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ABSTRACT

An approximate approach is presented for determining the
stationary random response of a general multidegree-of-freedom
nonlinear system under stationary Gaussian excitation. This
approach relies on defining an equivalent linear system for the
nonlinear system. Two particular systems which possess exact
solutions have been solved by this approach, and it is concluded
that this approach can generate reasonable solutions even for sys-
tems with fairly large nonlinearities. The approximate approach
has also been applied to two examples for which no exact or approxi-
mate solutions were previously available.

Also presented is a matrix algebra approach for determining
the stationary random response of a general multidegree-of-freedom
linear system. Its derivation involves only matrix algebra and
some properties of the instantaneous correlation matrices of a
stationary process. It is therefore very direct and straightforward.
The application of this matrix algebra approach is in general simpler

than that of commonly used approaches.



v

TABLE OF CONTENTS

CHAPTER TITLE PAGE
I INTRODUCTION 1
II STATIONARY RANDOM RESPONSE OF
MULTIDEGREE-OF-FREEDOM LINEAR 3
SYSTEMS 6
2.1 Equation of Motion : 6

2.2 Review of Commonly Used Approaches in
Obtaining a Stationary Solution for Multi-
degree-of-Freedom Linear Systems _ 7

2.3 A Matrix Algebra Approach for Stationary

Response 17
2.4 Compérison of Various Approaches 28
2.5 Examples 31

I STATIONARY RANDOM RESPONSE OF MULTI-

DEGREE-OF-FREEDOM NONLINEAR SYSTEMS 39
3.1 Introduction ‘ 39
3.2 Fokker-Planck Approach 40
3.3 Normal Mode Approach 43
3.4 Perturbation Approach , 46

3.5 A Generalized Equivalent Linearization
Approach 48

3.6 Accuracy of the Generalized Equivalent
Linearization Approach ' 57

Iv EXAMPLES 70



CHAPTER PAGE

v SUMMARY AND CONCLUSIONS 81
APPENDIX

A 85

B 89

C 91
FIGURES 94

REFERENCES 116



vi

NOTATIONS

Matrices and vectors will be denoted by capital letters and
lower case letters with a bar over them, respectively (exceptions:
E, T"). Subscripts may be used to designate different matrices or
vectors, e, g., Xl’ XlZ’ Rf Superscripts T and * will denote,
respectively, the transpose and the conjugate transpose of a matrixj or
a vector. The components of a matrix or a vector, say A or §, will
be written as ajk
symbols, Others will be defined when they are used,

or B In the following is a list of frequently used

G = ... when k=j-1
J Vi .
C = damping matrix of a linear system
C(O) damping matrix of the linearized system of a nonlinear
system
=3 = difference between a nonlinear system and its equivalent

linear system

E[ 71 = expectation operator

fu = ultimate force of a nonlinear spring
f(t) = stationary random vector

g = internal force vector of a system
G(t) = impuise response function matrix
H(w) = frequency response function matrix
i s 5%

I = identity matrix

kj = ij when m=j-1

k(o) initial stiffness of a nonlinear spring

oy w
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stiffness matrix of a linear system

stiffness matrix of the linearized system of a non-
linear system

mean vector of X
mass matrix
null matrix or null vector

Laplace transform parameter or probability density
function

transitional probability density
correlation function matrix of
instantaneous correlation matrix of
Sjk when k=j-1

f0£ce in the nonlinear element connecting the jth and the
k*® masses of a nonlinear system

white noise vector
time
potential energy of a system

spectral density matrix of a white or a clipped white
noise vector

displacement vector
. .th : th
displacement of the j° mass relative to the k~ mass

relative displacement vector of a simple n-degree-of-
freedom system

proportionality factor between C and R—f(’r) or a constant
equivalent linear damping constant of B

J
Gamma function

Dirac delta function

fraction of critical damping
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eqﬁivalent linear stiffness of Sjk
small parameter
r.m.s. value of y

cutoff frequency of a clipped white noise

natural frequency
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I, INTRODUCTION

In structural dynamics the excitation of a system is often ran-
dom in nature and hence the response of such a system cannot be
accurately predicted by usual deterministic approaches. For example,
the ground motion during an earthquake is a random process and it is
therefore desirable to apply probabilistic techniques to the analysis of
structures subjected to this type of excitation. In recent years the
development of rockets and jet engines which give rise to vibration
that is essentially random has lead to increased interest in the appli-
cation of probabilistic techniques to structural dynamics.

The theory of the random process was first successfully
applied to dynamic systems by Einstein!. He used it to inve stigate
the Brownian motion of a free particle and found that the probability
density of the response process was governed by a diffusion equation.
Soon his result was generalized to more complicated cases by
Fokkerz, Smoluchowski3, Pla.nck4, and others. It was found that
the transitional p;t‘obabilit'y of a special kind of Markov process was
governed by a partial differential equation of parabolic type. This
equation is usually called the Fokker-Planck equation. A more
general partial differential equation for determining the transitional
probability density of a completely general Markov process has also
been found5 and sometimes it is also referred to as the Fokker-Planck
equation, In the present study, the general equation will not be used,
and hence the more restrictive parabolic equation will be referred to

as the Fokker-Planck equation.
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In 1919 lOrnsteiné developed another approach which did not
require that the response process of a dynamic system be Markovian.
It is known that a random process can be completely defined by its
moment functions of various orders. For example, a Gaussian
process can be specified by its first and second moment functions.
Therefore, Ornstein integrated the equation of motion and expressed
the random displacement in terms of a stochastic integral. Then he
was able to derive all of the required moment functions, This
approach will be called the impulse response function approach.

Wiener7 in 1930, and Khintchineg in 1934, found independently
that the spectral density and the correlation function of a random
process are related by a Fourier cosine transform. Since the
spectral density of the stationary response of a linear system can
be readily determined by Fourier transform, the Wiener-Khintchine
relation furnishes another way to determine the stationary response
of a linear system., This approach is usually called the spectral
density approach.

All of these approachgs were first developed for single-degree-
of-freedom linear systems. However, they can be generalized to
multidegree-of-freedom linear systems without difficultyg‘.

In general, it is just an approximation to consider a real
system as linear, Most real systems are nonlinear'by‘ their very
nature. The results of linear analysis are particularly inadequate
for large m‘otions. Hence, the effect of system nonlinearities on the

response of structures should not be overlooked.
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Unfortunately, only one of the three approaches mentioned
above, the Fokker-Planck approach, can be extended to nonlinear
problems. However, no exact solution has been found for the
Fokker-Planck equation for any second-order nonlinear system,
The time-independent or stationary Fokker-Planck equation can be
solved, but only under certain rather restrictive conditions, Siﬁce
an exact solution is available onlir for limited stationary cases,
several approximate approaches have been devilsed to treat nofl—
linear problems.

In deterministic theory, Krylov and Bogoliubovlo developed a
technique to replace a nonlinear system by an equivalent linear
system. By solving this linear system, they obtained an approxi-
mate solution to the nonlinear system. The application of this
technique to problems of random vibrations was made independently
by Bootonll and Caugheylz. Later, Caughey further extended this
technique to include some special multidegree-~of-freedom nonlinear
systemslzo This extension will be called the normal mode approach
since it is based on the linear theory concept of normal modes of
oscillation.

Another approximate approach which has aléo been adapted

from the deterministic theory is the perturbation approach.

CrandaTi 2

first applied this approach to investigate the random
vibration of a nonlinear oscillator. Later, "I‘ung14 was able to

apply it to multidegree-of-freedom nonlinear systems. This approach

requires that the nonlinearity of the systerm be small. Then the
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nonlinear problem can be reduced to the solution of several sets of
linear differential equations.

In the present study a new approach for multidegree-of-freedom
nonlinear systems is presented. Additionally, as a by-product of
the nonlinear analysis, a matrix algebra approach is developed which
can be applied to find various instantaneous correlation matrices
for the stationary random response of a multidegree-of-freedom
linear system. The details of the matrix algebra approach are
presented in Chapter II. This chapter also contains a brief review
of existing approaches for multidegree-of-freedom linear systems
and a comparison of the matrix algebra approach and the existing
approaches. Two examples are worked out in detail to illustrate
the application of the matrix algebra approach.

The new approach for determining the instantaneous correlation
matrices of the stationary response of a multidegree~of-freedom
nonlinear system ;13 presented in Chapter III along with a brief
review of the Fokker-Planck approach, the normal mode approach,
and the perturbation approach. This approach is based on the idea of
defining an equivalent system by minimizing the difference between
the original system and the equiv#lent system, In the present study
the equivalent system is assumed to be linear. Thus, it leads to
a generalization of the method of equivalent linearization. The only
restrictions on the application of this generalized equivalent lineariza-

tion approach are that the excitation be stationary and Gaussian.
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If the nonlinearities of the system are small, then the response
should be close to a Gaussian process. Hence, it is expected that
the instantaneous correlation matrices generated by this approach
will be a good approximation. For large nonlinearities the response
may in general be quite different from a Gaussian process. However,
for the examples considered in Chapter III, this approach still gives
a reasonable solution,

In Chapter IV, two timely examples which cannot be solved
either exactly or approximately by existing techniques are given as

illustration of the generalized equivalent linearization approach.
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II. STATIONARY RANDOM RESPONSE OF
MULTI-DEGREE-OF-FREEDOM

LINEAR SYSTEMS

2.1 Equation of Motion

The general equation of motion in matrix form for an n-degree-

of-freedom linear system may be described by

Mx+CxX+Kx =7 (t) Z.1)
where
M  is an nxn generalized mass matrix
C is an nxn generalized damping matrix
K is an nxn generalized stiffness matrix
x is a generalized displacement vector

defining the motion of the system

f(t) is a stationary random vector process

specified by its mean vector ﬁf and its

correlation function matrix

Ry (t; - t,) =E[?(t1)ET(t2)]
Since f(t) is a random vector process, Eq. (2.1) is a stochastic
differential equation and x is also a random vector process. In this
study the vector process X is assumed to be stationary, continuous,
integrable and differentiable to the required order in the sense of
mean square. One consequence of these assumptions, which we will
use quite often, is that the operations of expectation and mean-square
differentiation or integration are commutative, provided, of course,
that the expectations in question exist and are continuous at the limit

. 1Z
points .
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2.2 Review of Commonly-Used Approaches in Obtaining a Stationary

Solution for Multidegree-of-Freedom Linear Systems

Several approaches have been developed to treat the stochastic
differential equation of motion (2.1). The most commonly used
approaches are the impulsive response function approach, the spectral
density approach, and the Fokker-Planck approach. The first two
approaches can be used to calculate the mean vector and the correla-
tion function matrix of the response process. However, if the response
process is Gaussian, these two quantities completely define the prob-
ability densities of any order. In the third approach, the Fokker-
Planck equation, which governs the transition probability density
of the response process, can be used only when the excitation is a
shot or white noise. If the excitation is a Gaussian white noise, and "
one is interested in the stationary solution, the transition probability
alone completely describes the response process. All three
approaches can be applied to nonstationary problems as well as
stationary problems. In this section we will give a brief descrip-

tion of these three approaches applied to stationary problems,

2.2.1 Impulsive Response Function Approach

The first step in this method is to find the impulse response
function matrix G(t) of (2.1) which is defined as the solution of the

following system:

MG +CG +KG = I5(t) | 2.2)



with the initial conditions

G(0)=G(0)=0 | (2.3)
where 8(t) is the Dirac delta function, I, an nxn identity matrix, and
O, an nxn null matrix. The problem specified by (2.2) and (2‘.3) can
be solved in a variety of ways. However, one of the most direct is
the Laplace transform method15.

