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ABSTRACT 

An approximate approach is presented for determining the 

stationary random response of a general multidegree-of-freedom 

nonlinear system under stationary Gaussian excitation. This 

approach relies on defining an equi valent linear system for the 

nonlinear system. Two particular systems which possess exact 

solutions have been solved by this approach, and it is concluded 

that this approach can generate reasonable solutions even for sys­

tems with fairly large nonlinearities. The approximate approach 

has also been applied to two examples for which no exact or approxi­

mate solutions were previously available. 

Also presented is a matrix algebra approach for determining 

the stationary random response of a general multidegree-of-freedom 

linear system. Its derivation involves only matrix algebra and 

some properties of the instantaneous correlation matrices of a 

stationary process . It is therefore very direct and straightforward . 

The application of this matrix algebra approach is in general simpler 

than that of commonly used approaches. 
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NOTATIONS 

Matrices and vectors will be denoted by capital letters and 

lower case letters with a bar over them, respectively (exceptions: 

E, I'). Subscripts may be us ed to d esignate different matrices or 

vectors, e.g., x 1, x 12 , ~· Superscripts T and >:< will denote, 

respectively, the transpose and the conjugate transpose of a matrix or 

a vector. The components of a matrix or a vector, say A or x, will 

be written as a.k or x. . In the following is a list of frequently used 
J J 

symbols. Others will be defined when they are used. 

c. 
J 

c 
C (o) 

E [ J 

f . 
u 

f(t) 

G(t) 

H(w) 

i 

I 

k. 
J 

k(o) 

= 

= 

= 

= 

= 

= 

= 

= 

= 
= 

= 

= 

= 

= 

yjk when k=j-1 

damping matrix of a linear system 

damping matrix of the linearized system of a nonlinear 
system 

difference b etween a nonlinear system and its equivalent 
linear system 

expectation operator 

ultimate force of a nonlinear spring 

stationary random vector 

internal force vector of a system 

impulse response function matrix 

frequency re sponse function matrix 

identity matrix 

x.. when m = j -1 
Jill 

initial stiffness of a nonlinear spring 
., . 



ffi­x 

M 

0 

p 

q 

R-(T) x 

R._(O) 
x 

s(t} 

t 

u(X) 

w 

x 

y 

yjk 

r< > 

o(t) 

G 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 
= 
= 

= 

= 

vii 

stiffness matrix of a linear system 

stiffness matrix of the linearized system of a non­
linear system 

mean vector of x 

mass matrix 

null matrix or null vector 

Laplace transform parameter or probability density 
function 

transitional probability density 

correlation function matrix of x 

instantaneous correlation matrix of x 

sjk when k=j-1 

fot;_ce in the nonlinear element connecting the jth and the 
kt masses of a nonlinear system 

white noise vector 

time 

potential energy of a system 

spectral density matrix of a white or a clipped white 
noise vector 

displacement vector 

displacement of the jth mass relative to the kth mass 

relative displacement vector of a simple n-degree-of­
freedom system 

proportionality factor between C and ~( T} or a constant 

equivalent linear damping constant of s jk 

Gamma function 

Dirac delta function 

fraction of critical damping 



~jk 

µ 

w 
c 

= 

= 

= 

= 

= 

viii 

equivalent linear stiffness of sjk 

small parameter 

r . rn . s . value of y 

cutoff frequency of a clipped white noise 

natural frequency 
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I. INTRODUCTION 

In structural dynamics the excitation of a system is often ran-

dom in nature and hence the response of such a system cannot be 

accurately predicted by usual deterministic approaches. For example, 

the ground motion during an earthquake is a random process and it is 

therefore desirable to apply probabilistic techniques to the analysis of 

structures subjected to this type of excitation. In recent years the 

development of rockets and jet engines which give rise to vibration 

that is essentially random has lead to increased interest in the appli-

cation of probabilistic techniques to structural dynamics. 

The theory of the random process was first successfully 

applied to dynamic systems by Einstein 
1

. He used it to investigate 

the Brownian motion of a free particle and found that the probability 

density of the response process was governed by a diffusion equation . 

Soon his result was generalized to more complicated cases by 

2 . 3 4 
Fokker , Smoluchowski , Planck , and others . It was found that 

the transitional probability of a special kind of Markov process was 

governed by a partial differential equation of parabolic type. This 

equation is usually called the Fokker-Planck equation. A more 

general partial differential equation for determining the transitional 

probability density of a completely general Markov process has also 

been found 5 and sometimes it is also referred to as the Fokker-Planck 

equation. In the present study, the general equation will not be used, 

and hence the more restrictive parabolic equation will be referred to 

as the Fokker-Planc k equation. 
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In 1919 Ornstein 6 developed another approach which did not 

require that the response process of a dynamic system be Markovian. 

It is known that a random process can be completely defined by its 

moment functions of various orders . For example, a Gaussian 

process can be specified by its first and second moment functions. 

Therefore, Ornstein inte grated the equation of rnotion and expressed 

the random displacement in terms of a stochastic integral. Then he 

was able to derive all of the required moment fun ctions. This 

approach will be called the impulse response function approach. 

Wiener 7 in 193 0, and Khintchine 
8 

in 1 934, found independently 

that the spectral density and the correlation function of a random 

process are relate d by a Fourier cosine transform . Since the 

spectral density of the stationary response of a linear system can 

be readily determined by Fourier transform, the Wiener -Khintchine 

relation furnishes anothe r way to determine the stationary response 

of a linear system. This approach is usually called the spectral 

density approach. 

All of these approaches were ffrst developed f or single-degree­

of-freedom linear systems. However, they can be generalize d to 

multidegree-of-freedom linear systems without difficulty 9 • 

In general, it is just an approximation to consider a real 

system as linear. Most real systerns are nonlinear by their very 

nature. The results of linear analysis are particularly inadequate 

for large motions. Hence, the effect of system nonlinearities on the 

response of structures should not be overlooked. 
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Unfortunately, only one of the three approaches mentioned 

above, the Fokker-Planck approach, can be extended to nonlinear 

problems. However, no exact solution has been found for the 

Fokker-Planck equation for any second-order nonlinear system. 

The time-independent or stationary Fokker-Planck equation can be 

solved, but only under certain rather restrictive conditions. Since 

an exact solution is available only for limited stationary cases, 

several approximate approaches have been devised to treat non-

linear problems. 

In deterministic theory, Krylov and Bogoliubov 10 developed a 

technique to replace a nonlinear system by an equivalent linear 

system. By solving this linear system, they obtained an approxi-

mate solution to the nonlinear system. The application of this 

technique to problems of random vibrations was made independently 

. 11 12 
by Booton and Caughey • Later, Caughey further extended this 

technique to include some special multidegree-of-freedom nonlinear 

12 systems • This extension will be called the normal mode approach 

since it is based on the linear theory concept of normal modes of 

oscillation. 

Another approximate approach which has also been adapted 

from the deterministic theory is the perturbation approach. 

Crandall13 first applied this approach to investigate the random 

vibration of a nonlinear oscillator. 14 Later, Tung was able to 

apply it to multidegree-of-freedom nonlinear systems. This approach 

requires that the nonlinearity of the system be small. Then the 

., . 
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nonlinear problem can be r educed to the solution of several sets of 

linear differential equations. 

In the present study a new approach for multidegree-of-freedom 

nonlinear systems is presented. Additionally, as a by-product of 

the nonlinear analysis, a matrix algebra approach is developed which 

can be applied to find various instantaneous correlation matrices 

for the stationary random response of a multidegree-of-freedom 

linear system. The details of the matrix algebra approach are 

presented in Chapter II. This chapter also contains a brief review 

of existing approaches for multidegree-of-freedom linear systems 

and a comparison of the matrix algebra approach and the existing 

approaches . Two examples are worked out in detail to illustrate 

the application of the matrix algebra approach. 

The new approach for determining the instantaneous correlation 

matrices of the stationary response of a multidegree- of-freedom 

nonlinear system is presented in Chapter III along with a brief 

review of the Fokker-Planck approach, the normal mode approach, 

and the perturbation approach. This approach is based on the idea of 

defining an equivalent system by minimizing the difference between 

the original system and the equivalent system. In the present study 

the equivalent system is assumed to be linear . Thus, it leads to 

a generalization of the method of equivalent linearization. The only 

restrictions on the application of this generalized equivalent lineariza­

tion approach are that the excitation be stationary and Gaussian. 
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If the nonlinearities of the system are small, then the re spouse 

should be clos e to a Gaussian process. Henc e , it is expected that 

the instantaneous correlation matrices generated by this approach 

will be a good approximation . For large no.nlinearitie s the response 

may in general b e quite different from a Gaussian process. However, 

for the examples considered in Chapter III, this approach still gives 

a rea s onable solution, 

In Chapter IV, two timely examples which cannot be solved 

either exactly or approximately by existing techniques are given as 

illustration of the generalized equivalent linearization approach. 
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II. STATIONARY RANDOM RESPONSE OF 

MULTI-DEGREE-OF-FREEDOM 

LINEAR SYSTEMS 

2. I Equation of Motion 

The general equation of motion in matrix form for an n-degree-

of-freedom linear system may be described by 

where 

~+Cx +KX = f(t) 

M is an nxn generalized mass matrix 

C is an nxn generalized damping matrix 

K is an nxn generalized stiffness matrix 

x is a generalized displacement vector 

defining the motion of the system 

T (t) is a stationary random vector process 

specified by its mean vector rnf and its 

correlation function matrix 

Rr<t1 -t2 )=E[f'<t1 )f'T<t2 )] 

Since f{t) is a random vector process, Eq . (2. I) is a stochastic 

(2. 1) 

differential equation and xis also a random vector process. In this 

study the vector process xis assumed to be stationary, continuous, 

integrable and differentiable to the required order in the sense of 

mean square. One consequence of these assumptions, which we will 

use quite often, is that the operations of expectation and mean- square 

differentiation or integration are commutative, provided, of course, 

that the e x p ectations in question exist and are continuous at the limit 

. 12 
points 
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2 .2 Review of Commonly- Used Approaches in Obtaining a Stationary 

Solution for Multidegree-of-Freedom Linear Systems 

Several approaches have been developed to treat the. stochastic 

differential equation of motion (2 . 1). The most commonly used 

approaches are the impulsive response function approach, the spectral 

density approach, and the Fokker-Planck approach. The first two 

approaches can be used to calculate the mean vector and the correla-

ti on function matrix of the response process. However, if the r esponse 

process is Gaussian, these two quantities completely define the prob-

ability densities of any order. In the third approach, the Fokker-

Planck equation, which governs the transition probability density 

of the response process, can be used only when the excitation is a 

shot or white noise. If the excitation is a Gaussian white noise, and · 

one is interested in the stationary solution, the transition probability 

alone completely de scribes the response process. All three 

approaches can be applied to nonstationary problems as well as 

stationary problems. In this section we will give a brief de scrip-

tion of these three approaches applied to stationary problems. 

2 . 2. I Impulsive Response Function Approach 

The first step in this method is to find the impulse response 

function matrix G(t) of (2 . I) which is defined as the solution of the 

following system: 
. .. . 

MG+ CG +KG= Hi(t) (2. 2) 

., . 
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with the initial conditions 

G(O) = G(O) = 0 (2. 3 ) 

where o(t) is the Dirac delta function, I, an nxn identity matrix, a nd 

0, an nxn n ull matrix, The problem specified by (2. 2) and (2. 3) can 

be solved in a variety of ways. However, one of the most direct is 

15 the Laplace transform method . 

Taking the Laplace transform of both sides of (2. 2) and 

using the initial conditions (2 . 3 ) yields 

,.,, 2 -1 
G(p) = (Mp +Cp +K) (2. 4) 

wh ere p is a transform parameter and G(p) i s the Laplace transform 

of G(t). Let 

2 
S(p)=Mp +Cp+K 

~ (p) = the determinant of S 

R(p) =the adjoint of S 

Then G(t) is g iven by the inversion integral 

1 i pt !U.tl 
G(t) = 2---:- I e /\( )dp 

rr 1 "B r w. p 

(2. 5) 

(2. 6) 

where Br is the Bromwich contour in the p-plane. For the pre sent 

case the integral on the right-hand side of (2. 6 ) can be evaluated by 

calculating the residues at the s ingulariti es of the integrand. In this 

way, G(t) can be expressed in the followin g form: 

n 

G(t) = 2 I (Xk cos !3k t - .yk sinf3k t)e - ak t 

k=l 

., . 

(2. 7) 
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where 

(2. 8) 

The :X.k' s are those roots of .:6.(p) = 0 which have positive imagina ry 

part, the °'k's a re always positive for a stable system. 

