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ABSTRACT

Sufficient conditions are derived for the validity of approximate
periodic solutions of a ¢lass of second order ordinary nonlinear differ-
ential equations.  An approximate solution is defined to be valid if an
exact solution exists in a neighborhood of the approximation.

"Two classes of validity criteria are developed, Existence is
obtained using the contraction mapping principle in one case, and the
Schauder-Leray fixed point theorem in the other, Both classes of
validity criteria make use of symmetry properties of periodic func-
tions, and both classes yield an upper bound on a norm of the difference
between the approximate and exact solution. This bound is uséd in a
procedure which establishes sufficient stability conditions for the
approximated solution,

Application to a system with piecewise linear restoring force
(bilinear system) reveals that the approximate solution obtained by the
xncthqd of averaging is valid away from regions where the response
exhibits vertical tangents. A narrow instability region is obtained
near one-half the natural frequency of the equivalent linear system,
Sufficient conditions for the validity of resonant solutions are also
derived, and two term harmonic balance approximate solutions which

exhibit ultraharmonic and subharmonic resonances are studied,
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INTRODUCTION

Attempts to devise mathematical models for physical
phenomena more often than not yield some form of nonlinear equation,
Since explicit solutions are extremely rare, one usually seeks an
approximate solution within a specific class, For example, Oscillation
Theory is particularly interested in approximating periodic solutions
of second order nonlinear differential equations.

A number of closely related approximating techniques, widely
used in applications, namely the method of averaging, harmonic
balance and equivalent linearization claim validity near resonance, or
asymptotically as some small parameter goes to zero, These criteria
are unsatisfactory in the sense that:

1) they do not guarantee the existence of an exact solution in
a neighborhood of the approximation, and

2) even if existence is assumed, no quantitative measure is
available for the actual error in the approximation, and
hence a stability analysis based on the approximate solution
is questionable,

In this work, quantitative validity criteria are derived which
remove the 'objections cited above, Fixed point theorems from func-
tional analysis and topology are the principal tools used.

Previous work on the validity of approximate solutions includes

that of Cesari, Bass, Urabe, Holtzman and McLaughlin, Cesari(l)
(2)

2

and later Urabe' ', derived sufficient conditions for the existence of
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an exact solution in a neighborhood of the n'th Galerkin (harmonic
balance) approximation, and a bound on the difference between the
exact and approximate solution, Urabe also showed that existence of
an isolated periodic solution implies the existence of a Galerkin
approximation of sufficiently high order, The validity of equivalent
linearization was studied by Bass(s) for the autonomous case, and by
Holtzman(4)’ (3 for the nonautonomous case, McLaughlin(é) used the
implicit function theorem to obtain sufficient validity conditions for the

= % ’ .
Poincare expansion,



CHAPTER I
MATHEMATICAL PRELIMINARIES

A number of ordinary differential equations frequently

encountered in applications are of the form
¥+ f(x, %) = g(t) (1.1)

where { and g are piecewise continuous with at most é finite number of
finite discontinuities, In this chapter, the problem of finding periodic
solutions of (1.1) is reduced to a boundary value problem on an inter -
val equal to or less than the period, Relationships between certain
boundary value problems and Fredholm integral equations are derived,
and several fixed point theorems are introduced,

For certain forms of f and g in (1.1) it is helpful to seek

periodic solutions with appropriate symmetry properties,

1.1, Symmetry Properties of Periodic Functions,

Definition 1,1: A function u(t) is in class PT (u EPT) if u(t) is

continuously differentiable and

u(t) =u(t+T) (1.2)

for all t, T a constant,

Definition 1,2: A function u(t) is in class HT (u EHT) if u EPT and

u(T/2+t)=-u(t) {1.3)



Definition 1.3: A function u(t) is in class QT (u EQT) if u EHT and

u(T/2 -t) = -u(t) {1.4)

Note: Certain HT functions may be put into class QT by a translation

i

in t,

Obviously, PT:HT::QT. Figure 1, la shows a function in class
HT and Figure 1,1b shows a function in class QT'- Functions in these

symmetry classes have properties given by the following. Lemmas,

Lemma 1.1: If uEPT, then necessarily

u(0) =u(T)
(1.5)
1(0) =4(T)
Proof: Let t=0 in (1.2 ), then differentiate and do the same,
Lemma 1,2: If uEHT, then necessarily
u(0) = -u(T/2)
. (1.6)
1(0) = -4(T/2)
Proof: Let t=0 in (1.3), then differentiate and do the same,
Lemma 1.,3: If u EQT then necessarily
u(T/4)=0
' (1.7)
4(0)=0
Proof: Lett=T/4 in (1.4), then ‘ -

u(T/4)=-u(T/4)
S u(T/4)=0

Differentiating (1.3) and (1.4) with respect to t and letting t=0 yields,
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a(T /2) = -u(0)
-4(T/2) = -4(0)

S a(0) = -4(0) implies a(0) = 0.

1.2 Periodic Solutions via Boundary Value Problems,

The following Lemmas show that in certain cases, periodic
solutions may be constructed by extending the solutions of particular
boundary value problems (B.V.P.'s) to the infinite interval, Fqua-
tions (1.5) - (1. 7) serve as boundary conditions, In the sequel,‘ it is
assumed that f and g are continuous. This is a matter of convenience
since many of the results apply to the case where f and g are piecewise

continuous with at most a finite number of finite discontinuities,

Lemma 1_4: If

1) glt) €R, (1.8)

2) uf(t) is a solution of the B, V, P,
G+ f(u,)=g(t) 0<t<T
(1.9)

u(0) =u(T) 1(0) =4(T)
then u(t) is extendible to a class PT solution of (1,1), That is, the
function x(t) defined by

x(t+nT) = u(t) (1.10)

for 0<t<T, n an integer, is a class PT solution of (1.1).
Proof: Since the differential equation remains the same on subsequent

intervals (n-1)T<t<nT, n an integer, x(t) satisfies (1.1) for allt, and

hence it is a class PT solution,



Lemma 1.5;: If

1) (1) Cll,l.

2) f(x, x)=-f(-x%, -%x)
3) u(t) is a solution of the B. V. P,
u+f(u,d)=g(t) O0<t<T/2
u(0) = -u(T/2) &(0)=-a(T/2)
then u(t) is extendible to a class HT
defined by
x(t)=uf{t) O<t<T/2
x(t+T/2) = -uft) O0<t<T/2
x(t+nT) = x(t) n an integer, OstsTj
is a class HT solution of (1, 1),
Proof: The second of equations (1, 14) implies
~x(T/2+t) =u(t)
-x(T/2+t) =a(t) O0<t<T/2
-X(T/2+t) = 1(t)

Using this in the differential equation yields
-x(T/2+t) + f(—x(T/2+t), -k('r/2+t)>: g(t) O<t<T/2
or, using (1.11) and (1. 12)
5:'(T/2+t) + f(x(T/Z+t), ;'c(T/2+t)> =g(T/2+t) 0O<t<T/2

and hence x(t) is a solution for 0<t<T satisfying
x(T) = x(0)

%(T) = %(0)

(1.11)

(1.12)

(1. 13)

solution of (1, 1), That is, x(t)

(1. 14)

{1, 15)

(1. 16)

(1. 17)



where (1. 14) and the boundary conditions on u(t) were used. FExtension

to fhe whole real line is as in Lemma 1.4,

Lemma 1.,6: If

1) glt)€Q, (1. 18)
2} e £)= -fl-% %) (1. 19)
3) flx, %) = £lx, -%) (1.20)

4) u(t) is a solution of the B, V, P,
U+ f(u,0)=g(t) O<t<T/4
(1.21)
a(0)=0 u(T/4)=0
then uf(t) is extendible to a class QT solution of (1, 1), That is, the
function x(t) defined by
x(t)=u(t) O<t<T/4
x(T/2-t)=-ut) O0<t<T/4

(1.22)
x(T/2+t) = -x(t) O<t<T/2

x(t+nT)=x(t) n an integer, 0<t<T
is a class Q‘T solution of (1. 1),
Proof: The second of (1. 22) implies
x(T/2-t) = -ult)
x(T/2-t) =1(t) 0<t<T/4 (1.23)
x(T/2-t) = -u(t)
Substituting into the differential equation and using (1. 18) - (1. 20) yields
X(T/2-t)+ f(x(T/Z-t), %(T/2-t))= g(T/2-t) O0<t<T/4

and hence x(t) is a solution of (1. 1) for 0<t<T/2 satisfying



,X(T/Z) = -x(0)
%(T/2)=-%(0)=0
where the boundary conditions and (1, 22) were used, Fxtension to the

whole real line is as in Lefnma (1. 5),

When the conditions on f and g are satisfied in Lemmas 1,4 -
1, 6, the differential equation is said to allow solutions in the pertinent
symmetry class, For some equations, a translation in t may be

necessary to allow solutions in QT.

1.3, Boundary Value Problems and Fredholm Integral Equations,

The following results concerning the relationship of certain
B.V.P,'s to Fredholm integral equations will be useful in what follows,
Consider the equation
u+a(t)a+b(t)u=c(u, ﬁ,t)‘ (1.24)
or, in vector-matrix form
T AT ol 4 (1.25)

where

A(t):[-‘t())(t),’-al(t):l - E(a’_t):[c(u,?l,t)] 2 “{3] (1. 26)

In the following Lemmas a, b, and c are assumed to be piece-

wise continuous with at most a finite number of finite discontinuities,

Although the first Lemma may be deduced from developments in

(7) (8)

Hahn' ', page 359, or Halanay' ', page 225, the proof is given here in

the context of this work,



Lemma 1,7: If u, :{H, t) and A(t) are as given by (1.26) wilh

1) U(t) the principal matrix solution (see Strub].e(())

page 83) of
u=A(t)u ' {1, 27

2) [I—U(T)]_1 exists, Here I is the 2 X2 identity

matrix and [ ‘Tl is the matrix inverse.
3)

IS P U(t)rl.-U(T)TIU’“l(s) O<g-tesT
: PPAE. T | . (1.28)
u)fI-u(T)] U(mu (s) O<tss<T 2

Hit: s l h,,]. h?Z

4) u governed by

é:A(t)G+E—(E,t) 0<t<T (1.29)
u(0) =u(T) (1.30)
then

T .

u= Ic(u, 4, s)h(t, s)ds (1.31)
0
h
hit, s):[hn} (1.32)
22 .

