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ABSTRACT 

Part I 

The latent heat of vaporization of n-decane is measured 

6 0 0 calorimetric ally at temperatures between 1 0 and 340 F. The 

internal energy change upon vaporization, and the specific volume 

of the vapor at its dew point are calculated from these data and 

are included in this work. The measurements are in excellent 

agreement with available data at 77° and also at 345°F, and are 

presented in graphical and tabular form. 

Part II 

Simultaneous material and energy transport from a one-inch 

adiabatic porous cylinder is studied as a function of free stream 

Reynolds Number and turbulence level. Experimental data is pre-

sented for Reynolds Numbers between 1600 and 15, 000 based on the 

cylinder diameter, and for apparent turbulence levels between 1. 3 

and 25. 0 per cent. n-heptane and n-octane are the evaporating 

fluids used in this investigation. 

Gross Sherwood Numbers are calculated from the data and 

are in substantial agreement with existing correlations of the results 

of other workers. The Sherwood Numbers, characterizing mass 

transfer rates, increase approximately as the 0. 55 power of the 

Reynolds Number. At a free stream Reynolds Number of 3700 the 

Sherwood Number showed a 40% increase as the apparent turbulence 

level of the free stream was raised from 1. 3 to 25 per cent. 
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Within the uncertainties involved in the diffusion coefficients 

used for n-heptane and n-octane, the Sherwood Numbers are com-

.. 
parable for both materials. A dimensionless Frossling Number is 

computed which characterizes either heat or mass transfer rates for 

cylinders on a comparable basis. The calculated Frossling Numbers 

based on mass transfer measurements are in substantial agreement 

.. 
with Fros sling Numbers calculated from the . data of other workers 

in heat transfer. 
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Part I 

LATENT HEAT OF VAPORIZATION OF n-DECANE
1 

1
H. T. Couch, William Kozicki, and B. H. Sage, 11 Latent Heat of 
Vaporization at n-Decane," Journal of Chemical and Engineering 
Data, Vol. 8, No. 3, pp. 346-49, (1963). 
-- Permission has been granted by the American Chemical 
Society to present this published article as Part I of the author's 
Ph.D. Thesis. 
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I. INTRODUCTION 

Direct calorimetric measurements of the latent heat of vapor­

ization of n-decane over a range of temperatures do not appear to 

be available. The volumetric behavior of the liquid phase of n­

decane has been studied by Reamer and others (5). Likewise, the 

vapor pressure has been determined over a wide range of tempera­

tures by Young (9), Reamer ( 5), and Willingham and co-workers (8). 

The volumetric data extend from a temperature of 40° to 460° F. 

and the vapor pressures cover a similar range of temperatures. 

Rossini (6) has also recorded several critically chosen values of 

the properties of n-decane at 77° F. As a result of the absence of 

directly measured values of the latent heat of vaporization of this 

paraffin hydrocarbon over a wide range of temperatures, the current 

investigation was initiated. This study involves measurements of 

the latent heat of vaporization of n-decane at temperatures between 

160° and 340° F. 



Page 3 is missing.
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the essentially adiabatic jacket have been described (2). In the 

current measurements, the maximum deviations from ideal isobaric, 

isothermal conditions did not introduce corrections to the measured 

enthalpy change upon vaporization of more than 0. 0054 fraction of 

the total change. The estimated uncertainty in .each of the several 

variables associated with these measurements is set forth in Table I. 

These values are expressed in terms of the fraction of the measured 

enthalpy change upon vaporization of n-decane at a temperature of 

340° F. Inspection of Equation 1 indicates that the volumetric cor-

rection factor, (V g - VP.) /V g, is necessary in order to relate the 

quantity of n-decane evaporated to that withdrawn. Experimental 

information concerning the volumetric behavior of the dew-point gas 

of n-decane is not available. 

A combination of the Clapeyron equation with Equation 1 

results in the following expression for the latent heat of vaporization 

of n-decane : 

P. = (Hg - Hp_ )T = [Q] T ,P - Vi. T(dP"/dT) ( 2) 

It should be recognized that the quantity [ Q J T p in Equation ( 2) , 
represents the thermal transfer required per unit weight of material 

withdrawn from the isochoric calorimeter under idealized conditions. 

It is necessary to apply the minor corrections that have been de -

scribed (2) to account for the superheat of the liquid and the deviation 

from isobaric, isothermal conditions. As a result of the absence 

of volumetric data, the specific volume of the dew-point gas was 



evaluated from 

v = g 

-5-

{3) 
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III. MATERIALS 

The n-decane employed was obtained as resea rch gra de from 

the Phillips Petroleum Company and was reported to contain not 

more than 0. 0066 mole fraction of impurities. The specific weight 

of the material was 45. 339 pounds per cubic foot at 77° F. as com­

pared to 45. 337 pounds per cubic foot reported by Rossini (6) for 

an air-saturated sample at the same temperature. The index of 

refraction relative to the D-lines of sodium at 77° F. was found to 

be 1. 4097 as compared to a value of 1. 40967 reported for an air­

saturated sample at the same temperature (6). Review of these 

data leads the authors to believe that the sample of n-decane did not 

contain more than O. 0066 mole fraction of material other than n­

decane. The probable impurities are the isomers of this hydro­

carbon. The presence of small quantities of material other than 

n-decane does not' influence the values of the latent heat of vapori­

zation to the extent that such impurities might affect measurements 

of other properties such as vapor pressure. 
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IV. · EXPERIMENTAL RESULTS 

The experimental results of the measurements upon n-decane 

are reported in Table II. Values of the slope of the vapor pressure 

curve were obtained from the measurements of Reamer (5) and 

Willingham (8) by the use of residual methods. It should be recog­

nized that a 2% uncertainty in the value of the slope of the vapor 

pressure curve does not introduce more than O. 00013 fraction un­

certainty in the measured enthalpy change upon vaporization. The 

residual specific volume at dew point was calculated utilizing a 

molecular weight of n-decane of 142. 276 and a value of the universal 

gas constant of R = 1 O. 73147 (psi)(cu ft)/(lb-mol)( 0 R). 

Values of the volumetric correction factor used in the reduc­

tion of the calorimetric measurements have been included in Table II. 

The slight deviation of this factor from unity serves to illustrate the 

small effect of uncertainties in the slope of the vapor pressure 

curve upon the reported values of the latent heat of vaporization. 

The latent heats of vaporizatio'n recorded in Table II are depicted 

graphically in Figure 1. Values reported by Rossini (6) at 77° and 

345° F. have been included for comparison. 

In order to permit a more meaningful comparison of the 

precision of the experimental data and the agreement with the 

values recorded by Rossini (6), residual techniques have been 

employed. For present purposes the residual latent heat of 

vaporization of n-decane was established from 
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£. = £. - (166.667 - 0.166667t) (4) 

The re is shown in Figure 2 values of the residual latent heat of 

vaporization of n-decane along with the values reported by Rossini 

(6). The standard error of estimate of the current latent heat of 

vaporization measurements from the smooth curves shown in 

Figures 1 and 2 is O. 03 Btu per pound. 

Table III records the smooth values of the latent heat of 

vaporization as a function of temperature. The internal energy 

change upon vaporization and the specific volume at dew point are 

recorded in a part of Table III. 

Values of the compressibility factor for the dew-po int gas as 

a function of vapor pres sure are shown in Figure 3. It is apparent 

that even at a vapor pressure of 13 p. s. i. a., corresponding to a 

temperature of 340° F., the dew-point gas of n-decane deviates 

only approximately 6. 3% from the behavior of a perfect gas. At 

160° F. additional uncertainty exists in evaluation of the slope of 

the vapor pressure-temperature relation. The standard error of 

estimate of the experimental values of the specific volume of the 

dew-point gas reported in Table II from the smooth curves drawn 

in Figure 3 is O. 27 cubic foot per pound, or O. 0025 when expressed 

in terms of the compressibility factor. This standard error 

corresponds to an uncertainty of approximately O. 26%. 
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VL NOMENCLATURE 

differential operator 

enthalpy, Btu/lb 

latent heat of vaporization, Btu/lb 

residual latent heat of :vaporization, Btu/lb 

weight of material, lb 

vapor pressure, psia 

heat added per unit weight of material withdrawn 

under idealized conditions, Btu/lb 

>'< 
Q ~, 2 net energy added to calorimeter under ideal con-

T 

t 

v 

Subscripts 

g 

.R. 

p 

T 

1 

2 

ditions, Btu 

thermodynamic temperature, 0 R 

0 temperature, F 

specific volume, cu ft/lb 

gas phase 

liqui d phase 

pressure 

temperature 

initial state 

final state 
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Table I 

ESTIMATED UNCERTAINTIES OF MEASUREMENT 

Quantity 

Energy added electrically 

Energy added by agitation 

Energy exchange between calorimeter and jacket 

Change in temperature of liquid and vapor 

Weight of material withdrawn 

Volumetric correction factor 

Superheat of liquid 

Probable 
Uncertainty 

per cent 

0.03 

0.18 

0 . 008 

o.os 

0.02 

0.03 

0.07 
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Temp. 
OF 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
310 
320 
330 
340 
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Table III 

CRITICALLY CHOSEN VALUES OF SOME PROPERTIES 

OF n-DECANE 

Specific Vol. 
at Dew Point 

cu ft/lb 

578.0 
434.0 
329.0 
251.0 
193.0 
149.1a 
116.4 

91. 5 
72.6 
57.9 
46.5 
37.5 
30.5 
25.0 
20.6 
1 7. 1 
14.3 
1 2. 0 
10.2 
8.6 
6.4 
5.5 
4.8 
4.2 

Internal Energy 
Change on 

Va po riz at ion 
Btu/lb 

144.60 
143.10 
141. 62 
140.12 
138.61 
137.11 
135.60 
134.07 
132.56 
131.05 
129. 54 
128. 03 
126.52 
125.00 
123. 49 
121. 98 
120. 4 7 
118.96 
117.44 
115.91 
112.88 
111. 36 
109.83 
108.30 

Latent 
Heat of 

Vaporization 
Btu/lb 

152. 40 
151. 04 
149.70 
148.34 
146.96 
145.59a 
144. 21 
142. 82 
141.43 
140.04 
138.64 
137.25 
135.84 
134.43 
133.02 
131.60 
130.18 
128.76 
127.33 
125.89 
123.03 
121 •. 58 
120.15 
118. 70 

aValues at this and lower temperatures extrapolated from data at 
higher temperatures. 
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Part II 

HEAT AND MASS TRANSFER FROM A CYLINDER PLACED IN A ... 
TURBULENT AIR STREAM - SHERWOOD AND FROSSLING 

NUMBERS AS A FUNCTION OF FREE STREAM TURBULENCE 

LEVEL AND REYNOLDS NUMBER 
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I. INTRODUCTION 

The transfer of matter to or from a cylinder placed normal 

to a fluid stream is an important phenomenon which, compared to 

energy transfer from a cylinder has received relatively little 

attention. Mass transfer operations are essential to the chemical 

industry, and with the concepts of ablative cooling and hypersonic 

velocities, situations involving simultaneous heat and mass transfer 

have found great importance in the aerospace industries. 

Undoubtedly interest in the transport of material from 

cylinders has suffered because measurements of the related 

phenomenon of energy transport from cylinders are frequently 

associated with fewer experimental difficulties, and it has been 

anticipated that these results are directly applicable to the pre­

diction of mass transfer rates through the Chilton Colburn analogy (8). 

The theory which forms the bas is of this analogy has recently be­

come suspect when flows involving a non-zero free stream turbu­

lence level are involved {30, 46, 51}, and the need for a systematic 

study of mass transport as opposed to energy transport for cylinders 

was indicated. 

Winding and Cheney (59} studied the evaporation of cast 

napthalene cylinders as well as a variety of other shapes exposed 

to a current of warm air. They obtained local mass transfer rates 

by observing changes in the cylinder shape as a function of time. 

This information was used to predict local heat transfer rates for 

a cylinder using the Chilton Colburn .analogy (8) between heat and 
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mass transfer. The results are interesting, but of somewhat 

limited value because the prevailing turbulence level or scale of 

turbulence of the air stream used in this study is uncertain. Also 

they had no provision for measuring local temperature var.iations 

as a function of angle from stagnation. In a study of energy and 

material transport from a sphere, Sato (45} determined that the 

surface temperature varied significantly with angular position, 

which introduces an additional complication into the study of local 

mass transfer rates. 

Mendelson et al. (35} measured mass transfer rates at the 

stagnation point of a cylinder in an effort to predict the effect of 

interfacial resistance on evaporation rates. Again,uncertainties 

in the prevailing free stream turbulence limit the value of this work. 

Comings, Clapp, and Taylor ( 1 O} studied the effects of free 

stream turbulence on heat and mass transfer from cylinders over 

a range of Reynolds numbers. from 400 to 20, 000 based on cylinder 

diameter. They determined that the effect of increasing free 

stream turbulence on heat transfer rates was greatest for low 

levels of turbulence. Specifically at a Reynolds Number of 5, 800 

they observed a 25 per cent increase in heat transfer rates as the 

turbulence level was increased from 1 to 7 per cent , and that a 

further increase in turbulence level up to 22 per cent had little 

additional effect on heat transfer rates. However, they used the 

Schubauer technique (50} for measuring the apparent level of tur­

bulence, which is somewhat uncertain in this application. This is 
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true not only because of the high levels of turbulence studied, but also 

because of the nonuniformity of their turbulence grids. Their 

data on mass transfer scatter so badly as to be of little quantitative 

value. 

Mais e l and Sherwood (33) and Schnautz (49) studied mass 

transfer from a cylinder over a variety of conditions, and their 

results are compared with this w ork. 

Energy transport from cylinders occurring as a result o f a 

temperature gradient has rece ived much additional atte ntion from 

many other worke rs (20, 30, 39, 41, 42, 51, 56). Unfortunately, 

the importance of free stream turbulence level and scale in enha ncing 

energy transfer rates has not been generally appreciated until r a ther 

recently (46, 51, 56) and one is confronted with large amounts of 

data from various sources in which the Reynolds number is well 

established, but for which the prevailing level or scale of turbulence 

is not documented . Some of the more recent data on energy 

transport from cylinders have been correlated by workers in this 

laboratory (18, 19) in terms of a Frossling Number which is a 

function of the free strea m Reynolds Number and turbulenc e level. 

Richardson (41, 42) sugge sts a different correlation based on a 

cognizance of the basic differences in the transport mechanism 

before and aft of boundary layer separation. Geidt (20) measured 

skin friction and heat transfer rate s from a cylinder placed normal 

to a free jet, and provided his cylinder with end plates to preserve 

the two dimensionality of the flow. He was interested in the 
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phenomenon attending transition from subcritical to supercritical 

flow causing the sharp decrease in the drag coefficient. His data 

differ substantially from those of Schmidt and Wenner {48) taken 

under similar conditions but without the end plates. 

While most of the work referenced above was done at high 

Reynolds Numbers at or close to critical, several interesting 

aspects of transport from cylinders are well documented. Con­

cerning energy transport from cylinders, the effect of free stream 

turbulence in enhancing transport is confined principally to the 

laminar boundary layer formed over the front half of the cylinder 

{30, 41, 42, 46, 55). The effect of turbulence is slight in influencing 

energy transport in the wake region of a cylinder, as well as in the 

turbulent boundary layer which can exist upstream of separation for 

supercritical Reynolds Numbers (46). Interestingly, the effect of 

free stream turbulence on skin friction from cylinders is an order 

of magnitude less than for heat transfer, a phenomenon measured 

by Geidt (20) and treated theoretically by Se ban {51) and Sutera {55). 

In view of this defeat of the Chilton Colburn analogy between energy 

and momentum transport it has recently been felt that this analogy 

is a limiting case which has general validity only for vanishing tur­

bulence levels (46, 51). 

In view of these findings it would seem desirable to study 

mass transport from cylinders not only to determine the effects of 

the composition gradient on the formation and properties of the 

"blown" boundary layer, but to answer questions concerning the 
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applicability of an a nalogy betwee n heat and mass transfer over a 

range of Reynolds Numbers and turbulence l evels. It is the purpose 

of this research to provide quantitative inf~rmation on mass transfer 

rates from cylinders over an intermediate range of Reynolds Numbers 

and turbulence levels. 
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II. THEORY 

The mathematical description of transport from cylind ers, 

whether it be momentum, material, or energy transport has 

proceeded on a semi-empirical basis. Transport from the f ront 

half of a cylinder placed in a moving fluid stream has been treated 

by many workers employing a variety of simplifying assumptions. 

This is espe cially true for subcritical flow where a laminar 

boundary layer persists up to the point of separation. However, 

an effective mathematical approach towards analyz ing the effects 

of free stream turbulence on a laminar boundary layer has not been 

presented, and likewise, an effective mathematical approach to 

transport in the wake region of a cylinder seems still further 

removed. 

In principle, mass transport from a cylinder can be d e :-. 

scribed by a,. solution to the following equations. These are, 

respectively, the continuity equation, the momentum equations, 

(Na vier Stokes equations of motion), in the x, y, and z Cartesian 

coordinate directions, the energy equation, and the continuity of 

k - 1 of the k chemical species. 

Continuity: 
a a a aa-
ax (a-u) + By (a-v:) + Bz (a-w) + 38 = O 

Du 
Momentum X : DS 2 --- --- J 3'V·q) 

( 1) 
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Dv 
Momentum Y: De = go ap go { a l av 2 - - J - - + - - T\ (2 - - - \1 . q ) o- ay er ay ay 3 

+ ..£_ [ { au + av)] + ..£_ [ ( aw + av)~} ox 'l \ oy ax oz _'l \ oy oz 'J 

Momentum Z: Dw go oP + go {~ rr, { 2 aw __ ~ V • q)'l 
DS = - 0:- 8z o- 8z l'. \ . a.z 3 ~ 

Energy: 

+ ..£_ ax [ ( aw+ 8u )] 
'l \ ox oz 

DT 1 DP + _1 _ V·(k\JT}+ ncf> 
DS = 0-Cp DS CICp 

and continuity of component k: 

D11< 1 - [ -,J 
DS = 0: \1 • o-D ckj \l~ 

(3} 

(5) 

( 6) 

In the equations above, u, v, and w are the velocity com­

ponents, V · q is the divergence of the velocity vector, cf> is the 

frictional dissipation function described by Schlichting (46}, and 

mdkx' mdky' and ~dkj are the diffusional mass fluxes of component 

k in tb:e x, y, and z directions respectively. These last two 

quantities may be formulated as: 

2 2 
+ ( ow + ov) - ]:_ (OU + av + aw) ay az 3 ax ay az 

and 
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a~ 
mdkx = - crD ck.j ox = 

the latter definition coming from Longwell and Sage (32). 

The necessity for a consideration of momentum in the z 

(axial) direction as well as axial variations in the continuity and 

energy equations is a consequence of local fluctuations in fluid 

properties in the axial direction due to the presence of turbulence. 

In this regard Sutera (55) demonstrated that it was necessary to 

consider turbulenc e in three dimensions even when the time aver-

aged flow was two dimensional. Similarly the inclusion, of a time 

dependence of the independent variables is also a necessity when 

random turbulent velocity components are considered. 

