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ABSTRACT 

The stability of a fluid having a non-uniform temperature 

stratification is examined analytically for the response of infinitesi-

mal disturbances. The growth rates of disturbances have been es

tablished for a semi-infinite fluid for Rayleigh numbers of 103 , 104, 

5 and 10 and for Prandtl numbers of 7. 0 and O. 7. 

The critical Rayleigh number for a semi-infinite fluid, based 

on the effective fluid depth, is found to be 32, while it is shown that 

for a finite fluid layer the critical Ra}'."leigh number depends on the 

rate of heating. The minimum critical Rayleigh number,_ based on 

the depth of the fluid layer, is found to be 1340. 

The stability of a finite fluid layer is examined for two special 

foqns of heating. The first is constant flux heating, while in the sec-

ond, the temperature of the lower surface is increased uniformly in 

time. In both cases, it is shown that for moderate rates of heating 

the critical Rayleigh number is reduced, over the value for very slow 

heating, while for very rapid heating the critical Rayleigh number is 

greatly increased. These results agree with published experimental 

observations . 

The question of stea dy, non-cellular conve ction is given quali-

tative consideration. It is concluded that, although the motion may 

originate from infinitesimal disturbances during non.-uniform heating, 

the final flow field is intrinsically non-linear. 
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I. INTRODUCTION 

When a stationary fluid develops a density stratification, an 

instability may occur which res~ts in motion of the fluid. The sus

tained form of this motion consists of vertical convective currents 

which are repeated horizontally at intervals. A number of experi

mental investigations of this motion have been carried out, usually in

volving a thin layer of fluid in the laboratory. 

The first writing on the a bove subject is due to Thomson 

(1882) who made observations of thermal convection currents i n water. 

It was noted that the convection developed a cellular structure and 

Thomson associated the entire process with the evaporative cooling of . 

the upper surface. 

Detailed measurements w ere first made by Benard (1900, 

1901) who used a finite fluid layer whose depth could be varied. The 

structure of the cells was examined visually and values of the temper

ature difference across the bounding surfaces at the onset of convec

tion were measure d and recorded. · The cell planforms were found to 

be predominantly hex agonal, but a few two-dimensional rolls were 

also observe d. 

The rate of heat transfe r, both before and a fte r the initia

tion of conv ective motion, w as mea sured by Schmidt and Milv e r ton 

(193 5). A break in the slope of the curve of heat transfer rate versus 

temperature difference was obtained, the heat transfer rate being 

higher in the convection mode than in the conduct ion mode. Malkus 

(1954) observed discrete t ransitions in the heat t r a nsfer r a t e at six 
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different values of the impressed temperature difference. These 

transitions' were attributed to changes from conduction to laminar 

convection to different modes of turbulent convection. Using schlieren 

photography, Silveston (1958) confirmed these basic modes of heat 

transfer. 

Sc,hmidt and Saunders (1938) measured the ratio of the 

length of the horizontal stde to the depth of the convection cells. They 

found this ratio to be about two. 

The different geometrical forms assumed by the convection 

cells were examined by Benard and Avsec (1938}. These authors 

also discuss the applications of thermal instability to the fields of 

astronomy and meteorology. A series of papers .on such applications 

appears in the publication edited by Miner (1947}. 

The direction of vertical motion of cellular convection in 

liquid sulphur was shown by von Tippelskirch (1956) to reverse at 

about 153 °c. Since the variation of viscosity with temperature also 

reverses at this point, it was concluded that the flow in the center of 

the cells takes place in the direction of increasing viscosity, a situa

tion first postulated by Graham ( 1933 ), 

Foster (1965b) carried out experiments in a layer of water 

which was cooled from above by surface evaporation. It was found 

that the time required for disturbances to grow, and the wave number 

of the fastest growing disturbances, were independent of the depth of 

the fluid. 

Complementary to the foregoing experimental studies, sig

nificant analytical advances have been made in understanding the 
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various physical phenomena which have been observed. The first 

analytical work was carried out by Rayleigh (1916), who showed that 

the onset of convection depended on the value of a dimensionless group 

which is now known as the Rayleigh number. A critical value of 657.5 

was obtained for this parameter for a fluid layer having two free 

boundaries. The principle of the exchange of stabilities was also 

established by Rayleigh for this case. That is, it was shown that 

disturbances must grow aperiodically in time and that marginal sta

bility corresponds to a stationary. flow pattern. 

The value of 657. 5 for the critical Rayleigh number is sub

stantially lower than the experimentally observed value of about 1700. 

Jeffreys (1926, 1928) showed that if the boundaries are considered as 

rigid, the numerical value of the critical Rayleigh number becomes 

1707. 8. This numerical value was refined by Low (1929), and the ef

fect of various types of boundary conditions was studied by Sparrow, 

Goldstein, and Jons son (1964). 

It was shown by Jeffreys (1930) that the incompressible analy

sis may be used for compressible fluids, provided the temperature 

gradient is interpreted as the difference between the adiabatic temper

ature gradient and the prevailing temperature gradient. 

The principle of the exchange of stabilities was established by 

Pellew and Southwell (1940) .for the case of two rigid boundaries and 

for the case of one rigid and one free boundary. A critical Rayleigh 

number of 1100. 7 was obtained for the latter case. 

The stability of a fluid layer which is bounded by stable regions 

of the same fluid was examined by Gribov and Gurevich ( 1957 ). For 
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small Rayleigh numbers it was found that the mixing region was small 

for upward convection only, but that for both upward and downward 

penetration the mixing region could be large . . Such penetration was 

also investigated by Veronis (1963). 

The importance of viscosity and thermal conductivity in fluid 

instability was examined by Morton (1957). The initial growth rate of 

disturbances was also calculated and was shown to depend on both the 

Rayleigh number and the Prandtl number. 

The amplitude of the velocity and temperature perturbations, 

as given by the linearized stability theory, was established by Malkus 

and Veronis (1958). This enabled the rate of heat transfer to be cal

culated and the distortions of the linearized flow fields due to finite 

amplitude effects was examined. The amplitude of the perturbations 

was also calculated by Gorkov (1958) and by Nakagawa (1960),and the 

rate of heat transfer was studied by Kuo { 1961 ). 

The variation of viscosity with temperature was considered by 

Palm {1960) who found that the critical Rayleigh number was slightly 

less than for the constant viscosity case. The various waves were al

so found to interact in such a way that hexagonal cells result. The 

stability of the maintained mode of convection has been subsequently 

examined by Segel and Stuart (1962), Segel (1962, 1965a, 1965b) and 

by Palm and Oiann (1964). 

Apart from the foregoing results, which refer to the simplest 

examples of the basic phenomena, some work has been done on the ef

fects of shear motion, rotation, and acceleration of the fluid medium 

as well as the effects of surface tension and impressed magnetic 
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fields. References to most of these works are to be found in the book 

by Chandrasekhar '(1961 ), 

The results reported above appear to form a comprehensive 

and consistent understanding of the phenomena associated with ther

mally induced fluid instability. However, certain anomalies have 

been observed from time to time which have not been explained analy

tically. 

It was observed by Graham (1933) that a columnar mode of in

stability may be established at smaller Rayleigh numbers than re

quired for cellular instability, but no numerical data was recorded. 

Measurements of the minimum temperature differences for maintained 

convection were recorded by Chandra (1938) and by Dassanayake, the 

latter results being published by Sutton ( 1950 ). These temperature 

differences were considerably smaller than the theoretical values for 

criticality. It was suggested by Sutton that the cause of this new mod~ 

of instability may be the non-linear form of the conduction tempera

ture profile during the initial stages of heating. This would be a di

rect violation of one of the basic assumptions of the analyses. 

The rate of heat transfer across a fluid layer with two rigid 

boundaries was measured by de Graaf and van der Held (1953 ), They 

observed that thermal convection: could be initiated at Rayleigh num

bers in excess of about 1400, rather than 1707. 8, and agreed with 

Sutton that the rate of heating might be important in accounting for the 

discrepancy. 

Soberman (1959) measured the critical Rayleigh number for a 

range of heating rates. He found that the heating rate did indeed 



-6-

influence the critical Rayle igh number and recorde d v alues of R as 
4 c 

,..., a gQh 0.394 
It was found that the curve R = 90. 7( 2 k ) c X,\) 

high as 3 X 10
4 

correlated his data, which was for one fixed and one free surface. 

Using schlieren photography, Spangenberg and Rowland (1961) 

recorded the temperature profile in a layer of water which was cooled 

by evaporation at the upper surface. The results show ed that the 

temperature profile at criticality was a highly non-linear function of 

the spatial coordinate and that a stationary mode of motion could be 

maintained at a cons iderably lower Rayleigh number than that cor- , 

responding to the onset of instability. 

No analytical explanation of the foregoing phenomena has been 

given, and only a few studies have been made of the apparent related 

effects. Morton (19 57 ), using approximate methods, concluded that a 

slightly non-linear temperature profile would have a negligible effect 

• 
on the critical Rayleigh number. Again, Sparrow, Goldstein, and 

Jonsson (1964) found that, for a particular type of distributed body 

heat source, disturbance s b e h a ved very differently when a non-linear 

temperature distribution existed. 

Some numerical work has been performed which sheds some 

light on the nature of the susta ined flow fields . Her r ing (1963) ac -

counted for the principal non-linear terms a nd solved the stability 

equation as an initial value problem using numerical methods. The 

steady temperature profile showed a strong boundary layering effect 

near the bounding surfaces. Fromm (1965) solved the two-dimensional 

non-linear equations by a finite difference method and obtained simi-

lar results. 
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The manifestation time of disturbances was inve.stigated nu

merically by Foster (1965a) for an initially homogeneous fluid layer 

with two free boundaries. The results showed that, for large Ray

leigh numbers, the manifestation time and the wave numbers of the 

fastest growing disturbances are independent of the fluid depth. 

