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ABSTRACT
PART 1

The energy spectrum of heavily-doped molecular crystals was ‘
treated in the Green's function formulation. The mixed crystal Green's
function was obtained by averaging over all possible impurity disi;ribu-
tions. The resulting Gre_en's" function, which takes the form of an
infinite perturbation expansion, was further approximated by a closed
form suitable for numerical calculations. The density-of-states
functions and optical spectra for binary mixtures of normal naphtha- -
lene and deuterated naphthalene were calculatéd using the pure crystal
density-of-states functions. The results showed that when the trap
depth is large, two separate energy bands persist, but when the trap
depth ié small only a single band exists. Furthermore, in the former .
case it was found that the intensities of the outer Davydov bands are
enhanced whereas the inner bands are weakened. Comparisons with
previous theoretical calculations and experimental results are also

‘made.

PART II

The energy states and optical spectra of heavily-doped mixed "
crystals are investigated. Studies are made for the following binary
| systems: (1) naphthalene-h, and d,, (2) naphthalene-h, and ed,, and
(3) naph’chaléne-%-1'_1_8 and Bd,, corresponding to strong, medium and weak

perturbations. In addition to ordinary absorption spectra at 4° K,
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band~-to-band transitions at both 4° K and 77° K are also analyzed with
emphasis on their relations to cooperative excitation and overall
density-of-states functions for mixed crystals. It is found that thé
theoretical calculations presented in a previoﬁs paper agree generally
g “with experiments except for cluster states observed in system (1) at
lower guest concentrations. These featurés are discussed semi- |
quantitatively. As to the intermolecular interaction parameters, it is
found that experimental results compare favorably with calculations
based on experimental- density~of-states functions but not with those
based on octopole interactions or charge—transfei* interactions. Pre-
vious experimental results of Sheka and the theoretical model of
Broude and Rashba are also compared with present investigations.

=

PART III

The phosphorescence, fluorescence and absorption spectra of
pyrazine-h, and d, have been obtained at 4° K in a benzene matrix.
For comparison, those of the isotopically mixed crystal pyrazine-h,
in d, were also taken. All these spectra show extremelyr sharp and
Well—resqlved lines and reveal detailed vibronic structure.

The analysis of the weak fluorescence spectrum resolves the
long-disputed question of whether one or two transitions are involved
in the near-uliraviolet absorptioﬁ of pyrazine. The "mirror-image
relationship"” between absorption and emission shows that the lowest
singlet state is an allowed transition, properly designated as
'B

sy = 1Alg. The forbidden component 1B2g, predicted by both
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"exciton' and MO theories to be below the allowed component, must
lie higher. Its exact location still remains uncertain.

The phosphorescence spectrum when compared with the excita-
‘tion phosphorescence spectra, indicates that fhe lowest triplet state is
also symmetry allowed, showing a strong 0-0 band and a "mirror-
image relationship’ between absorption and emission. In accordance
with previous work, the triplet state is designated as éBsu.

The vibronic structure of the phosphorescence spectrum is very
complicated. Previous work on the analysis of this spectrum all con-
cluded that a long progression of vy, exists. Under the high resolution
attainable in our work, the supposed vgy progression proves to ﬁave a
composite triplet structure, starting from the second member of the
progression. Not only is the v 4 hydrogen-bending mode present as
shown by the appearance of the C-D bending mode in the d, spectrum,
but a band of 1207 cm™ in the pyrazine in benzene system and 1231 c¢m™
in the mixed crystal system is also observed. This band is assigned as
2v6b and of QYo symmetry. Its anonymously strong intensity in the
phosphorescence spectrum is interpreted as due to the Fermi reso-
nance with the 2y, and vy, band.

To help resolve the present controversy over the crystal phos-
phorescence spectrum of pyrazine, detailed vibrational analyses of
the emission spectra were made. The fluorescence spectrum has
- essentially the same vibronic structure as the phosphorescence

spectrum.
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PART 1
ELECTRONIC STATES OF HEAVILY-DOPED
MOLECULAR CRYSTALS--NAPHTHALENE
I. THEORETICAL

(Accepted for publication in J. Chem. Phys.)



1. INTRODUCTION

The quantum states of solids are characterized by energy bands.
The periodicity of the lattice requires the stationary state wave-
functions to transform like the representations of the translational
group, each associated with the reduced vector k. Solid state phenom-

8 and magnonea4 are conveniently

ena such as excitons, 1,2 phonons,
described within this group theoretical framework. In each case, the
quasimomentum Kk is always a good quantum number and is suitable
for the description of energy systematics. On the other hand, many
important physical systems, such as doped molecular crystals, alloys,
copolymers, and some important biological macromolecules do not
possess translational symmetry. The studies of their physical
properties are usually hindered by the lack of symmetry. However,
when the system does not deviate too much from a periodic system,
theoretical analysis can usually be carried out by setting up the station-
ary state wavefunctions for the periodic system and, thén, allowing
them to mix when the imperfection is introduced. One of the simplest
systems for which this perturbation technique can be utilized is the
system of isotopically mixed molecular crystals.

In the discussion of mixed molecular crystals, two different
cases can be distinguished: (a) infinitely-dilute mixed crystals and
(b) heavily-doped mixed crystals. Case (a) has been studied exten-
sively during the last decade both in theory and experiment. Experi-
ments have been performed to study exciton trapping, % 6 exciton

migration, ? and, more fundamentally, the intermolecular interactions



that are responsible for the entire exciton band structure. 8 Consider-

9-19 mostly based on Koster and Slater'g20-22

able theoretical work,
formulation, was also carried out. This study was facilitated by the
fact that, at very low concentrations of impurities, guest-guest inter-
actions can be neglected. In the absence of such interactions, the
exact site occupied by the impurity need not be specified and thus the
disorder is actually minimized in this case.

For case (b), the designation of guest and host is no longer very
meaningful. Interactions between like molecules must now be taken
into account. The situation is further complicated by the fact that the
Hamiltonian of the system is only defined in an average sense. The
ordering of the guests (or conversely, the ordering of the hosts) affects
the energy spectrum of the system. A complete analysis would have to
involve a statistical averaging of all the possible configurations.

Previous work on case (b) is rather limited compared with
case (a). Broude and Rashba's method, 23 which is based on the
assumption that like molecules at like sites have the same excitation
amplitude is expected to be useful only for equimolecular admixtures.
Craig and Philpott'sm"15 super ~lattice method, while mathematically
more manageable, is limited by the size of the super-cell that can be
handled. Since a finite number of molecules are treated, a finite num-
ber of states are obtained. In addition only discrete compositions can
be considered. In order to approach the true situation, the super-cell
has to be enormously large. The most serious drawback to the latter

approach seems to rest with the basic assumption that impurities are

arranged on a super-lattice in translationally equivalent sets. This




immediately leaves out all the aperiodic distributions in the averaging

process. When attempts are made to remedy this situation, and

bigger cells are chosen, the problem becomes computationally in~

tractable. In actual numerical calculations, Craig and Philpott calcu-

lated only the k = 0 component of the density of states for naphthalene-

hg and d;. They did‘not treat spectra involving shallower energy gaps.
The only expeﬁments to date on concentrated mixed crystals

have been those of Broude and Rashba23 and Sheka24’ 25

on benzenes
and naphthalenes, respectively. Sheka's experiments were carried out
at 22° K. The spectra obtained were rather broad and some of the fine
structure caused by 'cluster states’ typically observed in the spectra
of certain mixed crystals became obscure. Furthermore, in this work
weighed samples with known concentrations were not used. Rather
Broude and Rashba's approximate formula was fit to the spectra in
order to determine the concentrations. Thus, on the experimental side,
additional work using weighed samples at lower temperatures seems
desirable.

In Part I of this series, we consider the general formulation for
isotopically-mixed crystals with various compositions, using the
Green's function method. Exact expressions for the mixed crystal
Green's function are presented in terms of an infinite perturbation
expansion. An approximate formula in closed form suitable for actual
numerical calculations is also given and applied specifically to the
mixed crystals of naphthalenes with different trap depths. Density-of-
states functions and optical spectra for the mixed crystals were calcu-

lated using two different sets of pure crystal density-of-states functions,



one based on Craig and Walmsley's26 octopole model and the other
experimentally determined by Colson et al. 27 In Part II new experi-
mental data on the absorption spectra and emission spectra at dif-
ferent temperatures will be analyzed and discussed in the light of the
theoretical model. |

The purpose of the present work is many-fold: (a) As a pro-
totype of disordered systems, heavily-doped mixed crystals present a
physically amenable system for more or less exact treatment. Under-
standing the electronic states of this system is the first step toward
the understanding of more complicated disordered systems. (b) A
unified theory connecting the electronic states and optical properties
of pure crystals on the one hand and infinitely-dilute mixed crystals on
the other is long overdue. The present investigation will, hopefully,
help fill the gap. (c) Heavily-doped mixed crysté,ls provide additional
detailed information concerning the guest-guest interactions in molec-
ular crystals. An exact theoretical analysis of this system not only
provides a check on the gross density-of-states function but also allows
the individual pairwise interactions to be determined. (d) These
studies also provide answers to the question of whether Davydov
splitting is primarily due to symmetry relations or resonance coupling,
as raised frequently by some of the workers in this field. 2b, 16

Among the general theories of disordered solids, the multiple-
scattering formulation of Lax28 has been the most successful. This

pioneering work was followed by the elegant mathematical analysis of

Yonezawa and Matsubara29 (YM). The present theoretical development



parallels closely YM's work except that their theory is generalized to
the case of multiple-branched exciton bands and particularized to the

problem of isotopically mixed crystals.