Taking the Laplace transform of both sides of (2.2) and

using the initial conditions (2.3) yields

iy 2 -1
G(p)=(Mp +Cp+K) (2.4)
where p is a transform parameter and G(p)is the Laplace transform

of G(t). Let

S(p) =Mp~ +Cp +K (2.5)
A(p) =the determinant of S
R(p) =the adjoint of S

Then G(t) is given by the inversion integral

] PRl 2.6)

where Br is the Bromwich contour in the p-plane, For the present
case the integral on the right-hand side of (2.6) ca;n be evaluated by
calculating the'residues at the singularities of the integrand. In this
way, G(t) can be expressed in the following form:

n
G(t) =ZZ (Xk cOs pk t- Yk Sinﬁk t)e—ak
k=1

t 2.7)



where
X, Y, = [RE) A=) ]
(2. 8)
)\k: —O:k-f-lﬁk, 5k>0
The )\k's are those roots of A(p) =0 which have positive imaginary
part, the cx,k’s are always positive for a stable system,

Differentiating G(t) with respect to t gives

.(.}(t) — —Zi e__akt[(Xkak+ Ykﬁk) cos [3kt

k=1
+(Xkﬁk‘Ykak)sm ﬁkt] (2.9)

As t-—»0+, that is, as t approaches zero from the positive side, it can
be proved that16

lim

G{t)=0
07
(2. 10)
lim G(t)=M" 1
t-0"

After having found G(t), the steady-state response to an
arbitrary excitation f(t) may be evaluated from the superposition

integral

5 (0 6] .
()= [ G(t-ni(rar (2.11)
oo

If ?(t) is a random process, E(t) will also be a random process and
the integral in (2. 11) becomeé a stochastic integral which will exist

in mean square iff17
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B )
—oo<j‘ I Gty =T IRl -15)G 7 (t, -7, )d 7 d T, <00 (2.12)

-00 -00
for all t, and t,. When (2. 12) is satisfied, the mean vector ™ and

correlation function matrix R.)_:(’r) are given by

T =E[%(t) T

(I) —
=I Cutuﬁ)E[f(ﬁ)]dTl
-0

» CO
J G(t—'l‘l)d'r‘l . e

H

(co , ;
J Glr)dry *mg (2.13)

R_(7) = Rylt; -t,) = E[x(t 8 (t,) |
@ (e o]
= f_oof_ooe(tl-Tl) [ T ) (r,) | 6T (t,-7,)dr dr,

@ (0o ' T
=[ [ ety r Retr 1) 6T (k- my)dm (2.14)
-00 ~-00 :

where T=tl—t2.

When 1:1 =t2 =t, the correlation function matrix becomes

(s 0] (s 0]
R_(0) = E[‘:E(t)i’T(t)]= f f G(t-m) R?(TI-TZ)GT(t-TZ)drldTZ

-0 =00

(2.15)
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The matrix R_X(O) will be referred to as the instantaneous correlation
matrix of X.

If the joint moment functions of higher order of the excita-
tion are given, the present approach can also be used to find the joint
moment functions of the corresponding order of the response. For
example, the third joint moment functions are

B [xj () oy ()% (5 )]

n

i 8
=) 2 2 j I J‘ “Th gt To) g (Ey-T5)
p=lg=lr=l = % -
'E[:fp('rl)fq('rz)fr("r3)]d'r1d'r2dT3
Js e =142, 4 w5 D (2.16)
provided that the right-hand side exists. The function gjk(t) in
(2.16) represents the (j, k) element of the matrix G(t).
The mean vector in (2.13) and the correlation function matrix
in (2,14) play an important role in application. First, if a process
ig Gaussian, all moments higher than the second can be computed
from these two quantities. Hence, a Gaussian process can be com-
pletely specified by its mean vector and correlation function matrix,
Second, even when the mean vector and the correlation function matrix
cannot specify a random process completely, they still give some

important information about that process.
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2.2.2 Spectral Density Approach

It is well known that the correlation function matrix RE(T)
and the spectral density function matrix EID§ (w) of a stationary random
vector process X form a Fourier transform pair. They are related

as follows#*:

1 r®
d‘ai (w) = 5= I R’}_c(ﬂ exp (-iwT)drT
-0
(2.17)

Qo
R_ ()= &_ () exp (iwT)d"

- 00

This Fourier transform pair is usually called the Wiener-Khintchine
relation, The impulse response function matrix G(t) and the fre-
quency response function matrix H(w) also form a Fourier transform

pair (or more accurately, G(t) and H(w)/2m)*:

1
G(t) = —Z_FI H(w) exp (iwt)dw
" (2.18)
: pee
H(w)=j G(t) exp (-iwt)dt
-0

With the aid of (2.14) and the second equations in (2.17) and

(2.18), the correlation function matrix becomes

Q0
:Jlﬁ}ul'Tl)QT(W)GTktz'TZ)eXP[}w(Tl-Tz)JdTldTZdw (2.19)
=00

* 3
For the conditions under which the integrals in (2.17) and (2.18) exist,
see reference (18).
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roo
=  H(w) &x(w) H¥(w) exp i""(tl'tz)]dw

-

oo
= J H(w) CI)-f—(uJ)H*(uJ) exp (iwT)dw (2.19)
- o0 cont'd

in which H*(w) is the conjugate transpose of H(w)}. Since the Fourier
transform of RSE(T) is unique, from (2.19) and the second equation in
(2.17) we know that the spectral density function matrix of the

response vector X is given by

P (w) = H(w) $x(w) H*(w) (2.20)
When 7=0, i.e., t=ty, Eq. (2.19) reduces to
- o
RR(O)EE,:E(t)ET(t)J:‘Jl Ooﬁb_i(w)dw (2.21)

Thus, the instantaneous correlation matrix is just the sum of the
spectral density matrix over all frequencies.

The matrix H(w) can be found by taking the Fourier transform
of both sides of (2.2), or it can alternatively be found from (2.1) by

0

an arbitrary constant vector. Both approaches lead to

letting the excitation vector be T ew‘)t and X = H(w)—f—oelw‘: where ?0 is

o
- Q0

IO N =1
(w) = G(t) exp (-iwt)dt = (-w M+iw C+K) (2.22)

If w=0, Eq. (2.22) reduces to

(e 0]
H(O):f Gt)dt =K}
& (2.23)

*For the conditions under which the integrals in (2.17) and (2.18)
exist, see reference (18).
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Hence, the frequency response function matrix at w=0 is just equal
to the inverse of the stiffness matrix.
Upon substituting (2.23) into (2.13), the mean vector "m—"i

becomes
_ R .
Tﬁ}_{—H(O)m-f-—K Ty (2.24)

2.2.3 Fokker-Planck Approach

A random vector process Z(t) is said to be Markovian if the

conditional probability density function p(En, £ t

al s taogie e iE 0 ty)

where "z'n= Z'(tn), cees Z = (tl) and tn>tn_1>. T depends only on
the last value Z (tn_l) and not on the preceeding values Z (tn_z). -

_z'(tl). Hence, for a Markov vector process, we can write
p(En’ t IEn— L LR ;_z-l +tp) =p(En’ t Zh-1 tn—l)’
tn>t >0t (2.25)
The ‘special conditional probability density p('En, k., IEn-l yt,-1) is

called the transitional probability density and will be denoted by a
special symbol q("zn, tn Iin-l" tn—l)' From the definition of condi-
tional probability we have
P(Z b3, 6538 0t ) =D)L 1)) P(E,, by IEI, )
o _p(_zn, tn IEn-—].’ tn-l;' & ;—Zl,tl); tn>tn_1>. ; .>f:1 (2,26)

Hence, it follows by using (2.25) that in the case of Markov processes,
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P2, Fp tyse e 3 E st )= R(E L 1) Al b 2, 8)). .

ceeq(Z Izn_l, t b 2t >

: >t1

2.27)

‘Thus, if we know the first probability density and the transitional

probability density of z(t), we can write its probability density of

any order, that is, the first probability density and the transitional

probability completely specify a Markov process.

Consider a special Markovian process whose transitional

probability density is governed by the ¥ okker-Planck equation

2n
9q Z?___ AN >“
5T BT -3 )
=1 ) '
with the initial condition

lim

=t

Such a process will be called a continuous Markovian process.

&8(zZ-

Azk = zk(t+'r)-zk(t)

z

1)

Then the quantities ay and bjk in (2.28) are given by

a_lhnEb%J

k™ 70 T
o = lim E[AzkAz.]
jk 710 T

provided that all limits exist.

