S =l if p, =1
Therefore, R-AI 1is a regular matrix associated with P . Since R
was chosen arbitrarily from J(C) and A, from G(A,A) , it

follows that G(A,A) is contained in a gap in ((C) , and we
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conclude from Theorem 7 that this gap, G(C,A) , must be associated

with P , since R-7AI belongs to Hc,A) . |

Theorem 17. Let A be an n X n non-negative matrix. Then no two

gaps in Q(A) can have the same number of subordinate diagonal

pivotal positions.

Proof: Because of Theorem 15, it suffices to prove that any two
gaps in Q(A) which are associated with the same permutation matrix
cannot have the same number of subordinate diagonal pivotal positions.

Suppose that two gaps in Q(A) are associlated with the same
permutation matrix P . Let 7\1 >0 be in the more interior of thesc
two gaps, and let A,> 7\1 be in the other. Since G(4, 7\1) and
G(A, 7\2) are disjoint gaps, at least one component of Q(A) must lie
between the circles 2z = 7\1 and 1z = 7(2 « Lot B = (b-lj) be
the n % n non-negative generalized permutation matrix in ﬁ'_‘(?,h)m-

1.6, forr k=1,2;+es,0 , We have

Oyp = aky if pg =1
bkj =0 iE ka =0
Let ¢ be an eigenvalue of A contained in a component of Q(A)
which separates the gaps, G(A,AM) and G(A, 7\2) . Since F(P,A) is

a closed, connected subset of complex Enz space which contains both
A and B , there exists a "pata"” in :F(P,A) which connects A to B,
and . the eigenvalues of the matrices on this path form continuous paths
in the complex plane. One of these paths contains &t and at least one

eigenvaluc of B. Moreover, since Lemma 17.3 informs us that no matrixc

in f(]f’,A) can have a comple:x number with modulus equal to ﬂl or 7\2
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as an eigenvalue, we conclude that there must exist at least one com=
ponent of (({(B) between the circles |z |= A, end |z | = ﬂz .
Furthermore, it follows from ILemma 17.3 that ?\1 and A both lie

2
“in gaps in Q(B) which are assocliated with P , and we conclude from
Lemma 17.2 that G(B, 7\1) and G(B, ﬁz) cannot have the same number
of subordinate diagonal pivotal positions. Consequently, G(A, }\1)

and G(A, 7\2) also cannot have the same number of subordinate

positions, and the proof of the theorem is complete, I '

We can also use Lemma 17.3 to obtain a certain amount of informe
ation about the components of Q(A) , but this information is useful

only if we know which permutation matrices are associated with the

gaps in Q(A) "

Theorem 18. Iet A be an n x n non-negative matrix, and let a com-

ponent of £2(n) be bounded by gaps which are associated with the

permutation matrices P and Q . Then at least one eigenvalue of

-every matrix in the set F(P,A) m c’f(Q,A) must be contained in the

given component of CR(n) .

Prooft Iet B be any matrix in (P,a) [} HQ,A) . Iet
G(A,A) be the gap in ((A) which bounds the given component of
" ((A) and which is associated with P, and let G(A,°) be the gap
which is associated with Q . It follows from Iemma 17.3 that the
gap G(A, A) is contained in the gap G(B,A) in (2(B) and that
G(B,A) 1is associated with P ., Similarly, the gap G(A,r) is con-

tained in the gap G(B, /0) s Which 1s assocliated with Q . Therefore,
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since J(P,A)ﬂ df(Q,A) is a closed, connecte& subset of complex
En2 space which contains both A and B , it follows that G(B,A)
and G(B,0) must be separated by at least one component of CA(B) .
Therefore, G(A,A) and G(A, /D) must also be separated by at least
one component of Q(B) , and this means that at least one eigenvalue.

of B must be contained in the given component of K@) . I

We conclude this section with two results which illustrate how
Theorem 17 may be used to determine the number and nature of the com-

ponents of certain eigenvalue sets,

Iemma 19.1 Let A be an n xn non-negative matrix. If A is not

regular, then each gap in 4(A) must have at least one diagonal

pivotal position. Ef_ A 1is regular, then only the gap G(A,'O) can

have no diagonal pivotal positions.