Proof: Use is made of the following well known result concerning

initial value problems (see Struble(g), page 92).

Given

u=A(t)u+ f(t) (1.33)

TI(())JIO (1.34)



then
t
u(t) = Ut)u, + U(t)jU -1 (s)f(s)ds
0 0

Using this result with f(t) replaced by c(u, t), yields the
following alternate form for (1.29)

¢
T(t) = U(t)a(0) + U(t)IU_l(s)E(E, s)ds
0

where now u(0) is determined from the condition (1. 30). That is,

i
w(0) - a(r) = urja(o)- U('l‘)Ju']‘(s)Z(H, 8)ds

0

g
wo0) = [1-u(m) 1 u(m [u(s)e(@, s)as
0
and hence
L & t

u(t) = U(t) [I—U(T)]_IU(T)JU—I(S)E(H, s)ds + U(t)J'U‘1 (s)c(u, s)ds
0 0

or,
"'["
u(t) = [ H(t, 8)T(u, s)ds
0
where

U(t){[I-U(t)]‘IU(T)+I}U‘l(s) 0<s<t<T
H(t,s):
U(t)[I-U(T)]'IU(T)U'l(s) O<t<s<T

(1.

(1.

(1.

(1.

(1.

(0

35)

36)

5 )

38)

39)

40)

41)
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T 0 .
Now using c(u,t) = l_(‘(u a t)] gives

-
E:J‘c(u,ﬁ, )R, 8)ds (1.42)
0

It remains only to show that H(t, s} as given in (1.41) is the

same as in (1. 29), or equivalently
[-u(T) 17 u(T) + 1= [1-U(T) 17 0Ty + (1-U(T) 17 [1-U(T) ]

[I-U(T)TIU(T)+I = [:[-U(T)Tl

Since the proof of the following Lemma is very similar to that

of Lemma 1,7, no proof is given,

Lemma 1.8: If u, c(u,t) and A(t) are as given in (1.27) with

1) U(t) the principal matrix solution of

u= AT (1.44)

2) ['I-FU(T)T:l exists

3)
h“,h12 -U(t)[I+U(T)]-1U-1(s) O<s<t<T 1
I—I(t,s):[ }: - 1 (1. 45)
h,,.hy,)  |-U@IHUT) ] UTIU ™ (s) OstsssTf
4) u governed by
ﬁ:A(t)GJrE'(E,t) 0<t<T/2 (1.46)

u(0) = -u(T/2) (1.47)



then

“11-

TR
u = \‘ c(u, 4, s)hi{t, s)ds
0

.
e - o12]

Lemma 1,9: If u, c(u,t) and A(t) are as given in (1, 27) with

1)

[ul(t) vl(t)
U=l o, w0t

the principal matrix solution of

= Alt)u

2) u.l(T/‘U'!U.

3)

where

hl(t, s)=

_[hytesy
o 1=, 4

ul(S)[ul(T/4)v1(t)—u1(t)V1(T/4)'J

a(T/4,s)

\

d(T /4, s)

ay(s)[u; (T/4)v, (t)-u, (t)v, (T /4)]
d(T /4, s)

uz(l.')[ul(T/4)v1(s)—vl(T/4)u1(s)]

h&(t, 5) 1

d(T/4, s)

O<s<t<T/4

O<t<s<T/4

O<s=st=T/4

O<t<s<T/4

(1

(1.

(1.

(1.

(1,

(1.

(1.

. 48)

49)

50)

51)

52)

53)

54)



then

Proof:

12 =

d(T/4, s) = ul(‘,[‘/4)[ul(s)v2(s)-vl(s)uz(s)]

4) u governed by
u=A(t)u+tclu,t) O0<t<T/4

4(0)=0 u(T/4)=0

i T/4
u(t) = J'c:(u, 4, s)h(t, s)ds
0
The initial value problem with &(0)=0 gives
\ t
— B % S
u= U(t)[0 :|+ I‘U(t)U (s)c{u, s)ds
0

The unknown u, must satisfy

(T /4)=0=u (T/4)uy+ j

where the first component of the vector equation (1, 58) was used,

0
T/4

[ul(s)VI(T /4)-V1(s)ul(T /4]

0 [ul(S)VZ(S)—UZ(S)VI(S)]

Solving for u, yields

Substituting this expression for u

(1. 8%),

T/ [v,(s)u (T/4)-u (s)v (T /4)]
u, = [

0

the desired result,

c(u, 8, s)ds

I(T7E5) c(u,ﬁ,s)d.s

(1. 55)

(1. 56)

(1.57)

(1.58)

(1.59)

(1, 60)

0 into (1. 58) and simplifying yields

The Fredhom integral equations (1.31), (1.48), and (1.57) are

special cases of a nonlinear operator equation
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x=Tx \ (1.61)
Functional analysis and topology provide useful results concerning the

solutions of such equations, References in this area include

Kolmogorov and Fomin(lo), Liusternik and Sobolev(ll), and Saaty and

(12).

RBRranm

1.4, Fixed Point Theorems.

The various fixed point theorems are extremely useful in
establishing sufficient conditions for the existence of solutions of (1,61).
As noted by Saaty(13), these theorems fall into two classes, the topo-
logical fixed point theorems which merely establish existence, and the
algebraic fixed point theorems which also yield uniqueness and a
means of constructing the solution. Both types are useful in estab-
lishing the validity of approximate periodic solutions.

In this work, consideration is restricted to nonlinear operator
equations on a complete normed linear space, i.e., a Banach space,

The following topological fixed point theorem, proved on page 45
(12)

of Saaly and Bram , is an extension of Brouwer's fixed point theo-

rem to a Banach space,

Theorem 1,1 (Schauder-Leray):

If B is a closed convex subset of a Banach space X and T is a
continuous operator mapping B into itself such that the image of B is
compact, then there exists at least one fixed point x €B satisfying

% = Tx™ (1.62)
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Corollary:
If in Theorem (1.1)

1) B= Br = {x[ ”XHSI‘}, a ball of radius r centered at the zero

[
.

element, Here represents a norm.
2) there exists a real number vy=>0 and a B=f(r) satisfying
0<p<1, such that |
| T=[[< v+ Bl | (1. 63)
for all x€B . o | |
thenl“there exists at least one x™€ Br satisfying (1. 62) and
f y

(1= S1.p (1.64)

Proof: By Theorem {1.1) there exists an x* €B, satisfying (1. 62),
Taking the norm of (1, 62) and using (1, 63) yields
5| < v+ B{l=*]l - (1. 65)

or, since 0<p<1

el < 155 | e

A constructive fixed point theorem is provided-by the principle

of contraction mappings,

Definition 1.4: An operator T mapping a normed space S into itself is

a contraction mapping on S if there exists an q satisfying O<a<1l such

that for all x,y €S

ITx-Tyll< all=-vl| | (1. 67)

A fundamental theorem concerning contraction mapping is
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Theorem 1.2:

Every contraction mapping T on a Banach space X has a unique

fixed point x* € X satsifying x*:’I“x*. For any X, € X, the sequence of

: n e
iterates anTXh l:T x, converges to x*, and
oo
. e
||xn—x ”s;r—(-x-“Txo—xO” (1.68)
Proofl: This theorem is the special case of Theorem 1.3, for r—-o,

This theorem requires the mapping to contract on the whole
space X, Unfortunately, most operators do not satisfy this condition,
so it is necessary to extend the theorem to particular subsets of X,
Intuitively, one would expect a mapping to contract in the neighborhood
of a point X if X, is '""close enough'' to a fixed point, That is, if
”x*—xOH is small enough, The following theorem, given without

proof on page 42 of Baily, Shampine and Waltman(14)

, extends the con-
traction mapping principle to the case where the mapping contracts on

a ball and also shows how to find the radius of the ball,

Theorem 1,3 (Contraction Mapping on a Ball):

If for an operator T, there exists a number r such that
1) T maps the ball B_= {w]| ”W—xO”sr} of a Banach space X
into X,
2) there exists an a=a(r) satisfying 0<qa<l and
I T=-Ty|l<allx-yl (1. 69)

for all X, ¥ GBr.



ik

3)
IT3g -l
. 0 "0
r o o (1. 70)
then I has a unique fixed point x* € Br satisfying x*=Tx*, and x* is the

: ’ n ; o
limit of the sequence xn:'l xn_lzT (wo) where w_ is any point in B_.

0
Proof: Since X is a Banach space, every Cauchy sequence in X con-
verges to a limit point in X, The following argument shows that %

defined by

n
Xn:TXn_lzT X (1, 71)

is a Cauchy sequence, and hence has a limit point in X,
For any n and k

[ENEE S

nH=”Xn+k‘xn+k-1+xn+k-1“Xn+k-2*- The

ntk n+1_xn”

Using the triangle inequality

<fl= R(ES

|lxn+k_xn” n+k_xn+k—ll n+k-1""nt+k-2 [EEPPRL *nt1 —Xn”
Now for any i

B T Ty

I,

" .
R Y e N N

o

Hence

” - ( n+k-1 n+k-2 n)H ”
|lxn+k—xn a +a Towa T xl—xo

gocn(onk'l+ e i’ T +1>”x1—x0”

(0 0]
k e :
<oy -xoll ), o = B [Ty -x, (1.72)
k=0
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Since the right hand side does not depend upon k, X is a Cauchy
sequence and hence it converges to a limit point x* € Br provided that
all of the iterates remain in B_. Letting n=0 in (1. 72) yields

”Txo‘xol!

