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ABSTRACT 

H. J. Kushner has obtained the differential equation 

satisfied by the optimal feedback control law for a 

stochastic control system in which the plant dynamics 

and observations are p e rturbed by independent additive 

Gaussian white noise processes. However, the differentiation 

includes the first and second functional derivatives and, 

except for a restricted set of system-s , is too complex to 

solve with present techniques. 

This investigat ion studies the optimal control law 

for the open loop system and incorporates it in a sub

opt i mal feedback control law. This suboptimal control 

law's performance is at least as good as that of the 

optimal control function and s atisfies a differential 

equation involving only the first functional derivative. 

The solution of this equation is equivalent to solving 

two two-point boundary valued integro-partial differential 

equations. An approximate solution has advantages over 

the conventional approximate solution of Kushner's equation. 

As a result of this study, well known results of 

det ermini stic optimal c ontrol are deduced from the analysis 

of optima l open loop control. 
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INTRODUCTION 

Since the notable contributions of Pontryagin, 

Bellman and Kalman to the field of deterministic control 

theory, researchers have wondered if some of these same 

concepts could be extended to the field of stochastic 

control theory. In particular, there has been considerable 

interest in the area of stochastic optimal control theory. 

Historically, the works of Florentin [!] and Wonham [ 2 ] 

advanced the state of the· art of stochastic optimal control 

theory for a restricted set of systems. A system of a 

more general nature was stud i ed by Kushne r (3] His 

investigations culminated in the derivation of a functional 

differential equation for the optimal feedback control 

law. The purpose of this treatise is to expound upon t h e 

results of Kushner. 

Stochastic control theory is concerned with the control 

of dynamical systems which in some sense are random. [2] 

The physical system to be controlled is called the plant . 

Although the outptit of the pla nt of a deterministic system 

is the state of the system, the plant output in general is 

not a realizable Markov process and consequently is not 

the state of the stochastic system. Appropriately, the 

state of a stochastic system is the probability dens ity 

function of the plant output. The plant output will be 

referred to as the plant variable . 

If the densi t y function of the pla nt varia ble i s 
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derived from only the statistics of the plant, it is known 

as the a priori density function since theoretically it 

can be computed 0 off line••. The state of the system may 

be updated if real time observations are taken of the plant 

variable. If such is the case, this a posteriori or 

conditional density function of the plant variable, con-

ditioned on all past observations is the state of the system. 

In this investigation, two types of control laws [JlJ are 

discussed. If the state of the system is determined 

using the observations, then the control law, which is a 

functional of the state, is called a feedback or closed 

loop control law. On the other hand, if the state of the 

system is mathematically independent of the observations, 

the control law is called an open loop control law, 

Consequently, given the open loop control law, the control 

at each instant of time can be determined a priori. Such 

a mapping is called a control function. 

~ecause _ it is intuitively obvious that the plant 

can be controlled better if the control law is feedback, 

the author investigates the optimal feedback control problem. 

The formulation of the problem often found in the literature 

and presented in this dissertation is as follows. The 

plant and observational equations are perturbed by independent 

additive Gaussian white noise [ 4 J processes. The criterion 

for the optimal feedback control law is to minimize a 

performance index - the expected value of a functional of 
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the state and the control law. For this model of the 

system, Kushner (5) derived the integro-partial difference 

equation of the a poster iori density function. Bucy [3B,39) 

and Mortensen C33] obtained an equivalent equation by an 

alternate method. In [3] Kushner deduced the functional 

differential equation for the optimal feedback control 
' law. Also in [33] Mortensen rigorously derived such 

an equation, again for the alternate method, Since then, 

the problem of great interest has been the solution of the 

functional differential equation. 

Florentin [i,39] derived the partial differential 

equation for the optimal feedback control law based upon 

perfect observations, This equation is more difficult to 

solve than the well known Hamilton-Jacobi equation ( 6J of 

optimal control theory. However, the problem presented 

by the functional differential equation is avoided. Another 

problem which simplifies the complex feedback equation arises 

if the system is linear and the initial state is Gaussian. 

Then the a posteriori density function is Gaussian for all 

time and reduces to the Kalman-Bucy filter [?J, in which 

the conditional mean is a sufficient statistic. Wonham [ 2 ] 

utilized this fact in deriving the optimal feedback control 

law when the performance index is quadratic. His results 

show that the functional differential equation can be re

presented by a finite number of ordinary differential 

equations. 
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Other analytical or numerical results are lacking 

because of the complexity of the functional differential 

equation, A feeling for this difficulty can be seen when 

the conditional density function is represented by its mean 

and central moments. Then the control law is derived from 

an integro-partial differential equation of an infinite 

number of variables, This method was investigated in (3] 

and [8], 

The purpose of this investigation is to study the 

functional differential equation derived by Kushner [3] of 

the optimal feedback control law and its solution and to try 

to find an engineering approximation to it that would advance 

the state of the art of stochastic control theory. In 

Chapter I the model of the system is des cribed, the optimal 

feedback control problem is formulated, and the feedback 

equation is derived, 

The solution of the functional differential equation is 

discussed in Chapter II. The "classical" problems of 

Florentin and Wonham are presented, Approximations that 

were inspired by Wonham's solution are given and are shovm 

to suggest a study of the optimal open loop control problem. 

In Chapter III the optimal open loop control problem 

is solved in terms of quantities analogous to the Lagrange 

multiplier (costate variable) and the Hamiltonian of 

deterministic optimal control theory. When there is no 

dynamical noise, these quantities are shown to be identical 



5 

to each other and to imply the canonlcal equations. 

A suboptimal feedback control law, discussed in 

Chapter IV, is motivated by the previous two chapters. 

It has the features of the usual approximations with 

the advantage that nonlinear functions do not have to be 

truncated in a Taylor series. A numerical example 

demonstrates the performance of the co~trol law. 

The impact of this investigation on the field of 

stochastic control theory is presented in Chapter v. 
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I. FORMULATION OF THE OPTIMAL FEEDBACK CONTROL PROBLEM 

1.1. Introduction 

This chapter is concerned with the presentation 

of the model and the optimum criterion of the control 

system. The model is characterized by the plant and 

observational equations that are perturbed by independent 

Gaussian white noise [ 4J processes. Historically, 

Kushner [5J derived the equation of the evolution of 

the state of the system - the a posteriori density 

function of the plant variable. Consequently, this 

conditional density function is used in defining the 

performance index o:f a control law as the expected 

value of the "cost" of a random run or job. Appropriately, 

the optimal feedback control law is defined as the control 

law which minimizes the performance index, ·and a derivation 

of the functional differential equation it satisfies is 

presented. Finally, the performance index of this 

feedback law is shown to be, as expected, at least as 

good as that of the optimal control function. 

1.2. Model of the System 

Let x(t) be an n-vector where O ~ t ~ T for 

a fixed T. Then assume (x(t)} is an incremental 

stochastic process with the following structure: 

6x(t) = m(t,x(t),u(t))6 + G(t,x(t))6w(t) + 0(62 ) • (1-1) 
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Equation ( 1-1) is lcnown as the plant equation, and 

x(t) is referred to as the output gf the J21..ant or the 

plant variable. Here u(t), the control, is an n1-vector, 

and w(t) is an n 2-vector. The stochastic process 

{w(t)} is a Wiener-L~vy [ 4 J process with unit variance 

parameter, 

process has 

i.e., w(t) - w(s) ~ N(O,I ft - s!). This 
, ,n2 

stationary, independent increments [ 4 ,9] 

and is of a more general class of processes ~alled 

Brownian motion [ 4 ,9J. 

The n
3
-:-observational vector y(t) of the plant 

variable has the property that { f~ y(s)ds } is 

an incremental stochastic process that is described via 

tl f 11 · d f. ·t· If z(t) --~ fto y(s)ds, then le o owing e 1n1 ion. 

6z(t) = h(t,x(t))~ + K(t)5v(t) + 0(62 ) • 

Here v(t) is an n4-vector where {v(t)} is a 

Wiener-L~vy process with unit variance parameter and is 

independent of the (w(t)} process. 

(1-2) 

Equations (1-1) and (1-2) comprise the equations 

defining the model of the system. For infinitesimal ~. 

they are known as stochastic or Ito difference 

equations [9,ioJ. By dividing them by ~ and formally 

letting A~ O, they may be written symbolically as: 

x(t) = m(t,x(t),u(t)) + G(t,x(t))C(t) (1-3) 
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y(t) = h(t,x(t)) + k{t)~{t) • 

The processes (C(t)} and (~(t)} are independent 

Gaussian white noise C4J processes with autocorrelation 

functions [ 4J and I o(t - T), respectively, 
n4 

In (1-1) through (1-L~) the functions G, h, and 

K may include the control u(t) explicitly, but it 

was omitted without loss of generality, 

1.3. A Posteriori Density Function 

Often in control theory and in this investigation 

one is interested in controlling the present output of' 

the plant, Because of' the noise present in the model 

of the system, the plant variable, in general, is not a 

realizable Markov process and thus is not the state of' 

the system, Th~refore, before the control problem 

can be formulated, the state of the system is defined, 

Assume that the a priori probability density 

function of x(O) is 1' (x). Define 

P(t,x)dx ~ Prob. [x{t) e dx l y(s) O ~ s ~ t] , 

Then P(t,x) is the~ no s teriori or conditiona l density 

function of x(t) conditioned on all observations up 

to time t. Kushner [3] shovred that P(t,x) is a 

Markov pr ocess, Appropriat ely, the a posteriori density 

function is c a ll ed the s tate of the system. 

From (1-1) and (1-2) it follows [3] tha t P(t,x) 
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satisfies the integro-partial difference equation 

oP(t,x) ~ P(t + 6,x) - P(t,x) = ~+(t,u(t))P(t,x)6 

+ (oz(t) - h(t)6)Tr(t,x)P(t,x) + 0(62) (1-.S) 

with P(O,x) = i(x) 

wheres 

L(t,u(t))• ~ m(t, x ,u(t)) 1 Vx• 

and its adjoint 

such that 

f A(x)!B (x)dx .= J ..r,+A(x)B(x)dx (1-6) 

when A(x) and B(x) vanish fast enough as !xi - co, 

X• ~ !(t)• ~ ~(t,u(t))• and 

when the arguments are obvious, 

R(t) ~ [K(t)K(t) 1 ]-1 . , which is assumed to exis t, 
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{'.:, -r(t,x) = R(t)[h(t,x) - h(t)] , and 

h(t) = fh(t, x)P (t,x)dx 

Dividing (1-5) by 6 and £ormally letting 

A -+O , (1-5) may be written as 

Pt(t,x) = X+P(t,x) + (y(t) - ~(t)) 1 r(t,x)P(t,x) 

with P(O,x) = T(x) • 

Equations (1-3) and (1-7) are not differential 

equations in the usual sense, but are called stochastic 

or Ito differential equations [9,lOJ. 

1. L~.. Pormulation of the Optimal Pol icy 

1.4.1. Determining the Criterion 

A fairly general class of deterministic optimal 

control problems has a performance index of the form 

I TO f(s,x(s),u(s))ds + g(x(t)) • 

The control u(s) is limited to some prescribed 

set n( s ) of admissible controls, a subset of 

Euclidean n 1-space. This statement will be omitted 

for brevity in further discussions. 

