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ABSTRACT 

The effect on the scattering amplitude of the existence of a 

pole in the angular momentum plane near J = 1 in the channel with 

the quantum numbers of the vacuum is calculated. This is then 

compared with a fourth order calculation of the scattering of neutral 

vector mesons from a fermion pair field in the limit of large 

momentum transfer. The presence of the third double spectral 

function in the perturbation amplitude complicates the identification 

of pole trajectory parameters, and the limitations of previous 

methods of treating this are discussed. A gauge invariant scheme 

for extracting the contribution of the vacuum trajectory is presented 

which gives agreement with unitarity predictions, but further calcu­

lations must be done to determine the posit ion and slope of the 

trajectory at s = 0. The residual portion of the amplitude is com­

pared with the Gribov singularity. 
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.I. INTRODUCTION 

This investigation is one step in a grand.plan(l)-(S) designed 

to delineate the role of Regge -poles in conventional field theory. In a 

sense, the Reggy pole hypothesis is a theory about theories. It tries 

to explain how various field theories might possibly resolve what 

appear to·be paradoxes. How, for example, a field theory might yield 

sensible conclusions about higher spin particles, and yet be unrenor-

malizable if these particles are inserted into the Lagrangian as 

''elementary"; or how the exchange of these higher spin particles is 

compatible with the high energy behavior of scattering processes in 

the cross channel when even the lowest order terms in perturbation 

theory seem to be too large. Another incentive for investigating the 

relation between Regge poles and field theory is the belief that such 

a relation will reveal properties of field theory which are independent 

of the results of a perturbation expansion. One application of this 

kind of information would be to the proble,m of whether or not field 

theory in its present form is correct for the strong interactions. 

Suppose, for example, that many of the experimental consequences 

of the hypothesis of Regge poles(6) for the strong interactions were 

in fact verified . Then any theory which was to explain the strong 

interactions would have to contain the features which the strong 

interactions exhibited--in this case Regge behavior. Thus the 

knowledge that field theory did not contain Regge behavior w ould tell 

us at least that field theory could be excluded as a s ource of further 

information, without our having to develop a non-perturbative calcu-
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lating scheme. 

· A third motivation for this study is the inverse of the previous 

one, namely, that if a connection between field theory and Regge poles 

theory could be established, it would be possible to use field theory as 

a guide to develop further understanding of Regge poles~ This point 

of view becomes particularly important if the Regge theory turns out 

to be a valuable tool in understanding experimental results. This 

hope was dimmed in the recent past by first the speculation (7 ) and 

later the confirmation (S) of the existence of cuts as well as poles in 

the angular momentum plane. However, recent research seems to 

indicate(9 ) that at least some of the simple experimental consequences 

of Regge poles are retained even when cuts are present, althou.gh the 

energies at which these phenomena become observable are higher. 

More research is seriously needed on this point. 

In the sense in which the Regge pole hypothesis makes pre-

dictions about field theories, Feynman diagrams become the labora-

tory in which these predictions may be tested. Some of these "experi­

ments" have already been performed. In the field theory where 

neutral vector mesons interact with spin one-half nucleons, i.e., 

massive quantum electrodynamics, the nucleon has been shown to lie 

on a Regge trajectory(3 } while the meson does not(lO}. In the same 

field theory, the experiment begun in Reference (5) to determine the 

existence of a vacuum Regge trajectory is continued here after the 

development of more refined techniques. Considering this and other 

field theories with particles of different spins, a set of "empirical" 

criteria emerges for the development of a Regge trajectory in a given 
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theory. Among these are the factorizability of the Regge pole residues 

and the existence of a ' nonsense channel, which will be discussed later. 

Before we begin. the actual experiment, it would be well to 

consider what is meant by a vacuum Regge trajectory, and what 

properties it has that would justify searching for it. The remarks 

:in this section are very general, and are not intended as a thorough 

introduction to the subject such as may be found in the book by 

( 11)' 
Frautschi • . · tb which the reader is referred for further details. 

Let s and t respectively be the conventional energy and momentum 

transfer variables for the relativistic scattering of two spinless 

particles. Then, as we shall see later, if the scattering is dominated 

by a Reggeized intermediate state we expect the invariant scattering 

matrix element to behave like 

M(s ,t) = C(s)ta(s) (1.1) 

at large t, where a(s) represents the Regge trajectory and C(s) 

is made up of factors th.at appear in (3 .15). Then if we may continue 

this function to a range of the parameters s and t which represents 

scattering in the crossed channel, we would find for the cross section 

in the .high energy (t) limit 

do- I C(s) 1
2 

t2a(s)-2 • 
ds = 16 ir 

(1. 2) 

By use of the optical theorem we would also find for the total cross 

section in the high energy limit 

ITtot = Im C(O)ta(0}-1 (1. 3) 
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where again we are in the channel where t represents the energy, 

and s = 0 gives the forward scattering direction. In order for the 

trajectory to match the inference from the data that the total cross 

sections for strong interactions become constant at sufficiently high 

energy(ll), it must have 

a(O)=l. (1.4) 

Expanding the trajectory about s - 0, we see from (1. 2) that 

da­
ds 

2 
= JC(s) J t2sa'(O) 

161T (1. 5) 

.Since s becomes more negative with increasing scattering angle it 

is clear that we must have 

a'(O) > 0 (1. 6) 

in order to match the observed peak in the forward direction as t 

becomes larger and larger. This choice of sign insures also that the 

width of the peak for large energies becomes inversely proportional 

to the logarithm of the energy. These properties and their relation 

to the experiments are the motivation for a theoretical interest in the 

Regge traject~ry. We expect also that the vacuum trajectory does not 

correspond to a physical particle, and hence cannot give a real pole 

when it crosses integer values. Otherwise i t shares with ordinary 

Regge poles the other properties which emerge from a . more detailed 

examination of the inner workings of the theory; some of these will 

be mentioned later. 
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We follow the general method of Reference (5) in evaluating the 

trajectory. We calculate the scattering amplitude in two ways, once 

by the Feynman rules, and again by inserting our conjectures for 

the vacuum singularity of the partial wave amplitudes into the 

partial wave expansion. A comparison of these amplitudes permits 

the identification of the parameters introduced by the conjectures, 

unless the forms of these amplitudes are so dissimilar that a simple 

identification scheme does not apply. The problem is then to revise 

the scheme so that an interpretation is possible. 

Some details of the field theory used in the main body of the · 

text are included in Appendix A along with the notational conventions. 

Chapter II describes the preparation of the states affected by the 

vacuum trajectory and derives the partial wave expansion for the 

relevant processes. Chapter III reviews the Reggeization procedure 

for particles with spin, and makes the predictions of the results 

expected in lowest order perturbation theory. The ' results of the calcu­

lations of Reference (5). and their agreement with the predictions are 

summarized. In Chapter IV, we calculate the fourth order "VY 

scattering amplitude, discuss its properties and derive the prescrip­

tion for evaluating the trajectory. Trajectory parameters using 

alternate prescriptions are discussed. Chapter V gives a summary 

of the results and suggests further areas of inquiry. 
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II. BACKGROUND FORMALISM 

1. Preparation of the States 

Our discussion of the scattering amplitudes in this problem 

follows closely that of Reference (5). We start with the helicity states 

of Jacob and Wick(l3) and prepare symmetrized parity eigenstates of 

the yy and N - N systems. 

Applying the parity operator P to a · two particle helicity state 

yields 

J-s -s 
PjJM;X.aX.b> = 11a11b(-l) a bjJM;-X.a-~> (2. 1) 

where the subscripts a and b refer to the particles of the same 

name, while A., 11 and s represent the helicity, intrinsic ·parity and 

spin respectively. In our problem the y ' s have s = 1, 11 = -1, and 

the N-N system has 
· . -s -·s 

( . ) a b . 
11a "lb -1 = +l. 

S - 1 - z. 11a "lb = -1 so that for both these systems 

Indicating by P
12 

the operator which interchanges particles 

1 and 2 , we have , 

J-s -s 
P12 IJM;~X.2> = (-1) 1 2 jJM;X.2~> (2. 2) 

The. charge conjugation operator C yiel.ds + l when applied to a 2-y 

state and - P
12 

when applied to an N-N state·. This last minus sign 

is a consequ~nce of the anticoinmutation of the fermion creation 

operators. 

If the two vector mesons which make up the y-y state were 
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distinguishable, say by a mass difference, then we would have nine 

states for the two particle system. This total number of states 

remains the same when we introduce the symmetrized states for the 

indistinguishable particles of the yy system by setting 

This prescription limits the states with x.
1 

'= x.
2 

to even J values and 

also changes their normalizat ion relative to the others. Since the raw 

jJM;>i_X.2> states are normaliz e d, a state such as JJM;OO>g has 

length ..f2. We follow Reference (5) in permitting different state 

normalization for the sake of a uniformity in the formal i sm. Table I 

lists the symmetrized states, their a llowed J values and normaliza-

tion. As will become obvious later when we discuss the factorization 

of the Regge pole residues, the relative state normalization does not 

affect our answer. 

Table I 

yy System. Symmetrized States 

State Allowed J Value Norm Parity Reflection 

JJM;l l>g Even ..f2 + I JM·-1-1> 
' g 

JJM;lO>g 
jEven l + JJM;0-1> 
lOdd g 

jJM; l-l>g {Even l + I JM· 1-1> 
Odd + ' g 

JJM;OO>g Even ..f2 + /JM;OO>g 

JJM;0-1> g {Even 
Odd 

1 ~ jJM;lO>g 

I JM· -1-1> ' g Even ..f2 + I JM· -1-1> ' g 
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Now we define the parity eigenstates by introducing 

I JM;~ A.2>:1: = J2 [1 :I: (-l)JP J I JM; A.l A.2> g 

= J2 [IJM;~A.2>g ± JJM;-"'i-A.2>g] (2. 4) 

for the yy system, and 

I JM; "'I >--2> :I: = J2 [1 ± (-l}J p J I JM; "'1 >--2> 

= J2 [JJM;"'iA.2> ± JJM; -"'i->--2>] (2. 5) 

for the N-N system. For example, in terms of raw states 

jJM;lO>± = ~ {JJM;lO> + jJM;Ol> ± jJM;0-1> ± JJM;-10>} (2. 6} 

while 

JJM;OO>± = 2JJM;OO> for even J only. (2. 7} 

Again, this procedure introduces various factors of .fz in the state 

normalizations. The complete list of 'states and their properties is , 

listed in Tables II and III. 
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' 
Table II 

yy System. Symmetrized Parity Eigenstates 

State Allowed J Value Norm Parity 

IJM; ll>+ Even ..f2 + 

I JM;ll> - Even ..f2 

IJM;lO>+ {Eve n l 
Odd l 

+ 

jJM;lO>_ {Even l 
Odd l + 

IJM;l-1>+ Even ..f2 + 

IJM;l-1>_ Odd ..f2 + 

IJM;OO> + Even 2 + 

The N-N states prepared according to Eq. (2. 5) are auto-

matically eigenstates of C and with unit norm. 

Table III 

N-N Sys tem. Parity E i genstates 

Sta t e Allow ed J Value Parit y c 

I 1 1 { E ven + + 
JM ;z-z-> + Odd 

I 1 1 {Even + 
JM;z- z-> _ Odd + 

I i i {Eve n + · + 
JM;z- -2> + . Odd 

I JM; t -i> - {Eve n 
Odd + + 
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All the permissible processes for these systems must con-

serve T, (time reversal} C and P separately. In this problem we 

are interested only in those processes whose intermediate states 

have the quantum numbers of the vacuum and which are physical for 

even values of J. (In another case, where we might be exploring . 

the possible Regge behavior of the vector meson itself, we would look 

for states which were physical at odd J and had C = -1.} Otherwise, 

we would get the appearance of a particle-like pole from the con-

jectured singularity near J = 1. With these restrictions, the only 

states which contribute are jJM;ll>+, jJM;lO>+• IJM;l-1>+• 

I I 11 I l l f 3 JM;OO> +• and JM;z-2> +' JM;2-2> + all or even • Thus there 

are 10 y +y - y +y processes, 3 N-N - N +N processes and 8 

N + N - '( +-y processes to consider, including time reversal sym-

metry. 
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2. Partial Wave Expans ions 

Many of the symbols which were written by hand in a draft of 

this section we repeat the arguments of that paper in great detail · to 

serve as an erratum, and to expand the treatment of our particular 

case. 

The first task is to see what modifications occur in the partial 

wave expansion as a result of the symmetrization of states. Then we 

.incorporate these results into the formalism that treats parity conser-

ving amplitudes. Finally, we give the expansions for the processes of 

the last section. 

Our starting point is the partial wave expansion of Jacob and 

Wick 

(2. 8 ) 

where A = Aa - ~, µ = Ac - Ad, ki and kf are the magnitudes of the 

center of mass momenta for the initial and final states. respectively , 

d~µ(9) are the usual Wigner matrices, and where fA. A ·A. >.._ , t he 
"- c d ' a ·-b 

scattering amplitude for the proces s ' a+ b - c + d, gives the differ-

ential cross section 

d<T 
dn = ifA. A. 'A>.._ (9) 12 

c d ' a ·o · 

The matrix F is related to the usual S matrix by 

(2. 9) 



-12-

(2.10) 

Equation (2.. 3) gives us the e££ect of the state symmetrization 

on states of definite J. To determine the effect of symmetrization on 

the scattering amplitude we must back up to a point in the develop-

ment before the decomposition into states of definite J has been 

carried out. The step which logically precedes Eq. (2. 3), 

(2.11) 

gives the effect of. P
12 

on a two y state with center of mass momen-

-tum k. Considering for a moment the process N + N - y + y we 

express the matrix element of F between an initial state and a sym­
i 1TJ 

metrized final state in terms of a matrix element of e YF between 

unsymmetrized states. By inserting complete sets of jJM;~h.2> 
states we arrive at a suitable decomposition into angular momentum 

pieces. Using the properties of d~µ(e) we derive the symmetrized 

scattering amplitude: 

fg .n(8} =; {f .n(S) + (-1)-µf~ (8-1T)} for N+N-y+y {2.12) 
m,x. v 2 m,x m;l 

. writing m for the ordered pair of helicities h.c A.d, m for h.d A.c, 

and 1. for A.a~. 

The analytic properties of the functions dfµ {9) are greatly 

clarified by introducing the functions 
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e~µ (z) = d~µ (El)x X.µ (El) (2.13) 

where z = cos e and where 

(2 . 14} 

Further, introduce new scattering amplitudes 

:Im;£ - XX.µ (El) fm;l (El) (2.15) 

so that the partial wave expansions of the ;J's become, from Eq. (2. 8} 

[k;\' J J 
:Jm;l (z) = ~ ~- L (2J+l)F m ;l eX.µ. {z) 

l J / 
(2.16} 

Kl J J 
;J_ · (-z} = (2J+l) F _ eX. (-z) 

m;£ J m;£ µ. 
( 2. 1 7} 

where we have written 

(2.18) 

Now since 

X.+µ x, {El-ir)=(-1) x, {El) 
~-µ ~µ 

(2.19) 
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for N + N - y + y ( 2. 20} 

( 2. 21) 

(k;' \ ~ e~ {z)+(-l)A.t{ (-z) 

= Jz ~ ~ ~ (ZJ+l) l µ .,fz -µ 

FJ +F-L 
m;l m;l 

..f2 

J . A.J J J e (z )- (-1) e ( -z) · F - F _ 
+ A.µ ..f 2 A.µ • m;~2 m;l i (2. 22) 

Defining the physical symmetrized matrix element for this 

process 

<JM; A. A.d IF I JM; A. A_ > , g c a -b (2. 23) 

Eq. (2. 3) leads us to 

FJg =-1-[FJ +(-l)JF~. J for N+N-,,+". {2.24) m;l ...r2 m;l ~ 1 1 
. m;l 

Recall from Appendix A of Reference {3) 

J J-tX. J e {-z) = {-1) e {z) 
A.-µ A.µ 

(2. 25) 

So the combination 
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(2. 26) 

since 2X. is even. (This same result is derived in Reference (5} 

with no re-striction on X. or µ.} Thus 

(2. 27} 

and only the symmetrized matrix elements appear. 

The partial wave matrix elements in this paper will always 

be defined between the appropriate set of states. Thus the product 

of the irregularities in the state normalizations will give the corre-

spending irregularities in the partial wave matrix elements. 

For the process y + y _. y + y both the initial and final 

states must be symmetrized. The derivation of the partial wave 

expansion is the same as the previous case except for minor modifi-

cations. Equation (2.12} acquires a factor ..f2 on the RHS, Eq. (2. 21) 

becomes 

g X. . 
;J ·i.(z} = ;J ·i.(z) + (-1} ;J_ (-z} 

m, m, m;i. 

and since we must take 

F'Jg . 
m;1 

y+y--y + y (2. 28) 

(2. 29) 
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for y +y-_y +y (2. 30) 

These two changes work in opposite directions so that the formula Eq. 

(2. 27) remains unaltered; it is only necessary to remember that the 

definitions of /m:.R. (z) and F~7.R. depend on the case in question. 