Proof: Suppose A 1is not regular. let A be a positive number
" in a gap in ({(A) which has no diagonal pivotal positions, Then A
is in r/V(-A-‘/’\I) , and this contradicts the fact that A .is not
‘regular. .

Similarly, if A is regular, then if G(A,0) has no diagonal
pivotal positions, it follows from Theorem 17 that every other gap
in Q'(A) ‘must have at least one diagonal pivoi'_,al position. If
G(a,0) has'.at least one diagonal pivotal position, we conclude from
a simple application of Theorem 3 that it is Impossible for any gap
in Q(A) to have no diagonal pivotal .positions. l
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Theorem 19, Iet A = (aij) 23 an nxn non-negative matrix such

that ay, =0 for k =1,2,...,n . Then CzﬁA) can have at most

(n-1) components.

Proof: Since all the diagonal elements of A are equal to zero,
it follows that all the diagonal pivotal positions of each gap in
CR(A) are subordinate.

If A 1is regular, then G(A,0) has no diagonal pivotal posi-
tions, and it follows from Theorem 17 that no two gsps in C;l(A) can
have the same number of subordinate diagonal pivotal positiéns. There-
fore, in the worst possible case, there can exist one and only one gap
of type <s,s> , for s =0,1,2,...,(n-2),n , since no gap can have
exactly (n-1) diagonal pivotal positions. Hence, if A is regular,
there can be at most n gaps in j;?(A) s> and this is equivalent to
the statement that ﬁ;?(A) has at most (n-l) components.

If A is not regular, then it follows from Lemma 19.1 that each
gap in L;?(A) must have at least one diagonal pivotal position. Hence,
there can only be gaps of type <s,s» for s =1,2,.,.,(n-2),n , and
it follows that l;Q(A) can have at most (n-l) gaps. Therefore, since

A is not regular, L;%(A) can have no more than (n-l) components. l

Iemma 20,1, Let A be an mn xn non-negative matrix. Then G(A,09)

Eﬁ 3£ type <:h,ﬁ> .

Proof: Since G(A,00) is associated with the identity, it has
n diagonal pivotal positions, all of which must be subordinate, since

G(A,00) is unbounded. Hence, G(A,00) is of type <n,n> . I
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Theorem 20. ILev Jn be the n x n matrix all of whose entries are

equal to one. Then Q(Jn) is the disk |z|< n.

Proof: ILet A be a positive number which is not in Q(Jn) .
Then we conclude from Theorem 7 and the symmetry of Jn that V~Jn—?\I
must be in normal form, Furthermore, Jn-?\I must also be a regular
matrix in normal form, and it follows from Theorem 3 that A > 1 ,
since the product of the elements of Jn- AI which lie along any
generalized diagonal that includes no diagonal positions is equal to
one, Since all the diagonal elements of Jn are equal to one, it
follows that all the diagonal pivotal positions of G(A, A) are sub-
ordinate, and G(A,A) must be of type <n,n> . T from
Iemma 20.1 and Theorem 17 +that the only gap in (J(A) is G(a,00) .

Furthermore, it is clear that n 1is an eigenvalus of Jn , and
if O 1is any number greater than n , +then -Jn-GI is diagonally
dominant and hence, a regular matrix in normal form. Consequently, n
must be the only positive boundary point of Q (Jn) , and we conclude

that (J_) 1is the disk zl<n.
n
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V. BOUNDARY PROPERTIES OF NORMAL GAPS,

It follows from the Perron-Frobenius Theorem that the largest non-
negative boundary point of the eigenvalue set of a non-negative matrix
A is actually an eigenvalue of A . Since it is possible for CQ(A)
to have as many as 2n non-negative boundary points, it is unrealistic
to expect that every non-negative boundary point of R (A) will be an
eigenvalue of A . However, we shall prove in this section that the
positive boundary points of a normal gap are actually eigenvalues of
certain real matrices equimodular with A . In perticular, if A is

a regular matrix in normal form, then every real boundary point of
QQ(A) is an eigenvalue of a real matrix equimodular with A ., We
shall also show that if A is an irreducible regular matrix in normal
| form, then the diagonal elements of A are all interior points of
() , eand it will be seen that this in turn implies that no compon-

ent of _C?(A) can be a circle.