Because x(s) in the stochastic system is a random 

variable whose density f'unction satisf'ies (1-7) , a 

(1-7) 
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natural criterion f'or selecting the optimal control 

is to minimize 

Exp [ J
T 

f'(s,x(s),u(s))ds + 
0 

g (x(::L'))] (1-8) 

where Exp is a suitably defined expected value operator. 

That is, (1-8) is defined as 

Ex:p 
y(T) 

[ J
0 
T J f(s,x,u( s ) )P( s,x)dxds 

+ J g(x)P(T,x)dx J • 

Appendices A and B show that (1-9) is equivalent 

to 

j
0

T J f(s,x,u(s))Q(s,x)dxds + .J"g(x)Q(T,x)dx 

where 

(1-9) 

(1-1 0) 

Qs(s,x) = ~+( s ,u( s ))Q( s ,x) Q(O,x) = T (x) • 

It is evident that a control £unction and not a f eedback 

control law minimizes (1-10). This control function 

is ca lled the optimal control £unction. 

What i s more desirable, as i s intuitively obvious 
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and as will be shovrn in 1.5., is to select the 

optimal control u(t) as a functional of the state 

of the system - the a posteriori density function. 
(11) 

The control law is then closed loop. 

1.4.2. Performance of Feedback Control 

Let r(t,P(t,x)) be a control functional of 

P(t,x). Then the performance index of the feedback 

control law r is 

Exp 
y(T) 

O~-r~T 
[JOT f f(s,x,r(s,P(s,x)))P(s,x)dxds 

+ j g(x)P(T,x)dx] 

where u(s) is replaced by r(s,P(s,x)) in (1-7) • 

Consider the imbedded system which starts at time t 

in a state ~(x). Define C(t,~;r) as the performance 

index of the control law r for such a system. Then 

by the technique of invariant imbedding [i 2-14 J 

C ( t,<p;r) ~ ;c~) [ !. T f f( s, x,r( s, P( s, x)) )P( s, x)dxds 
t~T~T t 

+ j g(x)P(T,x)dx] (1-11 ) _ 
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= 
Exp { f t+ti f y(T) f(s,x,r(s,P(s,x)))P(s,x)dxds 

t~'T"~t+ti t 

+ y('T") .J". ./' f(s,x,r(s,P(s,x)))P(s,x)dxds 
Exp [ T 

t+ti:o:;;-r~T t+ti 

+ j g(s)P(T,x)dx J } 

= 6!(~) [ J f(t,x,r(t,qi) ) ~,, (x)dx!l + C(t+ti,cp+ocp;r) 

+ O(t~2) J 

where 5~ is defined by (1-5) • 

Before expanding C(t+6,qi+o~;r) , the first 

and second functional derivatives are defined . [l5] 

Let ep , v
1 

, and iJr2 be functions . Then the 

first functional derivative of the functional F(~) 

with respect to 

F' (m)(* ) ~ . 1 

v 1 

lim 

is 

a.-o 
• 

a. 

It follows from (15] that F'(~)(•) is a linear 

operator. The second functiona l derivative of the 

functiona l F(~) with respect to t1 and t 2 is 

( 1-12) 

( 1-13) 



Hence F'(ro)( ~ ,•) ' 1 

lim 

cr.-~o 

14 

Ct 

is a linear operator, and thus 

F"(q>)(•,•) is a bilinear operator. 

Thus by Taylor's expans ion (1-12) becomes 

C(t,ro;r) 
Pxp ~ 

== 0 ~ ( t) l ff ( t' x, r ( t ' rs; ) ) m ~ x ) dxti .:!- C(t,tp;r) 

= ff ( t, x, r ( t ' cp ) ho ( x) d x6 + c ( t '~p ; r) 

+ t trace [R- 1 (t)C"(t, ro ;I')(r(t,x)~,r(t,x)T~)] 6 

Equation (1-15) follows from the linea rity properties 

of the functional derivatives and from (1-5) , (A-2) 

and (A-3). 
' 

In the limit as 6 -o (1-15 ) i mpl i es 

(1-15) 
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-Ct(t, c,') ;r) = J f(t,x,r(t, ~ ) )t0(x)dx + C' (t,co;r) (.!:+(t,r(t,ro) ) cp ) 

+ t trace [ R- 1 (t)C 11 (t, cp ;r)(r(t,x) cp ,r(t,x)rep)] • 

From (1-11) it is obvious that the initia l condition 

for (1-16) is C(T,~;r) = f g (x)~(x)dx 

1.4.3. Outimal Feedback Control 

Thus C(t,~ ;r) , the imbedded performance index 

of a control law r , satisfies (1-1 6 ). The problem 

of interest, however, is to derive the feedback control 

law that minimizes C(t, cp ;r). Such a control law is 

called the p ntimal feedback control law. 

(1-16) 

Define the performance index of the opti mal feedback 

control law 

Min 
J(t,~) ~ r c(t,cp;r) • (1-17) 

Let a be the opti.mal feedback control law and let 

{r(s,•) = E(s,•) l t s~T } • Then independent of r(t,•) 

J(t,cp) = C(t, ~ ;r) • Likewise, Jt = Ct , J' = C' 

and J" = C 11 
• Hence (1-17) and (1-16) i mply 

Min j 
-Jt(t,cp) = r(t,cp) tf f(t,x,r(t,rn) )~p(x)dx 
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+~trace [R-1 (t)J"(t,qi)(r(t,x)rp,r(t,x)T~p)] f 

with J(T,~) == /g(x)Q(x)dx • 

Equation (1-18) , which was derived by Kushner in 

[3], is the functional differential equation pf the 

optimal feedback control law for the system of 1.2. 

Its solution is discussed in Chapter II. 

1.5. Why Feedback Control? 

(1-18) 

Feedback control is desired because it is intuitively 

obvious that the state of a system can be controlled 

better if real time observations of the plant variable 

are utilized in determining the control rather than 

implementing a control function. This obvious but 

heretofore unproven fact can be shown via an alternate 

definition of J(t,~) • 

Let s = {s0 ,s1 , ••• ,s ) m be a partition of [t,T] , 

and let ak be a point in t h e subinterval [sk,sk+iJ • 

Define 

let 

A(S,a.) ~ 

~A {a a ••• a l and wi"th 
u. ·o' ·1' • ·m-1 ' 

m Min 
IT u(am-i) 

i=1 

+ J g (x)P(am-l 'x)dx J 

P(t,x) = i:p(x) 
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Then define 
tJ lim 

J(t, !'.!J ) = Sc [t,T) A(S,o_) when the limi t 

(defined i n Append ix A) exists. The limit is denoted by 

l'VIEi xnp [! T f (, ] u(T), y (T) f(s,x,u(s))P{s,x)dxds + 1 g( x~P(T,x)dx (1-1 9 ) 
t~T s:T t 

with P(t,x) = ~ {x) • 

The operator MEi xnp represents the sequences of 

opera tions Min Exp and symbolizes the structure of 

A{S, a, ) • 

By the technique of invari ant i mbedding 

,. 

J(t,q:i) 
MEixnp 

= U(T),y(T) 
t~Ts:T 

[ l
t+t. 

t J f ( s , x , u ( s ) ) P ( s , x) d xd s 

+ ~:/J. Jr< s, x , u ( s) ) P ( s, x)dxds + J g ( x )P(T, x)dx] 

MEixnp J ( t+6f 
= u(T),y(T) lJ~t f (s,x,u(s)) P ( s , x }dxds 

ts:'f~t+t. 

MEixnu [ (T 
+ u(T),y(T) l + j r ( s , x ,u( s )) P ( s ,x) dxds 

t+l\~'fs:T t+~ 
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+ ./"g(x)P(T,x)dx] 

J(t,ep) = u(~)~~C~) j Jtt+tl J f(s,x,u(s) )P(s,x)dxds 
t~T~t+ll l 

+ J ( t+~, r:p+o~p) ~ 

= ~1~) ~~1t) 1 Jr(t,x,u(t))~(x)dx6 

where o~ is defined by (1-5) • 

By analysis similar to that in (1-15) , (1-20) 

implies 

(1-20) 

Min j 
- Jt(t,~p) == u(t) i jf(t,x,u(t))r;p(x)dx + J'(t.~)(!+(t,u(t))cp) 

~ ~trace[R-1 (t)J 11 (t,q:i) (r(t,x)m,r(t,x)Tcp)]} (1-21) 

with J(T,~')) == Jg(x)P(T,x)dx. 
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By (1-18) and (1-21) J(t,ep) can be de.fined 

by (1-19) • Therefore, because of the r elation 

Exp Min 
r v T . J 

(1-21) implies by induction 

Min Exp 
v r [ . J 

Min Exp 
J(t,~) S: U(T) y(T) 

. ts:"i~T [ 

T li jf( s ,x,u(s) )P(s,x)dxds 

+ .J"g (x)P(T,x)dx ] 

the greater of which by Appendices A and B is the 

imbedded performance index of the optimal control 

f'unction. 

Thus, as has been conjectured, the performance 

of the optimal fe edback control lav·T is at least as good 

as that of the optimal control function. 
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II. SOLUTION OF THE OPTiiilAL FEEDBACK CON'l1 fWL FUHCTIOi>iAL 

DIFFEH.ENTIPJ_, EQUATION 

For the system presented in 1.2. the optimal 

feedback control law satisfies (1-18). This equation 

is analogous to the Hamilton-Jacobi [ 6] equation of 

deterministic optimal control theory. Because the latter, 

the simpler version, is difficult to solve both 

analytically and numerically, it is an extremely arduous 

task to solve the former, more complex version. Florentin's 

solution [l] shows that (1-18) r educes to a partial 

differential equation when the observations are perfect. 

Wonham's results show that the functional differential 

equation reduces to a finite system of ordinary differential 

equations when the system is linear and the performance 

index is quadratic. Other systems for which (1-1 8 ) 

reduces to a finite system of' ordinary differential 

equations have been fruitlessly investigated. Of course, 

a system of ordinary differential equations may still 

b:e far from a solution. However, their solutions have 

been studied more and are understood better than those 

of other types of differential equations, 

If the state of the system has a finite number of 

sufficient statistics , then an alternate approach is to 

represent the state by them, In addition, (1-18 ) reduces 
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to a partial differential equation. The problem with 

an infinite number of sufficient statistics is discussed 

in (3] and [8] • 

A numerical solution of the complex feedback equation 

was attempted for a simple first order nonlinear problem. 

Efforts were terminated because of the enormous amount 

of computational time needed. 

A typical approximation of (1-18) arises from 

Wenham' s solution. It is sho~vn to suggest the studying 

of the optimal open loop control problem. 

