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Abstract

This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile

neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during

the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted

21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron

stars.

In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale

sterile neutrino dark matter in the primordial Universe at temperatures T & 100 MeV. We report

final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron

transition. We give transfer functions for cosmological density fluctuations that are useful for N-body

simulations. We also provide a public code for the production calculation.

In the second part of the thesis, we study the instability of small-scale baryon pressure sound

waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous

recombination is driven by the transport of ionizing continuum and Lyman-α photons. We find a

maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low

growth factors are due to the relatively short duration of the recombination epoch.

In the third part of the thesis, we propose a method of measuring weak magnetic fields, of

order 10−19 G (or 10−21 G if scaled to the present day), with large coherence lengths in the inter

galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the

Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition.

We perform detailed calculations of the microphysics behind this effect, and take into account all

the processes that affect the hyperfine transition, including radiative decays, collisions, and optical

pumping by Lyman-α photons.

In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron

stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the

tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-

exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS

to leading order. This result is significant for the extraction of binary parameters from gravitational

wave observations.
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Chapter 1

General introduction

This thesis presents a set of four investigations in theoretical astrophysics. The first three are

cosmological in flavor, and set in the epochs of strong neutrino coupling, recombination and pre-

reionization, respectively. When viewed in conjunction, they progressively describe the Universe

from the first few milliseconds of its existence down to around 500 million years after the Big Bang.

The fourth work is set in the arena of inspiraling neutron star binaries.

At first sight, each of these studies focuses on a different physical regime, and is self-contained and

independent of the others. The cosmological work is set in environments with one or more thermal

components with temperatures ranging from 10 GeV down to 10−2 eV, while the one dealing with

neutron stars studies a non-thermal regime. Moreover, the relevant degrees of freedom are very

different – they range from quantum fields in the primordial Universe, sound waves in baryons at

recombination, and populations of hyperfine levels of neutral hydrogen in the pre-reionization era,

to oscillatory modes of neutron stars. Despite this diversity, the work in this thesis shares a common

theme: it seeks to study macroscopic consequences of strongly interacting degrees of freedom. In

the first work, they are the hadronic fields near the quark-hadron transition, which interact via the

(quite literally) strong force of the standard model of particle physics. The subsequent works study

the non-linear behaviors of cosmological fluctuations at recombination, absorption and scattering of

21–cm radiation by neutral hydrogen atoms, and neutron star modes.

The first section of this introduction is devoted to the cosmology section of the thesis; it introduces

the standard model of cosmology and a few important cosmological probes. Subsequent sections

introduce the background for the work in each chapter, place it in the context of the standard

model, and briefly summarize the original contributions in this thesis. The final section introduces

neutron star inspirals and touches upon our results for their evolution.
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1.1 Standard model of cosmology

This section is intended as an extremely brief survey. As such we make no attempt to be com-

prehensive, but focus on introducing just enough so that an interested reader can follow the later

parts.

It is fair to say that we have converged on a coherent picture of the early Universe over the course

of the past fifty years. This owes much to the revolution in observational cosmology that had its roots

in the discovery of the Cosmic Microwave Background (CMB) in 1965 [2]. It started in earnest with

the precise measurement of the CMB’s blackbody spectrum in the early 1990s [3], and continued

with the mapping of its temperature and polarization anisotropies [4–12], and the measurements of

galaxy clustering [13–20], gravitational lensing of the CMB [21–24], and the Lyman-α forest in the

spectrum of high-redshift quasars [25–29] in the 1990s and 2000s (the last three are measurements

of the Large Scale Structure (LSS) in the Universe). Some of the other important cornerstones

were measurements of the abundance of light elements in the Universe [30–37], and of the expansion

history of universe using Type 1A supernovae [38–40].

The relatively simple model that emerges out of this mass of evidence is the standard model

of cosmology, or the Λ cold dark matter model. It concisely describes an expanding homogenous,

isotropic, and spatially flat background universe, which is initialized with a spectrum of scalar

curvature fluctuations. In the present epoch, the energy density of the Universe consists of standard

baryonic matter (about 5%), cold dark matter (about 27%), and dark energy (about 68%) [41–

43]. There are also trace amounts of black body electromagnetic radiation (with a temperature

of 2.73 K [44]), and three flavors of neutrinos (with a temperature of about 2 K) [45, 46]. The

primordial curvature fluctuations are nearly, but not completely, scale invariant. Different parts of

these fluctuations are out of causal contact at early times, when they do not evolve. The cosmic

horizon represents the causally connected volume; it expands with time and eventually encompasses

fluctuations of a particular length scale. After this epoch of horizon-entry, the fluctuations evolve

due to the interactions of the standard model of particle physics.

The various components of the energy density have now been measured to a high degree of

accuracy, and there are stringent bounds on any additional departures from the model’s assumptions.

Given this state of affairs, a casual observer might conclude that we have exhausted what we can

understand about the large-scale composition and initial conditions of the universe. However, this

point of view does not survive closer scrutiny, since the ΛCDM model involves a unsettling number of

unknown components. At the very least, we are left with the following three outstanding questions:

1) What is dark matter composed of? 2) What is dark energy composed of? 3) What generates

curvature fluctuations in the primordial universe?

We have made the most progress in answering the third question, at least on a superficial level.
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The dominant paradigm for the initial conditions postulates an even earlier inflationary epoch that

lasts about 10−32 seconds, and that is driven by the evolution of a scalar field (in the simplest case)

[47–51]. Quantum mechanical perturbations of a scalar nature are generated during this period [52–

57]. This scenario also includes a spectrum of tensor fluctuations in the metric, which are pushed

outside the cosmic horizon during inflation [58, 59]. The tensor modes which re-enter the horizon

during the epoch of recombination lead to small changes in the CMB’s temperature and polarization

fluctuations [60–64], which include curl modes in the polarization that are not sourced by the scalar

modes[65–67]. Keeping aside further questions about the nature of the field driving inflation, there

is every hope that ongoing efforts to measure these curl modes can confirm this picture in the near

future [68–71].

We do not have any nearly as compelling answers for the other two questions, i.e., the composition

of dark matter and dark energy. In the case of dark matter, there have been a large number of

proposed candidates, but there is no consensus on which is the most promising one. The case of

dark energy is even more bleak; it would not be an exaggeration to say that we know as little about

it as we did when it was first discovered. We will have nothing further to say about it in this thesis.

1.1.1 Cosmological probes

The remainder of this section is intended as a lightning review of the most important cosmological

probes that we alluded to in the beginning of this section. As earlier, we do not cover every aspect,

but rather briefly mention the parts that are relevant to our work.

The first probe we consider is Big Bang Nucleosynthesis (BBN), which studies how the light

elements are synthesized via nuclear reactions in the early Universe [72–74]. The first nuclide heavier

than protium (1H) to be synthesized in substantial amounts is Deuterium (2H) at temperatures

T ' 0.1 MeV, which subsequently produces heavier nuclides such as Tritium (3H), Helium (3He

and 4He) and Lithium (7Li) [75–77]. These nuclides are formed due to a chain of reactions that

start with the simplest baryons, i.e., neutrons and protons. The rates of these reactions, and the

resulting nuclides’ abundances, depend on the baryon-to-photon and neutron-to-proton ratios at the

time. The former is an initial condition for the ΛCDM model, while the latter is set at the epoch

of weak decoupling, when the temperature of the cosmic plasma is T ' 1.5 MeV [74, 78]. Thus,

the abundances of light elements at low redshifts can constrain initial conditions in the primordial

Universe [79, 80].

The next probes of interest are concerned with primordial fluctuations that enter the cosmic

horizon at later times. These fluctuations’ length scales are typically measured in terms of their

wavenumber k on a comoving grid that follows the cosmic expansion.

The first probe of the fluctuations is the cosmic microwave background, which is relic radiation

from the Big Bang [81], that is released at the epoch of recombination when the Universe was around
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380, 000 years old, at a temperature T ' 0.25 eV [82–84]. Above this temperature, blackbody

radiation interacted via Thomson scattering with a substantial fraction of free electrons; together

with the heavier baryons, they formed a tightly-coupled plasma [85, 86]. The comoving sound

horizon in the plasma at this epoch was ' 150 Mpc in size (1 Mpc = 3.08× 1024 cm). The plasma’s

perturbations on these scales participated in so-called Baryon-Acoustic Oscillations (BAO) due to

the substantial pressure support [87]. The perturbations in the plasma, along with ones in the

gravitational potential, imprinted the characteristic pattern of peaks and troughs in the angular

distribution of the CMB that we measure today [88–95].

During this epoch, the optical depth for Thomson scattering was large, but finite. Blackbody

photons had a characteristic diffusion scale of λD ' 10 Mpc on the comoving grid at the epoch of

recombination. The CMB anisotropies that we observe today are damped below this characteristic

Silk scale [89, 91, 92, 96, 97]. This sets a fundamental limit to how much information we can recover

from the CMB.

The next probe of interest is large scale structure, which arises due to the gravitational insta-

bility of matter overdensities in an expanding universe [98–101]. Perturbations in the dark matter

distribution with wavenumber k . 0.01 Mpc−1 entered the cosmic horizon in the matter–dominated

epoch, and grew with the scale factor a, while those below this scale experienced a period of loga-

rithmic growth during the epoch of radiation domination [102–107]. This yields a transfer function

for matter densities which has a cutoff scale, along with subtle structure due to baryonic effects, and

late–time effects in the epoch of dark energy domination [108–113]. The inflationary spectrum of

fluctuations, filtered by this transfer function, represents the spectrum of linear dark matter density

fluctuations in the Universe. Measures of LSS, such as the galaxy distribution and the Lyman-α

forest, are tracers of this underlying dark matter distribution.

Figure 1.1, taken from Ref. [1], shows the amplitude of the density fluctuations in the Universe

as a function of length scale, and the various cosmological probes that provided the information. We

observe that the CMB constrains the largest scales, below which it is restricted by Silk damping.

Measures of the growth of LSS probe intermediate and smaller length scales.

The cosmological works presented in this thesis aim to study components of the standard model

of cosmology that are not currently understood, improve the understanding of length scales not

constrained by the common probes in Figure 1.1, and study the impact of new cosmological probes.

We now proceed to briefly introduce in turn the chapters in this thesis, and place them in the content

of the standard model of cosmology and the probes that we covered in this section. We provide more

comprehensive introductions in the individual chapters.
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Figure 1.1: Cosmological probes and their length scales [1]: This figure shows the amplitude of the density
fluctuations in the Universe vs length scale, along with the cosmological probes that provided the information.
The blue line is the prediction of ΛCDM.1

1.2 Sterile neutrino dark matter

Early on in Section 1.1, we introduced cold dark matter (CDM) as a component making up ' 27%

of the energy budget of today’s Universe. The CDM of the standard model of cosmology satisfies

the following conditions:

• It is cold, i.e. it behaves like a gas of non-relativistic particles. During cosmological expansion,

the CDM energy density scales with the scale factor a as ρCDM ∝ a−3.

• It is composed of collisionless particles, i.e. the constituent particles have a negligible cross-

section for mutual interactions, if any.

• It is dark, i.e. it only interacts with standard model particles gravitationally.

From the particle physics side, one of the dominant paradigms for dark matter has been Weakly

Interacting Massive Particles (WIMPs). In the most popular WIMP models, dark matter is com-

posed of particles with masses of mDM ∼ 100 GeV. Their population is kept in equilibrium with

1This figure is based on data that was available in 2006, and as such does not reflect state-of-the-art results.
However, the basic physics and scales are unchanged.
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the cosmic plasma at high temperatures due to electroweak interactions, but freezes out when the

Hubble expansion rate falls below the interaction rate [46, 114, 115].

From the cosmology side, one set of modifications to the ΛCDM model are motivated by in-

consistencies with structure on small scales. Density fluctuations on small scales are not described

by linear theory in the current epoch; on such scales, the linear fluctuations of LSS described in

Section 1.1.1 are processed by nonlinear growth [116–121]. A few of the major inconsistencies on

small scales are departures from the ΛCDM predictions for the density profiles of collapsed objects

or haloes [122–126], and the shape and normalization of their number distribution at mass ranges

of MH ∼ 109−10M� (1M� = 2 × 1033 g) [127–130]. These discrepancies have stimulated a lively

debate: suggested causes include the effects of baryonic feedback [124, 131, 132], and interactions in

the dark matter sector, that violate the second assumption presented above [122, 133, 134].

Part I of the thesis studies a dark matter candidate that violates the first (compared to CDM)

and third of the assumptions presented above. It explores the possibility that an additional, sterile

neutrino flavor makes up the population of dark matter [135, 136]. Sterile neutrinos with masses

in the keV range evade CMB bounds by acting as DM at temperatures T ' 0.25 eV, and are

compatible with BBN due to their negligible energy density compared to the Fermi-Dirac value at

T ' 1 MeV. Such sterile neutrinos could be produced via oscillations of standard-model neutrinos

at temperatures T & 100 MeV [137–139]. Sterile and active neutrino mixing, which is needed for the

former’s production, also leads to their decay [140, 141]. For typical values of the sterile neutrino

mass this predicts an X-ray flux from the DM distribution in the low redshift Universe [137, 142].

Motivated by reported X-ray signals that could be due to sterile neutrino decay, we consider 7

keV-scale masses [143–145].

We impose the following conditions: (a) the flux of the X-ray signal is consistent with the observed

one, and (b) the amount of dark matter is consistent with the Planck value. These conditions require

active–sterile mixing angles satisfying sin2 2θ ' 4 × 10−11 and a entropy-scaled lepton asymmetry

L/sSM ' 8 × 10−5 in the primordial plasma at temperatures T & 10 GeV. The last condition also

ensures that the sterile neutrino dark matter is resonantly produced at certain momenta [136–139],

and is cold enough to be compatible with cosmological structure on length scales k ' 1 h Mpc−1

(h is defined by the Hubble rate today, according to H0 = 100h km s−1Mpc−1) as measured by the

Lyman-α forest (the green points in Figure 1.1) [146–154].

In this work we computed the following properties of the primordial plasma through the quark-

hadron transition at TQCD ' 170 MeV: (a) the redistribution of an input lepton asymmetry, and

(b) neutrino opacities due to weak interactions. We used these results in a detailed study of sterile

neutrino production, and in the process obtained: (a) final dark matter phase space densities, and

(b) modified transfer functions for cosmological density fluctuations with cutoffs at k ' 10 h Mpc−1

due to sterile neutrino streaming [107, 155–157]. These transfer functions significantly depart from
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earlier ones for warm DM that were used in N-body simulations [158, 159], and will help compare

the predictions of the sterile neutrino model with cosmological structure formation on small scales.

1.3 Baryon perturbations during recombination

The CMB anisotropies of Section 1.1.1 peak on degree angular scales today. They reflect acoustic

oscillations of photon perturbations with wavenumbers k ∼ 10−2 Mpc−1 during the recombination

epoch. Due to the large optical depth to Thomson scattering at the time, baryon perturbations on

these length scales are in phase with those in the photons [91]. In the tail of the recombination epoch,

electrons and photons begin to decouple and develop relative velocities on large scales [92, 160]. In

Part II of this thesis, we study fluctuations in the baryon fluid (baryon pressure sound waves) on

small scales, i.e. with wavenumbers k & 103 Mpc−1, in this epoch.

The standard lore for the evolution of baryon fluctuations is a competition between gravity and

their pressure support. In this framework, the Jeans scale marks the transition between fluctuations

that are stable due to pressure support, and those that collapse due to gravity [98]. After baryons and

photons kinetically decouple, the pressure support is provided by non-relativistic hydrogen atoms,

and the resulting comoving Jeans length is kJ ' 102 Mpc−1 [85]. Thus the fluctuations we consider

are stable in this framework (also see Ref. [161]). However, previous work indicated that they could

grow due to an alternate mechanism; this appealed to an instability of sound waves in a recombining

plasma with large–scale relative velocities between photons and baryons, which are naturally present

during decoupling [162]. Chapter 6 lays out this instability’s mechanism.

The original analyses of this effect modeled recombination in an inhomogenous universe as a

perturbation to the parameters of the homogenous solution [162–164]. In our work, we perform a

detailed study of recombination in a perturbed plasma, and analyze its effect on the instability of

fluctuations in the baryons on small scales.

Recombination in the homogenous primordial plasma is complicated by the high ionization cross

section for neutral hydrogen, owing to which continuum photons (hν > 13.6 eV) are reabsorbed

promptly after they are produced. Thus recombination dominantly occurs to the excited states

of hydrogen, which ultimately de-excite to the ground 1s state through either the 2p channel (by

emitting Lyman-α photons) or the 2s channel (by a two photon decay) [83, 84, 165–167]. Thus, an

accurate evolution of the ionization fraction requires the populations of a large number of excited

states of the hydrogen atom [168–170].

Recombination in a inhomogenous plasma is much more complicated, since it depends on the

transport of both ionizing continuum and Lyman-α photons between the crests and troughs of

the density perturbations. In Chapter 7, we solve the radiative transfer of photons in both these

frequency ranges using a simplified three-level atom model. This work is a natural step in extending
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the solution of recombination in the the early Universe in the homogenous case, and in the case

with large-scale perturbations (k ' 0.1 Mpc−1), to one with inhomogeneities on small scales (k &

103 Mpc−1).

Finally, we use these results to study the growth of small scale baryon perturbations. Our results

indicate that the instability persists at intermediate scales, but that its growth is suppressed due to

the relatively short duration of the recombination epoch during which the electrons and photons are

coupled.

It is important to understand the evolution of small scale modes, since they are not well con-

strained by neither the CMB fluctuations (Silk damped on comoving scales below ' 10 Mpc), nor

LSS. Due to the large number of these modes, any growth and dissipation in the epoch of recombi-

nation could have implications for the spectral shape of the CMB [171–173].

1.4 Primordial magnetic fields and the 21–cm line

In the third work presented in this thesis, we use the fluctuations of large scale structure at redshifts

z & 10 to study primordial magnetic fields in the Universe. In order to do so, we use the redshifted

21–cm emission of neutral hydrogen. We now briefly introduce this probe.

The bulk of the photons that make up the CMB today last scattered off free electrons in the

cosmic plasma during the epoch of recombination at redshifts z ' 1100. The subsequent period is the

so-called dark ages; the hydrogen in the Universe largely is in the atomic form, with trace amounts

of ionized protons and electrons that are thermally coupled to the CMB until redshifts z ' 200

[82–84]. The dark ages ended with the birth of the first stars and galaxies, and the reionization of

the intergalactic medium due to the radiation emitted from these sources [174–177].

We currently have no direct observational probes of the dark ages; indirect evidence suggests

that cosmic reionization might have happened during redshifts 6 . zrec . 10 [43, 178–180]. A

large number of radio experiments aim to study the Epoch of Reionization (EOR) by measuring

the redshifted 21–cm line of neutral hydrogen, which is abundant in the dark ages [174, 181–187].

It will be particularly hard to detect due to local foregrounds, but it promises to be the ultimate

probe of the inflationary fluctuations (that are shown in Figure 1.1). This is due to the particularly

simple connection between the observable (i.e. the line’s brightness temperature) and the underlying

fluctuations, the three-dimensional nature of the data due to the redshift dimension, and the large

coverage in wavenumber space [181, 182]. Given the exciting developments that are anticipated in

this area, it is germane to consider new scientific avenues that can be explored given the data from

future experiments. The mechanism in Part III of this thesis is one such example; understanding it

requires consideration of the microphysics of the 21–cm line.

The 21–cm line corresponds to the transition between the hyperfine sublevels of the hydrogen
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ground state, which originate in the coupling between the spins of the proton and the electron. The

main channel for the transition between these levels is a magnetic dipole, and hence the excited

states are extremely long lived. We show in Chapter 8 that atoms in the triplet state are spin-

polarized due to the density fluctuations of LSS. These long-lived spins undergo Larmor precession

in the presence of a magnetic field.

We show how the precession modulates fluctuations in the brightness temperature of the 21–

cm line against the CMB. Consideration of the relative geometry of the spins, the direction of the

magnetic field, and the observer’s line of sight shows that the modulations encode both the amplitude

and direction of a large-scale magnetic field that the atoms are immersed in. Moreover, the long

lifetime of the triplet state makes the technique naturally sensitive to extremely weak field strengths,

of order 10−19 G (or 10−21 G if scaled to the present day). We calculate the size of the effect by

taking into account all the processes that affect the hyperfine transition, including radiative decays,

collisions, and optical pumping by Lyman-α photons.

The traditional diagnostics of a magnetic field in the interstellar or intergalactic medium (IGM)

include the Faraday rotation of polarized sources [188, 189], and effects on the growth of LSS [190]

and the CMB’s temperature anisotropies and spectral shape [191, 192]. These methods have placed

upper bounds of 10−9 G on the field strength in the IGM. More recently, non-observations of TeV

sources by the Fermi mission have been interpreted as implying the existence of magnetic fields

stronger than 10−15 G coherent on the Mpc scale in local LSS voids [193–195]. There is substantial

debate about the validity of the assumptions, and the size of the bounds [196–201]. The method

we propose is futuristic, but much more sensitive than exisiting techniques to constrain large scale

magnetic fields. Given the rapid pace of progress in 21–cm cosmology, it has the potential to probe

mechanisms for magnetogenesis on large scales.

1.5 Tidal effects on neutron star oscillations

The final chapter of thesis is set in a very different scenario from the first three. It studies the effect

of tidal interactions on the oscillatory modes of neutron stars that are part of binary systems.

The evolution of binary systems under their mutual gravitational influence is one of the enduring

themes of celestial mechanics. There are two main sets of corrections to the classical picture of

stable Keplerian orbits. Within Newtonian mechanics, there is a rich phenomenology of tidal effects

when one or both of the bodies is spatially extended [202]. In the strong field regime, we also have

corrections due to general relativity, which cause orbits to decay via the emission of gravitational

waves [203–205]. The latter effect is pronounced in the case of binaries hosting compact objects;

in particular, neutron star (NS) binaries are thought to be bright sources of both gravitational and

electromagnetic radiation during their inspiral and eventual merger [206–209].
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Over the past sixty years or so, there has been a large-scale quest for the direct detection of the

gravitational radiation from such binary inspirals [210–212]. Based on current estimates of the rates

of these events in the local Universe, we can be cautiously optimistic that the upcoming generation

of gravitational wave detectors will accomplish this feat [213]. Beyond the discovery era, observed

gravitational waveforms should enable precise measurements of the binary’s parameters [214–216].

Precise measurements of the waveforms can also potentially inform us about the first family of

corrections, i.e. tidal effects: thus we have the promise of indirectly measuring the neutron star’s

equation of state (its response to compression). Such effects rely on the precise measurement of the

waveform’s phase [217–220] or cutoff frequency [221–223]. Hence it is important to accurately model

the orbital evolution to extract accurate templates.

Typical neutron stars have masses near the solar mass, but packed within a radius R∗ ' 10

km [224]. Considering nearly equal–mass binaries with separation a, the tidal potential due to the

companion scales with the dimensionless tidal strength ε = (R∗/a)3 [202, 225]. As the orbit shrinks

due to gravitational wave emission, the neutron stars eventually approach close enough for one or

both of them to be tidally disrupted. The exact separation at which this happens depends on the NS

equation of state, but is generically at around three to four radii. Thus the evolution of the binary is

usually modeled with a long inspiral phase (where the weak tidal effects due to the small strength ε

can be treated within perturbation theory) and a comparatively short disruption and merger phase

[226, 227].

The work in Part IV of this thesis was motivated by the work in Ref. [228], which studied the

non-linear effects of the tidal deformation in NS–NS inspirals. The latter indicated that, though

the NSs were stably deformed within linear theory, the non-linear effects of the tidal deformation

led to an instability. Depending on the saturation, such behavior could lead to a large correction to

the inspiral’s orbital phase, and possibly fatally compromise the simple link between the binary’s

parameters and the gravitational waveform. This result relied on a large three-mode coupling between

the NSs tidal deformation and high order pressure and gravity waves.

In our work, we show that additional four-mode couplings enter into the analysis at the same order

as the three-mode terms previously considered, within the framework of perturbation theory. We

introduced a novel method to calculate these four-mode couplings, and showed how their stabilizing

effect nearly exactly cancelled the destabilizing effect of the three-mode couplings.

Within the context of NS inspirals, the work in this thesis shows that tidal interactions do not

impact the phase evolution of gravitational waves, and consequently do not compromise the program

to extract the binary’s parameters from the waveforms. In a larger context, these results will be

useful in studies of non-linear effects of tidal deformations in other, longer lived systems, such as

binaries hosting white dwarfs.
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Part I

Sterile neutrino dark matter
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Chapter 2

Preliminaries1

2.1 Introduction

Deep in the radiation dominated epoch of the Universe, the three neutrinos present in the standard

model (SM) of particle physics [229] make up a significant population of relativistic species within

the primeval cosmic plasma. We have strong evidence of their existence at these early epochs

from probes of the primordial Universe such as the Cosmic Microwave Background (CMB) (probing

temperature T ∼ 0.25 eV) [42], and the synthesis of light elements during the epoch of Big Bang

Nucleosynthesis (BBN) which depends on the neutron-to-proton ratio set at Tdec ∼ 1.5 MeV [80],

the temperature of weak neutrino decoupling. Above this temperature, SM neutrinos interact with

species that carry weak charge, through which they remain coupled to the primordial plasma [230].

There is a long history of speculation about additional neutrino species (see Ref. [231] for a recent

review). Owing to the precise measurement of the invisible decay width of the SM Z boson [229],

any extra neutrino species must be “sterile” (i.e. electroweak singlets) [232]. Furthermore, precise

measurements of the CMB [42, 233] and of the primeval abundance of light elements [37, 234]

strongly constrain the presence of extra relativistic species in the early Universe. These constraints

indicate that (i) unlike SM neutrinos, light sterile neutrinos never fully thermalize with the rest of

the cosmic plasma [235–239], or (ii) that sterile neutrinos are massive enough to form the inferred

population of dark matter (DM) in the Universe (see e.g. Ref. [240]). Sterile neutrinos with masses

in the keV range act as DM in the CMB era, but are relativistic in the BBN era, when they do

not significantly impact the expansion rate due to their negligible energy density (compared to the

Fermi-Dirac value).

Early works in this direction studied right-handed sterile neutrinos with masses ms ≈ 0.1− 100

keV, produced by the oscillation of left-handed SM neutrinos [135, 137, 241–243]. The mixing angle

1The material in Chapters 2–5 was adapted from the preprint Sterile neutrino dark matter: A tale of weak
interactions in the strong coupling epoch, Venumadhav, T., Cyr-Racine, F.-Y., Abazajian, K. N., & Hirata, C. M.
2015, arXiv:1507.06655, currently under consideration for publication in Physical Review D. Reproduced here with
permission, copyright (2015) by the American Physical Society.
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between the SM and sterile neutrinos is fixed by the present day DM abundance. In the original

Dodelson-Widrow scenario [135], sterile neutrinos are produced with a momentum distribution re-

flecting that of the active neutrino species, and thus constitute “warm” DM [158, 244–246]. However,

small-scale structure formation [247–254] and X-ray observations [142, 255–258] appear in signifi-

cant conflict with the fiducial Dodelson-Widrow scenario, hence prompting the search for alternative

sterile neutrino production mechanisms [136–138, 259–274].

In this work, we examine in detail the resonant production of sterile neutrinos in the presence of

a small primordial lepton asymmetry. Originally proposed by Shi and Fuller [136], this production

mechanism makes use of a small lepton asymmetry to modify the plasma’s interaction with SM neu-

trinos in such a manner as to resonantly produce sterile neutrinos at particular momenta [137–139].

This generically results in a ‘colder’ DM distribution, which improves consistency with models of

cosmological structure formation [146–154], while requiring a modest primordial lepton asymmetry,

which is relatively poorly constrained [275–279].

Sterile and active neutrino mixing, which is needed for the former’s production, also leads to

their decay [140, 141]. For typical values of the sterile neutrino mass this predicts an X-ray flux

from the DM distribution in the low redshift Universe [137, 142]. This has been the subject of

much recent interest, due to hints of an excess flux at ∼ 3.5 keV in stacked X-ray spectra of several

galaxy clusters [143] and in observations of M31, the Milky Way, and Perseus [144, 145]. There is

currently an active debate on the existence, significance, and interpretation of this excess [280–287].

In the present work, we use this tentative signal as a motivation to study in detail the physics of

sterile neutrino production in the early Universe, but the machinery we develop is more generally

applicable to the broader parameter space of the Shi-Fuller mechanism.

We present here an updated calculation of resonantly-produced sterile neutrinos and relax several

simplifications that had been adopted previously in the literature. Furthermore, we leverage recent

advances in our understanding of the quark-hadron transition in order to include a more realistic

treatment of the strongly-interacting sector. Our motivation is twofold: a) improve the treatment

of lepton asymmetry, which is a crucial beyond-SM ingredient in the mechanism, and b) provide

realistic sterile neutrino phase space densities (PSDs) and transfer functions for matter fluctuations,

which are starting points for studying cosmological implications on small scales. Our improvements

to the sterile neutrino production calculation can broadly be classified in three categories.

Firstly, we study how the cosmic plasma reprocesses a primordial lepton asymmetry. For models

that can explain the above X-ray excess, the majority of sterile neutrinos are produced at tempera-

tures above 100 MeV [139]. At these temperatures, there is a significant population of either quarks

or mesons, depending on whether the temperature is above or below the quark-hadron transition.

Since these hadronic species are coupled to neutrinos and charged leptons through weak processes,

the establishment of chemical equilibrium among the different constituents of the cosmic plasma
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will automatically transfer a primordial lepton asymmetry to the hadronic sector. An illustrative

example is the reaction

νµ + µ+ 
 π+, (2.1)

which can redistribute an initial neutrino asymmetry into charged lepton and hadronic asymmetries.

At lower temperatures, the asymmetry is redistributed to a lesser degree between the leptonic flavors.

As we discuss in the body of the work, this redistribution modifies the dynamics of the resonant

sterile neutrino production, resulting in a modified final PSD.

Secondly, we incorporate several new elements to the calculations of the neutrino opacity (i.e. the

imaginary part of the self-energy) at temperatures 10 MeV ≤ T ≤ 10 GeV. Accurate neutrino

opacities are needed since they basically control the production rate of sterile neutrinos through

cosmic epochs. Early works on neutrino interactions in the early Universe [137, 230, 288] assumed

that neutrinos largely scattered off relativistic particles and thus scaled their cross-sections with the

center-of-mass (CM) energy. In addition, these calculations also neglected the effects of particle

statistics. Under these two simplifying assumptions, the opacity Γ(Eνα) for an input neutrino of

energy Eνα is of the form

Γ(Eνα) = λ(T )G2
FT

4Eνα , (2.2)

where GF is the Fermi coupling constant, and λ(T ) is a constant that depends on the number

and type of available relativistic species in the cosmic plasma. References [243, 289] subsequently

developed a framework to include particle masses, loop corrections, and particle statistics in the

neutrino opacity calculation. In the present work, we add previously-neglected contributions to the

opacity such as two- and three-body fusion reactions, and also use chiral perturbation theory to

compute the hadronic contribution to the opacity below the quark-hadron transition. We find both

quantitative and qualitative modifications to the form of Eq. (2.2). Wherever we present matrix

elements, we use the ‘–+++’ metric signature.

Thirdly, we fold the asymmetry redistribution and opacity calculations into the sterile neutrino

production computation, and provide updated PSDs for the range of parameters relevant to the

X-ray excess. As part of this process, we carefully review and correct the numerical implementa-

tion of the sterile neutrino production used in Ref. [152]. Our sterile neutrino production code is

publicly available at https://github.com/ntveem/sterile-dm. We finally use the updated ster-

ile neutrino PSDs in a standard cosmological Boltzmann code [290] and provide new dark matter

transfer functions.

We organize the presentation such that the beginning chapters deal with SM physics, while the

later ones apply their results to the production of sterile neutrino dark matter. In the rest of this

chapter, we introduce the production mechanism. We then proceed to study the weak interactions of

active neutrinos in Chapters 3 and 4; we study the redistribution of asymmetries in the former, and

https://github.com/ntveem/sterile-dm


15

active neutrino opacities in the latter. Finally, we study the resulting sterile neutrino DM distribution

in Chapter 5. We follow sterile neutrino production in Section 5.1, and evaluate transfer functions for

matter fluctuations in Section 5.2. We finish with a discussion of our assumptions and uncertainties

in Section 5.3, and collect technical details into the appendices.

2.2 Overview of resonant sterile neutrino production

In this section, we briefly review the resonant production of sterile neutrinos in the early Universe.

We first present the specific scenario that we consider in this work, and then discuss the Boltzmann

formalism used to compute the out-of-equilibrium production of sterile neutrinos. We finally discuss

how the presence of the thermal bath and lepton asymmetry change the neutrino self-energy and

govern the sterile neutrino production. We refer the reader to Refs. [136, 137, 139] for more details.

2.2.1 Assumptions

In our current study, we focus on the following scenario.

1. We consider an extra sterile neutrino species, νs, that is massive compared to the SM neutrinos

νe/µ/τ , which we take to be effectively massless. The propagation (light/heavy) and interaction

(active/sterile) eigenstates are related by a unitary transformation, the most general version

of which is a 4× 4 matrix. We assume that the sterile neutrino mixes with only one of the SM

ones, which we take to be the muon neutrino, i.e.,


Ψνµ

Ψνs


 =


 cos θ sin θ

− sin θ cos θ




 Ψ0

Ψms


 . (2.3)

The fields on the left- and right-hand sides are interaction and mass (ms) eigenstates, respec-

tively, and θ is the active-sterile mixing angle. The choice of a muon neutrino is arbitrary, and

reflects the choice of previous work [137, 152].

2. We assign a non-zero lepton asymmetry to the primordial plasma. In the general case, each

SM flavor has its own asymmetry, but we assume a non-zero value only for the mu flavor (i.e.

the one that mixes with the sterile neutrino):

∆n̂να + ∆n̂α− ≡ L̂α = δαµL̂µ, (2.4)

where the dimensionless asymmetry ∆n̂A in species A is the temperature-scaled difference

between the particle and anti-particle densities, ∆n̂A ≡ (nA−nĀ)/T 3, and δαµ is the Kronecker

delta. In general, entropy-scaled asymmetries are preferable, since they are conserved through
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Figure 2.1: Sterile neutrino DM parameter space: shaded regions are consistent with the X-ray signal at
1, 2, and 3 σ. The best determined parameters are from the MOS stacked clusters of Ref. [143]. Statistically
consistent signals are found in their core-removed Perseus spectrum, and M31 [144]. The lines show
constraints at the 90% level from Chandra observations of M31 (H14) [291], stacked dwarf galaxies (M14)
[292], and Suzaku observations of Perseus (T15) [293]. Stars mark the models that we study in the body of
the work. Figure provided by Kevork Abazajian.

epochs of annihilation. However, the definition used in Eq. (2.4) simplifies comparison with

lattice QCD calculations in Chapter 3. We fix by hand the mu lepton asymmetry at high

temperatures to produce the canonical DM density, ΩDMh
2 = 0.1188 in the current epoch [42].

In the rest of this work, we use a hat to indicate temperature scaled quantities. We choose to

study the parameter space of interest for resonantly produced sterile neutrino DM consistent with

the recent X-ray signal. Figure 2.1 shows a section of the ms and sin2 2θ plane with contours for the

unidentified lines of Refs. [143, 144], along with constraints from Chandra observations of M31 [291],

stacked dwarf galaxies [292], and Suzaku observations of Perseus [293]. The stars show a range of

mixing angles at a specific value of ms, and mark models that we study in Chapter 5.

For all these models, the bulk of the sterile neutrinos are produced at temperatures well below

the masses of the weak gauge bosons (∼ 80 GeV), but above weak decoupling at T ∼ 1.5 MeV [139].

Active-active neutrino oscillations in the primordial plasma are suppressed at these temperatures

[294], and hence it is consistent to assign individual asymmetries in Eq. (2.4) and neglect electron

and tau neutrino mixing in Eq. (2.3).
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2.2.2 Boltzmann Formalism

In its full generality, out-of-equilibrium sterile neutrino production (via oscillations) is best described

by the evolution of the two-state density matrix of the neutrinos in the active–sterile (interaction)

basis [295–298].

For the parameter range in Figure 2.1, most sterile neutrinos are produced above temperatures

T & 100 MeV. At these temperatures, the two state system is collisionally dominated, i.e., the

interaction contribution dominates the vacuum oscillations. In this regime, the evolution of the

density matrix separates out and yields a quasi-classical Boltzmann transport equation for the

diagonal terms, which are the PSDs of the active and sterile components [299–301]. The Boltzmann

equation for the sterile neutrino PSD is

∂

∂t
fνs(p, t)−H p

∂

∂p
fνs(p, t) =

∑

νx+a+···→i+...

∫
d3pa

(2π)32Ea
. . .

d3pi
(2π)32Ei

. . . (2π)4δ4(p+ pa + · · · − pi − . . . )

× 1

2

[
〈Pm(νµ → νs; p, t)〉 (1− fνs

)
∑
|M|2i+···→a+νµ+...fi . . . (1∓ fa)

(
1− fνµ

)
. . .

−〈Pm(νs → νµ; p, t)〉fνs

(
1− fνµ

)∑
|M|2νµ+a+···→i+...fa . . . (1∓ fi) . . .

]
. (2.5)

We can write an analogous equation for the antineutrinos. Here, the f(p) are PSDs for particles

with three-momentum p and energy E, and H is the Hubble expansion rate. The right-hand side

sums over all reactions that consume or produce a muon neutrino. The symbol
∑ |M|2 denotes the

squared and spin-summed matrix element for the reaction, and the multiplicative factors of (1∓ f)

implement Pauli blocking/Bose enhancement, respectively. The factor of 1/2 accounts for the fact

that only one (i.e. the muon neutrino) state in the two-state system interacts [295–297]. The Pm

are active–sterile oscillation probabilities in matter, which depend on the vacuum mixing angle θ,

and are modified by interactions with the medium. The latter are parametrized by the neutrino self

energy [288], and the ‘quantum damping’ rate for active neutrinos. In terms of these quantities, the

oscillation probabilities are [300, 301]

〈Pm(νµ ↔ νs; p, t)〉 = (1/2)∆2(p) sin2 2θ
{

∆2(p) sin2 2θ +D2(p)

+
[
∆(p) cos 2θ − V L − V th(p)

]2}−1

. (2.6)

We have introduced the symbol ∆(p) for the vacuum oscillation rate, ∆(p) ≡ δm2
νµ,νs

/2p, and split

the neutrino self energy into the lepton asymmetry potential V L, and the thermal potential V th (the

asymmetry contribution enters with the opposite sign in the version of Eq. (2.6) for antineutrinos).

The quantity D(p) is the quantum damping rate, and equals half the net interaction rate of active
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Figure 2.2: Lowest order contributions to a propagating active neutrino’s self energy. In panel (a), f is any
species with weak charge, and in panel (b), f = να, α

−. Red lines are thermal propagators.

neutrinos [the factor of half enters for the same reason as it does in Eq. (2.5)]. The net interaction

rate for a muon neutrino is

Γνµ(p) =
∑

νx+a+···→i+...

∫
d3pa

(2π)32Ea
. . .

d3pi
(2π)32Ei

. . . (2π)4δ4(p+ pa + · · · − pi − . . . )

×
∑
|M|2νµ+a+···→i+...fa . . . (1∓ fi) . . . (2.7)

We simplify the phase-space integrals in Eq. (2.5) by using detailed balance to equate the forward and

backward reaction rates. The resulting Boltzmann equation for quantum-damped and collisionally-

driven sterile neutrino production is [137]

∂

∂t
fνs

(p, t)−H p
∂

∂p
fνs

(p, t) ≈ Γνµ(p)

2
〈Pm(νµ ↔ νs; p, t)〉

[
fνµ(p, t)− fνs

(p, t)
]

, (2.8)

with a related equation for antineutrinos. There are subtleties with the effects of quantum-damping

in the case of resonance [302], but tests with the full density matrix formalism find that the quasi-

classical treatment is appropriate [139].

2.2.3 Asymmetry and Thermal Potentials

We now expand on the origins of the asymmetry and thermal potentials appearing in Eq. (2.6).

These potentials encapsulate the self energy of propagating active neutrinos due to interactions with

the plasma. Under the conditions we are interested in, there are three contributions to the neutrino

self energy: a) an imaginary part proportional to the net neutrino opacity, b) a real part due to finite

weak gauge boson masses (V th), and c) a real part proportional to asymmetries in weakly interacting

particles (V L). We follow the treatment in Ref. [288], and recast it in terms of the quantities that we

compute later. Figure 2.2 shows lowest-order contributions to active neutrinos’ self energy. Thick

red lines are thermal propagators of weakly charged species in the background plasma. There are two
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corrections — bubbles and tadpoles, shown in Figure 2.2a and 2.2b, respectively. The background

fermion is a lepton of the same flavor in the former, and any weakly charged species in the latter.

A massless active neutrino’s ‘dressed’ propagator is

G−1
να (pνα) = 6pνα − bνα(pνα)6u (1− γ5) /2, (2.9a)

bνα(pνα) = b(0)
να + b(1)

να ωνα , ωνα = −pνα · u. (2.9b)

Here, pνα and u are the neutrino and plasma’s four-momenta, 6v is shorthand for γµvµ, and bνα is

the left handed neutrino’s self energy. Equation (2.9b) divides this self energy into two contributions

that affect the particle and anti-particle poles of Eq. (2.9a) differently. Figure 2.3 illustrates their

association with asymmetry and thermal potentials:

V L
να = b(0)

να , (2.10)

V th
να (Eνα) = b(1)

ναEνα . (2.11)

Ref. [288] computes these terms by summing over all species in Figure 2.2. Both kinds of diagrams

contribute to the asymmetry potential, while only bubble diagrams contribute to the thermal po-

tential. We write the answer in terms of the leptons’ asymmetries, and the densities of the strong

fluid’s conserved quantities:

V L
να =

√
2GF

[ ∑

β∈{e,µ,τ}

(
δαβ −

1

2
+ 2 sin2 θW

)
∆nβ− +

∑

β∈{e,µ,τ}

(1 + δαβ) ∆nνβ −
1

2
∆nB

+
(
1− 2 sin2 θW

)
∆nQ

]
, (2.12a)

V th
να (Eνα) = −8

√
2GF

3

[
ρνα
M2
Z

+
ρα
M2
W

]
Eνα . (2.12b)

In the above equations, θW is the weak mixing angle, and MZ/W are the masses of the weak gauge

bosons. The symbol δαβ is a Kronecker delta, the quantities ρα and ρνα are net energy densities of

charged and neutral leptons, respectively, and ∆nB and ∆nQ are densities of the baryon number

B, and electric charge Q, respectively. The standard model baryon number asymmetry is small

compared to the lepton asymmetry of interest [80], and hence can be set to zero for the purposes of

this calculation.

According to the assumptions in the first part of this section, the plasma starts out with a net

lepton asymmetry in the mu flavor. As we showed in Section 2.1, this asymmetry is redistributed

between muons and muon neutrinos. Moreover, leptons of other flavors acquire asymmetries that

respect Eq. (2.4), and the strong fluid acquires a net electric charge density ∆nQ to maintain overall

neutrality. Equation (2.12a) shows how the asymmetry potential depends on the redistributed
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Im(ωνα)

Eνα = |pνα | V L + V th

Γ/2
V L − V th

Figure 2.3: Matter potentials for massless neutrinos in the plasma’s rest frame: filled and un-filled circles
are poles at finite and zero temperature, respectively. See Chapter 4 for the imaginary shift.

asymmetries.

In the ensuing chapters, we study aspects of the weak interactions of active neutrinos that affect

the sterile neutrino production.
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Chapter 3

Redistribution of lepton
asymmetries

Weak processes couple leptonic and hadronic degrees of freedom in the primordial plasma. In

this section, we study this coupling’s effect on lepton asymmetries1. We first recast the required

quantities in terms of a few relevant suceptibilities in Section 3.1, which we compute over a range

of temperatures in Section 3.2.

3.1 Definitions and parametrization

Let us consider the primordial plasma at temperatures above the quark-hadron transition temper-

ature, TQCD. The following reactions couple leptons of different flavors, and the quark and lepton

sectors:

να + β− 
 νβ + α−, (3.1a)

να + α+ 
 a+ b̄, (3.1b)

where a and b are quarks with charges of +2/3 and −1/3, respectively. Free quarks no longer exist

at temperatures below TQCD, and the reactions in Eq. (3.1b) transition to ones involving mesons,

like Eq. (2.1).

In principle, we could study the effect of all these reactions on input asymmetries, but it is

a daunting task; one that is further complicated by the quark-hadron transition. The following

consideration of the relevant timescales suggests a solution. In the radiation dominated era, the

Hubble rate is H ≈ 2×105 s−1 g∗
1/2(T/GeV)2. At temperatures above the quark-hadron transition,

the rates of reactions in (3.1) are Γ(T ) ' G2
FT

5 ≈ 2× 1014 s−1 (T/GeV)5, while the relevant rates

1During this preparation of this manuscript, we became aware of Ref. [303], which points out the relevance of this
effect to sterile neutrino production, and estimates it under the simplifying Stefan-Boltzmann approximation for free
quarks, along with a modified number of colors as a phenomenological correction for the effects of confinement.
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below the transition are those of pion decays. The most important channel for the latter is the

muonic decay, π+ → µ+ + νµ, which is faster than the Hubble rate (Γπ+→µ++νµ = 3.8 × 107 s−1).

Thus, a significant number of the reactions in Eq. (3.1) are faster than the Hubble rate2.

This has two primary consequences. Firstly, high reaction rates enforce kinetic equilibrium,

i.e. all active species’ PSDs approach the Fermi-Dirac or Bose-Einstein forms. Secondly, forward

and backward reactions are in chemical equilibrium, one effect of which is to equate the chemical

potentials for both sides (the Saha equation). However, it has another implication: the plasma’s

complicated internal dynamics can be abstracted into a few parameters or susceptibilities that com-

pletely specify its response to small external ‘forces’, or in this case, input asymmetries. All that

remains is to compute the susceptibilities relevant to our problem.

We now define a few useful quantities and notation. Given any conserved quantity F , the symbol

µF denotes its chemical potential. The asymmetry ∆n̂A, in a particle A, is a function of its chemical

potential µ̂A ≡ µA/T . The quantities ∆n̂A and µ̂A are small, and in the linearized limit, related by

∆n̂A = χ̂Aµ̂A, (3.2)

where χ̂A ≡ χA/T 2 is the number-density susceptibility. The lepton asymmetries in the three flavors

are

L̂α = ∆n̂α− + ∆n̂να

= χ̂α− µ̂α− + χ̂να µ̂να , α ∈ {e, µ, τ}. (3.3)

The strong fluid is described by the densities of its conserved quantities: the charge and baryon-

number densities ∆n̂Q and ∆n̂B, respectively3. The chemical equilibrium of the reactions in Eq. (3.1)

implies

µ̂να − µ̂α− − µ̂Q = 0, α ∈ {e, µ, τ}. (3.4)

Here µ̂Q is the chemical potential for adding a unit of electric charge. The conserved quantities’

densities are related to their chemical potentials by their susceptibilities:


∆n̂Q

∆n̂B


 =


 χ̂Q

2 χ̂QB
11

χ̂BQ
11 χ̂B

2




µ̂Q

µ̂B


 . (3.5)

2The electronic channel for the pion decay, π+ → e+ + νe is helicity-suppressed (Γπ+→e++νe
= 4.7 × 103 s−1)

and of the order of the Hubble rate at temperatures T ' 50 MeV, hence one might worry that leptons with electronic
flavor depart from equilibrium. This is resolved by the observation that they are coupled to muonic species by other
non-helicity suppressed, and consequently faster, reactions such as e+ + νe ↔ µ+ + νµ and µ+ ↔ e+ + νe + ν̄µ.

3We do not follow the strangeness, S, since it is not conserved in weak reactions. Above the transitions, it disappears
at the Cabbibo–suppressed rate ΓS ' |Vus|2G2

FT
5 ≈ 1013s−1(T/GeV)5, while below the transition the relevant rate

is the Kaon inverse lifetime, ΓK± = 8.1× 107 s−1.
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Equation (3.5), along with net charge and baryon number conservation, yields the constraint equa-

tions

∆n̂B = χ̂BQ
11 µ̂Q + χ̂B

2 µ̂B ≈ 0, (3.6)

0 = χ̂Q
2 µ̂Q + χ̂QB

11 µ̂B −
∑

α∈{e,µ,τ}

∆n̂α−

= χ̂Q
2 µ̂Q + χ̂QB

11 µ̂B −
∑

α∈{e,µ,τ}

χ̂α− µ̂α− . (3.7)

Equations (3.3), (3.4), (3.6), and (3.7) are eight linear equations for eight unknowns. The resulting

asymmetries (obtained via their chemical potentials) are the ‘redistributed’ input lepton asymmetries

Lα.

We symbolically represent the solutions as

µ̂A =
∑

α∈{e,µ,τ}

∂µ̂A

∂L̂α
L̂α, (3.8)

where the coefficients (∂µ̂A/∂L̂α) depend on the susceptibilities of both the leptons and the strong

fluid. We also express the redistributed asymmetries as

∆n̂A =
∑

α∈{e,µ,τ}

∂∆n̂A

∂L̂α
L̂α =

∑

α∈{e,µ,τ}

χ̂A
∂µ̂A

∂L̂α
L̂α. (3.9)

At the temperatures of interest, the lepton susceptibilities are essentially given by the free particle,

or Stefan-Boltzmann, formula:

χ̂A(m̂A) = −gA
π2

∫ ∞

0

dp̂ p̂2n̂′F

(√
p̂2 + m̂2

A

)
. (3.10)

In this equation, gA and m̂A ≡ mA/T are the spin degeneracy and mass, respectively, and n̂′F(x) =

(d/dx){1/[exp (x) + 1]} is the derivative of the Fermi-Dirac distribution.

3.2 Susceptibilities of the strongly-interacting plasma1

The sterile neutrino production calculation requires knowledge of the strongly-interacting plasma’s

susceptibilities over a broad range of temperatures, both above and below the quark-hadron tran-

sition. We evaluate them using a number of techniques: perturbative quantum chromodynamics

(QCD) at high temperatures, matching to lattice QCD results near the quark-hadron transition,

1I have removed the part of this section that explicitly computed the susceptibilities of the strong fluid at low
and high temperatures, and have replaced it with a description of the method. The computation is Francis-Yan
Cyr-Racine’s work, and can be found in the preprint [304].
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and a hadron resonance gas (HRG) approximation at low temperatures. We now briefly describe

our methodology.

We first rewrite the definition of the dimensionless susceptibilities in Eq. (3.5) as

χ̂X2 =
∂∆n̂X
∂µ̂X

∣∣∣∣
µ̂X=0

and χ̂XY11 =
∂∆n̂Y
∂µ̂X

∣∣∣∣
µ̂X ,µ̂Y =0

, (3.11)

where X, Y ∈ {B, Q}, µ̂X ≡ µX/T is the chemical potential of the conserved charge X. The key

step is to recast the asymmetries, ∆n̂Y , in terms of the QCD pressure, which is a thermodynamic

quantity, i.e.,

∆n̂Y =
∂p̂QCD

∂µ̂Y
. (3.12)

The pressure p̂QCD is given by the logarithm of the QCD partition function ZQCD.

p̂QCD ≡
pQCD

T 4
=

1

V T 3
lnZQCD(V, T, µQ, µB), (3.13)

where V is the volume. Thus, the susceptibilities are the following derivatives of the QCD pressure:

χ̂X2 =
∂2p̂QCD

∂µ̂2
X

∣∣∣∣
µ̂X=0

and χ̂XY11 =
∂2p̂QCD

∂µ̂X∂µ̂Y

∣∣∣∣
µ̂X ,µ̂Y =0

. (3.14)

At low and high temperatures, i.e. T � TQCD and T � TQCD, the QCD degrees of freedom in

the plasma are conventionally described by an ideal gas of particles. At low temperatures, these

particles are all the known hadronic resonances. We compute the partition function using the hadron

resonance gas (HRG) model [305, 306].