Differentiating G(t) with respect tot gives 

n -°kt 
G(t) = -2 le . [(xk°'k + Ykf3k)cos (3kt 

k=l 

+ (xk(3k - Y k°'k) sin (3kt J (2. 9) 

As t-.o+, tha t is, as t approaches ze ro from the positive side, it can 

16 
b e proved that 

lim G(t) = 0 
·t-.o+ 

limG(t) = M-1 
t .... o+ 

Afte r having found G(t ), t h e steady - state r esponse to an 

(2. 10) 

arbitrary excitation f(t) may be evaluated from t h e superposition 

integral 

. roo 
x (t ) = . G(t-Tff(r)dT 

- 00 

(2. 11) 

If f(t) is a r andom process, x (t) will a lso be a r andom process a nd 

the inte g r a l in (2. 11) becomes a s tochastic integ r al which w ill exist 

. 'ffl 7 1n m ean s quare 1 
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{2. 12) 

for all t
1 

a nd t 2 . When {2.12) is satisfied, the mean vector~ and 

corre la tion function matrix R-{ 1") a re given by x 

nix =E [x{t) J 

= f 00 G(t-1"1 ) E [f{1"
1

nd1" l 
-Cl) 

= ( c G ( t-T I )di' 1) ' IDr 

=(C Gh1)d"1) 'ny 

Rx( T) = Rx( t 1 - t 2 } = E [ x { t 1 Jx T { t 2 ) J 

When t 1 = t 2 = t, the correlation function matrix becomes 

., . 

{2. 13} 

{2. 14) 

(2. 15) 
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The matrix R_(O) will be referred to as the instantaneous correlation 
x 

matrix of "X. 

If the joint moment functions of higher order of the ex.cita-

tion are given, the present approach can also be used to find the joint 

moment functions of the corresponding order of the response. For 

example, the third joint moment functions are 

E [ xj (t1 )xk (t2 )xm (t3 )] 

j, k, m = 1 , 2 , •. . , n 

provided that the right-hand side exists. The function gjk(t) in 

(2 .16) represents the (j, k) element of the matrix G(t). 

(2. 16) 

The mean vector in (2. 13) and the correlation function matrix 

in (2 . 14) play an important role in application. First, if a process 

is Gaussian, all moments higher than the second can be computed 

from these two quantities . Hence, a Gaussian process can be com-

pletely specified by its mean vector and correlation function matrix. 

Second, even when the mean vector and the correlation function matrix 

cannot specify a random process completely, they still give some 

important information about that process . 
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2. 2. 2 Spectral Density Approach 

It is well known that the correlation function matrix R-(r) 
x 

and the spectral density function matrix ~- (w) of a stationary random 
x 

vector process x form a Fourier transform pair. They are related 

as follows>:<: 

1 Joo <P-(w)= 2- R-(T)exp(-iwr)dr x 1T x 
-co 

(2.17) 

R-(r) = J00 
4'-(W) exp (iwr)dr x x 

-00 

This Fourier transform pair is usually called the Wiener-Khintchine 

relation. The impulse response function matrix G(t) and the fre-

quency response function matrix H(w) also form a Fourier transform 

pair (or more accurately, G(t) and H(w)/21T)'~: 

1 Joo G(t) = 21T H(w) exp (iwt)dw 
- ()() 

(2. 18) 
rOO 

H(w)= j G(t) exp (-iwt)dt 
-oo 

With the aid of (2 .14) and the second equations in (2. l 7) and 

(2. 18), the correlation function matrix becomes 

co 
r1'r T = jjJ G ( t 1 - 'T" 1 ) <If ( w) G ( t 2 - r 2 ) exp [ iw( r 1 - r 2 ) Jd,. 1dT2 dw (2. 1 9) 

-co 

*For the conditions under which the integrals in (2.17) and (2.18) exist, 
see reference ( 18). 
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00 

= J H(w) 47<w) H>'.c (w) exp [iw(t1 -t2 ) Jdw -oo . 

= J 00 

H(w) 4>y(w) H~l<(w) exp (iW'T")dw 
-oo 

(2. 19) 
cont'd 

in which H*(w) is the conjugate transpose of H(w). Since the Fourier 

transform of IL-( 'T") is unique, from (2. 19) and the second equation in 
x 

(2 . 1 7) we know that the spectral density function matrix of the 

response vector xis given by 

(2. 2 O) 

When 'T"=O, i.e., t 1 =t2 , Eq. (2.19) reduces to 

[ 
T -, Joo 

R,c(O) = E x(t)x (t) J = cf>x(w)dw 
-00 

(2. 21) 

Thus, the instantaneous correlation matrix is just the sum of the 

spectral density matrix over all frequencies. 

The matrix H(w) can be found by taking the Fourier transform 

of both sides of (2.2). or it can alternatively be found from (2.1) by 

letting the excitation vector be £
0
eiwt and x = H(wf£

0
eiwt where £

0 
is 

an arbitrary constant vector. Both approaches lead to 

H(w) = Joo G(t) exp (-itlit)dt = (- w
2

M +iw C+K)- l 
.i 
-00 

(2. 22) 

If w = 0, Eq. (2. 22) reduces to 

H(O) =I 00 

G(t)dt = K- l 
-oo 

*For the conditions under which the integrals in (2 . 17) and (2.18) 
exist, see reference (18) . 

(2. 2 3) 
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Hence, the frequency response function matrix at w = 0 is just equal 

to the inverse of the stiffness matrix. 

becomes 

Upon substituting (2. 23) into (2. 13 ), the mean vector m_ 
x 

2. 2. 3 Fokker-Planck Approach 

(2. 24) 

A random vector process z(t) is said to be Markovian if the 

conditional probability density function p(z , t I z 
1

• t 
1

; •.. ;z
1

, t
1

) 
n n n- n-

where z == z(t ), ..• , z-
1 

=z (t
1

} and t >t 
1

> ... > t
1

, depends only on 
n n n n-

the last value z (t 1 ) and not on the preceeding values z (t 2 ), •.• , 
n- n-

z(t1 ). Hence, for a Markov vector process, we can write 

p(z , t lz 1, t 1 ; ... ; -z1 , t 1 > = p(z , t I -z 1 • t 1 ), n n n- n- n n n- n-

t >t l> ... >tl n n-

The special conditional probability density p(z , t lz 1 , t 1 ) is 
. n n n- n-

(2. 2 5) 

called the transitional probability density and will be denoted by a 

special symbol q("z , t lz 
1

, t 
1

). From the definition of condi­
n n n- n-

·tional probability we have 

• • • P (z , t tz 1 ' t 1 ; . • • ;z 1 ' t 1 ) , t > t 1 > . . . >t 1 n n n- n- n n- (2. 26) 

Hence, it follows by using (2.25) that in the case of Markov processes , 
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p ( z 1 ' t 1 ; z 2 ' t2 ; .•• ; z n' t n) = p ( z 1 ' t 1 ) q ( z2 ' tz lz 1 ' t 1 ). . . 

. • • q ( z- , t lz 1-, t 1 ) , t >t 1 >. . . >t 1 n n n- n- n n- (2. 2 7) 

Thus, if we know the first probability density and the transitional 

probability density of z(t), we can write its probability density of 

any order, that is, the first probability density and the transitional 

proba bility completely specify a Markov process. 

Consider a special Markovian process whose transitional 

probability density is governed by the Fokker-Planck e quation 

2n 2n 2n 
~ l a I \-. 2 a2 -at+ -a -(a.q)-2 l a a (b.kq)- 0 

z. J _, zk z . J 
j=l J j=l k=l J 

(2. 2 8) 

with the initial condition 

(2. 2 9) 

Such a process will be called a continuous Mar kovi an process. Let 

(2. 3 O) 

Then the quantities ak and bjk in (2.28) are given by 

lim E[6zk] 
a = k r-+ O 'r 

(2. 3 1) 

1. E[~zk~z.] im J 
r-+0 T 

provided that all limits exist. 
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The first probability density of a stationary Markov vector 

may be obtained from the transition probability density by letting the 

transition time (t-t1 ) approach infinity, i.e., 

(2. 3Z) 

Hence, a stationary Markov vector is sufficiently defined by its transi-

tion probability density alone . The first probability dens ity of a 

stationary continuous Markovian process can also be found by solving 

the time independent or stationary Fokker-Planck equation 

Zn Zn Zn 

l ;z . (a/) --}l, l ;: . 8zk (bjkp)=O 
j=l J k= lj=l J 

(2. 33) 

which follows from (2 . 28) by dropping the first term and replacing 

q(Z, t
1 

+T lz
1

, t
1

) by p(Z, t). 

If the vector Yin (Z . I) is a Gaussian process such that 

E [f(t)] = 0 
(2.34) 

E [t{t)fT (t+T)] = Z1T W 15( T) 

where W is the spectral density matrix of f(t), it may be shown that 

the displacement and velocity vectors of the response process form 

a Zn continuous Markov vector. Wang and Uhlenbeck19 have solved 

this problem when M, C, K are symmetric and 

rrW = yC , (2 . 3 5) 

where y is a constant. They found that the instantaneous correlation 

matrices of the stationary response were governed by the following 

equations : 
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(2. 36) 

cE[icicT JM+ ME.[iicT Jc= 2y c 

This s et of equations can readily be solve d to give 

' • T J EL xx = o 

(2. 3 7) 

Wang and Uhlenbeck's approach can b e extended to a more 

general problem where the spectral d e nsity matrix W is not related 

to C and M, C, Kare not symmetric. In this case the instantaneous 

correlation matrices of the stationary r esponse are governed by the 

following equations (see Appendix A for details) 

I~ .1....T J ,-..!..-Tl r:__ T J 
ME l_x x - CE L x x J- K E Lx x = 0 

(2. 3 8) 

ME[icicT J c T + cE[iciT ]MT +ME[~xT JK T 

2. 3 A Matrix Algebra Approach for Stationary Response 

All the approaches dis cussed in the above section are 

dir e cted toward finding the corre lation function matrices, and the 

instantaneous correlation matrices are given a s special case s when 

T = 0. However , in many applications, one ne e ds only the instantaneous 
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correlation matrices. For example, the first probability density 

p(ic, x) of a Gaussian process is completely described by Ef?cxT]. 

E~~T J and E~-;cT]. the probability distribution of peaks and the 

average frequency of a narrow-band process are all dependent on 

the instantaneous correlation matrices. If one is only concerned 

with the instantaneous correlation matrices, then a very straight-

forward and direct approach can be used. In this approach, the 

mean vector and the instantaneous correlation matrices are derived 

directly from the equation of motion, and only matrix algebra and 

some special properties of stationary vector processes are involved. 

2 .3. 1 Mean Vectors 

The mean vector of the response process x, m-, x 
can be 

found in the following way. 

Taking expectations of both sides of (2. 1) gives 

ME LxJ +CE[~] +KE[x] = E[f] = rnr (2. 3 9) 

From the stationarity of x it follows that~ is a constant vector, x 

and 

• d 
E[X] = dt E[x] = 0 

2 
E r-x]:::: d 2 E [x J = 0 

dt 

Hence, Eq. (2. 3 9) reduces to 

E [xJ = K- 1rny 

This is the same equation as (2 . 24) . 

(2. 40) 

(2. 41) 
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2. 3. 2 Instantaneous Correlation Matrices 

The equations governing the instantaneous correlation 

matrices EjxxTJ. E[xicTJ and E['){-XT] can be obtained as follows. 

Postmultiplying through (2. 1) respectively by x T and~ T 

and then taking expectations of both sides of the resulting equation 

gives 

E ~-Tl' CE!..&. -TJ Ec--Tl E[_r _Tl M Lx x .J + L xx + K xx _i = x J } (2. 42) 

1&.£..LTJ [..L...a..TJ [-..... TJ c-..LTJ ME l xx + CE xx +KE xx = E f x 

Postmultiplying the second equation in (2. 42) by MT and adding the 

resulting equation to its transpose yields 

+ ME[3cxT]cT+KE[x~T]M T+ME[ "3cxT}< T 

(2. 43) 

For a stationary random process which is differentiable, it may be 

shown that (see Appendix B for details) 

E[-x-xT J+E[-X-xT]=o 

E j_ .... TJ- Ef .... _TJ- El_.__._ TJ Lxx - Lxx -- Lxx 
} 

Thus E[x-;cT J is antisymmetric and E[xiTJ is symmetric. Upon 

using the relations in (2. 44), Eq. (2. 43) and the first equation in 

(2. 42) become 

(2. 44) 
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J:t-.a..TJ f:a..-TJ r TJ h--TJ - MELxx + CELxx +KE[?C'X =EL uc 

(2. 45) 

The matrices E(!cxTJ and E[xffJ are clearly symmetric and the 

t . Ef.;--"-T]. . ' d S h E~-f!:fl ma r1x Lx x is antisymmetric, as note . uppose t at Lx J 

and E[3crTJ exist and can be evaluated, then there are (nxn) +n(n+l)/2 

unknowns in (2. 45 ). The first matrix equation in (2. 45) gives nxn 

component equations and because of symmetry, the second one 

furnishes only n(n+l) /2. The number of equations is just equal to 

the number of unknowns. Let 

(2. 46) 

and 

Then (2. 45) can be put into the following form 

AX+XAT= B (2. 4 7) 
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It .may be shown that X can be uniquely determined from (2. 4 7) iff 2 O 

\k + \. =/ 0 k, j = 1, •.. , Zn J . 
(2. 48) 

where \ 1 are the eigenvalues of A. 
K 

The instantaneous correlation matrix for acce l erations is 

given by 

(2. 49) 

which is obtained in the same way as in deriving the second equation 

in (2. 45). 

