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ABSTRACT

This thesis aims at enhancing our fundamental understanding of the East Asian summer

monsoon (EASM), and mechanisms implicated in its climatology in present-day and warmer

climates. We focus on the most prominent feature of the EASM, i.e., the so-called Meiyu-

Baiu (MB), which is characterized by a well-defined, southwest to northeast elongated quasi-

stationary rainfall band, spanning from eastern China to Japan and into the northwestern

Pacific Ocean in June and July.

We begin with an observational study of the energetics of the MB front in present-

day climate. Analyses of the moist static energy (MSE) budget of the MB front indicate

that horizontal advection of moist enthalpy, primarily of dry enthalpy, sustains the front in a

region of otherwise negative net energy input into the atmospheric column. A decomposition

of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes

identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional

stationary eddy velocity as the most influential factors determining the pattern of horizontal

moist enthalpy advection. Numerical simulations in which the Tibetan Plateau (TP) is

either retained or removed show that the TP influences the stationary enthalpy flux, and

hence the MB front, primarily by changing the meridional stationary eddy velocity, with

reinforced southerly wind on the northwestern flank of the north Pacific subtropical high

(NPSH) over the MB region and northerly wind to its north. Changes in the longitudinal

thermal gradient are mainly confined to the near downstream of the TP, with the resulting

changes in zonal warm air advection having a lesser impact on the rainfall in the extended

MB region.

Similar mechanisms are shown to be implicated in present climate simulations in the

Couple Model Intercomparison Project - Phase 5 (CMIP5) models. We find that the spatial

distribution of the EASM precipitation simulated by different models is highly correlated

with the meridional stationary eddy velocity. The correlation becomes more robust when

energy fluxes into the atmospheric column are considered, consistent with the observational
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analyses. The spread in the area-averaged rainfall amount can be partially explained by

the spread in the simulated globally-averaged precipitation, with the rest primarily due to

the lower-level meridional wind convergence. Clear relationships between precipitation and

zonal and meridional eddy velocities are observed.

Finally, the response of the EASM to greenhouse gas forcing is investigated at different

time scales in CMIP5 model simulations. The reduction of radiative cooling and the increase

in continental surface temperature occur much more rapidly than changes in sea surface

temperatures (SSTs). Without changes in SSTs, the rainfall in the monsoon region decreases

(increases) over ocean (land) in most models. On longer time scales, as SSTs increase, rainfall

changes are opposite. The total response to atmospheric CO2 forcing and subsequent SST

warming is a large (modest) increase in rainfall over ocean (land) in the EASM region.

Dynamic changes, in spite of significant contributions from the thermodynamic component,

play an important role in setting up the spatial pattern of precipitation changes. Rainfall

anomalies over East China are a direct consequence of local land-sea contrast, while changes

in the larger-scale oceanic rainfall band are closely associated with the displacement of the

larger-scale NPSH. Numerical simulations show that topography and SST patterns play an

important role in rainfall changes in the EASM region.
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Chapter 1

Motivation

Monsoons are conventionally defined as summertime tropical circulations with seasonally

reversing prevailing winds accompanied by alternating dry and wet seasons associated with

zonally asymmetric heating (e.g., Webster 1987; Webster and Fasullo 2003; Trenberth et al.

2006). They exert a significant and far-reaching influence on the general circulation of

the atmosphere, the global hydrological cycle and the atmospheric energy transport (e.g.,

Dima and Wallace 2003; Rodwell and Hoskins 1996, 2001). The Asian monsoon, the largest

monsoon system on Earth, plays a crucial role in the entire eastern hemisphere tropics,

subtropics, and mid-latitudes, and affects 60% of the world population (e.g., Wang 2006).

The East Asian summer monsoon (EASM) is one important branch of the Asian Monsoon.

On the large scale, the EASM is primarily characterized by a quasi-stationary, southwest

to northeast elongated rainfall band, spanning from China to Japan into the northwestern

Pacific (Fig. 1.1a). This precipitation front brings the major rainy season, referred to as

Meiyu in China and Baiu in Japan,1 in these densely-populated and rapidly-growing regions.

Its large intraseasonal and interannual variability causes flooding, droughts, heat waves, and

other consequent natural hazards, affecting millions of people’s lives and resulting in huge

economic losses (e.g., Gao and Yang 2009; Sampe and Xie 2010; Waliser 2006; Yang and Lau

1In China, the name “Meiyu” is used for persistent rainfall from mid-June to mid-July over the Yangtze
River Valley (Tao 1987). The name “Baiu” is used in Japan during the same period (Saito 1985). In
Chinese, “Mei” means plums, which in the Yangtze River valley reach maturity in the Meiyu-Baiu season.
A homonym of “Mei” in Chinese means mold, which vividly describes the tendency to molding under very
moist and warm atmospheric conditions.
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2006).

Because of the socioeconomic importance of the EASM, its meteorological and climato-

logical significance are highlighted and widely investigated in the literature (e.g., Ding and

Chan 2005; Wang 2006). However, even its large-scale dynamics, let alone factors controlling

its multi-scale variability, remains poorly understood. Fundamental questions, such as what

controls the location and the seasonal evolution of the EASM front, or why maximum rainfall

is not colocated with maximum SSTs, remain largely unanswered. Finding answers to these

questions is even more pressing in the face of the predicted expansion of subtropical dry

zones with climate change, with potentially significant impacts on subtropical precipitation

fronts such as the EASM, and enhanced regional sensitivity to greenhouse gases and aerosol

radiative forcing (e.g., Hirahara et al. 2012; Hsu et al. 2013).

Despite being a large-scale feature of the summer tropical and subtropical circulation

over eastern Asia and the northwestern Pacific, the EASM is not well represented in most

state-of-the-art Global Climate Models (GCMs), both in terms of its climatological features

and seasonal evolution (Sampe and Xie 2010). Large inter-model spread in EASM sim-

ulations exists in current climate simulations that are amplified when considering future

projections. Model resolution is found to be a factor affecting the quality of the simulated

large-scale precipitation over the EASM region (IPCC AR4, Solomon et al. 2007), but it is

not the only factor: improvements in EASM rainfall simulations can only be observed in

some models and do not continue when resolution is high enough. Ocean-atmosphere inter-

actions are other factors believed to produce significantly different simulated precipitation in

the Asian monsoon: the intensity of the EASM is relatively lower in AGCMs (Atmospheric

General Circulation Models) in which sea surface temperatures (SSTs) are prescribed, and

no interaction between atmosphere and ocean is allowed (Gao et al. 2011; Kitoh 2004).

In the following, I provide a review of the current knowledge of the EASM, which is

divided in three different sections to reflect the three overarching goals of this dissertation

work.
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1.1. Present climate

The climatology of the EASM has been widely investigated in the literature, but no

mechanism for this formation has yet been accepted. In this study, we focus on the energetics

of the EASM system and untangle the mechanisms by which the Tibetan Plateau (TP)

dominates the formation of the EASM. In general, the EASM is characterized by mixed

tropical and mid-latitude influences with frontal systems and jet stream effects (Ding and

Chan 2005; Molnar et al. 2010). One of its notable features is its seasonal northward and

northeastward migration punctuating three stationary periods, two abrupt northward jumps,

and rapid southward retreat: heavy rainfall starts in the South China Sea (SCS) and tropical

oceans at the beginning of May and shifts rapidly to the Yangtze River Valley, Korea, and

southern Japan in mid-June, when the Meiyu-Baiu (MB) front reaches maturity; in mid-

July, the rainfall core jumps to North and Northeast China, marking the end of the MB,

and then retreats back to South China at the end of August (e.g., Ding and Chan 2005; Gao

et al. 2011; Sampe and Xie 2010).

The formation of the EASM is believed to be the product of land-sea thermal contrast,

orographic forcing, and the seasonal shift of the subtropical westerly jet. In simulations with

idealized continental configuration, land-sea thermal contrast alone, due to the differing re-

sponse of land and ocean surfaces to the seasonally varying insolation, was shown to produce

a precipitation zone to the east of the continent and a dry zone to the west through Rossby

wave dynamics and ventilation of low moist static energy (MSE) air from the ocean to the

land, which resemble the large-scale summertime precipitation pattern over Eurasia (Chou

et al. 2001). More comprehensive simulations, however, suggest that a realistic EASM can

be simulated only when topography over Asia is included (e.g., Kitoh 2004; Liu and Yin

2002; Park et al. 2012a; Wu et al. 2012). The TP has long been held to exert a profound

influence on the Asian climate primarily through thermal forcing (e.g., Flohn 1957; Yeh et al.

1957; Li and Yanai 1996). During the warm season, increased surface heat flux over the TP
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drives the large-scale atmospheric circulation and reinforces the land-sea thermal contrast,

resulting in an intensified EASM (Wu et al. 1997, 2002, 2007b, 2012): elevated heat flux

causes cross-isentropic surface airflow along the TP slopes and results in cyclonic circulation

around the TP in the lower-troposphere and anticyclonic circulation (the so-called Tibetan

or South Asian High, SAH) in the upper troposphere (Yanai and Wu 2006). The lower-level

cyclonic circulation strengthens the moisture transport to the EASM region, thus reinforc-

ing the precipitation. The establishment of SAH, one of the hallmarks of the larger-scale

Asian monsoon, has a significant impact on the seasonal transition of the atmospheric circu-

lation over the EASM areas and far-reaching influences over the entire northern hemisphere

(Enomoto et al. 2003; Yanai and Wu 2006; Rodwell and Hoskins 2001).

Recent work, however, suggests that mechanical effects might be more important than

traditionally thought: the subtropical westerly jet, whose core is still located on the high

elevation terrain of the TP in late spring (Park et al. 2012a), induces a region of lower-level

downstream convergence, which may be a primary driver of the EASM (work of Takahashi

and Battisti, reported by Molnar et al. 2010). This hypothesis may explain why the demise

of the MB in mid-July is concurrent with the northward jump of the subtropical westerly jet

(as already identified in the late 50s, e.g., Dao and Chen 1957; Suda and Asakura 1955), in

spite of increasing land-sea thermal contrast. While suggestive, the precise workings of this

mechanism on the formation of the MB rainband have not been fully investigated.

In a recent observational study, Sampe and Xie (2010) called for a re-interpretation of

the thermal influence of the TP on the EASM. In boreal summer, because of the elevated

topography and latent heating due to monsoonal convection in South Asia, air over and south

of the TP is warmer than the surrounding regions. The subtropical westerly jet that is still

prevailing over the TP advects warm air from the southeastern TP to the MB region. The

warm air advection provides a large-scale environmental forcing capable of maintaining the

MB rainfall band even in the absence of diabatic terms. Such forcing can also steer weather

disturbances, which favor vertical convection by intensifying lower-level moisture advection
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Figure 1.1 Climatological mean precipitation during the MB season. Bold black contour
shows where orography intersects the 800 mb level.

with transient upward motion. As the jet stream rapidly jumps northward in mid-July (e.g.,

Schiemann et al. 2009), westerly flow and maximum mid-tropospheric temperatures are no

longer colocated, causing the rapid weakening of the EASM rainfall band.

Following Sampe and Xie (2010), we define June 15 to July 14, May 16 to June 14, and

July 15 to August 13 as the climatological MB, pre-MB, and post-MB seasons, respectively.

During the MB season, a spatially well-organized rainfall band extends over East Asia and

the northwestern Pacific (Fig. 1.1). The time evolution of the daily precipitation averaged

over the MB region (Fig. 1.2a) shows a gradual increase from winter to late spring, and a

sharp increase in mid-June, when the precipitation reaches its peak; around mid-July, the

precipitation decreases rapidly and returns to values comparable to those in the pre-MB

season. The MB also shows a large interannual variability in its duration and intensity

which causes variations up to 20% (1σ variability) in precipitation during the MB season

(Fig. 1.2b), far larger than that in the Indian summer monsoon (e.g., Krishnan et al. 2011).

The climatological conditions of the MB have been described at length in the literature

(e.g., Ding and Chan 2005; Ninomiya and Murakami 1987; Sampe and Xie 2010) and here

we only provide a brief summary, based on the most recent ERA-Interim product. Generally

5



Figure 1.2 Climatology of the MB season from 1997 to 2009. a) Seasonal cycle of the
precipitation averaged over the area enclosed by the red lines in Fig. 1.1, where precipitation
is the largest. The blue and yellow lines show the daily mean precipitation and filtered
precipitation by a low pass filter with a cutoff period of 20 days, respectively. The tick marks
on the horizontal axis correspond to the middle of each month. b) Interannual precipitation
anomaly over the enclosed region.

speaking, the MB rainfall is associated with pronounced lower-level moisture flux convergence

(Fig. 1.3a) and wind convergence (Fig. 1.3c). A large meridional gradient of specific humidity

(Fig. 1.3a) is present in both the Meiyu and the Baiu regions but a sharp meridional gradient

of temperature (Fig. 1.3b) is only seen in the Baiu region and further downstream over

the northwestern Pacific, which confirms that only the Baiu is associated with a lower-

level baroclinic zone (e.g., Chen and Chang 1980; Ding 1992; Ding and Chan 2005). The

importance of the zonal wind (i.e., the subtropical westerly jet) in the maintenance of the

rainband has been strongly emphasized in the literature (e.g., Molnar et al. 2010; Sampe and
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Xie 2010), while the role of the meridional wind has primarily been interpreted in association

with the southerly moisture transport from tropical oceans. Here, we will argue for a more

fundamental role of the meridional wind as an intrinsic component of the circulation response

to the TP forcings and an essential element of the MB front. As evident in Fig. 1.3d, over the

MB region the meridional wind is primarily from the south, advecting warm and moist air

from the tropical oceans to support the MB rainfall band. The meridional wind convergence

contributes significantly to the total horizontal convergence (Fig. 1.3c); in fact, the zonal

winds diverge in the MB region primarily due to the interaction of the zonal wind and the

TP.

Figure 1.3 MB climatology. a) Moisture flux convergence (color contours, g kg−1 day−1)
and near surface (925 mb) specific humidity (line contours, g kg−1). b) Absolute value of
lower-level (850 mb) temperature gradient (color contours, K (1000 km)−1) and temperature
(line contours, K). c) Lower-level (850 mb) wind convergence (color contours, 106 s−1) and
wind field (vector, m s−1). d) Lower-level (850 mb) meridional wind (color contours, m s−1)
and meridional divergence (line contours, m s−1(1000 km)−1).
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1.2. Model spread

State-of-the-art Global Climate Models (GCMs) participating in the World Climate Re-

search Programme (WCRP) Coupled Model Intercomparison Project Phase 3 (CMIP3) and

CMIP5 have been shown to grossly capture the large-scale pattern of the EASM precipita-

tion, but wide model-spread exists (Huang et al. 2013; Sperber et al. 2012; Song and Zhou

2013). While CMIP5 models have a slightly enhanced skill relative to CMIP3 in simulat-

ing the EASM climatological precipitation in terms of multi-model mean (MMM) (Sperber

et al. 2012), significant biases in MMM rainfall amounts and spatial distribution remain.

Fundamental issues related to the representation of basic physical processes in GCMs, such

as moist convection (Bony et al. 2013b; Huang et al. 2013; Stevens and Bony 2013; Chen

et al. 2010) and large-scale circulations (e.g., Ceppi et al. 2012; Huang et al. 2013), have been

suggested to be the limiting factors in improved climate simulations, together with relatively

coarse resolution, especially in regions with complicated topography like Asia (e.g., Boos

and Hurley 2013). However, no study has yet provided a unified framework to reconcile the

spread in present-day EASM simulations.

