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ABSTRACT

The effect 01:1 the scattering amplitude of the existence of a
pole in the angular momentum plane near J =1 in the channel with
the quantum numbers of the vacuum is calculated. This is then
compared with a fourth order calculation of the scattering of neutral
vector mesons from a fermion pair field in the limit of large
momentum transfer. The presence of the third double spectral
functic;n in the perturbation amplitude complicates the identification
of pole t.rajectory parameters, and the limitations of previous
methods of treating this are discussed. A gauge invariant scheme
fbr extracting the contribution of the vacuum trajectory is presented
which gives agreement with unitarity predictions, but further calcu-
lations must be done to determine the position and slope. of the
trajectory at s = 0. The residual portion of the amplitude is com-

pared with the Gribov singularity.
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I. INTRODUCTION

This investigation is one step in a grand‘plan(l)—(s) designéd
to delineate the role ‘of Regge poles in conventional field theory'. In a
sense, the Regge pole hypothesis is a theory about theories. It tries
to explain how various field theories might possibly resolve what
appear to-be paradoxes. How, for example, a field theory might yield
sensible conclusions about higher spin particles, and yet be unrenor-
malizable if these particles are inserted into the Lagrangian as
"elementary"; or how the exchange of these higher spin particles is
compatible with the high energy behavior of scattering processes in
the cross channel when even the lowest order terms in perturbation
theory seem to be too large. Another incentive for investigating the
relation between Regge poles and field theory is the belief that such
a relation will reveal properties of field theory which are independent
of the results of a perturbation expansion. One application of this
kind of information would be to the problem of whether or not field
theory in its present form is correct for the st:po'ﬁg interactions.
Suppose, for example, that many of the expefimental consequences
of the hypothesis of Regge poles(é) for the strong interactions were
in fact verified. Then any theory which was to explain the strong
interéctions would have to contain the features which the strong
interactions exhibited--in this case Regge behavior. Thus the
knowledge that field rtheory did not contain Regge behavior would tell
us at least that field theory could be excluded ds a source of further

information, without our having to develop a non~perturbative calcu-



lating scheme,

A third motivation for this study is the inverse of the previous
one, namely, that if ;. connection between field theory and Regge poles
theory could be established, it would be possible to use field théory as
a guide to develop further understanding of Regge poles. This point
of view becomes particularly important if the Regge theory turns out
to be a valuable tool in understanding experimental results. This
hope was dimmed in the recent past by first the speculation‘ﬂ and
later the confirmation(s) of the existence of cuts as w‘ell é.s poles in
the angular momentum plane. However, recent research seems to
indicate(g) that at least some of the simple experimental consequences
of Regge poles are retained even when cuts aré pres.ent, although the
energies at which these phenomena become observable are higher.
More researc}; is seriously needed on this point.

In the sense in which the Regge pole hypothesis makes pre-
dictions about field theories, Feynman diagrams become the labora-
tory in which these predictions may be tested. Some of these "experi-
ments " have already been performed. In the field theory where
neutral vector mesons interact with spin one-half nucleons, i.e.,
massive quantum electrodynamics, the nucleon has been shown to lie

(3) (10)

on a Regge trajectory while the meson does not « In the same
field theory, the .experirnent begun in Refei‘ence (5) to determine the
existence of a vacuum Regge trajectory is coﬁtinued here after the
development of mo‘re refined techniques., Considering this and other

field theories with particles of different spins, a set of "empirical”

criteria emerges for the development of a Regge trajectory in a given
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theory. Among these are the factorizability of the Regge pole residues
and the existence of a nonsense channel, which will be discussed later.
Before we begin the actual experiment, it would be well to
consider what is meant by a vacuum Regge trajectory, and what V
properties it has that would justify searching for it. The femarks
in this section are very general, and are not intended as a thorough
introduction to the éubject such as may be found in the book by
Frautschi G I_I to' which the reader is referred for further details.
Let s and t respectively be the conventional energy and momentum
transfer variables for the relativistic scattering of two spinless
particles. Then, as we shall see later, if 1\:he scattering is dominated
by a Reggeized intermediate state we expect the invariant scattering

matrix element to behave like
Mg ,t) = Clsi>=! | (1.1)

at large t, where a(s) represents the Regge trajectory and C(s)

is made up of factors. that appearin (3.15)‘. . Then if we may conﬁnue
this function to a range of the parameters s and t which represents
scattering in the crossed channel, we would ﬂnd for the cross section

in the high energy (t) limit

2.
L= ISl palal-z (1. 2)

By use of the optical theorem we would also find for the total cross
section in the high energy limit

Frop = 1 c(oy™0)-1 1.3)



s s

where again we are in the channel where t represents the energy,
and s = 0 gives the forward scattering direction. In order for the
trajectory to match the inference from the data that the total cross
sections for strong intéractions become constant at sufficiently high

(12)

energy s it must have

a(0) =1, (1.4)

Expanding the trajectory about s = 0, we see from (1.2) that

2 '
A ., JEa) | ey (1.5)

Since s becomes more negative with ihcreasing scattering angle it

is clear that we must have
a'(0) > 0 (1. 6)

in order to match the observed peak in the forward direction as t
beécomes larger and larger. This choice of sign insures also that the
width of the peak for large energies becomes inversely proportional
to the logarithm of the energy. These properties‘ and their relation
to the experiments are the motivation for a theoretical interest in the
Regge trajectpry. We expect also that the vacuum trajectory does not
correspond to a f)hysical particle, and hence c_anhot give a reé,l pole
when it crosses integer values. Otherwise it éhares with ordinary
Regge poles the otﬂer properties which emerge from a more detailed
examination of the inner workings of the theory; some of these will

be mentioned later.
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We follow the general method of Reference (5) in evaluating the
trajectory. We calculate the scattering amplitude in two ways, once
by the Feynman rules, and again by inserting our conjectures for
the vacuum singularity of the partial wave amplitudes into the
partial wave expanrsi..on. A comparison of these amplitudes permits
the identification of the parameters introduced by the conjectures,
unless the forms of these amplitudes are so dissimilar that a simple
identification scheme does not apply. The problem is then to revise
the scheme so that an interpretation is possible.

Some details of the field theory used in the main body of the -
text are included in Appendix A along with the notational conventions.
Chapter II describes the preparation of the states affected by the
vacuum trajectory and derives the partial wave expansion for the
relevant processes. Chapter III reviews the Reggeization procedure
forrparticles with spin, and makes the predictions of t‘he i-esults
expected in lowest order perturbation theory. The results of the calcu-
lations of Reference (5) and their agreement with the predictions are
summarizéd. In Chapter IV, we calculate the fourth order YY
scattering amplitude, discuss its properties and aerive the prescrip-
tion for eva.iuating the trajectory. Trajectory parameters using
alternate ﬁrescriptions are discussed., Chapter V gives a summary

of the results and suggests further areas of inquiry.
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II. BACKGROUND FORMALISM

1. Preparation of the States

Our discussion of the scattering amplitudes in this problem
follows closely that of Reference (5). We start with the helicity states
of Jacob and Wick(13) and prepare symmetrized parity eigenstates of
the yy and N-N systems,

Applying the parity operator P to a two particle helicity state
yields

J—sa—sb
PIM;A N> = n 7, (-1) |IM; =N -\ > (2.1)

where the subscripts a and b refer to the particles of the same
name, while A, N and s represent the helicity, intrinsic parity and
spin respectively. In our problem the v's have s =1, n=-1, and
the N-N system has s = 3, WMy = -1 so that for both these systems
' o AR
MMy (1) =

Indicating by P12 the operator which interchanges particles

g

1 and 2, we have,

.T--sl-sz
| TMA N> (2.2)

Py IJM;RIK2> = (-1)
The charge conjugation operator C yields +1 when applied to a 2y
state and - 13'12 when applied to an N-N state. This last minus sign
is a consequence of the anticommutation of the fermion creation
operators.

If the two vector mesons which make up the yy state were



distinguishable, say by a mass difference, then we would have nine
states for the two particle system. This total number of states
remains the same when we introduce the symmetrized states for the

indistinguishable particles of the yy system 'by setting
1
+ . e
| IM; "1"2 g =La Py )IJM,x_lx2> : A {IJM M) H(- 1y |.TM; hle)} (2.3)

This prescripﬂon limits the states with Al = ?\2 to even J wvalues and
also changes their normalization relative to the others. Sincle the raw
‘fJM;?\.17\Z> states are normalized, a state such as IJM;00>S has
length V2. We follow Reference (5) in permitting different state
normalization for the sake of a uniformity in the formalism. Table I
lists the symmetrized states, their allowed J wvalues and normaliza-
tion. As will become obvious later when we discuss the factorization
of the Regge pole residues, the relative state normalization does not
affect our answer.

Table I
vy System. Symmetrized States

State . Allowed J Value Norm Parity Reflection
|;rM;11>g Even V2 + |;rM;-1-1>g
|aM; 10>, {ggzn 1 * | TM;0-1>
|aM;1-1> {gzgn 1 i |IM;1-1>
I:rM;oo$g Even SV + |IM300>

| TM;0-1> - {gggn 1 tlaM;10>g
|JM;-1-1>g Even \ V2 + |JM;-1-1>S



"

Now we define the parity eigenstates by introducing

, _ 1 i ,
[IMiN N>, = 7 [1 * (-1) P:] IJM,?\IA.2>S
.1 . o - |
= {|JM,7\1>\2>81 |TM; N x2>g] (2.4)

for the yvy system, and

[IMA N>, = é Lk (—l)JP] | TMA N>
-—}-[IJM' o> £ | IM;-N -\ >] ’ (2.5
= Lt iy o 5

for the N-N system. For example, in terms.of raw states

[TM;10>, = {[JM;10> + |IM;01> = |TM;0-1> = ]JM;‘-10>} (2.6)

2
2

while

[‘TM;OO>:1: = 2|IM;00> for even J only. (2.7)

Again, this procedure introduces various factors of V2 in the state
normalizations. The complete list of states and their properties is.

1listed in Tables II and III.
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Table II

Symmetrized Parity Eigenstates

State
|IM;11>

|TM;11>_

|TM;10>

|IM;10>_
|TM;1-1>
|IM;1-1>_

| TM;00>

Allowed J Value

Even
Even

{ Even
Odd

Even
QOdd

Even
Qdd

Even

Norm

V2
V2

Paritz

The N-N states prepared according to Eq. (2.5) are auto-

matically eigenstates of C and with unit norm.

State

|IM;33>,
|oM;33>

| TM;3-3>

]JM;%—%>_

Table III

N-N System. Parity Eigenstates

Allewed T Value

Even
Odd

Ewven
Qdd

Even
1 Odd

Even
Odd

Pa rity

e}

1 +

+
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All the permissible processes for these systems must con-
serve T, (time reversal) C and P separately. In this problem we
are interested only in those processes whose intermediate states
have the quantum numbers of the vacuum and which are physical for
even values of J. (In another case, where we might be exploring
the possible Regge behavior of the vector meson itself, we would look
for states which were physical at odd J and had C = -1.) Otherwise,
we would get the appearance of a particle-like pole from the con-
jectured singularity near J =1. With these restrictions, the only
states which contribute are ]JM;11>+, |JM;10>+, |JM;1—I>+,
|IM;00>,, and |IM;32>,, |IM;z-2>, all for even J. Thus there
are 10 y+y — y+y processes, 3 N-N— N+N processes and 8
N+N — vy ty processes to consider, including time reversal sym-

metry.
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2. Partial Wave Expansions

Many of the symbols which were written by hand in a draft of
Reference (5) were slurred over when the paper was set in type. In
this section we repeat the arguments of that paper in great detail to
serve as an erratum, and to expand the treatment of our particular

case.

The first taék is to see what modifications occur in the partial
wave expansion as a result of the symmetrization of states, Then we
incorporate these results into the formalism that treats parity conser-
ving amplitudes. Finally, we give the expansions for the processes of
the last section.

