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APSTRACT 

Part I 

Numerical solutions to the S-limit equations for the helium ground 

state and excited triplet state and the hydride ion ground state are ob

tained with the second and fourth difference approximations. The 

results for the ground states are superior to previously reported values~ 

The coupled equations resulting from the partial wave expansion of the 

exact helium atom wavefunction were solved giving accurate S-, P-, D-, F -, 

and G-limits. The G-limit is -2. 90351 a. u. compared to the exact 

value of the energy of -2. 90372 a. u. 

Part II 

The pair functions which determine the exact first-order wave

function for the ground state of the three-electron atom are found with 

the matrix finite difference method. The second- and third-order 

energies for the (lsls)
1
S, (ls2s) 3S, and (ls2s) 1S states of the two

electron atom are presented along with contour and perspective plots 

of the pair functions . The total energy for the three-electron atom 

with a nuclear charge Z is found to be 

E(Z) = -1.125 ·z2 +1. 022805 ·Z-0. 408138-0. 025515 ·(1/Z)+O(l/Z2)a. u. 
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I. NUMERICAL SOLUTION OF EXACT PAIR EQUATIONS 



1 

It is a well established approach to the study of electron 

correlation to analyze the many-electron system as a series of 

simpler two-electron problems. Sinanoglu1 has shown how the 

first-order equation can be reduced to two-electron pair equations 

for the many-electron atom or molecule. He also discusses the 

equation for "exact pairs" which describes the pair correlations 

beyond first-order. N esbet2 has been successful in reducing the 

total wavefunction and energy for first-row atoms into their Hartree

Fock and two-body components. The general topic of electron cor

relation is reviewed in Refs. 3 and 4. 

We are not concerned here with the derivation_ or validity 

of the various pair approximations but with how to accurately and 

efficiently solve the resulting equations. There have been tv.;o stan

dard approaches in the past, both of which are variational. The 

first dates back to the early calculations of Hylleraas 5 who used a 

trial function containing inter electronic coordinates. The unspecified 

parameters are determined so as to minimize the two-electron 

energy. This method is capable of high accuracy if enough terms 

are included, but leads to difficult integrals to evaluate. Indeed 
1 

considerable research effort has gone into the study of these integrals 

themselves. The most successful approach is to use a configuration 

interaction (CI) trial function. The popularity of this method is due 
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in part to its general applicability. When applied to the pair equations'\ 

the CI method obtains the pair energies and properties without dealing 

directly with a two-electron equation. Instead 1the total N-electron . 

wavefunction is constructed from a set of Slater determinants so as 

to describe the correlation between a specific pair of electrons while 

treating the remaining N-2 electrons in the Hartree-Fock approxima

tion. The energy is found by diagonalizing the total Hamiltonian in 

this basis. This is equivalent to solving a Schrodinger equation des

cribing the pair of electrons correlating in the Hartree-Fock field 

of the remaining N-2 electrons. The principal disadvantage of the 

CI method is the slow convergence relative to the use of interelectronic 

coordinates. Schwartz 61 7 has pointed out the disadvantages of using 

orbital expansions to represent correlated wavefunctions with parti

cular attention to the convergence as higher angular configurations 

are included. 

We have chosen an alternative to these approaches by simply 

solving the equations numerically. Since it is not possible to treat 

a six-dimensional equation, we first eliminate the angular variables 

by a partial wave expansion. Then the resulting equations for the 

functional coefficients are solved numerically. The method is not 

variational and does not necessarily give an upper bound to the two

electron energy. However, once the basic techniques are established'\ 

any set of two-variable equations can be solved with high accuracy. 
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This allows one to consider a variety of approximations to the pair 

· equations (pseudo-potentials, etc.) without additional complications. 

The numerical methods are highly computer oriented,since the dif

ferential equation is reduced to a set of difference equations which 

are solved by standard matrix techniques. 

In two earlier papers8' 9 we applied the matrix finite difference 

.(MFD) method to the solution of the S-limit Schrodinger equation and 

the first-order pair equation for the helium atom. The results were 

accurate; however, in order to apply the method to excited states 

of two-electron atoms and to the valence electron pairs in first-row 

atoms, it was necessary to reexamine the numerical techniques. 

The most obvious problem originates from the diffuse nature of the 

wavefunction describing these electron pairs. This requires that 

the point at which the solution is required to vanish must be taken 

further out and consequently the number of points needed to obtain 

an accurate solution becomes unreasonable. Another refinement is 

needed when considering the solution of exact pair equations. The 

partial wave expansion qf the exact pair function leads to a set of 

coupled equations in contrast to the first-order pairs which give 

uncoupled equations . The exact pair functions are solutions of eigen

value equations differing from the two-electron atom Schrodinger 

equation only in the presence of the potential due to the N-2 "core" 

electrons and orthogonality constraints. In order to solve these we 



4 

have to iterate among the equations determining the functional co

efficients of the partial wave expansion. To keep the problem within 

limits we must be able to obtain accurate solutions with a small 

number of points. 
I 

We have corrected for the possible diffuse nature of the pair 

functions by transforming to a new set of variables which are just 

the square roots of the original variables. In order to guarantee 

greater accuracy with fewer points , fourth differences have been in

cluded in the approximation of the derivatives. Combining both of 

these modifications with an extrapolation procedure, we have found 

the S-limits for the ground states of helium and the hydride ion. The 

equations were also solved using both transformed and untransformed 

coordinates and second differences only. With the three sets of results 

for each atom, we can compare the effectiveness of the modifications 

for a tightly bound pair (helium) and a diffuse pair (hydride ion) . 

Finally, we have applied the MFD method to the exact Schrodinger 

equation for the helium atom using successively higher partial waves 

up to the G- linit. The results proved superior to any previous CI 

calculation of the angular limits. The properties predicted by the 

numerical solution compare well to the exact values . 
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B. PARTIAL WAVE REDUCTION OF THE TWO-ELECTRON E 

The partial wave expansion of the solution of the two-electron 

SchrOdinger equation has previously been considered by Luke, Meyerott, 

and Clendenin10 for the 3S state of Li+. For a spherically symmetric 

pair of electrons the exact wavefunction can be expanded in Legendre 

polynomials of the cosine of the relative angle between the two elec-

trans, 
Cf) 

'li'(r1r2812) = L 
.e =0 

By substituting this into the equation, 

(1) 

(2) 

multiplying both sides by ~ P 1(cos 812), and integrating over all 

angular variables 
1 

we obtain the Q-th member of an infinite set of 

coupled equations for the functional coefficients 



6 

[-t (l/r~ a/ar, (r: a/ar,) + 1/r~ a/ ar. (r~ a/ar.)) 

+ f (t+ii;2r: + f(f+l)/2r~ + V(r1) + V(r2) + MH J !Jlf(r1r 2) • 

where 

and 

k C (Qo, lo) 

MQQ' = 

= ../(2Q + 1)(2Q'+ 1) 
2 

'(3) 

Up to this point we have not made any approximations, although 

it is clearly an impossible task to solve an infinite set of coupled equations. 

The expansion is usually trtincated when the energy is determined 
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to the desired accuracy. When using the MFD method it is convenient, 

but not necessary, to begin by solving the S-limit ( Q = 0 partial waye 

only) and then use this as an initial guess to determine the P-limit 

(Q = 0, 1 partial waves only) and so forth. After two partial waves , 

the addition of further terms to the expansion has a small effect on 

the lmown functional coefficients and the iterative method of solving 

the coupled equations converges extremely rapidly. Therefore , the 

slow convergence of the partial wave expansion pointed out by Schwartz 7 

is not a serious drawback. 

It is easy to show that a similar reduction of the Schrodinger 

equation can be made for pairs that are not spherically symmetric. 

The main difference appears in the angular integrals which couple 

the equations together. Also the non-local potentials which occur in 

the Hartree-Fock pair equations offer little complication since the 

equations already contain nonhomogeneous term>. The numerical 

techniques needed to solve these equations are presented in the next 

section. 

The second derivative can be expanded in terms of differences 

as follows . 
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where 

6~ = tJ;(r0 + h) - 2tJ;(r0 ) + tJ;(r0 - h) 

6~ = tJ;(r0 + 2h) - 4tJ;(r0 + h) + 6tJ;(r0 ) - 4tJ;(r0 - h) + tJ;(r0 - 2h) 

o~ = tJ;(ro + 3h) - 6tJ;(ro + 2h) + 15tJ;(ro + h) - 20tJ;(ro) + 

l 5tJ;(r 0 - h) - 6tJ;(r 0 - 2h) + tJ;(r 0 - 3h) (5) 

and h is the grid size. 11 The first approxi:tra.tion to the second 

derivative is just a
2
tj;/ar2 

..... 1/ h
2 

6
2

• In order to find the difference 

error we expand the second difference in terms of derivatives 

= ( 2 I 2) i 2( 4 I 4) ..J..... 4( 6 I 6) a VI a r 0 + 12 • h a 1/J a r 0 + 360 • h a VI a r 0 + • .. 

(6) 

and as a consequence of choosing central differences, the error 

contains only even powers of h. Bolton and Scoins12 have shown 

that the energy found with a grid size h can be expressed as a power 

series of the form 

E(h) (7) 

where E(O) is the exact energy corresponding to h = 0. For most 

two-dimensional equations it is not possible to use enough points to 

compete with the accuracy of variational methods, therefore (7) is 
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used to extrapolate the energies found at several grid sizes to the 

exact value. 13 

Fox14 has argued that a substantial amount of the difference 

· error can be eliminated by including the next term in the difference 

expansion of the derivative in the MFD equations. The difficulty in 

using fourth differences is satisfying the boundary conditions. The 

usual conditions are to require r ·t/;(r) to vanish at r = 0 and r = r max 
where r max approximates infinity. The fourth difference of t/;(r) ·at 

r = h requires that we know the function at r = -h, and therefore 

introduces uncertainties into the MFD equations. A similar difficulty 

occurs at the other boundary. One solution of this problem is to 

extract the asymtotic behavior of t/;(r) at r = 0 and r = Q'.) from the 

differential equation and use this to relate the unknown values of t/;(r) 
-

outside the defined grid to the values within. This is the approach 

we have taken for the fir st-order pair equations; however, for . the 

eigenvalue equations, it is simpler to replace the fourth difference 

approximation at the boundary with the usual second difference ap

proximation. This does not appreciably affect the accuracy when 

combined with the coordinate transformation to be discussed later. 

Unfortunately, the fourth difference approximation does not 

sufficiently reduce the difference error to be used without extrapola

tion. The approximation does allow accurate results to be obtained 

from relatively few grids. These various methods are illustrated 



10 

for the S-limit equation in the next section. 

Truncating the partial wave expansion at 1 = 0, we then obtain 

the following equation for the two-electron atom, 

where u0 (r1r 2 ) = r 1r 2 lf;0 (r1r:,i). If the derivatives are replaced by the 

second difference approximation, (8) is transformed to a set of linear 

equations of the form, 

D·u = E·u (9) 

where D is a symmetric banded matrix with non-zero off-diagonal ,,.... 

elements in only two super-diagonals and two sub-diagonals. The 

eigenvectors at D represent the ground and excited states of the two-,,... 

electron equation and would be exact if we used an infinite number 

of grid points and satisfied the correct boundary conditions . Since 

we are usually satisfied with the lowest state and possibly a few 

excited states, a finite number of points are enployed and a reason

able radial cutoff is chosen to approximate the boundary conditions . 
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We have solved the S-limit equation for the first two states 

of the helium atom and for the ground state of the hydride ion using 

the second difference approximation. The radial cutoff for the ground 

state of helium was taken at 9 a. u. and for the excited state at 20 a. u. 

For the hydride ion the solution was required to vanish at 25 a . u. 

Equation (8) was solved for several grid sizes and the eigenvalues 

extrapolated using the polynomial representation of the difference 

error. From (7) we see that two eigenvalues are needed to eliminate 

the h2 -term, three for the h
2 

- and h4 -terms, etc. We have done this 

for the three states and present the results in Tables I-III. 

The extrapolation of the S-limit for the helium ground state 

predicts an energy of -2. 879031 a. u. with an uncertainty in the last 

figure. The previous best limit was found by Davis15 and by Schwartz 7 

to be -2. 879028 a. u. Table I shows the extrapolated values found 
-' 

using successively more of the initial energies to be converging from 

above. Thus the best extrapolant should be an upper bound to the 

true S-limit. This value falls within the error bounds on Davis' 

predicted limit. 
s . 

The results for the S state of helium and the ground state 

of the hydride ion are less satisfactory. Davis15' 16 places the S

limits of these states at -2. 1742652 a. u. and -0. 5144940 a. u. , 

respectively. The MFD method is more difficult for these states 

because of their large radial extent. To achieve the accuracy that 



12 

we have, it was necessary to diagonalize a matrix as large as 22, 500 

by 22, 5000 for the 3S state and about 15, 000 by 15, 000 for the hydride 

ion. 

In order to avoid this problem, we made the following co-

ordinate tr ans formation, 

2 = "2 

(10) 

and solved the Schrodinger equation on an evenly spaced grid in x1 

and Xa· The effect of this is to give a dense distribution of points 

near the nucleus and a sparse distribution in the tail regions , as 

viewed in the untransformed system. Not only is the radial cutoff 

less important in the new system, but since this is a more optimum 

distribution of points for our problem, we can use fewer points with-

out losing accuracy. 

Substituting the transformation into (3), the derivatives 

become, 

1/r
2 

a/ ar(r2 a/ar) = 1/ 4r (a
2
/ ax

2 
- 1/ x a/ ax) (11) 

The first derivative is eliminated by the transformation 
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which leads to the following equation for Uo(x1~), 

(12) 

This equation was solved for the hydride ion with a 25 a. u. radial 

cutoff (5 a. u. on the square root grid) using grids ranging from 25 

to 50 strips. The results extrapolated to E = -0. 514497 a. u. and 

were converging from below. Representation of the difference 

error using only even powers of h was not as efficient for the new 

coordinates giving an energy of -0. 514557 a. u. , also converging 

from below. Therefore a polynomial containing both even and odd 

. powers, but leading off with h
2

, was used. The square root grid 

reduced the computation time by a factor of 7 for this case. 

In an effort to improve the MFD method further, the four th 

difference approximation was used to re-solve the equations for 

helium and the hydride ion on the square root grid. The cutoff for 

helium was kept at 9 a. u. but the cutoff for the hydride ion was 

taken at 30 a. u. The energies obtained using both second and fourth 

difference approximations are given in Table IV. While the fourth 

difference results are improved, the accuracy is not sufficient to be 

used without extrapolation. In order to find the appropriate extra

polation method, the energies were fitted to various polynomials in 
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the grid size using successively finer grids. By studying the trends 

in the extrapolants and the coefficients of the power series, we can 

determine the most efficient form to represent the difference error. 

The results for the polynomial fits of the helium energies are given 

in Table V. 

The best representation of the difference error for the second 

difference approximation is given by the polynomial containing a 

cubic term in h. For the fourth difference results the polynomial 

E(h) (13) 

appears to give the best extrapolant, but by eliminating odd powers 

entirely we obtain accurate results and uniform convergence from 

above. We should point out that while the error in the fourth differ

ence approximation leads off as h4
, using second differences at the 

boundary introduces the h2 term. Table V1 gives the equivalent 

information for the hydride ion. The fourth difference approximation 

predicts an S-limit energy of -0. 514491 ± 0. 000001 a. u. which is 

within the error bounds of Davis' result. 

Even though the wavefunctions found by the MFD method are 

only known at discrete points, there is no problem extracting the 

same information from them that a variational solution can yield. 

In fact, the numerical solutions are generally of a higher quality 

over all regions of space than the variational functions. This is 
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illustrated by the local energy which agrees with the eigenvalue to 

six or more decimal places at every grid point. Properties are 

easily calculated by quad!'ature methods which amount to nothing 

more than double summations. These are then extrapolated in the 

same manner as the energy. 

We have calculated severa l properties from the fourth dif

ference S-limit functions for helium and the hydride ion and compare 

them to the radial CI and Hartree-Fock values in Table VII. The 

agreement is v,~ry good except for (r~ + r~), which indicates that 

more diffuse basis functions were needed ·in the radial CI calculations. 

Contour and perspective plots of the two helium states and the 

hydride ion ground state are given in Fig. 1. We have plotted the 

square of the function u0(r1r 2 ) in each case. The contour plots show 

the regions rllr2 ~ 4. 5 a. u. for the 1S state of helium, r 1 , r 2 ~ 10 a. u. 

for the 3s state, and r 11 r 2 :::;; 12. 5 a. u. for the hydride ion. The 

nucleus is positioned at the lower left corner and the constant contour 

increment is given in the upper right corner. The lowest contour is 

labeled. In the 3-D plots the regions shown are r 11 r 2 ~ 7. 5 a. u. for 

the helium 1s state, r 1 , r 2 ~ 13. 3 a. u . for the 3S state, and r 1 , r 2 ~ 

18. 7 a . u . for the hydride .ion. Figure 2 gives the viewer's orienta

tion for these plots . The functional axis has the same scale in each 

case so that the heights of the surfaces can be compared. The con-

tour plot for the hydride ion shows the minimum in the solution along 



16 

the line r 1 = r 2 • The helium atom shows a similar feature for large 

radial distances but only slightly. This minimum is not present for 

the Hartree-Fock wavefunction which does not predict a stable ground 

state for the ion. 

While including radial correlation relative to the Hartree-Fock 

model leads to a stable ion, the S-limit functions gives unreasonable 

values for some properties. The exact value of (r~ + r~) is 23 . 827 

a. u. , 17 which is about two-thirds of the S-limit value. If we include 

the higher partial waves in our expansion of the exact solution, the 

S-wave contracts and the expectation values approach the exact re

sults. This is illustrated for the helium atom in the next section. 

E. SOLUTION OF THE COUPLED PARTIAL WAVE EQUATIONS 

FOR THE HELIUM ATOM 

The MFO method was applied to the sets of coupled equations 

that result when (1) is truncated at i = 1, 2, 3, and 4. We decided to 

use the second difference approximation on the linear grid with a 

9 a. u . cutoff since this proved to be very accurate for the S-limit. 

For a more diffuse state the square root grid would have been used. 

The extrapolation tables for the angular limits are given in 

Table VIII. The results converge from above so that the best ex

trapolants should be upper bounds to the true limit. These are com-. 

pared to various CI calculations in Table IX. We note that the 
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numerical G-limit is superior to each of the other calculations. 

Tycko, Thomas, and King18 were only able to obtain an energy of 

-2. 90344 a. u. using 15 partial waves. This illustrates the difficulty 

in representing the functional coefficients with orbital products for 

the higher partial waves. · As pointed out by Schwartz, 7 this led to 

the erroneous conclusion that the majority of the error was in the 

S-limit and that the contribution from the higher waves could be neg

lected. The CI calculations generally do worse for the higher angular 

limits, because to keep the calculations from becoming intractable, 

fewer configurations are used to represent the functional coefficients. 

The 11FD method a:ctually becomes easier for these equations since 

the coefficients have less and less amplitude and are concentrated 

nearer the line r 1 = r 2 • 

The energy can be expressed in the form, 

(14) 

where 

= 

= (15) 
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Using the G-limit solution, we have calculated the different terms 

in this expression. The electron repulsion matrix elements 

L I k I k+l I . k ( ) . (.P.. r < r> P..') C P..o, P..'o are presented m Table X and 
k 

the energy analysis in Table XI. These results illustrate the small 

but important effects the higher partial waves have on the energy. 

Several properties were studied in the same manner and compared 

to the exact values in Table XII. The accuracy is very good, being 

about four decimal places in every case except for (r~ + r~) . The 

value is still too large and would improve if more partial waves were 

used. 

The contour plots of each functional coefficient for the G-limit 

are given in Fig. 3. Again the squares of the functions u2(r1r 2 ) are 

plotted over the region r 1 , r 2 ~ 4. 5 a. u . . The peakedness of the higher 

partial waves about the line r 1 = r 2 is quite evident. Since the am

plitude of the functions for .Q > 0 is negative, their effect is to reduce 

the electron density in this region. Figure 4 gives the perspective 

·plots of the S- and P-waves using the same scale along the fu...11ctiona.l 

axis. By integrating over the radial variables, we found the volume 

under the P-wave surface to be 0. 4% of that under the S-wave. The 

remaining waves were too small to be shown with this scale, but 

the same integration showed the D-wave to be 5% of the P-wave and 

the F-wave about 17% of the D-wave. 