2. THEORY

A. Perturbation Method for Isotopically-Mixed Crystals

The system under discussion consists of two types of molecules
with different excitation energies. For dilute mixed crystals, it is
common practice to denote the major component as the host and the
minor component as the guest. However, in the case of heavily-doped
mixed crystals, the distinction between the host and the guest is not
very meaningful. We will simply refer to them as the A-component
and the B-component. We take the A~component to have the higher
excitation energy (e. g., naphthalene with a higher degree of deutera-
tion).

We start with the total Hamiltonian of a pure crystal composed

of A-molecules.

=2 TT vA (1)
i b >y W

g
4
o
H
o
e
[

the Hamiltonian of an A-molecule at site i, and

<
>

the interaction between an A-molecule at site i

and an A-molecule at site j.

When the B-component is introduced as an impurity, the Hamiltonian




becomes

H':EH?+EHB+EZ) VéA-f 2 VBB+EZVAB, (2)
i p P i>3 4 p>q P4 jp P

‘ where H? = the Hamiltonian of an A-molecule at site i
HE — the Hamiltonian of 2 B-molecule at site p
V'%A = the interaction between an A-molecule at site i
and an A-molecule at site j
BB ; ; : ' ;
qu = the interaction between a B-molecule at site p
and a B-molecule at site -
Vﬁ)B = the interaction between an A-molecule at site i

and a B-molecule at site p.

We limit our discussion to the case of isotopically~mixed crystals. In
this case, all the interactions between A and A, Band B, and A and B

can be assumed to be equal, hence:

H’:EH?+EHB+EZ'Vnm 4 ) (3)
i p P n>m
where Yo is the interaction between molecules without making a dis-
tinction between A and B.

The mixed crystal Hamiltonian can be expressed in terms of the

pure crystal Hamiltonian and a perturbation:

H'=H°+Z7tp , (4)
p



_ B A
where tp = Hp Hp

site occupied by the B-molecule. For isotopically-mixed crystals, the

is the localized perturbation acting only on the pg’-

tp's arise primarily from the change in nuclear kinetic energy as a

result of isotopic substitution. Explicitly,

iy ( 11 ) > 8
t == - (5)
p 2 lmp m ; 2

B A/ ip axip
where mp and m A are the masses of isotopes (either hydrogen or
deuterium) in the B-molecule and the A-molecule, respectively. The
xip's run over all the coordinates of the substituted nuclei of the mole-
cule at site p.

In the present discussion, the zero-zero band of an electronic
transition is considered as an isolated Frenkel exciton band. It has

13

been shown = that under the assumption of a localized perturbation,

which is implied in Eq. (4), the introduction of isotopic impurities does
not cause the mixing between different excited states if initially they
are constructed properly to include possible configurational inter-
actions. The existence of vibrational sublevels in a particular
electronic state also has little effect on the pure electronic transition.
In the limit of weak coupling, the vibrational spacings are certainly
larger than the exciton bandwidth. Within this limit it was pointed out

13,16

by several authors that the one-band approximation is very likely

adequate for most purposes.

The eigenfunctions of the pure crystal Hamiltonian can be con-

structed from site functions with Bloch symmetry::30




ik-R.
k) = e la
1

i

where tI)i = ¢;‘ ’Ei ¢>] is the wavefunction corresponding to the excitation
localized at site i. There are as many such '"'site functions' as the
number of molecules per unit cell. These site functions reduce the
Hamiltonian matrix to small blocks characterized by their wave vectors.
Further reduction within the block is not possible except in some
special cases, for example, the k = 0 block. However, in the limit of
short-range interactions such as those encountered in molecular

30

crystals of benzene and naphthalene, Colson et al. "~ have shown that

the factor group operations can be applied to all the k-blocks, and
simple linear combinations of site functions can be used for all the k-
states. The approximation greatly simplifies the theoretical deriva-
tions, as will be seen later in Section 2.C. Using this approximation
for the lowest excited singlet state (*B,y) of the naphthalene crystal

(two molecules per unit cell) the two site-functions are, 31

1 ra 1[5 KRy - Rgy |
K) = 1 [0 (k) +¥,K&)] = - 2

00 = 1o 00+ 800] = —c|2e” Ta v2e” Tl
(6)

. ik-R ik-R, ]
—_ _l_ - - 1 ~ o~ - E; o, I\B :
‘I’Bu(k) e (¥, - ¥,0] = ~ L% e” "% 5 € |8

where |@) is the wavefunction corresponding to the excitation

at a-sites, and

IB) is the wavefunction corresponding to the excitation

at g-sites;
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and the summation is carried over all the a-sites and all the p-sites.

The corresponding energies are found to be

EAu(}_E) = €, + Iaa(g) + IaB(_l;g)
(7)
EBuq:{\) = EA. + Iaa(,l.{\) = I(!ﬁ@'{‘-) ’

2a
where Ioz - and I ap are the modulated sums

of translationally equiva-
lent and inequivalent interactions, respectively. ¢ A corresponds to the
mean of the exciton band. It is also equal to the gas phase transition
energy minus the site shift that is caused by the static interactions
between the molecule and its environment.

We now expand the mixed crystal wavefunctions in terms of the

complete set of pure crystal wavefunctions

v = 2NN + 2K ®)
'y k-
h K') =¥, (k
where |k ) \IfAu(,_)
and &™) = Ip ) .
u

For convenience we have put k = 1§+ for Au states and k = 1{ for B L
states. As a vector, k' may be equalto k but |k') is uniquely dif-

ferent from |k™). The corresponding energies for the 1,g+ and k-

states are

I
m
>
+
2
w
~

Byt =
(9)

(3]
1
]
m
»
+
2
w
S
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. + - _
with e(k’) = Ioear+ IaB and e(k ) = | IozB'

In the derivation of secular equations, we note that tp acts only
on the nuclear part of the Born-Oppenheimer wavefunctions. The fol-

lowing expressions can be easily obtained,

(§’i|tp|<1'?j) =0 if i]
(q:iltp|¢>i> = (A* -A°)5ip+A° o)
A* = (x*|t|x®

A° =(X°|t|)(°> ’

where y* and x° are the nuclear wavefunctions for the excited and
ground states; respectively, of the A-molecule. We drop the site

index because the expressions are independent of site. A* corre-
sponds to the first-order value of the zero-point energy difference
between A and B in the excited state, and A° corresponds to the same
quantity at the ground state. Since the wavefunctions for A and B are
expected to be very similar we can assume that the first-order cor-
rection is adequate and set A* - A® equal to Ep - Ey, i.e., the dif-
ference in excitation energies or siniply the trap depth A.

Notice that if the site shift does not depend on isotopic substitu-

'tion, which is the case in naphthalene8 but not in benzene, b we can
set A = €p - €4, where €p is the mean of the exciton band for the
- B-molecule.

v

With the aid of Eq. (10), the secular equations are found to be
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(E + NpA® - Ek+)f(k ) = {Z) f(k'+)l:p k" -%x') + pB(k k'+)]

(11a)

+ E 107) [ ool - K7) - pﬁug-;g')]}

(E + Npa® - E-)() = 5 f(k'+)[p & -k) - pglk” k'*")]
(11b)

+ 210 oK) + g -1}

-~

-i(k-k')-R
where pa(k-g') = ?e R SG

-i(k-k)-R
=1 = ~ o~ Aﬁ
ppl-K) ;De

N.. = total number of B-molecules.

B

The summations 2 and 2 are carried out over all @-sites and B-sites
occupied by the B?molecules. If we use the mixed crystal ground state
as the energy zero, NBA° terms can be dropped. The solutions of
Egs. (11) would correspond to the exact excitation energies in mixed
crystals.

Several features of the secular equations can be noted.