The last step is the construction of the parity conserving ampli-

tudes to match the parity eigenstates. From the choice of states 

Eq. (2. 4) and the requirement 

(2. 31} 

we get 

(2. 32} 

· As in Reference (3} , we introduce the parity conserving scattering 

amplitude 

± - g A.+A.m g 
fA. A. ·A. A.. (z} = JA. A. ·A. >.._ (z} ± (-1) :J_A. -A. ·A. A.. (2. 33} 

c d ' a·-b · c d' a·-b c d' a·-b 

where A. = Max[!x.I, !µ.!]. Equations (2.32} and (2.33) retain the m 

same form for ordinary parity eigenstates as for these symmetrized 

parity eigenstates. By introducing the functions 
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(2. 34} 

we obtain finally, for all cases 

± ~f \ { J+ J± J- J=r= 
fX. X. ·X. >._ (z) = k. L(2J+l} eX. (z}FX. X. ·X. >._ +eX. (z}FX. X. ·X. >._}• 

c d' a·o 1 µ c d' a·o µ c d' a ·o 
J 

(2. 35} 

For any state of definite P, C and helicities, the sum in (2. 35} is 

automatically restricted to even or odd J by the definition of the 

state. Which one to choose in any given case may be determined 

from Tables II and III. 

From the inversion formula of the original Jacob and Wick 

partial wave expansion, 

FJ = l.2 Kkkfi SI d f (8) dJ (8} 
x.cx.d,·X.a>.._ z X. X. ·x. X. X.µ ··b -1 c d' a b 

(2. 36} . 

we find 

=F J- } + fx_ X. ·X. X. (z} ex_ (z} 
c d' a b µ 

(2. 3 7} 

where 

(2. 38} 
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General information about the is contained in 

Reference (3), Appendix A. The few functions we use in this paper 

are listed in our Appendix B. 

With the reader 1 s indulgence, we point out this last aspect 

of normalization and factors of -f2. The symmetrized scattering 

amplitude defined by (2. 3) and (2.12) is equal to the phvs ical scattering 

amplitude (the one whose square gives the differential cross section 

for the process) only when the states which define it are themselves 

normalized. This is not the case if one of the symmetrized states 

is, for example, the state J JM;OO > g• On the other hand, the ampli­

tude calculated from the Feynman rules always represents the 

physical scattering amplitude so that we need the appropriate factors 

from Table I to relate them. 

± 
The parity conserving amplitudes f A. A. ·A. A.. do not represent 

c d' a ·-b . 
physical entities; they are constructs of physical quantities which 

bring the partial wave expansions into a convenient form. The addi-

tional factors which this construction produces in cases where the 

original states were already parity eigenstates must be included in 

the state normalizations. Thus the factors to use in unitarity rela-

tions are the ones given in Table II. These factors need not be con-

sidered in. any other portion of the paper since they may be absorbed 

into the factorized Regge pole residues, as will be seen in the next 

chapter. 
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III. THE BASIC PROGRAM 

1. Reggeization 

In the past few years, several clear and unhurried descriptions 

of the Regge phenomenon and its application to relativistic scattering 

have been published, in addition to the original pioneering articles. 

Among thes .e we cite the particularly useful works of Frautschi (ll) 

and Oehme (l4 ), which have good b~bliographies. We therefore do not 

feel it necessary to give more than an outline of the Reggeization pro-

cedure, except to emphasize points with special application to our case. 

The basic idea is to treat the angular momentum variable J, 

which appears as a discrete variable in the partial wave expansions 

of the scattering amplitude, as a continuous variable in the full com-

plex plane. Then, just as singularities in the energy variable have 

physical significance, so do the singularities in the angular momentum 

variable; they may represent stable particles or resonances. Further-

more, the asymptotic form of the scattering amplitude for fixed s as 

z - oo is determined by the singularity in the J-plane with the 

largest value of Re J. Because of the crossing relations in relativis-

tic scattering this asymptotic form is related to the scattering ampli-

tude for high energy and fixed momentum transfer in the crossed 

channel. 

The "Regge pole hypothesis" is the conjecture that the J 

singularities of the scattering amplitude are very simple, that is, 

they are simple poles in .the region Re J > - i, Im J > 0, which 

depend on s. Though other types of singularities have been 



-20-

discove r ed , the hope remains t hat some of the physic a l consequences 

of the hypothesis of simple singularities will be unaltered. 

The largest share of the trick of Reggeizing is to find a 

unique function F(J) of the continuous variable J, which will be 

equal to the partial wave function FJ· at the positive integers. We 

must rule out the possibility of adding to this function some multiple 

of say, sin TrJ which would le a ve it unchanged at the integers; this 

might be done b y specifying some bound on the function at large Im J. 

All the mathematical requirements are contained .in the hypotheses of 

Carlson's Theorem (lS ). This theorem provides that F(J) is a unique 

interpola tion if it is suitably bound. The ordinary partial wave pro-

jection formula (2. 36) is the natural expression to use for such an 

interpolation, but the functions d~l-1 (9), being composed of sines, 

cosines and Legendre polynomials, are not sufficiently bounded a t 

large Im J to satisfy the hypotheses of C arlson's theorem. We must 

look elsewhere for a workable formula. 

Considering for a moment the scattering of distinguishable 

spin zero particles of mass A., the center of mass momentum k 

satisfies 

t 
z = cos e = 1 + --2 (3 .1) 

Zk 

4k 2 = s - 4 A. 2 • ( 3 • 2) 

The scattering amplitude for fixed s obeys the dispersion relation 
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N-l N oo A {s ,t') 
srrfs f{s ,t) = \ c {s)tn + tiT s dt' ~ + 

L n t t' Ct'-t) 
n=l o . 

NSco ~ du' 
u 

0 

A (s ,u') 
u 
N , 

u' {u'-u) 

{3. 3) 

where At . and Au are the absorptive parts of f{s, t) in the t and u 

channels respectively, and N is sufficiently large to insure the con-

vergence of the integrals and the possible divergence of f as t - oo. 

Since dJ {9) = P
3

{cos 0), the partial wave amplitudes from 
00 

(2. 36) become, for J > N 

{3. 4) 

where the Q
3

{z) are the Legendre functions of the second kind. 

Strangely enough, although the Q
3

{z) cause no trouble, F
3 (s) vio­

lates the bound specified in Carlson's theorem beca use of the factor 

(-l)J in the integrand so that no interpolation formula valid for all J 

can be found except in special cases. However, by separating the 

physical values we must match into two sets, one for even J and the 

other for odd J, we can find two functions which interpolate uniquely. 

We call these functions . Fe and 'F 0
• 
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(3. 6) 

Fe(J) = FJ, J even integer F
0

(J) = FJ, J odd integer~ (3. 7) 

e 

These are the standard Froissart-Gribov continuations; F
0 

(J) is 

analytic for . Re J > N. The separation of the scattering amplitude 

into parity conserving processes in Chapter II is a way of giving 

physical significance to Fe(J) and F 0 (J) separately, since for 

each process the sum in (2.35} runs over either even or odd integers. 

We now extend the definitions (3. 5}, (3. 6} to the left of Re J = N 

by analytic continuation. This procedure would be rigorous if we had 

more knowledge of the analytic properties of At and Au, but for this 

project we must assume it to be merely heuristic. Further, we 

assume, unless contrary evidence appears subsequently, that At 

and A are such as to cancel the poles which would appear in F(J) 
u 

because of the poles in QJ at the negative integers. 

To determine the effect on f(s ·, t) of poles in Fe (J), intro-

duce the functions 

which have the property(lb) 

PJ(z) = PJ(z) 

PJ(z} = O 

(3. 8} 

at J = 0 , 1 , 2 , ••• (3. 9) 

at J = -1 , - 2 , - 3 , ••. (3.10) 
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The interesting part of the partia l wave sum may be written, 

f(s, t) "" ~ 6 
J=O, 2, ••• 

= l (2J+l)i[~J(z)Fe(J) +PJ(-z)Fe(J)J 

J=0,1,2, ••• 

00 

= l (2J +l)i l P3 (z)Fe(J) + P3 (-z)Fe(J) J 
J=- a:> 

(3.11) 

(3.12) 

(3. 13) 

Now we use the Sommerfeld-Watson technique to convert this sum to 

a contour integral 

f(s,t) = 1
1
. \ dJ_( 2J+l) P (-z)Fe(J) +~s dJ (~J+l) P

3
(z)Fe(J) (3.14) 

JC sm TIJ J 41 C sm TIJ 

where the contour C encircles the real axis as in the limit R - ro, 

E - 0 of Fig. 1. Besides the poles from sin TIJ, the poles a t the 

half-integers from P 
3

(z) contribute to e ach integral, but these 

contributions cancel in pairs J, J-1 of half-integers, except for t he 

one at J = % which is c;;ancelled 'by the factor 2J + 1 in the numerator. 

The function P 3{z) as a function o f z has a cut running from 

+ l to - oo, i.e., a left-hand cut, while P
3

(-z) has only a right-ha nd 

cut. Thus we h a v e duplicated the form of a dispersion relation for 

f(s, t) in z (or t). To the extent that the weight functions in such a 

dispersion relation a re uniquely determined, we shall have information 

about Fe (J). 
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lmJ 

---/ " \ 
\ J 
\ / , ___ / " 

( . \ 
\ . I 
-/ 

Fig. 1 -I ntegrotion contours 

We now open up the contour to the form C' as in Fig. 1, 

picking up the contribution of the poles of F e {J). 

f{s,t) 

_ \ {Zai{s)+l)rrl\{s ) [p {-z) + 
0 

{z )J 
L 2 sin 71'Cl'.{s) a. u-a. · 
i l 1 1 -

{3 .15) 
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where the ith pole of Fe(J) occurs at a.{s) with a residue of f3.(s). 
1 1 

Since rP a {z) goes asymptotically for large z as za, iri this limit 

the contribution of the Regge pole with the largest value of Re J 

dominates all the others and the integral over the contour C'. We 

conjecture that this leading pole term is in the neighborhood of J = 1. 

The first terms i~ the expansion of f{s ,t) about the point J = 1 are 

evaluated at J = 1 and will cancel if we are not careful to keep the 

pieces separate. Then we would have to carry the expansion to higher 

terms and the perturbation theory expansion to higher orders in order 

to get non-vanishing terms to compare. 

The situation for particles with spin is very similar except for 

a few complications. Equations (3.5} and (3.6} become 

>... 
+ ( ~ )( _ 1) m _l-=---

8rr2{s 
(3.16} 

where the A:, A: are the weight functions of < >... ·>... L {s,t} rn a 
c d' a·-b 

dispersion relation for fixed s and where the c~~(z) . are obtained 

from the c~:(z} by replacing the P J(z} in their definitions by 

QJ(z}. Again assuming Fe±(J} is finite for n~gative J and con­

siqering only the contributions from Fe± we have 
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..± Rf \ { J± J+ ±A. A. ;A. x_ (z) = k. /....; (2J+l) FA. A. ;A. x_ eA.µ.(z) 
c d a ·o i E T":>-. c d a·-b 

ven v"'-1\. 
m 

J~ J- } 
+ FA. A. ·A. x_ eA. (z) 

c d' a ·o µ. 
(3 .17) 

e± i J+ m J+ I A. 
= (2J+l) {FA. A. ·A. x(J)z [EA. (z) + (-1) EA. (-z}] 

1 c d' a·o µ. µ. 
J=0,1,2, ••• . 

A. 
e~ i [ J- m J- J} +FA. A. ·A. A. (J) z EA. (z) - (-1) EA. (-z) , 

c d' a b µ. µ. 

(3.18) 

where. the E~:(z) are obtained from the e~:(z) by replacing the 

P
3

(z) in their definitions by P
3

(z). After this, the extension of the 

sum to include the negative integers is made more difficult because 

of the existence of certain "nonsense"(l?) values of J. The se a re the 

values of J for a particular set of helicities for which J < A. • 
m 

Physically this is e quivalent to a vector of length J which is shorter 

than its projection. It is not surprising that the formalism treats 

these nonsense values different from the others. The· Ef: are non­

vanishing for J = -1, -2, ••• , -A. but provide terms which exactly 
. m 

cancel the contributions from E~~ for J = 0, 1, ••• , A.m-1, as 

shown in Appendix B of Refere nce (3 ). Thus the sum in (3.18) can be 

extended to include the negative integers, and the Sommerfeld-Watson 
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transformation together with a shift of contours gives us the contri­

bution from the Regge poles. 
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2. The Vacuum Trajectory 

Now we conjecture that the leading Regge pole for Fe(J) 

occurs at a value 

J = a(s) = 1 + .0.(s) (3.19} 

where .6 vanishes as the coupling constant g - O. We calculate 

.0.(s} by comparing the perturbation theory calculation for the relevant 

processes with the deductions from the hypothesis of a Regge pole 

at a(s ). There are two expansions involved here and their relation 

is sometimes delicate. Since we have the leading Regge pole, we 

want the high z limit of perturbation theory. But since we are 

c.omparing the Regge predictions with a particular order of pertur-

bation theory, we want only that term which involves the correct 

power of the coupling constant, even though higher powers of the 

coupling constant may be associated with larger z dependence. In 

J+ . 
any given order of .6, the contributions from the E (z) dominate 

J-
thos e of the E (z ), so tha t we neglect the latter in what follows. 

Thus the Regge pole contributions are: 

{3. 20) 

Further , we know that in the s-plane , the residues of single-

particle poles and of resonance poles are factorizable as a simple 
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consequence of the unitarity condition, i.e. , they may be written as 

the product of two factors- -one from the initial state and the other 

from the final state. Since the F±(J) obey similar ui"i.ita :rity con­

ditions in the complex J-plane(l
4

) we expect that the residues of a 

Regge trajectory factor in the same way(lS)' (l 9). Denoting these 

factored residues by s~ >--2 where the subscripts give the helicities 

of the corresponding state, we see that extra factors in the F's due 

to the state normalizations may be absorbed into the corresponding 

s~ A.
2

• However, we must be careful when dealing with unitarity 

r elations which are non-homogeneous. 

We see from the inversion formula (2. 37} and the form of the 

c~=(z), Appendix B that some of the partial wave amplitudes have 

square root factors multiplying them which should really have been 

taken into account in the derivation of (3. 20) since otherwise they 

would introduce troublesome branch points. For our purposes, which 

center about J = 1, we may consider these analyticity problems to be 

taken care of for all such factors except J - 1, which we keep track 

of separately. These special factors appear only in channels with a 

nonsense state, i.e., I JM;l-1> ±• Physically, the explanation is that 

in this channel, as J decreases, the formalism must have some way 

of eliminating the nonsense J contribution. Keeping track of this 

factor is important in our assigning the correct order of perturbation 

theory to each contribution. 

Combining all our hypotheses about Fe (J) we have the 

following: 
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F~.+,.., 
s.s. 
..:.2:..:..J_ 

lJ J-a 

Fe:,.., sssi 
Sl J-a 

Fe:,.., .../J-1 
sns i 

ni J-a 
{3. 21) 

Fe+,.., 
g2 

J -1 ___.£. 
nn J-a 

Fe+,.., fi:i snss 
ns J-a 

Fe+,.., srss 
rs J-a 

where the subscripts i, j each represent any of the states Iii>+ , 

I.!_ .!_ > . 
2 - 2 +' r, s each represent any of the states 110>+, Ill>+• IOO>+ 

and n represents the nonsense state ll -1> +' and where - indi-

cates that we are looking at the behavior near J = a; we have omitted 

a piece which is regular at that point. Of all the possible amplitudes 

for '( + '( - '( + '(, only one of them will give us information about 

~{s) in a fourth order perturbation calculation. We substitute these 

conjectures into the expression for the pole contributions to the 

amplitude, (3. 20), choosing the appropriate E~= from Appendix B 

for the partial wave expansions (2. 35). In evaluating the small 6., 

a+ 
large z limit of the EX.µ (z), the following formulas are useful: 
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P' (z} - 1 + 6 [log z + (2 - log 2}] + 0(6 
2

} 
Q' 

{3. 22} 

P~'{z) --
6

2{1 + 6 [log z + (1 ·-log 2)] + 0(6
2

}} 
z . 

P~v{z} -
2~ {1+6(log z + d: - log 2)] +0(6

2
)} 

z 

with similar formulas for z - -z. 

The final form of the predictions of the Regge pole hypothesis 

are: 

for N + N - N + N 

+ . 3 
fl. .!.. .!. .!. - -- S.!. .!...!..!. [- log (-z) + log z 1 
2-2.22 2-!2 2-2.22 

ft- i d·-i - ~ si-i [- log (-z) +log zJ 

(3. 23) 

for N + N - 'I + 'I, letting p be the center of mass momentum of the 

NN system, k, the center of mass momentum of the 'l'I system, 
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+ 
fll· -L!. -

' 2 2 

+ 3 fk 
£11 · l. l. - r .J ~ s lls l. l. [ 1 - 1] , z - z 2v 2 ~ , P z - z 

(3. 24) 

+ 3 ~ 1 1 £1 l · .!..!. - --r: - s1 is i i [ - - + - ] 
- , 2 2 2v 6 p - 2 2 z z 

+ . ...(3 ff 1 1 f ii--. -s Sii[--+-] 
1-1;2-2 4 p 1-1 2-2 z z 

+ . 3 ~ £00 .l. 1.. - -- - s00s i i [ i - i] • 
' 2 - 2 2..f.2 ~ p 2 - 2 

For y + y - y + y, 

f+ - ~s2 [-.!..+ .!..] 
1-1;1-l 4 1-1 . z. z 
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+ 3 2 
foo;oo - 26. soo [ - z + z] 

(3. 25) 

+ 3 2 
f10;10 - 26. s10 [ -l + l] 

+ 3 
s 10sn[ -1 + l] flO;ll -

2/"2 .6. 