19 

F. DISCUSSION 
~ 

The results presented here demonstrate that the numerical 

solution of partial differential equations can give accuracy competitive 

with variational methods. The values found for the S-limits of 

helium and the hydride ion are superior to any previous calcuiation 

and agree well with the predicted limits given by Davis. More im-
I 

i • 

portantly the same accuracy was found when the coupled equations 

were solved for helium. The equations describing the pair correla-

tions in atoms offer virtually no new considerations once they are 

derived. The same program which was used for the helium atom 

has been used to calculate the valence pair correlation energy for 

beryllium and the MFD method has been applied to the first-order 

hydrogenic pair equations for lithium. The results were consistently 

accurate in all cases. 

The calculations reported here were carried out on the CDC 6600 

and IBM 360-75 computers. The IBM 360-75 results were found using 

double precision arithmetic to avoid round-off errors. 
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TABLE II. The S-limit energy of the helium atom triplet 

excited state. 

Initial 
Grid Size Energies 

20/ 50 -1.92155742 

-2.14582478 

75 -2.04615040 -2.17185406 

-2.16534674 -2.17411134 

100 -2.09829880 -2.17375017 -2 .17 425468 

-2.17072494 - 2 . 1742 3 87 5 

125 -2.12437221 -2.17411661 

-2.17260920 

150 -2.13911129 
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TABLE m. The S-limit energy of the hydride ion on the 

linear grid. 

Initial 
Grid Size Energies 

. 25/ 50 -0.48265239 
-0.51258653 

75 -0. 49928247 -0.51438770 
-0. 51393741 -0.51447016 

100 -0.50569401 -0.51445695 
-0.51426992 

125 -0. 5087 8134 
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TABLE IV. S-limit energies for the helium atom and 
the hydride ion on the square-root grid. 

Grid Size 

3/20 
25 
30 
35 
40 
45 
50 
55 
60 

v'30/25 
30 
35 
40 
45 
50 
55 
60 

Helium 

2nd Differences 

-2.94612243 
-2.92313414 
-2.91042377 
-2. 9026067 8 
-2.89743538 
-2.89382642 
-2.89120257 
-2.88923204 
-2.88771261 

Hydride 

-0. 52387559 
-0.52151323 
-0.51996146 
-0.51888329 
-0.51810167 
-0 .51751582 
-0.51706469 

4th Differences 

-2.91652455 
-2.90253697 
-2.89514153 
-2.89076150 
-2.88795443 
-2. 8860477 8 
-2.88469360 
-2.88369718 
-2.88294265 

-0.52200314 
-0.51960370 
-0.51819644 
-0.51730055 
-0.51669499 
-0.51626649 
-0.51595212 
-0. 51571463 
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TABLE V. Polynomial fits for the helium atom S-limit.a 

Second Differences 

Grids Used in the h2 h4 hs ... h2 h3 h4 •.. h2 h4 h5 ... 
Polynomial Fit 

(20-25) -2.88226607 -2.88226607 -2.88226607 

(20-30) -2.88095296 -2.88066116 -2.88095296 

(20-35) -2.88007081 -2. 87954872 -2.87997000 

(20-40) -2.87968114 -2.87930272 -2. 87955936 

(20-45) -2. 87946967 -2. 87918352 -2. 87935227 

(20-50) -2.87934222 -2,87912250 -2. 879237 38 

(20-55) -2.87926080 -2.87909307 -2. 87917124 

(20-60) -2.87920098 . -2. 87903506 -2.87911356 

Fourth Differences 

(20-25) -2.87767016 -2. 87767016 -2. 87767016 

(20-30) -2. 87886455 -2.87912997 -2.87886455 

(20-35) -2. 87898118 -2.87905020 -2. 87 899451 

(20-40) -2. 87901272 . -2.87904011 -2. 87902257 

(20-45) -2.87902253 -2.87903181 -2.87902766 

(20-50) -2.87902500 -2. 87902523 -2.87902645 

(20-55) -2. 87902682 -2.87903194 -2. 87902896 

(20-60) -2. 87902886 -2.87903698 -2.87903236 

aSquare root grid with a 9 a. u. cutoff. 
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TABLE VI. Polynomial fits for the hydride ion S-limit. a 

Second Differences 

Grids Used in the 
2 4 8 h h h ... h2 h8 h 4 

••• h2 h4 h~ ... 
Polynomial Fit 

(30-35) -0.51459713 -0.51459713 -0.51459713 

(30-40) -0.51479082 -0. 51474569 -0. 51479082 

(30-45) -0.51466352 -0.51457709 -0.51464655 

(30-50) -0.51460482 -0. 51453888 . -0.51458322 

(30-55) -0. 51457261 -0.51452280 -0.51455157 

(30-60) -0.51454715 -0. 51448762 -0. 51452128 

Fourth Differences 

(25-30) -0.51415043 -0.51415043 -0.51415043 

(25-35) -0.51445461 -0.51452703 -0.51445461 

(25-40) -0. 51447961 -0.51449563 -0.51448274 

(25-45) -0.51448779 -0.51449584 -0.51449060 

(25-50) -0.51448998 -0.51449172 -0.51449120 

(25-55) -0.51449188 -0.51449635 -0.51449370 

(25-60) -0.51449172 -0.51448720 -0.51449081 

aSquare root grid with a 30 a. u. cutoff. 
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TABLE XI. Partial wave analysis of the energy for helium. 

l Tl v . 
l nuc vi.. El.. 

0 2.877088 -6.732944 -5.768487 -2.891399 

1 0.022998 -0.018653 -0.034538 -0.011490 

2 0.002222 -0.000810 -0.002748 -0.000527 

3 0.000542 -0.000110 -0.000615 -0.000073 

4 0.000194 -0.000024 -0.000211 -0.000017 

L; 2.903044 -6. 752541 -5.806599 -2.903506 
I. 
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TABLE XII. Partial wave analysis of expectation 
values for helium. 

J.. (r1 + r2) l 
2 2 

(r1 +r2>t (l/r1 + l/r2) l. ~ (1 /r i2> l.t' 

0 1.85014 2.37618 3.36647 0.96446 

1 0.00837 0.01064 0.00933 0.01589 

2 0.00039 0.00050 0.00041 0.00194 

3 0.00006 0.00007 0.00006 0.00051 

4 0.000013 0.000016 0.000012 0.00019 

L; 1. 85897 2. 387 41 3.37627 0.94594 
i 

Exact a 1.85894 2.38697 3.37663 0.94582 

aC. L. Pekeris, Phys. Rev. 115, 1216 (1959). 
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Figure 1. Contour and perspective plots of the S-limit for the 

(ls2
) 

1S and (ls2s) 3s states of helium and the (ls2
) 

1S state 

of the hydride ion. 

• ... 



t£'..JUM r~ • Fl.tlCflON SfAIE S-Llt1l 1 

• - TE S-L!HIT FLt.'CT!DN HELIUM fRIPLE1 ~TA 

36 

ll "UNCT ION 
HYOklO' /OH S-LIH . Figure 1 

t.=0.014 

t.=0.006 



37 

Figure 2. The viewer's orientation for the perspective plots. 
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Figure 3. Contour plots of the functional coefficients for the helium 

G-limit wavefunction. 
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Figure 4. Perspective plots of the S- and P-wave functional coefficients 

for the helium atom. 
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II. NUMERICAL SOLUTION OF FIRST-ORDER PAIR EQUATIONS 



43 

A. INTRODUCTION 

It was previously shown that the functional coefficients of the 

partial wave expansion for the first-order pair functions could be 

obtained with the matrix finite difference (MFD) method.1 Taking 

the full electron interaction as the perturbation, the method has been 

extended to the three pair equations that determine the first-order 

wa vefunction for the lithium isoelectronic series. The pair functions 

are independent of the nuclear charge and can be used to construct 

the first-order wavefunctions for other atoms when the remaining 

hydrogenic pair functions are determined.2 The method is not varia

tional and therefore can be applied without orthogonality constraints 

to the excited pair functions that are not the lowest of their symmetry. 

In addition, the calculation of the total second- and third-order energy 

involves none of the difficult integrals that occur for the complicated 

variational functions containing interelectronic coordinates. 

The first-order equation is reduced to its pair components in 

the first section, using the theory developed by Sinanoglu.3 The pair 

functions are then expanded in a partial wave series and the coef

ficients are determined with the MFD method. The results found 

using both the second difference and fourth difference approximations 

are presented for the ground and excited states of the two-electron 

atom. Finally, the total second- and third-order energies are calcu

lated for the lithium series. 
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B. REDUCTION OF THE FIRST-ORDER E 

With the entire electron interaction as the perturbation, the 

dependence on the nuclear charge can be removed from the perturba-

. tion equations. By scaling the radial distance to the nuclear charge z 
and measuring the energy in units of Z2

, the zero-order Hamiltonian 

can be written, 

l: (-~v~ - 1/r.) 
1 1 i 

= E h. 
1 

(1) 
i 

and the perturbation becomes, 

= 1/Z 2= 11r .. lJ 
(2) 

In these coordinates the expansion parameter is seen to be 1/Z and 

accordingly the total energy and wavefunction can be expressed as 

follows , 

E = 
(3) 

·where knowledge of '111 is sufficient to determine the energy through 

third-order .. The zero-order solution and energy are 
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L E. 

(4) 

i l 

where Q. =-~ '[ (-l)PP is the antisymmetrizer and <Pi are hydrogenic 
. p 

spin-orbitals which satisfy hi ¢i = Eicpi. For some states '1:0 will be 

a linear combination of determinants. The first-order equation is 

L (h. - E.) '1'1 = (E1 - L 1/r .. ) '110 . l l lJ 
l i <j 

(5) 

with 

Ei = <'lrol I 1/r .. J '110 ) 
lJ 

(6) 

i <j 

= L J .. - K .. 
lJ lJ 

i<j 

and 

The right-hand side of (5) can be rewritten as, 
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1/r .. ) '1> 0 lJ 
= C(, L <I> . . (J .. - K .. - 1/r . . }t(l - P .. )¢.(i)¢.(j) lJ lJ --i_J lJ lJ 1 J 

i <j 

(7) 

where <I>ij is the orbital product without ¢i(i) and ¢j(j). The permuta

tion Pij operates only on the particle labels. Equation (7) suggests 

the. following form for '11' 1 , 

~l = a L <I> .. t( 1 - pi.) w . . ( i' j) • 
lJ J lJ 

(8) 

i<j 

Substituting into the first-order equation and making use of the orbital 

equations, we obtain 

<I> . . (h. + h. - E. - E.) t (1 - P .. ) w .. (ij) = 
lJ l J l J lJ lJ 

/J \ <I> .. (J .. - K .. - 1/r .. )t (1 - P .. ) ¢ -(i) <J>.(j) (9) 
vt L iJ iJ --i.J iJ iJ i J 

A sufficient condition that '111 satisfies (9) is 

= 

(1 O) 

The necessary condition that a solution to this pair equation exists is4 
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(<fl. (1) ¢e(2) I J .. - K .. - l/r12 I (1 - P 12) ¢ .(1) ¢. (2)) = O (lla) . 
T k . . lJ -lJ l J 

·where </\_ (1) ¢ f. (2) is any solution to 

(h1 + h2 - E. - L) </>J,.. (1) ¢ n(2) = 0 . 
l J li x. 

(llb) 

For the ground state of the three-electron atom the following three

pair equations must be solved, 

(Jlsls - l/r12) ls(l) ls(2) (a[3 - [3 a ) (12a) 

(12b) 

(J 1s2s - K1s 2s - l/r12) (ls(1)2s(2) - ls(2)2s(1) )/ v'2 a a 

(J1s 2s - l/r12) (ls(l) ,8 ~s(2)0! - ls(~) /3 2s(l) a ) (12c) 

Both (12a) and (12b) satisfy the existence condition; how ever, (12c) does 

not, since the function (1 - P12) ls(l) a 2s(2) ,B is a solution to (llb) 

and (1s(1)a 2s(2) ,B I J1s 2s - l / r 12 I (1 - P 12) ls(l) ,B 2s(2) a) ~ 0. 

Sinanoglu5 has shown that by expanding both sides of (12c) in sym -
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metry states of the two-electron atom, 

(1 - P 12) ls(1){3 2s(2)a = i[ (ls(l)2s(2) - ls(2)2s(l)) (a{3 + {3a) -

(ls(1)2s(2) + ls(2)2s(l)) (a{3 - {3a)J 
(13) 

(1 - P 12) F(l, 2){3a = T(l, 2)(a{3 + {3a)/12 - S(1,.2)(l$ - {3a)/12 

'an equation for T(l, 2) is obtained which is identical to (12b) except 

for the spin function, a.Tld the following equation is obtained for S(l, 2), 

(ls(l) 2s(2) + 1s(2) 2s(l) )/12 (a{3- f3a) (14) 

The total first-order function can be expressed in terms of the 

solutions to (12a), (12b), and (14) as follows, 

'111 = 1/12 a(G(l, 2) (a{3 - {3a)/12 2s(3) a 

+ [ T(l, 2) (af3 + {3a)/ 2 - S(l, 2) (a{3 - {3a)/ 2) 1s(3)a 

- T(l,2) aa 1s(3){3) (15) 

where (11a) is satisfied in each case. The pair functions G(l, 2), 

T(l, 2), and S(l, 2) are identically the first-order wavefunctions for 

the (1sls) 1 S, (ls2s) 3S, and (1s2s) 1S states of the helium series. 
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Because the pair functions G, T, and S are spherically 

symmetric, the partial wave expansion for each is simply 

(16) 

By substituting this into the pair equation, multiplying both sides 

by Pe (cos 812), and integrating over the angular variables, the fol

lowing partial differential equation for u.Q(r1r 2 ) is obtained, 

+ .Q(Q + 1)/2r~ + .Q(.Q + 1)/ 2r: - Ei 

= ( 
r.Q ) 

E 1(pair) 6 £0 - rf 1 R (r1r 2) (17) 

where E 1 = 5/8 for the (lsls) pair, E 1 = 137/729 for the (ls2s) 38 

pair, and E 1 = 169/ 729 for the (ls2s) 
1
8 pair. The function R ~s the 

radial part of the zero-order function for each state . The boundary 

conditions on u.Q(r 1r 2 ) require that it is finite for r 1 or r 2 = 0 and that 

it vanish for r 1 or r 2 = oo. The set of equations for the functional co

efficients are not coupled and are solved independently for each 

partial wave using the MFD method. 

The details of the numerical analysis have already been 

discussed;1' S, 7 however, two impottant modifications have been 
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introduced which allow the diffuse excited states to be handled 

efficiently. First, the radial cutoff (the point at which u .Q (r1r 2) is 

required to vanish) for these states must be taken farther out than . 

for the (lsls) pair previously treated. Therefore, even with ex-

trapolation, a very large number of points are needed to achieve 

comparable accuracy. To avoid this difficulty, the following coor

dinate transformation was introduced into the pair equation, 

(18) 

The grid points in the transformed system are closely spaced near 

the nucleus and farther apart in the tail regions, as viewed in the 

untransformed system. This means that by using a large radial 

cutoff and relatively few points, the regions important to the accurate 

solution of (17) are not neglected. 

The second modification in the MFD method was to improve 

the difference approximation of the derivatives. Instead of truncating 

the difference expansion at the second difference approximation, the 

fourth difference is included giving the following improved approxima

tion for the second derivative, 

- lf • u(Xo) + ! · u(Xo - h) - 1
1
'J. • u(Xo - 2h) + O(h

4
) (19) 
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where his the grid size. The only difficulty occurs at the boundary 

points, where (19) requires values of the function outside the defined 

grid. This was resolved with the following approximations: at the 

point x = xmax - h, where xmax is the radial cutoff, u(x + 2h) was 

set to zero, and at x = h the value u(x - 2h) was set equal to u(x). 

The latter assumption was arrived at by investigating the power 

series form of u(x) for small x and can be shown to introduce an 

error of the order of the difference truncation error, if the coordi

nate transformation (18) is used. An alternative would be to use 

the usual second difference approximation at the boundaries and the 

fourth difference approximation elsewhere. Actually both approaches 

were used, depending on which method was used to solve the difference 

equations. 

When substituted into (17), both the second difference and 

the fourth difference approximations lead to a set of simultaneous 

equations of the form 

D ·u = b ,,.... ,,.... (20) 

where D is a banded matrix. The second difference approximation 

produces a symmetric matrix, as does the fourth difference approxi

mation with the modified boundary conditions. However, the mixed 

difference method leads to an unsymmetric matrix. The difference 

equations were solved with Gaussian elimination for the Q = 0 partial 

wave and with the Gauss-Seidel method for Q > O. It was found that 
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for the higher partial wave equations the Gauss-Seidel method con

verged extremely fast, while for the S-wave the method diverged. 

Because the Gaussian elimination method is more efficient for sym

metric matrices, the mixed difference approximation was not used 

for the S-wave, but was used for each of the higher waves. 

D. CALCULATION OF THE SECOND- AND THIRD-ORDER 

ENERGIES FOR THE TWO-ELECTRON STATES 

The partial-wave equations for each pair function were solved 

using both the usual second difference approximation and the improved 

difference formula given by (19). The second-order energy for each 

pair was found from 

(21) 

The radial integral was calculated by the trapezoidal rule. The 

calculations were carried out at several grid sizes and the results 

extrapolated with Richardson rs8 method. Therefore, the dHference 

and quadrature errors were eliminated in one step. 

The extrapolation tables for the partial wave contributions 

to E 2 for the (lsls) pair are given in Table I. The results were 

found using the second difference approximation and the untrans-
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formed (linear) grid with a 12 a. u. cutoff. The first column of each 

table lists the number of strips used in each direction. The second 

column gives the initial results and the remaining columns contain 

the extrapolants. The latter were obtained using different sets of 

results from the first column. By displaying the results in this 

manner, it is possible fo determine if the extrapolants are converging 

from above or below the true value. The partial wave contributions 

from all but the S-wave are converging from below and have converge~ 

to at least six decimal places. The results for the S-wave appear to 

oscillate , but the sub-table produced by the 45, 60, and 75 strip cal-

culations is converging smoothly from below. The extrapolation 

tables for the 
3
S and 

1
S excited states are given in Tables II and III. 

These results illustrate the need for the modifications that were dis-

cussed in section C. The 120 strip S-wave calculation required the 

solution of nearly 14, 000 linear equations which took about one hour 

on· the IBM 360-75. The S-wave cutoff was taken at 24 a. u., which 

was still not far enough from the nucleus. Clearly it was not practical 

to re-solve the equations with a larger cutoff. The functions for 

P.. > 0 were much less diffuse and could be obtained easily in only a 

few minutes. 
3 

For the S state these waves were nearly converged 

without extrapolation. The S-wave for both states converged from 

above. 

The three-pair equations were re-solved using the fourth dif

ference approximation and the transformed (square root) grid. 
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The initial results and the final extrapolants for the first 10 partial 

wave contributions to E2 are given for the three states in Tables IV, 

V, and VI. In addition, the third-order and total energies are also 

given for Z = 2. The radial cutoff was taken a t 32 a. u. for all three 

calculations. The first important result that should be noted is the 

relatively few points that were needed to obtain better accuracy than 

the linear grid calculations. All of the numbers were found at one 

time with the same program, and the total time was about one hour . 

This could have been reduced to about 20 minutes, if fewer grids 

were used. For example, the results from the 20, 25, and 30 strip 

calculations gave the following extrapolants for the (ls ls) pair, 

E 2(0) . = -0. 12532 a. u. 

E 2(1) = -0. 02648 a. u. 

E 2(2) = -0. 00387 a. u. 

which agree well with the best results. 

The third-order energy for each pair was calculated from., 

(22) 
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where 

The total energies were found for the helium atom and compare well 

to the following values given by Knight and Scherr, 9 

1 
E(lsls, S) = -2. 90331692 a. u. 

E(ls2s, ~S) = -2. 17398777 a. u. 
1 

E(ls2s, S) = -2. 14611980 a. u. 

The partial wave contributions to the second-order energy 

. have been calculated variationally by Byron and Joachain. lO The 

contributions found by the two numerical approximations are com

pared to variational results in Tables VII, VIII, and IX. For the 

(lsls) pair the first three columns agree closely for each partial 

wave. The values of E 2 (1) and E2 (2) predicted by Knight and Scherr9 

are less accurate, but their total second-order energy was not found 

by a partial wave expansion and represents the most accurate value. 