1. The introduction of impurities not only causes the mixing among
the 1§+ states and the E’ states, but it also causes the mixing
between 1§+ states and ;c: states. For a multiple-branched exciton
band, the full interaction matrix must be used to calculate the

perturbed energy states.
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2. It is apparent that for a single impurity molecule there is no need
to specify whether the impurity occupies the a- or g-site. How-
ever, when more than one impurity is present, the energy states
depend on the exact sites occupied by the impurities. This is
manifested by the fact that the coupling matrix elements among all

k-states depend on whether the impurities occupy «- or B-sites.

We have derived the secular equations using a delocalized
representation. For dilute miied crystals, the corresponding equations

can be converted to a localized set. This is essentially the method of
20-22

Koster and Slater. For example, the energy matrix for dimers
is found to be
.1+
1 -4 % 1 _A eﬂ,ﬁ-fjizelkg
= 0.
-ik". R -ik"-R
Al>r e ~ ~ > e ~ =~ a 5 1
- = . S SR 1 -= P RS
N k+ E-EA+ k- E-E}E- Na.].].}i E_Ek

The upper sign must be used for translationally equivalent dimers, and

the lower sign must be used for translationally inequivalent dimers.

R is the distance between the impurities. Similar expressions were

obtained by Craig and Philpott. 14
In the next section we will use the secular equations (11a) and

(11b) to derive the Green's function. By solving the Green's function

we can calculate the density-of-states function and also the optical

absorption spectrum for heavily~-doped mixed crystals.
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B. The Green's Function Method

A Green's function is conveniently defined by the operator

equation:
G=(E-H)", (12)

where H' is the Hamiltonian of the system. Interms of any complete

orthonormal set {k}, Eq. (12) can be written in a matrix representa-

tion:

Eﬂ (E"H')kkn Gkrrkl = Gkkl . (133.)

Ll

It follows immediately that

£, (k')

Gl_f\kﬂ' = %; W ’ (13b)

where E_ is an eigenvalue of H’, and fn(E) is the expansion coefficient
of the eigenstate |n) on to the basis state l@ , Oor equivalently
f () = (k|n).

Following Goodings and Mozer, 33

we define a weighted density=-

of-states function:

e’ (E) = 1? £ (K)B(E-E ) . (14)

Equation (13b) can then be written in an integral form,

grk’ (E')dE’
f S

GE?S'(E) ) E-E'
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Using the symbolic identity
. =1 -1 .
(E+ie-E') =p(E-E’) +ir6(E-E') ,

the Green's function can be separated into a real part and an imaginary

part:
gkkl(E’)dE'
Re Gy ./(E + i€ p 15a)
we®+ie) = p [ = —— e (
Im Gkk'(E + ie) = wgkk,(E) : (15b)

The energy states of the condensed system can be best des~
cribed by a normalized density-of-states function D(E) defined as the

fraction of states per unit energy or
D(E) = %EG(E E) -

Through Eqs. (14) and (15), D(E) is related to the Green's function by

the expression
D(E) = 1%1' Trace g = }%—ﬂ Im Trace G(E + ie) . (16)

If we identify the {k} set as the delocalized basis set in Eq. (6), the
familiar k = 0 selection rule implies that the transition probability to

an eigenstate |n) is equal to the square of its projection onto the k= 0
state times the square of the transition moment of the k = 0 state. Since
two Davydov components exist, we define two optical absorption func-

tions I, (E) and I, (E) as
Ay By
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B *p + + _
Iy (B) = 2060 = 00t (" = 000 (E - Ep)
(17)
L . - )
Ip (E) = 21057 = 0 (= 0B(E-E,) .
The product of I(E) and the square of the transition moment will yield
the actual spectrum. Using Eqs. (14) and (15), the I(E)'s are related

to Green's function by the expressions

| .

(18)
-1 - -

Iy (E) and In (E) will give the "normalized" spectra of mixed crystals
polarized along Q and ac, respectively.

The foregoing expressions with the exception of Eqs. (17) and
(18) are quite general. {k} can be any basis set, either localized or
delbcalized, and H can be any Hamiltonian, either for a pure or a
mixed crystal. Now we are in a position to use the result and to apply
it to our problem. We can easily recognize that the secular equations
(11a) and (11b) involve nothing but the inverse of the Green's function
in a E-represéntation. These equations can be rewritten as

22 (E - H), . f(K) = 0
) (E - B)got()

Ca)

2 Gl EKY =0
or Eckk()
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where G@: = (E = E}-{‘)GK' = Aﬁ’ ) (19)
with At = A = % [pg -k + pall- K]
Ap=vit = Ayt~ = 2 [p (k-K) - p,(k-K)]
S M ¥ A L G

and the summations are over all 15" of both exciton branches. Substi-

tuting Eq. (9) into Eq. (19), we have

Gl-{kl = [E - EA = E(E)] ﬁkkl & Akk' . (20)

Ll Faal

We further define
bkk’
e - = G, (k)S, ., (21)
k' E-e A - €k) O~k

It can be noted that G, (k) is the Green's function for a pure crystal
consisting of A only. Such a crystal possesses periodicity, i.e., the
quasimomentum HKk is a good quantum number. Mixing between the
k-states then comes from the perturbation At Equation (20) can be
converted by matrix inversion to yield the tr;: Green's function. With

the aid of Eq. (21), we find

thknl = GO (K)GH' + GO (E) E AkAEnGE”Ef . (22)

-~

This is exactly the matrix form of the operator equation:
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1 1 1 1

Bl " E-m0CE-m0AE-T

Equation (22) can now be solved by iteration, and we have

Gy = Go&)dyqr + % G, (K)p(k-k") G, (k)

+ (%) Go (K) ;2’ Ple-K")G, (£")p(k" - )G, (K1)

-~

. (%) 3 Go (E) Ek?' p(E = _1,(\”)(}0 (5")})(]}{,_” » E'”)

o
X Go(k'")o(k'” -k )Gy (k) + ... , (23)
where pl-K) = pyk-X') + pglk-Xk')

1

or plE-KE) - pB(E'k') ’

depending upon whether |1§) s 'lﬁ' ) belong to the same branch or not.

At this point, it is necessary to average over all impurity dis-
tributions to obtain an average Green's function. It is exactly this
complication that makes the heavily-doped mixed crystal much more
involved. Similar problems involving the electronic states of a random

lattice occupied by two types of atoms have been taken up by Yonezawa

and Matsubara. 29a

The corresponding problem for lattice vibrations
was also treated by Leath and Goodman34 using essentially the same
formulation. However, only a simple lattice with but one molecule per

unit cell was considered in any of these papers. For most organic
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solids of interest the very existence of multiple excition branches
deserves more careful consideration. In the following section we will
proceed with the averaging process to see what complications, if any,

arise for the case of multiple exciton branches.

C. The Average Green's Function

To find the average Green's function, it is necessary to evaluate

the s-moments of the p's defined as
M (P1: Pos B2 - R ) = (p(R1)p(R2)P(Rs)- - - p(p ) _— (24)

with  p,=k-K, p, = K'-K’, p, = K" -K"’, etc.

Fa T

In terms of these moments, the average Green's function ( Gkk’ ) is

found from Eq. (23) to be:

<Gk,,§'> = Gy (k)5kk’ + 5 G (&) M, (k-K') G, (k')

2
+ (&) 009 I Mk, K1) 6, &) Gy )

+ (%) G (k) Z}E M (k krl K"’ -k”, k”-k')
kn krrl L ol o~ N

Go (") Gy (K") Go (i) ++++ . (25)

The average over all impurity distributions can be effected by
replacing the sum over all impurity sites by the sum over all lattice

sites multiplied by the impurity concentration:
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2 — CBE ,

{¢} n
where {¢} means the average over all possible distributions of ¢ im-
purities. In doing this, we must take special care in the cases where
impurity sites coincide in the summation of Eq. (24). We will evaluate

directly some moments of p to illustrate the general approach to this

problem.

