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ABSTRACT 

The cataphoretic purification of helium was investigated for 

binary mixtures of He with Ar, Ne, N
2

, o
2

, CO, and co2 in a DC glow 

discharge. An experimental technique was developed to continuously 

measure the composition in the anode end-bulb without sample with­

drawal. Discharge currents ranged from 10 ma to 100 ma . Total gas 

pressure ranged from 2 torr to 9 torr. Initial compositions of the 

minority component in He ranged from 1.2 mole percent to 7.5 mole 

percent. 

The cataphoretic separation of Ar and Ne from He was found to 

be in agreement with previous investigators . The cataphoretic 

separation of N2 , o
2

, and CO from He was found to be similar to noble 

gas systems in that the steady-state separation improved with (1) 

increasing discharge. current, (2) increasing gas pressure, and 

(3) decreasing initial composition of the minority component . In the 

He-co
2 

mixture, the co
2 

dissociated to CO plus o2 • The fraction of 

co2 dissociated was directly proportional to the current and pressure 

and independent of initial composition. 

The experimental results for the separation of Ar , Ne, N
2

, o
2

, 

and CO from He were interpreted in the framework of a recently pro­

posed theoretical model involving an electrostatic Peclet number. In 

the model the electric field was assumed to be constant. This 

assumption was checked experimentally and the maximum variation in the 

electric field was 35% in time and 30% in position . Consequently, the 
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assumption of constant electric field introduced no more than 55% 

variation in the electrostatic Peclet number during a separat i on . 

To aid in the design of new cataphoretic systems, the follow­

ing design criteria were developed and t ested in detail : (1) electric 

field independent of discharge current, (2) electric field di rectly 

proportional to total pressure, (3) ion fraction of impurity directly 

proportional to discharge current, and (4) ion fraction of impurity 

independent of total pressure. Although these assumptions are approxi­

mate, they enabled the steady-state concentration profile to be 

predicted to within 25% for 75% of the data. The theoretica l model 

was also tested with respect to the characteristic time associated 

with transient cataphoresis. Over 80% of the data was within a 

factor of two of the calculated characteristic times. 

The electrostatic Peclet number ranged in value from 0.13 to 

4.33. Back-calculated ion fractions of the i mpurity component ranged 

in value from 4.8 x 10- 6 to 178 x 10- 6 • 
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I. INTRODUCTION 

When a pure gas is the conducting medium in a direct-current 

glow discharge, positive ions of the gas are formed and drift toward 

the cathode because of the electric field. If the pure gas is 

replaced by a binary mixture of gases, then the component with the 

lowest ionization potential will be selectively ionized and drift 

toward the cathode, producing an increase in concentration of this 

component near the cathode. The preferential ionization of gases in 

a glow discharge and the subsequent increase in concentration of a 

component near the cathode is referred to as cataphoresis. 

Literature Survey 

Cataphoresis was first observed by Baly [l] in 1893 . He 

reported that several binary mixtures of gases (co
2

-H
2

, N
2

-H
2

, CO-H
2

, 

so
2
-H

2
, I

2
-H

2
, Hg-H

2
, co

2
-co, N2-co

2
, and co

2
-so

2
) exhibited an 

increase in concentration of one of the components near the cathode. 

Baly's qualitative results were based on spectroscopic measurements. 

In 1898, Thomson [2] qualitatively observed cataphoresis in a H
2
-c1

2 

mixture with Cl
2 

being enriched near the anode . No further investi­

gations of cataphoresis in molecular gases were made until 1939 when 

Groth and Harteck [3] reported on the cataphoretic purification of 

H
2
-n

2
• In 1953 more data on the separation of hydrogen and deuterium 

were reported by Beckey, Groth, and Welge [4]. They explained the 

increase in deuterium concentration near the cathode by assuming that 

dissociation rates and mechanisms were identical for the isotopes and 

that the recombination proceeds by ternary collisions. Si nce H atoms 
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have a speed approximately /2 times as great as that of the deuterium 

atoms , the three-body r e combination rate was higher for hydrogen than 

for de uterium. Consequently, there wus a higher concentration of D 

:incl n+ than of H and H+. The net effect was deuterium enrichment 

at tiH' cathode. They were unahle to d·etect the separati.on of Xe 

iso topes. This result is consistent with their explanation of the 

hydrogen-deuterium separation because Xe isotopes have molecular 

weights which only differ by a small amount; therefore, the speeds of 

the isotopes are nearly equal. 

Except for the aforementioned investigations [1-4] the study 

of cataphoresis has been l i mited to mixtures of monatomic gases. 

The first qualitative studies of the cataphoretic separation of 

nohle gas mixtures were performed by Skaupy [5] in 1916. He worked 

·with binary mixtures of He, Ar, and Ne, and found that the gas with 

the lower ionization potential always appeared to be increased in con­

centration at the cathode. In 1925, Skaupy and Bobek [6] obtained the 

first quantitative measurement of cataphoresis by using a gas inter­

ferometer to measure the indices of refraction. Results were reported 

for binary mixtures of He-Ar and He-Ne in the pressure range 3 mm Hg 

to 10 mm Hg at a current of about 500 ma. They concluded that the 

s eparation of inert gases increased with increasing current and 

decreased with increasing pressure. 

In 1933 Penning (7] observed cataphoresis in mixtures of 

Ne-Ar-Hg. He made the first quantitative measurements on cataphoresis 

using optical spectroscopy. In his experiments Hg was enriched at the 

cathode. To this date all the work on cataphoresis had been 
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experimental; then Druyvesteyn [8], in 1935, presented t he fi.rst th.eo­

retical attempt to explain Penning's results for metal ions in nob.le 

gases. Druyvesteyn showed that the ambipolar diffusion of positive 

ions from the positive column to the wall gave rise to a radial con­

centration profile. In addition, he was apparently the first 

experimentalist to utilize the principle of cataphoresis in a practical 

application. He kept metal vapor from attacking a glass window in a 

metal-noble gas discharge by placing the window near the anode. 

In 1954 Riesz and Dieke [9] reported quantitative spectroscopic 

measurements of cataphoresis in binary mixtures of He-Ne, Ar-Ne, 

Kr-Ar, and Kr-Xe. Investigations were performed in the pressure range 

of 3.2 nun Hg to 5.5 mm Hg and the current range 10 ma to 30 ma. They 

. found that the steady-state separation increased both with increasing· 

pressure and increasing current. This pressure effect is the anti­

thesis of the results previously reported by Skaup~ and Bobek [6]. 

Later experimenters [15,16] have confirmed Riesz and Dieke's conclu­

sion that cataphoretic separation increases with increasing pressure. 

Riesz and Dieke also observed that the separation decreased as the 

mass of the preferentially ionized component increased . For the cases 

they investigated, it was observed that the minority component always 

increased in composition near the cathode whether it had a higher or a 

lower ionization potential than the majority component. 

In 1958 Kenty [10] observed the cataphoretic separation of Hg 

vapor (ionization potential of 10.4 eV) in binary mixtures with the 

inert gases He, Ne, Ar, Kr, and Xe (ionization potentials from 24.5 eV 

to 12.l eV). He noted that Hg moved in a retrograde direction, that 
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is, toward the anode in the binary mixture with Xe. In all the other. 

cases Hg moved toward the cathode as would be expected becnuse of the 

lower ionization potential of Hg. Kenty attributed the retrograde 

behavior of Hg in Xe to the increased drift of neutral Hg atoms toward 

the anode because of the large cross section of .Hg for electron impact 

and the small cross section of Xe for electron impact with electrons 

of about 1 eV energy (Ramsauer effect [11]). 

Loeb [12], in 1958, presented a qualitative discussion on the 

mechanism of cataphoretic separation in inert gas glow discharges. He 

attributed the preferential ionization of the minority gas to two 

mechanisms, namely charge exchange and hybridization. If, in a binary 

mixture, the minority gas has a lower ionization potential, then it 

can be separated near the cathode because the minority gas is almost 

completely ionized by the process of charge exchange. However, Loeb 

points out that under certain conditions, some of the ions present may 

+ + be hybrid ions such as Nelie and NeAr • These hybrid ions have been 

observed by Oskam [13] and Pahl [14]. Consequently, in some cases, 

the minority gas which may have a higher ionization potential could 

still he separated near the cathode as was observed by Riesz and 

D l t•ke [ 9]. Loch implies that a real understanding of cataphoresis can 

only be obtained by a microscopic analysis. 

In 1959 Matveeva [15] perfonned the first direct quantitative 

measurements of cataphoresis. Samples were removed from the discharge 

tube and subjected to a mass spectrometer analysis. Matveeva investi-

gated binary mixtures of He, Ar, and Ne and found tha t the s eparation 

was a function of minority gas concentration, discharge current, 
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discharge pressure, and the distance between electrodes. In the 

pressure range of 1.5 mm Hg to 4 mm Hg and a current range of 25 to 

400 ma, the separation increased with increasing pressure and increas­

ing current. Matveeva measured the concentration near the anode by 

removing several samples as a function of time in a binary mixture of 

He-Ar, and she observed that there was a continuous decrease of 

minority gas (argon) concentration near the anode for about fifteen 

minutes. She found that the time required to reach an apparent steady 

state was relatively independent of the discharge current and the 

initial composition of the mixture; however, increasing the length of 

the discharge tube increased the time to reach steady state. 

In 1962 Schmeltekopf [16] reported on the cataphoretic separa­

tion of He-Ne mixtures in experiments where a mass spectrometer was 

used for quantitative analysis. Schmeltekopf found that the Ne con­

centration always increased near the cathode irrespective of whether 

Ne was the minority or majority component. This result is a contra­

diction of Riesz and Dieke's [9] conclusion that the concentration of 

minority component . (whether it had the lower or higher ionization 

potential) was always increased near the cathode. In order to resolve 

this discrepancy Schmeltekopf also used an optical technique similar 

to the one used by Riesz and Dieke. Comparison of the optical data 

with the more reliable mass spectrometer data showed that the optical 

measurements were inaccurate near the cathode. A possible reason for 

erroneous optical measurements is the increase in degree of ioniza­

tion of the minority component because of a shift in the electron 
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energy distribution function near the cathode. 

All the work up to this time had been restri.cted to batch 

systems. Then, in 1962, Schrneltekopf [16] reported qualitative 

results on the separation of Ne from a binary mixture of He-Ne in a 

flowing system. In 1966 Flinn and Price [18] performed the first 

quantitative measurements on cataphoresis in a flowing system. They 

used a microthermal conductivity gauge similar to one described by 

Grew and Ibbs [19]. The removal of samples from the discharge system 

tended to disturb the system for about 7 minutes. Their investigation 

of binary mixtures of helium and argon indicated that the composition 

of argon near the cathode increased with increasing current and 

decreased with increasing flow rate. The separation was found ,to be 

relatively independent of the pressure for a given inlet composition. 

The theory presented 'was inadequate to explain their experimental 

results. Their analytical treatment predicted the wrong pressure and 

concentration dependence when compared to their experimental data . 

They concluded that the lack of agreement between the experimental data 

and the analytical solution was probably due to an inadequate theory 

and lack of knowledge as to the types and concentration of the ions 

existing in the gas mixture discharge. 

Until the last few years, a satisfactory theoretical model for 

cataphoresis had not been formulated. In 1967 Freudenthal [20,21] 

developed a linearized model for steady state and transient cata­

phoresis ' when no end-bulbs are present. In 1968 Shair and Remer [22] 

developed a linearized model for steady state and transient 
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cataphoresis for the general case including end-bulbs. When the 

degree of ionization is low, their results reduce to those presented 

by Freudenthal for the special case of no end-bulbs. The basic 

assumptions in the model were that after electrical breakdown, the 

level of ionization of the impurity, and the axial electric field 

remained constant. It was demonstrated that for these conditions a 

system involving rapid ionization-recombination reactions with 

electrodiffusion was equivalent to a system in which no reaction 

occurred, but in which the effective ion mobility was a product of 

the true ion mobility and the fraction of impurity ionization. Agree­

ment was found between this model and the experimental data reported 

by Matveeva [15] for mixtures of rare gases and by Beckey, Groth, and 

Welge [4] for mixtures of hydrogen and deuterium. Both of these sets 

of data were taken in systems with end-bulbs. In 1969 Sosnowski [77] 

measured cataphoresis in a He-Cd laser discharge tube. He found good 

agreement between his data and the theoretical model proposed by 

Shair and · Remt~r [ 22]. 

The development of these recent theories [20-22) for cata­

phoresis indicated the need for a method by which the gas composition 

within end-bulbs could be measured continuously and without sample 

withdrawal. The quantitative data reported by Schmeltekopf [17) was 

for the steady-state separation. The transient data reported by 

Riesz and Dieke [9] were qualitative with respect to composition. The 

data reported by Matveeva [15) were the closest to being continuous 

and quantitative. She withdrew several discrete samples from the 
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end-bulbs as a function of time. Until this time no one had t aken 

continuous and quantitative measurements of cataphoresis as a funct i on 

of time. In 1969 Remer and Shair [23] reported results for such a 

technique in which continuous and quantitative cataphoretic measure­

ments were performed in a He-Ar mixture. The measurements were 

recorded without removing samples from the system by using a 60-wat t 

light bulb filament as a thermal conductivity detector and placing 

the filament directly behind a porous molybdenum screen serving as 

the anode. 

Applications of Cataphoresis 

Cataphoresis has been used successfully for purtfication of 

noble gases in preparation for experiments where low impurity levels · 

are very important [24-28]. Miller [24] purified neon by using 

cataphoresis in order to determine the effect of argon impurity on 

the breakdown potential of .neon. Loeb, Westberg, and Huang [25] used 

cataphoresis to separate Kr and N2 impurities from Ar in order to 

study the spark breakdown potential of Ar • Purificat i on of Ar 

produced breakdown properties entirely different from those previous l y 

observed. Oskam and Mittelstadt [26] employed cataphoresis to remove 

impurities in helium to study the ion mobilities of He+ and He; in 

their parent gases from the. afterglow in a helium plasma. Druyvesteyn 

and Penning [27] used cataphoresis to remove argon from neon before 

determining the first Townsend coefficient in neon. Using cata­

phoresis, Benton [28] was able to carry out work on metastable He and 

to measure the cross section for the deactivation of me tastable He by 
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other gases. It was felt by Benton thut these lnvestigati.ons would 

have been very difficult if not impossible to conduct wi.thout the use 

of cataphoresis. 

In addition to using cataphoresis as a gas purification tech-

nique, Hogervorst and Freudenthal [29) employed cataphoresis to 

measure binary diffusion coefficients for neon-argon mixtures between 

0 
300 and 650 K. 

Over twenty-five different .binary mixtures have been separated 

by cataphor~sts. These mixtures are identified for ready reference 

in Fig . 1. Cataphoresis is not limited to binary mixtures. Skaupy 

[SJ observed qualitatively that in a ternary mixture of He, Ne and 

Ar, the mixture was enriched in He near the anode, Ne near the center 

of the tube, and Ar at the cathod~. Possibly a multicomponent mix-

ture could be separated by using several cataphoretic systems in 

series and removing one component in each chamber. If one pass 

through the system did not yield the required separation, then recycle 

could be used. 

There are many potential commercial applications for an effec-

tivc cataphoreti'c system. In helium-cooled nuclear reactors there is 

a build-up of Xe, Kr and other impurities. By bleeding off a steady 

stream of coolant from the reactor, these impurities could possibly 

be removed by cataphoresis. 

Separation of the isotopes H
2 

and n
2 

(which have been separated 

by Groth [3,4]) would be very important in both research and commer-

cial applications. 
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FIG. l 
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Recently, Sosnowski [77) investigated the influence of cata­

phoresis on the operation of a He-Cd laser discharge. In earlier 

designs of He-Cd laser discharge tubes, it was thought necessary to 

locate Cd sources at a number of discrete points along the tube to 

obtain a unifom Cd distribution. However, his results indicate that 

at high currents it is only necessary to use a single source of Cd 

near the anode. The Cd will be transported toward the cathode by cata­

phoresis. A theoretical model for cataphoresis would aid in the design 

and performance of future systems of this type. 

Purpose of This Investigation 

At the time the author began his research project, no adequate 

theory existed for predicting cataphoretic separation of gas mixtures 

and no quantitative experimental results were reported in the litera­

ture for molecular gases except H2 and D2 • Also, continuous and 

quantitative measurements of the cataphoretic purification as a 

function of time had not been reported. The potential applications 

for cataphoretic separations serve as an impetus to study oataphoresis 

both experimentally and theoretically. 

The main goal of the present experimental investigation was to 

check on .the theory put forth by Shair and Remer [22]. The project was 

divided into three parts. In the first part, an experimental method 

was developed to measure the composition during cataphoresis. An 

inexpensive thermal conductivity technique was designed to take con­

tinuous and quantitative measurements without removing a sample. This 

technique has been previously described by Remer and Shair [23]. The 
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second part of the project was to collect steady-state and transient 

separation data especially for molecular gases. Cataphoresis was 

investigated in six gas mixtures: He-Ar, He-Ne, He-N2 , He-0
2

, He-CO, 

and He-co
2

. The separation of o
2

, N
2

, and CO from He had not been 

previously investigated. The third part of this project consisted of 

comparing the experimental results to the model proposed for cata­

phoresis. Also, to facilitate the design of future cataphoretic 

separation systems, design criteria were developed and tested in 

detail. 

Outline of Thesis 

This thesis is divided into five major chapters: I. Introduc­

tion, II. Theory, III. Experimental Apparatus and Procedure, 

IV. Experimental Results, and ·V. Comparison of Theory and Experiment. 

In Chapter I there was a literature survey, followed by a 

discussion of the present and future applications of cataphoresis. 

The purpose of the investigation was explained, and the thesis format 

was outlined. 

In Chapter II the development of the theory for cataphoresis · 

is described starting with the early work by Druyvesteyn [8] in 1935 

and concluding with the most recent contributions by Shair and Remer 

[22]. 

In Chapter III the equipment including the vacuum, electrical, 

and water systems are described and the experimental procedure is 

outlined. 
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In Chapter IV the treatment of the data and the calculation 

procedure are explained. This is followed by a discussion of the 

experimental results and the quantities calculated from the data. 

In Chapter V the experimental results are compared to the 

predictions of the recently developed theoretical model for cata­

phoresis, and design criteria are introduced to aid in the design of 

future cataphoretic separators. 
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II. THEORY 

The theory of cataphoresis has been investigated for the pur-

pose of predicting the spatial and time dependence of the axial 

concentration gradient occurring in a DC glow discharge containing 

gas mixtures at pressures of several torr. The discussion is limited 

to binary m1xtures where one of the components is present in a small 

amount, usunlly leAs than to mole % • This component is referr<~d to 

as the. impurity an<l the other gas is called the majority component. 

In most cases the impurity gas has a lower ionization potential than 

the majority gas, but this is not mandatory [16). 

In this chapter the development of the theory of cataphoresis 

is described, starting with the early work by Druyvesteyn [8] in 1935, 

followed by the work of Schmeltekopf [16], and Beckey, Groth and 

Welge [4], and concluding with the most recent contributions by 

Freudenthal [20,21) and Shair and Remer [22]. 

Druyvesteyn [8] presented the first theory to describe cata-

phoresis. The impetus for his work was Penning's [7] observation that 

a metal vapor impurity moved toward the cathode i n a noble gas dis-

charge. Druyvesteyn's analysis was for a binary mixture composed of a 

metal vapor impurity in a noble gas. Because of mathematical com-

plexity, Druyvesteyn divided the problem into two parts. First, he 

investigated the axial dependence of the concentration of the metal 

vapor, N (x) , and second, he analyzed the r adial dependence, N (r), 
a a 

of the metal vapor concentration . 
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In the fi.rst part of the problem Druyvesteyn assumed that tlw 

concentration of metal atoms, N (x), was constant over the cross 
a 

section of the tube. He equated the ionic flux of metal vapor ions 

in one direction to the diffus.ional flux of neutral atoms of metal 

vapor in the opposite direction to obtain 

dN (x) 
R 

-D a 7TR2 + 
E 

+ f J (2.4r) 27Tr dr = µ n 
dx a o R 

0 

1.36 + µ+ ER2 
(1) = n a 

~1ere R is the radius of the tube, D is the diffusion coefficient 

of the metal atoms in the noble gas, E is the longitudinal electric 

field, and + µ and + 
n 

a 
are the ionic mobility and concentration of 

the metal ions, respectively. Although he does not state it, he 

assumed that the diffusional flux of metal ions was negligible: 

+ + dn (x) 
2 

dN (x) 
D a 7TR << D a 7TR2 

dx dx (2) 

This is a gooci assumption when the degree of ionization of the metal 

vapor. 1H low [ 21]. 

T t ls .l.mportant to not~~ that Druyveateyn' s entlre discus A ion 

was limited to the steady state analysis. He did not treat the time 

dependence of cataphoresis. In order to solve Eq. (1), the depend­

ence of n+ on the distance from the cathode x must be known. 
a 

Druyvesteyn therefore divided the system into two regions 
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(A) + for small n = n x a 

(B) + << for .1.Arge n n x 
a 

where n is the concentration of electrons. 

For region (A) he integrated Eq. (1) using 

+ n = a 

1. 9 x 10
11 .;v- i 

0 
(3) 

to yield a linear decrease in the concentration of metal vapor as a 

function of the distance x from the cathode 

N (x) 
a 

N 
0 

(4) 

where V is the mean electron energy, i the discharge current, 
0 

the mean free path of electrons, and N 
0 

the concentration of 

metal vapor atoms near the cathode. This equation gives only the 

relative distribution of metal vapor unless the absolute value of the 

metal vapor concentration is known at some position x . 

The axial gradient of the metal vapor concentration was 

obtained by taking the derivative of Eq. (4) 

