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ABSTRACT

Electromagnetic wave propagation and scattering in a sphere
composed of an inhomogeneous medium having random variations in its
permittivity are studied by utilizing the Born approximation in
solving the vector wave equation. The variations in the permittivity
are taken to be isotropic and homogeneous, and are spatially charac-
terized by a Gaussian correlation function. Temporal variations in

the medium are not considered.

Two particular problems are considered: 1) finding the far-
zone electric field when an electric or magnetic dipole is situated
at the center of the sphere, and ii) finding the electric field at
the sphere's center when a linearly polarized plane wave is incidenf
upon it. Expressions are obtained for the mean-square magnitudes of
the scattered field components; it is found that the mean of the
product of any two transverse components vanishes. The cases where
the wavelength is much shorter than correlation distance of the

medium and where 1t is much longer than it are both considered.
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I. TINTRODUCTION

The study of electromagnetic wave propagation in a turbulent
medium has been assuming increasing importance in recent years. The
advent of the laser and the employment of laser beams in various types
of communication systems is perhaps the major factor which has given
increased impetus to this area of research. The effects of atmospheric
turbulence, which could usually be neglected at longer wavelengths,
became important in analyzing the performance and limitations of a
system operating at optical wavelengths.

The problem of detecting clear air turbulance, a subject of
considerable importance to the airline industry, has also spurred
research in electromagnetic wave propagation in a turbulent medium.
Here the interest largely centers on the effects that turbulence has
on waves of radar frequencies and on the factors that influence these
effects[1].

Early work in the area of wave propagation in a turbulent
medium was related to the subject of over-the-horizon propagation of
radio waves and to the field of astronomy. In 1950, considering the
problem of tropospheric turbulence, Boocker and Gordon [2] derived an
expression for the scattering cross-section per unit volume of a
medium whose random variations in permittivity were characterized by
an exponential correlation function. That same year another article
by Booker, Ratcliffe, and Shinn [3] considered the problem of fluctua-
tions of a wave reflected by the ionosphere by analyzing the diffrac-
tion from a plane screen which had random variations in its

transmission characteristics. Chandrasekhar [4], in a 1952 article,
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developed a theory on the scintillation of stars by using geometrical
optics to analyze the propagation of light through a medium with random
variations in the index of refraction.

Much of the present day work being done on wave propagation in
a turbulent medium is based on methods employed by Tatarski [5].
Tatarski, utilizing Kolmogorov's work on the physics of turbulence,
applied Rytov's method (which Tatarski called the method of smooth per-
turbations) and spectral expansions to obtain structure functions for
the phase and the logarithm of the amplitude for the case of a plane
wave incident on a turbulent medium with a plane boundary. Other
methods currently being used to attack the problem are reviewed in a
recent article by Strohbehn [6].

All of the methods now employed in analyzing wave propagation in
a turbulent medium begin with a scalar wave equation for the polarized
component of the scattered field. In deriving the scalar wave equation
it is assumed that the change in polarization of the scattered field is
negligible. Generally, no attempt is made to calculate the depolarized
components of the field. The method used in this work is novel in that
solution proceeds directly from the vector wave equation. The solutions
for the polarized and depolarized components of the scattered field are
placed on an equal footing; no assumptions are made regarding their
relative magnitudes.

The subject which will be considered is that of electromagnetic
propagation and scattering by a sphere composed of a medium possessing
random variations in its permittivity. These variations are assumed to

arise from turbulent motions of the medium; however, the velocity of
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the turbulence is assumed to be sufficiently low so that temporal
variations in the permittivity may be neglected. The variations in
the permittivity are taken to be homogeneous and isotropic, and they
will be characterized spatially by a Gaussian correlation function.
The mean permittivity of the sphere will be assumed to be equal to
that of the surrounding medium.

The subject will be dealt with by utilizing the Born approxi-
mation in solving the vector wave equation. The problem which will be
treated first is that of finding the far-zone radiation pattern for the
cases where electric and magnetic dipoles are situated at the center of
the sphere. In particular, expressions will be obtained for the en-
semble averages of the squares of the magnitudes of the components of
the scattered electric field. Next, the converse problem of finding the
electric field at the center of the sphere when a linearly polarized
plane wave is incident upon it will be comnsidered. In both of these
problems, the cases where the wavelength is much greater than the
correlation distance of the medium and where it is much less than this
distance will both be treated.

The text begins by considering the wave equation and finding
the form of its solution when the Born approximation is used. Next, a
few pertinent aspects of random variables and correlation functions are
noted. Then the problem of finding the far-zone scattered electric
field for dipoles situated at the center of the sphere is considered.
Finally, the problem of finding the scattered electric field generated

at the sphere's center by an incident plane wave is treated.
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ITI. SOLUTION OF THE WAVE EQUATION

This work will be concerned with the problem of calculating
the electric field E in a number of different situations. There-
fore, the basic equation for E', the wave equation, and a number of
forms of its solution will now be examined.

One begins by considering Maxwell's equations in a linear,
isotropic, but not necessarily homogeneous medium. Only monochro-
matic waves will be of interest in this work; therefore, a time
dependence of the form e-_imt may be assumed. Under these conditions

Maxwell's equations have the following form:

VXE = iwB (2:1)
VxH = J - iwd (2.2)
V+B = 0 (2.3)
VeD = p. (2.4)

In addition, one has the constitutive relations

ol
I
m
=

(2.5)
B = uH. (2.6)

2.1 Derivation of the Wave Equation

The wave equation for E will now be derived under the
assumption that | dis a constant. Substitution of equation (2.6)
into equation (2.1), and equation (2.5) into (2.2) yields, respec-

tively



iwp H (2.7)

= |
[

V x

J - iweE . (2.8)

|
[

V x

By taking the curl of equation (2.7) and utilizing equation

(2.8), one obtains

VxVXE = ioud+ mzuéﬁ i

Letting kz = wzus and rearranging terms, one obtains the usual form

of the wave equation

VxVXE-k*E = iopnd . (2.9)

2.2 Solution of the Wave Equation in a Homogeneous, Unbounded Medium

The solution for E can be obtained through the use of the
field potentials [7]. In an unbounded region where p and € are
constants, the result is

L Akt _ gkt _
E(r) = iwu J -~ J(r")dr' + = \ARY -J — J(x")dr’

v 4|1 ' | k v 4| c-x" |
(2.10)
where V dis the volume containing the source = i

If the observation point r in equation (2.10) lies outside of

the volume V , then the V operators may be brought inside the inte-
gral. Thus,

ik|r-r'| i
N . e —_——n =
E(r) = iwp J—T—_J(r')dr +J——2—V Ve
v 4r|r-r'| v k

ik|r-r'| _
£ J(x")

4ﬂl;:;'1
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when r is an exterior point of V .

One can define a dyadic operator VV which has the property

VV « (YC) = VIV » (@C)] = (VV ) * C

where C 1is a constant vector and ¢ is a scalar function. In rec-
tangular coordinates the operator is given by

T
VvV = & €. TR
{1 §ei i Bxiaxj

where X =X, X =Y, X3 =2z, and where Ei, Eé, Eé are unit vec-

tors in the x,y,z directions, respectively. Use of the VV operator

in equation (2.11) yields

_ eik]?—?'|__m _ g eikl?—?'l L
E(r) = iwu J ——-ww——ﬁr-J(r')dr'-+J[——-V‘Y—————————]- J(r")dr'
== 2 =
4m| -1 v k 4w |r-r
(2.12)
Let I represent the identity dyadic,_a +I=I1-C=¢C. In
— 3 — —
particular,'f = Z ei ei . Then (2.12) can be put into the form
i=1
i Rl
E(r) = iwy J [(I + —E-VV) *:T:T—_-—{]'J(r') dr’' . (2.13)
k | t-r"|
A
Let
L .7 k[T
T(r,r") = (I + —E-VV) e . (2.14)
k 4ﬂ|r—r'

T is known as the free space dyadic Green's function. Using this nota-

tion in (2.13), one obtains a compact expression for E



E(r) = dwy J T(r,r') *» J(r") dr'. (2.15)

Recall that in obtaining equation (2.15) it was assumed that the
observation point r lay outside of V . However, since there will
be occasion to determine E when it lies inside V , 1t would be
convenient to have a similar expression for this case. Using the

results of Van Bladel [8], if T is replaced by

then

E(x) = 1wy J T'(r,t"Y - J(z') dr'. (2.16)

This is valid regardless of whether or not r 1lies within V . How-
ever, when r lies within V , the expression J.F(r;;')' J(r")dr' is
assumed to mean the "principal value" [9] of thevintegral, i.e., the
value obtained in the limit when one deletes from V a spherically
shaped volume, centered at r , as the radius of this volume approaches
zero.

Another expression for E which will prove useful is one
derived by Stratton and Chu [10]. The fields in the interior of amy
closed surface S are expressed in terms of the sources located

within V , the volume bounded by S , and the values of the fields on

S . The expression is
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L k[T _ ik|T-r'|
E(r) = J [fwpg J(x") —— + = p(x")V' e——_*_"'—*_—-—J dr'
v 4| -1 | 5 4 |- |
_ _ dk|r-r'| ik|r-1’|
- } [fwpn' x H(x"') —e-—_—-:—"—-l-(n' X H(r')) x V' £ e
) 4| -1 | 4| r-r" |
o ik|r-r'|
+ @'+ E@)V' E———)] ds’ (2.17)
4| r-r' |

where n' is the normal to S pointing out of V .

If all the sources can be contained within a sphere of finite
radius, then equation (2.17) can also be used to find the field in the
region exterior to S . In this case volume V is the exterior
region, and n' is directed into the interior of the surface.

If the sources are zero in the neighborhood of the point r ,

then equation (2.17) can be put into an alternate form that will prove

to be more useful. Let

c- [ o@ vea @ (2.18)
v
s -1 -
where G(r,r') = eiklr . |/4ﬂ]r—r'| . Due to the fact that

v'e(r,r') = -V6(r,r'), one has
C = -J p(r') VG(r,r') dr'.

Since V operates only on the r variables, not on the r' wvariables,

this can be written as

C = -I Vv [p(r") G6(r,r")] dr'.
A"
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It is permissible to change the order of integration and differentia-

tion here. Hence,

T- j o(x) G(E,T') dr'.
v

Now by taking the divergence of equation (2.2), one obtains the equa-

tion of continuity
V' eT(r") = dwp(r') .

Substitution of this into the expression for ) yields

T - Ly [ V' TEY GEE dT'.
v

Applying the vector identity
V' [TGE) 6(r,e)] = V' - T(") 6(x,T)+ I - V'e(r,r") ,

one finds that
C= i% v J v' - [3@") e(xr,t)] -J(E") - V'6(r,r")} dr.
vV

Using the divergence theorem, the volume integral over the first part
of the integrand may be transformed into a surface integral. Thus
T=2v4ba TG eG,ey as' + v | I@H -v'e@,r") dr'
iw L i ’ .
S v
But since V'G = -VG and V «[J(xr") G(x,T")] = J(z') - Ve(r,r') , one

has
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C= 1}) v jﬁ? -J(x") 6(zr,r") ds' -% v J Ve[IGE") 6(r,r")ldr'.
S

\
Bringing the V operators inside the integrals, one finds that

t-2t } 3 -TE) VeE, TS - j VIV - [OGEY) GE.TIHT

S v

But since V{V -+ [J(r') G(r,r")]1} = [VVG(r,r")] +J(xr") , it has thus

been shown that

j o(r") Ve(r,r') dr' = %a j(’ n' «J(r") V'e(xr,r') das "
\Y S
- %J [VVG(xr,r")] * J(x") dr'. (2.19)
A

Substitution of equation (2.19) into equation (2.17) yields

EEy = J [iwp T(E') G(z,T") ‘i_iE [VVG(E,z")] « F(x')] dr’
v

- jL [iwg n'"xHGE") G(r, ") + @' X E(TX"))x V'e(r,r') +
S

S B Ya VA= __]-__v.__ tAf Tt v
n' s E(r') V'G(r,r )"iwe J(x") V'G(r,r")] as’'.

= 2
Recalling that I represents the identity dyadic and that wzue = k7

this can be expressed as



= e

E(r) = dwp J [T + AE-VV)G] - J dr’

v k

= jﬁ [iwgn' *xHG+ (@'*xE)X V'G+ (n' ° E)v'c-ﬁ(? « J)V'G] ds'.
S
But since
TEr) = @+5vwmeEm,
k

the expression for E becomes

E(r)

[}
e
=
=
—
=
[
[= 9
]
|
—e—
[N
=
g =
B |
X
=
(9}

+ @' XE)XV'G + (a'- B)V'G - Ele (@' +THIV'C] dS'. (2.20)

If all of the sources are contained in a sphere of finite radius,
and if S is taken to be the sphere at infinity, then the surface
integral can be shown to vanish and equation (2.20) reduces to equation
(2.15«

The far zone is the region where r >> r' and kr'2/r << 1 for
every point r' at which J(r') # 0 . 1In this zone, equations (2.16),
(2.20) can be simplified. Since part of this work will consider the
nature of certain far-zone fields, this simplification will now be
derived.

Consider

_ - Jik|e-r'|
FP(e,E") = (1 +-—2"VV) e
k 4m|T-x' |

By virtue of the form of the arguments in T, V may be replaced by



= =

-V' . Thus,
_ — Jk[r-r']
I'(r,r') = (I + =5 v'v'h) -
k 4W|r—r‘|
Now
2
- — 2. g = 2 J D e r'
T = - M | 1 s L A e
Ir r'| Jr 72 il ol o ryl rz 1R rz

Assuming r >> r' , one can make the approximation

where e is a unit vector in the direction of r

r . Then since
kr'"/r << 1, one obtains-

ik|z-r"| ikr -ike - r'
e
4| r-x"| 4rr
Thus
ik|T-r"| ikr -ike_* ' ikr -ike_° t'
! = ¥ e = L‘k'_ei__. e E
—— 4Tr 4mr r "
4| r-x " |
Hence,
M '___| . = o & [ . _ =y - T
. elklr x| —ikelkr P ike_° r kzelkr ke » v+
v'v e V'e = - e e_e
— — 4r T 4rr ol o
4| T
Substitution of this into the expression for ?1?1;') yields

_ ikr -ikE-?'[T_w
T(r,r") ~ = .

