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Abstract

A theory of the order-disorder transformation is developed in
complete generality. The general theory is used to calculate long
range order parameters, short range order parameters, energy, and
phase diagrams for a face centered cubic binary alloy. The theoretical
results are compared to the experimental determination of the copper-
gold system, Values for the two adjustable parameters are obtained.

An explanation for the behavior of magnetic alloys is developed.
Curie temperatures and magnetic moments of the first transition series
elements and their alloys in both the ordered and disordered states are
predicted, Experimental agreeme-nt is excellent in ﬁost cases, Itis
predicted that the state of order can effect the magnetic properties of
an alloy to a considerable extent in alloys such as Ni; Mn. The values
of the adjustable parameter used to fix the level of the Curie temperature,
and the adjustable parameter that expresses the effect of ordering on the

Curie temperature are obtained,
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Introduction

It was first proposed by Tammann! that the atoms in an alloy
may arrange themselves in an ordered structure. The first use of
x-rays to show the presence of an ordered structure was made by
Johansson and Linde?, Nix et al> used neutron scattering to show the
presence of order in alloys whose components had almost identical
x-ray scattering factors. It is also possible to use electron diffraction*
to determine the presence of order in alloys,

The experimental evidence implies the existence of an ordered
structure in which like atoms tend to surround themselves with as many
unlike atoms as possible. Consideration of the free energy leads to the
prediction that an alloy ordered at low temperatures will disorder at
high temperatures where the temperature times entropy term becomes
more important. Experimental evidence5+® also implies that there are
two kinds of ordering, long range order and short range order. If long
range order exists each type of atom migrates to a designated atomic
site forming a superlattice.

There were many early theoretical attempts?:8:%: 19 to explain
the order-disorder transformation in alloys. Bragg and Williams 1!
introduced the most famous of these theories, Their treatment con-
sidered only long range order, the AB type of superlattice, binary
alloys of stoichiometric composition, and ignored atomic interactions
other than those with first nearest neighbors., Their method was
refined and extended by Bethe 12, Peierls ¥, Chang*, Easthope ¥ and

4

others to include the short range order of first nearest neighbors, the
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AB, type of superlattice, and non-stoichiometric compositions. The
extension to non-stoichiometric compositions, however, was incorrect
as it did not predict a maximum critical temperature of long range
order around the AB; stoichiometric composition contrary to experi-
mental evidence,

Cowley !® and Fournet ! considered interactions with other than
first nearest neighbor by assuming a small but arbitrary contribution
from the second and third nearest neighbors, The contribution was
determined by those values that fit the experimental data best. Cowley's!®
theory of short range order is quite good., In extending it to long range
order, however, he erroneously considers only those atoms on a simple
cubic lattice in taking the limit of the short range order parameters, He
also errs in assuming that the superlattice sites are always available in
the same ratio as the compositions of the atoms. This assumption leads
to an incorrect dependence on composition,

The major deficiencies of the above theories are 1) insufficient
generality in treating all crystal structures and superlattices; 2) im-
proper treatment at the variations with composition; 3) incomplete
treatment of the interaction of neighbors other than the first nearest;

4) inability to treat more than two components; and 5) inability to
treat the combination and interaction of long and short range order.

Ordering in alloys can have rather dramatic effects on their
magnetic properties. As one example, the ordered stoichiometric alloy
Ni; Mn has a Curie temperature that is 600° higher than the disordered
alloy. Grabbe® has shown that ordering increases the saturation

magnetization of iron-nickel alloys with the largest increase near Ni; Fe,
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The variation in the saturation magnetization in disordered
alloys is usually explained by considering the electron concentration,
The Slater-Pauling curve !9 (Fig, 1 ) shows that this relationship is
usually valid, although there are some prominent exceptions (Co-Cr,

Co-Mn, Ni-Mn, Ni-Cr, Ni-V).

30
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) |
|
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Cr Mn Fe Co Ni
¥ ELECTRON CONCENTRATION

Fig. 1. The Slater-Pauling curve 2°

Goldman and Smoluchowski?! have considered the saturation
magnetization to be determined by the local electron concentration
rather than the average electron concentration. Smoluchoswski %
applied this idea to iron-cobalt alloys with good success, The appli-

cation to other alloy systems has not been fruitful,
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Sato? and Muto et al.?* have made theoretical studies on the
effect of order on magnetic properties without much success in develop-
ing a working theory. Bell, Lavis, and Fairburn?® have made a theo-
retical study on the equilibrium behavior of ordered magnetic alloys,
Their results are of a very qualitative nature and virtually impossible
to compare with experiment without making simplifying assumptions
that render the theory practically useless,

There has been little success in obtaining a comprehensive
theory of magnetic behavior of alloys in either the disordered or
ordered states.

The objectives of this study are 1) to derive a theory of the
order-disorder transformation in sufficient generality so that it may be
applied to any crystal structure or superlattice, multicomponent systems,
and nonstoichiometric compositions; 2) to examine the behavior and
interaction of long and short range order; 3) to determine the effect of
the interaction of neighbors other than first nearest; and 4) to explain

the magnetic behavior of alloys and how it is influenced by ordering.



Calculation of the Free Energy of an Alloy

Energy

Consider a space lattice of N sites, Divide this lattice into
sublattices of types designated by A,B,C, ... . Let H,I, or J be
dummy indices each of which may be equalto A,B,C, ... . Define
nH(nI{nJ) as the fraction of sites contained in the Hth(Ith, Jth) sub-

lattice. Since all sites are included in one or another sublattice:

'EnH=l, ZnI=l, ZnJ=1 (1)
H I J

IH

H site, where 1=1,2,3, ... . The number of I sites a distance

2 i R .
Define N as the number of I sites that are a distance ri from an

i .
HNNIH' Similarly the number of H

sites a distance T, from all I sites equals nINN;-II' Since the

number of I-H pairs at distance T must equal the number of H-I

r, from all H sites equals n

pairs at distance Ty

For example, a body centered cubic structure may be divided

into two interpenetrating simple cubic sublattices where n, = %,
nB-EJ NAA—O’ NBB— ,NAB—-8, NBA—B, NAA—E), NBB—6,
2 2

NAB=0, NBA=0’ etc,

Consider an H site, (Fig. 2) Look at all I sites at a distance



r, from this H site. Define the number of J sites a distance :
K

(k =1,2,3, ...). From these I sites and a distance r., (j =1,2,3,...
J

From the H site as N(H, i,I,k,J,j). Then by symmetry:

N(H,i,I,k,J,j) = NH,j,J,k,I,1).

Fig. 2. Relationships between distances and sites

used to define N(H,i,I,k,J,j).

The values of N(H,i,I,k,J,j) for various lattice structure and super-
lattices are given in Appendix I.

An atom of types designated by a,b,c,..., 1is located at each
site of the space lattice., Vacant sites may be considered by assuming
one type of atom to be vacancies, Let a,8, or vy be dummy indices
each of which may be eélual to a,b,€, e .' Define m, (ms,m ) as

Y
the fraction of the ath (8th, yth) type of atom., Clearly:

Zma=l,2m6=1,2m=l. (3)
Y

Let the total number of @ atoms on the H sites be given by

n,NX_ (H)



where Xa (H) 1is the probability of finding an @ atom on an H site,

Since each site is occupied

), X, (H) =1 for H= A, B, C, ... (4)
a

Since the composition of each component is fixed

Z nHXa(H) =m, for @ = a, b, ¢, . (5}
a

Let pi(BllaH) be the probability of finding a 8 atom onan I
site given that there is an @ atom on an H site that is a distance r,
1

from the I site. (Fig. 3).

Fig., 3. Relationships between atoms and sites

used to define pi(ﬁlia H).

Since each site is occupied

BB oy
a, b) Cy ces (6)
1. 2: 35 sws

), p;(BIlaH)=1  for  H,I
B a

-
]
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The total energy, E, may be calculated by considering each
atom successively as the origin and then adding the energies of all atom
pairs. The energy so calculated must be divided by 2N as each inter-

action has been counted 2N times. If E,B Y(r is the interaction

K

energy between a [ and vy | atom separated by a distance r o

_ 1 . .
Ezss ), nNX_ (H) N(H, 1,1,k,7,j)

2jka B YHIT

EB Y(rk)pi (BI|aH) pj(leozH)

The total energy may also be calculated by the classical method
of considering successively one site of each sublattice as the origin and
adding the energies of interaction of all atoms with the atom at the

origin. In this way

E=} J  m;NK O Njp (WJIED Eg (ry) (72)
kB y1J

The factor of 3 is due to counting each interaction twice.

