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ABSTRACT

Part I

Numerical solutions to the S-limit equations for the helium ground
state and excited triplet state and the hydride ion ground state are ob-
tained with the second and fourth difference approximations. The
results for the ground states are superior to previously reported values.
The coupled equations resulting from the partial wave expansion of the
exact helium atom wavefunction were solved giving accurate S-, P-, D-,? -
and G-limits. The G-limit is -2.980351 a.u. compared to the exact

value of the energy of -2.90372 a. u.

Part II

The pair functions which determine the exact first-order wave-
function for the ground state of the three-electron atomare found with
the matrix finite difference method. The second- and third-order
energies for the (1sls)’S, (isZs) %, and (1s2s)’S states of the two-
electron atom are presented along with contour and perspective plots
of the pair functions. The total energy for the three—electron atom

with a nuclear charge Z is found to be

E(Z) = -1.125-Z%+1, 022805 *Z-0, 408138-0, 025515 *(1/Z)+0(1/Z)a. u.
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I. NUMERICAL SOLUTION OF EXACT PAIR EQUATIONS



A. INTRODUCTION

It is a well established approach to the study of electron
correlation to analyze the many-electron system as a series of
simpler two-electron problems. Sinanoglu1 has shown how the
first-order equation can be reduced to two-electron pair equations
for the many-electron atom or molecule. He also discusses the
equation for "exact pairs' which describes the pair correlations
beyond first-order. Nesbet2 has been successfql in reducing the
total wavefunction and energy for first-row atoms into their Hartree-
Fock and two-body components. The general topic of electron cor-
relation is reviewed in Refs. 3 and 4.

We are not concerned here with the derivation or validity
of the various pair approximations but with -how to accurately and
efficiently solve the resulting equations. There have been two stan-
dard approaches in the past, both of which are variational. The
first dates back to the early calculations of Hylleraas5 who used a
trial function containing interelectronic coordinates. The unspecified
parameters are determined so as to minimize the two-electron
energy. This method is capable of high accuracy if enough terms
are included, but leads to difficult integrals to evaluate. Indeed ,
considerable research effort has gone into the study of these integrals
themselves. The most successful approach is to use a configuration

interaction (CI) trial function. The popularity of this method is due



in part to its general applicability. When applied to the pair equations,
the CI method obtains the pair energies and properties without dealing
directly with a two-electron equation. Instead,the total N-electron
wavefunction is constructed from a set of Slater determinants so as
to describe the correlation between a specific pair of electrons while
treating the remaining N-2 electrons in the Hartree-Fock approxima-
tion. The energy is found by diagonalizing the total Hamiltonian in
this basis. This is equivalent to solving a Schrédinger equation des-
cribing the pair of electrons correlating in the Hartree-Fock field
of the remaining N-é electrons. The principal disadvantage of the
CI method is the slow convergence relative to the use of interelectronic
coordinates, Schwartzﬁ’ : has pointed out the disadvantages of using
orbital expansions to represent correlated wavefunctions with parti-
cular attention to the convergence as higher angular configurations
are included. |

We have chosen an alternative to these approaches by simply
solving the equations numerically. Since it is not possible to treat
a six-dimensional equation, we first eliminate the angular variables
by a partial wave expansion. Then the resulting equations for the
functional coefficients are solved numerically. The method is not
variational and does not necessarily give an upper bound to the two-
electron energy. However, once the basic techniques are established,

any set of two-variable equations can be solved with high accuracy.



This allows one to consider a variety of approximations to the pair

" equations (pseudo-potentials, etc.) without additional complications.'
The numerical methods are highly computer oriented,since the dif-
ferential equation is reduced to a set of difference equations.which
are solved by standard matrix techniques,

In two earlier papersa’ 9

we applied the matrix finite difference
(MFD) method to the solution of the S-limit Schrédinger equation and
the first-order pair equation for the helium atom. The results were
accurate ; however, in order to apply the method to excited states

of two-electron atoms and to the valence electron pairs in first-row
atoms, it was necessary to reexamine the numerical techniques.

The most obvious problem originates from the diffuse nature of the
wavefunction describing these electron pairs. This requires that

the point at which the solution is required to vanish must be taken
further out and consequently the number of points needed to obtain

an accurate solution becomes unreasonable. Another refinement is
needed when considering the solution of exact pair equations. The
partial wave expansion of the exact pair function leads to a set of
coupled equations in contrast to the first~order pairs which give
uncoupled equations. The exact pair functions are solutions of eigen-
value equations differing from the two-electron atom Schrddinger
equation only in the presence of the potential due to the N-2 "core"

electrons and orthogonality constraints. In order to solve these we



have to iterate among the equations determining the functional co-
efficients of the partial wave expansion. To keep the problem within
limits we must be able to obtain accurate solutions with a small
number of points.

We have corrected for the possible diffuse nature of the pair
functions by transforming to a new set of variables which are just
the square roots of the original variables. In order to guarantee
greater accuracy with fewer points, fourth differences have been in-
cluded in the approximation of the derivatives. Combining both of
these modifications with an extrapolation procedure, we have found
the S-limits for the ground states of helium and the hydride ion. The
equations were also solved using both transformed and untransformed
coordinates and second differences only. With the three séts of result.s
for each atom, we can compare the effectiveness of the modifications
for a tightly bound pair (helium) and a diffuse pair (hydride ion).
Finally, we have applied the MFD method to the exact Schrddinger
equation for the helium atom using successively higher partial waves
up to the G-lirait. The results proved superior to any previous CI
calculation of the angular limits. The properties predicted by the

numerical solution compare well to the exact values.



B. PARTIAL WAVE REDUCTION OF THE TWO-ELECTRON EQUATION

The partial wave expansion of the solution of the two-electron
Schrodinger equation has previously been considered by Luke, Meyerott,
and Clenden'm10 for the °S state of Li". For a spherically symmetric
pair of electrons the exact wavefunction can be expanded in Legendre

polynomials of the cosine of the relative angle between the two elec-

trons,
3 v2e+1
¥(r,rf,) = Z IL"Q(rlr,) _47}_‘&_. Py(cos 0;,). (1)
£=0 '
By substituting this into the equation,
(-3V2 - $V3 + V(ry) + V(r,) + 1/r,)¥ = EV¥ (2)

v20+1 .
multiplying both sides by —z— P Q(cos 6,,), and integrating over all

angular variables, we obtain the £-th member of an infinite set of

coupled equations for the functional coeifficients



[-% (i/ri a/or, (ri 8/or,) + 1/r§ a/ar, (ra 3/er,))

+ L (!Z+i)/érf + ﬂ(ﬁ+i)/“2r2 + V(ry) + V(ry) + MMJ glzﬁ(rlrz) =

E 'lpﬂ (r1r2) - Z Mp_gr Wﬂﬂl (rlrz) (3)
27 =g
where
£2+107 rk
» k " <
M.Q,Q’ = C™ (Lo, 2%0) FI
k=|2-0] o
r. = min (P, 25)
s, = max (r1,72)
and

Ck(ﬂo, #o) = V(20 + 1%(2,Q'+ 1) f (Pﬂ(cos 6,,) P, (cos 6,,) -
PQ,(COS 912))d(005 612)
Up to this point we have not made any approximations, although

it is clearly an impossible task to solve an infinite set of coupled equations.

The expansion is usually truncated when the energy is determined



to the desired accuracy. When using the MFD method it is convenient,
but not necessary, to begin by solving the S-limit (¢ =0 partial wave
only) and then use this as an initial guess to determine the P-limit
(2=0,1 partial waves only) and so forth. After two partial waves,

the addition of further terms to the expansion has a small effect on

the known functional coefficients and the iterative method of solving

the coupled equations converges extremely rapidly. Therefore, the

- slow convergence of the partial wave expansion pointed out by Schwartz 7
is not a serious drawback.

It is easy to show that a similar reduction of the Schrédinger
equation can be made for pairs that are not spherically symmetric.
The main difference appears in the angular integrals which couple
the equations together. Also the non-local potentials which occur in
the Hartree-Fock pair equations offer little complication since the
equations already contain nonhomogeneous terms. The numerical

techniques needed to solve these equations are presented in the next

section.

C. REVIEW OF THE FINITE DIFFERENCE METHOD

The second derivative can be expanded in terms of differences

as follows.

Ch w/ar’)rﬂo‘ = 1/h® (62 - 508 +&65~...) (4)



65 = W(re+h) - 2y(re) + ¥(r, - h)

65 = W(ry + 2h) - 4y(r, +h) + 6Y(r,) - 4¥(r, - h) + W(r, - 2h)
6 = W(ry+ 3h) - 6Y(r, + 2h) + 15y(r, +h) - 20%(r,) +

16¥/(ro - h) = 6Y(r, - 2h) + Y(r, - 3h) (5)

and h is the grid size. 11 The first approxination to the second
derivative is just 3*y/er® ~ 1/h® 6°. In order to find the difference

error we expand the second difference in terms of derivatives

1/h* & = (3°W/or"), + = hi@'W/arY), + = hi(a%W/or®), +...
(6)

and as a consequence of choosing central differences, the error

12 have shown

contains only even powers of h. Bolton and Scoins
that the energy found with a grid size h can be expressed as a power

series of the form
E(h) = E(0) + C;h° + C,h' + C.h° + ... (1)

where E(0) is the exact energy corresponding to h = 0. For most
two-dimensional equations it is not possible to use enough points to

compete with the accuracy of variational methods, therefore (7) is



used to extrapolate the energies found at several grid sizes to the

exact value. 13

Fox14 has argued that a substantial amount of the difference
error can be eliminated by including the next term in the difference
expansion of the derivative in the MFD equations. The difficulty in
using fourth differences is satisfying the boundary conditions. The
usual conditions are to require r *y¥(r) to vanishatr =0and r = =S
where L approximates infinity. The fourth difference of Y¥(r) at
r = h requires that we know the function at r = -h, and therefore
introduces uncertainties into the MFD equations. A similar difficulty
occurs at the other boundary. One solution of this problem is to
extract the asymtotic behavior of Y(r) at r = 0 and r = «© from the
differential equation and use this to relate the unknown values of ¥(r)
outside the defined grid to the values within. This is the approach
we have taken for the first-order pair equations; however, for_'lthe
eigenvalue equations, it is simpler to replace the fourth difference
approximation at the boundary with the usual second difference ap-
proximation. This does not appreciably affect the accuracy when
combined with the coordinate transformation to be discussed later.

Unfortunately, the fourth difference approximation does not
sufficiently reduce the difference error to be used without extrapola~-

tion. The approximation does allow accurate results to bé obtained

from relatively few grids. These various methods are illustrated
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for the S-limit equation in the next section.

D. SOLUTION OF THE S-LIMIT EQUATION

Truncating the partial wave expansion at £ = 0, we then obtain

the following equation for the two-electron atom,

o=

(-3 82/3ri - az/ar';’ - z/r, - z/r, + 1/r>)uo(r1r2)

= . E uy(r,r;) (8)

where u,(r,r,) = r,rp¥,(r,r;). If the derivatives are replaced by the
second difference approximation, (8) is transformed to a set of linear

equations of the form,

D'u = E-u (9)

where D is a symmetric banded matrix with non-zero off-diagonal
elements in only two super-diagonals and two sub-diagonals. The
eigenvectors at D represent the ground and excited states of the two-
electron equation and would be exact if we used an infinite number

of grid points and satisfied the correct boundary conditions. Since
we are usually satisfied with the lowest state and possibly a few
excited states, a finite number of points are enployed and a reason-

able radial cutoff is chosen to approximate the boundary conditions.
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We have solved the S-limit equation for the first two states
of the helium atom and for the ground state of the hydride ion using
the second difference approximation. The radial cutoff for the ground
state of helium was taken at 9 a.u. and for the excited state at 20 a. u.
For the hydride ion the solution was required to vanish at 25 a. u.
Equation (8) was solved for several grid sizes and the eigenvalues
extrapolated using the polynomial representation of the difference
error. From (7) we see that two eigenvalues are needed to eliminate
the h®-term, three for the h’-~ and h*-terms, etc. We have done this
for the three states and present the results in Tables I-III.

The extrapolation of the S-limit for the helium ground state

predicts an energy of -2.879031 a.u. with an uncertainty in the last

15 7

figure. The previous best limit was found by Davis™ " and by Schwartz
to be -2.879028 a.u. Table I shows the extrapolated values found
using success{vely more of the initial energies to be converging from
above. Thus the best extrapolant should be an upper bound to the
true S-limit. This value falls within the error bounds on Davis'
predicted limit.

The results for the °S state of helium and the ground state

of the hydride ion are less satisfactory. Davisls’ 16

places the S-
limits of these states at -2,1742652 a.u. and -0,5144940 a, u.,
respectively, The MFD method is more difficult for these states

because of their large radial extent. To achieve the accuracy that
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we have, it was necessary to diagonalize a matrix as large as 22,500
by 22, 5000 for the °S state and about 15,000 by 15, 000 for the hydride
ion.

In order to avoid this problem, we made the following co-

ordinate transformation,

(10)

and solved the Schrodinger equation on an evenly spaced grid in x;
and x,. The effect of this is to give a dense distribution of points
near the nucleus and a sparse distribution in the tail regions, as
viewed in the untransformed system. Not only is the radial cutoff
less important in the new system, but since this is a more optimum
distribution of points for our problem, we can use fewer points with-
out losing accuracy.

Substituting the transformation into (3), the derivatives

become,

1/rv* 8/or(x® 8/dr) = 1/4r (3%/ox" - 1/x 3/4%) (11)

The first derivative is eliminated by the transformation

Yo (x1x:) = = :;2 :3,2
Xy X
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which leads to the following equation for uy(x;x,),

[—% (zlf«- (az/axf - 21-331,—1) ¥ _4%._2 (az/ax: - 74%) ) -z/r, - z/rg + 1/r>]

1

e (Xt) 2 Erulex) . (12)

This equation was solved for the hydride ion with a 25 a.u. radial
cutoff (5 a.u. on the square root grid) using grids ranging from 25
to 50 strips. The results extrapolated to E = -0. 514497 a.u. and
wefe converging from below. Representation of the difference
error using only even powers of h was not as efficient for the new
coordinates giving an energy of -0, 514557 a.u., also converging
from below. Therefore a polynomial containing both even and odd
.powers, but leading off with hz, was used. The square root grid
reduced the computation time by a factor of 7 for this case.

In an effort to improve the MFD method further, the fourth
difference approximation was used to re-solve the equations for
helium and the hydride ion on the square root grid. The cutoff for
helium was kept at 9 a.u. but the cutoff for the hydride ion was
taken at 30 a.u. The energies obtained using both second and fourth
difference approximations are given in Table IV. While the fourth
difference results are improved, the accuracy is not sufficient to be
used without extrapolation. In order to find the appropriate extra-

polation method, the energies were fitted to various polynomials in
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the grid size using successively finer grids. By studying the trends
in the extrapolants and the coefficients of the power series, we can
determine the most efficient form to represent the difference error.
The results for the polynomial fits of the helium energies are given
in Table V.

The best representation of the difference error for the second
difference approximation is given by the polynomial containing a

cubic term in h, For the fourth difference results the polynomial
E(h) = E(0) + C,h° + Cnh* + Cgh® + Ch®+...  (13)

appears to give the best extrapolant, but by eliminating odd powers
entirely we obtain accurate results and uniform convergence from
above. We should point out that while the error in the fourth differ-
ence approximation leads off as h4, using second differences at the |
boundary introduces the h® term. Table VI gives the equivalent
information for the hydride ion. The fourth difference approximation
predicts an S-limit energy of -0, 514491 + 0. 000001 a.u., which is
within the error bounds of Davis' result.

Even though the wavefunctions found by the MFD method are
only known at discrete points, there is no problem extracting the
same information from them that a variational solution can yield.

In fact, the numerical solutions are generally of a higher quality

over all regions of space than the variational functions. This is
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illustrated by the local energy which agrees with the eigenvalue to
six or more decimal places at every grid point, Properties are
easily calculated by quadrature methods which amount to nothing
more than double summations. These are then extrapolated in the
same manner as the energy.

We have calculated several properties from the fourth dif-
ference S-limit functions for heliumand the hydride ion and compare
them to the radial CI and Hartree-Fock values in Table VII. The
agreement is very good except for (r’ +r.), which indicates that
more diffuse basis functions were needed in the radial CI calculations.

Contour and perspective plots of the two helium states and the
hydride ion ground state are given in Fig. 1. We have plotted the
square of the function uy(r,r,) in each case. The contour plots show
the regions r,,r, < 4.5 a.u. for the 'S state of helium, r,,r, < 10 a.u.
for the S state, and r,,r, < 12,5 a.u. for the hydride ion. The
nucleus is positioned at the lower left corner and the constant contour
increment is given in the upper right corner. The lowest contour is
labeled. In the 3-D plots the regions shown are r,,r, < 7.5 a.u. for
the helium 'S state, r,,r, <13.3 a.u. for the S state, and r,,r, <
18.7 a.u. for the hydride ion. Figure 2 gives the viewer's orienta-
tion for these plots. The functional axis has the same scale in each
case so that the heights of the surfaces can be compared. The con-

tour plot for the hydride ion shows the minimum in the solution along

-
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the line r, = r,. The helium atom shows a similar feature for large
radial distances but only slightly. This minimum is not present for
the Hartree-Fock wavefunction which does not predict a stable ground
state for the ion.

While including radial correlation relative to the Hartree-Fock
model leads to a stable ion, the S-limit functions gives unreasonable
values for some properties. The exact value of (ri +rs) is 23.827
a.u., 17 which is about two-thirds of the S-limit value. If we include
the higher partial waves in our expansion of the exact solution, the

S-wave contracts and the expectation values approach the exact re-

sults., This is illustrated for the helium atom in the next section.

E. SOLUTION OF THE COUPLED PARTIAL WAVE EQUATIONS
FOR THE HELIUM ATOM

The MFD method was applied to the sets of coupled equations
that result when (1) is truncated at £ =1,2,3, and 4. We decided to
use the second difference approximation on the linear grid with a
9 a.u. cutoff since this proved to be very accurate for the S-limit.
For a more diffuse state the square root grid would have been used.

The extrapolation tables for the angular limits are given in
Table VIII. The results converge from above so that the best ex-~
trapolants should be upper bounds to the true limit. These are com-~

pared to various CI calculations in Table IX. We note that the
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numerical G-limit is superior to each of the other calculations.

18 were only able to obtain an energy of

Tycko, Thomas, 'and King
-2.90344 a.u. using 15 partial waves. This illustrates the difficulty
in representing the functional coefficients with orbital products for
the higher partial waves. As pointed out by Schwartz, 1 this led to

the erroneous conclusion that the majority of the error was in the
S-limit and that the contribution from the higher waves could be neg-
lected. The CI calculations generally do worse for the higher angular
limits, because to keep the calculations from becoming intractable,
fewer configurations are used to represent the functional coefficients.
The MFD method actually becomes easier for these equations since
the coefficients have less and less amplitude and are concentrated
nearer the line r, = r,.