ﬂ PR
l-n

|ka_x()|

IHence X € Br for all k if

“Txo'xoll

r>
1-o

(1. 75}
Now for k—oo in (1, 72)

5k

n
-, || & | T -x (1. 74)

[&5

oll

which provides a bound on the error for the nth

iterate and shows that
Hx*-xn[lao as n—»oo. Hence, by Hypothesis 2) HTx*-Txn”—vo as n-oo

so T is continuous and hence

lim x o § ® limTx

n ) n
n—00 n—00

s "
x* =T lim Xn
n—+00

*F = Tx*
Mathematical induction will now be used to show that the
iteration scheme may begin at any point WOEBr. Assume WkE Br for
all k<n-1, Then |

llw, %ol = I Tw_ _ 1~ T+ Txg-x, |

—Txo H+ HTxO-x

n-1 O”

usiing (1. 69) and (1, 70)
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”Wn'xn” <artr(l-a)=r

S.w €EB  for all n,
n " r
Using arguments similar to those used for the sequence % it
is easy to show that

2rot
ok || < 22

and hence . is a Cauchy scquence converging to w*é€ Br' where
wr=Tw™,

Now suppose there are two fixed points x*¢€ Br and w¥¢€ Br' Then
| w

with O<a<l, so |[|w*-x¥|| =0 implies w¥=x%,

”W* xR ” < ”W:}:_X:::

1.5. Comments on Uniqueness,

Since the conditions satisfied by r in Theorem 1,3 are
inequalities, there may be a range of suitable values of r, Of course,
there may be no values at all in which case contraction is not assured

on any ball centered at x,, Assume for the moment that r__. is the
0 min

minimum value which satisfies the conditions of Theorem 1.3, and that

T _is the maximum value,. Let B_ . :{WI “w—x H <r__. } and
max min 0 min

= {w| I]W—XOI]Srm .J}. Obviously, there is a unique fixed point

max a

x € Bmin and this is the only fixed point inside Bmax' If there were
another fixed point y*¢€ Bmax then uniqueness would be violated for the
contraction mapping on Bmax' Hence, any other fixed point y* must

satisfy Hy"‘—x In the case L s 0 the fixed point x EBm.

0 |]>rmax' in

is the only solution in the whole Banach space,
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CHAPTER 11

VALIDITY AND STABILITY CRITERIA

The various approximating techniques are discussed by

Minorsky(ls) (16}

, Hayashi , and Bogoliubov and Mitropolsky(IT). This
work considers only harmonic balance, with the understanding that
equivalent linearization and the method of averagiﬁg are essentially one

term harmonic balance approximations,

2.1 Validity Criteria,

Consider an equation of the form (1. 1) with g(t) harmonic, That
is',
%+ f(x, %) = Pcos (wt+yp) (2. 1)
One term harmonic balance yields the approximate solution
xo(t):Acoswt (2. 2)

with amplitude A and phase ¢ satisfying

-sz+a =Pcoso

1

(2.3)
b= -Psinop

where ay and bl are the cocfficients of coswt and sinWt respectively, in

the Fourier expansion of f(xo, }to). In vector-matrix form (2, 1) is

- AT-T@+E) (2. 4)

where
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;:—:[ } ; A:[ } 5 f(X)=[ j] 5 \g(t):[ :l (2. 5)
Lx(t) 0, 0 f(x, %) P cos (wt+o)

with approximate solution

A cos yt
} (2.6)

4 (t) :[ _

-Aw sin wt

In this chapter, validity criteria are established for the one
term approximate solution, Extension to multi-term approximations
with more general periodic forcing functions is straightforﬁrard,
Examples of validity criteria for two term approximations are given
in Chapter III.

Suppose that (2. 1) allows solutions in a given symmetry class,
and that xo(t) is in this class. To establish the validity of the approxi-
mate solution xo(t), the existence of exact solutions in the given sym-
metry class in a neighborhood of xo(t) is sought,

Consider the difference between the exact and approximate
solution ,

n(t) = x(t)—xo(t) (2.7)

called the approximation error. The function n(t) satisfies the fol-

lowing equation obtained by substituting (2. 7) into (2. 1) and using (2. 3)
ﬁ+f(x0+'ﬂ,>'c0+'ﬁ):al cos wt+b, sin gt (2. 8)
Alternatively, (2. 8) is written as |
A+ a(t)h+b(t)n= a, cos u)t+b1 sinwt - f(x0+n, :’;0+ﬁ) +a(t)fh+bit)n (2. 9)
where a(t) and b(t) are suitably chosen piecewise continuous functions

with at most a finite number of finite discontinuities. In vector-mafrix



2%~

form (2. 9) is
n=A(t)n+d(m, t)

where A(t) is given by (1.26) and

ﬁ:[?:l 3 d(n,t)= a, cos wt +‘b1 sinwt+ a(t)h+ b(t)n
n ~£(x g+, X+ )
Now using Lemma 1,7, 1.8, or 1.9, depending upon the
symmetry class desired, (note that xo(t) Iﬁust be in the class -an&r—the

equation must allow solutions in the class) gives
I
E: Iﬁ(t, s) a,cosws —i-b1 sinws—f(xo+n,§‘;0+‘h) +a(s)h+ b(s)'q]ds (2. 10)
0

where h(t, s) is the appropriate kernel and I is the interval of the B.V.P.

An alternate form of (2, 10) is

1 :
n= J’E(t, s)[a1 cos ws + b1 sin ws—f(xo, ﬁo)]ds
3 -

I

+ fﬁ(t,s)Ef(XO,xOH a(s)h+ b(s)n-f(x0+n,:'<0+ﬁ)]ds (2. 11)
. |

 Since the first integral on the right hand side, denoted by
_ e(t) ‘ '
e(t) = : (2. 12)
&(t)
does not contain W, it can be evaluated for any given f. Hence 7 is
governed by the following Fredholm integral equation
I - -
=t v[‘ﬁ(t, s)[f(xo, %)+ a(s)f+ bs)n-£lx tm, >°<0+7ﬁ)]ds (2.13)
0 ' i )
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which is just a nonlinear operator equation of the type (1, 62)., For
purposes of notation (2. 13) is written as ;
n=e+Hn=Nn (2. 14)
Solutions are sought in the Banach space V of continuous two

dimensional real vector valued functions on the interval I with norm

[Pl = sup JE oo (2. 15)
where
[
v(t) :[vz (tJ (2. 16)

There will also be occasion to use the Banach space C of continuous

real valued functions on I with norm

lly)|| = sup ly(t)] 2. 17)
O<t<I

¢onsider (2. 14). The operator N maps the ball B = (W] [wl|<r}
of VintoV, soapplication of Theorem 1.3 to the operator N on V yields
sufficient conditions for the existence of a solution 'ﬁeBr. Obviously,
this implics the existence of an exact solution x(t) of (2.4) within r of

;0(1'). This results in

Validity Criteria I: Given an equation of the form (2. 1), let ;O(t), e(t)
and N be as previously defined.
If a subset Br of V can be found such that
1) there exists an a=a(r) satisfying O0<a<l and
[[N3-Ny || < alf=-| (2. 18)

for all x, y€ B .



S23 =

2)

.= el 2. 19)

I-a
then there exists an exact solution X(t) of (2. 1) of the form

x(t) =§0 (t) + n(t) (2.20)

where n(t)€ B, is the limit of the sequence

N H=T e.21)
and

EEAPEAC | (2. 22)
In particular, |

[FROENG! L. (2. 23)

in

where rmin is the smallest value of r satisfying (2. 19).

When the sufficient conditions for validity are satisfied, an
algorithm (2, 21) for computing the exact solution to any desired accu-

racy has been derived, In particular, using (2.22)

_El_ujl (2.24)

-Gyt gl = o
and

x(t) =X (t) + lim T ' . (2.25)
m-=00

where _ﬁzn is given by (2.21).

Also, since -ﬁl =N

approximation, i,e,, xasxo+e satisfies

- (xqte) | sgﬂ%ls ar__. _ (2.26)

1 min
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For the special case of f(x, %) linear in x, that is
f(x, %) = CX+ k(x) (2.27)

it is possible to derive sharper criteria. In (2.13) let a(t) = C to obtain
I
n=e+ Jﬁ(t, s)[k(xo) + b(s)n«k(x0+'r|):|ds (2.28)
¢ ‘

or, in component-operator form
n=€+ Hln = N1 n

(2.29)
ﬁ:é-}—Hz‘n:Nz’n

Since the right hand sides do not depend upon 7, it is possible to apply

Theorem 1.3 to the first of (2,29), This leads to

Validity Criteria I-A: Given an equation of the form (2. 1) with f(x, %)

as in (2, 27). Let xo.(t), N‘l, NZ’ and e(t) be as previously defined,
If a subset B_= {w| |lw|l<r} of C can be found such that
1) there exists an a=a(r) satisfying O<a<l and

IN=-N, vl <allx-yll (2. 30)

for all x, y€ Br'

2)
rz oo (2.31)
then there exists an exact solution of (2. 1) of the form
x(t) = % (t) + n(t) (2.32)
where né Br is the limit of the sequence
Ny =Ny mp=0 (2.33)

and
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1
fIn-m;ll f»%ﬂ (2. 34)
In particular

”X‘X()” grmin

(2.35)

where T in is the smallest value of r satisfying (2. 31),
Also, if the validity criteria are satisfied, and there exists a

§- &(r) such that
[N, %-N, y | < 8][-y | (2. 36)

for all x, y€ Br’ then

i1
1< Ba_llell  iuy (2.37)

1-a

[[h-y
and if there exists an €=¢&(r) such that
11, x| < €]l=|| (2.38)

for all x¢€ Br’ then

il

| < el + Elel @. 3
Application of Theorem (1, 3) is as follows: Since N1 maps Br
into C condition 1is satisfied, Equations (2. 30) and (2. 31) are the same
as conditions 2 and 3 respectively, and results up to (2, 33) are direct
consequences of the conclusions of the theorem, Equation (2. 34) fol-
lows from (1, 74). Taking the norm of the second of (2, 29) and using

(2.37) gives

=[lefl+ lmn [l < (lell+ € inll (2. 40)

i

or, using (2. 34) with i=0,
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flall < € |le ,
Al = [la]|+ -1J:°—u 2. 41)

a
which is the same as (2. 39).
Then
ﬁ—ﬁi:NZn-Nzni_l izl (2.42)
and using (2. 34) and (2. 36) yields
JIA-# |l salln-ni_lus%liu i>1 (2. 43)
When Validity Criteria I or I-:l\ are applicable, they yield,
in addition to a bound on the approximation error,
1) an algorithm, 2,21 or 2,32, for computing the solution to
any desired accuracy.
2) uniqueness of the approximated solution in the given
symmetry class within the ball Bmax of radius S
where ¥ oax is the largest value of r satisfying the
validity criteria.l
Slightly sharper validity criteria which yield only existence of an exact
solution near the approximation and a bound on the approximation
error arc obtained using Theorem 1,1 and its corollary, Application
to the special case (2. 27') yields the following:

Validity Criteria II-A: Given an equation of the type (2, 1) where f(x, %)

has the form (2.27), let xy, Nj, N,, H,, H, and e(t) be as previously
defined,

If a subset B_= {wl HW”SI'} of C can be found such that
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1) there exists a real number Y20 and a B=p(r)
satisfying 0<p<l and
IN <]l
for all x¢ BJ_.
2) v+Pre<r
3) there exists real numbers 620 and an €=€(r)
such that
v, ] < 6+ €l
for all x€B_.
then there exists an exact solution of (2. 1) of the form
x(t) = xq (£)+n(t)

where
In)l} = [l3¢(8) -x 4 ()] = —I—Y-B-
and

I8 = 1o -#g 0] < 6+ 5%

(2.