In order to prove that the real boundary points of a normal gap
in QQ(A) are actually eigenvalues of real matrices in xg(A) , wWe
proceed along lines which are basically analagous to the method used
in the proof of Theorem 1; However, certain continuity arguments must
be altered to take into accoﬁnt the fact that the set of gll real

2

matrices equimodular with A 1s not a connected subset of real EP

space, We begin with a definition.
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Definition 12. Let B = (bij) be an n x n real matrix. Then by

JO(B) we shall denote the set of all real matrices C = (ci:j) in

$§(B) whose diagonal elements satisfy cgy = by, , for 1 =1,2,...,n.
We shall call B semi-regular if every matrix in JO(B) is none

gingular,

We say that B is in normal form if for every matrix C in

JO(B) we have Fkk(c) >0 s Por k=™ 12,0000

Lemma 21.1. Iet B be an nxn real matrix. If there exists an

index k such that F,,(C) > 0 for every matrix € in JFJO(B) %

then B is semi-regular.

Proof: If C 1is a singular matrix, then Fkk(C)g 0 . Hence,
) 0(B) contains no singular matrices, and it follows that 33 D(B) is

semi-regular. |

Lemma 21.3. t B Bg an nxn real matrix. lf_ there exists a

matrix C in JO(B) and en index k such that Fkk(c) = 0, then

B is not semi-regular,

Proof: Let C be a matrix in JJO(B) such that F (C) =0 .

Then we have

| ey 1 & el = Zlck,j'lgkjl = Cae &

J#K
As in Lemma 1.3 we can use this equality to construct a singular
matrix T = (t;;) “which is in sJ_(B) and which differs from C only

in the off-diagonal elements of the kth row. Since ,j o(B) contains
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a singular matrix, it follows that B cannot be semi-regular. l

Definition 13. ILet B = (bij) be an n x n real matrix. Then we
shall denote by g&é(B) the set of all real matrices C = (cij) whose
elements satisfy the following conditions for k = 1,2,...,n 3

T T g

|ij| S lbkjl J ® 132540 04,n Ak

In the proof of Theorem 21, we shall show that a boundary point
of a normal gap in the eigenvalue set of a non-negative matrix A must
actually be an eigenvalue of a matrix in udé(A) . We shall now prove
two lemmas ﬁhich will enable us to use this fact to prove that such a

boundary point must be an eigenvalue of a matrix in ;JO(A) "

Lemma 21.3. ILet B be an n xn semi-regular matrix in normal form.

Then every matrix in U{é(B) is also semi-regular and in normal fornm,

Proof: The proof of this lemma is entirely analagous to the
proof of Lemma 1.5. .Therefore, we shall demonstrate the validity of
the lemma for those matrices in udé(B) which differ from B only in
the elements of a single row., The genaral result is obtained by using
a recursive argument analagous to that employed in Lemma 1.5.

Accordingly, for an index k , which will remain fixed throughout
the proof, we denote by u4ik(B) the set of all real matrices
U= (uij) whose elements satisfy the following inequalities:

Uk T Pkk
|ukj| < |ka| G G - SR | JAk (5.1)
ujy = byy n (IO, O T - NORUN, i#k
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Iet C be any element of ;/M,l'{(B) . We shall show that C is a
semi-regular matrix in normal form. Iet T = (tij) be any matrix in
s4,(C) end let V= (vy;) be the corresponding matrix in I (B) .
By this we mean that V is in xjo(B) s that Vij has the same sign
as tkj for j = 1,2,...,n 3 and that v:‘_j = tij for i,J = 1,25..45n
and 1 #k .