+ 3 
s1osoo[ -1 + l] flO;OO - 2/"2 .6. 

+ 
fll;ll 

3 2 
26. sn [ -z + z] 

In each case we have writte n first the term which was derived from 

the function with the right-hand cut in z. In the case of N + N - N + N, 

the contribution of the lowest order term was dropped because it gave 

a contribution lower than first order in the coupling constant. In the 

above predictions, the terms which behave as 1 or z as z - co in 

this lowest order correspond merely to the polynomial subtraction 
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constants in a dispersion relation in z of the form (3. 3). The de-

composition of the amplitude into two such terms is arbitrary; only 

their sum, zero, has significance. The terms which behave as -1 z 

or log z, however, must come from the integrals over the cuts in a 

dispersion relation. These have analytic structure, and are the 

asymptotic forms of terms which can be uniquely determined if their 

sum is given. The success of our program depends upon the identi-

fication of these terms. Of all the above processes involving a 2y 

state only those which contain the nonsense state are uniquely deter-

mined in this low order. Out of this group, only the "nonsense -

nonsense" transition involves ti.(s). 

The N + N - N + N predictions are compared with the fourth 

order perturbation calculations (the second order process, single y 

exchange, is too small at high z}, the N + N - y + y w'i.th the second 

order calculations, and the y + y - y + y with the fourth order 

calculations. Thus we can read off the size of the various quantitites: 

SS 
(3. 26) 

S - t9(go) 
n 

t::.. - t9(g 4) 

where the subscript i represents the two nucleon states, s the 

three meson states which are sensible at J = 1, and n the 1 - 1 

nonsense state. 
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The equations (3. 23) - (3. 25) are to be regarded not only as 

a scheme fo r calculating the residues, but also as a prediction of the 

asymptotic behavior of the amplitude in the appropriate order of per-

turbation theory. 

The trajectory can be evaluated from the identities 

~(s) = (3. 27) 

where the groupings on the right-hand side represent the combinations 

determined by comparison with perturbation theory. 
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3. Consistency and Unitarity 

We quote from Reference (5) the results from second and fourth 

fl+ l . .l.l - g2 _m __ ~ [ _ 1:_ + l] 
- ,zz 4 r z z 

TikV S 

(3. 28) 

(3. 29) 

where the first (second) term comes from the diagram which yields 

the right (left) hand cut. Using (3. 24) we get 

t c 2 1 m 
"'1 l'::>.l.l = g ---r-- . -:-r - zz v6TI kYs 

s1 ls.l .l - z-z 
2 = g 

1 1 
r. k 2v 3 TI 

(3. 30) 

(3. 31) 

The other six processes agree in their asymptotic form with the pre-

dictions of {3. 24), but for them the identification of the corresponding 

coefficients would be purely formal. It turns out that these other 

processes are also consistent with 

..f2 m 

.fs 
(3.32) 

although this may be only a coincidence. From the right-hand cut of 

the fourth order N + N - N + N calculation, 
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+R 4 Zm2 
fi·Lii - - g rrfs Io (s )(z log (-z)) 

+R 4 m 
f1 l 11 - - g - I (s) log (-z) 
2-2;22 1T 0 

I {s) 
0 

= 1 

161T
2 
s CX) ds I 

4A.2 ~(s')(~' 
1 

s'-s-iE 

{3.33) 

(3. 34) 

(3.35) 

(3.36) 

so that, noting again the correctness of the prediction of the asymptotic 

form, .we have 

2 4 4m 2 I (s) 
0 

S_!_l. = g 3;-
22 vs 

s1 is11 = 4 z.fz m 

2 -2 22 
g 31T 

2 s 1 1 
2 -2 

= 4 2Vs 1 {s) 
g 31T 0 

which agrees with (3. 32). 

(3. 37) 

I {s) 
0 

(3.38) 

{3.39) 

As in R efe rence (3) and Reference (5), we extract additional 

information from the partial wave unitarity relations continued into 

the complex J plane. The possibility of doing this uniquely for both 
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Fe (J) and F 0 (J) follows from Carlson's theorem. We have 

e 

Im F~a (J) = 
k 

m 
"2 
N 

m 

e [ e · ] ~' 
Fo (J) Fo .b (J) 

ma m (3. 4 0) 

where k is the center of mass momentum of the inte r mediate state, 
m 

N is the normalization factor for the intermedia t e state (taken from 
m 

Table III) and the sum is over all the intermediate states . This 

formula is valid in the range from the lowest threshold of the inter-

mediat e states to the first inelastic threshold. To emphas i ze that the 

"Imaginary part" above refers to the discontinuity ac ross the cut in 

s, we should write 

e e >:< 

F~a (J) - F~a (J ':' ) 

2i (3. 41) 

with a similar understanding for the c omplex conj ugat ion sign on the 

RHS of (3.40}. Applying thi s to the process N + N - N + N , we con-

sider intermediate state s of the NN and yy systems. Since {3. 40) 

must hold in each order of the coupling constant, let us consider the 

fourth order terms, a nd then look a t the high z limit. In this order, 

the only contributions come fr om the yy nonsense state as we see 

from {3. 26), since all the other states give lower order contributions. 

In the neighborhood of J = a , by means of (3. 21), we can write 

£.£. 
I -2:...J...... = 
m J-a (3 . 42 ) 
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and taking the residues of both sides, 

tm(.s.~ .) 
l ' J 

. 2 s >- 41'. • (3. 43) 

This expression serves as a check on the second and fourth order 

work already done. r -1 Noting from (3.36) that Im I (s) =(16rrkvs) 
0 

1 1 
and taking the case i = j = 22 , we confirm that 

g 
4

4m 2I {s) 
Im ----

0
--

3rr.fs 

where the RHS is obtained from (3. 30). 

(3. 44) 

Applying this formalism to the nonsense-nonsense transition, 

where the fourth order contribution comes only from the two NN 

intermediate states, we find 

[ s
2 J '\""' s s. 

Im (J-1) J~a = p L -JJ-1 Jn_a1 

i 

=p 

4 = g 

~~ 

~ <sns.> 
v J -1 l 

J-0:' 

s >4m2 • (3.45) 



-40-

IV. CALCULATION OF THE TRAJECTORY 

1. The Full yy Amplitude 

The fourth order calculation of the proces s 'I +'I - 'I +'I 

. + 
involves two parts: the calculation of fl-l;l-l (z) and the separation 

of the answer into right a nd left hand cuts in the momentum transfer 

t. The first part of the calculation is quite lengthy, but straightfor-

ward once certain points dealing with invariant amplitudes have be e n 

clarified. The second part presents not only difficulties of calcula-

tion but fundamental ambiguities of interpretation which have not 

yet been resolved. These will be discussed at length after we obtain 

+ 
fl-1;1-l{z). 

From (2.33), 

f+ = 
1-1;1-l 

fg 
1-1;1-l + 
(1+z) 2 

g 
~-1;1-1 

2 
(1 - z) 

Here fg is determined from the invariant matrix element M by 

fg = _l _ M 
sds 

and M is given directly by the Feynman rules. (ZO) We consider 

first the general case of fourth order scattering of neutral vector 

(4.1) 

(4. 2) 

bosons coupled by a conserved-current interation to a fe rmion field. 

We use the method of Karplus and Neuman ( 2l), but as we shall see, 

their result must be modified so that its analytic properties are 

recognizable. Instead of deriving their result as an intermediate 
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step and preceding onwards, we present here a more direct way of 

obtaining the result we want. The physical process is completely 

described by specifying the four boson four-~10menta k(l), k(Z), k( 3 ), 

k(4 ) and their corresponding polarization four-vectors e(l}, e(Z}, 

e(3 ), e(4 ). Taking the momenta as ingoing, energy-momentum con-

servation is 

(4. 3) 

Gauge invariance requires 

(i not summed) (4. 4) 

for each particle, and the e(i) are normalized as in (Al3). We write 

the invariant matrix element as 

(4. 5) 

where particles 3 and 4 have been chosen as outgoing and the factors 

have been chosen for convenience in what follows. Because of the 

conserved current interaction G , is divergenceless with respect 
µvl\.CJ" 

to each index. In momentum space 

(4. 6) 
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In fourth order, six diagrams contribute to G '\ • Three of 
µvA.IJ 

them are shown in Fig. 2. The others are the same except that the 

internal fermion line circulates clockwise. 

(a) (b) (c) 

Fig.2-Diagrams for fourth order 'Y 'Y scattering 

In addition to being Lorentz invariant, the fourth rank tensor 

G '\ (k(l) ,k(2 ) ,k< 3 ) ,k<4 )) is notationally invariant; it describes the 
µvf\.IJ 

same physical process unde r the 24 simultaneous permutations of 

its arguments and corresponding indices. The contribution of the 

2(a) to G (k(l) k(Z) k(3 ) k(4 )) Fig. µv ~IJ , , , is, by the Feynman rules, 
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T = µ v X.o-

1 s 4 Tr{-y1/i6'+mh)i6'+¥'{2)+m)-yX.{p+t{{2)+¥'{3)+m)yo-{p-t{(1)+m)} 

i 1/ d p (p2-m2)[ {p+k{2))2-m2] [ {p+k(2)+k(3))2-m2] [ (p-k(l))2-m2] 

{4. 7) 
2 

where the factor in front represents the product of -
8~ for the 

1 . g 
factor in (4.5), 4 for the energy momentum delta function, (-1) 

(2rr) i 
for the chosed fermion loop, 2 to represent the diagram with the 

fermion direction reversed and g 4 for the coupling constant. We leave 

it understood that the poles in this and similar integrals are to be 

treated as if the masses had a small negative imaginary part. The 

symmetries of T " are fewer than those of G , but include 
. µv~o- µv~o-

the 8 simultaneous permutations of its arguments and tensor indices 

which leave the trace invariant--4 cyclic permutations and the com-

plete reversal 1234 - 4321. We may obtain the contribution of the 

three diagrams to G from T , alone by proper permutations, µvX.o- µv ~o-

(4. 8) 

so we see e x plicitly how G is invariant under a ll 3 X 8 =. 24 
µvX.o-

permutations. 

The expression (4. 7) looks a s if it contained a loga rithmica lly 

divergent term, but Karplus a nd Neuman have demonstra ted by the 
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Pauli-Villars regulator method that G " is completely finite. 
f-LV/\.IJ" 

They then demonstrate explicitly that their regularized expression 

for G ... satisfies (4. 6). The same answer could be arrived at by µv /\.O-

using (4. 6) to enforce a finite answer, or by using Jauch and Rohrlich's 

method of symmetrical integration. <
22> 

To simplify the writing we introduce the following condensed 

notation. Replace the vector momenta symbols · k(l), k( 2 ), k(3 ), k(4 ) 

simply by 1, 2, 3, 4 respectively when there is no possible ambiguity. 

For example, G (k(l) k{ 2 ) k(3 ) k(4 }) becomes G {1234} {no 
µvA.rr ' ' • µvA.rr 

commas)· the tensor k( 2 )k{l)k{4 )k( 3 ) becomes 2 1 4 ... 3 ; the scalar 
' µ v A. (J" µ v /\. (J" 

k(i)k(j) becomes (i • j)· and the second of equations (4. 6) becomes 
µ µ ' 

2 G " (1234) = O. v µvl\.rr 

We join Karplus and Neuman in writing the tensor G 1n 
µvA.<T 

terms of the available tensors ·. 

€ '\. (1234) = \ 
f-LV/\.<T L A ijki (1234}i . k i + 

µJv A. rr 
B 1

1
. j(l234)i j g ... 

µ; v l\.<J" 

i,j,k,i i,j 

+ \ B 1
2
.k(l234)i k ... g + L µ {\. V(J" 

i ,k 

+ c
1

(1234)g g... + c
2

(1234}g "g + c
3

(1234}g g " , µv /\.<J" µ/\. V<T µrr vi\. 

(4. 9) 

with 

i = 2,3,4 j=l,3,4 

(4.10) 
k = 1, 2, 4 i=l,2,3., 
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where the 81 A's, the 54 B's and the 3 C's are scalar invariants which 

are functions of the scalar products of the four-momenta. One might 

imagine evaluating them by an explicit calculation of the traces and 

integrals in the regularized version of (4. 7) and its permutations. 

(This would involve handling some 11, 340 terms.) Although the com-

pletely anti symmetric tensor € , is also available, terms con-
µv l\.<J 

taining an odd number of these tensors would give a pseudo-scalar 

after dotting them into the polarizations. Terms with an even number 

of them are expressible as combinations of the tensors already 

appearing in (4. 9). Because of the conservation of momentum, 

there are only three independent four-vectors. We have eliminated 

k(l) when dealing with the tensor index µ, k{Z) for v, etc. , as indi-

cated by the range of the sums in (4 .10). The reason for this conven­

tion is that it is invariant under simultaneous permutation of the k{i) 

and their corresponding tensor indices. Since both the value of the 

left hand side and the form of the right hand side of (4. 9) are invariant 

under such permutations, certain relations among the A's must be 

satisfied. There are so many in fact that if the functional form of a 

representative set of six of them is known, the other 75 may be 

determined by simple permutation of the arguments. Detailed infor-

mation is given in Appendix D. Similar relations hold among the B '' s. 

A difficulty ·not mentioned by Karplus and Neuman is that an 

expression of the form of the right hand side of (4. 9) is not unique., 

This is because any two of the tensors can be expressed identically 

as combinations of the remaining ones so that there ,js an infinite 
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number of sets of A's , B's and C's which will yield the same function. 

This point is discussed more fully in Appendix C. At first glance, 

the simplest way to avoid this difficulty is to omit two tensors, say 

C 2 (1234)g , g and C
3

(1234)g g , from the right hand side. The 
µ/\. V<T µ<T V /\. 

coefficients of the remaining tensors are then uniquely determined, 

but operating on C
1
(1234) with certain permutations of momenta and 

indices would yield these unwanted tensors again. If we replaced 

these tensors by their values in terms of the others as given by the 

two identities, we would introduce additional A's. Thus under this 

operation some A's would go into unmanageable mixtures of A's 

and C's. The way out of this difficulty is to fix uniquely all the 

coefficients of (4. 9) by regarding them as coming from some parti-

cular calculation of the traces and integrals • . Then a simultaneous 

permutation of momenta and indices could be regarded as c oming 

from a line by line substitution into this particular calculation. With 

this uncle rstanding, the results of the previous paragraph are correct. 

Karplus and Neuman's big trick is to use current conservation 

Eq. (4 . 6) to derive further relations among these quantities. It is 

easy to show that in an expression which satisfies (4. 6) , if all the 

A's are zero, the B's and C's must vanish also. Thus, knowledge 

of the A's determines the B's and C's uniquely and for the case of 

G , , it is necessary to evaluate only the A's. Extending the te r­
µv l\.<J 

minology of Karplus and Neuman we call the A terms "heads," the 

B terms "shoulders" and the C terms "tails ." Following the usual 

procedure, we introduce Feynman parameters to c o mbine the 
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denominators of Eq. (4. 7), then shift the origin of the p integration 

to eliminate the terms in the denominator linear in p. We get 

. T , (1234) = 
µv /\.CJ 

where 

and 

x. (2) = 

'{3) - k(l) 
"" - Y1 

X.(4) _ k(l)(y +y ) +k(2)y 
- 1 2 2 

{4. ll) 

+k{4)(y4+yl) 

- k(4)Y3 

(4.12) 

But since we need only the head terms, i.e., only those where all the 

tensor indices appear on the k(i), we may disregard all the p and 

m terms in the numerator, making the integration over p very simple. 

The 11 divergent" contributions never appear. 
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Tr{ y µX'.(1) Yv~ 2) y "-~(3) y <T}<'.( 4)} 

D(l234) 
{4.14) 

+(k(l) +k (2)) • (k (3)+k(4»y 2Y 4 +(k (1) +k(4)) • (k(2)+k(3 ))yl y 3] 2 

(4.15) 

Further, in doing the trace over the remaining terms, i.e. , the (i} 
"'- . 

we get 24 terms instead of the usual 105 because all terms involving 

g contribute only to the shoulders and tails. we may collect the 
µv . 

terms belonging to each head tensor, being careful to express the 

,,_ (i) in terms of the three momenta appropriate to the index carried 

by the ,,_ (i} in accordance with the convention of (4.10). We call 

· Aijk£ (1234) the contribution of the heads to T , (1234) so that 
1 . ·µv l\.<T 

T = 
µv"-<T heads 

only 

) 
· u 

i=2,3,4;k=l,2,4 
j=l. 3. 4; i =l. 2. 3 

Aijki (1234)i . k i 
1 µJV "'- CT 

(4.16) 

The A's are calculated from the A{s by using the symmetry operations 

of (4. 8) and are listed in Appendix D. Because 

metric than G , as measured by the number of simultaneous µv /\.CT 

permutations of arguments and indices which leave it invariant, the 

Ais are less symmetric than the A's; a representative set of 15 of 
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them are required to determine all the others and consequently the . 