The energy can be expressed in the form,
E = Z E, (14)
[

where

E, = (|-3V]-3%Vi-2z/r; -2/1,]0)

+ Z Z (Q{rlé/rg'ﬂ |er) ck(eo,a'o)
2’k

= T, +V, (15)
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Using the G-limit solution, we have calculated the different terms

in this expression. The electron repulsion matrix elements

%; i | ri /rg+1 | 27) cK (o, £70) are presented in Table X and

the energy analysis in Table XI. These results illustrate the small
but important effects the higher partial waves have on the energy.
Several properties were studied in the same manner and compared
to the exact values in Table XII. The accuracy is very good, being
about four decimal places in every case except for (ri + rz) . The
value is still too large and would improve if more partial waves were
used.

The contour plots of each functional coefficient for the G-limit
are given in Fig. 3. Again the squares of the functions u Q(rlrz) are
plotted over the region r,,r, < 4.5 a.u. The peakedness of the higher
partial waves about the line r, = r, is quite evident. Since the am-
plitude of the functions for £ > 0 is negative, their effect is to reduce
the electron density in this region. Figure 4 gives the perspective
‘plots of the S- and P~-waves using the same scale along the functional
axis. By integrating over the radial variables, we found the volume
under the P-wave surface to be 0. 4% of that under the S-wave. The
remaining waves were too small to be shown with this scale, but
the same integration showed the D-wave to be 5% of the P-wave and

the F-wave about 17% of the D~wave.
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F, DISCUSSION

The results presented here demonstrate that the numerical
solution of partial differential equations can give accuracy competitive
with variational methods. The values found for the S-limits of
helium and the hydride ion are superior to any previous calculation
and agree well with the predicted limits given by Davis. More im-
portantly the same accuracy was found when the‘ coupled equations
were solved for helium. The equations describing the pair correla-
tions in atoms offer virtually no new considerations once they are
derived. The same program which was used for the helium atom
has been used to calculate the valence pair correlation energy for
beryllium and the MFD method has been applied to the first-order
hydrogenic pair equations for lithium. The results were consistently .
accurate in all cases.

The calculations reported here were carried out on the CDC 6600
and IBM 360-75 computers. The IBM 360-75 results were found using

double precision arithmetic to avoid round-off errors.
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TABLE II. The S-limit energy of the helium atom triplet
excited state.

Grid Size
20/50

75

100

125

150

Initial
Energies

-1.92155742
-2
-2,04615040
. -2
-2.09829880
-2
-2.12437221
-2
-2.13911129

.14582478
-2,17185406

.16534674 -2,17411134
-2.17375017 -2.17425468

.17072494 -2.17423875
-2.17411661

.17260920
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TABLE III. The S-limit energy of the hydride ion on the
linear grid.

Grid Size
25/50
75
100
125

Initial
Energies

-0.48265239
-0.49928247
-0.50569401
-0.50878134

-0.51258653
-0.51393741
-0.51426992

-0.51438770
-0.51445695

-0.51447016
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TABLE IV. S-limit energies for the helium atom and
the hydride ion on the square-root grid.

Grid Size

3/20
25
30
35
40
45
50
55
60

2nd Differences

-2
.92313414
. 91042377
-2.
-2.
-2.
-2
-2.
-2.

-2
-2

-0.
-0.
-0.
-0.
-0,
.51751582
-0.

Helium

94612243

90260678
89743538
80382642
89120257
88023204
88771261

Hydride

92387559
52151323
51996146
51888329
51810167

51706469

4th Differences

-l
-2.
-2.
-2.
-2.
-2.
-2.
B,
-2.

91652455
90253697
89514153
89076150
88795443
88604778
88469360
88369718
88294265

. 52200314
.91960370
.51819644
. 51730055
.51669499
. 51626649
. 51595212
.51571463
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TABLE V. Polynomial fits for the helium atom S-limit.?

Grids Used in the
 Polynomial Fit

(20-25)
(20-30)
(20-35)
(20-40)
(20-45)
(20-50)
(20-55)
(20-60)

(20-25)
(20-30)
(20-35)
(20-40)
(20-45)
(20-50)
(20-55)
(20-60)

8

h'h'nt...

-2.88226607
-2.88095296
-2.88007081
-2.87968114
-2.87946967
-2.87934222
-2.87926080
-2.87920098

-2. 87767016
-2.87886455
-2,87898118

-2.87901272

-2.87902253
~2.87902500
-2.87902682
-2.87902886

Second Differences

n?n®nt. ..

-2. 88226607
-2.88066116
-2. 87954872
-2.87930272
-2.87918352
-2, 87912250
-2, 87909307

- =2.87903506

Fourth Differences

-2.87767016
-2.87912997
-2.87905020
-2.87904011
-2.87903181
-2.87902523
-2.87903194
-2.87903698

aSqua.re root grid with a 9 a.u. cutoff.

h® h*nl...

-2

. 88226607
-2,

88095296

. 87997000
. 87955936
. 87935227
. 87923738
. 87917124
. 87911356

. 87767016
. 87886455
. 87899451
. 87902257
. 87902766
. 87902645
. 87902896
. 87903236
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TABLE VI. Polynomial fits for the hydride ion S-limit.?

Grids Used in the
Polynomial Fit

(30-35)
(30-40)
(30-45)
(30-50)
(30-55)
(30-60)

(25-30)
(25-35)
(25-40)
(25-45)
(25-50)
(25-55)
(25-60)

h

-0.

h ht.

51459713

. 51479082
. 51466352
. 51460482
. 51457261
. 51454715

.51415043
. 51445461
. 51447961
.51448779
. 51448998
.51449188
. 51449172

Second Differences

Fourth Differences
. 51415043
.51452703
. 51449563
. 51449584
.51449172
. 51449635
-0.

aSquare root grid with a 30 a.u. cutoff.

hdhné...

. 91459713
. 51474569
. 51457709
.51453888
. 51452280
. 51448762

51448720

h2

-0.
-0,

W52, ..

51459713
51479082

. 51464655
. 51458322
. 51455157
. 51452128

. 51415043
. 51445461
. 51448274
. 51448060
. 51449120
. 51448370
-0.

51449081
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TABLE XI. Partial wave analysis of the energy for helium.

th& (L] B - O =

Ty
2.877088
0.022998
0.002222
0.000542
0.000194
2.903044

VI; nué
-6.732944

-0.018653
-0.000810
-0.000110
-0.000024
-6.752541

vy
-5.768487
-0.034538
~0.002748
-0.000615
-0.000211
-5. 806599

Ey
-2.891399
~0.011490
-0.000527
~0.000073
-0.000017

-2.903506
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TABLE XII. Partial wave analysis of expectation
values for helium.

2 (ry+15 (rp+1),  (U/r+l/ry, PB (1/T12) g g

0 1.85014 2.37618 3.36647 0.96446

1 0.00837 0.01064 0.00933 0.01589

2 0.00039 0.00050 0.00041 0.00194

3 0.00006 0.00007 0.00006 0.00051

4 0.00001,4 0.00001, 0.00001, 0.00019

2 1.85897 2.38741 3.37627 0.94594
Exﬁtcta 1.85894 2.38697 3.37663 0.94582

4C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
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Figure 1. Contour and perspective plots of the S-limit for the
(18%) 'S and (1s2s) °S states of helium and the (1s”) S state
of the hydride ion.
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' Figure 2. The viewer's orientation for the perspective plots.
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Figure 3. Contour plots of the functional coefficients for the helium

G-limit wavefunction,



40

4=0064

%

(@)
O
So

/

4=Q00044

S-PARTIAL WAVE FOR THE HELIUM ATOM

P-PARTIAL WAVE FOR THE HELIUM RTOM

4=000003

%

%
0
W G

a=0000006

0-PRRTIAL WRVE FOR THE HELIUM RTOM

4=0000002

O
%
o)

G-PRARTIAL WAVE FOR THE HELIUM ATOM

Figure 3

F-PRATIAL WAVE FOR THE HELIUM RTOM




41

Figure 4. Perspective plots of the S- and P-wave functional coefficients

for the helium atom.
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II. NUMERICAL SOLUTION OF FIRST-ORDER PAIR EQUATIONS
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A. INTRODUCTION

It was previously shown that the functional coefficients of the
partial wave expansion for the first-order pair functions could be
obtained with the matrix finite difference (MFD) method.1 Taking
the full electron interaction as the perturbation, the method has been
extended to the three pair equations that determine the first-order
wavefunction for the lithium isoelectronic series. The pair functions
are independent of the nuclear charge and can be used to construct
the first-order wavefunctions for other atoms when the remaining
hydrogenic pair functions are determined.2 The method is not varia-
tional and therefore can be a.pplie.d without orthogonality constraints
to the excited pair functions that are not the lowest of their syminetry.
In addition, the calculation of the total second- and third-order energy
involves none of the difficult integrals that occur for the complicated
variational functions containing interelectronic coordinates.

The first-order equation is reduced to itsﬁpair components in
the first section, using the theory developed by Sinanoglu.3 The pair
functions are then expanded in a partial wave series and the coef-
ficients are determined with the MFD method. The results found
using both the second difference and fourth difference approximations
are presented for the ground and excited states of the two-electron
atom. Finally, the total second- and third-order energies are calcu-

lated for the lithium series.
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B. REDUCTION OF THE FIRST-ORDER EQUATION

With the entire electron interaction as the perturbation, the
dependence on the nuclear charge can be removed from the perturba-
tion equations. By scaling the radial distance to the nuclear charge Z
and measuring the energy in units of Zz, the zero-order Hamiltonian
can be written,

= & (A1) = & K (1)
H i(V1 /r;) ih‘

and the perturbation becomes,

H = 1/Z Z l/rij .. (2)
=] 2

In these coordinates the expansion parameter is seen to be 1/Z and
accordingly the total energy and wavefunction can be expressed as

follows,

E = E, + 1/Z°E, + 1/Z*°E, + 1/Z°E4 + **°

(3)
o= w, o+ 1/Z% + 1/2%, + 1/Z% W, + -

‘where knowledge of ¥, is sufficient to determine the energy through

third-order. The zero-order solution and energy are
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T, = Q(6:(1) 6,(2) 64(3) * + Gy

| (4)
E, = Z €
i

_ | ' . .
wherea—ﬁz (—I)Pp is the antisymmetrizer and qbi are hydrogenic
B ) .
spin-orbitals which satisfy hiqbi = €¢,. For some states ¥, will be

a linear combination of determinants. The first-order equation is

Z(h]'..- Ei) vy o= (B - Z l/rij) ¥, (5)

' i<y
with

E, = (‘I’o[Z l/rijl\lfo) (6)
i<j
- LK
i<j
and _
Jij - <¢i(1) ¢J(2) l 1/75 I (Pi(l) ¢j(2))

Kij = (9;(1) 952 | 1/r5] 94(2) 9,1))

The right-hand side of (5) can be rewritten as,
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(B, - L 1/ % - 4.2 By; (03 = Kyg = /030 - P)ai(06,(1)
i<j i< .
™

where q)ij is the orbital product without (,‘bi(i) and qu(j). The permuta-

tion P11 operates only on the particle labels. Equation (7) suggests
the. following form for ¥,,
o= A ey M- Py w6 ®)
i<j

Substituting into the first-order equation and making use of the orbital

equations, we obtain

C?Z h+h-e-e)(1-P)w()=
1<)

aig Ky-1r)d (- e o) ©
] ,

A sufficient condition that ¥, satisfies (9) is
(h, +hg - & = Ej) (1 - P,,) Wij(l; 2) =
(Jij " Klj - l/rm) (1 - Py;) ¢i(1) ¢](2) . (10)

The necessary condition that a solution to this pair equation exists 154



47
(B (1) 64(2) |3 = Ky = ey | (1 - Pio) (1) ¢,(2) = 0 (11a)
where qbk (1) ¢>ﬂ(2) is any solution to
(h; + h, - Gy 61) %{ (1) ¢p_(2) = 0. (11b)

For the ground state of the three-electron atom the following three-

pair equations must be solved,
(h; +hy - 2515) G(1,2) (e - Ba) =
(T1g1s = 1/712) 15(1) 15(2) (o - ) (12a)

(hy +h, - €1, - €5) T(1,2) aa =
(12b)

(T1g9s = Kigag = 1/712) (15(1)2s(2) - 1s(2)2s(1))/V2 aa
(h; + h, - €s ™ 625) 1- P, B, 2)Ba =

(JISZS -1/r;,) (ls(l)ﬁ 2s(2) - 1s(2)B 2s(1)a) (12¢)

Both (12a) and (12b) satisfy the existence condition; however, (12c) does

not, since the function (1 - P,,) 1s(1)a 2s(2)8 is a solution to (11b)

(1 -P,,) 1s(1)B 2s(2)a) =0.

and (1s(1)@ 25(2)8 | J{g9q - 1/T1

S‘manoglu5 has shown that by expanding both sides of (12¢) in sym-~
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metry states of the two-electron atom,
(1 - P 1s(1)8 2s(Qa = [ (As(1)25(2) - 1s(2)2s(1)) (B + Ba) -

(1s(1)25(2) + 1s(2)25(1)) (2B - Ba)]
(13)

(1 - P, F(1,2)pa = T(1,2)(aB +Ba)/V2 -5(1,2)(af - Ba)/V2

an equation for T(1, 2) is obtained which is identical to (12b) except

for the spin function, and the following equation is obtained for S(1, 2),
(b +hy - 6 - €9 ) S(1,2) (@8- Ba) = (Tygoq + Kigpg - 1/710)

(1s(1) 25(2) + 1s(2) 25(1))/VZ (aB - Ba) (14)

The total first-order function can be expressed in terms of the

solutions to (12a), (12b), and (14)'as follows,
v, - INTAG0,2) @F - )N 25()

+ [T(1,2) (B + Ba)/ 2 - 8(1,2) (aB - Ba)/ 2] 1s(3)a

- T(1,2) ca ls(S)B) (15)

where (11a) is satisfied in each case. The pair functions G(I, 2),
T(1, 2), and S(1, 2) are identically the first-order wavefunctions for

the (1s1s)'S, (1s2s)°S, and (1s2s)’S states of the helium series.
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C. SOLUTION OF THE FIRST-ORDER PAIR EQUATION

Because the pair functions G, T, and S are spherically

symmetric, the partial wave expansion for each is simply
Ulrrr,by) = % u,(riry) P, (cos 6y,) (16)

By substituting this into the pair equation, multiplying both sides
by P,(cos 8,,), and integrating over the angular variables, the fol-

lowing partial differential equation for u ﬂ(rlrz) is obtained,

(-3 (1/r3 @8/ar, (rf a/or,) + 1/ri &/er, (rz a/ory) ) - 1/r, - 1/r,

+ 202+ 1)/2r% + £(0 +1)/2r2 - € - Ej)-uﬂ(rlra)
; 2
. e
= E,(pair) 629 * S R (r,r;) (17)

where E, = 5/8 for the (1sls) pair, E; = 137/729 for the (1s2s)°S
pair, and E, = 169/729 for the (1s2s)’S pair. The function R is the
radial part of the zero-order function for each state. The boundary
conditions on u(r,r,) require that it is finite for r, or r, = 0 and that
it vanish for r, or r; = w, The set of equations for the functional co-
efficients are not coupled and are solved independently for each
partial wave using the MFD method,

The details of the numerical analysis have already been

discussed;l' 6,7 however, two important modifications have been
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introduced which allow the diffuse excited states to be handled
efficiently. First, the radial cutoff (the point at which u E(rlrz) is
required to vanish) for these states must be taken farther out than.
for the (1sls) pair previously treated. Therefore, even with ex-
trapolation, a very large number of points are needed to achieve
comparable accuracy. To avoid this difficulty, the following coor-

dinate transformation was introduced into the pair equation,

_ 2
r, = X%

(18)

.2
T, = X

The grid points in the transformed system are closely spaced near
the nucleus and farther apart in the tail regions, as viewed in the
untransformed system. This means that by using a large radial
cutoff and relatively few points, the regions important to the accurate
solution of (17) are not neglected.

The second modification in the MFD method was to improve
the difference approximation of the derivatives. Instead of truncating
the difference expansion at the second difference approximation, the
fourth difference is included giving the following improved approxima-

tion for the second derivative,
(8%/0x" u(x))yy = 1/h%(-5-ulxo + 2h) + 5 ulx, +h)

-3 vu(xg) + & ulx -h) - rux, - 2h) + O(hY) (19)
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where h is the grid size. The only difficulty occurs at the boundary
points, where (19) requires values of the function outside the defined
grid. This was resolved with the following approximations: at the

point x =x___ -h, where x is the radial cutoff, u(x + 2h) was

ax
set to zero, and at x = h the value u(x - 2h) was set equal to u(x).

max

The latter assumption was arrived at by investigating the power
series form of u(x) for small x and can be shown to introduce an
error of the order of the difference truncation error, if the coordi-
nate transformation (18) is used. An alternative would be to use
the usual second difference approximation at the boundaries and the
fourth difference approximation elsewhere. Actually both approaches
‘were used, depending on which method was used to solve the difference
equations.

When substituted into (17), both the second difference and
the fourth difference approximations lead to a set of simultaneous

equations of the form

D'u = b (20)

where D is a banded matrix. The second difference approximation
produces a symmetric matrix, as does the fourth difference approxi-
mation with the modified boundary conditions. However, the mixed
difference method leads to an unsymmetric matrix. The difference
equations were solved with Gaussian elimhation for the ¢ = 0 partial

wave and with the Gauss-Seidel method for ¢ > 0. It was found that
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for the higher partial wave equations the Gauss-Seidel method con-
verged extremely fast, while for the S-wave the method diverged.
Because the Gaussian elimination method is more efficient for sym-
| metric matrices, the mixed difference approximation was not used

for the S-wave, but was used for each of the higher waves.

D. CALCULATION OF THE SECOND-~ AND THIRD-ORDER
ENERGIES FOR THE TWO-ELECTRON STATES

The partial-wave equations for each pair function were solved
using both the usual second difference approximation and the improved
difference formula given by (19). The second-order energy for each

pair was found from

' 2
| b
E,(pair) = 2 20 +1 f u, (£.1,) (—f;—l— - Ei(pair))
£ ‘ rs,
‘R(r,r,) ror.dr,dr, ' (21)

The radial integral was calculated by the trapezoidal rule. The
calculations were carried out at several grid sizes and the results

8 method., Therefore, the difference

extrapolated with Richardson's
and quadrature errors were eliminated in one step.

The extrapolation tables for the partial wave contributions
to E, for the (1sls) pair are given in Table I. The results were

found using the second difference approximation and the untrans-
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formed (linear) grid with a 12 a.u. cutoff. The first column of each
table lists the number of strips used in each direction. The second
column gives the initial results and the remaining columns contain
the extrapolants. The latter were obtained using different sets of
results from the first column. By displaying the results in this
manner, it is possible to determine if the extrapolants are converging
from above or below the true value. The partial wave contributions
from all but the S-wave are converging from below and have converged
to at least six decimal places. The results for the S-wave appear to
oscillate, but the sub-table produced by the 45, 60, and 75 strip cal-
culations is converging smoothly from below. The extrapolation
tables for the SS and 'S excited states are given in Tables II and III.
These results illustrate the need for the modifications that were dis-
cussed in section C. The 120 strip S-wave calculation required the
solution of nearly 14, 000 linear equations which took about one hour
on the IBM 360-75. The S-wave cutoff was taken at 24 a.u., which
was still not far enough from the nucleus. Clearly it was not practical
to re-solve the equations with a larger cutoff. The functions for
£ > 0 were much less diffuse and could be obtained easily in only a
few minutes. For the 'S state these waves were nearly converged
without extrapolation. The S-wave for both states converged from
above.

