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Abstract

Digital signal processing (DSP) techniques have played an important role in channel equalization

and estimation in communication systems. While channel equalization and estimation are usually

done by pilot-assisted methods in most systems, algorithms for blind channel estimation have also

been largely studied due to high bandwidth efficiency. However, up to date, most blind methods

possess disadvantages such as slow convergence speed, high complexity, poor performance, etc.,

compared to pilot-assisted methods. These drawbacks have made many consider blind methods

as inapplicable in modern communication systems which feature fast-varying channels.

In this thesis, we consider the blind channel estimation problem in block transmission systems

with linear redundant precoding (LRP) which have been widely adopted in modern communica-

tion systems in recent years. The main contribution of this thesis is to considerably reduce the

amount of received data required for blind estimation and suggest blind methods which are appli-

cable even in fast-varying environments (e.g., in wireless channels). New algorithms are proposed,

performance analysis derived, and theoretical issues studied.

The first part of the thesis focuses on new algorithms for blind channel estimation and blind

block synchronization in LRP systems. Two major types of linear redundant precoding, namely

zero-padding (ZP) and cyclic prefixing (CP), are considered in this thesis. We first propose a gen-

eralized, subspace-based algorithm for blind channel estimation in ZP systems of which two pre-

viously reported algorithms are special cases. The generalization uses an integer parameter called

repetition index which represents the number of repeated uses of each received block. The number

of received blocks required for subspace-based blind estimation is roughly inversely proportional

to the repetition index. By choosing a larger repetition index, the amount of received data can be

significantly reduced.

The concept of repetition index is also applied in blind channel estimation in CP systems, which

are more widely used than ZP systems in many current communication standards such as orthog-



vi

onal frequency division multiplexing (OFDM) systems. The use of repetition index in CP systems

is much less obvious and conceptually more complicated than in ZP systems. By choosing a repe-

tition index larger than unity, the number of received blocks needed for blind estimation is signifi-

cantly reduced compared to all previously reported methods. Theoretically, the proposed method

can perform blind estimation using only three received blocks in absence of noise. In practice, the

number of received blocks needed to yield a satisfactory bit error rate performance is usually on

the order of half the block size. The proposed algorithm can be directly applied in OFDM systems

without any modification of transmitter structure. A semiblind algorithm for channel estimation

in OFDM systems is also proposed based on the extension of the blind algorithm.

Another important problem, namely the blind block synchronization, is also studied. Most

existing blind estimation methods in LRP systems assume the block boundaries of the received

streams are perfectly known to the receiver, but this assumption is usually not true in practice since

no extra known samples are transmitted. Two algorithms for blind block synchronization are pro-

posed for ZP and CP systems, respectively. In particular, the block synchronization problem in CP

systems is a broader version of the timing synchronization problem in the OFDM systems. The

proposed algorithms exploit the concept of repetition index and both theoretical and simulation re-

sults suggest their advantages over all previously reported algorithms, especially when the amount

of received data is limited.

The second part of the thesis deals with theoretical issues related to blind channel estimation.

Performance analysis of the generalized blind channel estimation algorithm in ZP systems is first

given and shows that the system performance in terms of channel estimation mean square error

(MSE) is very close to the Cramer-Rao bound (CRB), even when only two received blocks are avail-

able. Another important theoretical problem, namely the signal richness preservation problem, is

also studied. Signal richness is an essential property for input signals in subspace-based blind chan-

nel estimation algorithms studied in this thesis. This property, however, may be altered by a linear

precoder. Necessary and sufficient conditions for a linear precoder to preserve signal richness are

explored. Several relevant interesting mathematical problems are also studied.
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Chapter 1

Introduction

In digital communication systems, channel equalization and channel estimation are essential to

successful data transmission. While channel equalization and estimation are usually done by pilot-

assisted-based methods (i.e., inserting pilot samples that are known to the receiver into the trans-

mitted data sequence), blind methods have also been developed (see [8] and references therein)

which do not require use of pilot samples and possess desirable advantages such as a better band-

width efficiency. Although many blind methods in various types of communication systems have

been developed since the early 80s, they generally suffer from several drawbacks which prevent

them from widespread use.

As block transmission systems using redundant precoding, such as orthogonal frequency di-

vision multiplexing (OFDM) systems, become increasingly popular, research on blind channel es-

timation has also been shifted to these types of systems. Recent work on block transmission sys-

tems with redundant precoding [45] has shown that the redundancy, originally introduced for the

purpose of eliminating interblock interference (IBI), is also beneficial to blind channel estimation.

Many blind methods have been developed for block transmission with different types of redundant

precoding and prove to be free from several problems present in conventional blind channel esti-

mation [30]. These new algorithms, however, still have several problems such as slow convergence

speed (i.e., requirement of a large amount of received data), which makes them less applicable in

an environment where the channel status is fast-varying (e.g., in a wireless link). Other problems

include computational complexity, constraints on data constellations, etc.

This thesis presents a contribution to further reduction of convergence time for blind channel

estimation using redundant precoding. Some other important problems that arise from blind chan-

nel estimation problem, such as the blind block synchronization problem, the semi-blind channel
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estimation, and the signal richness preservation problem, will also be considered in this thesis. In

this introductory chapter, we give an overview of the basic concepts and a brief history of blind

channel estimation. Every attempt is made to make the present text as self-contained as possible,

and the introduction is meant to primarily serve this purpose. Due to the large volume of the blind

channel estimation literature, the summary here is only directly related to the thesis topics and is

by no means a complete treatment of all past work. The readers interested in more comprehensive

treatments are referred to [8, 11].

1.1 Brief History of Blind Channel Estimation

Figure 1.1 depicts the baseband representation of a digital communication system. The communi-

cation channel is characterized as a linear time invariant (LTI) system which has a finite impulse

response (FIR) due to finite delay spread of the channel. The impulse response hc(t) is a cascade of

the pulse shaping filter in the transmitter, the physical multipath fading channel, and the receive

filter. Assume the symbol interval of the input signal is T . The output signal can be written as

x(t) =
∑

n

s(n)hc(t − nT ) + w(t).

When the output signal is sampled at the baud rate (i.e., at the rate 1/T ), the system can be

simplified as in Figure 1.1-(b), where the equivalent channel, H(z), is a discrete LTI system. The

received signal x(n) is a noise corrupted version of the convolution of the input signal s(n) and

the channel impulse response hc(t). A successful communication aims at recovering the transmit-

ted symbols s(n) at the receiver. A large number of methods have been developed to equalize, or

deconvolve, the effect of H(z) assuming the channel transfer function H(z) is known. Therefore,

channel estimation, i.e., obtaining an estimate of H(z), is a critical problem. A straightforward

way of channel estimation is to insert in the transmitted signal pilot samples that are known to the

receiver, and to compare the pilot samples with corresponding received samples. Blind channel

estimation, however, seeks to estimate the channel H(z) without explicit knowledge of s(n). Math-

ematically, it is similar to blind deconvolution problem in control or image processing literature.



3 w ( t )s ( n ) C h a n n e lh c ( t ) t = n T( a )c ( ) x ( n )x ( t )w ( n )s ( n ) C h a n n e lH ( z ) x ( n )( b )
Figure 1.1: Baseband representation of a digital communication channel. (a) Analog model with
a bandlimited channel impulse response hc(t); (b) Equivalent digital model with channel transfer
function H(z).

1.1.1 Early Developments of Blind Estimation in SISO Systems

Since the late 70s, many blind equalization algorithms have been proposed [40, 12, 3, 47]. Most of

these early developments of blind methods are based on adaptive algorithms. They generally share

the following features. First of all, although the explicit knowledge of s(n) is unknown, the constel-

lation used by s(n) must be known and is usually quadrature amplitude modulation (QAM), pulse

amplitude modulation (PAM), or phase shift keying (PSK). A special class of these algorithms is

the constant modulus algorithm (CMA) [12], which works by setting constant modulus constraints

on samples equalized by adaptive filters. Also, higher-than-second-order-statistics (HOS) of the

received stream is required in these algorithms. The requirement for HOS may be explained as

follows. Evaluating the spectral density function of the output signal, we have

Sxx(z) = |H(z)|2Sss(z) + Sww(z),

where Sxx(z) ,
∑

m E [x(n)x∗(n − m)] z−m, Sss(z) ,
∑

m E [s(n)s∗(n − m)] z−m, and Sww(z) ,

∑
m E [x(n)x∗(n − m)] z−m. Assume the input spectral density function Sss(z) is known (usually

assumed white). Then the amplitude of the channel can be identified but the phase information of
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H(z) is missing. In order to obtain the full information of the channel, higher-than-second-order

statistics (HOS) of x(n) is employed in many blind algorithms (e.g., 4th order) [47].

These early algorithms in general share the following common drawbacks. First of all, the con-

vergence of the adaptive algorithms depends on the initial values of the equalizer parameters, and

the solution is subject to local convergence. Secondly, due to the use of HOS, the required amount

of received data is usually very large, and this makes the algorithms have slow convergence time

and inapplicable in time-varying environments. Finally, the computational complexity is high for

HOS of received data. These drawbacks limit their applicability in practical situations.

1.1.2 Using Second Order Statistics in SIMO Systems

It is shown above that second order statistics (SOS) of received samples alone cannot give the full

information of a frequency selective channel. However, since algorithms based on second order

statistics converge much faster than those using higher-order statistics, researchers have searched

for newer methods. The work proposed by Tong et al. in 1991 which first used only SOS of the re-

ceived samples for blind channel estimation in the context of single-input-multiple-output (SIMO)

systems is widely considered as a major breakthrough. As shown in Figure 1.2, a set of virtual mul-

tiple channels can be achieved by oversampling at the receiver in a physically SISO system. The

work in [64] suggests SOS alone is sufficient to estimate channel coefficients blindly as long as the

oversampled channel satisfies a channel diversity condition. Following this, considerable research

has been done to study blind channel estimation in SIMO systems using SOS [26, 27, 30, 46, 74].

Among these, a representative is a subspace based algorithm proposed by Moulines et al. in [30],

which explicitly exploits the signal and noise subspace separation and also the special structure of

the channel matrix. First used in the famous multiple signal classification (MUSIC) algorithm [42],

the basic idea of subspace-based methods are illustrated in Figure 1.3 and are elaborated below.

The first principle of subspace-based algorithms is that the dimension of the observation space,

q, must be strictly larger than that of the signal space, p. The matrix Hθ has a known structure in

terms of an unknown parameter vector θ. By evaluating the autocorrelation matrix of y(n) and

an eigen-decomposition of Ryy, the basis vectors of signal space and noise space can be found.

Finally, using the fact that the noise space is orthogonal to the space spanned by all columns of the

matrix Hθ , the parameter vector θ can be found. In the case of blind estimation in SIMO channels,

the parameter vector θ contains coefficients of the impulse response of all virtual channels, and
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Figure 1.2: Single-input-multiple-output channel model. (a) Oversampling of a SISO channel; (b)
A SIMO channel; (c) Equivalent system with an upsampled source signal.
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Figure 1.3: Schematic of subspace based system identification.

the matrix Hθ has a special block Toeplitz structure [30]. Subspace-based algorithms have since

played an important role and are still widely used in the development of blind channel estimation

algorithms nowadays.

There are two problems with blind methods in SIMO systems which prevent them from practi-

cal applications. First of all, most of these methods are very sensitive to channel order overestima-

tion: they require the maximum channel order among the multiple channels to be exactly known.

This information, however, is usually unavailable in most situations. The second problem is the

bandwidth expansion caused by oversampling at the receiver. As illustrated in Figure 1.2-(c), the

SIMO channel is equivalent to a SISO channel where the source signal is upsampled by a factor of

N [9].

1.2 Blind Channel Estimation Using Redundant Precoding

In the previous section we learned that blind channel estimation using SOS alone is possible only

when some redundancy is introduced in the transmitter. The virtual SIMO systems implemented

by oversampling the received signal are one way to introduce redundancy. There are, however,

different ways to introduce redundancy. In recent years, block transmission systems using linear

redundant precoders (LRP) have become popular due to their capability to facilitate block channel

equalization of frequency-selective channels. The redundant structure is also found to be beneficial

to blind channel estimation [10]. Blind estimation with LRP has a small bandwidth expansion factor
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Figure 1.4: Illustration of a zero-padding precoder and a cyclic-prefixing precoder.

(asymptotically unity) and is robust to channel order overestimation. So blind methods developed

in LRP systems are in general superior to those in SIMO systems. In this section, we will first

review block transmission systems with linear redundant precoders and then review blind channel

estimation algorithms with redundant precoding.

1.2.1 Block Transmission Systems With Linear Redundant Precoders

To illustrate the idea of linear redundant precoding, we first explain a special case called “zero-

padding.” As shown in Figure 1.4, the source sequence s(n) is divided into blocks of size M . A

zero block of length L is inserted after each block. Suppose P = M + L. Then mathematically,

u(nP + k) =





s(nM + k) if 0 ≤ k ≤ M − 1

0 if M ≤ k ≤ P − 1
.

The zero-padding precoder introduces bandwidth expansion by a factor (M + L)/M . While the

redundancy length L is usually chosen as an integer comparable to the channel order, the block

size M can be chosen as any positive integer. When M is chosen as a large integer, the bandwidth

expansion factor is asymptotically unity. The general form of a block transmission system with

linear redundant precoder is shown in Figure 1.5. The source sequence s(n) is blocked into vectors

s(n) of size M :

s(n) =
[

s(nM) s(nM + 1) · · · s(nM + M − 1)
]T

.

The vectors s(n) go through a linear precoder characterized as a P × M polynomial matrix in

z−1, R(z) =
∑K

k=0 Rkz−k, resulting in a P -vector u(n) =
∑K

k=0 Rks(n − k). The vectors u(n) are
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Figure 1.5: A block transmission system with a linear redundant precoder R(z).

interleaved into the precoded sequence u(n) which is sent over the channel H(z).

The zero-padding precoder illustrated in Figure 1.4 is a special case where R(z) is chosen as

R(z) =



 IM

0



 ,

where IM is the M × M identity matrix. A more general zero-padding precoder has transfer func-

tion of the form

R(z) =



 R1(z)

0



 ,

where R1(z) is an M × M polynomial matrix in z−1.

Another important class of linear redundant precoders is cyclic prefix (CP) precoders. A CP

precoder has a transfer function

R(z) =


 Rcp(z)

R2(z)


 ,

where R2(z) is an M ×M polynomial matrix in z−1 and Rcp(z) is an L×M matrix whose elements

are copied from the last L rows of R2(z). This arrangement inserts a cyclic prefix of length L in

front of a data block of size M . The popular orthogonal frequency division multiplexing (OFDM)

systems are a special case of CP systems where R2(z) is chosen as the inverse DFT matrix.
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The linear redundant precoders were proposed in an attempt to eliminate interblock interfer-

ence (IBI) of the received blocks caused by the frequency selective channel H(z) [73]. If the channel

order of H(z) is upper-bounded by L, the received blocks will be free of interblock interference and

channel equalization can be performed block-by-block without worries of interblock error propa-

gation. Noise amplification can be avoided in the channel equalization phase even if the channel

has zeros outside the unit circle. It turns out the redundancy introduced by LRPs are also helpful

in blind channel estimation, as discussed below.

1.2.2 Blind Channel Estimation in LRP Systems: Subspace v.s. Finite Alphabet

Algorithms

The blind channel estimation algorithms in LRP systems can be roughly divided into two cate-

gories: finite-alphabet-based algorithms and non-finite-alphabet algorithms. Algorithms that ex-

ploit knowledge of the finite-alphabet of the source data generally have a shorter converge time

but may be computationally exhausting when the constellation size is large [76, 6]. Most non-

finite-alphabet-based algorithms exploit (second order) statistics of the received data [15, 35]. These

methods naturally require a longer convergence time than finite alphabet counterparts before an

accurate channel estimate can be obtained due to use of statistics. Another important category of

non-finite-alphabet-based algorithms uses subspace decomposition [5, 21, 45], and they can even

be implemented deterministically [45, 36, 5, 21, 32].

Subspace-based algorithms can be used in any kind of constellation, but require a longer con-

vergence time. We will discuss subspace based channel estimation algorithms for ZP systems and

CP systems here. In ZP systems, the first subspace-based blind channel estimation algorithm was

proposed by Scaglione et al. [45]. Subspace algorithms in CP systems require more sophisticated

designs [5, 21, 32]. These methods all need the persistency of excitation property of the input sig-

nal (i.e., signal richness) to render the data covariance matrix to have full rank. This requirement

demands the receiver to collect at least a number of blocks equal to the block size for one channel

estimate and thus makes the approach less applicable when the channel is fast-varying.

In summary, the basic trade-off between finite-alphabet methods and subspace-based methods

is that finite-alphabet methods have a faster convergence speed, while subspace-based methods

can be operated in any constellations without any increase of computational complexity. It seemed

difficult to have both desirable properties at the same time. However, it was more recently pointed
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out by Manton et al. [28] that a blind estimation without knowledge of finite alphabet in ZP sys-

tems is possible with only two received blocks. An algorithm based on viewing the channel estima-

tion problem as finding the greatest common divisors (GCD) of polynomials representing received

blocks was proposed in [36].

Although many blind algorithms in LRP systems have been developed, they mostly tend to

suffer from several common drawbacks such as slow convergence speed, high complexity, poorer

performance, etc., as opposed to pilot-assisted methods. In this thesis, we propose new algorithms

and theories that suggest blind algorithms can in general be developed with small amount of re-

ceived data, satisfactory system performance, and reasonable complexity.

1.3 Outline of the thesis

1.3.1 Scope of the thesis

There are two major parts in this thesis. In the first part (Chapters 2, 3, and 4), new algorithms for

blind channel estimation using redundant precoding as well as other related problems, including

blind block synchronization and semi-blind channel estimation, are proposed. The second part of

the thesis (Chapters 5, 6, and 7) deals with theoretical aspects of the blind channel estimation prob-

lems, including performance analysis of the blind algorithms, and the signal richness preservation

problem. In this section we will briefly introduce the scope of each chapter.

1.3.2 Generalized Algorithms for Blind Channel Estimation in ZP Systems (Chap-

ter 2)

The material in Chapters 2 and 3 presents new algorithms for blind channel estimation in LRP

systems. Chapter 2 studies the blind channel estimation algorithm in ZP systems, i.e., the precoder

R(z) has a form of R(z) =
[

R1(z)T 0T
]T

. The proposed algorithm is a generalization of two al-

gorithms previously reported in [45, 36]. In [45], the first deterministic blind method in ZP systems

was proposed by Scaglione et al. which we will call the SGB method. The SGB method assumes

the input sequence is rich. That is, the matrix composed of finite source blocks achieves full rank.

This implies the requirement that the receiver has to accumulate at least M blocks before channel

coefficients can be identified. The method reported in [36] by Manton et al., which we will call

the MNP method, is based on viewing the channel identification problem as finding the greatest



11

common divisor (GCD) of polynomials representing received blocks. The MNP algorithm requires

only two blocks to work but has much more computational complexity.

Although the MNP method is based on the idea of the greatest common divisor of polynomials,

the mathematical formulation of its implementation still involves subspace decomposition (in a

space of a larger dimension). This fact puts the MNP method and the SGB method into the same

category, and we can generalize them using a concept called repetition index. In Chapter 2, we

will propose a generalized algorithm of which the SGB algorithm proposed in [45] and the MNP

algorithm in [36] are both special cases. The idea of repetition index is to repeatedly use each

received block. In the conventional subspace method, the receiver needs to accumulate M blocks in

order to achieve sufficient rank. By repeated use of each received block by a factor of Q, the number

of blocks needed to achieve the required rank can be significantly reduced and is roughly inversely

proportional to the repetition index Q. The MNP method essentially uses a large repetition index

(Q = P ) and requires only two received blocks. The use of a large Q also increases the receiver

side computational complexity. By carefully choosing parameters, the system performance and

computational complexity can be jointly optimized.

1.3.3 Blind and Semi-Blind Channel Estimation in Cyclic Prefix Systems (Chap-

ter 3)

In Chapter 3 we study the blind channel estimation problem in cyclic prefix systems. As more

and more new communication standards adopt cyclic-prefix based systems such as orthogonal

frequency division multiplexing (OFDM) and signal carrier cyclic prefix (SC-CP) systems, the im-

portance of studying CP systems is increasing. Unlike in ZP systems, some parts of a received

block in a CP system contain interblock interference (IBI). This fact makes the formulation of a

blind algorithm more difficult than in ZP systems. In [5], [31], and [32], Muquet et al. and Cai et

al. independently developed a subspace-based algorithm which requires at least 2M + 1 received

blocks. This requirement of minimum number of received blocks again limits the application of

these algorithms in a fast-varying channel environment. The idea of repetition index which first

arises in ZP systems can also be applied in CP systems. In Chapter 3, a generalization to algo-

rithms reported in [31, 5, 32] is proposed using the idea of repetition index, whose value is unity

for these previously reported methods. When the repetition index is chosen to be greater than

unity, the number of received blocks needed will be significantly reduced. Theoretical limit allows
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the proposed method to perform blind identification using only three received blocks in absence

of noise. We also study a semi-blind channel estimation algorithm in OFDM systems which is a

special case of CP systems. The proposed semi-blind estimation algorithm is a combination of the

blind channel estimation method and a pure pilot-assisted method. Simulation results show that,

under the same number of pilot samples, the semi-blind algorithm has a clear improvement over

the pure pilot-assisted method.

1.3.4 New Algorithms for Blind Block Synchronization In LRP Systems (Chap-

ter 4)

Many algorithms for blind channel estimation in LRP systems, including those proposed in Chap-

ters 2 and 3, are based on the assumption that block synchronization is perfect, i.e., block bound-

aries of the received streams are perfectly known to the receiver. In practical applications, however,

this assumption is usually not true since no extra known samples are transmitted. The problem of

blind block synchronization is therefore important. However, up to date, this problem has not yet

been given as much attention as blind channel estimation has. Chapter 4 studies the blind block

synchronization problem in both ZP and CP systems. These algorithms exploit the presence of rank

deficiency in the matrix composed of received blocks when the block synchronization is perfect.

The formulated matrices, when block synchronization is not correct, have a higher rank instead. In

order to make the matrices have sufficiently large rank, a large amount of received data is required

for both algorithms. The algorithms proposed in Chapter 4 use the concept of repetition index

and guarantee correct block synchronization in absence of noise using only two and three received

blocks in ZP and CP systems, respectively, when the repetition index is chosen appropriately.

1.3.5 Performance Analysis of Blind Estimation Algorithms in ZP Systems (Chap-

ter 5)

The second part of the thesis will deal with theoretical issues. The material addressed in Chapters

5, 6, and 7 will be related to blind channel estimation in ZP systems. In Chapter 5 we analyze the

performance of the blind channel estimation algorithm proposed in Chapter 2. As we have seen

in the simulation results reported in Chapter 2, with repetition index and the number of received

blocks adjusted appropriately, the performance of the generalized algorithm is superior to those

of the SGB and MNP algorithms. The goal here is to quantify this performance improvement the-
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oretically. We study the channel estimation error (MSE) in the algorithm of [49] and compare it

with the corresponding Cramer-Rao bound. We will derive in this chapter performance analysis

of the generalized algorithm proposed in Chapter 2. When the number of received blocks is small,

however, there is an obvious gap between the performance of the SGB algorithm and the corrected

CRB given in [58] when a small number of received blocks are available. Both theory and simula-

tion results suggest that the performance of the generalized algorithm is usually closer to the CRB

when the repetition index is larger but the performance does not achieve the CRB for any repetition

index.

1.3.6 Theoretical Issues on Signal Richness Preservation for Blind Estimation

(Chapters 6 and 7)

In Chapters 6 and 7, we study in detail theoretical issues on signal richness in ZP systems, specifi-

cally the richness preservation problem. The richness property of input signals is essential to blind

channel estimation algorithms we discussed in Chapter 2. Since the property of signal richness

may be altered by a linear precoder, we are interested in finding the conditions on which a this lin-

ear precoder will “preserve” the property of signal richness. For different blind channel estimation

algorithms, the definition of signal richness may be different. Conventionally, signal richness can

be defined as follows. A signal of M -vectors x(n), n ≥ 0, is said to be rich or rank rich if the matrix

[
x(0) x(1) · · · x(Kx)

]

has rank M for sufficiently large Kx. This definition of signal richness is required for input signals

used in the SGB method [45] (see Sec. 1.3.2). We say a ZP precoder R(z) is richness-preserving

if for any rich input signal x(n), the output of R(z) is also rich. The mathematical problem on

richness-preserving precoders, rather than the application itself, is the focus of Chapter 6. It turns

out that there exist only two major types of systems which preserve richness.

In Chapter 7, we extend the signal richness preservation problem to different definitions of

signal richness. In the generalized blind algorithm for ZP systems proposed in Chapter 2, the

requirement of signal richness is relaxed, and the concept of “generalized signal richness” is estab-

lished. The conditions on the precoders which preserve the generalized signal richness are different

from those which preserve conventional signal richness. The necessary and sufficient conditions

on memoryless precoders which preserve generalized signal richness are studied in Chapter 7. In
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finding the solution of the problem, a new class of invertible matrices, namely the Vandermonde-

form preserving (VFP) matrices, is introduced. Several interesting properties of the VFP matrices are

also studied.

1.4 Notations

The notations used throughout this thesis are defined as follows. Boldfaced lower case letters rep-

resent column vectors. Boldfaced upper case letters and calligraphic upper case letters are reserved

for matrices. Superscripts ∗, T , and † as in a∗, AT , and A† denote the conjugate, transpose, and

transpose-conjugate operations, respectively. A# represents the pseudo-inverse of A. H̃(z) repre-

sents H†(1/z∗). [v]i denotes the ith element of vector v, [A]i denotes the ith row of matrix A, and

[A]ij denotes the entry at the ith row and the jth column of matrix A. Column and row indices

of all vectors and matrices begin at one. ei,M denotes the ith column of the identity matrix IM

and is often abbreviated as ei when there is no ambiguity about the value of M . All the vectors

and matrices in this paper are complex-valued. The notation WM denotes e−j2π/M , and WM is the

M ×M normalized DFT matrix whose kl-th entry is W
(k−1)(l−1)
M /

√
M . Column and row indices of

all matrices and vectors begin at one. Ak,l is the entry at the kth row and the lth column of A. In is

the n×n identity matrix, and 0m×n is the m×n zero matrix. In figures, “↑ N” and “↓ N” denote the

signal downsampler and upsampler, respectively [67]. The notation vec(A) represents the column

vector constructed by concatenating columns of A. A ⊗ B denotes the Kronecker product[17] of

the matrices A and B.

A matrix T is said to be a Toeplitz matrix if T has constant values along diagonals, i.e., [T]ij =

[T]i+k,j+k for all i, j, k such that the indices of T in the above equation are within the size of T.

A matrix H is said to be a Hankel matrix if H has constant values along all skew diagonals, i.e.,

[H]ij = [H]i+k,j−k for all i, j, k such that the indices of H in the above equation are within the

size of H. Notations for commonly used matrix structures in this paper are presented below. If

v =
[

v1 v2 · · · vm

]T

is an m × 1 vector, we use Tn(v) to denote the (m + n − 1) × n full-
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banded Toeplitz matrix

Tn(v) =




v1 0 · · · 0

v2 v1
. . .

...
... v2

. . . 0

vm

...
. . . v1

0 vm v2

...
. . .

. . .
...

0 · · · 0 vm




(1.1)

and Kl(v) to denote the l × (m − l + 1) Hankel matrix

Kl(v) =




v1 v2 v3 · · · vm−l+1

v2 v3 . .
.

. .
. ...

... . .
.

. .
.

. .
.

vm−1

vl · · · · · · vm−1 vm




. (1.2)

Due to the special property of cyclic prefixes, we will use the following notation extensively in

this paper. Suppose y is an m×1 column vector y =
[

y1 y2 · · · ym

]T

. Then, the notation [y]a:b

denotes the (b − a + 1) × 1 vector

[y]a:b =
[

ya ya+1 · · · yb

]T

if 1 ≤ a ≤ b ≤ m. An extension of this definition to any arbitrary pair of integers a and b satisfying

a ≤ b is made by defining yk as y
(k−1 mod m)+1

for any k > m or k < 1. For example, if y =
[

y1 y2 y3

]T

, then [y]−1:7 denotes the vector
[

y2 y3 y1 y2 y3 y1 y2 y3 y1

]T

. If a >

b, then [y]a:b denotes an empty vector.
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Chapter 2

Generalized Algorithms for Blind
Channel Estimation in Zero-Padding
Systems

In this chapter, we study the problem of blind channel estimation in zero-padding (ZP) systems.

As shown in Chapter 1, redundancy introduced at the transmitter facilitates blind identifiability of

channel coefficients using only second order statistics (SOS) of received samples. The problem of

blind channel estimation in ZP systems was first studied in [45]. By exploiting the padded zeros

between data blocks, Scaglione et al. proposed a subspace based method, which we will call the

SGB method. The SGB method not only works with SOS of received samples, but can also be

implemented using deterministic received data, as long as the source signal is rich or rank rich.

That is, the matrix composed of finite source blocks achieves full rank. The SGB method is robust

to channel order overestimation. Furthermore, the bandwidth expansion factor is asymptotically

unity when the block size goes to infinity. These two advantages make the SGB method superior

to other blind channel estimation algorithms in virtual SIMO systems.

However, the signal richness assumption implies the number of received blocks should be at

least the size of a data block. This prevents the algorithm from identifying channel coefficients

accurately when the channel is fast-varying, especially when the block size is large. More recently,

Manton et al. pointed out that the channel could be identifiable with only two received blocks

[28]. An algorithm based on viewing the channel identification problem as finding the greatest

common divisor (GCD) of polynomials was proposed in [36], which we will call the MNP method.

This greatly reduces the number of received blocks needed for channel estimation. Although the

MNP method takes a completely different approach from the SGB method, the implementation of
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Figure 2.1: Communication System with Redundant Filter Bank Precoders.

the GCD idea is also based on subspace decomposition [39]. This similarity of the two algorithms

suggests a possibility of generalization.

In this chapter, we propose such a generalized, subspace-based algorithm of which both the

SGB method [45] and the MNP method [36] are special cases. The generalization uses an integer

parameter called repetition index which represents the number of repeated uses of each received

block. The choice of the repetition index is roughly inversely proportional to the number of re-

quired received blocks. When the repetition index is chosen as unity, the algorithm reduces to

the SGB method; when it is equal to the size of a received block, it becomes the MNP algorithm.

The large repetition index of the MNP method explains its speedy convergence and suitability in

fast-varying environments but also imposes a high computational complexity. The introduction of

repetition index provides a way to achieve a system performance similar to or better than that of

the MNP method with a much less computational load.

The content of this chapter is mainly drawn from [49], and portions of it have been presented

in [51]. Other relevant results will be presented in later chapters. The performance analysis of the

generalized algorithm will be presented in Chapter 5. Some theoretical issues on signal richness

will be studied in Chapters 6 and 7.

2.1 Outline

The organization of this chapter is as follows. Section 2.2 describes the system structure with ZP

precoders and reviews two existing blind algorithms: the SGB method[45] and the MNP method

[36]. In Section 2.3 we present the generalized algorithm and derive the conditions on the input
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Figure 2.2: The zero-padding system with precoder R1.

sequence under which the algorithm operates properly. In Section 2.4 a variation of the generalized

algorithm, namely the frequency domain version of the generalized algorithm, is proposed.

The conditions on the input signal under which the proposed algorithms work properly result

in the concept of generalized signal richness. In Section 2.5, a mathematical treatment of generalized

signal richness is presented, and some basic properties thereof are studied in detail. More advanced

materials on generalized signal richness will be studied later in Chapters 6 and 7.

Simulation results and complexity analysis of both time and frequency domain approaches are

presented in Section 2.6. In particular, simulations under time-varying channel environments are

presented to demonstrate the strength of the proposed algorithm against channel variation. Finally,

conclusions are made in Section 2.7.

2.2 Problem Formulation and Literature Review

2.2.1 Redundant Filter Bank Precoders

Consider the multirate communication system [25] depicted in Figure 2.1. The source symbols

s1(n), s2(n), ..., sM (n) may come from M different users or from a serial-to-parallel operation on

data of a single user. For convenience we consider the blocked version s(n) as indicated. The

vector s(n) is precoded by a P × M matrix R(z) where P > M . The information with redundancy

is then sent over the channel H(z). We assume H(z) is an FIR channel with a maximum order L,
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i.e.,

H(z) =

L∑

k=0

hkz−k.

The signal is corrupted by channel noise e(n). The received symbols y(n) are divided into P × 1

block vectors y(n). The M × P matrix G(z) is the channel equalizer, and ŝ1(n), ŝ2(n), ..., ŝM (n) are

the recovered symbol streams. Also, for simplicity we define h as the column vector
[

h0 h1 · · · hL

]T

.

We set

P = M + L,

that is, the redundancy introduced in a block is equal to the maximum channel order.

2.2.2 Trailing Zeros as Transmitter Guard Interval and the SGB method

Suppose we choose the precoder R(z) =



 R1

0



 , where R1 is an M×M constant invertible matrix

and the L × M zero matrix 0 represents zero-padding with length L in each transmitted block, as

indicated in Fig. 2.2. For simplicity of describing the algorithms, in this section we assume the

noise is absent. Now, the received blocks can be written as

[
y(1) y(2) · · · y(J)

]

︸ ︷︷ ︸
Y matrix; size P × J

= HMR1

[
s(1) s(2) · · · s(J)

]

︸ ︷︷ ︸
,

S matrix; size M × J

where HM = TM (h) is the full-banded Toeplitz channel matrix. As long as vector h is nonzero,

the matrix HM has full column rank M . Now we assume the signal s(n) is rich, that is, there

exists an integer J such that the matrix S has full row rank M . Since R1 is an M × M invertible

matrix, we conclude that the P × J matrix Y has rank M . So there exist L linearly independent

vectors that are left annihilators of Y. In other words, there exists a P × L matrix U0 such that

U
†
0Y = UHMR1S = 0. Now that R1S has rank M , this implies

U
†
0HM = 0. (2.1)

The channel coefficients h can then be determined by solving Eq. (2.1). In practice, where channel
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noise is present, the computation of the annihilators is replaced with the computation of the eigen-

vectors corresponding to the smallest L singular values of Y. In this and the following sections,

the channel noise term is not shown explicitly.

Note that this algorithm [45] works under the assumption that S has full row rank M . Obvi-

ously J ≥ M is a necessary condition for this assumption. This means the receiver must accumu-

late at least M blocks (i.e., a duration of M(M + L) symbols) before channel identification can be

performed. This could be a disadvantage when the system is working over a fast-varying channel.

2.2.3 The MNP Method: Finding the Greatest Common Divisor

Another approach proposed in [36] requires only two received blocks for blind channel identifica-

tion. Recall that the channel is described by y = HMu = TM (h)u, or




y1

y2

...

yP




=




h0 0

h1
. . .

... h0

hL h1

. . .
...

0 hL







u1

u2

...

uM




. (2.2)

By multiplying
[

1 x x2 · · · xP−1
]

to both sides of Eq. (2.2), we obtain

y(x) = h(x)u(x),

where

y(x) ,

P−1∑

k=0

yk+1x
k, h(x) ,

L∑

k=0

hkxk,

and

u(x) ,

M−1∑

k=0

uk+1x
k

are polynomial representations of the output vector, channel vector, and input vector, respectively.

This means Eq. (2.2) is nothing but a polynomial multiplication. Now, suppose we have two

received blocks y(1) and y(2), and let y1(x) = h(x)u1(x) and y2(x) = h(x)u2(x) represent the

polynomial forms of these. Then, the channel polynomial h(x) can be found as the GCD of y1(x)

and y2(x), given that the input polynomials u1(x) and u2(x) are co-prime to each other.
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To compute the GCD of y1(x) and y2(x), we first construct a (2P − 1) × 2P matrix [39]

YP ,




y11 0 · · · 0 y21 0 · · · 0

y12 y11
. . .

... y22 y21
. . .

...

... y12
. . . 0

... y22
. . . 0

y1P

... y11 y2P

... y21

0 y1P y12 0 y2P y22

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 y1P 0 · · · 0 y2P




.

One can verify that

YP =




h0 0

h1

. . .

..

. h0

hL h1

. . .
...

0 hL




︸ ︷︷ ︸




u11 0 u21 0

u12

. . . u22

. . .

..

. u11

..

. u21

u1M u12 u2M u22

. . .
...

. . .
...

0 u1M 0 u2M




︸ ︷︷ ︸

.

matrix HM+P−1 matrix U

size (2P − 1) × (M + P − 1) ; size (M + P − 1) × 2P

When u1(x) and u2(x) are co-prime to each other, it can be shown that the matrix U has full

rank M + P − 1 (see section 2.5). Since HM+P−1 also has rank M + P − 1, rank(YP ) = M + P − 1

and hence YP has L left annihilators (i.e., there exists a (2P − 1) × L full rank matrix U0 such that

U
†
0Y = 0). These annihilators are also annihilators of each column of matrix HM+P−1, and we can

therefore, in absence of noise, identify channel coefficients h0, h1, ..., hL up to a scalar ambiguity.

In presence of noise, the columns of U0 would be selected as the eigenvectors associated with the

smallest singular values of YP .

2.2.4 Connection to the Earlier Literature

The MNP method described above can be viewed as a dual version of the subspace methods pro-

posed in the earlier literature in multi-channel blind identification [30][65]. In the subspace method

in [30], the single source can be estimated as the GCD of the received data from two (more gener-
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ally N ) different antennas. The MNP method [36] swaps the roles of data blocks and multi-channel

coefficients.

2.3 A Generalized Algorithm

In this section we propose a generalized algorithm of which each of the two algorithms described in

the previous section is a special case. Comparing the two algorithms described above, we find that

the MNP approach needs much fewer received blocks for blind identifiability. However, it has more

computational complexity. Each received block is repeated P times to build a big matrix. Using the

generalized algorithm, we can choose the number of repetitions and the number of received blocks

freely as long as they satisfy a certain constraint.

2.3.1 Algorithm Description

Observe Eq. (2.2) again and note that it can be rewritten as

TQ (y) = TM+Q−1 (h) TQ (u) , (2.3)

where the notation T· (·) is defined as in Section 1.4. Here Q can be any positive integer. Note that

in the MNP method, Q is chosen as P , as described in the previous section. Suppose the receiver

gathers J blocks with J ≥ 2. Then we have Y
(J)
Q = HM+Q−1U

(J)
Q , where

Y
(J)
Q =

[
TQ (y(1)) TQ (y(2)) · · · TQ (y(J))

]
, (2.4)

HM+Q−1 = TM+Q−1 (h) ,

and

U
(J)
Q =

[
TP (u(1)) · · · TP (u(J))

]
. (2.5)

Note that U
(J)
Q has size (M + Q − 1) × QJ , and Y

(J)
Q has size (P + Q − 1) × QJ . For notational

simplicity, from now on we will use subscript Q as in NQ to denote NQ = N + Q − 1 where N

denotes a positive integer. In particular,

MQ = M + Q − 1
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and

PQ = P + Q − 1.

Notice that they still have the relationship PQ = MQ + L.

Assume now the matrix U
(J)
Q has full row rank MQ. Taking singular-value decomposition (SVD)

of Y
(J)
Q we have

Y
(J)
Q =

[
Ur U0

]

 Σ

0




[
Vr V0

]†
. (2.6)

The size of Σ is MQ×MQ since both HMQ
and U

(J)
Q have full rank MQ. The columns of the MQ×L

matrix U0 are left annihilators of matrix Y(J) and also of H since U(J) has full row rank. Suppose

U
†
0 =




u11 u12 · · ·u1,P+Q−1

u21 u22 · · ·u2,P+Q−1

...
...

uL1 uL2 · · ·uL,P+Q−1




.

Form the Hankel matrices

Uk ,




uk1 uk2 · · · uk,L+1

uk2 uk3 · · · uk,L+2

...
...

uk,MQ
uk,MQ+1 · · · uk,PQ




for k, 1 ≤ k ≤ L. Then we have




U1

U2

...

