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ABSTRACT

He J. Kushner has obtained the differential equation
satisfied by the optimal feedback control law for a
stochastic control system in which the plant dynamics
and observations are perturbed by independent additive
Gaussian white noise processes. However, the differentiation
includes the first and second functional derivatives and,
except for a restricted set of systems, 1is too complex .to
éolve with present techniques.,

This investigation studies the optimal control law
for the open loop system and incorporates it in a sub-
optimal feedback control law., This suboptimal control
law's performance is at least as godd as that of the
optimal control function and satisfies a differential
equation involving only the first functional derivative.

The solution of this equation is equivalent to solving

two two-point boundary valued integro-partial differential
equations. An approximate solution has advantages over

the conventional approximate solution of Kushner's equation,

As a result of this study, well known results of
deterministic optimal control are deduced from the analysis

of optimal open loop control.
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INTRODUCTION

Since the notable contributions of Pontryagin,
Bellman and Kalman to the field of deterministic control
theory, researchers have wondered if some of these same
concepts could be extended to the field of stochastic
control theory. 1In particular, there has been considerable
interest in the area of stochastic optimal control theory.

Historically, the works of Floremtin L1- [2]

and Wonham
advanced the state of the art of stochastic optimal control
theory for a restricted set of systems. A system of a
more general nature was studied by Kushner'[3]. His
investigations culminated in the derivation of a functional
differential equation for the optimél feedback control
law. The purpose of this treatise is to expound upon the
results of Kushner.

Stochastic control theory is concerned with the control
of dynamical systems which in some sense are random, [2]
The physical system to be controlled is called the plant.
Although the output of the plant of a deterministic system
is the state of the system, the plant output in general is
not a realizable Markov process and consequently is not
the state of the stochastic system., Appropriately, the
state of a stochastic system is the probability density
function of the plant output., The plant éutput will be
referred to as the plant variable,

If the density function of the plant variable is
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derived from only the statistics of the plant, it is known

as the a priori density function since theoretically it

can be computed "off line". The state of the system may
be updated if real time observations are taken of the plant

variable., If such is the case, this g posteriori or

conditional density function of the plant variable, con-

ditioned on all past observations is the state of the system.
In this investigation, two types of contpol laws [311 are

discussed. If the state of the system ié determinéd

using the observations, then the control law, which is a

functional of the state, is called a feedback or closed

loop control law. On the other hand, if the state of the

system is mathematically independent of the observations,

the control law is called an open loop control law,

Consequently, given the open loop control law, the control
at each instant of time can be determined a priori. Such

a mapping is called a control functicn.

Because it is intuitively obvious that the plant
can be controlled better if the control law is feedback,
the author investigates the optimal feedback control problem.
The formulation of the problem often found in the literature
and presented in this dissertation is as follows. The
plant and observational equations are perturbed by independent
additive Gaussian white noise (4] processes, The criterion

for the optimal feedback control law is to minimize a

performance index - the expected value of a functional of




the state and the control law., For this model of the
system, Kushner €53 derived the integro-partial difference
equation of the a postericri density function. Bucy (38,391
and Mortensen [33] obtained an equivalent equation by an
alternate method. In [3] Kushner deduced the functional
differential equation for the optimal feedback control

law, Alse in [33] \Mortensen rigorously derived such

an equation, again for the alternate method, Since then,

the prbblem'of gfeat interesf has beeﬁ»the Solutibﬁ of the
functional differential equatioh.

Florentin [1’39] derived the partial differential
equation for the optimal feedback control law based upon
perfect observations. This equation is more difficult to
solve than the well known Hamilton-Jacobi equation (el of
optimal control theory. However, the problem presented
by the functional differential equation is avoided. Another
probleﬁ which‘simplifies the complex feedback equation arises
if the system is linear and the initial state is Gaussian.
Then the a posteridri density function is Gaussian for all
time and reduces to the Kalman-Bucy filter [7]. in which
the conditional mean is a sufficient statistic. Wonham (2]
utilized this fact in deriving the optimal feedback control
law when the performance index is quadratic. His results
show that the functional differential equation can be re-
presented by a finite number of ordinary differential

equations.
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Other analytical or numerical results are lacking
because of the complexity of the functional differential
equation. A feeling for this difficulty can be seen when
the conditional density function is represented by its mean
and central moments. Then the control law is derived from
an integro-partial differential equation of an infinite
number of variables, This method was investigated in [3]
and [8].

The pufpose-of this invéstigatioﬁ‘is to stﬁdylthe
functional differential equation derived by Kushner (3] of
the optimal feedback control law and its solution and to try
to find an engineering approximation to it that would advance
the state of the art of stochastic control theory. In
Chapter I the model of the system is described, the optimal
feedback control problem is formulated, and the feedback
equation is derived.

The solution of the functional differential equation is
discussed in Chapter II. The "classical" problems of
Florentin and Wonham are presented. Approximations that
were inspired by Wonham's solution are given and are shown
to suggest a study of the optimal open loop control problem.

In Chapter III the optimal open loop control problem
is solved in terms of quantities analogous to the Lagrange
multiplier (costate variable) and the Hamiltonian of
deterministic optimal control theory. When there is no

dynamical noise, these quantities are shown to be identical
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to each other and to imply the cancnical equations.

A suboptimal feedback control law, discussed in
Chapfer IV, is motivated by the previous two chapters,
It has the features of the usual approximations with
the advantage that nonlinear functions do not have to be
truncated in a Taylor series. A numerical example
demonstrates the performance of the control law.

The impact of this investigation on the field of

stochastic control theory is presented in Chaﬁter ¥,



I. FORMULATION OF THE OPTIMAL FEEDBACK CONTROL PROBLENM

1.1« Introduction

This chapter is concerned with the presentation
of the model and the optimum criterion of the control
system. The model is characterized by the plant and
observational equations that are perturbed by independent
Gaussian white noise (4] processes, Historically,
Kushner (53 derived the equation of the evolution of
the state of the system - the a posteriori density
function of the plant variable. Consequently, this
conditional density function is used in defining the
performance index of a control law as the expected
value of the "cost" of a random run or job. Appropriately,
the optimal feedback control law is defined as the control
law which minimizes the performance index, and a derivation
of the functional differential equation it satisfies is
presented. Finally, the performance index of this
feedback law is shown to be, as expected, at least as

good as that of the optimal control function.

1.2. Iodel of the System

Let x(t) be an n-vector where 0 < t < T for
a fixed T. Then assume {x(t)} 4is an incremental

stochastic process with the following structure:

8x(t) = m{t,x(t),u(t))a + G(t,x(t))sw(t) + 0(aA%) . (1-1)



Equation (1~1) is known as the plant equation, and

x(t) is referred to as the gutput of the plant or the

plant variable. Here u(t), the control, is an n, -vector,

1
and w(t) is an nz-vector. The stochastic process

{w(t)} 1is a wienernLévy [zl process with unit variance
parameter, i.e., w(t) - w(s) ~ N(0,I_ |t - s|). This
2

process has stationary, independent increments [4,9]

and is of a more general class of processes gcalled
(4,91

Brownian motion

The n3—observational vector y(t) of the plant
variable has the property that { fg v(s)ds } is
an incremental stochastic process that is described via

the following definition., If =2z(t) & fg y(s)ds, then

§zl%) = hilb,xt®)]a + E(t)ev(s) + 0la®) . (1-2)

Here v(t) is an ny-vector where fv(t}l 4s &

Wiener—Lévy process with unit variance parameter and is
‘independent of the {w(t)} process,

Equations (1-1) and (1-2) comprise the equations
defining the model of the system. For infinitesimal A,
they are known as stochastic or Ito difference

(9,10,

equations By dividing them by A and formally

letting A — 0, they may be written symbolically as:

x(t) = n(t,x(t),u(t)) + G{t,x(t))(+t) (1-3)



y(t) = h(t,x(€)) + k(t)n(t) . (1-4)

The processes {C(t)} and {n(t)} are independent
gL

Gaussian white noise processes with autocorrelation

l
functions [4] I 8(t -~ 7) and I_ &8(t - 7), respectively.

In (1-1) +through (1-%) +the functions G, h, and
K may include the control u(t) explicitly, but it

was omitted without loss of generality.

1.3, A Posteriori Density Function

O0ften in control theory and in this investigation
one ig interested in controlling the present output of
the plant. Because of the noise present in the model
of the system, the plant variable, in general, is not a
realizable Markov process and thus is not the state of
the system., Therefore, before the control problem
can be formulated, the state of the system is defined.

Assume that the a priori probability density

function of x(0) is 171(x). Define

e

P(t,x)dx = Prob. [x(t) edx | y(s) 0<s < t] .

Then P(t,x) is the a posteriori or gonditional density

function of x(t) conditioned on all observations up

to time +. Kushner €3] showed that P(t,x) is a
larkov process. Appropriately, the a posteriori density
function is called the state of the system.

From (1-1) and (1-2) it follows £3] that P(t,x)



satisfies the integro-partial difference equation

sP(t,x) & P(t + 8,%) - P(%,x) = £, (t,u(t))P(t,x)A

+ (82(t) - h(t)a)Tr(t,x)B(t,x) + 0(a%)

with P(0,%) = T{x)

where:

£(t,u(t))e & n(t,x,u(t)) v,

+ % trace {G(t,x)G(t,x)'vxvx'-]

and its adjoint

£ (tyule))e 8

v, [n(t,x,u(t))+]

+ 39 T (v, 71604, %)6(4,x) T+ 1)

such that

!

.fA(x)£B(x)dx_ _f£+A(x)B(x)dx

when A(x) and B(x) vanish fast enough as |x|— e,

o 8 s(t)e 8 s(t,u(t))s  and

£.0 8 £.04) & 5 (5u(8))s

when the arsguments are obvious,

_’_—\_1.1..* Tq—1
R(£) = [K(EIK(E)"] » which is assumed to exist,

(1-5)

(1-6)
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r(t,x) & R(t)[n(%,x) - h(t)] , and
h(t) = [h(t,x)P(t,x)dx .

Dividing (1-5) Dby 4 and formally letiing

a8 >0, (1-5) may be written as

Po(t,x) = £.P(t,x) + (y(t) - h(£))Tr(£,x)P(t,x)  (1-7)
with P(0,x) = T(x) .

Equations (1-3) and (1-7) are not differential
equations in the usual sense, but are called stochastic

(9,101

or Ito differential equations

1.4, Tormulation of the Optimal Policy

1.4.1. Determinineg the Criterion

A fairly general class of deterministic optimal

control problems has a performance index of the form

b
fo f(s,x(s),u(s))ds + g(x(t)) .

The control u(s) is limited to some prescribed
set Q(s) of admissible controls, a subset of
Euclidean n, -space. This statement will be omitted
for brevity in further discussions.

Because x(s) in the stochastic system is a random

variable whose density function satisfies (1-7) , a
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natural criterion for selecting the optimal control

is to minimize
T

gxp [ f tis, wlel u sl + elzlry) (1-8)
0

where Exp 1s a suitably defined expected value operator.

That is, (1-8) is defined as

B [fonf(s,x.u(s))P(s,}:)dxds )

0O<sT1T< T

+ fg(x)P(T,X)dx :l % (1-9)

Appendices A and B show that (1-9) is equivalent
to

9 :
S, Jremuenaemas + fetoamnax (1-10)

where
Q (s,x) = £,(s,u(s))a(s,x) Q(0,x) = T(x) .