Then Fkk(v) >0, since B 1is in normal form. Since we have
Vg = ‘Z;j for j = 1,2,...,n , the fact that T is in )Jo(c)
together with inequalities (5.1) allow us to conclude that
Fkk(T) >0, also. Since T was chosen arbitrarily from XJ;(G) 3 3t
follows from Lemma 21,1 that C is semi-regular, and since C was
chosen arbitrarily from de(B) we conclude that every matrix inﬁﬁ&k(B)
is semi~-regular,

Now, suppose for some index m ¥ k , we have me(T)s; 0. Let
o”ﬁk(V) denote the set of all real matrices R = (rij) whose elements
satisfy the following conditions:

= ¥

Trk Kk
]rkjlglvkjl J = 1,200 JAk

Since B 1is in normal form, it follows that me(V) >0, and since
a”bk(v) is a connected subset of real En2 space which contains bpth
V and T , we conclude that there exists a matrix R in y%k(V) such
that me(R) = 0 . However, it follows from lemma 21.2 that R can- .
not be semi-regular, and since R is equimodular with a matrix in

d”bk(B) s this contradicts the already established fact that every
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matrix in e/M.k(B) is semi-regular. Hence, we conclude that me(T)>0
for m=1,2,...,n , and since T was chosen arbitrarily from ,JO(C),

it follows that C 1is in normal form. I

Lemma 21.h4. Let A be an n xn non-negative matrix, and let o be

a non-negative boundary point of a normal gap in CR(1) . If A-0oI

is semi-regular, then it is in normal form.

Proof: We shall assume that O 1is a non-negative right boundary
point of a normal gap in (R(A) . By this, we mean that points
slightly smaller than o are not in (2(a) . The proof for non-
negative left boundary points is entirely analagous to the one given
here.

Iet A be a positive number in the gap for which o 1is a bound-
ary point, and let B be any matrix in ;J_(A-oI) . Then B =C-oI,
where C 1is a matrix in )JO(A) . Let , be any number in the open
interval (2A,0) . Then p is in G(A,A) , and it follows from
Theorem 7 that A-o T is a regular matrix in normal form, since
G(A,A) 1is a normal gap. Hence, we must have Fkk(A-/o I) >0, for
k =1,2,,..,n . Since for each fixed k , Fy (A-oTI) is a continuous
function of the elements of its argument, A-/oI, it follows that it is
a continuous function of /0 s and we conclude that Fkk(A- cI) >0,
for k = 1,2,...,n . Furthermore, since A-gI 1is assumed to be semi=
regular, it follows from Lemma 21.2 that we must have strict inequality

for each index k . Therefore, A-6I 1is in normal form, as desired. I
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Theorem 21. Iet A be an nxn non-negative matrix, and let & be

0

a non-negative boundary point of a normal gap in (A(A) . Then o is

an eigenvalue of a matrix in )JO(A) .

Proof: First we shall show that the matrix A-oc I cannot be
regular, Suppose that A-&I 1is regular., Then A-0I is certainly
semi-regular, snd it follows from ILemms 21.L and Theorem 7 that
A-gI is a regular matrix in normsl form. If B 1is any matrix in
J(A) , then B-oI is in A(A-0I) . Hence, no matrix in J (A)
can have ¢ as an eigenvalue, and this contradicts the fact that o~
is in Q(A) . Consequently, we conclude that A-cI 1is not regular.

Since A-ocI is not regular, it follows that o 1is an eigenvalue
of a matrix C = (cij) in ;J(A) whose diagonal elements are all
non-negative, Let y  be the eigenvector assoclated with o, where
vy = |3r1|ejLel s | ¥s| o192 s eee s |¥pl o on ) , say . Let
D = diag ( dyy dys eees dy ) be the unitary diagonal matrix whose

diagonal elements satisfy the following conditions:
a4 =o' K if y 40

dknl ifyk-O.

Then x = D'ly is a real vector, and since Cy =0y , we have

D"lcDx =0x . Let T =D"1CD. Then T 4s in J(A) ; the diagon~
al elements of T satisfy t’kk = 8y s for k=1,2,,..,n 3 and T
has O as an elgenvalue assocliated with the real eigenvector x .

Iet T = Tl + 1T-2 s Where Tl and T2 are real matrices,
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Thgn we have

ox =Tx = T.x +'1'r2x .

1x=crx and sz-O.