UL




︸ ︷︷ ︸

h = 0. (2.7)

U matrix; size LMQ × (L + 1)

Vector h can thus be identified up to a scalar ambiguity.
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Figure 2.3: Q-repetition and shifting operation.

2.3.2 Q-Repetition and Shifting Operation

As we can see in the previous subsection, the repetition and shifting operation on a vector signal

is crucial in the generalized algorithm. Figure 2.3 gives a block diagram of this operation. For

future notational convenience, the subscript Q as in vQ(n) denotes the result of this operation on

a vector signal. By viewing Eq. (2.3) and applying this operation on y(n) and u(n), we obtain the

relationship

yQ(n) = HM+Q−1uQ(n)

for any positive integer Q. We call the integer Q the repetition index since it represents the number

of repeated uses of each received block.

2.3.3 Special Cases of the Algorithm

The blind channel identification algorithm described above uses two parameters: (a) the number

of received blocks J , and (b) the repetition index Q. A number of points should be noted here:

1. The algorithm works for any J and Q as long as U
(J)
Q has full row rank MQ. This is the only

constraint for choosing parameters J and Q.

2. Note that if we choose Q = 1 and J ≥ M , then the algorithm reduces to the SGB algorithm

[45].
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3. If we choose Q = P and J = 2, it becomes the MNP algorithm [36].

So both the SGB method and the MNP method are a special case of the proposed algorithm.

Since U
(J)
Q has size MQ × QJ , U

(J)
Q , having full row rank, implies QJ ≥ MQ = M + Q − 1, or

Q ≥ M − 1

J − 1
. (2.8)

Also note that we cannot choose J = 1 since U
(J)
Q can never have full rank unless the block size M =

1. This is consistent with the theory that two blocks are required for blind channel identification

[28]. While the inequality (2.8) is a necessary condition for U
(J)
Q to have full rank, it is not sufficient

because it also depends on the values of entries of u(n). Nevertheless, when inequality (2.8) is

satisfied, the probability of U
(J)
Q having full rank is usually close to unity in practice, especially

when a large symbol constellation is used. Thus,

Q =

⌈
M − 1

J − 1

⌉

appears to be a selection that minimizes the computational cost given the number of received blocks

J . A detailed study on the conditions for U
(J)
Q to have full rank is presented in Section 2.5.

When J = 2, Q can be chosen as small as M−1 rather than P . If we take J = 3, Q = ⌈(M − 1/2)⌉

makes the matrix Y twice smaller. We can choose Q = 1 only when J ≥ M . This coincides with

the SGB algorithm which uses a richness assumption [45].

2.4 Frequency Domain Approach

In this section we slightly modify the blind identification algorithm and directly estimate the fre-

quency responses of the channel at different frequency bins and equalize the channel in the fre-

quency domain. We call the modified algorithm frequency domain approach. Some of the ideas come

from [70]. The receiver structure for the frequency domain approach is shown in Fig. 2.4. To

demonstrate how this system works, observe the PQ × MQ full-banded Toeplitz channel matrix

HMQ
= TMQ

(h) .

Define a row vector vT
ρ =

[
1 ρ−1 · · · ρ−(PQ−1)

]
with ρ a nonzero complex number. Due to
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Figure 2.4: Receiver structure for frequency domain approach.

full-banded Toeplitz structure of HMQ
, we have

vT
ρ HMQ

=
[

H(ρ) ρ−1H(ρ) · · · ρ−(MQ−1)H(ρ)
]
,

where H(ρ) =
∑L

k=0 hkρ−k is the channel z-transform evaluated at z = ρ.

Let N be chosen as an integer greater than or equal to PQ, and ρ1, ρ2, ..., ρN be distinct nonzero

complex numbers. Consider an N × PQ matrix VN×PQ
whose ith row is vT

ρi
:

VN×PQ
=




1 ρ−1
1 ρ−2

1 · · · ρ
−(PQ−1)
1

1 ρ−1
2 ρ−2

2 · · · ρ
−(PQ−1)
2

...

1 ρ−1
N ρ−2

N · · · ρ
−(PQ−1)
N




.

It is easy to verify that

VN×PQ
HMQ

= ΛN




1 ρ−1
1 · · · ρ

−(MQ−1)
1

1 ρ−1
2 · · · ρ

−(MQ−1)
2

...

1 ρ−1
N · · · ρ

−(MQ−1)
N




︸ ︷︷ ︸

,

VN×MQ
matrix
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where

ΛN = diag(
[

H(ρ1) H(ρ2) · · · H(ρN )
]
) , diag(h̃N )

is a diagonal matrix with frequency domain channel coefficients as the diagonal entries. Now,

when we gather receiving blocks and repeat them as in Eq. (2.4), we get the following matrix.

Y
(J)
Q =

[
TQ (y(1)) TQ (y(2)) · · · TQ (y(J))

]
.

Since we have Y
(J)
Q = HMQ

U
(J)
Q in absence of noise, by multiplying VN×PQ

and Y
(J)
Q , we have

Z = VN×PQ
Y

(J)
Q = VN×PQ

HMQ
U

(J)
Q

= ΛNVN×MQ
U

(J)
Q .

Recall that rank(Y
(J)
Q ) = rank(U

(J)
Q ) = MQ. Since ρ1, ρ2, ..., ρN are all distinct, the matrix Z has

the same rank as Y
(J)
Q . The dimension of the null space of matrix Z is hence N − MQ. By per-

forming SVD on Z, we can find these N − MQ left annihilators of Z, which are also annihilators of

ΛNVN×MQ
. There exists an (N −MQ)×N matrix U

†
0 such that UT

0 Z = 0. Since U
(J)
Q has full rank,

this implies

U
†
0ΛNVN×MQ

= 0. (2.9)

Suppose

U
†
0 =




u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

...

uN−MQ,1 uN−MQ,2 · · · uN−MQ,N




.

Then by observing the ijth entry of Eq.(2.9), we have

u
†
ij h̃N = 0 (2.10)

for all i, j , 1 ≤ i ≤ N−MQ, and 1 ≤ j ≤ MQ, where uij =
[

ui1ρ
−(j−1)
1 ui2ρ

−(j−1)
2 · · · uiNρ

−(j−1)
N

]†
.
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Form the MQ × N matrices

Ui =




ui1 ui2 · · · uiN

ui1ρ
−1
1 ui2ρ

−1
2 · · · uiNρ−1

N

ui1ρ
−2
1 ui2ρ

−2
2 · · · uiNρ−2

N

...

ui1ρ
−(MQ−1)
1 ui2ρ

−(MQ−1)
2 · · · uiNρ

−(MQ−1)
N




,

and let U =
[
UT

1 UT
2 · · · UT

N−MQ

]T

. Then, from Eq. (2.10) we have U h̃N = 0. Then the fre-

quency domain channel coefficients h̃N can be estimated by solving this equation. After the frequency

domain channel coefficients are estimated, the received symbols can be equalized directly in the

frequency domain, as in DMT systems.

Recall that we have the freedom to choose N as any integer greater than or equal to PQ and the

values of ρi, 1 ≤ i ≤ N as any nonzero complex number in the z-domain. In this paper, we use

N = PQ and

ρk = exp

(
j2kπ

N

)
, k = 0, 1, ..., N − 1.

Note that since H(z) is an Lth order system, there are at most L values among H(ρi) which

can be zero (channel nulls). By choosing N ≥ PQ, there are at least MQ nonzero values among

H(ρi), i = 1, 2, ..., PQ. In practice we can choose to equalize the received symbols in frequency bins

associated with the largest MQ frequency responses H(ρi) to enhance the system performance. This

provides resistance to channel nulls.

2.5 Generalized Signal Richness

For the generalized blind channel identification method proposed in this paper to work properly,

the matrix U
(J)
Q defined in Eq. (2.5) must have full row rank for given parameters J and Q. An

obvious necessary condition has been presented as inequality (2.8) in Section 2.3. The sufficiency,

however, depends on the content of signal u(n). When Q = 1 and u(n) is rich, then there exists J

such that U
(J)
Q =

[
u(0) u(1) · · · u(J − 1)

]
has full rank. When Q > 1, u(n) requires another

kind of richness property so that U
(J)
Q has full rank for a finite integer J . We call this property the

generalized signal richness and define it as follows:
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Definition 2.1: An M × 1 sequence u(n), n ≥ 0, is said to be (1/Q)-rich if there exists a finite

integer J such that the (M + Q − 1) × JQ matrix

U
(J)
Q =

[
TQ (s(0)) TQ (s(1)) · · · TQ (s(J − 1))

]

has full row rank M + Q − 1. �

Several interesting properties of generalized signal richness will be presented in this section.

The reason why we use the notation of (1/Q) will soon be clear when these properties are pre-

sented.

2.5.1 Measure of Generalized Signal Richness

Lemma 2.1: If an M × 1 sequence s(n) is (1/Q)-rich, then s(n) is (1/(Q + 1))-rich.

Proof: See Appendix. � �

Lemma 2.1 states a basic property of generalized signal richness: the smaller the value of Q is,

the “stronger” the condition of (1/Q)-richness is. For example, if an M × 1 sequence s(n) is 1-rich,

or simply rich, then it is (1/Q)-rich for any positive integer Q. On the contrary, a (1/2)-rich signal

s(n) is not necessarily 1-rich. We can thus define a measure of generalized signal richness for a

given M × 1 sequence s(n) as follows:

Definition 2.2: Given an M × 1 sequence s(n), n ≥ 0, the degree of non-richness of s(n) is defined as:

Qmin , min
Q

(
s(n) is

1

Q
-rich

)
. (2.11)

�

Recall that the larger the degree of non-richness Qmin is, the weaker the richness of the signal

s(n) is. If s(n) is not (1/Q)-rich for any Q, then Qmin = ∞. The property of an infinite degree of

non-richness can be described in the following lemma. We use the notation pM (x) to denote the

column vector:

pM (x) =
[

1 x x2 · · · xM−1
]T

.
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Lemma 2.2: Consider an M × 1 sequence s(n). The following statements are equivalent:

(1) s(n) is not (1/Q)-rich for any Q.

(2) The degree of non-richness of s(n) is infinity.

(3) Either there exists a complex number α such that
[

1 α · · · αM−1
]

is an annihilator of

s(n) or
[

0 · · · 0 1
]

is an annihilator of s(n).

(4) Either polynomials pn(x) = pT
M (x)s(n), n ≥ 0 share a common zero (at α), or their orders are all

less than M − 1. �

Proof: See Appendix. �

Note that the statement
[

0 · · · 0 1
]

is an annihilator of s(n) in condition (3), and the

statement that polynomials pn(x) have orders less than M − 1 in condition (4) can be interpreted as

the special situation when the common zero α is at infinity.

If an M × 1 sequence s(n) has a finite degree of non-richness, or s(n) is (1/Q)-rich for some

integer Q, then it can be shown that the maximum possible value of Qmin is M − 1, as described in

the following lemma.

Lemma 2.3: If M > 1 and an M × 1 sequence s(n) is not (1/(M − 1))-rich, then it is not (1/Q)-rich

for any Q. �

Proof: See Appendix. �

With Lemma 2.3, we can see that for an M × 1 sequence s(n), the possible values of the degree

of non-richness Qmin are 1, 2, ..., M − 1, and ∞. (1/(M − 1))-richness is thus the weakest form of

generalized richness. When using the MNP method [39], this weakest form of generalized richness

is very crucial. If this weakest form of richness of s(n) is not achieved, then by Lemma 2.2, s(n) has

an infinite degree of non-richness and polynomials pT
M (x)s(n) have a common factor (x−α). Then,

as in Section 2.2.3, when we take GCD of the polynomials representing the received blocks, the

receiver would be unable to determine whether the factor (x−α) belongs to the channel polynomial

or is a common factor of the symbol polynomials. Therefore, if the input signal s(n) has infinite degree

of non-richness, all methods proposed in this paper will fail for all repetition index Q.

Furthermore, the MNP method proposed in [36] and [39] uses Q = P . Using Lemma 2.3, we

see that using Q = M − 1 is sufficient if we are computing the GCD of polynomials representing

received blocks, and the following two conditions are true: (1) the GCD is known to have a degree

less than or equal to L, (2) the degree of each symbol polynomial is less than or equal to M − 1.
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Using Q = P not only is computationally unnecessary, but also, as we will see in simulation results

in Section 2.6, has sometimes a worse performance than using Q = M − 1 in presence of noise.

The sufficiency of Q = M − 1 can also be understood from the point of view of polynomial

theory. Suppose polynomials a(x) and b(x) have degrees less than or equal to P − 1 and have

a greatest common denominator d(x) whose degree is less than or equal to L. Suppose a(x) =

d(x)a1(x) and b(x) = d(x)b1(x) and both a1(x) and b1(x) have degrees less than or equal to M − 1

and they are co-prime to each other. Then there exists polynomials p(x) and q(x) whose degrees are

less than or equal to M −2 such that 1 = p(x)a1(x)+ q(x)b1(x) and thus d(x) = p(x)a(x)+ q(x)b(x).

2.5.2 Connection to Earlier Literature

An earlier proposition mathematically equivalent to Lemma 2.3 has been presented in the single-

input-multiple-output (SIMO) blind equalization literature [65],[23]. We review it here briefly:

Proposition: Let h[n] be J×1 vectors. Suppose a QJ×(Q+M−1) block Toeplitz matrix TQ(h) =




h[0] h[1] · · · h[M − 1] 0 · · · 0

0 h[0] h[1] · · · h[M − 1]
. . .

...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 h[0] h[1] · · · h[M − 1]




satisfies the following conditions:

(1) h[0] 6= 0 and h[M − 1] 6= 0;

(2) h[n] = 0 for n < 0 and n ≥ M ;

(3) Q ≥ M − 1.

Then, TQ(h) has full column rank if and only if

h(z) ,

M∑

i=0

h[i]z−i 6= 0, ∀z.

�

Here, h[n] was used to refer to the impulse response of a J × 1 channel. Q stands for the

observation period in the multiple-channel receiver end. Conditions (1) and (2) imply that the

channel has finite impulse response. Condition (3) can be met by increasing the observation period

Q. While this old proposition focuses on the coefficients of multiple channels rather than values of

transmitted symbols, it is mathematically equivalent to the statement that s(n) is (1/(M − 1))-rich
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Figure 2.5: Normalized least squared channel error estimation.

if and only if polynomials pT
M (x)s(n) do not share common zeros. The case of Q < M −1, however,

has not been considered earlier in the literature, to the best of our knowledge.

2.5.3 Remarks on Generalized Signal Richness

In this section we introduced the concept of generalized signal richness. Given an M × 1 signal

s(n), n ≥ 0, the degree of non-richness Qmin was defined. For an input signal with a degree of non-

richness Qmin, we can choose any

Q ≥ Qmin

and some finite J for the generalized algorithm proposed in Section 2.3 to work properly. The

possible values of Qmin are 1, 2, ..., M − 1, and ∞. If s(n) has an infinite degree of non-richness,

the algorithm proposed in this paper will fail for all Q. The degree of non-richness of a signal s(n)

directly depends on its content. A deeper study of degree of non-richness will be presented in

Chapter 7 [56].

2.6 Simulations and Discussions

In this section, several simulation results, comparisons, and discussions will be presented. We

will first test our proposed method and compare it with the existing methods [45, 36] described

in Sec. 2.2. Secondly, we will compare the performances of time domain versus frequency do-
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Figure 2.6: Bit error rate performance of the blind algorithm.

main approaches and show that under some channel conditions the frequency domain approach

outperforms the time domain approach. Finally, we will analyze and compare the computational

complexity of algorithms proposed in this chapter.

2.6.1 Simulations of time domain Approaches

A Rayleigh fading channel of order L = 4 is used. The size of transmitted blocks is M = 8 and

received block size is P = M + L = 12. The normalized least squared channel estimation error,

denoted as Ech, is used as the figure of merit for channel identification and is defined as follows:

Ech =
||ĥ − h||2
||h||2 ,

where ĥ and h are the estimated and the true channel vectors, respectively. The simulated nor-

malized channel estimation error is shown in Figure 2.5, and the corresponding BER is presented

in Figure 2.6. When the number of blocks J = 10, the MNP method (with the number of block

repetitions Q = 12) outperforms the SGB method (Q = 1) by a considerable range. Taking Q = 2

saves a lot of computation and yet yields a good performance as indicated. Furthermore, in the

case of J = 2, the system with Q = 8 even outperforms the original MNP method with Q = 12.

This also strengthens our argument in Section 2.5 that choosing Q as large as P is unnecessary.
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Figure 2.7: Normalized least squared channel error estimation.

2.6.2 Simulations of frequency domain Approaches

Fig. 2.7 shows the comparison of frequency domain approach and time domain approach under

the channel coefficients H(z) = 1 − jz−1 + (−1 + 0.01j)z−2 + (0.01 + j)z−3 − 0.01jz−4.

For frequency domain approach, the normalized least squared channel error is defined as

Ech =
||ˆ̃h − h̃||2
||h̃||2

,

where

h̃ =
[

H(ρ1) H(ρ2) · · · H(ρN )
]

and ˆ̃
h is the estimation of h̃. Simulation results show that frequency domain approach outper-

forms time domain approach especially when the noise level is high. While the frequency domain

approach does not in general beat the time domain approach for a random channel, it has been con-

sistently observed that frequency domain approach performs better than time domain approach

when the last channel coefficient h(L) has a small magnitude (i.e., at least one zero of H(z) is close

to the origin).

Since we have the freedom to choose values of coefficients ρi, the receiver can adjust ρi dy-

namically according to the a priori knowledge of the approximated channel zero locations. This is

especially useful when the channel coefficients are changing slowly from block to block.
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2.6.3 Complexity Analysis

For the algorithms presented in Section 2.3, the SVD computation dominates the computational

complexity. The number of blocks J , the number of repetitions per block Q, and the received block

size P decide the size of the matrix on which SVD is taken. The complexity of SVD operation on

an n × m matrix [13] is on the order of O(mn2) with m ≥ n. Since Y
(J)
Q has size (P + Q − 1) × QJ ,

the complexity is O(QJ(P + Q − 1)2). We can see that the complexity can be greatly reduced by

choosing a smaller Q. Recall that the SGB method [45] uses Q = 1 and the MNP method [36] uses

Q = P . We thus have the following arguments:

1. the MNP method has a complexity around 4P times the complexity of the SGB method for

any J . A choice of Q between 1 and P could be seen as a compromise between system per-

formance and complexity.

2. When J is large, we have the freedom to choose a smaller Q, as explained in the previous

subsection.

For the frequency domain approach presented in Section 2.4, an additional matrix multiplication is

required. This demands extra computational complexity of the order of O(JP 2
Q). However, if the

values ρi are chosen as equally spaced on the unit circle, an FFT algorithm can be exploited and

the computational complexity will be reduced to O(JPQ log PQ) and is negligible compared to the

complexity of SVD operations.

2.6.4 Simulations for Time-varying Channels

In this subsection, we demonstrate the capability of the proposed generalized blind identification

algorithm in time-varying channels environments. The received symbols can be expressed as

y(n) =

L∑

k=0

h(n, k)x(n − k),

where the (L + 1)-tap channel coefficients h(n, k) vary as the time index n changes. We generate

the channel coefficients as follows. During a time interval T , the channel coefficients change from

h1(k) to h2(k), where h1(k) and h2(k), 0 ≤ k ≤ L represent two sets of (L + 1)-tap independent
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coefficients. The variation of the coefficient is done by linear interpolation such that

h(n, k) =






h1(k), if n = 0

h2(k), if n = T

T−n
T h1(k) + n

T h2(k) otherwise

.

In our simulation, we choose T = 180. Coefficients of h1(k) and h2(k) are given in Table I. The

size of transmitted blocks is M = 8, and received block size is P = M + L = 12 (so the channel

coefficients completely change after 15 blocks). Simulations are performed under different choices

of J and Q, as indicated in Figures 2.8 and 2.9. The normalized least squared channel error is

defined as

Ech =
||ĥ − h||2
||h||2

,

where ĥ is the estimated channel and h is the averaged coefficients during the time the channel is

being estimated:

h =
1

JP

n0+JP−1∑

n=n0

[
h(n, 0) h(n, 1) · · · h(n, L)

]T

.

In Figure 2.8 we see that when J = 10 (SGB), the time range is too large for the algorithm to

estimate the time-varying channel accurately. The performance for J = 2 (MNP) is much better

in high SNR region because the channel does not vary too much during the time of two blocks.

However, in low SNR region the performance for J = 2 becomes bad. The case for J = 4 has

the best performance among all other choices because the channel does not vary too much during

the duration of four receiving blocks, and more data are available for accurate estimation. This

simulation result provides clues about how we can choose the optimal J : if the channel variation

is fast (T is smaller) we need a smaller J while we can use a larger J when T is larger.

k h1(k) h2(k)
0 -0.6563 + 0.7059i -1.2519 + 0.2295i
1 -0.6534 + 1.1774i 0.9347 + 0.1237i
2 -0.4229 - 0.2362i 0.0346 - 0.6180i
3 0.2145 - 0.2207i 0.7272 - 1.4084i
4 -0.1478 + 0.2802i 0.8612 + 0.3455i

Table 2.1: Coefficients for the Time-Varying Channel.
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Figure 2.8: Normalized Channel MSE performance for a time-varying channel.
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2.6.5 Remarks on Choosing the Optimal Parameters

According to the simulations results above, we summarize here a general guideline to choose a set

of optimal parameters in practice.

1. When the channel is constant and for a fixed Q, a larger J appears to have a better perfor-

mance (as shown in Fig. 2.5) since more data are available for accurate estimation.

2. When the channel is time-varying, the optimal choice of J depends on the speed of channel

variation. Simulation results in Figures 2.8 and 2.9 suggest when the channel coefficients

completely change in N blocks, a choice of J ≈ N/4 could be appropriate.

3. Suppose J is given, a choice of Q as the smallest integer that satisfies inequality (2.8) often

has a satisfactory performance. A slightly larger Q can sometimes be better (see Fig. 2.5 for

J = 10) at the expense of a slightly increased complexity. However, if Q is too large, the

performance could be even worse (see Fig. 2.5 for J = 2, Q = 12).

The guidelines above are given by observing the simulation results. An analytically optimal set of

J and Q is still under investigation.

2.6.6 Noise Handling for large J

It should be noted that when J is very large (and Q = 1), the proposed method behaves like a

traditional subspace method using second-order statistics. Suppose

Y(J) = HU(J) + E(J),

where E(J) is composed of J columns of noise vectors e(n). The autocorrelation matrix of received

blocks can be estimated as

Ryy = E[y(n)y†(n)] ≈ 1

J
Y(J)Y(J)†.

If the input signal and channel noise are uncorrelated, we can write Ryy as

Ryy = HRuuH
† + Ree,

where Ruu = E[u(n)u†(n)] and Ree = E[e(n)e†(n)] are autocorrelation matrices of input blocks

and noise vectors, respectively. If Ree is known (e.g., if the noise is white and noise variance is N0,
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then Ree = N0IP ), an improved estimation of annihilators of matrix H can be performed by taking

eigen-decomposition of Ryy −Ree, which results in better channel estimation [45]. This technique,

however, does not apply when J is small.

2.7 Concluding Remarks

In this chapter we proposed a generalized algorithm for blind channel estimation in ZP systems.

The number of received blocks J ≥ 2 can be chosen freely depending on the speed of channel varia-

tion. An integer parameter called repetition index is introduced representing the number of repeated

uses of each block. The minimum repetition index Q is derived to optimize the computational com-

plexity while retaining good performance. Simulation shows that when the system parameter Q

is properly chosen, the generalized algorithm outperforms previously reported special cases, espe-

cially in time-varying channel environments.

A frequency domain version of the generalized algorithm is also presented. Simulation result

shows that it outperforms time domain approach at low SNR region for certain types of channels,

e.g., channels with a zero close to the origin. Since we have the freedom to choose different fre-

quency parameters in the frequency domain approach, certain choices other than equally spaced

grids on the unit circle can be used to improve the system performance for different channel zero

locations. An even more challenging problem might be to analytically derive the optimal frequency

points for a specific type of channel.

The concept of generalized signal richness for a vector signal was introduced. With the degree of

non-richness of the input signal decided, we can determine the minimum repetition index theoreti-

cally. A complete set of necessary and sufficient conditions for signals satisfying generalized signal

richness is still under investigation. The study of effect of a linear precoder on the property of

generalized signal richness will be presented in Chapter 7 [56].

2.8 Appendix: Proof of Lemmas

Proof of Lemma 2.1: Suppose s(n) is (1/Q)-rich but not (1/(Q+1))-rich, then there exists a 1×(M+Q)

nonzero vector vT =
[

v1 v2 · · · vM+Q

]
such that

vT T (s(n), Q + 1) = 01×(Q+1), ∀n. (2.12)
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Observing the first Q elements of the vector equation above, we obtain

[
v1 v2 · · · vM+Q−1

]
T (s(n), Q) = 01×Q, ∀n.

Without loss of generality, we can assume
[

v1 v2 · · · vM+Q−1

]
to be nonzero and an annihi-

lator of T (s(n), Q). This violates the assumption that s(n) is (1/Q)-rich. �

Proof of Lemma 2.2: Conditions (1) and (2) are equivalent by definition. The equivalence of con-

ditions (3) and (4) can also be easily examined. If condition (3) is true, then either pT
M+Q−1(α)

or
[

0 · · · 0 1
]

is an annihilator of sQ(n) (as defined in Sec. 2.3.2) for all Q and, hence,

condition (1) is also true. In the case condition (1) is true, assume there exists n ≥ 0 such that

the degree of the polynomial pT
M (x)s(n) is M − 1. Then for any Q, there exists a row vector

vT =
[

v1 v2 · · · vM+Q−1

]
such that vT sQ(n) = 0, ∀n. This implies

M∑

l=1

vk+l [s(n)]l = 0, ∀n, k ≥ 0, (2.13)

where [·]l represents the lth element of a column vector. So the series {vk}M+Q−1
k=1 must satisfy the re-

currence equation (2.13) for any n ≥ 0. This requires the characteristic polynomials pT
M (x)s(n), n ≥

0 to share at least one zero. So condition (4) must be true. By the arguments above, these four

conditions are equivalent. �

Proof of Lemma 2.3: If s(n) is proportional to a same nonzero vector x for all n, then it is obvi-

ously not (1/Q)-rich for any Q. We thus assume without loss of generality that s(0) and s(1) are

linearly independent. Suppose polynomials pT
M (x)s(0) and pT

M (x)s(1) have two sets of distinct ze-

ros {α01, α02, ..., α0,M−1} and {α11, α12, ..., α1,M−1}, respectively. Since s(n) is not (1/Q)-rich, there

exists a (2M−2)-row vector vT =
[

v1 v2 · · · v2M−2

]
such that vT T (s(n), M−1) = 01×(M−1).

We have that the nonzero row vector vT must have the form of

vT =
M−1∑

k=1

ck

[
1 α−1

0,k α−2
0,k · · · α

−(M−2)
0,k

]

=
M−1∑

k=1

dk

[
1 α−1

1,k α−2
1,k · · · α

−(M−2)
1,k

]
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for some coefficients c1, c2, ..., cM−1, d1, d2, ..., dM−1. This implies

[
cT −dT

]
V = 0T , (2.14)

where cT =
[

c1 c2 · · · cM−1

]
,dT =

[
d1 d2 · · · dM−1

]
, and

V =




pT
2M−2(α01)

...

pT
2M−2(α0,M−1)

pT
2M−2(α11)

...

pT
2M−2(α1,M−1)




is a Vandermonde matrix. If all zeros {αij} are distinct, V is a (2M −2)×(2M −2) invertible matrix

and Eq. (2.14) implies cT = dT = 0T and hence vT = 0T . This contradicts the assumption that

s(n) is not (1/(M −1))-rich. Therefore, if s(n) is not (1/(M −1))-rich, there must be a common zero

shared by pT
2M−2(x)s(0) and pT

2M−2(x)s(1). Similarly, we can obtain that there exists an α such that

pT
2M−2(α)s(n) = 0 for all n. Using Lemma 2.2, this implies that s(n) is not (1/Q)-rich for all Q. In

the case where the polynomial pT
2M−2(x)s(n) has multiple zeros for some n, the matrix V in Eq.

(2.14) can be replaced with a confluent Vandermonde matrix [13] which is still invertible. �
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Chapter 3

Blind and Semi-Blind Channel
Estimation in Cyclic-Prefix Systems

In this chapter we study the blind channel estimation problem in cyclic prefix (CP) systems, which

are more widely used than zero-padding (ZP) systems in many current standards such as orthog-

onal frequency division multiplexing (OFDM) and single carrier cyclic prefix (SC-CP) systems.

Many blind estimation methods in CP systems (mostly OFDM systems) have been proposed in

the literature [76, 35, 24, 15, 5, 21, 77, 31, 32, 6]. Depending on whether the knowledge of source

constellations is used in the receiver, these methods can be roughly divided into two categories.

Methods exploiting knowledge of source constellations usually discard the IBI-containing part of

received blocks before channel estimation [76, 6] and can be computationally prohibitive unless a

small constellation is used. Algorithms that do not use knowledge of source constellations gener-

ally exploit the statistical information of the source samples. Heath et al. proposed a statistical blind

method [15] which exploits cyclostationarity induced by cyclic prefixes. Another statistics-based

algorithm was proposed by Petropulu et al. [35, 24] using a special linear precoding. Zhuang et al.

proposed a statistical method that can estimate channels whose length is larger than the CP length.

All these statistics-based algorithms require a larger amount of received data to obtain an accurate

estimate.

Another class of blind algorithms that do not exploit knowledge of source constellations is the

subspace-based algorithms. They not only work well with second order statistics, but can also be

implemented deterministically as long as the persistency of excitation (p.o.e.) criterion of the input

signal is satisfied. Unlike in ZP systems, where each received block is free from interblock inter-

ference (IBI), in CP systems, some parts of a received block contain IBI and present a difficulty for

subspace-based blind channel estimation. Muquet et al. proposed a subspace-based algorithm for
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OFDM systems by exploiting information obtained from concatenating two consecutive received

blocks[31, 32]. Cai and Akansu proposed a similar deterministic algorithm of blind channel estima-

tion for OFDM systems [5]. Li and Roy further exploited the presence of virtual carriers of OFDM

systems[21]. All these previously reported methods require the number of received blocks to be at

least as large as two times the block size to satisfy the p.o.e. criterion of the input, which limits the

application in a fast-varying channel environment.

Inspired by the idea of repetition index proposed in Chapter 2, we propose in this chapter

a generalization to some of previously reported subspace-based blind methods for CP systems

[5, 32, 21]. The value of repetition index is unity for these previously reported methods. When the

repetition index is chosen to be greater than unity, the number of received blocks needed will be

significantly reduced. Note that OFDM systems and SC-CP systems are both special cases of CP

systems, so the proposed method can be directly applicable in these systems without modifying

transmitter structures.

The other part of this chapter deals with semiblind channel estimation in OFDM systems. In

the context of channel estimation, one of the most important advantages of blind methods over

pilot-assisted methods is better bandwidth efficiency. The bandwidth saving of blind methods,

however, usually comes at the expense of computational complexity, a slower convergence speed,

and worst of all, a poorer system performance than in pilot-assisted counterparts. A hybrid of these

two types of channel estimation therefore has been studied in an attempt to combine advantages of

both schemes [76, 16, 32, 16, 75, 7]. Several semi-blind algorithms have been proposed for OFDM

systems [76, 16, 32, 16, 75, 7]. Similarly, these methods either rely on the knowledge of source

statistics[7, 32], or require the knowledge of source constellation [76, 16, 75]. Methods relying on

source statistics inevitably need to collect a sufficiently large amount of received data to obtain

an accurate statistics. This fact makes these methods inapplicable to fast-varying channels since

the channel status may have changed significantly by the time the data is collected. On the other

hand, the methods using the knowledge of source constellations usually rely on using a small

constellation. When the constellation size is large, these methods become either inapplicable or

computationally prohibitive. We propose a semiblind algorithm based on a combination of a pure

pilot-assisted algorithm and the subspace-based blind channel estimation algorithm proposed in

this chapter. The new semiblind algorithm is applicable with any source constellation and any

pilot sample configuration and is suitable for fast-varying channels.
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Figure 3.1: A typical cyclic prefix system.

The content of this chapter is mainly drawn from [60], and portions of it have been presented in

[53, 52, 55].

3.1 Outline

The rest of the chapter is organized as follows. In Section 3.2 we review the basic ideas of subspace-

based blind estimation methods in CP systems that have been reported so far in the literature

[32, 21, 5]. In Section 3.3 we present the generalized blind algorithm.

In Section 3.4, we extend the idea to a semiblind algorithm by joint use of a purely pilot-assisted

criterion and the blind criterion. In Section 3.5 we study in detail the conditions on input signal

under which the proposed algorithm works properly.

In Section 3.6, simulations of the proposed blind algorithm are performed both in static and

time-varying channel environments and the results are presented. We also conduct a performance

comparison of the proposed blind algorithm, semiblind algorithm, and the purely pilot-assisted

algorithm. Conclusions are made in Section 3.7.

3.2 Problem Formulation

3.2.1 Cyclic Prefix System Overview

Consider the communication system using cyclic prefixes (CP) depicted in Figure 3.1. The source

symbols s1(n), s2(n), ..., sM (n) may come from M different users or from a serial-to-parallel oper-

ation on data of a single user. For convenience we consider the blocked version s(n) as indicated.
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The vector s(n) is precoded by an M ×M constant matrix R and results in precoded data uM (n). In

particular, for OFDM or multi-carrier (MC) systems, R = W
†
M is the normalized IDFT matrix; for

single-carrier cyclic prefix (SC-CP) systems, R is chosen as IM . A cyclic prefix of length L, taking

from the last L elements of uM (n), is defined as ucp(n) =
[

0L×(M−L) IL

]
uM (n). We assume

L + 1 < M . The cyclic prefix is appended to uM (n), forming a vector

u(n) =



 ucp(n)

uM (n)



 = [uM (n)]−L+1:M

whose length is P = M + L. The vector u(n), after parallel-to-serial conversion, is sent over the

channel H(z). We assume H(z) is an FIR channel with a maximum order L, i.e.,

H(z) =
L∑

k=0

hkz−k, (3.1)

and define h as the (L+1)-column vector
[

h0 h1 · · · hL

]T

. The signal is corrupted by chan-

nel noise e(n). The received symbols y(n) are blocked into P × 1 vectors y(n). We assume perfect

block synchronization between the transmitter and receiver. Also let e(n) denote the blocked ver-

sion of the noise e(n). Denote ycp(n) as the first L entries and yM (n) as the last M entries of y(n)

so that y(n) =
[

ycp(n)T yM (n)T
]T

. It can be shown that

yM (n) = HciruM (n) + eM (n), (3.2)

where

Hcir =




h0 0 hL · · · h1

...
. . .

. . .
. . .

...

hL
. . .

. . . hL

. . .
. . . 0

0 hL · · · h0




is an M × M circulant matrix [67] and eM (n) = [e(n)]L+1:P is the noise vector. The L × 1 vector

ycp(n) contains inter-block interference (IBI) and can be expressed as

ycp(n) = Hlucp(n) + Huucp(n − 1) + ecp(n), (3.3)
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where

Hl ,




h0 0

...
. . .

hL−1 · · · h0


 and Hu ,




hL · · · h1

. . .
...

0 hL




are L × L matrices and ecp(n) = [e(n)]1:L is the noise component. For channel equalization, ycp(n)

is usually dropped and only yM (n) passes the M ×M equalizer T and results in recovered symbol

ŝ(n). When the channel coefficients are known, the optimal equalizer T can be derived to minimize

mean square error of equalized symbols.

3.2.2 Subspace-based Blind Channel Estimation in CP Systems

While ycp(n) is often dropped before equalization, the information from ycp(n) is useful to estimate

the channel coefficients. In this section we review the essences of blind estimation algorithms which

have been used in earlier methods reported in [5], [32], and [21]. For simplicity, we first ignore the

noise term e(n). Define a composite block ȳ(n) which has a length 2M + L and contains information

from two consecutive blocks as follows:

ȳ(n) =
[

yM (n − 1)T ycp(n)T yM (n)T
]T

. (3.4)

Then, from Eqs. (3.2) and (3.3) we have

ȳ(n) =




HciruM (n − 1)

Hlucp(n) + Huucp(n − 1)

HciruM (n)


 = H̃ũ(n), (3.5)

where

H̃ =




Hcir 0M×M

[
0L×(M−L) Hu

] [
0L×(M−L) Hl

]

0M×M Hcir



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and ũ(n) =
[

uM (n − 1)T uM (n)T
]T

. Note that H̃ is a (2M + L)× 2M matrix. A special case of

Eq. (3.5) when M = 4 and L = 2 is shown as




y01

y02

y03

y04

ycp1

ycp2

y11

y12

y13

y14




=




h0 0 h2 h1 0 0 0 0

h1 h0 0 h2 0 0 0 0

h2 h1 h0 0 0 0 0 0

0 h2 h1 h0 0 0 0 0

0 0 h2 h1 0 0 h0 0

0 0 0 h2 0 0 h1 h0

0 0 0 0 h0 0 h2 h1

0 0 0 0 h1 h0 0 h2

0 0 0 0 h2 h1 h0 0

0 0 0 0 0 h2 h1 h0







u01

u02

u03

u04

u11

u12

u13

u14




, (3.6)

where we set y0k = [yM (n − 1)]k, y1k = [yM (n)]k , and ycpk = [ycp(n)]k for notational convenience.

Theorem 3.1: If H(z) =
∑L

k=0 hkz−k does not have any zero on the unit circle grid

W l
M , 0 ≤ l ≤ M − 1, then H̃ has full column rank 2M . �

Proof: See [32].

�

We now review some of the key ideas in [32]. Suppose we gather J consecutive received blocks

y(0),y(1), · · · ,y(J − 1) at the receiver. Then, we have J − 1 composite blocks ȳ(n) defined in

Eq.(3.4) for n = 1, 2, ..., J − 1. We can construct the (2M + L) × (J − 1) matrix by placing these

composite blocks together as

Y(J) =
[

ȳ(1) ȳ(2) · · · ȳ(J − 1)
]
.

Then, we have

Y(J) = H̃U(J), (3.7)

where

U(J) =
[

ũ(1) ũ(2) · · · ũ(J − 1)
]
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is a 2M × (J − 1) matrix. Assume there exists an integer J ≥ 2M + 1 such that U(J) has full row

rank 2M . Then, rank(Y(J)) = 2M and, hence, Y(J) has L linearly independent left annihilators.

Let g
†
k be the kth annihilator of Y(J), 1 ≤ k ≤ L, i.e., g†

kY
(J) = 0. Then, g†

kH̃ = 0 since U(J) has full

rank. Write g
†
k as

g
†
k =

[
g01 · · · g0M gc1 · · · gcL g11 · · · g1M

]
.

For notational simplicity, we ignore the index k in the contents of g
†
k. By observing the columns of

H̃, we can construct a 2M × (L + 1) matrix Gk as follows such that Gkh = 0:

Gk =




g01 g02 · · · g0,1+L

g02 g03 · · · g0,2+L

...
...

...

g0,M−L g0,M−L+1 · · · g0M

g0,M−L+1 · · · g0M g01 + gc1

... . .
.

. .
. ...

g0M g01 + gc1 · · · g0L + gcL

g11 g12 · · · g1,1+L

g12 g13 · · · g1,2+L

...
...

...

g1,M−L g1,M−L+1 · · · g1M

g1,M−L+1 + gc1 · · · g1M + gcL g11

... . .
.

. .
. ...

g1M + gcL g11 · · · g1L




. (3.8)

Define G =
[
GT

1 GT
2 · · · GT

L

]T

. Then, the channel coefficients h can be recovered within a

scalar ambiguity by finding the only right-annihilating vector of G [32].

Although the developments above are based on the assumption that H̃ has full column rank

(i.e., H(z) has no zeros on DFT grid), a slight modification of the algorithm when this is not true

can be found in [32]. Due to the length of the text, we do not elaborate this special case throughout

this chapter.

