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iii. 

ABSTRACT 

The structure of the setl{(A) of all eigenvalues of all complex 

matrices (elementwise) equimodular with a given n x n non-negative 

matrix A is studied. The problem was suggested by O. Taussky and 

some aspects have been studied by R.S. Varga and B.W. Levinger. 

I.f every matrix equimodular with A is non-singular, then A 

is called regular. A new proof of the P. Camion-A.J. Hoffman char-

acterization of regular matrices is given. 

The set (;{(A) consists of m ~ n closed annuli centered at the 

origin. Ea.ch gap, 'O , in this .set can be associated with a class of 

regular matrices and with a (unique) permutation, 1L ( o). The associa-

tion depends on both the combinatorial structure of A and the size 

of the aii • Let A be associated with the set of r permutations, 

1'c'1 , 1r2 , ••• ,1rr, where each gap in C{(A) is associated with one of 

the 1lk • Then r :::; n , even when the complement of Q(A) has n+1 

components. Further, if 1r( 1) is the identity, the real boundary 

points of Q are eigenvalues of real matrices equimodular with A • 

In particular, if A is essentially diagonally dominant, every real 

boundary point of Q(A) is an eigenvalue of a real matrix equini.odular 

with A • 

Several conjectures based on these results are made which if 

verified would constitute an extension of the Perron-Frobenius Theorem, 

and an algebraic method is iritroduced which unites the study of 

regular matrices with that of G{.(A) • 



I. JNTRODUCTION. 

We shall call two n x n complex matrices B • (b . .) 
1J 

and 

C • (c1) equimodular if I bij I • l cij I , i,j • 1,2, •• • ,n • 

Clearly the relation "B equimodular with G11 establishes an equival-

ence on the set of all n x n complex matrices, and we shall denote 

by ~(B) the class of all n x n complex matrices equimodular with 

a given matrix B • We shall denote by .Q(B) the set of all eigen

values of all matrices in x&(B) • When we discuss certain general 

features of c;((B) which do not depend on B , it will often be con-

venient to refer to this set as the eigenvalue set of B or even as 

the eigenvalue set of a general matrix. It is the purpose of this 

thesis to investigate such eigenvalue sets. 

In this introductory section, we shall review what· is already 

known about eigenvalue sets and conduct a heuristic survey of problems 

toward whose solution we may profitably direct the course of our 

investigations. We shall also introduce definitions and notational con-

ventions which recur throughout our work, and we shall state without 

proof several well-known results which we shall need in later sections. 

Not a great deal is known about the eigenvalue set of a general 

matrix. o. Taussky [ 2 J asked for a characterization of this set, and 

perhaps the best response to this request is found in a paper by Varga 

and Levinger [ 3 ] , in which the authors characterize the eigenvalue 

set in terms of minimal Gerschgorin sets (4,.5] This characteriz-
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ation is particularly elegant for the eigenvalue set of an essentially 

diagonally dominant matrix, but becomes more complex in the general 

case. In Section IV, we shall once again have cause to refer to this 

paper, for one of the main results of that section is quite similar to 

a conjecture of Varga and Levinger, although the approach we use is . 

completely different from the method of minimal Gerschgorin sets. 

Aside from the paper of Varga and Levinger, the most important · 

guides we have for the investigation of the eigenvalue sets are the 

many results in the literature which deal with bounds on the set of 

eigenvalues of a given matrix. Perhaps the most important of these 

results are the Gerschgorin Disk Theorem and the Perron-Frobenius 

Theorem. These two results are stated in their entirety at the close 

of this section, but roughly speaking, the most important evidence 

they provide is that the eigenvalue set of a diagonally dominant matrix 

does not contain the origin and that if A is a non-negative matrix, 

then the largest non-negative boundary point of ~(A) is an eigen-

·value of A • 

At this point, we can say very little about the eigenvalue set of 

a general matrix. However, we can prove that every such set has a 

certain basic form. 

Theorem o. Let B ~ ~· n x n complex matrix. ~ Q(B) is 

symmetric about~ origin.£!.~ coinplex plane. Furthermore, ..c;((B) 

is a closed set which has at most n components, and every component ------ · ---
.£!. Q(B) contains ~ ~ number .£! eigenvalues (counting multipli-

cities) of ~ matrix in J (B) • 



J. 

Proof: First of all, if ex is a positive nurnber in {).. (B) , 

then ex is an eigenvalue of some matrix C in ;0(B) If e is 

any real number such that 0 ~ e < 2 'Tt , then ex e19 is an eigenvalue 

of ei9c , and since ei9c is in J(B) , it follows that ..Q(B) 

contains every complex number on the circle I z I a ex • 

Now, let R be any matrix .in s.J(B) other than B. It is well

known -- e.g. ( 7 ] -- that the eigenvalues of an n x n complex matrix 

regarded as a function of n2 complex variables are continuous 

functions of those variables. Since the domain of these functions 

i.e. ~(B) -- is a compact, connected set in complex En
2 

space, it 

follows that Q(B) is closed and that every component of Q(B) must 

contain exactly the same number of eigenvalues of R (including multi-

plicities) as it does those of B • Since B can have at most n 

distinct eigenvalues and since R was chosen arbitrarily from ,0'(B) , 

this completes the proof of the theorem. 

Except for the basic form described in Theorem 0 , none of the 

features of the eigenvalue set of a general matrix is ;. i mmediatefy dis-

cernible. In fact, matrices which are very "similar" can have com-

pletely different types of eigenvalue sets. For example, if I is the 

identity matrix, t hen .c;{(I) is the unit circle. Let k be a positive 

number, and let ~ .. diag (l/k, l/k
2

, ••• , l/kn) • Then for each such 

1\: , ~(Dk + I) consists of the union of n distinct circles. Thus, 

we see that two matrices which are "close" in the topological sense can 

have eigenvalue sets which do not even have the same number of compon-

ents. It is just as obvious that two algebraically similar matrices 

may have entirefy different types of eigenvalue sets. For example, 
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let J be the matrix all of whose entries are equal to one. Then J 

is orthogonally similar to the diagonal matrix D • diag (o,o, •.• , n). 

We shall see later that Q (J) is the disk I z I ~ n , but Q(D) is 

clearly the union o:f the origin and the circle I z I • n • There:fore, 

it appears that i:f we are to find a general technique for analyzing the 

eigenvalue set of a matrix, then very little can be gained by regard

ing a matrix as a linear transformation or as a point in complex "FP
2 

space. 

Mindful of these preliminary observations, we shall begin our 

investigations of ~(A) with a view toward answering the following 

questions : 

1. Is every real boundary point of t;<.(A) an eigenvalue of 

some real matrix in ;,tf (A) ? 

2. If A and B are non-negative matrices such that B ~ A , 

under what conditions is it true that (2(B)=:)c:l(A) ? 

3. Is there any essential di:fference between the case when .c;;:((A) 

contains the origin and the case when it does not ? 

4. What causes the gaps between components in .,C2(A) ? 

Is it possible to predict whether a gap will appear in .c;2(A) 

without having precise knowledge of .(;<(A) itself ? 

5. Under what conditions is one of the annuli which comprise 

~(A) actually a circle ? 

In addition to the above questions, there are several other import-

ant issues with which we shall deal in our investigations. However, it 

is di:fficult to motivate or even describe these problems until we have 
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introduced a certain amount of basic terminology. Therefore, each 

section will begin with a paragraph which describes and motivates the 

main ideas end results contained in the section, end in Section VI, at 

the end of our investigations, we shal1 summarize the main results of 

our work. 

It is convenient at this point to introduce a few basic defini-

tions, notational conventions, and background results which will be 

used throughout our work. 

First of all, a complex matrix B will be called regular if every 

matrix in J (B) is non-singular. Equivalently, B is regular if 

~(B) does not contain the origin. 

Italic capital letters such as A,B,C, ••• will be used to denote 

n x n complex matrices. The letter A wil1 be reserved for non

negative matrices. Script letters with subindices -- e.g. A1 . , Q3 . . , 
J l.J 

~ij' 6C;j' ~j' -- will be used to denote the determinant of the 

n-1 x n-1 submatrix formed by deleting the ith row and jth column 

· from the n x n complex matrix denoted by the corresponding italic 

capital letter -- e.g. A,B,C,T,V • Although script letters are also 

used in the symbols ~(A) , {;{(A) as well as in the symbols for 

certain other sets which will be introduced later, there should be no 

difficulty in deducing from the context in which a script letter 

appears whether it denotes a set or a determinant. If B • (bij) is a 

complex matrix, the symbol j B I will denote the non-negative matrix 

whose (i,j)th entry is I bij I This symbol should not be confused 

with the symbol sometimes used in the literature to denote the determin-

ant of B • We shal1 always denote the determinant of B by (det B) • 
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The symbol 11 I 11 will be used to indicate the end of the proof 

of a theorem or a lemma. 

A set of n matrix positions which includes exactly one position 

from every row and every column will be called a generalized diagonal. 

For example, three of the 3 ! generalized diagonals of a 3 x 3 matrix 

are {<1,1), (2,2), (3,3)} {<1,1), (2,3), (3,2)} and 

{<1,2), (2,3), (3,1)} • A matrix whose only non-zero elements lie 

along a generalized diagonal will be called a generalized permutation 

matrix. Where we speak of such a matrix, we shall tacitly assume it to 

be non-singular -- i.e. we assume it has n non-zero terms. 

A matrix A will be called reducible if there exists a permuta-

tion matrix Q such that 

where A
1 

and A
3 

are square submatrices of A and 0 is a block 

of zeroes. If A is not reducible, it will be called irreducible. 

Let A • (a . . ) be an n x n non •negative matrix. Then by the 
1-J 

graph ~ A we mean the directed graph on n nodes which has an edge 

directed from node #k to node # l if and only if ak.t f. 0 • For 

example, consider the f ollowi ng matrix 

1 0 3 

A • 4 0 0 

0 2 1 
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Then the following is the graph of A i 

node #2 

A sequence of edges in the graph of A which begins at node #r and 

ends at node #s will be called a path from node #r to node #s • 

The graph of A is said to be strongly connected if there exists at 

least one path from each node in the graph to every other node. 

Equivalently, the graph of A is strongly connected if there exists a 

closed path in the graph which passes through each and every node. 

The symbol L 1 
will denote the deleted summation t . A 

i:Fj 1=1 
i 't j 

complex n x n matrix B • (bij) will be called diagonally dominant 

if we have the following inequalities for k • 1,2, ••• , n : 
I 

lbkkl > Ilbkj I 
j~IC 

. A complex matrix B will be called essentially diagonally dominant 

if there exists a positive diagonal matrix · D such that BD is diagon-

ally dominant. 

Let B • (bij) be an n x n complex matrix. Then the disk in 

the complex plane described by the .inequality 

will be called the kth Gerschgorin disk of B • We say that this 

disk is isolated if its intersection with the union of the other (n-1) 
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Gerschgorin disks of B -is void. Thus, it follows that an isolated 

Gerschgorin disk contains one and only one diagonal element of B • 

Finally, if B is an n x n complex matrix, then by the spectral 

radius. of B we shall mean the maximum of the moduli of the eigenvalues 

of B • Thus, if j\
1

, Ji
2

, •• • ,i\ are the eigenvalues of B , the 

spectral radius of B is equal to max j/\ I 
I~ K~1'\. k 

We conclude this introductory section by stating without proof 

five basic results which are used throughout our work. 

i) Let f be a continuous, real-valued function whose domain is 

a connected set in a finite-dimensional metric space. Then if the 

range of f includes both positive end negative numbers, it must also 

include zero. If the domain of f is also compact, then its range is 

a closed segment of the real line. 

ii) Gerschgorin ~ Theorem. Let B be a complex n x n matrix. 

Then all the eigenvalues of B are contained in the union of the n 

Gerschgorin disks of B • Furthermore, if the kth Gerschgorin disk 

of B is isolated, then this disk contains exactly one of the eigen-

values of B • 

It follows from ii) that a diagonally dominant matrix B must 

be regular, since the union of the Gerschgorin disks of any matrix in 

·~(B) oannot contain the origin. 

iii) Perron-Frobenius Theorem. Let A be a non-negative, irreduc-

ible matrix. Then A has a simple, positive eigenvalue O< which is 
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equal to the spectral radius of A and which is associated with a 

positive eigenvector. Furthermore, if B is any complex matrix such 

that A ~jBj , then ex is greater than the spectral radius of B 

·with the sole exception of the case when there exists a unitary diagon-

( ie)· -1 al matrix D and a real number 9 such that A • e DBD , in 

which case B has a simple eigenvalue of modulus ex 

Clearly, this result implies that the largest positive boundary 

point of .G{(A) is an eigenvalue of A , since every matrix B in 

x5(A) is such that A~ IBI • 

iv) Let B be a complex matrix. Then the matrix power series 

I+ B2 + B3 + ••• converges to (I-B)-l if and only if the spectral 

radius of B is less than one. 

v) A matrix is irreducible if and only if its graph is strongly 

connected. 
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II. REGULAR MA TRICES 

The main purpose of this section is to introduce and develop a 

technique which will prove to be the crux of all our main results. 

Using this technique, we shall establish a natural means of associat-

ing each regular matrix with a permutation matrix, and as a by-product 

of this result, we give a new proof of a theorem of Camion and Hoffman 

which completely characterizes regular matrices. Finally, we obtain a 

property of non-negative regular matrices which will be used to a 

great extent in Section IV • 

We begin this section with a lemma which expresses analytically 

the obvious fact that m line segments can be laid out in the form of 

a closed m-gon if and only if the length of no single one of them 

exceeds the sum of the lengths of the rest. 

Lemma 1.1. Let x1 '::! x2 - ..• ~ x r ~ ,... m be a set of m ~-negative 

numbers. Then it is possible to find real numbers e1,e2, ... ,em 

such that if and only if 

Proof: Suppose for real numbers 

0. This can be written as 
"' . e ,,.. 

follows that x1 "' j j~z.xj e
1 

j I ~j~~j • 

e1 ,e2 , ... ,em we have 

-xl ei81 = f:,x. ei9j 
.;::2 J 

and it 

To prove the converse, we use induction on m • For m = 2 , 

x1 ~ x2 , we must have x1 - x2 • O since x1 ~ x2 by assumption. 

if 
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7>t. 

In the general case ' .... -~uppose we have the inequality x1 ~ j[.z. xj • 

Then if we have x1+xm~ j'I;2xj we may apply the inductive hypothesis 

to the m-1 numbers x1+~, x2, ... ,~ to obtain the desired result. 
,.._, 

However, suppose x1 +~ > ~ xj so that 
,.,_, J-2 

- x ~ 0 • m 

Let z(e) = ( [ xj) - xm • Then z(e) 
j "z. 

varies continuously between 

some 

with 

,..., 
and ( [, xj ) - xm as e varies between 1T and 0 • Since we 

.,... , j = 2. """ 

(;~ xj ) - xm < x1 ~ j~ xj it follows that I z(e1)) = x1 for 

e1 with 0 ~ e1 ~ 1T. Therefore, there exists a number e2 

0 ~ e2 ~ 2 rr such that 

ie2 x e .. 1 

This can be re-written as 

and the proof of the lemma is complete. I 

It may appear that we can gain little insight into the nature of 

eigenvalue sets of general matrices by concentrating on regular 

matrices, for "most" matrices are not regular. However, as we shall 

show in Section III, if A is a complex matrix and A is a positive 

number not in ,;;{_ (A) , then the translated matrix A - A I must be 

regular. This indicates that a characterization of regular matrices 

is of basic importance in discussing man~ of the features of the 

eigenvalue set of a general complex matrix. The following lemma is 

the first step in the derivation of such a characterization. 
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Lemma 1.2. An n x n ~-negative matrix A is regular!.£~ only 

!£ ~ ~ (~) index k and every matrix B in ,J(A) , we have 
..... . i8 
[lbkj I I (i3kj J e j 1' 0 for any n real numbers el'e2 , ; ••• ,en 

. J•i 

Proof: Suppos~ A is not regular. Then there exists a singular 

matrix B • (bij) in ~(A) 

B is singular, we must have 

Let k be a (row) index. Then since 

" I k-jl L ( -1) bkj 63_ • det B = 0 • 
i =I kj 

Clearly this implies the existence of real numbers e1 ,e2, ..• ,en .,.. . 

such that [I bk . I I 63 k . I e iS j. = 0 . 
j s I J J 

Conversely, suppose A is regular. Let k be a (row) index and 

let B be an arbitrary element of ,,8(A) • Suppose there exist real 
7\. . 