The boundary conditions which are pertinent to the system 

of equations (1) to (6) .above are : 

at the cylinder surface: 

and at infinity: 

2 = r 
0 

u=v=w=O 

T = T (O) 
s 

~=~s 

u = U + u'(x,y ,z ,e} 
00 

V : VI (X J Y J Z J e} 

W : WI (X J Y J Z J '?} 

T=T 
0 
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In practice, equations ( 1) to ( 6) are so complex that their 

general solution even for the simplest boundary conditions has thus 

far proven an impossible task. With the assumption of steady state 

with no turbulent fluctuations, which makes the problem two dimen­

sional and eliminates the time dependent terms, a solution is still 

so difficult that in practice it is treated by considering separately 

the boundary layer flow within which all viscous effects are con­

centrated, and an external flow where the fluid is assumed to be 

inviscid. Such solutions have proved quite valuable in describing 

transport from the front half of the cylinder, up to the point of 

boundary layer separation, but have not shown much promise in 

describing either the flow or transport in the wake region. Beyond 

the point of separation, flow around a cylinder is inherently un-

steady due to the alternate shedding of vortices from first one side 

then the other. This phenomenon is present whenever the Reynolds 

Number based on cylinder diameter lies above a certain range of 

transition, 60 - 200, a fact well documented by many investigators (1, 

21, 52). These vortices which alternately build up and detach from 

the cylinder perturb the flow pattern about a cylinder enough so that 

a mathematical solution based on the premise of steady flow is 

severely limited. Surprisingly results obtained by this approach up 

to what is necessarily a time average point of separation are useful 

and will be discussed. 
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A. Two-Dimensional Steady Flow Around a Cylinder - - The Laminar 

Boundary Layer 

For two-dimensional laminar steady flow around a solid object 

it may be shown that the appropriate boundary layer equations are (46) : 

Continuity: 

o o ox (o-u) + oy (crv) = 0 (7) 

Momentum along wall: 

(8) 

Energy: 

uoT +v ~YT= _1 ..£...tkoT) +_IL_{ 8u)
2 

+ ~ oP (9) ox u o-cp oy \ oy o-cp \ 8y o-cp 8x 

Continuity component k: 

{ 
onk} 

o- D ckj oy (1 O) 

In deriving these equations momentum is considered only 

in the direction tangent to the wall because of the anticipated thin-

ness of the boundary layer region. Similarly, all derivatives in the 

direction tangent to the wall are an order of magnitude smaller 

than the derivatives considered in a direction perpendicular to the 

wall, and in most cases may be dropped from further consideration. 

Inspecting the boundary layer equations above 1 it can be 
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seen that aside from the effects of buoyancy apparent in the term 

gx (; - 1), the only influence of thermal and material transport 
ro 

on the solution of the momentum boundary layer equations (eqs. (7) 

and (8) above) is in causing a change in the fluid viscosity iJ, or the 

specific weight a-; or in the case of material transport, giving rise 

to a non-zero normal velocity component at the solid boundary. 

For Reynolds Numbers greater than 2500 the effects of natural con-

vection on the momentum boundary layer are usually negligible, 

and the last term in equation (8) may be dropped from consideration 

(19). Finally in considering the boundary layer equations the 

derivatives of pressure in a direction normal to the surface are 

deleted, and a pressure which is determined either experimentally 

or from the potential flow solution about the body in question is 

assumed to be impressed on the boundary layer. 

Laminar boundary layer solutions to equations (7) through {9) 

for the flow of an incompressible fluid with constant fluid properties 

are well known for the case of energy transport from flat plates 

and for cylinders up to the point of separation. Fr.~ssling (17) 

obtained numerical solutions for this case using a Prandtl Number 

of 0. 7. His results are shown in Figure 4 where local values of the 

heat flux in terms of a Nusselt Number are shown plotted vs. the 

angle from stagnation. Squire (54) repeated these calculations in 

the vicinity of stagnation over a range of Prandtl Numbers and 

deduced that the Nusselt Number at stagnation was roughly propor-

tional to the one-third power of the Prandtl Number and the one-half 
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power of the Reynolds Number. Thus by neglecting viscous dissi­

pation and assuming constant fluid properties at the stagnation point: 

Nu = 1 • 1 4 Re 1 / 2P r 
1 

/ 3 ( 11) 

The results of Fr
0

ossling {17) calculated for a Prandtl Number of O. 7 

{air) correspond to a turbulence level of zero. In practice~ the 

experimental values of other workers are somewhat higher due to 

the systematic effect of free stream turbulence. 

Howeve:i; it must be emphasized that even for the case of a 

laminar boundary layer with constant fluid properties and negligible 

viscous dissipation, the "theoretical" Nus selt Number dependence 

on the one-third power of the Prandtl Number is approximate only. 

It is obtained by smoothing the results of numerical calculations 

over a range of Prandtl Numbers, and noting that these results are 

correlated to within 5 to 6 per cent by the one-third power of the 

Prandtl group (6). In this regard it is noted that Korobkin {31) 

reviewed the results of Squire {54) at the stagnation point of a 

cylinder, and Homann {24) for a sphere, and deduces that the 

influence of the Prandtl group on stagnation point heat transfer is 

better correlated by the O. 4 power. These results are pertinent 

in this study , because, under the simplifying assumptions above, the 

boundary layer equation for energy transport becomes identical 

in form with the boundary layer equation for material transport 

except that the latter is a function of the Schmidt Number instead 

of Prandtl Number. Hence, except for the difference of a non-zero 
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normal velocity component at the boundary, material transfer is 

analogous to energy transfer, and one would expect the Schmidt 

dependence of the Sherwood Number to be comparable to the Prandtl 

dependence of the Nusselt Number. 
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B. The Frossling Number for Heat and Mass Transport 

Referring again to the boundary layer equations (eq. 7 to 1 O}, 

it is apparent that if the fluid properties are constant, buoyancy 

effects are negligible, and the effects of frictional dissipation and 

expansion work can be neglected, the momentum equation, (eq. 8}, 

is independent of the energy and conservation of chemical species 

equations. Further, as mentioned above those latter equations are 

of identical mathematical form. Hence: 

and 

8T + v 8T 
u 8x 8y 

2 = v 8 u 
ay2 

2 
8 nk 

D k.--2 
c J 8y 

(Sa} 

(9a} 

(1 Oa} 

It is apparent then, that if the "blown" velocity at the solid surface 

is negligible, (in the case of material transport}, equations 9a and 

10a will yield temperature and concentration distributions about 

the cylinder which are functions only of the Prandtl Number for the 

thermal boundary layer, or of the Schmidt Number for the material 

boundary layer. These solutions are well known for transport 

from a flat plate, and the following functional form is obtained: 

(12a} 

( 12b) 
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Again, solutions fo r transport from the forward half of a cylinde r 

a lso indicate that the Nusselt Number depends approximately to the 

one-third powe r of the Prandtl Number and the following functional 

forms have been used in this laboratory (19) : 

For thermal transport from cyliride rs: 

_ 1/2 1/3 ZT 
Nu - c 1 R e Pr + C 2 z + c 

T 3 
R e Pri/Z 

For material transport from cylinders: 

Sh R e Sci/Z 

These e quations sugges t a new dimensionless group, the Fros sling 

Number. T he form of the Fr°~ssling Number would be identical for 

( 13) 

(14) 

either energy or material transport for the f ollowfog four conditions: 

(a) constant fluid properties; {b) negl igible effect of a non- zero 

velocity component at the wall; (c) zero free stream turbulence; and 

(d) negligible frictiona l dissipation and compressive work. Hence : 

( 15) 



-34-

C. Derivation of the Sherwood Numbe r - The Modified Maxwell 

Diffusion Coefficient 

Whereas the definition of the Nusselt Number for heat 

transfer has been completely standardized, the definition of a 

Sherwood Number is somewhat arbitrary since it has been dependent 

on the nature of the diffusion coefficient specified, and there are 

at least six diffusion coefficients in more or less .common usage {32). 

Although the units most commonly encountered in the diffusion 

coefficient are those of length squared divided by time,there are 

variations {32, 37),and unlike the phenomenon of energy transport, 

the existence of a diffusion velocity caused by the bulk transport 

of material causes the actual rate of material transport in most 

instances to be somewhat different than that expressed by a diffusion 

coefficient multiplied by a concentration gradient (32, 37). 

In this regard we can define the mass flux of a given com-

ponent k from diffusion alone in any one of several ways (32) ; 

Fick 

Chapman Cowling 

Maxwell 

Modified Maxwell 

m = -• dk 

r;1dk = -

2 
lb/ft · sec (16a) 

(16b) 

(16c) 

(16d) 

All of these diffusion coefficie nts have been used by workers 



-35-

in this laboratory for some time, but some recent investigations 

have indicated that for gas phase diffusion the Modified Maxwell 

Diffusion coefficient shows only slight variations with composition 

(47), and because of this desirable characteristic it was selected 

in this work. 

In analogy with the definition of the heat transfer coefficient, 

h, we can define a mass transfer coefficient, KG,' which yields 

material flux in pounds per second when differences in the mole 

fraction of the diffusing component are considered in the driving 

force: 

{17) 

Similarly we can define the overall mass flux from a solid surface 

in terms of an "effective" diffusion coefficient which when employed 

with the mole fraction gradient of the diffusing species yields the 

correct mass flux for the case of one c.omponent stagnant. Hence 

also in analogy with the transport of energy we have: 

• >!< dnk I 
m = - D A -·-
-k k dy wall 

(18) 

Combining these relations it is natural to define the Sherwood 

Number for a cylinder as 

(19) 

which is, except for the various Reynolds analogy defeats discussed 

earlier, exactly comparable to the Nusselt Number for energy 
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transport. Therefore, if the Schmidt and Prandtl groups are equal, 

and the assumptions of negligible viscous dissipation or work of 

expansion in the energy equation (equation 9), constant fluid prop-

e rtie s, and a negligible effect of the "blown 11 boundary layer, 

(v * 0 at the wall for material transport), are valid, the Sherwood 

Number defined in this manner should be identically equal to the 

Nusselt Number for heat transfer. Moreover, corresponding to the 

dependence of Nusselt Number on the one-third power of the Prandtl 

modules, the Sherwood Number should depend on the one-third 

power of the Schmidt group, again within the limitations of the 

assumptions cited above. At this point it is worth noting that the 

Sherwood Number defined by equation { 19} is invariant whatever the 

choice of driving potential for the mass transfer coefficient, KG, 

>:< 
and effective diffusion coefficient, Dk' as long as this choice is 

consistent. It remains to evaluate the mass, transfer coefficient in 

terms of laboratory data, and the effective diffusion coefficient, 

>!< 
Dk, in terms of the Modified Maxwell diffusion coefficient for the 

case of one component stagnant. 

It may be shown {32) that for the case of one component stag-

nant, the mass diffusion of component k may be written: 

0 

( ~~) a ln n. 
• J 

ox {21) 

where in this expression f~ is the fugacity of the pure component 

at the total pressure, P, of the diffusion process. For the vapors 

of volatile liquids this "standard state" is obtained by an extrapolation 
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of fugacity vs. pressure data up to the appropriate pressure, and Z 

is the compressibility factor of the mixture. 

Finally if we consider the diffusion of component k over a 

distance .0.x, through a stagnant second component, equation (21) 

may be integrated upon the assumption of a mean value for the 

ratio ZD~k/T to give: 

0 

(; ) ln :~ ,x 
• J '0 

(22) 

If the gradient at the wall in equation (18) is expressed in 

terms of finite differences over the distance .0.x, equation ( 18) may 

be compared with equation (22) to render an expression for the 

>:~ 

effective diffusion coefficient Dk • 

0 

( fk) -
1 

ln [~] 
P .0.n n . 

• k .J,O 
(23) 

Then since KG is defined in terms of the mass flux of component k 

per unit area per unit mole fraction driving force, the Sherwood 

Number becomes for a cylinder: 

Sh= 

. 
m

1
b

1 
T 

-!:'. !:'. 

ln[~~ ,col 
·J ,o J 

(24) 

an expression which is analogous to that for the Sherwood Number 

for a sphere presented by Sage (44). 
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III. EXPERIMENTAL APPARATUS 

The object of this investigation is a one-inch adiabatic 

porous cylinder whose surface temperature was monitored, and 

which was fed with a liquid hydrocarbon (n-heptane or n-octane} 

which evaporated from the surface~ Auxiliary equipment includes 

the air supply system, which was used to provide an a ir stream 

whose temperature and mass flowrate were held constant,and the 

liquid feed system, which was used to monitor liquid feed rates and 

to match them to the rate at which liquid was evaporating from the 

cylinder surface. In the subsequent discussion, the cylinder itself 

will be considered first,to be followed by a description of the air 

supply system, the liquid injection system, and the thermocouples 

in that order. 

The direct measurements made are those of liquid vapori­

zation rate as a function of the measured a ir stream velocity and 

temperature. The local tempe rature profiles of the cylinder 

surface during the vaporization process are also measured. These 

must be known to determine the driving force during the vaporization 

process. 
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A. The Porous Cylinder 

The porous cylinder itself is one inch in diameter and 

features three 2-inch porous sections, each on e of which can be fed 

independent of the other two sections. In practice , the center 

section was fed independently, first by gravity feed until a steady 

state was reached and then by the 3/8" injector which will b e de-:-

s c:ribed later. During the course of experime ntation, it was found 

possible to switch from gra vity feed to the inj e ctor feed system 

without affecting the internal liquid pres sure by more than 0. 2 

centimeters of the evaporating liquid (which could be determined 

by obse~ving the action of various micromanometers associated 

with the feed system). The remaining two porous sections were 

used to reduce longitudinal temperature gradients, thereby reducing 

energy conducte d to the center section from the brass core and to 

preserve the two dimensional nature of the flow field about the center 

section. Both guard sections were fed by gravity from the same 

·source. 

1. Construction 

Figure A1 shows the porous cylinder during final stages of 

completion. Visible in this illustration are the three porous sections 

in the center, the vacuum jacket to the right, the spring-loaded 

compression sleeve to the left, and adjacent to it a screw adjustment 

n:Ut,which was used to vary the spring loading on the compression 

sleeve. Also visible at the ends of the cylinder are the junction 

boxes, which were µsed in making connections to the liquid feed 
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systems for each section , and in making thermocouple connections. 

At this point in the construction, the thermocouple leads are visible, 

with their temporary ·.labelliri.g tags needed for future identification. 

The last thermocouple plug is waiting to be cemented in place. The 

support brackets are also shown which were designed to allow the 

cylinder to rotate freely by loosening the two Allen screws at the top. 

During the course of this investigation, the cylinder was rotated to 

allow temperature measurements to be made at various angles from 

stagnation. 

Figure AZ is a close-up of the three porous sections taken at 

the same time as Figure Ai. It clearly shows the four O. 020 inch 

soft lead gaskets used to isolate the porous sections from one 

another and details of the installation of surface thermocouples. 

Small amounts of #220 epoxy adhesive manufactured by Hughes 

Associates were used to cement the thermocouple plugs into place 

and to make a seal between the lead gaskets and the diatomaceous 

earth sections. 

Figure A3 is another close-up o f the center section taken 

during experimentation. The thermocouple junctions can be seen 

in the center of each diatomaceous earth plug, and the O. 003 inch 

leads can be seen where they are brought across the face of the plug 

to its edge and then down from the surface along the edge of the plug. 

Another interesting feature of this illustration is the formation of 

droplets which are located a bout 70° from stagnation. It is apparent 

from this picture that the cylinder surface is quite saturated, and 
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the droplets have formed because a partial vacuum is created in 

this region as the air flows around the cylinder. 

Figure A4 gives an exploded view of parts involved in the 

construction of the cylinder. Each diatomaceous earth sleeve {inside 

diameter O. 812 inches) slips over one of the three ribbed brass 

sections shown assembled in the center of the picture. Each brass 

core has threaded ends. These are joine d after the diatomaceous 

earth sleeves are in place and a O. 002 inch lead gasket, A, has been 

bismuth soldered onto the end of each brass core. The liquid con­

duits , 0. 07 2 inch stainless tubing, B, and the thermocouple conduits , 

O. 042 inch stainless tubing, C, appear at each end of the cylinder 

in this exploded view. Since the center and left-hand sections are fed 

from one side, and the appropriate thermocouple conduits are also 

brought out of this same side, there are six stainless conduit tubes 

appearing on the left of the cylinder in Figure A4, whereas there are 

only three emerging on the right-hand side of the cylinder. Also 

appearing in this figure are the openings in the brass cores, D, 

where the conduit tubes are brought to the surface and soldered in 

place. 

The two junction boxes are equivalent in construction. The 

supporting plate, E, appears by itself and again ins talled on the 

right-hand half of the cylinder. The body of the junction boxes, F, 

differ only in that there is an additional union connection, G, for 

the liquid feed line to the center section. The junction box covers, 

H, are identical for both boxes. 
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Inside the junction boxes, a bakelite strip, I, gives support 

to the loose ends of the thermocouple conduits. The thermocouple 

leads are then tied to one of the junction posts, J, where they are 

eventually soldered in place. These junction posts were used in 

joining O. 003 inch thermocouple leads from the cylinder surface to 

O. 020 inch leads of the sarrie material which led to a stirred ice bath. 

The feed line union, G, is present bo"th for support of the 

internal feed lines, and to facilitate the installation of the cylinder 

over the air duct. The lead gaskets shown at each end of the housing 

nut have proven very effective in making leak proof seals. 

Also shown in Figure A4 are the support brackets, L, and the 

vacuum jacket, Mo The seal between the cylinder and the vacuum 

jacket was made by tightening the end nuts to compress a neoprene 

ring at each end, the neoprene being compressed against the brass 

ends of the cylinder. The function of the vacuum jacket was to allow 

the complete evacuation of the evaporating sections through the 

associated feed lines. After a good vacuum was attained within 

the vacuum jacket the system could be filled with deaerated hydro­

carbon sample with assurance that air bubbles would not be present 

between 'the brass cores and the outer diatomaceous earth sections. 

The vacuum jacket was also used between tests to prevent the 

evaporating sections from drying out. The vacuum jacket was 

constructed so that during operation it would slide off the evaporating 

sections into the position shown in Figure Ai. 

The compression sleeve, N, has the same inside diameter 
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as the brass cores and moved freely on an O. 812 inch inner support 

rod. It compressed the diatomaceous earth sections against the 

lead gaskets, A, to isolate each section from the liquid supply of 

the adjacent section, the compressing force coming from a spring 

contained within the spring housing, O. The compression could be 

adjusted by means of the compression nut. P. 

Figure A5 shows the assembled cylinder with the vacuum 

jacket in place over the diatomaceous earth evaporating sections. 

It can be compared with Figure Ai showing the cylinder with the 

evaporating sections exposed. 
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B. Air Supply System 

Figure A6 is a schematic diagram of the air supply system. 

The open-circuit air tunnel was originally designed by Sage {27) 

for studying the evaporation rates of drops, and later for heat and 

mass transfer work with spheres (25, 26, 45) and cylinders {13, 58). 

The air supply system was fitted with a 3 X 12 inch e xit area 

convergent section for this work, the same section employed by 

Short {53), Hsu (26), and Cuffel (13) in their investigations. With 

this convergent section the air supply system could produce average 

air velocities between 4 and 32 feet per second within ± 0.05% 

while maintaining a mean air temperature of 100 °F ± O. 2 °F. 

After entering the air intake duct two blowers at A force the 

air past wire grid heaters, B, through the venturi meter V. The 

grid heater power is controlled by an:. electronic control system 

actuated by the temperature sensed by platinum resistance ther­

mometer D. This type of temperature control system has been 

used with great success in this laboratory and is d e scribed by 

Corco'ran et al. (12). 

The air velocity is controlled by adjusting the blower speed, 

and then mainht ining a constant RPM through the use of a pre set 

counter monitored by a quartz oscillator. Since the measured 

phenomenon is a ,direct function of Reynolds Number, the blower 

speed was adjusted periodically to give a constant mass flow of 

air rather than constant velocity. The test velocities, namely 4, 

8, 16, 24, and 32 feet per second are nominal only, and the actual 
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air velocities used were subject to small changes with changes in 

atmospheric pressure and in the humidity of the air drawn through 

the blower system. In practice, it was found that the air temperature 

was much easier to control if the intake air to the blower system 

was drawn from the same room as that in which the experimental 

work was carried out. 