In presence of noise, Eq. (3.7) becomes

Y(J) = H̃U(J) + N(J),
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where the noise component N(J) comes accordingly from Eqs. (3.2) and (3.3). In this case, Y(J)

usually becomes full rank and no longer has L left annihilators. The left annihilators of H̃, i.e.,

the noise space, can be estimated by taking singular value decomposition (SVD) of Y(J). In the

equation

Y(J) =
[

Us Un

]


 Σs 0

0 Σn




[

Vs Vn

]†
, (3.9)

Un contains the singular-vectors associated with the smallest L singular values of Y(J) and gk is

chosen as the kth column of Un.

Note that in Eq. (3.9) if the matrix Y(J) is replaced with the estimated autocorrelation matrix

Rȳȳ = Y(J)[Y(J)]†.

Then, the null space Un obtained by singular value decomposition will remain unchanged. Since

the size of Rȳȳ is usually smaller than Y(J), especially when J is large, taking SVD on Rȳȳ rather

than on Y(J) actually saves computational complexity, although an additional computation will

be needed for creating matrix Rȳȳ. However, the matrix Rȳȳ, once created, can be easily updated

each time a new block is received (see Eq. (18) in [32]). The idea of maintaining an autocorrelation

matrix further develops into a strategy where newer blocks can be put a greater weighting than

older blocks. Specifically, after an initial estimate of Rȳȳ is established, Rȳȳ is updated each time a

new composite block ȳ(n) is obtained using

R̂
(N)
ȳȳ = αR̂

(N−1)
ȳȳ + (1 − α)ȳ(N)ȳ(N)†. (3.10)

The parameter α ∈ [0, 1] is called the forgetting factor. The technique of using a forgetting factor has

been applied especially in time-varying channel environments.

3.2.3 Limitations

In order for the above method to work, the 2M × (J − 1) matrix U(J) must have full row rank 2M .

This is also known as the property of persistency of excitation[32]. Obviously, U(J) has full row

rank only when the number of columns is not smaller than the number of rows, i.e., J − 1 ≥ 2M .

This requires the receiver to wait for at least (2M + 1)P symbol durations before a channel esti-
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mation can be performed. This limitation makes these previously reported algorithms unrealistic

in environments with fast-fading channels since the channel coefficients may have changed signifi-

cantly during accumulation of the data. Even though a forgetting factor can be used to give a larger

weighting to newer blocks than to older blocks, the use of blocks as old as 2M + 1 blocks earlier is

still unavoidable. The method we propose in Sec. 3.3 will overcome this fundamental limit present

in previously reported methods.

3.3 Proposed Method

For a subspace method, it is always necessary to write an equation

Y = HU + N (3.11)

or

Ry = HRuH
† + Rn, (3.12)

where H contains unknown information on the channel, U or Ru contain unknown information of

transmitted symbols, and Y or Ry contain the noise-corrupted observation of received data. Note

that Eq. (3.12) can always be obtained from Eq. (3.11) by setting Ry = YY†, Ru = UU†, and

Rn = NN†, as long as the input symbols and the noise are uncorrelated. The following discussions

will be focused on Eq. (3.11) only. In order to make the subspace method work, Eq. (3.11) must

satisfy the following two conditions:

1. H must be a tall matrix. That is, if H has a size p × m, then p > m.

2. U must have full row rank, i.e., rank(U) = m.

The idea of accumulating two consecutive blocks and keeping the ISI-containing CP between the

two blocks, as reviewed in the previous section, was actually intended to satisfy condition 1). To

satisfy condition 2), the minimum number of blocks must be at least as large as the number of rows

of U, since each composite block ȳ(n) defined in Eq. (3.4) can at most increase the rank of U only

by one (as can be seen in Eq. (3.7) and the equation after Eq. (3.7)).

In this section, we reformulate Eq. (3.11) in such a way that each new composite block ȳ(n) can

increase the rank of U by more than one. By repeated use of the same blocks, the “speed” of rank

growth of matrix U will be faster so that a smaller number of received blocks is needed to satisfy
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condition 2). The idea of repeated use of the same blocks originated in the work of Pham and

Manton [36] and was later generalized by Su and Vaidyanathan [49]. These developments were

originally for ZP systems. We now show that for CP systems, similar extensions are possible. The

generalized method works well in situations in which the previously reported methods [32, 5, 21]

either fail or do not perform well, as we shall demonstrate next.

3.3.1 The Repetition Index

In this subsection, we will present the idea of repetition index. We will first present the develop-

ment using an example with small values M and L.

We first rewrite Eq. (3.5) so that the channel matrix has a more symmetric and “tidy” form. The

rearranged version of Eq. (3.5) is

ȳ(n) = H̄ū(n), (3.13)

where

H̄ =




Hcir 0M×M

[
0L×(M−L) Hu

] [
Hl 0L×(M−L)

]

0M×M Hcir2




,

ū(n) =


 uM (n − 1)

u′
M (n)


 , and u′

M (n) = [uM (n)]−L+1:M−L .

Hcir2 is obtained by permuting columns of Hcir and is still a circulant matrix. Note that this rewrit-

ing is simply to cut the last L columns of H̃ and insert them into the middle. Accordingly, we per-

mute elements of uM (n) such that u′
M (n) = [uM (n)]−L+1:M−L. A special case of Eq. (3.13) when
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M = 4 and L = 2 is shown as in




y01

y02

y03

y04

ycp1

ycp2

y11

y12

y13

y14




=




h0 0 h2 h1 0 0 0 0

h1 h0 0 h2 0 0 0 0

h2 h1 h0 0 0 0 0 0

0 h2 h1 h0 0 0 0 0

0 0 h2 h1 h0 0 0 0

0 0 0 h2 h1 h0 0 0

0 0 0 0 h2 h1 h0 0

0 0 0 0 0 h2 h1 h0

0 0 0 0 h0 0 h2 h1

0 0 0 0 h1 h0 0 h2







u01

u02

u03

u04

u13

u14

u11

u12




. (3.14)

This might give a clearer view of the structure of the channel matrix H̄. Observe that H̄ is nearly a

Toeplitz matrix except for some sparse terms present in the top and bottom L rows. This Toeplitz-

like structure of H̄ will become very useful in the following development. For the sake of clarity,

the following developments will start from Eq. (3.14).

We take advantage of the property of circulant matrices. Notice that since




y01

y02

y03

y04




=




h0 0 h2 h1

h1 h0 0 h2

h2 h1 h0 0

0 h2 h1 h0







u01

u02

u03

u04




,
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we have




y03

y04

y01

y02

y03

y04




=




h2 h1 h0 0

0 h2 h1 h0

h0 0 h2 h1

h1 h0 0 h2

h2 h1 h0 0

0 h2 h1 h0







u01

u02

u03

u04




=




h0 0 h2 h1 0 0

h1 h0 0 h2 0 0

h2 h1 h0 0 0 0

0 h2 h1 h0 0 0

0 0 h2 h1 h0 0

0 0 0 h2 h1 h0







u03

u04

u01

u02

u03

u04




. (3.15)

In general, we can show that if yM (n − 1) = HciruM (n − 1) is true, then we have

[yM (n − 1)]1−k:M =


 Hcir 0M×k

0k×(M−L) Hk


 [uM (n − 1)]M :1−k (3.16)

for any k ≥ 0. Here

Hk =




hL hL−1 · · · h0 0 · · · 0

0 hL hL−1 · · · h0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 hL hL−1 · · · h0




(3.17)

is a k × (L + k) Toeplitz matrix. Eq. (3.15) was a special case when k = 2. Similarly if yM (n) =

Hcir2u
′
M (n), then we have

[yM (n)]1:M+l =


 Hl 0l×(M−L)

0M×l Hcir2


 [u′

M (n)]1:M+l (3.18)

for any l ≥ 0. Combining knowledge of Eqs. (3.16) and (3.18), we can “expand” the composite block

ȳ(n) in Eq. (3.13) by k symbols upward and l symbols downward for any nonnegative integers k

and l. If we choose k and l such that k + l = Q − 1 for some positive integer Q, we will be able to

write a new channel equation as follows.



54

ȳkl(n) = H̄Qūkl(n), (3.19)

where

ȳkl(n) =




[yM (n − 1)]−k+1:M

ycp(n)

[yM (n)]1:M+l


 ,

H̄Q =




Hcir 0M×(M+Q−1)

0(L+Q−1)×(M−L) HL+Q−1 0(L+Q−1)×(M−L)

0M×(M+Q−1) Hcir2


 , (3.20)

and

ūkl(n) =


 [uM (n − 1)]−k+1:M

[u′
M (n)]1:M+l


 .

Note that if we choose Q = 1, then k = l = 0 and Eq. (3.19) reduces to Eq. (3.13). Now, by

combining cases when k is chosen from 0 to Q − 1 (and so l from Q − 1 to 0) in Eq. (3.19), we get

YQ(n) = H̄QUQ(n), (3.21)

where

YQ(n) =
[

ȳ0,Q−1(n) ȳ1,Q−2(n) · · · ȳQ−1,0(n)
]

is a (2M + Q + L − 1) × Q matrix and

UQ(n) =
[

ū0,Q−1(n) ū1,Q−2(n) · · · ūQ−1,0(n)
]

(3.22)

is a (2M + Q − 1) × Q matrix. A special case of Eq. (3.21) when M = 4, L = 2, and Q = 3 is shown

as
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


y01 y04 y03

y02 y01 y04

y03 y02 y01

y04 y03 y02

ycp1 y04 y03

ycp2 ycp1 y04

y11 ycp2 ycp1

y12 y11 ycp2

y13 y12 y11

y14 y13 y12

y11 y14 y13

y12 y11 y14




=




h0 0 h2 h1 0 0 0 0 0 0

h1 h0 0 h2 0 0 0 0 0 0

h2 h1 h0 0 0 0 0 0 0 0

0 h2 h1 h0 0 0 0 0 0 0

0 0 h2 h1 h0 0 0 0 0 0

0 0 0 h2 h1 h0 0 0 0 0

0 0 0 0 h2 h1 h0 0 0 0

0 0 0 0 0 h2 h1 h0 0 0

0 0 0 0 0 0 h2 h1 h0 0

0 0 0 0 0 0 0 h2 h1 h0

0 0 0 0 0 0 h0 0 h2 h1

0 0 0 0 0 0 h1 h0 0 h2







u01 u04 u03

u02 u01 u04

u03 u02 u01

u04 u03 u02

u13 u04 u03

u14 u13 u04

u11 u14 u13

u12 u11 u14

u13 u12 u11

u14 u13 u12




. (3.23)

Note that Eq. (3.13) implies Eq. (3.21) without any additional assumptions. We can see this, for

example, by verifying that Eq. (3.14) is equivalent to Eq. (3.23). This may provide more insight for

Eq. (3.19). The new channel matrix H̄Q with a parameter Q maintains a Toeplitz-like structure plus

some sparse components: two triangular-shaped “residues” in the top and bottom few rows. As

Q increases, the Toeplitz component of H̄Q is elongated while the triangular-shaped components

keep the same size. We call the parameter Q the repetition index since for each composite block ȳ(n)

we can generate a matrix YQ(n) whose number of columns is Q.

Finally, if we accumulate J consecutive blocks (J ≥ 2) y(n), 0 ≤ n ≤ J − 1, we have J − 1

composite blocks ȳ(n), 1 ≤ n ≤ J − 1. Construct the (2M + Q + L − 1) × Q(J − 1) matrix

Y
(J)
Q =

[
YQ(1) YQ(2) · · · YQ(J − 1)

]
. (3.24)

Then, we have

Y
(J)
Q = H̄QU

(J)
Q ,

where

U
(J)
Q =

[
UQ(1) UQ(2) · · · UQ(J − 1)

]
(3.25)

is a (2M + Q − 1) × Q(J − 1) matrix.
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Theorem 3.2: H̄Q has full column rank 2M + Q − 1 if and only if H(z) as defined in Eq. (3.1) does

not have any zero at z = W l
M , 0 ≤ l ≤ M − 1. �

Proof: If H(W l
M ) = 0 for some l, then

[
1 W l

M W 2l
M · · · W

l(2M+Q−2)
M

]T

is a right annihilator of H̄Q and, hence, H̄Q does not have full rank. On the other hand, when

H(W l
M ) 6= 0 for any l, suppose H̄Q does not have full rank. Then there exists a nonzero vector

v =
[

vT
M1 vT

Q−1 vT
M2

]T

such that H̄Qv = 0. The lengths of vM1, vQ−1, and vM2 are M , Q− 1,

and M , respectively. Note that when Q = 1, the segment vQ−1 has a zero length (i.e., this segment

simply does not exist). Observe that HcirvM1 = 0. Since

det(Hcir) =

M−1∏

l=0

H(W l
M ) 6= 0,

we have vM1 = 0. Similarly, vM2 = 0 since det(Hcir2) 6= 0. If Q = 1, this already leads to

a contradiction. In the case when Q > 1, H̄Qv = 0 implies TQ−1(h)vQ−1 = 0 (see Eq. (1.1)

for definition of notation TQ−1(h)). But TQ−1(h) has full rank, so vQ−1 must also be zero. This

contradicts the fact that v is nonzero, and so H̄Q must have full column rank.

�

Note that when Q = 1, Theorem 3.2 reduces to Theorem 1. Theorem 3.2 states that the necessary

and sufficient conditions for H̄Q to have full column rank does not change whatever the repetition

index Q we use. Assume the channel H(z) does not have zeros at z = W l
M for any l. Then, H̄Q

has full column rank 2M + Q − 1. This assumption is usually reasonable since the probability

that a channel H(z) has a zero exactly at z = W l
M is zero. We also assume that there exists J

such that U
(J)
Q achieves full row rank 2M + Q − 1. Under these two assumptions, we obtain that

the (2M + L + Q − 1)-row matrix Y
(J)
Q has rank 2M + Q − 1. This means there exist L linearly

independent vectors gk, 1 ≤ k ≤ L such that

g
†
kY

(J)
Q = 0T . (3.26)

Since U
(J)
Q has full row rank, these vectors g

†
k are also annihilators of H̄Q.

For each annihilator g
†
k of H̄Q, we can construct a (2M + Q − 1) × (L + 1) matrix Gk in a way
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similar to Eq. (3.8) in Section 3.2 such that

Gkh = 0. (3.27)

The construction of Gk is conceptually easy. We simply inspect each column of H̄Q and find loca-

tions of each channel coefficient hi, 0 ≤ i ≤ L. For example, in the special case where M = 4, L = 2,

and Q = 3, the structure of Gk is given as

Gk =




gk1 gk2 gk3

gk2 gk3 gk4

gk3 gk4 gk5 + gk1

gk4 gk5 + gk1 gk6 + gk2

gk5 gk6 gk7

gk6 gk7 gk8

gk7 + gk,11 gk8 + gk,12 gk9

gk8 + gk,12 gk9 gk,10

gk9 gk,10 gk,11

gk,10 gk,11 gk,12




,

where gkl denotes the lth element of g
†
k. A systematic way of construction of Gk is given as follows.

First note that H̄Q = H2M+Q+L−1A, where the notation Hk was defined in Eq. (3.17) and A is

a sparse matrix defined as follows.

A =
[

AT
1 I2M+Q−1 AT

2

]T

,

where

A1 =
[

0L×(M−L) IL 0L×(M+Q−1)

]

and

A2 =
[

0L×(M+Q−1) IL 0L×(M−L)

]
.
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Now we have

0T = g
†
kH̄Q = g

†
kH2M+Q+L−1A

=
[

hL · · · h0

]
T T

L+1(g
†
k)A

= hTGkA,

where Gk = KL+1([01×L, (g†
k)T ,01×L]) is a Hankel matrix (see Eq. (1.2) for definition of the nota-

tion) composed of elements of g
†
k . Now, by simply choosing

Gk = ATGT
k ,

Eq. (3.27) is satisfied. By defining

G =
[
GT

1 GT
2 · · · GT

L

]T

, (3.28)

we now have Gh = 0. The channel coefficients h can be identified within a scalar ambiguity.

In presence of noise, the estimated annihilators g
†
k can be found by taking SVD on Y

(J)
Q and

choosing the L singular vectors associated with the L smallest singular values (similar to the de-

scription after Eq. (3.9)). Also, after constructing the G matrix, we use the vector h which minimizes

the norm of Gh as the estimated channel coefficients. This optimal estimation can be written as

ĥ = arg min
||h||=1

||Gh||2 = arg min
||h||=1

h†(G†G)h. (3.29)

3.3.2 Necessary Condition for Persistency of Excitation

Recall that the matrix U
(J)
Q defined in Eq. (3.25) must have full row rank. If U

(J)
Q does not have

full rank, some annihilators of Y
(J)
Q as defined in Eq. (3.26) may not be annihilators of H̄Q and will

result in failure of the proposed algorithm. Since U
(J)
Q has size (2M + Q − 1)× (J − 1)Q, it has full

row rank only when

(J − 1)Q ≥ 2M + Q − 1, (3.30)
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or

Q ≥ 2M − 1

J − 2
. (3.31)

This necessary condition for U
(J)
Q to have full row rank (2M + Q − 1) is not sufficient since it

still depends on the values of transmitted symbols uM (n). However, simulations in Section 3.5

show that (for most choices of M and input constellations) once inequality (3.31) is satisfied, the

probability that U
(J)
Q has full rank is very close to unity. Thus,

Q =

⌈
2M − 1

J − 2

⌉
(3.32)

is usually a valid choice in practice. A detailed study on the conditions of U
(J)
Q having full rank is

presented in Section 3.5. Now, if we choose

J ≥ 3,

then there exists Q such that U
(J)
Q can possibly have full rank. This suggests that the proposed

algorithm is potentially capable of identifying the channel from only three blocks. In Section 3.6 we will

demonstrate these with examples.

3.3.3 Repetition Index for the Forgetting Factor

The idea of using a repetition index Q can also be applied when a forgetting factor is used. The

technique of using a forgetting factor has been reviewed in Section 3.2 right before Eq. (3.10).

The “autocorrelation matrix” R
(0)
ȳȳ,Q is initiated as R

(0)
ȳȳ,Q = 0 and updated each time when a new

composite block ȳ(N − 1) is received as

R
(N)
ȳȳ,Q = αR

(N−1)
ȳȳ,Q + (1 − α)YQ(N − 1)[YQ(N − 1)]†, (3.33)

where α ∈ [0, 1] is the forgetting factor. The SVD of R
(N)
ȳȳ,Q is then taken, and the estimated anni-

hilators g
†
k chosen as the singular vectors associated with the smallest L singular values of R

(N)
ȳȳ,Q.

Note that N must satisfy N ≥ (2M + Q − 1)/Q to render R
(N)
ȳȳ,Q full rank. This means the first

channel estimation after initialization can be requested only when N ≥ (2M +Q−1)/Q. After this,

an estimation can be requested at any time instant N .
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3.3.4 Summary of the Proposed Algorithm

The proposed algorithm can be summarized as follows:

1. Given M and the CP length L, choose J and the repetition index Q such that

Q ≥ 2M − 1

J − 2
.

Some remarks on choosing a good pair of J and Q will be presented in Section 3.6.

2. Collect J blocks y(n) at the receiver and construct a (2M +L+Q− 1)× (J − 1)Q matrix Y
(J)
Q

as defined in Eq. (3.24). Let Z = Y
(J)
Q Y

(J)†
Q .

3. Perform SVD on Z so that

Z =
[

Us Un

]

 Σs 0

0 Σn





 U†

s

U†
n


 ,

where the diagonal entries of Σn are the L smallest singular values of Z.

4. Let gk be chosen as the kth column of Un. Construct the (2M + Q− 1)L× (L + 1) matrix G as

in Eq. (3.28).

5. Let ĥ be the eigenvector of G†G associated with the smallest eigenvalue. This is the estimated

channel vector within a scalar ambiguity.

When a forgetting factor is used, steps 1 and 2 are modified as follows.

1. Choose α ∈ [0, 1] and the repetition index Q. Some remarks of choosing a good α will be

presented in Section 3.6.

2. Update the “autocorrelation matrix” R
(N)
ȳȳ,Q as received blocks are accumulated. Choose Z =

R
(N)
ȳȳ,Q as defined in Eq. (3.33), where N is the block index when a channel estimation is

requested.

3.3.5 System Complexity

The computational complexity of the proposed algorithm is dominated by the SVD of the matrix Z,

whose size is 2M+Q+L−1. The computational complexity is proportional to O((2M+Q+L−1)3).
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Figure 3.2: The transceiver system equipped with a method to resolve scale-factor ambiguity.

A larger repetition index Q leads to a greater complexity. However, when M and L are much larger

than Q, this complexity increase due to increase of Q is not very serious. On the other hand, if Q is

chosen as large as 2M − 1 (e.g., when J = 3), the complexity increase can be significant.

3.3.6 Equalization and Resolving the Scalar Ambiguity

After estimating the channel coefficients, the receiver proceeds to equalize the effects of the frequency-

selective channels. A standard linear minimum mean square error (L-MMSE) equalizer is used at

the receiver. Figure 3.2 depicts the equalizer structure of the system. Here, Λ is a diagonal matrix

whose kth diagonal entry is

Λk,k =
EsĤ

∗(W k
M )

Es|Ĥ(W k
M )|2 + N0

, (3.34)

where Es is the average energy of transmitted symbols, N0 is the channel noise variance, and

Ĥ(W k
M ) =

∑L
l=0[ĥ]lWM

−kl is the frequency response of the estimated channel. Since there is a

scalar ambiguity in the estimated channel coefficients, all equalized symbols will be scaled by an

unknown complex-valued scalar c. A usual way to resolve this scalar is to introduce one extra pilot

symbol and compare it with the corresponding received symbol. If several blocks are using the

same channel estimate ĥ, the scalar ambiguity can be estimated as follows:

ĉ = argmin
c∈C

∑

n

||srec(n) − cspil(n)||2 (3.35)

=

∑
n s∗pil(n)srec(n)
∑

n |spil(n)|2 , (3.36)

where spil(n) is the pilot symbol of the nth block and srec(n) is the corresponding received pilot. We

set the first symbol of each source block s(n) as the known symbol (i.e., spil(n) = [s(n)]1) defined

as

spil(n) =
√

Esp(n mod 4),
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where
[

p0 p1 p2 p3

]
=

[
1 j −j −1

]
. There are definitely many other alternative de-

signs of these pilot symbols. The choice here is just to make sure that U
(J)
Q defined in Eq. (3.25)

would not become rank deficient due to the introduction of these pilot symbols.

3.4 Semi-Blind Channel Estimation in OFDM Systems

In this section, we extend the blind algorithm proposed above into a semiblind scenario. That is,

we assume there are some pilot samples at the transmitter that are known to the receiver. Specifi-

cally, we study the special case when R = W
†
M , where the CP system become an OFDM system. In

traditional pilot-assisted transmission, channel estimation is done by comparing the pilot samples

with the corresponding received pilots. In this section, we will develop a semiblind technique that

involves the blind technique proposed above and see how this can help improve system perfor-

mance.

3.4.1 Problem Formulation

Figure 3.3 shows a cyclic prefix (CP)-based OFDM system. It is a special case of Figure 3.1 where

the precoder R is set as the normalized inverse Fourier transform (IDFT) matrix. From (3.2), it can

be shown that

yM (n) = HciruM (n) + noise.

The vector yM (n) goes through an FFT operation and x(n) is obtained. Using the property that the

DFT matrix WM diagonalizes circulant matrices, the relationship of vectors x(n) and s(n) can be

written as

x(n) = diag(s(n))




H(ej0)

H(ej2π/M )

...

H(ej2π(M−1)/M )




+ noise. (3.37)

Suppose some samples of s(n) are chosen as pilot samples known to the receiver and do not

carry user information. Specifically, define the set of pilot indices

Cpil = {(m, n) |0 ≤ m ≤ M − 1, n ≥ 0, sm(n) is known} .

Consider the case where each channel estimate is obtained by using J consecutive received blocks
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Figure 3.3: A CP-based orthogonal frequency division multiplexing (OFDM) system.

y(n), n = t, t + 1, ..., t + J − 1. Let

C(t,J) = {(n, m)|t ≤ n ≤ t + J − 1, 0 ≤ m ≤ M − 1}

and let C(t,J)
pil = Cpil

⋂ C(t,J) be the pilot indices in the J blocks. Suppose C(t,J)
pil has a size K , and

denote the kth element of C(t,J)
pil as (nk, mk). Let

spil =
[

sm1
(n1) sm2

(n2) · · · smK
(nK)

]T

(3.38)

be the vector containing all pilot samples in these J blocks. The problem can be formulated as

follows. Given J received blocks y(n), n = t, t + 1, ..., t + J − 1, spil, and C(t,J)
pil , how do we estimate

the channel coefficients h?

The proposed semi-blind algorithm presented in this section is a combination of a pure pilot-

assisted algorithm and the blind channel estimation algorithm proposed previously in this chapter.

We will first review the pure pilot-assisted algorithm and then present the proposed algorithm.

As shown in Figure 3.4, all received samples, including the CP parts, will be used for a blind

estimation procedure. After FFT operation, received samples at the pilot positions will be used for

pilot-assisted estimation. These results will be combined to obtain an even more accurate estimate

than both the blind and the pure pilot-assisted algorithms.
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Figure 3.4: Illustration of the approach of the proposed semi-blind estimation algorithm.

3.4.2 Pure pilot-Assisted Channel Estimation

A pure pilot-assisted channel estimation method can be deployed (see [63] and the references

therein). From (3.37), it is readily verified that

x(n) =
√

Mdiag(s(n))WM,L+1h + noise, (3.39)

where WM,L+1 is an M × (L + 1) matrix composed of the first (L + 1) columns of WM . Let spil be

the pilot sample vector defined as in (3.38) and

xpil =
[

xm1
(n1) xm2

(n2) · · · xmK
(nK)

]
(3.40)

be the corresponding received pilot samples. Then from (3.39), we have

xpil = diag(spil)Fpilh + noise,

where Fpil is a K × (L+1) matrix whose kth row is the mkth row of WM,L+1 and can be expressed

as
[

1 e−j2πmk/M · · · e−j2πmkL/M
]
. (3.41)

A least-square estimate of h is given by

ĥ = arg min
h

||xpil − diag(spil)Fpilh||2.
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3.4.3 Proposed Algorithm

Note that the blind channel estimation algorithm proposed in Section 3.3 does not impose any

constraints on the input samples s(n) except for the requirement that U
(J)
Q as defined in (3.25) must

have full rank. This property is an advantage in adaption in semi-blind schemes: the positions

of pilot samples can be freely chosen, and their values do not have to be selected from a given

constellation. A semi-blind estimation technique can be devised by using both the information

obtained from the blind method and the pilot-assisted method described above. Specifically, we

can use the following expression as the objective function for channel estimation:

||xpil − diag(spil)Fpilh||2 + β||Gh||2, (3.42)

where β ≥ 0 is a constant which can be adjusted according to how much we are relying on the in-

formation obtained from blind method and from pilot-assisted method, respectively. The proposed

semi-blind algorithm is summarized as follows.

1. Collect J consecutive blocks y(n), n = t, t + 1, ..., t + J − 1 at the receiver, and construct a

(2M + L + Q − 1) × (J − 1)Q matrix Y
(J)
Q as defined in (3.24).

2. Perform SVD on Y
(J)
Q so that

Y
(J)
Q =

[
Us Un

]

 Σs 0

0 Σn





 V†

s

V†
n


 ,

where the diagonal entries of Σn are the L smallest singular values of Y
(J)
Q .

3. Let gk be chosen as the kth column of Un. Construct the (2M + Q− 1)L× (L + 1) matrix G as

in (3.28).

4. Collect the received pilot samples and form the vector xpil as defined in (3.40). Also construct

vector spil and matrix Fpil as defined in (3.38) and (3.41), respectively.

5. Take the estimate ĥ to be the value of h which minimizes the objective function defined in

(3.42), that is,

ĥ = argmin
h

(
||xpil − diag(spil)Fpilh||2 + β||Gh||2

)
. (3.43)
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3.5 On The Probability That U
(J)
Q Has Full Rank

Before presenting simulation results which demonstrate the performance of the above algorithms,

we discuss the technical issue of rank requirement of the matrix U
(J)
Q defined in Eq. (3.25) in greater

detail.

Recall that one assumption for the proposed algorithm is that the (2M + Q − 1) × Q(J − 1)

matrix U
(J)
Q must have full row rank. Inequality (3.31) is a necessary condition but is not sufficient

since whether U
(J)
Q has full rank or not ultimately depends on the content of U

(J)
Q . As long as the

contents of U
(J)
Q are chosen from a finite constellation, then there is always a nonzero probability

that U
(J)
Q is rank-deficient. To see this, simply consider the extreme case where the contents of U

(J)
Q

are always chosen as identical symbols. All subspace-based blind methods suffer from the possi-

bility of rank deficiency of the data matrix. In this section we will study how this probability of

rank deficiency changes when J and Q change. To facilitate our discussion, we formally define the

probability of U
(J)
Q having full rank as follows.

Definition 3.1: Consider a constellation S (which has at least two elements) and an M × M

nonsingular precoder R. Let each element of the M × J matrix S =
[

s(0) s(1) · · · s(J − 1)
]

be independently selected from the constellation S with equal probabilities. Let uM (n) = Rs(n),

and let U
(J)
Q be defined as in Eq. (3.25). For J ≥ 2, Q ≥ 1, the probability that U

(J)
Q has full rank

will be denoted as PS,R(J, Q). �

�

Obviously, PS,R(J, Q) = 0 whenever (J − 2)Q < 2M − 1. Also, we have PS,R(J + 1, Q) ≥

PS,R(J, Q) and PS,R(J, Q + 1) ≥ PS,R(J, Q). The former inequality comes from the fact that the

row rank of a matrix never decreases when additional columns are appended, and the latter can be

verified by the following theorem. These inequalities show that both increasing J and increasing

Q have the potential to increase the probability that U
(J)
Q has full rank.

Theorem 3.3: If U
(J)
Q has full row rank (2M +Q−1), then U

(J)
Q+1 also has full row rank (2M +Q). �

Proof: See Appendix 3.8.1.

�
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Figure 3.5: The probability of U
(J)
Q having full rank in SC-CP systems.

When J approaches infinity, it can be shown that limJ→∞ PS,R(J, Q) = 1 for any constellation

S and precoder R (and any Q ≥ 1). However, this is not the case when we increase Q. The proba-

bility of full rank of U
(J)
Q always stops increasing when Q ≥ 2M − 1, which can be verified by the

following theorem.

Theorem 3.4: If U
(J)
Q does not have full rank when Q = 2M − 1, then U

(J)
Q does not have full rank

for any Q. �

Proof: See Appendix 3.8.1.

� Combining Theorems 3.3 and 3.4, we immediately have

PS,R(J, Q) = PS,R(J, 2M − 1)

for any Q ≥ 2M − 1.

We perform simulations with three commonly used constellations in communications: BPSK,

QPSK, and 16-QAM. The M × M precoder R is chosen as IM for SC-CP systems and W† for

OFDM systems. Although the exact probability of U
(J)
Q having full rank can be actually obtained

by testing all possible transmitted data, an exhaustive simulation is barely feasible. For each J ≥ 3,

the simulations are performed under two values of Q = 2M−1 and Q = ⌈(2M − 1)/(J − 2)⌉. When
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Figure 3.6: The probability of U
(J)
Q having full rank in OFDM systems.

Q = 2M − 1, the simulation gives an upper bound of PS,R(J, Q) for a given J , and the simulation

where Q = ⌈(2M − 1)/(J − 2)⌉ gives a lower bound of nonzero PS,R(J, Q). M is chosen as 16.

Figures 3.5 and 3.6 show the results when the precoder is chosen as an identity matrix and an

IDFT matrix, respectively. Some comments on these results are made below.

1. As expected, the probability of U
(J)
Q having full rank is smaller when a smaller constellation

is used or when J is smaller. When J ≥ 12, the probability becomes very close to unity for

all combinations of constellations and precoders. When a 16-QAM constellation is used, the

probability is already very high when J = 5.

2. It should be especially noted that the probability of U
(J)
Q having full rank is significantly

smaller when R is chosen as the IDFT matrix than when R is an identity matrix. An expla-

nation of this phenomenon can be found in Appendix 3.8.2. This phenomenon suggests the

proposed algorithm is more stable when operated in SC-CP systems than in OFDM systems

when the constellation is small and/or when J is small.

3. Finally, although the theory suggests PS,R(J, 2M −1) ≥ PS,R(J, ⌈(2M − 1)/(J − 2)⌉), in sim-

ulation the above two quantities look almost the same so that a conjecture may be made that

PS,R(J, Q) = PS,R(J, ⌈(2M − 1)/(J − 2)⌉) for any Q ≥ ⌈(2M − 1)/(J − 2)⌉. This conjecture,

however, has not yet been verified or disproved at the time of writing of this chapter.
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3.6 Simulation Results and Discussions

In this section, we conduct several Monte Carlo simulations to demonstrate the performance of

the proposed method under different system parameters: the number of collected blocks J , the

repetition index Q, and the forgetting factor α. The block size M is chosen as 64, and the length

of cyclic prefix is L = 16. The sample period is 1µs, and so the block length is 80 µs. We assume

perfect block synchronization in all simulations. Note that in practice a blind block synchronization

must be done before blind channel estimation can be performed. Recall that all previously reported

algorithms in the literature use Q = 1.

3.6.1 Static Channels

We first test our methods in static channel environments. The channel is an FIR filter whose order

is upper bounded by the CP length L = 16. The constellation of source symbols is QPSK, and the

precoder R is chosen as the identity matrix (i.e., an SC-CP system). The simulation is performed

over 500 different channels generated by Rayleigh fading statistics according to Table 3.1. The

normalized least squared channel estimation error, denoted as Ech, is used as the figure of merit

for channel estimation and is defined as follows:

Ech =
1

Nch

[
Nch∑

k=1

min
c∈C

||cĥk − hk||2
||hk||2

]
,

where Nch is the number of channel estimates performed, hk is the true channel vector, and ĥk is

the channel estimate with a scalar ambiguity as defined in Eq. (3.29).

Delays Avg. Power Delays Avg. Power
Tap (µs) (dB) Tap (µs) (dB)

1 0 0.0 9 8 -6.9
2 1 -0.9 10 9 -7.8
3 2 -1.7 11 10 -4.7
4 3 -2.6 12 11 -7.3
5 4 -3.5 13 12 -9.9
6 5 -4.3 14 13 -12.5
7 6 -5.2 15 14 -13.7
8 7 -6.1 16 15 -18.0

Table 3.1: Power delay profile of the channel model used in Section 3.6
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The simulation results for normalized channel estimation error Ech is shown in Figure 3.7, and

the corresponding bit-error-rate (BER) plot is presented in Figure 3.8. When J = 86 and Q = 1, the

algorithm simply does not work since inequality (3.31) is not satisfied. This means the previously

reported methods are unable to perform blind channel estimation using only 86 blocks. When we

choose Q = 2, the algorithm works with a fairly satisfactory result. When Q = 3, the system

performance further improves.

When the number of received blocks is J = 129, the algorithm works, but not very well, with

Q = 1. In view of inequality (3.31), this is the minimum number of blocks J needed for any

previously reported algorithm (Q = 1). If we use Q = 2, the performance has a significant boost.

This suggests that choosing Q larger than necessary sometimes yields a better performance. When

J = 257, the performance is even better since more data are available for blind estimation. Using

Q = 2 stills slightly improves the system performance, but the improvement is not as large as in

the previous cases. It is worthy to note that the performance curves of three cases where “J =

86; Q = 3,” “J = 129; Q = 2,” and “J = 257; Q = 1” are very close to each other. Recognizing that

(J−1)Q are very close to each other in these three cases, this phenomenon suggests that the system

performance could be directly proportional to the number of column of Y
(J)
Q ((J − 1)Q) as defined

in Eq. (3.24) regardless of the actual number of accumulated received blocks (J).

We repeated the same simulation settings for other constellations and precoders R. Figure 3.9

depicts the BER performance where a 16-QAM constellation and a precoder R = IM are used. The

BER performance of the case where a QPSK constellation and a precoder R = W† (i.e., an OFDM

system) are used are shown in Figure 3.10. All these results exhibit similar characteristics to the

case described in the previous paragraph.

3.6.2 Simulations with smaller J

We also test our algorithm when the number of available received blocks are smaller, with nine

different values of J ranging from 3 to 64. Note that J = 3 is the smallest integer that satisfies

inequality (3.30). The repetition index Q is chosen as

Q =

⌈
2M − 1

J − 2

⌉
+ 3

for each J . Here we choose repetition indices larger by three than needed, in order to achieve a bet-

ter system performance. Other system parameters are the same as in the first simulation in Section
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Figure 3.7: Normalized mean squared error of channel estimation for static channels with the QPSK
constellation in SC-CP systems.
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Figure 3.8: Bit error rate performance for static channels with the QPSK constellation in SC-CP
systems.
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Figure 3.9: Bit error rate performance for static channels with the 16-QAM constellation in SC-CP
systems.
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Figure 3.10: Bit error rate performance for static channels with the QPSK constellation in OFDM
systems.

V-A. The BER performance is shown in Figure 3.11. When J = 3, the BER decreases slowly as SNR

increases. This demonstrates the theoretical limit on the number of received blocks required for

the proposed system, as argued in Sec. 3.3.2. However, when J is smaller than 10, the BER perfor-

mances as shown in Figure 3.11 are usually unrealistic in practice. Also, a small J requires a large

Q, which imposes a very demanding computational complexity. These observations largely limit

the applicability of the proposed algorithm with these extremely small J in practical situations.

When the number of available received blocks is larger, the BER performance is much better.

When J = 10 and Q = 19, a BER of around 10−5 is achieved when SNR is 30 dB. When J = 20

and Q = 11, the BER is on the order of 10−5 when SNR is 25 dB. The SNR margin between the

BER curves of this case (J = 20) and of the case of known channel is around 5 dB at BER= 10−4.

When J = 30 and J = 40, this margin reduces to around 4 dB and 3dB, respectively. These results

are considered acceptable BER in some practical applications (note that the presented results are

all un-coded BER). Since J = 30 is slightly less than half the block size M = 64, we can argue

that the minimum number of received blocks required in a practical situation is on the order of half block

size. Three more similar simulations results with M = 32, M = 128, M = 256 strengthen this

argument. Due to high similarity and space limit, they are not shown here. Compared to previously

reported subspace-based blind algorithms [32, 5, 21], which always require a number of received

blocks larger than twice the block size, the introduction of repetition index indeed largely reduces the

required number of received blocks.
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Figure 3.11: Bit error rate performance for static channels with the QPSK constellation in SC-CP
systems when J is small.
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Figure 3.12: Bit error rate performance for blind estimation systems when the Doppler frequency is
5 Hz (5.4 km/hr).
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Figure 3.13: Bit error rate performance for blind estimation systems when the Doppler frequency is
50 Hz (54 km/hr).
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3.6.3 Time-Varying Channels

We now test our algorithm in an environment of time-varying channels. For time-varying channels

there is always a dilemma for subspace-based blind channel estimation algorithms in choosing

the number of accumulated blocks (J). When J is large, the channel state may have changed

significantly during data accumulation so that the estimation results could be meaningless. When

J is small, the performance would be poor due to very limited amount of available data. With the

introduction of repetition index Q, this problem can be solved to a certain extent.

In our simulation, the channel model considered is a random FIR channel with an order upper

bounded by the CP length whose characteristics is shown in Table I. A standard Jakes’ Doppler

spectrum is used, and Rayleigh fading statistics are assumed for all taps[18]. A channel estimate is

obtained using data of J consecutive blocks and then used to equalize the middle NB blocks of the

J blocks, where NB is usually chosen as an integer small than or equal to J . One reason of doing

this is, in the context of time-varying channels, the channel estimate obtained from J blocks may

not be very accurate for the first few and the last few of the J blocks. In order to equalize each

received block, a channel estimate is obtained every NB blocks.

For the first simulation, the Doppler frequency is chosen as 5 Hz, which corresponds to an

object speed 1.5 m/s (5.4 km/hr) if the carrier frequency is 1 GHz. The symbol duration is 10−6

seconds. This setting implies that the channel coefficients become totally uncorrelated in around

0.08 seconds (i.e., coherence interval), equal to 80,000 symbol durations, or 1,000 received blocks.