Lick ( 196 5) analyzed the effect of a strong variation of tem

perature with depth in a finite fluid layer and found that, for large 

Rayleigh numbers, disturbances could grow much faster than they 

would in a uniform temperature stratification. 

The present investigation is directed towards obtaining an 

understanding of some of the latter anomalies. In particular, the role 

of a strong non-linear temperature stratification has not been fully in

vestigated. Since, in a finite fluid, the strongest temperature non

linearities occur in the early stages of heating, when the effect of the 

upper boundary is not felt, it seems desirable to investigate this ef

fect for a semi-infinite fluid field. In this way, we will obtain those 

results for a semi-infinite fluid which cannot be obtained from the re

sults for a finite fluid in the limit of the depth becoming infinite. 

We may ask how rapidly disturbances grow and what mode the 

resulting motion assumes. We would also like to know what the con

ditions are for marginal stability. Specifically, we would inquire 

whether the rate of heating influences marginal stability, and if so, to 

what extent and in what manner. Finally, we might ask why a sus

tained mode of convection has been observed at a significantly lower 

Rayleigh number than that predicted by the existing theory. 
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II. THEORY AND ANALYSIS 

1. Gove ruing Equations 

When a fluid is heated from below, the lowest layers become 

less dense due to the thermal expansion of the fluid. Thus, the buoy-

ancy force tends to drive the less dense fluid upwards and to replace 

it with the colder, more dense fluid from above. However, the mo-

tion associated with such an exchange is inhibited by the viscosity of 

the fluid, so that some critical temperature gradient must be attained 

before such a motion will begin. Thus, the analysis should account 

for the variation of density with temperature as well as the effects of 

viscosity and heat conductivity. However, since only relatively small 

temperature differences are encountered, the Boussinesq approxima-

tion will be used. This approximation states that the changes of den-

sity are relatively unimportant, except in the body force term of the 

momentum equation. Thus, the governing equations are 

>'< au' 
- ,-.. 
at' 

>:< 
+u 

>:< 
'V • u = 0 

>'< 'Vu . I * 2>:< >~ :i:i: 

=-.-'VP +\!'Vu -g[l-a.(T -T )}k 
P1 - 1 -

>'< 
aT ' >:< >:< 2 >:• 
--;:c- + u 'VT = K'V T 
at 

where we have written for the density 

( 1) 

(2) 

(3) 

It is convenient to introduce dimensionless variables at this point. 

We introduce new independent variables defined by 

* * * x = x /d y = y . Id z = z Id 

and new dependent variables defined by 

>:< t - 'IA. t - dz 



d * u=-u x 
d :i!c 

v=-v x 
d >:C 

w=-w 
x 
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2 >:C 
d p p=--
x2 P1 

The characteristic length d will be discussed later. In terms of 

these new variables, equations (1), (2}, and (3} become 

V'•u = 0 

au p 
2 

. 

at+~· 'Vu = - Vp + P\72~ - {; - P(T-T1>}k 

8T 
8t +~·'VT = 

(4} 

(5) 

(6) 
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2. Perturbation Equations 

In the initial state the transfer of heat is by conduction alone 

so that the fluid remains at rest. Furthermore, since the heating is 

uniform with respect to s .ome plane, say z = 0 , the temperature and 

pressure will, be functions of z and t only, independent of x and y • 

Then the equations governing the unperturbed state are 

u (o) = 0 

- (o) p 2 
~ = __ e + P(T(o)_T) 
8z F I 

8T(o) 8 2T(o) 

at = 

(7) 

(8) 

(9) 

We now allow this initial state to suffer a small perturbation so that 

u = ( 1) 
(I 0) u -

T = T(o) + T(l) (11) 

p = (o)+ (I) p p ( 12) 

where T(l) << T(o), p(l) << p(o), and ~(l) ,..._, T(l),p{l). Substituting 

equations (10), (11), and (12) into equations (4), (5), and (6) and 

making use of equations (7), (8), and (9), we arrive at the perturba-

tion equations. 

'i/ • )1) = 0 ( 13) 

8u (I) 

(14) 

aT< 1 ) (1) oT(o) = 'i/2T(1) 
at + w oz ( 15) 

The pressure can be eliminated from the analysis by making use of 

the identities 

'ii X'i/p = 0 'ii x ('ii x ~) 2 = 'i/('i/. ~) - 'ii ~ 
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Thus, taking the curl of equation (14) and making use of equation (13 ), 

we have 

The transverse velocity components can also be eliminated now by 

taking the scalar product of this equation with the unit vector k . The 

resulting equation, together with e quation (15 ), gives the following two 

. . (l) d. T{l) 
equations in w an . 

/92 _ _!_ ~)'i12w(l) = - 'i/2 T(l) (16) 
. \ p at xy 

2 <'.> (1) <:.T(o) (1) 
('ii - aT )T = v az w ( 1 7) 

Since we are considering an arbitrary disturbance, we can represent 

w(l) and T(l) by Fourier integrals. That is, we look for solutions of 

the form 

( 1 ) 
w {x,y,z,t) 

00
JJoo i(a x+a y) = w(z, t)e x Y daxday 

-oo -oo 

( i) 
T (x, y, z, t) 

rJOO i(a x+a y) 
= J e (z, t)e x y daxday 

-00-00 

and since we are studying the stability of the system for all wave 

numbers, equations (16) and (17) give 

(L - a
2 

- .!.. ~)(±- a
2

)w = a
2e az2 p at az2 (18) 

(-a2 -
a

2 
- ~)e = az2 at ( 19) 

where a = '"' /a 
2 
+a z' . v x y 

The analysis is most conveniently performed in terms of the 
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longitudinal velocity w, so we eliminate 9 from equations (18) and 

(19) to obtain an equation in w only. 

a 2 2 a 2 2 a a 2 2 1 a 2 8T(o) 
(-a 2 - a )( -d 2 - a - at)( -a 2 - a - P at)w = a az w (20) 

z z . z 

Once we have solved for w , 9 can be obtained from equation ( 18 ). 

Equation (20) is a partial differential equation for w in z and 

t. Furthermore, since 8T(o) I Clz will depend on z and t, the coef-

ficients are not constant and the variables do not separate. It is 

therefore desirable to introduce approximations which will facilitate 

the analysis. 
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3. Time Dependence 

If we restrict ourselves to the initial growth stages of an arbi-

trary disturbance, it will be sufficient to consider only a very short 

time interval and to inquire whether the disturbance is growing, de-

caying, or is stationary during this brief period. From solutions of 

the heat conduction equation we know that the time required for the 

temperature profile to cha~ge by a factor of l/e is dz/x.. Thus, if 

z 
we consider time intervals which are small compared with d /x., we 

may neglect the variation of 8T(o) /8z with time. That is, for t>:< << 

dz /x., or t << 1, we may replace 8T(o) /8z by dT(o) /dz , the latter 

being a function of z only. Under these circumstances, the coeffi-

cients of equation (ZO) are independent of t so that the time depend-

at ence is given by e Specifically, we write 

w(z, t) = W(z )eat 

6(z, t) = T(z)eat 

Then from equations (ZO) and (18) we have, respectively, 

Z 2 Z Z ( Z Z a ) Z dT{o) 
(D -a )(D -a -a) D -a - p W = a W dz 

2 Z Z(Z Za) a T = (D -a ) D -a - p W 

where we have introduced the operator D = d/dz . 

{21) 

(ZZ) 

(Z3) 

(24) 

The reason for choosing the time scale dz /x. now becomes ap

parent. In the present analysis, the time scale d Z / x. is much more 

meaningful t han the time scale dz l'J , which is usually used in similar 

stability calculations. 

We have succeeded in reducing the stability equation to the 

ordinary differential equation {23 ), but this equation has non-constant 
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coefficients due to the factor dT(o) /dz which is still a function of z 

in general. Although a series solution could be sought, such a solu

tion would require elaborate numerical exploration of the special 

functions so defined. Moreover, these functions would be different 

for each form of dT(o) /dz It is therefore proposed to introduce an 

additional simplification. 
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4. Conduction Temperature Profile 

In the conduction phase, the temperature T(o) must satisfy 

equation (9). As such, the profile will be as shown in Figure 1 for 

t << I after onset of heating at t = 0 • 

A most useful approximation,which was used by Li ck, is to 

represent the temperature profile by two straight line segments. For 

a semi-infinite fluid we accomplish this in the manner shown in Fig-

ure ·2. The depth d is chosen such that the area under the actual and 

approximate curves is the same. This assures that the total buoyancy 

forc e is preserved. The temperature gradient in the upper region is 

zero, while in the lower region it is given by (T ;'-T ;')/d so that 

dT(o) /dz = - (T 
0
-T

1
) = -R. Then from equations (23) and (24 ) we have 

2 2 2 2 2 2 (] 2 
(D -a )(D - a -a)(D -a - p )W l = -a RW l (25) 

(D2-a2 )(D2 -a2-a)(D2-a2-~ )W = 0 p 2 

2 
a T 1 = 

2 a T 2 = 

2 2 2 2 a 
(D -a )(D -a -- )W p 1 

2 2 2 2 a 
(D - a )(D -a --)W p 2 

(26) 

{27) 

(28) 

The length scale d , which was introduced earlier , has now been de-

fined and equation (23) has been replaced by equations (25) and (26), 

both of which have constant coefficients . Then the solutions to these 

equations will be of the forn1 W 
1 
~ e '(Z and W 

2 
~ e).z Thus, from 

equati ons (25) and (26) we have, for distinCt -y's and A. 's , 
-'(lZ -'(2Z -'(3Z '(lZ '(2Z '13Z 

w1 = C 1e +C
2

e +C
3

e +C
4

e +c
5

e +c6e (29) 

-A. 1z -A. 2 z -A. 3 z A. 1z A.
2

z A.
3

z 
= c

7
e +C 8 e +c

9
e +c 10e +c 11e +c

12
e 

{30) 
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FIGURE I - CONDUCTION TEMPERATURE PROFILE 

* z 

d --

FIGURE 2-APPROXIMATION TO TEMPERATURE PROFILE 
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where the y's and A.'s satisfy the equations 

2 2 2 2 2 2a 2 
(y -a )(y -a -cr)(y -a -p) = -a R (31) 

2 2 2 2 2 2a 
(A. -a )(A. -a -a )(A. -a - p ) = 0 {32) 

The mathematical model introduced in this section has a phys-

ical interpretation. · Replacing the actual temperature profile by two 

straight-line segments of unequal gradients is e quivalent to locating 

a heat sink along the plane z = 1. Since the temperature gradient in 

the upper region is zero, the strength of the heat sink is such that it 

absorbs all the heat approaching it from below in. the conduction phase. 

