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ABSTRACT 

Sufficient conditions are derived for the validity of approximate 

periodic solutions of a class of second order ordinary nonlinear differ­

L~nt i:1 l equat-ions. An approximate solution is defined to be valid if an 

cx;1ct solution exists in a neighborhood of the aP,proximation. 

·Two classes of validity criteria are developed. Existence is 

obt~ined using the contraction mapping principle in one case, and the 

Schauder-Leray fixed point theorem in the other. Both classes of 

validity criteria make use of symmetry properties of periodic func­

tions, and both classes yield an upper bound on a norm of the difference 

between the approximate and exact solution. This bound is used in a 

procedure which establishes sufficient stability conditions for the 

approximated solution. 

Application to a system with piecewise linear restoring force 

(biline;1 r syHh~m) reveals that the approxin1ate solution obtained by the 

ni.cthod of averaging is valid away from regions where the response 

exhibits vertical tangents. A narrow instability region is obtained 

near one-half the natural frequency of the equivalent linear system. 

Sufficient conditions for the validity of resonant solutions are also 

derived, and two term harmonic balance approximate solutions which 

exhibit ultraharmonic and subharmonic resonances are studied. 
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INTRODUCTION 

Attempts to devise mathematical models for physical 

phenomena more often than not yield some form of nonlinear equation. 

Since explicit solutions are extremely rare, one usually seeks an 

approxim.ate solution within a specific class. For example, Oscillation 

Theory is particularly interested in • approximating periodic solutions 

of second order nonlinear differential equations. 

A number of closely related approximating techniques, widely 

used in applications, namely the method of averaging, harmonic 

balance and equivalent linearization claim validity near resonance, or 

asymptotically as some small parameter goes to zero. These , criteria 

are unsatisfactory in the sense that: 

1) they do not guarantee the existence of an exact solution in 

a neighborhood of the approximation, and 

2) even if existence is assumed, no quantitative measure is 

available for the actual error in the approximation, and 

hence a stability analysis based on the approximate solution 

is questionable. 

In this work, quantitative validity criteria are derived which 

remove the objections cited above. Fixed point theorems from func-

tional analysis and topology are the principal tools used. 

Previous work on the validity of approximate solutions includes 

that of Cesari, Bass, Urabe, Holtzman and McLaughlin. Cesari(!>, 

and later Urabe (Z), derived sufficient conditions for t h e existence of 
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an exact solution in a neighborhood of the n'th Galerkin (ha rmonic 

balance) approximation, and a bound on the difference between the 

exact and approximate solution. Urabe also showed that existence of 

an isolated periodic solution implies the existence of a Galerkin 

approximation of sufficiently high order. The validity of equivalent 

linearization was studied by Bass (
3 ) for the autono~ous case, and by 

Holtzman (4 ), (S) for the nonautonomous case. McLaughlin (b) us e d the 

implicit function theorem to obtain sufficient validity conditions f o r the 

F'nincar(~ expansion. 
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CHAPTER I 

MATHEMATICAL PRELIMINARIES 

A number of ordinary differential equations frequently 

encountered in applications are of the form 

x+ f(x, x) = g(t) ( 1. 1 ) 

\.vhere f and g are piecewise continuous with at most a finite number of 

finite discontinuities. In this chapter, the problem of finding periodic 

solutions of (1.1) is reduced to a boundary value problem on an inter -

val equal to or less than the period. Relationships between certain 

bounda ry value problems and Fredholm integral equations are derived , 

and several fixed point theorems are introduced. 

For certain forms off and gin (1.1) it is helpful to seek 

periodic solutions with appropriate symmetry properties . 

1. 1. Symmetry Properties of Periodic Functions . 

Definition 1.1: A function u(t) is rn class PT (u E PT) if u(t) is 

continuously differentiable and 

u(t) = u(t+T) 

for all t:, T a constant. 

( 1.2) 

Definition 1.2: A function u(t) is in class HT (u EHT) if u E PT and 

u(T/2+t)=-u(t) (1 . 3) 
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Definition 1.3: A function u(t) is in class QT (u EQT) if u EHT and 

u(T /2 - t) = -u(t) (1.4) 

Note: Certain HT functions may be put into class QT by a translation 

int. 

Obviously, PT'.:)HT:::QT. Figure 1. la shows a function in class 

HT and Figure l. lb shows a function in class QT . . Functions in these 

· symmetry classes have properties given by the following .Lemmas. 

Lemma 1.1: If u E PT' then necessarily 

u(O)=u(T) 

u(O) = u(T) 

Proof: Let t =O in (1.2 ), then differentiate and do the same. 

Lemma 1.2: If u EHT' then necessarily 

u(O) = -u(T /2) 

u(O) = -u(T /2) 

Proof: Let t=O in (1.3), then differentiate and do the same. 

Lemma 1.3: If u EQT then necessarily 

u(T /4) = 0 

u(O) = 0 

Proof: Lett= T /4 in (1.4), then 

u(T /4) = -u(T /4) 

u(T/4) = 0 

(1.5) 

(1.6) 

(1 . 7) 

Differentiating (1.3) and (1.4) with respect to t and letting t=O yields , 
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u(t) 

-T 0 T t 

Fig. I.la. A CLASS HT FUNCTION 

u(t) 

-T 0 T t 

Fig. I.I b A CLASS QT FUNCTION 



-4-

u(T /2) = -u(o) 

-u(T /2) = -u(O) 

t1(0) = -t1(0) im.plies u(O) = O. 

l. 2 Pc riodic Solutions via Boundary Value Problems. 

The following Le1nmas show that in certain cas e s, periodic 

solutions may be constructed by extending the solutions of particular 

boundary value problems (B. V. P. 's) to the infinite interval. Equa­

tions ( l. 5) - ( 1. 7) serve as boundary conditions. In the sequel, it is 

assumed that f and g are continuous. This is a matter of c onvenience 

since many of the results apply to the case where f and g are piecewi s e 

continuous with at most a finite number of finite discontinuities . 

Le1nn1a 1. 4: If 

I) g(t) E PT 

2) u(t) is a solution of the B. V. P. 

'i.i+ f(u, u) = g(t) 0 <t <T 

u(O)=u(T) u(O)=u(T) 

then u(t) is extendible to a class PT solution of (1 . 1). 

function x(t) defined by 

x(t+nT) = u(t) 

( I. 8 ) 

( 1. 9) 

That is , the 

( 1. 10) 

for 0 st ~ T, nan integer, is a class PT solution of (1. 1 ) . 

Proof: Since the differential equation remains the same on subseque nt 

intervals (n-l)T<t<nT, nan integer, x{t) satisfies (1.1) for all t, and 

hence it is a class PT solution. 
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1) g(t) ( lTT 

2) f(x, x) ::: -f(-x, -x) 

3) u(t) is a solution of the B . V. P. 

ii+f(u,u)=g(t) O<t<T/2 

u(O) = -u(T /2) u(O} = -u(T /2) 

( 1.11) 

(1 . 12) 

(1 . 13) 

then u(t) is extendible to a class HT solution of (1 . 1). That is, x (t) 

<lcfincd by 

x(t) = n(t) O:S:ts:T/2 

x(t+T /2) = -u(t) Os:t~ T /2 

x(t+nT) = x(t) n an integer, 

is a class HT solution of ( 1, 1 ). 

Proof: The second of equations {l. 14) implies 

-x(T /2+t) = u(t) 

-x(T /2+t) = u(t) o< t< T 12 

-x(T /2+t) = u(t) 

Using this in the differential e quation yields 

-x(T /2+t) + f(-x(T /2+t), -x(T /2+t)) = g{t) O<t< T /2 

or, using (1. 11) and (1. 12) 

x{T /2+t) + f(x{T /2+t), ~{T /2+t)) = g{T /2+t) O< t < T /2 

and hence x(t) is a solution for O<t< T satisfying 

x{T) = x{O) 

x{T) = x{O) 

(1 . 14) 

(1. 15) 

(1. 16) 

( 1. 17) 
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where (1. 14) and the boundary conditions on u(t) were used . Extension 

to the whole real line is as in Lemma 1. 4. 

Lemma 1.6: If 

1) g(t) EQT 

2) f(x, x) = -f(-x, -x) 

3) f(x, x) = f(x, - x) 

4) u(t) is a solution of the B. V. P. 

ii+f(u,u)=g(t) O<t<T/4 

u(O)=O u(T/4)=0 

(1 . 18 ) 

(1 . 19) 

( 1. 20) 

(1 . 21) 

then u(t) is extendible to a class QT solution of (1. 1). That is, the 

function x(t) defined by 

x(t)=u(t) O~t~T/4 

x(T /2-t) = -u(t) O ~t~ T /4 

x(T /2+t) = - x(t) O ~ t-s; T /2 

x (t+nT) = x (t) n a n integer, 0 5.: t~T 

is a class QT solution of (I. 1). 

Proof: The second of (1. 22) implies 

x(T /2 -t) = -u(t) 

x(T/2-t)=u(t) O<t<T/4 

x(T 12-t) = -ii(t) 

(1 . 22) 

(1. 23) 

Substituting into the differential equation and using (1 . 18) - ( 1. 20) yields 

x(T 12-t) + f(x(T /2-t) , x(T 12 -t)) = g(T 12 -t ) o< t< T 14 

and hence x (t) is a solution of (1. 1) for O<t< T/2 satisfying 
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x(T /2) = -x(O) 

*(T /2) = -x(O) = 0 

where the boundary conditions and (1. 22) were used. F.xtension to the 

whole real line is as in Lemma (1. 5). 

When the conditions on f and g are satisfied in Lemmas 1. 4 -

1. (), the differential equation is said to allow solutions in the pertinent 

synunetry class. For some equations, a translation int may be 

necessary to allow solutions in QT. 

1. 3. Boundary Value Problems and Fredholm Integral Equations. 

The following results concerning the relationship of certain 

B. V. P. 1 s to Fredholm integral equations will be useful in what follows . 

Consider the equation 

u+ a(t)u+ b(t)u = c(u, u, t) {I. 24) 

nr. in vector-rnatrix form 

u = A(t)u+ c(u, t) (1 . 25) 

where 

-- [ 0 J c{u,t)= c(u,'1,t) (1. 26) 

In the following Lemmas a, b, and c are assumed to be piece -

wise continuous with at most a finite number of finite discontinuities. 

Although the first Lemma may be deduced from developments in 

Hahn{7>, page 359, or Halanay(S), page 225, the proof is given here in 

the context of this work. 
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L<>mm.a 1.7: If u , -:(~, l) and A(t) are a s given by (1 . 2<> ) with 

then 

. (9) 
1) U(t) the principal matrix solution (see Struble , 

page 83) of 

u = A(t)u 

2) [I-U(T) r 1 
exists. Here I is the 2 x 2 identity 

matrix and [ -r 1 i~ the matrix inverse. 