At high temperatures, the QCD coupling constant is small; hence to the lowest order of ap-

proximation, the degrees of freedom are an ideal gas of quarks (alternatively known as the Stefan-

Boltzmann approximation [307]). As we approach the quark-hadron transition, the coupling constant

rises. We incorporate the coupling constant into the QCD pressure calculation using a standard per-

turbative approach, based on the formalism in Ref. [308].

Perturbative techniques become inadequate at intermediate temperatures, i.e., at T ' TQCD.

We rely on lattice calculations that report susceptibilities through the quark-hadron transition (see

e.g. [309, 310]). These calculations rely on the thermodynamic relation between the susceptibilities

and moments of the fluctuations of conserved quantities.

〈∆n̂X∆n̂Y 〉
∣∣∣∣
µ̂X=µ̂Y =0

=
∂∆n̂X
∂µ̂Y

∣∣∣∣
µ̂X=µ̂Y =0

. (3.15)

This is most easily obtained from the thermodynamic definition in Eq. (3.12). The moments on the
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left-hand side are easily accessible in lattice QCD simulations [311]. Our strategy to compute the

susceptibility tensor over the whole required range of temperatures is as follows: we first separately

calculate it both above and below the quark-hadron transition using either perturbative or HRG

techniques, and then smoothly join the results with those from lattice QCD computations in the

regions of overlap.

Specifically, we use the results from the Wuppertal-Budapest (WB) lattice QCD collaboration

[309] and the HotQCD collaboration [310]. Even though the groups use different staggered fermion

actions on the lattice, their results are broadly consistent with one another. They report the suscep-

tibilities χ̂Q
2 , χ̂B

2 , and χ̂QB
11 , together with their estimated errors, in (2+1)-flavor QCD extrapolated

to the continuum limit 4.

We combine results from the three regimes into a single smooth susceptibility tensor, valid over

the range of temperatures relevant to the production of sterile neutrinos with masses of order O(10

keV). Figures 3.1a, 3.1b, and 3.1c display the susceptibilities χ̂Q
2 , χ̂B

2 , and χ̂QB
11 for temperatures

satisfying 10 MeV < T < 10 GeV. The thick solid black lines are our smooth fits to the three

regimes, while the dashed red and cyan dotted lines are the HRG and perturbative results, respec-

tively. We also show the results from the WB lattice QCD collaboration in the neighborhood of

the quark-hadron transition. For comparison, we also show the susceptibilities computed in the

Stefan-Boltzmann limit, i.e., assuming free quarks throughout and using Eq. (3.10).

The lattice QCD results are in good agreement with the perturbative calculations described

above for the temperature range 250 MeV . T . 300 MeV, above which they underpredict the

primeval plasma’s susceptibility owing to the charm quark’s influence [312]. Therefore, we do not

consider the lattice QCD calculations at temperatures above T & 300 MeV to avoid biasing our

results, and instead use the perturbative QCD approach.

We observe that the HRG calculation agrees well with the lattice QCD result for T . 150 MeV,

but systematically overpredicts the susceptibilities at higher temperatures. The perturbative ap-

proach is consistent with the available lattice QCD data at T & 225 MeV, but again systematically

overpredicts the susceptibilities at lower temperatures. Generally, the Stefan-Boltzmann approxi-

mation overestimates the susceptibilities by a factor of order unity, except near the quark-hadron

transition. Interestingly, we observe an accidental cancellation in the off-diagonal susceptibility,

χ̂QB
11 , in the (2+1)-flavor model which does not appear in the Nf = 5 theory. This arises because the

sum of the electric charges of the up, down, and strange quarks exactly vanishes. Hence, we expect

χ̂QB
11 → 0 for temperatures above the strange quark mass in the (2+1)-flavor model. In the Nf = 5

model, however, the charm quark becomes rapidly important at T & 300 MeV, leading to a sharp

turnover in χ̂QB
11 near this temperature.

4The WB collaboration does not directly report χ̂QB
11 , but we infer it from their results via a change-of-basis

operation.
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(c) charge-baryon number susceptibility
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Figure 3.1: Panels (a)-(c): Components of the quadratic susceptibility tensor for the primordial plasma’s
electric charge and baryon number. In all panels, the thick solid black line shows our smooth fit used in
the computation of sterile neutrino production. At low temperatures, we illustrate the HRG results with
dashed red lines, while the high-temperature perturbative results are shown with dotted cyan lines. We also
show the results from the WB lattice QCD collaboration[309] with green errorbars. For comparison, we also
display the Stefan-Boltzmann approximation to the susceptibilities assuming free quarks at all temperatures.
Panel (d): Effective populations of all leptonic degrees of freedom after the redistribution of an infinitesimal
mu leptonic asymmetry at all temperatures. Figure provided by Francis-Yan Cyr-Racine.

Given a set of infinitesimal lepton asymmetries, we solve for the chemical potentials using the

above susceptibilities in Eqs. (3.3), (3.4), (3.6), and (3.7), We obtain the redistributed asymmetries

in all the constituent species by using these chemical potentials, along with the appropriate suscep-

tibilities in Eq. (3.9). Figure 3.1d plots the redistributed asymmetries for an infinitesimal input mu

leptonic asymmetry. We note the following features:

1. At temperatures T > 2 GeV, the redistribution is efficient and ' 60% of the mu leptonic

asymmetry ends up in the muons. All the charged leptons are effectively massless at this

epoch, and hence the populations of the electron and tau flavors are identical.

2. The rise in the mu and tau lepton populations above temperatures of ' 25 MeV and 300 MeV

reflects, in part, the rise in their particle number susceptibilities as the temperature becomes

comparable to their masses [see Eq. (3.10)]. However, the largest contribution to the former is
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from the disappearance of the hadronic degrees of freedom below the quark-hadron transition,

and the associated drop in the strongly interacting fluid’s susceptibilities.

3. The ‘kink’ in all the redistributed asymmetries close to temperatures T ' 170 MeV is a

signature of the sharp change in the strongly interacting fluid’s susceptibilities at the quark-

hadron transition [see Figs. 3.1a, 3.1b and 3.1c].

4. At lower temperatures, T . 30 MeV, the redistribution is inefficient and most of the asymmetry

ends up in the muon neutrinos. Moreover, the electron neutrino and the muon have identical

(small) populations. This is characteristic of inelastic neutrino scattering, νµ + e− → νe +µ−,

which is the most important channel at these temperatures (the hadronic susceptibilities are

negligible at this epoch).

These redistributed asymmetries impact sterile neutrino production via the asymmetry potential,

V L
νµ . Equation (2.12a) expresses this potential in terms of the asymmetries in the populations of the

individual charged and neutral leptons, along with those in the charge and baryon number of the

strongly interacting fluid. As earlier, for an infinitesimal input mu leptonic asymmetry, the individual

asymmetries are formally represented by the functions in Eq. (3.9); the solutions for the charged and

neutral leptons are as plotted in Figure 3.1d. We obtain the electric charge density of the strongly

interacting fluid, ∆nQ, using net electric charge neutrality, i.e. Eqs. (3.5) and (3.7). Tables of

susceptibilities, along with the functions in Eq. (3.9) at a number of temperatures from 10 GeV down

to 10 MeV can be found at https://github.com/ntveem/sterile-dm/tree/master/data/tables.

Figure 3.2 shows the potential per unit physical µ lepton asymmetry using these solutions; this

quantity is constant and equals 2
√

2 = 2.83 in the absence of redistribution. As shown in the figure,

asymmetry redistribution corrects the potential at the ten-percent level above temperatures T & 100

MeV, which is where the bulk of the sterile neutrinos are produced. This contribution changes the

resonant momenta, and the resultant sterile neutrino dark matter’s phase-space densities; we explore

this further in Section 5.1.

https://github.com/ntveem/sterile-dm/tree/master/data/tables
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Figure 3.2: Asymmetry potential V L per unit unscaled mu lepton asymmetry. Solid line shows the effect of
redistribution using a combination of perturbative QCD, lattice calculations and the HRG approximation.
Dashed line shows the result using Stefan-Boltzmann approximation for free quarks. The value is constant
(= 2
√

2 = 2.83) in the absence of redistribution [see Eq. (2.12a)]. The redistribution is a ' 10% correction
at the most relevant temperatures for sterile neutrino production (T & 100 MeV).
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Chapter 4

Neutrino opacity

In this Chapter, we outline our calculation of muon neutrino opacities in the early universe. Initial

work in this area focused on reactions involving leptons, in the context of neutrino decoupling, active–

active neutrino oscillations and supernova calculations [230, 313, 314]. In particular, Ref. [313] lists a

number of relevant matrix elements. Our calculations apply to earlier epochs, with a larger number

of reactions due to the population of hadronic species above the quark-hadron transition.

Early work on sterile neutrino production used simple prescriptions for the resultant increase in

reaction rates [137, 139]. Recent work in Refs. [243, 289] provides a theoretical framework to include

particle masses and statistics in the neutrino opacity calculation, and formalism for loop corrections.

We include a number of additional contributions to the neutrino opacities that are significant at the

temperatures relevant to sterile neutrino production.

4.1 Assumptions and definitions

We adopt the following simplifying assumptions:

1. We neglect small asymmetries in the participating species’ populations (as for the thermal

potential). This is justified since the scattering rates are non-zero even in a CP symmetric

plasma. Moreover, we assume thermal and kinetic equilibrium, due to which the populations

of all active species are Fermi-Dirac/Bose-Einstein distributions.

2. We integrate out the massive gauge bosons, Z and W± and approximate the weak interaction

by a four-fermion contact term. Consequently, the reactions separate into leptonic and hadronic

processes, depending on the species involved. Moreover, we neglect the thermal populations

of Z0 and W±. These steps are valid at low temperatures and momentum transfers, i.e.,

T, s/t/u�MW±/Z0 ≈ 80 GeV. We operate in the temperature and energy ranges

10 MeV < T < 10 GeV, (4.1)
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10−4 < Eνµ/T < 20. (4.2)

The approximation fails at the higher energies at the upper end of the temperature range.

However, as we see in Section 5.1, the bulk of the sterile neutrinos are produced at lower

temperatures.

3. We assume incoming and outgoing particles to be non-interacting within two limits: below

and above the quark-hadron transition (see §3.3 of Ref. [46]). Below the transition, we include

hadronic channels with pseudoscalar and vector mesons1, and neglect the small population

of baryons. Above the transition, we include reactions with free quarks, i.e. we neglect the

strong coupling constant. This approximation fails at temperatures T ' TQCD [308]. We show

opacities interpolated through the transition using a few prescriptions, whose consequences for

sterile neutrino production we explore in Section 5.1.

The collision integral for a massless muon neutrino is

C[fνµ(Eνµ)] = −Γ(Eνµ)fνµ(Eνµ) + Γ(Eνµ)e−Eνµ/T (1− fνµ(Eνµ)), (4.3)

where Γ and fνµ are the interaction rate (opacity) and PSD, respectively. (This expression satisfies

detailed balance; see assumption # 1.) The interaction rate is given by a sum over all reactions that

consume the muon neutrino [see Eq. (2.7)].

It is useful to define the scaled interaction rate

Γ̃(Eνµ) =
Γ(Eνµ)

G2
FT

4Eνµ
. (4.4)

In the limit where all the particles involved are relativistic, weak cross-sections are proportional to

the squared energy in the CM reference frame. If we ignore particle statistics, reaction rates follow

the scaling of Eq. (2.2), and hence the scaled rate is proportional to the number of relativistic degrees

of freedom involved [288]. We present the scaled rates in the rest of this section in order to contrast

our results with this intuition.

In the rest of this Chapter, we enumerate reactions contributing to the opacity, and present

matrix elements and final rates under the above approximations.

4.2 Matrix elements

In this Section, we lay out matrix elements for reactions that contribute to the neutrino opacity,

under the assumptions laid out in Section 4.1. We classify reactions by the number of particles in

1We also include quark production in s-channel reactions at high CM energies. See Section 4.2.1 for details.
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their initial and final states. We now present their matrix elements in an organized manner.

4.2.1 Reactions with two-particle final states

We compute reaction rates for momenta and temperatures where we can integrate the weak gauge

bosons out and approximate the weak interaction by a four-particle vertex. For tree-level processes

under this approximation, if one of the ingoing particles is a neutrino, one of the other particles is

either a neutrino or a charged lepton of the same flavor. We classify two-particle to two-particle

reactions as leptonic or hadronic based on the nature of the remaining two particles.

We first study reactions that involve only fermions, which include ones involving solely leptons

and those involving quarks. Following this, we study mesonic channels, which are active below the

quark-hadron transition.

4.2.1.1 Four-fermion reactions with two particle final states

It is a lengthy, albeit straightforward, task to enumerate all leptonic reactions that contribute to

the neutrino opacity. Ref. [313] lists a complete set of reactions at temperatures of a few MeV.

Our calculations extend to higher temperatures, and hence we also include reactions involving tau

leptons. It is harder to study hadronic reactions in a consistent manner through the quark-hadron

transition temperature, TQCD.

We adopt assumption # 3 of Section 4.1 for the hadronic rates: we neglect the strong coupling

constant and its running at temperatures T > TQCD, and hence calculate opacities with free quarks.

The matrix elements in this section assume standard-model quark currents that couple to the weak

gauge bosons, Z0 and W± (see for example Ref. [315]). We study the low temperature limit in

subsequent sections.

Figure 4.1 shows the different classes of processes at tree-level which involve an incoming neu-

trino, νX , and two particles in the outgoing state. Regardless of whether leptonic or quark currents

are involved, the squared and spin-summed matrix elements of all such reactions are proportional

to one of three forms:

I(Qf , T
3
f ,mf ) = 128G2

F

[
Q2
f sin4 θW (p1 · p4)(p2 · p3) + (Qf sin2 θW − T 3

f )2(p1 · p2)(p3 · p4)

+m2
f (Qf sin2 θW − T 3

f )Qf sin2 θW (p1 · p3)
]
. (4.5)

I(Qf , T
3
f ,mf ) = 128G2

F

[
Q2
f sin4 θW (p1 · p2)(p3 · p4) + (Qf sin2 θW − T 3

f )2(p1 · p4)(p2 · p3)

+m2
f (Qf sin2 θW − T 3

f )Qf sin2 θW (p1 · p3)
]
. (4.6)

J (Qf , T
3
f ,mf ) = 128G2

F

[
Q2
f sin4 θW (p1 · p3)(p2 · p4) + (Qf sin2 θW − T 3

f )2(p1 · p4)(p2 · p3)

−m2
f (Qf sin2 θW − T 3

f )Qf sin2 θW (p1 · p2)
]
. (4.7)
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Reaction Label Sgc
∑ |M |2(Qf , T

3
f ,mf )

νX + νX → νX + νX 4.1c (1/4)I(0, 1, 0)
νX + ν̄X → νX + ν̄X 4.1d I(0, 1, 0)
νX +X− → νX +X− 4.1e I(−1, 1/2,mX)
νX +X+ → νX +X+ 4.1f I(−1, 1/2,mX)
νX + Y − → νX + Y − 4.1a I(−1,−1/2,mY )
νX + Y + → νX + Y + 4.1b I(−1,−1/2,mY )
νX + νY → νX + νY 4.1a I(0, 1/2, 0)
νX + ν̄Y → νX + ν̄Y 4.1b I(0, 1/2, 0)

νX + u/c/t→ νX + u/c/t 4.1a 3I(2/3, 1/2,mu/c/t)
νX + ū/c̄/t̄→ νX + ū/c̄/t̄ 4.1b 3I(2/3, 1/2,mu/c/t)
νX + d/s/b→ νX + d/s/b 4.1a 3I(−1/3,−1/2,md/s/b)
νX + d̄/s̄/b̄→ νX + d̄/s̄/b̄ 4.1b 3I(−1/3,−1/2,md/s/b)
νX +X+ → νY + Y + 4.1g J (0, 1, 0)
νX +X+ → β + ᾱ

β ∈ {u, c, t}
α ∈ {d, s, b}

4.1h 3|Vβα|2J (0, 1, 0)

νX + Y − → X− + νY 4.1i I(0, 1, 0)
νX + ν̄Y → X− + Y + 4.1j I(0, 1, 0)
νX + α → X− + β
α ∈ {d, s, b}
β ∈ {u, c, t}

4.1k 3|Vβα|2I(0, 1, 0)

νX + ᾱ → X− + β̄
α ∈ {u, c, t}
β ∈ {d, s, b}

4.1k 3|Vαβ |2I(0, 1, 0)

νX + ν̄X → X− +X+ 4.1n J (−1, 1/2,mX)
νX + ν̄X → νY + ν̄Y 4.1m J (0, 1/2, 0)
νX + ν̄X → Y − + Y + 4.1m J (−1,−1/2,mY )

νX + ν̄X → u/c/t+ ū/c̄/t̄ 4.1m 3J (2/3, 1/2,mu/c/t)
νX + ν̄X → d/s/b+ d̄/s̄/b̄ 4.1m 3J (−1/3,−1/2,md/s/b)

Table 4.1: Matrix elements of reactions involving a neutrino νX . Listed above are the moduli squared
multiplied with the appropriate symmetry factors and color degeneracy factors to be included in collision
integrals, for the diagrams shown in Figure 4.1. They are given in terms of the definitions of I, Ī and J in
Eqs. (4.5), (4.6), and (4.7).

Table 4.1 enumerates all reactions involving leptons and quarks, along with their counterpart in

Figure 4.1), and the moduli squared to be used in collision integrals.

4.2.1.2 Reactions involving mesons with two particle final states

The physical rates for hadronic reactions diverge from our calculated ones close to the transition,

since the strong coupling constant is non-zero. Treating this self-consistently is beyond the scope

of this work. When we use the computed rates in production calculations in Chapter 5, we present

results for a few unphysical interpolations through the transition.

At even lower temperatures, T < TQCD, we cannot use the free quark approximation. The

most important hadronic degrees of freedom are the pseudoscalar meson octet, which are pseudo-

Goldstone bosons associated with the spontaneous breaking of the axial part of an approximate
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SU(3)L × SU(3)R flavor symmetry [315]. We use three quark chiral perturbation theory (3χPT)

to write down the currents that couple to Z0 and W±, and through them evaluate the mesonic

contribution to the neutrino opacity.

Consider a 3 × 3 unitary matrix, U(x), which represents low-lying hadronic excitations at tem-

peratures T < TQCD. We express U(x) in terms of the pion fields πa(x) as follows:

U(x) = exp
[
2i
πa(x)T a

fπ

]
, a ∈ [1, 8], (4.8)

2πa(x)T a

fπ
=

1

fπ




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K0 − 2√

3
η


 , (4.9)

where fπ is an energy-scale associated with the breaking of the SU(3)A symmetry, and T a are

generators of SU(3). The most massive member of this octet, the η meson, has a mass of mη = 547.8

MeV [229]. We only use this prescription at T ≤ 150 MeV, so these low lying excitations are sufficient

to describe all relevant incoming hadronic degrees of freedom.

In the framework of 3χPT, the dynamics of the pion fields are described by an effective Lagrangian

for U(x) coupled to matrix valued SU(3)L and SU(3)R gauge fields lµ and rµ, respectively. The

first approximation to the Lagrangian is the lowest term in a derivative expansion:

L = −1

4
f2
πTr[DµU†DµU ], with DµU = ∂µU − ilµU + iUrµ. (4.10)

The gauge fields lµ and rµ are Hermitian matrices, which we decompose as

(l/r)µ = (l/r)aµT
a + (Vµ ∓Aµ)I, a ∈ [1, 8]. (4.11)

The fields Vµ and Aµ are vector and axial-vector parts of lµ and rµ. We identify the electroweak

gauge bosons of the standard model, Z0
µ,W

±
µ and Aµ [or equivalently, the underlying SU(2)×U(1)

gauge fields Aaµ and Bµ], with elements of (la/ra/V/A)µ by equating their action on the pion fields

πa(x) or the excitation U(x) via the right-hand side of Eq. (4.10). The results of this procedure are

g2A
1
µ = l1µ, (4.12a)

g2A
2
µ = l2µ, (4.12b)

g2A
3
µ = l3µ +

1√
3
l8µ −

1

12
Vµ +

1

12
Aµ, (4.12c)

eAµ = l3µ + r3
µ +

1√
3
l8µ +

1√
3
r8
µ. (4.12d)

Here g2 is the SU(2) coupling constant, and e = g2 sin θW. The overlap of A3
µ with the anomalous
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Aµ is an artifact of the omission of the charm quark from our analysis. If the charm quark were

included (as it has to be to make the SM non-anomalous) then there is no coupling to an anomalous

current. As long as there are no charm quarks (always true at the temperatures where 3χPT is

applied) this current looks like that associated with the anomalous U(1)A.

We read off the currents that couple to the gauge fields using the definition J
(a)µ
l/r/V/A =

∂L/∂(la/ra/V/A)µ, and the Lagrangian of Eq. (4.10). We transform the resultings to obtain the

currents that couple to the SM electroweak gauge fields, Z0
µ,W

±
µ and Aµ:

J+µ =
1√
2

[
V ∗ud

(
fπ∂

µπ+ + iπ0
↔

∂µπ+ − i√
2
K0

↔

∂µK+
)

+ V ∗us

(
− i√

2
K0

↔

∂µπ+ +
i

2
π0
↔

∂µK+ +

√
3i

2
η
↔

∂µK+
)]

, (4.13a)

J−µ =
1√
2

[
Vud

(
fπ∂

µπ− − iπ0
↔

∂µπ− +
i√
2
K0

↔

∂µK−
)

+ Vus

( i√
2
K0

↔

∂µπ− − i

2
π0
↔

∂µK− −
√

3i

2
η
↔

∂µK−
)]

, (4.13b)

Jµz = Jµ3 − sin2 θWJ
µ
EM, (4.13c)

Jµ3 =
1

2

[
fπ

(
∂µπ0 +

1√
3
∂µη

)
+ iπ+

↔

∂µπ− + iK+
↔

∂µK−
]
, (4.13d)

JµEM = iπ+
↔

∂µπ− + iK+
↔

∂µK−. (4.13e)

These currents agree with the leading order parts of the functionals computed in Ref. [316].

A final complication is that 3χPT, and the currents derived from it, are valid only when the

momentum in the intermediate weak gauge bosons is low compared to the energy scale 4πfπ ∼ 1

GeV [315]). The physical currents that couple to the SM electroweak gauge fields are continuous

functions of this momentum; they approach the SM free quark currents for large momentum values.

This manifests as the production of quarks in the large CM energy limit in s-channel reactions, and

as ‘deep-inelastic scattering’ off the mesons’ quark content in the large momentum-transfer limit

in t-channel reactions. These limits are important to consider at the higher energies for which we

calculate neutrino opacities using 3χPT (the total energy range is shown in Figures 4.5a and 4.6).

We do not self-consistently compute these corrections to the currents, as it is beyond the scope

of this work. Instead, we modify the s-channel reaction rates in a phenomenological manner: we

apply a cutoff in the CM energy at 1 GeV with a width of 50 MeV, below which we use the 3χPT

currents, and above which we use the SM free quark currents. We do not incorporate any corrections

to t-channel reactions; this would involve some knowledge of the parton distribution functions for

the mesons involved.

Figure 4.2 shows the relevant scattering processes involving mesons, keeping only terms upto

O(p2) in 3χPT. For the diagrams involving a Z boson, it is kinematically possible to have it couple

to a neutral meson too, but such processes are suppressed in 3χPT.
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Reaction Label
∑ |M |2

νX + π+ → νX + π+ 4.2a 2( 1
2 − sin2 θW )2A

νX +K+ → νX +K+ 4.2a 2( 1
2 − sin2 θW )2A

νX + π− → νX + π− 4.2b 2( 1
2 − sin2 θW )2A

νX +K− → νX +K− 4.2b 2( 1
2 − sin2 θW )2A

νX +X+ → π+ + π0 4.2c |Vud|2B
νX +X+ → K+ +K0 4.2c 1

2 |Vud|2B
νX +X+ → π+ +K0 4.2c 1

2 |Vus|2B
νX +X+ → K+ + π0 4.2c 1

4 |Vus|2B
νX +X+ → K+ + η 4.2c 3

4 |Vus|2B
νX + π− → X− + π0 4.2d |Vud|2A
νX +K− → X− +K0 4.2d 1

2 |Vud|2A
νX + π− → X− +K0 4.2d 1

2 |Vus|2A
νX +K− → X− + π0 4.2d 1

4 |Vus|2A
νX +K− → X− + η 4.2d 3

4 |Vus|2A
νX + π0 → X− + π+ 4.2e |Vud|2A
νX +K0 → X− +K+ 4.2e 1

2 |Vud|2A
νX +K0 → X− + π+ 4.2e 1

2 |Vus|2A
νX + π0 → X− +K+ 4.2e 1

4 |Vus|2A
νX + η → X− +K+ 4.2e 3

4 |Vus|2A
νX + ν̄X → π+ + π− 4.2f 2(1/2− sin2 θW )2B
νX + ν̄X → K+ +K− 4.2f 2(1/2− sin2 θW )2B

Table 4.2: Matrix elements for interactions of an incoming neutrino νX involving mesons, with only terms
upto O(p2) in 3χPT. Listed above are the moduli squared to be included in collision integrals, for the
diagrams shown in Figure 4.2. They are given in terms of the definitions of A,B in Eqs. (4.14), (4.15).

The squared and spin-summed matrix elements of all mesonic reactions are proportional to one

of two forms:

A = G2
FTr

[
6 p3(6 p4+ 6 p2)(1− γ5) 6 p1( 6 p4+ 6 p2)(1− γ5)

]

= 8G2
F

[
2{p3 · (p4 + p2)}{p1 · (p4 + p2)} − {p3 · p1}{p4 + p2}2

]
, (4.14)

B = G2
FTr

[
6 p2(6 p4− 6 p3)(1− γ5) 6 p1( 6 p4− 6 p3)(1− γ5)

]

= 8G2
F

[
2{p2 · (p4 − p3)}{p1 · (p4 − p3)} − {p2 · p1}{p4 − p3}2

]
. (4.15)

Table 4.2 lists the moduli squared of various reactions, along with the corresponding sub-figure in

Fig. 4.2, in terms of these functions.

We observe that the squared and spin-summed matrix elements, be it for tree-level processes

involving leptons and free quarks (computed using the SM currents), or for those involving pseu-

doscalar mesons (computed using terms upto O(p2) in 3χPT), are at-most quadratic functions of the

Mandelstam variables. This greatly facilitates a semi-automated computation of the two-particle to

two-particle reactions’ contribution to the neutrino opacity. which we very briefly describe next.
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4.2.1.3 Rates for two-particle to two-particle reactions

Consider a general two-particle to two-particle reaction, να +A→ B+C, that consumes a massless

input neutrino, να. The particles A,B, and C can all be fermions (leptons or quarks), or contain a

pair of bosons (pseudoscalar mesons). We expand Eq. (2.7) to write down the following expression

for the scattering rate as a collision integral:

Γ(Eνα) =
1

2Eνα

∫
d3p̃Ad

3p̃Bd
3p̃C(2π)4δ(pνα + pA − pB − pC)

× S
∑
|M|2fA(EA)(1∓ fB(EB))(1∓ fC(EC)), (4.16)

where the symbol d3p̃ is shorthand for the Lorentz invariant phase space volume element d3p/[(2π)32E(p)],

the symbol
∑ |M|2 is the absolute value of the matrix element squared and summed over all spin

states, S is a symmetry factor for identical particles in the initial and/or final states, and the f(E)s

are appropriate Bose-Einstein/Fermi-Dirac phase space distributions depending on the statistics of

the particles, with plus and minus signs for bosons and fermions, respectively.

We follow the treatment in Ref. [313] to reduce the nine-dimensional phase space integral of

Eq. (4.16) to a numerically manageable three-dimensional integral over the variables |pA|, |pB | and

µB = p̂B ·p̂να . This procedure involves using the delta function to perform the integral over pC , and

using the form of the matrix elements for tree-level processes to analytically perform the integral

over µA = p̂A · p̂να . We refer the reader to Ref. [313] for more details. The form of the matrix

elements also lends itself to easy parameterization in terms of a small number of classes; along with

the procedure described above, this enables a simple numerical implementation of the calculation of

these reactions’ contributions to the neutrino scattering rate.

4.2.2 Rates for neutrinos to go to one-particle final states

We must also consider the contribution to the neutrino interaction rate, Γ(Eνα), from interactions

with two-particle final states (“fusion” or inverse decay). A four-fermion interaction such as the

weak interaction (at E � mW ,mZ) can produce such a final state in two ways. One, applicable at

T < TQCD, is two-body fusion to produce a meson, e.g. νµ+µ+ → π+. The other is the ‘three-body

fusion’, e.g. νµ + ν̄e + e− → µ−. By construction, these fusion processes are the inverse of a decay

process. We describe our treatment of these processes in the rest of this section.

4.2.2.1 Two-body fusion processes1

1I have removed the part of this section that explicitly computes the rates of two body fusions, and only retained
the results for completeness’ sake. The computation is Christopher Hirata’s work, and can be found in the preprint
[304].
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Table 4.3: The parameters for reactions that go into Eq. (4.18). Reactions relevant for the neutrino opacity
are shown; antineutrinos are similar. Particle masses are obtained from the Particle Data Group. Decay
partial widths are obtained from the sources indicated. All reactions in which a neutrino can produce a
hadronic resonance below 1 GeV are included.

Reaction mA gA υ Γvac
reverse Rate method

MeV MeV

Reactions involving the pseudoscalar meson octet

νe + e+ → π+ 139.57 1 0.999987 3.110 × 10−18 PDG

νµ + µ+ → π+ 139.57 1 0.4269 2.528 × 10−14 PDG

νe + e+ → K+ 493.68 1 0.9999989 8.41 × 10−19 PDG

νµ + µ+ → K+ 493.68 1 0.95419 3.38 × 10−14 PDG

Reactions involving vector mesons with nonzero isospin

νX + ν̄X → ρ0 775.26 3 1 9.78 × 10−12 Average of τ decay and e+e− → ρ0; assumed isospin SU(2)1

νe + e+ → ρ+ 775.26 3 0.9999996 7.00 × 10−11 τ decay

νµ + µ+ → ρ+ 775.26 3 0.98143 6.80 × 10−11 τ decay

νe + e+ → K∗(892)+ 891.66 3 0.9999997 5.45 × 10−12 τ decay

νµ + µ+ → K∗(892)+ 891.66 3 0.98596 5.33 × 10−12 τ decay

Reactions involving vector mesons with zero isospin

νX + ν̄X → ω(782) 782.65 3 1 7 × 10−13 e+e− → ω(782); assumed quark content (ūu + d̄d)/
√

2

A two-body fusion process must involve a meson in either the initial or the final state, and – if it

is to absorb a neutrino – must then be semi-leptonic. The neutral current processes of this form

(e.g. a neutral meson is created by the fusion of ναν̄α → π0) are helicity-forbidden and have zero

amplitude at tree-level. The charged current processes can have either the meson in the initial state

and the charged lepton in the final state (e.g. K−ντ → τ−) or the meson in the final state (e.g.

νµµ
+ → π+). The “charged lepton in the final state” case is possible only if the charged lepton is

more massive than the meson, i.e. if that lepton is a τ ; at T < TQCD this not energetically feasible

for typical values of the incoming particles’ momenta, since mτ � TQCD. Therefore, we focus on

the problem of a charged meson in the final state. The reaction is

να + α+ → A+, (4.17)

where α = e or µ and A = π or K. We are interested in the thermal absorption rate Γfusion for the

neutrinos as a function of temperature T and neutrino energy Eν .

Consideration of the kinematics of the fusion process gives us the following rate:

Γfusion(Eνα) =
gAmAΓvac

A+→ναα+T

υ(1 + e−Eνα/T )E2
να

ln
1 + eEνα/T e−(υ2m2

A+4E2
να

)/(4υEναT )

1− e−(υ2m2
A+4E2

να
)/(4υEναT )

, (4.18)

where gA is the degeneracy factor (gA = 1 for pions and kaons), υ = 1 −m2
α/m

2
A. Note that the

numerical calculation of the logarithm must be treated carefully since for EA,min − Eνα � T we

are taking the logarithm of a number that is very close to 1. For calculational purposes, we replace

the logarithm in Eq. (4.18) by a truncation of its Taylor expansion at the fifth order wherever the

argument deviates from unity by less than ε = 10−3.

The rate parameters for the key two-body fusion reactions are shown in Table 4.3.
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4.2.2.2 Three-body fusion processes

The final set of reactions that contribute to the neutrino opacity are three-body fusions. As earlier,

these reactions can be either leptonic or hadronic in nature. We adopt the prescription outlined

in Section 4.2.1 for the hadronic reactions. Given the hadronic and leptonic currents coupling to

the SM electroweak gauge bosons, we can enumerate all three-body reactions that contribute to the

neutrino opacity by omitting in turn the products in the reactions of Tables 4.1 and 4.2, adding their

charge conjugates to the reactants, subject to the constraint that the products rest mass is strictly

greater than the sum of the reactants. An example is tau lepton production via νµ + µ+ + ντ?τ+.

The matrix element for any three-body fusion reaction is related to one for a two-particle to

two-particle reaction by crossing symmetry. Thus, we do not need to compute any new matrix

elements for this section. However, we need to modify the treatment of the kinematics from the

previous case. Consider a general three-body fusion reaction, να +A+B → C. The scattering rate

for an input neutrino energy Eνα is given by the collision integral:

Γ(Eνα) =
1

2Eνα

∫
d3p̃Ad

3p̃Bd
3p̃C(2π)4δ(pνα + pA + pB − pC)

× S
∑
|M|2fA(EA)fB(EB)(1∓ fC(EC)). (4.19)

All the symbols are defined identically to Eq. (4.16). The procedure to reduce the dimensionality

of this integral is exactly analogous to that in Section 4.2.1.3 and Ref. [313], with one important

difference. The variables finally left to numerically integrate over are, as earlier, |pA|, |pB |, and

µB = p̂να · p̂B . If we consider the integration domain for the two-particle to two-particle case, for

a given value of |pA|, energy constraints allow a maximum value of |pB |. For a three-body fusion,

|pB | has no upper bound, which greatly expands the allowed phase-space. With this caveat, the rest

of the procedure proceeds as it did for the other case.

4.3 Results

Figure 4.3 shows the leptonic contribution to the muon neutrino opacity at a temperature T = 100

MeV, using the matrix elements for reactions in Table 4.1, and related three-body fusions. For

convenience, we only show reactions in the top five at any particular momentum bin. In the numerical

implementation, we evaluate the dimensionless quantity Γ(Eνµ)/G2
FT

5 (proportional to the unscaled

rates) to an accuracy of 10−6 after simplifying the collision integrals in Eq. (4.16) and (4.19).

The quark-hadron transition considerably complicates the hadronic reactions. We appeal to

assumption # 3 of Section 2.2.1 and evaluate their rates in two limits: at low and high temperatures,

i.e. T < TQCD and T > TQCD respectively. Tables 4.1 and 4.2 list the hadronic two-particle to two-

particle reactions contributing to the muon neutrino opacity. At high temperatures, we use all
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reactions involving free quarks, while at temperatures T . TQCD, we assume that all incoming

hadronic degrees of freedom belong to the pseudoscalar meson nonet (the heaviest member of which

is the eta meson, with a mass of mη = 547.8 MeV). As in the leptonic case, we also include three-body

fusions involving pseudoscalar mesons or quarks. Examples are K0 and charm quark production via

νµ + µ+ + π− → K0 and νµ + µ+ + s→ c, respectively.

A complication is that at low temperatures, free quark and parton currents contribute to the

initial and final states for large momentum transfer in the t- and s-channel respectively (see Section

4.2.1). For s-channel reactions, we thus treat individual meson resonances for center of mass energies

< 1 GeV, and use the free quark model for inclusive cross sections at > 1 GeV. Also important are

‘two-body fusions’, i.e. reactions with two particles in the initial state and one in the final state, with

the latter being a pseudoscalar or vector meson. Table 4.3 in Section 4.2.2 lists all such reactions

included in our opacities.

Figure 4.4 shows the hadronic contribution to the muon neutrino opacity at low and high temper-

atures, using the matrix elements for two-particle to two-particle reactions, the associated three-body

and two-body fusions. As earlier, we only show reactions in the top five at any momentum bin; the

numerical implementation of the first two classes is unchanged.

Figure 4.5a shows the total opacities with muon neutrino energy at temperatures of 100 MeV

and 2 GeV. We note a few salient features of these rates.

Firstly, we note that the leptonic and hadronic two-particle to two-particle reaction rates ap-

proach the scaling of Eq. (2.2) at large energies; the downturn at lower energies is due to Pauli

blocking.

Secondly, both sets of rates exhibit a rise at low energies, which reflects non-zero limiting values

of the unscaled rates. This is due to the behavior of cross sections for inelastic collisions involving

massive particles, such as the three body collision νµ + e− + ν̄e → µ− or the scattering process

νµ+µ+ → νe+e+. We illustrate this by calculating the cross-section for the latter, while neglecting

the positron’s rest mass and Pauli blocking for simplicity. The squared and spin-summed/averaged

matrix element for this process is

〈
|M|2

〉
= 128G2

F

(
pνµ · pe+

) (
pµ+ · pνe

)
. (4.20)

In the limit of zero neutrino energy

(
pµ+ · pνe

)
= −m2

µ/2 +O
(
Eνµ

)
, (4.21)

which implies that modulus squared is

〈
|M|2

〉
= −64G2

Fm
2
µ

(
pνµ · pe+

)
+O

(
Eνµ

)
. (4.22)
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Hence the cross section for the µ−neutrino, integrated over outgoing particles’ directions, is

σνµ =
G2

Fm
2
µ

π
+O

(
Eνµ

)
. (4.23)

Such non-zero limiting values are responsible for the rise in the scaled rates for soft neutrinos in

Figs. 4.3 and 4.4

Thirdly, the hadronic opacities at low temperatures, i.e. T < TQCD, exhibit a series of peaks.

These are signatures of two-body fusions, which are broad resonances in the propagators of the

weak gauge bosons. These include the production of pseudoscalar mesons (e.g. pion production via

νµ + µ+ → π+) and vector mesons (e.g. ρ0 production via νµ + ν̄µ → ρ0). In the total opacities of

Figure 4.5a, the former is visible as a peak at intermediate momenta, while the latter are smeared

out at large momenta.

Finally, we observe from Figure 4.5a that the total opacities at high energies exhibit a jump as

the temperature passes through TQCD. This is due to the increase in the number of hadronic degrees

of freedom, as evidenced by the sizes of the jumps in hadronic- and leptonic contributions (the latter

due to the tau lepton turning on).

This is shown clearly in Figure 4.5b, which shows the scaled muon neutrino opacities at high

energies for a range of temperatures. Note that these rates assume that the hadronic species above

and below the transition are free quarks and mesons, respectively (assumption # 3 in our list above).

For comparison, the figure shows the number of relativistic degrees of freedom, g∗, both under this

assumption and from Ref. [308], which implements the running of the strong coupling constant. We

note the significant deviation close to the quark-hadron transition (TQCD = 210 MeV in the lattice

calculations underlying Ref. [308]).

Motivated by this, we explore two methods of interpolating opacities through the quark-hadron

transition. In each of them, we choose a cutoff temperature, Tc, above which we use the free quark

results, and use a cubic spline interpolation in between. We emphasize that this is not physically

motivated; the actual rates and their matrix elements need to incorporate the strong coupling

constant and its running. The figure shows interpolations with Tc = 250 MeV and 1000 MeV, which

we expect to bracket the range of rates.

With this caveat, Figs. 4.6a and 4.6b show interpolated µ neutrino opacities for a range of energies

and temperatures, with Tc = 250 MeV and 1000 MeV, respectively. In the rest of this work, we use

these scattering rates and the potentials defined in Section 2.2 to study sterile neutrino production

via oscillation in the early universe. We use both interpolations through the quark-hadron transition

in order to illustrate the results’ sensitivity to the scattering rates.
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Figure 4.1: Tree-level processes with two fermions in the initial and final states, which contribute to the
opacity of a neutrino νX . Diagrams for processes that can involve hadronic degrees of freedom are colored
red to distinguish them.
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Figure 4.2: Interactions of an incoming neutrino νX involving mesons, with only terms upto O(p2) in 3χPT.
The charge of the meson is shown with a red arrow.
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Figure 4.3: Scaled muon neutrino opacities through leptonic reactions, vs energy at T = 100 MeV. Only

reactions in the top five at any particular momentum bin are shown. The symbol
(−)
ν stands for ν/ν̄.
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(Ê

ν
µ
)

νµc̄→ µ−s̄

νµµ
+s→ c

νµc̄→ µ−d̄

νµµ
+d→ c

νµd→ µ−u

νµµ
+ → ud̄
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Figure 4.4: Scaled muon neutrino opacities through hadronic reactions, vs energy: panels (a) and (b) show
rates at T = 100 MeV and 2 GeV, respectively. Only reactions in the top five at any particular momentum
bin are shown.
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Figure 4.5: Scaled muon neutrino opacities: panel (a) shows total, leptonic, and hadronic opacities vs energy
at T = 100 MeV and 2 GeV. Panel (b) shows opacities at high energies (Eνµ = 20T ) vs temperature: black
lines are two interpolations through TQCD. They are cubic splines labeled by their cutoff temperature, Tc, as
defined in the text. Colored lines are numbers of relativistic degrees of freedom: g∗,KT under assumption
# 3, i.e., that of Kolb and Turner [46] with TQCD = 210 MeV, chosen to match Ref. [308], whose results are
g∗,LS(2006).
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Figure 4.6: Scaled muon neutrino opacities for a range of energies and temperatures. Panels (a) and (b)
show two interpolations for opacity vs energy and temperature. They are bicubic splines, and the red lines
label the cutoff temperatures, Tc, as defined in the text. Blue dashed lines mark ranges where the values of
g∗ in Ref. [46] and [308] differ by more than 10%, and are a rough guide to where these rates can be trusted.
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Chapter 5

Sterile neutrino dark matter
distribution

5.1 Sterile neutrino production

In this section, we incorporate the standard model calculations of Chapters 3 and 4 into the sterile

neutrino production mechanism, whose broad outline we provided in Section 2.2.

We evolve the sterile neutrino and anti-neutrino PSDs, fνs(p) and fν̄s(p), using the Boltzmann

equation of Eq. (2.8). We use the primordial plasma’s temperature T as a clock, and numerically

integrate a thousand logarithmically spaced Lagrangian momentum bins from a temperature of 10

GeV down to 10 MeV. For the models illustrated by stars in Figure 2.1, the vast majority of the

production happens between these temperatures. We use the muon neutrino opacities derived in

Chapter 4 and provide results using the two interpolation schemes presented in Figure 4.6, which

bracket the range of uncertainties due to the quark-hadron transition. We use Eq. (2.12b) for the

thermal potential V th
νµ , and the results presented in Figure 3.2 for the asymmetry potential V L

νµ

incorporating the redistribution of Chapter 3.

In order to close the system of equations, we also need the evolution of the plasma temperature

T and mu leptonic asymmetry L̂µ with coordinate time t. Before discussing the details of the sterile

neutrino production, we briefly review these two relations.

5.1.1 Time-temperature relation

In this subsection, we derive the time-temperature relationship prior to the epoch of weak decoupling.

The Hubble rate, H, is

d

dt
ln a = H =

√
8π

3m2
P

(ρSM + ρνs
), (5.1)

where a is the scale factor, mP = 1.2 × 1019 GeV is the Planck mass, and ρSM and ρνs
are energy

densities in standard model particles and sterile neutrinos, respectively. The latter is given by an
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integral over the PSDs, ρνs
= (1/2π2)

∫
p2dp

√
p2 +m2

s [fνs
(p) + fν̄s

(p)]. During Hubble expansion

from a to a+ δa a) the sterile neutrino PSDs evolve to fνs/ν̄s
(p) + δfνs/ν̄s

(p) due to a combination

of mixing with muon neutrinos, and their momentum redshifting as pa ≡ constant, and b) due to

large neutrino opacities, all active species maintain equilibrium PSDs with a common temperature

whose evolution is affected by the production of sterile neutrinos.

The continuity equation for the total stress-energy tensor is

3
d

dT
ln a = − d

dT
(ρSM + ρνs) (ρSM + PSM + ρνs + Pνs)

−1
, (5.2)

where PSM/νs
are SM and sterile neutrino pressures, respectively. The sterile energy density evolves

according to

dρνs

dT
=

∂ρνs

∂ ln a

d ln a

dT
+
∂ρνs

∂t

dt

dT
. (5.3)

The two terms on the right-hand side are the free-streaming and oscillation contributions, respec-

tively.

∂ρνs

∂ ln a
= −3(ρνs

+ Pνs
), (5.4)

∂ρνs

∂t
=

∫
dp p2

2π2

√
p2 +m2

s

∂

∂t
[fνs

(p) + fν̄s
(p)] . (5.5)

We substitute Eqs. (5.3) and (5.4) into Eq. (5.2) and solve for the relation between the scale factor

and temperature

3
d ln a

dT
= −

(
dρSM

dT
+
∂ρνs

∂t

dt

dT

)
(ρSM + PSM)

−1
. (5.6)

Substituting Eq. (5.1), we obtain the time-temperature relation1

dT

dt
= −3H[ρSM + PSM] + (∂ρνs

/∂t)

dρSM/dT
. (5.7)

Defining the number of SM relativistic degrees of freedom for the energy and entropy densities via

ρSM =
π2

30
g∗T

4, (5.8)

sSM =
ρSM + PSM

T
=

2π2

45
g∗,sT

3, (5.9)

1We note that we correct here an error introduced in Ref. [137].
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we have the final form of the time-temperature relation

dT

dt
= −4Hg∗,sT

4 + (30/π2)(∂ρνs
/∂t)

d[g∗T 4]/dT
. (5.10)

We use numbers of relativistic degrees of freedom g∗ and g∗,s from Ref. [308] in our numerical

implementation.

5.1.2 Time-evolution of asymmetry

The temperature-scaled muon asymmetry, L̂µ, evolves both from the depletion of relativistic degrees

of freedom due to annihilations and from the production of sterile neutrinos. There are subtleties in

dealing with the latter in the case of resonant production [317], but for the semi-classical approach

outlined in Section 2.2.2, we can write down the contribution in terms of the evolution of sterile

neutrino PSD. Keeping in mind the definition of the lepton asymmetry in Eq. (2.4), the asymmetry

evolution due to both contributions together is

dL̂µ
dt

=
d

dt

∫
dp̂ p̂2

2π2

[
fνµ(p)− fν̄µ(p) + 2fµ−(p)− 2fµ+(p)

]

= −3

[
H +

d lnT

dt

]
L̂µ −

∫
dp̂ p̂2

2π2

∂

∂t
[fνs

(p)− fν̄s
(p)] , (5.11)

where the symbol p̂ is the temperature-scaled momentum, p̂ ≡ p/T . The first term in the square

bracket in the last line above can be evaluated with the help of Eqs. (5.1) and (5.10), while the second

term can be evaluated using Eq. (2.8). Our large number of momentum bins (1000) allows us to use

spline integration at every time step in order to perform the momentum integrals in Eqs. (5.11) and

(5.5). We set up our Lagrangian momentum bins such that 5 × 10−3 ≤ p/T ≤ 20 at temperature

T = 10 GeV. We have checked that this range is more than sufficient to accurately capture the most

relevant range of the sterile neutrino PSDs.

5.1.3 Resonant Production

As described in Section 2.2, the presence of a lepton asymmetry leads to a resonant production of

sterile neutrinos with specific momenta. Through Eq. (2.8), the resonant momenta at a particular

temperature satisfy

∆(p) cos 2θ − V L − V th(p) = 0. (5.12)

Substituting the definition of ∆(p) and the potentials from Eq. (2.12), we obtain

m2
s

2p
− dV L

dLµ
Lµ −

dV th(p)

dp
p = 0. (5.13)
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Figure 5.1: We illustrate the temperature-evolution of the sterile neutrino’s PSD for the central model of
Figure 2.1 with (ms, sin

2 2θ) = (7.1 keV, 4× 10−11). Solid and dashed lines distinguish results with neutrino
opacities from Figure 4.6a and 4.6b, respectively.

There are two roots, i.e. two momenta resonant at any temperature [137]. Consideration of the

terms’ approximate temperature scaling shows that each scaled root (p̂ ≡ p/T ) sweeps to larger

values at lower temperatures (ignoring changes in the numbers of relativistic degrees of freedom).

This is reflected in Figure 5.1, which shows the sterile neutrino PSD’s evolution with temperature

for the central model in Figure 2.1 with ms = 7.1 keV and sin2 2θ = 4 × 10−11. We observe that

most of the neutrinos are produced at the lower resonance and at temperatures close to TQCD.

This is illustrated by Figs. 5.2a and 5.2b, which show the evolution of the entropy-scaled2 µ lepton

asymmetry and the net sterile neutrino and antineutrino density for the range of models marked by

stars in Figure 2.1. The latter is also sensitive to thermal (nonresonant) production, which operates

at all temperatures, but is subdominant for the mixing angles of interest.

Figures. 5.3a and 5.3b show the sterile neutrino and antineutrino PSDs at T = 10 MeV for these

models. We note that the sterile antineutrinos are produced off-resonance for the positive lepton

asymmetries we consider here, and their abundance is thus significantly suppressed compared to that

of the sterile neutrinos. Solid and dashed lines in Figure 5.3 show results for the two interpolations

of the µ neutrino opacities through TQCD presented in Figure 4.6, which differ in the temperature

range 150 MeV < T < 1 GeV. For small values of the mixing angle, we observe that there is little

difference between the PSDs computed using our two different interpolation schemes for the neutrino

opacity. For these models, most of the production happens at temperatures below the quark-hadron

2We show this scaling rather than the one with temperature, since it is conserved through epochs of annihilation.
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(a) mu lepton asymmetry
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Figure 5.2: Sterile neutrino production mechanism: panels (a) and (b) show the evolution of the entropy
scaled mu lepton asymmetry and the net sterile number density with temperature. For each model with a
given mass and mixing angle, the mu lepton asymmetry at high temperatures is tuned by hand to produce
the right relic abundance. Colors differentiate models in Figure 2.1, and solid and dashed lines distinguish
results with neutrino opacities from Figure 4.6a and 4.6b, respectively.

transition where our two opacity approximation schemes are essentially the same, hence leading to

similar PSDs. As the mixing angle is increased, the production is pushed toward higher temperatures

(see Figure 5.2b) where the difference between our two interpolation schemes is greater, leading to

a larger uncertainties in the final PSDs.
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Figure 5.3: Sterile neutrino production mechanism: panels (a) and (b) show sterile neutrino and antineu-
trino PSDs, respectively, at T = 10 MeV. Colors differentiate models in Figure 2.1, and solid and dashed
lines distinguish results with neutrino opacities from Figure 4.6a and 4.6b, respectively. Note the different
numerical factors multiplying the y-axis of panels (b) and (d). The dotted line in panel (b) is a massless
Fermi-Dirac distribution with degeneracy g = 0.003.

Table 5.1 lists parameters describing the production and final sterile neutrino DM PSDs for the

models marked in Figure 2.1. Also provided are the ranges for different interpolated µ neutrino

opacities through the quark-hadron transition as in Figure 4.6. Note that the sterile PSDs in

Figs. 5.3a and 5.3b are non-thermal; we show the mean momentum 〈p/T 〉 relative to the active
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Table 5.1: Parameters for the models marked in Figure 2.1, with ms = 7.1 keV and ΩDMh
2 = 0.119 [42].

The ranges displayed in the three last columns account for the uncertainties in the neutrino opacities near
the quark-hadron transition.

sin2 2θ (Lµ/sSM)i (Lµ/sSM)f 〈p/T 〉 3

at T = 10 GeV at T = 10 MeV
×10−11 ×10−5 ×10−5

0.800 13.0 – 13.1 6.95 – 7.03 2.60 – 2.61
1.104 10.80 – 10.88 4.74 – 4.81 2.45 – 2.47
1.523 9.57 – 9.64 3.51 – 3.58 2.28 – 2.32
2.101 8.81 – 8.88 2.76 – 2.83 2.12 – 2.16
2.899 8.32 – 8.39 2.27 – 2.34 1.95 – 2.01
4.000 7.96 – 8.03 1.93 – 2.00 1.80 – 1.87
5.519 7.69 – 7.76 1.68 – 1.74 1.66 – 1.74
7.615 7.45 – 7.53 1.47 – 1.54 1.53 – 1.62
10.506 7.20 – 7.29 1.28 – 1.36 1.43 – 1.52
14.496 6.95 – 7.05 1.09 – 1.18 1.35 – 1.44
20.000 6.7 – 6.8 0.9 – 1.0 1.29 – 1.38

neutrino temperature scale.