Now we turn our attention to the determination of the matrices 

Er£T], E~£T] and E[~fl'J. It follows from (2. 11) that 

r co I()'.) 
x(t) = j. G(t-T}f (T)dT = G(T)f{t-T)dT 

- co - ()'.) 

. rco. - Jco. -
x(t)=J G(t-T)f(T)dT= G('T')f(t-T)dT (2. 50) 

-co -co 

5f(t) -M - lf (t) = I co G (t- T)f ( T)d T =I()'.) G ( 1' )I (t- 1' )d T 
- ()'.) - ()'.) 

provided all these stochastic integrals exist. Hence, postmultiplying 

-T 
through (2.5 0 ) by f (t) and taking expectations of both sides of the 

resulting equations , we obtain 
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(2. 51) 

co 
E[~fT J-M-

1
Rf(O) =I G(T )Ry(T}dT 

0 

The lower limit of each integral in (2. 51) has been changed from 

-co to 0 since G(T), G(T), and G(t) are null matrices for T<O. The 

impulse response function matrices G(t) and G(t) are given by (2. 7) 

and (2. 9), and G{t) can be found from G(t) by direct differentiation. 

The integrals in (2. 51) are real and can readily be evaluated. 

Suppose that 

where A is a symmetric, constant matrix. Then from (2. 7) and 

(2. 8), we know that ea~h integral in (2. 51) takes one of the following 

two forms: 

I
co 

-a.T b{T)e cos!3TdT 
0 

or (2. 53) 

I co -a.T 
b ( 'T ) e s in 13 T d T 

0 

where a and 13 are positive constants. If b{ r) is specified, then, 

usually, these integrals can be found in standard integral tables. 

After evaluating the integrals in (2. 51), the instantaneous correla-

tion matrices can be determined by solving the linear equations 
., . 
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in (2. 45). Hence, this method is particularly simple and easily 

adapted to digital computation. 

2 . 3. 3 Instantaneous Covariance Matrice s 

The instantaneous covaria nce matrix of x, '¥x• is defined 

as 

~-= E[(X-ffi-)(X-m-?] = Efi:xT]- ffi-rrl x x x ~ x x 

With the aid of (2 . 41 ), Eq. (2. 54) becomes 

- b-TJ - 1- _T ( - 1 )T 1¥x = Elxx -K !llf m7 K 

(2. 54) 

(2. 5 5) 

Hence, the instantaneous covariance matrix of x is identical to its 

instantaneous correlation matrix if the mean vector of the excitation 

nX"f vanishes. Howeve r, all the other instantane ous c ovariance 

matrice s are the same as their corresponding instantaneous correla-

tion matrices since from (2.40) we know tha t ID.:... and m.... are two null x x 

vector s. 

2 . 3. 4 Special Cases 

White Noise Excitation: If the excitation f(t) is a white noise 

v e ctor, that is, 

(2 . 56 ) 

in which W r e pre s e nts the spectra l d e nsity m atrix o f f(t) and 6(1") is 

the Dirac d e lta function, then upon using (2. 56 ) and (2 . 1 0), the first 

two equa tions in (2. 51) become 
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(2. 5 7) 

Hence Eq. (2. 45) reduces to 

~-=-TJ f:.--TJ l=--TJ MELxx - CELxx - KELxx = 0 

(2. 58) 

Eq. (2.58) is the same as Eq. (2.38), but, here, the excitation is not 

necessary to be Gaussian. 

For white noise excitation, the integral in the third equation 

in (2. 51) does not exist bec;ause both G('l") and Rf( '1") go to infinity at 

'1" = O. Hence, the instantaneous correlation matrix of the accelera-

tion which depends on the third equation in (2. 51 ), become s meaning-

less. Howe ver, in some problems, the instantaneous corre lation 

matrix of the absolute a ccele ration may e x ist even though the instan-

taneous correlation matrix of the relative acceleration doe s n"ot 

exist. For example, consider an arbitrary system excited at some 

point by a white noise accele ration input, x (t). Let x. denote the 
0 J 

displacement of the jth mass relative to the excitation point . Then 

it may be shown that E~~TJ doe s not exist. For this example, the 

absolute acceleration of the jth mass a . will be 
J 

a.(t)=x.(t)+x (t) 
J J 0 

(2. 59) 
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and the excitation vector f(t) in (2. I) becomes 

f(t) = -( :~ ) X0 (t) (2. 6 0) 

n 

Substituting (2.59) and (2.60) into (2.49) and noting that 

0 . :) 
n 

(2. 61) 

0 

we have 

+CE [-;c·;?J KT 
(2. 62) 

It is now obvious that E[a aTJ exists. 

Filtered White Noise Excitation: A white noise has been 

widely used as an ideal excitation. It not only simplifies the analysis, 

but also gives very reasonable results for some lightly damped 

systems. Sometimes, the use of a white noise as an approximation 

may not be acceptable, but one may still use a filtered white noise. 

For· example, an earthquake may be approximated by passing a white 

noise through a viscously damped linear oscillator. In the following, 

a more general filter will be considered. 

A random process n(t) is said to be a filtered white noise 

if it satisfies the stochastic differential equation 
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r k 

l ak d k T'J(t) = s(t), ar f. 0 
k=O dt 

(2. 63) 

where the ak's are constants. The excitation s(t) is a white noise 

whose mean and auto-correlation function are given by 

E[s(t) ]= 0 } 

E[s(t) s(t-T) ]=21Tw t.{T) 

where w is the spectral density of s(t). 

(2. 64) 

Consider an n-degree-of-freedom system excited at some 

point by a filtered white noise acceleration input 11(t). Let x. denote 
J 

the displacement of the /h mass relative to the excited point. Then 

in (2 . I) 

f(t) = -ffi'J(t) = -(? ) ~(t) 
n 

Combining (2. I) and (2. 63) and using (2. 6 5) yields 

r k 

lak dk~+CX+K-x)=-ms(t) 
k=O dt 

For simplicity. we rewrite (2 .66) as 

r+2 k 

l Bk d k x(t) = -rns(t) , 
k=O dt 

· o 
d x 

B 2 =a M,- =x 
r+ r dto 

(2. 6 5) 

(2. 66) 

(2. 6 7) 

where Bk 1 s are constant matrices. Postmultiplying through (2. 6 7) 

t . 1 b _T d.XT far+l /d r+l \,.,T d k. . re spec 1ve y y x • --a.t"• . . •• '\ t ;x an ta 1ng expectations 

of both sides of the resulting equations yields 
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(2. 6 8) 

where 

(2. 6 9) 

j=O,l, .•• ,r+l 

Analogous to the second order system (2. 1 ), we define the impulse 

response function matrix G(t) of (2. 6 7) as the solution of the follow-

ing system 

r+2 k 

l Bk dk G(t) = I o(t) 
dt 

k=O 

with initial conditions 

d dr+l 
G(O) = dt G(O) = ... = dtr+l G(O) = 0 

dj 
Then--. G(t), j=l, ... , r, is continuous at t =O and 

dtJ 

lim dr+l _
1 

+l G(t) = B +2 t-+O+ dtr r 

Using (2. 71) and (2. 72) we obtain 

r dk T l T r co [ J dk T 
Els(t)--izx (t) j= -rn J E s(t)s(t-T) --i< G (T}dT 

ili 0 ili 

_ -T dk T + _ . _ 
- -ir wm --iz G ( 0 ) - 0 , k - 1 , ..• , r 

dt 

., . 

(2. 70) 

(2. 71) 

(2. 72) 

(2 . 73a) 
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r dr+l T ] T dr+l T + 
Els(t) -:-:r+}x (t) = -1Twrn I G (0 ) 

dt dtr+ 

_T(, -1 )T 
= -1Twm \Br+2 

Thus Eq. (2.68) becomes 

r+l 

I Bkxkj=Br+2Xr+l,j+l j=O,l, .... ,r 

~=0 

where the relations 

- g+j 
xgh - (-) xjk 

g+h = j +k; g. h, j, k = 0, 1, •.. , r+ 1 

(2. 73b) 

(2. 74) 

(2. 7 5) 

have been used (these relations have been proved in Appendix B ). 

Equations (2. 74) and (2. 75) can be used to determine all the instan-

taneous correlation matrices provided that they are independent. 

2 .4 Comparison of Various Approaches 

In the second section of the present chapter, we have dis-

cussed the impulse function approach, the spectral density approach 

and the Fokker-Planck approach. In the third section, a fourth 

approach, a matrix algebra approach. was introduced. The first 

three approaches can be used to find the correlation function matrices 

as well as the instantaneous correlation matrices for the response 
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process, whereas the last approach can only be used to find the instan­

taneous corre lation matrice s. This limitation may not, however, be 

severe as was m e ntioned earlie r. 

We will now give a discussion of comparison of various 

approaches applied to stationary problems. 

(1) The Fokker-Planck equation can be used only if the 

excitation is a Gaussian white or a filtered Gaussian white noise. 

In this case, both the Fokker-Planck approach a nd the matrix algebra 

approach lead to the same equations for the determination of the 

instantaneous correlation matrices . However, the matrix algebra 

approach can also be applied to arbitrary excitations provided that 

the integrals in (2 . 39) exist. 

(2) In the spectral density approach one needs to evaluate 

a separa te integral for each independent element in eac h instantaneous 

correlation matrix. From (2 . 21) and (2.20) we know that these 

inte grals are in general different and the ir integrands may be real 

or complex . Furthermore, the matrix H(w) in the inte grands must 

be found analytically from the expression (2. 22) and the difficulties 

involved in the integrations increase with increasing the number of 

de g ree- of-freedom of the syste m . Hence, for complex systems 

one is generally forced to e valuate the s e inte grals one by one 

nume rically. 

In the matrix algebra approach, if the excitation is white, 

then the instantane ous corre lation m a trice s can b e found by solving 

the system of line ar a lgebraic equations (2. 58) without evalua ting 
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any integrals. If the excitation is non-white, it is necessary to 

evaluate some integrals a lso, but each of these is real and takes one 

of the forms in (2. 53 ). Usually, these integrals can be found in 

standard integ ral table s. After evaluating the integrals in closed 

form, again one can find the instantaneous correlation matrices by 

simply solving a system of linear algebraic equations. Therefore, 

this approach is very suitable for digital computation. 

(3 ) Both the impulse respons e function approach and the 

matrix algebra approach use the idea of impulse r esponse functions. 

In the first approach the correlation function matrices are expressed 

in terms of double integrals. In the second approach, one, first, 

has to evaluate some integral as in (2. 53 }; then, the instantaneous 

correlation matrices are found by solving a system of linear algebraic 

equations. Since it is very time consuming to evaluate double integrals 

numerically, the matrix a lgebra approach is usually faster in use 

than the impulse respons e function 'approach. 

As an illustration, the spectral density approach and the 

matrix algebra approach were prog rammed to solve a three - degree­

of-freedom system under the excitation of a white noise vector. 

The program using the spectral density approach is limited to three-

degr ee-of-freedom systems and cannot be generalized to a rbitrary 

systems . For this special e xcitation, the integrals are evaluated 

by calculating the r esidues a t the singularities of the integrands. 

It t ake s about 200 milliseconds on a n IBM 360/75 computer to find 

the matrix E[xxT]. 

., . 
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The program using the matrix algebra approach can be used 

for arbitrary systems under white noise excitation. Also, the pro-

gram itself is simpler than that using the spectral density approach. 

It takes about 150 milliseconds on the same computer to find the 

r:....-T-J 1--~ TJ j;_._ TJ matrices ELxx , Elxx , and Elxx . 

2 • 5 Examples 

In order to illustrate the application of the matrix algebra 

approach, we consider two examples below. 

In the first example, a single-degree-of-freedom system 

under clipped white noise excitation is considered. This is a very 

simple example, but it contains all procedures needed for more 

complex systems. This problem has also been solved by using the 

spectral density approach. Both approaches lead to the same solu-

tion. 