dN a 
dx 

s.3 x 1010
11 + rv 

~~~~~~~~0- i 

A D R2 (S) 

Penning [7] experimentally determined a value for dN /dx = -1. 7 x 1013 
a 

atoms/cm4 at a distance of 3 to 4 cm from the cathode in a 

90% Ne - 10% Ar mixture with Hg vapor impurity. From Eq. (5), 
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Druyvesteyn calculated a value for IN I _, 1 2 x 1013 I '~ < ux =- - • . . atoms cm • a 

Several assumptions were made in Druyvesteyn 1 s calculation because 

experimental values of the transport properties were not available. 

However, since Druyvesteyn's work in 1935, more recent transport data 

have appeared in the literature [37,Sl]. 

Druyvesteyn calculated a value of D = 8.7 cm2/sec Hg-Ne at 

T = 300°K and P = 12 mm Hg with formula (846) in Jeans [SO]. How-

ever, if the diffusivity is recalculated using Eq. (8.2-44) in 

Hirschfelder, Curtiss, and Bird [37] with more recent values of the 

force constants for Hg and Ne [37), then a value of D = 15.S cm2
/ Hg-Ne 

sec is obtained; see Appendix A for calculations. 

Druyvesteyn extrapolated the mobility data of Tyndall and 

Powell [52] for Hg+ in He to obtain a value for the mobility of Hg+ 

in Ne (250 cm2/volt/sec at 12 mm Hg and 300°K.) However, in 1957 

Chanin and Biondi [51) reported the mobilities of Hg+ in Ne and Hg+ 

+ in Ar. If Blanc's law [36) is assumed valid for Hg in the Ar-Ne 

mixture, then the mobility of Hg+ in a 10% Ar - 90% Ne mixture can be 

calculated directly to yield 309 cm2/volt/sec at 300°K and 12 mm Hg. 

When Druyvesteyn's calculation is repeated using the more 

recent data for mobility and diffusivity, a value of dN /dx = 
a 

-0.8 x 1013 atoms/crn4 is obtained. (The details of these calcula-

tions are presented in Appendix A). This calculated value of 

dN /dx is a factor of two lower than the experimental value obtained 
a 

by Penning. Druyvesteyn's calculated value of dN /dx was 
a 

-1.2 x io13 atoms/cm4 which was fortuitously closer to the 
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experimental results thnn the vnlue ca.lculatecl wltlt more reclmt trun.1:1-

port data. 

In region (B) Druyvesteyn introduced two new quantities, S and 

B* . The term S was defined as the mean distance traveled by the 

ions in the direction of the cathode between their f orrnation and sub-

sequent neutralization on the wall. The number of ionizations of 

metal atoms per cm3 was n-N B* where B* · is a function of the elec­a 

tron temperature. Equation (1) takes the form 

dNa 2 2 1 dNa 
-D dx 7TR = (1. 36)n - B*SR (Na + 2 dx S) 

The solution is 

where 

A 

N a 

-0.43 n-8*S 

D+0.22 n-S*S2 

= N 
0 

-Ax e 

-2.1x1010 iS*/(A../V) 
0 

(6) 

(7) 

In the se.cond part of the problem Druyvesteyn investigated the 

radial dependence of the ion concentration of · the metal vapor. lie 

assumed the concentration N (r) 
a to be independent of the distance 

to the cathode. Again, as for the axial case, Druyvesteyn divided 

the system into two regions 

(A) 

(B) 

+ n 
a 

n for large R 

for small R 



For case (A) the solution is 

N = N ~ n 
a w 

2+V µ 0 

3D 
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J (2.4i:_) 
o R (8) 

where N is the concentration of metal vapor near the walls. For 
w 

case (B) the result is 

N 
a 

(9) 

In summary, Druyvesteyn's solution is given by Eqs. (4), (7), 

(8) and (9). 

Druyvesteyn did not discuss the relative importance of the 

axial concentration gradients (Eqs. (4) and (7)) and the radial con-

centration gradients (Eqs. (8) and (9)) to the cataphoretic purifi-

cation of the metal vapor from the noble gas. However, when the 

ionizat i on degree of the impurity component is low, which is usually 

the ca se for cataphore tic separations, .then the influence of the 

radial concentration gradi.ent on the axial gradient can be neglected 

[20,21]. 

Since Druyvesteyn's development was not r estricted to metal 

atoms, Schmeltekopf [16,17] applied Druyvesteyn's theor y to a binary 

mixture of noble gases. Schmeltekopf transformed Eqs . (4) and (7) 

into terms of the gas temperature, T , and pressure, P , by intro-

ducing several modifications. First, he used an expression for the 

electron mobility taken from Loeb [53]; second, Schmeltekopf assumed 

a Maxwellian distri bution of e lectron velocit ies ; and third, he used 

the Einstein expression to relate the mobility and diffusion 
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coefficient to the gas temperature. llis results were 

2. 63 x 10
15

P If p i 
N N c e · = x a 0 T2 R2 

(10) 

for small x and 

+ 6 E 1. 36}:! E 
1TD x - 1.5 x 10 T" x 

N N e = N e a 0 0 
(11) 

for large x , where p 
c 

is the collision probability for electrons 

and T is the electron temperature. 
e 

In the derivation of Eq. (11), Schmeltekopf assumed that the 

+ impurity atoms are completely ionized, n = N a a This assumption is 

invalid because the level of ionization of the impurity atoms is 

~ 10-5 to 10-6 . This point will be discussed later . 

Schmeltekopf [16] reported experimental data for the cataphore-

tic purification of Ne from He. In Fig. 4 of Schmeltekopf's paper he 

sunnnarized results for the relative concentration of Ne to He as a 

function of distance x from the cathode for a range of currents. 

According to Druyvesteyn's theory as modified by Schmeltekopf, dN /dx 
a 

should be proportional to i 

dN 
a 

dx 
- 2.63 x i (12) 

and, therefore, the slopes of the curves should be proportional to the 

current. However, the slopes of these curves appeared to be relatively 

.independent of the current in the range of 20 ma to 100 ma. 

Schmeltekopf concluded that the data were in clear disagreement with 

the current dependence as predicted by the theory of Druyvesteyn. 
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Beckey, Groth, and Welge [4] (referred to as BGW) investigated 

cataphoresis in H
2
-n

2 
mixtures. · In their steady-state analysis, which 

was similar to Druyvesteyn's, they equated fluxes but did not separate 

the discharge into two regions. They introduced a quantity aBGW 

which is a function of the ionization mechanism of H2 and n
2 

. The 

solution to their steady-state analysis is 

R.n T BGW = 

+ 
i L(aBGW - 1) . 

N 1TR2D 
a 

with + 2 + + i = 1. 36R n µ e E , where T BGW is the separation factor 

defined by 

(13) 

and + n e is the charge density. The quantity v is the mole fraction 

of n
2 

or H
2 

in the vicinity of the cathode c , or anode a . An 

absolute value for the separation factor could not be calculated unless 

a value for aBGW was assumed; however, relative changes in the value 

of TBGW could be compared to the experimental data. Linear plots 

were obtained for in TBGW versus i and in TBGW versus L , where L 

is the length of the discharge tube. 

In addition to their steady-state analysis, BGW presented an ad 

hoc approach for the time-dependence of the separation factor . The 

separation factor as a function of time Tt , was assumed to be 

- (T - T ) 
00 0 

-kt 
e (15) 



-22-

where T
00 

and T 
0 

are the separation factors as t -+ 00 and t + 0 

respectively. A plot of log(T
00 

- T) versus time was linear as pre-

dieted from Eq. (15). 

In 1966 Freudenthal [20,21,31] treated the steady state analysis 

for the axial concentration gradient by introducing the quantity GF 

which is the degree of ionization of the impurity 

= 

+ n 
a 

N a 
(16) 

where n+ and N 
a a are the average ion-number density and the neutral 

atom-number density of the impurity. The degree of ionization was 

assumed independent of the axial position x • 

Freudenthal equated the ionic flux to the diffusional flux 

similarly to Druyvesteyn and Schmeltekopf 

However, at this point he was able to substitute + n = €1 N a F a from 

(17) 

Eq. (16) into Eq. (17). This is the critical point where the other 

investigators went astray. Druyvesteyn got i nvolved in microscopic 

quantities B* and S which are difficult, if not impossible, to 

measure. Schmeltekopf, essentially assumed that eF = 1 , which is 

incorrect because 9F ~ 10-6 • 

with 

Freudenthal's solution after integrating Eq. (17) was 

n (x) = 
a 

* -vx/D na A e (18) 
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a 
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A 
vLD 

1 _ e-vL/D 

is the original density of the :Lmpurlty and 

The length of the discharge tube is L • 

Freudenthal's results in Eq. (13) were almost the same as 

Schmeltekopf's results in Eq. (7), except for the factor eF in the 

exponential term. 

Freudenthal then examined the impurity density as a function of 

position x and time t • The basic equation is 

an (x,t) 
a 

= 
a2n (x,t) on (x,t) a · a 

D ----- + v [ ~x 
ax2 0 

(19) 

This is the ordi.nary diffusion equation with an added term to account 

for the transport of the ions in the electric field. There is a mis-

print in Freudenthal's paper [20] relative to this equation. The minus 
an (x, t) 

a 
sign in front of v[ ax ] should be a positive sign to be consis-

tent with his solutions to the steady state case . However, this has 

been taken into account in his solution and does not affect the results. 

Freudenthal solved Eq. (19) for a system without end-bulbs. He 

states that it is a rather complicated problem to determine the time-

dependent cataphoresis theoretically for a system with end-bulbs. 

Shair and Remer [22] presented a theoretical model for tran-

sient and steady-state cataphoresis starting with the macroscopic 

equations of continuity for a system including end-bulbs. Their 

· general results reduce to Freudenthal's for the special case when the 

end-bulbs have zero volume, 
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and the level of ionization is low 

The basic assumptions in their model are that the level of ionization 

of the impurity, and the axial electric field remain constant. It was 

demonstrated that under these conditions a system involving rapid 

ionizati.on-recombination reactions vas equivalent to a system in which 

no reaction occurred, but in which the effective ion mobility was a 

product of the true ion mobility and the fraction of impurity ioniza-

tion. The influence of end-bulbs which are commonly employed in 

experiments was analyzed and found to influence greatly the character-

istic time required to reach steady state . Agreement was found between 

the model and available experimental data. Particular emphasis was 

placed upon mass spectrometer date reported by Matveeva [15] and Beckey, 

Groth, and Welge [4]. These data were for mixtures of rare gases and 

for mixtures of H
2
-n

2
• Both experiments involved end-bulbs. The 

ordinary diffusion case, associated with the collapse of the steady-

state cataphoretic profile, was also analyzed for a system containing 

end-bulbs. The theoretical model proposed by Shair and Remer [22] is 

presented in Appendix B. 

In their model, it is important to note that only electron-

impact ionization processes were considered. Whereas the ionization 

process was taken to be homogeneous in .character, the main loss of 

charged particles was considered to be through ambipolar diffusion to 
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the walls where recombination occurred; this has been the starting 

point in the development of other theories concerning the positive 

colUlllll [32,41] • In other words, the tube wall was assumed to be a 

sink for ions, that is, all ions diffusing to the wall were assumed 

to be lost. Moreover, the recombination was assumed to be rapid as 

compared to the characteristic times associated with the diffusion 

processes ; therefore, the system was diffusion limited. These assump­

tions break down at high pressures [41]. 

Recently, Sosnowski [77] utilized the theoretical model 

proposed by Shair and Remer [22] to interpret cataphoresis in a He-Cd 

l aser discharge tube. He obtained good agreement between the data and 

the model for the composition of Cd as a function of position in the 

discharge tube for a range of current of 6 ma to 60 ma, 
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III. EXPERIMENTAL EQUIPMENT AND PROCEDURE 

Introduction 

The basic experiment consists of producing a plasma by supplying 

DC power through electrodes into a glass discharge tube containing a 

binary gas mixture at a pressure of several torr. The purification of 

the gas mixture is investigated as a function of the initial mixture 

composition, the discharge current, and the gas pressure. The composi­

tion is measured by a thermal conductivity probe inserted in the anode 

end-bulb. The electric field is measured with a high-impedance volt­

meter placed across two floating probes at a known distance of 

separation in the positive column of the glow discharge. 

This chapter is divided into two sections. First a description 

of the experimental apparatus, and second a discussion of the experi­

mental procedure. 

A photograph of the experimental e'quipment is shown in Fig. 60. 

~t_Jipment 

The description of the experimental apparatus will be divided 

into th'.ree parts: (1) the vacuum system, (2) the water system, and 

(3) the electrical system. 

Vacuum system. The vacuum system is composed of the gas supply 

section, Fig. 2, and the discharge chamber plus detector, Fig. 3. The 

pressure is reduced to about one micron with a Welch Duo-Seal Vacuum 

Pump, Model 1400B, with a free air displacement of 21 i /min. The 

pressure is reduced to less than 0.01 microns with a Consolidated 
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Vacuum Corporation (CVC) Diffu!?ion Pump, Model PMCS-2C. A baffle i.s 

located between the mixing chamber and the diffusion pump. to reduce 

contamination of the system from the diffusion pump fluid vapors. This 

baffle is similar to the Chevron ring-baffle . described in CVC Bulletin 

10-1. A CVC Vacuum-Gate Valve, Model VSTM2, is used to isolate the 

baffle and pumps from the mixing chamber. 

The gases used in this experiment are stored in high-pressure 

cylinders up to 2,000 psig. Single-stage Matheson Regulators, Models 

1L580 and 3300, are used for regulating the delivery pressure at about · 

15 psig. 

The He, Ar, N
2

, o
2 

and Ne are supplied by Linde. The He and Ar 

are standard grade, the N
2 

is high-purity dry grade, the o
2 

is commer­

cia-1 grade, and the Ne is research grade. The CO and co
2 

are supplied 

by Matheson. The CO is C.P. grade and the co
2 

is commercial grade. 

High-vacuum stopcocks of borosilicate glass, supplied by Eck and 

Krebs, are used throughout the vacuum system. Universal type stopcock 

adapters are used to reduce the possibility of stopcock leakage. 

Pressures are measured by using a Universal McLeod Gage manuf ac­

tured by Todd Scientific Company. Pressures between 0.1 micron and 

25 mm Hg can be measured. There are three scales with ranges of 

5-25 mm Hg, 0.5 -5 mm Hg, and 0.0001- 0.5 mm Hg. An Eck and Krebs 

McLeod Gage, Model 2184, is used for measuring pressures down to 

0.01 microns. Mixtures are prepared by using an absolute pressure 

manometer and a Welch Cathetometer, Model 0068A. After preparing the 

mixtures they are stored in bulbs connected to the mixing chamber. 
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The water-cooled discharge chamber .and detector are shown in 

Fig. 3. The water-jacketed discharge tube is 1 cm in outside dia­

meter and 70 cm long • . The cathode end-bulb which also has a water 

jacket is connected to the end of the discharge tube. The volume of 

this bulb is 312 cc. Inserted into the cathode end-bulb is an elec­

trode which is connected by soft-solder to a one-inch kovar glass-to­

metal seal~ The 1/2-inch diameter cathode is composed of a solid 

molybdenum tip threaded into a hollow copper tube which is cooled 

with water. Stainless-steel tubes, 1/8-inch diameter, are used to 

supply cooling water to the cathode. Initially, a solid cathode with­

out water-cooling was used; however, expansion and contraction caused 

by repeated heating and cooling of the electrode produced cracking of 

the pyrex glass at the end of the discharge tube and fracturing of 

the kovar seal. Molybdenum was selected for the electrode tip 

because it sputters less than other connnon electrode materials and, 

therefore, reduces the tendency of glass fracture near the cathode. 

On the other end of the discharge tube is the anode which is 

3 cm long. The anode is a porous molybdenum screen rolled and packed 

tightly inside a 3/8-inch kovar glass-to-metal seal that is grounded. 

Behind the anode is the detector which is a commercial General Elec­

tric 60-watt, 120-volt light bulb immersed in a constant-temperature 

water bath. The volume of the bulb is 133 cc. 

Water system. Water is utilized for two purposes in this 

experiment. First, water is used .as a coolant in four locations: 

(1) the diffusion pump, (2) the Tamson circulation thermostat, (3) the 

discharge chamber, and (4) the cathode. Second, water is used to 
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maintain a constant-temperature bath for the thermal conductivity 

detector. A flow diagram for the water system is illustrated in 

Fig. 4. 

The use of water as a cooling medium will be discussed first. 

When the diffusion pump is operating, a nominal cooling-water rate of 

1/5-gallon per minute is required to prevent damage to the diffusion 

pump oil. This water is supplied through line #9 (line numbers are 

0 ' shown in Fig. 4) at about 20 C and exits through line #10 at about 

45-ss0 c. Line #11 supplies water to the boiler quench coil which is 

provided in case rapid shut-down of the pump is required. 

The Tamson circulation thermostat requires cooling water which 

enters via line #5 and exits via line #6 at the rate of approximately 

0.1 gallon per minute. This cooling water is necessary when the 

thermostat controls the water temperature at several degrees above 

ambient because the heat generated by friction · at the Tamson circula­

tion pump must be removed due to the efficient insulation of the 

thermostat bath. Otherwise, the temperature would rise above the 

0 designated set point of 30 C. 

The discharge tube and cathode chamber are cooled by water 

entering the discharge tube via line #7 and flowing through the jacket 

surrounding the tube and chamber; refer to Figs.3 and 4. This cooling 

water exits by line #8 at about the rate of one gallon per minute. 

The hollow cathode is water cooled by distilled water which is 

gravity fed from the water reservoir via line #2; refer to Figs. 3 and 

4. This water is returned to the r e servoir by line #1 using a Cole­

Parmar Oscillating Type Pump, Model 7103-1. Thermal expansion of the 
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cathode which resulted in f ruc turh1g of the kovnr Bcnl waH e l lmlnnt l·c.I 

by wate r-cool.lng the cathode. 

In addition to the use of water as a coolant , it. is a lso used 

for maintaining a constant-temperature bath. The Tamson Circulation-

Thennostat, Model TZ3, is utilized to control the water t emperature 

0 to within+ 0.02 C in the constant-temperature bath surrounding the 

thermal conductivity detector. The temperature of the bath is 

monitored with a Braun thermometer (A.S.T.M. 56C) which has a range 

of 19-35°C with subdivisions of O.Ol°C. Water exits from the Tamson 

thermostat and enters the constant-temperature bath via line #4 . 

Line #3 serves as the water return line to the Tamson the rmostat . 

Wate r is circulated through lines #3 and #4 by a combination force 

and suction ptnnp. Use of a magnetic stirrer , Preci sion Scientific 

Company, Model 65904, improved the water temperature control in the 

bath. 

Electrical systems. There are three distinct electrical 

systems used in this experiment. They are (1) the power-supply 

circuit for the electrical discharge, (2) the detector circui t for 

monitoring the thermal conductivity, and (3) the e lectrical circuit 

for measuring the electric field . 

The power to i nitiate and sustain the g low dis charge is 

supplied by a CVC High-Voltage Power Supply, Mode l No. LC-031. It is 

a variable voltage (0 to 5,000 volts) full-wave rectified, high 

reactance, DC power supply with an output current rating of 300 ma 

for continuous service. The power-supply output is filtered with a 

7f-section filter . The ripple factor [44) for the filter is 3 x 10-4 
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which corresponds to a ripple voltage of about 1.5 volts for a 

5,000 volt input to the filter. A ballast resistance of 7,500 ohms 

is placed in series with the discharge tube to stabilize the dis­

charge [11,16]. The voltage across the discharge tube is measured 

with a Triolab Vacuum-Tube Voltmeter, Model No. 106-1, connected 

across a voltage divider with a divider ratio of 200:1. This voltage­

divider ratio was determined with a Keithley Model 601 Electrometer to 

within± 2%. The current through the discharge tube is measured with 

a Simpson DC Milliammeter, Model No. 1150-1 (0-100 ma and 0-500 ma), 

with an accuracy of ±1% of full scala. A Hewlett Packard, Model 122A 

Dual-Beam Oscilloscope is connected across a one-ohm resistor in series 

with the discharge tube to monitor any AC interference. The electrical 

circuit for the apparatus used to furnish power for the glow discharge 

is shown in Fig. 5. 

The composition in the anode end-bulb is detennined by roonitor­

ing the thermal conductivity of the mixture. The detector probe is a 

filament in a conunercial G.E. 60-watt, 120-volt light bulb. This 

coiled-coil filament is made from 0.0046 cm diameter tungsten wire 

which is initially 53 cm long. After the first coiling, the filament 

length is reduced to 8.6 cm and the diameter is increased to 0.018 cm. 

This coil which consists of approximately 1200 turns is coiled again, 

making the filament 1.6 cm long. The filament is represented by R-5 

in the detector circuit shown in Fig. 6. The power for this circuit 

is supplied by a Dressen-Barnes, Model 20-5, five-volt regulated 

power supply. 
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The resistance changes in the filament are monitored hy measur­

ing the voltage drop ~cross R-4; refer to Fig. 6. This voltage drop is 

amplified by a Leeds and Northrup Stabilized DC Microvolt Amplifier, 

Model 9835-B. The output from the amplifier is monitored continuously 

on a Leeds and Northrup Speedomax W/L Millivolt Recorder. When cali­

bration runs are initiated, the potential drop across R-4 is set to 

approximately zero by adjusting two Spectral Potentiometers , Model 860, 

which are designated by R-6 and R-7 in Fig . 6. 

There are five major components needed to measure the electric 

field. These components are (1) the electric field probes, (2) the 

voltage divider probe, (3) the electrometer, (4) the isolation ampli­

fier, and (5) the recorder . 

Two sets of electric field probes are sealed wi th pyrex glass 

into the discharge tube; see Fig. 3. These probes are located so 

that they are in the positive column of the glow discharge . Each set 

of probes consists of two probes spaced 21 'mm apart . The tungsten 

probes are 1/2 nun in diameter and about 45 mm long. The probes are 

coa t ed with Pyrex glass over a l ength of about 34 mm . The out s i de 

diameter of these coated probes is about 1. 5 mm. Both ends of the 

probes are left uncoated. The tip of the probe i n the discharge tube 

is lef t uncoated over a l ength of 2 mm. A silver - solder ball is 

attached to the other end of the probe to facilitate the connection 

of an electrical lead • . To insure a good vacuum seal at t he Pyrex­

tungsten interface, the outside of the seal is coated with glypt al 

paint. For each set of e lectric fi eld probes, one of the two probes 

i s floating at a higher potential. This probe is refer red to a s t he 
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high-voltage probe and the other probe in the set is called the low-

voltage probe. 

The low-voltage probe is. connected to the input of a Keithley, 

Model 5103A, 1000:1 volt~ge-divider probe with input resistance of 

12 10 ohms and an accuracy of± 5%; refer to Fig. 7. The purpose of 

this probe is to drop the potential to within a range that can be 

monitored with the electrometer. The output of the voltage-divider 

probe is connected to a Keithley Model 6012 triaxial-to-coaxial 

adapter. 

This adapter is connected to the input of a Keithley Model 601 

electrometer with voltmeter accuracy of ±1% of full scale. The 

high-voltage probe is connected to the low-input terminal on the 

electrometer. The current output from the electrometer is accurate to 

+5%with recorders that have an input impedance of 1.4 KQ. 

A voltage divider converts the full-scale output from the elec-

trometer to full-scale input for the isolation amplifier. The output 

from the electrometer is connected to the input of a Fluke , Model ASS , 

i.solatton amp] ifier with gain accuracy of ±2% • This amplifier is 

u:-ied to pr.ovldc, f lrHt, high isolation of the input from ground, a nd 

second, high isolation of the input from the output . The isolation 

amplifier relieves the necessity of using a recorder having a high 

leakage resistance and high input resistance. The voltage divider 

located between the electrometer and amplifier converts the full-

scale output from the electrometer to full-scale input for the isola-

tion amplifier. The output from the isolation amplifier is monitored 

on a Leeds and Northrup Speedomax W/L millivolt recorde r with an 
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accuracy of ±0.25% of full scale. The voltage divider between the 

amplifier and the recorder converts the full-scale output from the 

isolation amplifier to a full-scale input to the recorder. A switch 

is used so that the electric field can be monitored at either set of 

probes during a cataphoretic test. 

Procedure 

The experimental procedure for the preparation of gas mixtures 

and for the calibration of the detector is described in this section. 

The gases are mixed in a glass cylinder that is approximately 

2 inches in diameter and 19 inches long; refer to Fig. 2. The system 

is evacuated to less than 0.01 micron and then flushed out with helium 

several times. The CVC vacuum-gate valve is closed and helium is 

added to a pressure P
1 

• The pressure is measured by using a mercury 

absolute-pressure manometer and a cathetometer with subdivisions of 

0.005 mm Hg. The second gas is added and the total pressure P
2 

is 

recorded. Assuming ideal gas behavior, the percentage of the compo­

nents in the binary mixture is then calculated. The time required for 

mixing is determined from the results in Cook [45]. The mixture is 

then stored in a 3-liter flask connected to the mixing cylinder . 

The detector that is used to monitor the composition of the gas 

mixture at the anode during cataphoresis is calibrated by the following 

technique; For one composition of the gas mixture, the voltage drop 

across tht> n~si.Rtor R-4 (refer to Fig. 6) is me;.isure<l as a funct.fon of 

the gas pressure at constant temperature. The temperature is main­

tained to within ±0.02°C by inunersing the detector in a water bath. 
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This procedure is replicated for different compositions of a specified 

binary gas mixture. As an example, results for the voltage drop as a 

function of pressure with composition as a parameter is shown in Fig. 8 

for He-CO. From these results, cross-plots are made of the composition 

as a function of the voltage drop with pressure as a parameter. This 

calibration curve is shown in Fig. 9 for He-CO. A known mixture of 

