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Abstract

Two systems for detecting the motion of a scene are described. For both, an image
is projected directly onto an integrated circuit that contains photosensors and com-
puting circuitry to extract the motion. The first system, which has been reported
earlier, correlates the analog image with a digitized version of the image stored from
the previous cycle. The chip reports the motion that corresponds to the maximum
analog correlation value. This system represents an advance from previous designs
but exhibits some shortcomings.

A second completely analog design surpasses the first. The mathematical foun-
dation is derived and the CMOS circuits used in the implementation are given. Test
results and characterization of the working chips are reported. The new motion de-
tector is not clocked and exhibits collective behavior. The use of local information
extensively avoids the correspondence problem. The system can be thought of as
a Hopfield neural net with one important extension—input driven synapses. The
motion detector also meshes nicely with the existing computational vision work.
Extensions to handle more complex motions are proposed. The suitability of the
motion extraction algorithm as a biological vision model is explored.
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Chapter 1

Introduction

Future machines that interact flexibly with their environment must process raw
sensory data and extract meaningful information from them. Vision is a valuable
means of gathering a variety of information about the external environment. The
extraction of motion in the visual field, although only a small part of vision pro-
cessing, provides biological systems with knowledge about their surroundings. In
addition to providing signals useful in tracking moving objects, visual motion can
give clues about an objects extent and distance away.

Although a reliable motion detection sub-system, such as the one described in
this thesis, may become an integral part of future machine vision systems, an in-
tegrated motion detector by itself has immediate application. A graphical pointing
device, the mouse, reports its motion to the host computer. Existing mouse designs
use either mechanical or optical means of detecting their motion over a fixed sur-
face. Existing optical mouse systems require a specific surface pattern for reliable
operation. The goal of building an optical mouse with a relaxed restriction on the
surface pattern serves as a concrete goal for the design and implementation of a
motion detector.

1.1 Readers Road Map

This thesis describes two approaches to the theory and implementation of integrated
systems that report the uniform motion of a visual scene. Both implementations are
VLSI integrated circuits that include an on-chip photosensor array, and report the
motion of an image focused directly on the chip (Figure 1.1). Both systems contain
integrated photosensors to sense the image and have closely coupled custom circuits
to perform computation and data extraction on chip.



Motion
Information

Figure 1.1: A scene is projected directly onto an integrated circuit by means of
a lens. A custom chip senses the intensities of the moving image, performs a
computation to extract the movement and reports the motion off-chip.



The first design, described in Chapter 2, utilizes a clocked photosensor similar
to Lyon’s [10]. On each cycle of the self-timed system, the image is quantized and
stored digitally. The analog image is correlated with the digital image stored from
the previous cycle. The maximum analog correlation is found and the corresponding
motion reported. The correlating motion detector fabrication and test results are
reported. This sensor system represents an advance over previous integrated sensors
in the wide range of input images for which it successfully reports motion. Its
shortcomings are that it cannot fully utilize the information present in the image
due to its coarse quantization and the global nature of its imaging and comparing.

The second generation of integrated optical motion detector emerged from the
goal of using local analog image intensity information as much as possible to ex-
tract image motion. This design combines a new high performance photosensor
with analog computation elements and uses a novel approach to extracting velocity
information from a uniformly moving image. The new motion sensor has a number
of features that address the shortcomings of previous designs:

e The chip uses a continuous, non-clocked analog photosensor that has been
demonstrated to operate over more than four orders of magnitude of light
intensity [12].

o The design makes use of information in analog light intensity variations in the
image. Sharp edges can be utilized but are not required.

e Local image gradients are utilized extensively. Our sensor avoids the prob-
lem of dealing with global gradients that plagues some sensors. The locality

property also means that global notions such as object boundaries are not
needed.

e The analog nature of our sensor and computation circuitry prevents the infor-
mation loss inherent in thresholding or digitization and thus increases the use
of the information that exists in a moving image.

Chapter 3 presents the physical motivation and mathematical basis for the one-
dimensional version of the velocity calculation and proposes a suitable method to
implement it. Chapter 4 extends the theory to handle the ambiguities of two-
dimensional motion and introduces an architecture to perform the motion extraction
computation. A simple analog mechanical model corresponds to this computation
circuitry. Chapter 5 describes some of the CMOS circuits used in the implementation
of the two-dimensional detector array and shows the characterization of these circuits
individually. Chapter 6 presents test results for the working integrated motion
system and extends the motion equations for good behavior even for images with



no information. Test data demonstrates that parameter variations within a chip are
significant. The effects of these variations on the motion detector are analyzed.

Chapter 7 discusses the relation of the optical motion detector to other fields of
research. An important Al problem, the “correspondence problem,” is an artifact
of the sampling process and is avoided completely by both generations of motion
sensors. The state space energy function for the motion detector is developed and
compared with that of Hopfield neural nets [6]. Extensions of the motion sensor
architecture to more complex motions than just rigid translation are shown. These
extensions mesh well with ideas from the computational vision field of Artificial
Intelligence. The suitability of the motion detector as a model for biological vision
modeling is discussed.



Chapter 2

A Correlating Motion
Detector!

Here we describe an optical motion detector that uses integrated light sensors and
analog and digital processing on the same chip. An image of an arbitrary scene or
working surface is sensed by an array of photodiodes, stored, and correlated with the
image taken on the next cycle. The position of maximum correlation indicates the
relative motion of the image during the time between samples. This peak is detected
using mutual inhibition and is converted to digital signals that go off chip to indicate
motion. This single chip motion detector has applications in optical mouse systems
and other optical tracking systems. It relaxes certain limitations of present devices
which require a special operating surface. Other potential uses are in automated
vision systems and robotics. This motion detector could be used, for example, to
track parts moving down an assembly line. We have built a one-dimensional motion
detector and demonstrated it in the laboratory.

2.1 Introduction to the Correlating Sensor

The mouseis a popular two-dimensional graphical input device for computers. Older
mechanical mouse designs are being replaced by newer designs that use optics instead
of moving parts to detect motion. These optical mice improve the reliability and
decrease the intermittent action so common with mechanical mice. To date all the
optical mouse designs must be moved over a special surface pattern in order to sense
their motion properly. One commercially available optical mouse uses a metal plate
with orthogonal grid lines. The lines in one direction reflect infrared and the ones in

'The bulk of this chapter has been previously published [22].



the other direction reflect visible light. Sensors within that mouse that are sensitive
to only one color of light can detect motion in two directions independently. Lyon
developed an innovative optical mouse design [10] that integrated sensors onto the
same chip with the processing. His design requires a working surface consisting of
a hexagonal grid of light dots on a dark background. Part of the motivation for our
work is to relax the requirements on the working surface of the optical mouse. Our
goal is to make an optical motion detector general enough to allow it to work on a
wide variety of surfaces, like those commonly found on desk tops, thus eliminating
the need for a special working surface.

2.2 How it Works

The optical motion detector consists of a single chip and a lens to project an image
onto the chip. Figure 2.1 shows the functional block diagram of the chip. It consists
of an array of photodiodes for detecting the light pattern, a storage array for the
image, circuitry to compute the correlation between the stored image and the current
one, decision circuitry to determine where the correlation is greatest, and a self-
timed controller to sequence the entire system. Included is a test register that can
electrically simulate optical images, allowing the chip to be tested for fabrication
defects in a conventional non-optical setting.

2.3 Image Detection

The optical transducers are photodiodes patterned closely after those described by
Lyon. In this nMOS process, a region of diffusion forms a diode with the grounded
substrate. See Figure 2.2. Light striking the circuit side of the chip forms electron-
hole pairs that create a leakage photocurrent through the reverse biased diode. In
operation, the diodes are charged up by enhancement mode pull-ups which then
shut off leaving them isolated. The diodes then discharge due to the photocurrent
at a rate proportional to the intensity of the light striking the diffusion region. An
array of these sensors starts out with all diodes charged. Each sensor discharges at
a rate determined by the intensity of the image at that point. Eventually all sensors
are discharged. The Lyon optical mouse uses mutual inhibition at this image level
to detect a fixed set of “wired in” images. His set of images was carefully chosen
by analyzing the possible positions of his hexagonal grid of dots relative to the
orthogonal grid of sensors. Since this method is not capable of imaging a general
pattern, we have pursued a more general approach.

Charge patterns that reflect interesting properties of the image occur somewhere
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Figure 2.1: Block diagram of the optical motion detector chip.
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between the time when all the sensors are high and when all of them are low. We
chose to sample and store all sensors at once, at a time when half of them are
below a threshold and half of them are above. The circuitry to accomplish this
operation is shown in Figure 2.3. There is a global Half-Down line with a single
pull-up and a pull-down transistor for each photosensor. When the sensors are all
high, the pull-down transistors are all on. The Half-Down line is low, with each of
the sensors contributing to the pull-down current. As each photodiode discharges
and passes the threshold of the transistor, the transistor turns off, subtracting its
current from the total pull-down current. When the total current decreases far
enough, the Half-Down line goes high. This threshold level is chosen by the width
to length ratio of pull-up and pull-down devices so thresholding occurs when about
half of the photodiodes are down. The rise of the Half-Down line triggers the latches
to end their sample of the falling sensor value and via positive feedback turn it into
a restored digital value. The digital image in these latches, one bit per sensor, is

later compared with the next image. Section 2.12 discusses improvements to this
circuit.

Half-Down I-‘ Self-Timed
M Controller

Precharge —-”E( Precharge —-“;]/

=L L = L1

Data In (_J éJ
Latch < Clock Latch 4

Data Out \L \L

Figure 2.3: Digital imager and storage array.
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2.4 Detecting Motion

Given two consecutive time samples of a one bit image, the task of motion detection
becomes a comparison of the two images. Under the assumption that the object
in view has changed relatively little, the images should be nearly the same except
for a translation that corresponds to the motion. One method of detecting that
motion is to shift one image past the other and at each position of the shift, count
the number of bits that match. The position where this tally is the greatest will
indicate how much the image has moved between samples. The comparisons could be
implemented with an exclusive NOR gate and the addition with a current summing
network.

This comparison and counting process corresponds to the one-dimensional cor-
relation function. The continuous version is given by the formula:

C(s) = / Z () i (z + 5)da.

Ip is the image at time = 0 and I; is the next image sample taken at time = 1.
The correlation of Iy and I; is C(z), where z is the amount one image is shifted
relative to the other. C(z) is maximum at the shift amount, z, that corresponds to
the distance moved between samples Iy and I;.

The discrete approximation to the correlation function is given by:

C(s) = Z L(n)i(n + s).

If the motion detector can operate fast enough to guarantee that the fastest
motion never moves the image more than one sensor width (pixel) between two
consecutive time samples, then this computation need only be performed within a
one pixel neighborhood. Only three values need to be computed and compared for
the one-dimensional case: C(s) where s = —1, 0 and 1. These values correspond to
the image having moved left by one pixel, right by one pixel or not having moved.

The logic diagram for the correlator is shown in Figure 2.4. Each of the three
required correlation values are calculated by performing a multiplication of each
of the old image values with the corresponding new image value and summing the
results. The only difference between the three calculations is that the match between
old image and new image values is shifted.

2.5 Analog versus Digital

When the analog voltage on the light sensor was quantized to one bit for storage,
much of the light level information was lost. This information was sacrificed for the
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ability to have long term storage of the image. In the correlation, we could have
digitized two consecutive images and performed the correlation on them. Instead
we chose to retain as much of the analog information as possible and use it in the
correlation computation. The correlation is performed between the previous image,
stored as 1-bit digital values, and the current image which is analog and develops
in time from an all-high state toward an all-low state. The correlation values are

represented as analog voltages that develop during the cycle as the photodiodes
discharge.

2.6 Two Ways to do Multiplication

Exclusive NOR gates could be used to do the multiplications in the correlation com-
putation. For this case, the individual correlation values within a cycle start out at
an intermediate value when the photodiodes are all high, rise to a peak in the middle
of the cycle and return to an intermediate value when all the diodes are discharged.
To determine which correlation was the greatest would require first finding the peak
voltages of each time-varying correlation voltage and then comparing them. Deter-
mining when all the peaks have passed so that the self-timed cycle can start over
is a hard analog circuit problem, especially when the circuits must work with light
hitting them and must work over several orders of magnitude of speed range.

AND gates can perform the multiplications and provide a monotonic time be-
havior. Correlation values using AND multiplication start at an intermediate value
when the photodiodes are all charged and develop in time to a zero value when the
sensors are all low. This monotonicity allows the comparison circuitry to be much
simpler. Now comparing the correlation values is just seeing which of them goes to
zero first. The end of the cycle is much easier to find also. The cycle ends when the
first correlation value goes to zero. Circuits to detect this final condition are much
simpler than circuits to detect the passage of a peak.

It is interesting to note that for motion detection either XNOR gates or AND
gates can be used to achieve the same results. The XNOR function is equivalent to
multiplication for digital levels assigned the values of 1 and —1, while AND gates
perform multiplication for values of 0 and 1. The difference between these two
ranges is the simple transformation:

Ixnor = 2Ianp — 1.

Substituting this transformation into the correlation equation and simplifying
yields the result:

Cxnor(z) = 4Canp (z) + constant.
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This result shows that for the correlation computation, the difference between
using XNOR and AND gates is a simple scaling and translation of the resulting values.
Since we are interested only in the correlation values relative to each other, either
type of multiplier will do just as well. It may seem that the XNOR case has a built-in
gain factor of four over the AND case, but in either case our circuit implementation
would scale the results into the same range; an analog voltage between the power
and ground supply rails. For simplicity and the monotonicity reason given above,
an AND structure implements the multiplications.

The circuitry to perform one of the three correlations is shown in Figure 2.5. The
complement of the stored one-bit image is multiplied by the value of the new image
by a pair of series pull-down transistors that perform the AND function. Instead
of a correlation, the use of the inverted stored bit in the multiplication results in
an anti-correlation—an output value that decreases with a better match instead of
increasing. The series transistor pairs perform the required one-bit multiplication
by sinking current when both the old stored image was low (inverted latch output
is high) and the new image input is high. When the anti-correlation current is high,
the correlation voltage is low. A global correlation line connecting the pull-downs
performs the current summing. For the one-dimensional motion detector there are
three correlation lines. On one of these lines, the current level indicates the strength
of the correlation on the image moved left by one pixel. Another indicated the
strength of “moved right” and the last gave “unmoved”. The currents or voltage

on these three lines must be compared to determine which of the three possibilities
has occurred.

New New New
Image Image Image
T Latch Latch Latch | = = -
ﬁ) ﬁ) ﬁ)
Old O1d Old
Image Image Image ["
v Li v L1 2 No-Move
| | | Correlation

Figure 2.5: Circuitry to compute one of the three correlation values.
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The Right-Move, Left-Move and No-Move correlation lines start at a high cur-
rent, low voltage state and evolve toward a low current, high voltage state. The line
with the greatest correlation will go high before the other two. We will make the
comparison on this condition.

2.7 Making the Comparison

The comparison is done using mutual inhibition. The idea of mutual inhibition
comes from neurobiology. Some sets of neurons are connected such that the firing
of any one of them prevents or inhibits the others from firing. This connection
arrangement allows at ‘most one neuron to fire. If two or more neurons in such a set
are stimulated at nearly the same time, there will be a race to determine which will
fire first and inhibit the others.

In the integrated circuit, mutual inhibition occurs between the correlation lines.
Each of the three correlation lines has a rising voltage that is in a race with the
other two. The winner of the race is the one to go high first. As each line goes
high it inhibits the rise of the other two, pulling them back down. In this way the
final winner is never ambiguous because the only possible final states of the system
are those with one line all the way high (the winner) and the other two low (being
fully inhibited by the winner). If two or more lines are rising at nearly the same
rates, the time required for a winner to be chosen is unbounded. The circuit is then
in a metastable condition [11]. In that sense the mutual inhibition circuit may be
viewed as a three-way arbiter [19].

The decision circuit is shown in Figure 2.6. Mutual inhibition is implemented
by a three-way NOR flip-flop that starts out in the balanced or “illegal” state of all
low. As the three lines are allowed to rise by the correlation circuitry, one of them
will rise high enough to begin pulling down the other two. The final state of the
peak detector will be two lines low and one line high. The high line indicates which
direction the image has moved (or that it hasn’t moved). When this circuit falls
into one of these stable states, it has “decided” which of the three correlation values
was greatest.

The gates driven by the three outputs of the decision circuit must have high
enough thresholds so they are not falsely triggered by the lines rising to their
metastable levels. The cross coupling of the NOR gates guarantees that at most
one line will rise past the metastable voltage all the way up. Figure 2.7 shows two
plots from a SPICE simulation of the decision tri-flop circuit. In the first, the cor-
relation value for Right-Move is 1.0% higher than that of No-Move and Left-Move.
Here the Right line has no trouble winning the race and going all the way high.
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Figure 2.8: Logic diagram and circuit to implement mutual inhibition to make
a decision.
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In the second plot, the correlations are only 0.05% different. Here, both lines rise
to the point that their mutual inhibition prevents them from rising further. The
simulation shows that they hang for more than 50 usec near the metastable point
before finally one wins out and goes all the way high. These simulations do not take
into account thermal noise or device parameter variations.

The three buffered outputs of the decision circuitry are outputs of the chip.
They indicate detected movement by pulsing high from the time the decision is
made until the next cycle is begun. These signals can be further encoded on chip
for other motion encoding schemes.

2.8 The Minimum Velocity Problem

During a cycle there are two independent processes going on. The latched image
from the last cycle is being used during the correlation-comparison process, and the
current image is being latched for use next time. Since there is no guarantee that
the computation-decision process will finish with the last image before the current
image needs to be latched, there must be a two-level latch. The first level latch
samples the light sensor and brings it to a digital level. The second level holds the
previous sample for the correlation computation. The image is transferred from the
first level to the second after a decision has been made by the tri-flop circuitry.