In the second example, we consider a n-degree-of-freedom 

system under the excitation of a clipped white noise. It is shown 

1.--::Tl [_..... -::TJ . that the matrices Elxf ..J and E x.f can be expressed in terms of 

the same two types of integrals as in the first example and can there-

for e be e asily evaluated. Only additional computation is the solu-

tion of a system of linear algebraic equations. The results of a 

particular 3-degree- of-freedom system are plotted. From the 

figures, some expected phenomena can be observed. 
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2. 5.1 Single-Degree-of-Freedom Systems Under Clipped White Noise 

Excitation 

Consider a mass-spring-dashpot system governed by the 

equation of motion 

x+2Cw x+w2
x=£(t)/m 

n n 
(2. 76) 

The constants m, w , C are respectively the mass, the undamped 
l'l 

natural frequency, and the ratio of the actual damping to the critical 

damping of the system. The excitation f(t) is a clipped white noise 

with cutoff frequency wc. It is specified by its mean mf and its 

auto-correlation function 

where w is the spectral density in the frequency range lw r::wc. The 

impulse response functions g(t) and g(t) can be easily found to be 

( ) 1 - Cwnt . g t = - e s 1n wdt, 
wd 

Then from (2. 51) one has 

E[ fl 2w Joo() sina.Td,,. x __ = 2 gT ,. , 
m wd o 

= 

(2. 7 8) 

(2. 79) 
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and 

E [xf] = 2 ~ J oo g ( ,. ) s i~ a T d T 

m o 

(2. 80) 

By using the results21 

(2. 81 ) 

roo -Cuti T 

j 
e . 

T sin WC T 
0 

Eqs. (2. 79) and (2. 80) reduce to 

(2. 82 ) 

(2. 83 ) 

., . 
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Upon using E[x:k]=O, Eq. (2.45) now becomes 

(2 . 84) 

Thus, 

(2. 85) 

E [:X 2 
1 = - 1 - E [xf] · 2Cw 

n 

(2. 86) 

where 

( 
ill: ) 1 -1 (2 C (We I wn) ) 

e -. ' =-tan 1 Wn ' 1T 1- (w /w )2 
c n 

(2. 87) 
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2. 5. 2 Multidegree-of-Freedom Systems Under Clipped White Noise 

Excitation 

Consider an n-degree- of-freedom system governed by 

:rvfi +ct+ KX = f (t) (2. 88) 

The excitation f (t) is a clipped white noise vector with cutoff frequency 

we. It is specified by its mean vector my and correlation f unction 

matrix 

sin W T 
Ry ( T) = 2 W T c (2 • 8 9) 

where Wis the spectral density matrix for lwl <We · The impulse 

response function matrices G(t) and G(t) are given by (2. 7) and (2. 9). 

Thus, 

n ,.. oo -ak,. =4 L xkwj e ·r sinwc rcosf3krdr 
0 

k=l 

(2. 90) 

(2 . 91) 

., . 
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where °K.• fjk' Xk a nd Y k are defined in (2. 8). As m e ntione d before, 

here one meets the same two type s of integrals as in the s ingle-

de g ree-of-fre edom system discus sed in E xample 1. 

Upon substitution of (2. 81) into (2 . 9 0 ) a nd (2 . 91 ), one has 

finally 

where 

n n 

E[xrTJ =2 L:xk wek- l Yk wcpk 

k = l k =l 

n 

E~ rTJ = - 2 l (xk°K +Ykfjk) w ek 

k=l 

n 

-I (xk~k-Yk°K)w~ 
k=l 

-1 
8k =tan 

., . 

(2. 92) 

(2. 93) 
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The instantaneous correlation matrices E~xTJ, E[x-~TJ. 

and E~xTJ can be determined by simply solving the linear algebraic 

equations in (2. 45). 

If this problem is solved by the spectral density approach, 

the matrices E[x:xTJ, E[xxTJ, and E~xTJ are given by 

where 

E[xxTJ= JwcH(w)WH>;<(w)dw 
0 

E[x3:c:T]= -i Jwc H(w)WH>:<(w) wdw 
0 

w 
E~xTJ= J cH(w)WH>:<(w)w

2
dw 

0 

2 -1 
H(w) = (-Mw + i Cw+K) 

(2. 94} 

(2. 95) 

In the above equation the resultant matrix in the brackets is a function 

of w, so its inversion must be done analytically. Even if the matrix 

H(w) has been found, the evaluation of the integrals in (2. 94) for a 

complex system is not trivial. Usually, these integrals are evaluated 

one by one numerically by computer, but this will generally take con-

siderable computer time. 

The matrix algebra approach has been applied to the system 

shown in Fig. 2 .1 

spectral density. 

with n = 3 and x is a clipped white noise with unit 
0 

The mean square displacements E&~J E&~J. and 
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E~~J. where yj is the displacement of the jth spring, are plotted 

against various cut-off frequencies in Figs. 2. 2 and 2. 3. 

In Fig. 2. 2 the mean square displaceme nts for the system 

shown in Fig. 2. 1 with C proportional to M is shown. It will be 

noted from this figure that the contributions from the modes higher 

than the first one are not negligible. For example, consider E~7J. 

The contribution from the first mode is about 5. 8, from the second 

mode is about 2. 9, and from the third mode is about 0 . 4 . Hence, 

the contribution from the second mode is as high as 50o/o of that from 

the fir st mode. 

In Fig. Z . 3, the mean square relative displace ments for the 

system shown in Fig. 2 .1 with C proportional to K is shown. The 

propo rtionality constant is chosen so that the system would have the 

same part of critical damping in the first mode as the system con­

sidered in Fig. 2. 2. The primary difference between Fig. 2 . 2 and 

Fig . 2. 3 is that the contributions due to frequencies beyond w2 , the 

second natural frequen c y, are almost comple tely damped out in 

F i g . 2. 3 . This phenomenon is expec ted since the modal damping 

in the first system decreases with increasing modal freque ncy while 

that in the s e cond system increases with increasing modal fre quency. 
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~II. STATIONARY RANDOM RESPONSE OF 

MULTIDEGREE -OF-FREEDOM 

NONLINEAR SYSTEMS 

3. 1 Introduction 

Since most real physical systems exhibit some kind of non­

linearity for sufficiently large motions, it is important that one be 

able to investigate nonlinear systems as well as linear systems. Of 

course, the analysis of nonlinear systems is more difficult than that 

of line a r systems since very few nonlinear differential equations can 

be solved exactly. 

One exact method of studying the stati onary random response 

of a nonlinear system is the Fokker-Planck approach. If the excita­

tion is a Gaussian white noise, then the transitional probability 

density of the response process is governed by the Fokker-Planck 

equation. As mentioned in Chapter 2, this transitional probability 

density can completely define the response process. However, no 

one has succeeded in solving the complete Fokker-Planck equation 

for any second-order nonlinear system. The first probability density 

is governed by Eq. (2. 33) which can be solved in some case s. From 

the first probability d e nsity, one can deduce all the instantaneous 

correlation matrices. 

Since the exact solution is available only for limited c a ses, 

attention has also turned to approximate solutions. If the nonlinearity 

is small, s e veral approximate methods have been devised. One of 

them is the normal mode approach in which the approximate solution 
., . 
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can b e found by solving seve ral single-degree- of-freedom systems. 

However, in using this approach, one must impose some conditions 

on the excit a tion as well as on the system. 

Another method of generating approximate solution is the 

perturbation approach. In this appr oach it requires that the non-

linear terms of the system must be small compared to· the linear 

terms and the excitation level also has to be sufficiently low. 

In this chapter, we will consider a more general approach for 

multidegree -of -freedom systems. The only restrictions on this 

approach are that the excitation b e stationary and Gaussian. Before 

introducing this approach, a brief discussion of the Fokker-Planck 

approach, the perturbation approach, and the normal mode approach 

is given below. 

3 .2 Fokker-Planck Approach 

The equation gove rning the first probability density for the 

stationary response process of a nonlinear system has only been 

solved unde r the foll owing rather restrictive conditions: 

(1) the damping force is proportional to the velocity 

(2) the excita tion is a Gaussian white noise 

(3) the correlation function matrix of the e xcitation is propor-

tional to the damping m a trix of the system 

Under the above conditions, the equation of m otion may be written 

a s follows: 

~+ct+ ou(X) = T(t) ax 
., . 

(3. 1) 
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with 

Ry(T)=2yCfi(T) 
} (3. 2a) 

where y is a constant, u(X) is the potential energ y of the system and 

au 
~ 

n 

(3 . 2b) 

Suppos e that there exists an orthogonal matrix A which can simul-

taneously diagonalize Mand C: 

ATA=I 

ATMA=V (3. 3) 

where V and A are two diagonal matrices. Then, upon using the 

transformation x = Az and noting that 

n 
AT 8u(X) =AT &z 8u(Z) = \ a . a. ~u(-z) 

8'5i Fx~ . ~ Jm Jk z k 
J• k=l 

_ 8u(Z) 
-~-

m 

m=l, . .. ,n 

(3. 4) 
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Equation (3 .1) becomes 

v~ +AZ-+ ou(z) =ATf(t)=b(t) 
oz 

and the correlation function matrix ofb(t) is given by 

(3. Sa") 

(3.Sb) 

The stationary Fokker-Planck equation associated with (3. Sa) is 

given by 

n n 

l o . l 1 o { [ . ou(z) J } -0 -(z.p)- -~ f... z . +-0-- p 
z . J v. z . . J J z. 

j =l J j = 1 J J J 

~ Y\~ 
-L 2 2 =0 

. 1 v. oz. 
J= J J 

(3 . 6) 

wher e ;\. and v. denote the j th diagonal element of .L\ and V, p is the 
J J 

abbreviation for the first probability density of the Markovian vector 

~ . The solution to (3.6) may be written as follows: 

n 

p(z, z) = f3 exp{-~ [i l vj zf +u(z) ]} (3. 7) 

j=l 

This solution was ·first obtained by Ariarathan22 for a two-degree-

of-freedom system (n = 2), and it was extended to the above form by 

23 
Caughey The constant f3 in (3. 7) is a normalizing factor such 

that 

Joo roo . . 
... j p(z, z) dz 1 ... dzn dz

1 
... dzn = 1 

-00 -co 
(3. 8) 

., . 
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In the original coordinates, Equation (3. 7) becomes 

· {l[l·T. Jl p(x, x) = 13 exp --y 2 x MX +u(X) J (3. 9) 

It will be noted that the terms in the square brackets are respec­

tively the kinetic energy and the potential energy of the system. 

Equation (3. 9) may also be written as 

(- .!...) A { 1 ~MT~} ~ 1 (-)}. p x, x = t' exp - By x x exp C y u x (3 .10) 

Hence x and x are linearly independent. 

3. 3 Normal Mode Approach 

Consider an n-degree-of-freedom system governed by the 

equation of motion 

M~ + C(o)5( +K<
0 >x +µg(X, x) = f(t), µ=a small parameter (3 .11) 

The matrices C(O) and K(O) are respectively the damping matrix 

and the stiffness matrix of the system due to the linea r part of the 

damping forces and the spring forces, and µg(x, x) represents the 

nonlinear forces of the system. f(t) is a stationary Gaussian random 

vector. Without loss of generality, assume tha t mf= O. 

In using this approach, the following two conditions must 

be satisfied: 

(I) the linear system obtained by neglecting the nonlinear 

term g(:fc,x) in (3.11) must possess normal modes 
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(2) the correlation function matrix Rr( T) must be diagonalized 

by the same matrix which diagonalizes the matrices 

M, C(o) and K(o). 

The second condition is quite restrictive and is seldom r ealized in 

real systems . 

Assume that the above restrictions can be met, then there 

exists a matrix A such that 

(3 . 12) 
AT K ( o )A = ,....,( o) ' ( o.) _ ( o) J: 

1 1, wkj - wk 'Jkj 

ATC ( 0 ) A =A ( c>), {~) = { 0
) 8kj 

ATRf(T)A =D(T), dkj =dk(T)t\kj 

By using the transformation x=Az, Eq . (3. 11) reduces to 

(3. l 3a) 

where the correlation function matrix of b is 

(3 . 13b) 

In component form , Eq. (3.13a) becomes 

. 2 n 
•. ( o). ( ( o)) l (. ) ( ) z . + A. z . + w. z . + ak . gk z, z = b . t 

J J J J J J J 
( 3. l 4a) 

k=l 

and Eq. (3.13b) becomes 

j, k :::: 1, .. . , n (3 . 14b) 
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The differential equations in (3. l 4a) may be written as 

z. + A..z. +w~z . +e.(~. ~ ) = b.(t) 
J JJ J J J J 

j=l, ... ,n 

where the deficiency term e . is given by 
J 

_ co> . G co) 2 
2 J e.-(A:. -A. . )z.+ (w. ) -w. z. 

J J JJ J J J 

n 

+µI akjgk(~. '2) j = l, . .. 'n 

k=l 

(3. 15) 

(3 . 16) 

If the quantities A.. and w~ are chosen in such a way that some measure 
J J 

of the deficiency term is minimized, then it seems reasonable that 

the statistics of the response of the nonlinear system can be approxi-

mated by those of the linear system described by 

z.+A. . z . +w~z.=b.(t) j=l, . . .,n 
J J J J J J 

(3. 1 7) 

At this stage, the differential equations are uncoupled and the 

excitation b(t) is an uncorrelated vector process. H ence , each 

uncoupled differe ntial equation can be solved s e parate ly. 