That is, when a particular conduction profile h a s been chosen and the 

associated depth d calculated, the strength of the heat sink is uniquely 

determine d. Any perturb<ation to the temperature profile will result 

in a heat flux through the plane z = 1 due to the fixed nature of the 

heat sink. 

The time dependence of the previous section is exact for all 

values of t for this mathematical model. It is only when the results 

of the analysis are appl~ed to the physical problem that the re s triction 

t << 1 must be observe d . 
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5. Boundary Conditions 

We must now define the basic boundar y conditions and, since 

the analysis has been carried out in terms o f the longitudinal velocity 

W , we must interpret them in terms of W. 

Performing the sa.me Fourier and time analyses on the ·trans-

verse velocity components and the pressure as we performed on the 

longitudinal velocity and the temperature, equations (13) and (14) give 

ia U + ia V + DW = 0 {33) 
x y 

crU = - ia p + P(D
2
-a

2
)U (34) 

x 

av = - ia p + P(D
2
-a

2
)V {35) 

y 

On the plane z = 0 we have a r igid boundary so that W 1 = 0 • Also, 

U = V = 0 , s o that from equation (33) we have the co~dition that 

DW 1 = 0. Further, since the temperature is prescribed on z = 0 

the temperature perturbation T 
1 

must vanish there. Then from 

. 2 2 2 (J 
e quation (27) we have tha t D (D -2a - p) W 1 = 0 • Thus, we have 

established the following boundary conditions. 

On z = O ; 

2 2 2 (J 
W l· = DW l = D (D - 2a - p ) W l = 0 (36) 

At the interface of the two regions we require continuity of the 

velocity, stress, and heat flux components as well as continuity of the 

temperature. Continuity of the velocity gives immediately that W 
1 

=W 
2 

on z = 1. Also, equ a tion (33) shows that DW 1 = DW 2 • Continuity of 

the tangential stresses requires that DU and DV b e continuous so that 

applying the operator D to equation (33 ) shows that D 2W 1 = D 2W 
2

• 

Equations (34) and (35) show that D
2

U and n 2 v are continuous so that 
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2 
applying the operator D to equation (33) establishes the condition 

3 3 
that D W 1 = D W 2 . Since the temperature is continuous, equation 

(24) now requires that D
4

W 1 = D 4
W 2 , and since the perturbation heat 

flux is also continuous, the same equation requires that n 5w 
1 

= 

5 D W 
2

. Then our boundary conditions at the interface are : 

on z = 1 ; 

) n n ) (W l - W 2 = (D W l - D W 2 = 0 n = 1, 2, 3, 4, 5 (37) 

For very large values of z we require that the velocity and 

temperature perturbations, as well as their derivatives, should 

vanish. That is, 

as z -+ co; 

and (38) 

The general solutions (29) and (30}. together with the bound-

ary conditions (36), {37), and (38), define an eigenvalue problem. 
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6. Solution of Eigenvalue Problem 

Equation {31) is a sixth order equation in 'I , but since only 

even powers of 'I appear, it can be considered a cubic equation in 

2 
'{ • Using the formulas £.or the solution of a cubic equation together 

with equations (31) and (32) we arrive at expressions for the 'f 1S and 

A's. 
1 

"1 = [a2 + _!_{ 1 + _!_ )cr +A+ BJ2 
3 p {39) 

1 

"2 = 
2 1 1 1 . \[3 2 

(40) [a +-(1+- )a--{A+B)+1-(A-B)] 3 p 2 2 
1 

"3 = 
2 1 1 1 . -JJ 2 

(41) [ a +-( 1 +-)a --(A+B)- i - (A-B)] 3 p 2 2 

Al = a (42) 
1 

A.2 = (a2 + a)2 (43) 

1 

A.3 = (a2 + Q. ? 
p (44) 

where A and B are defined by 

{ 
1 I I 2 3 1 2 1 4 2 a 2R 1 1 

A= -(lt-)(2--)(1--)a --a R+ [-a R - --(l+-)(2--) x 54 p p p 2 4 54 p p 
. 1/3 

(l-£)a3- 1 (l-_!_)2a6]1/2} 
p 108P 2 p 

The boundary conditions (38) and the solution (30) immediately 

require . that c 10 = c 11 = c 12 = 0 in view of the fact that the A.'s are 

all positive as defined by equations (42), (43), and {44). The remain-

ing boundary conditions (36) and (37), together with the solutions (29) 
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and (30 ), result in the following system of algebraic equations to be 

solved for the arbitrary constants. 

c 1 + c 2 + c 3 + c 4 + c 5 + c 6 = o 

2 2 2 2 2 2 2 2 2 2 
\' 1 (-y 1 -j3)C l+y 2 (y 2 -J3)C z+Y3 (y3 -J3)C3+y1 (y 1 -J3)C 4+y 2 ()' 2 -J3)C 5+ 

2 2 
y 3 ( y 3 - !3}C 6 = O 

-yl -y2 -y3 "'1 Yz Y3 -Al -Az 
e c 1+e c 2+~ . c 3+e c4+e c 5+e c 6 -e c

7
-e c

8 

-A 
-e 

3 
c9 :: 0 

-yl -y2 -y3 Y1 Yz Y3 
-y 1e c 1-y 2e c

2
-y

3
e c

3
+y 1e c

4
+y

2
e c

5
+y

3
e c 6 

-Al -Az -A3 
+A 1 e c 7+A 2e c 8+A

3 
e c

9 
= O 

2 -yl 2 -yz 2 -y3 2 Y1 2 Yz 2 Y3 
y 1 e c 1+y2 e c 2+y 3 e C 3+y 1 e c 4 +y 2 e C

5
+y

3 
e c 6 

2 -Al 2 -Az 2 -A3 
-A 1 e c

7
-A 2 e c

8
-A

3 
e c

9 
= O 

3 -yl 3 -y2 3 -y3 3 Y1 3 Yz 3 Y3 
-y 1 e c 1-y2 e C 2-y3 e C 3+y 1 e c 4+y2 e c

5
+y

3
e c

6 

-A -A -A 
+A{e 

1c 7+A:e 
2c 8+A;e 

3c
9 

= o 
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s ·-y1 s -y2 s -y3 + s 'Y1c + s 'Y2c + s 'Y3 
-yl e Cl-y2e · C2-y3e C3 'Y1 e 4 'Y2e 5 'Y3e C6 

-A -A -A 
+t..{e 1

c 7+t..le 
2

c 8+A;e 
3

c
9 

= O 

· 2 cr 
where we have written J3 = 2a + p . The necessary and sufficient 

condition that the s_olution given by equations (29) and (30) be non-

trivial is that the determinant of the coefficients of the constants in the 

above ~quations be zero. That is, we require that the following de-

terminant be zero. 

1 1 0 

'Y. 0 
l 

2 2 
0 'Y· (y. -[3) 

1 1 

2 2 
'Y· (y . -13) 

1 1 

'Y. 
1 

-A. 
1 e -e 

'Y. -A.. 
l A. .e l 

y.e 
1 l (45) 

2 'Y. 2 -A. 
1 1 y.e -A.e 

l l 

3 'Y. 3 -A . 
1 1 

y.e A.. e 
1 l 

4 'Yi 4 -A . 
l y.e -A.e 

1 l 

5 'Y. 5 -A. 
l 1 

'Y· e A..e 
l l 

where each column actually represents three columns corresponding 

to i = 1, 2, 3 • 
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The simplest way of evaluating this determinant analytically is · 

to use Laplace's theorem. This theorem states that if any m rows 

are selected from a determinant, then the value of the determinant is 

equal to the sum of the products of all the mth order minors contained 

in the chosen m rows, each multiplied by its algebraic complement. 

Let us choose the first three rows of our determinant (4S) so that 

m = 3. The number of third order minors contained in the first three 

rows is 84. However, due to the fact that three of the possible nine 

rows consist entirely of zeros, only 20 of these minors will have a 

value which is different from zero. Since these 20 minors are actu-

ally 3X3 determinants, a simple analytical evaluation is possible. 

The corresponding algebraic complements are 6 x 6 determi-

nants which can also be evaluated analytically. Taking out the expo-

nential factor appearing in each column of these 6 x 6 determinants 

leaves each one in the form 

1 1 1 1 1 1 

x l X2 X3 X4 XS x6 

2 2 2 2 2 2 
xl X2 X3 X4 XS x6 

3 3 3 3 3 3 
xl Xz X3 X4 XS x6 

4 4 4 4 4 4 
xl X2 X3 X4 XS x6 

s s s s s s 
xl X2 X3 X4 XS x6 

But this is just a Vandermonde determinant which has a know~ expan~ 

sion of n (x .-x.) . 
6:<!:i>j:<!: 1 1 J 
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That is, the value of the determinant is given by the product of all the 

differences (x.-x.} for which j <i. 
l J 

The method of solution for the eigenvalues is now apparent. 