It is evident that a control function and not a feedback
control law minimizes (1-10). This control function

is called the optimal control function.

What is more desirable, as is intuitively obvious
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and as will be shovm in 1.5., 1is to select the
optimal control u(t) as a functional of the state
of the system - the a posteriori density function.

The control law 1is then closed loop. [11]

1.4.2, Performance of Feedback Control

Let T(%,P(t,x)) be a control functional of
P(t,x). Then the performance index of the feedback

control law T is

Ex T ‘
lg,x,e,P(8, P(s,x)dxd
y('rg) [fo f (s,x,T'(s,P(8,x)))P(s,x)dxds

O<T1<?

o+ f g(x)P(’i‘,x)dx]

where u(s) is replaced by T(s,P(s,x)) in (1-7)

Consider the imbedded system which starts at time t
in a state o(x). Define C(t,»;') as the performance
index of the control law T for such a system., Then

by the technigue of invariant imbedding (12-14]

E i
c(toit) & y(7) [ft [ £(sx,T(s,P(5,%)))P (5, %) dxds

t=7<T

+ fg(X)P(T.x)dx] (1-11)
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Exp TEA
= Flex; (e P(s,2) ) )P{s,x)dxd
(1) {./; u/. g, % s g% S xds

tsT<tHA
Exp )
+  y(T) ./. ~/.f(s,x,P(s,P(s,x)))P(s,x)dxds
t+AST<T THA

-+ fg(s}P(T,x)dx] }

Exp
= 6Z(t)[:U/}It.X.P(t.@))m(X)dxA + C(t+d,+50;T)

+ O(Az)]

where §p 1is defined by (1-5) .
Before expanding C(t+A,p+dp;T) , the first
and second functional derivatives are defined. [15]

Let o , ?1 , and &2 be functions. Then the

first functional derivative of the functional F(w)

with respect to ¥ is

' ) 1im F(@+a$1) - Fle)
F (m)(#l) .
_ o—>0 o

o=

It follows from [15) that F'(w)(*) is a linear
operator., The second functional derivative of the

functional F(e) with respect to Ql and ¥, is

(1-12)

{1-13)
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linm F' (ptad, ) (¥.) - F'(w)(¥,)
P (o) (4,0%,) & 2 1a L (1-14)

Hence F'(m)($1,-) is a linear operator, and thus

F"(9)(*,+*) 1is a bilinear operator.

Thus by Taylor's expansion (1-12) becomes
Exp
C(t,»;T) = 8z(%) ff(t.x,l‘(‘c.ro))ao_(X)dxA + C(t,0;T)
+ Ct(t,m;r)a + C'(t,005T) (8ep)
+ 3G7 (4,037 (59,50) + 0(a%) }
= Jff(ﬁ,X,T(ﬁ,@))m(x)dxA + C(t,9;T)
+ Cy(tymiD)A + G (%,0:T) (£, (%,T(%,0))n)4
+ % trace [R™1(4)C"(t,03T) (r(%,x)o,r(t,x) e)] A
2
+ 0(a°) . (1-15)
Equation (1-15) follows from the linearity properties
of the functional derivatives and fron (1—5) y (A-2)

and (A-3).
In the 1imit as A—0 (1-15) implies
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~Co(tamsT) = [£(5,x,T(,5)Jo(x)ax + G (4,0:T) (£,(4,T(%,0))o)
+ % trace [R™I(£)C"(t,03T) (r(t,x)m,r(t,x) )] . (1-16)

From (1-11) it is obvious that the initial condition

for (1-16) is C(T,0;T) = _fg(x)m(x)dx s

1.4,3. Ovotimal Feedback Control

Thus C(t,»;T") , the imbedded performance index
of a control law TI' , satisfies (1-16). The problem
of interest, however, is to derive the feedback control
law that minimizes C(t,piT). Such a control law is

called the optimal feedback control law.

Define the performance index of the optimal feedback

control law

A Min
J(tyo) = T C(t,p:T) (1-17)
Let ¥ Dbe the optimal feedback control law and let
{T'(s,*) = =2(s,*) | t s<T} . Then independent of T(t,+)

J(t,p0) = C(t,p;T") « Likewise, J

-_
A

g =Cg» I =C

and J" = C" . Hence (1-17) and (1-16) imply

Min
=3 (o) = r(t,m);Jff(t.x.r(t.m))m(x)dx

+ J(tﬂ{)) (-‘:_I_(tsr('tn@) )CD)
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+ % trace [R'i(t)J"(t,m)(r(t;x)m,r(t.x)'a)] (1-18)

with J(T,0) = f—g(x)o(x)dx .

Equation (1-18) , which was derived by Kushner in
[3], is the functional differential equation of the
optimal feedback control law for the system of 1.2.

Its solution is discussed in Chapter II.

1.5. Why Feedback Control?

Feedback control is desired because it is intuitively
obvious that the state of a system can be controlled
better if real time observatiéns of the plant variable
are utilized in determining the control rather than
implementing a control function. This obvious but
heretofore unproven fact can be shown via an alternate
definition of J(t,w) .

Let S = {so,s ---,sm} be a partition of [%,T] ,

1'
and let «, be a point in the subinterval [sk,sk+1] .

Define o 2 fogragseessay o3 s and with P(t,x) = »(x)

let
A ™ Min Exp m-1
A(S,a) = T ulay ;) sz(ay ;) 2:~/}Tak.xgu(ak))P(ak,x)dxgsk
i=1 k=0

+ fetxIPlay,_,xax | .
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lim
Then define J(t,») A Sc[%,T] A(S,a0) when the limit

(defined in Appendix A) exists. The 1limit i1s denoted by

MEixnp T
u(7),y(1) Jf ~/.f(s,x,u(s))P(s,x)dxds +-/é{x)P(T,x)dx (1-19)
%t

t<T7<T

with P(t,x) = o(x) .

The operator HNEixnp represents the sequences of
operations Min Exp and symbolizes the structure of
A(S,a) .

By the technique of invariant imbedding

5 MEixnp t+A
J(t,ep) = u(7),y(71) [ Jf f(s,x,u(s))P(s,x)dxds
t<T<T t

T
+ ~/;+AJ[}(s,x,u(s))P(s.x)dxds +~/é(x)p(T,x)dX]

MEixnp t+A
= ( )'s ( ) g f( » g ( ))P( ’ )d- a
utz'rs¥+z j; f S,X,Uu(s Sy, X Xas

MEixnp T
+ u(7),y(7) £{m;x, P(s,x)dxd
utlis¥s$ [j;+AJr (s;x,;u(s) )P(s,x)dxds
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4—./é(x)P(T.x)dx] %

Eixnp
u(r),y(r)
t<T<t+HA

i

t+A
J(t,m) ./; ~/}‘(S,x,u(s))P(s,x)dxds

+ J(t+A,@+6@)£

Min DExp

u(t) sml{%) 3ff(tsxsu('t))ﬁp(x)dxﬂ

+ J(t+a,0ts0) + O(Az)§ (1~20)

where &y is defined by (1-5) .
By analysis similar to that in (1-15) , (1-20)

implies

Min
" Jt(tlﬁﬂ) = U—(t) ;ff(tnxyu(t))@(x)dx + J° (t,cﬁ)(£+(t,u(t))cp)

+ 3tracelR™T@ I (t,0) (2(t,x)o,r(t,x)Tw)] ¢ (1-21)

with J(T,0) = ./é(X)P(T,X)dX .
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By (1-18) and (1-21) J(t,») can be defined

by (1-19) . Therefore, because of the relation

(1-21) implies by induction

Min EXP iz
J(t,: (7) y(1) f(s,x,u(s))P(s,x)dxd
(t,»n) = ? T) y(T [ JQ ‘/” x,u(s s,x)dxds

t<y<sT

+fg(x)P(T,x)dx] ,

the greater of which by Appendices A and B 1is the
imbedded performance index of the optimal control
function.

Thus, as has been conjectured, the performance
of the optimal feedback control law is at least as good

as that of the optimal control function.
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II. SOLUTION OF THE OPTIMAL FEEDBACK CONTROL FUNCTIONAL

DITFERENTIAL EQUATION

2.1. Introduction

For the system presented in 1.2, the optimal
feedback control law satisfies (1-18). This equation

6]

is analogous to the Hamilton-Jacobi equation of
deterministic optimal control theory. Because the latter,
the simpler version, is difficult to solve both
analytically and numerically, it is an extremely arduous
task to solve the former, more complex version. Florentin's
solution [1] shows that (1-18) reduces to a partial
differential equation when the observations are perfect.
Wonham's results show that the functional differential
equation reduces to a finite system of ordinary differential
equations when the system is linear and the performance
index is quadratic. Other systems for which (1-18)
reduces to a finite system of ordinary differential
equations have been fruitlessly investigated. Of course,
a system of ordinary differential equations may still
be far from a solution. However, their solutions have
been studied more and are understood better than those
of other types of differential equations.

If the state of the system has a finite number of
sufficient statistics, then an alternate approach is to

represent the state by them. In addition, (1-18) reduces
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to a partial differential equation. The problem with
an infinite number of sufficient statistics is discussed
in [3] ana [8] .

A numerical solution of the complex feedback equation
was attempted for a simple first order nonlinear problem.
Efforts were terminated because of the enormous amount
of computational time needed.

A typical approximation of (1-18) arises from
Wonham's soiutioﬁ. It is shdwn to.suggest the stﬁdying

of the optimal open loop control problem.,

2,2. System with Perfect Observations

[1,39]

Florentin derived the optimal feedback con-
trol law when there are perfect observations; that is, for

a system with ng =n, hit,x(t)) = x(t) and K(t) = 0 .

Equation (1-7) then implies P(t,x) = §(x-y(t)) .
By defining A(t,c) to be the optimal feedback
control law at time t given the observation y(t) =c¢ ,

Florentin defined as the imbedded performance index

A Min Zxp i
F(t,e) & 0 y(m) | [ T2(e,y(0), alsy()))as + aly(D)] (2-1)
t<7<T T _

with y(t) = ¢ . Analogous to the method in 1.,3.3.,
he derived from (2-1) the partial differential equation

for the optimal feedback control law
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Min
- Ft(tlc) = A(J‘:!C) { f('t,C,A('t,C)) 3 .f.('t,A("t,C))F(t,C)} (2'2)

with F(T,c) = g(c) . This equation may also be derived
from (1-18).

Equation (2-2) 1is much simpler than (1-20) but
more complex than the well known Hamilton-~Jacobl equation [l
of detérministic optimal control theory. It has been

shown to reduce to a finite set of ordinary differential

equations only for a restricted class of systems.

2.3. Linear Svstem with a OQuadratic Performance Index

One of the restricted classes of systems for which
(1-18) reduces to a finite system of ordinary differential
equations is the linear system with a quadratic per-
formance index. The set Q(t) of admissible controls

at time t 1is understood to be the Euclidean n,-space,

Such a system implies
m(t,x(t),u(t)) = A(t)x(t) + B(t)u(t) ,

G(t,x(t)) = G(%) ,

h(t,x(%))

i

H(E)x(t)
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F(t,x(t),u(t)) = &x(t)TQ(t)x(t) + Zu(t)'c(t)u(t) ,
g(x(T)) = 2x(T)Tsx(T) ,

where matrices A(t) is nxn, B(t) is n x ny

G(t) is n x n, H(t) is n,xn, Q(t) and S

3

are n xn , symmetrical and positive semi-definite,

and C(t) 1is ngxXng o, symmetrical and positive definite,

If T(x) = N(x,uo,Mo) , then (1-7) reduces [2] to

the Kalman~-Bucy filter[7], that is, P(H,x) = N{x,u(t),M(t))

where
n(t) = A(B)ult) + 3(t)u(t)
+ M(E)E(E)TR(E) [y (%) - H(E)u(E)]  u(0) = 1y  (2-3)
and
M(t) = ACE)E(t) + M(E)A(E)T - M(t)H(t)TR(L)H(t)HM(t)

+ G(t)G(t)T M(0) = My (2-4)

Since M(t) can be determined a priori, it is
thought of as a function of time and not as a statistic.