2 
In order to determine ;\ . and w. , Caughey chose them so as 

J J 

to minimize the mean square value of the deficiency term e. This 

can be achieved by requiring tha t 

j=l, . . .,n (3 .1 8) 
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Substituting (3. 16) into (3 . 1 8) and inte rehanging the order of diffe ren-

tiation and expectation, we obtain 

n 

Aj = A~o) +µl akj E[zjgk(~. z) J/E[zf J 
k=l 

j=l, .. . ,n 

(3 . 1 9) 

Equations (3. l 7) and (3. 19) can be used to find various mean square 

values of the response process . 

In certain cases, the contribution from the first mode may 

be dominant. In these cases, w e may let xj = ajl z 1 in the above 

de ri va ti on. Then 

n 

'-1 =!-~+µl ajl E[z 1gj (z 1 ,z 1 )J/E[z~J 
j=l 

(3 . 2 0) 

This is a rather rough approx imation, but it is very simple, and in 

some cases, it does give reasonable approximate solution as will 

be demonstrated later. 

3. 4 Perturbation Approach 

Consider the same proble m d e fined in the pre vious section 

whose e quations of motion are 

(3. 21) 
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Assume that µ is so small that the solution of (3. 21) can be approxi-

mately represented by 

(3. 22) 

2 3 
Substituting (3.22) into (3.21), neglecting terms involvingµ , µ, 

and equating corresponding coefficients of µ
0 

and µ
1 

yields the 

following sets of linear differential equations: 

Wt +c<0~ +K(o)x =f(t) 
0 0 0 

(3.23a) 

(3.23b) 

Correct to the same order of accuracy, the instantaneous correla-

tion matrix for displacements becomes 

(3. 24) 

Note that 

(3. 2 5) 

The matrix E~0x~J can be found from (3. 23a) by the various approaches 

discussed in the previous chapter, and E[x
0
x'f J may be evaluated as 

follows. Since (3.23a) and (3 . 23b) are linear, their stationary 

solutions are 

x 0 = I co G ( t- ,. )f ( 'T' ) d 'T' 

-co 

"co 
x 1 = - j G ( t- r )g ( r) d T 

-00 

where G(t) is the common irnpulse response function matrix of 

(3. 26a) 

(3.26b) 

(3.23a) and (5.23b) and g(T) iti the abbreviation ofg(x (T),x (T)). 
() 0 
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Thus, 

(3. 2 7) 

The matrix E~(T1)gT(-r2)Jcan be evaluated with the help of properties 

of Gaussian processes. Therefore, we can find E~0x 1T]and hence 

E~xTJ. 
Usually, the evaluation of the integrals in (3. 2 7) is not easy, 

so Tung has developed a different approach to generate E~xTJ from 

(3.23a) and (3.23b). He applies Foss 1 s
24 

method to uncouple (3.23a) 

and (3. 23 b) into first order differential equations and then solves the 

resulting equations to find various instantaneous correlation matrices. 

For detail, see Reference ( 14}. 

This approach will fail if the damping matrix C(o) is a null 

matrix. In this case, Equation (3. 23a) does not have a stationary 

solution since all of its correlation functions will finally go to infinity . 

Another limitation of this approach is that not only the nonlinearity of 

the system has to be small, but also the excitation has to be sufficiently 

low. This will be demonstrated in Section 3 . 6 . 

3. 5 A Generalized Equivalent Linearization Approach 

The normal mode approach is quite powe rful if it applies, 

since it reduces the problem to one of the solution of unc oupled single-

degree-of-freedom linear oscilla tors . However, due to the conditions 

imposed on the ex'citation, its application is rather limite d. The 

perturbation approach also has its restrictions . In order to get a 
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reasonable approximate solution, both the nonlinearity of the system 

and the excitation have to be sufficiently small. 

In this section a more general approach will be introduced. 

Except that the excitation must be stationary, the only additional 

restriction to this approach is that the excitation be Gaussian. 

According to the central limit theorem
25

, many random processes 

in nature can be assumed to be at least approximately Gaussian 

distributed, so this restriction may not be too severe. 

In this approach, we define an auxiliary set of linear differen-

tial equations for the original nonlinear system. Some coefficients 

of the auxiliary set may still be unknown. The solution of the original 

nonlinear system is approximated by the solution of the auxiliary set 

and the unknown coefficients are chosen in such a way that some 

measure of the difference between the two sets of equations is a 

minimum. With the help of some properties of Gaussian processes 

and the approach derived in the last chapter, the approximate instan-

taneous correlation matrices of a nonlinear system can be found 

from the solution of a set of algebraic equations . Although these 

algebraic equations are in general nonlinear, they may be solved 

linearly by a specific iteration scheme. 

Consider an n-degree- of-freedom system connected by non-

linear elements. The equation of motion may be written as 

M'X +g(x, x) = £<t> (3.28) 
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x . is the generalized displacement of the /h mass 
J 

g.(5',x) is the total force acting on the /h mass by the non­
J 

linea r elements . 

f(t) is a stationary Gaussian random vector r e presenting the 

excitation to the system . 

It is assumed that the system possesses a stationary solution. 

By way of obtaining an approximate solution of (3 .28), con-

sider the following linear differential equation 

MX+Cx+Kx=f(t) (3.29) 

where C and K are two arbitrary matrices. Let the solution to (3. 2 9) 

be also the approximate solution to (3.28), then the diffe r e nce of (3.28) 

and (3,29), e, will be 

e = g()(, x) - CX - Kx (3. 3 0) 

Note that h e rex is the solution of (3.29). The matric es C and K, 

which are still arbitrary up to this point, will be chose n so as to 

make some measure of the vector e as small as possible. Then it 

is assumed that the solution to the linear system (3. 2 9) will furnish 

a good approximate solution to the nonlinear syste m (3 .28). This way 

of defining an auxiliary set for (3. 2 8) has been a pplie d by Iwan
26 

to 

nonlinear systems unde r d e t e rministic excitation. In that c as e , the 

criterion was that the squared error per cycle was a minimum. But 

here we shall use the criterion that the mean square value of e is a 

minimum, that is, 

E l-,._T_J M . . Le e = in1mum (3 . 31) 
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The necessary conditions for (3. 31) to be true arc 

(3. 32) 

Upon using (3. 3 O), they become in the matrix form 

(3. 3 3) 

The conditions in (3. 32) will give a true minimum (as opposed 

to a maximum) if the following inequality holds 

a2 a2 
8c.k8c + dcjk dkrs ~8-c-.k-8~k--

J rs J rs 

+ dkjk dcrs 8k.k8c 
J rs 

(3. 34) 

Differentiating (3. 32) with respect to c and k , substituting the 
rs rs 

results into the left-hand side of Inequality (3. 34) yields 

n 

l 
j=l 

dk.
1 

T dk .
1 • J . J 

dk. 
Jll 

dcjl 

de . . · 
Jn 

( E~xTJ E~tcTJ) E~xTJ E[tcxTJ 
dk. 

Jll 
dcjl 

de. 
Jll 

~ 0 (3 . 3 5) 
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Hence (3.31) will be a true minimum if (3.33) and (3.35) hold. 

The square matrix m (3. 35) is just the instantaneous correla­

tion matrix of the vector process(:)~ Since the excitation is assumed 

to be Gaussian, the vector process ("jc) is also Gaussian. It can be 

shown
27 

that for a Gaussian process, the instantaneous correlation 

matrix is non-negative definite. Therefore, (3. 3 5) is always true 

and the conditions in (3.33) do define a minimum for E[eTe ] . 

In order to solve (3. 33) for K and C, it is first necessary to 

E f:(_,_ __ )_TJ d Ef-:-(_,_ _).._T]. t f Ek,.._TJ E[__,_TJ d express i_gx,xx an 1_gx,xx 1n erms o 1_xx , Lxx an 

E~xTJ. Let ykr denote the displacement of the kth mass relative to 

the rth mass and let the approximate force acting on the kth mass by 

th th 
the nonlinear element connecting the k mass and the r mass be 

E[gk(x,x)xjJ = l E[skr(ykr' Ykr)xJ 
r 

r:#k 

(3.36) 

where the sum is taken over all nonlinear elements connected to the 

th k mass. Since x is a Gaussian vector, it follows that the quantities 

Ykr' Ykr' xj' and xj will be Gaussian distributed. H e nce 

I 
\ (3.37) 

[ 
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(3. 3 7) 

These two results are proved in Appendix C. Let us define 

- Eis (" )" ] /Er:. 2 ] kr - L: kr Ykr' Ykr Ykr l}kr 

(3. 3 8) 

Then equation (3. 37) reduces to 

(3. 3 9) 

Hence, there exists a linear system with spring constants x.kr and 

damping coefficients ykr defined by (3. 38) such that if the nonlinear 

system is replaced by this linear system, the expectation v a lues 

E~(5c,x)xTJ and E[g (5',x)x?J will not be changed. Note that up to this 

point this linear system is not nece ssary to be a system which mini­

mizes E[ t1e J 
Substituting (3 . 3 9) into (3. 36) gives 

E[gk("5t, x)xj J = E[I (11uYkr + x.krykr)xj J 
r 

r:fk 

E[gk(x,x)xj J = E[l < lk.rYkr + x.krYkr):Xj J 
r 

r:fk 

(3 . 40) 

Let the stiffness matrix and the damping matrix of the linear system 

defined by (3. 38) b e denoted by K(e) a nd C(e). Then (3. 40) can also 
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be written as n 

Elgk(Ic,x)x. J=E[ \'(c.(e)x +k(
1
e) x )x.J L! J . L lcs s cs s J 

s = l 
(3 . 41 ) 

n 

Elg (x x)x.J=Ef\(c.(e)x +k(e )x )x .J 
l'. k ' J L '-' lC S S ks S J 

s=l 

since the right-hand sides of (3.40) a nd (3. 4 1) a r e just t w o diffe rent 

th 
representa ti ons of the total force acting on the k mass. In matrix 

form, Eq. (3.41) becomes 

(3 . 42) 

E r: (..!- - )~Tl C(e)Ej,,_ _,_ TJ +K(e )El.- .... TJ Lg x , x x J = ~ Lx x L'"'{ x 

Eq. (3. 3 3) m a y now be s o l ved for the K a nd C whic h minimiz e 

E[e Te J. Substituting (3. 42) into (3. 3 3) yields 

( 3 . 43) 

This s e t of equ a tions m ay also b e writte n as 

(3. 44) 

If the squa r e m a trix i s n on- singula r, the only s o lut ion to (3 . 4 4 ) is 

} (3 . 45) 
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If the square matrix is singular, (3 . 45) is not the only solution. But 

in this case, it may be shown that any solution to (3 . 44) will lead to 

the same minimum for E[-e Te J. Since no criterion is available to 

determine which of the solutions is the best, for simplicity, we still 

use the s elution in (3. 45). 

We have thus shown that the linear system formed by replacing 

e ach nonlinear element by a linear spring and a linear damper defined 

by (3 . 38) will minimize E[e~J provided that the excitation is Gaussian. 

This linear system will henceforth be referred to as the equivalent 

linear system of the nonlinear system (3. 2 8) and the quantities defined 

in (3. 38) will be called the equivalent linear stiffne ss and equivalent 

linear damping coefficient of the corresponding nonlinear element. 

In the following we will discuss a m e thod of solution of this 

general equivalent linear system. 

3 . 5. 1 Method of S elution 

The first step in this approach is to find the instantaneous 

corre lation matrices for the equivalent linear system (3 . 2 9). This 

can be d one by solving (2. 36) . Hence, in orde r to find a n a pprox i-

mate solution for the nonlinear system (3. 28), one must solve (2. 36) 

a nd (3 . 3 8). These are nonlinear algebraic equations and it is difficult 

to solve them dire ctly. However, they can in general b e s o lved by 

the followin g ite ration sche m e . Assume a s e t of v a lue s for 'k ; s and 

~;s . Then (2. 36 ) is reduce d to a system of linear algeba ic equations 

and can be solved ea s ily for the instanta n eous corre lation fun c tions. 

Substituting the r e sults into (3 . 3 8) yie lds a n e w s e t of v a lue s fo r 
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K 's and " 1 s kr 'km • This procedure can be repeated until the required 

accuracy is obtained. This scheme is particularly well suited to 

digital computation and has been used successfully in solving the 

examples in Chapter 4. 

3 . 5.2 Special Case 

Suppose that the force in a nonlinear element, say sjk(yjk' yjk)' 

may be represented as the sum of separate functions of displacement 

and velocity, i. e. , 

( . )- (1)(. )+ (2)( ) 
sjk Yjk' Yjk - s Yjk s Yjk (3. 46) 

Since yjk and yjk are uncorrelated, Equation (3 . 38) reduces by the 

substitution of (3. 46) to 

(3 . 47) 

(3. 48) 

where c(o) and k(o) are constants , then it follow s from (3.47) that 

){. = k( 0) 
jk 

v =c(o) 
'j k 

(3 . 49) 

Hen ce the e quivalent line ar s yst e m i s the o riginal linea r system itse lf. 
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3. 6 Accuracy of the Generalized Equivalent Linearization Approach 

The accuracy of the generalized linearization approach, of 

course, depends on the smallness of the nonlinearity. In order to 

obtain some understanding of range of application, we consider some 

problems which can be solved by the Fokker-Planck approach as well 

as by the generalized equivalent linearization approach. It will be 

shown that for the special problems considered, the generalized equiva-

lent linearization approach gives quite satisfactory results even for 

rather large nonlinearities . We also give a comparison of the results 

of the generalized equivalent linearization approach with those of 

the normal mode approach. 