(2.

(2

(2.

(2.

(2

Application of Theorem 1.1 is as follows: The ball Br is a

44)

45)

.46)

47)

48)

+49)

closed convex subset of C, The continuity of hl(t, s) assures that N1 is

a continuous mapping, while conditions 1 and 2 assure that Br is

mapped into itself, Hence the images of all x& B under the mapping

Nl are uniforrﬁly bounded in norm by r. In addition, condition 3

assures that the images of all x¢ Br have uniformly bounded first deri-

vatives, Using the mean value theorem

“X(tz)‘x(tl)“ S}.{(Q)th ‘tl ||

(2.

50)
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where t1€C§ Ly, and %X(() is uniformly bounded, Hence all functions
in the image of Br are uniformly bounded and equicontinuous, so by
Arzela's Theorem (see page 54 of Kolmogoroff and Fomin(lo)) the
image of Br is compact. All of the hypotheses of Theorem (1.1) are
fulfilled and hence tﬁere is a least one n(t)€ Br satisfying (2, 28),
Application of the corollary yields (2,48). Then (2,46) and (2. 48)

yield (2. 49).

Successful application of the validity criteria depends upon
the choice of a(s) and b(s) in (2. 13) or b(s) in (2.28), These quantities
are called the basis for the integral equation. Except for certain
exceptional values which yield an unbounded kernel, the choice of basis
is unrestricted. Ideally, it would be chosen so as to minimize the
bound on the approximation error, However, such a choice is rather
involved computationally so several alternative selections are discussed
in Chapter III,

Furthermore, in application to specific problems, success
depends upon determining a suitable Lipschitz constant g(r), alter-

natively called a contraction constant, for Criteria I and I-A, and

upon determining suitable B(r) and y for Criteria II-A. Once these
are obtained, | the information concerning validity is contained in
(2.19), (2.31) and (2. 45) for Criteria I, I-A and II-A, respectively,
Henceforth, eacin of these inequalities is referred to as a validity

inequality.
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2.2 Comparison of Criteria [-A and 11-A,

Consider the equation of a simple undamped oscillater with an

odd polynomial restoring force
2+ K (e x0te x5)~Pcoswt K, €, €,>0 (2.51)
N | 2 - L .

The one term harmonic balance approximate solution is

xo(t)zAcos wt (2, 52)

where A>0 satisfies

=

A(R-0P)+3 € KA 2

KeE, A% = P | (2. 53)

Solitions which are out of phase with the forcing function correspond to
P<O,
Since (2. 51) does not contain a derivative term, the approxi-

mation error satisfies an integral equation of the form (2. 28) with
3 _ 5
kix)=K x+€1x +sz . (2. 54)

Now xOEQT and (2.51) allows solutions in QT, So'hl(t, s) in (2,28) is
given by (i. 53). For convenience, take b(s)=K,, an as yet unspecified

constant, in which case '

; ™
-sin /K, (EE —t) cos /Ky s

O<a<ts=—
w

: : 2
/Ry cos LSAT
hy(t, s)= (2.55)

-SiD.‘/ K:k %r"d)' —S) CcCOos / K;}: t
L J K cos A%

2w

O<ts ss-—T—T—
Zw
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A straightforward integration gives -

5
. DELA
k{e A+ —— €, KA
elt) = i cos 3wt + 5, COS 5wt (2.56)
4(K*—9w ) IG(K*-ZSQ_D
and from (2.28) and (2, 29)
wew ‘
le = e(tH+ [ hl(t, S)[k(x0)+K::=Y-k(xO+y)j}ds (2.57)
0

For Criteria I-A an a=a(r) is needed satisfying

[N, %-N, vl < aflx-y]| (2. 58)

for all x, y¢€ Br' Using (2.57) and (2. 54), and after some manipulation

/2w
: sc) 3
le—le_ .J‘hl(t’ s)[(K,;=—K—3EIKx0—562KxO - (x+y)(3€1KxO+IOEZKx0
0

2 2 2 3 Z2 -2 3
-(x 4+xy+y )(K€1+IOKEZXO)-(X +xy +x%x yt+y )SKEZXO
2 2
—KEZ(X4+X3Y+X v +xy3+y4)](x—y)ds (2.59).
Now choose K, so that the upper bound on the norm of
2 4
(K,::-K_seleohsesz()) (2. 60)

is as small as possible, that is

3 s 8 4
Ky=K+=€ KA +3€ KA
% 15 5 <, _ (2, 61)
which gives
IKs-K-3¢€ KxZ-5€ Kx4]|<ie KA+ 2 € KA (2. 62)
1707727 T 2 e :

Taking the norm of (2. 59) and using (2. 52), (2.55), (2,62) and x, y€ B1~

yields
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N, x-N vl -y || wK [2e A+ 2e, a2 (3e Ar10e, %)
2w/Rylcos fl;:;:n |
w
+3r2(€1+10€2A2>+20€2Ar3+5€2r4:| (2. 63)
[Ny x-N, v ]| = alr)||x-y| (2. 64)

By Validity Criteria I-A, x, is valid provided there are values of r

satisfying
el
T2 T a(r) (2. 65)
which can be written
2 3 4 5

r2a0+a1r+2a2r +t3a,r +4a4r +5a,r” =p(r) (2. 66)

where
2
ag = [lef] a3:K(€1+IOEzA. )/B

5 :KA2(3€ +5¢ A2>/ZB a, =8Ke AJB
1 1+5€; g 2 s

2
aZ:KA(SEl-HOEZA )/B a, =KE¢, /B

B=2yp/Kx Icos [4_1%__1 l/'n'
Now for Criteria II-A, Y and B=B(r) are needed satisfying
Ny vl < v+By (2. 68)
for all y€ Br‘ Using K, given by (2. 61) and the same type of bounding

procedure gives

E;(r):a1+a2r+a3r2+a4r3+a5r4 (2. 69)

Y=|le] (2. 70)



By Validity Criteria II-A, x_. is known to be valid provided there are

0

values of r satisfying

2 3 4 5
r2a0+a1r+azr +a3r +a4r —i—asr =q(r) (2.71)

where the ai,' i=0, 5, are given by (2.67). Figures 2, 1a, b show graphs
!
of the right and left hand sides of (2. 66) and (2. 71) for different values

<T

of the parameters. Obviously p(r) always lies above q(r) so r,<r,

(see Tigure 2, 1a) and Criteria I1-A yields a smaller bound on the
approximation error, In fact, the situation depicted in Figure 2. 1b
may develop, wherein I1- A yields a bound and I-A is not applicable,

On the other hand, when I-A applies, it yields an algorithm for com-
puting the exact solution and uniqueness of the approximated solution in

the given symmetry class within the ball of radius T, (see Figure 2, 1a).

2.3 Validity Boundaries.

A question of particular interest is: Given system parameters

K, (-:1, 62 for what excitations P, W do the validity criteria guarantee a
valid approximate solution,

| Consider the situation shown in Figure 2,lc. There is only one
value of r which satisfies r 2p(r), and for a slight change in the excita-
tion there may be no solutions, Values of the excitation for which such
a situation occurs will clearly lie on boundaries between valid and
""questionable'' regions. Where the validity crit;eria are not applicable,
there may still be exact solutions near the approximations, but their

existence cannot be guaranteed by the methods used here,.
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Fig.2.1 PLOTS OF VALIDITY INEQUALITIES
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It is convenient to calculate the wvalidity boundaries as functions
of A and W rather than P and w, Recall that A, P and @ are related by
(2.53). The development is presented for Criteria I-A, Validity bouﬁ-
daries for II-A are dete'rm_ined in an analogous manner, .

On a x’ralidity boundary

r=Pp(r) {2, 72)

* 1ap'(r) (2. 73)
Gi—ve-n A, values of W satisfyving' the %béve tv%fd equations are found as -
followé: Since p’(r) is monotone increasing when r>0, for p'(0)<1 thére
is always a unique positive root of (2.73). Solving for given w yieids
r=r(W). The transcendental equation

r(w) =p(r(w)) (2. 74)
obtained from (2, 72) is then solved yielding values of w on validity
boundaries. Figure (2.2) shows validity boundaries for Criteria I-A
and II-A applied to (2, 51) with K=1.0, €1=0.1 and 62:0.02. Also shown
are response curves for several values of P, Indications are that the
approximate solution is very good on thg lower response curve for @w>l
and also for certain ranges of frequency when W<l and P is small, Of
course, the validity criteria are only sufficient conditions so the
approximate solution may still be quite good even though its validity
- cannot be»demonstrated' by these methods,

In addition to validity, there is also the qug&;sf_ion of whether the
approximate solution is an approxilrnation to a stab{e so':lution. When

the approximation cannot be shown valid, the stability question cannot
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Fig. 2.2 VALIDITY BOUNDARIES - POLYNOMIAL RESTORING FORCE
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be answered rigorously, and even when it is valid, a stability analysis
bascd on the approximate solution is not exact, A precisc analysis
must account for the fact that the exact solution is known only to within

the bound obtained for the approximation error,

2.4 Sufficient Stability Criteria,

Consider again, an equation of the form (1.1). The stability

question for a periodic solution x(t) is answered by the equation of first

(9)

variation (see Struble page 149)
g B8 e g B e
Y”" -EE(X] X)Y"f x (X, X)Y =0 (2. 75)

If this cquation has any unbounded solutions then x(t) is unstable,
if all solutions are bounded, then x(t) is stable, and if all solutions tend

to zero as t—oo, then x(t) is asymptotically stable, Equation (2, 75) is

a Hill's equation of 'the form
'§T'+q1(t)37'+q2(t)Y=0 (2. 76)

where ql(t) and qz(t) are periodic with common period P, Floquet
thcory says that solutions of (2. 76) are of the form
ixlt ikzt
Y(t):wl(t)e +sz(t)e (2- 77)
where 0y and P, are periodic, The boundedness of solutions is hence

determined by A and Ay called the characteristic exponents, Hahn(7)

page 305, shows that (2, 76) is transformed to

Z+p(t)z=0 (2. 78)

P(t) = g, (t)- 75 (6)- 34, (t) (2.79)
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by the transformation
t
_'21—[;) ql(s)ds
vy =ze (2. 80)

Since (2. 7é) is also a Hill's equation it has solutions of the form (2. 77).