[ a ie· 
such that. l~j l \~kj I e J = 0 . 

J=I 

numbers 

For j = 1,2, ••• ,n ., let 1j be the argument of the complex number 

. Then we have 

~b {j3 i(0j - Yj) 
j4:I kj kj e B 0 0 

Clearly, this implies the existence of a singular matrix C which 

differs from B only in the signs of the elements of the row. 

Therefore, this matrix C is in ~(A) , and this contradicts the 

fact that A is regular. Hence, it is 
')'1 

el'e2, •.. ,en such that ~LI bkj 11 U3 kj I 

impossible to find numbers 

eiej • O . Since k was an 
J ~ I 

arbitrary (row) index and since B was chosen arbitrarily from ~(A) 

this completes the proof of the lemma. I 

Lemma 1.2 i ndicates that we can obtain valuable information about 
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regular matrices by investigating the set of complex numbers 

{ bkl 18kl ' bk2 $k2 ' ••• ' \me kn} 
for a fixed row index k • We shall now combine the results of 

Lemma 1.1 and Lemma 1.2 to demonstrate an important property of this 

set, but in anticipation of this and later results, it is convenient 

to first introduce a function which proves to be a valuable tool in 

our investigations. 

Definition 1. Let B • (bij) be a complex n x n matrix. Let r be 

an arbitrary (row) index and s , an arbitrary (column) index. Then 

will denote the following function: 
I . 

Frs(B) ... I brsl I <Brs I - r1 brj I I (jJ rj I 
J~S 

Clearly, for fixed r and s , Fr5 (B) is a continuous, real-

valued function of the elements of B if B is regarded as a point 

n2 
in complex E space • . One reason why this function is so useful is 

contained in the following lemma. 

Lemma 1. 3. Let B ~ 2_ complex matrix. If there exist two indices 

r and s such that then B ~ ~ regular. If there 

exist two indices k ~ l ~ ~ Fk£(C) / 0 for every 

matrix C ~ 0 (B) , then B ~ regular. 

Proof: The first statement is an obvious consequence of 

Lemma 1.2. Now let k and .-t be two indices such that FkL(C) / 0 

for every matrix in ..J (B) • Suppose B is not regular. Then there 

exists a matrix C in ,J(B) which is singular, and we must have 
7\ lk-jl 
\.( 1) c '° • det C • 0 • 

/;:;- kj ~ kj 
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From this it follows that 
I 

I cktl I ~k.tl ~[I ckj I I ~kjl 
ji::J, 

' 

and we must have Fk.l(C) ~ 0 • However, this contradicts the as sump-

tion that Fk,e<c) > 0 ' and we conclude that B is regular, as 

desired. I 
Now we prove a converse to the second part of Lemma 1.3 • 

Lemma 1.4. Let A be ~ regular matrix. Then for each (~) ---- -----
index k ' there exists ~ ~ only ~ (column) index 1 ,.. .i(k) -
such that Fk£.(B) >o for all matrices B in ,0(A) • ---- ---- -

Proof: Let k be a (row) index which will remain fixed through

out the proof. Since A is regular, we conclude from Lemma 1.2 that 

it is impossible to find real numbers e1,e2, ••• ,en such that 
7\. Li bkjl l<Bkjl eiej .. o • 

.j=I 

Choose )!, so that I bk.~) /~klJ -= 1 ~a;J bkjJ l©kj J • Then it follows 

from Lemma 1.1 that we must have 
I 

I bk.ti )8ktl > I1~jl I Bkj I 
j fK 

Moreover, ;(, is unique in the sense that for m ft J, we must have 
I 

I 0kml l $kml<[lbkj l JO~\· I . J 
J * 7"V 

Thus, we conclude that Fk.l(B) > 0 , but we still must show that this 

index 1, depends only on k and not on the choice of B from ..sJ (A) • 

Assume that there exists a matrix C in _,0 (A) such that 
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Fk.t (C) ~ 0 • Since Fkl 

;J(A) , and since r.J(A) 

is a continuous, real-valued function on 

is a connected set in complex ~2 space 

which contains both B and C , it follows that Fkt(T) a 0 for 

some matrix T in ~(A) • However, this contradicts the fact that 

A is regular, and we conclude that Fkt(C) > 0 for every matrix C 

in sJ(A) • Therefore, the (column) index ,£ depends only on the 

(row) index k and not on the choice of B from ~(A) , as 

desired. I 

As a consequence of Lemma 1.4, we can now define the important 

concept of a pivotal position for a class of regular matrices. 

Definition 2. Let A be a regular matrix and suppose that (k,£) 

is an ordered pair of indices such that Fk1(A) > 0 • Then we say 

that (k,£) is a pivotal position for matrices in .rJ(A) , and if 

B = (bij) is any matrix in J (A) , the element bkt will be called 

the pivotal element in the kth row of B • 

It follows from Lemma 1.4 that every row of a regular matrix con-

tains exactly one pivotal element and that the position of this element 

is an invariant of the class J (A) • Moreover, we shall show in 

Lemma l.S that the set of ' pivotal positions of the class ~(A) is 

actually an invariant of a much larger class of regular matrices, 

which we shall now define. 

Definition 3. Let B • (bij) be a regular n x n matrix. We shall 

denote by ek'(B) the set of all complex matrices C • (cij) whose 
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elements satisfy the following inequalities for k • 1,2, ••• ,n : 

where bkt is the pivotal 

element in the kth row of B 

I cks I~ lbks I for s • 1,2, ••• ,n 

(2.1) 

i.e. such a matrix C is obtained from B by increasing (in modulus} 

the pivotal elements in B and by decreasing (in modulus) the others. 

For example, consider the matrix 

B • 

3 

2 

2 

8 

3 

3 

l 6 15 

We shall see that B is regular and that the pivotal positions of 

B are (l,l); (2,2); and (3,3) . Therefore, a typical member of 

.A/(B) is the following complex matrix: 

c • 
5 
2 

0 

9i 

1 

2 

0 2+2i 15 

Lemma 1.5. Let A ~ ! regular n x n matrix. Every matrix in 

c.A/(A) is regular ~ ~ ~ ~ pivotal positions ~ matrices ~ 

J(A) • 

Proof: To simplify .notation, we shall assume that A is the 

non-negative matrix in J (A) • We shall first prove the lemma for a 

subset of cA}(A) . and then proceed recursively to the completely 

general case. Let k be a fixed (row} index, and let.Alk(A) be the 
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set of all. complex matrices B a (bij) whose elements satisfy the 

following inequalities for k • 1,2, ••• ,n : 

where a is the pivotal 
k.e. 

element in the kth row of A. 

I bks I ~ aks s • 1, 2, • • • , n s r i 
l bij l .. aij i,j • 1,2, ••• ,n i " k 

(2.2) 

In other words, cJ\/k(A) is the subset of v1/(A) which contains those 

matrices which differ from certain matrices in ~(A) only in the 

elements of the kth row. Let . B • (b .. ) be an arbitrary matrix in 
1J 

cJ\)k(A) , and let C • (cij) be the corresponding matrix in ~(A) 
. . th 

i.e. B and · C are identical except for the elements of the k 

row ; for j • 1,2, ••• ,n , the modulus of the complex number ckj 

satisfies the inequalities (2.2) , and its argument is equal to the 

argument of bkj • Then the inequalities (2.2) , together with the 

fact that Fkl(C) > 0 , imply that Fkt(B) > 0 , since the minors of 

the elements of the kth row of B are identical with the minors of 

the corresponding elements of the th 
k row of C -- i.e. we have 

i'l.3kj • ~ kj , j • 1,2, ••• ,n • Therefore, since B was chosen 

arbitrarily from v1{CA) , it follows from Lemma 1.3 that every 

matrix in cA/k(A) is regular and has . (k,l) as a p i votal po~ition. 

Now suppose (r,s) is a pivotal position for matrices in Jl (A) 

but not for matrices in J (B) • Then we must have F (A) > 0 and rs 2 
F (B) ~ 0 • Since v1/.k(A) is a connected subset of complex En rs 

space which contains both A and B , it follows that there exists a 
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such that F (T) = 0 • rs However, this implies 

that T is not regular, and this contradicts the already established 

fact that every matrix in J\{CA) is regular. Hence, we conclude 

· that F (B) > 0 , and (r,s) must be a pivotal position for all rs 

matrices in vt{CA) • Therefore, every matrix in ~k(A) is regular 

and has the same pivotal positions as matrices in .rJCA) . 

Now, let U "" (u .. ) 
l.J 

be an arbitrary matrix in c!V(A) • We 

define the following sequence of matrices 

Vs = (v {j') ' 
where v <;J • u r ~ S j = 1,2, ••• ,n 

rJ rj 

and ts·> 
vij = a 

ij 
i > s j ,,. 1,2, ••• ,n 

Since U is in .A/(A) , we know that v1 is in Jt{CA) , and by what 

we have already proved, it follows that v1 is regular and has the 

same pivotal positions as matrices in rJ (A) • Then v2 is in 

cA{<v1) , and v2 is regular and has the same pivotal positions as 

matrices in ,J (V1) and J (A) • Proceeding in like fashion, we con

clude that Vn is regular and has the same pivotal positions as 

matrices in ,07(vn_1 ), .J7cvn_2), ••• ,,J7(v1) and ,J(A) , and since 

Vn = U by construction, this completes the proof of the lemma. 

Now we are in a position to prove our rirst main result, which 

says that if A is regular, then the pivotal positions of the class 

;.J(A) lie along a generalized diagonal. In anticipation of future 

applications, this result will be stated in a slightly different, 

although equivalent form. 
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Theorem 1. Let A ~ ! regular matrix. ~ there exists ! permuta-

tion matrix P such that PA ~ ! regular matrix !!! ~ whose 

pivotal positions lie along ~ ~ diagonal. 

Proof: First we shall show that the pivotal positions of the 

class ~(A) lie along a generalized diagonal. For this purpose, we 

consider the matrix B • (bij) whose elements satisfy the following 

conditions for k • 1,2, ••• ,n: 

b - 0 ks 

Clearly B is in cA/ (A) 

if akt 

in the 

is the pivotal element 

kth row of A 

s = 1,2, •.. ,n s ,. £. 

Therefore, by Lemma 1.5, B must be 

regular and have the same pivotal positions as matrices in xf CA) 

However, each row of B has exactly one non-zero element, and such a 

matrix can be non-singular if and only if it is actually a generalized 

permutation matrix. . Therefore, the pivotal positions of the class 

J (B) and hence of the class J (A) lie along a generalized 

diagonal. Let Q • (qij) be that permutation matrix whose elements 

satisfy the following conditions for k • 1,2, ••• ,n 

Let -1 p .. Q • 

qkl m l if bkl f 0 

qks = 0 if bks m 0 

It is clear that PA is a regular matrix, and since 

pre-multiplication by a permutation matrix merely permutes the rows 

of a matrix, we conclude that if (r,s) is a pivotal position in A , 
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then (s,s) is a pivotal position in PA. Therefore, all the pivotal 

positions of PA lie along the main diagonal, as desired. 

. Corollarz .! . .! . If A and P are as in Theorem l, then AP is also ------- - - --
! regular matrix whose pivotal elements ~ ~ along ~ ~ 

diagonal. 

Proof: It is clear that AP is regular, and the location of the 

pivotal elements of AP follows from the fact that BP is a diagonal 

matrix, where B is the matrix defined in the proof of Theorem 1. 

Since the pivotal positions of a regular matrix A lie along a 

_generalized diagonal, it is clear that if P1 and P
2 

are permuta

tion matrices such that P1A and P2A both have all their pivotal 

positions along the main diagonal, then we must have Pl = P2 • This 

fact allows us to make the following definition. 

Definition 4. Let A be a regular matrix, and let P be that 

(unique) permutation matrix such that PA has all its pivotal 

positions along the main diagonal. Then we say that A is associated 

with P , If A is associated with I , the identity matrix, we say 

that A is a regular matrix in normal ~· 

The results of Theorem 1 and Lemma 1.5 indicate that a regular 

matrix in normal form behaves in many ways like a diagonal matrix. 

Indeed, we shall show that a regular matrix in normal form is actually 

essentially diagonally dominant, and this fact when combined with 

Theorem l gives the characterization of regular matrices which con-
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stitutes Theorem 2. The following lemma is used primarily in Theorem 2 

to provide a connection between Theorem 1 and the concept of diagonal 

dominance, but it is also a rather interesting result in itself. 

Lemma 2.1. Let A ~ !!! n x n !!£.!!-negative regular matrix~ 

normal ~' ~ ~ B • (bij) ~ !!:l matrix ~ v1/(A) ~ ~ 

bkk /' 0 .!£!: k • 1,2, •.• ,n • ~~~parts,££!!!~ eigen

values of B ~ positive. 

Proof: Let ...::\ be an eigenvalue of B , and suppose that the 

real part of A is non-positive. Write ?. as /\ • Re~ + i Im .A • 

Then for k = 1,2, ••• ,n, we have bkk - Rei\• bkk +I Re~I ~ akk 

since bkk ~ akk 

.J\/(A) since B 

and Re A ~ 0 • It follows that B - I\ I is in 

is in cA/cA) and we have for k • 1,2, ••• ,n 

Therefore, it follows from Lemma 1.5 that B - AI is regular, and we 

conclude that B - 'A I cannot be singular. This contradicts the 

assumption that I\ is an eigenvalue of B , and we conclude that the 

real part of A must be positive, as desired. I 
In a recent paper, Camion and Hoffman [l] proved that a 

matrix A is regular if .and only if there exists a permutation 

matrix P and a positive diagonal matrix D such that PAD is 

diagonally dominant. In Theorem 2, we obtain the same characterization 

as a consequence of Theorem 1 and Lemm(2.l, although in order to 

demonstrate the existence of a suitable positive diagonal matrix D , 
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we are forced to use a technique which has little in common with the 

rest of the work in this section. 

Theorem 2. Let A be an n x n !!,2!!-negative matrix. Then A is 

regular if ~ only .!£ there exists ! permutation matrix P and a 

positive diagonal matrix D such that PAD ~ diagonally dominant. 

Proof: Suppose PAD is diagonally dominant. Let B be any 

matrix in J (A) . Then PBD is diagonally dominant and must there-

fore be non-singular. Hence, B is non-singular, and since B was 

chosen arbitrarily from ~{A) , we conclude that A is regular. 