A's. Karplus and Neuman have done all the bookkeeping, and list 

values of such a set of 15 AJ.s. A typical one is 

A 21ll(l234} 
1 S y 1(y2 +y 3 +y 4HY1+y2 -y 3 -y 4HY 1+y2 +y 3 -y 4} 

= B dT D(l234} 

(4.17) 

the others differing by the polynomial in the numerator. A complete 

list is given in Appendix D. 

In collecting these formulas for the A
1

1s one discovers certain 

relations among them which in turn generate relations among the A's 

which are not obtainable by notational invariance alone. 

From here on we part company with the work of Karplus and 

Neuman, who go on to introduce a set of tensors which satisfy (4. 6} 

identically and express the answer in terms of these tensors and the 

A's. For a while considerations of the number of independent ampli-

tudes available to describe the scattering process cast doubt on the 

validity of their method and some looseness in their arguments 

increased our suspicions, but these uncertainties have been resolved. 

See Appendix C for a fuller discussion. Though their final answer 

is correct, it contains terms with products of momenta in the de­

nominator which yield factors of t~ 2 °or t+~- 2 in addition to the 

t dependence of the integrals (4.17). These factors make both the 

determination of the analytic properties of each term and the calcu-

lation of the asymptotic form very difficult. 

Following a suggestion of J. Sullivan we cast the answer in a 
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form whose analytic properties are more obvious by explicitly solving 

for the shoulders and tails in terms of the heads by use of (4. 6). 

For example, after contracting (4. 9) with 1 , we have a third 
µ 

. rank tensor which must vanish for any choice of the k(i). It is easy 

to show that this implies that the coefficient of each tensor form 

vanishes {unlike the case of second or fourth rank tensors). Thus 

the coefficient of, say 1 4, 3 is 
v /\. a-

{4.18) 

and this gives 
. 43 
B

6 
(1234) in t e rms of the heads. Similarly, all the 

B's and C's may be expressed in terms of the A's. However, we 

could also obtain an equation for Bt
3

(1234) by considering the coef­

'ficient of 2 4, 3 after contracting with 2 : 
µ /\. a- v 

(4.19) 

In this way we obtain additional relations among the A's, whi.ch are 

not obvious from expressions such as (4.17). Two such expressions, 

which we write in the form 

a(l234) = (3• 4)A 2123 (1234) + (2• 4)A 2122(1234) + {l• 4)A 2121(1234) = 0 

(4. 20) 

b(l234) = (l· 4)A2311(1234) + (3 • 4)A 2311(3134) + (2· 4)A 2311(2314) = 0 

(4. 21) 
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are derived in an elaborate. way in Reference (21). They felt it neces -

sary to check their arguments by an explicit calculation for a special 

case. The first of these identities will play a role in our later dis-

· cussion of the analytic properties of the amplitude. 

The final answer could be written in the form (4. 9) with the 

coefficients of the 138 tensor amplitudes all expressed in terms of the 

A's. We choose to regroup the terms and list the tensor expression 

which multiplies each of the 81 A's. This is the form given in Appe~-

dix E. This expression agrees term by term with the expression 

given by Karplus and Neuman if sufficient use is made of (4. 20), 

(4. 21) and their 24 permutations. The point of all this work is that 

now no scalar products of momenta occur in the denominator, or in 

dispersion theoretic language, we have avoided a great many kine-

matical singularities. 

The previous theory is perfectly general and applies even when 

the four particle box is an internal part of a diagram. Now specialize 

to the case where the k(i) represent the external momenta of identical 

particles of mass A.< m. Take A. to be the unit of mass and, in 

accordance with (4. 5}, choose 1 and 2 to represent the initial particles, 

3 and 4 to represent the final ones. Introduce s, t and u as usual by 

(4. 22) 

so that 

(l • 2) = ( 3 • 4} = ~ ( s - 2} ; 
1 

(l· 4) = (2· 3) = 2 (t- 2 ) 

(l • 3 ) = ( 2 • 4} = .!.(u-2} = .!.(2-s-t) 
2 2 . (4. 23 ) 
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Equation (4.15) becomes 

[ 2 2 
D(l234) = m - <Y1Yz+YzY3+Y3Y4 +y4yl)- SYzY4 -tyly3] :z:D(s,t). 

(4. 24) 

This simple form for D(l234) means that the 24 a priori permutations 

of the argtJ.ments can be reduced to only 6 different ones, and by a 

change of integration variables to only 3: D(s ,t), D(s ,u) and D(t,u). 

Appendix D lists all the possibilities! Since the A's depend on 

their arguments only through these denominators, additional equalities 

among them are obtained which are given in Appendix D. 

Further specialize to the actual cases at hand. In the center 

of mass sys tern take: 

k <1>.. ( 0 0 k) w. • • 

k < 3 ) : ( - w , k sin 9 , o , k cos 9) 

with 

k(Z): (w,0,0,-k) 

(4. 25) 

k(4 ): (-w,-ksin9,0,-k cos 9) 

2 2 
w -k =l; 4w

2 = s (4. 26) 

Chaos e the helicities to be 

E(l): ~ (O,l,i,O) E(2): 1 (0,-1,-i,O) 
2 . ..f2 

1 9. i. sin 9) for f"g 
··- ..[

2 
(O , -cos 

E (3 ) ··~ 1-1;1-l 

1 rg 
(4. 2 7) 

- (0 -cos 9 ,-i, sin 9) for 
..f2 • -11;1-l 

1 (O,cos 9,-i,-sin 9) for fg ,!4»*f: 1-1;1-l 

(O,cos 9,i,-sin 9) for fs 
..f2 -11;1-l 
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The calculation of M is now straightforward. The tensors 

associated with the A's yield terms ±k
4 

sin4 e, those associated 

w ith the B's yield (± k 2sin2 El)(± 1 +cos El) and those associated with 

the C's yield (± 1 +cos e) 2 • Combining the helicity cases according 

to (4.1), and making liberal use of the symmetries, we get the coef­

ficients of each head. Exp res sing these coefficients in terms of s 

and t we find that the only place the t appears explicitly is in the 

terms 

(4. 28) 

(The argument (1234) common to each of the A's is suppressed.) 

Two permutations of the identity a(l234) 

(2• 3)A 4311 + (2• l)A 4111 + (2• 4)A 4411 = 0 

(4. 29) 

(l· 3 )A 3422 + (l• 2 )A 2422 + (l· 4 )A 4422 = O 

furnish the . relations 

(4. 30) 

so that t may be entirely eliminated. The complete result is then 
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{4. 31) 

in which the only t dependence appears in the integrals for the A's. 
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2. The Program and Its Difficulties 

A few words about the analytic properties of the amplitude 

will be useful. Every A is the sum of three terms, each of which 

represents a contribution from one of the three basic diagrams and is 

obtained by applying permutations to A
1

• The effect of these permu­

tations on the scalar products of the momenta is to interchange t and 

u going from diagram 2(a) to 2(b), and s and u going from diagram 

2(a) to 2(c). This gives a characteristic denominator to the contri-

bution of each diagram so that M takes the form 

(4.32) 

where Ni, NII' and NIII are the polynomials in s, y 1 , y 2 , y 3 , y 4 

obtained from (4. 31) by combining integrands with the same denomina-

tor. 

An elementary study of (4. 24) shows that D(s ,t) cannot vanish 

anywhere in the regions of integration provided 

2 s < 4m 

t < 4m2 
(4. 33) 

so that these conditions become the bounda ries of the region of analy-

ticity for the first term on the right hand side of (4. 32), neglecting 

the s dependence of NI" This simple examination is confirmed by 

the more sophisticated investigations of Karplus, Sommerfield and 

Wichman(Z3 ) and Tarski(Z4 ) for the general mass case. The condition 
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on s is simply that we remain below the threshold for producing 

real fermion pairs. For s < 4m2 , we reach a branch point as w e 

increase t, so Fig. 2(a} gives a right hand cut in t beginning at 

2 4m • In Fig. 3 we have a picture in barycentric coordinates of the 

region of analyticity for each diagram. The central triangle DEF 

u = 4m2 

I II 

Fig.3-Regions of analyticity 

is a common analytic region for a ll three diagrams. If we hold s fixed 

. at s ome value s < 4m2 represented by the line PQ, we see that 
0 . 

Fig. 2(b} y ields a right hand cut beginning at t = 4m2 , Fig·. 2(b) yields 

a left hand cut beginning at t = 4 - s
0 

- 4m2 , while Fig. 2(c} yields 

both a r ight hand cut b eginning at t = 4m2 and a left hand cut begin-

2 
ning at t = 4 - s - 4m • 

0 
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The three terms in (4. 32) correspond to the decomposition in 

the Mandelstam representation into three double-spectral functions. 

Because these integrals go to 0 at infinite t, if we wrote the RHS 

of (4. 3 2) as a dispersion integral in t, there would be no subtraction. 

Thus we can unambiguously identify the contrib~tion from the right 

or left hand cuts separately, even if their sum should vanish. This 

separability of the cuts is essential to the program. 

To look at only the right hand cut, we take the first integral 

in (4. 3 2) and part of the third. The question is, how do we separate 

the right and left hand cut contributions in this third integral? Re-

writing the denominator 

we note that if the sign of (y
1
y

3
- y

2
y

4
) were positive (negative) D(u,t) 

could be ;made to vanish at some point in the region of integration for 

all positive (negative) t. This strongly suggests that if we were to 

limit the region of integration so that y1y 3 - y 2y 4 were always positive, 

we would get the contribution of the right hand t cut. The correctness 

of this intuitive result has been verified by the following procedure. 

Perform the y 4 integration by using the delta-function. Calculate 

the dis continuity across the cut in t by deforming the contour of the 

y variable and picking up the contributions of the two second order 

poles. For 4 < s < 4m2 contributions to the discontinuity are obtained 

2 
only under s evere restrictions: either 1. When t > m and the 

remaining integration variables y
1 

and y 
3 

are confined 
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to a region bounded by two conic sections; or 2. 2 When t < 4 - s - 4m 

and y 1 and y 3 are confined to a second region bounded by two conic 

sections. If we repeat this procedure using the condition that 

(y1y 3 - y 2y 4 ) > 0, the first region of the y
1

, y
3 

variables is un­

affected while the second region becomes excluded and we get only 

the right hand cut in t. The other choice of sign selects only the 

left hand cut. (This dispersion form of the original integrals contains 

such complications in the specification of the boundaries of integra-

tion that it is practically useless for further computation.) 

Having solved the problem of extracting the contribution of 

the right hand cut we examine its asymptotic form. Anticipating the 

results of the next section we find that the largest terms from the 

first diagram are of order t-l as t - ro, and we can easily deter-

mine their coefficient. We have demonstrated that the right hand 

cut portion of the third diagram also contributes terms of this order 

and no larger. Their coefficient has not been determined. What 

seems to be a messy calculation could probably be done if there were 

good reason. However there i s good reason not to do it. 

The Mandelstam representation gives the most convenient 

basis for a discussion of the analytic properties of M. It is exact 

for this fourth order process and neglecting subtraction it is 

related term by term to the decomposition into Feynman diagrams. 

1 SS p t(s',t') 1 SS p (s',u') M-- 8 ds'dt'+- _s_u ____ ds'du' 
. - rr2 (s'-s)(t'-t) rr2 (s'-s)(u'-u) 

+ :z H:::~:;;::~.> du' dt' (4. 35) 
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where, for example, the double spectral function put(u' ,t') is non-

vanishing only in a region below a curve u (t) 
0 

qr t (u) in the shaded 
0 

portion of Fig. 3 s ituatecl entirely below the s axis . :Sl."eaking up 

the contribution of the third double spectral function into right and 

left hand cuts in t, 

Sj" put(u'.,t') 
------du' dt' 
(t'-t)(u'-u) =SS u'-u+t'-t . 

CO CO p Ut ( U I > t I) 

= S dt' S du' u'+s+t'-4 (t;-t) 
4m2 u (t') 

0 

+ s co du ' s co dt' 

4m2 to(u') 

put(u' ,t') 

u'+t'+s-4 
' 1 ) 
(u 1-u · 

Replacing the earliest integration in both terms by an integration 

over s' = 4 - u' - t', the RHSbecomes 

co 4 -uo(t')-t' p (4-s '-t',t') -s dt' s ds' ~u_t ______ ~-
4m2 -co . (s '- s )(t'-t) 

4 -u'-t (u ') -s oo du r s o ds' 
4m2 -oo 

Put ( u' ' 4 - u' - s r) 

( s 1 - s ) ( u 1 
- u} 

(4 . 36) 

(4. 3 7) 

We see explicitly how the right hand t-cut contains a discontinuity for 

negative s. If we now took the limit as t- oo, the coefficient of t -l 

would contain this same negative s-cut, and a.(s) would acquire a 

left hand cut in s . From the first double spectral function we get only 

terms which lead to a right hands-cut in a(sr. 
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The crux of the matter is that for a normal Regge pole, a.{$) 

{14) . . 
cannot have any left hand cuts in s ! Oehme gives a demonstration 

of this which we sketch briefly. Considering the spinles s case for 

simplicity, the continued partial wave amplitude {3. 5} is given by an 

integral over z from some small value z to oo. If we break up 
0 

the integral into two parts, one in which the range of integration is 

z
0 

< z < a, and the other in which the range of integration goes from 

a to oo, the first integral is analytic in the whole J plane except for 

poles at the negative integers. Thus all other singularities of Fe{J} 

must come from the second integral which we call D(J}. In this 

integral we may take a as large as we please. Making the same 

assumptions about continuing D{J} to the left of Re J = N as in 

Chapter III, the Regge poles are given by 

{4. 38} 

T hen we expect singularities of a.{s} only where D-1{J} is singular 

or where 

= 0 J {4. 39) 

J= a.{s} 

and this latter can happen where two pole trajectories cross each 

other at J = a.{s}. In the first case, we may expect that the left hand 

cuts in At{s ,t) or Au{s ,u) will produce corresponding singularities 

in o.(s). But this is not the case since the left hand cut from {4. 3 7) 

begins at s = 4 - u (t ') - t' which recedes to - oo as we take a, and 
0 
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(In this limit u (t') - 4m
2

.) Thus a(s) 
0 

cannot have a left hand cut unless there is another singularity present. 

Since the full amplitude in fact yields a trajectory with a left 

hand cut, there must be some other singularity also present. That is, 

in addition to the vacuum trajectory we are seeking, there is an un-

identified foreign object (UFO) also near J = 1. The original program 

of evaluating the Regge pole parameters was not sophisticated enough 

to include this possibility. We must now try to make sense out of 

this phenomenon. Since we no longer have a fixed prescription of 

what to do, let us examine the possibilities and their consequences. 

If we decide that the theory is in such poor shape that the· 

presence of a left hand cut in s is not to be excluded a priori as 

unreasonable, what are. the other consequences of preceding with the 

original program and including the last diagram? 

First, let us describe a somewhat lengthy calculation which 

gives the value of a(O) for the complete scattering process, including 

the third diagram. Consider the dispersion relation (3 .-3) for fixed s 

in our unsubtracted case. The limit as t - oo, of the portion which 

gives the right hand cut is 

1 000 
\ At ( s ' t I ) d t I 

rrt jt 
(4. 40) 

0 

if that integral converges. If we c·ould calculate At, the absorptive 

part of the scattering in the t-channel, its . integral would give the 

coefficient of t-l (or, within a factor, z -l) which is just what we 
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need to evaluate the trajectory according to (3. 25) and (3. 27). We 

did this for s = 0 by noting that this case corresponds to the case 

of forward scattering in the cross-channel where t is the energy 

squared. In going to the cross-channel, one must perform a Lorentz 

transformation to convert to the new center of mass system, and this 

same transformation must of course be applied to the helicities, 

taking care not to mix up the complex conjugation of the final state 

polarization vectors indicated in (4. 5). The absorptive part is then . 

obtained by making a cut in the t (energy) channel and using elastic 

unitarity (or the Cutkosky rules) to put the intermediate N and N 

particles on the mass shell. Summing over the spins and integrating 

over the angles which are the only free parameters of the inter-

mediate state, and adding together the proper helicity combinations 

according to (4.'l), we obtain for the imaginary part of the invariant 

Feynman amplitude, 

I 
4Px 1 5 4 3 2 1 Im MR+ = _g__ x-1 1 -32x -64x -16x +5 5x +9x-4z-

t 1-1;1-l 64 lT x 2( . l)4 4x-3 x x- . 
s=O 

+ ~(!-if~~3_)l) [64x
6
-128x

5
+248x 

4-40x3-znx2+15lx-31~] I 
(4. 41) 

where 2 t = 4m x, and where to make the calculation simple r we have 

taken m = X.. At threshold, x = l, it seems as if this expression 

diverges as (x-1)- 7 / 2 , but the a pparently random numbers which 

appear in both terms in the numerators combine magically to cancel 
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the first five orders of a Taylor expansion about tha t point, so that 

it really goes to zero as (x-1) 3 / 2 . Further details about this calcu 

lation are contained in Appendix F. Integrating this expression over 

the whole range of the cut by machine calculation we get 

MR+ I 1-1;1-l 
s=O 

4 2 
~ -0. 025 g m 

t 
(4. 42) 

which leads to a trajectory which does not pass through 1 at s = O. 

This of course is not a necessary requirement of a vacuum tra-

jectory, but it would be an encouraging feature. 