2.2. System with Perfect Observations 

Florentin [l,J9] derived the optimal feedback con

trol law when there are perfect observations; that is, for 

a system with n 3 = n , h(t,x(t)) = x(t) and K(t) = O • 

Equation (1-7) then implies P(t,x) = o(x-y(t)) • 

By defining A(t,c) to be the optimal feedback 

control law at time t given the observation y(t) = c , 

Florentin defined as the imbedded performance index 

F(t,c) ~ l'Y~t ~C~) [1tTf'(s,y(s),A(s,y(s)))ds + g(y(T))l (2-1) 
t~-r~T J 

with y(t) = c • Analogous to the method in 1.3.3., 

he derived from (2-1) the partial differential equation 

for the optimal feedback control law 
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Min { } - Ft(t,c) = A(t,c) f(t,c,A(t,c)) + X(t,A(t,c))F(t,c) 

with F(T,c) = g(c) • This equation may also be derived 

from (1-18). 

Equation (2-2) is much simpler than (1-20) but 

(2-2) 

more complex than the well known Hamilton-Jacobi equation [ 6] 

of deterministic optimal control theo~y. I~ has been 

shovrD to reduce to a finite set of ordinary differential 

equations only for a r estricted class of systems . 

2. 3. IJinear System \·Ji th a Quadratic Perfornance Index 

One of the restricted classes of systems for which 

(1-18) reduces to a finite system of ordinary differential 

equations is the linear system with a quadratic per

formance index. The set n(t) of admissible controls 

at time t is understood to be the Euclidean n
1
-space. 

Such a system ir1plies 

m(t,x(t),u(t)) = A(t)x(t) + B(t)u(t) , 

G(t, x (t)) = G(t) , 

h(t,x(t)) = H(t)x(t) , 
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f(t,x(t),u(t)) = ix(t)TQ(t)x(t) + i u(t)TC(t)u(t) , 

g(x(T)) = tx(T)Tsx(T) , 

where matrices A(t) is n x n , B(t) is n x n1 , 

G(t) is n x n2 , H(t) is n
3 

x n , Q(t) and S 

are n x n , symmetrical and positive semi-definite, 

and C(t) is n1 x n1 , syiTuuetrical and po~itive definite, 

(1-7) reduces [2] to If T(x) = N(x,µ0 , M0 ) , then 

the Kalman-Bucy filter[?], that is, P(t,x) = N(x,µ(t),M(t)) 

where 

µ(t) = A(t)µ(t) + B(t)u(t) 

+ M(t)H(t)TR(t)[y(t) - H(t)µ(t)] (2-3) 

and 

• M(t) = A(t)M(t) + M(t)A(t) 1 
- M(t)H(t) 1 R(t) H(t)M(t) 

+ G(t)G(t) 1 M(O) = M0 (2-4) 

Since M(t) can be determined a priori, it is 

thought of as a function of time and not as a statistic. 

Thus J(t,P(t,x)) is a function of t and µ(t) • 
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It can be easily shown that 

J ( t, cp) = ! J x 1 
t0 ( x) dxU ( t) J x9 ( x) dx + ~w ( t) (2-5) 

is a solution of (1-18) where U(t) is the n x n 

symmetrical matrix that satisfies 

b(t) = - A(t) 1 U(t) - U(t)A(t) + U(t)B(t)c-1 (t) B(t) 1 U(t) 

- Q(t) U(T) = S (2-6) 

. 
The optimal feedback control law which follows 

from (1-18) and (2-5) is 

(2-7) 

Both (2-4) : and (2-5) are matrix Riccati-equations [16] 

\;1hich may be solved a priori. Only (2-J) has to be 

solved in real time to yield the optimal feedback control, 

r(t,N(µ(t), M(t))) , of (2-7) • 

These are the results derived by Wenham [ 2], who 

approached the problem as discuss ed in 2.4. without 

using (1-18 ) • 

2.4. Alternate Annroach to the Optimal Policy 

An alternate a pproach to d eriving the optir.1al feedba ck 
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control law is to repres~nt the a posteriori density 

f'unction by its r:iean and central moments . '11he conditional 

mean 

µ(t) == J xP(t,x)dx • 

With the definitions 

and 

A~ {a I ai e {0,1,2, ••• } l~i~n} 

B ~ {a I a e A and 
n 
L: 

i=1 
a,.< 2} 

1 

The central moments are {S(t;tt) f a € A - B} where 

Now let i 1 (t) , l 2 (t) , x
3

(t) , ••• represent some 

ordering of the central moments and define 

co 

X(t) ~Col {A1 (t)} 
i=1 

as the central moment , 
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From (1-5) the ordinary difference equations 

for µ(t) and X(t) can be derived. With . ~(t,µ(t),X(t)) 

as a feedback control law, define 

n(t,µ(t),A(t), ~(t,µ(t),\(t))) ~ ff(t,x,~(t,µ(t),\(t)))P(t,x)dx, 

and 

q(µ.(T) ,A.(T)) ~ f g (x)P(T, x)dx • 

The i mbedded performance index for the optimal feedback 

control law of a process which begins at time t with 

a conditional mean c and central moment d is 

Min Exp 1 l. T 
L(t,c,d) = z y('l") n(sd.t(s),;\.(s), Z(s,µ(s),;\.(s)))ds 

t~'T'~T t 

with µ(t) = c and )...(t) :::: d • 

A partial differential equation [3, 8] for L 

c an be derived .from (2-8) analogous to the procedure 

presented in 1.3.3. But since d has an infinite 

number of components, the equation has an infinite 

number of variables. Thus only a truncation of it can 

be i mplemented. 

(2-8 ) 
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For the linear system Wonham noted that X(t) 

was independent of the observations and control and 

absorbed it in L(t,c) from which he derived the optimal 

control law. 

M· Numerical Solut ion 

The partial differential equation suggested in 

2.L1-. is an awkward equation to solve numerically. 

Because of its infinite number of variables, it reduces 

to a cur.ibersome sequence of ordinary differential equations 

where each equation contains an infinite number of 

variables.. However, the functional differential equation 

(1-18) , which is more complex conceptually, can be 

reduced to a sequence of ordinary differential equations, 

each with a f'inite number of variables. There is a 

natural ordering of this sequence which is suggested 

after the following definitions. 

With cp(x) fixed, define the scalar quantities 

A
3

(s) ~ J' (s, ro ) ( .~+c:.i ) 

A w· -1 \ ( s ) ~ J II ( s ' (t) ) ( r. ( s ' x) \i) ' r . ( s ' x) M ) 
3+ 1 ~ +j . 1 . J 

f'or l~j~i and l ~i~n • 
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By defining (A1 } as the first step and 

{A2,A3•''',A3+ n(~+1)} as the second step, 

be determined by (1-18) as a function of the second 

step. By taking the necessary functional derivatives 

of both sides of (1-1 8 ) , the time derivatives of 

each eler.ient of the second step can be derived as functions 

of the second step and extra variables that define the 

third step. This process is continued where the time · 

derivatives of the kth step are derived via (1-1 8 ) 

as a function of variables defined in the first k steps 

and extra variables that define the (k+l)st step. 

Here a natural sequence of ordinary differential 

equations is evolved from the functional differential 

equation and offers a more concise numerical approach 

than the partial differential equation referred to in 

2.4. 

A computer program was written to generate the 

sequence of ordinary differential equations for a simple 

first-order nonlinear system. On the I BM 360/75 computer 

only the differential. equations of the first three steps 

(47) were derived because of the magnitude of time 

needed to derive those of the fourth step consisting 

of about 400 terms. 

However, the s olution of three steps of equations with 

(O,T) partitioned into 50 parts takes approximately 
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400 minutes 8..t'1cl thus was not attempted. The numerical 

solution resulting from just three steps of equations 

was attempted for the first order system of 2.3., and 

the answer was incorrect by several orders of magnitude. 

Assuming that four steps of ordinary differential 

equations yield a satisfactory nu1:!lerical solution, 

they must be solved in real time for each P(t,x) 

for each increment of time. Hence on one of the fastest 

computers of its generation, the increment of real time 

f'or a simple problem can be no smaller than 200 minutes: 

Obviously, except in a few rare cases, the determination 

of the stochastic optimal control is impractical. 

Consequently, either faster computers must be built 

or else simpler but effective suboptimal schemes must 

be used. 

2.6. Approximate Solution 

2.6.1. In General 

Because of the awesome amount of real computational 

time to solve (1-18) numerically, given P(t,x) , 

and to solve (1-7) to determine P(t,x) , sir:rple 

suboptimal solutions are desirable. One approxination 

is to expand all nonlinear functions in a Taylor series 

about some a priori nominal trajectory oi' the state of 

the system. By neglecting second order terms, a system 
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of equations like those in 2.3. are derived, Consequently, 

a suboptimal control law is obtained using \"/onham's 

solution. However, it has been recognized [l?] that 

unacceptable performance may follow, pcissibly because 

second order terms are significant. Thus, such expansions 

are not discussed in this treatise, 

Other approximations of (1-18) stem from the 

approach of 2.4. First, P(t,x) is approximated by 
A A 

a Gaussian density function N (x,µ(t)~M(t)) where 
A A 

µ(t) and M(t) are generated by a nonlinear filter, 

At least eight nonlinear filters [lB-27J for the system 

of 1.2. have been published, 
A 
A 

... 
Next M(t) is approxi-

mated by some M(t) that can be determined a priori, 

Lastly, since a Dirac delta function is a simpler form 

for P(t,x) , the latter is approximated by 

... ... ... 
N ( x , ·µ ( t ) , M ( t ) ) 

P(t,~(t),x) ~ or 
... 

o(x-µ(t)) • 

... ... ... 
Thus µ(t) is a sufficient statistic for P(t,µ(t),x) • 

Appropriately, the imbedded performance index 

" J(t,P(t,x)) is approximated by L(t,µ(t)) • Let 
... 

A(t,µ(t)) be the corresponding feedback control law, 

(2-9) 
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Such a control law is called suboptimal when it is derived 

from an approximation of the optimal control law. 

By a derivation suggested in 2.4. and analogous 

to that for (1-20) , 

Min Exp ~ J 
L(t,v) = A(t,v) 5z(t) 1 f(t,x,A(t,v))P(t,v,x)dx6 

• 

The increment in v is derived from the nonlinear 

filter used. Most nonlinear filters are of the form 

t 
µ(t) = a(t,~(t),u(t)) + F(t,~(t))(y(t) - h(t,~(t))) 

where F(t,• ) is a n x n3 matrix function of t , 

... ... 
M(t) and 'V.h(t,•)T • Notice that if h is linear, 

... 
F is independent of µ(t) • 

Continuing from (2-10), since 

(2-10) 

(2-11)" 
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then by (2-11) , (2-10) leads to 

Min ) f ;;; 
- Lt(t,v) = A(t,v)1 f(t,x,A(t,v))P(t,v,x)dx 

+ ~trace[R-1 (t)P(t,v) 1 ['i7 v 1 L(t,v)]F(t,v)]l (2-12) 
. \) \) ~ 

with L(t,v) = .["g(x)P( T,v,x)dx • 

Next L(t,v) i s approximated by a quadratic polynomial 

in v : 

is an n x n symmetrical matrix, and s 2 (t) is an 

n-vector. Equation (2-12) then becomes 

Min )f : - tv'S1v - s2'" - SJ= A(t,v) ~ f(t,x,A(t,v))P(t,v,x)dx 

(2-13) 

with L(T,v) = .J"g (x)P( T,v, x )dx • 
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The last approximation before obtaining the sub

optimal feedback control law is to expand the right 

side of (2-13) and its initial condition in a Taylor 

series in v where terms of degree three or more are 

truncated. Call these quadratic polynomials A(t,v) 

and B(v) , respectively. The resulting equation is 

. .. . 
- tvTs1v - s2Tv - SJ= A(t,v) 

with 

As a result, the ordinary differential equations 

Since Si(t) 

is independent of v , it can be computed a priori. 