If the image moves by less than half a pixel between samples, the greatest corre-
lation will always be on the unmoved line. If the second level latch always contains
the previous sample, continuous motion at speeds less than one-half pixel/sample
will never indicate a motion. For each cycle, the best image match will always be
for the unmoved position. This occurrence is clearly a problem since the maximum
speed of the image is only one and one-half pixels/sample (for a motion detector
that only calculates correlation in a one pixel neighborhood). A good motion detec-
tor should have no minimum velocity, especially not one so close to its maximum
velocity. We solved this problem by keeping the old image in the second-stage latch
if an unmoved condition occurs. The only time the new image is moved into the
register used for comparison with successive images is after a movement is detected
(Figure 2.8). This technique reduces the minimum velocity of the motion detector
to zero.

Conditionally loading the second-stage latch introduces a potential initialization
problem. If the second-stage latches happen to power up with all values low or all
high, the system may become stuck—either not able to load the second-stage latch
from the image or not able to cycle at all. The present version of the chip has an
external reset line that can force selected internal state to release the system from
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Figure 2.7: SPICE plots for the mutual inhibition decision circuit. Each of the
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single transistor used to model the collection of correlation transistors. These
voltages decrease steadily with time due to the discharge of the capacitance by
the collective photocurrents associated with each of the correlations shown. In
the top plot, the difference between the two lines is 1% and for the bottom
0.05%.
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either the all-high or all-low conditions. During normal operation, the Half-Down
circuit insures that every latched image contains some high and some low values. An
alternative method of releasing a stuck system is to provide circuitry to internally
detect the all-high or all-low condition and provide reset accordingly.

2.9 Cycling the Detector

A cycle in the detector consists of initializing the photodiodes, latching the new
image into the first-stage latch, computing the correlation, making the decision,
conditionally transferring the new image into the second-stage latch and then start-
ing over again.

Since the cycle is self-timed, some circuitry is needed to detect when the photodi-
odes have all reached their high precharged level. Figure 2.9 shows how a distributed
NOR gate and high threshold inverters are used to generate the required Ready sig-
nal. If any of the diodes are below the threshold, the Ready line will be low. When
all photosensors are pulled high enough, the Ready line goes high.

Ready

Precharge —]a, Precharge —-ia/

iaal an

Figure 2.9: Generating the Ready signal that goes high when all the photodiodes
are fully charged.

A Petri net of the flow of events in the motion detector is shown in Figure 2.10.
Note that the Half-Down and Ready transitions are not truly independent. The
Ready line always goes low before the Half-Down and goes high after the Half-
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Down. There is an extra pathway, shown by dotted lines, that serves to synchronize
the first-stage and second-stage latches. This link guarantees that the image data
is transferred to the second-stage latch before the first-stage latch is cleared in
preparation for the next cycle.

2.10 The First Prototype Chip

A one-dimensional motion detector chip was designed using the Caltech Stick design
tools. It was submitted in March 1983 for fabrication to MOSIS, the ARPA community
silicon foundry [2]. The fabrication process was a single polysilicon, single metal
nMOS process with buried contacts and 4 pm minimum device size (A = 2 um). The
chip was 5711x1734 um and contained sixteen photodiodes in a linear array. Each
photosensor was a diffusion rectangle 200x400 um. The chips came packaged in 40
pin packages with cavity covers that could easily be removed to project images onto
the chip.

Figure 2.11 is a photograph of the chip. There are 16 identical sensor cells,
the controller, pads and wiring. Each sensor cell consists of the large photodiode,
a two-stage one-bit latch, one bit of the test register and part of the distributed
circuitry to produce the Half-Down and Ready signals and perform the correlation.
The controller cell on the right contains the decision tri-flop and the self-timed
controller logic.

2.11 Maximum Image Speed

Figure 2.12 shows the operating frequency of the optical chip as a function of light
level. The solid line in the graph represents a first order approximation assuming
that the discharge rate of the photodiodes is the major delay in the cycle of operation
and that the rate is proportional to the intensity of the incident light. The operating
frequency, f, is given by the equation:

1
f_Z—kL)

where t is the time for one cycle, L is the illuminance of the incident light, and k
is a constant. Experimental results show that this linear approximation is reason-
able over almost three orders of magnitude of light level variation. The theoretical
proportionality constant for the frequency/light level relation, k, can be calculated
from the unit area capacitance of the diffusion layer and from a conversion between
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Figure 2.11: Photograph of the prototype optical motion detector chip.

I MHz

. 1001 c
P °
2 5
w et
o @ +H100KHz &
c v O
'; ~ 'O.L
[ [y
g 5
=3 >
:E;, E + 10KHz §
ETp g
) &
=

4 1 | KHz

10 100 1000 10,000

Flashlight Room .
at 3 inches  Light Sun Light
2)

Incident Light Intensity (lumen/meter

Figure 2.12: Plot of operating frequency of the optical motion detector as a
function of incident light level (right vertical axis). The dots are from measure-
ments of the working chip. The straight line is an ideal approximation. The
maximum tracking speed (left vertical axis) is for the sensor spacing of 200 um
and assumes an optical magnification of 1x and a maximum tracking speed of
one pixel/cycle (200 um/cycle).
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incident light and photocurrent. Depending on the exact assumptions made, k is
easily within a factor of 2 of the experimental results.

If the image moves on the chip between image samples farther than the neigh-
borhood of correlation calculation, the motion detector will not accurately report
the motion. In our chip the correlation is calculated only to the nearest neighbor,
about the width of one photosensor or about 200 um. At room light levels, the free
running cycle frequency of 10 KHz corresponds to an image velocity of about 2.0 me-
ters/second. The magnification provided by the lens is the ratio of the size of the
image on the chip surface to the real object. In a mouse application, a magnification
of 1x gives a resolution of about 100 points/inch and a maximum mouse speed of
2.0 meters/second. The magnification can be changed by moving the positions of the
lens and chip relative to the object. Adjusting the magnification effectively trades
off resolution for maximum tracking speed (Figure 2.13). A greater magnification
increases the resolution because one pixel distance on the chip now corresponds to
a smaller distance on the object. For the same reason, the maximum speed of the
object decreases for a constant image speed. If the same light level per unit area
on the object is maintained, the maximum speed will decrease even further. This
decrease is the result of a lower intensity image due to the magnification. To keep
the speed-resolution product the same, the image intensity must remain constant.
A greater magnification will therefore require the object to be illuminated with the
same amount of light concentrated on a smaller area, an effect that can be obtained
with a simple condensing lens on the light source.

2.12 Analog Control Inputs

Several circuits, such as the one that generates the Half-Down signal, depend crit-
ically on their switching threshold for correct operation. The threshold can be set
by carefully choosing the relative device sizes of the enhancement pull-downs and
depletion pull-ups. In this first prototype we wanted the flexibility of choosing the
thresholds after the chips were fabricated. One reason was that we wanted to vary
some of the thresholds to see how they affected performance. In other cases where
we knew the desired thresholds, we were reluctant to risk the success of the chip on
simulation results using device parameters from past MOSIS fabrication runs. Fig-
ure 2.14 shows a circuit that allows the threshold of a gate to be varied by using an
off-chip potentiometer. The current mirror configuration limits the current flow in
each pull-down to a value proportional to the control current set by the potentiome-
ter. The proportionality is set by the relative device sizes of the two current mirror
transistors. Decreasing the control current decreases the current in each pull-down



24

Optical Motioxi Detector Chip

| L | —
Lens
Iuminator
Low Resolution High Resolution High Resolution
High Maximum Speed Low Maximum Speed Even Lower Maximum Speed

Figure 2.13: The effects of optical magnification on resolution and maximum
speed.

so more of them need to be on to overcome the pull-up. With the Half-Down control
input we can vary the threshold smoothly from a level where all zeros are latched to
a level where all ones are latched. A similar analog control was built into the test
register enable line so that test patterns could be made to discharge the photodiodes
at slower rates.

Another approach to building the Half-Down circuit is to rely on the matching
of like transistors across the chip instead of the relatively poor matching of the
pull-up to pull-down transistor ratios between fabrication runs. The simple Half-
Down circuit of Figure 2.3 will produce an output voltage when half of the inputs
are high and half are low. This voltage represents the desired Half-Down threshold
and will vary from run to run. We can build a Half-Down reference circuit on
the same chip with identically sized pull-up and pull-down transistors. If we tie
half of the inputs to the reference circuit permanently high and the other half low,
the output of the circuit will be the Half-Down threshold. An on-chip differential
amplifier, connected to the outputs of the Half-Down circuit and the reference, can
compare the two values and determine when the Half-Down line has crossed the
threshold. Although not yet implemented, methods such as this that use on-chip
transistor matching instead of run-to-run parameter matching show promise for
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Figure 2.14: External analog control of the Half-Down threshold.

future versions of correlating motion sensor.

2.13 State of the Design

The one-dimensional version of the chip operated over a wide range of intensities as
reported in Figure 2.12 above. The optimal setting of the Half-Down control line
varied with light level. A single setting of the control would result in a good image
over a small range of light level variation. As the light level moved from range,
the image would become all 1’s or all 0’s. This problem would be quite serious if
the system was required to operate over a wide range of light levels without human
adjustment. If the problem was caused by light hitting part of the circuits other
than the photosensors, than a layout change to cover the sensitive circuit may solve
the problem. Otherwise, the chip could be made self regulating by feeding back the
number of 1’s (or 0’s) in the latched image to increase or decrease the analog control
current. Although I never implemented a solution to this problem, I feel it could be
solved.

A more serious problem is the global nature of the thresholding of latched im-
ages. The resulting image reflects only the intensity variations that occur near the
threshold intensity. Any edges in the image that occur in a relatively bright or dark
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area will not be captured in the image. Global gradients in intensity such as those
produced by a non-uniform light source, will make images that change from light to
dark over the chip. The inability of the chip to make use of local information away
from the global threshold is a serious limitation of this design. The motion detector
described in the next chapter avoids this limitation.

2.14 Summary of Correlating Sensor

The integration of sensors and computing structures onto the same chip is a natural
way to capitalize on the parallel nature of many problems by avoiding any sequential
representation or communication of information until after it has been processed at
the lowest level. Circuit tricks and ideas from biology such as mutual inhibition can
be used profitably in the design of these sensing/computing chips.

Some goals are met:

e The chip operates over a wide range of light levels.

e A wide variety of patterns, regular and irregular can be used as an operating
surface.

e Operating frequency is sufficient to allow reasonable velocities while meeting
the requirement of motion less than one pixel per cycle.

e Local computations allow a compact efficient design. The correspondence
problem is avoided.

e The design is extensible to any size array.
Some problems and shortcomings remain:

e The stored image is digitized to binary values and so information is lost.

o The global threshold results in a sensitivity to intensity gradients. Although
the correlation computation is local, the imaging does not utilize local intensity
variations.
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Chapter 3

A One-Dimensional Analog
Motion Detector

Analysis of a simple one-dimensional analog image shows some of the measurable
quantities present and the computation necessary to extract velocity from the mov-
ing image. An architecture is presented for combining local velocity calculations
into a reliable global result.

3.1 A New Analog Design

To overcome some of the limitations of the previous motion detectors [1,10,22] I
have designed a new motion detector with the following properties:

e [t still operates over many orders of magnitude of light intensity.

It utilizes the analog values of intensity to compute velocity continuously.

It utilizes local information extensively.

It does not depend on a global clocking scheme.

The longest communication wires required are those within a region over which
we are assuming uniform velocity (at first the whole chip).

3.2 One-Dimensional Motion Detection

Figure 3.1 shows a plot of the intensity of some incident image as a function of
distance along the one spatial dimension of interest for two moments in time. We
wish to exploit purely local properties of the image to determine motion. An observer
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fixed at zo and resting on the intensity terrain will be moved up and down as the
intensity curve (the scene) moves by him. His rate of movement up or down (3%
and the slope of the terrain (4L) can be determined by local observations. From
these two values, the observer can infer the velocity of the intensity curve past him.
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Figure 8.1: A one-dimensional image for motion detection.

The observers are implemented by an array of sensors described in detail in
Section 5.2. Each sensor produces a voltage monotonically related to the light
intensity incident upon it. At point z the spatial derivative can be approximated
locally by taking the difference between the intensities of the neighboring sensor on
either side and dividing by the fixed spacing between them. This approximation is
quite good if the sensors are spaced close enough together relative to the highest
spatial frequency in the image.

A local circuit can also determine the time rate of change of the local intensity
by taking the time derivative of the intensity signal. By knowing the local intensity
gradient (slope) and knowing how fast the intensity is changing, the velocity of the
intensity profile can be calculated. The equation for the tangent line to the intensity
curve at zg is:

I(z,t) = m(z — o) — vt|+ 1o,
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where v is the velocity of the image and m is the slope of the line.
The time and space derivatives of the intensity are:

g

8 .
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Therefore:
aI
Bt
v——»'—--g—l'. (3.1)

dz

Intuitively, this makes sense because the definition of velocity is just %. The minus
sign arises from the motion of the observers coordinate system with respect to the
image which is opposite the motion of the image with respect to the observer. (The
z in Equation 3.1 is not the same z asin v = %f—.

The relationship of Equation 3.1 allows us to take two quantities that are de-
pendent on the image, its two derivatives, and calculate the velocity which is inde-

pendent of the image. A hypothetical velocity detector is shown in Figure 3.2.

— —————> Velocity

—y

g —>

Figure 8.2: A hypothetical divider used to calculate velocity.

There are some problems with the above formulation that prevent us from im-
plementing it directly with analog circuits.

e A four-quadrant analog divider is hard to build. Since both derivatives can
be positive or negative, we need a circuit that operates in all four quadrants
of the input space.

e We can’t divide by zero. When the spatial derivative is zero (e.g. on the peak
of a hill) we can’t infer anything about velocity. Mathematically our equation
is undefined.

e For small g—zI—, any errors (e.g. noise) in our circuit would produce a large error
in the resulting velocity.
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The effect of errors in some positions can be reduced by combining information
from many positions. An array of local velocity sensors should be capable of combin-
ing velocity information in a way that increases reliability. Each locally computed
velocity should contribute to the resulting velocity in the following ways:

e A greater number of elements should yield a more reliable result.

e A local result that has a lower confidence level should contribute to the more
global result with a lower weighting. A local lack of information (when g—f; is
zero) should not contribute at all.

e The global result should not be affected drastically by the error or failure of
a small number of sensors relative to the total number of contributors.

3.3 A Simple Aggregation Scheme—Averaging

A simple method of aggregating many local signals is to average them. The equation
for a uniform average is:

1 1 Q%
T=—=dlvi=—) -
=1 =1 3z

If we had a divider, this computation could be implemented as shown in Figure 3.3
where the average circuit is a simple current summing wire and the scaling by the
constant ;1; is ignored.

The equation for the average assumes an equal weighting of all local velocities
and doesn’t solve any of our problems. An average with general weights is given by:

n n ar
Z”ij Z’"Z_;'wa
p=ig - El_ % (3.2)
Do 2w
=1 =1

and can be implemented with an additional multiplier per cell (Figure 3.3).

The individual local velocity measurements should be weighted according to
the confidence of their contributions. The greater in magnitude that the spatial
derivative is, the greater our confidence in it. Sharper edges are counted more
heavily. We therefore consider two possible weightings and consider their effect on
the implementation. First we will try:

Q.IZI,



31

~al oy 8L __ 4

aty . v at1 . v

oL _§l LI L Q——

dz 1l dz1l

3l ar
—s, = —55, —>

at 2 Y Vg at 2 . Vg

7 Weighted | ©

aL * v e ar *

dz2 Average —> 2 W2 —> Average [~
oL _ar

dtn . (1 dtn . Un

9 5 a0t

dzn dzn Wn

Figure 3.8: Aggregating local velocity information into a global quantity using
simple averaging and weighted averaging.

which results in:

The second choice to consider for the weight is:
— (3I\2
where confidence goes up with the square of the spatial derivative. For this choice,

sharp edges are weighted even more heavily than by the first choice of the weighting
function. The global average velocity becomes:
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Figure 3.4 shows an implementation of these equations.

This formulation has several effects on the implementation.

e The local division is not present anymore.
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Figure 3.4: Block level implementation of velocity calculation for confidence

weightings of |2L| and (2£)?

e We need to accumulate two quantities globally, the numerator and the denom-
inator, instead of the single quantity required by the previous formulation.

e We need to do a global division. Note that now the only time the denominator
is zero is when all local %ﬁs are zero. This condition occurs only when there
is no information in the entire image, a much less frequent and therefore less
troublesome condition than individual gﬁs equal to zero.

¢ The division that we do need is only a two-quadrant division because the
denominator is always positive. This two-quadrant divider is much easier to
build than a four-quadrant one.

e We need circuits to take the sign of an analog quantity and to implement
analog four-quadrant multipliers.

A CMOS amplifier, described in Section 5.3, can be used to implement either the
sign function or the analog multiplication. The amplifier behaves like a sign circuit
in part of its operating range and like a multiplier in another part of the range.

The transfer curve of a typical amplifier is shown in Figure 3.5. The output
voltage, Vour, is a smooth function of the input voltage, Vin. For VinN near zero,
the transfer curve is nearly linear and can be approximated by:

Vout = AVIn,
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Vout A
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Slope = A -
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Figure 3.5: Transfer curve of a typical cMOs amplifier.

where A is the gain of the amplifier, the slope of the transfer curve near zero. For
larger |Vin|, the amplifier output limits and becomes relatively independent of Viy.
Here the transfer function is a good approximation to the sign function:

Vour = k sign(Vin),
where k is the limit of Vour.

Figure 3.6 shows the two ideal weighting functions and the real weighting func-

tion of the amplifier of Figure 3.5. The amplifier behaves like each of the ideal cases
in different ranges of its operation.

w
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Figure 3.6: Weighting curves for [gﬁ—l, (?—i-)2 and the limiting amplifier.

The two choices for weights provide flexibility in the implementation. Circuits
have different behaviors in different ranges of operation. We use circuits that at



34

times implement one choice of weights and at other times implement the other
choice. At all times, they calculate a weighted average of velocity.