Values of the free parameters R, a, and P are first selected. The 

y's and A.'s, and hence the determinant itself, are then functions of o 

only and the value of a is varied so that the roots of the determinant 

are located. The values of a for which the determinant is zero are 

the desired eigenvalues of the problem. Since we are interested in the 

largest growth rates, we should pursue only the algebraically largest 

eigenvalue in each case . 

Due to the complicated nature of the expressions for the y's 

and for the expansion of the determinant, it is evident that the forego-

ing procedure leads to a very complicated transcendental equation in a 

which will have to be solved numerically for each set of the parame-

te rs R, a, and P. It is the re fore convenient to evaluate equations 

(39}, (40}, and (41} as well as the determinant (45} with the aid of a 

high-speed digital computer. 

When the eigenvalues have been established, the corresponding 

eigenfunctions can also be determined. To do this~ we apply all of the 

boundary conditions (36}, (37), and (38} except one. This enables all 

of the arbitrary constants , except one, to be determined in terms of 

the one remaining undetermined constant. In this way, dropping the 

last boundary condition of equation (36} and taking c 9 as the arbitrary 

constant, we obtain the following system of equations to be solved. 

(..:. 



1 1 1 1 1 1 0 0 \ (Cl 0 

-yl -Yz -y3 Y1 Yz Y3 0 0 CZ 0 

-yl -y2 -y3 Y1 Yz '13 -/..1 -A. -A. 2 
c3 

3 
e e e e e e -e -e e 

-yl -vz -'13 Y1 Yz Y3 -/..1 -A. - A. 
A.le A.ze 

2 
c4 -A. e 3 

-'{le -yze -y3e 'lie 'I 2e '13e 3 
= 

2 -/..3 I C9 2 -'{l 2 -"z 2 -'13 2 'I 1 2 'lz 2 Y3 2 -A. l 2 -A.z 
cs 'I 1 e 'lz e '13 e 'I 1 e 'lz e Y3 e -A. 1 e -A. e A. 3 e 2 

3 -yl 3 -vz 3 -'13 3 Y1 3 Yz 3 '13 3 -A.l 3 -A.2 3 -A.3 
I 
N 

-'{ 1 e -y2 e -'13 e Y1 e Yz e Y3 e A. 1 e A. 2 e c6 -/..3 e U1 
I 

4 -yl 4 -y2 4 -y3 4 Y1 4 Yz 4 '13 4 -A.l 4 -A.z 
c? 

4 -A.3 
'I 1 e 'lz e Y3 e yle Yz e '13 e -A. 1 e -A. 2 e A. 3 e 

5 -'{ 1 s -"z 5 -y3 5 Y1 s "z 5 'i3 5 -/.. 1 5 -A.z 
cs 

5 -A.3 
-yl e -y2 e -y3 e yle Yze '13 e A.le t.. 2 e -A. e 3 
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This system can be solved for c 1 /c
9

, C 2 /c
9

, ••• , C 8 /c
9

, after 

which the velocity and temperature can be f9und from the relations 

{47) 

c9[c7 4 2 -A.lz c8 4 2 -A.zz 4 2 -A.3z] 
Tz = Z c<"-1 -f3A.1 +,-)e +C{Az-f3A.z+,-)e +(A.3 -(3A.3 +'!')e 

a 9 9 . (49) 

. 2 2 (J 
where we have set ,- = a (a +:p) . The constant c 9 , and hence the 

amplitude · of the perturbations, is undetermined in the linear theory. 



-27-

7. Marginal Stability 

In comparing the analytical results with the published experi-

mental results, the critical Rayleigh number for a finite fluid having a 

non-line.ar temperature profile will be required. Furthermore, the 

results for the semi-infinite fluid may be obtained from the results for 

a finite fluid by taking an appropriate limit, as we will show in a later 

section. For these reasons, the critical Rayleigh number will be cal-

culated for the case of a finite fluid layer. 

By critical Rayleigh number, we mean the numerically small-

est value of R for which all the Fourier compone nts of an arbitrary 

disturbance are decaying, except one. This particular wave compo-

· nent is the fastest growing, and in the critical state it is marginally 

stable . That is, it is neithe r growing nor decaying. The disturbance 

corresponding to this wave number must satisfy equation (20) but, 

since the motion is steady, we set a/at= 0. Then the stability equa-

tion becomes 

. a2 2 3 
( - - a ) w 

az 2 
2 8T(o) 

= a az w (50) 

By considering only short time intervals and replacing the continuous 

cqnduction temperature profile by two straight line segments, as be-

fore, we obtain the following two ordinary differential equations: 

2 
-a RW 1 (51) 

(52) 

The general solutions to equations (51) and (52) are 

-"Y 1 z - 'Y 2z -"Y 3 z 'Y 1 z 'Y zz 'Y 3 z 
w1 = c 1e +C 2e +C3 e +C4 e +C5e +c6 e (S3 ) 
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where the y 1s are given by 

'Y 1 = a [i -(a~)1 /3 ]1'2 
(55) 

[ ]1'2 
Y2 = a 1 + ~(l+i\f3)(a~)l/3 

. (56) 

[ I ]1/2 
'Y 3 = a 1 + { ( 1 - i \13) (a~) 1 3 (57) 

The boundary conditions must now be applied on the planes z. = O, 1, 

and C , where C is .the non-dimensional thickness of the fluid layer. 

The boundary conditions on z = 0 and z = 1 will be as before, and 

the boundary conditions on the upper surface at z = C will be the same 

as those on the lower surface at z = 0 • 

On z = O 

(58) 

On z = 1 

n n 
(W 1-W 2) = {D W 1-D W 2 ) = 0 n=l,2,3,4,5 (59) 

· On z = C 
2 2 2 

W 2 = DW 2 = D (D - 2a )W 2 = 0 (60) 

The solution (53) and (54), together with the boundary conditions (58), 

(59), and (60), yield a set of twelve homogeneous algebraic equations 

in the twelve arbitrary c onstants. The requirement that thes e equa-

tions have a non-trivial solution leads to the condition that the deter-

minant of the coefficients of the arbitrary constants be zero. That is, 

the following determinant must be zero. 



1 1 I 0 0 0 0 0 0 

(6 i) 

-'{i '{. 0 0 0 0 0 0 
l 

I 
2 2 2 22 2 1 0 0 0 0 0 0 '{ . ( '{. - 2a ) '{ . (-y . - 2a ) 
i i i i I 

- '{i - '{ i I 
I 

- a - a -a a a a 
e • . e -e -e - e -e -e -e 

I 
-'{ i '{ . I - a - a -a a a 

l a 
-'{. e '( .e I a e ;. (1-a )e - (2 - a )e - ae - (l+a)e - (2+a)e 

l l 

I 
2 -'{i 2 '{ i I 2 - a -a 2 -a 2 a a 2 a 

'Y · e '( .e -a e a (2- a )e - (2-4a+a )e -a e - a (2+a)e -( 2+4a+a )e 
I~ l l I 

3 -'{i 3 '{ i I 3 -a 2 -a 2 - a 3 a 2 a 2 a 
- '{i e '(.e I a e - a (3-a)e a(6 - 6a+a )e -a e - a (3+a )e - a (6+6a +a )e 

l 
I 

4 - '{i 4 '{ i I 4 - a 3 - a 2 2 - a 4 a 3 a 2 2 a 
'Y · e 'Y · e I -a e a (4-a )e -a (1 2-8a+a )e -a e -a (4+a)e - a ( l 2+8a+a )e 

1 l 

I 
5 - '{i 5 '{i I 5 -a 4 - a 3 · 2 - a 5 a 4 a 3 · 2 

- '( . e '( .e a e - a (5-a)e a (20 - l Oa+a )e - a e -a (5+a)e - a (20+10a+a )e 
l 1 I 

I 
- ac :..ac 2 -ac ac ceac C2e a c 0 0 I e Ce C e e 

I 

0 
I - ac -ac 2 -ac aeac ( l+aC)ea C (ZC +aC 2 )e aC 0 I - ae (1 -aC )e (2C-aC )e 

I 

0 0 I 4 -ac 4 -ac -a e - a Ce 2 ( 2, 2 S ) - ac -a a - e 4 ac 4, ac -a e -a e - a2 (a2C2- 8 )eaC 
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The first two columns of (61) each represent three columns, corre

sponding to the three values of y given by equati ons (55 )1 (56 ), and 

(57). 

The eigenvalues here are values of the Rayleigh number and 

they are obtained by iteration. For given values of the wave number 

a and the thickness C , we must vary the value of R until the de

terminant (61) is zero. 
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III. RESULTS AND DISCUSSION 

1. Behavior of Determinant 

Before discussing the nature of the numerical results, two 

special roots of the determinant (45) should be examined. The first of 

these special roots comes about through coalescing of two of the y's • 

In this case, two pairs of columns of the determinant (45) will be iden-

tical so that its numerical value will be zero. Equations (40) and (41) 

show that y
2 

will be equal to y
3 

if A = B. From the definitions of A 

and B we see that this will occur when 1 

[
l 4 2 a

2
R ( 1 )( 1 )( z) 3 1 ( 1 )

2 6]2 -a R --- 1 +- 2 -- 1 -- o - 1 -- cr = 0 • 
4 54 p p p 108P2 p 

Squaring and solving the quadratic equation for cr
3 

, we find that the 

values of IJ which create this condition are given by 

IJ = 
~ .!. P2(1+.!:.)(2-.!:.)(1-~t 3R3 P P P + 

a 2 

(1-~) -

For 1- < P < 2 the positive value of cr so defined is associated with the 

negative square root and may be expressed in the form 

a = a3R3 P(P+l)(2P-l)(Z-P) 2 1 [' 

1 (P-1)2 

1 
3 

(62) 

Here we have used cr 
1 

to distinguish this particular value of a . For 

a given Prandtl number, a 
1 

is a simple function of a and R. 