(2-14) 

This standard suboptimal scheme, which is a function 

n2+3n+2 
of 2 components of s1 , s2 and SJ , yields 

the optir:ial feedback control law for the linear system 

with a quadratic performance index. 

2.6.2. Linear Observations 

A typical approximate solution of (1-18) was 

described in 2.6.1. \'/hen the observations are linear, 

the suboptimal feedback control law is the same as a 

suboptimal open loop control law. This will be shown 

after this comment on linear observations. 



The observations are linear if h(t,x(t)) = H(t)x(t) 

where H(t) is an n3 x n matrix. Notice that if there 

exists a vector function g(x(t)) that has an n-vector 

function inverse g-1 , and that if the transformation 

c(t) = g(x(t)) implies that h(t,x(t)) = h(t,g-1 (c(t))) 

is linear in c(t) , then redefining the state of the 

system to be c(t) will yield linear observations, 

The significance of having linear observations in 

the suboptimal feedback control problem is that F and 

consequently the last term in (2-13) are then 

independent of ~ , Consequently, s
1 

and s 2 are 

independent of the last term, which effects only s
3 

• 

If h and K do not depend explicitly on the control, 

then the suboptimal control law is a function of t , 

" , s 1 . , and s2 .. but not of s
3 

• Thus, for determining 

the suboptimal control, the last term in (2-13) may be 

deleted. 

Thus, : if the cibservations are linear and J(t,m) 

is approximated by the quadratic 
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then R-1 (t)J"(t,~)(r(t,x)~,r(t,x)'~) may be deleted 

f'rom (1-18) without altering the suboptimal feedback 

control law. The equation resulting f'rom (1-18) is 

Mi j 
- Jt(t,~) = r(~.~)(.J9f(t,x,r(t,~))~(x)dx 

with J(T, ~r> ) = J g(x)~(x) dx • 

Notice that equation (2-15) is derived from 

(1-18) when the observations are independent of the 

plant variable. Consequently, (2-15) is the equation 

for optimal open loop control. Appropriately, in the 

search of "better" approximations of (1-18) , the 

optimal open loop control problem [Jl,32] is studied 

in Chapter III. 

(2-15) 



III. OPTIMAL OPEN LOOP CONTHOL 

3.1. Introduction 

The optimal open loop control problem is studied 

because the conventional suboptimal feedback control 

law can be derived from it. The optimal open loop 

control law, which can be deduced from (1-18), is 

derived using dynamic programming [ 2S) This approach 

leads .to the definitions of the open loop or a priori 

stochastic analog of the Lagrange multiplier (costate 

variable), the Hamiltonian and Pontryagin's maximum 

principle [ 6). A feature, which is desirable but 

uproven for the feedback system, exists for the open 

loop system and is as follows. If the system is 

linear and the functions f and g are polynomials 

in the plant variable, then the optimal control law 

can be represented by a finite system of ordinary 

differential equations. 

J.2. Open Loop Policy via Dynamic Program..~ing 

If there are no observations of the plant variable, 

then h(t,x(t)) is independent of x(t) , and the 

system of 1.2. is said to be an open loou control 

system since the control can be determined a priori. 
-Therefore, h(t) = h(t,x(t)) , and hence r(t,x(t)) = o • 

Consequently, (1-7) reduces to Pt(t,x) = r+P(t,x) 

which is known as the Fokker-Planck .(9] eauation. 
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If the a priori density function of x(O) is 

T(x) , define Q(t,x) as the ~ priori densit..Y function 

of x(t) • Then 

Q(O,x) = T(x) • 

Consequently, when h(t,x(t)) = h(t) in the model of 

the system the state of the system is the a priori 

density function. 

With the open loop control system defined, the 

optimal control function {e(s) I O~s~T} is chosen to 

minimize the performance index 

Exp [.foT :f(s,x(s) ,u(s) )ds + g(x(T) i] 

(J-1) 

~ fa T j :f(s,x,u(s) )Q(s,x)dxds+ j g(x)Q(T,x)dx , (3-2) 

Notice that the optimal control function is mathematically 

independent of the observations. 

Consider the imbedded performance index for the 

control function u 

1TJ f(s,x,u(s) )Q(s,x)dxds + J g (x)Q(T,x)dx • 
t . 

(J-3) 



Define 

6 Min 
V(t,~) u(T) ((J-J)] 

t~T~T 

J8 

Q(t,x) = ~(x) • (J-4·) 

Notice that as in (1-9) Appendices A and B show that 

Min Exp [!Tf 
V(t,~) = u(T) y(T) f(s,x,u(s))P(s,x)dxds 

. t~T~T t 

+ _/"g( x)P(T,x)dx] P(t,x) = ~ (x) , 

Continuing , by dynamic programming [ 2 81 

Min 1 t+6 
v ( t '~) = u ( i") r ff ( s' x' u ( s) ) Q ( s, x) dxd s 

t=s:-r~t+A j t 

+ v ( t+~. r:p+otr )f 

(3-5) 

where oep i s derived from (J-1) • 
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Equation (J-5) then reduces as A~o to 

- Vt(t,~) = ~t~) l ~f(t,x,u(t))~(x)dx + V'(t,~){!+~l ! (J-6) 

with V(T,~) = ~g(x)~(x)dx • 

By (3-6) the optimal open loop control law is a function 

of t and q>, i.e., r(t,ep) • By replac.i.n,g ep 

by Q(t,x) , which is independent of the observations, the 

optimal control function is 

9(t) = Y(t,Q(t,x)) • (J-7) 

3.3. Toward the A Priori Stochastic Hamiltonian 

It is well known that in deterministic optimal 

control theory [ 6] the solution of the Hamilton-Jacobi 

equation, which is a partial differential equation of the 

first order, is equivalent to solving the canonical equations-

2n ordinary differential equations where n is the 

order of the state equation. Lur'e ~36 ] proved the 

existence of a similar result for the functional differential 

equation of the first kind as typified by (3-6). He 

also showed, as Mortensen (34 ,35] and Wang [37] point 

out, that the solution of such an equation is equivalent 

to solving two partial differential equations of n 

independent variables. However, the partia l differentia l 
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equations were not explicitly exhibited, Derivations 

which follow produce these equations for (3-6) and 

show how (3-6) relates to the a priori stochastic 

Hamiltonian and maximum principle, 

Theorem: For t<s let {u(T) l t~T~sl , c(s,x) and 

Proof: 

Q(t,x) be given. Define q(s,x,s) ~ c(s,x) 

and ·qa(o,x,s). ~ -.t(cr)q(o,x,s) for . t~cr~s • .. 

Then 

.J"c(s,x)Q(s,x)dx = .J"q(t,x,s)Q(t,x)dx • 

Define 

p(s,~;cr,x)d~ ~ Prob,[x(s)~dg I x(cr)=x] • 

Then p(s,gro,x) is the transition density 

function of the Markov process (x(t)l and 

satisfies Kolmogorov's backward eguation !9J 

and the Fokker-Planck or forward equation (9] 

p8 (s,~ro,x) = !+(s)p(s,;;cr,x) • 

The independent variables of the operators 

!(a) and !+(s) are x and g, respectively, 

By the properties of conditional density functions 

Q(s,;) = .{"p(s,sro,x)Q(o,x)dx • (J-8) 

Define q(cr,x,s)~ .{c(s,~)p(s,~;cr,x)d~ • (J-9) 
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Then qcr(cr,x,s) = .J"c(s,~)p0 (s,s;cr,x)d? 

= - .J"c(s,s)!(cr)p(s,s;cr,x)ds 

= -!(cr).J"c(s,s)p(s,~;cr,x)ds = -!(cr)q(cr,x,s). 

Therefore, by (J-8) and (3-9) with cr=t 

.J"c(s,s)Q(s,s)ds = .J'c(s,;)fa(s,s;t,x)Q(t,x)dxds 

=ffccs,s)p(s,s;t,x)dsQ(t,x)dx 

= .J"q(t,x,s)Q(t,x)dx • • 

3,4. A Priori Stochastic Operand 

Recall that the optimal control function e minimizes 

(3-3) with Q(O,x) = T(x). Define ci(s,x) and 

qi(t,x,s), analogous to c and q in the theorem of J.3., 
such that 

c
1

(s,x) ~ f(s,x,e(s)) and 

c2 (T,x) ~ g(x) • 

Then by (J-4), 

T 
V(t,Q(t,x)) = ~ .J"c1 (s,x)Q(s,x)dxds +.J"c2(T,x)Q(T,x)dx 

t 
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--![ (tT ] V(t,Q(t,x)) )
4 

q 1 (t,x,s)ds + q 2 (t,x,T) Q(t,x)dx. 

Define as the a 12riori stochastic ouerand 

E(t,x) ~ E(t,x,Q(t~x)) 

( 3-10) 

Then 

V ( t , Q ( t , x ) ) = f E ( t , x) Q ( t , x) dx • (3-11) 

Clearly, E(T,x) = q2 (T,x,T) = g (x) • 

By differentiating (3-10) with respect to t , 

the following integro-partial differential equation is 

derived: 

T 
Et(t,x) = - q 1(t,x,t) - ~ !(t)q1 (t,x,s)ds - !(t)q2(t,x,T) 

T 
= - f(t,x,e(t)) - !~ q1 (t,x,s)ds - !q2(t,x,T) 

= - f(t,x,e(t)) - !E(t,x) • (3-12) 

If f(t,x,e(t)) and g (x) are positive semi-definite, 
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then Appendix C shov1s that E(t,x) is also positive 

semi-definite. 

If the optimal control function e is knovm, then 

(J-12) can be solved in back'11ard time. 

More generally, if the a priori density function at 

time t is ~ , then by (J-10) E(t,x) = E(t,x,~) 

and hence E(t+6,x,cp+6cp) = E(t+tl,x) where 6~ is 

defined by (J-1) • 

By (J-7) and (J-12) 

E(t+~,x) = E(t,x) - f(t,x,~(t,~))6 - X(t,Y(t,cp))E(t,x)6 

and by (1-1J) 

These results lead to the following functional differential 

equation as ~--o s 

Et(t,x,cp) = - E'(t,x,~)(~+(t,Y(t,~))) - f(t,x,!(t,~)) 

- !(t,~(t,cp))E(t,x,~) 

with E(T,x,~) =fg(x)~(x)dx. 