The third-order energy shows somewhat worse agreement which is 

due in part to the finite number of partial waves used in the calcula

tior. . Comparison of the results for the 
3
S and 1S excited states il

lustrates the importance of the accurate difference formula and the 

increased cutoff. The agreement with Knight and Scherr9 is generally 

better than for the ground state. In fact, Knight11 has recently re

evaluated the 1S second-order energy and found the improved value 
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to be -0. 1145094 a. u . This indicates that the fourth differ ence value 

is the most accurate of those given in Table IX. The variational 

calculation of the partial wave contributions by Byron and Joachain10 

compares unfavorably for this pair. Since this is not the lowest ·state 

of its symmetry, it is expected that the variational method would 

have more difficulty. The convergence of the partial wave expansion 

is quite reasonable for both excited states. 

Schwartz12 has given an asymptotic formula for E2 (i ), which 

Byron and Joachain10 have used to est imate the contributions from 

partial waves with P.. > 20 for the ground s tate and with P. > 6 for the 

excited states. They obtain E 2 (.Q. > 10) = -0. 000042 a. u . , E2 (.e > 6, 

3s) = -0. 000001 a. u. , and E 2 (.Q > 6, 18) = -0. 000041 a . u. If the con-

tribution for the ground state is added to the second difference result, 

we obtain -0. 157661 a. u. , which agrees well with the correct value 

of -0. 157666 a . u. The fourth difference results predict that E2 (.Q > 6, 

38) ~ -0. 000016 a. u. and E 2 ( e > 6, 1S) ~ -0. 000069 a. u. using the 

accurate values of the second-order energy given by Knight11 for 

comparison. Because the functional coefficients u1(r1r 2 ) are found 

as arrays of numbers, it is not possible to communicate them in a 

compact form. Each coefficient could be polynomial fitted , but these 

results would still require a large amount of space to display. How

ever, qualitative information can be given in the form of contour plots 

of each pair function. The discussion of the plots of the functional 

coefficients for the three pairs is given in the next section. 
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The numerical functions found on the linear grid were plotted 

over a square region with the boundaries set at one-half the radial 

cutoff. In each contour plot the nucleus is located at the lower left 

corner, with the r 1 and r 2 ax.es running horizontally and vertically 

from this point. The positive contours are given by solid lines and 

the negative contours by dashed lines. Due to an artifact of the 

Calcomp plotter, some of the solid lines tend to break up in regions 

of small r 1 or r 2 • These should not be mistaken for negativ:e contours,. 

which are dashed lines in all regions. Each functional coefficient was 

multiplied by r 1r 2 and plotted with a constant contour interval. The 

values of the contour interval and of the largest positive and negative 

contours for the three states are _given in Table X. Ideally, these 

values should have been found for several grids and extrapolated to 

obtain quantitative results. Instead, the values are given for the 

particular function plotted and represent the exact results to no more 

than two or three significant figures. 

Figure 1 gives the plots for the first six partial waves of 

the first-order function for the (ls ls) pair. For 1 = 0, the effect 

on the zero-order function is to subtract amplitude in the region 

close to the nucleus and along the line r 1 = r 2 • The functional coef

ficients for Q > 0 are negative in all regions, becoming more peaked 

along r 1 = r 2 as 1 is increased. These waves have a simpler form , 
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since the orthogonality to the zero-order function is insured by the 

angular factor. In Fig. 2 the perspective plots of the first two _partial 

waves are given along with the zero-order, first-order, and total 

functions. The viewer'l:i orientation for these plots is shown in Fig. 3. 

Each perspective plot was drawn to the same scale and can be directly 

compared. The contour plots of t/10 , t/11 , and tJ; for all three pairs are 

given in Fig. 4 . . The total first-order function was found by tak;ing 

8
12 

= O and summing the partial wave components as follows, 

ij;1 = Lu.Q (r1r 2) 
Q 

then the total function was approximated by, 

(23) 

(24) 

The first-order function shows a deep minimum near the nucleus and 

two well-separated maxima farther out. When this is added to the 

zero-order function, the total function is found to have two separated 

rra.xima with a minimum along r 1 = r 2 • This is qualitatively what the 

exact solution should look like. 

The partial wave contributions to the first-order function for 
~ . 

the · S state are shown in Fig. 5. The trends are approximately the 
I 

same as for the ground state except that the effects contributed by 

higher partial waves are smaller. This is expected because of the 

exact node at r 1 = r 2 • From the perspective plots of t/.10 and tJ; given 
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in Fig. 6, the total first-order fW1ction serves to reduce the amplitude 

near the nucleus and increase it farther out (for the positive region). 

The contour plots of the functional coefficients for the 1S excited state 

are shown in Fig. 7. They exhibit the intricate nodal structure ex-

pected for a state which is not the lowest of its symmetry. In each 

case the functions subtract amplitude from the nuclear region and build 

amplitude in the region r v r 2 ~ 4 a. u. , when added to l./10 • In Figs. 4 .and 8 

the zero-order function is shown to have a maximum at r 1 , r 2 ~ 1 a. u. 

and separated minima at r 1 , r 2 ~ 1, 6 a. u. and r 1 , r 2 ~ 6, 1 a. u. Adding 

the first-order function for el2 = o, the total function has two maxima . 

occurring at r 1 , r 2 ~i, 1. 75 a. u. and r 11 r 2 ~ 1. 75, 1 a. u. The minima 

are moved out from 6 a. u. to 8 a. u. For both of the excited states 

the perspective plots are drawn to the same scale as the ground state, 

so that amplitudes for the three states can be directly compared. 

Up to this point the discussion has been concerned with elec

tron correlation in the two-electron states. In the next section the 

pair fW1ctions are used to construct the total first-order function and 

calculate the total second- and third-order energies. 

F. CALCULATION OF E :>. AND E:i FOR THE 

THREE-ELECTRON ATOM 

In order to calculate the second-order energy, '111 given by (15) 

is substituted into 
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E2 = ( '1i·1 IL 1/ rij I '1'1 ) 

. i<j 

which expressed in terms of the pair functions is, 

(25) 

(26) 

The first three terms are the additive contributions from the pairs. 

Using the best numerical results, we obtain E 2(add) = -0. 286013 a. u. 

This includes the correction for partial wave contributions from 

.Q > 10 for the (lsls) pair. The second-order energies found by 

Knight and Scherr9 and by Knight11 predict the additive contribution 

to be -0. 286035 a. u. The next six terms in (26) are defined as 

follows, 

W1 = (G(12) 2s(3) j l / r 1 !1 I ls(l) 1s(2) 2s(3) ) 

W2 = (G(l2) 2s(3) I 1/ r 1!1 J ls(l) 1s(3) 2s(2)) 

W3 = (G(12) 2s(3) I 1/ r 1 !1 I ls(3) ls(2) 2s(l ) ) 

(S(l2) ls(3) I 1/ r 1 !1 I ls(l) 1s(2) 2s(3) ) 
(27) 

w, = 

W15 = (S ( 1 2) 1 s ( 3) I 1/r 1 !I I 1 s ( 1 ) 1 s ( 3) 2s ( 2) ) 

Wa = (T(l 2) ls (3) j 1/ r 13 j ls (1) ls( 3) 2s (2)) 

Both the second and fourth difference solutions were used to calculate 
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these integrals. The extrapolated results are compared to those 

found by Chisholm and Dalgarno
13 

in Table XI. The fourth difference 

results give the best agreement, which is better than six decimal 

places for the (lsls) terms. The excited pairs are not quite as 

accurate and the total non-additive contribution is off by O. 000006 a. u. 

This is considerably better than the variational calculation of Seung 

and Wilson, 14 which is below the true value. Chisholm and Dalgarno 

did not obtain their results by solving for the pair functions, but these 

represent the most accurate values. Combining the additive and non

additive contributions, the numerical results predict the total second

order energy to be -0. 408138 a. u. compared to the accurate value 

-0. 408165 a. u. found by Knight. 11 

While the variational calculation gives an accurate result if 

enough terms are included, it is not easy to calculate the third-order 

energy due to the large number of difficult integrals. For the num

erical function, E 3 is nearly as easy to calculate as E2 • The first

order solution is substituted into the equation 

E~ = ('111 I L 1/ rij I '1\ ) - E1 ( \1f1 I \111 ) (28) 

i <j 

which leads 'to the following expression in terms of the pair functions, 
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E 3 = ( (G(~2) 2s(3) I I-I1 I G(12) 2s(3)) - (G(l2) 2s(3) IH1 j G(32) 2s(l) )' 

+ ~ (T(12) ls(3) IH1 I T(12) ls(3) ) + { (T(12) ls(3) jH1 I T(32) ls(l)) 

+ 1- (S(12) ls(3) I H1 I 8(12) ls(3)) - i (8(12) ls(3) ·I H1 I S(32) ls(l) ) 

- /2 (G(l2) 2s(3) I H1 IS(l2) ls(3)) + f2 (G(l 2) 2s(3) I H1 I S(32) ls(l)) 

- 3f2 · (G(12)2s(3)IH1 1T(32)1s(l)»+3. (8(12)1s(3)IH1 JT(32)ls(l))) __ 

- E 1 ·( (G(l2) I G(12)) - (G(12) 2s(3) I G(32) 2s(l)) 

+ ~ (T(l2) [ T(12)) +~· . (T(12) ls(3) I T(32) ls(l)) 

+ 1- (8(12) Is (12) ) - -fr (8(12) 1s(3) I 8(32) ls(l)) 

+ /2 (G(12) 2s(3) I 8(32) ls(l)) 

- 3/2 • (G(12) 2s-(3) I T(32) ls(l)) +3.(S(12) ls(3) I H1 I T(32) ls(l))) 

(29) 

The integrals were calculated. by . the trapezoidal rule and the extrapo-
, 

lated results were used to find E 3 • The pair contributions and the 

total third-order energy are compared to the calculations of Seung 

and V/ilson14 and Knight and Scherr9 in Table XII. The total E 3 is 

estiri1ated to be in error by less than ± 0. 0002 a. u. 

Substituting the second- and third-order energies into (3) and 

multiplying by Z2
, the total energy for the three-electron atom of 

nuclear charge Z is, 

E(Z) = -1.125 ·Z2 + 1. 022805 ·z - 0. 408138 - 0. 025515 (1/Z) (30) 

with an error0(1/Z2
) . For Z = 3,4, and 5, the energies given by 
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(30) and by the configuration interaction calculations of Weiss15 

compare as follows, 

MFD Weiss Exact15 

E(Li) -7.47332 -7.47710 -7.47807 

E(Be°1 -14.32339 -14. 32350 -14.32479 

E(B+°1 -23.42432 -23. 42312 -23.42471 

where the results are in atomic units. The MFD energies are superior 

to those of Weiss for Z ~ 5. Using variational pair functions, Seung 

and Wilson14 calculated the following energies for these atoms, E(Li) 

= -7. 47.262 a. u. , E(Be 1 = -14. 32289 a. u. , and E(B++) = -23. 42393 a. u. 

G. DISCUSSION 
~ 

The MFD method has been shown to be capable of solving the 

first-order pair equations for a many-electron atom with accuracy 

comparable to the best variational solutions. The numerical pair 

functions allow the calculation of the total second- and third-order 

energies with simple quadrature methods. Because of the unsophis

ticated techniques used to solve the equations and perform the numer

ical integration, the entire calculation can be easily programed and 

carried out in one step. It is also easily applied to excited states 

usirig the sarre programs. The method has been applied to the 

solution of the exact pair equations and to the first-order Hartree

Fock pair equations with consistent accuracy in each case. 
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TABLE VII. Comparison of the perturbation energies for 

the (lsls) pair. 

2nd differencesa 4th differencesb B.f KSd 

E2 (0) -0.125339 -0.125327 -0.125334 -0.125332 

E2 (1) -0.026495 -0.026495 -0.026495 -0.026446 

E2(2) -0.003904 -0.003905 -0.003906 -0.003612 

E2 (3) -0.001076 -0.001076 -0.001077 

E2 (4) -0.000404 -0.000403 -0.000405 

E:i(5) -0.000184 -0.000181 -0.000183 

E:i(6) -0.000094 -0.000092 -0.000093 

E2 (7) -0.000054 -0.000051 -0.000053 

E2 (8) -0.000033 -0.000030 -0.000032 

E2 (9) -0. 000021 -0.000019 -0.000021 

E2(10) -0.000015 -0.000014 

6E2(.~ 
.e. 

-0.157619 -0.157579 -0.157614 -0 . 157666e 

Es 0.008478 0.008572 0.008699 

aThe second difference results were obtained on a linear grid with 
a 12 a . u. cutoff. 

bThe fourth difference results wer e obtained on a square root grid 
with a 32 a . u. cutoff. 

cF. W. ByronandC. J. Joachain, Phys. Rev. 157, 1(1967). 

dR. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963). 
6 The total E2 was not obtained from a partial wave expansion for 
this calculation. 
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TABLE VIII. Comparison of the perturbation energies for 

the (ls2s) 
3
S pair. 

2nd differencesa 4th differencesb B.f KSd 

E2 (0) -0.045258 -0.045318 -0.045316 -0.045318 

E2 (1) -0.001909 -0.001910 -0.001898 -0.001902 

E2 (2) -0.000146 -0.000146 -0.000137 -0.000135 

E2 (3) -0.000024 -0.000024 -0.000020 

E2 (4) -0.000006 -0.000006 -0.000004 

E2 (5) -0. 000002 -0.000002 -0.000001 

E2 (6) -0.0000007 

E2 (7) -0.0000003 

E2 (8) -0.0000002 

E2 (9) -0.0000001 

~E2(.L) -0.047345 -0.047406 -0.047377 -0.047409e 
/. 

E 3 -0.003732 -0.004876 -0.005000 -0.004872 

aThe second difference results were obtained on a linear grid with 
a 20 a. u. cutoff except for the S-wave which was calculated with a 
24 a. u. cutoff. 

bThe fourth difference results were obtained on a square root grid 
with a 32 a. u. cutoff. 

cF. W. Byron and C. J. Joachain, Phys . Rev. 157, 1 (1967) . 
d R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963). 

eThe total E2 was not obtained from .a partial wave expansion for 
this calculation. 
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TABLE IX. Comparison of the perturbation energies for 
l 

the (ls2s) S pair. 

2nd differencesa 4th differencesb BJC 

E 2(0) -0.106479 -o·.1oe522 -0.106335 

E 2(1) -0.006500 -0.00649 8 -0.006239 

E2(2) -0.000928 -0.000929 -0.000816 

E2(3) -0.000253 -0.000254 -0.000199 

E2(4) -0.000095 -0.000095 -0.000066 

E2(5) -0.000043 -0 .000043 -0.000027 

E2(6) -0.000022 

E2(7) -0.000012 

E2(8) -0 .000007 

E2(9) -0.000005 

KSd 

DE2(i) -0.114339 -0.114486 -0.113681 -0.114476e 

Es 0.012114 {),009251 0.007000 0.009415 

aThe second difference results were obtained on a linear grid with 
a 20 a. u. cutoff except for the S-wave which was calculated with a 
24 a. u. cutoff. 

bThe fourth difference results were obtained on a square root grid 
with a 32 a. u. cutoff. 

. cF. W. Byron and C . J. Joachain, Phys. Rev. 157, 1 (1967). 

dR. E. KnightandC. W. Scherr, Rev.Mod.Phys . ~; 436(1963). 

eThe total E2 was not obtained from a partial wave expansion for 
this calculation. 
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TABLE XI. Comparison of the non-additive contributions to 

the second-order energy. 

Term 2nd Differencesa 4th Diffe rencesb 

Wl -0.005058 

W2 -0.006245 

W3 -0.023743 

W4 0.007159 

W5 -0. 048875 

W6 -0.043984 

Total -0.121986 

aLinear grid . 

bsquare root grid. 

-0.0050576 

-0.0062434 

-0.0237581 

0.0071474 

-0.0489486 

-0.0440383 

-0.1221247 

CDC swd 

-0.0050577 

-0.0062436 

-0.0237590 

0.0071465 

-0.0489523 

-0.0440409 

-0.1221307 -0.1223319 

cC.D.H.Chisholm and A. Dalgarno, Proc. Roy. Soc . (London) 
A292, 264 (1964). 

ds. Seung and E. B. Wilson, J ·. Chem. Phys. 47, 5343 (1967). 
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TABLE XII. Comparison of the third-order 

energy contributions. 

2nd Differencesa 4th differencesb 

l 
Es(lsls, S) 0.008478 0.008572 

3 
E 3(ls2s, S) -0 .003732 -0.004876 - 0 .004906 

l 
E 3(1s2s, S) 0 . 012114 0.009251 0.008217 

Total E3 -0 . 025515 -0.023043 

0.008699 

-0 .004872 

0.009415 

aThe (lsls) pair results were obtained on a linear grid with a 12 a. u . 
cutoff using 11 partial waves. The (ls2s) pair results were obtained .· 
on a linear grid with a 20 a. u. cutoff using only 6 partial waves. 

b All results were obtained on a square root grid with a 32 a . u. cutoff 
using 10 partial waves. 

cs. Seung and E. B. Wilson, J. Chem . P hys. 47, 5343 (1967) . 

dR. Eo KnightandC. W. Scherr, Rev.Mod.Phys. 35, 436(1963). 
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Figure 1. Contour plots of the functional coefficients for the (lsls) 

pair. 
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Figure 2. Perspective plots of the S- and P-waves and of the zero

order' first-order' and total wavefunctions for the (ls ls) pair. 
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Figure 3. The viewer's orientation for the perspective plots. 
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Figure 4. Contour plots of the zero-order, first-order, and total 

wavefunctions for the (lsls) 1S, (ls2s) 3s, and (ls2s) 1S pairs. 
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Figure 5. Contour plots of the functional coefficients for the 

(1s2s) 3S pair. 
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Figure 6, Perspective plots of the S- and P-waves and of the zero

order, first-order, and total wavefunctions for the (ls2s) 3S pair. 
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Figure 7. Contour plots of the fWlctional coefficients for the 
1 

(ls2s) S pair. 
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Figure 8. Perspective plots of the S- and P-waves and of the 

zero-order , first-order, and total wavefunctions for the 

(ls2s) 18 pair. 
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Formaldehyde Molecule in a Gaussian Basis. A Sell-Consistent Field Calculation 

N. W. WDmUl,• Tuow. H. DuNNrnc, Ja.,• AND JouN H. LETcmtR 

Cmkal Ruus"1' Detarlmml, MimsanJo Ci>mtany, SI. !Avis, Missouri 

(Received 19 February 1968) 

Accurate LCAO-MO-SCF calculations have been carried out for the formo.ldehyde molecule using 
(73/2) lllld (95/3) Gaussian baaia 11eta. The energy par.unetel'li, molecular orbitals, dipole moments, and 
popula.tion analr.cs are reported. The results are compared to a previous calculation wi th a minimum 
Slater buia and to experiment. 

I. INTRODUCTION 

It is now possible to obtain close approxima.tions to 
the Hartree-Fock orbitals for a number of small poly
atomic molecules.1·' These have been found by expand
ing the orbitals in large Gaussian basis sets. From such 
calculations it is possible to predict, with varying . 
degrees of accuracy, ionization potentials, dissociation 
energies, many one-electron properties, etc. In order to 
have confidence in our results we either need to know 
what type and size of basis set is required to predict 
the properties of interest with reliable accuracy' or 
have the LCAO-MO-SCF orbitals sufficiently close 
to. the Hartree-Fock orbitals so that no major error 
arises from the use of the expansion. 

We report here the results of LCAO-MO calculations 
on fonna.ldchydc using two uncontraCted Gaussian 
basis sets. The smaller, a (73/2) set,' is estimated to be 

• ~ermone.nt a.ddretll; A. A. Noy~ L:.boratory of Chemical 
I'~y11.1a, Cii.lifonua In&titutc of Technology, Pas:idens, Calif. 

CJ!.: J. M. Schulm11.n, J. W. Mooltowiu, and C. Hollister, 
] . Chem. Phys. M , 2759 (1966). 

•. HrO: D. Ncum= and J. W. Moskowitz, "One Electron Prop
crti~ of Ne:i.r Hart~Foclt WavefunctioDB. I. Water " ]. Chem. 
Phys. (to be published). ' 

1 By c.ccume we mean, of course, in comparison to IJu Hartree
Fock result a.n.d not to experiment. 

'We have o.dop.ted the st~dard not.c.tion, with (~/1/) 
repn:aentlng a s-orb1tala1 b jH>rb1ta!ii, 'd-orbit.Al:;, etc., on the fint
row &toma and• 1-orbltau,/ jH>rbitala,cte.,OA the hydro;cn atoma. 

slightly better than a molecular optimized minimum 
Slater set and the larger, a (95/ 3) set,' is near the (spl 
limit. While these wavefunctions arc obviously not at 
the Hartree-Fock limit, they form essential units in a 
stepwise approach to that limit and can be expected to 
provide a considerable amount of chemical information. 