A fatal drawback of the trajectory calculated using the third 

diagram is the magnitude of its imaginary part. Recall from (3.45) 

that the imaginary part should be fixed by unitarity. As will be seen 

in the next subsection, the first diagra~ alone yields the correct 

imaginary part, so that any further additions from the left hands-cut 

will spoil the agreement. 

To save the bulk of the formalism we must argue that to include 

the third diagram would be to include the UFO as well as the vacuum 

trajectory. Can we separate their contributions to the full amplitude 

by omitting the third diagram entirely or by omitting a portion of it? 

We look at these possibilities in the next section. 



-64-

3. Possible Resolutions 

a. Omit the Third Diagram 

The simplest solution to the difficulty is to omit the third 

diagram altogether. This is the solution adopted by Sullivan(Z
5

} in 

his search for the vacuum Regge trajectory in the theory with vector 

·mesons and scalar nuc leons. Before discussing the merits of this 

choice, let us actually calculate a.(s) in this case. 

Now, instead of using the expressions for the A's in terms 

of the A's 
1 

in Appendix D, we disregard the A
1 

which has a denomi-

nator of the form D(u, t) or D(t, u}. In fact, since we want only the 

contribution of the right hand cut we look only at the one A
1 

in each 

A which has a denominator of the form D{s, t) or D(t, s}. As is 

obvious from (4. 24), the change of variables y 1 - y 
2

, y 
3 

- y 
4 

in 
. ' 

the integrals converts the denominator D(t,s) into D{s ,t). Using 

the symmetries of the A's and combining all the terms in (4.31) over 

the common denominator D(s, t), we find for the contribution of the 

right hand t-cut an expression of the form 

MR+ 
1-1;1-l = 

The asymptotic form for large t is obtained by the following 

well-known procedure (
26

). Break up the integral into two parts so 

that in the first part the y
1 

and y .3 integrations go only up to El 



-65-

and E 
3 

respectively, where El and E 
3 

are small but finite positive 

numbers. The second part contains the r e mainder of the region of 

integration. -2 As t becomes large, the second part surely goes to t ; 

we could expand in a power series to prove this. The only hope of a 

larger asymptotic form comes from the first part which can not be 

expanded in a power series. Since N is a polynomial, we may set 

these variables equal to zero everywhere in the integrand but in the 

coefficient of t. After an elementary integration we get 

MR+ _log (-t)SS 
1-1;1-l -t 

N{s,O,y2,0•Y4)0{1-y2-y4) 

[m2-y2y4s] 

' - 2 
which is independent of E

1 
and E3 , and bigger than t , unless the 

numerator vanishes. Indeed, calculation shows that this latter, is the 

case for our problem. The largest asymptotic form is then obtained 

by taking only y
1 

small, performing the integration, and adding 

to this the contribution for y
3 

only taken small. Because the de­

nominators so obtained have a symmetric form, the sum of these 

contributions may be combined, giving 

{4. 45) 

-2 If this vanishes also we may still have terms as large as t log {-t). 
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In our case (4. 45) applies, and we see that the prediction of (3. 25) 

about the behavior of the asymptotic form is verified. In particular, · 

we get, after some manipulation, 

R+ 4 slslsl 
Ml-1;1-1 - -;;;:- 0 0 0 

(4. 46} 

Combining {3.25), (3.27), (3.30) and {3.37), we find that 

(4.47} 

and the trajectory is given by 

2 4 
.6(s} = -~ I

0
(s)T(s) (4. 4 8 } 

1T 

where T(s) is the integral in (4. 45), and I (s) is the expression 
0 

(3.36). 

Since I (0) is finite and T(O) = 0, we have 
0 

a.(O) = 1 + .6(0) = 1. 

This is very fortunate. Calculating .the slope of the tra jectory at 

s = 0' 

where 

do. 
ds l.s=O = 

4 
-~ I (O)T '(O} = 2 0 

1T 

4 
_...a_T'(O) 

8rr
4 

(4. 49) 

(4. 50) 
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\1 \1-y y
2

(1-y
2

)(1-2y) 
T'(O) = J dy J dy 2 --2----
. 0 0 m -y(l-y) 

(4. 51) 

Unfortunately, this integral is always positive for m 2::: 1, so that the 

slope at the origin is negative. Sullivan(
25

) finds a similar discom-

fiture in the case with scalar nucleons. 

Now we look at the discontinuity in s of T(s). From an 

analysis of the denominator, or by noting that it is the same denomi-

nator one would get for a three particle vertex if all the particles 

1 
(25) . . 

were s ca ars , we expect a cut 1n s running from 4m 2 to co. 

Calculating Im T(s) by deforming the contour of the y integration, 

and picking up the contribution of the one simple pole in the region 

of integration, we get 

Im T(s) = - _2T_ (2m2 + s) 
3..fs 

Then we have from (4 . 47) 

>4 2 s - m • 

s > 4m2 

which agrees e x actly with the pi-ediction {3.45) of partial wave 

(4.52} 

(4. 53} 

unitarity ! As marvelous as such agreement seems (especially after 

scores of pages of calculation) there is an important theoretical 

objection to discarding the third diagram which we discuss in a 

moment. 

First, one more feature of this trajectory is worthy of mention 
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-- the imaginary part of the trajectory itself. It follows from very 

general considerations in potential theory that as s increases above 

threshold on the upper edge of the branch cut, a.(s) acquires a posi-

ti:ve imaginary part. This is related to the general interpretation 

that singularities of the scattering amplitude from the non-physical 

sheet of the s-plane correspond to resonances. This interpretation 

is a valuable property of trajectories which we would like to retain 

in relativistic scattering. We see from (4.48) that the trajectory 

2 . 
has two thresholds, one introduced by the factor I (s) at 4A. , and 

0 

the other by the factor T(s) at 4m 2 • In the ~egion 4A. 2 
< s < 4m 2 

the imaginary part of a. has the sign of - T .(s) Im I
0

(s). A simple 

calculation shows that T(4} is negative so that Im a. at the beginning 

of the interval is greater than zero. More detailed investigation 

shows that this remains true at least until 2 
s ::: 4m • 2 

For s > 4m 

there is an additional contribution with the sign of - Re I (s} Im T(s). 
0 

In this region Re I (s) is negative s o that the additional contribution 
0 

has a net negative sign. As s becomes larger and larger, however, 

we see from an application of the analog of (4.45) that Re T(s} 

becomes positive again. Thus for some large s the sign of the 

imaginary part changes sign and becomes negative. We note further 

that both the real and imaginary parts of a.(s} diverge as log s for 

large s . 

The objection to omitting the third diagram has two aspects 

which are closely related . The first may be seen by studying the 

steps (4 . 28) - (4. 31) which lead from the full amplitude just as it is 
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obtained, to the form of the full amplitude afte r all powers of t have 

been eliminated from the coefficients o f the A's. First of all, the 

coefficient of t in (4. 28) does not vanish. This may be verified by 

evaluating it at a particular point for values of the parameters where 

the integrals become d egenerate. We ask what is the mechanism by 

which this t is eliminated? We may write the identity a(l234) = O 

{and all its permutations) in the form 

(yl +y 2 )(l-yl -y 2)(uyl - sy 2 +l -Zyl - Zy 3) 

D{s,u) dr 

(4. 54) 

.by collecting together all the A
1

1s whic.h make it up and combining the 

ones with similar denominators. In this e quation the integrals do not · 

vanish separately, as may be seen by taking the asymptotic form of 

any one of them. Thus the relation used to eliminate t does so by 

redistributing the contributions to the various diagrams. Further-

more, the procedure by which the original· form for the full amplitude 

was derived was only one of many similar procedures, which all owe 

thei r equivalence to the identity a {l234) = O. We cannot therefore say 

for any form of the amplitude that it was derived without using this 

identity, and hence that it possesses the "original" distribution of 

the contributions to each diagram. Thus, simply removing the third 
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diagram from some particular form of the full amplitude is not an 

invariant procedure . To put it more simply, the equation (4. 54) would 

be ' false if we crossed out the term corresponding to the third diagram. 

The other closely related aspect of this same phenomenon is 

that of gauge invariance, which is satisfied by the full amplitude be­

cause of the current conservationequa'tions{4.6). We should like the 

value we get for a(s) to be independent of the gauge used for the 

'('{ calculation, which would mean in this way of carrying out the pro-

gram that the tens or coefficient of the third diagram alone should 

satisfy (4. 6). The original form of the full amplitude derived by 

Karplus and Neuman had this property. Since our form could have 

been obtained from theirs by adding multiples of a(l234) and b(l234)., 

it would be surprising if this property were preserved . Indeed, it is 

not. <2 7 ) 

With all this arbitrariness· in the relative amounts of the 

third diagram in different forms of the amplitude it seems odd that we 

should have stumbled on to just the one form which gives the correct 

imaginary part (4. 52). The reason for this is the k e y to the approach 

in the next subsection. 
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b. Omit Part of the Third Diagram 

Suppose we write each integral in (4. 54) in dispersion form. 

Because of the asymptotic behavior of these integrals we now require 

one subtraction each in s, t, and u. Since we are treating each inte-

gr al separately it is not necessary that the points at which we make 

the subtractions, s , t , and u , 
0 0 0 

satisfy s + t + u = 4. 
0 0 0 

We 

choose for convenience to make them at s = ·t = u = O. Calling the 
0 0 0 

first term of (4.48) aI(s ,t), etc. we have 

S

im aI(s',O) tsimtaI(O,t') 1SSim Im aI(s 1 ,t 1
) 

a {0,0) +~ s ds 1 +- dt 1 +~ s t ds'st' 
I TT s'(s'-s) TT t 1 (t 1-t) TT s 1t 1 (s 1-s){t 1 -t) 

S 
Im a (s' ,0) 

+ a {O 0) + ~ 8 II ds 1 + 
II ' TT s'(s'-s) 

Im a
11

(0, u ') 
u du' 

u 1{u 1-u) 

s 1u'(s 1 -s){u 1-u) 

S ImuaIII(u' ,0) s Imta III(O,t') 
+ aIII{O, 0) + . ~TT du' + .!.TT dt' 

u'(u'-u) t'(t'-t) 

(4. 55) 

2 
where the single spectral functions a re integrated from 4m to oo, 

while the double spectral functions are ' integrated over the regions 

situated as described at (4. 35). The maxima l size of these r egion;i 

is g ive n by the denominators D(s ,t), etc . 1 for they determine the 

singulariti es of these particular functions. · ,The numerators , which 

are polynomials, only serve to· make the regio~s sma ller by cancelling 
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out some of these singularities. We see from Fig. 3 that even at 

their maximal sizes, these regions do not overlap for any choice of 

masses. Thus the only way for (4. 55) to be satisfied is if the double 

spectral terms all vanish separately. Indeed, the numerators in 

(4. 54) contain just the factor which in the Landau-Eden analysis is 

set equal to zero to determine the condition for a pinching singularity 

in the variable y
1

, so that the numerators cancel a possible branch 

point. Then we see how the rest of the cancellations occur. The 

pieces Imta1(0 ,t') and ImtaII1(0 ,t) with the right hand t-cut cancel; 

the pieces Imu aII(O 'u ') and ImuaIII(u I' O) with the left hand t-cut 

cancel, etc. We have calculated the constants and find that their sum 

vanishes though the separate terms do not. 

The puzzles of the last subsection now become clear. First of 

all the identity (4. 20} contains no double spectral functions so that 

adding multiples of it to the. full amplitude does not change the imagi­

nary part of the t-cut. If discarding the third diagram gives agree .­

ment with partial wave unitarity in one form of the full amplitude, it 

will for all forms. Secondly, we see that a(l234) adds cancelling 

amounts of right hand t-cut to the first and third diagrams; if we omit 

the third diagram, our estimate of the amount of this cut is spurious. 

To correct this, we might think of adding, to what we have, 

the contribution of the third diagram to the right hand single spectral 

functions ·in t. However, since these single spectral functions in t 

arise from the necessity of making subtractions in the u variable, 

they depend on the point at which we make the subtraction. However, 
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there is a unique prescription which accomplishes the same result, 

and that is to include only that portion of the third diagram which 

contributes to the real part of the right hand t-cut. This prescription 

is unique because all the imaginary part of the t-cut comes from the 

double spectral function, which can be uniquely determined. We can 

make this more specific by referring to (4. 36). Ignoring subtractions, 

the right hand t-cut contribution to M is 

R 
At (s, t) 

= lSco put(u',t> 

TT u · (t) u' +s +t-4 
0 

du' (4. 56) 

whose imaginary part from (4.37) is -put(4-s-t ,t). What we want is 

Re A~(s ,t') 
= l. \ CO p Ut ( U I 1 t J 

rrJu (t)u' +s+t-4 
0 

du' + iput(4-s-t ,t) • (4. 57) 

In the case with arbitrary amounts of subtractions in both u and t, it 

is still true that the amount we must subtract from the contribution of 

the third diagram to the right hand t-cut is 

iimA~(s ,t) = - iput(4-s-t ,t). (4. 58} 

It is now simple to show that this prescription gives a gauge 

invariant result. These manipulations a r e easy enough when the 

integrals are in the dispersion form, but when they are in the form 

of integrals ·over Feynman parameters the s tory is quite different. 

We have been a s yet unable to calculate explicitly these additional 
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contributions of the third diagram. We do not know whethe r the addi-

tional contributions will vanish at s = 0 so that the trajectory w ill 

go through 1 at this point. Nor do we know if the additional contribu-

tions will change the sign of the slope of the trajectory given by the 

contributions of the first diagram. We can, however, discuss the 

meaning of this new program for determing the trajectory. 

We have arrived at t his program by considering the properties 

of the terms which we assign to the vacuum trajectory. Let us con-

sider the properties of the terms we are discarding and get informa-

tion about the UFO. The ima gina ry part of the discontinuity in t 

which exists for nega tive s is responsible for another phenomenon 

in R e gge pole theory- -the Gribov singularit/
28

}. Looking first at 

the equa l m a ss spinless case we give an heuristic summary of 

Oe hme 's presentation(l4). Calling Ae(s,t) and A 0 (s,t} the combina­

tions of the weight functions which appear in (3. 5} for Fe (J) and (3. 6} 

0 for F (J), respectively, we write 

e e 
Fo (J} = 0 . 2 

d z QJ(z )A (s, 2k (z -1)) (4. 5 9 ) 

e 
We may express A 0 in t erms of the doub le spectra l functions as in 

(4. 35) 

e 
0 

A(s,v) = S
ro p t(s',v)± p (s',v) 

1 d 1 S SU 

.:;;:- u (v) s s ' - s 
0 

Sro put(u' ,v) ± put(v,u') 
+ ~ du' 

uJv ) u'+s+v- 4 
(4. 60) 
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e 
To figure out what effect the discontinuities in A 

0 
will have on 

e 
F

0 (J) we use 

e e c 
Im[ A 0 (s ,v)Q

3
(z)] 0 0 =Im Q

3
(z).ReA (s,v) + ReQ

3
(z)•ImA (s,v) 

(4. 61) 

Combining these equations and paying much attention to which side of 

the cut one is on, Oehme finds 

Im[ srr-fs F~(J) I = 1zS4
-s dv ~ PJ (-1- ..::!..__) A~(s ,v) 

s<O 4 2k 2k2 

1 s 1 (. . [ J + - dv -- Q -1- ..::!..__) put(4-s-v,v)±put(v,4-s-v} , 
Tr 2k2 J 2k2 

where the limits on the second integral are determined by the 

boundaries of the double spectral !unction. The function P J 

appears in the first integral because it is proportiona l to the dis-

(4. 62) 

continuity of the Q J" This fir_ st integral is perJectly regular as a 

function of J. The second integral , which contributes only for values 

of s sufficiently negative, has poles a t the negative integers because 

of the poles of QJ there. If we had inclu ded subtractions we would 

have gotten a similar result with the restriction that Re J > N, the 

number of subtractions required, because that is the range of 

validity of the representation (3 . 4 ). Continuing this analytically to 

the l e ft, Oehme evaluates the residues at the negative integral poles 

-n to be 
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where the limits of integra tion lie within the range -1 to +l when s 
e 

is sufficiently negative to be on the left hand s-cut of F
0

(J). Because 

of the reflection symmetry of PJ(z) we see that the residue of 

Fe(F
0

) vanishes for n an even (odd} integer. The residue can not 

vanish for all the integers, however, because the completeness of 

the P J would then imply that put vanishes identically. Thus we 

get poles at least at some negative odd integers in Fe because of 

the existence of these third double spectral functions. The principal 

difference for the case with spin is that the function c~: which 

replace the QJ involve a whole range of Q's extending from QJ->.. 
m 

>.. = 2, the presence 
m 

to QJ+>.. In our case, for example, where 
m 

of QJ-2 in C~+2 means that we reach the pole at 0_
1 

when J is 

as large as +l. 