(3-13) 
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Thus 

Et(t;x) = ET(T,x,Q(t,x))!T=t + E'(t,x,Q(t,x))(!+Q(t,x)) • 

J.5. A Priori Stochastic Hamiltonian and Maximum PrinCiJ?le 

By (3-10) and (3-11) 

V(t,q:>) = .J"E(t,x,cp)cp(x)dx • 

To determine Y'(t,cp)(o/) for an arbitrary. function 

• (x) , consider 

V(t,~+c:r.$) = .J"E(t,x,~+av)cp(x)dx 

(J-14) 

(J-15) 

Associated with V(t,q:i+ao/) and E(t,x,cp+c:r."¥ ) is a control 

function 'Y(s) ~ 'Y(s;*,c:r.) which minimizes (J-3) with 

Q(t,x) = q:i(x) + c:r.v(x) ~ But by the theorem of 3.3 • 

.J"E(t,x,cp+c:r.V)cp(x)dx is equal to the expression (3-3) 

with u(s) = 'Y(s) and Q(t,x) = q:>(x) • And since under 

these conditions (3-3) is at its minimum when 

-y(s) = e(s) or when a = 0 , then 

By (1-13) V' (t,cp)($) = 

(J-16) 
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Consequently, by . (J-15) and {3-16) 

• {3-17) 

Now define as the _g priori stochastic ]{amiltonian 

H{t,~,E,u{t)) ~ ./"f(t,x,u(t))~ (x)dx 

+ .f"x(t,u(t))E(t,x,Q)~(x)dx • (3-18) 

It follows that 

Min 
u(t) H{t,~,E,u(t)) 

= ~~~) {/ f ( t, x, u( t) )~p (x)dx + JiE( t, x ,ep)Q(x) dx} 

Mi 
=by (1-6) u(~){.Jf(t,x,u(t))Q(x)dx 

Min 
=by 0-18) u(t){fa(t,x,u(t))ep(x)dx + v•(t,~)(~+~>} 

= by {J-6) - Vt{t,~) • 

Thus by {3-6) 9 the optimal control e(t) satisfies 
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Min 
H(t,~,E,e(t)) = u(t) H(t,~,E,u(t)) , 

which is the a :griori stochastic maximum principl~. 

3.6. Summaa 

The func t ional differential equation (3-6) which 

yields the optimal control function e(t) = Y(t,Q{t,x)) 

(3-19) 

reduces to solving t wo two-point boundary valued integro

partial differentia l equations: 

Q{O,x) = i(x) (J-20a) 

and 

Et(t,x) = - f(t,x,e(t)) - !(t,e(t))E(t,x) (3-21a) 

with E(T,x) = g( x ) 

where 

Min 
H(t,Q,E,9(t)) = u(t) H(t,Q,E,u(t)) • (J-22a) 

These equations result from (3-1) , (J-12) and (3-19) 

and represent the solution of the optimal open loop 

control problem. By (3-11) its performance ind ex is 

.J"E(O,x)T(x)dx • 
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Notice that E(t,x,q:>) can be found by solving the 

initial valued equation (.3-13) or by solving these 

two-point boundary valued equations: 

Q(t,x) = cp(x) 

and 

~s(s,x) = -f(s,x,e(s)) ~ . x(s,e(s))E(s,x) 

with E(T,x) = g(x) 

where 

Min 
H(s,Q,E,e(s)) = u(s) H(s,Q,E,u(s)) 

Consequently, E(t,x,~) = E(t,x) • 

3.7. Linear System 

A class of pr~blems which has been of interest is 

(3-20b) 

c.:~-21 b) 

(J-22b) 

the linear system with a non-quadratic performance index. 

While (1-18) has not been reduced to a finite system 

of ordinary differential equations, (3-6) via the 

results in J.6. can be reduced when f and g are 

polynomials in x. This can be seen after the following 

definitions. 

A form of degree p in .x is the sum 
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n n 

L • • • L ai , • • •, i xi •••xi i O • 
i =1 i =1 1 p 1 p 

1 p 

A polynomial of degree q is the sum of forms the 

maximum d ~gree of wh ich is q. Defin e a constant as 

a polynomial of degree o. 
If f(t,x,e(t)) is a polynomial of degree r

1 

and g(x) is a polynomial of degree r 2 , then a polynomial 

of degree r
3 

= max{r1 ,r2 } is a solution of (J-21). 

First of all, the boundary cond ition of (3~21) c a n be 

satisfied wi t h such a polynomi a l, Sec ondly, sinc e t he 

plant equation is linea r, ~(t,e(t))E(t, x ) is a polynomial 

of degree r
3

• 

Thus both sides of (3-21) is a polynomial of 

degree r
3

. and E(t,x) can be represented by a finite 

number of ordinary differentia l equations of the 

coefficients of powers of x. 

As is well known, [7] (3-20) can be represented 

by a finit e number of ordinary differential equations. 

J.8. Determini s tic Sy s t em 

The equa tions of 3.6. are applied to the deterministic 

system to relate the a priori stochastic Hamiltonian, 

operand, and maximum principle to the deter ministic 
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Hamiltonian, the Lagrange multiplier, and Pontryagin's 

maximum principle. [ 6] Because there is no dynamical 

noise, G(t,x(t)) = o. 

Let c0 ~ x(O) , c(t) ~ x(t) , and c(T) be 

free. Let u(t) be the optimal control function. 

Then 

~(t) = m(t,c(t),u(t)) 

Q(t,x) = 6(x-c(t)) 

and 

Define 

From (3-21a) it f'ollov:s that 

(3-23) 
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Therefore, 

iCt) = J [:t VxE(t,x)J Q(t,x)dx + JvxE(t,x)Qt(t,x)dx • (3-24) 

But by (3-23) 

J [ :t VxE(t,x)J Q(t,x)dx 

= -V
0
f(t,c,u(t)) - [v

0
m(t,c,u(t))'J vcE(t,c) 

(3-25) 

and by (3-20a) 

= /cvxvx'E(t,x)Jm(t,x,u(t) )Q(t,x)dx 

(J-26) 

Thus by (J-24) through (J-26) , 
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(J-27) 

By 3~22a the a priori stochastic Ha.'niltonian 

·H(-'c,Q,E,u(t)) = jf(t,x,u(t) )Q(t,x)dx + js:E(t,x)Q(t,x)dx 

= f(t,c,u(t)) + m(t,c,u(t))rvcE(t,c) 

= f(t,c,u(t)) + m(t,c,u(t))'A(t) 

equals the deterministic Hamiltonian ( 6) H(t,c,A,u(t)) 

where A(t) is the IJagrange multiplier [ 6J. 

The a priori stochastic maximum principal 
Min 

H(t,Q,E,u(t)) = v(t) H(t,Q,E,v(t)) is equivalent to 

Min 

(J-28) 

H(t,c,A,u(t)) = v(t) H(t,c,"-,v(t)) , which is Pontryagin's 

maximum principle [ 6J. 

Since 

and E(T,x) = g(x) , it follows from (3-27) and (J-28) 
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that 

• V~H(t,c(t),A(t),u(t)) c(t) = c(O) = c 0 

and 

• -VCH(t,c(t),>.(t),u(t)) l(t) = ).(T) = V g(c(T)) c . 

which are the ca.rionical equations [ 6]: 
. . . 

Thus the optimal open loop control solution implies 

the deterministic solution. With no dynamical noise, 

the expected value of the gradient of the a priori 

stochastic operand is the Lagr ange multiplier, which is 

the gradient; of the imbedded performance index E(t,c) , 

the a priori stochastic Hamiltonian is identical to the 

deterministic Hamiltonian, and the a priori maximum 

principle is Pontryagin's maximum principle. 

Since E(t,x) in (3-28) is operated on by L , 

it was named an operand rather than a multiplier. 

3.9. Canonical Equations in Function Space 

Before concluding this chapter, it should be noted 

.that the a priori density function and the a priori 

stochastic operand satisfy the canonical equations in 

:function space as mentioned by Lur'e [36J, .Mortensen EJ3,34 J 
and Wang (37J. 

But first by the Riesz Represe~tation theorem [l51 
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there exists a functional L(~ 1 x) for the linear operator 

in (1-13) such that 

F'(~)(~) = .J"L(~,x)~(x)dx (3-29) 

for all functions V• Define 

6F A icp = L(~,x) • (3-JO) 

6F 
Then ~ is the Frechet derivature of F at ~· Mortensen 

discusses and gives examples of the derivature in [J4J. 

Thus by (3-18) with F{E) = H{t,Q,E,e(t)) • 

F'(E)(*) = .J"t~(x)Q(t,x)dx 

=by (1-6) .J"vCx)!+Q(t,x)dx. 

Consequently by (J-29) and (J-30) 

(J-31) 

Likewise with F(Q) = H(t,Q,E,e(t)) , 

F'(Q)(;) = .{"f(t,x,e(t))~(x)dx +.{"tE(t,x)v(x)dx. 

Similarly, by (J-29) and (J-30) 



~ = f(t,x,e(t)) + !E(t,x) • 

Indeed, by (J-20a), (J-21a), (J-Jl) and (J-32) 

and 

which are the canonical equations in function space for 

the a priori stochastic optimal control problem. 

(J-32) 
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IV. OPEN LOOP CONTROL LAW 

~.1. Introduction 

It was shown in 1.5. that the performance index 

of optimal feedback control is at least as good as that 

of optimal open loop control. Consequently, the per

formance index of any suboptimal feedback control law 

proposed should also be no worse than that of the open 

loop control, or else the trouble of taking real time 

observations is wasted, 

Such a suboptimal scheme is inspired by the results 

of studying the optimal open loop control system~ Un

fortunately, the scheme is not easily implemented. 

However, an approximation of it is easily implemented 

and has advantages over the typical suboptimal schemes 

discussed in 2,6,1. The results of a simple numerical 

problem, in which the approximate suboptimal control 

law is superior, is given. 

4.2. Definition 

While both the optimal open loop and feedback control 

laws satisfy functional differential equations, the former 

can be derived from two integro-partial differential 

equations. Because of the attractiveness of the solution 

of the open loop problem over that of the closed loop 

problem, the optimal open loop control law is proposed 

as a suboptimal feedback control law .• [3l • 32] By applying 
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it to the a posteriori instead of the a priori density 

function, it will be a feedback control law and hence

forth will be re£erred to as the optimal Qruill. loop control 

law. By (J-7) this suboptimal feedback control law is 

... 
t , and the suboptimal feedback control u(t) = Y(t,P(t,x)) • 

Alternatively, by J.6. 
A 

u(t) satisfies 

Min 
H(t,P,E,u(t)) = u(t) H(t,P,E,u(t)) .. 

where H is the a priori stochastic Hamiltonian. Thus .. 
u(t) minimizes 

H(t,P,E,u(t)) = .J"f(t 1 x,u(t))P(t 1 x)dx 

+ .J"!(t,u(t))E(t,x,P(t,x))P(t,x)dx • (4-1) 

Here, E(t,x,P(t,x)) can be determined by (J-20b) 

·through (J-22b). 

4.3. Performanc~ of the Optimal Onen Loop Control Law 

In 1~5. it was sh mm that the performance ind ex 1 

J(O,T), of the optimal feedback control law is less than 

.or equal to V(O,T) of the optimal control function. 