3 ) 

4) u governed by 

u = A(t)u + c(u, t) O<t< T 

u(O) = u(T) 

T 

u = Jc(u, u, s)h(t, s)ds 

0 

_ [h 12] 
h(t , s) = h22 

(1 . 27) 

(l. 28) 

(1 . 29) 

(1 . 30) 

(l.31) 

( 1. 32) 

P roof : Use is n1.ade of the following well known result concerning 

initial value problems (see Struble <9 >, page 92 ). 

Given . 
u = A(t)u+ f(t) ( 1. 33) 

( 1. 34) 
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t 

u(t) -' U(t:)u
0 

+ U(t) s U - l (s }f(s )ds 

0 

Using this result with f(t) replaced by c(u, t), yields the 

(1. V'i) 

following alternate form for (1. 29) 

t 

u(t) = U(t)u(O)+ U(t)J u-1 (s)c(U°, s)ds ( 1. 36) 

0 

where now u(O) is determined from the condition (I. 30). That is , 

T 

11(0) u(T) ~' U(T)u(O)+ U('J')J U-l(s)c(u, s)cls (1. 37) 

0 

T 

u(O) = [I-U(T) r 1
u(T) s U-l (s)c(u, s)ds ( 1. 38) 

0 

and hence 

T t 

u(t) = U(t) [I-U(T) J-1
U(T) s U-l (s)c(u, s)ds + U(t) s U-l (s)c(u, s)ds (1. 39) 

or, 

where 

0 0 

T 

u(t) ~-~ J H(l, s)c(u, s)ds 

0 

{

U(t){ [I-U(t) r 1
u(T) +I }u-l (s) 0 ~ s~t~ T} 

H(t, s) = 
[ 1- 1 -1 

U(t) I- U(T) _ U(T)U (s) O~t~ s~ T 

(I . 40) 

( I. 41) 
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-- r 0 J Now u s ing c(u, t) = ' ( • t) gives 
. l . u , u, 

T 

u = Sc(u, u, s)h(t, s)ds 

0 

( I. 4 2 ) 

It remains only to show that H(t, s) as g iven in (I. 41) is the 

same as in (1 . 29), or e quiva lently 

[ I-U(T)r
1
u(T)+l= [I-U(T)r

1
u(T)+ [I-U(T)r

1
CI-U(T)] 

[I-U(T)r
1
u(T)+l = [ I-U(T)r

1 

S .ince the pr o of of the following L e mma is v e ry s imila r to that 

o f L e mma 1. 7, no proof is g iven. 

Lemma 1.8: If u, c(u, t) and A(t) are as given in (1. 27) with 

1) U(t) the principal matrix solution of 

• u = A(t)u ( 1. 44) 

2) ri+U(T)r
1 

e x ists 

3 ) 

[

h 11 ,h 12] -U(t) I+U(T) _ U (s) O~ s~t~T \ 

{ 

[ J-1 -1 I 
H (t,s) = = 1 1 

h2l'h22 -U(t)[I+U(T)r U(T)U- (s ) o ~ t~ s ~ Tf 
(1. 45) 

4) u governed by 

u=A(t)u+c(u,t) O<t<T/2 ( 1. 46) 

u(O) = -u(T /2) ( 1. 47) 
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T/2 

u -=· J c (n , u, s )h(t, s )ds 

() 

L e mm.a 1.9: If u, c(u, t) and A(t) are as given in (1 , 27 ) with 

1) 

. [u1 (t) v 1 (t).J 
U(t) = u2 (t) v2 (t) 

the principal matrix solution of . 
u = A(t)u 

2 ) u
1
(T/4)/0. 

where 

h
1
(t,s)= 

u
1 

(s) [u
1 

(T /4)v 
1 

(t) - u
1

(t)v
1 

(T /4) 1 
d(T/4,s) 

Os; ss; ts; T /4 

u
1 

(t)[u
1 

(T /4)v
1 

(s)-v
1 

(T /4)u
1 
(s)] 

d(T/4, s) Os;t s; ss;T/4 

hl(l: , s) f 
u

1 
(s)[u

1 
(T /4)v

2
(t)-u

2
(t)v

1 
(T / 4) ] 

d(T/4,s) 

l u 2 ( l) r u 1 ( T I 4 )v 1 ( s ) - v 1 (T I 4 )u I ( s ) J 
l d(T/4, s) 

O::::s::;:t::::T / 4 

0 $ts; s sT /4 

(1 . 48) 

(l. 49) 

(I. 50) 

(1 . 5 1) 

( 1. 52) 

(1. 53) 

( I , 54 ) 
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4) u governed by 

u = A(t)u+ ~(u, t) O<t< T /4 

u(O) = O u(T I 4) = O 

T/4 

u(t) = s c(u, u, s )h(t, s)ds 

0 

Proof: The init'ial value problem with u(O)=O gives 

t 

u= U(t{:
0

J+ .f U(t)U-
1

(s)c(u, s)ds 

0 

The unknown u
0 

must satisfy 

T/4 

S 
[u1 (s)v

1 
(T /4)-v 1 (s)u1 (T /4) J 

u(T/4)=0=ul(T/4)uo+ [ul(s)v2(s)-u2(s)vl(s)] c(u,ti, s)ds 

0 

where the first component of the vector equation (l. 58) was used. 

Solving for u
0 

yields 

T/4 

f 
[v

1
(s)u

1
(T/4)-u

1
(s)v

1
(T/4)] 

uo = . d(T/4,s) c(u, ti,s)ds 

0 

(I. 5 5) 

( I. 56) 

( I. 57) 

(1 . 58 ) 

(1. 5 9) 

( 1.60) 

Substituting this expression for u
0 

into (1. 58) and simplifying yields 

(l. 57), the desired result. 

The Fredhom integral equations (1. 31), (1. 48), and (1. 57) are 

special cases of a nonlinear operator equation 
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x= Tx (1.6 1) 

Functional analysis and topology provide useful results concerning the 

solutions of such equations. References in this area include 

Kohnogorov and Fomin(lO), Liusternik and Sobolev(ll), and Saaty and 

Bram ( 12 ). 

1. 4. Fixed Point Theorems. 

The various fixed point theorems are extremely useful in 

establishing sufficient conditions for the existence of sol utions of (1 . 6 1 ). 

As noted by Saaty(I 3 >, these theorems fall into two classes, the topo­

logical fixed point theorems which merely esta.blish existence, and the 

algebraic fixed point theorems which also yield uniqueness and a 

n~eans of constructing the solution. Both types are useful in estab-

lishing the validity of approximate periodic solutions . 

In this work, consideration is restricted to nonlinear oper ator 

equations on a complete normed linear space, i.e. , a Banach space. 

The following topological fixed point theorem, proved on page 45 

of S;l;ily ;rnd Bran1(1Z), is an extension of Brouwcr's fi xed point theo-

rt.'n1 to a Banach space. 

Theorem 1.1 (S chauder-Leray): 

If B is a closed convex subset of a Banach space X and T is a 

continuous operator mapping B into itself such that the image of B is 

compact, then there exists at least one fixed point x,:, EB satisfyi ng 

x* = T x":i: ( 1. 62) 



-14-

Corollary: 

If in Theorem ( 1. 1) 

1) B = B = [xi !Jx]J~ r }, a ball of radius r centered at the zero 
r 

element. Here JI· II represents a norm. 

2) there exists a real number y~O and a f3=f3{r) satisfying 

b< f3< 1, such that 

for all x EB . 
r 

IJTxlJ~ Y+ f31!xl! 

then there exists at least one x*E B satisfying (I. 62) and 
r 

* y 
!Ix 11~l-f3 

( 1. 63) 

( 1. 64) 

Proof: By Theorem (1.1) there erlsts an x>:• E Br satisfying (1. 62). 

Taking the norm of (1. 62) and using (1. 63 ) yields 

1lx*ll~Y+f31lx*ll (1. 65) 

or, since 0< f3< 1 

(1.66) 

A construc tive fixed point theorem is provi d e d by the principle 

of c ontraction mappings. 

Definition 1.4: An ope r a tor T m a pping a normed space S into its e lf is 

a contraction mapping on S if there exists an a satisfying o<: a < I such 

that for all x, y ES 

(1. 6 7) 

A fundamenta l theor e m con c e rning c on traction m apping is 
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The orem 1. 2: 

Every contraction mapping T on a Banach space X h as a unique 

fixed point x':< EX satsifying x':'=Tx':<. For any x
0 

EX, the sequence of 

n * d iterates x =Tx 1=T x
0 

conve rges to x , an 
n n-

(l.68) 

llrooJ: This l.lworcrn i1:1 the special case of Theorem. 1.3 , for r-co. 

This theorem requires the mapping to contract o n the whole 

space X. Unfortunately, most operators do not satisfy this condition, 

so it is necessary to extend the theorem to particular subsets of X . 

Intuitively, one would expect a mapping to contract in the neighborhood 

of a point x
0 

if x
0 

is "close enough" to a fixed point. That is , if 

!lx':' -x
0

!1 is small enough. The following theorem, given without 

proof on p age 42 of Baily, Shampine and Waltman( l 4 l, extends the con -

traction 1Y1 ~1.ppjng pri.n c iple to the case where the mapping contracts on 

a b ;·1U <ind a l so shows how to find the radius of the ball. 

Theore1n 1. 3 (Contraction Mapping on a Ball): 

If for an operator T , there exists a number r such that 

1) T maps the ball Br= fwl Jlw-x
0

1Jsr} of a Banach space X 

into X. 

2) there exists an a.= a.(r) satisfying O< a.<l and 

for all x, yEB. 
r 

JITx-TyjJs allx-yj) (1 . 69) 
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3) 

( 1. 70) 

t.h<!n 'I' h~i:.; a unique fixed point: x ':·: E B satisfying .x':' 7.: Tx ':·' , and x'~' js the.: 
r 

bn1it of the sequence x :::- T.x 
1
=Tn(w

0
) where w

0 
is any point in B . 

n n- r 

Proof: Since X is a Banach space, every Cauchy seque nce in X con-

verges to a limit point in X. The following argument shows that x 
n 

defined by 

n 
x = Tx 1 = T x 0 n n-

is a Cauchy sequence, and hence has a limit point in X. 

For any n and k 

Using the triangle inequality 

!Ix t-1· -x II <!Ix tk-x +k 111 + !Ix +k 1-x +k 211 + ... + II x 1-x II n · " n n- n - n - n - n+ n 

Now for any i 

Hence 

x. + l - x. = Tx. - Tx. I 1 . l 1 1-

II II ( n+k-1 n+k-2 n)ll II 
xn+k -xn :-;;; a. +a. + · • • +a. xl - xO 

n( k-1 k-2 
~ a. a. +a. + .•. 