Thus J(t,P(t,x)) 4is a function of +t and u(%t) .
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It can be easily shown that
IJ(t,0) = %fo'm(x)de(t) xp(x)dx + Zw(t) (2-5)

is a solution of (1-18) where U(t) is the n x n

symnetrical matrix that satisfies
U(t) = - A(E)TU(E) = U()A(E) + U(E)B(E)C™H(4)B(t)TU(t)
- a(t) u(e) =S (2-6)

The optimal feedback control law which follows

from (1-18) and (2-5) 1is

T(t,0) = - c‘i(t)B(t)fu(t)fxcp(xyax . (2-7)
Both (2-4) :and (2-5) are matrix Riccati-equations (16]
Which may be solved a priori. Only (2-3) has to be

golved in real time to yield the optimal feedback control,
(t,N(u(t).¥(t))) , of (2-7) .

These are the results derived by VWonham

[2]

s+ who
approached the problem as discussed in 2.4, without

using (1-18) .

2.4, Alternate Approach to the Optimal Policy

An alternate approach to deriving the optimal feedback
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control law is to represent the a posteriori density
function by its mean and central moments. The conditional

mean

n(t) =~/~xP(t,x)dx .

¥With the definitions

a = (Qlfazr"'oﬁn) ’
Al fa | a; e {0,1,2,5¢s} 1<is<n)
and
A L '
B2f{a|laea and 3 a; < 2}

i=1
The central moments are {B(t;a) | « ¢ A - B} where

n C.
B(tia) = [ I (% = u (%)) *P(t,x)ax .

i=1 o
Now let xl(t) 3 Xz(t) . 13(t) s *** represent some
ordering of the central moments and define

©

A(t) 2 Col  fa (%))
1=1

as the central moment.
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From (1-5) the ordinary difference equations
for p(t) and A(t) can be derived., With = (t,u(t),x(%))

as a feedback control law, define
n(t,u(t),a(8), = (6,u(t),0())) & f£(t,x,2(,n(),1 (%) )P(t,x)dx,

and
alu(?),M1)) & [e(x)p(T,x)dx .
The imbedded performance index for the optimal feedback

control law of a process which begins at time + with

a conditional mean ¢ and central moment d4d is

Min Exp Py
L{t,¢,d) = Z ylT1) {f n(s,u(s),x(s), Z (s,u(s),a(s)))ds
t<r<sT T
+ qg(p(T),x(T)) } (2-8)

with p(t) =c and »(t) =4 .

A partial differential equation (3,8] for L
can be derived from (2-8) analogous to the procedure
presented in "1¢3¢3. But since d has an infinite
number of components, the equation has an infinite
number of variables. Thus only a truncation of it can

be implemented.



27

For the linear system Wonham noted that A(t)
was independent of the observations and control and
absorbed it in L(t,c) from which he derived the optimal

control law.

2.5 HNumerical Solution .

The partial differential equation suggested in
2.4, is an awkward equation to solve numerically,
Because of its infinite number of variables, it reduces
to a cumbersone sequence of ordinary differential equations
where each equation contains an infinite number of
variables. However, the functional differential equation
(1-18) , which is more complex conceptually, can be
reduced to a sequence of ordinary differential equations,
each with a finite number of variables. There is a
natural ordering of this sequence which is suggegted
after the following definitions.

With o(x) fixed, define the scalar quantities

>

Al(s) J(S,m)

It

A (s) 2 T(s,0)

Il

AB(S) J'(s,0) (£ e0)
A 1]
A3+ ii%;ll +j(S) 2 J (s,m)(ri(s,x)m,rj(S.X)m)

for 1<j<i and 1=isn .
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By defining {Al} as the first step and

{AZ’AB""'A3+ ok } as the second step, A, can
2

be determined by (1-18) as a function of the second

step. By taking the necessary functional derivatives

of both sides of (1-18) , the time derivatives of

each element of the second step can be derived as functions
of the second step and extra variables that define the
third step. This process is éontinued where the time

derivatives of the kth

step are derived via (1-18)
as a function of variables defined in the first k steps
and extra varizbles that define the (k+1)St step.

Here a natural sequence of ordinary differential
equations is evolved from the functional differential
equation and offers a more concise numerical approach
than the partial differential equation referred to in
2.4,

A computer program was written to generate the
sequence of ordinary differential equations for a simple
first-order nonlinear system. On the IBK 360/75 computer
only the differential equations of the first three steps
(47) were derived because of the magnitude of time
needed to derive those of the fourth step consisting
of about U400 ‘terms.

However, the solution of three steps of equations with

£0,7] partitioned into 50 parts takes approximately
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00 minutes and thus was not attempted. The numerical

solution resulting from just three steps of equations

was attempted for the first order system of 2.3., and

the answer was incorrect by several orders of magnitude,
Assuning that four steps of ordinary differential

equations yield a satisfactory numerical solution,

they must be solved in real time for each P(t,x)

for each increment of time. Hence on one of the fastest

computers of its generation, the increment of sl time

for a simple problem can be no smaller than 200 minutes!
Obviously, except in a few rare cases, the determination

of the sﬁochasﬁic optimal control is impractical.

Consequéntly, either faster computers must be built

or else simpler but effective subopltimal schemes must

be used,

2.6, Approximate Solution

2.6,1., In General

Because of the awesonme amount of real computational
time to solve (1-18) numerically, given P(t,x) ,
and to solve (1-7) +to determine P(t,x) , simple
suboptimal solutions are desirable. One approxination
is to expand all nonlinear functions in a Taylor series
about some a priori nominal trajectory of the state of

the system. By neglecting second order terms, a systen
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of eguations like those in 2.3. are derived. Consequently,
a suboptimal control law is obtained using Yonhan's
solution. However, it has been recognized (17] that
unacceptable performance may follow, possibly because
second order terms are significant. Thus, such expansions
are not discussed in this treatise.

Other approximations of (1-18) stem from the
approach of 2.4, PFirst, P(t,x) is approximated by
a Gaussian density function N(x,;(t);%(t)) ‘where
ﬁ(t) and &(t) are generated by a nonlinear filter.

AT least eight nonlinear filters (18-27]

for the system
of 1.2. have been published. Next %(t) is approxi-
mated by some ﬁ(t) that can be determined a priori.

Lastly, since a Dirac delta function is a simpler form

for P(t,x) , the latter is approximated by

N(x,u(t),1(t))
P(t,u(t),x) & or
s(x-u(t)) . (2-9)

rY ) )
Thus p(t) is a sufficient statistic for P(t,u(t),x) .
Appropriately, the imbedded performance index
J(t,P(t,x)) is approximated by L(t,u(t)) . Let

A(t,u(t)) be the corresponding feedback control law.
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Such a control law is called suboptimal when it is derived

from an approximation of the optimal control law.

By a derivation suggested in 2,4, and analogous

to that for (1-20) ,
Min Ex

L{t,v) = A(t,v) 6z%t) §-/}(t,x,A(t,v))%(t,v,x)dxﬁ

+ L(t+a,vibv) + 0(A2) } .

The increment in v 1is derived from the nonlinear

filter used. Fost nonlinear filters are of the form
% - A "
p(t) = a(t,u(t),u(t)) + FP(t,u(t))(y(t) - h{t,u(t)))

where F(t,* ) is a n x ng matrix funetion of t ,

-~

M(t) , and v_h(t,')' « Notice that if h is linear,

F is independent of ﬁ(t) .

Continuing from (2-10), since
L(t+AvV+6V) = L(t,\}) + L.t(t:\’)ﬁ + 5V‘VvL(tsV)

+ %6v'[vvvv'L(t,v)]6v + 0(8%) ,

(2-10)

(2-11)
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then by (2-11) , (2-10) 1leads to

Min A
- Lt(t,v) = A(t,v);./}(t,x,A(t.v))P(t,v,x)dx

+ a(t,v.A(t,v))'va(t,v)

& %trace[R"l(t)F(t,v)*{vvyv'L(t,v)]F(t,v)]

with L(t,v) = fg(x)%(T,v,x)dx .

(2-12)

Next L(t,v) is approximated by a quadratic polynomial

in v s %v'Sl(t)v + S,(8)7Ty + SB(t) where S, (%)
is an n x n symmetrical matrix, and Sz(t) is an

n-vector., Equation (2-12) +then becomes

" . Min
- 20¥S. v - S.Tw - S_ = A(t,V)

" JECtx, A )P(E, v x)ax

* a(t,v,A(‘t,\)))t(Sl\) + SZ)

+ %tracetﬂ‘i(t)F(t,v)’siF(t,v)]

with L(T,v) = Jfg(x)%(T,v,x)dx .

(2-13)
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The last approximation before obtaining the sub-
optimal feedback control law is to expand the right
side of (2-13) and its initial condition in a Taylor
geries in v where terms of degree three or more are
truncated. Call these gquadratic polynomials A(t,v)

and B(v) , respectively. The resulting equation is
v = 8,Tv = S, = A(t,v) (2-1k)

with %v"Sl(T)v + SZT'(T)\; + SB(T) = B(v) .

As a result, the ordinary differential equations

for Sl(t) , Sz(t) and S3(t) follow, Since Si(t)

is independent of v , it can be computed a priori.
This standard suboptimal scheme, which is a function

n2+:§n+2
of 2 components of 31 . 32 and 83 y yields

the optimal feedback control law for the linear system

with a quadratic performance index.

2.6.2. Linear Observations

A typical approximate solution of (1-18) was
~described in 2.,6.1. When the observations are linear,
the suboptimal feedback control law is the same as a
suboptimal open loop control law. This will be shown

after this comment on linear observations.
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The observations are linear if h(t,x(t)) =H(t)x(t)
where H(t) is an ny x n matrix. Notice thét if there
exists a vector function g(x(%t)) +that has an n-vector
function inverse g-l s and that if the transformation
c(t) = g(x(t)) implies that h(t,x(%)) = h(t,g“i(e(t)))
is linear in c¢(t) , then redefining the state of the
system to be c¢(%) will yield linear observations,

The significance of having linear observations in
the suboptimal feedback control problem is that .F- and
consequently the last term in (2-13) are then

independent of v . Consequently, S1 and S, are

independent of the last term, which effects only S3 .
If h and K do not depend explicitly on the control,
then the suboptimal control law is a function of ¢ ,

v o, Sl" and Sz .but not of 33 « Thus, for determining

the suboptimal control, the last term in (2-13) may be
deleted.
Thus,. if the observations are linear and J(t,m)

is approximated by the guadratic

L(t,J(;m(x)dx) = %J[;*¢(x)dx81(t) xQ(x)dx

+ sz'(t) xcp(x)dx'-» SB(t) ;
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then R I(£)JI"(t,»)(r(t,x)m,r(t,x)"0) may be deleted
from (1-18) without altering the suboptimal feedback
control law, The equation resulting from (1-18) is

Min
— Jt(ts@) = r(ts¢)§Jrf(t’xor(ts¢))@(X)dx

+ J‘(t:m)(£+(t,r(t.m))m) (2-15)

with J(T,»n) = fg(x)cp(x)dx .