Both implementations are robust against out-of-range signals. If the sign func-
tion of Figure 3.4 is implemented as a high gain amplifier but has input signals so
small that the output is not limited, the system will still work. The weighting of
that input will change but the output will still be a weighted average velocity. Al-
ternatively, if the implementation of the squared weighting is chosen and an input
signal becomes so large that a multiplier limits, the weighting of that one input
will be less than the squared weighting but the result is still a weighted average. If
a multiplier limits, its saturation level must be independent of the other input so
that the two multipliers in each cell saturate at the same time. The details of the
multiplier circuit are given in Section 5.6. It turns out that this saturation property
does hold.

The choice of weighting criterion, absolute value or square law, can vary from
cell to cell in the same system as well as varying from system to system. An imple-
mentation of a system provided with a wide range of input signal amplitudes will
have circuits operating in different ranges and therefore using different weights. The
output is always a weighted average velocity.

After considering the implementation, the weighted average scheme has another
important benefit:

e The system is robust against out-of-range values of g—i—. Small values of g—i-

and large ones that limit the circuits alter the weightings but the result is still
average velocity.

Some shortcomings remain:

o A global circuit is required to produce the desired velocity quantity.

¢ Two global wires are needed to communicate the numerator and denominator
of the global velocity.

The above method of finding the weighted average accumulates the numerator
and denominator separately and then divides. I call this organization the numerator-
denominator method (or formulation) to distinguish it from methods that follow.

3.4 A Two-Quadrant Divider

A local divider in each cell could reduce the number of global wires and eliminate
the need for a global circuit. This section examines the difficulty of implementing a
four-quadrant divider.
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Building a multiplier feedback circuit yields a divider with correct operation
for two quadrants of input. Often a forward transfer function can be implemented
by using its inverse in the negative feedback path of a high gain amplifier. The
four-quadrant multiplier is well behaved and can be implemented as described in
Chapter 5. The multiplier can be used in the feedback path as shown in Figure 3.7.
The output of the summation represents the error of the output, e:

_ ar 28
€= 5 t Vaz-

If the error is zero then:
_ ar ar
0= 7% +vg;-

This equation is just a rearrangement of the velocity equation (Equation 3.1). For
zero error, the output of the circuit is velocity. For non-zero error, the idea is to
greatly amplify the error and supply this signal to the output in a direction that will
reduce the error. We can see that for positive values of %ﬁ the feedback is negative
and moves the output to a point of near-zero error. In this case, the output is
velocity and the circuit really does implement a two-quadrant divider. As soon as
g—IE becomes negative, the feedback around the loop becomes positive. Any error
produces an output that increases the error instead of reducing it and the circuit
will race off to its limits. In these two quadrants of input space, the chip behaves

more like a latch than a divider.
RN
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Figure 3.7: Hypothetical four-quadrant divider and an attempt to build it that
operates successfully in two quadrants.

In Section 3.6 I introduce an extension of this design that performs a weighted
division but does so for all four quadrants, for both positive and negative values of
o1 al
Bt and 55
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3.5 A Resistor Network for Weighted Averaging

A simple resistor network can be used to perform weighted averaging. Our previous
implementation found the weighted average by accumulating the numerator and
denominator of the average and dividing externally. The resistor network uses the
much simpler structure of Figure 3.8 to achieve the same result.

R i
v, —AAAA——
R, 12
V. —AANN——1
. 1 > V
R, in

Figure 3.8: A resistor network that computes the weighted average of several
input voltages. Each weight is the conductance ¢ where g = —}%.

Intuitively, each of the resistors provides a connection that pulls the average volt-
age toward its corresponding input voltage. A smaller resistance means a stronger
connection and a greater influence on the average. The currents through the resis-
tors provide the means for changing the output voltage until it reaches equilibrium
at the weighted average. At equilibrium, the total current contribution from all
resistors is zero. Total current, iToT, is the sum of the currents through each of the
resistors due to a voltage drop across them. Here we use ¢ for current and V for
voltage. These quantities must not be confused with light intensity, I, and velocity,

v, used throughout:
. N “V; -V
0=1TOT:Z‘J‘:Z ! .
j=1 j=1 EB;

Replacing the reciprocal of resistance, -}%;, with conductance, g;, and solving for V,



we get:

i9i
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1

Comparing this equation to Equation 3.2 we see that the output voltage, V', is just
the weighted average of the input voltages, V;, where the weights are the conduc-
tances, g;.

The average computation performed by a resistor network is an example of a
very simple collective computation.

e The computation is disperse. There is no one central circuit performing the
crucial computation.

e The computation is done in parallel. Every resistor current changes continu-
ously without waiting for any other resistor.

e The computation is local. Each resistor responds only to the two voltages on
its own nodes.

e The network scales well. Adding or removing resistors still results in a valid

global average calculation. There are no scaling constants due to the number
of inputs.

We wish to use the collective nature of a resistive network to compute the
weighted average of the local velocities. If we had a local four-quadrant divider,
we could use the architecture of Figure 3.9. Analog voltage represents velocity and
ar
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Although we cannot implement the four-quadrant divider, we can build a circuit
that behaves like the combination of divider and weighting resistor surrounded by
the dashed box in Figure 3.9. The next section describes that implementation.

3.6 A Four-Quadrant Weighted Divider

In this section we present a block level diagram for a four-quadrant weighted divider
with inherent averaging capabilities. The new design addresses the shortcomings of
the numerator-denominator method of weighted averaging and has these properties:

e One circuit, by itself, is a four-quadrant divider.

e The divide-by-zero problem is avoided by an output drive with variable strength.



Figure 3.9: Using a resistor network and hypothetical local dividers to compute
average velocity.

e A group of these circuits generates a weighted average of their dividends on
their common output.

e No global circuits are needed.
¢ One global wire is needed.
To derive the circuit, we view the resistor as an element that computes an output

current that it injects onto a global line. This current is a function of the value of
the resistor, R;, and of the voltage difference across it, V; — V:

V; -V
1_.,': .

R;

For the velocity calculation, voltage represents velocity, V = # and V; = v;, and the

conductance weighting goes as the square of —g—g—, S0 }%,- = (g—ﬁ)z. Substituting, we
£

have:

ij = (v; - 9)(§0)"
I

The velocity, v;, is in turn a function of the two derivatives, 4 and

3
. at
substituting we have:
aI
. 3t _\ (aIy2
ij=- (37*‘”) (52)"
3z
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Multiplying through we get:

A— al =3I\ 31
1= (———at -+ U3z ) 3z (3'3)
ThlS equation l.S important:

e It contains no division.
e No internal representation of infinity is necessary.

e The calculated current, 1, is a function of the two measured inputs %{— and —g{;
that define local velocity and is a function of the weighted average, ©.

To find out what happened to infinity, we examine Equation 3.3 for the previ-
ously troublesome case of small values of g—i—. As -g—f; approaches zero, the output
voltage of the hypothetical divider increases rapidly, but due to a resistance that
increases at a faster rate, the current decreases. Since the weighted divider com-
putes the current directly, and the choice of weighting function for the resistance
eliminated the divide-by-zero in this computation, there is no need for any internal
representation of infinity.

A
_gj; -
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€

-V
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Figure 3.10: Circuit to implement the four-quadrant weighted divider.

The block diagram for a circuit that performs weighted averaging is shown in Fig-
ure 3.10. It directly implements Equation 3.3 It requires two analog four-quadrant
multipliers just as the numerator-denominator method of Section 3.3 but requires
only a single global line and no external divider.



40

Numerator-Denominator | Resistor Network
Formulation Formulation
Number of Multipliers per Cell 2 2
Sets of Global Wires 2 1
Requires External Divide Circuit Yes No

The weighted four-quadrant divider of Figure 3.10 is an extension of the two-
quadrant feedback divider of Figure 3.7. Study of these two diagrams shows that

they both have a four-quadrant multiplier in the feedback path and a summing node
that computes the same error, e:

- 81 ar
€= %3¢ TV5;-

For zero error, the output is the velocity as was the case for the two-quadrant
divider. Any non-zero error is multiplied by g—f; according to Equation 3.3:

i= (- 2) 8,

to generate a correction current that will move the output closer to the correct
velocity. The additional multiplier in the four-quadrant circuit serves to scale the
correction but more importantly flips the sign of the error term so that the correction
is always in the right direction—the feedback is always positive. The high gain
amplifier corresponds to the high voltage gain of the current from a high impedance
current source, integrated by the capacitance of the global line to form a voltage.

Using a simple physical analogy, the correction generated by the circuit can be
thought of as a force that pulls the global average velocity toward the locally derived

velocity. To illustrate the simplicity of the necessary computation, the force, F, can
be written in the form of Equation 3.3:

F=(

Rearranging to get the force as a function of velocity, we have:

12

t+ﬁi’—) )

z

Q.
Q:IQJ
B~

8l

9, - -

F= (—6—;-+v> (¥) = (s -v)C.
3z

The force is proportional to the difference between the local velocity, v, and the
global average © which gives rise to the global averaging property of the collection
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of circuits working together. The velocity average moves until the net sum of forces
on it becomes zero. The force is also proportional to (g%)2 which weights the
contributions of each cell according to the confidence in its local information, C.

e 3]
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Figure 3.11: An array of photosensors and weighted dividers that collectively
computes average velocity.

An array of cells, each with its photosensor and divider circuitry, form a simple
collective system (Figure 3.11). Among the benefits offered by such a system are:

e Local information is used by each cell.

e Aggregation of local information is done in a way that increases the accuracy
of the result.

e Cells that have no information (g—f; = 0) behave nicely and don’t contribute
to the aggregated value.
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e Analog intensity information can be used. This eliminates the information
lost due to quantization.

e Operation is completely parallel. Each cell in the array continuously computes.

e There are no global circuits needed to post-process the data or to cycle the
system.

3.7 Summary of One-Dimensional Motion Detection

Starting from the moving intensity curve of a one-dimensional image, we derived the
local calculation to extract velocity of the image from locally measured derivatives
of the image. An architecture modeled after a resistor net requires only simple
computational elements locally yet performs the equivalent of calculating all the
local velocities and finding their weighted average. A single global wire serves two
functions (Figure 3.12). First, the wire transmits the result of the weighted average
computation to each location where it is used in the local calculations. Second, the
wire takes part in the global calculation by accumulating all the local corrections to
the global weighted velocity.
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Figure 3.12: Architecture for the one-dimensional motion detector.

In the next chapter, this collective scheme will be extended to handle motion in
two dimensions.
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Chapter 4

A Two-Dimensional Analog
Motion Detector

Generalizing the motion detection algorithm for velocity detection in two dimensions
is not exactly straightforward. A problem arises from an inherent ambiguity between
motions along the two axes. This ambiguity stems from a limited field of view such
as the view through an aperture. The aperture problem is well known for binary-
valued images.

Figure 4.1 shows the view through a rectangular aperture. A black-and-white
image containing a single straight edge is moving with some velocity so that the
position of the edge at a later time is shown by the dashed line. The velocity cannot
be uniquely determined from these two snapshots. There is an infinite family of
possible velocities as illustrated by the arrows. We can view the image velocity
components v, and v, as the z and y coordinates in a plane we will call the velocity
plane. In this plane, the actual velocity of the image defines a point. The family
of possible image velocities define a line in velocity space. This line, as plotted in
Figure 4.1, has the same orientation in velocity space as the edge does in physical
space. To be consistent with the visual information from the local aperture the
actual velocity point is constrained to lie on the line in velocity space. This line is
known as a constraint line.

Please Note: Figure 4.1 illustrates the ambiguity problem but does not depict
the operation of the system described below. The velocity detectors emerging from
the analysis in this chapter:

o Represent intensity values continuously. The images we consider are not just
black and white.

o Represent time continuously. There is no notion of snapshots of the image or
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Image Space Velocity Space

Figure 4.1: The aperture problem: Local information is not sufficient to uniquely
determine two-dimensional velocity.

of clocking in these systems.

Using analog values for intensities and gradients doesn’t eliminate the ambiguity
problem. Figure 4.2 shows the intensity plot of an image that contains gray-scale
information and varies smoothly in intensity throughout. A local observer on the
intensity terrain cannot tell if his upward or downward movement, -aa—{, is due just
to motion along the z-axis, just to motion along the y-axis, or to a combination of
motions. Two of these possibilities are shown as arrows in Figure 4.2. The inherent
ambiguity cannot be resolved by strictly local information.

Here we derive an expression that relates the intensity derivatives to the velocity.
Following a route of analysis similar to the one-dimensional case, what was an
intensity curve in one spatial variable is now a surface function of two variables.

The equation for the tangent line:

I(z,t) = g—%((x - z0) — v-t>+I0
becomes a vector equation for a tangent plane:
I(x,t) = VI- ((x - Xg) — vt) + Io,

where x is the position vector (z,y), VI is the two-dimensional gradient at the
position Xg, and the velocity becomes a two-dimensional quantity as well where
v = (vz,vy). The expanded form of this equation is:

I(z,y,t) = A((:c —zp) — v,,t) + B((y - yo) — vyt) + Io,
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Figure 4.2: The intensity surface of a two-dimensional image.

where A and B are the spatial derivatives 2L and %5, respectively, and VI =

dz
(A»B> = <g_£’ %5)

The equation that relates the three partial derivatives is:

2=
I
<
o |
<

= —a—z-vz - -g—ivy. (4.1)

We can see from this equation that knowing the three local derivatives of the in-
tensity does not allow us to uniquely determine the velocity. There is an inherent
ambiguity.

The local intensity derivatives do provide some useful information—they con-
strain the possible values of the z and y components of velocity just as we found for
the aperture problem and black-and-white images.

Writing Equation 4.1 in the form of the line equation Az + By + C = 0, we get:

ar 81 al _
Evzﬁ—ﬁvy—i-g;—o.
Each local set of three derivatives defines a line in the velocity plane along which

the actual velocity must lie. The slope of this constraint line is ~——“§—-£— / gL. If we view

the gray-scale image as having a fuzzy “edge” with orientation perpencilicular to the
Y g g
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intensity gradient, the constraint line has the same orientation in velocity space as
the “edge” has in physical space. This is the same orientation as the constraint line
of the black-and-white image.

The aperture problem for binary-valued images is just a special case of the
general two-dimensional velocity ambiguity. Local images, gray-scale or black-and-
white, can only provide a family of possible velocities. This set of velocities can be
represented by the coefficients of the equation for the constraint line.

It is much easier to determine the constraint line if the analog information is
retained. For gray scale images, the coefficients of the constraint line equation are
just the three partial derivatives, %ﬁ-, %—;—, and %%, that can be locally measured. An
image with continuous intensity values can be made into a black-and-white image by
thresholding. To determine the orientation of the edge of the binary-valued image
(and so its constraint line) is a more global problem of determining the boundary
between black and white regions and fitting a line to the boundary. To determine
the velocity constraint line, it is much easier to locally measure the coefficients than
to throw away the information and then try to reconstruct it with a global process.

The ambiguity of a single local set of measurements can be resolved by using
another set of local values from a nearby location. These values define another line
in the velocity plane. The intersection of these two lines uniquely determines the
actual velocity. This intersection of constraint lines is illustrated in Figure 4.3.

AVy

Unique
Velocity

|

Vg

Image Space Velocity Space

Figure 4.3: Uniquely determining velocity by the intersection of constraint lines.
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4.1 Solving Simultaneous Constraints

In practice, to find the actual velocity, we will use constraint contributions from each
site on the sensor array. Using a small number of sites, close together relative to an
object size, results in a few constraining lines in the velocity plane that are nearly
parallel. A small error in any of the derivatives or in the constraint solver can then
result in a large error in the computed velocity. Errors will be kept to a minimum
when two lines in the velocity plane cross at right angles. This intersection occurs
when there are contributions from two sites on “edges” that are perpendicular. An
edge in this case is used loosely to mean a perpendicular to the direction of greatest
intensity change. Contributions from a large number of sites will then assure us of
having pairs of orthogonal constraints for any reasonable image.

The barber pole illusion is a well known example where the orthogonality of
constraint lines cannot be assured. In this illusion, the rotating cylinder produces
a purely horizontal velocity. Our vision system erroneously reports “seeing” a ver-
tical velocity. Images such as gratings and stripe patterns with intensity variations
along only one axis cause this problem. All constraint lines are coincident so their
intersection is not unique. It is not possible for man, beast, computer, or chip to
disambiguate the motion of such a pattern.

In practice, there is no such thing as a perfect stripe pattern. The question then
is a matter of degree. Our chip should reliably report the actual velocity unless the
signals resulting from intensity variation along one axis lie below the noise level.

4.2 Constraint Solving Circuits

Our constraint solving circuit contains a set of global wires that distribute a best
guess of velocity to all the individual constraint generating sites (T‘igure 4.4). Each
locale performs some computation to check if the global velocity satisfies its con-
straint. If there is an error, circuitry within the local site then supplies a “force”
that tends to move the global velocity in a direction to more closely satisfy the local
constraint. The global velocity components are represented as analog voltages on
the set of global wires. The correcting forces are currents that charge or discharge
the global wires.

Finding the intersection of many lines is an over-constrained problem. Any
errors will result in a region of intersection in which the real desired point most
likely lies. To compute a most probable intersection point (velocity) requires us to
know what types of errors to expect, to define “most probable” and select on the
basis of that definition a forcing function that varies with detected error. In the
absence of rigor, we can make some reasonable guesses for the forcing function. It
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Figure 4.4: Block diagram of the constraint solver cell and array.

should be monotonic—the greater the error, the harder we should try to move it
in the right direction. Since a forcing function linear in error distance is easiest
to implement, we have selected it. A linear force gives rise to a quadratic energy
function. (More on energy in Chapter 7.) In the energy context, the constraint
solver is minimizing the error energy by finding the least-squares fit of the velocity
point to all the constraint lines.

The similar problem of finding the best fit of a line to many points can be done by
the mechanical analog device drawn in Scientific American [3] (Figure 4.5). Rubber
bands connect fixed known points with a rigid rod that is free to move. The rubber
bands generate forces on the rod that move it until it comes to rest at the best-fit
position. Our converse problem of finding the best fit of a point to many lines can
be similarly diagrammed (Figure 4.6) as a movable point attached by rubber bands
to a number of fixed rods. The rods in this device represent the constraint lines and
at any time are fixed in velocity space by the three line parameters derived from the
image. The movable ring represents the global velocity point that comes to rest at
the best fit to the intersection of all the constraint lines (fixed rods).