Our starting point is the partial wave expansion of Jacob and

Wick

(0) = Z(2J+1)<JM AL | F|IM;A AN >a? (0) 2. 5)
xcxd,xaxb : d AR

where \ = ha- )\.b, Bo= }\.C- ?\d, ki and kf are the magnitudes of the

center of mass momenta for the initial and final states respectively,

(6) are the usual Wigner matrices, and where f?\ the

d s
A c)\d’hahb

scattering amplitude for the process’ a+b — ¢ +d, gives the differ-

ential cross section

,_g{): |)\)\ )\_)\_b(e)‘ . (2.9)

The matrix F is related to the usual S matrix by
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Sf.1 = Gﬁ + Zinfki Fﬁ . (2.10)

Equation (2.3) gives us the effect of the state symmetrization
on states of definite J. To determine the effect of symmetrization on
the scattering amplitude we must back up to a point in the develop-
ment before the decomposition into states of definite J has been

carried out. The step which logically precedes Eq. (2.3),

2s-N,th, imT

Ean,> =T{ik R 5 I V]Tc’;xz)\lé»}, (2.11)

gi{res the effect of | PlZ on a two y state with center of mass momen-
tum k. Considering for a moment the process N +N — vy +vy we
express the matrix element of F between an initial state and a sym-
metrized final state in terms of a matrix element of e”TJYF between
unsymmetrized states. By inserting complete séts of IJM;)\l)\Z>
states we arrive at a suitable decomposition into angular momentum

pieces. Using the properties of d'{u(e) we derive the symmetrized

scattering amplitude:

s 1 b ) <.
2..® =7 {fm;ﬂ(e) + (-1) fr;;ﬂ(e 'rr)} for N+N-—y+y (2.12)

-writing m for the ordered pair of helicities Kchd’ m for )«.dhc,
and { for )\akb'
The analytic properties of the functions dip(e) are greatly

clarified by introducing the functions



B

exala) = a5 (00, (@) (2.13)

where z = cos 6 and where

e - [N |
XML(G) = (V2 sin%) ' (V2 cos %) . : (2.14)

Further, introduce new scattering amplitudes

&

gl = B8 G 40) (2.15)

so that the partial wave expansions of the &'s become, from Eq. (2.8)

- |
Tyt (2) = k—fZ(ZJH)FI‘Tn;ﬂe‘{H(z) (2.16)
J“ 7

k
5. (-z) = -R—f Z (23+1) FY ei - (2.17)
mid i m;L
J
where we have written

J ; - ’ N+
Ty x .ok e <JM,?\C7\d|FlJM,Ra7\.b> : (2.18)

c'd a

Now since

X @™ = (DM, G0y, (2.19)
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s = s N
Ut ™ Hg PO g 100 for N+ N— vy +vy (2. 20)
= 71-— {3m.£(z) + (-1)7‘:3~ (-z)} (2.21)
2 ; : A
J T J J
_ L[ > (234) S ) Tt
zys & V2 V2
J T LY P, | J
el (z)-(-1)"el (-2) F_,-FL
5 B A o 22k gyl (2.22)
V2 : V2
Defining the physical symmetrized matrix element for this
process

Jj$  _ . .
Fonit = S<JM,KChd|F|JM,?\aR—b>, {2 23}

"Eq. (2.3) leads us to

FJS —L[an-l + (—1)JF‘1 ] for N+N— y+vy. (2.24)
3 ) m;ﬁ

m;l 2

Recall from Appendix A of Reference (3)

eJ);_p(-z) = (-1)J*7-‘eip(z) .

(2. 25)

So the combination
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e{}-l-(Z) + ("1))\6{_‘1’(-2) = e‘{p.(z) [1 $ (_1)J+}\+)\]

il

eip(z) [1 & (-1)J} (2. 26)

since 2\ is even. (This same result is derived in Reference (5)

with no restriction on N or p.) Thus
s K¢ Js _J
S (2) = X, Z(ZJ H)Fm;fehu(z) 1 (2.27)
J

and only the symmetrized matrix elements appear.

The partial wave matrix elements in this paper will always
be defined between the appropriate set of states. Thus the product
of the irregularities in the state normalizations will give the corre-
sponding irregularities in the partial wave matrix elements.

For the process y +vy —* vy tvy both the initial and final
states must be stmetr'ized. The derivation of the partial wave
expansion is the same as the previous case except for minor modifi-

cations. Equation (2.12) acquires a factor V2 on the RHS, Eq. (2.21)

becomes
8 (z)=3_ ., + (-5, (-z) T (2. 28)
op.g(2) =3 B ; Yty vy +y .
and since we must take
FI8 = <IMA AL |F|IMsA N >q, (2.29)
m;d ~ & Ted ’aka’ :



-

FJg; = [FJ g + (—I)JFE :I for y+y— & FAg (2.30)
I, m;l
These two changes work in opposite directions so that the formula Eq.
(2.27) remains unaltered; it is only necessary to remember that the
definitions of '(}'S . (z) and F'Tsl depend on the case in question.
m: m; .

The last step is the construction of the parity conserving ampli-

tudes to match the parity eigenstates. From the choice of states

Eq. (2.4) and the requirement

Ji - ; .

B 5 e LSIMA N [ F[IMA N >, (2.31)
c'd’ a

we get

F.]':l: _FJS JS

(2.322)
}\chd’ha)\'b )\C)Ld,)\a?s.b )\ 7\. 7\. )\

“As in Reference (3), we introduce the parity conserving scattering -
amplitude

+ S hﬂ\m s

£ =3 + (-1 : 2.33
c d’h )'b(Z) Lchd’)’akb(Z) = 'F-)\c_hd;)\a)\'b ; )

where \_ = Max[]h' . |p.|] . Equations (2.32) and (2.33) retain the
same form for ordinary parity eigenstates as for these symmetrized

parity eigenstates. By introducing the functions
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AN
J =
SHOEE RCHOEICHNLE OIS (2. 34)

we obtain finally, for all cases

J+ J:t
2J +1
cd”\hb(z) ‘} Z( ) ”“&r“\b ()ch”\’\b}

(2.35)

For any state of definite P, C and helicities, the sum in (2.35) is
automatically restricted to even or odd J by the definition of the
state. Which one to choose in any given case may be determined
from Tables II and III.

From the inversion formula of the original Jacob and Wick

partial wave expansion,

f dz f () dY (o) (2.36)
xcxd,xaxb S. = N AN M, A |

we find
’ dz (z)c ( )
c d’k )"b S' c d’ a)\'b s :
+£F (z) ) " (2) (2.37)
?\Chd,h N, 21 Cap = }
where
e aj (e) M) (8)
Ml & {_P'_(——X . &) + (.-1) X—_—_Em . 5 . (2.38)



.

General information about the eJ{:L(z) and c‘{:(z) is contained in
Reference (3), Appendix A. The few functions we use in this paper
are listed in our Appendix B.

With the reader 's indulgence, we point out this last aspect
of normalization and factors of V2. The symmetrized scattering
amplitude defined by (2.3) and (2.12) is equal to the physical scattering
amplitude (the one whose square gives the differential cross éection
for the process) only when the states which define it are themselves
normalized. This is not the case if one of the symmetrized states
is, for example, the state IJM;OO >g.

tude calculated from the Feynman rules always represents the

On the other hand, the ampli-

physical scattering amplitude so that we need the appropriate factors

from Table I to relate them.

. :
The parity conserving amplitudes f ; do not represent
Rc)\d’)"a)\'b

physical entities; they are constructs of physical quantities which
bring the partial wave expansions into a convenient form. The addi-
tional factors which this construction produces in cases where the
original states were already parity eigenstates must be included in
the state normalizations. Thus the factors to use in unitarity rela-
tions are the ones g'n}en in Table II. These factors need not be con-
sidered in any other portion of the paper since they may be absorbed
into the factorized Regge pole residues, as will be seen in the next

chapter.
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III. THE BASIC PROGRAM

1. Reggeization

In the past few years, several clear and unhurried descriptions
of the Regge phenomenon and its application to relativistic scattering
have been published, in addition to the original pioneering articles.

Among these we cite the particularly useful works of Frautschi.(ll)

and Oehme(14), which have good bibliographies. We therefore do not
feel it necessary to g‘ive more than an outline of the Reggeization pro-
cedure, except to emphasize points with special application to our case.
The basic idea is to treat the angular momentum variable 7J,
which appears as a discrete variable in the partial wave expansions
of the scattering amplitude, as a coﬁtinuous variable in the full com-~-
plex plane. Then, just as singularities in the energy variable have
physical significance, so do the singularities in the angular momentum
variable; they may represent stable particles or resonances. Further-
more, the asymptotic form of the scattering amplitude for fixed s as
z ~> @ is determined by the singularity in the J-plane with the
largest value of Re J. Because of the -crossing relations in relativis-
tic scattering this asymptotic form is related to the scattering ampli-
tude for high energy and fixed momentum transfer in the crossed
channel.
The "Regge pole hypothesis" is the con jecture that the J
singularities of the sc‘atte:c;ing amplitude are very simple, that is,
they are simple poles in.the region Re J = =~y Ty Jll’ Ov, which

depend on s. Though other types of singularities have been
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discovered, the hope remains that some of the physical consequences
of the hypothesis of simple singularities will be unaltered.

The largest share of the trick of Reggeizing is to find a
unique function F(J) of the continuous variable J, which will be
equal to the partial wave function FJ. at the positive integers. We
. must rule out the possibility of adding to this function some multiple
of say, sin ®J which would leave it unchanged at the integers; this
might be done by specifying some bound on the function at large Im J.
All the mathematical requirements are contained in the hypotheses of
Carlson's Theorem(15). This theorem provides that F(J) is a unique
interpolation if it is suitably bound. The ordinary partial wave pro-
-jection formula (2.36) is the natural expression to use for such an
interpolation, but the functions d‘{“(e), being composed of sines,
cosines and Legendre polynomials, are not sufficiently bounded at
large Im J to satisfy the hypotheses of Carlson's theorem. We must
look elsewhere for a workable formula.

Considering for a moment the scattering of distinguishable
spin zero particles of mass \, the center of mass momentum k

satisfies
z=c059:1+--—~§ (3.1)
2
4k™ = s - 4\" ., (3.2)

The scattering amplitude for fixed s obeys the dispersion relation
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N-1

N o  Als,t') o A (5.4
8ms f(s,t) = C (s)tn + -t—,E— dt'.—.E-__ e A

nZ:l ; S‘t N(t'_'t) ‘g (u -u)

(3.3}

where At and Au are the absorptive parts of f(s,t) inthe t and u

channels respectively, and N is sufficiently large to insure the con-

vergence of the integrals. and the possible divergence of f as t — oo,
Since d (9) PJ(cos 0), the partial wave amplitudes from

(2.36) become, for J> N

o |
T(s) = 2 g szJ(z){At(s,Zkz(z—l)) +(—1)JAu(s,2k2(z—1))}

8Tr21[s Z
o

F

(3.4)

where the QJ(Z) are the Legendre functions of the second kind.
Strangely enough, although the QJ(Z) cause no trouble, FJ(s) vio-
lates the bound specified in Carlson's theorem because of the factor
(—l)J in the integrand so that no interpolation formula valid for all J
can be found except in special cases., However, by separating the
physical values we must match into two sets, one for even J and the

other for odd J, we can find two functions which interpolate uniquely.

We call these functions F€ and 'FD.