helium and argon obtained from Matheson was used to check the mixture 

preparation and calibration procedure. The calibration curves were 

clwclwd uftcr ::;ix months, and the resultH were reproducible; r efer to 

Fig. 8. 

During a cataphoretic purification test, the voltage drop across 

resistor R-4 is measured as a function of time. The voltage drop is 

usually in the range of 0 to 200 microvol ts. This signal is amplified 

and recorded continuously. Since the pressure is known, the composition 

as a function of time is obtained from the composition-calibration 

curves. This technique has been described previously by Remer and Shair 

[23); refer to Appendix C. 
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IV. EXPERIMENTAL RESULTS 

Introduction 

The experimental program was designed to measure cataphoresis 

in binary mixtures of helium with atomic and molecular gases. The gas 

mixtures investigated were He~Ar, He-Ne, He-N2 , He-0
2

, He-CO, and 

He-co
2

• Helium is the majority component and the other gas is the 

impurity. The independent variables in the experiment were the dis­

charge current, the initial composition of the gas mi~ture, and the 

total pressure 0£ the gas mixture. The three measured dependent 

variables were the composition in the anode end-bulb, the axial elec­

tric field in the positive column of the glow discharge, and the time 

for cataphoresis. The composition and the electric field were meas­

ured continuously, commencing after the discharge was initiated and 

terminating when the discharge was extinguished. Three important 

quantities could be calculated from the model of cataphoresis with the 

data from the experimental measurements. These calculated quantities 

were (1) the electrostatic Peclet number, (2) the fraction of impurity 

ionization, and (3) the characteristic time for the separation. 

For all the experimental tests, the initial composition of the 

impurity gas was less than 7.5 mole%. The discharge currents were 

between5milliamperes and 100 milliamperes. At currents less than 

5 ma, the discharge could not be sustained, and for currents greater 

than 100 ma, the glass seals would fracture. The range of the gas 

pressure was between 2 mm Hg and 9 mm Hg. At higher pressures the 

breakdown potential of the gas mixture could not always be attained 
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with the power supply. The time for the separation was usually 

several minutes. 

All compositions are stated iri mole %. Whenever a pressure is . 

reported, it is always the total gas pressure. The current density in 

ma/cm2 can be calculated from the measured current by dividing by the 
' 2 

cross-sectional area of the discharge tube which is 0.502 cm • 

This chapter is divided into two parts. First, there is a 

discussion of the treatment of the composition and electric field 

data, followed by the calculation procedure for both the electrostatic 

Peclet number and the ionization fraction of the impurity. Second, 

there is a presentation and discussion of the results for the impurity 

composition at the anode, the axial electric field, the electrostatic 

Peclet number, and the ionization fraction of the impurity as a func-

tion of the pressure, current, and initial composition of the mixture. 

There is also a discussion of the ionization mechanisms. The charac-

teristic time for cataphoresis is discussed in Chapter V. 

Treatment of the Data and the Calculation Procedure 

In this section the treatment of the composition and electric 

field data, and the calculation procedure for both the electrostatic 

Peclet number and the fraction of impurity ionization are discussed. 

Composition data. The quantity 9(n,T) is the ratio of the 

impurity composition for an axial position n at a time T , divided 

by the initial impurity composition. This relationship is valid when 

the fraction of impurity ionization is small; refer to Appendix B. 

The value of n varies from zero at the cathode to one at the anode. 
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The composition of the impurity gas is continuously measured in the 

anode end-bulb (n 1) during cataphoresis. When thi.s measured 

result is divided by the initial composition of the impurity gas, the 

value of 9(1,T) is obtained. Initially at T = 0 the impurity is 

uniformly dispersed throughout the system before· electrical breakdown, 

and e(n,O) = 1. After breakdown, the impurity is driven toward the 

cathode as cataphoresis proceeds and G(l,T) decreases from 1.0 to 

the steady state value 9(1,00) • Therefore, one measurement of the 

effectiveness of the separation is the value of 8(1,00) • The smaller 

the value of 9(1,00), the better the separation. A complete separation 

of the impurity from helium would result in a value of 8(1,00) = 0 . 

The actual measurement of 8(1,T) and the calibration procedure have 

been discussed in Chapter III. 

Electric field. The axial electric field was measured by the 

floating probe technique [70 to 72]. The electric field E is the volt-

age difference between two points divided by the distance d between 

the two points. 

E (20) 

The value of d was 21 mm for all the experimental measurements 

r eported herein. The field was measured near both ends of the positive 

column. The position of the probes was 7 cm and 9.1 cm from each end 

of the tube. The electric field near the anode end of the positive 

column was designated by E · similarly, the electric field near the a , 

cathode end was designated by E 
c During the cataphoretic separation , 

the values of Ea and Ec varied because of the changing composition . 
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The highest and lowe st value s of the field at the l.lnode end of Lli e 

positive column were represented by Eh and E~ , a nd s i milarly near a a 

the cathode end of the positive column, Eh and E~ . The ave rage 
c c 

values of E and E during cataphoresis were taken as 
a c 

E = a 
and E c 

The value of E reported in the experimental results sect i on of this 

chapter was the ave rage o f these two values, name ly , 

E + E 
E 

a c 
2 

.. - ·---

For example, with the 4.8% N
2 

mixture at 25 ma and 6 . 0 mm Hg , the 

values of E~, Eh, E~, Eh, E, E, and E are summari zed be low in 
a a c c a c 

volts/cm. 

32. fi 

= 36 . 9~ 

. E 
c 

31.l , 

34 . 75 / / 

E 32. 9 

( 21) 

The max imum variation of E i n the experiments reporte d herein was 

35% in time and 30% in position. 
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The calculational procedure for the electrostatic Pech~t number 

and the fraction of impurity ionization will now be discussed. 

Electrostatic Peclet number. The electrostatic Peclet number 

ct was calculated from the following implicit equation for ct , using 

experimental results for 9(1,00) • 

e(l ,00 ) = K e -<l (22) 

where 

1 + 0 + e: 
K = (23) 

These equations were derived by Shair and Remer [22]; refer to Eqs. 

(13) and (18) in Appendix B. The quantity o is the ratio of the 

volume of the bulb surrounding the cathode to the volume of the dis-

charge tube. Similarly, e: is the ratio of the volume of the bulb 

surrounding the anode to the volume of the discharge tube. In the 

experimental system the value of e: was 4.2 and o was 8.9. The 

results for ct as a function of 9(1,oo) are summarized in Fig. 10 and 

Table E-1. 

Ion Fraction. The fraction of impurity atoms ionized is 

n 
0 

are the density of impurity ions and 

neutrals, r e spectively. When the degree of ionization is low, then 

n+ << n
0 

, and n+/(n
0

+ n+) ~ n+/n
0 

• The electrostatic Peclet 

number ct is given by 

ct = 
n+ n 

( ) Cl (_±)Cl +n µ ~ n µ 
no + o 

(24) 
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where f3 = µEL/D ~ The product of the ionic mobility µ and the e l e c-

tric field E is the drift velocity of the ion through a distance L • 

From a qualitative viewpoint, the numerator µEL represents the mag-

nitude of the forced diffusion of . the ions in one direction because of 

the electric field, and the diffusion coefficient D in the denomina-

tor represents the diffusion of the neutrals in the opposite direction 

because of the concentration gradient. Hence a low value of B means 

that forced diffusion is small in comparison to ordinary diffusion. The 

purification by cataphoresis becomes more effective as the value of S 

increases. 

The fraction of impurity ionization was calculated by rearrang-

ing Eq. (24). 

(25) 

The quantity D is the binary diffusion coefficient of the gas mixture 

He-X, where X is one of the following gases: Ar, Ne, N
2

, o
2

, CO, or 

co
2

• The values of D for He-N
2 

and He-02 were experimental 

results reported by Seager, Geerstrom, and Giddings [48). The diffusion 

coefficients for He-Ar and He-Ne were experimental results reported by 

Srivastava [39,40) that were corrected for temperature by the method 

suggested in Cobine [11). The experimental results for He-Ar, He- Ne, 

He-N
2

, He-0
2

, and He-co
2 

agreed to within 7% of those calculated from 

theory using the technique described by Hirschfelder , Curtiss, and Bird 

[37]. The diffusion coefficient for He-CO was calculated from theory 

[37]. The diffusivities were assumed to be inversely proportional to 

pressure and independent of composition [46) . The values used f or D in 



cm2/sec are summarized below for 760 mm Hg and 298°1<. 

Gas Mixture D 

He-Ar 

He-Ne 

He-N 
2 

He-0 2 

He- CO 

lle-co2 

2 
(cm /sec) 

0. 729 

1.05 

0.687 

0.729 

o. 721 

0.612 

Reference 

[38] 

[40] 

[48] 

[48] 

[37] 

[48 ] 

The quantity µ is the ionic mobility of the impurity ion 

diffusing through He. For example, in a He-Ar mixture , the value of 

+ µ is for Ar diffusing through He. The values used for the mobilities 

+ + + 
of Ar in He, Ne in He, and o2 in He were taken from experimental 

results reported in the . literature [26,33,49]. 

+ He was assumed equal to the value for o
2 

in He. 

The mobility for 

The mobility of 

in He was calculated with Blanc's law [53] using the data for CO+ in 

+ CO from Varney [61] and CO in He extrapolated from McDanie l (62]. The 

mobilities were assumed to be inversely proport i ona l t o pressure and 

i nde pendent of composition [12]. The value of the mobil i t y i s posi-

tive for positive ions and negative for negative ions . The value s 

used for µ in cm2/volt/sec are summarized below for 760 mm Hg and 
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2 
Gas Mixture (cm /volt/sec) Reference - -···----·- --

He-Ar 22.4 [33] 

He-Ne 16.2 [26] 

He-N 
2 

11.8 [49] 

He-0 2 
11.8 [49] 

He-CO 22.0 [53,61,62] 

The length of the discharge tube was 70 cm. This is the value of L . 

in Eq. (25). · 

Discussion of the Results 

He-Ar. Cataphoresis in a He-Ar mixture was investigated as a 

function of the discharge current and the total gas pressure. The 

initial composition of the gas mixture was 4.7% Ar. The current range 

was 25 ma to 75 ma and the pressure range was 3.2 mm Hg to 8.9 mm Hg. 

The effect of current and pressure on the steady-state composi-

tion at the anode 9(1, 00) is shown in Figs. 12 and 17. The purifica-

tion of Ar from He was found to be enhanced with increasing current 

and increasing pressure. However, the current had a much stronger 

influence on the purification than the pressure ; refer to Figs. 12 

and 17. For example, increasing the current from 25 ma to 100 ma at 

3.2 mm Hg changed the separation factor 9(1,oo) from 0.915 to 0.245, 

whereas increasing the pressure from 3.2 mm Hg to 8.9 mm Hg at 25 ma 

only changed the separation factor 9(1,00 ) from 0 . 915 to 0.790. The 

pressure and current dependence of cataphoresis in the He- Ar mixtures 

was in agreement with previously reported results [9,15]. 



-44-

The influence of current and pressure on the calculated elec­

trostatic Pech't numb('.r a is shown in Figs. 31_. and 39. Unless 

otherwi.se stato<l, the lines through the pofnts rnpreHent: the hPHt fi.t 

of the data. The value. of Cl was found to incrc!asc with i.ncreaslng 

current. This .result is in agreement with the theory (22). The value 

of Cl was found to increase linearly with increasing pressure. The 

pressure dependence of ~ is a function ·of the ionization mechanism 

which will be discussed later . The m~gnitude of the electrostatic 

Peclet number varied from a equal to 0.13 (at 25 ma and 3.2 mm Hg) 

to a equal to 3.92 (at 100 ma and 8.9 mm Hg). 

The effect of current and pressure on the electric field E is 

illustrated in Figs. 25 and 31. The electric field was found to 

increase with increasing pressure and to decrease with increasing cur­

rent. The electric field was a linear function of pressure. The 

values of E were between 8.5 volts/cm and 20.0 volts/cm . The lowest 

value of E , 8.5 volts/cm, occurred at the lowest pressure, 3.2 mm Hg, 

and the highest current, 100 ma. The highest value of E , 20.0 

volts/cm, occurred at the highest pressure, 8.9 mm Hg, and the lowest 

current, 25 ma. 

The influence of current and pressure on the ion fraction 

n+/n
0 

is shown in Figs. 43, 48 and 49. The ion fraction increased with 

pressure and with current. However, the value of n+/n
0 

was a much 

stronger function of current than pressure; refer to Figs . 43 and 48. 

The value of n+/n
0 

increased by about 30% for a range of pressure of 

3 . 2 mm Hg to 8.9 mm Hg. However, the value of n+/n0 
increased by a 

factor of 20 for a range of current of 25 ma to 100 ma. The values 
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f I r i th ra ge O.f 5 x 10-6 to 133 x 10-6 
or n+ n

0 
we e n e n The value 

of n+/n
0 

equal to 5 x 10-6 corresponded to the lowest current, 25 

ma, and the lowest pressure, 3.2 mm Hg (also 5.5 mm Hg). The higlwst 

value of n+/n
0 

equal to 133 x 10-
6 

corresponded to the highest 

current of 100 ma and the highest pressure of 8.9 mm Hg. A summary of 

the results for cataphoresis in He-Ar mixtures is presented in Table 

E-2. 

The ionization mechanism in a He-Ar mixture during cataphoresis 

may proceed by three paths. The first path is electron impact of Ar 

+ neutrals to form Ar . 

e + Ar (26) 

The second path is the formation of Ar; by the Hornbeck-Molnar 

process [57]. * Thi.s process invol ves formation of an excited atom Ar 

via the following reaction: 

* e + Ar + Ar + e 

* This step is possible because the energy of the excited atom Ar is 

between 11.5 eV and 11.7 eV which is lower than the ionization poten-

tial of Ar, 15.76 eV from Reed (56]. The second step is ionization of 

Ar by the following reaction: 

* + Ar +Ar + Ar
2 

+ e 

+ The third pa th is the f orma tion of Ar2 by a three- body impact 

process [53]. 
Ar++ 2Ar + Ar;+ Ar 
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+ This reaction can occur because the Ar has an appearance po t en tia l o f 

+ 15.76 eV which is larger than the appearance potential for Ar
2 

of 

15.06 eV (18,26]. This process is pressure dependent and is favored 

by high pressure and high percentage of Ar . This may explai n why the 

results for n+/n
0 

increased with increasing pressure . 

The ratio of rate constants for the formation of atomic ions 

+ + . Ar to molecular ions Ar
2 

is about 18, based on the r esults reported 

hy Dahler, Franklin, Munson and Fie ld [58]. Theref ore, most: ions a r e 

ro nnt~d by e lt:c tron l mpoct, Eq. (2<, ). Thir; i a i n agn~cmcot with t hl'. 

experimental results that n+/n
0 

increased only s l i ghtly wi th increas-

ing pressure. 

He-Ne. Cataphoresis in He-Ne mixtures was examined as a func-

tion of current, pressure and initial percentage of Ne. Two sets of 

experiments were performed. The first set of experimental data was 

taken at a constant pressure to investigate t he effect of current and 

initial composition on cataphoresis. The second set of data was t aken 

at a constant initial composition and a constant current to examine t he 

eff ect of pressure on cataphoresis. · 

In the first s e t of data, the total pressure was he ld cons tan t 

at 6.0 mm Hg. The initial compositions were 2. 4% Ne a nd 4. 8% Ne . 

The current range was 25 ma to 75 ma for the 2.4% Ne mixture and 25 ma 

to 100 ma for the 4.8% Ne mixture. 

The second set of data was taken for an ini tial composition ·of 

2.4% Ne at a current of 50 ma. The pre ssure range was be tween 3.5 mm 

Hg and 9.1 mm Hg. 
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The influence of current, initial percentage of Ne, and pres­

sure on the steady-state composition near the anode 9(1,00) is shown 

.ln Figs. 13 and 18. The puri.fication of Ne from He by cntaphoresis 

was found to be enhanced with increasing .current or with :lncrea s i ng 

pressure, or with decreasing initial percentage of Ne . The separa~ 

tion factor at the anode 9(1,00) varied from 0 . 900 at 25 ma and 

6.0 mm Hg for a mixture with initial composition of 4.8% Ne to 0 . 251 

at 75 ma and 6.0 mm Hg for a mixture with initial composition of 2.4% 

Ne. The pressure, current, and initial composition dependence of 

cataphoresis in He-Ne mixtures was in agreement with previously 

reported results [9,15,16]. 

The effect of current, pressure, and initial percentage of Ne 

on the electrostatic Peclet number a is shown in Figs . 35 and 40. 

For a given initial percentage of Ne, the value of a was found to 

increase with increasing current. Currents greater than 100 ma were 

not investigated because fracture of the glass-to-kovar seals resulted 

near the cathode. For a given current, the electr ostatic Peclet num­

ber decreased as the i nitial percentage of Ne inc.reased. The value 

for a increased with increasing pressure. For exampl e, at a current 

of 50 ma with an initial composition of 2.4% Ne, the electrostatic 

Peclet number increased from 0.62 at 3.5 mm Hg . to 1 . 10 at 9.1 mm Hg . 

The values of a for the He-Ne tests were in the range of 0.22 to 

1.72. The low value of a equal to 0.22 occurred at a discharge cur­

rent of 25 ma and a pressure of 6.0 mm Hg for the mixture with an 

initial composition of 2.4% Ne. The upper value of a equal to 1 . 72 
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occurred at 75 ma and 6.0 mm Hg for the 2.4% Ne mixture. 

The influence of current, pressure, and initial composition on 

the electric field E is shown in Figs. 26 and 32. The vnluc of E 

varied only slightly over the entire range of current~ inv(;~st:.lgnt(•d. 

The electric field was relatively independent of pressure. The val.ues 

of E were between 11.1 volts/cm and 12.6 volts/cm. In comparison 

with the other mixtures studied, the variation of electric field in 

He-Ne mixtures was very small. Very recently, Gaur and Chanin [68) 

reported electric field measurements in He-Ne at pressures generally 

higher than those investigated herein. However, they reported a value 

of 11.0 volts/cm at 7 mm Hg and 10 ma. This is in agreement 

with the value reported herein of 11.9 volts/cm at 6.0 mm Hg and 25 ma. 

The influence of current, pressure, and initial composition on 

the ion fraction n+/n
0 

is shown in Figs. 44 and 49. The ion frac-

tion increased with increasing current and decreased with increasing 

initial percentage of Ne. The value of n+/n
0 

also increased with 

increasing pressure. For example, at a current of 50 ma and an 

initial composition of 2.4% Ne, the ion fraction increased from 

-6 48.3 x 10 · at 3.5 mm Hg to 82.3 x 10-6 at 9.1 mm Hg. At high pres-

sures, the value of n+/n
0 

appeared to be reaching a limiting value . 

Higher pressures were not investigated because the breakdown voltage 

could not be reached with the powe r supply. The va lues of n+/n
0 

for 

the He-Ne data are in the range of 11.0 x 10-6 to 139 x 10-6 . The 

lowest value of n+/n
0 

equal to 11.0 x 10-6 occurred at 25 ma and 

6.0 mm Hg for the mixture with an initial composition of 4.8% Ne. The 

high est value of n+/n0 equal to 139 x 10-6 occurred at 75 ma and 
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6.0 mm Hg for the 2.4% Ne mixture. The results for c.ataphon•s18 Jn 

He-Ne mixtures are summarized in Table E-3. 

The experimental results for He-Ne mixtures were consistent 

with the model for cataphoresis [22]. The value of 9(1,00 ) decreased 

with increasing current because of the increase in a caused by the 

increase in the ion-production rate. The pressure dependence of cata-

phoresis is again believed to be a function of ionization mechanism as 

in He-Ar mixtures. 

The ionization mechanism in a He-Ne mixture during cataphoresis 

is pr:i.marily direct electron impact of neutral Ne atoms when the per-

centage of Ne> 0.1% [31]. 

e + Ne + Ne+ + 2e 

The production of Ne+ ions by electron impact increases as the percen-

tage of Ne increases [ 31] • 

The formation + of Ne ions by the Penning reaction [53,54) via 

* the helium metastable atoms, He , is energetically impossible because 

* the energy of He is between 19.81 eV and 20.96 eV [ 55] and the ioni-

zation potential for Ne taken from Reed [56] is 21.56 eV. 

* + -He + Ne + Ne + He + e 

At low percentages of Ne(< 0.1% Ne), the following charge 

exchange reaction may occur (55] 

l + .+ N l e
2 

e + Ne++ 2 He 

+ because the energy of the He2 molecular ion, 23.2 eV [ 36], is larger 
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than the ionization energy of Ne, 21.56 eV [56]. At high pressures 

of approximately 5 mm Hg, the molecular ion is probably formed by a 

three-body impact process (31,36]. 

He+ + 2He -+ He; + · He 

· + 
At low pressures, the molecular ion He

2 
is most likely formed by the 

following steps [31,36]: 

* e + He -+ He + e 

* + He + He -+ He
2 

+ e 

Gaur and Chanin (68] in a recent publication performed an 

ionic analysis of cataphoresis in He-Ne mixtures. + They observed He
2

, 

+ + + 
Ne , Ne

2
, and HeNe ions. Their work was limited to mixtures with 

0.05% Ne or less. The complex ion HeNe+ was postulated to occur via 

a three-body collision. 

In conclusion, for the cataphoretic experiments reported 

herein, the ionization of Ne by direct electron impact wil l pre-

dominate becaus~ of the high initial percentage of Ne which was 2.4% 

Ne to 4.8% Ne. 

A three-minute, 16 nun film was taken to illustrate the change 

in color produced by the formation of the axial concentration gradient 

during cataphoresis in a He-Ne mixture. The best pictures were 

obtained using Kodak Ektachrome EF Film, type 7242 at 16 frames per 

second with a f/5.6 setting. Overexposed films were obtained using 

· f/2 - f/2.8 and f/4 settings. 
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He-N2 • Cataphoresis in He-N2 mixtures was investigated as a 

function of discharge current, initial composition, and total pres­

sure. The first set of experimental data was taken at a constant 

pressure to examine the effect of current and initial composition on 

cataphoresis. The second set of data was taken at a constant initi.al 

composition and a constant current to examtne the effect of pressure 

on cataphoresis. 

In the first set of data the total pressure was held constant 

at 6.3 mm Hg. The initial compositions were 1.2% N2 , 2.2% N2 , and 

4.8% N2 • The current levels were 5 ma to 20 ma for the 1.2% N2 

mixture, 7.5 ma to 50 ma for the 2.2% N2 mixture, and 15 ma to 75 ma 

for the 4.8% N
2 

mixture. 

The second set of data was taken for an initial composition of 

4.8% N
2 

at a current level of 50 ma. The pressure range investigated 

was 2.2 mm Hg to 8.8 nnn Hg. 

The effect of current, initial composition, and pressure on the 

steady-state composition near the anode 8(1,oo) is shown in Figs . 14, 

19 and 22. The purification of N
2 

from He by cataphoresis was found 

to increase with increasing current or with increasing pressure, or 

with decreasing the initial percentage of N2 

The influence of discharge current on the separation was very 

significant; refer to Fig. 14. For exampl e, the value of 9(1,oo) 

decreased from 0.864 at 15 ma to 0.021 at 75 ma in the mixture with 

initial composition of 4.8% N2 and a pressure of 6.3 nun Hg. The value 

of 8(1,oo) equal to 0.021 represents 0.1% N2 in He which is almost a 
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fifty-fold reduction in the percentage of N2 near the anode as com­

pared with the initial composition of 4.8% N2 in He. 

The effect of pressure on the separation is shown in Fig. 19. 

The separation was improved by increasing the pressure up to about 

4 nun Hg. At higher pressures the separation became almost independent 

of pressure. 

The influence of initial composition on the separation is pre­

sented in Fig. 22 which is a cross-plot of the data in Fig. 14. The 

separation decreased significantly as the initial percentage of N
2 

increased. For example, at 15 ma and 6.3 mm Hg, the value of 9(1 ,oo) 

increased from 0.100 at 1.2% N2 to 0.864 at 4.8% N2 . 

The effect of current, pressure, and initial percentage of N
2 

on the electrostatic Peclet number Ct · is illustrated in Figs. 36 and 

40. The value of Ct increased with increasing current. For low 

currents the value of Ct increased linearly with current. At high 

currents the increase in Ct became nonlinear . This effect was prob­

ably caused by the large increase in the ion fraction at high currents. 

For a given current, Ct decreased as the initial percentage of N
2 

increased; refer to Fig . 36. The value of Ct increased with increas­

ing pressure by a factor of 2 in the pressure range of about 2 to 9 mm 

Hg at a current of 50 ma; refer to Fig. 40. The influence of pressure 

on Ct was significant at low pressures and became less important at 

pressures greater than about 4 mm Hg. The values of Ct varied from 

0.21 to 4.33. The low value of .0.21 occurred at a current of 15 ma 

and a pressure of 6.3 mm Hg for an initial composition of 4.8% N
2

. The 

upper value of 4.33 occurred wi th a pressure of 6.3 mm Hg at 75 ma for 
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the 4. 8% N
2 

mixture, 50 ma for the 2. 2% N2 m:f.xture, and 20 ma for the 

1.. 2% N
2 

mixture. 

The effect of current on the electric field is shown in Fig. 27 

for several initial compositions. For example, the electric field de-

creasedabout 20% in the range of currents investigated for the 2.2% N
2 

and 4.8% N
2 

mixtures. The electric field was an increasing linear 

function of pressure; refer to Fig. 32. For example, the electric 

field increased from 15.8 volts/cm at 2.2 nun Hg to 36.4 volts/cm at 

8.8 mm Hg for the mixture with initial composition of 4.8% N
2 

at 50 ma. 

The calculated ion fraction n+/n
0 

as a function of current, 

pressure, and initial composition is shown in Figs. 45 and 49. The 

value of n+/n
0 

increased with current. At low currents n+/n
0 

was 

approximately proportional to current; at high currents n+/n
0 

increased 

in a nonlinear manner with current. The pressure dependence of n+/n
0 

is shown in Fig. 49. The ion fraction increased with pressure in the 

range of about 2 mm Hg to 4 nun Hg. The value of n+/n0 
appeared to go 

through a maximum near 4 mm Hg, and the value of n+/n0 
decreased with 

further increases in pressure. The influence of pressure on the ion 

fraction was smaller than the effect of current. For example , the 

value of n+/ n
0 

was between 5().0 x 10-6 and 77.2 x 10-6 for the 

range of pressures of 2.2 nun Hg to 8.8 mm Hg with the 4.8% N
2 

mixt ure 

at 50 ma. In comparison, the value of n+/n
0 

increased from 

5.2 x 10-6 at 15 

The values of the 

-6 and 167.5 x 10 . 

ma to 131 x 10-6 at 75 ma for the 4.8% N
2 

mixture. 

calculated ion fraction were between 5.2 x 10-6 

The low value of 5.2 x 10-6 occurred at a current 

of 15 ma and a pressure of 6.3 mm Hg with an initial composition of 