The three-pair equations weré-re -solved using the fourth dif-

ference approximation and the transformed (square root) grid.
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The initial results and the final extrapolants for the first 10 partial
wave contributions to E, are given for the three states in Tables IV,
V, and VI, In addition, the third-order and total energies are also
given for Z = 2. The radial cutoff was taken at 32 a.u, for all three
calculations. The first important result that should be noted is the
relatively few points that were needed to obtain better accuracy than
the linear grid calculations, All of the numbers were found at one
time with the same program, and the total time was about one hour.
This could have been reduced to about 20 minutes, if fewer grids
were used. For example, the results from the 20, ‘25, and 30 strip

calculations gave the following extrapolants for the (181s) pair,

E,(0) = =0.12532a.u.
E;(1) = -0.02648 a.u.
E,(2) = -0.00387 a.u.

which agree well with the best results.

The third-order energy for each pair was calculated from,

k
r

Ey(pair) = Z Qk(ﬂo,ﬁ’o) fuz(rlrz) _fki uy,(r,r,) riridr,dr,
2,0’k o

1
- E,(pair) g 20 +1 fuﬁ(rlr,) u,(ryry) rirdr dr,

-2E,(pair) [y (r;ry) R(ryr,) rirzdrdr, (22)
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where

QXto, t70)

JP(cos 6,,) Py (cos 6,,) P,(cos 6,,) d(cos 6,,)

The total energies were found for the helium atom and compare well

to the following values given by Knight and Scherr, 9
E(lsls,’s) = -2.90331692 a.u.
E(1s2s,”S) = -2.17398777 a.u.
E(ls2s,’S) = -2.14611980 a.u.

The partial wave contributions to the second-order energy

10 ppe

I' have been calculated variationally by Byron and Joachain,
contributions found by the two numerical approximations are com-
pared to variational results in Tables VII, VIII, and IX. For the
(1s1s) pair the first three columns agree closely for each partial
wave. The values of E,(1) and E,(2) predicted by Knight and Scherr®
are less accurate, but their total second-order energy was not found
by a partial wave expansion and represents the most accurate value.
The third-order energy shows somewhat worse agreement which is
due in ~part to the finite number of partial waves used in the calcula-
tion. Comparison of the results for the °S and 'S excited states il-
lustrates the importance of the accurate difference formula and the
increased cutoff. The agreement with Knight and Scherr9 is generally

11

better than for the ground state. In fact, Knight™™ has recently re-

evaluated the 'S second-order energy and found the improved value
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to be -0. 1145094 a.u. This indicates that the fourth difference value
is the most accurate of those given in Table IX., The variational
calculation of the partial wave contributions by Byron and Jc:achzu’m10
compares unfavorably for this pair. Since this is not the lowest state
of its symmetry, it is expected that the variational method would
have more difficulty. The convergence of the partial wave expansion
is quite reasonable for both excited states.

Schwa.r‘cz12 has given an asymptotic formula for E,(£), which
Byron and J oachainlo have used to estimate the contributions from
partial waves with £ > 20 for the ground state and with £ > 6 for the
excited states. They obtain E,(£ > 10) = -0, 000042 a.u., E,(2 > 6,
°8) = -0.000001 a.u., and E,(£ > 6, 'S) = -0. 000041 a,u. If the con-
tribution for the ground state is added to the second difierence result,
we obtain -0, 157661 a.u., which agrees well with the correct value
of -0.157666 a.u. The fourth difference results predict that E,(£ > 6,
%) =~ -0. 000016 a.u. and E,(¢ > 6, ') ~ -0. 000089 a.u. using the

11 for

accurate values of the second-order energy given by Knight
comparison. Because the functional coefficients u(r,r,) are found

as arrays of numbers, it is not possible to communicate them in a
compact form. Each coefficient could be polynomial fitted, but these
results would still require a large amount of space to display. How-
ever, qualitative information can be given in the form of contour plots

of each pair function. The discussion of the plots of the functional

coefficients for the three pairs is given in the next section.
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E, CONTOUR AND PERSPECTIVE PLOTS OF THE PAIR FUNCTIONS

The numerical functions found on the linear grid were plotted
over a square region with the boundaries set at one-half the radial
cutoff. In each contour plot the nucleus is located at the lower left
corner, with the r; and r, axes running horizontally and vertically
from this point. The positive contours are given by solid lines and
the negative contours by dashed lines. Due to an artifact of the

Calcomp plotter, some of the solid lines tend to break up in regions

of small r; or r,. These should not be mistaken for negative contours,. .

which are dashed lines in all regions. Each functional coefficient was
multiplied by r,r, and plotted with a constant contour interval. The
values of the contour interval and of the largest positive and negative
contours for the three states are given in Table X. Ideally, these
values should have been found for several grids and extrapolated to
obtain quantitative results. Instead, the values are given for the
particular function plotted and represent the exact results to no more
than two or three significant figures.

Figure 1 gives the plots for the first six partial waves of
the first-order function for the (1sls) pair. For £ = 0, the effect
on the zero-order function is to subtract amplitude in the region
close to the nucleus and along the line r; = r,. The functional coef-
ficients for ¢ > 0 are negative in all regions, becoming more peaked

along r, =r; as £ is increased. These waves have a simpler form,
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since the orthogonality to the zero-order function is insured by the
angular factor. In Fig. 2 the perspective plots of the first two _partial
waves are given along with the zero-order, first-order, and total
functions. The viewer’s orientation for these plots is shown in Fig. 3.
Each perspective plot was drawn to the same scale and can be directly
compared. The contour plots of ,, ¥, and ¥ fpr all three pairs are
given in Fig. 4. The total first-order function was found by taking

6, = 0 and summing the partial wave components as follows,
Y, = guﬂ (e, (23)
then the total function was approximated by,
Vo= W Y (24)

The first-order function shows a deep minimum near the nucleus and
two well-separated maxima farther out., When this is added to the
zero-order function, the total function is found to have two separated
naxima with a minimum along r; =r,. This is qualitatively what the
exact solution should look like.

The partial wave contributions to the first-order function for
the 'S state are shown in Fig. 5. The trends are approximately the
same as for the ground state except that the effects contributed by
higher partial waves are smaller. This is expected because of the

exact node at r; = r,. From the perspective plots of ¥, and ¥ given
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| in Fig. 6, the total first-order function serves to reduce the amplitude
near the nucleus and increase it farther out (for the positive region).
The contour plots of the functional coefficients for the 'S excited state
are shown in Fig. T. They exhibit the intricate nodal structure ex-
pected for a state which is not the lowest of its symmetry. In each
case the functions subtract amplitude from the nuclear region and build
amplitude in the region r;,r, ~ 4 a,u,, when added to y,. In Figs. 4.ahd 8
the zero-order function is shown to have a maximum atr,,r, ~ 1 a. u.
and separated minima at r;,r, ~ 1,6 a.u. and r,;,r, ~ 6,1 a.u. Adding
the first-order function for 6,, = 0, the total function has two maxima
occurring at ry,r, ~1,1,75 a.u. and r;,r, ~ 1,.75,1 a.u. The minima
are moved out from 6 a.u. to 8 a.u. For both of the excited states
the perspective plots are drawn to the same scale as the ground state,
so that amplitudes for the three states can be directly compared.

Up to this point the discussion has been concerned with elec-
tron correlation in the two-electron states. In the next section the
pair functions are used to construct the total first-order function and

calculate the total second- and third-order energies.

F, CALCULATION OF E, AND E; FOR THE
THREE-ELECTRON ATOM

In order to calculate the second-order energy, ¥, given by (15)

is substituted into
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E, = (‘1‘1‘2 1/rijl‘lf1) (25)
1<)

which expressed in terms of the pair functions is,

"E, = E,(lsls,’s) + $E,(1s2s,’S) + 3E,(1s2s,'s)
- 4w1—2w2-w3-\f2—w4+1/\/_2"w5+3/w/§ We (26)

The first three terms are the additive contributions from the pairs.
Using the best numerical results, we obtain E,(add) = -0. 286013 a.u.
This includes the correction for partial wave contributions from

2 > 10 for the (1sls) pair. The second-order energies found by
Knight and Scherr9 and by Knight11 predict the additive contribution
to be -0. 286035 a.u. The next six terms in (26) are defined as
follows,

(G(12) 2s(3) | 1/r,4 | 1s(1) 15(2) 25(3))

32
]

w, = <{G(12) 2s(3) | 1/r,, | 1s(1) 1s(3) 2s(2))

wy = (G(12) 2s(3) | 1/r,, | 15(3) 1s(2) 2s(1))

(27)
w, = (S(12)1 |1/r“[13(1) 1s(2) 2s(3))
ws = (S(12) 18(3) | 1/r,, | 18(1) 15(3) 25(2))

ws = (T(12) 15(3)J1/1~nj1s(1) 1s(3) 2s(2))

Both the second and fourth difference solutions were used to calculate
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these integrals. The extrapolated results are compared to those
found by Chisholm and Dalga.rno13 in Table XI. The fourth difference
results give the best agreement, which is better than six decimal
~ places for the (1sls) terms. The excited pairs are not quite as
accurate and the total non-additive contribution is off by 0, 000006 a. u.
This iS considerably better than the variational calculation of Seung
and Wilson, I4 which is below the true value, Chisholm and Dalgarno
did not obtain their results by solving for the pair functions, but these
represent the most accurate values. Combining the additive and non-
additive contributions, the numerical results predict the total second-
order energy to be -0.408138 a.u. compared to the acchrate value
-0.408165 a.u. found by Knight. 11
While the variational calculation gives an accurate result if
enough terms are included, it is not easy to calculate the third-order
energy due to the large number of difficult integrals. For the num-

erical function, E; is nearly as easy to calculate as E,. The first-

order solution is substituted into the equation

E, = <\I’II Z l/rijl\Iﬁ) - E; <‘l’1|w1> (28)
1<)

which leads to the following expression in terms of the pair functions,
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<G(i2) 25(3) | H, | G(12) 25(3)) - (G(12) 2s(3) lHlI G(32) 2s(1)) -

E, =
+ £(T(12) 1s(3) |H,| T(12) 1s(3)) + & (T(12) IS(B)lelT(Bz)vls(l))
+ 7 (S(12) 1s(3) |H,; | S(12) 1s(3)) -  (S(12) 1s(3) |H,| S(32) 1s(1))

- V2 (G(12) 2s(3)|H,|S(12) 1s(3)) grﬁ(c;(m) 2s(3)|H,|s(32) 1s(1)>
- 3V2 + (G(12)2s(3) | H, | T(32) 1s(1))+ 3. <s(12)1s(3))Hllfr(sz)lsu)))

—E,-|[(G(12) | G(12)) - (G(12) 25(3) | G(32) 2s(1))
+ 2(T(12) | T(12)) +& (T(12) 1s(3) | T(32) 1s(1))

+ 3 S12) Is@2) -4 (6@12) 15(3) | S(32) 1s(1))
+ V2 (G(12)2s(3) |S(32) 1s(1))

VR (7G(12)2s(3)|T(32)1s(1)> +3.<s(12)1s(3)|H1!T(3z)1s(1)>)
(29)

The integrals were calculated by the trapezoidal rule and the extrapo-

lated results were used to find E;. The pair contributions and the

total third-order energy are compared to the calculations of Seung

9

and WilsonM and Knight and Scherr” in Table XII. The total E, is

estimated to be in error by less than +0. 0002 2. u.
Substituting the second~ and third-order energies into (3) and

multiplying by Zz, the total energy for the three-electron atom of

nuclear charge Z is,
E(Z) = -1.125-Z% + 1. 022805 *Z - 0. 408138 - 0. 025515 (1/Z)  (30)

with an error O(1/Z%. For Z = 3,4, and 5, the energies given by
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(30) and by the configuration interaction calculations of Weiss15

compare as follows,

MFD Weiss Exactl®

E(Li) -7.47332 -7.47710 -7. 47807
E(BeT)  -14.32339 -14, 32350 -14, 32479
E(B™)  -23.42432 -23,42312 -23. 42471

where the results are in atomic units. The MFD energies are superior
to those of Weiss for Z = 5. Using variational pair functions, Seung

14

and Wilson™ ~ calculated the following energies for these atoms, E(Li)

= -7.47262 a.u., E(Be™) = -14.32289 a.u., and E(B™™) = -23. 42393 a.u.

G. DISCUSSION

The MFD method has been shown to be capable of solving the
first-order pair equations for a many-electron atom with accuracy
comparable to the best variational solutions. The numerical pair
functions allow the calculation of the total second- and third-order
energies with simple quadrature methods. Because of the unsop}ﬁs-
ticated techniques used to solve the equations and perform the numer-
ical integration, the entire calculation can be easily programed and
carried out in one step. It is also easily applied to excited states
using the same programs. The method has been applied to the
solution of the exact pair equations and to the first-order Hartree-

Fock pair equations with consistent accuracy in each case.
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TABLE VII. Comparison of the perturbation energies for
the (1sls) pair.

2nd differences™ 4th differencesb BJ® KSd
E,(0) -0.125339 -0,125327 -0.125334 -0,125332
E,(1) -0.026495 -0.026495 -0.026495 -0.026446
E,(2) -0.003904 -0.003905 -0.003906 -0.003612
E,.(3) -0.001076 -0.001076  -0.001077 -
E,(4) -0.000404 -0.000403 -0.000405 -
E,(5) -0.000184 -0.000181 -0.000183 —
E,(6) -0.000094 -0.000092 -0.000093 —
E,(7) -0.000054 -0.000051 -0.000053 -~
E,(8) -0.000033 -0.000030 -0.000032 -
E,(9) -0.000021 -0.000019 -0.000021 -
E,(10) -0.000015 - -0.000014 —
ZEZ(!Z) -0.157619 -0.157579 -0.157614 -0.157666°
: E, 0.008478 0.008572 - 0.008699

4The second difference results were obtained on a linear grid with
a 12 a.u. cutoff.

Prhe fourth difference results were obtained on a square root grid
with a 32 a.u. cutoff.

°F. W. Byron and C. J. Joachain, Phys. Rev. 157, 1 (1967).

d

R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).

®The total E, was not obtained from a partial wave expansion for
this calculation.
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TABLE VIII. Comparison of the perturbation energies for
the (1s2s) ’s pair.

2nd differer;cesa 4th differencesb BJ® KSd
E,(0) -0.045258 -0.045318 -0.045316 -0.045318
E,(1) -0.001909 -0.001910 -0.001898 -0.001902
E,(2) -0.000146 -0.000146  -0.000137 -0.000135
E,(3) -0.000024 -0.000024 -0.000020 -
E,(4) -0.000006 -0.000006 -0.000004 -
E,(5) -0.000002 -0.000002  -0.000001 -
E,(6) - ~0.000000,, - _
E;(7) - -0.0000004 = _
E,(8) - -0.000000, - _
E,(9) = -0.0000004 — -
2IE,(L) -0, 047345 -0.047406  -0.047377  -0.047409°
: E, -0.003732 -0.004876 -0.005000 -0.004872

4The second difference results were obtained on a linear grid with
a 20 a.u. cutoff except for the S-wave which was calculated with a
24 a.u. cutoff.

The fourth difference results were obtained on a square root grid
with a 32 a.u. cutoff.

CF. W. Byron and C. J. Joachain, Phys. Rev. 157, 1 (1967).
dR. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).

©The total E, was not obtained from a partial wave expansion for
this calculation.

b
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TABLE IX. Comparison of the perturbation energies for
the (1s2s) ’s pair.

2nd dift”e-rencesa 4th differencesb BJ® KSd

E,(0) -0.106479 -0.106622 ~-0.1086335

E,(1) -0.006500 -0.006498 -0.006239

E,(2) -0.000928 -0.000929 -0.000816

E,(3) -0.000253 -0.000254 -0.000199

E,(4) -0.000095 -0.000095 -0.000066

E,(5) -0.000043 ~0.000043  -0.000027

E,(6) - -0.000022 =

E,(7) - -0.000012 -

E,(8) - -0.000007 —

E,(9) - -0.000005 -

2IE,(L) -0.114339 -0.114486 -0.113681  -0.114476°

E, 0.012114 0. 009251 0.007000 0.009415

AThe second difference results were obtained on a linear grid with
a 20 a.u. cutoff except for the S-wave which was calculated with a

24 a.u. cutoff.

bThe fourth difference results were obtained on a square root grid
with a 32 a.u. cutoff.

CF. W. Byron and C. J. Joachain, Phys. Rev. 157, 1 (1967).
dR. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).

©The total E, was not obtained from a partial wave expansion for
this calculation.
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TABLE XI. Comparison of the non-additive contributions to

the second-order energy.

Term 2nd Differences® 4th Differencesb Gh° SWd

w1 -0.005058 -0.0050576 -0.0050577 -

W2 -0.006245 -0.0062434 -0.0062436 -

W3 -0.023743 -0.0237581 -0, 6237590 -

w4 0.007159 0.0071474 0.0071465 —

W5 -0.048875 -0.0489486 -0.0489523 -

w6 -0.043984 -0.0440383 -0.0440409 -
Total -0.121986 -0.1221247 -0.1221307 -0.1223319

4Linear grid.

b

Square root grid.

€¢Cc.D.H.Chisholm and A. Dalgarno, Proc. Roy. Soc. (London)
A292, 264 (1964).

dS. Seung and E. B. Wilson, J. Chem. Phys. 47, 5343 (1967).
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TABLE XII. Comparison of the third-order
energy contributions.

2nd Differences® 4th differencesb sw® ' KSd
E,(1sls,’s) 0.008478 0.008572 - 0.008699
E (1s2s,S) -0.003732  -0.004876  -0.004906 -0.004872
E,(1s2s,'S) 0.012114 0. 009251 0.008217  0.009415

Total E, - -0.025515 -0.023043 —

2 The (1sls) pair results were obtained on a linear grid with a 12 a.u.
cutoff using 11 partial waves. The (1s2s) pair results were obtained
on a linear grid with a 20 a.u. cutoff using only 6 partial waves.

bAll results were obtained on a square root grid with a 32 a.u. cutoff
using 10 partial waves.