Conversely, suppose A is regular. Let P be the permutation 

matrix associated with A , and let .B • PA • We must show that B 

is essentially diagonally dominant. Let C • {cij) be the matrix 

whose elements satisfy the following conditions: 

c • -b 
ij ij 1,j. 1,2, •.. ,n 1 r j 

ckk • bkk k • 1,2, ••• ,n 

We shall first show that c-1 is a non-negative matrix, and then we 

shall use this fact to show that B is essentially diagonally 

dominant. 

Choose <5 > 0 so am.all that the matrix S .. I- er C is non-negative. 

Let p{S) be the largest non-negative real boundary point of c;{(s) • 

Then it follows from the Perron-Frobenius Theorem that p(S) is 

actually an eigenvalue of S , and we must have the following: 

0 • det { S- p(S)I ) ·• det [(I- <rC) - p{S)I] • det ( [1-p(S) J I - <rC) • 
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Consequently, (1-p(S)) 
-1 er is a real eigenvalue of C , and it 

follows from Lemma 2.1 that this eigenvalue must be positive. Since 

er is positive, we conclude that 1>p(S)~0 , and this inequality 

insures the convergence of the matrix series 2 I + S + S + • • • 

to the matrix (I-S)-1 • (~c)-1 • Since S and all its powers are 

non-negative matrices, we conclude that (~c)-1 • a-1c-1 is also non

negative, and since <1 >o .). it follows that c-1 is a non-negative 

matrix. 

Let e denote the transpose of the row vector (1,1, ••• ,1) , . 
n 

and consider the vector -1 x • C e 
n 

Since is non-negative, we 

know that x > 0 • Let D be the positive diagonal matrix such that 

Then the vector CDe is positive, and this means we have, 
n 

for i a 1,2, ••• n : 
I 

dicii - L;ci.d. > o 
u' J J 

Clearly, this is equivalent to the statement that C is essentially 

diagonally dominant, and this completes the proof of the theorem. 

Corollary 2.1. Let A be! ~-negative regular matrix, ~ ~ P 

and D be as in Theorem 2. If B ,!:! ~ matrix ~ rAI (A) , then 

PBD ,!:! ~ diagonally dominant. 

Proof: This is a simple consequence of the inequalities (2.1) , 

which arise in the definition of J1/ (A) • 

Corollary~·~· A diagonally dominant matrix ,!:! ! regular matrix in 

normal form. 



With Theorem 2, it is easy to see why the matrix 

3 2 3 

B • 2 8 3 

l 6 is 
which appeared on page 16 is regular • . Let D • diag (1, 1/2, 1/3) • 

) 

Then we have 

3 1 

~) BD • 2 4 

1 3 

Since BD is di agonally dominant, it follows from Corollary 2.2 

that B is a regular matrix in normal form. 

While the characterization of regular matrices given in Theorem 2 

provides an excellent means of constructing examples of various types 

of regular matri ces, it would be desirable for certain purposes to 

have a more tractable test for non-regularity. For example, it is 

obvious that the matrix 

is not regular, but thi s is not an immediate consequence of Theorem 2, 

and using Theorem 2 alone, it is quite difficult to see why the matrix 

l 

A • 2 

1 

2 

0 

l ~) 
is not regular. However, in Theorem 3 we obtain a necessary condition 
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for the regularity of a matrix which is usually much easier to apply 

than Theorem 2. 

Theorem J.. Let A be fill n x n non-negative, regular matrix. Then 

~ product of the pivotal elements of A is greater than the product 

of the elements of A which lie along any ~ generalized diagonal. 

Proof: Because of Theorem 1, it suffices to prove the theorem 

for regular matrices in normal form. Therefore, we assume that the 

pivotal elements of A are all diagonal elements. 

Let ( 1 ,11). (2,.lz), ••• , (n,.tn) be any generalized diagonal which 

contains at least one off-diagonal position, and let B = (bij) be 

that non-negative matrix whose elements satisfy the following con-

ditions, for k = 1,2, ••• ,n 

bkk = akk 

bk k = aklk 

bkj = 0 j = 1,2, ••• ,n j ~ k,~k 

Thus, B has non-zero elements along only the main diagonal and the 

generalized diagonal under consideration. Furthermore, B is in J1/(A) 

and is therefore a regular matrix in normal form, by Lemma 1.5 • If 

the permutation k ~.lk is not cyclic of order n , then B is red

ucible, and the theorem follows by induction, since each diagonal block 

of a block triangular regular matrix must be regular. Hence, we may 

assume that k~..lk is cyclic of order n • Suppose we have 
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Then since the generalized diagonal under consideration contains at 

least one off-diagonal position, it follows that by decreasing only 

the off-diagonal elements of B , we can construct a non-negative 

matrix ' C = (cij) which is in tl\)(B) and for which we have 

1\. .,,, 'I'\. 'n n ck.lk = n ckk = n bkk = n akk 
K"'"I ~"'I K•f K•I 

Since · k~.lk ·· is cyclic of order n, there exists a permutation matrix 

P such that 
c11 

I 
C1,t1 0 
c22 . 

c' 
n-1,~_1 

PCP' ::: 0 
I f 

cn£n cnn 

However, the matrix C cannot be regular, for we have 

-n. 11. 71. n. 

det(PCP') = n cl~k ±. n cfak = n ckk ± n ckk 
tt•I K=/ K"I K•I . 

This contradicts the fact that all matrices in A/(B) are regular, and 

we conclude that the theorem holds in all cases. 

We conclude from Theorem .3 that if the product of the elements 

along no single generalized diagonal of A exceeds the product of the 

elements along every other generalized diagonal, then A cannot be 

regular. For example, consider the following matrix: 

1 2 

A -· 2 0 

1 0 

No generalized diagonal product exceeds 2, but two different .such 

products equal 2. Thus, no single generalized diagonal product 
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of A dominates the rest, and A cannot be regular. Unfortunately, 

as one might suspect, even if this condition is satisfied, it is in 

general not enough to guarantee that a matrix be regular. For example, 

the matrix 

A • 

2 

1 

1 

1 

2 

1 

is equimodular with the singular matrix 

2 

B • -1 

1 

-1 

2 

1 

0 

1 

1 

0 

1 

1 

even though the product of the diagonal elements of A is greater than 

the product of the elements along any other generalized diagonal. 

Despite its limitations, Theorem 3 will nevertheless prove to be the 

key to all our investigation in Section IV. 

We conclude this section with several results which are interest-

ing in themselves but are isolated from th.e main body of our investi-

gations. 

Theorem 4. Let A · be ~ n x n ~-negative regular matrix in 

normal form. Let P be an n x n permutation matrix ~ ~ 

D • diag (dl'd2, • • • ,dn) · ~ ! positive diagonal matrix. Then 

PAP' , DA , AD , and DAD-1 are all regular matrices in normal 

form. 
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Proof: It is clear that each of these four product matrices is 

regular. We shall use Theorem 3 to prove they are all in normal form. 

Let (1,£1), (2,£2), ••• , (n,tn) be any generalized diagonal. 

Then the elements a
1 

, a
2 

, ... , a also lie on a generalized 
11 j2 ntn 

di 1 f PAP' • agona o .n In particular, the product of the diagonal 

elements of A equals that of PAP' , and every other product of 

elements of PAP' which lie along a generalized diagonal is equal 

to a product of elements of A which lie along a generalized diagonal. 

Therefore, since A is in normal form, it follows from Theorem 3 that 

no such generalized diagonal product of elements of PAP 1 
is as great 

as the product of the diagonal elements of PAP 1 
, and PAP' must be 

in normal form. 

Now let us consider the matrices DA • (di aij) and 

AD= (dj aij) • Let (l,i1) , (2,12) , ... , (n,in) be any generalized 

diagonal which contains at least one off-diagonal position. Then 

since A is in normal form, we have 

n n n n n n n dkak.tk - ( n dk) ( n aktk) < ( n dk) ( n akk) -ndk8 kk 
k•l k •1 k•l k•l k•l k•l 

Since (1,£1) , (2,J2) , ~··1 (n,tn) was an arbitrary generalized 

diagonal, it follows from Theorem 3 that DA is in normal form. 

Similarly, we can show that 
n n n·, aktk< n d,tk a.!k~ 

k•l ~-1 

, 
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and this allows us to conclude that AD is in normal form. Finally, 

since n-1 is also a positive diagonal matrix, it follows from what 

we have already proved that (DA)D-l • DAD-l is in normal form. I 
Theorem 5. Let A be ! ~-negative regular n x n matrix in normal 

form, ~ ~ B ~ .!! principal submatrix .£! A i.e. B is a sub-

matrix of A .!!!.£!whose diagonal elements~~ diagonal elements 

of A • Then B .!.:! ! regular matrix in normal form . 

· Proof: Let k be an integer such that l~ k 'n , and let B 

be a k x k principal submatrix of A . Then there exists a permuta-

tion matrix P such that . · 

PAP 1 
• 

where is an (n-k) x (n-k) 

~ 
A2 I ~;-

principal submatrix of A , 

and A2 are k x (n-k) and (n-k) x k submatrices of A , respect-

ively. Therefore, since A is in normal form, it follows from 

Theorem 1. that PAP' i i 1 f d th t it urf· ~ s n norma orm, an we see a s ices 

to prove the theorem for the case when B • (b •. ) 
1J 

is the submatrix 

of A whose elements satisfy bij • aij, for i,j • 1,2, •.• ,k . 

Now, let C be the n x n non-negative block diagonal matrix 

which has the following form: 
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where o1 , and o2 are k x (n-k) and (n-k) x k blocks of 

zeroes, respectively, and D .. diag (ak+l,k+l , ak+2,k+2 ' 

Then C is in cA/(A) , and it follows from Lemma 1.5 that 

... ' 
c 

a ) • nn 

is a 

regu1ar matrix in normal form. Suppose B is not regular, and let 

U be a singular matrix in .J (B). Then the singular matrix 

T .. ~1 
02 I D 

is in ~(C) , and this contradicts the fact that C is regular. 

Therefore, B must be regular. Because of the block diagonal form of 

C , it follows from Theorem 3 that the product of the diagonal 

elements of B must be greater than the product of the elements of 

B which lie along any other generalized diagonal, and B must be in 

normal form. Since k was an arbitrary integer such that l~ k~ n 

and since B was an arbitrary k x k principal submatrix of A , 

this completes the proof of the theorem. 

Theorem 6. Let A be an n x n ~-negative regular matrix, ~ 

let P .!?! ~ permutation matrix associated with A . Let B 

~ !!!l ~matrix in ~(A) ~~,!!!~pivotal elements of B 

are positive. Then we have det B > 0 . if det P • + l and d~t B < 0 

if det P .. -1 • 

Proof: Let C • PB • Since C is a regular matrix in normal 

form such that cii>O for i • 1,2, ••• ,n, it follows from Lemma 2.1 

that all the real eigenvalues of C are positive, and since C is 
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real, its complex eigenvalues occur in conjugate pairs. Hence, the 

product of the eigenvalues of C is positive, and since 
I 

B = P C , we 

must have det B • (det P 1
) (det C) > 0 if det p'>o and 

det B < 0 if det P < 0 • Since P is a permutation matrix, we have 

I 
det P • det P • + l , and we conclude that det B has the same sign 

as det P • I 
Corollary~·~· Let A ~ !!l n x n ~-negative regular matrix ~ 

normal ~' ~ let B .. (bij) ~ ~ ~ matrix ~ ~(A) .such 

~ bkk > 0 for k • 1,2, .•• ,n. !.h!m det B >0. 

Corollary~·.£· Let B a (bij) ~ ~ ~ symmetric regular matrix in 

normal form. ,!! bkk > 0 ~ k • 1,2, •.• ,n , then B ~positive 

definite . 

Proof: It follows from Theorem 5 that the principal submatrices 

of B of all orders are regular matrices in normal form. Since the 

diagonal elements of B are all positive, it follows from Corollary6.l 

that the determinant of each such principal submatrix must be positive. 

Therefore, B is positive definite, as desired. I 
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III. NORMAL GAPS IN THE EIGENVAI.UE SET OF A GENERAL COMPLEX MATRIX 

In Section II, we established a natural means of associating each 

regular matrix with a permutation matrix, and we shall use this result 

to show that each gap between .components of the eigenvalue set of a 

general complex matrix may be associated with a permutation matrix in 

a meaningful fashion. In this section we shall be mainly interested 

in gaps which are associated with the identity matrix; such gaps will 

be called normal gaps. We shall prove that the unbounded gap of every 

eigenvalue set is normal, and we shall show that certain interior gaps 

in the eigenvalue sets of special types of matrices are normal. We 

also prove that if A • (aij) is a non-negative regular matrix in 

normal form and B • (bij) is a matrix in c)}(A) such that 

lbkk I "' a kk 
for k .. 1,2, ..• ,n, then the eigenvalue set of B is 

contained in that of A • 

For several of the following results, ·it will be convenient to 

have a simple means of referring to the gaps in the eigenvalue set of 

a matrix. 

Definition 5. Let B be an n x n complex matrix, and let A be 

any non-negative number which is not in .c;?.(B) • Then we shall denote 

by G(B, 'A) the entire gap in a (B) which contains 'A • The 

unbounded gap in G{(B) will always be denoted by G( B,oo) If B 

is regular, the gap which contains the origin will always be denoted 
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by G(B,O) • If. /\
1 
~ 0 is in one gap of c;?. (B) and A.

2 
> /\

1 

is in another, .then we say that G(B, A 1 ) is the more interior of the 

two gaps and that G(B, /\ 2) is the more exterior. 

The .following diagram illustrates how Definition 5 is used in 

both the regular and non-regular cases: 

Regular Case 

G(A,oO) 

Non-Regular Case 
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Our first goal in this section is to show that each gap in the 

eigenvalue set of a general complex matrix may be associated with a 

permutation matrix. To obtain this result, we consider the following 

·set of matrices, which is closely related to a certain gap in the 

eigenvalue set of a given matrix. 

Definition 6. Let B be a complex n x n matrix, and let /\ be a 

non-negative number not in C{.(B) • Then we denote by }(' (B, ?\ ) the 

set of all matrices of the form C- 15 I , where C is a matrix in 

,S (B) and er is a non-negative number in the gap G(B, I\) • 

We shall show in Theorem 7 that all the matrices in 'J1 (B,?..) 

are regular and are associated with the same permutation matrix in 

the sense of Definition 4 , but first we must show that a non-regular 

matrix B is equimodular with a singular matrix which has the same 

diagonal elements as B • 

Lemma 7~1. Let B • (bij) .£! ! complex nxn matrix which is not --
regular. Then there exists ! singular matrix c • (cij) in JCB) 

such that ckk - bkk , for k = 1,2, ••• ,n -- -
Proof: Since B is not regular, there exists a singular matrix 

For k • 1,2, ••• ,n, let ek and ock be 

the arguments of the complex numbers ~k and bkk , respectively, 

and consider the unitary diagonal matrix : 
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Then the matrix C • UD is singular, and we have for k • 1,2, •.• , n 

• b 
kk 

· Since D is unitary, it follows that C is in t.8(B) , and this 

completes the proof of the lemma. 

Theorem 7. Let B ~.!complex n x n matrix,~ let I\ ~ ! 

positive number not in 9.(B) • ~ _!!! ~ matrices~ }f (B, I\) 

~ regular ~ ~ associated with ~ ~ permutation matrix. 