- 0T 1is not semi-regular. Furthermore

and since O x 1is real, we must have T
Therefore, the matrix Tl

since T has the same diagonal elements as A , we conclude that T1

isin A/(A), and T -6 I isin ‘/I/O(A- o I) . Hence, it follows

1
from Iemma 21.3 that A- o I cannot be a semi-regular matrix in
normal form, and we conclude from Lemma 21,4 that A~ o I cannot even
| be semi-regular., Therefore, there must be a singular matrix in

;JO(A- o I) , and this is equivalent to the statement that o is an

‘eigenvalue of a matrix in SJO(A) " I

Corollary 21.1 If B is a regular matrix in normal form, then every

real boundary point of Q(B) is an eigenvalué of a real matrix

equimodular with B : l

Corollary 21.2. Iet B be a positive definite, real symmetric matrix.

Then every real boundary point of £(B) is an eigenvalue of a real

matrix equimodular with B, l

Using Theorem 21, we can also obtain a result which is similar

to the Perron-Frobenius Theorem, but considerably weaker,

Theorem 22. Let A be an n x n non-negative matrix. Then the

matrix _'i_.n_ ;JO(A) . Furthermore, _i;i.‘_ B Ef. a non-negative matrix such

that B > A , then the largest non-negstive boundary point of R (B)
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is at least as large as that of Q(A) .

Proof: Since G(A,00) 1is a normal gap, it follows from
Theorem 21 that the non-negative boundary point of G(A,00 ) is an
eigenvalue of a matrix in ;J;(A) . |

Now, let A be any positive number in G(B,00) . Since G(B,00)
is a gap of type <n,n> and since B > A , it follows that all the
diagonal elements of both A and B are leas than A . Let
G = (ey,) be any matrix in ) (4) . Then we have the following

inequalities, for k = 1,2,...,n ¢

leye= Al > | 8= Al = A= = A=by = |bkk"' Al
Therefore, C= A I is in A/(B- AI), and C = AI must be a
regular matrix in normal form. Therefore, A is in a gap in (< (A) ,
and since A was chosen arbitrarily from G(B,00) 5 it follows that

G(A,00) is contained in G(B,00) , as desired. |

Unfortunately, the method used to prove Theorem 21 is non-
.constructive , and even though we can- say that the largest non-negative
boundary point of the eigenvalue set of a non-negative matrix A is an
eigenvalue of a matrix in ;JO(A) , We cannot prove that this point is
an eigenvalue of A . Furthermore, if A 1is irreducible, we cannot
prove that B > A implies that the spectral radius of B is greater
than that of A and although it is possible to show that the eigen-
vector which is associated with the largest non-negative boundary
point of Q_(A) is non-negative, we cannot prove that if A 1is

irreducible, then this eigenvector is positive.
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In fact, the concept of irreducibility rarely fits into our
investigations, for if A is a reducible matrix, then there exists
an irreducible matrix B such that the boundary points of Q(B) are
‘arbitrarily close to those of Q(A) and the gaps in Q(B) are of
the same type as the corresponding gaps in ,Q (A) . Thus, the eigen-
value sets of A and B are practically indistinguishable by the
methods we employ. However, our final result shows that this is not
altogether true, for we are able to prove that the diagonal elements
of an irreducible regular matrix in normal form are actually interior

points of its elgenvalue set,

Theorem 23, Let A be an mxn non-negative, irreducible, regular '

matrix in normal form. Then every diagonal element of A is an inter-

ior point of () .

Proof: It follows from Corollary 10.2 that every diagonal
element of A 1is in Q(A) . We shall prove that no diagonal element
"of A can be a boundary point of Q(A) . To simplify the proof, we
shall show that, in particular, 2, cannot be a boundary point of
Q(A) .  We shall use induction on n .