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4.8% N
2 

• The upper value for n+/n
0 

of 167.5 occurred a t 50 ma a nd 

6.3 mm Hg with the 2.2% N2 mixture. A sununary of the r esults for cata­

phoresis in He-N
2 

mixtures is presented in Table E~4. 

The ionization mechanisms in a He-N2 mixture during cataphore-

sis will now be considered. Electron impact of 

ionization potential of 15.57 volts may produce 

e N+ + 2e-
2 

N2 which 

N+ [ll]. 
2 

has an 

(27) 

+ The dissociation of N
2 

to N + N has a very high ionization potential 

of 24.5 volts [11]. The c ross s ection for dissociative ionization is 

very small and, therefore, this reaction was improbable [36,59]. 

Dissociation of N
2 

by electron impact requires only 9 .6 volts [53] . 

N + N + e 

The ionization of atomic nitrogen which requires only 14.5 volts may 

then occur. 

N + e 

Helium has a very high ionization potential of 24 . 6 volts [56]. 

Ionization via excited atoms has been reported [53] . The appearance 

+ potential of He
2 

is 23 .2 volts and is formed from 

* He + e + He + e 

followed by 

* + . He + He + He
2 

+ Charge exchange of the He2 with N2 may have taken place because the 
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ionization potential of N2 is 15.57 volts (11]. 

N+ + .2He 
2 

Loeb's [53] spectroscopic observations indicated that in a 

0.5% N
2 

+He mixture the color was determined by the N
2 

• Most prob­

ably the N2 in the He-N2 mixtures investigated herein was ionized via 

electron impact and charge exchange. 

He-o2• Cataphoresis in He-0
2 

mixtures was investigated as a 

function of discharge current, total gas pressure, and initial compo-

sition. Two sets of experiments were conducted. The first set of 

data was taken at a constant pressure to determine the influence of 

current and initial composition on the cataphoretic purification . The 

second set of experiments was taken at a constant current and initial 

composition to study the effect of pressure on cataphoresis . 

In the first set of data the pressure was held constant at 

6.0 mm Hg. The initial compositions were 2.2% o
2

, 4.1% o
2

, and 5.0% 

o
2 

. The current range s tudied was 15 ma to 85 ma . 

The second set of data was taken for an initial composition of 

5.0% o
2 

at a current of 50 ma. The pressure range examined was 2.1 mm 

Hg to 7.5 mm Hg. 

The effect of current, pressure, and initial composition on the 

steady-state compositi.on at the anode 9(1,00) is shown in Figs. 15, 

20, and 23. The purification of o2 from He improved by increasing the 

current or increasing the pressure or decreasing the initial percent-

age of o2 • The separation of o2 from He increased significantly by 
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increasing the current; refer to Fig. 15. For example, the value of 

9(1,oo) decreased from 0.764 at 20 ma to 0.020 at 85 ma with a 5.0% o
2 

mixture at a pressure of 6.0 mm Hg. The lowest value of 9(1,00 ) that 

could be measured with the present .instrumentation was 0.020, however, 

lower values of A(l, 00) probably occurred. The separation of o2 from 

He was improved by increasing the pressure up to 4.0 mm Hg; however, 

further increases in pressure produced no subsequent improvement in the 

purification; refer to Fig. 20. A cross-plot of the results in Fig. 15 

indicates that 9(1,00) increased with increasing initial percentage of 

o
2

; see Fig. 23. For example, the value of 9(1,00) increased by a 

factor of about 8 at 15 ma when the initial composition increased from 

1.2% o2 to 4.8% o2 • 

The influence of current, pressure and initial percentage of o
2 

on the calculated electrostatic Peclet number a is shown in Figs. 37 

and 40. The va lue of a was found to increase with increasing current; 

refer to Fig. 37. The current dependence of a was in agreement with 

the model [22] because increasing the current should have increased a 

by increasing the ion-production rate. The value of a increased with 

pressure up to 4.0 mm Hg and then became relatively pressure indepen­

dent; see Fig. 40. The electrostatic Peclet number decreased with 

increasing initial percentage of o2 • For example, at 35 ma the value 

of a was reduced from 2.69 to 0.84 by increasing the initial composi­

tion of o
2 

from 2.2% o
2 

to 5.0% o
2 

at a pressure of 6 . 0 mm Hg. The 

values for a were between 0.38 and 4.32. The low value of 0.38 cor­

responded to the 5.0% o2 mixtu~e at a current of 20 ma and a pressure 

of 6.0 mm Hg. The high value of 4.32 corresponded to a pressure of 
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6.0 mm Hg with the 5.0% o
2

, 4.1% o
2

, and 2.2% o
2 

mixtures at 85 ma, 

72.5 ma, and 42.5 ma, respectively. 

The effect of current, pressure, and initial composition on the 

clectrlc f'leld Jo: Js L!Justrated Jn J?h:s. 28 nnd 32. The t..~l(•ctrlc 

field increased in a linear manner with increasing pressure and decreas­

ing current. The values of E ranged. from a low value of 13 . 6 volts/ cm 

for a current -of 50 ma and a pressure of 2.1 mm Hg with a 5 . 0% o
2 

mix­

ture, to a high value of 30.4 volts/cm for a current of 20 ma and a 

pressure of 6.0 mm Hg with a 4.1% o2 mixture. The values of E gener­

ally increased with increasing percentage of o2 . This is in agreement 

with Headrick and Duffendack [83]. Several of the E versus i curves 

cross at low currents for the He-0
2

, He-N2 , and He-Ne mixtures; refer 

to Figs . 26 to 28. This is not unexpected because, for example, He-Ne 

mixtures undergo a maximum in the electric field versus composition 

curve at about 5% Ne [32]. In addition, these values of the electric 

field where the curves cross are within the error limits described in 

Appendix D. 

The influence of current, pressure and initial composition on 

the calculated ion fraction n+/n
0 

is shown in Figs . 46 and 49 . The 

ion fraction increased in almost a linear manner with increasing cur­

rent at low current levels. For higher currents, the value of n+/n
0 

increased more rapidly; refer to Fig. 46. The ion fract i on decreased 

with increasing pressure . The effect of pressure on n+/n
0 

was much 

less than the current dependence. The value of n+/n
0 

increased when 

the initial percentage of o2 was decreased. For example, at a pressure 

of 6.0 nun Hg and a current of 25 ma the ion fraction i ncreased from 
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to 1<)6 x 10-G I ti 1 ltJ 1 t 1· !) w lCll 1e . n : " .;1. ]H.!r <:t•ll . Hg!..' () 2 WllH 

dropped from 5.0% o
2 

to 2.2% o
2 The range for n+/n

0 
was ll.4x10-6 

n+/n
0 

of 11.4 x 10-6 occurred to 178 x 10-6 . The low value for 

at a current of 20 ma and a pressure of 6.0 mm Hg with an initial com-

position of 5. 0% o2 . The highest value of n+/n
0 

equal to 178 x 10-6 

occurred at 42.S ma and 6.0 mm Hg with the 2.2% o
2 

mixture. A summary 

of these results for cataphoresis in He-02 mixtures is shown in Table 

E-5. 

The ionization mechanism for cataphoresis in He-0
2 

mixtures may 

he direc t c]cctron impact of o
2 

[11). 

(12.5 eV) 

At higher energies than is probably present during cataphoresis, disso­

ciative ionization to O+ + 0 at 20 eV has been observed (67). The 

dissociation energy of o2 is 5 volts, and the ionization potential of 

0 is 13.S volts (36]. The attachment of electrons to o
2 

has been sum­

marized by McDaniel [62]. The chemistry of electrical discharges in o
2 

has been investigated by Rundle (70]. 

He-CO. Cataphoresis in He-CO mixtures was investigated as a 

function of discharge current, total gas pressure, and initial compo-

sition. Two sets of experiments were performed. The first set of 

experimental data was taken at a constant pressure to examine the effect 

of current on cataphoresis. The second set of data was taken at a con-

stant current to examine the effect of pressure on cataphoresis. Both 

sets of data were taken for several initial compositions. 
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In the first set of data the pressure was held constant at 6.3 mm 

Hg. The initial compositions were 1.2% CO, 2.3% CO, and li.9% CO. The 

current range examined was 15 ma to 75 ma. 

The second set of data was taken for an initial composition of 

1.2% CO, 2.3% CO, and 4.9% CO at a current level of 50 ma. The 

pressure range investigated was about 2 mm Hg to 9 mm Hg. 

The effect of current, pressure, and initial composition on the 

steady-state composition at the anode 8(1,00) is shown in Figs. 16, 

21, and 24. The purification of CO from He was found to be enhanced 

with increasing current or with increasing pressure, or with decreasing 

the initial percentage of CO. The steady-state separation factor 

9(1,00) appeared to decrease linearly with increasing pressure. At low 

initial percentage of CO the pressure effect . became unimportant; refer 

to Fig. 21. 

The effect of current, pressure, and the initial percentage of 

CO on the calculated electrostatic Peclet number a is shown in Figs. 

38, 41 and 42. The value of a was found to increase linearly with 

increasing current and increasing pressure. The current dependence of 

a agreed with the theory [22). The pressure dependence of a was 

believed to be a function of the ionization mechanism. The electro­

static Peclet number decreased when the initial percentage of CO was 

increased. The values for a ranged from 0.40 to 2.21. The lowest 

value for a of 0.40 corresponded to the 4.9% CO mixture at 15 ma and 

6.3 nun Hg, whereas the highest value for a of 2.21 corresponded to 

the 1.2% CO mixture at 75 ma and 6 . 3 mm Hg. 
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The effect of pressure, current and composit:ton on the el ectric 

field E is illustrated in Figs. 29 and 33. The e lectric fie ld was 

found to be a linear function of pressure and a linear function of 

current. The electric field increased with increasing pressure and 

decreased with increasing current. The values of E were between 

11.1 volts/cm and 35.8 volts/cm. The lowest value for E of 

11. l volt.sf cm occurred with the 1. 2% CO mixture at a current of 50 ma 

and n pressure of -2.5 mm Hg. The h:l.ghest value for E of 35 . 8 volts/ 

cm occurred with the 4.9% CO mixture at 50 ma and 8.8 mm Hg. 

The influence of current, pressure and initial composition on 

the ion fraction n+/n
0 

is shown in Figs. 47, 49 to 51. The ion 

fraction was a linearly increasing function of current; refer to Fig. 

47. This is probably the main reason why the purification was 

improved by increasing the current. The ion fraction decreased with 

increasing pressure for the 1.2% CO mixture. However, with the 2.3% 

CO mixture and especially with the 4.9% CO mixture, the value of 

n+/n
0 

was re.latively independent of the pressure ; r ef e r to Fig . 50. 

'l'lds l'Xp.lnins why increasing the pre ssure was less effl•c t:ive f or 

enhancing the purif ication of t he 1 .2% CO mixture than the 4.9% CO 

mixture. The ion fraction increased with de creasing percentage of 

CO. This is the reason for the increasing effectiveness of s eparati on 

with decreasing initial percentage of CO; refer to Fig. 21. The 

I 5.9 x 10-6 . -6 values for n+ n
0 

were in the range of to 70 . 2 x 10 . 

The lowest value for n+/n
0 

of 5.9 x 10-6 occurred with a 4.9% CO 

mixture at a pressure of 6.3 mm Hg and a current of 15 ma. The highest 

value for n+/ n
0 

of 70.2 x 10-6 occurred with the 1.2% CO mix ture 
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at 2.5 nun Hg and SO ma. A summary of the results for cataphoresis in 

lie-CO mixtures is shown in Table E-6. 

An excellent discussion of the ionization of CO by electron 

impact is given by Reed [56] and by Gaydon [63]. The ionization mech-

anism may be the ionization of CO by electron impact to form a positive 

+ molecular ion CO [11,56). 

(!li.l eV) 

Hagstrom [ 64 ,65) has reported that dissociative ionization occurs at 

high energies around 20.9 eV to 23.2 eV, but these are not important 

in cataphoresis. Dissociative electron capture has been observed by 

Cottrell [66]. 

He-co2• The He-co
2 

mixture behaved differently than the other 

mixtures investigated. In the five mixtures He-Ar, He-Ne, He-N
2

, 

He-0
2

, and He-CO only cataphoresis occurred. In the He-co
2 

mixture, a 

fraction of the co
2 

dissociated into CO and o
2 

. The dissociation 

proceeded by the following reaction 

(28) 

After the initial stages where dissociation predominated, cataphoresis 

was then observed in the resulting quaternary mixture of He, co
2

, CO , 

and o
2 

. When the discharge was extinguished, the gases diffused back 

to a uniform concentration profile in the axial direction. The dif-

ference between the thermal conductivity of the initial mixture of 

He-co
2 

and the final mixture of He, co2 , CO, and o2 was used to cal­

cul.ate the fraction of co2 dissociated. 
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The fraction of co2 dissociated was determined in two steps. 

First, the change in thermal conductivity of the mixture was obtained 

by measuring the detector output; refer to Figs. 55 and 56. Second, 

this thermal conductivity was related to the fraction of co2 disso­

ciated; refer to Fig. 57. 

The experimental measurements were taken for a mixture with an 

foitla:I compo!-d.ti.011 of 4. 7% C0
2 

ancl 7.5% co
2

• The currcnL range 

l'xamlned wns 10 ma to 65 .ma and the pressure range was 2. 2 11110 Ilg to 

7.9 mm Hg for the 4.7% co
2 

mixture. The current range was 30 ma to 

60 ma and the pressure 6.0 nun Hg for the 7.5% co
2 

mixture. 

The fraction of co
2 

dissociated was directly proportional to 

the current and independent of the initial percentage of co
2

; refer to 

Fig. 58. The fraction of co2 dissociated increased from 0.11 to 0.67 

when the current was increased from 10 ma to 65 ma at 6 . 0 nun Hg. The 

dissociation of co2 was directly proportional to the pressure; refer 

to Fig. 59. The fraction of co2 dissociated increased from 0.17 to 

0. 6/1 wlwn tlw pn~ssure wns increased from 2. 2 mm Hg to 7. 9 mm Hg. The 

results for the dissociation of co
2 

are summarized in Table E-7. 

After initiation of the discharge in the He-co
2 

mixture, the 

thermal conductivity of. the mixture in the anode end-bulb initially 

decreased. This decrease in the thermal conductivity of the mixture 

was a result of the diminution of the mole fract i on of He because of 

the increase in moles formed by the dissociation reaction. Since 

helium has a larger thermal conductivity than the impurity gas, the 

thermal conductivity of the mixture in the anode end-bulb increased 



-()3-

for all the other mixtures studied because the :I.mpurity gas was driven 

toward the cathode by cataphoresis. A calculation of the thermal con-

ductivity of the mixture resulting from the dissociation of co2 to co 

and o2 indicated that the thermal conductivity decreased as the frac­

tion of co
2 

dissociated increased. The result of these calculations 

are shown in Fig. 57 for a mixture with initial composition of 5.0% 

The values of the thermal conductivities that were used in the 

0 calculat:lons are summar:lzed below for 298 K [37]. 

Thermal Conductivity 
Gas (cal/sec gm OK) 

He 3,850 

02 615 

co 600 

co
2 

386 

Because helium was the major component and because the thermal 

conductivity of helium is much higher than any of the other gases, the 

calculated and experimental values of the the rmal conductivity were a 

I I near function of eompos:lti.on in the range invost:i.ga t (! cl ; r e fer to 

Figs. 55 and 56. 

A comment is required to explain why the dissociation of co
2 

via the following reaction was not observed in this study. 

c + 02 (29) 

The reaction described in Eq. (28) was energetically favored becaus e 

it occurred at 5.5 eV [73] compared to 26.6 eV [56] for the reac tion 
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described in Eq. ( 29 ). Blackwood and McTaggert [74] uncl O'Dr:tscoll 

[75] have also observed the dissociation of co2 via the reaction 

described in Eq. (28) in a simi lar discharge during their investiga-

tions of the reaction of C with atomic gases and the study of graphite 

oxidation. The results reported herein are in agreement with the very 

recent publication by Buser and Sullivan [78) in 1970. Buser and 

Sullivan [ 78] and McTaggart [ 73] suggest the following ionization 

mechanism: 

e + co2 

* co2 

* co2 + e 

co + 0 
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V. COMPARISON OF THEORY AND EXPERIMENT 

The purpose of this chapter is to check the theoretical model 

for cataphoresis which admittedly has many assumptions because of the 

very complex physical processes occurring in the discharge and to 

develop rule-of-thumb criteria for the design of cataphoretic separa-

tors. 

The chapter is divided into two parts. First, the magnitude 

of the steady-state separation calculated from the model is compared 

to the experiment, and second, the characteristic time for cataphore-

sis calculated from the model is compared to the experiment. 

The first part of this chapter is subdivided into five sections 

which are (1) a discussion of the variables which comprise the electro-

static Peclet number a, (2) an introduction to the assumptions asso-

ciated with the prediction of a , (3) a quantitative discussion of 

these assumptions, (4) the calculation of a and 8(1,00), and 

(.5) a comparison of the model to the experimental data for 8(1,00). 

Discussion of the Variables which Comprise the Electrostatic Peclet 

Number 

The main limitation to the model for cataphoresis is the neces-

sity of having to know a priori the value of the electrostatic Peclet 

number a which is 

= 
EL n+ ~­
D n 

0 

for the case where n+/(n
0
+ n+) "' n+/n

0 
. It is necessary to know the 

value of five quantities to calculate a . These five quantities are 
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summarized in Table 1. 

Table• 1.: Defi.nit.ion of Terms in the E.lectrostaUc 
P<:.~clct Number 

.---

' No . Symbol Definition Units 

r 1 L Discharge Tube Length cm 
I 
I 

2 
2 D Binary Diffusion Coeffi- cm /sec 

cient 

I Ion ic Mobility 2 3 µ cm / volt/sec 

I I 4 I E Electric Fiel d V/cm 

5 I n +/n Ion Fraction I ---
·--· . -___ o_ ----·-----·---- ------ _ ______ ______ _! _________ ___ - · ---- - - - . 

Dis.s_t:iar_s.e Tube Length. The length of the discharge tube L 

can be easily measur ed . 

Diffusion Coefficient. The diffusion coefficient of the gas 

mixture D can be calculated from the theory in Hirschfelder, 

Curtiss, and Bird [37]. The exper imental results for D have been 

summar ized by Reid and Sherwood [46]. For the gas mixtures investi-

gated herein, the experimental values of D are reported in the 

literature [37,38,40,48] except for He- CO. The agreement between the 

ca.1 cu.lated and experimental values were within 7% for He--Ne and 

within 3% for the other mixtures [46] . Therefore, the values of D 

are readily available either from theory [37] or from reported experi-

mental data [46]. 

Ionic Mobility. The theoretical methods for calculating the 

mobilities of ions in gases have been summarized by von Engel [361, 
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McDaniel [49], Tyndall [52], and Loeb [53]. The agreement between the 

experimental results and the theory is about 20% [43,49,53]. Calculat­

ing the ionic mobility from theory is difficult f43]. The experimental 

data, whe n available, arc preferred instead of the th eoretical values. 

Experimental values of the mobilities were used in the work d e scribed 

herein. 

Electric Field. The data for the electric fi e ld E of single 

components areabundant [32,36,49,53,59,62]; however, the data for E in 

mix tures are rarely available [32]. Therefore, the values of E during 

the cataphoretic separation of gases must be measured in order to calcu­

l a te a • The value of E can be measured as discussed in Chapter III. 

Ion Fraction. The fraction of impurity ionization n+/n
0 

for 

gas mixtures is not available in the literature. Recently, however, 

Gaur and Chanin [68] measured the degree of ionization during cata­

phoresis in He-Ne mixtures. In their experiment the initial composition 

o f Ne was ~ 0.05% Ne which is a factor of 50 less than the initial 

percentage of Ne examined herein. The current investigation by 

Ravimohan and Shair [69] utilizing a microwave cavity to measure the 

e lectron density may prove helpful in estimating an upper bound for the 

ion fraction. 

SUltUnary. The two transport properties D and µ can be 

obtained from the collections of experimental data in the · literature 

or from theoretical calculations. The theoretical calculations for D 

are easier than for µ and agree more closely with the experimental 

results. 
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The major difficulty in predicting a. is manifested by the 

problems of obtaining adequate data. for E and n +/ n
0 

• The vn 1 ue of 

n+/n
0 

is more of a problem than E because it is hnrdL'r to moaHure 

n+/n
0 

. In addition, the value of n+/n
0 

varies over a wJcler r a nge 

than E . For example, the measured E reported in Chapter IV varied 

by a factor of 4.3 from a maximum value of 36.t• volts/cm to a mini.mum 

value of 8.5 volts/cm. In comparison, the calculated n+/n
0 

varied by 

a factor of 37 from a maximum value of 178 x 10-6 
to a minimum value 

of 4.8 x 10-6 . These results are summarized in Table 2. 

Before one uses the theoretical model for cataphoresis to design 

systems for separating gas mixtures, it is necessary to have experimen-

tal data on E and n+/n
0 

to calculate a. Since these measurements 

are very diff.icult and require an excessive expenditure of time and 

resources, the use of cataphoresis as a practical separation technique 

is severely limited unless a. can be estimated by developing rule-of-

Table 2: Range of Measured E and Calculated n+/n
0 

Range of E E 
0 

n 
0 

i p 

Maximum 36.4 V/c: I 4.8% N2 I 50 ma 8.8 mm Hg 

Minimum 8.5 V/c~4.7% Ar : 100 ma 3.2 mm Hg 
·- -- ··-· ---·- -- - - ------- -- ~--- ----- ------ --- --- -·---------- -------L------ -------------1 

Ratio of Maximum E to Minimum E = 36 · 4 V/cm 
8.5 V/cm 4 . 3 

-·· --"'-,-~-= .r=.==,=•-,-

Range of i 0 
n 

0 

=r=---~=i=''"~'=== ~. : .--. -- --~-~~.- _, 

i p 
n+/n ! 

· o 
·-------.--------t-------+------+-------------------

! 118 x 10-6 2.2% o2 I 42.5 ma Maximum 6.0 mm Hg 
I -6 ; 
i4.8 x 10 4.7% Ar ' 25 ma J 3 . 2 mm Hg 

·-----·----·-·---···. _i.. ___ __ ------···· ' --· - -·-· -···- - - - -·-····--·-----·-- _______ ..1 _ _ __ • ··--· - ·-· ·-· · · ··- - - -- ·- -- - ·---·---·· ----·--· • 

Minimum 

Ra tio of Maximum n+/n
0 

to minimum n+/n
0 

= 178 x lo-6 
4. 8 x lo- 6 

3 7 
·---------·---------------------------·-- ----·----- ·-- ... - ·- . 



-69-

thumb methods for predicting the current and pressure dep e ndence of E 

and n+/n
0 

• 

_I21t ro~uc t .ion to the Assumptions Associated with ~Jl_£. __ 1Z.E_~:_c1_!~:.t:l o_!! _ _E_f ___ S~ 

Is it possible to make some rule-of-thumb a ssumpt i ons about es ti­

mating a that will yield reasonable results for designing systems to 

separate gases by cataphoresis? This important question will be consid­

ered here. 

The quantities L, D, and µ present practically no problem as 

previously explained. In addition, the ratio of µ/D is pressure 

independent [53]. Therefore, µL/D is a constant for a gas mixture at 

a fixed temperature. It is assumed that both D and µ are indepen­

dent of the composition [37,53] . 

The two k e y parameters are the e lectric field E and the ion 

fraction n+/n
0 

• In the ex perimental data descri bed in Chapte r IV, 

it was observed that E was directly proportional to the pressure P 

and r e latively independe nt of the current i . The ion fraction was 

approximately directly proportional to the current exc e pt at high 

currents, and the effect of pressure on n+/n
0 

was u sually cons i der ­

ably less than the effect of current on n+/n
0 

Based on these observations, several rule- of-thumb assumptions 

are made. First, to calculate a versus i , the e l ectric fie ld is 

assume d constant and independent of i , and n+/n
0 

is assumed direct-

ly proportional to i . Second, to calculate a v e rsus P , the i on 

fraction is assumed constant and independent of P , and E i s 

assumed directly proport i onal to P • The s e a s s umpt ion s a r e summarized 
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in Table 3. 

Tahle J: Rule~of-Thtnnb Assumption::i 

1. Assumptions t o Calculate vs i 

(constant P and 

A. E independent of i 

B. n+/ n
0 

directly proportional to i 

2. Assumptions to Calculate Cl. VS p 

(cons tant i and 

A. E directly proportional to P 

B. n+/n
0 

independent of P 

Discussion of the Assumptions 

Each assumption will be compared to the experimental results 

reported in Chapt er I V. The experimental results are summarized in 

Appendix E, Tables E-2 to E-6. 

Assumption LA: The experimental values of E decreased 

slightly with increas i ng current rather than being constant as assumed 

in l.A; refer to Figs. 25 to 29. The best, typical, and worst cases 

from these figures are summarized in Table 4. 

Table 4: Check of Assumption l.A 
----·-- -----r.-;:--

l ~aximun 
I Value 

Agre_ementl E (V/c 

l 

of 
m) 

worst i 12.6 

i 
typical I 27.3 

! 

best i 11. 9 

Minimum 
Value of 
E (V/ cm) 

I 

i I 8 . 5 I 
i 

I 21. 6 
i 
I 
: 11.4 ; 

··---
Ratio of 0 

Maximum to n p 0 

Minimum (mole%) (mm Hg) 
I 

1.48 4.7% Ar I 3.2 

I I 

1.26 2.2% N
2 I 6.3 

I 
' I I 

1.04 i 2 .4% Ne 6.0 I 

i 
(ma) 

25-100 

7 . 5-50 

25-75 
___ [____ _ ________ l _____ L _________ .: I I 
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The basis of comparison was the ratio of the maximum value of E (at 

the lowest current) to the minimum value of E (at the highest current) 

for mixture at 
0 and p a gas constant n 
0 

The worst case was the 4.7% Ar mixture at 3.2 nun Hg whe re the 

value of E decreased from 12.6 volts/cm at 25 ma to 8 . 5 volts/cm at 

100 ma. This 32.5% decrease in E was for a 400% increase in current . 

In conclusion, the maximum decrease in E was 32.5% for the range· of 

currents investigated at a constant n° and P • 
0 

Assumption l.B: The assumption that n+/n
0 

is directly propor­

tional to current was a good assumption at low currents , but a t high 

currents there was usually a nonlinear increase in current. When a 

straight line was drawn through the values of n+/n
0 

corresponding to 

the two lowest measured currents, then the deviation f r om linear 

behavior for the highest current was about a factor of 1.5 for He-Ar 

and He-N
2 

and about a factor of 2 for He-02 • The values of n+/n
0 

were linear with current for He-CO in the entire range of 15 ma to 

75 ma. 

The values of n+/n
0 

as a function of i were obta ined by 

drawing a straight line through the two values of n+/n
0 

which cor­

responded to the two lowest measured currents. The subsequent va l ues 

of n+/n
0 

calculated from this line are referred to as the predicted 

values of n+/n
0 

from assumption l.B. The values of n+/n
0 

calcu­

lated from the experimental data as previously described in Chapter 

IV are referred to as the calculated values. These calculated values 

of n+/n
0 

are shown in Figs. 43 to 47. A comparison of t h e predi cted 
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and calculated values of n+/n
0 

are sununarized in Table 5 for the 

best, typical, and worst cases. 

Table 5: Check of Assumption l.B 

Calculated I Predicted I Ratio of i 
n 6 I n I Calculated o ' 

·1 + x 10 l __± x 106 to no ! p ; i 