The energy may be separated into two parts, ELRO’ the
contribution from long range order only, and ESRO the remainder,
Let

p; (BIlaH) = X (1) (1+q; (BI]aH) ) (8a)

and similarly

pj(vJVaH)=Xy(J) (1+qJ-(YJIaH)) (8b)
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The set of q; -and qJ so defined are a quantitative measure of the
short range order., They are equal to zero in the absence of short
range order, The set of X's are a quantative measure of the 1ongr
range order,

Equations (4), (6), and (8) yield:

L XgMa; (BI]aH) =0 (92)
B

and ) X (@) e (yIaH) = 0 (9b)
a

Since the number of @ -5 atom pairs at a distance r is equal

to the number of B-a atom pairs at a distance r,:

Y, ny X, (H)p; (BIiaH)N;H= Y nyX g (Dp; (@H|BI)N
I 1H

. i i ; . . .
From equation (2) nHNIH = nINHI which with equation (8a) yields:

Z nH 15X () X () [ (BI|aH) - q. (aI—I\BIJ = 0
For ‘
nHN;H XQ(H)xﬁ(I);e 0
q, (BllaH) = qi(aHIBI) (10a)

Similarly

q-j(vJIaH) =qj(aHle) (10b)
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Equations (10a,b) are also valid for the trivial case

nHVIH o (H) X}9 (I) = 0. Using equations (8a,b) in equation (7):

= p .
E = 3 ) ny X, () N(H, 1,1k, 7,§) Eg (1) Xg (DX ()
ikaByHIJ

[1+ qi(sl}aH) + qj(leaH) P (BI|aH) qj(leaH)]

The summation over @ of the second and third terms in brackets

above may be written:

7 Xy (H) |q;(BI)aH) + qj(YJlaH)]

= Z X, (H) qi(aHIBIqu(aHiYJ)J

= ZX (i)q,(8L|aH) + Zx 9;(v7 |aH) = 0
B y

where equations (9a,b) and (10a,b) have been used and the dummy
indices have been changed.

Equation (7) may now be written:

LRO SRO

where

=
Eiro=2 I W
ijka B y HLJ

H)N(H,i,I,k,J,j)E

gy k¥ M)

()X 10X

Y(J)

(11)
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Lo X BN LLK T Eg (1 )X (DX ()
ijka 8 yHIJ ’

o
ESRO" %

q;(BI[aH)q,(vI|aH) (12)

Similarly we may separate equation (7a) into two parts,

1 k
E; no=3N ), N X X (D Eg (r) (11a)
kB y1J
k
B = 30 % n Ny X (1) X, (9) qk(mﬁI)EB V) (12a)
kB yIJ

Equation (11) may be simplified considerably. Consideration of

the summations over @, j, i, and H yields: .

Y, ng ), ), N(H,i,1k,7,5) ) X, (H)
H i a

ng ), ) N(H,i,Lk,7,j)
i

1
The summation over j may be performed by first considering one

I site a distance ri from the H site, The number of J sites a

distance T from this I site and any (?) distance from the H site
is simply NI.;I‘ Now simply multiply by the number of I sites a
distance . from the H site, 1i.e. N;H'
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Equation (11) may now be written

E;po = 3N 2 o N Xg(0) X (3) Eg (r))

which is identical to equation (lla) which was calculated by the classical
method,

Next, consider the summation over k in equation (lla).
Ordinarily approximations have been introduced at this stage such as
the Bragg-Williams approximation of considering only the contribution
from the first nearest neighbors, i.e. k =1. Others have attempted
to include the effect of second nearest neighbors by assuming a small,
arbitrary contribution from them. The complexity introduced by con-
sidering other neighbors was usually assumed to be too much to handle.
This investigation was undertaken, in part, to determine if the above
approximations were indeed necessary. The development that follows
leads to the conclusion that in many cases of interest the symmetry of
the lattice is sufficient to insure that none of these limiting assumptions
need be made,

Let Nk be the number of sites that are a distance r, from an

I k
1 site,
k k
Ny = L Nfp
J
Let CIEI = Nl;I/N}._( which implies ), CI;I= 1. For each r_
there is a set of cl;l. Some of these sets J of CI;I may be identical

for different values of k, Each such group of sets shall be designated
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kn
by kn(n=1, 2, +..). The characteristic set of €11 shall be designated

by W?I. From above

), Wiy =1 (13)

The summation over k in equation (lla) now becomes:

Kk K
K _ n., n _ n n
L NG Eg(m) = L) eqp Ny Eg (=2 wh ) NP B )
k n kn % on kn

If the crystal symmetry is sufficient to insure that the number

of kth neighbors to a site is independent of the site, i.e. N? = Nk then

the summation over k in equation (1la) becomes

n n
) ¥ip 2 (14)
n
k
where EEY: Z N ® EBY(rn) = E?B equation (lla) becomes:
kn
E oo=3N o Xg (0 X (3) W EG (15)
nBy1J

The value of replacing the summation over k by the summation
over n may be seen by considering a brief example, In the face-

centered cubic AB structure there are only two sets of W?I. For
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A similar result is found for the simple cubic AB structure, tetrago-

nal AB structure, body centered tetragonal structure, face centered

cubic AB; structure and the body centered cubic AB structure

(Table 1), In the above cases the summation over n in equation (15)

is therefore over only two values of n., For the face centered tetrago-

nal AB,C structure, the summation is over three values of n (Table I).
It is interesting to compare the above example with the approxi-

mation of k = 1,2 (second neighbor) of equation (lla), For equation (lla)

the summation over k becomes:

1 2
Njp Eg,(ra) + Ny Eg. (x2)

while in equation (15) the summation over n becomes:

The mathematical complexity of the exact equation (14) is no
more complicated than using the second neighbor approximation, yet
equation (15) considers all atomic interactions.

It must be re{nembered that EéY and E%Y are the weighted

sums of all atomic interactions, while E_ (r,), E__(r;), E, (r;3),

represent the interactions at first, second, third, ... neighbor distances.
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Equation (12a) may be simplified in a manner similar to that
used in the simplification of equation (lla) above. Let r be the
smallest of T - The summation over k in equation (l2a) may be

n
written:

k
= )% qn(yJ]BI)EB + ), wr ), NnEB e, )(qk(viiﬁl)‘qn(yﬂﬁl))
a L k #n TRYR

Since IEﬁy(rkH decreases rapidly with increasing S it is
safe to assume |EBV(rkn)|< < LEﬁY(rn)i k_# n and to ignore the second
summation.This approximation is better than the usual second neighbor
approximation for three reasons:

1) This approximation is made in the short range order energy term,
while the usual approximation is made in both the long and short
range order energy terms, Usually the energy of short range
order is much less than that of long range order thus the above
error is correspondingly less,

2) In the case of a large amount of short range order 9~ 9, thereby
reducing the error, ;

3) For some structures the energy assumption is lessened. In the

face-centered cubic case the third neighbor interactions are
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regarded -small compared to the first neighbor, rather than the
second neighbor interactions,

Equation (12) may now be written:

Egpo = 3N Y n Wi Xg (M X (Ma, (yJ[ﬁI)E;Y (16)
nfBvyLJ

The model used in this development considers the order in an alloy as
a state of uniform long range order on which is superimposed over-
lapping clusters of short range order, Equation (16) would give the
value of the energy of short range order were it not for the regions of
overlap. It is convenient to define the regions of overlap as regions
that do not contribute to the energy of short range order., If f is

defined as the fraction of atoms found in the regions of overlap, and

ESRO as the actual contribution to the energy:
! . Eagwi_ n 5 n
Egpo = NO-0) ), nywy XM x (3) q (W[ AD) Eg (17)
nBylJ

It is possible to determine f by comparing the energies of an
atom in a cluster of short range order and that of an atom in a region of
overlap. In the former case the energy is ELRO + ESRO » Wwhile in

the latter it is ELRO“ Therefore, f may be written as the Boltzmann

factor:

ESRO/KT (18)
f=e

The equations obtained are completely general and permit

treating systems with many components, However, it is instructive to
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consider the order-disorder transformation in binary alloy systems.
Specific consideration will be given to lattice structures that may be
decomposed into two sublattices, such as the face-centered cubic and

body—<entered cubic systems, For the above special case equations

(15), (12) and (17) become (Appendix II).

I N{maEaa +mE  -mm AE_ + (Xa(A)~ma) (ma-Xa(B))
n . n n
;AEab(wAA wAB)} (19)
' i g At
Bsro = 2 L 0y NppX (D X (ajy —3
! N
ilJ
X_(H) ; . AE__(r))
L : 5 a i 3 ab "k’
+ ), nyN(H,i,1k,7,j) X, () X, (X, (7) gy Oy Tk
ijkHIJ
(20)
' 3 _ n n n ' ‘
Egro = Nil-f) Y, nwo X (X (7)ary AE, (21)
nlJ
h ¥ s -
where Z is over 1i,j,k >0 qIJ.uqi(aIIaJ')
Eaa = energy of an "a" atom in pure "a"
Ebb = energy of a "b" atom in pure "b"
Eab = energy of a "b" atom in pure "a'

or ener of an "a" atom in pure "b"
¥ P

Al = B ¥ 8, b)

A p(rg) = (B, (ry) + Byylry) - ZEab(ri))Ni

n —
AED, = b AE_, (z) )
n n

The above derivation is givenk in Appendix II.

- 2E
a
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Entropy

Consider the entropy contribution from the long and short range
order of all atoms that are separated by a distance r..

The number of I sites at a distance T, from an @ atom on
an H site is

i
NIH Xa(H) nHN S

The number of B atoms on these I sites is

pi(BI]aH) N;H X (H) nN .
The number of ways of arranging these B atoms on these I
sites is

i
NIH XC! (H) nHN

p, (BI|aH) N;H X ,(H) nyN

n!

wheze (]:) = n!(n.-k)!