For s = 1, two cases can be distinguished:

1. |§) , IE’) belong to the same exciton branch,

M, (p,) = (E exp(—ip\l—f\tE )+ 2 exp(—igl-gm )>avg "
¥ ¢ o m B
o B
where ¢ impurities occupy a-sites and m impurities occupy p-sites

with ¢ +m = CBN, the total number of impurities. Replacing the

impurity sum by a lattice sum, we have

M, (PJ) = CB.I:%I exp ('121 . Bna) + %; exp (—igl . Enﬁ)] ’

where n, and nB run over all ¢-sites and B-sites. Therefore,
Ml(gl) = CBNG(PJ) . (26a)
II. |k}, |k’) belong to different branches

M, (p,) = ( iza exp (—ip\l . Bla) . EBeXP (‘ikx ) EmB) ’ avg

= CB[}; exp (-igl . Bna) - 1% exp (-—i;)~1 . Bnﬁﬂ = 0, (26b)
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Similarly, for s = 2 we have three cases:

L |k, |k'), and |k”) all belong to the same branch

M, (D1, P) = ([a exp(-igl'ﬁla)+ Eﬁ exp|-ip; R :H:E exp 192 Bﬂa)

- (T exp|-1urpo) By |+ Z o] @R By D g

o Mg
22 ‘: ‘R, +p,°"R,» :|
+{ e :XP ( A, P “la)
E b [ ‘R ‘R } 2 2 [ ‘R
* a 3exp ( A£a+ D2 nt) mB;theXp (21 AmB

R Bug)] + 2B oo Byt 2B ] e

Replacing the impurity sum by a lattice sum,

Mz(gu 22) = CB{nZa exp [;i(£1+22)' Bna] ¥ %38 exp 'i(g1+£z)' Enﬁ]}

cefD z)exp[.l(pl R, + B "“a)] M exp['l(Pl B,

a a nnB

" 53 Bk Y ‘R,
+ Pa Bnﬂ):] +n3¢nl'3 exp 1(21 EnB + P Bnﬁ):]

Using the equality:



22

li%'z!exp (-igr Ena) + ?ﬁ exp (—ig . Enﬁ):l l:%; exp (—i£2 . EncJ

2 -ip, - R ]
+ o exp| -ip nnﬁ)

o a

= %3 exp [—i(gﬂgz)-‘r}n ]+ §B exp [—i(gﬁgz)-l}nﬁ]

+ 22 Z,;exp -i(pl-R +P* R :J +2227 exp -i(pl-R +p.°
n_=n | ~ Ana ~c A AT A

o o Dong | o

=

)

4
2

> 5 ( : } 350 "_-( e S
+nB#n,BexpL1 21 Enﬁ+22 Enﬁ) +anaexp_1 Py +22

&
o)

3
™
I~

we have

Mz(E_n Rz) CBNG(Rl“'Ra) L CZB[ N6(21)N6(22) = N5(21+Rz)]

CEN"3(p,)8(p;) + (Cg - CHING(R,+p,) . (27a)

IL. |k), |k') belong to the same branch and |k”) belongs to the
other

Mz(plapz) & ( E exp -igl'El )+ E eXP(‘iE1‘R H

P.E exp (-122 . E‘Qa) - g exp (—i;ni2 . Emﬁﬂ )avg

- "o B

Using the same method, we find that

Mz(gngz) =0 . (27b)



23

1. |}_g) . |§") belong to the same branch, and IE’) belongs to the

other

Mz(RnRz) = (I:? exp(—iP~1 .Eﬂa) - nz%.exp (—iR1 4 Emﬁ)

a

D onln,)- B ool i)
[ﬂaexp ip, Bna mB exp| ~1p, Emﬁ_ )avg

-

= (Cg - CpIN8(R,+p2) - (27c)

It is clear that these expressions can be combined into a single
formula if we define the delta function in a broader sense. As an
example, take the case of the naphthalene pure crystal where the
eigenstates in the Au branch can have the same k as the eigenstates in
the B, branch. In the normal sense 6(k-k') =1 if k =k’ no matter
whether |k), |k’) belong to the same branch or not. Using this nota-
tion, we will have to treat all possible cases separately as we did

above. However, we can define our delta function as
8(Dy+Pa+Pa+ P g) => (P +Py+Py+- - - p JH -0 (28)

where H[ (-1)"] is the Heaviside step function and n is the number of

p's that connect k in one branch and k' in the other; so

H[ (-1)"
H[ (-1)"]

0 if n = odd
1 if n

even

By this definition, we can combine Eqs. (26a), (26b), (27a), (27b), and
(27¢) to yield a simple expression for Ml-and M,



24
M1(21) = CBNb(El) (29a)
M, (p1s P2) = CEN*6(p1)8(p,) + (Cp=CRING(R,+ps) - (29b)

It can be seen that M, in case (II) is equal to zero because 6(p.) = 0,
&‘)({pﬁ1 +Bz) =0, and M, in case (III) is equal to N((','B—CZB)ﬁ(R1 +P.)
because 6(21) = 6(22) = {.

Formally, Eqs. (29a) and (29b) are analogous to the expressions
obtained by YM for the electronic state of binary solids composed of
two types of atoms. Physically, we can say that the existence of two
branches of exciton states increases the number of intermediate states
to which the exciton under scattering can go. Furthermore, in addition
to the normal conservation of momentum for the simple case of one
molecule per unit cell, the factor-group symmetry must also be
retained (vide infra). In Fig. 1, we illustrate all these different situa-
tions diagrammatically by drawing the possible scattering routes. The
correspondence between systems with one exciton branch and two

exciton branches can be readily seen.
29a -

To proceed with the general s-moment, we follow YM nd
define a "'restricted’ lattice average as
{ Y(21)Y(.22)Y(23) s Y(BS» ave
s
=z)22...z>(i)exlo(.i2 b, R ) )
Ny =0, =Nge + + #0g t=1 N

where ny #n, # ny.-. =n_ means that all n;'s are different from one

s
another. Two possible forms of Y's are involved
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Y (p) = Eexp(-ip-,\n ) -2 exp(-ip-ﬁn J ;
~ Dy ~ al g ~ B

depending upon whether Il‘g) , |1}{~' ) belong to the same branch (p = k- k).
The signs in front of the exponential depend on whether R n is Ea or
BB. They also depend on whether Y is Y' or Y.

This definition immediately yields the following relation:

expy, []E ozj( Y(p j) ) avg}
(31)

- (expL[iZ) a;Y(p,) + ]‘sz;j 2 aian(Ri +,12j) i } )avg

where expy. is the "leveled exponential” introduced by Kubo, 43
expL(?xi) =1+% +%x, +°

+ XXy + KXg + oo (32)
FTEXXy e,

with each term containing only the first power of any X;e Equation (31)
enables us to express the s-moment of Y(s > 1) by a sum over various

products of the first moment of Y. The result is
(Y(R)Y(@,) - Y(Pg)) g

- (-0° 2 Hl-p-1)1] Yy @upPog* P By (83)

m
where Y, is the first moment of Y with its argument equal to the sum
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of the im p's in the m—tll- compartment of a particular partition. 2 is

{m}
carried over all the possible partitions {m}. Notice that LE:J i, =68
_ m
Careful examination of the Y, 's results in the following conclusions:

(i) If there is an even number of p's connecting k in one branch and

k' in the other,

m
Y,

%31 exp l}i(glm TRom *Rapy 7 Eim) ' Enajl

+* %; expl:"i(glm+£2m+23m+' ’ .'P..im) . BIIB]

- NG(P}m Py *Ram*o e Rim)

(ii) If there is an odd number of R'S connecting k in one branch and

k" in the other,

Y

%3! exp 'i(glm""gzm TRap o Rim) ) Ena]

- ?B exp[—i(glm+22m+23m+- = le) . Ena}
=90 .

If we again define the delta function in a broader sense as in Eq. (28),

we can use a single formula for all the cases,

m
Y, = N6(21m+9.2m+23m+'“2im) i (34)

Formally this is again equivalent to the results of YM. 29a

A comment should be made at this point. Although the present

discussions are limited to the case of two molecules per unit cell, with
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special reference to the naphthalene singlet, the results we have
obtained so far can be extended to more complicated systems such as
benzene with foﬁr molecules per unit cell. The crucial assumption
that has to be made is the one we used in Section 2. A; namely, that

the exact crystal wavefunctions can be approximated by a simple

linear combination of site functions as a result of weak translationally
equivalent interactions. It can be neted that the first factor on the
right-hand side of Eq. (28) has to do with the translational symmetry of
the lattice, while the second factor has to do with the interchange sym-

metry of the lattice. In the "restricted” Frenkel limit, >°

the basis
functions in Eq. (6) are constructed so that they belong to the irre-
ducible representations of both the translational group and the inter-
change group. Equation (28) simply states that a scattering route is
allowed if the product of the characters of these irreducible repre-
sentations (or states involved in the scattering processes), i.e.,
1"(_1’{\)1"*(&’)1‘(1‘5”)1"*(1’5”’ ): -+ contains the characters of the totally sym-
metric fepresentatiohs of both the translational group (i.e.,
p= k-k'+k” =K 20 = 9) and the interchange group (i.e., n = even).
This is a general rule and is suitable for all the multiple-branched
exciton bands.