4.3 A Preliminary Formulation

We first extend the theory to incorporate two-dimension images and velocities by
modifying the one-dimensional numerator-denominator formulation. We will see
later that this preliminary formulation has some of the same shortcomings as the
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N

A gadget for finding the line that best fits a series of data points

Figure 4.5: An analog mechanical device for finding a best-fit line. The rigid
rod, connected by rubber bands to a set of fixed points, comes to rest in a
position of “best-fit” to the points. From June 1985 Computer Recreations by
A.K. Dewdney. Copyright 1985, Scientific American. Used by permission.



50

\
/
Uz

Figure 4.6: An analog model for velocity space constraint line intersection solver.
Each rod represents a constraint line, fixed in velocity space by the image pa-
rameters —g—ﬁ, g—é and ‘Z—f. The movable ring represents the global velocity and

comes to rest at a point in velocity space that is a best fit to the intersection of
the constraint lines.
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one-dimensional formulation from which it arises. The value of this analysis is that
the recognition of the major problem leads directly to the much better solution.
The analysis will proceed as it did for the one-dimensional case as follows:

e Find the equation for the relationship between velocity and the intensity
derivatives.

e Solve this equation for velocity.
o Write the expression for the weighted average of velocities.
e Choose an appropriate weighting function.

e Substitute the expression for velocity into the weighted average equation.

The left-hand column of equations represents these steps already applied to the
one-dimensional case in Chapter 3. The right-hand column contains the correspond-
ing equations for the two-dimensional case.

One-Dimensional Two-Dimensional
af _ _ar o _ _ar, _aI
at — TazV 9t — T azvVz T 3y %
ar ar  ar
v = -2 = st ay™ 4.2
- QL Vg = — Q_!_ ( . )
dz dz
n n
ar3r (2L 43I 3L
Z_Btaz (6t+6yvy) z
_ _ j:]_ . _ j=1
5 = L by = = (4.3)
a1 a1 aI 81
Do D55

1

LY
1l

1

.
[

What we have done is solved the local constraint equation for v, in terms of vy.
Although with strictly local information we cannot determine v, and v,, given an
initial guess at vy, we can calculate v, at each location, average the results and use
the result to be the new v;. Similarly, we can simultaneously use the current guess
for v; to compute a new value for v,. Each cell then is using its knowledge of its own
constraint between v; and vy to move the global values, initially just guesses, into
closer agreement with its own constraint. Graphically this operation amounts to
moving the present point in velocity space, represented by the global values (vz,v,),

closer to the constraint line determined by %%, g—f—}, and g% (Figure 4.7).
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Figure 4.7: The naive way to try to satisfy your line constraint. (A) Sometimes
it moves perpendicular to the line. (B) Sometimes it doesn’t.

There are two problems with this approach. First, since the global values, v,
and vy are used in the local computations, they must be normalized. This nor-
malization is done by dividing by the sum in the denominator of Equation 4.3. In
the one-dimensional case we could transfer the problem into the next level of ag-
gregation, perhaps avoiding the division altogether, depending on the form of the
velocity representation needed by this higher level. With the two-dimensional for-
mulation, we must perform the division, with all its inherent problems, and supply
this normalized value back to all the cells.

A more serious problem turns up when we examine a constraint line that is
more nearly parallel with one of the axes (Figure 4.7(B)). We see that our method
of determining the local contribution to the new global velocity according to Equa-
tion 4.2 has the following graphical interpretation: We get the new y-component
of the correction force by finding the y-coordinate of the point on the constraint
line directly above (same z-coordinate as) the present velocity point. Similarly, the
z-component is determined by the point on the line across from the present veloc-
ity point. The resulting correction vector is in roughly the direction toward the
constraint line but it is not necessarily orthogonal to it. This problem gets worse
as the constraint line becomes parallel to one of the axes. Because the constraint
line is the only information that exists locally, a local cell should try to move the
global velocity point onto its constraint line. The cell should express no opinion
as to where along its line the global velocity point should be. Any non-orthogonal
component to the correction force amounts to an expression of bias that does not
come from any information in the image.

If we were to implement this version of the algorithm, it would require three
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multipliers for each axis. The term g—:— . ‘9—5 can be shared between the two axes so
a total of five multipliers per cell would be needed. We would need three sets of
global wires per axis: one to carry the normalized velocity component, one for the
normalizing factor, and one for the unnormalized velocity component. In addition,

two global divider circuits would be needed.

4.4 A Better Formulation

In this section we address the orthogonality problem and as a result arrive at a new
solution with the properties:

e The correction is always perpendicular to the constraint line.

e No division is required.

The new formulation directly constructs a correction force that is perpendicular
to the constraint line as shown in Figure 4.8. The problem with the first attempt
at a two-dimensional velocity tracking algorithm was that the correction force could

have a component that was not orthogonal to the constraint line used to generate
it. A direct orthogonal construction eliminates this problem.

Uy A Uy A
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Figure 4.8: The correction force should be perpendicular to the constraint line.

If we rearrange the constraint line equation g{;v, + g%vy + %% = 0 from the

implicit form Az + By + C = 0, to the slope-intercept form y = mz + b we get:

a1 ar
- Bzv at
T T

dy dy
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The slope of the constraint line, where defined, is m = ___g_al_: g{;, so the slope of the

desired perpendicular correction force is then the negative reciprocal, "rlﬁ = g—{; g—%.
A unit vector in this direction would be:

al ar
&= =< oy
VI aI% |, a1 arz | ar? '
\/55 tay Vo Tay

8z

The magnitude of the correction force should be greater if the present point in
velocity space is farther away from the constraint line. The force should go to zero
as the point comes closer to lying on the constraint line. The direction of the force
should always be perpendicular to the constraint line and with a sign such that the
global velocity point will move toward the constraint line. A forcing function that is

linear with error distance fulfills all these requirements and can be easily computed
as follows:

If we just plug the present values for the velocity components into the line equa-
tion and normalize by the quantity under the radical, we get D, a signed distance.
The magnitude of D is the distance of the present velocity point (v;,v,) to the
constraint line. The sign of D indicates which side of the line the point is on and
therefore the direction of the correcting force. The vector, Av, from the current
velocity to the point on the constraint line is then:

ar ar
Av = D-Av=<D , D
a1? | a1? a1t | a1t
\/3: +3y dz + y
ar ar aIN3I (3L ar aIyaI
i < 6:”5+Byvy+ 6t) T ( z”z+ay”u+ t) y
B ar? | pI? ’ 1% a1t '
8z +3y z + y

Each cell should produce a force (electrical current), F, that will tend to move
the global velocity proportional to the detected error, Av. We would also like to
scale this correcting force according to our confidence in the local data, C.

F=C-Av

There is more information in a higher contrast edge, or at least there is a higher
signal to noise ratio. We should afford a greater weight to the correcting forces in
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those higher contrast areas. Our measure of contrast in the image is the intensity
gradient, a vector quantity VI = (gi, g£ ). Confidence is related to the magnitude

of the gradient, |VI| = sqrt(§; o1 352). If we choose our confidence, C, to be the
square of the magnitude of the 1ntensity gradient we have:

= |VI* = gL* 4 9%,

This choice greatly simplifies the correcting force calculation by canceling out
the denominator. Our force equation becomes:

ar ar r3arI ar IRY:24
F= <azvz+ayvy+ 52 (—-vz+ﬁvy+——>.

Writing the two components of this vector equation separately we have:

_ (oI ar ar
F, = azU2+ ByvV + Bt az (4 4)
. (3l aI aI\al ’
F, = 32Vt 3% t 5t) 3y

These are the equations implemented by the circuits of Chapter 5.

4.5 Comparing the Two Formulations

Notice first that the better formulation requires no division. This feature is very
important because of the difficulty with implementing a divider circuit and the
divide-by-zero problem. In the first formulation, we tried to get around this problem
by pushing it to the next higher level. This “hack” required two sets of global wires
out of each cell to carry the numerator and the denominator, and one set to carry
the result of the division back to each cell. The first formulation required five or
six multipliers. In the better formulation, the common term, ( s+ &Lv, + &L )
in the equations for the two components can be calculated once and usec¥ for both
further computations. Each cell then requires only four multipliers. In addition, the
second formulation avoids the data dependency of the first one by moving the global
velocity perpendicular to its constraint regardless of the position of the constraint
relative to the axes of the sensing array.



56

Numerator-Denominator | Orthogonal
Formulation Formulation
Number of Multipliers per Cell 5 4
Sets of Global Wires 3 1
Requires External Division Circuit Yes No
Always Moves Perpendicularly No Yes

4.6 Design of the Constraint Solver Cell
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Figure 4.9: Block diagram for each cell’s motion detection circuitry.

The block diagram of an implementation of the orthogonal two-dimensional formu-
lation is shown in Figure 4.9. There are several similarities to the weighted divider
implementation of the resistor network formulation for one dimension as shown in
Figure 3.10. If v, in the two-dimensional case is set to zero, the effect of the two
multipliers on the right is eliminated and the system reduces to the one-dimensional
case. One view of the one-dimensional system was that it computed an error and
used this as feedback to correct the global average velocity. This is consistent with
the two-dimensional view where the error term is the signed scalar quantity D, the
distance in velocity space of the global average velocity to the locally known con-
straint line. This distance error is also used as feedback to correct the system. For
two dimensions, this error is multiplied by the appropriate vector perpendicular to
the constraint line, to generate a correction force in the same direction to correct
the global velocity vector.
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One Dimension

Two Dimensions

Velocity Computed

Locally Measured Quantities
Error Term

Correction Force

Multipliers / Cell

b}
€ \Y;
F=(4+v3)dL

4.7 Summary of One-Dimensional Motion Detection

The extension of the velocity sensor to two dimensions has the same collective nature
as the one-dimensional case. Local information, weighted by confidence, is aggre-
gated to compute a global result. Each cell performs a simple calculation based
on moving the global velocity state into closer agreement with its locally measured
information. The collective behavior that emerges is the tracking of the intersec-
tion of constraint lines to solve the two-dimensional ambiguity, when possible, and
accurately report the two-dimensional analog velocity of the image.
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Chapter 5

Implementation: Circuit
Details

Our motion detection chip consists of a two-dimensional array of cells. Each cell
contains a photosensor and some other circuitry. The outputs of the photosensors
are routed to adjacent cells so that the computational elements of each cell can
monitor the light intensity at its nearest neighbor in each dimension as well as its
own intensity. The z and y components of velocity are distributed on wires globally
to each cell. These values represent the present best guess for the global velocity.
The voltages on these velocity wires are inputs to each cell. From the global velocity
inputs and the local light intensity inputs each cell calculates a correction to the
global velocity and expresses this correction in terms of currents that it applies to
the same global velocity wires with an appropriate magnitude and sign. The global
velocity wires perform a current sum of the correction contributions from all cells.
The velocity voltages change according to the net correction from all the cells.

The inputs to the chip consist of the optical image focused on the die (whose
motion the chip measures) and several analog wires to control the gains of each
component of the cells’ circuitry. The outputs of the chip are the analog voltages
on the global velocity wires.

Each cell contains four analog multipliers, a differential amplifier and some cur-
rent summing nodes to implement the correction computation of Equation 4.4. Fig-
ure 4.9 shows the block diagram for each cell. We present details of the individual
circuits used to implement the velocity detector.
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5.1 Choice of Technology and Representation

This new class of motion sensors is implemented using CMOS technology. CMOS
was chosen because in this technology, high voltage gain differential amplifiers can
be easily built using both n-type and p-type transistors. In addition, the inherent
bipolar transistors in a CMOS process can be used to generate photocurrent and to
perform low-noise current amplification [12]. Finally, because CMOS is perceived to
be the dominant digital technology for some time to come, we will continue to have
access to better and better CMOS fabrication processes as time passes.

Analog values are represented throughout the chip as the difference between the
analog voltages on two wires. This dual-rail scheme, although requiring more wires
to represent a value, has several advantages. There is no need of an absolute voltage
reference and the operating range restrictions that this would entail. Many of the
circuits describe below are based on the differential pair. This circuit, in its simplest
form, has an input that is the difference in voltage between two nodes and has an
output that is the difference in the current drawn from two nodes. The differential

pair is used throughout the motion sensor design and so the dual-rail representation
is a natural choice.

5.2 A Logarithmic Photo Detector

In Section 3.2 we derived the computation necessary to extract the velocity of a
intensity terrain from local measurements. This method works for the motion of
any terrain. In particular, a compression of the intensity scale such as a logarithmic
one, produces a different terrain curve. As long as the same compression is done
at each position, the analysis remains the same. The velocity of the log(I) terrain
curve is the same as the velocity of the image.

The reasons for using a logarithmic sensor are two-fold:

e The compression of large amplitude signals results in a wide dynamic range.

e Logarithms weight contrast ratios in the image the same for all levels of scene
illumination (more detail below).

The intensity, I;, incident on a photosensor is proportional to the reflectivity,
Rj, of the corresponding point on the object multiplied by the illumination of the
scene, L so:

I; = LoR;.
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If the illumination changes with time or varies slowly across the image, the ratio of
nearby intensities, the local contrast ratio, C, remains the same:
_ 5L LRy LiR,

Cio === = :
Y2 T, T LoR;  LiR;

With sensors taking the logarithm of all intensities, differences between sensor values
are independent of scene illumination levels. The difference quantity is the logarithm
of the contrast ratio:

logl; —log I, = log% = log C1.2.
2

The logarithmic photosensors have been fabricated, tested and reported by
Mead [12].

To build a logarithmic photosensor, the inverse function, an exponential is used
in the feedback path of a high gain amplifier (Figure 5.1). Any error between the
input intensity and the exponential of the output is amplified and affects the output
such that the error is reduced.

The schematic for the photosensor is shown in Figure 5.1. The Light striking
the base-emitter junction of a phototransistor creates photocurrent that is amplified
by the transistor. The parasitic bipolar transistor in a CMOS process typically
has a current gain, 8, of 300 to 500. The cross-sectional view shows the vertical
PNPphototransistor. The well forms the base and the substrate forms the collector.
Since the substrate is tied to ground (or some other constant voltage) to insure
uniform behavior of the MOS devices, the bipolar can only be used with its collector
grounded. A Darlington configuration of the four bipolar transistors provides the
high amplification in the circuit. A diode-connected MOS p-type transistor, M1,
provides a pull-up and yields an output voltage as a function of the amplified current.
The output voltage is fed back to the gate of another p-transistor, M2, operating in
its subthreshold region (where Vgg < Vry). In this region the source-drain current,
ips, is proportional to the exponential of the gate-source voltage, Vpg, so Vpg o €'Ds.
This exponential behavior in the feedback path provides the logarithmic forward
response of the circuit. A third p-type device, M3, provides a voltage offset from
Vpp to keep the second transistor in subthreshold. Finally, the drain-source current
from the subthreshold transistor is summed with the photocurrent, amplified by the
phototransistor, to make the error current.

The feedback connection is to the emitter of the phototransistor instead of the
base to improve response time of the sensor. The capacitance of the MOS transistor
source is charged and discharged by a current 300 times greater than the photocur-
rent. This connection choice yields a lower range of operating intensities than does
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Block Diagram: Schematic:
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Figure 5.1: Block diagram and circuit schematic for the logarithmic photosensor
and cross-section of the vertical PNP phototransistor.
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a base connection. The range of currents over which the circuit’s transfer curve
will closely approximate a logarithm is determined by the fabrication parameters of
the transistors. The pre-amplification of the photocurrent by the phototransistor
reduces the maximum intensity but extends the operating range for low light levels.

The offset voltage provided by transistor M3 is not constant but follows the same
exponential voltage-current relationship as does M2. For M3, the current increases
with gate-source voltage at about 115mV/decade of current, over more than five
decades of current. Transistor M2 has a similar constant that is increased by the
back gate effect so that the combination of M2 and M3 produce a voltage of about
325 mV /decade of current. Room light level produces a voltage of about 1.5 Volts
down from Vpp or 3.5 Volts. A factor of 30 variation in light intensity either way
will produce an output voltage within the range of 3 to 4 Volts.

5.3 The Differential Pair and the Vyyy Problem

A differential pair of MOS transistors (Figure 5.2) working in subthreshold with
current source ip have a differential output current proportional to the product
of 19 and the differential input voltage. This result can be shown by noting that
in saturation the drain current, ipg, is independent of Vps and in subthreshold
saturation ipg is proportional to €es. Therefore:

At = iz—il
x e’Gsa _ gYas1,

Using a linear approximation for the exponential we get:

At ~ (V(;sz - VGSI)GVAVG
= AViave
x AV io.

This differential pair circuit, with its current source, takes a differential voltage
input and produces a signed differential current. This differential output current is
scaled by the current from the current source.

Although the differential pair performs well it does have an important restriction
in its operating range. The drain-source voltage, Vpg, of the two transistors of a
differential pair must be greater than about 100 mV for them to be in saturation and
therefore act as current sources independent of drain-source voltage. The restriction
on the output voltage range is determined by the voltage on the common source
node, Vo. The transistor with the higher gate voltage will carry most of the current,
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Figure 5.2: An important analog building block: the differential pair.

10, so the gate-source voltage of that transistor will be approximately the same as
the gate-source voltage of the biasing transistor, Vg. The common source node will
track the higher of the two gate voltages so:

Vo ~ max(Vl,Vg) had VB.

For proper operation, the output voltages, Vour: and VouyTsz, must both be at least
100mV greater than the common source node voltage, V. The minimum output
voltage, VMmN, is then:

VMIN = max(V,V3) — Vg + 100mV

and for proper operation:

Vour:1 2 Vmin  and  Vourz 2 VMmN

If the voltage on one of the output drain nodes drops below Vyn, the drain-
source voltage for that transistor will be less than 100 mV. The output current will
reduce to zero and can become negative if the output voltage drops even further.
We call this the Vygiy problem. Clearly under these circumstances the assumption
that the transistors of the differential pair act as current sources is no longer valid.
The circuit no longer produces a differential output current proportional to the
differential input voltage. The direction of the current can even change, drawing
current from the other output node.
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5.4 Current sources and mirrors

A MOS transistor operating in the saturated region makes a reasonable current
source. As Vpg changes, ipg remains relatively constant. The current can be set by
the gate voltage. A convenient way to set this gate voltage is with a current-mirror
transistor and a controlling current as shown in Figure 5.3. Above threshold, the
condition for saturation is Vpg > Vgs — Vrg. The control transistor is guaranteed
to be saturated because Vgs = Vpg. The control transistor biases its gate voltage
so that in steady state it sinks all the control current. This same gate voltage is
provided to the controlled transistor. Provided the drain voltage is high enough
to keep the controlled transistor saturated, the drain-source current ipg will be
essentially the same for both transistors. The circuit will maintain a fixed current
equal to the input control current over quite a wide range of output voltages.