1 e - .
811-2-\[5 S;o dz QJ(Z){At(S,Zk (Z-l)) + _Au(s’Zk (Z-l))} (3.5)

Fe(J)=



DD

[0's)
w0 A 2
FO(J) = = > Sv dz QJ(Z){At (s,2k"(z-1)) - Au (s,Zkz(z-l))} (3.6)
Vs Vz
o
e e | : o] J .
F(J)=F",J eveninteger; F (J)=F", J odd integer. (3.7)

e
These are the standard Froissart-Gribov continuations; e (J) is

analytic for Re J > N. The separation of the scattering amplitude
into parity conserving processes in Chaptex" I is a way of giving
physical significance to F<(J) and F°(J) separately, since for
each process the sum in (2.35) runs over either even or odd integers.
We now extend the definitions (3.5), (3.6) to the left of ReJ =N
by analytic continuation. This proceaure would be rigorous if we had
more knowledge of the analytic properties of At and Au’ but for this
project we must assume it to be merely heuristic. Further, we
assume, unless contra:fy evidence appears subsequently, that At
and Au are such as to cancel the poles which would appear in F(J)
because of the poles in Q‘;r at the“negative integers.
To determine the effect on f(s,t) of poles in Fe(J), intro-

duce the functions

T +2 wF G
pymya T o (3,03 12 %) (3.8)
Vo T'(T +1) z
which have the propertyué)
PJ(Z)=PJ(?) gk 3= 05 1y 25 ssa (3.9)
PJ(Z)=0 at J=-=1, -2, =3, aea (3.10)
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The interesting part of the partial wave sum may be written,

f(s,t) = Z (27 +1)P ()77 | (3.11)
J=0,2,... ; :
= Z (23 +1)%[PJ(Z)FE(J) + PJ(-z)Fe(J):l (3.12)
T, 1,200 4 ' \
(0 8]
5 B (2T +1)3 [PJ(Z)FG(J) - PJ(-Z)Fe(J)} : (3.13)
fnd
J=- 00

Now we use the Sommerfeld-Watson technique to convert this sum to

a contour integral

£(s ,t) = -4}.1- gc%(fﬂ'%}l PJ(-Z}-)FG(J) +Zli' gch%% PHz)FO(T) (3.14)

where the contour C encircles the real axis as in the limit R— o,
€ >0 of Fig. 1. Besides the poles from sin nJ, the poles at the
half-integers from PJ(Z) contribute to each integral, but these
contributions cancel in pairs J, J-1 of half-integers, except for the
one at J =3 which is cancelled by the factor 2J +1 in the numerator.
The function PJ(Z) as a function of z has a cut running from
+1 to -0, i.e., a left-hand cut, while PJ(vz) has only a right-hand
cut. Thus we have duplicated the form of a dispersion relation for
f(s,t) in z (or t). To the extent that the weight functions in such a

dispersion relation are uniquely determined, we shall have information

about FC(J).
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Fig.l —Integration contours

We now open up the contour to the form C'as in Fig. 1

picking up the contribution of the poles of F (J).

c' sin wJ

fs,t) = g | d7{2IH) [PJ(—z> i PJ(Z)-J F (1)

(2a,(s) H1) B, (s)
- Z 2 sin 1ra'i(s) [Pai(-z) * Pai(z)] '

i

ReJ

(3.15)
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where the ith pole of F®(J) occurs at afi(s) with a residue of Bi(s).
Since #,(z) goes asymptotically for large z as za,‘iri this limit
the contribution of the Regge pole with the largest value of Re J
dominates ail the others and the integral over the contour C'. We
conjecture that this leading pole term is in the neighborhood of J =1.
The first terms in the expansion of f(s,t) about the point J =1 are
evaluated at J =1 and will cancel if we are not careful to keep the
pieces separate. Then we would have to carry the expansion to higher
terms and the perturbation theory expansion to higher orders in order
to get non-vanishing terms to compare.

The situation for particles with spin is very similar except for

a few complications. Equations (3.5) and (3.6) become

°)
(7)) co
O e — an (e T + ATy
2 t €
87w Vs Y=z
o
A (oo}
B (FYel) Pk gz (A5 T - 4TIy, (3.16)
2. u u
8 V¥s Zo

+ + .
where the A, A are the weight functions of ii . (s,t) in a
£ TN kc)\d’ka}"b

dispersion relation for fixed s and where the C{::.(z)' are obtained
= o
from the Ciu(z) by replacing the PJ(Z) in their definitions by

Q_{z). Again assuming Fei(.]') is finite for negative J and con-
5 g g

+
sidering only the contributions from F* we have
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K
£ tg) =] 2 z (23741 §#I* ol iy
R I % %gh % TN
cMatha L Bven J=\ { a*halty M
=
+F)\ Agph ’“b M-L(z)} (3.17
l.f }: (2a0) {F S g )\_b)a[El () +(-1) ™5 By, (-2
E B A B s

F 2"
+FS KRN (3) % [Ex (2 - (-1) ™ M(-z)]} ,

(3.18
where the E‘{i(z) are obtained from the e‘){j‘(z) by replacing the
PJ(z) in their definitions by PJ(Z). After this, the extension of the
sum to include the negative integers is made more difficult becausel
of the existence of certain ”nonsense”uﬂ values of J. These are the
values of J for a particular set of helicities for which J< km.
Physically this is equivalent to a vector of length J which is shorter
than its projection. It is not surprising that the formalisrﬁ treats
these nonsense values different from the others. The E'{: are non-
vanishing for J = -1, -2, ..., —hm but provide terms which exactly
cancel the contributions from E‘{:i for J = O,- Iy swny )\m—l, as

shown in Appendix B of Reference (3). Thus the sum in (3.18) can be

extended to include the negative integers, and the Sommerfeld-Watson

)

)

)
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transformation together with a shift of contours gives us the contri-

bution from the Regge poles.
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2. The Vacuum Trajectory

Now we conjecture that the leading Regge pole for F©(J)

occurs at a value

J =a(s) =1+ A(s) (3.19)

where A vanishes as the coupling constant g—* 0. We calculate
A(s) by comparing the perturbation theory calculation for the relevant
processes with the deductions from the hypothesis of a Regge pole

at o(s). There are two expansions involved here and their relation

is sometimes delicate. Since we have the leading Regge pole, we
want the high 2 limit of perturbation theory. But since we are
comparing the Regge predictions with a particular order éf pertur-
bation theory, we want only that term which involves the correct
power of the coupling constant, even though higher powers of the
coupling constant may be associated with larger z dependence. In

J+(z) dominate

any given order of A, the contributions from the E
those of the EJ'(Z), so that we neglect the latter in what follows.

Thus the Regge pole contributions are:

k. [ M
(2a+1)mpB f m_a+ a+
T2 sin ma ‘/ K [('1) By trml + E?\p.(z)]

k A
f 3P m_ o+ a+

Further, we know that in the s-plane, the residues of single-

particle poles and of resonance poles are factorizable as a simple
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consequence of the unitarity condition, i.e., they may be written as

the product of two factors--one from the initial state and the other
- ¢ . 3

from the final state. Since the F (J) obey similar unitarity con-

(14)

ditions in the complex J=-plane we expect that the residues of a

,(18), 019

Regge trajectory factor in the same wa Denoting these

factored residues by g)“l)\z where the subscripts give the helicities
of the corresponding state, we see that extra factors in the F's due
to the state normalizations may be absorbed into the corresponding
&,th. However, we must be careful when dealing with unitarity
relations which are non=homogeneous.

We see from the inversion formula (2.37) and the fornd of the
c‘;{i(z), Appendix B that some of the partial wave amplitudes have
square root factors multiplying them which should really have been
taken into account in the derivation of (3.20) since otherwise they
would introduce troublesome branch points. For our purposes, which
center about J =1, we may consider these analyticity problems to be
taken care of for all such factors except J - 1, which we keep track
of separately. These special factors appear only in channels with a
nonsense state, i.e., ‘JM;1—1>£ Physically, the explanation is that
in this channel, as J decreases, the formalism must have some way
of eliminating the nonsense J contribution. Keeping track of this
factor is important in our assigning the correct order of perturbation
theory to each contribution.

Combining all our hypotheses about F° (J) we have the

following:
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or . BiE,
ij J-a
Fe+~ gsgi
si J-a
g .
7w 5oy B
ni J-a
(3. 21)
2
g
FOT s gog
nn J-a
£t
Fe+~ 7.1 & )
ns J-a
Fe+~ grgs
s J-a

where the subscripts i, j each represent any of the states |%%>

and n represents the nonsense state |1—1>+, and where ~ indi- -

+ 3
-é—>+; r, s each represent any of the states |1 O>+, [11>_|_, |00>+;

o

cates that we are looking at the behavior near J = o we have omitted
a piece which is regular at that point. Of all the possible amplitudes
for y +y — vy t vy, only one of them will give us information about
A{s) in a fourth order perturbation calculation. We substitute these
conjectures into the expression for the pple contributi.ons‘ to the
amplitude, (3.20), choosing the appropriate Ei:: from Appendix B
for the partial wave expansions (2.35). In evaluating the small A,

large =z limit of the Ei:(z), the following formulas are useful:



P (2) —~ z{l +aflogz + (1 -1og 2)] + @(A?‘)}
P!(z) =~ 1+A[logz + (2 - log 2)] + 6(a%)
Pc'z’(z) s ;A-{l + A [10g z + (2 - log 2)] + @(Az)} (3.22)

Plilfg) —- A:—Z-{l +A[logz + (1 - log 2)) + @‘(AZ)}

PVz) —~ —2—?— {1 +A(log z + (3 - log 2)] +@(A2)} .

with similar formulas for z — -z.

The final form of the predictions of the Regge pole hypothesis

are.

for N+ N— N +N

fi—l._l.i “ % ‘ii [- z log (-z) + z log z]

2222 22 e

+ 3

f1_1,131 = —— &1 1.1 [~ log (-2) + log z] (3.23)
2"2322 2\/'2 2= 2iz2z2

3.2 -
= —‘IE%-% [- log (-2) +1log z] ;

for N + N — v tvy, letting p be the center of mass momentum of the

NN system, k, the center of mass momentum of the yy system,
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+

N T e 5_:', gl L[ - 1]
iz-2 zw/"za\ "2

f+ iy = 3 . ﬁ. {:,11[ -1 +1]
1022 524 YP

{3.24)

==y 9

+ A2 1 1
1,11 2bal-3 1 51

+ 3 1.1
‘ 3¢ gof-Lall
1-1;00 ~ 7% “1-1%000 Tz T 3
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4 3 .2
f00;00 ~ ZA ool % T2l

+

3 1,1
Bam ™ 35 8-fnl-2 2]

5 V3 1,1
fi10 " T 51abw0l-z T ]
+ 3 .2

f10;10 ZA 5’10[ -1 +1]

+ 3

£, — & £ [-1+1]
10511~ S5 A 10711

i 2 -1 +1]

£ an = —— &, E [
10;00 /5 A 10700

£ 3 g2

1 zA b Loz ozl

+ 3
£1.00 = z& Eubool -z * 2] -

(3. 25)

In each case we have written first the term which was derived from

the function with the right-hand cut in z. In the case of N + N — N+N,

the contribution of the lowest order term was dropped because it gave

a contribution lower than first order in the coupling constant,

In the

above predictions, the terms which behave as 1 or z as z — o in

this lowest order correspond merely to the polynomial subtraction
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constants in a dispersion relation in z of the form (3.3). The de-
composition of the amplitude into two such terms is arbitrary; only
their sum, zero, has significance. The terms which behave as z
or log z, however, must come from the integrals over the cuts in a
dispersion relation. These have analytic structure, and are the
asymptotic forms of terms which can be uniquely determined if their
sum is given. The success of our program depends upon the identi-
fication of these terms. Of all the above processes involving a 2y
state only those which contain the nonsense state are uniquely deter-
mined in this low order. Out of this group, only the ”nonsénse =
nonsense" transition involves A(s).

The N +N -~ N + N predictions are compared with the fourth
order perturbation calculations (the second order process, single vy
exchange, is too small at high z), the N + N — y + vy with the second
order calculations, and the y +y — vy vy with the fourth order
calculations. Thus we can read off the size of the various quantitites:

&, ~ 6(g?)