For molecular crystals that do have strong translationally
equivalent interactions, the assumption that factor group operations

can be applied to all the k-states is no longer valid. The wavefunctions

would be (for two molecules per unit cell)

¥ () = J—;‘—‘[Agg, DY) + Bl DY
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where the j's denote different exciton branches. Although the formula-
tion presented so far would still be applicable, the lattice sum now

takes the following form:

m s 5 5 :
Y, Qi *Bagt " Pipg) = {f? Ak, DA, 1A, 1A, §") - - -
(4

- l}i(le+£2m+ “**Pim) By

|+ Z s 00, 178, 190 1) -
al B

exp l}i(glm+22 m** " Rig) Enﬂjl } :

No simple expressions can be written. The A(k, j)'s and B(k, j)'s would
have to be evaluated in order to do further calculations. Fortunately,
most low-lying states of molecular crystals seem not to fall into such
categories.

To relate the moments of p to the moments of Y, we further

define,

(XEIX@IXQS) XD 00

e 2324 ee 2 (ﬂ:)exp(-ii pt'Eﬂt) ) (35)

ﬂ,#ﬂz;ﬁ---#ﬂs =1 =

where %} is the sum over all impurity sites and ¢, =€, L, means that
all E ﬂt's are different.
The relation between the moments of X and the moments of Y

can be easily established:

(XEIX@2)" X ) gyg = Cpl YOIY®) -+ YR ) g - (36)
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An expression similar to Eq. (31) now relates the moments of p to the

moments of X:

{ expL[%_) ajp(gj)} ) avg
(37)
= Z; o - EZ; . . s ° . 86 ®
(expLI;j a]X(EJ) + e ala]X(21+R]) + )avg
Equations (33) through (37) would enable us to evaluate the various
moments and the average Green's function. The final expressions of
the moments can be conveniently given in terms of the cumulantszga

through the following equations:
2 a.p(p- = o) -
(expp, 2/ @;0(p})) 5yg = expy|{expy, ?a]p(g]) Ll - (38a)
The s-cumulant is, in turn, given as

(P(R1)P(Bz)' . 'P(gs)) a ™ PS(CB)NMB* +Pgbee s RS) » (38b)

where PS(CB) is given by a generating function

o0

log[1 - Cp + Cp exp(x)] = SZ=)1 P (Cp)x®/s1 , (38¢)
for example,
P,(Cp) = Cq
P,(Cp) =Cg-Ch
Py(Cg) = Cp - 3CH + 2C

- = 2 i3 - 4
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The function PS(CB) can be viewed as a probabilistic weighting func-
tion and the delta functions contain the "selection rules’ of scattering.
As shown in the earlier sections, for multiple-branched exciton bands
in the ''restricted' Frenkel limit, no complications involving the Ps's
result; however, the delta functions will have to be modified to account
for the conservation of factor group symmetries. Using these equa-

tions, the average Green's function is found to be:
(G = Gol) Sy + (&) B NRLC) G0 (G ()
+(B) oy {Ettcp) 0,090, 090,00)
+ NP, (Cp) G, (k) E G, (k")G, (E'a
(&) oy {NSP:«: 5 Go (G, ()G, ()G, ()
+ N'B,(Cp)Py(Cp) Go (k) Z1 Go (G0 (K)o ()
+ N°P,(C)P5(Cp) Go () ? Go (") G, (K')Go (')

+ N’y (Cp)P;(Cp) G, (k) kE Go () Go (K") Gy (')

+ NPS(CB) G, Qt\) kE" %?u Go (l{\” )Go(l,{\”' )GOQ_{\' 9 +-++ (39)

Notice that any summation %:/ includes all the k-states in all the

Eal

branches.
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A diagrammatic method in which each expansion term is repre-
sented by a diagram drawn in momentum space has been developed by

Edwa,rds36 37

and Klauder. Equation (39) is depicted diagrammatically
in Fig. 2. We have represented the true Green's function by a heavy
horizontal line and the free propagator G, by a thinner line. Each
vertex is associated with a polynomaial PS(CB), where s equals the
number of interaction lines connecting the impurity (represented by a
cross) and the exciton line. Each interaction line is associated with a
momentum transfer p = k, - k,, and since the net momentum transfer
to a single impurity is zero, each vertex also carries a delta function
Nb& (g 1+ Pa ¥ P s). The expansion can thus be written down easily by
enumerating all the possible diagrams.

These diagrams have the general form of an exciton line with a
series of self-energy parts. At this point we define a "proper’ self-
energy part to be a self-energy part that cannot be split into two parts
by cutting the exciton line once. It can be shown that by replacing the
last free propagator G, with the true propagator { G), it is now only
necessary to sum over all proper self-energy parts. This is demon-
strated diagrammatically in Fig. 3. Further simplification can be
achieved if all but the first free propagator G, in each term is
replaced by the true {(G). All the proper self-energy parts that can be
broken down into two proper self-energy parts by a closed line cutting

through the exciton line twice can be eliminated. This is again shown

in Fig. 4. Equation (39) now takes the simpler form
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(G(K)) = Gy(k) + G, (®)Z*(K)(G(K)) . (40)

This is the familiar Dyson equation. 38 Z*(lg) denotes the sum of all the
irreducible proper self-energy parts and is called the exciton self-

energy. Alternately, we can rewrite Eq. (40) as

1

The argument E is introduced here to denote the E-dependence.
In order to obtain expressions that are more symmetric with
respect to both components, the first constant term in the self-energy

can be absorbed into Gg‘- (k, E). If we define
Z(, E) = Z(, E) - ACy

Eq. (41) now becomes

1
E 0 CAEA = CBGB - €(E) = E(E&E)

(G, E)) = (422)

The self-energy, thus defined, can be obtained from Fig. 4 by

removing the first diagram from the summation:

25, E) - (§) 20 T (o, B

A ’ "
5 (ﬁ) NPS(CB)§ f? (G(K', E)) (G(K", E))

" A)*NP4(c )2 T T (G, E)) {G(K", E)) (G(K"", E))
N B E’ E’I k”'
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+ (A)4N2P§(c YLD 8(k-K +k” -K"")
N K’ k" k"' _—

5(!5!_}-{\”_'_5”' _E)(G(E” E)) (G(E”) E))(G(EH I, E)) g

We have thus extended YM's results to more complicated sys-
tems using a physically reasonable approximation, namely the neglect
of all but short-range forces in the molecular crystal. Equations (42a)
and (42b) then become the master equations with which the energy
spectrum of mixed crystals can be calculated. It can be seen that the
self-energy includes terms that arise from multiple scattering by a
single impurity [ such as the first, second and third terms in Eq. (42b)]
and also terms that arise from inteference scattering by the multiple
centers [ such as the fourth term in Eq. (42b)]. The former bear no
explicit k-dependence and hence can be calculated if the density-of-
states function is known, whereas the latter have to be evaluated from
the dispersion relation. A word of caution has to be made about the
fourth term and similar terms associated with two impurities in the
expansion. According to oui' definition of the delta function we draw
all the possible scattering routes in Fig. 5. Terms to be included in
the sum are those given in Fig. 5a and terms to be excluded are those

in Fig. 5b. (We assume k = }_{".) If we define

hER) - T K" R (Gact, B)) +Z " Riau, B))

Ll

e

£,(E,R) = ;Egr SR (gt B)) -2 X "B(ap, E)

k

Cal
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we can rewrite the fourth term as

4
9-) NPACR) 2 2 2 8(k-k'+ K’ -k"’) 5k’ ~k" +k"" k)
N B kl kll klrl I -~ ~ ~ ~ ~

(G', EN{GK", E))(GK"',E))

ik-R 2
Zie” “°f,(E,R.)IL(E,R)

NG 1
- (§) wricp ﬁ[ge

ik R,
+§3 e” TIL(E, Ry |L(E, ggi)l"’] ,
~i

where Be is the separation between two translationally equivalent im-
purities and Ei is the separation between two translationally inequi-
valent impurities. The necessity of using two f-functions to associate
with dimers is rather unique for multiple-branch exciton bands. As
has been shown in Section 2., A, energy expressions for translationally
equivalent dimers and translationally inequivalent dimers are differ-
ent. The way we define our delta function will automatically take care
of this.

YM29b have obtained the second=-order self-energy by summing
all the diagrams associated with two impurities. They also showed
that at low concentrations the second-order self-energy gives the
energies of dimers with variable separations consistent with the
Koster-Slater equations. A parallel treatment of the present problem

would lead to the same conclusion, both the translationally equivalent
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dimers and inequivalent dimers being obtained in the same limit.
Expressions similar to those we have derived in Section 2. A can be
shown to be included in the second-order self-energy.

Although the exact expression of the average Green's function
can be written down in an expansion, no closed form has yet been
obtained. This is quite expected in view of the fact that we are trying
to describe a highly discontinuous function by an analytical expression.
In the next section, we will derive an approximation for the average

Green's function and apply it to actual numerical calculations.