The same inequality is shown to be true for the performance 

index, c(O,T), of the optimal open loop control law 

and V(O, T). 
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and P(O,x;O) f1: T(x) , By induction define for O~k~m-1 

e( s ;k) , Q(s,x;k) , and P(s,x;k) such 

Qs(s,x;k) ~ t+(s,e(s;k))Q(s,x;k) where e(s;k) 

minimizes H(s,Q(s,x;k),E(s,x,Q(s,x;k))~u(t)Y 

(thus, e(s;k) is the optimal control function for a 

process which starts at time sk in a state P(sk,x;k) 

Q(s,x;k) is the corresponding a priori density function; 

in particular, e(s;O) and Q(s,x;O) equal e(s) and 

Q(s,x) , respectively, of 3,6, ); P(s,x;k) satisfies 

(1-7) with u(s) = e(s;k) , and P(sk+l'x;k+1) ~ P(sk+l'x;k) 

(hence P(s,x;k) is the conditi onal density function 

driven by the control function e(s;k)), 

Define for O~t~m 

. .t-1 I sk+1/ 
B(S,t) ~ L f(s,x,e(s;k))P(s,x;k)dxds 

k=O sk 

s 

+ j m j f ( s , x, e ( s ; .t) ) P ( s , x; t) d xd s 

SJ, 

/ 
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Exp 
Then y(T)B(S,O) is the performance index of the optimal 

Os:'T"::::T 
Exp lim 

control function, and y(T) sc[o,T)B(S,m) is the 
o~as:T 

performance index of the optimal open loop control law, 

Therefore for t<m 

s 
B(S,.t) - B(S,.t+1) = ~ mJf(s,x,e(s;.t))P(s,x;.t)dxds 

t 

s 
+ ./:, m .f"r(s,x,e(s;.t+1))P(s, x1.t+1)dxds 

s .t+1 

s . 
= ./"__ m ./'f(s,x,e(s;t))P(s,x;t)dxds +.J"g(x)P(sm,x;.t)dx 

8 t+1 . . 

_ - ~Sm ff ( S , X, 9 _( S ; .t+l ) ) P ( S , X; .t +1 ) d Xd S 

~ s .e+1 

For ls:.t~m define Q(s,xs.t) to satisfy (J-1) 
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with u(s) = e(s;t-1) and Q(s.t,x:t) = P(st,x;t). 

Then by Appendices A and B 

Exp 
y(T) [B(S,t) - B(S,t+1)] 

s .t+l S'l':!:T 

= ~sm .J"f(s,x,e(s;t))Q(s,x:t+l)dxds + ./"g(x)Q(sm,x:.t+1)dx 
8 .t+1 · 

-[.£sm Jf(s,x,e(s;.t+1))Q(s,x;t+1)dxds 
""t+1 

s 
=. J m J f( s,x, e ( s; t)) Q(s ,xi t+1 )dxds + J g(x) Q( sm,x: .t+1 )dx 

s .t+1 . 

Since the minimum of (3-3) with 

then by (4-2) 

Exp 
y('I') [B(S,.t) - B(S,t+l)] ~ 0 

s t+l s:~-s:~ 

T = s m 

• 

(4-2) 

t = s.t+l 
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Thus 
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Exp 
y('t"J (B(S,t) - B(S,.t+1)] ~ 0 • 

O:S:T:S:T 

V(O,i) 
Exp 

= .y ( 'l") B ( S, 0) 
0:S:T~T 

Exp { m-1 } 
= y(T) :E [B(S,.t) - B(S,.t+1)_]_ + B(S,m) 

O~T~T t=O 

Exp 
:i?: y('r) B(S,m) 

O:!:T~T 
, 

and hence 

lim Exp 
V(O,T) ~ sc(o,T] y(T) B(S,m) 

Os:TS:T 

·, ' .. 
,:Exp lim = y(T) sc(o,T] B(S,m) 
O~T:!>:T 

= C(O,T) • • 

As hoped for the performance of the optimal open 

loop control law is at least as good as that of the 

optimal control function. The p~ri'ormance .. 

indices of specific forms of the . model of the system 



in nondecreasing order are those of the deterministic 

system driven by its optimal control function, of the 

stochastic system with perfect observations driven by 

the optimal feedback control law and of the stochastic 

systems driven by the optimal feedback control law, driven 

by the optimal open loop control law and driven by i t s 

optimal control function. 

Thus an upper bound of the ratio of the performance 
~ 

index of the optimal open loop control law to that of 

the optimal feedback control law is the ratio of the 

performance index of the optimal control function of 

the stochastic system to that of the deterministic system, 

the latter pair being the easier to compute. 

Also, as discussed in J.7., when the plant equation 

is linear and f and g are polynomials in x , then 

the optimal open loop control law reduces to a finite 

system of ordinary differential equations. 

4.4. Linear System with a Quadratic Performance Index 

Since (1-18) reduces to a finite system of ordinary 

differential equations when the system is linear and the 

performance index is quadratic, a criterion for any 

suboptimal feedback control law is that it satisfy this 

optimal result. With such a system defined in 2.3., 

this property is shown true for the optimal open loop 

control law. (Ji) 
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"' By (4-1) u(t) minimizes 

H(t,cy,E,u(t)) 

= ./'~r~rQ(t)x + u(t)Tc(t)u(t)J~(x)dx 

(4-3) 

Differentiating (4-3) with respect to u(t) yields 

C(t)u(t) + B(t)jvxE(t,x,~)~(x)dx 

which implies 

• (4-4) 

A quadratic form for the a priori stochastic operand 

is attempted, i.e., 

where D1 (t) and D2 (t) are n x n symmetrical matrices, 
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Thus the initial condition E(T,x,~) = !xTsx 

implies o1 (T) == S, D2(T) = O and o3(T,rp) = 0. 

Also, 

and 

Consequently, by (4-4) 

~(t) = -c-1 (t)B(t)T.[o1 (t) + n2 (t)ifx~(x)dx. (4-5) 

Equation (3-13) implies 

+ o2 (t)ifxq>(x)dx - {A(t)x - B{t)c-1 (t)B(t)T[o1(t) 

+ o2 (t) Jjxq>(x)dx)1 [D1 ( t )x + o2 ( t >jxq>(x)dx 

(4-6) 
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Notice that by (1-6) 

= {A ( t ) - B ( t ) c- l (t) B ( t ) T [ D l ( t ) + Dz ( t ) ] Jj X~() ( x) d x , 

Equating coefficients of like po1.vers of x in (4-6) 

yields for n
1
(t) and n2 (t) 

• 
D1 (t) = -Q(t) - A(t) 1 D1(t) - D1(t)A(t) (4-7) 

+D2 (t)Jljx14J(x)dx. (4-8) 

The functional equation for n
3

(t,f4J) is irrelevant to 

the control law. 

Since (4-8) holds for any f4J(X) , ./"x~(x)dx may 

-· b-e cancelled from both sides of the equation. 
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Let U(t) = Dl(t) + Dz(t). Then by (4-5) 

and by (4-7) and (4-8) U(t) satisfies (2-6) • 

Consequently, the optimal open loop control law 

(4-9) is the same as (2-7) , the optimal closed loop 

control law derived by Wonham [zJ. Thus for one of 

the limited class of systems for which (1-18) can 

(4-9) 

be represented as a finite system of ordinary differential 

equations, the optimal open loop control law produces 

the optimal performance index. 

4. 5. Approx:i.mation of the Optimal Open Loop Control La\'! 

The optimal open loop control law is derived after 

the a priori stochastic operand E(t,x,P(t,x)) is 

determined. For each P(t,x) , te[O,T] the two-point 

boundary valued equations of (J-20b) and (J-21b) 

must be solved. Because this is a very tedious task, 

an approximation of E(t,x,P(t,x)) is desired. 

Let F(d(t),x,~) be linear in the vector d(t) , 

which is chosen to minimize 

I [ F ( d ( t ) , x , Q ( t ' x) ) - E ( t ' x ' Q ( t ' x) ]
2 

Q ( t ' x) d x , 

where the a priori density function Q(t,x) satisfies 

(4-10) 
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(3-1) with u(t) = 0(t) = !(t,Q(t,x)) , which is defined 

in ( 3-7) • 

Equation (4-10) is minimal when 

/[F(d(t),x,Q(t,x)) - E(t,x,Q(t,x))J 

• vgF(d(t),x,Q(t,x))Q(t,x)dx = O • 

Differentiating (4-11) with respect to t yields by 

(J-13) and by the linearity of d(t) in F 

(4-11) 

./"{ [cvqF(d(t),x,Q(t~x))J 1 ct(t) + F'(d(t),x,Q(t,x))(!+Q(t,x)) 

+ f(t,x,e(t)) + !E(t,x,Q(t,x)~VdF(d(t),x,Q(t,x))Q(t,x) 

+ [F(d(t),x,Q(t,x)) - E(t,x,Q(t~i))) 

- ~ [VdF'(d(t),x,Q(t,x))(L+Q(t,x))Q(t,x) 

{4'-12) 

By applying the adjoint of !+ as in (1-6) , 

and noting that for scalar functions A(x) and B(x) 



![A(x)B(x)J = A(x)S-B(x) + B(x)!A(x) + !p(A(x),B(x)) 

where 

(4-12) becomes 

~VdF(d(t),x,Q(t,x))[vdF(d(t),x,Q(t,x))]TQ(t,x)dxd {t) 

~ -.f{[F'(d(t),x,Q(t,x))(!+Q(t,x)) + f(t,x,e(t)) 

+ .tF ( d ( t ) , x , Q ( t , x) ) J V d F ( d ( t ) , x , Q ( t , x) ) 

-

+ (F(d(t),x,Q(t,x))-E(t,x,Q(t,x))J 

• [VdF' (d(t) ,x,Q(_~_,x)_) ~.t+Q(t,x)_) _ + __ .cvdF(d(t) ,x,Q(t,x) )] 

+ tp(F(d(t),x,Q(t,x))-E(t,x,Q(t,x)),vdF(d(t),x,Q(t,x))]} 

• Q(t,x)dx • (4~1J) 

If E(t,x,Q(t,x)) is approximated by F(d(t),x,Q(t,x)), 
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(4-lJ) simplifies to 

~vdF(d(t),x,Q(t,x))[~dF(d(t),x,Q(t,x))J 1 Q(t,x)dxd(t) 

.~ -.J"[F'(d(t),x,Q(t,x))(~+(t,e(t))Q(t,x)) + f(t,x,e(t)) 

+ !(t,e(t))F(d(t), x ,Q(t,x))JvdF(d(t),x,Q(t,x))Q(t,x)dx 

with 

~lF(d(T),x,Q(T,x))-g(x)} vdF(d(T),x,Q(T,x))Q(T,x)dx=O. (4-14) 

In 2.4. J(tt~) is approximated by a quadratic 

polynomial in Jxq)(x)dx. Analogously, E(t,x,~) is 

approximated by a quadratic polynomial in x i 

(4-15) 

are 

· -being symmetrical; d(t) is the 

n x n matrices, the former 

3n2+n+2 - 2 - vector of 

the components of n1 (t) , n2 (t) and n
3
(t) , where n 

is the order of the plant equation. 