Proof: Let C- a I be an arbitrary matrix in d1 (B, I\) , where 

C is in J (B) and er is a non-negative number in the gap G(B, I\) 

Suppose C- o- I is not regular. Then there exists a singular matrix 

U = ( u1 j) in J (C- er I) , and because of Lemma 7 .1 , we may assume 

that ukk ""ckk-crI,. k = 1,2, •.. ,n. Let V = U +err. Then V is 

in ~ (B) , and since U is singular, it follows that <S is an 

eigenvalue of V • However, this contradicts the fact that <J is 

n~t in G{ (B) , and we conclude that C- cs I must be regular. · Since 

C- er I was chosen arbitrarily from df (B, /..) , it follows that every 

matrix in }f (B, I\) ls regular. 

Now we shall show that every matrix in '}{ ( B, I\ ) has the same 

pivotal positions as B- ?-. I Once again let C- er I be an arbitrary 

matrix in df (B, A) . Let k be an arbitrary index and l et (k, l) 

be the pivotal position in the kth row of B-A.I • Suppose we have 

Fkt (B- /\.I) '? 0 and Fkt(C-O"I) ~ 0. 



. . · 

36. 

Since '}f' (B, J\) 
n2 

is a connected set in complex E space which con-

tains both B- '/\I and C- d"I , it follows that there exists a 

matrix T in '}f (B, 'J...) such that Fkt (T) • 0 • However, this contra

dicts the fact that every matrix in l-f (B, '}...) is regular, and we con

clude that Fk.£ (c .. 6 I)> 0 • Since C- <SI was chosen arbitrarily from 

df (B, A.) , and since k was an arbitrary (row) index, it follows 

that every matrix in 'H (B, I\) has the same pivotal positions as 

B-~I and hence is associated with the same permutation matrix as 

B- ;i\I , and this completes the proof of the theorem. I 

The value of Theorem 1 lies in the fact that if we know A ~ 0 

is not in the eigenvalue set of a given matrix B and if we also 

know that one matrix in d{(B,I\) is associated with a certain 

permutation matrix P , then every matrix in 'd1' (B, :A) must be 

associated with P • Therefore, we make the following definition: 

Definition 7. Let B be an n x n complex matrix, and let 71. be a 

non-negative number not in C<(B) Then the pivotal positions shared 

· by all the matrices in d1 (B,?..) will be called the pivotal positions 

of the gap G(B, I\ ) • If P . .is the permutation matrix associated 

with every matrix in '}( (B, I\ ) , then we say that the gap G(B, I\) 

is associated with P A gap which is associated with the identity 

matrix will be called a normal E.!!E· 

It will be seen that normal gaps play an important part in our 

investigations. One reason for the iroportance of such gaps is found 

in the following result, which states that the unbounded gap of any 
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eigenvalue set is normal. 

·. Theorem 8. Let B be an. n x n · complex matrix. Then G(B, oo) is 

! normal~· 

Proof: Let C be the matrix in . J. (B) which has all non-

negative off-diagonal elements and all non-positive diagonal elements, 

and let ex. a 

than both C< 

max ~~ • If /\ is any positive number greater 
I ~ I< ' n j 7 K kj 

and the largest non-negative boundary point of Cl (B) , 

then C- I\ I is diagonally dominant, and it follows from Corollary 2. 2 

that C-~I is a regular matrix in normal form. Since /\ is in 

G(B, oo) , we conclude that G(B, 00 ) is a normal gap. 

Theorem 8 guarantees that at least one gap in every eigenvalue 

set is normal. In Theorem 9, we show that if a certain gap in an 

eigenvalue set is normal, then every gap exterior to this normal gap 

is also normal. In particular, every gap in the eigenvalue set of a 

regular matrix in normal form is normal. 

. Theorem 9. Let B be an n x n complex matrix, ~ let I\ ~ ! 

~-negative number~! normal gap in C{(B) . Then g J° >:A is ~ 

in .Q(B) , ~ gap G(B,p) 

Proof: Let c ... ( c .. ) 
1J 

must be normal. -----
be that matrix in ~ ( B) which has all 

non-negative off-diagonal elements and all non-positive diagonal 

elements. Since G(B,?i,) is a normal gap, it follows from Theorem 7 

that C-~I is a regular matrix in normal form. Furthermore, C-;<> I 
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is in .A/CC-/\ I) since we have for k • 1,2, ••. ,n : 

I ckk - f I = I bkk I + ,P >I ~k J + A • I ckk - Jtj • 

. Therefore, it follows from Lemma 1.5 that C-.f>I is a regular matrix 

in normal form, and we conclude from Theorem 7 that the gap G(B,,,o) 

is normal. I 

Corollary ~·!· Let B ~ ! regular matrix in normal form. Then 

every~~ C{(B) is normal. 

Proof: Since the gap G(B,O) is normal, the corollary follows 

from Theorem 8. I 

The following result is perhaps the most interesting in this 

section, for it shows, in particular, that if A • (aij) is an n x n 

non-negative essentially diagonal:cy- dominant matrix and B • (bij) is 

a non-negative matrix such that A ~ B and akk = ~k for 

k = 1,2, •.• ,n, then the eigenvalue set of B is contained in that 

of A . 

Theorem 10. Let A = (a .. ) be an n x n _non-negative matrix such 
_1J --

~ every gap ~ a (A) ~ normal, ~ ~ B IS (bij) be a complex 

matrix whose elements satisfy ~ following conditions for 

k • 1,2, ••• ,n 

I bkj I ~ akj j • 1, 2, ••• , n 

Then we have C{(A) ~ .G{(B) . 

j r k (3.1) 
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Proof: Let 7'. be any non-negative number which is not in ,C{.(A) , 

and let C m (cij) be an arbitrary matrix in ;..J (B) • Because of 

inequalities (3.1) the elements of C satisfy the following condi-

tions, for k • 1,2, ••. ,n: 

I ckj I~ akj j • 1,2, ••• ,n j r k 

I akk - Al ~ I 0 kk - I\ I 

Since every gap in Q (A) is normal, it follows that A-/\ I is a 

regular matrix in normal form. Therefore, C- ?-. I is in .Al (A- I\ I) 

and we conclude from Lemma 1. 5 that C- I\ I is regular. Hence, I\ 

cannot be an eigenvalue of C , and since C was chosen arbitrarily 

from J (B) , '/\ cannot be in Q(B) • Since /\ was any non-negative 

number not in C{(A) , we conclude that every number which is not ih 

{;(.(A) also cannot be in .Q.(B) , and this means that Q.(A) =:J Q(B) . 

Corollary 10.~. Let B a (bij) ~ ~ n x n regular matrix in 

normal ~' and ~ C be a k x k principal submatrix of B • Then 

Q(B) .:=J Q.(c) . 

Proof: Let /\ be a positive number not in .G{(B) , and let T 

be any matrix in ~(C) . To simplify notation, suppose B can be 

partitioned as follows: 

(3. 2) 
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Let S be the following n x n partitioned matrix: 

S• TI B2 

~ 
Then S is in j (B) , and it follows from Theorem 10 that S- I\ I 

is a regular matrix in normal form. Hence, it follows from Theorem 5 

that T-/\I is a regular matrix in normal form, and since T was 

chosen arbitrarily from .J'(c) , and since 7i. was any positive number 

not in Q(B) , we conclude that Q(B) ,:).Q(c) • If B is not in 

form (3.2) , then we proceed exactly as in Theorem 5. 

Corollary 1f!. _g_. Let be an n x n regular matrix ,!!! normal 

form. ~ ~ diagonal element of B is contained in G{(B) • 

Actually, using a continuity argument similar to that used in 

Theorem 0 , we can show that the eigenvalue set of any matrix in 

c./f/(B) whose diagonal elements equal those of B must have at least as 

· many components as c;((B) • This fact can be used to show that each 

component of ;;::((B) must contain at least one diagonal element of B • 

Clearly, this result is not necessarily true unless B is a regular 

matrix in normal form. 

If a non-negative matrix A has en isolated Gerschgorin disk, 

then it follows from the Gerschgorin Disk Theorem that the annulus 

formed by rotating this disk about the origin must contain at least 

one component of _c:;(_(A) • In Theorem 11, we obtain another fact 

about the eigenvalue set of a matrix with an isolated Gerschgorin disk. 
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Theorem ~l. ~ A • (aij) ~!~-negative n x n matrix. If the 

kth Gerschgorin ~ of A is isolated and at least one of the ------------
diagonal elements of A ~ ~ ~ akk , ~every gap~ ,C{(A) 

which contains numbers greater ~ akk ~ ~ normal. 

Proof: Let?-. > akk be in a gap in .c:{(A) • Let B • (bij) be 

that matrix in ;,J (A) which has all non-negative off-diagonal elements 

and all non-positive diagonal elements. We shall show that B-;;\ I 

is diagonal~ dominant. 

Let r be any index such that arr > akk and 
th 

s, such that 

Since the k Gerschgorin disk of A is isolated, we 

have 

I:' I 

arr drarj > akk + [akj 
Hk 

and 
I I 

akk - [akj > 8 + L asj (3.3) es 
J :t I< j -:/:S 

Therefore, we must have 
I I 

I brr - /\.I •arr+ J\>?: 8 rj • Lbrj 
d-T' j:;tr 

and , I 

I bss - A I .. ass +A > 8 ss + 8 kk > L 8 sj = L bsj 
j;tS jr#S 

Finally, since at least one diagonal element of A is less than akk , 

it follows from inequality (3.)) that 
I I 

I bkk -?I • akk +A > ['akj + fi. > [akj (3.4) 
J:i!K j~ K 

Therefore, B-/\I is diagonally dominant, and it follows from 

Corollary 2. 2 that B- A.I is in normal form. Hence, we conclude from 

Theorem 1 that the gap G(B, /..) must be normal, and since A was 
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any positive number not in ..G<_(A) and greater than akk , this com

pletes the proof of the theorem. ·. I 

In Theorem 11, the condition that at least one diagonal element 

of A be less than akk may be removed if we require that ~ be in 

a gap in Q (A) . which includes numbers greater than the larger of the 

two numbers 

inequality (3.4) 

I 
and L ak. , for this is enough to guarantee that 

HK J 
will hold. On the other hand, if akk is the 

smallest diagonal element of A , then it is possible for numbers 

greater than akk to lie in a gap in G{(A) which is not normal. 

For example, consider the following 2 x 2 matrix: 

Clearly A is a regular matrix associated with the permutation matrix 

, 

but both Gerschgorin disks of A are isolated, and one component of 

C{(A) must ·be contained in the disk j·zl ~ 1 . Therefore, there 

exist .. numbers greater than a
22 

• 0 which lie in the non-normal gap 

in C{(A) which is associated with P . However, we can obtain a 

result similar to Theorem 11 even if akk is the smallest diagonal 

element of A • 
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Theorem 12. Let A = (aij) ~!~-negative n x n matrix, ~ ~ 

the kth Gerschgorin ~ ~ A ~ isolated, where akk !.::! in ~ 

smallest diagonal element of A • .!.£ akk 1:!! ~ ! component of Q.(A) , 

~ every gap in Q(A) which contains numbers greater~ akk ~ 

normal. If akk ~~!gap:!.!! Q(A) , ~every gap~ Q(A) 

which!.::! exterior~~~ G(A,akk) ~ normal. 

Proof: Since the kth Gerschgorin disk of A is isolated, it 

follows that elements of only one component of .c;{(A) can be contained 

in the annulus (or disk) formed by rotating the disk 

about the origin. 

I 

I z - akk I ~ l 9 k · 
j :# K J 

lies in a component of Q (A) , it follows Therefore, if akk 

that any gap in Q(A) which contains numbers greater than akk must 
I 

also contain numbers greater than akk + ~ akj , for the greatest 
J" K 

positive boundary point of the kth Gerschgorin disk of A must lie 

in the more exterior of the gaps which bound the component of c;:l(A) 
I 

containing akk • If A is greater than akk + L: akj , then 
J #1( 

inequality (J.4) holds, and the proof that G(A,A) is normal 

follows exactly as in Theorem 11. 

Similarly, if akk is in a gap in C?..(A) , then the "next" gap 
I 

contains akk + ~ akj , and it follows as before that this gap and 
j ;/:" 

every other gap exterior to G(A,akk) must be normal. I 

We conclude this section with a result which concerns the eigen-

value set of a positive definite matrix. Although this result is 
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interesting, it is included mainly to illustrate the method by which 

the technique which we developed in Section II may be used to obtain 

results which are basically combinatorial in nature. 

Theorem 13. Let B be an n x n positive definite ~ symmetric 

matrix. Then every ~ !!! C{(B) is normal. 

Proof: We shall use induction on n . Let n s 2 • Since 

B = (bij) is positive definite, we must have b11 > 0 ; b22 > 0 ; and 
2 

b11 b22 > b12 b21 = (b12) . Therefore, B must actually be a 2 x 2 

regular matrix in normal form, and it follows from Theorem 9 that 

every gap in Q (B) is normal. 

Now, for a general n x n matrix B , let A be a positive 

number which is not in ~(B) , and let A be the non-negative matrix 

in J (B) . It follows from Theorem 7 that -A-/\ I is a regular 

matrix. Let S .. A +I\ I • We shall prove that S is in normal form. 

Consider the non-negative matrix C • (c1 j) whose elements 

satisfy the following conditions: 

if skL is the pivotal element 

in the kth row of S 

otherwise 

Then C is in cA/(S) and it follows from Lemma 1.5 that C is 

regular with the same pivotal positions as S We shall now show 

that C is reducible. 
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A matrix is irreducible if and only if its graph is strongly 

connected. However, since S is symmetric, C must be symmetric, 

arrl furthermore, C has at most n non-zero off-diagonal elements. 

· If C has less than n non-zero off-diagonal elements, it is clearly 

reducible. On the other hand, if C has exactly n non-zero off-

diagonal elements, it follows from the symmetry of C that n must 

be even, and the graph of G consists of n/2 closed paths of length 

two. Thus, for n > 2 , C must be reducible. 

Since C is reducible, there exists a permutation matrix P 

such that 

' 

where for some integer m with l~ m < n, 0 is an (n-m) x m 

block of zeroes; c2 is an m x (n-m) submatrix of C and c1 and 

c4 are m x m and (n-m) x (n-m) submatrices of C , respectively. 

Now consider the matrix U = PBP'. Partition U conformally with 

PCP'-- i.e. regard U as the partitioned matrix 

' 

have the same dimensions as 

respectively. Since B is positive definite, it follows that U is 

positive definite, and the principal submatrices u1 and U4 must 

also be positive definite. Moreover, since .G((B) • G\(U) , and since 

/\ is not in Q (B) , it follows from Corollary 10.l that "A is not 
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in either ..Qcu1) or .Q.(U4) Therefore, by the inductive 

hypothesis, /\. must be in · a normal gap in both Q (U1) and · Qcu4) 

and u1 + A I and U4 + I\ I must be regular matrices in normal form. 

· Let V be the following block diagonal n x n matrix: 

Since the matrix V + :;>.. I is in cAJ (PSP1
) , it follows that V + I\ I 

has the same pivotal positions as PSP 1
• However, since both u1 +A I 

and U4 + /\I are in normal form, it follows that V + :A I is in 

normal form, and this in turn implies that PSP' is in normal form. 

Therefore, we conclude that S is in normal form, and it follows from 

Theorem 7 that the gap G(B, I\) is normal. Since 'A was an 

arbitrary positive number not in Q (B) , we conclude that every gap 

in a (B) is normal, as desired. I 



47 • . 