(2.28)

(2.29)

Let

(2.30)

(2.31)
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The first probability density of a stationary Markov vector
may be obtained from the transition probability density by letting the

transition time (t-tl) approach infinity, i.e.,

_ lim S
p(Z, t) _(t-tl)-'ooq(z’tlzl’tl) (2.32)
Hence, a stationary Markov vector is sufficiently defined by its transi-
tion probability density alone. The first probability density of a
stationary continuous Markovian process can also be found by solving

the time independent or stationary Fokker-Planck equation

2n 2n 2n >

\' D 1y 9 ,

Z az.(ajp)’“z‘z Z‘a'm'zz(bjkp)w (2.33)
=1 7 k=1j=1

which follows from (2.28) by dropping the first term and replacing
a(z,t,+7 [Z;, 1) by p(Z, t).
If the vector f in (2.1) is a Gaussian process such that

E[f(t)]=0
(2.34)

E [f(t)fT (t+71) 1 =27w W §(T)
where W is the spectral density matrix of f(t), it may be shown that
the displacement and velocity vectors of the response process form
a 2n continuous Markov vector. Wang and Uhlenbeck19 have solved
this problem when M, C,K are symmetric and
TW =vC, (2.35)
where v is a constant. They found that the instantaneous correlation

matrices of the stationary response were governed by the following

equations:
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E[zx" |=0
ME[ %% |-KE[%%T |=0 (2.36)
'Tc T—IM+M is‘zT:iczzyc
This set of equations can readily be solved to give

EJE?;T]:o
L

Bl ]zyK (2.37)

Wang and Uhlenbeck's approach can be extended to a more
general problem where the spectral density matrix W is not related
to C and M, C, K are not symmetric. In this case the instantaneous
correlation matrices of the stationary response are governed by the

following equations (see Appendix A for details)

_._T ] _'__T:,_
E J+ELXX =0

ME| %% ] CEE;J;T]_KE ‘;&T:]:o

(2.38)
r L] A
ME i‘iT ic +CE""’T]M +ME[’“— _JK

+KE!L§'§TJ‘MT=ZWW

2.3 A Matrix Algebra Approach for Stationary Response

All the approaches discussed in the above section are
directed toward finding the correlation function matrices, and the
instantaneous correlation matrices are given as special cases when

T=0. However, in many applications, one needs only the instantaneous
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correlation matrices. For example, the first probability density
p(X, X) of a Gaussian process is completely described by E[EZ':ET ],
E%?T] and EE}E";ET :', the probability distribution of peaks and the
average frequency of a narrow-band process are all dependent on
the instantaneous correlation matrices. If one is only concerned
with the instantaneous correlation matrices, then a very straight-
forward ana direct approach can be used. In this approach, the
mean vector and the instantaneous correlation matrices are derived
directly from the equation of motion, and only matrix algebra and

some special properties of stationary vector processes are involved.

2.3.1 Mean Vectors

The mean vector of the response process X, r'r'i}—:- , can be

found in the following way.
Taking expectations of both sides of (2.1) gives
ME[’:’E]+CE[‘§E]+KE[‘>‘;]:EE]=E? (2.39)
From the stationarity of X it follows that -rﬁ-}—{ is a constant vector,
and

EE'%:]:%EE[X]:O

(2.40)
d?.
E[‘S‘E]:-—z— E[x]=0
dt
Hence, Eq. (2.39) reduces to
| Efx]=K 'mg (2.41)

This is the same equation as (2.24).
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2.3.2 Instantaneous Correlation Matrices

The equations governing the instantaneous correlation
matrices E’-EET_I, E "x"*}'ETJ and E ﬁ?’:T] can be obtained as follows.

Postmultiplying through (2.1) respectively by ®* and ‘SiT
and then taking expectations of both sides of the resulting equation

gives
i — -— T
ME[¥%" |+CE[%x" | +KE[Z% |=E[T% |
- o | =
ME[?;T} CE [§§T ] + KE[E';ET] = E[‘f‘a‘cT]

Postmultiplying the second equation in (2.42) by MT and adding the

(2.42)

resulting equation to its transpose yields
m(E[ 2% +E[EeT MT+cr[xx" M7
+ME[x§T]C +KEI:_"'T]M +ME[*-—TJKT
= E["f"iT]MT+ ME [%?T] (2.43)

For a stationary random process which is differentiable, it may be

shown that (see Appendix B for details)

EL?cézT J+E[""T_] o

x%" |-E[%x" |- -B%%" |

| T
Thus E| xij is antisymmetric and E[xxTJ is symmetric. Upon

(2.44)

using the relations in (2.44), Eq. (2.43) and the first equation in

(2.42) become
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—MEE:';ETJ-PCEE;EET]+KELJCXTJ E[‘f"T] )
MEE}'E':':‘T:]CT+CE[§'5ET]MT+ME[§?T]KT ) (2.45)
+KE[§§TJMT=E[T§TJMT+ME[‘:‘E J

The matrices E[?ETJ and EI:;E;:IJ are clearly symmetric and the

matrix E[xx Jls antisymmetric, as noted. Suppose that E xfT]

and E[xf J exist and can be evaluated, then there are (nxn)+n(n+1)/2
unknowns in (2,45). The first matrix equation in (2.45) gives nxn
component equations and because of symmetry, the second one
furnishes only n(n+l1)/2. The number of equations is just equal to

the number of unknowns. Let

o <X 7
A =
Mk wmlc
E '}'E‘SET] EEE“:ET
X = : (2.46)
EEx’ | EEET]
and
o EE:;'f‘T] et T
B =
ME[fET] M 1E[fxTJ+E[ i ]\M'l)

Then (2.45) can be put into the following form

AX +XAT=B (2.47)
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It may be shown that X can be uniquely determined from (2.47) iff 20

)\k+}\j‘+‘0 Mi=ky gy plny (2.48)

where Ay are the eigenvalues of A .

The instantaneous correlation matrix for accelerations is

given by
r— LA X) o » g
ME[E%ET [cT+ ce[xx" |M" - KE[}&T]CT-F CE[§ % KT
I -
+E|[TE" [cT+CERT | ( (2. 49)

which is obtained in the same way as in deriving the second equation
in (2.45).
Now we turn our attention to the determination of the matrices

C HE Lo A
ERXT |, Exf |and E[XTT |. It follows from (2.11) that

p OO _ 9] _
":E(t):J Gt T)f(T)dT?-J G(7)f (t-7)dT W

~ 00 - 00

. roo, = ®,
H(t) = Cr(’c»T)f('r)d'r=j G7)T (t-T)dT (2.50)
- 00 -0

- Jis ™ - i
Z(t)-M"~ f(t):J G (t- 'r)f(fr)dfrzj G(T)E (t-T)dT
-0 - Q0

¥
provided all these stochastic integrals exist. Hence, postmultiplying
through (2.50) by "f_T (t) and taking expectations of both sides of the

resulting equations, we obtain
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E[EZ?E"T] = IOmG( T)R¢(7)dT M |

.V

E[‘;ETT]:IOOG(T)R?(T)&T 2.51)
-

E[;éf*T]_M’lRf(O):joo’c}(T)R;('r)d'r J
o

The lower limit of each integral in (2.51) has been changed from -
- to 0 since G(T), G(7), and G(t) are null matrices for T<0. The
impulse response function matrices G(t) and G(t) are given by (2.7)
and (2.9), and G(t) can be found from G(t) by direct differeﬂtiatioﬁ.

The integrals in (2.51) are real ar;d can readily be efraluated.
Suppose that

Rz (7)=Ab(T) : (2.52)

where A is a symmetric, constant matrix. Then from (2.7) and
(2.8), we know that each integral in (2.51) takes one of the following

two forms:

o
j‘ b(‘T)e_aTcosﬂTdT )
o

_- ' > 2.53)

fes)
j b(T)e—O’TsinﬁTdT p
o

where o and B are positive constants. If b(T) is specified, then,
usually, these integrals can be found in standard integral tables.
After evaluating the integrals in (2.51), the instantaneous correla-

tion matrices can be determined by solving the linear equations
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in (2.45). Hence, this method is particularly simple and easily

adapted to digital computation.

2.3.3 Instantaneous Covariance Matrices

The instantaneous covariance matrix of X, ‘EL)-{, is defined

o — A il 1 apm i 1
Y?{EE[G(-—I'I}J—C-)GE-HIJ—() :IZE X% |- mgmz (2.54)
With the aid of (2.41), Eq. (2.54) becomes

"@?c:E?ciT]..K“l“ﬁrf A )’ (2.55)

Hence, the instantaneous covariance matrix of X is identical to its
instantaneous correlation matrix if the mean vector of the excitation
ﬁ? vanishes. Howewver, all the other instantaneous covariance
matrices are the same as their corresponding instantaneous correla-

tion matrices since from (2.40) we know tha,t‘ﬁls_{ and ﬁ:}..,{ are two null

vectors.

2.3.4 Special Cases

White Noise Excitation: If the excitation f(t) is a white noise

vector, that is,
1’?1?2 O, R—E(T):Z'ITWS(T) (2-56)
in which W represents the spectral density matrix ofﬂf(t) and &(T) is

the Dirac delta function, then upon using (2.56) and (2.10), the first

two equations in (2.51) become
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EFT |-0

(2.57)
E[?;?T}wm“lw
Hence Eq. (2.45) reduces to
ME E’E?cT]- CE [?;?:T] - KE [?;ET] =0 N
ME[?{'SZT:[CT+CE ":E":ET:]MT+ME[§E§T]KT ) (2.58)

+KE[ZET [MT=2rW .
Eq. (2.58) is the same as Eq. (2.38), but, here, the excitation is not
necessary to be Gaussian. |
For white noise excitation, the integral in the third equation
in (2.51) does not exist because both G(T) and R—;(T) go to infinity at
T=0. Hence, the instantaneous correlation matrix of the accelera-
tion which depends on the third equation in (2.51), becomes meaning-
less. However, in some problems, the instantaneous correlation
matrix of the absolute acceleration may exist even though the instan-
taneous correlation matrix of the relative acceleration does not
exist. For example, consider an arbitrary system excited at some '
point by a white noise acceleration input, 3'{0(1:). Let Xj denote the
- displacement of the jth mass relative to the excitation point. Then
it may be shown that E T:ETJ does not exist., For this example, fhe

absolute acceleration of the jﬂrI mass a, will be

aj(t) =:':?:J.(t) +'5:O(t) (2.59)
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and the excitation vector f(t) in (2.1) becomes

ml'

f(t) = - m, | % (t) (2.60)

m
n

Substituting (2.59) and (2.60) into (2.49) and noting that

m1 0 0
0 mz s % 3 % 0
M=l . . .5 ... .. (2.61)
0 O = « % % m
n
we havwve
ME [‘:ﬁ'TJ ety CE[E?;{T]M KB "‘i"’:&T] cT
+CE[§E'§£T]KT @.62)

It is now obvious that E[EET] exists.

Filtered White Noise Excitation: A white noise has been

widely used as an ideal excitation. It not only simplifies the analysis,
but also gives very reasonable results for some lightly damped
systems. Sometimes, the use of a white noise as an approximation
may not be acceptable, but one may still use a filtered white noise,
For example, an earthquake may be approximated by passing a white
noise through a viscously damped linear oscillator. In the following,
a more general filter will be considered.