Notice that equation (2-15) is derived from
(1-18) when the observations are independent of the
plant variable, Consequently, (2-15) is the equation
for optimal open loop control. Appropriately, in-the
search of "better" approximations of (1-18) , the
optimal open loop control probvlem [31,32] is studied
in Chapter III. |
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III. OPTIHMAL OPEN LOOP CONTROL

3.1+ Introduction

The optimal open loop control problem is studied
because the conventional suboptimal feedback control
law can be derived from it. The optimal open loop
control law, which can be deduced from (1-18), is
derived using dynamnic programming [28]. This approach
leads .to the definitions of the open loop or a prieri
stochastic analog of the Lagrange multiplier (costate
variable), the Hamiltonian and Pontryagin's maximum
principle [6]. A feature, which is desirable but
uproven for the feedback system, exists for the open
loop system and is as follows, If the system is
linear and the functions f and g are polynomials
in the plant variable, then the optimal control law

can be represented by a finite system of ordinary

differential equations,

3.2. Open Loop Policv via Dynamic Programming

If there are no observations of the plant variable,
then h(t,x(t)) is independent of =x(t) , and the

system of 1.2, 1is said to be an open loop control

system since the control can be determined a priori.
Therefore, h(t) = h(t,x(%)) , and hence r(t,x(t)) =0 .

Consequently, (1-7) reduces to Pt(t,x) = £+P(t,x)
.91

which is known as the Fokker-Planck equation.
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If the a priori density function of x(0) is

T(x) , define Q(t,x) as the a priori density function

of x(t) . Then

Q(t,%) = £, (£,u())Q(t,x) Q(0,%) = T(x) «  (3-1)

Consequently, when h(t,x(t)) = h(t) in the model of
the system the state of the system is the a priori
density function.

With the open loop control system defined, the
optimal control function {Q(s) | OsssT} is chosen to

minimize the performance index

T
Exp [fo f(s,x(s),u(s))ds + g(X(T))]

T
4 j; ff(S,X.U(S))Q(S,x)dxds+fg(x)Q(T,X)dx « (3=2)

Notice that the optimal control function is mathematically
independent of the observations.
Consider the imbedded performance index for the

control function u

T
ftff(s,x.u(s))a(s,x}dxds + fg(x)Q(T,x)dx . (3-3)
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Define
A Min
V(t,p) = ul(r) {(3-3)] Q(t,x) = o(x) . (3-%)
tsTt<T

Notice that as in (1-9) Appendices A and B show that

Mi Exp
V(t 0) = uj(-l':) y?T) [f ff(s,x,u(s))P(s.x)dxds

tsT=T

+ fg(x)P(T,x)dx] P(t,x) = o(x) .

(28]

Continuing, by dynamic programmning

t+A
It ff(s,x,u(s))&(s,x)dxds

Min
u(r)
tsr<tHA

V(t|$)

it

+ V(t+A.m+6m)£

Min
= u(t)3J(}(t,x,u(t))m(x)dxg + V(t,0) + Vt(t,w)ﬂ

+ V' (t,0) (5,0)8 + 0(a%) (3-5)

where 8w is derived from (3-1) .
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Equation (3-5) then reduces as A—>0 %o

) Min
- vt(t’m) = U.(t)

[rttmuomax + Vi (tio) (s,0) | (3-6)

with V(T,e) = fg(x)cp(x)dx .

By (3-6) the optimal open loop control law is a function
of t and o , i.e., ¥(t,p) « By replacing o |
by Q(t,x) , which is independent of the observations, the

optimal control function is
8(t) = ¥(t,Q(t,x)) . (3"‘7)

3.3. Toward the A Priori Stochastic Hamiltonian

It is well known that in deterministic optimal

control theory cé] the solution of the Hamilton-Jacobi
equation, which is a partial differential equation of the
first order, is equivalent to solving the canonical equations-
2n ordinary differential equations where n is the

order of the state equation. Lur'e FBé) proved the

existence of a similar result for the functional differential
equation of the first kind as typified by (3-6). He

also showed, as Mortensen (34,351 and Wang [37] point

out, that the solution of such an equation is equivalent

to solving two partial differential equations of n

independent variables, However, the partial differential
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equations were not explicitly exhibited. Derivations
which follow produce these equations for (3-6) and
show how (3-6) relates to the a priori stochastic .

Hamiltonian and maximum principle,

Theorem: For t<s 1let {u(r) | t=<rtss} , c(s,x) and
Q(t,x) be given. Define q(s;x,8) 4 elmx)
and vqc(c,x,s) 4 —;(c)q(c,x,s) for . t<o<s .-
Then

U/;(s,x)Q(s.x)dx = qu(t,x,s)@(t,x)dx .

Proof: Define

p(s,8;0,x)d4Eg 4 Prob,[{x(s)edg | x(o)=x] .

Then 7p(s,E;0,x) is the transition density

function of the Markov process {x(t)} and

satisfies Kolmogorov's backward equation'ng

Po(soglonx) = ~£(0)p(s,8;0,x)

and the Fokker~Planck or forward equation tgl

p.(8,830,x) = £ (s)p(s,850,x) .
The indepeﬁdent variables of the operators
£(oc) and £.(s) are x and £, respectively,
By the propérties of conditional density functions

Q(s,g) = fp(s,g;c,xmco.x)ax . (3-8)

Define q(o,x,s)2 [e(s,8)p(s,E50,x)AE . (3-9)
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Then q,(0,%,s) =fc(s.§)pc(s.§;o.x)d§
= -fc(s.g)s(o)p(S.E;c.X)dﬁ
= -5(0) fe(s,8)p(s,810,x)a8 = -£(0)alo,x,9).
Therefore, by (3-8) fand (3-9) with o=t

_/;(S.E)Q(S.E)dg =_/;(S.§{/5(S.§:t.x)Q(t.X)dxdE

f[]L(S.g)p(S.gzt.x)dea(t.X)dx

=fq(tnxoS)Q(th)dx . "

3.4, A Priori Stochastic Operand

Recall that the optimal control function © minimizes
(3=-3) with @q(0,x) = T(x). Define ci(s,x) and
qi(t,x,s), analogous to ¢ and q in the theorem of 3.3.,

such that

o=

cl(s.x) f(s,x,6(s)) and

cz(Tlx) g g(x) .

Then by (3-4),

T
vit,q(t,x)) =.ji cl(s,X)Q(s,X)dxds +;/E2(T.X)Q(T.x)dx

=foq (tnX:S)Q(t,X)dXdS +fq (‘t.x'T)Q(-t’x)dx
0 1 2
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s
V(t,Q(t,X)) =./"[j; Q1(tixfs)ds % qz(t.X.T)]Q(ﬁ.x)dx .

-

Define as the z priori stochastic overand

E(tlx) = E(t,x,Q(t,x))
-’-’-fT (t,%,8)ds + q,(%,x,T) (3-10)
=1, q, (tyx,8)ds + q,(%,x,T) .
Then
V(5,005,%)) = fE(6,x)a(t,x)ax (3-11)

Clearly, E(T,x)

1

QQ(T!X:T> 2= glx)

By differentiating (3-10) with respect to t ,
the following integro-partial differential equation is

derived:

T
E, (%) = = g, (t,%,1) -ft £(t)q, (t,%,8)ds ~ S$(t)a,(t,x,T)

T
- f(t,x,0(t)) - LJZ ql(t.x,s)ds - sqz(t.x,T)

- Flt,x,;0(8)) = L£BlE:x) (3-12)

If f£(t,x,0(t)) and g(x) are positive semi-definite,
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then Appendix C shows that E(t,x) is also positive
semi-definite.

If the optimal control function & is known, then
(3~12) can be solved in backward time.

Fore generally, if the a priori density function at
time ¢t is ¢ , then by (3-10) E(t,x) = E(%,x,9)
and hence E(t+A,x,0+60) = E(t+A,x) where 8o is
defined by (3-1) .

By (3-7) and (3-12)

E(t+a,x) = E(t,x) - f(tnKrY(ts@))A =~ £(t.?(t,¢))E(t,X)A
+ 0(4%) §
and by (1-13)

E(t+blxs$+5¢) = E(tva¢) + Et(t:va)A
+ BT (t,x,0) (£, (+,7(t,9)))A + 0(a%) .

These results lead to the following functional differential

equation as A—O :

Et(tnxn@) = = E'(t,x,w)(£+(t,Y(t,@))) - f(tnXsY(tt$))

= s(t:Y(tt¢))E(ttxl@) (3'13)
with E(T,x,0) =.fg(x)¢(x)dx "
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Thus
E (t:x) = E (7,%,Q(t,x)) | oy + B'(£,x,Q0t,x)) (£,Q(t,x)) .

3.5 A Priori Stochastic Hamiltonian and Maximum Principle

By (3-10) and (3-11)

V(tip) = [E(tix0)p(x)ax . O (3-1k)

To determine V'(%,9)(y) for an arbitrary function

¥(x) , consider
V(t,ptaf) =L/b(ﬁ.x,¢+a¢)m(x)dx

+ %/%(t,x,m+a$)¢(x)dx " (3-15)

Associated with V(t,p+at) and E(t,x,pt0y) is a control
function 7v(s) A Y(s;¥,a) which minimizes (3-3) with
Q(t,x) = o(x) + a¥(x) « But by the theorem of 3.3,

./%(t,x,¢+a¢)¢(x)dx is equal to the expression (3-3)

with u(s) = v(s) and Q(%t,x) = @(x) « And since under

these conditions (3-3) 4is at its minimum when

¥(s) = 6(s) or when a = 0 , then
Tgané(t,x,@+a¢)w(x)dxlazo =0 . (3-16)

By (1-13) V'(t,9)(¢) = 755 V(t,oray) | _o o
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Conéequently; by . (3-15) and (3-16)

v (t,0) (8) = [E( o) e(xdx . | (3-17)

Now define as the a priori stochastic Hamiltonian

H(t,0,Eu()) & f2(t,%,u(5))o(x)ax

o+ [t uEEGee(0dx W T (3-18)
It follows that

Min
u(t) H(tﬂptEsu(t))

Mi
= u(g){Jrf(t,x,u(t))m(x)dx.4l/}E(t,x,¢)¢(x)dx}

Min
by (1-6) u(6) 205, x,u())p(x)ax

+fE(‘t,x,cp).ﬁ+qa(x)dx}

n

Min
by (-18) wu(t)) Jf(t,x,u(t))e(x)dx + V'(t,¢)(£+¢)}

i

by (3-6) > vt(t’fp) '

Thus by (3-6) , the optimal control ©€(t) satisfies
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Min
H(t,9,E,0(t)) = u(t) H(t,,E,u(t)) , (3-19)

which is the a priori stochastic maximum principle.