—_—— e T er] ‘
4T

Now it is easily verified that any vector C satisfies the relation



;L
(I - e er)' C = . X(Er XC).—.Tﬁfg, in the far zone,
ikr —iker o . o
e e X(er x J(r")). Hence, equa-

Tro Tty . 10N =
P, B )™ J(x") = o

tions (2.15) and (2.20) become

—-ike = r'

E(—;) i *}Tw‘_—]:: elkr I 'Erx ("é'rx j(_f')) e r d—;' (2 . 21)
\Y

— —iwy ikr | — — T “ikg¥. T

E(r) = e © e x(e xJ(r')) e dr'
\Y

e:i.kr - = _
= e § [iwun'x H(xr') - ik(n' XE(x")) x e,
S

L I |
- ik(n' * E(r")) er+~aE (n' 'J(r'))er]e ds’'. (2.22)

2.3 Solution of the Wave Equation in a Slightly Inhomogeneous Medium

The wave equation (2.9) was derived under the assumption that U
was a constant. In Section 2.2 the solution of the wave equation in an
unbounded medium was found under the additional assumption that € was
also a constant. In this section an approximate solution of the wave
equation will be obtained for the case where € is slightly inhomo-
geneous. This solution is the tool which will be used to treat the
problems dealt with in this work.

Now the wave equation is

U %Y XE = oelr) B = du]

where ¢(r) has been written to emphasize the fact that the
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permittivity in the region is inhomogeneous.

e® = e ll+v b=y

where € and Vv are constants, |v| << 1 , and where

1

for all r .

22—

E= E; + VE, + VE, + *°*

1

Substituting the expressions for E , e(T)

letting k2 = wzuel 5

2

VxV X(§O+ ES B4 wus) —k2(1+v?:’)(fo+\)

1 2

or

V x Vx(EO+ VE.+ v2E + ---)—kz(fo + v

1 2

2

one obtains

1

iwp J + k2 r%’(\)_FTQ+ \)2

Equating terms with like powers in Vv yields

VxVxE - KkE
o ()

1]

- -
V x ¥V x E, - k El

- 27—
V xV x E2 -k E2

PR |

From equation (2.25) it

for a homogeneous medium, i.e., the solution when V

iwpuJ

~
e |

-
N
me
= |

E .+ VoE+ -

E.+ voE + .

In particular, let

(2-23)

le(x)| ¢ 1

Using a perturbation technique, it is assumed that

(2.24)

into the wave equation and

D o= ieud

o)

(2.25)

(2.26)

can be seen that E; is the solution

. Next, from
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equation (2.26), it can be seen that Ei is the solution of the wave

2 V—
equation when the quantity k E:Eo/iwu acts as the source, and so on.

Now if Vv is sufficiently small, one can use the approximation

E ~ Eo + vEl. t2.27)

This is known as the Born approximation and it will be the device used

to treat problems in this work.

El can now be obtained through the use of the expressions derived

e i M s
earlier. One merely replaces E by El and iwpd by k? EEO « Imn

the interior of the inhomogeneous medium, equation (2.16) is used:

— — IS e— — — — r\l— —_—
El(r) = k2 J Ve, ") Eo(r') e(r')dr'.
\
Recalling that :F'(;;;') =-?(;;?“) -~—l§ 5(;:;'):T , one obtains
3k

= 2 T = b=l | "\1_' 1
El(r) = k J I'(r,r") 'Eo(r ) e(xr')dr' -
\'

(r) Eo( ). (2.28)

n
€

W=

If the inhomogeneity is finite in extent, and if the observation
point is sufficiently distant from the region containing the inhomo-

geneity, then one can use the far—zone expressions for obtaining Ei &

Application of equatioms (2.21) and (2.22) yields

_ _ o o —ikzr ol o3 _
1 T 1
j e, X (erx Eo(r Ye(r') e dr
\Y

2
= = =k  Jkr
El(r) = Zmr ©
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o k2 i lex . _ . LV '-'ik._é:r “;'
= e i 1 2k .
El(r) B e @ J e, X(er><Eo(r )) (') e dr
v
ikr . . _ . .
s % [iwLin'><Hl(r')— ik(n'><Hl(r'))>< e - ik(n' 'El(r'))er
S — —
P —iker- "
—-ik(n' *E (r') e(r'))e_ le dst.
o T
(2.30)

The equations of this part will serve as a starting point for
dealing with the problems to be considered in this work. Before work
on these problems can begin, however, some elementary aspects of random

variables should be reviewed. This is done in the next part.
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IITI. TREATMENT OF RANDOM FUNCTIONS

In treating the problem of wave propagation in a turbulent
medium, one must deal with quantities that are random functions. There-
fore, it will be helpful to examine briefly the method of handling
these quantities.

For the purposes of this work a random variable will be
defined in a non-rigorous fashion as a variable whose values must be
characterized statistically and cannot be given by a deterministic
rule. Statistical characterization here denotes finding averages of
various functions of the random variable or finding with what probabil-
ities the variable will assume various values or lie within various
ranges of values.

Now consider a variable w which is a function of position,
i.e., w = w(r), and suppose that for each fixed value of r , w is a
random variable. Then w is a random function and in particular it
constitutes a random field. 1In general, the statistics of an arbitrary
random field will vary from point to point.

One means of characterizing the random field w is through the
use of the correlation function which is defined by <<w(¥i) w(;2)> .

In this expression < > denotes ensemble average and .;l’ r, are two

arbitrary points. The correlation function is symbolized by Rw(;l;;z).
It may be that the correlation function of w(r) depends only

upon the difference of the arguments, i.e., RW(Fl,rz) = Rw(rl—rz), and

that the mean of w(;), defined as <w(r) > , is independent of T

In such. a case the random field is said to be homogeneous. Furthermore,
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the correlation of a homogeneous field w might only depend on the

magnitude of the difference of the arguments, i.e., RW(;l;;z) =
RW(V;IJEZI) < In this case the field is isotropic as well as homo-
geneous.

In the problems dealt with in this work, homogeneous, isotropic
random fields will be encountered, and the correlation function will
prove to be very useful. The Fourier transform of the correlation
function, known as the spectral demnsity, will also prove to be of con-
siderable value in this case. Letting S represent the spectral
denéity, and letting R be the correlation function of the homogeneous

isotropic random field, S5 is given by

; I R(r) e X" T dr (3.1)

where the integration is performed over all space. Since R depends
only on the magnitude of ;., the angular integrations in the preceding
expression can be performed at once and it can be seen that S will
depend only on the magnitude of K . The complete transformation is

thus specified by

R(r) = I sty et " T de (3.2)

where the integration is performed over all K space, and

§() - —t - J His) o ge (3.3)
(2m)

If ¥ = ?i— ;é , then equation (3.2) yields



=G
G - (1'1—1‘2

B [ oy~ gyl = J s(k) e dg . (3.4)

As a final remark on random functions, it can be seen that any
homogeneous, isotropic random field can be expressed as the sum of a
constant plus another homogeneous, isotropic field whose mean is zero.
In particular, if w(r) 1is a homogeneous, isotropic random field, one

observes that

w(r) = <w(@)> + [w() -<w(r)>].

Letting w., = <w(r) >, which is a constant because w(;) is homo-

i

. N e Fo e .
geneous, and letting w(r) = w(r) - <w(r)> , one obtains

w(®) = w + WD) (3.5)
where
(D) > = <wl(T) = <w(D)>>= <u(T)>=-<w(D> = 0
and where

R‘}Gl,?z) =<?3(¥1) %(?2) >= <w(®) wir,) - wir) w

- w(r,) wy +wi> = RW(]rl— rzl)— Wy - Ry([rl— r2|).
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IV. SCATTERED FIELD OF A DIPOLE LOCATED AT THE CENTER OF A

RANDOMLY-INHOMOGENEQUS DIELECTRIC SPHERE

The problem of electromagnetic wave scattering by a sphere which
has a dipole located at its center will now be considered. The sphere
is composed of an inhomogeneous medium having random variations in its
permittivity. These variations are assumed to arise from turbulent
motion of the medium; however, the physical factors responsible for the
turbulence and for the shape of the volume are beyond the scope of this

work.

At any instant of time, the variations in the permittivity are
agsumed to constitute a homogeneous, isotropic random field. Further-
more, for the purposes of this work, the velocities characterizing the
turbulence are assumed to be sufficiently low so that temporal varia-
tions in the permittivity may be neglected.

Inside the sphere, the permittivity e(r) is given by

o — o
El[l + e(r)] where €, = <e(r) > and where €(r) is a homogeneous,
isotropic random field with <Z(;)> = 0, |g(;)fmax<<< 1. Furthermore,
g(;) is assumed to have a Gaussian correlation function of the form
vzexp[—rz/lz] where V2 = <223>= <€2>'- Ei and where £ , the corre-
lation distance, is much less than the radius R of the sphere, i.e.,
2/R << 1 . Although it is more common now to characterize a turbulent
medium through the use of the structure function derived in Kolmogorov's
theory of turbulence [11], the Gaussian correlation function is still

frequently employed [12,13,14] and it will be assumed here that its use

is justified.
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Outside the sphere the permittivity is equal to the constant €1
the mean value of the permittivity inside the sphere. The permeability
U 1is assumed to be a constant everywhere.

The coordinate system employed in the problem has its origin at
the center of the sphere and has its z axis aligned with the dipole.
By virtue of the symmetry of the problem, the observation point, i.e.,
the point at which the fields are examined, may be chosen to lie in the
x-z plane without loss of generality. The situation is illustrated in

Fig. 4.1. Imn this figure, the vectors e. s ey > ) at the observa-
o o o
tion point are unit vectors corresponding to a spherical coordinate

system. Spherical coordinates are illustrated in Fig. 4.2.

4.1 Preliminary Development

Some preliminary expressions to be used in dealing with the prob-
lem will now be developed.

Let a current source J be situated inside the sphere. The
quantities to be sought are the components of the electric field in the
far zone (the precise meaning far zone for this problem will be consi-
dered shortly). Now it was stated earlier that the permittivity of
the medium of the sphere was given by el[l + 2(;)]. Provided that
Ig(;)lmax is sufficiently small, the Born approximation developed in
Section 2.3 can be used to obtain a solution. 1In particular, using
equations (2.25), (2.26), (2.27), the total electric field will be

assumed to be given by

E = EO % E1 (4.1)
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Figure 4.1. Randomly-Inhomogeneous Sphere with a Dipole
at the Center
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Figure 4.2. Spherical Coordinate System
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where E;,E& satisfy
VxVXE-kZ"E"=iqu (4.2)
o o :
Vx¥xE - kE = KEeE (k= oue.) (4.3)
1 1 o 17 - :

In obtaining equations (4.1), (4.2), the parameter Vv that

appears in Section 2.3 is assumed to be incorporated into both Ei 3

- .
the scattered field, and € . Reiterating part of the discussion of

that section, Eg is the electric field generated by the source J

when all space is homogeneous with permittivity El , and Ei is the

field generated when the source is given by kzzyﬁg/iwu . Thus, the
inhomogeneities of the sphere, when acted upon by the zeroth order
field, become the new sources. Physically, E; may be thought of as
generating electric dipoles in the medium of the sphere which in turn

produce Ei

In Section 2.2 the far zone was defined as the region for which

2 .
r> r', kr'"/r << 1 at every point r'

for which the source

'3(;') # 0 . 1In this case, for the El field, the entire sphere acts

as the source. Noting that the radius of the sphere is R and letting
?g be the location of the observation point, the far zone is thus
defined by r_>> R, kRz/r0 <1 or r_ >> kRz =

Under the assumption that the observation point lies in the far
zone, equations (2.29) and (2.30) may be applied. Thus at the observa-

tion point r, onme obtains the following expressions for the scattered

field:



-

ikr s .
o YN . . o -ike, * r _
B x)) =—fr7— | e * [e, X E_(r)] e(x) e o dr (4.4)
o y © o
. “k2e1kro _ _ e el —ikgr ‘T _
El(ro) = __Za;f'_‘J e, ><[er X Eo(r)] e(r) e o dr
o gy © o
ikr
e ° e =l —
= ImE } {1w11n><Hl(r)-1k[n><El(r)] -
0 g o
o _ o _ a_ . -ike T
-ik[n '(El(r) + Eo(r)] e e(r)} e ° ds . (4.5)

o

The V in equation (4.4) is the entire volume of the sphere,
while the V' in equation (4.5) is the volume of the sphere that remains
when an arbitrary volume V" with surface §" is deleted from it.

Let Ei be given by equation (4.4). It will be found that even

in those instances where calculation for Ei begins with equation (4.5),

most of the following development will still be applicable.

Let e represent either one of the unit vectors ey » e¢ and

a
o o}
let Elu be the component of El in the direction of ey Then from
equation (4.4) one obtains
B G) =K — | - (e xlec, xEMI}e@ e '© dr
loo® o 4ﬂr0 o L T, o :

Vv

One notes that Elro(ro) = 0 since e. '{er ><[er ><Eo(r)]} = 0 for any

o o o
E0 . Furthermore, if ey equals ey or em , then it is easy to show
o o
that
P . e X_ X--__ =__ ® -
e, {ero [ero E (r)1} e, * B (r)

for any E;(;) . Hence,
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o -ike_ * r
= k<e — = g O as ;= =
E () = —TJ e, 'Eo(r) e(r) e o dr . (4.6)

Now 2(;) is a random field whose spatial dependence cannot be
explicitly given. Hence, equation (4.6) cannot be evaluated as it
stands. However, the mean and correlation functions of g are known
and because of this it will now be shown that it is possible to cal-
culate certain averages of the field components.