A random process n(t) is said to be a filtered white noise

if it satisfies the stochastic differential equation
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I
dk
Zakgt-k— n(t)=s(t),a_#0 (2.63)

where the ak's are constants. The excitation s(t) is a white noise
whose mean and auto-correlation function are given by

E s(t)]=0
(2.64)

E[s(t) s(t-T) |=2mw 5(7)
where w is the spectral density ofr s(t).

Consider an n-degree-of-freedom system excited at some
point by a filtered white noise acceleration input n(t). Let xj denote
the displacement of the jﬂ:1 mass relative to the excited point. Then
in (2.1)

f(t) = -Tn(t)=-| m, | nt) (2.65)

m
n

Combining (2.1) and (2.63) and using (2.65) yields

i 2 (M—+c-x+Kx)__ms(t) (2.66)

For simplicity, we rewrite (2.66) as

r+2 ,
d°x

Z 5, Lo ), B g ma M, X 2.67)
dt

where Bk's are constant matrices. Postmultiplying through (2.67)
o

respectively by':'c'T, %—, ¥ oy (dr+1 /dtr-l-1 )}'{T and taking expectations

of both sides of the resulting equations yields
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n42 - j

ZB X .:-’fﬁE[s(t)—d—.szT]
L de?

k=0 s

where

e
oy ™ EL(iE X)(_d%'x) ]

320, 15 e n el

(2.68)

(2.69)

Analogous to the second order system (2.1), we define the impulse

response function matrix G(t) of {2.67) as the solution of the follow-

ing system
r42 k

d .
Y B, % Glt)=Ts(t)
k k
el dt

with initial conditions

d dr+1 )
G(0) = -HGO=... = I G0 =0
ol , |
Then — G(t), j=1,...,r, is continuous at t=0 and
at’
lim r+l
d -1
— G(t)=B
1:-'0+ dtI'-H 42

Using (2.71) and (2.72) we obtain

k oo k
E[s(t)- 2% (1) =T | E|s(t)st-m) |97 aT(mar
dt o dt

k
= —TTWHIT —d~—1~<-GT(O+)=O;k= s s 5wy i

dt

(2.70)

(2.71)

(2.72)

(2.73a)
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+1 r+l
iy _T d T, +
E[s(t) E;f—-nx (t):|= - Wwim —-—(;;;_—;TG {(0)
- (B ) (2.73b)
Thus Eq. (2.68) becomes
r+l
szijzBr+2Xr+1,j+l 320 dgw s o ®
k=0
(2.74)
r+l r+l
|
Fisid Z w41, k k+ Z BpX kr+1Br+z-z“Wmm
k=0
where the relations
—(_\8*1]
gh™ 1 Xy
gthejdg g, b i, k=0, 1, » oo, Pl (2.75)
_ h+k
Xgh“(m) Xjk

have been used (these relations have been proved in Appendix B).
Equations (2.74) and (2.75) can be used to determine all the instan-

taneous correlation matrices provided that they are independent.

2.4 Comparison of Various Approaches

In the second section of the present chapter, we have dis-
cussed the impulse function approach, the spectral density approach
and the Fokker-Planck approach. In the third section, a fourth
approach, a matrix algebra approach, was introduced. The first
three approaches can be used to find the correlation function matrices

as well as the instantaneous correlation matrices for the response
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process, whereas the last approach can only be used to find the instan-
taneous correlation matrices. This limitation may not, however, be
severe as was mentioned earlier.

We will now give a discussion of comparison of various
approaches applied to stationary problems.

(1) The Fokker-Planck equation can be used only if the
excitation is a Gaussian white or a filtered Gaussian white noise.
In this case, both the Fokker-Planck approach and the matrix algebra
approach lead to the same equations for the determination of the
instantaneous correlation matrices. However, the matrix algebra
approach can also be applied to arbitrary excitations provided that
the integrals in (2.39) exist.

{(2) In the spectral density approach one needs to evaluate
a separate integral for each independent element in each instantaneous
correlation matrix., From (2.21) and (2.20) we know that these
integrals are in general different and their integrands may be real
or complex. Furthermore, the matrix H(w) in the integrands must
be found analytically from the expressio.ﬁ (2.22) and the difficulties
involved in the integrations increase with increasing the number of
degree-of-freedom of the system. Hence, for complex systems
one is generally forced to evaluate these integrals one by one
numerically.

In the matrix algebra approach, if the excitation is white,
then the instantaneous correlation matrices can be found by solving

the system of linear algebraic equations (2.58) without evaluating



<30

any integrals. If the excitation is non-white, it is necessary to
evaluate some integrals also, but each of these is real and takes Voﬂe
of the forms in (2.53). Usually, these integrals can be found in
standard integral tables. After evaluating the integrals in clésed
form, again one can find the instantaneous correlation matrices by .
simply solving a system of linear algebra.ic equations. Therefore, .
this approach is very suitable for digital computation.

(3) Both the impulse response function approach and the
matrix algebra approach use the idea of impulse response functions.
In the first approach the correlation function matrices are éxpressed
in terms of double integrals. In the second approach, one, first,
has to evaluate some integral as in (2.53); then, the instantaneous
correlation matrices are found by solving a system of linear algebraic
equations. Since it is very time cﬁnsuming to evaluate double integrals
numerically, the matrix algebra approach is usually faster in user
than the impulse response function approach.

As an illustration, the spectral density approach and the
matrix algebra approach were programmed to solve a three-degree-
of-freedom system under the excitation of a white noise vector.

The program using the spectral density approach is limited to three-
degree-of-freedom systems and cannof be generalized to arbitrary
systems. For this special excitation, the integrals are evaluated
by calculating- the residues at the singularities of the integrands.

It takes about 200 milliseconds on an IBM 360/75 computer to find

the matrix E[x xT].
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The program using the matrix algebra approach can l;e used
for arbitrary systems under white noise excitation. Also, the pro-
gram itself is simpler than that using the spectral density approach.
It takes about 150 milliseconds on the same computer to find the

- : o
matrices E!r_:_c;cTJ, E ;:ET__J, and ELXXT:].

2.5 Examples

In order to illustrate the application of the matrix algebra
approach, we consider two examples below.

In the first example, a single-degree-of-freedom system
under clipped white noise excitation is considered. This is a very
simple example, but it contains all procedures needed for more
complex systems. This problem has also been solved by using the
spectral density approach. Both approaches lead to the same solu-
tion,

In the second example, we consider a n-degree-of-freedom
system under the excitation of a clipped white noise. It is shown
that the matrices E[’ifT] and E[}?—EJT] can be expressed in terms of
the same two types of integrals as in the first example and can there-
fore be easily evaluated. Only additional computation is the solu-
tion of a system of linear algebraic equations. The results of a
particular 3-degree-of-freedom system are plotted. From the

figures, some expected phenomena can be observed.
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2.5,1 Single-Depgree-of-Freedom Systems Under Clipped White Noise
Excitation

Consider a mass-spring-dashpot system governed by the

equation of motion
% +2Cw_x +ufx = £(t) /m (2.76)
The constants m, W, € are respecti\}ely the mass, the undamped

natural frequency, and the ratio of the actual damping to the critical

damping of the system. The excitation f(t) is a clipped white noise

with cutoff frequency W It is specified by its mean mg and its
auto~-correlation function
2w .
B f(t)f(t-T)-lz-—T—- ginw T (2.77)
| (&4

where w is the spectral density in the frequency range Iw |<wc. The

impulse response functions g(t) and g(t) can be easily found to be

1 _-Cwut . B /1_r2
g(t)—wd e n*gin mdt, Wg =0 1-¢

B(t) = e"Cwnt cos wdt —71%?- sin wdt]

Then from (2.51) one has

(2.78)

Q0 N
Elx]= -3 | g(n) 222 gr
m UJd (o]

2w © - Cw,T
Shis J = sianT sinwd’r dr (2.79)
m Wy o )
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and

2w « sinaT
E[f;f]:-——-—-z f 'g(fr)-~——-—-T dr
m o

2 b e-thT
- “é J = sinwc T cos wqTdT - Cuy E £ (2.80)
. .

By using the results21

PO ~CupT _ : 1 _1 ZCunwe
J ——"""T—-"“ SanJC'T CcOos UJdT dT:"Z' tan ﬁ
o Wn - W
| (2.81)
‘ 2 2
(00 =T 1 (Cup) ™ + (e +wg)
= sinwc'r sinwdeT=Z in 5 5
o (Cwp) +{w,- wg)
Eqs. (2.79) and (2.80) reduce to
2, 2
(Cw_ )"+ (w.+wy)
Efef]= —%—) fn—— dz
dem (gwn) +(U‘)C" U)d)
O AR, '
w L+ (e Jup )+ 2/1- €% (w, /wy)  2.82)

2ugm”  1Hwe fwg)>- 2/1-C(w, /u.)

) | wc+wd

Ekf]=2% |t
xX. m2 [a.n gwn

(lb—w

2 C(w, /wn) :
= Wotan™! ST gy Efke] (2.83)
m 1-(w./w,) :
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Upon using Ex%x]=0, Eq. (2.45) now becomes

w:E[xz]—E[:'c2]=E[ch"l

4Cw B[ 1=2E [%f]

Thus,
ERST = (2Cw_Eff1+E[XE])
ZC,w
= w W,
Il G ) (2 0]
E[i;ZW-agw E [&f ]
n
W,
_ZCw 2.[9( ) (wn’g)]
where

2¢(w. /w.)) E
oy (R ¢)- ! (2020 )
1—(wclwn)

3 W >
o - & &n”(_u_h—)"z L (W)
2_211‘/1—65 W W

(2.84)

(2.85)

(2.86)

(2.87)
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2.5.2 Multidegree-of-Freedom Systems Under Clipped White Noise

Excitation

Consider an n-degree-of-freedom system governed by

MXx + CX +Kx =T (t) 1 (2.88)
The excitation f(t) is a clipped white noise vector with cutoff frequency
w.. It is specified by its mean vector Tﬁ?and correlation function
matrix

sinwcfr

where W is the spectral density matrix for lw|<wc. The impulse

response function matrices G(t) and G(t) are given by (2.7) and (2. 9).