1.3. Future climate

It is well understood that the increase in global precipitation in response to greenhouse

warming is energetically constrained rather than being limited by the availability of atmo-

spheric water vapor (e.g., Mitchell et al. 1987; O’Gorman et al. 2012). Therefore, the global

precipitation changes less rapidly with temperature (at around 2% K−1 in current climate)

than the change in water vapor in the atmosphere at around 7.5% K−1 from the Clausius-

Clapeyron relation (Held and Soden 2006). Changes in precipitation at the regional scale

are more complex, and arguably more important than global changes, as circulation changes

will affect the precipitation locally. Here, we explore regional changes in the EASM region,
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in response to CO2 forcing. Although it has been found that the rainfall during the EASM

season is projected to increase at the end of the 21st century, limited understanding has

prevented us from robustly identifying the physical and dynamical processes contributing to

the change of the EASM and from better constraining the inter-model spread of EASM pro-

jections. Understanding how the EASM responds to a changing climate can provide support

to theories of its maintenance in present-day climate and shed light into the dynamics and

responses of other subtropical convergence zones to climate change.

The mechanisms that alter regional precipitation vary at different time scales. A fast

response to an increase in CO2 concentration before sea surface temperatures (SSTs) change

occurs at short timescales and is associated with changes in large-scale wind patterns in the

atmosphere. Large uncertainties in the precipitation change are found in the fast response,

particularly over tropical oceanic regions, which are identified as a primary contributor to

the inter-model spread in the difference in simulated precipitation between two equilibrium

climate states (Bony et al. 2013a). A slow response to the subsequent increase in SSTs

while maintaining the radiative forcing of CO2 in the atmosphere is found to resemble the

climatological precipitation pattern following observe the “wet get wetter” behavior (Held

and Soden 2006).

The “wet get wetter” response captures the thermodynamic response of net rainfall over

oceanic regions to SST forcing. Based on the assumptions of unchanged relative humidity

and circulation, increases in atmospheric water vapor in a warmer climate intensify clima-

tological convergence of water vapor fluxes. As a result, climatological wet regions (positive

net precipitation regions) will become wetter. This simplified depiction has been generally

accepted in the study of the response of the hydrological cycle to climate change; however,

because of its assumptions, it does not capture the complexity of the thermodynamic pre-

cipitation response at the regional scale. For example, Xie et al. (2010) found that tropical

rainfall change follows a “warmer get wetter” pattern modulated by future SST pattern,

rather than the “wet get wetter” pattern, which can only be realized if SSTs are increased
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uniformly.

While providing a useful starting point, the thermodynamic change due to SSTs is only

one component of the total precipitation response. Dynamic changes in response to SST

forcing have also been found to be important both globally and locally (e.g., Xie et al. 2010,

2009; He and Zhou 2015). Over the EASM region, dynamic changes have, for instance, shown

to be associated with changes in the NPSH. Kitoh et al. (1997) found that global warming is

associated with a strengthening and southward movement of the NPSH in a global climate

model (GCM). Together with more El Niño-like patterns in future climates, it explains the

mean sea-level pressure anomalies that might be related to the delay of Baiu withdrawal

simulated in GCMs (Kitoh and Uchiyama 2006). The influence of tropical SST anomalies

on the western NPSH has been vastly explored at the interannual timescale. It has been

proposed that increases in rainfall over the tropical Indian Ocean due to the resulting warm

SST anomalies from El Niño in the precedent year generate Kelvin waves emanating into the

tropical western Pacific, inducing local northesterly surface wind anomalies and resulting in

an anticyclonic circulation over the western North Pacific (e.g., Yang et al. 2007; Xie et al.

2009). This signal can be enhanced by a cold tropical Pacific SST anomaly that generates

anticyclonic Rossby waves to its northwestern region (e.g., Terao and Kubota 2005). This

relationship between the western NPSH and the zonal SST gradient between the tropical

Indian Ocean and the tropical Western Pacific is examined in RCP4.5 and RCP8.5 model

outputs in CMIP5 by He and Zhou (2015). They found that this zonal temperature gradient

has a robust influence on simulated western NPSH anomalies, which modulate the climate

change over eastern China. In addition, they performed a sensitivity test on the impacts of

tropical SST anomalies on the western NPSH, and they found that both the tropical Indian

Ocean and tropical Western Pacific SST anomalies contribute to changes in the projected

western NPSH intensity.

Mechanisms driven by changes other than just SSTs have, however, been invoked. Zhao

et al. (2011a) investigated the tropical-North Pacific mode in present climate and found
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that this mode is closely correlated with the variability of climate over Asia and the Pacif-

ic Ocean through Asian-Pacific Oscillation (APO). Sensitivity experiments emphasize the

importance of the Asian land heating due to elevated topography (the TP) in generating

summertime Asian-Pacific climate anomalies. Pacific SST forcing, seemingly important in

this teleconnection, was suggested to play a much weaker role in the summertime Asian-

Pacific atmospheric circulation. At interdecadal timescale, Zhao et al. (2011b) found that

from a low-APO to a high-APO decade, both the upper-tropospheric SAH and the lower-

tropospheric low pressure system intensify over Asia. This strengthened circulation results

in anomalous southerly, southwesterly winds prevailing over the Asian monsoon region and

leads to a strong northward transport of moisture and enhanced rainfall over the Asian

monsoon region.

1.4. Goals of this dissertation work

In this thesis, I explore the fundamental dynamics of the EASM with the aim of unraveling

dynamic and thermodynamic mechanisms that are implicated in 1) its current climatology,

2) its representation in present-day simulations by state-of-the-art climate models, and 3) its

response to CO2 forcing at different time scales. We frame our analyses of the current clima-

tology of the EASM within the context of the moist static energy budget as observed in the

European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim products.

Eddy decomposition of the advection terms in the MSE budget is used to expose the role of

zonally asymmetric forcings in the energetics of the EASM system. Finally, we use numerical

experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model,

version 2.1 (AM2.1, Anderson et al. (2004)) to explore the processes through which the TP

influences the EASM rainfall formation.

We then use the theoretical understanding of the energetics of the EASM developed in

part I to analyze model simulations from state-of-the-art climate models in the Coupled
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Model Intercomparison Project Phase 5 (CMIP5). This allows us to expose processes con-

tributing to the large inter-model spread of rainfall amount and spatial pattern of rainfall of

EASM simulations based on our previous study of current climatology.

In the final part of this dissertation work, we use CMIP5 simulations to investigate the

response of the EASM to atmospheric CO2 forcing and subsequent sea surface warming

within the context of the moisture budget. The relative role of the thermodynamic and

dynamic contributions to the rainfall changes are examined. We use GFDL AM2.1 numerical

experiments to further explore contributions from topography and surface warming pattern

to rainfall changes.
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Chapter 2

Energetics of the EASM system

Studies on the energetics of the EASM system date back to the late 80s, when latent en-

ergy advection was identified as a major energy source for the development and maintenance

of the rainfall band over the MB region. However, a different mechanism has been recently

proposed by Sampe and Xie (2010), who argue that mid-tropospheric warm air advection

through the subtropical westerly jet provides a large-scale forcing, which is fundamental in

triggering and maintaining the MB front even in the absence of diabatic forcing. In this view,

advection of dry enthalpy, rather than latent energy, plays a key role. The work by Sampe

and Xie (2010) is based on observational studies of the dry thermodynamic equation. Here,

we extend their work to a comprehensive consideration of moisture, by framing our analyses

within the context of the MSE and moisture budgets. As detailed below, this provides a

more consistent view of the energetics of the EASM and allows us to highlight the role of

zonally asymmetric circulations in the maintenance of the rainfall band.

2.1. Data and method

Precipitation data are from the Global Precipitation Climatology Project (GPCP) One-

Degree Daily Precipitation Dataset (1DD) plotted over a 1◦×1◦ latitude-longitude grid from

1997 to 2008 with daily temporal resolution (Huffman et al. 2001). All other data are from the

European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim products,
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spanning the 20-year period from 1990 to 2009. Surface fluxes (latent heat and sensible heat)

and radiation fluxes are from the ERA-Interim (1.5◦ grid, Dee et al. 2011) 3-hour-forecast

fields produced from forecasts beginning at 0000 and 1200 UTC. Data on pressure levels,

such as temperature, wind field, and humidity, are obtained from ERA-Interim reanalysis (37

pressure levels, 512×256 N128 Gaussian grid, analysis fields produced for 0000, 0600, 1200,

1800 UTC) in the Data Support Section of the National Center for Atmospheric Research

(NCAR). The energy and radiation flux data are then converted to daily data, while data

on pressure levels are analyzed at a 4×daily frequency to improve eddy statistics.

We use the reanalysis data to compute the MSE and moisture budgets for the EASM,

and we perform a decomposition of all terms in the budgets into mean, stationary, and

transient eddy components. To do so, we denote (·)′ as the deviation from the monthly

time mean (·) for each individual year (e.g., u′ = u − u), and (·)∗ as the deviation from

the global zonal mean [·] (e.g., u∗ = u − [u]). As detailed in Eq. 2.6, we thus decompose

fluxes into mean, stationary, and transient eddy terms. Monthly total and eddy fluxes are

computed for each year and then averaged over all available years to generate a 20-year

long-term climatology. Based on the above definitions, transient eddies contain sub-monthly

synoptic-scale variability, with longer-scale (timescale longer than a month) variability being

captured by the stationary eddy terms.

2.2. Thermodynamic equation

Sampe and Xie (2010) investigated the large-scale dynamics of the MB in the context of

the dry thermodynamic budget evaluated from the Japanese reanalysis (JRA-25), and argued

that temperature advection from the southeastern flank of the TP at 500 mb is important in

inducing vertical motion and positioning the MB front. The dry thermodynamic equation
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in pressure coordinates is,1

∂tT = Q/cp −
ω

cp
∂ps− v · ∇pT −

1

cp
ω′∂ps′ − v′ · ∇pT ′, (2.1)

where Q is diabatic heating/cooling, cp is the specific heat at constant pressure, s = cpT +gz

is the dry static energy, v is horizonal wind, T is temperature, z is geopotential height,

and g is gravitational acceleration. (·)′ denotes time deviations from the temporal mean

(·). Averaged over a climatological period, the heat storage on the left hand side can be

neglected. Here, we briefly discuss the TD budget in the MB region based on Era-Interim

data and compare our findings with those in Sampe and Xie (2010).

In the tropics, the leading order balance is between the vertical advection term (second

term on the right hand side in Eq. 2.1) and the diabatic term, with smaller contribution

from the horizontal temperature advection (the third term on the right hand side) because

of weak temperature gradients (e.g., Sobel et al. 2001). However, in the MB region, especially

over the Baiu region and the northwestern Pacific, horizontal advection becomes significant

and provides warm air advection that well correlates with the vertical ascending motion

(Fig. 2.1c,f; Sampe and Xie 2010). Both zonal and meridional components contribute to

the overall pattern of warm air advection in the MB region, with the former dominating in

the Meiyu region and the northwestern Pacific at lower latitudes (Fig. 2.1a,d), and the latter

dominating in the Baiu region and the northwestern Pacific at higher latitudes (Fig. 2.1b,e).

In partial agreement with Sampe and Xie (2010), we find that transient eddy fluxes are

negligible in limited areas of the MB region but become more important further downstream

over oceanic regions (Fig. 2.1i).

While the mid-tropospheric dry thermodynamic balance successfully explains the overall

position of the MB rainfall band, it has the conceptual disadvantage of treating the diabatic

term as a known forcing, which in fact influences and strongly depends on the circulation

1Sampe and Xie (2010) write the thermodynamic equation in potential temperature. Here, we use
temperature for notation consistency with Eq. 2.2, used to derive the moist static energy budget.
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Figure 2.1 Mid-tropospheric temperature advection in the MB season. Columns show
zonal (left), meridional (middle), and total (right) horizontal temperature advection. Rows
show the total advection (top), the mean advection (middle), and the transient eddy term
(bottom). In all panels, color contours indicate temperature advection (K day−1, with
warm/cold colors indicating warm/cold air advection) and line contours indicate the mid-
tropospheric vertical velocity (Pa s−1, with upward/downward motion in solid/dash contours
and the zero contour thickened.)

itself. Even when used as a diagnostic tool from reanalysis data, it provides the challenge

of estimating the non-readily available diabatic term as the residual of the thermodynamic

budget, with results potentially dependent on the relatively coarse vertical resolution.

2.3. MSE budget

Previous work has emphasized the advantages of the MSE budget over the dry ther-

modynamic equation in studies of tropical-subtropical circulations in which comprehensive
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effects of temperature, humidity, and diabatic processes are taken into consideration, and

the interaction between moist convection and the circulation is accounted for (e.g., Chou and

Neelin 2003; Neelin 2007). Following these studies, first we consider the vertically-integrated

thermodynamic and moisture equations in pressure coordinates,

cp〈∂tT 〉+ cp〈v · ∇T 〉+ 〈ω∂ps〉 = 〈Qc〉+ Snet +Rnet + SH, (2.2)

Lv〈∂tq〉+ Lv〈v · ∇q〉+ Lv〈ω∂pq〉 = 〈Qq〉+ LH, (2.3)

where q is specific humidity and 〈·〉 indicates a vertical mass integral (i.e.,
∫
·dp/g). The

vertically-integrated change of internal energy and work done by the atmosphere is balanced

by the energy fluxes at the boundaries of the atmospheric column, that is, the net shortwave

radiation Snet, the net longwave radiation Rnet and the sensible heat SH, and the convective

heating Qc. The vertically-integrated change of moisture in the atmospheric column is

balanced by the evaporation LH/Lv and precipitation −〈Qq〉/Lv, where LH is the surface

latent heat flux, Qq is moistening and Lv is latent heat of vaporization. The sum of convective

heating and moistening must be zero in the atmospheric column because precipitation P =

−〈Qq〉/Lv = 〈Qc〉/Lv.

The MSE balance in the atmospheric column is obtained by summing Eqs. 2.2 and 2.3

and averaging over a climatological period:

〈∂E
∂t
〉 = F net − 〈v · ∇E〉 − 〈ω∂h

∂p
〉, (2.4)

and

F net = S↓t − S
↑
t − S↓s + S↑s −R

↑
t +R↑s −R↓s + SH + LH, (2.5)

where h = cpT +gz+Lvq is the MSE, E = cpT +Lvq is the atmospheric moist enthalpy, and

F net is the net energy flux into the atmosphere, with the subscript t and s denoting the top of

atmosphere and surface, respectively. The vertical advection of MSE is the column-integrated
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product of vertical velocity in pressure coordinate ω and the MSE stratification ∂ph, whose

vertical integral in the troposphere is negative in pressure coordinates. Therefore, regions

of positive vertical advection, where 〈ω ∂h
∂p
〉 > 0, correspond to ascending vertical motion,

and vice versa. That is, vertical motion can be inferred from the sum of the net energy

flux into the atmospheric column and horizontal advection of moist enthalpy, provided that

the storage term is negligible over a climatological period. In the tropics and over land,

the vertical MSE advection is almost entirely balanced by the net energy flux; however,

over oceans outside of the deep tropics, the horizontal advection of moist enthalpy is non-

negligible and essential in maintaining vertical motions (Fig. 2.2). The horizontal moist

enthalpy advection has also been shown to be critical in setting the poleward boundary of

monsoonal convergence zones over subtropical continents (Chou and Neelin 2003; Neelin

2007). In the extra-tropics, where precipitation is primarily due to moisture transport along

isentropes by large-scale baroclinic eddies, vertical motion is primarily along rather than

across isentropes (which are parallel to isobars in the tropics), and the stratification (which

determines the total gross moist stability) is dynamically determined (e.g., Schneider 2004),

rather than thermodynamically constrained to follow a moist adiabat as it is in the tropics.