00 

:-;;; a.nllx1-xo11 l ak = I~: !ITxo-xo II 
k=O 

(1. 7 1) 

(1 . 72) 
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Since the right hand side does not depend upon k, x is a Cauchy 
n 

sequence and hence it converges to a limit point x':< EB provided that 
r 

al1 of the iterates rcn1ain in Br. Letting n==O in (1. 72) yields 

Hl'nl·e x1 E n for all k if 
" r 

Now for k ..... oo in (1. 72) 

r :?-

n 

llx':'-xnll ~ l~Cl !ITxo-xoll 

( 1. 73) 

(1 . 74) 

which provides a bound on the error for the nth iterate and shows that 

Hence, by Hypothesis 

~ o T is continuous and hence 

I . 1. 'I' . un.x 
11 

:- :1m . .. x 
n · n 

Jl -'( l I n -.CX) 

n-oo 

x::~ = Tx:!.: 

2) l!Tx"~-Tx 11-+0 as n-+oo 
n 

Mathematical induction will now be used to show that the 

iteration scheme may begin at any point w
0

EBr. Assume wkEBr fo r 

all k:>:n-1. Then 

llwn -x0 !1 = !1Twn-l-Tx0+Tx0 -x0 11 

~ l!Twn- l-Tx0 1!+1!Tx0 -x0 11 



• w EB for all n. 
11 r 
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Using arguments similar to those used for the s e quenc e xn' it 

is easy to show that 

a nd h e nc e w is a Cauchy sequence converging to w':<E B , where 
11 r 

Now suppose there are two fixed points x':<E Br and w':'E Br. Then 

llw':'-x':'ll :s; a.!lw':' -x>:'ll 

with O<a.<l, so llw':'-x':'ll = 0 implies w>:' =x':<. 

1.5. Comments on Uniqueness. 

Since the conditions satisfied by r in Theorem 1. 3 are 

inequalities, there may be a range of suitable values of r. Of course, 

there may be no values at all in which case contraction is not assured 

on any ball centered at x
0

. Assume for the moment that r . is the 
min 

minimum value which satisfies the conditions of Theorem 1.3, and that 

r isthemaximumvalue. LetB. =[wlllw-x
0

!1-o:r . }and 
max min min 

B =fwl llw-x
0

!1:s;r }. Obviously, there is a unique fixed point 
max max 

x ':<E B . and this is the only fixed point inside B . If there were 
min max 

another fixed point y':'E B then uniqueness would be violated for the max 

contraction mapping on B . Hence, any other fixed point y""' must 
max 

satisfy llY':' -x
0 

ll>r . In the case r -+oo, the fixed point x""'E B . 
max max min 

is the only solution in the whole Banach space. 
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CHAf>TER Il 

VALIDITY AND ST ABILITY CRITERIA 

The various approximating techniques are discussed by 

Minorsky(lS>, Hayashi(l 6 ), and Bogoliubov and Mitropolsky(l 7 ). This 

work considers only harmonic balance, with the understanding that 

equivalent linearization and the method of averaging are essentially one 

term harmonic balance approximations. 

2. l Validity Criteria. 

Consider an equation of the form ( 1. 1) with g(t) harmonic. That 

is, 

x+ f(x, x) = p cos (wt+ cp) 

One term harmonic balance yields the approximate solution 

with amplitude A and phase cp satisfying 

-w 
2 
A+ al = P cos cp } 

b 1 = -P sin cp 

(2 . 1) 

(2 . 2) 

(2 . 3) 

when) a 1 and b 1 are the coefficients of coswt ancl s i nwt respectively , in 

the Fourier expansion of f(x
0

, x
0

). In vector-matrix form (2. 1) is 

dx - - - -
dt =Ax-· f(x)+g(t) (2 . 4) 

where 
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-x =f x(t)] 
._:X(t) 

[
o , l] 

; A= 
0 ' 0 

[ 0 J f(x) = 
f(x, x) 

[ 
0 ] g(t) = 

, P cos (wt+cp) 
(2 . 5 ) 

with approximate solution 

[ 
Acoswt] 

XO (t) = 
-Aw sin wt 

(2 . 6) 

In this chapter, validity criteria arc e stablished for the one 

le nn approxin1<.ll:c solution. Extension to multi-term approximations 

with ni.orc gcn~~ral periodic forcing functions is straightforward. 

Examples of validity criteria for two term approximations are given 

in Chapter III. 

Suppose that (2. 1) allows solutions in a given symmetry class , 

and that x
0 

(t) is in this class. To establish the validity of the approxi-

mate solution x
0

(t), the existence of exact solutions in the given sym­

metry class in a neighborhood of x
0

(t) is sought. 

Consider the difference between the exact and approximate 

solution 

(2. 7) 

c;:dled the approximation error. The function '!l(t) satisfies the fol-

lowing equation obtained by substituting (2. 7) into (2. 1) and using (2. 3 ) 

(2 . 8) 

Alternatively, (2 . 8) is written as 

r;+ a(t)fi+ b(t)n = a 1 cos wt+ b 1 sin wt - f(x0+'Tl. x0+f)) + a(t)n+ b{t) 'Tl (2 . 9) 

whe re a (t) and b(t) are s uitably chosen piecewise continuous functions 

with at most a finite number of finite discontinuities. In vector-m.atrix 
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form (2. 9) is . 
T)= A(t)T)+ d(T), t) 

where A(t) is given by ( 1. 26) and 

Now using Lemma 1. 7, 1. 8, or 1. 9, depending upon .the 

symmetry class desired, (note that x 0 (t) must be in the class and the 

equation must allow solutions in the class) gives 

I 

n= Jh(t, s)~ 1 cosws+b 1 sinws-f(x 0+n,x0+f))+a(s)fi+b(s)n]ds 

0 

(2. 10) 

where h(t, s) is the appropriate kernel and I is the interval of the B.V.P. 

An alternate form of (2. 10) is 

I 

T)=. J h(t, s{a1 cos ws +bl sinws-f(xo, xo)Ja.s 
0 . 

I 

+ J h(t, s) ~(xo·*o) + a(s )T)+ b(s )T)-f(x o +ri,xo +ti)]ds 

0 

Since the first integ r a l on the right hand side, denoted by 

[
e(t)J 

e(t) = 
e(t) 

(2. 11) 

(2. 12) 

does not contain T], it can be evalua ted for any given f. Hence T) is ... 
governe d by the following Fredholm inte gra l equa tion 

I 

-:n = e + s h(t, s)~(xo, io> + a(s)fi + b(s}ri-f(x o+TJ, xo+ fi)f~ 
0 

(2. 13) 
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which is just a nonlinear operator equation of the type (I. 62). F or 

purposes of notation (2~ 13) is written as 

(2 . 14) 

Solutions are sought in the Banach space V of continuous two 

dimensional real vector valued functions on the interval I with norm 

(2 . 1 5) 

where 

(2 . 16 ) 

There will also be occasion to use the Banach space C of continuous 

real valued functions on I with norm 

!IY(t) II = sup ly(t)I 
Os;tsI 

(2. 17) 

Consider (2. 14). The operator N maps the ball Br=fwl llwjjsr} 

of V into V, so application of Theorem 1. 3 to the operator N on V yields 

sufficient conditions for the existence of a solution "Ti EB . Obviously, 
r 

this in1plics the existence of an exact solution x(t) of (2 . 4) within r of 

~() (I). Th i s l°l! s ult s in 

V;llidity Criteria I: Given an equation of the form (2. I) , let x
0

(t), e(t) 

a nd N b e as previously defined. 

If a subset B of V can be found such that , r 

1) there exists an a.=a.(r) satisfying 0< a.<1 and 

J!Nx-Nyjj sa.jlx-y!J 
for all x, yE B . 

. r 

(2 . 18) 
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2) 

then there exists an exact solution x(t) of (2. 1) of the form 

x(t) = x 0 (t} + n(t} 

where 11(t}E B is the limit of the sequence 
r 

and 

In particular, 

l[x(t)-x0 (t)ll s:r . min 

where r . is the smallest value of r satisfying (2. 19). 
min 

(2. 19) 

(2. 2 0} 

(2. 21) 

(2,22) 

(2. 23) 

When the sufficient conditions for validity are satisfied, an 

algorithm (2. 21) for computing the exact solution to any desired accu-

racy has been derived, In particular, using (2. 22} 

and 

x(t) = x 0 (t) + lim '11m 
m->OO 

where '11m is given by (2. 21 ). 

Also, since 11
1 
=NO=e, the readily .available improved first 

approximation, i.e.' x~xo+e satisfies 

. llx-(xo+e) II s: a.Ille II s: a.r . . 
-a. rmn 

(2. 24} 

{2. 2 5) 

(2. 26) 
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For the spec ial case of f(x, x) linear in x, that is 

f(x, x) :: Cx+ k(x) (2 . 27) 

it 1s possible to derive sharper criteria. In (2 . 13) let a(t) :: C to obtain 

I 

11 = e + Jh(t, s)~(xo) + b(s)ri-k(xo+n)}s 

0 

or, in component-operator form 

n=e+H1n=N1n 

'fl=~+ H2 T):: N 2 T1 

(2 . 2 8) 

(2. 29) 

Since the right hand sides do not depend upon ri, it is possible to apply 

Theorem 1.3 to the first of (2. 29). This leads to 

Validity Criteria I-A: Give n an equation of the form (2. 1) with f(x, x ) 

a s in (2. 27). Let x
0

(t), N '
1

, N
2

, and e(t) be as previously defined. 

If a subset B = (w I ll wll~ r} of C can be found such that 
r 

1) there exists an a=a(r) satisfying O<a<l and 

2) 

for all x, yE B . 
r 

then there exists an exact solution of (2. 1) of the form 

x(t) =x0 (t)+ n(t) 

where nE B is the limit of the sequence 
r 

and 

(2 . 30) 

(2. 31) 

(2 . 32) 

(2. 3 3) 
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In particular 

llx-xo 11 ~ r . min 

where r . is the smallest value of r satisfying (2 . 31 ). 
min 

(2 . ~M ) 

(2. 3 5) 

Also, if the validity criteria are satisfied, and there exists a 

6 - 5(r) such thal: 

for all x, yE B , then 
r 

and if there exists an E =E(r) such that 

for all xE B , then 
r 

(2 . 36) 

(i;;::l) (2 . 3 7) 

(2 . 3 8) 

(2. 3 9) 

Application of Theorem (1 . 3) is as follows : Since N 1 maps Br 

into C condition 1 is satisfied. Equations (2. 30) and (2. 31) are the same 

as conditions 2 and 3 respectively, and results up to (2 . 33) are direct 

consequences of the conclusions of the theorem. Equation (2 . 34} fol-

lows from (1. 74). Taking the norm of the second of (2. 29) and using 

(2. 37) gives 

II n 11 ~ 11~ II+ 11H2ti II s: II e II+ E lb1ll (2. 40) 

or, using (2. 3 4) with i=O, 
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(2 . 4 1 ) 

which is the sa1ne as (2. 3 9). 

Then 

i :2: 1 (2. 42) 

and using (2. 34) and (2. 36) yields 

i ";:::: 1 (2. 43) 

When Validity Criteria I or I-A are applicable, they yield, 

in ad<liti.on to a bound on the approximation error, 

1) an algorithm, 2.21 or 2.32, for computing the solution to 

any desired accuracy. 

2) uniqueness of the approximated solution in the given 

symmetry class within the ball B of radius r 
max max 

where r is the largest value of r satisfying the 
max 

validity criteria. 