1

g™ G(gé)

(3.26)
&~ 8lg°)

n

A~ 6(g®

where the subscript i represents the two nucleon states, s the
three meson states which are sensible at J =1, and n the 1-1

nonsense state.
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The equations (3.23) - (3.25) are to be regarded not only as
a scheme for calculating the residues, but also as a prédiction of the
asymptotic behavior of the amplitude in the appropriate order of per-
turbation theory.

The trajectory can be evaluated from the identities

(AE %) (€6

Al T ETEES - o]

(€ ETEE)

where the groupings on the right-hand side represent the combinations

determined by comparison with perturbation theory.
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3. Consistency and Unitarity

We quote from Reference (5) the results from second and fourth

order calculations. For N+ N ==y +vy,
ot 2 m ‘ [k 1 1
f — b R k) e e (=t < 3. 28
1"1;%% . 4nkys P { 8 . ] ( :
+ 2 1 fk 1 1
—_ et JPAR I by e
f1—1; = & Bk \pr [ z z ] (3. 29)

where the first (second) term comes from the diagram which yields

the right (left) hand cut. Using (3.24) we get

- S - :
ST T S
e B3

The other six processes agree in their asymptotic form with the pre-
dictions of (3.24), but for them the identification of the corresponding
coefficients would be purely formal. It turns out that these other

processes are also consistent with

E = {3.32)

although this may be only a coincidence. From the right-hand cut of

the fourth order N + N — N + N calculation,
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2 .
il = - 8" ZF el log (-2)) (3.33)
,.+.
f;Rg.;; - g4E I (s) log (-z) (3.34)
27222 m (8]
+R 4 /s
f%_%;_lz__% - g - I {(s) log (-2) (3.35)
where
(09 1
1 {s) = 1 g8 1 (3.36)

2 y 2 1 leg=-i
16w 4N '/(S,)(%_)\Z) s'-s-ie

so that, noting again the correctness of the prédiction of the asymptotic

form, we have

2 I (s)
2 4 4m o)
= 3. .
4 2/2m
g%-%g%% B oo I (s) (3.38)
2 4 2Vs '
5_;:_% = g —=-—1[s) (3.39)

which agrees with (3.32).
As in Reference (3) and Reference (5), we extract additional
information from the partial wave unitarity relations continued into

the complex J plane. The possibility of doing this uniquely for both
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F€(J) and F°(J) follows from Carlson's theorem. We have

5] -k g g g s’
o - m -
B, Eothy }__} N2 Frnald) [Fmb(J)] (3.40)
m m ’

where km is the center of mass momentum of the intermediate state,
Nm is the normalization factor for the intermediate state (taken from
Table III) and the sum is over all the intermediate states. This
formula is valid in the range from the lowest threshold of the inter-

. mediate states to the first inelastic threshold. To emphasize that the

"Imaginary part" above refers to the discontinuity across the cut in

s, we should write

e e G Sk
e il 5 [FO (J"‘)]
Im FY_(J) = L -~ 2 G4

with a similar understanding for the complex conjugation sign on the
RHS of (3.40). Applying this to the process N+ N — N + N, we con-
sider intermediate states of the NN and VY systems., Since (3.40)
must hold in each order of the coupling constant, let us consider the
fourth order terms, and then look at the high =z limit. In this order,
the only contributions come from the yy nonsense state as we see
from (3.26), since all the other states give lower order contributions.

In the neighborhood of J = @, by means of (3.21), we can write

EE . EE. (€ 6,
b o PV0AL gt c Wl (3.42)
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and taking the residues of both sides,
(g E) = S(6 £ 607, sz 4l (3. 43)
ij . 2 n j n i ? L " = & =
This expression serves as a check on the second and fourth order

work already done. Noting from (3.36) that Im Io(s) = (1611-}0/_5)"1

1 :
2, we confirm that

=

and taking the case i=j =

2

4 2
4 I (s) 2
Im_g.__r.n_.._fl__ _—_1_;(__%_1“_._> (3.44)
3mVs Vo6 mkV's

where the RHS is obtained from (3.30).
Applying this formalism to the nonsense-nonsense transition,
where the fourth order contribution comes only from the two NN

intermediate states, we find

g2 £ £, € £
Im[(J—l) ﬁ] =p§; Tl sk 5 of T v

J-a J-o

1l
-
-]
wr
B
U
o
v

(2m~+s), s =4m"”. (3.45)



=40

IV. CALCULATION OF THE TRAJECTORY

1. The Full vy Amplitude

The fourth order calculation of the process vy +y —~ vy +vy
involves two parts: the calculation of f1+—1;1-1(z) and the separation
of the answer into right and left hand cuts in the momentum transfer
t. The first part of the calculation is quite lengthy, but straightfor-
ward once certain points dealing with invariant amplitudes have been
clarified. The second part presents not only difficulties of calcula-
tion but fundamental ambiguities of interpretation which have not

yet been resolved. These will be discussed at length after we obtain
+
f151-1)
From (2.33),
8

3
" _Haag | Aaa

f g =

. (4-1)

Here fg is determined from the invariant matrix element M by

1
£ = M (4.2)
Smfs

(20)

and M is given directly by the Feynman rules. We consider
first the general case of fourth order scattering of neutral vector
bosons coupled by a conserved-current interation to a fermion field.
We use the method of Karplus and Neuman(zn, but as we shall see,
their result must be modified so that its analytic properties are

recognizable. Instead of deriving their result as an intermediate
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step and proceding onwards, we present here a more direct way of
obtaining the result we want. The physical process is completely

described by specifying the four boson four-momenta k(l), k(z), k(3),

k(4) and their corresponding polarization four-vectors e(l) e(z)

e(s), 6(4). Taking the momenta as ingoing, energy-momentum con-

P

servation is

(i) _
Z k,"=0. (4.3)

i
Gauge invariance requires

S ) _ g

i (i not summed) (4.4)

for each particle, and the e(l) are normalized as in (Al3). We write

the invariant matrix element as

4 sle 3
s 1) (2)_(3)7 _(4) 1 ,(2)  (3) ,(4)
M= - _ég_n__z E!\l EV E?\. 60_ G}J.V)\(T(k S 'k k7)), (4.5)

where particles 3 and 4 have been chosen as outgoing and the factors
have been chosen for convenience in what follows. Because of the

conserved current interaction GpV?\.cr is divergenceless with respect

to each index, In momentum space

e (k(l),k(Z) ,k(3),k(4)) -0
M T RVAC

3 PR I 3 N I ) N
1% SR N
(4.6)
K3 ) (2

N T AL

g g (2) ( 3) @) _ g
(ip KV AT
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In fourth order, six diagrams contribute to G Three of

pvio®

them are shown in Fig, 2. The others are the same except that the

internal fermion line circulates clockwise.

K (3) (2
k‘”\)\ (2) (2
A v k(J) o v v A
| |
g ' M k(4) A m [ M
(4) L) ROMNMO! )

(a) {b) ()

Fig.2—Diagrams for fourth order Y7¥ scattering

In addition to being Lorentz invariant, the fourth rank tensor
Gpv)w(k(l),k(z) 83 B g notationally invariant; it describes the

same physical process under the 24 simultaneous permutations of
its arguments and corresponding indices. The contribution of the

Fig. 2(a) to Guvka(k(l),k(z),k(s) ,k(4)) is , by the Feynman rules,



wd

t S‘ 4 Tr{y (B+mly, (B P lem)y K(F”K( 2)+1£(3)+m)v0(15-¥“ Yies 3
% P
in” (p%-m ) (PN Z-m® [ (p PPN m [ (i) 2

(4.7)
81T2
where the factor in front represents the product of - g for the
factor in (4.5), -—-1—-—-4-- for the energy momentum delta function, (-1)
(2w) 71

for the chosed fermion loop, 2 to represent the diagram with the
fermion direction reversed and g‘/-l for the coupling constant. We leave
it understood that the poles in this and similar integrals are to be
treated as if the masses had a small negative imaginary part. The

are fewer than those of G but include

‘stmetrles of prho- pv Ao

the 8 simultaneous permutations of its arguments and tensor indices
which leave the trace invariant--4 cyclic permutations and the com-
plete reversal 1234 — 4321, We may obtain the contribution of the

three diagrams to Gpw?\cr from Tp,V?\cr alone by proper permutations,

PRCUIN - N SO I N e

4

Gp.v Ao MY AT E

1 (2) _4) (3) 0 _(3) (2) (4)
+Tp.vo-)\(k K » K »k )+THRVo'(k .,k sk sk )

(4.8)

so we see explicitly how Gpvho' is invariant under all 3 X 8 = 24
permutations.
The expression (4.7) looks as if it contained a logarithmically

divergent term, but Karplus and Neuman have demonstrated by the
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Pauli-Villars regulator method that G;W?ur is completely finite.

They then demonstrate explicitly that their regularized expression
for Gpw?ur satisfies (4.6). The same answer could be arrived at by

using (4.6) to enforce a finite answer, or by using Jauch and Rohrlich's

method of symmetrical integration. (22)

To simplify the writing we introduce the following condensed

notation. Replace the vector momenta symbols - k(l), k(z), k(3), k(4)

simply by 1, 2, 3, 4 respectively when there is no possible ambiguity.

For example, P-Vha-(k(l) k(‘?') (3) k(4)) becomes G '(1234) {no

commas); the tensor k(z)k(l) (4) (3) becomes 2 1 4.3 ; the scalar
BV k cr V' NTo
ki) ()

S becomes (i-* j); and the second of equations (4.6) becomes

2.G )\0_(12,34) =

Vv

We join Karplus and Neuman in writing the tensor G

WA in
terms of the available tensors.
ijk{ ij
WA (1234) = A (1234)i _] k ll B (1234)i _] vExe
JJ ' X, £ ,J
ik 4 kil
i toee.
1+ Z B2 (1234)1p‘k7\gv0_ w’lern Z B6 (1234)k>‘_£ ngv
i,k . k,f
i Cl(1234)gpvg)\0_ i C2(1234)gp.7\gvo- + C3(1234)gwgvk 5
(4.9)
with
i} 2y 34 % 3 j=1,3,4
(4.10)
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where the 81 A's, the 54 B's and the 3 C's are scalar invariants which
are functions of the scalar products of the four-momenta. One might
imagine evaluating them by an explicit calculation of the traces and
integrals in the regularized version of (4,7) and its permutations.
(This would involve handling some 11,340 terms.) Although the com-
pletely antisymmetric tensor e]J-VKO' is also available, terms con-
taining an odd number of these tensors would give a pseudo-scalar
after dotting them into the polarizations. Terms with an even number
of them are expressible as combinations of the tensors already
appearing in (4.9). Because of the conservation of momentum,
there are only three independent four-vectors. We have eliminated
k(l) when dealing with the tensor index p, k(z) for v, etc., as indi-
cated by the range of the sums in {4.10). The reason for this conven-
tion is that it is invariant under simultaneous permutation of the k(i)
and their corresponding tensor indices. Since both the valule of the
left hand side and the form of the right hand side of (4.9) are invariant
under such permutations, certain relations among the A's must be
satisfied. There are so many in fact that if the functional form of a
representative set of six of them is known, the other 75 may be
determined by simple permutation of the arguments. Detailed infor-
mation is given in Appendix D. Similar relations hold among the B's,
| A difficulty not mentioned by Karplus and Neuman is that an
expression of the form of the right hand side of (4.9) is not' unique..
This is because any two of the tensors can be expressed identically

as combinations of the remaining ones so that there :is an infinite
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number of sets of A's, B's and C's which will yield the same function.
This point is discussed more fully in Appendix C, At first glance,
the simplest way to avoid this difficulty is to omit two tensors, say
C2(1234)gpxgvg and C3(1234)g}wgv>\ from the right hand side. The
coefficients of the remaining tensors are then uniquely determined,
but operating on C1(1234) with certain permutations of momenta and
indices would yield these unwanted tensors again. If we replaced
these tensors by their values in terms of the others as given by the
two identities, we would introduce additional A's. Thus under this
operation some A's would go into unmanageable mixtures of A's
and C's. The way out of this difficulty is to fix uniquely all the
coefficients of (4,9) by regarding them as coming from some parti-
cular calculation of the traces and integrals.. Then a simultaneous
permutation of momenta and indices could be regarded as coming
from a line by line substitution into this particular calculation. With
this understanding, the results of the previous paragraph are correct.
Karplus and Neuman's big trick is to use current conservation
Eq. (4.6) to derive further relations among these quantities. It is
easy to show that in an expression which satisfies (4, 6), if all the
A's are zero, the B's and C's must vanish also. Thus, knowledge
of the A's determines the B's and C's uniquely and for the case of