IV. THE ANALOGUE OF A CONJECTURE OF VARGA AND I.EVINGER. 

In their characterization of the eigenvalue set, Varga and 

Levinger proved that at most (n+l) permutations are needed to char

acterize the eigenvalue set of a general n x n matrix A in terms of 

the minimal Gerschgorin sets of matrices related to A by these per

mutations. Furthermore, they conjectured that actually only n such 

permutations . are needed to characterize ~(A) • Although we do not 

actually obtain an analytic characterization of c,;((A) , we can still 

show that ..c;.:{(A) may be associated with at most (n+l) permutations 

in a meaningful fashion, for it follows from Theorem 0 that there 

exist at most (n+l) gaps in ~(A) , and each of these gaps is 

associated with a permutation matrix in the sense of Definition 7. 

Therefore, motivated by the analagous conjecture of Varga and Levinger, 

we make the following conjecture: 

. Conjecture 4.1. Let A be a non-negative n x n matrix. Then there 

can exist at most n different permutation matrices associated with 

gaps in Q(A) • 

In this section, we shall verify this conjecture, and in addition, 

we shall develop a new means of classifying gaps which is more refined 

than the one provided by Definition 7. It will be seen that this new 

gap classification system actually yields a certain amount of inform

ation about the components of ~(A) • 
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In constructing a proof of Conject\lre 4.1 , we shall depend 

mainly on a comparison technique which utilizes the results of 

Theorem 3 and Theorem 7. The following example illustrates this 

·technique: 

Example 4.1. 

Let A • (aij) be a general 4 x 4 non-negative matrix. Suppose 

that a certain gap in ~(A) -- say G(A, I\ ) -- is associated with the 

permutation matrix 

P• (~gg~) 
0 l 0 0 
0 0 1 0 

Then the non-negative matrix A- 'A I must be a regular matrix whose 

pivotal positions are (1,1); (2,3); (3,4); and (4,2) , and it 

follows from Theorem 3 that, among others, the following inequalities 

hold: 

I all - Al 8 23 8 34 8 42>-la22 - /\la13 8 34 a41 

1°11 - 7',1 8 23 8 34 8 42>1 8 11 -:Alla22 -.Al 8 34 a43 

Consider the following matrix: 

all al2 al3 8 14 

a21 - 0 22 a23 a24 
B IC 

8
31 a32 -

8
33 

8
34 

a41 a42 8 43 -a44 

(4.1) 
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Then B is in . J (A) , and we conclude from Theorem 7 that B- 'AI . 

is a regular matrix associated with P • Therefore, in addition to 

inequalities (4.1) , it follows from Theorem 3 that, among others, 

we have the following inequalities: 

I 8 11 - ~ I 8 23 a34 8 42 >l-8 22 - A I 8 13 8 34 8 41 

I all - A I a23 a34 a42> I all - A 11-8 22 - A I 8 34 8 43 (4.2) 

Inequalities such as (4.1) and (4.2) occur for .each and every 

gap in Q(A) • Thus, if there exists a second gap in (;{(A) which 

is not associated with P , the "difference" between this gap and 

G(A,?.) must be due to a fundamental change in the above inequalities. 

However, suppose;° i~ in a second gap in .G{(A) whose pivotal 

positions are (1,1); (2,4); (3,2); · an.d (4,3) . Then we have the 

following pair of inequalities: 

and 

These two inequalities are clearly incompatible. We shall now show 

that this dilemma results from the fact that two gaps can be associated 

with different permutation matrices onlJr if they do not have the same 

diagonal pivotal positions. 
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Theorem 14. Let A be an n x n non-negative matrix and let 

P • (pij) ~ Q • (qij) · ~permutation matrices which~ associated 

~~different~~ .Q(A) • .!,! pkk • ~k for k • 1,2, ••• ,n , 

then P • Q • 

Proof: Let /\, and /\ 2 be any positive numbers in the gaps which 

are associated with P and Q , respectively, and assume · ?\ 1 > 7'. 2. • 

Let A • ·-A - ~ I 1 . J. 

that PA
1 

and QA
2 

and let A2 • -A - AzI • It follows from Theorem 7 

are regular matrices in norrnal form, and it is 

clear that A
1 

and A2 have the same diagonal pivotal positions, 

since Pkk • qkk for k • 1,2, ••• ,n • 

Let C • (c
1
j) be the non-negative matrix whose elements satisfy 

the following conditions, for k • 1,2, ••• ,n 

ckk •a +A kk . 1 if pkk • qkk • 1 

ckk • 0 if Pkk • qkk - 0 

cks • a ks 
if (k,s) is a pivotal position 

in the kth row of either A
1 

or A2 

ckj • 0 otherwise 

It is clear that C is in A/(A1) • Since Ai ) .A 2 and since A2 
has the same diagonal pivotal positions as A

1 
, it follows that C 

is in cA'CA2 ) also. Therefore, both PC and QC are regular 

matrices in normal form, and we conclude from Theorem 1 that P • Q .I 

It is not hard to see that we could prove Conjecture 4.1 at this 
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point if we could only show that any two gaps with the same number of 

diagonal pivotal positions must be associated With the same permutation 

matrix, for no n x n matrix can have exactly (n-1) diagonal pivotal 

positions. However, this is not the case, ·as 1;he following example 

illustrates: 

Example ~·~· Consider the following 3 x 3 matrix: 

0 l 0 

A• 1 0 1 

0 5 1 

Then, using Theo.rem 2, it is easy to see that A is e regular matrix 

. associated with 

p -

0 1 0 

1 0 0 

0 0 1 

• 

Furthermore, the number 1 lies in a gap in c:{(A) which is associated 

with the permutation matrix 

1 0 0 

Q - 0 0 1 

0 1 0 

Therefore, both G(A,O) and G(A,l) have one diagonal pivotal position, 

but P and Q are not identical. 

One feature of the preceding example merits further investigation. 

Namely, in the gap G(A,O) , the (3,3) position is pivotal, and we 
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have 833 - 0 • 1 > 0 ; however, in the gap G(A,l) , where (1,1) 

is the diagonal pivotal position, we have a
11 

- 1 • -1 < 0 • 

Furthermore, if A · is a general n x n non-negative matrix, and 

·1:r (k,k) is a pivotal position for a certain gap G(A, I\) , then it 

follows from Theorem 7 that akk cannot lie in the gap G(A, .I\) , . for 

(k,k) cannot be a pivotal position of A - a I . Therefore, we con
kk 

elude that every positive number in G{A, I\) must either be strictly 

greater than, or strictly less than akk • This observation enables us 

to make the following definition: 

Definition 8. Let A be an n x n non-negative matrix, and let ~ 

be a non-negative number not in Q(A) • Let (k,k) be a pivotal 

position for the gap G(A, J..) • Then the (k,k) position will be 

called subordinate if every non-negative number in G(A, /\) is strictly 

greater than akk • If every non-negative number in G(A, .A) is 

strictly less than akk , then {k,k) · will be called !!.2!1-subordinate. 

Furthermore, the gap G(A, J..) is said to be of ~ <r,s> 

if it has r diagonal pivotal positions, exactly s of which are 

subordinate. 

For example, if A is the matrix in Example 4.2 , the gap 

G(A,O) is of type <1,0) , since A has no negative diagonal 

pivotal elements, and the gap G(A,l) is of type since 

the (1,1) . position is pivotal in this gap and we have 1 > a
11 

• O • 

Thus, at least in the precedtiig .example, we see that this new 

method of classifying gaps enables us to distinguish between two gaps 
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which have the same number of diagonal pivotal positions but are 

associated with dif'ferent permutation matrices. Actually, this 

phenomenon is quite general, for we shall show in Theorem 15 that if 

A is a non-negative matrix suoh that two gaps in C{(A) have the same 

number of subordinate diagonal pivotal positions, then these gaps must 

be associated with the same permutation matrix. However, we shall 

first prove a lemma which will enable us to use an inductive technique 

in the proof of Theorem l~. 

Lemma 15._!. Let · A ~!~-negative n x n matrix, ~~there~ 

! ~ _!!! C{(A) ~ ~ <r,s) which has (k,k) ~ ! pivotal 

position. Let Ak denote ~ (n-1) x (n-1) submatrix formed from A 

El deleting ~ kth ~ ~ kth column. ~ if (k,k) ,:!! ~

subordinate, there exists ! gap 1!! Q. (Ak) ~ ~ <r-1, ~ , and 

!!, (k,k) is subordinate, there exists ! gap.!,!! Q(Ak) of~ 

<r-1,s-l>: 

Proof: First of all, we note that it is impossible to have r • s 

. in the first case or s • 0 in the second case because of the way the 

lemma is.worded. 

We shall assume that k • n • It will be seen that this involves 

no real loss of generality but merely facilitates the construction 

used in the proof. 

Let /.\ be any positive number in the given gap in U(A) • We 

shall show that /\ is in a ·gap in Q (An) of type <z'-1, s> · if 

(n,n) is non-subordinate. and of type cQ--1,s-t> if (n,n) is 

subordinate. 
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Let B • (bij) be an arbitrary matrix in ~(An) , and let C 

be the following n x n block diagonal partitioned matrixs 

c-~ 
~ 

, 

where o1 end o2 are 1 x (n-1) and (n-1) x 1 blocks of zeroes, 

respectively. · Since (n,n) is a pivotal position for the gap G(A, ~) , 

it follows that A- I\ I is regular and that C- /\I is in J\/(A- I\ I) • 

Therefore, C- I\ I is non-singular, and ?. cannot be an eigenvalue . 

of B. Since B was chosen arbitrarily from ,](An) , we conclude 

that I\ is in a gap in C{(~) • 

Furthermore, C-.A I has the same pivotal positions as A-71 I , 

and from this we conclude that except for the (n,n) position, which 

is excluded, the diagonal pivotal position of the gap G(~,?I.) are 

either subordinate or non-subordinate according to their status in 

G(A, /\) • If (n,n) is non-subordinate in G(A, 'A) , then the gap 

G(~, 1') has the same number of subordinate positions as the gap 

G(A, 'A) , but it has one less diagonal pivotal position than G(A, "./\) , 

since (n,n) is not included. Hence, in this case, the gap G(A , I\) n 

is of type <r-1,s> Similarly, if (n,n) is subordinate, then 

G(An, A) contains one less subordinate position -- namely, (n,n) -

and one less diagonal pivotal position than the gap G(A, I\) • Hence; 

in this case, G(A , 7') 
n 

is of type <z--1,s-t> 

Now we are in a position to prove Theorem 15. 
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Theorem 15. Let A be~ n x n ~-negative matrix. ~ ~ ~ 

gaps~ Q(A) which~ the~ number of subordinate diagonal 

p ivotal positions ~ be associated ~ ~ ~ permutation matrix. 

Proof: We shall proceed by induction on n • 

For n "" 1 , the theorem is obviously true. Now assume the 

theorem holds for all matrices of order not greater than n-1 • 

Suppose there exist two gaps in .(;{,(A) which have the same number 

of subordinate diagonal pivotal positions. Let ?t 1 > 0 be in the 

more interior of these gaps and let /I. 
2 

> I\ 
1 

be in the other. 

Suppose that G (A, ?1
1

) is of type <r,s) and that G (A, .A
2

) is of 

type <t,s) • Naturally, we must have 0 ~ s ~ r,t :;:;. n , but other-

wise, s,r and t are completely arbitrary. Before proceeding to the 

main part of the proof, we shall make a few simplifying observations and 

assumptions. 

First, suppose there exists an index such that 

non-subordinate for both gaps . 

are in gaps in 

respectively. 

It follows from Lemma 15.1 
Q(A _t

1
) of types <r-1, s> and 

By the inductive hypothesis, we conclude 

that G(A,el' A
1

) and G(A,e
1

, ,/l.
2

) are both associated with the same 

permutation matrix, say Q • Then it follows that G (A, .A 1 ) and 

G (A, 11 2 ) are both associated with the permutation matrix P • (pij) , 

where P .e .l. ""' 1 and P 1
1 

"" Q • A similar argument shows that the 
I) I 

theorem holds if a diagonal pivotal position is subordinate for both 

gaps . Furthermore, if (k,k) is subordinate for G (A, .?l
1

) , then 

it is subordinate for G (A, A 2 ) , since /\l > akk implies :A2 > a kk. 

Therefore, it suffices to consider the case in which the only 

diagonal positions which are pivotal for both gaps are non-subordinate 

for the gap G (A, /\. 1 ) and subordinate for G (A, /\.2 ) • Suppose there 
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are precisely p such diagonal positions, where 0 ~ p ~ s • Clearly 

we must also have r + t - p ~ n • 

In the proof that follows, we shell need to be able to index the 

diagonal pivotal positions of both gaps, and in order to avoid confusing 

the proof with a complicated, albeit completely general indexing scheme, 

we shall make a few assumptions concerning the location of these diag-

onal pivotal positions. Since the calculations used in the proof 

involve only arithmetic inequalities among products of elements along 

certain generalized diagonals, it will be seen that this assumption 

involves no real loss of generality. Accordingly, we will assume that 

the p common diagonal pivotal positions for the two gaps are 

(1,1); (2,2); ••• ; (p,p) ; that the (r-s)-p other non-subordinate 

and s subordinate diagonal pivotal positions for the gap G(A, 7'1) 

are (p+l,p+l); ••• : (r-s,r-s) , and (r-s+l,r-s+l); ••• ; (r,r) , 

respectively; and finally that the (s-p) other subordinate and 

(t-s) non-subordinate diagonal pivotal positions for G(A, ~2 ) are 

(r+l,r+l); ••• ; (r+s-p,r+s-p) 

(r+t-p,r+t-p) , respectively. 

and (r+s-p+l,r+s-p+l); . . . . , and 

Moreover, let CX denote the product of the off-diagonal pivotal 

elements of the gap G(A, /\
1

) , and let (3 denote the product of the 

off-diagonal pivotal elements of the gap G(A, /i\
2

) If G(A, ~ 
1

) is 

normal, then let O< equal one, and similarly, if G(A, /\
2

) is normal, 

we take f3 equal one. Clearly O< and f3 are invariants of the two 

gaps and depend in no way on the choice of /\1 and Finally, 
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we shall need the following two matrices B • (b1j) and C • (c
1
j) 

whose elements satisfy the following conditions: 

i,j • 1,2, ••• ,n i" j 

i • 1,2, ••• ,r 

bii • -aii i • r+l,r+2, ••• ,n 

and 

i,~ • 1,2, ••• ,n i ,i' j 

c1i • aii i • 1,2, ••• ,p; r+l, ••• , r+t-p 

cii • ...;aii i • p+l,p+2, ••• ,r; r+t-p+l, ••• ,n 

Clearly 9oth · B and C are in rJ(A) • Furthermore, B is such that 

the product of the pivotal elements of the matrix I B- /\ 1I I is no 

greater than the product of the pivotal elements of any other matrix 

, where R is in ;J(A) • The matrix C 

has an analagous connection with the gap G(A, A2) • 

Now suppose the two gaps are not associated with the same permuta

.tion matrix. If we apply Theorem 3 to the regular matrix j B- Al I I , 
we obtain the following inequality, since the terms on the right lie on 

a generalized diagonal of I B- A.1I I : 
r P -r+t.,.p 

<Dai1 - A1l>0< ><TI1aii -J\i.1><Til-si1 -l'-11> (3 
i=I i=I i..:'t+I 

(4.3) 

In the gap G(A, A
1

) , the positions (1,1); (2,2); ••• ; (r-s,r-s) 

are non-subord'inate, and th~ positions (r-s+l,r-s+l); ••• ; (r,r) are 

subordinate. Therefore, we conclude from Definition 8 that we have 
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the following: 

i • 1,2, ••• , r-s 

and 

i • r-s+l, ••• , r 

Thus, we may rewrite inequality (4.3) as follows: 

[ C! <•u-/\1 ~[f J.~·u- 7'1>Jll.)~.~1-•u> 1 O< · > 

[Tl<•u-?>)[ft<:ii+ A1~[.rt1T811+ "1~f3· 
iat 'J l•f'+I 'J l•f-tS-.f•I ~ 

As it stands, this inequality gives us little information, but we may 

weaken it to obtain the following useful inequality: 

(4.4) 

If we apply similar arguments to the matrix j C- /\2I j , we obtain the 

following inequality: 

Following exactly the same procedure as before, we obtain the weaker 

inequality: 

(4.6) 
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Combining inequalities (4.4) and (4.6) , we obtain the inequality 

r-s 

1 l {fTaii)CX 
i = f+I 

(4. 7) 

Since all the quantities in inequality (4.7) are positive numbers, 
-p .,, 

we conclude that /\1 )>A; . However, /\2 > 1'1 by assumption, and 

since this contradiction is a logical result of the existence of 

inequalities (4.3) and (4.5) , we conclude that at least one of 

these two inequalities cannot hold. This means that the gaps must have 

exactly the same pivotal position so that the two sides of (4.3) and 

(4.5) are identical, and this is equivalent to the statement that the 

two gaps correspond to the same pennutation matrix. 