Taking the ensemble average of equation (4.6) yields

ikr s
k2e o o W —1ker =t R
<Elu.> = TJ' eu' Eo(r) e(r) e o dr>
o
v
or
g ikr, % -ikKe, *T
$E. =ef | T EE cetise B dr
1 4mr o o ’
o
A"
But <eg(r)>= 0 . Hence, one finds that
= — s _
<Ela(r0) 0. (4.7)

Since equation (4.7) holds for all the components of Ei , it ds

apparent that
<E1(r0)> = 0. (4.8)

This will be true for all the problems considered in this work.
Now let Eé also represent either one of the unit vectors Eé 5
o

be the corresponding component of E, . Then just

Eb , and let E 1

18
o

as in equation (4.6) one may write
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ikr
kze » '

4T
o

oo - — 2% — _ikgr * ? -
J eB °Eo(r') e(r') e o dr', (4.9)
v

I

ElB(rO)

P * —
T i < > .
he expression for Ela(ro) ElB(ro) can now be formed:

4 -ike_ T
== * — k —_— = e Ny T o
<Ela(ro) ElB(ro)> _<$Ig;§;§ J e, 'Eo(r) e(r) e o dr
oV
G ike = 1' _
X J eB -Eo(r‘) e(r') e o dr':>
A

or
_ -1ker o (r-xr'")
(r JE, (r )> = . E (r) e . E (r") e o
B l6ﬁ r? “a
oV YV
x <e(r) e(r')> dr dr'
o Ay —
But <e(r) e(r')> = Ry(|r-r'|) where R, is the correlation function
£ &
n
of € . Thus,
B >= E (1) ¢ T (x -ik5¥o°(¥:;')
la"18 lem r2 g eB =) e
o VYV
X Ro(|r-r'|) dr dr'. (4.10)
€

Since the correlation function Rg is assumed known, the inte-
grals in equation (4.10) may be evaluated at least in principle.

When o = 8 , equation (4.10) gives the mean square value of the
0. component of the scattered field. When o # B , equation (4.10)
yields an average of the product of the two transverse components of
the field. These are the specific quantities which will be sought in

the analysis of the field.
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In certain cases it will prove useful to express the correlation
function used in equation (4.10) as a Fourier integral of the spectral

density Se . From equation (3.3) one has

Ry(|z-1']) = J 8. (&) &= " g
£ £

where the region of integration is all of Kk space. Substitution of

this into equation (4.10) yields

S (k) el (T} = o T, (4.11)
€

By changing the order of integration and rearranging terms, one obtains

M 2 _ _ _ -ir - (ke_-k)
E1of1g” = ;TZ-J S’g(K) I J le, “E (r)e g
M T
o VvV
_ _ dr'+(ke_ -K)
S -E:(r') & Yo '] dF dF' dF (4.12)
or
" X __ —ire(ke_ —K)
<El E13>= J Sn, (K) { f e *E (r) e o dr
lém'r £
el ir'(ke. —K) _ _
X J e, *E (r'") e o dr' dg . (4.13)
B o
v

If o =B , then equation (4.13) becomes
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4 _ _ _  -ire(ke, ) _|° _
<‘Ela‘2> = kz 2 J Sn,(K) J eOL 'Eo(r) e %o dr dic .
16em ro € v
(4.14)

In performing some of the operations indicated in equations
(4.10) and (4.14) it will be helpful if EE is expressed in terms of

the unit vectors at the observation point e. > €5 > Eb . Now EO

o o o _  _
will be given initially in terms of the unit vectors e.» €gs eg .
Thus, one must express these latter vectors in terms of the unit vec-

tors at the observation point. This is done in the following manner.

Referring to Fig. 4.2, it can be easily shown that

e =sin O cos P e + sin O sin P e + cos O e (4.15)
r x v z
ey = cos O cos 0 ex+ cos B8 sin @ ey— sin O e, (4.16)
Eb = - gin 0 E; + cos @ E; . (4.17)
In particular, at T = ;; , one has 0 = 90, ¢ = ﬁo = 0 , and hence
e =3sin® e +cos 0 e (4.18)
T x
o
ego = cos 90 e - sin 90 e, (4.19)
_- 4.20
emo ey ( )

Now e s eys eﬂ can be expressed as

B e e *e.de.+ (e *e, e (4.21)
(o] (o) 90 e0 o m0 ﬂ

o |
[}
~~
®
*
(0]
p—
M
+
~
™
L ]
0]

s & 0" %o )eg-i- (eg'em )em (4.22)
o o o o

D
]
~
©
©
.
(0]
R
o]
+
~
L]
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ey = (pre Ve, + (5y7 5 2oy + (5555 )5, (4.23)
¢ Q rO r0 Q) QO 9O w gO mo

From equations (4.15) and (4.18) one finds that e *e =
T T
o
(sin @ cos P e +sin@ sinP e + cos Oe ) *(sin © e+ cos 8 e ) =
X v z o X o v

sin 90 sin 6 cos P + cos QO cos @ . Substituting this and similar

expressions for e ey

5 Eé e etc. into equations (4.21) - (4.23),
o o

one obtains

e = (sin O sin O cos P +cos 9 cos O)e
T o o r
+ (cos Gosin 0 cos @ -sin Gocos Q)Eé + sin 0 sin @ Eﬁ (4.24)
o o
eQ = (sin roos ® cos - cos 9051n G)erO
+ (cos Oocos O cos P+sin Qosin Q)Eé + cos O sin @ Eb (4£.25)
o o
ey = —sin 9051n 1] ero— cos 9051n ] e90+ cos P eﬂo. (4.26)

The material of this section can now be applied to calculating the
mean-square components and the mean of the product of the transverse

components of the problems at hand.

4.2 Scattering for the Case of k& >> 1

It will now be assumed that k&% >> 1 , which, because k = quEl
= 2m/X , is equivalent to A << & . Since it was given that
R/% >> 1, it follows that kR >>> 1 .

The case of the magnetic dipole will be considered first. Then

the case of the electric dipole will be treated.
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A, Scattering with the Magnetic Dipole

(i) Derivation
Let a z-oriented magnetic dipole be situated at the center of
the randomly-inhomogeneous sphere. From Papas [15], the electric field

of such a dipole in a homogeneous medium with permittivity €. and per-

1

meability W dis given by

T (?) = i[(t)ﬂum (}E_'_ lz_) elkr
r

sin 0 e
o 5 @

where m dis the strength of the dipole, and where k = wvusl . Letting

t = wum/4T™ , this equation becomes

= 3y o Bl g iy ik
Eo(r) = E(r + 2) e

sin © Eﬁ . (4.27)
kr

It will be assumed that &£ is real. Next, one finds from equation

(4.26) that

e¢ = —gin Gosin 0 er0~ cos 9051n )] ego+ cos @ em0

Substituting this into equation (4.27), one obtains

—_ 3 1 i ikr . . =
Eo(r) = —f gin QO(;-+ ——ED e sin @ sin @ e,
kr o
~E cos 0 (—1- +-1)sin @ sin @ o, + E(}-+—-—i )sin@cos @ e
o'r 2 e r 2 @
kr o kr o

(4.28)
Now E;(E} has a l/r2 singularity at the origin which, however,
is integrable. Therefore, the scattered field Ei(;) may be given in

the far-zone by equation (4.4), i.e.,
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o _ _ o a_ -ike_ T _
El(r)=—k-e—— e, x[e, xE @] €@ e o dr

o o
where V 1is the volume of the sphere. Hence, the expression for the

mean square of the components or the mean of the product of the trans-

verse components may be obtained immediately from equation (4.13):

& A J . -Are(k-x) _

<E, E,_>=——— | 5, (k) Je *E (xr) e dr

lo. 1B 16'IT21‘2 '&\:J {v o o
o

% JEB E G k) d;v} dc
v

where k = k Er and where the K integration is performed over all
o
K space. Let

— — = = 4R ey ==
Lu(K) = Jea Eo(r) e dr (4.29)
v
where K' =K — k . Then
) B (r)> i [ Sn,(K) L (L. (<) dc (4.30)
<E, (r T = — n (K . i
lo*" 0’ 1B o 16“21:(2) b o B

Equation (4.29) will now be considered. Substituting equation

(4.28) into equation (4.29) and noting that Eu . Er =0 since
o
e, = ¢g

or Eﬂ , one finds that
o o

L()=|e +{-Ecos 0 (—l—+ =3 eikrsin 0 sin @ e
o. ¢ o'r 2 fs]
v kr o

i

. iK' e T
z)elkr sin O cos @ ey } e dr . (4.31)
kr o

+ E(%+
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In particular,

Ci-k i )eikr KT
r 2
kr

sin 0 sin @ dr  (4.32)

Py

Lgo(K) = -f£ cos 90

=

T TR _
Jal it AES e O vos B d0 . (4. 33)

N

L, (K)
mo

E j @&+
¥ kr
v

The integrations in equations (4.32), (4.33) will be facilitated
by expressing the integrand in terms of associated Legendre polynomials
and spherical Hankel and Bessel functions. From Appendix A,

i ikr

(kr) 2

-1 1 5
hl(kr) = [E; - ] e 5 Pl(cos 8) = sin 0 .

Expressing equations (4.32), (4.33) in terms of these yields

— _ E 1 iE‘ '_E .
Lg (k) =tk cos 90 hl(kr) Pl(cos Q)sin @ e dr (4.34)
- v
—_ 1 iK' s r —
LG (k) =-Ek hl(kr) Pl(cos 0) e dr . (4.35)
o

\

Let K' be given by

k' =k

'e +k' e +k' e =kK'sinYcosye +kK'sin i e +k!' e
- B v Sy z S P Y o siny siny ey cosd}ez

where {,Y correspond to the angles 0,0 , respectively, in spherical
i . s
coordinates. Then e " r may be expanded as the sum of spherical

waves. By using formula (A.18), one obtains

—_— [ee] n

eiK . I‘= X in(2n+l)jn(l<'r)[ Z o (n—m)!

An-m) : m m
sywil) oio m Tmtal} Pn(cos w)Pn(cos 8)cos m(y-9)]

(4.36)
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where

Substitution of equation (4.36) into equations (4.34) and (4.35) yields

Ly = Ek cos 6_ J h (kr) Pi’(cos 0)sin @ ) {in(Zrﬂ-l)jn(K'r)
o v n=0
2 (n—m)! _m m —
X [mzo am TaiajT-Pn(cos w)Pn(cos B)cos m(Y-Q)]} dr (4.37)
L¢ = -Fk J hl(kr) Pi(cos Q)cos @ z {in(2n+1)jn(K'r)
o
A%
= (n-m)! _m m —
x [mzo m.?E;ajT'Pn(COS w)Pn(cos Q) cos m(Y—G)]} dr . (4.38)

The evaluation of equation (4.37) will now be considered. Changing

the order of summation and integration yields

oo n
L9 = Ek cos GO Z {in(2n+l) [ Z o E2+$;: P (cos ) J hl(kr)
o n=0 m=0 5
X Pi{cos Q)sin @ jn(K'r)Pg(cos 8)cos m(@-y) d;]}
or Rm 2w
-5} (n—m) ! m
Le = Ek cos O Z {in(2n+l)[ Z O, (ntm)! Pn(cos ¥) J J J hl(kr)
o m=0
fo} n=0 000

X Pi(cos 9)sin @ jn(K'r)Pz(cos 8)cos m(y-@) . rzsinG)dﬂ de dr] }

(4.39)
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Now it is easily verified that

2m m sin vy m=1
J sin @ cos m(Y-9) dg =
0 0 m#F 1

Thus, the @ integration in equation (4.39) yields

0 (nt+1)!

Rm
L =-Ek cos 90 Z {in(2n+l)' 2w {o-1)! Pl(cos w)sin*yj J hl(kr)
o n=0 H 00

X jn(K'r) Pi(cos e) Pi(cos Q)rzsin 0de dr . (4.40)

But from equation (A.1l7) one has the following orthogonality relation-

ship for the associated Legendre polynomials:

il 4/3 n = .l
J Pi(cos e) Pi(cos Q) sin O dO =
0

When this is utilized in equation (4.40), the result is

R
- o id P : . £y 2
L9 =Ltk cos QO 4i Pl(cos P)siny J hl(kr)Jl(K r)r® dr
- 0
or R
L9 = 4miEk cos Qosindisin‘yj hl(kr) j(K'r)err (4.41)
& 0
since P}(cos P) = sin P . In an identical fashion one can also show
that
R
L@ = =41mi Ek sind}cos'YJ hl(kr) jl(lc'r)r2 dr . (4.42)
o
0
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The integrals in equations (4.41) and (4.42) can be evaluated by

using equation (A.9) which states

T

2

J t an(kt) bn(klt)dt = 'k—z:? [kan+l(kr) bn(kll‘)— klan(kr)bn+l(klr)]
1

where an’bn are any linear combinations of nth order spherical

Bessel or Hankel functioms.

Letting a_ = h,, bn =35 kl = k' , one obtains
R
2 R2
h, (kr) j,(k'r)r"dr = ——— [kh,(kR)j,(K'R)- k "h_ (kR)j,(k"R)]

1 2 7 .2 2 1 1 2

0 k™= K
r2
- —— . 1 — L} . T
5 ) [khz(kr)jz(K r) K hl(kr)Jz(K r)]
k- K r=0

Evaluation of the term in braces in the preceding expression can be
easily done by using the asymptotic approximations for hl(kr),
hz(kr), ji(K'r), jZ(K'r) which are valid for r + 0 . From Section

A.1 in the appendices, one finds that

2.2
K'r [l -1i -3i
. 1 : 1 R,
Jl(K r) v 3 E Jz(K r) i 15 ] hl(kr) v 92 9 ¥ hz(kr) u 3 3
k'r k'r
as v >+ 0 . Then
r2
——— [ kh, (kr)j,(k'r)- k'h (kr)j,(k'r)]
M L ] 1 2 s
_ r2 [k * -31 _g'r e -i .K'2r2] _ —-ik’
2l o 22 I » 5
s (k -k' )k
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Thus,
R
f hy (kr)j, (') r’dr = ﬁ {Rz[khz(kR)jl(K'R)- €'hy (KR)1, (<'R) ]
! 2
+i—'<;-} _ {53}
K

Equation (4.43) is now substituted into equations (4.41) and (4.42).