A channel estimate is performed once for a time duration of 50 blocks (i.e., NB = 50). The plot

of BER performance is shown in Figure 3.12. In the low SNR region, the case where J = 258

and Q = 2 has the best performance. However, in the high SNR region, the case where J = 86

and Q = 3 becomes the best. Note that in the high SNR region, except for a few cases (where

inequality (3.30) is not satisfied or is satisfied with a very small margin), the BER is greater when

J is larger. This is because when channel noise is small, the channel estimation error comes solely

from channel variation due to accumulation of a large number of blocks. In the low-SNR region,

curves with similar values (J − 1)Q tend to have similar performances, just like what has been

observed in static channel environments. We also compare an adaptive scheme where a forgetting

factor λ = 0.99 is used. When Q = 1, the performance is not very good. Now if we choose Q = 2, a

considerable improvement over Q = 1 is observed. Although the performance of forgetting factor

schemes is not very good when SNR is high, they could be more promising than methods using a
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fixed J in the low-SNR region.

Due to channel variation, the channel estimation error does not converge to zero even when

the SNR is very high. As a consequence, the linear MMSE receiver defined in Eq. (3.34) becomes

inaccurate when the SNR is large since the channel estimation error constitutes a larger variance

than channel noise. In the simulation for the BER plot, we slightly adjust the linear MMSE equalizer

defined in Eq. (3.34) as

Λk,k =






EsĤ∗(W k
M )

Es|Ĥ(W k
M

)|2+N0

if N0 ≥ Nt

EsĤ∗(W k
M )

Es|Ĥ(W k
M

)|2+Nt

if N0 < Nt

, (3.44)

where Nt is the threshold noise level. In this case we choose Nt = 10−3 since the channel mean

square error approaches at a value greater than or equal to 10−3 in most settings (the plot for

channel mean square error is not shown due to space limit).

For the second simulation, the Doppler frequency is chosen as 50 Hz, which corresponds to an

object speed 15 m/s (54 km/hr) if the carrier frequency is 1 GHz. The symbol duration is 10−6

seconds. This setting implies that the coherence interval is around 8 × 10−3 seconds, equal to

8,000 symbol durations, or 100 received blocks. Since the channel is varying much faster than the

previous case, we need to choose a much smaller J . The number of blocks J is ranging from 12 to

80, the parameter Q is chosen as the minimum value for each J , and NB is chosen as J/2 for each

J . The BER plot is shown in Figure 3.13. A modified linear MMSE receiver as defined in Eq. (3.44)

with Nt = 10−2 is used when producing the BER plot. When J = 80, the performance is fairly

poor since the estimated channel coefficients are hardly accurate due to channel variation. When

the number of received blocks J is reduced, the performance becomes better, and J = 32 yields the

best performance in the low-SNR region among all values of J chosen in this simulation. When an

even smaller J is chosen, performance in low-SNR region becomes worse again due to lack of data

available for estimation. For high-SNR region, “J = 12; Q = 13” has the best performance. We also

test the algorithm with a forgetting factor chosen as α = 0.7 and repetition index as Q = 13. In

this setting the data obtained 12 blocks earlier will be given a weighting of α12 ≈ 0.0138. If we use

1% as a threshold, we could say that the autocorrelation matrix (as defined in Eq. (3.33)) contains

effective information from 12 composite blocks. This setting outperforms all other settings using a

fixed J , which suggests the forgetting factor technique is more promising in a fast-varying channel

environment. It should be especially noted that using a large repetition index Q = 13 makes it

possible to choose a forgetting factor as small as 0.7. As shown in the plots, the same forgetting
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factor does not work at all for Q = 1.

In all our simulations above, we used M = 64. However, in some applications, M can have

a much larger value (e.g., M = 1024). In this case, the task of blind estimation is more sensitive

to time-varying channels. The number of blocks J needs to be chosen even smaller to fit in a

coherence interval. Note that J can be chosen as small as three. This implies the requirement of a

larger repetition index Q. As we learned in Section 3.5, the problem of rank deficiency of U
(J)
Q may

arise. However, since M is large, the probability of rank deficiency would be much smaller. So the

proposed algorithm has the potential to work well in the case of time-varying channels and a large

M . The only concern here may be a high complexity as can be seen in Section 3.3.5.

3.6.4 Simulation Results for Semi-BlindK = 2 0 K = 1 5
encyi nd ex encyi nd exF reque F reque

O F D M s y m b o l i n d e x O F D M s y m b o l i n d e x
Figure 3.14: Pilot positions for K = 20 (left) and K = 15 (right).

In this subsection, we present the simulation results of the proposed semi-blind algorithm. We

choose M = 64 and L = 15. The data symbols are chosen from a 64-QAM constellation to demon-

strate the capability of the proposed algorithm with a large constellation. We use a 16-tap Rayleigh

random channel whose power delay profile is defined as in Table 3.1. One thousand realizations of

the channel are used in the simulation. We use two different pilot symbol configurations. In config-

uration 1, as shown in the left part of Figure 3.14, pilot samples are placed in 16 different frequency

bins. In configuration 2, as depicted in the right part of Figure 3.14, only 12 different frequency bins
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Figure 3.15: Comparison of pilot-based and semi-blind methods in channel estimation mean square
error performance.

are used for pilot samples. The pilot samples are chosen so that they are uniformly distributed in

an OFDM symbol to achieve the optimal positions [64]. In both configurations the pilot patterns

repeat for every 8 OFDM symbols. Note that for a 16-tap channel, a pure pilot-assisted scheme

requires pilot samples to be placed in at least 16 frequency bins. Each pilot sample has an absolute

value
√

Es, where Es = 42 is the average sample energy for a 64-QAM constellation.

Ten blocks are used for each channel estimate (J = 10). Channel estimation is performed for

every 5 OFDM symbols, i.e., for the kth channel estimate, t is chosen as 5k. The repetition index is

chosen as Q = 25 so that inequality (3.30) is satisfied. Notice that it is the idea of repetition index

that makes it possible to choose the number of blocks as small as 10. It can be observed that for

each channel estimation, K = 20 pilot samples are available for configuration 1, while K = 15 for

configuration 2. The parameter β defined in (3.42) is 32. This value is chosen to give the best system

performance based on empirical observations. The performance metric in channel estimation mean

square error is defined as

Ech = E

[
1

Nch

Nch∑

k=0

||ĥk − h||2
]

,

where the expectation is taken over 1,000 different channel realizations, Nch is the number of total

channel estimates for each channel realization, and ĥk is the kth channel estimate. Figure 3.15

shows the simulation results. For the least square pure pilot-assisted method, configuration 2

(K = 15) does not work, while configuration 1 (K = 20) has a satisfactory performance. The



78

10 15 20 25 30 35

10
−4

10
−3

10
−2

10
−1

E
s
 / N

0
 (dB)

B
it 

E
rr

or
 R

at
e

[64−QAM] M=64; L=16; J=10

 

 

LS K=20; J=10
Blind K=20; J=10; Q=25

SemiBlind K=20; Q=25; β=32
LS K=15; J=10
SemiBlind  K=15; Q=25; β=32
Known Channel

Figure 3.16: Comparison of pilot-based and semi-blind methods in bit error rate performance.

pure blind method works properly, but the performance is obviously worse than the pure pilot-

assisted method with K = 20. When a semi-blind technique with β = 32 is used, the performances

for both K = 20 and K = 15 are better than those of pure pilot-assisted method.

Based on the estimated channel coefficients, a linear minimum mean square error (L-MMSE)

equalizer is used in OFDM symbol recovery [60]. The kth channel estimate ĥk is used for equalizing

the OFDM symbol numbers 5k +3 to 5k + 7. Equalized symbols then go through detection devices

and bit error rate (BER) performance of the system is evaluated which is shown in Figure 3.16.

We see that the semi-blind method with K = 15 has an even better performance than the pure

pilot-assisted method with K = 20 when the Es/N0 ratio is greater than 23 dB. This suggests the

proposed semi-blind algorithm does reduce the number of pilot samples for achieving the same

BER performance.

3.7 Conclusions

In this chapter we proposed a generalized algorithm for subspace-based blind channel estimation

in cyclic prefix systems. The repetition index (Q) was introduced as a new system parameter. By

using a repetition index larger than unity, the number of received blocks (J) is significantly reduced

compared to previously reported methods so that the proposed algorithm is more feasible in time-

varying channel environments. A necessary condition on the system parameters J and Q for the
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algorithm to work is derived. The number of received blocks J ≥ 3 can be chosen depending on

the speed of channel variation to yield the best performance. The generalization can also be applied

to blind methods using a forgetting factor α.

Simulation shows that when the number of received blocks J and the repetition index Q are

properly chosen, the generalized algorithm outperforms previously reported special cases, espe-

cially in a time-varying channel environment. The proposed method can be directly applied to

existing systems such as OFDM, SC-CP, etc., without any modification of the transmitter structure.

We also proposed a semi-blind channel estimation algorithm in OFDM systems based on a com-

bination of a pure pilot-assisted algorithm and the blind algorithm proposed in this chapter. The

proposed semiblind algorithm is presumably the first one to be applicable with any type of com-

munication constellations and a limited number of received blocks. Simulation results confirm the

improvement in system performance of the semi-blind algorithm over the direct pilot-assisted algo-

rithm. They also suggest that fewer pilot samples can be used to achieve the same BER performance

when a semi-blind algorithm is employed.

In the future, many aspects are worthy of further investigation. For example, developing the

strategy to find the optimal J and Q or the optimal α and Q given knowledge of channel variation

can be a challenging yet important problem. Extending this scheme for multi-input-multi-output

(MIMO) channels is also of great interest. As for the semiblind algorithm, it may be interesting to

analytically derive the optimal parameter β. The optimal design of the pilot symbol configurations

(i.e., pilot position, value, etc.) for the semi-blind algorithm is still an unknown but important issue.

3.8 Appendix

3.8.1 Proofs of Theorems

Proof of Theorem 3.3: Assume U
(J)
Q+1 does not have full row rank. Then there exists a nonzero row

vector vT =
[

v1 · · · v2M+Q

]
such that vT U

(J)
Q+1 = 0T . From the definition in Eq. (3.25), we

obtain that vT is a left annihilator of UQ+1(n) for 1 ≤ n ≤ J−1. The notation of UQ(n) was defined

in Eq. (3.22). Notice that UQ(n) is a submatrix of UQ+1(n) and can be obtained by removing the

first row and the first column of UQ+1(n), or by removing the last row and the last column of

UQ+1(n). This means that both vT
1 =

[
v1 · · · v2M+Q−1

]
and vT

2 =
[

v2 · · · v2M+Q

]
are
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left annihilators of UQ(n) for 1 ≤ n ≤ J . So vT
1 U

(J)
Q = vT

2 U
(J)
Q = 0T . Since vT is nonzero, at

least one of vT
1 and vT

2 must also be nonzero. This implies that U
(J)
Q does not have full rank and

contradicts the assumption. �

Proof of Theorem 3.4: Let Ũ
(J)
Q = KU

(J)
Q where

K = I2M+Q−1 −



 0(M+Q−1)×M IM+Q−1

0M×M 0(M+Q−1)×M



 .

Then, we have rank(Ũ
(J)
Q ) = rank(U

(J)
Q ) since K is nonsingular. Also define ŨQ(n) = KUQ(n)

where UQ(n) is defined as in Eq. (3.22). It can be shown that ŨQ(n) can be written as

ŨQ(n) =
[

[T(n)]T [C(n)]T
]T

,

where T(n) = TQ (uM (n − 1) − u′
M (n)) is an (M +Q−1)×Q Toeplitz matrix and the M ×Q matrix

C(n) =
[

[u′
M (n)]1M [u′

M (n)]2M+1 · · · [u′
M (n)]M+Q−1

2M+Q−2

]

has a “circulant” structure. For simplicity, hereafter we denote a(n) = uM (n − 1) − u′
M (n) and

b(n) = u′
M (n). We also define polynomials in x as A(x) =

[
1 x · · · xM−1

]
a(n) and B(x) =

[
1 x · · · xM−1

]
b(n). ŨQ(n) is a (2M + Q− 1)×Q matrix and has at least (2M − 1) linearly

independent left annihilators. These annihilators can always be written in the following forms,

regardless of the value of Q:

v
†
k(n) =

[
1 αk · · · αM+Q−2

k 01×M

]
, 1 ≤ k ≤ M − 1 (3.45)

and

v
†
M−1+k(n) =

[
B(W−k

M )w†
k −A(W−k

M )x†
k

]
, 1 ≤ k ≤ M, (3.46)

where {α1, α2, · · · , αM−1} are distinct roots of the polynomial A(x) , w†
k =

[
1 W−k

M · · · W
−k(M+Q−2)
M

]
,

and x
†
k =

[
1 W−k

M · · · W
−k(M−1)
M

]
. Please note that annihilators in the form of Eq. (3.45)

come because of the Toeplitz structure of T(n) and annihilators in the form of Eq. (3.46) come be-

cause A(W−k
M ) and B(W−k

M ), the DFT coefficients of a(n) and b(n), respectively, cancel each other

when ŨQ(n) is multiplied by v
†
M−1+k defined inEq. (3.46). Here we omit the index n in polynomi-

als A(x) and B(x) for the sake of notational simplicity. Also note that vectors vk, 1 ≤ k ≤ 2M − 1,

are always linearly independent as long as 1) the polynomial A(x) has degree M − 1; 2) all roots of
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A(x) are distinct; and 3) none of roots of A(x) is on the DFT grid. When any of these is not true, a

slight modification of Eqs. (3.45) and (3.46) can be found so that they are still linearly independent.

If Ũ
(J)
Q is rank-deficient and there exists any left annihilator of Ũ

(J)
Q , in the form of either Eq.

(3.45) or Eq. (3.46), then Ũ
(J)
Q is rank-deficient for all Q, since the same form of vectors will continue

to be annihilators of Ũ
(J)
Q . Now, we will prove that if Ũ

(J)
2M−1 is rank-deficient (as assumed in the

theorem statement), then at least an annihilator in the form of either Eq. (3.45) or Eq. (3.46) will

be a common annihilator for all ŨQ(n). Suppose this is not the case and there exist two nonzero

ŨQ(n), say, ŨQ(1) and ŨQ(2), without loss of generality, which do not have common annihilators.

Since Ũ
(J)
Q is rank-deficient when Q = 2M − 1 (as assumed in the theorem statement), there exists

a nonzero (4M − 2)-row vector v† such that v†Ũ
(J)
2M−1 = 0T . Clearly v† is also an annihilator of

Ũ2M−1(1) and Ũ2M−1(2). Thus, v† can be decomposed into the following form:

v† =

2M−1∑

k=1

ckv
†
k(1) =

2M−1∑

k=1

dkv
†
k(2),

where v
†
k(n), 1 ≤ k ≤ 2M − 1, n = 1, 2 are as defined in Eqs. (3.45) and (3.46) with Q = 2M − 1. So

we have

V



 c

−d



 = 0, (3.47)

where c and d are (2M − 1)-column vectors containing coefficients ck and dk, respectively, and V

is a (4M − 2) × (4M − 2) matrix whose columns are vk(n), 1 ≤ k ≤ 2M − 1, n = 1, 2. Since the

annihilators of ŨQ(1) and ŨQ(2) are linearly independent, V has full rank. Thus, Eq. (3.47) implies

c = d = 0 and hence v† = 0T . This contradicts the assumption that Ũ
(J)
2M−1 is rank-deficient. This

completes the proof. �

3.8.2 Probability of U
(J)
Q having full rank for different precoders

We now explain why the probability of U
(J)
Q having full rank is much smaller when R = W than

R = I. As explained in the proof of Theorem 3.4, if U
(J)
Q does not have full rank for Q ≥ 2M − 1,

then a row vector v† in the form of either Eq. (3.45) or Eq. (3.46) will be a common annihilator of

ŨQ(n). The probability of this depends on how many possible values of these vectors there are.

Focusing on Eq. (3.46), since w
†
k and x

†
k are fixed, the variety of this form of annihilators comes

from the values of A(W−k
M ) and B(W−k

M ), which are Fourier transforms of a(n) and b(n). If there

is no precoding (i.e., R = I), the number of possible values of A(W−k
M ) and B(W−k

M ) can be quite
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large. On the contrary, when an IDFT precoder is used (i.e., R = W†), A(W−k
M ) and B(W−k

M ) can

only be symbols in the constellation or the difference of two of them. Since the possible values of

A(W−k
M ) and B(W−k

M ) are much fewer, it is more likely that a common annihilator of Ũ
(J)
Q in this

form exists, so the probability of U
(J)
Q having full rank is smaller in OFDM systems.
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Chapter 4

Blind Block Synchronization for
Transceivers Using Redundant
Precoders

In Chapters 2 and 3, we studied blind channel estimation in block transmission systems using linear

redundant precoding. These algorithms, as well as other blind algorithms studied in the literature

[45, 36, 49, 76, 5, 32, 31, 24, 35], assume that block boundaries of the received streams are perfectly

known to the receiver. In practical applications, however, this assumption is usually not true since

no extra known samples are transmitted. The problem of blind recovery of block boundaries of

the received signal is therefore important. However, up to date, the problem of blind block syn-

chronization has not yet been given as much attention as the blind channel estimation problem

has. In this chapter, we consider the blind block synchronization problem in ZP and CP systems.

For ZP systems, the first blind block synchronization algorithm was proposed by Scaglione et al.

[45]. The blind synchronization algorithm uses the rank deficiency property of a matrix composed

of received samples, which was first used in a blind equalization algorithm also proposed in [45].

The rank deficiency property of the aforementioned matrix is valid at perfect block synchroniza-

tion but is no longer valid when a nonzero timing mismatch is present. The algorithm proposed in

[45] shows that block synchronization algorithms can be connected with existing blind channel es-

timation/equalization algorithms that exploit matrix null spaces. The blind block synchronization

problem in CP systems may be of more importance since it is a broader version of the timing syn-

chronization or the symbol synchronization problem in the popular orthogonal frequency division

multiplexing (OFDM) systems. A number of blind block synchronization algorithms for OFDM

systems have been developed [33, 20, 1, 72, 34]. In particular, in [33] Negi and Cioffi proposed the
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first blind OFDM symbol synchronization for frequency selective channels.

These previously reported methods, however, require a large amount of received data to ob-

tain accurate statistics for successful block synchronization. As we examine these previously re-

ported blind block synchronization algorithms, we find that block synchronization algorithms can

be connected with existing blind channel estimation/equalization algorithms that exploit matrix

null spaces. In recent years, more advanced blind channel estimation algorithms, including those

presented in Chapters 2 and 3, were developed. These suggest more opportunities to develop

new blind channel synchronization algorithms that may possess new features. The feature of using

much less received data in the blind channel estimation algorithms can also be properly transferred

to blind synchronization algorithms if we adopt the concept of repetition index. The blind block

synchronization algorithm for ZP systems proposed in this chapter will explore this idea. Another

novelty is that the proposed method for ZP systems is based on a subspace of dimension L rather

than one as in [45] (where L is the channel order). This idea, combined with the repetition index,

is shown to significantly improve the performance with sufficient amount of received data. As for

CP systems, our approach to reduce the required amount of received data resorts to employing

the idea of repetition index. As the idea of repetition index was recently extended to blind chan-

nel estimation in CP systems [60], we propose a new blind block synchronization algorithm in CP

systems based on the foundation of [60]. Our proposed algorithm possesses two advantages over

the previously reported methods: 1) In absence of noise, the proposed algorithm provides correct

recovery of block boundaries using only three received blocks, whereas all previously reported al-

gorithms require the number of received blocks to be no less than the block size. 2) When noise is

present, simulation results as reported in Section 4.5 show that given the same amount of received

data, the proposed algorithm has an obvious improvement in blind block synchronization error

rate performance over the previously reported algorithm in [33].

The content of this chapter is mainly drawn from [59], and portions of it have been presented in

[61] and submitted to [62].

4.1 Outline

The chapter will be organized as follows. In Section 4.2, the problems of interest, namely the blind

block synchronization problems in ZP and CP systems, respectively, will be formulated.

In Sections 4.3 and 4.4, the proposed blind block synchronization algorithms in ZP and CP
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Figure 4.2: Illustration of blind block synchronization problem in ZP and CP systems.

systems, as well as their theoretical foundations, will be presented, respectively. In Section 4.5,

simulation results are provided to evaluate the system performances of the proposed algorithms

and to compare them with those of previously reported algorithms. Finally, the conclusions are

made in Section 4.6.

4.2 Problem Formulation

4.2.1 Redundant Block Transmission Systems

Figure 4.1 shows the structure of a block transmission system. The data samples, s(n), are blocked

into vectors s(n) of size M . Let L be a positive integer indicating the redundancy inserted in each

block, and assume M > L. The precoded vector, u(n), of size P = M +L is obtained by multiplying

a P × M matrix R with s(n) . The vector sequence u(n) is then unblocked into a scalar sequence

u(n) before being sent over the channel. The channel is characterized as an FIR system with a
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maximum order L, i.e.,

H(z) =

L0∑

k=0

hkz−k,

where L0 ≤ L. Assume h0 and hL0
are nonzero. Define h as the (L + 1)-vector

[
h0 h1 · · · hL

]T

,

where the values of hk are set to zeros for any k, L0 < k ≤ L. The integer L0 is called the effective

channel order. The signal at the channel output is corrupted by an additive white Gaussian noise

e(n). At the receiver side, the received sample stream y(n) is blocked into vectors y(n) of size P .

An equalizer, characterized by an M × P matrix E, is used to recover the data blocks s(n).

While the redundant precoder can be designed as any rank-M matrix R, we consider specifi-

cally two commonly used classes of LRPs in this paper: the zero-padding (ZP) precoders and the

cyclic prefixing (CP) precoders. A block transmission system using a ZP or CP precoder is called a

ZP system or an CP system, respectively.

In a ZP system, the matrix R has the form of

R =



 Rzp

0L×M



 ,

where Rzp is an M × M nonsingular matrix. Each precoded block u(n) is composed of a data part

of length M followed by a zero block of length L. Due to trailing zero introduced in each block at

the transmitter, each received block y(n) can be expressed as [45]

y(n) = TM (h)Rzps(n) + e(n), (4.1)

where e(n) is the blocked version of e(n). Note that y(n) depends only on s(n) and not on s(k)

where k 6= n, so the inter-block interference (IBI) is completely eliminated.

In a CP system, the precoder matrix R has the form of

R =



 0L×(M−L) | IL

IM



 · Rcp,

where Rcp is an M × M nonsingular matrix. Each precoded block u(n) is composed of a cyclic

prefix ucp(n) of length L followed by the precoded data uM (n) = Rcps(n) of length M . The cyclic
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prefix is a copy of the last L elements of the precoded data (i.e., ucp(n) = [uM (n)]M−L+1:M ). Each

received block can be expressed as

y(n) =


 ycp(n)

yM (n)


 =


 Hlucp(n) + Huucp(n − 1)

HciruM (n)


 , (4.2)

where Hcir is an M ×M circulant matrix [67] whose first column is
[

h0 · · · hL 0 · · · 0
]T

and where

Hl ,




h0 0

...
. . .

hL−1 · · · h0


 and Hu ,




hL · · · h1

. . .
...

0 hL




are L × L matrices. We can see that ycp(n), the CP part of y(n), contains IBI, but yM (n) is free

from IBI. In particular, when Rcp is chosen as the normalized inverse DFT matrix, the CP system is

equivalent to the popular OFDM system.

4.2.2 Blind Block Synchronization for LRP Systems

Figure 4.2 illustrates the precoded sample stream u(n) and the received sample stream y(n) of

a ZP and a CP system, respectively. The dashed lines shown in the precoded sample streams

and received sample streams depict the block boundaries. While the block boundaries are easy to

trace in precoded sample streams u(n) by recognizing the zero part or the cyclic prefix part, there

does not seem to exist a clear rule of thumb to determine by inspection the block boundaries in

the received sample streams y(n) in either ZP or CP systems, as the signal has been convolved

with the frequency selective channel H(z). Furthermore, there is additive channel noise. A more

sophisticated method must be employed to recover the block boundaries in received signals.

When the block synchronization is perfect between the transmitter and the receiver, the nth

received block y(n) is

y(n) =
[

y(nP ) y(nP + 1) · · · y(nP + P − 1)
]T

.

Suppose the blocking was performed with an unknown timing mismatch d ∈ [−P/2, P/2) between

the transmitter and the receiver. Then the samples collected in the nth block will be

y(d)(n) =
[

y(nP + d) y(nP + d + 1) · · · y(nP + d + P − 1)

]T

.

The problem statement of this paper is explained as follows. In a ZP or CP system as described
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in Section 4.2.1, given the received sample stream y(n), with a possible unknown timing mismatch

to the transmitter, how do we determine the optimal d ∈ [−P/2, P/2) that represents the starting

index of a received block without knowledge of s(n)? Note that since the OFDM systems are a

special case of CP systems, the block synchronization problem in CP systems is a broader version

of the “timing synchronization” problem or the “symbol synchronization” problem in OFDM sys-

tems. Without loss of generality and for convenience of the presentation, we assume the “correct

answer” is always d = 0. Furthermore, when the effective channel order L0 is strictly smaller than

the guard interval length L (i.e., trailing zeros or cyclic prefixes), we observe that

d = −L + L0,−L + L0 + 1, ..., 0

can all be considered “correct answers” since we can think of the equivalent channel vector as

h(d) =
[

01×(−d) h0 · · · hL0
01×(L−L0+d)

]T

in this case. No interblock interference will occur due to a timing-mismatch d, −L + L0 ≤ d ≤ 0. If

the redundancy is minimal, i.e., L = L0, then the only choice is d = 0.

4.3 Proposed Algorithm for ZP Systems

The basic idea of the proposed blind block synchronization algorithm for ZP systems stems from

Eq. (4.1). Notice that TM (h)Rzp is a P × M matrix whose rank is M . In absence of noise, each

received block, y(n), must be a linear combination of columns of TM (h)Rzp when the block syn-

chronization is perfect. In other words, a P × J matrix YJ composed of J received blocks,

YJ ,

[
y(0) y(1) · · · y(J − 1)

]
, (4.3)

must have rank M for some sufficiently large J ≥ M . This implies that YJ has a L-dimensional

null space if the block synchronization is perfect. This property has been exploited in the blind

channel estimation algorithm reported first in [45]. On the other hand, the matrix

Y
(d)
J ,

[
y(d)(0) y(d)(1) · · · y(d)(J − 1)

]
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usually has a larger rank when d 6= 0 than when d = 0 (this will be verified later). The task of blind

block synchronization can thus be completed by finding an optimal d ∈ [−P/2, P/2) such that the

rank deficiency of Y
(d)
J is L. In presence of noise, the optimal d can be chosen such that the sum

of the smallest L eigenvalues of Y
(d)
J Y

(d)†
J is minimized. It should be noted that this technique is

different from the one reported in [45] and reviewed in Section 4.3.2.

However, the blind block synchronization technique requires the condition that J ≥ M as the

blind channel estimation algorithm in [45] needs it to satisfy certain full rank condition. This means

the receiver has to accumulate at least MP data samples in order to determine the block boundary

correctly. In a fast-varying environment such as a wireless channel, we usually do not have the

luxury to collect so many samples since the channel status may have changed significantly during

the data accumulation.

In order to reduce the amount of required data, we will use the idea of “repetition index,” which

first arose in a blind channel estimation problem [49]. The idea of repetition index is to repeatedly

use each received block and has successfully reduced the number of received blocks needed for

blind channel estimation problem in ZP and CP systems, as reported in [36, 49, 60]. By properly

applying this idea, we can develop blind block synchronization algorithms using less data. We

shall present here the application of repetition index in blind block synchronization problems, and

the readers interested in the blind channel estimation algorithms are referred to [36], [49], and [60].

4.3.1 Derivation of the Proposed Algorithm

Consider the noise-free case first. It can be verified [49] that Eq. (4.1) is equivalent to

TQ(y(n)) = TM+Q−1(h)TQ(uM (n)), (4.4)

where Q is any positive integer and uM (n) denotes Rzps(n) in the context of ZP systems. The

notation Tn(·) was defined in Section II-A. Note that when Q = 1, Eq. (4.4) reduces to Eq. (4.1).

When Q > 1, Eq. (4.4) is similar to Eq. (4.1) in the sense that TM+Q−1(h) is also a full-banded

Toeplitz matrix, except that the size of TM+Q−1(h) is larger than that of TM (h) by Q − 1. The

parameter Q is called the repetition index since each received block is repeatedly used Q times.

Note that TQ(y(n)) is a (P +Q−1)×Q matrix, and each column of TQ(y(n)) is a linear combination

of columns of TM+Q−1(h). This property leads us to develop a new blind block synchronization

algorithm as follows.
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Suppose J received blocks are available at the receiver. Consider the (P + Q − 1) × JQ matrix

YJ,Q =
[
TQ (y(0)) TQ (y(1)) · · · TQ (y(J − 1))

]
. (4.5)

It is readily verified that

Y
(J)
Q = TM+Q−1 (h)U

(J)
Q ,

where

U
(J)
Q =

[
TQ(uM (0)) TQ(uM (1)) · · · TQ(uM (J − 1))

]
(4.6)

is a (M + Q − 1) × JQ matrix. A necessary (but not sufficient) condition for U
(J)
Q to have full rank

M + Q − 1 is JQ ≥ M + Q − 1, or

J ≥ 1 +
M − 1

Q
. (4.7)

Inequality (4.7) gives a lower bound on the required number of received blocks of the proposed

blind synchronization algorithm with respect to the repetition index Q. When U
(J)
Q has full rank

M + Q − 1, the rank of Y
(J)
Q is also M + Q − 1, and therefore the rank deficiency of Y

(J)
Q is exactly

L. On the other hand, when a nonzero timing error d ∈ [−P/2, P/2) is present, the matrix

Y
(d)
J,Q

=
[

TQ

(
y(d)(0)

)
TQ

(
y(d)(1)

)
· · · TQ

(
y(d)(J − 1)

) ]
(4.8)

usually has strictly less than L zero eigenvalues, as verified in the following theorem.

Theorem 4.1: Consider the noise-free situation. Assume each channel coefficient hk, 0 ≤ k ≤ L, is

an independent complex Gaussian random variable, and each element of s(n) is i.i.d. and selected

from a finite constellation. Then, with probability one there exists a sufficiently large J such that

the following statement on the matrix Y
(d)
J,Q defined in (4.8) is true with probability one.

The number of zero eigenvalues of Y
(d)
J,QY

(d)
J,Q

†

= (P + Q − 1) − rank(Y
(d)
J,QY

(d)
J,Q

†
)

=





L if d = 0

max{L − |d| − 2(Q − 1), 0} if d 6= 0
.

�

Proof: See Appendix. �
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Theorem 4.1 gives the foundation of the proposed algorithm for ZP systems. We use the rank

deficiency of the matrix Y
(d)
J,Q to determine the optimal block boundaries. When the block syn-

chronization is perfect (i.e., d = 0), the rank deficiency of Y
(d)
J,Q is exactly L. When the amount of

timing error |d| increases, this value decreases gradually to zero. In particular, if Q = 1, the rank

deficiency of Y
(d)
J,Q is max{L−|d|, 0}. The decrease in the rank deficiency of Y

(d)
J,Q when |d| increases

is relatively smooth. When Q ≥ 2, the rank deficiency of Y
(d)
J,Q has an abrupt decrease when |d| in-

creases from 0 to 1. Furthermore, if Q ≥ (L+1)/2, the rank deficiency of Y
(d)
J,Q goes immediately to

zero whenever a nonzero timing error is present. This sharper decrease in rank deficiency of Y
(d)
J,Q

demonstrates the advantage of using a larger repetition index Q for blind block synchronization.

The use of a large repetition index Q has two major advantages. First of all, it requires less

received data as suggested in inequality (4.7). If Q is selected sufficiently large (e.g., Q = M − 1), J

can be as small as 2. Secondly, the robustness of block boundary detection is potentially improved

from the above discussions on Theorem 4.1. We now present the proposed blind block synchro-

nization algorithm in ZP systems as follows.

Algorithm 1:

1. Choose the repetition index Q ≥ 1 and the number of received blocks J ≥ 2 so that inequality

(4.7) is satisfied.

2. Collect (J + 1)P consecutive received samples, and form the matrix Y
(d)
J,Q as defined in Eq.

(4.8) for each d ∈ [−P/2, P/2).

3. Perform eigen-decomposition on the matrix Y
(d)
J,QY

(d)†
J,Q for each d, and take the L smallest

eigenvalues σ2
L,(d) ≥ σ2

L−1,(d) ≥ · · · ≥ σ2
2,(d) ≥ σ2

1,(d) ≥ 0.

4. Calculate the cost function

λzp,Q(d) :=
L∑

k=1

σ2
k,(d), (4.9)

and decide the estimated timing mismatch

d̂ = arg min
−P

2
≤d< P

2

λzp,Q(d).

�
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4.3.2 Comparison with An Earlier Algorithm

We review here a blind block synchronization algorithm proposed earlier by Scaglione, Giannakis,

and Barbarossa in [45] (which we call the SGB method from now on) and compare it with Algorithm

1. Suppose J consecutive blocks are collected at the receiver with a timing mismatch of d samples.

Let Jn denote an n × n square shift matrix

Jn =


 0T 0

In−1 0


 ,

and consider the P × JL matrix

Y(d)
SGB ,

[
Y

(d)
J JP Y

(d)
J · · · JL−1

P Y
(d)
J

]
. (4.10)

The following claim has been proved (as Theorem 4 in [45]) regarding the rank of Y(d)
SGBY(d)†

SGB .

Claim: Consider the noise-free situation and assume L0 = L. Then, Y(d)
SGBY(d)†

SGB has full rank P

when d 6= 0 and has rank P − 1 when d = 0. �

The block synchronization problem can thus be solved by finding the only d which makes the

matrix Y(d)
SGBY(d)†

SGB rank deficient. In practice, when the noise is present, the cost function can be

defined as

λSGB(d) , min
{

eigenvalues of Y(d)
SGBY(d)†

SGB

}
. (4.11)

The optimal d can be chosen as

d̂ = arg min
−P

2
≤d< P

2

λSGB(d).

The matrix Y(d)
SGB defined in Eq. (4.10) was first proposed in [45] for blind direct channel equal-

ization and was used in blind block synchronization. Note that when d = 0, the matrix Y(d)
SGB

happens to be a truncation of Y
(d)
J,L after a proper permutation of columns:

Y(0)
SGB =

[
IP 0P×(L−1)

]
Y

(0)
J,LP = HUJ,LP ,

where P is a JL × JL permutation matrix, UJ,L is as defined in (4.6) with Q = L, and H is a

P×(P−1) matrix defined as
[
IP 0P×(L−1)

]
TP−1 (h) (i.e., dropping the last L−1 rows of TP−1 (h)).
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The SGB method exploits the property that the rank deficiency of Y(0)
SGB is unity when d = 0.

In order to use this property properly, the matrix UJ,L must have full rank. This implies that

J ≥ 1 + (M − 1)/L, which is equivalent to the requirement of Algorithm 1 with Q = L. Of course

the SGB method was not developed from the point of view of a repetition index, but the fact that

Y(d)
SGB happens to be a truncation of Y

(d)
J,L suggests a potential performance degradation of the SGB

algorithm from Algorithm 1 with Q = L. Indeed, this will be verified in the simulation results

presented in Section 4.5.

4.4 Proposed Algorithm for CP Systems

In this section we consider the blind block synchronization problem in CP systems. The block syn-

chronization problem in CP systems is a broader version of the so-called “timing-synchronization”

or “OFDM symbol synchronization.” Here we will tackle this problem without knowledge of the

transmitted blocks and exploit a rank deficiency property that has been observed in an existing

blind channel estimation algorithm for CP systems [60]. Unlike in ZP systems, where each received

block is free from inter-block interference (IBI), a received block in CP systems, as indicated in Eq.

(4.2), contains IBI in some part of it. This makes it difficult to express the received block as a linear

combination of less than P linearly independent vectors, as we did in ZP systems. To overcome

this problem, a concept of “composite block” composed of elements from two consecutive received

blocks is employed, as described below.

4.4.1 Derivation of the Proposed Algorithm

The proposed approach to the blind block synchronization problem is derived from the blind chan-

nel estimation algorithm proposed in [60]. We first consider the situation where the noise is absent.

Define a “composite block” whose elements are chosen from two consecutive received blocks:

ȳ(n) =
[

yM (n − 1)T ycp(n)T yM (n)T
]T

.

It can be verified that [32]

ȳ(n) = H̃ũ(n), (4.12)
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where

H̃ =




Hcir 0M×M

[
0L×(M−L) Hu

] [
0L×(M−L) Hl

]

0M×M Hcir




,

ũ(n) =
[

uM (n − 1)T uM (n)T
]T

, and uM (n) denotes Rcps(n) in the context of CP systems. Note

that here H̃ has a size of (2M + L) × 2M . This means each composite block, ȳ(n), of size 2M + L,

is a linear combination of 2M columns of H̃, and is always limited to a 2M -dimension subspace.

This special property, however, is no longer true when the block synchronization is not correct (this

will be verified later). This observation constitutes the basic idea of the proposed method for blind

block synchronization.

Furthermore, employing the idea of repetition index, each received composite block ȳ(n) can

be reformulated into a Q-column matrix ȲQ(n) as defined below:

ȲQ(n) =
[

ȳ0,Q−1(n) ȳ1,Q−2(n) · · · ȳQ−1,0(n)
]
,

where each column is a (2M + L + Q − 1)-vector defined as

ȳkl(n) =




[yM (n − 1)]−k+1:M

ycp(n)

[yM (n)]1:M+l




for k, l = 0, 1, ..., Q − 1. When block synchronization between the transmitter and the receiver is

perfect, it can be shown that [60]

ȲQ(n) = H̄QŪQ(n), (4.13)

where H̄Q and ŪQ(n) are defined as follows:

H̄Q =




Hcir 0M×(M+Q−1)

0(L+Q−1)×(M−L) HL+Q−1 0(L+Q−1)×(M−L)

0M×(M+Q−1) Hcir2


 , (4.14)
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where Hcir2 is obtained by moving the first L rows of Hcir to the bottom and HL+Q−1 is a (L+Q−

1) × (2L + Q − 1) Toeplitz matrix whose first row is
[

hL · · · h0 0 · · · 0
]

and whose first

column is
[

hL 0 · · · 0
]T

. In (4.13),

ŪQ(n) ,

[
ū0,Q−1(n) ū1,Q−2(n) · · · ūQ−1,0(n)

]
, (4.15)

where

ūkl(n) ,



 [uM (n − 1)]−k+1:M

[uM (n)]−L+1:M+l−L



 .

Note that H̄Q is a tall matrix with a size (2M + Q + L − 1) × (2M + Q − 1). So each column of

ȲQ(n) is limited to a (2M + Q − 1)-dimension subspace. Also note that when Q = 1, Eq. (4.13)

reduces to (4.12). Now, consider J consecutive received blocks y(n), n = 0, 1, ..., J − 1 and the

(2M + L + Q − 1) × (J − 1)Q matrix

ȲJ,Q =
[

ȲQ(1) ȲQ(2) · · · ȲQ(J − 1)
]
. (4.16)

It is readily verified that

ȲJ,Q = H̄QŪJ,Q,

where

ŪJ,Q =
[

ŪQ(1) ŪQ(2) · · · ŪQ(J − 1)
]

(4.17)

is a (2M +Q− 1)×Q(J− 1) matrix. Suppose J is sufficiently large so that ŪJ,Q has full rank 2M +

Q − 1. Then the rank of Y
(J)
Q is exactly 2M + Q − 1, i.e., Y

(J)
Q Y

(J)
Q

†
has exactly L zero eigenvalues.