Because of the wide range of interest in formaldehyde, 
a number of theoretical calculations on it have been 
reported. All of the calculations based on pi-electron 
theorf . approximated the required atomic integrals 
and provided little usable information, other tha.n 
possibly the spectra. More recently, accurate calcula
tions have been made using an unoptimized minimum 
bnsis set of Slater orbitals.•·' Several comparioons win he 
made with these functions. 

In the next section we brive the results for the two 
Gaussian sets. In the following section we discuss the 
results. In the lo.st section the computational details 
are given. 

• T. Anno and A. Ss.d6, J. Chem. Phys. 26 1i59 (1957); J. W. 
Sidman, iO:.d. ?:I, 429 (1957); J. A. Pople a.nd J. W. Sidman, ib14. · 
27, 1270 (1957) · R. D. Brown and M. L. Hcfieman, Trans. 
Faraday Soc. 5-41 f57 (1958); J.M. ~arks.ai:d R. G. Parr, J. Chem. 
Phys. 32, 1657 \1960); a.nd l'. L. Pilar, ibid. 47 , 884 (1967) . 

1 J . M. Foster and S. F. Boya, Rev. Mod. Phya. 32, 303 (1960). 
7 M. D. Newton and W. E. Palke, J. Chem. Phys. 45, 2329 

(1966); S. Aung, R. M. Pitzer, and S. I. Cha.n, ibid. 45, 3457 
(1966). 
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F1a. 1. The geometry of formaldehydt>. 

Il. SCF RESULTS 

of d and/ orbitals to the basis set. Most of the improve
ment is expected to arise from the inclusion of d orbitals.' 

T able I compares the calculated binding energies 
for the three wavefunct ions to the experimental value, 11 

and Table II compares the orbital energies to the 
negatives of the experimental vertical ionization poten
tials.11 From the kinetic energies given in Table II, the 
virial ratio - T / E is found to be 0.9990 for the small 
Gaussian set and 0.9989 for the large set. We also see 
that the kinetic energy for the Slater calculation agrees 
with the GaussiiLn results much better than the molecu
lar energy, and consequently gives a poorrr virial ratio 
( 1.0023) . 

The molecular-orbital coefficients for the (73/2) and 
(95/ 3) basis sets arc listed in Tables III and IV, respec
tively. The population analyses14 of both sets a.re given 
in Tables V-VIII. 

The dipole moment is 1.018 a .u . (2.587 D ) for the 
( 73/ 2) set and 1.193 a.u. (3.032 D ) for the (95/ 3) 

For comparative purposes, the calculations were done set, as compared to the experimental value 0.92 1 a .u. 
at the g_c·on~ctry .usL'<l by Goodfriend, Birss, and Dun- (2.34 D ) .i~ The minimum-Slater-basis-set wk\llation 
can

8 
which 1s quite close to that from the most rrcent · predicted 0.235 a.u. (0.597 D), considerably worse 

structure dctcrmination
9

; sec Fig. 1. The atomic energies . . than either Gaussian calculation. All of the calc.ulatcd 
for each of the basis sets are included in Table I. The dipole moments a rc in the direction c+o-. The behavior 
exponents for both sets were detem1ined from atomic of the dipole moment is in agreement with recent 
SCF calculations10 and are included in Tables III and observations that d orbitals are needed to describe the 
IV. polarizations, due to molecular foimation.2 •16•17 In gen-

The computed elect ronic energies a.re - 144.7857 erai addition of d orbitals decreases the calculated 
and -144.9471 a.u. for the (73/ 2) and (95/3) basis di~le moment,2.11 although such a trend may not be 
sets, respectively. Newton and Palke7 give -144.5409 universal. 
a.u. for a minimum Slater basis set with exponents 
determined from Slater's rules. As stated in the Intro-
duction, from the energy and numerous properties for 
the (73/ 2) basis set, we estimate that this basis set is 
superior to a molecular optimized minimum basis set 
of Slater orbitals. As such, the (73/2) basis set would 
be a good candida te for ab ihitio studies of larger mole
cules, although three basis functions are recommended 
for the hydrogens rather than the two employed here. 
The (95/ 3) basis set should be within 0.04 a.u . of the 
(sp) limit for furmaklehyde. It is felt that most prop
rrtie~ arc rsscntially at the (sp) limit and would be 
li ttle afTcc:te:cl hy any additional sand p orbitals. Hollis
trr and Sinanoglu11 predict the total Hartrce-Fock 
tne:rgy of formaldehyde to be -114.0309 a.u. Thus, our 
wavdunct ion in the (95/ 3) Gaussian basis is approxi
mately 0.20 a.u. from the Hartree-Fock limit. Work 
on other polyatomicsl.1 leads us to suspect that this 
is an upper limit . In any case, a significant lowering 
(.-....0. 16 a.u .) would be achieved through the addition 

'P. 1.. Goodfrien<l< F. W. Diru, nnd A. B. F. Duncan, Rev. Mod. 
l'h_v~. Jl, .l07 (1%01. 

• T . Oka1 J. Phy• . Soc. J npnn HS, 2274 (1960); K. Takagi 1md 
T. Oka, ibid. 18, 1174 (196J). 

10 The cxroncnt~ for the 1ma.ll basi1 act were m11.de available to 
us by Dr. Mu rray Geller nnd nrc from ca.lculntions hy D. Whitman 
nt RIAS, Martin Company, D111timore, Md. T hoac for the large 
act nrc given by S. Hur.ina~a, J. Chem. l'hya. 42, 1293 (1964) . 

11 C. Holliater ud 0 . S1na.noglu, J. Am. Chem. Soc. 88, 13 
(1966). 

TABLF. I . Comparison of the binding enc~ies (B.E.) calculated 
from a single Slater basis and from the (73/2) and (95/ 3) Gauss
ian bases. 

Ee 
Eo 
Ea 

Ea\oma 

E_,i...ule 

Il .E. (a.u .) 

(eV) 

Experimen ta! D. E. 

Single 
Sla ter• 

-37.619 

-:-74.533 
-0.500 

-113. 152 

-113.4272 

0 .275 

7.49 

(73/2) b (95/3) b 

- 37 .6551 -37 .6852 
-74. 7007 -74'.8003 
-0.4858 -0.4970 ' 

-113.3274 - 113.4795 

-113.6720 -113.8334 

0.3446 0 .3539 

9.38 9.63 
16.24 eV 

•For the atomic ener11ie1, 11tt U. J. Ranoll, Rev. Mod. Phy&. Jl, l .'9 
(1960) ; for the molecular energy, ue Rd. 7a. 

b For the atomic encr11IH, oee Rd. JO. 

11 G. N. Lewis and M. Rancloll, Tlzumodyna,,lics, revised by 
K. S. Piti:cr and L. Brewer (McGraw-Hill Book Co., New York, 
196\) . 

u C.R. Brundlc and D. W. Turner, Chem. Commun.1067, 314. 
11 R. S. Mulliken , J. Chem. l'hys. 23, 1833 (1955). 
a J. N. Shoolcry and A. H . Sharbaugb, l'hya. Rev. 82, 95 

(1951) . 
11 W. M. Huo, J. Chem. Phya. 431.624 (1965). · • 
11 P. E. CadQ AAd W. M. Huo, J. l:hem. Pbya. 45, 1063 (1967) . 
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TAllLE II . Orbitals energies, total energies , and kinetic energies for formaldehyde in a single Slater l.insis nnd in the (7.l/ 2) and (95/J) 
Gaussian bases compared to the photoclectron ionization potentials, in atomic units.• 

Orbital energies 
Molecular 

orbit.al Single Slatcrh (73/ 2) (95/3) - 1.P.• 

I ( ln1l -20 .<>2.17 - 20.6072 - 20 .5<)()6 
2(2111) -1 1.4026 -11. 3576 -I I . .!(127 
,'\{l111l -1 .3977 -1.4304 - 1.42'>9 
4 (4ao) -0.83 14 - 0 .8609 - 0.8666 --o. 772 
5 ( lb,) -0.6759 - 0.6893 - 0 . 7020 - 0.r,21 
6(511,) -0.5932 -0.6318 - 0.6437 - 0.S/!8 
7 (lb,) -0.4971 -0.5238 - 0 .5.l.'i.5 - 0 . 529 

'8(2h:) -0.3955 -0.4269 - 0.4423 -0.31>9 
9(2b,)d 0 . 22-l9 0.1465 0.1076 
Total energy - 113 .4272 -113.6720 -113.8334 
Kinetic energy 113.6906 113. 5632 113. 7089 

• I LU. or ener1y ii 27.2099 eV. d Thie orbit.al la unoccu pied ln the 1rouni.I 1tate. It is the low~•l r anti· 
~ Stt Ref. 7L bondlna orbit.al. 
• Stt Rel. IJ. 

TAnLE III. Coefficient vectors and orbital energies for the (73/ 2) basis set. 
. .. : :-~-=- ·:::-= 

Vector 1 2 3 4 5 6 7 8 
Orbital energy -20.60716 -11 .35758 -1.43043 -0.86087 - 0.68928 -0.63177 -0. S2.lli2 - 0.426').'i 

Center T ype Exponen t 

Ht s 0. 2700 -0.00033 0.00255 0.01395 -0.16815 - 0.17395 -0.11 284 0 .0 - O .. lri231> 
Ht s 1.8000 - 0.00009 -0. 00063 0.01364 -0.09477 -0.09599 - 0.05144 0.0 - 0.()<)414 
H2 s 0.2i00 -0.00033 0.00255 0 .01395 -0.16815 0 . 17395 -0.11284 0.0 0 . .'\(1239 
H2 s 1.8000 -0. 00009 -0 .00063 0 .01364 -0.09477 0.09599 -0.05144 0 .0 0.09414 
c s 0. 1817 0 .00626 -0.01235 0 .07111 -0. 35181 0 .0 -0. 11 942 0.0 0.0 
c s 0.6026 - 0.00027 0 .03921 0. 21135 -0.34019 0.0 0 .08271 0.0 0.0 
c s 3.6980 0.00049 0.44308 -0.09829 0.15255 0.0 - 0.02530 0 .0 0.0 
c s 11. 8200 -0.00027 0 .44689 - 0.05696 0.08545 0.0 -0. 00947 0.0 0.0 
c s 39.9100 0 .00007 0.18184 - 0.02080 0.03121 0.0 -0.00.l.'\5 0.0 0 .0 
c s l<i0.0000 -0.00001 0 .04723 -0.00499 0.00743 0.0 - 0 .00090 0.0 0.0 
c s 994. 7000 0 .00000 0.00720 -0.00076 0.00114 0 .0 - 0.0001 5 0.0 0.0 
c x 0.2036 0.0 0 .0 0 .0 0.0 -0.29650 0 .0 0.0 - 0.02856 
c x 0 .8699 0 .0 0 .0 0.0 0.0 - 0 .29774 0 .0 0.0 - 0.16HJ 
c x 4.2790 0 .0 0.0 0.0 0.0 -0.06443 0.0 0.0 - 0.0.ll05 
c }' 0 .2036 0.0 0 .0 0.0 0.0 0.0 0.0 0.33331) 0.0 
c y 0.8699 0.0 0.0 0.0 0.0 0.0 0.0 0.242.ll 0.0 
c y 4. 2790 0.0 0 .0 0 .0 0 .0 0.0 0 .0 0.05756 0.0 
c.; z 0.2036 0 .00418 0 .00106 - 0.00179 0.11738 0 .0 0.12914 0.0 0.0 
c z 0.8699 0 .00006 0.00097 0 . 13518 0.12114 0.0 0.29511 0. 0 0.0 
c z 4.2790 0.00028 0.00040 0.02979 0.02802 0.0 0.06086 0.0 0.0 
0 s 0 .. 1342 -0.01642 0.00087 0.49982 0. 30572 0.0 - 0 .. '\0007 0 .0 0 .0 
0 s 1. 1030 0 .03963 -0.00033 0.39549 0.18151 0.0 -0.13214 0.0 0 .0 
0 s 6. 7730 0 .44059 0 .00003 -0. 16325 -0.07354 0 .0 0.05667 0.0 0.0 
0 s 21 .7400 0.45708 -0. 00027 - 0 . 11392 -0.05331 0.0 O.C»318 0.0 0.0 
0 s 76.9.100 0 .18018 - 0.00004 - 0 .0.1636 - 0.01648 0.0 0.01293 0.0 0 .0 
0 s 332 .2000 0.04169 - 0 .00002 -0.00815 - 0.00375 0.0 0 .00299 0.0 0.0 
0 s 2200.0000 0.00569 0 .00000 - 0.00108 - 0.00049 0.0 0.000.19 0.0 0 .0 
0 x 0.3814 0 .0 0.0 0.0 0.0 - 0 .27536 0.0 0.0 0 .5417'> 
0 x 1. 7190 0 .0 0.0 0 .0 0.0 - 0.24381 0.0 0.0 0 .37014 
0 x 8.3560 0 .0 0 .0 0 .0 0.0 - 0.06012 0.0 0.0 0 .0%01 
0 }" 0 .3814 0 .0 0.0 0 .0 0.0 0.0 0. 0 0 .45440 0.0 
0 y l. 7190 0 .0 0.0 0 .0 0 .0 0.0 0.0 0 . .12506 0 .0 
0 }' 8.3560 0 .0 0.0 0 .0 0.0 0.0 0.0 0.08254 0.0 
0 z 0.3814 0.00366 0 .00112 -0.11458 0.10388 0.0 -0. 43-1-tll 0.0 0.0 
0 z 1.7190 -0.00142 -0.00001 - 0.11122 0.Cf)977 0 .0 -0 .. 14852 0.0 0 .0 
0 z 8.3560 -0.00176 -0.00017 -0.02344 0.02563 0 .0 -0.08784 0.0 0 .0 
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T ABLE lV. Coefficient vectors and orbital energies for the (95/3) basi~ set. 

Vector 1 2 3 4 5 6 7 8 
Orbital energy - 20.59059 - 11.36267 -1 .42987 - 0.86658 - 0. 70195 - 0.64364 - 0.53551 - 0.44226 

Center Type Exponent 

111 s 0.14830 0.00006 0.00003 - 0.00357 0.05457 - 0. 10847 0.07776 0.0 -0.25965 
111 s 0. 65770 0.00000 - 0.00044 -0.01993 0.16507 - 0.15062 0.08646 0.0 -0.20085 
11 1 s 4.23920 0.00000 - 0.00009 -0.00497 0.03336 -0.03520 0.01849 0.0 -0.03155 
112 s 0. 1411.lO 0.00006 0.00003 -0. 00357 0.05457 0.10847 0. 07776 0.0 0.25965 
ll:l s 0. 65170 0 .00000 -0.00044 - 0.01993 0.16507 0.15062 0.08646 0.0 0.20085 
112 s 4. 2.VJ20 0.00000 - 0.00009 - 0.00497 0.03336 0.03520 0.01 849 0.0 0.03155 
('. s 0. 15.Hl -0.00118 0.00001 -0.04922 0.27@ 0.0 0.08407 0.0 0.0 
c s 0. 4%24 +0.00031 - 0.00326 - 0.26113 0. 44897 0.0 -0.09462 0.0 . o.o 
c s l . 96655 - 0.00007 - 0. 14710 0.02694 - 0.05924 0.0 0.01050 0.0 0.0 
c ·s 5. 14773 -0.00006 -0.43684 0.08380 -0.11724 0.0 0.01412 0.0 0.0 
c s 14.18920 0.00001 - 0.35845 0.04346 - 0.06691 0.0 0.00826 0.0 0.0 
c s 42 . 4974-0 - 0.00001 - 0.15448 0.01776 - 0.02541 0.0 0.00314 0.0 0.0 
c s 146.09700 0.00000 - 0.0454-0 0.00480 - 0.00715 0.0 0.00088 0.0 0.0 
c s 634.88200 0.00000 -0.00933 0.00100 -0.00144 0.0 0.00018 0.0 0.0 
c s 4232.61000 0.00000 -0.00122 0.00013 - 0.00019 0.0 0.00002 0.0 0.0 
c x 0.11460 0.0 0.0 0.0 0.0 - 0.06603 0.0 0.0 0.02995 
c x 0.35945 0.0 0.0 0.0 0.0 - 0.32825 0.0 0.0 - 0.14996 
c x 1. 14293 0.0 0.0 0.0 0.0 -0.18459 0.0 0.0 - 0.09817 
c x 3.98640 0.0 0.0 0.0 0.0 - 0.05644 0 .0 0.0 - 0.02784 
c x 18. 15570 0.0 0.0 0.0 0.0 - 0.00949 0.0 0.0 - 0.00474 
c y 0 . 11460 0.0 0.0 0.0 0.0 0.0 0.0 0.12135 0.0 
c y 0.35945 0.0 0.0 0.0 0.0 0.0 0.0 0.27727 0.0 
c y 1. 14293 0.0 0.0 0.0 0.0 0.0 0.0 0. 15428 0.0 
c y 3.98640 0.0 0.0 0.0 0.0 0.0 0 .0 0.04747 0.0 
c y 18.15570 0.0 o.o· 0.0 0.0 0.0 0.0 0.00787 0.0 
c 7. 0.11460 -0.00039 - 0.00008 0.00883 - 0.05074 0.0 0.00867 0.0 0.0 
c z 0.35945 - 0.00027 0.00039 -0.06480 - 0. 12354 0.0 - 0.25958 o.o 0.0 
c 7. 1. 14293 0.00040 - 0 .00056 - 0.10501 -0.07935 0.0 -0.19082 0.0 0.0 
c 7. 3.98640 -0.00010 - 0.00049 - 0.02244 -0.02530 0.0 - 0.04903 0.0 0.0 
c 7. 18.15570 0.00002 - 0.00010 - o.oom - 0.00407 0.0 - 0.00924 0.0 0.0 
0 s 0 .28461 0.00281 -0.00019 - 0.36985 - 0.26524 0.0 0.29802 0.0 0.0 
0 s 0.93978 -0.00091 - 0.00091 - 0.49433 - 0. 22601 0.0 0.16611 0.0 0.0 
0 s 3.41364 0.14-064 0.00031 0.04210 0.01325 0.0 - 0.00161 0.0 0.0 
0 s 9.53223 0.46100 0.00016 0 .15741 0.07620 0.0 - 0.06443 0.0 0.0 
0 s 27. 18360 0.35555 0.00016 0.08005 0 .03649 0.0 - 0.02836 0.0 0.0 
0 s 81.1()960 0. 14386 0.00005 0.02941 0 .01377 0.0 -0.01122 0.0 0.0 
0 s 273.18800 0.04286 0.00002 0.00820 0.00375 0.0 -0.00295 0.0 0.0 
0 s 1175.82000 0.00897 0.00000 0.00171 0.00079 0.0 - 0.00064 0.0 0.0 
() s 7816.54000 0.00118 0.00000 0.00022 0.00010 0.0 - 0.00008 0 .0 0.0 
0 x 0. 21373 0.0 0.0 0.0 0.0 - 0.12905 0.0 0.0 0.33109 
() x 0.71706 0.0 0.0 0.0 0.0 -0.25091 0.0 0.0 0 .41099 
() x 2.30512 0.0 0.0 0.0 0.0 -0. 15550 0.0 0.0 0.24256 
0 x 7.90403 0.0 0.0 0.0 0.0 - 0.04982 0.0 0.0 0.07939 
I) x 35. 18320 0.0 o.o 0.0 0.0 - 0.00787 0.0 0.0 0.01227 
() r 0.2137.~ 0.0 0.0 0.0 0.0 0.0 0.0 0.26122 0.0 
() I' o. 71706 0.0 0.0 0.0 0.0 0.0 0.0 0.363(il.l 0.0 
(I J' 2.30512 0.0 0.0 0.0 o.o 0.0 0.0 0. 21243 0.0 
() I' 7 .90403 0.0 0.0 0.0 0 .0 0.0 0.0 0.06931 0 .0 
0 y .15.18320 0.0 0.0 0.0 0.0 0.0 0.0 0.01087 0.0 
() 7. 0.21Ji3 - 0.00058 - 0.00006 0.01237 -0.05380 0.0 0. 18671 0.0 0.0 
0 7. 0.71706 0.00017 0.00080 0. 13094 -0.08727 0.0 0.35119 0.0 0.0 
0 z. 2.30512 -0.00063 0.00036 0.067.~ - 0.06521 0.0 0.23027 0.0 0 .0 
u z 7 .90403 - 0. 00165 0.00006 0.02073 -0.02038 0.0 0.07147 0.0 0.0 
0 z .l5 , l8320 -0.00029 0.00002 0.00350 -0.00329 0.0 0.01158 0.0 0.0 
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TABLE V. Nc.t atomic &nd grou atom.le populllt.!001 for the (73/2) Gaussian ba.sia set. 