In the subthreshold region (where Vgs < Vry), MOS transistors behave much like
bipolar transistors so the condition for saturation is Vps > ~100mV [13]. Saturation
is not a function of Vgg so within subthreshold the output of the current mirror will
remain constant down to within 100 mV of ground independent of the current level.

A
1 ade
ips
(nA)
0 +— } >
0 100 200
Vps (mV)
IGNTL 1oUT LCNTL 10UT1 tOoUT2 touTs

miP
T

Figure 5.3: (A) A characteristic transistor curve. (B) A current mirror. (C) A
current mirror with multiple outputs.

A current mirror with differently sized controlling and controlled transistors will
produce an output current scaled by the geometric ratio.
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One common use for the current mirror is to set many currents to the same value.
For example, all the current sources for the multipliers in our chip are set with a
single controlling transistor. The gate voltage is then distributed throughout the
chip to many identical controlled transistors—one for each multiplier. The current
sources throughout the chip will produce the same current to the extent that the
transistors are fabricated identically. Threshold variations and geometric variations
will contribute to variations in the resulting currents. Also, the distributed line is
susceptible to noise. In the subthreshold region especially, because ipg goes as PACH
a variation in the gate voltage due to noise of 0.1V can produce a current variation
of about a factor of ten.

Current mirror are often used to combine the two differential current outputs of
the differential pair into a single bidirectional current output. The differential pair,
its current source, and a pair of transistors to mirror the differential pair currents,
form a transconductance amplifier. Such an amplifier, with its output connected to
its input, is used in the differentiator (Figure 5.4(D)).

5.5 Integrators and Differentiators

Part of the velocity correction calculation of each cell requires the time derivative
of the light intensity signal. A conventional resistor-capacitor (RC) differentiator
is shown in Figure 5.4. The time constant, r, of the circuit is proportional to the
product of the resistance, R, and the capacitance, C so r = R-C. Since we will want
to control this time constant after fabrication, we will make the resistor a variable
one. It is difficult in our CMOS fabrication technology to make a linear variable
resistor with one end tied to ground. It is also difficult to make a linear, low leakage
capacitor with both nodes floating (unless you have a special capacitor layer in your
CMOS technology). We can make somewhat better resistors and capacitors if we
switch their order in the circuit. A capacitance to ground can be formed by the
gates of two transistors. The high leakage sides are tied to the power supply rails,
Vpp and Gnd, leaving the varying node in low leakage poly. A resistor has the
property that the current through it is proportional to the difference in voltage
across its two ends. A transconductance amplifier in its linear region, connected as
a voltage follower, has the same property (Figure 5.4(D)}). Furthermore, the scaling
of this current and thus the value of the resistance, is set by the current source at
the bottom of the amplifier. This source can easily be controlled from off chip after
fabrication.

Since we swapped the order of the resistor and capacitor, we built an RC integra-
tor instead of a differentiator. The current through the series resistor and capacitor
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Figure 5.4: (A) The RC differentiator. (B) The RC integrator. (C) An RC inte-
grator used as a differentiator. (D) A cMOS integrator used for differentiation.
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did not change due to the swap so the time derivative signal of interest is still pro-
duced but is the voltage across the resistor, not the capacitor. Alternatively, we can
say the derivative is the difference between a signal and its integral. (This is precise
only if we are talking about the “leaky” RC type of integrators and differentiators.)

In Laplace transforms, the output voltage of the RC differentiator taken across the

resistor is: s

1/r+s’
where r is the time constant R - C. The output voltage of the RC integrator taken
across the capacitor is:

Vr =VIN

1/r
1/r+s
We can see that the difference between the signal, Vin, and the output of the inte-
grator, Vg, is:

Ve =Vin

1/r
Vin—-Ve = Vin -V
IN C IN INI/T+S
8
Vi
Ly
= Wr.

The output of our differentiator is then the difference between the voltages on
two wires. This construction fits in well with our dual-rail scheme and the differential
amplifier that follows this stage.

The resistor-equivalent circuit in the integrator avoids the Vyyn problem because
of the way it is connected. The voltage on node 1, on the left, is the gate bias voltage
for the current mirror made of p-type transistors. For subthreshold currents, this
voltage will be within a threshold of Vpp or greater than about 4.3 Volts. The output
voltage on node 2 can go higher than 4.3 Volts without exceeding Vyyn. For voltages
below 4.3 Volts, M1 stays saturated as it must for normal operation. The drain of
transistor M2, node 2, is an output and is connected to an input, the gate of the
same transistor. This gate-drain connection assures that transistor M2 is saturated
whenever it is conducting. When Viy gets larger than the node 2 voltage, then the
common node voltage, Vy, can become larger than the output node voltage. For
the general differential pair this could cause reverse currents through transistor M2.
For the integrator’s resistor circuit, the gate-drain connection makes transistor M2
act like a diode. When Vpg becomes negative, the gate-drain connection becomes
a gate-source connection. With Vgg = 0, the transistor will conduct no reverse
current. The resistor circuit avoids the effects of the Viyn problem by virtue of its
input-output connection.
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5.6 A Four-Quadrant Analog Multiplier

The differential pair circuit takes a signed differential voltage, multiplies by a uni-
directional current and produces a signed differential current. We need a multiplier
that can take as inputs two signed numbers (a four-quadrant multiplier) instead of
one signed and one positive (two-quadrant). Another differential pair with inputs
reversed can provide the other two quadrants of operation, provided that we arrange
the two unidirectional current sources correctly. The difference between the two cur-
rent sources must be proportional to the second (signed) input to the multiplier. If
our second input is a dual-rail pair of currents, we can use this multiplier as is, or
through a pair of current mirrors. We call this a Vi-i multiplier because it requires

one voltage input ( V), one current input (i), and produces a current output (i), all
dual-rail (Figure 5.5(B)).

RN o TR TR

R

+— }]

AV,

Figure 5.5: (A) A two-quadrant multiplier. (B) A four-quadrant vi-i multiplier.
(C) A four-quadrant vv-i multiplier.

We can make a multiplier with two pairs of differential voltage inputs and dif-
ferential current outputs. This type is a VV-i multiplier. A third differential pair
connected to the bottom of the Vi-i multiplier turns the second voltage input pair
into the required proportional differential currents (Figure 5.5(C)). This configu-
ration is structurally identical to the Gilbert multiplier well known in the bipolar
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world [4].

Our first implementation of the four-quadrant multiplier is susceptible to the
VMmiIn problem. Each multiplier contains three differential pairs. Each of the output
nodes of the bottom differential pair is the common node of the differential pair
above. Applying the Vyin restriction throughout yields the relationship between
the two sets of input voltages and the output voltages. For correct operation:

Ve+ > max(Va+,V4—)+100mV

Vp— > max(Va+,V4~)+ 100mV
Vour+ 2 max(Ve+,Ve-) - Vs + 100mV
Vour— 2> max(Vp+,Vp—)—Vp+ 100mV.

In general, the Vg input voltages must be greater than the V4 input voltages and
the output voltages must be higher yet.

The Vyn restriction on the multiplier determines the choice of operating point
throughout the present motion detector design. A modification of the multiplier
circuit could reduce some of the restrictions. The bottom half of the multiplier
can be decoupled from the top half by inserting a pair of current mirrors between
the two halves. This eliminates the restriction between the two pairs of inputs.
Adding an additional pair of current mirrors on the outputs, decouples the upper
input voltages from the output voltages. Although requiring more chip area, this
multiplier can be used over a wider range of input operating conditions.

5.7 Putting the circuits together

Figure 5.6 shows a detailed schematic for the circuitry in one cell. The output of
the logarithmic photosensor goes to an integrator with a time constant set with the
external analog current control labeled 7. A choice in the range of 0.3 to 0.4 Volts for
the 7 control knob allows operation for velocities typically encountered by a mouse
pointing device. The difference between the intensity signal and its integrated value
is amplified by a transconductance amplifier and summed onto the differential pair
of nodes labeled D (for Distance in velocity space of the current global velocity point
from this cells constraint line). The amplifier gain is set externally by the TS analog
control. TS stands for Time Scaling.

The spatial derivatives are estimated by the difference in the intensity values of
adjacent sensors. The two spatial derivatives are multiplied by the corresponding
velocity components and the two results are summed onto the D nodes. The gain of
the multipliers is controlled by the external analog control labeled GS for Gradient
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Scaling. The relative scaling of the gradient and the time derivative by the corre-
sponding analog controls, determine the scaling of the global velocity output. In
practice, the GS and TS controls are usually the same and are operated at a voltage
between 0.5 Volts and 0.7 Volts.

The differential current summed onto the D nodes represents the distance term
which is the common term in the two parts of Equation 4.4. This D current is passed
through a double current mirror. The mirrors allow the currents to be duplicated
and used in two places in the next stage of computation. The D currents are used
as inputs to another pair of Vi-i multipliers that multiply them by the appropriate
spatial derivative and sum the resulting current back onto the global velocity wires.

The global velocity wires are presently brought out to pads so that the pull-up
resistors can be varied to set the operating point and so that enough capacitance
can be added to assure one dominant time constant and thus prevent oscillation.
In practice, the stray capacitance is sufficient to prevent oscillation. Appropriate
values for external pull-up resistors are in the range of 100 to 1000 MQ due to the
small subthreshold currents. These unusually large resistors can be obtained and
used as loads. A better way to provide pull-ups is to use the two pairs of on-chip p-
transistors as high resistance current sources. The current through these transistors
is set by the analog v Bias controls and is chosen to keep the common mode voltage
of the v+ and v— lines at an appropriate operating point.

The Vn operating range restrictions of the multipliers determine the necessary
operating points throughout the circuit. The common mode voltages at selected
points in the circuit are shown in Figure 5.6. These voltages satisfy the constraint
between the two sets of inputs and the outputs of each of the multipliers. Since
the outputs of multipliers must feed the inputs of other multipliers, circuitry is
needed to shift the level of the signals to a lower common mode voltage. At the D
nodes, a pair of double current mirrors provides this function. The diode-connected
control transistors maintain the output nodes above 4.3 Volts over a large range of
subthreshold currents. The controlled currents of these current mirrors can operate
over a range of voltages down to within ~100mV of ground. These currents feed
into Vi-i type four-quadrant multipliers.

The output currents of the top two multipliers tend to discharge the global
velocity lines. Current is supplied to the velocity lines by matched pairs of p-type
pull-up transistors. The gate voltage is the same for both transistors in the pair and
is chosen such that the common mode voltage of the pair of velocity lines is within
operating range—about 4.0 Volts. The non-ideality of the current sources connected
to the velocity lines, both the pull-ups and the multipliers, tend to keep the velocity
voltages near the same value. Although not a strong effect, this tendency becomes
important for low contrast images. Experimental data and discussion of this effect
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are included in Chapter 6. Transistors in their saturation region provide a much
greater dynamic resistance than would external resistors.

The high resistance of the pull-up transistors reduces their non-ideality as current
sources but makes the common-mode voltage highly dependent on the controlling
gate voltages, v, Bias and v, Bias. For any given image there is a setting for the
bias voltage that will keep the common mode velocity voltage near 4.0 Volts. As the
image intensity varies, the optimum setting of the bias changes as well. To make full
use of the wide dynamic range of the photosensors, a mechanism for automatically
adjusting the bias voltages is needed. Our present prototype chip is augmented with
an external operational amplifier to provide this automatic bias. The common mode
voltage is compared to a fixed voltage of 4.0 Volts and the error fed back to the gate

of the p-transistor pull-up. Future versions of the motion detector chip will include
a similar circuit on board.

5.8 Motion Detector Circuit Test Results

Test results for the cMOS differentiator of Section 5.5 are shown in Figure 5.7.
Constant amplitude sine waves were applied to the input of the differentiator. The
output amplitude is shown as a function of frequency on a log-log plot for various
settings of the r control. Each curve approximates closely the one-pole roll-off
expected from an RC differentiator. The knees of the curves step regularly with 7
control voltage. This behavior is expected because in the subthreshold region the
resulting current varies exponentially with gate voltage.

Figure 5.8 shows a typical multiplier characteristic test result. The output dif-
ferential current is plotted as a function of one of the inputs. The other input is
used as a parameter for the family of curves. The linear region seems to be about
500 mV with smooth limiting behavior outside this region.

5.9 Circuit Summary

An 8x8 array of motion detection cells was fabricated on a standard MOSIS CMOS-
Bulk fabrication run. Figure 5.9 is a photograph of the chip. A lambda of 1.5 um
yielded a die size of about 45003500 um. Individual test results for the photosensor,
differentiator, and multiplier are reported above. Test results and characterization
of these circuits working in concert as an integrated motion detector are reported
in the next chapter.
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Frequency Response of the cM0OS Differentiator
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Figure 5.7: Differentiator output as a function of frequency and control voltage.
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Figure 5.9: Photograph of the 8x8 array motion detection chip.
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Chapter 6

Results

The 8x8 array chip has been extensively tested with actual moving images and by
electronically simulating motion. Quantitative results of testing are reported below.
The first set of experiments use an electronically controlled light source to apply
an intensity field onto the chip that varies spatially across the chip and varies with
time. The space and time derivatives of intensity are controlled by the experimental
apparatus to simulate a moving intensity pattern while the velocity outputs from
the chip are monitored. A second set of experiments focuses actual images onto the
chips and measures the chip’s response. The constraint line behavior is verified and
the correction forces are mapped for different images. Finally, an interactive test
set-up is described.

6.1 Characterizing the Motion Output

In the analysis for the motion detector, any changes in the light intensity were
assumed to be due only to motion of the image, not to changes in the illumination
level. By rapidly changing the illumination level under experimental control, the
motion of a spatial intensity gradient can be simulated. The motion simulation test
set-up is shown in Figure 6.1.

A time derivative is generated by changing the current through the LED light
source. A triangle wave intensity, used in these experiments, makes a %—f that is a
square wave. The magnitude of the %—{- square wave is the slope of the triangle wave
which is dependent on the amplitude and frequency of the triangle wave. Frequency
is used to vary %It-'.

An opaque screen between the LED and the chip that partially occludes the
light causes a spatial derivative of intensity (edge) to fall on the chip. Moving the
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Figure 6.1: The test setup to electronically simulate motion. An LED casts
light directly on the motion detector chip. Varying the LED current produces a
controlled %{. An opaque screen makes a shadow edge on the chip. The distance

from the chip to the screen controls the sharpness of the edge, g—ﬁ.
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screen closer to the chip makes a greater g—i, that is, a sharper edge. The position
of the screen is adjusted until the measured spatial gradient is the desired value.

When a spatial intensity gradient that varies in time as a triangle wave is applied
to the motion detector chip, the differential voltage on the chip’s velocity outputs is
a square wave. Figure 6.2 shows an oscilloscope trace of the LED input current and
the velocity output of the chip. For these experiments, the screen producing the
spatial gradient was aligned with the y-axis of the chip. As the intensities varied
with time, the y-component of velocity reported by the chip was very nearly zero.
The z-component of velocity is reported in the quantitative results.
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Figure 6.2: Oscilloscope traces of LED current (top) and reported velocity from
the chip (bottom) for frequency of 20Hz.

With experimental control of g—i— and %%, the velocity output of the chip can
be tested to verify that the reciprocal relationship for velocity, v = ——%% / —g—i—, holds.
Two sets of measurements are given. First, reported velocity as a function of %%
is plotted for fixed values of -gé. A straight line graph is expected. Second, the
triangle wave frequency generating %{- is held constant and the spatial gradient is
varied. The expected curve is a hyperbola. For all plots, the reported velocity is
the amplitude of the square wave of the z-component output from the chip.

Figure 6.3 plots reported velocity versus %{- (frequency) for three fixed values of
g_Ii_ The straight lines represent the theoretical proportional behavior as shown on
the log-log plot. The experiment matches theory in the range from 1Hz to 40Hz.
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Beyond that frequency, the amplitude of the motion rolls off.

Velocity as a function of %{
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Figure 6.3: Measured motion response of the chip as a function of % for fixed
values of -g—i—. The straight lines represent an ideal linear response.

There are three circuit properties that can be responsible for the roll-off. First,
the photosensor has a frequency limitation as reported by Mead [12]. This limitation
is due to the charging of the capacitance of the first stage of the current amplifier by
the photocurrent. This speed can be increased by operating at higher light levels.

Second, the frequency response of the differentiator has a roll-off frequency that
is set by the 7 knob as reported in Section 5.5. By increasing the control current into
the integrator, the cutoff frequency can be made very large. The entire frequency
response curve shifts, reducing greatly the signal levels produced by the differentiator
for low frequencies. The operating frequency range of the differentiator is limited
on the low end by noise levels and on the top end by either the unity gain of the
differentiator at high frequencies and therefore the magnitude of the intensity change
or the linear response of the differential pair circuits, whichever comes first. The
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7 control current should be chosen so that the operating frequency range of the
differentiator encompasses as much of the expected frequency range as possible.
Third, the charging of the capacitance on the global motion lines by the 1oyt
current sets a limit on how fast a change in motion can be reported. This limit is
the RC time delay of multipliers collectively charging the capacitance of the global
motion lines. Note that this limitation is different from the first two because it is
not a limit on how great a velocity can be reported but on how quickly a change in
velocity can be reported. For these experiments, the applied intensity was driven
by a triangle waveform generator. The reported velocity, as shown in Figure 6.2,
approximates for suitably low frequencies the square wave that the theory predicts.
For higher frequencies, the global velocity lines do not have enough time to respond
to the apparent velocity change and in this slew-rate limited mode, become distorted
from the desired square waves. The example of Figure 6.2 shows that even at
20Hz the chip starts to exhibit this departure from the ideal square wave. This
limitation on the acceleration of the applied image can be affected by the current
control on the multipliers that supply current to the global lines. Increasing the
current provides a quicker reported velocity response at the expense of greater power
consumption. Performance can be increased in this way until the operation of the
multiplier exceeds subthreshold and becomes more non-linear. Figure 6.4 is a plot

of reported velocity on the vertical axis versus applied —g% on the horizontal axis for
three fixed values of %%. The curves approximate a hyperbola over most of their

range. The behavior to the left of the peaks deviates significantly from a hyperbola
and is investigated further below.