In continuing through the air system the air is turned by 

vanes at the elbow, passes over a high precision calibrated platinum 

resistance thermometer at E, arid through a screen, F, used to 

provide a more uniform velocity distribution at the jet exit, and to 

reduce the free stream turbulence to a nominal level of 1. 3% (13). 

For the higher turbulence levels used in some of the tests with 

n-heptane a turbulence grid was installed at the jet exit C, and a 

jet ext ens ion was added. The magnitude of the free stream turbu­

lence is a strong function of distance downstream of the turbulence 

grid, and the cylinder was positioned accordingly. The temperature 

of the duct system · downstream of the venturi was maintained within 

1 °F of the air temperature by using external heaters. 

The position of the cylinder over the jet exit can be seen in 

Figure A 7. Also seen in this photograph, taken under test conditions, 

is the protractor used to determine the angular location relative to 

stagnation of surface thermocouples, and one of the liquid feed lines 

which was installed in such a way that the cylinder could be rotated 

through an angle of 3 60 degrees. This picture was taken during one 

of the low turbulence level tests. 
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C. The Liquid Feed System 

The evaporation rate · for the center section was measured 

directly by observing the displacement of the positive displacement 

piston, described by Chen {7}, as part of the liquid injector system. 

Since the capacity of the injector system was small {approximately 

20 cc), it was found necessary to achieve steady state operation by 

some other means until the laboratory conditions, air temperature 

and velocity, were those desiredo It was necessary then to be able 

to switch over to the injector feed system to take vaporization rate 

data, and then back to the auxiliary feed system when the capa city 

of the injector was exhausted. It is imperative that the first switch 

be accomplished without appreciably disturbing the steady operation 

of the cylinder, whereas, for the second operation it was necessary 

only that the cylinder be kept from drying out since evacuating the 

cylinder and refilling it proved to be a very time consuming process. 

Since the injector its elf provided the means for all vaporization rate 

measurements it will be described first. 

1. The Injector 

The liquid injector, originally developed by Reamer and 

Sage {40) conta ins fluid in a reservoir which is continuously dis­

placed by the motion of a 3/8 inch plunger. The plunger is driven 

through a series of reduction gears by an electric motor. The 

motor's speed is controlled by a preset counter monitored by a 

quartz oscillator. The injector can be driven at almost any pre-
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determined speed through the selection of the proper reduction gear 

ratio and motor speed. For details on the control circuit the reader 

is referred to the original paper by Reamer and Sage. The liquid 

in the injector was maintained at a constant temperature of 100 °F 

by means of a constant temperature oil bath surrounding the injector 

reservoir. Figure AS is a photograph of the injector and some of 

the associated mechanisms. 

2. The Injector Loading System 

All ope rations involving the use of the 3/8 inch injector 

described above are controlled through a six-way manifold system. 

The manifold, and its relation to the injector, the vacuum system, 

the liquid loading system, and the cylinder are shown schematically 

in Figure A 9. 

The principle function of the liquid loading system is to 

deaerate the liquid sample. This function is essential to the use of 

injector as a volume m e tering devic e, since the formation of air 

bubbles within the injector system would destroy the simple relation­

ship between volumetric displacement and weight flow to the cylinder. 

To accomplish the deaeration the sample was first loaded into boiler 

B 1 after which the top was sealed. The sample was then d e aerat ed 

under vacuum until approximately 10% of the sample had evaporat ed. 

The next 80% of the sample was then trapped in B
2 

by using liquid 

nitrogen as a coolant. Vacuum w~s continuously applied during this 

process so that after this step essentially all dissolved air had been 
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removed. Finally the sample ampule, A, ·which had been previously 

evacuated, was filled from the supply of liquid in B 2 by distillation. 

The reader will appreciate that this process resulted in some 

further purification of the sample used. 

During the process of filling the sample ampule, A, the 

bottom was sealed against atmospheric pressure by freezing mer­

cury which flowed between the mercury reservoir and the sample 

ampule at the glass "U" shown schematically in Figure A9. After 

loading, the sample ampule valv:e 2 was closed, mercury frozen 

in the freeze-off leg was allowed to thaw, and liquid hydrocarbon 

in A was forced up to the valve 2 by the weight of mercury in the 

reservoir and atmospheric pressure behind it. After evacuating the 

injector' hydrocarbon was forced into it through the opening of 

valves 2 and 5 with all other valves closed. Valve 2 was then 

closed, valve 4 opened, and tl~e injector system was ready for use. 

Subsequent refillings of the injector were accompli shed by closing 

valve 4, and opening valve 2 while the injector plunger was with­

drawn in preparation for a run. This process was continued until 

the contents of the sample ampule, approximately 250 ml , had been 

exhausted. 

3. The Auxiliary Feed System 

Since the capa'7ity of the injector, approximately 20 ml, was 

quickly exhausted during operation, some other source of liquid 

feed to the cylinder was necessary for the attainment of steady state 
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temperatures and evaporation rates from the cylinder prior to 

evaporation rate measurements made with the injector, and also 

for maintaining the cylinder feed while the_ injector was reloaded. 

This system is illustrated schematically in Figure Ai 0. 

Liquid hydrocarbon feed to the cylinder can reach the feed 

line in Figure A10 either from the injector, or from the large two 

liter reservoir, R, when the valve shown is opened. To force 

flow through the feed line when -the injector system was inoperative 

the elevation of the liquid interface in R had to be from one to six 

inches above the elevation of the porous cylinder. Significantly, 

the resistance to fluid flow through the valve shown was so much 

less than that encountered in going through the feed line that the 

additional flow to the cylinder when the injector was operating with 

the shut off valve to the reservoir open was negligible. During the 

switch from gravity to injecto_r feed this phenomenon proved very 

useful, and in practice the injector was always turned on before the 

gravity feed was shut off, and correspondingly the gravity feed 

system was opened to the cylinder before the injector was shut off. 

The readings of the micromanometers, M 1 and M
2

, were independent 

of the feed source, and were very useful in determining how close 

to saturation the cylinder was actually operating, and in balancing 

the input liquid feed rate with the actual rate of vaporization .from the 

cylinder. 

The two guard sections were also supplied by a gravity feed 

system with one feed bottle supplying both secti-ons. The feed to 
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these sections was split at the tee immediately below the shutoff 

valve so that the length of all feed lines from the reservoir bottles 

was approximately equal. The guard section feed lines also had 

micromanometers installed at the same relative distance from the 

feed bottles as micromanometer M 2 is located in the primary 

feed system. 

Figure A11 is a phot~graph taken of the two reservoirs. The 

one on the left-hand side was u~ed to feed the two guard sections, 

while the reservoir on the right-hand side of Figure A11 was used 

to feed the center section of the porous cylinder. To maintain a 

constant liquid level in the reservoirs the aluminum box housing 

the reservoirs could be moved in the vertical direction by a screw 

type traversing gear. In addition, the bottles themselves could be 

moved relative to each other since they were mounted on a · channel 

section which slid up and down within the aluminum box, and were 

set in the desired position by tl.ghtening two wing nuts. Note that 

in Figure A11 the liquid levels in the feed bottles are approximately 

equal. 

Towards the right-hand side of Figure A11, and closer to the 

observer the stationary micromanometer board can be seen. A 

closeup of the front side can be seen in Figure A12, a photograph 

taken during the operation of the cylinder. The micromanometers 

M 1 and M
2 

shown schematically in Figure A10 are in the center of 

the manometer board, the outside one being the feed line manometer, 

M 2 , and the inside one, M 1 , indicating the actual internal pres sure 
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of the cylinder. The two manometers on the right- and left-hand 

sides of the manometer board are feed line manometers for the 

guard sections, and their levels are approximately equal to the level 

of the line manometer of the primary feed line. · All three liquid 

levels were significantly higher than the level of the central 

manometer indicating the internal pres sure of the center section 

of the cylinder. 

In practice the cylinder was operated very close to satura­

tion which was an easily observed phenomenon. As an example, 

saturation occurred in the center section when the center manometer 

level in Figure A12 reached a height of 18. 9 cm above the bottom 

of the manometer board. As can be seen in this figure the cylinder 

is being operated with an internal pressure which is less than one 

centimeter of heptane below atmospheric. The internal pressure in 

the guard sections while not known directly was adjusted by main­

taining the line manometer levels of the guard secti ons approximately 

one half centimeter below that level which was observed to cause 

saturation of those sections. 
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D. Thermocouples 

The thermocouples used to monitor the surface temperature 

of the cylinder during its operation were made from 0. 003 inch 

copper, and O. 003 inch constantan. The copper was double glass 

covered electrolytic grade supplied by the Driver-Harris Corpora­

tion. The cons tan tan used was also insulated with two layers of 

glass obtained from the same supplier under the trade name 

"Advance." Because of the high electrical resistivity of the O. 003 

inch constantan, the thermocouple leads were brought out to one of 

the junction boxes located at the end of the cylinder and joined 

respectively to O. 020 inch copper and constant leads. The heavier 

gauge constantan was also supplied by the Driver-Harris Corpora­

tion, and was chosen because it gave rise to the same thermoelectric 

potential with copper to within 1 microvolt when the junctions were 

maintained at 3 2° and 100°F as did the smaller gauge constantan. 

With this choice of thermocouple materials a thermoelectric 

potential of 1418. 6 microvolts was generated when the two junctions 

were at 32° and 100 °F, and since the potential generated comes 

very close to being a linear function of the temperature difference 

between junctions, the error incurred by changing wire gauge, 

allowing for small differences in composition, was more than com­

pensated for by the increased sensitivity of potential measurements. 

In this latter regard the deflection produced in a . galvanometer by 

a small potential difference is inversely proportional to the line 

resistance of the thermocouple plus galvanometer circuit. 
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The junction itself was made by butt soldering the two O. 003 

inch thermocouple leads with a small flake of silver solder. A 

micromanipulator used in conjunction with a microscope was used 

to align the leads. Figure Ai 3 shows two photomicrographs of a 

typical diatomaceous earth plug with the thermocouple junction 

installed. This particular junction was discarded because of the in­

advertent spread of epoxy resin over the junction itself. However, 

the two shots clearly show the junction on the top side, how epoxy 

resin was used to hold the junction flush against the cylinder surface, 

and how this resin supports the leads as they are brought around to 

the sides of the diatomaceous earth plug and then in to where they 

eventually re-emerged through a hole drilled through the bottom. 

The scale divisions in these photomicrographs are O. 01 inch apart. 

In practice the finished thermocouple plugs proved difficult to make, 

and several efforts were required to produce a plug in which the 

thermocouple junction lay flush against the diatomaceous earth sur­

face, and was also free from the epoxy resin used to hold the ends 

in place. After a thermocouple plug was proven to be satisfactory the 

leads were drawn through the stainless thermocouple conduits, and 

the thermocouple plug was drawn and pushed into its final position. 

Before the final positioning a narrow band of epoxy resin was 

placed on the top edge of the plug both to hold the plug in place, and 

also to seal the center section from external air leaks. This latter 

requirement was quite important since the internal pressure within 

the outer diatomaceous earth sleeve was always less than atmospheric, 
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the evaporating fluid being drawn to the surface by capillary action. 

However, it was also necessary to ensure that the plug itself was 

not sealed off from the rest of the cylinder by an epoxy film. The 

fact that the surfaces of the plugs were evaporating surfaces can 

be seen by reference to Figure A3. 
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E. Materials Used 

1. Evaporating Fluids 

The volatile fluids used in this study are n-heptane and n­

octane. These liquids were selected for three reasons: (1) The 

anticipated vaporization velocities would be high enough to signifi­

cantly affect the boundary layer parameters from thos e found during 

fluid flow around a solid cylinder, but still low enough so tha t it was 

possible to mea sure the existing flow rates with great accuracy 

using the 3/8" injector apparatus described earlier. Also, (2) The 

boundary condition of zero concentration of the evaporating fluid in 

the free stream would not be affected by the atmospheric humidity. 

Finally, (3) The physical properties of the fluids are well known as 

a consequence of the large amount of experimental information 

available on those hydrocarbons (11, 34, 43, 47). 

Both of these fluids used were supplied by t he Phillips 

Petroleum Company. The "Pure 11 grades were used, which have a 

nominal purity of 99 mole per cent. The purity was checked by 

measuring the refractive index and comparing the measured values 

with those cited in reference (43) for the pure components at this 

temperature. The measured refractive index of n-heptane was 

1. 3850 which compares with a value of 1. 38511 cited in the reference 

above. The measured value for the sample of n-octane used was 

1. 3950 which also agrees with the accepted standard of 1. 39505 listed 

in the reference above. 

The favorable comparisons with the accepted standard re-
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fractive indices substantiate the stated minimum purity level of 

99 mole per cent. Because of the method used by the manufacturer 

in preparing "Pure 11 grade examples, distillation, it is expected 

that the impurities would have volatilities very close to those of the 

hydrocarbon studies, and the probable error incurred by assuming 

the measured evaporation rates were equal to the evaporation rate 

of the pure component would be an order of magnitude less than the 

relative impurity level in the samples used. 

2. Diatomaceous Earth Evaporating Sections 

The porous sections of the cylinder were made from the 

"Fine Grade 11 diatomaceous earth known commercially as Allen Filter 

Material. The same material has been used in other studies of mass 

transport in this laboratory (7, 45), and has always worked well. 

Its main attributes are (i) it is easy to machine, (2) it has a 

very high porosity, and (3) a small cell size. In the latter regard it 

has been established experimentally that the capillary action of this 

material is sufficient to maintain a wet surface using water at room 

temperatures over an adverse pressure differential of 13 inches of 

water. 

Also, during the course of this investigation it has been 

found that there was no detectable difference in observed evaporation 

rates during operation of the cylinder over an internal pressure 

range of from atmospheric minus two centimeters (heptane and 

octane at 100 °F) up to atmospheric. This observation is important 
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because it substantiates the implicit assumption that the air stream 

"sees" a wet surface or film of the evaporating fluid at all times. 
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IV. EXPERIMENTAL MEASUREMENTS 

Discussions about the calibrations, measurements, calcu­

lations, and the anticipated uncertainties in the measurements or in 

the assumed physical properties of the system considered, are pre­

sented in this section. 

A. Evaporation Rates 

As discussed previously the vaporization rate measurements 

were made by adjusting the injection rate of the 3/8" injector until it 

matched the evaporation rate from the center section of the porous 

cylinder as evidenced by the observation of the two manometers 

indicating the line and cylinder (center section) pressures respectively. 

The uncertainties encountered with this method of evaporation rate 

measurement are very small, and will be discussed below. 

The injector itself is surrounded by an oil bath which is 

maintained at 100 °F by using a platinum resistance thermometer in 

conjunction with an:electronic contror circuit used to control an oil 

bath heating element . The temperature excursions were very small, 

and since the specific volume of either n-heptane or n-octane at at­

mospheric pressure changes: by less than 0.08% in going from 99 . 5 °F 

to 100. 5 °F (43) , the error incurred by assuming that the contents 

of the injector were expelled at the mean temperature of the injector 

bath during the duration of .a run is completely negligible. Similarly 

the effect of variations in pres sure of the ejected fluid may be 

assumed inconsequential' as it can be estimated from observing the 



-59-

pressure drop encountered by the liquid feed between the "line" 

manometer and the cylinder internal pressure manometer that the 

pressure of the fluid leaving the injector ranged between atmospheric 

and atmospheric plus a four foot head of the ejected fluid for all runs. 

The feed lines used were standard seamless stainless tubing 

with an internal diameter of 0. 072 inches. The fluid leaving the in­

jector must travel through approximately forty feet of tubing before 

reaching the cylinder of which approximately twenty feet are main-

tained at a constant temperature through an oil line trace. Oil 

recycles continuously through this "trace" using oil drawn from the 

isothermal injector oil b ath. The unprotected length, about 20 feet, 

represents a total volume of about 16 cm3 which is comp~rable to the 

volume of fluid displaced by the injector on any given run. If the 

mean temperature of the hydrocarbon in this line were to change by 

3. 0 °F between the start and completion of an injector run, which is 

a maximum figure, the error induced by assuming that the mass of 

hydrocarbon retained in the feed . line was constant at the beginning 

and end of an injector run {so that a mass of fluid equal to that dis -

placed from the injector reached the cylinder surface and evaporated) 

could amount to 0. 25% of the total mass displaced by the injector. 

Since the actual mass flow rates are obtained from an inte-

grated average of the injector displacement rates during a run, and 

these rates are controlled to 1 part in 10, 000 by use of a preset 

counter mechanism, described by Chen (7), the total uncertainty 

involved in measuring mass flow rates is essentially the same as 
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that due to changes in the specific volume of the residual hydrocarbon 

feed retained in the injector and in the feed lines during the com­

pletion of a run. This uncertainty for the average run is estimated 

to be on the order of 0. 25%. 

Uncertainties in evaluating the surface area of the evaporating 

center section arise principally from the use of an epoxy resin to 

bond the diatomaceous earth sleeves to the lead gaskets at each end, 

and to cement the thermocouple plugs in place. It was determined 

experimentally that the freshly mixed resin would penetrate approxi­

mately O. 008 inch into a fine grade diatomaceous .earth sample of the 

material used in making the porous sleeves. It is presumed that the 

rapid polymerization rate of the setting resin prevented further dif­

fusion into the diatomac eous earth sample. In constructing the 

cylinder a great effort was made to make the epoxy bonded seals 

between the evaporating sections and the lead gasket on the inner 

edge of the diatomaceous earth sleeve so that the outside surface 

would be unobstructed. Inspection of the finished cylinder (ref. Fig. 

A2 and A3) showed that these attempts were largely but not com­

pletely successful, a result which leads to an estimated 0. 006 inch 

uncertainty concerning the effective length of a two inch porous 

section. In the case of the thermocouple plugs a ring of epoxy resin 

appears as a result of an endeavor to fill in the cavity between the 

cylinder surface and the plug to avoid creating irregularities in the 

resulting flow field. The surface area in question here is con­

siderably less than that involved in bonding the end of each evaporating 
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section to the lead gaskets though, and is probably less than the 

error involved in estimating this loss of evaporating surface area. 

Since each diatomaceous earth section is 2. 000 ± O. 001 inches 

long by 1. 000 ± O. 0005 inches in diameter, the uncertainty in the 

machined surface area is about 0. 07% while the uncertainty in sur­

face area due to not including that portion of the surface blocked by 

an epoxy film is on the order of 0. 25%. 

Combining the uncertainty in determining the liquid feed rate 

with the uncertainty involved in calculating the effective evaporating 

surface area the total uncertainty of the calculated evaporation rate 

per unit area is on the order of 0. 35 per cent. In obtaining this 

estimate the square root of the sum of squares rule for random 

errors with no correlation between them was assumed. 
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B. Cylinder Surface Temperature 

The surface temperature of the cylinder was measured by 

O. 003 inch copper constantan thermocouples mounted on each of 

two diatomaceous earth plugs per section. All_ thermocouples were 

made from the same materials and a representative sample of these 

materials was used for a calibration in this laboratory. A potential 

of 1418.6 microvolts was created at 100 °F when the cold junction 

was maintained at the ice point. It has been established in this 

laboratory that temperature measurements made with calibrated 

copper-constantan thermocouples are generally accurate to within 

± O. 1 °F. However, as can be seen from Figure 5 point measure-

ments of the cylinder surface temperature appear to have a standard 

deviation from the mean of approximately O. 5 °F when normal heptane 

was used as the evaporating fluid. This surprisingly large deviation 

was not observed with runs made with n-octane where the mean 

standard deviation of individual surface temperature measurements 

0 was 0. 1 to 0 • 2 F. 