Atom 

Hl c 0 

MQa Net Grosa Net Gross Net G ross 

l 0.0000 0.0000 0.0001 0.0015 1.9970 1.9985 
2 0.0000 0.0004 I. 9987 1.9993 0.0000 -0.0002 
3 0.0012 0.0071 0.1703 0.4042 1.3488 I. 5817 
4 0.1098 0.2678 0.8J62 l.08J5 0.4535 0.3809 
5 0 . 1159 0 .2234 0 .5995 0 .9485 0.4538 0.6046 
6 0 .0436 0.0745 0.3486 0.4478 1.3378 1.3731 
7 0 .0000 0. 0000 0.5580 0.7715 l .0150 1.2285 
8 0.3558 0 .3165 0 .0766 0. 1142 1.3902 1.2528 
, Subtotal 0 .8897 i .0291 7 .1914 
r Subtotal 0 .0000 0. 7715 1.2285 
Tot&! 0 .6262 0 .8897 4.5880 5.8006 7 .9962 8.4199 

III. DISCUSSION 

The results for formaldehyde given in the previous 
section illustrate the usefulness of Gaussian orbitals 
a.s expansion functions for molecular SCF calculations. 
Such basis functions are popular because of the ease 
with which the multicenter atomic integrals can be 
evaluated. However, this advantage is somewhat offset 
due to the large basis sets required to obtain accurate 
results. Because of this, the SCF phase oi the problem 
can make the calculation with Gaussian orbitals as 
time conswning as those employing Slater orbitals. One 
way to overcome this disadvantage is by using con
tracted Gaussian sets.1•11 Calculations on the ethylene1 

·and waterS molecules indicate that little accuracy is 
lost with moderate amounts of contraction. Such a 
procedure greatly reduces the amount of computer 
time required. Since our wavefunctions were calculated 
using uncontracted basis functions, the results can be 

TA..11Li: VI. Overlap populations for the (73/2) Gaussian 
basis set. 

Overlap population. 

MQa H1-H2 Hl-C Hl--0 C--0 

l 0.0000 0.0000 0.0000 0.0029 
2 0.0000 0.0009 0.0000 - 0. 0004 
J 0.0002 0.0063 0.0053 0. 4552 • 0.0223 0.3068 -0.0131 -0. 1190 
s -0.0238 0. 2186 0 .0204 0.2609 
6 0.0098 0.0730 -0.0209 0. 1126 
7 0 .0000 0.0000 0.0000 0.4270 
8 -0.0957 0.0960 -0.0790 -0.1169 
, Subtotal -0. 0872 0.7016 -0.0873 0. 5952 
r Subtotal 0.0000 0.0000 0 .0000 0.4270 
Total -0.0872 o. 7016 -0.0873 1.0222 

• TbA molec:ul&r 0tbltal1 ..,.. ordued &C"COrdlna to lb• oibltal eneralco. 
Soi Table II. 

u E. Clementi a.n<l D. R. Davia, J, Comput. Phya. 11 223 
(1966); &lao ace E. Clementi, J. Chem. Phya. 46, 3851 (1967), 
and auc:ceediDi pape" hi that acriea. 

~sed to optimumly determine contraction coefficients.1 

Such contracted functions may then be employed to 
study larger aldchydes or ketones, etc. 

The dissociation energies presented in Table I are 
indicative of ab inito attempts to calculate this <li fferen
tial property. The problem is well documcnted15 • 1~n 
and arises because dissociation energies arc small 
quantities obtained by subtracting two large quantities 
with sizable inherent errors (i.e., correlation energy). 
The wavefunction from the (95/3) basis set predicts 
593 of the observed dissociation energy, compared to 
653 for a calculation on ethylene with an identical 
basis set.1 Hollister and Sinanoglu11 estimate the molecu
lar extra correlation energy for formaldehyde to be 
3.74 eV. Adding this to the calculated dissociation 
energy, we obtain a "corrected" dissociation energy of 
13.37 eV, which is still in error by 2.87 eV. Presumably 
this error arises from basis-set truncation, particularly 
in the neglect of d and higher orbitals in the molecular 
basis set. Note that the dissociation energy for the 
(73/2) basis set is nearly as good as that for the (9~/3) 
basis set and is considerably better than the single 
Slater result. 

To the extent that Koopmans' theorem22 holds, the 
negative of an orbital energy is just the vertical ioniza
tion energy needed to remove an electron from that 
orbital. In Table II we note surprisingly good agree
ment for the .,, orbital, lb1 (calculated, 14.57 eV vs 
experimental, 14.40 eV), fair agreement for the s~
called n orbital, 2b~ (calculated, 12.04 eV vs experi
mental, 10.86 eV), and increasingly worse agreement 
as the orbital becomes more tightly bound. Quite 
similar results are observed in ethylene.I The error 
a.risea from two sources: (a.) a neglect of the sdf-con-

11 A C. W:ilil, J, Chem. Pbyu. •1 , 2600 (1964). 
"'P: E . Cadr, K. D. Salca, and A. C. W11hl1 J. Chem. l'hya. ~. 

1973 (1966) . 
11 P. E. Cc.de and W. M. Huo, j. Chem. Pby1. 47, 614 (1967) i 

and P. E . Cade And W, M. H uo, Ibid. lo7, 649 (1967). 
nT. Koopmana, Phyiica 11 lo.l (1933). 
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TABLE VII_. Net atomic r.nd gross atomic populations for the (95/3) Gaussian basis set. 

Atom 

Hl c 0 

MO- Net Gross Net Gross Net Gross 

0 .0000 0 .0000 0 .0000 - 0.0002 2.0004 2.0002 
2 0 .0000 0.0000 1.9996 1.9998 0.0000 0 .0001 
J 0 .0013 0.0066 0 . 2104 0.4752 1.2492 1. 5116 
4 0 . 101 2 0.2468 0.8988 1.1235 0 .4561 0 .3829 
s 0. 1312 0.2344 0. 5796 0.0237 0 .4542 0 .6074 
6 0 .0509 0 .0834 0.3814 0 .5022 1.2937 1.3310 
7 0 .0000 0.0000 0.4944 0.7101 1.0741 · 1.2899 
8 0 .3812 0 .2980 0.10J2 0 . 1375 '1.4715 1.2664 
tr Subtotal 0 .8692 5. 1619 7.0996 
r Subtotal 0 .0000 0. 7101 1. 2899 
Total 0 .6659 0.8692 4.6675 5.8720 7.9993 8.3895 

• The molecular orbita.11 are ordered accordina to the orbital_e~riiies. See Table II . 

sistency requirement for the ionized state, inclusion of 
which would decrease the calculated ionization energy, 
and (b) a difference in the correlation energies of the 
neutral and ionized molecules, inclusion of which would 
increase the calculated ionization energy. Thus, the 
correction to the ionization energy calculated using 
Koopmans' theorem is a balancing of two oppositely 
directed ellccts. In some cases the two errors nearly 
cancel, such as for the 7r orbital, and in others the sum 
may he ciuite large, such as for the n and more deeply 
buried orbitals. Of course, an additional error arises 
from the use of a truncated basis set, which may increase 
or decrease the sum of the other two errors. Calculations 
on water1 lead us to believe that the orbital energies 
for the (95/3) basis set are within ± 0.01 a.u. of the 
Hartree-F ock or bi ta! energies. Our conclusions· then 
should be unaffected by the additic.n of more · basis 
functions. 

The population analysis results given in Tables 
V-VIII can be used to classify the molecular orbitals 
in a qualitative, chemically interpretive, manner. ·In a 
subsequent paper, contour maps of the electronic 
density will be used to put this information into more 
pictorial form. At present we shall content ourselve's 
with l:haracterizing the molecular orbitals according 
to the various population breakdowns. The first . two 
orbitals, la1 and 2ai, arc the oxygen and carbon inner
shcll orbitals. The following orbital, 3a1, is strongly CO 
tr bone.ling, with most of the charge centered on the 
oxygen; qualitatively, it had been assumed that this 
orbital was almost exclusively an oxygen 2s orbital; 
however, as we can see, molecular formation perturbs 
the oxygen 2s orbital quite strongly. The next orbital, 
4a1. is CH tr bonding and slightly CO u antibonding, 
wi th much of the charge associated with the carbon. The 
following orbital, lbw, is about equally CO " and CH 

u bonding, with the charge mainly on the oxygen and 
carbon. The Sa1 orbital is only slightly CO u and CH 
u bonding, with most of the charge localized 'on the 
oxygen and carbon. The.,,. orbital, lb1, is, of coufse, CO 
7r bonding, with the charge distinctly polarized· in the 
oxygen direction. The so-called n orbital, 2b2, ·is not 
particularly bond\ng or untibonding, as one would 
expect if it were to be identified as a non bonding orbital, 
but the charge, while mainly localized on the oxygen, 
does have a significance contribution from the hydro
gens. These results emphasize the major conceptual 
difficulty associated with Hartree-Fock theory-the 
individual molecular orbitals do not describe regions of 
space which arc localized ·between or around nuclear 
centers, i.e., bonds, lone pairs, etc., but rather they are 
delocalized over the entire molecule. 

From the population analysis discussed above, we 
note that the n orbital has a rather large contribution 

TABLE VIII. Overlap populations for the (95/ 3) Gaussian 
basis set. 

MO• . H1-H2 Hl-C Hl-0 C-0 

1 0.0000 0 .0000 0.0000 -0.0004 
2 0.0000 0 .0001 .. 0 .0000 0.0003 
3 0 .0001 0 .0065 o.oow 0. 5168 
4 0 .0164 0.2864 - 0 .0116 - 0.1232 
5 - 0 .0381 0.2176 0.0268 0.2529 
6 0.0173 0.0655 -0.0179 0.1104 
7 0.0000 0.0000 0.0000 0 .4315 
8 -0.1638 0.1184 -0. 1210 -0. !682 
tr:Subtotal - 0.1680 0.6945 -0. 1198 0.5886 
11' Subtotal 0.0000 0.0000 0.0000 0 .4315 
Total - 0 . 1680 0 .6945 - 0.1198 1.0201 

• The molecular orbltala are ordered accordina to the orbl&.a..I cncrale .. 
See Table ll. 
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from the hydrogen atoms. This is in distinct contradic
tion to the older· concepts,6 •23 which assigned this orbital 
as a nonbonding lone pair (2p) orbital on the oxygen 
atom. As with the minimum-basis-set calculations,2' 

the centroid of the n orbital (i.e ., (z)) indicates con
siderable delocalizatioo. In fact, as the basis set was 
refined, the centroid shifted closer to the carbon. Our 
calculations also predict tha.t the n orbital is more 
tightly bound than experiment indicates. In summary, 
an LCAO-MO-SCF wavefunction for formaldehyde 
near the (sp) limit has an n orbital which is not localized 
on the oxygen atom, as had been expected, but contains 
significant hydrogen contributions. From the calcula
tions on water,1 we expect that these results will not be 
appreciably changed for a wavefunction at the Hartree
Fock limit. 

The CO r bond in both the (73/2) and the (95/3) 
basis sets is characterized by a significant amount of 
charge transfer from the carbon to the oxygen. This is in 
agreement with our intuitive chemical concepts (elec
tronegativities, etc.). On the other hand, the minimum 
Slater basis set indicates a nearly homopolar bond. This 
evidently arose from the use of an unoptimized, limited 
basis set. 

From the gross population analysis of the (95/3) 
basis set in Table VII, we see that the hydrogen atoms 
are a donors (losing 0.13 electrons), the carbon is a <J 

acceptor (gaining 0.16 electrons) while being a r donor 
(losing 0.29 electrons), and the oxygen is both a <J 

acceptor (gaining 0.10 electrons) and a 1f' acceptor 
(gaining 0.29 electrons). The <J changes are quite large, 
even though in a purely pi-electron approximation such 
charge transfer would be ignored. The problem is 
particularly acute for carbon, for which the two changes 
are in opposite directions. The net result of the above 
is a charge transfer from the CII2 group to the oxygen. 
The residual charge on the hydrogens and the carbon 
is +0.13e, while the oxygen has a net charge of -0.39e. 

. "H. H. Jaffe and M. Orchin, Theory and Applications of Ullra
'Piotel Sf>«lroscopy (John Wiley & Sons, Inc., New York 1962); 
M. Kasha, Discussions Faraday Soc. 9, 14 ( 1950); H. McConnell, 
J. Chem. Phys. 20, 700 (1952) . 

"D. E. I1recman and W. Klemperer, J. Chem. Pby1. 45, 52 
(1966). 

As stated previously, in a subsequent pa.per we will 
present contour maps of the electronic density and its 
various partitions. We will also compare the onc
electron properties of formaldehyde in the two Gaussian 
basis sets with the corresponding quantities from the 
calculation with a minimum basis set of Slater orbitals 
and with experiment. 

IV. COMPUTATIONS 

Evaluation of the integrals for both sets were per
formed on the CDC 6600 computer. The integral 
evaluation times for the (73/2) and (95/ 3) sets were 
2.1 and 11.0 min, respectively. The SCF cycling was 
carried out on the CDC 6400 computer, which is a 
somewhat slower machine. The time for one iteration 
for the small set was 1.5 min and for the large set was 
7.3 min. Neither calculation used symmetry-adapted 
basis functions. An extrapolation proccdurc26 was used 
to increase the rate of convergence for both sets. 

The vectors for the small set have converged to 
l~, except for a few coefficients in the higher vectors 
changing in the fifth place. The large set has converged 
to 10-7, again with the exception of a few coefficients in 
the higher vectors changing in the sixth place. The 
o.rbital energies for the (73/ 2) set were still changing· 
in the fifth decimal place and for the (95/3) set in the 
sixth place. In each case the total energy had converged 
to more than eight decimal places. 
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Numerical Solution of the S-Limit Schrodinger Equation 
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Numerical solutions to the S-limit Schr&linger equation have been obtained for He and Li+. Using these 
the energy and the expectation values (!:r;) and a:,.~) wert calculated and compared to the radial con
figuration interaction vRlues. The resull!I demonstrate that the direct numerical solution of many partial 
difTcrential equations in chemical physics can be accompli!ohed io a practical and straightforward manner. 

I. INTRODUCTION 

The finite difference method has been previously dis
cussed as a means of solving the Schrodinger equation 
for two electrons interacting in an infinite square well.1 

Due to the nature of the potential, that calculation was 
not a severe lest of the method's ability to solve 
differential equations occurring in quantum mechanics. 
As an example, many of the nonhomogeneous equations 
arising in perturbation theory could be easily attacked 

· with a direct numerical method,2 after they have been 
reduced by a partial wave expansion to a set of un
coupled two-variable partial differential equations. 

Numerical methods have been used to solve the 
ordinary integrodifferential equations determining the 
Hartree-Fock orbitals for atoms. With the low cycle 
times and large storage capacity of modern computers 
we are at a point where the numerical solution of both 
ordinary and partial differential equations can be 
accomplished at a large number of points in !!pace. 
This is one reason why we suggest that numerical 
methods of solving many differential equations in 
riuanturn mechanics be reexamined. While such methods 
may n0t be uniformly better than variational methods, 
they arc straightforward in principle and simple to 
program as compared with, for example, the years 
already spent evaluating integmls containing inter
elcctronic coordinates in the atomic correlation problem. 

l krc we describe the solution of the eigenvalue 
equation corresponding to a potential function which 

• P~scnt ad<l~u: Department of Cheml1try, Unlven!ty of 
Miuouri at St. I.ou!a, St. Louis, Mluouri. 

t Contribution No. 3608. 
1 D. J. Dicstltr and V. McKoy, J. Chem. Phys. 47, 454 (1967) . 
1 V. McKo;; and N. W. Wintcr1 "Numerlct.I Solution of Quan-

tum-Mechan1ct.l Pa.ir Equation•,' J. Chem. Phy1. (to be pul>
U.hed). 

includes all radial correlation for the two-electron atom. 
The results are compared to accurate variational 
calculations. Both radial correlation and the finite 
difference method are adequately described elsewhere,1·' 

and therefore the first two sections give only a brief 
review of these topics. The third section contains the 
results for the finite difference method and the com
parison with the variational calculations. 

II. THE S-LIMIT SCHRODINGER EQUATION 

The Hamiltonian for the two-electron atom in 
atomic units is 

(1) 

Then by expanding the electronic interaction potential 
as follows, 

1/r12 = L (r<'f r>1+1) P1( cos812), 
I 

(2) 

it is evident that the spherical component of the 
Hamiltonian is just 

z z 1 ----+-, (3) 
r1 r, '> 

where r>- max(r1, r2 ). From the S-limit solution 
t/t(r1r1) - ( 411'• r1 • r2)-1u(r1r1) the differential equation for 

1 E. Hololcn, Phys. Rev. l°", 1301 ( JIJ56); II. Shull and P.-0 . 
Uwden, J. Chem. Phya. 25, IOJS (1956). 

• L. Fox, Numerical SoluJion of Two-l'oint BouruJa,y Probl1ms 
(Oxford Unlveraity Prcu, London, 1957). 

1879 
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the function u(r1r1) can be written 

z 1 
- - u(r1r1)+ - u (r1r1) -Eu(r1r2) =0. (4) 

rt '> 
The function u(r1r1) is taken to be normalized as 
follows 

J u(r1r2)u(r1r2)dr1dr2= 1, 

and the boundary conditions require that u ( r1r2) 
vanish when either variable is zero or infinity. Using 
the finite difference method the next section illustrates 
how Eq. (4) can be systematically reduced to an 
algebraic problem. 

III. REVIEW OF THE FINITE DIFFERENCE 
METHOD 

There are two important points to consider in 
treating Eq. ( 4) with the finite difference method. 
First, we want to treat the differential equation as a 
boundary value problem and not as an initial value 
one. The boundary condition at r1 or r2 equal to zero 
can be easily imposed, but the condition as r1 or r2 goes 
to infinity is more difficult and must be modified so as 
to describe the solution over a finite numerical grid. 
Fox~ suggests two methods for handling this type of 
situation. The first approach, which is direct and is the 
one we use, is to require that u(r1r2) vanish on the edges 
of a square bounded on two sides by r1 = R, r2 = R. As 
long as R, which in this method "represents" infinity, 
is sufficiently large, the solution remains a good ap
proximation to the solution one would obtain as R-+co. 
The other approach, an indirect one which could be 
easily implemented, assumes that for large values of the 
variables r1 and r2 the differential equation has a 
solution g(r1r2) exp[ -a(r1+ r2) ] where, at reasonable 
grid sizes, g{r1r2) varies slowly. We can allow for this by 
using as the .boundary condition the equation u(r1r2) = 
e"~u(r1+h, r2) at any convenient point r1• The quan
tity h is just the spacing between grid points. 

The second and more important poin t to consider is 
the level of the difference approximat ion to be used. 
The differential operators in Eq. (4) can be formally 
expanded in an infinite series of difference operators 
and the level of the approximation is determined by the 
truncation of this series. After some experimentation it 
was found that the best compromise between accuracy 
and ease of calculation was to employ only second 
differences and then extrapolate the results by the 
Richardson met hod .1 

1 L. Rlch1ml110n and J. Gaunt, Trana. Roy. Soc. (London) A226, 
m (1927). 

fox4 argues strongly for including higher-order 
difference operators by an iterative method. Al though 
such schemes may allow one lo use a coarser grid and 
still obtain reliable solu tions, we decided to work only 
with second differences. This approximation best 
demonstrates the straightforwardness of the numerical 
approach. 

The derivatives can be written in terms of second 
differences as follows, 

h2 (<J2/ ar I 1) U(r1r2) 

=u(r1-h, r2) -2u(r1r2) +u(r1+h, r2) +O(h4), (5a) 

h2 ( a2/ ar SI) U( r1f2) 

=u{r1, r2-h)-2u(r1r2) +u(r11 r,+h) +O(h') 1 (Sb) 

where h is the grid spacing. By introducing these into 
the S-limit equation, there results a set of linear equa
tions, one for each grid point, having the form 

(1/h2)[u(r1-h, r2) +u(r1+h, r2) +u(r1, r2-h) 

+u(r., r2+h) J+[ (2Z/ r1 ) + (2Z/r2) - (2/r> ) 

-4+2(E ) ]u(r1r2) =0. (6) 

These can be collected into the following matrix form, 

Du=Eu, (7) 

where D is a real symmetric banded matrix ,8 u is an 
eigenvector whose elements correspond to the solution 
values at the various grid points, and E is the corre-
sponding eigenvalue. . . . . 