With the results of Theorem 1, we are now in a position to prove 

Conjecture 4.1. 

Theorem 16. Let A ~ ~ regular n x n ~-negative matrix ~ which 

there exist (n+l) ~ ,:!!! Q(A) • ~ ~ least~~ these gap~ 

are associated ~ ~ ~ permutation matrix. 

Proof: Suppose that no two gaps in ..c;:2(A) are associated with 

the same permutation matrix. It follows from Theorem 15 that there 

exists one and only one gap with exactly s subordinate diagonal 

pivotal positions for each a• O, 1,2, ••• ,n • However, ifs • (n-1) 

for a certain gap, then that gap must have either (n-1) or n diagonal 

pivotal positions, and since no n x n permutation matrix has (n-1) 

non-zero diagonal elements, it follows that any gap with (n-1) or 

n subordinate diagonal pivotal positions must be associated with the 
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identity. Thus, in any case at least two gaps in .G{(A) must be 

associated with the same permutation matrix. I 

.Corollary 16._!. Let A ~ .!.!! · n x n ~-negative matri.X. Then there 

can exist at most n different permutation matrices associated with 

gaps~ Q(A) • 

Proof: It is clear that (n+l) different permutation matrices 

may be needed only if there are (n+l) gaps in C{(A) , and in this 

case, it follows from Theorem 16 that at least two of the gaps in 

G{(A) must be associated with the same permutation matrix. I 

The results of Theorem 15 and 16 seem to indicate that gaps may 

be distinguished from one another by the number of subordinate diagonal 

pivotal positions which they determine. However, there is still the 

possibility that two gaps may have the same number of subordinate 

positions if they are associated with the same permutation matrix, and 

. we would like to remove this qualification if possible. We shall prove 

in Theorem 17 that two gaps which are associated with the same permuta-

tion matrix cannot have the same number of subordinate diagonal pivotal 

positions. It will be seen that the proof of this result for a general 

non-negative matrix A depends almost entirely on the fact that the 

result holds for a non~negative generalized permutation matrix. · Before 

we proceed to the proof of Theorem 17, let us analyze the eigenvalue 

set of a specific generalized permutation matrix. 
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Example 4.2. 

Consider the following matrix: 

all 0 0 0 

A .. 0 a22 0 0 

0 0 0 8 34 
0 0 8

43 
0 

1 

Suppose we have a11 > (a34 a43)2 > a22 • Then Q (A) consists of the 
1 

three circles I zl = a11 ; I z I a a22 ; and I z I • (a34 a43)2 • 

Clearly the gap G(A,O) is associated with 

(HH) 
0 0 1 0 

and is of type <2,o) . Let /\
1 

, satisfy 

Then the gap G(A, A.1) is associated with 

( ~~gg) 0 0 0 1 
0 0 1 0 

and is of type <2,1) Let ;\2 satisfy 

1-

822 < 7'1 < Cs34 a43) 2 • 

1 

all > /\.2 > (a34 a4)
2 

• 

· Then ?l2 
2 > a 34 a43 , and the gap G(A, A.2) is associated with the 

identity and is of type <(4,3). • The gap G(A,()(J) is clearly 

associated with the identity and is of type <(4,4) . 

The reasoning used in this example may be applied to any general

ized permutation matrix A to show tha~ if two gaps in C( (A) are 

associated with the same permutation matrix, then these gaps cannot 

have the same number of subordinate diagonal pivotal positions. · 
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However, before we prove this result, we shall need to define the 

concept of a cyclic matrix and to show that every generalized permuta

tion matrix can be combinatorially decomposed into a direct sum of 

cyclic submatrices. 

Definition 9. For k ? 2 , let A be a k x k non-negative general-

ized permutation matrix. Then A will be called cyclic .£! order !: 

if the permutation related to A is cyclic of length k • Alternat

ively, A is cyclic of order k if Ak is a positive diagonal matrix 

but any smaller power of A has positive off-diagonal elements. If 

A is cyclic of order k , the positive kth root of the product of 

the positive elements of A will be called the radius of A , and 

we shall denote this number by (rad A) • 

If A is cyclic of order k , the significance of the radius 

of A lies in the fact that .l2CA) consists entirely of the circle 

I z I • (rad A) • 

Lemma 17.1. Let .A .!:!! ~ n x n ~-negative generalized permutation 

matrix. Then there exists ! permutation matrix Q such that 

QAQ' - (4. 8) 
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where A
0 

~!positive diagonal submatrix .£! A and A1,A
2

, ••• , Am 

!.!!. .!,!! cyclic submatrices of A of various orders. 

Proofs This resu1t is well known and is an immediate consequence 

of the fact that a permutation may be writ.ten as the composition of 

· disjoint orbital cycles. The cycles of length one correspond to non-

zero diagonal elements of A , and the cycles of length k correspond 

to k x k submatrices of A which are cyclic of order k • 

Therefore, if A is a generalized permutation matrix, it follows 
~ 

from Lemma 17.1 that c:2CA) a l)G:{(A1) , and it is easi]Jr seen that 
l "0 

G2(A) consists of a set ·or circles. These circles fall into two 

fundamental]Jr different categories. 

Definition 10. Let A be an n x n non-negative generalized permuta-

tion matrix. If akk r 0 ~ then the circle I z I • akk will be 

called a ;e~imary com;eonent of Q(A) • If AJ, is a cyclic submatrix 

of the standard decomposition (4.8) of A given in Lemma 17.l , 

then the circle I z I • (rad A..t) will be called a cyclic component 

Lemma 17.2. Let A be an n x n ~-negative generalized permutation 

matrix, ~ ~ .!:.!£ rn _!.!! Q. (A) ~ associated ~ ~ ~ permuta

tion matrix. ~ these gaps ~ E,! separated by onzy primary compon

~ ,!!! Q(A)°. Furthermore, ~two~ cannot!!!!!~~ number 

of subordinate diagonal ;eivotal ;eositions. 
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Proofs We shall assume that A is in the block diagonal form 

(4.8) of Lemma 17 .l. Let ?i. 1 be a positive number in the more 

interior of the gaps in question, and let ?1
2 

> /1.
1 

be in the oth,er. 

Suppose the gaps are separated by a cyclic component of c;{(A) • Then 

there is a cyclic submatrix of A , say Al , such that 

?-.2 > (rad Al.) > .A1 

Since G(A, ?..1 ) and G(A, 1'2) are both associated with the same 

permutation matrix, it follows from Theorem 7 that -A- fl.1r and 

-A- A2I are regular and have the same pivotal positions. From the 

block diagonal form of A , it follows that -Al. - A 1 I and -Ai, - .?I 2I 

are also regular and have the same pivotal positions -- namely, the 

pivotal positions of G(A, .?t1 ) and G(A, A2) which lie in the sub

matrix A1 • Since Al is cyclic, it follows that -AL - 1'1 I and 

-A~ - A2I have non-zero elements along only the main diagonal and one 

other generalized diagonal, which includes no diagonal positions. 

Since Al is cyclic, each diagonal element of -A£ - "1_I is equal to 

· - /\1 , and each diagonal element of -A.l - /\ 2I is equal to - /\.2 ~ 

Suppose that A is cyclic of order k • Then the product of the 

diagonal elements of -A/, - I\ 1 I is equal to and the pro-

duct of the elements along the only other generalized diagonal of 

k 
-A.t - 1\

1 
I is equal to _:!:(rad Ai ) • Since we have 

k k 
(rad Al ) > 'A

1 
, 

it follows from Theorem 3 that the pivotal elements of -AL - .1'-
1

I are 

. the off-diagonal elements of -A_t - t..1I • On the other hand, since 
k . k 

?.. 2 :>(rad A,i) , 
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we conclude that the pivotal elements of -A1 - ~2I are the diagonal 

elements of 

A - A I - £ 1 

-AJ. - ?1.2I ' 

and -AJ., - /\
2
I 

·and, this contradicts the statement that 

have the same pivotal positions. 

Hence, we conclude that no cyclic component of (;{(A) can 

separate G(A, ~\) and G(~, 7'
2

) , . and since these two gaps were 

assumed to be distinct, they must be separated by a primary component 

of C{(A) • 

Thus, there exists a diagonal element of A , say arr , which 

satisfies 

Since ·a 
rr is the only non-zero element in the row and 

column of A , it follows that (r,r) must be a pivotal position for 

both gaps, and it is clearly subordinate for G(A, A2) and non-

. subordinate for G(A, /\
1

) • Hence, the two gaps cannot have the same 

number of · subordinate diagonal pivotal positions, and in fact, if the 

gaps are separated by exactly s primary components of (;{(A) , then 

·the gap G(A, /\.. 2) has exactly s more subordinate positions than 

G(A, ?1.1 ) • 

This result, coupled with Theorem 15, allows us to conclude that 

no two gaps in the eigenvalue set of a generalized permutation matrix 

can have the same number of subordinate diagonal pivotal positions. 

In order to prove that this result can be extended to the general 

case, we shall now establish a connection between the gaps in the 

eigenvalue set of a general matrix A and gaps in the eigenvalue sets 

of certain generalized permutation matrices which are closely related 
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to A • 

Definition 11. Let A be an n x n non-negative matrix, and let 

P = (pij) be a permutation matrix. Then we shall denote by f(p ,A) 

the set of all n x n complex matrices c m (c ) whose elements ij 

satisfy the following conditions, for k • 1,2, ••• ,n 

fomrna 17·1.· 

J ck.ti .. akt 

I ckj I :;::; akj 

Let A be an n x n 

if P,tk "" l 

if p = 0 
jk 

~-negative matrix, ~ ~ 

P "' (p .. ) ~associated~! certain gap~ .Q(A) • Let C ~ ~ 
1.J 

matrix in j(P,A) • ~~~in Q(A) which is associated with 

P is contained :!.::, ! gap in _c::{(c) which is ~ associated with P • 

Proof: Let ~ be any positive number in the given gap in .{;{(A) 

Let R .,, ( rij) be any matrix in J (C) • Let B • (bij) be the matrix 

whose entries satisfy the following conditions, fork• 1,2, ••• ,n 

bkk ""akk if pkk = l 

bkk "" -akk if pkk ""0 

bkj "' akj j ""1,2, ••• ,n j ~ k 

Then B belongs to J (A) , and it follows from Theorem 7 that B-?i I 

is a regular matrix associated with P • Furthermore, R- I\. I belongs 

to cN(B-/\ I) , since we have the following inequalities for 

k ""1,2, ••• ,n 

a +/\ ... Jb - 71J~lr -J..I 
kk kk 7 kk 

I akk-i\ I •jbkk-/\I ~ lrkk-A I 

if pkk - 0 

if pkk .. l 

Therefore, R- :A I is a regular matrix ass ociated with P • Since R 

was chosen arbitrarily from 0'Cc) and A, from G (A, I\) , it 

follows that G (A, I\ ) is contained in a gap in Q ( C) , and we 



conclude from Theorem 7 that this gap , G(C , :;\. ) , must be a.ssociated 

with P , s ince R- ?II bel ongs to 'J-{(c ,~) • 

Theorem 11.· Let A be an n x n TIQ!!_-negative matrix: . T~en no t wo 

gaps in Q(A) can have the same number of subordinate diagonal 

pivotal positions. 

Proof: Be cause of Theor em 1 5 , it suffices to prove tha t any two 

gaps in Q(A) which are associated with the same permutation matrix 

cannot have the same number of subordinate diagonal pivotal positions. 

Suppose that two ga ps in Q.(A.) are associated i1ith the s ame 

permuta tion matrix P • Le t /\1 >O be in the more interior of these 

two gaps , and l e t A ;~ > /\1 be in the other. Since G(:\ ,/\1 ) and 

G(A , ?t 2 ) are d i s joint gaps , at l east one component of Q.(A) must lie 

between t he circles z = ::\1 and z = l\;z . Le t B = ( b ij) be 

the n x n non-nee;.:i.tive generalized permutation ma trix in ~ ( P , A) - -

i. e . for k = 1, 2 , ••• , n , we have 

bkt = a1a if Ptk = 1 

bkj = 0 if Pjk = 0 

Let lX be an eigenvalue of A contained in a component of Q(A) 

which separ a tes the gaps , G(A,1-.1) and G(A , /\ 2 ) . Since :f"(P , A) is 

2 
a closed , connected subset of compl ex En space which contains both 

A and B , there exists a 11 path" in ~(P ,A) which conne cts A to B, 

and . the e i genvalues of the matrices on this pat h form continuous paths 

in t he compl ex pl ane . One of these paths contains ex a nd at l east one 

e i genvalue of 3 . Moreover, s ince Lemma 17. J informs us t hat no matrix 

in §( P,A) ca n have a compl ex number with modulus equa l t o /\1 or /\2 
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as an eigenvalue, we conclude that there must exist at least one com

ponent of Q (B) between the circles I z I • A 1 and I z I • /\ 2 • 

Furthermore, it follows from Lemma 17 .3 that ~l and /l, 
2 

both lie 

in gaps in C{(B) which are associated with P , and we conclude from 

Lemma 17 .2 that G(B, ~1) and G(B, ~2 ) cannot have the same number 

of subordinate diagonal pivotal positions. Consequently, G(A, /\.
1

) 

and G(A, ~2 ) also cannot have the same number of subordinate 

positions, and the proof of the theorem is complete. 

We can also use Lemma 17.3 to obtain a certain amount of inform

ation about the comj'.lonents of {;{(A) , but this information is useful 

only if we know which permutation matrices are associated with the 

. gaps in Q(A) • 

Theorem 18. Let A ~ ~ n x n ~-negative matrix, ~ ,!!!:; ! ~ 

~onent .£! Q {A) ~ bounded ~ ~ which ~ associated ~ ~ 

permutation matrices P ~ Q ~ ~~least~ eigenvalue.£! 