The only possible explanation for the observed deviations 

from a mean surface temperature is that the mean temperature of 

the cylinder was not constant during the course of a run, being 

influenced by the mean temperature of its surroundings. An 

approximate energy balance was made which indicated that radiant 

energy transferred from the cylinder surroundings could easily 

amount to ten per cent of the total energy required to affect the 

vaporization process. A more rigorous analysis was not possible 
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because there were no temperature measurements made which would 

allow the evaluation of energy conducted to the center section from 

the exposed ends of the cylinder. Further such an analysis would 

still have required that the fluctuations in the temperature of the 

cylinder surroundings be documented. The desirability of these data 

was not anticipated. 

However for purposes of evaluating the gross Sherwood 

Number the available surface temperature data indicate that, although 

the surface temperature of the cylinder was a function of time as 

well as angle from stagnation, the fluctuations did not amount to 

more than 0. 5 °F, and by taking a statistical mean it is felt that 

the mean temperature at which the vaporization runs were made is 

known to within ± O. 2 °F in the case of n-heptane, and ± 0.1 °F for 

runs made using n-octane. The possible reasons for the greater 

stability of the observed surface temperature behavior with runs 

made using n-octane will be discussed in more detail later. 

The effe.ct of longitudinal temperature gradients is small as 

evidenced by the small differences in the mean surface temperatures 

of each of the three porous sections. The mean temperatures sensed 

by the gua.rd section thermocouples at a point 9/16 inch away from the 

boundaries of the center section (the guard section thermocouples 

were not located at the· center of the sections, c.f. Fig. AZ) were 

never more than 2 °F higher than the mean temperature of the center 
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section. At this point it should be noted that the highest tempera-

tures were always recorded by the thermocouples on the south guard 

section. Temperatures sensed by thermocouples on the north guard 

section were usually halfway between the temperature s recorded by 

the center section thermocouples and those of the south section. This 

lack of longitudinal surface temperature symmetry presumably occurs 

because the vacuum jacket, which fits around the north brass sup-

porting rod during operation, shielded the north brass supporting rod 

from direct energy transfer. Because the vacuum jacket did not pro-

vide a low resistance thermal circuit to the north brass supporting 

rod less energy was conducted longitudinally to the north evaporating 

section through the brass core . To b e tte r appreciate the above dis-

cussion the reader is referred to Figure Ai showing the position of 

the vacuum jacket when the porous sections are exposed, and to 

Figur~ A7 taken looking south during a run. 

Summarizing, the effect of longitudinal conduction in pro-

ducing axial temperature gradients for the center e vaporating section 

should not introduce an uncertainty of more than 0.1 °F in the deter-

mination of an overall m e an tempe rature for the center sect ion, and 

the estimated uncertainty involved in using a mean temperature is 

0 . 0 
O. 25 F for n-heptane and O. 1 F for n - octane. The uncertainty in 

computing the mean temperature based on the various thermocouple 

readings is O. 2 °F for heptane, and 0.1 °F for octane. If these 

uncertainties are assumed to be independent of each other they may 

be combined according to a square root of the sum of squares law 
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for the total effect of randomly distributed uncertainties. Hence the 

total anticipated uncertainty in the cylinder surface temperature 

for this investigation is O. 35 °F for the measurements made with 

n-heptane, and O. 20 °F for measurements made with n-octane. 
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C. Sample Purity 

The effect of impurities in the fluid investigation would be to 

introduce uncertainties into data derived from the measured mass 

evaporation rates and cylinder surface temperatures. Principally in 

deriving the Sherwood and Fr°ossling groups which characterize mass 

transport rates, a vapor pressure is assumed which corresponds to 

that of the pure component at the measured mean temperature pre­

vailing during the evaporation process. If the vapor pressure of the 

impurities did not correspond to that of the pure components such an 

assumption would be in error. Secondly, the diffusion coefficient 

which appears in the derivation of the mass transfer groups would 

also be subject to uncertainty with the addition of impurities. For­

tunately, the method of preparation of pure grade samples tends to 

alleviate both of these objections, and the uncertainty introduced by 

sample impurities can be shown to be an order of magnitude less than 

the actual impurity level. 

Concerning the effect of the supposed impurities on the vapor 

pressure of the sample, the n-heptane and n-octane obtained from the 

Phillips Petroleum Company are purified through fractionation in the 

manufacturing process. Hence, the impurities present would have 

vapor pressures very nearly equal to that of the pure component 

studied, and their effect in this regard would be minimal. The 

diffusion coefficient of the impurities when expressed in units of 

mass flowrate would increase approximately in proportion to the 

square root of the molecular weight. However, it is most probable 
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that the mean molecular weight of the impurities present is also very 

close to that of the hydrocarbon studied and certain that the effect 

on the over-all diffusion coefficient would be less than the actual 

impurity level. 
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D. The Free Stream Reynolds Number 

The free stream Reynolds Number is computed from the 

measured weight flowrate of air, the diameter of the cylinder, and 

the viscosity of the air. The derived quantity which is based on a 

mean velocity through the jet exit is then increased by the factor 

1. 08 to account for differences between the average velocity seen 

by the horizontal cylinder and the mean velocity through the jet 

opening. The formula used for computing the free stream Reynolds 

Number is: 

where 

D~. 
Re = 1. 08 air 

go 11airA duct 

u = 1. 08U 
m = -.08 crA 

In the formula above, the cylinder diameter is known to O. 001 

inch or 0.1%. The jet exit area was measured by Cuffe! (13} to 

within an estimated accuracy of O. 1 %. The uncertai11ty in the mass 

flowrate of air through the jet opening and the origin of the factor 

1. 08 merit some discussion and will be considered presently. 

During operation the mass flowrate through the duct was 

maintained constant to within ± 0. 1 per cent. This was done by 

monitoring the blower RPM with a control system using a preset 

counter mechanism. The apparatus used to control the blower 

speed is comparable to that used to control the injector speed and was 

'discussed earlier. Adjustments in the counter setting could be 
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made, if necessary. 

The venturi meter discussed earlier in this work, shown 

schematically in Figure A6 was used to measure all air flowrates. 

In this work, either a 3- or a 6-inch throat diameter venturi was 

used, depending upon the weight flowrates desired. The design of 

the venturies and the calibrations for them are based on the research 

of Jorrison (29), ·who conducted an exhaustive investigation on the 

properties of venturi meters. 

Jorrison (loc. cit.) published the results of test performed 

with over two hundred venturi es. His results are expressed in terms 

of a venturi coefficient relating the actual pressure drop between 

the entrance and the throat of a venturi to the theoretical pressure 

drop which would prevail for the ."one dimensional 11 flow of a perfect 

. inviscid fluid. A sample of his results appear in Figure 6; from 

these it is judged that mass flowrates through the apparatus may be 

reproduced to within O. 1 % in this laboratory and are known with an 

absolute accuracy of 0. 5%. 

The factor 1. 08 is an estimate of the ratio of mean velocity 

in the center of the jet to the mean jet velocity. The velocity profile 

was measured by Venezian (58)' and Cuffel (13) in the center region 

of the jet opening. These data, taken at a mean jet velocity of 7. 8 feet 

per second, appear in Figure 7 where the velocity profile is extrapo­

lated to the edge of the jet opening. The extrapolation conforms to 

the requirement that the area integral of the local velocities must 

equal the bulk velocity, as determined from the weight flow rate, 

multiplied by the duct area. It is anticipated that the relative shape 
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of the velocity profile of the jet is a function of the mass flowrate. 

However in this regard the work of Venezian and Cuffel indicate that 

the velodty profile is quite flat over the center two-thirds of the jet 

width, and the ratio of peak to average velocity assumed above does 

not seem untoward. It is estimated that the relative veloeity profile 

(for runs at different Reynolds Numbers) would not differ by more 

than 1 per cent on account of the short length downstream of the 

duct contraction, and that the absolute velocity in the center of the 

duct is known to within 1. 5 per cent. Considering the factors above, 

it is estimated that the uncertainty in the free stream Reynolds Number 

is less than 2. 0 per cent. Becuase the measured evaporation rates are 

approximately proportional to the square root of the Reynolds Number, 

this uncertainty would lead to a 1. 4 per cent uncertainty in results 

presented as a function of Reynolds Number. 
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E. Free Stream Turbulence Level and· Integral Scale o f Turbule nce 

For all runs made without the turbulence grid and jet exten-

sion, the free stream turbulence level as measured by Cuffel (loc. 

cit.) was i. 3 per cent. The measurements were made using the 

Schubauer hot wire technique for measuring eddy conductivity, and 

the estimated uncertainty in the level of turbulence obtained from 

these measurements is± 0.4, e.g., 0.9 < ZT < i.7 per cent. 

The higher turbulence levels were created by the use of a 

turbulence grid which consisted of a plate with 7/8 inch holes. punched 

at i-inch intervals on a square lattice. The turbulence created by 

such a grid is a strong function of the distance downstream of the grid 

andhasbeeninvestigatedbymanyworkers (2, 3, 5, 14, 15, 22, 

57). These workers reported that the high level o f turbulence pre-

vailing at downstrea m distances less than 10 hole diameters from 

the grid is non-isotropic so they correlate their results in 'terms of 

an ':'apparent 11 turbulence level defined as the ratio . of the mean longi-

tudinal fluctuating velocity component to the time average local 

velocity. Thus : 

{
-} i/2 

ZT = -b u'2 

Their results are in substantial agreement and indicate that the high 

apparent turbulence levels created in this laboratory can be p redic.t.e.d 

to within 10 per cent. Figure. 8 shows the turbulence levels anticipated 

for various distances downstream of the turbulence grid used in this 

study. For details concerning the origin of this f:urve the reader is 

referred to Proposition 5 in the Appendix. The distance of the 
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cylinder stagnation point downstream of the turbulence grid was 

4. 512 inches for an estimated free stream turbulence level of 0. 26% 

and 7. 428 inches for an estimated turbulence level of 11 %. 

The scale of turbulence generated downstream of the turbu­

lence grid is shown in Figure 9. As pointed out by Van der Hegge 

Zijnen {56) thermal transport from cylinders is a strong function of 

the scale of turbulence relative to the cylinders diameter. For 

details on the origin of Figure 9 the reader is again referred to 

Proposition 5 in the Appendix. The scale obtained from reference 

to Figure 9 is estimated to be accurate to within 10 per cent. It is 

O. 67 inches for the run at the high tubulence level, and O. 78 inches 

for the run at 11 % turbulence. 
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F. Effect of Finite Duct Width 

Extrapolating test data t~ken in a finite jet to predict the 

behavior of a body placed in an "infinite 11 parallel stream has always 

caused workers some conce.rn (20, 46). For objects tested in a 

wind tunnel, the "blockage ratio 11 is described as the ratio of block ed 

area to total area available for flow, and it is well known that blockage 

ratios greater than 0. 20 significant ly affect the flow around a cylindri­

cal body ( 1 , 21 , 5 2). The effect of high blockage ratios in a tunnel 

is to compress the fluid streamlines in the region of maximum frontal 

area producing higher free stream velocities than would exist for the 

same object placed in an infinite air stream. Simultaneously, the 

sectional area occupied by the wake is reduced (21, 52). 

In the case of a free jet one would anticipate the opposite 

effect wherein the streamlines would show a greater divergence at 

the point of maximum area, the wake cross section would be in­

creased, and possibly, that separation would occur earlier than for 

the same object placed in an infinite air stream. Cuffel (13) predicts 

tangential velocity components in_the vicinity of separation which 

are substantially less than those which would prevail for the same 

cylinder placed in an infinite air stream. His work is based on hot 

wire measurements made in the vicinity of the boundary layer, and 

he. used the correlation of Collis and Williams {9) to transpose his 

hot wire Nusselt Numbers into local velocities. The results of his 

work in this area appear as Figure 10 of this thesis since he also 

worked with a one-inch cylinder using the same air jet with air 

velocities of 8 feet per second. Also presented in Figure 10 are the · 
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results of Yuge {60) for a cylinder placed in a free jet or tunnel 

where the blockage ratio is negligible. It will be noted that even for 

this case local velocities are significantly lower than those pred icterl 

by potential flow theory due to the effect of the wake. Yuge 's corre-

lation is based on the experimental pressure distributions reported 

by several investigators, at Reynolds Numbers near 40, 000. Re-

garding Figure 10, Cuffel reports that "the thickness of the boundary 

layer was not clearly defined beyond 60 degrees from stagnation,'' 

indicating possible separation at this point. This is in marked 

contrast with the observations of others working at lower blockage 

ratios who report laminar separation at approximately 81 degrees. 

The effect of high bloc::kage ratio, O. 33, for a cylinder placed 

in a free jet is still uncertain. It is hoped that future work will 

clarify this problem. 

G. Air Temperature 

The air temperature was measured at a point approximately 

three feet upstream of the jet exit. A high precision calibrated 

platinum resistance thermometer was used to measure the air 

temperature with an accuracy of± 1 °F. During the course of this 

investigation the air temperature was always maintained between 

0 
99.8 and 101.1 F. During the course of a run the air temperature 

cycled about 100 °F due to the action of the control circuit. The 

error introduced into the calculations by these air temperature 

·excursions is completely negligible and may. be disregarded. 
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H. Air Properties and the Boundary Layer Parameters 

The derivation of the Sherwood Number in terms of the 

measured variables was discussed earlier. The final form shown is 

arrived at by assuming an isothermal diffusion process for an ideal 

solution where the mean modified Maxwell diffusion coefficient, 

DMk,, and the compressibility factor of the mixture, Z, are constant. 

However, if the mixture of heptane and air (or octane and air) is 

assumed to be an ideal solution, the differential form of the mass 

flux is rigorous, and the correct expression for the mass diffusion 

flux may be obtained by numerically evaluating the differential form 

through the boundary layer. Since in this work the simultaneous 

temperature and composition of the fluid in the boundary layer are 

not known the same results are approximated by evaluating all bound­

ary layer parameters at a temperature halfway between the mean 

cylinder temperature and that of the air stream. 

The diffusion coefficie nt for the diffusion of heptane into air 

has been measured in this laboratory (47). Values for the diffusion 

coefficient of n-octane into air were taken from the International 

Critical Tables (28). These data along with the data for n-heptane of 

reference (47) are presented in Figure 11. The Maxwell diffusion 

coefficient was selected f or this work because it is relatively insensi­

tive to composition changes. In the case of n-heptane the diffusion 

data were obtained at essentially the same temperature and com­

position as those encountered in this study, and the diffusion coefficient 

for this · system was used with great confidence. The estimated un­

certainty is ± O. 7%, the same uncertainty cited by the investigators (47). 
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The uncertainty in the diffusion coeffici·ent used for then-octane air 

system is unknown. Reference to Figure 11 indicates that the reported 

diffusion coefficient for n-octane may be low. Also the effect of 

varying composition is unknown. Overall,the author estimates that 

uncertainty to be ± 3. 0%. It is hoped that future work currently 

underway in this laboratory will improve this estimate. 

The evaluation of the compressibility of the mixture can be 

approached in several ways. The method selected is based on the 

assumption of an ideal solution between the hydrocarbon and air 

giving: 

In this expression the sub dots denote molar quantities and :1k is the 

mole fraction of the hydrocarbon. . The mole fraction hydrocarbon is 

never greater than 0. 0 5, and the two phase compressibility factor 

for the vapor at the temperature and vapor pressure which prevailed 

during these tests was O. 995 or greater (34, 36). It is estimated 

that the uncertainty in the mean compressibility factor used is on 

the order of 0. Oi per cent. 
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I. Standard State Fugacity 

The evaluation of the standard state fugacity of the hydrocarbon 

0 
vapor, fk, when the ideal solution as s umption is made regarding the 

fugacity of the hydrocarbon, 

requires that the "standard s t ate" fugacity be obtained by a linear 

extrapolation of a graph at ~/P vs. P up to one atmosphere of 

pressure. The validity of the extrapolation process requires that the 

fugacity of the hydrocarbon vapor be a function only of its partial 

pressure and temperature. 

In this work the "standard stat e" fugacity of the hydrocarbon 

in atmospheres is evaluated at the m:ean t e mperature of the boundary 

layer. It will be r e cognized that the ordinary conception of a standard 

state fugacity as being the fugacity of the vapor at one atmosphere 

pressure does not have significance in this case, since the pure 

vapor does not exist at the temperature and pressure of the vapori-

zation process. 
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V. EXPERIMENTAL RESULTS 

The experimental results, the overall uncertainties, and the 

implications of these data are presented in this section and compared 

with the pertinent experimental results of other workers • 

.. 
A. Sherwood and Frossling Numbers 

The Sherwood Numbers characterizing mass transfer rates 

are plotted against the square root of the free stream Reynolds 

Number in Figure 12. These data are for an estimated free stream 

turbulence level of 1. 3 per cent, taken without the turbulence grid in 

place. The choice of the one-half power of the Reynolds Number 

as the abscissa is a common one and is based on the theoretical 

considerations discussed earlier. 

The data indicate an almost linear dependence on the one-half 

power of the Reynolds Number which, as indicated earlier, is in 

accord with '1theory." The Sherwood Numbers for n-octane are 

significantly higher than those obtained with n-:heptane, which is 

also .anticipated since the Schmidt Number of n-octane in air at the 

mean temperature of the vaporization process, 2. 39, is 26 per cent 

higher than the corresponding Schmidt Number for n-heptane, 1. 89. 

The Fr~ssling Numbers are shown plotted against the square 

root of the Reynolds, Number in Figure 13. These results are most 

interesting since they indicate that the Fr.ossling Number for mass 

transfer from a cylinder is almost independent of the Reynolds Number 

for low free stream turbulence levels and Reynolds Numbers less 



-.
...

_ 

8 
,J

 
.... 

-
. ....,

 . ..
., 

F'
 i

:·
 

.....
.....

.. 

t-
~ 

8
0

 
~
 
~
 

..a
 
~1(

1_ 
~
 

·~I
 
~
 

N
 
~
 

,,
 ~
 

,0
 

6
0

 
' 

_
J

 

II 
~ 

01
* 

I 
I 

v
~
 

I 
I 

I 
~
o
 

~
 II 

4
0

 
oc

 
w

 
a:

i 
~
 

::::
:> z 0 

2
0

 
0 0 

I ·
 
/
I
 

I 
I 

I 
• 

T
I-

H
E

PT
A

N
E

 
~
 

0::
: 

0 
11

 -
O

C
T

A
N

E
 

w
 

:r:
 

I/
) 

2
5

 
5

0
 

75
 

10
0 

12
5 

SQ
U

A
R

E
 

RO
O

T 
R

EY
N

O
LD

S 
N

U
M

BE
R

 
R

eV
2 

F
ig

. 
1

2
 

M
at

e
ri

a
l 

T
ra

n
sp

o
rt

 
fr

om
 

C
y
li

n
d
e
rs

 
-

S
h

e
rw

o
o

d
 N

u
m

b
e

r
s 

fo
r 

L
o

w
 L

ev
e

ls
 

o
f 

F
re

e
 

St
re

a
m

 T
u

rb
u

le
n

c
e
 

(Z
t 
=

 0.
 0

1
3

) 

If
 



if
) 

if
) ci
 ~
 

0
.8

 
Il

l 0 Q
) z .s:
: 

I/
) ~ 

0.
6 

u..
 

0:
: w
 

ca
 ~
 0

4
 

:::>
 

• 
z <.:

> z ..
J 

V
) 

V
) 

0
.2

 
:o

 
0:

: 
LL

. 