Slightly sharper validity criteria which yield only existe nce of an exact 

solution near the approximation and a bound on the approximation 

error are obtained using Theorem 1.1 and its corollary. Application 

1-0 the.~ special case (2. 27) yields the following: 

Validity Criteria II-A: Given an equation of the type (2. 1) where f(x, x) 

has the form (2. 27), let x 0 , N 1, N 2 , H 1, H 2 and e(t) be as previously 

defined. 

If a subset B = fw I 1Jwll$ r J of C can be found such that 
r 
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1) there exists a real number y::?:O and a 13=j3(r) 

satisfying O<j3<1 and 

/IN 1xll<t\llxll+y 
for ;111 x(B. 

1· 

2) y+ j3r< r 

3) there exists real numbers o::?:O and an E=E(r) 

such that 

for all xE B • 
r 

(Z . 44 ) 

(2 . 45) 

(2. 46) 

then there exists an exact solution of (2. l) of the form 

where 

and 

x(t) = x 0 (t)+ri(t) (2 . 4 7) 

(2 . 48) 

(2 . 49) 

Application of Theorem 1.1 is as follows : The ball B is a 
r 

closed convex subset of C. The continuity of h
1 

(t, s) assures that N 
1 

is 

a continuous mapping, while conditions 1 and 2 assure that B is 
r 

mapped into itself. Hence the images of all xE B under the mapping 
r 

N 
1 

are uniformly bounded in norm by r. In addition, condition 3 

assures that the images of all xEB have uniformly bounded first d eri­
r 

vativcs. Using the mean value theorem 

(2 . 50) 
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where t 1 :-;: (,~L2 , and x(() is uniformly bouncled. Henc e all functions 

in the i1nage of I3 are uniformly bounded and equicontinuous , so by 
r 

Arzela' s Theorem (see page 54 of Kolmogoroff and Fomin ( lO )) the 

image of B is compact. All of the hypotheses of Theorem ( 1. 1) are 
r 

fulfilled and hence there is a least one n(t)E Br satisfying (2. 28). 

Application of the corollary yields (2. 48). Then (2 . 46) and (2 . 48) 

yield (2. 49). 

Successful application of the validity criteria depends upon 

the choice of a(s) and b(s) in (2. 13) or b(s) in (2. 28). Thes e quantities 

are called the basis for the integral equation. Except for certain 

exceptional values which yield an unbounded kernel, the choice of basis 

is unrestricted. Ideally, it would be chosen so as to minimize the 

bound on the approximation error. However, such a choice i s rather 

involved computationally so several alternative selections are discussed 

in Chapter III. 

Furthermore, in application to specific problems, success 

depends upon determining a suitable Lipschitz constant a.(r), alter-

natively called a contraction constant , for Crit eria I and I-A, and 

upon determining suitable (3(r) and y for Criteria II-A. Once these 

are obtained, the information concerning validity is contained in 

(2. 19), (2. 31) and (2. 45) for Criteria I, I-A and II-A, respectively. 

Henceforth, each of these inequalities is referred to as a validity 

inequality. 
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2. 2 Comparison of Criteria I-A and II-A. 

Consider the equation of a simple undamped oscillator with an 

odd polynomial restoring force 

(2. 51) 

The one term harmonic balance approximate solution is 

x 0 (t) =A cos wt (2. 52) 

where A>O satisfies 

(2. 53) 

Solutions which are out of phase with the forcing function correspond to 

P<O. 

Since (2. 51) does not contain a derivative term, the approxi-

mation er.ror satisfies an integral equation of the form (2. 28) with 

k(x) = K(x+E 1x
3 

+E2 x
5

) (2. 54) 

Now x 0 EQT and (2. 51) allows solutions in QT' so h 1 (t , s) in (2. 28~ is 

given by (1. 53). For convenience, take b(s)=K*, an as yet unspecified 

constant, in which case 

- sin/K: (iii;-t) cos /K; s 

h 1(t,s)= 

ru- /IGrr 
"n.* cos 2 w 

-sin/K,ic (fuJ-s) cos ;-K:;c t 

;--;-;--- /K,; 1T 
.,/ .l'\.>:' COS Z W 

Q:<;;;t~s :s:: 21T w 

(2. 55) 
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A slt·aightforward jntegration gives · 

and from (2. 28) and (2. 29) 

rr/2W 

N 1 y = e(t)+ J h 1 (t, s{k(x0 )+K,:,y-k(x0+y)Jds 

0 

For Criteria I-A an a.=a.(r) is needed satisfying 

(2.56) 

(2 . 5 7) 

(2 . 58) 

for all x, yE B . Using (2. 57) and (2. 54), and after some manipulation 
r 

rr/2W 

N l x - N l y =· J h 1 (t, s >[ ( K>:, -K-3 E1 Kx~ -5 E2 Kx6 )- (x+y) (3 E1Kx0+10 E2Kx;) 

0 
2 2 (, 2) 3 2 . 2 3 

-(x +xy+y )(~<E 1+10KE2x0 -(x +xy +x y+y )5KE2x
0 

4 3 2 2 3 4] -KE2 (x +x y+x y +xy +y ) (x -y)ds (2 . 59), 

Now choose K ,:, so that the upper bound on the norm of 

(2 . 60) 

is a s sn1a ll as possible, that is 

3 2 5 4 K .. , = K+-E KA +-
2 

E KA 
~· 2 1 2 (2 . 6 l) 

which gives 

(2. 62) 

Taking the norm of (2. 59) and using (2. 52) , (2. 55), (2 . 62) and x, yE B 
r 

yields 
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(2. 6 3) 

(2.64) 

By Validity Criteria I-A, x
0 

is valid provided there are values of r 

s ati sfyi-ng 

r ~ lie JI 
1-a.(r) 

(2. 6 5) 

which can be written 

(2. 66) 

where 

(2.67) 

B = 2w /R; I cos~ TT I /iT 

Now for Criteria II-A, Y and 13=13(r) are n eeded satisfying 

(2. 68) 

for all y E Br. Using K ,.'< given by (2. 61) and the s a me type of bounding 

procedure gives 

(2. 6 9) 

Y =!!ell (2 . 70) 
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By Validity Criteria II-A, x
0 

is known to be valid provided there are 

values of r satisfying 

(2. 71) 

where the a . , i=O, 5, are given by (2. 6 7). Figures 2. 1 a, b show graphs 
1 

I 

of the right and left hand sides of (2. 66) and (2. 71) for different values 

of the parameters. Obviously p(r) always lies above q(r) so r
1
<r

2 

(:;e(• F'i g urc 2. l ;1) and C1·i t cri.a II-A yields a smaller bound on the 

;1ppro.xi1naU(ln ~·rror. In fact, I.he situation depicted in Figu re 2. 1 b 

n-iay develop, wherein II-A yields a bound and I-A is not applicable . 

On the other hand, when I-A applies, it yields an algorithm for com-

puting the exact solution and uniqueness of the approximate d soluti on in 

the given symmetry class within the ball of radius r
3 

(see Figure 2. I a). 

2 . 3 Validity Boundaries. 

A question of particular interest is: Given system parameters 

K, E
1

, E2 for what excitations P, w do the validity crit e ri a guarant ee a 

v:1l:id approxin•ate solution. 

Consider the situation shown in Figure 2. l c . There is only one 

value of r which satisfies r ~p(r), and for a slight change in the excita-

tion there may be no solutions. Values of the excitation for which such 

a situation occurs will clearly lie on boundaries between valid and 

"questionable" regions. Where the validity criteria a re not applicable, 

there may still be exact solutions near the approximations , but their 

e x istence cannot be guaranteed by the methods used here. 
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a) z 
Z• p(r) ------

Z•q(r) 

b) z 
Z=r 

Z=p(r) -~ 

Z• q(r) 

r, 

c} z 
Z=p(r) _ _.., 

r, 

Fig. 2.1 PLOTS OF VALIDITY INEQUALITIES 
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It is convenient to calculate the validity boundaries as functions 

of A and w rather than. P and w. Recall that A, P and w are related by 

(2. 53 ). The development is presented. for Criteria I-A. Validity boun-

daries for II-A are determined in an analogous manner. 

On a validity boundary 

r = p {r) 

' _l=p'(r) 

{2. 72) 

(2. 73) 

Given A, values of W satisfying the above two equations are found as . 

follows: Since p'(r) is monotone increasing when r>O, for p(O)<l there 

is always a unique. positive root of (2. 73 ). Solving for given w yields 

r=r(W). The transcendental equation 

r(w) = p(r(w)) (2. 74) 

obtained from (2. 72) is then solved yielding values of won validity 

boundaries . Figure (2. 2) shows validity boundaries for Criteria I-A 

and II-A applied fo (2. 51) with K=l.O, E1=0.l and E2 =0.02. Also shown 

are response curves for several values ·of P. Indications are that the 

approximate solution is very good on the lower response curve for w>l 

and also for certain ranges of frequency when W<l and P is small. Of 

course, the validity criteria are only sufficient conditions so tJ:ie 

approximate solution may still be quite good even though its validity 

cannot be _demonstrated by thes e methods. 

In addition to validity, there is also the que~stion of whether the 
. ·;;.~, . . 

.. 
approximate solution is an approximation to a stable solution. When · 

the approximation cannot be shown valid, the stability question cannot 



A 

2.0 

1.0 

--- - II-A 
I-A 

P= l.O 

VALID 

K=l.O 

+ El =0.1 

E2 =.02 

P=-1.0 
...... .,,.. .,,.. --...... 

VALID 

...... -

0.0----.....---~-----~--~---------~~-------------------
0.1 0.5 1.0 1.5 2.0 

w 
Fig. 2 .2 VALIDITY BOUNDARIES - POLYNOMIAL RESTORING FORCE 

I 
v.l 
l.]l 

I 
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be answered rigorously, a nd even when it is valid, a stability analysis 

b;i S<'d on !:he a pproxin1alc solution is not exact. ./I p r cc i sc a nalysis 

n.1ust account for the fact that the exact solution is known only t o within 

the bound obtained for the approximation error . · 

2. 4 Sufficient Stability Criteria, 

Consider again, an equation of the form ( 1.1 ). The stability 

question for a periodic solution x(t) is answered by the equation of first 

variation (see Struble(9 ) page 149) 

.. of ( • )'"' of ( • > 0 y + ox x , x r + Dx x, x y ::: (2 . 75) 

I( this equation has any unbounded solutions then x(t) is unstable:, 

if all solutions are bounded, then x(t) is stable, and if all solutions tend 

to zero as t-+oo, then x(t) is asymptotically stable. Equation (2. 75) is 

a Hill's equation of 'the form 

¥+ q
1 
(t)y+ q 2 (t)y = o (2 . 76 ) 

wher e q
1 

(t) and q
2

(t) are periodic with common period P . Floquet 

theory says that solutions of (2 . 76) are of the form 

(2. 77) 

where cp
1 

and q:i2 arc p eriodic. T he boundedness of solutions is hence 

d e termined by A.
1 

and A.
2 

called the characte r istic exponent s. 

page 305, shows that (2. 76) is transformed to 

z + p(t)z = 0 

Hahn( 7 ) 
' 

(2 . 7 8 ) 

(2. 79) 
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by the transforn1at:ion 

t 
_ _!_ r q (s)ds 

2 "O 1 . 
y = ze (2 . 80) 

I 

Since (2. 78) is also a Hill's equation it has solutions of the form (2 . 77) . 