Note that by (1-6) F'(d(t),x,~)(X+~) in (4-15) 



69 

equals 

An approximation of the optimal open loop control 

law is now defined. As in 2.6. P(t,x) is approximated 
A A 

by P(t,µ(t),x) which is defined in (2-9). Let 
A 
A . · A 

u(t) be the a priori estimate of µ(t) such that 

Q(t,x) ~ 

A 

A A 
A A 

N(x,µ(t),M(t)) 

A 
A 

or 

6(x-µ(t)) 

r . 

Next, define e(t) as the approximate control function 
A ~A 

which minimizes H(t,Q(t,x),F(d(t),x,Q(t,x)),u(t)) , 

where H is defined in (J-18) and F in (4-15). 
A A 

With Q and e replaced by Q and e , respectively, 

in (4-14), d(t) , that is, D1 (t), D2 (t) and n
3
(t), 

are determined a priori. 

A 
A 

Finally, define u(t) to be the control of the 

suboptimal open loop control law such that 

A 
A . A A A A 

u(t) minimizes H(t,P(t,µ(t),x),F(d(t),x,P(t,µ(t),x),u(t)) • 
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Since the function d can be determined a priori, 

.. 
only the evolution of the nonlinear filter P(t,x) 

has to be determined in real time to derive the sub-. 
"" 

optimal open loop control ~(t). As can be seen from 
"" 

(4-11), (4-14) and 4.li-., u(t) is the optimal 

feedback control (4-9) when the system is linear and 

the performance index is quadratic. Thus the suboptimal 

open loop control law has some of the_ properties of the 

conventional suboptimal feedback control law of (2-14). 

An advantage the suboptimal open loop control law 

has over the conventional suboptimal feedback control 

law is that it can be determined without truncating 

the Taylor series expansions of m, G and f in 

(4-14). However, a disadvantage is that its parameters 

3n2+n+2 
2 consist of 

I 

elements as compared with elements of s1 (t), 

s2 (t) and s
3
(t) ·of (2-14), where n is the order 

of the plant equation. 

- Before the merits and limitations of the suboptimal 

operi loop control law are given in detail, the optimal 

and suboptimal open loop control laws are demonstrated 

in a numerical example. 
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4.6. An Example 

4.6o1• Formulation of the Problem 

It is now appropriate to apply the suboptimal open 

loop control law to a system other than the linear system 

that has a quadratic performance index and to compare 

its per:formance index and computation time with those 

of the optimal feedback control law and the suboptimal 

feedback control law of (2-14). 

In order to produce a simple system from which to 

calculate the performance index of the optimal feedback 

control law, a linear system was chosen: 

i(t) = -x(t) + u(t) + .Js(t) 
,, 

y(t) = x(t) + .J~(t) • 

With minimum control u with {ul<~ the desired 

performance is to drive the state of the system close 

to the origin by the time t=l where controls luf ~1 
are penalized more than controls lul<1. A trade-off 

type of performance index was defined with 

f(t,x,u(t)) = u4 (t) 

and 

(4-16) 

(4-17) 
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g(x) 2 = x • 

Equations (2-J), (2-'+), (4-16) and (4-17) imply 

the filter 

µ = -µ + u + 100 M(y-µ) 
9 µ(O) = µO 

M(O) = M0 

where P(t,x) = N(x,µ(t),M(t)) • 

4.6.2. Outimal Control Function 

The open loop filter for (4-16) and (4-17) as 

derived from (3-20a) or, equivalently, from (2-3) 

and (2-4) with H(t) = O is 

• m = ·-m + e m(O) = µ
0 

• 
P = -2P + .09 P(O) = M0 • 

where Q(t,x) = N(x,m(t),P(t)) • 

·By 3.7. E(t,x) = id1x2 + d2x + d3 is a solution of 

(J-21a). Therefore, 

(4-18) 

(4-19) 

(4-20) 

(4-21) 

(4-22) 
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By (3-22a) 

Consequently, the optimal control function 

• 

Thus, by (4-22) the optimal open loop system is represented 

by the following differential equations 

. elm+ d2 y/J 
m = -m-~ m(O) = µo 

• 
p = ·-2P + .09 P(O) = MO 

• 
d1 = 2d1 d1(1) = 2 

- - - - -· -- - .-

• (d m + d y/J 
d2 = d 1 2 + d2 d2(1) 0 1 4 = 

• - ( d1m4 + d2 f /J cm+ d rJ 
dJ = + d 1 2 - .045d1 2 4 

with d3(1) = 0 • 



The performance index is 

4.6.3. Subontimal Open Loop Control Law 

With the open loop filter (4-20) and (4-21) 

apply 

to (4-1L~) or equivalent ly, try it as a solution of' 

(J-21a). Then 

e = - ( '\7l2lm) 1/J 

• ( (d1+d2)my1J 
m = -m- 4 m(O) = µ 0 

• 
p = -2P + .09 P(O) = M0 

• 
d1 = 2d1 d1(1) = 2 

• [ (d +d )4] 1/J 
d2 = 2d + 1 2 d2 (1) 0 2 4 2 = 

m 
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• ( (d +d )m )
4/J ((d +d )rn)i/3 

dJ = - 14 2 -md2 14 2 -.045d1 

The suboptimal open loop control law is 

~(t) = - ( [dl (t)+d2(t) ]µ(t)) 1/3 
• 

The performance index L(0,µ0 ) of this control law is 

derived from 2.4. where 

[
(d +d )µ] 4/3 { [ (d +d )µ] i/J} 

-Lt(t,µ) = 14 2 + Lµ(t,µ) -~- 14 2 . 

L(l,µ) = µ 2+M(1). 

4.6.4. Optimal Open Loop Control Law 

... 
By (4-1) the control u(t) of the optimal open 

loop control law minimizes H(t,N(x,µ,M),E,u(t)). 

With the solutions of 4.6.2. and with (J-20b), 

(J-21b) and (J-22b), the optimal open loop control 

law is represented by the following system of differential 

equations 
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) 
)

1/3 -(d1 (t,s)m(t,s)+d2(t,x 
m

8 
( t, s) = -m ( t, s) --""----.....---------

with m(t,t) = µ(t) 

P
8
(t,s) = -2P(t,s) + .09 

d
1 

(t,s) = 2d
1
(t,s) 

s 

P(t,t) = M(t) 

d1(t,1) = 2 

(
d

1
(t,s)m(t,s)+d2 (t,s))1/3 

d
2 

(t,s) = d
1 
(t,s) + d 2 (t,s) 

s 

with d 2 (t,1) = 0 

__ -(d 1 c t , s ) m < t , s ) +d 2 c t , s > ) 4 I 3 
dJ (t,s) 

s 

where 

(
d

1 
( t, s) m ( t, s) +d2 ( t, s) ) l/J 

+ d2(t,s) -.o45d1 (t,s) 

µ(t) = -e1(t,t)µ{t)+d2(t,t))1/3 • 

From 2.4. and 4.2. ~(.t) = -[±w (t,µ(t))J1/3 
µ 
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where the performance index of the optimal control function 

satisfies 

(4-23) 

with W(1,µ) = µ2 + P(0,1) • 
I 

Similarly, by 2.4. the performance index L(0,µ0) 

of the optimal open loop dontrol law satisfie s 

L(1,µ) = µ2 + M(l). 

4.6.5. Ontimal Feedback Control Law 

By (1-18) and 2.4. the optimal feedback control 

law is 

and its performance index L(0,µ 0 ) satisfies 

L(l,µ) = u2 + M(l). (4-24) 
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4.6.6. Optimal Feedback Control Law with Perfect 

Observations 

By (2-2) the optimal feedback control law of a 

stochastic system with perfect observations is 

where its performance index .F(0,µ0 ) satisfies 

with 

4.6.7. 

2 F(1,y) =y • 

Results 

The comparison of optimal control of specific forms 

of the model of the system of 1.2. is presented in 

Table 1. There the mea.,, computational time for cal

culating the control is real time needed on the 

IBM 360/75 computer for one increment; the interval 

(0,1] was divided into 100 steps. Because of the 

cube root in (4-24) the suboptimal scheme of (2-14) 

cannot be applied. 

The deterministic and open loop performance 

indices depend on only five ordinary differential 

equations; there ·was no problem in the convergence of 

their solutions. However, the other performance indices 
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are represented by an infinite number of ordinary 

differential equations. With 87.5K words of 

memory in the computer, they could be represented 

by only nine differential equations. Thus their values 

are not very accurate, However, the performance indices 

of the optimal control function calculated via (4-23) 

differed by less than 5% from those determined f~om 

4,6,2. Consequently, the calculations of the 

performance indices represented by an infinite sequence 

are estimated to be 5% in error. 

Since the performance index of a suboptimal feed-

back control law must be better than that of the optimal 

control function and is desired to be close to that of 

the optimal feedback control law, a m~asure of the 

closeness is defined. 

Let C(O,T) be the performance index of a 

feedback control law. Recall that J(O,T) and 

V(O,T) are the performance indices of the optimal 

feedback control law and the optimal control function, 

respectively. Define the ratio 

C ( O , T) - J ( O 1.Il 
V(O,T) - J(O,T) 

to be the deficiency of the feedback control law. 

Consequently, the optimal deficiency is zero with the 

worst deficiency being 1. 

(4-25) 
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Therefore, for µ 0 = 1 and M0 = O, the deficiency 

of the suboptimal open loop control law ie ; .265% 

whereas its computation is .0167% of that of the optimal 

feedback control law. For the other run with µ 0 = 1 

and .M0 = 1, the deficiency is 4.84% with the same 

computational advantage. Sample runs of the suboptimal 

open loop control law are graphically presented in Figure 

2. The a priori . functions d 1 and .d2 of 4.6.J .. , 

which constitute the suboptimal open loop control law and 

the optimal open loop mean and control function, are 

shown in Figure 1. 

As shown in Table 1, the optimal open loop control 

law has a better performance index for this example than 

does its approximation. However, its computation is 

about 50 times as much. 

The purpose of this example is to compare the 

performance indices of the suboptimal and optimal open 

loop control laws with that of the optimal feedback control 

law. It was shown that the former are superior to the 

conventional suboptimal control law (2-14) in that the 

latter cannot be applied. All results of this chapter 

are now summarized. 

4.7. Conclusions 

The discussion in 2.6.2. show that the suboptimal 
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A Priori Parameters of the 

Suboptimal Open Loop Control Law 

Optimal Open Loop 

Meon and Control Functions 
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Figure 1. 
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Figure 2. Sample Mean and Control Functions Genera ted 

by the Suboptimal Open Loop Control Law 
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feedback control law of (2-14) can be derived from the 

solutibn of the optimal open loop control problem when 

the system has linear observations. Consequently, the 

optimal open loop control law was studied in terms of 

a·suboptimal feedback control law. As desired, its 

performance index was shO\'ffi to be at least as good as 

that of the optimal control function. Because this 

control law is not easy to implement, an approximation 

of it was defined and is called the suboptimal open 

loop control law. The resulting control law is the 

main contribution of this investigation to stochastic 

control theory. Its properties are compared with the 

conventional suboptimal feedback control law of (2-14). 