Therefore the MSE budget in the extra-tropics provides weaker constraints on the circulation

(e.g., Merlis and Schneider 2010). With these caveats in mind, the MSE budget as written

in Eq. 4.1 does hold across latitudes and we will use it in the MB region to shed some light

on its dynamics.

As discussed in previous studies (e.g., Chou and Neelin 2003), F net is positive over land

and most convective zones in tropical oceans but negative in extra-tropical oceans (Fig. 2.2,

left). In boreal summer, the continents in the northern hemisphere receive high insolation

extending to high latitudes. The outgoing longwave radiation depends largely on the upper-

tropospheric temperature and cannot fully compensate the incoming insolation. The thermal

inertia of land is very small, which results in a zero heat flux condition at the surface

(Chou and Neelin 2003), whereas, over the oceans, the net flux into the surface can be
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Figure 2.2 Vertically integrated MSE budget. Net energy flux into the atmospheric column
F net (left), vertical integral of horizontal moist enthalpy advection −〈v · ∇E〉 (middle), and

vertical integral of vertical MSE advection −〈ω ∂h
∂p
〉 (right) for the pre-MB season (top), MB

season (middle), and post-MB season (bottom). Contours are in W m−2.

balanced by heat transport and heat storage, which in turn affects F net. As a result, F net

is positive over the northern hemisphere continents and convective oceanic regions in boreal

summer. The horizontal advection of moist enthalpy tends to offset F net in most regions

(Fig. 2.2, middle). Over land and convective tropical oceans, the horizontal moist enthalpy

advection is negative, indicating that moist enthalpy is transported away from regions of

positive F net; however, over non-convective oceans and parts of the continents, the horizontal

moist enthalpy advection is positive, indicating that moist enthalpy is transported into these

regions of negative F net from neighboring areas.

The vertical MSE advection in Fig. 2.2 (right) is obtained explicitly as the product of

the MSE stratification, which is susceptible to the relatively coarse vertical resolution of

the data used, and the vertical velocity. In our analysis, the MSE budget (Eq. 4.1) does
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not close, resulting in a relatively small residual caused by insufficient vertical resolution,

non-resolved sub-grid scale motions, and existing imbalances of atmospheric energy and

mass in the reanalysis data from both the ERA forecast model and the assimilation system

(Berrisford et al. 2011). In Fig. 2.3 (left) we show the vertical MSE advection computed as the

difference between F net and the horizontal moist enthalpy advection, which therefore includes

the residual necessary to close the budget (note the opposite sign in Fig. 2.2, right and

Fig. 2.3, left). Given that the MSE stratification is mostly negative in pressure coordinates,

the vertical motion is qualitatively coupled to the vertical advection of MSE: ascending

and descending motions are expected to occur where the sum of the net energy input and

advective fluxes are positive and negative, respectively. This qualitative correspondence does

not, however, imply a quantitative mapping, since the MSE stratification varies spatially. In

the Baiu region and the northwestern Pacific Ocean, the fact that precipitation occurs in a

region of otherwise negative net energy input into the atmospheric column invalidates the

traditional tropical-subtropical balance in which ascending motion is correlated with positive

net energy input into the atmospheric column. The horizontal moist enthalpy advection

therefore plays an essential role in sustaining the MB rainfall band.

In the seasonal evolution of the EASM, both the net energy into the atmosphere and the

horizontal moist enthalpy advection vary in location and intensity. In the pre-MB season,

F net is positive over continents and tropical oceans but decreases rapidly poleward over the

oceanic regions (Fig. 2.2a). The horizontal moist enthalpy advection −〈v · ∇E〉 is prevail-

ingly negative and offsetting F net in most continental and tropical regions, except over and

to the east of the TP (Fig. 2.2b). The sum of these two terms is the vertical MSE advection

(Fig. 2.2c or Fig. 2.3a), whose pattern resembles the precipitation pattern in the pre-MB

season (Fig. 2.3d). The precipitation pattern, in turn, is spatially correlated with the pat-

tern of horizontal moist enthalpy advection everywhere except over southeast China where

vertical ascending motion is colocated with positive F net. To the north of the rainfall band,

strong negative horizontal moist enthalpy advection is balanced by vertical descending mo-
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tion. Over the oceans, precipitation occurs in regions of weak energy flux but strong positive

horizontal moist enthalpy advection; however, the horizontal moist enthalpy advection can-

not balance the strong negative energy flux in the mid-latitudes, resulting in an unfavorable

region for convection.

During the MB season, the energy flux (Fig. 2.2d) decreases in the MB region and

the northwest Pacific Ocean, mainly because of increased reflection of insolation due to

increased cloud cover and decreased latent heat flux over oceanic regions. In the tropical

and subtropical oceans, however, as the SSTs continue to increase, evaporation from the

ocean increases accordingly, resulting in an increase in net energy input into the atmospheric

column. Nevertheless, convection is not favored to the south of the MB region despite higher

SST values (Sampe and Xie 2010, Fig. 2.3e). Sampe and Xie (2010) attribute this preference

of convection over the northwest Pacific Ocean with lower SSTs to the combined effect of the

mid-tropospheric warm air advection and weather disturbances steered by the subtropical

westerly jet. In the framework of the MSE budget, this preference is largely governed by

the horizontal moist enthalpy advection: to the south of the MB region, regardless of higher

SSTs, the net energy is weak and cannot trigger convection; the horizontal moist enthalpy

advection is large over the northwestern Pacific while hardly affecting or even suppressing

convection in the subtropical ocean. The MB rainfall band, similar to what is seen in the pre-

MB season, is primarily sustained by the horizontal moist enthalpy advection, with its overall

structure and location resulting from both the net energy input and the horizontal moist

enthalpy advection (Fig. 2.2f or Fig. 2.3b). In addition, over the Meiyu region, the horizontal

moist enthalpy advection is positive before and during the MB season, but becomes negligible

in the post-MB season.

In the post-MB season, the net energy flux over the ocean increases in tropical and

subtropical latitudes but decreases in the mid-latitudes. Over the continents, it decreases in

most regions (Fig. 2.2g). The horizontal moist enthalpy advection displaces poleward and

becomes less intense, resulting in a sharp reduction in horizontal moist enthalpy advection
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over the MB region but a slight increase to both its south and north (Fig. 2.2h). As a result,

the MB region is less favored energetically and a bifurcation of the vertical MSE advection

is formed to the south and north of the MB region (Fig. 2.2i or Fig. 2.3c). This pattern

of vertical MSE advection explains the suppression of rainfall and revival of convection

over the subtropical northwestern Pacific during and after the MB season: during the MB

season, despite high SSTs, strong negative horizontal moist enthalpy advection is balanced

by descending motions in this region; after the MB season, the increase in net energy flux into

the atmosphere combined with a reduction in negative horizontal moist enthalpy advection

provides a favorable environment for the development of convection (Fig. 2.3f).

The similarity between the vertical MSE advection and the precipitation pattern in the

three subsequent seasons using two independent datasets (Fig. 2.3, left, right) gives us con-

fidence in the validity of using the MSE framework to study the climatology and seasonality

of the EASM.

2.4. Energy advection decomposition

During the MB season, both F net and horizontal moist enthalpy advection are important

in sustaining the rainfall in the Meiyu region; however, in the Baiu region and northwestern

Pacific, energy input into the atmosphere is negative, and the horizontal moist enthalpy

advection alone sustains the rainfall. Given that the horizontal moist enthalpy advection

plays an essential role in positioning the stationary MB rainfall band, heuristically we ex-

pect the stationary eddy fluxes to be the dominant terms in the horizontal moist enthalpy

advection. Here, we decompose the horizontal moist enthalpy advection into mean, tran-

sient, and stationary eddy fluxes. As explained in Section 1 Data and Method, (·)′ and (·)∗

denote deviations from the time (·) and zonal [·] mean, respectively. Hence, the time mean
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Figure 2.3 Vertical MSE advection computed as F net − 〈v · ∇E〉 (color contours, W m−2,
left) and GPCP climatological mean precipitation (color contours, mm day−1, right). Rows
are the same as in Fig. 2.2. In all panels, line contours show vertical velocity (Pa s−1, contour
interval 0.02 Pa s−1), with upward/downward motion in solid/dash contours and the zero
contour thickened.

advection of the atmospheric energy 〈v · ∇E〉 can be written as

〈v · ∇E〉 = 〈[v] · [∇E]〉+ 〈[v] · ∇E∗〉+ 〈v∗ · [∇E]〉+ 〈v∗ · ∇E∗〉+ 〈v′ · ∇E ′〉. (2.6)

The first term on the right side is the zonal-mean energy advection by the zonal-mean

flow; the second term is the advection of the stationary eddy energy by the zonal-mean flow;

the third term is the advection of the zonal-mean energy by the stationary eddy velocity; the

fourth term is the advection of the stationary eddy energy by the stationary eddy velocity;

the fifth term is the advection of the transient eddy energy by the transient eddies.
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Figure 2.4 Eddy decomposition of the vertical integral of the horizontal moist enthalpy
advection −〈v · ∇E〉 (left), the horizontal dry enthalpy advection −〈cpv · ∇T 〉 (middle), and
the latent energy advection −〈Lvv · ∇q〉 (right) during the MB season. Rows indicate the
total advection −〈v · ∇(·)〉 (a,b,c), the advection of the stationary eddy energy by the zonal-
mean flow −〈[v]∇(·)∗〉 (d,e,f), the advection of the zonal-mean energy by the stationary eddy
velocity −〈v∗[∇(·)]〉 (g,h,i), the advection of the stationary eddy energy by the stationary
eddy velocity, or pure stationary eddy −〈v∗∇(·)∗〉 (j,k,l), and the advection of the transient
eddy energy by the transient eddy velocity −〈v′ · ∇(·)′〉 (m,m,o). Contours are in W m−2.

The zonal-mean term 〈[v] · [∇E]〉 is very small compared to the other terms and can be

neglected (not shown). All other terms are shown in Fig. 2.4 (left), together with separate

contributions by the dry enthalpy (Fig. 2.4, middle) and latent energy (Fig. 2.4, right).

Comparing the horizontal dry enthalpy advection and latent energy advection on the MB

region during the MB season, we find that the dry enthalpy component tends to dominate
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in the core of the MB region, with the latent energy advection becoming important only

over the midlatitude ocean. Previous evaluations based on observational and numerical

studies argued latent energy advection through the lower-level southwesterly transport of

moisture from the tropical oceans, including the Bay Of Bengal (BOB), the SCS, and the

western Pacific, to be the major source of energy for the development and maintenance

of the rainfall band over the MB region (e.g., Ninomiya and Murakami 1987; Kuo et al.

1986; Wang 1987; Wang et al. 1993). However, our analysis de-emphasizes the importance

of moisture advection as an energy supply and confirms that the MB rainfall band, from a

large-scale perspective, is mainly the result of dry enthalpy advection (Sampe and Xie 2010).

As we have identified the horizontal dry enthalpy advection as the main component in the

horizontal moist enthalpy advection, we now focus on its eddy fluxes and assess their relative

contributions to the moist enthalpy advection.

The total dry enthalpy advection results from the advection of the stationary eddy dry

enthalpy by the zonal-mean flow −〈[cpv] · ∇T ∗〉 (Fig. 2.4e), the advection of the zonal-mean

dry enthalpy by the stationary eddy velocity −〈cpv∗ · [∇T ]〉 (Fig. 2.4h), the pure stationary

eddy flux −〈cpv∗ · ∇T ∗〉 (Fig. 2.4k) and the transient eddy flux −〈cpv′ · ∇T ′〉 (Fig. 2.4n).

All the three stationary eddy fluxes have positive dry enthalpy advection into the MB region

and the northwestern Pacific; however, the transient eddy flux, which is expected to diverge

atmospheric energy away from the subtropics into higher latitudes, has the opposite sign in

the MB region. The first two terms, −〈[cpv] · ∇T ∗〉 and −〈cpv∗ · [∇T ]〉, vanish when one

takes the global zonal mean, but represent stationary eddy-mean flow interactions, which

locally are of primary importance. The pure stationary eddy flux and the transient eddy

flux are comparable in magnitude to the other two stationary eddy fluxes, but they appear

to have similar spatial patterns of opposite sign, such that their combined contribution to

the total dry enthalpy advection over the overall MB region and the northwestern Pacific is

negligible. This is even more evident if we look at the zonal and meridional components of

dry enthalpy advection (not shown), which are dominated by −〈[cpv] · ∇T ∗〉 and −〈cpv∗ ·
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[∇T ]〉, respectively, with a negligible contribution from the corresponding components of the

pure stationary and transient fluxes. While we still do not understand to what extent this

cancellation might be a coincidence or an intrinsic feature of the EASM, we also observe it in

the numerical simulations discussed in the next section. For this reason, in the following we

primarily focus on the two stationary eddy fluxes that depend on stationary eddy-mean flow

interactions, that is, the advection of the stationary eddy dry enthalpy by the zonal-mean

flow, −〈[cpv] · ∇T ∗〉, and the advection of the zonal-mean dry enthalpy by the stationary

eddy velocity, −〈cpv∗ · [∇T ]〉.

The [v] · ∇T ∗ term is approximately equal to the product of the zonal mean zonal wind

[u] and the longitudinal stationary thermal gradient due to zonal asymmetries ∂xT ∗. The

v∗ · [∇T ] term is equal to the product of the meridional stationary eddy velocity v∗ and zonal

mean meridional temperature gradient [∂yT ]. The zonal mean zonal wind and the zonal

mean meridional temperature gradient are primarily determined by the global energy and

momentum budgets and barely affected by local forcings, especially in Northern Hemisphere

summer (cf. Peixoto and Oort 1992). Hence, the presence of the TP will not influence zonal

mean quantities but will be primarily manifest in the local longitudinal thermal gradient

due to zonal asymmetries ∂xT ∗ and the meridional stationary eddy velocity v∗.

The zonal gradient of the stationary temperature term ∂xT ∗ is due to the land-sea thermal

contrast and the TP thermal effects. Given that during the MB season, the predominant

winds are still eastward, both locally over the TP and the MB region and in the zonal

average at these latitudes, the land-sea differential heating results in warm air advection in

the downstream of the TP. Such inhomogeneous heating is reinforced by the presence of the

TP, which is heated up rapidly during the spring and summer. The factor [u]∂xT ∗ is the

backbone of the theory in Sampe and Xie (2010), in which the advection of warm air from

the TP to the MB region is argued to be the major forcing of the MB rainfall system. The

presence of the TP can also contribute to the meridional stationary eddy velocity v∗ in its

downstream by both thermal and mechanical effects. The thermal effect can drive lower-level
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cyclonic circulation around the TP, which enhances the southerlies in the MB region. The

mechanical interaction between the subtropical westerly jet and the TP induces a region of

lower-level convergence in its downstream, with southerlies to the south and northerlies to

the north of the MB region.