For n=2, the fact that A 1is irreducible means that
810 859 # 0. Hence, A-a__I must be regular, and it follows from

11
Theorem 21 that all cannot be a boundary point of Q(A) .
' Now, in the general case, since A 1is irreducible, the graph
of A must be strongly connected. Hence, there must be a closed path

in the graph of A which includes node. #lr. By paring off super-
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- fluous circuits of this closed path, it is possible to obtain a closed
subpath which includes node #1 and which passes through no node more
than once. Thi§ means there exists a sequence of, say, m £ n non-
‘zero off-diagonal terms in A which lie along a generalized diagonal

of an m x m principal submatrix of A that contains a If

1%
m<n, it follows that there exists an irreducible principal sub-
matrix of A which contains a)q - In this case, we conclude from
the inductive hypothesis that a4 is an interior point of the eigen-
value set of this principal submatrix, and the theorem follows from

Corollary 10.1 .

If m=n, then the n non-zero off-diagonal elements must lie
along a generalized dilagonal which is cyclié of order n . Hence,
there is no loss of generality in assuming that these elements are

suial B a Let C = (cij) be the matrix whose

81038543 n-l,n; nl *

.elements satisfy the following conditions:
| Crk ™ k k = 1,2,..;, n
ck,k+1 = ak,k+1 k= 1,2y000y D=1
°m1 * ®m1
Cijj = 0 otherwise
Then C 1is in ./bkA) s and it follows from Corollary 10.2 +that
a;; is in 1;?(0) . Let B be an arbitrary matrix in xgo(C-allI) 4

Then we have
n=1

det B = * 81 L J ak,k+1 .

It follows that C-allI is semi-regular, and we conclude from Theorem 21
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that a,  cannot be a boundsry point of (2(C) . Therefore, a

must be an interior point of (A(C) , and it follows from Theorem 10

 that 2,1 must also be an interior point of K;Q(A) " |

Corollary 23.1. Iet A be an n x n non-negative, irreducible,

regular matrix‘ig normal form. Then no component 3£ LQ(A) can Eg‘g

circle,

Proof: Iet D = diag (811’ 8,p3 cees ann) . Since every gap in
(2(A) 1is normal, it follows from Theorem 18 that an eigenvalue of D
is contained in every component of 1;?(A) « In particular, this means
that a circular component of l;E(A) would have to contain a diagonal
element of A , and this is impqssible since every diagonal element of

A 1is an interior point of L;Q(A) . Hence, no component of 1;2(A) can

be a circle.
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VI. SUMMARY.

In this section, we shall summarize the resulis of the preceding

sections and make a few conjectures about possible future developments.,

Now that we have completed our investigations, we can say the

following about the structure of the eigenvalue set of a general n x n

non-negative matrix A :

1.

li.

The set i;Q(A) consists of k € n closed annuli, each of
which is centered at the origin. One of these annuli is a

disk if ,J(A) contains a singular matrix. (Theorem 0) .

Each gap in (;?(A) may be regarded as a class of regular
matrices, each of which is associated with the same permuta-
tion matrix. Thus, each gap in Q;Q(A) may be associated

with a permutation in a natural fashion. (Theorem 7) .

The unbounded gap, G(A,00) is always associated with the

identity permutation. (Theorem 8) .

There exist m ¢ n permutations, qi, q%, eees qk 3

such that each gap in L;E(A) is associated with one of
731, ‘sz e ch . This is true even if Q(A) has (n+1)
gaps. Hence, we say that (2(a) is associated with the

permutations ®; P, ..oy . e (Theorem 16) .
] ’
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5, Let P, denote the permutation matrix related to qac,

k
for k=1,2, .coo n . Then 1;2(A) can be characterized

as the complement of the set of all complex numbers =z such
that for each matrix B in gg(A) , there exists a permuta-
tion, say (Pk s &and a positive diagonal matrix D such
that the matrix Pk(B- |z] I)D is diagonally dominant.

(Theorem 2 and Theorem 7) .

Tt is clearly not feasible to compute ({(A) from the above
characterization., Instead, we use tools such as Theorem 3 in conjunc-
tion with Theorem 7 to determine key points in the gaps in () "
and once we have determined the number of gaps and the permutation
matrix with which each is associlated, we can use Theorem 18 to con-
struct points in the components of L;Z(A) . To illustrate this tech-

nique, we shall analyze the eigenvalue set of a specific matrix.