This property, however, is no longer true when the block synchronization is not perfect. When a

timing mismatch d is present, the matrix in (4.16) becomes

Ȳ
(d)
J,Q =

[
Ȳ

(d)
Q (1) ȲQ(2) · · · Ȳ

(d)
Q (J − 1)

]
, (4.18)

where

Ȳ
(d)
Q (n) =

[
ȳ

(d)
0,Q−1(n) ȳ

(d)
1,Q−2(n) · · · ȳ

(d)
Q−1,0(n)

]
,

ȳ
(d)
kl (n) =




[
y

(d)
M (n − 1)

]

−k+1:M

y
(d)
cp (n)[

y
(d)
M (n)

]

1:M+l


 ,
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y(d)
cp (n) ,

[
y(d)(n)

]

1:L
,

and

y
(d)
M (n) ,

[
y(d)(n)

]

L+1:P
.

The rank deficiency of the matrix Ȳ
(d)
J,Q is the key to the proposed blind block synchronization al-

gorithm. The following theorem presents the theoretical foundation of the proposed algorithm for

CP systems.

Theorem 4.2: Assume each channel coefficient hk, 0 ≤ k ≤ L, is an independent complex Gaussian

random variable, and each element of s(n) is i.i.d. and selected from a finite constellation. Then,

with probability one there exists a sufficiently large J such that the following statement on the

matrix Ȳ
(d)
J,Q defined in (4.18) is true with probability one.

The number of zero eigenvalues of Ȳ
(d)
J,QȲ

(d)†
J,Q

= (2M + L + Q − 1) − rank(Ȳ
(d)
J,QȲ

(d)†
J,Q )

=





L if d = 0

max{L − |d| − 2(Q − 1), 0} if d 6= 0
.

�

Proof: See Appendix. �

The behavior of the rank deficiency of Ȳ
(d)
J,Q is exactly equal to that of Y

(d)
J,Q in ZP systems

as presented in Theorem 4.1, even though the sizes of Ȳ
(d)
J,Q and Y

(d)
J,Q are completely different.

Similar comments can therefore be made as follows. When Q = 1, the rank deficiency of Ȳ
(d)
J,Q is

max{L− |d|, 0}, and when Q ≥ (L + 1)/2, the rank deficiency of Ȳ
(d)
J,Q is L · δ[d], where δ[·] denotes

the discrete Delta function. An advantage is present for using a larger Q: the reduction in the rank

deficiency of Ȳ
(d)
J,Q when d 6= 0 is more significant. This potentially improves the accuracy of blind

block synchronization performance.

We should note that a necessary (but not sufficient) condition for ŪJ,Q to have full rank is [60]:

J ≥ 2 +
2M − 1

Q
. (4.19)
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Although (4.19) is not sufficient, the probability that ŪJ,Q has full rank is usually very high in the

simulation shown in Section 4.5. Inequality (4.19) also shows that, when the repetition index Q

is chosen sufficiently large (e.g., Q = 2M − 1), the proposed algorithm can work with only three

received blocks in absence of noise!

In presence of noise, the optimal d can be chosen as the one which minimizes the sum of the

smallest L eigenvalues of Y
(d)
J,QY

(d)
J,Q

†
. The proposed algorithm can be summarized as follows.

Algorithm 2:

1. Choose the repetition index Q ≥ 1 and the number of received blocks J ≥ 3 so that (4.19) is

satisfied.

2. Collect (J + 1)P consecutive received samples, and form the matrix Ȳ
(d)
J,Q as in Eq. (4.18) for

each d ∈ [−P/2, P/2).

3. Perform eigen-decomposition on the matrix Ȳ
(d)
J,QȲ

(d)
J,Q

†
, and take the L smallest eigenvalues

σ2
L,(d) ≥ σ2

L−1,(d) ≥ · · · ≥ σ2
2,(d) ≥ σ2

1,(d) ≥ 0.

4. Calculate the cost function λcp,Q(d) :=
∑L

k=1 σ2
k,(d), and decide the estimated timing mis-

match d̂ = arg min−P
2
≤d< P

2

λcp,Q(d). �

4.4.2 Comparisons with a Previously Reported Algorithm

In [33], a block synchronization algorithm was proposed by Negi and Cioffi based on the estimated

rank of the autocorrelation matrix of received blocks. The basic idea of the Negi-Cioffi algorithm is

to use the (M + L − L0) × J matrix

Y(d)
NC =




[
y

(d)
cp (0)

]

L0+1:L
· · ·

[
y

(d)
cp (J − 1)

]

L0+1:L

y
(d)
M (0) · · · y

(d)
M (J − 1)


 .

Define

u(d)(n) =
[

u(nP + d) u(nP + d + 1) · · · u(nP + d + P − 1)
]T

.

Then it can be verified that

Y(d)
NC = HL0

U
(d)
NC ,

where HL0
is a (P − L0) × P Toeplitz matrix whose first row is

[
hL0

· · · h0 0 · · · 0
]

and
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whose first column is
[

hL0
0 · · · 0

]T

, and

U
(d)
NC =

[
u(d)(0) u(d)(1) · · · u(d)(J − 1)

]

is a P × J matrix. When d = 0, U
(d)
NC has rank M and the matrix Y(d)

NC has a L − L0 rank deficiency.

When d 6= 0, the rank of U
(d)
NC is larger than M and the rank deficiency of Y(d)

NC will not exceed

L − L0. This provides a way to determine the block boundaries by finding the d which gives Y(d)
NC

the smallest rank. In order to make the method work, L − L0 must be a positive integer, which

implies that the effective channel order L0 must be strictly less than the cyclic prefix length L. In

our proposed Algorithm 2, L − L0 does not have to be positive. Another difference between the

Negi-Cioffi algorithm and Algorithm 2 resides in the matrix U
(d)
NC . In order to make U

(d)
NC rank M , a

condition J ≥ M must be satisfied, which means the minimum number of received blocks is equal

to the block size. As a comparison with (4.19), we find that the required number of received blocks

for Algorithm 2 is always smaller than that of the Negi-Cioffi algorithm whenever the repetition

index Q is chosen greater than 2.

In [33], the optimal d is chosen by estimating the rank of Y(d)
NC using a minimum description

length (MDL) criterion, assuming the channel noise variance is known. However, our proposed

algorithm does not assume known channel noise variance. In order to make a fair comparison

between Algorithm 2 and the Negi-Cioffi algorithm, in our simulations presented in Section 4.5,

we will slightly modify the optimal d decision procedure in the Negi-Cioffi algorithm by using the

following cost function:

λNC(d) ,

L−L0∑

k=1

σ2
k,(d), (4.20)

where σ2
k,(d) is the kth smallest eigenvalue of Y(d)

NCY(d)
NC

†
. The optimal d is chosen as the one which

minimizes the value of λNC(d).

4.5 Simulation Results and Discussions

In this section, we conduct simulations to evaluate the performances of Algorithms 1 and 2 and

compare each of them with well known algorithms. In all simulations, the number of data samples

per block is chosen as M = 16, and the length of guard intervals per block is L = 4 (which implies
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P = 20). The constellation of data samples is QPSK. In the plots, Es = E[|sk(n)|2] and N0 =

E[|e(n)|2].

4.5.1 Simulation Results for Zero Padding Systems

We first present simulation results for zero padding systems. The precoder is chosen as Rzp = IM .

We test Algorithm 1 with Q = 1, 2, 3 and compare the performances with that of the SGB algo-

rithm proposed in [45]. Simulations are first conducted with two different fixed fourth order FIR

channels. Channel 1 has zero locations at (0.8,−0.8, 0.5j,−0.5j) and is a minimum-phase system.

Channel 2 has zero locations at (1.2,−0.9, 0.7j,−0.7). As suggested in (4.7), the number of received

blocks must be at least J ≥ M = 16. We choose J = 20, that is, (J + 1)P = 420 consecutive re-

ceived samples y(n) are available for blind block synchronization. For each blind synchronization

attempt, 420 samples y(n) are collected, and the cost functions λ(d) as defined in (4.9) and (4.11)

(i.e., λzp,Q(d) and λSGB(d) for Algorithm 1 and the SGB method, respectively) are evaluated for

each d ∈ [−P/2, P/2). A successful block synchronization is declared when λ(d) gives the mini-

mum value at d = 0. Over 20,000 block synchronization attempts are conducted in the simulations

in different Es/N0 levels ranging from −20 dB to 50 dB, and the block synchronization error rates

are calculated accordingly. We also calculated the average values of λ(d) over all block synchro-

nization attempts in a noise-free environment.

Figure 4.3 shows the average value of the cost functions λ(d) versus the timing mismatch d ∈

[−P/2, P/2) with Channel 1. For a clearer view of the values of λ(d) in the neighborhood of d = 0,

a close-up window is put at the top of each plot. As expected, λ(d) = 0 when d = 0 and is nonzero

otherwise for all curves. The robustness of a particular algorithm against noise perturbation with

respect to a specific Q may be roughly evaluated by looking at the values ∆k,Q

left and ∆k,Q

right. When an

additive noise is present, the values of λ(d) will change, and an algorithm may mistakenly decide

the optimal timing mismatch as d = −1 or d = 1. Therefore, larger values of ∆k,Q

left and ∆k,Q

right, in

Figure 4.3, represent a larger margin against noise perturbation and suggest a better performance

for a particular algorithm.

As we can see in Figure 4.3, the SGB method has a good ∆k,Q

left but a relatively small λ(1). Al-

gorithm 1 with Q = 2 or 3 has a much better ∆k,Q

right, but both ∆k,Q

left and ∆k,Q

rightare poor with Q = 1.

These observations can be explained from the point of view of Theorem 4.1. In Theorem 4.1, the

number of zero eigenvalues of Y
(d)
J,QY

(d)
J,Q

†
is L when d = 0, and it decreases to L − 2Q + 1 when
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Figure 4.3: Function λ(d) v.s. time mismatch d for a channel with zeros at (0.8,−0.8, 0.5j,−0.5j) in
absence of noise.
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Figure 4.4: Blind block synchronization error rate performance for a channel with zeros at
(0.8,−0.8, 0.5j,−0.5j) when J = 20 in ZP systems.
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Figure 4.5: Function λ(d) v.s. time mismatch d for a channel with zeros at (1.2,−0.9, 0.7j,−0.7j) in
absence of noise when J = 20.
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(1.2,−0.9, 0.7j,−0.7j) when J = 20 in ZP systems.



102

−20 −10 0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

E
s
 / N

0
 (dB)

P
ro

ba
bi

lit
y 

of
 B

lo
ck

 S
yn

ch
ro

ni
za

tio
n 

E
rr

or

[ZP] M=16; L=4; L
0
=4; J=20; Channel Power Delay Profile [0.0 −0.9 −1.7 −2.6 3.5] (dB)

 

 

Q = 1
Q = 2
Q = 3
SGB

Figure 4.7: Blind block synchronization error rate performance for a Rayleigh random channel with
J = 20 in ZP systems.
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d = 1 (if L ≥ 2Q − 1), so λ(1) is obtained by adding up 2Q − 1 nonzero eigenvalues of Y
(d)
J,QY

(d)
J,Q

†
.

When Q = 1, λ(1) is obtained by a single nonzero eigenvalue, which can be very close to zero with

a certain probability. When Q = 2, λ(1) is obtained by adding three nonzero eigenvalues, and the

probability that all of them are very small will drop significantly. Simulations under a noisy envi-

ronment, as shown in Figure 4.4, confirm the intuitive expectation that the algorithms (for various

Q) perform better for larger values of ∆k,Q

left and ∆k,Q

right. Clearly, Algorithm 1 with Q = 2 has a signif-

icant gain (more than 10 dB!) over the SGB algorithm. Increasing Q from 2 to 3, however, does not

further improve the performance. Algorithm 1 with Q = 1, however, requires a 50-dB Es/N0 ratio

to achieve a satisfactory error rate, which is considered infeasible in practice.

We now show the simulation results for Channel 2, which contains channel zeros both inside

and outside the unit circle and so is neither a minimum phase nor a maximum phase system. In

the noiseless environment, the plot of λ(d) versus timing mismatch d is shown in Figure 4.5. We

observe that the SGB method has a much larger ∆k,Q

rightthan it does with Channel 1, a minimum

phase system. Yet Algorithm 1 with Q ≥ 2 possesses even larger ∆k,Q

left and ∆k,Q

rightthan the SGB

algorithm. The block synchronization error rate performance is plotted in Figure 4.6. Algorithm

1 with Q = 2 still has a roughly 5-dB gain over the SGB method. Again, the performance of

Algorithm 1 with Q = 3 is not significantly better than that with Q = 2. Algorithm 1 with Q = 1 still

has the poorest performance in this plot. From Figures 4.4 and 4.6 for Channels 1 and 2, respectively,

we find that the block synchronization error rate performance depends not only on the algorithms,

but also on the channels. Minimum phase channels appear to be less favorable for blind block

synchronization in general than other types of channels.

Simulation results presented so far are based on fixed channels. We now try the comparison

in a fourth order Rayleigh random channel with a power delay profile [0.0 − 0.9 − 1.7 − 2.6 −

3.5] (dB). Over 4,000 independent realizations of the channel are used in the simulation, and for

each channel realization four block synchronization attempts are performed (i.e., four different

sets of data samples s(n) are used). Figure 4.7 shows the average block synchronization error rate

performances for all cases. As we can see, Algorithm 1 with Q = 2 has a roughly 10 dB gain over the

SGB algorithm. Increasing Q from 2 to 3 does not significantly improve the system performance.

Finally, in this subsection, we demonstrate the capability of Algorithm 1 to conduct blind block

synchronization with extremely limited received data. We choose J ranging from 2 to 5, and the

repetition index Q is properly chosen so that inequality (4.7) is satisfied. Figure 4.8 shows the
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Figure 4.9: Blind block synchronization error rate performance for a channel with zeros at
(0.8,−0.8, 0.5j) when J = 40 in CP systems.

simulation plot. As discussed in Section 4.3.2, the SGB algorithm is similar to Algorithm 1 with

Q = L = 4 except for some omissions of data. As shown in the plot, when J = 5, the SGB method

indeed has a much worse performance than Algorithm 1 with Q = 4. Furthermore, when J = 4,

the SGB algorithm fails, while Algorithm 1 continues to work even when J is as small as 2. Note

that when J = 2, the number of available consecutive received samples is only (J + 1)P = 60.

Even though the block synchronization error rate performance is satisfactory only when the Es/N0

value is very high, Algorithm 1 is presumably the first one to perform blind block synchronization

properly with such limited received data.

4.5.2 Simulation Results for Cyclic Prefix Systems

We now present simulation results for cyclic prefix systems. The precoder is chosen as Rcp = IM .

We test Algorithm 2 with Q = 1, 2, 3 and compare the performances with that of the Negi-Cioffi

algorithm [33]. As suggested in inequality (4.19), J must be chosen as at least 2M + 1 = 37 for

Algorithm 2 with Q = 1 to work. We choose J = 40, that is, (J + 1)P = 820 consecutive received

samples y(n) are available for blind block synchronization.

We first test the algorithm with third-order channels (i.e., L0 = 3). Note that a cyclic prefix of

length L = 4 allows a maximum channel order to be four to avoid interblock interference. The

reason why we chose only third-order channels is for proper comparison with the Negi-Cioffi algo-
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Figure 4.10: Blind block synchronization error rate performance for a channel with zeros at
(1.2,−0.9, 0.7j) when J = 40 in CP systems.
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Figure 4.11: Blind block synchronization error rate performance for a third-order Rayleigh random
channel with J = 40 in CP systems.
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Figure 4.12: Blind block synchronization error rate performance for a fourth-order Rayleigh ran-
dom channel with J = 40 in CP systems.
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Figure 4.13: Blind block synchronization error rate performance for a third-order Rayleigh random
channel in CP systems when J is small.
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rithm due to its restriction (see Section 4.4.2). In the simulations, we use the cost function defined

in (4.20) for the Negi-Cioffi algorithm.

Simulations are first conducted with two different fixed third order FIR channels. Channel 3 has

zero locations at (0.8,−0.8, 0.5j) and is a minimum-phase system. Channel 4 has zero locations at

(1.2,−0.9, 0.7j). Figure 4.9 shows the simulation results with Channel 3. We see that when Q = 1,

Algorithm 2 works properly in the high-SNR region, but with a rather unsatisfactory performance.

Algorithm 2 with Q = 2 has a much better performance and has a 20-dB gain over the Negi-Cioffi

algorithm. Increasing Q from 2 to 3 further improves the performance. Figure 4.10 shows the

simulation results with Channel 4. While the relative performances among all cases do not change,

the performances are obviously better than those in Figure 4.9 in all cases. This suggests all blind

block synchronization algorithms have poorer performance for minimum phase channels than for

other types of channels.

We now perform the simulation in a third-order Rayleigh random channel with a power delay

profile [0.0 − 0.9 − 1.7 − 2.6] dB, and the results are shown in Figure 4.11. Algorithm 2 with Q = 2

has a 10-dB gain over the Negi-Cioffi algorithm. Increasing Q from 2 to 3 does not significantly

improve the system performance.

Recall that we chose L0 = 3 < L in previous simulations due to a restriction of the Negi-

Cioffi algorithm. Now we conduct simulations with a fourth order Rayleigh channel to verify that

Algorithm 2 also works in the situation where L = L0. As shown in Figure 4.12, Algorithm 2 works

fine with all Q, while the Negi-Cioffi algorithm fails.

Finally, in this subsection, we demonstrate the capability of Algorithm 2 to conduct blind block

synchronization with small amount of received data. We choose J ranging from 3 to 16, and the

repetition index Q is properly chosen so that inequality (4.19) is satisfied. We also compare the

performances with those of the Negi-Cioffi algorithm with J = 16 and 17. Figure 4.13 shows the

simulation plot. As discussed in Section 4.4.2, the Negi-Cioffi algorithm requires at least M = 16

blocks to work properly. From the simulation plot, we see that it does not even work with J = 16.

When J = 17, the Negi-Cioffi algorithm appears to work, but with a somewhat poor performance.

On the other hand, Algorithm 2 with Q = 4 already works when J = 16 with a fairly satisfactory

performance. As the parameter J decreases, the performance of Algorithm 2 (with a properly

chosen Q) degrades slowly. Even when J = 3 (which implies the number of available consecutive

received sample is only (J +1)P = 80), Algorithm 2 still possesses a much better performance than
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the Negi-Cioffi algorithm with J = 17.

4.6 Conclusions

In this chapter we proposed two algorithms for blind block synchronization in zero-padding (ZP)

systems and in cyclic prefix (CP) systems, respectively. Both algorithms use a parameter called

repetition index (Q) which can be chosen as any positive integer. The CP algorithm can be directly

applied to blind symbol synchronization problem in the popular orthogonal frequency division

multiplexing (OFDM) systems. Theoretical results prove the validity of the proposed algorithms

in the noiseless case and suggest that the algorithms would have a better performance when the

repetition index is larger in the noisy case. The proposed algorithms are capable of blindly recover-

ing the block boundaries using much less received data than previously reported algorithms. This

feature makes the proposed algorithms more favorable in an environment of fast-varying chan-

nels. Simulation results of the proposed algorithm not only demonstrate the capability to work

properly with a limited amount of received data but also reveal significant improvement in block

synchronization error rate performance over previously reported algorithms.

In the future, performance evaluation of the proposed algorithms for time-varying channels

will be important for a more realistic scenario. A theoretical analysis of the system performance is

also of interest.

4.7 Appendix

Proof of Theorem 4.1: We first consider the case d = 0.

y(n) = H




0L×1

u(n)

0L×1


 = TM (h)u(n),

where H is the P × (P + L) Toeplitz matrix Toeplitz matrix whose first column is [hL, 0, ..., 0]T and

whose first row is [hL, ..., h0, 0, ..., 0].

When d = 0, it can be shown that

TQ

(
y(0)(n)

)
= TM+Q−1 (h) TQ

(
u(0)(n)

)
.
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With probability one, for sufficiently large J , the matrix

Y
(d)
J,Q = TM+Q−1 (h)U

(J)
Q

has rank M + Q − 1. This implies Y
(d)
J,QY

(d)
J,Q

†
has exactly L zero eigenvalues.

When d 6= 0,

y(d)(n) = Hu(d)(n),

where u(d)(n) =




0(L−d)×1

u(n)

0L×1

[u(n + 1)]1:d




when 0 < d ≤ L and u(d)(n) =




[u(n)]d−L+1:M

0L×1

[u(n + 1)]1:d


 when

L < d ≤ P/2.

The qth column of TQ

(
y(d)(n)

)
can be written as




0(q−1)×1

y(d)(n)

0(Q−q)×1


 = HQ




vq−1

...

v1

u(d)(n)

x1

...

xQ−q




,

where HQ is a (P + L + Q − 1) × (P + Q − 1) Toeplitz matrix whose first column is [hL, 0, ..., 0]T

and whose first row is [hL, ..., h0, 0, ..., 0] and sequences {xk} and {vk} are defined as follows.

[x−L+1, x−L+2, · · · , x0]
T ,

[
u(d)(n)

]

P :P+L

[v0, v−1, · · · , v−L+1]
T

,

[
u(d)(n)

]

1:L
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xl , − 1

h0

[
L∑

k=1

hkxl−k

]
, l = 1, ..., Q − 1.

vl , − 1

hL

[
L−1∑

k=0

hkvl−L+k

]
, l = 1, ..., Q− 1.

So

TQ

(
y(d)(n)

)
= HQU

(d)
Q (n),

where

U
(d)
Q (n) = TQ

(
u(d)(n)

)
+ V

and V is a (P +L+Q−1)×Q Toeplitz matrix whose first column is
[

01×(P+L) x1 · · · xQ−1

]T

and whose first row is
[

0 v1 · · · vQ−1

]
.

Denote n(L, Q, d) as the number of pairs of identical rows in U
(d)
Q (n). When Q ≤ L + 1, the

zero block 0L×1 in u(d)(n) accounts for (L − Q − 1) zero rows in U
(d)
Q (n). Furthermore, if 0 < d ≤

L − Q + 1, the zero block 0(L−d)×1 in u(d)(n) accounts for (L − Q − 1 − d) zero rows in U
(d)
Q (n).

If L − Q − 1 < d < P/2, the zero block 0(L−d)×1 does not account for any zero rows in U
(d)
Q (n)

(when d > L, 0(L−d)×L does not even exist). The above arguments can be extended to the case

when −P/2 ≤ d < 0 due to symmetry. So, when Q ≤ L + 1,

n(L, Q, d) = (L − Q + 1)︸ ︷︷ ︸ + max{L − Q + 1 − |d|, 0}︸ ︷︷ ︸ .

from 0L×1 from 0(L−d)×1

When Q > L + 1, neither blocks 0L×1 nor 0(L−d)×1 in u(d)(n) account for any zero rows. So

n(L, Q, d) = 0

when Q > L + 1.

Now Y
(d)
J,Q = HQU

(d)
J,Q = H′

QU′(d)
J,Q, where U′(d)

J,Q is obtained by eliminating the n(L, Q, d) zeros

rows in U
(d)
J,Q and H′

Q is obtained by eliminating the corresponding columns in HQ. We are inter-

ested in the value of the number of rows of H′
Q minus the number of columns of H′

Q. Denote this

value as n(H′
Q). This value represents the column rank deficiency of H′

Q if n(H′
Q) ≥ 0. It is readily
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verified that n(H′
Q) = n(L, Q, d) − L, and so the column rank deficiency of H′

Q is max{n(H′
Q), 0}.

Due to the random nature of u(n), {xk}, and {vk}, with probability one, there exists a sufficiently

large J such that U′(d)
J,Q has full rank (P +L+Q−1−n(L, Q, d)). The rank deficiency of Y

(d)
J,QY

(d)
J,Q

†
is

max{n(L, Q, d)−L, 0}. When Q > L+1, n(L, Q, d) = 0, so the rank deficiency of Y
(d)
J,QY

(d)
J,Q

†
is zero.

When Q ≤ L+1 and when |d| ≥ L−Q+1, n(L, Q, d) = L−Q+1, so the rank deficiency of Y
(d)
J,QY

(d)
J,Q

†

is max{−Q + 1, 0} = 0. When Q ≤ L + 1 and when |d| ≤ L −Q + 1, n(L, Q, d) = 2L− 2Q + 2 − |d|,

so the rank deficiency of Y
(d)
J,QY

(d)
J,Q

†
is max{2L − 2Q + 2 − |d| − L, 0} = L − |d| − 2(Q − 1).

In summary, with probability one, the number of zero eigenvalues of Y
(d)
J,QY

(d)
J,Q

†
is max{L −

|d| − 2(Q − 1), 0} when d 6= 0. This completes the proof. �

Proof of Theorem 4.2:

We first consider the case d = 0.

ȳ(n) = H




ucp(n − 1)

uM (n − 1)

u′
M (n)

ucp(n)




= H̄ū(n),

where H is the (2M + L) × (2M + 2L) Toeplitz matrix whose first column is [hL, 0, ..., 0]T and

whose first row is [hL, · · · , h0, 0, ..., 0], and u′
M (n) is a permutation of uM (n) defined as u′

M (n) =

[uM (n)]−L+1:M−L.

With probability one there exists a sufficiently large J such that

Y
(d)
J,Q = H̄QU

(J)
Q ,

where H̄Q is a (2M +L+Q−1)×(2M+Q−1) matrix which has full column rank (2M +Q−1) with

probability one and UJ,Q has full row rank. The rank of Y
(d)
J,Q is thus exactly equal to 2M + Q − 1

since H̄ has full column rank 2M + Q − 1 and U
(0)
J,Q has full row rank 2M + Q − 1. This implies

Y
(d)
J,QY

(d)†
J,Q has exactly (2M + L + Q − 1) − (2M + Q − 1) = L zero eigenvalues.

When d 6= 0, we have

ȳ(d)(n) = Hū(d)(n),
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where ū(d)(n) =




[ucp(n − 1)]d+1:L

uM (n − 1)

u′
M (n)

ucp(n)

[ucp(n + 1)]1:d




when 0 < d ≤ L and ū(d)(n) =




[uM (n − 1)](d−L+1):M

u′
M (n)

ucp(n)

ucp(n + 1)

[uM (n + 1)]1:d−L




when L < d ≤ P/2.

Now, from the definition of Ȳ
(d)
Q (n), the qth column of Ȳ

(d)
Q (n) can be expressed as




[
y

(d)
M (n − 1)

]

M−q+1:M

ȳ(d)(n)
[
y

(d)
M (n)

]

1:Q−q




= H2Q




vq−1

...

v1

ū(d)(n)

x1

...

xQ−q




, q = 1, 2, ..., Q,

whereH2Q is a (2M+L+Q−1)×(2P+Q−1)Toeplitz matrix whose first column is
[

hL 0 · · · 0
]T

and whose first row is
[

hL · · · h0 0 · · · 0
]

and sequences {xk} and {vk} are defined as

follows. The values of xk and vk when k ≤ 0 are defined as

[x−L+1, x−L+2, · · · , x0]
T ,

[
ū(d)(n)

]

2P−L+1:2P

[v0, v−1, · · · , v−L+1]
T

,

[
ū(d)(n)

]

1:L
.

The values of xk and vk when k > 0 are defined recursively as

xl ,
1

h0

[[
y

(d)
M (n)

]

l
−

L∑

k=1

hkxl−k

]

and

vl ,
1

hL

[[
y

(d)
M (n − 1)

]

M+1−l
−

L−1∑

k=0

hkvl−L+k

]

for l = 1, ..., Q− 1. So

Ȳ
(d)
Q (n) = H2QŪ

(d)
Q (n),

where

Ū
(d)
Q (n) = TQ

(
ū(d)(n)

)
+ V
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and V is a (2P + Q − 1) × Q Toeplitz matrix whose first column is
[

01×2P x1 · · · xQ−1

]T

and whose first row is
[

0 v1 · · · vQ−1

]
.

Denote n(L, Q, d) as the number of pairs of identical rows in Ū
(d)
Q (n). When Q ≤ L + 1, the

segment ucp(n) in ū(d)(n) accounts for (L − Q − 1) pairs of identical rows in Ū
(d)
Q (n) (recall that

ucp(n) = [u′
M (n)]1:L.) Furthermore, if 0 < d ≤ L − Q + 1, the segment [ucp(n − 1)]d+1:L accounts

for (L−Q−1−d) pairs of identical rows in Ū
(d)
Q (n). If L−Q−1 < d < P/2, on the other hand, the

segment [ucp(n − 1)]d+1:L will not account for any pairs of identical rows (when d > L, this segment

does not even exist). The above arguments can be extended to the case when −P/2 ≤ d < 0 due to

symmetry. So, when Q ≤ L + 1,

n(L, Q, d) = (L − Q + 1)︸ ︷︷ ︸ + max{L − Q + 1 − |d|, 0}︸ ︷︷ ︸ .

from ucp(n) from [ucp(n − 1)]d+1:L

When Q > L + 1, neither segments ucp(n) nor [ucp(n − 1)]d+1:L in ū(d)(n) account for any pairs

of identical rows. So

n(L, Q, d) = 0

when Q > L + 1.

Now Ȳ
(d)
J,Q = H2QŪ

(d)
J,Q = H′

2QŪ′(d)
J,Q, where U′(d)

J,Q is obtained by eliminating the n(L, Q, d)

duplicated rows in U
(d)
J,Q and H′

2Q is obtained by merging the corresponding column pairs of H2Q.

We are interested in the value of the number of rows of H′
2Q minus the number of columns of

H′
2Q. Denote this value as n(H′

2Q). This value represents the column rank deficiency of H′
2Q if

n(H′
2Q) ≥ 0. It is readily verified that n(H′

2Q) = n(L, Q, d) − L, and so the column rank deficiency

of H′
2Q is max{n(H′

2Q), 0}. Due to the random nature of uM (n), {xk}, and {vk}, with probability

one, there exists a sufficiently large J such that Ū′(d)
J,Q has full rank (2P + Q − 1 − n(L, Q, d)). The

rank deficiency of Ȳ
(d)
J,QȲ

(d)
J,Q

†
is max{n(L, Q, d) − L, 0}. When Q > L + 1, n(L, Q, d) = 0, so the

rank deficiency of Ȳ
(d)
J,QȲ

(d)
J,Q

†
is zero. When Q ≤ L + 1 and when |d| ≥ L − Q + 1, n(L, Q, d) =

L − Q + 1, so the rank deficiency of Ȳ
(d)
J,QȲ

(d)
J,Q

†
is max{−Q + 1, 0} = 0. When Q ≤ L + 1 and

when |d| ≤ L − Q + 1, n(L, Q, d) = 2L − 2Q + 2 − |d|, so the rank deficiency of Ȳ
(d)
J,QȲ

(d)
J,Q

†
is

max{2L− 2Q + 2 − |d| − L, 0} = L − |d| − 2(Q − 1).

In summary, with probability one, the number of zero eigenvalues of Ȳ
(d)
J,QȲ

(d)
J,Q

†
is max{L −
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|d| − 2(Q − 1), 0} when d 6= 0. This completes the proof. �
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Chapter 5

Performance Analysis of Blind
Estimation Algorithms in ZP Systems

In this chapter, we analyze the performance of the generalized blind channel estimation algorithm

for ZP systems proposed in Chapter 2. From Chapter 2, we know the generalized algorithm con-

tains a parameter called the repetition index Q; when Q = 1, it reduces to the SGB algorithm

proposed in [45]. When Q is equal to the size of a received block, the algorithm reduces to the MNP

algorithm [36], which allows blind estimation with as few as two received blocks. Even though the

performance with two blocks is usually not satisfactory, with repetition index Q and the number of

received blocks adjusted appropriately, the performance of the generalized algorithm is superior to

those of the SGB and MNP algorithms, as documented in detail Chapter 2.

The goal here is to quantify this performance improvement theoretically. We study the channel

estimation error (MSE) in the algorithm of [49] and compare it with the corresponding Cramer-Rao

bound. Performance analysis for subspace-based algorithms has been studied in the literature since

the advent of directional-of-arrival (DOA) estimation algorithms such as the famous multiple signal

classification (MUSIC) algorithm. Since the subspace algorithms involve nonlinear operations of

singular value decomposition (SVD), many studies resort to first-order small perturbation analysis

(see, e.g. [22]) which gives an accurate performance analysis when the noise level is low, i.e., in the

high-SNR region. In [2], the performance of the SGB algorithm in [45] was analyzed based on small

perturbation analysis. By generalizing the work in [2], we will derive in this chapter performance

analysis of the generalized algorithm proposed in Chapter 2. Analysis in this chapter gives an

explanation for the performance of different algorithms we have observed in simulation results

presented in Chapter 2.

The Cramer-Rao lower bound (CRB) for an estimation problem is independent from algorithms
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and is smaller than the MSE of any algorithm that solves the problem, so the CRB has long been

a useful tool to evaluate the efficiency of a particular algorithm. In [2] fundamental work has

been reported which derives the CRB of the blind channel estimation problem in ZP systems. By

comparing the CRB with the analytical performance of the SGB method, it has been found that

the SGB algorithm is efficient in high-SNR region when the number of received blocks goes to

infinity. When the number of received blocks is small, however, we use the CRB expression given

in [58] which is a correction of that in [2]. There is an obvious gap between the performance of

the SGB algorithm, and the corrected CRB given in [58] when a small number of received blocks

are available. Both theory and simulation results suggest that the performance of the generalized

algorithm is usually closer to the CRB when the repetition index is larger but the performance does

not achieve the CRB for any repetition index. The material in the chapter is mainly drawn from

[57] and [58].

5.1 Outline

The rest of the chapter is organized as follows. Section 5.2 briefly gives the problem statement and

reviews the generalized algorithm proposed in Chapter 2. In Section 5.3 we derive the theoretical

performance of the generalized algorithm and compare it with the Cramer-Rao bound. In Section

5.4 simulation results are given to compare the theoretical performance, performance obtained by

simulation, and the CRB. Finally, the conclusion is given in Section 5.5. An appendix is provided

to elaborate the corrected version of the CRB reported in [58].

5.2 Review of the Generalized Algorithm

5.2.1 Problem Formulation

Consider a sequence of discrete-time information symbols s(n), which is blocked into vectors of size

M . Let s(n) =
[

s0(n) s1(n) · · · sM−1(n)
]T

, where sk(n) := s(Mn+k) for k = 0, 1, ..., M −1.

Each block s(n) is precoded by a linear transformation characterized by an M × M nonsingular

matrix F so that u(n) = Fs(n). Each precoded block u(n) is appended at the end with a block of L

zeros, forming a vector uP (n) =
[

u(n)T 0T
1×L

]T

of size P = M + L. The vector signal uP (n) is

unblocked into scalar form u(n) before being sent over the channel. The channel is characterized as

a linear time-invariant (LTI) finite impulse response (FIR) system whose order is upper-bounded
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by L:

H(z) =

L∑

k=0

h(k)z−k.

Also define h =
[

h(0) h(1) · · · h(L)
]T

as the (L + 1)-vector containing the channel co-

efficients. The channel output is corrupted by an additive complex white Gaussian noise e(n)

with variance σ2
v . At the receiver side, the symbol stream y(n) is blocked into vectors of size P

which can be written as y(n) =
[

y0(n) y1(n) · · · yP−1(n)
]T

, where yk(n) := y(Pn + k) for

k = 0, 1, ..., P − 1. Assuming the block synchronization between the transmitter and the receiver is

perfect, it can be shown that [45]

y(n) = HFs(n) + e(n),

where H := TM (h) is a full-banded Toeplitz matrix and e(n) is the blocked version of the additive

noise e(n). Suppose we collect J received blocks in a P×J matrix Y(J) =
[

y(0) y(1) · · · y(J − 1)
]
.

Then it is clear that

Y(J) = HU(J) + noise, (5.1)

where U(J) =
[

u(0) u(1) · · · u(J − 1)
]

contains unknown transmitted blocks.

The problem of blind channel estimation can be stated as follows. Given P × J matrix Y(J),

how do we estimate the channel coefficients h blindly (i.e., when s(n) is unknown)? This problem

was first formulated and solved by Scaglione et. al [45]. We will study here the performance of a

generalization of the SGB algorithm proposed in [49].

5.2.2 Generalized Algorithm

In this subsection we review the generalized algorithm proposed in Chapter 2. We start with a

subroutine that is used by both SGB algorithm and the generalized algorithm.

Subroutine 1: (ĥ, R̃, Ũ) = ZPBLIND(Z)

Input: Matrix Z of user-defined size p × k.

Outputs: (L + 1)-vector ĥ, p × L matrix R̃, and (L + 1) × mL matrix Ũ , where m := p − L.

1. Take SVD on Z and denote this as

Z =
[

R R̃

]

 Σs

Σn 0





 V

†

Ṽ†


 , (5.2)
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where Σn has size L × L and contains the L smallest singular values of Z. Columns of R̃,

denoted as r̃l, l = 1, 2, ..., L are the corresponding left singular vectors. (Remark: In particular,

if Z can be written as Z = Tm (h)U, where the m × k matrix U has rank m, then it can be

shown that Σn = 0, R̃Z = 0, and R̃Tm (h) = 0, i.e., columns of R̃, r̃l, l = 1, 2, ..., L, are

annihilators of Tm (h).)

2. Construct the (L + 1) × m Hankel matrix

Ũl :=




r̃l(1) r̃l(2) · · · r̃l(m)

r̃l(2) r̃l(3) · · · r̃l(m + 1)

...
...

...
...

r̃l(L + 1) r̃l(L + 2) · · · r̃l(p)




(5.3)

for l = 1, 2, ..., L, where r̃l(i) represents the ith element of r̃l. Construct matrix Ũ :=
[
Ũ1 Ũ2 · · · ŨL

]
.

(Remark: If R̃Tm (h) = 0, it is readily verified that h†Ũ = 0†.)

3. Let ĥ = argminh̄ ||h̄†Ũ ||2.

Subroutine 1 produces an output ĥ proportional to h (i.e., ĥ = αh for some α ∈ C) if the input Z can

be written as Z = Tm (h)U, where U has rank m. When Z is corrupted with small additive noise,

then columns of R̃ are approximately annihilators of Tm (h), and an estimate of h is outputted (with

a scalar ambiguity). These properties were first used by Scaglione et al. in [45] when developing

the SGB algorithm. In fact, the SGB algorithm simply runs (ĥ, R̃, Ũ) = ZPBLIND(Y(J)) (under the

assumption that U(J) has full rank M ) and takes ĥ as the estimated channel coefficients.

Although the SGB algorithm uses Subroutine 1 as its kernel routine, it does not take advantage

of the flexibility on input matrix size of Subroutine 1 (it always uses p = P ). The generalized algo-

rithm in [49], on the other hand, fully exploits this flexibility by using an extra parameter, namely

the repetition index Q, as described below.

Algorithm 1: ĥ = GENERAL(Y(J), Q)

Inputs: P × J matrix Y(J) and repetition index Q ≥ 1.

Output: channel estimate as an (L + 1)-vector ĥ.
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1. Construct the (P + Q − 1) × JQ matrix

Y
(J)
Q =

[
TQ (y(0)) TQ (y(1)) · · · TQ (y(J − 1))

]
.

2. Perform the subroutine (ĥ, R̃, Ũ) = ZPBLIND(Y
(J)
Q ) and output ĥ. �

The generalized algorithm is based on the idea that Eq. (5.1) implies

Y
(J)
Q = TM+Q−1 (h)U

(J)
Q + noise, (5.4)

where

U
(J)
Q =

[
TQ (u(0)) TQ (u(1)) · · · TQ (u(J − 1))

]
. (5.5)

Note that the noise autocorrelation in (5.4) is different from that in (5.1). When Q = 1, the gen-

eralized algorithm reduces to SGB algorithm. Also, when Q = P , the generalized algorithm is

equivalent to the MNP algorithm [36]. The matrix U
(J)
Q must have full rank so that Algorithm 1

works, which implies J ≥ 1 + ⌈(M − 1)/Q⌉.