D. Approximate Green's Function and the Calculation

of the Naphthalene Mixed Crystal Energy Spectrum

If We substitute the expressions for the PS's in terms of C A

and Cg into Eq. (42b), we have
25, E) = £e,0, [}ﬁ%‘ (G(K', E))} + £C,Cp(C,-Cp)
1 ’ 2

+ A'C,Cp(1-6C,Cp) [—1{7— ;2: (G(K’, E))] ’

AHC,Chn)
+—AB VT T sk +k" k") 5k’ -K"+k"’ -K)
N2 ’ k” k”’ ~ N A~ ~ ~ o~ ~ ~

(G, BN (G, E»(G@",E»]

= AC,CK(G(E)) [1-A(CH-CAXGE)) +---] , (43)
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where

1
E-CpreaCptg @)K, Ey - (49

(GE)) = FZ(GL, E) -1

~~

AN

This suggests an approximate closed form of the following type:

C,Cpt
2 E) = GEN T (Cq-CoIA 7 £ (45)

If we investigate the asymptotic behavior of the self-energy, we
find that in the limit of zero bandwidth [ e(k) = 0], the exact self-energy
is given by

2
CACBA

E) = = = - (46)
E-Cp€)-Cpép+(Cp-Cp)A

To compare Eq. (45) with Eq. (46), we have to assume that the self-
energy is k-independent. Then, when e(k) = 0, (G(E)) *-E-C A€A
-Cpép -2(E). It follows immediately that £ = Z(E). An approximate

self-energy is then obtained:

) C Cp&
(GE)™ + (Cx-Cy)A+ XE)

XE) (47a)

With this approximate self-energy, Eq. (44) now becomes

(G(E)) = %I" E') Wm‘y " (47b)
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Equation (47) has been derived by Taylor“" for the lattice vibration of

mixed crystals with mass defects. It was also obtained by Onodera

and Toyozawa40 for the corresponding electron problem. YM29c

also
showed that when the first-order self-energy was expressed as a con-
tinued fraction, the lowest approximation agreed with Eq. (47a).
Some features of Eq. (47) can be noted.
(i) It satisfies the dual symmetry, i.e., the equation is unchanged
under the transformation: C A €* CB’ Aer-A, € AT ER
(ii) The mixed crystal problem can be solved if the density-of-
states function is known. The dispersion relation is not needed
in this approximation.
(iii) It is exact when e(k) = 0 and also when A = 0.

(iv) It is exact when C, — 0. In this limit

B

_ CBA”
(GEN™ - A

There is a pole that corresponds to isolated impurities given by the

following relation:

1 b
Eve, -y " € =0 -

2|
L

Our problem now is to solve simultaneously Egs. (47a) and
(47b). Putting (G(E)) = a + bi and 3(E) = ¢ + di, we obtain four

equations:
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DO(E’)(E - CAEA - CBEB - E' - C)

4 = %} (E = CAEA - CBGB = E’ -C)z + dz (483.)
0
b = 5 DiE'M (48D)

E' (E - 6A€A = CBEB- E’ - C)‘ + d‘
_ =cx - d
a = _Xr'l'-)_fﬁx. (48C)

b = i;‘r%g_ , (48d)

where D° (E’) is the density-of-states function for a pure crystal and

"
I

il

y = d[ (Cg-CpA + 2¢]

Two sets of D°(E’) are used, one obtained by Craig and

Walmsley26 27

and the other by Colson et al. They are shown in Figs.

6 and 7. Notice that the Davydov components are located -77 cm™ and
81 cm™ from the mean of the exciton band according to Colson et al.
and =103 cm™ and 53 cm*?! according to Craig and Walmsley. To

solve Eqs. (48), a trial and error method was used. A set of trial
values for ¢ and d were inserted into Egs. (48) and using Newton's
method, a new set of values for ¢ and d were obtained. The iterations
were carried on until these values converged. Using the results

obtained in Section 2. B, the density-of-states function and the optical
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spectrum were calculated from the following expressions:
" - b
D(E) = -y Im(G(E)) = 7

I(E) = 1 Im(Gy, (E))

1 Im X(E)
T [E-Cpep -Cpep - Eo -Re HE))® + [Im X(E))*

d
(E-CAGA-CBeB-EO -C)a +d2

I
A=

’

where the E, 's correspond to the energies of the Davydov components.

We have assumed that the two Davydov components are infi-
nitely sharp. In reality, it is observed that the b-component is
somewhat broad. This has not been taken into account in our calcula-
tion. The actual spectrum ma.y‘be obtained by incorporating the actual
line shape of the pure crystal into the calculated spectrum.

The exact I(E), D(E) must satisfy some important sum rules.

They are
[~}
[ IE)E =1 (49a)
=00
f..,o EIEME = Cp€p + Cpep + Eo (49b)
and
o0
/ DE)ME = 1 (49¢)

=00
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[- -]
f_m ED(E)IE = Cpe, +Cpep - (49d)

It is easy to show that our approximation I(E), D(E) also satisfy these
sum rules. Equations (492a) and (49b) state that the approximate I(E)
and D(E) are correctly normalized and Eqs. (49b) and (49d) state that

they satisfy the '"rule of the lever. "

3.  RESULTS AND DISCUSSION

A. Calculations Based on Experimental

Density-of-States Functions

As we have discussed in Section 2. D, the mixed crystal
density -of-states function and optical spectrum are completely deter-
mined in the first approximation by the overall density-of-states
function (including both exciton branches) and energy gap. The
assumption that self-energy does not depend on k has the effect of
smearing out the density-of-states function that would otherwise be
very irregular due to the existence of cluster states. 40 This approxi-
mation would suffer severely if the energy gaps were large. For
isotopic substitution, the largest possible energy gap is 115 cm-?
corresponding to the case of naphthalene-h, and d,. Since the band-
width is known to be of the same order of magnitude, all the isotopic
mixed crystals fall within the limit of shallow traps. The approxima-
tion is, therefore, expected to be good.

In Figs. 8, 9, 10, and 11, we show the results of our
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calculations for different energy gaps, using the experimental density-

of-states function by Colson et al. 21

Here the density-of-states
function is taken as a 186-point histogram. Each energy interval
corresponds to 1 cm™*. At fixed energy gap and concentration a par-
ticular energy, usually chosen close to € A OF €pp is used as a starting
point. After the values of ¢ and d were calculated from Eqgs. (48) by
iterations for that energy, they are corrected for energy change and
used as the trial values for the next energy interval both higher and
lower by 1 cm=!, Using this procedure, we can scan the whole region
where the density-of-states is non-vanishing. In situations such as
naphthalene-h, in d,, two bands exist and two starting points are
needed to cover both domains; otherwise one would be sufficient. The
convergence is excellent except at band edges. This was also noted
by Taylor. = However, we did not use his procedure and stopped
wherever the density-of-states was sufficiently small.

In Fig. 8, where the energy gap corresponds to that for
Cg H; -Cg Dy, mixed crystals, we notice that for all concentrations the
eigenstates of the mixed crystal are grouped into two bands. This is
due to the moderately large energy gap involved. Each component
forms its own exciton band with little disturbance from the other.
Davydov splittings similar to those of the pure crystal arise naturally
as a result of interactions between like molecules. The density~of-
states attributable to each component is such that the integrated area

39

is equal to the concentration of the component. This is consistent

with the fact that the total number of states is not altered by a unitary
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transformation. Since the shapes of the density-of-states functions in
Fig. 8 are all quite similar, the bandwidth increases with concentra-
tion, bearing roughly a vC-dependence similar to the findings of

Onodera and Toyozawa4o and Taylor. 89

It can also be noted that the
mean of the individual exciton bands is shifted relative to the mean
energies € A and €g of the pure crystal exciton bands, indicating the
existence of a ""repulsive interaction’ between the bands. Eventually

as C — 0, these interactions will move the ideal mixed crystal level
8

to the isolated impurity level causing the quasiresonance shift.

Lifshitz18 has recently given an extensive discussion of the
systematics of the energy levels and behavior of band edges in dis-
ordered systems. In particular, he predicted that when the perturba-
tion is strong enough to split a state from the main band to form a
localized impurity state, the edge of the main band will move to
higher energies as more impurities are introduced. This pred.icfion
is in agreement with our results.

The Davydov components are seen to be broadened by disorder-
ing. For the inner bands, the broadening is much larger due to the
proximity of the top of the lower band and the bottom of the upper band.
Since the ac component is assumed to be at the bottom of the band, it
is broadened to only one side whereas the b component, which is inside
the band, is seen to be broadened on both sides with more broadening
on the side that has larger density-of-states. Recently Sommer and
J ortner16 have suggested looking for the background absorption in the

main band induced by isolated impurities as a means of monitoring the
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band structure. It would appear from Fig. 8 (and the later figures as
well) that little can be learned about the overall band structure by
looking at disorder-induced spectra even at high impurity concentra-
tions.