3.6, Summary

The functional differential equation (3-6) which
yields the optimal control function 6(t) = ¥(t,Q(t,x))
reduces to solving two two-point boundary valued integro-

partial differential equations:

Qu(t.x) = £,(£,0(6)Q(4,x)  Q0,x) = T(x)  (3-20a)
and
E (t,x) = - F(tyx,0(t)) - £(t,0(t))E(t,x) (3-21a)
with E(T,x) = g(x)
where

Min
H(t,Q,E,8(t)) = u(t) H(t,Q,E,u(t)) . (3-22a)

These equations result from (3-1) , (3-12) and (3-19)
and represent the solution of the optimal open loop

control problem, By (3-11) its performance index is

./h(o,x)T(x)dx .
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Notice that E(%t,x,p) can be found by solving the
initial valued equation (3-13) or by solving these

two-point boundary valued eguations:

Q (s,x) = £, (s,8(s))als,x) Q(t,x) = o(x) (3-20Db)
and
E_ (s,x) = -f(s,x,8(s)) - £(s,8(s))E(s,x) , (3-21Y)
with E(T,x) = g(x)
where

Min _
H(s,Q,E,8(s)) = u(s) H(s,Q,E,u(s)) . (3-22b)

Consequently, E(t,x,p) = E(t,x) .

3.7, Linear Systen

A class of problems which has been of interest is
the linear system with a non-quadratic performance index.
While (1-18) has not been reduced to a finite system
of ordinary differential eqguations, (3-6) via the
results in 3.6. can be reduced when f and g are
polynomials in x. This can be seen after the following
definitions.

A form of degree p in x 1is the sum
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A polynomial of degree ¢q 1is the sum of forms the
maximum degree of which is gq. Define a constant as
a polynomial of degree O,

If f£(t,x,9(t)) is a polynomial of degree ry

and g(x) is a polynomial of degree r, » then a polynomial

of degree ry = max{rl,rz} is a solution of (3-21).

First of all, the boundary condition of (3-21) can be
satisfied with such a polynecmial. Secondly, since the
plant equation is linear, £(%,0(t))E(t,x) is a polynomial
of degree r3.

Thus both sides of (3-21) is a polynomial of

degree r3 and E(t,x) can be represented by a finite

number of ordinary differential equations of the
coefficients of powers of x.
As is well known, 71 (3~20) can be represented

by a finite number of ordinary differential equations.

3.8. Deterministic System

The equations of 3.6. are applied to the deterministic
system to relate the a priori stochastic Hamiltonian,

operand, and maximum principle to the deterministic
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Hamiltonian, the Lagrange multiplier; and Pontryagin's

maximum principle. (6l Because there is no dynamical

noise, G(t,x(t)) = 0.

Let

o

8 x(0) , c(t) & x(t) , and c(T) bDe

free, Let wu(t) be the optimal control function.

Then

c(t) = m(t,c(t),u(t)) ,

Q(t,x)

and

T {x)

Define

A (t)

i

lie=

= §(x-c(t))

5()’;-’00) .

S B 0at,x)ax = v E(tc) .

From (3-21a) it follows that

—§% VE(t,x) = ~9_f(t,x,u(t)) - ¥ _SE(t,x)

n

-9, f(t,x,u(t)) - [vxm(t,x,u(t))T]VxE(t.X)

~09,9, E(%,x) In(t,x,u(t)) . O (3-23)
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Therefore,
A (t) = f[-a-a:g vXE(‘c,x)] Q(t,x)adx +fvxE(t,x)Q_t(‘b,x)dx « (3-24)

But by (3-23)

f[—a% vxE(t,x):lQ(t,x)dx

= -9 £(t,c,ult)) - [9gm(t,e,u(t)) IV E(t,e)

- Ly v "E(t,e)Im(t,c,ult)) , (3-25)

and by (3-20a)
'jrvXE(t,x)Qt(t,x)dx =_/;XE(t,x)£+Q(t,x)dx
=fztvxE(t,x)]Q(t,x)dx

=f[vaX‘E(t’x)Jm(t’x.u(t) )Q(t.}()dx

]

fv v . "E(t,c)In(t,c,ult)) . (3-26)

Thus by (3-2&) +through (3-26) ,



51

L]

A(t) = -v T(t,c,ult)) = [vom(E,c,u(t))?Iv E(%,c)

—vcf(t,c.u(t)) - ch(t,c,u(t))Tl(t) . (3-27)

By 3-22z the a priori stochastic Hamiltonian

H(t,Q,E,u(t)) =./%(t,X.u(t))Q(t,X)dx +‘/EE(t,X)Q(t,X)dx

f(tscvu(t)) + m(t,c,u(t))'?cE(t,c)

= f(tyc,ult)) + m(t,c,u(t)) a(t) (3-28)

equals the deterministic Hamil<tonian (6] H(t,e,x,u(t))

(61

where x(t) 1is the Lagrange multiplier .

The a priori stochastic maximum principal

Min
H{t: QB 8(%)) = wit) H{%.Q,B,%(t)) ais equivalent to
” Min
H(t,c,x,u(t)) = v(t) H(t,c,x,v(t)) » which is Pontryagin's
maximum principle [6].

Since

vcH(tQCl)\'u(‘t)) = vcf(t,c,u(t)) + 'v?cm('t,c,u('t))T).(t) »

and E(T,x) = g(x) , it follows from (3-27) and (3-28)
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that

¢(t) = v, H(t,c (), A (%) ,u(t)) el0) = 8
and

A(t) = -9 H(t,c(£) A (t) ult)) A(T) = v g(e(T))
which are the canonical equations [6];

Thus the optimal open loop control solution implies.
the deterministic solution. With no dynamical noise,
the expected value of the gradient of the a priori
stochastic operand is the Lagrange multiplier, which is
the gradient of the imbedded performance index E(t,c) ,
the a priori stochastic Hamiltonian is identical fo the
deterministic Hamiltonian, and the a priori maximum
principle is Pontryagin's maximum principle.

Since E(t,x) in (3-28) is operated on by £ ,

it was named an operand rather than a multiplier.

3.9, Canonical Egquations in Function Space

Before concluding this chapter, it should be noted
that the a priori density function and the a priori
stochastic operand satisfy the canonical equations in
function space as mentioned by Lur'e,t36], Mortensen_[33’3u]
and Wang [377,

But first by the Riesz Representation theorem E15],
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there exists a functional IL(g,x) for the linear operator

in (1-13) such that
F'(0) (4) = [Llox)¥(xdax (3-29)

for all functions ¢. Define

2 L(p,x) . (3-30)

&3

Then &8s 1is the Frechet derivature of F at g. Mortensen

discusses and gives examples of the derivature in [347.

Thus by (3-18) with F(E) = H(t,Q,E,0(t)) ,

F*(E)(¥)

i

f.w(x)Q('l:,x)dx

= by (1-6) ft(X).*:_,_Q(t.X)dX-

Consequently by (3-29) and (3-30)

o

it = £,Q(t,x) . ' (3-31)

O

Likewise with F(Q) = H(t,Q,E,e(t)) ,
F'(Q) () =ff('t.x,e(t))¢(x)dx +f£E(t.x)¢(x)dx.

Similarly, by (3-29) and (3-30)
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%% = £(t,x,0(t)) + £E(t,x) . (3-32)

Indeed, by (3-20a), (3-212), (3-31) and (3-32)

. SH
and E(t,x) = - %%

which are the canonical equations in function space for

the a priori stochastic optimal control problem.
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IV. OPEN LOOP CONTROL LAW

4.1, Introduction

It was shown in ‘1.5. that the performance index
of optimal feedback control is at least as good as that
of optimal open loop control. Consequently, the per-
formance index of any suboptimal feedback control law
proposed should also be no worse than that of the open
loop control, or else the trouble of taking real time
observations is wasted, |

Such a suboptimal scheme is inspired by the results
of studying the optimal open loop control system. Un-
fortunately, the scheme is not easily implemented,
However, an approximation of it is easily implemented
and has advantages over the typical suboptimal schemes
discussed in 2.6.1. The results of a simple numerical
problem, in which the approximate suboptimal control

law is superior, is given.

L,2, Definition

While both the optimal opeh loop and feedback control
laws satisfy functional differential equations, the former
can be derived from two integro-partial differential
equations. Because of the attractiveness of the solution
of the open loop problem over that of the closed loop
problem, the optimal open loop control law is proposed

[31,32]

as a suboptimal feedback control law, By applying



56

it to the a posteriori instead of the a priori density
function, it will be a feedback control law and hence-

forth will be refterred to as the optimal open loop control

law. By (3-7) this suboptimal feedback control law is
¥ , and the suboptimal feedback control a(t) = ¥Y(t,P(t,x)) .

Alternatively, by 3.6. ﬁ(t) satisfies

Min
H(tiPiEtu(t)) = u(t) H(t!Pngu(t))'_

where H 1is the a priori stochastic Hamiltonian. Thus

“ - - -
u(t) minimizes

H(%,P,E,u(t)) =./}(t.x,u(t))P(t,x)dx
+fs(t.u(t))E(t,x.rtt,x)mt.x)dx . (B-1)

Here, E(t,x,P(t,x)) can be determined by (3-20b)
“through (3-22b).

L,3, Performance of the Optimal Open Loop Control Law

In 1.5 it was shown that the performance index,
J(0,T), of the optimal feedback control law is less than
or equal to V(0,T) of the optimal control function.,

The same inequality is shown to be true for the performance
index, ¢(0,T), of the optimal open loop control law
and V(0,T).

Let S = {so,sl,---,sm] be a partition of ([0,T]
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and P(0,x;0) A rix) . By induction define for Osksm-1

and sksssT o(s:k) , Q(s,x3k) 4, and P(s,xik) such

that : Q(sk,x;k) ) P(sk,x;k) and

Q (s,xsk) & 5, (s,08(s5k))a(s,x1k) where 0(sik)

minimizes H(s,Q(s,x;k),E(s,x,Q(s,x;k)),u(t))
(thus, 6(s;k) is the optimal control function for a

process which starts at time 8 in a state P(sk,x;k) :

Q(s,x;k) 1is the corresponding a priori density function;
in particular, 6(s;0) and Q(s,x;0) equal ©(s) and
Q(s,x) , respectively, of 3.6. ); P(s,x;k) satisfies

(1-7) with u(s) = 0(s;k) , and P(sy . ,xsk+1) & P(sy, +%:k)

(hence P(s,x3;k) is the conditional density function
driven by the control function 6(s;k)).

Define for O0<fzm
. 2=-1 Sk )
B(s,s) 2 2{: £(8,%,0(s:k))P(s,x;k)dxds
k=0 Sk

S

+f m[f(s,x,e(ssﬁ))P(S'X:!»)dxds

Sy

+ fg(x)P(sm,x;z)dx
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Exp
Then y(7)B(S,0) is the performance index of the optimal

O<sT=<T
Exp lim '
control function, and y(7) Sc[0,T]1B(S,m) is the
O=T<T

performance index of the optimal open loop control law,

Therefore for 4<nm

B(S,2) - B(S,4+1) = Jrsmjrf(s,x,e(s;z))P(s,x;z)dxds
s

+:/é(x)P(sm,x;£)dx -[y£j£+i/}(s,x,e(s;£))P(s,x;ﬁ)dxds

s
m

‘/}Ks,x,9(s;£+1))P(s,x;£+1)dxds

S g+

+‘/é(X)P(Sm,X;£+1)dx]

It

. ,
f T f:f‘(s,x,e(s;z))P(s,x;z)dxds +fg(x)P(sm,x;£)dx
S a1 “

'8
—[f mff(s.x.e(s=z+1))P(s,x;z+1)dxds
S g1 ‘

4:/E(X)P(Smgxzx+1)dx] .

For 1s<#s<m define Q(s,x:4) +to satisfy (3-1)
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with u(s) = 6(s;£-1) and Q(sz,x=£) = P(sL,x;L).