°S. Seung and E. B. Wilson,J. Chem. Phys. 47, 5343 (1967).
9R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).
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Figure 1. Contour plots of the functional coefficients for the (1sls)

pair.
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Figure 2, Perspective plots of the S- and P-waves and of the zero-

order, first-order, and total wavefunctions for the (1sls) pair.
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Figure 3. The viewer's orientation for the perspective plots.
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Figure 4. Contour plots of the zero-order, first-order, and total

wavefunctions for the (1s1s)’S, (1s2s)°S, and (1s2s)’S pairs.
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Figure 5. Contour plots of the functional coefficients for the
(182s) °S pair.
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Figure 6. Perspective plots of the S- and P-waves and of the zero-

order, first-order, and total wavefunctions for the (1s2s) ’s pair.
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Figure 7. Contour plots of the functional coefficients for the

(1s2s) lS‘ pair.
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Figure 8. Perspective plots of the S- and P-waves and of the
zero-order, first-order, and total wavefunctions for the

(1s2s) 'S pair.
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Formaldehyde Molecule in a Gaussian Basis. A Self-Consistent Field Calculation

N. W. Wovrze,* Toou. H. DonniNG, JR.,* anNDp Joon H. LETcmer
Ceniral Research Depariment, Monsanto Company, St. Louis, Missouri
(Received 19 February 1968)

Accurate LCAO-MO-SCF calculations have been carried out for the formaldehyde molecule using
(73/2) and (95/3) Gaussian basis sets. The energy parameters, molecular orbitals, dipole moments, and
population analyses are reported. The results are compared to a previous calculation with a minimum

Slater basis and to experiment.

1. INTRODUCTICN

It is now possible to obtain close approximations to
the Hartree-Fock orbitals for a number of small poly-
atomic molecules.!?* These have been found by expand-
ing the orbitals in large Gaussian basis sets. From such

calculations it is possible to predict, with varying -

degrees of accuracy, ionization potentials, dissociation
energies, many one-electron properties, etc. In order to
have confidence in our results we either need to know
what type and size of basis set is required to predict
the properties of interest with reliable accuracy® or
have the LCAO-MO-SCF orbitals sufficiently close
to the Hartree-Fock orbitals so that no major error
arises from the use of the expansion.

We report here the results of LCAO-MO calculations
on formaldehyde using two uncontracted Gaussian
basis sets. The smaller, a (73/2) set,*is estimated to be

* Permanent address: A. A. Noyes Laboratory of Chemical
Physics, California Institute of Technology, P eng, Calif

' GHy: J. M. Schulman, J. W. Moskowitz, and C. Hollister,
J. Chem. Phys. 44, 2759 (1966).

" H30: D. Neumann and J. W, Moskowitz, “One Electron Prop-
erties of Near Hartree-Fock Wavefunctions. 1. Water,” J. Chem.
Phys. (to be published).

* By accurate we mean, of course, in comparison to tke Hartree-
Fock result and not to riment.

¢We have ndog_ted tae standard potation, with (abcé;f)
representing a s-orbitals, b p-orbitals, ¢d-orbitals, etc., onthe first-
row atoms and ¢ c-orbm.fa.j $-orbitals, ctc., 0n the hydrogen atoms.

slightly better than a molecular optimized miniinum
Slater set and the larger, a (95/3) set, is ncar the (sp)
limit. While these wavefunctions are obviously not at
the Hartree—Fock limit, they form essential units in a
stepwise approach to that limit and can be expected to
provide a considerable amount of chemical information.

Because of the wide range of interest in formaldehyde,
a number of theoretical calculations on it have been
reported. All of the calculations based on pi-electron
theory® approximated the required atomic integrals
and provided little usable information, other than
possibly the spectra. More recently, accurate calcula-
tions have been made using an unoptimized minimum.
basis set of Slater orbitals.®7 Several comparisons will be
made with these functions. :

In the next section we give the results for the two
Gaussian sets. In the following section we discuss the
results. In the last section the computational details
are given.

¢ T, Anno and A. Sadd, ; Chem. Phys. 26, 1759 (1957); J. W.
Sidman, ibid. 27, 429 (1957); J. A. Pople end J. W. Sidman, ib4d.
27, 1270 (1957); R. D, Brown and M. L. Heffernan, Trans.
Faraday Soc. £4, 757 (1958) ; J. M. Parks and R. G. Parr, J. Chem.
Phys. 32, 1657 (1960); and F. L. Pilar, ibid. 47, 834 (1967).

¢J. M. Foster and S, F. Boys, Rev. Mod. Phys. 32, 303 (1960).

7M. D. Newton and W. E Palke, J. Chem. Phys. 45, 2329
Hggg;. S. Aung, R. M. Pitzer, and S. I. Chan, ibid. 45, 3457
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M1 B81410,0.0,-1,.09003)

€(0,0,0) 0(0,0,2.28640)

H2(-1.81410,0.0, -1.09003)

F16. 1. The geometry of formaldehyde.

II. SCF RESULTS

For compuarative purposcs, the calculations were done
at the geometry used by Goodfriend, Birss, and Dun-

can® which is quite closc to that from the most recent-
structure determination®; sce Fig. 1. The atomic energies

for each of the basis sets are included in Table I. The
exponents for both sets were determined from atomic
SCI" calculations!' and are included in Tables III and
IV.

The computed clectronic energies are — 144.7857
and —144.9471 a.u. for the (73/2) and (95/3) basis
sets, respectively. Newton and Palke’ give —144.5409
a.u. for a minimum Slater basis set with exponents
determined from Slater’s rules. As stated in the Intro-
duction, from the energy and numerous properties for
the (73/2) basis set, we estimate that this basis set is
superior to a molecular optimized minimum basis set
of Slater orbitals. As such, the (73/2) basis set would
be a good candidate for @b initio studies of larger mole-
cules, although three basis functions are recommended
for the hydrogens rather than the two employed here.
The (95/3) basis set should be within 0.04 a.u. of the
(sp) limit for formaldchyde. It is felt that most prop-
ertics are essentially at the (sp) limit and would be
little uffected by any additional s and p orbitals. Hollis-
ter and Sinanoflu! predict the total Hartrce-Fock
encrgy of formaldchyde to be —114.0309 a.u. Thus, our
wavefunction in the (95/3) Gaussian basis is approxi-
matcly 0.20 a.u. from the Hartree-Fock limit. Work
on other polyatomics'? leads us to suspect that this
is an upper limit. In any case, a significant lowering
(~0.16 a.u.) would be achieved through the addition

* . L. Goodfriend, I'. W, Birss, and A. B. F. Duncan, Rev. Mod,
Phys. 32, 307 (1960).

I’ Oka, J. Phys. Soc. Japan 18, 2274 (1960); K. Takagl and
T. Oka, ibld. 18, 1174 Cigsg” L 2274 (1960); ¢

' The exponenta for the small basis set were made available to
us by Dr. Murray Geller and are from calculations by D. Whitman
at RTAS, Martin Company, Baltimore, Md. Those for the large
set are i{{vc:} by S. Huzinaga, J, Chem. Phys. 42, 1293 (1964).
I;G% ollister and O. Sinanoglu, J. Am. Chem. Soc. 88, 13
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of d and f orbitals to the basis sct. Most of the improve-
mentisexpected to arise from the inclusion of  orbitals.?

Table I compares the calculated binding encrgies
for the three wavefunctions to the experimental value,”
and Table II compares the orbital encrgics to the
negatives of the experimental vertical ionization poten-
tials.” From the kinetic encrgies given in Table II, the
virial ratio — T'/E is found to be 0.9990 for the small
Gaussian set and 0.9989 for the large sct. We also sce
that the kinetic energy for the Slater calculation agrees
with the Gaussian results much better than the molecu-
lar energy, and consequently gives a poorer virial ratio
(1.0023).

The molecular-orbital coefficients for the (73/2) and
(95/3) basis sets are listed in Tables I1I and IV, respec-
tively. The population anulyses'* of both scts are given
in Tables V-VIII.

The dipole moment is 1.018 a.u. (2.587 D) for the
(73/2) set and 1.193 a.u. (3.032 D) for the (95/3)
set, as compared to the experimental value 0.921 a.u.
(2.34 D).1% The minimum-Slater-basis-set caleulation
predicted 0.235 a.u. (0.597 D), considerably worse

- than either Gaussian calculation. All of the calculated

dipole moments are in the direction CtO~. The behavior
of the dipole moment is in agreement with recent
observations that d orbitals are needed to describe the
polarizations, due to molecular formation.?'%7 In gen-
eral, addition of d orbitals decreases the calculated
dipole moment,?¢ although such a trend may not be
universal.

TasLr I. Comparison of the binding energies (B.E.) calculated
from a single Slater basis and from the (73/2) and (95/3) Gauss-
ian bases. : :

Single

Slater® (73/2)® (95/3)®
Eg —37.619 —37.6551 —37.6852
Eo —74.533  —74.7007 - —74.8003
Ex —0.500 —0.4858 —0.4970"
Eavws —113.152 —113.3274 —113.4795
Erotesule —113.4272 -—-113.6720 —113.83%4
B.E. (a.u.) 0.275 0.3446 0.3539

(eV) 7.49 9.38 9.63

Experimental B.LE. 16.24 eV

® For the atomic energies, see B, J. Ransil, Rev. Mod. Phys. 33, 239
(1960) ; for the molecular encrgy, see Rel. 7a.
b For the atomic energles, see Ref. 10.

WG, N. Lewis and M. Randall, Thermodynamics, revised by
K. S3 Pitzer and L. Brewer (McGraw-Hill Book Co., New York,
1961).

W C. R. Brundle and D. W. Turner, Chem, Commun, 1067, 314,

WR. 8. Mulliken, J. Chem. I'hys. 23, 1833 (1955).

“?.) N. Shoolery and A. H. Sharbaugh, Phys. Rev. 82, 95
(1951).

¥ W, M. Huo, J. Chem. Phys. 43, 624 (1965). : ‘
WP, E. Cade ppd W. M. Huo, J. Chem. Phys. 43, 1063 (1967).
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TauLe II. Orbitals encrgies, total energies, and kinetic energics for formaldehyde in a single Slater basis and in the (73/2) and (95/3)
Gaussian bases compared to the photoelectron ionization potentials, in atomic units.*

Orbital energies

Molecular
orbital Single Slater® (73/2) (95/3) —I1.D.e
1(la) —20.6237 —20.6072 —20.5%06
2(2uy) —11.4026 —11.3576 —11.3027
3(3m) —1.3977 —1.4304 —1.4299
4(4) —-0.8314 —0.8609 —0.8666 ~—=0.772
S5(16) —0.6759 —0.6893 -0.7020 —0.621
6{5ay) —0.5932 -0.6318 —-0,6437 -0.548
7(15) —0.4971 —0.5238 —0.5355 —0.529
‘8(2h:) ~0.3955 —0.4269 —0.4423 —0.39
9(2h;)4 0.2249 0.1465 0.1076
Total energy —113.4272 —113.6720 —-113.8334
Kinelic energy 113.6906 113.5632 113.7089

* 1 a.u. of energy s 27.2098 eV

® See Refl. 7a.
® See Rel. 13

d This orbital Is unoccupled In the ground state. It is the lowest ¥ anti-
bonding orbital.

TanLe IT1. Coefficient vectors and orbital energies for the (73/2) basis set.

Vector 1 2 3 4 S 6 7 8
Orbital energy —20.60716 —11.35758 —1.43043 —0.86087 —0.68928 —0.63177 =0.52382 —0.42695
Center Type  Exponent
H1 Ry 0.2700 —0.00033 0.00255 0.01395 —0.16815 —0.17395 —0.11284 0.0 —0.36239
H1 S 1.8000 —0.00009 ~0.00063 0.01364 —0.09477 =—0.09599 -—0.0514¢ 0.0 —0.09414
H2 S 0.2700 —0.00033 0.00255 0.01395 =-—0.16815 0.17395 —0.11284 0.0 0.36239
H2 S 1.8000 —0.00009 —0.00063 0.01364 —0.09477 0.09599 -—0.05144 0.0 0.09414
(o S 0.1817 0.00626 —0.01235 0.07111 -0.35181 0.0 —0.11942 0.0 0.0
Cc S 0.6026 —0.00027 0.03921 0.21135 —0.34019 0.0 0.08271 0.0 0.0
C S 3.6980 0.00049 0.44308 -—0.09829 0.15255 0.0 —0.02530 0.0 0.0
C S 11.8200 —0.00027 0.44689 —0.05696  0.08545 0.0 —0.00947 0.0 0.0
C S 39.9100 0.00007 0.18184 —0.02080 0.03121 0.0 —0.00435 0.0 0.0
€ S 160.0000 —0.00001 0.04723 —0.00499 0.00743 0.0 —0.00090 0.0 0.0
c S 994.7000 0.00000 0.00720 -0.00076 0.0C0114 0.0 —-0.000i5 0.0 0.0
G X 0.2036 0.0 0.0 0.0 0.0 —-0.29650 0.0 0.0 —0.02856
e X 0.8699 0.0 0.0 0.0 0.0 —0.29774 0.0 0.0 —0.16243
C X 4.2790 0.0 0.0 0.0 0.0 —0.06443 0.0 0.0 —-0.03105
C Y 0.2036 0.0 0.0 0.0 0.0 0.0 0.0 0.33339 0.0
Cc g 0.8699 0.0 0.0 0.0 0.0 6.0 0.0 0.24231 0.0
C Y 4.2790 0.0 0.0 0.0 0.0 0.0 0.0 0.05756 0.0
€ Z 0.2036 0.00418 0.00106 -—0.00179 0.11738 0.0 0.12914 0.0 0.0
C z 0.8699 0.00006 0.00097 0.13518 0.12114 0.0 0.29511 0.0 0.0
C z 4.2790 0.00028 0.00040 0.02979  0.02802 0.0 0.06086 0.0 0.0
o] S 0.3342 —0.01642 0.00087 0.49982 0.30572 0.0 —0.30007 0.0 0.0
(o) 5 1.1030 0.03963 —0.00033 0.39549  0.18151 0.0 —-0.13214 0.0 0.0
0 5 6.7730 0.44059 0.00003 -—0.16325 =-0.0735¢ 0.0 0.05667 0.0 0.0
o} S 21.7400 0.45708 -0.00027 -—0.11392 —0.05331 0.0 0.04318 0.0 0.0
o} S 76.9300 0.18018 —0.00004 —0.03636 —0.01648 0.0 0.01293 0.0 0.0
6] S 332.2000 0.04169 —0.00002 -—0.00815 =—0.00375 0.0 0.00299 0.0 0.0
(o] S 2200.0000 0.00569 0.00000 —0.00108 =—0.00049 0.0 0.00039 0.0 0.0
0 X 0.3814 0.0 0.0 0.0 0.0 -0.27536 0.0 0.0 0.54179
O X 1.7190 0.0 0.0 0.0 0.0 —0.24381 0.0 0.0 0.37014
0 X 8.3560 0.0 0.0 0.0 0.0 —0.06012 0.0 0.0 0.09601
(0] ¥ 0.3814 0.0 0.0 0.0 0.0 0.0 0.0 0.45440 0.0
o} | 4 1.7190 0.0 0.0 0.0 0.0 0.0 0.0 0.32506 0.0
¢] ) ig 8.3560 0.0 0.0 0.0 0.0 0.0 0.0 0.08254 0.0
o Zz 0.3814 0.00366 0.00112 —0.11458  0.10388 0.0 —-0.4348 0.0 0.0
o} V4 1.7190 —0.00142 —=0.00001 -0.11122 0.09977 0.0 —0.34852 0.0 0.0
o Z 8.3560 =—0.00176 -0.00017 ~—0.0234¢4 0.02563 0.0 —0.08784 0.0 0.0




1

874

WINTER,

97

DUNNING, AND LETCHER

TasLE IV. Coefficient vectors and orbital energies for the (95/3) basis set.

Vector 1 2 3 4 5 6 7 8
Orbital energy —20.59059 —11.36267 —1.42987 —0.86658 =—0.70195 —0.64364 —0.53551 —0.44226
Center Type  Exponent
m S 0.14830 0.00006 0.00003 —0.00357  0.05457 —0.10847 0.07776 0.0 —0.25965
28 S 0.65770 0.00000 —0.00044 ~—0.01993  0.16507 =—0.15062 0.08646 0.0 —0.20085
1l & 4.23920 0.00000 —0.00009 ~—0.00497 0.03336 -—0.03520 0.01849 0.0 —0.03155
i12 N 0. 14830 0.00006 0,00003 —0.00357  0,05457  0.10847 0.07776 0.0 0.25965
112 Ry 0.65770 ().00000 —0.00044 =0.01993  0.16507 0.15062 0.08646 0.0 0.20085
12 N 4.23920 0.00000 —0.00009 —0.00497 0.03336  0.03520 0.01849 0.0 0.03155
€ 5 0.15331  =—0.00118 0.00001 —0.04922 0.27009 0.0 0.08407 0.0 0.0
(3 Y 0.49024 40.0C031 —0.00326 —0.26113 0.44897 0.0 —0.09462 0.0 © 0.0
(& s 1.96655  —0.00007 —0.14710 0.02694 -—0.05924 0.0 0.01050 0.0 0.0
C 5 5.14773  —0.G0006 —0.43684 0.08380 —0.11724 0.0 0.01412 0.0 0.0
¢ 5 14.18920 0.03001 —0.35845 0.04346 —0.06691 0.0 0.00826 0.0 0.0
C S 42.49740 —0.00001 —0.15448 0.01776 —0.02541 0.0 0.00314 0.0 0.0
C S 146.09700 0.006000 —0.04540 0.00480 —0.00715 0.0 0.00088 0.0 0.0
C S 634.88200 0.00000 —0.00933 . 0.00160 —0.00144 0.0 0.00018 0.0 0.0
Y e S 4232.61000 0.00000 —0.00122 0.00013 —0.00019 0.0 0.006002 0.0 0.0
C X 0.11460 0.0 0.0 0.0 0.0 —0.06603 0.0 0.0 0.02995
C X 0.35945 0.0 0.0 0.0 0.0 —-0.32825 0.0 0.0 —0.14995
Cc X 1.14293 0.0 0.0 0.0 0.0 —0.18459 0.0 0.0 —0.09817
C X 3.98640 0.0 0.0 0.0 0.0 —0.05644 0.0 0.0 —0.02784
& X 18.15570 0.0 0.0 0.0 0.0 —0.00949 0.0 0.0 —0.00474
C ¥ 0.11460 0.0 0.0 0.0 0.0 0.0 0.0 0.12135 0.0
C ¥ 0.35945 0.0 0.0 0.0 6.0 0.0 0.0 0.27727 0.0
Cc 1.14293 0.0 0.0 0.0 0.0 0.0 0.0 0.15428 0.0
C Y 3.98640 0.0 0.0 0.0 0.0 0.0 0.0 0.04747 0.0
C Y 18.15570 0.0 0.0' 0.0 0.0 0.0 0.0 0.00787 0.0
(& 7 0.11460 —0.00039 —0.00008 0.00883 —0.05074 0.0 0.00867 0.0 0.0
C Z 0.35945 —0.00027 0.00039 —0.06480 —0.1235%4 0.0 —0.25958 0.0 0.0
C Z 1.14293 0.00040 —0.00056 —0.10501 ~—0.07935 0.0 —0.1%082 0.0 0.0
C z 3.98640 —0.00010 —0.00049 —0.02244 -0.02530 0.0 —0.04903 0.0 0.0
C 7 18.15570 0.00002 —0.00010 —0.00487 —0.00407 0.0 —0.0092¢ 0.0 0.0
O S 0.28461 0.00281 —0.00019 —0.36985 —0.26524 0.0 0.29802 0.0 0.0
0 S 0.93978 —=0.00091 =0.00091 =—0.49433 -—0.22601 0.0 0.16611 0.0 0.0
(0] S 3.41364 0.14064 0.00031 0.04210 0.01325 0.0 —0.00161 0.0 0.
0] 5 9.53223 0.46100 0.00016 0.15741 0.07620 0.0 —-0.06443 0.0 0.0
Q S 27.18360 0.35555 0.00016 0.08005  0.03649 0.0 —0.02836 0.0 0.0
o] S 81. 16960 0.14386 0.00005 0.02941 0.01377 0.0 —0.01122 0.0 0.0
¢} S 273.18800 0.04286 0.00002 0.00820  0.00375 0.0 —0.00295 0.0 0.0
O S 1175.82000 0.00897 0.00000 0.00171 0.060079 0.0 —0.00064 0.0 0.0
O S 7816. 54000 0.00118 0.00000 0.00022 0.00010 0.0 —0.00008 0.0 0.0
0] X 0.21373 0.0 0.0 0.0 0.0 —0.12905 0.0 0.0 0.33109
0 X 0.71706 0.0 0.0 0.0 0.0 —0.25091 0.0 0.0 0.41099
O X 2.30512 0.0 0.0 0.0 0.0 —0.15550 0.0 0.0 0.24256
0 X 7.90403 0.0 0.0 0.0 0.0 ~0.04982 0.0 0.0 0.07939
0 X 35.18320 0.0 0.0 0.0 0.0 —0,00787 0.0 0.0 0.01227
O ¥ 0.21373 0.0 0.0 0.0 0.0 0.0 0.0 0.26122 0.0
0 ¥ 0.71706 0.0 0.0 0.0 0.0 0.0 0.0 0.36369 0.0
O y 2.30512 0.0 0.0 0.0 0.0 0.0 0.0 0.21243 0.0
0 ¥ 7.90403 0.0 0.0 0.0 0.0 0.0 0.0 0.06931 0.0
0 J 35.18320 0.0 0.0 0.0 0.0 0.0 0.0 0.01087 0.0
0 7 0.21373  —0.00058 —0.00006 0.01237 -—0.05380 0.0 0.18671 0.0 0.0
0 7 0.71706 0.00017 0.00080 0.13094 -0.08727 0.0 0.35119 0.0 0.0
0 Z 2.30512  —0.00063 0.00036 0.0673¢ —0.06521 0.0 0.23027 0.0 0.0
) Z 7.90403 —0.00165 0,00006 0.02073 -—0.02038 0.0 0.07147 0.0 0.0
0 Z 35,18320 —0.00029 0.00002 0.00350 -0.060329 0.0 0.01158 0.0 0.0
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TasLE V. Net atomic and gross atomic populations for the (73/2) Gaussian basis set.