· every matrix _!!! ~ ~ t'.f{P,A) n 8(Q,A) 

given component of C<CA) • 

must be contained in the 

Proof: Let B be any matrix in J'.CP,A) n j{Q,A) • Let 

G(A, 'A) be the gap in Q (A) which bounds the given component of 

· .G{(A) and which is associated with P , and let G(A,f) be the gap 

which is associated with Q • It follows from Lemma 17.3 that the 

gap G(A, /\) is contained in the gap G(B, /\) in .Q.(B) and that 

G(B, I\) is associated with P • Similarly, the gap G(A,f') is con

tained in the gap G(B,;o) , which is associated with Q • Therefore, 



since . 61{P,A) 0 c3{Q,A) is a closed, connected subset of complex 
n2 E space which contains both A and B , it follows that G(B, ~) 

and G(B,f') must be separated by at least one component of ,.C((B) • 

Therefore, G(A, I\) and G(A,;O) must also be separated by at least 

one component of ~(B) , · and this means that at least one eigenvalue . 

of B must be contained in the given component of Q(A) • 

We conclude this. section with two results which illustrate how 

Theorem 17 may be used to determine the number and nature of the com-

ponents of certain eigenvalue sets. 

Lemma 19.1; ~ A ~ !!! n x n ~-negative matrix. If A is not 

regular, ~ ~ gap ,!.!! (;{(A) must have at least one diagonal ----- - - - ------
pivotal position. l!, A !:! regular, ~ only. ~ gap G(A,O) ~ 

~ ~ diagonal pivotal positions. 

Proof: Suppose A is not regular. Let I\ be a positive number 

in a gap in c;:?. (A) which has no diagonal pivotal positions. Then A 

is in cJ\/(-A- i I) , and this contradicts the fact that · A . is not 

· regular. 

Similarly, if A is regular, then if G(A,O) has no diagonal 

pivotal positions, it follows from Theorem 17 that every other gap 

in Q(A) must have at least one diagonal pivotal position. If 

G(A,O) has at least one diagonal pivotal position, we conclude from 

a simple application of Theorem 3 that it is impossible for any gap 

~ Q(A) to have no diagonal pivotal positions. 
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Theor em 19. Let be an 

that akk::: 0 for k :::i 1,2, .... ,n. 

(n-1) components. 

n x n ~-negative matrix such 

Then {)_(A) can have at most 

Proof: Since all the diagonal elements of A are equal to zero, 

it follows that all the diagonal pivotal positions of each gap in 

Q (A) are subordinate. 

If A is regular, then G(A,O) has no diagonal pivotal posi

tions, and it follows from Theorem 17 that no two gaps in (;{(A) can 

have the same number of subordinate diagonal pivotal positions. There-

fore, in the worst possible case, there can exist one and only one gap 

of type '('s,s)> , for s u 0,1,2, ••• ,(n-2),n , since no gap can have 

exactly (n-1) diagonal pivotal positions. Hence, if A is regular, 

there can be at most n gaps in ..G{(A) , and this is equivalent to 

the statement that {;2(A) has at most (n-1) components . 

If A is not regular, then it follows from Lemma 19.1 that each 

gap in {;{(A) must have at least one diagonal pivotal position. Hence, 

t here can only be gaps of type <s, s) for s • 1, 2, ••• , (n-2), n , and 

it follows that J;;2(A) can have at most (n-1) gaps. Therefore, since 

A is not regular, .(;{_(A) can have no more than (n-1) components. I 
Lemma 20.1. Let A be an n x n ~-negative matrix . Then G(A, O<J) 

Proof: Since G(A,oo) is associated with the identity, it has 

n diagonal pivotal positions, all of which must be subordinate, since 

G(A,oo) is unbounded. Hence, G(A,OO) is of type <n,n) 
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Theorem 20. Let nxn matrix all of whose entries are ------
is the disk lzl::;n. 

Proof: Let /\ be a positive number which is not in Q(Jn) 

Then we conclude from Theorem 7 and the symmetry of J that n -J -/\I n 

must be in normal form. Furthermore, J - /\I must also be a regular n 

matrix in normal form, and it foll~as from Theorem 3 that /\ > 1 

since the product of the elements of Jn-~I which lie along any 

generalized diagonal that includes no diagonal positions is equal to 

' 

one. Since all the diagonal elements of Jn are equal to one, it 

follows that all the diagonal pivotal positions of G(A, /\) are sub-

ordinate, and G(A, I\) must be of type <n,n) We conclude from 

Lemma 20.1 and Theorem 17 that the only gap in Q(A) is G(A,oo) 

Furthermore, it is clear that n is an eigenvalue of Jn , and 

if o- is any number greater than n , then -J - er I is diagonally n 

dominant and hence, a regular matrix in normal form. Consequently, n 

must be the only positive boundary point of r:;;{_(Jn) , and we conclude 

I z l:::; n • 
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V. BOUNDARY PROPERI'IES OF NORMAL GAPS. 

It follows from the Perron-Frobenius Theorem that the largest non

. negative boundary point of the eigenvalue set of a non-negative matrix 

A is actually an eigenvalue of A • Since it is possible for ~(A) 

to have as many as 2n non-negative boundary points, it is unrealistic 

to expect that every non-negative boundary point of ,G<.(A) will be an 

eigenvalue of A • However, we shall prove in this section that the 

positive boundary points of a normal gap are actually eigenvalues of 

certain ~ matrices equimodular with A • In particular, if A is 

a regular matrix in normal form, then every real boundary point of 

C{(A) is an eigenvalue of a real matrix equimodular with A • We 

shall also show that if A is an irreducible regular matrix in normal 

form, then the diagonal elements · of A are all interior points of 

G{(A) , and it will be seen that this in turn implies that no compon

ent of U(A) can be a circle. 

In order to prove that the real boundary· points of a normal gap 

in Q.(A) are actually eigenvalues of real matrices in ~(A) , we 

proceed along lines which are basically analagous to the method used 

in the proof of Theorem 1. However, certain continuity arguments must 

be altered to take into account the fact that the set of all real 
2 

matrices equimodular with A is not a connected subset of real En 

space. We begin with a definition. 
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Definition 12. Let B • (bij) be an n x n real matrix. Then by 

J10 (B) we shall denote the set of all real matrices C • (c1j) in 

J'(B) whose diagonal elements satisfy c11 • bii , for i • 1,2, ••• ,n. 

We shall call B ~-regular if every matrix in ~0(B) is non

singular. 

We say that B is in norma.l ~ if for every matrix C in 

.J'0 (B) we have Fkk(C) > 0 , for k • 1,2, ••• ,n • 

Lemma 21.1. Let B be an n x n real matrix. If there exists an 

index k such that for every matrix C in _J (B) , 
- . 0 

then B ~ ~-regular. 

Proof: If C is a singular matrix, then Fkk(C) ~ 0 • Hence, 

contains no singular matrices, and it follows that ;.J (B) is 
. 0 

semi-regular. 

Lemma 21.2. Let B be an n x n real matrix. If there exists a 

matrix C in and an index then 

B ~ ~ ~-regular. 

Proof: Let C be a matrix in ..J'
0

(B) such that Fkk(C) • 0 • 

Then we have 
I 

l ckk I I (,;kl< I • L I 0 kj I I C kj I • ~ ckk (: kk 
j :F k 

As in Lemma 1.3 we can use this equality to construct a singular 

matrix T • (tij) which is in ;J'
0

(B) and which differs from C only 

in the off-diagonal elements of the kth row. Since .,)
0

(B) contains 
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a singular matrix, it follows that B cannot be semi-regular. 

Definition 13. Let B • (bij) be an n x n real matrix. Then we 

shall denote by ~(B) the set· of all real matrices C • (cij) whose 

elements satisfy the following conditions for k • 1,2, ••• ,n : 

j • 1,2, • •• ,n j " k 

In the proof of Theorem 21, we shall show that s boundary point 

of a normal gap in the eigenvalue set of s non-negative matrix A must 

actually be an eigenvalue of a matrix in ~(A) • We shall now prove 

two lemmas which will enable us to use this fact to prove that such a 

boundary point must be an eigenvalue of a matrix in .;.J (A) • 
0 

Lemma 21.3. Let B be an n x n ~-regular matrix in normal form. 

Then every matrix .!!: ~ (B) ~ ~ ~-regular ~ _!!: normal ~· 

Proof: The proof of this lemma is entirely analagous to the 

.proof of Lemma 1.5. Therefore, we shall demonstrate the validity of 

the lemma for those matrices in ~(B) which differ from B only in 

the elements of a single row. The general result is obtained by using 

a recursive argument analagous to that employed in Lemma 1.5. 

Accordingly, for an index k , which will remain fixed throughout 

the proof, we denote by cAtlk(B) the set of all real matrices 

U • (uij) whose elements satisfy the following inequalities: 

~ - bkk 

I ukj I ~ I bkj I 
uij • bij 

j •1,2, ••• ,n 

l,j •1,2, ••• ,n 

j r k 

i " k 

(5.1) 
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Let C be any element of ~(B) • We shall show that C is a 

semi-regular matrix in normal form. Let T "' (t1 ) be any matrix in 

and let V • (v1j) be the corresponding matrix in .J (B) • 
0 

By this we mean that V is in J
0

(B) ; that vkj has the same sign 

as tkj for j • 1,2, ••• ,n ; and that vij • tij for 1,j .. 1,2, ••• ,n 

and i r k • 

Then Fkk(V) > 0 , since B is in normal form. 

(/ kj • ~j for j .. 1,2, ••• ,n , the fact that T 

Since we have 

is in ,J (C) 
0 

together with inequalities (5.1) allow us to conclude that 

Fkk(T) > 0 , also. Since T was chosen arbitrarily from xf 0(c) , it 

follows from Lemma 21.1 that C is semi-regular, and since C was 

chosen arbitrarily from ~(B) we conclude that every matrix in~k(B) 

is semi-regular. 

Now, suppose for some index m r k , we have F (T) ~ 0 • Let 
mm 

cfaf,k(V) denote the set of all real matrices R • (rij) whose elements 

satisfy the following conditions: 

r • v 
ij ij 

j • 1,2, ••• ,n 

i,j • 1,2, ••• ,n 
j " k 

i" k 

Since B is in normal form, it follows that F (V) > 0 , and since 
mm 

c/11,k(V) is a connected subset of real En
2 

space which contains both 

V and T , we conclude that there exists a matrix R in ~(V) such 

that Fmm(R) • 0 • However, it follows from Lemma 21.2 that R can

not be semi-regular, and since R is equimodular with a matrix in 

vt\,k(B) , this contradicts the already established fact that every 
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matrix in ~(B) is semi-regular. Hence, we conclude that Fmm(T) > 0 

for m • 1,2, ••• ,n, and since T was chosen arbitrarily from ,,J
0
(c), 

it follows that C is in normal form. I 

Lemma 21.4. Let A ~ !!! n x n ~-negative matrix, ~ ~ Cf be 

! ~-negative boundary point .£!!normal gap~ Q(A) • If A- 11 I 

is semi-regular, then it is in normal form. -- ----
Proof: We shall assume that <J is a non-negative right boundary 

point of a normal gap in .C2(A) • By this, we mean that points 

slightly smaller than <S are not in Q (A) • The proof for non-

negative left boundary points is entirely analagous to the one given 

here. 

Let .A be a positive number in the gap for which o- is a bound

ary point, and let B be any matrix in xf 
0 

(A- <J' I) • Then B r: C- er' I , 

where C is a matrix in ;J 
0 

(A) • Let p be any number in the open 

interval ( /I, o-) Then p is in G(A, I\) , and it follows from 

Theorem 7 that A-;or is a regular matrix in normal form, since 

G(A, ~) is a normal gap. Hence, we must have Fkk(A-j> I) > 0 , for 

k • 1,2, ••• ,n • Since for each fixed k , Fkk(A-j'I) is a continuous 

function of the elements of its argument, A-fI, it follows that it is 

a continuous function of f' , and we conclude that Fkk(A- er I) ~ 0 , 

for k • 1,2, ••• ,n • Furthermore, since A- <J'I is assumed to be semi-

regular, it follows from Lemma 21.2 that we must have strict inequality 

for each index k Therefore, A- tr I is in normal form, as desired. I 
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Theorem 21. Let A ~ ~ n x n ~-negative matrix, ~ ~ (5 be 

! ~-negative boundary point ~ .! normal gap .~ Q.(A) • Then i:7" is 

~ eigenvalue ~ .! matrix ~ ,J 
0 

(A) • 

Proof: First we shall show that the matrix A- rs I cannot be 

regular. Suppose thet A- er I is regular. Then A- CT I is certainly 

semi-regular, and it follows from Lemme 21.u and Theorem 7 that 

A- O" I is a ·regular matrix in normal form. If B is any matrix in 

.J (A) , then B- ~ I is in ~(A- ~ I) • Hence, no lll8trix in J (A) 

can have (J" as an eigenvalue, and this contradicts the fact that er 

is in .cl (A) • Consequently, we conclude that A- u I is not regular• 

Since A- err is not regular, it follows that er is an eigenvalue 

of a matrix C • (c .. ) in .r.J(A) whose diagonal elements are all 
1.J 

non-negative. Let y · be the eigenvector associated with <r , where 

. . . , i0n I Yn I e ) ' say • Let 

D • diag ( d1, d2, ••• , ~ ) be the unitary diagonal matrix whose 

diagonal elements satisfy the following conditions: 

cik ... ei0.k if yk r 0 

~ • l if yk .. 0 • 

Then -1 
x • D y is a real vector, and since Cy ""f1' y ' we have 

n-1cnx • C1x • Let T ... n-l C D • Then T is in ,J (A) ; the diagon-

al elements of T satisfy tkk • akk , for k • 1,2, ••• ,n ; and T 

has er as an eigenvalue associated with the real eigenvector x • 

Let T • T + iT· 
l 2 ' 

where T
1 

and T
2 

are real matrices. 
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Then we have 

and since O' x is real, we must have T
1

x • er x and T
2

x • 0 • 

Therefore, the matrix T
1 

- er. I is not semi-regular • . Furthermore 

since T has the same diagonal elements as A , we conclude that T1 

is in ~(A) , and T
1 

- 5 I is in ~(A- <JI) • Hence, it follows 

from Lemma 21.3 that A- <r I cannot be a semi-regular matrix in 

normal form, and we conclude from Lemma 21.4 that A- a I cannot even 

be semi-regular~ Therefore, there must be a singular matrix in 

,0
0

(A- CT I) , and this is equivalent to the statement that 6 is an 

eigenvalue of a matrix in J
0 

(A) • I 

Corollary 3.!·1: .£ B is .! regular matrix in normal form, ~ every 

~ boundary point 2! .c;((B) .!!!, .!!! eigenvalue ~ .! ~ matrix 

equimodular ~ B 

Corollary ~·3.· ~· B ~ .! positive definite, ~ symmetric matrix. 

~every~ boundary point .2£ Q(B) ~.!!!eigenvalue.£!.!~ 

matrix equimodular ~ B • 

Using Theorem 21, we can also obtain· a result which is similar 

to the Perron-Frobenius Theorem, but considerab1y weaker. 