In the zonal mean, transient and stationary eddy fluxes are the primary means by which

energy is transported poleward in the extra-tropics to satisfy the global energy budget. Zonal

asymmetries can create regions of enhanced and suppressed eddy transport through local

effects. For instance, in a recent work, Kaspi and Schneider (2013) showed that a zonally

asymmetric surface heating in an otherwise uniform slab ocean can shape storm tracks by

modulating local baroclinicity through stationary fluxes. In the MB region, the local moist

enthalpy advection arises, as shown by our analysis above, because of zonal asymmetries

due to both land-sea contrast and the TP. The precise role of the TP in the local moist

enthalpy advection, which cannot be assessed by means of observations only, will be more

systematically explored using numerical simulations in Chapter 3.

2.5. Moisture budget

The distribution of the net precipitation in the MB rainfall needs to satisfy the moisture

budget:

〈∂tq〉+ 〈∇ · (vq)〉+ 〈∂p(wq)〉 = −P + E. (2.7)

Averaged over a climatological period, the tendency term 〈∂tq〉 and the vertical term

〈∂p(wq)〉 can be neglected (not shown). The convergence of moisture flux −〈∇ · (vq)〉 can

be decomposed into the moisture advection −〈v · ∇q〉 and the product of moisture and wind

convergence −〈q∇ · v〉. In most of the MB region, particularly over the oceanic regions,

surface evaporation is limited (Fig. 2.5b) and the moisture flux convergence (Fig. 2.5a) plays

a more dominant role in water vapor supply. Further decomposition indicates that the

moisture flux convergence primarily arises from the wind convergence (Fig. 2.5c) over the
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MB region, whereas moisure advection becomes dominant in mid-latitude oceanic regions

(Fig. 2.5d), consistent with the results discussed in the previous secton.

As we did for the MSE budget, we decompose −q∇ · v into mean (−[q][∇ · v]), stationary

(−q∗[∇ · v], −[q]∇ · v∗, −q∗∇ · v∗) and transient eddy fluxes (−q′∇ · v′). The dominant

term is −[q]∇ · v∗ (Fig. 2.6a), while the zonal asymmetries due to water vapor are negligible

(Fig. 2.6b). As argued above, the presence of the TP will primarily impact stationary

quantities, including the stationary eddy convergence term −∇ · v∗. The pure stationary

eddy flux −q∗∇ · v∗ is comparable to the −[q]∇ · v∗ term over the Meiyu region, but becomes

negligible over the Baiu and oceanic regions (Fig. 2.6c). The transient eddy flux −q′∇ · v′

plays only a minor role.

The results discussed so far identify the longitudinal thermal gradient due to zonal asym-

metries ∂xT ∗ and the meridional stationary eddy velocity v∗ as important dynamical factors

Figure 2.5 Moisture budget for the MB season. a) Vertically integrated moisture flux
convergence −〈∇ · (vq)〉. b) Evaporation E. c) Product of moisture and wind convergence
−〈q∇ · v〉. d) Moisture advection −〈v · ∇q〉. Units are mm day−1. Line contours are
precipitation with interval 1 mm day−1.

28



Figure 2.6 Eddy decomposition of the vertical integral of the the product of moisture and
wind convergence −〈q∇ · v〉 (e) into the product of the stationary eddy convergence and the
zonal-mean specific humidity −〈[q]∇ · v∗〉 (a), the product of the zonal-mean flow conver-
gence and the stationary specific humidity −〈q∗[∇ · v]〉 (b), the product of the stationary
eddy convergence and the stationary specific humidity or pure stationary eddy −〈q∗∇ · v∗〉
(c), and the product of the transient flow convergence and the transient specific humidity
−〈q′∇ · v′〉 (d) during the MB season. Contours are in W m−2.

implicated in the MB formation. In the next section, we perform numerical simulations with

the AM2.1 AGCM to explore how the presence or absence of the TP affects the MB rainfall

through these exposed factors.

2.6. Conclusions

We have used the MSE and moisture budgets in observations to identify large-scale mech-

anisms controlling the development and seasonality of the EASM. Novel results emerging

from this study include:
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• Positive horizontal moist enthalpy advection, and primarily dry enthalpy advection,

sustains the MB rainfall band in a region of otherwise negative net energy input into

the atmosphere;

• The zonal thermal gradient due to zonal asymmetries ∂xT ∗ and the meridional station-

ary eddy velocity v∗ are the dominant stationary terms creating the pattern of total

dry enthalpy advection in the MB region;

• The largest contribution to the moisture flux convergence sustaining the MB rainfall

arises from stationary eddy convergence −∇ · v∗.

In the next chapter, we leverage numerical experiments to disclose the mechanisms

through which the TP affects the EASM formation within the theoretical framework of

the MSE budget.
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Chapter 3

Orographic effect of the TP on the
EASM formation

The observational analyses presented in Chapter 2 highlight the importance of the hor-

izontal advection of moist enthalpy in the energetics of the EASM system. The further

decomposition into mean and eddy terms identifies the stationary eddy-mean flow terms as

playing a dominant role in controlling the overall pattern of the horizontal moist enthalpy

advection. These terms involve zonal asymmetries in both the zonal temperature gradient

and the meridional velocity, which are influenced by zonally asymmetric forcing such as that

provided by the TP. Observational analyses alone, however, cannot allow for an assessment

of the precise role the TP plays in shaping these terms. Hence, we perform numerical ex-

periments in which the TP is retained or removed to more systematically examine its on the

EASM formation.

3.1. Data and method

Numerical simulations are performed with the AM2.1 AGCM developed at the Geo-

physical Fluid Dynamics Lab (GFDL, Anderson et al. 2004). AM2.1 uses a finite-volume

dynamical core (Lin 2004) with 2.5◦×2.0◦ horizontal resolution and 24 vertical levels. Cli-

matologically fixed SSTs from monthly mean Reynolds SST analysis are used as boundary

condition (Smith et al. 1996). Two different model integrations are performed with different
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topography over Asia, one where full topography at present-day height is retained (control)

and one where the TP and Himalaya mountains are removed (experiment). More specifical-

ly, in the no-TP experiment, the entire TP and Central Asian mountains from 45◦ to 125◦E

and from 28◦ to 55◦N are reduced by 95%. The experiments are the same as those described

in Park et al. (2012a). Climatological mean winds, temperature, and geopotential height

fields obtained from the control run are used as the initial conditions in the experiment run.

Each experiment ran for 19 years, and the last 12 years of the simulations are used for the

analysis.

Previous studies have shown that the presence of the TP causes changes in the SSTs

in the surrounding oceanic regions, which have an impact on the evolution of the EASM

in addition to the direct effects from the TP (Abe et al. 2004; Kitoh 2004). However, in

this paper, we focus on the direct effects of the TP on the EASM and leave examination of

possible indirect effects through SST changes to future studies.

3.2. Numerical simulations

Here, we analyze the AM2.1 control simulation and the experiment simulation to explore

the role of the TP on the existence of the EASM. The control experiment simulates reason-

ably well the seasonal evolution of the EASM (Fig. 3.1). However, the model underestimates

the precipitation over the MB region, possibly because of coarse resolution and deficiencies

in the convective parameterization.1 When the TP is removed, the MB rainfall almost dis-

appears and oceanic precipitation in the deep tropics slightly increases. This confirms that

the TP plays a fundamental role in the existence of the EASM, in agreement with previous

studies (e.g., Kitoh 2004; Park et al. 2012a; Wu et al. 2012).

Fig. 3.2 shows the precipitation distribution and the vertical MSE advection calculated

1In the AM2.1 control simulation, the MB season is anticipated by around 30 days. Here, we define the
MB season in the control simulation as the 30 days in which the precipitation over the MB region reaches
its maximum.
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Figure 3.1 Hovmöller plot of precipitation averaged from 110◦E to 160◦E in GPCP v1.1 (a),
AM2.1 simulations with the TP (b) and without the TP (c).

as the difference between F net and horizontal moist enthalpy advection in the control run

and experiment run. The precipitation is strongly coupled with mid-tropospheric vertical

velocity, which is highly correlated with the vertical MSE advection. In the presence of the

TP, a tilted, intensified rainfall band expands across the MB region and to the northwestern

Pacific. In the absence of the TP, however, the precipitation over the MB region is signifi-

cantly weakened and sparsely distributed. The suppression of precipitation over higher SST

regions is not observed in the absence of the TP. The similarity between the precipitation
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Figure 3.2 Precipitation (upper, color contours, mm day−1) and vertical MSE advection
(bottom, color contours, W m−2) of AM2.1 integration with the TP (right) and without the
TP (left) during the MB season. Line contours indicate vertical ascending velocity (Pa s−1,
contour interval 0.02Pa s−1) at 500 mb.

pattern and the vertical MSE advection further confirms the feasibility of our framework in

capturing the precipitation in the MB season.

The difference between the experiment run and control run in the vertical MSE advection

mainly results from changes in horizontal moist enthalpy advection rather than changes in

net energy flux over the MB region (not shown). The change in horizontal moist enthalpy

advection is dominated by changes in the horizontal dry enthalpy advection, with smaller

or opposite signed changes in latent energy advection (Fig. 3.3a,b). The presence of the TP

creates a narrow and titled band of positive dry enthalpy advection in its downstream, highly

resembling the rainfall pattern. Strong negative advection, which is balanced by descending

motion, appears to the north and south of the positive advection zone.
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Performing the same decomposition of the dry enthalpy advection in mean and eddy

terms as the one presented in Section 4c, we find that the main contribution to the total dry

enthalpy advection (Fig. 3.3a) arises from the advection of the zonal mean dry enthalpy by

stationary eddies −〈cpv∗ · [∇T ]〉 (Fig. 3.3d). Interestingly, the advection of the stationary

eddy dry enthalpy by the zonal-mean flow −〈cp[v] · ∇T ∗〉 (Fig. 3.3c) only exerts a minor

and relatively local influence over the near downstream of the TP. Similar changes occur in

the mid-tropospheric warm air advection at 500 mbar (not shown). This result shows that

local heating over the TP, which reinforces the land-sea thermal contrast, and hence the

longitudinal temperature gradient, only impacts the near downstream of the TP, leaving the

Baiu region and the northwestern Pacific largely unaffected. However, the presence of the

TP, through both its mechanical effect and changes in the circulation due to the thermal

effect, influences the meridional stationary eddy velocity and helps sustain the MB rainfall

band. The pure stationary eddy flux and the transient eddy flux both increase in magnitude

in the presence of the TP (Fig. 3.3e,f), but their combined contribution to the total dry

enthalpy advection remains negligible.

To further expose the role of the TP in determining patterns of dry enthalpy advection

necessary to maintain the MB front, we compute the anomalous advection of the mean

dry enthalpy by stationary eddies as the difference between the control (v∗c · [∇T ]c) and

experiment (v∗e · [∇T ]e) simulations and we further partition it in such way that

〈δ(v∗ · [∇T ])〉 = 〈δv∗ · [∇T ]e〉+ 〈v∗e · δ[∇T ]〉+ 〈δv∗ · δ[∇T ]〉, (3.1)

where δ(·) is defined as the difference between the experiment with the TP and without the

TP, i.e. δ(·) = (·)c − (·)e, where the subscript c and e denote the experiment with the TP

and without the TP, respectively. The result (not shown) indicates that the total difference

〈δ(v∗ · [∇T ])〉 is almost entirely due to changes in v∗, 〈δv∗ · [∇T ]e〉, while the difference in

the zonal mean temperature gradient, [∇T ] in 〈v∗e · δ[∇T ]〉, and co-variation 〈δv∗ · δ[∇T ]〉
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Figure 3.3 Anomalies (TP - noTP experiments) in horizontal dry enthalpy advection
−〈cpv · ∇T 〉 (color contours) and vertically-integrated (normalized, not mass-weighted)
meridional stationary eddy velocity divergence 〈∂yv∗〉 (line contours, contour interval 10−6

s−1) (a), latent energy advection −〈Lvv · ∇q〉 (b), the advection of the stationary eddy
dry enthalpy by the zonal-mean flow −〈cp[v] · ∇T ∗〉 (c), the advection of the zonal-mean
dry enthalpy by the stationary eddy velocity −〈cpv∗ · [∇T ]〉 (color contours) and vertically-
integrated (normalized, not mass-weighted) stationary eddy wind fields (vectors) with refer-
ence vector 3 m s−1 (d), the advection of the stationary eddy energy by the stationary eddy
velocity −〈cpv∗ · ∇T ∗〉 (e), and the advection of the transient eddy energy by the transient
eddy velocity −〈cpv′ · ∇T ′〉 (f).

are negligible.

The same analysis is performed on the moisture budget and it is found that the presence

of the TP primarily influences the stationary eddy convergence term −〈∇ · v∗〉 in the prod-

uct of the zonal mean moisture and stationary eddy convergence −〈[q]∇ · v∗〉 (Fig. 3.4). The

presence of the TP barely exerts any influence on the zonal mean atmospheric specific hu-

midity. The enhanced moisture flux convergence therefore is primarily due to enhanced wind

convergence, or more specifically lower-level convergence, because the term −〈[q]∇ · v∗〉 is
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Figure 3.4 Anomaly (TP - noTP experiments) in the product of the zonal mean moisture
and stationary eddy divergence 〈[q]∇ · v∗〉. Contours are in mm day−1.

highly weighed by the water vapor content, mostly confined in the lower troposphere.

The zonal mean temperature gradient, [∇T ], or equivalently the zonal mean latitudinal

temperature gradient [∂yT ], is nearly invariant in the troposphere in the MB region (not

shown), allowing us to extract the temperature gradient term from the vertical integral of

the advection of the zonal mean dry enthalpy by stationary eddies, i.e., −〈cpv∗ · [∇T ]〉 ≈

−cp〈v∗〉[∂yT ]. This reveals that the pattern of change in the advection of the zonal mean

dry enthalpy by stationary eddies is similar to that in meridional stationary eddy velocity, or

meridional velocity, given that the change in the zonal mean meridional velocity is negligible

in the simulations (Fig. 3.3d).

The meridional stationary eddy velocity, v∗, shows a strong first baroclinic structure in

the MB region (averaged from 110◦E to 160◦E) in both the reanalysis data (Fig. 3.5a) and the

AM2.1 numerical simulation in the presence of the TP (Fig. 3.5b), with strong southerlies in

the middle and lower troposphere and northerlies in the upper troposphere and stratosphere.