5.3 Performance Analysis in Additive Noise

When evaluating the MSE performance of blind estimation algorithms, it is natural to compare

the estimated channel ĥ and the true channel h. However, due to an intrinsic scalar ambiguity pre-

sented in all blind channel estimation algorithms, the comparison should be done after normalizing

this unknown scalar. There are many options for doing this. Here we adopted an option presented

in [2], where the channel coefficient with the largest magnitude is assumed known. That is, h(d),

where d ∈ [0, L] satisfies |h(d)| ≥ |h(l)|, ∀l 6= d, is known. After normalizing the estimated channel

vector by letting h̃ = (h(d)/ĥ(d))ĥ, the channel estimation error can be defined as an L-vector

∆h = IL,d(h̃ − h), (5.6)

where IL,d is an L × (L + 1) matrix obtained by removing the dth row of IL+1. We first review a

result on estimating ∆h presented in [2] using small perturbation analysis. In Lemma 5.1 presented

below, we assume the perturbation ∆X is small compared to X. That is, assume the first-order
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approximation

(X + ∆X)†(X + ∆X) ≈ X†X + ∆X†X + X†∆X

is accurate. We also assume h(d) is known to the receiver and the output of ZPBLIND, ĥ, has ap-

plied the scalar ambiguity normalization based on the knowledge of h(d).

Lemma 5.1: Let X = Tm (h)U, where m× k matrix U has rank m. Let Y = X + ∆X, where ∆X is

a small perturbation to X. Perform subroutine ZPBLIND on X and Y, and denote them as

(ĥ,R1,U1) = ZPBLIND(Y) and (h1, R̃, Û) = ZPBLIND(X), respectively. Consider error vector ∆h

as defined in (5.6). Then the first-order approximation of ∆h can be expressed as

∆h† ≈ vecT (∆X†)
(
R̃ ⊗ U#∗

)
Ṽ#,

where Ṽ := IL,dŨ . �

Proof: See (28) in [2]. �

Notice that R̃ and Ṽ depend only on U and h and not on the noise perturbation ∆X. Using

Lemma 5.1, we can derive the MSE performance of the generalized algorithm in [49] by computing

the autocorrelation matrix of ∆h, as described below.

Theorem 5.1: Consider Y(J) as defined in Eq. (5.1) and Q as the repetition index. Perform

Algorithm 1: ĥ = GENERAL(Y(J), Q). Then the autocorrelation matrix of the channel estimation

error vector ∆h (defined in (5.6)) can be expressed as

Chh,Q = E[∆h∆h
†]

≈ σ
2
vṼ

#†
Q

(
R̃

†
Q ⊗U

(J)#T

Q

)
(IJ ⊗ BQ)

(
R̃Q ⊗ U

(J)#∗

Q

)
Ṽ

#
Q .

(5.7)

Here, U
(J)
Q is defined as in (5.5), and BQ is defined as

BQ =




B11 · · · B1Q

...
...

...

BQ1 · · · BQQ


 ,Bkl =




0(k−1)×(P+Q−1)

Kl

0(Q−k)×(P+Q−1)


 ,

and Kl =
[

0(P+Q−1)×(l−1) IP 0(P+Q−1)×(Q−l)

]
. In (5.7), R̃Q and ṼQ are obtained by
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performing

(ĥ′, R̃Q, ŨQ) = ZPBLIND(TM+Q−1 (h)U
(J)
Q )

and letting ṼQ = IL,dŨQ.

�

Proof: Using Lemma 5.1, the autocorrelation matrix of ∆h can be written as

E[∆h∆h†] = Ṽ#†
(
R̃† ⊗ U#T

)
R∆X

(
R̃ ⊗ U#∗

)
Ṽ#, (5.8)

where R∆X := E[vec(∆X
(J)
Q )vec†(∆X

(J)
Q )]. The perturbation matrix ∆X

(J)
Q can be written as

∆X
(J)
Q =

[
TQ (e(0)) TQ (e(1)) · · · TQ (e(J − 1))

]
.

One can verify that the (P + Q − 1)JQ × (P + Q − 1)JQ matrix R∆X can be written as R∆X =

σ2
v (IJ ⊗ BQ) , and the proof of the theorem is complete. �

Corollary 5.1: When Q = 1, the channel estimation error autocorrelation matrix can be expressed

as

Chh,1 = σ2
vṼ#†

(
IL ⊗ U(J)#TU(J)#∗

)
Ṽ#,

which agrees with the analytical performance of SGB algorithm derived in [2]. �

Proof: Immediate from Theorem 5.1 using BQ = IP and the fact that columns of R̃Q are orthogonal

to each other. �

5.3.1 Cramer-Rao Bound

In [2], a Cramer-Rao lower bound (CRB) for the zero-padding blind channel estimation problem

was derived. We use the corrected version CRB presented in [58] as follows:

CCR = σ2
v

[
Ṽ

(
IL×L ⊗ U(J)∗U(J)T

)
Ṽ†

]−1

. (5.9)

The Cramer-Rao bound presented in Eq. (5.11) is a lower bound for the performance of all algo-

rithms which attempt to solve the blind estimation problem described in Section 5.2.1, including
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the SGB algorithm [45], the MNP algorithm [36], and the generalized algorithm [49]. More details

of the correction of the CRB are presented in the Appendix.

5.4 Simulations

In this section we perform Monte Carlo simulation for the generalized blind channel estimation

algorithm [49] with different repetition indices and compare the performances obtained by simula-

tions and theory, and the Cramer-Rao Bound at different SNR values.

In our simulations, the block size is chosen as M = 12, and the channel order is chosen as

L = 4. The QPSK constellation is used to generate i.i.d. symbols s(n), and the linear precoder

F is chosen as IM . The channel coefficients (elements of h) are chosen as i.i.d., zero-mean, unit

variance complex Gaussian random variables. The simulation is performed using 100 indepen-

dent realizations of channel coefficients and 10 independent realizations of symbol streams s(n)

(totally 1000 different pairs of S(J) and h). Theoretical preformances in Eq. (5.7) and the CRB in Eq.

(5.11) are computed accordingly and averaged over these 1000 pairs of S(J) and h. Furthermore,

to solve the scalar ambiguity problem, the channel coefficient with the largest magnitude, h(d), is

assumed known to the receiver. Two separate simulation settings are considered: the first one uses

16 received blocks (J = 16), and the second one uses J = 5.

Figure 5.1 depicts the result of the first simulation setting, where J = 16. We compare the

MSE performances with Q = 1 and Q = 2. Both theoretical and simulation performances are

plotted for each case. The Cramer-Rao bound is plotted as the benchmark. We have the following

observations. First of all, in both cases of Q = 1 and Q = 2, the simulation results are very close to

theory in the high SNR region. This validates the small perturbation assumption given in Lemma

5.1. Secondly, performance of Q = 2 is better than that of Q = 1 with a considerable margin.

However, the system with Q = 2 does not achieve the CRB yet. Increasing Q might further improve

the performance toward the CRB, but we omit these curves here due to space limit.

In Figure 5.2, simulation results are shown for the case when J = 5. We choose Q = 3 and

Q = P (= M + L = 16) in this simulation. Notice that Q = P represents the MNP algorithm

[36]. The simulation results approach the theoretical values when SNR goes to infinity. In high

SNR region, the performance for Q = P is obviously better than that for Q = 3. But it still does not

achieve the CRB. Notice that in this case, we need Q ≥ 3 in order to satisfy the full rank assumption

as described in Section II-B.
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Figure 5.1: Channel estimation MSE versus SNR obtained by simulations, theoretical values in (5.7),
and CRB in (5.11) with 16 blocks.

5.5 Conclusions

In this chapter we derived the theoretical performance of the generalized blind channel estima-

tion algorithm proposed in Chapter 2 for ZP systems in the high-SNR range. Simulation results

and theory both suggest that when the repetition index is larger, the performance is usually better

when SNR is large. A Cramer-Rao bound (CRB) presented in [2] and corrected in [58] is used as a

benchmark of the algorithm performance. When the repetition index Q is large, the performance

curve tends to approach the CRB but does not appear to achieve it.

In the future, a formal proof that the generalized algorithm does not achieve the CRB for any Q

is desirable. It also remains an open question whether there exists another blind channel estimation

algorithm that has a performance achieving the CRB.

5.6 Appendix

In [2], important work has been done to analyze the SGB algorithm [45] which solves the blind

channel estimation problem in ZP systems. The performance of the algorithm in [45] in high SNR

region was shown to be as in (33) of [2]. The Cramer-Rao bound (CRB) of the above mentioned

blind estimation problem was shown to be as in (49) of [2]. The coincidence of (33) and (49) led the

authors of [2] to claim that the algorithm in [45] is statistically efficient (i.e., achieves the CRB) at
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Figure 5.2: Channel estimation MSE versus SNR obtained by simulations, theoretical values in (5.7),
and CRB in (5.11) with 5 blocks.

high SNR values. However, we have found an error in the derivation of (49), which invalidates this

claim. Eq. (49) of [2] was derived from (80) in Appendix B of [2]. The second equality of (80) is not

valid in general since it is conditioned on the validity of the matrix identity

(ABAH)−1 = AH†B−1A†, (5.10)

where A is a full rank matrix with more columns than rows and B is a square positive definite

matrix. But a simple example shows that this identity is not true in general: set

A =



 1 0 0

0 1 0



 , and B =




1 0 0

0 1 1

0 1 2


 .

Then, the left hand side of (5.10) is I2 whereas the right hand side is


 1 0

0 2


.

A correction to the CRB, however, is easy to make. The corrected CRB can be simply taken as

the first equality of (80) of [2]:

CCR = σ2
v

[
Ṽ

[
IL×L ⊗ (F∗S∗

NST
NFT )

]
ṼH

]−1

(5.11)

(in the original text [2], σ2
v appeared in the denominator, which was presumably a typographical
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error).

We conduct numerical simulations to compare

Chh ≈ σ2
v Ṽ†H

[
IL×L ⊗

(
F−T (S∗

NST
N )−1F−∗

)]
Ṽ†

from (33) of [2] and the corrected CRB in (5.11). The simulation setting basically follows that in [2]:

the channel order is chosen as L = 4, and the channel coefficients are i.i.d., zero-mean, unit variance

complex Gaussian random variables. The data length per block is M = 12, and the number of

blocks N ranges from 8 to 1000. Elements of the data matrix SN were generated using the QPSK

constellation, and F is chosen as IM . One hundred independent realizations of channel coefficients

and 10 independent realizations of data blocks SN are used (totally 1000 different pairs of SN and

h). Traces of Chh and CCR in (5.11) are computed for these 1000 realizations, and the averages are

reported in Table I.

N tr(Chh)/σ2
v tr(CCR)/σ2

v
tr(Chh)−tr(CCR)

tr(CCR)

8 − 1.7752 −
12 184.01 1.3373 136.6002
14 6.8590 1.0981 5.2462
16 3.5362 0.9760 2.6233
20 1.7197 0.7414 1.3196
100 0.1614 0.1448 0.1147
1000 1.5149× 10−2 1.4986× 10−2 0.0109

Table 5.1: Comparison of Eq. (33) in [2] and Eq. (5.11); the data length per block is M = 12

We find from Table I that there is a significant discrepancy between the corrected CRB in (5.11)

and the performance of the algorithm in [45] (Eq. (33) in [2]), especially when N is small. Further-

more, when N < M , the inverse of S∗
NST

N in (33) of [2] does not exist, but CCR in (5.11) still gives a

finite value. This suggests there might exist algorithms (e.g., see [36, 49, 57]) other than [45] which

solve the aforementioned blind estimation problem when N < M . On the other hand, when N is

large, the difference between traces of Chh and CCR tends to shrink, but it never goes to zero. This

observation is accounted for by the following lemma, where we use notations from the singular

value decomposition of the L × LM full-rank matrix Ṽ :

Ṽ = U
[

D 0

] [
V1 V2

]H

, (5.12)
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where U is a unitary matrix, D is a diagonal matrix with positive diagonal entries, and V :=
[

V1 V2

]
is a unitary matrix. V1 and V2 are the first L and the last (M − 1)L columns of V,

respectively.

Lemma 5.2: If N ≥ M , then tr(Chh) ≥ tr(CCR), with equality if and only if

VH
1 BV2 = 0, (5.13)

where B := IL×L ⊗ (F∗S∗
NST

NFT ) and V1 and V2 are defined as in (5.12).

�

Proof: Since both Chh and CCR are positive definite (p.d.), the statement tr(Chh) ≥ tr(CCR) is

equivalent to the statement that Chh −CCR is a positive semi-definite matrix. We first observe that

B is p.d. since F∗S∗
NST

NFT is p.d. Recall the SVD of Ṽ as in (5.12), where U and V := [V1,V2] are

unitary matrices and D is a diagonal matrix with positive diagonal entries. Define B2 := VHBV,

which is obviously also p.d. Partition B2 and B−1
2 into

B2 =



 B11 B12

BH
12 B22



 and B−1
2 =



 B′
11 B′

12

B′H
12 B′

22



 ,

respectively, so that B11 and B′
11 have the same size as D (L × L). Then we have

CCR = σ2
v(ṼBṼH)−1 = σ2

vU([D 0]B2[D 0]T )−1UH

= σ2
vUD−1B−1

11 D−1UH

and

Chh = σ2
v Ṽ†HB−1Ṽ† = σ2

vU[D−1 0]B−1
2 [D−1 0]TUH

= σ2
vUD−1B′

11D
−1UH .

Therefore, CCR ≤ Chh if and only if

B−1
11 ≤ B′

11 = B−1
11 + B−1

11 B12∆
−1
B11B

H
12B

−1
11 ,

where ∆B11 := B22 − BH
12B

−1
11 B12 is the Schur complement [17] of B11 in B2. Since B2 is p.d.,
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both B11 and ∆B11 are also p.d. (see theorem (7.7.6) of [17]), so B−1
11 ≤ B′

11 is readily verified, with

equality if and only if B12 = 0, which is equivalent to (5.13). �

Using Lemma 5.1, we find that (33) in [2] achieves the CRB if and only if (5.13) is satisfied. Eq.

(5.13) can be satisfied only in one of two possible ways described as follows.

1. If B is the identity matrix or a positive multiple thereof, i.e., S∗
NST

N = cIM for some positive

constant c, then Eq. (5.13) is satisfied. This is extremely unlikely to happen since elements of

SN are i.i.d. random symbols. However, we should note that (1/N)S∗
NST

N tends to approach

cIM for some c > 0 as N goes to infinity. This explains to some extent why the discrepancy

between tr(Chh) and tr(CCR) approaches zero as N → ∞.

2. On the other hand, if B 6= cI, then columns of V1 and V2 must match the eigenvectors of B

in order to make (5.13) true. But this is also extremely unlikely since Ṽ depends on, besides

SN , the random channel coefficients which we have no control of.

So, the gap existing between (33) of [2] and the corrected CRB (5.11) suggests that there might

exist algorithms other than [45] which yield a better performance than [45] in high-SNR region.

Indeed there are such algorithms as reported in [36, 49, 57].
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Chapter 6

Theoretical Issues on Linear
Precoders that Preserve Signal
Richness

In this chapter and the next, we will study a mathematical concept, namely signal richness, that is

highly related to the blind algorithms we have studied in Chapter 2. Vectorized signals are often

considered to be “rich” if they satisfy certain fullness properties appropriate for an application un-

der discussion. The property is especially important for subspace-based blind channel estimation

algorithms. In this chapter, we consider the following definition of signal richness. A sequence of

M × 1 vectors x(n), n ≥ 0, is said to be rich or rank-rich if the matrix

[
x(0) x(1) · · · x(Kx)

]

has rank M for sufficiently large Kx [69]. The definition of signal richness given above first arose

in the blind algorithm proposed in [45], referred to as the SGB algorithm. It serves as a necessary

and sufficient condition on the channel input vectorized signal for channel identifiability in the SGB

algorithm, a special case of the generalized blind algorithm proposed in Chapter 2. For different

algorithms in various systems, the exact definition of signal richness may be different. For the

generalized algorithm proposed in Chapter 2 with a repetition index Q, a generalized (and more

relaxed) definition of signal richness can be established and will be studied in detail in the next

chapter.

Now, the channel input signal is usually a precoded version of the source signal. We are there-

fore interested in the effect of the precoder on the signal richness property. Let the linear time
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invariant system be characterized by the M × M polynomial matrix

H(z) =

N∑

k=0

h(k)z−k

so that the output of the system is

y(n) =

N∑

k=0

h(k)x(n − k).

We say the system H(z) is richness preserving (RP) if for any rank-rich input x(n), the output

y(n) is also rank-rich. Obviously, if the precoder is characterized as a constant (i.e., memoryless; or

H(z) = h(0)) nonsingular matrix, the signal richness property will not be altered due to the precod-

ing. However, there are some other applications (e.g., [37]) which use a precoder as a polynomial

matrix with memory. The conditions under which the linear precoders will preserve richness of

the vectorized signals are much less obvious. In this chapter, we will explore this question and

find the necessary and sufficient conditions on such linear precoders. This fundamental mathemat-

ical problem, rather than the applications, will be the focus of this chapter and will be explored in

depth. Several examples will be presented to clarify the issues involved in the problem. Parau-

nitary and unimodular matrices can be shown not to preserve richness unless they are constant

matrices (or a delayed version in the paraunitary case). Some richness preserving properties of cas-

caded systems are also investigated. A structured proof of the necessary and sufficient conditions

is presented. The relationship between persistent excitation (PE) and our definitions of richness is

also described.

The richness preserving problem can also be formulated for the generalized definition of signal

richness which arises in the blind algorithm proposed in Chapter 2 with a repetition index greater

than unity. We will delay our exploration of this more advanced problem until next chapter. The

material in the chapter is mainly drawn from [48], and portions of it have been presented at [69],

[50], and [68].

6.1 Outline

This chapter is organized as follows. In Section 6.2, the first definition of richness will be given and

several examples will be presented to clarify the issue. A set of necessary and sufficient conditions
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will be presented in Section 6.3. In Section 6.4 we will explore more properties of richness pre-

serving systems, including cascaded systems, and enriching systems, and we will also show that

paraunitary (PU) matrices and unimodular matrices cannot satisfy the necessary conditions unless

they are constant matrices (with a possible delay in the PU case). In Section 6.5 a strict definition

of richness and the necessary and sufficient conditions on LTI systems that preserve richness ac-

cording to this definition will be given. The proof of the main theorems will be given in Section 6.6.

In Section 6.7 we will connect the relationship between strict richness defined in Section 6.5 and

persistent excitation (PE) in the literature on control theory [14, 41, 43, 4]. Conclusions and open

issues are presented in Section 6.8.

6.2 Formulation and Examples

Definition 6.1: A sequence of M × 1 vectors x(n), n ≥ 0 is said to be rich if there exists an integer

Kx such that the matrix
[

x(0) x(1) · · · x(Kx))
]

has rank M . �

Consider an LTI FIR causal system H(z) =
∑N

k=0 h(k)z−k. Then, the output of this system is rich if

there exists an integer Ky such that

Y =
[

y(0) y(1) · · · y(Ky)
]

has rank M . Note that Y = HX , where

H = [h(0) h(1) · · · h(N)]

and

X =




x(0) x(1) x(2) · · · x(Ky)

0 x(0) x(1) · · · x(Ky − 1)

0 0 x(0) · · · x(Ky − 2)

...
...

. . .
...

0 0 0 · · · x(Ky − N)




.
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The matrix H has size M × M(N + 1). With ρy , ρh, and ρx denoting the ranks of Y , H and X

respectively, we have from Sylvester’s inequality [17]:

ρh + ρx − M(N + 1) ≤ ρy ≤ min(ρh, ρx).

Observe that if the output matrix Y has to have rank M , it is necessary that the filter matrix H have

rank M . For example, if one of the h(n)’s has rank M , this is satisfied. We will produce examples

to demonstrate that this necessary condition is in fact not sufficient. In fact the examples also

show that many standard systems such as unimodular and paraunitary matrices do not preserve

richness!

6.2.1 Examples that Do not Preserve Richness

Example 6.1: To demonstrate that the rank-M property of the filter matrix H is not sufficient,

consider the following example with M = 2:

H(z) =


 1 1

1 1


 + z−1


 1 −1

−1 1


 .

Then,

H =



 1 1 1 −1

1 1 −1 1





and has rank M = 2. Suppose the input signal is

x(0) =


 1

−1


 ,x(1) =


 −1

−1


 ,

with x(n) = 0 otherwise. Clearly this input is rich because
[

x(0) x(1)
]

has rank two. The

output can have only three nonzero samples, so that the largest output matrix we need to look at

is:

[y(0) y(1) y(2)] =
[
h(0) h(1)

]

 x(0) x(1) 0

0 x(0) x(1)


 .
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We have

[y(0) y(1) y(2)] =


 1 1 1 −1

1 1 −1 1







1 −1 0

−1 −1 0

0 1 −1

0 −1 −1




=



 0 0 0

0 −4 0



 ,

which shows that the output matrix has rank one. Thus, richness of the input is not preserved at

the output even though the matrix H has full rank M . In this example, H(z) happens to be a

paraunitary matrix [67], that is, it satisfies H̃(z)H(z) = dI for some positive d. Thus, paraunitary

matrices do not necessarily preserve richness. �

Example 6.2: Consider again M = 2 and let

H(z) =


 1 + z−1 −z−1

z−1 1 − z−1


 =


 1 0

0 1


 + z−1


 1 −1

1 −1


 .

Then,

H =


 1 0 1 −1

0 1 1 −1




and has rank M = 2. Consider the input

x(0) =


 0

1


 ,x(1) =


 1

1


 ,

with x(n) = 0 otherwise. Then the output matrix is

[y(0) y(1) y(2)] =



 1 0 1 −1

0 1 1 −1








0 1 0

1 1 0

0 0 1

0 1 1




=


 0 0 0

1 0 0


 ,

which has rank one. Again, richness of the input is not preserved at the output, though H has full
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rank M . In this example H(z) happens to be a unimodular matrix[67], that is, detH(z) = 1 for all

z so that its inverse is an FIR matrix as well. The example shows that unimodular matrices do not

necessarily preserve richness. �

6.2.2 Examples that Preserve Richness

If H(z) is an invertible memoryless system (i.e., a constant nonsingular matrix), it obviously pre-

serves richness since multiplication with a nonsingular matrix does not change the rank of a matrix.

A generalization of this special case has been found in [69] to be sufficient to preserve richness.

Example 6.3: An N th order FIR system of the form

H(z) = A
(
g0 + g1z

−1 + · · · + gNz−N
)

preserves richness if A is a nonsingular matrix and g0 6= 0. To see this, suppose there exists a rich

input sequence x(n) such that the output y(n) is not rich. Then, there exists a vector v 6= 0 such

that

v†y(n) = 0, ∀n

For n = 0, we have g0v
†Ax(0) = 0. Since g0 6= 0, we obtain w†x(0) = 0, where w, defined as A†v,

is also a nonzero vector. For n = 1, we have g0v
†x(1) + g1v

†Ax(0) = 0, which implies w†x(1) = 0

because the second term is zero. For n = 2 we have g0v
†x(2) + g1v

†Ax(1) + g2v
†Ax(0) = 0, and

this implies w†x(2) = 0 since the last two terms are zero. Proceeding like this, we see that

w†x(n) = 0 for all n, contradicting the assumption that x(n) is rich. �

Example 6.4: An RP example that does not have the form of the previous example is [69]:

H(z) =


 1 a

0 0


 + z−1


 0 0

1 a


 ,

where a is an arbitrary number.

To see this, assume the input x(n) is rich. Denote xn =
[

1 a
]
x(n). Then, xn cannot be zero for

all n since x(n) is rich. Now we have

y(0) =


 1 a

0 0


x(0) =


 x0

0



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and

y(n) =


 1 a

0 0


x(n) +


 0 0

1 a


x(n − 1) =


 xn

xn−1




for n ≥ 1. Suppose xk is the first nonzero number in the sequence {xn}. Then,

[
y(k) y(k + 1)

]
=


 xk xk+1

0 xk




is a full-rank matrix, so y(n) is rich for any rich input x(n). �

6.3 Main Theorem

In this section we will describe the necessary and sufficient conditions for an LTI system to preserve

richness. The proof of the theorem will be given in Section 6.6.

Theorem 6.1: An N th order, M × M polynomial matrix

H(z) =

N∑

k=0

h(k)z−k

is a richness preserving (RP) LTI system if and only if either one of the following conditions is

true:

(a) There exist a nonsingular M × M matrix A and constants g0, g1, · · · , gN of which at least one

is nonzero such that h(k) = gkA.

(b) There exist a nonzero row vector v† and a set of column vectors a0,a1, · · · ,aN such that

h(k) = akv
† for any k, and

[
a0 a1 · · · aN

]
has full rank M .

�

It is obvious that conditions (a) and (b) cannot be satisfied at the same time. We can hence

say there are two types of RP matrices, namely Type A and Type B, according to the statement of

Theorem 6.1. Examples 6.3 and 6.4 in the previous section serve as special cases for Type A and

Type B RP matrices, respectively.

For a Type A matrix, each nonzero coefficient matrix is nonsingular. For Type B matrices, each

nonzero coefficient matrix has unit rank. There are no other types of examples! Notice in particular
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that the order N and the size M of a Type B matrix must satisfy N ≥ M − 1 to meet the full rank

criterion of
[

a0 a1, · · · aN

]
.

The rank of each nonzero coefficient matrix of a RP matrix is always the same, and we call it the

coefficient rank. In addition, the coefficient rank of a RP system can only be either unity or full. For

a RP system where the first coefficient matrix is nonsingular, a useful corollary of Theorem 6.1 is as

follows:

Corollary 6.1: Consider the N th order, M × M FIR systems H(z) =
∑N

k=0 h(k)z−k and assume

h(0) is nonsingular. Then H(z) is RP if and only if there exist a nonsingular M × M matrix A and

constants g0, g1, · · · , gN where g0 6= 0 such that h(k) = gkA. �

When the first coefficient matrix h(0) of a RP system is singular but nonzero, it must be a Type

B RP system, as stated in the following corollary:

Corollary 6.2: Consider the N th order, M × M FIR system H(z) =
∑N

k=0 h(k)z−k with size

M ×M , and assume h(0) 6= 0 is singular. Then, H(z) is RP if and only if there exist a nonzero row

vector v† and N + 1 column vectors a0,a1, · · ·aN such that h(n) = anv†,
[

a0 a1 · · · aN

]

has full rank, and a0 6= 0. �

The proofs of the preceding two corollaries will be automatically covered when we prove The-

orem 6.1 in Section 6.6. In these corollaries we have not considered the case where h(0) = 0. If this

is true, however, H(z) is simply a delayed version of another LTI system whose first coefficient is

nonzero. Since H(z) is RP if and only if z−mH(z) is RP for any m, the assumption h(0) 6= 0 is not a

loss of generality.

6.3.1 Proof of a Special Case

We will give the proof of a special case of Corollary 6.1 where we assume h(0) is nonsingular.

Although the proof of this special case will be definitely covered when we prove Theorem 6.1 in

Section 6.6, the reader might find this insightful.

Special Case of Corollary 6.1: Consider the first order, 2 × 2 FIR system

H(z) = h(0) + z−1h(1),
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and assume h(0) is nonsingular. Then, H(z) is RP if and only if h(1) = ρh(0) for some scalar

constant ρ.

Proof: The proof of sufficiency is self-evident in view of Example 6.3. As for necessity, since h(0) is

nonsingular, we can write H(z) = h(0)(I + Bz−1). The nonsingular factor h(0) does not affect the

rank of the output matrix, so H(z) is RP if and only if (I + Bz−1), which has the form

G(z) = I + z−1



 a b

c d



 ,

preserves richness. Consider the input

x(0) =


 0

1


 ,x(1) =


 −b

a


 ,

with x(n) = 0 otherwise. This produces the output

y(0) =



 0

1



 ,y(1) =



 0

a + d



 ,y(2) =



 0

ad − bc



 ,

and y(n) = 0 otherwise. We see that if b 6= 0, then
[

x(0) x(1)
]

has rank 2, and hence the

input is rich while the output y(n) is not. Therefore, b = 0 is a necessary condition for richness

preservation. A slight variation of this construction shows that c = 0 is necessary as well. Thus, in

order to preserve richness G(z) has to be of the form

G(z) = I + z−1


 a 0

0 d


 .

If we now choose the input

x(0) =


 1

1


 ,x(1) =


 d

a


 ,

with x(n) = 0 otherwise, then

y(0) =



 1

1



 ,y(1) =



 a + d

a + d



 ,y(2) =



 ad

ad



 ,

with y(n) = 0 otherwise. If a 6= d, then the input is rich whereas the output is not. This shows that

a = d is a necessary condition. Thus, G(z) = I + ρIz−1, so h(1) = ρh(0) indeed.
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�

6.4 Properties of Richness-Preserving Systems

6.4.1 Cascaded Systems

In this subsection we are interested in richness preserving properties of cascaded systems. It is

obvious that the product of RP systems is also RP. We will show that the product is Type A RP if all

the subsystems are Type A RP, and it would be Type B RP if any of them is Type B RP.

Theorem 6.2: If A1(z),A2(z) are Type A RP matrices and B1(z),B2(z) are Type B RP matrices,

then

(1) A1(z)A2(z) is a Type A RP matrix,

(2) A1(z)B1(z) is a Type B RP matrix,

(3) B1(z)A1(z) is a Type B RP matrix,

(4) B1(z)B2(z) is a Type B RP matrix.

�

Proof: Let A1(z) = g1(z)A1,A2(z) = g2(z)A2, where A1,A2 are invertible constant M × M matri-

ces and g1(z), g2(z) are nonzero polynomials in z−1. Then the product A1A2 = g1(z)g2(z)A1A2 is

clearly a Type A RP matrix. Furthermore, let B1(z) =
∑N1

k=0 akv
†
1z

−k and B2(z) =
∑N2

k=0 bkv
†
2z

−k,

then A1(z)B1(z) = g1(z)A1

∑N1

k=0 akv
†
1z

−k =
∑N

l=0 glz
−l

∑N1

k=0 a′
kz−kv

†
1 =

∑N1+N
k=0 a′′

kz−kv
†
1 is

Type B RP since both a′
k’s and a′′

k ’s still span a full dimensional space. And B1(z)A1(z) = (
∑N1

k=0 akz−k)g1(z)

v
†
1A1 = (

∑N1+N
k=0 a′

kz−k)v′† is also Type B RP. Finally B1(z)B2(z) = (
∑N1

k=0 akv
†
1z

−k)(
∑N2

l=0 blv
†
2z

−l) =

∑N1+N2

k=0 a′
kv

†
2z

−k is also a Type B RP matrix. �

If some of the subsystems are non-RP, however, it does not imply the whole system is non-RP.

A trivial example is a cascade of the unimodular matrix in Example 2 with its inverse, which is also

causal and unimodular. Since the product is identity it preserves richness. But both of the factors

in the product are non-RP systems. In fact, for a cascaded system to be RP, although it is sufficient

that all the subsystems are RP, this is not necessary. An interesting question that comes up here is

this: if F(z)H(z)G(z) is a richness preserving system and both F(z) and G(z) are RP, is H(z) also

RP? The answer depends on the types of F(z) and G(z), and is given in the following two theorems.
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Theorem 6.3: Suppose A(z) is a Type A RP matrix. Then, the statement “A(z)H(z) is RP” implies

that H(z) is RP. Similarly, the statement “H(z)A(z) is RP” also implies that H(z) is RP. �

This theorem states that if a Type A RP system is going to connect with another system, the

resulting cascaded system is RP only when the new system is also RP. On the contrary, Type B RP

systems do not have this property. We can see this in the following examples.

Example 6.5: Let B(z) =


 1 0

z−1 0


, which is a Type B RP system, and

H1(z) =



 1 1

0 0



 .

Then,

B(z)H1(z) =


 1 0

z−1 0





 1 1

0 0


 =


 1 1

z−1 z−1




is RP, although H1(z) is not RP. On the other hand, let

H2(z) =


 1 + z−1 −1

z−1 0


 .

We have

H2(z)B(z) =


 1 + z−1 −1

z−1 0





 1 0

z−1 0


 =


 1 0

z−1 0




is also RP, while H2(z) is not. �

Actually, for any given Type B RP system, we can always find a non-rich system such that the

product of the two systems is RP, as stated in the following theorem.

Theorem 6.4: If B(z) is a Type B RP matrix, then there exist non-RP systems H1(z) and H2(z) such

that B(z)H1(z) and H2(z)B(z) are both RP. �

The proofs of these two theorems require some lemmas which will be introduced in the follow-

ing two subsections. The proofs will be given in Section 6.4.4.
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6.4.2 Enriching Systems

We can define a system to be enriching if there exists a non-rich input such that the output of the

system is rich. An enriching system, when following a non-RP system, could possibly make the

overall system become RP again. We will show that Type A RP matrices are not enriching, while

all Type B RP matrices are enriching.

Lemma 6.1: If A(z) is a Type A RP system, then the input x(n) is rich if and only if the output y(n)

is rich. �

Proof: Obviously, if x(n) is rich, then so is y(n). Now suppose x(n) is non-rich. We need to show

that y(n) is also non-rich. Let

A(z) =
N∑

k=0

gkAz−k,

where A is an invertible constant matrix. We have

y(n) =

N∑

k=0

gkAx(n − k) =

N∑

k=0

gkx
′(n − k),

where x′(n) = Ax(n) is also non-rich since A does not change the rank of a signal. This implies

y(n), a linear combination of x′(k), is also non-rich. �

This lemma states that Type A RP systems are never enriching. Type-B RP systems, on the

contrary, can be shown to be enriching. An example of this is when

H(z) =


 1 a

0 0


 + z−1


 0 0

1 a


 ,

and we let the input x(n) = [1 0]T for all n, which is obviously non-rich. Then, we obtain

y(0) = [1 0]T and y(1) = [1 1]T , implying the output y(n) is rich, and hence H(z) is enrich-

ing. More generally we have:

Lemma 6.2: If B(z) is a Type B RP system, then there exists a non-rich input x(n) such that the

output is rich. �
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Proof: For B(z) =
∑N

k=0 akv
†z−k, let x(n) = v/||v||2 for all n, which is obviously non-rich. Then it

can be shown that y(n) =
∑n

k=0 ak for 0 ≤ n ≤ N , so we have

[y(0) y(1) · · ·y(N)] = [a0 a1 · · ·aN ]




1 1 · · · 1

0 1 · · · 1

...
. . .

. . .
...

0 · · · 0 1




,

which implies the matrix [y(0) y(1) · · ·y(N)] has full rank since it is the product of two full-rank

matrices, so y(n) is rich, and hence any Type B RP system is enriching. �

6.4.3 Restriction on Output Range

Consider the cascaded system F(z)G(z). If rich signals which are rendered non-rich by F(z) can

never be produced as outputs of G(z), then the product F(z)G(z) can be RP. We will show that a

Type A RP system G(z) can produce any output if the first coefficient matrix g(0) is nonzero. For

any Type B RP system, on the contrary, we can always find an output that it cannot generate.

Lemma 6.3: If A(z) is a Type A RP matrix, and the first coefficient matrix h(0) is nonzero, then for

any output sequence y(n), there exists unique x(n) such that the output of A(z) is y(n). �

Proof: For any n ≥ 0 we have

y(n) =

N∑

k=0

gkAx(n − k),

where we assume x(n) = 0 for all n < 0. This implies

A−1y(n) = g0x(n) +
N∑

k=1

g1x(n − k),

and hence

x(n) =
1

g0

[
A−1y(n) −

N∑

k=1

g1x(n − k)

]

can be uniquely decided for any n ≥ 0, given any output signal y(n). �

Lemma 6.4: If B(z) is a Type B RP matrix, then there exists y(n) that cannot be output of B(z). �

Proof: Suppose

B(z) =

N∑

k=0

akv
†z−k.
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Then for any input x(n), we have y(0) = a0v
†x(0), which is confined to be a scalar multiple of a0,

so B(z) cannot produce output y(n) where y(0) is not proportional to a0. �

6.4.4 Proof of Theorems 3 and 4

Proof of Theorem 6.3: First let x(n) be the input to H(z), x1(n) be the output of H(z) and the input of

A(z), and y(n) be the output A(z). Suppose H(z) is not RP but A(z)H(z) is RP. Then there exists

x(n) such that x1(n) is non-rich. From Lemma 1 we know y(n) is also non-rich. Hence the system

A(z)H(z) is not RP, contradicting the assumption, so H(z) has to be RP if A(z)H(z) is RP.

Conversely, let x(n) be the input of the cascaded system H(z)A(z) and y(n) be the output of

H(z)A(z). In addition, we assume A(z) = z−mA′(z), where m is a nonnegative integer and A′(z)

is a causal Type A RP system with first coefficient matrix nonzero. Then, the cascaded system can

be viewed as a cascade of A′(z) followed by H(z)z−m. Let x1(n) be the output of the subsystem

A′(z) and the input of the subsystem H(z)z−m. Suppose H(z) is not RP. Then, H(z)z−m is also

not RP, so there exists input sequence x1(n) such that the output y(n) of H(z)z−m is not rich. By

Lemma 3 we can find an input x(n) for A′(z) such that the output is x1(n). Also, by Lemma 1

this x(n) must be rich, so we can use this x(n) to be the input of the whole system H(z)A(z) and

generate the non-rich output y(n), so H(z) must be RP if H(z)A(z) is RP. �

Proof of Theorem 6.4: Let B(z) =
∑N

k=0 akv
†z−k. Assume ||v|| = 1. Take an arbitrary nonzero

row vector w† and let H1(z) = vw†, which is a singular constant matrix and is obviously non-RP.

Then, it can be shown that B(z)H1(z) =
∑N

k=0 akw
†z−k is also RP!

Suppose a0 and aN are nonzero. Let H2(z) = IM + a0a
†
Nz−1. Since the coefficient matrices

have different ranks, H2(z) is not RP. But the product H2(z)B(z) can be shown to have the form
∑N+1

k=0 bkv
†z−k, where b0 = a0,bk = ak + ck−1a0 for 1 ≤ k ≤ N , and bN+1 = a0cN , where

ck = a
†
kaN are constants. One can verify that the matrix [b0b1 · · ·bN ] is a full rank matrix and

hence H2(z)B(z) is Type B RP. �

6.4.5 Paraunitary and Unimodular matrices

In Examples 6.1 and 6.2 we have seen that paraunitary matrices and unimodular matrices are not

necessarily RP. Using Theorem 6.1, we can actually show that FIR paraunitary and unimodular

matrices cannot preserve richness unless they are constant matrices (with a possible delay in the

PU case):
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Corollary 6.3: If a paraunitary matrix H(z) is RP, then H(z) is a constant unitary matrix or a

delayed version of it. �

Proof: Without loss of generality, assume h(0) 6= 0. Suppose H(z) =
∑N

k=0 h(k)z−k is parauni-

tary and richness preserving but not a constant matrix (i.e., N > 0 and h(N) is nonzero). From

properties of paraunitary matrices we know both h(0) and h(N) are singular [67]. Using Corollary

6.2 of Theorem 6.1, there exist row vector v† and N + 1 column vectors a0,a1, · · · ,aN such that

H(z) =
∑N

k=0 akv
†z−k, so H̃(z) =

∑N
l=0 va

†
l z

l and

H̃(z)H(z) =

N∑

k=0

N∑

l=0

va
†
l akv

†z−(k−l).

The constant term (z0) of H̃(z)H(z) would be

N∑

k=0

vaH
k akv

† =

[
N∑

k=0

a
†
kak

]
vv†

since a
†
kak are all constants. The matrix vv† obviously has rank one. This contradicts H̃(z)H(z) =

IM , completing the proof. �

Corollary 6.4: If a unimodular matrix H(z) is richness preserving, then H(z) is a constant matrix.�

Proof: If H(z) =
∑N

k=0 h(k)z−k is unimodular, det (h(0)) = det (H(∞)) = 1, so h(0) must

be nonsingular. If H(z) is also RP, it must satisfy condition (a) in Theorem 1. Then, H(z) =
(∑N

k=0 gkz−k
)

A and det(H(z)) =
(∑N

k=0 gkz−k
)M

det(A) = 1, where A is nonsingular, so we

have gk = 0 for k > 0, and hence H(z) must be a constant matrix. �

6.5 Strict Definition of Richness

In practical applications, the new definition of richness given below might be more useful:

Definition 6.2: A sequence of M × 1 vectors x(n), n ≥ 0 is said to be strictly rich (SR) if for any

positive integer n0, there exists an integer Kn0
such that the matrix

[
x(n0) x(n0 + 1) · · · x(n0 + Kn0

)
]
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has rank M . �

Observe that a strictly rich signal is also rich according to the old definition. Conversely, a rich

signal is not necessarily strictly rich. Furthermore, we will find that some systems that preserve

richness according to the old definition no longer preserve strict richness. For example, we showed

that Type A RP system H(z) =


 1 0

0 1


 + z−1


 1 0

0 1


 preserves richness. However, if we let

x(2n) =
[

1 0
]T

and x(2n + 1) =
[

0 1
]T

for all nonnegative n, then the output would be

y(0) =
[

1 0
]T

and y(n) =
[

1 1
]T

for any positive n. Here, the input x(n) is both rich and

strictly rich, but the output y(n) is not strictly rich. The necessary and sufficient condition for LTI

systems to preserve strict richness is summarized in the following theorem.