-
("

) 
-

~
 

-
-
-
-

u 
... 

lii
.{

 

F
ig

. 
13

 

.. 
-

- • 
n

-H
E

P
T

A
N

E
 

0 
TI

 -
O

C
T

A
N

E
 

I 
2

5
 

5
0

 
7

5
 

10
0 

1
2

5
 

SQ
U

A
R

E
 

R
O

O
T 

R
E

Y
N

O
L

D
S 

N
U

M
B

E
R

 
.;z

y. 
M

a
te

ri
a
l 

T
ra

n
sp

o
rt

 f
ro

m
 C

y
li

n
d
e
rs

 -
F

r0 o
ss

li
n

g
 N

u
m

b
e
rs

 f
o

r 
L

o
w

 L
e

v
el

s 
o

f 
F

re
e 

S
tr

e
a
m

 T
u

rb
u

le
n

c
e
 

(Z
t 

=
 O

. 
0

1
3

) 

I 0
0

 
-J

 
I 



-88-

than 10. 0 00. This is in marked contrast to the behavior of the 

Fr.ossling Number for heat transfer at lower Reynolds Numbers as 

reported by this laboratory (19). Also the consistent difference 
.. 

between the observed Frossling Number obtained with n-octane as 

opposed to those observed with n-heptane would seem to indicate that 

the one-third power dependence of the Fr"c;ssling Number on the 

Schmidt Number is not high enough. If instead of correlating a 

, Fr.ossling Number on the basis of an inverse one-third power of the 

Schmidt Number, an inverse O. 4 power dependence is assumed, the two 

curves in Figure 13 would coincide with an intercept of approximately 

O. 60 for the Fr:;ssling Number at vanishing Reynolds Numbers. This 

apparent dependence of the Sherwood Number on the 0. 4 power of the 

Schmidt Number may be altered somewha t when a more accurate 

value of the diffusion coefficient of n-octane is available. 

The Frossling Number taken at the higher turbulence levels 

with n-heptane are shown along with the data for the lowest level of 

turbulence in Figure 14. In constructing this figure it was assumed 

that the effect of free stream turl?ulence on mass transport rates 

diminishes with decreasing Reynolds Numbers unti~ in the limit 

as the Reynolds Number approaches zero, the effect of free stream 

turbulence disappears. This assumption has been made before in 

this laboratory for the case of energy transport (19) and is in accord 

with the "theory" presented earlier in all respects except for the 

indicated curvature. The increasing slope of the curves for the 

higher turbulence levels is anticipated from the indicated curvature 
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of the data for the low turbulence level. 

It will be recalled that the scale of turbulence downstream of 

a turbulence grid increases approximately as the square root of the 

downstream distance. The effect of the scale of turbulence on 

energy transport has been considered by Van der Hegge Zijnen (56}, 

but the limited data available in this study do not warrant a similar 

comparison for the case of material transport. 
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B. Experimental Uncertainties 

The measured data are tabulated along with the derived 
.. 

Sherwood and Frossling Numbers in Table I in the Appendix. In 

Table II the uncertainties in the measurements obtained and in the 

constants used in this study are tabulated. The uncertainties are 

those discussed in the previous section and are compared on the 

basis of relative and/or absolute uncertainties. In the case of n-

octane the large uncertainty in the numerical value used for the 

diffusion coefficient causes the absolute uncertainty of the reduced 

data for this substance to be much greater than the uncertainty of 

the data for n-heptane. However it will be appreciated that the 

relative uncertainty, indicating the magnitude of anticipated scatter, 

is small. The observed trends of the Sherwood and Fr
0

ossling 

Numbers obtained with this substance are felt to be fully as reliable 

as those indicated in the study of n-heptane. 

The individual uncertainties are combined by taking the 

square root of the sum of the squares to obtain an overall uncertainty. 

This procedure is valid in this case since there is no reason to 

suspect a correlation between the individual uncertainties involved. 
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C. Cylinder Surface Temperature 

During a run each of the six thermocouples which had been 

installed on the surface of the cylinder were read many times. In 

making these measurements the cylinder was rotated so that the 

surface temperature could be computed as a function of the angle 

from stagnation. 

Upon the completion of this investigation there were over one 

thousand surface measurements made, and statistical methods were 

applied to the interpretation of results. A statistical approach was 

used principally to determine whether a rational explanation for the 

scatter of the individual points would be apparent, but it was also 

desired to establish surface temperature trends which could then be 

described as a function of the free stream Reynolds Number and 

turbulence level. 

It was assumed that the cylinder surface temperature for a 

constant free stream Reynolds Number and turbulence level could be 

expressed by a Fourier Series in terms of cosines of even multiples 

of the angle from stagnation. Thus : 

T(cf>) = A + A 1 cos cf> + A 2cos Zc{> + •.• +A cos ncf> o n 

The 'functional relationship above was selected because of an antici­

pated · symmetry in the surface temperature about stagnation. It was 

further assumed that the temperatures of each of the three porous 

sections could be described by the same series with all coefficients 
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except the zeroth order term, denoting the average temperature of the 

section, being equal for each section during a given run. 

The Fourier coefficients based on the data from each run were 

compared on this basis to determine the effect of Reynolds Number 

and turbulence level on the cylinder surface temperature. A further 

inspection of these results revealed a definite correlation between 

the zeroth and first order Fourier coefficients with the mean labora­

tory temperature which prevailed during a run. In this case the zeroth 

order Fourier coefficient is the average cylinder surface tempera­

ture, while the first order coefficient is indicative of the relative 

difference between the front and back halves of the cylinder surface 

during a run. The correlation observed between the first order coef -

ficient and the prevailing laboratory temperature is significant because 

the front half of the cylinder "sees" the duct interior (and hence would 

be receiving radiation from an essentially constant temperature source, 

100 °F, for all runs), while the back half of the cylinder faces the 

surroundings whose mean temperature varied from one run to the 

next, and presumably varied about the mean during a run. These 

observations are important because they demonstrate conclusively 

that the cylinder surface temperature is affected by the temperature 

of the laboratory surroundings. 

This comparison is shown in Table III and also in Figures 15 • 

16 I and 1 7 ShOWing the Variations in the mean Cylinder temperature 

and the first order Fourier coefficient with laboratory temperature. 

These results for the evaporation of n-heptane at a turbulence level 
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of 0. 013 appear in Figure 15 plotted against the square root of the 

free stream Reynolds Number. In Figure 16 the data for various 

turbulence levels are plotted against the apparent free stream 

turbulence level for n-heptane at a constant free stream Reynolds 

Number of 3 780. Figure 1 7 is comparable to Figure 15 except 

that the evaporating fluid is n-octane. In comparing Figures 15 

through 1 7 it is apparent that the statistically determined first 

order coefficient for the evaporation of n-heptane at a Reynolds 

Number of 3780 and free stream turbulence level of 0.013 (Figure 15) 

is inconsistent with the trends observed in the surface temperature 

measurements for· other runs. This is explained by the fact that 

tests were made over a three day period at these conditions, and 

the mean laboratory temperature varied from day to day {c. f. Table 

III). Alternatively it is possible that the measured laboratory tem­

peratures do not represent a true mean temperature during the 

period the data were taken. In this regard it was not anticipated that 

the prevailing laboratory temperature was an important variable, 

and this variable was measured rather infrequently. 

The higher order Fourier. coefficients were calculated up to 

the seventh order for runs where more than forty surface tempera­

ture measurements per section were available, and up to the fifth 

order if fewer data points were available. The coefficients thus 

calculated for each ·run were smoothed according to the square root 

of the Reynolds Number for those tests made at a constant level of 

turbulence, and against the prevailing turbulence level when this 

parameter was varied. Further, the zeroth and first order coef-
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ficients were adjusted to allow for the difference between the actual 

measured laboratory temperature and. 82 °F, a representative 

average temperature for the cylinder surroundings. The smoothed 

curves in Figures 15 to 17 show this compensation. The results 

appear in Table IV and were used to calculate the cylinder surface 

temperature profiles as a function of local velocity, Figures 18 and 

20, or of turbulence level, Figure 19. These are the surface tern-

peratures anticipated if the l a boratory t e mperature had been main­

tained at a constant 82 °F. However in the figure presented earlier, 

Figure 5, showing the results of point temperature measurements 

at 8 feet per s e cond, the smoothed curve shown has not been 

adj usted for the difference between the laboratory temperature and 

82 °F. The reader will recall the scatter apparent in this figure; 

again this is attributed to variations in the laboratory temperature 

during the course of a run. The analysis is not carried any further 

because it is known that there were fluctuations in the room tempera­

ture during the course of a run which were not sufficiently well 

monitored to jus tify a quantitative corre lation between the prevailing 

t emperature of a cylinder surroundings and the cylinder temperature. 

However the observed effe ct is substantial for room temperature 

0 0 
changes of 3 to 5 F (c.f. Figures 15, 16, 17), and is set forth as a 

possible explanation of the "ra ndom" deviations of individual surface 

temperature measurements from the general trend. In this regard 

there was no general sequence followed in obtaining the thermocouple 

measurements as a function of the angle from stagnation, and the 
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data for adjacent points were commonly taken hours apart. The 

relative stability of the laboratory temperature for runs made with 

n-octane is probably due to the fact that these data were taken on a 

priority bas is with runs made every day, which was not true of the 

runs made using n-heptane. 

Finally it is felt that the uncertainty involved in determining 

the mean cylinder surface temperature at which mass transfer rate 

measurements were made is less than O. 2 °F for n-heptane, and 

0.1 °F for n-octane because mass flow rate measurements were 

made concurrently with cylinder surface temperature measurements. 

Also the trends shown by the statistl.cally determined Fourier coef­

ficients a:te felt to have comparable accuracy because whenever one 

data point was taken at one angle from stagnation another point 180° 

opposed was also taken. Thus the effect of transient temperature 

perturbations of the cylinder temperature would tend to cancel out 

except for data points taken in the vicinity of separation. 
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D. Material Transport From Cylinders 

Results of Other Workers 

Compari son with the 

The results of this investigation are compared in Figure 21 

with data obtained by Schnautz (49) with cast napthalene cylinders, 

and with the data of Maisel and Sherwood (33). Maisel and Sherwood 

studied the evaporation of a number of liquids in air, carbon dioxide, 

and helium in an. e ffort to determine the effect of the Schmidt Number 

on mass transfer rates. They concluded that the jD factor for 

material transport (the Fr
0

ossling Number considered in this study 

is equivalent to the Chilton Colburn jD factor multiplied by the 

square root of the Reynolds Number) was best correlated by the one­

third power of the Schmidt Number, but in this regard the scatter of 

their data was too great to allow them to distiD:guish betwe en a one­

third or a O. 4 power dependence. The results obtained by Maisel 

and Sherwood (33) corroborate the present study, again within the 

limitations of their data. These data were taken with several 

cylinders, whose diameters were somewhat greater. than O. 5 inches, 

placed in a section of pipe with an inside diameter of 4. 015 inches. 

With this design it would be difficult to document the two-dimension-

ality of the flow around the test cylinder. In addition their free 

stream turbulence level was inordinately high, 3. 2 per cent. 

The data of Schnautz (49) also scatter widely, but the experi­

mental design was much more favorable. He took data over a range 

of turbulence intensities from 0. 5 to 11. 0 per cent, but at much 

higher Reynolds Numbers than those used in the present study. His 

data comp1e.ment the present investigation very favorably by 
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indicating the general trend of the Fros sling Number with level of 

turbulence at the higher Reynolds Numbers. His scatter is disap­

pointing, but seemingly unavoidable in view of his observation that 

"the cast napthalene cylinders tended to sag when left in the duct 

over sustained periods of time." 
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E • . Comparison with Data for Energy Transfer 

As indicated earlier, the results of the present investigation 
.. 

indicate that the Fros sling Number for material transport from 

cylinders is independent of the Reynolds Number for low levels of 

free stream turbulence and Reynolds Numbers. This contrasts 

markedly with the correlation proposed by Galloway ( 19), which in 
.. 

turn was influenced by the systematic decrease in Frossling Number 

with decreasing Reynolds Numbers observed by Perkins and 

Leppert (39). However a review of the latter's work with flow of 

water and ethylene glycol over horizontal cylinders indicates that 

their results were correlated best with a Fr"c;ssling Number involving 

the O. 4 power of the Prandtl Number over a range of Prandtl Numbers 

from 1 to 300. Their data, . take.n ov.er. ·,a range ·of Reynalds Numbers 

frorri 40 to . .100,000, are correlated by the expression: 

(
µ . 0.25 

Nu __:!! ) 
µb 

R o. 5 p 0.4 e r · 

1/2 = O. 53 + O. 0015 Re 

This comparison with the present work is very favorable in terms of 

the indicated dependence of Nusselt Number on the O. 4 power of the 

Prandtl Number, but the slope of the Fr.~s sling Number with the 

square root of the Reynolds number: is somewhat incompatible with 

that indicated in the present investigation. The cause of this differ-

ence is not clear, although it may be .that the fr~e stream turbulence 

level of Perkins and Leppert was much higher than their reported 

1. 08 per cent. They employed a turbulence grid to smooth out 
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irregularities in the flow through the test section. The test cylinder 

was placed 430 bar widths downstream of a grid having a solidity of 

0. 395. This, from a cursory glance, would indicate that the reported 

turbulence level is not untoward. However it is to be suspected that 

the level of turbulence upstream of the mesh would be very high due 

to flow through a long section of pipe prior to expansion into the test 

section, and as indicated by Dryden et al. (15), one could not expect 

the single grid to damp out the residual free stream turbulence . 

Whether or not this would prove to be an important factor is uncertain. 

Another possible explanation for the discrepancy would be that 

Perkins and Leppert performed their studies. in a channel with 

blockage ratios ranging up to 0. 3 while this investigation was con­

ducted with a cylinder placed over a free jet w ith comparable blockage. 

As noted earlier, the effect of blockage in a free jet is opposite to 

that in a channel, leading to lower local velocities outside of the . 

boundary layer in the former case. However this would lead one to 

anticipate lower heat or mass transfer rates with a free jet. If the 

difference in transport for the two cases is significant, it does not 

seem readily explained in terms of the different blockage effects 

for the two situations. 

Other workers in energy transport, notably Richardson (41, 42) 

feel that tpe Fr
0

c;;ssling Number s hould become assymptotically inde­

pendent o f Reynolds Number .as the Reynolds Number approaches 

zero. Richardson arrives at this conclusion by reasoning that. 

laminar boundary layer theory indicates that transport rates in the 
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front half of the cylinder should be proportional to the square root 

of the free stream Reynolds Number, and that transport rates for 

the back half of the cylinder, in the separated flow region, should 

increase with the two thirds power of the Reynolds Number. He 

bases the latter conclusion on a correlation of heat transfer rate 

measurements by a variety of workers in the separated flow region 

behind cylinders, flat plates (placed normal to the oncoming air 

stream), and a few other shapes. Further, Richardson (41 , 42) deter­

mines that the transport rates from the front and back halves of 

the cylinder become comparable at a Reynolds Number of approxi­

mately 40, 000. For free stream Reynolds Numbers less than this 

value, according to Richardson, transport from the forward half of 

the cylinder predominates, and the Nusselt Number becomes 

asy:r;nptoti'cally .- proportional to the square root of the Reynolds 

Number. This conclusion is in accord with the results of the present 

investigation. The absolute magnitude of his coefficients are not. 

Richardson's correlation may be expressed in terms of a Fr
0

ossling 

Number by the formula: 

In the expression above, Ci lies within the limits of 0.42 to o.62, 

depending on the level of free stream turbulence, and c 2 between 

O. 064 and O. 095. However, continuing his reasoning one must conclude 

that the "constant," c
1 

is a function of Reynolds Number as well as 

the turbulence level, for it does not seem reasonable to expect an 
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effect of turbulence level for vanishing free stream velocities. 

Comings, Clapp and Taylor (10} measured heat transfer rates 

from a cylinder over a range of Reynolds Numbers from 400 to 

20, 000. Interestingly their results for the two levels of turbulance 

(1. 0 to 3. 0%} are very similar to those obtained in the present study 

except that their data indicate that the Fr
0

os sling Number for vanishing 

Reynolds Numbers approaches a limiting value of O. 67 to O. 68. Their 

results are compared with the results of this study in Figure 22. 

In view of their negligible blockage, and without the non-zero normal 

velocity component at the cylinder surface (as is the case with 

material transport}, it is not surprising that their results for the. 

Fr~ssling ' Number for energy transport are higher than those observed 

in the present study for material transport. 
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VI. CONCLUSIONS 

Material transport rates from cylinders, at least in the range 

of low Reynolds Numbers, are analogous to energy transport rates. 

The overall transport rate at low Reynolds Numbers is nearly pro-

portional to the square root of the free stream Reynolds Number 

and to the O. 4 power of the Schmidt Number. The O. 4 power depen-

dence of material transport on the Schmidt Number suggested by 

this work is somewhat less certain than the Reynolds dependence 

because of an estimated 3% uncertainty in the Maxwell Diffusion 

Coefficient for n-octane. 

At higher levels of free stream turbulence, 0. 110 to 0. 260, 

material transport rates increase substantially faster than the square 

root of the Reynolds Number. At a Reynolds Number of 3700, the 

overall material transport rate was increased approximately 30% 

by going from a free stream turbulence level of 0. 013 to 0. 260, and 

12% by a free stream turbulence level of 0.110. Thus,to a first 

order approximation material transport rates at this Reynolds Number, 

show a percentage increase which is proportional to the per cent level 

of turbulence. Also it is indicated that the effects of turbulence are 

proportionately greater at higher Reynolds Numbers. 

The data were compared with the results of Comings, Clapp 

and Taylor { 1 O} concerning energy transport rates from cylinders. 

Comings et al. measured energy transport rates which, when com­

pared on the basis of Fr.ossling Numbers for heat and mass transfer, 
.. 

were approximately ten per cent higher than the Fros sling Numbers 
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for material transport obtained in this study at the low levels of 

turbulence. However, in their work the cylinder 'was placed in a 

duct where the blockage was 12 per cent or less. In the present 

study the cylinder was placed .in afree jet where the blockage was 33 

per cent. The reader will appreciate that the . effects of blockage 

in thet'wo cases are diametrically opposed. In the duct, high blockage 

ratios restrict the flow past a cylinder causing higher local velocities 

than those which would be anticipated for the same cylinder placed in 

an infinite air stream having the same bulk velocity. For the case 

of the cylinder placed in a free jet, the flow diverges more than 

would be the case with an infinite air stream, and the lo.cal velocities 

are reduced. 

It seems that these lower local velocities encountered by the 

cylinder placed in a free jet could account for a reduction in the ove.r­

all transport rate (energy or material) because the laminar boundary 

layer thickness on the front half of the cylinder would be correspond­

ingly increased. However, it is not known how transport in the wake 

region would be affected by high blockage ratios for a cylinder placed 

in a free jet, and it is certainly pas sible that an increase in transport 

rates from the wake region could offset any small decrease in trans­

port rates encountered in going from stagnation up to the point of 

separation. Interestingly the effects of blockage do not seem to be 

high, for Galloway (18, 19) working with a 1. 4 inch cylinder placed 

over a 3 inch free jet, (blockage ratio = 0. 467), encountered energy 

transport rates comparable to those found by Perkins and Leppert (39), 

who studied energy transport rates from a cylinder placed in a closed 
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duct. 

In this study the normal velocity component at the cylinder 

surface due to the vaporization process ranged from 0. 001 to 0. 004 

ft/sec. The effect of a non-zero velocity component at the cylinder 

surface would be to increase the boundary layer thickness, thereby 

reducing overall transport rates. It is difficult to estimate this 

effect and to do so with any degree of accuracy would require a more 

detailed knowledge of local transport rates as a function of the angle 

from stagnation. , It is felt though that these velocities are sufficiently 

small so that the effect of the non-zero surface velocities on the 

boundary layer thickness and ·transport rates outside o~ influencing 

the viscosity of the fluid in the boundary layer, would be negligible. 