The number of ways of arranging all 8 atoms at a distance r.
from any atom on any site is

i

N.

—l_i- IH

aHI

X, (H) nyyN

p;(B1|aH) N;H X (H) ny;N
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The number of ways of arranging the 8 atoms after the vy

atoms have been arranged on I sites is

Nj; X, (H) n N (1-py(v1]am)

HI 1
o p,(B1|aH) N} X (H)n N
The number of ways of arranging all atoms at a distance r,
from any site is:

p-1

H)nyN(1 - ) p;(vI|oH))

S v=1

W= . (22)
p, (B1|aH) Ny, X, (H)nyN

The entropy, S, is obtained from
S = KinW

where K 1is Boltzmann's constant,
In the special case of a binary alloy on two sublattices, the

entropy takes the form (Appendix III):

= KZ 170 {X (J)G[xa(x)(uq;)]

X,
X, (3) G[Xa(l)(l- %) qIJ)

)
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where

qij = qi(al‘zla.T)
G(x) = xinx + (1-x) In(l-x)

The derivation of (23) is given in Appendix III.
" sk

It is useful to obtain the form of the entropy in which q;J=q;J

for all 1.
e

The value of i is the lowest value of i which yields the
correct entropy in the limit of perfect short range order. For b.c.c.
i=l, for £.6.€6, 1 =2 , In this eases

* X [J) *

S = -Nk ), nInJ{Xa(J)G(Xa(I)(l-q;J-)> ¥ Xb(J)G(Xa(I)(l -X—iﬁth))}
o (24)

Free Energy Minimization

First consider the free energy dependence on short range order.

Using the general formula

F=E-TS

where F is the free energy, E, the energy, T the absolute tem-
perature, and S, the entropy, minimize the free energy with respect
to the short range order parameters, E 1is obtained from equation (20)
and S from equation (23). The resulting set of equations is given

below for each I, J, i:
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0 X_(7)

20E , (r) (1+qIJ) (“x AR X @ qm)
KT ¥ 2B =g _M (:r)

"X (I)qIJ) (Lo X, (D qIJ)

AE () N@,i,LEHj) dy  N@LIKH) gy

N Nk = BB = ] R X0

jkH " 1J JI
—T ) (25)

The derivation of equation (25) is given in Appendix IV,
The set of equations (25) may be solved by the following iteritive

procedure;: Let

2AE _ (r.) AE . (r.) N(TiIkH,i) o
4nD = ____ié_b___l._ ¥ Y —ab k= X_(H) : XJ(I:TI)
NkT jkH NSk T Ni; b
| N T A
Njp |-
) X_(3) .
A= 2T Y‘xb(:r)' Q=qp

Equation (25) may be written:

; (1+Q)(1+ XYQ)
1 1-XQ)(1-YQ)

IinD +

(I+XY)D+ X+ Y - /[(1+XY)D+ X+ Y]Z---*;XY(D-l)z

Solvi f : =
olving for Q Q 2XY(1-D)
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A set of qi‘], is-assumed (qJI“I = 0 is a good starting point), For a
AR, »'T;)

T , D is calculated. Next, Q is
N kT

given X, Y, and

calculated and the old value of qij is replaced by the new one, The
procedure is repeated until the calculated Q is as near to the trial Q
as desired.

It is now possible to calculate a set of qu for any given long
range order and temperature. To minimize the free energy with respect
to the long range order parameter, use the set of qh. determined above
along with the energy of equations (19) and (21) and the entropy of
equation (24). Values of the long range order parameter are assumed

and the free energy is calculated until a minimum is obtained.
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Application of the Order -Disorder Theory

The following assumptions have been made to facilitate the
calculations:
(1) Short range order parameters for shells greater than a distance
of 10th nearest neighbors are set equal to zero.
(2) To avoid the choice of numerous arbitrary constants, the
following energy values are assumed in the calculation of short range

order parameters:

i.e. the AE wvalues at first and second neighbor positions are given by
the AE values for the odd and even shells respectively., Assumption
(1) has very little effect on the results obtained below since the short
range order parameters for shells greater than 10th nearest neighbors
are small (Table II). In addition, the effects of the atoms in these
distant shells frequently cancel. Assumption (2) has little effect on the
results obtained below except perhaps for a small effect on the values of
the short range order parameters in the shells greater than 2nd nearest
neighbors, For example, if AEab(r3) # 0 there is a change in the
short range order parameters of the third shell, For [AEab(rs){ <L
]AEab(rl)l , however, the effect is not great. It therefore seems

reasonable as a first approximation to ignore AEab(r for k> 2.

1)
Use of the dimensionless quantity KT/AE;b permits the
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1

determination of AE by comparison with the experimental critical

ab
2
temperature. The remaining energy AEab will be used in the form
2 1 .
AEab/AEab = p. The behavior of an alloy system will be examined as

a function of p., A long range order parameter, S, may be defined as;

This parameter reduces to the Bragg-Williams S for stoichiometric
compositions, A short range order parameter, Ty for each shell
may be defined as:

i
a

i
Na

i =
Naa (O:qL) -~ N

a(S,Q) - N a(s: O)

i
aa(

og. =
3

0,0)

where Niaa(S,q) is the number of a-a atom pairs at distance T, with
long range order S and short range order g given by qi‘&A , qLB ,
quB and qr is the maximum short range order possible, The param-
eter os is equal to zero for no short range order and equal to one for
maximum short range order,

For structures such as face centered cubic, with ma> .25, ‘the
fully ordered structure has some a-a first neighbor pairs., The limit-

ing values of q determined above yield no a-a first neighbor pairs,

i.e, g— -1. It is therefore necessary to multiply the g wvalues
m
determined above by 3 m—b for ma> .25, This procedure gives the
a
proper q; values,

Table II shows typical order parameters for an AB; stoichiom-

etric alloy, Figures 4-6 show S, o and q/qL as a function of



26

TABLE II
1 i i i
KT/AE 1 4 Aaa 9aB 98B =
Y 1 - -.1527 -.7564 .9513
e 2 | .o0006 - .5203
3 - . 0031 . 3370
4 . 0001 - . 0671
5 - -. 0029 -.1202
6 | -.0000 - -.0911 |
7 = -. 0022 -.1308
8 . 0000 . . 0367
9 - -.0023 | -.1333
10 = -.0024 -, 1353
11 . 0000 g - L1417
1 1 - Bl 0
/s 2 .8071 |
3 .0898 |
4 .2046 |
5 -.2459 |
6 i -.0731 !
| 7 L. 0032 ;
§ : . 2269
| 9 -. 0846
! 10 . 0331
i 11 . 0666
Order parameters for a f.c.c. AB; stoichiometric

alloy for p = 0.
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T/Tt and p for various compositions and lattice structures, where
Tt is the highest temperature at which long range order exists,
Figures 7-9 show the energy as a function of T/Tt and p for various
compositions and lattice structures. Figures 10, 11, and 12 show partial
phase diagrams for different values of p, The two phase regions were
determined by the common tangent method.

In the phase diagrams the disordered regions represent alloys
with no long range order, but with a varying degree of short range
order., The A;B, AB, and AB; regions represent alloys with varying
amounts of long range order based on the respective superlattice plus
a varying amount of short range order.

For p=0, i,e, AEzab = 0, three maxima (25%, 50%, 75%)
are observed, For the case of no lattice parameter variation, two
eutectoids occur at a temperature 67.5% of the critical temperature
for the AB stoichiometric alloy (Fig. 10). For p = .025 the three
maxima are again observed, however no eutectoids occur (Fig. 1l).
For p=-.025 one maximum (50%) is observed (Fig. 12). For the
case of no lattice parameter variation, there are two peritectoids at a
temperature 89% of the critical temperature for the AB stoichiometric
alloy.

The effect of p as seen above is to stabilize long range order
for p< 0 and to stabilize short range order for p > 0, For perfect
long range order, there are many like second neighbor pairs., A
negative value of p gives this configuration a lower energy than a
positive p,

It is possible to include the effect of lattice parameter changes



28

by allowing AE'ab to be a function of composition. This effect
influences Tt through a simple shift in the temperature scale. Figs,
13 and 14 show the effect of a small linear variation in AE;.b' "I‘he
experimental phase diagram (Fig. 15) for the copper-gold system is
quite similar to the theoretical phase diagram shown in Fig. 13 for
p= 0, AE:,b = 0, The experimental phase diagram shows that it is

likely that there is a peritectoid for me, = .25 If so, a value of p

slightly less than zero would produce a eutectoid at m = .75 anda

Cu
peritectoid at me. = .25, A value of p slightly less than zero would
also give good agreement with the experimental measurements of long
range order at the critical temperature, short range order just above
the critical temperature, and energy as a function of temperature.

It is estimated that p is between -.005 and -.0l. This value
of p would represent a contribution of the even shells of ,5 to 1.0
percent of the contribution of the odd shells. The negative value of p
implies that the even shells favor like atoms as neighbors while the odd

1
shells favor unlike atoms. The value of AE_, (mCu =.5)/Kk is

determined to be 4430° K, .
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Magnetism in Alloys

Consider the magnetic properties of alloys under the molecular
field approximation. Assume the contribution to the molecular field

from a B type ion may be written:

Hﬁ(ri) = Aﬂk(ri) (1)
where A depends only on the type of ion and X\ depends only on the
distance r, from that ion.