Hahn also shows that the characteristic multipliers µ
1 

and u
2 

given by 

(2 . 81 ) 

where v
1 

and v
2 

are the characteristic exponents of (2 . 78) satisfy 

where 

and 

2 
u -aµ+ 1 = 0 

[

u
1 
(t) 

U(t) = u2 (t) 
v I (t)J 
v 2 (t) 

is the principal inatrix solution of (2. 78). Solving (2. 82) gives 

from which it is easy to see that µ 1µ2 =1 and hence from (2. 81) 

(2 . 82) 

(2 . 83) 

(2. 84) 

(2. 85) 

(2. 86) 

Thus v
1
=-v2 mod;-. Letting v=v

1
=-v2 mod 2; and using (2 . 8 1 ) and 

(2.86)gives 

(2. 8 7) 

(2. 88) 

for some integers m and n. Now if a2 ~4, then µ 1 and µ
2 

are both real 
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A () 1 ·1 "f" 2 4 I. ;lnd positive, so Arg µ
1 

·.·: · r~ µ
2 

., , wu c 1 a < , t11cn 

Inlf \.I} ' 0. This leads to 

now let 

where 

p 

q 1 = ~ s q 1 ( s )d s 
0 

Thl~ll tlw chal'adcl"istic exponents of (2. 76) are 

(2 . 89) 

(2 . 90) 

(2 . 91) 

(2. 92) 

of of 
If ql (t)= ox (x, x) and q2 (t)= ox (x, x), then the stability of x(t) is related to 

A.
1 2 as given in Table 2. 1. All except the last entry are consequences 
' 

of (2 . 77) and the remarks following (2 . 75). The last case in the table 

involves the question of coexistence of P or 2P periodic solutions of 

Hill's equation (see Magnus and Winkler(l 3 ) page 5) . 

Tlw above analysis provides an answer to the stability question 

fol' x(t:) in lt~rnls of solutions of the equation of first variation over a 

single period P. Solving a Hill's equation to determine u 1 (P) and 

v
2 

(P) is not a simple matter, even when q
1 

and q
2 

are known exactly. 

When using the equation of first variation, x and hence the peri odic 

coefficients are known only approximately, thus adding further 
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Char acteristi c Exponents A. 1 and Az 

Rel a t ion of "1 
Im ).. 1 and Im Az and A.2 Stability of ~(t) 

Im A. 
1 

< 0 and Im A.2 < 0 unstable 

Irn :>..
1
>0 and Im \ 2 >0 asymptotically stable 

Im. \ 1 > 0 and ln1 :>..2 :::0 

or stable 

1111 A. 1 =. 0 and Irn A.2 > 0 

Im A. 1 =Im A.2 =0 
21T 

t._ 1 f:.A.2 mod-p stable 

Im A. 1 =Im :>..2 =0 
21T 

unstable except when A. 1=\z mod-p 

(occurs only 
v 1 (P)=uz (P)=O 

when q1 =0) 

Tabk 2 . 1. Stability from the Characteristic Exponents . 
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t' 0111 f> l:ications. A wid c ly a c ceptcd s i rnpl:ifi.c a ti on consists of analy z .. i. ng 

th1..~ stability of the approxi1nalc solution (se e , for instance, Hayashi's 

book( lb)). Such an analysis is never precise and may sometimes lead 

to unjustified results as shown by an example in Chapter III. 

When the validity criteria are applicable, there is a possibility 

of obtaining sufficient stability conditions. The equation of first varia-

tion may be written as 

(2 . 93) 

which is a Hill's equation of the form 

(2. 94) 

where q
1 

(t) and q
2

(t) are known periodic functions and r;
1 

(t) and c
2

(t ) 

are also periodic with the same period and satisfy 

(2 . 9 5) 

In some cases, it is possible to determine a range of values fo r u
1 

(P) 

and v
2 

(P). That is, u
1 

(P) and v
2 

(P) lie within certain intervals . The 

notation 

[u
1 
(P)] = [MAX(u 1 (P)), MIN(u

1 
(P))J (2. 96 ) 

(2 . 97) 

is convenient. Using these interval values, together with (2. 83), (2. 85) 

and (2. 92) gives [Im A.
1 
J and [Im A.

2 
], from which sufficient conditions 

for stability and instability are deduced. For example, if both 

intervals contain only positive values, then x
0 

(t) approximates an 
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asymptobcally sta ble solution, while if either interval contains only 

negative values, then x
0

(t) approximates an unstable solution. An 

example in which sufficient stability conditions are computed is given 

in Chapter III. 
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CHAPTER III 

EXAMPLE: .A BILINEAR SYSTEM 

Consider the equation 

x+ F(x) = P cos wt (3 . 1) 

where 

{

K l+x for x> 1 

F(x) = ~x for Ix! !>: 1 

1-K+x for x<-1 

(3. 2) 

and K>O. This restoring force is shown graphically in Figure 3 . 1. 

The change of variables 

R 
P= K2a 

takes the above to the more general form 

where 

F(u)= 

u + F(u) = R cos v'T 

K
1 
a+K2 (u-a) for u>a 

- K
1

u for luL;;;a 

-K
1
a+K

2
(u+a) for u<-a 

w = v/K2 (3 . 3) 

(3 . 4) 

(3 . 5) 

Since (3. 1) is piecewise linear some exact solutions are obtained by 

"piecing together" solutions for the time segments on which the equa-

tion is linear. Generation of these simple solutions , i .e., solutions 

which cross Jxl=l only once in a quarter period, is discussed in 

Appendix A. Subsequently, these exact solutions are used to study the 

sharpness of bounds on the approximation error. 
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F(x) 

+1.0 

Fig. 3.1 BILINEAR RESTORING FORCE 
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3. I. Validity Criteria . 

The first order harrnonic balance approxin1ate :,;nl11t.ion of (3. 1 ) 

is 

( 3. 6) 

where A> 1 satisfies 

(3 . 7) 

. 1/2 
K -K+ 2(1-K){ -11._ _ _!_[1 __ 1 J } 

EQ v- 'TT c OS . A A . A 2 (3. 8) 

Solutions which are out of phase with the forcing function occur for 

P<O. 

Since x
0 

(t)E QT and (3. l) allows solutions in QT for T= 
2
;, 

Validity Criteria I-A is used to establish the existence of an exact QT 

solution near x 0 (t). In accordance with the development in Chapter II, 

the approximation error 'Tl(t) satisfies 

where 

rr/2w 
'Tl(t) = e(t) + J h 1 (t, s{F(x0 )+b(s)Tl-F(x

0
+ll)]ds 

0 

or/2w 

e(t) = J h 1 (t, .s{KEQVx0 -F(x0 )]ds 
0 

(3 . 9) 

(3 . 10) 

Take b(s ) =K,~, an as yet unspecified constant. Then h 1 (t, s) is given 

by (2. 55) and 
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1-K 
e(t) = K,:, + 

(K EQ V - 1 ) A cos wt W( 1 - K) cos .(K"; t 
2 + 

K ,:,-W rrr-(K W2) ,~'J1' .; .n'>:' >:< - COS Z W 

I/Kt., . -1 IJ [AZ i]~ . ~/K* . -1 i]~o..-t 1 cos-I 1 x --cos1---s1n - - - sin --sin - '°" ~- -
- '-· w A ll1 . w A 

>): . 

e (t) = 
(KEQV-K) w( 1-K) sin JR; (21Tw -t) 
---'-z,.....-A cos wt+ ----------

K ,:< - w rr:r-(K 2) /K; TI .; .n.,:, ,:, -W cos z W 

(3 .1 1) 

Using the notation of Chapter II, 

TI/2w 

N 1y = e(t)+ J h 1(t,s)[F(x
0

)+K,:,y-F(x.
0
+y)}s · (3 . 12) 

0 . 

In Appendix B a contraction constant for this ope rator is de riv ed . T hat 

is, a.=a:(r) given by {B-11) is such that 

for all x , yE B . Hence, the validity inequality is 
r 

llell ~r 
1-a.(r) 

For the present, take K ,:c=K AVG, the time ave r age value of F ' (x
0

) 

2 -1 l 
K AVG = K + :; ( 1 -K) cos A 

Later, various other choices of the basis ar e discussed . 

(3 . 13) 

{3 . 14) 

(3 . 15) 

As in Chapter II, validity boundarie s in the A, w plane consist 

of points satisfying 
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lle ll = r-ra.(r) 

1 ::: a.(r)+ra.'(r) 

From (B-11) 

0 

CJ 

l+ar --p:-<0 or >l 

0 
1 +err 

1 ~--~ 
A 

Multiplying (3. 17) by r and using ( 3 . 16) gives 

r ( 1 - a.) = r 
2 ~ ~ = II e JI 

Using (3. 18), squaring and rearranging gives 

(3. 16) 

(3 . 17) 

(3. 18) 

(3. 19) 

(3 . 20) 

For given A a nd W, the unique positive root of the quartic e quati o n 

(3. 20) is obtain ed yielding r=r(W). Roots w of the transcendental 

equation 

lleJI = r(W)-r(w)a.(r(OJ)) (3. 2 1) 

obtained from (3. 16) then cor respond to points on validity boundar ies. 

Figure 3. 2 shows validity b oundari es fo r the case K =O. 8. In the regions 

m arked I, II, and III the s uffic ient validity condi tions are not satisfied. 

The hea vier solid line s are response c urves determined from the 

approxilnate solution. In some parts of t he s haded regions the approx-

imate solution may still be quite good in the sense that an exact solu-

tio n exists in its vicinity. However, this to b e exp ected since t he 

validity c onditions are merely sufficient a nd not necessa r y . Further-

more, in each r egion there is apparently some type of behavior whi ch 
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can lead to large errors in the approxin1.ate solution. In region I, 

sonw of the response curves have vertical tangents. If the location of 

a vertical tangent is not exact, then near the vertical ·tangent there may 

be no exact solution near the approximation. In regions II and III the 

system apparently has ultraharmonic resonances . The resonant 

response in region II is predicted by a two term harmonic balance 

approximation developed later in this chapter. 

3. 2. Bounds for the Derivative of Tl(t). 