Theorem 22. Let A ~ ~ n x n ~-negative matrix. ~ ~ 

largest ~-negative boundary point .£! Q (A) ,!! .!.!! eigenvalue .2£ .! 
matrix~ ;J

0
(A) • Furthermore, .!!, B ~!~-negative matrix~ 

that B ? A , ~ .!.!:! largest ~-negative boundary point .£! Q. (B) 
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is at least as large as that of C((A) • _...... - ---
Proof: Since G(A,oo) is a normal gap, it follows from 

Theorem 21 that the non-negative boundary point of G(A, oo ) is an 

eigenvalue of a matrix in ;J
0

(A) • 

Now, let A be any positive number in G(B, 00) • Since G(B, oo) 

is a gap of type < n,n > and since B ~A , it follows that all the 

diagonal elements of both A and B are less than ?.. • Let 

C .,. (c
1
j) be any matrix in J (A) • Then we have the following 

inequalities, for k • 1,2, ••• ,n : 

Therefore, C- ~ I is in cA/(B- /\ I) , and C - /.. I must be a 

regular matrix in normal form. Therefore, A is in a gap in Q (A) , 

and since }.. was chosen arbitrarily from G(B,00) , it follows that 

G(A, oo) is conta.ined in G(B, 00) , as desired. I 

Unfortunate~, the method used to prove Theorem 21 is non-

constructive, and even though we can · say that the largest non-negative 

boundary point of the eigenvalue set of a non-negative matrix A is an 

eigenvalue of a matrix in ;J
0

(A) , we cannot prove that this point is 

an eigenvalue of A • Furthermore, if A is irreducible, we cannot 

prove that B ~ A implies that the spectral radius of B is greater 

than that of A , and although it is possible to show that the eigen-

vector which is associated with the largest non-negative boundary 

point of G{.(A) is non-negative, we cannot prove that if A is 

irreducible, then this eigenvector is positive. 
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In fact, the concept of irreducibility rarely fits into our 

investigations, for if A is a reducible matrix, then there exists 

an irreducible matrix B such that the boundary points of Q (B) are 

. arbitrarily close to those of Q_ (A) and the gaps in Q (B) are of 

the same type as the corresponding gaps in kf (A) • Thus, the eigen-

value sets of A and B are practically indistinguishable by the 

methods we employ. However, our final result shows that this is not 

altogether true, for we are able to prove that the diagonal elements 

of an irreducible regular matrix in normal form are actually interior 

points of its eigenvalue set. 

Theorem 23. Let A ~ ~ n x n ~-negative, irreducible, regular 

matrix in normal form. Then every diagonal element of A ~ .!ill inter

.!££ point £! Q. (A) • 

Proof: It follows from Corollary 10.2 that every diagonal 

element of A is in. C<(A) • We shell prove that no diagonal element 

·of A can be a boundary point of C2 (A) • To simplify the proof, we 

shall show that, in particular, all cannot be a boundary point of 

C{.(A) • . We shall use induction on n • 

For n = 2 , the fact that A is irreducible means that 

a12 a21 F 0 • Hence, A-a11r must be regular, and it follows from . 

Theorem 21 that a
11 

cannot be a boundary point of _G( (A) • . 

Now, in the general case, since A . is irreducible, the graph 

of A must be strongly connected. Hence, there must be a closed path 

in the graph of A which includes node #1 • By paring off super-
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fluous circuits of this closed .path, it is possible to obtain a closed 

subpath which includes node #1 and which passes through no node more 

than once. This means there exists a sequence of, say, m Q n no.n-

·zero off-diagonal terms in A which lie along a generalized diagonal 

of an m x m principal submatrix of A that contains a11 • If 

m < n , it follows that there exists an irreducible principal sub-

matrix of A which contains a11 • In this case, we conclude from 

the inductive hypothesis that a11 is an interior point of the eigen

value set of this principal submatrix, and the theorem follows from 

Corollary 10.1 • 

If m • n , then the n non-zero off-diagonal elements must lie 

along a generalized diagonal which is cyclic of order n • Hence, 

there is no loss of generality in assuming that these elements are 

a12;a23 ; ••• ; an-l,n; anl • Let C • (c1j) be the matrix whose 

elements satisfy the following conditions: 

ckk • akk 

ck,k+l • 8k,k+l 

k • 1,2, ••• , n 

k • 1,2, ••• , n-1 

otherwise 

Then C is in )J(A) , and it follows from Corollary 10.2 that 

a11 is in ..G'<Cc) • Let B be an arbitrary matrix in ..r.J0 (c-a11r) • 

Then we have 
n-1 

det B • + anl "f"-r ak k+l 
k•l ' 

• 

It follows that C-a
11

I is semi~regular, and we conclude from Theorem 21 
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that 8
11 

cannot be a boundary point of Qcc) . Therefore, a 
11 

must be an interior point of _.C:((c) , and it follows from Theorem 10 

that all must also be an interior point of ,C{(A) • 

Corollary 23.l. Let A be an n x n ~-negative, irreducible, 

regular matrix in normal form. ~ ~ component £! {).(A) can be a ---
circle. 

Proof: Let D • diag (a
11

, a
22

, ••• , ann) • Since every gap in 

G{(A) is normal, it follows from Theorem 18 that an eigenvalue of D 

is contained in every component of .c;?(A) • In particular, this means 

that a circular component of .kf2(A) would have to contain a diagonal 

element of A , and this is impossible since every diagonal element of 

A is an interior point of .(;2(A) • Hence, no component of ~(A) can 

be a circle. 
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VI. SUMMARY. 

In this section, we shall summarize the results of the preceding 

sections and make a few conjectures about possible future developments. 

Now that we have completed our investigations, we can say the 

following about the structure of the eigenvalue set of a general n x n 

non-negative matrix A : 

1. The set .(;{(A) consists of k ~ n closed annuli, each of 

which is centered at the origin. One of these annuli is a 

disk if ;cf (A) contains a singular matrix. (Theorem 0) • 

2. Each gap in Q(A) may be regarded as a class of regular 

matrices, each of which is associated with the same permuta

tion matrix. Thus, each gap in Q(A) may be associated 

wi.th a permutation in a natural fashion. (Theorem 7) • 

3. The unbounded gap, G(A,oo) is always associated with the 

identity permutation. (Theorem 8) • 

4. There exist m ~ n permutations, ~l' cp
2

, ••• , <pm, 

such that each gap in {;{(A) is associated with one of 

cp1 'f.2 ••• , Cf • This is true even if Q(A) has (n+l) 
' , m 

gaps. Hence, we say that .G{(A) is associated wi.th the 

permutations <f>i, f2, ••• , <f'm • (Theorem 16) • 
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5. Let Pk denote the permutation matrix related to cpk , 

for k c 1,2, ••• , n • Then (;{(A) can be characterized 

as the complement of the set of all complex numbers z such 

that for each matrix B in sJ(A) , there exists a permuta

tion, say <pk , and a positive diagonal matrix D such 

that the matrix Pk(B- I z I I)D is diagonally dominant. 

(Theorem 2 and Theorem 7) • 

It is clearly not feasible to compute .G{(A) from the above 

characterization. Instead, we use tools such as Theorem 3 in conjunc

tion with Theorem 7 to determine key points in the gaps in .G{(A) , 

and once we have determined the number of gaps and the permutation 

matrix with which each is associated, we can use Theorem 18 to con

struct points in the components of {;;(. (A) • To illustrate this tech-

nique, we shall analyze the eigenvalue set of a specific matrix. 

Example ~·.!· 

Consider the following matrix t 

16 0 1/16 0 

A .. 
0 0 . . 1 0 

1/32 0 0 1 

0 l 9 2 

Because of the structure of A , it follows from Theorem l that any 
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gap in ,C{(A) must be associated with one of the following permutation 

matrices : 

(

1000) p. 0001 
1 0 1 0 0 

0 0 l 0 

(

0 0 l 0 
p. 0100 
3 1 0 0 0 

0 0 0 l 

P2 -(~~gg) 
0 0 0 1 
0 0 1 0 

I • 
l 0 0 0) 
0 l 0 0 
0 0 1 0 
0 0 0 l 

Since 1/16 and 1/32 are small relative to the other numbers in A , 

we eliminate P
3 

from consideration and we shall assume that any gap 

in Q (A) is associated with P1 ,P2, or I • 

First of all, we observe that A must be regular since the sub

matrix formed from A by deleting the 1st row and 1st coluTllil is 

regular, and the minor of the (1,3) position is zero for all matrices 

in sJ(A) • Since no product of elements of A which lie along 

generalized diagonal exceeds 16 , it follows from Theorem 3 that the 

is associated with P
1 

• Since G(A,O) is of type . gap G(A,O) 

<1,0) , any other gap in Q.(A) must have at least one subordinate 

diagonal pivotal position. If C{(A) has a gap of type ('1,1) , 
then this gap must have (1,1) as a pivotal position, since any gap 

which includes numbers greater than 16 is clearly normal. Since 

(l,l) is the sole diagonal pivotal position of only P
1 

, it follows 

that any gap of type <:1,1")- must be associated with P
1 

• If a 

gap is associated with P2 , then every gap in {;{(A) which is more 

exterior than this gap must be normal, since any such gap must have at 

least two subordinate diagonal pivotal positions. 
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Now we shall determine whether each diagonal element of A is 

in Q. (A) or in a gap in . Q.(A) • Clearly, the zero diagonal elements 

of A are in the gap G(A,O) • The number 2 cannot be in a gap in 

·which (2,2) i~ pivotal. Hence, if 2 is not in Q.(A) , it must 

be in a gap associated with P
1 

or P
2 

• We observe that the product 

of the elements of A-2I which lie along the generalized diagonal 

(1,1); (2,2); (3,4); (4,3) is greater than the product of elements 

along (1,1); (2,3); (3,4); (4,2) • Hence, if 2 is in a gap, it 

follows from Theorem 3 and Theorem 7 that this gap must be assoc-

iated with P2 • Let D • diag (1, 9/16, 1, 33/16) • Then if B is 

any matrix in xJ (A) , the matrix P2 (B-2I)D is diagonally dominant. 

Hence, it follows from Theorem 2 and Theorem 7 that 2 is in a 

gap in _c{(A) 

type <2,1) 

which is associated with P2 , and this gap must be of 

• On the other hand, the number 16 cannot be in a 

gap in .GtCA) since (1,1) must be a pivotal position of every gap 

in Q(A) • Moreover, if B is any matrix in 0 (A) , then it is 

· clear that B-11.JT is diagonally dominant. Hence, it follows that 14 

is in a normal gap in C{(A) of type <4,3) 

that there are four gaps in Q(A) : 

Thus, we conclude 

G(A,O) 
' 

which is associated with pl and is of type <1,0) ; 

G(A,2) , which is associated with p2 and is of type <2,1) ; 

G(A,14) , which is associated with I and is of type <4,3) ; 

G(A,00) , which is associated with I and is of type <4,4) 

Now we shall determine a few key points in Q(A) • First of all, 

it follo'Ws from Theorem 18 that the component of ..G<(A) which is 
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bo.unded by G(A,O) and G(A,2) contains at least one component of 

C{(c1) , where c1 is the following matrix 

16 0 0 0 
0 0 1 0 

cl • 0 0 0 1 
0 1 9 0 

Thus, this first component contains only one eigenvalue of every matrix 

in sJ(A) , since this property holds for matrices in ~(c1) , arid 

the smallest boundary point of Q(A) is no greater than 1/8 • 

Similarly, the largest positive boundary point of this component is 

somewhat less than 1/2 • The second component of .Q.(A) is bounded 

by G(A,2) and G(A,14) , 

Qcc2) ' where 

and contains at least one component of 

16 0 0 0 

0 0 1 0 
c -2 0 0 0 1 

0 1 -9 2 

The characteristic polynomial of c2 is (x-16)(x3-2x2+9x-l) • This 

polynomial has a pair of complex roots whose modulus is approximately 

3 • Therefore, the second component of c;{(A) contains two eigen

values of every matrix in sJ (A) , and contains numbers at least as 

small as 3. In addition· to a component of .G{(c2) , this second 

component of .Q(A) must . contain a component of .Q(c
3

) , where 

16 0 0 0 

0 0 0 0 

CJ • 0 0 0 1 

0 0 9 2 
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Since the only two eigenvalues of c3 which can be in the second 

component of (A) are 1 + ./iO and 1 - -fiO , and since 2 is 

in G(A,2), we conclude that the smallest positive boundary point 

of ,C2(A) must be slightly larger than 2 • Further examination shows 

that the largest positive boundary point of this gap is slightly less 

than 5 • Finally, the last component of Q(A) contains 16, and 

its two positive boundary points are both approxiroa.tely equal to 16. 

Hence, ~(A) is closely approximated by the union of the following 

three annuli: 

31 /2 ~I z \ < JJ/2 

The results we have obtained answer only part of the questions 

raised in the introductory section. Actually, we believe that much 

more can be said about Q(A). In fact, we conjecture that the 

Perron-Frobenius Theorem is a special case of a more general property 

of the set Q(A) which may be stated as :follows: 

Conjecture 6.1. Let A be fill irreducible, !!Q!l-negative, n x n 

matrix, and let er> 0 be g_ boundary point of G{(A) • Then <:r is fill 

eigenvalue of §!. certain real matrix B in J (A) , and @:.matrix C 

eguimodular with A has fil!. eigenvalue of modulus <J' if and only if 

C = eieDBD-1 , where D is §!. unitary diagonal matrix. 

We also conjecture that it is possible to describe the matrix B 

of Conjecture 6.1 explicitly, in terms of the pivotal positions of the 

gap for which it is a boundary point. 
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Conjecture 6.2. Let G(A,/\) be §:.!@Qin Q(A). Then the matrix B 

of Con,jecture 6.1 may be described ~follows, for k = 1,2, ••• ,n 

~) If (k,k) is a subordinate pivotal position in G(A, 71.), then 

bl . CJ = akj j = 1,2, ••• ,n 

£) If (k1k) i2. a non-subordinate pivotal position in G(A,/\), 

£) 

bkk = akk 

bkj = •akj j = 1,2, ••• ,n j :/: k 

If (k, l ) with ,l :f k is ~pivotal :12osition in the 

. !:Qli ID G (A • /\ ) ' !:h.fil!. 

bk.t = ak.l 

bkj = -akj j = 1 , 2, ••• ,n j :/:L 

kt.h 

Moreover, we further conjecture that Theorem 17 may be extended 

in the following sense : 

Conjecture 6.3. Let G(A,7\) and G(A,µ) be K,Cll2.2.in (A) §.ill!. 

suooose that fA > /\ > 0 • Then G(A, f') has ~ subordinate dia gonal 

pivotal oositions than G(A, ?t) • 

It appears that a more systematic approach to the study of {;'{(A) 

is possible if we regard this study as a s pecial case of a more 

general problem. Before we can be more specific, we shall require the 

following definition: 

Definition: Let A and B be non-negative, n x n matrices. Then the 

pair (A,B) is said to be bi-regular if det(R+S) :f 0 for all matrices R 

in J(A) and S in J (B) • 
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The motivation for this definition is provided by Theorem ?, for 

if ?. is not in Q(A) , then the pair (A, /\I) is bi-regular. By 

regarding the set c;{(A) in terms of bi-regularity, it is possible to 

construct a unified theory in which the intrinsic properties of Q(A) 

are made evident. Specifically, it can be shown that the open set of 

all n x n regular matrices has nl components, each of which contains 

a permutation matriX. A similar result holds for the set of all bi

regular matrices of a given order. In particular, it can be shOim 

that each component of this set contains a bi-regular "splitting" 

of the form (P,Q), where P~ is a permutation matrix. If B = O, 

then (A,B) is bi-regular if and only if A is regular, and in this 

case, the corresponding splitting has Q = 0, and P is a permutation 

matrix. This is equivalent to Theorem 1. I.f B =/\I , where 71. i s 

not inc:{.(A) , then the corresponding splitting is closely related to 

the subordinate and non-subordinate diagonal pivotal positions of the 

gap G(A,/\) • This technique not only promises to yield interesting 

results concerning C{(A), but also suggests that the study of what 

could be called multi-regular sets o.f matrices might be profitable. 
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