The results are

— siny sin Y 2 b Rl ; ;
LQO(K) 4mi Ek cos 90 kz— K‘z R [khz(kR)jl(K R)- Kk hl(kR)JZ(K R) 1]
1! )
+'_'7Z} (4.44)
k

Ly (<) = -4mi Ek —S—%mw{thkhzckR)jl(m'R)— k'hy (kR) 3, (K "R)+ iK'} ,

o k™= K'z k2

(4.45)

Now L9 g LQ were found as a preliminary step in evaluating
o o
integrals of the form

J 55 (<) L, (k) LS(E) 3 (4.46)

which appears in equation (4.30). The region of integration here is all

of Kk space. It will now be shown that if a spherically-shaped volume
centered at K = k and having a radius of -lz-k is excluded from the
region of integration, then the value of the integral will not be sig-
nificantly affected. That is, the error incurred by restricting the

region of integration of all K space to the region where

|« - k| é-%]ﬁ will be negligible. Restricting the region of
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integration in this manner will allow simplification of the integrand
which in turn will expedite evaluation of the integral.
¥
Recall that the correlation function of € 1is given as being

Gaussian, i.e.,

From Tatarski [16], the spectral density of this correlation function

is
2,3 2,2
S ) = 2—%7§-e_K X (4.47)
€ 8m
Let u denote the region where |E'— iw < %k , or, since
K'=%k -k , the region where k' < %k . Then the interest here will

center on estimating

1, = J s?:,(K) LOL(E) L;(K) de ,

u

the value of the integral in the region which is to be excluded. Now

—_— % - — A
HE \ j S, (K) L, ()1g ()| < JIS?:,(K)I'|La('<)

u u

Lg )| de .

Using equations (4.44), (4.45), (4.46), one can show that
259
1| < 2 APV f Fa bl
u

1 21
Re P04y (g "B E= 4. 314 2 2

1 k 2 k2
% dk
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Next, since k' <-%k. in u , and since ljl(K’R)l, Ijz(K‘R)[ < .5

for all k' , it is easily seen that

T L
Réwhjwm)+&d(wm]+HL
1 K 12 2
k . 4R
B* ~ g 3K>
Hence,
32/7 E2v2eR? 2.2 10E2v2p 382 |, —2p2/%
<L/ = dx
)« T [ g T
9k k
u u

Now u 1s a spherical volume in 3 space centered at the
point K =k and having a diameter of k . Because of the spherical

symmetry of the integrand, k may be taken to lie along the K axis.

Let u' be the region contained in a cube whose center is at
K= kg; and whose sides of length k are parallel to the respective

coordinate axes. Then, since u is contained in u', one has

7| < 10E2v293r? J e-KZ,Q,Z/ll- e 10E2v29 3R
u k2 . k2
u
3k/2 k/2 k/2 —(KZ-FK2-+K2)22/4
X e = y = dc dk_ dk ’
y z X
k/2 -k/2 -k/2
Then
ERLE Y w292 /4 T eIy b —Kizz/a
|I|<———-IeX dk Jey dk Ie dk
u k2 X
K/2 oo e

Using the fact that
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x
202 .
I SERE 25?

one has
2
Y 2.2 L 2 k 2
4orE 2v2g rZ =Kkl somE2y? g g2 [ (T HkTH )AT/4
|I | < e dic = e dt
u k2 X k2
k/2 0

where the variable of integration has been changed from Kx to

1
T = Kx - zk. Next,

2.2, o
It sonE2vZy, g2 TKLT/16 —T222/4 —Tk£2/4
u‘ S e e e dt
k 0
22 2 22, .° 272
< LomE \)22 R” -k27/16 J ST
k 0
Thus,
sorE2v2e 82 1202716 /T 250E2VE RZ —k%0%/16
|1 | « AOMETV R RT T ZSEV R
u 12 z 12

But if k% is sufficiently large, and it is given that k& >> 1 ,

then it is safe to assume that the exponential will reduce | | to a

I
u
negligible value. Letting U be the region where IE?—?J 2 %1{, i.e.,

the region where k' 2 l‘k, equation (4.30) can thus be replaced by

2
A
* k I : - ——— o=
<E, E. > =— | §.() L () L&) d< . (4.48)
1o 16 16—n2r§ I o B

Now since k' 2 %lcin U, and since kR >> 1 , then k'R >> 1

in U . Therefore, referring to equations (4.44), (4.45), the Bessel

and Hankel functions can be replaced by their asymptotic approximations
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valid for large arguments. From Section A.1l one finds

s o .
hy(kr) v o e, h,(KR) v

as kR - o,

ikR i ikR " -1
R R © 5 Jl(K'R) n TR oS K'R ,

=1
. 1 . 1
JZ(K R) v vz sin k'R

Substitution of these into equations (4.44) and (4.45)

yields
o P * 1]
L. (k) = 411 Ek cos © ﬁiEJEEELl-{eikR[~%-cos K'R-vl sin K'R]+ =
8 o 2 i2 K k 2
o k- K k
(4.49)
e 3 '_o I 1
L, (& = -triE2iBeosy y IR o0 ip L gin cry+ 2 (4.50)
) 2 2 K k 2
o k™= K k
It is now possible to obtain more explicit expressions for
<|E ]2> <|E |2> and <|E E* |> . From equation (4.48) it
18 ¥ 10 d 16 14 ’
o} o o o
can be seen that
<lE. [2> o K S, (<) |1, @)% dc (4.51)
19 2 2 2 e :
o lén” ¢ € o
oU
2 k4 —x 2 =
i L S (k) L, ()| de (4.52)
190 2 2 @
o 167" r € o
oU
k4 %
<E E,,> = ——————-I Sn(k) L, (k) Ly (k) de . (4.53)
190 1¢o 16ﬂ2r§ 0 > eo mo

By substituting equations (4.49) and (4.50) into equations (4.51)-(4.53)

and noting that 8S,,(xk) is given by (4.47), one obtains
g
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E2k6£3 2 2

V7 cos 0O 22
2 -K"L =
e, |%> = S | * 2 in® sta®Y |¥ee')|? dE 4.5
10 3/2 2
o 8m 1
o U
2.6,3 .2 24,2
E — e
2 _-—4&4§;2— e o4 sinzw coszy ]F(K')|2 dk (4.55)
€8 [“2=, 32 3
19 8m T
o olU
* Ezk6£3\)2cos 6, -KZR.Z/Z; 9 e
<E,. E..> = e sin“yP cosysiny |F(k')|“dk
190 1¢0 8ﬂ3/2 r2
o U (4.56)
where
. i . L
Fe') = —t—— {eM®[ZL cos k'R-2 sin 'R+ X}, (4.57)
k2_ K.Z 'S 3 k2

Two transformations of coordinates will simplify the computation
of the integrals in equations (4.54) - (4.56). Recall that K'=K - k

and that k' = k' sini cosYEx+'r<'sin1Psiany+l<'cosI]J.e—z . Then

o k!
: X - :
sincos Yy = 5 , siny siny = ——%
K
K

Substitution of these expressions into equations (4.54) - (4.56) and

changing the wvariables of integration from K to k' yields

5 E2k6\)22,3c05290 -k "+k| 29.2/4 12 9 —
|5, 172 ey f e —1-2— |F(c')|“ dc"  (4.58)
o 8m r, g 2

—, 12,2 2

2.6.2,3 -k | “25/4 =

<legy 12 > =§—1§712’i2f e = R |? de (4.59)
8m U k'
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% B o B -fE“#E[zzz/a k!k!
B o - XY |pe'y |2k, (4.60)
16 19 372 2 - el
o o 8m r, U K

The variables of integration will now be transformed from k' coor-
dinates to E- coordinates which are defined by the following axis

rotation:

., = k' cos 8 -k' sin ©
1 X o z o

gz = Ky (4.61)

a: st v
53 KX sin GO + Kz cos 90 .

The inverse of the transformation is given by

| -
K' = Clcos 90 + §351n 90

X
v =
ke Z, (4.62)
o .
Kz §151n 90 + C3cos 90 .
It should be noted that |Z| = |k'| . Now let [ be given by

o=k sinT]cosE-gi+ (ol sinr]sinE-Eé+ C cosn_g3

where 7, n, and & are spherical coordinates. Thus,

Cl = gsinncosé
C2= zsinnsing

C3 = L cosn



G

Then equations (4.62) become

L4 =0 . .
< z sinmn cos £ cos 90+ z cosn sin 90
K; = ¢ sinnsin § (4.63)
¥ e .z 4
Kz z sinncos g sin 90. £ cosTmcos 90 i
Now
K+ K2 = k% k% 3 T o= 5 Ko+ KK (4.64)
Recall that k = ke_ =k sin 6 e + k cos 6 e . Substituting this and
5 0 x oz

o
equations (4.63) into equation (4.64) yields

lE*+'E[2= §2+ k2+ 2(kz sinm cos & cos Gosin 90+ kg cosr]sin290
— kZ sinmn cosé& cos Gosin.604-k£ cosr]coszgo)

or

|E“+'E|2 = §2+ P 2k cos n. (4.65)

Writing equations (4.58) - (4.60) in terms of the new variable of inte-

gration T and utilizing equations (4.63) and (4.65) vields

2.6,32 2
p ERVeose (12,2 0 o0 002,
<|E19 I 3/2 2 ©
o am r
o u

X (sinn sin E)ZIF(C)IZ dc (4.66)

E2k6£3v2 J e—[§2+k2+2§k cos n]22/4

2
<|Byg 17> = EA
1¢0 8ﬂ3/2 r2
oU

(sinn cos £ cos 90 +

cos nsin 0)°|F(@)|® T (4.67)
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2, 6,3 2

& E* S = E7k"L7v cos 90 e—[C2+k2+2 k cos n]22/4
16 "1¢ 3/2 2
fo} fo} 8m rO I

x (sin ncos & cos 90+ cos n sin Go)(sinn sin £)|F(;)|2 dE‘
(4.68)

More explicitly,

2.6.2.5 H. w @
5 E“k Ve cos 90 _[§2+k2+2;k cos n]22/4
<IE19 %> = 3/2 2 ¢
o BT e, koG 0

sinzn sinzglF(q)lz stinr]dEdndC (4.69)

2

) -T2k cos n182/4
8TT3/2 2

T

2 £2605y%

<|Em | 5 gyt MM
@ o k/2 0

oOY—3

X [sinzn COSZE coszeo-FZ sin n cos £ cosn cos BO sin 90

T sinzeo]|F(c)|2§251nr]d£dnd; (4.70)

58 B « T 2m
) N E“k v cos 90 _[52+k2+2gk cos n]£2/4
E,.E > = %
16 100 8,"_3 / 2 rz
o o k/2 0 O

X [sinzn cos £ sin £ cos 90+ cosn siné sin Go] |F(C) lzgzsinn dEdndc .

(4.71)

The £ integrations in the preceding equations can be performed

at once. Noting that
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2T 2T

one finds

2m
J coszé’—; dg = j sin?'&j d§ =, J sin & d§ = J sin & cos & d§ =
0 0 0

6,3 2 © T
<|E |2>- ) E?k 2 v cos 90 e“[C2+k2+2Ck — n]22/4
19o 8vm r2
o k/2 0
X sinzn |F(C)|2§291n71dndc (4.72)
Ez * T 5 37 2
<|E1ﬁ lz> _EKk?% J J o[ K +2Ck cos N /4 [Simzn coszgo
o 8v/mr ro k/2 0
+ 2 cos’n sin®0,1 |F(@)|%c%sinnandz (4.73)
* S 0
Eig Eig . (4.74)
o (o]

It is apparent from equation (4.74) that the transverse components of

the scattered field are uncorrelated.
A change in variables will now be made. Letting ¢t =
w =& , equations (4.72) and (4.73) become

2.6 2 2 2 1
2 E"k VvV cos 60 J J e_[W2+k2£2+2wk£t]/4

[ =
190 8vm rg

k&/2 -1

2

x (1-t%) [P % ae aw

cosn and

(4.75)
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o 1
2.6.2 2. 52,2
<IE1¢ l2> JEE Vz e—[w +k“L 2wkt ] /4 [c0529
o 8/ r a
o kg/2 -1

+ t2(3 sin’e - D1|FEH | % wat aw. (4.76)

The t integrations in equations (4.75) and (4.76) will be done

first. Performing these integrations is equivalent to finding the two

integrals
1 1
[ o TVRRE/2 o ’ J (2 wkit/2
-1 -1

The first one can be done immediately, yielding

1

J e*Wth/Z B 2[ewkﬂ,/Z _ e—WkQ/Z

]

-1 wkl

In the second integral, two integrations by parts yields

wk&/2 e—ka/Z]

qp = 2[e _ 8le

Wil (wke) 2

wkf/2 -wk®/2
. ]

1

J 2 —wkt/2
t e

-1

wk® /2 —-wk/2
e - e

, 161 : ]
(wk®)
Now in equations (4.75) and (4.76) it can be seen that w =2 %-kﬁ .
Hence, wk2 é%—(kﬁ)z . But -%(kz)z >> 1. Thus e /2 555 ¢¥Kb/2

-wk&/2
e

and therefore the terms in the preceding equations can be

neglected. Hence these equations become

1

kR/2
~wkt/2 28"
J T / dt " e—WkXT— (4.77)

-1
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1
J 22 g 2. By 16 g /2 (4.78)
- (wk®) (wkh)

Equations (4.77) and (4.78) are then substituted into equations

(4.75) and (4.76). Now since w = %—kﬁ >> 1 , one has

l/wz, 1/w3 <K< 1 . Therefore, as an approximation, only the highest
order term in w will be retained in equation (4.75) and only the two
highest order terms in w %ill be retained in equation (4.76). The

results are

E2k4v2c0529 i 2
<|Ele l2> = 0 J e—(w—kﬁ) /4 IF(%)IZ . (4.79)
. LI oS Y
2.4 2 2
<|E l2> RN o~ BIFEE .[(2wk9,-12)sin29 + 4]
14, W 20 o
o~ k&/2

< |FGH|% av . (4.80)

But 2wk 2 (kﬁ)z, and assuming (k£)2 >> 12, equation (4.80) becomes

co

2. 4 2 2
<]E |2:> v Ekv e_(whkg) /4 ﬁl wki sin29 + l]|F(E-)|2 dw .
16 22 2 o '3
o v roﬂ

kL/2 (4.81)

From equation (4.57) one has

1
F(k') = —— {Re
B

ikR i e L A : ik
[K, cos k'R - = sin K R] + - }.