Recall that as g—ﬁ decreases, the reported velocity should increase but that the
resistance of the circuitry will increase, causing it to have less effect on the reported
velocity. When -‘g—f—: becomes zero, the reported velocity could take on any value
because it is not affected at all by the local cells. The current source loads in our
implementation have large but finite impedance so that in the absence of any infor-
mation from the visual field, the reported velocity will tend to zero. The schematic
representing this effect is shown in Figure 6.5. For large g—i— (contrast ratios) the
impedance of the local circuits is much smaller than that of the loads so their ef-

fect on reported velocity is negligible. As the contrast ratio is reduced, the load
impedance must be taken into account.

So far we have referred to the output of the chip as the velocity v. Now, con-
fronted with evidence that under some circumstances, the values on these global
output lines may not be velocity, we will distinguish the chip’s output by calling it
“reported motion,” M.

Since M = [irordt, the condition for the system to be in steady state is



81

Motion as a function of g—i—
700+

600 +
500 1

Reported 400

Motion
(mV)
300+

200+

100+

0 t - + f
0 100 200 300 400 500 600

Spatial Derivative of Intensity L (mV)

Figure 6.4: Measured motion response of the chip as a function of gﬁ for fixed
values of %{'. The response approximates a hyperbola over most of its range as
expected for velocity. Near zero, the response is linear with %f;.
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Figure 6.5: Schematic of the motion cell circuitry taking into effect the finite
load impedance, Ry.

tror = 0. Before considering the load impedance, iTor = foyr. Including the
load impedance, ttor = fouT — i1 so for steady state ioyr = 1, = M;%—;. The
output current, toyr, produced by the divider circuitry is:

Steady state becomes:

Solving for M we get:
M=2%d_2%2 _ (6.1)

A plot of this mathematical function is shown in Figure 6.6. For sufficiently

large 2 5 z, g’ 2> ——— so the above equation reduces to:

ar
3t _
M = —-"'3_7 =v (62)
dz
as we had before. As 3L approaches zero so that (§ aI )? < 7=, the equation becomes:
M=¢83p,. (6.3)

This analysis allows us to determine the chip’s behavior for images with different
contrast ratios. For sufficient difference between light and dark areas the motion
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Theoretical Motion Output Curve
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Figure 6.6: Plot of the theoretical motion response curve as a function of %—i—

according to Equation 6.1. This curve approximates a hyperbolic response to
the right and a linear response near zero.
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detector chip will accurately report velocity. As contrast in the image is reduced,
the motion output M will smoothly change to become a function proportional to
both %—{ and -‘;—i—. There is evidence that some biological vision systems such as the
fly’s eye, utilize this motion M [18]. It seems a particularly graceful way for a system
to fail as the contrast ratio in its field of view is reduced to the point where velocity
can no longer be extracted.

Note that if the multiplicative definition of motion is desired over the entire
operating range, the existing chip can be easily made to do this calculation. Setting
the control current to zero on the feedback multiplier makes toyr = %%%—i—. This
current will be turned into a voltage by the load resistor or a higher performance
current sensing arrangement could be built off chip.

In the absence of any information, at zero contrast, the motion detector chip
will report zero motion. For a strict velocity detector, the zero contrast case is
undefined so a device that reported “true velocity” could take on any value in the
absence of information. Our chip behaves much better. It seems to be particularly
useful that our motion sensor reports zero motion when it can detect no spatial
intensity variation.

The stick and rubber band model needs a slight revision to include the effect of
Ry, on the circuit. Figure 6.7 includes an additional rubber band from the global
velocity point to the origin. For images of sufficient contrast, the new rubber band
is enough weaker than the others to be disregarded. As the image contrast decreases
the new rubber band has more and more effect. When there is no information in
the image, the additional rubber band pulls the global velocity to the origin. The
effect the additional force has on ambiguous one-dimensional images is discussed in
Chapter 7.

Over the complete range of g—i’s, and in particular in both the hyperbolic and
linear regimes of motion, Equations 6.2 and 6.3 show that the magnitude of the
motion response should be proportional to —g—:. The three curves of Figure 6.4,
above, taken at frequencies of 10Hz, 20Hz, and 40Hz seem to be scaled versions of
the same curve and so bear out this proportionality over the range of %ﬁ-. Figure 6.3
shows a plot of reported motion as a function of %%. The three curves are for fixed
%ﬁ’s, one chosen for each of the regimes of operation and one for midway in the
transition region between them.

6.2 Verifying Constraint Line Behavior

The circuitry in each cell of the motion detector array was developed in Section 4.6
(Figure 4.9). The collection of circuits in each cell, working in concert, tries to
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Figure 6.7: Physical model for the constraint solver with the addition of the
tendency-to-zero effect.
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satisfy the constraint between the z and y-components of velocity according to the

line equation:

oI, L or, . ar _
azVz T a0 T 3¢ =

This constraint is defined by the inputs, the locally measured intensity derivatives,
gﬁ-, '35’ and %%. If we force the value of one of the components of velocity, the circuit
will drive the other component of velocity until its value satisfies the constraint. For
a given image input the entire constraint line can be determined by sweeping the
forced velocity value. Figure 6.8 plots three constraint lines from the measured
response of the motion chip. A single edge was projected onto the chip so that the
constraint lines of each cell in the array would all coincide. The z-component of
velocity was driven to a sequence of values. For each value, the chip determined
the y-component and the resulting point in velocity space was plotted. The image
was not moving relative to the chip, so the constraint line should pass through the
origin. The constraint line was plotted for three different orientations of the edge.
To insure the relative angles of the three orientations, a single triangle was used
as the image for each trial. Between trials, the part of the image falling on the
chip was adjusted by translations only. Although the data deviates from the ideal
slightly, this experiment clearly demonstrates the constraint line behavior of the
motion detector chip.

6.3 Velocity Space Maps

To demonstrate the two-dimensional collective operation of the motion detector
chip, we applied an image of a single high contrast edge to the chip at rest (zero
velocity). The chip should report zero motion. The global output lines were driven
externally to take on a particular sequence of values. The values were chosen to
scan the velocity space in a regular grid. For each z-y pair of voltages driven onto
the chip, the chip responded with a current intended to move the global point in
velocity space into agreement with the velocity of its image input, namely zero
velocity. These resulting z-y pairs of currents were measured for each point and
displayed as a small vector originating at the forced point in velocity space. The
resulting map of these vectors, Figures 6.9-6.11, shows in which way and by how
much the chip is trying to pull the global velocity lines. The point of stability,
the attractor point, is near zero as it should be. The amount by which the chip
pulls as the global line gets further from the attractor depends on the structure of
the applied image. A one-dimensional image such as the single edge used in this
experiment provides information only about the velocity perpendicular to the edge.
Thus the chip should pull harder when the velocity lines are forced away from the
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Figure 6.8: Demonstration of the constraint line behavior. The z-component of
velocity was swept while plotting v, versus v,. The three trials were for the edge

in the image oriented at 0°, 60°, and —30°. The lines are the ideal constraint
lines.
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real velocity in a direction perpendicular to the one-dimensional image stimulus.
The image contains less information about the velocity parallel to the applied edge,

so forced displacements of velocity away from zero in that direction result in much
smaller restoring forces.

The motion detector has been extensively tested with the interactive arrange-
ment shown in Figure 6.12. The chip is mounted on an z-y motion table. Motors
translate the table in the z and y directions according to the position of a joystick
control. The joystick is a velocity control—the velocity of the table increases with
the distance the control is displaced from its center rest position. A photographic
enlarger projects and focuses an image onto the chip. The analog velocity outputs
from the chip are connected to the z and y channels of an oscilloscope that is set to
display in z-y mode. The oscilloscope display represents velocity space and the dot
on the display generated by the two analog inputs represents the reported velocity
of the chip. As the joystick moves, the dot on the screen tracks the velocity of the
chip and therefore tracks the position of the joystick. The speed range over which
the chip can operate is more than adequate for use as a mouse pointing device.

6.4 Testing for Threshold Variations

Most of the circuits described depend on having matched transistors. The two most
common requirements are that the two transistors of a differential pair have the
same parameters and that identical circuits in adjacent computing cells behave the
same so that the difference between their outputs is meaningful. As an example,
the four-quadrant multiplier of Figure 6.13 has three differential pairs of transistors
that must be matched to operate accurately. In addition, the top two pairs of the
multiplier must be matched. For the cutput current of the multiplier to be scaled
the same as for all multipliers, the current source transistor must match the current
source transistor for all other multipliers.

The questions are:

e Is there a significant variation in transistors fabricated?

e If so, what is the effect of these variations on our circuit?

Data showing that transistors do have variations—some regular and some random—
is followed by an analysis of what effect these variations will have on our circuit.

For test purposes, we fabricated an array of multipliers that could be individ-
ually tested. First, all the current source transistors were tested to see how well
they matched throughout the array. Second, a simple test was performed for how
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Figure 6.12: An interactive test set-up for the motion detector chip. The joystick
controls the speed of an z-y motion table. The chip moves with the table under
a fixed image projected from above. The chip outputs go to an oscilloscope to
display reported velocity.
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Figure 6.13: Multiplier transistors that must be matched. Each of the three

pairs of transistors must be matched, the top two pairs must be matched to
each other and the current source transistors of all the multipliers must be
matched.
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well matched were the transistors within a multiplier. The test circuit is shown in
Figure 6.14. For both tests, the two differential inputs were set to zero with suitable
common mode operating points. The gate of the current source transistor was set to
0.7 volts. The two output currents for each multiplier were recorded. The multipli-
ers were arranged in a 6xX9 two-dimensional array. One array had multipliers made
with all transistors 2x2X and one with 16x 16\ transistors. Both were fabricated
on a MOSIS 3 um (A = 1.5 um) run of a CMOS-Bulk process.
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Vs = 0.7 Volts —{

Figure 6.14: Transistor variation array test setup.

The sum of the two measured currents indicates the total current set by the
bottom transistor. Figure 6.15 plots this total current as a function of position in
the two-dimensional array. Each line is a scan across a row. Shown superimposed
are the lines for the 6 rows. Besides noting a general upward trend in the envelope
of these data lines, we see that there is periodic variation that repeats about every
two or three multipliers (about 250)). The same data is displayed in another way
in Figure 6.16 to achieve a three-dimensional plot of control current as a function
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of both spatial axes. To achieve this display each of the successive rows of data is
offset vertically by the same increment. The absolute vertical axis scale is correct
then for only the lowest line. We can then quite clearly see that along with some
random variation there are ridges and valleys running diagonally across the chip at
an angle of about 30° off from the vertical axis.

Maultipliers with 16 x 16 lambda transistors

Total
Current
(nA)

1.0+

0.5

0.0

1 2 3 4 5 6 7 8 9
Position in the Array (104 Lambda)

Figure 6.15: One-dimensional plot of total current as a function of position in
the array.

These periodic variations in transistor parameters may be due to the coarseness
of the raster scan used to implant impurities in the active layer of the silicon. If
the direction of this scan relative to the axes of the designed chip is known, there
is a straightforward way of eliminating the mismatch of transistors due to the scan.
Each matching pair of transistors can be designed to lie next to each other parallel
to the scan pattern. As less is known about the orientation and spatial frequency
of the variation, more and more complex schemes can be designed to compensate
at the expense of simplicity and chip area. Such compensation schemes have been
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Figure 6.16: Two-dimensional plot of total current as a function of position in
the array.
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used to fabricate well-matched MOS capacitors [16]. We are currently pursuing
another attack on this problem by opening a dialog with the fabrication service
through MOSIS. Perhaps they can reduce this variation to below measurable levels
by modifying their fabrication process.

To see what effect these transistor variations have on multipliers, the same test
data was used in another way. Since the differential inputs to the multipliers in our
test setup were set to zero, their differential current output should be zero. The
currents ¢; and t2 from the test setup shown in Figure 6.14 should be the same.
The actual currents were measured and and the difference between the two cur-
rents, expressed as a percentage of the total current, were plotted as a histogram in
Figure 6.17. We can see that a significant number of multipliers made with 16x16)
transistors have errors of more than 40%. For the smaller transistors (Figure 6.18),
the errors are considerably worse. These tests indicate that transistor variations are
a real problem that must be considered by the analog designer.

6.5 Effects of Transistor Variations on the Motion De-
tector

A variation in the doping of a transistor results in a behavior that still follows the
subthreshold relation of:

ipg = efVos,
but with a different threshold constant k. Differential pair circuits made with tran-
sistors with different thresholds will then behave the same as a circuit with matched

transistors with a fixed DC voltage added to one of the differential inputs. This DC
voltage is referred to as an offset voltage Vorr.

We now analyze a simplified version of the divider circuit for its behavior in the
presence of offsets. Figure 6.19 shows the schematic.

The equations describing the circuit become:
ip = (§+0u)(-M+0:8)G:
D = i1+ (% +02)G,
iour = (D+034)(3L + 03B)Gs.
where O, are the offset voltages. Substituting we get:
iour = (& + 038)Gs[0s4 + (& + 02)G2 + (& + 014)(—M + 015)G4].

M is constant when gyt = 0 which occurs when:
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Figure 6.17: Histogram of the differential current output of the multipliers for
zero differential input as a percent of average current. 16x16) transistors.



99

16 T 2x2A
o = 44.8%
14 4 Mean = —-2.2%

12 + ]

Fraction 10 T -
in Range // -\
%) sl —

/

%

I
-+

0 1 ¥ L}
-100 .80 -60 -40 -20 0 20 40 60 80 100
3:1 2:1 1:1 1:2 1:3

Relative Current Difference (% and Ratio 1, : 15)

Figure 6.18: Histogram of the differential current output of the multipliers for
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Figure 6.19: The divider circuit schematic taking into account offset voltages
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If all the offsets happened to be zero, and we ignore the various constants (as we

have been doing all along) this equation reduces to the familiar:
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For non-zero offsets, their effect on the output depends on their position in the
circuit. As is usually the case in feedback systems, any offsets within a negative
feedback path show up in the output. This offset is not particularly good but could
be worse—none of these offsets is multiplied by any of the gains throughout the
circuit. The offsets that fall into this category are O1p and O34. The Oy4, Oz and
O34 offsets are not in any feedback loops and are therefore multiplied by gains in
any amplifiers encountered on the way to the output including the amplifier with
the offset in question.

Unamplified voltage offsets are generally acceptable. A current offset of 40%, as
typical in the test data above, translates into a voltage offset of only 125mV. For
reasonable signal levels, this may not affect the signal to noise ratio significantly.
Voltage values from the photosensors vary by about 320mV per decade of light
intensity. A voltage difference of 125 mV corresponds to a contrast ratio of about
2.5:1. For contrast ratios greater than 5:1, the measured distribution of voltage
offsets may be acceptable. If these offsets are amplified, the result is generally
significant and often devastating. Individual circuits in the motion detector cell by
themselves do exhibit errors of this magnitude. These errors make it difficult to test
parts of the motion cell such as a multiplier and load devices in isolation. Without
the negative feedback, small offset voltages result in offset currents that as high
impedance current sources tend to drive the outputs all the way to their limits near
the power supply rails. Adding the feedback reduces the offsets to their unamplified
levels in most cases.

The remaining offsets when feedback is added are in evidence for single motion
cells but are barely noticeable in an 8x8 array. As the contributions from many
local cells are aggregated, the signals due to intensity input add up, reinforcing
each other, while the offsets due to random threshold variations tend to cancel each
other out. This increased reliability and accuracy with larger arrays is an important
property of the motion detector.
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6.6 Summary of Results

An 8x8 version of the motion detector chip has been tested extensively in the lab.
Electronically simulated motion was used to characterize the response of the chip.
These tests showed that the chip reports velocity over a range of significant contrasts.
With low contrasts the output gracefully degraded to another form of motion. As the
contrast goes to zero, the reported motion goes to zero. Using real images projected
onto the chip, the constraint line behavior of the motion algorithm was verified.
Velocity space maps illustrated the correction force as a function of error distance.
Threshold variations within a chip were demonstrated to be significant. Circuit
feedback in some cases can reduce the effects of transistor variations. The aggregate

property of large arrays improves the accuracy and reliability of the resulting motion
output. output for
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Chapter 7

Discussion

The following sections relate the velocity detector theory and implementation de-
scribed in previous chapters to work in the other related fields of Hopfield neuron
modeling, Al and computational vision, and biological vision modeling.

The correspondence problem of matching images in successive frames is avoided
by both the motion sensing systems.

The velocity detector is an example of a Hopfield neural net [6,7]. The Hop-
field neuron model is a recent powerful model for describing the behavior of highly
connected neural nets. It is an important example in the emerging field of collec-
tive computation. Section 7.2 gives a brief description of the fundamental model
and shows how the motion detector can be described in this model. Input-defined
connection strengths, although a potentially powerful computing technique, are gen-
erally not considered by the Hopfield model due to their mathematical complexity.
The motion detector is an example of a network with input-defined connections that
is well behaved.

Motion detection (optical flow) has traditionally been done by the Artificial
Intelligence community using conventional TV cameras and sequential digital com-
puters. Some researchers are beginning to investigate and appreciate the power of
analog networks for the solution of many early vision processes. In Section 7.3 I
relate how the motion sensor chip fits into the computational vision paradigm and
how the motion sensor architecture can easily be modified to accommodate some of
the more complex motions studied by researchers in the computational vision field.