The UFO must h a ve something to do with this Gribov singu-

l ar ity since they have four characteristics in c ommon: they occur 

a} for J = 1, b} in the amplitude Fe for which this value is unphysical , 

c} as a result of t he third double spectral function, d) in the region 

of the c ut at negative s. However relating the UFO to the Gribov 

singularity is only putting our black box into another black box with 

a more popular name, because the Gribov singularity is not well 

understood. An example of the mystery which surrounds it is the 

following. The existence of a fixed pole in Fe(J} means that if we 
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write a dispersion relation in s · for Fe(J) and consider the contri-

bution from the left hand cut, we would obtain a fixed pole at J = -1, 

for · example, at all values of s. But this violates the partial wave 

unitarity condition (3. 40) which must be valid for 4 < s ;:::::; 4m2 • Thus 

the pole rn:ust either be cancelled by other contributions to Fe(J) or 

else there must be some reason why we can not continue our functions 

to this point. 

Gribov and Pomeranchuk(29 ) conjecture a mechanism to cancel 

the fixed pole at J = -1 in the scalar case. They imagine that as we 

continue Fe (J) from Re J > N down toward the pole at J = -1, more 

and more Regge poles s = s. (J) appear on the 'physical sheet of the 
. ·1 

s-plane coming 'out of the branch point at s = 4. Then, just looking 

at the negative cut and these poles, 

-s 

= -l'ITS 0 Brrfs Fe(J) 
- 00 

Im srrfs Fe (J) \ j3 . (J) 

s ds' + J s.(~)-s 
s'-s L.; l 

·1 

(4.64) 

where the upper limit - s represents the beginning of the left hand 
0 

s-cut. Then they imagine that in the neighborhood of J = -1, these 

Regge poles become as dense as you please, so that in the limit they 

simulate a cut at that point which exactly cancels the contribution 

of the pole to the left hand cut: 

lim 
J--1 

i 

(J+l)j3. (J) 
l 

s.(J}-s 
l 

R(s ') 
ds' 

s '-s 
(4. 65) 

where R is the residue of the pole a t J = 1 g iven in (4. 63). The 
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difference between this and our case with spin is that the speculation 

begins when J becomes less than N + A.m. 
e 

For Fl-l;l-l we have 

N ~ 0 • A. = 2 and the poles must start to emerge as we enter the 
m 

nonsense region. 

Sullivan discarded the entire third diagram on the grounds that 

it was the Gribov singularity. We see now that this was discarding 

too much• and that the minimum amount we may discard and clair.n 

we are free from the Gribov singularity is given by the prescription 

of this section. 

There are several interesting questions which remain to be 

answered. The UFO arises so naturally from the structure of the 

diagrams that one wonders if it is in fact connected to the ordinary 

vacuum trajectory in some simple way. One could imagine that it is 

the crossed version of what in some other channel would look very 

simple. There are some indications, in fact, from the scalar case, 

that the chain of crossed diagrams may give a moving singularity in 

the same way as the ladder diagrams give the usual Regge trajec­

tory. (3 0) .If this should turn out to be the case we would have an 

alternate explanation of how the unitary relations are maintained. 
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VI. CONCLUDING REMARKS 

Let us briefly summarize the results of the investigations of 

the preceding pages, make some comments to underline their sig-

nificance, and suggest some area s of future inquiry. We have con-

firmed the results of the fourth order calculation by Karplus and 

Neuman of the scattering of neutral vector particles as a r e sult of a 

conserved current interaction with a fermion pair field. We have 

also g iven a very simple derivation of two identities which appear in 

their work, and made a distinction between those symmetries which 

are valid for the general proc es s a nd those which are true only in 

the fourth order case. As a res ult, the previous objections to the 

number of gauge invariant tensors used in their calculation have 

been resolved. An equivalent solution of the same general problem 

which is free of kinematical singularities has been obtained and 

evaluated for the particular case of the nonsense-nonsense transition. 

W.e have further cast the particular result into a form which may be 

written as a dispersion integral in t with no subtractions, and a 

scheme for separating the right a nd left hand t cuts in the contri-

bution to the full amplitude of the third diagram {Fig. 2c) has been 

validated. Although the fourth order contributions naturally behave 

-1 
as t log t for large t, the asymptotic form of the right hand t-cut 

-1 
in our case was shown to be t fro.m each of the diagrams, con-

firming the prediction of the vacuum trajectory hypothesis. 

A number of assumptions concerning the analytic properties of 

the partial wave amplitudes had been made in the R e ggeization pro-
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cedure (
3

) which led to the conclusion that the vacuum pole dominated 

the asymptotic behavior of all the relevant processes. From the 

appearance of a left hand s -cut in the asymptotic form of the right 

hand t-cut, we conclude that another singularity, the UFO, is 

present and hence that not all of these assumptions can be valid. 

In reformulating these assumptions a posteriori we must make room 

for the observed phenomenon, although it is not clear how this should 

be done. We are in the position of having to espouse a \doctrine of 

"maximum analyticity," (
3
l) together with all its connotations of 

vagueness and expediency. 

A separate calculation of the imaginary part of the forward 

scattering amplitude in the cross channel. reveals that a trajectory 

based on both right and left hand s-cuts does not pass through 1 at 

s = 0. The trajectory calculated by omitting the third diagram does 

have a.(O) = 1, and further, fulfills the condition on its imaginary 

part predicted by unitarity, but has the unphysical property that a' (0) 

is negative. However, we show that simply omitting the third diagram 

i s an ambiguous, gauge dep ende nt proce dure , a ithough in our helicity 

case, first conve rting the amplitude i nto a f orm which has no sub­

tractions in t somewhat mitigates this objection. 

We conclude that the correct prescription i s to. retain only that 

part of the third diagram whic h contributes to t h e real part o f the 

right h a nd t-cut. Thi s prescription is gauge invariant, and depends 

neithe r on the subtra ctions in a di s p e rsion r e lation nor onto whic h of 

the m a ny forms of the full yy amplitude it i s a p p lie d. Furthe r, the 

tra j e ctory it generates will always satis fy the unita rity r e qui r e m e nt 



. -81-

on its imaginary part. Other trajectory parameters must await a 

difficult calculation before their properties are determined. For the 

scattering of scalar particles the difficulty of extracting even the 

asymptotic form of integrals arising from the third diagram is 

documented in the literature. The situation is worse when the 

particles have spin. Moreover, in our case the prescription calls 

not only for a separation of the right and left· t-cuts, but a further 

extraction of the s-cut before the asymptotic form may be taken. 

While attempting this project we can hope that the additional contri­

butions to T(s), Eq. (4. 47), will be sufficiently negative to make the 

sum negative for O< s < 4}1..2 ; in this way a'(O) will become physically 

sensible. The same prescription should be applied to the recent cal­

culation of Sullivan(ZS) of the vector meson scalar nucleon case in 

order to cure the same ills. 

The discarded portion of the amplitude contains the UFO; 

further investigation shows that the same portion should contain the 

Gribov singularity. The identification of the UFO with the Gribov 

singularity is strongly suggested, especially since both appear in the 

same channel at the same point. This singularity is not well-under-

stood even in the spinless case where it was first found. More work 

is needed on this question and particularly on the role of the non­

planar diagrams in producing it. 

The larger question remains, however, of how this singularity 

should be regarded in the sea rch for the vacuum Regge trajectory. 

Is it to be· regarded, as we have done for the most part here, as an 
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object which interferes with the ''pure 11 vacuum trajectory and where 

the largest problem is how to separate out its contribution? Or is it 

to be regarded as a necessary part of the same mechanism which 

produces what we have chosen to idealize as the "pure" trajectory? 

In the latter case, it would fulfill some role, such as providing for 

the crossing symmetry of the trajectory, which has yet to be discov­

ered. Looking at the situation from a purely practical point of view, 

both singularities contribute to the asymptotic form of the amplitude, 

and hence it would be a combination of both which would be measured 

in any experiment. Perhaps it would be best to say, at this point in 

our understanding, that there seems indeed to be a vacuum trajectory, 

but in addition, the re are other phenomena in the angular-momentum 

plane which mask the simple properties which the vacuum trajectory 

was supposed to display. 
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Appendix A 

FIELD THEORY AND CONVENTIONS 

The following brief remarks characterize the field theory with 

which we are working. Further details may be found in Reference (20) 

The diagonal metric is g , where 
µv . 

(Al) 

and we use the summation convention for repeated indices so that, 

if p = (E ,p} is the four-momentum of a nucleon of mass 
µ 

m, we 

have 

2 = m (AZ) 

The free Lagrangian for the nucleon in units where h = c = 1 is 

(A3} 

so that using the notation I. = a y , the Euler-Lagrange equations µ µ 

become 

qil); - mljJ = (p - m}lj; = 0 {A4} 

(A5) 

The only properties of the spinors which we use is the choice of 

normalization 
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u(p)u(p) = 2m (A6) 

v(p)v(p) = - 2m (A7) 

where u(p) are positive energy spinors and v(p) are negative 

energy ones. 

For the neutral vector meson, henceforth called '(, the free 

Lagrangian is 

where >.. is the particle mass. The free-field equations are then 

subject to the condition 

a A = 0 
µ µ 

(A9) 

(AlO) 

which we regard as an operator identity provided >..=J:. O. This condi-

tion means that there are only three independent fields A (x) rather 
. µ 

than the nominal four. In the decomposition of the A (x) into plane 
µ . 

waves, there are, for each momentum, only thr.ee independent solu-

tions to the field equ~tion; we take these to be labeled by their 

polarization vectors i -€ (k ). To insure that the subsidiary condition 
µ 

is fulfilled, we take 

Ei (k)k = 0 
µ µ 

i = -1,0,1 (All) 
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for each of the three polarization states. These states also satisfy 

the co.mpleteness .relation 

1 

l 
i=-1 

k k 
= g +~ 

- µv >..2 {Al2) 

We normalize these states by 

i - '*-€ { k ) EJ { k ) = - 0 . . 
µ µ 1J 

{Al3) 

and further choose them .to be helicity eigenstates. If the y momentum 

is in the z-direction so that k = : Cw,0,0,k) the set 
µ 

helicity + 1 · 1 1 . 
€ =7{0,l,1,0) 

µ v2 

helicity 0 
0 1 

€µ = x:<k,0,0,:W) (Al4) 

helicity - 1 
-1 1 . 

E =-{O,l,-1,0) 
µ ...(2 

satisfies all the requirements. The violation of all the accepted 

phase conventions is not serious; the problems we treat have always 

an even number of helicities of each type. · The helicities for momenta 

in different directions are obtained by rotation. 

To obtain a conserved current coupling we make the replace-

ments 

a t1i - ca + igA )t\J 
µ µ µ 

8 ~ - (8 - igA )t\J 
µ µ µ 

(Al5) 
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in the nucleon Lagrangian (A3), and add the free y Lagrangian (AS) 

to obtain for the total 

where 

;,I = - g°lii y ~A 
µ µ 

(Al6) 

(Al7) 

The coefficient of A in (Al7) has the same form as the four-current 
µ 

for the free Dirac field, except of cours.e that the ~ and ~ here obey 

not the sourceless equations (A4) and (A5) but the Euler-Lagrange 

equations derived from the complete Lagrangian. However it is still 

true that the current in the presence of the 'I field is conserved. 

If we were to replace g, the coupling constant by e, the 

charge, then the above formalism would become the same as that for 

conventional quantum electrodynamics , except for the free y equa-

tion. Thus, the entire machinery of quantum electrodynamics may 

be taken over, except for the use of a slightly different propagator 

for the internal 'I lines. Our work in fourth order does not involve 

any internal 'I lines. 