In a straightforward manner one can then show that



cxilif=

6 in2 . c052 xR
g {S % L 2 WR

2
lFCE)l = ; + # [cos kR cos — +
3 12222 | ey 7 ety 2 %

2
Al x wR W
— kR sin —] + - (4.82)
B 2 /..}

(k&)

Referring to (4.79) and (4.81l), it can be seen that because the exponen—
tial in the integrand decreases very rapidly for |w—k2| > 1, most of the
contribution to the integral comes from a relatively small neighborhood
of w = k& . Therefore it is reasonable to see if |FC%)'2 can be re-

placed by some approximation in this neighborhood which would be less
complex than the expression in equation (4.82) and hopefully easier to
integrate. A simple way to find this approximation is to let w > ki

in equation (4.82). One finds that

- 16 sin2 %B cosz%E 5
IFCE)I n 5 2{: 5+ g 7 [cos kR cos %E
(2k2) ™ (w-k&) (k) (k) (k)
g -
+-§% sin kR sin %B] + ik&lz_} as |w-k&| ~ 0 ,
(kL)

or, after combining terms,

22 1- cos[(w—-kﬂ)-%]

IF |2 ~ . (4.83)
2 21 (w - kL)°

Equation (4.83) gives the approximation which will be used in
evaluating the integrals in equations (4.79) and (4.8l). However,
before this can be done, one ought to have some estimate of the error
incurred by_using the approximation. To do this, the approximation
will be obtained in a different manner which will yield terms with

which the error can be calculated. First it can be seen that



1 o__ 1,1 1 _ 1 w- )’
v )% w2 a2)?  wre)?
R G ¢ 5 e A 5 S W e ¢
(x2) ) S

w w - k& + k% w — k&

P T = 1+ g

When these expressions are substituted into equation (4.82), the result

is
| o |2 26 'sin2 %E- cosz%1i (Wz— kzﬁz)cos2 %ﬁ
rep |2 - {. + -
Z w- ¥22H2 L an?  aa? w2 i) 2
- 5 [cos kR cos %5-+ sin kR sin %§-+ LE;LE%l sin kR sin EE]
(k%) (k2) 5
& 1 " wz— (kﬁ)z}
2 4
(kL) (k)
or
| " rz 226 {l-—cos[(w-—kﬂ)%ﬂ} 26
Fh|? = +
2

k) 2w +k2) 2 w-k0)Z . KW Z(w+kL)? (w- kL)

2 wR . WR
. { —-(w+ k%) cos 2 _ 2 sin kR sin 7 L ¥ " kl}
W ) (12) 2
Next, since
1 S S 1 1 (w+3KR)(w-KkR)

w2 (2?2 wHEZ k02 402 4k) 2w+ kL) 2

the preceding equation for [F(%)IZ can be put into the form
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]F(-"—’)|2 i 02 ’ 1 - cos[(w—kﬂ,)%} _ 02 ) (w+ k2){1 - cos[(w- kﬂ,)%]}
A 2t (w - k8)2 gt G + ®0)* G — ko)
wR
N 26 {W_]_kz_ZsinkRsin—Q—*
(R2)° G+ KBY° o = BE) L (RR)Z )
(w + kL) c052 ‘Z—R}
- 2
w
Let

22 1 - cos[(w - k&)%]
B = —g* 2

2k (w - k2)

22 (w + 3k%) {1 - cos[(w - kﬂ)%]}
g () = — 7 2

2k (w+ k)™ (w - kg)

24 v+ K 2 sin kR sin %E

g,(w) = — 2 { g -

kK(w + k)" (w -k L (kL) kg

(w + k%) cos2 %B
_ ' }
w
so that

IFGHI% = £6) - g, () + g, .

It can be seen that £f(w) is identical to the approximation for
[FG%)|2 given by equation (4.83). Hence, the error involved in using
the approximation results from dropping the terms gl(w) and gz(w)

In particular, for equation (4.79), the error is given by the integrals

- 2 T 2
J e«(w—kﬁ) /4 gl(w)dw 5 e-(w—k%) /4 gz(w)dw
k&/2 k&/2

The magnitude of these integrals will now be determined. Let the range
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of integration f% k%,°] be divided into the three intervals I% k%,

K - /301, [k& = /30, k& + /301, [k& + 7/30,2] . Thus

% ke~T/30 K&HT/30 1
[ - * ¥
kL/2 ke/2 kﬁ—ﬂ/BO k2+ﬂ/30
k2-"/30 k&+T/ 34 o
k2/2 ICQJ—TT/:J,O k2«+ﬂ/30

Now using the expressions for gl(w) and gz(w) it can be seen with-

out too much difficulty that if |w - k&| =2 é% , then

0L
Iy ey ] <=5

Hence, if g(w) represents either gl(w) or gz(w), one finds that

K-T/30
. J =12 %74

k%

k2=T/30

o~k 274

g (w)dw | g (w)| dw

KL /2

k2-T/30 9 k& 2
y sog J k) T sgz J GRS SR 1022 .
k x%/2 - S k

In an identical fashion one can also show that

co

100
509, -l o g ek
——— e 5
5 K
k2+T/ 50

e—(WBkl)z/h

g(w)dw| <

ke+T/ 30
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Then
kﬁz—'n-/_'so oo
2 2
J e—(w—k&) /4 g (w)dw| + J e—(w—kk) /4 g (w)dw
kL/2 kf&+m/30
& 100£_+ lOgR - 2022 .
0 K K

i1
and k& >> 1 , one can show that

Next, for |w-k&| £ 30

1 - cos[<w-kz>%]

3 3 2
&t % - - {1— cos[(w—kﬂ}—]}
" P =) 810 .
~, sin w-% sin[(w—kﬂ)i%]
(w) ~
k
Then
ke4T/ 30 ) Ll
2
e— (W_k./QA) /4 gl(W) dwl v |—2= e_ (W"‘leA) /4
k2-T/4q e b=/ 30
QT
{1- cos[ (w-ke) 5} g K/ 30 ~ (k) 274
dw - e
(w-k2) a0
ki—n/go
R
x {1 - cos[(w-k&)71} dw
kT /30 2
- _Eg J o (m-il) /4{1-cos{(w—kl)]} dw
8k
k2-"/3q m
, k&+"/ 30 2
A dw < —
e 1®

k2~T/30
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and

KA/ k&+T/ 30
- ) ~Ge-1)2/4
&

2
em[wﬂkZ) /4 gz(w)dw

k,Q,—Tr/BO kﬂ,—TT/BO

R
il —‘gl‘— sin[ (v-k8)7]

* (w-Kk2) s

LA+T / 30 5 " R
B & SR/ 2 wR sin”[(w-kR)y]  ]1/2
5 % 5 dw
k-T/30 kE—W/BO (w-k&)

k£+ﬂ/30

In deriving the estimate for the integral with gz(w), use was made of

the Schwartz inequality

b b b 1/2
J hl(x) hz(x) dx| £ J h%(x) dx J hg(x) dx
a a a

and the fact that

oo
sinzax
j__dx=ﬂa.

X

Combining results, the error involved in using £(w) as the approxima-
Wy 12 ,
tion for fFGE)f in the dintegral

s 2
e—(W—k,Q,) /ll- |F(_T§_)|2 e

ke/2

is less than
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200t , 200, L A R = L (4o0+/%y . (4.84)
k k k k k

An identical estimate can be obtained for the integral in equation
(4.81) in which the additional approximation 1s made of replacing the
%-wkﬁ sinZG term with -i(kﬂ)zsinzg .
o 2 o

The expressions for the scattered field are now

2.4 2 2 o
E°k v cos 0 2
2 - (-
<]Eie | ™> ~ = o ¥ (w=k&) /4 £ (w) dw (4. 855
o) v rg 2 10/2
2, 42 T 2
E —(w—
<|Eyy |2>ka§ 5 [l+%(kﬂ»)zsin290] e WTIE sy dw. €4.86)
o Jﬁ'rol _18/2
Let -
2
If = e—(W_kaQ:) /4 f(W) v . (4.87)
~-k&/2
Then once If is computed, the final expressions for <|E1e |2> "
o
<!E1¢ '2> can be obtained. Of course, the magnitude of If must be
o

compared with the value in expression (4.84) to determine the relative
error incurred by using the approximation for ]F(%5]2 . Substitution

of the explicit expression for £(w) into equation (4.87) yields

2 7 {1 - cosl(w-ke)31}
b = 7%
2K

kL) 2ig

dw . (4.87")

7
19 /2 (w-k2)

One can extend the lower limit on the integral in equation (4.87') to -«
with negligible effect on the value of If . Then making the change of

variables T = (w—k&)%-, one finds that
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T 2.2,.2
1 = 2R J T2 /4R" {1 - ;os T} A . (4.88)

T

One integration by parts yields

T 2 .
il:f = {J = {s:m T—--&Z— T[l-cos T]} e 27/4R dT}

4R

oy 2

oo
_ iR {: sin T -v2%/uR? o 27 J 1202452
2k ' - &
2

But

and from the N.B.S. "Handbook" [17],

1 i —at2 dt = ( cos 2xt e—atzdt = ljkﬂ-e—lea (4.89)
El J cos 2xt e 2\Va g
0 :
-00

so that one finds

. -
5 2 22 2 2 2
If=£R4{JSIETET2/4R dT-%‘ﬁfTF*“f%‘fTFE—R/Q},
2(k2) e '
But
1
Sl L a I cos xXT dx .
C
0

Substitution of this into the integral in the expression for If and

reversal of the order of integration yields
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2,2 2 2 g
-T 7 /4R ) 2 -R“/% }
cos XT e dt - 3R MW-FEE VT e

g‘———18

If=—%{J

Applying equation (4.89) again, one finds

1
O
YL . S L~ -R%
1, - 2& gﬁje - A Ak re }
2k 0

Changing of the variable of integration in the preceding expression by
letting vy =-% x vyields
R/%
2 2,2
- AR -y X L -R7/%
i_ = 2/ J e dy - 7R VT o+ 7R /T e g

£ 4
2k 0

But since it is given that R/L >> 1 , it can be seen that

R/ 2 ot ) e
- v -
J e v dy = J eV dy = -é;
0 0
Thus,
2 i)
If - WRE {1 _ 2 5 2 e—R /L }-
2k 2R/T 2RVT
B -wtat
But again, since R/2 >> 1 , then << 1 and —— e << 1,
2R/ 2R/
Hence,
I, F’l—f : (4.90)
2k

Comparison of the value of If with the estimate for the error in
expression (4.84) reveals that the error does indeed become mnegligible

as k4/R/? becomes increasingly large.
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Using equation (4.90), the final expression for <|Ele|2:> and
o
<|Ele]2 > can be obtained from equations (4.85) and (4.86). The results
o
are
2 2
<|E |2>’h EviRdT c0529 (4.91)
16 2 o
o] 2~
o
) 2.2
<|E |2> N ETVR/T [1 +-l(k.Q,)2 sinze 1 . (4.92)
19 2 2 o
o] 2ro

(ii) Discussion of results

The results of the examination of scattering and propagation
with the magnetic dipole are represented by equations (4.74), (4.91),

and (4.92). They are repeated here for reference:

2.2
<|E,, |25 EVRA .2
16 2 o
o 2r_ R
o
2 2
<|E ’2> n ETVR/T [1+l(k£,)2sin29 1
10 2 2 o
o 2r " %
(o]
< E* > 0
P10 P19 '
o
A plot of the root-mean-square values of ElG . Elﬂ for k& = 10 1is
o o

given in Figure 4.3.
In interpreting the equatiomns for the mean square field com-
ponents, it should be noted from equation (4.27) that the far-zone

magnetic dipole field for a homogeneous medium is

EO(?) = E= sinezﬁ. (4.93)
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for Magnetic Dipole with kg =10
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Using the Poynting vector method, one can easily show that the power
T

radiated by this dipole is %ZV€17H'E2 . The radiated power is thus

proportional to Ez and independent of the frequency. Hence, the

! 2

expressions for <[ >, <|El¢ !2 > give the behavior of these
o

"0
quantities for constant power in the zero'th order field of the dipole.

Now the method used in treating this scattering and propagation
problem was the Born approximation, and it should be recalled that in
order for this method to give reliable results, the first order field
must be much smaller than the original field. Owing to the random
nature of the physical situation of the problem, the first order fields
themselves cannot be calculated and so any criterion for determining
the validity of the Born method must rely on the mean square components
of the field. A condition that seems plausible in insuring the appli-
cability of the Born approximation is to require that

<|Ei|2> << lﬁ;lz . Since (kJL)2 >>> 1 , one has

2.2
<|E |2> s <|E |2>NE\)RVTI' k2 Sinze
1 16 2 o

o 4r0

Using equation (4.92), the condition 1s thus

2.2.2 2
FEME, sin29 << E;-sinze
2 o 2 o

4y ¥

o o

or simply
VP <o (4.94)
k™ RL

where it is recalled that v2 = <€2> - si =
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If this condition is satisfied, it is reasonably safe to assume that
the Born method will yield reliable results.