Example 6.1.
Consider the following matrix i

16 0 1/16 o]

% o 0 0 o 0
1/32 0 0 1

) 1 9 2

Because of the structure of A s 1t follows from Theorem 1 +that any
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gap in (A(A) must be associated with one of the following permutation

matrices @

1000 1000

p. =| 0001 p.=| 0100
1 0100 2 0001
0010 0010
0010 ‘ 1000

p. =] 0100 I =[ 0100
3 1000 0010
0001 0001

Since 1/16 and '1/32 are small relative to the other numbers in 4 ,
we eliminate P3 from consideration and we shall assume that any gap
in (J(A) is associated with P1,Py, or I .

First of all, we observe that A must be regular since the sub- |
matrix formed from A by deleting the lSt row and 15% column is
regular, and the minor of the (1,3) position is zero for all matrices
in k}(A) . Since no product of elements of A which iie along
generalized diagonal exceeds 16 , it follows from Theorem 3 that the

.gap G(A,0) 1is associated with P Since G(A,0) is of type

1 e
<<1,Q> ', any other gap in (;{(A) must have at least one subordinate
diagonal pivotal position. If Q(A) has a gap of type <L,1> ,
then this gap must have (1,1) as a pivotal position, since any gap
which includes numbers greater than 16 1is clearly normal. Since
(1,1) 1is the sole diagonal pivotal position of only P_. , it follows

1

that any gap of type <:i,i>- must be associsted with P If a

1 L J
gap is associasted with P, , then every gap in (A(n) which is more
exterior than this gap must be normal, since any such gap must have at

least two subordinate diagonal pivotal positions.
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Now we shall determine whether each diagonal element of A is
in Q(A) or in a gap in (A(A) . Clearly, the zero diagonal elements
of A are in the gap G(A,0) . The number 2 cannot be in a gap in
which (2,2) is pivotal, Hence, if 2 is not in [A(A) , it must
be in a gap associated with Pl or P2 . We observe that the product
of the elements of A~2I which lie along the generalized diagonal
(1,1); (2,2); (3,4); (4,3) is greater than the product of elements
along (1,1); (2,3); (3,4); (L,2) . Hence, if 2 is in a gap, it
follows from Theorem 3 and Theorem 7 +that this gap must be assoc-
iated with P, . Iet D = diag (1, 9/16, 1, 33/16) . Then if B is
any matrix in sJ(A) , the matrix P,(B-2I)D 1is diagonally dominant.
Hence, it follows from Theorem 2 and Theorem 7 that 2 1is in a
gap in Q(A) which is associated with P, , and this gap must be of
type <2 ,1> « On the other hand, the number 16 cannot be in a
gap in (2(A) since (1,1) must be a pivotal position of every gap
in Q(A) . Moreover, if B is any matrix in J(A) , then it is
‘clear that B-1j I is diagonally dominant, Hence, it follows that 1L
is in a normal gap in Q(A) of type | <h,3> . Thus, we conclude

that there are four gaps in Q(A) :

G(A,0) , which is associated with P, and is of type <1,0>

G(A,2) , which is associated with P2 and is of type <2,1>

“-e

.o

G(A,14) , which is associated with I and is of type <h,3>

“e

G(A,00) , which is associated with I and is of type <l,L> .
Now we shall determine a few key points in ({(A) . First of all,

it follows from Theorem 18 <that the component of Q(A) which is
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bounded by G(A,0) and G(A,2) contains at least one component of

62(01) s Where C; is the following matrix :

16 0 0 0
00 10
2"\ 00 0 1
019 0

Thus, this first component contains only one elgenvalue of every matrix
in J(A) , since this property holds for matrices in J(C;) , and
the smallest boundary point of J;?(A) is no greater than 1/8 .
Similarly, the largest positive boundary point of this component is
somewhat less than 1/2 . The second cdmponent of l;l(A) is bounded
by G(A,2) and G(A,1L4) , and contains at least one component of
62(02) , Where