Let o(BIl) be the relative magnetization of f ions on I sites,
The contribution to the molecular field from a 3 ion on an I site is

given by:

Hop(r) = Agh(x;) o(pD) (2)

where A[3= leI

The field acting on an « ion on an H site, H(aH), is given by

the sum of the contributions of the surrounding ions.,

H(eH) = ), Nygp;(l|aH) Hy(r) (3)
e

i
where NIH

and p.(Bl|aH) is the probability of finding a [ ion on an I site given
p;(P Y

is the number of I sites a distance :ri from an H site

an a ion on an H site,
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Let Ja' be the total angular momentum quantum number of an
a ion, 8, the Landé spectroscopic g-factor of an a ion, and KR

the Bohr magneton, Calculating o(aH) from simple statistical

mechanics:
J H(oH
U(QH) - B (g& OZ}LB (Q ) (4)
J KT
a
where BJ(x) = Z'—éI;—l coth ;é%_ﬂ x - —213: coth g_‘lfx is the Brillouin function.

The Curie temperature, Tc, may be determined by solving the set of

equations obtained in the limit ¢ — 0, T — ’I‘C.

Ja-i-l gaJaHB H(aH)
3J KT
a c

cl(aH) = c— 0 ‘ (5)

Solutions of equation (3) for some special cases are given in the

following sections.

 Case of Complete Disorder.

pi(ﬁllaH) = mg, the composition of B ions. From equations
(2) and (3):
H(eH) = ) NiH my A\ (x,) ofpl)

ipI

Z N (r,) %mﬁ Ay o(BH)
1

Where N' is the number of ith neighbors to a site. Since H(aH) is
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independent of - @, equation (5) yields:

o(BH) _

(J +1) g

&g

o(aH) = (J g,

and

H(eH) = A Z 1’1'1‘3 Api:é’ﬁ(
8

where A= z Nil(ri)_
i

Equation (5) yields:

B
ZH%A
where 6, = ETE and B[3 = Aﬁ(JBH) g

Case of Long Range Order Only.

pi(gllaH) = X (I)

P

From equations (2) and (3):

H(eH) = ), N 1) A
ipl 1 "ot %
= Z w I)A

npl

B

Jﬁ+1)/ga(J’a+l):|cr(ozH)

X(x) o(BI)

A a(BI)
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jot
where w

to a summation over n is mathematically equivalent to the trecatment

of order-disorder above. Since H(aH) 1is independent of «, cquation

(5) yields:

o (pr) _ Uptl g

o (al) (Ja+1) g,
and

H(aeH) = Z ’W?H Xﬁ(I)ABAll-[éﬁ(Jﬁ-}-l)/ga(Ja%»l)_lo‘(QI)

nPi

_ - g (o)
= 2 A ), Wi U g (3_+1)

where Wi, =) W;HAH/A and U= Zxﬁ(l)Bﬁ.
n

P

9y ©

o(aH) = T W'II-I UI olel) o — 0

O
—

In the case of two sublattices, eliminating the o's yields:

1
arc defined above and A = Z‘Mr. ) N n' The rcduction
L¥E n ~! 1
3

Eguation (5) yields:

e
T =

L

Case of Short Range Order Only.

r G
2
el 7 T = 17 XXF g
c” 2 I.UAWAA +Ug W +\/(DA“AA UBWBB) * VY Ha s

(7)

M)
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From equations (2) and (3):

H(aH) = ), Nppgmy (g (la)) Ah(;)o(p)
ipI

A Z m Ag o (B) |:1+ABOJ

where

Mg ZNiqi(Ma)k(ri)/A
p 2

Equation (5) yields:

J+1

alal) = 3KT Ag pBEm 13)!_1&B }q—— 0
or
ot % Jnlelind -
Gilg,~ T % Bl D e, T i (8)

For the case of a small amount of short range order, i.e. q(ﬁ]a) <1,

A < <1, In this case:

Ba

Tc/ = EmBBﬁ-}-Emm B,Bg) B/ZmﬁB@-{—"' (8a)
P ap P

In order to examine the affect of ordering on magnetic properties

it is necessary to know more about A, of equation (1), As an example

3

consider the first transition series of elements. It is commonly

assumed that the 3d shell is split into two subshells that are displaced
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in energy. The subshell with the lower energy states is said to contain
electrons with + spin, while the other subshell is said to contain
electrons with - spin, The difference in occupation levels of the sub-

shells gives rise to a magnetic moment., It is commonly assumed that

A[3 = Mg .J'[3 gﬁ, i.e. the molecular field is proportional to the average
magnetic moment per ion. This assumption would yield a value of
B[3 B(Jﬁﬂ) gﬁ/z It is indeed reasonable to assume that the magnetic

moment is one factor involved in the m_echanlsm producing the molecular
field, but quite liiniting to assume that it is the only ion dependent factor,
Anderson% considers the number of electrons in the 3d subshell in his
formulation of a theory of the origin of localized magnetic moments. In
this treatment his correlation Hamiltonian is proportional to g the
number of electrons in the 3d subshell. Following this reasoning the
internal field here is assumed to be a proportional to uﬁ. It has been

assumed in the derivation of equation (4) that the molecular field is

independent of my, the projection of J along the z-axis. This

assumption leads to the factor J§+1 in BB. If the molecular field is
allowed to depend on my, the values of BB would depend critically on

the assumptions made about the behavior of the molecular field. It is

assumed here that the dependence is such that the new B, is given by

B

B (9)

8- s ﬁgﬂ/z

The difference between the B, used here and the B, commonly

p B

used may be seen in Fig, 16 for ions with a filled 3d” subshell,
The important difference inbehavior occurs for those ions thathave
analmost completelyunfilled 3d subshell. The B, commonlyusedgives

p

amuchlarger contributionto the magnetic interaction fromthese ions than
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the B, used in this paper.

B8
20
Bn=2
i P
@
curve v B.= 23 (J.+1
15 |
ceurve (2) s B.=2d 1
@ B 8P
B
10 [
5 L
0 3 ! L ! \g®

0 5 1 h oo 2 %
B Fig. 16

Comparison of the values of B, commonly used

€

and the values used in this treatment,

Using equation (9) for Bﬁ yields two different values for Zm,SBﬁ

depending on whether the time average or instantaneous values OP

B, are used, For example, in pure nickel if g=2, the time average

P

value of BNi is approximately (.6) (4.4) = 2,64. The instantaneous
value of BNi is obtained by allowing only integer number of electrons.
In pure nickel approximately .6 of the ions have BNi = 4 while the

1

remaining ions have BNiz = 0 which yields BNi = ,6(4) = 2.4. In the
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following development the instantaneous value of B, will be used, In

g
addition, it is assumed that an ion with both 3d1 and 3d~ subshells

unfilled has a B=0. The number of electrons in each of the subshells

. +
# electrons in 3d_), e.g. Ni( 5

of a B ion will be represented by ﬁ(# electrons in 3d 4)

denotes a nickel ion with five 3(:'[+ electrons and four 3d electrons.

To determine the m_, for a pure element assume there is a

B

resonance of the 3d electrons. If the probability for an ion to change

from a state with u, 3d electrons is proportional to ul3, detailed

p

u =m a = u = &% e
B1 B B1 P2 Bs B3
and Fe(g) are present; in cobalt, CO(Z) and Co(g) are

5
5

the resultant values of m_, along with the values of J,u,g,B,ny, T , and

¢ ¢’

0p. It is assumed that the g values for each ion species of an element

m

balance requires m In iron, Fe( g )s

Fe(>),

present; and in nickel, Ni(Z) and Ni(i) are present., Table III gives

are the same and equal to the experimental value for that element, B
is calculated from equation (9). The saturation moment in Bohr

magnetons, ng, is given by:
n = Z m ] 10

The agreement with the experimental values is excellent., 6,
is calculated from equation (6).

Since the values of 6, are so close together it seems that the
differences in structure and lattice parameter are relatively unimpor-
tant in determining the Curie temperature and perhaps other magnetic
properties, A further investigation was therefore undertaken to explore

the possibility that the arrangement of atoms is a dominent factor in

determining the magnetic properties of alloys,
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Table III
1 2 2
s m J u (exp) B n nylexp) | T exp| ©
Species g p . - c 0
5
Fe(3) | 2/17 1 3 | 2.070 | 6.43
Fe(;) | 3/7 | 3/2 | 2| 2.070 |6.43 | 2.218| 2.218 | 1043 | 227
4

Fe(3) 2 1/2 3 | 2.070 0
Co(z) 3/7 | /2 | 4 | 2170 | 471

1.705 | 1.714 | 1403 232
Co3) | 4/7 | 1 3 | 2170 | 7.06
Ni(D) | 4/9 | o0 5 | 2.190 0

.6083| .604 631 236
Ni(}) | 5/9 | V2 | 4| 2190 | 4.80

" Values of m,J,u,g,B,n,, T, and 6, for the first
series transition elements

m = composition B given by equation (9)
J = ionic spin n, = saturation moment given by
u = number of 3d electrons/atom apEsion. (109
g = Landé g factor ’I‘C = Curie temperature

1 C alculated from
M.I.T. Press, 1967, p.22,

ol
(=]

0o given by equation (6)

in D, H., Martin, Magnetism in Solids,

ZR. M, Bozorth, Ferromagnetism, D, Van Nostrand Co., 1951,
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Let T be any element in the first transition series, Let tT be
the average number of electrons in the 3d subshell of a T ion with a

filled 3d” subshell. For example, pure nickel contains Ni(;) and

Ni(i) ion species in the ratio of 4/9: 5/9 and bags = %g Similarly,
_ 24 y _12 : 5 5 e S s
tCo = For iron tFe =% since only Fe(3) and F‘e(z) have a filled

3d+ subshell. For manganese only Mn(g) exists and tMn= 2. Let =z
be any element that is able to contribute bz electrons to the 3d sub-

shell., The average number of electrons in the unfilled 3d subshell is

where M, and m_ = are the compositions of the respective elements
!
and Z is over those ions with filled 3d' subshells.