It

Atom
H1i C (0}
MO* Net Gross Net Groas Net Gross
1 0.00060 0.0000 0.0001 0.0015 1.9970 1.9985
2 0.0000 0.0004 1.9987 1.9993 0.0000 —0.0002
3 0.0012 0.0071 0.1703 0.4042 1.3488 1.5817
4 0.1093 0.2678 0.8362 1.0835 0.4535 G. 3809
5 0.1159 0.2234 0.5995 0.9485 0.4538 0.6046
o 0,0436 0.0745 0.3486 0.4478 1.3378 1.3731
7 0.0000 0.0000 0.5580 0.7715 1.0150 1.2285
8 0.3558 0.3165 0.0766 0.1142 1.3902 1.2528
o Subtotal 0.8897 5.0291 7.1914
= Subtotal 0.0000 0.7715 1.2285
Total 0.6262 0.8897 4.5880 5.8006 7.9962 8.4199

% Tbe molecular orbitals are ordered according to the orbital energics. See Table II.

III. DISCUSSION

The results for formaldehyde given in the previous
section illustrate the usefulness of Gaussian orbitals
as expansion functions for molecular SCF calculations.
Such basis functions are popular because of the ease
with which the multicenter atomic integrals can be
evaluated. However, this advantage is somewhat offset
due to the large basis sets required to obtain accurate
results. Because of this, the SCF phase of the problem
can make the calculation with Gaussian orbitals as
time consuming as those employing Slater orbitals. One
way to overcome this disadvantage is by using con-
tracted Gaussian sets.!'® Calculations on the ethylene!
-and water® molecules indicate that little accuracy is
lost with moderate amounts of contraction. Such a
procedure greatly reduces the amount of computer
time required. Since our wavefunctions were calculated
using uncontracted basis functions, the results can be

TasLE VI. Overlap populations for the (73/2) Gaussian
basis set.

Overlap population.
MO» H1-H2 H1-C H1-0 c-0
1 0.0060 0,6300 0.0000 0.0029
2 0.0000 0.6309 0.0060 —0.0004
3 0.00632 0.0063 0.0053 0.4552
4 0.0223 0.3068 —0.0131 —0.1190
5 —0.0238 0.2186 0.0204 0.2609
6 0.0098 0.0730 —0.0209 0.1126
vl 0.0000 0.0600 0.6000 0.4270
8 —0.0957 0.09¢0 —0.07%0 ~0.1169
¢ Subtotal —0.0872 0.7016 —0.6873 Q.5952
r Subtotal 0.0000 0.0000 0.06000 0.4270
Total -0.0872 0.7016 —0.0373 1.0222

® Tha molecular orbitals are ordered according to the orbital enargles.
Soa Tabla II.

¥ E. Clementi and D. R. Davis, J, Comput. Phys. 1, 223
(1966) ; also see E. Clementi, J. Chem. Phys. 46, 3851 (1967),
and succeeding papers in that series.

used to optimumly determine contraction coefficients.!
Such contracted functions may then be employed to
study larger aldehydes or ketones, etc.

The dissociation energies presented in Table I are
indicative of ab inito attempts to calculate this differen-
tial property. The problem is well documented!é.t+2
and arises because dissociation energies are small
quantities obtained by subtracting two large quantities
with sizable inherent errors (i.e., correlation energy).
The wavefunction from the (95/3) basis set predicts
59% of the observed dissociation energy, compared to
65% for a calculation on ethylene with an identical
basis set.! Hollister and Sinanoglu!! estimate the molecu-
lar extra correlation energy for formaldehyde to be
3.74 eV. Adding this to the calculated dissociation
energy, we obtain a “corrected” dissociation cnergy of
13.37 eV, which is still in error by 2.87 ¢V. Presumably
this error arises from basis-set truncation, particularly
in the neglect of 4 and higher orbitals in the molecular
basis set. Note that the dissociation energy for the
(73/2) basis set is nearly as good as that for the (95/3)
basis set and is considerably better than the single
Slater result.

To the extent that Koopmans' theorem?® holds, the
negative of an orbital energy is just the vertical ioniza-
tion energy needed to remove an electron from that
orbital. In Table II we note surprisingly good agree-
ment for the = orbital, 1 (calculated, 14.57 eV vs
experimental, 14.40 eV), fair agreement for the so-
called # orbital, 25, (calculated, 12.04 eV vs experi-
mental, 10.86 eV), and increasingly worse agreement
as the orbital becomes more tightly bound. Quite
similar results are observed in ethylene.! The crror
arises from two sources: (a) a neglect of the sclf-con-

WA, C. Wehl, J. Chem. Phys. 41, 2600 (1964).

% P, E. Cade, K. D. Sales, and A, C, Wahl, J. Chem. Phys. 44,
1973 (1966).

u P E, Cade and W. M. Huo, J. Chem. Phys. 47, 614 (1967);
and P, E. Cade and W, M. Huo, bid, 47, 649 (1967).

8 T. Koopmans, Physica 1, 104 (1933).
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TasiE VIL Net atomic and gross atomic populations for the (95/3) Gaussian basis set.

Atom
Hl1 C (8]

MOQO- Net Gross Net Gross Net Gross
1 0,0000 0.0000 0.0G00 —0.0002 2.0004 2.0002
2 0.0000 0.0000 1.9996 1.9998 0.0000 0.0001
3 0.0013 0.0066 0.2104 0.4752 1.2492 1.5116
4 0.1012 0.2468 0.8988 1,1235 0.4561 0.3829
5 0.1312 0.2344 0.5796 0.0237 0.4542 0.6074 °
6 0.0509 0.0834 0.3814 0.5022 1.2937 1.3310
7 0.0000 0.0000 0.4944 0.7101 1.0741  -1,2899
8 0,3812 0.2980 0.1032 0.1375 *1.4715 1.2664
o Subtotal 0.8692 5.1619 7.0996
« Subtotal 0.0000 0.7101 1.2899
Total 0.6659 0.8692 4.6675 5.8720 7.9993 8.3895

* The molecular orbitals are ordered according to the orbital energles. See Table II.

sistency requirement for the ionized state, inclusion of
which would decrease the calculated ionization energy,
and (b) a difference in the cortelation energies of the
neutral and ionized molecules, inclusion of which would
incrcase the calculated ionization energy. Thus, the
correction to the ionization energy calculated using
Koopmans’ theorem is a balancing of two oppositely
directed effects. In some cases the two errors nearly
cancel, such as for the » orbital, and in others the sum
may be quite large, such as for the #» and more deeply
buried orbitals. Of course, an additional error arises
from the use of a truncated basis set, which may increase
or decrecase the sum of the other two errors. Calculations
on water? lead us to believe that the orbital energies
for the (95/3) basis set are within £0.01 a.u. of the
Hartrce-Fock orbital energies. Our conclusions' then
should be unaffected by the additicn of more basis
functions.

The population analysis results given in Tables
V-VIII can be used to classify the molecular orbitals
in a qualitative, chemically interpretive, manner.'In a
subsequent paper, contour maps of the electronic
density will be used to put this information into-more
pictorial form. At present we shall content ourselves
with characterizing the molecular orbitals according
to the various population breakdowns. The first two
orbitals, 14, and 2a,, are the oxygen and carbon inner-
shell orbitals. The following orbital, 3a,, is strongly CO
o bonding, with most of the charge centered on the
oxygen; qualitatively, it had been assumed that this
orbital was almost exclusively an oxygen 2s orbital;
however, as we can see, molecular formation perturbs
the oxygen 2s orbital quite strongly. The next orbital,
4a,, is CH ¢ bonding and slightly CO ¢ antibonding,
with much of the charge associated with the carbon. The
following orbital, 1dy, is about equally CO ¢ and CH

o bonding, with the charge mainly on the oxygen and
carbon. The Sa; orbital is only slightly CO ¢ and CH
¢ bonding, with most of the charge localized on the
oxygen and carbon. The = orbital, 18, is, of course, CO
# bonding, with the charge distinctly polarized in the
oxygen direction. The so-called 7 orbital, 2&;,'is not
particularly bonding or antibonding, as one would
expect if it were to be identified as a nonbonding orbital,
but the charge, while mainly localized on the oxygen,
does have a significance contribution from the hydro-
gens. These results emphasize the major conceptual
difficulty associated with Hartrce-Fock theory—the
individual molecular orbitals do not describe regions of
space which are localized between or around nuclear
centers, i.c., bonds, lone pairs, etc., but rather they are
delocalized over the entire molecule.

From the population analysis discussed above, we
note that the n orbital has a rather large contribution

TasLE VIII. Overlap populations for the (95/3) Gaussian

basis set.
MO» .H1-H2 Hi-C Hi1-O C-O
1 0.0000 0.0000 0.0000 —0.0004
2 0.0000 0.0C01 *°  0.0000 0.0003
3 0.0001 0.00065 0.0040 0.5168
4 0.0164 0.2864 —0.0116 -0.1232
S " —0.0381 0.2176 0.0268 0.2529
6 0.0173 0.0655 -0.0179 0.1104
74 0.0000 0.00C0 0.0000 0.4315
8 —0.1638 0.1184 —0.1210 -0.1682
o Subtotal —0.1680 0.6945 —0.1198 0.5886
= Subtotal 0.0000 0.0000 0.0000 0.4315
Total ~0.1680 0.6945 —0.1198 1.0201

® The molecular orbitals are ordered according to the orbital energles.
See Table 11,
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from the hydrogen atoms. This is in distinct contradic-
tion to the older concepts,®® which assigned this orbital
as a nonbonding lone pair (2p) orbital on the oxygen
atom. As with the minimum-basis-set calculations,™
the centroid of the n orbital (i.e., (8)) indicates con-
siderable dclocalization. In fact, as the basis set was
refined, the centroid shifted closer to the carbon. Our
calculations also predict that the n orbital is more
tightly bound than experiment indicates. In summary,
an LCAO-MO-SCF wavefunction for formaldehyde
near the (sp) limit has an # orbital which is not localized
on the oxygen atom, as had been expected, but contains
significant hydrogen contributions. From the calcula-
tions on water,! we expect that these results will not be
appreciably changed for a wavefunction at the Hartree—
Fock limit.

The CO = bond in both the (73/2) and the (95/3)
basis sets is characterized by a significant amount of
charge transfer from the carbon to the oxygen. Thisis in
agreement with our intuitive chemical concepts (elec-
tronegativities, etc.). On the other hand, the minimum
Slater basis set indicates a nearly homopolar bond. This
evidently arose from the use of an unoptimized, limited
basis set.

From the gross population analysis of the (95/3)
basis set in Table VII, we see that the hydrogen atoms
are o donors (losing 0.13 electrons), the carbon is a ¢
acceptor (gaining 0.16 electrons) while being a = donor
(losing 0.29 electrons), and the oxygen is both a ¢
acceptor (gaining 0.10 electrons) and a # acceptor
(gaining 0.29 electrons). The ¢ changes are quite large,
even though in a purely pi-electron approximation such
charge transfer would be ignored. The problem is
particularly acute for carbon, for which the two changes
are in opposite directions. The net result of the above
is a charge transfer from the CI; group to the oxygen.
The residual charge on the hydrogens and the carbon
is +0.13¢, while the oxygen has a net charge of —0.3%.

. B H. H. Jaffe and M. Orchin, Theory and A pplications of Ulira-
viokel Speciroscopy (John Wiley & Sons, Inc., New York, 1962);
M. Kasha, Discussions Faraday Soc. 9, 14 (1950); H. Mcéonneli,
J. Chem. Phys. 20, 700 (1952).

(136?). E. I'reeman and W. Klemperer, J. Chem. Phys. 45, 52
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As stated previously, in a subsequent paper we will
present contour maps of the electronic density and its
various partitions. We will also compare the one-
clectron propertics of formaldehyde in the two Gaussian
basis sets with the corresponding quantities from the
calculation with a minimum basis sct of Slater orbitals
and with experiment.

IV. COMPUTATIONS

Evaluation of the integrals for both sets were per-
formed on the CDC 6600 computer. The integral
evaluation times for the (73/2) and (95/3) sets were
2.1 and 11.0 min, respectively. The SCF cycling was
carried out on the CDC 6400 computer, which is a
somewhat slower machine. The time for onc iteration
for the small set was 1.5 min and for the large set was
7.3 min. Neither calculation used symmetry-adapted
basis functions. An extrapolation procedure? was used
to increase the rate of convergence for both sets.

The vectors for the small set have converged to
10-%, except for a few coefficients in the higher vectors
changing in the fifth place. The large set has converged
to 1077, again with the exception of a few cocflicients in
the higher vectors changing in the sixth place. The
orbital energies for the (73/2) set were still changing -
in the fifth decimal place and for the (95/3) set in the
sixth place. In each case the total energy had converged
to more than eight decimal places.
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Numerical Solution of the S-Limit Schrodinger Equation

N. W. Winter, Dexnis DiestiLEr,” AND ViNcENT McKoy
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Numerical solutions to the S-limit Schrédinger equation have been obtained for He and Li*. Using these
the energy and the expectation values (Zr;) and (Zr3) were calculated and compared to the radial con-
figuration interaction values. The results demonstrate that the direct numerical solution of many partial
differential equations in chemical physics can be accomplished in a practical and straightforward manner.

I. INTRODUCTION

The finite difference method has been previously dis-
cussed as a means of solving the Schrédinger equation
for two electrons interacting in an infinite square well.!
Due to the nature of the potential, that calculation was
not a severe test of the method’s ability to solve
differential equations occurring in quantum mechanics.
As an example, many of the nonhomogeneous equations
‘arising in perturbation theory could be easily attacked
with a direct numerical method,? after they have been
reduced by a partial wave expansion to a set of un-
coupled two-variable partial differential equations.

Numerical methods have been used to solve the
ordinary integrodifferential equations determining the
Hartree-Fock orbitals for atoms. With the low cycle
times and large storage capacity of modern computers
we are at a point where the numerical solution of both
ordinary and partial differential equations can be
accomplished at a large number of points in space.
This is one reason why we suggest that numerical
mcthods of solving many differential equations in
quantum mechanics be reexamined. While such methods
may not be uniformly better than variational methods,
they arc straightforward in principle and simple to
program as compared with, for example, the years
alrecady spent evaluating integrals containing inter-
electronic coordinates in the atomic correlation problem.

Here we describe the solution of the eigenvaluce
cquation corresponding to a potential function which

*® Prescnt address: Department of Chemistry, University of
Missouri at St. Louls, St. Louis, Missourd.

t Contribution No. 3608.

' 1. J. Dicstler and V. McKoy, J. Chem. Phys. 47, 454 (1967),

'V. McKoy and N. W. Winter, “Numerical Solution of Quan-
}l\:g:dh;lechmncal Pair Equations,” J. Chem. Phys. (to be pub-

includes all radial correlation for the two-electron atom.
The results are compared to accurate variational
calculations. Both radial correlation and the finite
difference method are adequately described elsewhere,*
and therefore the first two sections give only a brief
review of these topics. The third section contains the
results for the finite difference method and the com-
parison with the variational calculations.

II. THE S-LIMIT SCHRODINGER EQUATION

The Hamiltonian for the two-electron atom in
atomic units is

H=—%V;’—}V,’—Z/n—Z/rg-i-1/7;:. (1)

Then by expanding the electronic interaction potential
as follows,

1/ra=2_ (rt/rs1*1) Pi(cosOna),

(2)

it is evident that the spherical component of the

Hamiltonian is just
11 9 ] 10 ( a)]
ey s a2 e P
i 2 [n’ ar, (n ar,) + 7q? Oy - ar:
1
oL T

noon >

where 5= max(r;, r2). From the S-limit solution
Y(nra) = (drerier)~'u(rnrs) the differential cquation for

¢ E, Hololen, Phys. Rev. 104, 1301 (1956); I. Shull and P.-O.
Léwden, J. Chem. Phys. 25, 1035 (1956).

¢ L. Fox, Nusmerical Solulion of Two-Point Boundary Problems
(Oxford Unliversity Press, London, 1957).
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the function u(ryry) can be written

1 ai al Z
- 5(377 + 57,1) ulnin) = Zulnm)

Z 1
— — u(nr)+ — u(nr) — Eu(nr) =0. (4)
4] >

The function %(rry) is taken to be normalized as
follows

fu(r.r,)u(r,r,)dndr;:l,

and the boundary conditions require that u(rr,)
vanish when either variable is zero or infinity. Using
the finite difference method the next section illustrates
how Eq. (4) can be systematically reduced to an
algebraic problem.