In regions of validity, an upper bound on the derivative of the 

approximation error is obtained. The following is used 

(3 . 22) 

where 

II rill :;;;rmin (3. 23) 

and r . is the smallest value of r satisfying (3. 14). In the notation of 
min 

Chapter II 

rr/2W 

H 2 y = J h 2 (t, s >[F(A cos ws) + K,::y-F(A cos ws+y)}s 

0 

COS /K;!c (ifu -t) COS /K:cs 

tcos~' rr 
21JJ 

sin~< (it; -s)sinJK;,,t 

/K:rr 
cos 2 w 

Using d evelopments in Appendix B, 

(3. 24) 

(3. 25) 
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, 
for all yE B . . Hence from (2. 38 ), (2. 39) and (3. 14) 

min 

'I fill ~ll~ll+JR; r · cx,(r · ) · min min 

3 . 3 . Stability Criteria. 

Suppose that x
0

(t) is a valid approximate solution. 

or, from (3 . 2 7) 

(
1 1 l+r · \ !Ifill ~:XO Wcos- :;rn) 

[ 
2 2 ]1/2 

= w A -(l+r . ) min 

[. 
2 2 ]1/2 

11~11+/K,.,r. cx,(r . )~WA -(l+r.) ., min nun min 

If 

then x(t) does not c h ange sign when llxll is within r . of one. 
min 

(3 . 26) 

(3. 2 7) 

(3. 28) 

(3 . 2 9) 

(3. 30) 

In this 

1..'asc, x(t:) is sjm.ple and the stabi lity analysis of Appendix C applies . 

The following analysis presumes that (3. 30) is satisfied. 

Using (3. 23) the following bounds on t
1

, where x(t
1

)= 1, are 

obtained 

l+r . 
1 1 

1-r . 
1 -1 min - min _ t 

t = wcos A s:t1 ~wcos A - + (3 . 3 1) 

In interval notation 

(3. 32) 

For any given solution x (t) =x 0 (t)+i](t), [u 1 (~) J i s c omputed as 

follows: 
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(3. 33) 

where u
1 
(~) is given by (C-6 ). 

Appendix C, x(t) is stable if 

Then according to the results given in 

[ u I(:) Jc [I, -1 J (3 . 34) 

and unstable if 

[u 1 (~)Jn [ 1, - 1 J = e the null set (3. 3 5) 

When neither (3. 34) nor (3. 35) is true, then no definitive statement is 

available concerning the stability of x(t). 

3. 4. Sufficient Stability and Instability Boundaries. 

From (3. 34) and (3. 35 ), it is apparent that boundaries between 

stable and unstable regions occur when 

(3 . 36) 

The stability boundaries in the A, w plane based upon the 

apprnxirnate solution are calculated as follows: For given t
1 

and K 

(3. 36) with u
1 
(~) given by C-6, is solved for w. A is obtained from 

A= l (3.37) 
cos wtl 

and P from (3. 7). In valid regions where (3. 30) holds, the approxi-

mate boundaries are used as initial guesses in the following scheme 

to determine sufficient stability and instability boundaries. For given 
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A and K, values of ware determined satisfying 

sup u
1 

(".!..J :: ±1 (for sufficient stabjllty bounclariefl') 
t- ,~t:l < I: w, 

- I 

inf u
1 

(Tu)= ±1 (for sufficient instability boundaries) 

t - ..;:tl s:t + 

where 

1-r . 
I -1 min 

t+=wcos A 

1 1 
l+r . 

- min 
t = w cos A 

= llell 
rmin 1-a(r . ) 

min 

Pis then determined from (3. 7) . 

(3. 38) 

The cross hatched areas in Figure 3. 2 designate regions where 

the sufficient stability conditions are not satisfied. That is , either 

(3. 30) does not hold or [u1 (:)}t:[l, -1 ]. Near w=-} there are indeed 

some unstable solutions as may be seen in the blowup of this unstable 

region in Figure 3. 3, where the stability boundaries based upon the 

approximate solution are shown together with the sufficient stability 

and instability boundaries . In this region, equation (3. 14) is satisfied 

for all r ~ r . . That is, the situation is as in Figure 3, 4 . Hence, 
min 

the unstable solution is unique within the class o21T I w , so any stable 

solution cannot be in this class. In other words, the unstable solution 
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z 
Z= r 

II e II 
1-a.(r) 

r 

Fig. 3.4 · VALIDITY INEQUALITY FOR GLOBAL UNIQUENESS 
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is globally unique within QZrr/w· The sanw rcH111t would hold if ~' so]11 -

!:ion in TTZrr/w were sought:, so any stable periodic sol11t:"ion o f period 

2rr/w is in PZrr/w· This result is consistent with the work of Loud(l 9 ) 

who observed that equations of the form (3. 1) exhibit branching pheno­

mena in unstable regions near UJ = 2~, n an integer . 

The desirability of applying the validity criteria to class QT 

and HT solutions may be appreciated if one observes the following : 

Had the validity criteria been applied in class 

there would have been additional regions near 

PT rather than QT, 

1 
w = Zn, nan integer, 

wh~~ rc the validity criteria could not be applied. These regions would 

have included all of the instability region in Figure 3.3. The validity 

criteria in QT may be applied in this unstable region because the 

branching is to a .class of solutions outside of QT . There are also 

apparently branching processes in r egions I.and II of Figure 3.2. 

However, these branching processes occur entirely within QT. 

3 , 5. Choice of Basis for the Integral Equation. 

In the integral equation for the approximation error, the linear 

b;isi.s, i . c ., b(s) in (3. 9), -is chosen to facilitate application of the 

' 
va lid ity <·ritcr ia. In this section, various choices of the basis for the 

bilinear system (3. 1) with approximate solution (3. 6) are compared. 

The symmetry class is Q 2rr /w in all cases. 

The following choice of b(s) removes all linear terms from the 

operator H, 
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b(s) ={: 1 -1 1 
for 0:-:;; s:o:;; w cos A 

1 -1 1 1T 
for -cos -:5" s:5"-w A 2w 

In this case, 

h
1
(t,s) = 

where 

/ 

(A c ost+ B sin t) cos s !"F:. 

(.A cos~+ B sins) cos t/E 

1 -1 1 1T 
0:5"t:5"-COS -:5" S:S"-

W A 2w 

sin/K(21Tw-t)( C cos ~s + D sin/Ks) j (/KE:) · 
I -1 1 1T 
wcos As:t:S"s::;; 2 w 

sin /K ( 21Tw -s )( C cos /Kt+ D sin jK t) /((KE) 
1 - 1 1 1T 
-cos -:5"t :5" s:S"­
w A 2w 

cos -
~ jR . -1 1 . A 1 . /K . -1 1 -1 1] 
A=cos[wsrn A]srn[ w + /Ksrn[wsrn A]cos 

[ 
-1 lJ [ -1 1 "" jK . -1 I cos A 1 . /K . -1 1 cos A 

B = -cosr-s1n -]cos +-s1n[-s1n Al cos J 
-W A W /K W - W 

"' K -1 I cos A I -1 I cos A 
[ 

-1 I J -1 I 

C = cos[~ cos A] cos w + /K sin[~ cos A] sin[ W J 

(3. 39) 

(3 . 40) 

(3.41 ) 



-56-

,.., . IK -I 1 cos A 1 /K -1 1 . cos A 
. . -1 1 J -1 1 

D=sinf-cos -]cosr --cos[-cos -]sinr ] 
LW . A [ w /K w A L w 

-1 1 -1 1 ' ...., [IK . -I I J rcos Al I . [IK . -I I J . rcos AJ 
E =cos wsin A cosl w J- %sin u:;-sin A sinL w 

and 

(KEQV-I) . ( 1-K) { [.fK -1 1 ~ 
e(t) = (1-K)+ 2 A coswt---;:.::;- cos -sin AJ 

. 1-W E W 

[ 

(K -w
2 )J i (K -w

2
)} 

1- ~ EQV +-1 r"z_1;i . [/K . -I_!_] ~ EQV t 
2 2 L..M. ~ sin sin A 2 2 cos 

( 1- w )(K - w ) jK w ( 1- w )(K - w ) · . 

1 -1 1 
for O::;:t::;:wcos A 

. 1 . 

(i<EQV-K) (1-K) { ~cos-l±j r 2 -f (KEQV-w2) 
e(t) = 2 A cos wt- ,..., cos w wl.!\. -Jj 2.. 2 

(1-w ) IKE (1-w J(K-w ) 

-1 1 ~ (, 2 )J~ cos A \KEQV-w 
+sinr 1.1- 2 2 sin·. 1K(2rr -t) l w J ( 1-w )(K- w ) w 

1 -1 1 Tr for -cos -::;:t$-
w A 2w 

. As in Appendix B for the constant coefficient case, one finds the 

following suitable contraction constant 

a.(r) = 

where 

II-Kj(I+-
1 

) 

----"JK_K_MAX rl, _!_Jc (r) 
IElw l /"K" 

(3. 41) 
cont. 

(3. 42) 

(3.43) 
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for O<r~MIN [l, A-1 l 

for l ~ r~ A-1 

( 3. 44) 

f o r A-l < r <l 

for r :e: MAX [ 1, A- l] 

From this point, application of Validity Criteria I-A is the same as 

the constant basis case. Figure 3. 5 shows a comparison of the 

percent error e where 
p 

r . 
min x 100 ep = -A- (3 . 4 5) 

for various c hoices of the basis including the time depe ndent (T. D . ) 

basi:; disvus sccl above, and th e following choices of c onstant coefficient 

b~l::>l's: h -:- l, h:.' KAVG d ef ine d by (3 . 15), and K,:,=- KEQ V defined by 

( 3 ,8). Also shown is llllll c ompute d as the sup of the difference between 

the approximate and exact solution. Where the curve is broken, just 

to the right of w=0.3, there are no simple exact QT solutions. The 

parameters are P= 1.0 and K=0.8, the same as those for a response 

curve shown in Figure 3. 2. 

For this case, the T. D. basis gives very good results away 

from the validity boundary for region II of Figure 3.2. In fact e for 
p 

this basis is so close to <the exact value that no separate curve is 

dra wn l~xccpt near the previously mentioned validity boundary. Also 

o b serve that the constant coefficient basis K,:,=K AVG gives the widest 

range of validity. H e nce, the time dependent basis may not always 
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be the best choice. The percent error for all basis choices has the 

character of the exact curve and compares favorably with the actual 

1 
value at lea st for UJ >z-. Although the comparison is plotted for only 

one set of valu~~s of the parameters, the same general behavior was 

.1ls11 nhs~·rved for <1 nun1bet· of other cases. 

An ;111 ;ilyli ... ·;d. cornpar.ison of lhe bases is rnade by considering 

the resonant case. 

3. 6. Validity Criteria at Resonance. 

The following result holds for the T . D . basis and for all of the 

constant bases considered below. 

lim lle(t}li::; I 1-KI 
A.-.oo 

Also. in the Jim.ii: as A--.cX), equation (3. 14) goes to 

Solving (3. 47) in the case of e quality gives 

r = 16 II-Kl (i+-1 )MAx [1 . _!_J 
/K . JK: \ 

32 (l-K)2(1+ _l )MAX 1 

1± 1- /K 
'IT I P+ 4 ( 1 - K ) I 

'IT 

1 

jK 

(3. 46} 

(3. 47) 

rJ 
(3. 48) 

Hence, a sufficient condition for application of the validity criteria at 

resonance is 
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32(1-K)
2 

( l+-
1
-)MAX [1, -

1
-] 

JK JK <I (3. 49) 
'TT I P+ 4 (1-K) I . 