A key element to take away from Table 5.1 and Figs. 5.3a and 5.3b is that the ‘warmer’ mod-

els with larger values of 〈p/T 〉 are less sensitive to the uncertainty in the quark-hadron transition.

This is important since these warmer models can be most easily constrained by small-scale struc-

ture formation. Therefore, uncertainties in the strong plasma near TQCD are unlikely to affect the

robustness of the these constraints.

5.2 Transfer functions for matter fluctuations

In this section, we study the effect of sterile neutrinos on the growth of density fluctuations in the

early universe. We focus on the lepton asymmetry-driven mechanism outlined in Section 2.2, and

on modes of the matter distribution with co-moving wavenumbers k ∈ [1, 100] hMpc−1. These

scales are probed by the Lyman-α forest in quasar spectra (see [318] and references therein), and

populations of dwarf galaxies in the Local Group (see [319, 320] and references therein). All these

scales enter the horizon after the redshift zH ' 4× 107, when the temperature of the photon-baryon

plasma is T ' 10 keV. The sterile neutrino models shown in Figure 2.1 cease to be produced below

temperatures T ∼ 100 MeV; hence we can assume they are essentially collisionless in this section.

The main effect of such a collisionless component on matter fluctuations is suppression due to

free-streaming in the epochs where it is relativistic [155, 156]. Previous works extensively studied

this in the context of warm and/or neutrino DM models (see Refs. [107, 157] and references therein),

and identified the characteristic scales at which the suppression set in as a function of the neutrinos’

3The sterile DM distributions are non-thermal; we compute 〈p/T 〉 using the active neutrino temperature. Below
the epoch of e± annihilation, the latter is related to the CMB temperature by the factor (4/11)1/3 = 0.714. We note
that for a Fermi-Dirac distribution 〈p/T 〉 ' 3.15.
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Figure 5.4: Suppression of the transfer functions of overall density fluctuations relative to the ΛCDM ones
for sterile neutrino models in Figure 2.1, as a function of wavenumber. Dashed and dotted lines show results
for the interpolated µ neutrino scattering rates of Figs. 4.6a and 4.6b, respectively. The solid black line is
the numerical fit for a thermal warm DM transfer function as given in Ref. [159].

mass and mean momentum [137].

In order to obtain the suppression’s detailed form, we need to incorporate the PSDs of the sterile

neutrinos and antineutrinos into the Boltzmann equation for the DM component. This entails solving

a perturbed form of Eq. (2.8), with additional terms due to inhomogeneities, but without the source

(production) terms. The scales of interest are non-linear in the current epoch, but we only provide

the linear transfer functions at z = 0, which can be used as initial conditions for cosmological N-body

simulations.

We use the publicly available CLASS solver [290] to integrate the perturbed linear Boltzmann

equation4. We initiate the solver with the Planck background parameters [80], except with the

CDM component replaced by collisionless components with PSDs as shown in Figs. 5.3a and 5.3b.

Since we are interested in the detailed shape of the transfer function, we turn off the default fluid

approximation for non-cold relics [322].

Figure 5.4 shows the resulting suppression as a function of the comoving wavenumber. We

illustrate the suppression in the fluctuations’ transfer functions relative to their values in ΛCDM.

Also shown is the commonly-used fit to a thermal warm DM transfer function given in Refs. [158, 159]

with an ‘equivalent thermal mass’ of mth = 2.2 keV; fits for models marked with stars in Figure 2.1

have a range of 1.6 to 3.2 keV.

4Our choice was motivated by the availability of well-documented modules to deal with non-cold relics. We have
checked our results against those obtained from a modified version of the publicly available CAMB solver [321].
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However, the strong difference in shape with the thermal WDM transfer function warrants use

of the exact sterile neutrino dark matter transfer functions. The thermal warm DM PSDs relevant

to the fit are rescaled versions of the Fermi-Dirac distribution; as can be seen from Figure 5.3a, the

resonantly-produced DM’s PSD has an excess at low momenta that cannot be reproduced by such

a rescaling. Hence, our DM transfer functions do not exhibit the fits’ steep ∼ k−10 dependence at

large wavenumbers and the resultant severe suppression of power on small scales. This indicates

that the models considered in the present work are more likely to be in agreement with small-scale

structure formation constraints, as recently pointed out in Refs. [146–151, 154].

5.3 Discussion and conclusions

Sterile neutrinos are a well-motivated extension of the standard model of particle physics, and offer

a promising candidate for the inferred DM population of the Universe. In this work, we performed

a detailed study of the resonant production of sterile neutrinos with masses and mixing angles rel-

evant to the recent X-ray excess. In doing so, we explored the rich phenomenology associated with

the active neutrinos’ weak interaction with the primordial plasma. These interactions efficiently

redistribute primordial lepton asymmetries among all the available degrees of freedom, and impact

the temperature and momentum dependence of neutrino opacities. We incorporated these effects

into the sterile production calculation, corrected and extended the existing numerical implementa-

tion, and obtained revised DM phase space densities. We finally computed transfer functions for

fluctuations in the matter density, which can be used as starting points for N -body simulations of

cosmological structure formation.

For the parameters relevant to the X-ray excess, resonant sterile neutrino production coinciden-

tally occurs in the vicinity of the quark-hadron transition (see Figure 5.2b). Strongly interacting

degrees of freedom affect the production in two ways: a) they influence both asymmetry redistri-

bution and neutrino opacities through their interaction with the weak gauge bosons (Z and W±),

and b) the transition from free quarks to hadrons at TQCD influences the time-temperature relation

[Eq. (5.10)]. We now consider the robustness of each of these elements to the remaining uncertainties

in the quark-hadron transition.

The asymmetry redistribution among the strongly-interacting degrees of freedom depends on

the susceptibility of the quark-hadron plasma to baryon number and electric charge fluctuations.

At high temperatures, we use tree-level perturbative QCD to compute the susceptibilities. There

are uncertainties concerning the exact values of the quark masses, loop corrections, and the exact

implementation of the MS renormalization scheme. We expect these to have little effect on the final

sterile neutrino PSDs since the bulk of the production occurs at lower temperatures, where the lattice

QCD- and HRG-derived susceptibilities are most relevant. Thus, uncertainties in the asymmetry
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redistribution are likely dominated by systematic errors in the lattice calculations [309], measurement

errors in the hadronic resonances’ masses, and inaccuracies inherent in the HRG approach near the

quark-hadron transition. Our confidence in the fit we use in this work is bolstered by the fact that

a) an independent lattice QCD calculation [310] finds very similar susceptibilities to those we used,

and b) the HRG approach – without any free parameters – is in very good agreement with the lattice

calculation for T . 150 MeV. It is therefore unlikely that uncertainties in the susceptibilities will

lead to dramatic changes in the sterile neutrino PSDs.

The validity of our neutrino opacities is much less clear: we have attempted to calculate them

in as much detail as possible, but the hadronic parts still retain significant uncertainties due to the

quark-hadron transition. We expect that opacities at high and low temperatures are well described by

the rates of reactions involving free-quarks, and the lightest pseudoscalar and vector mesons, which

are shown in Chapter 4. For temperatures near TQCD, we have considered two interpolation schemes

(shown in Figure 4.6) that we expect might bracket the range of possibilities. We have computed

the sterile neutrino PSDs for both cases and shown that they are fairly robust to the choice used,

especially for models with larger values of the average momentum 〈p/T 〉. We leave the calculation of

self-consistent opacities through the transition to future work. Yet another approximation we have

made is that of equilibrium distributions for all active species, which has been studied in a different

context in Ref. [323]. We expect this to be valid at the temperatures relevant to the models we

study.

To compute the Hubble expansion rate and time-temperature relation, we have used the plasma’s

equations of state provided in Ref. [308], which are obtained by matching to the lattice QCD results

of [324]. As the former’s authors point out, this result is still uncertain at temperatures close to

the quark-hadron transition. It would interesting to update their result with the latest lattice QCD

computations, which suggest a lower transition temperature [325]. We expect the uncertainties

associated with the plasma’s equation of state to be at most similar in magnitude to those coming

from the neutrino opacity [243].

Another simplification we adopted is the semi-classical Boltzmann equation, which greatly facili-

tates our study of the oscillation-driven production. As mentioned in Section 2.2.2, the most general

analysis considers the evolution of a two-state density matrix, rather than phase-space densities.

The validity of the semi-classical approach rests on the assumption that collisions dominate the

off-diagonal element of the Hamiltonian that is responsible for vacuum oscillations [299–301]. For

typical momenta at the temperatures of interest, the ratio of these terms is ∆(T ) sin2 2θ/D(T ) '
0.6 × (T/100 MeV)−6(ms/7keV)2(sin2 2θ/10−11)1/2. The production of sterile neutrinos happens

at temperatures above, but close to where these terms become comparable (note the ratio’s steep

temperature dependence). Thus, we expect that the results in this work are relatively unaffected by

this approximation, but further work in this direction can settle this question.
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Finally, we examine the assumptions underlying the model itself, which were enumerated in

Section 2.2.1. If there is indeed an extra neutrino that is an electroweak singlet, it is not restricted

to mix with only one flavor. However, the general case where the sterile neutrino mixes with all

flavors introduces extra mixing angles, which cannot be constrained as easily from observations. The

same can be said about the assumption of a lepton asymmetry in a single flavor. We briefly remark on

the possibility of the sterile neutrinos mixing with electron or tau flavors instead. The redistribution

of Chapter 3 is almost identical for the cases with electronic and muonic lepton asymmetries, but

is different in the tauonic case. This is due to the significantly larger mass of the corresponding

charged lepton (mτ = 1.77 GeV [229]), which is annihilated away at higher temperatures. Thus

most of an input tau asymmetry ends up in the tau neutrino below T . 400 MeV, and the quark

hadron transition does not impact the redistribution. The electron and tau neutrino opacities are

different from the muonic case, and so is the balance between the thermal and asymmetry potentials,

which affects the resonant momenta and ultimately the final dark matter PSDs – we leave for future

work the possibility of sterile neutrinos mixing with those flavors.

Also worth considering is active–active neutrino mixing, which does not conserve asymmetries

in the individual flavors. This was studied in Ref. [294], which showed that such asymmetries are

frozen in at the temperatures of interest. An interesting possibility is to revisit this study and use the

redistributed asymmetries of Chapter 3 to calculate the active neutrino self energies at this epoch.

In conclusion, we find remarkable that sterile neutrino models that are in agreement with the

X-ray excess have transfer function shapes that can significantly impact structure formation on sub-

galactic scales. Fixing the leptonic asymmetry to produce the right DM relic density, the resonantly-

produced sterile neutrino transfer function goes from ‘warm’ to ‘cold’ as the mixing angle is increased

from small to large values. This indicates that upcoming X-ray observations [326, 327] and ongoing

efforts to study small-scale structure can together cover all of the allowed mixing angle parameter

space, and consequently confirm or disfavor the model.
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Part II

Small-scale baryon perturbations

during cosmological recombination



58

Chapter 6

Preliminaries1

6.1 Introduction

The early universe is largely composed of atomic matter, or baryons, radiation and cold dark mat-

ter. The main resources available to study this era are the Cosmic Microwave Background (CMB)

and Large Scale Structure (LSS). Primary anisotropies of the CMB are a result of the imprint of

primordial fluctuations on radiation at early times [328, 329], while secondary anisotropies probe

the matter distribution at late times [330]. LSS surveys are a complementary probe of the clustering

of matter at late times [331].

The distribution and dynamics of baryons during early epochs of the Universe is poorly con-

strained by this data. The angular distribution of power in the CMB constrains them on large

scales, through their coupling with the radiation and its effect on the Baryon Acoustic Oscillations.

The CMB is well-described by a spectrum of adiabatic fluctuations at these scales – these are mo-

tions of both the baryon and radiation fluids. Tight bounds exist on the primordial fluctuations of

solely the baryon fluid at these scales – the so-called isocurvature modes [328].

This investgation deals with the complementary limit of fluctuations in the baryon field on very

small scales. In the CMB, this information is lost due to diffusion damping of the anisotropies. The

spectral distortion associated with diffusion damping has been suggested as a probe of modes on

these small scales [173]. The proposed PRISM mission aims to study CMB spectral distortions [332].

In the rest of this work, we use the term “matter” to refer to baryons, for reasons of readability; we

are not concerned with the dynamics of cold dark matter. We concentrate on small-scale fluctuations

of the matter field, and their evolution through the epoch of recombination. In particular, we

undertake a detailed study of an instability which can amplify sub-Jeans length fluctuations at

recombination suggested by Shaviv [162]. The mechanism of interest is potentially applicable to

wave numbers in the range 102 . k . 3 × 105 Mpc−1 comoving. This is at much smaller scales

1The material in Chapters 6–7 was adapted from the paper Stability of small-scale baryon perturbations during
cosmological recombination, Venumadhav, T., & Hirata, C. 2015, Phys. Rev. D, 91, 123009, and reproduced here
with permission, copyright (2014) by the American Physical Society.
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than the standing acoustic waves responsible for peaks in the CMB power spectrum and baryon

acoustic oscillations in the matter power spectrum (e.g. [87, 333]), which are damped below the Silk

scale [334] kSilk ∼ 0.1 Mpc−1. We expect the pre-recombination amplitudes of modes at k � kSilk

to be extremely small, but if an instability is present then a “seed” amplitude could be generated

by nonlinear generation of small-scale isocurvature modes [335], or even thermal fluctuations if the

growth rate is fast enough.

Shaviv’s instability acts on sound waves propagating in a partially ionized gas, in the presence

of a background flux of radiation. The scenario is illustrated in Figure 6.1. The key observation is

that the fraction of ionized atoms is different in overdense and underdense regions; the ionization

fraction, xe, is lower in overdense regions where recombination proceeds faster due to the increased

flux of free electrons seen by the ionized atoms.

Sound waves are propagating longitudinal waves in the matter fluid – if we orient ourselves along

the wave-vector, k, the local velocity at a compression is in the forward direction, while the opposite

is true for rarefactions. Thus, the earlier observation leads to a negative correlation between the

ionization fraction and the local velocity in the region of propagation.

In the presence of a background flux of radiation in the matter’s bulk rest-frame, the radiative

force acting on a mass element is related to the radiation flux, or alternatively its velocity vγ , by

the opacity, which is proportional in turn to the ionization fraction, xe. Over a time-period of the

sound wave, the resulting force per unit mass a performs an amount of work ∆w given by

∆w =

∮
a · dr ∼ uγσ

mHc
vγ ·

∮
xe dr, (6.1)

where in the second equation, the multiplicative factor involving the energy density of the radiation

(uγ), its interaction cross section with matter (σ), the particle mass (the hydrogen mass mH) and

the speed of light c relates the force per unit mass to the ionization fraction. The net work done

over a time period is nonzero due to the difference in ionization fractions during the forward and

backward motion. From consideration of Figure 6.1, the work integral of Eq. (6.1) is positive if the

flux, vγ , is directed opposite to the wavevector, k.

The first estimate of the growth rates due to this mechanism, due to Shaviv [162], used the

assumption of local thermal equilibrium (LTE) to derive the variations in the ionization fraction.

Recombination in the real universe proceeds out of LTE, and most of the hydrogen first recombines

to excited states before reaching the ground state [83, 84, 165–167, 169, 170, 336]. Subsequent work

[163, 164] used the three level approximation to model non-LTE recombination, and incorporated

the diffusion of microwave background photons, following which the expected growth rates were

revised downward.

The standard treatment of recombination assumes that the ionization state is set by the local
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radiation field. This is valid in the homogenous case, since the transport of photons out of the

region of interest is perfectly balanced by the influx from other regions. This is no longer true in

the inhomogenous case, and these two components (the influx and outflux) do not balance each

other. In particular, direct recombinations to the ground state, which did not affect the homogenous

ionization fraction, xe, are important in determining its fluctuation, δxe.

In this work, we incorporate the transport of both continuum and Lyman-α (Lyα) photons. We

find simple analytical expressions for this “non-local” contribution to the evolution of the ionization

fraction, and provide revised estimates for the growth rates of the small-scale sound-waves.

We organize the presentation as follows: the rest of this chapter is devoted to introducing the

instability and some background. In Section 6.2, we expand upon the simple estimate given above

for the work done on the fluctuations, and estimate the associated growth rates. In Section 6.3,

we list the relevant background variables, and the various factors which determine their size during

the epochs of interest. Chapter 7 is devoted to the detailed study of the atomic physics, and the

growth of the instability. We start with the standard Newtonian equations for the density and

velocity in Section 7.1, following which we estimate growth rates using a simple scaling relation

for the ionization fraction fluctuation in Section 7.2. We then move beyond this simple treatment,

and study in detail the radiative transport of photons between different parts of the fluctuations

– Sections 7.3 and 7.4 deal with the transport of continuum and Lyman-α photons, respectively.

Finally, we bring all the pieces together and estimate the growth rates of the small-scale fluctuations

in Section 7.5, and find their distribution in a stochastic background of large-scale relative velocities

in Section 7.6. We finish with a short discussion of our results and their implications in Section 7.7,

and collect some technical details in the appendix.

6.2 Motivation and simple estimate

This section closely follows the analysis of [162].

We use the two fluid approximation, where matter and radiation fluids are coupled by Thomson

scattering of photons off free electrons. The characteristic response time, τeγ , is inversely related

to the matter’s opacity per unit mass, κ. For a given relative velocity between the two fluids,

ve − vγ = veγ , the force per unit mass is expressed in terms of the response time as

a =
d〈veγ〉
dt

=
κ

c
Fγ = −〈veγ〉

τeγ
, (6.2)

where Fγ is the photon flux seen in the matter’s rest frame. This force, and the related response

time, are most easily obtained by considering the Doppler shifted background radiation field in the
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(a) (b)

v
k vγ

Figure 6.1: Illustration of the instability of sound waves during recombination. The symbol � represents a
neutral atom, while large and small dots represent positive ions and free electrons, respectively. The sound
wave propagates to the right. Regions of compression and rarefaction, marked with (a) and (b), have lower
and higher free electron fractions respectively. Solid arrows show the local velocity at various points along
the wave in the bulk-rest frame of the matter. If the background flux of radiation, vγ , is directed to the left,
the work done on the wave by the radiative force at (b) is larger than that extracted from it at (a).

matter’s rest frame. The result is [337]

1

τeγ
=

4

3

σT

mHc
aradT

4
r xe, (6.3)

where xe is the hydrogen ionization fraction, σT is the Thomson scattering cross-section and arad

is the radiation energy density constant. The matter temperature, Tm closely follows the radiation

temperature, Tr, at these times. With this understanding, we omit the subscript on the temperature

in subsequent equations.

Primordial adiabatic fluctuations entering the horizon lead to large-scale motions of the matter

and radiation fluids. Their physical size, λH is ≈ 250 kpc at recombination. Due to the small but

finite response time, τeγ , during this epoch, the matter velocity does not perfectly follow the local

radiation velocity; this leads to a spectrum of relative velocities that can be estimated from the

background cosmology [161].

We consider motions of the matter fluid alone, as contrasted with the large-scale adiabatic modes

involving both matter and radiation. In particular, we concentrate the evolution of very small

wavelength modes though the epoch of recombination out to late redshifts of z = 800. We consider
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modes that are isothermal in nature, i.e., have a uniform matter temperature. As noted in the

discussion (Section 7.7), this condition restricts our analysis to modes with wavenumbers k smaller

than ≈ 3.5 × 105 Mpc−1. The large scale adiabatic modes are effectively fixed on the timescales

relevant to these small-scale modes, and provide a background radiation flux due to their associated

relative velocity. The radiative force due to this flux is given by Eq. (6.2).

The ionization fraction and opacity vary with the local density during recombination. Thus

small-scale fluctuations of the matter density are associated with a modulation of the local force,

denoted by δa. The in-phase component of δa feeds power from the large-scale relative motions into

small-scales.

The rest of this section estimates the size of this effect in a simplified scenario with direct

recombination to the ground state of neutral hydrogen. With this assumption, the ionization fraction

is given by the Saha equilibrium value, which we denote by xS
e . This is set by the balance between the

recombination of free electrons to the ground 1s state, and photoionization by microwave background

photons:
(xS

e )2

1− xS
e

=
(2πmekBT )3/2

h3nH
e−(EI/kBT ), (6.4)

where EI is the ionization energy of a hydrogen atom in the ground 1s state, and nH is the hydrogen

number density. We take the logarithm of both sides of Eq. (6.4), and perturb it to estimate the

power-law exponent relating the perturbed free electron fraction and hydrogen density as follows:

αS =
δ log xS

e

δ log nH
= − (1− xS

e )

(2− xS
e )

, (6.5)

where we have used the assumption that the small-scale fluctuations do not perturb the temperature,

T . The Saha electron fraction is approximately xS
e ≈ 4 × 10−3 at recombination, so the exponent

αS ≈ −0.5.

Consider a region with a background relative velocity between matter and radiation, ve,0−vγ,0 =

v0. The associated force per unit mass, a0, is related to the relative velocity v0 by the response time

τeγ , according to Eq. (6.2). The local matter density, velocity, and force per unit mass are perturbed

due to the small-scale fluctuation. For a sound wave, these perturbations are of the form

δρm

ρm
= δme

i(k·r−ωt), (6.6a)

vm = vs,Iδmk̂ei(k·r−ωt), (6.6b)

δa =
δκ

κ
a0 =

δxS
e

xS
e

a0 ≈ −|αS|δma0e
i(k·r−ωt). (6.6c)

In the above relations, vs,I denotes the isothermal sound speed. It is determined by the matter

temperature according to vs,I = [kBT (1 + xS
e )/mH]1/2. Averaged over the phase of the wave, the
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power input into the fluctuation by the extra force, δa of Eq. (6.6c), is

〈p〉 =
1

2
Re(vm · δa∗) = −1

2
|αS|δ2

mvs,Ia0 · k̂ (6.7)

=
1

2
|αS|δ2

mvs,I
v0 · k̂
τeγ

. (6.8)

The first line uses Eq, (6.6b) and (6.6c) for the velocity and force, respectively, while the second

uses Eq. (6.2) for the background force and the definition of the response time τeγ in Eq. (6.3). The

energy per unit mass in the fluctuation is 〈ε〉 = (1/2)v2
m,max = (1/2)δ2

mv
2
s,I. Hence the growth rate

for the amplitude, G, can be estimated from the input power of Eq. (6.8) as

G =
〈p〉
2〈ε〉 =

|αS|
2τeγ

v0 · k̂
vs,I

. (6.9)

The growth of the instability is maximal during the epoch with large relative velocities and mod-

erate response times. Relative velocities of the order of the isothermal sound speed are needed to

produce an appreciable growth rate. The last part of Section 6.3 deals with the distribution of

large scale relative velocities in detail. In particular, Figure 6.3 shows the mean relative speed, and

the isothermal sound speed, as a function of redshift, z. We see that large relative velocities are

much more probable in the post-recombination era; however, this effect is mitigated by the growing

response time. Ultimately, the instability is limited by the relatively narrow duration of cosmic

recombination.

6.3 Background parameters

This section describes the relevant properties of the background on which the small fluctuations of

interest live.

We assume a standard spatially flat Λ cold dark matter cosmology with the Planck cosmological

parameters [42]. The derived quantities of interest to us are the hydrogen number density and

ionization fraction, and the relative velocities between matter and radiation on large scales due to

adiabatic fluctuations of primordial origin.

The simplest of these to obtain is the hydrogen number density, nH, which is given by

nH(z) = 248.7 cm−3

(
1 + z

1100

)3
Ωbh

2

0.022

1− YHe

0.752
, (6.10)

where Ωbh
2 is the Baryon fraction and YHe is the Helium mass fraction.

It is considerably harder to estimate the hydrogen ionization fraction, xe, as a function of redshift.

It is especially challenging to follow it through the epoch of recombination, when the universe
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Figure 6.2: Power spectrum of relative velocities between matter and radiation at the redshift of recombi-
nation, z0 = 1100. This assumes that these velocities arise from primordial adiabatic fluctuations. (This
figure uses units in which velocity v0 is dimensionless.)

transitions from a plasma of free electrons and hydrogen nuclei to a largely neutral phase with traces

of free electrons that are strongly coupled to the cosmic microwave background (CMB) radiation.

This difficulty arises from the fact that direct transitions to the ground 1s state of hydrogen

contribute very little to recombination, since they produce ionizing photons themselves. Instead,

recombination mainly proceeds through excited states of neutral hydrogen. In order to derive the

evolution of the ionization fraction to sub-percent level accuracy, we should follow the populations

of a large number of excited states of the hydrogen atom [169, 170].

We eschew this sophisticated analysis for a conceptually simpler, and less accurate, model of

recombination originally proposed in Refs. [83, 84]. This is adequate for the purposes of this in-

evstigation, since we follow fluctuations in the ionization fraction. The errors introduced in the

fluctuations by using the approximate model should be at the few-percent level.

This model approximates the hydrogen atom as a three level system; it assumes that the excited

states of the true hydrogen atom are in thermal equilibrium with each other, and cascade down

to the n = 2 level through fast radiative decays. Atoms in the 2p state reach the ground state

when photons redshift through the Lyα line due to cosmological expansion, while those in the 2s

level de-excite through a two-photon process. Direct recombination via the redshift of continuum

photons is much slower (by a factor of ∼ 10−6) than through the Lyα channel [338]. Hence we set

the direct recombination’s contribution to zero in the background case. As Section 7.3 demonstrates,
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this assumption is no longer valid in the perturbed case.

We add the recombination coefficients to the excited states to obtain an effective, or case B

recombination coefficient, αB. We also have an effective rate of photo-ionization from this state, βB.

With these definitions, the ionization fraction evolves according to

ẋe = −C
(
nHx

2
eαB − 4x1sβBe

−E21/kBT
)

, (6.11)

where C is the Peebles C-factor, which is the probability that an atom in the n = 2 state reaches

the ground state [83]. It is defined in terms of the Lyα escape rate, the 2s–1s two-photon transition

rate, and the rate of photo-ionization from the n = 2 state. We derive explicit expressions for C

and the population of the n = 2 state, x2, in Section 7.4.1.1.

The case B recombination coefficient and the effective photo-ionization rate are related by the

principle of detailed balance [83, 84, 336]:

βB(T ) =
(2πmekBT )3/2

4h3
e(E2/kBT )αB(T ). (6.12)

We assume that the four sublevels of the n = 2 level are equally occupied. Thus their occupation

fractions are related by x2p = 3x2s = (3/4)x2. This is justified by the high effective 2p–2s transition

rate at these redshifts (Λ2p,2s ≈ 2.5 × 104 s−1 [168, 169]). This is much faster than both the case

B recombination rate per hydrogen atom, and the photo-ionization rate, which are ∼ 1.3× 102 s−1,

and the two-photon decay rate, Λ2s,1s = 8.22 s−1 [339].

In deriving Eq. (6.11), we assume that the population of the n = 2 level is in steady state, i.e., we

balance the net rate of recombination and photo-ionization against the escape of Lyα photons and

two-photon decays. This is valid if the abundance of intermediate states is very small; in this case,

x2/x1s can be estimated from the recombination codes themselves (e.g. Ref. [169]), and is typically

of order ∼ 10−14.

The final piece needed is the spectrum of relative velocities between matter and radiation on large

scales. We assume that velocities are irrotational, i.e., they are aligned with their wave vectors, k.

The velocity at any point in space is a Gaussian random variable, whose two-point correlation

function is

〈v0,i(x)v∗0,j(x)〉 =
1

3
δij

∫
d ln k ∆2

v0
(k), (6.13)

where ∆2
v0

is the dimensionless power per log wave-number of the component along the wave-vector.

This power spectrum is given by [160]

∆2
v0

(k) =
k3Pv0(k)

2π2
=

1

k2
|Θm(k)−Θr(k)|2∆2

ζ(k), (6.14)
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Figure 6.3: Speeds with redshift: the solid line shows the average magnitude of the background relative
velocity between matter and radiation; the dashed line shows the isothermal sound speed.

where ζ is the primordial curvature perturbation, and Θm and Θr are the transfer functions for the

matter and radiation velocity divergence respectively. We use the publicly available CLASS code to

obtain these transfer functions [340]. Figure 6.2 shows the resulting power spectrum for the relative

velocity. We observe that most of the power is in scales near k ∼ 0.1 Mpc−1.

We estimate the typical velocities from the distribution of Eq. (6.13). Figure 6.3 shows both the

average speed of the matter relative to the radiation, and the isothermal sound speed, as a function

of redshift. We observe that these velocities are very small during the pre-recombination era: the

matter-radiation response time, τeγ , is much smaller than the expansion age due to rapid scattering,

which suppresses the relative velocities. During recombination the free electron fraction drops, and

the response time becomes comparable to the expansion age, i.e., recombination leads to decoupling.
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Chapter 7

Calculation of growth rates

7.1 Linear analysis of density and velocity fluctuations

Small-scale fluctuations of the matter field perturb the density, velocity, and the ionization fraction.

We denote the fractional matter overdensity by δm, the velocity by vm and the ionization fraction

and its fluctuation by xe and δxe, respectively. In addition to these, we denote the perturbed

gravitational potential by δφ. In this section, we derive the evolution equations for the density and

velocity. In what follows, x is the position on a comoving grid, while a dot represents a derivative

with respect to coordinate time.

There is a small amount of helium present in the early Universe: the He:H ratio by number,

fHe, is given in terms of the Helium mass fraction, YHe, by fHe = YHe/[4(1 − YHe)] ≈ 0.08. We

consider late times, z . 1800, where the helium is fully neutral, so that it does not contribute to

the ionization fraction. The hydrogen mass fraction XH = 0.76 is also used in the equations below.

The matter density, velocity, and gravitational potential on sub-horizon scales are governed by

the Newtonian equations of motion – the equation of continuity, the Navier-Stokes equation, and

Poisson’s equation written in the comoving frame (as in Ref. [341]). The linearized forms of these

equations are

δ̇m +
1

a
∇ · vm = 0, (7.1a)

v̇m +Hvm = − 1

aρm
∇P − 1

a
∇δφ+ frad, (7.1b)

1

a2
∇2δφ = −4πGρmδm. (7.1c)

The quantity H is the Hubble rate of expansion, H = ȧ/a. The relative velocity force term, frad,

depends on the flux of background radiation in the local matter rest frame. We use Eqs. (6.2) and

(6.3) to write the force as frad = −ΛeγXHxe(vm−vr), where Λeγ is the inverse of the response time

in the case where the hydrogen is completely ionized and the helium mass is neglected. Typical
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large-scale relative velocities, v0, on comoving scales k ≈ 0.1 Mpc−1, appear nearly uniform to

the small-scale matter fluctuations. By definition, the latter do not perturb the radiation field.

Therefore the force associated with the relative velocity is

frad = −ΛeγXHxevm − ΛeγXHδxev0. (7.2)

We decompose the velocity into scalar (curl-free) and vector (divergence-free) parts:

Θm = ∇ · vm and Ωm = ∇×vm. (7.3)

Under the equation of motion, (7.1b), the vector part’s evolution depends on the scalar part through

the latter’s modulation of the free electron fraction in the force term, but the reverse is not true.

We focus on the scalar part in the rest of this work.

We expand the restoring force due to the pressure up to first order in the fluctuation as follows:

−∇P
aρm

= − 1

aρm
∇(nkBT )

= − 1

aρm
kBT∇[nH(1 + fHe + xe + δxe)]

= −1

a

kBT

mH
XH∇[(1 + δm)(1 + fHe + xe + δxe)]

= −ik
a

kBT

mH
XH[(1 + fHe + xe)δm + δxe]. (7.4)

We substitute the pressure and relative velocity force terms [Eqs. (7.4) and (7.2)] in the Newtonian

equations [Eq. (7.1)], and eliminate the gravitational potential, δφ. Assuming plane-wave forms

for the perturbed quantities, α(x) =
∫

[d3k/(2π)3]α(k) exp (ik · x), the final forms of the evolution

equations for the matter density and velocity are

δ̇m = −1

a
Θm, (7.5a)

Θ̇m = −k
2

a

[4πGρm

k2
a2 −XH(1 + fHe + xe)

kBT

mH

]
δm

− (H + ΛeγXHxe)Θm +XH

(k2

a

kBT

mH
− iΛeγk · v0

)
δxe. (7.5b)

7.2 Ionization fraction fluctuation: Saha equilibrium scaling

In order to get a complete picture of the ionization fraction’s evolution, we need to study the

transport of photons between different parts of the fluctuations. Before we deal with this problem

in Sections 7.3 and 7.4, we make a simple first estimate following Ref. [162].

The simplifying assumption in this section is that the ionization fraction scales with matter
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density in the same manner as the value calculated using local thermodynamic equilibrium (LTE,

or Saha equilibrium). In subsequent sections, we consider non-equilibrium ionization. We note that

perturbed non-equilibrium ionization in cosmology is one of the contributions to the CMB bispectrum

and hence has been investigated as a potential contaminant to primordial non-Gaussianity studies

[342–345] and probe of new physics [346]; however, these studies did not consider the very high

k of interest in this work and hence did not have to solve the nonlocal radiative transfer problem

considered in Sections 7.3 and 7.4.

Using the scaling of Eq. (6.5) for the ionization fraction fluctuation in Eq. (7.5b), we reduce the

Newtonian evolution equations to

δ̇m = −1

a
Θm, (7.6a)

Θ̇m = −
[
H + ΛeγXHxe

]
Θm +

{
(1− xe)

(2− xe)
iΛeγXHxek · v0

− k2

a

[4πGρm

k2
a2 − 2− fHexe

2− xe
XH

kBT

mH

]}
δm. (7.6b)

The instantaneous growth rate, G, is the largest eigenvalue of the system of Eq. (7.6). Figure 7.1 plots

this growth rate (normalized to a net elapsed coordinate time, τu, at the redshift of recombination,

z0 = 1100) for various values of the large-scale relative velocity, with the wave vector oriented

along its direction. Modes with comoving wavenumbers satisfying k > 2 × 102 Mpc−1 (or physical

wavelength smaller than ≈ 30 pc) at recombination are unstable. The growth rate increases with

wavenumber until it saturates on very large wavenumbers (k ≈ 105 Mpc−1), or physical wavelength

λphys ≈ 0.06 pc, or 104 AU. The modes at the saturation scale grow by a factor of a few hundred.

Since there is a large number of small-scale modes, it is worth considering mechanisms that can cut

off the growth on these scales.

Photons in the continuum and Lyα line interact strongly with matter during this epoch. We have

briefly considered the aspects of this interaction relevant to background recombination in Section

6.3. Continuum photons produced in direct recombinations to the ground state are completely

unimportant for the background at the level of accuracy of Section 6.3. Their interaction cross

section with neutral hydrogen atoms is so large that they are promptly reabsorbed. However, we

should keep track of them in the in-homogenous case, since they can stream from one part of the

fluctuation to another.

Figure 7.2 is a schematic diagram of the radiative transport processes relevant to perturbed

recombination. Before we study the various processes in detail in subsequent sections, we clarify a

few general points.

Under the assumptions of the three level model of the hydrogen atom, we only need to consider

a single spectral line (Lyα). This greatly simplifies our analysis. The Lyα photons can be decoupled
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Figure 7.1: Maximum instantaneous growth rate for small-scale fluctuations in the matter field at recombi-
nation, normalized to the net elapsed coordinate time, τu. The wave-vector is oriented along the large-scale
relative velocity between matter and radiation, v0. This approximates the perturbed ionization fraction
with the scaling relation of the Saha equilibrium value, given by Eq. (6.5).

from the continuum due to their wide separation in frequency. In the rest of this work, we neglect the

homogenous population of the first excited state, x2 (except in equations which compute transitions

from the n = 2 level), and assume xe + x1s ≈ 1. As discussed in Section 6.3, it is completely

negligible compared to the other populations.

A first step towards judging the relative importance of various arms of Figure 7.2 is to look at

the mean free paths (MFPs) of the photons at this redshift. If we use numbers for Lyα photons at

the line center, the comoving wavenumbers corresponding to the MFPs are

kcont = n1sσ1s,conta ≈ 3.6× 106 Mpc−1 (7.7)

and

kLyα = n1sσ1s,Lyαa ≈
HτSa

c∆H
≈ 1011 Mpc−1. (7.8)

Here σ1s,cont ≈ 6.3 × 10−18 cm2 is the photo-ionization cross section for a ground state hydrogen

atom at the threshold frequency, while τS ≈ 5.6× 108 and ∆H ≈ 2.3× 10−5 are the Sobolev optical

depth and the dimensionless Doppler width of the Lyα line at the redshift of recombination.

The MFP for continuum photons is very close to the saturation scale in Figure 7.1. Moreover, as

we show in Appendix 7.A.1, the length scale for the diffusion of Lyα photons is much larger than this
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Figure 7.2: Schematic diagram showing the effect of continuum and Lyα photon transport on the evolution
of the ionization fraction fluctuation associated with small-scale fluctuations.

naive estimate. In fact, we will see in Section 7.4 that Lyα transport is important for wavenumbers

satisfying k > 103 Mpc−1. We begin by studying the outer arm of Figure 7.2 in the next section.

7.3 Radiative transfer in the continuum

We study the transport of continuum photons in two stages: we first determine their perturbed phase

space density, and then calculate its effect on the recombination rate. We approach the problem

using the Fourier-space Boltzmann equation (as used in previous sections and in modern CMB codes

[160, 347–349]). We note that the similar problem of ultraviolet and X-ray radiative transfer in the

literature on high-redshift 21 cm radiation is usually addressed by a Green’s function approach,

i.e. by summing the contributions from individual point sources either analytically or numerically

[350–353].

Let the phase space density (henceforth, the PSD) of continuum photons be f(ν,x, n̂, t). It

evolves via the Boltzmann equation

∂f

∂t
−
[
H +

ninj
a

∂vi
∂xj

]
ν
∂f

∂ν
+
c

a
n̂ · ∇f =

∑

process

ḟ |process. (7.9)

The second and third terms on the left-hand side account for the redshift of photons and their ad-
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vection, respectively. Both the background cosmological expansion and the peculiar matter velocity

contribute to the redshift term.

We assume that the PSD is not a dynamical variable and drop the explicit time-dependence.

This is valid both in the unperturbed and perturbed cases: in the former, because photons redshift

through the frequency range much faster than a Hubble time, and in the latter, because the advection

term dominates below the Jeans scale.

We neglect the redshift term in Eq. (7.9). This is equivalent to neglecting the background rate of

recombination through the continuum channel. We consider the contributions of the absorption and

emission of continuum photons to the right hand side of Eq. (7.9), and neglect the redistribution of

photons within the frequency range due to resonant scattering – this is important within the Lyman

lines.

Let σa(ν), α1s(ν), and φ(ν) denote the continuum photon absorption cross-section, the direct

recombination coefficient, and the probability distribution for the emitted photons’ frequency re-

spectively. These quantities are functions of radiation (absorption) and matter (recombination)

temperature. The integrated or total recombination coefficient to the ground state is defined by

α1s =

∫ ∞

νc

dν α1s(ν)φ(ν). (7.10)

The rates of absorption and emission of continuum photons are

ḟ(ν,x, n̂)|abs = −cn1sσa(ν)f(ν,x, n̂), (7.11)

ḟ(ν,x, n̂)|em =
c3

2ν2
nenpα1s(ν)

φ(ν)

4π
, (7.12)

where we have used the fact that every direct recombination is accompanied by the emission of

a continuum photon, and multiplied by a factor of c3nH/(2ν
2) to convert the contributions per

hydrogen atom to those for the PSD. Substitution in the Boltzmann equation yields

1

a
n̂ · ∇f(ν,x, n̂)

= −n1sσa(ν)f(ν,x, n̂) +
c2

8πν2
nenpα1s(ν)φ(ν). (7.13)

In the homogenous case, with just the background parameters, this reduces to the balance between

absorption and recombination contributions:

0 =
1

a
n̂ · ∇f(ν) (7.14)

= −(1− xe)nHσa(ν)f(ν) +
c2

8πν2
(xenH)2α1s(ν)φ(ν). (7.15)
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In the presence of small-scale fluctuations, we linearize the Boltzmann equation and simplify using

the unperturbed solution, Eq. (7.15), and obtain

1

a
n̂ · ∇δf(ν,x, n̂) + (1− xe)nHσa(ν)δf(ν,x, n̂) =

c2

8πν2
n2

Hxeα1s(ν)φ(ν)
[
xeδm +

2− xe

1− xe
δxe

]
. (7.16)

Let the total number flux of continuum photons in a direction be N(x, n̂). In terms of the PSD, it

is given by

N(x, n̂) =

∫ ∞

νc

dν
8πν2

c2
f(ν,x, n̂). (7.17)

The photo-ionization cross-section, σa(ν), is discontinuous across the threshold frequency. It falls

off with increasing frequency in a power-law fashion [354], while the PSD falls in an exponential

manner in the UV part of the spectrum. Hence we neglect the frequency dependence of σa in all

integrals. Using Eq. (7.16) and the definition (7.17), we get the equation for the transport of the

number flux:
1

a
n̂ · ∇δN(x, n̂) +AδN(x, n̂) = nH

[
B1δm +B2δxe

]
, (7.18)

where the coefficients are

A = (1− xe)nHσa(νc), (7.19a)

B1 = nHx
2
eα1s, (7.19b)

B2 = nHxeα1s
2− xe

1− xe
. (7.19c)

Note that the coefficient A is the inverse of the mean free path for continuum photons at the threshold

for photo-ionization.

We assume a plane-wave dependence for the fluctuation, following which the solution to Eq. (7.18)

is
δN(k, n̂)

nH
=
B1δm +B2δxe

A+ i(n̂ · k/a)
. (7.20)

The photo-ionization from and recombinations to the ground state together cause the free electron

fraction to evolve as

ẋe|cont = x1s

∫ ∞

νc

dν
8πν2

c2
σa(ν)f0(ν,x)− nHx

2
eα1s. (7.21)

In the homogenous case, we approximate the small contribution to be zero, which gives us a relation

between the absorption cross-section and the recombination coefficient.

We can obtain this relation by considering the alternative scenario of local thermal equilibrium

(LTE) between a population of ionized and 1s hydrogens, free electrons, and a blackbody distribution
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of photons above the threshold frequency. The free electron fraction then equals the Saha equilibrium

value of Eq. (6.4). As earlier, we neglect power-law frequency dependence of pre-factors in the

integrals over frequency and obtain the relation

α1s(T ) = 4
hνc
mec2

hνc

(2πmekBT )1/2
σa(νc, T ). (7.22)

In the inhomogenous case, we perturb Eq. (7.21) and retain terms up to the first order.

δẋe|cont = x1s

∫ ∞

νc

dν
8πν2

c2
σa(ν)

[δx1s

x1s
f0(ν) + δf0(ν,x)

]

− nHx
2
e

[
δm + 2

δxe

xe

]
α1s. (7.23)

We use detailed balance in the homogenous case, and the definition of the total flux in Eq. (7.17)

to simplify this contribution to

δẋe|cont = (1− xe)σa(νc)δN0(x)

− nHxe

[
xeδm +

2− xe

1− xe
δxe

]
α1s (7.24)

= − 1

4πanH

∫
dn̂ n̂ · ∇δN(x, n̂). (7.25)

To get to the second line, we used equation (7.18) for the the flux.

We use the solution (7.20) and evaluate the angular integral to obtain the final equation for the

effect of continuum photon transport on the ionization fraction for a plane-wave fluctuation.

δẋe|cont = −
{ 1

4π

∫
dn̂

in̂ · k
Aa+ in̂ · k

}[
B1δm +B2δxe

]

= −
{

1− Aa

k
arctan

( k

Aa

)}[
B1δm +B2δxe

]
, (7.26)

where the coefficients A,B1, and B2 are given in Eq. (7.19). The MFP of continuum photons is 1/A;

as expected the continuum photons’ contribution goes to zero when the wavelength becomes much

larger than this.

7.4 Radiative transfer in Lyman-α

This section works out the radiative transfer of Lyα photons in an inhomogenous universe. The

subject and details of this calculation are self-contained, but impact the rest of the work through

the resulting perturbed recombination rates. This sections’ results are applicable over a wide range

of length scales; we show that they reduce to expected values in the large- and small-scale limits in

Appendices 7.A and 7.B.
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The PSD of Lyα photons evolves via the Boltzmann equation of Eq. (7.9). It is simplest to

work in the matter’s rest frame, since the source terms on the right-hand side take on simple forms.

Absorption, emission and resonant scattering contribute to this source term; we describe each of

these processes in detail below.

The scattering of photons off a hydrogen atom in the ground state is a two step process, involving

an excitation to a virtual excited state through the absorption of the incident photon, and subsequent

decay through the emission of the outgoing one. When the first photon is of very low frequency,

this corresponds to classical Rayleigh scattering. When its frequency approaches the Lyα frequency

(henceforth νLyα), the intermediate state is long lived and other processes which deplete it become

important.

In particular, the excitation of the 2p state to higher bound states and its photo-ionization

compete with spontaneous emission. We count the former as true absorptions, and the latter as

coherent scattering events. The net photon number is unaffected by coherent scattering, but the

frequency of the outgoing photon is related to that of the incident one.

The branching ratio for coherent scattering is set by the rate of spontaneous emission from the

2p state

psc =
ALyα

Γ2p
= 1− pab, (7.27)

where Γ2p is the width due to all processes, and pab is the complementary branching ratio for

absorption via two-photon processes. Coherent scattering is the dominant process, and the scattering

probability psc is close to unity.

A useful definition is the Sobolev optical depth of the Lyα line. It is the net optical depth for

the absorption of a photon over its path as it redshifts through the Lyα line due to cosmological

expansion.

τS =
3

8π
n1s

(
c

νLyα

)3
ALyα

H
. (7.28)

The line is optically thick at the redshift of recombination, i.e. τS ≈ 5.6× 108 � 1. We divide this

optical depth into true absorption and scattering contributions as

τsc/ab = psc/abτS. (7.29)

The rate of removal of Lyα photons per unit volume of phase space due to coherent scattering is

ḟ(ν, n̂)|sc− = −Hντscφ(ν)e[h(ν−νLyα)/kBT ]f(ν, n̂). (7.30)

In the above expression, φ(ν) is broadened from a delta function at the Lyα frequency, νLyα, due to
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the thermal motions of the absorbing atoms and the finite lifetime of the excited state. The resulting

profile is a Voigt function, which is most easily expressed in terms of the deviation from the central

frequency in Doppler widths [355]:

φ(x, a) =
a

π3/2

∫ ∞

−∞
du

e−u
2

a2 + (x− u)2
, (7.31)

x =
ν − νLyα

νLyα∆H
, ∆H =

(
2kBT

mHc2

)1/2

. (7.32)

The Voigt parameter, a, quantifies the relative strength of the radiative and Doppler broadening

mechanisms, and is given by

a =
Γ2p

4πνLyα∆H
. (7.33)

The outgoing photon follows a redistribution function, p(ν, n̂|ν′, n̂′). This is defined as the probability

of an outgoing photon (ν, n̂) conditioned on the incoming photon (ν′, n̂′) [355]. It is normalized as

∫
dν
dn̂

4π
p(ν, n̂|ν′, n̂′) = 1. (7.34)

The rate of injection per unit volume of phase space due to coherent scattering is

ḟ(ν, n̂)|sc+ = Hντsc

∫
dν′

dn̂′

4π
φ(ν′)e[h(ν′−νLyα)/kBT ]

× p(ν, n̂|ν′, n̂′)f(ν′, n̂′). (7.35)

True absorptions are two-photon transitions to higher states, through an intermediate ‘virtual’ 2p

state. Direct photo-ionization from the 2p state is formally included by letting the summation over

the higher states run over the continuum states. However, the dominant transitions from 2p are to

the 3s and 3d levels. To the first approximation, the resultant absorption probability is

pab ≈
A3s−2p + 5A3d−2p

3ALyα
e−(5hνLyα/27kBT )

≈ 10−4 at z0 = 1100. (7.36)

In the first line, we have neglected the absorption contribution in the denominator, and assumed that

the PSD for the second photon of lower energy is that of a blackbody at the radiation temperature.

The rate of removal of photons due to true absorption is

ḟ(ν, n̂)|ab = −Hντabφ(ν)e[h(ν−νLyα)/kBT ]f(ν, n̂). (7.37)

In a similar manner, true emission of Lyα photons is a two-photon process, in which the first photon
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is emitted in a transition from one of the higher levels (as earlier, largely from 3s and 3d) to a

‘virtual’ 2p level, and the second one during a subsequent decay to the ground state. We neglect

the stimulated component of both transitions since the PSDs involved are much smaller than unity.

The rate of injection due to true emission is

ḟ(ν, n̂)|em =
c3nH

8πν2
psc

∑

i 6=1s

xiAi−2pφ(ν). (7.38)

In principle, two-photon transitions to and from the 2s state can also inject or remove photons

within the Lyα line. Depending on the frequency of the more energetic photon involved, these

are Raman scattering or two-photon transitions between 2s and the ground state. However, these

transitions are much slower than those involving the 2p state; in particular, their cross-section goes

to zero at the central frequency, since there is no phase space available for the second photon (see

Figure 7.3). This statement is no longer true if we include stimulated emission, but the full transition

rates are still much smaller than the ones to 2p within the Lyα line [356]. Thus, the majority of

photons produced in this manner are on the far red side of the line. We can safely neglect this

channel while calculating the spectral distortion within a few hundred Doppler widths of the Lyα

line center.

Figure 7.3 shows the rates of the radiative processes described above which add or remove photons

from the frequency range of interest.

7.4.1 Solution of the Boltzmann equation

We solve the Boltzmann equation under a number of simplifying assumptions.

1. The 2s–2p transition rate is high enough so that all their sublevels are equally occupied.

Consequently we neglect the fast transitions between these sublevels.

2. The line profile, φ(ν), dominates the frequency dependence of the absorption and emission

terms. Thus we replace all factors of ν multiplying the profile with the central frequency,

νLyα.

3. The rates of radiative processes are large compared to the Hubble rate, so the PSD and excited

level populations are effectively in steady state. This is valid within the line profile due to the

high scattering rate.

4. The absorption and emission profiles are identical. Under this approximation, factors of

exp [h(ν − νLyα)/kBT ] are approximately equal to unity. This is valid if we restrict ourselves

to frequencies which satisfy

|ν − νLyα| � νLyα∆HX, (7.39)
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Figure 7.3: Rates of radiative processes. The solid and dashed lines show the rate coefficients per unit fre-
quency for two-photon absorption via an intermediate 2p level, and two-photon absorption/Raman scattering
to the 2s level, respectively. The lower and upper axes show the frequency in physical units, and Doppler
widths from line center, respectively. Also shown on the same plot is the spectral distortion, as calculated
by HyRec [169]. The dotted line shows the number of excess photons over a blackbody per hydrogen atom
per logarithmic frequency interval. The plots are generated at redshift z0 = 1100.

X =
kBT

hνLyα∆H
≈ 1080, at z0 = 1100.

This is satisfied within the frequency range of interest, since the wings are optically thick to

true absorption only up to ∼ 20 Doppler widths at this redshift [357].

5. On the far blue side of the line, we take the PSD to equal that of a blackbody at the radiation

temperature.

6. The redistribution function, p(ν, n̂|ν′, n̂′), is isotropic. We condense it to the the notation

p(ν|ν′).

