A STUDY OF NONLINEAR PHENOMENA IN THE PROPAGATION OF

ELECTROMAGNETIC WAVES IN A WEAKLY IONIZED GAS

Thesis by

T. C. Chan

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1966

(Submitted in October 1965)



ii

ACKNOWLEDGEMENT

The author is grateful to his research advisor,
Professor Charles H. Papas, for his encouragement as well
as his guidance, and also to Dr. K. Lee for his many
stimulating discussions during the course of this investi-
gation. The author wishes to thank Mr. P. A. McGovern for
his aid in reviewing the manuscript.

Thanks are due to Mrs. R. Stratton for her efforts
in preparing the final manuscript, and to Mrs. P. Samazan
for her assistance in locating the necessary research
papers.

Financlal aid during the author's tenure as a
graduate student was generously provided by Tektronix, Inc.,
Consolidated Electrodynamic Corporation, and International
Business Machines Corporation under their fellowship pro-

grams.



iii
A STUDY OF NONLINEAR PHENOMENA IN THE PROPAGATION OF

ELECTROMAGNETIC WAVES IN A WEAKLY IONIZED GAS
T. C. Chan

ABSTRACT

This thesis is a study of nonlinear phenomena in the propaga=~
tion of electromagnetic waves in a weakly ionized gas externally
biased with a magnetostatic field. The present study is réstricted
to the nonlinear phenomena arising from the interaction of electro-
magnetic waves in the ionized gas. The important effects of
nonlinearity are wave-form distortion and generation of mixed
frequencies. The wave-form distortion leads to cross modulation of

one wave by a second amplitude-modulated wave.

The nonlinear effects are assumed to be small so that a

" perturbation method can be used. Boltzmann's kinetic equation with
an appropriate expression for the collision term 1s solved by
expanding the electron distribution function into spherical harmonics
in velocity space. In turn, the electron convection current density
and the conductivity tensors of the nonlinear ionized gas are found
from the distribution function. Finally, the expression for the
current density and Maxwell's equatlons are employed fo investigate
the effects of nonlinearity on the propagation of electromagnetic
waves in the ionized gas, and also on the reflection of waves from an

ionized gas of semi-infinite extent.
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I. INTRODUCTION

This thesis presents a study of nonlinear phenomena in the
propagation of electromagnetic waves in a weakly ionized gas
externally biased with a magnetostatic field. The present study is
restricted to nonlinear phenomena arising from the interaction of
electromagnetic waves in the ionized gas. The propagation of electro-
magnetic waves through the ionized gas disturbs the otherwise uniform
electron distribution function. The resulting spatial dependence
affects the conductivity tensors of the gas thus leading to nonlinear
phenomena such as interactions among various electromagnetic waves in

the gas.

1.1) ILiterature Survey

The-study of nonlinear phenomena in the propagation of electro-
magnetic waves in a weakly lonized gas was initiated by Tellegen's
paper (1) in 1933. He reported iqterference by cross-modulation of
broadcast signals in the ionosphere by the strong Luxembourg station
signal. Cross-modulation, which is the consequence of nonlinear
interaction between two electromagnetic waves in the lonosphere when
the disturbing wave is amplitude-modulated, is now known as the
Luxembourg effect. In explaining Tellegen's observations, Bailey and
Martyn (2) considered the heating effect of a passing electromagnetic
wave on the collision frequency which in turn affects the propagation
of another wave in the disturbed medium. With known numerical values
for the physical parameters of the ionosphere and the broadcast sig-

nals, their theory predicts a detectable cross-modulation. They made



use of the geometrical optics approximation and utilized the oversim-
plified concepts of the effective collision frequency of the free

electrons.

Instead of the approach to the problems using mean free path
or relaxation time technique as in (2), most investigators prefer to
use the method of statistical mechanics and to solve Boltzmann's
kinetic equation for the electrpn distribution function in an ionized
gas in the presence of disturbing electromagnetic waves. TFrom the
knowledge of the electron distribution function they deduce the non-
linear conductivity tensor of the disturbed.gas. Chapman and Cowling
(3) derived Boltzmann's kinetic equation of motion for an ionized gas
in the presence of an electric field as well as a magnetic field, and
also the collision term for elastic and inelastic collisions. Margenau
(4) developed methods for calculating the electron distribution func-
tion for a gas discharge in the presence of an A.C. field, taking into
account all types of collisions. He expanded the function into
spherical harmonics in velocity space, assuming that the distribution
function did not deviate much from being isotropic, and retained only
the first two terms in the expansion. His expression for the isotropic
part of the distfibuiion function reduces to the Druyvesteyn's form in
reference (3) for a strong electric field and to the Maxwellian form
for a weak electric field.

Meanwhile several investigators studied in detail the colli-
slon term in Boltzmann's kinetic equation for collisions under

different conditions. Allis (5) obtained an expression for the

collision term in Boltzmann's kinetic equation by considering that a



Coulomb force exists between the two participating particles, while
Desloge and Matthysse (6) arrived at the same expression for a hard
collision where a short rage force exists between the two particles.
In the present study, the elastic electron-molecule collisions are the
dominant ones in a weakly ionized gas, and therefore the latter
approach is more appropriate.

In the laboratory, Goldstein, Anderson and Clark (7) observed
the nonlinear effect of cross-modulation between microwave signals
propagating through a gaseous discharge plasma. Using the geometrical
optics approximation, Rumi (8,9) presented an extensive analysis of
the radio-wave interaction mechanism in the ionosphere. He observed
that cross-modulation in the lonosphere can be produced not only by
changing the electron collision frequency, but also by changing the
electron density.

Later, Fain (10) and Sodha (11) determined the electron dis-
tribution function for a plasma in the presence of electromagnetic
waves and a magnetostatic bilasing field. The plasma wés assumed to be
weakly ionized so that the elastic electron-molecule collisions were
dominant. Sodha also calculated the electron convection current den-
sity in the nonlinear plasma disturbed by the passing electromagnetic
waves. Ginzburg (12) discussed the nonlinearity of plasmas due to the
change in collision frequency, non-uniformity of the plasma and the
presence of a magnetostatic field. He and Gurevick (l3,lhy gave a
detailed analysis for the nonlinear phenomena in a plasma located in

an electromagnetic field and the cross-modulation of two electro-

magnetic waves.



Sodha and Palumbo (15,16) derived the time-invariant change in
the complex conductivity for a plasma due to the heating effect on the
electrons by the passing electromagnetic wéves. They then proceeded
to investigate the nonlinear propagation of an amplitude-modulated
electromagnetic wave in a plasma and also the nonlinear interaction
of a number of electromagnetic waves. The waves were assumed to
propagate in the same direction and in the absence of any external
magnetostatic field. TIn his recent paper, Papa (17) derived the non-
linear complex conductivity tensor of a magneto-active plasma as a
function of the polarization of the radio-wéve. He then found the
transmission and the reflection coefficients for the radio-frequency
propagation through an inhomogeneous, magneto-active and nonlinear
plasma. There the direction of propagation was taken toc be parallel
to the external magnetostatic biasing field. These authors restricted
the electromagnetic waves to TEM waves. This restriction limits the
usefulness of their theories when they are applied to the propagation
of radio-waves in the lonosphere where the earth's magnetic field
cannot be neglected gnd electromagnetic waves usually propagate at an
angle to the directién of thg earth's magnetic field.

It will be found in the present study, from the inherently
nonlinear Boltzmann kinetic equation, that there are two nonlinear
effects of different nature, namely the heating effect on the electrons
by the passing waves and the effect of spatial dispersion due to the
longitudinal components of the electric field of the waves. The heat=-
ing effect on electrons gives rise to wave form distortion in the

passing waves, while the effect of spatial dispersion leads to wave



generation of harmonic or mixed frequencles. In the previous papers
(16,17), the waves are restricted to TEM waves whose longltudinal

components of the electric field along the propagation direction are
zero so that the effect of spatial dispersion is absent and there is

no wave generation at harmonic or mixed frequencies.

1.2) Outline of Study

In the study of nonlinear phenomena in the propagation of
electromagnetic waves, many investigators have used a geometrical
optics approximation which is valid only for TEM waves. 1In the
present study, field theory will be used to treat the practical case
of broadcast signals in the ionosphere with no restriction on the type
of electromagnetic waves. Consequently both the heating effect on
electrons and the effect of spatial dispersion will appear in the
study.

To simplify the problems, nonlinearity in the disturbed gas
will be treated as perturbation. The inherently nonlinear Boltzmann
kinetic equation and Maxwell's equations are solved for the two
dependent variables, namely, the electron distribution function and
the electric field of the waves.

This study 1s divided into seven chapters. The first chapter
defines the nonlinear problems and gives a literature survey. 1In
Chapter II, we use an elementary kinetic theory to study not only the
propagation of an electromagnetic wave in & linear, magneto-active,
ionized gas, but a;so the reflection of a wave from such a gas of semi-

infinite extent. It 1s necessary to include this chapter since the



solutions found here will be the zeroth order solutions of the non-
linear problems in later chapters. In Chapter III, the electron
distribution function is expanded in velocity space into spherical
harmonics which are further expanded in Fourier series. Eight terms
in the expansions, instead of the usual first three terms, are
retained and determined by solving Boltzmann's kinetic equation by a
perturbation method. The additional five terms take into account the
effect of spatial dispersion, while the usual first three terms take
care of the heating effect on the electrons. In Chapter IV, the
electron convection current density as well as the nonlinear conducti-
vity tensors are derived from the knowledge of the electron
distribution function. These four preliminary chapters lead to the
study of nonlinear phenomena in the propagation of electromagnetic
waves in Chapter V. The effects of nonlinear phenomena are wave form
distortion and wave generation of harmonic or mixed frequencies. If
the disturbing wave 1s amplitude modulated, the other wave in the same
ionized gas will be cross modulated. 1In Chapter VI the coefficients
of reflection from a weakly lonized gas are derived. Similar effects
of nonlinear phenomena are also present in the reflected waves. The
conclusions of this study are given 1n Chapter VII.

The rationalized MKS system of units is used throughout the

study.



IT. LINEAR, TONIZED GAS

As a preliminary investigation prior to the study of nonlinear
phenomena, this chapter is devoted to the study of the propagation
of an electromagnetic wave in a linear, ionized gas and the reflection
of the wave from a gas of semi-infinite extent. This preliminary
investigation is important as it provides the zeroth order solutions
for the nonlinear problems to be studied in the following chapters.
Here an elementary kinetic equation is used to describe the motion of
electrons in the ionized gas which is externally biased with a

magnetostatic field.

2.1) Elementary Kinetic Equation of Motion

In order to derive an expression for the conductivity tensor,
the motion of the particles in the ionized gas under the influence
of an external magnetostatic field and the electric field of an
electromagnetic wave must be examined. In an ionized gas there are
three types of particles, namely electrons, ions and neutral molecules.
The neutral molecules contribuie nothing to the convection current
density,; and because of their very large mass (in comparison with
that of the electrons) the ions contribute a negligible fraction of
the convection current density. Hence only the motion of the elec-
trons need be studied. The gas is assumed to be weakly ionized and
the predominant type of collision which affects the motion of the
electrons is the electron-molecule collision. Since the average
kinetic energy of the electrons is Vell below the ionization energy
of the molecules, the collision is elastic. wﬁen the collision term

is included in the kinetic equation, the lonized gas is found to be



lossy.

From Newton's law of motion, the elementary kinetic equation

of motion of an electron is

o
= -

Elo

(E+vx go) -vy (2.1)

where the first two terms on the right represent the Lorentz force on
the negatively charged electron due to the electric field E of the
wave and to the external magnetostatic field Eo respectively. The
last term takes into account the elastic electron-molecule collision.
v 1s the collision frequency. The effect of the magnetic field of
the wave on the electron motion is neglected.

Under an assumed time dependence exp(-iwt) for the electric
field of a monochromatic electromagnetic wave, the steady state solu-
tion of Eq. 2.1 is given by

[(v - iw) - ng] vV = - % E

where the electron gyrofrequency is

)] = .
-

Hlo

B
—O
The velocity of the electron, in terms of the electric field of the

electromagnetic wave, is found to be

glo
i
jed

(2.2)

v = -

where the dyadic operator is

B = (v - iw)2 u+ (v - iw) @, O D

(v = iw) [(v - iw)2 +




and u = the unit dyadic.

2.2) Conductivity and Dielectric Tensors

From the solution for the electron velocity v in terms of
the electric field E of the electromagnetic wave, we are in the
position to derive the conductivity and the dielectric tensors of the
ionized gas. By definition, the electrqn convection current density
ie is equal to -env where n 1is the electron density of the ionized
gas. From expression 2.2 it follows that the electron convection

current density is

J = €w

2
—e 0o

=

"E
where the electron plasma frequency is

ne
w = —_— -

= €m
o
But the convection current density ge ig also equal to o= B o»

Hence the conductivity tensor is found to be

2
g (@) = ew L (2.3)
The corresponding dielectric tensor is given by
2L
= € - i »
@) = 2 - o) - (2.4)

The subscript L 1s used to indicate that EI, and EL

tively the conductivity and the dielectric tensors of a linear

are respec-

ionized gas. Both EI, and EI. are found to be functlons of the

angular frequency w of the wave. -
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Since a tensor is covariant under transformation of coordi-
nates, a cartesian coordinate system can be used without any loss of
generality. For mathematical simplicity we shall choose the direction
of wave propagation and that of the external magnetostatic field as
those shown in Fig. 1. Accordingly, the electron gyrofrequency can

be written in the cartesian system as

w = € wsin©® + e w cos O
—g vV 8 —z g

and the components of the dlelectric tensor become

€ € [1- X2}
XX o . 1w

2, 2
3 [l _X(1-Y"sin G)]

e =
Yy L =¥
X(1 - Yecos‘?‘O)
Ezz = eo 1l - S
1-X
i1XY cos @
Xy YX o 1= ¥
iXY sin ©
€ = —sz = —EO —-——-—2—_—
xz 1 =1
and o
XY“sin © cos ©
€ = € = € 5
L % 1= (2.5)

where the dimensionless quantities X and Y are given by

2
W
TR - G-
io (v - iw)
-iw
y g
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Fig. 1. Direction of wave propagation and direction
of external magnetostatic field
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2.3)7 Wave Propaggtiqn_ in an Ionilzed Gas

In this section we shall examlne the properties of wave
propagation using the dielectric tensor whose components are given by
Eg. 2.5. The electric field of a plane monochromatic wave traveling

along the z-axis has the following form

E(z,t) - EOei(kz-mt)

vhere E_ represents its amplitude and is a constant vector, and k
'~ 1s the propagation constant to be found. A similar expression can be
written for the magnetic field H(z,t).