Hahn also shows that the characteristic multipliers My and ko given by

iy 0 b, =e (2. 81)

where vy and v, are the characteristic exponents of (2, 78) satisfy

e -l =0 (2. 82)
where
a = (u, (Pyv, (P)) (2. 83)
and
(B v, ()
U(t) =[u2(t) v (t)} (2. 84)

is the principal matrix solution of {2, 78), Solving (2. 82) gives

w R
a a4
ul,ztii'—A‘]} a6

from which it is easy to see that p.luzzl and hence from (2, 81)

1\)1P -1\;2P

e =e (2. 86)
Thus vi=-v, mod%. Lettin‘g V=V =-vy mod%"- and using (2. 81) and
(2. 86) gives
1 i 1
Im{v}= Stn i = S0 |, | (2. 87)
1 1
Re{vl}= —I;(Arg Wp+2nm) = 5(-Arg Wy +2mm) (2. 88)

for some integers m and n, Now if a224, then y; and Mp are both real
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and positive, so Arg My = Arg My 0, while if ;12(.,.4, then Iull:- [u-zlzr-l 80

Im{v}=0. This leads to

%&n-ru—l'r for a£24
N (2. 89)
%(Arg 1_11+2n1r) for a2<4

now let
q;(s)=8,+4,(s) (2. 90)

where

4, - -é- q(s)ds (2.91)

o g

Then the characteristic exponents of (2. 76) are
q,P

A =+y+i > (2. 92)

1,2

If ql(t):%(x, %) and q, (t):g—f—{-(x, ). then fhe afebilily of Tt} is related 0
?\‘1,2 as given in Table 2,1, All except the last entry are consequences
of (2. 77) and the remarks following (2. 75)., The last case in the table
involves the question of coexistence of P or 2P periodic solutions of
Hill's cquation (see Magnus and Winkler(ls) page 5).

The above analysis provides an answer to the stability question
for x(t) in terms of solutions of the equation of first variation over a
single period P. Solving a Hill's equation to determine ul(P) and
V2(P) is not a simple matter, even when 4 and q, are known exactly,
When using the equation of first variation, x and hence the periodic

coefficients are known only approximately, thus adding further
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Characteristic Exponents )\1 and )\2

N

Im }\1 and Im ',\2

Relation of }‘1
and )\2

Stability of x(t)

Im 3\1<0 and Im)\2<0
Innx1>0 and Im )\2>0

Im _\1>0 and Im 7\2::0
or
Im Xer and Im )\2>0

Im ',\1: Im )\2:0

Im )\I:Im )\2:0

2t
kg Bind g

ok

K1=X2 mod B

(occurs only
when t’;‘{l:O)

unstable

asymptotically stable

stable

stable

unstable except when
Vl(P):u2 (P)=0

Table 2.1, Stability from the Characteristic Exponents,
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complications, A widely accepted simplification consists of analyzing
the stability of the approximate solution (sce, for instance, Hayashi's
book(lé)), Such an analysis is never precise and may sometimes lead
to unjustified results as ‘shown by an example in Chapter III,

When the validity criteria are applicable, there is a possibility
of obtaining sufficienf stability conditions., The equation of first varia-

tion may be written as

. ., of 5 el
v+ %(Xo-l_n' }'&O+ﬁ)y + 5% (x0+'r], XO+'n)y =0 (2. 93)

which is a Hill's equation of the form

5+ (a0, @) 3+ (a, 00+, 0))y =0 (2. 94)
where ql(t) and q4, (t) are known periodic functions and gl(t) and gz(t)

are also periodic with the same period and satisfy

le,wli<s,  lig,ml<s, (2. 95)

In some cases, it is possible to determine a range of values for u,(P)

i
and VZ(P). That is, ul(P) and VZ(P) lie within certain intervals. The

notation

[u,(P)] = [MAX(u, (P)), MIN(u, (P))] (2. 96)
[v, (P) 1= [MAX(v, (P)), MIN(v, (P}))] (2.97)

is convenient, Using these interval values, together with (2, 83), (2, 85)
and (2.92) gives [Im }\1] and [Im )\2], from which sufficient conditions
for stability and instability are deduced, For example, if both

intervals contain only positive values, then xo(t) approximates an
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asymptotically stable solution, while if either interval contains only
negative values, then xo(t) approximates an unstable solution, An
example in which sufficient stability conditions are computed is given

in Chapter III.
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CHAPTER III
EXAMPLE: A BILINEAR SYSTEM

Consider the equation
X+ F(x)=Pcos gt (3.1)
where

K-1+x for x>1
F(x)={ Kx for |x|<1 | (3. 2)
1-K+x for x<-1

and K>0, This restoring force is shown graphically in Figure 3, 1.

The change of variables

EEg P:KIZa D ot=/K, T K:K-—; ; w=wK, (3.3)
takes the above to the more general form
U+ F(u)=R cos yT (3, 4)
where
K1a+K2(u—a) for u>a
F(u) = ﬁKlu for 1u!sa (3. 5)

~K1a+K2(u+a) for u<-a

£

Since (3. 1) is piecewise linear some exact solutions are obtained by
""piecing together'' solutions for the time segments on which the egua-

tion is linear. Generation of these simple solutions, i, e., solutions

which cross |x|:1 only once in a quarter period, is discussed in
Appendix A. Subsequently, these exact solutions are used to study the

sharpness of bounds on the approximation error,
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3.1. Validity Criteria,

The first order harmonic balance approximate solution of (3, 1)

is
xo(t)zAcoqut (3.6)
where A>1 satisfies
2 P
Kgv-¥ =& (3.7)
K oy =K+ 2B feop L 1Ty L]UZ} i e
EQV™ - w8 ATELT,2 (3. 8)

Solutions which are out of phase with the forcing function occur for
P<0.
Since x,(t)€Q., and (3. 1) allows soclutions in Q.. for T:-zl
0 T T w’
Validity Criteria I-A is used to establish the existence of an exact QT
solution near xo(t). In accordance with the development in Chapter II,

the approximation error n(t) satisfies

/2w
nit =e(®)+ [ hy(t, 8)[Flxg)+bs)n-F eyt |ds (3. 9)
0
where

/2w

e(t) = t, s I_K x. -F(x Td

(t) hy (t, 8)|Kpn X -Fxg) ds (3. 10)
3 L

Take b(s)=Ksx, an as yet unspecified constant, Then hl(t, s) is given

by (2.55) and



A5

1-K (KEQV-I)A cos Wt w1 <K} con = \
elty= =+ 5 & SR
- Ky-w VR (Ko _u? ) cos LgaT
W cos ‘/I;* ] I:A l]zs n[‘ A:I Ostgicoslﬁl&
_ (3.11)
| (K oy K) w(1-K) sin /K (7= -t)
eft) = —TA cos wt+
i TR (Ko ) cos LEuT
| sin[‘[ﬁsin-l—1 —[AZ—I:IECQS[ R 1 S ..
7 W Al L w A Zw)
Using the notation of Chapter II,
/2w
N,y=elt)+ J h (t, s)[F(xO)+K:::y—F(xb+y)]ds (3.12)
. o :

In Appendix B a contraction constant for this operator is derived., That
is, qa=afr) given by (B-11) is such that

N,y -Ny x| sa(x)]ly-x]| | (3.13)

for all x,y€ Br. Hence, the validity inequality is

e .
l_a(r)sr (3.14)
For the present, take K*:KAVG’ the time average value of F'(xo)
I
2 -1 1
KAVG_K+ F(I-K)cos & (3.15)

Later, various other choices of the basis are discussed,

As in Chapter II, validity boundaries in the A, w plane consist

of points satisfying



A

]e =r-raf(r) (3. 16)
1=q(r)+ra’(r) (3. 17)
From (B-11)
. 0 HXT <0 or >1
CI.I(I‘) - ['I'K*" I:K'K*IJ 1 » (3.18)
w/Ky lcos 55T - g et
' 2w ' [Az_(1+or)2]1/2 A

Multiplying (3. 17) by r and using (3. 16) gives

2 0
r(l-a)=x" 52 = el (3. 19)
Using (3. 18), squaring and rearranging gives
1.4{’ L-K]- |K*‘K|}2 + [lellu’r, COSZ‘JK;%J’TL [{1+ or}z—A2:|: 0 (3. 20)

For given'A and w, the unique positive root of the quartic equation
(3.20) is obtained yielding r=r(W), Roots @ of the transcendental
equation

lell = r(w)-r(walr(w)) {5..21)
obtained from (3. 16) then correspond to points on validity boundaries,
Figure 3.2 shows validity boundaries for the case K=0.8, In the regions
marked I, II, and III the sufficient validity conditions are not satisfieci_
The heavier solid lines are response curves determined from the
approximate solution. In some parts of the shaded regions the approx-
imate solution mr;ty still be quite good in the sense that an exact solu-
tion exists in its vicinity. However, this to be expected since the
validity conditions are merely sufficient and not necessary, Further-

more, in each region there is apparently some type of behavior which
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can lead to large errors in the approximate solution. In region I,

some of the response curves have vertical tangents, If the location of
a vertical tangent is not exact, then near the vertical tangent there may
be no exact solution near the approximation, In regions II and III the
system apparently has ultraharmonic resonances, The resonant
response in region II is predicted by a two term harmonic balance

approximation developed later in this chapter,

3.2. Bounds for the Derivative of N(t).

In regions of validity, an upper bound on the derivative of the
approximation error is obtained. The following is used
n= x0+'r'] (3.22)
where

Inll =x i (3.23)

and T in is the smallest value of r satisfyiﬁg (3. 14). In the notation of

Chapter II
w/2Ww
sz: I h2 (t, s)rF(A cos ws)+K,y-F(Acos ws+y):]ds (3. 24)
. 3 :
/cos SR (iﬂ--t)cos,/f{::s
- 2 T T
K,v:'ﬂ' *
cos 20
h,(t, s) = ' (3..25)

sin /K (-éﬂ— - s) sin/ Ky t
¢ O=st< ssﬂ—!
K JKo W )

Ccos 20

Using developments in Appendix B,
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M,y sV R alx _, iyl (3.26)

min

for allyeB_ . . Hen'ce from (2. 38), (2.39) and (3, 14)
min :

Al llell+vRyr y alr ) (3.27)

3.3, Stability Critcria.