Thus,

E[E?T]:JOOG(T)R}—(T)dT

(o]

n
p GO e"‘ak'r . . 7
:42 XkW‘JO sinw_Tcos [3de'!'
k=1
B e e] e—akT
- 42 YkWJO sinw T sin [3k'i' dr (2.90)
k=1
T = ‘
Eff =] G(MRp(mdr
0 .
4 ooe-ai{T .
:-4Z(Xkak+Ykpk>WJlo cos@k’r s1nUUC'TdT (2.91)
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o © - T
'l ek

i | ; :
_42 Ky Bycm Ykak>WJo = sin ﬁk'r sinw_TdT (2.91)
k=1

cont'd
where %Y ﬁk’ Xk and Yk are defined in (2.8). As mentioned before,
here one meets the same two types of integrals as in the single-
degree-of-freedom system discussed in Example 1.
Upon substitution of (2.81) into (2.90) and (2.91), one has

finally

n n
- T N
E|xT ]“zZXkW_ek-ZYchpk |
S v femd

n
EifT]:—ZZ (xkakwksk)wek > — 2.92)
k=1

~18

(Xk‘?k' Yko'k> W,

bt
11

1

where

1 chak
2 2 2
O('k-l_ﬁk" e
(2.93)
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The instantaneous correlation matrices ELJTET], E[xs'tT—l,
and E[‘:‘Z&T] can be determined by simply solving the linear algebraic

equations in (2.45).

If this problem is solved by the spectral density approach,

the matrices E[}“:S‘{T:l . E[’x‘:"cT], and EE‘:‘&:‘TJ are given by
ST, P
E|Xx :I:J H{w)WH*(w)dw
o
LT We
E[sasz ]=-1f H{w) WE* (w) wdw (2.94)
o

E[ﬁﬂ:jwc H () WH () 0 dw
o
where
H(w) = (-Mo® +i CatK) (2.95)
In the above equation the resultant matrix in the brackets is a function
of w, so its inversion must be done analytically. Ewven if the matrix
H(w) has been found, the evaluation of the integrals in (2.94) for a
complex system is not trivial. Usually, these integrals are evaluated
one by one numerically by computer, but this will generally take con-
siderable computer time.
The matrix algebra approach has been applied to the system
shown in Fig. 2.1 withn=3 and = is a clipped white noise with unit

spectral density. The mean square displacements E[y?:], E[yg:], and
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E[y%], where yj is the displacement of the jth spring, are plotted
against various cut-off frequencies in Figs. 2.2 and 2.3.

In Fig. 2.2 the mean square displacements for the system
shown in Fig. 2.1 with C proportional to M is shown. It will be
noted from this figure that the contributions from the modes higher
than the first one are not negligible. For example, consider E[y?:i
The contribution from the first mode is about 5.8, from the second
mode is about 2.9, and from the third mode is about 0.4. Hence,
the contribution from the second mode is as high as 50% of that from
the first mode.

In Fig. 2.3, the mean square relative displacements for the
system shown in Fig. 2.1 with C proportional to K is shown. The
proportionality constant is chosen so that the system would have the
same part of critical damping in the first mode as the system con-
sidered in Fig, 2.2. The primary difference between Fig. 2.2 and
Fig. 2.3 is that the contributions due to frequencies beyond w5 the
second natural frequency, are almost completely damped out in
Fig. 2.3. This phenomenon is expected since the modal damping
in the first system decreases with increasing modal frequency while

that in the second system increases with increasing modal frequency.
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III. STATIONARY RANDOM RESPONSE OF
MULTIDEGREE -OF -FREEDOM
NONLINEAR SYSTEMS

3.1 Introduction

Since most real physical systems exhibit some kind of non-
linearity for sufficiently 1a;-ge motions, it is important that one be °
able to investigate nonlinear systems as well as linear systems, Of
course, the analysis of nonlinear systems is more difficult than that
of linear systems since very few nonlinear differential equations can
be solved exactly.

One exact method of studying the stationary random response
of a nonlinear system is the Fokker-Planck approach., If the excita-
tion is a Gaussian white noise, then the transitional probability

-density of the response process is governed by the Fokker-Planck
equation. As mentioned in Chapter 2, this transitional probability
density can completely define the response process, However, no
one has succeeded in solving the complete Fokker-Pianck equation
for any second-order nonlinear system. The first probability density
is governed by Eq. (2.33) which can be solved in some cases, From
the first probability density, one can deduce all the instantaneous
correlation matrices,

Since the exact solution is available only for limited cases,
attention has also turned to approxﬁnate solutions. If the nonlinearity
is smali, several approximate methods have been devised, One of

them is the normal mode approach in which the approximate solution
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‘can be found by solving several single-degree-of-freedom systems.
However, in using this approach, one must impose some conditions
on the excitation as well as on the system,

Another method of generating approximate solution is the
perturbation approach. In this approach it requires that the non-
linear terms of the system must be small compared to the iinéar
terms and the excitation level also has to be sufficiently low.

In this chapter, we will consider a more general approach for
multidegree —of —freedom systems. The only restrictions on this
approach are that the excitation be stationary and Gaussian. Before
introducing this approach, a brief discussion of the Fokker-Planck
approach, the perturbation approach, and the normal mode apprloach

is given below.

3.2 Fokker-Planck Approach

The equation governing the first probability densi;‘:y for the
stationary response process of a nonlinear system has only been
solved under the following rather restrictive conditions:

(1) the damping force is proportional to the velocity

(2) the excitation is a Gaussian white noise

(3) the correlation function matrix of the excitation is propor-

tional to the damping matrix of the system
Under the above conditions, the equation of motion may be written

as follows:

M+ CF + gl =T(t) ' (3.1)
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with
"rﬁ—f- =0
(3.22)
R-f—('r) =2y Cs(T)

where y is a constant, u(x) is the potential energy of the system and

ou
Fx,)
%gsz : (3.2b)
b.4 .
du
5J{
n

Suppose that there exists an orthogonal matrix A which can simul-

taneously diagonalize M and C:

ATA=I

T
ATMA =V (3.3)
ATca=A

where V and A are two diagonal matrices. Then, upon using the

transformation X =A% and noting that

n
T 9u(x) _ , T 9%z 9u(Z) _ oulz
AT AT BRI ) At melin
i k=1
_u(@)
=50

m
_ng) (3.4)
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Equation (3.1) becomes
5 ) 0 - = :
V% +AZ +-53_£@)— = ATE() =D (t) (3. 5a)
Z
and the correlation function matrix of b(t) is given by
R—B(T)=2yA5(T) {3.5b)
The stat’ionary Fokker-Planck equation associated with (3.5a) is

given by

o+ 32]e)

3 i |-
Q| ©
N
N
L APy
=

1
15
41--

j | j=1
) B | G-6)
. v 0%, ’
=1 3 J

where }\j and vj denote the jt diagonal element of A and V, p is the
abbreviation for the first probability density of the Markovian vector

@ . The solution to (3.6) may be written as follows:

o
p(z,%):sexp{-ly[%zvj 'zj2+u(-z')]} (.7)
)

This solution was first obtained by Ariarathanzz for a two-degree-

of-freedom system (n=2), and it was extended to the above form by
23 . y

Caughey . The constant § in (3.7) is a normalizing factor such

that

(0 0] r(x) . )
j cee p(E,'Z‘)le...dznd:'z.l...d'zn=l (3.8)
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In the original coordinates, Equation (3.7) becomes
p(%, %) = B expl-1[ 3 3T ME +u®) || 3.9)
It will be noted that the terms in the square brackets are respec-

tively the kinetic energy and the potential energy of the system.

Equation (3.9) may also be written as

plE, %)= exp{— Blgi MTfi} exp{— %{u(i)} (3.10)

Hence X and X are linearly independent.

3.3 Normal Mode Approach

Consider an n-degree-of-freedom system governed by the

equation of motion

M')E + C(o)§ +K(0% +ug(%, )= 1(t), u=a small parameter (3.11)
The matrices C(O) and K(O) are respectively the damping matrix
and thé stiffness matrix of the system due to the linear part of the
damping forces and the spring forces, and ug(%,X) represents the
nonlinear forces of the system. f(t) is a stationary Gaussian random
vector. Without loss of generality, assume that m- =0,

f

In using this approach, the following two conditions must
be satisfied:
(1) the linear system obtained by neglecting the nonlinear

term §(5?,§) in (3.11) must possess normal modes
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(2) the correlation function matrix Rf{'r) must be diagonalized
by the same matrix which diagonalizes the matrices
M, C(O) and K(O).
The second condition is quite restrictive and is seldom realized in
real systems.
Assume that the above restrictions can be met, then there

exists a matrix A such that
ATMA =1

) 2 ylo)

T . (0), _~l0) -
AKYV''A =0 e =Wy 5kj

) , (3.12)
T xl0),y . al0) o) (o)
ATCTA =AT, AT = by

T - —_—
A Rf('r)A =D(T), dkj _dk(T)ﬁkJ- y,

By using the transformation =A%, Eq. (3.11) reduces to

%+A(°)'E+Q(°’E+HAT§('E,E) = ATF(T) =B(t) (3.13a)

where the correlation function matrix of b is
RTJ(T)=D(T) (3.13b)
In component form, Eq. (3.13a) becomes

2 n

TN ) (o) ; "
#4054 (W )zj+ZakJ.gk(z,z)—bj(t) (3, 18]

N B
and Eq. (3.13b) becomes

Eby (b (t+7) = a (M) 8 k=1, ...,n (3.14b)
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The differential equations in (3.14a) may be written as

B B, B v B e b )
J J ] J ] J J

j=1,...,n (3.15)

where the deficiency term ej is given by

2
_ ¢+(0) : (°) 2
e;= 0 -lj)zj+[(wj )-wj]zj

n

“L“Z 288 2) §=1, on (3.16)
k=1

If the quantities }\j and w? are chosen in such a way that some measure
of the deficiency term is minimized, then it seems reasonable that
the statistics of the response of the nonlinear system can be approxi-
mated by those of the linear system described by

. i 2
b R Bz 2B Tk, ouns 3.1
zJ )\JZJ wJZJ J() j=1 n ( )

At this stage, the differential equations are uncoupled and the
excitation b(t) is an uncorrelated vector process. Hence, each
uncoupled differential equation can be solve& separately.

In order to determine }‘j and wJZ , Caughey chose them so as
to minimize the mean square value of the deficiency term &. This

can be achieved by requiring that
-gx El:éTé ] =0
J

Z—(:?—) E[éTé']:O

i=1,...,n (3.18)
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Substituting (3.16) into (3.18) and interchanging the order of differen-

tiation and expectation, we obtain

n
)\j = )L(J.O) +iz:fk5 E[zjgk(%‘, Z) :’/E[zjz ]
J=1; 605

z n
2 (o) . 27
wy'= (wj ) +ukzlakjE zjgk(z, Z)]/E[ZJ- i (3.19)

Equations (3.17) and (3.19) can be used to find various mean square

values of the response process.