At this point the solution of the S-hm1t equ~t1on ha.s 
been reduced to the diagonalization of the difference 
matrix or at least to that of finding the lowest eigen
vector' and eigenvalue. Since D is a banded matrix, 
this can be accomplished for large matrices in a fai rly 
simple fashion. It is important to be able to solve 
extremely large matrix equations in order to reduce the 
difference truncation error to a tolerable level. The 
method we have used to extract the lowest eigenvector 
is described in the appendix. Even though matrices as 
large as 2600 by 2600 were diagon:ilized,_ the di~erence 
error remained import:int. To correct this, solut ions a t 
several grid sizes were found and the Richardson rxlrap
olation method~ was used to predict the resul ls at zero 
grid size. The other alternative, including higher 
differences was tried and found to be at best only 
equally as' accurate as extrapolation. The inclusion ?f 
higher differences has the disadvantage tha.t ~nd 
points outside the boundaries must be de:ilt with. 
Because of this arbitrariness, we chose to stay on firmer 
ground with second differences. T~e results for He and 
Li+ arc presented in the next se<.:l1on. 

• Sec Appendix. 
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IV. THE FINITE DIFFERENCE RESULTS 

The lowt•sl ci~envector of the S-limit matrix was 
founri at four different grid sizes for each atom. The 
radial cutofT for He was set at 5 a.u. and for Li+ at 
4 a.u. Jn choosing the cutoff we tried lo balance the 
advantage of a small grid size with the disadvantage of 
unphysical boundary conditions. 

With the eigenvectors, the energy and the expectation 
values (Lr;) and (Lr;2) were found at each grid size. 
Simple matrix multiplication was used rather than 
numerical quadrature in order to be able to extrapolate 
the results. 

Tables I-III give the initial results for each grid size 
as well as the extrapolated values. In the tables the 

TABLE I. Total energy. 

Grid Initial 
siz.ca result 

$/13 

5/26 

5/.19 

$/52 

4/13 

4/26 

4/39 

-2 .512505 

-2. 766800 

-2 .826695 

-2 .848967 

-6.072929 

-6.870866 

-7 .072455 

4/52 -7 .148980 

Helium 

-2.851565 
-2.877493 

-2.87~12 
-2.878608 

-2.877609 

Lithium ion 

-7 . 136845 
-7 .245837 

-7.233727 
-7.251916 

-7 .247369 

-2.878682 

-7. 252321 

• The arid •ize io defined ao the radial cutoff divided by lhe number of 
1trlp1 alona one oide of the iTld. 

second column gives the eigenvalues of the finite 
difference matrix . The third column gives the results of 
exl rapolating successive values in the second column 
assuming that the di/Terence between these approximate 
eigenvalues ancl the ci~envalue at zero mesh size has an 
h' dependence. The fourth column gives the result of an 
h' exlrapolation, i.e., one assumes that the difference 
bet ween the approximate eigenvalues and the exact 
eigenvalue is given by aJi2+a1h'. The final extrapolant 
is obvious. This h2 convergence is common in many 
elliptic partial dilTerential ef1Uations.7 We will comment 
further on this property in the next section. 

To determine the accuracy of the eigenvectors the 
residual vector R-Du-f;u was calculated and found 

'See fo~ cumplr H. C. Bolton l\nd H. I. Scoln~, Proc. Cam· 
hrlclgc Phil. Soc. Sl, 1$0 (IQ.~6) . Thue l\uthora e.ttcmptcd ll 
numerical aolution of the S-limit cqu&lion. Their beat cxlre.polnnt 
wu -2.6.52 11..u. for btlium. 

TAnLl': IT. Expectation value of 1;,,, 

Grid Initial 
size result 

Helium 

5/13 2.098644 
1.870169 

5/26 1. 927288 1. 864165 
1.8648.32 1.864173 

5/39 1.892590 1.864173 
1.864338 

5/52 1.880230 

Lithium ion 

4/13 1.343108 
1.152010 

4/ 26 1.199784 1.147341 
1.147860 1.1474.15 

4/39 1.170937 1.147429 
1.147537 

4/52 1. 160700 

to have a length in the range 10-5 to 1~ in each case. 
In addition, the local energy, E (i ) = (D11)Ju(i) was 

· found to be constant to more than five decimal places at 
each grid point. In Table IV we compare the finite 
difference results, including the vi rial ratio V /2E to 
the radial configuration interaction (RCI' values.8 

The RCI basis orbitals were ls, 2s, 3s, 4s, ls', and 2s' 
Slater-type functions. The exponents for the helium 
atom were .1=3.7530 and .I'= 1.5427. ang for the lithium . 
ion .I= 5.8249 and .I'= 2.5456. The energy compares well · 
with the S-limit energy in both cases; however, for 
helium the other properties arc slightly less satis
factory. 

TABLE III. Expectation value of 1;,,,, 

Grid Initial 
size result 

Helium 

5/13 2.986072 
2.41482J 

5/26 2.5576.15 2 .. ~99441 
2.4-01 !SO 2.399136 

5/39 2.470699 2.399155 
2 .399654 

5/52 2.439617 

Lithium ion 

4/13 1.196438 
0.90.3515 

4/ 26 0.976746 0 .896798 
0 .897544 0.896575 

4/39 0.932745 0.896589 
0 .896828 

4/52 0.917031 

'We wlah to thank Dr. Willinm A. C:11clcl11rcl Cur 111lowing u1 to 
UllC hia RCI computer program for thnc cak11l111io111. 
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TABLE IV. Comparuon of the finite difference values with the 
radial confiitUralion internction results. 

~~-~-·-~-:=::..=:::=================..:=========== 

E V/2E 

Helium 

Fl> -2 .8787 1.0007 1.11642 2..1991 
HCI -2. !<7'10 1.0000 l .8<188 2.4206 

Lithium ion 

FD -7. 2S23 0.9999 l .1474 0.8966 
RCI - 7. 2525 1.0000 1.1475 0.8968 

V. DISCUSSION 

From Tables I, II, and III we see that in each case 
the extrapolants have converged to more than four 
places. This implies that further extrapolations using 
results at smaller grid sizes would give little or no 
i1!!.Erovement. However, for He the expectation values 
(,Lr;) and (Lr;1) indicate that the radial cutoff was 
chosen too close to the nucleus. Since it has a much 
smaller ro.<lial extent, the 4 a.u. cutoff for the lithium 
ion was a better approximation to the true boundary 
conclilions (see Table IV). In the case of helium a 
cutoff of 6 a.u. would have given better agreement. A 
preliminary investigation of the hydride ion, which is 
extremely extended, gives support to this conclusion. 

In spite of this difficulty, the calculations presented 
in this paper have shown that good accuracy can be 
obtained with the finite differer.Ce method in the solu
tion of these partial differential equations. We realize 
that there are variational methods that give as good or 
better results for this particular example. However, 
there are other examples where the choice of the 
variational parameters and even the basis functions 
themselves can be so prejudicial that meaningful results 
are difficult to obtain. In the numerical method much is 
known about the convergence of finite difference 
solutions to the exact solutions. As seen, this information 
can be quite useful through an extrapolation process. 
In a variational method, even though the trial function 
is a linear combination of functions belonging to a 
complete set, little is known about the approach towards 
the true eigenvalue as the number of functions is in
crea~. Even in a problem as simple as the S-lirnit 
there have been numerous estimates of the true eigen
value. 

Finally it should he reiterated thnt the finite differ
ence mel hocl is definitely not limited to eigenvalue 
equations. As previously mentioned, the perturbation 
equations rletermininµ; the first- and second-order wave
functions arc easily solved by this same method. The 
solution o{ these nonhomogcneous equations will be 
discussed in n iiLler p:Lper.1 Such nonhomogcncous 
equntions arc nctually simpler to solve than the eigen
value problem. This will be nn interesting applicu.tion o{ 
the numerical methods discussed in this paper. 
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APPENDIX: DIAGONALIZATION OF LARGE 
BANDED MATRICES 

The banded structure of the finite difference matrices 
is very simple. The matrix for a one-variable equation, 
in the second difference approximation, is tridiagonal.' 
In such a matrix only nonzero off-diagonal matrix 
elements lie in the first super- and first subdiagonal. 
For a two-variable equation the st ructure is altered to 
include nonzero elements in the nth superdiagonal and 
the nth subdiagonal, where n is the number of points 
along one side of the grid. 

Tak.ing the matrix equation to be Du= Eu, the 
method assumes we have a guess for the eigenvector. 
Let the trial vector be Uo and define a correction vector 
as follows, 

Co=U -UQ. 

Then substituting into , the matrix, we obtain the 
following equation for eo, 

(D-E)c0 = - (D- E) Uo. (8) 

The right side is known and the solution of the non
homogeneous matrix equation yields the correction to 
u.o. From this we can construct a new trial vector 
u 1 =u.o+co and repeat the process to find a new correc
tion vector c1• The one difficulty is that Eq. (8) re
quires the previous knowledge of the eigenvalue E. 
In order to circumvent this, we approximate E by the 
Rayleigh mean of D with respect to Uo, that is, 

E..,,,O=Uo1Jl4J/UoUo· (9) 

Then Eq. (8) becomes 

(D- Erm0)co= -(D-Erm0)Uo, (10) 

where the right side is just the residual vector Ro. 
Upon succeeding iterations the correction vector c; 
becomes smaller, as docs the residual vector R;, and the 
trial vector u; approaches the exact solution. The 
ultimate accuracy depends on the machine error, but 
depending on the initial guess three to four passes are 
sufficient to reduce lhc residual vector lo a length less 
than 10-e uncl have the RayleiKh menn agree with the 
local energy to five decimal places at each point. 

The important key to the method is the accurate 
solution of Eq. ( 10 ). This was possible due to the 
efficient program for the solution of simultaneous linear 
equntions developed by M cCormick.1° 

-,- Fo;~ di-s~ussion of mnlrix tcchniqul'I sec I.. Fox, An /ntrodut· 
tinn to NumuiciJJ l.itlt<Jr Ali:ebrti (Clnrcndo11 l'r~s1, OxCor<l, 
Englnnd, 1964). 

10 C. W. McCormick nncl K. J. llcl>ert, "Solution o! l.inrnr 
Equntions with Dil(illll CompulcrR," Cnlifornil\ ln1litutc of 
Technology Report, 1965 (unpublillhc<l). 
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Numerical Solution of Quantum-Mechanical Pair Equations• 
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We discuss and illustrate the numerical solution of the differential equation sati3£ied by the first-order 
pair functions of Sinanoglu. An expansion of the pair function in spherical harmonics and the use of finite 
difJcrcnce methods convert the differential equation into a set of simultaneous equations. Large systems 
of such equations can be solved economically. The method Is &mp!e and straightforward, and we have 
applied it to the first-order pair function for helium with 1/r1~ as the perturbation. The results are accurate 
and encoumging, and since the method is numerical they are indicative of ita potential for obtaining atomic
pair functions in general. 

INTRODUCTION 

In the Hartree-Fock approximation each electron 
moves in a potential averaged over the motions of all 
others. This is an excellent starting point, and a great 
deal of chemical knowledge can be obtained this way. 
Many properties require more accurate wavefunctions 
for their prediction and understanding. The difference 
between the Hartree-Fock and exact wavefunction is 
referred lo as the correlation wavefunction. It is impor
tant to have methods of finding the correlation wave
function and its effect on physical observnbles. 

Sinano~lu1 hns developed a many-electron theory of 
atoms and molecules. This theory can provide the wave-

• Supported in part by a grant from the NSF (GP 6965). 
t Contribution No. 3642. 
1 Some ~arly references are 0. Sinnnoglu In J. Chem. Phys. 33, 

1212 (1960); Phy1. Rev. 122, 493 (1961); Proc. Roy. Soc. (Lon
don) A260, 379 (1961); Proc. Natl. Acad. Sci. U.S. 47 1217 
(1961). For a review of the theory and e.n extensive list o{ refer· 
encca Ke 0. Sina.no~u, Adv&n. Chem. Phy.. 6, 315 (1964). 

function and energy of an atom or molecule to chemical 
accuracy, and it does so in such a way that it does not 
become rapidly difficult or uneconomcial as the number 
of electrons increases. In one of his early pa.pers1 the 
first-order correction to the single-particle wavefunction 
was expressed in terms of pair functions which describe 
the correlation between pairs of electrons.' These first
order pair functions are solutions of nonhorn.ogeneous 
partial differential equations. The equations are just 
like those for an actual two-electron system, except that 
each electron moves in the Harlree-Fock (HF) field 
of the entire medium. This has not been fully appre
ciated, especially from a computntional standpoint. 
Each pair energy bas a variational principle, and 
attempts to solve the pair equations have been mainly 

•In later p11pcrn the pair theory was made llCcurate to &II orders, 
l.e.i ~yond firnt order. We refer the reader to the review article in 
Re • 1. The complete form of the many-electron theory la not a. 
perturbation theory. 
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by this method. The variational method reduces the 
calculation to the evaluation of a large number of 
integrals. The presence of a nonlocal potential in the 
HF operator does lead lo some difficult integrals, which 
can become more difficult if higher powers of the inter
electronic coordinate are included. A large effort has 
gone into evaluating such atomic integrals. 

In this paper we discuss and illustrate the numerical 
solution of the differential equation satisfied by a pair 
function. An expansion of the pair function in spherical 
harmonics and the use of finite· difference methods 
convert the differential equation into a set of simulta
neous equations. Large systems of such equations can 
be solved quite economically, e.g., about 2000 equations 
in two minutes. The method bas many attractive 
features, and we have applied it to the equation of the 
first-order pair function for the helium atom. The 
results are accurate and encouraging, and since the 
method is numerical, these results are truly indicative 
of its potential in solving for atomic pair functions in 
general. 

THEORY 

A. Sinanoglu's Pair Equations 

The total Hamiltonian, B, and the zeroth-order 
. Hamiltonian, Bo, for an N-electron atom are 

B- L: -lV;'- - + L: ·-N ( B N 1 
0-1 ,. k.i '" 

(1) 

and 
N 

Bo= L: (hf+ v,) I . (2a) 
l-1 

respectively. In Eq. (2a) V; is the Hartree-Fock poten
tial, which is the same for all electrons. For closed-shell 
atoms V; is uniquely defined.1 Also in Eq. (2a), 

h!'--!V~-(Z/r0), 

The zeroth-order function .Jt<0> satisfies 

B oiJtCO) - &/t(O). 

where 
Eo ... L:,, 

' 
and each HF orbital satisfies the equation 

(hf+ V1)<J>,-e(C/>,. 

(2b) 

(3) 

( 4) 

The zeroth-order wavefunction 1/1<0> is just the anti
i;ymmetrized product of HF orbitals, 

y,co> -A(cM 1)4>1(2) • "<l>a(N)} (5) 

The first-order correction to y,co>, y,co, satisfies the 

1 For & discu&t.lon of the mo.ny-electron theory for open-shell 
WYAlcm1 ace H. J. Silver.tone and O. Sinanojilu, ]. Chem. Phya, 
... 1899, 3608 (1966). . 

equation 

where the perturbation Bi is 

N 1 N 

H1""' L:-- L v,. 
l<i ,,, .-1 

(7) 

Equation (6) is an inhomogeneous partial differential 
equation in 3N spatial variables. It has solutions if the 
corresponding homogeneous equation are orthogonal 
to the inhomogeneity, (E1-B1).Jt<0>. The general solu
tion of Eq. (6) is 

(8) 

i.e., a sum of a particular solution, .Jt,<u, plus a contri· 
bution from the homogeneous solution, The constant, c,. 
is chosen so that (,Yt0>, iJtO>) =0. · 

From Sinanoglu's analysis' the first-order wave
function can be written as 

N A 
Yt(I) = L: - (4>1(1)<J>,(2)' • •4>t-1a1/ll4>i+J" '•<J>N ), (9) 

l<i VJ. . . 
where ~,,m(x;, x1), a first-order pair function, satisfies 

. the nonhornogeneous differential equation 

(e,+e;)a,;<1> = -Q(1/r12)B(<J>,( 1)¢;(2) ). (10) 

The operator, Q, makes a two:electron function orthog
onal to all occupied H-F orbitals; i.e., 

. N 

Q-= 1- L: <14>;( 1) )(<J>,(1) l+l<M2))(<J>,(2) I) 
l-1 

N + L IB(<J>.{l )q,,(2) ))(B(<J>.(1)4>;(2) ) \, (11) 
k.J 

and e; is just the HF operator minus an orbital energy, 
fj, 

z N N 

e;-=- ~ Vr- -+ L: S1(x,)- L R;(X;)-e,, (12) 
,, ;-1 ,...1 

with 

B «M 1) qi,(2)) ... ( 1/v'l.) (4>;( 1)4'1( 2) -<J>,( 2)¢,( 2) ), 

(13a) 

and 

S;(x;)<J>•(x;)- U <1>1(x1)r,r1-1>1(x;)dx;) ¢•(x,), 

(13b) 

R1(x1)¢•(x,) • (/ ¢,(x1)r,r'<P•(x,)dx,) <J>1(x1) • 

(13c) 

We also define 
N 

V.(x1) - L: s,(x,) ( 14a) 
,...1 
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and The comparison between Eqs. ( 17) and (21 ) is obvious. 
N In the perturbation study of helium, starting from an 

V ,( X1) ia L R1( 1'1). (14b) unscreened hydrogenic y,.<0>, one usually writes ,_, 
The pair functions are also rigorously orthogonal to 
all occupied HF orbitals, i.e., 

f i2;/ll(x1, X1)4>c(X1)dX1=0. 

The second-order energy, Es, is 
N 

&= .L: (B(q,,(1)4>;(2) ) , ru-1a1/1>(x1, Xi)). (15) 
I<( 

The pair function, a,p>' is the solution of the first-order . 
part of the SchrOdinger equation for two electrons in 
the HF "sea." The effect of the medium enters through 
the HF potentials in the operators e, and Q. 

One can write the solution of Eq. (10) as follows: 

( 16) 

where Q is defined in Eq. (11) and "'' satisfies the 
equation 

(e,+e;) u,1 = [J,,-K0 - ( 1/ru) ]B (q,;( 1)4>1(2) ), ( 17) 

with J,1 and K11 the Coulomb and exchange integrals 
for orbitals !/>; and q,1• This approach has some advan
tages if one needs to expand u;1 in a series of spherical 
harmonics. The general solution to Eq. ( 17) is obtained 
by orthogonalizing a particular solution to B(<t>1 q,1) . 

If B (if>;( 1 )4>,(2) ) belongs to a two-electron irreducible 
representation, then Eq. (17) has a unique solution, 
e.g., ls' pair of electrons. However, when B(q,,( 1 )4>;(2)) 
is not a pure two-electron symmetry state, then Eq. 
(16) does not have a solution,1 and one must write 

( 18) 

where 4'1/ are unperturbed pure symmetry states. Then, 
m 

u;;= .L: a,u;,' ( 19) 
-1 

(e,+e;) U;;' = [ (4';/(1/ r11)4>;/)- ( 1/ru) }!>;/. (20) 

The solution of Eq. ( 10) does not require any vector 
coupling schemes such as Eqs. ( 18) and (20), but the 
obvious symmetry properties of u;/ are convenient if 
u,, is expanded in spherical harmonics. We have given 
Eqs. ( 17) and ( 20) because the use of symmetry pairs 
leads to simplifications in the numerical treatment of 
these equations. Equation ( 17) is also very similar to 
the equation one obtains starting from a bare nuclei 
Hamiltonian, i.e., a hydrogenic y,.<0>. In that case, the 
first-order wavefunction is ngnin written like Eq. (9) 
but with a,;<1

> replaced by u;it which satisfies an equation 
very similar to Eq. (17), i.e., 

(-tVi1-V,1
- (Z/r1)- (Z/r1)-e;-e;]u1; 

• [J w·- .KIJ- ( 1/ru) ]B(it>,(1 )!J>j(2) ), (21) 

H0 =-~'v?-~V21-(Z/ri)-(Z/r1 ), (22) 

H1= 1/rn, (23) 

and ..y<1> satisfies Eq. ( 6). Comparison of Eqs. ( 6), (21), 
(22), and (23) shows that ..y<o is just an example of a 

· pair function . This is the example we use to illustriate 
our method of solution of pair equations. Num er cal 
details of the method demonstrate that these resu Its are 
indicative of its usefulness for obtaining atomic pair 
functions in general. 