Although cr 
1 

is a root of the determinant ( 45). it is not a true 

eigenvalue of our problem. This is due to the fact that the solution 

(29) was written down under the assumption of distinct y ' s. For 
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y
2 

= y
3 

, the solution takes the form 

-ylz -yzz 'Y1z 'Y2z 
W 

1 
= C 

1 
e + ( C 

2 
+ C 

3 
z )e + C 4 e + ( C 5 + C 6 z )e • 

The corresponding determinant is not zero when a = a 1 so that a 1 is 

not a true eigenvalue. 

For a real and less than a 1 , both 'Yz and y 3 will be com-

2 
ple'x; while for a greater than a 1 , '{ 2 and y 

3 
will be real. 'Y 1 will 

always be real but, since 'Y 1
2 

may be negative, y 1 itself may be 

imaginary. The transition from y 1 being real to its becoming imag

inary will correspond to y
1 

being zero. The simplest method of find

ing the corresponding values of a is to observe that the general solu-

tion, when y
1 

is zero, is of the form 

-y2z -y3z 'Y2z 'Y3z 
= (C 1+C 4 z)+C 2e +c

3
e +c

5
e +c

6 
e (63) 

Now if this solution is to satisfy the boundary conditions, the constant 

c
1 

must not be zero. On the other hand, if W 
1 

= c
1 

is to be a solu

tion of the differential equation (25), then the coefficient of W 
1 

itself 

in that equation must be zero. That is, we must have 

22 (2a) 2 - a (a +a). a + P = -a R • .. 
This is a quadratic equation in a which has the solutions 

a = a
2 

(P+1>{.:1 f1 + . 4P ( B_ - 1 )
1 

- l} 
2 v· (P+l)2 a 4 

(64) 

As a --+ 0 , a -+ 
0 

4 
PR , ·and a is zero when a = R . As we have 0 . 

pointed out, the solution for W 1 when y 1 is zero is given by equation 

(63) rather than equation (29). · Applying the boundary conditions to 

equation (63) shows that a is not a true eigenvalue. 
. 0 
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Apart from a 
0 

and a 
1 

and the corresponding negative values, 

which are all functions of the free parameters R, a, and P, there 

is a fixed root of the determinant (45) at a ::: 0 In this case, equa

tions (43) and (44) show that A. 2 .and A. 3 coalesce. Again, the exact 

solution shows that <J == O is not a true eigenvalue, at least for arbi

trary values of the free parameters. 

Although the values of a mentioned above are not true eigen

values, it is useful to locate these roots of the determinant. In par

ticular, a 
0 

and a 1 are most useful, since they play important roles 

in the behavior of the determinant in the vicinity of the largest eigen

value. 

Since the determinant is in general complex, it might appear 

that in order to get both the real and the imaginary parts to vanish 

simultaneously we would require two parameters. That is, it might 

be supposed that a is complex and that both the real and imaginary 

parts of a have to be adjusted in order to reduce the determinant to 

zero. However, it is found that roots of the determinant (45) can be 

found by considering a .to be real. This means that the principle of 

the exchange of stabilities is valid here also, as in the case of a uni

form density stratification, but it is presented here as a numerical 

observation only, for which an analytical proof has not yet been found. 

The fact that a is real means that disturbances will grow aperiodi

cally in time, which is in accord with physical observations. 

Typical behavior of the determinant is shown in Figure 3. For 

a> a
0 

> cr 1 , all of the y 1s are real and, since the A.'s are always 

real, the determinant itself is real. For a <a 1 <a 
0 

, y
1 

is imagi-
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nary, while both y
2 

and y 3 are complex. In this case, the deter

minant is complex, but both the real and imaginary parts vanish for 

the same values of a. For cri <a< a
0

, the determinant is purely 

imaginary. Since y 2 and y
3 

as well as all the /... 1s are real, the 

imaginary nature must come from y 1 • We have already shown that 

in this range 'Yi is pure imaginary, so that, writing 'Yi ::: iy 1 , col

umns one and four of the determinant (45) become, respectively, 

1 + i 0 

0 - i)'l 

-2-2 
'Y1 <Yi +f3) + i 0 

COS )' i - i Sin 'Y l 

-'Yi sin Yi - i "Yi cos. -y 1 

-2 -2 
-y 1 cos 'Yi+ i 'Yi sin 'Yi 

-3 -3 
Yi sin 'Yi + i 'Yi cos 'Yi 

-4 . -4 . 
'Yi cos 'Yi - i 'Yi sm Yi 

-5 .-5 
-"Yi sin 'Yi - l y 1 cos "Yi 

1 + i 0 

0 + i Yi 

~i2<'Y:+f3) + i 0 

c 0 s 'Yi + i sin 'Y 1 

-yi sin-y 1 + i-yi cos -y 1 

-2 . -2 
- 'Y l cos 'YI - i 'Y i sin 'Yi 

-3 . -3 
'Yi sin 'Yi - l 'Yi cos -y 1 

-4 4 
y 1 cos y 1 + i Y-1 sin 'Yi 

-5 -5 
/'YI sin -y 1 + i 'Yi cos -y 1 

All of the other columns will have real elements only. Now the de

terminant (45) can be expressed as the sum of four determinants. In 

the first of these four determinants we enter only the real parts of 

columns one and four. Since these real parts are identical, this de-

terminant will have two identical columns, and so its nurrie rical value 

will be zero. In the second determinant we enter only the imaginary 

parts of columns one and four. Since these parts are numerically 



-36-

equal, this determinant will also be zero. The remaining two deter

minents will contain the real part of column one with the imaginary 

part of column four, and vice versa. · These two determinants are 

numerically the same and they will add, since one will look just like 

the other but with two of the rows inte rehanged and one of these rows 

multiplied by -1. The factor -1 comes about since the imaginary 

parts o{ columns one and four are opposite in sign. The factor i = 

-{:[may now be taken outside of this non-zero determinant leaving it 

with real elements. Hence the determinant (45) will be pure imagi

nary. 

For values of a less than a 1 , the real and imaginary parts of 

the determinant are of the same order and are in phase with one an

other as shown in Figure 3. 

J 
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2. Growth Rates of Disturbances 

The eigenvalues corresponding to the largest growth rates 

have. been established for Rayleigh numbers of 10
3

, 10
4

, and 10
5 

for 

Prandtl numbers of 7. 0 and O. 7. The selected Prandtl numbers cor-

respond closely to water and air at ambient temperature. 

The results for R = 105 and P = 7. 0 are shown in Figure 4. 

It is seen that a large portion of this curve falls in the region <J 1 < 

<J < cr and that a approaches a as a tends to zero. 
0 - 0 0 

Figure 5 shows the results for R = 10
4 

and P = 7. 0. Here, a 

much smaller portion of the curve falls in the range a 1 <a < a 
0

, but 

CJ still tends to a as they both become small. 
0 

For R = 10
3 

and P = 7. 0, Figure 6 shows that the growth 

rate curve lies entirely below CJ l as well as a 
0

• From this and the 

previous curves we conclude that the effect of increasing the Rayleigh 

number is to increase the growth rate of disturbances and the wave 

number at which the maximum growth rate occurs. Furthermore, the 

spectrum of wavelengths for which infinitesimal disturbances become 

unstable is increased for the higher Rayleigh numbers. 

Results for the same three Rayleigh numbers but for a Prandtl 

number of O. 7 are shown in Figures 7, 8, and 9. These curves differ 

from the previous ones in so much as the solution curve O' never ex-

ceeds the curve a 1 • However, CJ is still an upper bound and as be
o 

fore CJ and cr tend to coalesce as they approach zero. 
0 

The solution curves themselves are shown in Figure 10 where 

they are all drawn to the same scale for comparison. 

Since positive growth rates have been obtained for a Rayleigh 
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number of 10
3 

and for both Prandtl numbers, it is evident that the 

stability of the sub-layer with the non-zero temperature gradi ent has 

been decreased. The critical Rayleigh number for a fluid layer with 

a rigid boundary below and a free boundary above. is 1100. The effect 

of the interfq..ce with the upper region of fluid causes two modifications 

over the free surface case. First of all, the perturbation velocity 

need not vanish at the interface in the present case, and secondly, the 

tangential surface stresses need not be zero. The first modification 

should render the sub-layer less stable, since less restriction is 

placed on the disturbance, while the second modification should make 

the layer more stable, since a restoring stress can be exerted on the 

lower region by the fluid in the upper region. Clearly, the former ef:.. 

feet predominates in the semi-infinite case. The actual value of the 

critical Rayleigh number for our sub-layer could be determined by 

calculating the growth rates for smaller and smaller Rayleigh num

bers until the curve is reached whose maximum is tangent to the line 

a = 0. However, a more general approach exists,as was discussed in 

an earlier section. 

The wave numbers corresponding to the maximum growth 

rates are given in Table I. 

x 103 104 105 

7. 0 1. 5 3. 8 5. 4 · 

o. 7 1. 8 4. 1 6. 0 

Table I. Wave Numbers of Fastest Growing Disturbances. 
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We observe that increasing the Rayleigh number increases the 

wave number of the fastest growing disturbance,while increasing the 

'Prandtl number decreases this wave number. 

Interpreting the Prandtl numbers of O. 7 and 7. 0 as corre-

spending to air and water, respectively, we find that the ratio of the 

maximum growth rates is given by 

a la R::J 1 /3 • a w 

>!c 2 
Then the absolute growth rates, a = cr(x./d ) , will be in the ratio 

>:C 
(J (J K a a a 

---;:< = - -
(J K 

(J w w 
w 

Since K /x. R:I 75 , we find that a w 
>:< >'< 

(J la ' ~ 25 • 
a w 

That is, disturbances will grow about 25 times faster in air than in 

water for a given temperature profile. 