We use the steady state approximation to balance the rate of processes which populate the 2p level

– downward transitions from higher levels and upward transitions from the 1s level – with its net

rate of depletion:

0 = ẋ2p

=
∑

i 6=1s

xiAi−2p + 3x1sALyαf − Γ2px2p, (7.40)
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where f is the average of the phase-space density over the line profile, f =
∫
dν φ(ν)f(ν). We use

this along with the definition of the scattering probability in Eq. (7.27) to rewrite the emission term

of Eq. (7.38) as

ḟ(ν, n̂)|em = HντSφ(ν)
[
feq − pscf

]
, (7.41)

where we have introduced the equilibrium PSD, feq, which is defined as

feq =
x2p

3x1s
=

x2

4x1s
. (7.42)

7.4.1.1 Homogenous case

If the background ionization state and density are homogenous, the PSD is independent of direction

and position. Under the assumptions listed above, the Boltzmann equation of Eq. (7.9) reduces to

∂f(ν)

∂ν
= τsc

[
φ(ν)f(ν)−

∫
dν′φ(ν′)p(ν′, ν)f(ν′)

]

+ τSφ(ν)
[
pabf(ν)− feq + pscf

]
. (7.43)

This is easily solved if the redistribution due to coherent scattering is unimportant, i.e., psc ≈ 0, or

independent of the incoming frequency, i.e., p(ν′, ν) = φ(ν). The PSD is then given by the Sobolev

solution. Complete redistribution is a good approximation within the Doppler core (up to ∼ 40

Doppler widths away from νLyα at z = 1100 [357]).

However, redistribution due to coherent scattering is nontrivial in the wings, since the average

change in frequency between the incident and outgoing photons is only a few Doppler widths. We

implement the resulting diffusion in frequency using a second-order differential operator. This is

commonly known as the Fokker-Planck approximation [165, 357, 358]. It is well suited for describing

the partial redistribution in the wings. Due to the high scattering rates near the line center, the

PSD sets itself to the equilibrium value, and the particular prescription used becomes unimportant,

as long as it yields a small result. Under this approximation, the rates of injection and removal due

to scattering are

ḟ(ν)|sc = −Hντsc
[
φ(ν)f(ν)−

∫
dν′φ(ν′)p(ν′, ν)f(ν′)

]

= Hντsc
ν2

Lyα∆2
H

2

∂

∂ν

[
φ(ν)

∂f

∂ν

]
, (7.44)

The operator above does not account for the effect of atomic recoil; this is consistent with the

approximation of equal absorption and emission profiles (assumption 4). Using this in Eq. (7.43),
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we get a second–order ordinary differential equation (ODE) for the phase-space density

∂f(ν)

∂ν
= −τsc

ν2
Lyα∆2

H

2

∂

∂ν

[
φ(ν)

∂f

∂ν

]

+ τSφ(ν)
[
pabf(ν)− feq + pscf

]
. (7.45)

We numerically solve this differential equation in a frequency range extending out to 1000 Doppler

widths on either side of νLyα, with 50 bins per Doppler width. We set the PSD to a blackbody on the

far blue side, and use a Neumann boundary condition on the far red side, where we set the derivative

to zero. The latter is designed to kill an unphysical solution where the PSD grows catastrophically

as we approach the red side of the line.

Technically, this region is larger than the domain of validity for some of our approximations, but

we formally extend the equation out to this region in order to reduce boundary effects. We evaluate

the Voigt profile using Gubner’s series in the core, and a fourth order asymptotic expansion in the

wings [359].

In order to evaluate the equilibrium PSD, feq, we need the occupancies of the ground (1s) and

excited (2p) states. The rates of their depletion and population depend on the PSD itself, so to be

completely self-consistent, we need to solve for the level populations together with the PSD. Instead,

we use the three level model of recombination of Section 6.3, which assumes the Sobolev solution.

The error introduced by doing so is small, because the most significant effect of the redistribution

is to broaden the jump in the PSD, rather than change its amplitude.

Figure 7.4 shows the resulting spectral distortion, which is defined via the PSD as the number of

excess photons over a blackbody distribution per hydrogen atom per logarithmic frequency interval.

Also shown are the true distortion (as calculated by the publicly available HyRec code [169]), and

the Sobolev approximation to it, which neglects redistribution due to coherent scattering. HyRec’s

treatment of recombination and radiative processes is significantly more sophisticated than ours – it

does not assume a steady state or equal emission and absorption profiles, follows the population of

the higher levels, and accounts for two-photon and Raman transitions which are nonresonant with

the Lyα transition.

The rate of recombination through the Lyα channel is the difference between the downward and

upward transition rates:

ẋ1s|Lyα = 3ALyαx1s

[
feq − f00

]
. (7.46)

We get an expression for the average monopole, f00, and hence the recombination rate through the

Lyα channel by integrating Eq. (7.43) over frequency, and using the normalization of the redistri-
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Figure 7.4: Lyα spectral distortion: This figure plots the number of excess photons over a blackbody
distribution per hydrogen atom per logarithmic frequency interval, against the frequency offset from line
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does not. Also shown for reference is the result of the full calculation of HyRec [169].

bution probability:

∆f = τS[f − feq], (7.47)

where the notation ∆X respresents the jump in a quantity X across the line, ∆X = X(ν+)−X(ν−).

Using this in Eq. (7.46), we recover the background recombination rate in the Sobolev approximation

with large optical depth

ẋ1s|Lyα = −3ALyαx1s

τS
∆f . (7.48)

Typically the PSD on the red side, fν− , sets itself to the equilibrium value, feq, due to the high

optical depth. On the far blue side, we take fν+ to equal the blackbody value to maintain consistency

with assumption 5 and the numerical solution.

A significant fraction of atoms reach the ground state via two-photon decays from the 2s level.

From Figure 7.3, we see that the more energetic of the emitted photons is largely on the far red

side of the Lyα line. The effect of absorption of the background spectral distortion in this region

is largely canceled by that of the stimulated emission of the low energy photon [356]. Thus, we

compute the two-photon decay rate using the blackbody PSD.

ẋ1s|2s = Λ2s,1sx1s

[
feq − e−{hνLyα/kBT}

]
, (7.49a)
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Λ2s,1s =

∫ νLyα

νLyα/2

dν
dΛ2s

dν
= 8.22 s−1. (7.49b)

We neglect Raman scattering events involving photons above νLyα. Their main impact on recombi-

nation is ‘nonlocal’ in time; they inject photons on the far blue side of Lyα which redshift into the

line at a later time due to cosmological expansion and get absorbed [356].

Equations (7.48) and (7.49) together give the net rate of recombination to the ground state. The

result depends on the equilibrium PSD, feq, which in turn depends on the n = 2 level’s population.

We use the steady state assumption and balance its overall rates of population and depopulation.

One way of implementing this would be to follow the populations of all the levels which connect

to it, in the manner of Eq. (7.40). Instead, we choose to work in the three level approximation of

Section 6.3, which collects all the higher levels into a single block and assumes equal population for

all the sublevels. The rates of case B recombination and photo-ionization add up to give the rate of

the upper arms, which connect the fully ionized state with the n = 2 state.

ẋ2|rec/ion = nHx
2
eαB − x2βB. (7.50)

If we equate this expression to the sum of Eqs. (7.48) and (7.49), we recover Eq. (6.11) after some

algebra. The explicit expressions for Peebles’ C factor and the n = 2 population are

C =
3ALyα/τS + Λ2s,1s

3ALyα/τS + Λ2s,1s + 4βB
, (7.51)

x2 = 4
nHx

2
eαB + (3ALyα/τS + Λ2s,1s)x1se

−E21/(kBT )

3ALyα/τS + Λ2s,1s + 4βB
. (7.52)

7.4.1.2 Inhomogenous case

The situation of interest in this investigation involves spatially varying hydrogen number density,

ionization fraction, and matter velocity. The resulting phase-space density in Lyα is both inho-

mogenous, i.e., varies with position x, and anisotropic, i.e., varies with direction n̂. We assume that

these variations take the form of small fluctuations over a homogenous background, so that we can

expand their spatial dependence into plane waves which evolve independently of each other. They

obey the Boltzmann equation (7.9), whose linearized form is

∂δf

∂ν
− ick

Hνa
(k̂ · n̂)δf − δτS

τS

∂f

∂ν

= τSφ(ν)
[
pabδf(ν, n̂)− δfeq + pscδf00

]

+ τsc

[
φ(ν)δf(ν, n̂)−

∫
dν′

dn̂′

4π
φ(ν′)p(ν|ν′)δf(ν′, n̂′)

]
. (7.53)
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Here the perturbed source terms on the right hand side include the effects of absorption [Eq. (7.37)],

emission [Eq. (7.41)], and scattering [Eqs. (7.30) and (7.35)], after applying the assumptions listed

at the beginning of Section 7.4.1.

The fluctuation in the optical depth is

δτS
τS

= δm +
δx1s

x1s
− Θ

aH
(k̂ · n̂)2. (7.54)

We decompose the angular dependence of quantities into their spherical harmonic components. (This

– or some more sophisticated variant – is the standard approach for Boltzmann solvers that predict

CMB anisotropies [160, 347–349, 360].) It is convenient to orient the z-axis, ẑ, along the wave

vector, k. Due to azimuthal symmetry about this axis, quantities depend on direction only through

µ = k̂ · n̂, and the spherical harmonics reduce to the appropriate Legendre polynomials. The explicit

forms of the decomposition and its inverse for the PSD are [160, 360]

δf(ν, k, µ) =
∑

j

(−i)jδfj(ν, k)Pj(µ), (7.55a)

δfj(ν, k) =
2j + 1

2

∫
dµ ijPj(µ)δf(ν, k, µ). (7.55b)

We substitute the expansion (7.55) into Eq. (7.53) to get the Boltzmann equations for the moments.

The equation for the zeroeth moment is

∂δf0

∂ν
=
δτS,0
τS

∂f

∂ν
− τSφ(ν)

[
δfeq − pscδf0

]

+
ck

3Hνa
δf1 + pabτSφ(ν)δf0 + τsc

{
φ(ν)δf0

−
∫
dν′φ(ν′)p(ν|ν′)δf0(ν′)

}
. (7.56)

The term within curly braces is the scattering contribution, which redistributes photons within the

line. We replace it with a second-order differential operator under the Fokker-Planck approximation,

in the same manner as in the homogenous case.

∂δf0

∂ν
=
δτS,0
τS

∂f

∂ν
− τSφ(ν)

[
δfeq − pscδf0

]
+

ck

3Hνa
δf1

+ pabτSφ(ν)δf0 − τsc
ν2

Lyα∆2
H

2

∂

∂ν

[
φ(ν)

∂δf0

∂ν

]
. (7.57)

The Boltzmann equations for the higher moments, with j ≥ 1, are of the form

∂δfj
∂ν

=
ck

Hνa

[
− j

2j − 1
δfj−1 +

j + 1

2j + 3
δfj+1

]

+ τSφ(ν)δfj +
δτS,2
τS

∂f

∂ν
δj,2, (7.58)
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Figure 7.5: Basis solutions for the inhomogenous Boltzmann equation: (a) and (b) show the solutions Aj
and Bj defined in Eq. (7.59). The source terms modulate the optical depth through the density and ground
state population, and velocity gradient. This figure is generated for k = 105 Mpc−1 at redshift z0 = 1100.
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where the δj,2 in the final term on the RHS equals unity if j = 2 and zero otherwise.

Equations (7.57)–(7.58) form a hierarchy for the moments of the PSD, δfj0 [160, 347]. Absorp-

tion, emission and redshifting of Lyα photons contribute to the evolution of each moment, while

redistribution due to coherent scattering only contributes to the zeroeth moment. The latter is a

direct consequence of the assumption of the isotropy of the redistribution function, p(ν, n̂|ν′, n̂′)
(assumption 6). In addition to this, free-streaming couples moments whose angular indices differ by

unity [360].

We obtain the complete solution by adding the ones for each of the source terms as follows:

δfj(ν) =

(
δm +

δx1s

x1s

)
Aj(ν) +

Θ

aH
Bj(ν)

+
(
δfeq − pscδf0

)
Cj(ν), (7.59)

where Aj ,Bj , and Cj are dimensionless solutions sourced by combinations of the first and second

terms on the RHS of Eq. (7.57), and the last term on the RHS of (7.58). The notation for Cj is used

only in this section, and is not to be confused with Peebles’ C factor.

We numerically solve the Boltzmann hierarchy of Eq. (7.57) and (7.58) for a set of multipoles

from j = 0 to jmax = 8. We discretize a range of frequencies extending out to ±1000 Doppler

widths from the line center, with 50 bins per Doppler width, in the same manner as we did for the

homogenous case. We assume that all the perturbed moments go to zero on the far blue side, i.e., a

boundary condition of the Dirichlet type, with an additional Neumann boundary condition on the

blue side for the zeroeth moment. We use a nonreflecting boundary condition at jmax to minimize

the propagation of errors back to low values of j [160].

Figure 7.5 shows the resulting basis solutions Aj and Bj . These source terms for these solutions

create regions of higher and lower optical depth, which accumulate over- and under-densities of

photons in the blue damping wings of the Lyα line. The excess photons stream between these

regions, which leads to characteristic features in higher moments as well. Since there is no injection

of photons, the solutions go to zero on the red-side of the line-center.

Figure 7.6 shows the solution Cj , whose source term includes δfeq, which injects photons within

the line. Due to these photons’ large interaction cross section, local equilibrium between emission

and absorption is achieved over a range of frequencies. This is reflected in the large and ‘truncated’

peak in the monopole. Also worth noting is the characteristic double peak in the dipole, which arises

due to streaming away from the central frequency.

We solve for the perturbed monopole, δf0, by averaging Eq. (7.59) with j = 0 over the line

profile.

δf0 =
1

1 + pscC0

[(
δm +

δx1s

x1s

)
A0 +

Θ

aH
B0 + δfeqC0

]
. (7.60)
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7.4.2 Perturbed recombination rate

Our goal is to compute the fluctuation in the recombination rate. We first consider the recombination

rate within the Lyα line. The linearized form of Eq. (7.46) is

δẋ1s|Lyα =
δx1s

x1s
ẋ1s|Lyα + 3x1sALyα

[
δfeq − δf0

]
. (7.61)

We substitute the expression (7.60) for the fluctuation in the monopole averaged over the line, to

write this in terms of the dimensionless solutions defined in Eq. (7.59).

δẋ1s|Lyα

=
δx1s

x1s
ẋ1s|Lyα + 3x1sALyα

1− pabC0

1 + pscC0

δfeq − 3x1sALyα

×
[(
δm +

δx1s

x1s

) A0

1 + pscC0

+
Θ

aH

B0

1 + pscC0

]
. (7.62)

Next we consider the perturbation to the two-photon decay rate from the 2s level. This is only

sourced by changes in the level populations, since the perturbed moments of the PSD go to zero on

the far red side of the line [see Figs. 7.5 and 7.6]. The linearized form of Eq. (7.49) is

δẋ1s|2s =
δx1s

x1s
ẋ1s|2s + Λ2s,1sx1sδfeq. (7.63)

To close Eqs. (7.62) and (7.63), we need to compute the fluctuation in the equilibrium PSD, δfeq

(or equivalently, the population of the n = 2 level). As in the homogenous case, we use the steady

state assumption within the three level approximation, and balance the rates of the upper and lower

arms of Figure 7.2.

For the upper arm, we perturb Eq. (7.50), which describes the change in the population of the

n = 2 level due to photo-ionization and recombination from the continuum levels. We expect the

fractional change in the population of the n = 2 level, x2, to be related to those in the other

parameters of the system. The background value of x2 is much smaller than the other states’

populations [see discussion in Section 6.3]. Thus, it is a good approximation to set δxe + δx1s = 0.

Using this,

δẋ2|rec/ion = nHx
2
eαB

[
δm + 2

δxe

xe

]
− δx2βB. (7.64)

= nHx
2
eαBδm −

[
2nHxeαB + 4feqβB

]
δx1s

− 4x1sβBδfeq. (7.65)

The rate of the lower arm is the sum of the recombination rate in the Lyα line [Eq. (7.62)] and two-
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Figure 7.6: The case of injected photons: Shown above is the solution Cj as defined in Eq. (7.59), which
perturbs the equilibrium PSD. This figure is generated for k = 105 Mpc−1 at redshift z0 = 1100.

photon decays from the 2s state [(7.63)]. Using Eq. (7.50) for the background rate, and equating

the sum with the RHS of Eq. (7.65), we get

δfeq =
[
3ALyα

1− pabC0

1 + pscC0

+ Λ2s,1s + 4βB

]−1

×
[
nH

x2
e

x1s
αB

(
δm −

δx1s

x1s

)
− 2nHxeαB

δx1s

x1s
+ 3ALyα

×
{(

δm +
δx1s

x1s

) A0

1 + pscC0

+
Θ

aH

B0

1 + pscC0

}]
. (7.66)

Before we compute the perturbed recombination rate, we define the quantity

P =
3ALyα

1−pabC0

1+pscC0
+ Λ2s,1s

3ALyα
1−pabC0

1+pscC0
+ Λ2s,1s + 4βB

. (7.67)

This is the analog of Peebles’ C factor [see Eq. (7.51)] in the perturbed case – it represents the

probability that a fluctuation in the population of atoms in the n = 2 level translates into one in

the ground state population.

Figure 7.7 plots P as a function of the wavenumber. We observe that it asymptotes to a small

value for large wavelengths. We expect this limiting value to be the Peebles C factor. It approaches
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Figure 7.7: Inhomogenous analog of the Peebles C factor. The parameter P defined in Eq. (7.67), as function
of the wavenumber, k. It is the probability that a fluctuation in the population of n = 2 leads to one in that
of 1s. This figure plots values out to k ≈ 3.6× 105Mpc−1, up to which matter fluctuations can be assumed
to be isothermal.

unity in the complementary limit of small wavelengths, but we do not show this since the assumption

of the isothermal nature of such small wavelength modes breaks down at low redshifts. This turnover

happens on scales of k ≈ 103 Mpc−1, which is large compared to the diffusion scale at line center,

which was calculated in Section 7.2. We give physical arguments for the large wavelength limit in

Appendix 7.B, and the turnover scale for small wavelengths in Appendix 7.A.

We substitute Eq. (7.66) into Eqs. (7.62) and (7.63), and use the definition of P to write the

fluctuation in the net recombination rate as

δẋ1s|Lyα,2s = PnHx
2
eαBδm + δx1s

[
(1− P)nH

x2
e

x1s
αB

− 2PnHxeαB − 4feqβB

]
− 3(1− P)x1sALyα

×
[(
δm +

δx1s

x1s

) A0

1 + pscC0

+
Θ

aH

B0

1 + pscC0

]
. (7.68)

In Appendix 7.A.2, we derive the expression for the perturbed recombination rate for wavelengths

much smaller than the diffusion scale, and show that it is identical to the above expression in the

limit P → 1.
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Figure 7.8: Maximum instantaneous growth rate for small-scale fluctuations in the matter field at recombi-
nation, normalized to the net elapsed coordinate time, τu. The scenario here is identical to that of Figure
7.1, except that perturbed recombination is treated with full radiative transport of Continuum and Lyman-α
photons.

7.5 Solution for the local growth rates

We solve for the local growth rates by finding the fastest growing modes of the matter field. We

use Eq. (7.5) for the evolution of the matter density and velocity, and obtain the evolution equation

for the perturbed ionization fraction by adding the rates of perturbed recombination due to Lyα

photons and two-photon decays from 2s [Eq. (7.68)] and Continuum photon transport [Eq. (7.26)].

We use case B recombination coefficients from [361] for numerical estimates.

Figure 7.8 plots the maximum instantaneous growth rate for small-scale matter fluctuations at

recombination (normalized to the net elapsed coordinate time, τu at z = 1100) for various values

of the large scale shear v0. Comparison with the results of Figure 7.1 shows that the instability

persists, and even somewhat strengthened, on intermediate scales with wavenumber k ≈ 102 Mpc−1.

However, it is cut off on small scales due to the radiative processes described in Sections 7.3 and

7.4. The precise wavenumber at which it is cut off depends on the large-scale relative velocity, but

is well before the saturation scale over the practically achievable range.

In the next section, we estimate the growth rates achieved due to a stochastic background relative

velocity, the distribution for which was introduced in Section 6.3.
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7.6 Distribution of growth factors

The growth rate shown in Figure 7.8 is a general property of the equations of motion calculated in

the presence of a constant background relative velocity. In actuality, this background velocity at

a given location and time is picked from the distribution of Eq. (6.13) of Section 6.3. Moreover,

values at nearby redshifts are correlated with each other. Thus we should critically consider how

this distribution is sampled over time.

Towards this end, we generalize the equal-time distribution of Eq. (6.13) to

〈v0,i(x, t)v
∗
0,j(x, t

′)〉 =
1

3
δij

∫
d ln k F(k; t, t′)∆2

ζ(k), (7.69)

F(k; t, t′) =
1

k2
[θm(k, t)− θr(k, t)][θm(k, t′)− θr(k, t

′)]∗. (7.70)

The direction of the relative velocity, v0(x) at a given point x, varies with time. The force term,

frad, in the equation of motion (7.1b), depends on the direction of the local wavevector relative to

the background velocity. We proceed under the simplifying assumption that the fastest growing

mode always aligns itself; this is true in the case where the timescale for growth is much smaller

than that for change in the relative velocities. Thus the linear growth factors obtained are upper

bounds to the actual ones achieved.

We use the notation T (k,x) to denote the net growth factor of fluctuations with wave vector k

in a small region around a point x. This quantity depends on the entire relative velocity history,

v0(x, t). At any point on the history, the growth rate is the largest eigenvalue of the equations of

motion [Eqns. (7.5b), (7.81), and (7.26)]. As earlier, we denote this eigenvalue by G. The growth

factor in a small region around a point, x, due to linear physics, and over the velocity history, is

T (k,x) = exp
[∫

dt Re(G)(k,v0(x, t))
]
. (7.71)

Note that T (k,x) is normalized to unity in the absence of any growth or suppression. The relation

in Eq. (7.71) endows the growth factor with a distribution that is inherited from that of the velocity

histories. For a particular realization of the relative velocity field v0(x, t), the value of T (k,x)

varies when both its input wave-vector k and position x are varied. However, over the entire set of

realizations, there is no dependence on the direction k̂ and the position x, due to the isotropy and

homogeneity of the fluctuations underlying the relative velocities. With this understanding, we use

the condensed notation T (k) for the growth factors.

We generate a large number of these velocity histories in an efficient manner by sampling the

distribution with the covariance matrix of Eq. (7.69). We numerically sample these velocity histories

at 90 redshifts between z = 800 and z = 1430, and evaluate Eq. (7.71) by spline integration. In order

to illustrate the tail of the growth distribution, we choose to plot the mean growth factor achieved
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Figure 7.9: This figure plots the mean growth factor 〈T (k)〉p achieved in the highest pth fraction of a sample

set of 107 velocity histories, for successively smaller p-values and a range of wavenumbers. The growth factor
is normalized such that it is unity when there is no growth or suppression. Also shown is the largest growth
factor for each wavenumber achieved in this sample set. Note that the growth is suppressed on scales on
which the linear analysis predicts the strongest instability for large relative velocities (k > 104 Mpc−1, from
Figure 7.8).

in the highest pth fraction of the realizations. We formally define this as

〈T (k)〉p =
1

Np

N∑

i=N−Np+1

Ti(k). (7.72)

In this equation, N is the number of realizations of the relative velocity history, v0(x, t), which have

been sorted in increasing order of the value of T for the purpose of the summation. The p in this

definition corresponds to the usual notion of p-value. This use of the symbols N and p is restricted

to this section alone, and they do not represent the number flux and momentum here.

Figure 7.9 shows the tails 〈T (k)〉p estimated from a set of 107 samples of the relative velocity

history, for a range of wave numbers k. Note that Figure 7.8 predicts that small-scale modes of

wavelengths k ∼ 105 Mpc−1 are most unstable for a constant large-scale relative velocity. The growth

factors estimated in Figure 7.8 are optimistic for two reasons: firstly, they depend on the distribution

of the histories, i.e. time-series of large-scale relative velocities, and secondly and most importantly,

the instability is only active during the time where the electrons and photons are coupled, and this

is much smaller than the coordinate time due to the short duration of recombination.
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7.7 Discussion

The analysis in this chapter accomplishes our primary goal of answering the question of the stability

of small-scale fluctuations in the matter field at recombination. Our main conclusions in this regard

is that while growing sound wave modes exist, the amount of growth that occurs during the cosmic

recombination epoch is only a fraction of an e-fold, and we do not expect the unstable modes to

produce any phenomenological consequences. Fluctuations with comoving wavenumbers satisfying

k > 102 Mpc−1 are unstable in the presence of large-scale relative velocities between matter and

radiation. On intermediate scales, this instability persists in the face of, and is even strengthed by

the transport of continuum photons above the photo-ionization threshold, and photons within the

Lyα line of neutral hydrogen. However, this transport cuts off the growth before the saturation scale

of k ≈ 105 Mpc−1.

The linear analysis of the fluctuations only yields instantaneous growth rates for a constant

large-scale relative velocity; the true growth factor within a given patch depends on the local relative

velocity over a range of redshifts, and occurs for a duration (the width of recombination) that is

shorter than the coordinate time. Accounting for this, we find no appreciable growth within a large

number of random realizations of the relative velocity history. The largest growth factor achieved

in our sample set, which corresponds to a p-value of 10−7, is slightly less than 1.2, for modes with

wavenumber k ≈ 103 Mpc−1.

Along the way, we made a number of simplifying assumptions to facilitate the solution of the

complicated problem of perturbed recombination. We examine a few of them below.

The first, and most helpful one, is the three level model of the hydrogen atom, which assumes

radiative equilibrium between upper levels of the true hydrogen atom. This is a good assumption

at high redshifts, but becomes progressively worse as the redshift approaches z ' 800, at which

point it is approximately a 10% correction. In the context of homogenous recombination, there

have been two approaches to deal with this: follow the higher levels in a consistent manner [169],

or multiply the case-B recombination coefficient, αB, with a fudge factor [336]. We eschew this

additional complication in our preliminary analysis; instead, we generate realizations and compute

growth rates only for redshifts z ≥ 800, where the instability is expected to be strongest.

A second assumption is the equality of matter and radiation temperatures, which allows us

to compute the recombination and photo-ionization rates at the CMB temperature. This is an

excellent approximation for the background temperatures during the redshifts of interest due to

the high Thomson scattering rates [336]. Its validity is much less clear in the perturbed case; a

detailed discussion of timescales can be found in Ref. [344]. In our case, the relevant comparison

is the dimensionless ratio tsc/tC of the sound-crossing time tsc = a/(kvs,I) to the Compton cooling

time tC = 3mec(1 + fHe + xe)/(8σTaradT
4
γxe). These timescales are equal at a critical wavenumber
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kcr: sound waves are isothermal for k � kcr and adiabatic (or at least decoupled from the CMB

temperature) for k � kcr. We find that kcr decreases with time, equaling 108 Mpc−1 at z = 1290,

107 Mpc−1 at z = 1020, 106 Mpc−1 at z = 870, and 105 Mpc−1 at z = 690. Thus for the range of

redshifts we consider in this investigation (up to z = 800), we can make the isothermal approximation

for modes of wavenumbers up to k ≈ 3.6× 105 Mpc−1.

Another factor we have not included in our analysis is the transport of the microwave background

photons themselves between different parts of the fluctuations. Rather we have assumed that the

CMB photons can freely stream through many perturbation wavelengths. At the earliest redshift

considered herein, z = 1430, the photon comoving attenuation coefficient [inverse comoving mean

free path: 1/(nHaxeσT)] is 0.8 Mpc−1. This is much smaller than the wave numbers k under

consideration here, justifying the treatment of the CMB as uniform.

Finally, in a larger context, this work solves the problem of perturbed recombination for modes on

very small scales. Previous work on large-scale modes relevant to the linear fluctuations in the CMB

[344, 362, 363] has shown that the ionization fraction obtained by perturbing the ODE resulting

from the three-level model of the hydrogen atom is accurate enough for all practical purposes. This

breaks down for very small-scale modes; modulo the proper prescription for the perturbed kinetic

temperature, the method outlined in Sections 7.3 and 7.4 helps solve the problem in this limit.

7.A Lyman-α transport: Diffusion-dominated regime

In this section, we study the diffusion of Lyα photons during the epoch of recombination. In the

first part of this section, we demonstrate that the length scale for their transport is much larger than

the simple estimate of Eq. (7.8). In the second part, we derive a simple expression for the perturbed

rate of recombination in the Lyα and two-photon channels when the wavelength of the fluctuations

is much smaller than this scale.

7.A.1 Length scale for diffusion

We begin by studying the redistribution of Lyα photons’ frequency due to resonant scattering off

ground-state hydrogen atoms.

The Sobolev optical depth, τS, is much greater than unity at the redshift of recombination [see

the estimate following Eq. (7.28)]. The overwhelming majority of absorptions are followed by the

spontaneous de-excitation of the excited atom [see Eq. (7.27)]. Thus the timescale for coherent

scattering is much shorter than the Hubble time for a photon in the Doppler core of the Lyα line.

A large number of scattering events effectively scrambles the initial frequency over a short time,

and the emitted photon’s frequency is well described by a distribution over the line profile which is
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incoherent with the initial one.

p(νout|νin) = φ(νout), (7.73)

where we have adopted a suggestive notation for the probability distribution.

The mean free path of the scattered photon is obtained by averaging over this frequency distri-

bution

〈lmfp(ν)〉 =

〈
1

n1sσsc(ν)

〉
=

1

τSH

c

νLyα

〈
1

φ(ν)

〉
→∞. (7.74)

Physically, this is a consequence of the Lyα photon rapidly scattering out of the core into the wings,

where the probability of further scattering is very small. The repeated scattering and resulting

diffusion is not described by typical Brownian motion with the steps drawn from a globally Gaussian

distribution. Thus the mean free path at line center, in Eq. (7.8), is a poor guide to the Lyα transport

scale.

In the rest of this section, we look at this random walk’s step size distribution in more detail,

and estimate a scale for the Lyα photon transport.

A general random walk is studied by following a collection of walkers starting at the origin. It

is characterized by the distribution of their density after a given number of steps. The asymptotic

form of this distribution is [364]

pN (x) =
1

N (d/α)
Lα

[ x

N (1/α)

]
, 0 < α ≤ 2, (7.75)

where d is the dimensionality of the random walk (d = 3 in our case), and Lα[x] is a stable distri-

bution. Its index, α, is fixed by the tail of the distribution of the step size:

lim
x→∞

p(x) ∼ 1

x1+α
. (7.76)

We estimate the index in our case by marginalizing over the frequency of the scattered photon.

p(x) =

∫
dν p(ν) p(x|ν)

∼
∫
dν φ4(ν) x2 exp [−x2φ2(ν)] −−−−→

x→∞
x−2. (7.77)

The argument for the scaling in Eq. (7.77) is that the dominant contribution to the integral at large

step sizes, i.e., when x→∞, is from frequencies satisfying φ(ν) ≤ x−1; the prefactor is exponentially

suppressed when we move a few Doppler widths away. Through Eq. (7.76), this implies a distribution

of the form Eq. (7.75) for the density distribution, with an index of around unity.
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Figure 7.10: Histograms of the displacements of 105 photons after N scattering events, in units of the mean
step size at the Lyα line-center, 〈x(νLyα)〉. They are normalized to integrate to unity. Inset: Demonstration
of their scaling property. The histograms collapse onto a common form when the displacement, x, is rescaled
by a factor of N1/α, with the index α = 1.06.

We confirm this observation by following a large number of photons through simulated scattering

events. Following each event, we redistribute the frequency incoherently according to Eq. (7.73),

neglect any direction dependence, and pick the subsequent step with a Gaussian distribution for its

size, with the MFP at that frequency.

Figure 7.10 shows the density distributions following a large number of scattering events, N ,

and the collapse of these distributions onto a universal form when the displacements are scaled

appropriately.

The displacement does not follow the usual
√
N law of Brownian motion – instead, the histograms

collapse onto a universal form when the independent variable is scaled as N1/α with α = 1.06. Also

notable is the fact that the resulting universal form is a fat-tailed distribution which exhibits power

law scaling, rather than the usual exponential falloff of the Gaussian distribution.

The quantity of direct interest for transport properties is the spread in a given time, t. The

diverging mean-free path leads to a spread which approaches ballistic transport, and hence the

distributions are significantly cut off by the maximum distance ct.

As before, we directly sample the distributions through a large number of simulated scattering

events. Their spread is fit by a power-law dependence of the form 〈x2(t)〉 ∼ t1.88.

To gauge the implications for the importance of Lyα photon transport, we consider the various
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processes involved in perturbed recombination, schematically represented in Figure 7.2. The response

time to a fluctuation in the ionization fraction is set by the speed of the case B recombination arm,

tr = (1/neαB). From the near-ballistic transport discussed above, the time taken by a Lyα photon

to diffuse across the fluctuation is comparable to the wave crossing time td ≈ (λphys/c). From Figure

7.1, we see that comoving wave-numbers of k ∼ 105 Mpc−1 are most relevant for the instability. On

these length scales, the wave crossing time and response time are

td ≈
2πa

kc
= 0.2 yr� tr ≈ 200 yr at z = 1100. (7.78)

These two timescales become comparable for wavenumbers k ≈ 102 Mpc−1 at the redshift of re-

combination, which is when the nonlocal radiative transport starts to matter. These wavelengths

are significantly larger than the simple estimate of Eq. (7.8). This is borne out by Figure 7.7. The

practical consequence is that for modes with wavelengths smaller than this, perturbed recombination

cannot be modeled by simply varying the cosmological parameters of the homogenous solution.

7.A.2 Recombination rate in diffusion-dominated regime

This section uses the notation of Section 7.4 for the moments of the photons’ phase space density.

In particular, inhomogeneities in the zeroeth moment, δf0(νLyα,x), drive transport of Lyα photons.

We consider fluctuations with small enough wavelengths so that the Lyα photons easily diffuse

between the peaks and troughs. In this case, the Lyα flux adjusts itself to wash out inhomogeneities

in the zeroeth moment.

The population of the first excited level is set by balancing the transition rates to and from the

ground state. The condition that the Lyα phase space density is uniform yields

δf0(νLyα,x) = δ (feq) = 0, (7.79)

δx2 = 4feqδx1s. (7.80)

The precise details of the radiative transfer determine the adjustment in the Lyα flux — we avoid

studying that part of the mechanism by considering the case B recombination arm of Fig 7.2. All

that is needed to solve the recombination arm is the fluctuation in the population of the n = 2 level,

which is given by Eq. (7.80):

δẋe|Lyα,2s = δ(−nHx
2
eαB + x2βB)

= −nHx
2
eαB

[
δm + 2

δxe

xe

]
+ βBδx2

= −nHx
2
eαBδm −

[
2nHxeαB + 4feqβB

]
δxe. (7.81)
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This matches the P → 1 limit of the result of the complete analysis, Eq. (7.68).

7.B Limit of weak diffusion

In this section we work out an analytical solution to the Boltzmann hierarchy in a situation with

weak diffusion. This is the complementary limit to that considered in Appendix 7.A, and is realized

when the wavelength of the fluctuations is much larger than the length scale for the diffusion of the

Lyα photons. We restrict ourself to the source term in Eq. (7.57) involving δfeq.

7.B.1 Anisotropic part of hierarchy

Let us consider the hierarchy of equations for the moments with j ≥ 1, Eq. (7.58). If the range of

frequencies ∆νv over which δfj0 varies is larger than

∆νmfp =
1

τSφ(ν)
≈ 4π2(ν − νLyα)2

ALyατS
(7.82)

(where the approximation is in the damping wings), the photons’ scattering rate is faster than that

of their redshift through the frequency range of interest, and we may drop the left hand side. We

expect this to be valid since ∆νmfp < |ν − νLyα| in the damping wings, even out to |ν/νLyα − 1| of

order unity.

This condition is satisfied very easily in the Doppler core due to the high scattering rates:

∆νmfp,core = νLyα∆H

√
π

τS
e(ν−νLyα/νLyα∆H)2 � νLyα∆H. (7.83)

Dropping the left-hand side of Eq. (7.58) converts the system of ODEs into an algebraic hierarchy.

We can define the frequency-dependent parameter

q = q(ν, k) ≡ HνaτSφ(ν)

ck
(7.84)

= 1.1× 106

(
k

105 Mpc−1

)−1

φV(x) at z = 1100, (7.85)

which is the optical depth for photons to travel a comoving distance k−1 at that frequency. We then

reduce Eq. (7.58) to

0 = q−1

[
− j

2j − 1
δfj−1 +

j + 1

2j + 3
δfj+1

]
+ δfj (7.86)

(for j ≥ 1). It is convenient at this point to transform back to angle-space, i.e. to work with the

function δf(ν, k, µ). Multiplying Eq. (7.86) by 2 and using the inverse transformation of Eq. (7.55),
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we see that

0 =

∫ 1

−1

dµ δf(µ)
[
iq−1jPj−1(µ) + iq−1(j + 1)Pj+1(µ)

+ (2j + 1)Pj(µ)
]
. (7.87)

Using the multiplication formula for the Legendre polynomials gives

0 = (2j + 1)

∫ 1

−1

dµ Pj(µ) δf(µ)(iq−1µ+ 1). (7.88)

This holds for all j ≥ 1, hence the solution is that the combination (iq−1µ + 1)δf(µ) must be a

constant independent of µ:

δf(µ) = F 1

1 + iq−1µ
. (7.89)

In particular, the relation between the first and zeroeth moments is

δf1(ν, k)

δf0(ν, k)
= 3i

∫ 1

−1
dµ µ δf(ν, k, µ)

∫ 1

−1
dµ δf(ν, k, µ)

= 3i

∫ 1

−1
dµ µ (1 + iq−1µ)−1

∫ 1

−1
dµ (1 + iq−1µ)−1

= −3q
[
1− 1/q

arctan (1/q)

]
. (7.90)

7.B.2 The isotropic part

It remains to solve the equation for δf0(ν, k). We substitute the relation (7.90) into Eq. (7.57), and

retain the source term of interest to get the Boltzmann equation for this moment

∂δf0

∂ν

= −τSφ(ν)
[
δfeq − pscδf0

]
− τsc

ν2
Lyα∆2

H

2

∂

∂ν

[
φ(ν)

∂δf0

∂ν

]

+ τSφ(ν)
[
pab −

{
1− 1/q

arctan (1/q)

}]
δf0. (7.91)

The boundary condition is that δf00,+ = 0 (i.e. no perturbation to the incoming radiation on the

blue side of the line). The solution C0(ν) of Eq. (7.59) is determined by setting δfeq − pscδf̄00 = 1

in Eq. (7.91).

We examine the simplest case, where the frequency diffusion term is negligible. In the limit we

are considering in this section, the wave-number k → 0. In that case, the parameter q → ∞, and
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the term in curly braces on the RHS of Eq. (7.91) approaches zero. Taking this limit, we have

∂δf0

∂ν
= τSφ(ν)pabδf0 − τSφ(ν). (7.92)

Defining the cumulative distribution function of the profile X =
∫
dν φ(ν) (so that X ranges from

0 at the red side of the line to 1 at the blue side), we may solve this equation to yield

δf0(ν) =
1

pab

[
1− epabτS(X−1)

]
. (7.93)

Averaging over the line profile is equivalent to the integration
∫ 1

0
dX :

C0 = δf0 =
1

pab

(
1− 1− e−τSpab

τSpab

)
. (7.94)

It follows that
1− pabC0

1 + pscC0

=
1

τS

1− e−τSpab

1− psc(1− e−τSpab)/(τSpab)
. (7.95)

In the relevant optically thick limit of τSpab � 1, this becomes equivalent to the usual Sobolev

escape probability, ≈ 1/τS. Substitution into the definition of P in Eq. (7.67) recovers the standard

Peebles’ C factor of Eq. (7.51).
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Part III

A new probe of magnetic fields in

the pre-reionization epoch
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Chapter 8

Preliminaries1

8.1 Introduction

Magnetic fields (MFs) are seen in astrophysical structures on a wide range of observable scales, both

in the local universe [365, 366] and at high redshifts [367]. Typical field strengths in galaxies and

galaxy clusters are a few to a few tens of µG, with coherence lengths of up to hundreds of kpc [368].

In contrast, the properties of the intergalactic magnetic field, i.e. that on larger length scales, are

largely unknown.

The leading paradigm for the origin of large-scale cosmic MFs assumes some kind of amplifica-

tion and dynamo-based sustaining of weak seed fields [369]. These seed fields may originate from

mechanisms effective during structure formation, or could be primordial remnants from the early

universe (see, for example, Refs. [369–373]). The search for primordial magnetic fields (PMFs) is an

active area of investigation in astrophysics and cosmology, as their observation would open up a new

window into the physics of the early universe and possibly provide an entirely unexplored source of

information about inflationary and pre-reheating processes.

Current upper limits on large-scale MFs come from several different observations, and are on the

order of 10−9 G. They are derived from the limits on Faraday rotation of the cosmic-microwave-

background (CMB) polarization [188] and of the radio emission from distant quasars [189], mea-

surements of the CMB temperature anisotropies [191], limits on CMB spectral distortions [192], and

various observations of large scale structure [190].

More recently, observations of TeV sources by the Fermi mission have been interpreted as im-

plying the existence of magnetic fields stronger than 10−15 G with Mpc scale coherence lengths, in

local large-scale-structure (LSS) voids [193–195]. Plasma instabilities might avoid these bounds by

eliminating the expected cascade of lower-energy gamma rays [196], but recent calculations indicate

1The material in Chapters 8–10 was adapted from the manuscript A new probe of magnetic fields in the pre-
reionization epoch: Formalism, Venumadhav, T., Oklopcic, A., Gluscevic, V., Mishra, A., & Hirata, C. M. 2014,
arXiv:1410.2250, currently under consideration for publication in Physical Review D. Reproduced here with permis-
sion, copyright (2014) by the American Physical Society.
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these instabilities might saturate, and thus challenge the viability of this argument [197, 198] (but

see also Ref. [199])). The lower limit may also be reduced if the TeV emission timescale is short,

since the arrival of the lower-energy cascade photons is delayed relative to the direct TeV photons

[200, 201].

All these methods have their advantages, but share the common feature of being sensitive to

the integrated effect of any MFs along a line of sight. Thus their measurements can be contami-

nated by low-redshift magnetic fields of astrophysical origin, for instance, those carried by galactic

winds. Moreover, these methods optimally detect only fields which are much stronger than typical

expectations for PMFs. Thus a definitive probe of PMFs needs to have the following features:

• The ability to isolate the effects of fields at different redshifts. In particular, sensitivity at high

redshifts (prior to, or at the dawn of structure formation).

• Sensitivity to extremely low field strengths. Inflationary, post-inflationary, and structure-

formation related mechanisms typically generate seed fields with strengths in the range 10−30–

10−15 G [371, 373].

• The ability to recover the MF power spectrum, whose features might give insight into the

specifics of the process of magnetogenesis.

This is the first part of a series that proposes a new observational probe of magnetic fields, which

has all the desired properties listed above. In this work, we lay out the details of the microphysics

behind it, while upcoming work [Gluscevic et al., in prep] evaluates detectability for various PMF

models and experimental setups.

The method discussed here is based on the effect of global MFs on the redshifted 21-cm emission

from neutral hydrogen prior to and during the epoch of cosmic reionization (EoR), whose measure-

ment is the goal of a number of low-frequency radio arrays, such as MWA [183], LOFAR [184],

PAPER [185], LEDA [186], SKA [187], and others. The 21-cm signal allows insight into very high

redshifts (in the approximate range 7 < z < 30), including early epochs where the intergalactic

medium (IGM) was just beginning to be affected by stellar feedback.

This method relies on the availability of internal (spin) degrees of freedom to hydrogen atoms

in the triplet state of the ground hyperfine transition. As we show in the body of the work, an

anisotropic radiation field spin-polarizes these levels (also see previous work in Refs. [374–378]).

Such anisotropies are naturally present in the early universe due to density fluctuations in the

neutral gas. In the presence of a background magnetic field, the Larmor precession of the atoms

leads to a characteristic signature in the 21-cm brightness temperature. In particular, the magnetic

field breaks the statistical isotropy of the measured two-point correlation functions of the brightness

temperature, which encapsulates information about both the MF’s coherence length and strength.
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This effect is inherently sensitive to extremely weak MFs, smaller than ∼ 10−19 G.1 This remarkable

sensitivity is due to the long lifetime of the excited state, during which even very slow precession

results in a substantial change in the direction of the emitted radiation.

We organize the presentation as follows: the rest of this chapter is devoted to background mate-

rial, and introduces the effect. We introduce 21-cm cosmology, and the Hanle effect (which is closely

related to the effect considered in this work) in Sections 8.2.1 and 8.2.2. We then introduce the effect

in a simple, semi-classical manner in Section 8.3. We lay out the notation and formalism we use in

Section 8.4, including our description of spin-polarized atoms in 8.4.1 and the anisotropic radiation

field in the vicinity of the 21-cm transition in 8.4.2.

Next, we study the microphysics of the 21-cm transition in Chapter 9. Section 9.1 studies the

excitation and de-excitation of the atoms by the 21-cm radiation itself, while Section 9.2 focuses

on de-polarization by competing non-radiative processes: Sections 9.2.2 and 9.2.3 deal with spin-

exchange collisions and optical pumping by Lyman-α photons, respectively.

Finally, Chapter 10 calculates the observables at late times; Section 10.1 describes the radiative

transfer of 21-cm photons, and Section 10.2 puts together all the results and calculates the result-

ing change in the brightness temperature fluctuations. We summarize the work and lay out our

conclusions in Section 10.3, and collect various technical details into the appendices.

8.2 Background

8.2.1 21-cm cosmology basics

The 21-cm line of neutral hydrogen corresponds to the transition between the hyperfine sublevels of

its ground state, whose origin is the interaction between the spins of the proton and the electron.

This interaction reorganizes the four possible spin states of the electron and proton into singlet and

triplet levels, which are separated by an energy gap of 5.9×10−6 eV, which corresponds to radiation

with a wavelength of 21.1 cm or a frequency of 1420 MHz in the rest frame.

In the early stages of the EoR, the universe was still mostly neutral, and fluctuations in the

brightness temperature of the 21-cm line were mainly driven by (mostly Gaussian) density fluctu-

ations. This stage lends itself to a very precise statistical description, allowing us to get a good

handle on the expected 21-cm signal from these redshifts [181, 182].

The first generation of EoR experiments, such as the MWA, PAPER, and LOFAR, aim to achieve

a statistical detection of the 21-cm signal from the EoR. Second generation experiments, such as the

SKA, are planned to come online within the next couple of decades. They aim to perform detailed

tomography of the IGM out to z ∼ 30. Future 21-cm observations of the high-redshift universe

1Note that a frozen magnetic field should scale as ∝ (1+z)2 due to flux conservation; the “comoving” field strength,
defined by extrapolation to the present day, would be 10−21 G.
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can open up a new frontier in cosmology, with a sample volume far exceeding that probed with

current observations. Several authors have suggested that cosmological 21-cm radiation could be

used to detect primordial magnetic fields via their dynamical effects on density and gas temperature

fluctuations [379–381]. The method proposed here using radiative transfer is sensitive to much

weaker fields than those investigated by these authors.

The conventional appeal of 21-cm observations is the availability of redshift information (in

contrast to other probes of the very early universe such as the CMB), the access to small-scale

modes (Silk damped in the CMB and washed out by nonlinear evolution today), and the consequent

large number of accessible modes [382]. The effect studied in this work relies on another aspect of

the transition: in the triplet state, the net magnetic moment of the atom (which is dominated by

the magnetic moment of the electron), takes on different values depending on the magnetic quantum

number. It is through this magnetic moment that that the 21-cm emission is sensitive to ambient

MFs, as explained in the following sections.

For unpolarized atoms, the detectability of the 21-cm signal hinges on the spin temperature Ts,

which quantifies the relative number densities of atoms in the two hyperfine levels of the electronic

ground state:
n(F = 1)

n(F = 0)
= 3e−T∗/Ts . (8.1)

Here F = 0 denotes the lower (spin-antiparallel) hyperfine level, F = 1 denotes the upper (spin-

parallel) level, 3 is the ratio of statistical weights, and T∗ = ~ωhf/kB = 68 mK is the hyperfine

splitting in temperature units. A signal is detected if the spin temperature of the gas deviates

from the temperature of the background CMB Tγ at that redshift: net emission occurs if Ts > Tγ

and absorption if Ts < Tγ . The spin temperature is determined by three major processes: (1)

absorption/emission of 21-cm photons from/to the radio background at that redshift (primarily the

CMB), (2) collisional excitation and de-excitation of hydrogen atoms, and (3) resonant scattering

of Lyα photons from the first stars and galaxies, which can change the spin state via the spin-orbit

interaction while the atom is in the excited state.

The fundamental quantity of interest observationally is the brightness temperature of the H i 21-

cm line [383]. In the optically thin approximation, the brightness temperature fluctuation relative

to the CMB at redshift z and hence observed frequency ωobs = ωhf/(1 + z) is

δTb ≈ 27x1s(1 + δ)
Ts − Tγ
Ts

(
1 + z

10

)1/2
(1 + z)H(z)

∂‖v‖
mK (8.2)

(see e.g. Ref. [182]).2 Here x1s is the hydrogen neutral fraction (essentially all in the ground state),

1+δ is the matter density contrast, Ts is the spin temperature, and the line-of-sight velocity gradient

∂‖v‖ accounts for deviations from the expansion rate of the homogeneous universe.

2Note that Eq. (7) in Ref. [182] is missing a −1 exponent.
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In this investigation, we take account of the spin-polarization of atoms, and hence we need the full

atomic density matrix and not just Ts. We will extend the formalism of 21-cm cosmology as needed

to derive an equation for ∆Tb valid in this case. Several previous analyses have considered polarized

21-cm radiation from high redshift and its “scrambling” by Faraday rotation in passing through the

interstellar medium of our own galaxy [384, 385]; however, they did not study polarization of the

emitting atoms3, and thus did not need to develop the formalism here.

8.2.2 Related methods: Hanle effect and ground-state alignment

The effect considered in this work is closely related to the Hanle effect [386], which refers to the

change in the polarization of resonant-scattering radiation in the presence of external MFs. In solar

research, techniques based on the Hanle effect are used for measuring weak MFs in solar prominences

and the upper solar atmosphere (see e.g. Refs. [387–390]).

The subject of this work relies on atomic alignment, whose significance in the astrophysical

context was first realized in the early days of maser studies. The theory of alignment in astrophys-

ical environments was further developed in the pioneering work of Varshalovich [374, 375]. Other

significant milestones were the work of Goldreich, Keeley, and Kwan [391, 392], who considered

the polarization of maser emission due to aligned molecules, and Goldreich and Kylafis [393], who

proposed using linear polarization in radio lines as probes of magnetic fields in molecular clouds.

More recently, Yan & Lazarian [376–378] proposed a suite of methods to probe weak MFs in

diffuse media using atomic alignment. Since the method discussed in this work relies on the same

atomic physics as these previous studies, we briefly summarize the main idea behind them. Their

methods rely on the polarization and intensity of radiation interacting with atoms or ions with fine

(or hyperfine) structure in the ground state. When these species are immersed in an anisotropic flux

of photons, the orientation of the total atomic angular momentum vector gets a preferred direction

since photons carry angular momentum and transfer it via interactions. If aligned atoms are further

placed in an external MF, their orientations change due to Larmor precession. As a result, the

output radiation’s intensity and polarization changes in a manner depending on the direction and

strength of the MF. The main advantage of using atomic species with (hyper)fine structure in their

ground or metastable states is these states’ long lifetimes. Longer lifetimes are associated with

longer baselines for Larmor precession, which make the effect sensitive to very weak MFs. These

authors recognize the relevance of this effect for studying magnetic fields during the EoR via the

21-cm line of neutral hydrogen [378] and the fine-structure lines of the first metals [394], but they

do not include its calculation in the cosmological context.

This work distils elements from the physics of all the previous work on astrophysical alignment,

3These works focused on polarization produced by re-scattering of 21-cm radiation by electrons in ionized regions.
There is no anisotropy of the spins of the hydrogen atoms involved in this mechanism.
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and uses features unique to the study of the 21-cm line in the cosmological context in order to

synthesize a new method for measuring MFs. In order to align the excited state of the 21-cm

transition, our method relies on ‘resonant’ anisotropies (at frequencies ν = 1.42 GHz) that are

sourced by fluctuations of Large Scale Structure (LSS). This is closely related to the mechanism of

Refs. [391–393], in that it uses anisotropies in optical depth sourced by velocity gradients in order

to achieve alignment. The mechanism studied in [376–378] aligns the triplet via optical pumping by

anisotropies in the incident Lyman-α radiation field, i.e. at frequencies ν ≈ 2.46× 1015 GHz.