But this average number of electrons is also given by

L s s
g
Therefore
), mg ug = ), mpto+ ) m b (11)
B T t

Use of equations (6), (9), (10), and (11) along with the knowledge
of the electron distribution of an impurity ion as it enters a host lattice
allows calculation of n, and TC/GO in the alloys of> the elementg of the
first transition series. The electron distribution of an ion is frequently

dependent upon its surroundings. Below it is assumed for simplicity
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that only first nearest neighbors determine the electron distribution,

Magnetic Properties of Disordered Alloys,

A list of transition alloy behavior in the disordered case follows.
A comparison of the predicted and observed behavior is given at the end
of this section, When necessary 0, is assumed to be a weighted

average of the values in Table III,
Ni with Cu, Zn, Al S,, Sb, Cr, and V.
In all cases the impurity contributes z electrons per atom to

the alloy. If 5/9 electrons per atom go into the 4s band bz= z-5/9.

Equation (11) yields:

40
5m + 4m == mg. +(z-5/9)m
Ni(g) Ni(i) 7 T 2
Since m + m =m.,.=1l-m , m L = 5/9 - zm_, equation
NN N O 2N 2

(10) yields
n, = .608 - 1,095 zm

This simple case was first explained in a similar manner by Stoner, 2¢

Equations (6) and (9) yield:

TC/GO = 2.67 - 4,80 zm,_
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The linear behévior of Tc was first noted in experiments by Marian.#
A satisfactory explanation has not been given until this paper. The
values of z that best fit the experimental curves of n, and Tc/@

0

are given in Table IV, Comparison with experiment is given in Fig.17.

Table IV

element z

Zn

Si
Sb

Number of electrons element

contributes to a nickel alloy.
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Ni with Co
Equation (11) yields:

5m 5 + 4m 5 + 4m + 3m =
Ni(s) Ni(4) Cof

Since

If gNi = Eco it would be possible to calculate n, from equation (10),

: = 5 11 . s

i.e. ng= g/2[9 Mo+ mCo] , but since gNi;é 8co it is necessary

to make one further assumption to calculate n;, and Tc/e . Assume
0

simply that cobalt added to nickel enters the lattice as CO(Z) and

similarly nickel added to cobalt enters the lattice as Ni(5

4). Therefore
m 5 = Mol me < 7/16
Co(})
m o o= my mCo’7/16
Ni(5)
4
The limits are determined by the condition m 20, m =0
e 5
Ni(Z) Co(3)

Equation (10) yields:
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<
608 + 1.102m m 7/16

613 + 1.092.mC0 m

Equations (6) and (9) yield:

2.67 + 4.78mc0 Co

Tc:/e0 -

315 # 2'30mCo

Comparison with experiment is given in Fig, 18,

Ni with Fe

In the case of iron added to nickel, the iron atoms enter the
nickel lattice as Fe(g), the electron spin configuration most like nickel.
If an iron ion has two or more iron nearest neighbors, Fe(g) transforms

5 . 5 Bl & 5 ' g
to Fe(z) such that the ratio of Fe(3) to Fe(z) is 2/5: 3/:>. This ratio
is determined by the condition that the number of electrons in the un-

filled subshell of each ion species be equal, If an iron ion has six or

5
2)'

an iron ion has eight or more iron nearest neighbors, it transforms to

more iron nearest neighbors, all of the Fe(5) transforms to Fe( If
g 3

Fe(g).

Let fn be the probability that n or more nearest neighbors are
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iron. The com@posi’cions of the iron ion species are:

3 2
m = m == f,= =%
Fe(5) Fe( 5 5 )
3 2
m =m —f2+—f6—fs)
Fe(5) Fe(S 5
2
m =m fa
Fe(d) Fe
Equation (11) yields:
. 2 ey 2 -
66 & Ry €F ML, Urfy) — pRb M —ia)
N1(4)

Equation (10) yields:

n, = .608 + 2,119 mp - .036mFe f, - .OZ‘]:JmF
Equations (6) and (9) yield:
T, fo, = 2-67+6.64mp, -2.88mp, £, - 1.92mp f; -

It is interesting to observe (Fig.19) the effect on 'I'C

6 =597 mp,_fg

Fe

4.5Im_, fg

Fe

/0 of changing
0

the assumptions made above about the iron ion species present. Curve

@D shows the above equation for Tc/e . Curve (@
0

shows TC/GQ under

the assumption that Fe(s) transforms as above with one or more iron
P 3

nearest neighbors, Curve (3) shows Tc/e under
0

5 : ,
Fe( transforms as above with three or more iron

3)

the assumption that

nearest neighbors,

Comparison with experiment is given in Figs.20 and 21,
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Ni with Mn

Manganese enters the nickel lattice as Mn(g). Since B 3,18,

=2.,12, and B =6,74., If a manganese ion has one manganese

g
Mn Mn(s)

- nearest neighbor it changes to Mn(g). If it has three or more
manganese nearest neighbors it contributes four electrons per atom to
the alloy. Of these electrons, 5/9 electrons per atom go into the 4s

band. Equation (11) yields:

m Mn‘

—im -2m
5,7 9 Ni Mn

Ni(})

From above the compositions of the manganese ion species are:

m = m (1-1,)
Mn(fz)) 5 '
m = m, . (f; =5)
Mn(g) Mpn'l 3

Equation (10) yields:

n, = .608 + 2.572 m,, - 6.882m,, f-.07m f

Equation (6) and (9) yield:

Tc/90= 2.67 + 4,07 mMn-lé. 34mMnf1-6.93 mMnf3

It is again interesting to observe (Fig.22) the effect on n, of
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changing the aséumptions made above about the manganese ion species
present, Curve () shows the above equation for n,. Curve (2 shows
n, under the assumption that Mn(g) does not form, but instead man-
ganese ions surrounded by one or more manganese ions contribute four
electrons per atom to the alloy. Curve (3) shows n, under the assump-
tion that Mn(g) does not transform until it has four or more manganese
nearest neighbors,

Comparison with experiment is given in Figs.23 and 24.

The iron atoms enter the cobalt lattice as Fe(g), Fe(‘;), and

4, . ’ . .
Fe( l) in the ratio of TR Equation (11) yields:
m oy
Fe(S) 11 "'Fe
3
m = == i
Fe(g) 11 " Fe

™4 711 e

Fe(7)

e 5 " %mCo
Col(y)

m = iI‘ﬂ
Co(g) 7 Co

Equation (10) yields:
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n, = 1.705 + 1.212 mp

Equations (6) and (9) yield:

Tc/e0 =608 - 3,13 mp

Comparison with experiment is given in Fig.25,

Co with Mn and Cr

In both cases the impurity contributes z electrons per atom to

the alloy. If 4/7 electrons per atom go into the 4s band, bZ:z—4/7,
Equation (11) yields:

24
5m + 4m + 3m ==-m + (z -3)m
Col)  Co(})  Co(z T C° T

and

ng = 1.705 - 1,085(z+1)m
z

If the compositions are as follows:

m =

Co(})

m =
Co(3)
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and
= (z=-5]m -im
mC (5) 7 z 7 Co
5 4 11
- = T S
1z z  T(z+l)
m s I m - (z-3)m
5 7 "Co 7 Z
C0(4)
Equations (6) and (9) yield:
6.05 - 4.7lm_ - 2.35m z S
T /9 - z z . Z 7211
€/ Yo = - -
7.40 4.7lmz 4,71 m_z =2 < m, < T(241)

The values of z that best fit the experimental values of n, and
Tc/e are given in Table V., Comparison with experiment is given in
0

Fig, 26.