Eliminate the magnetic field E(z,t) from Maxwell's equations,

= H
VxE imuo_
VxH = "i‘”EL ‘' E . (2.8)

We obtain the vector wave equation for E

2
VxVxE=wp, £ ° E (2.7)

o =L

For the plane wave in the ionized gas whose dielectric tensor is given
in Eq. 2.5, the vector wave equation separates into a set of three

equations, namely

2 2 2 2
(k"= w uoexx)Ex - uoexyEy -ope E = 0
2 2 2 2
- @ e B+ (k= w HOEW)Ey -w p.oeyzEz = 0
2 2 2
=W Mo By - i'Lcoe:zyEy =, B D (2.8)
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where E_, Ey and EZ are the three cartesian components of the
electric field E(z,t). Note that the above three simultaneous equa-
tions contain three variables, namely Ex’ Ey and Ez’ and are homo-
geneous. In addition to the trivial solution Ex‘= E =E =0,

Y z
there are nontrivial solutions for the vector wave equation 2.7 only

when
= meu'oexx ¥ a)EP'oexy A m2“o€xz
- wzuoeyx 5 k?- w?poeyy, - meuoeyz =0 .,
-op € - wzuo‘izy ’ o ¢2“oezz

After some simplification, the two solutions of the above equation

for k are

. 1/2
s w “oeo [ 1~ X n '
2 2 L
Y sin © & \/% Y sin g " Y2c0829
L= (1-X) (2.9)

w
]

1
=3
and

% 1/2
e T ®VHo% [l ) 2 2 Lo, b ]
1.1 ¥sin"0 _ \/T}i Ysine choseg :
"B 7 - 2
1-X (L-x)° . (2.10)

=
i

The two solutions are the same as those in reference (18) except for
the definitions for X and Y which are complex here to take into

account the loss due to the elastic electron-molecule cpllisions. The
two solutions for the propagation constants indicate that the aniso-

tropic ionized gas can support two electromagnetic waves traveling with
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two different propagation constants respectively in an arbitrary direc-
tion with respect to the external magnetostatic field.

The following properties of wave propagation have been found in
reference (18). As a function of X +the propagation constant L
resembles the propagation constant of a wave in an isotropic gas more
closely than ke does. The wave traveling with propagation constant
ko is referred to as the ordinary wave and the wave traveling with
propagation constant ke is referred to as the extraordinary wave.
Waves that propagate at an arbitrary angle to the external magneto-
static field are TM waves. Both ordinary ﬁnd extraordinary waves
degenerate to TEM waves when they propagate parallel to the external
magnetostatic field. Only the ordinary wave degenerates to a TEM wave
when it propagates perpendicularly to the external magnetostatic field.
In the latter case the electric field of the ordinary wave is parallel
to the external magnetostatic field.

The nontrivial solution of the vector wave equation 2.7 for the

ordinary wave, with the time dependence exp(-iwt) omitted, is found

to be
\
E = - iR A
X0 oo
ikoz
Eyo = Aj > e (2.11a)
K2
i d g l) sin ©
€
E 2 ol . ROAOJ
Z0 1 - X

and the corresponding magnetic fleld, found from Maxwell's equations,

is
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K
.
on i Ao
® Ky
1k R_ 1k 2
B == A e (2.11b)
yo wp O
(9]
H -
Zo % /
where
2
Y sin“g + \/Ygsinue + (1 -%)%c0s%
R =
o] M

2(1 - X) cos ©

Ao denotes an undetermined coefficient and the subscript o stands
for the ordinary wave. The nontrivial solution for the extraordinary
wave has field components similar to those ofrthe ordinary wave. The
field components are obtained by simply replacing the subscript o's

by e's 1n equation 2.11, and replacing R, by

Y sin®e - VYesinuG + 4(1- X)2cosee
R = . (2.12)
2(1 - X) cos ©

In the next section we shall use these two nontrivial solutions
for the ordinary and the extraordinary waves to find the coefficients

of reflection from an ionized gas of semi-infinite extent.

2.4) Reflection from an Ionized Gas of Semi-Infinite Extent

When an electromagnetic wave propagates through the interface
between two media, reflected and transmitted waves are set up. It is
interesting to study these waves and the reflectlon coefficients when
an electromagnetic wave from free space is incident on an anisotropic

ionized gas of semi-infinite extent.

Nt -
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Tonized gas
z>0

transmitted
waves

Free space
z <0

\___V__/
incident reflected .
wave waves

Fig. 2. Refiected and transmitted waves
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For simplicity, consider a plane TEM wave from free space
incident normally on the interface z = O separating free space from
that occupied by an ionized gas which is externally biased with an
oblique magnetostatic field. Choose a cartesian coordinate system
such that the ionized gas occupies the half-space z > 0 as shown in
Fig. 2. The external magnetostatic field is parallel to the y-z plane
and makes aﬁ angle © with the z-axis. The electric field vector of
the normally incident TEM wave is assumed to make an angle @ with
the x-axis, and the direction of propagatipn of the wave is parallel
to the z-axis.

To find the reflected and the transmitted waves we must solve
the vector wave equation for the electric fields in both half-spaces.
The solutions for the electric fields of the ordinary and the extra-
ordinary waves in the ionized gas z > O have been found in Section
2.3. Now the solutions for the electric fields of the waves in free
space will be found.

In free space the vector wave equation takes the form, with the

time dependence exp(-iwt) omitted,
2
VxVXE = wp€ E (2.13)

Its solutions are

E. = Acos @
_ + ikfz
E = Asing e
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vwhere kf (=m‘/uo€o) is the free space propagation constant and A 1is

an undetermined coefficlient. From Maxwell's equation

the corresponding magnetic field components are found to be

k

= big
H = + E
X wu, Y
k
H = + . E
Yy ® pg X
H = O k .

Z

The field components of the incident TEM wave of unit amplitude

take the following form:

E, = cos @ )
= 8in
E, @
E = 0 L ik _z
= o e ) (2.14)
H = L sin @
% u)p_o
kp
Hy = = ™ cos @
BE = O J

Generally the electric field vector of the reflected TEM wave is
different from the electric field vector of the incident wave both in
magnitﬁde and in direction. It is possible to decompose the reflected
wave into two components, one of which has the electric field parallel

to that of the incident wave, while the other has the electric field
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perpendicular to that of the incldent wave. Define the two coeffi-
cients of the reflection for these two components with respect to the

incident wave as

Bl
S T o
inc g
and E at z =0
R - L
4 Einc J

then the field components of the two reflected waves are

Ex = cos §
Ey = sin ¢
E = 0] -ik =z
z £
K . == (2+5)
_ by
H, = o sin ¢
k
B o e, G @
v @ Mo
H = O -
z
and
E_ =~ sin @ A
E, = cos ¢
Ez = @ > -ikfz
k R e (2.16)
H = L cos @ : 3 .
X w p,o
k
Hy = . sin ¢
C® g
B =0 J
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In the space z > 0O , which is occupied by the ionized gas,
there are two transmitted waves; namely the ordinary and the extra-
ordinary waves. Thelr field components have been found and are given
by equation 2.11 and equation 2.12 with two undetermined coefficients
Ab and Ae .

We shall use the boundary conditions at the interface to solve
for the four undetermined coeffigients Rll, 3L 3 AO and Ae 4 At
z = 0 the boundary conditions require that the tangential component
of the electric field be continuous and that, since there is no surface
charge, the tangential component of the magﬁetic field be continuous.
The boundary conditions lead to the following set of four equations

with four unknown coefficients:

Rllcos ¢ - BL sin @ + iRoAb + iReAe' = ~ cos

Rllsin @ + SL cos ¢ - Ab - Ae = - sin ¢

kfR” sin @ + kfR-L cos @ + kA +kA =k sing
kfRH cos @ - kfR-L sin @ - ik R A - ik R A =k, cos g .
{2,17)

The first two equations are for the x- and the y-components of the
electric field respectively, and the last two equations are for the
x- and the y-components of the magnetic field respectively.

In matrix notation equation 2.17 takes the form



.2l

— ‘—1
B RH—1 - cos @
RL - sin @
[4] =
Ao kf sin ¢
L A, | L k. cos g |
where the matrix [M] is
s =
cos @, - 8in ¢ , 1R° s iRe
sin @, cos @ , -1, -1
(] -
k. sin @, k, cos@ , K k
ka cos @, -k, sin g, -1k R, -ikR_ i

The solutions for RII, ij AO and Ae can be obtained by inverting

the matrix [M] . The two coefficients of reflection are then found
to be
S K2)(R - R) + (k- k) k(R +R_) cos 2f
I (ke + ko) (k+ k) (R - R )
and
. 1(k -k ) k; [2+1(Ro+ R_) sin 2 ]
s (ko+ kf)(ke+ kf)(R0- Re) (2.18)

The amplitudes of the y~components of the transmitted ordinary wave

and the transmitted extraordinary wave are found to be

21k (cos @ + iR sin @)

A =
(o] -
(ko-t- k_f)(Ro Re)
2ik (cos @ + iR sin @)
A =- 2
e = v
(ke+ kf)(Ro Re)

(2.19)
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Note that all notations used here have been defined in Sections 2.3
and 2.4.

We have now reviewed wave propagation in a linear ionized gas
and the reflectlon of a wave from a gas of semi-infinite extent as
an introduction to the treatment of the nonlinear problems considered

in the following chapters.
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ITI. ELECTRON DISTRIBUTION FUNCTION

In this chapter we shall study nonlinear phenomena in the
propagation of electromagnetic waves in a weakly lonized gas. Since
the nonlinear problems have great importance in the propagation of
broadcast signals through the ionosphere and in reflection of signals
from the ionosphere, the weakly ilonized gas will be assumed to have
physical properties similar to those of the ionosphere, and the elec-
tromagnetic waves will be assumed to have physical parameters similar
to those of ordinary broadcast signals. Approximations derived from
the above assumptions will be used extensively to simplify the mathe-~
matics and to show the effects of nonlinear phenomena explicitly.

The study starts with the use of kinetic theory to find the
distribution function of free electrons in the weakly ionized gas.
From the electron distribution function, the electron convection cur-
rent density will be derived. ©Since the mass ratio of an electron to
an ion is extremely small, an electron can respond to the external
accelerating fields much faster than an ion. Hence the ion convection
current density may be neglected in comparison with that of the elec-
trons in the derivation of the conductivity tensors of the ionized
gas. From the nonlinear cpnductivity tensors, the effects of non-

linear phenomena on wave propagation will be found.

3.1) Boltzmann's Kinetic Equation

In the exact kinetic theory Boltzmann's kinetic equation is
used to solve for the distribution functions of charged particles.

Since the free electrons contribute most to the convectlon current



2k

density in a weakly ilonized gas, the charged particles considered here
will be the free electrons whose distribution function f can be

derived from Boltzmann's kinetic equation

ox ov

P of of
S Is ' ie =%
i i i 4. coll (3.1)
where Xy is one of the orthogonal components of the spatial vector
and vy is one of the orthogonal components of the velocity vector of

the free electrons. The collision term (%%) on the right of equa-

coll
tion 3.1 is the time rate of change of the distribution function due to
collisions of the electrons with other particles in fhe ionized gas.

In a weakly ionized gas most of the particles are neutral molecules,
there being relatively few electrons and ions. Electron-molecule col-
lisions effect the most change in electron distribution function. The
few electron~ion and electron~electron collisions may be neglected in
the kinetic equation. If the external accelerating electric field is
not too strong, the average kinetic energy of the free electrons is
below the ionization energy of the molecules, and the electron-molecule
collisions are elastic. The collision term due to elastic electron-

molecule collisions will be written in the form derived by Chapman and

Cowling (3) as

(&) 0y = [ 7@ - 200 7] va a0 (3-2)

where f 1s the electron distribution function and F 1is the molecular
distribution function. The electron travels with an initial velocity

v and a velocity v' after collision, while the molecule has
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velocities V and V' Dbefore and after a collision respectively.
Let u be the magnitude of the relative veloclty before collision,
i.e., u=|v=-V|. q is the collision cross-section for momentum
transfer between the two particles during collision. ¢q dQ 1is the
fraction of the incoming flux of electrons which is scattered into
solid angle dQ by a single scattering center. This form, equation
3.2, for the collision term is valid for binary, elastic, hard colli-
slons where a short-range force exists between the two colliding
particles.
| Now the weakly ionized gas is assumed to be-exfernally

biased with a magnetostatic field B_ , and is disturbed by a number
of electromagnetic waves with an electric field E and.a magnetic
field B . Under such fields the Lorentz force on a negatively
charged electron is -e(E + v X B + Vv X go) where e 1s the magnitude
of charge on an electron and v 1is the velocity of the electron. Then
the acceleration of an electron with mass m is -%(§_+1x13_ * zxgo).