16 0 0 O
0O 01 0

G =
2 0 0 0 1
0 1-9 2

.The characteristic polynomial of C, 1is (x-lé)(x3-2x2+9x-l) . This
polynomial has a pair of complex roots whose modulus is approximately
3 . Therefore, the.second component of CR{A) contains two eigen=
values of every matrix in xg(A) , and contains numbers at least as
small as 3 . In addition to a component of .QQ(CZ) s, this second

component of J;Q(A) must. contain a component of 1;2(03) , where

6 0 0 O

| 0 00 O
C3=\ 0 0 0 1
009 2
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Since the only two eigenvalues of C3 which can be in the second
component of (A) are 1 +-410 and 1 -+/10 , and since 2 is

in G(A,2), we conclude that the smallest positive boundary point

of ((A) must be slightly larger than 2 . Further examination shows
that the largest positive boundary point of this gap is slightly less
than 5 . Finally, the last component of Q(A) contains 16, and
its two positive boundary points are both approximately equal to 16.
Hence, Q(A) is closeiy approximated by the union of the following

three annuli:

18<|z|<1/2 5 2<|z|<5 5 3/2<|z| <332

The results we have obtained answer only part of the questions
raised in the introductory section. Actuslly, we believe that much
more can be said about Q(A). In fact, we conjecture that the
Perron-Frobenius Theorem is a speclal case of a more general property

of the set Q(A) which may be stated as follows:

Conjecture 6.1. Let A be an irreducible, non-negative, n x n

matrix, and let 0 >0 be a boundary point of CAA) . Then & is an

eigenvalue of a gertain real matrix B in ;-45’ (A) , and a matrix C

—_— T T e e

equimodular with A has an eigenvalue of modulus o if and only if

¢ = o®pBp~! , where D is a unitary diagonal matrix,

We also conjecture that it is possible to describe the matrix B
of Conjecture 6.1 explicitly, in terms of the pivotal positions of the

gap for which it is a boundary point.
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Conjecture 6.2. Let G(A,A) be a gap in (J(A). Then the matrix B

of Conjecture 6.1 may be described as follows, for k = 1,2,...,n :

a) If (k,k) is a subordinate pivotal position in G(A, A), then

blcjzakj J = 1i25eaasn |

b) If (k,k) is a non-subordinate pivotal position in G(A,A),
bkk = By
bk.j = "'akj j = 1'2, ...,n j % k

¢) If (k,£) with L# k is the pivotal position in the k™!

row in G(A,A), then

Diep = 2k g
By = =8kj J=12,.00n J#L

Moreover, we further conjecture that Theorem 17 may be extended

in the following sense:

Conjecture 6.3. Let G(A,A) and G(A,u) be gaps in (A) and

suppose that % >A>0 . Then G(A,y) has more subordinate diagonal

pivotal positions than G(A,A) .

It appears that a more systematic approach to the study of Q(A)
is possible if we regard this study as a special case of a more
general problem. Before we can be more specific, we shall require the
following definition:
Definition: Let A and B be non-negative, n x n matrices. Then the
pair (A,B) 4is said to be bi-regular if det(R+S) # O for all matrices R
in J@) and 5 in J(B) .
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The motivation for this definition is provided by Theorem 7, for
if A is not in C(A) , then the pair (A, AI) is bi-regular. By
regarding the set ({(A) in terms of bi-regularity, it is possible to
construct a unified theory in which the intrinsic properties of Lo(A)
are made evident. Specifically, it can be shown that the open set of
all n x n regular matrices has n! components, each of which contains
a perrmtation matrix., A similar result holds for the set of all bi-
regular matrices of a given order. In particular, it can be shown
that each component of this set contains a bi-regular "splitting"
of the form (P,Q), where P+) is a permutation matrix. If B = 0,
then (A,B) 1is bi-regular if and only if A is regular, and in this
case, the corresponding splitting has Q = 0, and P is a permutation
matrix. This is equivalent to Theorem 1. If B =AI , where A is
not in CR(A) , then the corresponding splitting is closely related to
the subordinate and non-subordinate diagonal pivotal positions of the
gap G(A,A) . This technique not only promises to yield interesting
results concerning GQ(A), but also suggests that the study of what

could be called multi-regular sets of matrices might be profitable.
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