The effects of blockage ratio for a cylinder placed in a free 

jet or of a non-zero normal velocity component at the cylinder surface 

is not well documented. However, it is probable that these effects 

would act to reduce overall transport rates. It was observed that 
. . . 

the Fros sling Numbers for material transport measured in this study 

were approximately 10% lower than those measured by Comings ~t al. 

(10) for energy transport in a closed duct. This agreement is con-

sidered excellent and gives strong support to the analogy between 

energy and material transport from cylinders at low Reynolds Numbers. 

It was shown that radiant energy transport from the surround-

ings had a significant effect on the surface temperature of the cylinder. 

It was not anticipated that the effect of small changes in the laboratory 

room temperature would have much influence on the cylinder surface 
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temperature, and no provisions were made to control this variable. 

For these reasons the results of the investigation of the cylinder 

surface temperature profile were somewhat disappointing and were 

not used in any way except to determine the mean temperature of the 

cylinder during the vaporization process. In future studies of 

material transport rates it is strongly recommended that the tem­

p~rature of the radiation environment be controlled, or possibly that 

steps to reduce the total energy transport through radiation be taken. 
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VIII. NOMENCLATURE 

A. Roman Type Symbols 

b 

b 

c 
p 

D 

D ~· 

Dk. c J 
I 

DMk 

gas constant 

g ·rid bar width 

heat capacity 

cylinder diameter 

effective diffusion coefficient 

Chapman-Cowling diffusion coefficient 

Modified Maxwell diffusion coefficient 

d's Fr
0

ossling Number 

f fugacity 

gravitational constant 

local acceleration due to gravity 

thermometric conductivity 

mass transfer coefficient 

thermal conductivity 

L cylinder length 

L scale of turbulence 
x 

M molecular weight 

M mesh width 

m weight flow rate 

m molal flow rate 

n weight fraction 

n mole fraction 

Nu Nusselt Number 

ft' lb/lb' 
0

R 

ft 

Btu/lb, 
0

R 

ft 

lb/lb-mole, ft, sec 

ft
2 
/sec 

lb/sec 

lb/ft
2 

2 
ft/sec 

ft/sec
2 

ft
2 
/sec 

lb/lb-mole, ft
2 , sec 

Btu/ft, sec, 
0

R 

ft 

ft 

ft 

lb/ft
2

, sec 

lb-mole/ft~, se~ 
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p pressure lb/H
2 

Pr Prandtl Number 

q velocity ft/sec 

R molal gas constant ft, lb/lb-mole, OR 

Re Reynolds Number 

Sc Schmidt Number 

Sh Sherwood Number 

T temperature OR 

u free stream velocity ft/sec 

u bulk velocity at jet exit ft/sec 

u velocity component in Cartesian 
coordinate direction x ft/sec 

u local velocity ft/sec 

v modal volume 
3 

ft /lb-mole 

v velocity component in Cartesian 
coordinate direction y ft/sec 

w velocity component in Cartesian 
coordinate direction z ft/sec 

x Cartesian coordinate direction ft 

y Cartesian coordinate direction ft 

z compressibility factor 

zt turbulence level 

z . Cartesian coordinate direction ft 

B. Greek Type Symbols 

viscosity ·; 2 lb, sec ft 

a time sec 
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A. rriic roscale of turbulence 
x 

v kinematic viscosity 

specific weight 

molal specific weight 

frictional dissipation function 

angle from stagnation 

C. Operators 

gradient operator 

divergence operator 

~ finite difference operator 

D. Subscripts 

d pertaining to diffusion effects 

j component j 

k component k 

0 external to boundary layer 

s surface 

co undisturbed free stream 

E. Superscripts 

o pure component 

ft 

ft
2 
/sec 

lb/ft
3 

lb-mole/ft3 

-2 sec 

radians 

fluctuating component pertaining to turbulence 
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F ig. A 7 P orou s Cyl inder - Showing Installation over Jet E xit 
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Fig. A 8 The Injector and Injector Drive Mechanism 
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Fig. A11 Auxiliary Feed System - The R eservoir and Connections 
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Fig. A12 Manometer System used to Monitor Liquid Feed Rates 
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PROPOSITIONS 
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Proposition 1 

The ability to estimate pressure losses for a compressible 

fluid flowing in a constant area duct is very important in the design 

of a variety of fluid systems. The pressure loss (or gain) for the 

flow of a compressible fluid through a constant area duct may be many 

times greater than that calculated from the Fanning friction factor 

due to the acceleration or deceleration of the fluid a ccompanying 

changes in the specific volume. A correction to the Fanning friction 

factor is proposed which relates the pressure loss of a compressible 

fluid flowing in a const ant area duct to the incompressible Fanning 

friction factor and the volume tric behavior of the fluid. 

The proposed differential expression for the steady flow of a 

compressible fluid in a constant area duct i s : 

~ = { 1 + g~~ [:p (ZbT) - ( Z~T) J} -\ ~;) (1) 

where (dP /dx)f . t • denotes the frictional pres sure drop calculated r1c ion 

for an incompressible fluid having the same density, flow rate, and 

Reynolds N umber as the compressible fluid, and the indicated derivative 

with respect to pressure must be evaluated along the path of flow. 

Where the compressible fluid can be assumed to be an ide al gas 

the differential equation above reduces to the following simple expres-

sion when the flow is adiabatic: 

dP 1 + (y - 1) M
2 

dx "'"' l _ M2 ( ~~)f . . 
r1ct1on 

(2) 
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whereas, if isothermal flow of an ideal gas is considered, it can be 

shown that the general form reduces to: 

dP 1 · dP) 
\ dx friction (3) dx = 

Discussion 

Measurements and correlations of friction losses for compres-

sible flow at velocities near sonic have been made by Moody (1) and 

Keenan et al. (2). These investigators found no significant variation 

in the Fanning friction factor with velocity (outside of the well known 

Reynolds Nurriber dependence) for Mach numbers less than unity. 

Shapiro (3) and Lappell (4) substantiated these findings. * Lappel states, 

"For a given pipe and flow rate, f depends only upon viscosity, which 

in turn depend s only upon temperature, (the variation with pressure 

generally being negligible for pressures less than 100 atmospheres)." 

Since the frictional forces observed for flow through a pipe or 

duct are not appreciably affected by the compressibility or incompres -

sibility of the fluid studie d, as evidenced by the findings above, it 

seems reasonable to relate the total pressure loss for the flow of a 

compressible fluid to the frictional losses encountere d by an incom-

pressible fluid under the same conditions of flow. For incompressible 

flow the Fanning friction factor is a function of the pipe Reynolds 

Number and pipe roughness only, and the following equation applies: 

* This statement is not strictiy true. In the case of hydrocarbon vapors 
the viscosity at 100 atmospheres may be substantially different than 
the viscosity at atmospheric pressure. 
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( ~;; )f . t. = - i; 
r1c ion 

2 
(P~ ) (4) 

It is proposed that this relation be used in conjunction with the differ-

ential forms presented previously to calculate the pres sure drop 

(or gain) for the flow of a compressible fluid through a constant area 

duct. 

Finally it will be appreciated that the pres sure effects as soci-

ated with the compressiblity of a fluid are related to rate of change 

of the specific volume with downstream distance. For this reason the 

derivative of the group (ZbT) appearing in the general expression 

for the pressure drop of a compressible fluid must be evaluated 

along the path of flow. The derived relation is applicable to the 

steady flow of a non-ideal gas which may be undergoing chemical 

reaction. The overall pressure drop is calculated from a line inte-

gration involving the evaluation of the derivatives of ·the variables 

Z, b, and T with respect to the pressure P along the actual path of 

flow. 
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Theory 

For steady flow in a constant area duct the momentum equation 

can be written as indicated by Longwell ( 5): 

OU 1 ( 
u ox = p . 

_ dP + F ) 
dx A 

Continuity can be expressed: 

G = g p U = const 0 . 

Introducing an equation of state: 

and 

V = ZbT p-

dU 
dx 

= G ~( ZbT) 
dx \ P 

U d~ = G2/ ZbT) .E__ / ZbT ) 
dx · \ P dx\ P 

ft/sec
2 

2 
lb/ft sec 

ft
3 
/lb 

{5) 

(6) 

(7) 

{8) 

{9) 

{ 10) 

Expanding this expression, and equating it to the net forces acting on 

:>!c 

the system per unit weight, one obtains 

>!< 
Strictly speaking, this equality is not correct, as it implies 
U(dU/dx) = u(du/dx). However, this approximation becomes better 
as the Reynolds Number increases due to the relatively flat velocity 
profile caused by turbulence. Since situations where sonic velocity 
is approached will seldom be accompanied by Reynolds Number.s 
less than 100 ,000, this approximation is reasonable. 
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G2( ZbT) [.!. d(ZbT} _ _!. (ZbT)] dP = _!. (- dP + !') 
P P dP P P dx . p dx A 

( 11} 

Since from equation (7} p = 

G2 _1 [.!. d(ZbT) _ _!. ( ZbT )] dP = 
g

0 
P dP P P dx 

( 12) 

Rearranging this expression, and designating the frictional forces 

per unit area, F/A, as -(dP/dx}f . t" gives the desired expres-ric ion 

sion which can be put in any of several forms. 

dP 
{ 1 + G

2 
( dV) } - i ( dD 

dx g dP dx f . t• o ric ion 

{ 1 + 
G2 d(ZbT) -i 

= d~ } ( ~~) f . t. go r1c ion 

= {· 1 + G2 f...i_ (ZbT} - ( ZbT)J } -1 (dP) (1} 
g P dP P dx f . t• o · - r1c ion 

where it is noted that the pressure differential in the bracketed 

quantity must be evaluated according to the path followed by the 

flowing fluid. 

For an ideal gas with no reaction taking place: 

:p (ZbT} = b ~~ (Z = 1) ( 13) 

and 

2 / aP) a = \ ap = g
0 

ybT 
s 

2; 2 ft sec (14} 
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For an ideal gas in adiabatic flow: 

( dT) = ( dT) X (. du) 
dP . . du . . · dP . . 

adiabatic adiabatic adiabatic 

From the energy e quation: 

2 
H+~ =const 

2go 

Again making the approximation that u = U, differentiating, and 

replacing dH by Cp dT 

C dT + U dU = 0 
p g 

0 

= J_ b dT + U dU 
y-1 go 

where the second equality results from the ideal gas law, where 

cp = (y/y-1)b , . then: 

Also: 

dT 
<lu= 

.Y..:J. • u 
'\' g b 

0 

( 15) 

(16) 

( 17) 

( 18) 

dU = G ~ ( ZbT) (9) 
dx dx P 

Replacing the independent variable x with P and performing the 

indicated operation gives: 

dd~ = G ddP( z;T) = Gb (dT) GbT 
p dP adiabatic - 7 (19) 

Substituting equations (18) and (19) into equation (15), recognizing 

that G= U(P/bT) and that M ~ U/a: 
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(~~) d. b · = - Y:, 
1 

gu • ~ { ( ~~) d" b t· - ~ } 
a ia atic 1 o a ia a ic 

I dT) = 
\ dP adiabatic 

uz 
(y-l) g ybT 

0 = 
2 (y-1 )M T 

1 + (y-1 )M2 p 

Then returning to equation ('1} 

dP PU2 2 T (y-qM 
dx -

(20) 

{1 + 
go b2T2 

[b 
1 +(y-1)M2 p 

bTJ} -
1 

( dP) 
- p dx f . t" r1c ion 

{ 1 -
u2 

1 r- 1 
·· dP) = g bT 1 + (y-1 )M2 ~ dx friction 0 

= { ~ 1 }-
1 

( dP 1 
- a 2 1 + (y-1)M2 dx)friction 

Finally, a.rearrangement gives the desired formula relating the 

pressure drop for an ideal gas to the friction loss for adiabatic flow. 

dP 
dx = 1 + (y-1)M

2 
( dP) 

1 - M 2 dx f . t• r1c ion 

For isothermal flow of an ideal gas with no reaction taking place 

~ { ZbT) = 
dP \ P 

and equation (1) reduces to: 

bT 
- p2 

(2) 
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dP 
dx 

= {i G
2
bT l - i ( dP) 

- p2 ( dx £ . t" g
0 

r1c ion 

dP 

1 -

1 

yM2 (~;)friction dx = (3) 
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Nomenclature: 

A cross sectional area of pipe 

a sonic velocity 

b gas constant 

D pipe diameter 

F total frictional forces /ft 

f Fanning friction factor 

G weight flow rate 

standard gravity = 32. 17 

H specific enthalpy 

M Mach number= U/a 

p pressure 

T absolute temperature 

u bulk velodty 

u local velocity 

v specific volume 

Z compressibility factor 

y ratio of specific heats 

p density 

ft/sec 

ft lb/lb
0

R 

ft 

lb/ft 

lb/ft 2sec 

ft/sec 2 

ft lb/lb 

ft/sec 

ft/sec 

ft
3 
/lb 

21 4 lb sec ft 

Note: The force-length-time system of units is employed above, 
where the lb is the force. exerted on a lb mass (in the mass­
length-time system) by a standard gravitational field. 



-154-

References: 

1. Moody, L. F., Trans. ASME 66 (1948}, p. 671. 

2. Keenan, J. H., and Neumann, E. P., Journal App. Mech., 2l_; 
No. 2, (1946}. p. A-91. 

3. Shapiro, Ascher H. , The D amics a nd Thermod amics of 
Compressible Flow, two volumes Copy 1953, Ronald Press Co. 

4. Lappel, C. E., Fluid and Particle Mechanics, University of 
Delaware, (1956), pp. 51-68. 

5. Longwell, P. A., Mechanics of Fluid Flow (1958), (unpublished). 



-155-

:?ropo:sition 2 

In the study of catalysis the Langmuir Model for the adsorption 

and subsequent dissociation of a diatomic gas is well known. Based on 

this model Hougen and Watson {I) derive a series of theoretical rate 

expressions for catalytic rea ctions involving the ads orption and sub-

sequent dissociation of a diatomic gas on the catalyst surface. It is 

proposed that these expressions are fundamentally wrong because 

allowance WaS .nOt made for the number Of "active Sites II OCCUpied 

by the inert diatomic species' which under some circumstances can 

amount to an appreciable fraction of the total available "active sites. 11 

Introduction 

In their analysis of catalytic reaction rates Hougen and Watson 

obtain the following "general" expression for the concentration of an 

adsorbed atomic s ·pecies A: 

XIX, eq. (22) 

where B and I are other chemical species, assumed to be adsorbed 

w ithout dissociation. Since it is assumed that A must first dis-

soc iate before reacting to form products, and {implic itly), that the 

activation energy for the surface reaction is independent of the con-

centration of adsorbants, the catalytic reaction ' rate between two 

adsorbed species becomes proportional to the product of their con-

centrations. 
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Much work has been done (2) to indicate that the heat of ad-

sorption of an adsorbed species is not a constant; hence, the ad-

sorption rate constant l.n the Langmuir expression would not be 

constant. · These considerations led to other forms for the adso;rption 

isotherm (3). 

However, it is proposed that the Langmuir derivation for the 

concentrati.on of adsorbed atomic A presented by Hougen and Watson 

(1) is fundamentally wrong, and that the magnitude of other effects 

may be masked by a comparison with an improper model. 

Theory 

Hougen and Watson (1) present Langmuir's derivation by 

postulating the following two reactions: 

A
2 

+ .R. 
2 
~~ A

2 
• .R. 

2 
r~te controlling step 

A • .R. + U ~ 2A · • .R. + .R. equilibrium step 2 2 . . 2 

where A 2 represents a diatomic gas, . .R. an active site, and i. 2 two 

adjacent active sites. Hence A 2 • .R. 2 and A • i. represent the ad­

sorbed diatomic gas and adsorbed atom respectively. From the . second 

step an expression for the quantity of adsorbed· diatomic A 2 was 

found in terms of the surface ;dissociatio1i equilibrium constant. 

sites/gram 

It is conceivable that an appreciable quantity of adsorbed diatomic A 2 
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might be present on the catalyst surface, thereby reducing the sites 

available for atomic A. In this case the adsorption of the diatomic 

form must be taken into account, which Hougen and Watson (1) failed 

to do. 

Again, if the reaction rate of a system involving the partici-

pation of dissociated A 2 is proportional to the surface concentration 

of the atomic form, a rate expression which does not take into account 

the competitive adsorbed diatomic form could be quite erroneous for 

systems where the ratio of adsorbed diatomic to monatomic reactant 

is high. Hence, a new form for the concentration of monatomic A on 

the catalyst surface is proposed: 

where 

and 

(1) CA= 1 

1 + (KAaA2) 2 + K_AaA2ial + ••• 

KA =. adsorption equilibrium constant for gaseous A
2 

K~ = equilibrium constant relat~ng adsorbed A
2 

to adsorbed A 

L = total active sites/gram 

cA =total sites with adsorbed A/gram 

e1 = c1 /L =fraction. sites which are unoccupied, and must be 

evaluated with due consideration to all adsorbed species 
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(2) 

Using the nomenclature, a.nd following the derivation of Hougen and 

Watson (1), the rate of adsorption of A 2 can be expressed: 

r = kAaA c1 :... kA' cA 
2i 2 . 2 

(3) 

From the equilibrium step for dissociation on the catalyst surface; 

(4) 

Now considering the geometry of an active site, which is surrounded 

on the average by s nearest equidistant neighbors, it is evident 

"that the concentration of adjacent vacant active sites is 11 (1): 

Then 

= 

Now L, the number of active sites /gram of catalyst, is the sum of 

(5) 

(6) 

a) the vacant sites, b) th~ sites with adsorbed A, c) twice the number 
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of dual sites with adsorbed AZ, plus d) the number of sites occupied 

by other reacting species. Hence, 

L = c I.. + c A + Zc A + ••• 
z 

(7) 

a form which differs from that of Hougen and Watson. Furthermore, 

if we consider that the adsorption of the diatomic form is in equili-

br.ium as well (this assumption is tantamount to assuming that the 

rate of the surface chemical reaction, e.g., aA + bB - cC + dD is 

slow relative to the · rate of adsorption of AZ and the rate of 

dissociation of . A 2): 

r = 0 = kAaA c I.. - kA' cA 
2i 2 2 

2 
SC/.. 

kAaA2i 2L - k_A = 0 

Define the adsorption equilibrium constant; as: 

kAKA,d 
KA= 1<: 1 = 

A 

Then 

(3a) 

(8) 

(9) 

( 10) 
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and 

(11) 

Then returning to equa tion (7); 

(12) 

and the conce ntration of adsorbed atomic A is, contrary to 

formula XIX (22) in Hougen a nd Watson, the following . 

Reducing 

l (14) 

1 + (KAaA2)2 + LK:,d .c.fKAaA2i + • • • 

It is apparent that the other terms in the denominator are of the form 

KBaB. for species adsorbed without dissociation, and 
l 

l 

(Kcac
2

)
2 

+ LK~,d c1 Kcac
2

i for spe cies a dsorbed with dissociation. 

This follows since the concentration of all other adsorbed speCies can 

be related to the concentration of vacant sites, as was done here, for 



-161-

component A, independent of the other components. 