Table V
element ] z
Mn 1 4
Cr 5

Number of electrons element

contributes to cobalt alloys.
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Fe with Ni

In the case of nickel added to iron, nickel atoms enter the iron

lattice as Ni(i) and Ni(g) in the ratio of %—: % If an Fe(g) ion has
one or more nickel neighbors it forms Fe(g) and Fe(‘i) in the ratio of
1/3 : 2/3. Equation (11) yields:
m =L m m - m., f
= 1
Fe(s) 7 "Fe Fe(4) 2l TFe
3 1
m = i m m N m
Fe(2) 7 TFe Ni(g) 9 N1
2 5
m = =m. . {I=£:) m == m
4 7 "Fe 1 .5 9 "Ni
Fe(3) Nl(4)
m = 2 ., f
= 1
Fe(g) 21 "Fe

Equation (10) yields:

ng = 2.218 - 1,610 my. + .493 (l-my,)f;

N

Equations (6) and (9) yield:

Tc/e0 = 4,59 - 1.92rnNi

Comparison with experiment is given in Figs. 20 and 21.



and Co(;) in the ratio

Cobalt enters the iron lattice as CO(Z)

of 3/7: 4/7. As with nickel the Fe(;f) ions form Fe(}) when they

W U

have one cobalt nearest neighbor. There is an additional transformation

shown below if the Fe(4 have more than one cobalt nearest neighbor,

3)

The following compositions satisfy equation (11):

Fe(3)
m =t & (£, ~£,)
Fe(s)“7 Fe " 35 Mpeltz™h
2
2
SIPRL LM
1:'61(3)
m = S E b))
- 3 § 2
Feld 7 Fe
m == m (f3 -fé)
Fe(‘i) L
Xl == m
Fe(é) 7 "Fe

Equation (10) yields:
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ng = 2.218 - .513m _ + .296mp £, +.178mp, £ +.118mp £ +.296mp £,

C F F

Equations (6) and (9) yield:
TC/BO = 4,59 + l.46mco + 1,84 (l-mco)(fz =5

Comparison with experiment is given in Fig. 25.

Fe with Mn

In the case of manganese added to iron, manganese contributes
one electron per atom to the alloy. If 5/7 electrons per atom go into

the 4s band, % electrons per atom go into the 3d shell, Let

m = (A-1)
Fe(g) mMn

m o= 2/7 (1-Am, )
Fe(3)

m = 3/7(1-Am,, )
Fe(g) Mn

m o, = 2/ (1-Am, )
Fe(3)

Equation (11) yields
A= aL

W
un
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n, = 2.218 (1 - g—;imMn)
Equations (6) and (9) yield:
- .37
To /e, = 459 (1 = mMn)

Comparison with experiment is given in Fig,27.

Fe with Cr

Chromium with a majority of iron nearest neighbors contributes
two electrons per atom to the alloy while chromium with a majority of
chromium nearest neighbors contributes one electron per atom to the
alloy. Of these electrons 5/7 electrons per atom go into the 4s band

and 9/7 electrons per atom go into the 3d shell, If there is a trans-

formation of Fe(g) into iron ions with a filled 3d shell such that
m = :]Z—mFe(l-fz), equations (10) and (11) yield:
Fe(,)
3
ng = 2.218mFe -1,331 me. + .473 mp £ + 1.035mcrf5

If the Fe(g) transforms into Fe(g) and Fe(g) as below,

equations (6), (9), and (11) yield:

TC/BO = (4.59 + 1.84 F,) mp - 1.38 m .t 1.07m. _ 1

C Cr
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The compositions of the ion species are:

- 1
m = m - o M fg
Fe(S) 14 “°Cr Cr
m = ;m e f
B, T F 35 "Fe?
Fe(3)
m =2m : o irn f; - -Q-m +3m._f
5, 7 Fe 35 "Fe? 14 Cr 2"°Cr
Fe(3)
Fe(3)

Comparison with experiment is given in Fig, 28.

Fe with V

Vanadium contributes four electrons per atom to the alloy of
which 5/7 electrons per atom go into the 4s band and 23/7 electrons
per atom go into the 3d shell. There is a transformation of Fe(;}‘)

2
=-cm

into iron ions with a filled 3d+ shell such that m 7 M

(1-£,).
Fe(}) :

Equations (10) and (11) yield:

ng = 2.218m_,_ - 3.40lm +.473 m__f,

Fe

If the Fe(g) transforms into Fe(g) and Fe(5 as below, equations (6),

2)
(9), and (11) yield:
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TC/BO = (4.59 + 1.841,) mp - 287 my,

The compositions of the ion species are:

m =T m
Fe(i) 14 7V
_2 &
W g Sy Mg ¥ gpwpn.h
Fe(s)
m = é‘m + “*6-'m f ';im
5 7 7Fe 35 "Fe'l 14 7V
Fe(3)
m = = e (1=
Fe(;}) 7 " Fe

Comparison with experiment is given in Fig. 29.

Each element contributes z electrons per atom to the alloy of
which 5/7 electrons per atom go into the 4s band and z - % electrons

per atom go into the 3d shell. There is a transformation of Fe(g)

into iron ions with a filled 3d+ shell such that m 4, = %mFe(l-fl).

_ Fe(y)
Equations (10) and (11) yield:

= - _5
n, = 2.218m 1.035(z - 2)m_+.473mp 1,

Fe
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If the Fe(;l) transforms into Fe(5

3) and Fe(g) as below,

equations (6), (9), and (11) yield:

_ - -
Tc/eo = (4.59 + 1.84f;)) mp_ - 2.14(z-2)m,

The compositions of the ion species are:

m 5 -%(z-:?-)mz
Fe(;)
5
_ 2 -
mFe(5) =7 Mp, t3gMp 0
3
- 6 X, B
B e(5 =7 Mpe t3gmp.fi -3 (2-3)m
e(z)
_ 2 E
m_ 4 =gmp, (1-1f)
Fe(})

The values of z that best fit the experimental curves for n,

i i V.
and Tc/eo are given in Table VI,

Table VI
element z
Al 3
Si %

Number of electrons element contributes to iron alloys.

Comparison with experiment is given in Fig, 27,
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Magnetic Properties of Ordered Alloys,

It is now possible to use equations (5) and (l0) together with the
information gained above about the behavior of the ion species to
calculate the saturation moment and Curie temperature of an alloy with
a specified degree of order. The effect of order on the magnetic
properties may be seen by considering the special cases treated above,
long range order only and short range order only., To determine the

Curie temperature, equations (7) and (8a) are used instead of equation (5).

Saturation Moment.

Equation (10) for the saturation moment is valid for any degree
of order., The only effect of order on the saturation moment is through
a change in the compositions of the ion species. It may be seen from
above that the alloys of nickel with copper, zinc, aluminum, silicon,
antimony, chromium, vanadium and cobalt; the alloys of cobalt with
manganese and chromium; and the iron manganese alloy do not have
their saturation moments affected by ordering. The alloys systems

where the saturation moment is affected by ordering are treated below.

Iron-Nckel,
For the fully ordered case in the nickel rich alloys, f,=1£=0;

5/16; £, = 16(m and

<6
Fe ~ 16°
In the iron rich alloys, f;= SmNi/mFe for

5
fb=0 for mp, -1g) for 5/16 < m

<
Fe

6
Fe = 16°

1 . .
Ni <1/9 and f,=1 for M = 5 The theoretical curve is plotted

in Fig, 20 , The values of n, for partially ordered states lie in

f,=1 for m

m

between the fully ordered and disordered curves.



68

Nickel-Mangane se

To obtain the values of n; for an arbitrary state of order, it is
sufficient to use the equation for the disordered case with the modified

probability of finding n manganese nearest neighbors given by:

ord _ ‘ 1 1
my, 07 “=n, X (A) fn( p(MnA | MnA)w, ,+ py(MnB| MnA)WBA)

1 1
+ nBXMn(B)fIl(pI(MnAIMnB)wAB+ Pl(MnB]MnB)wBB)

The theoretical values of n; for various states of order are given in
Fig. 30 . The theoretical values of n, for alloys quenched from
various temperatures are given in Fig. 31 . It is assumed that the free
energy due to magnetism does not effect the state of order, p=0, and

only one phase is present, The discontinuities occur at the onset of long

range order,

Iron-Cobalt.

For the fully ordered case in the iron rich alloys: ,

17 17 217
= $ S T a =
me, $1/9 /9 < m < g 8L = Mog™ 728
£ Smco/mFe £, =1 f, =1
£, =0 f, = 8(mg 1/9)/mF £ =1
_ 17
£ =D £ = b f; = 8(m, -gl-)/mFe
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217 2465 - 2465
729 T TCo 6561 Co ~ 6561
£ =1 £ =1
£ =l B =1

_ _ 217 _
fa = 8(mg - 779)/mp, g =

The above values of f assume that the number of nearest neighbor cobalt
atoms to each iron atom does not differ by more than one, i.e. if one iron
atom has no cobalt nearest neighbors, another iron atom can not have two
cobalt nearest neighbors. This assumption is not exact because of
structure limitations, but it is a good approximation. The values for n,
using the above assumption is given in Fig. 25 . The values of n; for
the partially ordered alloy lie in between the fully ordered and .disordered

curves, Comparison with experiment is also given in Fig. 25,

Iron-Chromium and Vanadium.

The values of f are the same as in the ironjcobalt case above,.