Our method also differs from these previous methods in the respect that it uses relatively subtle

changes in the intensity of the outgoing radiation to detect MFs. Refs. [376–378] recognize the

change in the net emissivity, and propose using the emissivity ratio of multiple lines to probe MFs.

As we show in this work, it is possible to use solely the 21cm transition, due to the statistical nature

of its measurement in cosmology. The cosmic density field contains perturbation modes with a

variety of wave vectors k, whose amplitudes obey the underlying statistical isotropy of the Universe.

The anisotropy in the scattering properties caused by the MF can then be probed using the varying

illumination conditions (depending on the direction of k̂), rather than the polarization of outgoing

radiation.

8.3 Illustration and simple estimate of the effect

Consider a hydrogen atom in the ground state of the hyperfine transition, located in the overdense

part of a growing Fourier mode at a suitably high redshift. Moreover, let us assume that the

21-cm line is visible in emission. The brightness temperature fluctuation δTb seen by this atom

along a particular line of sight (LOS) n̂ is largely due to stimulated emission and absorption by a

thermal background of excited atoms, and is proportional to the optical depth τ integrated along

that direction:

δTb(n̂) ≈ τ(n̂)(Ts − Tγ), (8.3)

where Ts and Tγ are the spin- and CMB-temperatures, respectively.

The optical depth, in turn, depends on the path length over which photons stay within the line:

τ(n̂) ∼ n
∫
σ(ν)dl = n

∫
σ(ν)

dl

dν
dν ∼ nσ(ν0)c∆

dv||/dr||(n̂)
, (8.4)

where σ(ν) is the absorption cross-section at frequency ν, ν0 is the frequency at line-center, ∆ is the

dimensionless Doppler width of the line, c is the speed of light, and dv||/dr||(n̂) is the velocity gradient

along the LOS. The velocity gradient term equals the Hubble rate when the LOS is orthogonal to

the wave-vector k of the Fourier mode, but it picks up a contribution from the infall into the growing

overdensity when the LOS has a component along k. For an arbitrary direction of the LOS, the
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Figure 8.1: An illustration of how an incident quadrupole spin-polarizes the triplet level of the hyperfine
transition. The hydrogen atom (at the center) is surrounded by a quadrupole intensity pattern with hot
(blue, thick lines) and cold (red, thin lines) spots. Absorption of 21-cm photons produces a state with a
magnetic moment µ aligned with the magnetic field Bγ of the incident radiation. The incident anisotropy is
tranfered to the direction of the magnetic moment. Inset: The resulting unequal population of the triplet
sublevels. For the orientation of this figure, the levels with magnetic quantum number mF = ±1 (thick blue
lines) are preferentially populated due to the hot spots.

velocity gradient term equals

dv||

dr||
(n̂) = H +

dvinfall,||

dr||
(n̂) = H

[
1− (k̂ · n̂)2δ

]
. (8.5)

Hence the optical depth of the medium around the atom has a quadrupole dependence with a frac-

tional size proportional to the overdensity, or an absolute size of O(δτ). This leads to a quadrupole in

the incident brightness temperature, oriented such that directions along the wave-vector are hotter.

Atoms that are excited by absorption have magnetic moments that are aligned with the exciting

radiation’s magnetic field. For anisotropic incident radiation, this leads to a preference for directions

orthogonal to that of hot spots in the incident radiation field. Thus an incident quadrupole spin-

polarizes the atoms, i.e. unequally populates the states within the hyperfine triplet. Figure 8.1

illustrates this effect.

These excited atoms de-excite to the ground state mainly by stimulated emission or non-radiative

processes. The former leads to an output quadrupole pattern with the same orientation as the

incident one, but a smaller size of O(τ δτ). This is illustrated in Fig. 8.2.

The angular structure of the observed brightness temperature fluctuations is dominated by the

contribution of the pre-existing thermal background of excited atoms, and is O(δτ) in size, as can
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Figure 8.2: A hydrogen atom in a growing plane wave density fluctuation: The atom is excited to the
spin-polarized state of Fig. 8.1, which produces the quadrupolar radiation pattern shown above when it de-
excites. Also shown is one possible orientation of the intermediate magnetic moment µ, and the associated
angular momentum L. If an external magnetic field B is present, the torque it exerts (µ×B) causes the
moment to precess around it before it de-excites. If the field has a component in the plane of the observer’s
sky, this changes the brightness temperature for a plane wave oriented in a general direction.

be seen from Eq. (8.3). The secondary emission described above is much smaller (by a factor of the

optical depth, τ), and does not correspond to a qualitatively different pattern.

The presence of a background magnetic field breaks isotropy and leads to a unique signature

in the angular pattern of this secondary emission. To see this, consider the effect of the magnetic

field on the intermediate magnetic moment, which has a finite lifetime td. This lifetime is mainly

due to stimulated emission and non-radiative processes such as collisions and optical pumping by

Lyman-α photons. Additionally, the moment precesses about the background magnetic field B with

the Larmor frequency ωL.

Due to these effects, the moment µ evolves as

d

dt
µ ≈ − µ

td
− ωLµ×B̂. (8.6)

In a coordinate system with the background magnetic field along the z−axis, the solution is

µ(t) = e−t/td




cos (ωLt) − sin (ωLt) 0

sin (ωLt) cos (ωLt) 0

0 0 1


µ0. (8.7)
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Thus the moment precesses through an angle θB ≈ ωLtd before the atom de-excites. If the de-

excitation occurs only via radiative processes, the lifetime is

t−1
d ≈ AkBTγ

∆Ehf
, (8.8)

where kB is the Boltzmann constant, ∆Ehf is the hyperfine energy gap, and A is the Einstein

A-coefficient or intrinsic width of the line, which is broadened due to stimulated emission by the

background CMB with a temperature Tγ .

We estimate the angle of precession to be

θB ≈ ωLtd =
γe∆Ehf

AkBTγ
B = 1.5×

(
B

10−19G

)(
1 + z

10

)−1

, (8.9)

where γe is the gyromagnetic ratio of the electron. Figure 8.2 illustrates the precession of the

magnetic moment, and that of the quadrupole associated with the secondary emission. From the

geometry of the figure with the magnetic field along the z−axis, the change in a mode’s brightness

temperature depends on which quadrant of the x− y plane the projection of k lies in. Keeping the

line of sight along ŷ and assuming the precession angle is small,

δTb|pr ∼ (Ts − Tγ)τ δτ
(
θBz k̂xk̂y − θBx k̂yk̂z

)
. (8.10)

The precession-induced correction shown in Eq. (8.10) distorts the angular structure of the 21-cm

emission in a manner unlike any of the usually considered effects – it breaks the symmetry around

the line of sight. This distinguishes it from corrections like the usual redshift space distortions due

to peculiar velocities. Fig. 8.3 illustrates this.

In the rest of the work we go beyond this simple semi-classical treatment of the spin-polarization,

and compute the rates of de-polarization by other non-radiative channels.

8.4 Notation and Basic Formalism

Table 8.1 lists the symbols used throughout this work and the physical quantities they represent.
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Figure 8.3: This figure illustrates the effect on the power-spectrum of the brightness temperature fluctua-
tions. The sub-figures show contours of constant power in k-space. (a) Fluctuations of the 21-cm emissivity
(photons per cm3 per s emitted over all solid angles) in the rest-frame of the emitting atoms. (b) Fluctua-
tions as seen by a distant (present-day) observer. Note the elongation in the direction of the line of sight to
the observer, n̂, due to peculiar velocities. This manifests as a “compression” in the real-space correlation
function, but as a power enhancement (“stretching” of the P (k) contours) in Fourier-space. (c) Fluctuations
with an external magnetic field added. The effect of the precession is to break the symmetry around n̂. The
size of the effects has been exaggerated in (b) and (c).
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Table 8.1: Glossary of symbols used in this work.

Symbol Physical quantity
ρ Density matrix of neutral hydrogen atoms
ρaa Singlet state sub-matrix of ρ. It is a scalar which corresponds to the occupancy

of the singlet state
ρmn Triplet state sub-matrix of ρ
Pjm Irreducible components of ρmn
ωhf Angular frequency of the hyperfine transition
T∗ Hyperfine gap expressed in temperature units
A Einstein A-cofficient for the hyperfine transition
k± Averaged cross-sections for collisional transitions
κ(1-0) Collisional rate for transition from triplet to singlet state
κ(0-1) Collisional rate for transition from singlet to triplet state
κ(j)(1-0) Collisional depolarization rates for rank-j irreducible components
n Principal quantum number
l Azimuthal quantum number
m Magnetic quantum number
F Total angular momentum (nuclear + electronic)
mF Total magnetic quantum number
Jα Flux of Lyman-α photons on the blue side of the line (in cm−2s−1Hz−1sr−1)
Tc,eff Effective color temperature in the vicinity of the Lyman-α resonance
Γ2p Einstein A-coefficient for the Lyman-α transition
γ2p = Γ2p/4π, HWHM of the Lyman-α transition
φAB(ν) Interference profiles for the lines A and B
σFI→FJ ,(j)(ν) Cross section for the transition between the rank-j components of multiplets with

F = FI , FJ due to optical pumping by incident Lyman-α photons of frequency
ν

S̃α, S̃α,(2) Correction factors for the detailed frequency dependence of Lyman-α flux, en-
tering the rate equations for P00 and P2m

kγ Wave-vector of the radiation
n̂ Direction of the radiation’s propagation (line-of-sight from the emitter to the

observer)
fαβ(ω) Phase space density (p.s.d) matrix for the radiation
fX(ω) Parity invariants of the radiation’s p.s.d
Fjm(ω) Irreducible components of the radiation’s p.s.d
φ(ω) Absorption profile for the hyperfine transition
X (ω) Cumulative function for φ(ω)
σ(ω) Absorption cross-section for the hyperfine transition
τ Optical depth of the medium
δTb Brightness temperature fluctuation of the 21-cm line relative to the CMB
xα,(2) Relative strength of depolarization through optical pumping and radiative chan-

nels
xc,(2) Relative strength of depolarization through collisions and radiative channels
xB Relative rates of precession and radiative depolarization
δ Local overdensity
v Bulk matter velocity
k Wave-vector of the growing mode of the matter density
z Redshift
Ts Spin temperature
Tγ CMB temperature
Tk Kinetic temperature
nH Number density of hydrogen atoms
x1s Fraction of hydrogen atoms in the 1s state
H Hubble expansion rate
B External magnetic field in the region of interest
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8.4.1 Atomic Density Matrix

We study the level populations of the hydrogen ground state using the density matrix formalism

[395]. If we consider an ensemble of atoms consisting of a mixture of states |ψα〉 with statistical

weights Wα, then the density operator is defined as

ρ =
∑

α

Wα|ψα〉〈ψα|. (8.11)

Given the density matrix ρ, the expectation value of a general dynamical operator M is

〈M〉 = Tr [ρM] . (8.12)

In order to express the density operator in matrix form, we choose a set of basis states |φI〉 which

are orthonormal and complete, i.e.,

〈φI |φJ〉 = δIJ , and (8.13)
∑

I

|φI〉〈φI | = 1, (8.14)

where δIJ is the Kronecker delta. The matrix elements of ρ are then given by

ρIJ = 〈|φJ〉〈φI |〉 =
∑

α

Wα〈φI |ψα〉〈ψα|φJ〉. (8.15)

The interaction between the electronic and the nuclear spin splits the ground state of the hydrogen

atom into a superposition of two hyperfine levels, a singlet with quantum numbers (F = 0,mF = 0),

and a triplet with (F = 1,mF = 0,±1). As long as we consider the subset of neutral hydrogen

atoms in the 1s electronic state, these states form a complete basis. In the ket notation, these states

are represented by |FmF 〉.
We will henceforth adopt the convention that indices of the kind I, J, . . . , when used as subscripts

for the density matrix ρ or as state labels, run over all four of the hyperfine states of the 1s type.

They are purely abstract indices. Depending on the context, their instantiations are either the lower-

case roman letters a, b, c, and d or the numbers 1, 0, and −1. Table 8.2 maps the various indices to

states. Note that numerical subscripts, referred to by m,n, . . . in the text, run over only the triplet

states. They equal the magnetic quantum numbers of the respective states. Thus summations over

these numeric indices represent ones over only the triplet states.

Within the basis of the two hyperfine levels, the density matrix is of the form

ρ = ρIJ =




1× 1︷︸︸︷
ρaa ρam

ρma
︸︷︷︸
3× 3

ρmn


 . (8.16)
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This density matrix consists of four submatrices. The upper diagonal submatrix has only one element

(ρaa) that describes the probability of finding an atom in the singlet state. The lower diagonal

submatrix describes the triplet state. Its diagonal elements represent the probabilities of finding

atoms with F = 1 in the states with the corresponding quantum number mF . The off-diagonal

elements describe coherences between states of different mF . The remaining two submatrices, with

elements in the first row or column, describe the interference between F = 0 and F = 1 levels.

The time evolution of these terms is proportional to exp (iωhft), where ωhf = 2π × 1420 MHz is the

angular frequency corresponding to the hyperfine gap. These terms rapidly oscillate on macroscopic

timescales with average values of zero, and thus we do not need to follow them in the calculation.

The processes we are interested in only redistribute atoms between the levels, and hence the

trace of the density matrix is preserved by them. The trace can be taken to be unity as long as we

are interested in the population of atoms in the ground electronic state i.e. ρaa + Tr(ρmn) = 1.

The 4×4 Hermitian matrix ρ is described by sixteen real numbers. Removing the six real degrees

of freedom constituting the sub-matrix ρam, and the singlet sub-matrix ρaa, leaves nine real numbers

describing the triplet state sub-matrix ρmn.

In order to take advantage of the symmetries of the problem, it is convenient to express the

density matrix in terms of irreducible tensor operators. We construct irreducible components of

ranks j = {0, 1, 2} from the elements of the triplet sub-matrix, in the manner of Ref. [396]: 4

Pjm =
√

3(2j + 1)
∑

m1,m2

(−1)1−m2


 1 j 1

−m2 m m1




×ρm1m2 , (8.17)

where the expression in large parentheses is the Wigner 3-j symbol. The indices j and m indicate

that the irreducible component Pjm transforms in the same way as the corresponding spherical

harmonic Yjm does under a rotation of the axes – only components with the same rank j mix. The

Hermiticity of the density matrix leads to the characteristic behavior of these components under

complex conjugation:

Pj−m = (−1)mP∗
jm. (8.18)

The components of rank zero, one, and two are described by one, three, and five real numbers,

respectively. As expected, both descriptions of the triplet state density sub-matrix have the same

total number of real degrees of freedom.

4Note that the definition in Ref. [396] differs from ours by a factor of ij , due to their usage of a different convention
for spherical tensors.
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Table 8.2: Notation for hyperfine states.

|FmF 〉 Roman Numeric
|0 0〉 a -
|1− 1〉 b -1
|1 0〉 c 0
|1 1〉 d 1

We recover the density matrix in the standard basis from the irreducible components using the

following relation:

ρm1m2
=
∑

jm

√
2j + 1

3
(−1)1−m2


 1 j 1

−m2 m m1


Pjm. (8.19)

The explicit forms of the irreducible components are as follows:

P00 = ρ11 + ρ00 + ρ−1−1 = Tr(ρmn), (8.20a)

P11 = −
√

3

2
(ρ01 + ρ−10),

P10 =

√
3

2
(ρ11 − ρ−1−1), (8.20b)

P1−1 =

√
3

2
(ρ10 + ρ0−1),

P22 =
√

3ρ−11,

P21 = −
√

3

2
(ρ01 − ρ−10),

P20 =
1√
2

(ρ11 − 2ρ00 + ρ−1−1), (8.20c)

P2−1 =

√
3

2
(ρ10 − ρ0−1), and

P2−2 =
√

3ρ1−1.

The operator of rank zero is a scalar representing the net probability of finding an atom in the triplet,

or F = 1, state. The operator of rank one is a vector with three components, and is often called

the orientation vector. It is proportional to the internal angular momentum of the ensemble. The

operator of rank two is the so-called alignment tensor, which has five components that are quadratic

in angular momentum – they are related to the spherical components of the electric quadrupole

tensor.

In many applications, excitations between the singlet and the triplet are isotropic. In such cases,

only the operator of rank zero, or the net excited-state occupancy, is relevant. The scenario of

interest in this work involves anisotropic excitations, and thus we need to use operators of higher
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rank to describe the spin state of the atoms, which are said to be spin-polarized.

For a system in equilibrium with a heat bath with temperature T , the elements of the density

matrix take the form

ρth
IJ =

e−βEI

Z
δIJ , (8.21)

where β = (kBT )−1, and Z =
∑
I e
−βEI is the partition function of the ensemble.

Given a general density matrix ρIJ , the spin temperature Ts is defined using this equilibrium

formula:
P00

1−P00
=
ρ11 + ρ00 + ρ−1−1

ρaa
= 3e−(~ωhf/kBTs). (8.22)

In the regimes of interest, the spin temperature is much larger than the temperature associated with

the gap, which is T∗ = ~ωhf/kB = 68.2 mK. In this limit, the occupancy of the excited state is

P00 ≈
3

4
− 3T∗

16Ts
. (8.23)

8.4.2 Phase-space density matrix for radiation

In this section and subsequent sections, we use the Coulomb gauge to describe the electromagnetic

field. It is defined by the condition that

∇ ·A = 0 , (8.24)

where A is the vector potential. In this gauge, the electric and magnetic fields are functions only of

the vector potential in the absence of free charges.

As long as we can approximate the electromagnetic field to be Gaussian, we can describe its

general state by a density matrix or two-point function, in the same manner as the spin-states of

the hydrogen atoms in Section 8.4.1. In order to explicitly realize this, we use the Fourier modes of

the vector potential as an orthogonal and complete basis set:

A(r) =
∑

kγ ,α

[
aα(kγ)Akγ ,α(r) + a†α(kγ)A∗kγ ,α(r)

]
, (8.25)

with mode functions given by

Akγ ,α(r) =

(
2π~c2

ω

)1/2

e(α)(k̂)eikγ ·r , (8.26)

where kγ is the wave-vector of the radiation. We use a subscript on the wave-vector to avoid confusing

it with that of the density fluctuations. The summation over kγ is shorthand for the integral
∫
d3kγ/(2π)3, and the angular frequency is given by ω = ckγ . The symbol e(α)(k̂γ) represents
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polarization vectors for modes propagating in the direction k̂γ , where α = ±1 indicates right- and

left-circularly polarized radiation, respectively, with the phase convention in terms of the unit vectors

θ̂ (north-south polarization) and φ̂ (east-west polarization):

e(±1)(k̂γ) = ∓ 1√
2

(θ̂ ± iφ̂)|(θ,φ)=(θkγ ,φkγ ) . (8.27)

The expansion coefficients in Eq. (8.25) are annihilation and creation operators for photons with

momentum ~kγ , with the following commutation relations:

[aα(kγ), a†β(k′γ)] = (2π)3δ(kγ − k′γ)δαβ , (8.28)

[aα(kγ), aβ(k′γ)] = [a†α(kγ), a†β(k′γ)] = 0. (8.29)

We define the density matrix for radiation in a manner almost exactly paralleling that of Eq. (8.15),

which defined it for the atoms:

〈a†α(kγ)aβ(k′γ)〉 = (2π)3δ(kγ − k′γ)fβα(ω, n̂ = k̂γ), (8.30)

where n̂ denotes the direction of propagation. The phase-space density matrix fαβ(ω, n̂) generalizes

the scalar phase-space density for photons to the polarized case:

fαβ =


f++ f+−

f−+ f−−


 = fI 1+ fV σz − fQ σx − fUσy =


 fI + fV −fQ + ifU

−fQ − ifU fI − fV


 . (8.31)

The decomposition of the elements of the phase-space density matrix in Eq. (8.31) using the Pauli

matrices connects them to the Stokes parameters:

X(ω, n̂) =
~
c2

ω3

4π3
fX(ω, n̂), X ∈ {I,Q,U,V}, (8.32)

where the quantities are defined per unit angular frequency ω.

The elements of the phase-space density matrix transform in different ways under a rotation of

the axes. The diagonal elements transform as scalars, while the off-diagonal elements transform as

quantities with spin weights of ±2 [397]. Hence, their decomposition into moments is of the form

fαβ(ω, n̂) =
∑

j,m

√
4π

2j + 1
(fαβ)jm(ω) [α−βYjm(n̂)]

∗
. (8.33)

The quantity sYjm(n̂) is the spin-weighted spherical harmonic with spin-weight s. The convention

of Eq. (8.33) is slightly different from that in the standard cosmology literature. Appendix 10.A

expands on the difference and the reason for adopting the current convention.
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Inversion of the coordinate axes (a so-called parity transformation) transforms quantities with

spin weights of ±2 into each other. We further split the moments into parity invariants as follows:

(f++/−−)jm = fI,jm ± fV,jm , (8.34a)

(f+−/−+)jm = − fE,jm ± ifB,jm . (8.34b)

The quantities fI,jm and fV,jm are moments of the intensity and circular polarization, respectively.

A parity transformation multiplies the quantities fE,jm and fB,jm by factors of (−1)j and (−1)j+1

respectively. Hence, the nomenclature of “electric-type” and “magnetic-type” moments.

In this section, we used the plane wave basis to define the phase-space density matrix and its

moments. The interaction of partially polarized light and atoms takes on a particularly simple form

if we describe the EM field in the alternate spherical wave basis [398]. We use this basis to perform

calculations with an atomic physics flavor, due to the simplicity and transparency of the resulting

equations. If needed, we can also perform all the calculations in the plane wave basis, with the

investment of some extra effort. The substance of the final results does not depend on the choice of

basis; when we use the results as inputs to calculations with a cosmology flavor, we use their form

in the conventional plane wave basis of this section.

Appendix 10.B expands on the details of the spherical wave basis, and the steps involved in

moving back and forth between it and the plane wave basis.
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Chapter 9

Microphysics of the 21-cm line

9.1 Interaction Between Hydrogen Atoms and 21-cm Radi-

ation

In this section, we work out the effect of radiative transitions to and from spin-polarized states of the

atom. We generalize the usual treatment of absorption, and spontaneous and stimulated emission,

to account for the evolution of the full density matrix ρ rather than just the level occupation

probabilities. Our description of the atom-radiation interaction Hamiltonian is similar, in principle

if not in detail, to Sections 14.1 and 15.4 of Mandel & Wolf [399].

Radiative transitions between the singlet and triplet states of neutral hydrogen atoms are ac-

companied by the emission or absorption of radio photons at or near the frequency of the hyperfine

gap. The electronic wavefunctions of both states are of the 1s type in position space, so an electric

dipole transition between them is forbidden. The dominant channel is a magnetic dipole transition,

which involves the emission or absorption of j = 1 photons of the magnetic type.

The matrix element for the transition from an initial state I to a final state J , via the absorption

of a photon of the magnetic type, with angular frequency ω and angular momentum indices j = 1,m

is [396]

VJI,m(ω) = −i
√

2

3π

(
~ω3

c3

)1/2 [
−e
{
Q

(M)
1,m

}
JI

]
, (9.1)

where
{
Q

(M)
1m

}
JI

is a component of the magnetic dipole transition moment Q
(M)
JI in the spherical co-

ordinate system. Given the initial and final states, rotational invariance fixes the magnetic quantum

number m of the photon.

The magnetic dipole moment is related to the electron’s spin-angular momentum by the gyro-

magnetic ratio, i.e., −eQ(M) = −(geµB/~)Se, where ge is the Landé g-factor for the electron spin

and µB is the Bohr magneton.

The initial state I is the singlet state a, and the final state J lies within the triplet. We appeal to
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the Wigner-Eckart theorem to write the various absorption matrix elements in terms of the reduced

(or double-barred) matrix element:

VmF a,m(ω) = (−1)1−mF


 1 1 0

−mF m 0


 〈1‖V (ω)‖0〉, (9.2)

〈1‖V (ω)‖0〉 = i

(
~ω3

2πc3

)1/2

geµB. (9.3)

The Hamiltonian for the interaction between the atoms and EM radiation is1

Hhf,γ =
∑

mFm

∫
dω VmF a,m(ω)|1mF 〉〈00|a(M)

1m (ω) + h.c. (9.4)

Here “h.c.” stands for Hermitian conjugation. The Hamiltonian uses the notation for the annihilation

operator for a photon of the magnetic type, expanded upon in Appendix 10.B.

From here onwards, we use a dot over a quantity to represent its rate of change with respect

to coordinate time. Equation (8.15) enables us to write down the evolution of the triplet state

sub-matrix ρmn due to the interaction with the EM field. The underlying operator commutes with

the matter Hamiltonian, so its evolution is solely due to the interaction Hhf,γ , specifically:

ρ̇m1m2
|γ =

i

~
〈[Hhf,γ , |1m2〉〈1m1|]〉 =

i

~
∑

m

∫
dωV ∗m2a,m(ω)

〈
|00〉〈1m1|a(M)

1m
†(ω)

〉
+ c.c.s. (9.5)

Here “c.c.s.” stands for complex conjugation with a swap (i.e. swap m1 ↔ m2).

The three-point functions of the atom and the radiation field represent transitions between the

singlet and the triplet levels. Appendix 10.C derives expressions for such three-point functions.

Plugging in Eq. (10.60) gives the evolution equation

ρ̇m1m2
|γ = − π

~2

∑

m,m′,m3

V ∗m2a,mVm3a,m′

[
ρm1m3

{
δmm′ + f

(M1)(M1)
m′,m

}
− δm3m1

ρaa f
(M1)(M1)
m′,m

]
+ c.c.s.

(9.6)

This uses the notation for the radiation’s phase-space density matrix in the spherical basis, defined

in Eq. (10.49) of Appendix 10.B. The transition matrix elements and phase-space density moments

are evaluated at ωhf , the angular frequency of the hyperfine transition. However, the frequency

in the bulk-rest frame corresponding to ωhf in the interacting atoms’ frame is distributed over a

broadened profile due to the thermal motions of the atoms.

In this calculation, we assume that the atom density matrix is independent of the velocity. The

practical consequence of this assumption is that Eq. (9.6) can be used as is, with the radiation’s phase

1Compare Eq.(15.4-3) of Ref. [399]. Their interaction Hamiltonian is for a single plane wave mode of the radiation
field, and is written in the interaction rather than the Heisenberg picture.
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space density averaged over a Doppler-broadened profile centered around ωhf . The consequences of

relaxing this assumption have been explored in a different context before [400]. In subsequent

equations, a bar over quantities is used to indicate averages over the line profile.

In order to simplify the evolution given by Eq. (9.6), it is convenient to divide the terms into

spontaneous and stimulated emission, and photo-absorption contributions.

Spontaneous emission is described by the terms in Eq. (9.6) connecting the excited state density

sub-matrix ρmn to itself. We write these terms in terms of the irreducible components Pjm using

Eqs. (8.17) and (8.19):

Ṗjm|sp.em =−APjm, (9.7)

A =
2π

3~2
|〈1‖V (ωhf)‖0〉|2 = 2.86× 10−15s−1. (9.8)

The quantity A is the Einstein A-coefficient for the hyperfine transition. We use Eqs. (9.2), (9.3)

and (9.8) to express the transition matrix element in terms of A as follows:

VmF a,m(ωhf) = i~
√
A

2π
δmmF . (9.9)

Absorption is described by the terms in Eq. (9.6) connecting the excited state density sub-matrix

ρmn to the ground state occupancy ρaa. Using Eq. (9.9), we write this contribution as

ρ̇m1m2
|ab = A ρaa f

(M1)(M1)
m1,m2 . (9.10)

We can define irreducible components, Fjm, of the M1–M1 block of the photon phase-space den-

sity matrix in the same manner as those of the triplet state density sub-matrix [see Eq. (10.53)].

Hence, the photo absorption contribution retains its form when expressed in terms of the irreducible

components:

Ṗjm|ab = A ρaa Fjm = A (1−P00)Fjm. (9.11)

Stimulated emission is described by the terms in Eq. (9.6) connecting the excited state density sub-

matrix ρmn to itself, via the photon phase-space density moments f
(M1)(M1)
m,n . Using Eq. (9.9), this

contribution is

ρ̇m1m2
|st.em = −A

2

∑

m3

ρm1m3
f (M1)(M1)
m3,m2

+ c.c.s. (9.12)

Using Eqs. (8.17), (8.19) and (10.54), we rewrite this in terms of the irreducible components Pjm

and Fjm:

Ṗjm|st.em = −A
2

∑

m1m2m3

∑

j′m′j′′m′′

√
(2j + 1)(2j′ + 1)(2j′′ + 1)

3
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×(−1)1−m3

[

 1 j 1

−m2 m m1




 1 j′ 1

−m3 m′ m1




 1 j′′ 1

−m2 m′′ m3


+(j′m′ ↔ j′′m′′)

]
Pj′m′Fj′′m′′ .

(9.13)

The summations over angular indices for products of three 3-j symbols, when evaluated, yield the

product of a Wigner 6-j symbol along with a 3-j symbol [401]. Thus the evolution of the irreducible

components Pjm due to stimulated emission is

Ṗjm|st.em =−A
∑

j′,j′′

√
(2j′ + 1)(2j′′ + 1)

3




j′′ j′ j

1 1 1




[ (−1)j + (−1)j

′′−j′

2

]
(Pj′ ⊗Fj′′)jm.

(9.14)

The expression enclosed in curly braces is the 6-j symbol, and the notation (Pj1 ⊗ Fj2)jm denotes

the sum of products of the irreducible quantities Pj1m1
and Fj2m2

, weighted with appropriate 3-j

symbols, to yield a quantity which transforms in the (jm) representation.

In the absence of a density fluctuation, the excited states are isotropically occupied. Thus only

the irreducible moment P00 has a zeroth-order contribution. The radiation field is unpolarized in

this case, so only the intensity monopole has a zeroth-order contribution. Thus the only relevant

radiation moment in the unperturbed case is F00.

As discussed in Section 8.3, a growing density fluctuation leads to an incident quadrupole on

the atoms. Hence the extra radiation moment exciting the atoms is of the F2m type. The spin-

polarization due to this quadrupole is described by the alignment tensor P2m. The orientation

tensor P1m can be neglected to the first order in the fluctuations. (The CMB dipole in the baryon

rest frame is first-order in perturbation theory, and thus in principle should be considered; however,

it has the wrong parity to contribute to P1m.)

When we sum up the contributions of absorption and emission from Eqs. (9.7), (9.11), and (9.14),

we get the net rate of change of the atom density matrix due to radiative processes. Using explicit

expressions for the irreducible components Fjm of the phase-space density matrix from Eq. (10.53),

we find that

Ṗ00|γ =−A
[
P00 − (3− 4P00) fI,00

]
and (9.15a)

Ṗ2m|γ =−A
[(

1 + fI,00

)
P2m −

3− 4P00

5
√

2

(
fI,2m +

√
6 fE,2m

)]
. (9.15b)

9.2 Other Processes Affecting the Atomic Density Matrix

The level populations or spin-polarization of the hydrogen ground state can be altered by mechanisms

other than emission/absorption of the 21-cm photons. The ones relevant to the subject of this work
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are background magnetic fields, hydrogen-hydrogen collisions, optical pumping by Lyman-α photons.

Of these, the effect of the magnetic fields is simplest to evaluate.

The transition rates for the isotropically occupied cases due to the other processes have been

calculated previously [402, 403]. In this section, we generalize these results to the case of spin-

polarized hydrogen atoms – in particular we calculate the rates of de-polarization due to collisions

and optical pumping, which are important for determining the lifetime of the excited state of Section

8.3.

9.2.1 Background magnetic field

The precession of an atom in an external magnetic field B is the result of the perturbing Hamiltonian

HB = −µ ·B =
µB

~
(Le + geSe − gp

me

mp
Sp) ·B. (9.16)

The orbital angular momentum Le vanishes for electronic wavefunctions in the 1s subspace. The

spin angular momenta of the electron and proton are comparable, but their masses differ by three

orders of magnitude. Hence we neglect the third term in Eq. (9.16) (the interaction of the nuclear

spin with the external magnetic field, since ge/me � gp/mp).

It is simplest to choose a coordinate system such that the z-axis is oriented along the external

magnetic field. If we retain only the second term in Eq. (9.16), we have the following evolution

equation for the density matrix:

ρ̇m1m2 |B =
i

~
〈[HB, |1m2〉〈1m1|]〉 =

i

~
geµBB[ρm1m3〈m3|Se,z|m2〉 − (m1 ↔ m2)∗]. (9.17)

In terms of the irreducible components Pjm, this takes the form

Ṗjm|B = i
m

2

geµB

~
BPjm. (9.18)

9.2.2 Spin-exchange Collisions

Spin-exchange collisions can occur between a pair of hydrogen atoms (atoms A and B) with antipar-

allel spins (spin up ↑ and down ↓):

A(↑) +B(↓) −→ A(↓) +B(↑) . (9.19)

Collisions often result in spin-exchange due to the large energy difference between the singlet state of

a pair of hydrogen atoms X1Σ+
g , which has an antisymmetrical spin wave function and corresponds

to the ground state of a stable H2 molecule, and the unbound triplet b3Σ+
u state. The change in
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the electronic spin induces a hyperfine transition in the atom because the electron and nuclear spins

are coupled by the hyperfine interaction. Since the energy difference between the triplet and singlet

state is large, the cross sections for the spin-exchange collisions are much greater than those of

spin-flipping transitions induced by magnetic interactions between atoms, in which only one atom

can change its spin [404]. We do not consider the latter type of transitions in this analysis.

The rates of spin-exchange hydrogen collisions have been calculated by Ref. [403] for a range

of temperatures. We will follow their procedure for obtaining the rate equations for populations of

hyperfine levels, which we briefly describe here.

The total azimuthal spin angular momentum of the atomic pair is conserved in spin-exchange

collisions. However, the collision cross section depends on how many atoms involved in the collision

change their value of the quantum number F . If both atoms change their value of F , making the

total change ∆F = 2, the cross section is equal to

σ+ =
π

2k2

∑

L=0,2,...

(2L+ 1) sin2 (δt − δs) , (9.20)

where k2/2µ is the kinetic energy in the entrance channel (µ = mH/2 is the reduced mass), and δt

and δs are the phase shifts for elastic scattering in the triplet b3Σ+
u and singlet X1Σ+

g configurations,

respectively. On the other hand, if ∆F = 1, that is if only one atom changes its value of F , then

the cross section is given by

σ− =
π

2k2

∑

L=1,3,...

(2L+ 1) sin2 (δt − δs) . (9.21)

For transitions with no change in the total angular momentum of both atoms involved (∆F = 0),

the cross section equals σ0 = σ+.

To get the de-excitation rate of hydrogen atoms, we need to average the cross sections over a

Maxwellian velocity distribution. The rates k± = 〈σ±v〉 evaluate to

k± =

√
8kBTk

πµ

1

(kBTk)2

∫ ∞

0

dEEσ±(E) exp

(
− E

kBTk

)
, (9.22)

where Tk is the kinetic temperature. We can take k0 ≈ k+. The excitation rate coefficients are given

by

k±x = exp
(
−ω±

)
k± , (9.23)

where ω+ = 2∆Ehf/kBTk = 2T∗/Tk, ω− = ∆Ehf/kBTk = T∗/Tk. The values of coefficients k± as

functions of temperature are given in Ref. [403] and we use them in our calculations.

The final rate equations in Ref. [403] are applicable to the case of isotropically excited hydrogen
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atoms. The collisional evolution of a general density matrix has been studied earlier in Ref. [405].

We perform the calculation by choosing a basis where the density matrix is diagonal, and using

rate equations with the coefficients k± for the level populations. This works because different

irreducible moments Pjm of the atomic density matrix do not mix due to collisions in linear theory.

Schematically,

Ṗjm|c ∼ CjPjm. (9.24)

The collision coefficients Cj depend only on the rank of the polarization moment j, and not on its

projection m. Because of this general property, we only need to calculate the coefficients in the basis

where the density matrix is diagonal, i.e., only the irreducible components Pjm with m = 0 are

non-zero [see Eq. (8.20)]. The equations for the scalar components are slightly more complicated

because there are two rank-0 objects that come into play: the occupancies of the singlet and the

triplet.

We refer to the analysis of Ref. [403] to write down the evolution equations in such a basis:

ρ̇aa|c =− 3k+
x nHρ

2
aa + 2(k− + k+)nHρbbρdd + 2k−nH(ρbb + ρdd)ρcc + k+nHρ

2
cc

− 2k−x nHρaa(ρbb + ρcc + ρdd), (9.25a)

ρ̇bb|c =ρ̇dd|c = k+
x nHρ

2
aa + 2k−x nHρaaρcc + k0nHρ

2
cc − (k0 + k+ + 2k−)nHρbbρdd, and (9.25b)

ρ̇cc|c = k+
x nHρ

2
aa + 2k−x nHρaa(ρbb − ρcc + ρdd)− 2k−nH(ρbb + ρdd)ρcc − (k+ + 2k0)nHρ

2
cc

+ 2(k− + k0)nHρbbρdd. (9.25c)

Since the level of anisotropy is very small, the occupation of a state I can be written as ρII = ρth
II+εI ,

where ρth
II is the thermal occupation of that state (ρth

bb = ρth
cc = ρth

dd = Pth
00/3, ρ

th
aa = 1 −Pth

00), and

εI is a small perturbation. Retaining only quantities linear in ε, the above equations become:

ε̇a|c =−
[
6k+

x (1−Pth
00) + 2k−x Pth

00

]
nHεa +

[
−2k−x (1−Pth

00) +
(
4k− + 2k+

) Pth
00

3

]

× nH(εb + εc + εd), (9.26a)

ε̇b|c =ε̇d|c =
[
2k+

x (1−Pth
00) +

2

3
k−x Pth

00

]
nHεa −

1

3
k0Pth

00nH(εb + εd − 2εc) + 2k−x (1−Pth
00)nHεc

− 1

3
(k+ + 2k−)Pth

00nH(εb + εd), and (9.26b)

ε̇c|c =
[
2k+

x (1−Pth
00) +

2

3
k−x Pth

00

]
nHεa + 2k−x (1−Pth

00)nH(εb − εc + εd)− (4k− + 2k+)
Pth

00

3
nHεc

+
2

3
k0Pth

00nH(εb + εd − 2εc). (9.26c)

We convert these equations to ones for the irreducible components Pjm following the argument

leading to the Eq. (9.24) and the explicit forms of Eq. (8.20). The resulting equations are of the
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form:

ρ̇aa|c = −nHκ(0-1)ρaa + nHκ(1-0)P00, (9.27)

Ṗ00|c = nHκ(0-1)ρaa − nHκ(1-0)P00 = nHκ(0-1)− nH [κ(0-1) + κ(1-0)] P00, (9.28)

Ṗ1m|c = −nHκ
(1)(1-0)P1m, and (9.29)

Ṗ2m|c = −nHκ
(2)(1-0)P2m, (9.30)

where we have extended the notation of Ref. [403] to include both transition and de-polarization

rates, which we read off from Eq. (9.26):

κ(0-1) = 6k+
x (1−Pth

00) + 2k−x Pth
00 , (9.31a)

κ(1-0) = −2k−x (1−Pth
00) +

(
4k− + 2k+

) Pth
00

3
, (9.31b)

κ(1)(1-0) = 0, and (9.31c)

κ(2)(1-0) = 4k−x (1−Pth
00) +

2

3

(
3k0 + 2k− + k+

)
Pth

00 . (9.31d)

The de-polarization rate κ(1)(1-0) vanishes because the total spin angular momentum of the ensem-

ble, corresponding to the orientation vector P1m, is conserved in collisions.

If the spin temperature is much larger than T∗ = 68 mK, the states are nearly equally occupied

and Pth
00 ≈ 3/4 [see Eq. (8.23)]. Using this in the rates of Eq. (9.31), we write down the collisional

contributions to the evolution of the revelant pieces of the atom density matrix as follows:

Ṗ00|c = −4nHκ(1-0)

(
P00 −

3

4
+

3T∗
16Tk

)
and (9.32a)

Ṗ2m|c = −nHκ
(2)(1-0)P2m, (9.32b)

with

κ(2)(1-0) = 4κ(1-0) = 2(k+ + k−). (9.33)

These equations assume that the kinetic temperature Tk � T∗, which is valid over the entire range

of redshifts.

9.2.3 Optical pumping by Lyman-α photons

Optical pumping by Lyman-α (Lyα) photons, or the Wouthuysen-Field effect, is another process

which significantly affects the level populations within the hydrogen ground state (see e.g. Ref. [406]).

An atom in the ground (1s) state absorbs a Lyα photon and gets excited to the 2p state. Subse-

quently, the atom re-emits a photon and returns to the ground state. However, it does not necessarily
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Figure 9.1: The hyperfine structure of the ground and first excited electronic levels of the hydrogen atom.
The levels are labeled by term symbols F lJ , where l is the spectroscopic notation for the orbital angular
momentum, and J and F are the net electronic and total angular momentum, respectively. Also shown are
all the allowed single photon transitions between the 1s and 2p levels, along with their labels; these involve
photons in the Lyα frequency range. Only the downward transitions are shown. Needless to say, the gaps
between the levels are not drawn to scale.

de-excite to the same ground-state level it originated from. Thus, interactions with Lyα photons

can change the density matrix of hydrogen atoms within the ground state basis.

The excited state consists of four levels: 0p1/2, 1p1/2, 1p3/2, and 2p3/2, where we use the notation

F lJ for the state in terms of its quantum numbers. The Roman index J here is not a state label,

rather it is the quantum number for the net electronic angular momentum. Figure 9.1 shows the

levels with their multiplicities, and the single-photon transitions which occur between them. Since

we will study the effects of these transitions in detail, we adopt the convention that Greek indices

represent the excited levels, i.e., those within 2p, when used as state labels.

The electric dipole interaction between hydrogen atoms and Lyα photons as a function of time

is governed by the Hamiltonian (in the interaction picture) 2:

H int
Lyα(t) =

∑

I,µ,α,kγ

QµI(kγ , α)|µ〉〈I|aα(kγ)e−i(ω−ωµI)t + h.c., (9.34)

where the matrix element QµI(kγ , α) is given by

QµI(kγ , α) = −i
√

2π~ω〈µ|d · eα(k̂γ)|I〉 . (9.35)

As in the case of the EM field in the radio frequency (see Section 8.4.2), the symbol kγ is the

2This is in contrast with the rest of the work, which uses the Heisenberg picture. We choose this to make contact
with previous work on this topic, in particular Ref. [407]. Of course, the final answer does not depend on which
picture is used to perform the calculation.
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photon wave-vector, ω is its frequency, eα is the radiation polarization vector and aα(kγ) is the

photon annihilation operator. The quantity d is the electric dipole moment of the atom, which is

proportional to the position vector r of the electron. The frequency corresponding to the energy

difference between the upper (µ) and lower (I) state is ωµI = (Eµ − EI)/~.

We divide the changes to the ground-state density matrix due to interactions with the Lyα

photons into two categories: (i) depopulation pumping which describes how the ground state is

depleted due to absorption of incident Lyα photons, and (ii) repopulation pumping which describes

how the ground state is repopulated due to spontaneous emission from the excited 2p state.

To obtain the expressions for the evolution of the ground state density matrix, we follow the

derivation presented in Ref. [407], with slightly modified notation for the purposes of clarity. We

start by writing the wave function of an ensemble of hydrogen atoms and the radiation field γ0 in

the interaction picture:

Φ(t) =
∑

I

bI(t)|I, γ0〉+
∑

µ,kγ ,α

bµ,(kγ ,α)(t)|µ, γ0 − (kγ , α)〉

+
∑

I,kγ ,α,k′γ ,β

bI,(kγ ,α),(k′γ ,β)(t)|I, γ0 − (kγ , α) + (k′γ , β)〉, (9.36)

The first term describes the population of atoms in the ground (1s) state and a background popu-

lation of photons represented by γ0. The second term describes the ensemble in which one of the

atoms was excited to the 2p state by absorbing a photon characterized by wave-vector kγ and po-

larization α (the sum is taken over all possible realizations of kγ and α). The third term describes

the ensemble in which one of the atoms was excited by absorption of a Lyα photon (with kγ and

α) and then de-excited back to the ground state through spontaneous emission of a photon with

wave-vector k′γ and polarization β.

Using the Schrödinger equation, we get the following set of equations for the time-dependent

coefficients b in the wave function. For the initial photon state, we find

ḃI =
−i
~

∑

µ,kγ ,α

〈I, γ0|H int
Lyα|µ, γ0 − (kγ , α)〉bµ,(kγ ,α); (9.37)

for the states with one photon removed,

ḃµ,(kγ ,α) =
−i
~
∑

I

〈µ, γ0 − (kγ , α)|H int
Lyα|I, γ0〉bI

−Γ2p

2
bµ,(kγ ,α); (9.38)
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and for the states with a scattered photon,

ḃI,(kγ ,α),(k′γ ,β) =
−i
~
∑

µ

〈I, γ0 − (kγ , α) + (k′γ , β)|H int
Lyα|µ, γ0 − (kγ , α)〉bµ,(kγ ,α). (9.39)

The coefficient Γ2p is the Einstein A-coefficient of the Lyα transition, and the term containing it

describes de-excitation of the 2p state through spontaneous emission.

We write the density matrix of the hydrogen ground state in terms of the b coefficients describing

the contribution of different levels to the total population of hydrogen atoms. In general, the IJ

element of the density matrix in the interaction picture is

ρint
IJ = bIb

∗
J +

∑

α,β,kγ ,k′γ

bI,(kγ ,α),(k′γ ,β)b
∗
J,(kγ ,α),(k′γ ,β). (9.40)

The time derivative of the first term describes the depletion of the ground state population due

to Lyα absorption, whereas that of the second term describes how the ground state is repopulated

by spontaneous emission of Lyα photons by atoms that were once excited. In the remainder of

this section we derive the expressions for the time change of the density matrix due to these two

processes.

9.2.3.1 Depopulation pumping

Following Ref. [407], we begin our calculation by writing the expression for the excited state coeffi-

cient bµ,(kγ ,α), which we get by integrating Eq. (9.38):

bµ,(kγ ,α)(t) = − i
~
∑

J

∫ t

t0

dt′ e−Γ2p(t−t′)/2〈µ, γ0 − (kγ , α)|H int
Lyα(t′)|J, γ0〉bJ(t′). (9.41)

We plug this expression into Eq. 9.37 to get

ḃI = − 1

~2

∑

µ,kγ ,α,K

〈I, γ0|H int
Lyα(t)|µ, γ0 − (kγ , α)〉

∫ t

t0

dt′e−Γ2p(t−t′)/2〈µ, γ0 − (kγ , α)|H int
Lyα(t′)|K, γ0〉

× bK(t′). (9.42)

Taking the integral over time and keeping only the leading term in the expansion of the exponential

gives

ḃI =
∑

µ,kγ ,α,K

f(kγ)

~2

Q∗µI(kγ , α)QµK(kγ , α)

i(ω − ωµI)− Γ2p/2
eiωIKtbK , (9.43)

where f(kγ) is the phase-space density of photons. In order to write this equation, we used the

following identity to simplify the Lyman-α radiation field’s contribution to the matrix elements in
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Eq. (9.42):

f(kγ) = 〈γ0|a†α(kγ)aα(kγ)|γ0〉 =
∑

k′γ ,β

〈γ0|a†α(kγ)|γ0 − (k′γ , β)〉〈γ0 − (k′γ , β)|aα(kγ)|γ0〉

= 〈γ0|a†α(kγ)|γ0 − (kγ , α)〉〈γ0 − (kγ , α)|aα(kγ)|γ0〉. (9.44)

The time evolution of the ground state density matrix in the interaction picture due to depopulation

pumping is given by

ρ̇int
IJ |depop = ḃIb

∗
J + bI ḃ

∗
J . (9.45)

Hence, in the Schrödinger picture, this becomes

ρ̇Sch
IJ |depop = ρ̇int

IJ |depope
−iωIJ t =

∑

µ,kγ ,α,K

f(kγ)

~2

Q∗µI(kγ , α)QµK(kγ , α)

i(ω − ωµK)− Γ2p/2
ρSch
KJ + c.c.s. (9.46)

As in Section 9.1, “c.c.s” stands for complex conjugation along with a swap; the indices to be

swapped in this case are I and J .

9.2.3.2 Repopulation pumping

The ground state density matrix also evolves with time due to the repopulation of the ground state

via spontaneous emission of photons from the excited state. To find the rate equation for this

repopulation, we follow the same approach as in the previous section.

We begin by plugging the expression for the excited state coefficient bµ,(kγ ,α), which we obtained

by evaluating the integral in Eq. (9.41), into Eq. (9.39):

ḃI,(kγ ,α),(k′γ ,β) =
1

~2

∑

µ,K

Q∗µI(k
′
γ , β)QµK(kγ , α)ei(ω

′−ω+ωIK)tbK(0)

×
〈γ − (kγ , α) + (k′γ , β)|a†β |γ − (kγ , α)〉

i(ω − ωµK)− Γ2p/2
〈γ − (kγ , α)|aα|γ〉. (9.47)

Integrating this gives

bJ,(kγ ,α),(k′γ ,β) = − 1

~2

∑

ν,L

Q∗νJ(k′γ , β)QνL(kγ , α)
1− ei(ω′−ω+ωJLt)

i(ω′ − ω + ωJL)

× bL(0)
〈γ − (kγ , α) + (k′γ , β)|a†β |γ − (kγ , α)〉

i(ω − ωνL)− Γ2p/2
〈γ − (kγ , α)|aα|γ〉 . (9.48)

Combining the results in Eq. (9.47) and (9.48), we get:

ḃI,(kγ ,α),(k′γ ,β)b
∗
J,(kγ ,α),(k′γ ,β) =

1

~4

∑

µ,K,ν,L

Q∗µI(k
′
γ , β)QµK(kγ , α)QνJ(k′γ , β)Q∗νL(kγ , α)
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× f(kγ)bK(0)b∗L(0)ei(ωIJ−ωKL)t

[i(ω − ωµK)− Γ2p/2] [−i(ω − ωνL)− Γ2p/2]

ei(ω
′−ω+ωJL)t − 1

i(ω′ − ω + ωJL)
.

(9.49)

In deriving this expression we used the definition of the phase-space density in Eq. (9.44) and the

commutation relations of the creation and annihilation operators:

a†αaαa
†
βaβ = a†α(a†βaα + δαβ)aβ ≈ a†αaβδαβ ,

where we assume that the photon number operator a†a � 1, which is valid for the UV part of the

spectrum, including the Lyα photons.

We can further simplify Eq. (9.49) by giving level L a small width, i.e. ωL → ωL−iε. Due to this

width, at large times, the numerator of the final factor on the RHS of Eq. (9.49) approaches −1. For

a given frequency of the incoming photon, ω, this factor is dominated by frequencies of the outgoing

photon, ω′, for which the denominator is small. In other words, the last factor is dominated by its

behavior near its pole, which manifests as a delta function in integrals over the outgoing frequency.

The evolution of the density matrix due to repopulation, in the Schödinger picture is then given

by:

ρ̇Sch
IJ |repop =

∑

kγ ,k′γ ,α,β

ḃI,(kγ ,α),(k′γ ,β)b
∗
J,(kγ ,α),(k′γ ,β)e

−iωIJ t + c.c.s

= ~−4
∑

kγ ,k′γ ,α,β,µ,K,ν,L

f(kγ) Q∗µI(k
′
γ , β)QµK(kγ , α)

× QνJ(k′γ , β)Q∗νL(kγ , α)πδ(ω′ − ω + ωJL)

[i(ω − ωµK)− Γ2p/2] [−i(ω − ωνL)− Γ2p/2]
ρSch
KL + c.c.s. (9.50)

We rewrite the phase-space density in terms of the flux per unit frequency, and use Eq. (9.50) to

infer a cross-section for the KLth component of the density matrix ρ to go to the IJ th component.

We simplify Eq. (9.50) by using Eq. (9.35) for the dipole matrix elements, and approximating the

incident Lyα radiation field to be isotropic for performing integrals over the directions k̂γ and k̂′γ .

This is an excellent approximation due to the large value of the cross-section, and low mean free path

for incident Lyα photons. Thus we conclude that Eq. (9.50) connects only irreducible components

of the same rank within the initial and final density matrix.