As it stands , this formula is not yet useful, since it includes 

the unknown variable c.R.. in the denominator. However, the quantity 

c.R.. /L is the proportion of vacant sites to total sites, which makes 

evaluation feasible. Then 

c -A-
aA 8.£. + ••• 

2i 

(1) 

Noting again that the other terms in the denominator are of the form: 

and 

1 

(Kcac2)2 + K~,d Kcac2ie.R.. 

for adsorption without 
dissociation 

for adsorption and 
dissociation 

The expression for the sum of the catalyst sites is again introduced, 

but is simplified by the substitution of 8 .£. for c .£. / L and the further 

substitution 

' sKA 
K = 

A KA,d 

Then 

1 

L = c .£. + c .R.. (KA a A 
2

) 
2 

+ c .£. K ~a A ;i 8 .£. + ••• ( 15) 

Dividing by L 
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for non-dissociating species 

for dissociating species (16) 

Hence 

- 1 = 0 (17) 

where the index i denotes a summation of the dissociating species, 

and j, a summation of the inerts. Then 

8£ = 

j [r/KAaA .)i + ~KBaB. +1]
2 

+ 4~K~aA Ji-{~ (KAaA ~+6KBaB. +1} ~ 1 \ 21 J 1 1 21 1 2J J 1 

(18),(2) 

and substituting 8 £ into the derived .expression for c A equation (1) 

gives 

(19) 
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This expression will now be used to determine the form of a rate 

equation for two reacting diatomic gases. It .will .he. assumed that 

adsorbed atomic A and adsorbed atomic C can react only when 

the two species are adsorbed on adjacent sites: 

sec 
cA.G = cA--y;- = (20) 

and the rate of reaction is then proportional to this quantity, or by 

incorporating the constants s and L into the rate constant 

rate (21) 

Hence the forward rate of reaction between the two adsorbed species 

A and C is: 

rate= 

{\[t(KAaAj+~KBaBL+r +4tK~aAzl+[t(KAaAj+~KBaBi+~} 2 

where 

(22) 

k(T)= :re·action .rate constaht/u.nit wt . catalyst 

KA = adsorption equilibrium constant for A 2 

KB = adsorption equilibrium constant for B
2 

(where B is 

a non-dissociating species) 
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I 
KA = equilibrium constant for surface dissociation of 

species A 

aA = gas phase activity for A 2 at. the catalyst surface 
2i 

Discussion 

An example for the catalytic reaction of two diatomic gases 

will now be worked and compared with the formula from Hougen and 

Watson for the same conditions. The following assumptions are made: 

1. AZ and CZ adsorbed in appreciable quantities. 

z. The surface reaction is the rate controlling step. 

3. The reverse reaction rate is negligible. 

4. Only adjacently adsorbed atomic A and .C can undergo 

r eaction. 

5. The .rate of diffusion of reactants to the catalyst surface 

and products away from the surface is much greater than 

the surface reaction rate. 

6. The activities are defined as a A = f/f
0

, where £0 = 
z 

fugacity at 1 atm. 

The comparable formula from Hougen and Watson, which is to be com-

pared with equation (Z2) is the following: 

rate= 

. . 1 1 

.k(T) ( KAaA2) 2 ( Kcac 2) 2 

These formulas will be compared using the following constants: 
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= 1 = constant 

KACaAC << l 

-3 3 while the activity of AZ will be allowed to vary from 10 to 10 • 

As shown in the table below, at values for the activity of AZ, 

greater than unity, the form which does not consider the adsorbed 

diatomic form becomes a very poor approximation. For this 

particular case the rate expression becomes 

rate= (23) 

For the same conditions, the Hougen and Watson formula becomes: 

rate= (Z4) 

A plot can be made of rate/K(T) for these two expressions as a 

function of the change in the partial pressure of Az• 
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Normalized Reaction Rate 

Activity Hougen and Proposed 
in A

2 
Watson 

0.001 0.00765 o. 0053.7 

0.01 0.0227 0.0166 

0.05 0.0452 0.0347 

0.10 0.0589 0.0463 

o. 20 0.0747 0.0595 

o. 50 0.0965 0.0748 

1.00 o. 1111 0.0788 

2.00 0.1213 0.0720 

5.00 0.1246 0.0493 

10.00 o·. 1186 0.0304 

100.00 0.0694 0.00254 

1000.00 0.0280 o. 00011 
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CA 

k(T) 

L 

s 

-168-

activity of diatomic gas A at catalyst surface 

activity of inert gas B at catalyst surface 

concentration adsorbed ator.qic A per gram 
catalyst 

concentration adsorbed diatomic A per gram 
catalyst 

concentration vacant sites per gram catalyst 

concentration "dual" or adjacent vacant sites 
per gram catalyst 

dissociation constant for adsorbed species A 

adsorption equilibrium constant for adsorbed 
atomic A 

adsorption equilibrium constant for adsorbed 
diatomic A 

forward rate constant for adsorption of A
2 

reverse rate constant for desorption of A
2 

reaction rate constant for reaction between 
adsorbed atomic A and adsorbed atomic C 

total active sites per gram catalyst 

average number of nearest adjacent sites, a 
property of the catalyst surface 

fraction vacant catalytic sites 
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Proposition 3 

In many of the studies of material and energy transport con-

ducted in this laboratory, it is necessary to maintain a constant 

mass flow rate of air. A graphical technique is proposed for the 

rapid calculation of weight flow rate s o f air through a Herschel type 

venturi. This technique allows the graphical determination of weight 

flow rates directly from meas·ured laboratory data with a relative 

accuracy of± O. 1 %~ The advantage of this technique over the direct 

longhand computation using the standard venturi formula is its speed. 

The direct computation of weight flow rates using the standard 

laboratory procedure (1) requires between twenty and thirty minutes 

of computation, and is impractical for use by the operator in the 

laboratory to maintain desired air flow rates. 

Introduction 

For a given venturi the pres sure drop .(difference between 

upstream and throat pressure) is a function of the air density, flow 

rate, and venturi Reynolds Number, the latter parameter affecting 

the magnitude of the correction for viscous effects. In addition, 

for a compressible fluid the pressure drop is als o a function of the 

relative pressure drop, 6,P/PA, (1, 2). For this case, the venturi 

formula becomes: 

m = cjJ)I. I 
1/2 

PA6,P 

bT A [1 + s(~:)J 
(1) 
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where cf> is the discharge coefficient, a function of venturi Reynolds 

Number, e is a function of the compressibility of the fluid (9 = 0 

for an incompressible fluid), and the subscript "A" refers to con­

ditions immediately upstream of the venturi. 

The complexity of the direct computation of the weight flow 

rate is due to the many steps required in the evalua tion of the pressure 

terms in equation (1) from the laboratory manometer readings. This 

process requires several corrections for differences in elevation 

between the manometer levels and the centerline of the venturi, and 

also a search through tabulated values of the density of the various 

manometer fluids as a function of laboratory room temperature. 

Furthermore, the compressibility coefficient, 9, is a function of 

the ratio 6P /P and temperature and is tabulated as · a function of 

these variables for each of the several venturis. Finally, the dis -

charge coefficient, c/>, is tabulated as a function of Reynolds Number. 

In this laboratory the air flow is provided by a series of 

blowers which are controlled automatically at ·a predetermined speed. 

Before reaching the experimental system the air is heated to the 

desired temperature and then flows through a Herschel type venturi 

used to measure the flow rate (3). The venturi and its relation to the 

manometer system is shown schematically in Figure 1. 

Because the air supply system normally operates close to at­

mospheric pressure, and the influence of the variables other than the 

difference between upstream and throat pressures is small, it is 

possible to determine weight flow rates from the measured laboratory 
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variables with great accuracy using the proposed graphical technique. 

Theory 

A dimensional analysis approach was used to separate the 

influence of the five independent variables in equation (1) above . From 

this equation it was apparent that the weight flow rate of air i s a 

function of the inlet air temperature TA, pressure PA, and gas 

constant b. It is also a function of the manometer reading ~~ and 

laboratory temperature T , which together determine the pressure 
m 

drop, or diffe rence between upstream and throat pressures. In 

this approach it is recognized that the discharge coefficient </> is 

a function of Reynolds Num'f?er, and can therefore be expressed in 
. 

terms of the weight flow rate m and TA (viscosity being nearly 

independent of pressure). The compressibility coefficient e is 

principally a function of the pressure ratio ~p /P (for a thermally 

perfect gas where the i sentropic exponent, '{ = c /c , is constant, 
p v 

e is a unique function of the pressure ratio). In the case of air e 

exhibits only a slight dependence on temperature and this dependence 

was neglected in the present analysis. 

Equation (1) can be rearranged to separate those terms which 

are functions of air temperature TA and/or the weight flow rate, 
. 
m, as follows : 

(2) 

'' .,,.''_,, 
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where the left-hand side of equation (2) is a function of the air tern-
. 

perature TA or flow rate ~ , and the right-hand side of equation (2) 

is a function of the air inlet pres sure PA, gas constant b, or the 

pressure drop 6P. ·This equality is the heart of the graphical 

technique presented, for it is easily seen how the function 1 /TA (¢'A./.:n} 2 

. 
can be plotted against the weight flow rate, ~ , producing a family 

of curves each for different temperatures. 

The second. step is to separate the dependence of the right .· 

hand of equation (2) on the gas constant b. This is done by plotting 

the function: 

2 

_1 (f!::) 
bT • A m 

thereby producing another family of curves each for a different value 

of the gas constant b, which for the case of air is a function of the 

absolute humidity. 

After continuing through the first two steps we have the 

equality which is the counterpart of equation (2): 

2 

b~ (¢.'A.) = 
A m 

1 +a(~) 
p A.6P 

{3} 

where the right-hand side of equation (3) is now a function only of the 

inlet pressure PA and the pressure difference 6P. The third step 

consists of plotting the right-hand side of equation (3} against the 

pressure drop 6P, thereby obtaining a third family of curves each 
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for a different pressure PA, neglecting the very slight variation 

of the compressibility coefficient, 9, with temperature. In this 

regard the numerical values of 9 used were those tabulated against 

I 
. 0 

the ratio 6P PA for a constant air temperature TA = 100 F (1). 

In the last step the "pressure drop" 6P was plotted against 

the manometer reading 61\: obtaining a family of curves for different 

prevailing laboratory temperatures since the specific weight of the 

manometer fluid is a function of this parameter. In this regard it 

was also desired to take into consideration the effect of the "air legs" 

on the manometer readings which tend to offset the pressure indicated 

by the manometer pressure head. A first order correction for 

weight flow rates of air in the vicinity of 0. 1340 lb/sec through a 

3 inch Herschel type venturi tube is formulated by the relation: . 

6P = O. 99899 ak 6~ {4) 

the indicated facto r is an average value correlating a number of test 

runs made in this laboratory at or close to the weight flow rate cited 

above. It is noteworthy that the indicated factor never varied by 

more than six units in the last significant figure for the many test 

runs correlated. It is also anticipated that this coefficient is a 

function of 61\: for different air velocities with the same venturi, 

and would be subject to some change for greatly different flow rates. 

It is evident that each of the fundamental relationships above 

i$ not . changed if it is desired to go from an observed manometer 

differential, 61\:, back througp. the four graphs to . obtain the current 
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air flow rate, so the four plots were combined on each graph. A 

simple graphical method of determining weight flow rates of air from 

an observed manometer differential which allows for the effects of 

changes in air density and viscosity in terms of measured laboratory 

variables is thereby obtained. 

In practice, the inlet pressure, PA' is not measured directly, 

but was determined graphically from the readings of the upstream 

manometer and barometer with a family of curves allowing for the 

effect of laboratory temperature on the density of the manometer 

fluids. All these relations are shown in Figure 2. The effect of the 

air legs in determining the venturi entrance pressure PA is cor­

related by the factors 1. 00036 and 1. 00041 where: 

(5) 

The error introduced by this correlation is comparable to the un-

certainty introduced into the expression for .6P above {equation 4) 

and is entirely negligible. 

Discussion 

In seeking a graphical technique to be used as an aid to the 

operator interested in maintaining constant air flow rates in the 

laboratory it was necessary to account for the not insignificant 

effects of small variations in the air density due to changes in the 

pressure PA and gas constant b and in the laboratory temperature, 

T , which affects the density of the various manometer fluids. 
m 
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The proposed chart shown in Figure 2 is a smaller sized ver­

sion of the one used in the laboratory for a nominal air velocity of 

8 feet per second (~ :;:: 0.1341 lb/sec). With the larger sized labora­

tory version, it was found possible to predict laboratory mass flow 

rates with a relative certainty of better than ± 0. 1 % from a given set of 

laboratory data, or to select the necessary blower speed to obtain a 

desired mass flux with comparable certainty. The chart shown, as 

with the laboratory version, extends over a limited range only (to 

improve the accuracy with which the charts could be read} and differ­

ent charts were made for several of the nominal air flow rates used 

in this laboratory. 

To use the chart, one. selects the desired mass flow rat e m 

on the left, crosses over to the appropriate inlet air temperature, 

TA, then travels down to the appropriate value of the gas constant, b; 

across to the inlet pressure, PA, and up to the laboratory temper­

ature Tm. The desired manometer head, b.1\:, is then read on the 

right-hand side of the chart. The process is reversed to go from a 

measured manometer head 611_<:: to obtain the corresponding mass 

flow rate of air. On the far l e ft-hand side of the figure the inlet 

pressure PA is obtained by adding the pressures corresponding to 

the readings of the barQmeter b, and the manometer m. This is 

done graphically by determining the intersection of a straight line 

from the pressures sensed by the barometer and manometer (the 

abscissas of the charts shown at the far left of Figure 2} with the 

additive scale line PA. 
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Nomenclature: 

A. Roman Type Symbols 

b gas constant 

h elevation 

m weight flow rate 

p pressure 

T temperature 

Z elevation of manometer reference point 
0 

above venturi centerline 

B. Greek Type Symbols 

.6 difference operator 

e compressibility coefficient 

A venturi coefficient (a function of venturi 

size and shape) 

a specific weight 

<P venturi discharge coefficient 

ft 

lb/sec 

lb/in
2 

OR 

ft 

ft3 / 2 • in/sec 

lb/ft
3 
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C. Subscripts 

b barometer 

k manometer between venturi inlet and throat 

m manometer between venturi inlet and atmospheric 
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Proposition 4 

The possibility of measuring small distances electrically by 

establishing the point of electrical contact w as investigated using a 

30 volt potential. It is proposed that the point of contact can be 

established to within ±0. 0001 inch in this manner with a probe con­

tacting either a metal or weak electrolyte surface. 

Introduction 

A number of experimental programs have. been conducted in 

this laboratory to investigate local temperatures and Nusselt Numbers 

sensed by a small wire in the vicinity of .a cylinder (1, 2) or sphere 

(3, 4). These worke rs use d various techniques to determine the 

separation betw een the wire and the cylinder (or sphere), but their 

results indicate that their measurements of relative distance were 

uncertain to the e x t e n t of ± O. 001 inch. 

To investigat e the possibility of improving .distance measure­

ments should futur e s tudies of this nature arise preliminary tests 

of the propos e d e lectric a l contact method were m a de. A 30 volt 

source was selected for this investigation. With this choice of 

potential difference it w as hoped that thin layers of surface oxide 

(in the case of a metal surface) would be penetrated, but that appreci"." 

able errors due to "sparking'.' would not be encountered. 

Discussion 

The contact "probe" selected for this study was a O. 01 inch 
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platinum wire. Distances were monitored through the use of a standard 

Micrometer acting against the tip of a spring loaded lever. The wire 

probe was located one-fifth of the way from the fulcrum to the lever 

end, thereby increasing the resolution of the distance measurements 

by a factor of five. 

The electrical circuit employed consisted of a standard Leeds 

and Northrup Galvanometer in series with a 30 .volt source and a 4 

megohm resistance. The purpose of the 4 megohm resistor was to 

limit the current through the system to 7. 5 micro-amps which was 

somewhat greater than that required to obtain a full scale deflection 

of the galvanometer. To balance the circuit a small resistance was 

connected in parallel with the galvanometer both to protect it against 

induced voltages when the circuit was opened and closed, and also to 

reduce the current through the galvanometer to a level so that a full 

scale deflection would be produced when the circuit was closed. The 

resistance selected for this purpose was 70 ohms. 

The electrical circuit described above was closed when the 

platinum probe made contact with the metal or electrolyte surface. 

In the latter case an electrolyte "surface" was maintained by allowing 

a flat diatomaceous earth surface to become saturated with distilled 

water. In this regard the capillary action of the diatomaceous earth 

sample was sufficient to provide a saturated surface against an adverse 

pressure gradient of 13 inches of water. It was discovered that re­

producible results were not obtained unless the porous material was 

made to lift water to the surface against some adverse pressure 
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gradient, which is to be expected. The diatomaceous earth used in 

this study is available commercially under the trade name Allen 

Filter Material. 

Several possible situations which might be encountered were 

tested. The platinum probe was tested against polished and partially 

oxidized brass surfaces. In addition, tests were made on the wet 

diatomaceous earth surface where the fluid was raised 0. 0, 9. 5, and 

13. 25 inches by capillary action. The data indicate that for other 

than very clean metal surfaces, the point at which electrical contact 

is broken gives a more consistent indication of the point of contact 

than the point at which electrical contact is made. This effect is 

apparent in Figure 1. It is concluded that this phenomenon is due to 

the presence of an insulating oxide film which required a certain 

>'.< 
·force to rupture, but did not interfere with the reverse process. 

For a porous surface impregnated with a liquid electrolyte 

the point at which contact is made is the best indicator of position 

because of an .observed tendency for the probe to pull a meniscus of 

liquid with it as it is drawn back. This effect was very prominent 

>:c>:c 
when back pressures of 0 and -4. 5 inches of H 2 0 were employed. 

but was negligible at the highest back pres sure. used (-13. 25 inches 

>:C 
On one traverse out, the galvanometer current dropped sharply 
and then recovered before contact was finally broken, which is an 
exception to the statement above. 

~c>:c 
Because of the c apillary effect of the porous surface, it is neces-
sary to have a small vacuum on the liquid on the inside of the test 
specimen to prevent the formation of a liquid film on the surface. 
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of H
2
0). Only the results of the data taken w ith a back pressure of 

- 13. 25 in. H 20 appear here in Figure 2, as data taken with lower 

hydrostatic back pressures showed a much greater variance·. 

· Using the point at which electrical contact is broken as repre-

sentative of contact for a metal surface, the standard deviation from 

the mean was O. 00007 inch • 

. Using the point at which electrical contact is made as repre-

sentative of conta ct for a p o r ous :surface s a tura ted with a conducting 

fluid, the standard deviation of the measurements was O. 00005 inch 

for a back pressure of -13. 25 in. H
2
0, and 0.00030 and 0.00060 for a 

back pressure of - 4. 5 and O. 0 in. H
2

0 respectively. 

All data w e r e taken with the electrical circuit shown, using a 

30 volt source. While it would be interesting to know how different 

voltages would affect the precision of distance measurements, the 

effect of this variable was not investigated. 
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Proposition 5 

Turbulence grids are frequently placed in wind tunnels and at 

free jet exits to control the prevailing free stream turbulence en­

countered in studies of transport rates from solid bodies. A quanti­

tative knowledge of the apparent level and scale of turbulence pre­

vailing downstream of a turbulence grid is important because transport 

rates of material and energy from bodies placed in an otherwise 

uniform air stream are very sensitive to these parameters. Both of 

these properties of free stream turbulence have been measured by 

many workers, but there is great disagreement in the results obtained 

by these investigators. 

It is proposed that beyond the point of maximum turbulence, 

(two to four meshwidths downstream of the turbulence grid), the 

apparent level of turbulence is correlated in terms of the ratio of 

downstream distance to the turbulence grid bar width. Correlations 

for the scale and microscale of turbulence relative to grid bar width 

showing the additional dependence on a Reynolds Number based on 

mesh width, {as the distance parameter), are also proposed. 