--~~-r_e_e_~_e __ n_t_l _n_o ___ ----+'-n-o------+-P-r_e_d_i_c_t_e_d~_<_m_o_1_e_%) I (mm H~ (ma) 

i 170 I 69.9 2.43 Id% 02 i 6.0 1::1 worst 

typical 168 i 126 1. 33 2. 2% N2 : 6. 3 50 1 

I I 
best 17.4 17.2 1.01 4.9% co 6.3 75 

In conclusion, the assumption that n+/n
0 

is directly propor­

tional to i varied from excellent for the He-CO mixtures to poor for 

the He-0
2 

mixtures; refer to Table 5. The effect of this assumption 

on the prediction of Ct and e(l,oo) will be discussed later. 

Assumption 2.A: For a given gas mixture, the measured electric 

field was a linear function of pressure for a constant initial composi-

tion and a constant current; refer to Figs. 30 to 33. The lines in 

these figures are described by the following equation. 

E = mP + b 

The values of m and b were calculated using the method of least-

squares for constant no 
0 

and i [42,76] . The results for m and b 

are summarized in Table E-13. For a discharge tube of 8 mm diameter, 

these are good design equations for calculating E • The E versus 

P data for He- 02 had the most scatter and the data for He-Ni had 
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the least scatter; refer to Fig. 32. The results shown in Fig. 32 

are sununarized in Table 6. The predicted values of E were obtained 

Table 6: Check of Assumption 2.A 

--~-·--------·----- - - - --·- - - ·- ----- ---. 
i = 50 ma 

Measured E Predicted E p 

(V/cm) (V/cm) (mm Hg) 

13.6 15.9 2.1 

19.8 17.4 2.7 

20.3 20.6 4.0 

26.8 25.5 6.0 

28.0 29.l 7.5 

i = 50 ma ' n~ = 4.8% N2 

Measured E Predicted E p 

(V/cm) (V/cm) (mm Hg) 
- · 

15.~ 15.8 2 . 2 

17.7 17.4 2 . 7 

21. 7 22.4 4.3 

29.2 28.7 6.3 

36.4 36.5 8.8 

by using the above design equation with the appropriate m and b . 

In conclusion, the assumption that E is directly proportional 

to P is within 17% for the range investigated . 
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Assumption 2.B: The ion fraction incre ased with increasing 

pressure for He-Ar and He-Ne mi.xtures. The 1.on fraction general] y 

decreased with P for the He-N
2

, He-02 , and He-CO mixtures ; refer to 

Figs. 48 to 50. The salient features of these figures are summarized 

in Table 7. The basis of comparison was the ratio of the maximum 

Table 7: Check of Assumption 2.B 

I 

\ 
Maximum Minimum Ratio of I 

Value of Value of Maximum 
n+ 

x 106 n+ 
106 

and 0 I 
Minimum n p 

I i Agreement - -X 0 
n n 

0 0 Values (mole %) (mm Hg) (ma) 
I 

worst 70.2 35.9 1.96 1.2% co 2.5-8.7 ! 50 i 

typical 77.2 50 .0 1.54 4.8% N2 2.2-8.8 I 50 
; 

best 12.9 11.8 1.09 4.9% co ; 2.8-8.8 
' 

50 
I 
I : .. _ ! _ __ ___, 

value of n+/n
0 

to the minimum value of n+/n
0 

for a given gas mix-

ture at a constant 
0 

n 
0 

and i . The worst case was the 1.2% CO 

mixture at 50 ma where the value of n+/n
0 

decreased by a factor of 

1.96 as P increased by a factor of about 3.5. The best case was the 4 . 9% 

CO mixture at 50 ma where the value of n+/n
0 

decreased by only a fac­

tor of 1.09 as P increased by a factor of about 3.1 . 

In conclusion, the assumption that n+/n
0 

is independent of P 

is excellent in some cases, for example, the 4.9% CO mixture at 50 ma, 

and fair in other cases, for example, the 1.2% CO mix ture at 50 ma. The 

effect of this assumption on the prediction of a and S(l,oo) will be 

discussed later. 
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A qualitative sunuuary of the assumptlons for each gas ml.xture 

is presented in Table 8. 

! 

Table 8: Qua.lltative Smmnary of J\ssumptJ<.rns for Each 
Mixture 

I ! 
i 

Assumption Assuinption I Assumption Assumption 
l.A l.B I 2.A 2.B 

E n+/n0 E 
n+/n

0 Independent Directly Directly 
Gas of Proportional I Proportional Independent 

\ 

Mixture i to i i to P of p 

: ! 
! ! i 

He-Ar Fair Fair i Excellent I Fair (improves I 
I i with i) 
i 

I ! 

He-Ne Excellent Good Excellent i Poor 

I i 
He-N

2 
Good Fair Excellent 

I 
Fair 

He-0 Good Poor Very Good I Fair 2 

He-CO Good Excellent Excellent ,' Exe el lent (low 
~ 

no) 
j 

!, _~oor (high 
0 

------~-·--- -----. -·- -·-1·--·-··--- . -· -·· ····-·· 

Calculation of a. and 9(1,~) 

The electrostatic Peclet number was estimated by using the 

rule-of-thumb assumptions. The results of these calculations are in 

n 

Appendix E, Tables E-8 to E-12 . The details of these calculations for 

t h e e lectric field and the ion fraction are now d escribe d . 

a. versus i. For each gas mixture at a constant 
{) 

n 
0 

and 

P, the values of n+/n
0 

versus i were estimated by using the values 

of n+/n
0 

for the two lowest measured currents and assuming that 

n+/n
0 

was directly proportional to i The measured value of 

--
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E at the second lowest current was used for the electric field, and 

this value of E was assumed constant and independent of i . 

a versus p For each gas mixture at a constant . 0 
n 

0 
and 

i, the values of E as a function of P were pre dicted by the equa-

tion describing the best straight line through the expe rimental data. 

The line was obtained by the method of least squares. The value for 

n /n was assumed constant and independent of P . The value for + 0 

n+/n
0 

was taken as the calculated value closest to a pressure of 

6.0 mm Hg. For He-Ar, He- Ne, He-02 , He-N2 , and He-CO, these val ues of 

P were 5.5, 6.0, 6.0, 6.3, and 6.3 nnn Hg, respectively . 

G(l,00) versus i and P . The values of G(l,00) versus i 

and G(l,00) versus P were calculated from Eqs. (22) and (23) 

G(l,00) = Ke -a (22) 

K= 1 + 0 + £ (23) 

o + £ e-a 

by using the estimated values of a versus i and a versus P 

The results of these calculations are summarized in Tables E-8 to 

E-12. These calculated values will now be compared to the exper imen-

tal measurements for G(l,00) • 

Comparison of the Model to the Experimental Data for G(l,00) 

The value of G(l,00) calculated from the model by usi ng the 

estimated values of a are compared to the experimental measurements 

of G(l,00) as a function of i and P • 
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9(1,00) versus i . The agreement between the calculated values and 

the measured results for 9(1,00) as a function of i are shown in 

Figs. 12 to 16. The agreement in general is good considering that 

G(l ,oo) is proportional to 
-<l 

e The values of a were estimated 

using assumptions l.A and l.B. The salient features of these figures 

are now discussed. 

He-Ar. The agreement between the model and the data for 

G(l,oo) versus i was good except at high currents approaching 100 ma. 

· The values of 9(1,00) calculated from the model were between a factor of 

1. 38 to 2. 07. times higher than the measured values at 100 ma; refer 

to Table 9 and Fig. 12. 

Table 9: Comparison of Calculated and Measured Values of 
9(1,00) for He-Ar. Calculated Values Obtained 
with Assumptions l.A and l.B 

----·-· -·--
i 100 ma 

0 4.7% Ar = • n = 
0 

' Ratio of 
Cal cu- Calculated 
lated Measured to p 

9(1,00) 9(1,00) Measured (nun Hg) 

0.338 0.245 1.38 3.2 

0.207 0.138 1.50 5.5 

0.062 0.030 2.07 8.9 

L 

The main reason for this result was that the values of n+/n
0 

were estimated a factor of about 1. 5 times too low at high ·currents 

because of the nonlinear increase in n+/n
0 

• 
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He-Ne. The agreement between the model and the experiment for 

g(J,no) as a function of i was very good except at hlgh currcnt1:1 

approaching 100 ma for the 4. 8% Ne mixture. When the current wai:; 

increased, the agreement became worse as shown in Table 10 and Fig. 13. 

I 

Table 10: Comparison of Calculated and Measured Values of 
9(1,00) for He-Ne. Calculated Values Obtained 
with Assumptions l.A and l.B 

P = 6.0 mm Hg 

Cal cu-
lated Measured 
9(1,00) 9(1,00 ) 

0.915 0.900 

0.631 I 0.631 

0.420 I 0.458 I 
! 

0.270 I 0.403 
' 
; 

n° = 4.8% Ne 
0 

Ratio of 
Calculated 

to 
Measured 

1.02 

1.00 

0.92 

0.67 

i 
(ma) 

25 

50 

75 

100 
----- --·-··- -

The value of 9(1,00) calculated from the model at 100 ma was 33% 

lower than the measured value. The calculated value of 9(1,oo) was 

too low at 100 ma because the value of n+/n
0 

was estimated a factor 

of 1. 36 too high. The experimental value of G (1,00) appeared to be 

leveling off at high currents for the 4.8% Ne mixture. 

He-N2· The agreement between the model and the experiment for 

9(1,00) as a function of i was good. The calculated value of 

9(1,oo) was generally higher than the measured value. For the 4.8% N2 

mixture the ratio between the calculated and measured values of 9(1,oo) 
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incr eased from 1. 00 to 3. 86 as the current increa s ed from .1.5 ma to 75 

ma; refer to Table 11 and J?i g . 14. The. reason for this departure of t he 

Table 11 : Comparison of Calculated and Measured Values of 0(1,00) 

f or He~N2 with ng of 4. 8% N2 Calculated Values 
Ob t a ined with Assumptions l.A and l.B 

··---·-
p = 6.3 mm Hg , no 

0 
= 4.8% N2 

Ratio of 
Cal cu- Calculated 
lated Measured t o i 
e ( l, oo) fl(l , oo) Meaaurl~d (mn) 
·----·------ ....-·- -·-· ·------·--·----- --- - -- -··--- ----· 

0 . 8() ~) 0.861. l . ()() 15 

0 . 600 

I 
0.600 1.00 25 

0 . 236 0. 173 1.36 50 
I . I 0 . 021 3 . 86 75 10 . 081 
'···---- ·· ··· ' 

calculat ed and meas ur ed values a t high current was that the values of 

n+ / n
0 

were est imated t oo l ow at currents greater than 25 ma . For ex­

ample, at 100 ma the estimated value of n+/n
0 

was approximately 50% low. 

The calcu lated values of 9(1,00 ) were always higher than (or 

equal to) the measured values except for the 2.2% N2 mix ture at 6.3 mm 

Ilg and 25 m~1 ; r~·fer to Table 12. The ratio of the calcula t ed to the 

11 1< •aHt1r('d va I 11c wai; 0. 88. ThJ.s effect occurred he cauae the rat lo of t he 

calculated to pr edicted value of n+/ n
0 

was 1.05 as compared t o t he 

ratio of the measured to estimated value of E which was 0.89 . The 

pr oduct of these two r atios was less than 1 . 0, and the net result was an 

increase in a which produced a resulting decrease in the calculated 

value of 9(1 ,00
) . This is an example of one of the only cases where 

Assumption l.B introduced a larger error than Assumption l.A. 

He-02 . The agreement between the model and the experiment was 
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Table 12: Comparison of Calculated and Measured Values of 9(1,oo) 
for He~2 with n~ of 2,2% N2. Calculated Values 
Obtained with Assumptions l.A and l.B 

-· ·· ·--·· · ···- ·------------·----------------·----~ 

P = 6.3 mm Hg , 0 
= 2.2% N2 n 

0 

Ratio of 
Cal cu- Calculated 
lated Measured to i 
9(1,oo) 9(1,oo) Measured (ma) 

0.737 0. 728 1.01 7.S 

0.44S 0.44S 1.00 lS 

0.213 0.241 0.88 2S 

0.029 0.022 1.32 so 
--

good at low currents, but the agreement departed significantly as the 

current increased; see Table 13 and Fig. 13. Analogous to the discussion 

Table 13: Comparison of Calculated and Measured Values of 9(1, 00) 

for He-Oz. Calculated Values Obtained with Assumptions 
1.A and 1.B 

Cal cu-· 
lated 
9(1,oo) 

0 . 782 

O.S36 

0.3S6 

0.171 

0.126 I 
~-

P = 6.0 mm Hg 

Measured 
9(1,00 ) 

0.764 

0.536 

0.344 

0.080 

0.020 

Ratio of 
Calcul ated 

to 
Measured 

1.02 

1.00 

1.03 

2 . 14 

6.30 

i 
(ma) 

20 

3S 

so 
75 

8S 

for He-Ar and He-N2 , the departure of the measured and the calculated 

value of 9(1,oo) was caused by the nonlinear increase of n+/n
0 

at 

high currents. At 8S ma, the estimated value of 

by about a factor of 2 for the S.0% o2 mixture at 6 . 0 mm Hg. 
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He-CO. The value of 8(1,00) calculated from the model was 

generally lower than the experimental data for He-CO. A summary of 

the results for a 4.9% CO mixture is shown in Table 14 and Fig . 16. 

i 
! 

~ 
\ 
j 

i 
t 

! 
! 

Table 14: Comparison of Calculated and Measured Values 
of 8(1,00) for He-CO. Calculated Values 
Obtained with Assumptions l.A and l.B 

- - ----·-
p 6 . 3 mm Hg 0 = ' n = 4.9% co 

0 

I ' 
Ratio of 

I 

I 
I 

Cal cu- Calculated I 
lated I Measured to I i 
0(1,oo) 8(1,oo) Measured (ma) 

i 

I 
0.765 0.755 1.01 15 

0.699 0.698 1.00 25 
i 

0.548 0.575 0.95 I 50 
I 

0.420 0.482 0.87 I 
I 

75 

--- -~·----· ·- --··-

The worst agreement for the He-CO mixtures occurred for the 

1.2% CO mixture at 75 ma and 6.3 mm Hg . The ratio of the calculated 

to measured value of 8(1, 00) was 0.682. The agreement between the 

calculated and measured results for 8(1,00 ) were generally good 

because ass umption 1.B was excellent, that is , the ion fraction was 

directly proportional to i . The calculated values of 8(1,oo) were 

generally lower than the experimental measurements because E 

decreased by about a factor of 1.2 with increasing current rather than 

being constant as assumed in Assumption l.A. 
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B(l 2oo) versus P . The agreement between the calcul.ate<l val.ues and 

the measured results for 9(1,00) as a function of P are shown in 

Figs. 17 to 21. The agreement in general is good cons ickr:l.ng that 

9(1,oo) is proportional to -a 
e The values of a were estimated 

utilizing Assumptions 2.A and 2.B. The salient characteristics of 

these results are now discussed. 

He-Ar. The values of 9(1,00 ) versus P calculated from the 

model were lower than the experimental results for pressures less than 

about 6 nnn Hg and higher than the experimental results for pressures 

greater than 6 mm Hg. The agreement between the calculated and meas-

ured values of B(l, 00) . are shown in Table 15 and Fig. 17. The ratio 

I 

I 

I 
I 

Table 15: Comparison of Calculated and Measured Values 
of 9(1,00) for He-Ar at 100 ma. Calculated 
Values Obtained with Assumptions 2.A and 2.B 

··-... -· ------, i 100 ma 
0 

4.7% Ar = , n = 
0 

Ratio of 
! 
I 

Cal cu- Calculated I lated Measured to i 
9(1,oo) 9(1,oo) Measured (ma) 

0.213 0.245 0.87 3.2 

0.138 0.138 1.00 5.5 

0.030 2.33 
I 

8.9 0.070 
I I 

I . .. . .. ........ .. ____ 1-- ··--·--· 

of the calculated to measured values of 9(1,oo) varied from 0.87 at 

3.2 nun Hg to 2.33 at 8.9 mm Hg. This r esult occurred because n+/n
0 

increased with P by a factor of 1.4 be tween 3.2 mm Hg and 8.9 mm Hg 
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rather than being constant as assumed in Assumption 2.B. 

The data for He-Ar were take n at a constant pressure as a 

function o.f currm1t, and at a constant current as a function of prt?H-

sure . This enabled a compar ison between the first set of assumptions 

(l./\ and LB) and the second set of assumptions (2 .A and 2.B). The 

results in Tables 9 and 15 a re for the same experimental point s 

using the two different sets of assumptions. This comparison is 

s ununari zed in Tabl e 16 . The agreemen t is better (except at 8 . 9 mm Hg) 

I 

Tabl e 16: Comparison of Calculated and Measured Values 
of 9(1,00 ) Using Both Sets of Assumptions for 
He- Ar at 100 ma 

-- ···· ---··--- ··· ·-------------------------------, 
i 100 ma 0 

4 .7% Ar = , n = 
0 

Ratio of Calcu- Ratio of Calcu-
lated to Measured lated to Measured 
8(1,00 ) Using 8(1,00 ) Using 
Assumptions l.A Assumptions 2 . A 
and l.B (from an d 2.B (from p 

Table 9) Table 15) (mm Hg) 
-

' 

l. 38 0.87 3.2 
I 

1.50 1.00 5.5 

2.07 2.33 I 8.9 

L ______ --·--- I 
---'--

us ing Assumptions 2.A and 2 . B. Therefore, the use of the s econd set 

of assumptions (2.A and 2.B) are r e commended for He-Ar at high cur-

rents around 100 ma . 

The same comparison is made in Tabl e 17 for He-Ar at a low 

current of 25 ma . Again as bef ore , the second set of assumptions 
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Table 17: Comparison of Calculated an<l Measured Values 
of 9(1,00) for He-Ar at 25 ma. Calculated 
Values Obtained with Assumptions l.A and l.B, 
and Assumptions 2.A and 2.B 

-· · ······ - ~·-·· -··-- - - ---· 
i i 25 ma 0 

4 . 7% Ar = ' n = 
0 

Calculated 9(1,00 ) iJsing Assumptions LA and LB 

Ratio of 
Cal cu- Calculated 
lated Measured to p 

9(1,00) 9(1,00) Measured (mm Hg) 

0.931 0.915 1.017 3.2 

0.915 0.894 L023 5.5 

0.829 0.790 L049 8.9 

-=~-

Calculated 9(1,oo) Using Assumptions 2 .A and 2.B 
t- - · ·-·-· -- .. . · - -

0.915 0.915 i 1.000 3.2 

0.896 0.894 1.002 5.5 

0.867 0.790 L097 8.9 
' L-.-- -- - ·····--- ··-·---- --·····--· 

(2.A and 2.B) are recommended for He-Ar at 25 ma except at high pres-

sures around 8.9 nun Hg. 

In conclusion, the second set of assumptions gave be tter 

agreement between the calculated and measured values of 9(1,oo) 

except at high pressures around 8.9 mm Hg where the first set of 

assumptions gave closer agreement. 

He-Ne. The values of 9(1,00) versus P that were calculated 

from the model are lower than the experimental results for 9(1,oo) 
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at pressures less than about 6. 0 mm Hg and higher at prL~ssures greater 

than 6 mm Hg. The agreement between the calculated and measured vallwr; 

of 9(.l,00) are shown in Tahle 18 and F:l.g. 18 . The nll -f_o of l:li<· 

! 
i 

Table 18: Comparison of Calculated and Measured Values 
of 9(1,00) for He-Ne. Calculated Values 
Obtained with Assumptions 2.A and 2.B 

i 50 ma 
0 

2.4% Ne = , n = 
0 

Ratio of 
Cal cu- Calculated 
lated Measured to p 

9(1,00) 9(1,00) Measured (mm Hg) 

0.476 0.635 0.75 3.5 

0.468 0.483 0.97 6. 0 

0.460 0.430 1.07 9.1 

calculated to measured values of 8(1,00) varied from 0.75 at 3.5 mm 

Hg to 1.07 at 9.1 mm Hg. This result occurred because n+/n
0 

increased with pressure by a factor of 1.7 from 3.5 mm Hg to 9.1 mm 

Hg. 

He-N2 . The values of 9(1,00) versus P calculated from the 

model were higher than the experimental values at pressures less than 

about 6 nun Hg and lower at pressures greater than 6 mm Hg. The agree-

ment between the model and the measurements are shown in Table 19 and 

Fig. 19. The ratio of the calculated to measured values of 9(1,oo) 

varied from a high of 1.42 to a low of 0.64 in the pre ssure range 
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Table 19: Comparison of Calculated and Measured Values 
of 9(1,00 ) for He-N2 . Calculated Values 
Obtained with Assumptions 2.A and 2.B 

-···--- -- --------------------------
i = 50 ma 

Ratio of 
Cal cu- Calculated 
lated Measured to p 

9(1,00) 9(1,00 ) Measured (mm Hg) 

0.412 0.379 1.09 2.2 

0.372 0.275 1.35 2.7 

0.270 0.190 1.42 4.3 

0.177 0.173 1.02 6.3 
I 
I 0.103 
l 

0.160 0.64 8.8 
! 
; 

w - ---·--·- -
J 

2.2 nun Hg to 8.8 mm Hg. The worst agreement occurred at a pressure 

of l1. 3 mm Hg because the value of n+/n
0 

was es timated about 20% too 

low. The ratio of calculated to measured values of 9(1,oo) went 

through a maximum near 4.3 mm Hg because the ion fraction went through 

a maximum there; see Table 19 and Fig. 49 . 

He-02 • The results for He-02 were similar to those for 

He-N
2

• The agreement between the model and the data are shown in 

Fig. 20. The salient feature of this figure is that the calculated 

values of 9(1,00 ) are higher than the observed values for pressures 

less than about 6.0 mm Hg. The experimental data for 9(1,00) were 

higher than the calculated values at P greater than 6.0 mm Hg . This 

result occurred because the value of n+/n
0 

decreased with increasing 

pressure rather than being constant as assumed in Assumption 2.B. The 
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ratio of the calculated to the measured value of 9(1,00 ) varied from 

1 . 06 to 1.29 for the pressure range of 2.1 mm Hg to 7 . 5 nun Hg. 

He-CO. The agreement between 9(1,oo) calculated from the mode l 

and measured in the experiment are shown :l.n Fig. 21. · The important 

features are sununarized in Table 20. The agreement improved markedly 

' 

Table 20: Comparison of Calculated and Measured Values 
of 9(1,oo) for He-CO. Calculated Values 
Obtained with Assumptions 2.A and 2.B 

i 50 ma 0 
4.9% co = , n = 

0 

Ratio of 
Cal cu- Calculated 
lated Measured to p 

9(1,oo) 9(1,oo) Measured (mm Hg) 

o. 715 0. 711 1.006 2.8 

0.652 0.654 0 .997 1 •• 4 

0.579 0.575 1.007 6.3 

0.492 0.472 1.042 8.8 
.. . .. .. = 

i = 50 ma , no = 1. 2% co 
0 

0.457 0.261 1. 751 2.5 

0.332 0.248 1. 339 4.4 

0.236 0.233 1.013 6.3 

0.153 0.218 0 . 702 8.7 
l ··-·-- ----· 

as the percentage of CO increased from 1 .2% CO to 4.9% CO because 

n+/n
0 

became more independent of P • For example, the value of 

n+/n
0 

varied by a factor of only 1.09 for the 4.9% CO mix ture in 
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the pre ssure range of 2.8 mm Hg to 8 . 8 mm Hg, whe r eas the value of 

n+/n
0 

varied by a factor of 1.96 for the 1. 2% CO mixture in the 

pressure range of 2.5 mm Hg to 8.7 mm Hg. The agreement between the 

calculated and measured values of 8(1,00) for the 4.9% CO mix ture was 

exce llent because the ion fraction was linear with i, and n+/n
0 

was 

independent of P , sati.sfying Assumptions 2 .A and 2. B. 

Conclus ion to First Part of Chapter 

Near the beginning of this chapter, the ques tion was posed whe ther 

some rule-of-thumb assumpti ons could be used to estimate a for design­

ing systems to separate gases by cataphoresis using the model and only 

a few experimental values of n+/n
0 

and E • These approximate methods 

gave very satisfactory results for predicting 8(1, 00 ) versus i and 

8(1,00 ) versus P This technique is recommended for designing systems 

to separate gases by cataphoresis taking i n to account the following 

limitations. The assumptions for estimati ng E were v ery good; the 

pressure de.pendence of E was particularly accurate because of the 

linear relationship between E and P • The assumptions for estimating 

n+/n
0 

were generally not as good as those f or estimating E . At high 

currents a nonlinear effect may occur for n+/n
0 

versus i • Also , at 

low . initial percentages of impurity, for example the 1 . 2% CO mixture, 

the value of n+/n
0 

may be a strong function of P • A qualitative 

summary of the assumptions is shown in Table 8 for each mix ture. 

In the second part of the chapter, the characteris tic time f or 

cataphoresis calculated from the mode l i s compared t o the expe rimental 

results . This part of the chapter is s ubdivided i nto f ive s ections 
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which are (1) the definition of the characteristic time for cataphore-

sis tc , and the dimensionless characteristic time T , (2) the 
c 

calculation of T and t from the model, (3) the calculation of 
c c 

t and T from the experiment, (4) a comparison of the characteris-
e c 

tic times from the model and experiment, and (5) a discussion of the 

dependence of t 
c 

0 on P. , n
0 

, and i . 

Definition of tc and Tc for Cataphoresis 

For the following discussion, the time for 6J.2% of the total 

change in composition to occur at the anode is referred to as the 

characteristic time for the cataphoretic separation t 
c 

As defined 

by Shair and Remer [22], the dimensionless characteristic time T 
c 

is 

(30) 

where D is the binary diffusion coefficient for the mixture and L 

is the length of the discharge tube. The values for D and L are 

reported in Chapter IV. 

Calculations of Tc and tc from the Model 

The value of T was calculated from the transient part of the 
c 

solution to the model for cataphoresis; refer to Eq. (13) in Appendix 

B. This value for the characteristic time is 

M 
T 

c 
1 (31) 

for small a . The superscript M refers to the value calcul ated 
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from the model. The value s of and a. were require d to calculate 

M 
T 

c 
from Eq. (31). The term is a solution to the following equa-

tion which is derived in Appendix B, Eq. (19). 

(32) 
a.2 2 

1 + % (o - e:) - oe: ( 4 + ul ) 

The value of a. was calculated from the experimental value of e(l,00 ) 

and the steady-state solutions, Eqs. (22) and (23), as previously dis-

cusse d i.n Chapter IV. An outline of these calculations J.s shown in 

P:lg. 11. For a specified a. , the value of was calculated from 

Eq. (32) by an iterative procedure. The results for as a function 

of a are summarized in Table E-14 for o = 8.9 and e: = 4.2. The 

value of TM calculated from Eq. (31) was a linear function of 
c 

M 
T = -0.6la. + 3.00 

c 
(33) 

for a. < 1. 36 . The results for TM as a function of 
c a are sum-

mar :f.zcd ln Table E-14. Equation (33) was also used as an approximation 

or M 
T 

c 
For val.ues of a up to about 3. For tlw c;al culat lon of M 

T 
c 

when a > 3 , more eigenvalues are required; refe r to Shair and Cohen 

[ 79]. These calculations were not performed in the present investi-

gation. The value of tM 
c 

was then calculated from Eq. (30) using the 

results for 
M 

from Eq. (31). T c 
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Calculation of Tc nnd tc from the Experiment 

The value of t was obtained from the composition versus time 
c 

curve measured at the anode; refer to Fig. 61 or Fig. 1 in Appendix C. 

This value of t is denoted by tE where the superscript E refers 
c c 

to the experiment. The composition versus time curves were checked to 

see if they were first order. The values of t were calculated for c 

several cases using the three different methods suggested by Shilling 

[80]. The three methods gave the same values for t withi.n 1% . 
c This 

implies that the transient response was definitely first order. The 

remaining values of tE were obtained from the response curve by using 
c 

the value of t when cataphoresis was 63.2% completed. 

The results for TE were then calculated from Eq. (30). An 0,ut­
c 

line of these calculations is shown in Fig. 11 . The results for 

Comparison of 

tM are summarized in Tables E-15 through E-19 . 
c 

The agreement between the model and the experiment for t was 
c 

within 25% for 50% of the data and within a factor of 2 for 82% of the 

data. The calculated values from the model were about 20% lower than 

the exper:lrnental values for He-Ne and He-N
2 

mixtures and higher by a 

f actor of about 2.2 for the He-CO mixtures . 

He-Ar. The ratio of tM/tE for He-Ar varied from a high of 
c c 

1.50 to a low of 0.875; however, for five out of eight of the compari-

sons, the ratio of tM/tE was between 0.875 and 0.98. 
c c 
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He-Ne. The ratio of tM/tE for He-Ne varied from 0.24 to 1.53; 
c c 

however, for six out of nine of the comparisons, the ratio of 

was between 0.63 and 0.95. 

He-N2· The ratio of tM/tE for He-N
2 

varied from 0.51 to 1.36; 
c c 

however, for ten out of twelve of the comparisons, the ratio of tM/tE 
c c 

was between 0.51 and 0.97. 

The rati.o of M/ E t: t 
c c 

varied from 0. t.9 to 2. 42; however, 

flff t(~n out of thirteen of the comparisons, the ratio of was 

between 0.49 and 1.15. 

He-CO. The ratio of tM/tE varied from 0.94 to 5.14; however, 
c c 

for sixteen out of twenty-one of the comparisons, the ratio of 

was 0.94 to 1.81. 

Summary. The range of for each gas mixture is sum-

marized in Table 21. The average of the values of 

0.80 and 1.04 for all the mixtures except He-CO, which was 2.23. 

l>Jscussion of the Dependence of 0 on P , n0 , and i 

Since the diffusion coefficient is inversely proportional to 

the pressure P , the characteristic time t is predicted to be 
c 

directly proportional to P • The data generally agree with this 

prediction; refer to Figs. 52 to 54 and Tables E-2 to E-6. In these 

figures the values of t vary between 1/2 minute and 4 minutes, and c 

the values of P vary between about 2 mm Hg and 9 mm Hg. The con-

clusion that tc is directly proportional to P is in agreement 

w:lth other experimental observations (4,15). 