It is shown in the following that the acceleration of the
electron due to the magnetic field B of the wave.can be neglected
in comparison with that dvue to the eleétric field E . From Maxwell's

equations the ratio of acceleration due to B to that due to E 1is

| v X g |

TE|

where c¢ 1is the light velocity in vacuum. From the electron distri=-

A

ol<

bution function derived later, it is found that only .04% of the

electrons has veloclty greater than 3‘/252 where k 1s the
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Boltzmann's constant and T is the electron temperature. This .0L%

of the electrons is found to contribute only 0.3% of the electron con-

9

vection current density. Since only one out of 10

2K
velocity greater than 5 m;? » electrons having velocity greater

electrons has

than 5\/252 will be neglected. In the various layers of the iono-
sphere the electron temperature ranges from 20000 to 2000°C and the

n

corresponding value of \/ggs ranges from 7.8 x 10 to 2.5 x 105m

sec-l. The average electron velocity \/gﬁg‘ is three orders of mag-
nitude less than the light velocity in vacuum, and so the term vxB
can be neglected.

In terms of the accelerating fields, Boltzmann's kinetic

equation of motion takes the form

of o of
L VI -SEsyx B) - V1T = = (3.3)

where V} stands for the spatial gradient operator and V; the velo-
city gradient operétor.

The solution of equatiop 3.3 for the distribution function f
is difficult to obtain, in general, ﬁnless we make an assumption that
the electric field of the electromagnetic waves is not too strong and
hence the electron distribution function f deviates only slightly
from being isotropic. In order to éhow the conditions under which
such an assumption is valid, the distribution function f in an iso=-
tropic ionized gas will be examined first. Then we shall derive the
solution of equation 3.3 for the distribution function f in an ani-

sotropic gas.
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3.2) Distribution Function in an Isotropic Ionized Gas

In the absence of any external accelerating field, the elec=-
trons, the ions and the molecules in the ionized gas are in thermal
equilibrium with random thermal velocity. As soon as electromagnetic
waves are present in the gas, their electric field will give a
directed velocity to the electrons. Under the assumption that the
electric field is not too strong, the random thermal velocity of the
electrons will be much greater than their directed velocity. Con=-
sequently, the distribution function will deviate slightly from being
isotropic and it is possible to separate thé distribution function
into its principal part, which is isotropic in velocity space, and
its directional parts which are functions of the angle between v
and the electric field E . Let the direction of the external elec-
tric field E ©be parallel to the z-axis in the cartesian coordinate
system and let X make an angle OV with ﬁhe z-axis. BSince v 1is
symmetrical about E , the distribution function can be expanded in

the zeroth order épherical harmonics, namely in Legendre polynomials

f = 2; fg(a,v,t) Pﬂ(cos Qv) : (3.4)

Note that fz's are explicit functions of v , but not functions of
components of v .
In an isotropic ionlized gas with the external electric field

E 1lying along the z-axis, Boltzmann's kinetic equation has the form

! T ‘pt’eoll ’ (3-5)
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Substitute the expansion of f, given in equation 3.4, into equation
3.5. Multiply both sides by Pm(cos Ov) and integrate over the solid
angle dnv in velocity space. With the ald of the orthogonal proper=-

ties of PZ‘B , namely

L
IPsz % = 24 Om
where

ng =1 if £=m

1l

0 if 2#m

and the differentiation

s} afz
s;; ijz(cos Ov)} = Pz(cos Gv) cos @_ =
£ 1n°6 oP
% £ v £
* d 2
(cos v)
where v = VvV cos @
A h'
2 2 2 2
and v = V_ 4+ V_ +V_ o,
X y z :

a set of equations which links various spherical harmonics of f is

obtained, namely

Ef_o +E_a_fl L €E_ 3 (2.3 . f’f&)

ot 3 oz 3mv2 ov 1 bt coll

of of of ‘5 of

" ©,2_2 _eE|_o, 2 9 (3 e -

= T v g m["§$+5v33w7("f2)]‘(at coll



) 3 09z 7 Oz Bt coll
"""""""""""""""""""""""""" . (3.6)
of
2 2041 f &F
b — = P (cos @ ) dQ . 3.7
where ( Bt coll le (Bt _— ﬂ( ) v ( )

To solve the set of equations 3.6 it is necessary first to
of

2
(St )coll )
£ # 0 . Substitute the expression 3.2 for (g%)

determine from equation 3.7. Consider the case where

sl in equation 3.7
and expand f(v) and f(v') into spherical harmonics in velocity

space. Then equation 3.7 takes the form

&F

) 2441 f f f B
i - dQ. P (cos @ ug dQ d
5t )coll Lx ¥ ﬂ( V) .

X {F(V*) z: f}#v')Pm(cos @v,)-F(V) Z: fm(v) Pm(cos Qv)}

where GV is the angle between v and the z-axis and Gv' is the

angle between V' and the z-axis. Choose the new spherical coordi-
nate system (0,@) whose polar axis coincides with v so that the
direction of v' is (9,0), where @ 1is the angle between the initial
veloelty v and the final veloclty v' of the electron, and the
direction of the original z-axis is (Ov,¢) . From geometry it is
found that

cos 6, = cos @ cos O + sin @ sin © cos @ .

The Legendre polynomial Pm(cos Ov,) can now be expanded in the new

spherical coordinate system. The expansion appears in many
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mathematical physics texts as
Pm(cos Ov,) = Pm(co_s Gv) Pm(cos Q)
(m-n)! _n n
+221 P (cos ©_) P.(cos @) cos n
(min): & V) m ) 4

Because of the orthogonal properties of Pg(u) s namely

2m+1 (m_n)! nn' mm' o

1
f Pi(u) P;:(u) du = L B o
]

the integration of terms containing cos nf over the solid angle

dnv ylelds zero value and equation 3.7 becomes for £ ;4 0

of
(_.éf)coll ijlfuq an adv {F(V') fﬂ(v') Pz(cos 8) - F(V) fz(v)} .

Because the mass ratio of an electron to a molecule is extremely small,
there is little energy transfer during an elastic electron-molecule

collision. Hence we can use the approximations v ~ v' ~u

and
V~ V' 1o obtain
Bfg) ,
e = e v f 08
8t coll 'R (3.8)

for 4 #£ 0 . The collision frequencies

vle=Nqu[l-P£(cos O)] daq

and the molecule density N in the gas is

N = .jﬁ F(V).d3V .

v are defined by
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of
The isotropic part (Efg)coll of the collision term has been

derived by Desloge and Matthysse (6). 7They assumed that the electron-
molecule collision was between two hard spheres having a short-range
force between them. Because of the heavy mass M of the molecule,
the molecular distribution function was assumed to be undisturbed by
the external fields and to have a Maxwellian distributién, namely

M )3/ 2 Ne-MVE/EkT

F = (enkT

where T was the molecular temperature and
k was Boltzmann's constant. Using the laws of conservation of energy

and of momentum during an elastic collision, they obtained the expres-~

sion
of '
(E‘F_’.) =_:.L_.a_{v2 E—EI‘_ ___2+v3ff_l £ } (3.9)
Bfo
Note that the isotropic part (—) is due to energy transfer and
5f£ &t coll
the other parts (—gf)coll with £ £ 0 are due to momentum transfer

during collision.

Returning to equation 3.6, we are now iIn the position to examine
conditions under which the set of equations 3.6 can be terminated at
the first two equations. From the second equation of 3.6 these condi~

tions are found to be

afo afe
e >> —-— (3.10)
and
of
o 1 0o 3

Assume there is only one electromagnetic wave with carrier frequency w
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in the ionized gas and neglect the dispersion term v - V}f in

Boltzmann's kinetic equation 3.5. Then from the second and the third

equations of 3.6 we get the following approximate solutions for f

1

and f2

If I ,u 1 elEl aro

1
_(vi+m)]‘/2 o ov
and
22
2 o
|f2| A 5= (%’ )

3m2(vi & ma)

where the approximation Vl'm've is used. The collision frequencies

v, are defined by equation 3.8. The approximate solution of £, will

! —mve/EkT
be found later to be Coe . With the above approximate solutions
for fo’ fl and f2 » the inequalities 3.10 and 3.1l become
21
e | mv
5 = ( kT) << 1
ka(vl + )
and
2 2
e ‘—3 § it WL
2 2 kT
mkT (v w’)
it
Since we find that only one out of 109 electrons has velocity greater
than & kT , for most electrons the conditions 3.10 and 3.1l are
reduced further to
=)
B = ol B

2 2
ka(Vl + )
The inequality is well satisfied for broadcast signals in various

layers of the ilonosphere as shown in Table I. There the electric
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TABIE I. Value of 5 5
m.kT(vl +w )
' 8 o
- mk‘l“(v]z_ + (_02) eR
2 2
- 2
Ionosphere (sec 1) € 5 m}S‘-‘F(Vl + o)
(v/m) 10 kw 50 kw 100 kw 500 kw 1000 kw 5000 kw
| . 5 =5 -5 R -3 -3
D-layer(daytime)| 10 1.5x10 1.7x10 8.5x10 1.7x10 .5x10 1. 7x10 8.5x10
v = 107 10° 1.5x10 1.7x10"° 8.5x10'5 l.7xlO-u 8.5x10'lL 1.7x1073 8.5x1073
T = 300°% 107 2.9x10 8.5x10‘6 4.2x10"7 8.5x10'5 h.exlo'LL 8.5x10-k 4.2x1073
z = 60 km 108 1.5x103 T2l 8.5x10‘7 1. 75%106"% 8.5x10“6 1.7x107° 8.5x10'5
-2 - - -2 - =
Lowss pars oF 10° 4.9x10 2.3x1075 1.1x1072 2.3x107° 1.1x1071 2.3x107t 1.1
E-layer (night) 5 1 £ 3 -3 5 -2 -1
v, = 7x10° 10 L.5%10 7.6x10 3.8x10 7.6x10 3.8x10 7.6x10 3.8x10
. o -l -l . .
T = 200°% 107 9.8 1.1x107° 5.5%10 2 1.1x10 5.5%10" " 1.1x1075 5.5x1073
z = 90 km 108 9.8x102 1.1x1077 5.5x10'7 1. 1100 5.5x10'6 1.1x10™° 5.5x10'5
F-layer 107 9‘8x10“3 1.0x1073 5.0x1073 1.0x107° 5.0x10'2 1,0x10°F  5.0%10™"
vy= 10 5 108 9.8x10°Y | 1.0x10™ 5.0x107° 1.0x10™* S.OxlO-u 1.0x1070 5.0x1073
- 7 . o . - y -
T = 2000 °C 10 9.8x10 1.0x10"7 5.0x10"% 1.0x107° 5.0x107® 1.0x107° 5.0x1077
B 390 a 10° 9.8x103 1.0x107 5.0x1077 1.0x10% 5.0x10° 1.0x1077 5.0x107"

€€
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field E of the signal at a distance z km from the station having an

output power W kw 1s found from the relation

—— .

E = 3OOVFE.‘ mv
- Z m

’E°
2 2

m.k‘I'(vl+w

even for broadcast stations having an output power as high as one

From Table I it is clear that << 1 always holds

megawatt and a carrier angular frequency w of lossec"l or higher.
Hence it can be concluded that the electric field of the signal from
even a powerful station can be considered small enough so that the
second and higher spherical harmonics in equﬁtion 3.4 can be neglected
in comparison with the zeroth and the first harmonics, namely, fo and

fl .

We shall not find the electron distribution function of an
isotropic ionized gas as the function can be obtained from the electron
distribution function of an anisotropic ionized gas which will be

derived in the next section.

3.3) Distribution Function in an Anisotropic Ionized Gas

In the previous section it was shown that the electron distri-
bution function deviates slightly from being isotropic in velocity
space so that the function can be approximated by the zeroth and the
‘first spherical harmonics in velocity space. Under the same assumption
that the electric field of the electromagnetic waves is not too strong,
the electron distribution function can be expanded in spherical harmon-
ics in velocity space and only the first two terms in the expansion are

retained, namely



(3.12)

Note that El

To find fo and f we must decompose Boltzmann's kinetic

appears as a vector.

equation 3.3 into a set of equations iinking fo and El . Insert
the spherical harmonics expansion 3.12 into Boltzmann's kinetic equa-
tion 3.3, multiply both sides by P:(cos Ov) and integrate over the
solid angle dQv . Here Qv i1s the angle between v and the z-axis
and dQv is the solid anglé in velocity space. Using the orthogonal
properties of the associated Legendre function Pz(u), we obtain the

followling two equations

of : of
o v . e 9 2E _ o
T3 AT A VE L) - gl (313)
and
of of of
=i €E "o e —l;
"% T T ek it Y, - (3.14)

The last vector equation is obtained through its component equations.

In deriving equations 3.13 and 3.1L4 we have assumed that fo and fl

are functions of v , and have used the following results

v | af
Lo o N
E-W=—~w—"=%*vE" 4
. f V'f
vxop {212 24
v v

and
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The components of the collision term on the right of equations 3.13
and 3.1k are still given by equations 3.9 and 3.8.
Consider equations 3.13 and 3.1&. To the first approximation,

by neglecting the term vV}fo in equation 3.1k, £ and E are found

1
to be proportional. In the study of nonlinear problems, we cannot use
& phasor to represent an electric field such as E(r,t) = E(z)e'ﬂnt in
Chapter II. The real part of the phasor will be used to represent the
actual physical electric field. Since the sum of a clockwise phasor
and a counterclockwise phasor is proportional to the real part of

either a clockwise phasor or a counterclockwise phasor, the electric

field E(E’t) of m electromagnetic waves can be explicitly written

ag :
m -im t iw t
E(r,t) = ), {Epl(_r.) e P +pl(x)e P } (3.15)
p=1 \ ~
=-im t

where Efl(z) e P is the clockwise phasor of the electric field of
iw
the pth wave with a carrier angular frequency @, and EE(E) e P is

the counterclockwise phasor. It is clear that EPl and EE are com=-

plex conjugates of each other. To the first approximation the
anisotropic part Ei of the electron distribution function has a

similar form,

m -im t i
£ (r,t) = {f’ (x)e P fP()eP}
ELRE Pgl 1,-1 * 3,108 .