G , it is necessary to evaluate only the A's, Extending the ter-

WY Ao ;
minology of Karplus and Neuman we call the A terms "heads," the
B terms "shoulders" and the C terms "tails." Following the usual

procedure, we introduce Feynman parameters to combine the
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denominators of Eq. (4.7}, then shift the origin of the p integration

to eliminate the terms in the denominator linear in p. We get

Tp.v?\.o‘

--«-—62 g d'rS‘ d4p
i

Denominator= {pz—m tk

where

and

Denominator

(4)2

[3)*
¥oy3tk " yayy

2
2 (1)y +42)

7
4Y1 V¥ tk

_ i (2)y, 1 03) +k(4))yzy4_ ROEACHN (k‘2)+k(3’)y1y3}4

(4.11)
Al i@y e kB
A(2) _ 2y Py vy )+
N IION, R ey
A2 Dy el 18y
(4.12)

1p1 15l
‘S‘dTES‘ S' S‘ § 5(-y, -y, ,~yv,-v,)dy. dy_ dy,dy, . (4.13)
oY0Y0v0 172 23 74 1 Z 3 4‘

But since we need only the head terms, i.e., only those where all the

tensor indices appear on the k

(i)

, we may disregard all the p and

m terms in the numerator, making the integration over p very simple.

The "divergent" contributions never appear.-
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Tr{YHX(”YVX(Z)VKX(Z')YGXH)}
D(1234)

(4.14)

(1234) = Sd’r
heads
only

Tliv?\.u"

where

2 2 )2 2
" 3 2 3 4
D(1234)= [ m?-kV Y4Y1'k( ) Ylyz-k( : Y2Y3’k( ) Y3V4

AW 42y, (1 (3) +k(4))y2y4+(k(1)+k(4))‘ (k(zb,k(s))ylys] 2
(4.15)

(i)

Further, in doing the trace over ‘the remaining terms, i.e., the A\'',
we get 24 terms instead of the usual 105 because ali terms involving
gpy contribute only to the shoulders and tails. We may collect the
terms beionging to each head tensor, being careful to express the
)\(i) in terms of the three momenta appropriate to the index carried
by the 7\.(1) in accordance with the convention of (4.10), We call

' All"]kJE (1234) the contribution of the heads to T}.WKG‘(1234) so that

ijkt o
AP (2340 k! (4.16)

The A's are calculated from the Ais by using the symmetry operations

of (4.8) and are listed in Appendix D. Because Tp,v}\.o' is less sym-

metric than G as measured by the number of simultaneous

HY Ao
permutations of arguments and indices which leave it invariant, the

Al

1S are less symmetric than the A's; a representative set of 15 of
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them are required to determine all the others and consequently the -
A's. Karplus and Neuman have done all the bookkeeping, and list

values of such a set of 15 Al's. A typiéal one is

' A12111(1234) = SS\ ar

yl(y2+Y3+Y4) (Y1+YZ_Y3 _Y4)(V1+Y2+Y3_Y4)
D(1234)

(4.17)

the others differing by the polynomial in the numerator. A cor.nplete
list is given in Appendix D,

In collecting these formulas for the Al's one discovers certain
relations among them which in turn generate relations among the A's
which are not obtainable by notational invariance alone.

From here on we part company Qith the work of Karplus and
Neuman, who go on to introduce a set of tensors which satisfy (4. 6)
identically and express the answer in terms of these tensors and the
A's. For a while considerations of the number of independent ampli-
tudes available to descri‘be fhe scattering process cast doubt on the
validity of their method and some looseness in their arguments
increased our suspicions, but these uncertainties have been resolved.
See Appendix C for a fuller discussion, Though their final answer
is correct, it contains terms with products of momenta in the de-

‘ 1 1

3 or gy in addition to the

t dependence of the integrals (4.17). Thes‘e factors make both the

nominator which yield factors of

determination of the analytic properties of each term and the calcu-
lation of the asymptotic form very difficult,

Following a suggestion of J. Sullivan we cast the answer in a
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form whose analytic properties are more obvious by explicitly solving
for tl"xe shoulders and tails in terms of the heads by use of (4. 6).

For example, after contracting (4.9) with lp.’ we have a third
rank tensor which must vanish for any choice of the k(i). It is easy
to show that this implies that the coefficient of each tensor form

vanishes (unlike the case of second or fourth rank tensors). Thus

the coefficient of, say 1V47\.30' is

2143 3143 4143

S (1-2)A (1234) +(1-3)A (1234) +(1-4)A (1234) +B23(1234) =0

(4.18)

and this gives B23(1234) in terms of the heads. Similarly, all the
B's and C's may be expressed in terms of the A's. However, we
could also obtain an equation for 553(1234) by considering the coef-

ficient of 2 4.3 after contracting with 2 _:
L AT v

2143 2343 2443

(2-1)A%%3(1234) +(2+3)A (1234) +(2+ 4) A (1234) +B§3(1234) = 0y

(4.19)

In this way we obtain additional relations among the A's, which are

not obvious from expressions such as (4.17). Two such expressions,

which we write in the form

a(1234) = (3-4)a2123(1234) + (2-4)4%122(1234) + (1. 4) A% % (1234) = 0

(4.20)

b(1234) = (1.4)a%3 0 1234) + (3-4)2%3 N (3134) + (2- 4) 223U (2314) = 0

(4. 21)
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are derived in an elaborate way in Reference (21), They felt it neces-
sary to check their arguments by an explicit calculatioﬁ for a special
case., The first of these identities will play a role in our later dis-
cussion of the analytic properties of the amplitude.

The final answer could be written in the form (4.9) with the
coefficients of the 138 tensor amplitudes all expressed in terms of the
A's, We choose to regroup the terms and list the tensor expression
which multiplies each of the 81 A's, This is the form given in Appen-
dix E. This expression agrees term by term with the expression
given by Karplus and Neuman if sufficient use is made of (4. 20),
(4.21) and their 24 permutations. The point of all this work is that
now no scalar products of momenta occur in the denominator, or in
dispersion theoretic language, we have avoided a great many kine-
matical singularities,

The previous theory is perfectly general and applies even when
the four particle box is an internal part of a diagram. Now specialize
to the case where the k(i) represent the external momenta of identical
particles of mass A <m., Take N\ to be the unit of mass and, in

accordance with {4.5), choose 1 and 2 to -represent the initial particles,

3 and 4 to represent the final ones. Introduce s, t and u as usﬁal by

so that

1l

(1-2) = (3+4) =1 (s-2) 5 (1.4) = (2:3) %(t-Z) ;

1}

(1-3)

i

(2ol = -lz-(u-Z) = }2(2-5-1:)‘ : (4.23)
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Equation (4.15) becomes

2 ' 2
D(1234) = [ m - (V1Y2+Y2Y3+V3Y4 +Y4Y1) - SY2Y4 - tY1Y3] =D(s,t) .
' (4.24)

This simple form for D(1234) means that the 24 a priori permutations
of the arguments can be reduced to only 6 different ones, and by a
change of integration variables to only 3: D{s,t), D(s,u) and D{t,u).
Appendix D lists all the possibilities. Since the A's depend on
‘their arguments only through these denominators, additional equalities
among them are obtained which are given in Appendix D.

Further specialize to the actual cases at hand. In the center

of mass system take:

s (0,0,0,K) 2 (,0,0,-%)
(4. 25)
k(3): (-w,k sin 6, 0, k cos 0) k(4): (-w,-ksin9,0,-k cos 0)
with
Bt ¥ du® = g | (4. 26)
Choose the helicities to be
(1) 1 . (2), 1 .
ety — (0,1,1,0 ey —=— (0,-1,-1,0
\/-2( 1 ) ‘\/-2( ’ 1 )
% (0,-cos 6,i,sin 6) for £%.. |
LD I ; o g (4.27)
7—2~ (0,-cos 06,-i,sin 0) for f-ll;l—l
2 (0,cos 0,-i,-sin 0) for f'g
(4))%‘ 75 . g s 1—1;1-1
€ g
1 . ; S
— (0,cos 0,i,-sin 0) for £ .. ”
2 -11;1-1
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The calculation of M is now straightforward. The tensors
associated with the A's vyield terms :I:k4 sin46, those associated
with the B's yield ‘(ikzsinzﬁ)(:ﬁl+cos 8) and those associated with
the C's yield (1 + cos 6)2. Combining the hel‘i.city cases abc:ord"mg |
to (4.1), and making liberal use of the symmetries, we get the coef-
ficients of each head. Expressing these coefficients in terms of s
and t we find that the only place the t appears explicitly is in the

terms

sty 44l _

: 4422 _ ,3422 _

4311]

A A . (4. 28)

(The argument (1234) common to each of the A's is suppressed.)

Two permutations of the identity a(l234)

(2-3)a®3 4 2o a* 4 (2. )a** L - o
(4.29)
A AR 5 .0y aB822 4 o 8422 _ o
furnish the relations
HAML 29810 _ 5,431 L oy J4IT 44l
(4.30)
(A3422_ pB422) |, 4422 |, ,u 22422 A3422)

so that t may be entirely eliminated. The complete result is then



Bl

_ 1 s 2 4321, ,3412 4312
T M_1..7 1606 4s+8)[ A + A + 2A ]

Jrgs_[Azseu+ A2413) _%(S_Z)[Aazetu + a%422)

& -1§s(s-2)[ A4111+ A2422_ A4121_ A3112.]

) %(8_4)2[ A3312 | 44310 (4. 31)

in which the only t dependence appears in the integrals for the A's.
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2. The Program and Its Difficulties

A few words about the analytic properties of the amplitude
will be useful. Every A is the sum of three terms, each of which
represents a contribution from one of the three basic diagrams and is
obtained by applying permutations to Al' The effect of these permu-
tations on the scalar products of the momenta is to interchange t and
u going from diagram 2(a) to 2(b), and s and u going from diagram
2(a) to 2(c). This gives a characteristic denominator to the contri-

bution of each diagram so that M takes the form

(s ,Y ) (51Y )
% B P Nt |
M1-1;1—1‘§dT D( ,t) dr D(s T Dla.D) (4.32)

where NI', NII’ and NIII are the polynomials in s, Yi» Y20 V32 Yy
obtained from (4. 31) by combining integrands with the same denomina-
tor.

An elementary study of (4.24) shows that D(s,t) cannot vanish

anywhere in the regions of integration provided
s < 4m°

(4.33)

1:<4:m2

so that these conditions become the boundaries of the region of analy-
ticity for the first term on the right hand side of (4.32), neglécting
the s dependence of NI' This simple examination is confirmed by
the more sophisticated investigations of Karplus, Sommerfield and

(23)

Wichman and Tarski(2‘4) for the general mass case. The condition
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on s is simply that we remain below the threshold for producing
real fermion pairs. For s < 4m2, we reach a branch point as we
increase t, so Fig. 2(a) gives a right hand cut in t beginning at
4m2. In Fig. 3 we have a picture in barycentric coordinates of the

region of analyticity for each diagram. The central triangle DEF

Fig.3 —Regions of analyticity

is a common analytic region for all three diagrams. If wé hold s fixed
. at some wvalue 8, < 4m2 represented by the line PQ, we see that
Fig. 2(b) yields a Iright hand cut beginning at t = 4m?%, Fig. 2(b) yields
a left hand cut beginning at t =4 - s - 4m2, while Fig.. 2(c) yields
both a right hand cut beginning at t = 4m2 and a left hand cut begin-

ning at t =4 - So ” 4m2.
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The three terms in (4.32) correspond to the decomposition in
the Mandelstam representation into three double-spectral functions.
Because these integrals go to 0 at infinite t, if we wrote the RHS
of (4.32) as a dispersion integral in t, there would be no subtraction.
Thus we can unambiguously identify the contribution from the right
or left hand cuts separately, even if their sum should vanish. This
separability of the cuts is essential to the proé’ram.