In discussing the scattering of two particles, 1 + 2 - 3 + 4, 

we find it convenient to introduce the invariant scattering matrix 

element M, related to the S matrix by 

s = 1 + 
i(21T)464(pl + P2 - P3 - P4) . 
~~~~~~~~~~~~~- M 

4 ~ E 1E 2E 3 E 4 

(A18) 
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where the E. represent the energies of the particles and the p. 
l l 

represent their four-momenta. If we introduce the Mandelstam 

variables s and t as in (4.12) then M(s, t) has two important 

properties which the scattering amplitude does not have. It is M(s ,t) 

which can be taken to represent the scattering in all channels as the 

ranges of s and t are varied. This can be demonstrated explicitly 

for the general fourth order '(''( scattering amplitude in Appendix E. 

It is also M{s, t) rather than the scattering amplitude which obeys 

the Mandelstam representation {4. 35) {at least in fourth order). 

Carrying out the integrations over the final particle momenta 

we find for the scattering amplitude 

M f=--
8-rr!s 

and f is related to the cross section by ( 2. 9). 

{Al9) 
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Appendix B 

J± J± 
THE FUNCTIONS e}..µ (z} AND c}..µ (z} 

The relations below are taken from Appendix A of Reference (3). 

All of the properties of the e and c functions are derivable from 

J the properties of the Wigner functions d}..µ{z) available in Refer-

ence {13). 

As in Chapter II we take 

(Bl) 

Then the following formulas hold both for the e 1 s and the c 's: 

{B2) 

{B3) 

J J+ J-
eAf-L (z) = e:\.µ (z) + eA.µ (z) • (B6) 

Although general recursion formulas for the e's and c 's 

exist, we give only those functions used in the text. We have dropped 

the arguments z of all the functions and denote differentiation with 

respect to z by primes. 
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J + J-
e 00 = PJ; eoo = o 

J+ J+ 
p' 

J- J-J = 0 -e 10 = eOl = elO = eOl 
v'J(J+l) 

I II -P" , 
J+ PJ+zPJ J- J 

ell = J(J+l) ell = J(J+l) 

p" 
(B7) 

J+ J J- 0 e02 = e02 = 
v' (J-l)J(J+l)(J+2} 

J+ 2P; + zP;
1 

J-
-P"' 

J 
e12 = e = 

J(J +l}v' (J - l)(J +2) 12 J(J+l)v' (J-l)(J+2) 

J+ 2P; +4zP;'+(z 2 +1)P~v J- -4P;' - 2zP~v 
e22 = (J -l}J(J +l}(J +2} e22 = (J-l)J(J+l}(J+2) 

J-
coo = 0 

J+ (J+l)P J-l + JP J+l 
ell = 2J+l 

J+ -/(J-l}J(J+l)(J+2} [ l 
c 02 = (2J.;1}(2J+l)(2J+3) (2J+3)PJ-2-2(2J+l)PJ+(2J-l}PJ+:J; 

J-
C02 = 0 (B8} 



-90-

J+ v'(J-1)(J+2) f. · J 
cl2 = (2J-1)(2J+1)(2J+3) 0J+l)(2J+3}P J- 2-3 (2J+l)P J-J(2J-l)P J+2 ; 

J- v'(J-l)(J+2) [p -p ] 
cl2 = 2J+l J-1 J+l 

J + (J +l)(J+2)( 2J+3)P J _ 2 +6 (J -l)(J +2)(2J +l}P J +(J -l)J(2J -l)P J+Z 

c22 = (2J-1)(2J+l)(2J+3) 

2(J+2)P J-l + 2(J -l)P J+l 

2J+l 
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Appendix C 

SOME REMARKS CONCERNING INDEPENDENT INVARIANTS 

In the 'l'Y scattering problem considered in the text, all the 

information is contained in the fourth rank tensor G '\ (1234} defined µv(\.o-

in (4. 5}. Ignoring for the moment the fact that G '\ obeys the µv(\.o-

current conservation equations (4. 6) we discuss the decomposition of 

a general tensor into independent tensor forms. The only available 

pieces from which these independent tensor forms may_ be constructed 

are the dynamical variables k{i}, and the invariant tensors g and 
µ µv 

E '\ • Since the four k{i} are related by momentum conservation {4.3} 
µv f\.O- µ . 

we i:iave time by considering only three of them. Further, we ignore 

the possibility that these three momenta in a particular degenerate 

case may not be independent. In general, if bj {1234), j = 1, 2, ••• , N 

are a set of scalar functions of the momenta and Hj '\ are a set 
µv f\.O- • •• 

of tensor functions of the momenta and the invariant tensors, we call 

the Hj independent tensor forms if. 
µv\o- • •• · 

N 

l implies bj{l234) ~ 0 • 

j=l 

For the case of first rank tensors we choose arbitrarily 

2µ and 3 fJ. to be the dynamical variables. Further defining 

{Cl) 

1 • 
µ 

R = E 1 2 3 {CZ) µ µvh.o- v h. a-

we note that because of the antisymmetry of the indices in E µv h.o- • 
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R is orthogonal to the other three. Moreover 
J-L 

R=E 214=€ . 134=€ 432 
µ µv>..o- v >.. o- µv >..o- v >.. o- µv>.,o- v >.. o- (C3) 

so that we may eliminate any vector we choose in accordance with 

(4.10). The vectors 2 , 3 , 4 , together with the ps eudovector R 
J-L J-L µ J-L 

span the space of four-vectors; ignoring reflection properties, the 

four independent components of any four-vector can be obtained by a 

suitable linear combination of the four primitive four-vectors. 

An arbitrary second rank tensor which contains sixteen inde-

pendent components may b e decomposed into a linear combination of 

the sixteen independent tensor forms .obtained from the outer products 

of the four primitive vectors. Each tensor index contributes a factor 

of four in counting the possibilities. This decomposition is true even 

for the metric tensor. Indeed we have the identity 

gµ.v gµ.p gµ.o- gµ.T 

gav gap gao- gar 

€µ.af3y € = - (C4) vprrT 
gf3v gf3p gl3rr gf3T 

gyv gyp gyd- gyr 

which contains the special case 
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+ (1 2 + 2 1 )[ (2· 3)(3· l) - (l· .2)3 2 ] + µ v µ v 

+ (2 3 + 3 2 )[ {3·1)(1· 2) - (2· 3)12] µ v µ v 

+ (3 1 + 1 3 )[ (l• 2)(2· 3) - (3·1)2 2] 
µ v µ v 

{C5) 

so that gµv may be expressed in terms of the 10 tensor forms which 

are invariant under reflection. 

Fourth rank tensors contain 256 independent components, and 

we may classify the 256 independent tensor forms according to whether 

they are even or odd under reflection. The ones containing an odd 

number of indices borne by the pseudovector R have odd symmetry. 

Table CI lists the pas sibilities. 

Table CI 

PARITY CLASSIFICATION OF 4th RANK TENSORS 

Number of R's Number of Tensors . 

Even Odd 

0 81 

l 108 

2 54 

3 12 

4 1 --
Total 136 120 256 
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In the decompos ition of G , (1234) m (4. 9) only even tensors µv /\.(J" 

have been included, but still there are 81 A 1 s, 54 B's a nd 3 C's for a 

total of 138. The two extra tensor forms in the d e composition (4. 9) 

correspond to the existence of two identities among these tensor 

forms·. These identities m a y be obtained from the observations 

(R R )(R, R ) = (R R, )(R R ) = (R R )(R R,) (Cp) 
µv /\.Ci µ/\. V<r µer vi\. 

by s ubstituting for the indicated pairings the identity (C4), first 

choosing the momenta appearing in each R according to the convention 

(4.10) by using the freedom generated by (C3). Thus any two of the 

tensor forms appearing in (4. 8) may be eliminated to ·give a decom-

position with uniquely determined coefficients. 

Turning to the case of a fourth rank tensor w hich satisfies the 

current conservation e quations (4. 6) we observe that for each index 

we have not a choice of four four-vectors in the construction of inde-

pendent tensor forms, but only three. When considering, for example 

the first ihdex µ, we must choose only v e ctors orthogonal to 1 in 
. µ 

order that the contraction with lµ vanishes. Since R is already 
µ 

orthogonal to 1 it remains only to construct from the vectors 2 , 
µ µ 

3 , a nd 4 two suitable line ar combinations which ar e orthogonal to 
µ µ . 

lµ. C a ll these constructions q and r so that we now h a ve available 
µ µ 

for the first index the v e ctors q , r and R • Further imagine per-
µ µ µ 

forming the analogous construction qv and rv for the second index 

v, in such a way that the operation 1 - 2 induces q - q and µ v 

r µ - r v· Of course such an operation does not affect Rµ so that 
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R - R trivially. Making similar definitions for each of the four µ v 

tensor indices we can construct 3
4 

or 81 different independent 

conserving fourth rank tensors. According to the .number of R's 

present they will have even or odd reflection symmetry as in table C II. 

Table CU 

PARITY CLASSIFICATION OF CURRENT CONSERVING TENSORS 

Number of R's Number of T ensors 

Even Odd 

0 16 

l 32 

2 24 

3 8 

4 l -
Total 41 40 81 

The totals in Table CII have a simple interpretation if ampli-

tudes are counted in the helicity scheme . Suppose we have four 

distinguishable -y 's so that we cannot invoke either tirne reversal 

symmetry or identical particle symmetry. Then we have nine initial 

states and nine final states for a total of 81 transitions. If parity 

eigenstates are introduced as in (2. 4) applied to the raw states then 

initially there are five states with parity (-l)J and four with parity 

J -(-1) • The odd one arises because only one parity eigenstate may 

be formed from I JM;OO>. The same distribution holds for the final 

states. In a vector current interaction we have five states into five 

states plus four states into four states for a total of 41 transitions. 

With a pseudovector current interaction we would have five states into 
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fo"ur states plus four states into five states for a total of 40 transitions. 

Suppose now we consider the elastic scattering of two distin­

guishable '{ 1S with a vector current interaction. .Time reversal 

symmetry now gives us relations between the trans itions so that from 

the 5 by 5 matrix we have only 15 independent transitions, and in the 

4 by 4, only 10 for a total. of 25 transitions. 

We can check this by looking at the explicit.. form of the 

constructed amplitudes. If we write the full scattering amplitude as 

a linear combination of the independent tensors, the fact that the 

amplitude is invariant under certain simultaneous permutations of 

the momentum arguments and corresponding tensor indices means 

that under the same permuta tion each of the tens ors must go into a 

linear combination of the . others. The square transformation matrix 

which accomplishes this must be symmetric so that it can be diagonal­

ized by a suitable choice of combinations of the . independent tensors. 

For this choice of tensors each one must be invariant under the 

relevent permutation operation. Now write symbolically the tensors 

we have constructed as if they were this diagonalizing set of tensors. 

Omitting for brevity the subscripts µ, v, A., er in that order, the 

invariance under time reversal implies the relation abed = cdab for 

each of the tensors, where a , b, c, and d s tand for any of q, r, or R. 

This is because the position of each of these vectors in the tenso:i; 

determines which polarization vector it gets dotted into and for any 

interchange of momenta the . q's go into q's, the r's into r's and the 

R's into R's. The following combinations exhaust the 41 available 

independent parity conserving tensors. 
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qqqq, (qqqr + qrqq), (rqqq + qqrq), (qqrr + rrqq), 

(qrrq + rqqr), qrqr, rqrq, (qrrr + rrqr), 

(rqrr + rrrq), rrrr 

(RRqq + qqRR), RqRq, qRqR, (RqqR + qRRq), 

{RRrq + rqRR), (RrRq + RqRr), (RrqR + qRRr), 

{rRRq + RqrR), (rRqR + qRrR), (RRqr + qr RR), 

RrRr, rRrR, (RRrr + rrRR), {RrrR + rRRr) 

RRRR 

(::: 10) 

(= 14) 

(= l} 

This gives a total of 25. Similarly, it is simple to see that the axial 

vector part gives 20 amplitudes as it should; the presence of an odd 

number of R's insures that each of the 40 original tensors tnust be 

paired. ' 

t . 
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Appendix D 

PROPERTIES OF THE FUNCTIONS Aijkl(l234) AND Aijk1(1234) 
1 

The largest source of relations among the 81 functions 

Aijkl (1234) is the notational invariance of the GµvA.cr(l234) in {4. 9). 

The effect of the simultaneous permutation of the arguments and 

indices of G \. (1234) is to produce equality of the heads under µv ACT 

similar operations. · Thus, starting with A 
2143 

(1234) and inter-

changing the second and third arguments we generate the relation. 

2143 3412 . A (1234) = A (1324), where we have been careful m the super-

script not only to interchange the numbers 2 and 3, but also the 

numbers appearing in the second and third positions. Note that the 

fact that the second and third arguments of the functions are in this 

case actually called 2 and 3 is irrelevant; for the purpose of 

specifying which permutation we consider, the arguments could just 

as well be called (abed). If we apply all 24 permutations of the 

2143 . . . . 
argument to the head A (1234) we generate relations among only 

three of the heads , 

(Dl) 

since most of the permutations produce no change in the superscripts. 

Thus the 81 heads group themselves into families all the members o f 

which can be generated if the functional form of any one of them is 

known. Karplus and Neuman ( 21) give a complete list whic h contains 

three typographical errors: A 
44

ll(3124) of their Eq. (l 9b) s hould 



-99-

read A
4411

(2431), A
3422

(4132) of (19c) should read A 3442(4132), 

3342 3342 
and A {4321) of (19d) should read A (4312). Instead of re-

producing the list we give a typical member of each of the six groups 

and indicate the size of the family. 

GrouE TyEical Head Number in Grou;e 

I A2143 3 

II A2341 
6 

III A2111 12 

1V A2121 12 

v A2311 24 

VI A2123 24 

A similar table constructed for the Aijld (1234) of (4.16) would require 

15 entries, since only the eight permutations which leave the trace 

unaltered may be used to generate equalities among them. 

Another source of equalities among the heads in the general 

case is current conservation (4. 6). It is simple to prove that in order 

for the third rank tensor obtained hy any of the contractions (4. 6) to 

vanish identically, the coefficient of each tensor form in (4. 9) must 

vanish separately. By contracting with 4 and setting the coefficient 
er 

of 2 l 2'\ equal to zero we obtain µ v ~ . 

{4• l)A 2121(1234)+(4• 2)A 2122(1234} +( 4. 3 )A 2123 (1234}=a(l234)= 0 

(DZ) 

which is (4. 20). By contracting (4. 9) with 4 and setting the coef­
cr 
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ficient of 2µ_3vlA. equal to z e ro, we get 

{D3} 

from which, using the symmetries from group V of the table we deduce 

(4•l}AZ~ll(l234}+(4• 2}A 23ll(2314)+(4·3)A23ll(3124} = b(l234) = 0 (D4} 

which is (4. 21). 

Applying the proc edure indicated in (4. 8), the six typical heads 

may be expressed in terms of a basic set of 15 A
1

1s as follows . 

(DS) 

(D6} 

(D7) 

(D8 } 

(D9} 

(DlO) 

Here we have followed Karplus and Neuman in making occasional use 

of the permutation symmetries for the sake of conve nience. 
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Note that the symmetries obtained up to now are perfectly 

g eneral and apply even to the four y vertex in any order of pertur-

I 
bation theory. In the general fourth order case the necessary A

1 
s 

are of the form 

(Dll) 

in the notati on of {4.13) and (4.15). The numerators of the integrals 

are given by Karplus and Neuman: 

3412 
N = 32(y('Y2Hy2+y3)(y3+y4HY4+y1) 

.N2341 = 4{[ (1-y 4)(1-y 3)+y 3Y 4J [ (1-yiCl-y 2)+yly 2] 

+ [ (l-y 4)Y 3 +(l-y 3)Y 4 J [ (l-y 2>Y1+{l-yl)y2]} 

N
2413 

= - 4 {[ (yz+y3HY3+y4)+(y1+y2)(yl+y4)][yly3+(l-y1Xl-y3] 

+ [ {yl+y 4HY 3 +y 4) +{yl +y zHY 2 +y 3>J [ Y1(l - y3)+y 3 (1-yl)]} 

(D12) 
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2311 3121 . 
N = - N = 4 (yl +y2 +y3-y 4){ (yl +y2) [{yly2 +(l·y1){1-y2)J 

+ (y3 +y4)[yl(l-y2)+y2{1-yl)]} 

2411 . [ 
N = 4 (yl+y2-y3-y4){(yl+y4) Y1Y4+(l-yl}(l-y4)] 

+ (y2+y3)[y4(l-yl)+yl(l-y4)]} 

Two additional relations among the A 1 s may now be verified: 

A 2311(1234) = - A 3121(1234) . (Dl3) 

A 
2341

(1234) = A 
4123 

(1234) • (Dl4) 

If we specialize further to our case of equal masses for all the -y's, 

then the functions D(l234) simplify as in (4. 24) with the symmetries: 
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D{l234) = D{2143) = D{3412) = D{4321) = D{s, t) 

D(l432) = D(2341) = D(3214) = D{4123) = D{t,s) 

D(l243) = D(2134) = D(3421) = D(4312} = D(s ,u) 

(Dl5} 

D(1342) = D{2431) = D(3124) = D(4213) = D(u, s) 

D(l324) = D(2413} = D(3142} = D(4231} = D(u,t} 

D(l423) = D(2314) = D(3241) = D{4132) = D{t,u} • 

Here, as in (4. 24) 

(4. 24} 