The implementation proves that a motion detector can be built using a very well-
founded theory and using a simple, regular structure. Although there may not be a
direct correspondence between the motion detector’s electronic parts and neurons in
a biological vision system, knowing the operation of the electronic version may allow
the biologists to develop a new class of vision models that are more firmly based



103

on first principles than are the present ones. As an example, in Section 7.4, a well
known psychophysical experiment is examined to see how my motion detector would
respond—i.e., can the motion detector model explain the results of the experiment?

7.1 Avoiding the Correspondence Problem

The usual way researchers attempt to reconstruct velocity from image input is to
match up features or objects in successive images. This approach has two problems:

e Features or objects must be extracted in advance. This prevents motion cues
from being used in the feature or object extraction process.

e Matching must occur over large distances in the image, creating a difficult
global problem out of an easy local one.

Advance feature extraction can be avoided by calculating velocity directly from
the intensity information in the image. These direct techniques can only be used
when the sampling rate is sufficiently high relative to motion in the scene.

The sampling process is also responsible for increasing the complexity of the
problem. TV cameras generate images at a rate of 60Hz or 30Hz. In the time
between successive frames, an object can move many pixels. Since the information
associated with any intermediate positions is lost, the motion reconstruction algo-
rithm must perform a match over an area large enough to cover the range of possible
motions during the frame time. The coarseness of the sample makes a very difficult
and computation intensive task from an inherently local problem.

The correlating motion detector of Chapter 2 avoids the correspondence prob-
lem by operating fast. The clocking rate must be high enough so that during one
cycle time, the image does not move more than one pixel. This corresponds to a
correlation window of 3 pixels. At room light levels the detector cycles at a rate of
about 10KHz. This rate will handle image speeds of up to 2 meters/sec. To handle
the same image velocity as this sensor, a system cycling at 60Hz would have to per-
form the correlation over a window 166 pixels wide. The slower system must then
perform 166/3 = 55 times the computing per cycle. For a two-dimensional detector,
the computational load goes with the square of the linear window distance. The
60Hz system must perform 55% or more than 3000 times the computation of the
faster system in each cycle. The computational bandwidth for the slower system
must be 18 times that of the faster system. When more degrees of freedom of mo-
tion are considered, such as rotations or smoothly varying velocities, the space to

be searched for matching features increases at a rate faster than the square of the
window size.
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The analog motion sensor also avoids the correspondence problem. Since this
sensor operates continuously, the loss of information associated with discrete time
sampling does not occur.

It is well known that two-dimensional velocity cannot be unambiguously deter-
mined from strictly local information. The need for longer range interactions does
not require edge detection, feature extraction or the communication of individual
intensity values over distances the scale of the interaction distance. The analog
motion detector described in this thesis has none of these properties.

Data representation is the key to the efficiency of the motion detection algorithm.
The velocity vector representing the result of the computation is also the means
of interaction between cells. The global behavior of the motion detector is the
solution of constraints from cells separated by a distance. This behavior occurs
not because intensity values or individual local velocity values are communicated
throughout and compared, but because each cell performs its own computation
locally. Each local computation contributes to the final velocity result according to
its local information. The velocity representation with its two degrees of freedom,
the z and y components, allows the interaction of many cells each of which has only
an ambiguous one degree of information. The local computation serves to reduce
the raw data tremendously, with a rich long range interaction occurring over a very
narrow communication channel. This channel of interaction is the set of wires (or
resistor network) carrying the velocity vector.

The analog motion detector avoids the correspondence problem. The long range
interactions necessary to disambiguate two-dimensional motion are solved by an
appropriate choice of global data representation and local computation. Computa-
tionally intensive global pattern matching is not inherent in the motion detection
problem and is not done by the analog motion detector.

7.2 Neuron Modeling and Energetics

The optical motion sensor shows some of the collective properties of a Hopfield
neural net. Both systems exhibit a robustness which allows them to operate in
the presence of defects and incomplete information. For both neural nets and the
velocity detector, an abstract energy can be defined that is decreased by the system
as time passes. The velocity sensing algorithm can be written below in terms of the
same equations of the Hopfield neuron model so the motion detector is an example
of a Hopfield neural net.

The two systems do have one important difference: static versus input-defined
synapses. Following is a brief description of the Hopfield model and the motion
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detector cast in this model, and a discussion of the importance of the difference
between the two.

In the Hopfield model, the output of each neuron is connected to the input
of each neuron by a set of connection weights or synapse strengths as shown in
Figure 7.1. The set of N neurons defines the vector V. For complete connection,
there are N? connections or synapses each with its own connection strength or
weight. Each neuron sums the outputs of all the other neurons according to its own
connection weights. It then thresholds the resulting sum and outputs the mostly
digital value. The system of neurons will, under the right conditions, fall into a
stable state. The set of these possible stable states or “memories” is determined by
the interconnection strengths. These strengths can be viewed as a matrix T, and
the memories as the fixed-points of the non-linear equation:

V =f(T-V+1U),

where f is the thresholding function and U is a vector of threshold values [6].
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Figure 7.1: The Hopfield neural net model with vector V outputs from N neu-
rons with feedback through the T matrix of weights.

In an elegant proof 7], Hopfield shows that for symmetric matrices T, the system
will converge to a fixed-point. This proof utilizes the idea of an energy for the system.
The neuron network traverses its multi-dimensional state space ever decreasing its
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energy until it reaches a fixed-point at a local energy minimum. The shape of this
state space energy function and thus its minima are determined by the synapse
matrix T. These connection strengths are presumed to be fixed or to change slowly
with time by some learning process.

Figure 7.2(A) shows a cross-section of the state space energy diagram for the
simplest two-neuron net, the flip-flop. It has two stable states that correspond to the
two low points in the diagram. A flip-flop started near the middle, near but not at
its metastable point, will progress away from metastability. As the flip-flop moves
from the center, the slope of the energy function gets steeper. Correspondingly,
the force increases and moves the circuit even farther in the direction away from
center. The decision as to which of the energy minima the flip-flop will come to rest
is determined long before the minimum is even approached. The only reason the
system even has its fixed-points is because eventually the state variables approach
the limits of their values near the power supply rails. The signals at this point can
be conveniently thought of as digital values, 0 and 1.

Energy Energy
A A\
~ N
-~ P
(A) State Space (B) Velocity

State Space

Figure 7.2: State space energy functions for (A) a simple Hopfield neural net
and (B) a velocity detector.

In operation, the neural net must be cycled. It is first forced into some initial
state near metastability and then released to fall into one of its stable states near
the signal extremes. The inputs to the net determine the initial state of the system
which biases the final state to be one that is “nearest” the initial state in state space.

It is straightforward to use an energy concept for the optical velocity sensor. The
local computational elements of each cell produce a tendency for the global velocity
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to move into closer agreement with its locally measured constraint line in velocity
space. I loosely referred to this tendency earlier as a force. The idea now becomes
a bit more formal. This force was defined earlier for one dimension as:
— (arI =0I\a3rI

F = Bt + vz;; 3z
This force defines the energy of the system. Energy is the integral of force over
distance. Distance in this case is in velocity space, not physical space. For one
dimension:

E:/de.

Since the individual forces from the local cells are each linear, their sum is also linear
and the energy is quadratic. The parabolic energy function has single minimum at
the velocity as in Figure 7.2.

Expanding the physical analogy, the state of the global velocity can be repre-
sented as the horizontal position of a ball that rolls down the parabolic energy curve
due to gravity and comes to rest at the low point. For a system with only a single
cell, the low point or energy minimum will be at the local velocity. For a collection
of cells working together, the minimum will be at the weighted average of all the
local velocities. The circuits construct the appropriate energy well by computing
the associated forces.

In two-dimensions, the forces produced by one cell make up the linear vector
force field given by:

_ (aI a1 aryal
F, = —3—20;+5‘7vy+§t’)—a—;
_ (4l aI aIyal
F, = ﬂ”z+§‘§”u+797)5;-
The energy becomes:
E= /F ‘< dv,

where F = (F,, Fy). The energy function is a two-dimensional curved surface and is
generally a parabolic bowl as shown in Figure 7.3(A). An image that contains infor-
mation equally in orthogonal directions will produce a circularly symmetric bowl.
Images with non-symmetric information content will produce ellipsoid parabolic
curves as in Figure 7.3(B). Any cross-section of the surface parallel to the velocity
plane will be an ellipse with its long axis parallel to the direction of the greater
number of edges in the image. In the special case of an ambiguous velocity of a one-
dimensional image such as a stripe pattern, this bowl becomes a parabolic trough.
Here, as shown in Figure 7.3(C), there are infinitely many lowest points, each of
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which is consistent with the image information. A vertical cross-section of the ve-
locity detector’s energy function in any direction is a parabola. The curvature of
such parabolas is not necessarily the same in all directions.

Energy . Energy Energy

(A) Vg (B) Vg (C) Uz

Figure 7.3: Velocity space energy diagrams for the velocity detector. Forces,
shown as arrows, give rise to the parabolic energy surfaces. (A) Circular
cross-section. (B) Elliptical cross-section. (C) Parabolic trough.

For the velocity detector, at any one time there is one and only one minimum
in the energy function. For a Hopfield neural net there are many, one for every
possible memory. On the other hand, a Hopfield net energy function stays fixed as
the inputs change. The inputs only affect the initial position in the state space, not
the energy function. For the velocity detector, the exact shape of the energy surface
is determined by the input image as described above, but, except for the ambiguous
case, has only one energy minimum. The position of the energy surface in state space
moves as the input image changes velocity such that the energy minimum is always
at the global velocity of the image. The reported velocity of the chip continuously
tracks this energy minimum with no artificial clocking. The velocity detector has,
over time, an infinite number of possible stable points which are directly a function
of the input image.

The equations for the behavior of the velocity detector can be cast in the same
manner as those for the Hopfield net. Feedback is a major part of both systems.
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Each system has processing elements that take in the current state, perform a com-
putation based on this state and additional information (either image input or pre-
determined connection weights), and produce a result that may affect the current
state. An abstract energy can be defined for both systems that is only reduced by
this computation. Energy minima correspond to fixed-points and both systems will
move toward these fixed-points as their processing proceeds. The Hopfield fixed-
point equation is:
V=T-V+T1U,

where the non-linear thresholding function has been changed to the linear identity
function. Although in the real velocity detector chip, non-linearities can occur and
for various practical reasons can be quite useful, this analysis works fine for linear
systems. The operation of Hopfield neural nets depends on the non-linearities to
come to a fixed-point.

For the velocity detector, velocity represents the state of the system so the state
vector, V, above corresponds to the velocity vector, v, so:

VEVZ[vz].
Yy

For the velocity detector the fixed-point equation becomes:
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where the summations involving g%, %i—, and %% are occurring over the array of cells

each with its own local derivatives obtained from image inputs.

Alternatively, the local variables, one in each cell, could be included in the state
space vector. These local variables are an intermediate result in the computation
performed in each cell and represent the error distance, D, between the global ve-
locity and the locally determined constraint line. Expressing the local intermediate
distance variables, D; as state variables, the fixed-point equation becomes:
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The Hopfield proof of fixed-points is one of the major strengths of the neural net
model. The proof makes somewhat tractable a potentially very difficult problem—
the behavior of an arbitrary fully connected non-linear neural net. The proof gives
us one important piece of information, stability, about a large set of neural nets—
those with all symmetric connections. The same stability is the reason the neural
net must be cycled for continued operation. During the active phase of the cycle,
the range of state space values a neural net can take on decreases with time until
it reaches a fixed-point where it would sit indefinitely until the next reset phase.
Compare this behavior to that of a velocity detector that can remain near a fixed-
point at all times yet traverse all of state space continuously and indefinitely as the
inputs change. The velocity detector example illustrates the power of state space
energy terrain defined by inputs.

The usual method of cycling a Hopfield neural net is to introduce an additional
mechanism such as in Figure 7.4(A) to force the state of the net out of its minima.
This forcing is done repeatedly forming a simple two-step cycle of force-release. It is
interesting that to make a net useful, a cycle must be introduced, since the strength
of the Hopfield proof was that the fixed point existence eliminated the possibility of
cycles. As beautiful a system as a Hopfield net is, one must go outside the system
in order to make it useful. The excursion outside the system is the addition of the
circuitry to reinitialize the state in a cyclic manner.

We can, of course, view the reset circuitry in the framework of a state space
energy function. The reset circuitry alters the state space energy terrain by removing
the feedback and thus the fixed point behavior. This circuitry temporarily puts the
system into a mode where the internal state tracks the input. The energy diagram
for one possible input is shown in Figure 7.4(B). This is the simplest possible input
driven connection function—unity. During the next phase of the cycle, the reset
circuitry reconnects the feedback, restoring the fixed-point stuck kind of behavior.
During the reset phase, even the simplest useful neural net has input defined fixed-
points although it is usually not thought of in this way.

Fixed-point behavior is important. Random walks through state space are gen-
erally of very limited usefulness. Points in state space that are not only fixed-points
but also have all neighboring points tending toward them are called attractors.
Metastable points are fixed-points but are not attractors. The existence of attrac-
tors is important. The velocity detector has one attractor at all times, neural nets
have attractors—many during the memory phase and one during the reset phase.
Allowing the locations of these attractors in state space to change as a function
of inputs to the system is a powerful extension to the neural network paradigm.
This extension formalizes what is done outside the Hopfield model during the reset
phase, and allows us to go beyond the simple two-phase network cycling scheme and
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Figure 7.4: (A) Neural net with circuitry to cycle it. (B) Energy function for
the reset phase shown as dotted line.

develop systems that smoothly traverse state space in response to inputs, with no
artificial clocking imposed.

The bad news about input-driven connection matrices is that the nice stability
property of the fixed-weight nets is not guaranteed. In general, if the connections
are defined by the inputs, they may be symmetric and therefore yielding a stable
network for all sets of inputs, some sets, or none at all. A system that is stable
sometimes but unstable for some input combination seems very unsettling. In fact,
with some unstable networks, energy is not defined. When a ball can continually
run downhill and return to where it has been before, there is no longer a well-defined
energy terrain.

The easiest approach to the stability problem is to retro-fit the new input-defined
connections into the old stability criterion: Make sure that even though the inputs
determine the connection matrix that they always make a symmetric one. The
velocity detector algorithm uses this method. Examination of Equations 7.1 and 7.2
reveal that both matrices are symmetrical about the diagonal. This self-transpose
property is another way of saying that the connection between any pair of neurons
is the same going both ways. This symmetry can also be determined from the
examination of the architecture of the velocity detector. All circuits are symmetrical
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with respect to v, and vy.

Another method of achieving stability is to appeal to the special properties of
the problem at hand. For example, in the case of the velocity detector, the network
was designed to consist of one large attractor at the minimum of a single convex
energy bowl. This property, along with an additional tendency to zero to handle
the ambiguous case, results in a stable system. Admittedly, the velocity detector is
a low dimensionality problem compared to even the smallest Hopfield neural nets
considered, but the elegant smooth nature of the solution suggests that the approach
may be well worth the extra effort required to examine its stability.

7.3 Artificial Intelligence and Computational Vision

A developing field in artificial intelligence is computational vision. One of its main
goals is to develop systems that construct scene descriptions from input images.
Computation of optical flow, the apparent velocity at each point in the image, is
one of several early vision processes that extract some property of the scene from low
level image data. Poggio, Torre and Koch [17] show that most of the early vision
problems are ill-posed but that they can be made well-posed by adding a prior:
knowledge often in the form of a variational principle. A unified mathematical
structure emerges called variational regularization theory that can be applied to
early vision problems including optical flow.

The ambiguity resolution of my velocity detector is a well-posed problem for
rigid translational motions in the absence of noise. The presence of noise, minor
fabrication defects or small deviations of the image from strict translation cause the
constraint lines in velocity space to converge on a region instead of intersecting at
a point. Determining a velocity point from an approximate region of intersection is
ill-posed. The variational principle of the energy associated with the rubber-band
solution makes the problem well-posed.

Two important classes of image motion form extensions to rigid translation—
those with smoothly varying velocities across the image and those with velocity
discontinuities. An example of motions in the first category are rotations in the
plane, that together with translation make up rigid motion within the image plane.
Scalings of the image such as those that result from moving closer to or farther
from the viewed object, also produce smooth optical flow fields. Smoothly varying
motions can also result from the projection onto a two-dimensional image of three-
dimensional objects rotating in three-space. Velocity discontinuities, however, arise
from objects moving at different speeds occluding one another. For example, an
object moving in front of a fixed background will have velocity discontinuities along
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its boundaries in image space. Both of these types of more complicated motions can
be handled by relatively minor extensions to the velocity detector architecture.

Horn and Schunck [8] and Hildreth [5] develop smoothness criteria for the 3-
D motions projected onto 2-D images that turn them into well-posed problems
that they solve by iterative solution methods. The area based criterion, which is
most amenable to the parallel solution, is cast by Poggio et al. in the form of the
regularization principle:

E= /[ v,,-{— ) +A<Q&2+%‘%2+%’§2+%§’#2>}dxdy,

where A is the regularization parameter and E is the total energy to be minimized
by the system.

This formulation seems to allow a straightforward extension of the algorithm
and architecture that detects only translational velocity. The first term of the
equation, g’ v + vy + 3t’ is a familiar quantity, the weighted distance of the
velocity guess to the local velocity constraint line. The second part of the equation,

+ 59-912 + %gz”- +3 Q’-’l , incorporates a smoothness cost function and requires the
use of the difference in velocity components between neighbors in z and y directions.
A is the relative weighting of the smoothness criterion to the constraint-line criterion.

Poggio goes on to suggest that analog networks could be used to solve some of
these regularization problems. The velocity detector already described in this thesis
is an example of such a network. We have already designed, fabricated, tested, and
shown in the laboratory a working velocity detector based on a simple regularization
principle and utilizing an analog network implemented with active CMOS circuits.
This integrated velocity sensor uses a simple regularization principle needed due to
the noisy data of real world images. The more advanced regularization principle
based on smoothness is a simple extension of the velocity detector architecture and
is described below.