The curves for n, are plotted in Figs, 28 and 29,

Curie Temperature,

The alloys mentioned above in which the compositions of the ion
species do not depend on the local environment still have a variation in
Curie temperature with order due to the form of equations (7) or (85.). The
variation of the Curie temperature with order is given below for a few

typical systems.
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Nickel-Copper, Zinc, Aluminum, Silicon, Antimony, Chromium, and

Vanadium,
., - - _ -
From above m g = 5/9 zm , u, = 4.8(5/9 zmz)(l Tin '),
N1(4) Ni
u_ = 4.8(5/9 - zm )(1 + 2 ), W = A,/AN, w =—1A/A,w =A,/A,
B : z 4mNi > TAA 2 AB 341 BA 1
and Wpp = (% A +A;)/A for the AB, superlattice, Let )\1=A1/A,

A, = A,/A, and X, + X\, = 1. Using equation (7) it is possible to cal-
culate the Curie temperature for various values of S, the long range
order, and \;, the magnetic interaction parameter. The ratio of the
Curie temperatures of ordered and disordered alloys is given in Figs,
42, 43, and 44 as a function of S and \,.

For the case of short range order only, it is not necessary to
use the approximation to equation ( 8 ) since Ni(Z) is the only magnetic

ion species present. Equation ( 8) yields:

Tc(ord)/TC(dis) = 14 Rpgeans

i ¢ Fops " :
where Ay.. = )N g (Ni|Ni) X (r,)/A. The behavior of T_/T_(dis)
depends on both the amount of short range order, ;s and the variation
of R(ri). In the case of a small amount of short range order with

|q1|> > [qxl i#1l, if q;> 0 (Ni ions avoid each other) the Curie tem-

perature will be lowered; if q; > 0 (segregation of Ni ions) the Curie

temperature will be raised.



71

Nickel- Manganés e

From above

The values of f are determined as above by using the modified

probability of finding n manganese nearest neighbors, fgrd . The

values of X for the AB; superlattice are:

_ 35\ = 8
X (A) = m 1, s X (B) =m 1+
Ni(i) Ni(Z) ( 4mNi) Nl(z) Ni(g) ( 4mNi)
_ 3s _ 5 _
X (A) = m 1+ s X (B) = m ]
Mn(3) Nb(3 )( 4mMn) Mn() Mn(; )( 4mMn)
X  (A)=m 5(1+43S X B=m (1-52)
Mn(l) Mn( 1) M Mn Mn(:]'_) Mn(z) Mn

Equation (7) yields the values of Tc/eo for various values of long range
order, S, The results are given in Figs. 45 and 46 for A\;=.5,1

The values of Tc/eo for the fully ordered alloy for various values of

N, are given in Fig, 47. It is clear that for Ni;Mn TC/BO is a very
sensitive function of order, For \;=1 there is a difference of 260°K
between the Curie temperatures of the fully ordered alloy and the alloy
with S = .9. It is therefore very difficult to determine \; unless the
degree of order is known quite well, The experimental measurements

45

of Marchinkowski and Brown yield Tc/e = 3,10 for m = .227 in
0

Mn
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what they consider a fully ordered alloy, i.e. s = .91. If it may be
assumed that the order was slightly less than complete, \;=1 gives

excellent agreement with the experimental value,
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Experiment

Cu ng Ref. 28
Cu Tg /8y Ref. 27
Zn ny Ref 27
Zn To/8y Ref. 27 —263
Al ng Ref. 29,28
Al T./8y Ref. 29,30
Si ng Ref. 27

Si Te/6y Ref. 27 —2.19
Cr ng Ref. 29

Cr To/6, Ref. 29
V no Ref. 29

V Tc /8, Ref. 27 —1.75
Sb ng Ref. 27
Sb T¢ /84 Ref. 27

+ X DOBODO e oo pbd DA

1.3l

Te/6o

—-88

Atomic percent element in nickel

Fig.17. Saturation moments and Curie temperatures of nickel alloys
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Tc /80 Theoretical (disordered)
2.4 —-— ng Theoretical (disordered)
—— ngo Theoretical (fully ordered)
” —14.8
2.2
J4.7
2.0 X
—14.6
No Q)O
1.8 ™
, A X
© ng Exp. Ref. 43 —14.5
X To/8, Exp. Ref. 43
1.6
—14.4
l 4— .\\
"\
\.\ "‘43
\\
|.2— ‘\\
| |
0 5 10 15 20 25

Atomic percent vanadium in iron

Fig. 29. Saturation moments and Curie temperatures
of iron-vanadium alloys
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.40~ === Long range order only
@ S=.9
@ s=.7
@ s=5
.20 ... Short range order only \®
@ ql =={).5 E
.©
N
.00 g N
............... ool
N
.80
.
No -\
...\
.60 ‘N
O/-'.
-—-+— Long and shortf range order &
40 ® S=.7 .
dan, =0 K
qAB[ =-0.25
qBBl =-0.50
20
0 | | ] |
0 o 1O 15 20

Atomic percent manganese in nickel

Fig, 30. Theoretical values of the saturation moments
of nickel-manganese alloys for various degrees of long range order, S,

and short range order, qAAl’ qABl’ qBBI’ q, qAAl qABl qBB1
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Conclusion

A theory of the order disorder transformation has been developed
that considers all atomic interactions. The generality of the theory
permits treatment of alloys of arbitrary composition in multi-component
systems, The theory is applicable to virtually and crystal structure
and superlattice,

The theory has been applied to a binary face centered cubic alloy
assuming the possibility of A;B, AB, and ABj; superlattices. There
were two arbitrary constants to be determined. One can be determined
by comparison with the experimental critical temperature at one
composition. The behavior of the alloy was examined as a function of
the other parameter p, which may be determined by comparison with
experimental determinations of three phase equilibria,

It was not possible to determine p by examining the energy of
the alloys. The energy of alloys with the AB superlattice showed
little variation as a function of p. The same may be said for the AB;
and A;B superlattices except for a small change in the energy given
off on the formation of long range order.

The long range order of AB alloys decreased conti-nuously to
zero as the temperature was increased, while the AB; and A; B alloys
showed a discontinuity. The long range order changed very little with
p except for the case of p= .05 in the AB; alloys, where the dis-
continuity in order was much greater than the other cases,

In all cases the short range order increased as the long rahge
order decreased, The short range order reached a maximum at the

critical temperature and decreased at higher temperatures, This
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behavior of the short range order is a consequence of the definitions
used in this treatment.

The most dramatic effect of p was seen in the phase diagrams,
For p=0 and p=,025 three maxima (25%, 50%, 75%) were pre-
dicted, For p =0 two eutectoids were predicted, For p = -,025 one
maximum (50%) was predicted. Two peritectoids were also predicted
for this value of p.

The above results were compared with the experimental deter~
mination of the copper gold system. Best agreement with the experi-
mental results was obtained for p between -,005 and -.01 and
AEai.b(mCu:'S)/K: 443001{. This value of p would indicate a .5 to 1.0 per-
cent energy contribution from the even shells as compared to the odd
shells, The negative value of p indicates that like neighbors are
favored in even shells, while unlike neighbors are favored in odd shells,

A theory to explain the magnetic properties of alloys has been
developed. The theory is able to predict the magnetic moments and
Curie temperatures of pure iron, cobalt, and nickel as well as many
of their alloys in both the ordered and disordered states. The agree-
ment with experiment in almost all cases is very good. The theory
points out the importance of the electrons in the unfilled 3d subshell
in determining both the magnetic moment and Curie temperature, The
constant, 6,,neededtodetermine the magnitude of the Curie temperatures
was determined to be equal to 230°K,

It was found that the state of order in an alloy may affect the
magnetic properties, i.e. magnetic moment and Curie temperature, in

two ways: 1) by changing the magnetic species present; and 2) by
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changing the form of the equation for the Curie temperature. The alloy
Ni; Mn was found to have a critical dependence on long range order, By
comparison of the experimental and theoretical properties it was possible
to obtain a value for the magnetic interaction parameter, X; =1. This
value of \; means that the magnetic interaction is confined almost

completely to the atoms in odd shells.
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Appendix I

Values of N(H,i,l,k,J,j)/N}H

for various lattice structures and sublattices

Face centered cubic AB;
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Face centered cubic AB,; (cont'd.)
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k=2
. . HIJ | 513 § H1J . . HIJ | HIJ
. J ABB | BBB | BAA J AAA | BBB
. 1 2 2 2 ) 4 4 4
3 2 2 2 8 1 1
5 2 2 2
= 2 2 2
1 1 1 1 4 6 2 2
3 3 2 2 2 11 2 2
7 2 2 2
10 1 1 1 6 4 3 3
1 1 1 1 5 2 1 1
E 5 1 1 1 11 4 4
7 2 2 2
9 1 1 1 4 1 1
I 1 1
3 1 1 q
7 5 1 1 1
7 1 1 1
9 5 2 2 .
3 1 1 1
10 10 2 2 2
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Face centered cubic AB
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Note:



Body centered cubic AB
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Appendix 1I

Energy of a binary alloy on two sublattices

Equation (15) states

n n
Bron=2W 1 n XM X (3) wy Eg

nBylJ
n
=3 ) “IWJI(Xﬁ(I)-mB> (3 e, |,
nSyIJ
+3N ), n Jl(m CHLELN T b‘mv) EEY
nBylJ

Using equations (1), (2), (5), and (13)

™ n.1y e . " n
LRO/N" 2 L mgm Ept 2 L mgw JI(XB(I) mﬁ)(xvm HQEBV
npy nByIJ

E

Let EBY = %—EEEY = energy of a 3 atom in pure v.