It also shows pronounced meridional convergence almost throughout the entire troposphere,
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with maximum up to 200 mb, between 30◦N and 40◦N. In the absence of the TP, the strength

of the meridional stationary eddy velocity is significantly weakened, and is accompanied by

a sharp reduction in its convergence in the free troposphere (Fig. 3.5c). The difference

between the control and experiment runs is shown in Fig. 3.5d, with the presence of the

TP causing a pronounced southerly wind to the south and northerly wind to the north of

the MB region, and hence strong convergence over the MB region. The spatial patterns

of changes in the vertically-integrated meridional stationary eddy velocity convergence and

stationary wind fields are shown in Fig. 3.3a,d. The reinforced southerlies over the MB

region in the presence of the TP bring abundant warm and moist air from tropical oceans to

the MB region and the northwestern Pacific. The enhanced northerlies to the north of the

MB region prevent the southerlies from invading further north and are associated with the

meridional wind convergence (Fig. 3.5b and Fig. 3.6a). The meridional convergence has to be

balanced by zonal divergence if integrated vertically. In pressure coordinates and neglecting

topographic effects on boundary velocity, the continuity equation

〈∇ · v〉 = 0 (3.2)

can be written as 〈∂xu + ∂yv〉 = 〈∂xu∗ + ∂yv∗〉 = 0. Therefore, the convergence of the

meridional stationary velocity (Fig. 3.5a) is coupled with divergence of the zonal stationary

velocity (not shown). The zonal wind diverges over the MB region due to the interaction

with the TP and the effect from the subtropical high, as well as possible influences by the

precipitation system itself. The lower-level wind convergence (integrated from surface to

700 mb, Fig. 3.6c), due to the meridional wind convergence (Fig. 3.6a) and partly offset by

zonal wind divergence (Fig. 3.6b), resembles the anomaly in the product of the zonal mean

moisture and stationary eddy convergence 〈[q]∇ · v∗〉 (Fig. 3.4) because δ([q]∇ · v∗) is highly

weighted by [q].

At least qualitatively, the horizontal stationary eddy convergence and the meridional

stationary eddy velocity can be related through Sverdrup balance, βv∗ ∼ f∂pw
∗. While
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Figure 3.5 Meridional stationary eddy velocity v∗ (color contours,m s−1) and its convergence
∂yv∗ (line contours, contour interval 10−6 s−1) averaged from 110◦E to 160◦E in the ERA-
Interim reanalysis data (a), in the AM2.1 simulation in the presence of the TP (b), in the
absence of the TP (c), and the difference between a and b (d).

not perfect (note for instance that the maximum of the meridional stationary eddy velocity,

indicated by the zero line of its meridional gradient, Fig. 3.6a, and the maximum southerly

wind velocity are not exactly colocated), this balance does seem to hold reasonably well in

the MB region.
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Figure 3.6 Anomalies (TP - noTP experiments) in ∂yv∗ (a), ∂xu∗ (b), and∇·v∗ (c) integrated
(normalized, not mass-weighted) from surface to 700 mb. Contours are in day−1.
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3.3. Conclusions

The numerical experiments with and without the TP show that:

• The TP primarily influences the formation of the MB front through changes in the

meridional stationary eddy velocity v∗ as well as its meridional gradient ∂yv∗;

• Changes in the meridional thermal gradient due to zonal asymmetries ∂xT ∗ have a

lesser impact and are confined to the near downstream of the TP.

In the literature, it is well accepted that the onset and demise of the MB season are

governed by the position of the subtropical westerly jet (e.g., Ding and Chan 2005; Park

et al. 2012a; Molnar et al. 2010; Sampe and Xie 2010), but the exact mechanisms are less

well agreed upon. It has been suggested in Sampe and Xie (2010) that horizontal warm

air advection from the southeastern flank of the TP by the subtropical westerly jet can

initiate ascending motion that would have to be balanced by lower-level convergence and

can sustain the front even in the absence of diabatic forcing. Our analysis confirms the

importance of the horizontal dry enthalpy advection, but in addition to the advection by

the zonal mean flow of temperature zonal asymmetries, it exposes the meridional advection

of the mean temperature by the meridional stationary eddy velocity as a key mechanism. It

is revealed in the AM2.1 simulations that the anomalous advection by v∗ of the mean dry

enthalpy is strongly coupled to the meridional stationary eddy velocity: increased meridional

stationary eddy velocity amplifies the positive energy advection into the MB region and

the northwestern Pacific Ocean and therefore intensifies the precipitation. Its pattern (i.e.,

latitudinal gradient) determines the wind convergence and is closely coupled with zonal eddy

velocity. Although the total (zonal and meridional) warm air advection, as investigated by

Sampe and Xie (2010), can successfully explain the location and seasonality of the MB, the

application of the MSE budget, together with the eddy decomposition, allows us to isolate

one single dominant factor, v∗, based on a widely applicable theoretical framework, which

41



encapsulates the influences of the TP on the formation of the EASM.

Together with the upper-level westerly jet, the lower-level southerly flow around the

subtropical high has also been identified as important in the climatological position and

seasonal evolution of the MB front. Rodwell and Hoskins (2001) investigated the dynamics

of summertime subtropical anticyclones in a dry model forced by the observed diabatic

heating and argued for a more dominant role of the diabatic heating over the topography in

driving the meridional southerly flow in the western flank of the North Pacific subtropical

anticyclone. In moist circulations, such as the MB front, however, this separation might be

artificial, given that patterns of convergence and divergence induced by topography shape

and interact with the distribution of the diabatic heating. By using the MSE budget, we

circumvent the need to specify or diagnose the diabatic heating and more generally focus on

the role of thermally- and/or mechanically-induced stationary flows on the formation of the

MB front.

Kodama (1992) investigated the Baiu front from an observational perspective, together

with other subtropical convergence zones (STCZs), and found that the lower-level poleward

flow around the subtropical high and the subtropical jet are two necessary circulation features

for generating the STCZs. His study highlights the role of the lower-level poleward flow in

water vapor transport, intensification of the moisture convergence, frontogenesis in equivalent

potential temperature fields, and generation of convective instability. The poleward flow itself

is interpreted as forming geostrophically in the longitudinal pressure gradient between the

monsoonal heat low and the subtropical high (Kodama 1992; Ninomiya 1984). Our analysis

suggests that these circulation features might not be independent from each other, and, by

means of the MSE and moisture budget, sheds further light into their role in the MB front

in terms of their resulting pattern of positive enthalpy advection. In fact, in the presence

of upper tropospheric westerly flow, any zonal asymmetry, such as topography, land-sea

thermal contrast and diabatic heating, can induce stationary Rossby waves, with associated

temperature, moisture, and wind perturbations (see for instance Held et al. 2002, for a
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comprehensive review of stationary waves in the northern hemisphere winter). Dispersion

characteristics of these stationary Rossby waves might explain aspects of the observed MB,

such as its spatial extent and tilted structure.

The results presented here suggest that the TP influences the EASM by both thermal

and mechanical effects. In nature, these two effects cannot be separated and we do not

argue to be able to give a quantitative assessment of their relative role in this paper. Future

studies will attempt a more quantitative assessment by performing modified surface flux and

albedo simulations (e.g., Wu et al. 2012). However, the successful explanation of the MB

rainfall season within the framework of the MSE budget gives us confidence in continuing to

explore attributable factors in the inter-model spread in CMIP5 EASM simulations and in

attempting to assess future changes in the EASM in the context of global warming. Factors

including accelerating warming and widespread loss of glacier and snow cover throughout

the 21st century in the SRES A1B scenario (IPCC AR4), the expansion of the subtropical

dry zones and changes in position and strength of the westerly jet, the possible non-linear

changes in dry enthalpy advection and latent energy advection because of polar amplification

and heterogeneous changes in relative humidity might all be critical in the future evolution

of the EASM. The MSE and moisture budgets are expected to provide insights into the

possible role of all these factors in EASM changes in a unified theoretical framework.
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Chapter 4

Inter-model spread of EASM
simulations

We use the understanding we have developed on the dynamics of the EASM based on

the MSE and moisture budgets to expose parameters that explain the biases in precipita-

tion amounts and spatial structure in CMIP5 EASM simulations. In return, the different

present-day EASM simulations confirm the robustness of our theoretical framework in cli-

mate models. While not directly translatable into recommendations for model improvements,

our results identify processes that are central for better constraining model simulations and

projections of the EASM.

4.1. Data and method

In this study, we examine the CMIP5 decadal2000 hindcasts. The decadal predictions in

CMIP5 consist of a series of 10-year or 30-year forecasts with initial observed climate states,

and take into account both the long-term mean forced response and the internal decadal vari-

ability (Meehl et al. 2009; Taylor et al. 2012). Here, decadal2000 predictions are composed of

10-year integrations, initialized at the end of year 2000, in which ocean initial conditions are

representative of either the observed anomaly or full-fields for the start date (i.e., full-field

and anomaly initialization methods), but land, sea-ice, and atmosphere initial conditions

are chosen at the discretion of different model groups (Taylor et al. 2012). Historical runs
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differ from decadal runs in that they are started from stochastically selected preindustrial

states and the synchronization between climate predictions and internal variability is not

guaranteed. Especially when multi-ensemble mean (MEM) techniques are used to increase

the predicability of long-term simulations (e.g., historical runs) in each individual model,

the internal variability is suppressed and only an estimate of the forced response survives

(Meehl et al. 2007). We prefer the decadal2000 run to the historical and RCP runs, as they

allow for a better comparison with observations.

Monthly data of decadal2000 integrations from 2001 to 2009 from seventeen coupled cli-

mate models and three additional simulations with different initialization methods (a total

of twenty experiments; refer to the legend of Fig. 4.2) are used to assess the model perfor-

mance. All available ensembles for each individual model are averaged. When computing

the MSE and moisture budgets as described below, we first average monthly fields over June

and July, and then compute all budget terms and finally produce a long-term climatology

by averaging over the nine available years. We also present results in which the long-term

climatology (nine-year average) is applied before computing individual budget terms. The

difference between the two climatologies lies in that the former (latter) includes (neglects)

interannual transient eddies. While the mature MB phase is traditionally considered to span

from June 15 to July 14, here we average over both June and July, because most model

outputs are available on monthly averages. Accordingly, we focus on the broader EASM

region (Fig. 4.1a, enclosed regions), which includes East China (20◦-42◦N, 110◦-122◦E, in-

cluding the Meiyu region) and the Changma-Baiu-northwestern-Pacific (CBP, 122◦-170◦E,

with an upper latitudinal bound of 42◦N, and a lower latitudinal bound linearly varying with

longitude from 20◦N to 30◦N). In the context of the MSE budget (Eq. 4.1), vertical pressure

velocity is used as a proxy for precipitation. This is a good approximation in continental

deep convection regions, such as the Meiyu region, but might be less satisfactory in the CBP

region, where precipitation is a mixture of deep convection and large-scale condensation a-

long isentropes associated with extra-tropical storms (Chen and Bordoni 2014; Sampe and
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Xie 2010). For this reason, in addition to results for the overall large-scale EASM domain,

we also separately discuss East China and the CBP region.

Monthly observed precipitation is obtained from GPCP (Global Precipitation Climatol-

ogy Project) and TRMM (Tropical Rainfall Measuring Mission) provided from obs4MIPs

(http://obs4mips.llnl.gov:8080/wiki/, Teixeira et al. 2011) project hosted on the Earth Sys-

tem Grid Federation (http://esgf.org). Wind field, temperature and humidity are obtained

from ERA Interim reanalysis (37 pressure levels, 512×256 N128 Gaussian grid, analysis field-

s produced for 0000, 0600, 1200, 1800 UTC) in the Data Support Section of the National

Center for Atmospheric Research (NCAR), while precipitation, surface heat fluxes, and ra-

diation are obtained from the ERA-Interim (1.5◦ grid Dee et al. 2011) 3-hour-forecast fields

produced from forecasts beginning at 0000 and 1200 UTC. All data from model forecasts

and observations are bilinearly interpolated to a 1◦ × 1◦ grid, if necessary. Since there are

systematic differences over ocean and land between GPCP and TRMM (Adler et al. 2000),

both datasets are used here as observational references (Fig. 4.1b,c). We also use the ERA

Interim precipitation to assess consistency and robustness between climate models and the

ECMWF operational forecasting model.

Following Chen and Bordoni (2014) (hereafter CB14), we use the MSE and moisture

budgets to interpret the inter-model spread of the EASM in the decadal2000 predictions. As

a review, the MSE budget over a climatological period is

〈w∂ph〉 = F net − 〈v · ∇E〉, (4.1)

where h = CpT + gz + Lvq is the MSE, E = CpT + Lvq is the atmospheric moist enthalpy,

F net is the net energy flux into the atmosphere and is given by the sum of net radiative fluxes

at the surface and top-of-atmosphere, and surface sensible heat and latent heat fluxes, v is

the horizontal wind field (u,v), and w is vertical velocity. 〈·〉 indicates the mass-weighted ver-

tical integral
∫

(·)dp/g. To the extent that the MSE stratification, ∂ph, remains everywhere
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Figure 4.1 June-July climatological mean precipitation (shaded, mm day−1) for the 2001-
2009 nine-year period for the CMIP5 decadal2000 MMM (a), GPCP (b) and TRMM (c). Line
contours (contour interval 0.5 mm day−1) in (a) show the model spread or standard deviation
of the twenty experiments listed in Fig. 4.2. Line contours in (b) and (c) show vertically-
normalized stationary zonal and meridional eddy velocities, {u∗} and {v∗} (contour interval
1 m s−1 and 0.4 m s−1), respectively. Red contour encloses the EASM region, comprising
East China and the CBP region. See text for details.

negative, Eq. 4.1 links upward motion to regions of positive F net − 〈v · ∇E〉. We further

decompose each field into mean, stationary eddy, and transient eddy components, where con-

ventionally (·)′ indicates the deviation from the time mean (·) (here the two month June and

July mean for each individual year), i.e., u′ = u− u, and (·)∗ denotes the deviation from the

global zonal mean [·], i.e., u∗ = u− [u]. By performing a similar decomposition using reanal-

ysis data, CB14 found that two stationary eddy fluxes, −〈[u] ·∂xT ∗〉 and −〈v∗ · [∂yT ]〉, are the

major contributors to the horizontal moist enthalpy advection. The first term, −〈[u] ·∂xT ∗〉,
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represents the advection by the mean zonal flow of zonal temperature asymmetries, due to

anomalous heating by the TP, convection and land-sea thermal contrast (Sampe and Xie

2010). The second term, −〈v∗ · [∂yT ]〉, is the advection of the mean meridional temperature

gradient by the stationary eddy velocity and can be further approximated as proportional

to 〈v∗〉 at any given latitude, given that [∂yT ] is almost height-independent in the free tro-

posphere (Fig. 11d in CB14). Physically, positive stationary meridional eddy velocity 〈v∗〉,

arising from zonal asymmetries, transports warm air from the south to the EASM region.

Given their role in determining the spatial pattern of positive upward motion, and hence

precipitation, in the EASM region, F net, −〈[u] · ∂xT ∗〉, −〈v∗ · [∂yT ]〉 and 〈v∗〉 will be used to

assess the model performance in simulating the spatial structure of the EASM rainfall.

The inter-model spread in rainfall amounts is investigated using the moisture budget:

P − E = −〈∇ · vq〉, (4.2)

which, over a climatological average, directly relates the net precipitation P − E to the

horizontal moisture flux convergence −〈∇ · vq〉. This term is further decomposed into con-

tributions by the wind convergence −〈q∇ · v〉 and moisture advection −〈v · ∇q〉.

4.2. Assessment of inter-model spread

Global MSE and moisture budgets between June and July are evaluated across all climate

models and ERA Interim. All models satisfy the global moisture budget by which [P ] ≈

[E], with the exception of FGOALS-s2, in which [E] ∼ 3.2 mm day−1 and [P ] ∼ 2.7 mm

day−1. Over the climatological June-July average, the global precipitation is not strictly

energetically constrained (e.g., O’Gorman et al. 2012), because of the coupling between solar

insolation and hemispheric asymmetries in heat capacity. In boreal summer, the atmosphere

gains energy, resulting in a positive heat storage in all climate models, mostly ranging from

0.5 W m−2 to 3.0 W m−2, and with a maximum of 7.0 W m−2 in CFSv2-2011. ERA Interim
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is known to have unbalanced moisture and MSE budgets (Berrisford et al. 2011). Hence,

while we analyze and discuss results based on all models and observed data, we exclude

FGOALs-s2, ERA Interim, and observations from our regression analysis.