III. REVIEW OF THE FINITE DIFFERENCE
METHOD

There are two important points to consider in
treating Eq. (4) with the finite difference methed.
First, we want to treat the differential equation as a
boundary value problem and not as an initial value
one. The boundary condition at r; or r; equal to zero
can be easily imposed, but the condition as 7, or r; goes
to infinity is more difficult and must be modified so as
to describe the solution over a finite numerical grid.
Fox* suggests two methods for handling this type of
situation. The first approach, which is direct and is the
one we use, is to require that u#(r,r;) vanish on the edges
of a square bounded on two sides by =R, rn=R. As
long as R, which in this method “‘represents” infinity,
is sufficiently large, the solution remains a good ap-
proximation to the solution one would obtain as R—<,
The other approach, an indirect one which could be
easily implemented, assumes that for large values of the
variables 7, and r, the differential equation has a
solution g(rir2) exp[—a(ri4r2)] where, at reasonable
grid sizes, g(rira) varies slowly. We can allow for this by
using as the boundary condition the equation u(rr;) =
e*u(r,+h, r;) at any convenient point 7. The quan-
tity A is just the spacing between grid points.

The second and more important point to consider is
the level of the diffcrence approximation to be used.
The differential operators in Eq. (4) can be formally
expanded in an infinite series of difference operators
and the level of the approximation is determined by the
truncation of this series. After some experimentation it
was found that the best compromise between accuracy
and ease of calculation was to employ only second

dificrences and then extrapolate the results by the
Richardson method.®

* L. Richardson and J. Gaunt, Trans. Roy. Soc. (London) A226,
299 (1927). ’ ) i )
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Tox* argues strongly for including higher-order
difference operators by an iterative method. Although
such schemes may allow one to use a coarser grid and
still obtain reliable solutions, we decided to work only
with second differences. This approximation best
demonstrates the straightforwardness of the numerical
approach.

The derivatives can be written in terms of second
differences as follows,

k(3% ar,») u(riry)

=u(ri—h, rn) =2u(nr) +u(ri+h, 1) +0(4*), (Sa)
(3% dr, ) u(riry)
=u(r, n—h) —2u(nr) +u(n, r+h) +0(k*), (Sb)

where 4 is the grid spacing. By introducing these into
the S-limit equation, there results a set of linear equa-
tions, one for each grid point, having the form

(1/8) [u(ri—h, r) +u(ri+h, ra) +u(n, n—h)
Fu(n, ro+h) J4+0(2Z/n) +(22/r) — (2/r5)
—4+42(E) Ju(rirs) =0.  (6)

These can be collected into the following matrix form,

(7)

where D is a real symmetric banded matrix,® u is an
eigenvector whose elements correspond to the solution
values at the various grid points, and E is the corre-
sponding eigenvalue. .

At this point the solution of the S-limit equation has
been reduced to the diagonalization of the difference
matrix, or at least to that of finding the lowest eigen-
vector and eigenvalue. Since D is a banded matrix,
this can be accomplished for large matrices in a fairly
simple fashion. It is important to be able to solve
extremely large matrix equations in order to reduce the
difference truncation error to a tolerable level. The
method we have used to extract the lowest eigenvector
is described in the appendix. Even though matrices as
large as 2600 by 2600 were diagonalized, the difference
error remained important. To correct this, solutions at
several grid sizes were found and the Richardson extrap-
olation method® was used to predict the results at zero
grid size. The other alternative, including higher
differences, was tried and found to be at best only
equally as accurate as extrapolation. The inclusion of
higher differences has the disadvantage that grid
points outside the boundaries must be dealt with.
Because of this arbitrariness, we chose to stay on firmer
ground with second differences. The results for He and
Lit+ are presented in the next section,

Du=Eu,

¢ See Appendix.
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IV. THE FINITE DIFFERENCE RESULTS

The lowest eigenvector of the S-limit matrix was
found at four diffcrent grid sizes for each atom. The
radial cutofl for He was set at 5 a.u. and for Lit at
4 a.u. In choosing the cutoff we tried to balance the
advantage of a small grid size with the disadvantage of
unphysical boundary conditions. .

With the cigenvectors, the energy and the expectation
values {O_r:) and (2_r?) were found at each grid size.
Simple matrix multiplication was used rather than
numerical quadrature in order to be able to extrapolate
the results.

Tables I-III give the initial results for each grid size
as well as the extrapolated values. In the tables the

Tasre 1. Total energy.

Grid Initial
sizes result
Helium

S5/13 —2.512505

—2.851565
5/26 —2.766800 —2.877493

—2.874612 —2.878682
5/39 —2.826695 —2.878608

—2.877609
5/52 —2.848967

Lithium ion
4/13 —6.072929

—7.136845
4/26 —6.870866 —7.245837

—7.233727 —7.252321
4/39 —7.072455 —7.251916

—7.247369
4/52 —7.148980

® The grid size is defined as the radial cutofl divided by the number of
strips along one side of the grid.

second column gives the eigenvalues of the finite
diffcrence matrix. The third column gives the results of
extrapolating successive values in the second column
assuming that the difference between these approximate
cigenvalues and the eigenvalue at zero mesh size has an
#* dependence. The fourth column gives the result of an
A* cxtrapolation, i.e., one assumes that the difference
between the approximate eigenvalues and the exact
ancnvaluc is given by agh’+a;k*. The final extrapolant
is obvious. This A* convergence is common in many
elliptic partial differential equations.” We will comment
further on this property in the next section.

To determine the accuracy of the eigenvectors the
- residual vector R=Du— Fu was calculated and found

! See for example H. C. Bolton and H. I. Scoins, Proc. Cam-
bridge Phil. Soc. 53, 150 (1956). These authors attempted a
numerical solution of the S-limit equation, Their best extrapolant
was —2.652 a.u. for helium.
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Tanrz IT. Expectation valuc of Zr;.
Grid Tnitial
size result
Helium
5/13 2.098644
1.870169
5/26 1.927288 1.864165
1.864832 1.864173
5/39 1.8925%0 1.864173
1.864338
5/52 1.880230
Lithium ion
4/13 1.343108
1.152010
4/26 1.199784 1.147341
1.147860 1.147435
4/39 1.170937 1.147429
1.147537
4/52 1,160700

to have a length in the range 10~ to 10~® in each case.
In addition, the local energy, E(i) =(Du)i/u(i) was
found to be constant to more than five decimal places at
each grid point. In Table IV we comparc the finite
difference results, including the virial ratio V/2E to
the radial configuration interaction (RCIV values.®
The RCI basis orbitals were 1s, 2s, 3s, 45, 15', and 25’
Slater-type functions. The exponents for the helium
atom were {=3.7530 and {'=1.5427 and for the lithium
ion { =5.8249 and {'=2.5456. The energy compares well
with the S-limit energy in both cases; however, for
helium the other properties are slightly less satis-
factory.

TasLE III. Expectation value of Zr2.

Grid Initial
size result
Helium
5/13 2.986072
2.414823
5/26 2.557635 2.399441
2.401150 2.399136
5/39 2.470699 2.399155
2.399654
5/52 2.439617
Lithium ion
4/13  1.196438
0.903515
4/26 0.976746 0.896798
0.897544 0.896575
4/39 0.932745 0.896589 :
0.896828
4/52 0.917031

8 We wish to thank Dr. William A. Gaddard for nllowing us to
usc his RCI computer program for these calculations.
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Taece IV. Comparison of the finite difference values with the
radial configuration interaction results,

E V/2E (Zre) (Zrt)
Helium
D —2.R787 1.0007 1.8642 2.3991
RCI -2, 879 1.0000 1.8688 2.4200
Lithium ion
D —7.2523 0.9999 1.1474 0.8966
RC -—17.2525 1.0000 1.1475 0.8968

V. DISCUSSION

From Tables I, IT, and III we see that in each case
the extrapolants have converged to more than four
places. This implies that further extrapolations using
results at smaller grid sizes would give little or no
improvement. However, for He the expectation values
()_R,r.») and (D _r;?) indicate that the radial cutoff was
chosen too close to the nucleus. Since it has a much
smaller radial extent, the 4 a.u. cutoff for the lithium
ion was a better approximation to the true boundary
conditions (sce Table IV). In the case of helium a
cutoff of 6 a.u. would have given better agreement. A
preliminary investigation of the hydride ion, which is
extremcly extended, gives support to this conclusion.

In spite of this difficulty, the calculations presented
in this paper have shown that good accuracy can be
obtained with the finite difference method in the solu-
tion of these partial differential equations. We realize
that there are variational methods that give as good or
better results for this particular example. However,
there are other examples where the choice of the
variational parameters and even the basis functions
themselves can be so prejudicial that meaningful results
are difficult to obtain. In the numerical method much is
known about the convergence of finite difference
solutions to the exact solutions. As seen, this information
can be quite useful through an extrapolation process.
In a variational method, even though the trial function
is a linear combination of functions belonging to a
complete set, little is known about the approach towards
the true eigenvalue as the number of functions is in-
creased. Fven in a problem as simple as the S-limit
there have been numerous estimates of the true eigen-
value.

Finally it should be reiterated that the finite differ-
ence method is definitely not limited to cigenvalue
equations. As previously mentioned, the perturbation
equations determining the first- and second-order wave-
functions are easily solved by this same method. The
solution of these nonhomogencous equations will be
discussed in a laler paper.? Such nonhomogencous
equations are actually simpler to solve than the eigen-
value problem. This will be an interesting application of
the numerical methods discussed in this paper.
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APPENDIX: DIAGONALIZATION OF LARGE
BANDED MATRICES

The banded structure of the finite difference matrices
is very simple. The matrix for a one-variable equation,
in the second difference approximation, is tridiagonal.®
In such a matrix only nonzero off-diagonal matrix
elements lie in the first super- and first subdiagonal.
For a two-variable equation the structure is altered to
include nonzero elements in the nth superdiagonal and
the nth subdiagonal, where n is the number of points
along one side of the grid.

Taking the matrix equation to be Du=FEu, the
method assumes we have a guess for the eigenvector.
Let the trial vector be w# and define a correction vector
as follows,

Co=U—Uy.

Then substituting into the matrix, we obtain the
following equation for co,

(D—E)co=—(D—E)us. (8)

The right side is known and the solution of the non-
homogeneous matrix equation yields the correction to
1. From this we can construct a new trial vector
1 =1uo+cp and repeat the process to find a new correc-
tion vector ¢;. The one difficulty is that Eq. (8) re-
quires the previous knowledge of the eigenvalue E.
In order to circumvent this, we approximate E by the
Rayleigh mean of D with respect to u, that is,

Er® = uoDito/ tagtto. (9
Then Eq. (8) becomes
(D—Ewm?) co=—(D—Em°) 0, (10)

where the right side is just the residual vector Ro.
Upon succeeding iterations the correction vector ¢
becomes smaller, as does the residual vector Ry, and the
trial vector u; approaches the exact solution. The
ultimate accuracy depends on the machine error, but
depending on the initial guess three to four passes are
sufficient to reduce the residual vector to a length less
than 10% and have the Rayleigh mean agree with the
local cnergy to five decimal places at each point.

The important key to the method is the accurate
solution of Eq. (10). This was possible due to the
cfficient program for the solution of simuliancous linear
equations developed by McCormick.'

—'an u: xli-sc_ussiun of matrix techniques sce 1. Fox, An Introduc-
ion to Numerical Linear Algebra (Clarendon Dress, Oxford,
England, 1964). .

W C, W. McCormick and K. J. Hehert, “Solution n_! Linear
Tquations with Digital Computers,” California Institute of
Technology Report, 1965 (unpublished).
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We discuss and illustrate the numerical solution of the diferential equation satisfied by the first-order
pair functions of SinanoZlu. An expansion of the pair function in spherical harmonics and the use of finite
difference methods convert the difierential equation into a set of simultaneous equations. Large systems
of such equations can be solved economically. The method is simple and straightforward, and we have
applied it to the first-order pair function for helium with 1/rg as the perturbation. The results are accurate
and encourzaging, and since the method is numerical they are indicative of its potential for obtaining atomic-

pair functions in general.

INTRODUCTION

In the Hartree-Fock approximation each electron
moves in a potential averaged over the motions of all
others. This is an excellent starting point, and a great
deal of chemical knowledge can be obtained this way.
Many properties require more accurate wavefunctions
for their prediction and understanding. The difference
between the Hartree~Fock and exact wavefunction is
referred to as the correlation wavefunction. It is impor-
tant to have methods of finding the correlation wave-
function and its effect on physical observables.

Sinanoglu' has developed a many-electron theory of
atoms and molecules. This theory can provide the wave-

* Supported in*)art by a granot from the NSF (GP 6965).
t Contribution No. 3642.

! Some carly references are O. Sinanoflu in J. Chem. Phys. 33
1212 (1960); Phys. Rev. 122, 493 (1961); PnI)c. ey b
don) A260, 379 (1961); Proc. Natl. Acad. Sci. U.S. 47, 1217
(1961). For a review of the theory and an extensive list of refer-
ences see O. Sinanoflu, Advan. Chem. Phys. 6, 315 (1964).

function and energy of an atom or molecule to chemical
accuracy, and it does so in such a way that it does not
become rapidly difficult or uneconomcial as the number
of electrons increases. In one of his early papers' the
first-order correction to the single-particle wavefunction
was expressed in terms of pair functions which describe
the correlation between pairs of electrons.? These first-
order pair functions are solutions of nonhomogeneous
partial differential equations. The equations are just
like those for an actual two-electron system, except that
each electron moves in the Hartree-Fock (HF) field
of the entire medium. This has not been fully appre-
ciated, especially from a computational standpoint.
Each pair energy has a variational principle, and
attempts to solve the pair equations have been mainly

¥ In later popers the peir theory was made accurate to all orders,
l.e., beyond first order. We refer the reader to the review article in
Ref. 1. The complete form of the many-electron theory is not a
perturbation theory.
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by this method. The variational method reduces the
calculation to the evaluation of a large number of
integrals. The presence of a nonlocal potential in the
HF operator does lead to some difficult integrals, which
can become more difficult if higher powers of the inter-
electronic coordinate are included. A large effort has
gone into evaluating such atomic integrals,

In this paper we discuss and illustrate the numerical
solution of the differentiul equation satisfied by a pair
function. An expansion of the pair function in spherical
barmonics and the use of finite difference methods
convert the differential equation into a set of simulta-
neous equations. Large systems of such equations can
be solved quite economically, e.g., about 2000 equations
in two minutes. The method has many attractive
features, and we have applied it to the equation of the
first-order pair function for the helium atom. The
results are accurate and encouraging, and since the
method is numerical, these results are truly indicative
of its potential in solving for atomic pair functions in
general.

THEORY

A. Sinanoglu’s Pair Equations

The total Hamiltonian, H, and the zeroth-order
Hamiltonian, H,, for an N-electron atom are

and
N

Hy= 3, (h?+V),

ol

respectively. In Eq. (2a) V;is the Hartree-Fock poten-
tial, which is the same for all electrons. For closed-shell
atoms V; is uniquely defined.? Also in Eq. (2a),

h=—3493—(Z/r,).

(2a)

(2b)
The zeroth-order function Y@ satisfies
Hol©® = Egy®, (3)
where
Ey= Zﬂ
(9
and each HF orbital satisfies the equation
(BE+V ) dim e (4)

The zeroth-order wavefunction Y@ is just the anti-
symmetrized product of HF orbitals,

VO = A(be(1)3(2) *+ gn(N)) ()
The first-order correction to y¥©, Y, gatisfies the

* For a discussion of the many-electron theory for open-shell

systems see H. J. Silverstone and O. Sinanoglu, J. Chem. Phys.
€4, 1899, 3608 (1966), sl s
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equation
(Ho— Eo)yW = (Ea— H)y, - (6)
where the perturbation H, is
N : N
H=) —— > V. )]
i<i Tis il

Equation (6) is an inhomogeneous partial differential
equation in 3N spatial variables. It has solutions if the
corresponding homogeneous equation are orthogonal
to the inhomogeneity, (E£;—H;)y¥®. The general solu-
tion of Eq. (6) is

VO =g, O+ p, (8)

i.e., a sum of a particular solution, y,, plus a contri-
bution from the homogeneous solution, The constant, ¢,
is chosen so that {(y©@, y®)=0, o

From Sinanoglu’s analysis' the first-order wave-
function can be written as

N

o= % (6:1(1)¢a(2) + + i1V j01 + =), (9)

i<

where 4, (x;, x;), a first-order pair function, satisfies

~ the nonhomogeneous differential equation

(eite) @i =—Q(1/r) B(¢:(1)¢;(2)). (10)

The operator, Q, makes a two-electron function orthog-
onal to all occupied H-F orbitals; i.e.,

0=1- ‘_i 6:(1) (1) [ 16:(2) V(D))

+ ‘éIB(¢.-(1)¢,(2)))(B(¢.»(1)¢;(2))i, (11)

and ¢; is just the HF operator minus an orbital energy,
€,

Z N N
ly=— % V"— '—+ 21 S,(x.—)— Z‘R,'(X.')—ﬁ, (12)
with
B(gi(1)9,(2) )= (1/V2) (6:(1)9:(2) — $:(2)#)(2) ),
(13a)

Si(x:) du(xi) = (f 4’:(&)"-‘;“@(%)“:‘) x(x4),

(13b)
and :

Ri(x)on(xs) = (f 6(x)) ru“oh(x:)dx.) o(x0).

(13¢)
We also define

Ve(x) = i Si(x0) (14a)
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and

N
Ve(xi)= 2 Ry(x)).

=t

(14b)

The pair functions are also rigorously orthogonal to
all occupied HF orbitals, i.e.,

[ 2,0 (x;, Xo)du(x1)dx; =0.

The second-order energy, Es, is

- f; (B@(1)$4(2)), rs™ 4D (3, 1)), (15)

The pair function, 4, is the solution of the first-order
part of the Schrédinger equation for two electrons in
the HF “sea.” The effect of the medium enters through
the HF potentials in the operators ¢; and Q.

One can write the solution of Eq. (10) as follows:

;0 = Quy, (16)

where Q is defined in Eq. (11) and w4 satisfies the
equation

(eitep) uiy=[Toj— Kij— (1/m1) 1B(9:(1)¢5(2) ), (17)

with J;; and X;; the Coulomb and exchange integrals
for orbitals ¢; and ¢;. This approach has some advan-
tages if one needs to expand u;, in a series of spherical
harmonics. The general solution to Eq. (17) is obtained
by orthogonalizing a particular solution to B(¢: ¢;).
If B(¢:(1)9;(2)) belongs to a two-electron irreducible
representation, then Eq. (17) has a unique solution,
e.g., 15? pair of electrons. However, when B(¢;{1)$;(2))
is not a pure two-electron symmetry state, then Eq.
(16) does not have a solution,! and one must write

(18)

where ¢,;* are unperturbed pure symmetry states. Then,

m

B(¢w;) = 2 asbif,

=1

= Y G (19)
(eite)uwift =[ (@i (1/ra) ¢i*)— (1/r13) s, (20)

The solution of Eq. (10) does not require any vector
coupling schemes such as Eqs. (18) and (20), but the
obvious symmetry properties of u;;* are convenient if
#;, is expanded in spherical harmonics. We have given
Egs. (17) and (20) because the use of symmetry pairs
leads to simplifications in the numerical treatment of
these equations. Equation (17) is also very similar to
the equation one obtains starting from a bare nuclei
Hamiltonian, i.e., a hydrogenic ¢©. In that case, the
first-order wavefunction is again written like Eq. (9)
but with 2., replaced by u,;, which satisfies an equation
very similar to Eq. (17), i.e.,

E"' }V;’— Vi'— (z/ﬂ) —(Z/r) —e-'—e,-]uu
=[J4= Ky=(1/rs) JB0:(1)¢7(2)), (21)
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The comparison between Egs. (17) and (21) is obvious.
In the perturbation study of helium, starting from an
unscreened hydrogenic ¢, one usually writes

Hy=—3V2=4V!—(Z/n)—(Z/r), (22)
Hx=1/fu, (23)

and ¥ satisfies Eq. (6). Comparison of Egs. (6), (21),
(22), and (23) shows that y@ is just an example of a

-pair function. This is the example we use to illustrjate

our method of solution of pair equations. Num er cal
details of the method demonstrate that these results are
indicative of its usefulness for obtaining atomic pair
functions in general.