Note that an integral with denominator D(t,s) can be converted to one 

with denominator D(s ,t) by making the interchanges y
1 

- y
2 

and 

y 3 - y 4 , in the integrand, and similarly for the two other pairs of 

denominator functions. 

The relations (Dl5) a lso imply further equalities among the A 1 s. 

Summarizing all the equalities which exist among the heads with the 

same argument, we have for the equal mass case 

Group III AZlll = A2122 = A3343 = A4443;A4lll=A2322=A3323=A4441; 

A2422 = A3111 = A4442 = A3313; 

(Dl6) 
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Group V A 2311= A 4122= A 3341= A 4423 =-A 3121= -A 2421= -A 4342= -A 4313. , 

A3123=A2342=A4113=A2441= -A2313= -A3141= -A2423= -A4142; 

A 3122= A 2411= A 44-13 =A 3342= -A 2312= -A 4112= -A 3441= -A 3423; 

Group VI A 2123 =A 2141= A 4143 = A2343; A 4121= A 2321= A 4323= A 434\ 

A 3312= A 4412= A 3411= A 3422; A 4311= A 4322= A 3321= A 4421; 

A2142=A2113:;:A2443=A3143; A3112=A2412=A3413=_A3442. 

The same relations hold for the A 1
1 
s. 
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Appendix E 

THE FULL y + y - y + y AMPLITUDE 

We give the complete form of the y + y - y + y amplitude 

despite its length. The expression below is extremely general, 

applying to the generalized four y interaction even when it is an 

internal part of a more complicated diagram, i.e. , the particles 

need not have the same mass, nor need they lie on the mass shell. 

Further, the expression below is valid in any order of perturbation 

theory. The only quantities which vary from order to order are 

the formulas for the 15 A
1
's which make up the A's as in (D5)-(Dl0). 

Unlike the forrri given by Karplus and Neuman <21> in their equation. (46) 

this expression is free from kinematical singularities, though identi-

cally equal to theirs. Terms are grouped as in Appendix D. Within 

each group the terms related by equations (D16) in the equal mass 

case have been placed together. 

The expression below is presented as a table - - for each of the 

81 A's the corresponding tensor coefficient is placed beside it. The 

sum of all these products is the GµvA.cr (1234) of (4, 5) and (4. 9). 

Group I 

A2143 

A 4321 

2 1 4'\3 -(1•2)g 4'\3 -(3•4)2 1 g'\ +(3•4)(1·2)g g'\ µ v ''- cr µv {\. cr µ v 1\.0" µv 1\.0" 

4 3 2'\l -(1•4)3 2,g -(2·3)4 1 g '\+(2-3)(1·4}g g '\ 
µvl\.cr vl\.µcr µcrvl\. µcrvl\. 

3 4 l'\2 -(1·3)4 2 g ,-(2•4)3 l,g +(2·4)(1·3)g ,g µ v {\. er v er µ{\. µ {\. vcr µ{\. vcr 
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Group II 

A2341 2 3 4 ... 1 -(1·2)3 4 ... g +(2•3)1 4 ... g -(2·3)4 ... 1 g -(3·4)2 1 g ... µ v (\. (J v (\. (J.(J v (\. (J.(J (\. (J µ v µ (J v (\. 

+(3·4)2 ... l g +(3·4)(1· 2)g g ... -(1•4)2 3 g.,. (\. (J µv µ(J v (\. µ v f\.(J . 

A
4123 

4 1 2,3 +(1•4)2 3 g .,.-(1•4)2.,.3 g +(1•2)4 3vg, -(1·2)4 3 gv, µ v (\. (J µ (J v (\. (\. o- µv . µ f\.<T µ o- (\. 

-(2·3)4 1 g, +(2•3)(1·4)g g, -(3·4)1 2.,.g µ v f\.0- µ v f\.0- v (\. µo-

A 2413 2 4 1,3 -(1•2)4 3 g .,. +(1·2)3 4 g.,. +(2·4)1 3 g ,-(2· 4 )1.,.3 g v µ v (\. (J v (J µ(\. µ v f\.0- v (J µ(\. (\. (J µ 

-(1•3)2 4 g, -{3·4)2 l.,.g +(3•4)1.,.2 g v+(l•2)(3·4)g ,gv µ v f\.<T µ (\. v (J (\. (J µ µ/\. (J 

A 3142 3 1 4,2 +(1•3)2 4.,.g -(1·3)4.,.2 g -(1•2)3 4.,.g -(3·4)1 2 g.,. µ v /\. o- µ /\. v o- /\. o- µv µ /\. v o- v o- µ/\. 

-(4· 2)3 1 g, +(l· 3)(4• 2)g vg" µ v 1\.0- µ /\.0-

A 4312 4 3 1,2 -(1•4)3 2 g .,.-(2•3)4 1.,.g +(1·4)(2•3)g ,gv µ V /\. <T V <T µ/\. µ f\. Vo- µ/\. 0-

+(1•3)4 2,g -(1 ·3}4 2 g 'I. ..;(4. 2)3 1,g . +(4·2)3 1 g '\ µ /\. VO- µ cr: V /\. V /\. µ<T . V 0- µ/\. 

A 3421 3 4 2,1 -(1·3)4 2.,.g -(2•4)3 1 g .,.+(1·3)(2·4)g gv, µ v (\. o- v (\. . µer µ o- v /\. µo- /\. 

+(3·2)4 l,g -(3•2)4 1 g ... -(1·4}3 2,g +(1·4)3 2 g ... 
V /\. µ<T V (J µ/\. µ /\. Vo- µ <T V /\. 

Grou p III 

A2111 2 1 1,1 -(1· 2)1,1 g v J-t.Vf\.(J f\.CTJ-l. 

A 2122 2 1 2,2 -(1•2)2 ... 2 g v µv/\.o- A.<T(J. 

A 3343 3 3 4 ... 3 -(1• 2)3 3 g, µ v (\. (J" µ v f\.(J 

A 4443 4 4 4, 3 -(3 • 4)4 4 g, µ v /\. (J µ v 1\.0-



A 4111 

A 2322 2 3 2 2 -(2•3)2u2crgvA. µvA.c; r-

A 3323 3 3 2 3 -(2•3}3µ3crgvA. µ v A. er 

. A 3111 
3 1 1 1 -{1•3}l l gt•A. µvA.er VO"r-

A3313 3 3 1 3 - (l • 3) 3 3 g µA. µvA.O" Ver 

Group IV 

A 4343 4 3 4 3 -(3 • 4)4 3vgX.er 
µ v A. cr µ 

A4411 

A 3322 3 3 2 2 -(2• 3)3 2 gvX. 
µvX.O" µO" 

A4141 

A 2323 2 3 2 3 -(2·3)2 3 gvA. 
µvA.er µcr 

-107-
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A2112 2 1 1, 2 -(2·1)1, 2 g 
µ v /\.. cr /\.. cr µv 

A
3443 

3 4 4,3 -(3•4}3 4 g, µ v /\.. (j µ v l\.<J 

A
3113 

3 lvl,3 -{1•3)lv3 g, µ /\.. cr cr µ/\.. 

A 2442 2 4 4,·2 -(2·4)2 4,gv µvl\.cr µ/\.. cr 

Group V 

A2311 2 3 1,1 -(1•2)3 1 g ,-(2•3)1,l g v+(3•1)2,l g v µ v /\.. cr v cr µ/\.. /\.. cr µ /\.. cr µ 

-(3-1)2 1 g , +(3•1)(1· 2)g gv, · µcrvl\. µo- /\.. 

A3121 3 1 2,1 -(2•1)3 1 g , +(1•2)(1•3)g gv,-(3·2)11 g, µ v /\.. cr µ cr v /\.. µcr /\.. v cr µ/\.. 

A
4122 

4 1 2,2 -(1•4}2,2 g -(2•1)4 2,g -{4•2)1 2,g 
µ v /\.. cr /\.. cr µ v µ /\.. v cr v /\.. µcr 

A 2421 2 4 2,1 -(1•2}4 2,g -(2·4}2,1 g -(4·1)2 2,g 
µ v /\.. cr v /\.. µcr /\.. cr µcr µ /\.. v cr 

A 3341 3 3 4,1 -(1• 3)3 4, g -(4-1)3 3 g, 
µ v /\.. cr v /\.. µcr µ v A.<r 

A 4313 4 3 1,3 -(1•4)3 3 g ,-(3•1)4 3 g, -(4·3)3 l,g 
µ v /\.. cr v cr µ/\.. µ v /\..<:T v /\.. µcr 

+(4· 3)3 1 g '\ 
v cr µ/\.. 

A 4423 4 4 2,3 +(2•4)4 3 g, -(2·4)4 3 g ,-(3·2)4 4 g, 
µ v /\.. a- µ v (\.U" µ a- v /\.. µ v 1\.0" 

A
4 342 

4 3 4,2 -(2•3)4 4,gv +(3•4)4 2,gv -(3•4)4 2 gv, µv/\..cr µ/\.. cr µ/\.. cr µcr /\.. 

A 3123 3 1 2,3 +(1•3)2 3 g ,-(1•3)2,3 g -(2•1)3 3 g, 
µ v /\.. cr µ cr v /\.. . /\.. er µv . µ cr v /\.. 

A2313 2 3 1,3 -(1•2)3 3 g ,+(2•3)lv3 g ,-(.2·3)1,3 g v µ v /\.. cr v cr µ/\.. cr µ/\.. /\.. cr µ 
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A
2342 

2 3 4,2 -(2•3}2 4,g -(3•4)2 2 g ,-('4·2)2 3 g, 
µ V /\. CT fJ. /\. V CT µ CT V /\. fJ. V /\.CT 

A
2423 

2 4 2,3 -(2•4)2 3 g ,-(3·2)2 4 g, -(4·3)2 2,g 
µ v I\. CT µ CT v /\. µ v r..cr µ /\. Ver 

A4113 4 1 1,3 -(1·4}1 3 g , -(3·1}4 1 g, +(3•1)(4-l)g vg, 
µ V n. CT V CT f-1/\. fJ. V /\.CT µ /\.CT 

-(4•3}1 1 g 
v x. µCT 

A3141 3 1 4,1 -(1·3}1 4,g -(3•4)1 1 g ,-(4·1}3 1 g, 
µ V /\. CT V /\. µ<T V <T µ/\. fJ. V l\.<T 

+(4•1)(1·3}g g, 
µv l\.<T 

A2441 2 4 4,1 -(1•2)4 4,g +(2·4}1 4,g -(2·4)4,1 g µ v /\. <T v /\. µo- v /\. µo- /\. <T µ v 

A
4142 4 1 4,2 +(1·4}2 4,g -(1·4}4,2 g -(2•1}4 4,g 

fl. V /\. CT fl. /\. V CT /\. CT µv µ /\. V <T 

3 1 2,2 -(1·3)2,2 g -(2·1)3 2 g ,-(3•2}1 2 g' 
µ V /\. CT /\. CT µv fl. <T V /\. V CT f-1/\. 

A2312 2 3 1,2 -(1·2)3 2 g ,-(2•3}1,2 e: -(3•1}2 2 g' 
fl. V /\. CT V <T µ/\. /\. CT'-' µv fl. CT V /\. 

A2411 2 4 1,1 -(1·2}4 l,g -(2·4)1,1 g v+(4•1)1,2,....g v 
µvl\.CT . vl\.µ<T /\.CTf.l /\.vµ 

+{l• 4)(1• 2}g , g -(1· 4)2 1, gv 
fl.I\. V CT fl. /\. CT 

A4112 4 1 1,2 -(2•1}4 l,g +(2•1)(1·4)g ,gv -(4· 2 )1 l,g µ V /\. CT µ /\. Vo- fl.I\. CT V /\. µCT 

A 4413 4 4 1,3 +(1·4)3 4 g, -(1·4}4 3 g ,-(3•1)4 4 g, 
µ V /\. CT µ V /\.CT V CT jJ./\. µ V /\.CT 

A3441 3 4 4,1 -(1• 3 )4 4,g +(3•4}4 l,g -(3•4}4 1 g' µ V /\. CT V /\. fl.CT V /\. µo- V <T fl. I\. 

A
3342 

3 3 4,2 -(2•3)3 4, g -(4•2}3 3vg, 
fl. V /\. <T fJ. /\. Vo- jJ. /\.CT 

A 3423 3 4 2,3 -(2·4}3 3 g ,-(3•Z)3 4 g, -(4.3)3 2,g 
µ V /\. CT µ CT V /\. fJ. V /\.CT · jJ. /\. V CT 

+(4· 3}3 2 g ' 
fJ. CT V /\. 
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Group VI 

A
2123 

2 1 2,3 -(1•2}2,3 g -(3•2}2 1 g, +{3•2}(1·2}g vg" µ v (\. CT (\. CT µv µ v f\.CT µ f\.CT 

A
2141 

2 1 4,1 -{2·1}4,1 g v 
µv f\.CT f\.CT µ 

A
4143 

4 1 4,3 -(1•4}4,3 g -{3•4)4 lvg" +(3·4}{1•4)g vg" µ v (\. CT (\. CT µ v µ· f\.CT . µ f\.CT 

A
2343 

2 3 4,3 -{4•3}2 3 g, 
µ v .f\. CT µ v f\.CT 

A4121 
4 121-(2•1)41 g ,+{2•1}{1·4)g g ,-{4·I)I 2,g 
µv ACT µCT v(\. µCT v(\. v (\.µCT 

2 3 2 I -{1•2)3 2,g -{3•2}2 1 g ,+(3•2){1•2}g gv, µ V A, CT V f\. µCT µ CT V f\. µCT f\. 

A
4323 

4 3 2,3 -(2•3)4 3 gv, 
µvf\.CT µ<T (\. 

A 
33

I
2 

3 µ3 VIA. 2 CT - {l· 3)3 V2CTgµA. -{ 2· 3 )3 µIA. gV() +(2. 3) {l • 3 }gµA. gVCT 

A 
4412 

4µ4vlA. 2<J-{4• 1)4V2<TgµA.-(2. 4)4µ1:\.gV<J +(2• 4)(1• 4)gµA.gvCT 

A
3422 

3 4 2,2 -{4•2)3 2,gv 
µvf\.CT µ(\.CT 

A4311 4 3 1,1 -{4-1)3 l,g 
µVf\.CT Vf\.µCT 

A
4322 

4 3 2,2 -{3•2)4 2 gv" µvf\.lT jJ.<T (\. 

A
3321 

3 3 2,1 -{1•3)3 2,g -(2•3}3 1 g ,+(2•3}{1•3)gµ gv" µ v (\. lT v (\. jJ.<J µ CT v (\. () (\. 

A
4421 

4 4 2 1 -{1•4}4 2,g -{2·4}4 1 g , +(2•4}{1·4)g gv" µ v A. CT v (\. jJ.CT µ () v /\. µa- (\. 
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A2142 2 1 4'\2 -(1•2}4'\2 g . v 
µv(\.er (\.erµ 

A3143 3 1 4 3 -(1•3}4'\3 g -(4·3}3 lvg'\ +(4·3}(1·3}gµvg\er µ v \ er (\. er µ v µ (\.er . 

A2412 2 4 l'\2 -(1•2}4 2 g '\+(4·2}(1·2}g '\gv -(4•2)2µ1\gver µ v (\. er v er µ(\. µ(\. er 

·A
3413 

3 4 l'\3 -(1·3}4 3 g, µ v (\. er v cr µ(\. 
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Appendix F 

DETAILS OF CROSS CHANNEL CALCULATION 

This is a description of the calculation of the absorptive part 

of the 'Y'Y scattering amplitude in the t-channel for s = 0. First we 

set out the general expl,"ession for this result and then show how the 

particular values of the particle momenta and helicities are converted 

to the cross channel. 

In Fig. 2{a), particles 1 and 2 were taken as the ingoing 

particles. In the t-channel, we take 1 and 4 as the ingoing. particles 

and evaluate the absorptive part by means of the unitarity relation for 

the invariant amplitude M. We make a slice across the two vertical 

fermion lines in Fig. 2(a}, and put the internal lines on the mass shell. 

Then the upper and lower portions represent respectively the matrix 

elements for pair annihilation and creation. Of course we must make 

similar cuts in diagram Fig. 2{c} and the two other diagrams which 

have the direction of the fermion line reversed. For the case of a 

two particle intermediate state, the unitarity relation reads 

· with 

S SS 4 4 2 2 2 2 4 . 
dp = d p

1
d p

2
o(p

1 
-m )o(p

2
-m }9{p

10
)9{p

20
)o (p

1
+p

2
-k1-k

4
} 

(F2) 

Here the sum over i represents the su,m over the intermediate spin 

states. the function e is +l for positive argument and 0 for 
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negative argument, and p 1 and Pz are the four-momenta of the 

intermediate fermion antiparticle and particle, respectively. For 

ease in writing we will use subscripts rather than superscripts to 

denote the t- channel momenta and helicities. 

Then we have for the pair creation matrix element 

(F3) 

The annilihation matrix element is 

{F4 ) 

where we have deliberately avoided the complex conjugation of the 

final state polarization vectors for reasons to be explained later. 

Making use of the spinor equations 

(p + m)v{p) = 0 , (j:> - m)u(p) = 0 (F5) 

we eliminate the m's in the numerator with a set of equations like 

u(p2>¢'1 (-pl +}{4 +m)¢' 4 v{p1)= u{p2 >¢'1[ ¥4¢' 4- 2P1. e 4] v(p) (F6) 

= ~(p2)[ Zel ·p2~¢'1¥iJ ¢'4v{pl) {F7) 
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where the freedom to switch from -:¢'
1 

+ }t
4 

to :¢'
1 

- }{
1 

is assured by 

momentum conservation. Combining these relations . 

Im<k
2

k
3 

JM f k
1

k
4 

> = 

~ "S u(p2>¢'1[ i'4¢'4-2Pi" e4J v(p1> 
z L dp z 

8rr i A. - 2p1 • k 4 

+ 

2 
A. - Zp · k 1 4 

v(pl)[ ¢'3¥3 - Zpi" e3] ¢' 2u(p2} 

A. 2 _ 2pl. k3 

where in the last two terms we have first expressed all the four-

(FS) 

vectors so that they involve Pz and then made use of the symmetry 

of the integration (FZ) to interchange p
1 

and Pz. To perform the 

sum over the spin states we use the projection operators for the 

positive and negative energy spinors and ta.ke the trace, recalling 

our convention for spinor normalization {A6), (A 7). The first and 

third terms have the same denominator, and upon rewriting the 

numerators we see that they are also equal. Similarly for the 

second and fourth terms. Thus we obtain 
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Im<k2k 3 IM jk]_k4 > = 

_Ls Tr {(p'2+m)¢'1[1/4¢'4-ZP1·e4] (pl -m)[ ¢'31/3 -Zpl • e) iz} 
2 dp 2 2 . 

41T (A. - 2pl. k4)(A. - 2pl. k3) 

The selection of the appropriate v a lues of the momenta and 

helicities in passing to the crossed channel is somewhat tricky. 

Looking at ( 4. 5) we see that in the s - channel, M is evaluated by 

complex conjugating the helicities corresponding to particles 3 and 4 

before dotting them into G , • To evaluate M in the crossed . µ".'.r<.CJ" 

channel we must keep th~s same set of complex conjugations even 

though in the new channel these particles are no longer the outgoing 

ones. We have been able to show explicitly, by use of the original 

Karplus and Neuman form of the amplitude, that 

G , (s,t) = G , (t,s) • 
µv"-cr µcrr<.v 

(FlO) 

The switching of the roles of the particles 2 and 4 accompli s hes the 

reversal of the roles of s and t as mentioned above and as may be 

seen from the set of equations (Dl5). 

If we look at (4. 25) which gives the momentum values for the 

s-channel problem we see that since the value s ,,; 0 is below thresh -

old, we would have to deal with imaginary components in the momenta. 

This difficulty can be circumvented by first making a Lorentz trans-
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formation to a frame w here 1':(l) and k(4 ) will be in the center of 

mass system . {For c larity, first change the sign of k (
3

) a nd k (
4

) 

so tha t they represent the physical momenta.) The same Lorentz 

transformation must of course be applied to the helicities e (l) , e{Z.), 

{3} ''' {4) >'' e -·· , e ··, for e a ch case. T hen the re is no difficulty encountered 

in setting the s - channel w equal to zero to get the case s = O. Now 

that we have eliminated the energy component in the s-channel we 

are free to use the same letter w to denote the energy component of 

the -y momenta in the t-channel. With A. as the unit of mass, we 

obtain the set of momenta 

~: (w, 0, 0, k} k4: (w, 0, 0, -k) 
(Fll) 

kz.: (w,0,0,k) k3: (w, 0, 0, -k} 

with 

2. 2 
4w 2 {Fl2.) w - k = l ; = t • 

The helicities are 

el; Jz. (k,O,i;w) I }
2 

(k,O,-i,-wJ for f g 

e4: 
1-1;1.,..1 

J 2. {k, 0 , i , - w) for 
f g . 
-11;1-l 

}
2 

{k, 0, i , w) 
(F13) 

ez. : 

1-h (k, 0 , ~ i , - w) 
g 

for f 

~: 
1-1;1-l 

Jz. (k,O,i,-w) for f g 
-11 ;1-l 
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Now that the momenta have been chosen, the operator (F2} may be 

evaluated more in detail. Setting ~ =~ + k
4 

= (2w,O,O , O} w e have 

(Fl4} 

with the further pres c r iption 

set P2 = - p +a 
1 -

-set p: (w,P } (Fl5} 

set il?/ = ~w2- m 2 

and w h ere n represents the angles of p. 

The calculation now becomes very tedious even after setting 

m = A., which we do merely for convenience. The evaluation of the 

traces, the combining of integrals of the same form , and the combi -

n a tion of the helicity cases according to (4 .l}are s o lengthy that it was 

felt wise to check the whole affair by doing the calculation again, but 

in a diffe rent gauge. The gauge invariance of the whole exp ression 

may be demonstrated explicitly from (F3} and (F4} . We replace the 

helicities (Fl3} by a set which h as a constant mult iple of the appropJ:'.iate 

momentum vector subtracted from it . Then, since the amplitude is 

linear in each helicity vector, we may multiply any two of them by 

(-1}. T he alternate set of helic ities become 



1 (0,0,iw,l) 
-fz w 

} (0,0,iw,l} 
v2 w 

- 1- (O,O,iw,-1) 
-fz w 

1 (0,0,iw,l) 
-fz w 

I 
Jz w (0,0, iw,l) 

k (0 ,0 ,iw, -1) 
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f f
g 

or 1-1;1-l 

g 
for f -11;1-1 

for fg 
1-1;1-l 

for fg 
-11;1-l 

(Fl6) 

In this gauge the entire calculation has a different appearance, and 

the result of the two calculations can only be compared at the last 

step. As in a random walk, the magnitude of the coefficients in the 

full answer (4. 41) suggests the square root of the number of steps 

taken; here however we have two such walks ending in the same place. 

In addition to the threshold properties mentioned in the text, the answer 

has another interesting property. The integrand, which represents 

the imaginary part of the amplitude with respect to t; behaves 

-2 . 
asymptotically as t log t. This agrees with what it should to corre-

-1 
spond to a real part which behaves as t • 
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