Introduction 

The turbulence produced by perforated plate and square mesh 

type turbulence grids has received a great deal of attention from 

many investigators principally because of the large and still not well 

documented effect of free stream turbulence on transport rates from 

cylinders, spheres, and other common body shapes. In this regard, 
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even low turbulence levels significantly affect heat and mass transport 

rates in How situations involving a local pressure gradient (5, 10). 

Of the parameters characterizing tu.rbulence, the intensity or 

level of turbulence has received the most attention. Batchelor and 

Townsend (2, 3, 4) made a theoretical study of turbulent decay rates 

based on a two-dimensional model and the assumption of isotropy. 

They concluded that two distinct decay laws should apply, one for the 

limiting case where the vis cous forces are negligible relative to 

inertial forces, and another, for the other extreme case where viscous 

forces are predominant. Their data taken to verify the theory con-

form approximately to the first decay law, but the agreement is not 

good. The Reynolds Numbe r range of its general applicability was not 

determined' and the low turbulent energy law was not verified experi-

mentally. Clearly, their theory in its pres e nt form is severely limited 

in its general utility. 

Baines and Peterson (1) conducted a n extensive investigation of 

the turbulence l e v e ls prev ailing behind both perfora ted plate and 

square me s h type grids . They did not mea sure the microscale or the 

approach to isot ropy for distances close to the grid relative to the 

mesh dimension s; however, their work has great merit becaus e they 

were the only inve stig ators who took data through the point of maximum 
. . 

turbulence and 'they obtained consistent results w ith a great variet y of 

grid sizes and geometries. Their failure to docµment the flow R e ynol ds 

Number does not substantially affect the application of their results 

concerning the . turbulence level, as will be appreciated later. 

Dryden (7) measured the turbulence level for flow through a 
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mesh type grid. His data confirm the work of Baines and Peterson (1) 

over a limited range. He also did not measure the scale or microscale 

of turbulence. H a ll (9) and Davis (6) took measurements over a 

limited range of downstream distances from the grid. Their data lie 

almost 50 per cent b e low the measurements of Baines (1) and Dryden (7) 

over a range of distances downstream of the grid from 20 to 1000 bar 

widths. However, the point of maximum turbulence intensity lies 

outside of this range, and most of the data is taken at low turbulence 

levels where the possibility of competition from residual wind tunnel 

turbulence is high. Davis (6) did measure the scale of turbulence and 

is the only investigator to measure the approach to isotropy. 

Van der Hegge Zijnen (13) considered grid generated turbulence 

in some detail and took measurements which conform to the average 

of the above w orkers over most of his . range of investigation. He also 

measured the scale and micros cale of turbulence and is the only in­

vestigato~, other than Batchelor and Towns end , to measure the latter 

parameter. In this r egard, the microscale is important since it is 

indicative of the smallest eddy sizes and, along with the integ ral scale, 

serves to give some definition to the spectrum of eddy sizes. 

There are other methods besides hot wire anemometry sug­

gested for determining the turbulence level. One such method (8) 

correlates the turbulence level with the critical Reynolds Number for 

a sphere, which is d etermined by observing the trend of the drag coef­

ficient with increasing Reynolds Number. M.aisel and Sherwood (11) 

used the wake angle technique for determining the turbulence level for 

their studies on mass transfer rates• Thus far, however, these 
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approaches have proven to be of little value in studying the character 

of flow behind screens. Undoubtedly one of the inherent liabilities in 

using the observed critical Reynolds Number for a sphere to ·correlate 

turbulence intensity is that the flow around a solid object is affected 

by eddy size as well as by the intensity. Van der Hegge Zijnen (14) 

studied heat transfer from cylinders as a function of turbulence in­

tensity and scale. His interpretation is included here as Figure 1, 

where the fraction increase in e nergy transport rates is shown as 

a function of these parameters. It suggests an inherent liability when 

a c·ritic·a.1 Reynolds Number approach is used to measu.re turbulence 

intensity without regard to the integral scale of turbulence. 

Obviously much more work must be done to enable workers to 

predict the nature of turbulence generated behind turbulence grids. 

It is certainly a necessary step towards understanding and sometimes 

anomalous results obtained by different workers in different labora­

tories conc~rning the effects of turbulence on transport from spheres 

and cylinders, as well as from other more complex bodies (5, 10, 11, 

12). In this work the best available data is used to deduce the effects 

of the many parameters influencing the characte r of grid generated 

turbulence. Correlations are proposed for the intensity, integral 

scale , micros cale, and approach to i s otropy as a function of distance 

downstream of the grid, the bar width, mesh width, and mesh Reynolds 

Number for both perforated plate and square mesh type grids. 
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Discussion 

In reviewing the various data available concerning grid 

generated turbulence it is immediately apparent that the relative 

intensity of turbulence produced by a perforated plate grid is sub­

stantially greater than the turbulence produced by a square Mesh 

grid having the same grid solidity (1, 6). The results of those in­

vestigations involving perforated plate grids are shown in Figure 2. 

It is seen that when the level of turbulence is plotted against the 

relative downstream distance referred to the mean "bar width," the 

curves for the various ratios of mesh width to bar width tend to 

coalesce as one proceeds downstream. In the case of perforated 

plate grids the "bar width'' is equarto the bar width of a square mesh 

grid having the same mesh size and grid solidity. 

Baines and Peterson (1) used a number of grids in their 

research ranging from 1. 33 inches to 12 inches in mesh size and 

having solidities ranging from O. 23 to O. 89. They do not cite the 

Mesh Reynolds Numbers for their work, but it is probable that the 

Mesh Reynolds Number ranged from 15, 000 to 13 5, 000 since their 

wind tunnel was designed for work with free stream velocities up to 

25 fps. Apparently they did not believe the e ffect of Mesh Reynolds 

Number on the free stream turbulence intensity. was important, for 

this pa,rameter was not documented. However, this parameter has a 

significant effect on the scale and microscale of grid produced tur­

bulence, even though its effect on the turbulence level is minimal. 

The results of various workers using a square mesh type 
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turbulence grid are shown here in Figure 3. Representative data 

taken at a Mesh Reynolds Number of 10 ,000 were selected for this 

plot except for that of Baines, et al., {loc. cit.). It was desired to 

see how the results of the various workers compared on this common 

basis. 

The effect of Mesh Reynolds Numbers on the intensity of 

grid produced turbulence appears to be negligible. The results of 

Davis (6) for both perforated plate and square mesh grids are shown 

in Figure 4, and a slight decrease in intensity with increasing Mesh 

Reynolds Number i s indicated. The results of Batchelor and 

Townsend (2, 3, 4 ) appear in Figure 5, and their findings, except 

for the crossover at a Mesh Reynolds Number of 656, are similar. 

Van der Hegge Zijnen {13} also determined that.the intensity of 

turbulence tended to decrease with increasing Mesh Reynolds Number. 

However Dryden (8) states that the intensity of turbulence over a 

range of Mesh Reynolds Numbers from 2, 400 to 175, 000 does not 

depend upon either U or ReM, and Hall (9) determined that the 

intensity of turbule nce increases with ReM. Further Baines and 

Peterson {loc. cit.) find that their data taken using similar grids 

over a ninefold range of sizes are well co~related by a single curve 

downstream of the point of maximum turbulence intensity. 

In view of the above uncertainty between various workers, it . 

can be asserted that the effect of Mesh Reynolds Numbers on grid 

produced turbulence is small, and with this in mind Figure 6 and 

Figure 7 are proposed, correlating the. turbulence level prevailing 
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downstream of perforated plate and square mesh type grids re­

spectively as a function of downstream distance and the ratio of 

mesh width to bar width. 

In arriving at these curves the work of Baines and Peterson 

(loc. cit.) was relied on heavily for distances close to the grid because 

of the absence of other data in this region. In Figure 6 for the per­

forated plate grids the curves were brought into the data of Davis 

for relative distances downstream of the grid greater than 100. 

In Figure 7 the curves were drawn through a mean of the other 

workers data further from the grid. Preference was given to the 

data of Baines and Peterson in the region of the onset of "isotropic 

decay" because of the great size of their grids. In this regard it 

will subsequently be shown that the microscale of the turbulence, 

{a dimension roughly proportional to the size of the smallest eddies}, 

increases with the square root of distance downstream of the 

grid. This is significant because as one approaches the grid the 

resolution of individual eddies with a hot wire anemometer becomes 

increasingly difficult due to the decreasing mean eddy size. Hence 

the data which would be most reliable in this region wou.ld be those 

where the ratio of wire size to mesh size is smallest. Referring 

again to Figure 3 it will be appreciated that the only other investi­

gator working with comparable sized grids, Dryden (8), obtained 

data which is more in agreement with Baines et al., than with the 

results of other workers. Finally, because the effect of the Mesh 

Reynolds Number above is certainly small, Figures 6 and 7 are 
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recommended as being independent ·of this parameter, although it 

will be subsequently demonstrated that this independence of Mesh 

Reynolds Number cannot be expected to apply for Reynolds Numbers 

much less than 5,000. 

Pertinent data on the size of the wires used by various investl.­

gators are presented in Table I. In this Table can be found the wire 

length, L, the wire diameter, D, the length to diameter ratio, 

L/D, and the ratio of mesh size to wire length, which is mentioned 

above as being one possible criterion in assessing the relative merit 

of the various data available for distances close to the turbulence 

grid. 

In reviewing the trend of intensity of turbulence with increas""'. 

ing Reynolds Number, as illustrated in Figures 4 and 5, the effect . 

of this ·parame ter appears more pronounced at the lower levels of 

turbulence. However, at these relatively low levels of intensity, 

one may question the validity of the trends found because of the 

possible effect of residual free stream turbulence on these data. 

Certainly it is unlikely that the residual turbulence, .(that which 

would be present without the turbulence grid in place), would remain 

unchanged with increasing bulk flow through the test duct, but the 

direction and magnitude of this change is uncertain. Van der Hegge 

Zijnen (loc~ cit.) points out that the two turbulent motions would 

not maintain their individual character, and hence the effects of 

residual free stream turbulence cannot easily be separated out. 

Because of this additional complication the observations of 
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Table I 

Wire Sizes Employed by Various Investigators in Turbulence 

Measurements Downstream of Turbulence Generating Grids 

Wire Size Ratio of 
Length Diameter L/D Wire Length 

.Author inches inches to Mesh Size 

Baines and 
Peterson (1) 0.10 0.00031 300 13. 3 - 120. 0 

Batchelor and 
Townsend (2,3,4) ""'0.04 0.0001 ""'400 ""'6.3 - so.o 

Davis (6) o. 1 ? 0.0001 1000 10 

Dryden et al. (8) 0.2 0.0002 1000 1.2- 25.0 

Hall (9) o.os 0.0001 500 10. 0 - 40. 0 

Maisel and 
Sherwood ( 11) o. 1 ? 0.0001 1000? 1.7 - 7.0 

Van de_r Hegge 
Zij_nen (13) 0.05 0.00012 430 20. 7 - 62.0 
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Batchelor and Townsend (2; 3, 4}, and Davis (6) regarding the effect 

of Mesh ;Reynolds Number at low levels of turbulence are viewed with 

some skepticism. In the absence of additional data it would be difficult 

to establish a minimum Reynolds Number above which one could 

expect turbulence level to be independent of this parameter. 

Scale of Turbulence 

The . scale .of turbule nce is not so easily correlated by a single 

series of curves. Referring to the data of various workers appearing 

here in Figure 8 it is apparent that the relative scale of turbulence, 

referred to bar width, is not only a rather strong function of distance 

downstream of the grid , but is influenced by the ratio .of Mesh width 

to bar width. At the same t ime the relative scale of turbulence for 

constant grid solidity , varies somewhat less rapidly than the inverse 

.square root of the Mesh Reynolds Number. Inspection of these data 

r eveal that the scale of turbulence for a constant mesh size decrease 

approximately as the Oo 4 power of the Mesh Reynolds Number. 

Figure 9 is obtaine d by separating out the Reynolds Number 

dependence of the integral scale , and interpolating from the 

various' data to obtain the dependence on the ratio of mesh size to 

bar width. 

Of the referenced work, only Baines and Peterson have 

measured the integral scale of turbulence behind perforated plate 

grids. A review of their data indicates that there is no essential 

difference in the scale of turbulence derived from a perforated 
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plate grid as opposed to a square mesh grid. In view of these 

findings Figure 9 is presented for both types of grids. 

The correlation proposed .in Figure 9 can be viewed with 

some uncertainty concerning the effect of the ratio M/b, but the 

Reynolds Number dependency appears quite reliable. Certainly the 

exponent is much closer to o. 4 than to either O. 3 or O. 5 based on 

the work of Bajnes and Peterson (loc. cit.) and Van der Hegge 

Zijnen (13). The data of Batchelor and Townsend taken at a Reynolds 

Number of 22,000 fit the proposed correlation remarkably well, but 

fall 30 and 50 per cent below the proposed curve for Reynolds 

Numbers of 11 ,000 and 5, 500 respectively. This may be an indi­

cation of the minimum R e ynolds Numbe r below which the proposed 

correlations fail, but more probably arises from the competition of 

residual turbulence caused by flow through the duct. In this regard 

it will be noted the microscal.e of turbulence is well correlated by 

an inverse square root Mesh Reynolds Number dependency, and 

that the data of Batchelor and Townsend (2, 3, 4) for the microsc.ale 

continue to conform to this correlation d()wn to a Mesh Reynolds 

Number of 2,800. Since it is anticipated that the smallest eddies, as 

represented by the microscale, would be the first ones to be 

affected .by the viscous decay law, and that this , type of decay is : not 

apparent from their measurements of the microscale, it is doubtful 

that the deviation of their measurements of the integral scale at the 

lower Reynolds Numbers from the data of others carries any real 

significance. 
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Finally bearing on the possibility of competition from residual 

tunnel turbulence it is noted that Mais el and · Sherwood ( 11) investi­

gated the intensity and scale turbulence produced behind two perfor­

ated plate grids. Their data on the intensity of turbulence appear in 

Figure 3, but were omitted from Figure 8 because their measurements 

indicated that the relative scale of turbulence decreased with increas­

ing downstream distance, a trend which is not only contrary to the 

results of the other workers cited above, but which is also contrary 

to all practical considerations, (for the scale to decre;:i.se with in­

creasing distance downstream of the turbulence grid it would be 

required that the larger eddies decay before the smallest eddies). 

Equally in Figure 3 their data appear somewhat untoward. · These 

anomalies can be explained by reference to their experimental 

design. Their data were taken in a pipe whose inside diameter 

is 10. 2 cm., causing a free stream turbulence level (without the 

grids) as indicated by their measurements of 3. 2 per cent. It seems 

evident that the effects of the grid produced turbulence in their 

work were obscured by the normal pipe turbulence caused by friction 

at the walls, and hence their data were not used in this work. 

This observation indicates that the measured trends of the turbu-

lent scale appearing in Figure 8 would be.come less reliable with 

increasing downstream distance, and in particular that · this same 

effect might be the cause of the relatively low scale of turbulence 

observed by Batchelor and Townsend at the lower Reynolds Numbers. 
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Microscale of Turbulence 

The microscale of turbulence is a parameter which is related 

to the size of the smallest eddies. The microscale of turbulence is 

important in that it along with the scale of turbulence gives definition 

to the spectrum of eddy sizes. 

Apparently the microscale of grid produced turbulence has 

thus far been measured only by Batchelor and Townsend (2, 3, 4) and 

by Van der Hegge Zijnan (13). Their data appear here in Figure 10. 

In Figure 11 the microscale of turbulence is correlated against 

downstream distance by forming its product with the square root of 

the Mesh Reynolds Number. Perhaps this Reynolds Number is the 

wrong parameter for correlating microscale, since one would expect 

the size of the smallest eddies to be much more dependent on bar 

size than on mesh size, but the correlation becomes worse with 

this approach. In any case the microscale of turbulence is not well 

documented, and the extrapolation is obtained by noting its dependence 

on the inverse one-half power of velocity, (for constant mesh size), 

and hence of decay time, which is, in turn, also proportional to 

downstream distance. With the available data there is no way of 

knowing how much the correlation of microscale would be affected 
. . 

by .conditions of non-is·otropy which become increasingly pronounced 

as one approaches the grid. Also it is assumed here that the micro-

scale of turbulence produced by perforated plate grids is the same 

as for square mt;) sh, grids of similar mesh size; such may not be· the 

case. 
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Approach to Isotropy 

Davis (6) is the only work.er who investigated the magnitude of 

the normal fluctuating velocity component, v' turbulence, relative 

to the tangential fluctuating velocity component. His data indicate 

that the two fluctuating velocity components are within 3 per cent of 

each other 100 bar widths downstream of the grid, although the nor­

mal component was always less for both perforated plate arid square 

mesh grids. Unfortunately his data do not cover a range of grid 

solidities nor do they extend far enough upstream to establish the 

degree of non-isotropy close to the grid. His data do indicate how­

ever that turbulence conditions which are very nearly isotropic are 

established 100 bar widths downstream of either a perforated plate 

or square mesh type grid. 
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Conclusions 

Co.rrelations are proposed and presented in graphical form 

for the level of turbulence, scale and micro scale of turbulence, and 

the approach to isotropy for turbulence generated by perforated plate 

and square mesh type turbulence grids. The following conclusions 

concerning the nature of grid generated turbulence can be drawn: 

1) For Reynolds Numbers based on mesh width greater than 

5, 000, the intensity of turbulence produced downstream of a turbulence 

grid is independent of the Mesh Reynolds Number. Moreover the 

intensity or level of turbulence is well correlated in terms of down­

stream distance referred to bar size, and once complete jet mixing 

is established, 100 bar widths downstream, the intensity for both per­

forated plate and square mesh grids is relatively independent of grid 

solidity. 

2) The maximum intensity of turbulence occurs from two to 

four mesh widths downst.ream of the grid and is roughly proportional, 

in magnitude, to the ratio of bar width to mesh width. 

3) Work with grids having solidities greater than O. 5 is not 

recommended because of the tendency for uneveness and time depen­

dency of the mean flow through individual meshes. This uneveness 

is certified by Baines et al., (1) and Davis (6). 

4} Turbulence levels attained from perforated plate grids 

are higher than those achieved with mesh type grids of comparable 

grid solidity because of the "vena contracta" effect associated with 
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flow through the individual orifices leading to higher local velocities 

and a more intense mixing process. 

5) The scale and microscale of turbulence both decrease . 

rapidly with increasing Mesh Reynolds Number. The integra l sca le 

of turbulence downstream of a turbulence grid decreases approxi­

mately as the O. 4 power of the Reynolds Number, while for the 

microscale the decrease is proportional to the O. 5 power of the Mesh 

Reynolds group. The integral · scale of turbulence, referred to bar 

width, is a mild function of grid solidity or of the ratio of mesh 

width to bar widths, while the microscale seems to be independent of 

this parameter. Finally both integral scale and microscale increase 

approximate ly as .the square root of downstream distance. 

6) The approach to isotropy has been measured only by 

Davis (6). His results indicate that the turqulence prevailing more 

than 100 bar widths downstream of a turbulent grid is .very nearly 

isotropic. Unfortunately his results do not reveal how far from 

isotropy the turbulence is at the point of maximum intensity. 

7) Displacements in the mean velocity profile(due to the 

incomplete mixing of individual jets with the wakes formed behind 

solid portions of the turbulence grid)persist up to somewhere between 

5 and 8 mesh widths downstream of the turbulence grids. The maxi­

mum turbule nce level is attained somewhat upstream of this region, 

and for all practical purposes an investigator operating downstream 

of the point of maximum intensity of turbulence will encounter a 

s ubstantially uniform mean velocity profile. 
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