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tM/tE for Each Gas Mixture 
c c 

Minimum Average of 
i 

Maximum i 
Value 

of 
Gas tM/tE 

Mixture c c 

He-Ar 1.50 

He-Ne 1.53 

He-N 
2 

1.36 

He-0 
2 

2.42 

He-CO 5.14 
___ ,, __ 

The model suggests that 

Value the Values 
of of 

tM/tE M/ E t t c c c c 
-- -

0.875 1. 04 

0.24 0 . 83 

0.51 0.80 

0 . 65 0 . 995 

0.96 2 . 23 

t should be rela tively independent 
c 

of the initial composition of the impurity 
0 

n 
0 

The results in 

Fig. 54 for He-CO are in agreement with this prediction for a range of 

p between 2 mm Hg ·and 9 mm Hg and a range of 
0 

n between 1 . 2% CO and 
0 

4.9% co. The conclusion that t c is relatively independent of 

in agreement with another experiment [15]. 

0 
n 

0 
is 

If heating effects upon the transport properties are negligible , 

then t should not be significantly influenced by the current . This 
c 

is in agreement for the range of currents investigated which was about 

5 ma to 100 ma . This is also in agreement with Matveeva [15]. 

In conclusion the qualitative agreement was very good between 

the measured value of tE and the calculated value of 
c 

tM as a func­
c 

tion of current, pressure, and initial composition . The quantitative 

agreement was within a factor of 2 for 80% of the data . 
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VI. CONCLUSIONS 

1. A tungsten filament lamp was used as a Pirani gauge for continuous 

gas analysis. This proved to be a very inexpensive and effective 

technique for obtaining quantitative data on the cataphoretic 

separation without requiring the removal of a sample from the system. 

2. The cataphoretic separation of Ar and Ne from He was found to be in 

agreement with previous investigations. 

3. Cataphoresis was an effective technique for separating diatomic 

gases from He. The cataphoretic separation of N
2

, o
2

, and CO from 

He was found to be similar to noble gas systems in that the steady~ 

state separation improved with (1) increasing discharge current, 

(2) increasing total gas pressure, and (3) decreasing initial com-

position of the minority component. 

4. In the He-co
2 

mixture, the co2 dissociated to 02 and CO. The extent 

of dissociation was proportional to the current and pressure and 

independent of the initial composition. Dissociation may occur in 

other cases when cataphoresis is utilized to separate polyatomic 

gases . 

5. In a recently proposed theoretical model involving an electrostatic 

Peclet number, one of the basic assumptions was that the electric 
I 

field is a constant which is independent of time and position. This 

assumption was checked experimentally and the maximum variation in 

the electric field was 35% in time and 30% in position. Therefore, 

the assumption of constant electric field introduced no more than 

55% variation in the electrostatic Peclet number during a separation. 
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11. To aid in the construction of new cataphoretic Hcparator systems, 

design criteria were developed and che cked. First, to calc ulate 

the electrostatic Peclet number as a function of current , the fol-

lowing two assumptions were used. 

l.A . The electric field was assumed constant and independent 

of the discharge current. 

l.B. The ion fraction was assumed directly propor tional to 

the discharge current. 

Second, to calculate the electrostatic Peclet number as a function 

of the total pressure, the following two assumptions were used . 

2.A. The electric field was assumed directly proportional to 

pressure. 

2.B. The ion fraction was assumed constant and independent 

of pressure. 

These assumptions, although approximate, enabled the steady-state 

separation to be predicted to within 25% for 75% of the data . 

7. The theoretical model was also checked with respect to the charac-

t eristic time associated with transient cataphoresis . The charac-

t eris tic times for ca taphoresis obtained from t he expe r i ment wer e 

compared to t he values calcu l ated from the model. The agreement was 

wi thi n a f actor of 2 for about 80% of the data. The values of a. 

used i n these comparisons we r e calculated f rom the steady-sta t e 

solution of the mode l and t he expe r i mental da t a f or the steady-state 

s epa r a tion at the anode. 

8 . The va lues of the calculated electrostatic Pecl et number ranged 

from 0 . 13 to 4. 33 . Thes e r esults we r e calculat ed from th~ steady-
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state solution of the model and the experimental value for the 

steady-state separation at the anode. The calculate d values of 

the ion fraction of the impurity component r a nged from 4.8 x 10-h 

to 
-6 178 x 10 . 
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APPENDIX A 

The Application of New Data to Druyvesteyn's 

Calculation of the Axial Concentration Gradient 
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THE APPLICATION OF NEW DATA TO DRUYVESTEYN'S 

CALCULATION OF THE AXIAL CONCENTRATION GRADIENT 

Druyvesteyn (8] calculated a value of dNa 
dx -1. 2 x 10

13 
atoms/ 

4 cm . The purpose of this appendix is to show that a value of 

dNa 13 4 
dx = -0. 8 x 10 atoms/ cm is obtained when more recent values for 

transport properties are used in the calculation. 

The following discussion will be divided into three parts . First, 

Druyvesteyn's calculation for dNa 
dx will be described. Second, recent 

i ill b d F . 11 dNa ill b 1 transport propert es w e presente . ina y, dx w e ca cu-

lated using the more recent values for the transport properties. 

Druyvest·eyn' s Calculation for dNa/ dx 

Equation (11) in Druyvesteyn's paper (8] is 

Na N 
0 

- 8.3 x 1010 

The derivative of Eq. (A.l) is 

dNa 
dx 

10 
8.3xlO µ+ IV i 

0 

x (A.l) 

(A. 2) 

Druyvesteyn neglected the argon in the calculation of dNa/dx 

for a 10% Ar - 90% Ne mixture. Values for the current and the tube 

radius were taken from Pennings [7] experiment where R = 0.6 cm and 

i • 0.03 amperes . He assumed V 
0 

was 1 volt. The value for 

extrapolated from Tyndall and Powell's data [52]. Druyvesteyn's 

footnote #1 which is quoted below explains how was obtained . 



-160-

"Tyndall and Powell [ 52] have found f01: Hg+ 

ions in He µ +p = 9 x 103 . As the mobility of alkali­

ions in He ·is about three times greater than in Ne, 

we adopt for Hg+ ions in Ne . µ+p = 3x103 ." 

Druyvesteyn calculated the diffusion coefficient by means of fonnula 

(846) in Jeans [SO]. He found DP= 104 where P is in mm Hg. The 

value of A. was taken to be A. P = 0.2 The values used by 

Druyvesteyn are summarized below. He did not specify a temperature. 

Term Magnitude Reference 

v 
0 

1 Volt [8] 

µ+P 3 x 103 (P in mm Hg) [52] 

A. P 0.2 (P in nun Hg) [8] 

DP 104 (P in mm Hg) [SO] 

R 0.6 cm [7] 

i 0.03 amps [7] 

Substituting these values into the expression for dNa/dx, Druyvesteyn 

obtained for P = 12 mm Hg 

dNa 13 4 
-;r~ = -1.2 x 10 atoms/cm 

His calculation was checked and this value was confirmed. 

Determination of More Recent Transport Data 

Chanin and Biondi [51] reported the mobilities of ~ercury ions 

in Ne and Ar at 300°K to be 



and 

+ Hg in Ne 
µ 

+ Hg in Ar 
µ 
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2 5.95 cm /volt/sec 

2 1.84 cm /volt/sec 

+ Assuming that Blanc's law [62] is valid for Hg in the Ar-Ne 

mixture, then 

+ Hg in Ar-Ne 
µ = Hg+ /Ne + X Hg+ I Ar 

XAr µ Neµ 

F ] 0%A 90%N i l µ
Hg+inl0%Ar-90%Ne= 4 • 87 cm2/ . •or a . o r - " e m xture, t 1en 

volt/sec at 300°K and 1 atm, or 309 cm
2
/volt/sec at 300°K and 12 mm 

Hg. The mobility was assumed to be inversely proportional to P . It 

is important to note that Druyvesteyn bad to use a "ball-park" number 

+ for the mobility of Hg because data were not available at that time . 

Druyvesteyn calculated DH N by neglecting the Ar percent­g- e 

age; this same assumption was· also made here. The diffusion coeffi-

cient was calculated from Eq. (8 . 2-44) in Hirscbfelder, Curtiss, and 

Hird [37] with the values in the following table which were obtained 

from pages LllO ancl 1112 [37]. 

2 
The value of aHg-Ne was Druyvesteyn used a 

value of a 2 = 12 ( 0 A) 2 . 
Hg-Ne 

The resulting calculated value of 

D was 15.5 cm2/sec at 300°K and 12 mm Hg . 
Hg-Ne Druyvesteyn cal-

culated a value of DP = 104 

P • 12 nun Hg. 

2 
or DH N = 8 . 7 cm /sec g- e at 300°K and 



Term 

T 

p 

~g 

~e 

(e:/k)Hg 

(e:/k)Ne 
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Magnitude 

300 °K (assumed) 

12/760 atm 

200.6 gms/gmole 

20.2 gms/gmole 

851 °K 

35.7 °K 

2.898 °A 

2.789 °A 

Recalculation of dNa/dx Using Recent Values for the Transport 

Properties 

With the more recent values for the transport properties, 

mobility and diffusivity, the value of dNa/dx was recalculated from 

Eq. (A.2). The result was dNa/dx = -0.8 x 103 atoms/cm4 • This value 

is 33% lower than the value calculated by Druyvesteyn, and a factor of 

two lower than the value measured by Penning (7). The new results 

are compared to Druyvesteyn's results in the following table. 

In Fig . A.l, there is a comparison of dNa/dx versus ;v-
0 

using both Druyvesteyn's results and the new results . Druyvesteyn's 

results are about a factor of 1.5 times higher than the new results 

for the range of ;v- from 1 to 6 volts. 
0 
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·------------...----- --------···-·-· ~··· 
Druyvesteyn's 

Results 
New 

Results 
f 

~ 
·--------------+-------·-- - - -- .. - ··· --·. 

+ Hg in Ne 
µ 

D Hg-Ne 

2 250 cm 
volt sec 

8 . 7 2 cm 
sec 

dNa 13 
-1. 2 x 10 atoms -- = 

dx 4 cm 

+ µHg tn Ne-Ar 309 2 cm 
volt sec 

n 
Hg-Ne 

15.5 2 cm 

dNa 
dx = 

sec 

-0 . 8 x 10~;::1 
cm I 

I 

·--------'·---------'----------·-·_J 
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CALCULATED BY 
EMPLOYING THE 
TRANSPORT PROPERTIES 
USED BY DRUYVESTEYN 

CALCULATED BY USING 
MORE RECENT VALUES 
FOR THE TRANSPORT 
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APPENDIX B 

A Theoretical Model for Gas Separation in a 

Glow Discharge: Cataphoresis 
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T~1·pri11li·1I fr11111 .Jo11MNl\I . ntt A1•111.um P11 \'~u·!'l, Vo1. .t'>. No. I.!, SU1! ·~7h7, N11v1·111fwr IWiA 
Copyrt1h1 1968 h)' the American Inatltute ol l'hyaka 

l1rtRtfld 11 U. I. A. 

A Theoretical Model for Gaa Separation In a Glow Discharge: Cataphoresls 

1"Jrlr.UMll'k It. SoA•M ANH 1>oNl\1.U s. lh:Mr.k 

/Jfrld''" •1 Cll1111lt.hv •1111/ ( ·1t,mlc11l / ·:N1l•Hrl11a , C.'1Jllj,,rNl11 J1ulU11t11 1'1 Trrl1H1J111,y, l'11:m1/r1w, f ·,,fil,,,,,fo UI /ot.I 

(lh,·rlvecl 4 l•rt~r111l .. ·r 11M7i In fin•t form 11J July l'H!iK) 

A thrnrctk1tl motlc~l lor tra.ruJenl anti 1tcllcly-•latc cata11huttKI• i-dcvt•ln1K·tl »lurling whh th1· m1uTo~upi1: 
r11muionA u( cuntinoity. After a brief breakdown period, the impurily ionK aw n~umed lo IH.· do~t·ly rnuplccl 
with their neut ml roirnh.•rparts. The ba1ic a11umption1 in the modd urc thut 1t.hcr hreakclnwn, the level cir 
ionization uf the impurity, and the axial electric faeld remain conio.lanl ; ii is dcmunalratcrl thnt unclcr these 
conJitinM a system in\•olving rapid ionization- recombination reactions ii1 c'1uivalent lo o. sy~tcm in whkh 
nu rc•dion occurs, but in which the ••effective" ion mobility is a product n{ the true ion mohilily and the 
fraction of impurity ionization. The inftuence or endbulba commonly employed in cxpcrimt-nl ~ is ornalyucl 
nnd founJ to intluclll'C l(reatly the characteritttic time required lo n:ou :h skady atu.le. A~n:Nncnt is found 
bc1wccn the m<>tkl t\IUI a vnilahle uperimenlal data. Particulur cmpfo•~i" i~ pla1·cd upon mas~ ~pcdromctcr 
dlllA reporl'='' hy Mnlvt.-cva, and by Beckey, Grotl1, nnd Wr.1Ke; tht.·M! ctatu nrc: for midurn• uf rure gnM·~ 
&1n1I for miJ1.lore11 uf hy1lrngcn und deuterium, ""d involve <•n1tbulh". The onlinnry 11ifful"ic111 1 "~c. ;111sucint1:rl 
• ·ith lht 1·11U1tJlltC' uf thC" l'tctu1y alatc cah1.phorctk Jlroril t , ie ttl"o a 11111.Y7.C"1I fur u ~ynt1·m conl1tini11K t•ml1mlt1". 

I. INTRODUCTION 

It Im; ht•en known for sotuc lime: that" lon11itmlin11l 
roiu·,·ntn\tion grndit·nb ol't:urred within de glow­
tli!44.·lmr1-tc luln-s conla.ininf.{ various gas mixllircR.1 This 
t'lft~t: t, n:~uhin~ from one nunponcnt being drawn 
prdcrcnt ially towanl the rntluKlc, has heen termed 
mtaphorcsis.2 This phenomenon has bL"Cn known lo 
01.·cur in nt lcust 2.1 tli ITert•nt hi1111ry mixturL'!l,1- 14 The 
work up to 1!1511, involvini; mrc g!IJICll, wna rcvicwL1l hy 
l.ocb." Cal11phor.-lli• h11• Ileen used prinuuily as n 
l'OJ1Vt' 11i1..·n t h-1.:h11i«1uc lu provide pure galeM11·11 ; cJCra­
siona lly, rnh11Jhorc:1is has l1t•t•n used lo oLt,.in an 
impurity level o( one parl in Ill' or less.•·•• As pointed 
out hy Oskam," "even the npplication of the most 
rl'linnl ullmhil(h v11ruu111 krhniques ~annot remove the 
rare ~a~ impurities in commt•rdully avu.ilahlc guscs."l• 
t '1111st·<111cntly, ii is o( interest to obtain a heller dcsc:rip­
t iou "" both the mkroscopi~ and macroscopic levels. 
Conn·rning the separation of isotopes, Groth and 
Harteck" found an enrichment of deuterium at the 
cathocfo in the case of hydrogen. Continuing along this 

1 E. C. C. Baly, l'hil. lllag 35, 2\Kl ( l89J ). 
t G . Fmncis, Enc.,dopeJia of Phvsics, XXJI, Gos Disdariu II, 

(SprinK<r-Vcrl•K, lkrlin, 19S6), pl t95. 
• J. J. Thompson, Prue. Roy. Soc. (London) 58, 244 (1895) . 
4 F. Sknupy. Vt.'rh. lkul. Phy:4. Gc!4. (8, 2.JO ( 191<>). 
•I'. S lutullY nmt F . HnlK•k, '/.. 'l't'f·h . l'h~ik 6 , 284 (1''2!1) . 
• F. M. t't·1111in~ . l'liy!4irn I, 7h,4 { l~.l .t) . 
1 M J. lhuyv1·11lry 11 1uol N. W1um111l10, l'hll. Mug. 17, 1, 

( l'l.l~l. 

: ~·-- &ir~~~ra~'·;:~· r:'.· ,';i1l~t~.1 -j . 2A1~1~I~ :.:1~!~1·s, 11}(, o•J."-a) . 
1• 11. l ' . l\·lilll-r, Cc1wml J•:lc·dl'k kt.'1U~Arf.:h J.tc11t. No. 6.4- KL~ 

.\.ll1ll : (l'lld) . 
11 ,\. I .. Sduuclt<kopf, Jr., J. ,\l'pl. l'h)'11. 35, 1712 (1964). 
t t N . A. Matvt:r.v1t, H11ll. A.nul. Sd. lf~SK Phy1. Ser. (fo!nKliith 

1·:11.l 23, 11-~· (1•15'1). 
1• W . t; ro1 h aml 1'. llnrll•t;k, Nnl11rwl111. 2Z, 391 (1939) . 

N,::!~r, .. !:.i •. ~~~·~"~(;: (~~ .• :·:· (;ri1th, Anet K. ll. WelKC, '/,, 

:: ~: ~~ ~~1:~1!t1C1~'1~,·ur111r.·j~ih.~~~~ ~~:~§;; .. In•tr. J2, 1408 
( t%tl. 

n I.. U. t.ot:h, K. c;. Wc::-.tlt<~rJ<, uo1I H. (,:.Huante, Phy!'. Rev. 
Ul, 4.l (t'H>I). 

"ll. J. tMkMm, J . Appl. Pl.ya. 34, 711 (1963) . 
"The italiC"lt u.rc Oi;lrn.m' it (Rd. IK) . 

lhw, Uet kt•y, (:rot h, nncl Wt·lf.(1·14 rc:purlc1l t•xpcri111cnlnl 
rcisultfl in whkh a. nrnli~ ~peel ro111d.1·r WIL~ u!led lo 
monitor the , ·oot.:1:11 1.rn.tlon of tlcukrium and h ydrogen 
in the nt1hodc and unodc rc14ion~. Later, Matvecva11 

rcporlctl ma~~ Npcd.romclt:r cl;1ta which she obtained 
during s lmlit•s involving hinary mixtures of He, Ar, 
1md Ne. Oflcn, the de1·trixlt• h:.ve hccn plarnd within 
bulhs whid1 an: lomlc•I al. 1 lu· ends .,r the discharge 
tuhc.•·''·'" 

lJruyvc~kyn" prc~cnh:cl an approximalc treatment 
for u •tcu1ly-slatc mtaphon·sis wi1ho11L cndbull1K. 
Recently, J•rc111lcnthal"""' has dcvclopc1l a linc:uizcl! 
model of tran•icnt catuphoresi• when no cndhulbs are 
present. }'resented hclow i• a linearir.cd macroscopic 
modd of transicn t calaphorc.i• when cndhulbs are 
present." Q111rntitative comparison is made between lhc 
model :u11l the ma,._, spc1:tron11:kr data reported by 
Beckey, Groth, and Wclge," and hy Matveeva.12 

The mass spectrometer data were favored because (1) 
the initial impurity composi tions were reported, and 
(2) the problem associated with the optical spectro­
scopic technique near the cathode" was avoided. Due to 
the 11<ck of completeness associated with the optical 
spectroscopic data reported previously, only a qualita­
tive comparison wa• made hctw1,cn these rlata and the 
model. 

UHinf( n Myslcm nmtnininJ< 1:mlh11ll1~ , Matvccv1L12 

11l110 Hludie<l t ht: collap•e of tht: Kll'ady ·•tuk rnlaph11rcli1. 
profile. after the c•lt·l:lrknl <li84·haq.~c wa~ cx tinlo(UiMhc<I . 
rt is 1ncnlio11t'.f\ that. Ho~crvor~l a.n'I l'rcudt.·nllialu 
recently uscJ thiH system w illw11I cntllmllJs to mca!iHl'c 
binary diffusion cocflicients. 

II. ANALYSIS 

Cataphoreaia 
The llhLKR contM:l'VtLLion equal iunK u.rt~ :lpplicd lu t lu: 

hnpurity ion• 1111d to the impurily ncutrnlR, immediately 
· • J. 1-"reudent lial. l'hyMlu. Ht 3S4 ( Jt>t.7). 

"I.- l'reu•lcnlhal, J. Appl. l'hY•· 38, 4818 ( 1'167). 
•• fhia research commenced lndcpe111lcntly of that rc1>0rl~,1 lty 

Freudenthal•·" and ()y Hof(ervor.tl anti Frcu1lenthal." 
•w. Hogcrvo~t anti j. Frcu1h:nthul, Ph)'lica. 37, 97 (1'>67 ), 

5762 
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Mn JH: I. Fii It <:AS SI•'. I' A It A 'I' 11) N IN ,\ c; I. fl W 0 I S 1 • 11 f\ I< c; I·'. 

11hl'r 1111' e1, .. ·1rk 1li•d111ri,:c i• ''"'"hllohed. Mull lplt• 
io11i1.nlion pron·MC'fii un· nq,ch·d1•cl. Huth tlw dt·dric 
li1•l1I, 111ul llU' rutio or i111pudt .r ion \'Olll't:nlrt\tion lo 
impuril,\' m•ulral 1·um-..11lrntiu11 n.rt· lnkt•n lo lw l'.OU · 
~t11n1. \\'lH'n t•1ullu1ll1K un· lln'M'lll, tlw 1·01u·t•111rn.lic1n 
1hrouJ,thout c·nda t•mlh11ll1 i!i tnkt!U lo lu~ uniform uml 
1·11unl to tlw \•ithll' of the· nunpoHilion ul lht~ nr.n.rt.·~l. 

""'' ol liu· <ii,..·h•irl(c 1111 .... C Inly clt:l'lrun im1wu:l 
iuni7J.lli1m )>1"1)<'1-S."k'S nr1: 1·1u1:-; i1lcn·cl. WhcrcuK the 
ioni1 .. nl inn prol·cs....; i!i takl'n lo he horuogcncous in 
rhnral'lcr, t he nlllin lnss nf l'hllrgcd pnrlides is con­
si<l•·n•I to be throul(h nmbipolnr diffusion lo the walls 
wlwr.: n•rnmbination ucrurs; this has been the starling 
point in the clcvclopmcnt ur other theories concerning 
lhe positive column.'·' " "' Let. lhc cathode be situatL'<I 
al :=0. The shtrting equalion for the impurity ions is 

cl11+/ ill= D+ (a'11+/ iJZ') + D,(1/ r) (a/ar)[r(iJn+/ar)] 

+µR(iin_,/aZ)+R;. (1) 

Tlw startinl( equation lor lhe impurity neutrals is 

0111,./ill= I>(il'110/rlZ') + IJ( l/r) (11/rlr)[r(rlllo/•lr) 1-R,. 

(2) 

Th" first lcrm on th<• ri~ht -hnnd side rcpre>1enls the 
or<linnry cliffusion in lh•· clin"<' lion purnllcl to the uxis of 
the tuhe. We huve as..im1l'i the <liffusion rnctfidculs lo 
he inckpcn<lent of mmpo~ition. The second term repre­
sents tht' radial cliffusion ol ions towards the wull, and 
the r;ulial diffusion ol nl'utrals uway lrom the Willi . 

Till' thin) krill in lhe ion l'fJUlltion reprt-scnls forced 
tlitTusion dul' to a uni£urm a ... inl clci·t ric field. The ln~t 
ll'l"IU n·prl~tlll:i lht• ruh' or homOJ(t.'nCoU~ ioniT.alion 
whkh is H :4Ulll'Cl ' £or iuns and I\ ~ink ror nt·utral!(, The 
qun111i1i"" /J, /J1, 111111 /J, tm· lhc <lillusion cocllid1•nls 
{or 1u·1urnl <lilTuMion, ion •liffusion, un<I amhipolur 
ttiffu~inn. rc~pC'L'tivl'ly. A-::. n firNI approximation, we 
shall ll'l'llt the prohlem assuming /;r.,,,D_,. The non­
Llil11t.·nsi01lal <lilTtlsicm equ:1ti«ms then hcccnnc 

ilC,/ilr= (il'C+/ ilT1') 

+(/JD./ R' Dp) (il/dp)(p(OC+/c1p)) 

whkh iH 1111i£on11ly 1liKl>Cl'Heii ll1101tf(l11111l ilw Hy•ll·111 
I.dun· hrt·nktlown. Tiu: q111101it y fl n·pn·~wnlK tlu- ralio 
ul 1111' forn'<I clilTuHion cff1·1·t lo lh1• urdi11ury cliflu•i1111 
1•1T<•d, 

Multiplyit1)( l•:q•. (.I) 01111 (.I 1 lo)' 11 a111i i11lc~rnli11~ 
lrom thc 1uhl'1· .. ntcrulp- O lo 1h1· wull nl p ~ l yitlrl• 

1l(C', )/ilr ~ (;12(( .. )/iJT1') + (l.'JJ,//(2/J) (ii( ' .filp),..1 

+tl(iJ(l., }/ rlTfH UNO) (R,) (5) 
a.nu 

iJ(Co)/dr=iJ'(Co)/iJT1'+ (L'/ K') (i1Co/iJp) ,_1 

- (1)/D)(R,). (6) 

The brackets indicate ra.tl ia lly averaged quantities 
such as 

(C+)= [ pC_,(p)dp. 
• 

(7) 

All ions diffusing to the wall arc assumed to he lo•t, 
and lo recombine rapidly as t'f11np1lred to the char· 
acleristic times a.~sociatcd wilh tlu: diffusion p rocL'll!ICS. 
For small diumcler luhL-s, the radilll diffusion lcrm~ arc 
m uch lurg<'r than the longi1l1iii11al diffusion Lcrm•. 
Thus, 

IJ. (.JC:t/ilp),..1= - /J(i1C0/iJp),...1• (K) 

Since D-"""D+[1+(1',/ 7'1)] and 1'.>>T, in the positive 
column of the glow discharge, then I (iJC+/dp) ,_1 I« 
I {i)(,'Ja,,),...1 I. 

The level of ionization of the impurity, 

(C+)/ ( (C+)+ (Co)l, 

ia l\9'11m1~'<i cons lant 1tnd in<l"111:r11lcnt of time and of 
p ooilion in lhe c)i,..:harge. This """' '"'(tlion implies th"t 
we 110 not lrt'al. the case where th" ioni1.a tion lrcquenci<:• 
of the impurity IUH) of the hoHI Jll\H are of the lf:tmc 

order. Adding E<1s. (5) and (<1) ancl rearranging y ields 
"geneml e<1uation for cataphorcsis: 

08/iJr= {d'6/dT1') ta{illl/iJT/) ~ 

We have defined 
8= ((Co)+ (C+)) 

{9) 

+[ft(ilC+/ilT1)]+(L'/D)R1 (3) and 
a= ((C+)/(Co)+(C+})(µB/,/D). 

und 

{)Co/ dr= (iJICo/d,,S) 

+ (L'/R'p) (a/ap)[p(ac./ap)]- (L'/D)R,, (4) 

where 

r~ID/L', T1-Z/ L, p- r/ R, 

fJ-µEL/D, C+-"-tfno0 

nnd Co= no/11.•. Herc / , represents the tube length, 
R 1h1· tuhc radius, and 110° is the density of the impurity 

"(•'. Llt•wf'llcyn-Jonc!ll, Me1h11c11 & Co., Ltd. (1.nndon) 1966. 
" J.M. <,:ohen l\Ud M. tJ. Kruskol, Phya. l:tuid1 I, 920 (1''65). 

Thus, when the impurity ions 1tnd neutrals a re tightly 
coupled, the reacting 1y1tem is found to he equivalent 
to an inert system; however, the inert system is one in 
which the "effective" ion mobility is a product of the true 
ion mobility and the level of ionization of the impurity. 
When (C+ )«(Co), then W"((C+)/(C0))(µEL/D) and 
Eq. (9) reduces lo Freudenthal's p rinciple equation ... ·" 

Equation (9) must be solved under appropria te 
boundary conditions for the experiments considered. 
The boundary conditions which represent the inOucncc 
of the cn<lbulhs arc 

a lTf= O (10) 
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Fu: . 1. Art,"Un <'onrentmlion vs lime nCl\r the anode for h,u·kward 
tlitTu~inn in a'l(on IU'liurn mixture. 

""" nt "= 1. (II) 

The c111autitr a i• the mtio of lhc vol11111c of lhe hulh 
sun.umtlinv, tlw nlthuth- tu llw vnlunic of the ditM.·har~c 
tnht·. ~in1ihuly, e, i~ tlu· ratio of the vuhunc of lhr. hulh 
surruumling the anutlc to lhc volun"~ of the discharge 
111hc. 'Jo:111m1ion {10) stah·s that a Jiu• of impurity out 
,,f the tube al .,=O results in an increase in the concen­
tration of impurity in the bulb surrounding the cathode. 

On the other hnnd, Eq. (I 1) slates that a flux of 
impurity into the tube at"= 1 results in a decrease in 
the concentrntion of impurity in the bulb surrounding 
the anode. Each endbulh is assumed to he well mixed 
so that the impurity composition in the cathode bulb is 
11nifonn and equal to the impurity composition at .,=O; 
likewise, the impurity composition in the anode bulb is 
assume<! uniform and equal lo the impurity rnmposition 
at"= I. 

The initinl cundilion is 

11= 1 for all.,. (12) 

II "hu11ltl IJt' nuktl lhnt tlw d11.rnfundinmi for lh<' ahovc 
l'ruhh·m nrr nut orll1nJ.(u1111I in the rno1nl !4t·n~c. :-;im:t.: the 
p1uh11·m lint4 l1t•1·u Hnlvt·d c+wwlu-n·,:tt' w1· Mliull 11u•1rly 
write• ,1uw11 tlu- !'tul11llun : 

0(11, r) . I\,,. ... ,, ,.e-••"c~p( - n'r/4) !; A.-• -· Xl[µ.co~µ.(1 - .,) I /i.siu""(I-.,)] 

-· <""[11.<·11•µ • .,-- 1>.ai11µ.1i°ll cxp{ - µ.•r), (I .I) 

Wlll'l'C 

A.~ [{u'/4) t 11.•·rl[A• I (6 t•)/2] Min"" 

·- P.(cusl'./2,..) I (14) 

ll. ·• \a[lH(la)Jt6µ ,.' (IS) 

R.= la[l-<{ja)]--•µ.' (16) 

F.= tH+•+ (a/2) (6-•)-6e(ta>+11.•) (17) 

and 

K= (l+H•)/(H.r•-e-/a+l/a) . (18) 
"F. 11. Shalt and I>. S. Cohen, J. Chem. F.ng. Scl (in preu) . 

The terms, µ .. , nrc solul ions to the following t.•qunl icm: 

lanµ.=-(A+•)11./[l+lct(6- -.) -· 6t(!u' I µ.')J. (l'J) 

The first term in Jo:q. {1.l) rcpn:scnt• the· sh·:uly·slalc: 
solution, while the re~t rcpn·s1·11t~ lhc I rnusic·nl. parl 
which dcray" rapidly in 1i11w. The nmsla11t K was 
ohtu.inc..-cl from a mas."' lmlamT ) JdWt·t·11 lht: li11al :111d 
inil ial ccuwe·nt ml ion Jln•falt·~. 

611(0, "') + f' Kr·•d~ I t.0(1 , ,,, ) ~ I Io I' · IW) 
• 

Typical val11<.-s of 0 vs r wh<:n o= •arc shown in Fi~s. 
7 nnd 8. 

Collapse of the Steady-State Cataphoretic Profile 

Al lime equal to zero, the 1lisdmrge is cxtinguislll'd 
nnd llu~ r xponcntin.I f'OIU'CnlnLlion profile collupm:s in 
time 111 n tlal uniform 4;onn:nlraliu11 profllt·. H en: ai.cain, 
:tn.:ollllt j~ lakt•11 rur tJu: t·ncll 111lb~ pn·~c11 f in lfu: C'l()H'l"i 
nu·nl. Tiit' t:qualinn lo be ~olvf·d i s 

iW/i!r<• il'IJ/ ih1' 

with boundary conditions 

and 
M/ cJ,,=8(cW/ ilr) 

iJll/cJ~= - •(iJll/ ilr) 

The initial condition for this case ;, 

ll=Ktr"•. 

(ll) 

(lli 

at~= I. (2.lJ 

(2·1) 

4 .0 
~DATA REPORTED BY MA Pl[( VA FOR 

ARGON - HELIUM AT P ~ 1.!I mm H9 ) 

... 
q; 
...!.. z 0 
u .. 
a; 

10 

20 30 

~ • 4 93 x io - t e m ' 1 

I • Hit) mo 

I • ";0 tn 11 

~•I 6J1110-2 c;ni1 

1 •2~ m o 

•o ~o 60 10 

L,cm 
}"IO 2. Prcdictioo of steady-state conccntra lion dillcrcnce as a 

function of /1. 
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:\~ lidnrc, t.lu: pruhlcm i~ non st·lf-1uljoint nncl ha~ hrt~n 
:41•h·,·d t·l~cwtu:n;.• The Molulion i~ 

11( •1. rl I I lo/.. r 11. '1(1 I ,.a)/I. I 

11-·I 

Xlrnsµ.(l-•1) ··-•µ. sinµ.(l-11)] 

\I ... ,,. ) (rnsp.,11 -·aµ., sinp.,.,) j l'Xp(-µ.'T), (25) 

/l., (u' I µ .,') L\ 1 I ~ l c · a.µ.') cosµ. 

· · \6-h+l.S.)µ. sinµ.]. (2<1) 

Thl· t1·n ns µ,. £or this prohh:m arc solutions tu the 
(1•ll1•wi11~ t•q11at icm: 

\h ·I ,)µ., / ( !-~•µ.'). (l7) 

111. DISCUSSION 

Cakulatiuns with l•:q. ( U) indirnlc I hill the st<'ady­
~lalt' nLlaphorctk profile is nnu . .:h more sen~itive ~o _a 
1han In a and •. On the otlwr hand, the ch11ractcnst1c 
time Tc assodatt:<l wlth transient calaphorcsis is quite 
iusrusitfrr to a bul. extremely sensitive to 6 and t. 

Jllal vccva" monitored the composition near the anode 
duTin!( the buildup of the rnlaphoretic profile; in _order 
lo oh1ain a!(rccnwnt between lhe model and cxpemnent 
au "clTl·1·tivl' 11 volume of t.'ach bulb, c<1ual to 1.7 times 
that oi the n•porl cd vahu·~. was rcquirL·d. This is not 
lll\t.'\)ll''·kd,n sint.'c 1-:q. ( IJ ) is the solution t.o an 
itl,.ali1.1·d prnlol<-111 in whi<-h lh1· 1·11<lhulhs arc 1uk~pmlcly 
sti1Tr~ I . In Matvt•t.:va's1:: tra1,si"·nl n •lnphorclit: cxJ>cri· 
Oll'HI, it was £ound that T t ; .~A aiu\ cw=~l.5. lJsin~ lhc 
df111c1l vohum•s of tin· t·1hlh11lhs yields a. T,.= 2.0. Wht.·n 
nu t'mlhulhs an· pn·si·11t, the i·akulafr<l rc=O.OO«>. 

Matn•t•v;i.''= a lso m<miton·<l lhl• t.'omposition near lhc 
:.uuuh• 1lurin~ tlH· ':nl1aps1.· of th(..' cataphon•tic profile. 
As indi1·akd in Fig:. t, i11 unh•r t<.' obtain af.(n·cmcnt 

·' 

ll'lllN l:'o ""II 11411, /'It l>Qlt1~ 111n tN (Il l f , ft11101H , .IHO Wl. ~~11 1 

HtfilMI 11\" ... I r.<l!< 111 1111ClH Wi iii v.- v.·41)•0 ,. ' . t ., •.. ,•Ill • ~ ... I 

T 

... ~l-Hllf 

.. •(! ~·:i 
1•14''111 •"' 

.......... 
1 ° 11 ... fl , ... 

....... " IAl!ClH or A •• ' ,OR HYOll(IGI ~ . ClUT(l'llUlllll ir.r P•O > ''"" " ' 

Fw .. t \";triatiou c)f '1 YR., for hplm).!cn-<lrutcrium II.I P - 0 .3 T orr. 

u J. <. 'runk. 1'ht Afc1thc,,tt1fif'.f of IJijf1isimt (Clurcndon Presa, 
i..•donl. 10~1), 

... 

l ::l·;·:·~::·~'j f~,:~·:·: ;::::1: --~·'""" 
1 ;.~·· ::~·.:.p.: ... ~ ~"' '·•·' 

U I I I I , 

~ .. .,.,. · ~··'' .... , 
1.,· •· ·· "'' """lfhl 

n 1011 4 00 •oo •oo 1f1t..•1 •1 (;(1 ••f,., . 1,• /li ·-'1<1 ,,,. ,., 

l, r.m 

""""""''°* "' Sf f AO' ~;tAff t. Wlfl.tl """ .. fUIHl':f h Ill •Ill""'"' a,1 I• ·•1 ~ .. ,. ... q 

F10. 4. Vnrinlion of ~lt:lldy- ~l nH: L\ wilh / . (or h y1l roKt.·11 

1lt-ulNiU1t1 Al r - o .l Tun. 

hclwccn Eq. (25) and expcrinwnt , we h:ul lo lakt- an 
"cfTcctivc" volume of each bull> equal tu 2.5 t imcs 
that of the reported values. The dificrcnce in the 
effective volumes required for lhc lwo experiment> may 
be due lo some endhulb mi xing in the calaphorctic 
experimenl; eleclrode healing along wilh lhe discharge 
within lhe cndbulbs, may have caused free convection. 

The data repor ted in Matvceva's Figs. J, 4, and 5 
were then analyzed within lhe framework of our model. 