To look at only the right hand cut, we take the first integral
in (4.32) and part of the third. The question is, how do we separate
the right ;md left hand cut contributions in this third integral? Re-

writing the denominator
2 2
. D{u,t)= [ m - (Y1Y2+Y2Y3 +V3Y4+Y4Y1) - (4-s )Y2Y4' t(V1Y3— Y2Y4)] (4.34)

we note that if the sign of (y1y3- y2y4) were positive (negative) D(u,t)
could be made to vanish at some point in the region of integration for
all positive (negative) t. This strongly suggests that if we were to
limit the region of integration so that ViV3~ V¥, were always positive,
we would get the contribution of the right hand t cut. The correctness
of this intuitive result has been verified by the following procedure.
Perform the Y4 integration by using the (ielta-function. Calculate

the discontinuity across the cut in t by deforming the contour of the

y wvariable and picking up the contributions of the two second §rder
poles, For 4 <s< 4m2' contfibut'ions to the discontinuity are obtained
only under severe restrictions: either 1. When t = rn2 and the

remaining integration variables ¥y and y4 are confined
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to a region bounded by two conic sections; or 2, When t=<=4-s5 - 4m?
and vy and . y3 are confined to a second region bounded by two conic
sections. If we repeat this procedure using the condition that

(y1y3 - y2y4) > 0, the first region of the ERE variables is un-
affected while the second region becomes excluded and we get only
the right hand cut in t. The other choice of sign selects only the

left hand cut. (This dispersion form of the original integrals contains
such complications in the specification of the boundaries of integra-
tion that it is practically useless for further computation.)

Having solved the problem of extracting the contribution of
the right hand cut we examine its asymptotic form. Anticipating the
results of the next section we find that the largest terms from the
first diagram are of order t_l as t— oo, and we can easily deter-
mine their coefficient. We have demonstrated that the right hand
cut portion of the third diagram also contributes terms of this order
and no larger. Their coefficient has not been determined. What
seems to be a messy calculation could probably be done if there were
good reason. However there is good reason not to do it.

The Mandelstam representation gives the most convenient
basis for a discussion of the analytic properties of M, It is exact
for this fourth order process and neglecting subtraction it is

related term by term to the decomposition into Feynman diagrams.

e B S v+ 3§

(s'-s}{u'-u)

P lu'sth)
+——* du' dt' 4,35
gg(u BT i)
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where, for example, the double spectral function put(u',t') is non-
vanishing only in a region below a curve uo(t) or to(u) in the shaded
portion of Fig. 3 situated entirely below the s axis. Breaking up
the contribution of the third double spectral fu‘nction into right and

left hand cuts in t,

P lutnt’) ' "S P fatst) g .
‘S‘S (t'-t)(u' u)du s S‘ uU'.—u+t'-t (t"‘t u' u) G &

o o p_(u',t") . '

=S dt'S. du' ’ut ( X )

2 u'tsH'-4 M-t
4m uo(t')

o) oo p. . fa',t'% |
+§ du'S g pul (= ) . (4.36)
2 u't+t'ts-4 u-u

Replacing the earliest integration in both terms by an integration

over s'=4 - u' -t', the RHS becomes

4-u (t')-t' U1 4
Qo (o] p (4"5 gl )
-5 dt'g ds' utl :
41‘]:'12 -0 - (s 'S)(t -t)
leo) 4—u'—t0(u') P t(u.',‘ic—u.'—'s;')
-S' du' ds' —2 . (4.37)
4m?2 “ 00 (s'-s){u'-u)

We see explicitly how the right hand t-cut contains a discontinuity for
negative s. If we now took the limit as t— oo, the coefficient of t-1
would contain this same negative s-cut, and a(s) would acquire a

left hand cut in s. From the first double spectral function we get only

terms which lead to a right hand s-cut in a(s).
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The crux of the matter is that for a normal Regge pole, a(s)
cannot have any left hand cuts in s! Oehme(lé) gives a demonstration-
of this which we skefch briefly. Considering the spinless case for
simplicity, the continued partial wave amplitude (3.5) is given by an
integral over z from some small value z, to o. If we break up
the integral into two parts, one in which the range of integration is
z =z = a, and the other in which the range of integration goes from
a to oo, the first integral is analytic in the whole J plane except for
poles at the negative integers. Thus all other singularities of F<(J)
must come from the second integral which we call D(J). In this
integral we may take a as large as we please-. Making.the same
assumptions about continuing D(J) to the left of Re J =N as in

Chapter III, the Regge poles are given by

D Hats)) =0 . | (4.38)

Then we expect singularities of a{s) only where D—l(J) is singular

or where

a4 1 - )
\ 567 ) =0, (4.39)
J=a(s)

and this latter can happen where two pole trajectories cross gach
other at J = a(s). In the first case, we may expect that the left hand
cuts in At(s,t) or Au(s ,u) will produce corresponding singularities
in a(s). But this is not the case since the left hand cut from (4.37)

begins at s = 4 - uo(t') - t' which recedes to - as we take a, and
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hence t', larger and larger. (In this limit uo(t') s 4m2.) Thus a(s)
cannot have a left hand cut unless there is another singularity present.

Since the full amplitude in fact yields a trajectory with a left
hand cut, there must be some other singularity also present. That is,
in addition to the vacuum trajectory we are seeking, there is an un-
identified foreign object (UFQO) also near J =1. The original program
of evaluating the Regge pole parameters was not sophisticated enough
to include this possibility. We must now try to make sensé out of
this phenomenon. Since we no longer have a fixed prescription of
what to do, let us e.xamine the possibilities and their consequencés.

If we decide that the theory is in such poor shape that the
presence of a left hand cut in s is not to be excluded a priori as
unreasonable, what are the other éonsequences of proceding with the
original program and including the 1astl diagram ?

First, let us describe a somewhat lengthy calculation which
gives the value of a(0) for the complete scattering process, including
the third diagram. Consider the dispersion relation (3.3) for fixed s
in our unsubtracted case. The limit as t — oo, of the portion which
gives the right hand cut is

00

L 5, gt
= At(s,t ) dt h (4.40)

t
o

if that integral converges. If we could calculate A, , the absorptive

t’
part of the scattering in the t-channel, its,integral would give the

1

coefficient of t - (or, within a factor, z_l) which is just what we
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need to evaluate the trajectory according to (3.25) and (3.27). We
did this for s = 0 by noting that this case corresponds to the case
\Of fo;ward scatterihg in the cross-channel where t is the energy
squared. In going to the cross-channel, one must perform a Lorentz
transformation to convert to the new center of mass system, and this
same transformation must of course be applied to the helicities,
taking care not to mix up the complex conjugation of the final state -
polarization vectors indicated in (4.5). The absorptivépart is then
obtained by making a cut in the t (energy) channel and using elastic
unitarity (or the Cutkosky rules) to put the intermediate N and N
particles on the mass shell. Summing over the spins and integrating
over the angles which are the only free paraﬁqeters of thé inter-
mediate state, and adding together the proper helicity combinations
according to (4.1), we obtain for the irﬁaginary part of the invariant

Feynman amplitude,

R+
1-1;1-1

o x-1 1

~32x° -64x-16%> +55x > +9x-4L
b 2 4
x7(x-1)

Ith 4x-3

log (4x-3) 6 5 - 2 s T
+ A1) (P ) 64x -128x +248x -40x™-211x"+151%-313 .

(4-. 41)

where t = 4rn2x, and where to make the calculation simpler we have

taken m = A. At threshold, x =1, it seems as if this expression

T2

diverges as (x-1)" , but the apparently random numbers which

appear in both terms in the numerators combine magically to cancel

-
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the first five orders of a Taylor expansion about that point, so that
it really goes to zero as (x—1)3/2. Further details about this calcu
lation are contained in Appendix F. Integrating this expression over

the whole range of the cut by machine calculation we get

R+ ' 4m2
M * =0,025 &2 (4.42)

which leads t§ a trajectory which does not pass through 1 at s = 0.
This of course is not a necessary requirement of a vac1;1urn tra-
jectory, but it would be an encouraging feature.

A fatal drawback of the trajectory calculated using the third
diagram is the magnitude of its imaginary part. Recall from (3.45)
that the imaginary part should be fixed by unitarity. As will be seen
in the next subsectioﬁ, the first diagra’r‘n alone yields the correct
imaginary part, so that any further additions from the left hand s-cut
will spoil the agreement.

To save the bulk of the formalism we must argue that to include
the third diagram would be to include the UFO as well as the vacuum
trajectory. Can we separate their contributions to the full arﬁplit_:ude
by omitting the third diagram entirely or by omitting a portion of it?

We look at these possibilities in the next section.,.
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3. Possible Resolutions

a. Omit the Third Diagram

The simplest solution to the difficulty is to omit the third
diagram altogether. This is the solution adopted by Sullivan(zs) in
his search for the vacuum Regge trajectory in the theory with vector
mesons and Vscalar nucleons. Before discussing the merits of this
choice, let us actually calculate a(s) in this case.

Now, instead of using the expressions for the A's in terms
of the Al's in Appendix D, we disregard the A1 which has adenomi-
nator of the form D(u,t) or D(t,u). In-fact, since we want only the
contribution of the right hand cut we look only at the one A1 in each
A which has a denominator of the form D(s,t) or D{t,s). As is
obvious from (4.24), the change of varigbles Vi< Yy Y3 < ¥y in
the inte_zgrals converts the denom‘inator‘ D(t,s) into D(s,t). Using
the symmetries of the A's and combining all the terms in (4.31) over
the common denominator D(s,t), we find for the contribution of the
right hand t-cut an expression of the form

R+
My y.3-1 F

1 l\g‘l‘g‘l N(S :Y1$YZ’Y3’y4)6(1_y1-yz-y3—y4) d d d d
ool 2 I RNy #

2
[m = (Y].YZ +Y2Y3 +V3Y4 +Y4Y1) =Sy ZY4“Y1Y3t]

The asymptotic form for large t is obtained by the following
(26)

well-known procedure . DBreak up the integral into two parts so

that in the first part the ¥y and V3 integrations go only up to €
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and €4 respectively, where € and €, are small but finite positive

numbers. The second part contains the remainder of the region of

-2

integration. As t becomes large, the second part surely goes to t “;
we could expand in a power series to prove this., The only hope of a
larger asymptotic form comes from the first part which can not be
expanded in a power series., Since N is a polynomial, we may ée‘c

these variables equal to zero everywhere in the integrand but in the

coefficient of t. After an elementary integration we get

MR+ log - t)‘S'S‘ N(s ’OSYZJO 5Y4)5(1'Y2—Y4)

il 1 7 dy, dy, (4.44)
[m®- y,y,s]

which is independent of € and €35 and bigger than t-z, unless the
numerator vanishes. Indeed, calculation shows that this latter is the
case for our problem. The largest asymptotic form is then obtained
by taking only vy small, performing the integration, and adding

to this the contribution for V3 only taken small. Because the de-
nominators so obtained have a symmetric form, the sum of these

contributions may be combined, giving

R+

M Aot ™
g f'l il 1 { NI(S ,0 ,Y23Y1Y4)+NI(S ’Y:Y2s01Y4)] 6(1-Y'V2“Y4)
TE‘) > dy dYZ, dy4 "
0¥0v0 vl m%-yly,ty,)-s7,7,] -
(4.45)

If this vanishes also we may still have terms as large as t_ 2log (-t).
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In our case (4.45) applies, and we see that the prediction of (3.25)
about the behavior of the asymptotic form is verified. In particular,:

we get, after some manipulation,

LR R 4 15»1 1 sy,(1-y,M-8y,H-2y)6(1-y-y,-v,)
i1-1 2
tmw 0Yo

. dy dy dy .
1-1 2 2 74
(4.46)
Combining (3.25), (3.27), (3.30) and (3.37), we find that
2 gt | ,
AE” = - T(s) , (4.47)
B gt A |
and the trajectory is given by
> 4
Als) = - =5~ I.(s)T(s) (4,48)

™

where T(s) is the integral in (4.45), and Io(s) is the expression
(3.36).