B. Reduction of Pair Equations

For quantitative results one must solve Eqs. (10),
(17), or (21). Most attempts so far have used a varia-
tional approach. Equation (15) can be written

E®= 3 e,

i<

(24)

and one has a minimum principle! for each ¢;®, i.e.,
%(ﬂgeul(z) -_-_-2(3(,#,‘.,;5‘.)’ mi).a‘.}t(l))

+ (2D, (eite) 2:,'M), (25)
with '

mii(1, 2) = (1/r1) = 8i(1) = 5:(2) = §;(2)
—8;(1)+T,—K,
Si(1) =S:(1) — Ri(1),

(26a)
(26b)

and 4;#® is varied to minimize ¢;'®. With a varia-
tional form for #;,'™@, one evaluates all the integrals in
Eq. (25) and determines 4;,. Tor different types of
pairs one has a choice of 4;,%, e.g., a configuration-
interaction (CI), open-shell, and a rp-type 4,,®. We
will comment later on their relative merits in comparison
with the numerical method. We now show that these
pair functions can be obtained accurately by solving
the partial differential equation by numerical methods.
The method is direct, with simple programming require-
ments,

The pair function, 2,%, is expanded in a series of
surface harmonics, the coefficients in the expansion
being functions of the radii of the two electrons,!

2= 3 (7173) Mimirme (1, 72)

im:/m/

XS!M(BI, ¢1)Sl‘m’(02; d"l)- (27)

For a spherically symmetric pair function the spatial
part of #;) depends only on ry, ra, and 6. However,
for states of arbitrary symmetry one has to expand in

¢ For a suggestion along these lines sce J. Musher in Modern
uantum Chemistry—1stanbul Leclures, Part 11, Interaction, O,
inanoflu, Id. (Academic Press Tac., New York, 1965).

L
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terms of angular symmetries with respect Lo the two

electrons separately. The 1/r;; term on the right-hand
side of Eq. (10) can be written

:
nt= 2L Ui(r, 7a) 2, Siml6, ¢1) Siom(0s,64), (28)
= m—|

(eit¢;) i,V (1, 13)

1(1+1)

QUANTUM-MECHANICAL PAIR EQUATIONS

where Ui(r, r:) stands for

f<‘

'>l+|
and S is a surface harmonic. Substitution of the
expansion Eq. (27) into Eq. (17) or Eq. (10) gives

; 1 a9 a 1 d ( a)
L e L RS LB e N
'-;-l [ 2f|’ 6"; ('l an) 2';’ 612 “ ar. +

bl +V(n)+V(r:)—e.-—=,]
L)

2'[2

X (1172) " im:trme (71, 73) Sim (01, $1) Sirme (03, d3).  (29)

For closed-shell systems the Hartree-Fock potential, V (r,), is spherically symmetric. For open-shell systems one
still requires the potential to be spherically symmetric and the orbitals, symmetry orbitals.? With the expansion,
Eq. (28), the right-hand side of Eq. (10) or Eq. (17) becomes a sum of terms,

Y Gintrme (71, 72) Sim(1) Strme (2).

H/mm/

The Gim:1'm+ are combinations of terms U,;(r;, r2) and the radial factors of the H-F orbitals. One now obtains a set

of uncoupled equations, one for each term in Eq. (27),

(LA LI D fE)
2 61.’ 2 afgz 2f|’ 2712

In deriving Eq. (30) we have used relationships such as

Si5(6, $) Sui(8, ¢) = 2‘; @i’ Sas(8, ¢), (31)

where a;°# are numerical coefficients. Equation (30)
is our basic equation. It is a second-order elliptic partial
differential equation in two variables, and no closed-
form solution exists.

C. Analysis

Of the numerical methods for solving partial differen-
tial equations, those employing finite differences are
most frequently used. Finite-difference methods are
approximale in the sense that derivates at a point are
approximated by difference quotients over a small
interval; i.e., d¢/dx is repluced by &¢/6x where 8z is
small, but the solutions are not approximate in the
sense of being crude estimates. In these methods the
area of integration is divided into & set of square meshes,
and an approximate solution to the differential equation
is found at these mesh points. This solution is obtained
by approximating the partial differential equation by »
algebraic equations. The values at the mesh points form
a vector which is the solution of the set of simultancous
linear cquations. A numerical solution contains no
arbitrary constants, so that we always obtain particular
integrals rather than complete primitives of the differen-
tial equation.

+V(n)+V(r) —éi—tj)dlmi'n"” =1172G tm:1'm* (1, 12).

(30)

In operator notation Taylor’s series can be written®

y(x+h) =y(x)+h(dy/dz) + 4R (dy/dx*) ++

= exp(hD)y(x). (32a)
Define a central difference operator §,
Sy(z+3h) =y(z+h) —y(2), (32b)
and one has the operator equation
6= exp(3hD)— exp(—%kD)
=2sinh(}4D), (32¢)
and hence
W DP=(2sinh™! 45)?
=§— P8+ glgbt— e o (33)

The second derivative of a function at the ith point is
B (dy/da3) ;=8— P58yt o8y (34)

The operators & and &, etc.,are defined by the equations

&y(x) =y(z+h)+y(x—h) —2y(2), (35)
8'y(x) = y(x+2h) —4y(x+h) +6y(x)
—4y(x—l)4-y(x—2h). (36)

& See, for example, L. Fox, The Numerical Solution of T'wo-Paint
Boundary I'roblems in Orr{inmy Differential Fyuations (Oxford
University I'ress, New York, 1957).
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Here, k is the spacing between neighboring mesh points,
and the purtial derivatives of Eq. (30) become

K[(8Y/0x%)+ (0% ay*) Jul=, y)

= (5348, u(x, y) — Py (8445, u(z, ) +0(8). (37)
At a point u(x, ¥) one has
[(8%/92%) + (8%/ay*) Ju(x, ¥)
= (1/h) [u(x+h, y)+u(z—k, y)+u(z, y+h)
+ulx, y— k) —du(z, y) J4+Cu(z, y), (38)

with
=— (1/125%) (6:45,) + (1/90K*) (8,548,8) — + - -.
(39)

As a first approximation we neglect C« in Eq. (38) and
therefore replace the differential operator by the first
term on the right-hand side. This leads to a truncation
error in the expansion of the differential operator. The
form of this truncation error is important, as it allows
us to predict the convergence of the numerical solution
as one approaches the exact solution (see Appendix A).
From Eqgs. (33)—-(39) it is obvious that the local trunca-
tion error in the second-difference approximation is
O(A4%. The term Cu in Eq. (39) contains higher differ-
ence operators, which can be included by an iterative
technique (see Appendix B).

One must now specify the boundary conditions for
Eq. (30). We treat the problem as a boundary-value
one, specifying the value of the solution on a boundary
enclosing the area of integration (Dirichlet boundary
conditions). The functions @im:s"’ vanish along the
boundaries r; =0, r;=0. These functions also vanish as r;
or r— =, This boundary condition must be modified so
as to handle the equation on a finite numerical grid.
There are two alternatives, and both are based on the
condition that the solutions approach zero exponentially
and essentially do so at some finite value of the inde-
pendent variable. One can choose a value of =R, and
make the solution vanish on this boundary, ie.,
u(R,, 1) =u(n, R) =0. One then moves this boundary
out to rn=R,, R, etc., until at least two adjacent values
at the boundary are zero to the required number of signi-
ficant figures. The boundary condition is then accurately
satisfied. The other alternative is based on the asymp-
totic form of the solution of Eq. (30). We can use this
as a boundary condition. For large values of ry and 7, the
solution behaves like g(r,, ;) exp[—a(rn+rs)], where
g(r, ra) varies slowly. This behavior becomes a bound-
ary condition,

u(r, ra) =e*ru(r+h, ry). (40)

The boundary condition is satisfied when Eq. (40) holds
between neighboring points. Both alternatives work
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well and bring all atoms of interest within reach of the
method.

With Eq. (38) the differential equation is obviously
replaced by a set of algebraic equations. In matrix form
these equations are

Au=b, (41)

where # is a column vector, the components of which are
approximate solutions to the differential equation at a
set of internal points. Were it not for the nonlocal
exchange potentials of Eq. (30) [see Eqs. (13b) and
(14b)], the matrix A, Eq. (41), would have a very
simple structure; e.g., for M divisions along each dimen-
sion the only nonzero elements lie on the diagonal, the
super-, and sub-diagonal, and on lines parallel to the
diagonal but M strips above and below the diagonal.
This is a banded matrix of half-bandwidth equal to M.
We now show that (a) large systems of such equations
can be solved rapidly and accurately, and (b) once such
solutions have been obtained, the nonlocal operators
can be taken into account with a small increase in
computing time. We put more emphasis on (a), but (b)
is shown quite convincingly.

For B internal points in each dimension we have N
equations with V=B% The matrix 4 then has dimen-
sions B*X B?; e.g., with B about 40 one has a 1600 X 1600
matrix. We use the method of triangular resolution to
solve the matrix equation, Eq. (41). The method has
been efficiently programmed,® and very large systems
of equations can be solved economically. We give a very
brief outline of the method. If the leading minors of the
matrix A are nonzero, there is a unique lower triangular
matrix L and 2 unique upper triungular matrix U so that
A=LU. An upper triangular matrix is one which has
zeros above the diagonal. The solution procceds by
eliminating the lower triangular elements, taking pivots
successively along the principal diagonal, and the only
recorded quantities are the multipliers needed for the
triangular resolution (L) and the triangularized array
(U). The band structure is preserved in the L and U
factors.” Solution of the linear equations is straight-
forward; i.e., for Ax=D one solves Ly=b and Ux=y
by forward and backward substitution. The L and U
matrices can be used to operate on any number of right-
hand vectors,? i.e., b of Eq. (42).

% It can be shown that there is no limit on the number of rows of
equations that can be handled and that the upper limit un the
bandwidth is set by the requirement of having 47 terms in
memory at any one time. FFor an IBM 7094 an u{qmr limit to the
M is about 200. This corresponds (o a large number of equations.
For details of the program sce C. W. McCormick and K. J. Hebet,
“Solution of Lincar Equations with Digital Computers,” Tech.
Rept., Fngincering Division, California Institute of Technology,
10(?5 (unpublished).

L. Fox, Numerical Solution of Ordinary and Puriial Differential
Equations (Pergamon Press, Tnc., London, 1962),

¥ Most of the computing time is required to obtain the L and U
factors and the time to forward- and hack-substilute is much less.
This feature enables us to include, by an iterative scheme, both
nonlocal potentials and higher-order differences. See Appendix
B for details.
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For a method to be practical the computing-time
requirements must be realistic. The real advantage of
triangular resolution for band matrices is that the
running time for inversion of an N XN matrix is pro-
portional to A% rather than M?N for triangular resolu-
tion. A is the half-bandwidth. For this differential
equation NM?, and the ratio of running times for
matrix inversion to triangular resolution is M2, Matrix
inversion does not preserve band structure, and the
time to determine a new set of roots, i.e., solve Eq. (40)
with a new vector b, is proportional to A% The time
savings involved here are significant, e.g., a factor of
1600 for M~40. In the next section we give an example
which shows that the method is numerically and eco-
nomically feasible.

RESULTS

When the differential equation is converted into a
set of simultaneous linear equations the term V.(r)
[see Eq. (14a) ] is just an algebraic operator evaluated
at every mesh point on the grid. For H-F orbitals one
would evaluate integrals such as Si(r;), Eq. (13a),
analytically and tabulate them at the necessary points.

For a numerical method.it makes no difference to the
analysis whether the potential term, V¢(r), in Eq. (30)
is given by HF orbitals or is just the electron-nucleus
attraction, i.e., hydrogenic zeroth-order Hamiltonian.
They both give rise to numerical arrays, which are
evaluated even before the numerical analysis really
begins. Hence, to demonstrate our method we pick the
simplest pair equation, that for the helium atom
starting from a hydrogenic Mo. The important issue here
is the practicality of solving the number of simultaneous
equations which must be solved so as to obtuin an
accurate value of a pair energy. Also, for helium we have
a series of previous results on the energy contribution of
each partial wave to the second-order energy.

Consider Eqgs. (21) and (27). For a %;; of S symmetry
ooly those #im.1'm- with /=1" are nonzero, and t4im.i/—m is
independent of m. This gives the partial wave expansion,

w1ty = 4T bty (42)
-0 T2
Recall that #(1s?) must be made so that {u(1s?),
B(1salsg) )=0. The differential equations are

18¢ 18 Z 2Z
(— 203 20 o m —261.) (11, 1) = Pu(n) Puln) (Juu—rs7"), (43)
1 16 I+ I+l zZ2 Z 7t
(— 2o 208 2 + 7 n ‘—2'51.) wy(r, ) = — o Pu(r) Pu(r) (4)
for I=0 and /> 1, respectively, and decouples into a sum over the partial wave contribu-
Pulr) =rRu(r). (45) tions, £z(J). All integrations are done by the trapezoidal

In Egs. (43) and (44) we have ¢, =—2.0, E;=1.25, and
R,,=4vZe?. Tables I and II give the results for the
first three partial waves. Here the second-order energy

TabLE I. Results for the J=0 partial wave
of the helium pair function.*

Execution
Number time
. of (seconds on
Mesh sizeb equations® E,(i=0) IBM 7094)
} 361 —0.12605 34
} 576 —0.12678 16
i 841 —0.12664 27
} 1156 —0.120640 52
! 1521 —0.12619 82
1936 —0,12603 115
,l, 2401 —0.12591 169

* See Eq. (43). The perturbation is 1/,

% Spacing between grid points,

* Nuinber of pointa at which an approximate solution to the differentlal
equution is obtuined,

9 This size problem fits completely in random access memory,

® This size problem requires auxiliury divk storage.

rule, and
E3(1=0) = (ug(ny, r3), (1/r12) B(15(1)15(2)))
— Es{uo, B(15(1)15(2))), (46a)
E3(I21) = (u(n, r2), (1/ra) B(15(1)15(2) )). (46b)

In Tables I and IT we have given the computing times
necessary to solve the equations at each mesh size. We
feel it is important to communicate the computing needs
of a given method. Computing times for this method
are quite low. For /=0 we require u(r;, r;) to vanish at
R=35 and obtained the solutions at seven different mesh
sizes: k=4%,3,1,4,}, %, Yo. Totest the boundary condition
we allowed #(ry, r;) to vanish at R=6 and, at a mesh
size of 4, found I5(J=0)=—0.12607, compared to
—0.12605 for the same condition at R=>5. With the
exponential behavior of the function as a boundary
condition at R=5 we obtained /5(/=0) =—0.12607,
while at R=4 one finds /%(I=0)=-0.1261. The
boundary condition poses no ditTiculty. IFor k=1 there
are 361 equations, and the entire problem can he londed
into the rundom access memory of an 1M 7094 und
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TasLE II. Results for the J=1 and 2 partial TasLe IV. Extrapolants from intermediate meshes.s
waves of the helium pair function,
Results from
Mesh Execution Mesh direct K extrap- K extrns)-
size E(i=1) Ey(l=2) timeb l size  quadrature olants® olants
i —0.033051= —0.0056616 2 t —0.126642v
b —0.030387 —0.0049862 30 —0.12562
t —0.029073 —0.0046351 124 =0 H —0.12619%4 —0.12526
] —0.028333 —0.0044302 23 —0.12539
t —0.027874 —0.0043007 37 ] —0.125905
t —0.027569 —0.0042137 50
o —0.027356 —0.0041525 82 $ —0.029073
—0.026332
* All integruls evaluated by the traperoidal rule. Jm=1 $ —0.027874 —0.026495
b Execution time in seconds on an 1BM 7094, —0.026436
® This size problem fits entirely in core. 1‘5 —0.027356
4 This sise problem requires auxiliary storage.
t —0.0046351
solved within 3 sec. At h=} one requires disk storage —0.0038707
to handle the 576 equations, and the execution time is b § =0.0043007 —0.0038892 —0.0038996

16 sec. Table II gives the results for /=1 and /=2
partial waves. The execution times are lower than those
for the /=0 case, since the exponential boundary con-
dition could be imposed at R=4 for these higher partial
waves. One can expect this behavior for the higher /
components of pair functions. Requiring the function to
vanish at R=6 affected the seventh significant figure
in the energy.

Tables III-V give the results of extrapolating the
values at varying mesh sizes (Tables I and II).In
Appendix A we derive the convergence of the solution
of the corresponding finite difference equations, u(k),
towards the solution of the differential equation itself,
4. We show that

u—u(h) =ch’+adi'++--, (47)
Tanre III. Extrapolants from finest meshes.»
Results from
Mesh direct K% extrap- i extrar
[ size quadrature olants* olants
t —0.126194®>
~0.12541
i=0 t —0.126030 —0.12531
—0.12537
5 —0.125905
$ —0.027874
—0.026422
j=1 $ —0.027569 —0.026498
| —0.026449
Y —0.027356
t —0.0043007
—0.0038862
=2 ) —0.0042137 —0.003%02
—0.0038919
e —0.0041525

* See Eq. (48) of text.
:lxleoulu from direct quadrature on numerical solutions (Tables I
and 11).

* Extrapolants from pairs of successive values in the preceding column
sssuming an h! convergence.

4 Extrapolants from the three values in the first column

f&  —0.0041525

* See Eq. (48) of text.

® Results from direct quadrature on numerical solutions (Tables I
and II).

¢ Extrapolants from palirs of successive values in the preceding coluinn
assuming an h? convergence,

d Extrapolants from the three values in the first colpmn assuming an
At and A¢ convergence.

where %, u(h), a5, and a, are functions of the independent
variables and 4 is the mesh size. We therefore know
exactly how an approximate solution approaches the
exact one. This convergence property forms the basis of
an extrapolation technique which allows us to obtain a
high degree of accuracy for the pair energies, We
checked the use of Eq. (47) by comparing an actual
solution with an extrapolated one. The agreement is
excellent.

The integrals for E; are evaluated by the trapezoidal
rule. The error term for quadrature by the trapezoidal
rule can be expressed as a power series in the interval
size, 4. In Appendix A we show that the second-order
energy, evaluated by the trapezoidal rule and with the
finite difference solution, converges to the exact value

TasLe V. Extrapolants from values at various meshes.