Then by Appendices A and B

BExp
y(t) [B(S,2) - B(S,s+1)]

S£+1ﬁTST

= fsmff(syxne(szz))Q(SnX:z'f'i)dXdS +fg(x)Q(Sm,X=£+1)dX

-

s
-L/ﬁ m_[}(s,x,e(s:z+1))Q(S.x;z+1)dxds
g1

+'/é(X)Q(Sm,X;£+1)dx]

s

[

ni/}(s,x,e(s;z))Q(s,x:z+1)dxds-t/éxx)Q(sm,x=z+1)dx

B g1

“V(s, oP(s, sx50H1)) (B-2)

Since the minimum of (3-3) with T = S

and Q(t,x) = P(s£+1.x;z+1) is V(s£+1.P(s£+1.x;z+1)) .

then by (4-2)

Bx

y(1)  [B(S,#) - B(S,4+1)1 = 0 .
s£+lsTs?
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Exp
Hence y(Ty) [B(S,2) - B(S,2+1)1 =0 ,
O<T=<T
Thus
Exp
v(o,r) = y(t) B(S,0)
D<T<T
Exp m=1
= Y('r) { Z [B(S,2) - B(S,L'i'l)_]‘_'*' B(S,m)
O<7<T 4=0

Exp
= y(r) B(S,m) ,

O=T<T
and hence
lim Exp
v(o,r) = s<[0,T] y(7) B(S,m)
O<T<T
Bxp  lim
OgT=T

C(O.T) ® | |

As hoped for the performance of the optimal open
loop control law is at least as good as that of the
optimal control function. The performance

indices of specific forms of the model of the system

}
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in nondecreasing order are those of the deterministic
system driven by its optimal control functiqn. of the
stochastic system with perfect observations driven by
the optimal feedback control law and of the stochastic
systems driven by the optimal feedback control law, driven
by the optimal open loop control law and driven by ite
optimal control function.

Thus an upper bound of the ratio of the performance
index of the optimal open loop control law to that of
the optimal feedback control law is the ratio of the
performance index of the optimal control function of
the stochastic system to that of the deterministic system,
the latter pair being the easier to compute.

Also, as discussed in 3.7., when the plant equation
is linear and f and g are polynomials in x , then
the optimal open loop control law reduces to a finite

system of ordinary differential equations.

4.4, Linear System with a Quadratic Performance Index

Since (1-18) reduces to a finite system of ordinary
differential equations when the system is linear and the
performance index is quadratic, a criterion for any
suboptimal feedback control law is that it satisfy this
optimal result. With such a system defined in 2.3.,
this property is shown true for the optimal open loop

{31]

control law.
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By (4~1) a(t) minimizes

H(tltp:E!u(t))
r—_f%[i‘@(t)x + u(t)‘c(ﬁ)u(t)](?(x')dx

+ [{TA(®)x + B()u(8) 1TV _E(t,x,0)
+ Jgtmce[c(t)c(t)‘vag'mt.x.:p)]}cp(x)dx : (4-3)

Differentiating (4-3) with respect to u(t) yields

c(t)u(t) + B(t)T VXE(t,X,m)w(X)dX

which implies
u(t) = ~¢H(6)B(E) v, B, x,0)0(x)ax (=)

A quadratic form for the a priori stochastic operand

is attempted, i.e.,

CE(t,x,9) = %x’Dl(t)x + xTDz(t) xp(x)dx + D3(t,m)

where Dl(t) and Dz(t) are n x n symmetrical matrices,
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Thus the initial condition E(T,x,0) = 4x'Sx

implies Dl(T) =585 , DZ(T) = 0 and DB(T,q)) = 0 ,

Also,

VXE(t,x,¢) = Dl(t)x + Dz(t) xp(x)dx ,

v 9 E(t,x,0) = D, (%) ,
and
E'(t,x,0) (¥) = x'D, (%) [xy(x)dx + D3' (t,0) (V)

Consequently, by (4-4)

u(t) = -c‘i(t)B(t)‘tnl(t) + Dz(t)ll;m(x)dx J (4-5)

Equation (3-13) implies

%x‘ﬁltt)x + xTﬁz(t) xp(x)dx + D3t(t’m)
= -x'Dy(t) [xL,0(x)dx - Dy (t,9) (£,0) - &x'Q(t)x
-3 fx"o(x)ax[D (+) + Dy(£)IB(£)C™ (£)B(+)T[D (+)

+ D, (0) I frp(x)ax = {ACt)x - BEHICTL(6)B(+)" [D, (+)

+ Dy (€)1 fxep(x)ax}’ [D, (+)x + D, (%) [xe(x)ax

- %trace[G(t)G(t)’Dl(t)] . (4-6)
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Notice that by (1-6)

./;£+m(x)dx i/EX@(x)dx

= {A(®)-B(s)CL@B(+)TID () + D,(+)11fxw(x)ax

Equating coefficients of like powers of x in (4-6)

yvields for Dl(t) and Dz(t)

D, (%) = -a(%) - A(%)'D; (%) - D, (t)A(%) (A0

D, (+) [ (x)ax
= {—bz(t)A(t) + Dz(t)B(t)c"lct)B(t)'[Di(t) + D, (t)]
-A(1) Dy (%) + D, (£)B(£)C™ (£)B(+)T[D, (t)
+D, (t) 13 [xep(x)dx . (4-8)
The functional equation for D3(t.¢) is irrelevant to

the control law.

Since (4-8) holds for any o(x) , ‘/;m(x)dx may

be cancelled from both sides of the equation.
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Let U(t) = Dl(t) + Dz(t). Then by (4-5)

a(t) = ¢ H()B(E)TU(E) [xn(x)ax , (4-9)

and by (4~7) and (4-8) U(t) satisfies (2-6) .
Consequently, the optimal open loop control law

(4-9) is the same as (2-7) , the optimal closed loop

(2]

control law derived by Wonham « Thus for one of

the limited class of systems for which (1-18) can

be represented as a finite system of ordinary differential
equations, the optimal open loop contrel law produces

the optimal performance index.

4,5, Approximation of the Optimal Open Loop Control Law

The pptimal open loop control law is derived after
the a priori stochastic operand E(t,x,P(t,x)) is
determined., For each P(t,x) , te¢[0,7] the two-point
boundary valued equations of (3-20b) and (3-21Db)
must be solved. Because this is a very tedious task,
an approximation of E(t,;,P(t.x)) is desired.,

Let F(d(t),x,p) be linear in the vector d(t) ,

which is chosen to minimize

2
f[F(d(t),X,Q(t,X)) - E(tlx!Q(tlx)'] Qlt,x)dx , _(}4‘"1D)

where the a priori density function Q(t,x) satisfies
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(3-1) with u(t) = o(t) = ¥(t,Q(t,x)) , which is defined
in (3'7) .

Equation (4-10) is minimal when
nlﬂ[F(d(t),x,Q(t,x)) = E(t,X,Q(t,X))}

y VdF(d<t),XgQ(t,X))Q(t,X)dX =0 . (4'11)

Differentiating (4-11) with respect to t yields by
(3-13) and by the linearity of d(t) in F

S vartace) xats,x)) 1) + Fracs),x,alt,x)) (£,a(t,x))
* £0t,%,0(5)) + LE(E,x,Q05,x)|VaF(a() %, Q(5,%)) Q(t, %)

-+ [F(d(t),X,Q(t,X)) - E(t,x,Q(%,x))]

- tvdF'(d(t)ixiQ{tlx))(£+Q(tlx))Q(tlx)

+ 74R(A (%), x,Q(t, %)) £,Q(t,x) )] ax = 0 . (4-12)

By applying the adjoint of £,  as in (1-6) ,

and noting that for scalar functions A(x) and B(x)



sfA(x)B(x)] = A(x)£B(x) + B(x)sA(x) + £,(A(x),B(x))

where

£5(A(x),B(x)) & [V,A(x)17TG(,x)G(%,x)"v, B(x) ,

(4-12) Dbecomes

-

J[VdF(d(t),X,Q(ﬁ,x))[?dF(d(t),X,Q(t,x))]TQ(t,X)dX&(t)
= ~f1[Fr @), a0t,00) (s,006,3)) + £(5,x,004))
+ LF(a(),x,a0t,%))] v4F(a(t) ,x,a(t,%))

+ [F(d(t),x,0(t,x))-E(t,x,Q(t,x))]

* L9, F(A(),%,Q08,5)) (£,0(8,%)) + £94F(A(S),x,Q(t,x))]
% £p[F(d(t),x,Q(t,x))—E(t.x,Q(t.x)),vdF(d(t),x,Q(t,x))]
* @lt,x)ax . ‘ (4-13)

If E(t,x,Q(t,x)) is approximated by F(d(t),x,Q(t,x)),
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(4-13) simplifies to
f"df‘<d(’°> v, Q(t, %)) [V F(a ()%, a(t,x)) 17 Q(t, x)dxd ()
==‘*"./.[F'(61(13).X»Cé(t.x))(.‘3+(“t:,6}('{:))@_(1:,;{)) + £(t,x,0(t))

+ £(t,0(%))F(a(t),x,Q(t,x) )]0 Falt),x,Q(t,x))alt,x)ax

with

S1Fam xaim,x))-g(x) | 74F(@(D) %, Q(T,x))a(T, x)ax=0, (4=14)

In 2.4, J(t,») is approximated by a gquadratic
polynomial in _fxw(x)dx. Analogously, E(t,x,») is

approximated by a quadratic polynomial in x :

F(a(t),x,0) & x"D (£)x + x"D, (%) [xp(x)ax + D5(%) (4-15)

where Dl(t) and Dz(t) are n x n matrices, the former

2
-being symmetricals d(t) is the 32—%§i§ - vector of

the components of Dl(t) " Dz(t) and D3(t) s Where n

is the order of the plant equation.

Note that by (1-6) F'(d(t),x,0)(L,0) in (4-15)
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equals

x'DZ(t2/lx¢(x)dx - x'nz(tbfh(t,x,e(t))m(x)dx ’

An approximation of the optimal open loop control
law is now defined. As in 2.6. P(t,x) is approximated
by §(t,a(t),x) which ig defined in (2-9). Let

-~

ﬁ(t) be the a priori estimate of u(t) such that

~ -

) N(xyn(t),H(t))
Q(t,x) & or

-

e(::—i}(t))

Next, define ©(t) as the approximate control function

which minimizes H(t,Q(t,x),F(d(t),%,0(t,x)),u(t)) ,
where H is defined in (3-18) and F in (4-15).

"

With Q and € replaced by a and € , respectively,
in (b-1k), a(t) , that is, D (%), Dy(t) and DB(t).

are determined a priori.

a

Finally, define G(t)l to be the control of the

suboptimal open loop control law such that

e

u(t) minimizes H(t,P(t,p(t),x),F(A(t),x,B(t,n(t),x),ult)) .



70

Since the function d can be determined a priori,

only the evolution of the nonlinear filter %(t.x)
has to be determined in real time to derive the sub-
optimal open loop control a(t). As can be seen from
(4-11), (4-14) and L.4., a(t) is the optimal
feedback control (4-9) when the system is linear and
the performance index is quadratic, Thus the suboptimal
open loop cpntrol law has some of the.properties‘pf the
conventional suboptimal feedback control law of (2=14).,
An advantage the suboptimal open loop control law
has over the conventional suboptimal feedback control
law is that it can be determined without truncating
the Taylor series expansions of my, G and f in

(L-14). However, a disadvantage is that its parameters

2
Dl(t). Dz(t) and DB(t) consist of 25—%313

a3

2 ;
elements as compared with Ehigﬂig elements of Sl(t),
S,(t) and S, {(t) of (2-14), where n is the order

2 3 |

of the plant equation.