Consider the system shown in Figure 3. 1. Its equation of 

motion may be written as 

where 

:.:. ~ 8u(x) __ r.(t) x +ex+ Bx I1 

x. is the absolute displacement of the ith mass. 
1 

c is a constant . 

ti(x) is the potential energy of the system. 

Furthermore, let f(t) be a Gaussian white noise specified by 

Rr(T) =2c y o(T)l 
} 

(3 .50a) 

(3.50b) 

where y is a constant. This problem will be solved for several forms 

of u(x) first exactly by the Fokke r-Planck approach, a nd then approxi-

mate ly by the genera.li:r.ed equiva lt' nt line a ri :r.at:ion ;1 pproach. 
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(1) Exact Solution - Fokker-Planck Approach 

It follows from (3. 1 0) that 

(
• ) A { 1 . T .. ~ p x = .., 1 exp - ry x x) 

p(x) = {3 2 exp{- ; u(X)} 
) 

where {3
1 

and {3 2 are two normalization factors such that 

,, oo ,,oo Joo Joo j .. . j p(x)dk
1 

. . . dXn = . .. p(x)dx
1 

.. . dxn = I -oo -00 -oo -00 

Straightforward calculations show that 

f:· . TJ Elx x = y l 

E~itT]= 0 

a nd E [xx TJ d e pends on u(x). Let 

x= Ay 

where 

1 0 0 0 

I 1 0 0 
A= 1 I 1 0 

1 1 1 . . . 1 

(3 . 51) 

(3. 52) 

(3 . 53 ) 

(3. 54 ) 

and let y . b e the displacement of the jth m a ss r e l a tive t o the (j-1 )th 
J 

mass o r the base if j = 1. Then Equation (3 . 51) b ecome s 

(-'-) A { l -'-AT ..... } p y = .., 
1 

e x p - 2 y y A y 

(3 . 5 5 ) 



-59-

where uk(yk) is the potential energy of the kth spring. From (3. 55), 

one immediately finds 

(3. 56) 
and 

k, j = l, ... , n 

The first two results are independent of the nonlinear springs, so they 

will remain unchanged for all kinds of nonlinear springs. The third 

equation implies that the nonlinear springs are uncorrelated with one 

another. Two kinds of nonlinear springs will be considered after the 

discussion of the approximate solution. 

(2) Approximate Solution - The Generalized Equivalent Linearization 

Approach 

The general equivalent linear system of (3. 50a) is 

x +ex +Kx= f(t} 

and its correlation function matrices are given by 

and 

I: . TJ Elxx = yI 

E [--=-Tl O 
Lx x J = 

E~--TJ K-1 E[ou(x)- T1 I xx = y or ~x 1 = y 
ux .J 

(3.57) 

(3.58) 
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Under the same transformation defined by (3. 54 ), Equation (3. 58) 

becomes 

(3.59a) 

E[yyTJ= 0 

E [s . ( y. )y . ]= y 
. J J J 

j=l, ... , n 

where s. is the force in the spring connecting the jth mass and 
J 

(3. 59b) 

(3. 59c) 

(j-1 )th mass. Equations (3. 59a) and (3. 59b) are the same as those 

obtained by the Fokker-Planck approach. Equation (3. 59c) is different 

from the third equation in (3. 56), but both equations show that the non-

linear springs are uncorrelated with one another. 

According to the above results, we know that the approximate 

solution is different from the exact solution only in E lYj~• j = 1, ... . , n. 

Moreover, since the equations for the determination of the E [ YjJ 's 

are uncoupled, it is sufficient to consider one e quation for each type 

of nonlinear spring . 

In the following, two types of nonlinear springs, a hardening 

spring and a softening spring, will be considered. 

3. 6. 1 Cubic Hardening Spring 

Consider a cubic hardening spring having a force-deflection 

relation 

(3.60) 

Using the formulas derived in this section, we have the following 

results. 
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(1) Exact Solution 

The first probability density for the displacement is given by 

r k<
0 >r. 2 a 4)0/J 00 r k(o)f. 2 a 4)~ 

p(y)=exp t zy \Y +2 y 'J _
00
expr Zy \Y +2 y ~dy (3.61) 

and the mean square displacement if' is defined as 
y 

2 I 2] Joo 2 a =Ely = y p(y)dy 
y -co 

(3.62) 

Expanding the exponential functions in p(y) into a Taylor's series 

about y = 0 and integrating the resulting series term by term yields 

a:= :(o)~-3(:{0))m(:r;,J291(:10J+ ... J (3.63) 

If J~) < < 1, the sum of the first two or three terms will be very close 

2 
to the true value of a . y 

Consider another situation. Let k(o) tend to zero, but let 

k(o)a approach some finite value e:. In other words. the nonlinearity 

parameter a tends to infinity. In this case , one has 

(3. 64) 

and 

2 Joo 2 r 4\ , 00 
( 4\ 

cry = - coy exp l 4 ~ y ) dy I j -ooexp l 4 ~ y ) dy (3. 65) 

Upon using the result 28 

r 00 a -(ry)bd - 1 r (a+l) J y e y- a+l b • a+l, b, r>O 
o br 

(3. 66) 
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where r ( ) is the Gamma function, Eqns. (3 . 64) and (3 . 6 5) reduce 

to 

( e: )
114 

( € 4} 1 ( 1) p(y) = y exp l 4y y /4 r 4 (3 . 67) 

and 

1/2 1/2 
cr 2

= ~ r(? ~4 >(:t....J =O. 6760 (X) 
y 3 res 4 > e: . e: 

or 

(3. 6 8) 

(2) Approximate Solution 

The response process is of course Gaussian and the mean 

square displacement E~2] is governed by 

(3.69) 

Noting that E[y 
4]= 3E[y

2J for a Gaussian process, one can solve (3. 6 9) 

for E[y
2J 

2 r 2] 1 ( J a y ) cry = E L_Y = - bci 1 - 1 + 1 2 k ( 0 ) (3. 70) 

If:(~) < 1~ , the second term in the brackets can b e e x panded into the 

following power serie s 

2 3 
/ !£1__ _ 1 ( !£1__ ) 1 ( -9:.Y._) 1 ( av \ 

•. I+12 k(o) - 1 +z: 12 k(o) - 8 12 k(o) +u 12 k(o) J 

(3 . 71) 
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Thus 

( 3. 72} 

Again let k(o} tend to zero and let k(o}a. approach e;. Then Eq. (3. 6 9) 

reduces to 

1/4 1/4 
a = (..::t....) = o. 76 00 (:J...) y 3 € E: 

(3.73) 

From the above calculations, we have the following results: 

When :<~(< 1, we know from (3. 63) and (3 . 72) that the approximate 

solution for a shows good agreement with the exact one. When the 
y 

nonlinearity of the spring is very large, from (3. 68) and (3. 73} we 

find that the error for the approximate a is about (0 . 822 - 0. 760)/0. 822 
y 

= 7. 5%. For an arbitrary nonlinearity, one might expect that the error 

will be less than 7. 5%. 
a 

For comparison, the exact and approximate values for -?-
o 

have been plotted against 0'b) in Fig . 3. 2 . o-
0 

is the linear solution 

for CT and is e qual to y/k(o). Both the exact and approximate CT decrease 
y y 

as the nonlinearity parameter a. increases. The approximate solution 

is always less than or equal to the exact solution, but the error is 

le s s than 7 . 5% . 

Also plotted in Fig. 3 . 2 is the first order approximate solu-

tion found by the perturbation approach. It is clear that this approach 

is valid only if both the nonlinearity of the system and the e x c itation 

are sufficiently small. 
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3. 6. 2 Softening Spring 

In deterministic theory, a softening spring can also be 

represented by (3. 60) with a.< 0. But in probabilistic theory this 

representation often leads to unbounded solutions. In order to avoid 

this difficulty, here, the following representation will be used. 

2 -1 (TI"k(o) · 
s(y) =:; futan 2£ Y) (3. 74) 

u 

in which f is the ultimate force of the spring and k(o) 
u is the initial 

slope of the load-displacement curve. Fig. 3. 3 shows some general 

features of this type of springs. 

(1) Exact Solution 

The potential energy of a spring specified by (3. 74) is given 

by 

(3 . 7 5) 

The first probability density and the mean square displacement are 

given by 

p(y)=exp{- .!. u(y)}/J
00 

exp{- ~u(y)jdy 
y -00 . 

2 r: 2] 100 
2 cry= Ely =, y p(y)dy 

-oo 

Now consider a special case . 

Eq. (3.74)becomes 

Let k(o) /£ -oo. Then 
u 

(3 . 76) 

(3. 77) 
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( 

fu 

s(y) = 0 

-f u 

if y>O 

if y= 0 

if y < O 

and the potential energy u(y) reduc e s to 

. 2 

lim 2 ~ - I ( 1T k ( 
0

) y \ f u r (1T k ( 
0

) )-JD 
u(y)= (o) ;r\ivtan 2 f ;- -(-)tnll+\ lf Y =f lvl 

k /f .... 00 U 1Tk O L u U 
u 

(3. 78a) 

(3.78b) 

where IY I denotes the absolute value of y. The first probability 

density now becomes 

p(y)=exp{- fu IYl}/J
00

exp{- fu !vi }dy 
y -00 y 

and the mean square displacement is given by 

2 Joo f 2 { f } cr = ~ y exp - _]!_ I y I dy 
y -00 y y 

2 2 
-~ - f 

u 

(2) Approximate Solution 

First, we shall evaluate E[s(y)y} 

(3. 7 9) 

(3. 80) 
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2 

1 Joo 2 f - __::t_.... 1 (rrk(o) ~ 
E [s(y)y 1 = 12; ~ye 20: tan - 2 £ Y;dy 

2rr CJ rr u y -00 

(3. 81) 

where we have set CX. = /2 f /rrk(o)cr and used the change of variable 
u y 

r =rrk( o)y /2£ . Integration by parts and using the result
2 9 

u 

2 
lT ex. 

dr = 2 e e rfc (ex.) 

where erfc ( ) is the complementary error function, yields 

2 2 

(3. 82) 

J
oo 22 -1 e-a.r 

- ex. r tan r dr = - 2 re 2 ex. 

2 2 
-1 loo 1 Joo - Ctr tan r + _

2
_ e z dr 

-oo 2 a. - oo 1 +r -00 

2 
1T a. 

= -z e erfc(a.) 
2a. 

(3. 83) 

Substituting (3. 83) into (3. 81) gives 

E[s(y)y J =JI crlue a.
2 

erfc(CX.) (3. 84) 

Then it follows from (3. 59c) that 

2 
cr ea. erfc (a.) =Jf f-

y u 
(3. 85) 

As k(o) /f -oo this becomes 
u ' 

(3. 86) 
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From (3. 80) and (3. 86) we know that the error of the approximate 

er for k( o) /f --oo is about (1-/Tr /2) = 11. 4%. 
y u 

For comparison, Equations (3. 77) and (3 . 85) have been solved 

numerically and the results are plotted in Figure 3. 4. The approxi-

mate solution is always bigger than the exact solution, but the error 

is less than 11. 4%. 

We have considered two types of nonlinear springs for the 

problem defined by (3. 50) using the exact approach and the generalized 

equivalent linearization approach. Both approaches can diagonalize 

the matrix E&yTJ and therefore we consider only one element of 

this matrix. If the same system is solved by the normal mode 

approach, the matrix El!Y"T] is not diagonal, so we must consider 

a particular system. The system as shown in Figure 3. 1 when n = 3 

will be used. The parameters of this three-degree-of-freedom system 

are as follows: 

_ ( o) 3 
s . ( y . ) - k. ( y. + ay. ) , j = 1 , 2 , 3 

J J J J J (3. 87) 

k( 0 ) = 3 , k ( 0 ) = 2 k ( 0 ) = 1 
-1 2 , 3 

c = 0. 1 

where a and y are constants. Again, this approach yields 

[. ·T] E xx :::: yl 
(3.88) 

~[- ..... T-J FJ xx _ :.::() 
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Hence for these two matrices both approximate approaches give the 

exact solution. This is because the exact velocity process is Gaussian 

and both approximate approaches recognize that the velocity process is 

uncorrelated with the displacement process. 

The mean square values for the displacements cry. from the exact 
J 

approach and two approximate approaches are plotted against the spe,c-

tral density of the white noise excitation in Figs. 3.5 to 3.8 for different 

a.'s. From these figures one sees that both approximate approaches 

give reasonable results. As far as the percentage of error is con-

cerned, the three percentages of error for cry
1

, crYz, and cry
3 

given by 

the generalized equivalent linearization approach are more uniform 

than those for crYi' crYz' and ay
3 

given by the normal mode approach. 