Some aspects 6f the results will now be examined. From the
expressions for <]Elg |2 > and <|El¢ ]2> it can be seen that the
magnitude of the latte: is for the mosi part (kl)2 times the magnitude
of the former. However, the magnitudes of the two are equal at 90= 0
which is a phenomenon required by the (—symmetry and isotropy of the
physical situation.
|2

The vanishing of <|E > at @ = m/2 has a simple physical

16
explanation. Recall that theo Ei field can be considered to be
generated by electric dipoles which are induced in the inhomogeneities
of the medium of the sphere by the E; field. The dipole moment in-
duced in an infinitesimal volume element dv located at the point r
will be Elg(gjﬁéff)dv . This induced dipole is parallel (or anti-
parallel) to E; . Furthermore, since E; = Eoﬂ Eﬁ for the original
magnetic dipole field, all of the induced dipoles will be directed in
the Eb direction, and hence the vectors representing these dipoles
will all lie in planes parallel to the x-y plamne (see Figure 4.4). As
shown in Figure 4.5, the far-zone field of an electric dipole is in the
g direction, where £ 1is the angle between the axis of the dipole and
the ray extending from the dipole to the observation point; the impor-
tant thing to note is that the vectors representing the dipole and its
far-zone field both lie in the same plane. Therefore, if the observa-

tion point lies in the far-zone and in the x-y plane, the field at

that point due to any one of the induced dipoles in the sphere will be
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INDUCED DIPOLES

Figure 4.4. Electric Dipoles Induced in the Sphere by the
Magnetic Dipole Field

ELECTRIC DIPOLE —»

Figure 4.5. Far-Zone Field of an Electric Dipole
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directed in some x-y direction and will have no z component. (Actually
there would be a slight z-component due to the fact that the observa-
tion point is not in the same 2z = constant plane that the dipole lies
in, but rather it lies in a parallel plane. However, this z-component
decreases as l/ri and for an observation point in the far-zone the
component is negligibly small). Since the total electric field at the
observation point is the sum of the fields generated by all the induced
dipoles, the total electric field will have no z-component. Noting
that the e, and ;gz directions coincide for a point in the x-y

Q

plane, thé cause of the vanishing of <| 25 for o, = m/2 is

E190|
established.

It is of interest to examine the polarization of the -El field.
Using the Stokes parameters, this will be done in the same manner that
is employed to analyze the polarization of a polychromatic wave [18],
except that time averages will be replaced by ensemble averages.

A plane wave may be separated into two parts, an unpolarized
part and a polarized part. At any given point in space, the tip of
the E vector of the unpolarized part of the wave moves in a com-
pletely random fashion. On the other hand, the tip of the E vector
of the polarized part periodically sweeps out an ellipse, circles or
straight lines being special cases of the ellipse. Referring to
Figure 4.6, two characteristics of this ellipse are the orientation
angle Y (0 £ Y < m), and the eccentricity angle X_(|X| £ m/4) which
is defined by tan_l(ia/A) where A is the major axis of the ellipse

and a is the minor axis. For a circularly polarized wave, a = A

and X = * m/4 , and for a linearly polarized wave, a = 0 and X = 0.
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eccentricity = % = |tan x|

Figure 4.6. Polarization Ellipse

X,
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The sign of X depends upon the direction of rotation of the E
vector; for a wave receding from the observer, the sign is negative if
the rotation is clockwise, positive if counterclockwise.

Referring back to the coordinates of Figure 4.6, the Stokes

parameters are defined by

s = <IE 12> + <|g_ |%> (4.95)
X X
1 2
8y = <|E |2 > - <|E |2> (4.96)
X X
1 2
& *
s,= <E_E_>- <E_E_> (4.97)
1 *2 T %y
* *
sy = 1<E_E_> - i<E_E_> . (4.98)
wy oy

The relations between the Stokes parameters and the angles ¢ and ¥

are given by

51
= cos 2X cos 2V (4.99)
2 2 2
1\/sl + s, + S3
s
= cos 2X sin 2Y (4.100)
2 2 2
_\/51 Wias Ty
s
= gin 2X . (4.101)

2 2 2
ﬂy/sl + s, + 8,
The degree of polarization m i1s given by

’\J/si + sg + s§
o . (4.102)
o
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For a completely polarized wave, m = 1, and for an unpolarized wave,

Now let Xy = GO » X, = ﬁo . Then from equations (4.95) - (4.99)

the Stokes parameters for the E, field are

1
= <|E [2>+ <|E |2>NM[CO 29+1+i(k2)2129]
So 10 19 2 € % 2 ST %o
o o) 2r0 2
2 2 2 .2
o EV BT (o0 oy ® Dain®0 1 o E0BE aden Py 14
2 2 o 2 2 o
2r 2 2 &
o )
2.2
_ 2 2 E“VRMT 2 1 2 .2
sy = <]Elg | <> -<'E1ﬂ |>%—~»?r——-[cos GO— l—-§(k£) sin 90]
o o 2r0 2
2 2 2.2 2
~E
__E vzafﬁ [14“%(k2)2]sinzeo N £V §/F<k2) ain2p
2ro 2 4r0 L .

= <E E* > <E* E > =< E E* > <E * >7'c
Sp = “Eig B1g 7 " B19 B1g 7 T B19 E1g 7 " E15 Eyp
() (8] o (o] O (8} (8] (8]

i

% * * * *
= > - < > = < > - =
By = L%By g Big 15 8yg By 1<E19 Eqg SEig Bqg *
(o] (o] (o] [a] (] (] (8] 0

From equation (4.102) the degree of polarization is

E2y 2R/ (1) 2 .
[s2 + 52 + sz 1/2 ) 4r2 2 ® (k2)251n29
L | . 3 5 o _ o
s 2 2 - g 9
0 E VZRJF[24~%(k2)Zsin29 ! 4+ (k) “sin”0
(0]
2r0 2

or

.
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m v L

2

1+ csc @
o

(k2) 2

Thus 0 € m < 1 , and hence the wave is partially polarized. At

Qo = 0 the wave is unpolarized.
The polarized part of the wave will now be examined. Since
Sy = 0, it can be seen from equation (4.101) that X = 0 . Hence the

polarization is linear. Next, considering equation (4.100), it can be
seen that sin 2 = 0 since S, = 0O and X = 0 . Therefore, either

Y=0 or Y=mn/2 . From equation (4.99) one has

ET = cos 2V

since S, = 83 = X =0 . But sy < 0 for 90 >0 . Hence VY = n/2.
Thus, for the polarized part of the wave, the polarization is linear

and in the @ direction.

B. Scattering with the Electric Dipole

(i) Derivation
Let a z-oriented electric dipole be situated at the center of
the randomly-inhomogeneous sphere. The electric field of such a dipole

in a homogeneous medium with permittivity €1 and permeability p is

given by [19]

- - m 2ik 2 ikr — m k ik 1
E () = ZFEI_(_ = F r3) e cos O e e | =g r3)
x e sin 0 g, (4.103)

where m 1is the dipole strength and where k = WYHE, .
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Now E;(;) has a l/r3 singularity at the origin which is non-
integrable. Therefore equation (4.4) cannot be used to express the
scattered electric field. Instead, the electric field will be given by

equation (4.5):

zikro _
= ~. _ ke - - = =g v dkeT
El(ro) = ——z?r;——-J e, x[er ><E0(r)] e(r) e dr
o g o o
ikr
g ¢ — o — == =
- 4ﬂro f {1wun><Hl(r) - ik[n.XEl(r)]X ero

SII

} e—i_f(-' --'l:T
o

- ik[@ - & (D) + & (D) D] e, ds

where 8" is the surface of a small spherical volume V" of radius r
centered at the origin, V' is the volume of the homogeneous sphere

external to S'", and where k = ker

o
In the far zome El(ro) is transverse to e - Therefore it is
o
X x B il
easy to show that e, [ero El(ro)] El(ro) . Noting that
E; X E; = 0 , one cross multiplies the preceding expression twice by
o o
e to find
Y
o
2 ikr0 .
- - ~k“e - - = = v~ —ikeT ~—
= X X
El(ro) AT I e, [er Eo(r)] e(r) e dr
o i o o
Vv
ikr
e 2 = = = ==
= jg{-—lwu e x[e_  xH (r)]
o gn o o
- 1k[WXE, (D] x5, } e T as
(o]

or
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:'Lkr0 o
- —, _ -k‘e — — = ey e, =ik p =
El(ro) = —-Zﬁ;f—-J e X[er ><Eo(r)] e(r) e dr
o v o o
ikr .
o o x e, x } axE, @ TR T ag)
o o "
S
ikro .
ik - — = = -ik-
- ——fﬁ—- e, Xj( nxE (r) e L (4.104)

S"

The behavior of the integrals in equation (4.104) will now be
examined as r, tends to zero. It is noted immediately that if

T + 0, then V' =+ V , where V is the entire volume of the inhomo-
geneous sphere; hence, it is understood that one is to find the prin-
cipal value of the volume integral (which was encountered earlier in
connection with equation (2.16)) when the region of integration becomes
the entire volume of the inhomogeneous sphere.

Approximate values can be obtained for the surface integrals as
T + 0. First, the expression for the magnetic field of the electric

dipole in a homogeneous medium will be needed. In a medium with con-

stitutive parameters € and WU , the magnetic field is [20]

e ivm ik 1 ; ikr —
Ho(r) - ¢ = - r2) sin @ e eg - (4,105)
Let Ty <<<% . Then since k& >> 1, where £ is the correlation dis-
oy
tance of the random field €(r), one has r, <<< &£ . But if r is

1 1

0y N —
much less than the correlation distance of €(r), then €(r) can be
considered constant on and inside of the surface S" and may be

replaced by %(0) . Let %(0) be denoted by 20 where it should be
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noted that %0 is a random variable. Close to the electric dipole,
i.e., for r % r, , the total electric and magnetic fields are very
nearly those which would be generated by the dipole if the medium were
homogeneous with permittivity €1 1+ %o) and permeability u . Let
g5 5 mzuel(l + EO) so that k' = w/ﬂEITIfI‘E;) =k /iifg; . Let

E(r) and H(r) be the total electric and magnetic fields. Then to
obtain the total fields for «r £ Ty o oﬁe substitutes k' , the expres-

k'r 1 2

. . i : 2 .
sion for €, and the approximation e v 1l4ik'r - E-k' r~ into

equations (4.103) and (4.105) to find

2
m k! 2 -
( > + 3) cos B8 e -

v < o n
Awel(l + eo) T r 4ﬂel(l4-eo)

E(r) ~ 2

12
T

N =

) sin 0 e

x € 0

H lw
w

Ty % 20 g L g

1 . =
o 3 - ;EO sin O em

where only the two terms of highest order of magnitude in r are

retained for each component. Using the same approximation for the

eikr factor, the following asymptotic approximations can be obtained
for the original fields when 1 £ ry
2 2
= == m k 2 == m 1 k 1 s
B,y W gpiG+ Sgioes B e, ~ g GGy~ g sn 8 gy
1 i r
— v iwm L .2 1 ; ==
HO( ) e ( 5 k™ - 2) sin O e¢

Now the total field is equal to the original field plus the scattered

field, i.e.,



=
~
a1
-
1
=
~~
R
N
+
=
H
~~
a1
p—g

fas
—~
la]
~
]
fax]
~
H |
~
o
fas]
=

—~
a1
~

Hence,

Using the approximate expressions for E, E, E_ and H0 , one finds

o
that
n n
o -me _ me _
E.(r) v cos O e - sin @ e
1 Ny 3 r Y 3 G
21Tel(l + eo)r lme:l{l + eo)r
2v
_ —-iwmk"e _ (4.106)
Hl(r) Y 8_"_ Sin g eG
N
& "
for r € r, - Using the first order approximation ~ ~E_ , the
o 1+ € o
expression for El(r) becomes 2
N n
o -mEo _ meo =
El(r) \ —3 cos 9 W sin O eg - (4.106")
2n€lr 4nelr

Utilizing these approximate expressions for :‘:‘._1 and ﬁl , the surface

integrals in equation (4.104) become

oy

N g, s —-iwumk € R S e

n XH, (r) T Cagn——0= nX_egsinQelk T s
Sll SI'I

_ n
e 4 A - oy = = =

anl(r) e ds v —3 nX[2 cos O er+ sin © eg]

an 4mEJTY gn

X e_ik' v oas
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These integrals will be evaluated by using spherical coordinates. Thus
n=e ds = ri sin © df d0 . Next, making the approximation

e = 1- ikrl[sin 00 sin © cos §

+ cos GO cos 8] on the surface 8", the surface integrals become

2m

™
f J ;é [sinze
0 0

2y
iwpmk EO

T e Tas v 9

2
8m 1
S"

- ikrl(sin Qosin39 cos P + cos Gocos (] sin39)] dg de

. i 2m
—_ -ik*r (o} 2
} n><El(r) e ds ~ 4ﬂ81 f I g [ sin“ @
s 0 0

- ik(sin Qosin39 cos @ + cos roos 4] sin39)] dg de.