Since IO(O) is finite and T(0) = 0, we have

a(0) =1 + A(0) =1. | ‘ (4.49)

This is very fortunate. Calculating.the slope of the trajectory at

s =0,
2o .2 (0)T'(0) = - Il T'(0) (4.50
i P ™ = ) -50)
s=0 i 8w

where
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1 l-y ¥, (1-y,){1-2y)
T'(0) =S‘Ody 50 dy, —&—5—=2 . (4. 51)

mz-y(l-v)

Unfortunately, this integral is always positive for m = 1, so that the

(

slope at the origin is negative. Sullivan #5) finds a similar discom-
fiture in the case with scalar nucleons.

Now we look at the discontinuity in s of T(s), From an
analysis of the denominator, or by noting that it is the same denomi-
nator one would get for a three particle vertex if all the particles

(25)

were scalars , we expect a cut in s running from 4m2 to .
Calculating Im T(s) by deforming the contour of the y integration,
and picking up the contribution of the one simple pole in the region

of integration, we get

Im T(s) = - 2 (2m®+s), s =4m®. (4.52)
3Vs
Then we have from (4.47)
2 % 2 2
Im (A§5) = "gEP'E“ (2m“+ s), s=4m (4.53)

127"k s

which agrees exactly with the pi‘ediction (3.45) of partial wave
unitarity ! As marvelous as such agreement seems (especially after
scores of pages of calculation) there is an important theoretical
objection to discarding the third diagram which we discuss in a
moment.

First, one more feature of this trajectory is worthy of mention
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-- the imaginary part of the trajectory itself, Tt follows from wvery
general considerations in potential theory that as s increases above
threshold on the upper edge of the branch cut, a(s) acquires a posi-
tive imaginary part. This is related to the general interpretation
that singularities of the scattering amplitude from the no‘n-physical
sheet of the s-plane correspond to resonances. This interpretation
is a valuable property of trajectories which we would like to retain
in relativistic scattering. We see from (4.48) that the trajectory
has two thresholds, one introduced by the factor IO(S) &t 4)\.2, and
the other by the factor T(s) at 4m2. In the fegion 47\2 =g = 4m2
the imaginary part of a has the sign of - T(s)Im Io(s). A simple
calculation shows that T(4) is negative so that Im o at the beginning
of the interval is greater than zero. More detailed investigation
shows that this remains true at least until s = 4m2'. For s> 4m2.
there is an additional cont‘ribution with the sign of - Re Io(s) Im T(s).
" In this region Re Io(s) is negative so that the additional contribution
has a net negative sign‘. As s becomes larger and larger, however,
we see from an application of the analog of (4.45) that Re T(s)
becomes positive again. Thus for some large s the sign of the
imaginary part changes sign and becomes negative. We note further
that both the real and imaginary parts of af(s) d:iverge as log s for
large s.

The objection to omitting the third diagram has two aspects
which are closely related. The first may be seen by studying the

steps (4.28) - (4.31) which lead from the full amplitude just as it is
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obtained, to the form of the full amplitude after all powers of t have
been eliminated from the coefficients of the A's. First of all, the
coefficient of t in (4.28) does not vanish. This may be verified by
evaluating it at a particular point for values of the parameters where
the integrals become degenerate. We ask what is the mechanism by
which this t is eliminated? We may write the identity a(l234) = 07

(and all its permutations) in the form

5 Yz(l"YZ)(l"ZYl)(tYl' SYZ+1_ 2y1-2y3) P

D(s,t)

+S‘ (Y1WZ)(l-Vl-YZ)(uV1-3Y2+1'2Y1'2V3) 2

D(s ,u) ar
+S, v, (1-y ;) (1-2y )ty -uy , +1-2y, -2y 5) dr = 0 (4.54)
D(u,t) B -

by collecting together all the Al‘s which make it up and combining the
ones with similar c'llenorninators° In this equation the integrals do not
vanish separately, as may be éeen by taking the asymptotic form of
any one of them. Thus the relation used to eliminate t does so by
redistributing the contributions to the various diagrams. Further-
more, the procedure by which the original form for the full amplitude
was derived was only one of many similar procedures, which all owe
their equivalence to the identity a(l234) = 0. We cannot therefore say
for any form of the amplitude that it was derived without using this
identity, and hence that it possesses the "original" distribution of

the contributions to each diagram. Thus, simply removing the third
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diagram from some particular form of the full amplitude is not an
invariant procedure. To put it more simply, the equation (4.54) \x-fould
be'false if we crossed out the term corresponding to the third diagram.
The other closely related aspect of this same phenomenon is
that of gauge invariance, which is satisfied by the full amplitude be-
cause of the current conservation equa’tion’s(‘i.é). We should like the
value we get for a(s) to be independent of the gauge used for the
vy calculation, which would mean in this way of carrying out the pro-
gram that the tensor coefficient of the third diagram alone should
satisfy (4.6). The original form of the full amplitude derived by
Karplus and Neuman had this proiaerty. Since our form coul\d have
been obtained from theirs by adding multiples of a{l234) and b(1234),
it would be surprising if this property were preserved. Indeed, it is
not, k2
With all this arbitrar‘inesé' in the relative am(;)unts of the
third diagram in different forms of the amplitude it seems odd that we
should have stumbled on to just the one form which gives the correct
imaginary part (4.52). The reason for this is the key to the approach

in the next subsection,
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b. Omit Part of the Third Diagram

Suppose we write each integral in (4.54) in dispersion form.
Because of the asymptotic behavior of these integrals we now require
one subtraction each in s,l t, and u. Since we are treating each inte-
gral separately it is not necessary that the points at which we make

the subtractions, S, t , and u

1 ‘f‘ + ==
o o? satisfy So 1:O ug 4, We

choose for convenience to make them at 5, % 'to =u = 0. Calling the

first term of (4.48) aI(S ,t), etc. we have

Im a_(s',0) Im,a-{0, t) ImIma(s £')
aI(0,0)+TST§———‘°-’-—I——ds'+3§ L ! z\g\y s

s'(s'-s) ™ t£'(t'-t) s't!(s' —s)(t -t)

Im a..(s',0) ‘ I a0 ")
11 1 w I ?
0,0 +ES‘—-—-S————d '+_—S‘————d '
aII( ) T s'(s'-s) ° m u'{u'-u) =

Im Im =) I(s',u') I
55‘ ds'du'

s'u (s -s){u'-u)

Im a (u ,0) T, a.(0 ;)
ta 0,00+ 20 el du' + 35‘ = Lo dt'
1T TJ u'(u'-u) w t'(t'-t)
oo Im Im, a...fix',t")
u—t) 5 g LT du' dt' = 0 (4.55)
U {u'-u)(t' t) » ’

’

where the single spectral functions are integrated from 4m2 to oo,
while the double spectral functions are integrated over the regions
situated as described at (4.35).  The maximal s;ze of these regions
is given by the denominators D(s,t}, etc. , for theyldetermine the
singularities of these particular functions. ‘\The numerators, which

are polynomials, only serve to make the regions smaller by cancelling
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out some of these singularities. We see from Fig. 3 that even at
their maximal sizes, these regions do not overlap for any choice of
masses. Thus the only way for (4.55) to be safisfied is if the double
spectral terms all vanish separately. Indeed, the numerators in

(4. 54) contain just the factor which in the Landau-Eden analysis is
set equal to zero to determine the condition for a pinching singulari‘cy
in the variable Yl' so that the numerators cancel a possible branch
point. Then we see how the rest of the Ca.ncellations occur. The
pieces ImtaI(O,t') and ImtaIH(O,t) with the right hand t-cut cancel;
the pieces Imu.aH(O,u') and ImuaIII(u"O) with the left hand t-cut
céncel, etc., We have calculated the constants and find that their sum
vanishes though the separate terms do not.

The puzzles of the last subsection now become clear. First of
all the identity (4. 20) éontains no double spectral functions so that
adding multiples of it to the full amplitude does not changé the imagi-
nary part of the t-cut. If discarding the third diagram gives agree-
ment with partial wave unifar‘ity in one form of the full amplitude, it
will for all forms. Secondly, we see that a(l234) adds cancelling
amounts of right hand t-cut to the first and third diagrams; if we omit
the third diagram, our estimate of the amount of this cut is spurious.

To correct this, we might think of adding, to what we have,
the contribution of the third diagram to the right hand single spectral
functions in t. However, since these single spectral functions in t
arise from the necessity of making subtractions in the u wvariable,

they depend on the point at which we make the subtraction. However,
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there is a unique prescription which accomplishes the same result,‘
and that is to include only that portion of the third diagr-am which
contributes to the real part of the right hand t-cut. This prescription
is unique because all the imaginary part of the t-cut comes from the
double spectral function, which can be uniquely determined. We can
make this more specific by referring to (4.36). Ignoring subtractions,
the right hand t-cut contribution to M is _

A (s,t) = = du' (4.56)

I
R 1 g @ Pylust)
t Ty () u'tsit-4
o

whose imaginary part from (4.37) is (4-s-t ,t). What we want is

—put

.
1 (‘00 put(u +L)

R A _ut
Re At(s,t)- ) ey
u (t)

du' + iput(4—s—t Sty . (4.57)

In the case with arbitrary amounts of subtractions in both u and t, it
is still true that the amount we must subtract from the contribution of

the third diagram to the right hand t-cut is

. R .
1ImA_t(s,t) = - 1put(4-s—t sE) (4.58)

It is now simple to show that this prescription gives a gauge
invariant result. These manipulations are easy enough when the
integrals are in the dispersion fori'n, but when they are in the form
of integrals over Feynman parameters the story is quite different.

We have been as yet unable to calculate explicitly these additional
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contributions of the third diagram. We do not know whether the éddi-—
tional contributions will vanish at s = 0 so that the trajectory will
go through 1 at this point. Nor do we know if the additional contribu-
tions will change the sign of the slope of the trajectory given by the
contributions of the first diagram. We can, however, discuss the
meaning of this new program for determing the trajectory.

We have arrived at this provgram by considering the properties
of the terms which we assign to the vacuum trajectory. Let us con;
sider the properties of the terms we are discarding and get informa-
tion about the UFO. The imaginary part of the discontinuity in t
which exists for negative s 1is responsible for another phenomenon
in Regge pole theory--the Gribov singular‘ity(ZS)., Looking first at
the equal mass spinless case we give an heuristic summary of
Ochme's presentation(14). Calling Ae(s,t) and Ao(s,t) the combina-
tions of the weight functions which appear in (3.5) foxl Fe(J) and (3.6)

for F°(J), respectively, we write

5 1 = Bp®
F(J) = . 2‘/_ S. dz QJ(Z)A (s,2k"(z-1)) . (4.59)
Vs vz

e
We may express A% in terms of the double spectral functions as in

(4.35)
e . 1 !
£ —~ ;
o uo(v) s'-8
oo p _u',v)xp (v,u')
+ %S du' —ot 5 : (4.60)

U-Cgv) u'tstv-4
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e

To figure out what effect the discontinuities in Ao will have on

e
FO(J) we use

e e @
Im[ AO(S,V)QJ(Z)] = Im QJ(Z)-Re A%(s,v) + Re QJ(Z)-Im A°(s,v) .