When these two forms of E(r,t) and fl(g,t) are used in equation
3.13, the isotropic part fo- of the distribution function is found to

have time-dependent components as well as a time-invariant component;
of

From equation 3.1%, because of the term ‘2—3% y 2

£ will have terms
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representing higher harmonics of the carrier frequencies. Both fo

=

and fl can now be expanded ihto Fouriler series as

m 5 -ant ‘
A f T
fo(f)vat) ¥ §;1 0,-l(£’v) € + fo,o(_)v)
P
m b in ©
+ J Fp ) e B o4 e (3.18)
p=1
and
m “ilw +w )t m -im_t
_f_l(E:V,t) = MR o Z _f_'?_’%g(f_:v) e P2, leﬁ)_ _l(E:V)e ¥
p,q=1 ™’ ' p=l1
m B -i(wp q)t m hmpt
2
+ 2: £y O(r,v) e + E:l‘gl,l(z,v)e
p,q=1 e
m Btts : i@gpﬁnq)t
# 5 f_l’e(s_,v) e 4 WERSA (3.17)

where higher order terms in the expansions have been omitted under the
assumption that the electric field E of the waves is not too strong.
Here p or g stands for the pth or the gqtR wave of m electromag-
netic waves. The first subscript 1 of fﬁjg indicates the order gf
thé spherical harmonics in velocity space, and the second subscript J

“is the order of harmonics in the Fourier series. The corresponding

pairs in equations 3.16 and 3.17 must be comblex conjugates, namely

£ = (£ )
0,-1 0,1

]

£, -



P = (£fF )*
£, (£;,,)
and
fP)q - (fQ;P)*
=1,0 =1,0

It is still difficult to solve equations 3.13 and 3.1k simul-
taneously for the harmonic components of fo and El unless the
relative magnitudes of the terms in equations 3.13, 3,14, 3.16 and
3.17 are known. Then the harmonic components can be found by means. of
perturbation method. Under the assumption that the electric field of
the electromagnetic waves is not too strong, the terms containing E

in equations 3.13 and 3.14 are small. Because the velocity of most

electrons is much smaller than the velocity of-light in vacuum, the
v ;
3

are also small. Since the distribution fﬁnction is found to deviate

term v;-_gl in equation 3.13 and the: term vV%fo in equation 3.1k

P P D
B0yt * o1 » B, 8 -i:il in

equations 3.16 and 3.17 are of first order of smallness in comparison

slightly from being isotropic,

Pyq P,q P,q
;and f < =
with f0,0 ; an Ly 5 9 El,O and £l,2 are of second order of small

ness in comparison with f The relative orders of magnitude of the

0,0°
various harmonic components of the electron distribution function can
be identified by the number of superscript p's and g's.

Now we are in the position to solve equations 3.13 and 3.14 for

the harmonic components of fo and f From equation 3.14 the

1 -
components of El can be found in terms of E and the components of
fo . With the solutions of the components of El substituted in equa-
tion 3.13, the components of fo can be found explicitly in terms of

E and the physical parameters of the ionized gas. We shall follow
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this procedure of solving equations 3.13 and 3.1k.
Substitute the expansions 3.16 and 3.17 in equation 3.1 and
equate coefficients of the corresponding terms of the same exponen=-

tials in frequency. This is possible because of thelr orthogonal
—ﬂnpt iwbt —i(mp+mq)t

properties, i.e., 1, e ; € y € , ete. are orthogonal
functions. Neglect terms of higher order of smallness; then, from.
~(w_+0 )t
terms of e d y Wwe obtain
d € Bfg 1 P
R m = T+ ) * E . .18
~ly~e m  Jv 2( P q) ===l (3.18)
~lw t
Simllarly, from terms of e P
of :
P = £_0,0 . 7P '
El,—l n T oy L(wp) E, (3-19)
~ilw -0 )t
and from terms of e P d
f;pq eafgl EP
s = = == L{w_ - ¥ .20
Lo T ney Eeptey TE, 320

where the dyadic operator is given by

2
(vo=1w)  u + (vo= i) ®_ x u +»
E(‘D) - 1 = 1 —g = =g —g

(vl- iw) [(gl— iqn)2 + m:]

iy t
fi 1 is found from terms of e P to be the complex conjugate of
T ,q i(w_ 4w )t
o ; and f.’% 4is found from terms of e * % to be the complex
—l_y-l _1,2
P,q

con ate of £ 5

g =1,-2

To find the component fo 0 of fo, substitute the expansions
J 5

3.16 and 3.17 in equation 3.13 and equate coefficients of terms inde-

pendent of time. Neglect terms of higher order smallness. It is found



that

3mv2 oV Sk -1 -1,1 1 —-1,-1
_ l i V2 vlkT af0,0 e V3 vlm f } ( 21)
i M oy M 70,0 =
Bfo o
where the terms on the right are (—L) and are given in equa-
ot ‘coll
tion 3.9. Use the solution of _f:?_ 1 given by equation 3.19 and the
5=
solution of its complex conjugate _f_?_ 1" The solution of the differ-
2
ential equation 3.21 is sl
T 2KT
eff
fO’O = C.e | (3.22)
m
where T e Tl +_2e§M z: X
€ 3m“kT p=1

\)
n

2 2 B ol ¢ B o2 @ . gP . gP
(vi +e ) (vi+w +wg)§:__l §l+(vl- 3a, +mg)(9€ E-l)@g El) }

(v

=g
Hrold

2 2 2 2 2
o+ 0, +2u)pcng)(vl+ a)p+ @, = 2w_w )

2
+cnP)(v Oy

and Co is the integration constant to be determined from the elec-
tron density. Note that T 1s the temperature of the neutral

molecules whose distribution function has been assumed to be
O—JE-)B/Q Ne—Mv2/2kT

27kT
function with the molecular distribution function, we conclude that

. Comparing fo 0 of the electron distribution
>

the electrons are heated up by the electromagnetic waves from T +to
Tere
To determine Co we need the relation between the electron

density n(r) and its distribution function f . By definition
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n(r) = f £ adv

and the time-average electron density is found to be
g,

n(r) = hng Jﬂ ve f0,0 dv .
0

For convenience we shall relate the integration constant C0 to the
electron density n at a spatial point far from the influence of the

electromagnetic waves. From the above equation it is found that

_ m 3/2
Gy = n(EnKT) :
To find the other components f of the isotropic part

0,+1

fo , gubstitute the expressions 3.16 and 3.17 in equation 3.13 and
equate coefficlents of terms of the same exponentials in frequency.
Neglect terms of higher order of smallness. Then, from terms of

-im t
e P, it is found that

B P Vo . P
B s M + iw £ s e N w P 2
5t |coll YOl ™ B e AL (3.23)
P - P
hore | 0p-1) _ 13 {vg poa o gvm
8t [coll Ve ov M v M 0,=-1
ng 5
as given by equation 3.9. Under the condition | —2—=| << fr

ot coll p O,-1
the solution of equation 3.23 is found to be

fp ev afO 0 P
o= —_— v -[I,w - E J 24
0,-1  3ip m ov r =( p) mel, (3.24)
P
where the solution of 23 l- from equation 3.19 is used.
y=

A similar expression can be found for fg,l which is the complex
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P
fo’-l

To Justify the condition

conjugate of

s> ,
cprd <« w_fP
&5t [coll p 0,-1
oy SRV
use the approximate solution of fo 0’ namely Coe 2kT | From the
2>

relation between the electron density and its distribution function we

find that only .04% of the electrons have velocity greater than

3 Eﬁz m.Sec-l and only 2% of the electrons have velocity less than
1 /2kT 1

& / =
3 u;r-m.sec . Hence most electrons have velocity around E%E m.sec .

‘Take the value VE%EE for the electron velocity v , and use the

approximate solution of fO 0 and the solution of fg 1 in equation
’ ¥

3.24 to evaluate
P
SfO,-l
ot coll
It is found that the ratio
P
825 3
8t coll i
"
w M
P

mp 0’-1

10° 45 15" see

i

In the ionosphere ¥y

m 9.1 x 10-31 kg for electron

]

M b7 5 1028 kg for nitrogen molecule

and the angular frequency of broadcast signal
© =10° sec™’ ana up,

The ratio is found to be lO_h or smaller, and hence the inequality
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8E5 1 D
e << w T is Justified.
5t Jcoll p 0,-1

We shall justify the statement in Chapter I that the effect of
nonlinear phenomena due to spatial dispersion disappears if the elec~

tromagnetic waves are TEM waves. The additional terms which take into

. i¢] P,q
account the effect of spatial dispersion are fO,i].’ 31,12 and
fg’g . In an ionized gas which supports TEM waves, the electron gyro-
)

frequency Qg is found in Chapter II to be either zero, or parallel
or perpendicular to the propagation direction of the TEM waves, and by
definition of TEM waves the electric field of the waves is always per-
pendicular to the propagation direction. In the case where the electron
gyrofrequency Qg is perpendicular to the propagation direction, the
electric field of the TEM waves is also parallei to the electron gyro-
frequency. From the properties of the TEM waves, fg,-l is found
from equation 3.2k4 to’be zero and the other four terms are also found
to be zero. The effect of spatial dispersion disappears.

From the components of fo and El already found, the elec-
tron distribution function f can now be obtained explicitly in
terms of the electric field E and the electron velocity v . 1In

the next chapter we shall use the electron distribution function f

to derive conductivity tensors of a nonlinear ionized gas.
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Iv. CONDUCTIVITY TENSORS OF A NONLINEAR IONIZED GAS

To find the conductivity tensors of a nonlinear ionized gas the
convection current density in the weakly lonlized gas due to the dis-
turbing electromagnetic waves will be determined first from the
distribution functions of the charged particles. Then from the
relation between the phasors of the currént density and the correspond-
ing phasors of the electric field, the conductivity tensors of the
ionized gas as seen by the corresponding phasors of the electric field
can be obtained.

Since the mass ratio of an electron to an ion is extremely small,
an electron can respond to the external accelérating fie;ds much
faster than an ion can. Hence the ion convection current density can
‘be neglected in comparison with that of electrons in the derivation of
the conductivity tensors of the ionized gas. The electron density in

the velocity range from v to v +dv is £ adv w3

, and in one second
there are v f d3v electrons passing through a unit area in space in
the direction of v . The total convection current density due to the

electrons of all velocity is given by
J ==-e | vf d3v (k.1)
- - :

where the negative sign indicates the negative charge of the electrons.
Substitute the spherical harmonic expansion in velocity space for f ,

and the electron convection current density is

v & £
J == e.jn(v f +v :——;:E) v .
e -0 - ¥

In cartesian coordinate systems 1ts x-component is
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@
v
X
T ™ =8 Jﬁjij‘ vt o+ 77(vxflx + vyfly + vzflz) dvxdvydvz
-00

and similar expressions hold for the other two components Jey and

Jez . Since fo and El are functions of v only, and not the

components of v , and since they are isotropic in velocity space,

v f 3w wvE and v v f are odd functions in v_ . The inte=-
X 0 Xy ly x z lz x

gration of the odd functions over dvx from -oco0 to oo gives zero

2 2 2 '
value. Because flx depends on  v{= Ve + Vy + vz) and not on
the components vx, vy or vZ , 1t is obvious that

@ 2 2 ‘
vx vy
Ji]i]ﬁ ?7 flx dvxdvydvz =-J17i[-1r flx dvxdvydvz
-00 ; -0
jijg flx dvxdvydvz .

Hence

o
]

v2
X
ex -‘e_[‘ :r flx dvxdvydvz
-00
XQ
= vf dv_dv_dv
-3 xR Y = '
-0
In vector notation
e 3
'EUI"??&“
b
e 3
3f fdvf d¢v f sin @ de_

0

[l

i

. d
lnlle

]
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where ¢v and Gv are the angles in velocity space in the spherical
coordinate system. The integratlon over d¢v and d@v is equal to

hx . Consequently
@
bse 3
J =- - f voE, dv : (4.2)
O .

In Section 3.3 the components of f. of the electron distri-

38
bution function in an aﬁisotropic ionized gas were found, and now we
can find fl explicitly in terms of the electric fields of m elec-

tromagnetic waves and the physical parameters of the ionized gas.