Theorem 6.5: An N th order, M × M polynomial matrix

H(z) =

N∑

k=0

h(k)z−k

is a strict-richness preserving (SRP) LTI system if and only if there exists nonnegative integer n

and an invertible M × M matrix A such that

H(z) = z−nA. �

In view of this theorem, we find if a system is SRP then it is also RP. We will prove Theorems

6.1 and 6.5 together in Section 6.6.

6.6 Proof of the Main Theorems

6.6.1 Sketch of the Proof

In this section, we will prove Theorems 6.1 and 6.5 step by step. We will first show that conditions

described in Theorems 6.1 and 6.5 are sufficient (Section 6.6.2). Then we will present Lemma 5,

which shows that necessary conditions for Theorem 1 are also necessary for Theorem 5 (Section

6.6.3). From Section 6.6.7 to Section 6.6.6, necessary conditions of Theorem 6.1 will be developed.

In particular, a term coefficient rank will be defined for all RP systems to denote the ranks of all

nonzero coefficient matrices since they will prove to be the same (Section 6.6.5). The coefficient

rank will later on prove to be either unity or M . Finally, for the case of unity coefficient rank,
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we will show condition (b) is necessary, and for the case of full coefficient rank, condition (a) is

necessary (Section 6.6.6).

In Section 6.6.7, we will show that Type A and Type B RP systems cannot preserve strict richness

unless they are a constant invertible matrix with a possible delay.

6.6.2 Proof of Sufficiency

We first prove conditions (a) and (b) in Theorem 6.1 are sufficient for preserving richness.

Proof: If H(z) satisfies condition (a), by Theorem 6.1 in [69], it is RP. Suppose H(z) satisfies condi-

tion (b) but is not RP. Then there exists a rich input x(n) such that the output y(n) is not rich, i.e.,

there exists a row vector w† such that w†y(n) = 0, ∀n. Using y(n) =
∑N

k=0 h(k)x(n − k), we have

the following equations:

(w†a0)(v
†x(0)) = 0

(w†a0)(v
†x(1)) + (w†a1)(v

†x(0)) = 0

...
∑N

k=0(w
†ak)(v†x(N − k)) = 0.

(6.1)

If v†x(0) is not zero, then from the first equation we have w†a0 = 0. Substituting this into the

second equation, we get

(w†a1)(v
†x(0)) = 0,

so w†a1 has to be zero. Repeating these substitutions we will have w†ak = 0, ∀k, 0 ≤ k ≤ N . This

contradicts the statement that [a0,a1, ...,aN ] has rank M , so v†x(0) has to be zero. Substituting this

into (6.1) and repeating the same derivations, we will have v†x(1) = 0 as well. Repeating this we

get v†x(n) = 0 for all n. This violates richness of the input x(n), so condition (b) is also sufficient.

�

The sufficiency for Theorem 6.5 is self-evident.

6.6.3 Relationship between RP and SRP Systems

We know that strict richness implies richness, but not vice versa. Therefore, it is not obvious that

an SRP system is also RP. We will show, however, that this is the case.

Lemma 6.5: Given M × M polynomial matrix H(z) =
∑N

k=0 h(k)z−k, if there exists a rich causal
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signal x(n) which has a finite support such that y(n) =
∑N

k=0 h(k)x(n − k) is non-rich, then H(z)

is neither RP nor SRP. �

Proof: By definition, H(z) is not RP. Suppose x(n) has length L, that is, x(n) = 0 for all n ≥ L.

Then it is clear that y(n) =
∑N

k=0 h(k)x(n − k) = 0 for all n ≥ L + N . Now consider a new

signal x′(n) = x(n mod (N + L)). Since x(n) is rich, we have x′(n) is strictly rich. Then, using the

facts that x(n) = 0 for all n ≥ L and that y(n) is not rich, we find y′(n) =
∑N

k=0 h(k)x′(n − k) =

∑N
k=0 h(k)x((n−k) mod (N +L)) =

∑N
k=0 h(k)x([n mod (N +L)]−k) = y(n mod (N +L)) is also

not strictly rich. Therefore, H(z) is not SRP. �

We will use this lemma to show that SRP is stronger than RP. In the following lemmas, we will

derive necessary conditions for Theorem 1 by constructing rich input signals that have non-rich

output for a system that does not satisfy these conditions. All of the input signals we construct will

have finite support, and hence the necessary conditions for Theorem 1 are also those for Theorem

5.

6.6.4 Lemmas for Proof of Necessity

Lemma 6.6: If an M × M polynomial matrix H(z) =
∑N

k=0 h(k)z−k is RP, then there exist M × M

diagonal matrices Dk and an M × M constant matrix A, each row of which is nonzero, such that

h(k) = DkA. �

Proof: For 0 ≤ k ≤ N , we assume

h(k) =
[

a1k a2k · · · aMk

]T

,

where

aT
ik =

[
ai1k ai2k · · · aiMk

]

is the ith row of h(k). Focusing on the ith row of H(z), we use

bT
k =

[
b1k b2k · · · bMk

]

to denote aT
ik for simplicity. Since H(z) is richness preserving, any row of H(z) cannot be all zeros.

So there exists bjk that is nonzero. Without loss of generality, assume b10 6= 0. Construct the input

as:
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x(0) = b20e1 − b10e2

x(1) = b21e1 − b11e2

...

x(N) = b2Ne1 − b1Ne2

x(m(N + 1) + k) = b(m+2),ke1 − b1kem+2,

0 ≤ m ≤ M − 2, 0 ≤ k ≤ N.

For simplicity, we will use xm(k) to denote x(m(N + 1) + k)

By the definitions above, one can verify the following things for 0 ≤ m ≤ M − 2, 0 ≤ k, l ≤ N.

(1) bT
k xm(k) = 0.

(2) bT
k xm(l) + bT

l xm(k) = 0.

Using these results, it can be shown that

[y(n)]i =

[
N∑

k=0

h(k)x(n − k)

]

i

=

N∑

k=0

bT
k x(n − k) = 0.

Hence, the output y(n) is not rich. Since H(z) is richness preserving, x(n) must also be not rich.

Define the M × M matrix

X1 =
[

x(0) x(1) x1(0) x2(0) · · · xM−2(0)
]
.

One can verify the absolute value of the determinant of X1 is |det(X1)| = |b10|M−2|b10b21 − b11b20|.

Since x(n) is not rich, det(X1) = 0. Since b10 is nonzero, we get b10b21 = b11b20, or b21 = di1b20,

where di1 is chosen as b11/b10. Now we define another M × M matrix by replacing x(1) in the

definition of X1 with another xm(1), and we obtain b(m+2),1 = di1b(m+2),0. These results for all m

imply that b1 = di1b0, or ai1 = di1ai0.

If we replace x(1) in the definition of X1 with xm(k), we can show that ∃dik such that bk =

dikb0, or aik = dikai0. Finally, define vi = ai0 and di0 = 1. Then, we have aik = dikvi for all i and

k. The reader has to note that here we assign vi as ai0 just because of the assumption that b10 is

nonzero without loss of generality. If b10 = 0, we can find another bjk that is nonzero and do similar

derivation, and vi here will be assigned as another aik rather than ai0. After all, ∃dik,vi 6= 0 such
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that aik = dikvi is still true for all i and k. Now we simply assign

A =
[

v1 v2 · · · vM

]T

and

Dk = diag
[

d1k d2k · · · dMk

]
.

Then, the proof is complete. �

Lemma 6.6 will play an important role in the proof of necessity for both conditions (a) and (b)

of Theorem 6.1. Some other useful lemmas will be presented here.

Lemma 6.7: H(z) is RP if and only if AH(z) is RP, where A is any nonsingular M × M matrix. �

Proof: This lemma becomes obvious when we recognize that x(n) is rich if and only if Ax(n) is rich

for any nonsingular matrix A. �

Lemma 6.8: H(z) is RP if and only if z−kH(z) is RP, where k is any nonnegative integer. �

Proof: This is self-evident. �

Lemma 6.7 allows us to do invertible row operations on H(z) since each invertible row oper-

ation corresponds to a nonsingular matrix. Lemma 6.8 allows us to assume h(0) 6= 0 for an RP

matrix H(z).

6.6.5 Coefficient Rank of an RP System

Lemma 6.9: For an FIR system H(z) =
∑N

k=0 h(k)z−k which preserves richness, the ranks of all

nonzero coefficient matrices must be the same. We call this value the coefficient rank of an RP

system. �

Proof: Suppose h(j) has the smallest rank ρ among all nonzero h(k) (ρ > 0). By Lemma 7, we can

do invertible row operations on H(z) such that h(j) can be expressed as

h(j) =
[

v1 v2 · · ·vρ vρ · · · vρ

]T

,



148

where v1, ...,vρ are linearly independent nonzero column vectors. By Lemma 6, there exists a

constant matrix A and a diagonal matrix Dj such that h(j) = DjA. Since each row of h(j) is

nonzero, all diagonal entries of Dj must be nonzero and A also has rank ρ.

Now for any other nonzero coefficient matrix h(k), there exists a diagonal matrix Dk such that

h(k) = DkA, so rank(h(k))≤ rank(A) = ρ. Since h(j) has the smallest nonzero rank ρ, we have

rank(h(k)) = ρ. � In the following two lemmas, we will prove the coefficient rank of an RP system

can only be unity or M .

Lemma 6.10: If an RP system with the form H(z) =
∑N

k=0 DkAz−k has coefficient rank ρ, where

Dk’s are diagonal matrices and A is a constant matrix, then rank(A) = ρ. �

Proof: If H(z) has only one nonzero coefficient matrix, then the statement is self-evident. Now we

assume H(z) has at least two nonzero coefficient matrices and, without loss of generality, assume

h(0) and h(l) are nonzero. Since h(0) = D0A, we have rank(A) ≥ rank(h(0)) = ρ. Suppose

rank(A) > ρ. Then, without loss of generality we can assume the first ρ + 1 rows of A, namely

aT
1 , · · · ,aT

ρ ,aT
ρ+1, are linearly independent. Since rank(h(0)) = ρ, we can further assume the first

row of h(0) is zero, while rows 2, 3, ..., (ρ + 1) are nonzero. Let dik denote the ith diagonal entry

of Dk. Now we have d10 = 0 and di0 6= 0 for 2 ≤ i ≤ ρ + 1. Since H(z) is RP, there exists a

coefficient matrix whose first row is nonzero. Assume h(l) satisfies this and, thus, d1l 6= 0. Since

rank(h(l)) = ρ, at least one of the first ρ + 1 rows of h(l) must be zero. Assume the second row is

zero, which means d2l = 0. By Lemma 7 we can do an invertible row operation on H(z) by adding

the second row into the first row and produce another RP system H′(z) =
∑N

k=0 h′(k)z−k. Now

the first rows of h′(0) and h′(l) are d20a
T
2 and d1la

T
1 , respectively. They are both nonzero and are

linearly independent. This makes it impossible for H′(z) to be written as the form in Lemma 6 and

causes a contradiction. Therefore, rank(A) = ρ must be true. �

Lemma 6.11: The coefficient rank of an RP system can only be unity or M . �

Proof: Suppose there exists an RP matrix H(z) that has a coefficient rank ρ where 2 ≤ ρ ≤ M − 1.

By Lemmas 6.2 and 6.3, we can assume h(0) 6= 0 and do invertible row operations on H(z) such

that

h(0) =
[

a1 a2 · · · aρ 0 · · · 0

]T

.

Since ρ < M , the last row of h(0) must be a zero vector. The last rows of other h(k), however,

cannot be all zeros. By Lemma 6.6, there exist a constant matrix A and a diagonal matrix D0 such
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that h(0) = D0A. By Lemma 6.10 we know rank(A) = ρ, so the last row of A, namely vT
2 , must be

a linear combination of aT
1 ,aT

2 , · · · ,aT
ρ .

Since ρ ≥ 2, we can find an i, 1 ≤ i ≤ ρ such that ai and v2 are linearly independent. For

convenience we define v1 = ai. Now we can find a set of linearly independent vectors w1,w2, · · · ,

wM such that w1 is orthogonal to v2, w2 is orthogonal to v1, and w3, w4, ..., wM are orthogonal

to both v1 and v2. (For example, we can let w1 = v1 − vT
1
v2

||v2||2
v2). Furthermore, we can assume

vT
1 w1 = vT

2 w2 = 1.

Now we focus on the ith and the M th rows of H(z). They are vT
1 +

∑N
n=1 pnvT

1 z−n and
∑N

n=1 qnvT
2 z−n, respectively, where {qn}N

n=1 are not all zeros. Construct the input sequence as:

x(n) = wn+3, 0 ≤ n ≤ M − 3

x(M − 2) = w2

x(M − 2 + k) = qkw1 + pkw2, 1 ≤ k ≤ N

x(n) = 0, ∀n ≥ M + N − 1.

Then, one can verify that [y(n)]i = [y(n)]M for all n, and hence y(n) is not rich. But the input x(n)

is rich. This contradicts the assumption that H(z) is RP, so the coefficient rank of H(z) can only be

unity or M . �

6.6.6 Completion of Proof of Necessity for RP Systems

Now we are ready to prove conditions (a) and (b) are necessary for richness preserving property.

Proof: Let H(z) be RP. By Lemma 6.8 we assume h(0) 6= 0. If h(0) is singular, the coefficient

rank of H(z) must be unity by Lemma 6.11, so there exist a nonzero row vector vT and column

vectors a0,a1, · · · ,aN such that h(k) = akv
T . Now we only need to prove [a0,a1, ...,aN ] has full

rank. If this is not true, we can find an annihilator wT for all ak. Then, no matter what the input

is, the output y(n) will have an annihilator wT , and thus H(z) becomes richness-destroying. So

[a0,a1, ...,aN ] must have rank M , and thus condition (b) must be true.

If h(0) is nonsingular, the coefficient rank of H(z) must be M . By Lemma 6.7 we assume h(0) = I

without loss of generality. Using Lemma 6.6, H(z) must have the form

H(z) = I +

N∑

k=1

z−kdiag
([

ak1 ak2 · · · akM

])
.
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Suppose there exist i, j, k such that aki 6= akj and i 6= j. Let

x(0) = ei + ej

x(n) = anjei + aniej , 1 ≤ n ≤ N

{x(n)}M+N−2
n=N+1 = {el|1 ≤ l ≤ M, l 6= i, l 6= j}

x(n) = 0, ∀n ≥ M + N − 1.

Since aki 6= akj , one can verify that x(n) is rich. It is also easy to verify the following things for

1 ≤ k ≤ N :

(1) [x(0)]i = [x(0)]j .

(2) aki [xk]i = akj [x(k)]j .

(3) [x(k)]i + aki [x(0)]i = [x(k)]j + akj [x(0)]j .

(4) ali [x(k)]i + aki [x(l)]i = alj [x(k)]j + akj [x(l)]j ,

1 ≤ l ≤ N .

(5) aki [x(l)]i = akj [x(l)]j , N + 1 ≤ l ≤ M + N − 2.

Using these facts, we can show [y(n)]i = [y(n)]j , n ≥ 0, and hence y(n) is not rich. Therefore, in

order to let H(z) preserve richness, aki = akj must be true for any i 6= j and any k. This means

each coefficient matrix of H(z) is proportional to identity matrix and hence condition (a) must be

true. �

The proof of Theorem 6.1 is now complete. In addition, by Lemma 6.5, we know the necessary

conditions in Theorem 6.1 are also necessary for SRP systems. In the next subsection, we will show

that SRP systems require even stronger necessary conditions and complete the proof of Theorem

6.5.

6.6.7 Necessary Conditions for Preserving Strict Richness

Lemma 6.12: If a Type A RP matrix A(z) preserves strict richness, then it must be a constant

invertible matrix with a possible delay. �

Proof: Assume A(z) = g(z)A, where A is an invertible constant matrix and g(z) is a nonzero

polynomial of z−1. Suppose the contrary, then the polynomial g(z) must have at least two terms
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and hence have at least one zero other than infinity. Suppose g(α) = 0. Let the input x(n) =

αnA−1e
(n mod M)+1

. Then, for all n ≥ N , we have

M∑

i=1

[y(n)]i =

M∑

i=1

eT
i

[
N∑

k=0

gkAx(n − k)

]

=

N∑

k=0

gkαn−k

[
M∑

i=1

eT
i e

((n−k) mod M)+1

]

= αng(α) = 0.

This means row vector
[

1 1 · · · 1
]

is an annihilator of y(n) for all n ≥ N . Therefore, y(n) is

not strictly rich, and the proof is complete. �

Lemma 6.13: Type-B RP matrices B(z) do not preserve strict richness. �

Proof: Suppose B(z) =
(∑N

k=0 akz−k
)

vT
1 and assume ||v1|| = 1. We can find v2,v3, · · ·vM such

that ||vk|| = 1 and vT
i vj = 0, ∀i 6= j. Let w1 = v1 and wk = v1 + vk for k ≥ 2. Then, we have

vT
1 wk = 1, ∀k. Let the input x(n) = w

(n mod M)+1
, and clearly it is strictly rich. However, for all

n ≥ N , we have y(n) =
∑N

k=0 akv
T
1 x(n − k) =

∑N
k=0 ak , independent from n. This implies y(n) is

not strictly rich, so Type B RP matrices cannot preserve strict richness. �

Using Lemmas 6.5, 6.12, and 6.13, the proof of Theorem 6.5 is now complete.

6.7 Relationship with Persistent Excitation

The definition of strict richness given in Section 6.5 happens to be related to the concept of “persis-

tent excitation” in the literature on control theory. The property of persistent excitation is relevant

to the stability and convergence of adaptive systems [43],[4]. The exact definition of persistent ex-

citation can vary with respect to different applications. In [41] (page 1060), a sequence of M × 1

vectors x(n) is called persistently exciting (PE) if there exists a finite integer K such that the matrix

[
x(n) x(n + 1) · · · x(n + K)

]
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has rank M for sufficiently large n. It is clear from the definition that PE implies SR, but the converse

is not true. This can be seen by constructing a sequence of 2 × 1 vectors x(n) as:

x(n) =







 1

0


 , if n = 22k ∀k ∈ N


 0

1


 , if n = 22k+1 ∀k ∈ N


 0

0


 , otherwise.

It is readily verified that x(n) is SR but not PE. Although the definitions of SR and PE are not exactly

equivalent, it can still be shown that for an LTI M ×M system to preserve the property of PE is the

same as to preserve SR, as stated in Theorem 6.5. The proof of this is rather involved and will be

presented elsewhere.

An even stronger definition of PE can be found in [14] and [43]. Therein, the sequence x(n) is

called persistently exciting if there exist positive integers L, n0, and α > 0 such that for any vector

v ∈ CM and any integer n ≥ n0, |v†x(k)| > α for some k satisfying n ≤ k ≤ n + L.

However, in many applications of control theory, the property of PE is applied to signals which

are often called “regressors,” [14] that is, the sequence of M ×1 vectors x(n) comes from a sequence

of scalars xn, n ≥ 0 and can be written as

x(n) =
[

xn xn−1 · · · xn−M+1

]T

.

This constraint limits the degrees of freedom of choices of sequence x(n). If we take into account

this constraint when studying PE signals, the problem of preserving PE becomes a totally different

problem. The similarity between the definitions of SR and PE, nevertheless, suggests that there

might exist some application in control or adaptive filtering to which the theory of richness preser-

vation can be applied.

6.8 Concluding Remarks and Open Issues

Necessary and sufficient conditions have been found for multiple-input-multiple-output (MIMO)

LTI FIR systems that are richness preserving (RP) and strict-richness preserving (SRP). The results
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show that most standard systems with memory do not generally preserve richness, including pa-

raunitary and unimodular matrices. The similarity of, and relationship between, signal richness

and persistent excitation have also been described and discussed. This relation suggests that there

might be some applications of the results of this chapter in the control theory literature.

Under the definitions of richness considered in this chapter, it remains to investigate conditions

on infinite impulse response (IIR) systems that preserve richness. It is also interesting to consider

the case where the input and the output of the LTI system have different sizes.

Another issue of interest is the evaluation of the probability for an LTI system to preserve rich-

ness. For an LTI system that does not satisfy necessary conditions in Theorem 6.1, we can manage

to find a rich input sequence such that the output of the system is not rich. In practical applica-

tions, however, the probability of appearance of such input could almost be zero! This suggests

there may exist some LTI systems that, although not satisfying necessary conditions of Theorems

6.1 and 6.5, still preserve richness with probability one. These systems would still be very useful in

practical applications. The RP conditions for such systems are characterized probabilistically and

furthermore depend on the statistics of the class of allowed inputs. A study of such systems could

be challenging and important.

It would also be of interest to study the case of wide sense stationary (WSS) signals. In this

case, richness can be defined with respect to the autocorrelation matrices (e.g. nonsingularity) of

the signal. Development of RP conditions is equivalent to finding the conditions under which an

LTI system preserves such nonsingular property.
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Chapter 7

Generalized Signal Richness
Preservation Problem and
Vandermonde-Form Preserving
Matrices

In the previous chapter, we studied the signal richness preservation problem. In this chapter, we

will extend the study for a more generalized definition of signal richness. As we have seen in Chap-

ter 2, using a generalized blind channel estimation algorithm in zero-padding (ZP) systems with a

repetition index larger than unity, the signal richness property required for the input sequence is

relaxed. The generalized signal richness has been defined in Section 2.5, with the repetition index

Q as its parameter. An M × 1 sequence x(n), n ≥ 0 is said to be (1/Q)-rich if there exists a finite

integer J such that the (M + Q − 1) × JQ matrix

U
(J)
Q =

[
TQ (s(0)) TQ (s(1)) · · · TQ (s(J − 1))

]

has full row rank M + Q − 1. Notice that when Q = 1, the generalized definition of signal richness

reduces to traditional signal richness, as discussed in the previous chapter. When Q = M − 1, it

becomes equivalent to the coprimality property stated in [36]. We will elaborate the generalized

definition and study many properties thereof. Under this new definition of signal richness, the

richness-preserving conditions on the linear precoders become a different problem. Finding out

these conditions will be helpful as a guideline to choose the ZP precoders when a generalized blind

algorithm proposed in Chapter 2 is used.

In this chapter, we will focus on the theoretical issues of the generalized signal richness preser-
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vation problem and find out the necessary and sufficient conditions for linear precoders to preserve

generalized signal richness. In order to solve the problem, a special class of square matrices, namely

the “Vandermonde-form preserving” (VFP) matrices, is introduced and found to be highly relevant

to the problem. Several properties of VFP matrices are studied in detail. The necessary and suf-

ficient conditions of the problem have been found, and a systematic proof is also presented. The

material of this chapter is mainly drawn from [56], and portions of it have been presented in [54].

7.1 Outline

The rest of the chapter is organized as follows. In Section 7.2, we give a definition of generalized

signal richness and briefly describe several important properties thereof. Some examples will be

given to clarify these properties. In Section 7.3, we will address the problem of preserving gen-

eralized signal richness. In Section 7.4, the class of Vandermonde-form preserving (VFP) matrices

will be introduced and several properties of VFP matrices will be studied in detail. In Section 7.5,

the necessary and sufficient conditions for linear precoders to preserve generalized richness will be

presented. In Section 7.6, some deeper issues on (1/Q)-richness will be studied. For example, the

relation between such richness and the “rank” of a signal is studied. Finally, Section 7.7 gives the

conclusion and possible future directions.

7.1.1 Notations

Besides notations defined in Section 1.4, some more notations specifically used in this chapter is

defined as follows. If A and B are multisets (a multiset is like a set, but it may contain identical

elements repeated a finite number of times[19]), A
⊎
B, A

⋂
B, and A

⋃
B denote the multisets

defined as follows: if an element occurring exactly a times in A and b times in B, it occurs exactly

a + b times in A⊎B, exactly min(a, b) times in A⋂B, and exactly max(a, b) times in A⋃B.



156

7.2 Generalized Signal Richness

7.2.1 Definition of Generalized Signal Richness

Definition 7.1: A sequence of M × 1 vectors s(n), n ≥ 0, over the field C is said to be rich if there

exists a finite integer J such that the M × J matrix

[
s(0) s(1) · · · s(J − 1)

]

has full row rank M . �

�

The definition of the generalized signal richness for an M × 1 signal will be given in Definitions

2 and 3 as follows. We first build up the definition of a notation sQ(n), representing a shifted and

repeated version of s(n), using the following examples.

Example 7.1: s1(n) is s(n) itself. � �

Example 7.2: Consider a sequence of 3 × 1 vectors s(n) defined as

[
s(0) s(1) s(2)

]
=




1 4 7

2 5 8

3 6 9


 ,

and s(n) = 0 for n ≥ 3. Then, s2(n) can be expressed as

[
s2(0) s2(1) s2(2) s2(3) s2(4) s2(5)

]
(7.1)

=




1 0 4 0 7 0

2 1 5 4 8 7

3 2 6 5 9 8

0 3 0 6 0 9




, (7.2)
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and s2(n) = 0 for n ≥ 6. And s3(n) can be expressed as

[s3(0), s3(1), s3(2), s3(3), s3(4), s3(5), s3(6), s3(7), s3(8)] (7.3)

=




1 0 0 4 0 0 7 0 0

2 1 0 5 4 0 8 7 0

3 2 1 6 5 4 9 8 7

0 3 2 0 6 5 0 9 8

0 0 3 0 0 6 0 0 9




, (7.4)

and s3(n) = 0 for n ≥ 9. � �

The formal definition of sQ(n) is given as follows.

Definition 7.2: Given a positive integer Q and a sequence of M × 1 vectors s(n) over the field C,

sQ(n) is a sequence of (M + Q − 1) × 1 vectors defined as

sQ(nQ + k) =




0k×1

s(n)

0(Q−k−1)×1




for n ≥ 0, k = 0, 1, ..., Q− 1. � �

Note that the matrices shown in Eqs. (7.2) and (7.4) are similar to Sylvester’s resultant matrices

[19] in the manner of Toeplitz-like structures. The definition of generalized signal richness is given

as follows.

Definition 7.3: An M × 1 sequence s(n), n ≥ 0 is said to be (1/Q)-rich if sQ(n) is rich. �

�

Note that when Q = 1, Definition 3 reduces to the conventional signal richness given in Defini-

tion 1. For the example given in Example 2, we can verify that s(n) is (1/2)-rich and (1/3)-rich, but

not 1-rich.

An alternative definition of (1/Q)-richness can be given immediately by using the following

theorem.
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Theorem 7.1 ((1/Q)-richness): Given an M × 1 vector sequence s(n), n ≥ 0, s(n) is (1/Q)-rich if

and only if there does not exist a nonzero Q × M Hankel matrix H such that Hs(n) = 0, ∀n ≥ 0. �

Proof: See Appendix. �

7.2.2 Properties of (1/Q)-richness

It can be shown that the condition of (1/Q)-richness is stronger when the integer Q is smaller, as

shown in the following lemma.

Lemma 7.1: If a sequence of M × 1 vectors s(n), n ≥ 0 is (1/Q)-rich, then s(n) is (1/(Q + 1))-rich.

�

Proof: The proof of this lemma becomes straightforward when we use the result of Theorem 1.

Suppose s(n) is (1/Q)-rich, but not (1/(Q + 1))-rich. Then there exists a nonzero (Q + 1) × M

Hankel matrix V such that Vs(n) = 0 for all n. Let V1 and V2 be Q × M Hankel matrices whose

rows are composed of the first Q rows of V and the last Q rows of V, respectively. Note that at

least one of V1 and V2 is nonzero, and Vs(n) = 0 implies Vks(n) = 0 for k = 1, 2. This violates

the assumption that s(n) is (1/Q)-rich. �

Lemma 7.1 states a basic property of generalized signal richness: the smaller the value of Q is,

the “stronger” the condition of (1/Q)-richness is. For example, if an M × 1 sequence s(n) is 1-rich,

or simply rich, then it is (1/2)-rich, (1/3)-rich, and (1/Q)-rich for any positive integer Q. This is why

we use the notation of (1/Q)-richness. On the contrary, a (1/2)-rich signal s(n) is not necessarily

1-rich. We can thus define a measure of generalized signal richness, namely the degree of non-richness

for a given M × 1 sequence s(n), as follows.

Definition 7.4: Given an M × 1 sequence s(n), n ≥ 0, the degree of non-richness of s(n) is defined as:

Qmin , min
Q

(
s(n) is

1

Q
-rich

)
. (7.5)

�

If s(n) is not (1/Q)-rich for any Q, then Qmin = ∞. The property of an infinite degree of non-

richness can be described in the following lemma, in which we use the notation of pM (x) to denote
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the column vector:

pM (x) =
[

1 x x2 · · · xM−1
]T

.

Lemma 7.2: Consider a sequence of M × 1 vectors s(n), n ≥ 0. The following statements are

equivalent.

1. s(n) is not (1/Q)-rich for any Q.

2. The degree of non-richness of s(n) is infinity.

3. Either pT
M (α)s(n) = 0, ∀n for some α ∈ C or

[
0 0 · · · 1

]
s(n) = 0, ∀n.

4. Polynomials pn(x) = pT
M (x)s(n), n ≥ 0 either share a common zero α ∈ C or all have orders

less than M − 1.

�

Proof: See Chapter 2.

�

Lemma 7.1 suggests that if the value of Q is larger, the less “rich” is the signal s(n). By def-

inition, a 1-rich signal has “full rank”. If s(n) is not 1-rich but has only one annihilator vT (i.e.,

vT s(n) = 0), intuitively it is still likely to be (1/2)-rich, or (1/Q)-rich for other larger Q. Lemma

7.2 suggests, however, this is not the case if the annihilator happens to be in the form defined in

condition 3) of Lemma 7.2. If an M × 1 sequence s(n) has a finite degree of non-richness, or s(n)

is (1/Q)-rich for some integer Q, then it can be shown that the maximum possible value of Qmin is

M − 1, as described in the following lemma.

Lemma 7.3: If M > 1 and an M × 1 sequence s(n) is not (1/(M − 1))-rich, then it is not (1/Q)-rich

for any Q. �

Proof: See Chapter 2. �

With Lemma 7.3, we can see that for an M×1 sequence s(n), (1/(M−1))-richness is the weakest

form of generalized richness. Given a M × 1 vector sequence s(n), the degree of non-richness can

only be one of values 1, 2, ..., M − 1, or ∞.
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7.2.3 Vandermonde Form Vectors and Generalized Zero Location

Consider a 1 × M complex-valued row vector vT =
[

v1 v2 · · · vM

]
which has the form

vT = c
[

1 α α2 · · · αM−1
]

(7.6)

for some c, α ∈ C, c 6= 0. We call a vector in the form of Eq. (7.6) a Vandermonde form vector since it

can be a row of a Vandermonde matrix. Now, consider the vector

vT =
[

0 0 · · · 0 c
]

(7.7)

for some c ∈ C, c 6= 0. In view of condition 3) of Lemma 7.2, for generality we want to include

vectors as in Eq.(7.7) into the definition of Vandermonde form vectors. A formal definition of Van-

dermonde form vectors is given as follows.

Definition 7.5: [Vandermonde Form Vectors] A row vector vT =
[

v1 v2 · · · vM

]
is said to

be in the “Vandermonde form” if there exist α, β ∈ C, |α|2 + |β|2 > 0, such that

vT =
[

βM−1 αβM−2 · · · αM−2β αM−1
]
.

The set of M -vectors in Vandermonde form, denoted as VM , is defined as

VT
M =

{
vT |v ∈ C

M and vT is in the Vandermonde form
}

.�

�

By the definition above, we have

vT =
[

βM−1 αβM−2 · · · αM−2β αM−1
]

=





βM−1 · pT

M

(
α
β

)
if β 6= 0

[
0 0 · · · αM−1

]
if β = 0

.

An straightforward observation on Definition 7.5 is described below.

Property 7.1: If M ≤ 2, a nonzero M × 1 row vector vT is always a Vandermonde form vector. �
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Proof: Self-evident. �

In view of Definition 7.5, it would be useful if we define a Vandermonde ratio for each M -row

vector in Vandermonde form.

Definition 7.6 (Vandermonde ratio): For a row vector vT ∈ VM ,

vT =
[

βM−1 αβM−2 · · · αM−2β αM−1
]
,

where α, β ∈ C, the “Vandermonde ratio” γ ∈ C
⋃{∞} is defined as

γ =






α
β if β 6= 0

∞ if β = 0
.

� �

Lemma 7.4: Let vT be a 1 × M Vandermonde vector with Vandermonde ratio γ ∈ C
⋃{∞}. Let y

be an M × 1 nonzero vector. Then, vT y = 0 if and only if

1. Polynomial pT
M (x)y has a zero at γ if γ ∈ C.

2. Polynomial pT
M (x)y has a degree less than M − 1 if γ = ∞.

�

Proof: See Appendix. �

Now, let us turn our attention to the sequence of polynomials pn(x) = pT
M (x)s(n), n = 0, 1, 2, · · · .

Lemma 7.2 states that s(n) has an infinite degree of non-richness if and only if the polynomials

pn(x) either a) have a common factor or b) all have an order less than M − 1. Conditions a) and

b), although seemingly unrelated to each other, can be unified in one statement using the following

definition.

Definition 7.7: Given an M × 1 nonzero column vector u, suppose u(x) = pT
M (x)u is an mth

order polynomial, where m + 1 ≤ M , (i.e., [u]l = 0, ∀l ∈ {m + 2, m + 3, ..., M}). The “zero locations”

of u are defined as a multiset Zu of M − 1 elements from C
⋃{∞} (possibly with multiplicity), as

follows:

Zu = {α1, α2, ..., αm,∞, · · · ,∞} ,
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where α1, ..., αm are the zeros of the polynomial pT
M (x)u whose degree is m. The number of

occurrences of ∞ is M − m − 1. � �

Example 7.3: For examples, if y =
[

1 −2 1
]T

, then Zy = {1, 1}.

If y =
[

1 −2 1 0
]T

, then Zy = {1, 1,∞}.

If y =
[

1 −3 2
]T

, then Zy = {1, 1/2}.

If y =
[

1 −3 2 0 0
]T

, then Zy = {1, 1/2,∞,∞}.

As an extreme case, if y =
[

1 0 0 0
]
, then Zy = {∞,∞,∞}. � �

This definition may seem unusual at the first sight since infinity can never be a zero of a polyno-

mial. Nevertheless, we gave this definition on a vector for convenience in our context and will find

it useful in later discussions. So far, we have not given a formal definition of set of zero locations

on a zero vector 0. However, there is no loss of generality in the following discussions to assume

that

Z0 =

M−1⊎

m=1

(
C

⋃
{∞}

)
,

which means any number in the complex plane is a zero location of the vector 0 with a multiplicity

M − 1.

With the new definitions addressed above, we can rewrite Lemma 7.2 in a clearer manner.

Lemma 7.5 (Lemma 2 rewritten): Consider a sequence of M × 1 vector s(n), n ≥ 0. The following

statements are equivalent:

1. s(n) is not (1/Q)-rich for any Q.

2. The degree of non-richness of s(n) is infinity.

3. There exists a Vandermonde form vector vT ∈ VM (with a Vandermonde ratio γ ∈ C
⋃{∞})

such that vT s(n) = 0, ∀n ≥ 0.

4. ∃γ ∈ C
⋃
{∞} such that γ ∈

⋂∞
n=0 Zs(n) (i.e., vectors s(n), n ≥ 0 share a common zero

γ ∈ C
⋃
{∞}. )

� �
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Using Lemmas 7.2 and 7.3, we readily obtain the following useful lemma.

Lemma 7.6: Column vectors s(n), n ≥ 0 have no common zeros if and only if s(n) is

(1/(M − 1))-rich. �

7.3 Preserving Generalized Signal Richness

7.3.1 Problem Statement

Figure 7.1: A multi-input multi-output LTI system.

In this section, we will describe the main problem addressed in this chapter. Consider an

N th order, M -input-M -output LTI causal system, depicted in Figure 7.1, with a transfer function

R(z) =
∑N

k=0 Rkz−k.

Definition 7.8: An M × M system R(z) =
∑N

k=0 Rkz−k is said to be (1/Q)-richness preserving if

and only if for any (1/Q)-rich signal s(n), the output u(n) =
∑N

k=0 Rks(n − k) is also a (1/Q)-rich

signal. � �

We want to find out the necessary and sufficient conditions for the LTI systems R(z) to be (1/Q)-

richness preserving. The special case of this problem when Q = 1 was solved in Chapter 6 (also in

[48]). In particular, for memoryless systems, an M × M constant matrix R preserves 1-richness if

and only if R is nonsingular. However, in the case when Q > 1, a nonsingular memoryless system

R does not necessarily preserve (1/Q)-richness. This can be seen in the following simple example.

Example 7.4: Let s(0) =
[

1 −1 0
]T

, s(1) =
[

1 1 2
]T

, and s(n) = 0 for n > 1. By
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observing that

A =




1 0 1 0

−1 1 1 1

0 −1 2 1

0 0 0 2




has full rank 4, we know that s(n) is (1/2)-rich. Now let

R =




1 0 0

0 0 1

0 1 0


 ,

which is an invertible permutation matrix. Then we can obtain the output u(n) = Rs(n) as

u(0) =
[

1 0 −1
]T

and u(1) =
[

1 2 1
]T

. Note that if vT = pT
3 (−1) =

[
1 −1 1

]
, then

vT u(n) = 0 for all n, so u(n) is not (1/Q)-rich for any Q. This suggests that an invertible constant

precoder, although preserving the “rank” of a signal does not preserve (1/Q)-richness in general!

� �

In this chapter we will limit our focus of the problem on memoryless systems, as described

below.

Main Problem: Given integers M, Q, where M > 1 and 1 ≤ Q ≤ M − 1, what are the necessary

and sufficient conditions for an M × M matrix R to be (1/Q)-richness preserving?

7.3.2 The Special Case When Q = M − 1

From Lemmas 7.2, 7.3, and 7.6, we know that s(n) is (1/(M − 1))-rich if and only if there is no row

vector vT ∈ VM such that vT s(n) = 0, ∀n ≥ 0. This suggests that a (1/(M − 1))-richness preserving

matrix R may have something to do with Vandermonde form vectors.

Theorem 7.2: An M × M matrix R preserves 1/(M − 1)-richness if and only if vT R ∈ VM for all

vT ∈ VM . An M × M constant matrix R satisfying this condition is said to be a “Vandermonde-form

preserving” (VFP) matrix. �

Proof: See Appendix. �

While a rigorous proof of Theorem 7.2 can be found in the Appendix, here we seek to present

an intuitive understanding of it. Recall that signal s(n) being 1/(M − 1)-rich means that vectors
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s(n), n ≥ 0 do not share a common zero γ ∈ C
⋃
{∞} (see Definition 7.7). Denote the set of zeros of

the vector s(n) as Zs(n). Then we have

+∞⋂

n=0

Zs(n) = φ.

If the matrix R is chosen arbitrarily, the zeros of the vector Rs(n) for a given n, ZRs(n), compared

to Zs(n), are likely to “reshuffle randomly.” This is mainly because the zero locations of a vector

are a nonlinear function of the vector contents, so it is usually hard to decide ZRs(n) simply by

inspecting Zs(n). Hence, one usually can manage to find a sequence of vectors s(n) which do not

share common zeros but vectors Rs(n) do share a common zero. On the other hand, if we choose R

as a VFP matrix defined above, each zero of Rs(n) can be uniquely “predicted,” given the zeros of

s(n): suppose α ∈ C
⋃
{∞} is a zero of s(n), that is, there exists vT ∈ VM with Vandermonde ratio

α such that vT s(n) = 0. Then, the Vandermonde ratio of wT = vT R, say γ, must be a zero location

of the vector Rs(n). As we will show in the Section 7.4.2, the transformation of zero locations, due

to the VFP matrix, is a one-to-one mapping. Thus, if the vectors s(n) do not share a common zero,

then vectors Rs(n) also will not have a common zero.