(4.61)

Combining these equations and paying much attention to which side of

the cut one is on, Oehme finds

e

4-s e
Im[81ﬂ/—s FO(J) i :-ZS' dv —i-z PJ (-1- _K'Z) Ao(s,v)
s=0 4 2k 2k

1 1. ' A
i+ ?rSldv 'Z'I:Z QJ (“'1"‘ —2'1:2) [Put(4"S"V,V)iPut(V,‘:t-S-V)] ’

(4.62)

where the limits on the second integral are determined by the
boundaries of the double spectral function. The function PJ
appears in the first integral because it is proportional to the dis-
continuity of the QJ. This first integral is perfectly regular as a
function of J. The second integral, which contributes only for values
of s sufficiently negative, has poles at the negative integers because
of the poles of QJ there. If we had included subtractions we would
have gotten a similar result with the restriction that Re J > N, the
number of subtractions required, because that is the range of
validity of the representation (3.4). Continuing this analytically to

the left, Oehme evaluates the residues at the negative integral poles

-n to be
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e
Im[8wvs FO(J)

.11 | )
P L (an o)y fo Geomdtg i1} (4.63)

where the limits of integration lie within the range -1 to ¥l when s

is sufficiently negative to be on the left hand s-cut of Fg(.]'). Because
of the reflection symmetry of PJ(Z) we see that the residue of
Fe(Fo) vanishes for n an even {odd) integer. The residue can not
vanish for all the integers, however, because the compieteness of

the PJ would then imply that Pt vanishes identically. Thus we

get poles at least at some negative odd integers in F° because of

the existence of these third double spectral functions. The principal
difference for the case with spin is that the function Cii which
replace the Q_J involve a whole range of IQ's extending from Q

J-A
m

to Q'.T+h . In our case, for example, where ?\.m = 2, the presence
™m

of QJ—Z in C‘:ZH2 means that we reach the pole at Q_1 when J is
as large as *l. |

The UFO must have something to do with.this Gribov singu-
larity since they have four characteristics in common: they occur
a) for J =1, b) in the amplitude F® for which this value is unphysical,
c) as a result of the third double spectral function, Vd) in the region
of the cut at negative s. However relating the UF QO to the Gribov
singularity is only putting our blagk box into another black box with
a more popular name, because the Gribov singularity is not well

understood. An example of the mystery which surrounds it is the

following. The existence of a fixed pole in F®(J) means that if we



=P

write a dispersion relation in s for F®(J) and consider the contri-
bution from the left hand cut, we would obtain a fixed pole at J = -1,
for example, at all values of s. But this violates the partial wave
unitarity condition (3,40) which must be valid for 4= 35 = 4m2. Thus
the pole must either be cancelled by other contributions to F<(J) or

else there must be some reason why we can not continue our functions

to this point.

(29)

Gribov and Pomeranchuk conjecture a mechanism to cancel
the fixed pole at J = -1 in the scalar case. They imagine that as we
" continue FS(J) from Re J> N down toward the pole at J = -1, more
and more Regge poles 5= Si(J) appear on the ‘physicgl sheet of the

s-plane coming out of the branch point at s = 4. Then, just looking

at the negative cut and these poles,

"% Im_8m/s FE(J) o B.(f)
gmis By = L 8 Gttt F et 4,64
<] ( ) T-F\S]_m S1_S S Zi-/ Si(J)_S ) ( )

where the upper limit -S, represents the beginning of the left hand
s-cut. Then they imagine that in the neighborhood of J = -1, these
Regge poles become as den‘se as you please, so that in the limit they
simulate a cut at that point which exactly cancels the contribution

of the pole to the left hand cut:

_ ‘(:r+1)ﬁ.1(:r) 10 0% RisYy L,
Jlj-’m:l . —S:(Tm_ = -7—757_(;0 -;-l—_—-s—— ds (4.65)

where R is the residue of the pole at J =1 given in (4.63). The
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difference between this and our case with spin is that the speculation
begins when J becomes less than N + A . For Ff-l;l»-l we have
N=0, Krn = 2 and the poles must start to emerge as we enter the
nonsense region.

Sullivan discarded the entire third diagram on the grounds that
it was the Gribov singularity. We see now that this was discarding
too much, and that the minimum amount we may discard and claim
we are free from the Gribov singularity is given by the prescription
of this section.

There are several interesting questions which remain to be
answered. The UFO arises so naturally from the structure of the
diagrams that one wonders if it is in fact connectéd to the ordinary
vacuum trajectory in some simple way. One could imagine that it is
the crossed version of what in some other channel would look very
_simple. There are some indications, in fact, from the scalar case,
that the chain of cfossed diagran;s may give a moving singularity in
the same way as the ladder diagrams give the usual Regge trajec-

(

tory. - If this should turn out to be the case we would have an

alternate explanation of how the unitary relations are maintained.
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Vi. CONCLUDING REMARKS

Let us briefly summarize the results of the investigations of
the lpreceding pages, make some comments to uﬁderline their sig-
nificance, and suggest some areas of future inquiry. We have con-
firmed the results of the fourth order calculation by Karplus and
. Neuman of the scattering of neutrai vector particles as a result of a
conserved current interaction with a fermion pair field. We have
also given a very simple derivation of two identities which appear in
their work, and made a distinction between those symmetries which
are valid for the general process and those which are true only in
the fourth order case. As a result, the previous objections to the
number of gauge invariant tensors used in their calculation have
been resolved. An equivalent solution of the same general problem
 which is free of kinematical singularities has been obtained and
evaluated for the particular case of the nonsense-nonsense transition.
We have further cast the particular result into a form which may be
written as a dispersion integral in t with no subtractions, and a
scheme for separating the right and left hand t cuts in the contri-
bution to the full amplitude of the third diagram (Fig. 2c) has been
validated. Although the fourth order contributions naturally behave
as t-1 logt for large t, the asymptotic form of the right hand t-cut
in our case was shown to be t—l from each of the diagrams, con-
firming the prediction of the vacuum trajectory hypothesis.r

A number of assumptions concerning the analytic properties of

the partial wave amplitudes had been made in the Reggeization pro-
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cedure(3) which led to the conclusion that the vacuum pole dominated

the asymptotic behavior of all the relevant processes. From the
appearance of a left hand s-cut in the asymptotic form of the right
hand t-cut, we conclude that another singularity, the UFO, is
present and hence that not all of these assumptions can be valid.

In reformulating these assumptions a posteriori we must make room

for the observed phenomenon, although it is not clear how this should
be done. We are in the position of having to espouse a‘doctrine of
"maximum analyticity," (31} together with all its connotations of
vagueness and expediency.

A separate calculation of the imaginary part of the forward
scattering amplitude in the cross channel reveals that a trajectory
based on both right and left hand s-cuts does not pass through 1 at
s =0. The trajectory calculated by omitting the third diagram does
have a(0) =1, and further, fulfills the condition on its imaginary
part predicted by unitarity, but has the unphysical property that a'(0)
is negative. However, we show that simply omitting the third diagram
is an ambiguous, gauge dependent procedure, although in our helicity
case, first converting the amplitude into a form which has no sub-
tractions in t somewhat mitigates this objection.

We conclude that’the correct prescription is to retain only that
part of the third diagram which contributes kto the real part of the
right hand t-cut. This prescription is gauge invariant, and depends
neither on the subtractions in a dispersion relation nor onto which of

~ the many forms of the full yy amplitude it is applied. Further, the

trajectory it generates will always satisfy the unitarity requirement
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on its imaginary part. Other trajectory parametérs must await a
difficult calculation before their properties are determined. For the
scattering of scalar particles the difficulty of extracting even the
asymptotic form of integrals arising from the third diagram is
documented in the literature, The situation is worse when the
particles have spin. Moreover, in our case the prescription calls
not only for a separation of the right and left” t-cuts, but a further
extraction of the s-cut before the asymptotic form may be taken.
While attempting this project we can hope that the additional contri-
butions to T(s), Eq. (4.47), will be sufficiently negative to make the
sum negative for 0= s = 4?\2; in this way a'(0) will become physically
sensible., The same prescription should be applied to the recent cal-

(25)

culation of Sullivan of the vector meson scalar nucleon case in
order to cure the same ills.

The discarded portion of the amplitude contains the UFQO;
further investigation shows that the same portion should contain the
Gribov singularity. The identification of the UFO with the Gribov
singularity is strongly suggested, especially since both appear in the
same channel at the same point. .This singularity is not well-under-
stood even in the spinless case where it was first found. More work
is needed on this question and particularly on the role of the non-
planar diagrams in ?roducing it.

The larger question remainé » however, of how this singularity

should be regarded in the search for the vacuum Regge trajectory.

Is it to be regarded, as we have done for the most part here, as an
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object which interferes with the "pure" vacuum trajectory and where
the largest problem is how to separate out its contribution? Or is it
to bé regarded as a necessary part of the same mechanism which
produces what we have chosen to idealize as the "pure" trajectory?
In the latter case, it would fulfill some role, such as providing fof
the crossing symmetry of the trajectory, which has yet to be discov-
ered, Looking at the situation from a purely practical pbint of view,
both singularities contribute to the asymptotic form of the amplitude,
and hence it would be a combination of both which would be measured
in any experiment., Perhaps it would be best to say, at this point in
our understanding, that there seems indeed to be a vacuum trajectory,
but in addition, there are other phenomena in the angular-momentum
plane which mask the simple properties which the vacuum trajectory

was supposed to display.
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Appendix A

FIELD THEORY AND CONVENTIONS

The following brief remarks characterize the field theory with
which we are working. Further details may be found in Reference (20)

The diagonal metric is gp'v, where

800 = " 8B;1 7 " 837 " 8371l , (Al)

and we use the summation convention for repeated indices so that,
—_—
if Pp ={E,p ) is the four-momentum of a nucleon of mass m, we

have
p.=E"-p"=m" . . (A2)

The free Lagrangian for the nucleon in units where h=c¢c =1 is

] L

o =

s . | —
- Vi-iy 8, tm)y - 5 (0 Ty +mlly (A3)

so that using the notation # = Y i the Euler-L.agrange equations

become
ifg - my = (F - mhp =0 I ' (A4)
-{lf - my =@ +m)=0". (A5)

The only properties of the spinors which we use is the choice of

normalization
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Shpdale) = 2 | (A6)
vip)v(p) = - 2m (A7)

where u(p) are positive energy spinors and v(p) are negative

energy ones,
For the neutral vector meson, henceforth called vy, the free

Lagrangian is

1 -
£ =-=(0 A -9 A )0 A -8 A)-=\“A A A8
Y 4(uvvu)(uv Vu)z B hath)

where M\ is the particle mass. The free-field equations are then

- | . |
OA -"A\"A =0 A
" . | (A9)
subject to the condition
9 A =0 ‘ (A10)

which we regard as an operator identity provided \# 0. This condi-
tion means that there are only three independent fields Ap(x) rather
than the nominal four. In the decomposition of the Apu(x) into plane
waves, there are, for each momentum, only three independent solu-
tions to the field equation; we take these to be labeled by their
polarization vectors e:" (Tc.). To insure that the subsidiary condition

is fulfilled, we take

el (K)k =0 = =1,0,1 , (A11)
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for each of the three polarization states. These states also satisfy

the completeness .relation

\

D g e KKy
Z Ep,(k)ev (k) = - gpv + )\2 8 (A12)
i=-1
We normalize these states by
£ AW
€ (k)e' (k) =~ 6.. Al3
L) € (K) " (A13)

and further choose them to be helicity eigenstates. If the y momentum

is in the =z-direction so that kp = :(@,G,O,k) the set

s 1 1 .
helicity +1 ' € =—(0,1,i,0
elicity " \/-2( »i,0)
- 0 1
helicity 0 € X(k,O,O,@) (Al4)
bty = 1 T ey
Y2

satisfies all the requirements, The violation of all the accepted
phase conventions is not serious; the problems we treat have always
an even number of helicities of each type. " The helicities for momenta
in different directions are obtained by rotation. |

To obtain a conserved current coupling we make the réplace-
ments
BH\;J 4 (au + igAp)L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>