Finally, since we have observed that cr never exceeds a , 
. 0 

and since cr tends to zero at a = R 
1 I 4

, we conclude that a semi
o 

infinite fluid will be stable to all infinitesimal disturbances for which 

a ~ Rl/4 • (65) 

Thus, if a given disturbance has no Fourier components which violate 

the inequality (65), the disturbance will be damped out. 
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3. Velocity and Temperature Profiles 

The velocity and temperature profiles have been obtained for 

the maximum growth-rate wave numbers given in Table I. In each 

case, the curves have been normalized so that the peak amplitude is 

unity. 

Figure 11 shows the velocity curves for a Prandtl number of 

7. 0. At high Rayleigh numbers the penetration is quite small, but 

for the lower Rayleigh numbers the penetration depth is greatly in-

creased. This result may be a consequence of the wave number as -

sumed by the most prominent disturbance. The wave length of the 

disturbance is related to the wave number by the equation 

6 = d 
271" -

a 

As we pointed out in the previous section, the wave numbers corre-

spending to the maximum growth rates are smallest for the low Ray-

leigh numbers. Thus, the wave lengths for these disturbances will 

be large. 

The temperature profiles for P = 7. 0 are shown in Figure 12. 

Although the same dependence on the Rayleigh number is exhibited, 

the temperature does not penetrate the stable layer as deeply as the 

. velocity. The velocity and temperature perturbations are of the same 

sign, so that if we consider W as being positive, corresponding to 

the fluid rising against gravity, then the temperature is everywhere 

increased. In particular, at the heat source z = 0 the temperature 

gradient is rendered numerically smaller so that less heat will cross 

the surface z = 0 locally. In those regions of the fluid where the mo-



1.0 PRANDTL NUMBER=~O 

0.8 

~ .. 
>-
~ 0.6 
-
(..) 

I Ill \ \ ·- I ~ 0 
_J 

~ 0.4 

0.2 

QI,,,/' I I I I I I I L d 
0 0.2 0.4 0.6 0.8 1.0 1.2 I. 4 1.6 1.8 

DISTANCE FROM ORIGIN, z 

FIGURE 11- VELOCITY PROFILE 



1.0 
PRANDTL NUMBER =7.0 

I- 0.8 
.. 

w 
a:: 
~ 
J-: 0.6 
<t: 
a:: 

I Ill \ \ \ I * w 
a. 
~ 0.4 
w 
I-

0.2 

R=I05 

Q1r I I I I I ...........__, -- I I d 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

DISTANCE FROM ORIGIN, z 

FIGURE 12 -TEMPERATURE PERTURBATION 



-50-

tion is downward, the situation is reversed. Here, the temperature 

perturbation is negative, giving a decreased temperature profile and 

a greater local heat flux through the plane z = 0. Malkus and 

Veronis (1958) have shown that the finite amplitude effects are such 

that the net heat flux through the plane z = 0 is greater with convec

tion than with conduction alone. 

The results for the Prandtl number O. 7 are illustrated in Fig

ures 13 and 14. Comparing these with Figures 11 and 12 shows that 

the lower Prandtl number shifts the entire velocity curve towards the 

origin so that the velocity does not penetrate so deeply. However, the 

temperature curve is flattened out so that the temperature is greater 

than that for P = 7. 0, in both the region where dT/dz is positive and 

also where dT /dz is negative. In spite of this tendency for the ve

locity and the temperature penetrations to approach each other, there 

is still a much deeper velocity penetration than temperature penetra

tion. 
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4. Critical Rayleigh Number 

There is only one root of the determinant (61) which is not a 

true eigenvalue, and this occurs when R = a 
4

• Inspection of equation 

(55) shows that when this occurs, 'I l will be zero, so that two columns 

of the determinant (61) will be identical. Roots of (61) corresponding 

to CJ 1 cannot exist here, · since 'lz and '1 3 are complex conjugates for 

all values of R and a, so they can never coalesce. 

For a given wave number, an infinite set of discrete values of 

R exist which reduce the determinant (61) to zero. These correspond 

to different modes of instability and are the counterpart of the infinite 

set of growth rates encountered previously. By the definition of the 

critical Rayleigh number, we are interested in the numerically small-

est value out of this discrete set. This gives the lowest mode of in~ 

stability, whi.ch corresponds to the largest growth rates obtained 

earlier. 

For the lowest mode of instability, there is a continuous spec-

trum of Rayleigh numbers which render the determinant (61) equal to 

zero, one for each wave number. These solutions correspond to the 

points where the positive growth-rate curves cross the line (] = 0 . 

For a fixed value of R, this will occur at two different wave numbers. 

As we pointed out earlier> it is the minimum value of R with respect 

to the wave number- a that gives the critical Rayleigh number. 

A typical solution curve, for fixed C , is shown in Figure 15. 

We denote the critical value of R by R and the corresponding critic 

cal wave number by a c 
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The variation of critical Rayleigh number with C is shown in 

Figure 16, and the corresponding wave numbers are presented in 

Figure 17. The critical Rayleigh number decreases monotonically 

from a value of 1707. 8 at C = 1 to a value of 32 at C = ro. The latter 

limit corresponds to the semi-infinite fluid. The wave number cor-

responding to the critical Rayleigh number decreases almost linearly 

from a value of 3. 117 at C = 1 to zero at C = ro. 

For discussion of marginal stability of a finite fluid layer, it 

is convenient to base the Rayleigh number and the wave number on the . 

length scale h , the depth of the fluid layer. Thus, we introduce new 

parameters defined by 

h3 
>!c >!< 3 

It 
ag(T 

0 
-Tl )h 

= -R = 
d3 x \) 

h 2'Tfo a = d 
a = 11 

1 d 
€ = = c h 

Transforming the results of Figures 16 and 17 to the new parameters 

R' a I and € gives the results shown i n Figures 19 and 20. If we had 

used the length scale h instead of d, equations (51), (52), (58), (59), 

and (60) would have read 

On z = 0 

on z = € 

3 
(D

2-a2
) W 

1 
3 

{D
2 -a2

) W 
2 

...... 2 ~ 
= -a RW l 

= 0 • 

n = 1, 2, 3, 4, 5 
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on z = 1 

2 2 ~2 
W 2 = DW 2 = D {D - 2a }W 2 = 0 

where now W 1, W 2 and z are non-dimensionalized by using h in

stead of d. From the above equations, we see that the results shown 

in Figures 16 and 17 apply to the situation depicted in Figure 18{a}, 

where the plane z = C is considered movable, while the results of 

Figures 19 and 20 apply directly to the situation shown in Figure 18{b}, 

where the plane z = e: is considered movable. The latter case corre-

sponds to a moving conduction temperature profile between fixed 

boundar1es. 

Although the results of Figures 16 to 20 could theoretically be 

obtained by use of either length scale, it was found that numerical 

difficulties arose in case {b} when e: became small. These difficulties 

are related to the numerically large values of R shown in Figure 19, c 

for small e:, and lead to an indeterminate value of R for the semi
c 

infinite case. These difficulties did not arise in case {a). 

In Figure 19, the minimum critical Rayleigh number is 1340 

and occurs at e: = 0. 72. For a given method of heating, the corre-

sponding solution to the heat conduction equa tion will trace a path on 

Figure 19 which, for an initially isothermal fluid, will emanate from 

the origin. The intersection of this heat conduction curve with the 

critical Rayleigh number curve will determine the actual critical 

Rayleigh number. However, for the present, we may state that, for 

infinitesimal disturbances, 
,..... 
R ~ 1340 • 

c 
(66} 



-59-

T1* 
---------------+--z=~ 

.._ _______ z=I 

---------___..------z=O 
To* 

(a) z = ~ MOVABLE 

T1* _____ __,. _________ z=I 

----- -----t--- z=E 

--------------- z=O 
To* 

( b) z= E MOVABLE 

FIGURE IS-NATURE OF BOUNDARIES FOR FINITE FLUID LAYER 



-60-

(.) 

lo:: 108 .. 
0::: 
w 
CD 
~ 
::J 

107 z 
:r: 
(.9 

w 
_J 

~ 106 
0::: 
_J 

<! 
u 
I- 105 
0::: 
u 

103 ,___,_~_.___.~__,_~~---'-~-'----'.___._____, 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

EFFECTIVE DEPTH, E 

FIGURE 19-CRITICAL RAYLEIGH NUMBER 



-61-

7 

0 6 
0 .. 

0:: 
w 
CD 5 
~ 
:::> 
z 
w 
?i 
3: 

4 

-' 
<( 
u 3 -r 
0:: 
u 

2 

o--~~-'-~~__.---~~--~~__.~~~~ 

0 0.2 0.4 0.6 0.8 1.0 

EFFECTIVE DEPTH, E 

FI GURE 20- CRITICAL WAVE NUMBER 



-62-

IV. CO:MPARISON WITH EXPERIMENTS 

1. Review of Experimental Results 

In order that we may compare the results of the previous sec

tions with the relevant experimental results, a more detailed descrip

tion of the previously mentioned anomalies will be presented here, 

including the numerical data. 

Although Graham (1933) appears to have been the first to note 

the existence of a non-cellular m .ode of thermal convection, the first 

relevant data were published by Chandra (1938). The experiments 

performed by Chandra involved a layer of air bounded above by a 

glass plate and below by a steel plate . Below the lower surface there 

were a number of heating coils enclosed in an asbestos box. Side 

walls were erected from the upper surface so that water could be kept 

in contact with the glass. In this way, the bounding surfaces could be 

maintained at uniform, but different, temperatures while the motion 

of the fluid could be observed from above with the aid of injected 

smoke. The temperatures were measured at midpoint and as close 

to the top and bottom plates as possible by means of platinum resist

ance thermometers. 