Let the initial and final states, (I and J), belong to multiplets with total angular momentum

quantum numbers FI and FJ , respectively. We implement the above program to infer the cross-

section for a general irreducible component of rank-j within the initial state sub-matrix to go to

the corresponding component within the final state sub-matrix. We use the suggestive notation

σFI→FJ ,(j) to represent this cross-section, the expression for which we read off from Eq. (9.50). We

approximate all multiplicative factors of frequencies by the value of the Lyα line-center, and get
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(using, e.g., the methodology of Ref. [402])

σFI→FJ ,(j)(ω) =
8π

9

ω4
Lyα

c4
e4

~2

√
2j + 1

√
2FJ + 1

2FI + 1

∑

mJ1
,mJ2

∑

mI1 ,mI2

∑

j′,m′

∑

p,q

∑

r,s

∑

µ,ν

(−1)FJ−mJ2


 FJ j FJ

−mJ2 m mJ1


 (−1)FI−mI2


 FI j′ FI

−mI2 m′ mI1


 gprgqs

× 〈FJmJ1 |rp|µ〉〈µ|rq|FImI1〉
∆ωµI + iΓµ/2

〈FImI2 |rs|ν〉〈ν|rr|FJmJ2〉
∆ωνI − iΓν/2

, (9.51)

where the symbol ∆ωµI is shorthand for ω − ωµI , which is the frequency offset from the line-center

of the µ → I transition. The two 3-j symbols project the irreducible components of rank j and

j′ (which equals j) in the initial and final density sub-matrices in Eq. (9.50). We further simplify

this result using the Wigner-Eckart theorem, following which each factor of a matrix element of the

electron’s position vector r on the RHS of Eq. (9.51) yields another 3-j symbol.

Using the identity for sums of products of three 3-j symbols, and their orthogonality property,

we get the following expression for the cross-section:

σFI→FJ ,(j)(ω) =
8π

9

ω4
Lyα

c4
e4

~2

√
2FJ + 1

2FI + 1

∑

µ,ν

(−1)FI−FJ
〈µ‖r‖J〉∗〈µ‖r‖I〉〈ν‖r‖I〉∗〈ν‖r‖J〉
(∆ωµI + iΓµ/2)(∆ωνI − iΓν/2)

×




Fµ Fν j

FI FI 1








Fµ Fν j

FJ FJ 1



 . (9.52)

When we perform the summation over the upper levels (µ and ν), the terms with µ = ν and µ 6= ν

give Lorentzian line and interference profiles, respectively. In this calculation, we assumed that the

only factor involved in broadening the lines shown in Fig. 9.1 is their finite lifetime; in reality, the

lines are broadened due to a combination of this and the Doppler effect, owing to which we need to

convolve these profiles with the appropriate velocity distributions.

In the case where the triplet sublevels are equally occupied, the only relevant components of the

density sub-matrices are those of rank zero. For j = 0, Eq. (9.52) gives net transition cross-sections

from F = 1 → F = 0 and F = 0 → F = 1, which have been previously worked out. We use the

notation and list of line strengths in Appendix B of Ref. [402]. In particular, Fig. 9.1 shows their

choice of labels for the various lines making up the fine-structure of the Lyα line, which we will use

in subsequent expressions.

Using the line-strengths in Ref. [402] for the irreducible matrix elements in Eq. (9.52), the

isotropic cross-sections are

σ0→0,(0) =
3

2
λ2

Lyαγ2p

(
1

9
φCC +

4

9
φFF +

4

9
φCF

)
, (9.53a)
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σ1→1,(0) =
3

2
λ2

Lyαγ2p

(1

9
φAA +

4

27
φBB +

1

27
φDD +

5

9
φEE +

4

27
φBD

)
, (9.53b)

σ0→1,(0) =
3

2
λ2

Lyαγ2p

(
2

9
φCC +

2

9
φFF −

4

9
φCF

)
, and (9.53c)

σ1→0,(0) =
3

2
λ2

Lyαγ2p

(
2

27
φBB +

2

27
φDD −

4

27
φBD

)
, (9.53d)

where γ2p = Γ2p/4π = 50 MHz is the HWHM of the Lyα transition, and φAB etc. are the interference

or line-profiles for the various lines shown in Fig. 9.1.

φAB(ν) =
γ2p

π

∆νA∆νB + γ2
2p

(∆ν2
A + γ2

2p)(∆ν2
B + γ2

2p)
. (9.54)

In the situation of interest in this work, the triplet is spin-polarized i.e. it has an irreducible

component of rank-2. The one extra cross-section which involves this component is

σ1→1,(2) =
3

2
λ2

Lyαγ2p

( 1

27
φBB +

1

108
φDD +

7

36
φEE +

2

9
φAE +

1

27
φBD +

1

3
φBE +

1

6
φDE

)
. (9.55)

Note that this calculation also gives us the depopulation rates (or equivalent cross-section) of Section

9.2.3.1. These rates are independent of the rank of the irreducible component (or the magnetic

quantum numbers) by isotropy. Since the net population of the 2p levels is always negligible, the

rate of depopulation from a level is given by the sum of the rates of all repopulations which start

from that level:

σFI |depop =
∑

FJ

σFI→FJ ,(0). (9.56)

We obtain the following evolution equations for the irreducible components of interest by subtracting

the contribution of depopulation from that of repopulation:

Ṗ00|Lyα = −4π

∫
dνJLyα(ν)

[
σ1→0,(0)(ν)P00 − σ0→1,(0)(ν)ρ0

]
, (9.57)

Ṗ2m|Lyα = −4π

∫
dνJLyα(ν)

[
σ1→1,(0)(ν) + σ1→0,(0)(ν)− σ1→1,(2)(ν)

]
P2m. (9.58)

To simplify these equations, we use the relation ρ0 = 1 −P00, and substitute the repopulation

cross-sections for the rank-zero components from Eq. (9.53), and the rank-two component of the

triplet from Eq. (9.55).

The effect of optical pumping by Lyα photons on the rank zero component (net triplet occupancy)

is complicated by a source term. In the approximation of a very high cross-section (or T > ∞),

the states are driven to equal occupancy, i.e., P00 → 3/4. In order to correct the populations for a

finite temperature, we need to consider the frequency dependence of the flux JLyα. This motivates
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the definition of the flux correction factor S̃α
3 and the effective color temperature Tc,eff , which are

given by

Tc,eff = − h

kB

d

dν
ln JLyα(ν) (9.59)

and

S̃α =
9

8λ2
Lyαγ2p

∫
dν
JLyα(ν)

Jα
[σ1→0,(0)(ν) + σ0→1,(0)(ν)], (9.60)

where Jα is the flux on the blue side of the Lyman-α line, before it is processed by any radiative

transfer. Substitution of these definitions in Eq. (9.57) gives us the evolution equation for the

occupancy:

Ṗ00|Lyα = −32

9
πλ2

Lyαγ2pS̃αJα

[
P00 −

3

4
+

3T∗
16Tc,eff

]
. (9.61)

The evolution of the rank two irreducible component of the triplet state density sub-matrix is easier

to evaluate, since it has no source term. The detailed frequency dependence of the flux JLyα is not

crucial. Substituting the expressions for the cross-sections, we obtain the following depolarization

rate:

Ṗ2m|Lyα = −0.601× 6πλ2
Lyαγ2pS̃α,(2)JαP2m, (9.62)

where the flux correction factor S̃α,(2) for the rank-two tensor is defined such that

0.601S̃α,(2)Jα =

∫
dνJLyα(ν)

(1

9
φAA +

5

27
φBB +

11

108
φDD

+
13

36
φEE −

2

9
φAE −

1

27
φBD −

1

3
φBE −

1

6
φDE

)
, (9.63)

and the numerical pre-factor is the integral over frequency of the term enclosed in braces on the

RHS of the above equation.

3The tilde is to avoid conflict with the usual definition of Sα in the literature, which approximates the color
temperature, Tc,eff with the kinetic temperature, Tk. It is consistent with the notation of Ref. [402].
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Chapter 10

From microphysics to observables

10.1 Radiative Transfer

Sections 9.1 and 9.2 dealt with the evolution of the atom’s density matrix due to various processes. In

this section, we study the evolution of the components of the 21-cm radiation’s phase-space density

matrix fX,jm(ω). In particular, the intensity monopole fI,00 and quadrupole fI,2m are the relevant

multipoles to study for the effect on the brightness temperature.

The baryon rest frame simplifies the details of the matter-radiation interaction, and hence we

use it throughout this calculation. We restrict ourselves to quantities which are atmost of the first

order in smallness in terms of the matter overdensity δ.

The only quantity related to the radiation field with a zeroth-order piece is the intensity monopole

fI,00. From the discussion in Section 8.1, we expect the matter velocity v and the intensity and

polarization quadrupoles, fI,2m and fE,2m, to be quantities of the first order in smallness.

The Boltzmann equation for a generic component of the phase space density fX is

DfX
Dt

= ḟX |s. (10.1)

The left hand side is the material derivative with respect to the flow of points in phase space, which

represents the effect of free-streaming. The right hand side is the source term for the phase-space

density, due to interaction with atoms.

10.1.1 Free-streaming term

The material derivative of the phase-space density expands to

Df

Dt
= ḟ +

dx

dt
· ∇f +

dω

dt

∂f

∂ω
+

dn̂

dt
· ∇n̂f , (10.2)
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where, as earlier, n̂ is the radiation’s direction of propagation. The second, third, and fourth terms

represent advection, time-dependent redshift, and lensing, respectively. Since we are interested only

in terms up to the first order in the density fluctuations, we neglect lensing (since it is a second-order

effect), and replace the coefficient of ∇f in the advection term with its zeroth-order value, which is

dx

dt
= c n̂. (10.3)

In order to expand the redshift term, we use the relation between the angular frequency of a photon

in the baryon rest frame (ω) and in the Newtonian frame (ωN):

ω = ωN

(
1− v · n̂

c

)
, (10.4)

where v and n̂ are the bulk matter velocity and the direction of the photon’s travel, respectively.

The coefficient of the time-dependent redshift term is

1

ω

dω

dt
=

1

ωN

dωN

dt
− 1

c

d

dt
(v · n̂) + . . . =

1

ωN

dωN

dt
− 1

c
v̇ini −

∂vi
∂xj

ninj + . . . (10.5)

The first term, which is the rate of redshifting in the Newtonian frame, has contributions both from

large-scale Hubble flow and gravitational redshifting in the presence of local potential wells. The

latter contribution is the Sachs-Wolfe effect. The second term is the time-dependent redshift due

to local acceleration, and is of the same size as the Sachs-Wolfe term. The final term, which is the

origin of the effect of interest, is the contribution of the local matter velocity gradient ∇v.

The effect of local velocity gradients is much larger than that of acceleration, which scales as the

depth of the potential wells, as long as the modes under consideration are sub-horizon sized. We

estimate their relative sizes as

(1/c)v̇ini
(∂vi/∂xj)ninj

≈ aH

kc
≈ 4× 10−4 ×

(
1 + z

10

)1/2(
k

1 Mpc−1

)−1(
Ωmh

2

0.143

)1/2

. (10.6)

The second term in Eq. (10.2) is the advection term. On free streaming, it causes mixing of multipoles

on a characteristic timescale ∼ (a/kc) [397]. The size of this contribution relative to the time-

dependent redshift term is set by the comparision with the timescale for the photons to redshift

through the line. We can safely neglect the advection term as long as we restrict ourselves to modes

of wavelengths much larger than the Jeans length, rJ, at this epoch. This is a good approximation

for the modes under consideration:

c(∂f/∂xi)ni
Hω(∂f/∂ω)

∼ k

a

vs

H
∼ krJ

a
≈ 5.8× 10−3 ×

(
Tk

Tγ

)1/2(
k

1 Mpc−1

)(
Ωmh

2

0.143

)−1/2

. (10.7)

Hence the most important contribution to the time-dependent redshift term is the velocity gradient
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term. We assume that the fluctuation is a plane wave with co-moving wave-vector k, and use the

continuity equation to express the velocity gradient in terms of the overdensity as follows:

1

ω

dω

dt
≈ −H − ∂vi

∂xj
ninj = −H

[
1− δ(k̂ · n̂)2

]
, (10.8)

where H is the Hubble rate at the redshift under consideration and δ is the local overdensity. In

writing this equation, we used the standard scaling of the growth factor for a matter dominated

universe, i.e. d(log δ)/d(log a) = 1.

Thus the free-streaming term of Eq. (10.2) is

Df

Dt
= ḟ −H

[
1− δ(k̂ · n̂)2

]
ω
∂f

∂ω
. (10.9)

In a coordinate system with an arbitrary orientation,

(k̂ · n̂)2 =
8π

15

∑

m

Y2m(k̂) [Y2m(n̂)]
∗

+
1

3
. (10.10)

Using this identity, we write down the free-streaming terms for the relevant moments in a general

coordinate system.

In order to expand Eq. (10.9) into moments, we note that the only relevant moments, i.e., those

which are non-zero up to first order in the matter density fluctuation δ, are the intensity monopole

fI,00 (which has a zeroth-order piece too) and quadrupole fI,2m, and the polarization quadrupole

fE,2m (vide Section 8.3 and Table 10.1). Thus, up to first order in δ, the equations describing the

free-streaming of the relevant moments are

DfI,00

Dt
= ḟI,00 −H

[
1− δ

3

]
ω
∂fI,00

∂ω
, (10.11a)

DfI,2m

Dt
= ḟI,2m −Hω

∂fI,2m

∂ω
+

2

3

√
4π

5
δHω

∂fI,00

∂ω
Y2m(k̂), and (10.11b)

DfE,2m

Dt
= ḟE,2m −Hω

∂fE,2m
∂ω

. (10.11c)

10.1.2 Source term

The source term describes the evolution of the 21-cm radiation’s phase-space density matrix due

to interaction with neutral hydrogen atoms. In this section, we generalize the usual treatment of

spontaneous and stimulated emission, and photo-absorption to the case of spin-polarized atoms.

We complete construction of the plane wave source term ḟαβ(n̂, ω)|s in several steps. First,

we find the contribution to the plane wave source term from a single atom in terms of spherical

operators. Then we sum this contribution over all atoms, with the specified number density nHx1s.
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Finally, we turn the required expectation values of spherical operators into photon phase space

densities, and re-express them in terms of the radiation multipoles and atomic polarizations.

We write the second-order moments of the photon field in the plane wave basis in terms of the

spherical basis by inversion of Eq. (10.45):

aα(kγ) =
(2πc)3/2

ω
e−ikγ ·R

∑

jmλ

[
e∗(α) ·Y

(λ)
jm

]
(k̂γ) a

(λ)
jm(ω), (10.12)

where ω = kγ/c and λ ∈ {E,M}. We have inserted a factor of e−ikγ ·R here to place the atom (which

is the center around which we expand the spherical waves) at position R rather than the origin. It

follows that the time evolution of the photon density matrix is

d

dt
〈a†α(kγ)aβ(k′γ)〉 =

(2πc)3

ω2

∑

jmλj′m′λ′

[
e(α) ·Y(λ)∗

jm

]
(k̂γ)

[
e∗(β) ·Y

(λ′)
j′m′

]
(k̂′γ)

× ei(kγ−k′γ)·R d

dt
〈a(λ)†
jm (ω)a

(λ′)
j′m′(ω

′)〉. (10.13)

This result is valid if the electromagnetic field interacts with a single atom. However, in the scenario

under consideration, it interacts with an ensemble of atoms of number density nHx1s. We obtain

such an ensemble by integrating Eq. (10.13) over volume d3R and multiplying by nHx1s. Using the

rule that
∫
ei(kγ−k

′
γ)·R d3R = (2π)3δ(3)(kγ −k′γ), we obtain a δ-function on the right hand side and

hence the result:

ḟβα(ω, k̂γ)|s =
(2πc)3

ω2
nHx1s

∑

jmλj′m′λ′

[
e(α) ·Y(λ)∗

jm

]
(k̂γ)

[
e∗(β) ·Y

(λ′)
j′m′

]
(k̂γ)

d

dt
〈a(λ)†
jm (ω)a

(λ′)
j′m′(ω)〉.

(10.14)

Note that in Eq. (10.14), the derivative on the right-hand side is the contribution of a single atom.

Since the operator a
(λ)†
jm (ω)a

(λ′)
j′m′(ω) commutes with the radiation’s Hamiltonian Hγ , it evolves

only in accordance with the interaction Hamiltonian Hhf,γ , specifically:

d

dt
〈a(λ)†
jm (ω)a

(λ′)
j′m′(ω)〉 =

i

~

〈[
Hhf,γ , a

(λ)†
jm (ω)a

(λ′)
j′m′(ω)

]〉

=
i

~
∑

mF

VmF a,m(ω)
〈
|1mF 〉〈00|a(λ′)

j′m′(ω)
〉
δMλδj1 + c.c.s.

= − π

~2

∑

mFm2m3

VmF a,m(ω)V ∗m2a,m3
(ω)δ(ω − ωhf)δMλδj1

×
[
δm2mF ρaaf

(λ′j′)(M1)
m′m3

(ω)− ρm2mF (δλ′Mδj′1δm′m + f
(λ′j′)(M1)
m′m3

(ω))
]

+ c.c.s.

(10.15)

Here again “c.c.s.” stands for complex conjugation with a swap (i.e. swap λjm ↔ λ′j′m′). In the
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second equality we used Eq. (9.4) for Hhf,γ , and in the third we use the results of Appendix 10.C

for the atom-radiation three-point function.

We next use Eq. (9.9) for the interaction matrix elements, with which Eq. (10.15) simplifies to

d

dt
〈a(λ)†
jm (ω)a

(λ′)
j′m′(ω)〉 = −A

2
δ(ω − ωhf)δMλδj1

∑

m2

{
δm2mρaaf

(λ′j′)(M1)
m′m2

(ω)

− ρm2m[δλ′Mδj′1δm′m2
+ f

(λ′j′)(M1)
m′m2

(ω)]
}

+ c.c.s. (10.16)

A useful definition is the isotropic absorption cross-section σ(ω) for radiation whose wavelength is

close to 21-cm:

σ(ω) = 3π2 c
2

ω2
Aφ(ω), (10.17)

where φ(ω) is the absorption profile centered at ωhf . It is broadened from the delta function of

Eq. (10.16) due to the thermal motions of the hydrogen atoms.

Substituting Eq. (10.16) into Eq. (10.14), using the definition (10.17) and the notation n̂ for the

direction of propagation, we get

ḟβα(ω, n̂)|s = −4π

3
nHx1sσ(ω)c

∑

m2mj′m′λ′

[
e(α) ·Y(M)∗

1m

]
(n̂)
[
e∗(β) ·Y

(λ′)
j′m′

]
(n̂)
{
δm2mρaaf

(λ′j′)(M1)
m′m2

(ω)

− ρm2m[δλ′Mδj′1δm′m2
+ f

(λ′j′)(M1)
m′m2

(ω)]
}

+ [α↔ β]∗.

(10.18)

(Note that because of the symmetry of Eq. 10.14 under λjm ↔ λ′j′m′ symmetry, the “c.c.s.”

term simply results in the complex conjugate of the contribution with α and β switched, thereby

guaranteeing the Hermiticity of the phase-space density matrix).

It is profitable to break Eq. (10.18) into the three terms in braces: these correspond to absorption,

spontaneous emission, and stimulated emission, respectively. Each one may be converted back into

radiation multipole moments using the inverse of Eq. (8.33):

(ḟβα)jm(ω)|s =

√
2j + 1

4π

∫
ḟβα(ω, n̂)|s[β−αYjm(n̂)] d2n. (10.19)

This conversion entails the angular integral of products of three spherical harmonics, and results in

appropriate sets of 3-j symbols [401].

The absorption term is

(ḟαβ)jm(ω)|ab = −nHx1sσ(ω)c ρaa (fαβ)jm(ω). (10.20)

The emission terms involve elements of the triplet state density sub-matrix ρmn, which are most
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naturally expressed in terms of the irreducible components Pjm using Eq. (8.19). The spontaneous

emission term simplifies to

(ḟαβ)jm(ω)|sp.em = nHx1s
σ(ω)c

3

√
3(2j + 1)αβ


1 1 j

α −β β − α


Pjm, (10.21)

and the stimulated emission term simplifies to

(ḟαβ)jm|st.em =
2j + 1

2
nHx1s

σ(ω)c

3
(−1)m

∑

j1m1j2m2γ

√
3(2j2 + 1)

[
αγ


 j1 j2 j

−m1 −m2 m




×


1 1 j2

α −γ γ − α




 j1 j2 j

γ − β α− γ β − α


 (fγβ)j1m1Pj2m2

]

+ (−1)−m[α↔ β,m→ −m]∗. (10.22)

We can further rewrite the source terms of (10.20), (10.21), and (10.22) in terms of the parity

invariants of Eq. (8.34).

As noted earlier in Section 10.1.1, the only relevant moments are the intensity monopole fI,00

and quadrupole fI,2m, and the polarization quadrupole fE,2m. Summing up all the contributions

yields the following source terms for these moments:

ḟI,00(ω)|s = nHx1s
σ(ω)c

3
[− (3− 4P00) fI,00 + P00] , (10.23a)

ḟI,2m(ω)|s = nHx1s
σ(ω)c

3

[
− (3− 4P00) fI,2m +

1√
2

(1 + fI,00) P2m

]
, and (10.23b)

ḟE,2m(ω)|s = nHx1s
σ(ω)c

3

[
− (3− 4P00) fE,2m +

√
3 (1 + fI,00) P2m

]
. (10.23c)

10.2 Solution for the brightness temperature

In this section, we collect the results of the previous sections, and derive their effect on observables,

i.e., the 21-cm brightness temperature fluctuations.

Let us first consider the Boltzmann equation [Eq. (10.1)]. It is useful to define a few quantities

to facilitate its solution and interpretation.

First, the optical depth τ of the neutral hydrogen gas is proportional to the absorption cross

section integrated over the line. For a given Hubble rate H, and a peculiar velocity along the line

of sight v||,

τ =
π2c3nHx1sA (3− 4P00)

Hω3
hf [1 + (1/H)(dv||/dr||)]
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Table 10.1: Sizes of terms. They are classified as follows: A) terms included in the usual, lowest-order
calculation, B) terms relevant to the effect under consideration, and C) other terms of the same order.

Quantity Sizes of relevant constituents
A B C

fI,00(X ) Tγ/T∗ + () τ () τ2

fI,2m(X ) () δτ () δτ2

fE,2m(X ) () δτ2

P2m () δτ

= 9.7× 10−3 × x1s

(
Tγ
Ts

)[
1 +

4

3
δ

](
Ωbh

2

0.022

)
×
(

Ωmh
2

0.143

)−1/2(
1− YHe

0.75

)(
1 + z

10

)1/2

. (10.24)

This expression is correct to first order in the fluctuation δ, and assumes that the slow variation of

factors of ω in front of the absorption profile in Eq. (10.17) can be neglected. Expression (10.24)

is the optical depth for the monopole, since it is derived by averaging out the dependence of the

velocity-gradient on direction.

Next is the cumulative function X (ω) for the absorption profile φ(ω), which is defined as

X (ω) =

∫ ω

−∞
dω′φ(ω′). (10.25)

It is convenient to express the frequency dependence of quantities in terms of X , which varies between

0 and 1 from the red- to the blue-side of the line. The boundary conditions for the moments are

fixed on the blue side of the line i.e. at X = 1:

fI,00 = fγ ≈
Tγ
T∗

and fI,2m = fE,2m = 0 at X = 1. (10.26)

Finally, the 21-cm brightness temperature fluctuation relative to the CMB, δTb, is defined via the

phase-space density on the red side of the line:

δTb(n̂) =
T∗

1 + z
(fI(X = 0, n̂)− fγ) ≈ T∗

1 + z

(
fI(X = 0, n̂)− Tγ

T∗

)
. (10.27)

Before we write down the form of the Boltzmann equation, it is worthwhile to note the sizes of various

relevant terms. Table 10.1 shows the sizes of the relevant pieces, and summarizes the estimates made

in Section 8.3.

We solve for the phase-space density in the steady state approximation. This holds if the time

taken for the photon to redshift through the line is much smaller than a Hubble time, which is the case

for a narrow line. Thus we safely neglect the time-derivatives in the free-streaming term [Eq. (10.11)],

and take the source terms from Eq. (10.23). With the above definitions and assumptions, the
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Boltzmann equations for the various moments simplify to

∂fI,00

∂X = τ

[
fI,00 −

Ts

T∗

]
, (10.28a)

∂fI,2m

∂X = τ

[
fI,2m −

2
√

2

3

TγTs

T 2
∗

P2m

]
+

2

3
δ
∂fI,00

∂X

√
4π

5
Y2m(k̂), and (10.28b)

∂fE,2m

∂X = τ

[
fE,2m −

4
√

3

3

TγTs

T 2
∗

P2m

]
. (10.28c)

The velocity-gradient contribution to the optical depths of the quadrupoles is different, but these

moments vanish in the absence of fluctuations. Hence Eq. (10.28) is correct to first order in the

overdensity δ. The simplifications here use the sizes of various terms from Table 10.1, the relation

of Eq. (8.23) between the excited state occupancy P00 and the spin temperature Ts, and neglect

spontaneous emission contributions.

The Boltzmann equation must be solved along with the evolution equations for the hydrogen

atom-density matrix. We obtain these from the Sections 9.1 and 9.2, and include the effects of

interaction with radio photons, [Section 9.1], optical pumping by Lyman-α photons [Section 9.2.3],

collisions with other hydrogen atoms [Section 9.2.2] and precession within an external magnetic field

[Section 9.2.1]. Similar to the phase-space density, we solve for the various parts of the density

matrix under the steady state approximation.

Firstly, we obtain the evolution of the excited state occupancy P00 (or alternatively, the spin

temperature Ts) by summing Eqs. (9.15a), (9.32a), and (9.61) and equating the result to zero:

Ṗ00 = A
[
−P00 + (3− 4P00) fI,00

]
−

32πλ2
Lyαγ2p

9
S̃αJα

(
P00 −

3

4
+

3

16

T∗
Tc,eff

)

− 4κ(1-0)nH

(
P00 −

3

4
+

3

16

T∗
Tk

)
= 0. (10.29)

In a similar manner, we obtain the equation for the evolution of the alignment tensor P2m by

summing Eqs. (9.15b), (9.32b), (9.62), and (9.18). It is most convenient to continue in the coordinate

system used in Section 9.2.1, with the z−axis along the direction of the magnetic field; in this system,

the angular indices jm are not mixed:

Ṗ2m = A
[
−Tγ
T∗

P2m +
3

20
√

2

T∗
Ts
fI,2m

]
− 3.607πλ2

Lyαγ2pS̃α,(2)JαP2m − nHκ
(2)(1-0)P2m

+ i
m

2

geµB

~
BP2m ≈ 0. (10.30)

As earlier, the above equation neglects spontaneous emission and is correct up to the sizes of terms
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from Table 10.1. We carry out the averages over the line-profile in Eqs. (10.29) and (10.30) using

f =

∫ ∞

−∞
dωf(ω) =

∫ 1

0

dXf(X ). (10.31)

Equations (10.29) and (10.28a) together determine the spin temperature Ts and the intensity monopole

fI,00, which is given in terms of the former by

fI,00(X ) =
1

T∗

[
Ts + (Tγ − Ts) e

−τ(1−X )
]

. (10.32)

Likewise, we use Eqs. (10.30) and (10.28b) to solve for the alignment tensor P2m, and the intensity

quadrupole fI,2m(X ) in a simultaneous manner. They are given by the following solutions, which

are correct to the orders in Table 10.1:

P2m =
1

20
√

2

T∗
Tγ

(
1− Tγ

Ts

)
τ

1 + xα,(2) + xc,(2) − imxB
δ

√
4π

5
Y2m(k̂) (10.33)

and

fI,2m(X ) =
Ts

T∗

(
1− Tγ

Ts

)[
1

30

τ

1 + xα,(2) + xc,(2) − imxB
+

2

3
(1− τ(1−X ))

]
δτ(1−X )

√
4π

5
Y2m(k̂),

(10.34)

where the quantities xα,(2), xc,(2), and xB parametrize the rates of depolarization by optical pumping

and collisions, and precession relative to radiative depolarization. They are given by

xα,(2) =
3.607πλ2

Lyαγ2pT∗

ATγ
S̃α,(2)Jα = 0.073S̃α,(2)

(
1 + z

10

)−1(
Jα

10−12cm−2sr−1s−1Hz−1

)
, (10.35)

xc,(2) = κ(2)(1-0)
nHT∗
ATγ

= 2× 10−3

(
1 + z

10

)2(
κ(2)(1-0)

1.3× 10−11cm3s−1

)
, and (10.36)

xB =
geµBT∗
2~ATγ

B = 0.698

(
1 + z

10

)−1(
B

10−19G

)
. (10.37)

We compute the brightness temperature fluctuation, δTb, from Eq. (10.27), wherein the phase-

space density is given by the sum of the monopole and quadrupole from Eqs. (10.32) and (10.34),

respectively. We get the following expression, which is one of the main results of this work:

δTb(n̂) =

(
1− Tγ

Ts

)
x1s

(
1 + z

10

)1/2 [
26.4 mK

{
1 +

(
1 + (k̂ · n̂)2

)
δ
}
− 0.128 mK

(
Tγ
Ts

)
x1s

(
1 + z

10

)1/2

×
{

1 + 2
(

1 + (k̂ · n̂)2
)
δ − δ

15

∑

m

4π

5

Y2m(k̂) [Y2m(n̂)]
∗

1 + xα,(2) + xc,(2) − imxB

}]
. (10.38)

Equation (10.37) offers a rough guide to estimate the strengths of magnetic fields to which the
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method outlined in this work is most sensitive. We must keep in mind that the coefficient xB only

measures the strength of the precession relative to radiative de-polarization, and a full analysis of the

discriminating power of this method must estimate the sizes of Lyα and collisional de-polarization,

or the coefficients xα,(2) and xc,(2) in Eqs. (10.35) and (10.36). Subsequent work in this series will

study this in more detail. For now, we note that field strengths of O(10−19 G) at redshifts of z ∼ 10

are associated with xB ∼ 1.

Given this scale of field strengths, we identify two physical regimes – one with weaker fields, and

one with much stronger ones. We use the weak-field limit of Eq. (10.38) to make contact with the

intuitive picture laid out in Section 8.3. Taking the limit of xB → 0 in Eq. (10.38) and writing the

result in a coordinate independent fashion, we get the following response to a weak magnetic field:

dδTb

dB
(n̂) = 1.786× 1017 mK

G
[B̂ · (k̂×n̂)](n̂ · k̂)×

(
1− Tγ

Ts

)
x2

1s

(
Tγ
Ts

)
δ

(1 + xα,(2) + xc,(2))2
.

(10.39)

In the geometry of Fig. 8.2, the direction to the observer is n̂ = −ŷ. If we substitute this in the

above equation, we recover the angular structure of the correction to the brightness temperature in

Section 8.3, in particular, the form of Eq. (8.10). The latter only accounted for the radiative decay

of the magnetic moment, while Eq. (10.39) includes the additional effect of collisions and optical

pumping through the dimensionless factors of xα,(2) and xc,(2).

We realize the complementary strong field limit by taking the limit xB →∞ in Eq. (10.38). The

change in brightness temperature over the case with no external magnetic field is

δTb(n̂)|xB→∞ − δTb(n̂)|xB=0 = 8.53 µK×
[
P2(k̂ · B̂)P2(n̂ · B̂)− P2(k̂ · n̂)

]

×
(

1− Tγ
Ts

)
x2

1s

(
1 + z

10

)(
Tγ
Ts

)
δ

1 + xα,(2) + xc,(2)
. (10.40)

From the above expression, we see that the effect saturates at large values of the magnetic field

strength. However, we observe that it is still possible to reconstruct the direction of the magnetic

field in the plane of the sky using the form of the isotropy breaking in k̂ space. The correction is

roughly three orders of magnitude fainter than the raw 21-cm brightness even for the optimal range

of k̂, B̂, and Jα. However, it should be noted that it is exactly in phase with the conventional

brightness temperature fluctuations – that is, it traces the same underlying density field δ and is

changing the coefficient in front of this. Thus its effect on the power spectrum is of order 10−3, not

10−6 (as would be the case if the magnetic field correction were a new random field, independent of

the density but with an amplitude three orders of magnitude smaller).
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10.3 Summary and Conclusions

In this study, we propose a new method to probe magnetic fields present in the universe prior to

and during the early stages of cosmic reionization. The method relies on the spin-polarization of the

triplet state of the hyperfine sublevels of neutral hydrogen by an anisotropic radiation field near the

energy of the 21-cm transition. These anisotropies naturally arise in the early universe due to density

fluctuations in the high redshift gas. In the presence of an external magnetic field, the precession

of these spin-polarized atoms changes the angular distribution of the emitted 21-cm radiation at

second order in optical depth. This produces a characteristic signature in the power spectrum, or

two-point correlation function, of the fluctuations in brightness temperature. In particular, large-

scale magnetic fields break the isotropy of the power spectrum in a way that can be identified in

data from future low-frequency radio surveys.

Due to the long lifetimes of the excited states of the hyperfine transition, this method is naturally

optimal for measuring very weak magnetic fields (. 10−19 G at the epoch of reionization, or . 10−21

G scaled to the present day). It thus raises the exciting possibility of probing seed fields that possibly

gave rise to the magnetic fields observed in the present-day universe. As the background magnetic

field increases, the effect saturates; however, even in the saturated case, it is possible to recover some

information about the direction of the magnetic fields.

In order to estimate the size of the effect, we present a detailed calculation of the coupled evolution

of atomic and photon density matrices. We account for all the processes which affect the atomic

magnetic moments, such as the Wouthuysen-Field effect, atomic collisions, and radiative decay. The

main results are Eq. (10.38), which includes the corrections to the brightness temperature due to all

these effects, and Eqs. (10.39) and (10.40), which show the weak- and strong-field limits, respectively.

This calculation provides a complete theoretical basis for the microphysics of the hyperfine transition,

which can be used to compute the detectability of any particular model for primordial magnetic fields

with future surveys after folding in the astrophysics which determines background parameters such

as the Lyman-α flux. We will carry out this program in subsequent investigations.

The method we proposed here adds to the already exciting opportunities for the use of the 21-

cm line as a probe of the early universe, and is in principle sensitive to extremely weak magnetic

fields which are far beyond the reach of any other methods (including other techniques based on the

21-cm radiation). Paper II of this series [Gluscevic et al., in prep] presents the formalism to evaluate

detectability of primordial magnetic fields with 21-cm surveys using this new method, and discusses

the sensitivity of different radio-array designs for probing a range of magnetic-field models.
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10.A Conventions for spherical tensors

In this section, we lay out the conventions for spherical tensors, and our reasons for adopting the

same.

Consider a passive rotation around the z-axis by an angle α, which connects two coordinate

systems S and S′ as follows:

(θ, φ)|S = (θ, φ− α)|S′ , (10.41)

where both sides refer to the same point on the unit sphere. Within quantum mechanics, the

coefficients of a state and expectation values of spherical tensors transform with opposite signs:

cm|S′ = eimαcm|S with |ψ〉 =
∑

m

cm|m〉 (10.42)

for states and

〈T (k)
m 〉|S′ = e−imα〈T (k)

m 〉|S (10.43)

for spherical tensors. The spherical tensors of interest are the irreducible components of the matter

density matrix (Pjm), and the moments of the phase-space density matrix of the radiation [(fαβ)jm].

They are defined in Eqs. (8.17) and (8.33); these definitions transform in the manner of Eq. (10.43).

Note that the definition of the multipoles of the radiation in Eq. (8.33) differs from the usual

convention adopted in cosmology literature, which omits the complex conjugate on its RHS. The

latter considers these moments as state-coefficients rather than expectation values of spherical ten-

sors. Considering that the majority of the calculations in this work have an atomic physics flavor,

our definition is convenient, though unconventional.

10.B Spherical Wave Basis for the Radiation’s Phase-space

Density Matrix

The standard choice of basis for the EM field’s expansion is one consisting of plane waves, whose

defining characteristic is that they are eigenfunctions of the linear momentum and helicity of the

EM field. This is the basis used in Section 8.4.2. However, it is also possible to use eigenstates of the

total angular momentum, parity and energy of the EM field as basis elements. This section expands

on this, and details how to transform between these two bases.

Eigenstates of total angular momentum have the usual indices j and m. They are classified as

electric and magnetic type states depending on how they behave under a parity transformation –
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electric type states pick up a factor of (−1)j , while those of the magnetic type pick up (−1)j+1. The

explicit form of these eigenstates is [396]

A
(λ)
ω,jm(r) =

∫
d3kγ
(2π)3

A
(λ)
ω,jm(kγ)eikγ ·r, λ = E,M (10.44)

A
(λ)
ω,jm(kγ) = 4π2

(
~c3

ω3

)1/2

δ(kγ − ω/c)Y(λ)
jm(n̂), and (10.45)

Y
(λ)
jm(n̂) =





1√
j(j+1)

∇n̂Yjm λ = E

1√
j(j+1)

n̂×∇n̂Yjm λ = M

, (10.46)

where n̂ = k̂γ is the direction of propagation and the index j runs over integers greater than zero,

while m runs over integers from −j to j.

We expand the vector potential A in the same manner as in Eq. (8.25).

A(r) =
∑

j,m

∫ [{
a

(E)
jm (ω)A

(E)
ω,jm(r) + a

(M)
jm (ω)A

(M)
ω,jm(r)

}
+ h.c.

]
dω, (10.47)

where the operators a
(e/m)
ω,jm and a

(e/m)
ω,jm

† are annihilation and creation operators for photons of the

electric and magnetic type. Operators for photons of the same type have the following commutation

relations:

[ajm(ω), a†j′m′(ω
′)] = δ(ω − ω′)δj,j′δm,m′ and

[ajm(ω), aj′m′(ω
′)] = [a†jm(ω), a†j′m′(ω

′)] = 0, (10.48)

while those of different types commute with each other.

The phase-space density matrix in this basis can be defined in the same manner as in Eq. (8.30)

for the plane wave basis:

〈a(λ)†
jm (ω) a

(λ′)
j′m′(ω

′)〉 = f
(λ′j′)(λj)
m′,m (ω) δ(ω − ω′) (10.49)

for λ, λ′ = E,M.

At this stage, it is worthwhile to examine the general considerations leading to the forms of the

density matrices in the two bases. Phase coherence between frequencies separated by ∆ω leads to

oscillatory features on time-scales of ∆t ∼ 1/∆ω. If the time-interval ∆t over which the statistical

properties of the radiation field are stationary is sufficiently long, the width of the two-point function

in frequency space is ∼ 1/∆t→ 0. Thus the δ-function in the definition in the spherical wave basis

[Eq. (10.49)] is a consequence of time-translation invariance.

The δ-function in the definition in the plane wave basis [Eq. (8.30)] is a consequence of invariance
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under spatial translations, the argument paralleling the one for time-translation invariance above.

It is relatively simple to express a state given in the plane wave basis in the spherical one, but

the inverse transformation involves averaging over the positions of the interacting atoms to recover

translational invariance. This is dealt with in greater detail in Section 10.1.2.

In the rest of this section, we describe the transformation from the plane wave basis (the fX,jms)

to the spherical wave one (the f
(λj)(λ′j′)
m,m′ s) centered at the position of a hydrogen atom interacting

with the radiation. The transformation is

f
(λj)(λ′j′)
m,m′ (ω) =

∑

α,β

∫
d2n fαβ(ω, n̂)

[
e(α) ·Y(λ)

jm
∗](n̂)

[
e∗(β) ·Y

(λ′)
j′m′

]
(n̂). (10.50)

The normalization is such that if the radiation is unpolarized and isotropic (e.g. a thermal state),

the elements of the phase-space density matrix are

f
(λj)(λ′j′)
m,m′ (ω) =




fI,00(ω) δj,j′δm,m′ if λ = λ′

0 if λ 6= λ′
. (10.51)

We further simplify the angular integral in the transformation of Eq. (10.50) using the moments of

the phase-space density matrix in the plane wave basis [Eq. (8.33)], and the Clebsch-Gordan rule

for evaluating the angular integral of the product of three spherical harmonics [401].

The M1–M1 block of the phase-space density matrix contributes to the evolution of the atom

density matrix [see Section 9.1]. We derive its explicit form for arbitrarily polarized radiation by

simplifying Eq. (10.50):

f
(M1)(M1)
m,m′ (ω) =

3

2

∑

j,m2

∑

α,β

αβ(−1)α−m
′
(fαβ)jm2(ω)


 1 1 j

−α β α− β




 1 1 j

−m m′ −m2


 .

(10.52)

This 3 × 3 block is equivalently described in terms of its irreducible components Fjm(ω) of ranks

j = {0, 1, 2}, in exactly the same manner as the matter density matrix ρm1m2
in Eqs. (8.17) and

(8.19):

Fjm(ω) =
√

(2j + 1)3
∑

m1,m2

(−1)1−m2


 1 j 1

−m2 µ m1


 f (M1)(M1)

m1,m2
(ω), (10.53)

with the inverse relation

f (M1)(M1)
m1m2

(ω) =
∑

jm

√
2j + 1

3
(−1)1−m2


 1 j 1

−m2 m m1



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×Fjm(ω). (10.54)

Substitution in Eq. (10.52) gives the explicit forms of these irreducible components

F00(ω) = 3fI,00(ω), (10.55a)

F1m(ω) =

√
3

2
fV,1m(ω), and (10.55b)

F2m(ω) =
3

5
√

2

[
fI,2m(ω) +

√
6 fE,2m(ω)

]
. (10.55c)

10.C Three-point functions of the atoms and the radiation

field

Three-point functions of the atom and the radiation field affect the evolution of the atoms’ density

matrix ρ and the radiation’s phase-space density matrix f . In this section, we derive expressions for

their contribution.

The Hamiltonians for the hydrogen atoms and radiation are

Hhf = E0|00〉〈00|+ E1

∑

m

|1m〉〈1m|, (10.56)

Hγ =
∑

j,m,λ

∫
dω ~ω a(λ)

jm
†(ω)a

(λ)
jm(ω), (10.57)

where E0 and E1 are the energies of the singlet and triplet levels. The zero-point energy has been

left out of Eq. (10.57).

A three-point function is the expectation value of an operator consisting of the product of creation

and annihilation operators for the hydrogen atoms and for the radiation. This function’s evolution

is governed by the operator’s commutator with the total Hamiltonian:

d

dt

〈
|1m1〉〈00|a(λ)

jm(ω)
〉

=
i

~

〈[
Hhf +Hγ +Hhf,γ , |1m1〉〈00|a(λ)

jm(ω)
]〉

= i(ωhf − ω)
〈
|1m1〉〈00|a(λ)

jm(ω)
〉

+
i

~

〈[
Hhf,γ , |1m1〉〈00|a(λ)

jm(ω)
]〉

. (10.58)

Assuming that the interaction is turned on at t = 0, the formal solution to Eq. (10.58) is

〈
|1m1〉〈00|a(λ)

jm(ω)
〉

= Cei(ωhf−ω)t +
i

~

∫ t

0

dt′e−i(ωhf−ω)(t′−t)
〈[
Hhf,γ , |1m1〉〈00|a(λ)

jm(ω)
]〉

. (10.59)

If the expectation value in the integrand of the second term varies slowly with time, the exponential

dominates the integral and results in a δ-function which picks out the frequency resonant with the

level gap. This behaves like a rate term when the three-point function is input to an evolution
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equation (the Fermi golden rule). The first term does not lead to such a secular rate contribution.

We have the identity

〈
|1m1〉〈00|a(λ)

jm(ω)
〉

=
i

~
πδ(ω − ωhf)

〈[
Hhf,γ , |1m1〉〈00|a(λ)

jm(ω)
]〉

. (10.60)

We use the form of the interaction Hamiltonian from Eq. (9.4) to evaluate the expectation value on

the RHS,

〈[
Hhf,γ , |1m1〉〈00|a(λ)

jm(ω)
]〉

=
∑

m2,m′

∫
dω′ V ∗m2a,m′(ω

′)
[
δm1m2

〈
|00〉〈00|a(M)

1m′
†(ω′) a

(λ)
jm(ω)

〉

−
〈
|1m1〉〈1m2| a(λ)

jm(ω) a
(M)
1m′
†(ω′)

〉]
. (10.61)

The dominant contribution to the four-point function is from the classical, disconnected part. We

evaluate this using the commutation relations Eq. (10.48) and the definitions of the photon and

atom density matrices. The final result is

〈[
Hhf,γ , |1m1〉〈00|a(λ)

jm(ω)
]〉

=
∑

m2,m′

V ∗m2a,m′(ω)
[
δm1m2

ρaa f
(λj),(M1)
m,m′ (ω)

− ρm2m1

{
δ(λ)(M)δj1δmm′ + f

(λj)(M1)
m,m′ (ω)

}]
. (10.62)
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Part IV

The stability of tidally deformed

neutron stars to three- and

four-mode coupling
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Chapter 11

Preliminaries1

11.1 Introduction

Compact binary systems are thought to host some of the most energetic phenomena in the universe.

In particular, neutron star binaries can be exceptionally bright sources of both gravitational and

electromagnetic radiation during their inspiral and eventual merger. Such systems provide a unique

window into a variety of fundamental physical processes. For example, merging binaries which host

at least one neutron star are thought to be sources of short gamma ray bursts. These binary inspirals

are also the most promising sources for the upcoming generation of gravitational wave detectors,

such as Advanced LIGO [210], Advanced VIRGO [211], and KAGRA [212]. Observations of compact

binaries through their gravitational wave emission should provide precise measurements of the binary

parameters [e.g. 214–216], including possibly the indirect measurement of the neutron star equation

of state through the effects of tidal deformation of the binary companions on the gravitational

waveform [e.g. 217–220] or the final cutoff frequency of the gravitational waveform [e.g. 221–223].

Since the phase of the waveform depends sensitively on the binary parameters, it is imperative that

we have accurate theoretical templates in order to extract useful information from observed inspirals.

The evolution of a compact binary through radiation reaction is understood up to high order

general relativistic effects in the post-Newtonian expansion, which accounts fully for the inspiral of

pairs of black holes. When the binary hosts at least one neutron star, tidal interactions in principle

also play a role. Tidal dissipation allows for the transfer of orbital energy into oscillations and the

internal heating of the stars, which corrects the predicted rate of inspiral due to purely gravitational

effects. Studies of the effect of tidal interactions and the excitation of linear perturbations have shown

that tidal effects have a negligible impact on the last stages of binary inspiral [226, 227, 408–410].

In particular, they can be ignored for the purpose of gravitational wave detection and parameter

extraction.

1The material in Chapters 11–13 was adapted from the paper The stability of tidally deformed neutron stars to
three- and four-mode coupling, Venumadhav, T., Zimmerman, A., & Hirata, C. M. 2014, Astrophys. J., 781, 23.
Reproduced here with permission, copyright (2013) by the American Astronomical Society.
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Recently, attention has been drawn to nonlinear tidal effects in close binary systems. Weinberg

et al. [411] investigated a variety of scenarios in which nonlinear instabilities can produce strong tidal

effects and corresponding dissipation, through both the familiar parametric resonance mechanism

and the less-familiar, nonlinear driving of modes due to strong mode-mode coupling. Even more

recently, Weinberg et al. [228] (hereafter abbreviated WAB) considered nonlinear coupling between

modes in a tidally perturbed neutron star and found a potential non-resonant instability. The

essential idea is that the tidal perturbation can set up a strong coupling between a high-order p-

mode and a high-order g-mode, through a three-mode interaction term. Since these two daughter

modes have widely spaced frequencies, with ωp � ωg, they cannot suffer from a resonant instability.

But, when they have nearly identical wave numbers, kp ' kg, WAB found that the three-mode

coupling was so strong that it destabilized the daughter modes. In this case, the tidal forces on the

star rapidly drive the g-mode to large amplitudes, and nonlinear dissipation of these modes in turn

converts the orbital energy of the binary into tidal heating of the star. Depending on the saturation

amplitude, such behavior can lead to a large correction to the orbital phase of binary inspiral, at

around the time that the inspiral enters into the sensitive frequency band of gravitational wave

detectors. This would represent a potential difficulty for gravitational wave detection via matched

filtering with a template that accumulates signal-to-noise ratio over many orbits.

In fact, the nature of the instability discussed in WAB implies that a neutron star immersed in a

static tidal field is also unstable, even when the tidal perturbation is weak compared to the star’s self-

gravity. In this case, the star is unstable to a sort of buckling effect: the static p-mode would cause

the star to separate radially into alternating layers of increased and decreased compression, while

the static g-mode gives these layers an alternating horizontal shear relative to their initial positions.

We may thus consider WAB’s instability to be “quasi-static” in the sense that it exists even as

the tidal forcing frequency is taken to zero (see WAB Section 2 and Appendix A). However, the

work of WAB focused in detail only on the three-mode coupling terms, neglecting other potentially

important effects such as four-mode coupling terms.

In this work, we present an investigation of a static, tidally perturbed star, including all of the

necessary three- and four-mode terms to determine whether the star is stable to the first nonlinear

corrections to perturbation theory. In order to complete the analysis, we present a novel technique

for computing the four-mode coupling terms between two daughter modes and the tidal perturbation.

We find that the four-mode coupling terms cancel the three-mode coupling terms when the latter

become large, protecting the star from non-resonant instabilities. We consider a non-rotating neutron

star and a static tidal field in order to simplify the analysis. It is important to note that for the

case of possible non-resonant instabilities, having a fixed rather than a slowly-varying tidal field (as

compared to the neutron star’s dynamical time scale) does not change the essential problem. This is

because a quasi-static instability (such as WAB) occurs when perturbations of the deformed star can
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possess negative potential energy, as opposed to a parametric resonance instability where a time-

varying tidal field excites oscillatory modes of positive energy (a phenomenon that is impossible

if the forcing frequency vanishes). WAB also investigated parametric resonances in neutron star

binaries, and found that these did not contribute significantly to the orbital evolution of the binary.

Other possible effects of the time-varying tidal field are considered in Appendix 13.E, and in the

discussion.

For simplicity, we only consider inviscid, normal fluid neutron stars in Newtonian gravity: this

physics is sufficient to capture the instability in WAB. Including the solid neutron star crust would

produce additional modes at the crust-core interface (i) and due to shear waves (s) in the crust

[412]; linear resonant excitation of the i-mode has been studied in the context of an energy source for

gamma-ray burst precursors [413]. However the quasi-static instability in WAB occurs due to mode

overlap in the core, and we would not expect crustal modes to play a role. General relativistic effects

are also not considered: they make modest (order GM/R∗c
2) perturbations to the mode frequencies,

but their only qualitative effect is a small damping due to gravitational wave emission not present

in the Newtonian theory [see e.g. 414–417]. We also make use of the Cowling approximation, where

the background gravitational field is held fixed while the fluid elements are perturbed about their

original configuration [e.g. 418], and this approximation does have a potentially important impact,

since it is necessary in the technique we use to compute the four-mode coupling. In fact, the Cowling

approximation is at its worst when treating the tidal deformation. However, the high-order daughter

modes whose stability we are ultimately interested in should be very well described by the Cowling

approximation.

Before entering into a detailed discussion of our results, it is worthwhile to first examine a simple

toy problem in order to gain an intuition regarding what order in perturbation theory we need to

go to. This directly illustrates why four-mode terms are significant in the stability analysis.