If E~IO V /cm, then calculated values of (n.) near the 
cathode region ranged from w•• · 10" inns/cm'; the 
corrcspondin~ vahu:s near I he anode ranged from 
tU'--1011 ions/cm3

• These valut.·:--; appea.r lo he rcasonahlt. 
11 shoulcl lie uwnl ionecl 1.lml Ilic clala point• were: 
measured hy tradngM onlo 11u11 ~raph paper. A to111 

pari~um lu:lwt·t·n our model and lhe dal <l n ·pclfkd in 
l'iK. 7 of Matvccva.17 i~ shown i11 Fig. 2 ,,f this lcxl. 
For cad1 of the three value~ uf dis1 :ha r~c nirrents, it 
was pos.'iihlc lo ohtain cxccllt·n1 :igrt:cmcnt wilh a singlt: 
value of a. / / .. 

Hcck.,y, (;rolh, and Wcl~c" (rc:fcrn·cl lo as IH~WJ 
monitorccl the ninccntra.tion of I>'.! a11<1 112 in both llu· 
anode :rnc.I c: al.lu'4'1c rc~ion!i. IH ;w rcporh'<I t ht!ir da la 
u•in!( lau, whidi they dcfuml 

.. (molt·fnu:l ion_uf l)"'a l 1all1od~ ·) 
Tuow 111nk f1a1 lion of I ) -.t :ti :111od1· 

( 
molt· fmc l ion 111 11., at ;1 111 t1k ) 

x l!lolt: rr·~U'liOll of JJ 'l ill I ;dl1<1dt• • 
llKJ 

ln order lo avoid any amhigu ity, we shall <ldinc 
.a== Tnow, whh.:h is rcla.tcd lo our 0 by the following 
expression : 

a =[o(11=o, T)/O(q= 1, ,)] 

x l[t-0.58(q= 1, T)]/[l-0.SO(q=O, ,)JI. (29) 

In the above expression, T rdcrs t1> tht: dimcnsion lcgs 
lime as used in Eq. (13). Tht' faclor 0 .. 5 is present 
hec.:u.use the initial mole frac tion of d euterium was 0 .5 
in all lhc experi11u,nts reporlccl. Unforl11na1cly, II < ;W 
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Fu;. 5. \'1ui1ttion uf 1• with .li:i4,:lmrf.:e current for hydrogtn­
clcutcrium nl /' - 0 .. ~ Torr. 

re1w1rt neither cleclri<'. fidd data nor lhc volumes of the 
" lar11c ll:~~k~ situlltc<l near the anode and cathod<·.'"" 
llowt•vt•r • from thdr FiJ,t. I, ii i~ rca~onahlc lo assume 
that llu: volunu.,; ol holh llasks arc :1pproxin1111cly 
t•qual, i.t•. 1 6= t. 

As shown in Fi11s .. l und ·I, vah11·s of V.= V.=4Sl~l 
n11' :11111 u/ I.= I .IU7X JO • allow ll!(rccmcnt hctwccn 
our 1111wh·I a111I the dutu n·1H11·1" I in Figs. 2 nncl .1 nl 
II( ;w. If /•:- ·111 V /mi, llwn rnlculalcd v:1lucs 
of (11 1) in lh<' disdinr11e r:111111~I Imm 11110 lo 1011 

i1111s/ n11•. ViHure 4 111 IH:W imlirnlell 1h11t a plot ul 
lnl°.:i(r "" )-· .O.(T)i vs linw is li11e:1r, which is in agree · 
11h•nl with the nuKlcl. FiAllrl' .5 of UUW indin.1lcK 11 
lim·:ir rdnlion between in[.1(r-+ ao)] v- disdmri;e 
t: tlTrt.' l\I ; aS ShOWll in OUr l•'i~. 5t lhL"SC lfata. SUl;gt.'Sl that 
1he 11u:111tity ((n~)/(nn))/•: is linearly proportional to 
till' 11h1ch:1rgc nu-rent. This rnndusion appears reason· 
ahle as " number ol investig:ilors" have found that in 
the ttlow discharge the electron density at constant 
pressure is lin<'llrly proporl ional to the disc~ari;c 
n1rrenl, whill' R docs nol ,·hange much at higher 
l·urn..·nt~. 

v .. 1111111· •1 fa11lbulb.•: E•1ualion ( 1.1) indie111L'S that To 

i• lilwurly proporliom1l lo 6·1-t. Thus, when / . nml /! nrc 
kq>t r1mstnnt 1 both Tn mul /(. nrc linearly proJxtrllonal 
to r .. t t' ... Rit':-\7. aml Dickl·• n:rorkcl: "The time a.t. 
\\'hkh l'' luilihrium i:; rcadwtl 1lc.·pcncls on the voluml' 
uf tlw holh II . (Thi• was a hulh allndicd tu the anc•k 
rl·~ion .) The..~ lary;l"I' its vohtmc, lhc longe r iL tukes 
twfon· 1·quililtrium is n·adwcl. II it is omitlcd c..·quilih· 
rlum i~ n.·adwc.1 within a. minute; • • ·"'° Undouhtcdly, 
thl' Ion~ t:hanu.:h:ristk tinH'!i n•purlt:d hy Matvccva1

:1 

and hy IH:\\"' :m· 11114' lo th4' lar!(c values of 6 and • 
pn-scnl. in !heir <'<perimenls. The mlculnted inllucnce 
ul hulh •i1.1· "I""' r, rdcv:inl lo the <l:1t:1 reported hy 

•Tlw itnlin1o 11n· Ht i \\''~ (Wd . f.11. 
·ni :\11111t11( utl1rr~ . J F . 1'1i11n·, iuid W . W . H.nlH•rhwm, J. •'.lll'lll. 

I'll\'!( 4~. !.,r;77 1 l4>CM'1). 
... \ u .\ . l'd,;u , S.1\· l'hy!t. II, IOl·I (11H11J , 

U(:W, i~ Mhuwn in l•"iJt. <1. /\H imlknl•·• I in l'ig. f•, 1,, t •1 

n •hltivdy inHl'IU'itiVt' lu ft. 

A hu·>(c.· '·rnllu1llt Ill 1h,~ fall1rnlt· is pn·di~ h:d tu 41.­

crcm~c lhc stc.:1uly ~l1lk l'HIH't•n\rnliun of the lmp111ity 
nt:UI' the tuuwtL·; t1w limitin).t val111: ul 0 al 11 :.;..:. I is pn· 
clkted to he e. · •. Regarding Mat vccva's t·.i.:pcrinu:nt,1

"' 

she prol>ahly would have ulolainl'<l much lower Ar 
concentrations at the anode h:ul she reversed lhe 
electric field. 

Tube Length: When 6 and t :ire kept constant, r, is 
11lso constant; thus I, is propnrtion:il lo /J. Whe11 V, 
nnd V. arc kcpl constant, both 6 :mil • vary inversely 
with L; then I, is directly pro1•irliunal lo /,. Thi~ pre· 
tlktion is in agrcemcnl with Malv<:c..:van and H(;W.14 

Jli:m usc of the exponential <kpcndence of "• the tul": 
length greatly influences Lhe slea<ly-slalc rnnn:nlratinn 
profile. The longer Lhc tuhc, Lhe greater will be Lhe 
concentration difference belWCl'll the arlf~lc anil mtho•lc. 
This prcdit-tiun is in a~rccn1ent wilh experimental 
olJscrvations.11

•
12

•
14 

Tube R111li11s: For tixcd valm:s of Vr. a.nd Vu , lr. is 
prL•lirl"I lu hl' proportional lu R .,_ Unlorlunal.dy, 
there arc 110 dnla. availahlc lo l1·sl I.his predit:linn. 

(:ol\Cl'rning the Hlcac)y-Klllll: CIHKC.:lllrllli11n J>r11fil1:, 
<h:m!(eS in }( will inlluence "· If lht: <lisd1ar~c rum:ul 
il'\ kcpl ,·on~l:rnl, both the prutluction rak or ions IUHI 

the lo~li ra.tc of ions should vary as R 1; howcvt·r, f.,r 
tunall 1liamctcr h1hcs, U dcncast:~ a~ R iiu:rt:uscs.2 ·i• 
ThuM, " shoulfl dcc rcu.sc with im·rca.sinJ( R; this is in 
lll(rt:cn1cnt with Sd1mchekopf11 an<I wilh fl(;W." 

Pressure: Si1u:c the diffusion c:ocllidt~nl is inversely 
proportional lo/', lr. is prcdic.:tcd lo he directly propor­
tional to l '; this is in agrccmf:nl. wit h Ma.tvccva11 and 
llC:W." 

Since both µ and D Me inversely proportional to /'. 
P affects a mainly t hrough the ioni>'.ationa.I fraction an(I 
through the clcclric field. Sin1·c lhe amhipolar di1Tusim1 
n>efficient is inversely proportional to P 1 the loss. rate of 
ions shouhl vary inversely with /'. On lht: other h:ulfl, 

" fnth 

.• -

• - I Alt rot,.TS C.tiLCULAflD) 

1 . . 

o _..L_LJ~.-.L-L_.L_.J .. I 
0 t <l 6 9 10 I Z l<l It. 

8111. 
l.llAllll.I u . •t1 •,11(. ! lo.II 11111 CA llWW•l•1·.1· . "" " ' 'Jll! l!r111•11 lllMh ... , , t•• 

Fu:. 6. ( 'lmrndt'.ri1llif I inn· for 1 al ;q1l1urr~i"' a" a 11!11d inu uf 
l1ull~ iti7.t: · A-1 . 
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tht· pnMludion rate of ions mi\y im.::rcasc with in­
'Tt·a~in~ 1~. Uolh llll'St' dTrd~ t>nhnncc tht~ ioni1.ntiun 
fradinn nncl ia1t·n:asc.· "·Tiu· vahll' or" lllU)' hl· furlht•r 
t•nhann•cl ~inn· lht· lun~i1111li11nl clct:lrit· lic•ltl al:-lu 
i1u-r,·a~·~ with iiu·n·u~ing IH't'S."411n·." Tht· url 11t1l (l rt'M.'f.Hrt· 

clt•1tt·ndt·1h·•· will ckpt'lltl upon llw iuni1..1Ll ion IHl't'lumi~un. 
In llw 1·oiiow.· of nt·on with arg:cm im1mrily, ll1t· Penning 
..tl1••·t hl'11 .. k1•t·p tht• st·paratiun rch11iwly 1m·11sure 
imh·p,·1ult·nt. 1~ ( lskam 1" al~1> IM>inb out thut in ltu.· t'U.~! 
of hdium with neon impurity, an incrca&c in prl'S."4ttrt• 

will in•Tt'""" llw protlu.-tion mt" ul He••· throul(h lhc 
lloruln·•·k Molnar pnK·1·'"· He•+HL-+Hc;•+ .. , 111111 
thrnui:h the thn:t· ·hcMI)' pnk'ell.< He·•·+2ffo-•Hc1

1 +Be. 
Tiu"'<· pron. • .....,s ;u·e important since the neon is prohal.ily 
ioniz"I hy He,1+Nl'-->lk 1+2Hc, as suggcskd by 
Lcwh" and Oskam. " At hil(hcr pn·ssures, three-body 
n.· .. ·omhination mu.y ht.•t:cmu.· importnnt thus lending to 
minimir.t• lhc intJm.•nrc of pn.·sHurc. Aside from the curly 
wurk ol Skaupy 11nd llol1t·k .'' thio is in 11grecmcnt with 
l'"i.pt•rinu-ntnl ohservutiun!"."·11 · •1 · •• 

Di.r1·/11rrK< ( ·urrrnl: II h<·11tin11 t'ffl'rls upon the 
t ran!-iport prupt·rl icK arc nc1-tli,.dhlc1 le shoulcl not he 
sii:nilirnntly inllucm·<'I hy the diow.:h11rgc currcnl; this is 
in ol_i.:n.•t.·nwnl with t.·xpcri111cnt1d 1•bscrvations.11 

(. '01u ·crnin~ tht.· sh:.iuly state, increu.Ming the •lischargc 
rnrrl'lll should im-re11sc er hy incrcasinl( the ion prodm:­
tion ratt• . As Slll(l(l'SIL'tl in s,·hmchckopf's cmpiriml 
n•la1ion, 11 the <'Urrcnl density is more fundamental thun 
t Ill' art ual dis<:hari:l' rurrent . .E,,perimcntal ohscrv11tions 
havt• shown that the cataphorctic separation is en­
lrnrn:t."<1 with int:rea~inJ.( disc:har~c currcnl.' ·' ·11 · 14 

c;,.., 1"t'niprr111 .. rr: The l(ilS lcmpcmlure is exp.,· tL•l lo 
inlltwm·t· t,. h\' drnn~in~ llw tlifTusion t'oc.·ffldcnl. 

Rq . .:.anlin~· th,· skiul~· stale, inrrt·asinl( lino J.(as 
h·11qH·rnh11'\' im·1·1·as...·s tht· Ins.~ rah~ of ions lo tlu· wa.11 

--·-----··~~·...:::::.::-:...:. /------·---·-

Fw. 7. t '11m·t•u t rn1 i1111 nl llu~ n11hoclc ntt it funt'lio11 of Cimt~ 
l11r n1luphnrt·1ti1' wilh 1•1111HI l'i7.1 ' 1·111U111lh" O-•) for lhr c·n..._• whr rc 
.. ... o 1(1!-

"h, ol 

.. . ·~- ... 

l"rn. K. Concentration at the anu•lc U!'l a function ur time for 
calaphnrc!li" with t.'f tunl -~i:ie enc llmlh~ (&-•) fu r th<: 1'll!'IC whc:u • 
a - 0.26$. 

und thus lcnclt; lo rc<lm.:c a hy lowcrinK lht io11i1.ation 
fraclion of the impurily. E .,pe rimcnl.a l rc•ull • " ·" 
indil:atc that the s teady-st uh: :-il'parat ion is n:duccd 
with in1:rc11sinl( gall lcmpcml ure. 

I 11ilial Cc>mfH1sili1111: The mmlcl sugl(csls that ' " 
should he relatively indepc n<ll'nl. ul the initial rnm . 
position ol the impurity; lhis is in agrccull'nl with 
cx1x:rinumt 12• 

These: c:xperimental results also inclicate lhat I h e: 
stcady·slalc ~parution in1-rcaSt.-s with clcrrcasing initial 
impurity conn:nlrntinn. Possihly, lhc ioni7.alion fr:u:liun 
of the impurit y increases wilh dcc·rcits ing <:onccntralion 
of impurity . II this he the case , the va riation ol a within 
each nf the expcrimcnls an11lyzcfl was apparently wt:a k 
<.·nou,l.(h lo allow agreement ht·I wt·c.·n a linear mo<ld a1\fl 
nn inhcrcnlly 1umlincar pl1t·111t111t·111>n. llowcvcr, lherc 
arc initial vah11·M of the impurily cum1H1sition whkh will 
lt•ad lo a lransition rc~inw, wht:rc the ionil"'.alion frc · 
qui:ndtM for the impurity J(il.S aJHI for lhc host gas art: 
ol the s;unc order of magnit ucle. Then tht: clcl'lrit: liclcl 
and lhc level ol impurity iuni1"1tion will he clc:pc nclcnl 
upon the longitwlinal pm~ition.:.ii.ai In lhis casc

1 
variaR 

I ion!'\ from the linear mc><ld may he quite ~ignifinrnt. 
Aliso, in so11u· nuscs, lhc.· vulunu: force iu dt:ct ropht1n·!4 i s~·l 
mu.y J.(ivt· ri:it' lo dt:vial ions from 1 lw a~suuu.:d nu tf lt ·I. 
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Use of a Tungsten Filament Lamp as a 
Pirani Gauge for Continuous 

Gas Analysis• 
D . s. Rf.MEit AHO F . H. SHAIN 

l>i1•isia" of CltnsiJlry ""d (,'h.mic:al l•:Ntinee'i" t , 
Califur"ia lfl.Jlils.U af Ttclr"ufory, 

PuJodMo, t.:alifumio VI/II~ 

(Kc<"f'ivcd 17 October 1968; and in final form, 20 Novcmhcr IW>K) 

REl'OKTEll herein i• a ther111al conduclivitv tcch­
niqm· hy whkh contin11011s :uul qtmntilative data 

ha\'c lll't'll nhtaincd in u mtuphnrclk •)'•lem without 
samplt· willulrnwn.l. S1k't·tro1'tn111i,· lcl·hni(IUt.."9 were the 
,•;1rli,·1'll 01H.'!4 wwtl 10 nwmmrc ralnphort•Mi".I • When cml 
hull•'4 nn· pn":4c·111 in 1h1• 1liJit1·hnrM•' ~r~h'm , Pt-fittcll4t1uh 1mcl 
t lsknm• ha\"r rq1orlccl IL d cvcr wa,\' to ttt.•1·iodkull~' deh·r 
111in'" if the !(a" within 11n cnrlhull1 i" spel'lroscopirnlly pure. 
Mas" sp<." lromctcr" h:.vc,hcen s111·c<.•ss£ully used to obtain 
rnlaphorelk d:<La, hul samples must be removed from 
the dis..·harge syslcm.• 7- • Recenl studies have been re­
porkd in which a them1al conductivity probe was utilized 
for n1ea .. .;uring calaphoresis.1n. n For this conductivity 
method, Flinn•• stilled " The removal of a sample from 
the dis.:hari:c syslem Lended lo 11islurb the system some­
what, but the i minutes avemge Lime between samples 
was ;ulcquale tu r"lurc the ste:uly -stilte condition." 

Tht• dis lurhan<·c, ass<Kiatcd with sample withdrawal in 
1lw ahon· tcd111iq11c, may he cli111inaled by hnving carh 
!:"" "tn•am tlow thmul(h a l~I W lamp. In l11e Oow •y•te1n 
1ht• lamp 1ilamt·111s must lu.• r:llil1rah·d for ho lh composi· 
tiun arnt tluw rnll'. 111 tht~ unnllow s_n~h·m involving encl · 
l111lh:-. th .- hO \\' lamp is nu111t•t lt·1l 1lin·dly hf'hind H 

\ ·'> 
TIMf (n..,..ult' .. ) 

' ·~ ' 1\1 .. ~ di 1141 
.,11 '\ltY S IAl l 
••'N• I NlkAllt .. 
11fl Ull l 

Fi1 :. I. ArKon t'ompo1iti11n 4t the anodt• in a Hc+Ar mixture vs 
1imt· for couaph11r,•Jii& ancl fur ha ck. diffusion •her the dtecharse ia 
1urn1··I oil. <'urn·ul · too mA; pre~Ufl' .\.2 mm. 

porous molyhdcnum screen servin~ as the anode. The 
molybdenum screen is rolled 1ii1h1ly inside a 'J.5 mm Kovar 
glass-to-metal seal which is 11rounch·cl. The K'" clisc:harl(e 
!-'Yi\lcm is roolcd hy a comd a ul l r 111pcrat 11 rc waler hath. 
l•'<,r 1y1•it:1LI ••1n~ralinli( 1 ·1 1rulil i1111~ in 11c1nll11w G\.ta11lu1rcli1 
Ky!4lcm~. the p1·1Hh1t·r of the ( ira!ihof and l 'ra111hl n11111lwr~ 
itt -.to•, thereby indkuti11~ 1hal heal l ran~.ft:r from 1he 
ftlamcral by free c.:unvcc:Lio n is nc~l igihl c. 1:: .i;a Although t he 
<><> W hmp filament is in a clu"c hclix-in-hcli.< winding, a 
simple conduction analysis or a straighl thin wire prcdicl s 

the calibration curves quite accurately . Binary mi• turcs 
with helium or hydrogen arc ideall y suited lo Lhis tech­
nique because of their rcla Livdy high Lhermal conductivi­

Lies. The lamp filament provides one leg in a Wheatstone 

bridge. The imbalance of the brirlge circuit is amplified 
and recorded on a s trip chart. Typical results, shown in 
Fig. 1, arc in agreement with t lu:ory.1' 

U:i~~!;i~1:;:~"k ,\~·::~i~u1::~::'.~~~l ,!;;n:~:i~~i~·1~~ h furn ls 1•r11viclc1I l1y the 
1 E. <". C. Bui.~· . Phil. M'lg. ~5. 200 ll X1J.'\}. 
'F. M . l'c1111i11K, J'hvt>iu I , 7<i.I rl'>.t'4>. 
1 M . J. l>ru vvc.·~hl1'1 1uul N. W u r111ull 1, l'l1il. M nK. 17, t '1'J.M ). 

: ~: ~-1~~\':::,·.111~~k 11,~r. ·;~·-·~1~ ~l:~r1 ·11 ·11'~:~.)·;5~~1 ,'1(~ r.~~;~> · 
1 V. f< . ~-1i t11· l,.1 1ult 11 111 1 fl . J . f Mrn111, lfrv Sf'i J11~l ru 111 . 32, 1411~ 

I tt>t,I ) . 
'N. I\. Mul\·1·1·\·11 . 111111. /\nul. ~,. 1:ss1<, 1·t1r•·· s..,. 231 ll J'l4J 

(111.~'I). 
111 J . F rt:tull- 111lml, M1.\nicn lh, .1f1~ t1 1H1i'1 

•It. I>. Ucr kc·.\•, W . Jo:, ( ;rull1, 1111 11 f\ II. W l'lv:r , Z. Nnt urfm~d1 . 
He, 5~ (t<l.UJ . 

M )itme1 Jo:. l'liun, Uot'lurl\I d iSM·r l0t l i1111, lluivc·ni.ily of C'inci11r11t ti 
(U~1vcr!ity. ~icrolilm1, Inc., ~nn Ar t.m_. Mk,hii.c;u1, JCX,S), ~- J.10. 
f~v!ic~~~- S~·l;~nO;~)~ · II . l' nct, Incl. J•.ng. ( hrnl. l' r occto~ Jc·!'iiS:fl 

11 N . V. T scdt·rhcrg, 1'hn,,wl CM"lu1·1i1,ily (Jj l:ri t'-S and L iqu hh 
(Thi! ~~T Prc:as, C'aml.ritl~c:, Mai:.sac huscll1', PH,S), Chop. I, p . 22 . 

.. Wilham U . McAdams, J/euJ '/'riuumi.u iun fMcCra w· llill Uouk 
Co., New York, t954), 3rd ed ., ( 'hu.p . 7, p . 17'>. 

1' I'. II, Shuir a nd n. S. l<1•1m·r" J. Appl. l'f1ys. ~9. S76'1 ( l 'J<~ 1 . 
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ERROR ANALYSIS 

An error analysis of the directly measured quantities and the 

calculated quantities is considered in this appendix. The method of 

analysis is based on the discussion by Mickley, Sherwood, and Reed 

[42) on the interpretation of data and the propagation of errors. 

In the first part of the appendix, the errors in the directly 

measured quantities are described. The pressure in the discharge 

chamber was measured with a McLeod gauge which was accurate to ±0.1 mm 

Hg in the range of 5 nun Hg to 10 mm Hg and ±0.05 mm Hg in the range 

of 1 mm Hg to 5 mm Hg. The mercury levels in the absolute-pressure 

manometer were read with the cathetometer to an uncertainty of ±0.01 mm 

Hg. The water-bath temperature was accurate to ±0.02°C. The charac-

teristic time for cataphoresis was determined by using a scale to 

measure the distance to an uncertainty of ±1/16 inch. The distance 

was converted to a time with uncertainty of ±0.06 minutes by using the 

recorder speed of 1.0 inch/minute. The distance between the electric-

field probes was measured with a scale to within ±1 nun. The length of 

the discharge tube was also measured with a scale to an uncertainty of 

±2 cm. The current through the discharge tube was measured with a 

Simpson DC milliammeter, Model No. 1150-1, with an error of ±1 ma. The 

electric field was measured by using a Keithley, Model 601, electro-

meter with an uncertainty of ±1 volt. 

The errors in the directly measured quantities are summarized 

below. 
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Measured Quantities and Estimated Errors 

i-·. Variable Measured to 

I p (McLeod gauge, 5 ±0.1 mm Hg mm 
Hg to 10 mm Hg) 

p (McLeod gauge, 1 mm ±0.05 mm Hg 
Hg to 5 mm Hg) 

p (manometer) ±0.01 mm Hg 

T ±0.02°C 

t ±0.06 min 
c 

d ±1 nnn 

L ±2 cm 

i ±1 ma 

v ±1 volt 

In t he second part of this appendix, the errors in the calcu-

lated quantities are described. The maximum and minimum values for 

each quantity are used in the following discussion. The e lectric 

field was between 8.5 volts/cm and 36 . 4 volts/cm. The error in the 

electric field for these two values was calculated to be 8.5 ± 0 . 9 volts/ 

cm and 36.4 ± 2.2 volts/cm. Therefore, the bounds for the error in the 

report ed values of the electric field were ± (0.9 to 2.2) volts/cm. The 

uncertainty in the initial composition of mixtures was calculated to 

be ±0.1 mole %. 

The equation for K in Chapter IV is 



K 
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1 + 0 + € 

e -a J . o + £e -a - -·- + -
a a 

( 2'.I) 

The error in K was calculated using Eq. (2-5) in Mickley, 

Sherwood, and Reed [42]. If a is assumed constant and the 

denominator in Eq. ( 23) is denoted by 12_ , then 

D 
6.K = 

(l+o+c) 

D2 

D - (l+o+E:)e-a 
M + -------- 6.E: 

D2 
(34) 

The values of E: and o were E: = 4. 2 ± 0. 2 and o = 8 . 9 ± 0 . 5 • The 

range of a was between 0.13 and 4 .33. The r esults for 6.K were 

6.K = ±0.003 with a = 0.13 and 6.K = ±0.050 with a = 4 . 33. 

The composition is obtained from the calibration curve to 

about ±0. 2 mole % ; ref er to Figs . 8 and 9. The error in the value of 

9(1, oo) is calculated to be· within ±0.06. 

The value of a was obtained from Eqs. ( 22 ) and (23). The 

error i n the calculated value of OI. for the maximum and minimum 

v alues of a was 4.33 ±1. 10 and 0 . 12 ± 0.06 . 

The value of n+/n
0 

was obtained f rom Eq. (25) . The error in 

the calcula t ed val ue of n+/n
0 

n+/n
0 

was (178 t 82) x 10-6 and 

for the maximum and minimum values of 

-6 (4.8 ±1. 9) x 10 . 

It is evident that the use of Eq . (2-5) in reference [42) 

probably overes timates the e rror because it is assumed that the error 

extremes ar e additive . However, the method still serves as a useful 

tool fo r estimat ing the maximum error in the calculated quantities . 
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TABLE E-1 

THE VALUES OF a. AND 8(1,oo) FOR 6 = 8.9 AND £ = 4.2 

a. ~(1, oo) a. 8(1,oo) 

0.05 0.967 1. 20 0 .395 

0.10 0.935 1.25 0.378 

0.15 0.903 1.30 0.362 

0.20 0.872 1.35 0.347 

0.25 0.841 1.40 0.332 

0.30 0.811 1.45 0.318 

0 . 35 0.782 1.50 0.304 

0.40 0.754 1.55 0 .291 

0.45 0. 726 1. 60 0.278 

0.50 0.699 1.65 0.266 

0.55 0.673 1. 70 0 .254 

0.60 0.647 1. 75 0 .243 

0.65 0.622 1.80 0 .232 

0.70 0.598 1.85 0 .221 

0.75 0 . 575 1.90 0.211 

0. 80 0.552 1.95 0 .202 

0.85 0.530 2.00 0.193 

0.90 0.509 2.05 0 . 184 

0.95 0.488 2.10 0 .176 

1.00 0.468 2.15 0 . 168 

1.05 0.449 2.20 0.160 

1.10 0.430 2.25 0 . 153 

1.15 0 . 412 2.30 0.146 
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TABLE E-1 - Continue d 

Ct ~(!_Lool_ Ct ~jl , ex•)_ 

2.35 0.139 3 . 45 0 . 048 

2.40 0.132 3.50 0.046 

2.45 0 . 126 3.55 0.044 

2 . 50 0.120 3 . 60 0.041 

2.55 0.115 3 . 65 0.040 

2.60 0.109 3.70 0.038 

2.65 0.104 3.75 0 . 036 

2.70 0.099 3 . 80 0 . 034 

2.75 0.095 3.85 0.032 

2.80 0.090 3.90 0.031 

2.85 0 . 086 3.95 0.029 

2.90 0.082 4.00 0.028 

2.95 0.078 4 . 05 0.027 

3.00 0.074 4.10 0.025 

3.05 0.071 4.15 0.024 

3.10 0.068 4~20 0 . 023 

3.15 0.064 4.25 0.022 

3.20 0.061 4.30 0 . 021 

3.25 0 . 058 4 . 35 0 . 020 

3.30 0.056 4.40 0.019 

3.35 0.053 4.45 0 . 018 

3.40 0.050 4.50 0.017 



TABLE E- 2 

Result s for Cataphoresis in He-Ar 

,---
Measured ! Calculated I ,, 

t---
0 tE E I tM M 6 I n i p 9(1,00) E T ! T CL n+/n

0 
x 10 0 c c ! c c 

' (% Ar) (ma) (mm Hg) (VI cm) (min) i 

! (min) 
j 
! 

4.7 25 3. 2 0.915 12 . 6 1.12 
I 

2.39 I 1.37 2.92 0.13 4.8 

4.7 100 3.2 0.245 8.5 1.00 2. 13 0. 91 1.94 1. 74 96.3 

4 . 7 50 3.2 0.681 10.2 1.31 2.79 1.26 2.68 0.53 24.2 

I I 
4.7 25 5. 5 0.894 15 .5 2.62 3.24 I 2.35 2.90 0.16 4.8 1--' 

CX) 
1--' 

4.7 100 5.5 0.138 10.7 1.44 
I 

1. 78 1.26 1.56 2.36 103 

4.7 50 5.5 0 . 585 12.7 1.38 1. 70 2.07 2 . 55 0.73 26.7 

4.7 25 8.9 0 . 790 20 . 0 3. 75 2.86 3.67 2.80 0 . 34 . 7 . 9 

4.7 100 8.9 0. 030 13.7 1.40 1.07 -- -- 3.92 133 

4.7 50 8.9 0 . 383 15. 9 3.13 2.39 2.93 2. 24 1.24 36.3 





TABLE E-4 

Results for Cataphoresis in He-N2 

i 
Measured i Calculated 

0 Q(l ,oo) tE E I tM M 6 
n i p E Tc Tc a. n+/n

0 
x 10 

0 c c 
(% N2) (ma) (mm Hg) (V/cm) (min) (min) 

4.8 lS 6.3 0.864 33 .S 2.90 2.94 2.83 2.87 0.21 S. 2 

4. 8 2S 6.3 0. 600 32.9 2.73 2. 77 2.S3 2 . S7 0.70 17 . 7 

4.8 so 6.3 0.173 29 . 2 1.86 1.89 1.69 1. 71 2.12 60.S 
I 

4.8 7S 6. 3 0. 021 27 . 6 1.10 1.12 -- -- 4 . 33 131 f-' 
CXl 
w 

2.2 7.S 6. 3 o. 728 27.3 4.38 4 . 44 2 . 69 2. 73 0.4S 13 .7 I 

2. 2 lS 6.3 0.44S 26.3 2.6S 2.68 2. 31 2. 3S 1.06 33 .S 

2.2 2S 6.3 0. 241 23 . 4 3 . 69 3.74 1.90 1.93 1. 76 62.6 

2.2 so 6. 3 0 . 022 21.6 2.17 2 . 20 -- -- 4.33 168 

1. 2 5 6.3 0 . 433 26.7 1. 73 1. 7S 2. 3S 2.37 1.09 33 . 9 

1.2 9 6.3 0. 267 27. 8 2. 04 2.07 1.97 2 .00 1.64 49.1 

1.2 20 6 .3 0.020 26 . 9 1. 22 1.24 -- -- 4.33 133 

4. 8 so 8. 8 0 .160 36 . 4 1.69 1.23 2. 29 1.66 2.20 so .o 
4.8 so 2.7 0.27S 17 . 7 1. 25 2.96 0 .8S 2. 02 1. 61 7S. 6 

4. 8 so 4. 3 0. 190 21. 7 1. 7S 2. 60 1.19 1. 77 2. 01 77 .2 

4.8 so 2. 2 0 . 379 15 . 8 1.12 3 .25 o. 77 2. 24 1. 25 65 . 7 



TABLE E-5 

Results for Cataphoresis in He-o2 
Measured i Calculated 

0 9(1,00) 
tE E I tM M 6 

n i p E T I T a n+/n
0 

x 10 
0 c c 

I 
c c 

(% Oz) (ma) (mm Hg) (V /cm) (min) (min) 

5.0 75 6.0 0.080 25.7 4.38 4.95 -- -- 2.93 101 

5.0 50 6.0 0.344 26.8 2.72 3.07 1.92 2.17 1. 36 44.8 

5.0 35 6.0 0 .536 27.4 2.53 2.86 2.20 2.49 0.84 27.0 

5.0 20 6.0 0 . 764 28.4 1.19 1.34 2.45 2. 77 0.38 11.4 

5.0 85 6.0 0.020 24.8 3.31 3.74 -- -- 4.32 154 
I 

5.0 50 7.5 0 . 370 28.0 2. 72 2.46 2.46 2.22 1. 28 40.4 ,.... 
CXl 
.!:'-

5.0 50 4.0 0.350 20.3 2.16 3.66 1.29 2.18 1.34 58.3 I 

5. 0 50 2.7 0.440 19.8 1. 91 4.80 0.94 2.35 1. 07 47.6 

5.0 50 2.1 0 . 500 13 . 6 0. 66 2.13 0.76 2.44 0.92 59.6 

2.2 25 6.0 0 . 332 23.6 1. 75 1.98 1.90 2.15 1.40 52.5 

2.2 15 6. 0 0.632 24.7 1.13 1.28 2.32 2.62 0.63 22.5 

2.2 35 6.0 0 .100 22.4 1.84 2.08 1.20 1.36 2.69 106 

2.2 42.5 6.0 0.020 21.5 1.59 1.80 -- -- 4.32 178 

4.1 50 6.0 0.250 25.0 1.69 1.91 1. 73 1. 96 1. 71 56.2 

4. 1 72,5 6.0 0.020 22.5 1.41 1.60 -- -- 4.32 170 

4.1 35 6.0 0.462 28.1 2.09 2.36 2.11 2.38 1.02 32.0 

4.1 20 6.0 0.658 30.4 0 .97 1.10 2.35 2.65 0.58 16 . 9 
I 
-~-.. ..-.--.. - -



0 
no 

(% CO) 

4.9 

4.9 

4. 9 

4.9 

4,9 

4.9 

4.9 

2. 3 

2.3 

2. 3 

2.3 

2.3 

2.3 

i 

(ma) 

50 

25 

15 

75 

50 

50 

50 

25 

15 

75 

50 

50 

50 

Measured 

P 9(1 ,oo) 

(nun Hg) 

6 .3 0.575 

6.3 0. 698 

6. 3 0. 755 

6. 3 0. 482 

4 . 4 0. 654 

8. 8 0 . 472 

2. 8 o. 711 

6.3 0 .587 

6.3 0. 643 

6. 3 0 .348 

4 . 25 0.479 

8. 6 0 .412 

2. 3 0. 531 

TABLE E-6 

Results for Cataphoresis in He- CO 
......, 

I 
! Calculated I 

E E IM M 5 1 
E t T t T a n+/n x 10 I c c c c 0 

(V /cm) (min) 1 (min) 1 

28 . 7 o. 94 1.00 2.38 2.54 0.75 12 . 2 

30 . 7 0 . 91 0 . 97 2 . 53 2.695 0.50 7.64 

31.9 2.69 2.87 2.59 2.76 0 . 40 5.90 

26.2 0.66 0. 70 2.26 2.41 0.97 17.4 

23 . 4 0.59 0.90 1.73 2. 64 0 .59 11 . 8 

35.8 2. 47 1. 88 3.15 2.40 0. 99 12 . 9 

17 .3 0.22 0 . 53 1 . 13 2. 71 0.48 12 . 9 

24. 6 1. 63 1.74 2.40 2. 56 0. 72 13 . 7 

27.1 1.50 1. 60 2. 47 2 . 63 0 . 61 10 .5 

21.4 2. 31 2 . 46 2.05 2 .18 1 . 35 29.4 

18. 0 0. 75 1.18 1 . 355 2. 41 0 . 97 25 . 2 

28 .1 2 . 12 1.66 2 . 95 2. 30 1. 15 19 . 1 

12.45 0 . 69 2. 01 0 .85 2. 48 0. 85 31. 9 

l ,_. 
:0 
Vt 
I 



TABLE E-6 - Continued 

I 1--- -----
Measured i Calculated 

0 i p 9(1,00 ) E tE TE tM TM 6 n a n+/n
0 

x 10 0 c c c c 
(% CO) (ma) (nnn Hg) (V/cm) (min) (min) 

2.3 50 6.3 0.461 21.4 1.94 2.07 2.24 2.38 1.02 22.3 

1. 2 25 6. 3 0.350 21. 7 2.19 2.33 2.05 2 .18 1.34 28.9 

1. 2 75 6.3 0.158 18.4 0.94 1.00 1.55 1.65 2.21 56.2 

1.2 15 6.3 0.425 21. 7 1.31 1.40 2.18 2.32 1.12 24.2 
I 

I 

I I 
f--

1. 2 50 6.3 0.233 19.3 1.56 1.66 1. 79 1.91 1. 79 43.4 o:> 
er-
I 

I 
1.2 50 2.5 0.261 11.1 0.71 1.91 0.74 1.98 1.67 70.2 

1. 2 50 4. 4 0.248 15.0 1.20 1.83 1.27 1.94 1. 73 53.8 
I 
I 
L 

1.2 50 8.7 0. 218 24.2 2. 28 1. 76 2. 42 1.87 1.86 35.9 
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TABLE E-7 

Results for Dissociation in He-co2 

0 

i p n F>'< 0 

(ma) (mm Hg) 
(% co

2
) 

10 6.0 4 . 7 0.11 

25 6.0 4.7 0.26 

35 6.0 4.7 0.38 

50 6.0 4.7 0.48 

65 6.0 4.7 0 .67 

50 2.2 4 . 7 0 . 17 

50 7.9 4 . 7 0.64 

30 6.0 7.5 0 .31 

40 6.0 7 . 5 0 . 41 

60 6.0 7.5 0.59 

* The letter "F" is Fraction of C02 Dissociated . 
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TABLE E-8 

Results for Cataphoresis in He-Ar Calculated from the 
Model with the Estimated Values of the Electrosta t i c 

Peclet Number 

8(1,oo) VS i 

0 

i p n 8(1,oo) E x io6 0 
n+/n

0 (ma) (mm Hg) (% Ar) (V/cm) 

25 3. 2 4.7 0.931 0 . 105 10 . 2 4 . 8 

50 3.2 4.7 0.681 0 . 53 10.2 24 . 2 

100 3.2 4.7 0.338 1.38 10 . 2 63 . 0 

25 5.5 4.7 0.915 0 . 13 12 . 7 4.8 

50 5.5 4.7 0.585 0.73 12 . 7 26.7 

100 5.5 4.7 0.207 1.925 12.7 70.5 

25 8 . 9 4.7 0.829 0 .27 15 . 9 7 . 9 

50 8.9 4.7 0.383 1.24 15.9 36 . 3 

100 8.9 4 . 7 0 . 062 3.19 15.9 93 .4 

8(1,oo) vs p 

25 3.2 4.7 0 . 915 0.13 12 .6 4 .8 

25 5.5 4.7 0.896 0 .16 15 . 6 4. 8 

25 8.9 4.7 0 . 867 0.21 20 . 0 4 . 8 

50 3.2 4.7 0.652 0. 59 10.3 26.7 

50 5 . 5 4.7 0 . 589 o. 72 12 . 6 26. 7 

50 8.9 4.7 0.500 0.92 16 . 0 26 . 7 

100 3.2 4.7 0.213 1.89 8 . 5 103 

100 5.5 4.7 0.138 2 . 36 10.7 103 

100 8.9 4.7 0.070 3 . 06 13 .8 103 
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TABLE E-9 

Results for Cataphoresis in He-Ne Calculated from the 
Model with the Estimated Values of the Electrostatic 

Peclet Number 

9{1200~ vs i 

0 
x 106 

i p n 0(1,00) ~ E n+/n
0 

0 

(ma) (nun Hg) (% Ne) (VI cm) 

25 6.0 2.4 0.865 0.21 11. t~ l7 .2 

50 6.0 2.4 0.483 0.96 11.4 78. 1 

75 6.0 2.4 0 .252 1. 71 11.4 139 

25 6 . 0 4.8 0.915 0.13 11.2 11.0 

50 6.0 4.8 0.631 0.63 11. 2 52.2 

75 6.0 4.8 0.420 1.13 11.2 93 . 5 

100 6.0 4.8 0.270 1.63 11.2 134 

0(1,oo) VS p 

50 3.5 2.4 0 .476 0.98 11.6 78 . 1 

50 6.0 2.4 0.468 1.00 11.9 78 . 1 

50 9.1 2.4 0 . 460 1.02 12.l 78.1 
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TABLE E-10 

Results for Cataphoresis in He..-N2 Calculated from the 
Model wi:th. the Estimated Values of the Electrostat i c 

Peclet Number 

Q(l 2oo) VS i 

0 

i p n 9(1,oo) a E 
x 106 0 

n+/n
0 (ma) (mm Hg) ( % N2) (V /cm) 

5 6.3 1.2 0.420 1.13 27 .8 33 .9 

9 6.3 l.2 0.267 1. 64 27 .8 49.l 

20 6.3 1. 2 0.072 3 . 04 27 .8 90 .9 

7 .5 6.3 2.2 0.737 0.43 26 . 3 13 . 7 

15 6.3 2.2 0.445 1.06 26.3 33 . 5 

25 6.3 2.2 0.213 1.89 26.3 59 . 9 

so 6.3 2.2 0.029 3.98 26 . 3 126 

15 6.3 4.8 0.865 0.21 32 .9 5 . 2 

25 6.3 4 . 8 0 . 600 0 . 70 32 . 9 17 .7 

50 6.3 4 . 8 0.236 1. 78 32.9 45.1 

75 6.3 4.8 0.081 2.91 32 . 9 73 . 6 

9{1 loo) vs p 

50 2.2 4 . 8 0.412 1.15 15 . 8 60 . 5 

50 2.7 4.8 0 .372 1.27 17 .4 60.5 

50 4.3 4 . 8 0. 270 1.63 22.4 60 .5 

50 6 .3 4.8 0 .177 2 . 09 28 .7 60. 5 

50 8.8 4.8 0 . 103 2 . 66 36 . 5 60 .5 
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TABLE E-11 

Results for Cataphoresis in He-Oz Calculated from the 
Model wi.th the Estimated Values of the Electrostatic 