As r, -~ 0, the integral with H obviously tends to zero. Noting

1 1
that Eb = —-gin @ E; + cos P E& from equation (4.17), the surface
integral with Ei becomes
v 2T
R .- e —_— s
% n><El(r) e ds ~n e [-sin @ ex+ cos P ey]
5" 1o o

X [%%—sinzg — 1k (sin Qosin39 cos @ - cos roos (8] sin39)] dd d4e.
1

Performing the integrations, one finds that

L iT(h e ‘ ilunrgosin Qo -
n X El(r) e ds T ey
S"

as r, >0 .
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Using the values obtained for the surface integrals, equation

(4.104) now becomes

2 ikr0 L
= =~ .  =k'e = = - —~1 v, — =iker —
El(ro) —-——ZE;;—— J erox [er0><El(r)] e(r) e dr
LY
kzﬁgosin QO__ _
+ ———————e X e
12’rr€1ro r, ¥
or, since ey = eQ from equation (4.20) and E; X ew = -egy ,
o o o o
2 ikr0 o
= — . _ -k’ ~ — = =y Y ik T —
El(ro) = AT J e x [er X El(r)] e(r) e dr
o g © o
2
k meosin 90._
T Tizmer,  “e st
1o o

where it is understood that one is to find the principal value of the
integral (to find the principal value one merely performs the integra-

tion over the angular variables of spherical coordinates first). Let

e, represent either one of the unit vectors ey > Eb . Then taking
o] o

the dot product of Eﬁ and Ei(;;) yields

"
_ kZeikro e e g e AR ST . BEsdu 0, _ .
E o . M, (ROT— .
la(ro) s J €y Eo(r) e(r) e dr + 35 ey eg
v o o
kzm — —
where E = - . Similarly, if e, also represents either e
4w€1 B 90
or Eb . then one has
(0}
_'kr ny
§ "Ly — = Le sin O
* — . ke ol Ik o 2% o=y O @Y %
ElB(ro) B 4ﬂr0 €a Eo(r ) e(r') de” + 3r0 €a ee&

\Y
Multiplying these expressions together and taking the ensemble average,

one finds that



Ezsinze <?:'2>
+ LT e
9r§ & 9o B 9o

Ny — 0 — S n n
But <e(xr) e(x")> = R%(|r-r'|) . Furthermore, since €, = £(0) , omne
€

N o— no— o N2 2
has <e(r)€o>= R,é,(r) ,<€(r’)eo>= R%(r') , and <€0>= R’é’(o) = v,

Hence,
4 -ik* (r-r')
* L _k 2 o T« B () =
<ElaE16>- 7 J J ey Eo(r) eB Eo(r )R%(lr T I)e dr dr
l6m ¢
oVYV
2 ikr e
Ek"e © sin 90 eB' e P
+ . o[ T “E @ B (r) KT dr
12rr o = £
o
2 —ikro .
Ek'e sin 8_ e + eg . =y
- L - J e cE(@) R(x") FTT g
127 r2 B = €
o v
Ezv sinzeb = == =, =
+ 5 %1- ey eB- eg (4.108)
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The correlation functions in equation (4.108) will now be ex-

pressed as Fourier integrals of the spectral density. The results are

i -
% X T ik * (r-r'")
<E p SV QUSRS * E B ') s
laElﬁ 16m% 2 f J J o O(r) °B O(r ) %(K) ©
o ¥V o ng gen
X dk dr dr'
P ikr0 I
Ek“e gin 6 e, * e .
o B 60 ey -ik* r
+ 5 g Eo(r)SL(K) e
127r -
o v iE'_— o pmes
X e dk dr
2 -ikr _
Ek"e sin Goea' e _ S
o il * & L] 1 s P
Y 2 > J’ j © 'Eo(f')sm(K)eik . - dk dr’
121 r 8 %
o V
Ek2 2sinze
+_—__Q_ _e— *e E ’-e_
9r2 o 90 B 90
(0]
or
o E*> k_4 j . (K) J—e- ':_E- (}-)e—i-l?' (_k—-——'(-) d?
= Y]
718 6%y € s
o Vv s
x JE CEEnelT ) ) de
B o)
V
ikr .
Ek"e sin 8 e,* e
oB @ — e e e Ty b
+ 2 J 58n, (k) J g Eo(r)e L= i) dr ; dk
i2m r &
\'
9 mikro .
tk7e sin Goea ey il i TS
+ 2 > J Sy, (<) Igg ‘Eo(_')eir k) v} de
127 ¢ €
o v
2 2 2
+E\)sin eo_é == .o (4.109)
9r§ o 90 B 90
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where the y integration is performed over all i space.

Let
N . g
Lu(K) = J e, Eo(r) e dr (4.110)
v
where k' =k - k . Then equation (4.109) becomes
% 4 %
<E. E >=~————]‘5-~I S, (k) L (k) L, (k) d¢
107 1B 16ﬂ2r§ & o B
ikro .
Ek"e sin Goe B'eeo L
+ 3 [ SV(k) L (k) dk
£ o
127 r
o
—ikro _
Ek~e sin @ e, - eeo [ © TS Ezvzsinzeo o
+ S. (k) L(k)dge + ———————— e s e_e_ - e
Yoy 2 > B 9r2 o 8,8
o o
(4.111)
In particular,
2 k4 2 =
<|E19 [ =———2-J S,\J(K)|L9 (<) |“ dx
o 16T € o
o
ikr
{Ekze sin 6 _ E2v2s1n290
+ 2 Re J SV(k) L, (k)dk }+m
12w r2 & eo 9r2
o o
(4.112)
2 k4 — 12 —
o 161 r € o
5 —-ikr
@ K — % — . Ek'sin 6 e
<E E s J S. (k)L., (k)L, (k)dk +
leo 10o 16'rr2 rg & s p)o 127 rg

" _ ‘
x J S%(K) Lwo(K) dg . (4.114)
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Now EQ(E) is given by equation (4.103). Recalling that

E = -kzm/4WEl , one finds that this equation becomes

i — ik —
Eo(r) = E(—z— + —52_3.)6 cos O er+ E(%+i2- 21 3)e rsine g
kr k™r kr k"r

~2i ikr

(4.115)

But from equations (4.24) and (4.25) one has

e = (sin © sin 6 cos §+ cos O cos 8)e + (cos O sinB cos @
r o o T, o

- sin Gocos 9)e90+ gsin  8in 0 em0

e

o = (sin 9 cos @ cos $ - cos 0 _sin G)er + (cos Gocos 8 cos @

o

+ sin O sin B)e. + cos O sin P e
o (] [
o o
Substituting these expressions into equation (4.115) and using the

fact that

ikr

. | - ikr
ho(kr) = %z © 5 h2(kr) [

-i 3 _3i

] e
kr (kr)2 (kr)3

=3 2, .1 1 >
Pz(cos 9) = 2[cos 0 3], Pz(cos 0) 3 sin B cos 0,

one finds that the expression for E; becomes

E;(;) = —'i§£ {Zho(kr)cos 90+ hz(kr){sin eoPé(cos 8)cos 0

+ 2P2(cos 8)cos 90]} ero +



<P T

+ E%E {Zho(kr)sin 90— hz(kr)[cos eoPé(cos 8)cos P

- 2P2(cos 8)sin 90]} eeo

itk
3

h,, (kr) P%(cos 8)sin @ Eﬁo' (4.116)

Substitution of equation (4.116) into equation (4.110) yields

Le dE) E%E f {Zho(kr)sin 90— hz(kr)[cos 90 Pé(cos Q)cos @

e v

I

wle m
- 2P2(cos 9)sin 90]} e:LK R (4.117)

Lﬁ ) _‘:1%5 J hz(kr) P;(cos 8)sin & eiK' dr . (4.118)

© v

Computation of L and Lﬁ proceeds in the same manner as in

]
o

the case of the magnetic dipole. First, if K' = K'sin Y cos Y E;

+ K'sin Y sin Y E§+ K'cos Y E; , then from equation (4.36) one has

o o n x i
e = nzo in(2n+l)jn(K'r) [mZO am-%ﬁiﬁ%? Pi(cos 8)

X Pz(cos Y)cos m(y-A)].

Substitution of this into equations (4.117) and (4.118), which are
expressed in terms of spherical coordinates, and reversal of the order

of summation and integration yields

=] n
Ly (O ) in(2n+1)[ 7

o 3 n=0 m=0

|

(n-m)!

%y Cab) ! P (cos )

3

- 1
{ZhO(kr)51n B - hz(kr)[cos GOPZ(cos 8)cos P -

X
o —=
O N
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- 2P2(cos 8)sin GO]} jn0<'r)P:(cos 8)cos mCY—ﬂ)rzsin 6 dg de df}

(n-m)!

-k §
(m) 1

- Il
Ly ) = 1“(2n+1)[ I o P" (cos V)
o n=0 m=0 E

X
o=

m 2T
J J [hz(kr)P;(cos @)sin 9] §_('r)P"(cos ©)
00

cos m(Y—ﬁ)rzsin e dp de dr]

Performing the angular integrations with the help of the orthogonality

relation (A.19), one finds that

R
L9 ) = :ﬁﬂ%ﬁk.f {hz(kr)jz(m'r)[Pé(cos V) cos roos Y
g 0
- 2P, (cps W)sin 6 I+ 2h (kr)j (<'r)sin 0} r’dr
(4.119)
R
ﬁ (k) = 4H1Ek Pl(cos PY)sin Y f hz(kr) jz(K'r)rzdr . (4.120)
0

Using equation (A.9) to evaluate the integrals in equations (4.119) and
(4.120), one obtains

R
J h_ (ke)i (< 'e)r?dr = —F— {R[kh, (KR) (< 'R)
0

kT«

- k'h (R)]_("R)1+ & } (4.121)
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R
J hz(kr)jz(K’r)rzdr = —ELFTE-{Rz[kha(kR)jz(K'R)
0 k" =k )
1) L iK'
= K'h, (R) 34 (K 'R) ]+ 3 b, (4.122)

Substitution of these expressions into equations (4.119) and (4.120)

yields
L, (€) = =9LEE [ fp20p (KR)H. (k'R)- K'h, (KR)]. (K"R)] + «'?
a =35 [khy (KR)J, (< "R)= K 'hy (IR} 5 (K 'R) ] 3
o k7K k
X l:cos 6 cosl siny cosy - (coszw - l")sin G:I
(o] 3 (o]
| [ﬁz[kh (KR)j (k'R)- k'h_(kR)] (K'R)]-FEJ st @
3 1 o (o) 1 k o
(4.123)
Lﬂ k) = 3%15%5 coslPsinUJsin‘Y{Rz[kh3(kR)j2(K'R)
o k™~
42
1 ' iK
- K'h, (IR)J4(<'R)] + 3 } (4.124)

where the expressions for the Legendre polynomials have been written
out explicitly.

Now just as in the case of the magnetic dipole, the region of
integration in K space for the integrals in equations (4.112) - (4.114)
can be restricted from all of K space to the region where IE —'iv =
! @ %1( with negligible error, provided k& >> 1 . Letting U repre-
sent the region where |k - k| 2 %ﬂc, equations (4.112) - (4.114)

become
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ikr
I |2 k4 j I __|2 _ Ek”e sin 90
<|E > = — | 8§ (K)|L, (k)| dgc + 2Re
8y 1grtes | € % 121 2
oU e}
_ E“v"sin“0
X J S, (k) L, (K)dk p+ ————2 (4.125)
(> eo 9r2
U o]
2 2
g, ["re—r0l g (K)IL () |° dic (4.126)
1¢ 2 w
o 16W r
oU
2 ~1ikr
. J — % — _ Ek'sin 9 e °
Sp(K) Ly (K)L (K)de +
19 1¢ 16W r2 ﬂo 12w r2
o0 o
* * —
x f S (k) Lm (k) dk . (4.127)
u o
Since k' = |k - k| > 2 in U , and since kR >>> 1 , one

2

may use the asymptotic expansions which are valid for large arguments
for the Hankel and Bessel functions found in equations (4.123) and

(4.124). From Section A.1l, one finds

-1 dikR i ikR 1 ikR
hl( ) R © ? h2( ) kR © # h3( ) R ©

cos K'R, j2(K'R) n ~ ¥ sin k'R , jS(K'R) . —l—tos K'R

=
T
1y (2R % K'R TR

k'R

as kR + = . Substitution of these into equations (4.123), (4.124) and

rearranging terms yields
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L, (K) = AWiEk-l(cos @ cosV siny cos Y+ sinzw sin @ )
(] 2 .2 o] o
o kK
2 i 32 8TE sin ©
x [ eikR(si:'K R + 1 coskK R) -1 K - 1+ : o) (4.128)
k 3k
2
- - ' ' '
Lﬁ (k) = —%Iig%-coslbsinlbsin'Y[eikR(Sian R~+i CoskK R)— s 3 [
o k™ -k k
(4.129)
In the neighborhood of k' = k, the last term on the right hand

side of equation (4.128) will be quite small in comparison to the
rest of the expression. Since it is known from the derivation with
the magnetic dipole that most of the contribution to the integrals in
equations (4.125) and (4.126) comes from this neighborhood, the last
term in eq. (4.128) may be neglected. Then equations (4.128) and

(4.129) become

L9 (<) = 4TiEk(cos Y siny cos Y cos G°+ sinzw sin 90) F(x") (4.130)
(o]

Ly (k) = -4miEk cos P sinyP siny F(k') (4.131)
o

where
. [} [} . |2
Fle') = : 1 . eikR(51n f R 4§ 08 K R) _ ik . (4.132)
K- k' i = 13

Substituting equations (4.130) and (4.131) into equations

(4.125) ~ (4.127), one finds that
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2 «20%/4
<|E]_9 l > 2 J (cosy sinVy cos Y cos 90
o
o U
+ sinzlj) sin G)O)?‘IF(K')I2
Ezk323\)3sin 90 :Lkro 20274
+ 372 rz Re { ie I e (cos Ysin | cos Y cos 90
o U
2 _ E%y2sin’e
+ sin“Y sin 0) F(k') dc ) + 5 =
9r
o
(4.133)
6 3.2 2.2
<|El¢ |2 E—lgl—z-———z— J e © L (cos Y sin sin Y)Z,F(K')|2
© TR, 1 (4.134)
6432
* _ Efke7ve —-KL°/4
Ele E10> = 3/2 2 J (cos VY siny cos Y cos 90
o o
o U
2 . vy 2
+ sin" Y sin 90)(coswsinw siny) IF(K’ )| dic
3.3 —ikro
12300 %s1n 0 e —|<2,Q,2/4 p _
+ cosyPsinyPsinyF (k') dk
3/2 2
4 r, U

(4.135)

where the explicit equation for §, (k) , given by equation (4.47), has
€
been substituted into the equations.
Changing the integration wvariables from K to K', recalling

that K' = K - k , and noting that cosy = K;/K' » sinP cosy= K}'{/K',

sinY siny = K;/K' , one finds that equations (4.133) - (4.135) become
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2.6,3 2 — =12 2 K'
2 E"k L -k
<|E ] > =-————~—2—-J e |K +K| L7714 [—2(k' cos © - k' sin O )
190 8’]T3/2 r2 |<'2 X o 2 o
oU
2 B e E2k323vzsin 0
+ sin @_1° |F(k")|” de' - TN 0
127 T
o
ikr R A K"
X Im< e & J e_||< +k| A [——% (k! cos @ =k sin 0 )
! b o =z o
U
. Ezvzsinze
+ sin QO]F(K')dKE}+-———-m—ji——g (4.136)
9r0
2 =2
2.6,3 2 - =2 2 K !
2 E'k 27V -lk"+k 4 2 —
<|Bpy |“>= _T/ﬁf o~k HE[TR7/ L'ay— |F(c")|“ dk' (4.137)
o 8m LI K
6,3 2 g e 32 k!
R - —|ic*+k| “2%/4 Kz , , :
< Elg E1¢0> = 8W3/2 rz J e [_Ti(Kx cos 90- K sin 90)
°© o U
] 1
Z X & =
+ sin @ ] o |F(e™) | de"
-ikr
iE2k323\)251n Qoe = -|E'+_1€|2 K; it % _
+ 3773 f e St ¥ (" (4.138)
24T r "
o U

Now a second change of variables will be made from the K"
variables to the ¢ variables, where the E- variables are

defined by equations (4.61) - (4.63). Noting that ¢ = k'

>

' ' - - i -
K, cos 8 - K} sin 8,=1%, =% sinn cos £ , etc., equations (4.136)

(4.138) become



<|E

|2> g2 62 2 J .
16 3/2 2
0

~8=

~[z2#Kk%+ 20k cos n1L2/4

X [sin4n cosAE sin296+ coszn sinzn COSZE coszeO + sinzeo
- 2 cosr]sian cosBE cos Gosin 90— 2 sinzn coszE sinzeo

+ 2 cosn sinn cosé cos Gosin 90] ]F(C)lz Czsin11dg dn dz

2 3.3 2 =%
E"k™2 v sin 6 ikr J J [ ~[z2+%+2Ck cos n182/4
Im< e e
12“3/2 r2
B 0 0

k/2

X [—sinzn coszi sin 90+ cosn sinn cosé& cos 90

2 Ezvzsinzeo
+ sin Go] F(z) £7sinn d& dn d%}+ 5
9r
o
(4.139)
g 2m
l 2 6 3 2 e—[§2+k2+2§k cos n]22/4
1¢ 3/2 2
ok/20 0

X [sinAn cosZE sinzﬁ sinzeo - 2 cosn sin3n cos £ sin £ cos Gosin 90

+ coszn sinzn sinzg coszeo][F(Q)]2 Czsinr1dg dn dc

(4.140)
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]

L

- | _—EA&?