The climatological MMM captures reasonably well the elongated band of the EASM

precipitation spanning from East Asia into the northwest Pacific, but precipitation amounts

are underestimated compared to both GPCP and TRMM (Fig. 4.1) due to biases in both

precipitation intensity and spatial extent. Precipitation is particularly underestimated over

the EASM oceanic region compared to GPCP, with better agreement with TRMM. The

systematic bias between TRMM and GPCP found here, with lower TRMM estimates over

EASM oceanic regions, is consistent with previous studies (Adler et al. 2009). The inter-

model spread (Fig. 4.1a) is large in both heavily precipitating continental regions and mildly

precipitating oceanic regions. The large spread in the former might be accounted for by

different convective parameterizations and simulated circulations in different models (e.g.,

Song and Zhou 2013; Zhou et al. 2009), with discrepant simulations of high precipitation

generating large standard deviations. The large spread in the latter appears to be more

related to differences in the simulated spatial structure of precipitation over the northwestern

Pacific. The analyses below allow for a more in-depth understanding of the inter-model

spread in both spatial structure and precipitation amounts in the EASM region.

a. Spatial structure

Fig. 4.2 shows the spatial centered-pattern correlations between precipitation and the

MSE budget terms identified in CB14 as fundamental in determining the spatial patterns of

upward motion. A relatively high correlation between precipitation and F net is observed and

agreed upon amongst climate models, particularly in the CBP region. This is not unexpected

given that F net depends on the circulation itself and, through changes in energy and radiative

fluxes because of clouds, is influenced by model-dependent physical parameterizations of

clouds, radiation, and air-sea interaction. The observed TRMM and GPCP rainfall estimates
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Figure 4.2 Spatial pattern correlation (centered) between the precipitation over the EASM
region (left in each column), East China (middle), and the CBP region (right) and the
metrics indicated in the diagram. Each metric is summarized by a boxplot, characterized by
mean value and standard deviation of correlation (with the exception of FGOALS-s2). The
name of the seventeen models and three additional experiments with different initialization
method are labeled in the legend, with initialization methods (when necessary) labeled with
i#, and the number in parenthesis indicating the number of ensembles.

have relatively low correlation with the ERA Interim F net.

From a large-scale perspective, the subtropical westerly jet advects warm air from the TP

to the MB region and induces ascending motion through −〈[u]∂xT ∗〉 (CB14, Sampe and Xie

2010); nevertheless, we find a negative correlation between P and −〈[u]∂xT ∗〉 everywhere in

the EASM domain. Thermal effects by the TP and land-sea contrast result in a negative

longitudinal temperature gradient in the EASM region. Convection tends to smooth out

this temperature gradient in the free troposphere, which helps explain the observed negative

correlation. The correlation between precipitation and the term −〈v∗ · [∂yT ]〉 varies signifi-

cantly amongst different models; however, when we only consider 〈v∗〉, correlations increase
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and the model spread decreases significantly, especially in East China (see also the close co-

incidence of spatial patterns of precipitation and {v∗} from observations in Fig. 4.1c), with

the exception of two outliers. Finally, the largest spatial correlations are obtained when we

consider the combined effect of F net − 〈v∗[∂yT ]〉. A nonparametric test with bootstrapping

techniques shows that the correlation between P and F net − 〈v∗[∂yT ]〉 is significantly larger

than the correlation between P and F net alone (The null hypothesis in the test is that the

mean of the two sample pools is the same. For any constructed samples with size larger

than 4 out of total sample pool of size 17 (EC-EARTH and GFDL-CM2 are not included

because of incomplete data outputs) with 10,000 random repetitions, the null hypothesis can

be rejected at 0.01 level.). This confirms that, in spite of differing simulated precipitation

over the EASM region, the underlying dynamics is the same across models and data: the

combined positive pattern of the advection of the mean meridional temperature gradient

by the stationary eddy meridional velocity 〈−v∗[∂yT ]〉, and the net energy input into the

atmospheric column F net, is the most important large-scale factor controlling the spatial

distrubition of precipitation in the EASM region.

The analysis above suggests that anomalies in the EASM precipitation are strongly cor-

related with biases in the simulated 〈v∗〉, which is primarily due to topographically induced

stationary waves and the resulting diabatic heating distribution (CB14, Rodwell and Hoskins

2001; Wu et al. 2007a; Park et al. 2012b). The reasons of such disparate simulations of 〈v∗〉

remain unclear, but are likely to be affected by the model’s resolution and the interaction of

the model’s physics with the simulated large-scale circulation.

b. Rainfall amount

How can biases in the simulated large-scale dynamics constrain biases in simulated rain-

fall amounts? The simulated EASM regional precipitation (Fig. 4.3) shows a wide range

across the seventeen climate models, with most models producing an area-average of 4.2-5.0

mm day−1, and minima and maxima ranging between ∼ 3.5 mm day−1 (EC-EARTH) and ∼
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6.5 mm day−1 (HadCM3). ERA Interim precipitation is also presented as a reference. It is

not unreasonable to expect that models with moist (dry) biases in the global average might

have similarly signed biases in precipitating regions (see Muller and O’Gorman (2011) for

similar arguments on the regional precipitation response to climate change). The spread in

the simulated EASM rainfall P , especially in East China, can in fact be partially explained

by the spread in the simulated background global precipitation [P ](Fig. 4.3a,d). The remain-

ing spread arises from spread in mean moisture flux convergence 〈∇ · v q〉, which is close to

the total moisture flux convergence 〈∇ · vq〉 because of almost negligible transient term in

most climate models. CB14 show that the largest contribution to the vertically-integrated

moisture convergence comes from the moisture-weighted meridional stationary eddy con-

vergence integrated from the surface to 700 mb, i.e., MWC = −
∫ 700mb

surf
qd∂yv∗

d
dp/g, where

superscript d denotes the decadal climatological average. Fig. 4.3 (b,e,h) show that this met-

ric provides a remarkable, albeit not perfect, estimate of the total moisture flux convergence

and accounts for the spread across all climate models.

The empirical association of the EASM precipitation and the subtropical westerly jet has

been discussed in many studies (e.g., CB14; Kodama 1992; Sampe and Xie 2010). While

several hypotheses have been proposed to explain this association, thermal wind balance

suggests a direct link between the intensity and location of the upper-tropospheric subtropical

westerly jet and the horizontal temperature gradient, which is influenced by the atmospheric

diabatic heating (Zhang et al. 2006). The westerly winds have an equivalent barotropic

structure over the EASM region, so we use the vertically-normalized zonal wind eddy velocity

{u∗} = 1
(pbottom−ptop)

∫
u∗dp (e.g., Fig. 4.1b, linear contour) as an index of the subtropical

westerly jet core. Precipitation amounts are indeed well correlated to {u∗} in regions of

strong meridional temperature gradient, i.e., CBP (Fig. 4.3i). However, no such correlation

is observed over East China, where meridional temperature gradients are weak (Fig. 4.3f).
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Figure 4.3 Regression between the regional precipitation P (x−axis) and (top) global pre-
cipitation [P ] (y−axis), between the estimated moisture flux convergence P − E (x−axis)

and (center) normalized −
∫ 700mb

surf
qd∂yv∗

d
dp (y−axis), and (bottom) vertically-normalized s-

tationary zonal wind eddy velocity {u∗} (y-axis) over the EASM region (left), East China
(middle), and the CBP region (right). The coefficient of determination R2 is calculated based
on all models except for FGOALS-s2, which does not satisfy the global P-E budget, excludes
ECMWF reanalysis, GPCP, and TRMM products, and is significant at the 95% level of
a two-tailed Student’s t test if larger than 21%. The dashed line denotes the one-to-one
relationship.

4.3. Conclusions

CMIP5 simulations of the EASM have been assessed within the MSE and moisture bud-

gets. We have shown that the spatial distribution of the simulated precipitation is strongly

correlated to the sum of the net energy input into the atmospheric column and the zon-

al mean temperature advection by the meridional stationary velocity, F net − 〈v∗[∂yT ]〉. In

terms of rainfall amounts, we find that the wide inter-model spread can be only partly relat-
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ed to the background spread in the globally-averaged precipitation (particularly over East

China), and is primarily due to disparate simulations of the large-scale circulation as char-

acterized by the lower-level meridional stationary wind convergence. In both analyses, the

stationary eddy velocity, 〈v∗〉, appears to be the most important single metric capturing the

inter-model spread. The meridional eddy velocity over the EASM region is primarily due

to stationary waves induced by land-sea contrast and the TP (CB14), and their interaction

with the resulting diabatic heating, highlighting existing deficiencies in how GCMs represent

moisture-circulation interactions. These conclusions are consistent with those in CB14 and

are expected to provide useful constraints for future projection of the EASM as well as other

STCZs.

The EASM rainfall amount is partially affected by the simulated globally-averaged pre-

cipitation, whose spread should be energetically constrained on annual averages, but might

be only loosely constrained over monthly time scales because of atmospheric heat storage.

The range in the simulated June-July global precipitation amongst different models is as

large as 0.7 mm day−1, which is equivalent to ∼ 18 W m−2 difference in atmospheric la-

tent heating. Such spread in latent heating can be examined using observations, such as

the CERES-EBAF together with sensible heat in ERA Interim and attributed to errors in

simulated radiative and/or heat fluxes.

Analyses similar to those discussed here will be used to investigate future projections on

the regional scale. We will specifically explore if the inter-model spread in future EASM

changes in response to increasing greenhouse gases will diverge, based on the existing wide

spread in the present-day climate. If so, identifying key processes that need to be accurately

represented in climate models to better constrain present-day climate, as we do in this study,

is the first necessary step to reduce future projections of the EASM and ultimately provide

effective guidance to adaptation measures at the regional scale.
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Chapter 5

Response of the East Asian Summer
Monsoon to Atmospheric CO2 Forcing
and Subsequent Sea Surface Warming

Under global warming forced by atmospheric CO2, regional precipitation has been shown

to change in differing ways on different time scales. In this chapter, we use the readily

available simulations in the CMIP5 archive to diagnose the mechanisms embedded in the

EASM projections at fast and slow time scales. We frame our analysis on the moisture

budget, and partition precipitation anomalies into dynamic and thermodynamic components.

We find that the dynamic component plays an important role in setting up the spatial pattern

of regional precipitation changes. We expose mechanisms behind these dynamical changes.

Numerical simulations with the GFDL AM2.1 are used to further assess the relative role

of land-sea contrast, topography and SST patterns in driving the circulation, and hence

precipitation, response.

5.1. Data and Method

We use 11 climate model single realization outputs (Table 5.1) with monthly mean from

several CMIP5 experiments (Taylor et al. 2012): 30-year atmosphere-only simulations forced

by a fixed 1xCO2 or 4xCO2 concentration with prescribed SST distribution that remains

unchanged in both sets of experiments (sstClim or sstClim4xCO2); 150-year fully-coupled
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Table 5.1 CMIP5 models that have outputs in piControl, sstClim, sstClim4xCO2, and
abrupt4xCO2.

Model name Modeling group Resolution (plevXlatXlon)

bcc-csm1-1
Beijing Climate Center (BCC),

China Meteorological
Administration

17X64X128

CanESM2
Canadian Centre for CLimate

Modelling and Analysis
(CCCMA)

22X64X128

CCSM4
National Center for Atmospheric

Research (NCAR)
17X192X288

CSIRO-Mk3-6-0

CSIRO in collaboration with
Queensland CLimate Change

Centre of Excellence
(CSIRO-QCCCE)

18X96X192

inmcm4
Institute of Numerical
Mathematics (INM)

17X120X180

IPSL-CM5A-LR
L’Institut Pierre-Simon Laplace

(IPSL)
17X96X96

MIROC5
L’Institut Pierre-Simon Laplace

(IPSL)
17X128X256

MPI-ESM-LR
Max Planck Institute for

Meteorology (MPI-M)
25X96X192

MPI-ESM-MR
Max Planck Institute for

Meteorology (MPI-M)
25X96X192

MRI-CGCM3
Meteorological Research

Institute (MRI)
23X160X320

NorESM1-M
Norwegian Climate Centre

(NCC)
17X96X144

ocean-atmosphere simulations forced by a constant 4xCO2 concentration (abrupt4xCO2);

and fully-coupled simulations forced by pre-industrial forcings (piControl). The 30-year

sstClim and sstClim4xCO2, piControl and the last 30 years of abrupt4xCO2 are averaged

to represent the climatology of different climate states. The monthly resolution of available

data does not allow for consideration of sub-monthly transient eddies in our analyses.

The fast response is computed as the difference between sstClim4xCO2 and sstClim, in

which the SST distribution is prescribed based on the climatology from pre-industrial simula-

tions. In these two sets of experiments the only difference is, therefore, the atmospheric CO2
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concentration. The slow response is computed as the difference between abrupt4xCO2 and

sstClim4xCO2, in which the atmospheric CO2 concentration in both scenarios is essentially

the same, and the only difference is the subsequent warming in SSTs in the abrupt4xCO2

scenario.

As done in several previous studies of regional climate changes, we use the moisture

budget to study the hydrological change in the EASM region,

〈∂tq〉+ 〈∇ · (vq)〉+ 〈∂p(ωq)〉 = −P + E, (5.1)

where v indicates horizontal winds, ω is vertical wind, q is water vapor in the atmosphere,

P is precipitation, and E is evaporation. (·) indicates temporal mean. Ignoring water vapor

storage in the atmosphere and vertical velocity at the surface, Eq. 5.1 can be written as

P − E = −〈∇ · (vq)〉. (5.2)

This budget closes only if variables v and q include all temporal resolutions. Because our

data are at monthly resolution, the calculated moisture flux convergence does not include

the contribution from sub-monthly transient eddies. Hence, this contribution has to be

estimated as the residual of Eq. 5.2. In the following, we will drop the notation (·), with all

variables in following equations indicating monthly means.

In order to expose contributions from individual climatic variables to changes in the

moisture budget, we decompose specific humidity, q, into the product of relative humidity,

H, and saturation specific humidity, qs, as done by previous studies. One caveat is that by

using the monthly average of relative humidity, we ignore the covariance of relative humidity

and temperature (through the saturation specific humidity) on sub-monthly timescales.