In the above example, the damping matrix of the system is 

proportional to the spectral density of the excitation. This problem 

can be solved exactly as well as approximately. Here we are going to 

consider another example in which 'the damping matrix is proportional 

to the stiffness matrix formed by the linear part of the nonlinear 

springs. This problem cannot be solved exactly, but can be solved by 

both approximate approaches . The results are shown in Fig. 9. Also 

plotted in Fig. 9 are the results from the one mode approximation 

discussed at the end of section 3 . 3 . The syste m considered here is 

the same one used in Fig. 3.6 except that the damping matrix is now 

proportional to the stiffness matrix formed by the linear part of the 

nonlinear springs . The proportionality constant is chosen in such a 

way that both systems used in Figs. 3.6 and 3.9 have the same amount 

of damping in the first mode. Since in this case the modal damping in-
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creases with increasing modal frequency, contributions from higher 

modes are nearly damped out. That is the reason why the results 

in Fig. 3 . 9 are much lower than those in Fig. 3. 6. By the same 

reasoning the results given by the one mode approx imation are not 

too bad . 
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IV. EXAMPLES 

In this chapter we shall consider two examples which can be 

treated by the generalized equivalent linearization approach described 

in the previous chapter. 

It is well known that damping plays an important role in 

structural dynamics. In order to simplify analysis, it is usually 

assumed that the damping force is directly proportional to velocity. 

However, in some systems, this force does not obey such a simple 

linear law. For example, the damping force in the landing system of 

certain aircraft is found to be proportional to the square of velocity3 O 

The vibration of submerged structures furnishes another example in 

which the external damping force, the resistance to the surrounding 

water, can often b e considered to be proportional to the square of 

velocity. Hence in the first example , we consider a multidegre e- of-

freedom system conne cte d by line ar springs, but having da mpe rs 

whose re sis ting force is proportional to the square of velocity. 

The system is excited by a base acceleration which is a white noise. 

This problem cannot be solve d exac tly by the Fokke r-Planck approach 

because the conditions listed in Section 3 . 2 are not satisfied. The 

perturbation approach fails because the damping matrix c(o)vanishes. 

An equivalent linear system which possesses normal mode s may be 

constructe d, but the modal exictation process is correlate d . There -

fore, the normal mode approach is also n o t applicable. 

' 
Many structures can be c onsidered a s line ar in analysis 

without significant e rror if the excitation is sufficie ntly small. 

.• 
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However, for severe excitation, the linear treatment are often not 

accurate enough. Hence, the systems must be considered as non-

line ar. For example, buildings subjected to severe excitations often 

b e have like lightly damped softening systems, that is, the stiffness 

of the syste m decreases as the displacement increase s. In addition, 

the effective damping in the first few modes is often only a few per-

c e nt of the critical damping. As a second example we conside r a 

multidegree-of-freedom system of this type . The springs in this 

system are nonlinear and follow the arctangent law discussed in 

Chapter III. The dampers are linear and arranged in such a manner 

that the equivalent linear system has normal modes and the e quiva-

lent damping in each mode is known. This system is excited by a 

base acceleration which is a Gaussian white noise. This problem 

c a nnot be solved exactly by the Fokker-Planck approach since the 

conditions listed in Section 3. 2 are not satisfied. The perturbation 

approach is not applicable because the damping matrix C( o) is not 

known. Althoug~ the equivalent linear system is assumed to possess 

normal modes, the normal mode approach also fails since the modal 

displacement process is correlated. 

4. 1 Example 1 

Consider the system shown in Figure 4. 1. n equal masses 

are connec ted by n identical springs and n ide ntical dampers . The 

springs are assumed to be linear. The dampers are nonlinear and 

their damping forc e is proportional to the square of the re la ti ve 

velocity. The base acceleration a (t) is a Gaussian white noise 
0 
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which is specified by its spectral density w. Let y. denote the 
J 

displacement of the jth mass relative to the (j-1 )th mass or the 

base if j = 1. Then the equations of motion of the system will be 

MY +Ky + g tY) = f( t) 

where 

£. ( t) = - ma ( t) , j = 1 , • . . , n 
J 0 

j=l,. . .,n yn+l=O 

where y is the damping coefficient of the dampers and 

{

-1 
sgn(y.)= 

J +l 

if y .<0 
J 

if y.>0 
J 

The equivalent linear system of (4. 2) can be written as 

MY+ Gy +KY= f{t) 

( 4. 1) 

(4. 2), 

(4. 3) 

(4. 4) 

(4. 5) 

Let c. be the equivalent linear damping coefficient of the damper 
J 

th th ' 
b e twee n the j mass and the (j-1) mass. Then from (3.38), we 

obtain 

Since a (t) is Gaussian, y. will also be Gaussian. Hence 
0 J 

(4. 7) 

., . 
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2 1 00.3 
= i_ [=-Ti J y. exp 

/21T E Y·(,J !, 0 J 
. J 

/8 ( [· 2] \ 3/2 
= y TI' \E YJ ) ( 4. 7) 

cont'd 

Therefore, 

( 4. 8) 

The instantaneous correlation matrices of the equivalent 

linear system are given by (2. 58). In order to reduce the nurnber 

of unknowns in con.1-putation, the matrix E[x~TJ. which is known to be 

ant isymmetric, will be eliminated from (2 . 58) to give 

ME [;-..:...T]cT C"' 1--'--=-TJ MT cE[--TJKT KEr J'JcT 0 Lx x + £, L x x - x x - ·• L x x = 

p....:...TJ T f.· ·'.I'] T -1 [· .:..TJ T [· .:..Tl ( -1 '~ MELx x c +CELxx M +MC M E xx K + KE xx _J MC M) 
T [--TJ ( -1 ) -1 I. 'T'I T - KE xx MC K - MC KELxx J K =21TW (4. 9) 

where Wis the spectral density matrix of f(t). If the base excitation 

i s a clipped Gaussian white n oise, Equation ( 4 . 8) is still valid, but 

Equation (2 . 58) has to b e replaced by (2 . 45 ). 

By using the iteration scheme discussed in Chapter III, 

Equations (4. 9) and (4 . 8) can b e solved nurnerically. The results 

of a three-degree - of- freedom system a r e plotted in Figures 4. 2 to 

4. 1 o. 

Figure s 4. 2 and 4. 3 show the general behavior of the non-

linear system. As i n a linear system, the mean square di spl acenl.ents 

increase with increasing excitation l evel w and decrease with increas-
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ing damping coefficient y. But they do not increase linearly as in 

a linear system when the excitation level increases and they decrease 

faster than those in a linear system when the damping coefficient 

y increases. 

The base excitation used in obtaining Figure 4. 4 is a clipped 

Gaussian white noise with cutoff frequency w • Here the mean square 
c 

displacement is plotted against w • When w is not close to the first 
c c 

modal frequency of the equivalent linear system w1, the curves are 

very flat but they rise sharply from nearly zero to values corres-

ponding to solutions for a Gaussian white noise excitation in the 

neighborhood of w1 . Hence it is apparent that for a Gaussian white 

noise excitation the greatest contribution to the mean square displace-

ment comes from the first mode of the equivalent linear system and 

contributions from higher modes are nearly damped out. This indi-

cates that the equivalent linear damping in the higher modes is much 

greater than that in the first mode. The slope field of this figure 

represents approximately (exactly for linear systems) the spectral 

density for the displacement. Hence from Figure 4. 4 we also observe 

that the spectral density has its most si~nificant peak in the vicinity 

We therefore conclude that the displacement y. will be essen-
1 

tially narrow band processes. 

In order to obtain more insight into the damping behavior 

of the nonlinear system, it is instructive to consider a linear system 

which has the same M, K, f(t ), and instantaneous correlation matrices 

as the nonlinear system (4.3). A~sume that this system possesses 
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normal modes. Then the damping ratio C. in each mode of this 
l 

linear system can be determined without difficulty. This will give 

a measure of the damping in the nonlinear system. As expecte d, 

the damping ratio for the second and third modes is much higher 

than that for the first mode (the damping ratios are roughly propor-

tional to the modal frequencies). The damping ratio C1 for three 

different y's is plotted against the excitation level win Figure 4. 5. 

It increases as either the damping coe fficient o r the excitation leve 1 

incre ases. Since, for a linear syste m, dam ping is not a fun c tion of 

w, the C1 curve will be just a horizontal line . Thus in Figure 4. 5 

we can compare the non linear system with a linear syste m whic h 

is different from the nonlinear syste m only in the dampers used. 

For example, a nonlinear system with y = 1 will b e more effective 

than a linear system with c1 = 0. 15 in reducing mean square displace­

ments if the e xcitation level w is gre ater than 0. 2 /2rr . Howeve r, 

if w is less than this value, the linear system will be better . 

On the basis of the above observations, the follo wing con-

clusions can be m a de . 

(1) Since the response is essentially a narrow band pro cess, 

only those components of the spe ctral density of the excitation whic h 

are in the neighborhood of± w
1 

are important. Thus, if the spectral 

density is slowly varying in these neighborhoods, then the excitation 

can be approximated by a white noise whose spectral d e nsity is just 

equal to that of the original excitation at w = w
1

. In this way the 

ana lysis of the equivalent linear system c an be much simplified 

because the stationary response of a linear sys t e n1 subjected to a 
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white noise excitation can be found by just solving a system of linear 

algebraic equations. 

(2) The dampers used in this example are effective in reduc-

ing the mean square displacem e nts only when the excitation level is 

high. Hence, if the excitation of a system is usually very severe, 

then the use of this kind of dissipation could be beneficial. However, 

if the excitation level of a system is in general rather low, then the 

need for additional linear viscous dampers is indicated. 

Although these conclusions are drawn from a three-degree-

of-freedom system, it is not difficult to see that they are also valid 

for n-degree-of-freedom systems. 

4. 2 Example 2 

Consider the system shown in Figure 4. 6. n equal masses 

are connected by n identical nonlinear springs and linear dampers 

(not shown in the figure) . The linear dampers are arranged in such 

a way that the equivalent linear system for the nonlinear system has 

normal modes and the damping in each mode is 5% of critical damp-

ing. The spring force s . (y.) is governed by following law 
J J 

2f 1Tk(o)y. 
u -1 

s . (y.) =-tan Zf 
J J 1T u 

(4.10) 

where f and k(o) are the ultimate force and the initial spring constant 
u 

of the n onlinear springs. The base acceleration a (t) is as s umed to 
0 

be a Gaussian white noise with spe ctral density w. The equations of 

motion of this sys t e m will be 
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MY +c"Y +-g<Y> = Y<t> (4.11) 

where 

g.(y)=s . +l(y. )-s.(y .)' 
J J J+l J J 

(j=l, ... , n) (4.12) 
f.(t)=-ma (t) 
J 0 

and C is an unknown matrix. The equivalent linear system of (4. 11) 

may be written as 

My +Cy+Ky = f{t) (4.13) 

Since it is assumed that this system has normal modes, there exists 

a matrix A such that 

3 3 

l ~ ajrmjkaks= ~rs (r, s=l,2, ... ,n) 

j=l k=l 

3 3 

l l 
j=l k=l 

3 3 

l l 
j=l k=l 

2 
a. k.kak =w o Jr J s r rs 

( r, s = 1, 2, •.. , n) 

a . c.kak =2C w o Jr J s r r rs 
( r, s = 1, 2, •.. , n) 

(4.14) 

(4. 15) 

(4.16) 

where C and w are respectively, the modal damping ratios and modal r r 

frequencies of the equivalent linear system (4.13). Equations (4.16) 

can be solved for cjk: 

n n n 

c .
1

=2 \' \ \' a m . C w a m k 
J c LJ L L. qr qJ r r s r s 

q=l r = l s = l 

(4. 17) 

Since C are known, C can be deterinint·•d from this equation once I< 
r 

is known. 



-78-

Let k. denote the equivalent linear spring constant of s.(y.). 
J J J 

Then it is found that 

E[s.(y. )y.J ; - 2 -
J J J a 

[ 
2] = r 2J fue erfc(a) 

E Y.· irELY· 
J J 

(4 . 18) 

where 

(4. 19} 

Following the same procedure as used in Example 1, we can 

solve (4. 18) and (4. 13) numerically to find all the instantaneous correla-

tion functions. The results of a three-degree- of-freedom system are 

plotted in Figures 4 . 7 to 4. 10. 

Figure 4. 7 shows that, as the excitation level increases, the 

mean square displacement of the first spring increases much faster 

than that of the second and the third springs. Hence, if this nonlinear 

system is subjected to severe excitation, the mean square displace-

ment of the first spring will be dominant. 