Suppose that xo(t) is a valid approximate solution, If

L 5
I} < (Geos™ —222) (3.28)
/2 ;
. w[AZ-(nrmin)Z] (3.29)
or, from (3.27)
1/2
”é” +/ Ky T in a(rnﬂin) < w[AZ—(I+rmin)2] (3.30)

then %(t) does not change sign when [|x|| is within ro of one. In this
case, x(t) is simple and the stability analysis of Appendix C applies.
The following analysis presumes that (3, 30) is satisfied.

Using (3, 23) the following bounds on t,, where x(tl):l, are

1’
obtained

14+r 1-r

_1 -1 min 1 -1 min _
t = ujcos S Stlswcos __K"_"'ti» | {3.31)
In interval notation
[t,1=[e,,t ] (3. 32)

Tor any given solution x(t):xo(t)+n(t), [ul(%)] is computed as

follows:
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(o ()« 212

t <t <t

Min(ay (£)) = int o, (2)

t <t st

(3. 33)

where ul(%> is givén by (C-6). Then according to the results given in

Appendix C, x(t) is stable if

[“1(%>]C [1,-11 (3.34)

and unstable if
[ul(“aﬂnfl,~-1]: 9 , the nill set (3. 35)

When neither (3.34) nor (3.35) is true, then no definitive statement is

available concerning the stability of x(t).

3.4, Sufficient Stability and Instability Boundaries,

From (3. 34) and (3. 35), it is apparent that boundaries between

stable and unstable regions occur when

u (T) =21 (3. 36)
The stability boundaries in the A, w plane based upon the
approximate solutioﬁ are calculated as follows: For given ty and K
(3. 36) with ul(%> given by C-6, is solved for . A is obtained from

1

and P from (3. 7). In valid regions where (3. 30) holds, the approxi-
mate boundaries are used as initial guesses in the following scheme

to determine sufficient stability and instability boundaries, For given



-

A and K, values of w are determined satisfying

sup \11<%) = +1 (for sufficicent stability boundarics)
< ’

t _ at 15,

(3.38)
in{ uy (‘l): +1 (for sufficient instability boundaries)

i w
t_§t1$t+
where

. (L+/R)
™ _ (1_ i S (E_ ) ;
ul<w/_cosm % 2t1>c032t1 5 sin /K e 21:1 s1n2t1

min_~ l-a(r_. )
min

P is then determined from (3. 7).
The cross hatched areas in Figure 3, 2 designate regions where

the sufficient stability conditions are not satisfied, That is, either

(3. 30) does not hold or [ul(%):l¢[l, -17]. Near w:%there are indeed
some unstable solutions as may be seen in the blowup of this unstable
region in Figure 3, 3, where the stability boundaries based upon the
approximate solution are shown together with the sufficient stability
and instability boundaries, In this region, equation (3. 14) is satisfied
for all r Ermin' That is, the situation is as in Figure 3,4, Hence,
the unstable solution is unique within the class Q

2n /> 5O 20y stable

solution cannot be in this class, In other words, the unstable solution
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is plobally unique within an_/w_ The samwe result would hold if a solu-
tion in HZ Jw were sought, so any stable periodic solution of period
5 2

2r/w is in P This result is consistent with the work of Loud(lg)

2m/w”
who observed that equations of the form (3. 1) exhibit branching pheno-
mena in unstable regions near w:%, n an integer,

The desirability of applying the validity criteria to class QT
and I—IT solutions may be appreciated if one observes the following:
Had the validity criteria been applied in class PT rather than QT i
there would have been additional regions near w:—Z-l-H, n an integer,
where the validity criteria could not be applied, These regions would
have included all of the instability region in Figure 3.3, The validity
criteria in QT may be applied in this unstable region because the
branching is to a class of solutions outside of QT . There are also

apparently branching processes in regions I and II of Figure 3.2,

However, these branching processes occur entirely within QT .

3.5, Choice of Basis for the Integral Equation,

In the integral equation for the approximation error, the linear
basis, i.c¢., b(s) in (3.9), is chosen to facilitate application of the
v;.ilid'i‘ty criteria, In this section, various choices of the basis for the
bilinear system (3, 1) with approximate solution (3. 6) are compared,
The symmetry class is QZ-n-/w in all cases,

The following choice of b(s) removes all linear terms fr’om the

operator H,
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1 for O< s«s}u‘-,c:os_1 —Al—
b(s) = (3.39)
K f rl & -1—5 <=
or ;€08 © Fsss5o
In this case,
72 1 11
(Kcost+ B~sint)cos s/& Ossstsmcos' i
= o~ 1 "]. 1
(Kcoss+Bs1ns>cost/ﬁ Ostsssmcos %
sin\/K(E% —s)cos t/(\/'KE) Osts-{];cos'ljlgs ssz%-;
i \/K(-T—r— t)cos s/(fKﬁ) 0<ss}-cos-1—1—sts—w-
i W =70 A 2w
b (¢, 5)=4 (3. 40)
sin/K'(-é%—t)(ffcos JKS+5$in/K—s>/</Kﬁ)
1 ~1 1 ™
ZU_COS Kstssgm
sin/K(%-s)(acos\/Kt+ﬁsin/Kt)/(/KE)
1 -11 T
\ i _u')‘COS ‘A‘StSSS'ZE
where
4::05"1 A4 co s_1 —l—\
A =cos £s1n A]sin[-——a——‘e‘— +~i-sin L—K-sux A]cos {t——w—é—]
i /K w -
cospll- '1 L
§= —cos,_—wsul —}-]cos[ o A +-—1-51n --——-31n —-—‘cos{ J
" ¥R b (3. 41)
/K cos' 21 1 /R a1 cos™ ¢
M-cos[ cos K]cos —_— +——sin[—cos_ K_) sin —-—J
; W \/—K‘ w = Ww




-

.-11

‘ cos =
D= sinl--‘/-—Kc:os_1 }—Jcos |:————i:|——cos
LW A W /K
R cos_1K1
E=cos —--—51n A]COS[—UJ-_J_ESIH
and
74 3
e(t) = (1—K)+(—EC—2-Y2-~—~> oswt- (- K){cos
: 1-w E
K
1- ( EQV ) 1 [A 1:] JK
(1- w? )(K- o )
() 1-x) ) [co°
e{t)= —————=—— AcosWt-——=(cos
2 -
(1-w") VKE
2
cos K -
+sin{ A] 1- ( EéJV 2) sin
® (1-u) (K-u)

_As in Appendix B for the constant coefficient case,

following suitable contraction constant

]1-K[(1+—1——)

alr) = #
1Ew

where

/K MAX

-11
07e cos  —
Y_—cos 11 Jsin{—————é—]

W A w

-11

A W Y,

/K

b Sln
W

i = “A‘]

o1l (KEQV'“’Z)

N (l«wz)(K—wz)J

cost

-11

A

(KE.3Q>V 2)

(1~w2) K-w )

for Ostsé—cos

ot ) ef Eogr )
(-9

-11 ™

'—sts—z—w-/

“for lcos
w A
one finds the

{1,—1—Jg(r>
JE)

(3.41)

cont,

(3. 42)

(3.43)
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- }-ji = cos"1 IZr for O<r<MIN 1, A-17
T -1 1+« ‘
5 - CO X for I<sr<A-1

Clr) - : (3. 44)
for A-l1<r<1

L for r=MAXT[1, A-1]

From this point, application of Validity Criteria I-A is the same as
the constant basis case, Figure 3.5 shows a comparison of the
percent error ep where

) o3 «
min
e =

P A

X 100 (3. 45)

for various choices of the basis including the time dependent (T. D.)
basis discussaed above, and the following choices of constant coefficient

basves K. l. BKas K defined by (3. 15), and K- K

AVG defined by

EQV
(3.8). Also shown is ”T]” computed as the sup of the difference between
the approximate and exact solution, Where the curve is broken, just
to the right of w=0.3, there are no simple exact QT solutions, The
parameters are P=1,0 and K=0.8, the same as those for a response
curve shown in Figure 3.2,

For this case, the T, D, basis gives very good» resulté away
from the validity boundary for region II of Figure 3.2, 1In fact ep for
this basis is so close to £he exact value that no separate curve is
drawn except near the previously mentioned validity boundary. Also

observe that the constant coefficient basis K*:KAVG gives the widest

range of validity., Hence, the titne dependent basis may not always
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be the best choice, The percent error for all basis choices has the
character of the exact curve and compares favorably with the actual
value at least for w>%. Although the comparison is plotted for only
once set of values of the parameters, the same general behavior was
also obscervaed for a number of other cascs,

An analytical comparison of the bases is made by considering

the resonant case,

3.6. <Validity Criteria at Resonance.