B. Reduction of Pair Equations 

For quantitative results one must solve Eqs. (10), 
( 17), or (21). Most attempts so far have used a varia
tional approach. Equation (15) can be written 

El2)= """'E .. (:i) . k-1 •J ' 
l<i 

(24) 

and one has a minimum principle1 for each· e;p>, i.e., 

E;1 <2>~t;/C2> = 2(B(¢;tJ>;) 1 m;;tl;/(I)) 

with 

m,;(1, 2) = (1/r12)-Si<t)-s,<2)-S1(2) 

-S;O) +J;,-K1;, 

S1(l) =S,(1 ) -R,(l), 

(26a) 

(26b) 

and 12;/<ll is varied to minimize E;/<2>. With a varia
tional form for 12;/0>, one evaluates all the integrals in 
Eq. (25) and determines a,,(I>. For different types of 
pairs one has a choice of 12;, o>, e.g., a configuration
interact ion (CI), open-shell, and a r12-type 12,,m. We 
will comment later on their relative merits in comparison 
with the numerical method. We now show that these 
pair functions can be obtained accurately by solving 
the partial differential equation by numerical methods. 
The method is direct, with simple programming require
ments. 

The pair function, 12;,(I>, is expanded in a series of 
surface harmonics, the coefficients in the expansion 
being functions of the radii of the two electrons,' 

12,p>... :E (r1r2)- 112u..:1•1n•(r1, r2) 
ltn:ll.,1 

For a spherically symmetric pair function the spatial 
part of a,p> depends only on r 1, r2, and 812. However, 
for states of arbitrary symmetry one hns to expand in 

'For a auggcstion along thc&C linca sec J. Musher In Mod••H 
Quantum Chemistry-I slanbuJ lulur111. l'arl I I, lnur~lion, O, 
Si11anoi lu, Ed. (Aca<lcmic Prc111 l11c., New York, 1965). 
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terms of angular symmetries with respect lo the two 
electrons separately. The 1.lr11 term on the right-band 
side of Eq. ( 10) can be written 

I 

ru-1= L: U1lr1, rs) L: Su.(81, 4>1)S1_,,.(82, "'1), (28) 
1-4 _, 

where U 1(r1, r2) stands for 

( '<') 
'>1+1 

and S1tn is a surface harmonic. Substitution of the 
expansion Eq. (27) into Eq. (17) or Eq. ( 10) gives 

For closed-shell systems the Hartree-Fock potential, V(ri), is spherically symmetric. For open-shell systems one 
still requires the potential to be spherically symmetric and the orbitals, symmetry orbitals.• With the expansion, 
Eq. (28), the right-band side of Eq. (10) or Eq. (17) becomes a sum of terms, 

L: G,,,.,.,,..(r1, r2)S1,,.(1) S1•,,..(2). ,,,,,..,., 

The c,,,.,1.,... are combinations of terms U1(r1, r2) and the radial factors of the H-F orbitals. One now obtains a set 
of uncoupled equations, one for each term in Eq. (27), 

In deriving Eq. ( 30) we have used relationships such as 

S,J(B,<J>)SH(B,tj>)= L:a•J~1°PS0p (8,<J>), (31) 
a{J 

where ai111 1°P are numerical coefficients. Equation ( 30) 
is our basic equation. It is a second-order elliptic partial 
differential equation in two variables, and no closed
form solution exists. 

C. Analysis 

Of the numerical methods for solving partial differen
tial equations, those employing finite differences are 
most frectuently used. Finite-difference methods are 
approximate in the sense that derivates at a point are 
approximated by dilTcrence quotients over a small 
interval; i.e., aq,/ax is replaced by O<J>/ox where ox is 
small, but the solutions are not approximate in the 
sense of being crude estimates. In these methods the 
area of integration is divided into a set of square meshes, 
and an approximate solution to the differential equation 
is found at these mesh points. This solution is obtained 
by approximating the par~ial differential equation by n 
algebraic equations. The values 11.t the mesh points form 
a vector which is the solution of the set of simultaneous 
linear equations. A numerical solution contains no 
arbitrary constants, so that we always obtain particular 
integrals rather than complete primitives of the differen
tial equation. 

(30) 

In operator notation Taylor's series can be written' 

y(x+h) =y(x) +h(dy/dx) +th2(d2y/dx") + • • • 
= exp(hD)y(x). 

Define a central difference operator o, 
oy(x+th) =y(x+h)-y(x)' 

and one has the operator equation 

and hence 

o= exp(thD)- exp(-thD) 

=2 sinh(thD), 

h2JYl= (2 sinh-1 !c5)2 

(32a) 

(32b) 

(32c) 

=02-n-0•+ 0~06-. ... (33) 

The second derivative of a function at the ith point is 

The operators 02 and c5',etc.,are defined by the equations 

oiy(x) a:ay(x+h) +y(x-h) -2y(x), (35) 

o'y(x) .. y(x+ 2h) -4y(x+h) +6y(x) 

-4y(x-hH-y(x-211). (36) 

'See, for rxumpl(•, L. Fnx Tiu N umniC11I St1luti11n of 1'w11-l'olnl 
B11und1iry l'r11Utnis in Ordiiurr'J J>l.ffutnli11l J•:111111/itin1 (Oxfn11l 
University l'rcsa, Nrw York, 1957). 
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Herc, his the spacing between neighboring mesh points, 
an<l the partial derivatives of Eq. (30) become 

lr1[(c12/ar) + (<}2/ay) ]u(x, y) 

""(o.•+ol)u~x, y)-i\(c5z'+c511')u(x, y)+O(o•). (37) 

At a point u(x, y) one has 

[(a2;axt)+ca2/ay2)]u(x, y) 

... ( 1/ h') [u(x+h, y) +u(x-h, y) +u(x, y+h) 

. +u(x,y-h)-4u(x,y)J+Cu(x,y), (38) 

with 

C= - ( l/12h1
) (o,.'+011') + (l/90h1

) (c5:r1+c511')- • • •. 

(39) 

As a first approximation we neglect Cu in Eq. (38) and 
therefore replace the differential operator by the first 
term on the right-hand side. This leads to a truncation 
error in the expansion of the differential operator. The 
form of this truncation error is important, as it allows 
us to predict the convergence of the numerical solution 
as one approaches the exact solution (see Appendix A). 
From Eqs. ( 33)-( 39) it is obvious that the local trunca
tion error in the second-difference approximation is 
O(h2_\. The term Cu in Eq. (39) contains higher differ
ence operators, which can be included by an iterative 
technique (see Appendix B). 

One must now specify the boundary conditions for 
Eq. (30). We treat the problem as a boundary-value 
one, specifying the value of the solution on a boundary 
enclosing the area of integration (Dirichlet boundary 
conditions). The functions t21m:1•.,,<ll vanish along the 
boundaries r1=0, r2 = 0. These functions also vanish as r1 
or rz-t oo. This boundary condition must be modified so 
as to handle the equation on a finite numerical grid. 
There are two alternatives, and both are based on the 
condition that the solutions approach zero exponentially 
and essentially do so at some finite value of the inde
pendent variable. One can choose a value of r1 =R1 and 
make the solution vanish on this boundary, i.e. , 
u(R1, r2) =u(r1, R1) =0. One then moves this boundary 
out to r1 = Rz, Ri, etc., until at least two adjacent values 
at the boundary are zero to the required number of signi
ficant figures. The boundary condition is then accurately 
satisfied. The other alternative is based on the asymp
totic form of the solution of Eq. (30). We can use this 
as a boundary condition. For large values of r1 and r, the 
solution behaves like g(r1, r1) exp[ -a(r1+rs) ], where 
g(r1, rs) varies slowly. This behavior becomes a bound
ary condition, 

(40) 

The boundary condition is satisfied when Eq. (40) holds 
between neighboring points. Both alternatives work 

well and bring all atoms of interest wiLhin reach of the 
method. 

With Eq. (38) the difTerential equation is obviously 
replaced by a set of algebraic equations. In matrix form 
these equations are 

Au=b, ( 41) 

where u is a column vector, the components of which are 
approximate solutions to the diITerential equation at a 
set of internal points. Were it not for the nonlocal 
exchange potentials 0£ Eq. (30) [sec Eqs. ( 13b) and 
(14b)], the matrix A, Eq. (41), would have a very 
simple structure; e.g., for M divisions along each dimen
sion the only nonzero elements lie on the diagonal, the 
super-, and sub-diagonal, and on lines parallel to the 
diagonal but M strips above and below the diagonal. 
This is a banded matrix of half-bandwidth equal to M. 
We now show that (a) large systems of such equations 
can be solved rapidly and accurately, and (b) once such 
solutions have been obtained, the nonlocal operators 
can be taken into account with a small increase fo 
computing time. We put more emphasis on (a), but (b) 
is shown quitf:! convincingly . 

For B internal poin ts in each dimension we have N 
equations with N = B2 • The matrix A then has dimen
sions lflXB2 ; e.g., with B about 40 one has a 1600X 1600 
matrix. We use the method of triangular resolution to 
solve the matrix equation, Eq. (41). The method has 
been efficiently programmed,6 and very large systems 
of equations can be solved economically. We give a very 
brief outline of the method. If l he leading minors of the 
matrix A are nonzero, there is a unique lower triangular 
matrix Land a unique upper triangular matrix U so that 
A=LU. An upper triangular matrix is one which has 
zeros above the diagonal. The solution proceeds by 
eliminating the lower triangular elements, taking pivots 
successively along the principal diagonal, and the only 
recorded quantities are the multipliers needed for the 
triangular resolution (L) and the triangularized array 
(U). The band structure is preserved in the L and U 
factors.7 Solution of the linear equations is straight
forward; i.e., for Ax =b one solves Ly=b and Ux=y 
by forward and backward substitution. The L a~d U 
matrices can be used to operate on any number of nght
hand vectors,8 i.e., b of Eq. ( 42). 

•It can he ~hown 1hn1 there is no limit on the numhrr of row• of 
equations thnt can be handled and that the upper limit on ll_ie 
bandwidth j5 set by the requirrmt•nl of havinl( P t.• l.crm• in 
memory a t 1rny one time. For nn I !IM 71~)4 nn u11pl'r lin11t t~ the 
M is about 200. This corrcsponrls to a largr num ><·r of 1·q 1wt 111n~. 
For details of the proi(rnm ~cc C:. W. McCormick and K. J. flclil'I, 
"Solution of l.inrar Eciuation~ with ~i)(ilal. Cornpu.ic;rs," T~ch. 
Rcpt., F.ngint'l'ring Division, C11liforn111 Institute 111 l cchnology, 
1965 (unpulilishctl). . . 

'L. Fox, Nt4muical Snlulim1 nf Ordinnry nnd l'11rlii1/ f>1./fue11/1dl 
H.qualio11s ( P~rgnm1m Prr~~. Inc., l~m1l11n, IW>2) .. 

•Most of the computing time i~ rcq11irctl lo ol~tam ~he I. r.n1l U 
factors and the time to forward- anti liuck-suhgt1lutc 1~ much le~~. 
This feature cnnhlt·s us to indutlc, liy lln itnutivc .~chcmr, hot.h 
nonlocal potcntinla and higher-order clilTcn·nc<'s. Sec Ap1H:ntl1x 
B for details. 
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For a · method to be practical the computing-time 
requirements must be realistic.· The real advantage of 
tri;i.ngula r resolution for band matrices is that the 
running time for inversion of an NXN matrix is pro
portional to N1 rather than M 2N for triangular resolu
t ion. M is the half-bandwidth. For this differential 
equation N-;::::,M2 , and the ratio of running times for 
matrix inversion to triangular resolution is M 2

• Matrix 
inversion docs not preserve band structure, and the 
time to d1·tcr111ine a new set o{ roots, i.e., solve Eq. ( 40) 
with a new vector b, is proportional to N1• The time 
savings involved here are significant, e.g., a factor of 
1600 for M-;::::,40. In the next section we give an example 
which shows that the method is numerically and eco
nomically feasible. 

RESULTS 

When the differential equation is converted into a 
set of simultaneous linear equations the term v.(r1) 
[see Eq. ( 14a}l is just an algebraic operator evaluated 
at every mesh point on the grid. For H-F orbitals one 
would evaluate integrals such as S,(r2), Eq. ( 13a), 
analy tically and tabulate them at the necessary points. 

for l=O and l~ 1, respectively, and 

P 11(r ) =rR11(r ). (45) 

In Eqs. ( 43) and ( 44) we have Ei. = -2.0, E 1 =1.25, and 
Ri. = 4v'Ic2' . Tables I and II give the results for the 
first three partial waves. Here the second-order energy 

T A BLE I. Results for the l~O partial wave 
of the helium pair function.• 

Number 
of 

Mesh aizcb equations• &(l-0) 

l 361 -0. 12605 
l 576 -0.12678 
i 1141 -0 .12664 
~ 11$6 -0.12640 

t 152 1 - 0. 12<119 
19.16 -0. 12603 

-h 2401 -0 . 12591 

• Stt Eq. (4l) . T l°' ~rturb•ll lon lo I/ •,., 
~ Spadns ll<'lwt"•n arid polnu. 

Exeeution 
t ime 

(seconds on 
IBM 7094) 

3d 
16• 
27 
.52 
82 

11 5 
169 

• Numll<'r of polnl• •I which an a1111roxtmalt aolutlon to the dUTerentlal 
.,1u•lion lo o bt•lill<"d. 

d Thi• •IR 1>robltm fit• rom11letcly In rnnJom acceoa memory. 
• Thia •I• problem requln:1 •u•lll•ry dl•k •toraae. 

For a numerical method. it makes no difference to the 
analysis whether the potential term, V. (r1 ) , in Eq. (30) 
is given by HF orbitals or is just the electron-nucleus 
attraction, i.e., hydrogenic zeroth-order Hamiltonian. 
They both give rise to numerical arrays, which are 
evaluated even before the numerical analysis really 
begins. Hence, to demonstrate ou r method we pick the 
simplest pair equation, that fu r the helium atom 
starting from a hydrogenic /10• The important issue here 
is the practicality of solving the number of simultaneous 
equations which must be solved so :is to ohttLin :rn 
accurate value of a pair energy. Also, for helium we have 
a series of previous results on the energy contribution of 
each partial wave to the second-order energy. 

Consider Eqs. ( 21) and ( 27) . For au,; of S symmetry 
only those uz,,. ,1•,,,• with l=l' are nonzero, and tli...:1·- is 
independent of m. This gives the partial wave expansion, 

~ u1(r1, r2) 
u(ls2) = L P1(cos812) . 

l-<J r1r2 
( 42) 

Recall that u(ls2) must be made so that (u ( ls2) , 

B( lsals,B)) =0. The differential equations are 

(43) 

(44) 

decouples into a sum over the partial wave contribu
tions, E2(l). All integrations are done by the trapezoidal 
rule, and 

.E,(l = O) = (Uo(r1, r2) , ( 1/ru) B (ls(l) 1s(2))) 

- E1(Uo,B(ls(l)ls(2) ) ), (46a) 

&(l~ 1) = (u,(ri, r2) , ( 1/ r12) B(ls( 1) 1s(2) ) ). ( 46b) 

In Tables I and II we have given the computing times 
necessary to solve the equations a t each mesh size. We 
feel it is important to communicate the computing needs 
of a given method. Computing t imes for this method 
are quite low. For l=O we require u(r1, r2) to vanish at 
R=S and obtained the solu tions at seven different mesh 
sizes: h = t, ! , a, t, ! , t. ,'tr. To test the boundary condition 
we allowed u(r1, r 2) to vanish at R=6 and, at a mesh 
size of l, found Jh(l=O) =-0.1 2607, compared to 
-0.12605 for the sn.me condition al R = 5. With the 
exponential behavior of the function as a boundary 
condition at R-5 we obtained /~2(l=O) =-0.12607, 
while a t R-=4 one finds 1':2(l=O) = -0.1261. The 
boundary condition poses no <litr1culty. For h = t there 
are 3<11 cquatiorn11 and the entire pr11bll·111 can hl' lrnult-u 
into I he rnndom accclil\ mc111ory of an 111 M 71J<J4 nnd 
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TABLE II. Results for the 1-.1 and 2 partial 
waves of the helium pair function. 

1 

i 
• + 
i 
• n 

£. (I~ I) 

- 0.033051 • 
- 0 .030387 
-0.029073 
-0.028:133 
-0.027874 
-0.027569 
-0.027356 

-0.0056616 
-0.0049862 
-0.0046351 
-0.0044302 
-0.0043007 
-0.0042137 
-0.0041525 

• All lntrar~I• •valuated by the traper.oldal rule. 
h 1!:1e.:utlon ti~ In oecond• on an I UM 7094. 
1 Thlo .i,.. problem fill entirely In core. 
4 Thlt "'"" problem require. auxJIJary ttorall". 

Execution 
timeb 

2• 
3• 

12d 
23 
37 
so 
82 

solved within 3 sec. At h=i one requires disk storage 
to handle the 576 equations, and the execution time is 
16 sec. Table II gives the results for l = 1 and l = 2 
partial waves. The execution times are lower than those 
for the l=O case, since the exponential boundary con
dition could be imposed at R=4 for these higher partial 
waves. One can e.Kpect this behavior for the higher l 
components of pair functions. Requiring the function to 
vanish at R = 6 affected the seventh significant figure 
in the energy. 

Tables III-V give the results of extrapolating the 
values at varying mesh sizes (Tables I and II) .In 
Appendix A we derive the convergence of the solution 
of the corresponding finite difference equations, u(h), 
towards the solution of the differential equation itself, 
u. We show that 

1-0 

u-u(h) =aJi'+aJi'+ • • ·, (47) 

TADLE III. Extrapolants from finest meshes.• 

Results from 
Mesh direct h1 extrap-
sizc quadrature olants• 

-0.126J94b 
-0.12541 

-0. 126030 
-0.12537 

-0. 125905 

-0.027874 
-0.026422 

-0.027569 
-0.026449 

-0 .027356 

• -0.0043007 
-0.0038862 

h' extrap
olantsd 

-0.12531 

-0.026498 

-0.0042137 -0.003902 
-0.0038919 

-0.0041525 

•See EQ. (43) of tut. 
I> R"ulu from direct quad rature on numerical eolutlone (Tablet l 

and II) . 

• E:xtrapolanlt from P&in of 1uc:ceulve nlue1 In the preoedina column 
auumlni an A• converll"nce. 

4 Enrapolant.a from \he thrtt value1 In the Ant column auumlna an 
41 and .\• oonwrpace. 

T ABLlt IV. Extrapolants from interme<liate meshes.• 

Results from 
Mesh di rect h' extrap-
size quadrature olants• 

t -0.126642b 
-0. 12562 

1-0 i -0 .126194 
-0.12539 

n -0 . 125905 

t -0.029073 
-0.026332 

t -0.027874 
-0.026436 

n -0.027356 

i -0.0046351 
-0.0038707 

t -0.0043007 
-0.0038892 

n -0.0041525 

Jr< extrl!.!>
ol1111tscl 

-0.12526 

-0.026495 

-0 .0038996 

• See EQ. (48) or text. 
b Results Crom dirKt quadrature on numerical solution• (Tables I 

and ll) . 
• E:xtrapolanta from pairs of succe .. ive value• in the precedlna column 

assumina: an h1 converacnce. 
d E:xtrapolants from the three valueo In the fir•t col;imn a••umlni an 

A• and Jo• converience. 

where u, u(h), a2, and a, are functions of the independent 
variables and h is the mesh size. We therefore know 
exactly how an approximate solution approaches the 
exact one. Thi~ convergence property .forms the basis of 
an extrapolation technique which allows us to obtain a 
high degree of accuracy for the pair energies. We 
checked the use of Eq. (47) by comparing an actual 
solution with an extrapolated one. The agreement is 
excellent. 

The integrals for & are evaluated by the trapezoidal 
rule. The error term for quadrature by the trapezoidal 
rule can be expressed as a power series in the interval 
size, h. In Appendix A we show that the second-order 
energy, evaluated by the trapezoidal rule and with the 
finite difference solution, converges to the exact value 

TABLE V. Extrapolants from values at various meshes. 