Figure 7.5 shows a proposed extension of the velocity detector architecture for
smooth optical flow. What had been a single global velocity distributed to all cells
is now a network of resistors. The resistors allow the velocities at each cell to be
different while at the same time minimizing the departure from smoothness of the
velocity values on the nodes between resistors. The force equations become:

F = (v _’7z)+(a +g{,”y+%§g’£
Fy, = (”u‘”y)‘*‘(az“z ”v+ )gi:

where ¥, and ¥, are the average velocities of the four neighboring nodes. These forces
will minimize the local deviation from the constraint line and larger scale departures
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Figure 7.5: An extension to the velocity detection architecture for computing
an array of smoothly varying optical flow. Each intersection point in the array
represents the velocity field at that point. This velocity is computed by the same
local circuitry as before, with the collective effect of neighboring cells reduced
with distance away by the resistor network.
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from smooth velocities. These equations follow from Horn and Schunk and use a
somewhat simpler approximation for the Laplacian than theirs as a criterion for
smoothness.

The simpler design described in previous chapters had a single global velocity
that was distributed throughout the array. This architecture allowed only one ve-
locity to be reported and had all local velocity information interacting globally with
that of other cells regardless of distance away. The extension to the architecture
has an array of nodes, where each node represents the local velocity. The rubber
band model of constraint solving still holds for every node, but the strength of the
force exerted by neighbors is reduced as the distance between the interacting cells
increases. A slight practical problem is introduced by this velocity network. There
are now an array of possibly different velocities that need to be communicated to
the outside world. Until such time as the velocity map can be used by the next
level of processing integrated on-chip, we must be content to monitor the array of
velocity values off-chip. Since the pin limitation and wiring costs prohibit using a
separate wire for each velocity value, circuitry to scan out the array sequentially
can be integrated on-chip [21].

The resistors between cells can be implemented as CMOS active circuits as de-
scribed by Mead and Mahowald [14] and reproduced in Figure 7.6. Here V; and V,
are the voltages on two adjacent nodes of the network. A pair of current mirrors
causes the current 14 into the upper node to match the current out of the lower node.
Any current out of node 1 must then flow into node 2. By symmetry, this current
must be zero when the two voltages are equal and will be monotonically related to
the voltage difference, V3 — V5. The value of the effective resistor implemented by
this circuit is set by the current ig which is controlled by the current mirror input.

The second class of motions that are very important give rise to discontinuities
in the optical flow. The flow field for an object moving with respect to a fixed
background will have step discontinuities along its boundaries. These steps can be
very useful in later stages of processing to aid in determining the object bound-
aries. If they are to be used in this way, the early vision optical flow extraction
must preserve the discontinuities instead of forcing them into the mold of smooth
flow. Koch [9] tackles a similar problem, that of reconstructing a smooth surface
from sparsely sampled data while preserving the discontinuities of the surface. The
basic idea is to allow neighboring values to interact in a way that yields smooth
interpolation between them until the difference becomes great. At that point, a
discontinuity is detected which causes the neighbors to be disconnected from each
other. Then neighboring values can be quite different without affecting each other,
as should be the case for two values straddling a step discontinuity. Koch proposes a
hybrid digital-analog system to perform the computation using a cycled two-phase
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Figure 7.6: A CMOS active circuit used as a resistor.

approach with A/D and D/A conversion between phases. Alternatively, the inte-
grated architecture of the velocity sensor could be easily adapted to perform this
extension to the original computation. As well as solving the linear aspects of this
problem, CMOS analog circuits are well suited to computing the necessary non-linear
functions.

To allow discontinuities, we need a mechanism to suppress the interpolation
mechanism when the difference between adjacent velocities becomes too great. One
simple way to generate this behavior is with current limiting resistors between cells.
Now, for small differences in velocity values (voltage) between neighbors, the con-
nections are linear. As the voltages increase, the available current approaches a
limit and the effective resistance begins to increase. The increased resistance causes
the adjacent nodes to be less tightly coupled, as they should be when straddling a
discontinuity, yet they are never detached entirely. This property is important so
when the discontinuity moves or disappears, the circuit can recover to its smooth
interpolation linear regime.

The resistor-equivalent circuit of Figure 7.6 has the current limiting property.
The I-V transfer function is a hyperbolic tangent function. Plotted in Figure 7.7 is
the I-V curve along with the resistance function. Near the origin, the circuit is linear
and the resistance is constant. As the voltage increases, the current approaches its
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limit at the value set by the current source of the amplifier. This limit is reflected
as a rising resistance. If the determination of discontinuities is dependent only
on adjacent differences, the resistor circuit with current limiting is an excellent
implementation candidate.
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Figure 7.7: Transfer curve and effective resistance curve for the resistor circuit.

Koch et al. incorporate a priori knowledge about the nature of edges to penalize
rare or non-physical combinations of nearby edges. They propose using digital hard-
ware to compute the arbitrary nonlinear energy expressions associated with these
penalties. Analog circuits can also perform non-linear computations. The desired
penalty calculation in this case amounts to a coupling between nearby “resistors.”
This coupling could be implemented with analog or digital circuits or a mix of the
two integrated together on a single CMOS chip. Figure 7.8 shows one possible con-
figuration. What is shown in the diagram as resistors are computational elements
that produce a current proportional to voltage for a range of voltages. For larger
voltages, the elements perform a non-linear calculation that incorporates the a pri-
ort knowledge about edges. The current produced by the variable resistor in this
regime of operation is a function of the neighboring discontinuities as well as the
local voltage difference.

Extensions to the motion detector architecture seem to be viable implementa-
tions of a variety of the early vision algorithms under investigation in the AI field
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Figure 7.8: Incorporating a priori knowledge. Each variable resistor is actually
an analog non-linear computation element that varies its “resistance” according
to neighboring resistances and voltages. This coupling between neighbors is
designed to encourage plausible arrangements of discontinuities and discourage
non-physical ones.

of computational vision.

7.4 Biological Vision Modeling

It is a general property of collective systems that a collection of many local units
working together, each doing a simple function, gives rise to a complex global behav-
ior. This property is extremely useful for the system designer. My motion detector
illustrates this property by globally resolving ambiguities when possible (a complex
behavior) through a system of interconnected simple local cells each of which is per-
forming a simple local computation. The complex-from-simple property can make
biological vision research difficult. Researchers must derive clues about collective
vision systems from observing their very complex behavior. Movshon et al. [15]
performed psychophysical experiments with moving gratings and developed a visual
motion model. This section investigates the suitability of my optical motion detec-
tor as a model for biological vision systems by comparing its response to the same
input stimuli used by Movshon to the response of the biological systems.

The inherent motion ambiguity of one-dimensional images such as stripes is
well recognized by researchers in the biological vision field. The consensus is that
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the structures in the low levels of vision each deal with only one component of
information, namely motion perpendicular to the edge and that the ambiguities
that are unresolved because of this low level treatment are resolved at higher levels
of processing. My motion sensor, in contrast, resolves much more of this ambiguity
at the lowest levels of processing. To resolve ambiguities at a higher level does not
require a different kind of algorithm or structure, just the same one applied to a
larger field of view.

The motion detector explicitly represents the final disambiguated velocity at the
lowest level. This representation allows the local computational elements to adjust
their calculation based on the results of neighboring calculations. Alternative vision
models have been proposed where each local cell independently makes a calculation
and passes it to a higher level for processing. The highly interconnected cooperative
system that results from the explicit representation of the aggregate answer, seems
to have much more of a biological flavor than a strictly feed-forward system.

One-dimensional patterns such as bars or gratings are widely used by biologists
for stimulating vision systems. Since such patterns appear so infrequently in nature
on the scale of the entire visual field it is unlikely that biological vision systems
evolved to explicitly handle these cases. My chip also was not specifically built to
handle these ambiguous cases, but has a secondary effect described in Section 6.1
that causes the reported velocity to tend toward zero in the absence of information
in the image. This effect will also influence the sensor output for one-dimensional
patterns.

Figure 7.9 shows the rubber band model for the case of a stripe image input
to the electronic motion detector. A true velocity detector would be content to
report equally well any velocity that lay upon the single constraint line or multiple
coincident constraint lines. The motion detector with its additional tendency toward
zero velocity brings the reported velocity as close to zero as it can while still on the
constraint line. This is the point where the reported velocity is perpendicular to
the edges of the image. In the absence of disambiguating information, the motion
sensor will report the component of velocity normal to the edge. This is not because
the normal component is the fundamental low level representation of velocity but
because the chip is being presented with an unusual situation that it is handling in
a reasonable way.

Applying a one-dimensional grating to an electronic vision system is operating
it out of the range for which it was designed. One could wonder if applying 1-D
patterns to a biological vision system might be operating it out of the range for
which 1t evolved. If so, the conclusions drawn from such experiments should be
tempered with this knowledge.

Movshon et al further display two one-dimensional gratings superimposed and
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Figure 7.9: Physical model for the constraint solver doing the best it can with
ambiguous input. The constraint solver tends to report zero velocity when no
information is present. This tendency, modeled as a rubber band to the origin,
causes ambiguous velocities to be reported as perpendicular to the image edge.
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investigate when the observers perceive the two separately sliding over each other
and when they perceive a single coherently moving plaid. The electronic motion
detector has a single global velocity that it reports. As a result it will always
“perceive” the coherent motion. The extension to the motion detector to allow
smooth variation in motion described in the previous section could simultaneously
compute different velocities at different points in the velocity network. For sufficient
contrast in both dimensions for every neighborhood in the net, all velocities will be
computed as the coherent plaid motion.

As the contrast of one of the gratings is reduced, the secondary effect of the
motion sensor to tend toward zero velocity will become greater than the effect of the
weak grating, yielding a reported velocity that is perpendicular to the higher contrast
grating and decoupled from the weaker one. Movshon reports a region for biological
systems between the threshold of detection of the weaker grating and the threshold of
coherent motion of the plaid. This region suggests the importance the visual system
puts on the higher contrast signals, yielding a velocity that is consistent with them
even in the presence of detectable lower contrast signals. The zero tendency of my
motion system is a secondary effect with a fixed small magnitude. On the other
hand, for biological systems or more advanced electronic ones, this effect may scale
with the largest contrast signal so it could be contrast level independent. Contrast
gain control in biological vision systems is already an accepted idea. It has been
observed in the cat retina by Shapley [20].

The motion sensor model can easily explain the transition from a coherent per-
cept to a separate motion perception of the higher contrast grating as the relative
contrasts of the two gratings changes. To explain the perception of motion of the
weaker grating after the coherence has ceased requires a look at the spatial frequency
of the gratings.

The second experimental result reported by Movshon is the dependence of rel-
ative spatial frequency of the two gratings on the threshold of coherence. Matched
spatial frequencies provide the best coherence with the threshold rising as the fre-
quencies differ. Let us look at the effect of the spatial frequency of a plaid on the
behavior of the electronic motion detector with the network extension described in
the previous section.

A simplified velocity network is shown in Figure 7.10 that includes the load
resistors Ry, at each node. The influence of the velocity information on a node in
the network on a neighboring node diminishes with distance away, due not only
to inputs to the net from other more local constraint solvers but also from the
tendency-to-zero at each intermediate node produced by Ry,. The decay of influence
is an exponential function of distance. We will call the distance where the voltage
representing velocity drops to one-half its center value, the radius of influence. This
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radius distance is a constant that is dependent upon the ratio of the resistors between
nodes, R, to the resistors within nodes, RBr,.
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Figure 7.10: A simplified velocity network and a plot of the influence of the
velocity voltage of a node as a function of distance from the node. The constant

in the exponent is a function of the resistor ratio .

The radius of influence due to Ry, can be made quite large by choosing a large
Ry,. This radius sets the maximum distance that a node’s influence can be felt. For
reasonable images, the influence distance will be reduced significantly, due to the
inputs from the constraint solvers at each node. The output resistances of the local
circuits, R;, are generally smaller than Ry, but are highly image dependent and vary
from place to place in the array. In areas where the image is of uniform intensity
the output conductance of the cell is zero, so the velocity information from higher
contrast areas will propagate a long way, limited only by the Ry, radius of influence.
For regions with high contrast edges, the influence of neighbors is greatly reduced.
Here the output resistance, Rj;, is relatively low so the locally computed values have
a much greater effect on the node voltage.

An additional complexity not captured in Figure 7.10 is that the values on
the nodes are vector quantities and the output resistances of the local constraint
solvers reflect the interrelationship between the voltages representing the z and y
components of velocity. For a high contrast nearly one-dimensional image, node
voltages will have little influence on their neighbors in a direction perpendicular to
the stripes or edges. Parallel to the stripes, however, the influence of a node voltage
can extend much further to the limit imposed by Rj,.

Putting the above ideas back into the frame of the psychophysical experiments,
we see that each location in the motion sensing array sees only a single ambiguous
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intensity gradient. In the presence of influence from nearby locations that are sensing
a different intensity gradient, the result will be the solution of constraint lines. As
the spatial frequency decreases so that the distance between contributions from non-
parallel gradients exceeds the radius of influence, the result will be the reporting of
separate velocities from each region. In this case, the tendency to zero is greater
than the influence from cooperating regions far away, so each local cell will report
the component of velocity normal to its local edge. This mechanism can account
for the separation of the coherent motion into two separately perceived motions as
spatial frequency decreases. As spatial frequency increases past the sensor spacing
frequency, the integrating nature of the sensors will average out the intensities,
effectively filtering out any information contained in the higher frequencies. This
property is very important to prevent aliasing but will reduce the contribution to
velocity sensing of these spatial frequencies and thus the coherence would drop off
for higher frequencies.

The arguments given above for reduced motion coherence for high and low spa-
tial frequencies are relative to sensor spacing. Movshon’s experiments show this
behavior for frequencies of the two grating relative to each other for more than
one frequency relative to the sensor spacing. This observation suggests that bio-
logical visual motion systems may have a hierarchy of network motion sensors each
operating at a different spatial scale. This change in scale could be implemented
electronically using different resistor ratios for an array with identical structure or
by making structures with similar resistor ratios but with a sparser cell grid and
longer interconnections.

The motion detection algorithm described in this thesis is probably not a direct
match to any biological systems. Although it may be possible to identify which
populations of neurons correspond to each of the electronic circuits of this model
and to determine how current and voltage map into nervous system representations,
it will most likely take modifications and extensions beyond those suggested above
to form a consistent, believable biological vision model. My intent was to draw the
attention of vision modelers to an example of a simple, elegant, constraint-solving
architecture. I have given an existence proof that such a system can be well founded
mathematically, yet exhibit some of the same collective behavior as is often found
in biological systems. I hope that this system or similar ones can be incorporated
into future biological vision models.
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7.5 Analog VLSI Systems

The working motion detector demonstrates that large collections of analog elements
can be combined on a single chip. The resulting benefits are high density and
low power consumption. While the moderate speed of analog circuits operating
in subthreshold is not as great as digital devices, a digital multi-bit multiplication
requires many propagation delays or clock cycles.

Threshold variations between adjacent transistors are significant and limit the
accuracy of local analog computations. Feedback methods can often be used to limit
the errors due to device variations. The collective nature of the motion detector ar-
chitecture increases accuracy and reliability with larger arrays. The system produces
answers that are more reliable than those of its constituent parts. Conventional dig-
1tal systems, by contrast, are considerably less reliable than their component parts.

Usually analog circuits are thought to be less flexible after manufacture than
digital circuits. Often the opposite is true. The control voltage on the current
source provides a convenient means to “program” an analog circuit, varying its
operating characteristics over orders of magnitude. Judicious use of these control
points by the system designer allows a great deal of flexibility to accommodate a
variety of real world unknowns. It is easy to go overboard with analog knobs and
end up with a system so complex that it becomes difficult to find a state for all
the programming where the system will operate as intended. Analog control points
also provide convenient places for feedback in the form of automatic gain control.
As the design of a system progresses, knobs that were set manually for purposes of
exploration and experimentation, become set by the system itself, often as slowly
varying functions of input data. In this way systems can be made continuously
self-regulating.

Some digital logic systems will never be replaced with analog ones. Digital
designs are best for problems that have complete well-defined inputs and demand
precise outputs and reliable long term storage. Analog systems, on the other hand
are useful for solving problems with partial information as input and require only
approximate results with moderate accuracy. As we gain experience with large ana-
log systems and more fully recognize their benefits, we may find that our attention is
turning more toward the imprecise, ambiguous kind of problems that were difficult
to solve using only digital techniques. Hybrid systems combining analog and digital
circuits show great potential for future implementations.
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Chapter 8

Conclusions

I have designed and built the first of two new generations of integrated motion sen-
sors. The first uses a correlation technique for motion detection. A one-dimensional
version has been demonstrated.

A second algorithm and architecture emerged from the desire for more collective
behavior through the aggregation of locally derived quantities. This design utilizes
closely coupled analog photosensors and analog computational elements. It gains
performance benefits through the parallel operation of large arrays of sensors and
computing elements made feasible by the use of small analog circuits. The system
makes extensive use of local intensity information and is thereby resistant to the
global gradient problems of other approaches. This locality also eliminates the
need for any prior higher level processing like edge detection or object recognition.
The circuits used in this design have been demonstrated and characterized in the
laboratory.

This integrated motion system can be viewed as an example of a Hopfield neural
network. As such it demonstrates the feasibility of an important extension to the
Hopfield theory—input-driven synapses.

The motion chip is also a first example of an analog network used for early vision
processing. These networks are just now becoming popular in the AI/computational
vision field. The motion detector design can easily be extended to handle more
complex motion fields.

The motion detector architecture, along with local analog computational ele-
ments, provides a dense, reliable means of processing high bandwidth visual data.
The motion detector chip demonstrates the suitability of analog VLSI circuits for
processing of sensory data.

The motion detector architecture is one of the first of a growing class of systems
that employ collective computation. The property of increased reliability and ac-
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curacy with larger arrays, which the motion detector exhibits, is one of the clear
benefits of collective computation. As we gain experience with these types of sys-
tems, the range of application may expand beyond that of processing sensory data.
The motion detector proved to be a good first example. While having a crisp, solid
mathematical foundation, the motion sensor exhibits the collective behavior that is
so necessary in the fuzzy real world.
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