The moisture budget can hence be written as

δ(P − E) = −〈δ∇ · (v ·Hqs)〉+ residual, (5.3)
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where δ indicates the difference between sstClim4xCO2 and sstClim (abrupt4xCO2 and

sstClim4xCO2) scenarios in the fast (slow) response, and the second term on the right hand

side of Eq. 5.3 is a residual, including sub-monthly transient eddies and moisture tendency

in the atmosphere. The moisture flux convergence term can be further decomposed as,

−〈δ∇ · (v ·Hqs)〉 =− 〈∇ · (δv ·Hqs(T ))〉+

− 〈∇ · (v · qs(T )δH)〉 − 〈∇ · (v ·Hδqs(T ))〉 − 〈∇ · (v · δHδqs(T ))〉+

− 〈∇ · (δv · qs(T )δH)〉 − 〈∇ · (δv ·Hδqs(T ))〉 − 〈∇ · (δv · δHδqs(T ))〉,

(5.4)

where terms on the right hand side represent, respectively, the change due to winds, rela-

tive humidity, saturation specific humidity and hence temperature, the covariance between

relative humidity and temperature, the covariance between winds and relative humidity, the

covariance between winds and temperature and the covariance among winds, temperature,

and relative humidity. Assuming no changes in winds and relative humidity, anomalies due

to saturation specific humidity, −〈∇(v · Hδqs(T ))〉, can be further decomposed into two

terms, −〈∇(v · Hδq∗s(T ))〉 and −〈∇(v · Hδ(qs(T ) − q∗s(T )))〉, where q∗s(T ) is qs(T ) at the

surface. The former can also be written as −αδT (P − E), where α = Lv/RT
2, Lv is the

latent heat of evaporation and R is the gas constant for water vapor. −αδT (P −E) has been

described in the literature as the “wet get wetter” pattern (e.g., Held and Soden 2006), by

assuming fixed shape of the temperature profile under climate change (similar to the Planck

response in climate sensitivity studies) and ignoring changes in transient eddy fluxes. It

predicts that with warming, (δT ), the pattern of net precipitation (P − E) will simply be

enhanced: becoming more positive when it is already positive; and more negative when it is

already negative. The latter arises due to lapse rate changes or changes in the shape of the

temperature profile.

In addition to these CMIP5 experiments, we also perform simulations with the GFDL
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AM2.1. Six experiments (noTopo control, noTopo 4xCO2, Topo control, Topo 4xCO2, U-

ni4K and CMIP5SST) are performed (see more details in Table 5.2). These experiments

have been designed to explore the impact of different regional forcings, such as land-sea con-

trast, topography and SST distribution, on the EASM response. For instance, the difference

between noTopo 4xCO2 and noTopo control is expected to show how enhanced land-sea

thermal contrast influences regional precipitation without any contribution from topograph-

ic forcing. These results can be compared with their counterparts with full topography. The

difference between 4xCO2 and Uni4K or CMIP5SST is expected to show how SST patterns

(in addition to SST uniform warming) affect the EASM. Climatological-fixed SSTs without

internannual variability from monthly-mean Reynolds SST analysis are used as boundary

condition (Smith et al. 1996). Each experiment ran for 25 years, and the last 14 years of the

simulations are used for the analyses.

We analyze changes in the EASM precipitation and circulation just for the month of

June, when most models well capture the EASM rainfall band. In doing so, we ignore

possible changes in the EASM seasonality and only focus on seasonal mean changes in

rainfall intensity and position.

5.2. Rainfall anomalies

With quadruple CO2 forcing, rainfall increases over the EASM region, particularly over

the oceanic regions on the southern flank of the rainfall band (Fig. 5.1a). Most of the pre-

cipitation increase only happens when SST starts to warm. With CO2 forcing alone, rainfall

decreases over oceanic regions, while it increases over East China (Fig. 5.1b). The decrease

in precipitation is colocated with the rainfall band, indicating that it is not simply a result of

model artifact but a robust signal in changes in the strength of the EASM precipitation. The

slow response shows a pattern opposite to the fast response – rainfall decreases over East

China while it increases over the oceanic regions (Fig. 5.1d). The difference between coupled
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Table 5.2 Experiments designed by using the GFDL-AM2.1.

Acronyms Descriptions Configurations

noTopo control
Benchmark present-day

simulation with no topography

Removed global topography,
climatological SSTs, CO2

concentration 320 ppm

noTopo 4xCO2

Evaluate impact on precipitation
from enhanced land-sea contrast
due to atmospheric CO2 forcing

without topographic forcing

Same as noTopo control but with
CO2 concentration 1280 ppm

Topo control
Benchmark present-day

simulation with full topography

Retained global topography,
climatological SSTs, CO2

concentration 320 ppm

Topo 4xCO2

Evaluate impact on precipitation
from enhanced land-sea contrast
due to atmospheric CO2 forcing

with topographic forcing

Same as Topo control but with
CO2 concentration 1280 ppm

Uni4K
Evaluate impact of uniform

increase in SSTs by 4K

Same with 4xCO2 but global
SSTs are increased by 4K

everywhere

CMIP5SST

Evaluate impact of increase in
SSTs as evaluated from the
MMM in the CMIP5 slow

response

Same as 4xCO2 but with
anomalies in the slow response
from CMIP5 MMM added to

global SST

and uncoupled simulations in EASM precipitation is fairly small (Fig. 5.1c, the spatial pat-

tern and magnitude is consistent with a recent study by Song and Zhou 2014, their Fig. 8c)

compared to that in either fast or slow response, safely concluding that air-sea interaction

can be ignored and that the signal in Fig. 5.1d comes from the SST forcing in the MMM.

a. Fast Response

The fast response of the EASM rainfall band to elevated CO2 concentrations with fixed

SSTs features a decrease (increase) of precipitation over oceanic (land) regions (Fig. 5.1b).

This precipitation response is robust in most models (not shown).

Anomalies in net precipitation (Fig. 5.2a) largely explain the pattern of precipitation

change in the EASM (Fig. 5.1b), with changes in evaporation being important only over
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Figure 5.1 Multi-model mean changes in precipitation (shading, W/m2) between different
climate states and climatological precipitation (linear contour interval 1 mm/day, 3 – 9
mm/day) in each base state.

oceanic regions: here, the contribution by evaporation decreases along regions of large

climatological evaporation (Fig. 5.2b). The spatial pattern of net precipitation change is

consistent with changes in mean moisture flux convergence (Fig. 5.2c), although transient

eddy flux anomalies, calculated as the residual of the moisture budget, are not negligible

(Fig. 5.2d). Changes in mean moisture flux convergence are mainly captured by those due to

winds (Fig. 5.2e). Contributions from changes in temperature (Fig. 5.2g), relative humidity

(Fig. 5.2f), and their covariances (Fig. 5.2j-l) play a less important role. This confirms that

in the absence of SST changes, the precipitation response is primarily dominated by changes

in circulation, as seen in other tropical-subtropical regions (Bony et al. 2013a).

b. Slow response

At a first glance, changes in the slow response appear to follow the “wet get wet-

ter” pattern. However, important deviations from the simple thermodynamic change exist

(Fig. 5.3a): While the response is characterized by a well organized positive change in net
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Figure 5.2 MMM anomalies (shading, W/m2) between sstClim4xCO2 and sstClim of net
precipitation δ(P − E) (a), evaporation δE (b), mean flux convergence −〈δ∇(v · Hqs)〉
(c), transient component (d, subtracted from a by c), wind component −〈∇(δv ·Hqs)〉 (e),
relative humidity component −〈∇(v · δHqs)〉 (f), temperature component −〈∇(v · Hδqs)〉
(g), temperature component due to the Planck response (surface temperature) −αδTs(P −
E) (h), temperature component due to lapse rate response (i, subtracted from g by h),
covariance between relative humidity and wind −〈∇(δv · δHqs)〉 (j), covariance between
relative humidity and temperature −〈v · ∇(δHδqs)〉 (k), and covariance between wind and
temperature −〈∇(δv ·Hδqs)〉 (l). Line contour (contour interval 1 mm/day, solid (dash) line
means positive (negative) value) indicates climatological net precipitation in sstClim4xCO2
(a,c-l), climatological evaporation (b).

precipitation, this is located to the south of its climatological location. The net precipitation

change over East China is negative, counteracting its positive change in the fast response.

Surface evaporation increases, particularly over oceanic regions where large evaporation re-

ductions occur in the fast response (Fig. 5.3b). This increase in surface evaporation might

be due to the experiment configuration: in sstClim4xCO2, SSTs are prescribed and surface

evaporation is strongly limited; in abrupt4xCO2, SSTs are interactive, and a strong increase

in local SSTs due to ocean dynamics might explain the narrow band of enhanced evaporation

(Xie et al. 2010).
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Figure 5.3 Same with Fig. 5.2 but for slow response.

The mean flux convergence, −〈δ∇(v ·Hqs)〉, captures the overall spatial pattern of the

net precipitation change in Fig. 5.3a, with strong moisture convergence on the southern

flank of the rainfall band. Transient eddies show a significant contribution to the balance

(Fig. 5.3d). Recall that because of the monthly resolution of the CMIP5 data, the transient

eddy contribution is estimated from the moisture budget residual, which prevents a more

careful mechanistic understanding of the transient eddy response. Changes due to winds

(Fig. 5.3e) and temperature (Fig. 5.3g) are both important, with circulation changes domi-

nating the overall spatial pattern, and temperature changes increasing moisture convergence

over the climatological convergence zone. Contributions from relative humidity changes are

nontrivial, but their magnitude and spatial extent are smaller than those from wind and

temperature changes (Fig. 5.3f). As discussed in section 2, changes due to temperature can

be decomposed into the Planck response (Fig. 5.3h) and the lapse rate response (Fig. 5.3i).

The Planck response relates the climatological net precipitation, weighted by the surface

warming, to changes in net precipitation, or the so-called “wet get wetter” pattern. The
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Planck response dominates the total response due to temperature, in both magnitude and

spatial pattern. Weak signals over some land and oceanic regions are due to nearly zero cli-

matological net precipitation, where local precipitation is primarily balanced by evaporation

(c.f. Fig. 7a in Chen and Bordoni 2014). The coupling between temperature (saturation

specific humidity) and wind changes (Fig. 5.3l) is dominant among the covariance terms

(Fig. 5.3j-l) and resembles the dynamic change due to only winds (Fig. 5.3e). The reasoning

is as follows: since temperature increases everywhere, the sign in the response is due to

changes in winds, with specific humidity, (qs(T )), and specific humidity changes, (δqs(T )),

acting as scaling factors.1

In both fast and slow responses, changes in circulation are significant and dominate the

spatial pattern of the precipitation anomalies. Changes in thermodynamic quantities, such

as temperature and relative humidity, play a less important role. Hence, we focus primarily

on analyzing the local circulation changes, and infer possible mechanisms through which

fundamental forcings, such as land-sea contrast, topography, and atmospheric CO2, affect

local circulations directly or indirectly through larger-scale atmospheric circulation changes

such as those of the NPSH.

Fig. 5.4 shows changes in precipitation and moisture flux due to changes in winds and

geopotential height. Specifically, to clearly link geopotential height to circulation changes,

in Fig. 5.4 we show differences in the local geopotential relative to the maximum value in

the NPSH. This is because, through geostrophic balance, winds are linked to gradients in

geopotential height rather than its magnitude. Additionally, geopotential heights tend to

systematically shift upward under global warming. Our metric in Fig. 5.4 accounts for all of

these factors.

On the larger scale, changes in the location and the strength of the NPSH in the fast

1A comparison between Figs. 5.3 e and l shows that qs(T ) and δqs(T ) are of similar magnitude. This is
due to the nonlinear dependence of qs(T ) on temperature, which gives rises to big changes in qs(T ) even for
small changes in T . For instance, the water vapor saturation pressure is 3523 Pa at 300 K and 4701 Pa at
305 K, which implies that for only 5K difference in temperature, the water vapor saturation pressure differs
by around 33%.
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Figure 5.4 MMM anomalies of precipitation (shading, W/m2) due to winds, winds at 850
mb (vector, m/s), and difference in geopotential height between its maximum and locational
value (line contour, contour interval 30 m, solid black, purple and brown lines indicate
sstClim, sstClim4xCO2, and abrupt4xCO2, respectively) at 850 mb in the fast (a) and
slow (b) responses. Short dash lines in black and purple indicate the inter-model spread (1
standard deviation) in sstClim and sstClim4xCO2 simulations.

response are within one standard deviation of the inter-model spread and therefore not signif-

icant. In the slow response, instead, the NPSH moves southward and weakens significantly.

This implies that changes in winds over the EASM region are mostly local responses in the

fast response, while resulting from a combination of local and remote responses, mediated
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Figure 5.5 MMM anomalies of climatological moisture weighted wind convergence (shad-
ing, W/m2) and vertical velocity at 500 mb (line contour, contour interval 0.005 Pa/s).
Solid/dash line indicates ascending/descending motion.

by the NPSH, in the slow response.

The dynamic moisture flux convergence anomalies, (−〈∇ · q0δv〉), can be further de-

composed into a wind convergence component, (−〈q0∇ · δv〉), and an advection component,

(−〈δv · ∇q0〉). The wind convergence component, (−〈q0∇ · δv〉), can be expressed in terms

of the vertical advection using continuity, −〈δω∂pq0〉. The change in this term is largely

explained by changes in vertical velocity at 500 mb (i.e., δω500, Fig. 5.5).

The vertical velocity is directly associated with remote forcing (i.e., energy advection),

local radiative and surface fluxes, and stability. According to the MSE budget (Chen and
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Bordoni 2014), vertical velocity can be approximated as the fraction between energy input

and moist static stability. Here, we define a proxy for vertical velocity at 500 mb based on

the MSE budget,

ω500apprx =
−〈v · ∇E〉+ F net

−α〈∂ph〉
, (5.5)

where F net = S↓t − S↑t − S↓s + S↑s − R↑t + R↑s − R↓s + SH + LH, h = cpT + gz + Lvq is

the MSE, E = cpT + Lvq is the atmospheric moist enthalpy, and F net is the net energy

flux into the atmosphere, with the subscript t and s denoting the top of atmosphere and

surface, respectively.2 α is a coefficient added to account for the coupling between vertical

velocity and MSE stratification. Transient eddies are ignored and the coupling coefficient α

is assumed to be homogeneous for simplicity. Fig. 5.6 shows changes in vertical velocity as

diagnosed from the model output directly and from the approximation in Eq. 7.1 (i.e., δw

and assuming α = 1).

At the first order, changes in vertical velocity can be partitioned into changes in ener-

gy input and changes in stability (Appendix). Contributions from changes in energy input

(mostly from horizontal advection of moist enthalpy) are significantly larger than those from

changes in stability in both fast and slow responses (Fig. 5.7). In the fast response, anoma-

lous positive moist enthalpy advection over Northeast China and negative moist enthalpy

advection over the climatological rainfall band are closely associated with changes in verti-

cal velocity. In the slow response, anomalies in moist enthalpy advection change sign, with

anomalous positive moist enthalpy advection over ocean and negative advection over land.

Contributions from local stability are considerably smaller, however, with a destabilizing ef-

fect over land in the fast response and over oceanic regions in the slow response. Anomalies

in moist enthalpy advection are due to both dry enthalpy and latent energy advection, with

similar spatial pattern (not shown) because of close relationship between temperature and

water vapor changes via the Clausius-Clapeyron relationship.

2The vertical integration of moist static energy stratification is from 700 mb to 100 mb to account for
the steepest slope for stability.
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Figure 5.6 MMM anomalies of approximated vertical velocity ω500apprx (Eq. 7.1, shading,
Pa/s) and MMM anomalies of climatological vertical velocity at 500 mb (line contour, con-
tour interval 0.005 Pa/s). Solid/dash line indicates ascending/descending motion. ω500apprx

is multiplied by a factor of 2 in the fast response (a).