11.1.1 A toy model: Two dimensional oscillator

Consider a two-dimensional harmonic oscillator with characteristic frequencies ω1 and ω2, such that

ω1 � ω2. The potential energy of this system for a general displacement η from equilibrium, written

in coordinates with a unit-mass normalized kinetic energy term T = 1
2 η̇
>η̇, is given by

V(η) =
1

2
η>Mη , where M =


ω

2
1 0

0 ω2
2


 . (11.1)

Consider some effect (like interaction with a third degree of freedom, for example) which rotates

the coordinate basis, so that displacement vectors become η′ = U(θ)η, where U(θ) is in the SO(2)
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representation of the rotation. In the new basis, the potential energy is given by

V(η′) =
1

2
(η′)>M′η′ , where M′ = UMU> . (11.2)

Putting in the form of U(θ), we see that

M′(θ) =


ω

2
1 cos2 θ + ω2

2 sin2 θ (ω2
1 − ω2

2) cos θ sin θ

(ω2
1 − ω2

2) cos θ sin θ ω2
1 sin2 θ + ω2

2 cos2 θ


 =M+ δM, where (11.3)

δM =


(ω2

2 − ω2
1)θ2 (ω2

1 − ω2
2)θ

(ω2
1 − ω2

2)θ (ω2
1 − ω2

2)θ2


+O(θ3) . (11.4)

The change in the smaller eigenvalue of M due to this change can be formally calculated using

second-order perturbation theory as

ω2
− =ω2

2 + δM22 +
δM2

12

ω2
2 − ω2

1

+ ... = ω2
2 + θ2(ω2

1 − ω2
2) +

[
(ω2

1 − ω2
2)θ
]2

ω2
2 − ω2

1

+ . . . = ω2
2 . (11.5)

We could have predicted this from the fact that the interactions act as a pure rotation, but

this avenue of analysis highlights a fact which is useful when we do not have such global, non-

perturbative information. When calculating perturbations to the eigenvalues, perturbations to the

matrix elements along the diagonal (M22) enter into the analysis at the same order as perturba-

tions to those off the diagonal (M12) squared. Hence, if the angle θ is a small angle such that

ω2
2/(ω

2
1 − ω2

2) ' ω2
2/ω

2
1 < θ2 � 1, the diagonal perturbation δM22 is much smaller than the

off-diagonal perturbation δM12, but the latter cannot be ignored in the calculation of ω−. Ignor-

ing it would lead us to the conclusion that the deformed potential has an unstable direction, i.e.

ω2
− = ω2

2 + θ2(ω2
2 − ω2

1) + . . . < 0. Figure 11.1 illustrates this point by plotting contours of constant

potential V using both the full rotation, and using only the leading order term in small angle θ.

In the former case, it is clear that the origin remains a stable equilibrium, but in the latter case,

neglecting the higher order terms leads the origin to become a saddle point.

This example captures much of the physics describing the system we are interested in, i.e., a

tidally-deformed neutron star. In Section 12.1.4, we show that in the sub-matrix of a pair of high

order modes, the off-diagonal perturbation to the potential is given by the three-mode coupling be-

tween the modes and the tidal deformation, and the diagonal perturbations are given by appropriate

four-mode couplings. Lessons learned from the toy model tell us that we need to evaluate both the

three- and the four-mode couplings in order to determine the lowest order or ε2 (in dimensionless

tidal strength ε) perturbation to the eigenfrequencies.

The example also captures one other aspect of our analysis: what happens if the shallow direction

of the potential changes with time. In the limit of ω1 → ∞, this example corresponds to that of
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Figure 11.1: Potential surfaces for a perturbed two-dimensional oscillator, with the perturbation taking the
form of a rotation. This plot is for characteristic frequencies ω1/ω2 = 5 and the angle of rotation θ = 0.25.
The top panel shows the contours of constant potential after adding perturbations of all orders in θ, while
the bottom panel shows the contours after adding only terms that are first order in θ.

a bead in a restoring force (−ω2
2x) sliding on a wire at position angle θ. If θ varies, then the

bead experiences a centrifugal or anti-restoring force (θ̇2x). In Appendix 13.E we consider the

consequences of this effect when the tidal field is varying with time due to the motion of the binary.

The presentation is structured as follows: we review the formalism of nonlinear perturbations

of a star in Chapter 12. We introduce variational techniques in Section 12.1. We first discuss the

Lagrangian formulation of the dynamics in Section 12.1.1, review the expansion of the problem in the

basis of the linear modes of the star in Section 12.1.2, and discuss the equilibrium tidal deformation

in Section 12.1.3. We arrive at the full expression of the perturbations to the mode frequencies due

to three- and four-mode coupling in Section 12.1.4. We compute four-mode couplings in Chapter

13. In Section 13.1 we compute the four-mode coupling terms using a novel technique. We describe

this technique in Sections 13.1.1–13.1.2, apply it to recast the problem of perturbations of the mode

frequencies in Sections 13.1.3–13.1.4, and show that largest potentially unstable terms cancel in

Section 13.1.6. In Section 13.2 we estimate the size of the remaining perturbations, and show that

they are small in the case of high-order daughter modes in the presence of the tidal deformation.

Finally, we conclude with an overview and discussion of our results in Section 13.3. Some technical

details that arise along the way are collected into the Appendices.
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Chapter 12

Formalism of mode couplings

12.1 Perturbations in tidally deformed stars

We now discuss the equations which govern stellar perturbations, focusing on three- and four-mode

interactions between tidal deformations and additional perturbations of the star. First we review

the Lagrangian formulation of general perturbations of a background star, and then we expand these

perturbations in the basis of the linear modes of the star. This allows us to examine how nonlinear

interactions perturb the eigenfrequencies of the linear perturbations. We show how coupling between

modes can generate an instability, and we also show that in order to determine if an instability exists,

we must account for both three- and four-mode interactions.

12.1.1 Lagrangian formulation of perturbations

Consider a non-rotating, inviscid, fluid neutron star with total mass M , radius R∗, and a charac-

teristic dynamical frequency ω2
0 = GM/R3

∗, which is perturbed by a weak tidal field. The tidal

potential has the form εU(x), where ε is the dimensionless tidal strength. Our particular expression

for U is the leading-order tidal potential due to a distant companion star of mass m, held at a fixed

separation a, so that ε = Gm/(ω2
0a

3). We consider the leading multipole of the corresponding tidal

potential, which is

U = −ω2
0r

2P2(cos θ) , (12.1)

where Pl is a Legendre polynomial with unit normalization, and θ measures the angle from the

line joining the star to its companion. The perturbing potential is axisymmetric in this coordinate

system. This work can be generalized to include the higher, weaker multipoles of the potential in a

straightforward manner.

Let ξ denote a general displacement field on the star. Each fluid element of the star is labeled by

its initial coordinates, x (the Lagrangian coordinates of the element), so that elements initially at x
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are displaced to their actual (Eulerian) positions x′ as x→ x′ = x+ ξ. Whatever coordinate system

we choose to use, whether it be x, x′, or some other coordinate system X, note that the masses

of the elements are invariant, so that d3xρ(x) = d3x′ρ′(x′) = d3XρX(X). From now on, quantities

such as ρ are taken to be defined in the coordinate system being used at that stage.

The displacement field has a Lagrangian L given by

L(ξ, ξ̇) =

∫
d3x ρ(x)

1

2
ξ̇(x) · ξ̇(x)− V(ξ) , (12.2)

where the potential V(ξ) incorporates both the internal energy of the perturbed star and the gravi-

tational energy. For a star with an external perturbing field, the potential energy with an arbitrary

displacement field takes the form

V(ξ) =

∫
d3x′ ρ(x′) [Eint(x

′) + Φ0(x′) + εU(x′)] + C

=

∫
d3x ρ(x) [Eint(x + ξ) + Φ0(x + ξ) + εU(x + ξ)] + C

=

∫
d3x ρ(x)

[
Eint(x) + Φ0(x) +

1

2
ξ ·C · ξ +

1

3!
f3(ξ, ξ, ξ) +

1

4!
f4(ξ, ξ, ξ, ξ) + . . .

+ε ξ · ∇U +
1

2
ε ξ · (ξ · ∇)∇U + . . .

]
+ C . (12.3)

In the case of linear perturbations, only the symmetric bilinear C and the gradient of U contribute

to the dynamics of the displacement field. Physically, C · ξ is the linear restoring force opposing an

infinitesimal displacement ξ. Lynden-Bell and Ostriker [419] [see also, e.g. 420] derive a functional

form for C. The functionals fn, meanwhile, encode the nonlinear corrections to the restoring forces

due to the internal and self-gravitational energy of the star. These functionals are symmetric and

linear under addition and scalar multiplication of displacements, but not under multiplication of the

displacements by scalar functions. Later, when we expand the displacement in terms of the linear

modes, they give us the n-mode couplings.

The term C in this case contains the contributions to the energy from the gravitational field itself,

which are fixed by the Cowling approximation and do not contribute to the dynamics of ξ. The issue

of the appropriate division of gravitational potential energy between the field degrees of freedom and

the interaction between the fluid elements and those fields is discussed in Appendix 13.A. We also

remark that for the tidal field given in Eq. (12.1),
∫
d3x ρU = 0 due to the fact that the background

ρ is spherically symmetric and U is dipolar, and so has not been written in Eq. (12.3). In addition,

since U is a quadratic function of x, all third and higher derivatives of U vanish, and as such have

not been written.
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12.1.2 Mode expansion of the Lagrangian

The most convenient language in which to discuss nonlinear perturbations is in terms of an expansion

in the orthonormal basis of linear modes of the star. We write the mode functions themselves are

as ξa, and a general displacement can be expanded as

ξ(x) =
∑

a

caξa(x) (12.4)

using this basis. In spherical coordinates, the mode functions have the form1

ξa = ξrYar̂ + ξh

(
∂θYaθ̂ +

1

sin θ
∂φYaφ̂

)
, (12.5)

where ξr and ξh are functions of r and Ya = Yla,ma(θ, φ). The basis obeys the orthonormality

condition

∫
d3x ρ ξ∗a · ξb =

E0

ω2
a

δab , (12.6)

where E0 = GM2/R∗. This normalization, which is the same as the one used by WAB but differs

from that of Schenk et al. [420], means that when a basis mode is excited to unit amplitude, it has

energy E0. By expanding in these basis functions, we can re-express our Lagrangian and potential

as sums over mode amplitudes.

The square of the mode frequencies ω2
a are the eigenvalues of the bilinear C in the mode basis,

C · ξa = ω2
aξa . (12.7)

By defining the mode expansions of the remaining terms in the Lagrangian, we can write it entirely

in terms of the mode amplitudes. The definitions we need are

Ua =− 1

E0

∫
d3x ρ ξ∗a · ∇U , (12.8)

Uab =− 1

E0

∫
d3x ρ ξa · (ξb · ∇)∇U , (12.9)

κabc =− 1

2E0

∫
d3x ρ f3(ξa, ξb, ξc) , and (12.10)

κabcd =− 1

3!E0

∫
d3x ρ f4(ξa, ξb, ξc, ξd) . (12.11)

Due to the symmetry of the functionals fn, the coupling terms κabc and κabcd are symmetric in

all their indices. When we expand the Lagrangian in this mode basis, we use the fact that the

displacement ξ is real, and can be replaced by ξ∗ as and when needed. Using these definitions and

1We do not consider toroidal displacements, ξ ∝ r×∇Ya, since they do not couple to the tidal field [e.g. 418].
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the potential (12.3), we rewrite the Lagrangian (12.2) in the form

L =E0

∑[
ċaċ
∗
a

2ω2
a

− 1

2
cac
∗
a +

1

3
κāb̄c̄c

∗
ac
∗
bc
∗
c +

1

4
κāb̄c̄d̄c

∗
ac
∗
bc
∗
cc
∗
d + εUac

∗
a +

1

2
εUāb̄c

∗
ac
∗
b + . . .

]
− V(0) .

(12.12)

Here, our convention is that the sum runs over all the repeated indices in each term (including the

index a in the first two terms). Bars indicate the use of complex conjugate wave-functions in the

respective terms. Note that in the first and second terms, the amplitude of a mode with a given

m comes up twice – in the terms corresponding to m and in those corresponding to −m, since the

reality of ξ implies that they are related by ca−m = (−1)mc∗am . We recall that the potential term V
with the displacement set to zero has the form

V(0) =

∫
d3x ρ [Eint(x) + Φ0(x)] + C . (12.13)

We use the rule that sums run over repeated indices throughout this work, except where noted.

Though we do not do so here, the equations of motion, as presented in e.g. Schenk et al. [420], can

be derived by varying this Lagrangian with respect to the amplitude c∗a.

With the formalism of the mode expansion established, we now investigate the perturbations

excited by a static tidal field.

12.1.3 The static response to the tide

The star responds to the external tidal field εU by deforming to a new equilibrium configuration.

We denote this equilibrium tidal deformation χ and set ξ equal to χ in the preceding equations. The

tidal displacement χ is such the internal restoring forces balance the external perturbing force,

δV
δξ

∣∣∣∣
ξ→χ

= 0 . (12.14)

Physically, χ takes the spherically symmetric star to a static configuration where elements along

contours of constant gravitational potential Φ0 + εU have the same density and pressure. The

displacement χ has a part linear in the tidal strength ε, which is the so-called linear tide. There are

also higher terms, which arise from the nonlinear restoring forces and the nonlinear tide. In order

to consistently account for the changes in the eigenfrequencies ωa of additional perturbations due

to coupling with the tide, we need to keep terms up to O(ε2). As such, we write the expansion of χ

in the mode basis as

χ =
∑

χaξa =
∑

(εχ(1)
a + ε2χ(2)

a )ξa . (12.15)
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Varying just the potential terms of the Lagrangian (12.12) with respect to a given mode amplitude

c∗a, and then substituting the amplitudes χa into the result gives an equation for χa,

χa − εUa −
∑

[κāb̄c̄χ
∗
bχ
∗
c + κāb̄c̄d̄χ

∗
bχ
∗
cχ
∗
d + εUāb̄χ

∗
b + . . .] = 0 . (12.16)

Solving order by order for χa, we find that

χ(1)
a = Ua and (12.17)

χ(2)
a =

∑
[κāb̄c̄U

∗
b U
∗
c + Uāb̄U

∗
b ] . (12.18)

Given the tidal field εU , the fluid elements respond by the nonlinear displacement χ. Note that since

U is axisymmetric, χ is also axisymmetric and χa contains only terms where m = 0. This means

that all of the terms in Eqs (12.17) and (12.18) are actually real. The question we must answer is

whether or not this deformed star is stable.

12.1.4 Stability of the deformed star

Now we allow the star to undergo further perturbations, so that

ξ = χ+ η , (12.19)

where η is an additional displacement field on the star away from the equilibrium configuration. We

are interested in the interaction of pairs of daughter modes with the tidal perturbation, and so we

expand our Lagrangian only to second order in the additional small perturbations, O(η2). We do

not deal with the coupling of three or more non-tidal modes either to each other or to the tide, and

so O(η3) and higher terms are dropped in what follows.

By expanding η as
∑
ηaξa, and substituting the corresponding expansion of the displacement

ca = χa + ηa into the Lagrangian (12.12), we arrive at the following form of the Lagrangian, up to

the order we are interested in,

L =E0

∑[
η̇aη̇
∗
a

2ω2
a

− 1

2
(χaχ

∗
a + ηaη

∗
a) + κāb̄c̄η

∗
aη
∗
bχ
∗
c +

3

2
κāb̄c̄d̄η

∗
aη
∗
bχ
∗
cχ
∗
d + εUaχ

∗
a +

1

2
εUāb̄η

∗
aη
∗
b

]
− V(0)

=E0

∑[
η̇aη̇
∗
a

2ω2
a

− 1

2
ηaη
∗
a +

(
ε[κāb̄c̄χ

(1)∗
c +

1

2
Uāb̄] + ε2[κāb̄c̄χ

(2)∗
c +

3

2
κāb̄c̄d̄χ

(1)∗
c χ

(1)∗
d ]

)
η∗aη
∗
b

]

+
E0

2

∑
ε2|Ua|2 − V(0) . (12.20)

In the first line we have written only those terms which are of the correct order, and we have also

neglected terms which have only a single factor of ηa, since these vanish upon substitution of our

solution for χa. The terms linear in η vanish because the displacement χ takes the star to an
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equilibrium state. In the next line, we have substituted the decomposition (12.15), collected terms

in orders of ε, and used Eq. (12.17) to isolate the |Ua|2 term. For now, we ignore the overall constant

terms V(0) and E0

∑
ε2|Ua|2/2, which follow along for the ride but do not affect the dynamics.

The O(ε) term in Eq. (12.20) is the three-mode interaction κāb̄c̄η
∗
aη
∗
bχ

(1)∗
c . If the coupling

κp̄ḡc̄χ
(1)∗
c happens to be large and positive for a particular pair of modes (p, g) then it can overcome

the smallness of the tidal coupling strength ε. As first noted by WAB, κp̄ḡc̄χ
(1)∗
c is in fact large for

certain high order p-mode and g-mode pairs, due to a spatial resonance of the mode functions ξp

and ξg. However, as we show below, this three-mode term perturbs the characteristic frequencies at

O(ε2), as do all of the terms in Eq. (12.20) multiplied by ε2. It is not immediately clear what role

these terms play.

By varying the Lagrangian (12.20) with respect to the amplitudes ηa we can derive the equa-

tions of motion, and from there the characteristic frequencies. We instead adopt an equivalent,

but hopefully more transparent strategy to obtain the characteristic frequencies. Defining rescaled

amplitudes η′a = ηa/ωa leads us to the analogy to a system of coupled oscillators, for which we can

rewrite the Lagrangian in matrix notation as

L =
E0

2
(η̇′)†η̇′ − E0

2
(η′)†Mη′ , (12.21)

where η′ is a vector of mode amplitudes and the matrix M contains the leading restoring terms,

the effect of the tidal potential, and the mode-mode interactions. The rescaling introduces factors

of ωa at each instance of an ηa, and it is equivalent to normalizing the mode functions to all have

the same moment of inertia MR2
∗ at unit amplitude rather than the same energy E0, which is the

choice of normalization used in [420].

The eigenvalues ofM are the characteristic frequencies of this set of oscillators, and consideration

ofM is equivalent to writing out the equations of motion and solving the corresponding characteristic

equation. Because the tidal potential is axisymmetric, there is an ordering of the basis modes where

the matrix M is made up of 2 × 2 and 1 × 1 blocks along the diagonal, where each block consists

of those modes which are allowed to interact given conservation of angular momentum. The blocks

are all independent of each other, and analysis of one essentially applies to the rest.

We now focus on a particular pair of modes with m = 0, which we give indices p and g, and

write the sub-block ofM for this pair. We discuss the structure ofM and the case of modes where

m 6= 0 further in Appendix 13.B. The modes have unperturbed frequencies ωp and ωg, and we set

ωp > ωg. The sub-block of M is composed of

Mpp =ω2
p − εω2

p

(
Upp +

∑
2κappχ

(1)
a

)
− ε2ω2

p

∑[
2κappχ

(2)
a + 3κabppχ

(1)
a χ

(1)
b

]
, (12.22)

Mpg =Mgp = −ε ωpωg
(
Upg +

∑
2κapgχ

(1)
a

)
, and (12.23)
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Mgg =ω2
g − εω2

g

(
Ugg +

∑
2κaggχ

(1)
a

)
− ε2ω2

g

∑[
2κaggχ

(2)
a + 3κabggχ

(1)
a χ

(1)
b

]
, (12.24)

and note that since p and g denote particular modes, they are not summed over in the expressions

forM. Formally expanding in powers of ε, we can compute the perturbed eigenvalues of this matrix

as

ω2
+ =ω2

p − εω2
p

(
Upp +

∑
2κappχ

(1)
a

)
− ε2ω2

p

∑[
2κappχ

(2)
a + 3κabppχ

(1)
a χ

(1)
b

]

+ ε2
ω2
pω

2
g

ω2
p − ω2

g

(
Upg +

∑
2κapgχ

(1)
a

)2

, (12.25)

and

ω2
− =ω2

g − εω2
g

(
Ugg +

∑
2κaggχ

(1)
a

)
− ε2ω2

g

∑[
2κaggχ

(2)
a + 3κabggχ

(1)
a χ

(1)
b

]

− ε2 ω2
pω

2
g

ω2
p − ω2

g

(
Upg +

∑
2κapgχ

(1)
a

)2

. (12.26)

Since ωg is the smaller frequency to begin with, the negative-definite term involving κapg in Eq. (12.26)

is in danger of pushing ωg to a negative value, especially if the mode is a high order g-mode with

ω2
g � ω2

0 = GM/R3
∗ � ω2

p. This is the potential nonlinear instability described by WAB.

In order to make definite statements, we need to know how the other terms behave, in particular

the four-mode interaction term κabggχ
(1)
a χ

(1)
b . If they are large when the three-mode coupling is

large, they can in principle prevent the instability. We now discuss a method for computing the

interaction between two daughter modes and the tidal deformation at the level of the four-mode

coupling. Along the way we also find a way to simply derive the three-mode terms. We find that

the four-mode term serves to precisely cancel the κapg term.
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Chapter 13

Four-mode coupling and the
stability of the tidal deformation

13.1 Computing the four-mode coupling terms

In this section we derive the four-mode terms discussed in Section 12.1.4. The method we use

is straightforward in practice, but it is not obvious from the outset that such a method will be

useful. Briefly, we utilize a coordinate transform that removes the lowest order perturbation, thereby

restructuring the orders of ε in the potential of the star. By matching the mode expansions of the

potential of the transformed star with those derived in the original coordinates, we can write higher-

order mode coupling terms as functions of the lower terms and the coordinate transform itself.

Figure 13.1 shows the two stars – the star in the original coordinates and in the transformed

coordinates – and the various perturbations that are applied to the stars. The first, which we call

star A, has already been given a full treatment in Section 12.1. There we considered the interactions

between the tidal displacement χ and further perturbations η. In star B, we use a volume-preserving

coordinate transform to map the tidally deformed star back into a spherically symmetric configura-

tion. This transform is generated by an infinitesimal, volume-preserving displacement field ζ. We

then consider further perturbations on star B. It is important to note that A and B are the same

stars, just in different coordinate systems. Table 13.1 provides a key for the various vector quantities

which are used in the discussion of the two stars.

In order to gain any new insights from star B, we expand the potentials of both stars in the

same mode basis, which is the basis of linearized modes of the original, unperturbed star. The mode

functions in star B are linear combinations of the original mode functions, and so are related by

the Jacobian matrix of the coordinate transform, expanded in the mode basis. We find that we can

write the three- and four-mode couplings in star A as functions of this Jacobian and a modified tidal

perturbation field.
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Figure 13.1: Schematic of the two stellar models. The external tidal field produces a deformation χ. In
star A, we consider further perturbations η. Star B is obtained by mapping the tidally deformed star
back to a spherically symmetric configuration by a coordinate transform. Further perturbations are now
expressed in this new coordinate system; the field ηS is that perturbation in model B which corresponds to
the perturbation η in model A.

13.1.1 The volume-preserving transform

To begin with, we apply the tidal perturbation εU to a spherical star, so that the total gravitational

potential becomes Φ0 + εU . In response the fluid elements of the star are displaced by the field χ

as discussed in Section 12.1.3. Next, we consider a coordinate transform ψ : x = (r, θ, φ) → X =

(R,Θ, φ). We require this transform to have the special properties that it is volume-preserving, and

that it returns the star to spherical symmetry. These properties completely determine our mapping

in terms of a power series expansion in ε. The resulting spherically symmetric star is not the original

star, because χ itself is not volume-preserving; but as we will see the coordinate transform reverses

χ at leading order in ε. Since our problem is axisymmetric, the φ coordinate is unchanged, and from

here on we can safely ignore the coordinate φ.

We require an expansion of the coordinate transform in orders in ε, and so we represent ψ by

a coordinate flow under an infinitesimal generator ζ(x). Explicitly, the finite transformation ψ

generated by the infinitesimal transformation ζ is defined via a parameterized transform ϕ(s,x)
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Table 13.1: Key for the vector quantities involved in the two stellar models

Vector Quantity Definition
χ Equilibrium tidal deformation
ζ Infinitesimal generator of the volume-preserving coordinate transform ψ
σ Combined application of the equilibrium tide and the coordinate transform ψ
η Further, general perturbation of Star A
ηS Further, general perturbation of Star B

1,2,3 Virtual displacement vectors that sum to χ
Jψ The Jacobian transformation matrix for the coordinate transform ψ

by the ordinary differential equation dϕ(s,x)/ds = ζ(ϕ(s,x)), initial condition ϕ(0,x) = x, and

assignment X = ψ(x) ≡ ϕ(1,x). The flow forward, ψ, gives us our new coordinates in the form of a

Taylor expansion

X = x + ζ(x) +
1

2
(ζ · ∇)ζ

∣∣∣∣
x

, (13.1)

up to order ζ2. The volume-preserving requirement is equivalent to requiring the generator to be

divergenceless, ∇ · ζ = 0.1 It is actually more convenient to first get an explicit representation of

ψ−1: this is actually the transformation generated by the negative of the generator. (This can be

seen from the integral curve definition of a generator if we reverse the sign of d/ds; for an explicit

proof see Appendix 13.C.) Thus the mapping from X to x via −ζ is

x = X + (−ζ)(X) +
1

2
[(−ζ) · ∇](−ζ)

∣∣∣∣
X

. (13.2)

Because of this, once we find an expression for the generator of the inverse flow −ζ in (R,Θ)

coordinates, we have the desired generator ζ(x).2

The vector −ζ(X) has an expansion in powers of ε, which is

ζ = εζ(1) + ε2ζ(2) +O(ε3) . (13.3)

From Eq. (13.2), the magnitude r of the coordinate vector x is

r = R− εR̂ · ζ(1) + ε2

[
ζ(1) · ζ(1)

2R
− (R̂ · ζ(1))2

2R
+

R̂ · (ζ(1) · ∇)ζ(1)

2
− R̂ · ζ(2)

]
, (13.4)

1The Jacobian Jij(s,x) = ∂ϕi(s,x)/∂xj satisfies the differential equation or chain rule ∂Jij/∂s =
∂2ϕi(s,x)/∂xj∂s = ∂ζi(ϕ(s,x))/∂xj = ζi,k(ϕ(t,x)) Jkj , from which we see that its determinant |J| satisfies
∂ ln |J|/∂s = ζi,i(ϕ(s,x)) – thus a divergenceless ζ leads to a volume-preserving transformation.

2A similar construction is used in the Lie transformation theory of small but finite canonical transformations of
Hamiltonian systems [e.g. 421]. There a transformation is generated by the infinitesimal flow in phase space ζ(x,p);
the requirement for the transformation to be canonical corresponds to the requirement that ζ be derivable from a
Hamiltonian. The rule that a transformation can be inverted by reversing the sign of the generator is the same.



166

which can be further simplified using the vector identity (A ·∇)A = ∇A2/2−A× (∇×A), to yield

r = R− εζ(1)
R + ε2

[
ζ

(1)
R ∂Rζ

(1)
R

2
+
ζ

(1)
Θ ∂Θζ

(1)
R

2R
− ζ(2)

R

]
, (13.5)

with the definitions ζ(i) · R̂ = ζ
(i)
R and ζ(i) · Θ̂ = ζ

(i)
Θ . Also useful is the expansion

P2(cos θ) = (1− εζ · ∇)P2(cos Θ) = P2(cos Θ)− εζ
(1)
Θ ∂ΘP2(cos Θ)

R
(13.6)

to the order needed. Now we are in place to solve for ζ, and at the same time to determine the form

of the total gravitational potential Φ(R) out to order ε2. The tidally perturbed potential is

Φ0(r)− εω2
0r

2P2(cos θ) =Φ0(R)− ε
[
ζ

(1)
R g + ω2

0R
2P2(cos Θ)

]
+ ε2

[(
ζ

(1)
R ∂Rζ

(1)
R

2
+
ζ

(1)
Θ ∂Θζ

(1)
R

2R
− ζ(2)

R

)
g

+
1

2
(ζ

(1)
R )2 dg

dr
+ 2ω2

0Rζ
(1)
R P2(cos Θ) + ω2

0Rζ
(1)
Θ ∂ΘP2(cos Θ)

]
. (13.7)

For convenience here and later, we have denoted the local gravitational acceleration as g = dΦ0/dR.

By insisting that all Θ dependence in Φ vanishes, we find at first order

ζ
(1)
R = −ω2

0

R2

g
P2(cos Θ) , (13.8)

and at second order

ζ
(2)
R =

ζ
(1)
R ∂Rζ

(1)
R

2
+
ζ

(1)
Θ ∂Θζ

(1)
R

2R
+

(ζ
(1)
R )2

2R

d ln g

d lnR
+
ω2

0

g

[
2Rζ

(1)
R P2(cos Θ) +Rζ

(1)
Θ ∂ΘP2(cos Θ)

]
.

(13.9)

In order to write this last equation entirely in terms of the gravitational potentials, we need an

expression for ζ
(1)
Θ . For this, we use the requirement that ψ be volume-preserving. The volume-

preserving infinitesimal displacements are spanned by the vectors

f1
lm = l(l + 1)

ulm
R

R̂ +
(ulm
R

+ ∂Rulm

)
R∇Ylm and (13.10)

f2
lm = wlmR×∇Ylm . (13.11)

This can be seen by considering the usual decomposition of vectors into vector spherical harmonics,

and finding those combinations which satisfy ∇ · flm = 0. These naturally decompose into the

spheroidal displacements f1
lm and the toroidal displacements f2

lm [see also 422, Ch. 12]. We are

interested in axially symmetric perturbations, so we only need to use the basis vectors f1
lm. We

further absorb the normalization of the spherical harmonics into the definition of the ulm and write
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(with m = 0 implicit)

ζ =
∑

l

l(l + 1)
ul
R
Pl(cos Θ)R̂ +

(ul
R

+ ∂Rul

)
[∂ΘPl(cos Θ)]Θ̂ , where (13.12)

ul = εu
(1)
l + ε2u

(2)
l +O(ε3) . (13.13)

We see that the ζΘ is simply related to ζR through the requirement that ζ be volume-preserving.

Comparing Eq. (13.8) to Eq. (13.12), we immediately find that

u
(1)
l = −ω2

0

R3

6g
δl2 . (13.14)

Substituting this into Eqs. (13.9) and (13.12) allows us to solve for the functions u
(2)
l . The angular

terms are of the form (P2)2 and (∂ΘP2)2, which when re-expanded in terms of Legendre polynomials

couple only to l = 2, 4. We can pick off each of these terms by integrating Eq. (13.9) with the

appropriate Legendre polynomial and weight dµ = d[cos Θ]. Orthogonality then gives

u
(2)
2 = −ω

4
0

84

R4(8− n)

g2
and u

(2)
4 =

3ω4
0

350

R4(1− n)

g2
; (13.15)

all the other u
(2)
l vanish. We have defined n = d ln g/d lnR, which proves to be a convenient short

hand in the estimates in Section 13.2. When g has a simple power-law dependence on R, n is just

its constant power law index. Note that the l = 0 contribution, which is Θ independent, represents

the correction to the spherically symmetric potential Φ0(R). Because of this we also have from the

matching that

Φ(R) = Φ0(R) + ε2V (R) +O(ε3) , where (13.16)

V (R) = −ω
4
0

10

R3(6− n)

g
. (13.17)

In order to have the generator of the transform ψ we simply need to replace the coordinates (R,Θ)

with (r, θ), since we have already accounted for the sign change in reversing the flow. As such, we

have completed the construction of ψ up to O(ε2).

13.1.2 Understanding the transform

We have an expression for the volume-preserving transform which takes the tidally perturbed star

A into the spherically symmetric star B. We have seen that star B is more weakly perturbed than

star A, and this allows us to match orders in perturbation in a way that gives useful relations. First

though, it is useful to step back and consider the physical intuition underlying the transformation.

Figure 13.2 illustrates the principles behind the transformation. Consider an element displaced from
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Figure 13.2: Depiction of the nonlinear tidal response χ as a sum of virtual displacements. The purely radial
displacement 1 changes the density and pressure of the fluid elements. The virtual displacements 2 and 3
are volume-preserving, and correspond to the linear l = 2 tide and the volume-preserving component of the
nonlinear tide, respectively.

point P to point Q by the tidal displacement χ. As we noted before, this tidal displacement takes

the star to a configuration where elements along contours of equal potential have the same density

and pressure. Point Q lies on one such contour. The displacement field χ can be decomposed as the

sum of certain virtual displacement fields, appropriate members of which are marked as 1, 2, and 3

in the figure. These virtual displacements are chosen to have some nice properties.

First, each virtual displacement is chosen to be adiabatic. This is possible since their sum, χ, is

adiabatic. Second, we choose 2 and 3 such that they both preserve the volume of fluid elements.

The pressure and density of an element at P is not necessarily equal to the pressure and density of

the element once it is displaced to Q, as the tidal deformation χ is not volume-preserving beyond

linear order. With this choice for 2 and 3, the entire volume change of an element, and the related

pressure and density change, occurs during displacement 1. Third, the displacement 2 is chosen

to be the linear part of χ (the so-called linear tide). This is possible because the linear tide is a

volume-preserving deformation. Given this choice, the displacements 1 and 3 make up the nonlinear

part of χ. Fourth, 3 is chosen to be that part of the nonlinear tide which preserves volumes, such

that the remaining displacement, 1, takes the initial spherical potential contour that P lies on to

another spherical contour. Hence, the displacement 1 is a radial displacement, which takes P to a

point R.

We are now faced with the question of what sort of perturbing fields we would need to apply

to make the elements follow these virtual displacements. We have seen that 2 and 3 correspond

to a pure coordinate transformation (they make up ψ−1), so that the potential V of the element

is frozen in during these displacements. The overall stellar structure naturally flows forward along
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with the transformation. Hence the potential at R is same as the potential at Q. This differs from

the background star’s potential at P, and the difference can be seen as a spherically symmetric

perturbing potential causing the elements of the star to deform along 1.

We could judge this decomposition scheme solely on its power to illuminate the underlying

components of the equilibrium tide χ, but its real value manifests in the study of small displacements

on top of this, away from equilibrium. This is because these weak displacements, say η, which are

originally on a star deformed to O(ε), when pulled back along 3 and 2 pick up additional corrections

of O(ε) and higher while the transformed star is more weakly deformed [perturbed at O(ε2)]. We

can explicitly compute these corrections to the displacements from the pullback. In order to get the

ε2η2 part of the energy, we have to look at both of the functionals f3 and f4 in the original picture.

Here we find that we only need f3.

13.1.3 Potential of star B

Now that we have an explicit form for the transformation between star A and star B, and a better

understanding of the motivation behind this transform, we can consider the potential V of star

B. Star B sits in a spherically symmetric gravitational potential, and its fluid elements have been

adjusted by the combination of the displacement field χ and the coordinate transform. In total, the

star has undergone a radial deformation σ (before called 1), sourced by the external potential ε2V ,

so that x→ X = x + σ. As before, we have for the new configuration

V(σ)

=

∫
d3X ρ(X)

[
Eint(X) + Φ0(X) + ε2V (X)

]

=

∫
d3x ρ(x)

[
Eint(x + σ) + Φ0(x + σ) + ε2V (x + σ)

]

= V(0) +

∫
d3x ρ(x)

[
1

2
σ ·C · σ +

1

3!
f3(σ, σ, σ) + . . .+ ε2V (x) + ε2σ · ∇V + ε2

1

2
σ · (σ · ∇)∇V + . . .

]
.

(13.18)

Expanding σ in the mode basis of the unperturbed star, σ =
∑
σaξa, we can write the potential as

V =V(0) +

∫
d3x ρ ε2V + E0

∑[
1

2
σ2
a −

1

3
κabcσaσbσc − ε2Vaσa − ε2

1

2
Vabσaσb + . . .

]
, (13.19)

with

Va = − 1

E0

∫
d3x ρ ξ∗a · ∇V and Vab = − 1

E0

∫
d3x ρ ξa · (ξb · ∇)∇V . (13.20)
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Defining an expansion in ε for σa which must begin at O(ε2) because the perturbing tidal field enters

only at this order,

σa = ε2σ(2)
a +O(ε3) , (13.21)

we can again solve for σa for this static configuration by minimizing the variation in V with respect

to the amplitude σa. At leading order, we simply have

σ(2)
a = Va . (13.22)

It is worth noting here that since σ(1) = 0, we immediately have that

χ(1) = −ζ(1) . (13.23)

To see this, we note that by definition the displacement of a point x in the unperturbed star by σ

is the same as the composition of a displacement by χ and then the application of the coordinate

transform ψ. Keeping only the leading order terms in ε this gives

x + σ(x) = x +O(ε2) = x + εχ(1)(x) + εζ(1)(x) +O(ε2) , (13.24)

from which Eq. (13.23) follows.

As before, we now consider further perturbations to star B, which we denote ηS . From the

original unperturbed star we have a displacement

x→x + ξ = x + σ + ηS where (13.25)

ηS =Jψ · η . (13.26)

Here, η is the form of the corresponding oscillations of star A, which must be transformed into the

coordinates X of the spherical star B if we are to consider further displacements beyond σ. This is

the origin of the Jacobian transformation matrix Jψ in Eq. (13.26). In principle, Eq. (13.26) should

include terms of order η2; however, since star B is an equilibrium solution, the potential energy

contains no terms of first order in ηS and the leading dependence is η2
S . Therefore to compute the

potential energy to order η2, we need only obtain ηS to linear order in η.

Now we consider the potential V of star B when the additional perturbations Jψ · η are present.

We define the expansion of the Jacobian in orders of ε,

Jψ = 1 + εJ
(1)
ψ + ε2J

(2)
ψ +O(ε3) , (13.27)
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and its expansion in the mode basis ξa of the original star,

Jab =
ω2
a

E0

∫
d3x ρ ξ∗a · Jψ · ξb , (13.28)

so that the basis coefficients are naturally transformed as

ηS =
∑

ηS,aξa =
∑

Jabηbξa =
∑

(δab + εJ
(1)
ab + ε2J

(2)
ab )ηbξa . (13.29)

Taking all of this into account, we have for star B the mode expansion of the potential

V(σ + ηS) =V(0) +

∫
d3xρε2V +

E0

2

∑[
η2
a + ε

(
J

(1)
ab + J

(1)
ba

)
ηaηb + ε2

(
J (1)
ca J

(1)
cb + J

(2)
ab + J

(2)
ba

)
ηaηb

−2κabcηaηbσc − ε2Vabηaηb + . . .
]

=V(0) +

∫
d3xρε2V +

E0

2

∑[
η2
a + ε

(
J

(1)
ab + J

(1)
ba

)
ηaηb

+ε2
(
J (1)
ca J

(1)
cb + J

(2)
ab + J

(2)
ba − 2κabcVc − Vab

)
ηaηb

]
, (13.30)

where again in the first equality we have already eliminated the terms which vanish when the solution

for σa is inserted and terms higher order in ε or η than we are considering. In the second equality

we have substituted the solution (13.22) for σa and collected terms according to their order in ε.

13.1.4 Matching stars A and B in the mode basis

We have computed an expression for V in the mode basis using two different methods, and we can

now equate these expressions. For star A, V is given by the Lagrangian of Eq. (12.12), through

V =
∑
η̇2
a/ω

2
a − L. Matching this to Eq. (13.30) order by order in ε and η, we get the following

conditions on the three- and four-mode coupling terms.

At order ε, matching terms gives

Uab +
∑

2κabcχ
(1)
c = −

(
J

(1)
ab + J

(1)
ba

)
, (13.31)

which results in an expression for κabcχ
(1)
c in terms of the Jacobian transform and the tidal potential.

Meanwhile, matching the ε2 terms gives

∑(
2κabcχ

(2)
c + 3κabcdχ

(1)
c χ

(1)
d

)
= −

∑(
J (1)
ca J

(1)
cb + J

(2)
ab + J

(2)
ba − 2κabcVc − Vab

)
. (13.32)

In both of Eqs. (13.31) and (13.32), the indices (a, b) refer to particular modes and are not summed

over.
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13.1.5 Expressions for the Jacobian in the mode basis

Before using the matching conditions in Eqs. (13.31) and (13.32), we derive the explicit equations

for the Jacobian that transforms the perturbations η on star A to the perturbations ηS . This is

achieved by considering the difference between two series of active transformations as depicted in

Fig. 13.1, using a fixed background coordinate system. We begin by considering a fluid element at a

point x in the unperturbed star. We then consider the application of the tidal perturbation, which

takes x → x + χ(x), followed by the coordinate transform ψ acting on this element, which acts on

the element at its displaced position x + χ(x). This takes us across the top row of Fig. 13.1, and

acts to transform the initial point as

x→ x + χ(x) + ζ|x+χ(x) +
1

2
(ζ · ∇)ζ|x+χ(x) . (13.33)

Next, consider the series of transforms which first takes x to the corresponding point in star A,

x → x + χ(x) + η(x). Since we wish to express all perturbations in Lagrangian coordinates, the η

is written as a function of the position of the original, unperturbed element. We follow this pair of

displacements by the coordinate transform ψ, which acts on the actual position of the element. This

gives us the position of the element in star B,

x→ x + χ(x) + η(x) + ζ|x+χ(x)+η(x) +
1

2
(ζ · ∇)ζ|x+χ(x)+η(x) . (13.34)

The difference between Eqs. (13.34) and (13.33) is simply ηS(x) = Jψη(x). Taking this difference,

and expanding our expressions in terms of small η, we have

Jψη =η(x) + η(x) · (∇ζ)|x+χ(x) +
1

2
η(x) · [∇(ζ · ∇)ζ]x+χ(x) +O(η2) . (13.35)

Further expanding out χ and ζ in terms of ε, this expression becomes

Jψη =η + ε(η · ∇)ζ(1) + ε2
(

(η · ∇)ζ(2) + η · [(χ(1) · ∇)∇ζ(1))] +
1

2
(η · ∇)(ζ(1) · ∇)ζ(1)

)
+O(η3) .

(13.36)

Here, all terms are evaluated at the base point x. This allows us to simply read off the Jacobian

of Eq (13.27). It is useful to recall that χ(1) = −ζ(1), which allows us to simplify the Jacobian

somewhat:

J
(1)
ψ η = (η · ∇)ζ(1) and J

(2)
ψ η = (η · ∇)ζ(2) + [(η · ∇)ζ(1)] · ∇ζ(1) − 1

2
(η · ∇)(ζ(1) · ∇)ζ(1) . (13.37)

To simplify Eq. (13.36) we have temporarily resorted to a Cartesian basis in order to commute the
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covariant derivatives.

Now that we have an explicit expression for the Jacobian, we can express it in the mode basis

using the expansion for η. The result, for the first and second order terms, is

J
(1)
ab =

ω2
a

E0

∫
d3xρ ξa · (ξb · ∇)ζ(1) and (13.38)

J
(2)
ab =

ω2
a

E0

∫
d3xρ ξa · (ξb · ∇)

[
ζ(2) − 1

2
(ζ(1) · ∇)ζ(1)

]
+ ξa ·

([
(ξb · ∇)ζ(1)

]
· ∇ζ(1)

)
. (13.39)

For our initial check of the mode stability in Section 12.1.4, we note here that for a particular

high-order mode, ξa ∼ ω−1
a , and so we have the useful fact that for a particular pair of modes (a, b),

J
(i)
ab ∼

ωa
ωb

(13.40)

so long as the angular integrations satisfy selection rules and the contraction of indices in Eqs. (13.38,13.39)

do not lead to a much smaller value. This fact is made more explicit in Section 13.2.

13.1.6 Lagrangian perturbations of star A revisted

With our matching results from Section 13.1.4, we can return to the expressions for the perturbed

eigenvalues from Section 12.1.4. We focus on the case of interest for the instability proposed by WAB,

that of a high-order (p, g) mode pair with comparable wave numbers and widely spaced frequencies,

ωp � ωg. Working in the rescaled mode amplitudes η′a = ηa/ωa, consider the eigenvalues of the

matrixM in the Lagrangian (12.21). Substituting the matching conditions (13.31) and (13.32) into

M as given by Eqs. (12.22)–(12.24), we have now that

Mpp =ω2
p + 2εω2

pJ
(1)
pp + ε2ω2

p

[∑(
J (1)
ap J

(1)
ap − 2κppaVa

)
+ 2J (2)

pp − Vpp
]
, (13.41)

Mpg =Mgp = ε ωpωg

(
J (1)
pg + J (1)

gp

)
, and (13.42)

Mgg =ω2
g + 2εω2

gJ
(1)
gg + ε2ω2

g

[∑(
J (1)
ag J

(1)
ag − 2κggaVa

)
+ 2J (2)

gg − Vgg
]
. (13.43)

The resulting perturbed eigenvalues are similarly re-expressed in terms of the Jacobian and the

potential V . Let us focus on the smaller frequency, which is perturbed to a lower (and possibly

negative value):

ω2
−
ω2
g

=1 + 2εJ (1)
gg + ε2

[(
J (1)
pg

)2

+
(
J (1)
gg

)2

+ 2J (2)
gg − Vgg −

∑
2κggaVa

]
− ε2 ω2

p

ω2
p − ω2

g

(
J (1)
pg + J (1)

gp

)2

.

(13.44)
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Keeping in mind the origin of each of the terms, and our estimate that J
(i)
ab ∼ ωa/ωb, we can see how

Eq. (13.44) encodes a potential instability, and the particular manner in which it is actually canceled.

The final O(ε2) term in Eq. (13.44) is just the three-mode term κpgaχ
(1)
a in Eq. (12.26), expressed

in the language of Jacobians. When the frequency of the p-mode is much larger than that of the

g-mode, the size of this term is ∼ (J
(1)
pg )2 ∼ (ω2

p/ω
2
g) � 1. In principle, this can overcome the ε2

suppression when the tidal field is relatively strong (but with ε� 1), and overwhelm the order-unity

contribution from the restoring force. However, when we express the perturbation to the diagonal

terms [entering from the four-mode and κabcχ
(2)
c terms in Eq. (12.26)] in terms of Jacobians, we

observe that it contains an identical contribution with the opposite sign.

Before we explicitly write down the remaining terms, it is worthwhile to pause and consider the

impact of our coordinate transformation. The three- and four- mode terms in Eq. (12.26) both

affect the eigenvalues equally. Independently calculating their individual contributions would have

involved careful book-keeping in order to accurately track the cancellation of large terms. Instead,

our approach has confirmed the intuition developed from the toy model of Sec. 11.1.1, and illuminated

the fact that large coupling terms can arise from rotations of modes into each other.

We now write down the terms that remain after the large cancellations. Expanding the prefactor

of the final term in Eq. (13.44),

ω2
p

ω2
p − ω2

g

=

(
1 +

ω2
g

ω2
p

)
+O

(
ω4
g

ω4
p

)
, (13.45)

we can simplify Eq. (13.44) to

ω2
−
ω2
g

=1 + 2εJ (1)
gg + ε2

[
ω2
g

ω2
p

(
J (1)
pg

)2

+
(
J (1)
gg

)2

+ 2J (2)
gg − Vgg − 2J (1)

pg J
(1)
gp −

∑
2κggaVa

]
. (13.46)

Our estimate for the size of the Jacobian terms shows us that all the terms are O(1) in terms of

frequency, except perhaps the Vgg and κggaVa terms. We need to check that these terms are not

large for the case of the high-order (p, g)-mode coupling. We show this formally and estimate the

size of these terms in Section 13.2.

In both this section and in Section 12.1.4, we have considered the coupling of a single pair of

modes (p, g), but in general M contains entries for all modes and their mode-mode coupling terms.

Equations (13.41)–(13.46) extend naturally to this case. For example, if we consider a single g-

mode, there is an off-diagonal matrix entryMag for every other mode ηa, and this entry couples the

g-mode to ηa. In addition, the sum
∑
J

(1)
ag J

(1)
ag in Mgg contains a contribution from each of these

other modes. When computing the perturbation to the g-mode frequency, the off-diagonal terms

all enter as a sum of squared terms analogous to the last term in Eq. (13.44). In those cases where

a mode strongly couples to the g-mode, the same leading-order cancellation of large terms occurs
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mode-by-mode. This means that even in the case where many p-modes strongly couple to a single

g-mode, cancellation between the large parts of the three-mode couplings (squared) and four-mode

couplings prevents the g-mode from developing an instability.

It is remarkable that up until now, our investigation of the generation of the daughter modes

from the tidal perturbation has been formal and general in nature, with no reference made to a

particular stellar model. In our estimates we have only needed to note that ξa ∼ ω−1
a given our

normalization of the mode functions.

13.2 Estimating the remaining terms

So far, we have shown that the major potential contributions to the instability discussed in WAB

cancel out in the limit ωp � ωg for the (p, g) pair of daughter modes. This result alone does not

guarantee the stability of the star to the production of the (p, g) mode pair, since there are other

terms whose sizes need to be estimated for the modes of interest. We carry out these estimates in

this section, relying on the WKB approximation for the mode functions when we need to explicitly

compute the size of the various terms in Eq. (13.44). The WKB approximation is appropriate in this

case, since the proposed instability occurs when high order p- and g-modes have resonant spatial

eigenfunctions, a condition which requires large wave numbers kp and kg for the modes.

First, though, we develop some confidence in the matching results of Section 13.1.4 by showing

that the three-mode coupling term κpgcχ
(1)
c as derived in WAB can be recovered from our matching

equations. We then turn to estimating the size of the remaining terms.

13.2.1 The three-mode coupling

We begin by considering the amplitude Ua = χ
(1)
a = −ζ(1)

a . It is conveniently obtained by considering

the leading order part of ζ,

ζ(1) = −χ(1) = −ω2
0

r2

g

[
P2(cos θ)r̂ +

4− n
6

∂θP2(cos θ)θ̂

]
. (13.47)

When we recall the definition that ε = Gm/(a3ω2
0) this recovers the linear tidal response,

εχ(1) =
Gm

a3

r2

g

[
P2(cos θ)r̂ +

4− n
6

∂θP2(cos θ)θ̂

]
, (13.48)

which can be compared to Eqs (A12) and (A13) of Weinberg et al. [411]. Recall that our eigenmodes

ξa have the form in Eq. (12.5), and that here we have specialized to the m = 0 case. We see that

χ(1) has the correct form for an l = 2 displacement.
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Before continuing, it is useful to note that we have frequent need of integrals of the form

Iabc =

∫
d3x ρ ξa · (ξb · ∇)ξc . (13.49)

With our convention that ξa take the form in Eq. (12.5), the integral (13.49) resolves to

Iabc =

∫
drr2ρ(r)

[
Tabcarbr

dcr
dr

+ Fa,bc
arbh
r

(cr − ch) + Fb,acahbr
dch
dr

+
ahbh
r

(Gc,abch + Fc,abcr)

]
.

(13.50)

The angular integrals Tabc, Fa,bc, and Ga,bc are those originally defined in Wu and Goldreich [423]

and match those listed in Eqs. (A20–A22) of Weinberg et al. [411]. We give them in Appendix 13.D,

and they are determined by the angular indices (la, lb, lc) of the mode vectors in the integral. These

integrals vanish unless the angular momentum indices obey the triangle inequality |lb − lc| ≤ la ≤
lb + lc, and in addition the sum la + lb + lc must be even.

Now we are ready to consider the three-mode coupling term for the case of a pair of (p, g) modes

excited by the tide. From Eq. (13.31), we have

∑
κpgcχ

(1)
c = −1

2
Upg −

1

2

(
J (1)
pg + J (1)

gp

)
. (13.51)

The coupling κpgc can be large in the case ωp � ωg, and when the spatial resonance condition

kp ' kg is met [228]. This means that the (p, g) modes must be high order modes with large

wave numbers, and as such we use the WKB approximation [411, 424] to get analytic forms for the

eigenfunctions ξp and ξg. In this case, the radial functions (pr, ph) and (gr, gh) are

(pr, ph) ' Ap
ωp

(
cos kpr,

cs sin kpr

ωpr

)
and (13.52)

(gr, gh) ' Ag
ωg

(
ωg sin kgr

N
,

cos kgr

Λg

)
, (13.53)

where cs is the adiabatic sound speed, N is the Brünt-Väisälä frequency,

N2 = −
(

1

ρ

dρ

dr
− 1

Γ1P

dP

dr

)
g, (13.54)

Γ1 is the adiabatic index, Λ2
a = la(la + 1), and we set

(kp, kg) '
(
ωp
cs
,

ΛgN

rωg

)
, Ap,g =

√
E0αp,g
ρr2

, αp =

(
cs

∫
c−1
s dr

)−1

, and αg =
N

r

(∫
Nd ln r

)−1

.

(13.55)

In the WKB approximation, kp ' kg implies that ωpωg ' ΛgNcs/r. The key consideration for



177

estimating the largest terms is that for the p-mode, pr is the dominant component of the mode (the

acoustic modes are mostly radial) and for the g-mode, gh is the dominant component (the gravity

wave modes are mostly horizontal).