In certain cases, the contribution from the first mode may

be dominant. In these cases, we may let XJ. :ajl zy in the above

derivation. Then

n
””? =<w§°”2+uz 251 E[zlgj(-zl’ 2)) ] /E[zﬂ
j]

| (3.20)
n
Ay = >‘01+“z %51 E[élgj ()0 Zl)J/E[Zﬂ
j=1

This is a rather rough approximation, but it is very simple, and in
some cases, it does give reasonable approximate solution as will

be demonstrated later.

3.4 Perturbation Approach

Consider the same problem defined in the previous section

whose equations of motion are

Mt +C 0% 1 k(% 4k, 7) = fit) (3.21)
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Assume that y is so small that the solution of (3.21) can be approxi-
mately represented by

X=X tux, (3.22)
Substituting (3.22) into (3.21), neglecting terms involving uz, |~l3, ’
and equating corresponding coefficients of uo and ul yields the
following sets of linear differential equations:

M§0+C(°EO+K(°)io=f(t) B 2%

MST':l +c(°)§1 +K(o)}—(1 :_g(.fo(t)’io(t)) (3.23b)

Correct to the same order of accuracy, the instantaneous correla-

tion matrix for displacements becomes

s [ T]+H{E T]+EL§;1§E]} (3.24)

Note that
Elx = T ( D (3.25)

The matrix E[:Tco'iTo] can be found from (3.23a) by the various approaches
discussed in the previous chapter, and E ioTcrlr] may be evaluated as

_follows. Since (3.23a) and (3.23b) are linear, their stationary

solutions are

m -_—
=_f G(t-T)E(T)ar (3. 26%)
- QO
A Q0
T{l:—J G(t-T)g(T)dT (3.26h)
- Q0

where G(t) is the common impulse response function matrix of

(3.232) and (3.23b) and g(7) is the abbreviation of ‘i;[(:ﬁ“('r),‘i&o('f) ).
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Thus,

oo . 00O
E[Scoil; =-j_mj G(t-Tl)E[f(Tl)‘gT(TZ):IGT(t—Tz)d'Tlde (3.27)

The matrix E[?(Tl)—gT(’rz)]can be evaluated with the help of properties
of Gaussian processes. Therefore, we can find E 'io"ilT]and hence
EF% .

Usually, the evaluation of the integrals in (3.27) is not easy,
so Tung has developed a different approach to generate E[i':"cT:l from
(3.23a) and (3.23b). He applies Foss'sz4 method to uncouple (3.23a)
and (3.23b) into first order differential equations and then solves the
resulting equations to find various instantaneous correlation matrices.
For detail, see Reference (14).

This approach will fail if the damping matrix C(O) is a null
matrix. In this case, Equation (3.23a) does not have a stationary
solution since all of its correlation functions will finally go to infinity.
Another limitation of this approach is that not only the nonlinearity of
the system has to be small, but also the excitation has to be sufficiently

low. This will be demonstrated in Section 3.6.

3.5 A Generalized Equivalent Linearization Approach

The normal mode approach is quite powerful if it applies,
since it reduces the problem to one of the solution of uncoupled single-
degree-of-freedom linear oscillators. However, due to the conditions
imposed on the excitation, its application is rather limited. The

perturbation approach also has its restrictions. In order to geta
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reasonable approximate solution, both the nonlinearity of the system
and the excitation have to be sufficiently small.

In this section a more general approach will be introduced.
Except that the excitation must be stationary, the only additional
restriction to this approach is that the excitation be Gaussian,
According to the central limit theoremzs, many random processes
in nature can be assumed to be at least approximately Gaussian
distributed, so this restriction may not be too severe.

In this approach, we define an auxiliary set of linear differen-
tial equations for the original nonlinear system. Some coefficients
of the auxiliary set may still be unknown. The solution of the original
nonlinear system is approximated by the solution of the auxiliary set
and the unknown coefficients are chosen in such a way that some
measure of the difference between the two sets of equations is a
minimum. With the help of some properties of Gaussian processes
and the approach derived in the last chapter, the approximate instan-
taneous correlation matrices of a nonlinear system can be found
from the solution of a set of algebraic equations. Although these
algebraic equations are in general nonlinear, they may be solved
linearly by a specific iteration scheme.

Consider an n-degree-of-freedom system connected by non-
linear elements. The equation of motion may be written as

MX +B(%, %) = £(t) (3.28)
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where
s is the generalized displacement of the jth mass

gj(i,i) is the total force acting on the jth mass by the non-

linear elements .
f(t) is a stationary Gaussian random vector representing the
excitation to the system .

It is assumed that the system possesses a stationary solution.

By way of obtaining an approximate solution of (3.28), con-
sider the following linear differential equation

MX + Cx +Kx = f(t) (3.29)
where C and K are two arbitrary matrices. Let the solution to (3.29)
be also the approximate solution to (3.28), then the difference of (3.28)
and (3.29), e, will be
€=g(%,x%)-Cx-Kx (3.30)

Note that here X is the solution of (3.29). The matrices C and K,
which are still arbitrary up to this point, will be chosen so as to
make some measure of the vector @ as small a..s possible. Then it
is assumed that the solution to the linear system (3.29) will furnish
a good approximate solution to the nonlinear system (3.28). This way
of defining an auxiliary set for (3.28) has been applied by Iwan26 to
nonlinear systems under deterministic excitation. In that case, the
criterion was that the squared error per cycle was a minimum. But
here we shall use the criterion that the mean square value of € is a
minimum, that is,

E[ETE:,: Minimum (3.31)
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The necessary conditions for (3.31) to be true are

T -
SEETS kT ) opl s Joo
acjk Ik

dc

ik
(3.32)
oE[eTe]_ rTae ZE[ ]_O
Bk, _J ® K
ik
Upon using (3.30), they become in the matrix form
Efex” |-E[g 0" |- cEfex" |- KE[zE" |-0
(3.33)

E EET]=E[E(§E,:?)§T]— CE[}'sz] " KE[xxT]: o
The conditions in (3.32) will give a true minimum (as opposed

to a maximum) if the following inequality holds
P A .
{d“ kdcrs B dc__ | dcjkdkrs dc,, 0k
j=1 k=1 r=l s=1 ° 3k e Jkrs

8% 9% 1 LT
+ky de e rlgy e o krs}E[e & 20

(3.34)

Differentiating (3.32) with respect to g and krs' substituting the

results into the left-hand side of Inequality (3.34) yields

k. \T
e iy
: A O :
i dkjn ELxx :l Exx i dkjn
s - - =0 (3.35)
Pt e efkx" | Bfz%" | Bl
dc. ! d(.‘:.

m
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Hence (3.31) will be a true minimum if (3.33) and (3.35) hold,

The square matrix m (3.35) is just the instantaneous correla-
X

tion matrix of the vector process Since the excitation is assumed

b4

to be Gaussian, the vector process

2 2 : .
shown = that for a Gaussian process, the instantaneous correlation

is also Gaussian, It can be

matrix is non-negative definite. Therefore, (3.35) is always true
and the conditions in (3.33) do define a minimum for E[ETEJ.

In order to solve (3.33) for K and C, it is first necessary f;o
express El_’g(’f,'ji)iET] and E[g(é‘:,i)iT] in terms of E[iiT] ) El':?tiT] and
E[ESZT:I Let Vics denote the displacement of the kth mass relative to
the rth mass and let the approximate force acting on the kth mass by
the nonlinear element connecting the kth mass and the rth mass be

denoted by s Then

kr(ykr’ Ykr)'

T = _ 2 R
E[gk(x’ p, ] ‘Z El:skr(ykr’ Vi |
T
rik (3.36)
E[gk(iai)ij_l =Z E[Skr(ykr: Ykr)icJ]
I
r#k
where the sum is taken over all nonlinear elements connected to the

kt mass. Since X is a Gaussian vector, it follows that the quantities

Srkr' > I Xj’ and S(J. will be Gaussian distributed. Hence
CRER S AN E A /S
ELSkr(Ykr’ Yk:r)Xj_J“E Skr(ykr’ Ykr)ykr ks Yerj El_ykr
(3.37)

+E sy Gegs Ve Wier I E[?erj ] /E[Ylfr:’
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E[skr(?kr’ Ykr)"‘j] = {830 Fpep VierWier ] - E[S’krkj] / E[&r]

(3.37)
3 [ . 2
H Skr(')’rkr’ ykr)ykrjl ) El.yerj ]/EB‘kr]
These two results are proved in Appendix C. Let us define
: ” .2
Yer ™ E[Skr(ykr’ Ykr)ykr] /E[ykr]
k#r (3.38)
~E[sy, I/l
Mer = skr(ykr’ Ykr)Ykr / yi{r.j
Then equation (3.37) reduces to
E[:Skr(ykr’ ykr)xj]= E[(Ykryermkrykr)xj :I
(3.39)

E[Skr(ykr’ Ykr )Xj :] - E[( MerVkr +nkrykr)xj ]
Hence, there exists a linear system with spring constants Myep and
damping coefficients Yier defined by (3.38) such that if the nonlinear
system is replaced by this linear system, the expectation values
El_‘g(’i'c,i)iT_i and EEg(%g,i)’i‘:T] will not be changed. Note that up to this
point this linear system is not necessary to be a system which mini-
mizes E[’ETE_-J
Substituting (3.39) into (3.36) gives
Elg, 5 30x, |=E[ ) eFier MrenVice™; |
B\ 2%y | YerYke " “krVke'™j
T
r#k (3.40)
" e e e . 1
E[gk(x'x)xjfE[Z‘krykr”krykr)m
r
r#k
Let the stiffness matrix and the damping matrix of the linear system

defined by (3.38) be denoted by K®) and c(®). Then (3.40) can also
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be written as ”
2 - (e) (e)
E[:gk(x, x)xj:l— E[Zl(cks Xs+kks XS) Xj]
sS=

n

(3.41)

—

E[gk(i,z)ij] ~§LZ(C1 i ke )xs)kj]

since the right-hand sides of (3.40) and (3.41) are just two different
representations of the total force acting on the kth mass. In matrix
form, Eq. (3.41) becomes
E[g(;‘?,?;)saT]: C(e)E[ic xT] + K(e)E]:X'ET]
(3.42)
[nipn -T7 3
ELg(“i,i)”iTj:C(e)E[i ]+K E|x T:l
Eq. (3.33) may now be solved for the K and C which minimize

E[éTé‘]. Substituting (3,421 into (3,93} yiclds

(- Jplzs" J+ (c-c') ) ufes | -0

(3.43)
(K-K(e)> [}_ciT]-f-( C(e)>E ‘*«.:XT] o
This set of equations may also be written as
ofes™] BpT]\  /Gx)
=0 (3.44)

ay
] st/ \ (oo
If the square matrix is non-singular, the only solution to (3.44) is

- K = (¢
o ole) (3.45)
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If the square matrix is singular, (3.45) is not the only solution. But
in this case, it may be shown that any solution to (3.44) will lead to
the same minimum for E[éTé]. Since no criterion is available to
determine which of the solutions is the best, for simplicity, we still
use the solution in (3.45).