The following result holds for the T.D. basis and for all of the

constant bases considered below,

lim [le(t)]|< |1-K| (3. 46)

A- oo

Also. in the limit as A-o0, equation (3. 14) goes to

8 1-K| (1 ! «1—)

JK [ 1 J 2 _ .
~— MAX [1,— |[r"+]1-K]| <r (3.47)
ﬂ.‘l_)+'_4_(_,1_“’;g_‘l.| /R ;

Solving (3.47) in the case of equality gives

1/2
4(1-K) 32 (1-K)(1+ - MAx 1, -
™ |P+ = ] 1adt /R /K
T = S _
16 I1-K|(1+ —I—)MAX[L—IZI o |P+4(1—K)1
/K /K ™
(3. 48)

Hence, a sufficient condition for application of the validity criteria at

resonance is
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2(,, 1 1
32(1-K) (1+/K>MAX{1, }

4(1‘_K)|_ <1 ' {3.49)
= ,

Tr|P+

in which case the relative error rﬁﬁn/A goes to zero as A-oo, Simi-
lar results for other choices of the basis are summarized in Table 3.1. _
Even at resonance, no one choice is cle;irly superior for all values of
P and K.

Much work remains to be done in the area of optimum basis
choice. However, the results given by Figure 3,5 and Table 3.1

indicate that the choice K =K used in this work, compares

AVG”

favorably with other easily computed bases,

3.7. Two Term Harmonic Balance Approximate Solutions,

The bilinear system (3, 1) allows Q‘T solutions for T:Z'rr/ﬂ,

Q=w/(2n-1), n a positive integer, For the case n=1, following

(20)

Caughey , assume an approximate solution

xo(t):Acos wt+ Ucos 3ut (3.50)-

As with the one term approximation, there is no loss of-genérality in
taking A>0,
In order to apply harmonic balance, it is necessary to

determine 2y and ay in the Fourier expansion

F(xo) =a, cos wt + ajcos 3wt+higher harmonics (3.51)

Expressions for 2y and ajy are given in Appendix D, Substituting (3. 50)

into (3. 1), using (3.51) and balancing first and third harmonics yields



Bl

lim q(r) Sufficient Condition
Basis A -00 for Validity
8|1 K| (1+-—L->MAX[1, J—} 32(1-K)% 1+ -—I—)MAXll, s
19, ffflK) /L. £K1K 3L
x| P+ l n|P+-i;l—)|
41 -K|(3+r) 4I1 Kl
Eeav = P Vi 12[‘1 KI) el
K pve |1 Kl(4+2r) 4|1 K[ o
+(1 K)I
g 41-K|(1+r) 4[1-K]| -1
e 2=5)) “A(1-K) 4)1-K|
N P—="10—"anx
Pt 20K,

Table 3.1. Validity at Resonance
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-sz ta, = B
(3.52)

~9L'U2U+a3 =0

Just as with the one term approximate solution, sufficient
conditions for existence of an exact QT solution near XO

applying a validity criteria which is essentially Criteria I-A for two

are obtained by

term approximate solutions. The work involved in the application is
computational rather than conceptual, so the details will not be given

here.,

-

3.8, Ultraharmonics,

An interesting development occurs in region II of Figure 3.2,
Assuming a value of U and solving (3. 52) for A and @ yields system
responses shown in Figure 3. 6. Note that the parameters used, i.e,,
P=1,0 and K=0. 8 correspond to a response curve for the one term
approximation shown in Figure 3.2, R is the ratio of U to A, The
two term approximation predicts an ultraharmonic resonance (i, e.,
],argq amplitude response near w:wn/m, m an integer > 2, where W,
is the harmonic resonant frequency) in this region,

is

Application of the validity criteria with K, =1 shows that %q

valid on the lower ultraharmonic response curve in the frequency range
shown in Figure 3.6, Note that there is an improvement over the one
term approximation, i, e,, compare with Figure 3.2, The presence of
a vertical tangent in the ultraharmonic response apparently precludes

application of the validity criteria over a larger frequency range,
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With Ky=1,

limoa(r) = 1+r (3. 53)
U-00 .

Also, there is no constant coefficient basis which yields a smaller
limiting value of Q(r). Hence, for this particular system the existence
of ultraharmonic resonant responses has not been established,
However, the two term approximation has a larger range of
validity near w=1/3, This indicates that the third harmonic is impor-
tant in this region. Also, Figure 3,5 indicates that the approximation
error for the one term approximate solution is large near w= 1/3.
Hence, a stability analysis in this region based upon the one term

approximation is not justified.

3. 9. Subharmonics.

In a manner analogous to the development above, one obtains
two term approximate solutions which exhibit subharmonic resonance,
i.e., large amplitude response near w=mw_, m an integer 22 and W the

harmonic resonant frequency, Assume an approximate Q6 /o solution
™

xo(t):Scos%Jt-!-Acoswt (3. 54)

where now S>0. Harmonic balance yields

S: 2 2
"5‘” -{-bl:O HERT ) A+b3:P (3. 55)
where b1 and b3 are the Fourier coefficients in
F(xg) :bl cos l—:,lji-*t-h b3 cos wt+higher harmonics (3. 56)

Expressions for b1 and 1::3 are given in Appendix D,
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For giveﬁ S, equations (3.64) are solved for Aandw., Figure 3.7
shows the resulting subharmonic system response. The presence of
vertical tangents apparently precludes application of thie validity
criteria for all responses shown in Figure 3.7. Also, there is no
choice of constant coefficient basis which yields validity at subharmeonic
resonance, Hence it does not seem possible to verify the existence of
subharmonic responses using this analysis; at least not with a constant

coefficient basis,
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CHAPTER IV

CONCLUSION

4.1 Summary

Sufficient validity criteria are derived for approximate
periodic solutions of a class of second order nonlinear ordinary
differential equétions.. An approximate solution is defined to be valid
if an exact solution with the same symmetry properties exists in a
neighborhood of the approximation. Although the validity criteria are
stated for harmonic balance approximations, they are easily extended
to include other approximate periodic solutions.

One class of validity criteria, namely I and I-A, require an
integral operator associated with the approximation error to contract
on a ball in an appropriate Banach space. That is, the operator must
satisfy a Lipschitz condition with Lipschitz constant less than unity,
and in addition, an inequality involving the Lipschitz constant and the
" radius of the ball must be satisfied. These criteria yield an
algorithm for constructing the exact solution and some uniqueness
results in addition to existence.

The second class of validity criteria, namely II-A, is based
upon continuity of the same integral operator. This criteria requires
that the mapping determined by the integral operator, continuously

map a ball in an appropriate Banach space into a compact subset of

itself.

Application of Criteria I-A and II-A to the equation of an
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undamped oscillator with an odd polynomial restoring force reveals
that Criteria II-A yields a smaller bound on the approximation error
and a larger region of validity. Criteria II-A is also somewhat
easier to apply since it does not require determination of a Lipschitz
constant. This is to be expected, however, since the results are not
as strong as t\hose of Criteria I-A with respect to uniqﬁeness and the
constructive algorithm.

In terms of types of hypotheses and conclusions, the existence
theorems for B. V P.'s upon which the two classes of validity criteria
are based, may be compared to the existence theorems for initial
value problems. The existence theorem for I and I-A is analogous to
the Cauchy-Lipschitz theorem, while the existence theorem for II-A
is analogous to the Cauchy-Peano theorem.

In addition to existence, both types of validity criteria yield
an upper bound on a norm of the approximation error. This bound is
used in a procedure for establishing sufficient stability and instability
conditions for the approximated solution. A system with symmetric
bilinear restoring force provides an example.wherein both sufficient
validity and sufficient stability and instability conditions are obtained.
When the validity criteria are satisfied and the bound on the error is
small, the stability analysis based upon the approximate solution is
apparently quite accurate as shown in Figure 3. 3. On the other hand,
when the approximation cannot be shown valid or when the bound on
the appréximation error is large, then a stability analysis based on

the approximate solution is not justified. For example, in region II
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of Figure 3, 2 there may be a considerable difference between the
exact and approxirriate solutions as shown in Figure 3,5,

The example problems indicate inapplicability of the wvalidity
criteria in regions where a bifurcation (branching phenomenon) occurs
within the symmetry class used, Thus the most restrictive allowable

symmetry class yielded the widest range of validity,

4.2 Previous Work

The use of fixed point theorems to establish validity of approxi-
mate periodic scolutions is not new, having been used in one form or

(2) (4), (5)

another by Urabe and Holtzman

among others, However tile
methods proposed in these works require the pertinent integral opera-
to-r to be differentiable in some sense. Thus the bilinear system
studied in Chapter III cannot be handled by either of these approaches,
In this work, the ﬂoperator need only satisfy a much weaker Lipschitz
or continuity condition, Further improvements over the previously
mentioned methods result from the/use of symmetry properties and
selection of an arbitrary basis for the integral equation. The con-
structive algorithm was also apparently overlooked in earlier work,

A ‘recent book of Falb and DeJong(Zl) also contains app-lication
of contraction mapping fixed point theorems to problems in oscillation
theory. The approach ;15 similar to Holtzman's work but makes use

of the arbitrary basis idea, a procedure which the authors refer to

as modified contraction mapping.
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4.3 Future Work

Although this work considers only periodic solutions of non-
linear ordinary differential equations, the basic idea of applying fixed
point theorems to prove existence for the approximation error should
be applicable to other types of problems, for example, transient
oscillations in damped vibratory systems and also oscillations in
multi-degree of freedom and continuous dynamical systems. Also,
much work remains to be done in the area of optimum basis choice.