Since El i1s a function of the collision frequency L which in turn
may depend on the electron velocity v , we should know the exact
dependence of v, on v before the electron convection current den-
sity J, in equation 4.2 can be evaluated. For the sake of simplicity
vy is assumed to be independent of v . Then the electron convection
current density Ee for m disturbing electromagnetic waves can be
easily evaluated from equation 4.2. Define the conductivity tensors

UP and Ef

by the equation

~iw t ; iw t
[ Pme P+ad-mne P (k.3)

Me

J (t) =
=z gop b= ==1

where g_? is the conductivity tensor of the ionized gas as seen by the

clockwise phasor E:Sl(-{) of the electric field of the p'bh vave and

cr.,l_) is that seen by the counterclockwise phasor gri(f_) . From the

solution of ._I_e obtained from equation 4.2, the conductivity tensors

_o_'P and UE in the above equation are found to be
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D A
o = {1+ —5—
i { m kT qzu:l

2 2.2 2 2,4 a 2 2 2 o] a
+ . +(vo- +m . . E
(vl +® )(vl ®_+o» )E 1 El ( 1 3wq ) (w E_l)(w 1)

X a
(v2+ 02) (vE + @ oo + 200 ) (Vratton - 2o o) 2 ()
17 17 % "% T e 117" g T Ta e
m & q -imqt
e v . .
i Z_: T [g(wq) _1_*]__1] e - (wp+ qu)
g=1
m " q] iuht
- L B3 v 1wy Ele ¥ oglera) (b.4)

where the dyadic operator lﬂm) has been defined in Section 3.3 and

= (@)

In the above derivation for _q? and gf , the approximation is
used
(Teff)3/2 o Wil Tepp = T
T 2 T
vwhere Teff is given by equation 3.22. Teff A T under the‘ assumption

that the electric field of the electromagnetic waves 1s not too strong.
In the expression 4.4 for _c_rP the first term __c_rL(wp) is the
conductivity tensor of a linear ionized gaé as given by equation 2.3
for the clockwise phasor of the electric field of an electromagnetic
wave. Note that gL(mp) is the zeroth order term in the expression
for o- . The second term on the right of equation 4.4 is due to the
heating effect on the electrons in the ionized gas by the passing elec=-

tromagnetic waves. The electron temperature 1s thereby changed from T

to T . . The last two terms on the right of equation .k are due to
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the dispersion term v - V}f in Boltzmann's kinetic equation 3.3.
These last two terms disappear when the electromagnetic waves in the
ionized gas are TEM waves because the electron gyrofrequency Qg and
the electric field phasors :a_il(_r_) have a special relation with the

propagation direction as mentioned in Section 3.3.
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V. NONLINEAR PHENOMENA IN A WEAKLY IONIZED GAS

In the previous chapter we found the conductivity tensors of a
nonlinear ionized gas. In additlon to the constant terms glf&b) and
:giﬁmp), the conductivity tensor gﬁ from equation (L.4) and its
complex conJjugate EE contain terms which depend on the electric field
of the disturbing electromagnetic waves in the ionized gas. The
dependence on the electric field will lead to nonlinear phenomena.
Here we shall study nonlinear phenomena in two cases: (1) the effects
of nonlinear phenomens on the eléctric field due to self-interaction,
and (2) the effects of nonlinear phenomena on the electric field of a
weak wave due to mutual interaction with a strong wave.

We shall solve Maxwell's equations with the electron convection

current density I given by equation 4.3, for the electric field of

the waves by means of a perturbation method.

5.1) Nonlinear Effects Due to Self-Interaction

In the lonized gas two of Maxwell's equations describing the

fields of an electromagnetic wave are

OH
VIE T
OE
VxHE = J +€ 5 - (2.4)

Eliminate H from the above palr of équations to give the vector wave

equsation

- poeo —45 , (5.1)
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In the study of self-interaction only one electromagnetic wave
is assumed to be present in the ionized gas. Similar to the represen-
tation of the electric field of the wave by the actual physical
electric field as in Chapter III, the electrié field vector can be

written as a sumiof two phasors as

E(r,t) = E-(x,t) + Ei(z,t) (5.2)

where the negative sign stands for a clockwise phasor and the positive
sign stands for a counterclockwise phasor. With this representation
5.2 for the electric field E(r,t), the electron convection current

density ge in equation 5.1 can be written, from equation 4.3,as
I (z,t) = o - E_+0+. E, (5.3)

where the conductivity tensor o¢. 1is given by equation 4.4 for one

wave in the ionized gas, and g, 1s the complex conjugate of o. .

Since the conductivity tensors o, are functions of the electric
field, we can solve the vector wave equation 5.1 using a perturbation
‘method by expending each phasor of the electric field into a series,

namely for the clockwise phasor

-iwt
E-(z,t) = {E_l(z) + a4 (2) + } e
-12wt
+ E_e(z) e TEPT 4 .l (5.4)
where ﬂ-l and E; are correction terms to take into account the

terms in 0. +which are dependent on the electric field. a7 is the

correction term for the wave form distortion due to the heating effect
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on the electrons, and corresponds to the second term on the right of
equation L.k. 1q L will be found to be proportional to the third

power of the amplitude of the electric field of the wave. is the

Eo
correction term for the harmonic wave generation due to the dispersive
effect and corresponds to the third term on the right of equation k4.lL.
It arises indirectly through the dispersion term v - V}f in Boltz-
mann's kinetic equation 3.3 and will be found to be proportional to
the square of the amplitudé of the electric field of the wave. Higher
order terms in the expansion 5.4 have been omitted under the assumption
that the electric field is not too strong. .Since the contribution of
the fourth term on the right of equation 4.4 to the clockwise phasor
of the electric field is of higher order, there is no term in the
expansion 5.4 of E.(r,t) to take into account the fourth term of
the conductivity tensor o. in equation L.4. An expansion similar to
equation 5.4 is used for the counterclockwise phasor E.(r,t).

To solve the vector wave equation 5.1 for the electric field
E(r,t), substitute the expansion 5.2 for E(r,t) and the expression
5.3 for ge(zjt) into equation 5.1. Because of the orthogénal

+iwt +1 2wt
e

properties of e~ and , equation 5.1 can be separated into

two equations containing E-(r,t) and E4(r,t) respectively, namely

5 .
VXVXE- - _uo E(_E:'-E-") - uoeogz— (5-5)
and
VEV L E =« K E(gj'ﬁﬂ '“oeo';—'é . (5.6)
t

Since equation 5.5 and equation 5.6.are similar, and g¢. is the com-

plex conjugate of o4 , we find that E- 1s the complex conjugate of
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E; . Hence we shall consider only the clockwise phasor E, in this

and the next chaptersg.

To find E.(r,t) substitute the expansion 5.2 for E.(r,t)

and the expression 4.4 for ‘g; into equation 5.5. Equate the coeffi-

-1wt
cients of terms of the same time dependence, namely e and

-i2
e e Equate further the coefficients of terms of the same order

in equation 4.k for g_ 1is one

of magnitude. Note that the term EL
order larger than the rest in equation 4.4, and the term E, in

equation 5.4 for E. 1is one order larger than the rest in equation

5.4. From equation 5.5 the following set of equations is found

V xVx B~ “’EMO gL(w) *E, =0 O
2
VxVxg -ou €@ “q = QE -E)E, (5.8)
and
2
VxVxE, -hou €, (20) By R(E_;) ‘E_ (5.9)

where EI, is the dielectric tensor of a linear ionized gas for an

electromagneﬁic wave with carrier angular frequency w . The dyadics

on the right of equation 5.8 and equation 5.9 are given by

e2M

mekT

YE " E) - 1oy

2 2 2 2 2 2 2 2
. i = - B w B
(Vl +w )(vl+w + a)g) E,E (Vl 3w 'HDg) LU_)g "‘--l) (—g -l)

X
2 2 2 2 2 2 2 2
(Vl+ua)(vl+m'+wg+2ww£(vl+w-+wg-2mmg)

Qun:e R HORE R FNCD
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and

(vl- i.a.>)2 u o+ (vl- iw) @, XU+ Eg @,

]

L(w)
- (vl- iw) [(vl- im)2 + wi]

where ¢ (m) is the conductivity tensor of a linear lonized gas for
an electromagnetic wave with carrier angular frequency w .

Equation 5.7 is identical with equation 2.7 as 1s expected
gince it 1s the equation for the zeroth order solution for the clock-
wise phasor E—(E’t) of the electric field of the electromagnetic
wave. Without any loss of generality, we take the propagation direc-
tion along the z-axlis and the external magnetostatic field in the y-z
plane at an angle © with the z-axis as shown in Fig. 1. Then the
solutions of equation 5.7 are given by equation 2.11 for an ordinary
wave, and by equation 2.12 for an extraordinary wave. The spatial
dependence of g_l(z) is exp(ikz) and that of the counterclockwise
phasor El(z) vwhich is the complex conjugate pf E_I(E)‘ will be found
to be exp(-ik*z). .

To solve equation 5.8 for the correction term ﬂ_l(g) note
that the spatial dependence of the forcing- term .gﬂg_l' El) . E—l on
the right of equation 5.8 is. exp 1(2k - k¥)z . Hence the particular
solution of equation 5.8 for 3_1(5), will have the spatial dependence

of exp i(2k -k*)z . If the abbreviated dyadic notations

'—_":'-l = A -k*)e (e 8y + Eyf-y) - mel‘Lo _—E.L(m)
“and
.
B = (5—1)

are used, then the particular solution of equation 5.8 is
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@ - 8 [aEy ) n] (5.10)

Similarly, the spatial dependence of the forcing term

R(E l)' E , on the right of equation 5.9 is exp(i2kz). Hence the

particular solution of equation 5.9 for E _,(r) Wwill have the spatial

dependence of exp(i2kz). If the abbreviated dyadic notations

Lo Wlee, v22) - o, g ()
and
A= (Zp)™h

are used, then the particular solution of equation 5.9 is

il =‘=a1

20 = 2,56, £ (5.12)

In equations 5.10 and 5.11 the propagation constant k 1is to be taken
as ko if the wave is an ordinary wave and as .ke if the wave is an
exﬁraordinary wave.

We have solved the vector wave equation 5.1 for the electric
field of an electromagnetic wave in a nonlinear ionized gas. From
equation 5.4 the effects of nonlinear phenomena on the electric field
of the wave are shown to be wave form distortion from the correction
term _T]_l(_x_')e-imt and harmonic wave generation of second harmonic
fréquency from the correction term E_E(E)e-izwt . When the complex
propagation constant k is written explicitly as (B +ic) where B

and ‘¢ are the real positive phase constant and the real positive

attenuation constant, respectively, then



55

ik = - + iB
i(2k -k*) = -3a + ip
and i2k = - 2+ 128 .

From equation 5.10 the wave form distortion is found to be proportional
to the third power of the amplitude of the electric field of the wave
and the attenuation constant 3a of the wave form distortion is three
times that of the electric field. From equation 5.11 the harmonic
wave is found to be proportional to the square of the amplitude of the
electric field of the wave and the attenuaﬁion constant 2a of the
harmonic wave is twice that of the electric field. Higher order cor-
rection terms in the electron distribution function £ will certainly
lead to further corrections to both the wave form distortion and the
harmonic generation expressions. These higher order correction terms
are found'to be proportional to the third or higher power of the amp-
litude of the electric field of the wave.

In Figure 3 an antenna is located in a nonlinear ionized gas
in the presence of an external magnetostatic field Eo . The antenna
is excited by a monochromatic source of angular frequency w . In
the far zone the eiectric field due to the source has Just been found
in terms of that in a linear ionized gas. For convenience the clock=-

wise phasor of the electric field in the far zone is rewritten here:

E—(E;t) ={‘_E__]§E‘_) + ﬂ-l(E) £ m win }e_i‘m; e E_E(.‘E)e-iewt+ S

where E. l(_r_)e‘j“’t = clockwlse phasor of the electric field in a

linear ionized gas as given in Section 2.3



56

=

=)

Vct.e_hbt

source

Fig. 3. Wave propagation in a nonlinear lonlzed gas

due to self-interaction
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and E (z) = 11}_2'[2(.@.- 1+ E_l]

The dependence of the correction terms ﬂ_l(z) and, _@_2(5_) on the
clockwise phasor _]g:__l(s_) and its complex conjugate :E-l(E) is
explicitly indicated.

If the wave is originally amplitude-modulated with a modulation
angular frequency Q and a modulation index u , and if Q << w , then
a quasi-stationary approximation can be used to solve the vector wave
equation. The sclution of the electric field of the wave can be found
from the previous solution by replacing each E-l or El by
E_l(l + p cos Qt) or El(l + p cos Qt) respectively. Use the trigo-

nomentrical equalities

I

(L+p cos Qt)3 [(l + % p,2) + % p(h +p.2) cos Qt

+ g uzcos 20t + % u3 cos 3nt]

and

2 1L 2 y 2
(L+p cos Qt) =[(l+—2-u)+2pcosnt+§p cosEQtJ :

The effects of nonlinear phenomena on an amplitude-modulated wave are:
(1) from equation 5.10, that the wave is found to be modulated with

modulation angular frequencies Q, 20 and 30 ; and (2) from equation
5.11, that the harmonic wave 1s found to be modulated with modulation

angular frequencies Q and 20 .



58

If the modulation angular frequency  1is not small in com-
parison with the carrier angular frequency w , the quasi-stationary
approximation cannot be used. The clockwise phasor of the electric

field of the amplitude-modulated wave can be written as

" e—i(m—ﬂ)t+E e-iwt_l_EE e-i(cu+n)t

~-iwt K
E_l(l-ku cos Qt)e =5E_ E_q 5E .

Consequently the amplitude-modulated wave can be regarded as three
unmodulated waves having carrier angular frequencies (m-a), w and
(w+Q) respectively. The case for many waves present simultaneously
in the ionized gas will be discussed in the next section.

If the wave 1s a TEM wave, 5 is found‘to be zero because the
electron gyrofrequency Qg and the electric field phasor E‘lﬁz) have
a special relation with the propagation direction as mentioned in
Section 3.3. From equation 5.11 we find that the harmonic wave of
second harmonic angular frequency disappeafs. The effect of spatial
dispersion, corresponding to the term v - V}f in Boltzmann's kinetic

equation 3.3, 1s always absent for TEM waves in the ionized gas.

5.2) Nonlinear Effects Due to Mutual Interaction

In the study of mutual interaction one weak and one strong
electromagnetic wave are assumed to be present simultaneously in the
ionized gas. We are interested in the nonlinear effects due to mutual
interaction on the electric field of the weak wave. The nonlinear
effects due to self-interaction on the electric field of the weak wave
can be neglected in comparison with that due to mutual interaction.

The nonlinear effects due to self-interaction can be easily taken
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into account by including the results obtained in Section 5.1.
Superscripts (1) and (2) are used to distinguish parameters for
the weak wave (1) and the strong wave (2), respectively. Following the
arguments given in Section 5.1, we shall solve equation 5.5 for the
clockwise phasor E(l) of the electric field of the weak wave only,

since the counterclockwise phasor gil) is just the complex conjugate

of Esl) . The clockwise phasor Egl) can be expanded into a Fourier

series, namely

5 (z,8) - {Eﬁ)(z) £ 55) + }e ’

-i{w,+

1 £ -i(w

1,2 )

T (5.12)

The superscripts and subscripts of E's and 15's have the same

. 2
meaning as those of the components of f, in equation 3.17. 3ii 3
1,2 1,2
E_é and EO’ are correction terms to take into account the terms

(1)

in g¢. "which are dependent on the electric field of the strong wave
(2), and those dependent on the weak wave (1) have been neglected.