We have thus shown that the linear system formed by replacing
each nonlinear element by a linear spring and a linear damper defined
by (3.38) will minimize E ETE:] provided that the excitation is Gaussian.
This linear system will henceforth be referred to as the equivalent
linear system of the nonlinear system (3.28) and the quantities defined
in (3.38) will be called the equivalent linear stiffness and equivalent
linear damping coefficient of the corresponding nonlinear element.

In the following we will discuss a method of solution of this

general equivalent linear system.,

3.5.1 Method of Solution

The first step in this approach is to find the instantaneous
correlation matrices for the equivalent linear system (3.29). This
can be done by solving (2.36). Hence, in order to find an approxi-
mate solution for the nonlinear system (3.28), one must solve (2.36)
and (3.38). These are nonlinear algebraic equations and it is difficult
to solve them directly. However, they can in general be solved by
the following iteration scheme. Assume a set of values for Hkrs and
Ykr.s . Then (2.36) is reduced to a system of linear algebaic equations
and can be solved easily for the instantaneous correlation functions.

Substituting the results into (3.38) yields a new set of values for



B

1 1
Mpr ® = Yem ®. This procedure can be repeated until the required
accuracy is obtained. This scheme is particularly well suited to
digital computation and has been used successfully in solving the

examples in Chapter 4.

3.5.2 Special Case

Sgppose that the force in a nonlinear element, say Sjk(yjk’ ij)’
may be represented as the sum of separate functions of displacement
and velocity, i.e.,

. =51 (2)
$adTpe i) =8 Uy +o | (550 (3.46)
Since ?jk and ij are uncorrelated, Equation (3.38) reduces by the

substitution of (3.46) to

Mg = B[s® )(ij)yij /E[ijk]

(3.47)
e (1) . 2
ij‘E[s (ij)ij] /E[ij]
If Sjk(?jk’ ij) is linear, savy,
! )ij) = C(O)S’jk
(3.48)

(2) _1.(0)
s (%k%Jc Vil

where c(o) and k(o) are constants, then it follows from (3.47) that

~1.(0)
Kjk-—k

(3.49)
= (o)
=

Hence the equivalent linear system is the original linear system itself.
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3.6 Accuracy of the Generalized Equivalent Linearization Approach

The accuracy of the generalized linearization approach, of
course, depends on the smallness of the nonlinearity. In order to
obtain some understanding of range of application, we consider some
problems‘ which can be solved by the Fokker-Planck approach as well
as by the generalized equivalent linearization approach. It will be
shown that for the special problems considered, the generalized equiva-
lent linearization approach gives quite satisfactory résults even for
rather large nonlinearities. We also give a comparison of the results
of the gené ralized equivalent linearization approach with those of
the normal mode approach.

Consider the system shown in Figure 3.1. Its equation of

motion may be written as

3‘&+c§:‘+g}_lﬂ=f_(t) (3.50a)
z .

where

Xg is the absolute displacement of the ith mass.
c is a constant.
u(xX) is the potential energy of the system.

Furthermore, let f(t) be a Gaussian white noise specified by

(3.50b)
Rf("‘) =2cy 8(T)I

where v is a constant. This problem will be solved for several forms
of u(xX) first exactly by the Fokker-Planck approach, and then approxi-

mately by the generalized equivalent linearization approach,
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(1) Exact Solution - Fokker-Planck Approach

It follows from (3.10) that

p(%) = ﬁleXP{- 2_1\7 iT:‘c‘j
(3.51)
- 1
PIE)=pyenpy- g um)} )

where [31 and [32 are two normalization factors such that

f_(: Jn—(:)p(f'c)dicl... dk_= jO:O I_O:Op(i)dxl... dx_=1 (3.52)

Straightforward calculations show that

E fi}L{T]= vI
. (3.53)
E i‘szT]zo
i =
and El:xx J depends on u(x). Let
x = A¥ (3.54)

where

100...0
110...0
A=1431 0
111 1

and let Yj be the displacement of the jth mass relative to the (j—l)th

mass or the base if j =1, Then Equation (3.51) becomes

o £ 34T Ay}
p(¥) =B exp { Zy YA AY
) n
1= Byewp e L Y tve 1}
p(¥) = ﬁzexp 1— Y “k(yk,”
k1

(3.55)
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where uk(yk) is the potential energy of the kth spring. From (3.55),

one immediately finds
T

E ??T}yA‘I(A"I) w
E[?"fT]:o

$ {3.56)

and

& (e 0] 1 a 00 1
_ 2_-<u (yy) -7 dg
E[ykvj] = b5 j e” Vi K ay, G Vi

- Q00 - 00

o

The first two results are independent of the nonlinear springs, so they
will remain unchanged for all kinds of nonlinear springs. The third
equation implies that the nonlinear springs are uncorrelated with one
another. Two kinds of nonlinear springs will be considered after the

discussion of the approximate solution.

(2) Approximate Solution - The Generalized Equivalent Linearization

Approach

The general equivalent linear system of (3.50a) is

% 4 cX +Kx = f(t) (3.57)

and its correlation function matrices are given by

E i—ﬁT] = yI )

Ei?{T} =0

{3.58)
and

E"}":":ET:]zyK_l or E[—?—.@iﬂ: vi )
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Under the same transformation defined by (3.54), Equation (3.58)

becomes ,
o - - - T
E[Tr?T]: va~lah (3.59a)
E[?'S‘rT}O (3.59b)
E[Sj(yj)yj]zy O = (3.59c¢)

where s, is the force in the spring connecting the jth mass and
(j—l)ﬂ’1 mass. KEquations (3.59a) and (3.59b) are the same as those
obtained by the Fokker-Planck approach. Equation (3.59c) is different
from the third equation in (3.56), but both equations show that the non-
linear springs are uncorrelated with one another.

According to the above results, we know that the approximate
solution is different from the exact solution only in EI_VJZ], JE L winny B
Moreover, since the equations for the determination of the Eryjz:l‘s
are uncoupled, it is sufficient to consider one equation for each type
of nonlinear spring.

In the following, two types of nonlinear springs, a hardening

spring and a softening spring, will be considered.

3.6.1 Cubic Hardening Spring

Consider a cubic hardening spring having a force-deflection
relation
s(y) =k{ytay’); k9, a0 (3.60)
Using the formulas derived in this section, we have the following

results.
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(1) Exact Solution

The first probability density for the displacement is given by

P(Y)=GXP( z(j)v +— }/I eXp{ (0)<Y2+§Y4)}dv (3.61)

and the mean square displacement 05 is defined as

- 00 .
U§=ELY2]=j yoply)dy (3.62)
-0

Expanding the exponential functions in p(y) into a Taylor's series

about y =0 and integrating the resulting series term by term yields
. e 2
=X [ _3(a ( S | ] ]
Xl 3(1\(%5)%4 ?YE)/ 297(E55) - (3.63)

If __(X_) <<1, the sum of the first two or three terms will be very close
k
to the true value of o;'.
Consider another situation. Let k(o) tend to zero, but let
(0)

o approach some finite value e¢. In other words, the nonlinearity

parameter A tends to infinity. In this case, one has

(o8]
P(Y)=€XP{-—57 4}/j exp -{Tf\‘,vé}dy (3.64)
-0

2 2 e 4 i g 4
- . -£ d - d 3.65
O'y j_ yexp{zlyy}y/J" exp{4yy Yy ( )

and

(o]
i 28
Upon using the result
p OO b
| yre V) gy a+lr(a+1>, a+l, b, r>0 (3.66)
o br
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where T' () is the Gamma function, Eqns. (3.64) and (3.65) reduce

to
1/4

ply) = (—f—;—) exp { = y’*}/%r(%) (3.67)

and
1/2 1/2

GY2=-§—%27/:—;( =) =0 6760(%)
or

oy=o.8222(—‘é)1 i (3.68)

(2) Approximate Solution

The response process is of course Gaussian and the mean

square displacement E[yz:j is governed by

e re E )

Noting that E[y‘ﬂ: 3E’:y2] for a Gaussian process, one can solve (3.69)

for El:yzjz_

szE[yz:I:--é—la(l- /1+12§(i0;) (3.70)
1

If %) <yz: the second term in the brackets can be expanded into the
k

following power series

2 3
«/1“2%) =1 +-;—(12f(3’5))m 3 (121%)) +1%(1zf(lo))
=1+6&1)—18(?{0))2+108(i( Y (3.71)
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Thus

c;:ja[l_s(%‘fo—))ﬂs(f{a ] (3.72)

Again let k(o) tend to zero and let k(o)a approach e. Then Eq. (3.69)
g

reduces to

1/4

0= (%é) = 0. 7600(3;—)1/4

(3.73)

From the above calculations, we have the following results:
When _G'(_Y.O)<<1’ we know from (3.63) and (3.72) that the approximate
solutio]il for O‘Y shows good agreement with the exact one. When the
nonlinearity of the spring is very large, from (3.68) and (3.73) we
find that the error for the approximate Gy is about (0.822 - 0,760)/0. 822

=7.5%. For an arbitrary nonlinearity, one might expect that the error

will be less than 7.5%.

]

For comparison, the exact and approximate values for B-X
O

have been plotted against liﬂlé—‘ in Bl 3.2 o, is the linear solution
for OY and is equal to y/k(o). Both the exact and approximate Gy decrease
as the nonlinearity parameter O increases. The approximate solution
is always less than or equal to the exact solution, but the error is
less than 7.5%.
Also plotted in Fig., 3.2 is the first order approximate solu-
tion found by the perturbation approach. It is clear that this approach

is valid only if both the norﬂinearity of the system and the excitation

are sufficiently small,
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3.6.2 Softening Spring

In deterministic theory, a softening spring can also be
represented by (3.60) with a<0. But in probabilistic theory this
representation often leads to unbounded solutions. In order to avoid

this difficulty, here, the following representation will be used.

