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1 J zM (z) dz 
0 m 

2 
i 

2 
c

3
z 

m J zM (z)e dz 
0 m 

e 
-v s 

m (2. 26) 

on changing the order of integration and summation in Eq. A. 44. The 

justification for this step rests on the validity of the corresponding 

step for the undamped case and the description in the next section of 

the reduction of Eqs. A. 26 and A. 36 to the undamped Eqs. 2.16 and 

A. 5, on letting the damping fraction, n, tend to zero. 
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C. Reduction to the undamped equations. 

The eigenvalues, v , in the damped case are given by the 
m 

roots of Eq. A. 37, as the first parameter, 1 - v /2nw , is varied. , m o 

These roots are negative as indicated in Fig. A .1. Hence the 

eigenvalues can be obtained from the positive roots of Eq. A. 36: 

Defining 

v· 
-m 

a= 2nw 
0 

it is possible to write the constant c 3 as 

{A. 36) 

(A. 45) 

{A. 46) 

Hence the eigenvalue equation for the undamped case is given from 

Eq. A. 36 by 

lim M ( 2:: ,1,-c3),. = 0 
.n-·O o 

{A. 47) 

i.e. 

(A. 48) 

. (23) i.e. 

{A. 49) 

i.e. 

J (>,. )=O 
o m (A. 50) 
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Therefore the zeros of the confluent hypergeometric function reduce 

correctly to the zeros of J 
0 

as n - 0. 

In a similar fashion the eigenfunctions ljJ (z) 
m in the damped 

case, given by 

(A. 34) 

reduce to 

= J (A z) o m (A. 51) 

i.e. 

(A. 4) 

which are the undamped eigenvectors. 

The probability distribution . F(R) in the damped case, given 

by Eq. 2. 26, can be reduced using these results for the eigenvalues 

and eigenvectors to yield: 
1 J zJ (X z) dz 

_ \' 0 o m 
lim F(R) - /..; - 1------ e 

n - 0 m J z J 2 
(A z) dz 

0 o m 

-v s 
m 

(A. 52) 

Evaluating these integrals is a simple matter, reducing the equation to 

I Jl(A )/>-.. -k sA
2 

/R
2 

F(R) 
m m 1 m = 

J~(>-..m) 
e 

1 

m z 

-k SA 
2 

/R 
2 

2I 

1 m 
e 

(2. 16) = A J
1 

(A ) 
m m 

m 

which is the undamped distribution. 
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D. Correction applied to the ground acceleration. 

Suppose that the digitized acceleration record a(t) is different 

from the true ground acceleration ~(t) by an amount e(t), caused by 

inaccuracies in the recording system and errors in the digitizing. 

Hence 

" a(t) = a(t) + &(t) (A. 53) 

Successful separation of e.(t) from a(t) will be possible only if some 

• A 
characteristic of a(t) is affected differently by a(t) and ~(t), that 

is , if the spectra of ~(t) and £-(t) are distinguishable. The integral 

of a(t) is one such property because the error term ~ (t) causes 

this integral, the unadjusted velocity v(t), to drift away from the 

base line in an apparently systematic way. Integrating Eq. A. 53 

yields 

v(t) = 

A 

t 

f a(t) dt = 
0 

" v(t) + e(t) (A. 54) 

where v(t) is the true ground velocity and e(t) is the error, given 

by 

t 

e(t) = . f c (t)dt (A. 55) 

0 

The effect of the error in the velocity, or the difference between 

I\ 
v(t) and e(t), is much more evident than the difference between 

A 
a(t) and c (t). For this reason, the error is best reduced by 

operating on the velocity rather than the acceleration. Similarly, the 

error might be reduced by operating on the integrated displacement. 
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However, since in some cases there is a permanent displacement 

of the ground, the use of the velocity is indicated rather than the 

displacement. 

The form of the drift in the computed velocity indicates that 

the most objectionable part of e{t) might reasonably be expressed 

by the initial terms of a power series in t, with zero constant term 

because e{O) = 0, that is, 

{A. 56) 

Terminating the series at the cubic term ensures that the main 

period components of the correction term will remain considerably 

longer than the longest periods of importance in the ground motion. 

The component of e{t) having the form of Eq. A. 56 can be removed 

from the ground velocity by minimizing the mean squared value of 

the expression 

{A. 57) 

This leads directly to Eq. 1. 6 which permits the calculation of the 

constants. 

When a complete record is available, use can be made of the 

fact that the final ground velocity must be zero. However, when 

studies are made of strong-motion earthquakes the records are 

usually terminated long before the ground motion has finally ceased. 

In this case it would be expected that any adjustment procedure must 

result in the ground velocity, towards the end of the record, behaving 
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in an oscillatory manner about the base line with slowly decaying 

amplitude. Provided this condition is satisfied, it may be assumed 

that the adjustment procedure may ignore the precise value of the 

velocity at the record end. 

A different physical argument that might be used in adjusting 

the acceleration record is the following. If a force is applied to a 

mass, proportional to the recorded acceleration, the displacement 

of the mass will exhibit the same drift as mentioned in the preceding 

paragraphs. This drift can be reduced by attaching the mass to a 

fixed base with a spring. The spring must be soft enough for the 

natural period of the resulting oscillator to be longer than the 

longest important periods present in the ground motion. A suitable 

period to choose would be the duration of the record, for the record 

can contain no frequency component with a longer period than this. 

This choice is equivalent to fitting a correction, different from the 

above parabolic correction, to the original ground acceleration 

base line. 

The ground velocity is assured of exhibiting a decaying oscil­

latory behavior towards the end of the record by introducing some 

viscous damping. Having made a suitable choice of the damping, 

the system may be considered as a simple filtering element 

effectively reducing the long period error components. 

It may be pointed out that these different procedures are 

attempts to standardize the adjustment of the recorded ground 

acceleration and bear little relationship with the actual cause 
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of instrument and reading inaccuracies. The results obtained by 

the parabolic method indicate that although the displacements are 

very sensitive to the corrections, the magnitude of the corrections 

is of the same order of smallness as the trace thickness and reading 

error. Neither method can be said to hold appreciable computa­

tional advantages over the other. 