Peel.ct Number 

9(1 200) vs i 

0 

i p n E 
x 106 0 9(1,00) n+/n

0 (ma) (nun Hg) (% Oz) (V/cm) 

15 6.0 z.z 0 .647 0.60 Z3.6 ZZ.5 

Z5 6.0 Z.2 0 . 332 1.40 23.6 5Z.5 

35 6 . 0 2.2 0.160 Z.20 23 .6 8Z.5 

4Z.5 6.0 z . z 0.089 Z. 81 23.6 105 

20 6 . 0 4.1 0.678 0.54 28.1 16.9 

35 6.0 4.1 0.462 1.02 28.1 32.0 

50 6 . 0 4.1 0.304 1.50 28.1 47 . 2 

72. 5 6.0 4.1 0.155 2.23 28.1 69.9 

20 6.0 5 . 0 0.782 0 .35 27.4 11.4 

35 6.0 5.0 0.536 0.84 27.4 27 .0 

50 6.0 5.0 0.356 1.32 27.4 42.6 

75 6.0 5.0 0.171 2.13 27 .4 68.6 

85 6.0 5.0 0.126 2.45 27.4 79.0 

9(12002 vs p 

50 2.1 5.0 0.548 0.81 15.9 44 . 8 

50 2.7 5.0 0.517 0.88 17 . 4 44.8 

50 4.0 5.0 0 . 453 1.04 20.6 44.8 

50 6.0 5.0 0.366 1.29 25.5 44 .8 

50 7.5 5.0 0 . 309 1.48 29.1 44.8 
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TABLE E-12 

Results for Cataphoresis in He-CO Calculated from the 
Model with the Estimated Values of the Electrostatic 

Peclet Number 

0(1 200) vs i 

0 

i p n 0 (l ,oo) E x 106 0 
n+/n

0 (ma) (mm Hg) (% CO) (V/cm) 

1'" _) (). J l.2 0 .L127 L.ll 21. 7 '2!1 .o 
L.5 6 . 3 1.2 0.344 l.36 21. 7 29.4 

50 6.3 1.2 0.195 1.99 21. 7 42.9 

75 6 . 3 1. 2 0 . 108 2.61 21. 7 56.4 

15 6.3 2.3 0.668 0.56 24.6 10.6 

25 6.3 2.3 0.587 0. 72 24.6 13.7 

50 6.3 2.3 0 . 414 1.15 24.6 21.8 

75 6 . 3 2.3 0.288 1. 56 24.6 29.7 

15 6.3 4.9 0 . 765 0.38 30 . 7 . 5 .8 

25 6.3 4.9 0.699 0.50 30.7 7 . 7 

50 6.3 4 .9 0.548 0 . 81 30.7 12.4 

75 6 . 3 4.9 0.420 1.13 30.7 17.2 

B(l 2oo~ VS p 

50 2.8 I+• 9 0. 715 0.47 17.9 12.2 

50 4.4 4.9 0.652 0.59 22.7 12.2 

50 6.3 4.9 0.579 0.74 28.5 12.2 

50 8.8 4.9 0 . 492 0.94 36.1 12.2 

50 2.3 2.3 0.647 0.60 12.6 22.3 

50 4 . 25 2 . 3 0.539 0.83 17.3 22.3 

so 6.3 2 . 3 0.445 1.06 22 . 3 22.3 
50 8.6 2.3 0.353 1.33 27.8 22.3 

50 2.5 1.2 0.457 1.03 11.l 43.4 

50 4 .4 1.2 0 . 332 1.40 15.2 43.4 

50 6.3 1.2 0.236 1. 78 19.2 43.4 

so 8.7 1.2 0.153 2.25 24.3 43.4 



i 

(ma) 

25 

50 

100 

50 

50 

so 

so 

so 

so 
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TABLE E-13 

The Design Equations for the Electric Field 
as a Function of Pressure 

E = mP + b 

where E is the electric field in 
volts/cm and p is the total gas 

pressure in mm Hg 

The values of m and b were calculated by the method 

of least squares. The tube inside diameter is 8 mm . 

no 
b of P 0 m range 

(percentage (V/cm ) 
of impurity) mm Hg (V/cm) (mm Hg) 

4.7% Ar 1.30 8.41 3 . 2 - 8.9 

4.7% Ar .996 7 . 10 3.2 - 8 . 9 

4.7% Ar .910 5.63 3 . 2 - 8.9 

2.4% Ne . 0985 11.3 3 . 5 - 9.1 

4. 8% N2 3.14 8.90 2 . 2 - 8 .8 

S.0% 02 2.445 10.8 2 . 1 - 7.5 

4.9% co 3.04 9 . 35 2 . 8 - 8.8 

2.3% co 2 . 41 7.08S 2.3 - 8.6 

1. 2% co 2 . 12S S.82 2.5 - 8 . 7 
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TABLE E-14 

The Values of Tc , u1 , and a for 6 • 8.9 and E = 4.2 

u l T ul T 
a c a c 

0.10 0 .583 2 . 92 1.10 0.359 2.32 

0 .20 0. 582 2 .87 1.15 0.327 2 .29 

0.30 0.578 2.80 1.20 0.288 2.26 

0 .40 0.569 2. 75 1.25 0.242 2.23 

0 . 4.5 0.563 2 . 72 1.30 0 . 181 2.20 

0.50 0.556 2 . 69 1.33 0.129 2.18 

0.55 0 . 548 2.66 1.35 0.08 2.16 

0.60 0 . 539 2 . 63 

0.65 0 . 528 2.60 

0 . 70 0. 517 2 .57 

o. 75 0. 504 2.53 

0 .80 0. 489 2.50 

0 .85 0 .473 2 . 47 

0.90 0.455 2.44 

0.95 0.435 2 . 41 

1.00 0.412 2.38 

L OS 0.387 2.35 
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APPENDIX F 

Preliminary 

Experimental Investigations 
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Preliminary Experimental Investigat l ons 

Two preliminary experimental systems were designed and con~ 

structed. The purpose of these investigations was to study t he 

cataphoretic separation of binary mixtures flowing through a glow 

discharge between concentric electrodes. The results of these studies 

have been previously described in reports entitled, "Cataphoresis in 

Binary Gas Mixtures"[81] and "Cataphoresis in a Flowing System" [82 ] . 

Associates have redesigned the two-inch diameter system descri bed in 

reference (82], and their current investigation is proceeding with the 

aid of a mass spectrometer. 
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This proposition was submitted and accepted by the 

Candidacy Examination Committee of Professors F. H. Shair , 

G. R. Gavalas, W. H. Corcoran, and S. K. Friedlander on May 3 , 

1967. 
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PROPOSITION I 

List of Figures 

Figure 

I-1. Life Span of Drosophila Melanogaster as a Function 210 
of Pressure 

I-2. Photograph of Apparatus for the Measurement of 211 
Mortality of Drosophila Melanogaster as a Function 
of Pressure 

I-3. Schematic Diagram of Apparatus for the Measurement 212 
of Mortality of Drosophila Melanogaster as a Function 
of Pressure 
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The mortality of Drosophila melanogaster (D.m . ) which are 

commonly referred to as fruit flies was investigated unde r partial 

vacuum. The experimental results appear in Fig. I-1. The life span 

was found to vary from approximately 3 minutes at 2 inches of mer-

cury absolute to about 3 weeks at atmospheric pressure. 

The reactions and mortality of Drosophila exposed to light, 

sound, pressure, temperature, chemicals, radiation, electrical prop-

erties, etc. have been found to be similar in many ways to other 

living things . Weltman [ l ] has studied the mortality and infertility 

effects of cold-shock treatments on D.m. Harnly and Goldsmith [2] , 

under a grant from the National Cancer Institute, have investigated 

the effect of chemicals on the mortality of D.m. Muller [3], working 

with a grant from the U. S. Atomic Energy Commission, studied 

mortality induced by x-rays. He concluded that the mortality in 

Drosophila represents basically the same phenomenon which is described 

in the case of vertebrates as radiation aging. Scheltgen and Cole [4] 

investigated D.m. in the range of 5 , 200 lbs/in2 to 9 , 000 lbs/in2 , and 

Pease and Regnery [5] studied D.m. at pressures of 10,000 lbs/in2 to 

2 15,000 lbs/in . Ingraham [6] has conducted experiments at 0 . 2 atmos-

pheres pressure and found that vacuum treatment retarded the growth 

processes. No results have appeared in the literature where mortality 

of D.m. as a function of pressure has been investigated. A recent 

impetus for this work has been provided by the U. S . biosatellite 

program in which a capsule of living specimens, including D.m. has 
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been launched into orbit. The object of this Biosatellite 1 mission 

is to study biological hazards of space trave l . Such questions as the 

e ffect of weightlessness, growth, heredity, reduced pre ssures, radia­

t!.on, and suht:ll' cellular changes for l>.m. will lie L11v(•t:1tlgat rnJ [7 , 8 .I. 

The data obtained from JHosatellite 1 and later missions will 

indicate the mortality of D.m. under the influence of reduced pressure, 

increased radiation, and other factors. Because data for D.m. life 

span on earth under partial vacuum apparently is not reported in the 

literature, the present experimental investigation has been carried out 

to furnish this information and in effect serve as a control experiment. 

The experimental apparatus appears in Fig. I-2 and a schematic 

diagram of the system is shown in Fig. I-3. The pressure was measured 

by a U-type absolute pressure gauge. A vacuum pump was used to obtain 

the reduced pressures and the system pressure was regulated by a valve 

which controlled the air leakage into the system. Cardboard barriers 

were used to prevent the D.m. from being pulled into the vacuum pump 

and to prevent their escape into the pressure gauge line. Since D.m. 

will only live about 20 hours without food under normal conditions , a 

supply of food-gelled medium consisting of maize meal, yeast , molasses , 

and agar was provided in the test cell. An anesthetizing bottle was 

used to transfer the D.m. into the apparatus . Ether was used as the 

anesthetic. 

It was ne cessary to determine a criterion for D.m. mortality . 

Experimental tests were performed where the pressure was reduced and 

then returned to atmospheric pressure. A close surveillance of the 

D.m. indicated that those flies which rolled over on their backs under 
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the reduced pressure never regained consciousness at atmospheric pres­

sure. Therefore, it was assumed that after a fly rolled over on its 

back, it was dead. 

The results for the life span of D.m. as a function of pressure 

appear in Fig. I-1. The life span is approximately 3 weeks (500 hours) 

between atmospheric pressure and 26 in. Hg. As the pressure is 

reduced to 22 in. Hg, the life span begins to decrease rapidly to about 

110 hours. Upon further reduction of the pressure, the life span 

decreases to 3 minutes at 2 in. Hg. The results are arithmetic averages 

of the life span for groups of ten flies at each pressure reported. 

Continuous observations of D.m. lifetime were recorded at pres­

sures below 6 in. Hg. At pressures in the range of 6 to 10 in. Hg , 

observations were made at least once every 10 minutes, and at pressur es 

in the range of 10 to 29 in. Hg, the frequency of observations was at 

least once every seven hours. 

D.m. species Oregon R were used in the investigation. The sub­

jects studied were two days old when testing was initiated. 

No conclusions about the cause of mortality can be inferred from 

the experimental data. Mortality may be dependent on the partial pres­

sure of water vapor which might cause dehydration of D.m. The partial 

pressure of o2 or co2 may also be an important factor affecting mortal­

ity. Further experiments where the partial pressure of two of the 

three components o
2

, co
2

, and H
2

0 are held constant while varying t he 

partial pressure of the third component would be necessary before any 

conclusions could be reached on the cause of mortality. 
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Meager experimental data on the influence of the partial pres­

sure of o
2

, co
2

, and H20 have appeared in the literature. Goldsmith 

[9] investigated D.m. at atmospheric pressure in o
2 

with partial pres­

sures of co
2 

ranging from 0.2 - 0.5 atm. D.m. activity was depress ed 

hut incrl!nsed mortality was not observed. Abrahamson [ ·1 O] oh.served 

n.m. Jn an environment devol.d of o2 • 

phere for 1, 3, and 18 hour periods. 

D.m. were placed in u N
2 

atmos-

95% survival was obtained for the 

groups of D.m. in the 1 and 3 hour tests; however, 100% mortality was 

reported for the group in the 18 hour period. Herskowitz [11] found 

that the dehydration of D.m. increases the mortality effect of x-rays 

on D.m. 
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Figure I-2. Photograph of Apparatus for the Measurement 
of Mortality of Drosophila Melanogaster as 
a Function of Pressure 
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It is proposed to revise the model for the Industrial 

Materials Price Index. Each component in the indl'x wa8 indi­

vidually compared to the business cycle. It was found that 

five of the components did not forecast the contractton 

periods in the business cycle. These five components were 

removed from the index, and the remaining eight components 

were used to form a revised model. The revised model pre­

dicted the last four contractional periods in the business 

cycle an average of three months earlier than the original 

index refer to Fig. II-1 . 

During the last one hundred and fifty years the United States 

economy has undergone repeated expansion and contraction periods . An 

expansion period is characterized by rising employment, production, 

prices, wages, interest rates, and profits. The reverse is true of 

contraction periods. This recurring phenomenon is referred to as the 

business cycle. Two main methods of forecasting the business cycle 

have been used; analysis of economic aggregates , and empirical business 

cycle indicators. The latter method is considered in this discussion. 

The concept of business cycle indicators was first introduced 

at the Harvard Business School in 1919. This study was abandoned in 

1925 because the introduction of the Federal Reserve and the Central 

Bank were believed to be artificial stimuli that would destroy the 

natural business cycl e trends. After World War II, the National 

Bureau of Economic Research (NBER) revived the interest in business 

cycle forecasting and is presently the leader in the field of research 

relating to business cycle indicators. 
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The principle behind the business cycle approach to economic 

forecasting is an outgrowth of the empirical work performed by the 

NBER which indicates that certain segments of our economy cyclically 

increase or decrease before, during, or after, an expansion or con­

traction period. These segments are referred to as leading, 

coincident, or lagging indicator time series, respectively . 

One of the important leading series :f.ndicators is the Industrial 

Materials Price Index. The model presently being used by the U. S . 

Department of Commerce for this indicator is composed of an aggregate 

of thirteen components which are supposed to represent the cyclical 

nature of prices for industrial materials (1,2]. The thirteen com­

ponents were originally selected for their historical importance in 

predicting trends . It was hypothesized that an individual analysis 

of these components might indicate that certain ones no longer pre­

dict current cyclical trends. Data (3,4,5] was obtained and the time 

series for each component was compared to the business cycle as 

defined by thL' Bureau of the Census [1] for the period 1947 to 1962. 

The data for each component is shown in Figs . 11-2, 11-3, 11-4, and 

11-5, where the shaded regions represent the contraction periods and 

the unshaded regions represent the expansion periods. A summary of 

these results appears in Table 11-1. 

This table indicates that the Rosin price series predicted 

only one contraction period, and that the Copper, Zinc, Burlap, and 

Tin price series each predicted only two contraction periods. 

The Copper, Tin, and Zinc series have been affected by two 

counteracting forces; namely, t he increase in population, and the 
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inroads of new t echnology. The rate of increase i n populat1on, 

coupled with the relative rate of de crease in usage because of the 

introduction of plastic substitutes, new styles in packaging , etc., 

have caused these items to be insensitive to the relative variations 

in the business cycle. Rosin and Burlap usage has been affected 

by the paper and synthetic chemical replacements , respectively . Both 

of these items have relatively inelastic demand curves which would 

make them less sensitive to business fluctuaions. 

When the five components, Copper, Tin, Zinc, Rosin, and Burlap 

are eliminated from the model for the industrial materials price 

index , the r emaining eight components which each predicted at least 

three of the contraction periods are used to form a revi sed model . A 

comparison between the original model and t he revised model indicates 

that the revised one forecasts the four contractional periods an 

average of about three months earlier than the original model ; refer 

to Fig. II-1. 



-219-

TABLE Il-1 

% of 
Number of months before the con- contraction 
traction period that each component: PL~r:lods 

Component series started a downtrend pred:f.ct (~d 

1948-49 1953-54 1957-58 1960-61 

Copper scrap 11 5 50 

Lead scrap 16 2 6 75 

Steel scrap 3 6 6 75 

Tin 28 3 50 

Zinc 14 8 so 

Burlap 16 24 so 

Cotton 4 24 13 11 100 

Print cloth 11 25 19 s 100 

Wool tops 4 30 5 7S 

Hides 10 30 12 11 100 

Rosin 9 25 

Rubber 2 31 18 75 

Tallow 10 30 5 75 
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Two new methods are proposed for the 

electrode-to-skin contact in routine clinical elec­

trocardiography. '111e proposed methods are less 

expensive, less time-consuming, less corrosive, 

cleaner, and yield the same results as present 

methods. Experimental tests indicate the recom­

mended methods yield electrocardiograms in agree­

ment with conventional methods. 

Introduction 

The use of electrocardiography in the diagnosis of heart condi-

tions has been well documented (1,2,3]. There are three basic 

components in electrocardiography: (1) electrocardiograph, (2) elec-

trodes, and (3) patient. This discussion is primarily concerned with 

the interface between the electrodes and the patient, that is, the 

medium for electrode-to-skin contact; refer to Fig. 111-1. 

l ----
(2) Electrode 

: (1) Electro- Patient 
i cardiograph 

E;j - ·. 

____ I 

Fig. III-1. Basic Components in Electro­

cardiography 

Electrode­
to-Skin 
Contact 
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Recently , expensive> a nd sopbi.stlc.atcd mL•.thods have l>cvn 

developed to continuou:=dy mon:itor e lcctroc11rd.logrrnns l.11 :qivc. Lil 

appl.ications s uch as for pJloti:;, ai:;tronauts, and aquairnuLs LL1,S]. 

However, this i s outside the scope of the present investigation 

which is only concerned with routine clinical procedures . 

Historical Perspective of the Problem 

In the embryonic stage of electrocardiography, it was common 

practice to place a patient's two hands and one foot into three large 

pots of saline solution to reduce the electrical resistance of the skin 

to obtain satisfactory cardiograms. The inconvenience of this tech-

11iqu1;' led Jamci:; and Williams [6] in 1910 to introduce contact electrocles 

which were later improved by Cohn [ 7] in 1920. Cohn utilized saline pad 

bandages with the contact electrodes. These saline pads were messy and 

bedclothes became wet, often resulting in short-circuits . In 1928 Boas 

[8] dispensed with saline pads by introducing the use of cup-shaped 

metal electrodes filled with soft soap. 

The modern era of electrode-to-skin contacts was initiated in . 

1935 when Jenks and Graybiel [9] introduced an electrode paste con­

taining a pumice abrasive and salt. This electrode paste or jelly, 

c.on td.~.; tlng of sodium chloride and an abrasive, became an essential part 

of cardiography. Very similar pastes (or jellles or creams) are now 

commercially. available. In fact, about 90% of electrode-to-skin con­

tacts are made using commercial pastes (jellies or creams), for example, 

Electro Cream by Elma Schonander Company. 
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Cardiographers have continually compla:i ned aboul conven l .I on al. 

electrode paste because it is messy, time-consuming, lnconvenlent, and 

unpleasant to patients, doctors, and technicians. Clothes become 

soiled,, patients must wash after tests, and instruments and electrodes 

are corroded. These grievances were summarized by Littmann [10] in 

1959. The inherent problems in the existing methods spurred Littmann 

to experiment with liquid solutions containing salt, propenol , and 

glycerine. He concluded that these liquid electrode solutions pro­

vided adequate electrode-to-skin contact and yielded results comparable 

to the jelly, and in addition, they eliminated all the objectionable 

features of the established jelly. These liquid solutions soon became 

available, for example, E-Graph manufactured by Hoyt Pharmaceutical 

Corporation. A slight improvement in this technique was introduced by 

using pads impregnated with the electrolyte solution, for example, 

Burdick Lectro-Pads produced by Burdick Corporation. 

After a brief period of usage, it became apparent that these 

liquid solutions introduced another problem. For a complete examina­

tion, usually at least ten e lectrode positions and sometimes as many 

as twenty are required for the patient's chest and extremities. The 

patient often becomes chille d with these wet solutions and shivering 

occurs which causes muscular movements. These movements introduce 

artifacts in the traces destroying their accuracy and impairing their 

interpretation. In addition, grounding problems are encountered 

between the patient and the resting table. 

At the present time-, about 90% of cardiographers still use the 

jelly or cream and the remainder use a liquid solution or impregna ted 
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pad (11] . In 1968 Marriott [3] recommended the use of jellies in 

his popular, standard text for cardiologists. 

Historically, the need for a good electrodc-to-sk .ln contact 

was of ess e ntial importance . The sk.in rc::>lstance (mnaally about. 

several thousand ohms) had to be ove rcome becaus e of the low .L mpe<lance 

of the string galvanometers. The electrode jelly, therefore, was 

necessary to reduce excessive A.C. interference which distorted traces. 

However, the recent electrocardiographs now being produced, for example 

by the Sanborn Division of Hewlett Packard, have input impedances of 

at least a factor of 10 to 100 times higher than . string galvanometers . 

In light of these new high-impedance circuits , an investigation 

of present electrode-to-skin contact materials was conducted . 

The principal goal of this investigation is to see if the 

present electrode-to-skin contact materials are n ecessary and to find 

suitable alternatives to thes e materials without impairing diagnosis. 

Purpose 

The purpose of this study is to find a less time-consuming, 

less corrosive, less objectionable, and less expensive method for 

providing the electrode-to-skin contact required in clinical practice 

of cardiography. This method should provide the same quality o f meas­

urements as existing methods. 

Experiment 

The experiment was conducted to inv~stigate seve ral electrode­

to-skin contact methods. The results of the electrocardiograms 
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obtained from both the c onventional and recommen<led methods were 

compared. Both limb and chest measure me nts we rt:' taken u s ing a d I. re ct--

reading electrocardiograph under- the supervJsion and ope ration o l" a 

cardiologist [11] The author was _the patient in t h e experiments 

described below. 

Experimental Apparatus. The electrocardiograph was a Sanborn 

(Hewlett Packard) Model Viso 100. There were two visual outputs, a 

Biocom Scope, Model 430, and a Sanborn millivolt recorder . The sen-

sitivity of the output was 1 cm = 1 millivolt with a chart speed 

of 25 mm/sec. Measurements were taken at rest and while the patient 

was on a M. D. Electronics Treadmill, Model E-6 at two mph and 10° 

incline. Two types of electrodes were used. Che st measurements were 

taken while the patient was on the treadmill and while the patient 

was at rest using the M. D. Electronics Ag/AgCl electrode s with in-

line insulated connectors; refer to Fig. III-2. These electrodes 

were supported by two-sided adhesi ve rings. The e l ectr odes are about 

2 cm diameter. Limb measuremen ts were taken at rest using the 

Lumiscope Cardio Clamps; refer to Fig. 111-2. 

Six different electrode-to-skin contacts were investigated. 

They were (1) dry, that is direct e l ectrode-to-skin contact, (2) tap 

wat(.~ r, (3) s tandard saline solu t ion w i th 0.9 gms NaCl USP / 100 cc, 

s upplied by Cutter Laboratories, (4) Pacquins Hand Cream (for extra 

dry · hands) produced by Charles Pfizer and Company , Inc., (5) standard 

,_ 

EKG paste manufactured by Burton, Parsons, and Company , Inc., and 

(6) isopropyl a lcohol, 70% by volume. 



Preparat:l.ons (3), (5), and (6) .represent the convc•nt.io11a.I 

methods; preparations (1), (2), and (4) represent the proposed 

methods. 

Experimental Procedure. 'The chest measurements were taken in 

the standard V-4 position using three probes and a ground. The hair 

was shaved in the area where electrodes were placed on the chest. The 

limb measurements were taken using two arms, and one leg as a ground 

which is called the standard limb lead l; refer to Fig. 111-2. 

Experimental Results. All six electrode-to-skin contact 

mediums gave similar traces for the limb electrocardiograms. A com­

parison of these cardiograms is shown in Fig. llI-3. No differences 

between the cardiograms were discernible [11). A comparison of the 

methods for limb measurements including costs is summarized in Table 

III-1. 

The use of a dry skin-to-electrode contact is recommended 

for limb measurements because it is fast, cost-free, and noncorro­

s l.ve . No application or removal of any messy material Js requin~d. 

Finally, and most important, the electrocardiograms are comparable 

to the other methods. 

Some difficulty was encountered using the liquid contact 

methods with the chest measurements because the liquid run-off 

reduced the effectiveness of the adhesive tape in supporting the 

electrodes. However, the hand cream and EKG paste contacts yielded 

comparable cardiograms [11]. A dry contact was not used for the 

chest measurements during the movement on the treadmill because 
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Table III-1. Summary of Results for Limh Measurements Using 
Various Electrode~to-Skin Contact Methods 

·-·--.. ,- .. ------
Time-for 

Cost of Application Applica-
Electrode- Contact and tion and 
to-Skin Materials Removal Cardio- Removal/ 
Contact (per of Contact gram Patient Corrosive 
Material Patient) Material Results (minutes) Properties 

---

(1) Dry -- Nothing Excellent -- Negligible 
Required 

(2) Tap -- Easy Excellent 2 Negligible 
Water 

(3) Saline 2¢ Must he Excellent 2.5 Minor 
Solution Washed 

Off 
Electrodes 

(4) Hand 4¢ May be Excellent 3.5 Negligible 
Cream Rubbed 

into Skin 

(5) EKG 10¢ Must be Excellent 6.5 Serious 
Paste Washed Off Problem 

Electrodes Unless 
and Cleaned 

Patient Very 
Carefully 

(6)Isopropyl 2¢ Easy 
Alcohol 

Excellent 2 Negligible 

. ·--·· ·-·-···---·--- -·- -- __ _..___ __ --· .. ·····-··--- . - . -·--.l 

lubrication between the skin and electrode may reduce the possibility 

of chafing a nd art i facts. 

The comparison of the hand cream and the EKG paste is interest-

ing because after removal of the electrode, the hand cream can be 

simply rubbed into the skin like a vanishing cream. In comparison , 

the EKG paste is messy , must be wipe d off, and usuall y is troublesome 
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to patient, doctor, technician, and especialJ.y to e l ectrodes because 

of corrosion (10]. The use of hand cream will undoubtedly be 

favorably received by fem'ale patients. 

These results are in substantial agreement with Lewes (12] 

who investigated very high-impedance research type instruments of 

about 4 megohm. The present investigation was conducted with an 

instrument of input impedance around 20 kilohm which is the type 

commonly used in routine clinical practice. 

Conclusion 

For limb measurements, all six electrode~to-skin contact 

methods yielded similar electrocardiograms. The dry contact method 

is recommended. Use of conventional EKG jellies, pastes, creams, 

alcohol solution, and electrolyte pads can be discontinued for 

routine clinical practice. The savings in time, effort, and money, 

and the elimination of shivering and corrosion problems will be the 

result. 

For chest measurements, a commercial, noncorros i ve hand cream 

was more convenient and yielded electrocardiograms comparable to the 

recommended EKG pastes which are messy and corrosive . 

The standard recommended practices for electrode-to-skin con­

tacts were developed in the 1930's for low input instruments, and 

these practices are no longer necessary with today's commercial elec­

trocardiographs. 
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