7.4 Vandermonde-form preserving Matrices

Given the knowledge that Vandermonde-form preserving (VFP) matrices preserves (1/(M − 1))-

richness, we will consider in this section the representation of general M × M Vandermonde-form

preserving (VFP) matrices. We will also present several properties of VFP matrices which help to

answer the problem addressed in the previous section.

7.4.1 Representation of Vandermonde-form preserving Matrices

We start from focusing on what VFP matrices look like. Obviously, the identity matrix IM and any

nonzero multiple of it are VFP matrices. A permutation matrix, however, is in general not a VFP

matrix, such as the one given in Section 7.3.1. So, is there any VFP matrix other than a multiple of

an identity matrix? First we recognize that a VFP matrix has the following property.

Lemma 7.7: If an M × M matrix R is a Vandermonde-form preserving matrix, then both the first

row of R and the last row of R, [R]1 and [R]M , are in VM . �
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Proof: See Appendix. �

An identity matrix IM certainly satisfies this condition since the first row and the last row, eT
1

and eT
M , respectively, are in Vandermonde form. Now if we choose the first row and the last row

of an M × M matrix R as vectors in VM other than eT
1 and eT

M , will we be able to construct a VFP

matrix R? The answer turns out to be yes if we choose the first row and the last row of R as two

Vandermonde form vectors with different Vandermonde ratios. The following theorem gives the

most general characterization of VFP matrices.

Theorem 7.3: An M × M matrix R =
[

r1 r2 · · · rM

]
is Vandermonde-form preserving if

and only if there exists a 2 × 2 invertible matrix

R2 =


 a b

c d




such that

rk(x) = (a + cx)M−k(b + dx)k−1, k = 1, 2, ..., M,

where rk(x) is the polynomial representation of the column vector rk, i.e., rk(x) = pT
M (x)rk (see

definition of pM (x) in Section 7.2.2). The 2 × 2 matrix R2 is called the characteristic matrix of the

M × M VFP matrix R. �

Proof: See Appendix. �

Theorem 7.3 essentially provides us a construction method of an M × M VFP matrix using a

“seed” 2 × 2 nonsingular matrix

R2 =


 a b

c d


 .

Note that R2 is always a VFP matrix as long as it is nonsingular (i.e., ad − bc 6= 0) since a 1 × 2

nonzero vector is always in the Vandermonde form. Besides, we can see that any M × M VFP

matrix RM can be parameterized by a 2 × 2 Vandermonde-form preserving matrix. Thus, the

number of freedoms of M × M Vandermonde-form preserving matrices is always a constant for

any M > 1. For convenience, we denote

RM





 a b

c d




 ,
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where ad−bc 6= 0, as the M×M Vandermonde-form preserving matrix generated with polynomials

a + cx and b + dx. For example,

R3





 a b

c d




 =




a2 ab b2

2ac ad + bc 2bd

c2 cd d2


 . (7.8)

Some more numerical examples are presented below for a better “visual” understanding of VFP

matrices.

Example 7.5: If we choose R2 =


 1 1

0 1


, then

R3 =




1 1 1

0 1 2

0 0 1


 and R4 =




1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1




.

If we choose R2 =



 2 1

1 0



, then

R3 =




4 2 1

4 1 0

1 0 0


 and R4 =




8 4 2 1

12 4 1 0

6 1 0 0

1 0 0 0




.

� �

Example 7.6: A VFP matrix can also be a full matrix. If we choose R2 =


 1 2

1 1


, then

R3 =




1 2 4

2 3 4

1 1 1


 and R4 =




1 2 4 8

3 5 8 12

3 4 5 6

1 1 1 1




.

If we choose R2 =



 1 2

2 1



, then
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R3 =




1 2 4

4 5 4

4 2 1


 and R4 =




1 2 4 8

6 9 12 12

12 12 9 6

8 4 2 1




.

If we choose R2 =


 1 j

j 1


, then

R3 =




1 j −1

2j 0 2j

−1 j 1


 and R4 =




1 j −1 −j

3j −1 j −3

−3 j −1 3j

−j −1 j 1




.

� �

7.4.2 Zero-Location Transformation

The key reason that a VFP matrix preserves 1/(M − 1)-richness is that it transforms each zero loca-

tion of a column vector (see Definition 7.7) with a transformation function. This function depends

only on its characteristic matrix and is independent from any other zeros of the column vector. In

this subsection we will explore how VFP matrices transform zero locations of a column vector.

Consider an M × 1 vector u and the set of zero location

Zu = {α1, α2, ..., αM−1},

where αk ∈ C
⋃{∞} for all k = 1, 2, ..., M−1, as defined in Definition 7.7. Now, consider an M×M

VFP matrix R whose characteristic matrix is R2 =



 a b

c d



. Suppose the set of zero locations of

y = Ru is

Zy = {β1, β2, ..., βM−1}.

How can we find each element of Zy given its corresponding zero in Zu and the values of R2?

This question is directly related to how the Vandermonde ratio of wT is related to that of vT when

wT = vT R, as presented in the following theorem.

Theorem 7.4: Suppose vT ∈ VM has a Vandermonde ratio α ∈ C
⋃{∞} and RM is a VFP matrix
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with a nonsingular characteristic matrix

R2 =



 a b

c d



 .

Then, wT = vT RM is also a Vandermonde form vector with Vandermonde ratio β = f(α), where

f : C
⋃{∞} → C

⋃{∞} is called the characteristic function of RM , defined as

f(α) = lim
x→α

b + dx

a + cx
. (7.9)

�

Proof: See Appendix. �

In view of Theorem 7.4, when a + cα = 0, the function f gives the value of infinity. On the

other hand, if α is infinity, the function gives the value d/c when c 6= 0 or gives the value ∞ when

c = 0 and d 6= 0. Notice that c and d can not both be zero due to the nonsingularity of R2 matrix.

Also note that the characteristic function of a VFP matrix depends only on the 2 × 2 characteristic

matrix and not on the size of the VFP matrix. Some numerical examples are presented below to

demonstrate Theorem 7.4 and clarify the concept.

Example 7.7: We take R2 =


 1 2

1 1


 as in Example 7.6. Then, the 4 × 4 VFP matrix characterized

by R2 is

R4 =




1 2 4 8

3 5 8 12

3 4 5 6

1 1 1 1




.

The characteristic function of R4 is

f(α) = lim
x→α

2 + x

1 + x
.

Let vT =
[

1 −3 9 −27
]
, which has a Vandermonde ratio α = −3. Then

wT = vT R4 =
[
−8 −4 −2 −1

]

has a Vandermonde ratio β = (2 − 3)/(1 − 3) = 1/2.
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If vT =
[

1 −1 1 −1
]
, which has a Vandermonde ratio α = −1, then

wT = vT R4 =
[

0 0 0 1
]

has a Vandermonde ratio β = ∞.

If vT =
[

0 0 0 1
]
, which has a Vandermonde ratio α = ∞, then

wT = vT R4 =
[

1 1 1 1
]

has a Vandermonde ratio β = 1/1 = 1. �

�

From the discussions above, we find that a VFP matrix “bi-linearly” transforms the Vander-

monde ratio of a Vandermonde form vector with the characteristic function f defined in Theorem

7.4. Note that the function f is a one-to-one and onto function. The inverse function of f can be

expressed as

g(β) = lim
y→β

(
−ay − b

cy − d

)
. (7.10)

A direct corollary of Theorem 7.4 is presented below.

Corollary 7.1: If β is a zero with multiplicity m of an M × 1 vector u, then

α = g(β) = lim
y→β

(
−ay − b

cy − d

)

is a zero with multiplicity m of the vector y = RMu. �

Proof: Since β ∈ Zu, we have vT
β u = 0, where vT

β ∈ VM whose Vandermonde ratio is β. From

Theorem 7.4 there exists vT
α ∈ VM whose Vandermonde ratio is α = f−1(β) = g(β) such that

vT
β = vT

αRM . Then, vT
αy = vT

αRMu = vT
β u = 0. So α = g(β) ∈ Zy. �

Example 7.8: We choose the same R4 as in Example 7.7. Let u =
[

1 −3 2 0
]T

, which has
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zeros at β1 = 1/2, β2 = ∞, and β3 = 1, respectively. Then we have

y = R4u

=




1 2 4 8

3 5 8 12

3 4 5 6

1 1 1 1







1

−3

2

0




=




3

4

1

0




.

The zero locations of y are at α1 = −3, α2 = −1, and α3 = ∞. Note that αk and βk have the

relationship as predicted in Corollary 7.1. The function g defined in Eq. (7.10) is thus called the

zero-location transformation (ZLT) function of the VFP matrix RM . � �

7.4.3 Other Properties of VFP matrices

Some other noteworthy properties of VFP matrices, although not directly related to solving the

main problem, are briefly presented here. The reader can verify these with some effort.

1. First of all, VFP matrices are in general not Hermitian nor symmetric, even if the 2 × 2 char-

acteristic matrix is. In fact, one can prove that for M > 2, if the M × M matrix R is both VFP

and Hermitian, then R must be a diagonal matrix or an anti-diagonal matrix (i.e., [R]ij could

be nonzero only when i + j = M + 1).

2. VFP matrices are invertible. The inverse of a VFP matrix is also a VFP matrix. In addition, the

characteristic function of the inverse of a VFP matrix (as defined in Eq. (7.9)) is the inverse

function (as defined in Eq. (7.10)) of the characteristic function of the original VFP matrix.

3. The product of two VFP matrices is a VFP matrix. The characteristic function of the product

is the composition of two characteristic functions of the original two VFP matrices.

4. DFT and IDFT matrices are in general not VFP unless M = 2. It can also be shown that

Hadamard matrices are not VFP in general. This means some most commonly used precoders

do not preserve 1/(M − 1)-richness. It can also be shown that a unitary matrix is not VFP

unless it is the identity matrix (or a nonzero scaled version of it) or an anti-diagonal matrix

with identical anti-diagonal entries.



172

5. Define the set of all characteristic functions

TC =
{
f : C

⋃
{∞} → C

⋃
{∞}

∣∣∣

f(α) = lim
x→α

b + dx

a + cx
, a, b, c, d ∈ C, ad 6= bc

}

Then, (TC, ◦), where “◦” denotes the function composition operation, is a group which is

algebraically isomorphic to the group (RM , ·), where RM is the set of all M ×M VFP matrices

and “·” is the matrix multiplication operation.

6. Eigenvalues and eigenvectors of a VFP matrix can be easily found given its size M and its

2 × 2 characteristic matrix. Suppose RM is a VFP matrix with a characteristic matrix R2 =

 a b

c d



 whose eigenvalues are λ1 and λ2. Then, the M eigenvalues of RM are

{
λM−1

1 , λM−2
1 λ2, · · · , λM−1

2

}
.

So, the determinant of RM is

det(RM ) = (λ1λ2)
M(M−1)/2 = det(R2)

M(M−1)/2.

Now suppose ui is an eigenvector of R2 associated with the eigenvalue λi for i = 1, 2. That

is, R2 = U2Λ2U
−1
2 , where U2 =

[
u1 u2

]
and Λ2 = diag(λ1, λ2). Then it can be shown

that RM = UMΛMU−1
M , where UM = RM (U2) (see definition in Eq. (7.8)) and ΛM =

diag(λM−1
1 , λM−2

1 λ2, · · · , λM−1
2 ).

7. Using the property mentioned above, a VFP matrix with unit-norm eigenvalues can be eas-

ily constructed by simply choosing a characteristic matrix R2 whose eigenvalues λ1 and λ2

satisfy |λ1| = |λ2| = 1, but it should be noticed that matrices created in this way are usually

still not unitary. In fact, one can show that for M > 2, an M × M VFP matrix R is in general

not a normal matrix (i.e., R†R = RR†) [17] unless R is diagonal or anti-diagonal. This more

general fact also explains properties 1) and 4) mentioned above.
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7.4.4 VFP matrices as a Linear Precoder

In real applications when a VFP matrix is used as the precoder, we multiply the input vectors

by the VFP matrix at the transmitter and multiply the inverse of the VFP matrix (which is also

a VFP matrix) at the receiver after equalization. In many applications, we may want to choose

an optimal VFP matrix that satisfies certain constraints (e.g., power constraint, noise reduction,

etc.). Since all VFP matrices can be characterized using four parameters (see Theorem 7.3), an

optimization problem can be formulated with respect to only four parameters according to the

specific application. In addition, since a VFP matrix is in general not unitary as discussed above, at

the receiver it can amplify the signal subspace and noise subspace with different values. Hence, if

the channel state information is known to both the transmitter and the receiver, we can accordingly

choose the optimal values of R2 such that the signal-to-noise-ratio (SNR) is maximized.

7.5 Main Theorem

Now let us return to the problem stated in Section III: what is the necessary and sufficient condition

for an M × M matrix R to be (1/Q)-richness preserving for any Q, 1 ≤ Q ≤ M − 1? In Section III

we have already shown that when Q = 1, R needs to be nonsingular, and when Q = M − 1, R

needs to be Vandermonde-form preserving (VFP). With properties of VFP matrices presented in the

previous section, we are now ready to solve the general case of problem for any Q, 1 ≤ Q ≤ M − 1.

7.5.1 Necessary Conditions

We first show that the VFP condition is necessary for M × M matrix R to preserve (1/Q)-richness

for any Q ≥ 2. From Lemma 7.2, we learn that if some vT ∈ VM is an annihilator of s(n), then s(n)

cannot be (1/Q)-rich for any Q. On the other hand, if some vT not in VM is the only annihilator of

s(n) (i.e., the signal space has rank deficiency equal to one), we can show that the degree of non-

richness of s(n) is 2. Following this argument, we can easily obtain the following lemma.

Lemma 7.8: For M > 1, consider an M × M matrix R. If 2 ≤ Q ≤ M − 1 and R is (1/Q)-richness

preserving, then R must be VFP. �

Proof: See Appendix. �
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Notice that when Q = 1, R is not necessarily VPF to be (1/Q)-richness preserving (nonsingu-

larity is sufficient). Lemma 7.8 is true only when Q ≥ 2.

7.5.2 Hankel-form Preservation

As for sufficient conditions of the main problem (for the case Q ≥ 2), we explore in this subsection

another property of VFP matrices.

Theorem 7.5 (Hankel-form Preservation): Given an m × n nonzero Hankel matrix H = [hij ], let

R2 be a 2 × 2 invertible matrix. Let Rm = Rm(R2) and Rn = Rn(R2) be m × m and n × n VFP

matrices, respectively (the notation RM (·) was defined in Section 7.4.1). Then, H′ = RT
mHRn is

also a nonzero Hankel matrix. �

Proof: See Appendix. �

Theorem 7.5 shows another capability of VFP matrices: besides preserving Vandermonde form

vectors, they also preserve the property of Hankel matrices if we use two VFP matrices with the

same characteristic matrix. An example is shown below.

Example 7.9: Let R2 =


 1 1

2 0


 , R3 = R3(R2), and

H =


 h1 h2 h3

h2 h3 h4




is a nonzero Hankel matrix. Then we have

H
′ = R

T
2 HR3

=


 1 2

1 0





 h1 h2 h3

h2 h3 h4







1 1 1

4 2 0

4 0 0




=


 h1 + 6h2 + 12h3 + 8h4 h1 + 4h2 + 4h3 h1 + 2h2

h1 + 4h2 + 4h3 h1 + 2h2 h1




is also a nonzero Hankel matrix. � �
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7.5.3 Main Theorem

Using Theorem 7.5 and Lemma 7.8, the main problem described in Section III can now be com-

pletely answered by the following theorem.

Theorem 7.6 (1/Q-richness Preservation): For M > 1, 2 ≤ Q ≤ M − 1, an M × M matrix RM is

(1/Q)-richness preserving if and only if RM is Vandermonde-form preserving. �

Proof: The necessity comes directly from Lemma 7.8. As for sufficiency, suppose a Vandermonde-

form preserving matrix

RM = RM (R2)

is not (1/Q)-richness preserving for some Q ≥ 2, where R2 is a 2 × 2 invertible matrix. Then

there exists a (1/Q)-rich signal s(n) such that the output y(n) = RMs(n) is not (1/Q)-rich. Using

Theorem 7.1, there exists a Q × M nonzero Hankel matrix

V =




v1 v2 · · · vM

v2 v3 · · · vM+1

...
...

. . .
...

vQ vQ+1 · · · vQ+M−1




such that Vy(n) = 0 for all n ≥ 0. This implies VRMs(n) = 0 for all n ≥ 0. Let

RQ = RQ(R2).

We have RT
QVRMs(n) = 0 for all n ≥ 0. Using Theorem 7.5, we know that RT

QVRM is also

a Hankel matrix. Now, using Theorem 7.1 again, we conclude that s(n) is also not (1/Q)-rich,

contradicting the assumption that it is (1/Q)-rich. So a Vandermonde-form preserving matrix must

be (1/Q)-richness preserving for Q ≥ 2. �

A summary of the answer of the main problem is given as follows. Given an M × M matrix R,

then

1. when Q = 1, R preserves (1/Q)-richness if and only if R is nonsingular;

2. when 2 ≤ Q ≤ M − 1, R preserves (1/Q)-richness if and only if R is a VFP matrix.
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7.6 Other Relevant Issues on (1/Q)-richness

In this section we will discuss some deeper issues on (1/Q)-richness.

7.6.1 Relationship between degree of richness and rank of a signal

As we already know, given an M -vector signal, the degree of non-richness Qmin of the signal can

only be one of the values 1, 2, ...M − 1, and ∞. The larger Qmin is, the “less rich” the signal is. By

definition, a signal is 1-rich if and only if a matrix composed of finite sample vectors of s(n) has full

rank M . This gives us an intuition that as the degree of non-richness of s(n) increases, the “rank”

of s(n) should decrease. Before further discussion, we shall give a formal definition to the rank of a

signal s(n) as follows.

Definition 7.9: The rank of an M × 1 sequence s(n) is defined as

rank(s(n)) , max
0≤n1≤n2≤···≤nM

rank ([s(n1), s(n2), · · · , s(nM )]) .

� �

In other words, the rank of s(n) is the maximum number of linearly independent column vectors

among s(n), n ≥ 0. The rank of an M×1 signal s(n) is an integer between zero and M . In particular,

if rank(s(n)) = M , then Qmin = 1. If rank(s(n)) ≤ 1, then Qmin = ∞. If rank(s(n)) = M − 1, then

the degree of non-richness can be found in the following lemma, which we have already known

when exploring necessary conditions of the main problem (See Section 7.5.1).

Lemma 7.9: If a sequence of M × 1 vectors s(n) is not 1-rich but rank(s(n)) = M − 1, then the

degree of non-richness of s(n) is either 2 or ∞. �

Proof: See Appendix. �

While a high rank signal (as high as M −1) can have a “bad” degree of non-richness as depicted

in Lemma 7.9, a signal with a low degree of non-richness always implies it has a sufficiently high

rank, as explained in the following lemma.
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Lemma 7.10: If an M × 1 sequence s(n) has a finite degree of non-richness Qmin, then

rank(s(n)) ≥ M + Qmin − 1

Qmin
.

In particular, if rank(s(n)) = 2, then Qmin = M − 1. �

Proof: See Appendix. �

If s(n) has a degree of non-richness Qmin = 1, Lemma 7.10 says the obvious fact that rank(s(n)) =

M . If Qmin = 2, then the minimum rank s(n) must have is (M + 1)/2. As Qmin increases, the min-

imum rank required by s(n) is approximately inverse proportional to Qmin, around 1/Qmin of full

rank. This is also a reason why we call s(n) (1/Q)-rich.

Now let us look at Lemma 7.10 from the view point of the rank of s(n). If we consider a signal

s(n) with rank(s(n)) = 2, then Lemma 7.10 says Qmin ≥ M − 1. In other words, the degree

of non-richness of s(n) is either M − 1 or infinity. More generally, consider an FIR signal with

s(n) = 0, ∀n ≥ J , i.e., considering an M × J matrix

S =
[

s(0) s(1) · · · s(J − 1)
]
.

Then, the condition in Lemma 7.10 can be rewritten as

J ≥ rank(S) = rank(s(n)) ≥ M + Qmin − 1

Qmin
. (7.11)

This implies

Qmin ≥
⌈

M − 1

rank(S) − 1

⌉
≥

⌈
M − 1

J − 1

⌉
. (7.12)

The equality in the left part of inequality (7.12) always holds true when M ≤ 4, as long as s(n)

has no annihilator in the Vandermonde form (i.e., Qmin = ∞). This can be readily verified using

Lemmas 7.9 and 7.10. When M ≥ 5, there are, however, situations when this is not true, as can be

seen in the following example.
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Example 7.10: Let M = 5 and s(n) be chosen as

[
s(0) s(1) s(2)

]
=




1 1 0

−1 0 0

−1 −2 1

−1 −1 −1

1 1 0




,

and s(n) = 0 when n ≥ 3.

Then, rank(s(n)) = 3, so Qmin ≥ ⌈(5 − 1)/(3 − 1)⌉ = 2 as indicated in (7.12), and vectors

s(n), n ≥ 0 do not share a common zero ( Zs(0) = {1.7221,−0.6514± 0.7587j, 0.5807},

Zs(1) = {1.9052,−0.7881± 0.4014j, 0.6710}, and Zs(2) = {0, 0, 1,∞}), so Qmin is finite. However, it

can be verified that s(n) has two annihilators
[

2 1 1 1 1
]

and
[

1 1 1 1 2
]
, and so

the 2 × 5 Hankel matrix

H =


 2 1 1 1 1

1 1 1 1 2




satisfies Hs(n) = 0. So s(n) is not (1/2)-rich and Qmin > 2 (actually Qmin = 3 since the Hankel

matrix H cannot be extended into three rows in this case). � �

We summarize the relationship between degree of non-richness and rank of an M × 1 sequence

s(n) in Table I.

Qmin

rank(s(n)) M=2 M=3 M=4 M=5 M=6

1 ∞ ∞ ∞ ∞ ∞
2 1 2 or ∞ 3 or ∞ 4 or ∞ 5 or ∞
3 - 1 2 or ∞ 2, 3, 4, or ∞ 3, 4, 5, or ∞
4 - - 1 2 or ∞ 2, 3, 4, 5, or ∞
5 - - - 1 2 or ∞
6 - - - - 1

Table 7.1: Relationship between degree of non-richness and rank of s(n). Notice ambiguity of finite
values for M ≥ 5. See text.
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7.6.2 Distribution of Degree of Non-richness

In this subsection we want to discuss the distribution of degree of non-richness for a sequence of

M × 1 vectors s(n) when all entries of s(n) come from a finite constellation. We perform a Monte

Carlo experiment with 2,500,000 samples of 8 × J matrices for each J, 2 ≤ J ≤ 9, whose entries are

randomly chosen from commonly used communication constellations: BPSK, QPSK, and 16-QAM.

BPSK constellation has an alphabet size of two (1 and −1). QPSK constellation has a size of four,

and 16-QAM has a size of sixteen. Each 8 × J matrix can represent a causal FIR 8-vector signal

whose first J samples are nonzero. In Figures 7.2, 7.3, and 7.4, the length of each bar segment with

specific color represents the proportion of samples which have the corresponding degree of non-

richness Qmin. For example, in Figure 7.2, around 77% of samples of 8×9 matrices have a degree of

non-richness Qmin = 1, while most of the rest have around 23%. In view of these figures, we find

that the degree of non-richness tends to achieve the lower bound predicted in (7.12) when entries

of the signal come from a larger constellation. This indicates that in real applications (see Chapter

2 for more detailed reference) where Q is given, it is usually sufficient to collect

J =
M + Q − 1

Q

samples of vectors when a large constellation is used. On the contrary, when using a small con-

stellation like BPSK, it is quite probable that the signal has a degree of non-richness larger than the

lower bound described in (7.12).

As a final comment, in real applications when these signals are precoded by a VFP matrix, the

degree of non-richness of the input signal is guaranteed not to decrease. However, since a VFP

matrix would not turn a non-(1/Q)-rich signal into (1/Q)-rich, the degree of non-richness would

not increase and thus would be always unchanged. On the contrary, for an arbitrary non-VFP

matrix, although the property of (1/Q)-richness could sometimes be destroyed, it is sometimes

possible that a non-VFP matrix turns a non-(1/Q)-rich signal into a (1/Q)-rich signal. Whether an

arbitrary matrix increases or decreases the probability of (1/Q)-richness is not clear at the time of

writing this chapter.
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Figure 7.2: Distribution of degree of non-richness of signals whose entries are from BPSK constel-
lation.

7.7 Concluding Remarks

In this chapter, we described a mathematical problem that arises in the blind channel estimation

algorithm proposed in Chapter 2. We introduced Vandermonde-form preserving (VFP) matrices as

a new subclass of invertible matrices which are highly relevant to the problem. Several properties

of VFP matrices have been presented clearly, and the proof of the answer to the problem has been

presented systematically.

In the future, it may be useful to consider the problem in general for a system with memory.

That is, the transfer function of the precoder is an M ×M polynomial matrix R(z) =
∑N

k=0 r(k)z−k.

It is also of interest to deal with a rectangular P × M system R(z). Finding other engineering

applications of VFP matrices will also be interesting.

7.8 Appendix: Proof of Theorems

Proof of Theorem 7.1: If s(n) is not (1/Q)-rich, there exists a nonzero row vector

vT =
[

v1 v2 · · · vQ+M−1

]
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Figure 7.3: Distribution of degree of non-richness of signals whose entries are from QPSK constel-
lation.

such that vT sQ(n) = 0, ∀n ≥ 0. Then we have

[
vk vk+1 · · · vk+M−1

]
s(n) = 0

for all k, 1 ≤ k ≤ Q. This leads to




v1 v2 · · · vM

v2 v3 · · · vM+1

...
...

. . .
...

vQ vQ+1 · · · vQ+M−1




︸ ︷︷ ︸

s(n) = 0

V

for all n ≥ 0 where V is a nonzero Hankel matrix.
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Figure 7.4: Distribution of degree of non-richness of signals whose entries are from 16-QAM con-
stellation.

On the other hand, suppose there exists a nonzero Q × M Hankel matrix

V =




v1 v2 · · · vM

v2 v3 · · · vM+1

...
...

. . .
...

vQ vQ+1 · · · vQ+M−1




such that Vs(n) = 0 for all n ≥ 0. It can be readily verified that the nonzero row vector

vT =
[

v1 v2 · · · vQ+M−1

]

satisfies vT sQ(n) = 0, so s(n) is not (1/Q)-rich. �

Proof of Lemma 7.4: If γ ∈ C, the statement is self-evident. If γ = ∞, then vT = ceT
M for some

c 6= 0, so vT y = 0 ⇔ eT
My = 0 ⇔ [y]M = 0 ⇔ polynomial pT

M (x)y does not have the term of xM−1

and, hence, has a degree less than M − 1. �

Proof of Theorem 7.2: Suppose R is Vandermonde-form preserving (VFP) but does not preserve
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(1/(M −1))-richness (i.e., there exists s(n) such that s(n) is (1/(M −1))-rich but Rs(n) is not). Then

there exists wT ∈ VM such that wT Rs(n) = 0. This leads to vT s(n) = 0, where vT = wTR is also

in VM . This contradicts the fact that s(n) is (1/(M − 1))-rich, so R being VFP implies it preserves

(1/(M − 1))-richness.

On the other hand, if R is not VFP, then there exists wT ∈ VM such that vT = wT R is not in VM .

We can thus create a (1/(M −1))-rich signal s(n) such that vT s(n) = 0, ∀n ≥ 0. (In fact, we can even

create a (1/2)-rich signal s(n), which is stronger than a (1/(M − 1))-rich signal. See also the proof

of Lemma 7.8.) This implies wTRs(n) = 0, ∀n ≥ 0, which means Rs(n) is not (1/(M − 1))-rich. So

R does not preserve (1/(M − 1))-richness. �

Proof of Lemma 7.7: We first learn that both eT
1 and eT

M are in VM (with Vandermonde ratios 0

and ∞, respectively). Since [R]1 = eT
1 R, [R]M = eT

MR, and R is Vandermonde-form preserving,

the lemma is proved immediately. �

Proof of Theorem 7.3: Let rk(x) be the polynomial representation of the kth column of R, i.e.,

pT
M (x)R =

[
r1(x) r2(x) · · · rM (x)

]
.

Then we have

rk(x)rk+2(x) = rk+1(x)2 (7.13)

for k = 1, 2, ..., M − 2. (Otherwise we can find γ ∈ C such that rk(γ)rk+2(γ) 6= rk+1(γ)2 and, hence,

pT
M (γ)R /∈ VM , while pT

M (γ) ∈ VM .)

We first argue that all columns of R must be nonzero. If rk = 0 for some k, then Eq. (7.13)

implies that only r1 and rM can be nonzero among rk’s. If only one of them is nonzero, say r1 6= 0

and rM = 0, then there exists vT ∈ VM such that vT r1 = 0 and hence vT R = 0T /∈ VM . If both r1

and rM are nonzero (which implies M ≥ 3), then there exists γ ∈ C such that r1(γ) and rM (γ) are

both nonzero. Choose vT = pT
M (γ) ∈ VM . Then, pT

M (γ)R =
[

r1(γ) 0 · · · 0 rM (γ)
]

/∈ VM .

Since all columns of R are nonzero, Eq. (7.13) implies that there exist nonzero polynomials p(x)

and q(x), which are co-prime to each other, such that

rk+2(x)

rk+1(x)
=

rk+1(x)

rk(x)
=

q(x)

p(x)
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for k = 1, 2, ..., M − 2. This leads to

rM (x) =
r1(x)

(p(x))M−1
· (q(x))M−1 .

Since p(x) and q(x) are co-prime to each other, we obtain that (p(x))M−1 is a factor of r1(x). So

r1(x) = c(x)(p(x))M−1

for some nonzero polynomial c(x). We now have

rk(x) = c(x)(p(x))M−k(q(x))k−1 , k = 1, 2, ..., M.

Note that deg(p(x)) ≤ 1 since otherwise deg(r1(x)) ≥ 2(M − 1) > M − 1. Similarly we have

deg(q(x)) ≤ 1. p(x) and q(x) cannot both be constants since otherwise there exists vT ∈ VM such

that vT R = 0T /∈ VM . (This vT can be chosen as pT
M (γ) if γ is a zero of c(x). If c(x) is a constant,

we can choose vT as
[

0 · · · 0 1
]
.)

Now that at least one of p(x) and q(x) must be a first-order polynomial, c(x) must be a constant,

for otherwise either deg(r1(x)) or deg(rM (x)) would be greater than M − 1. Without loss of gener-

ality, we can assume c(x) = 1. Now let p(x) = a + cx and q(x) = b + dx. Since p(x) and q(x) are

co-prime to each other and they cannot be constants simultaneously, this implies ad − bc = 0 and

the proof of necessity is done.

The sufficiency is easily verified.

�

Proof of Theorem 7.4: From the proof of Theorem 7.3 we learn that

pT
M (x)R =

[
r1(x) r2(x) · · · rM (x)

]
,

where rk(x) = (a + cx)M−k(b + dx)k−1, k = 1, 2, ..., M . Suppose vT has a Vandermonde ratio α.

When α ∈ C, vT can be expressed as

vT = g
[

1 α α2 · · · αM−1
]
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for some g ∈ C. The output wT = vT R is thus

wT = g
[

r1(α) r2(α) · · · rM (α)
]
.

When a + cα 6= 0, it is readily verified that the Vandermonde ratio of wT is β = rk+1(α)/rk(α) for

all k, 1 ≤ k ≤ M . This is

β =
rk+1(α)

rk(α)
=

b + dα

a + cα
.

If a+cα = 0, then wT = g
[

0 · · · 0 1
]
, so β = ∞. Finally, when α = ∞, vT = g

[
0 · · · 0 1

]

for some g, so

wT = g
[

cM−1 cM−2d · · · dM−1
]
,

and β = d/c when c 6= 0 and β = ∞ when c = 0. In summary,

β =





b+dα
a+cα if a + cα 6= 0

∞ if a + cα = 0 and b + dα 6= 0

d
c if a + cα = 0 and b + dα = 0

= lim
x→α

b + dx

a + cx
.

�

Proof of Lemma 7.8: Assume R is not VFP. Then there exists vT ∈ VM such that wT = vT R /∈ VM .

Construct a vector sequence s(n), n ≥ 0 as follows. Let s(0), s(1), · · · , s(M − 2) be selected as

(M − 1) linearly independent column vectors that are orthogonal to wT /∈ VM . Let s(n) = 0 for all

n ≥ M − 1. Since wT /∈ VM is the only annihilator of s(n), there does not exist a 2 × M nonzero

Hankel matrix H such that Hs(n) = 0, so s(n) is (1/2)-rich, and hence is (1/Q)-rich for any Q ≥ 2.

Now consider u(n) = Rs(n). We have vT u(n) = vT Rs(n) = wT s(n) = 0. By Lemma 7.2, u(n) is

not 1/Q-rich for any Q, so R is not (1/Q)-richness preserving for any Q ≥ 2. �

The proof of Theorem 7.5 requires the following lemma.

Lemma 7.11: Let H be an m × n Hankel matrix whose entry values come from an (m + n − 1) × 1

vector h. That is, [H]ij = [h]i+j−1 = hi+j−1. Let u and v be m × 1 and n × 1 column vectors,

respectively, and u(x) = pT
m(x) and v(x) = pT

n (x) are the polynomials representing two vectors.

Let w(x) = u(x)v(x) and w be an (m + n − 1) × 1 vector whose polynomial representation is w(x)
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(i.e., w(x) = pT
m+n−1(x)w). Then

uT Hv = wTh.

�

Proof: The Lemma is immediately verified by observing that the coefficient associated with hk in

the sum uT Hv is
∑m

l=1 ulvk−l+1. (Assuming vl = 0 when l ≤ 0 or l > n.) �

Proof of Theorem 7.5: Denote the kth column of Rm as rm,k and the lth column of Rn as rn,l.

Let rmk(x) = pT
m(x)rm,k and rnl(x) = pT

n (x)rn,l. From construction of VFP matrices we know

rmk(x) = (a + cx)m−k(b + dx)k−1 and rnl(x) = (a + cx)n−l(b + dx)l−1. The kl-th entry of H′, [H′]kl,

can be expressed as rT
m,kHrn,l. Using Lemma 7.11, we have

[H′]kl = wT
k,lh, (7.14)

where the polynomial representation of the (m + n − 1) × 1 vector wk,l is wkl(x) = rmk(x)rnl(x) =

(a + cx)m+n−k−l(b + dx)k+l−2. The polynomial wkl(x) stays unchanged when k + l is fixed, so from

Eq. (7.14), the value of [H′]kl is a function of (k + l), and hence H′ is also a Hankel matrix. H′ being

nonzero is readily verified by observing that both Rn and Rm are invertible. �

Proof of Lemma 7.9: In view of proof of Lemma 7.8, this lemma is self-evident. �

Proof of Lemma 7.10: If s(n) has rank r, then rank(sQ(n)) ≤ rQ. Since s(n) is Q-rich, then sQ(n)

is rich and hence rank(sQ(n)) = M + Q− 1 ≤ rQ. So r ≥ M+Q−1
Q , and hence the proof is complete.

�
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Chapter 8

Conclusions

In this thesis, we have studied various important topics on blind channel estimation using linear

redundant precoding. New algorithms were proposed which feature fast convergence speed and

are much more applicable in fast-varying channel environments. Performance analysis is derived

to confirm the improvements, and relevant theoretical issues are studied.

Two major types of linear redundant precoding, zero-padding (ZP) and cyclic prefixing (CP),

are considered in this thesis. In Chapter 2, we proposed a generalized algorithm for blind channel

estimation in ZP systems of which two previously reported subspace-based algorithms are spe-

cial cases. The generalization uses an integer parameter called repetition index which represents the

number of repeated uses of each received block. The minimum value of repetition index Q is found

to be roughly inversely proportional to the number of available received blocks. Simulation shows

that when the system parameter Q is properly chosen, the generalized algorithm outperforms pre-

viously reported special cases, especially in a time-varying channel environments. A frequency

domain version of the generalized algorithm is also presented and is shown to outperform time

domain approach at low SNR region for certain types of channels. The concept of generalized signal

richness for a vector signal is introduced for the conditions of input signals on which the proposed

algorithm works properly.

In Chapter 3, we extended the idea of repetition index to a more widely used class of redundant

precoding systems: CP systems. A subspace-based generalized blind algorithm is proposed for CP

systems. By using a repetition index larger than unity, the number of received blocks (J) is for the

first time significantly reduced compared to previously reported methods so that the proposed al-

gorithm is more feasible in time-varying channel environments. Theoretical limit allows the blind

estimation to be performed using only three received blocks. Simulation shows that when the num-
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ber of received blocks J and the repetition index Q are properly chosen, the generalized algorithm

outperforms previously reported special cases. The proposed method can be directly applied to

existing systems such as OFDM, SC-CP, etc., without any modification of the transmitter structure.

We also proposed a semi-blind channel estimation algorithm in OFDM systems based on a

combination of the blind estimation algorithm in cyclic prefix systems and a pure pilot-assisted

algorithm. The proposed algorithm is presumably the first one to be applicable with any types of

communication constellations and a limited number of received blocks. Simulation results confirm

the improvement in system performance of the semi-blind algorithm over the direct pilot-assisted

algorithm. They also suggest that fewer pilot samples can be used to achieve the same BER perfor-

mance when a semi-blind algorithm is employed.

In Chapter 4, the blind block synchronization problem in LRP systems is studied. Two algo-

rithms which use the parameter repetition index were proposed for ZP and CP systems, respec-

tively. The algorithm for CP systems can be directly applied to blind OFDM symbol synchroniza-

tion problem. Theoretical results prove the validity of the proposed algorithms in the noiseless case.

The proposed algorithms are capable of blindly recovering the block boundaries using much less

received data than previously reported algorithms. This feature makes the proposed algorithms

more favorable in an environment of fast-varying channels. Simulation results of the proposed

algorithm not only demonstrate the capability to work properly with limited amount of received

data but also reveal significant improvement in block synchronization error rate performance over

previously reported algorithms.

Chapter 5 is a performance analysis of the generalized algorithm proposed in Chapter 2 in

the high-SNR range. Theoretical analysis confirms the simulation results in Chapter 2 that when

the repetition index is larger, the performance is usually better when SNR is large. A Cramer-

Rao bound (CRB) is presented and used as a benchmark of the algorithm performance. When the

repetition index Q is large, the performance curve tends to approach the CRB but does not appear

to achieve it. However, the analysis, as well as simulation results, suggests that the generalized

algorithm has a performance very close to the CRB even when the number of received blocks is

very small.

In Chapters 6 and 7, the signal richness preservation problem has been studied. Chapter 6 con-

siders the problem with respect to conventional definition of signal richness while Chapter 7 deals

with the problem using the definition of generalized signal richness which first arises in Chap-
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ter 2. In Chapter 6, necessary and sufficient conditions on linear FIR precoders which preserve

conventional signal richness are found and proved. The results show that most standard systems

with memory do not generally preserve signal richness, including paraunitary and unimodular

matrices. In Chapter 7, necessary and sufficient conditions on linear memoryless precoders which

preserve generalized signal richness with any repetition index Q are found. In order to solve the

problem, a special class of nonsingular matrices called Vandermonde-form preserving (VFP) ma-

trices are introduced. Several properties of VFP matrices have been presented, and the proof of the

answer to the problem has been presented systematically.

There are various topics worthy of future research. First of all, the idea of repetition index can

be applied to blind and semiblind channel estimation in MIMO systems. Also, the optimal number

of pilot samples for semiblind systems which achieve capacity limit can be explored. A similar

analysis can be conducted to evaluate the performance of blind channel estimation algorithm in CP

systems proposed in Chapter 3 or in MIMO systems.
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