ELro/N * Z g By * EH nwip (Xp@-mp)(X(9)-m ) €5 -E] )
ngy

I gy (xgrrmg) (i em ) 25,

nBvyIJ

Using equations (3) and (4):
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Epro/N = b Mgy Byt L npy (X -mp )X (D-m )(ES -ET )

By v
By npyLJ
=ZmmeEﬁ =) nIWJI( )mﬁ)(XY(J)—mY)(EgY_Eiv)
By nlJBy

#3 L apegp (X @m0 (9)-mg ) (EBY,-Eg )

nlJBy

Using equations (13) and (14) and interchanging dummy indices:

ElRO/N ™ =), m g™ By 14 nIWJI( mﬁ)(xvm -mv)(ZEgv'Eélﬁ-E;lv)
By nlJBy
Let AEE\;%( 55+E Y—?.E{3 )

[

ELro/N T ), ™ 8 ERy L nIW?I(XB(I)-mB)(Xy(J)-my) AEEY
By nlJBy

Consider the case of two sublattices, From equations (1) and (5):

nA(Xﬁ(A)-mB) = (rnﬁ XB(B))

ELro/N = L mpm Egy -3 ) ABg { n Wy (K- JK () -m, )

By nfyJ

+ z an.IIlI (Xf’ (I)-mﬁ)(XY(J)*m\)}

I#J

Z mm Bg 43 ), AEg D, o Whywip) (et -mp ) (€, (D-m,)

np yJ I#J
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Using equation (13):
FLRO/N® L mﬁmYEBY+ ) AEEY(W.EA'WKB){“B (XB(B)-mB)(XY(A)_mV)

By npy
' ¢ ) @1, )}

Using equations (1), (3), and (4) for a binary alloy:

E =m E +m, E ., - m_m, (Eaa+ Ebb - ZEab)

LRO/N~ "a~aa’ "'b bb

Qe (i) G )

n

Equation (12) states:

— - ;
Eqro=t . L nygNEALKJTHX (H)X

ijkep yHIJ

DX, (T)qy (B | @H) 9; (v | oH)E, (7))

For the case of a binary alloy, equations (9ab) yield:

=1 ; :
Eqpo =3 L mygNE,LLKJ,j) X (H)
ijkoHIJ

{ X (DX, (J) 9 (al|aH) qj(aJ|aH) E_ (r)

X, (7)
+ X (I)X (J)q.(aIiaH) [- m qJ.(aJ!aH)}E

a b AL

)
1) k

j
X_(I)

ik A [ = a;( aIlaH]j(aJ;aH)Eba(r

S0,

X, D

X_(I) X (J)

_a - a

x,m 4 “HM X, m %l ] }
AE T

1,10k

- Z N(H,i =

oy T X HX, DX, (Tq fallaH)qadeH) —— —
ijkeHIJ
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_ 1K "
where AE_, (r,) = 3N (Eaa(rk) + Epy(r)) ZEab(rk))
and Eab(rk) = Eba(rk)

Using equations (10a), (9a), and (4):

X (H) i g /_\.Eab(rk)
Egro = L mygNEALKI) X, MK, (Dayaly -
ijkHIJ
where
q]ch = qi(aIIaH) and q?IH = qj(a.IIaH)

It is convenient to perform the summations for i=0 and for j=0.

AR . (#.)
B = 0y Ryie i BV (g, ~—=d i
ilJ N
. AE_ (r.)
h nIN LOX_ (3 )qﬁl——ajb—J—
1T N
X (H) .. AE. (r,)
+ ) ngN(ELLK,T,j) % () xau)xa(:r)q;quTH—;;ﬁ—k

ijkHIJ

1
where Z is for i,j,k> 0. Using equations (2) and (10a) and changing

dummy indices:

- i SFaplti)
o~ Z_Z n N X, (DX, (7)qp ol
. Xa(H) . AE, (r)

ijKHLT
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Equation (17) may be simplified in much the same way as equation (12).

For a binary alloy equations (9ab) and (10ab) yield:

Egpo = 3N0-H) ), nIWI}I{Xa(I)Xa(J)qn(aﬂaI)En

aa
nlJ

- X, () n

+ X 1)X, () - m qn(aJ|aI)J E_,
i Xa(I) n

+ Xb(I) Xa(J) _' 'TI)‘ qn(aJlaI)] Eba
- X )X, () ,

+ %00 EHED a(e7la1] 25, }

= N(-f) ), nwp X ()X, (J)qf; AED (21)

nlJ



109

Appendix III

Entropy of a binary alloy on two sublattices

From equation (22);

[3—1

IHX (H)n N(l = pi(yllaH))
v=1

InW = 2 in
N }
iaBHI
i
Nip; X (H)ng N p, (BI | aH)

Using Stirling's formula for factorials:
JZn(AC) [B B -CnC - (B-C) {n(B- C):l

and

B-1 B-1
mw= ) nHN X_(H) {[1 - Z p1 yIIaI—I:l 1n|: Zp yIlaH)J
iefHI y=1

- B
- p, (BI|eH) In p; (BI|eH)- [1- f pi(yI[aH):|£n ]_I-Zpi(yI]aH):l }

v=1 v=1

For the case of a binary alloy:

InW= Z Ny N}_H [Xa(H) 1-pi(aIIaH)ﬁnpi(a.l|aH)-!_1-pi(aI]aH)_%ﬂnlil-pi(aIIaH)_g
iHI

+ [1-pi(a1|aH):iﬂn|:1—pi(aI]aH{l-pi(bIIaH)Enpi(inaH)
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-

- [1-pi(a1]aH)-pi(bI\aH)]ﬂn [1—pi(a1]a.H)—p.l(bI|aH)} }
X, (H) { -pi(alin)L’npi(aIin) - [l-pi(aI[bH)] in [l—pi(al]bH):]
+ [1-pi(a1\bH)J in [l—pi(aIIbH):l - p; (bI|bH) inp, (bI[bH)
- [1-pi(aI|bH) - p.l(bl\bH)jI in [l-pi(aIIbH) - pi(bIIbH)“ } }
= - E nHNliH [xa(H) {pi(aIIaH)znpi(ailaH)+pi(b1|aH)_£npi(bI\aH)}
iHI
+ X, (H) { pi(aIIbH)Enpi(aI[bH)+pi(inbH) ﬂnpi(bI]bH)} :l
Using equations (8a), (9a), and (10a):
gnW = - ) n N}H {Xa(H)G[Xa(I)(lﬁ-q;H)]
iHI

nonels,ole- 28 )]

where G(X) = X4nX + (1-X)£In (1-X). Changing dummy indices;

InW = - z o N ‘Xa(J) G[Xa(l)(hqij)}

Xa(H) i
+ X, () G[xa(x)(l i qU):J
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Appendix IV

Minimization of the free energy of short range order

From equation (20):

OE . AE | (r.)
—Si—RQ = {20, N X (D) X () —22—
anJ a a Nl
X () . AE  (r,)
a . ’ j ab 'k
+ ), mg X, @) XalDNEALEH, ) X, ) gy -
jkH
X _(I) . AE . (r )
! a 2o . J ab'"k N
+ ) o X0 x_ (J)N(L,j,HKk,T,1) X (H) gy —& (2-6
jkH
where
o(1+ J
6 ey
1T 1{ I o= 3
From equation (23):
98  _ _ o \ iy]
o = -k Np;ng {Xa(J)Xa(I)G [xa(x)(uqm)_;
1J

X_(J)

a 1

- X_(1)X_(1)G [xa(l)(l- %) qIJ)} } (2-8; 1)

.9
=y

o
e

where G'(X)

x,0 (el ) [1-X, 0 g2mely)]

[1-}( Di+q.) X a 1-}?"“(” -
al )(“'qmﬂ L@ Xb(.T)qIJ')

9
i
991y

iR
= KNIJnJ Xa(I) Xa(J) In
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i Xa(I)Xa("T) i
(tragy) ,L“ X, M X, () qw}
= KNIJ.nJ.X () X_ (J) in X0 ) (2-6;1)
1- —=2 i 1- —2 i
[ xb(l)qu X, (7 )qIJ]
8F
a—i = (2_61J)HJ NIJ Xa(I)Xa(J)
7
AE () oo [NOLLKH)) X ) o AR, (5)
4 N1 + Z l: Nl ( ) q..'I'H Nk
jKH 1J
N(L,j,H,k,J,i) X H) . AE,(r)
+ . ql., —=—=-
N X, (0 MH Kk
; X (1) X _{(I)
il Tt A 4
(ras) 1 B qm]
+KT tn B = B
X 0 ar X.0)
[1_ a ql:H_l" a ql
X, [ X () IJj|

Dividing out terms and using the symmetry of N(I,j,H,k,J,i):

- X MX_(3)
20E. . (r.) (1+agy) [“x DX, () qIJ]
ab i $ B b
NKT P Lot | ( } 4
X, (D) %17 (J) 97
_ . i
L3 AE,, (r,) o (H)FN(J,l,I,k,H,J) qJ.H N(I,i,J,k,H,j) qm}o
k a i Ay i X, (1)
s NOKT l_ N b N b

(25)