Values usc<l in 
extrapolation Ext rapolant& 

( ~ . +) . -0 . 12574 
(!, t ,\) - 0.12512 
(~. • i) -0.12521 

l-0 

(i, t~ -0 .02564 
(t, -0 .02609 
(i, • t) -0 .02645 
(i, t. ) -0.02649 

-1 

o. i) -0. 003 786 

<t· t ) -0.003837 ( , t· i} -0 .003878 
u .. a.+l -0 .003896 
u. •· .. ·t. n> -0.003905 

• Tbe nluea at theee mffh al1De1 wue uoed In the cztrapolatLon. 
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as follows: 
Es =E2(h) +b2h2+bJi•+ • • ·, ( 48) 

where E2 (h) is the energy obtained at each mesh size. 
Wilh Eq. (48) we can derive very accurate extrap
olants. To oblain the best results one obviou!.ly extrap
olates the results from lhe finer meshes. If one simply 
wants a good estimate of a pair energy, extrapolation 
from coarser meshes may be sufficient. Tables III and 
IV give the exlrapolants based on results from the finest 
meshes, i.e., h=#, ! . ../-er and those derived from the 
results at Ii= l, 1, -fo-, respectively. The various columns 
of Tables III and IV correspond to an extrapolation 
from a successively higher-order polynomial, i.e., an h2 

and h' extrapolation. The successive columns of both 
Tables indicale lhat the extrapolation b stable and 
yields excellent results. Table V lists extrapolants de
rived from the results al various mesh sizes. We do this 
primarily lo show the kind of extrapo\ant!. one can ob
tain from results al cruder meshes. These compare well 
with the best results of Table III. This approach can 
yield useful estimates of pair correlation energies. For 
the l = 1 partial wave extrapolation from mesh sizes 
t. ·L a give -0.02645. These solutions were obtained 
with a total computing time of 17 sec. Table V also lists 
some extrapolants based on very high-order poly
nomials; e.g., use of the results at all seven mesh 
sizes implie!. an h10 extrapolation and for l = 2 gives 
.lh(l = 2) = -0.003905. Other extrapolants indicate a 
s imilar stability. 

For comparison we use the most recent results on the 
helium-atom pair function. Byron and Joachaing solved 
the pair equation variationally and also gave the contri
butions of the various partial waves to E2. They used 
two different types of trial functions. For u1(r11 r,) of 
Eq. ( 42) they chose (a) a "con.figuration-interaction" 
type expansion, 

u1(r1, r,) = L cu.,,.(r1"'r1"+r1"r2"') 
"'•" 

Xr1r2 exp[ -2(r1+r2) ], ( 49a) 

and (b) a function of the form 

£.(/) 

l-0 
l-1 
l-2 

T ADLE VI. Comparison of numerical results 
with vanntional calculntiona. 

Variational 

Caso I• Case Ilb Case III• Numcricald 

-0. 12533 -0.12532 -0. 12.501 -0.12531 
-0.026495 -0.026475 -0 .025903 -0.026498 
-0.003906 -0 .003893 -0.003531 -0.003!)()2 

•See Eq. (49b) (.JO variational paramet.ero) . 
" Stt Eq. (•9b) . Only Poaitlve p0-ra of r with 36 variational para met.era. 
• Equation (49a) Mlh io paramelen. 
d Numerical lnleiin.tlon or the partial differential ~uatlona. 

• F. W. Byron e.nd C. J. Joacha.io, Phy1, Rev. 157, 1 (1967) . 

TADLE VII. Upper bounds derived from numerical solution.• 

Mesh 
size Mb E, (l~O) M E,(l-1) M E.(1-2) 

t 7 -0.1 239 8 - 0 .02554 7 -0.003222 
i 7 -0. 1246 7 -0.02605 8 -0.003630 
t 7 -0. 1251 8 - 0.02625 9 -0.003753 
t 7 -0.1252 7 - 0.02()34 9 -0.003802 
i 9 -0.1252 8 -0.02641 9 -0.003839 

•See Eq. (50b). 
b M - I lo the order or a p0lynomial coverln11 a trlan~ular "'lion. 

Functions of type (a) are standard, and those of type 
(b) are correlated in their radial part, and they avoid 
some difficult integrals due to nonlocal potentials that 
appear when interelectronic coordinates are used . Such 
functions may seem inadmissible as trial functions, 
since they have a finite discontinuity in the first de
rivative at r1 = r2. The variational principle neverthe
less U, s~ill valid giving an upper bound. Table VI 
gives their value~ g listed as Cases I-III and our best 
extr:i.pola.nts. For Case I a function of type ( b) is 
used but ea.ch partial wave contains 30 terms with 
-l~m+n~4. In Case II functions of type lb) a.re 
again used, but with 36 terms and m+n:5 7 (no nega
tive powers of r 1 r 2). For Ca~e III they9 used a func
tion of type (a) with 20 variational parameter!.. The 
results of Table VI clearly show that the numerical 
method of finite differences, coupled with extrapolation 
based on the convergence properties of the fini~e dif
ference solution, can give results as accurate a~ ~he 
variational method. 

It is easy to derive a convenient analytical fit to the 
numerical solution by simply projecting various func
tional forms on to it. To demonstrate this we use 
functions of the type in Eq. ( 49b). These analytical 
fits can obviously provide upper bounds to&. Since the 
.solutions of Eqs. ( 43) and ( 44) are symmetric about the 
line r1=r1, consider the region r1>r2 and let x=r1 and 
y=r2 there. The numerical solution should. have the 
form10 

u(x, y) = exp[-a(x+y)}ir(x, y), (50a) 

M "' 

11'(x, y) = L L c .. ..x--"Y-1
• (SOb) 

,,,_1 n-l 

In principle a can be varied, but here it is clearly equal 
to two. One just takes t.he solution vector, multiplies it 
by exp [a(x+y) ], und puts a polynomial, 11'(X, y), 
through a selected number of point!! of the resulting 
vector. Equation (25) then give!! an 1ippcr bound. The 
equation determining the c .. ,.'s can be l!olvcd in a mutter 
of seconds. Table VII gives some of these results. At 
crude meshes one can obtain estimates that compare 

10 Sec comments below Eq. (49h) on the use of such function• in 
the variatiooal expression. One must handle the iotcgra.la contllln
iog the ldoctic energy operator properly. 
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well with the configuration-interaction results of Table 
VI; e.g., at a mesh size of t for the l = 1 and 2 partial 
waves £ 1 (l) = -0.02605 arid -0.00363, respectively, 
versus -0.025903 and -0.003531 of Table VI. An 
interesting observation is that the numerical result 
always lies below the best available estimate of the 
energy of each partial wave, so that the true value is 
apparently bracketed by the numerical and variational 
results; e.g., at a mesh size of r)r E,(l) for l=O, 1, and 2 
is -0.1259, -0.02736, and -0.00415, respectively, by 
numerical integration and -0.1252, -0.02641, and 
-0.003839 variationally. These bracket the accurate 
results of -0.12533, -0.026495, and -0.003906. This 
bracketing occurs at all mesh sizes, and the limits 
become smaller as the mesh is refined. 

NONLOCAL POTENTIALS 

Our results demonstrate that the pair equations can 
be solved by the finite-difference method if the exchange 
potentials in Eq. (30) were absent. In that case the 
differential equation is replaced by a matrix equation in 
which the matrix is banded. Such a system of equations 
can be solved quite efficiently by triangular decomposi
tion; i.e., A[Eq. (41)] is decomposed into its Land U 
factors. With the matrix A in triangular form the 
system Ax= b is solved by a forward and backward 
substitution. The lower and upper triangular matrices, 
L and U, are stored and are always available. This 
allows one to include nonlocal potentials and higher 

. difference corrections (Appendix B) by an iterative 
technique, with a small increase in computing time. 

There are two starting points. One can drop the 
exchange operator V,(r) completely [see Eqs. (13b) 
and ( 14b) J and solve the resulting equations 

AUo= b. (51) 

The term -[V,(r1)+V,(r2)]u(r1,r2) has been neg
lected for the first iteration. Write u~Uo+t.U-O, and 
the correction LlUo is approximately given by the 
equation 

A(LlUo) = [V ,(r1) + V,(r2) ]Uo, (52) 

which can be solved by a forward and backward sub
stitution since the L and U factors are available. One 
would really like to replace the nonlocal operator by a 
local operator. Various effective local potentials can 
approximate the exchange potential quite well, e.g., 
those of Slater11 and Kohn and Sham.12 Slater suggests 
that the exchange potential be represented by 

v,•(r) :m(3/ 211')[311'2n(r)]1" , (53) 
where 

N 

n(r) - 2: i/li•(r)>J!;(r), 
'-1 

11 J.C. Sh\tcr, Phya. Rev. 81, 38.~ (1051), 
1• W. Kohn and I.. J. Sham, Phy1. Rev. 140f Al IJJ ( IQ6S). For 

commc.-nl~ on t hi~ ~hoirr nf cxchnnl(c.- fl<ll rnt 1nl ice J. C. Sinter, 
Musachu~C'lt~ rn111tut,e of Tcchnnlnzy, Solid Stllte 11nrl Mnlrculnr 
Theory, Quartrrly rrogn:u RctlOrt NQ. 58, 1965 (unµublisbcd). 

and .J;,( r) satisfies an equation like the HF equations, 
but with V. of Eq. (53). The advantage is that this 
V:(r) is an algebraic operator, and one now has an 
equation like Eq. (51) with a different band matrix, A.: 

A,Uo=b. (54) 

The operator ( V ,•- V ,) is neglected for the first 
iteration. As in Eq. (52), one solves for the correction 
llil'. 

Since the facility of including exchange potentials i!I 
important, we give some estimates of the additional 
computing requirements. 1£ the problem lits in random 
access memory, a solution of the matrix equation 
requires about !M4+2M3 operations. But with the L 
and U matrices available only 2M1 operations are 
required to solve for a new root. Thus, the additional 
time per iteration to include the nonlocal potentials will 
be about 4/ ( 4+ M) of the initial time, which for M = 20 
is about 16%. With auxiliary storage and bandwidths 
that are not too large, one can prove that this percentage 
will be less than 25% and will decrease the larger the 
number of equations becomes. 

CONCLUSIONS 

We have shown that the first-order p;i.ir equations 
proposed by Sinanoglu can be solved both economically 
and conveniently by numerical integration. One of the 
advantages of the method is its simplicity, and its 
success depends on the ability to solve a large number 
of simultar.eous linear equations efficiently. One can 
obtain an approximate solution at around 2000 mesh 
points in just under 2 min on an IBM 7094. Such 
solutions would be sufficient for many purposes. With 
this number of equations one must use auxiliary disk 
storage, and a fair bit of time is spent transmitting 
information between computing units. On a machine 
with a larger random access storage but, hypothetically, 
with the same basic cycle time, such a calculation would 
take about 40 sec. The programming is simple, and the 
few integrations necessary are done by the trapezoidal 
rule. Nonlocal potentials can be treated with a small 
increase by the same iterative technique. 

We also prove how the finite difference solution must 
converge toward the exact solution as the mesh size 
goes to zero. This convergence forms the basis of a stable 
extrapolation procedure which gives an accurate value 
for the pair energy. On the other hand, very little is 
known about the convergence properties of variational 
methods. The expansion in spherical harmonics has 
some conceptual advantage, and the solutions for the 
radial functions converge nicely for all l values. The 
boHndary condition poses no difficulty. 

We chose the first-order pair function as the example 
in this paper, hut there arc other pairs that are more 
nccurnte than t hcsc first-order pairs.2 In many cases one 
expects a,;<1> to sullicc, but if one w1rnts to go tn more 
accurate pairs, nu1pcricul mcthodit arc aL;o applicable. 
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For cxnmplc, consider the pair equation which satisfies 
the equation' 

(e;+e,+Qm1;)lf1;=0. (55) 

Q is defined in Eq. (11), and 

lf<J=B(!f>,(1)4>;(2) )+12•i· (56) 

The corresponding pair energy provides a lower bound 
to the exact pair cnergy.13 One can write 

(e,+ci) 12;, = -Q( 1/r12) B (if>;( l ) <M2) )-Qm;;f'l1i· 

(S7) 

Neglecting the second term on the right-hand side, Eq. 
(57) becomes identical with Eq. (10) for a,,co. An 
obvious approach to the solution of Eq. (57) would be 
iterative; i.e., take 121,(t) and use the L and U matrices 
to solve for 61t;; due to the term Qm;,-121; [see discussion 
below Eq. (52)]. The algebra on the spherical harmonics 
may be more involved, but comparison between .a,;<o 
and a,J, Eq. (57) I will be informative. 

APPENDIX A 

An advantage of the numerical method is that one 
can derive the convergence of the numerical solution, 
u(x, y, h), towards the exact solution, u(x, y). One 
expands u(x, y), 

u(x, y) =i,(x, y, h)+Ah+Bh2+Clr+· ·., (Al) 

where A, B, C, · · •, are functions of x and y. The differ
cntial equation, Eq. (30), has the form 

J(D)1,=g(x1 y), (A2) 
where 

f(D) =-t(a2/ax2)-Ha2/ay2)+p(x, y), (A3) 

and the numerical solution, u(h), satisfies 

Lu(lt ) =g(x, y). (A4) 

The d ifference between Eq. (A2) and Eq. (A4) is the 
local truncation error, Eq. ( 39). This error contains only 
even powers of h, with zero constant term, so 

Lll(h) =[f(D)+(c!12+dh'+· .. )]u(h). (AS) 

Substituting for 1,(!z) and equating powers of h, 

f(D) tt = g(x, y) 1 

j(D)A =0, 

f(D)B-cu=O, 

j(D)C+cA =0. 

(A6) 

(A7) 

{A8) 

{A9) 

Note that Eq. (AS) has its form due to the use of 
central differences. From Eqs. (A7) and (A9) A and 
C arc zero. Thus, Eq. (A1) becomes 

u-u(h) =Bh'+Dlz'+· .. , (AlO) 

1.1 0. Sinanoglu (priv11tc c:ommunkiltion), 

The basic integrals arc of the type 

l= [ dx jJ(x,y)dy. {All) 
0 0 

Here f(x, y) contains the numerical solution, and this 
is known approximately at fixed intervals. In evaluating 
I there are two sources of error: (i) that of Eq. (A10), 
and (ii) the quadrature by the trapezoidal rule. With 
a known function f(x, y), the form of I would be 

I= T(li) +alz'+O(h6), {A12) 

where T(Jz) is the value of the integral evaluated by the 
trapezoidal rule. Use of the numerical solution, instead 
of the exact solution, to evaluate T(lz) introduces terms 
proportional to h2

, h', etc., into Eq .. (A12). The final 
form is 

APPENDIX B 

In Eq. (38) we neglected the term Ctt and retained 
just the second difference operator. Instead of going to 
very fine meshes one may include fourth difierences, 
e.g., Eq. {36), and this may give an accurate solution · 
at coarser meshes.7 Consider the fil'st term of Eq. (39), 

C=-(1/12lz2
) (oz'+ov'), (Bl) 

and write the new matrix equation 

(A+C)y=b. (B2) 

The matrix A dominates, and for a first approximation, 
yO>, one has 

AyO>=b. {B3) 

The first correction z to y<n is approximately 

Az=-CyO>. (B4) 

With the L and U matrices available, Eq. (B4) is 
easily solved. At points next to the boundary the term 
Cy<1> requires values of the function beyond the bound
aries [sec Eq. ( 36)]. One often extrapolates across the 
boundary, but there is an apparent indeterminacy at 
the boundary [sec Eq. ( 43)]. One can derive a relation 
between the point next to the boundary and the first 
external one through a cusplikc condition. In the region 
r1>r2 let x=r1, y=r2, and ;.--tO; we have 

_ ~ (a2u) _ ~ (a2u) + [(l(l+ 1) _ ~u] =O. 
2 ax2 z; 2 ay l/'+O 2y2 y) l/'+O 

(BS) 

Substitution from Eq. (35) into Eq. (BS), and with 

(au/ay)v,= I [u(x, y,+lz)-!l(x, y2-h) ]; 2/zj +O(h2), 

(B6) 

one obtains the necessary relationship. The limits 
(u/y)v-o and (tt/yl 11-o are evaluated using L'Hopital'!i 
rnlc for inclctcnnin~te fonns. 
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We have calculated the energies and quantum defects 
for the lowest eight s-cr states of 112+ using the first
order perturbation theory. In zero-order, we retain 
only the spherical component of the core potential. 
The zero-order equation has previously been solved by 
Chen1 for the lowest six s-cr states and his results for 
the ground state have been corrected by Cohen and 
Coulson,2 and by Hauk and Parr.3 The perturbation is 
simply the nonspherical part of the core potential, and 
its effects on the Rydberg orbital arc included by solving 
the first-order perturbation equation. It is well known 
that such a procedure is not sufficient for the ground 
sta te4; however it is expected to be a better approxi
mation for the highly excited Rydberg levels.6 For 
these orbitals, the spherical component of the core 
potential plays a more dominant role in determining 
the eigenvalue. 

The partial wave expansion of the core potential for 
• ll1+ -:s 

-ro-1_,0-1= -2L (r<21;,>21+1) P21(cos8)' (1) 
I 

where r<= min(R, r), r>=max(R, r), and 2R( = 2 a.u.) 

is the internuclear separation. The zero-order equation 
for the us-er states is 

[ -?(cfl/dr2) - (2/r» ]1,lin°(r) = En°.;,,.o. (2) 

If we expand the first-order wavcfunction in the same 
form as the perturbation, the first-order equation 
decouples to give a separate equation for each partial 
wave of the form 

( 
1 <fl 2l(2l+ 1) 2 t - - - + - - - En O n 1 ( 21 · r) 
2 dr2 2r2 '> ' 

= (2r<2l/r>21H)Y,nO(r) . (3) 

Both Eqs. (2) and (3) were solved by the matrix 
finite-difference method which we have discussed else
where.6·7 The first-order wavefunclion for the ground
statc included partial waves up to 2l= 16 and the re
maining states up to 2l= 12. The results for each level 
arc given in Table I along with the exact values of the 
energy for the lowest three states.8 In addition, the 
quantum defects On were found from the formula 

(4) 

TABU: I. Perturbation energies for the tis-<r RydLeri;; series of H,+ at nn internuclear separation of 2 a.u. 

" -E, -E, -E, -E, ~. 

1.018507 0.061408 0.016398 1. 096313 (J.10263) 0.3507 

2 0.350367 0.007912 0.002218 0.360.J97(0.36087) 0.355·1 

3 0.17~455 0.002396 0.000735 0.177586(0.17768) 0.3559 

4 .OIO.J041 0.001043 0.000339 0.!05-m 0.3556 

s 0.068995 0.000538 0.000177 0.069710 0.3563 

6 O.o.t9069 0.000323 0.000110 O.o.t9502 0.3563 

7 0.036687 0.000203 0.000068 0.036958 0.3563 

8 0.028456 0.000138 0 . ()()()().17 0.028641 0.356'1 
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TABLE II. Contribution of each partial wave to - &,. 

~ 2 4 6 8 10 12 

2 0.007034 0.000640 0.000150 0.000052 0.000023 0.000012 

3 0.002125 0.000197 0.000047 0.000016 0.000007 0.000003 

4 0.000922 0.000087 0.000020 0.000007 0.000003 0.000002 

5 o.ooom 0 .000045 0.000011 0.000004 0.000002 0.000001 

6 0.000285 0.000027 0.000006 0.000002 0.000001 0.000000. 

7 0.000180 0.000017 0.000004 0.000001 0.000000. 0.0 

8 0.000122 0.000012 0.000003 0.000001 0.0 0.0 

where z. is the charge on the core, and are listed in 
the last column. The contributions of the partial 
waves to the seco.nd-order energy are given in Table II 
for each excited state. 

The results of Table I clearly show the rapid con
vergence of the perturbation energies for the higher 
Rydberg levels. Even for the third state, the energy 
agrees with the exact result better than 0.13. On 
the other hand, from Table II we can see that the 
convergence of the partial wave expansion is about the 
same for each state. Within the accura~y of the nu
merical results (about five decimal places) the quantum 
defect has converged nicely to a limiting value of 0.356. 

Because the method we have used is numerical, it 
should not be difficult to apply to a more general 
diatomic molecule. The charge distribution due to the 
core electrons can be determined from an appropriate 
two-center calculation and then expanded in a partial 
wave series in the same manner as the nuclear potential. 
The resulting zero- and first-order equations are very 
much like those we have solved here for H2+. A method 

which accounts for exchange effects and yet yields a 
local potential has been developed by Goddard9 and 
thus would be particularly suited for numerical work. 
Another alternative is the use of a pscudopotential 
theory such as proposed by H azi and Rice.10 In any 
case, once a few of the higher levels have been deter
mined, the energies can be fitted to a Rydberg formula 
and the remaining members of the series calculated. 
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