Both the suboptimal open loop control law and that 

of (2-14) are feedback, both approximate the a posteriori 

density function by means of a nonlinear filter, both 

are functions of other parameters that are determined 

a priori and both are optimal when the system is linear 

and the performance index is quadratic. 

The advantages of the former over the latter is that 

its a priori parameters can be determined without the 

necessity of truncating the expansions of m, G and f, 

that these functions need not be analytic in the state 

variable and that the control law need not be an 

analytic :function. These advantages stem from the versatility 

of the a priori stochastic operand in that it is a function 
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of three variables whereas J in (1-l.8) is a function 

of only two variables. 

However, because of the extra degree of freedom, 

a trade-off occurs between the two feedback control laws 

in that the suboptimal open loop control law requires 

3n2+n+2 a priori parameters while the conventional 
2 

scheme of (2-14) requires only n2+J.n+2 
2 , where 

is the order of the plant equation. 

n 

In the example of 4.6. the suboptimal open loop 

control law is demonstrated to be superior to the optimal 

feedback control law for most systems because of its 

low deficiency, as defined in (4-25) and short 

computational time. 
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V. CONCLUSIONS 

This investigation explores an area of stochastic 

optimal control. Its purpose is to study the solution 

of the functional differential equation of the optimal 

feedback control law of a system where the noise processes 

of the plant and observational equations are additive, 

independent Gaussian white noise processes. This complex 

equation arises from the fact .that the best description 

of the output of the plant is a function - the a posteriori 

density function of the plant variable conditioned on 

all past observations. 

Using an equivalent definition for the criterion 

of optimal feedback control, the author proved that 

the optimal feedback performance index is superior to 

that of the optimal control function. With the solution 

of the functional differential equation justified, it 

was applied to a simple first order nonlinear system. 

However, the solution required an overwhelming 

computational time of 400 minutes on the IBM 360/75 

computer. This result accentuated the futility of 

implementing optimal feedback control with present 

techniques~ Such a result had been suspected because 

the conditional density function is in general an 

infinite dimensional vector. 

Consequently, in practice, one approximates the 
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a posteriori density function by means of a nonlinear 

filter. Based upon this simplification, a suboptimal 

feedback control law is derived. It is a function of 

the nonlinear ~ilter and a priori parameters, 

where n is the order of the plant equation. 

The author showed that the conventional suboptimal 

feedback control law c6uld be derived from the solution 

of the opti~al o~en loop control problem when the ~ystem · 

has linear observations. Consequently, its solution 

was studied in hopes of discovering a better suboptimal 

feedback control law. 

An investigation of the optimal open loop control 

problem brought to light some remarkable results! · First, 

the functional differential equation for the optimal open 

loop control law was reduced to two two-point boundary 

valued integro-partial differential equations which satis

fy the canonical equations in function space. The exist

ence of these results were discussed by Lur'e tJ6 J 
-· 

Mortensen [34,35] and Wang [J7J. More interestingly, 

when. the system is deterministic, these equations reduce 

to the canonical equations of deterministic optimal con

trol theory ( 6]. Hence, the author defines the a priori 

stochastic operand, Hamiltonian and maximum principle 

which imply the ' deterministic Lagrange multiplier (costate 

.variable) and Hamiltonian and Pont~yagin's maximum prin

ciple, respectively. Thus, a priori stochasti c optimal 
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control theory, that is, optimal open loop control theory, 

was found to encompass deterministic optimal control theory 

in a very interesting way. 

A feature of the optimal control function, yet to be 

shown for the optimal feedback control law, is that it can 

be derived from a finite system of ordinary differential 

equations whenever the system is linear and the performance 

index is a polynomial. 

Appropriately, the author studies the optimal open loop 

control law as a suboptimal control law. (3i,32J As a must 

for suboptimal schemes, its performance index is shown to 

be at least as good as that of the optimal control function. 

Because the optimal open loop control law is not easily im

plemented for all systems, it is approximated by what the 

author calls the suboptimal open loop control law. This 

suboptimal feedback control law is the author's main con

tribution to stochastic control theory. Its advantages and 

limitations are summarized. 

An unwritten necessity satisfied by the suboptimal 

open loop control law, is that it is optimal when the 

system is linear and the performance index is quadratic. 

An advantage it has over the conventional suboptimal 

feedback control law is that its a priori parameters 

can be determined without the necessity of truncating 

the. expansion of any nonlinear functions of the system. 

This feature is enhanced by the dependence of the a priori 
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stochastic operand on three variables instead of only 

two as in the functional differential equation for the 

optimal feedback control law. Also, neither the control 

law nor nonlinear functions need be analytic functions. 

Its disadvantage over the conventional suboptimal control 

law is that it is characterized by a priori 

parameters whereas the latter requires only 

where n is the order of the plant equation. Thus a 

trade-off between the two suboptimal .feedback control 

laws exists. 

Through the use of' a numerical example, the per

f'ormance of the suboptimal open loop contr~l law is shown 

to be near optimal, and its computation is 6000 times 

less. The results of this example are particularly 

noteworthy since the conventional suboptimal control 

law could not be applied. 

Consequently, the concept of the suboptimal open 

loop control law advances the state of the art of stochastic 

control. Future eff'orts in stochastic optimal control 

are centered around simplifying or reducing the 

.functional differential equation for optimal feedback 

control to a finite system of ordinary differential 

equations. Also, a simple analytical method of comparing 

suboptimal feedback control laws is desired in order to 
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select the superior one given the model of the system. 
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NOTA'EION 

indicates an equality by definition 

oa(t) a(t + 6) - a(t) 

0(€) is understood to be a matrix function of 

e: and possibly of other variables 

N(a,A) or N(•,a,A) represents the normal density function 

of an m-vector random variable with an 

m-vector mean a and an m x m-covariance 

matrix A. 

Im ~ the m x m identity matrix 

da 

= 

m 
n b 

__ 6 
a. 

. 1 J_ i= 

o(a) 

(a,a + da] or its Euclidean m-space 

volume where a is an m-vector 

is the transpo s ition of the matrix A. 

m 
Coli=i { o~. 

J_ 

. } where 

a [a (••• a [ab]•••]] m m-1 2 1 

m 

a is an m-vector 

n 6(a.) 
. 1 l. 1= 

where a is an m-vector and 

6 is the Dirac delta function 



A power of a. 
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a term of the form 
m a.. 
n a. 1 for the 

. 1 ]. l.= 

m-vector a where a.. is a nonnegative 
l. 

integer 
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APPENDIX A. 

Definition: Let S = {s ,s ,•••,s) 
O 1 m be a partition 

of rt,TJ and let a.k be a point in the subinterval 

Let a.. A {a ~ . ••• ~ } - 0•~1• •~m-1 • and let 

A(s,a.) be some function of S and a. Then 

6 lim ( ) B = Sc[t,TJ A S,a.. if for every €>0, there exists 

a partition Sc of [t,TJ such · that for every 

partition S::>S 
E: 

and for every choice of a, 

it follows that IA(S,a..) - Bl < e. 

Definitioni Let 

A(s,tr.) 

Then 

m 
= n 

i=1 

(A-1) 

~C~)[~T .f"r(s,x,r(s,P(s,x)))P(s,x)dxds+/g(x)P(T,x)dx] 
t~T~T t 

lim 
~ A(S,a.) • 

Sc[t,T] 



Notice that the joint conditional probability 

density function q(t,g,x) of ~z(t) and x(t) can 

be approximated from (1-2), By (1-2) 

q(t,g!x)ds 

that is, 

I -1 q(t,s x) ~ N(g,h(t,x)A,R (t)6) • 

Thus q(t:s) = .J"q(t,;lx)P(t,x)dx. Observe that 

that 

and that higher moments are 0(62 ). 

Theorems Let u(s) be a control function, Then 

;C~) [1TJ f(s,x,u(s) )P(s,x)dxds + J g(x)P(T_,x)dx] 
t~T~T t -

= l+_T .{f(s,x,u(s))Q(s,x)dxds +.{g(x)Q(T,x)dx 
t 

(A-2) 
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where Q
8

(s,x) = ~+(s,u(s))Q(s,x) with Q(t,x) = P(t,x). 

Proof: Since u(s) is a control function, it is 

independent of {y(T) I t~T~T} • Then with 

r(s,P(s,x)) = u(s) (A-1) can be written 

m-1 

A(S,a.) = ~jfca.k,x,u(ak)).~ (Exp) P(ak,x)dx6sk 
LI i 1 5 z a.m-:i..· k=O = 

.. 

+ fg(x).~ (Exp) P(am_1 ,x)dx. 
J I 1=1 OZ 0.ffi-i 

Define E • a. 

m 
~ n Exp • 

i=l oz(am-i) . , 

Q
8

(s,x;a) = ~+(s,u(s))Q(s,x;a.) 

Then the following is proven. 

Lemmas 

for O~k~-1 • 

and let 

Proofs The lemma is true by definition for k=O. 

Assume it i s true for O~k=t<m-1 • 
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Then by (1-5) 

2 + 0 ( 60. .t ) • 

By (A-2) 

2 + 0 ( 6a. t ) • 

Interchanging the integration and differentiation 

operations ( 29) implies 

Thus, by induction, (A-4) implies 

A, 2 
= Q (CI .t+1 'x; a.) + L 0 ( tia.i) • 

i=l 
Thus t implies t+l • c 

(A-l.J·) 
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Then 

But 

and 

Thus 

+ fo(x)Q(am_1 ,x;a)dx + O(h) • 

Therefore, 

scf~~TJ A( S,a) = ~Jf( s ,x,u( s ))Q( s , x )dx+fa ( x)Q(T,x)dx. n 
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APPENDIX B • 

. The results of Appendix A are extended to the 

stochastic system with perfect observations, 

Equations (1-5) and (1-7) assume that [K(t)K(t) 1 J-1 

exists. When there are perfect observations, it does 

not exist, but then a difference equation for P(t,x) 

is not needed since n
3 

= n, h(t,x(t)) = x(t), K(t) = O 

and P(t,x) = 5(x-y(t)) • 

Consequently, with u as a control function 

in (A-1), 

lim 
SC[t,T] A(S,a.) = E~ [ T J y(T) (t f(s,y(s),u(s))ds+g(y(T)) • (B-1) 

ts:'T'~T 1+ 

Since y(t) = x(t) , (B-1) is equivalent to 

~Tj"f(s,x,u(s))Q(s,x)dxds + j"g(x)Q(T,x)dx 

with Q(t,x) = P(t,x) • 
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APPENDIX C, 

The a priori stochastic operand E(t,x) is 

pos~tive semi-definite if f(t,x,e(t)) and g(x) are 

positive semi-definite, Here is the proof, 

Assume that the optimal control function 

known and that to and XO are given. 

Let Q(t,x) satisfy 

Qt(t,x) = !+(t,e(t))Q(t,x) Q(t0 ,x) 

Then by the theorem of 3.3. 

T 
= 1 ff(s,x, e(s) )Q(s,x)dxds 

to 

+/g(x)Q(T,x)dx ::i: 0 • • 

e is 

= o(x-x0 ) 
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