Changes in the advection term (−〈δv ·∇q0〉) are a direct result from (mostly geostrophic)

wind anomalies. In the fast and slow responses, changes in local precipitation over East China

and adjacent oceanic regions are highly associated with meridional wind anomalies (Fig. 5.8

b, d). Intensified (weakened) meridional wind enhances (reduces) moisture transport, re-

sulting in higher (lower) rainfall. In addition, the meridional component of the geostrophic

flow on a β plane can induce convergent flow, which reinforces local precipitation in ad-

dition to positive advective anomalies. Changes in meridional wind at 850 mb are largely

geostrophic, a consequence from changes in surface pressure gradient through geopotential
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Figure 5.7 MMM anomalies of energy input (a and c, first term in Eq. 7.2, shading, W/m2),
fractional changes in stability weighted by climatological energy input (b and d, second term
in Eq. 7.2, shading, W/m2), and climatological vertical velocity at 500 mb (line contour,
contour interval 0.005 Pa/s) in the fast (a and b) and slow (c and d) responses. Solid/dash
line indicates ascending/descending motions.

height (Z850) gradient anomalies. For simplicity, ignoring subtle influences from changes in

the atmospheric temperature between the surface and 850 mb pressure level, Z850 is only

dependent on ln(ps), where ps indicates surface pressure. Anomalies in locational differences

in surface pressure, i.e., δ ln(ps1/ps2) will change the Z850 gradient, and thereafter create

wind anomalies, δv850. In the fast response, enhanced land-sea contrast is manifest in an

increased surface pressure gradient, with lower pressure over land and higher pressure over

ocean. Meridional wind is subsequently enhanced. In the slow response, however, land-sea

contrast is weakened, and the meridional wind is reduced. This relationship is well observed

amongst different model simulations (Fig. 5.9).3 Changes in precipitation over the oceanic

rainfall band, however, are largely due to changes in zonal wind, particularly in the slow

response (Fig. 5.8 c). Enhanced lower-level westerly wind might be related to a southward

displacement of the NPSH. In the fast response, the NPSH does not feature significant

changes in its spatial pattern, which might be the reason why contributions from anomalous

advection of climatological moisture are limited.

3The robustness of the relationship between δ ln(ps1/ps2) and δv850 is insensitive to the width of the
region we choose (the East boundary varies from 130E to 140E).
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Figure 5.8 Zonal (a, c) and meridional (b, d) components of MMM anomalies of climato-
logical moisture advection at 850 mb (shading, W/m2)) in the fast (a, b) and slow (c, d)
responses.

c. Summary

We have diagnosed precipitation changes in the EASM region in both fast and slow

responses. Some robust conclusions emerging from this diagnosis include:

• Changes in net precipitation are associated with changes in the moisture flux conver-

gence, which is dominated by the dynamic component (i.e., by changes in circulation);

• The wind convergence term in the dynamic component is directly linked to changes in

vertical velocity through continuity;

• These changes in vertical velocity are found to be mostly related to changes in moist

enthalpy advection, with changes in vertical stability playing a lesser role;

• Changes in horizontal moisture advection over East China are dominated by changes

in the meridional wind, which is a consequence of changes in land-sea contrast. The

zonal component dominates the slow response over the oceanic regions, as a possible

consequence of the southward displacement of the NPSH.
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Figure 5.9 Scatterplot (blue/red for fast/slow reponse) of meridional wind anomaly over East
China and adjacent oceans (25N-40N, 110E-130E) and surface pressure gradient anomaly
between land (100E-120E) and ocean (130E-150E) over 25N-40N band. Each dot represents
one model output as indicated in Table 5.1. Solid line indicates linear regression line in
fast/slow response, respectively. See text for more details.

5.3. Numerical simulations

We use the GFDL AM2.1 to investigate the impact of land warming and SST pattens

on the EASM response to CO2 forcing. We have previously shown that topography plays

an essential role in the rainfall band formation (Chen and Bordoni 2014, Chapter 3 of this

thesis). As discussed in Chapter 3, the presence of topography reinforces the land-sea thermal

contrast, in addition to its mechanical interactions with the prevailing flow. However, in a

changing climate, can enhanced land-sea thermal contrast due to land warming alone provide

a large enough forcing to cause changes in precipitation? In addition, how do changes in

71



SST patterns affect the response of the EASM?

a. Land warming

In order to expose impacts of land warming alone on the EASM, we design two experi-

ments with changing CO2 concentration in the absence of global topography: noTopo control

and noTopo 4xCO2. Fig. 5.10 shows the simulated precipitation change in May, June, and

July with and without topography. Consistent with our previous study (Chen and Bordoni

2014), in the presence of topography, a well organized rainfall band is simulated during the

EASM season: the rainfall band disappears when topography is removed. In the absence

of topography (Fig. 5.10, right), there are no significant changes in precipitation until July,

when the rainfall band dissipates even in the control experiment (with topography). The

difference highlights the limited impact of land warming alone on the EASM rainfall, and

emphasizes the importance of topography in its response to CO2 forcing.

b. SST patterns

Previous literature (e.g., Xie et al. 2010) has discussed the importance of SST patterns

in regional precipitation changes, arguing that the “wet get wetter” response can hold only

for uniform SST changes. We illustrate the impact of spatially varying SST patterns on the

projected EASM rainfall by comparing the Uni4K and CMIP5SST experiments (Fig. 5.11).

With spatially varying SSTs (Fig. 5.12), rainfall increases from East China through the

northwestern Pacific; rainfall instead decreases over Japan and part of the northwestern

Pacific in the case of uniform SST warming. In the latter case, changes in regional net

precipitation do not follow the pattern of the climatological net precipitation, as would be

expected from the “wet get wetter” response.

Differences in rainfall projection are largely due to the dynamic component (Fig. 5.13)

in the moisture budget. With spatially varying SSTs, the NPSH weakens and moves south-
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Figure 5.10 GFDL AM2.1 simulations of precipitation (shading, W/m2) in the fast response
with full topography (left) and without topography (right) in May (a,b), June (c,d), and
July (e,f). Line contour (contour interval 1 mm/day, 3 – 9 mm/day) indicates climatological
precipitation in each comparison.

ward, which is associated with a southward displacement of the westerly jet (Fig. 5.12a).

The weakening of the NPSH, together with its spatial displacement, creates an anomalous

westerly wind to the southeast of Japan, resembling the MMM response in CMIP5 simula-

tions. With uniform SST warming, the NPSH intensifies and there is little evidence of any

southward displacement. As a consequence, the prevailing wind to the southeast of Japan

is northeasterly, which results in a reduction in precipitation.

5.4. Summary and discussion

In this Chapter, we analyzed the response of the EASM rainfall band to atmospheric

CO2 forcing and subsequent SST warming within the context of the moisture budget. The

spatial pattern of net precipitation changes is dominated by changes in mean moisture flux
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Figure 5.11 GFDL AM2.1 simulations of precipitation in June (shading, W/m2) with CMIP5
anomalous SST pattern (a) and with 4K uniform SST increase (b). Line contour (contour
interval 1 mm/day, 3 – 9 mm/day) indicates climatological precipitation.

convergence, which in turn is primarily explained by changes in circulation. The thermo-

dynamic component however is non-negligible; it mimics the net precipitation climatology

and contributes significantly to rainfall changes under warming. Surface pressure anomalies,

as a consequence of land-sea contrast due to CO2 forcing, create an anomalous meridional

flow over East China and adjacent oceans, which affects the moisture advection. The NPSH

weakens and moves significantly southward in the slow response, creating an anomalous

westerly flow to the south of the climatological rainfall band and subsequently increasing

moisture advection. In addition to contributions from anomalous moisture advection due to

winds, anomalous wind convergence also contributes to rainfall changes. The spatial pattern
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Figure 5.12 GFDL AM2.1 simulations of surface temperature (shading, W/m2), 850 mb
winds (vector) and the westerly core (maximum westerly wind, black indicates climatology,
purple and blue indicate simulations with CMIP5 anomalous SST pattern and 4K uniform
SST increase, respectively) with CMIP5 anomalous SST pattern (a) and with 4K uniform
SST increase (b).

is colocated with that of vertical velocity anomaly at 500 mb, which can be thought of as a

response to a remote forcing, provided by anomalous horizontal moist enthalpy advection.

Numerical simulations without topography show that enhanced land-sea contrast due to

land warming alone cannot induce similar precipitation changes. This result implies that the

land warming is not a sufficient condition for the EASM rainfall changes. It also emphasizes

the important role of topography in the EASM response in terms of its climatology and

75



Figure 5.13 GFDL AM2.1 simulations of net precipitation (a-c), evaporation (d-f), wind
component (g-i), relative humidity component (j-l) and temperature component (m-o) as in
Fig. 5.2 for fast response (left), slow response (middle), and slow response with uniform 4K
increase in SSTs (right) with full topography. Line contour (contour interval 1 mm/day, 3 –
9 mm/day) indicates climatological precipitation in each comparison.

climate change. In addition, spatially varying SST changes are shown to play a key role in

rainfall changes in the oceanic regions through associated changes in the NPSH.

The fast and show responses of the EASM to CO2 forcing show an opposite pattern,

implying a compensating effect in transient climate change. This result is consistent with

recent work by Shaw and Voigt (2015), who highlight how changes in land-sea contrast in

response to the direct radiative forcing and the indirect SST warming have an opposite

impact on global circulation change. Speaking of the EASM specifically, we acknowledge the

importance of land-sea contrast but emphasize the role of topography rather than that of land

warming alone. Our simulations are based on GCM experiments with realistic continents,

rather than the more idealized study by Shaw and Voigt (2015), who prescribe SSTs to

artificially introduce land-sea contrast in their aquaplanet simulations.
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Results emerging from this work have important implications for improving EASM pro-

jections in GCMs. The dynamic component due to circulation changes, though highly model

dependent and hard to constrain, can disclose mechanisms through which different forcing

agents influence the EASM. The thermodynamic component mimics the climatology. There-

fore, a better representation of the climatological precipitation will be the first necessary step

to reduce spread in regional precipitation projections. In addition, analysis of the results

from the fast response highlight how dramatic changes in rainfall can occur even as a direct

response to CO2 forcing, without any SST warming. These changes can have a tremendous

societal impact on heavily populated monsoon regions. This confirms how geo-engineering

schemes that have been proposed as climate mitigation strategies and that only aim at re-

ducing surface warming without CO2 sequestration might have unexpected implications for

the global and regional hydrological cycle (Bony et al. 2013a; O’Gorman et al. 2012).
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Chapter 6

Conclusions

Observational analyses of the energetics of the EASM in present-day climate show that

horizontal advection of moist enthalpy, rather than local thermodynamic forcing, plays a

central role in its existence and seasonality. The horizontal moist enthalpy advection is in

turn primarily associated with stationary quantities, such as zonal asymmetries in the zonal

temperature gradient and in the meridional velocity. Numerical simulations show how the TP

exerts a profound influence on the EASM formation primarily by enhancing the stationary

eddy meridional wind, rather than by reinforcing the longitudinal thermal gradient. The

enhanced meridional stationary eddy velocity throughout the whole troposphere increases

dry enthalpy advection into the EASM region significantly, which supports the formation

of a well-organized rainfall band. At upper levels, increases in the meridional stationary

wind are linked to the acceleration of the deflected westerly jet over Northeast China; at

lower levels, the enhanced meridional stationary eddy velocity represents the northwestern

flank of the NPSH. In the absence of the TP, the NPSH narrows in latitude meridionally

and gets elongated zonally, which allows its western flank to penetrate into the inner Asian

continent (Rodwell and Hoskins 2001). As a result, these changes in the NPSH result in a

significant weakening of the southerly wind over the EASM region. In the presence of the

TP, the northwestern flank of the NPSH is more tilted, resulting in an anomalous southerly

wind therein.

The GFDL AM2.1 simulations provide support to this mechanism. However, there are
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a few caveats to keep in mind. The first one is that the choice of prescribed SSTs reduces

the changes in the NPSH in the lower troposphere. Therefore, we choose 750 mb (above the

boundary layer, where the wind response is less affected by the prescribed SSTs) to diagnose

how topography shapes the NPSH (Fig. 6.1). Another limitation is that the geopotential

height might not be a good proxy for winds where the ageostrophic component might not be

small, such as mountainous regions. With consideration of these caveats, we focus only on

the North Pacific region. In the presence of topography (Fig. 6.1, top), the NPSH is spatially

limited over the Pacific, with a relatively more tilted structure in its northwestern flank; in

the absence of topography (Fig. 6.1, bottom), the NPSH is strongly weakened. Additionally,

it penetrates into the Asian continent and shows a relatively flat spatial structure, with

its western boundary limited by a low pressure system over the Indian continent, and its

northwestern flank by the westerly winds.

The importance of the meridional stationary eddy velocity in the EASM formation is in-

vestigated in CMIP5 current climate simulations. The spatial correlation between simulated

EASM precipitation and stationary southerly wind is found to be high amongst all available

model outputs. The inter-model spread of EASM rainfall amount can be largely explained

by stationary meridional wind convergence.

In a changing climate, the dynamic component due to circulation changes plays an im-

portant role in setting up the spatial pattern of net precipitation changes. Rainfall changes

due to wind convergence and moisture advection are both important. The rainfall anomaly

due to the wind convergence is largely explained by changes in moist enthalpy advection.

The rainfall anomaly due to moisture advection is dominated by changes in meridional wind

over land and zonal wind over the ocean: over East China, changes in meridional wind are

a direct consequence of land-sea thermal contrast; over the oceanic regions, changes in the

zonal wind are modulated by changes in the larger-scale circulation pattern of the NPSH.

Numerical simulations reveal the importance of topography and spatial SST patterns in

rainfall changes in the EASM region.
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Figure 6.1 GFDL AM2.1 simulations of geopotential height at 750 mb in the presence (top)
and absence (bottom) of global topography. Color shading indicates topography height.
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Climatology 

Figure 6.2 Schematic of the role of the TP (red oval) in the NPSH (dashed lined) and the
EASM in present-day climate.

In summary, observational studies show that southerly wind plays an important role in

the energetics of the EASM. The TP affects the rainfall band formation primarily through

the meridional stationary wind velocity (Fig. 6.2 top). In the absence of the TP, the NPSH

expands more widely and significantly weakens the southerly wind in the EASM region.

As a result, the rainfall band disappears (Fig. 6.2 bottom). In the fast response to CO2

forcing, enhanced land-sea thermal contrast reinforces the meridional wind, which results

in an increase of rainfall over East China (Fig. 6.3). In the slow response, the land-sea

thermal contrast is weakened because of sea surface warming, and the rainfall over East

China decreases. The NPSH moves southward, causing the rainfall band to move southward

(Fig. 6.4).
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Fast response 

Figure 6.3 Schematic of the fast response of the EASM to CO2 forcing. Notation as in
Fig. 6.2.
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Slow response 

Figure 6.4 Schematic of the slow response of the EASM to CO2 forcing. Notation as in
Fig. 6.2.
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Chapter 7

Appendix: Decomposition of the
approximated vertical velocity

We use a, s, and w to represent energy input (−〈v · ∇E〉 + F net), stability (〈∂ph〉) and

approximated vertical velocity at 500 mb (ω500apprx). Therefore, Eq. 5.5 can be expressed

symbolically as w = a
αs

. Changes in vertical velocity (δw) can be expressed as

δw

w0

=
δa

a0
− δs

s0
, (7.1)

where the subscript 0 indicates the control experiment, which is sstClim (sstClim4xCO2) in

the fast (slow) response. Because a0 approximates to zero in some regions, we reformulate

Eq. 7.1 by multiplying a0 on both sides of the equation,

a0δw

w0

= δa− a0δs

s0
. (7.2)

One advantage of this approach is that we can avoid imposing an empirical value of α while

still being able to diagnose respective contributions.
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