Sufficient stability and instability boundaries are determined
in this work for one special case, namely, the one term harmonic
balance approximate solution of the bilinear system (3.1). More
general problems might be handled using the procedure given in
Chapter II together with results of Caughey and Dickerson(zz) in the

(23)

damped case and Borg in the undamped case.
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APPENDIX A

SIMPLE SOLUTIONS FOR THE BILINEAR SYSTEM

Definition Al: A class QT solution of the bilinear system (3. 1), call

it x(t), is simple if [x(t)l crosses +1 at one and only one value of t in

0<t<sT/4,

Equation (3. 1) allows a QT solution for T=(4n+2)r/w, n an
integer. Let T take a value from this set, For simple QT solutions,
there is no loss of generality in assuming x(0)>1, in which case the
governing equation is

$+x=Pcosuwt+ 1-K  O<t<t, )

1
2(0)=0  x(t,)=1
¥+ Kx=Pcosuwt t1<t<T/4 (A-1)
x(tl): 1 x(T/4)=0
Solving for O<i:<i:1
x(t) :‘1-K+ [A-14+KTJcost+ Pz [coswt - cost] Ostst, (A-Z)

1-w
where A>1 is the assumed value of x(0), Using the condition x(tl):l

yields

_ 1 P }
A= 1-K+costl {K+_—.1~w2 [costl—coswtl] (A-3)

Denoting )'t(tl) by v and using (A-2) and (A-3)



B

1 ;
cost —w81n(.ut1 (A-4)

sint {cos wt,sint
2
1

Then for tISts%
x(t) = cos /K (l:—tl) + 'V—_ sin/ K (t—tl)
JK
P/ -
+ — {cos wt - cos /K (t—tl) cos wtl
K-w

w
JK

_I..

sin/i_(t—tl)sinwt& (A-5)

The remaining condition is x(T /4) =0, Using (A-4), (A-5) and simpli-
fying gives the following equation for ’c1

Pcos wt ]

O:COS‘/IE(%_H)P——K“TE
' -

|

sin wt (A-6)
-yt Y

2 T ‘ :
. sin/K (I—tl) sint, [Pcos wt ‘K} . _w(l-K)P

SR cos tl l_wZ
Simple QT solutions are then constructed as follows: For given
P,V K, and w
1., All roots t in OStls% of (A-6) are obtained,
2. Values of v and A corresponding to each root are computed
using (A-4) and (A-3), respectively,
3. The function corresponding to each root and given by (A-2)
and (A-5) is checked to be sure that it is a simple solution,

The last step is important, since there may be roots of (A-6) which do

not yield solutions. As an example, Figure A, 1 shows a case where



-T2

w =069
P =10
K=05

SIMPLE SOLUTION

NON SOLUTION

7.0

X(t)

-5.0

0.0

SIMPLE AND NON SOLUTIONS OF THE

BILINEAR SYSTEM

Fig. A.l
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(A-6) has three roots, only one of which corresponds to a solution,
The other functions cross |xl:l more than once in Osts% and hence

they are not solutions,
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APPENDIX B
A CONTRACTION CONSTANT

Consider the restoring force F(u) for the bilinear system
shown graphically in Figure B-1. Inspection of the graph reveals
that:

1) For zt+x and zty both on segment 3 or both on segzﬁent 1
| F(z+x)-F(zty)=x-v (B-1)
2) For z+x and z+y both on segment 2
F(z+x)-F(z+y) = K (x-y) (B-2)
3) For z+x and z+y on different segments

K (x-y) <F(z+x)-F(zty) sK_I_(x-y) x>y

(B-3)
K (x-y) 2F(z+x)-F(z+y) 2K+(x-y) x<y
where K,=MAX[1,K] and K_=MIN[1, K],
Hence
for z+x and z+y both
”K*(Y—x)-l- F(z+x)-F (zt+y) ” = II—K | “x y” on segment 3 or
oth on segment 1

Ky (y-%) + F(ztx)- F(z+y>nsMAx[|1 Ky, [K, K]]|x vl for z+x

> (B-4)

and z+y on different
segments .

for z+x and z+y
[Kyly-x) + F(zt+x)-F(z+y)| = [K K.‘l lx-y||{both on
segment 2 )
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Fig. B.l BILINEAR RESTORING FORCE
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The purpose of this Appendix iJs to determine a suitable o= a(r)
satisfying
Ny -N x| <a(r)|ly-x]| (B-5)
for all x,yE€ Br’ where N1 is given by (3, 12), Using an elementary

inequality for integrals

m/2W
IN,y-Nxll s sup [h(t, 8)] [ [[Feepho)-Focgiy) + Kuly-x)llds  (B-6)
Ost<s— 0
2w
0555-2—(1—,
From (2, 55)
1
sup Ihl(t, s)' < (B-T)
Ostsi% / K lcos K>.-rr
Osssﬁ
Using x,y€B_, i.e., HXH <r and |ly]|<r, and x,= Acosws, the following
is deduced from (B-4)
1) For r<A-1 and O< sswl—cos_l s
w A
[F(xgtx)-Fxyty) + Kyly-x)|| = |1-Ke| [ly-x]| (B-8)
1 -11-r ™
2) For r<1 and _UGCOS TSSS?&E
|F (g +3) -F(x+y) + Ka(y-x) | = [K-Ky| [ly-x]| (B-9)

3) Otherwise, that is, L<s<U where

lcos_1 MHr o rxA-l
W A

L=
0 for r=A-1



one obtains

[P (xgtx)-Fxyty) + Ky (y-x)|] SMAX[ [1-%,

~-78-

, KKy Jly-x]

Combining with (B-6) and (B-7) yields

G.(r) =

where

'
]

T {IK—K>{=|‘+%—[|1-K*|- !K_K,,dl]_cp(r,)}
2wy Ky Icos ig?;)“ |
0 . I-iqcr >1
op(r) :‘ c:osd?l ltfr 0< IZOT <1
T l+or
7 A <0

when IK—K*[ > | 1-K.. l

when IK—K*I < II—K*l

(B-10)

(B-11)

(B-12)

(B-13)
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APPENDIX C

STABILITY OF A SIMPLE QT SOLUTION

OF THE BILINEAR SYSTEM

The equation of first variation for a simple QT solution x(t) of
(3. 1) with T=2n/Q s
§4E()y =0 | (G-1)
where

1 for Ostst1

™ ™
f(t)= (K for t1<tSﬁ-t1 f(t):f(t'i'a) (C-2)

—_—— < —
1 for o tl<t 5

and tl is the only value of t in O<t<w/2Q for which lxI:l. Equation (3.1)
allows QT solutions for Q=w/(2n-1), n a positive integer,

Since f(t) is an even function, the stability criteria given in

Chapter II have a simpler form. In the notation of Chapter II

u(5)=v2 (%) (©-3)

(18)

(see Magnus and Winkler page 8) and q1=o. Hence, the character-

istic exponents for C-1 are

iQ 1 -
—“_-an for Iul(a)lal

M,27%qa . (C-4)
;(Arg u1+ 2nmw) for lul(ﬁ>|<l

where
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ik 2 (w 1/2
“1=“1(ﬁ)+ [“1(5)‘1] (C-5)
Using the results summarized in Table 2.1, (C-4) and (C-5) it is
apparent that x(t) is stable when Iul(%>|<]., unstable when Iul(%>l >1
and unstable when ]u](g) I, unless v[('l(r)’) u, (1(12) Since ”l.(t)
satisfies (C-1) and the intial conditions ul(()) -~ I 1’11(()) =0 it ig readily
obtained yielding
1
F+ Vv K)
N ™ _ K . ol .
ul(ﬁ) =cos /K (Q 2t1)cos 2t, - t—=5——sin/K (Q—Ztl)SJ.nZtl (C-6)
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APPENDIX D

FOURIER COEFFICIENTS FOR

TWO TERM HARMONIC BALANCE

Consider first
xO::Acost-Ucos 3wt (D-1)
The precise form of F(xo) where F is given by (3. 2) depends upon the

sign of U and upon the number of level crossings at IXOI:l per quarter

eyele (CPQC), i.e., in Os<t<w/2W, There are four possible cases
shown graphically in Figure D-1. The number and locations of the
level crossings are determined by the roots of

Acos6+Ucos38=1 _ (D-2)

in 0<8<w. Equivalently (D-2) is written

cos 6+~(———§g~ cos 9_4U (D-3)

The roots ei are called the crossing angles and they are related to the

crossing times t where Ixo(ti)lzl by ei=mti. If there is only one real
root ei’ then there is one CPQC; two real roots gives 2 CPQC, etc,
Let Zi be roots of the cubic equation (D-3) satisfied by cos ei,

that is,

!A 3U! :
Z1 4U_ (D=4

Only roots Zi in -1< Zis+1 are considered since roots outside of this
range correspond to complex values of Oi. In cases where there is

more than one root in this interwval, let Z1 be the largest root, .Z2 the
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X 1) Xot)

1.0

1O} -1.0f-------- e

| CPQC 2 CPQC

Xo(1)

3 CPQC, U>»O0 3 CPQC, U<«O

Fig. D.I POSSIBLE LEVEL CROSSINGS FOR X,(t)



whe

next largest, and Z,;, if it exists, the smallest. Then the ?._i and G_i

are related by

-1
one root : 61 = cos. Z1
-1
two roots : 61 =Ccos Z1
-1
62 =Ccos Z2
three roots, U>0 : 8, =cos” L Z,
8 ol L 2 ' (D-5)
2 3

three roots, U<O0 : 91 :Tr—cos'l Z

Now expanding F(XO) in a Fourier series for each of the four
cases gives

]?‘(\0) a,cos wt + acos 3wt+ higher harmonlcs (D-6)

where

ay = H{I, 0K+ Al (1-KT, Jr UK, }
r ; 3 (D-7)
- %t g,(1-K) + A(1-K)g, + U[K+(1‘K)g3j}

and ?i’ Ei (i=1, 2, 3) are different in each case. Define functional forms

a(x)=-4sinx b(x) = - %—sin 3x

(D-8)
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cled = s S aindn  dle)s Bxt oot b

? (D-8)
1 cont.
e{x) = sinZ2x+ Esin‘ix
Then Hu?f;and Eiare:
- One CPQC
f=a(8,) & =b(8,)
£,=cle;) &;=d(s;) (D-9)
£,=%,=e(8))
Two CPQC
fi=a(8,)-a(8;) &, =b(6,)-b(8;)
T, =c(8,)-c(8;) E,=d(8,)-d(8,) (D-10)
T =8, =e(0,)-e(8,)
Three CPQC (U>0)
?1=a(el)+a(92)-a(e3) ’g“lzb(el)+b(ez)_b(e3)
T, =c(8;)+c(0;)-c(8,) §3=d(el)+d(92)-d(93) (D-11)
%:gzze(81)+ e(ez)—e(63)
Three CPQC (U<0)
Same as (U>0), but change sign of f; and El .
For an approximate solution
xO:Scos-(,;.—)t+AcoS wt (D-12)
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where S>0, réplace Aby S, Uby A and w by w/3 in all of the preceding
equations, Then by and b3, instead of ay and a

3» are obtained from -
(D-6), where

Deeb

F(XO) :bl cosz 3 €Os wt+higher harmonics

(D-13)
and %, is given by (D-12),
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12.

13.
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