If we turn our attention now to the intensity distribution of the
Davydov components, we observe that the outer bands are enhanced
and the inner bands weakened. This agrees qualitatively with
Sheka'525 experiment and Broude and Rza.shba's23 approximate for-
mula. The integrated absorption intensity attributable to each compo-~
nent divided by its concentration is plotted in Fig. 12. It can be seen
that these values converge nicely to the corresponding values for dilute

mixed crystals (as C — 0) as given by Rashba‘59 equation:

o
I=|—l _1&_2______
E-E(0) | k [E-e(®]®

| P lsen]”
E-E(0)| |E (E-E')

The fact that the outer bands are stronger and sharper indi-
cates that they are relatively undistributed by the presence of the
impurities. This, of course, is due to the large energy difference
between the perturbing and the perturbed states. As the bandwidth
increases so does the Davydov splitting until it reaches the limit of
full Davydov splitting manifested by the pure crystal. According to

27

the density-of-states function of Colson et al., the Davydov
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components are located near the bottom and the top of the band. This
results in a near VC-dependence for the Davydov splittings. Broude
and Rashba's allegation that the sum of the Davydov splittings must be

equél to the Davydov splitting of the pure crystal is certainly not con-
sistent with the present calculations. In fact, we will show in Part II
of this series that our experirhental results agree with our calculation
rather than with Broude and Rashba's.

Notice that at low concentrations both the theoretical optical
spectrum and the density-of-states function are rather structureless.
This is probably the most vulnerable region as far as the applicability
of the theory is concerned. Experimental data also indicate that al-
though the theory predicts a reasonably good band edge it does not, as
expected, show the fine structure observed in the optical spectrum.

Finally, our numerical resulAts indicate that the calculated 1(E)
and D(E) remain correctly renormalized and their first moments equal
to CAéA + CBeB + E, and CAEA + CBEB, respectively, within a few
wavenumbers. Thus the sum rules in Egs. (49) are satisfied. This
provides a gbod check on the iteration.

Proceeding now to shallower trap depths, we show in Fig. 9
our calculated resulis for naphthalene-h, and gd,. The energy gap in
this case is 74 cm™. It can be seen that two bands attributable to
naphthalene-h, and gd, merge together when the h, concentration is
larger than 30%, and are barely separated at lower concentrations.
The b-polarized absorption has a peak in the region 300 cm~? ~ 350 emes,

which is reminiscent of the 1{3\-polarized absorption of pd,; but it also
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extends throughout the entire band and shows a small hump in the h,
region, roughly corresponding to the b-polarized absorption of h,.
The ac-polarized absorption behaves quite similarly. Compared with
the results of h, in d,, the inner components are here weaker and
broader while the outer components are stronger.

If we use Izyumov's19 method to calculate the isolated impurity
states, we find that E , = 180 cm~* for hy in 8d, and E, = 291 cm™ for
Bd, in hy. (The energy reference is the same as in Fig. 9.) The
former corresponds to a bound state and the latter to a virtual state.
It is interesting to note that, as the concentration of h, is lowered to
less than 10%, the h, band tends to separate from the gd, band and to
form a bound state. On the contrary, when the concentration of gd,
is lower than 10%, the entire pd, band will be embedded into the h,
band and produce a virtual state. The last graph in Fig. 9 is quite
similar to Fig. 6 of Sommer and Jortner's paper16 except that here
we are talking about virtual states involving large impurity concentra-
tions. The behavior of the spectrum at lower concentrations of gd,
is such that the peak at 305 cm~! will move to lower energy and con-
verge to 291 cm=* (a virtual state), and the peak at 265 cm=* will
move to 277 cm-! (the b-component of h, ). Virtual states are fre-
quently difficult to locate. Our calculation suggests that by following
the b-component of the gd,, which is relatively strong, and extrapo-
lating to C — 0, we can locate the virtual state. Of course, this
depends on the accurate determination of the band position, which may
not be so easy for the naphthalene b-component due to its inherent

broadness.
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As we proceed to a smaller energy gap, we find that the inner
Davydov components almost disappear. For naphthalene-h, and ad,
with A = 51 cm~?, only two absorption peaks are apparent in Fig. 10.
The assignment of each peak to each component has to be made very
carefully. We first examine the isolated impurity states. They are
found to be 169 cm~* for h, in @d, and 267 cm™ for ad, in hy. The
former is a bound state being only 1 cm-! from the main band edge;

-the latter is a virtual state lower in energy than the b-component of
bg (277 cm=~t). With this in mind, we can start interpreting the first
and the last graphs in Fig. 10. In the first graph, the sharp b-
polarized absorption is almost pure ad,, the broad ac-polarized
absorption indicates complete mixing of the ad, k = 0 state with the
h, impurity states. The mixing is so complete that it is no longer
legitimate to speak of the excitation of ad, or hy alone. The same
interpretation can be made for the last graph. The sharp ac
component is almost pure hy and the b component now becomes a
mixture of the h, k = 0 state and the ad, states. In between these
extremes, both the ac and b components show the effect of mixing
and broadening. A gradual transition from the excitation of one mole-
cule to the other occurs over the whole concentration range. The
widths of the individual components clearly bear out this fact.

Further reduction in the strength of the perturbation results in
a situation not very different from that of the pure crystal. In Fig. 11,
we see that for naphthalene-h, and gd, (A = 21 cm™), both the density-

of-states function and the optical spectrum approach those of the pure
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crystal. Two sharp lines are predicted. These lines shift gradually
from the Davydov components of the pure h, to those of pure gd,. In
the limit of the dilute crystal, no bound state or virtual state will be
observed.

The various types of behavior of the self-energy Z(E) are
illustrated in Figs. 13a to d. It can be seen that the imaginary part
of Z(E) is larger in the impurity region and smaller in the main band
(Figs. 13a and c). Since we are effectively calculating the response
of the crystal to wave-type excitation, it is not surprising that the
damping of the excitation is larger in the impurity band, which is
formed by localized excitations, as compared with the damping in the
main band. In Fig. 13d, we notice that when Re Z(E) = 0, Im Z(E)
has its maximum. This behavior is somewhat common. The same
type of resonance peaking was also observed in the similar studies

involving lattice vibrations. In fact, Tay10r39

observed the same
behavior (see Fig. 3 of his paper) in his calculation of the lattice
dynamics of mixed crystals of gold and copper.

The behavior of the real part of the Green's function, which is

by definition the principal value of the following integral,
drls ’
F(E) = p [ 2EAE (50)

is illustrated in Figs. 14 and 15. A useful analogy>? can be used in
the discussion of the general behavior of this function. If D(E’) is

understood as the charge distribution function and E - E’ the distance
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between the point of observation and the charge, the function F(E)
then, by analogy, is the potential function. For a density-of-states
function that consists of only one band (Fig. 14), there is only one
source. At distances much larger than the dimension of the source,
the source can be regarded as a point charge and the potential is
inversely proportional to the distance. As the distance is reduced, the
potential increases and reaches its maximum near the band edge. On
approaching the center of gravity of the distributed charges, the
potential decreases due to the mutual compenéation of the charges in
the outer region and finally equals zero at the center of gravity. Thus
the shape of the F-function can be understood in the region E > the
center of gravity. By changing the repulsive potential to the attractive
potential we can use the same argument to explain the behavior of the
F-function in the region E < the center of gravity, where the F-function
is inverted.

When two bands exist, the behavior of the F-function resembles
that of the potential due to two sources. By superimposing two F-
functions similar to Fig. 14, we have the situation shown in Fig. 15.
The F-function is seen to possess two maxima and two minima due to
the presence of two bands.

Notice that the F-functions were not calculated from Eq. (50),
but rather obtained directly as solutions of Eqs. (48). The agreement
between the results obtained from Eqs. (50) and (48) is evidence of

the self-consistency of Eqs. (48).
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B. Calculations Based on the Octopole Model

Calculations were also performed using the density-of-states

26 This was

derived from the octopole model of Craig and Walmsley.
done (1) to study the effect of the density-of-states function of the
pure crystal on the density-of-states function and optical spectrum of
mixed crystals and (2) to compare the results obtained by solving Egs.
(48) with those of the incomplete machine calculations by Craig and
Philpott. 14 The octopole model of exciton interactions in naphthalene
predicts a density-of-states function that is rather asymmetric. As
shown in Fig. 16, this asymmetry is carried over to the mixed crystal
density-of-states function. It can be seen that in Fig. 16 the density-
of-states functions for 10% hg /90% d, and 10% dg /90% h, are quite
different. In the former case, the 'density—of-states function attribut-
able to the guest (hy ) is much broader and extends closer to the main
band edge, while in the latter case the density-of-states attributable
to dg is farther from the main band. This is believed to be due to the
larger density of states on the higher energy side of the band center
and, consequently, larger repulsive interaction felt by the guests when
they are above the band. The same effect was also predicted in the
theory of impurity levels in dilute crystals. Generalization of this
effect to the heavily-doped mixed crystals will predict a narrower
impurity band for guests above the main band.