The temperature differences measured by Chandra, which 

correspond to sustained convection, are shown in Figure 21 along 

with the linear temperature profile theory. The relation of these 

data to those for the onset of instability is unknown, since Chandra's 

experimental procedure is made clear by the following quotation from 

his publication. "In practice it was found easier to estimate the 

limiting value by first heating the bottom plate until the difference of 
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temperature was sufficient to produce motion, then allowing the metal . 

plate to cool slowly. The critical stage at which all motion had just 

ceased could then be observed, and the corresponding difference of 

temperature measured. 11 

For h s: 6 mm, Chandra observed that a columnar mode of 

instability was induced and was sustained at temperature differences 

considerably less than predicted by the classical analysis. Increasing 

the temperature difference in this range resulted only in increased 

activity of the columnar mode. For h;:: 10 mm, the instability was 

of the· cellular mode and corresponded closely to the classical pre-

dictions. For 6 mm< h < 10 mm, the columnar mode could be estab-

lished at temperature differences lower than predicted by the theory, 

while increasing the temperature difference resulted in a transition 

to the cellular mode at temperatures close to the theoretical values. 

Using essentially the same apparatus as Chandra, Dassanayake 

performed similar tests using carbon dioxide rather than air. The 

same qualitative behavior was observed. 

The experiments of de Graaf and van der Held (1953) were 

concerned with the rate of heat transfer across plane air layers. 

However, in the course of these experiments, it was noted that a 

columnar motion could be induced at layer .thicknesses of 5. 5 and 

6. 9 mm if the Rayleigh number exceeded 1400. This result has al-

ready been explained by the present analysis without further calcula-

tion. It was observed that the minimum of the curve of Figure 19 

resulted in the inequality (66 ), namely, 
,.._, 
R ;:: 1340 • 

c 



-65-

This is in close agreement with the observations of de Graaf and van 

der Held. 

Soberman (1959} measured the critical Rayleigh number for 

various rates of heating. Two fluids were used, silicon oil and mer-

cury. The fluid was placed in a cylindrical container which had heat-

ing elements below its bottom surface. The upper surface of the fluid 

was open to the atmosphere, and it was noted that a surface scum 

formed during the tests. Two fluid depths were considered, 1/2 inch 

and 1 inch. Temperatures were measured by means of two thermo-
; . 

piles which were located in the fluid at 1 /8 inch and 3/8 inch from the 

fluid surfaces for fluid depths of 1 /2 inch and 1 inch respectively. 

The computed Rayleigh numbers were based on a linear temperature 

variation across the fluid layer. Heat was applied by suddenly admit-

ting power to the heating coils, which had a small air gap between 

them and the bottom of the container to achieve uniform heating. 

Soberman correlated his results with the equation 

- (a.gQh 4)0. 394 
Rc - 90. 7 Zx\!k 

The actual experimental points are recorded in Figure 22 for future 

comparison. 

The experiments of Spangenberg and Rowland (1961} were 

carried out with a 10 cm layer of water. The water was contained in 

a rigid vessel and a cover could be placed over the surface of the 

water. Under initially isothermal conditions, the cover was suddenly 

removed. The subsequent surface evaporation caused a transient 

cooling of the upper surface. The surface temperature of the water 
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was measured using a schlieren system, while two thermopile as

semblies measured the temperatures within the fluid. The initial mo

tion of the fluid was observed to be mainly in the form of two-dimen

sional sheets of plunging fluid emanating from the free surface, but a 

few three-dimensional columns, of the type observed by Chandra, 

were also observed. Since the rate of cooling was not con trolled, 

only one set of data could be recorded for the onset of insta bility. 

This data showed that the surface temperature decreased approxi

mately linearly in time, reaching a depression of 0. 36°C after 70 

seconds, at which time the instability was first observed. At thi s 

point, the effective depth of the temperature profile was about 5 mm. 

The stability point a r ising from the foregoing data is plotted in F igure 

23(b) for future discussion. 

When the apparatus was left undistur bed for several hours, 

the motion was observed to reach a quasi-steady form. Sheets of 

cold liquid were observed to plunge a t regular intervals, the leading 

edge of each plume descending as far as the bottom of the container , 

where it broke up into intertwining filaments and then dissipated. At 

this stage, the temperature depression of the upper surface was only 

O. I 0 c and the effective depth about 2 mm. The quas i-steady motion 

p ersis t ed even when the apparatus was left undisturbed for several 

days. 
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Z. Constant Flux Heating 

The results of Soberman (1959} seem to correspond approxi-

mately to the idealized case of constant heating. Then the conduction 

phase will be described by the solution of the following problem. 

>!'(o} 
8T = x. 

Z >!<(o} 
8 T 

>!<Z 
8z 

8T>!<(o) ':' 
-k _,_ (O,t} Q = 

az .... 

-·--·-*{ } >:< 
T 

0 
{h, t } = Tl 

"'"( 0) >:< 
T (z , 0) = -·--·· 

Tl 

The solution to this problem is 

} 
z 

-·- Cl) 
>!'(o) >!< ':' >!< Qh ( z-··) Qh L 

2 T( ~ >:< 
-{2n+l) - t 

4hz 
T {z t ) = T +- 1 -- --' l k h k 

n=O 

* T(Z 
cos {Zn+ 1} Zh 

,,_ hz * 
Introduce dini.ens ionles s variables defined by t ,. = Kt , z = hz , 

T*(o} ='th T{o}. In terms of thes e variables the solution to the heat 

conduction equation becomes 

T(o)(z,t) . = T
1

+{1 -z )-

00 z 7fz 
-{Zn+ I) -

4
-t 7f 

\ 
8 

z z e cos{2n+l)-z z 
L (Zn+l) 7f 
n =O {67) 

The definition of the Rayle igh number 1s 

~ a.gQh 4 { >!<( 0) >!< >:<} 
R{t} = 1(.\Jk T {O, t )-Tl 

From this definition and equation (67} we have 
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co 2 2} 
R(t) "~Qh4 {- l: 8 

- (Zn+ 1 ) ir
4 

t 

K\lk (Zn+l}zirz 
e . '(68) 

n=O 

From the definition of the effective depth e: we have 

h I T>!<(o}(z':', t':'}dz>:< 

::'.< 
e:(t ) = 0 

Thus, using equation (67), we find 
co ' z 1fz 

\ ( - 1 }n 3 Z e - (Zn+ 1 ) -4- t 

L (Zn+ 1 }3 ir3 
n=O 

1 -

e:(t) = 
co z' z 

1 
_ \ 8 e-{Zn+l} (7f /4}t 

L z z 
n=O (Zn+ 1) 1f 

(69} 

For a given value of t , R may be calculated from equation (68) and 

e: may be calculated from equation (69). Then, as t varies from 

zero to infinity, the heat conduction equation traces a monotonically 

increasing curve on Figure 19 which varies from R = e: = 0 at t = 0 
,..., 4 

to R = (o,gQh }/ (K\lk} , E: = 1. 0 at t = co . The point at which this 

c~rve intersects the critical Rayleigh number curve gives the theo-
,..., 

retical value of R and the corresponding critical time, t • The lo-
. ' c c 

cation of this point will depend on the magnitude of the parameter 

4 ~ 
(agQh }/ (xvk} , and a value of Rc will exist for each value of this pa-. 

rameter. The resulting stability curve so obtained is shown in Fig-

- -4 
ure ZZ for critical times varying from about 4 x I 0 to infinity. The 

experimental results of Soberman are also shown in this figure. 

There is one major feature about Sobe!'man's results which 

accounts for, at least in part, the discrepancy between the theoretical 
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and experimental results . This feature involves the way in which the 

values of R were ca:lculated from the experimental data. Soberman 
c . . 

assumed that the temperature profile at criticality was approximately 

linear for all rates of heating, 'so that the overall temperature differ

ence was e 'stimated by linearly extrapolating the temperature differ-

ence between the thermopiles. As was mentioned earlier, the thermo-

piles were located 1 /8 inch and 3 /8 inch from the fluid surfaces when 

the fluid depth was 1 /2 inch and 1 inch, respectively. Thus, any 

curvature · in the temperature profile would result in an underesti-

mated value of the Rayleigh number. This effect will be particularly 

important for large values of the heating parameter, which corre-

sponds to short manifestation times, since the non-linearity of the 

temperature.profile is then more pronounced. Thus, near the upper 

portion of the curve in Figure 22, we would expect the 'experimental 

values of R to be smaller tha n the theoretical values, which is in
c 

deed the case. 

In view of the foregoing discussion, it may be concluded that 

the theoretical and experime ntal results are in agreement a nd that 

for constant flux heating, rapid rates of heating result in high critical 

Rayleigh numbers. 
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3. Uniformly Increasing Surface Temperature 

The results. of Spangenberg and Rowland (1961) show that the 

temperature of the upper surface decreased approximately linearly 

with time up to the onset of convection. Thus, treating the analogous 

case of heating from below, the conduction temperature will be given 

by the solution of the following problem. 

>!<(o) 
8T 

>'< 
at' 

= K 

T>!<(o)(O, t * ) 

>!< ( ) >!< 
T 0 (h, t ) 

::i:c( 0 ) ':c 
T (z , 0) 

2 >!< (o ) 
8 T 

= 

= 

= 

>'<2 az' 

>:C 
T 1 + 131 t 

>!< 
Tl 

>:< 
Tl 

The solution to this problem is 

* } >:C 
t > 0 

>:C 
o~ z ~ .h 

. * 2 00 * 
>:C (o) >!< >!< >!< ( z ) >!< h \' 2 . nrrz' (, 

T (z ,t ) = T 1 +1-h131t -13 1 -:X:L 33sm -h-~-e 
n=l n 'If . 