Values used in
} extrapolation Extrapolants
(3 4)e —0.12574
I=0 (¢, 8, %) —0.12512
&4 ‘) —0.12521
(€% )) —0.02564
G, 8 —0.02609
-] (3, ,g) —0.02645
(*- i‘: ) —0.02649
(3,4 —0.003786
(I. $) —0.003837
=2 (3,48 —0.003878
et d) —0.003896
(Jl'l *I “'ir 110') —0.003905

ing an
A and A¢ convergence.

* The values at these mesh sizes were used in the extrapolation.
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as follows:

La=Ly(h) + bk b+ o+, (48)

where E,(k) is the energy obtained at each mesh size.
With Eq. (48) we can derive very accurate extrap-
olants. To obtain the best results one obviously extrap-
olates the results from the finer meshes. If one simply
wants a good estimate of a pair energy, extrapolation
from coarser meshes may be sufficient. Tables III and
1V give the extrapolants based on results from the finest
meshes, i.e., A=}, }, Yo and those derived from the
results at A=1%, 3, 1%, respectively. The various columns
of Tables III and IV correspond to an extrapolation
from a successively higher-order polynomial, i.e., an /?
and A* extrapolation. The successive columns of both
Tables indicate that the extrapolation is stable and
yields excellent results. Table V lists extrapolants de-
rived from the results al various mesh sizes. We do this
primarily to show the kind of extrapolants one can ob-
tain from results at cruder meshes. These compare well
with the best results of Table III. This approach can
yield useful estimates of pair correlation energies. For
the /=1 partial wave extrapolation from mesh sizes
1, 4, } give —0.02645. These solutions were obtained
with a total computing time of 17 sec. Table V also lists
some extrapolants based on very high-order poly-
nomials; e.g., use of the results at all seven mesh
sizes implies an A" extrapolation and for /=2 gives
Iy(l=2) =—0.003905. Other extrapolants indicate a
sirnilar stability.

For comparison we use the most recent results on the
belium-atom pair function. Byron and Joachain® solved
the pair equation variationally and also gave the contri-
butions of the various partial waves to E;. They used
two different types of trial functions. For u(r;, r3) of
Eq. (42) they chose (a) a “configuration-interaction”
type expansion,

wuy(n, ) = Z Cimn (117" +11"7™)

Xriraexp[—2(n+r)], (49a)

and (b) a function of the form
w71, 73) D CimaliTarS"r " exp[—2(r+rs)]. (49b)

-.n
TasLe VI. Comparison of numerical results
with variational calculations.

Variational

E (1) Case I» Case TI® Case ITI°  Numericald
=0 —0,12533 ~—0.,12532 —0.12501 —0.12531

jm=1 —0.026495 —0.026475 —0.025903 —0.026498
=2 —0.0039%06 -—0.003893 —0.003531 —0.003902

* See Eq. (49b) (30 variational parameters).

® See Eq. (49b). Only positive powers of r with 36 variational parameters.
* Equation (49a) with 20 parameters.

4 Numerical integration of the partial differential equations.

* F. W. Byron and C. J. Joachain, Phys. Rev, 187, 1 (1967).

QUANTUM-MECHANICAL PAIR EQUATIONS

Taorte VII. Upper bounds derived from numerical solution.s

Mesh
Bize My E(l=0) M E(i=1) M Es(l=2)

3 7 =0.1239 8 —0.02554 7 —0.003222
% 7 —0.1246 7 —0.02605 8 —0.003630
s 7 —0.1251 8 —0.02625 9 —0.003753
¥ 7 —0.1252 7 —0.02634 9 —0.003802
t 9 —0.1252 8 —0.02641 9 —0.003839

* See Eq. (S0b).

b Af —1 Is the order of a polynomial covering a triangular region.

Functions of type (a) are standard, and those of type
(b) are correlated in their radial part, and they avoid
some difficult integrals due to nonlocal potentials that
appear when interelectronic coordinates are used. Such
functions may seem inadmissible as trial functions,
since they have a finite discontinuity in the first de-
rivative at ry=r,. The variational principle neverthe-
less is still valid giving an upper bound. Table VI
gives their values ? listed as Cases I-1I1 and our best
extrapolants. For Case I a function of type (b) is
used but each partial wave contains 30 terms with
—1<m+n<4. In Case II functions of type (b) are
again used, but with 36 terms and m=+»<7 (no ncga-
tive powers of r; r3). For Case III they® used a func-
tion of type (a) with 20 variational parameters. The
results of Table VI clearly show that the numerical
method of finite differences, coupled with extrapolation
based on the convergence properties of the finite dif-
ference solution, can give results as accurate as the
variational method.

It is easy to derive a convenient analytical fit to the
numerical solution by simply projecting various func-
tional forms on to it. To demonstrate this we use
functions of the type in Eq. (49b). These analytical
fits can obviously provide upper bounds to E,. Since the
solutions of Egs. (43) and (44) are symmetric about the
line r;=r;, consider the region r,>r; and let x=r, and
y=7; there. The numerical solution should have the
form '

u(z,y) = exp[—alz+y)Jr(z,5),  (50a)
where #(x,y) is a polynomial in the triangular area
fl>'b

w(x, )= i i CmaX™ "y (50b)

me=] ne=]

In principle & can be varied, but here it is clearly equal
to two. One just takes the solution vector, multiplies it
by exp [a(x+7%)], and puts a polynomial, #(x, ),
through a selected number of points of the resulting
vector. Equation (25) then gives an upper bound. The
equation determining the ¢na’s cun be solved in 4 matter
of seconds. Table VII gives some of these results. At
crude meshes one can obtain estimates that compare

# See comments below Eq. (49h) on the use of such functions io

the variational expression. One must handle the integrals contain-
ing the kinetic energy operator properly.
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well with the configuration-interdction results of Table
VI; e.g., at a mesh size of } for the =1 and 2 partial
waves FEy(}) =—0.02605 and —0.00363, respectively,
versus —0.025903 and —0.003531 of Table VI. An
interesting observation is that the numerical result
always lies below the best available estimate of the
energy of each partial wave, so that the true value is
apparently bracketed by the numerical and variational
results; e.g., at a mesh size of Y5 Ez(}) for /=0, 1, and 2
is —0.1259, —0.02736, and —0.00415, respectively, by
numerical integration and —0.1252, —0.02641, and
—0.003839 variationally. These bracket the accurate
results of —0.12533, —0.026495, and —0.003906. This
bracketing occurs at all mesh sizes, and the limits
become smaller as the mesh is refined.

NONLOCAL POTENTIALS

Our results demonstrate that the pair equations can
be solved by the finite-difference method if the exchange
potentials in Eq. (30) were absent. In that case the
differential equation is replaced by a matrix equation in
which the matrix is banded. Such a system of equations
can be solved quite efficiently by triangular decomposi-
tion; i.e., A[Eq. (41)] is decomposed into its L and U
factors, With the matrix 4 in triangular form the
system Ax=D is solved by a forward and backward
substitution. The lower and upper triangular matrices,
L and U, are stored and are always available. This
allows one to include nonlocal potentials and higher
difference corrections (Appendix B) by an iterative
technique, with a small increase in computing time.

There are two starting points. One can drop the
exchange operator V,(r) completely [see Eqgs. (13b)
and (14b)] and solve the resulting equations

Aug=D. (51)

The term —[V.(n)+V.(r:) Ju(r,, :) has been neg-
lected for the first iteration. Write u2u+ A, and
the correction Aw is approximately given by the
equation

A(Aw) =[V.(n)+V.(r) Ju, (52)

which can be solved by a forward and backward sub-
stitution since the L and U factors are available. One
would really like to replace the nonlocal operator by a
local operator. Various effective local potentials can
approximate the exchange potential quite well, e.g.,
those of Slater" and Kohn and Sham.”? Slater suggests

that the exchange potential be represented by
Va(r) =(3/2x)3xin(r) '8, (83)
where

n(r) = Zl: v (r)(r),

u {‘.IC. Slater, Phys. Rev, 81, 385 (1951),

W, Kohn and l.. J. Sham, Phys. Rev, 140,-A1133 (1965). For
comments on this choice of exchange potentinl sce J. C, Slater,
Massachusetts Institute of Technology, Solid State and Molecular
Theory, Quarterly Progress Report Na. 58, 1965 (unpublished).
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and ¥,(r) satisfies an equation like the HF equations,
but with V, of Eq. (53). The advantage is that this
Ve (r) is an algebraic operator, and one now has an
equation like Eq. (51) with a different band matrix, 4,:

Aag=d. (54)

The operator (V,—V,) is neglected for the first
iteration. As in Eq. (52), one solves for the correction
A,

Since the facility of including exchange potentials is
important, we give some estimates of the additional
computing requirements. If the problem fits in random
access memory, a solution of the matrix ecquation
requires about $M*4-2}® operations. But with the L
and U matrices available only 2M*® operations are
required to solve for a new root. Thus, the additional
time per iteration to include the nonlocal potentials will
be about 4/(4-+ M) of the initial time, which for 4 =20
is about 16%. With auxiliary storage and bandwidths
that are not too large, one can prove that this percentage
will be less than 259, and will decrease the larger the
number of equations becomes.

CONCLUSIONS

We have shown that the first-order pair equations
proposed by Sinanoglu can be solved both economically
and conveniently by numerical integration. One of the
advantages of the method is its simplicity, and its
success depends on the ability to solve a large number
of simultareous linear equations efficiently. One can
obtain an approximate solution at around 2000 mesh
points in just under 2 min on an IBM 7094. Such
solutions would be sufficient for many purposes. With
this number of equations one must use auxiliary disk
storage, and a fair bit of time is spent transmitting
information between computing units. On a machine
with a larger random access storage but, hypothetically,
with the same basic cycle time, such a calculation would
take about 40 sec. The programming is simple, and the
few integrations necessary are done by the trapezoidal
rule. Nonlocal potentials can be treated with a small
increase by the same iterative technique.

We also prove how the finite difference solution must
converge toward the exact solution as the mesh size
goes to zero. This convergence forms the basis of a stable
extrapolation procedure which gives an accurate value
for the pair energy. On the other hand, very little is
known about the convergence properties of variational
methods. The expansion in spherical harmonics has
some conceptual advantage, and the solutions for the
radial functions converge nicely for all } values. The
boundary condition poses no difficulty.

We chose the first-order pair function as the example
in this paper, but there arc other pairs that are more
accurate than these first-order pairs.? In many cases one
expects 2,9 to suffice, but if one wants to go to more
nccurate pairs, numerical methods are also applicable.
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For example, consider the pair equation which satisfies
the equation®

(eite,4Qmig)i=0. (55)
Q is defined in Eq. (11), and
Pu=B(¢:(1),(2) )+ (56)

The corresponding pair energy provides a lower bound
to the exact pair cnergy.” One can write

(ect2;) fhiy=—Q(1/r12) B($:(1) $,(2) ) — Qmuisthi;.

(s7)
Neglecting the second term on the right-hand side, Eq.
(57) becomes identical with Eq. (10) for #,%". An
obvious approach to the solution of Eq. (57) would be
iterative; i.e., take #;,™ and use the L and U matrices
to solve for Au;; due to the term Qm;;7;; [see discussion
below Eq. (52) ]. The algebra on the spherical harmonics

may be more involved, but comparison between #;;®
and 4y, Eq. (57), will be informative.

APPENDIX A

An advantage of the numerical method is that one
can derive the convergence of the numerical solution,
u(x, y, k), towards the exact solution, #(z, ). One
expands %(z, ),

u(z, y) =u(z, v, h)+ Ah+BR+Cl4---+, (Al)

where 4, B, C,+ -, are functions of x and y. The differ-
ential equation, Eq. (30), has the form

J(D)u=g(x ), (A2)

where
J(D) =—§(3"/6x*) = 5(8%/3) + p(=, 3),
and the numerical solution, %(k), satisfies
R (A%)

The difference between Eq. (A2) and Eq. (A4) is the
local truncation error, Eq. (39). This error contains only
even powers of /, with zero constant term, so

Lu(k) =[ f(D)+ (chi+dh'+ ) Julhk). (AS)

Substituting for (4) and equating powers of 4,

(A3)

f(D)u=g(x,3), (A6)
f(D)A=0, (A7)
J(D)B—cu=0, (A8)
f(D)C+cd =0. (A9)

Note that Eq. (AS) has its form due to the use of
central differences. From Egs. (A7) and (A9) A and
C arc zcro. Thus, Eq. (A1) becomes

u—u(h) =BR+DifF+en, (A10)

¥ Q, Sinanoglu (private communication),

QUANTUM-MECHANICAL PAIR EQUATIONS

The basic integrals are of the type

I= j:dzj;}(x,y)dy.

Here f(x, y) contains the numerical solution, and this
is known approximately at fixed intervals. In evaluating
1 there are two sources of error: (i) that of Eq. (A10),
and (ii) the quadrature by the trapezoidal rule. With
a known function f(x, ), the form of 7 would be

I=T(k)+ak*+0(), (A12)

where T'(%) is the value of the integral evaluated by the
trapezoidal rule, Use of the numerical solution, instead
of the exact solution, to evaluate T'(k) introduces terms
proportional to A%, k4, etc., into Eq. (A12). The final
form is

(A11)

I=To(h)+aJit4afii+-+-. (A13)

APPENDIX B

In Eq. (38) we ncglected the term Cx and retained
just the second difference opcrator. Instead of going to
very fine meshes one may include fourth differences,
e.g., Eq. (36), and this may give an accurate solution’
at coarser meshes.” Consider the first term of Eq. (39),

C=—(1/121) (5 4+5,%), (B1)
and write the new matrix equation
(4+C)y=b. (B2)

The matrix 4 dominates, and for a first approximation,
@, one has

AyW=p, (B3)
The first correction z to ¥® is approximately
Az=—Cym, (B4)

With the L and U matrices available, Eq. (B4) is
easily solved. At points next to the boundary the term
Cy® requires values of the function beyond the bound-
aries [sec Eq. (36)]. One often extrapolates across the
boundary, but there is an apparent indeterminacy at
the boundary [see Eq. (43) ]. One can derive a relation
between the point next to the boundary and the first
external one through a cusplike condition. In the region

n>r;let x=ry, y=r, and y—0; we have
1 fo% 1 /6*u (l(H-l) Z) ] _
(5.~ 16 (5 - Do
(BS)

Substitution from Eq. (35) into Eq. (BS), and with
(0u/6y)ve=[[u(x, yrt-it) —u(x, y2— 1) I/ 2k} +- 0 (i?),
(B6)

one obtains the necessary relationship. The limits
(#/9)y0 and (2/9*),.q are evaluated using L'Hopital's
tule for indeterminate forms,
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We have calculated the energies and quantum defects
for the lowest eight s-¢ states of H;t using the first-
order perturbation theory. In zero-order, we retain
only the spherical component of the core potential.
The zcro-order equation has previously been solved by
Chen! for the lowest six s-o states and his results for
the ground state have been corrected by Cohen and
Coulson,? and by Hauk and Parr.? The perturbation is
simply the nonspherical part of the core potential, and
its effccts on the Rydberg orbital are included by solving
the first-order perturbation equation. It is well known
that such a procedure is not suficient for the ground
state!; however it is expected to be a better approxi-
mation for the highly excited Rydberg levels.t For
these orbitals, the spherical component of the core
potential plays a more dominant role in determining
the eigenvalue.

The partial wave expansion of the core potential for
CHitis

g l= =20 (P B 1) Py(cost), (1)
i

wherc 7e=min(R,7), rs=max(R, r), and 2R(=2 a.u.)

is the internuclear separation. The zero-order equation
for the ns-o states is

[_%(dg/drn)_(2/'>)]’n0(7):Eno¢no- (2)

If we expand the first-order wavefunction in the same
form as the perturbation, the first-order equation
decouples to give a scparate equation for each partial
wave of the forin

1@ A+ 2
( 24" 27 15 E"O)’b"l(ﬂ; &

= (2 0(r). (3)

Both Egs. (2) and (3) were solved by the matrix
finite-difference method which we have discussed else-
where.®" The first-order wavefunction for the ground-
state included partial waves up to 2/=16 and the re-
maining states up to 2/=12. The results for each level
are given in Table I along with the exact values of the
energy for the lowest three states.? In addition, the
quantum defects 8, were found from the formula

En= ——Z,’/Q(n-i—é,.)’, (4)

TasLE I. Perturbation encrgics for the ns-o Rydberg series of Ha* at an internuclear scparation of 2 a.u.

n —E, —F —E; —E, 3n
1 1.018507 0.061408 0.016398 1.096313(1.10263) 0.3507
2 0.350367 0.007912 0.002218 0.360497(0,36087) 0.3554
3 0.174455 0.002396 0.000735 0.177586(0.17768) 0.3559
4 L0104041 0.001043 ~ 0.000339 0.105423 . 0.3556
S 0.068995 0.000538 0.000177 0.069710 0.3563
6 0.049069 - 0.000323 0.000110 0.049502 0.3563
7 0.036637 0.000203 0.000068 0.036938 0.3563
8 0.028456 0.000138 0.000047 0.028641 0.3564




116
4730

LETTERS TO THE EDITOR

J. CHEM. PHYS., VOL. 49, 1968

TasLe IT, Contribution of each partial wave to — E;.

% ’ 2 4 6 8 10 12

n
2 0.007034 0.000640 0.000150 0.000052 0.000023 0.000012
3 0.002125 0.000197 0.000047 0.000016 0.000007 0.000003
4 0.000922 0,000087 0.000020 0.000007 0.000003 0.000002
5 0.000477 0.000045 0.000011 0.000004 0.000002 0.000001
6 0.000285 0.000027 0.000006 0.000002 0.000001 0.000000,
7 0.000180 0.000017 0.000004 0.000001 0.000000, 0.0
8 0.000122 0.000012 0.000003 0.000001 0.0 0.0

where Z. is the charge on the core, and are listed in
the last column., The contributions of the partial
waves to the sccond-order energy are given in Table 11
for each excited state.

The results of Table I clearly show the rapid con-
vergence of the perturbation energies for the higher
Rydberg levels. Even for the third state, the energy
agrees with the exact result better than 0.1%. On
the other hand, from Table II we can see that the
convergence of the partial wave expansion is about the
same for each state. Within the accuracy of the nu-
merical results (about five decimal places) the quantun
defect has converged nicely to a limiting value of 0.356.

Because the method we have used is numerical, it
should not be difficult to apply to a more general
diatomic molecule. The charge distribution due to the
core electrons can be determined from an appropriate
two-center calculation and then expanded in a partial
wave serics in the same manner as the nuclear potential.
The resulting zero- and first-order equations are very
much like those we have solved here for H,*, A method

which accounts for exchange effects and yet yields a
local potential has been developed by Goddard® and
thus would be particularly suited for numerical work.
Another alternative is the use of a pseudopotential
theory such as proposed by Hazi and Rice.® In any
case, once a few of the higher levels have been deter-
mined, the encrgies can be fitted to a Rydberg formula
and the remaining members of the series calculated.
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