(o)_.
s(y)=%futan—l(%-—y (3.74)

in which fu is the ultimate force of the spring and k(o) is the initial
slope of the load-displacement curve. Fig. 3.3 shows some general

features of this type of springs.

(1) Exact Solution

The potential energy of a spring specified by (3.74) is given

by
: ) =
aly) = £ 4, {ytan” (ﬂgi: £k ::(o)"'n[l +(3 '}Ef(":“)z) T o6

The first probability density and the mean square displacement are

given by
ply) = eXP{— -1—( u(y)}/j;Zexp{m %u(y)j dy (3.76)
- (o 0]
05=E[V2J=Ioovzp(v)dv (3.77)

Now consider a special case. Let k(o)/fu—'oo. Then

Eq. (3.74) becomes
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f, if y>0
s(y) =( 0 ify=0 (3.78a)
-f, if y<0

and the potential energy u(y) reduces to

2
: (o) f (o) =
1 2 )
w= (o). ;ffu@tan '(3 s s )'“k‘?o)m[”(ﬂé—Tf)J} by 780

where [y | denotes the absolute value of y. The first probability

density now becomes

p(y) =eXP{-f$- |y l}/fO'DeXp{-fTulvl fay
-0

= -12- exp{— %—1— fy |}/‘f ooexp{‘f—:“Y}dY
o

£ £ o o
Z—VeXP{-—Y—lvlj (3. 78)

and the mean square displacement is given by

o jmfu . 2 |
= i - — d
op=) ZyY exp{ =y } y

22

= (3.80)
f2
u

(2) Approximate Solution

First, we shall evaluate E s(y)y]:



.

2
2f - ) (o)
E[S(Y)thioy IOO =g i%—?tan 1(&252')@
=( ofaf n‘lrdr (3.81)

where we have set c.=/2'fu/nk(°)0y and used the change of variable

r:nk(o)y /qu. Integration by parts and using the result29
2 2
-q T - c('2
J- ——'——"z—d ='i erfc(a) (3.82)
o l+r

where erfc ( ) is the complementary error function, yields

2.2
. -ar - © -0'r
J‘OO —G.Zrztan 1rdr=-—-§—-—-—tan 1r 'OD+ 1 j e A
re 20.2 2
- 00 - 00 20. -0 l+4r
T az 3
e erfe(a) (3.83)
20
Substituting (3.83) into (3.81) gives
2 C(.Z
E s(y)y]: /-T-T— G_y_fue erfc(a) (3.84)
Then it follows from (3.59c) that
G‘Z i1
Oye - erfc () = > fu (3.85)

As k(o)/fu—-oo, this becomes

[Ty
Uv_“/Z - (3.386)
u
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From (3.80) and (3.86) we know that the error of the approximate
GY for k(o)/fu-mis about (1-/7 /2) = 11.4%.

For comparison, Equations (3.77) and (3.85) have been solved
numerically and the results are plotted in Figure 3.4. The approxi-
m'ate solution is always bigger than the exact solution, but the error
is less than 11.4%.

We have considered two types of nonlinear springs for the
problem defined by (3.50) using the exact approach and the generalized
equivalent linearization approach. Both applroaches can diagonalize
the matrix EBF?T] and therefore we consider only one element of
this matrix. If the same system is solved by the normal mode
approach; the matrix EB?:}T] is not diagonal, so we must consider
a particular system. The system as shown in Figure 3.1 whenn=3
will be used. The parameters of this three-degree-of-freedom system
are as follows:

m; =m; =mj =1

{o) 3 i
Ay.)=k. . Fay. , 3=1,2,3
SJ(YJ) J(YJ YJ) j

(3.87)
oy, el Wil
c=0.1
RHT)=0.2y8(T)T , ™;=0O
where o and Y are constants. Again, this approach yields
B[%x" |-y
(3.88)

el

Elxx J,:: O
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Hence for these two matrices both approximate approaches give the
exact solution. This is because the exact velocity process is Gaussian
and both approximate approaches recognize that the velocity process is
uncorrelated with the displacement process.

The mean square values for the displacements Oy, from the exact

approach and two approximate approaches are plotted a.jgainst the spec-
tral density of the white noise excitation in Figs, 3.5t03.8 for different
a's. From these figures one sees that both approximate approaches
give reasonable results. As far as the percentage of error is con-

cerned, the three percentages of error for o and g, given by

1" ¥ b
the generalized equivalent linearization approach are more uniform
than those for o'yl, O'yz, and cry given by the normal mode approajch_
In the above example, the damping matrix of the system is |
proportional to the spectral density of the excitation, This problem
can be solved exactly as well as approximately. Here we are going to
consider another example in which the damping matrix is proportional
to the stiffness matrix formed by the linear part of the nonlinear
springs, This problem cannot be solved exactly, but can be solved by
both approximate approaches. The results are shown in Fig, 9. Also
plotted in Fig, 9 are the results from the one mode approximation
discussed at the end of section 3,3, The system considered here is
the same one used in Fig, 3.6 except that the damping matrix is now
proportional té the stiffness Iﬁatrix formed by the linear part of the
nonlinear springs. The proportionality constant is chosen in such a

way that both systems used in Figs, 3.6 and 3,9 have the same amount

of damping in the first mode. Since in this case the modal damping in-
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creases with increasing modal frequency, contributions from higher
modes are nearly damped out. That is the reason why the results
in Fig. 3.9 are much lower than those in Fig. 3.6. By the same

reasoning the results given by the one mode approximation are not

too bad.
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Iv. EXAMPLES

In this chapter we shall consider two examples which can be
treated by the generalized equivalent linearization approach described
in the previous chapter.

It is well known that damping plays an important role in
structural dynamics. In order to simplify analysis, it is usually
assumed that the damping force is directly proportional to velocity.
However, in some systems, this force does not obey such a simple
linear law. For example, the damping force in the landing system of
certain aircraft is found to be proportional to the square of velocity30
The vibrationrof submerged structures furnishes another example in
which the external damping force, the resistance to the surrounding
water, can often be considered to be proportional to the square of
velocity. Hence in the first example, we consider a multidegree- of-
freedom system connected by linear springs, but having dampers
whose resisting force is proportional to the square of velocity.

The system is excited by a base acceleration which is a white noise.
This problem cannot be solved exactly by the Fokker-Planck approach
because the conditions listed in Section 3.2 are not satisfied. The
perturbation approach fails because the damping matrix C(o) vanishes.
An equivalent linear system which iaos sesses normal modes may be
constructed, but the modal exictation process is correlated. There-
fore, the normal mode approach is also not applicable.

Many structures can be considered as linear in analysis

without significant error if the excitation is sufficiently small.
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However, for severe excitation, the linear treatment are often not
accurate enough. Hence, the systems must be considered as non-
linear. For example, buildings subjected to severe excitations often
behave like lightly damped softening systems, that is, the stiffness
of the system decreases as the displacement increases. In addition,
the effective damping in the first few modes is often only a few per-
cent of the critical damping. As a second example we consider a
multidegree-of-freedom system of this type. The springs in this
system are nonlinear and follow the arctangent law discussed in
Chapter IIl. The dampers are linear and arranged in such a manner
that the equivalent linear system has normal modes and the equiva-
lent damping in each mode is known. This system is excited by a
base acceleration which is a Gaussian white noise. This problem
cannot be solved exactly by the Fokker-Planck approach since the
conditions listed in Section 3.2 are not satisfied. The perturbation
approach is not applicable because the damping matrix C(o) is not
known. Althoug}i the equivalent linear system is assumed to possess
normal modes, the normal mode approach also fails since the modal

displacement process is correlated.

4.1 Example 1

Consider the system shown in Figure 4.1. n equal masses
are connected by n identical springs and n identical dampers. The
springs are assumed to be linear. The dampers are nonlinear and
their damping force is proportional to the square of the relative

velocity. The base acceleration ao(t) is a Gaussian white noise
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which is specified by its spectral density w. Let yj denote the
displacement of the jth mass relative to the (j-l)t]:1 mass or the

base if j=1. Then the equations of motion of the system will be

..

M¥ + Ky +E () = T(t) (4.

where

fj(t):—mao(‘c) g JEL, 0w my @ (4.

The gj(?f) are given by

N - T o
gJ-(Y) =YL Sgn(yj) “¥ip sgn(vj+l)]

; (4.
J=dy 54558 yn+l=0
where v is the damping coefficient of the dampers and
-1 if y.<0
sgn(y.) = J (4.
J 1 if >0
The equivalent linear system of (4.2) can be written as
MY + C¥ + Ky = £(t) (4.

Let Cj be the equivalent linear damping coefficient of the damper
between the jth mass and the (j-l)th mass. Then from (3.38), we

obtain

;= yE[gffsgn(yj) ]/E[yﬂ | (4.

Since ao(t) is Gaussian, irj will also be Gaussian. Hence

-2
'y’.

E[ir-3égn<§r-)]s L[ P eanty et —dpbay,  qa
j j ;Z“EU’J'Z] "o j ZE[%ZJ ¥ ¢

1)

Z):

3)

4)

5)

6)

7)
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7 V. exp —““-"‘L'g“ dV
Anh[y o ZF[y | f

:f? (1:[532] )3/2 (4.7)

cont'd

Therefore,

= 1/2
_ 2 [.2 |/ %
-(8\(E Yj_] T ) (4.8)
The instantaneous correlation matrices of the equivalent
linear system are given by (2.58). In order to reduce the number

of unknowns in computation, the matrix EE}'{"S‘ET], which is known to be

antisymmetric, will be eliminated from (2.58) to give
ME §E§TJCT+ c;«JLsz:zT] M - CE[‘X‘ETJ K - KE E’i‘fr[‘j[ & =0

oeT g 5k
ME[AX ]c +CErXX ]M +MC” MELXX ]K +KE (Mc M )

-KE[EQT](MC'IK> -McT kR %% KT 220w (4. 9)

where W is the spectral density matrix of £(t). If the base excitation
is a clipped Gaussian white noise, Equation (4.8) is still valid, but
Equation (2.58) has to be replaced by (2.45).

By using the iteration scheme discussed in Chapter III,
Equé,tiOns (4.9) and (4. 8) can be solved numerically. The results
of a three-degree-of-freedom system are plotted in Figures 4.2 to
4.10,

Figures 4.2 and 4.3 show the general bechavior of the non-
linear system. As in a linear system, the mean square displacements

inc