When we have need for a specific stellar model, we use rough approximations to the neutron

star model [425] used by WAB, generated with the Skyrme-Lyon equation of state [SLy4; 426]. In

this model the density is approximately constant throughout the core of the neutron star, where

the coupling κpgc is large. When this is true the gravitational acceleration grows linearly with the

radius, g ' 4πGρr/3. In addition, cs is roughly constant throughout the core of the star and so

cs ' ω0R∗. We also use the expression for N from Reisenegger and Goldreich [427], derived to

leading order in small electron fraction Ye,

N ' g

cs

√
Ye
2
. (13.56)

This leads us to see that Ncs/r is constant, and moreover that N ∼ ω0r/R∗, since ω2
0 ' Gρ

for a nearly constant density. Taken together with the condition that the wave numbers for the

(p, g) modes are nearly equal, we have that ωpωg ∼ ω2
0 . In this model, Eq. (13.47) shows that

χ
(1)
r ∼ χ

(1)
h ∼ r. These approximations are expected to hold for a variety of neutron star models

(see WAB Section 3.3).

We begin our computation of the three-mode coupling constant by evaluating Upg,

Upg =− ω2
0

E0

∫
d3x ρ ξp · (ξg · ∇)∇[r2P2(cos θ)]

=− ω2
0

E0

√
4π

5

∫
dr r2ρ [2prgrTpg2 + prghFp,g2 + phgrFg,p2 + phgh(2F2,pg +G2,pg)]

'− ω2
0

E0

√
4π

5

∫
drr2ρ prghFp,g2 ∼

ω2
0

ωpωg
∼ O(1) , (13.57)

where in the third line terms have been dropped since they are higher order in ωg/ω0 or ω0/ωp. We

see that Upg contains no large terms.

Similarly, we can consider the leading order Jacobian terms, using Eqs. (13.38) and (13.50) to

write them as,

J
(1)
ab =

ω2
a

E0
Iabζ = −ω

2
a

E0
Iabχ(1) , (13.58)

where the subscripts ζ and χ(1) indicate the substitution of the corresponding displacement for the

mode function ξc in the integral Iabc. The radial functions χr and χh are defined as in Eq. (12.5),
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with l = 2 and m = 0, so that the largest contributions to the Jacobian terms are

J (1)
pg =− ω2

p

E0

∫
dr r2ρFp,g2

prgh
r

(χ(1)
r − χ(1)

h ) ∼ ωp
ωg

and (13.59)

J (1)
gp =− ω2

g

E0

∫
dr r2ρFg,p2 ghpr

dχ
(1)
h

dr
∼ ωg
ωp

. (13.60)

At leading order, then,

∑
κpgcχ

(1)
c ∼

ω2
p

2E0

∫
dr r2ρFp,g2

prgh
r

(χ(1)
r − χ(1)

h ) ∼ ωp
ωg

. (13.61)

This matches the leading order terms in WAB, and arises solely from our consideration of the

volume-preserving transform. As we have shown, a correction involving the four-mode coupling

term cancels its influence on the eigenfrequencies. We now show that none of the remaining terms

are large enough to produce a potential instability.

13.2.2 Size of the remaining terms

We have calculated the correction to the frequency of the almost-neutrally stable g-modes in the

presence of the tidal deformation, in Eq. (13.46). We can write the relative corrections as

ω2
− − ω2

g

ω2
g

=2εJ (1)
gg + ε2

[{
ω2
g

ω2
p

(
J (1)
pg

)2

+
(
J (1)
gg

)2

− 2J (1)
pg J

(1)
gp + 2J (2)

gg

}
−
{
Vgg +

∑
2κggaVa

}]
.

(13.62)

The corrections can be divided into two classes - a set of Jacobian terms, and a set of potential

terms.

We have previously encountered Jacobian terms while estimating the three-mode coupling. For

high-order modes a and b, the leading order dependence of the first-order Jacobian J
(1)
ab on the

frequencies is J
(1)
ab ∼ O(ωa/ωb). From this observation, we see that all the terms involving a first-

order Jacobian in Eq. (13.62) are O(1) in the large frequency ratio ωp/ωg.

The second-order Jacobian term J
(2)
ab is given by Eq. (13.39). We observe that it has the same

frequency dependence as the first-order Jacobian, with a prefactor of ω2
a/E0 and the two eigenfunc-

tions ξa and ξb present in the integrand. As we did for the first order Jacobian, we recall that

for high-order modes the WKB eigenfunctions have a size ξa ∼
√
E0/ωa, as seen in Eqs. (13.52)

and (13.53). Hence, the second-order Jacobian term is O(1) in the frequency ratio ωp/ωg.

Having established that all the Jacobian terms in Eq. (13.46) are of the form ε or ε2 times terms

of O(1) in the frequency ratio, we turn to the potential terms in Eq. (13.62). Using Eq. (13.22), we
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can write

−ε2
(
Vgg +

∑
2κggaVa

)
= −ε2

(
Vgg +

∑
2κggaσ

(2)
a

)
= −ε2 (Vgg + 2κggσ) , (13.63)

where in the last equality we have used the notation introduced in Eq. (13.58), and further dropped

the superscript on σ with the understanding that we are using the leading ε2 term in the expansion

of the displacement. The key point is that ε2κggσ can be computed by substituting the displacement

σ in place of the eigenfunction ξc in the definition (12.10) of the three-mode coupling, as κabc is

linear in its arguments.

The nonlinear tidal term Vgg is given by Eq. (13.20):

Vgg =− 1

E0

∫
d3x ρ ξg · (ξg · ∇)∇V

=−
√

4π
1

E0

∫
dr r2ρ(r)

(
grgr

d2V

dr2
Tσgg +

ghgh
r

dV

dr
Fσ,gg

)

=− 1

E0

∫
dr r2ρ(r)

(
grgr

d2V

dr2
+ Λ2

g

ghgh
r

dV

dr

)
. (13.64)

In this expression, we have used expressions for the angular integrals from Wu and Goldreich [423],

together with the fact that the radial displacement σ has the angular quantum numbers l = 0, m = 0.

The integrals are elaborated upon in Appendix 13.D. Note that in this expression for Vgg, we have a

potentially large part ∼ ghgh due to the large size of the horizontal displacement gh of the g-mode.

We see that this term cancels exactly with a part of the three-mode term.3

The three-mode term κggσ has a covariant form [e.g. 420, Eq. 4.20]. It can be evaluated in

terms of the radial and angular parts of the mode eigenfunctions [411, 423]. Before continuing, we

should note a complication which arises in the case we are dealing with, namely that of a radial

displacement coupled to non-radial displacements.

The process of expanding and simplifying the expression for the three-mode coupling involves

using the equations of motion for the constituent displacements. The equation for the divergence of

a displacement of the form of Eq. (12.5) is

(∇ · ξa)r =
dar
dr

+
2

r
ar −

Λ2
a

r
ah , (13.65)

where we have written the divergence as (∇ · ξa)r because we have omitted its spherical harmonic

angular dependence, which is absorbed in the angular integrals. The equations of motion for a mode

3The expression Vgg as defined by Eq. (13.20) is the spherical (l = 0) counterpart of the nonlinear driving terms
Jablm of Weinberg et al. [411], as given by their Eq. (A23). We can anticipate that there are large cancellations with
the inhomogeneous part of the three-mode coupling terms, just as it happens for the functions Jablm in Weinberg
et al. [411].
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with angular index l > 0 are

Γ1P (∇ · ξa)r =− (δP )r = ρgar − ω2
aρrah + ρΦ′ and (13.66)

d

dr
[Γ1P (∇ · ξa)r] =

Λ2
a

r
ρgah −

(
ω2
a +

2g

r
− dg

dr

)
ρar + ρ

dΦ′

dr
. (13.67)

The Eulerian perturbation of the potential is denoted by Φ′. Within the Cowling approximation, it

has a contribution only from the external driving potential V . Spherical symmetry demands that

it only has a contribution from the part of the driving potential with the same spherical harmonic

dependence as the displacement. For the g-mode, the external driving potential Vg vanishes, because

the mode’s eigenfunction is nonradial, and the potential is spherically symmetric.

We cannot use Eqs. (13.65–13.67) for the radial displacement σ just by setting the angular

displacement σh to zero. Deriving Eq. (13.66) involves using the angular parts of the equations of

motion, which do not exist for a radial displacement. We could still have used Eq. (13.66) for the

radial displacement had we been operating within the hydrostatic approximation, with the Eulerian

pressure perturbation P ′ = ρgσr = −ρΦ′ and the Lagrangian pressure perturbation δP = 0. We

cannot use the approximation, as it is not consistent with our construction of the radial displacement

as that part of the tidal displacement χ which changes the volume of the elements. The root of the

difference is that radial and angular modes have different analytic structures. For instance, the

Lagrangian and Eulerian pressure perturbations δP and P ′ do not necessarily vanish at the center

of the star for a radial displacement. This fact is noted in Cox [418, Section 17.6]. Another point of

view is that for just a single degree of freedom, Eqs. (13.65)–(13.67) are overdetermined, and would

need to satisfy a consistency condition.

We can still use Eq. (13.65) (the definition of divergence) and Eq. (13.67) (the radial equation of

motion) for the radial displacement σ, with the Eulerian perturbation to the potential Φ′ given by

the external potential V on star B. Equation (13.67) still holds even though σ does not represent a

normal mode of the star because it represents a force balance: star B is in hydrostatic equilibrium

in the modified potential and hence we may use Eq. (13.67) with ωσ = 0.

Keeping this in mind, the starting point for simplifying the three-mode term κggσ is Eqs. (A27)–

(A30) of Weinberg et al. [411]. Our paths diverge from the point where the equations of motion

are used. The end goal of our simplification is to get an expression which consists of terms which

have dominant contributions of the form grgr and ghgh, since given the WKB forms of the mode

function, these are the forms which pick up a growing contribution as we integrate through the star.

In order to do so, we repeatedly use the equations of motion for the nonradial mode g and the radial

displacement σ, and integrate by parts wherever needed.
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The final expression for the combination of coupling terms needed is

ε2 (Vgg + 2κσgg)

=
1

E0

∫
dr

[
r2P

{
Γ1(Γ1 + 1) +

(
∂Γ1

∂ ln ρ

)

s

}
(∇ · σ)(∇ · g)r(∇ · g)r − 4rσrΓ1P (∇ · g)r(∇ · g)r

−2r2
(
Λ2
gω

2
gρrghgh + 2grΓ1P (∇ · g)r

) d
dr

(σr
r

)
− ρgr3grgr

d2

dr2

(σr
r

)

+

(
−ρg2r

d

dr

(
σr
g

)
+ ρrε2

dV

dr

)(
2rgr(∇ · g)r + grgr

d ln ρ

d ln r

)]
. (13.68)

The process of simplifying the terms from their canonical forms, and the cancellation of the large

term in the inhomogeneous driving Vgg with the three-mode coupling are demonstrated in more

detail in Appendix 13.D.

In estimating the size of the remaining terms in the above expression, we find it useful to ap-

proximate the divergence of the g-mode by using Eq. (13.66) in the following way. First we note

that ω2
ggh is small, and that

(∇ · g)r '
ρ

Γ1P
g gr =

g

c2s
gr . (13.69)

The radial eigenfunction for the g-mode is given by Eq. (13.53) within the WKB approximation,

which involves the Brünt-Väisälä frequency N . Recall that for typical equations of state N and the

acceleration due to gravity g grow nearly linearly with radius till well outside the core, N ∼ ω0r/R∗

and g ∼ rω2
0 , and the sound speed cs is nearly constant, with cs ∼ ω0R∗. The radial displacement

σ is regular near the center; in fact σr/r is an analytic function everywhere including around the

center r → 0. From these observations, we can check that none of the potential terms given by

Eq. (13.68) pick up large contributions as we integrate through the star, and that their contribution

is of the order ∼ O(1) in the large frequency ratio ωp/ωg.

To sum up, we have shown that all the corrections to the frequency of the almost-neutrally stable

g-mode due to inhomogeneous driving and the lowest nonlinear interactions are small. Specifically,

they are the form ε or ε2 times terms of O(1) in the frequency ratio ωp/ωg. Since ε is a small

parameter [ε = Ω2/ω2
0 = (m/M)(R∗/a)3, where Ω is the orbital frequency of the binary] during the

early part of the in-spiral phase, the interaction of internal modes with the equilibrium tide does

not cause them to go unstable in this region of parameter space.

13.3 Discussion

The volume-preserving coordinate transformation enables us to calculate the four-mode coupling

terms which arise when we look at the interaction of the equilibrium tide with two high-order p- and
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g-modes, as long as we stay within the Cowling approximation. This coupling is important since we

are interested in the effect of nonlinear interactions on the frequencies of the almost-neutrally stable

g-modes, and for consistency we should consider all corrections which affect it at a given order in

the tidal strength ε. Using this estimation of the four-mode terms, we have found that there are no

large corrections to ωg up to the second order in ε. This is true because of cancellations between

large terms, some arising in the three-mode coupling and others in the four-mode coupling terms.

The cancellation occurs transparently using our method, but it is a useful check to see if the

four-mode coupling computed using more traditional methods contains terms of the appropriate size

for this cancellation. Using Eq. (49) from Van Hoolst [428], where repeated coordinate indices are

summed over, we see that there are terms of the form

κggχ(1)χ(1) = − 1

3E0

∫
d3xΓ1P

[
(∇jχ(1)k)(∇kξjg)

]2
+ · · · ∼ 1

E0

∫
dr r2Γ1P

(
dgh
dr

)2

∼ ω2
0R

2
∗k

2
g

ω2
g

∼ ω2
p

ω2
g

.

(13.70)

For the first approximation, we have neglected factors of order unity, as well as lower order terms

in the expression for κggχχ. For the second, we have used the simple stellar model and WKB

eigenfunctions from Section 13.2. The final relation uses the fact that kg ' kp ' ωp/cs ∼ ωp/(ω0R∗).

We can see that this term has the right size to cancel with the square of the large three-mode term

in equation for the perturbed frequency, Eq. (12.26).

Although the analysis of this work has introduced the four-mode corrections to the stability of

the star, a number of assumptions and approximations have been invoked along the way. We now

briefly summarize them, discuss their validity, and comment on topics for future investigation.

Higher-order couplings: Given that four-mode interactions have an important role in keeping the

modes stable, one might wonder whether the five- and higher-mode couplings are important. The

immediate answer to these concerns is that these couplings do not correct ωg at O(ε2) – the terms

we have considered are the only terms which enter at this order. Of course, we have not shown that

the star is stable against these sorts of non-resonant instabilities at even higher orders in ε. However,

our results and the intuition we derive from both our toy model and our coordinate transformation

method indicate the reason that many large, cross-canceling terms enter into the analysis is that the

mode expansion of the Lagrangian displacement ca is not the most natural choice of coordinates in

the full nonlinear problem. We suspect that there exists some other coordinate system, in analogy

to the simply rotated basis of the harmonic oscillator, which is better suited for analyzing the

stability of the star, and in particular where the “valleys” of the potential energy surface (which

would be exactly flat for a neutrally buoyant star with uniform specific entropy and composition)

are straightened out. A more natural coordinate system could be related to our transformation, but

we have not investigated this issue further. The search for a more natural coordinate system can
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serve as the subject of future work.

Dynamical tide: We have not considered the stability of the dynamical tide in this work; it is not

amenable to study using the volume-preserving transform here, which made use of the equilibrium

nature of the background in an essential way. However, the dynamical tide is transiently excited

during ` = 2 g-mode resonance crossings – thus the energy input and gravitational wave template

phase error do not depend on the details of the damping mechanism (see discussion in WAB Section

5.3), and in any case the phase error is tiny [410, Eq. 7.5].

Cowling approximation: The Cowling approximation, while a very good description of high-order

p- and g-modes, is a poor model for the tidal bulge. The volume-preserving transformation makes use

of the Cowling approximation in an essential way since we need to know the gravitational potential

in order to construct it. This is however not a critical omission: since we are examining dynamics

of only the daughter modes and not the excitation of the tidal bulge, we could have used as our

background potential U the perturbed potential including both the tidal bulge and the external field

instead of just the latter. (This would have required including higher derivatives of the potential, e.g.

Uabc, since then U(x) is not a quadratic function of x, but these terms do not affect the arguments

about the volume-preserving transform.)

Time dependence of the external tidal field: Throughout this study, we considered stability to

a static perturbation of the star, since the instability in WAB exists even for a static perturbation

(constant amplitude of the parent). If we instead consider the physically relevant scenario, where the

tidal field is sourced by a distant companion in a circular orbit, the matrix of potential energies M
for the daughter modes is positive-definite at any given time, but it varies at the orbital frequency,

and one may wonder whether this leads to an instability. We investigate this in Appendix 13.E, and

show that at second order in the tidal field, the only mathematically possible instabilities in this

problem are the parametric resonance instability, the quasi-static instability considered by WAB

and revisited here, and a centrifugal correction to the latter due to the rotation of M (as discussed

in Section 11.1.1). The parametric resonance instability was considered in WAB and found not to

occur for the equilibrium tide. The centrifugal instability would occur with a growth timescale of

order

tcen ∼
1

εΩ
=
ω2

0

Ω3
≈ 4

(
fgw

100 Hz

)−3

s (13.71)

for parameters in WAB and fgw ≡ 2Ω, and only for modes with ωg . t−1
cen. This is very slow

compared to the original growth rate estimated in WAB, of order ∼ (εωp)
−1. Indeed, one may think

of the centrifugal modification to the quasi-static instability as resulting from a failure at order

Ω2/ω2
p of the near-exact cancellation of three-mode and four-mode contributions to ω2

−. In principle

a more detailed analysis would be required to determine whether the high-order g-modes can grow
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due to the centrifugal instability. However, the centrifugal instability timescale is comparable to the

gravitational wave inspiral timescale (see WAB Eq. 20),

tcen

tgw
∼ 0.6

(
Mchirp

1.2M�

)5/3(
fgw

100 Hz

)−1/3

, (13.72)

where Mchirp = µ3/5M
2/5
tot is the chirp mass of the binary, µ here is the reduced mass of the binary,

and Mtot is the total mass of the binary. Thus the instability has time only to grow by of order one

e-fold during the inspiral phase, and even this is neglecting any viscous damping of the g-modes.

Detailed investigation of the factors of order unity and the possibility of modest growth due to

centrifugal effects at the very latest stages of the inspiral is left to future work.

To summarize, we have shown that four-mode couplings play a critical role in the stability of

equilibrium tides, and almost exactly cancel the three-mode coupling terms responsible for the p-

mode-g-mode instability identified by WAB. This near-cancellation is generic and not dependent on

the details of the equation of state. We conclude that in the quasi-static approximation the p-mode-

g-mode instability and its deleterious effects on template-based searches for binary neutron stars go

away. The principal caveat is that, when the time variability of the tidal field is taken into account,

this near-cancellation is not exact, and it remains possible that an instability would develop over a

much longer timespan – but likely longer than the lifetime of the binary system.

The tools we have developed in this work are quite general, and can be applied to a variety

of interacting binary systems, including white dwarf binaries, stellar binaries, and possibly close

planetary systems. A detailed treatment of the first nonlinear effects in stellar binaries may be

needed to understand such systems, or very long-term secular effects in compact binaries.

White dwarf binaries are particularly well suited to studying tidal effects on inspirals. The

physics describing tidal dissipation in these systems is much richer than in the case of neutron stars,

primarily because these binaries inspiral for a much longer time in units of the dynamical timescale

(ω−1
0 ). The dimensionless tidal strength ε evolves with time as

1

ω0

d ln ε

dt
∼ ε4/3(ω0Mchirp)5/3 . (13.73)

The dynamical frequency goes as the square root of the density, and the density of a typical neutron

star is around 108 times that of a typical white dwarf. Hence, a white dwarf binary spends more

time (in units of the dynamical timescale) at a given value of tidal strength than a neutron star

binary, by a factor of ∼ 106. For these slowly-evolving systems, subtler secular effects can become

important, as well as both linear and nonlinear wave damping and the effect of entropy injection

from tidal dissipation on the background state of the star [429–432]. Similarly, the cumulative effect

of tidal lag can result in the spin-up of the white dwarfs, which both “Doppler shifts” the tidal field
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to lower frequencies in the frame rotating with the white dwarf, and modifies the mode spectrum due

to Coriolis forces [e.g. 433]. For the same reasons that they appeared here, four-mode couplings are

likely to be necessary for a consistent treatment of nonlinear effects, and the results and techniques

of this study may be of use for future lines of inquiry in these systems.

13.A Gravitational Potential Energy and the Cowling Ap-

proximation

In this appendix, we briefly go into greater detail regarding the division of gravitational potential

energy between the fields and the fluid elements, and the manner in which it relates to the Cowling

approximation. The essential idea is that when writing the gravitational potential energy of a system

of particles, there is an ambiguity in how to divide the energy between that stored in the gravitational

field itself and that stored by the particles because of their position in the field. Here we follow the

discussion presented in Chapter 13 of [422]. One can choose a constant β and write the gravitational

potential energy of a mass distribution ρ as

Vgrav =

∫
d3x

[
(1− β)ρΦ + (1− 2β)

∇Φ · ∇Φ

8πG

]
. (13.74)

The Poisson equation then guarantees that any choice of β gives the same total gravitational potential

energy as any other. However, when we use the Cowling approximation, the Poisson equation is no

longer valid; instead, the gravitational potential Φ is frozen to its value on the background matter

distribution. As such, we need to take some care in our division of potential energy.

The usual choice for the constant β when the self gravity of a system of particles is important

is β = 1/2, since it places the gravitational potential energy into the pairwise interactions of the

particles. The most natural choice when using the Cowling approximation is to choose β = 0, as this

gives the usual expression for the gravitational potential energy of matter in an externally prescribed

potential Φ. The integral over the energy density of the field becomes our constant C in Eq. (12.3),

and this accounts for the lack of a factor of 1/2 in front of the term Φ0 + εU in these equations.

13.B Non-Axisymmetric Modes

In this appendix, we extend our analysis to the full set of non-axisymmetric modes with all possible

values of m. As before, we consider a particular pair of p- and g-modes with angular momentum

quantum numbers lp and lg. Since these are coupled to the l = 2 tidal potential U , the triad (lp, lg, 2)

satisfies the triangle inequality, and their sum is even. There are 2lp + 1 p-modes with azimuthal

quantum numbers mp ranging from −lp to lp, and likewise a number of g-modes, whose unperturbed
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frequencies ωp and ωg are independent of m by the symmetry of the background star. As before, we

set ωp > ωg. The sub-block of M for this pair of modes is

M =




Mpp Mpg

Mgp Mgg

︸ ︷︷ ︸ ︸ ︷︷ ︸
2lp+1 2lg+1


 , (13.75)

where

[Mpp]m1,m2
=ω2

p

[
δm1,m2

− ε
(
Up̄m1pm2

+
∑

2κap̄m1pm2
χ(1)
a

)

−ε2
∑(

2κap̄m1
pm2

χ(2)
a + 3κabp̄m1

pm2
χ(1)
a χ

(1)
b

)]
+O(ε3),

[Mpg]m1,m2 =[Mgp]
∗
m2,m1

= ωpωg

[
−ε
(
Up̄m1

gm2
+
∑

2κap̄m1
gm2

χ(1)
a

)]
+O(ε2) , and

[Mgg]m1,m2 =ω2
g

[
δm1,m2 − ε

(
Uḡm1

gm2
+
∑

2κaḡm1
gm2

χ(1)
a

)

−ε2
∑(

2κaḡm1gm2
χ(2)
a + 3κabḡm1gm2

χ(1)
a χ

(1)
b

)]
+O(ε3) . (13.76)

In the above expressions, the convention is that Mab is the coefficient of η′a
∗ η′b in the expansion of

the Lagrangian given by Eq. (12.20), after the rescaling η′a = ηa/ωa. In writing this expression, we

have used the symmetry of the coupling coefficients and the reality of χ.

Until now, we have not used the fact that U and χ are axisymmetric, i.e. they only have m = 0

components. By angular momentum conservation, such a U and χ can only couple modes of the

same azimuthal quantum number m. In addition to this, the strengths of the couplings between

modes with m are the same as those between modes with −m by parity. This implies that the

matrix M has a sparse structure as shown in the left hand side of Fig. 13.3. In order to study

the perturbations to a particular mode at the lowest order, we need to consider a 2× 2 sub-matrix

corresponding to the members of the p and g subspaces with the same quantum number m, when

possible. Otherwise, the subspace is a 1× 1 block.

The resulting perturbations to the mode frequencies are, to second order in ε,

ω2
pm =ω2

p

[
1− ε

(
Up̄mpm +

∑
2κap̄mpmχ

(1)
a

)
− ε2

∑(
2κap̄mpmχ

(2)
a + 3κabp̄mpmχ

(1)
a χ

(1)
b

)]

+ ε2
ω2
pω

2
g

ω2
p − ω2

g

∣∣∣Up̄mgm +
∑

2κap̄mgmχ
(1)
a

∣∣∣
2

and

ω2
gm =ω2

g

[
1− ε

(
Uḡmgm +

∑
2κaḡmgmχ

(1)
a

)
− ε2

∑(
2κaḡmgmχ

(2)
a + 3κabḡmgmχ

(1)
a χ

(1)
b

)]

− ε2 ω2
pω

2
g

ω2
p − ω2

g

∣∣∣Up̄mgm +
∑

2κap̄mgmχ
(1)
a

∣∣∣
2

. (13.77)
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Figure 13.3: Left panel: Illustration of the form of the sub-block of M, for the interaction of two modes
p and g. We take lp > lg. Only the diagonals and those entries which couple terms with mp = mg are
nonzero. The entries marked with the black, thick line can be rearranged into independent 2×2 blocks, and
an example block is marked out by the dashed square. Those entries of the sub-block which do not interact
are marked with the gray thick line, and they form independent 1 × 1 blocks. Right panel: The tidal field
and mode couplings correct the frequencies of the various modes as illustrated for a pair (p, g) with lp = 3
and lg = 1. These corrections are due to both off-diagonal and diagonal perturbations in the sub-block of
M.

We can recognize Eqs. (12.25) and (12.26) as special cases of this for m = 0. This level splitting is

schematically shown in the right hand side of Fig. 13.3. For any m, the analysis of the cancellations

between the four-mode terms and the three-mode terms proceeds exactly as for the axisymmetric

case.

13.C Reversing the Flow of an Infinitesimal Coordinate Trans-

form

In this appendix, we briefly derive the identity for reversing the direction of the flow discussed in

Section 13.1.1. Consider a point P on a manifold, and define an origin so that this point has the

coordinate vector xP . Next, consider the diffeomorphism generated by a flow in the direction of

an infinitesimal vector field ζ(x). Viewed from the perspective of an active transformation, this

diffeomorphism sends the points on the manifold a small distance along the integral curves of ζ, and

the point P is mapped to a point Q whose coordinate vector is given by (keeping track of terms to

second order in the small motion)

xQ = xP + ζ(xP) +
1

2
(ζ · ∇)ζ

∣∣∣∣
xP

+ . . . . (13.78)
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We can then express xP as

xP = xQ − ζ(xP)− 1

2
(ζ · ∇)ζ

∣∣∣∣
xP

+ . . . = xQ − ζ(xQ) + (ζ · ∇)ζ|xQ −
1

2
(ζ · ∇)ζ

∣∣∣∣
xQ

+ . . .

= xQ − ζ(xQ) +
1

2
(ζ · ∇)ζ|xQ + . . . , (13.79)

where we have used Eq. (13.78) to eliminate xP from the right side of the equation. On the other

hand, we could have considered the inverse flow, carrying xQ to xP . It is clear that this flow is

accomplished by simply reversing the sign of the generator field ζ and evaluating it at the new base

point xQ. Generalizing to the coordinates of points on the entire manifold, if we call the coordinates

we begin with x and transform to coordinates X by the infinitesimal transform ζ, the transformation

is

X = x + ζ(x) +
1

2
(ζ · ∇)ζ

∣∣∣∣
x

+ . . . , (13.80)

while the inverse transform is

x = X− ζ(X) +
1

2
(ζ · ∇)ζ

∣∣∣∣
X

+ . . . . (13.81)

These relations allow us to invert our coordinate transform derived in Section 13.1.1.

13.D Additional Details in Estimating the Perturbations to

the Eigenfrequencies

Here, we collect the details of the various computations needed to estimate the various terms in

Eq. (13.46). As before we define Λ2
a = la(la + 1). The angular integrals are

Tabc =

∫
dΩYaYbYc =

√
(2la + 1)(2lb + 1)(2lc + 1)

4π


 la lb lc

ma mb mc




 la lb lc

0 0 0


 ,

(13.82)

Fa,bc =

∫
dΩYa(∇Yb) · (∇Yc) =

Tabc
2

(Λ2
b + Λ2

c − Λ2
a) , (13.83)

Ga,bc =

∫
dΩ (∇j∇kYa)(∇jYb)(∇kYc) =

Tabc
4

[
Λ4
a − (Λ2

b − Λ2
c)

2
]
, (13.84)

Sabc =
1

2
(Λ2

aFa,bc + Λ2
bFb,ca + Λ2

cFc,ab) , and (13.85)

Va,bc =Λ2
bΛ

2
cTabc − Fa,bc − Sabc , (13.86)
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where for Ga,bc we have used Einstein summation convention and we use the standard metric on a

unit sphere to raise indices.

In the remainder of this section, we expand on our derivation of the three-mode coupling κσgg,

with two of the modes being high-order g-modes and the third being the radial displacement σ. As

mentioned in subsection 13.2.2, we build upon the results of Weinberg et al. [411]. We take as our

starting point their Eqs. (A27)–(A30),

κabc

=
1

2E0

∫
dr

[
r2P

{
Γ1(Γ1 − 2) +

∂Γ1

∂ ln ρ

⌋
s

}
(∇ · a)r(∇ · b)r(∇ · c)rTabc (13.87)

+2Tabcρgarbrcr + (Fa,bc + Sabc)ρgarbhch + (Fb,ca + Sabc)ρgbrchah + (Fc,ab + Sabc)ρgcrahbh

−TabcΛ2
aρgahbrcr − TabcΛ2

bρgbhcrar − TabcΛ2
cρgcharbr − 2Sabcρgahbhch (13.88)

+

(
dar
dr

dbr
dr

+
2

r2
arbr

)
r2Γ1P (∇ · c)rTabc +

(
ar
dbh
dr

+ br
dah
dr
− d

dr
(ahbh)

)
rΓ1P (∇ · c)rFc,ab

−
(
Λ2
barbh + Λ2

aahbr
)

Γ1P (∇ · c)rTabc + ahbhΓ1P (∇ · c)rVc,ab

+

(
dbr
dr

dcr
dr

+
2

r2
brcr

)
r2Γ1P (∇ · a)rTabc +

(
br
dch
dr

+ cr
dbh
dr
− d

dr
(bhch)

)
rΓ1P (∇ · a)rFa,bc

−
(
Λ2
cbrch + Λ2

bbhcr
)

Γ1P (∇ · a)rTabc + bhchΓ1P (∇ · a)rVa,bc

+

(
dcr
dr

dar
dr

+
2

r2
crar

)
r2Γ1P (∇ · b)rTabc +

(
cr
dah
dr

+ ar
dch
dr
− d

dr
(chah)

)
rΓ1P (∇ · b)rFb,ca

−
(
Λ2
acrah + Λ2

cchar
)

Γ1P (∇ · b)rTabc + chahΓ1P (∇ · b)rVb,ca (13.89)

−r2ρarbrcr
d2g

dr2
Tabc − r2ρ

d

dr

(g
r

)
(Fa,bcarbhch + Fb,caahbrch + Fc,abahbhcr)

]
. (13.90)

In writing this, we are including only those terms which arise within the Cowling approximation.

The above expression assumes that the radial mode, taken to be the a mode, is defined in the manner

of Eq. (12.5), i.e. its radial component ar is such that a = arY00(θ, φ)r̂. As such, when we later

plug in the radial displacement σ, we need to account for our different normalization by inserting

stray factors of
√

4π. We consider the case where the other two modes are azimuthally symmetric

g-modes (m = 0). Relaxing this assumption leads to extra phase factors of (−1)−m, which do not

affect our conclusions.

In order to simplify these terms, we initially proceed as in Weinberg et al. [411]. We integrate by

parts the d(ahbh)/dr terms in line (13.89) and cancel against the Sabcρgahbhch term in line (13.88)

after using the radial equation of motion (13.67) for the displacements. We then deal with the

ar dbh/dr terms in the same manner. Next, we use the definition of divergence (13.65) for the modes

to eliminate factors of dar/dr in line (13.88), and residual terms which are leftover from the previous

steps. However, we cannot subsequently use the angular equations of motion to simplify terms with

one factor of (∇ · a)r, as one of the modes is radial.
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When we use the radial equation of motion (13.67) for the modes, we collect the restoring force

terms into a homogeneous part κabc,H and the driving terms into an inhomogeneous part κabc,I .

The homogeneous part is given by

κabc,H

=
1

2E0

∫
dr

[
r2P

{
Γ1(Γ1 + 1) +

∂Γ1

∂ ln ρ

⌋
s

}
(∇ · a)r(∇ · b)r(∇ · c)rTabc (13.91)

+Γ1Pr(∇ · a)r(∇ · c)r
{
−4br + Λ2

bbh
}
Tabc + Γ1Pr(∇ · b)r(∇ · a)r

{
−4cr + Λ2

cch
}
Tabc

+Γ1Pr(∇ · c)r(∇ · b)r
{
−4ar + Λ2

aah
}
Tabc (13.92)

+Γ1P (∇ · c)r
(
Gc,abahbh + 6Tabcarbr +

{
Fc,ab − 3Λ2

bTabc
}
arbh +

{
Fc,ab − 3Λ2

aTabc
}
brah

)

+Γ1P (∇ · a)r
(
Ga,bcbhch + 6Tabcbrcr +

{
Fa,bc − 3Λ2

cTabc
}
brch +

{
Fa,bc − 3Λ2

bTabc
}
crbh

)

+Γ1P (∇ · b)r
(
Gb,caahch + 6Tabccrar +

{
Fb,ca − 3Λ2

aTabc
}
crah +

{
Fb,ca − 3Λ2

cTabc
}
arch

)

(13.93)

+Tabc

(
2g− r2 d

2g

dr2

)
ρarbrcr + Sabcρg(arbhch + brchah + crahbh)

+ρ

(
g− r dg

dr

){
Λ2
aahbrcr + Λ2

bbhcrar + Λ2
ccharbr

}
Tabc

−ρr
(
Fc,abω

2
cahbhcr + Fa,bcω

2
aarbhch + Fb,caω

2
bahbrch

)
− (arbh + ahbr)Fc,ab

(
Λ2
cρgch − ω2

cρrcr
)

−(brch + bhcr)Fa,bc
(
Λ2
aρgah − ω2

aρrar
)
− (crah + char)Fb,ca

(
Λ2
bρgbh − ω2

bρrbr
)]
. (13.94)

For a triplet of modes (σ, g, g) with angular quantum numbers ({0, 0}, {lg, 0}, {lg, 0}), the angular

integrals in the above expression are

Tσgg =

√
1

4π
, (Fσ,gg, Fg,gσ) =Tσgg(Λ

2
g, 0) , (Gσ,gg, Gg,σg) =(0, 0) , and Sσgg =0 . (13.95)

Plugging in the forms of the displacements, the angular integrals, and the fact that ωσ = 0, we

arrive at the expression

ε2κσgg,H =
1

2E0

∫
dr

[
r2P

{
Γ1(Γ1 + 1) +

∂Γ1

∂ ln ρ

⌋
s

}
(∇ · σ)(∇ · g)r(∇ · g)r

+2Γ1Pr(∇ · σ)(∇ · g)r
{
−4gr + Λ2

ggh
}
− 4Γ1Pr(∇ · g)r(∇ · g)rσr

+6Γ1P (∇ · g)rσr(2gr − Λ2
ggh) + 2Γ1P (∇ · σ)gr(3gr − 2Λ2

ggh)

+ρ

(
2g− r2 d

2g

dr2

)
σrgrgr + ρ

(
2g− 2r

dg

dr

)
Λ2
gσrgrgh

]
. (13.96)

As we have noted in Section 13.2.2, the potential V (r) only couples to the radial displacement

σ due to its spherical symmetry. Hence only the radial displacement has an inhomogeneous term

in its equation of motion. Keeping track of when we have used the radial equation of motion



191

(force-balance) for this displacement, this residual inhomogeneous term is

ε2κσgg,I =
1

2E0

∫
drΛ2

gρr (ghgh − 2grgh) ε2
dV

dr
. (13.97)

These homogeneous and inhomogeneous contributions to the three-mode coupling, when combined

with the nonlinear driving term from the potential as ε2(Vgg + 2κσgg,H + 2κσgg,I), give the pertur-

bation to the restoring force. Note that the largest contribution to this sum, due to the horizontal

displacement of the g-mode in the two inhomogeneous terms given by Eq. (13.64) and Eq. (13.97),

cancels exactly.

The remaining terms can be simplified further using the divergence equation, the radial equations

of motion for the modes and the angular equation of motion for the g-mode. We have chosen to reduce

them to the form given in Eq. (13.68) in order to emphasize terms whose dominant dependence on

the frequency ratio ωp/ωg can be easily estimated from the WKB form of the g-mode eigenfunction.

In particular, the only remaining term involving the horizontal displacement in Eq. (13.68) contains

the combination of factors ω2
gghgh, so that the small factor ω2

g suppresses the large contribution from

ghgh.

13.E Rotating tidal fields

We have thus far considered the stability of small daughter perturbations η for a static tidal field.

This section considers a rotating tidal field, as occurs for a binary on a circular orbit, and shows

that – as we would expect – the quasi-static instability (considered by WAB) and the parametric

resonance instability are the only two possible instability mechanisms at second order in the tidal

perturbation and while considering the behavior of two roots of the secular equation at a time. (The

“collective instability” in Weinberg et al. 411 is of higher order in the sense that it requires multiple

resonance criteria to be satisfied.) The only difference is that the quasi-static instability criterion is

modified by the time dependence of the tidal field: the natural frequency of the g-mode oscillation ω2
g

picks up not just the static three- and four-mode coupling corrections, but a “centrifugal” correction

due to the time variation of the shallow direction in configuration space (i.e. the small eigenvalue

of M).

We suppose that the daughter perturbation modes have an evolution matrixM in the instanta-

neous frame with the tidal field aligned on the z-axis, so that in the case of a static tidal field we

have as before η̈ = −Mη. (In the case where the tidal field is rotating, the frame where the tidal

field is aligned with the z-axis is not an inertial frame, and the equations of motion have additional

centrifugal and Coriolis corrections.) The eigenvalues ofM are the squares of the mode frequencies

in the static approximation. Here M is an N × N matrix, where N = (2`p + 1) + (2`g + 1) is
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the number of normal modes under consideration. In terms of the basis of Appendix 13.B, M is

symmetric, real, has nonzero entries only when the azimuthal quantum numbers are equal, and has

equivalent components for m and −m. (In the main text, we treated M as a 2× 2 matrix, since it

is trivially block-diagonal by rotational symmetry and hence there is no need to consider more than

2 modes at the same time. For a rotating tidal field, we must generalize this.)

We would like to express M in an inertial frame where the binary orbit is in the xy-plane; this

is achieved via the rotation by Ωt around the z-axis, followed by rotation by π/2 around the y-axis:

R(t) = exp
(
−iπ

2
Ly

)
exp(−iΩtLz) = R(0) exp(−iΩtLz), (13.98)

where Lx, Ly, and Lz are the angular momentum operators, each of which is an N ×N Hermitian

matrix. This is a unitary rotation matrix in the sense that if η(inert) is the daughter perturbation in

the inertial frame, then η = R(t)η(inert) is the daughter in the frame aligned with the instantaneous

tidal field, where M is defined. The evolution equation in the rotated frame is

η̈(inert) = −R†MRη(inert). (13.99)

We now define a partially rotated daughter perturbation µ ≡ exp(−iΩtLz)η(inert), in a basis where

the z axis is normal to the orbital plane, but the x axis always points in the direction of the

companion. We then left-multiply Eq. (13.99) by exp(−iΩtLz) to get

exp(−iΩtLz)
d2

dt2
[exp(iΩtLz)µ] = −R†(0)MR(0)µ, (13.100)

which expands to

µ̈+ 2iΩLzµ̇− Ω2L2
zµ = −R†(0)MR(0)µ. (13.101)

It is convenient to Taylor-expand M in the tidal deformation,

M =M(0) + δM, where δM = εM(1) + ε2M(2) + ...; (13.102)

then since M(0) is spherically symmetric, we have R†(0)M(0)R(0) = M(0). If we substitute into

Eq. (13.101) and take a solution of the form µ ∝ e−iωt, then

A(ω)µ ≡ [−ω2I + 2ωΩLz − Ω2L2
z +M(0) + R†(0)δMR(0)]µ = 0, (13.103)

where I is the identity matrix. An unstable daughter can then exist if Eq. (13.103) has a nontrivial

solution (i.e. µ 6= 0) in the upper-half complex plane. Since det A(ω) is a 2N th order polynomial in
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ω, there are 2N solutions. Also Lz and δM are real and symmetric, and R(0) is real (this is because

in the standard basis, the generator Ly is purely imaginary; hence the finite rotation matrices around

the y-axis have all real entries). Therefore det A(ω) is symmetric and has real coefficients, and so

non-real solutions for ω occur in conjugate pairs.

It is also important to note that if we define the reflection matrix Σ through the xz-plane, so

that in the spherical harmonic basis Σm,m′ = (−1)mδm,−m′ , we have that Σ anti-commutes with

Lz, i.e. {Σ,Lz} = 0, but Σ commutes with M and R(0). It follows that ΣA(ω) = A(−ω)Σ and,

since Σ is nonsingular, det A(ω) = det A(−ω). Thus if ω is a solution, then so is −ω.

In the unperturbed case where δM = 0, we can immediately see that A(ω) = A(0)(ω) is diagonal

in the usual basis for spheroidal modes: the diagonal entries are

−ω2 + 2mωΩ−m2Ω2 + ω2
p = (ωp +mΩ− ω)(ωp −mΩ + ω) (13.104)

for the 2`p + 1 p-modes with m = −`p... + `p, and similarly for the g-modes. Therefore the un-

perturbed solutions are ±ωp,g + mΩ, as one would expect. For the perturbations, we note that

the correction δA(ω) = R†(0)δMR(0) does not depend on ω; our task is “simply” to add this

correction, re-compute the determinant A(ω), and find the new zeroes.

We are now in a position to determine what the tidal perturbation does to the eigenfrequencies

in the co-rotating frame. In order for the roots to leave the real axis, the perturbation due to the

motion must first cause a pair of roots to collide and then split into a complex conjugate pair. For

a general problem of the form of Eq. (13.103), we can understand this phenomenon by taking two

nearby roots of the unperturbed problem, say ωe and ωd, which correspond to zeroes in the diagonal

elements A
(0)
ee (ω) and A

(0)
dd (ω), respectively. Two cases present themselves – that e and d correspond

to different modes (i.e. are zeroes of distinct diagonal elements), or the same mode (i.e. are zeroes

of the same diagonal element, which has very nearly a repeated root). Our approach is to compute

det A(ω) to second order in the detuning ωe − ωd, the separation of ω from the natural frequencies

ω − ωe,d, and the perturbation δM. We then ask whether the resulting polynomial possesses roots

in the upper half complex plane.

13.E.1 Case of distinct modes, e 6= d

In this case, we further suppose that ω′e and ω′d are the alternative roots associated with the same

diagonal entries A
(0)
ee and A

(0)
dd . To do this, we take ω − ωe, ω − ωd, and δA as perturbations and

expand to second order. The determinant is given by the usual formula,

det A(ω) =
∑

π

(−1)πA1π(1)(ω)A2π(2)(ω)...ANπ(N)(ω), (13.105)
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where the sum is over the N ! permutations π of {1...N} and (−1)π denotes whether the permutation

is odd or even. Inspection shows that if at zeroth order (in ω−ωe, ω−ωd, and δA) A(ω) is diagonal

and has zero entries in the ee and dd slots, then det A(ω) is second-order and the only terms at

second order have π(h) = h for h /∈ {e, d}. Then det A(ω) is the product of the diagonal entries

with h /∈ {e, d}, times the determinant of the 2× 2 sub-block,

A(ω) 3


 (ω − ωe)(ω′e − ω) + δAee δAed

δAde (ω − ωd)(ω′d − ω) + δAdd


 . (13.106)

Moreover, at second order ω′e − ω in the above determinant may be replaced with ω′e − ωe. The

latter gives a quadratic equation for ω:

0 =(ω′e − ωe)(ω′d − ωd)(ω − ωe)(ω − ωd) + (ω′d − ωd)δAee(ω − ωd)

+ (ω′e − ωe)δAdd(ω − ωe) + δAeeδAdd − δA2
ed, (13.107)

and from the discriminant (treating the above equation as a quadratic in ω−ωe) we get the criterion

for an instability:

(4$e$d∆− 2$dδAee − 2$eδAdd)
2 − 16$e$d(δAeeδAdd − 2$dδAee∆− δA2

ed) < 0, (13.108)

where we have defined ∆ = ωe−ωd and 2$e = ωe−ω′e (so that $e = ±ωp for p-modes and ±ωg for

g-modes; in general $ denotes an inertial-frame unperturbed frequency). Algebraic simplification

leads to

(
∆ +

δAee
2$e

− δAdd
2$d

)2

+
δA2

ed

$e$d
< 0. (13.109)

This is in fact the familiar criterion for parametric resonance. It requires first that $e and $d have

opposite signs; if we take $e to be positive, then ωe = $e + meΩ, ωd = $d + mdΩ, and hence the

resonance criterion is |$e| + |$d| ≈ (md − me)Ω, and thus it occurs only when the unperturbed

frequencies sum to a harmonic of the orbital frequency. The coupling strength must be at least

|δAed| > |$e$d|1/2|∆|, with a correction to the detuning if the applied perturbation leads to first-

order corrections to the mode frequencies (δAee and δAdd).

13.E.2 Case of the same mode, e = d

This time we are interested in the case where two frequencies associated with the same mode are

“near” each other and may merge – say ωe and ω′e. Here the frequency difference is 2$e = ωe − ω′e
and is treated as small; we have ωe = meΩ + $e and ω′e = meΩ −$e. We suppose that ω is near
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these frequencies, i.e. ω ≈ meΩ, and we work to second order in $e, ω −meΩ, and δM.

Evaluation of det A(ω) is more subtle than the case of e 6= d because many more terms in the

determinant are important. In Eq. (13.105), we have two types of terms: those with π(e) = e and

those with π(e) 6= e. Since Aee(ω) is at least first order, as are all off-diagonal entries, the only

surviving term with π(e) = e is where π is the identity permutation (i.e. corresponding to the

product of all diagonal entries in A). If π(e) = h 6= e, then Aeh is first order, and so such a term

can only survive if there is at most one other off-diagonal entry in the product, i.e. if π(h) = e and

π(i) = i for all i /∈ {e, h}. These terms lead to the approximation

det A(ω) ≈ Aee(ω)
∏

i 6=e

Aii(ω)−
∑

h6=e

δA2
eh

∏

i/∈{e,h}

Aii(ω). (13.110)

We now set this to zero and divide by
∏
i 6=eAii(ω) to get

0 ≈ Aee(ω)−
∑

h6=e

δA2
eh

Ahh(ω)
. (13.111)

Finally we see that Ahh(ω) can be approximated by its zeroth-order value (since it already appears

multiplying a second-order perturbation), which is (ω−ωh)(ω′h−ω) ≈ (meΩ−ωh)(ω′h−meΩ). Also

we substitute for Aee(ω):

0 ≈ $2
e − (ω −meΩ)2 + δAee −

∑

h6=e

δA2
eh

(meΩ− ωh)(ω′h −meΩ)
. (13.112)

Finally, replacing ωh and ω′h by ±$h+mhΩ, we see that the roots of this equation become complex,

i.e., unstable, when

$2
e + δAee −

∑

h6=e

δA2
eh

$2
h − (me −mh)2Ω2

= (ω −meΩ)2 < 0. (13.113)

This resembles the quasi-static instability criterion including both Aee (which through second order

includes both three-mode and four-mode couplings of mode e to the tidal field) and the square of

Aeh (three-mode coupling of e and h to the tidal field), modified by the rotating reference frame

term, (me−mh)2Ω2. In the case of interest, where e is a g-mode and there is a perturbation coupling

to p-modes h, the instability criterion becomes

ω2
g + δAgg −

1

ω2
p

∑

h is p−mode

δA2
gh

[
1− (mg −mh)2Ω2

ω2
p

]−1

= (ω −mgΩ)2 < 0. (13.114)
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The last term can be expanded to leading order in Ω2/ω2
p to give

ω2
g + δAgg −

1

ω2
p

∑

h is p−mode

δA2
gh −

Ω2

ω4
p

∑

h is p−mode

(mg −mh)2δA2
gh = (ω −mgΩ)2 < 0. (13.115)

We see that the instability criterion – that the left-hand side be negative – differs from the quasi-

static case only in the introduction of a “centrifugal correction” of order

Ω2δA2
gp

ω4
p

∼
(

ΩMgp

ω2
p

)2

∼
(

ΩεωpωgJ
(1)
pg

ω2
p

)2

∼
[

Ωεωpωg(ωp/ωg)

ω2
p

]2

∼ ε2Ω2, (13.116)

where we have used that δAgp ∼ Mgp, used Eq. (13.42) for Mpg, and the value of the Jacobian.

This correction goes in the direction of de-stabilizing the star. It has a simple interpretation in

the language of the 2-dimensional oscillator of Section 11.1.1: if the eigenvectors of M rotate at

some rate θ̇, then a particle moving in the shallow direction in the potential well experiences a

“centrifugal force” correction −θ̇2 to ω2
−. In our case where the external tidal field is rotating, the

shallow direction varies by an angle O(ε) over a timescale Ω−1, hence its rotation rate squared is

∼ ε2Ω2. The interpretation as such a term is clear since in Eq. (13.115), the “rotation angle” of

mode e into mode h is δAeh/ω
2
p, and it oscillates at a rate (me − mh)Ω. The second summation

then represents the sum of squared angular rates.

For the highest-order g-modes with frequencies ωg . εΩ, it is possible that the centrifugal term

may dominate and lead to an instability whose growth timescale would be tcen ∼ (εΩ)−1.
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[21] K. M. Smith, O. Zahn, and O. Doré, Phys. Rev. D 76, 043510 (2007), 0705.3980.

[22] C. M. Hirata, S. Ho, N. Padmanabhan, U. Seljak, and N. A. Bahcall, Phys. Rev. D 78, 043520

(2008), 0801.0644.

[23] S. Das, B. D. Sherwin, P. Aguirre, J. W. Appel, J. R. Bond, C. S. Carvalho, M. J. Devlin,

J. Dunkley, R. Dünner, T. Essinger-Hileman, et al., Physical Review Letters 107, 021301

(2011), 1103.2124.

[24] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ash-

down, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, et al., Astron. Astrophys.

571, A17 (2014), 1303.5077.

1303.5075
astro-ph/9304022
astro-ph/9304022
astro-ph/9606055
astro-ph/0105252
astro-ph/0310725
astro-ph/0501171
1203.6641
0705.3980
0801.0644
1103.2124
1303.5077


199

[25] R. A. C. Croft, D. H. Weinberg, M. Pettini, L. Hernquist, and N. Katz, Astrophys. J. 520, 1

(1999), astro-ph/9809401.
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[208] L.-X. Li and B. Paczyński, Astrophys. J. Lett. 507, L59 (1998), astro-ph/9807272.

[209] E. Nakar, Phys. Rep. 442, 166 (2007), astro-ph/0701748.

[210] G. Harry and the LIGO Scientific Collaboration, Classical and Quantum Gravity 27, 084006

(2010).

[211] T. Accadia, F. Acernese, M. Alshourbagy, P. Amico, F. Antonucci, S. Aoudia, N. Arnaud,

C. Arnault, K. G. Arun, P. Astone, et al., Journal of Instrumentation 7, 3012 (2012).

[212] K. Somiya, Classical and Quantum Gravity 29, 124007 (2012), URL http://stacks.iop.

org/0264-9381/29/i=12/a=124007.

[213] J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams,

R. Adhikari, P. Ajith, B. Allen, et al., Classical and Quantum Gravity 27, 173001 (2010),

1003.2480.
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