- Before the merits and limitations of the suboptimal
open loop control law are given in detail, the optimal
and suboptimal open loop control laws are demonstrated

in a numerical example,
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L,6., An Example

L,6,1. Formulation of the Problen

It is now appropriate to apply the suboptimal open
loop control law to a system other than the linear system
that has a quadratic performance index and to compare
its performance index and computation time with those
of the optimal feedback control law and the suboptimal
feedback control law of (2-14). r .

In order to produce a simple system from which to
calculate the performance index of the optimal feedback

control law, a linear system was chosen:

(t) = ~x() + u(t) + 30(8) (4-16)

]

y(t) = x(t) + 3n(t) . (k-17)
With minimum control wu with |u|<e the desired
performance is to drive the state of the system close

to the origin by the time t=1 where controls |ul=1

are penalized more than controls lul<i. A trade-off

type of performance index was defined with

£(tyx,u(t)) = ut(t)

and
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g(x) = X2 .

Equations (2-3), (2-%), (&#-16) and (4-17) imply

the filter
o= -p+u lgg M(y=-p) n(0) = u, (4-18)
M= -2m - 138w+ 09 M(0) = M, (4-19)
where P(%,x) = N(x,u(t),M(t)) .

L,6,2., Optimal Control Function

The open loop filter for (4-16) and (4-17) as
derived from (3-20a) or, equivalently, from (2-3)

and (2-4%) with H(t) = 0 is

m=-n+ 0 m(0) = u, (4-20)
P = -2P + .09 P(0) = My . (4-21)
where Q(t,x) = N(x,m(t),P(t)) .
"By 3.7« E(t,x) = %dlxz + dyx + d3 is a solution of

(3-21a). Therefore,

2 . L

3,57 + Qyx + g = =07 = (-xb0)(d,x4d,) - 2(.09)d,  (4-22)

with dl(l) = 2, dz(i) = 0, and d3(1) =0 ,



(&

By (3-22a)

é%;/}eb + (-x+e)(d1x+d2) + %(.09)d1}N(x,m.P)dx =0 .

Consequently, the optimal control function

1/3

d,m+ d
Ly

Thus, by (4-22) +the optimal open loop system is represented

by the following differential equations

o dlm -+ d2 1/3

m = =m-{ = m(0) = u,
P = -2P + ,09 P(0) = M,
d, = 24, d1(1) = 2
. am + a, 1/3

dz = d1 + d2 d2(1) = 0
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The performance index is

2.
./ﬁ(o,x)m(x,po,mg)dx = %dl(o)(uo +m0) -+ d2(0)u0 -+ d3(0) .

L,6.3. Suboptimal Open Loop Control Law

With the open loop filter (4-20) and (4-21)
apply

3

F(t,%,0(t,x)) = 4, x°

4 + dzx xQ(t,x)dx + d

to (4-14) or equivalently, try it as a solution of
(3-212). Then

((d1+d2hn)1/3

6 = -

M

R (d,+d,)m 1/3

m = -m- | ——p m(0) = Mo

P = —2P + .09 P(0) = M,

a, = 24, a,(1) =2
L71/3

. d. +d

d, = 2d.+ ¢ 1+ 2)

B d,(1) =0
2 2 i 2
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b/3 \1/3
[} d d d +d [
d3 _ (( + 2_)__]?__) _mdz (.S__]-_E.._zlﬁ) __045(-11

with d3(1) =0 .

The suboptimal open loop control law is

2 [a, (+)+, (4) Ju(e) | /3
T.l('t) - Iy : J .

The performance index L(O,uo) of this control law is

derived from 2.4. where

L/3 v 173
(d,+d,) (a,+d,)
-Ly(t,1) = [“lﬂfg‘E] + Lu(t.u){-p~[:—~lgag~g] }

+ %} Mz(t)Luu(t,u) L(1,u) = 92+M(1)-

L,6,k, Optimal Open Loop Control Law

By (4-1) the control u(t) of the optimal open
loop control law minimizes H(t,N{(x,u,M),E,u(t)).
With the solutions of L4,6.,2, and with (3-20Db),
(3-21b) and (3-22b), the optimal open loop control

law is represented by the following system of differential

equations



76

8, (t,8)m(t,8) 4, (t,x) |73
ms(t,s) = -m(t,s) —( N

with m(t,t) = u(t)

P (t,s) = -2P(t,s) + .09 ~P(t,t) = M(t)

dls(t.s) = 2d1(t,s) dl(t,l) =2

a, (t,5)m(t,5)+, (%,5) 1/3
d2 (E,8) = dl(t,s)( N )

4 dz(t,s)
s

with dz(t,l) = 0

, dl(t.s)m(t,s)+d2(t,s) 4/3
ey S = i D )
s

1(‘t,s)m(‘t,s)+d2(t's) ) 1/3

¢}
+ dz(t.s)( n —.Ob5d1(t,s)

where

. a, (t,t)u(t)+d, (t,1) | 173
n(t) = ,( . T —— )

From 2.4, and 4.2, n(t) = -[%Wu(t,u(t))]l/B
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where the performance index of the optimal control function

satisfies

Wy (Bau) = =303, (5,013 i (5,0) (4-23)
with W(1,u) = u® + P(0,1) .
Similarly, by =2.4. the performance index L(O,uo)
of the optimal open loop dontrol law satisfies
Ly (t) = B (6™ 3 1 (6, 0) [mu- (3 (,0))173]
t v M u
+ 22 WP (E)T,, (5h0) L(1,u) = u® + M(1),

4.,6,5., Optimal Feedback Control Law

By (1-18) and 2.4, +the optimal feedback control

law is

1

u(t) = -3, (t,u(6))1/3
and its performance index L(O,uo) satisfies
Lyt = =300, () 2= ) )

+ =2 Mz(t)Luu(t,u) L(1,u) = p

+ M(1).

(4-24)



78

L,6.6, Optimal Feedback Control Law with Perfect

Observations

By (2-2) +the optimal feedback control law of a

stochastic system with perfect observations is

w(t) = -(38, (4,y(8))*/2
where its performance index .F(O,uo) satisfies

o Yy L/3_
Ft(t:y) = 3(¢Fy('bvy)) yFy(t!Y) + -014‘5Fyy(t!y)

with F(i,y) = y° .

4,6,7., Results

Thelcomparison of optimal control of specific forms
of the model of the system of 1.2, 1is presented in
Table 1. There the mean computational time for cal-
culating the control is real time needed on the
IBM 360/75 computer for one increment; the interval
[0,1] was divided into 100 steps. Because of the
cube root in (4-~24) +the suboptimal scheme of (2-14)
cannot be applied.

The deterministic and open loop performance
indices depend on only five ordinary differential
equations; there was no problem in the convergence of

their solutions. However, the other performance indices



17

(spucoas) TOJju0p J0F ouwly Teuotjeinduwop umel II

XopuJ oouUBWIOFISd I

U013 0UN] 10a3U0D

10° LogTe” T0° GE€gL0" Teutado U3 TM wessAs OTLSEYO0LS
10° 65L9T° 10° 981440° Hmsﬁpmopsmmumthmmm>moMMPMmeopm
G * #1991* g ALY usdp TBWTd0 svﬂwmmwwmmw:wwpmmmmOpm
09 Se591 | 09 | SLTHlO* soeaess TeuTado URTA WeASAS STASEUDORS
09 | 6n6u90" | 09 | 6n6090° | guoriuatesad aserdod MATA MeASAS oYIESIS0LS
10° H0E6£0 " 10° 70€6€0* Teutado ysIM EMMMMMQMMprmMHMWPmQ
IT I IT I

294640 =(T)H
98at T =(1)u

1=
L] HﬂOi

H2iHe0t=(T1)H
985H 1 =(1)u

0=

« 1=0ni

*1 HI8VL




- 80

are represented by an infinite number of ordinary
differential equations. With 87.5° words of

memory in the computer, they could be represented

by only nine differential equations. Thus their values
are not very accurate, However, the performance indices
of the optimal control function calculated via (4-23)
differed by less than 5% from those determined from
L,6.2, Consequently, the calculations of the
pérformance indices representéd by.an infinite sequence
are estimated to be 5% in error.

Since the performance index of a suboptimal feed-
back control law must be better than that of the optimal
control function and is desired to be close to that of
the optimal feedback control law, a measure of the
closeness is defined.

Let €(0,T) be the performance index of a
feedback control law., Recall that J(0,T) and
V(0,T) are the performance indices of the optimal
feedback control law and the optimal control function,

respectively., Define the ratio

C(O:T) =g J(O!m
v(o,T) - J(0,T) (4-25)

to be the deficiency of the Zfeedback control law.

Consequently, the optimal deficiency is zero with the

worst deficiency being 1.
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Therefore, for Mg = 1 and MO = 0, +the deficiency

of the suboptimal open loop control law is @ .265%
whereas its computation is .0167% of that of the optimal

feedback control law, For the other run with My = 1

and M, = 1, the deficiency is 4,84% with the same
computational advantage. Sample runs of the suboptimal
open loop control law are graphically presented in Figure

2. The a priori. functions d1 and -d2 0 Hu643u,

which constitute the suboptimal open loop control law and
the optimal open loop mean and control function, are
shown in Figure 1.

As shown in Table 1, the optimal open loop control
law has a better performance index for this example than
does its approximation. However, its computation is
about 50 times as much.

The purpose of this example is to compare the
performance indices of the suboptimal and optimal open
loop control laws with that of the optimal feedback control
law. It was shown that the former are superior to the
conventional suboptimal control law (2-14) in that the
latter cannot be applied. All results of this chapter

are now summarized,

4,7, Conclusions

The discussion in 2.6.2. show that the suboptimal
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A Priori Parameters of the
Suboptimal Open Loop Control Law

Optimal Open Loop
Mean and Control Functions

Figure 1.



Figure 2.
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g 2

o=l
Mo =

—e

Sample Mean and Control Functions Generated

by the Suboptimal Open Loop Control Law
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feedback control law of (2-14) can be derived from the
solution of the optimal open loop control problem when
the system has linear observations, Consequently, the
optimal open loop control law was studlied in terms of

a suboptimal feedback control law. As desired, its
performance index was shown to be at least as good as
that of the optimal control function. Because this
control law is not easy to implement, an apprpximation
of it was defined and is calléd fhe subOptimal.0pén‘
loop control law. The resulting control law is the
main contribution of this investigation to stochastic
control theory. Its properties are compared with the
conventional suboptimal feedback control law of (2-14).

Both the suboptimal open loop control law and that
of (2-14) are feedback, both approximate the a posteriori
density function by means of a nonlinear filter, both
are functions of other parameters that are determined
a priori and both are optimal when the system is linear
and the performance index is quadratic.

The advantages of the former over the latter is that
its a priori parameters can be determined without the
necessity of truncating the expansions of m, G and £,
that these functions need not be analytic in the state
variable and that the control law need not be an
analytic function. These advantages stem from the versatility

of the a priori stochastic operand in that it is a function
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of three variables whereas J in (1-18) is a function
of only two variables.