To compare with calculations based on the experimental density-

of-states function, &t we have shifted the position of the band center

from the octopole' model to higher energy so that the two Davydov
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components coincide with those of Section 3. A. It should be pointed
out that theoretical calculations of the band structure deal only with
the intermolecular interactions that lead to the exciton band without any
reference to the absolute position of the band center. In principle, the
merits of different models for exciton interactions should be weighed
by using the band center as the common energy reference. From this
point of view, if we accept the absolute position of the band center
obtained from hot-band spectroscopy of Colson et al., = the octopole
model is already erroneous (by 26 cm-!) in predicting the absolute
positions of the Davydov components, although their relative positions
given by the Davydov splitting are in good agreement with experiments.
However, since the position of the band center is not directly observ-
able physically, another approach would be to use the position of the
lowest Davydov component as common energy reference. In doing
this, we are effectively comparing the shape of the density-of-states
function in the region spanned by the Davydov components. This

~approach was adopted by Sommer and Jorf:ner16 and by Hanson et al. 8

and will also be used here.

In Fig. 17, we have plotted the relative positions of the
Davydov components of hy /d, mixed crystals as a function of con-
centration for the two different models. It can be seen that the
Davydov components are rather symmetric for the experimental
density -of -states function in the sense that the plot has roughly a
center of inversion. On the other hand, the octopole model gives a

highly asymmetric plot. In the idealized situation where the density-
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of~states function is symmeftric and the Davydov components are
located symmetrically with respect to the band center, the plot will
have an exact center of invérsion. Knowing the Davydov components,
we can use this method to gain SOme information about the shape of
the density-of-states function. In this respect, it is an extension of
the meth_()d of the va,riatioﬂ of energy denominators used by Sommer
and Jortner16 and by Hanson et al. 4 Both methods were based on the
same principle that the optical Spectrm:n is completely determined by
the density-of-states function and the energy gap.

The intensity distributions can be discussed by u$i11g the "'rule
of the lever' contained in Eqs. (49). Compared with the calculations
based on the experimental densitymofwsf;atesj Tunction, the ac-polarized
absorption is stronger in the h, region and weaker in the d; region.
The p\»-polarized absorption behaves 'oppositely. This providés another
criterion for comparing the experimental results with different types
of density-of-states functions.

Unlike the corresponding lattice problem, 41 complete machine
calculations of the electronic levels of heavily~doped mixed crystals
based on Some-kind of dispersion relations have been lacking. The
only data available for comparison are those of Craig and Philpott. T
Since their calculations were made for super cells with relatively
small dimensions (2 x 2 x 2), their results can only be regarded as
suggestive. in Fig. 18, we compare our calculations with those of
Craig and Philpott. 14 The agreement is actually belter than expected

considering the fact that bniy a few of all the possible guest
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distributions were included in their calculation. Notice that we did not

compare our results with the "average' energies obtained by Craig and

Philpott. Such an averaging process, although intuitively appealing, is

not justifiable. What we observe experimentally is not a single level

corresponding to the average energy but rather a broad absorption due
to all the levels of all the different guest distributions.

As shown in earlier sections, the cluster states that are im-
portant when the energy gaps are large and the concentration of one of
the components is small are only treated approximately in Eqs. (48).
To study the detailed features of the guest band, several approaches
are available:

(1) The present formulation may be improved by including higher-
order self-energies. This calculation will become much more
involved and may not be feasible for practical purposes.

(2) Refined machine calculations must be done especially at low guest
concentrations. As mentioned by Craig and Philpott, 16 their
calculations were very confusing in this region. Some of the
features in the guest band cannot be followed with certainty. A
more complete calculation would certainly improve the situation.

(3) Koster and Slater's equations for isolated cluster states or its
asymptotic form involving larger gaps42 may be used and
extended to higher concentrations by assuming that only broaden-

ing occurs. As was pointed out by YM29 %

and by Lifschitz,
these isolated cluster states formed the low concentration limits

of the true cluster states. In the regions where the present
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calculations fail to show the detailed structure of the guest band,
gualitative discussions can be made in terms of these isolated
cluster states. This will be discussed more thoroughly in con-

junction with our discussions of the experimental results.

C. Some Comments on Broude and Rashba's

Model Sheka's Experiments

According to Broude and Rashba'523 simple model, the posi-
tions of the optically active levels in a heavily-doped mixed crystal are

given by the following equation:

= 2 g (51)

where € is the "ideal mixed crystal" level (or the exciton band center)
of component i with concentration Ci’ and ep is the energy difference
between the Davydov component p and €;- Using the present notation,
aa(g) -1 OIB(Q) for naphtha-
lene crystals. Since two Davydov components exist, two equations can

we have EAu = Iaa(g) + Iaﬁ(g) and eBu =1

be written. For a binary system, each equation is a second-order
equation of E. Two solutions, E Ap’ EBp, will give the excitation
energies of A and B respectively. Thus the theory always predicts
four sharp lines in the optical spectrum without taking into account
any broadening due to disordering.

Furthermore, the theory also fails to account for the exciton

interactions that cause the quasiresonance shift in the limit of dilute



54

mixed crystals. According to Eq. (51), when C A approaches unity
(CB — 0) EApz €p + € while EBp = €g. The single-impurity level
is predicted to be the same as the "ideal mixed crystal’ levell
Conceptually, what Broude and Rashba's model really amounts
to is a model in which the mixed crystal is considered as a virtual
crystal consisting of two non-interacting but interpenetrating crystals
of A and B, each possgssing perfect lattice symmetry (including both
the translation symmetry and the factor-group symmetry). Davydov's
formulation for pure crystals is then extended to this type of idealized
mixed crystal. The results, thus obtained, are quite expected: a
"scaled-down' Davydov splitting due to the increased ''lattice' para-
meter and eventually, at zero concentration, the ideal mixed crystal
level without quasiresonance shift. In this connection, Craig and
Philpott'sM method is an improvement over Broude and Rashba's in
that it takes into account some disordering by allowing random im-
purity distributions within the supercell. However, the translational
symmetry among the supercells is, obviously, an artifact. This
"residual"” symmetry is removed in the present formulation.

24,25

Sheka's experiments are difficult to assess at this mo-

ment because of the uncertainty involved in the determination of the
compositions of his samples. We will defer detailed discussion until
a later publication of additional experimental results from this
Laboratory. It is sufficient to mention two of the problems inherent

in Sheka's analysis:
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The ei's were determined from Broude‘s43 method Qf vibronic
analysis. This method has been criticized by Nieman and
Robinson. s In this particular case, €; was determined for
naphthalene-hy to be ~31,530 cm™, which is even lower than the
isolated impurity level of naphthalene-h, at 31,542 cm=!. Accord-
ing to Ha11éon et al. ? and also Sommer and Jortner, 1 it should be
afounc_i 31,556 cm. |

To circumvent the difficulties in Broude and Rashba's formula at
both Cp, —0andCy =0, Shelen nesed ot €h, 2nd €; hada
linear dependence on the concentrations. Although this modification
allowed some superficial consistencies ‘petween theory and experi-
ments involving the naphthalene-hg absdrption bands, it also

added to the inconsistencies involving the naphthalene-d, bands.
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FIG. 1. Possible scattering routes contained in M, for (a) single~
branched exciton band and (b) double-branched exciton band.
Route (1) corresponds to 6(p;)5(p2) =1, and route (2) cor-
responds to 6(p, +p,) = 1. The definition of the delta function

used here is given in the text.
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FIG. 2. Diagrams representing the expansion of the true propagator

in terms of the free propagator.




63

Yom

p ST

W]

p IR



64

FIG. 3. Diagrams representing the expansion terms to be summed
if the last propagator G, in Fig. 2 is replaced by the true
propagator (G) .
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FIG. 4. Diagrams representing the expansion terms to be summed
if all but the first propagator in Fig. 2 are replaced by the
true propagator ( G).
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FIG. 5. Possible scattering routes given by 6(k -k, +k, - k,)
x 8(k, -k, +kg ~k) according to our definition of the delta
functions. Terms to be summed are those in (a) and terms

not to be summed are those in (b).
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FIG. 6. Density-of-states function obtained experimentally by
Colson et al. 2T The two Davydov components are repre-

sented by two heavy vertical bars.
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