2 2 . 
n Tr K '"' - t 

hz ) 

* hz >:< 
Introduce dimensionless variables defined by t = - t, z = hz , 

K 

In terms of these new variables the above 

equation becomes 

00 2 2 
(o) ( \ 2 . ( -n 11' t) T (z, t ) = T 1 + 1-z)t - L 33 sm nirz 1-e 

n=l n Tf 

(70) 

From e quation (70) and the definitions of the Rayleigh number Rand 

the effective depth e; , we find 
5 

a.gf31h 
R(t) = 

2 
t 

K \I 

(71) 
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co 

e(t) = 1 8 ~ 1 (1 
t ~o (Zn+ 1 )\i: 4 

- e 
2 2 

-(Zn+l) rr t} (7 2) 

For a given value of t , R and. e may be calculated from equations 

(71) and (72), respectively. Then, as t varies from zero to infinity, 

the solution (70) traces a monotonically increasing curve on Figure 19 

which varies from R = e: = 0 at t = 0 to R = oo , e = 1. 0 at t = oo • 

Thus, there will be one location for each value of the parameter 

(a.gj3 1h
5

)/ (11, 
2

\J) where the heat conduction curve intersects the margi-

nal stability curve. The trace of these points is shown in Figures 23a 

-4 +l and 23b for critical times varying from about 10 to 10 • The ex-

perimental point arising from the results of Spangenberg and Rowland 

is also shown in Figure 23b. 

5 2 The analytical results show that for values of (a.gj31 h )/('Ji. \J) 

less than 10
3

, that is, for critical times greater than about unity, the 

critical Rayleigh number is independent of the heating rate. This is 

as we would expect, since for slow heating the temperature profile will 

remain essentially linear at all times. For values of the heating pa-

. 3 4 
rameter lying between about 10 and 10 , the critical Rayleigh num-

ber is slightly reduced. For large heating rates, greater than about 

4 . 
10 , the critical Rayleigh number may be considerably increased 

over the class ical value. 

The numerical values of the critical Rayleigh number and the 

associated critical time are shown in Table II for the value of the 

heating parameter relevant to the experiments of Spangenberg and 

Rowland. 
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. Experiment Present Theory Classical Theory 

,..., 
6.47Xl0

6 
2. 3 x 10

6 l.7l x l0 3 
R 

c 

>!< 
{secs) 70 20 o. 0157 t 

c 

Table II. Data for Onset of Instability in Evaporating Water. 

The analysis based on the non-linear temperature profile the-

ory gives results of the same order of magnitude as the experimental 

results. Furthermore, the remaining discrepancy can be accounted 

for qualitatively. The theory predicts the Rayleigh number and time 

at which infinitesimal disturbances will no longer be damped out, but 

which will allow one Fourier component to survive undamped. On the 

other hand, in order to observe visually a convective motion, this in-

finitesimal disturbance must have subsequently grown by two or three 

orders of magnitude. Now during the time required for •this growth, 

the temperature of the lower surface, and hence the Rayleigh number, 

continues to increase uniformly. Thus the observation of a higher 

Rayleigh number and a larger critical time than predicted by the the-

. ory is self-consistent and understandable. 
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4. Maintained Non-Cellular Convection 

So far, we have succeeded in giving an analytical explanation 

for all of the previously mentioned anomalies, except for the results 

of Chandra and Dassanayake, ·Figure 21. The successful analysis 

has been based on the theory that, due to the heating process, a non

linear temperature profile may exist in the fluid at the time instability 

first sets in. This being the case, we would not expect the initial 

mode of motion assumed by the fluid to correspond to the steady state 

mode of motion, since the temperature profile will continue to change 

due to continued conduction as well as the onset of convection • .. In 

cellular convection, on the other hand, the conduction temperature 

profile is app roxima tel y linear and steady, so that there is no tenden

cy for the average temperature profile to change after convection is 

initiated. 

Thus, on theoretica l grounds alone, we wou ld not expect the 

results of Figure 2 1 to correspond to the data prevailing at the onset 

of conv ection. This expecta tion is substantiated by the observations 

of Spangenberg and Rowland that the steady-sta te temperature differ

ence may be considerably less than the value e xisting a t the onset of 

convection • . Moreover, it w a s observed that the sustained tempera

ture gra dient w a s highly non-linear, v arying f rom a large v alue at the 

surface to approximately zero in the interior of the fluid layer. This 

being the case, we would suspect that maintained non-cellular con

vection is a n intrinsically non-linear phenomenon. To show this, we 

average the steady-s tate energy equa tion (6) ove r a horizontal pla n e . 
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II ~·'VT dxdy = II v 2
T dxdy 

Here, the integrations are taken over an average horizontal wave-

length of the flow pattern. We now express the temperature as the 

sum of a mean part and a ~luctuating part . . That is, we write 

T(x, y, z) = T(z) + 0(x, y, z) 

where 

. ff T' dxdy = T 

and 

II e dxdy = o . 

In view of the conservation of mass, the velocity will have zero hori-

zontal average. The energy balance thus becomes 

IJ d't' JJ (d
2
T'. · 2 ) J (w dz+~· 'V9)dxdy = dzz + \7 8 dxdy 

Since ~ and 9 represent fluctuating quantities in x and y , they may 

be expanded in Fourier series so that the energy balance may be sim-

plified to give 

JI w ~~.dxdy = 1Jd21:' Jl --2 dxdy , 
dz 

Using again the fact that w is a fluctuating quantity, we have 

d - d
2

T 
dz (wT) = 

dz
2 

Integrating once with respect to z , we finally obtain 

wT dT = Q 
- dz (73) 
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where Q is the constant heat flux. Equation (73) states that the sum 

of the averaged convective heat transfer and the averaged conductive 

heat transfer is a constant for all horizontal planes .in the fluid. Now 

if dT /dz varies from a numerically large value at z = 0 to zero iz:i

side the layer, then wT must vary in an equally violent manner to 

satisfy (73 ). That is, the· non-linear convective terms u · 'i7T and 

u· 'Vu are of fundamental .importance in maintained ·non-cellular con-

vection. 

It is therefore suggested that non-cellular convection is initi-

ated at a Rayleigh number equal to or greater than 1340, depending on 

the rate of heating; and that the subsequent maintained mode of con-

vection is intrinsica lly non-linear. Since it appears that a transition 

from columnar to cellular c_onvection is possible at about R = 1708, 

at least when the columnar temperature profile is not too far from be- . 

ing linear, then it is likely that columnar convection is initiated at a 

value of R . lying in the range 1340 ~ R ~ 1708. This means that the 
c c 

heating rate parameter must Iall within a certain range. The subse-

quent steady-state convection may then be a chieved at a R a yleigh num

ber w hich .is less tha n 1708, but which is a t a supercritical value for 

the sustained form of this mode of convection. Thus a reduction in 

the heating rate is permissible while still maintaining the c onv ective 

motion. Evaluation of the lower limit of the temperature difference 

for this steady state mode is outside the scope of the linear stability 

analysis. 
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V. SUMMARY AND CONCLUSIONS 

The stability of a fluid having a non-uniform and adverse tem-

perature gradient has been analyzed for the response .of infinitesimal 

disturbances. 

The following results have been established for the growth of 

disturbances in a semi-infinite fluid field. 

:>}: :i:c: 3 . 
(i) Increasing the Rayleigh number, R = [a.g(T 

0 
-T 1 )d J / K\J , 

increases the growth rate and the wave number of the fastest growing· 

disturbance and the spectrum of wave numbers of unstable disturb-

ances. 

(ii) Increasing the Prandtl number reduces the absolute 

growth rate of all disturbances, but does not affect the spectrum of. 

unstable waves. 

(iii) Disturbances for which the wave number satisfies the 

inequality a ::: R 
1 I 4 will be damped out. 

The velocity and temperature perturbations of the associated 

motion of these disturbances have certain characteristics as follows. 

(iv) The velocity and temperature perturbations both pene-

t rate the stable region of fluid more deeply at smaller values of the 

supercritical Rayleigh number. 

(v) The velocity perturbation penetrates more deeply than the 

temperature perturbation. 

(vi) Increasing the Prandtl number increases the velocity 

penetration and decreases the temperature penetration. 

We have esta blished the following results for m a rginal sta-

bility of infinitesimal disturbances. 
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(vii) For a semi-infinite fluid, the critical Rayleigh number 

:>,'< >:< 3 
[ag(T

0
-T1 )d J/x.v is 32. 

(viii) In a finite fluid layer, the effect of the rate of heating 

may be to slightly decrease the critical Rayleigh number R = 
c 

::< >:< 3 . "'"' 
[a.g(T 

0
-T 1 )h JI X.\I , or it, may be to increase Rc considerably over 

the slow heating valut:: of 1707. 8. 

(ix) The minimum value of it was found to be 1340, which is 
c 

in close agreement with experimental observations. 

The stability of an initially isothermal,finite fluid layer under 

constant flux heating was examined. The results are in agreement 

with experimentally obtained results. The principal features were 

found to be as follows. 

(x) Instability will set in for heating rates such that 
. 4 

(agQh )/(x.vk) ~ 1708. 

(xi) For 1708 < (agQh 
4

)/(x.vk) < 5500, the value of the critical 

Rayleigh number is reduced over that for the slowest possible heating 

rate which leads to instability. 

(xii) For (a.gQh 
4

) I (x.vk) > 500 , the value of the critical. Ray-

leigh number is increased and continues to increase indefinitely as 

the heating rate increases. 

A finite fluid layer whose lower surface temperature is in-

creasing uniformly with time was also studied,and the results agree 

with experim~nts. The main features for this type of heating are 

given below. 

(xiii) For heating rates such that (a.gJ3h 5 ) I (x. 2v) < 3 00 , the 

critical Rayleigh number is independent of the rate of heating. 
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5 2 
(xiv) For heating rates in the range 300 < (a.gj3h )/(x. \I)< 

16, 000 , the critical Rayleigh number is reduced over that for slow 

heating rates. 

(xv) For (a.gj3h5 )/(x. 2\I) > 16, 000, the value of the critical 

Rayleigh number is increased and continues to increase indefinitely 

as the rate of heating increases. 

The physical phenomenon of columnar instability is regarded 

as a sustained mode of thermal convection which arises from infini-

tesimal disturbances becoming unstable during time dependent heat-

ing. The steady flow field is intrinsically non-linear. 
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