In Figure 4 . 8 the mean square displacement is plotted against 

the nonlinear factor k(o) /£ of the springs. Note that when k(o) /f 
u u 

approaches zero, Equation (4. 10) reduces to 

(o) 
s . (y.) =k y . , 

J J J 

Hence the system becomes linear. Figure 4. 8 shows that the 

(4.20) 

mean 

square displacement of the second and the third springs does not 

differ too much from the linear solution (k(o) /f = 0) . As the non­
u 

linear factor k(o) /f increases, the mean square displacement of 
u 
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the third spring actually decreases monotonously, while that of the 

second spring increases slowly at first, then also decreases when 

k(o) /f is greater than 2. However, the mean square displacement 
u 

of the first spring differs considerably from the linear solution 

when the nonlinear factor is large. For example, at k(o) /f = 1. 5 
u 

2 
the mean square value, cr , of the nonlinear system is about four 

Y1 
times as large as that of the linear system. 

In Figures 4. 9 and 4. 10 the excitation is a clipped white 

noise. These figures show respectively the mean square displace-

ments of the first and the third springs as a function of w . They 
c 

also indicate the contributions from different modes of the equiva-

lent linear system when the excitation is a white noise. For the 

first spring the contribution from the first mode is the largest mean 

square displacement in that mode while the contributions from the 

other modes are considerably smaller. Hence in Figure 4. 9 one 

sees that the contributions to the first spring from the higher modes 

is negligible compared to that from the first mode. However, for 

other than the first spring the mean square displacement in the first 

mode may be comparable with those in the other modes. Therefore, 

in Figure 4. 10 one sees that for the third spring the contribution 

from the second mode may be of the same order of magnitude as 

that from the first mode. Thus the response y 1 will be e ssentially 

a narrow band process while the response y3 (also the response Yz) 

may in general be much less so. 
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From the above results the following conclusions can be 

made. 

(1) Since only the response of the first spring can b e 

accurate ly considered as a narrow band process, the use of a white 

noise to replace an actual excitation may be not a good approxima­

tion in this case and the actual excitation should be used if possible . 

This will, of course, be true for n-degree-of-freedom system. 

(2) For the second and third springs the mean square 

displace ments obtained from the linear analysis and the equivalent 

linearization approach are quite close. However, for the first 

spring the two solutions will be close only if the excitation is suffi­

ciently low and the nonlinear solution will be much larger than the 

linear solution if the excitation is large. Therefore, the usual 

line ar analysis furnishes a good approximation only for low excita­

tion. If the excitation is severe, the line ar analysis is unconserva­

tive for design purposes and the system should be considered as 

nonline ar. For large systems (n>3) the big difference between the 

two solutions may not be limited to the first spring. 
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V. SUMMARY AND CONCLUSIONS 

A matrix algebra approach for determining the mean vector 

and the instantaneous correlation matrices of the stationary random 

response of a multidegree-of-freedom linear system is presented 

in Chapter II. Its derivation is quite straightforward and involves 

only some simple matrix algebra. Its application consists of two 

steps: evaluating some simple integrals and solving a system of 

linear algebraic equations. The first step sometimes becomes very 

trivial. For example, if the excitation is white, then the integrals 

can be readily evaluated since their integrand contains a Dirac 

delta function. The second step can be done by a digital computer 

and a single program will be valid for any kind of multidegree-of­

freedom linear systems. From the comparison of this approach and 

the existing approaches, it seems that if one is only interested in 

instantaneous correlation matrices, this approach will be simpler 

than other approaches. 

Several approaches are available for determining the stationary 

response of a multidegree- of-freedom nonlinear system, but each of 

them has certain limitations. In all these approaches the excitation 

is assumed to be stationary and Gaussian . The Fokker-Planck 

approach is the only approach available which can generate an exact 

solution for some nonlinear systems, but its applicability is rather 

limited because of the following restrictions: 

(1) the damping force must be proportional to the velocity; 
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(2) the correlation function m a trix of the excitation must be 

proportional to the damping matrix of the system; 

(3) the excitation must be a Gaussian white noise . 

The perturbation approach may be used only when the solu-

tion of a nonlinear system is close to its linearized solution. Hence 

it requires that 

(1) the nonlinear system possess a linearized solution, 

that is, C(o) is not a null matrix; 

(2) both the system nonlinearities and the excitation be suffi­

ciently small. 

Under these conditions this approach reduces the nonlinear differential 

equations of motion to several sets of linear differential equations. 

The normal mode approach is perhaps the simplest one a mong 

the existing approaches. It reduces an n-degree - of-freedom non-

line ar system to n single-degree-of-freedom linear systems. How-

eve r, the restrictions imposed on this approach are rather severe. 

It r equires that the linearized system have normal modes and that 

the correlation function matrix of the excit a tion be diagonalized by 

the same matrix that uncouples the linearized system. The first 

condition may not be too serious, but the second condition on the 

excitation makes the application of this approach quite limited . 

In the present study a generalized equivalent linearization 

approach for determining the instantaneous correlation matrices of 

the stationary random response of a multidegree- of-free dom non-

line ar systen1 h as br'!en presented. 'l'hP only rl'Kt rict:ion :-> on its 
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application are that the excitation is stationary and Gaussian. The 

equivalent linear system is formed by replacing each nonlinear 

element in the original system by a linear spring and a linear damper. 

After applying the matrix algebra approach to the equivalent linear 

system and the special iteration scheme described in Chapter III, one 

is led to the repeated solution of a system of linear algebraic equations. 

It is implicitly assumed that in order to obtain a good approxi-

mate solution the nonlinearities of the system must be small . How-

e 'ver, this approach can a ls o be used to generate approximate solu-

tion for systems with large nonlinearities. Two examples which can 

be solved exactly by the Fokker-Planck approach were also worked 

out by the generalized equivalent linearization a pproach. A compari-

son of the results shows that for a cubic hardening system the error 

in the root mean square displacement is always within 7. 5% of the 

exact solution and that for an arctangent softening system the largest 

error is 11. 4%. Therefore, it seems that even for large nonlinearities, 

this approximate approach still gives very reasonable results. 

Two more examples which can be solved by the new approach 

I 

were given in Chapter IV. The first example, linear springs a nd 

dampers who se damping force is proportional to the square of the 

velocity were used. The results show that the dampers used in this 

example are particularly suitable for systems which a r e subje c ted 

to severe excitation. In the second example , softening springs which 

follow a n arctangent law, were use d. The linear dampers were ar-

ranged in such a way that the equivalent linea r system of the nonlinear 
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system has normal modes and the damping in each inode is specified. 

The results show that the usual linearized analysis is unconserva­

tive for design purpose. 
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APPENDIX A 

Multidegree-of-Freedom Systems Under Gaussian White Noise 

Excitation 

Under certain conditions (see Section 2. 2. 3) Wang and 

Uhlenbeck19 have solved the system (2. l) by the Fokker-Planck 

approach. However, their approach can be extended to more 

general problems. 

Consider the following equation 

~+G+KX =s(t) (A. 1) 

where s(t) is a Gaussian white noise vector . Without loss of 

generality, assume that 

E Es(t) J= 0 } (A. 2) 

where W is the spectral density matrix of s(t). The stationary response 

x, °3c will form a 2n dimensional continuous Markovian process z=(x, '3c_) 

whose first probability density p(Z) is governed by the stationary 

Fokker-Planck equation 

2n 2n 
\a I\ 
L oz. (ajp)-zL 

j=l J k=l 

2n 

l 
82 
a a (bk.p) = o 

zk z. J 
j =l J 

(A. 3) 

From (2. 31) one easily finds that 

(A. 4) 
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and 

a=DZ where (A. 5) 

Instead of solving (A. 3) directly we make first the linear transforma-

ti on 

z=Au (A. 6) 

The matrix A is the matrix which diagonalizes D, so that : 

(A. 7) 

where A is a diagonal matrix which consists of the eigenvalue s of 

D. Since it is assumed the system (A. 1) possesses a stationary 

response, hence all eigenvalues will have a negative r e al p a rt. 

After applying the line ar transformation (A.6), Equation (A. 3 ) 

takes the form: 

2n 2n 2n 

\ ' A..~ (u.p) __ 21 \ ' \ - , vk. 
L J u . J L L J 

j = 1 J k= 1 j = l 

where 

Let h(s ) denote the c harac t e r i stic f unc tion of u whic h is jus t the 

Fourie r tra nsform of p('U) : 

The n i n t e rms of h(g ), Equa tion (A. 8 ) b e c o m es 

2 n 

\ t.. . i;. o h( S ) 
L J J a ~. 

j = l J 

2n 2n 
1 - - , ,...., 

- 2 h( i; ) l l vk j sk sj = 0 

k =l j =l 

(A . 8) 

(A. 9 ) 

(A. 1 0 ) 

(A. 11) 
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By direct substitution it can be easily shown that 

2n 

~ 
2n 

h( s ) = exp t l l 
j=l k=l 

(A. 12) 

From the definition of characteristic function and the properties of 

a Gaussian distribution, one knows that u is Gaussian distributed with 

zero means and its variances and covariances are given by 

(A. 13) 

In the matrix form Equation (A . 13) becomes 

(A. 14) 

Substituting (A.6) into (A.14), using (A . 7) and (A.I), o n e finds that 

[--TJ [--TJ T DE zz +E _zz D =-B (A. 1 5) 

Substituting (A. 4) and (A . 5) into (A . 15) and noti ng that 

(A. 16) 

one obtains 

(A . 1 7) 
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If M, C, K are symmetric and 

TrW =ye 

then by direct substitution it can be shown that the following solution 

found by Wang and Uhlenbeck 

also satisfies (A.17). 

EL36cTJ = yK- l 

E[3c3cT] = y M-1 

(A. 18) 
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APPENDIX B 

Some Properties of the Correla tion Functions of a Sta tionary 

Random Vecto r Process 

Let x(t) be a stationary random vector process which ·is 

assumed to be differentiable in mean square to the required order 

and R.._ (T) be its cross-correlation function matrix. Then we 
x 

have 

Differentiating (B. 1) with respect to T gives 

d I ..:..T 'r-. ~] 

d
-IL ( T) = E! x(t)x (t+T) I= -E ix(t-T JX (t) 
TX ,_ _, L 

The stationarity of x implies that (B. 2) can be rewritten as 

d~ Rx ( T) = E [ x(t- T)xT (t)J = -E[3c(trx (t+T)J 

Diffe rentiating {B. 2) and (B. 3) with re s p e ct to T again yields 

2 
d:2 Rx ( T) = E[ x(t)~T (t+T)J = E[~<t- T )xT (t)J 

[ . ·T 1 
[· ·T J = -E x{t-T)x (t)j= -E x(t)x (t+T) 

Finally, setting T=O in (B.2) and (B.4) gives 

[ _,_l'J [· _TJ . E xx +E xx = 0 

[ ,_,'.l'J c· ..TJ ~ .d'J E xx =E xx = -ELXx 

(B. I) 

(B. 2) 

(B. 3) 

(B. 4) 

(B. 5) 

where the common argument t has b.een omitted. 

antisymmetric and E[x)fl'] is symmetric . 

Thus E [ x-¥'] is 

. , . 
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Further, the above results can be generalized to give 

(B. 6) 

where 

g + h = j + k, s = g + j or s = h + k 

g, h, j, k = 0, 1, . .. , r 

and dr /dtrx is the highest derivative ofx that exists . 

. , . 
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APPENDIX C E [x
1 

f(x2 , x 3 >] 

Suppose that x
1

, x 2 and x 3 are Gaussian distributed. Then 

(X) . 

E[ x
1 

f(x
2

, x
3

)J = - 3 72 
1 

. J J Jx
1 

f(x2 , x
3

) exp{-ixT A -lx }ax
1 

dx
2

dx
3 

(2.-rr) j det(A) - co . 

where 

k, j = 1 ' 2., 3 . 

det(A) =the determinant of A 

We may also write (C. 1) as follows: 

= 

where °'k:j =the (k, j) e lement of A - l =the· co-factor of ajk in A. 

Now consider the integral 

., . 

(C. 1) 

(C.2.) 

(C. 3) 
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which reduces 2 l ( ·2~· )2 by the change of variable z =~ a
1 

.x. to 
· all . · J J 

J=l the f o rm 

By making use of results 

(C. 4) reduce s to 

J
oo 2 

e- z dz= rrr . 
-00 

Hence (C . 2) becomes 

where 

00 2 

I -z 
ze d z = 0 

- oo 

A
11 

=the minor of a
11 

= 
( 

a22 

a 32 

and the following r e lation has b een used 

(C. 4) 

(C. 5) 

(C. 6) 

(C. 7) 

(C . 8) 
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• -1 
a a.. - a a k . a det(A ) k+ · a 

11 .K.j lk lj=(-l) +J rs -( l) J rs (C. 9) 
a

11 
det(A

11
)/det(A)- - det(A

11
) 

k,j,r,s=2,3 r = s ;tk if k =j 

r = k, s = j if k ;t j 

With the aid of the definition of the cofactor, we have finally, 

(C. 1 0) 

If x 2 and x 3 are uncorrelated, for example, x 3 = x 2 , then a 23 = a
32 

=E[x2 ,x3 )]=0. Thus, 

(C.11) 

Replacing akj by E [xkxj J, we obtain 

., . 
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