ﬂ}ie is the correction term for the wave form distortion due to the
heating effect on the electrons by the strong wave. ﬂ}ia will be
found to be proportional to the square of the amplitude of the electric
field of the strong ﬁave. Eiée and ‘Eé’e are the correction terms
for the harmonic wave generation due to the spatial dispersive effect.
They arise indirectly through the'dispérsion term v - V}f in Boltz-
mann's kinetic equation 3.3 and will be found to be linearly propor-

tional to the amplitude of the electric field of the strong wave.
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Higher order terms in the expansion 5.12 have been omitted under the
assumption that the electric field of both waves are not too strong.

To solve equation 5.5 for the clockwlse phasor (l) of the

—

electric field of the weak wave, substitute the expansion 5.12 for

6 ) il
EE )(Eft) and the expression k.4 for U( ) into equation 5.5. Equate

the coefficients of terms of the same time-dependence, namely

—hnlt -i(wl+ wa)t -i(ml~ mz)t
e 5 &8 , and e . Equate further the coeffi-

cients of terms of the same order of magnitude. Note that the term

glppl) in equation 4.4 for gsl) is one order larger than the rest
(1), ()

in equation 4.4, Terms containing 24_1 n o- are neglected in

comparison with those containing Eii). The term Egi) in equation

(1)

5.12 for E. is one order larger than the rest in equation 5.12.

From equation 5.5 the following set of equations is found.

ey

vxvxED ) B = 0 (5.13)

- €
2. "9y By

Sl

vx v x g2P ol g ) - g P = a@ D P ) (5.

1,2 e A2 1,2 (2) (1)
VEVXE 5 - (o), & (0+ o) B2 =R(E) B

2 = —T =1
' (5.15)
and
1,8, _ B _ o sl ® e (BY (1)
V xV x B’ (o @)k, Erlog- wp) BT = 8(B,7) B1]

(5.16)
where Elﬁm) is the dielectric tensor of a linear ionized gas for an
electromagnetic wave with 'a carrier angular frequency w . The -

dyadicson the right of equation 5.1k4, equation 5.15 and equation 5.16

are given by
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oM
mEkT
g 2.8 2 2 (B &) .8 8 &, _(8) -y
(vi+o) vy +oy +0,) B0 BT+ (v - 3ah+a) (@ E17) (0 °EY)
d 2 2 2 B 2 2 2 gL(wl)
2 .
(vl+ me) (vl+m2 *o 2w2wg) (vl+w2+ W, - 2u>2wg)

2@, 5 @) gpy

al o

@, Lot o2t oy

5(2- = W, g(m2) | EE?.)] g (u)1+ “’2)
( - Ju_e
E(E(E)) = - ﬁkr:fi.— e [ L(~p) * Eﬁa)J gl = 05)
and
2
g(m) ) (vl- iw) u o+ (vl- iw) 0, XU +O @

m
PRI ) |

(vi- io) [(v —iu.‘»)2 + W

where glpn) is the conductivity tensor of a linear ionized gas for an
electromagnetic wave with a carrier angular frequency w .

Equation 5.13 is identical with equation 2.7, as 1s expected,
since it is fhe equation for the zeroth order sclution for the clock-
wise phasor Egl)(z,t) of the electric field of the electromagnetic
vave (1). Take the propagation direction of both waves to be along the
z-axis and the external magnetostatic field in the y-z plane to make an
angle © with the z~-axis as shown in Fig. 1. Then the solutions of
equation 5.13 are given by equation 2.11 for an ordinary wave, and by

equation 2.12 for an extraordinary wave. The spatial dependence of

L
)

which is the complex conjugate of g(_]i) (r) will be found to be

(r) is exp(iklz) and that of the counterclockwise phasor Egg)(z)

.exp(-ik"l".z). Similarly, the spatlial dependence of the clockwise phasor
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2
E(l)(ﬁ) of the electric field of the strong wave will be found to be
exp(ikgz) and that of the counterclockwise phasor Eie)(r) to be

exp(ik;z). The propagation constant k, or k, can be k 1f the

wave 1s an ordinary wave and ke 1f the wave is an extraordinary

wave. ko and ké are functions of ®, or w, , respectively, for

the weak wave (1) or the strong wave (2).
To solve equations 5.14, 5.15 and 5.16 for the correction
2

terms ﬂ l ( %) 3 E (r) and @i’ (r) , note that their particular
solutions will have the same spatial dependence as the'corresponding
forcing terms as in Section 5.1. On the right of the three equations

2 1 2 1
the forcing terms Q(E( ). ( )) ( ) 5 R(E( )) E( ) and

(2)y. (1)

E(El ) E_, are found to have the spatial dependence of
' *
: - k
exp i(kl+ k, kE)z , exp i(
tively. Hence the particular solutions of equations 5.14, 5.15 and

) ke)z and exp i(kl- kZ)z respec -

5.16 have the spatial dependence of exp i(kl+ k2- k;)z »
exp 1(kl+ ka)z and exp i(kl— k;)z respectively. Their particular

solutions are

03w - A [g@f? ) - £ | (5.17)

2% - 472 [mED)- 5D ] (5.18)
and

2 - a2 [sE®) 5V] (5.19)

where the abbreviated dyadic notations are

é]--l [(k + k -k ) (_e_x_e_:_x+ 3y§v>_wl o & (a) )]-1
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1,2 2 2 wl
Ay = [(kl+ ka) (Exsx+ EyEy) - (cnl+ wa) T gL(wl+ ma)]
and
1,2 _ K _ _ _ ] -1
AT = [ ) (e e+ee) (ml w ) T _L(wl a)2) .

We have solved the vector wave equation 5.1 for the electric
field of a weak electromagnetic wave in a nonlinear ionized gas in
the presence of a strong wave. From equation 5.12 the effects of non-
linear phenomena due to mutual interaction on the electric field of
the weak wave are shown to be wave form distortion from the correction

1.2 —ﬂnlt
term g :l (E) e and harmonic generation of mixed frequencies
' -i(o,+ W)t ~1i(w_ -, )t
1,2 2
from the correction terms E J (r) e L "% and E-’ (r)e L

When the complex propagation constant k i1s written explicitly as
(B + i) where B and o are the real positive phase constant and
the real positive attenuation constant, respectively, then

lkl = = al + iﬁl

i(kl+ k.- K )

-(al+ 20:2) + 1B,

i(kl+ k2) = - (al+ az) + i(Bl+ ‘62)

and

1(k_ - k;)

3 - (al+ a2) + 1(51- 52) .

From equation 5.17 the wave form distortion is found to be propor-
tional to the square of the amplitude of the electric field of the

strong wave, and the attenuation constant (a, + 20@) of the wave form

1
distortion is greater than the attenuation constant al of the elec-

tric field of the weak wave. From equation 5.18 and equation 5.19,
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the harmonic waveé of mixed frequencies (wl 1;&2) are found to be
linearly proportional to the amplitude of the electric field of the
strong wave. The attenuation constant (a1+ Oé) of the harmonic
waves 18 greater than the attenuation constant al of the electric
field of the weak wave. The phase velocities of the harmonic waves
of mixed frequencies (ml + me) are found to be different from that
of the weak wave. Higher correction terms in the electron distribu-
tion function f will certginly lead to further corrections to both
the wave form distortion and the harmonic generation expressions.

In Fig. 4 two antennas are located in a nonlinear ionized gas
in the presence of an external magnetostatic field Eo . One of the
antennas is excited by a weak source of angular frequency w,
while the other is excited by a strong source of angular frequency
W, - The electric fields from the two sources interact mutually in
the nonlinear ionized gas. In the far zone the electric field from

the weak source has Jjust been found. The clockwise phasor of the

far-zone field of the weak source is rewritten here for convenience:

-iw_t
Esl)(z’t) - {E—(i)(:{.’) +_.Tll_,f (r) + - } e L
~i(w. + w,)t -1(w, -w,)t
CEF@e Y T aEfme P F L
where
-iw_t

E(l)(z) e L clockwise phasor of the electric field of
T the weak source in & linear ionized gas as
given in Section 2.3

1w = A '[3@5? - B2) -.E.(.ll’]



B - a5 [rE'd) 5]
and
o - 22 se® 5]

The clockwise phasor of the electric field from the strong source has
been found in the previous section. The dependence of the correction
terms ﬂ%jf(z) . E%i?(g) and Ei’a(g) on the clockwise phasors
E{}{(E) ‘of the weak wave, g(fg(z) of the strong wave and its complex
con jugate Eﬁf)(z) is explicitly indicated.

If the strong wave (2) is amplitude modulated with a modulation
angular frequency  and a modulation index p and if @ < W= Wy 5
then a quasi-stationary approximation can be used to solve the vector
wave equation. The solution of the electric field of the weak wave can
be found from the previous solution by replacing each EE%? or Eg?) by
E‘fz(l‘*“ cos Qt) or E&E)(l-ru cos Qt) respectively. Use the trigo-

nometrical equality i

2
(L+u cos Qt)2 = [(l—+%|¢ )+ 2p cos Qt +-% ugcos EQt}

The effects of nonlinear phenomena on the weak wave are: (&) from equa-

tion 5.17 that the weak wave is c:oss»modulated with modulation angular

frequencies Q and 20 , and (b) from equation 5.18 and equation 5.19

that the harmonic waves are modulated with a modulation angular fre-
quency Q -

If the modulation angular frequency Q of the strong wave is not.
small in comparison with the carrier frequencies wy and W, the

quasi-stationary approximation cannot be used. The clockwise phasor of
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to mutual interaction



67 '
the electric field of the amplitude-modulated wave can be written as

_ -iw t -i(w
Esi)(li-p cos Qt) e 2" s % E( )

Aot -
(2) m2 . n E(e) . i(w2+ﬂ)t
2 —=1 )

Consequently the amplitude-modulated strong wave can be regarded as
three unmodulated stroﬁg waves having carrier angular frequencies
(me_ Q), m2. and (m2+ Q) respectively. The effects of nonlinear
phenomena on the weak wave due to the mutual interaction with these
three waves can be found readily from the résult of this section.
If there are many waves, say m , present simultaneously in
the lonized gas, it is easy to extend the present result of the
effects of nonlinear phenomena on the electric field of one of the
waves due to both self-interaction and mutual interaction. For a
wave, say wave 1, its clockwise phasor EEl) of the electric field

can be expanded into a Fourier series, namely

E«_Sl)(_r_,t) = {E(i)(z) + f: .

+
g [
=

H
-
Lo}
~~
H
[(]
I--I
+
M
=
I—l
-
o]
~~
H
(1]

e S T T

where higher order correction terms have been omitted. In the above
summations the terms where p = 1 arise from the effects of nonlinear
phenomena due to self-interaction and the terms where p = 2,3,--*,m

- arise from the effects of nonlinear phenomena due to mutual
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interaction between wave 1 and wave 2, wave 3, *°*+, wave m , respec-
1 1 il
tively. The solutions for n’7 , E and E’P are given by

equations 5.17, 5.18 and 5.19, respectively, where p = 2. As

a el 1,1
expected, 3_’1 and E_’e

tively, given by equations 5.10 and 5.11 in the case of self-interaction.

coincide with iy and E_g s respec-

151
Note that E 6 is found to be zero and is omitted in equation 5.L.
If the m waves have different propagation directions, the

LP El’p and El’P are still similar to those

correction terms 7 -1 *E_ 5 £,

given by equations 5.17, 5.18 and 5.19, respectively, except that the
definitions of the dyadics é will be more complicated than those given
previously for waves having the same propagation direction along the
z~axis. The same effects of nonlinear phenomena, namely wave form
distortion and hérmonic wave generation, still exist.

If the pth wave is a TEM wave, the dyadics 5(_3_‘_’1) and E(Ei)
are found to be zero because the electron gyrofrequency Qg and the
electric field phasors EEIFE) of the pth wave have a special relation
with its propagation direEEion as mentioned in Section 3.3. From equa-
tions 5.18 and 5.19, where p = 2, we find that the spatial dispersive
effect of harmonic wave generation on wave 1 due to mutual interaction
with the pth wave disappears if the pth wave is a TEM wave.

We have found the electric field of a wave in a nonlinear ion-
ized gas where other waves are simultaneously present, and we shall use
the solutions of the electric field of the waves in the ionized gas to
find the reflection of the waves from the nonlinear lonized gas in the

next chapter.
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VI. REFLECTION FROM A NONLINEAR IONIZED GAS

In Chapter IV it was found that the conductivity tensors of a
nonlinear ionized gas depended on the electric field of the disturbing
electromagnetic waves. The reflected waves from such a nonlinear
ionized gas will no longer be linearly proportional to the incident
wave. In order to simplify the mathematics we shall examine reflected
waves of normally incident waves only. We study nonlinear phenomena
in the reflection from a nonlinear ionized gas of semi-infinite extent
in two cases: (1) reflection of a wave from a nonlineaf ionized gas,
and (2) reflection of a weak wave from a nénlinear ionized gas in the

presence of a disturbing strong wave.