'TT 

in which case the relative error r . /A goes to zero as A-+oo. Simi-nun · 

lar results for other choices of the basis are summarized in Table 3.1. 

Even at resonance, no one choice is clearly superior for all values of 

P and K. 

Much work remains to be done in the a.rea of optimum basis 

choice. However, the results given by Figure 3. 5 and Table 3. 1 

indicate that the choice K,:~=K AVG, us.ed in this work, compares 

favorably with other easily computed bases. 

3. 7. Two Term Harmonic Balance Approximate Solutions. 

The bilinear system (3. 1) allows QT solutions for T=27T /0., 

O=w/(2n- l); n a positive integer. For the case n=l, following 

Caughey <2 O), assume an approximate solution 

x
0

(t) =A cos wt+ U cos 3wt (3. 50) . 

As with the one term approximation, there is no loss of generality in 

taking A>O. 

In order to apply harmonic balance, it is necessary to 

determine a 
1 

and a
3 

in the Fourier . expansion 

F(x0 ) = a
1 

cos wt+ a
3 

cos 3wt+higherharmonics (3.51) 

Expressions for a
1 

and a
3 

are given in Appendix D. Substituting (3. 50) 

into (3. 1), using (3. 51) and balancing first and third harmonics yields 



Basis 

T.D. 

KEQV 

KAVG 

1 

lim a,(r) 
A-f()() 

-6 1-

8rll - KI (i+-1-)MAX[l, -
1 

] 
.(K jK 

1T I P+ 4 ( 1 - K) l 
1T 

4ll-Kl(3+r) 
lr IPI 

I I - KI ( 4+ 2 r) 

Irr{ +{1 - K)I 

411-KI (l+r) 

Sufficient Condition 
for V alidity 

32(1-K)
2 (1+ -1 )MAxf 1. _!_J 

jK , jK < I 
1T I P+ 4 (1-K) I ' 

1T 

411-KI 
1 

~~1 _ l~j~IKIJ < 

411-KI < 1 

jrJ'+(l-Kll ~- 411-KI ) 
2 1rri+(l-K)l 

411-KI < 1 
1T l P+ 4 ( 1 -K) I }IP+ 4(1-K) I~- 411-KI ) 1T 

-rr rrlP+ 4(1-K)l 
1T 

Table 3.1. Validity at Resonance 
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2 
-Aw +a

1 
:::P 

2 
-9wU+a

3
=0 

Just as with the one term approximate solution, sufficient 

(3. 52) 

conditions for existence of an exact QT solution near x
0 

are obtained by 

applying a validity criteria which is essentially Criteria I-A for two 

tern1 approximate solutions. The wor1c involved in the application is 

con1putational rather than conceptual, so the details will not be given 

here. 

3 . 8. Ultrahannonics. 

An interesting development occurs in region II of Figure 3.2 . 

Assuming a value of U and solving (3. 52) for A and w yields system 

responses shown in Figure 3. 6. N?te that the parameters used, i.e., 

P = 1. 0 and K=O. 8 correspond to a response curve for the one term 

approximation shown in Figure 3 . 2. R is the ratio of U to A. The 

two t e rm approx imation predicts an ultraharmonic resonanc e (i.e. , 

large arnplitudc response near W=-' W /m, in an integer ~ 2, where w 
n n 

is the harrnonic r e sonant frequency) in this r egion. 

Application of the validity criteria with K,:, = I shows that x 0 is 

valid on the lower ultraharmonic response curve in the frequency range 

shown in Figure 3.6. Note that there is an improvement over the one 

term approximation, i.e., compare with Figure 3. 2 . The pres e nce of 

a vertica l tangent in the ultraharmonic response appa rently preclude s 

applic ation of the validity crite ria over a larger fr e quency range. 
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lim a(r) = l+r 
U--+ro 

(3. 53) 

.Also, there is no constant coefficient basis which yields a smaller 

limiting value of 0.(r). Hence, for this particular system the existence 

of ultraharmonic resonant responses bas not been established. 

However, the two term approximation has a larger range of 

validity near w=l/3. This indicates that the third harmonic is impor-

tant in this region. Also, Figure 3. 5 indicates that the approximation 

error for the one term approximate solution is large near w = 1/3. 

Hence, a stability analysis in this region based upon the one term 

approximation is not justified. 

3. 9. Subharmonics. 

In a manner analogous to the development above, one obtains 

two term approximate solutions which exhibit subharmonic resonance, 

i.e. , large amplitude response near w=mW , m an integer :::: 2 and w the n n 

harm.onic resonant frequency. Assume an approximate a
6

rr/w solution 

(3. 54) 

where now S >0. Harmonic balance yields 

2 
-w A+ b

3 
= P (3. 55) 

where b 
1 

and b
3 

are the Fourier coefficients in 

F(x0 ) = b
1 

cos ~t + b
3 

cos wt+ higher harmonics (3. 56) 

Expressions for b 1 and b
3 

are given in Appendix D. 
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For given S, equations (3.64) are solved for A and w. Figure 3. 7 

shows the resulting subharmonic system response. The presence of 

vertical tangents app<l .t•cntly precludes application of the validity 

criteria for all responses shown in l"igure 3. 7. Also, there is no 

choice of constant coefficient basis which yields validity at subharmonic 

resonance. Hence it does not seem possible to verify the existence of 

subharmonic responses using this analysis; at least not with a constant 

coefficient basis. 
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CHAPTER IV 

CONCLUSION 

4. l Su rn1nary 

Suffic i e nt validity criteria are de rived for approxirnate 

periodic solutions of a class of second order nonlinear ordinary 

differential equations. . An approximate solution is defined to be valid 

if an e x act solution with the same symmetry properties e x ists in a 

neighborhood of the approx imation. Although the validity criteria are 

stated for harmonic balance approximations, they are easily e x tended 

to inc lude othe r approximate periodic solutions. 

One l: l a ss o f validity c riteria, namel y I and I-A, r e quire an 

integral oper a tor associated with the approximation error to contract 

on a ball in an appropriate Banach space. That is, the operator must 

satisfy a Lipschitz condition with Lipschitz constant less than unity, 

and in addition, an inequality involving the Lipschitz constant and the 

radius of the ball must be satisfied. These criteria yield an 

algorithm for constructing the e x act solution and some uniquene ss 

r esults in addition to existence. 

The second class of validity criteria, namely H-A, is based 

upon continuity of the same integral operator. This criteria require s 

that the mapping determined by the integral operator, continuously 

map a ball in an appropriate Banach space into a compac t subset of 

itself. 

Application of Criteria I-A and II-A to the equation of an 
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undamped oscillator with an odd polynomial restoring force reveals 

that Criteria II-A yields a smaller bound on the approximation error 

and a larger region of validity. Criteria II-A is also somewhat 

easier to apply since it does not require determination of a Lipschitz 

constant. This is to be expected, however, since the results are not 

as strong as those of Criteria I-A with respect to uniqueness and the 
I 

constructive algorithm. 

In terrns of types of hypotheses and conclusions, the existence 

theorems for B . V. P. 's upon which the two classes 9f validity criteria 

are based, may be compared to the existence theorems for initial 

value problems. The existence theorem for I and I-A is analogous to 

the Cauchy-Lipschitz theorem, while the existence theorem for II-A 

is analogous to the Cauchy-Peano theorem. 

In addition to existence, both types of validity c riteria yield 

an upper bound on a norm of the approximation error. This bound is 

used in a procedure for establishing sufficient stability and instability 

,·,H1ditions for the approximated solution. A s ystem with s ymmetric 

bilinear n~ sto1·in.g force provides an example wherein both sufficien t 

validity and sufficient stability and instability conditions are obtained. 

When the validity criteria are satisfied and the bound on the error is 

small, the stability analysis based upon the approximate solution is 

apparently quite accurate as shown in Figure 3. 3. On the other hand, 

whe n the approximation cannot be shown valid or when the bound on 

the approximation error is large, then a stability analysis base d on 

the approx imate solution is not justified. For example, in region II 
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of Figure 3. 2 there may be a considerable difference between the 

exact and approximate solutions as shown in Figure 3. 5. 

The example problems indicate inapplicability of the validity 

criteria in regions where a bifurcation (branching phenomenon) occurs 

within the symmetry class used. Thus the most re~tri ctive allowable 

symmetry class yielded the widest range of validity. 

4. 2 Previous Work 

The use of fixed point theorems to establish validity of approxi-

mate periodic solutions is not new, having been used in one form or 

another by Urabe(Z) and Holtzman(4 ), (S) among others, However the 

methods proposed in these works require the pertinent integral opera-

tor to be differentiable in some sense, Thus the bilinear system 

studied in Chapter III cannot be handled by either of these approaches. 

In this work, the operator need only satisfy a much weaker Lipschitz 

or continuity condition. Further improvements over the previously 

mentioned methods result from the use of symmetry prope rties and 

selection of an arbitrary basis for the integral equation. The con-

structive algorithm was also apparently overlooke d in earlier work. 

A ~ecent book of Falb and DeJong(Zl) also contairts application 

of contraction mapping fixed point theorems to problems in oscillation 

theory. The approach is similar to Holtzman's work but makes use 

of the arbitrary basis idea, a procedure which the authors refer to 

as modified contraction mapping. 
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4. 3 Future Work 

Although this work considers only periodic solutions of non­

linear ordinary differential equations, the basic idea of applying fixed 

point theorems to prove · existence for the approximation error should 

be applicable to other types of problems, for example, transient 

oscillations in damped vibratory systems and also oscillations in 

n1ult.i-degree of freedom and continuous dynamical systems. Also, 

rnuch work remains to be done in the area of optimum basis choice. 

Sufficient stability and instability boundaries are determined 

in this work for one special case, namely, the one term harmonic 

balance approximate solution of the bilinear system (3. 1 ). More 

general problems might be handled using the procedure given in 

Chapter II together with results of Caughey and Dicker son (ZZ) in the 

damped case and Borg(Z3 ) in the undamped case. 
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APPENDIX A 

SIMPLE SOLUTIONS FOR THE BILINEAR SYSTEM 

De finition Al: A class QT solution of the bilinear system (3. 1), call 

it x(t), is simple if lx (t)I crosses + 1 at one and only one value oft in 

O:<; ts:T/4. 