However, because of the extra degree of freedom,
a trade-off occurs between the two feedback control laws

in that the suboptimal open loop control law requires
§n2+n+2 a priori parameters while the conventional
2

2
scheme of (2~14) requires only E_igﬂig s Wwhere n

is the order of the plant equation.

In the example of 4.6, the suboptimal open loop
control law is demonstrated to be superior to the optimal
feedback control law for most sysitems because of its
low deficiency, as defined in (4-25) and short

computational time,
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V. CONCLUSIONS

This investigation explores an area of stochastic
optimal control. Its purpose is to study the solution
of the functional differential equation of the optimal
feedback control law of a system where the no;se processes
of the plant and observational equations are additive,
independent Gaussian white noise processes., This complex
equation arises from the fact that the best description
of the output of the plant is a function - the a posteriori
density function of the plant variable conditioned on
all past observations.

Using an equivalent definition for the criterion
of optimal feedback control, the author proved that
the optimal feedback performance index is superior to
that of the optimal control function. With the solution
of the functional differential equation justified, it
was applied to a simple first order nonlinear system.
However, the solution required an overwhelming
computational time of 400 minutes on the IBM 360/75
computer, This result accentuated the futility of
implementing optimal feedback control with present
techniques, Such a result had been suspected because
the conditional density function is in general an
infinite dimensional vector,

Consequently, in practice, one approximates the
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a posteriori density function by means of a nonlinear
filter. Based upon this simplification, a suboptimal

feedback control law is derived, It is a function of

2
the nonlinear filter and E.i%ﬁi& a priori parameters,

where n 1is the order of the plant equation.

The author showed that the conventional suboptimal
feedback control law could be derived from the solution
of the optimal open loop control problem when the system -
has linear observations. Consequently, its solution
was studied in hopes of discovering a better suboptimal
feedback control law,.

An investigation of the optimal open loop control
problem brought to light some remarkable results! First,
the functional differential equation for the optimal open
loop control law was reduced to two two-point boundary
valued integro-partial differential equations which satis-
fy the canonical equations in function space. The exist-
ence of these results were discussed by Lur'e t36q,

[34,35] (371,

Mortensen and Wang More interestingly,

when the system is deterministic, these equations reduce
to the canonical equations of deterministic optimal con-
trol theory E6]. Hence, the author defines the a priori
stochastic operand, Hamiltonian and maximum principle
which imply the deterministic Lagrange multiplier (costate
-variable) and Hamiltonian and Pontryagin's maximum prin-

ciple, respectively. Thus, a priori stochastic optimal
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control theory, that is, opfimal open loop control thecory,
was found to encompass deterministic optimal control theory
in a very interesting way.

A feature of the optimal control function, yet to be
shown for the optimal feedback control law, is that it can
be derived from a finite system of ordinary differential
equations whenever the system is linear and the performance
index is a polﬁnomial.

Appropfiateiy. the authof studieé the optimai open iooP
control law as a suboptimal control law. (31,32] As a must
for suboptimal schemes, its performance index is shown to
be at least as good as that of the optimal control function.
Because the optimal open loop control law is not easily im=~
plemented for all systems, it is approximated by what the
author calls the suboptimal open loop control law. This
suboptimal feedback control law is the author's main con-
tribution to stochastic control theory. Its advantages and
limitations are summarized.

An unwritten ﬁecessity satisfied by the suboptimal
open loop control law, is that it is optimal when the
system is linear and the performance index is quadratic,

An advantage it has over the conventional suboptimal
feedback control law is that its a priori parameters
can be determined without the necessity of truncating
the expansion of any nonlinear functions of the system.

This feature is enhanced by the dependence of the a priori
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stochastic operand on three variables instead of only

two as in the functional differential equation for the
optimal feedback control law, Also, neither the control
law nor nonlinear functions need be analytic functions.
Its disadvantage over the conventional suboptimal control

2

law is that it is characterized by 22_%312 a priori

2
parameters whereas the latter requires only E_T§n+2 ,

where n 1is the order of the plant equation. Thus a
trade-off between the two suboptimal feedback control
laws exists.

Through the use of a numerical example, the per-
formance of the suboptimal open loop control law is shown
to be near optimal, and its computation is 6000 times
less. The results of this example are particularly
noteworthy since the conventional suboptimal control
law could not be applied.

Consequently, the concept of the suboptimal open
loop control law advances the state of the art of stochastic
control. Future efforts in stochastic optimal control
are centered around simplifying or reducing the
functional differential equation for optimal feedback
control to a finite system of ordinary differential
equations. Also, a simple analytical method of comparing

suboptimal feedback control laws is desired in order to
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select the superior one given the model of the systen,
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NOTATION

e

indicates an equality by definition
A .
sa(t) = a(t + A) - a(t)

0(e) is understocd to be z matrix function of

e and possibly of other variables

N

N(a,A) or N(e«,a,A) represents the normal density function
of an mnm-vector random variable with an
m-vector mean a and an m X m=covariance

matrix A.

Im Q the m x m identity matrix
da 2 (aya + dal or its Euclidean m-space
volunme where a 18 an m-vector
AT is the transposition of the matrix A.
v g Cﬁl.m {-QQ— -} where a 1is an m-vector
a i=1 aai ’
o A
Rl a;b = am[am_l['-- azfalb]"°}]
i=1
A m
8(a) = il ﬁ(ai) where a is an m-vector and
$=1
8§ 1is the Dirac delta function
A -
Aak = ak+1 ak



9z

2 A 2
moooy
I a, for the

j=1 T

is a nonnegative

b=l

A power of a a term of the form

m=vector a where ai

integer
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APPENDIX A,

Definition: Let S = {so.sl,---.sm] be a partition
of [%,T)] and let o, be a point in the subinterval

[Sk’sk'l'lj. Let a, é {Gao!c- ] al’ld let

gt e

m-ll'

A(s,a) Dbe some function of S and a. Then

p & Sé%$ 7 A(S,a) if for every e>0, there exists
’ .

a partition S, of (t,T] such that for every

partition SDSe and for every choice of a,

it follows that |A(S,a) - B| < e.

Definitions: Let

m
A(Ss@) 21 az(am i fo(akix r(ak!P(CLk!x)))
* Playox)dxasctfa(x)P(ay g sx)ax| (A-1)
Then
E T
y?g)[/- JGTS.x,T(S.P(S.x)))P(s,X)dde+ g(X)P(T,X)d%]
t<7<T t

lim

.’_3. A(SvOf.) .
- Belt,2]
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Notice that the joint conditional probability
density function q(t,g,x) of 6&z(t) and x(t) can
be approximated from (1-2)., By (1-2)

a(t,glx)ag

= Prob [az(t)¢d§!X(t)=x]*N(§.h(t,X)A,R-l(t)ﬁ)dgx
that is,
a(t,5]x) = N(E,h(t,x)a,R7H(1)A) .

Thus q(t,5) =~/&(t,§|x)P(t,x)dx. Observe that

By [85(9)] = fra(s,8)ag = n(e)a + 0(8%) , - (4-2)

that

Ex%t) Coz(t)sz(t)T] “Ulég’q(t,g)dg = R71(6)a + 0(a?%) (a-3)

and that higher moments are 0(a%).

Theorem: Let u(s) be a control function. Then

Exp
y}(('r)[f ff(s x,u(s))P(s,x)dxds +fg(x)P(L x)dx:,

t<T<T

T
= f ff(s.x,u(S))Q(S.X)dxds +fg(x)Q(T.X)dx
4
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where Q.(s,x) = £ (s,u(s))a(s,x) with a(t,x) = P(%,x).

Proof: Since u(s) is a control functicn, it is
independent of {y(7) | t=71=T} . Then with

I'(s,P(s,x)) = u(s) (A-1) can be written

=1
m
o - Exp
AGS,0) = :ﬁ‘(ak,x,u(ak))igl sularr,) Plogrx)axts,
k=0 -

m
Exp
+fg(X) i Pla__.»x)}dx &
i=1 6Z(am—i) =

A
i

Exp
1 sz (o

==

Define Ea' 3 * 8 and let

m-1

Q(adsxia) = P(ag»x) where
Q (syx5a) = £, (s,u(s))a(s,x;a)

* Then the following is ?foven.
k=1

Lemma : EaP(ak,x) = Q(ak,xsa)'+ ¥,

2
0(Aat)
i=0 -

for O<k=sm-1 .

Proof: The lemma is true by definition for k=0.

Assume 1t is true for Osk=4<m-1 .,
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Then by (1-5)

Play, ) = Playsx) + £,(a,)P(a,,x)ba,

+ (6z(a,) - ﬁ(az)ﬁaz)’r(az.X)P(aﬁ.X)
+ 0(Aa,?) .
By (A-2)

EaP(“$+1’X) = EaP(a£,x) + Ea£+(a£)P(a£,x)AaL

+ 0(ha,”) (A-l)

Intefchanging the integration and differentiation

operations [29] implies
E £ (a,)P(a,,x) =‘£+(QL)EGP(QL,X) .
Thus, by induction, (A~L4) implies

)
2
EP(a,, %) = Q(as.xza)+£+(a£)Q(az.x:a)Aa£+£§£0(Aai)

£
2
= Qla, ., rxia) + {é& OCQai) :

. Thus £ implies £+1 . B
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IMax

Now let h = P e

{Aai,Asi} « Then

A(S,a) = Egi[j%(ak,x,u(ak))Qfak.x;a)dx+§Z;O(Aa§)]ask

-lfg(X)Q(am_l.xm)dx + Eo(éag) ;

But .
S 4 2 il 3y -
5 o, - 5 5L e o
and
?ii O(Aa?) = Tiz 0(h?) = o(n) .
1= 1=
Thus
m-1
A(S,a) = fo(o:k.xm(ak))Q(ak.x;a)dxt&sk
k=0
+~/é(X)Q(am_1,x;a)dx + 0(h) .
Therefore,

5 T ‘
sc%%?mg A(S,a) =J£./}(s.x,u(s))Q(s.x)dx+ 2(x)Q(T,x)dx, =
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APPENDIX B.

The results of Appendix A are extended to the

stochastic system with perfect observations.

Equations (1-5) and (1-7) assume that [K(t)K(t)‘]-1
exists. When there are perfect observations, it does
not exist, but then a difference equation for P(t,x)

is not needed since n3 =n, h(t,x(t)) = x(t), K(t) = 0

and P(t,x) = 6(x=y(t)) .
Consequently, with u as a control function

in (A"’l) ¥

s Exp T
lim

] A S, = ) f ] ), ( ))d T ' B-r
S":[‘b,-?] ( q) tz'(r;'f [_/1; (syy(s),u(s))ds+g(y( ))] (B-1)

Since y(f) = x(t) , (B-1) 1is equivalent to

T
f ff(s,x,u(s))Q(s,x)dxds +fg(x)Q(T,x)dx
.h

with Q(t,x) = P(t,x) .
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APPENDIX C.

The a priori stochastic operand E(t,x) is
positive semi-definite if f(t,x,08(t)) and g(x) are

positive semi-definite, Here is the proof,

Assume that the optimal control function € 1is

known and that to and X, are given.

Let Q(t,x) satisfy

Qt(trx) = %+(t:e(t))Q(t¢X) Q(tosx) = G(X—XO) .

Then by the theorem of 3.3.

E(to,xo} =./%(t0;x)Q(t0,x)dx

T
=f ff(s,x,e(s))Q(s,x)dxds
Ty

4?/%(X)Q(T,X)dx # 0 . | V;
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