6.1) Reflection of a Wave

When a plane electromagnetic wave from free space falls on the
interface between free space and a linear ionized gas as in Section 2.k,
there are two reflected waves in free space, one of which has its elec-
tric field parallel to that of the incident wave, while the other has

its electric field perpendicular to that of the incident wave. 1In the
| linear ionized gas on the other side of the interface, there are two
transmitted waves, namely the ordinary and the extraordinary waves.
Because the conductivify tensors of the nonlinear ionized gas depend
on the electric field of the waves present, the ordinary and the extra-
ordinary waves will interact with each other in the nonlinear ionized
gas. Their electric fields will be distorted and harmonic waves will
be generated which_have been found in Section 5.2. The above nonlinear

effects modify the coefficients of reflection from the lonized gas.
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Consider a plane electromagnetic wave which is normally inci=-
dent on the interface separating the free space from that occupied
by the nonlinear ionized gas. The gas is still assumed %o be
externally biased with an obligue magnetostatic field. Choose the
cartesian coordinate system as shown in Fig; 2 for the incident wave
and for the external magnetostatic field. The nonlinear ionized gas
is assumed to occupy the half-space z > 0.

As mentioned in Section 5.1, the clockwise phasor of an elec-
tric field of a wave is always the complex conjugate of the
corresponding counterclockwisé phasor. Hénce we shall solve only
for the clockwise phasor of an electric field, since the counter-
clockwise phasor can be found readily from the clockwise phasor.

In the nonlinear ionized gas the effects of nonlinear phenomena
will distort the wave forms of the two transmitted waves, namely the
ordinary and the extraordinary waves, and will generate harmonic
waves at the second harmonic frequency. To preserve the notations
used in Chapter V, superscripts (1) and (2) are used to distinguish
the ordinary wave (1) from the extraordinary wave (2). The clockwise
phasor of the electric field of either wave can be expanded, accord-

ing to Section 5.2, as
E_(r,t) = {g_l(z) + ) 2 (x) + } e
ol

2
~-i2wt
+ Y ERP) e v eee (6.1)
IF:l Lo -

where q = 1 or 2.
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The terms Z E_%’ p(_:_c‘_) are absent because both transmitted waves
p=1
have the common carrier angular frequency w . From the vector wave

equation 5.5 for the clockwise phasor of the electric field, the fol-
lowing set of equations 1is found for the clockwise phasor of the

electric field of the qbh wave, according to Section 5.2

VXxVx _}_E‘,fl - wap.o __C-;L(m) . 5?1. = 0 (6.2)
q,p o e 4GP _ P . Py, 4
and
a4,P 4P _ P
VxVxE’S lw.)u £.(20) - ETS = R(EZ,)" —-1 (6.4)

where EL(‘D) is the dielectric tensor of a linear ionized gas for an
electromagnetic wave with an angular frequency ® . The dyadics on

the right of equations 6.3 and 6.4 are given by

Q Eu EP) iop - EEM_

= o] 2

m KT
2 2 2 2 2y P . P 2 2 2 . P . P
(vl+m )(vl+w % mg) s B +(vl—3m =2 mg)(o_:u_g E—rl) (@g gl)
X . . g, (@)
= S 2 2 2 =
(vi+@ )(vl+w + mg+2¢uwg)(vl+m + o, - Ewmg)
2u e ’
D _ (o) . s o
RE,)) = /Y [2(‘,") E:--1] 3 (20)
el =
. i (vl m)u+(vl iw) ng3+(£g9g
L(w) 5
(vl- iw) [(vl- iuo) + 0, ]

where orL(m) is the conductivity tensor of a linear ionized gas for

an electromagnetic wave with an angular frequency w .
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The solutions of equation 6.2 have been found in Section 2.3.
For the ordinary wave (1), the solution is given by equation 2.1l
(0).

with an undetermined coefficient AO ; and for the extraordinary

wave (2), the solution is given by equation 2.12 with an undeter-

mined coefficient Aéo) . The superscript (0) is used to distinguish
the undetermined coefficients of equation 6.2 from those of eguation
6.3 and equation 6.4, where superscripts (1) and (2) are used,
respectively. The two other solutions of equation 6.2 are for waves
traveling along the negative z~-direction énd they have the spatial
dependence exp(=-ikz) = exp(a - ip)z whiéh increases with increasing
z . At z = o0, the radiation condition requires that all waves be
finite and be zero in a lossy medium. Hence these two solutions of
equation 6.2 will be omitted.

The particular solution of equation 6.3 is given by an equa-
tion similar to equation 5.17. Although equation 6.3 represents a
set of four equations with g or p denoting (1) or (2), the com-
Plementary solutions to these four equations are similar to the
solutions of equation 6.2. These complementary solutions are given
by equations 2.11 and 2.12 with two undetermined coefficients for each
equation. We shall combine the four ordinary waves into one ordinary
wave with an undetermined.céefficient Li), and the four extraordinary
vaves into one extraordinary wave with an undetermined coefficient
A(i).

Similarly, the particular solution of equation 6.4 is given

by an equation similar to equation 5.18. Aga) and Ag?) are the

undetermined coefficients in equations 2.1l and 2.12, respectively,
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for the resultant ordinary and the reéultant extraordinary waves of
the complementary solutions of equation 6.4. Note that the carrier
angular frequency in equation 6.4 is 2w which should be used in
equation 2.11 and equation 2.12.

In free space on the other side of the interface we shall
choose a normally incident wave whose electric field makes an angle
¢ with the x-axis as shown in Fig. 2, and whose clockwise phasor of
the electric field has an amplitude Ai . The clockwise phasors of

the electric field and the magnetic field in cartesian coordinate

gystem are

\
E, = cos @
B = sl
y o p |
B, i(kfz -wt)
$ A e (6.5)
k '
H = - 1 sin ¢
k
B, = L cos ¢
® P
H = (0] =
zZ

where kf =W “oeo is the propagation constant in free space.

Tn order to solve the boundary problems we shall look for
reflected waves such that the incident wave, the reflected waves,
and the transmitted waves satisfy the boundary éonditions at z =0 .
When wave form distortion and harmdinc wave generation in the trans-
mitted waves due to the effects of nonlinear phenomena are taken into

account, the clockwise phasors of the fields of the two reflected
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waves are

. ~
E, cos {
E = sin
" ¢
E = 0
: ( )
-i(k_z+ot
0] 2 -
k. > A [Ri(l )+ Rﬁl‘)+ R?i ) e i“’t] e = (6.8)
H = sin ¢ :
X W
8]
k
: T s ¢
g ® by
Ho= 0 J
Z
and
'\
= - 8i
E, sin @
E = COoB
, = con g
B = 0
) ( )
-i(k_z +wt
ke & A [R(O)+ r(1), g(B)-tot] e (6.7)
H = cos @ iLTL i 4 , s
X W P
k
H = L ain @
¥ w IJ-O
H = O 7

The two coefficients of reflection from a nonlinear ionized gas are

o o) afp

i

gl

and

o3}
i

i = Rio) + Ril)+ R(f) e_?nt . | (6-8)
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R?F) and RS?) are the same as the coefficients of reflection from a
linear ionized gas and have been found in Section 2.k. R?%) and Rg})
are correction terms due to wave form distortion in the transmitted
waves, and will be found to be proportional to the square of the ampli-
tude of the incident wave. R(?) and Rg?) are correction terms due to
harmonic wave generation in the transmitted waves, and will be found to
be linearly proportional to the amplitude of the inclident wave.

At the interface =z = 0 the boundary conditions are such that
the taggential component of the electric field is continuous and that
the tangential éoﬁponent of the magnetic field is continuous. We match
the x- and the y-components of both the electric and the magnetic
fields of the incident wave and the reflected waves with those of the
transmitted waves. Equate the coefficients of terms of the same time
dependence of e—jﬂ)t and e—ith . Bquate further the coefficients of
terms of the same order of magnitude. We obtain the following equa-

tions in matrix notation

r‘Jﬂ\hiJEi(I?)ﬁ‘ [ - cos @ A
[M ] St T e
) At i k, sin ¢
o b _
_Aio) B | kg cos @ R 5 (6.9)
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and

[.)

where the matrix is

(]

In the matrix [M l] 3 K

™

b4

k sk, R

76

{ Q;P(o) }

o],

(k+ k- k;) {nfiP(o)}

- (e+ k- X¥) { q’p(o)}

{EVZ(0)]

{ Q:P(o)}
¥
(kq+ kP) {E‘(}ép(o)}

L -Ce+ k) {E35P(0)

and R
e

-ik R
oo

(6.10)

(6.11)

are functions of w

and have been found in Sections 2.3 and 2.4. In the matrix [M 2}

they are functions of 2w .

tively.

the ionized gas, and

{1(1’1’(0)}:(

ERd { Q;P(O)}

x- and the y-components of &q’P(z) evaluated at z

are the
= 0 respec-

is the propagation constant of the transmitted waves in



=
e
]

te]
I
(=

q,p 9,P . »
{E—E (O)}x and {E-E (O)}y are the x- and the y-components of
Eqép(z) evaluated at z =0 .
When Ai = 1 equation 6.9 is identical with equation 2.17, as
is expected, since it is the equation for the zeroth order solution

for the reflected and the transmitted waves. R%?), Ri?), AE?) and

(0)

Ae are found to be
/(0 _ _ (k k- ki)(Ro- R )+ (k= k )k, (R + R, )cos 2f
. (ki + ko) (k + k) (R - R))
R(O) . (k- ke)kf [24—i(RO+ Re) sin 2¢]
i1 (};O+ kf)(ke+ kf) (Ro- Re)
A(O) ) Eikf(cos @ + irR_sin @)
° (k_+ k.) (R - R) i
and i 2ik_(cos @ + iR sin @)
A = - L . A .

(kgt kf) (RO— Re)

From equation 6.2, equation 2.1l and equation 2.12 E», 1is found to

==1
(0)

be proportional to A if g =1 and 'AE?) if g =2 . From the

above expressions for A(O) and A(O) > We find that Eq

o = is, in

1
turn, linearly proportional to A

1 1 1
R( ), RS_), Ag
inverting the matrix [M l] . Because of the long and complicated

1
)‘and Agi) can be found from equation 6.10 by

solutions for R%%), Rsf), A&}) and ‘Agl), we shall not give their

solutions here. From an equation similar to equation 5.17 the
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correction term nqip

3

i

is found to be proportional to (Elj]_ E?_)E?]_

(1)

. From equation 6.10 Rll and Rgf) are found

2 1 1
to be proportional to Ai , and Ai ) and Aé ) proportional to Ag "

' 2 2
Similarly, R(||2), R(f), Ar(J ) and A((a )

tion 6.11 by inverting the matrix [M-E] . However, thelr long and

and hence to A

can be found from equa-

complicated solutions will not be given here. The correction term

Eq,p on the right of equation 6.11 is found to be proportional to

' 2 2
: Ai and leads to the result that Rﬁl) and RSL) are proportional to

A, , and A(z) and A(e) are proportional to A2
i ¢} e i

The results Just obtained can be applied to the case shown in
Fig. 5. An antenna 1s located in free space and 1s directed toward
a nonlinear ionized gas of semi-infinite extent. The gas is assumed
to be in the far zone of the antenna. When the plane incident wave
from the antenna falls on the gas, there will be transmitted waves
in the gas and reflected waves in free space. For convenience the

clockwise phasors of the electric fields of the incident and the

reflected waves are rewritten here:

i(kfz«nt)

]

clockwise phasor of E, . {gxcos g + gysin ¢}.Aie

-i(kfz«nt)

clockwise phasér of _}E” {gxcos g + Eysin ¢}A1R” e

—i(ku-Kl)t)
clockwise phasor of E.L = {— e sin @ + g, 008 ¢;A1RL e
where R|| - R%?)+ R%T)(Af) % R?F)(Ai) g
o glo) (1), ,2 (2) —twmt
and RL = 3l + R (Ai) + BL (Ai) e .

Note the dependence of the correction terms in RII and BL on the
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Fig. 5. Reflection of a wave from a nonlinear ionized gas
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amplitude A1 of the clockwise phasor of the electric field of the
incident wave.

Ffom the coefficients of reflection given by equation 6.8 we
conclude that in free space the amplitudes of the reflected waves are
distorted and waves of second harmonic frequency are generated which
are all due to the effects of nonlinearity in the ionized gas. If the
incident wave is amplitude modulated with a modulation angular fre-
quency Q and a modulation index pu , the quasi-stationary solutions
for A Rll and A R(l) are found to be proportional to
Af(l + W cos m:) and those for AiR(HE) and A R(a)

1L
A?(l + U cos ﬂt)z. The reflected waves are now modulated with modu-

proportional to

lation angular frequencies Q, 20 and 30, and the harmonic waves are
modulated with modulation angular frequencies ( and 2Q . If the
direction of the external magnetostatic field is parallel to the
propagation direction of the incident wave, || =0 = R(g) and

there will be no harmonic waves.

6.2) Reflection of a Weak Wave in the Presence of a Disturbing Strong

Wave

In this study of reflection from a nonlinear lonized gas, a
weak and a strong electromagnetic wave are assumed to be incident
simultaneously on the interface between free space and the nonlinear
ionized gas. The weak incident wave gives rise to two weak transmit-
ted waves in the ionized gas and, similarly, the strong incident wave
gives rise to two strong transmitted waves. We are interested in the

effects of nonlinear phenomena on the reflected waves of the weak
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incident wave due to mutual Interaction between the weak and the strong
transmitted waves, neglecting that between the two weak transmitted
waves., The electric fields of the weak transmitted waves are found in
Section 5.2 to be distorted and harmonic waves are generated. The
above effects of nonlinear phenomena, in turn, modify the coefficients
of reflectlon for the weak incident wave.

For simplicity consider two plane electromagnetic waves which
are normally incident on the interface separating the free space from
that occupied by the nonlinear ionized gas. Choose the cartesian
coordinate system as shown in Fig. 2 for the weak incident wave and
for the external magnetostatic field. The strong incident wave is
assumed to propagate along the z-axis and its electric field is
assumed to make an arbitrary angle with the x-axis. The nonlinear
gas is assumed to occupy the half-space z > 0O .