Equation (3. 1) allows a QT solution for T={4n+2)1T/W, nan 

integer. Let T take a value from this set. For simple QT solutions, 

ther e is no loss of generality in assurrting x(O)>l, in which case the 

governing equation is 

x + x = P cos wt+ 1-K 

x(O) = 0 

x + Kx = P c os wt 

x(T /4):: 0 

Solving for 0<t<t 1 

' p 
x{t) = 1-K+ [A-l+K] cost+--2-[cos wt - cost] 

1-w 

(A- 1) 

(A- 2 ) 

W'here A>l is the assumed value of x(O). Using the condition x(t
1

)=1 

yi e lds 

(A-3) 

D e noting x(t
1

) by v a nd us i ng (A-2) and (A-3) 
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sin t 1 p {cos wt 1 sin t 1 . ~ 
v = -K + --2 t - w sin wt 1 cost1 l-w cos 1 

:x (t) :: c os /K (t:- t 1 ) + ~ sin /R (t - t 1) 

+ ~ {~os wt - c os /K (t-t 1) cos wt 1 
K-w 

(A-4) 

(~-5) 

The remaining condition is x(T /4) = O. Using (A-4), (A-5) and simpli -

fying gives the following equation for t 1 

(
T ) [ P cos Wt l] 

0 = c os ,/K 4-t 1 1- 2 
K - w 

s:inJR(!-t 1 )~sint 1 [Pcoswt 1 ] w(l-K)P ~ + -K + _..::::;..i. __ __,_ ___ sinwt
1
J (A-6.) 

/K cos tl l-w2 - (K-w2)(1-w2) 

Simple QT solutions a r e the n constructed as follows: For given 

P, K, . and W 

1. All roots t
1 

in O~t 1 ~~ of (A-6) are obtained. 

2. Values of v and A corresponding to each root are compu t e d 

using (A-4) and (A-3), respectively. 

3. The function corresponding to each root and given by (A-2) 

and (A-5) is checked to be sure that it is a s i mple solution. 

The last step is important, since there may be roots of (A-6) whic h do 

not yi.cld solutions. As an example, Figure A . 1 shows a case where 



7.0 

X(t) 

5.0 

3.0 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

-1.0--- -

-3.0 

-73-

\ 
\ 
\ 
\ 
\ 
\ 
\ 

w • . 069 

p • 1.0 

K • 0.5 

r' I 
I 
I 
I 
I 
I 
I 

' I 
~-- ' 

---1..·-----.--­

t • t, 

\ 
\ 
\ I ,_, 

SIMPLE SOLUTION 

----- NON SOLUTION 

' .... ' ... \ .... __ 
\ 
\ 

---t\1---. I 
\ I 
\ I 
\ I 
\ I 

' I \J 

-s.o...._ __________ .._ ______________________ _. 

0.0 

Fig. A.I SIMPLE AND NON SOLUTIONS OF THE 

BILINEAR SYSTEM 



-74-

(A-6) has three roots, only one of which corresponds to a solution. 

The other functions cross Ix I= 1 more than once in 0 :5:: t$ ! and hence 

they are not solutions. 
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,APPENDIX B 

.A CONTRACTION CONST ANT 

Consider the restoring force F (u) for the bilinear system 

shown graphically in Figure B-1. Inspection of the graph reveals 

that: 

1) For z+x and z+y both on segment 3 or both on segment 1 

F(z+x)-F(z+y) = x-y 

2) For z+x and z+y both on segment 2 

F(z+x)-F(z+y) =K(x-y) 

3) For z+x and z+y on different segments 

K_ (x-y) ~F(z+x)-F(z+y) ~K + (x-y) x>y 

K_(x-y) :2!F(z+x)-F(z+y) :2!K+(x-y) x<y 

where K+=MAX[l,I<;] and K_=MIN[l,K]. 

Hence 

{

for · z+x and z+y both 
llK*(y-x) + F(z+x)-F(z+y) II= I 1-K>:: I llx-y II on segment 3 or 

both on segment 1 

llK:.:: (y-x) + F(z+x)-F(z+y)I! ~MAX[ I 1-K*I' IK,::-Kl]llx -yJJ for z+x · 

and z+y on different 
segments . 

· {for z+x and z+y 
· llK* (y~x) + F(z+x)-F(z +y)ll = IK-K,:J JJx-yll both on 

segment 2 

(B-1) 

(B-2) 

(B-3) 

(B-4) 
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The purpose of this Appendix is to determine a suitable a.= a.(r) 

satisfying 

for all x, yE Br' where N 1 is given by (3. 12). Using an elementary 

inequality for integrals 

TT/2W 

jjN 1y-N1x!I s sup lh 1(t, s)l,f !IF(x0+x)-F(x0+y)+K,:,(y-x)lj<ls (B-6) 

Qst:s;~ 0 
2w 

From (2. 55) 

sup lh
1 

(t , s) I :s; ---
1
---

TT ru- I I K,:<TT I 
0 :s;t:s; Zw " K,:, cos 2 w 

(B-7) 

Using x,yEBr' i.e., llxllsr and llYll :::: r, and x 0 =Acosws, the following 

is d educed from (B-4) 

I -1 l+r 
1) For r<A-1 and O:s; s :s;-cos -A . w 

(B-8) 

I -1 1-r TT 
2) For r < 1 and w cos -p:- :s; s :s; 2 w 

(B-9) 

3) Otherwise, that is, L:s;ssU where 

{

..!..cos -l l+r for r<.A- 1 
L = w A 

0 for r~A-1 
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{

I -1 1-r 
-cos -

U= w A 

0 

for r< 1 

for r~ 1 

one obtains 

Combining with (B-6) and (B-7) yields 

where 

- cp(r) = 

CJ={+l 
-1 

0 -

-1 1+ crr 
cos -p;--

'IT 

2 

when jK-K* ! > jl-K,:, I 
when IK-K,:: I s: I 1-K,:: I 

~ .:. 

(B-10) 

(B-11) 

(B-12) 

(B-13) 
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APPENDIX C 

ST ABILITY OF A SIMPLE QT SOLUTION 

OF THE BILINEAR SYSTEM 

The equation of first variation for a simple QT solution x(t) of 

(3. 1) with T = Zrr/O is 

where 

y+f(t)y=O 

1 for O~t~t1 
f(t) = K for t 1 <t~ ;-t1 f(t) = f(t+ ;) 

I for !!.. _t <t~!!.. 
0 1 0 

(C-1) 

(C-2) 

and t
1 

is the only value oft in O~t~1T/20for which lxl=~· Equation (3.1) 

allows QT solutions for 0 =w/ (2n- l ), n a positive integer. 

Since f(t) is. an even function, the stability criteria given in 

Chapter II have a simpler form. In the notation of Chapter II 

(see Magnus and Winkler(IS) page 8) and 4
1 

=0 . Hence, the character -

istic exponents for C-1 are 

(C-4) 

where 
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(C-5) 

Using the results sumn1arizcd in Table 2. 1, (C-4) and (C- 5) it is 

;1 ppa rent t:hat: x(t) is stabl(~ when lu 1 (~)I < l, urn·d:able when I u 1(7)1>1 
;1nd 11nsL1hk wlw11 111 1 (~)1 1 , unlcsH v 1 (l~) "zG~). Since 11 1(t) 

salisfie :-; (C -1) and till~ jntial condiboni; u
1

(0) :d, 1i
1

(0) -.. 0 it lH readily 

obtained yielding 

(-1 +/K) . 
/K 2 sin/K (~ -2t

1
) sin2t

1 
(C-6) 
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APPENDIX D 

FOURIER COEFFICIENTS FOR 

TWO TERM HARMONIC BALANCE 

Consider first 

x
0 

== A cos wt+ U cos 3wt (D-1) 

The precise form. of F(x
0

) where Fis given by (3. 2) depends upon the 

sign of U and upon the number of level crossings at lx0 1 =l per quarter 

cycle (CPQC), i.e., in O~t~;r /2w. There are four possible cases 

shown graphically in Figure D-1. The number and locations of the 

level crossings are determined by the roots of 

Acos 8+Ucos38= 1 (D-2) 

in O ~ 851T. Equivalently (D-2) is written 

3 (A-3U) 1 
cos 8 + 4U cos 9 = 4 U (D-3) 

The roots 9. are called the crossing angles and they are related to the 
1 

crossing times t. where lx0 (t.)l = l by 9.=wt.. If there is only one real 
l l 1 l 

root 9., then there is one CPQC; two real roots gives 2 CPQC, etc . 
l 

that is, 

Let Z . be roots of the cubic equation (D-3) satisfied by cos 9. , 
l l 

Z 3+ (A-3U) z __ l _ _ O 
i 4U i 4U- (D - 4) 

Only roots Z. in -l~Z.s+l are considered since roots outside of this 
l l 

r a ng e correspond to complex values of 9.. In cases where there is 
l 

n"\ore than one root in this interval, let zl be the largest root, z2 the 
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Fig. 0.1 POSSIBLE LEVEL CROSSINGS FOR X0(t) 
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next l a rgest, and Z3' if it e xists, the srnalle st. Then the Z . a nd 0. 

are related by 

one root 

two roots 

three roots, U>O 

three roots , U< 0 

-1 
9 I= cos. Z I 

-1 e1 =cos Z I 

-1 
92 =cos z 2 

- 1 
8 1 =cos z 1 

- 1 8
2 

='IT-COS z
3 

- 1 
8

3
=1T-COS z 2 

-1 el =1T-COS z3 

-1 e2 =cos z 1 

-1 e
3 

=cos z
2 

1 ] 

{D-5) 

Now expanding F(x
0

) in a Fourier series for each of the four 

cases gives 

F (:x
0

) -c a 1 c os wt+ a
3 

cos 3wt +higher har~onic s 

where 

a l = ~{£1 ( 1-K) + A[K+{l - K)T 2 ]+ U{l-K)1
3

} 

a 3 =; {g1 (1-K) + A(l-K)g2+ u[K+(l-K)g
3

]} 

(D-.6) 

(D -7 ) 

and f., g. (i= l, 2, 3) are different in each case. Define functional forms 
1 1 

a(x) = - 4 sin x b(x) = - ; sin 3x l 
(D-8) 
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c(x) = 2x + sin2x d{x) = 2x+ ~ sin6x 

e(x) = sin2x+ fsin4x 

Then the t a nd g. arc: 
1 1 

One CPQC 

Two CPQC 

£1 =a{9
1

) 

£;=c{9 1) 

£
1 

= a(92 )-a{e
1

) 

~ = c ( 92 )- c (el) 

Three CPQC {U>O) 

£1 =a(9 1)+a(92 )-a(9
3

) 

~ = c(9 1 )+ c(9
3

)-c(92 ) 

Three CPQC (U<O) 

gl =b{91) 

g3=d(81) 

g l = b ( e2 ) - b { 8 l ) 

g-3 = ace2 )-d(e 1 ) 

g-1 =b(9 1)+b(e2 )-b{e3 > 

g
3 

=<l(e 1)+d(92 )-d(e
3

) 

Same as (U>O), but change sign of £
1 

and g
1

. 

For an approximate solution 

{D-8) 
cont. 

(D-9) 

(D-10) 

(D-11) 

{D- 12) 
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where S>O, replace A by S, U by A and w by w/3 in all of the preceding 

equations, Then b 1 and b 3 , inste~d of a 1 and a
3

, are obtained from . 

(D-6 ), where 

F(x0 ) =bl cos ~t+b3 cos wt+higher.harmonics 

and x
0 

is given by (D-12). 

(D-13) 
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