As mentioned in Section 5.1, we shall solve for only the
clockwlse phasor of the electric field -of a wave, since the counter-
clockwise phasor is the complex conjugate of the clockwise phasor and
can be found radily.

To preserve the notations used in Chapter V superscripts (1),
(2), (3) and (4) are used to denote the weak ordinary wave, the weak
extraordinary wave, the strong ordinary wave, and the strong extra-
ordinary wave, respectively. Because of the effects of nonlinear
phenomena in the lonized gas, the clockwise phasor of the electric
field of elther weak transmitted wave can be expanded, accqrding to

Section 5.2,as



b -im_t
EXNr,6) = {ES () + ¥ alP@ 4o ye *
- { o 1;3 ) }
+ Zh: EQ:P(I.) e-i(ml+ w3 g }% EQ:P(r)e-i(wl—w:ﬁ)t
p=3 P=3 . (6.12)

where q = 1 or 2, and the angular frequency of the weak transmitted

waves (1) and (2) is w, , and that of the strong transmitted waves

(3) and (%) is m3 . In equation 6.12 the terms with p =1 or 2 in

the summations are absent because these terms are due to interaction
between the two weak transmitted waves and have been neglected. From
the vector wave equation 5.5 for the clockﬁise phasor of an electric
field, the following set of equations 1s found for the clockwise phasor

of the electric field of the gth weak transmitted wave, according to

Section 5.2
2
v T € L B
/X VX E3] = O B =L((Dl) B 0 (6.13)
a4,P 2 . GP_ 1 .l
VxVx it .o Sle) it QED (B EL (6.14)
VrVxEY? . (o+ro) e (o+o) BUP - g(EP.). BY. (6.15)
2.0 1 3 o=L"1 3/ =2 ='=—=1" =1
and
LP - 2 E . 'y - 74
VxVXE (aol m3) M eL(u)l m3) E = g(_E_ﬁ) B (6.16)

where gq = 1 or 2 stands for the weak ordinary or the weak extra-
ordinary wave, respectively;

and P 3 or 4 stands for the strong ordinary or the strong

extraordinary wave, respectively.
eISm) is the dielectric tensor of a linear iconized gas. The dyadics
=

on the right of the above equations are given by
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e2M /
(8, " EY) = lwpm_ *
QE,, " E o " B

5 B.8 5 = 2 2 2
X (v +03) (vy +ogvay) By By + (V) - 3ug+ ) (o By (- ) o (o)
=L 1
p B2 a p 2,8 8 @
(v] +w3)(vl+ (.u3+mg+2w3 u)g)(vl tagto - 20_)3 mg)
(w.+ w,) ue
Py o i 3 9 . P -
RE) om [z < 2 ] oyt o)
(w = ®) u_e
P et 1 3 O . . < _
S(g;) = — v [2(.&3) gl] o (w. - )

3 =;l 3

where Ulﬂm) is the conductivity tensor of a linear ionized gas, and

2
(v.-iw)  u+ (vi- 1) @ X u+0 o
) u 1 = 2T e B
L) - —2 = g g g

(vl- iw) [(vlu im)2 * m: }

This set of equations 6.13 to 6.16 1s similar to the set of

eguations 6.2 to 6.4 in Section 6.1. The complementary solutions are

given by equation 2.11 for the ordinary waves and by 2.12 for the

extraordinary waves. Aéo) and Aéo) are the two undetermined coef-

1)

ficlents for the solutions of equation 6.13. Aél) and A( are

e

the two undetermined coefficients for the complementary solutions of
equation 6.14% whose particular solution is given by an equation similar

(2) (2)
to equation 5.17. A "’ and A

" are the two undetermined coeffi-

cients for the complementary solutions of equation 6.15 where the
angular frequency 1is (mlf m3). The particular solution of equation

6.15 is given by an equation similar to equation 5.18. Aé3) and
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Aé3) are the two undetermined coefficients for the complementary solu-

tions of equation 6.16 where the angular frequency is (.- w3) . The

1
particular solution of equation 6.16 is given by an equation similar
to equation 5.19.

In free space, on the other side of the interface, we shall
choose a weak, normally incident wave whose electric field makes an
angle ¢ with the x-axis as shown in Fig. 2, and whose clockwise
phasor of the electric field has an amplitude A v The clockwise
phasors of the fields in cartesian coordinate system are given by
equation 6.5. |

In order to solve the boundary problems we shall look for
reflected waves such that the incident wave, the reflected waves and
the transmitted waves satisfy the boundary conditions at z =0 .

When wave form distortion and harmonic wave generation in the two weak
transmitted waves due to the effects of nonlinear phenomena in the
nonlinear ionized gas are taken into account, the clockwise phasors of

the fields of the two reflected waves are given by equations 6.6 and

6.7 with the coefficients of reflection

RIS (- J - N - e o o
I I Il
and ' s, S5 &
R = R(O)+-R(l)+ R(E) e 4 3(3) e 3 3 (6.17)
. 1 L L :

Rif) and Rg?) are the same as the coefficients of reflection from a

(1)

linear ionized gas, and have been found in Section 2.k. er and

R(l)_ are correction terms due to wave form distortion in the weak
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transmitted waves, and will be found to be proportional to the square

' 2 2
of the amplitude of the strong incident wave. Rﬁl), Ri-), R%?) and
(3)

R are correction terms due to harmonic wave generation in therveak
; 5

transmitted waves, and will be found to be linearly proportional to
the amplitude of the strong incident wave.

At the interface z = 0 the boundary conditions are that the
tangential components of the electric and the magnetic fields are con-
tinuous. We match the x~ and y=-components of both the electric field
and the magnetic field of the weak incident wave and the weak reflected
waves with those of the weak transmitted wéves. Equate the coeffici-

-iw.t -i(wl+ m3)t

ents of terms of the same time dependence of e & y € ~and
~i(mlﬁb ¥t
e 3 . Equate further the coefficients of terms of the same

order of magnitude. We obtain the following set of equations in matrix

notation
(O)W [ - cos @ N
[Ml AlRS_O) B - sin @
-1] Aéo) Sl i, sin @
L Aéo) = L k, cos § _J (6.18)
r Athl)ﬂ = {E?JP(O)}X T
[ i3 A R(l) z o ﬂq’P(O)
M-—l] 'y |= Zl 23 {_,_ }Y
g=1 p=
Ac(;l) (kq+kp—k;) { gﬂ’f(o)}y
» A((El) (kq+kp'kp) {ﬂciip(o)}xj

(6:19)
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— e
where
[ cos g ,
(] sin @ ,
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M=

o
A=

R L3O N
{227,

(kqfr kp) {E?ép(o)ky

L "(kq+ kp) {-E-c-lép(o)lx -

—

EE)P(O)}X =
Logi ol

(k- 65) { EIP(0)}

(6.20)

L Ag- ) {E57P(0)} ]

- sin g , iR, » iR,
cos @ , -1, -1
k. cos g, LS k_

ke cos §, -k,sin@, -ikR, -ikR,

(6.21)

5 .(6.22)

ko, ke, RO and Re are found in Section 2.4 to be functions of

angular frequency w which is different for the three wmatrices.

for [M§’3],

W
1l

W <
w
] I

=
I

k (o
o

k()

ke(m3)

w=Ww, - o

L

1

1

for [M%é3] g

L4

+ W H

1 3

)
for the weak transmitted waves
ke(w )

*

} for the strong transmitted waves,
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If Al = 1 equation 6.18 is identical with equation 2.17 as

is expected, since it 1is the equation for the zeroth order solution

for the weak reflected waves and the weak transmitted waves. R%f) and

z(0) C) - A(0)
L

are given by equation 2.18 and A are given by

(o] e

equation 2.19.

Since the correction terms R%ip are found from equations

similar to equation 5.17 to be proportional to the square of the ampli-

tude A3 of the strong incident wave, R%i), R(l), Aél) and Aél) in
-L i

equation 6.19 are found to be proportional to the square of the ampli-

tude A3 of the strong incident wave.

Since the correction terms g?’P from equations similar to

equation 5.18 and the correction terms .ES’P, from equations similar
to equation 5.19 are found to be linearly proportional to the ampli=-
tude A3 of the strong incident wave, Rﬁf), Ri?), Aéz) and Agg)-
in equation 6.20 and R?F), Rié), A§3) and Aé3) in equation 6.21
are found to be linearly proportional to the amplitude A3 of the
strong incldent wave.

The results just obtained can be applied to the case shown in
Fig. 6. Two antennas are located in free space and are directed
toward a nonlinear lonized gas of seml-infinite extent. The gas is
assumed to be in the far zone of both antennas. One antenna is
excited by a weak source (1), and thereby produces a weak incident
wave at the far zone. The clockwise phasor of the electric field of
the weak incident wave has an amplitude A, . The other antenna is

L
excited by a strong source (3), and the clockwise phasor of the elec-

The

tric field of the strong incident wave has an amplitude A3 ¥
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strong transmitted waves interact mutually with the weak transmitted
waves in the nonlinear ionized gas. The weak reflected waves are
found to depend on the strong incident wave. For convenience, the
clockwise phasors of the electric fields of the strong and the weak

incident waves and the weak reflected waves are rewritten here:

. ] i [kf(cn3) z-<u3t]
. P 1 ]
clockwise phasor of strong E; . =|&,c08 @+ Eysin @ A3e
o ilk (o, )z-w_ t
clockwise phasor of weak E =|e cos @+e Sin-ﬂq A e [ f( l) 1 ]
—inc L—x -y 1
) . ik (0)z +o t]
clockwise phasor of weak E =|e cos §+e sin ¢] AR e £ 2 +ﬂi
=l | =x =y 1|
and [ (©.) ]
: ik (o, )z+w,t
clockwise phasor of weak E = [—e sin @ + e cos ¢] AR e =& =
=iw,t iw,t
where R|| = R( (lg(A ) + R(E)(A e 3%, R(3)(A e S
1 T | Il 3 I3
it im_t
ana R =319 4 W42+ r@ %) 3, rB Gy e 3.
L L M e L 3

Note the dependence of the correction terms in Rli and R on the
amplitude A3 of the clockwise phasor of the electric fleld of the
strong incident wave. "The clockwise phasofs of the electric fields of
the strong reflected waves have been given in the previous section.
From the coefficients of reflection given by equation 6.17 we
conclude that in free space the amplitudes of the weak reflected waves
are distorted and waves of mixed frequencies are generated which are

all due to the effects of nonlinearity in the ionized gas. The weak

‘reflected waves depend on the amplitude Al of the weak incident
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wave as well as the amplitude of the strong one as indicated pre-
viously.

If the strong incident wave is amplitude modulated with a
modulation angular frequency Q and a modulation index p , the
quasl-stationary solutions for Ri?) and R(l) are found to be
proportional to Ag(l“ku cos Qt)2 and those for REF), Rig), R(S)

(3)

and R proportional to A (L+p cos Qt). The weak reflected
L

3
waves are cross modulated with modulation angular frequencies Q
end 2Q, and the harmonic waves of mixed frequencies are cross
modulated with modulation angular frequeﬁcy Q .

If the direction of the external magnetostatic field is paral-
lel to the propagation direction of the strong incident wave, the
strong transmitted waves will be TEM waves. The correction terms
@fép and gg’p with p = 3 or b will disappear and there will be
no harmonic waﬁes of mixed frequencies in the lonized gas or free
space.

If the effects of nonlinear phenomena due to the interaction
between the two weak transmitted waves are not neglected, the sum-
mation signs in>equations 6.19, 6.20 and 6.21 will be 2:
instead of : « The additional correction terms for ti:l
coefficientsng reflection Rll and Rl will be the same as the
correction terms found in Section 5.1. If there are many incident
waves present simultaneously, we can just extend the summation

signs in equations 6.19, 6.20 and 6.21 to cover all transmitted

waves.
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If the incident waves propagate along different directions, then
the matrices [M ] 's , the dyadics _j}‘s , the undetermined 'coeffici—
ents AO ’ Ae , etec. will be more complicated. We still find the same
effects of nonlinear phenomena, namely wave form distortion and
harmonic wave generation in both the transmitted and the reflected

waves.
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VII. CONCLUSION
In the study of nonlinear phenomena in the propagation of

electromagnetic waves in a weakly ionized gas and the reflection
from the weakly ionized gas, we use statistical mechanics and field
theory to solve the nonlinear problems. Boltzmann's kinetic equation
is used to find the electron distribution function in a weakly
ionized gas in the presence of electromagnetic waves and an external
magnetostatic field. From the electron distribution function, the
electron convection current density is found. Then Maxwell's equa-
tions are used to find the fields of the electromagnetic waves. A
perturbation method has been used because it is Justified in many
practical cases. Geometrical optics approximation has been avoided
because it can only be applied to TEM waves.in the ionized gas. In
this study we find that the amplitude of an electromagnetic wave is
distorted and harmonic waves are generated. If the disturbing elec~
tromagnetic wave is amplitude modulated, the other wave is found to
be cross modulated.

As pointed out in Chapter I, investigations of TEM waves in
an ionized gas have little application in the propagation of bréadcast
signalslin the ionosphere because the signals are frequently TM waves.
In the present study we have analyzed the effects of nonlinear
phenomena on TM waves in a weakly ionized gas, and can apply a similar
analysis to the propagation of broadcast signals in the ionosphere by
treating the lonosphere as stratified layers of ioniied gas and by
using the method in Chapter VI of matching the boundary conditions at

the interfaces.
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Cross modulation which is the consequence of wave form distortion
had been reported in reference (1). It will be interesting to perform
experiments to detect harmonic waves generated using an ionized gas and
electromagnetic waves of appropriéte Physical parameters to maximize
such a nonlinear effect.

Similar analyses can be used to study the effects of nonlinear
phenomena in gas, liquid and solids such as gaseous discharge, ionic

solution, semiconductors, etc.
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