< Eig Eip T
o (o] 0

%o k./2

2

& [ C2+2?,'k cos nj 2,2/4

oY—3

X [sin4n cong sing sinzgo— cos nsin3n cost, cos Qosin 90
2 2 3 2 :
-~ sin'n cos £ sin £sin 90- cosnsin™n cos & sin £ cos 90s1n Qo

+ coszn sinzn cos & sin § c05290+ cos Nsinn sin € cos Gosin Oo]

-ikr
9 2 iEZRSRBvZSin 9 e °
|F(z) |© £%sinndg dn dz +
3/2 2
24w r

(o]

2 .2 2
o~ [TTHK +2CK cos nle=/4 [ﬂ_ginzn N

N—
oY—3
oY—3

%
+ cos NsinnNsin & cos 90] F (C)i;zsinndn d& dg . (4.141)
Performing the £ integrations in eqs. (4.139) - (4.141), one finds that

<|E,, |“> = [3 sin4n sinzgo

©
5 2k623\J2 J J e_[z;2+k2+22;k cos TIJQ'Z/"
190 32'/_ r 0

k/2
+ 4 coszn sinzn c03290+ 8 coszn sinzgo] IF(l;)Iz i;zsinn dn dg

2,53 .2 . 2

5 @ q
E°k™2 v sin CH ikr e,[;2+k2+22;k cos n]22/4
- 12 %
L K/2 0

2 2 E \) sin 9
x [1 + cos™n] F(g)C sinndn dg ¢+ ————— (4.142)
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T % 3 2
<lE.. %> = f o[k 420k cos NILT/4 L 4 L 20
lmo 321/_ r =
o k/2 0
+ 4 coszn sinzn coszeo] |F(C)|2c‘;zsinn dn dc (4.143)
E * > 0 4.144
10 Elﬂ . (4.144)
o o

It can be seen from equation (4.144) that the transverse components of
the field are uncorrelated, just as in the case of the magnetic dipole.
Making the change of variables w=C% , t = cos n , and

rearranging terms, one finds that equations (4.142) and (4.143) become

w 1
F 6 B 5 535
<|e 12> _ _ETk R U S st 0 VIS FON
o Fo k72 -1

+ (4-2 sinzgo)tz-f- (7 sinzgo— 4)t4]|F(%)|2 wzdt dw

239 2 w1
E%7v?sin’e_ .{ fkr_ J J [ et 1
Im<e e

12v7m r
o

ke/2 -
* [L+ t2] F(%) s HE dw}

Ez\)zs inZGO
+ Bttt (4.145)

9r
o
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o 1
_ERS? f I P auie] /4

2
<|Eyy 17> =
1¢o 32/ ri

[sin29 +
o

k&/2 -1

+ 6 cos’6 - Dt*+ (1-5 cos’0 e 1|FE)|? vPde aw. (4.146)

Now through repeated integration by parts, one can show that

1

[tée—wklt/Z e [le& _ 16, 96 , wk&/2

Wik)?  (wik)°

(4.147)

-1
for wkl >> 1 . Using this equation and equations (4.77) and (4.78),
one can perform the t integrations in equations (4.145) and (4.146).

Keeping only the higher order terms in wkl , one obtains

2. 4 2 2
<|E !2> n £ 6V J e—[w—kﬁ] /4 1+ l-wkIL sin29 )|F(39[2dw
18 v 22 r2 g ° *
o o kk/2
2. 2 2 2
Ek"v sin“@ ~ikr 2
- . Tad e = KR4 e Wy
kK4 Zrz :
Ezvzsinzg
e "0 (4.148)
2
9r
o
232 1 2
5 S —[w—k£]2/4 1+ 5 wki cos GO .
<|E,, |7> v—e—s— e [P " aw.
19 /g’ ! ’

(4.149)

Owing to the fact that most of the contribution to the integrals
in equations (4.148) and (4.149) comes from a relatively small neigh-
borhood about the point w = k& , the same type of approximations can

be made here that were made in the case of the magnetic dipole. These
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approximations are

14 % widi stice % 1 + A(k4) *sin’8
o 2 o

1 +-% wki sinzeo 2 1+ %{kﬁ)zsinzeo
W k2
Y o (sinl(w-k0F] cos[(w——kﬁ/)%] =4
PG v -5 % (4.150)
2k (w-k2) (w-k2)
i R, _
2 1 - cosf (w-k)F]
lF@H|2 2 4{ — } (4.151)
2k (w-kL)

When these approximations are made in equations (4.148) and (4.149) and
if at the same time the change of variables T = (W—kﬁ}% is made, the

results are

o]

. gl 2 22 2
<|E ]2>'u EWR [1+ l{kl)zsinze ] T R7/4R [1 = cos Ty 4o
16 2 2 o 2
o 2/mir T
[a] -—CO
2 2 2 o
EkAvsin“® ikr 2.2 2 s
" - 0 ]ml{e o I T RO 4R [312 T . g COSTT_I]df}
6/T T
o —C0
% Ezvzsinzeo
——— (4.152)
9r
o
5 2 . BB .3
<[Ey 2> EVR [oos?e + —2] J T A/ART (1o 208 Tyar  (4.153)
o 262, k) ) T

where the lower limit on the integrals has been extended from-% k& to

=00 %
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It has been shown in evaluating equation (4.88) that

[————7;————] dt ~ T, (4.154)

(o]
J e—T2£2/4R2 T = ops T
T

-00

Furthermore, it can be seen that

dt = 0 (4.155)

—T222/4R2 cos T~ 1
: e

since the integrand is an odd function. Hence, equations (4.152) and
(4.153) become

12 £22r/T
- e

0 2r- 2
o

<|E [1+ %{kﬂ)zsinzeo]

16

e—T222/4R2 sin T
T

+

Ezkivzsinze sin kr I
o o
J dt
=0

6/ 2
o

Ezvzsinzeo
e ———— (4.156)

9r2
o

2 2
E"VRYT 2 2
o sy [cos 8.t _———Zﬂ "

2rO 2 (kR)

2> (4.157)

<|E
1¢0
Comparing the magnitudes of the first and last terms on the right-hand
side of equation (4.156), it can be seen that the former is on the
order of % (kﬂ,)2 times the latter. Since k£ >> 1 , R/L > 1 , the
last term should be neglected. Furthermore, the integral in the second

term on the right-hand side of equation (4.156) was calculated earlier

in evaluating the integral in equation (4.88). The result was
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I & A AR 8T gt oaow. (4.158)
Thus it can be seen that the first term of equation (4.156) is on the
order of kR times the second term and hence the second term should
also be neglected. Therefore, one has

£ 22/

> LR gy %(kﬂ,)zsinze 1. (4.159)
(s}
o 2r0 2

2

(ii) Discussion of results

Summarizing the results of the derivation for the electric
dipole situated at the center of the randomly-inhomogeneous sphere,
one has
£ 2R/

2r2 2
o

2 s WO I
<|E190| > N [1 + (k&) sin”0_]

2
<fE I > ny
160

*
< o =
(o] 8]

A plot of the root-mean-square field components for k& = 10 is

given in Figure 4.7.
It can be seen that the results for the electric dipole are

nearly the same as those for the magnetic dipole, except that Ele
o

and Elﬁ are interchanged. However, it should be noted that
o
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Figure 4.7. Root-Mean-Square Scattered Field Components
for Electric Dipole with k£ =10
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<IE1¢ |2> does not vanish at 90 = T/2 , unlike the case of <’E19 ’2>
o

8]
for the magnetic field. It is also seen that <|Elﬂ ]23> and <]Ele |2>
o o

are not precisely equal at 90 = 0 but rather they differ by a term
of the order 1/(k2)2. The reason for this is that in making the

approximations in the calculation for <|E 25 , terms of this order

10 |

5 2

were neglected. More exact calculations would show that <|E1G | o
o

o .

and <|E1¢ !2 > are in fact equal at 90
o

One can show that the condition required on the parameters in
order that the Born approximation yield reliable results is the same

as for the magnetic dipole, namely

The polarization of the scattered wave can be analyzed with
the help of the Stokes parameters just as in the previous case. The

degree of polarization m dis given by

1

m v
csc29

1+
(K22

and the polarization of the polarized part of the wave is linear and

in the © direction.

4.3 Scattering for the Case of ki << 1

The far—-zone scattered field will now be determined under the
assumption that the wavelength is much greater than the correlation

distance of the randomly-inhomogeneous medium, i.e., it is assumed that
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k& << 1 . The case of the magnetic dipole will be considered first, to

be followed by the case of the electric dipole.

A. Scattering with the Magnetic Dipole

(i) Derivation

The zeroth order electric field of the magnetic dipole in terms
of the unit wvectors E; 5 ;6 , and Eb was given by equation (4.28)
o o o
which is repeated here:

i

E () = <& stn 8 &+ -3 o plives 8Yeln @ o
o'r krz i ro

-E cos O C; + ~3;o eikr Pl(cos Q)sin @ e
o'r er 1 Go

+ ECl-+ _E eik Pl(cos 8) cos P e
T kr2 1 ﬁo

r

where the fact that Pi(cos 0) = sin ® has been employed.

Since the singularities of E; at the origin are integrable,
the expression for Ei or either of its compomnents is given by equa-
tion (4.4) or (4.6). Then utilizing the development in Section 4.1,

the expression for the mean square components and mean of the product

of the components is obtained from equation (4.10):

4
* k — = ey
_-IE—E:E J J e, Eo(r) eB Eo(r de
T %o ¥ ¥

-ik * (z-r")
<E1uE18

v
|

x R_(|r-r'|)dr dr’

where V dis the entire volume of the randomly-inhomogeneous sphere

and where k = ker . In particular,
o



~Gd e

<|E19|2> - ZJJEQ'F (r)e STy etk T )
o 16ﬁ LI o
x R,E(lr—r']) dr dr' (4.160)
<[Epg % Len2e? J Igﬁ "E,(r) eg'E (g )
¥ B ro vV o
X Ro(|x-r|) dr dr’ (4.161)
€
-ik » (r-r'")

< e. *E (r) eﬁ- F (r de

E E >
16 14 2JJ9
o o 16ﬂ ro vy

X Rn(]r-r'|) dr dr’'. (4.162)
€

Substituting the explicit expression for E; into equations (4.160) -

2 —Ir -r | /2

(4.162) and recalling that Rm(lr—r ) = v , one finds that

J |2 - E k v cos 9 J J e_l;;;,|2/£2 [ l' s i 1

190 16W r B & 2r'
VvV
P S

. - )+ L ] elk(r ) Pl(cos 8)
12 2.2 2 1
rY k'r'r
X Pi(cos 8")sin @ sin fi'e -k (r-r" )d dr’

(4.163)
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—_p!
k(- Pi(cos 0) Pi(cos 8')cos P cos @'

—. _—_' — —_—
1k (x-r") =t (4.164)

. —E k v cos Go J J _|;:;.12/22 1 i
= e
16ﬂ r0 vV

—_ !
1 eik(r r')

2.2 ,2]

Pl(cos 8) Pl(cos 6')cos @' sin @
1 1
k'rr

— . e '
x o ik G 4o aTv (4.165)

By expressing the correlation function in equation (4.165) as
the Fourier transform of the spectral density, one can proceed to show
that <Ele Ezﬂ >= (0 by using virtually the same method that was
employed in Section 4.2, Referring to equation (4.53), the only dif-
ference is that one would not reduce the region of integration over all
K space to the region U where IE.—'EI =-% k . It can be seen by
following the development in Section 4.2 that this would not affect the

demonstration of the fact that <E >=0.

10 E:m
o o
Attention can now be focused on equations (4.163) and (4.164).
Asymptotic expressions will be obtained for <|E19 |22> and <|E1¢ |2
for two cases. ° °
Making the change of variables -5 =-%'; and -5 "-%-_ so

3

that dr = 23da> and dr' = 2°dp', one finds that equations (4.163)
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and (4.164) become

R
£ k424\)2cos 6, R/% ™ 2w R/% w27 2
- . -lo-p] 1
<'E19_| = 2 2 e [ ]
o lem™ z 000 00 O PP
- ]
r Lt - 51 PP plicos 6
PP pp' k™27p%p!

— ==
X Pi(cos 8')sin @ sin @' eizk (b-p") pzp'zsin 0 sin 9'

x d@ de dp 4p@' de' dp' (4.166)
R/& m2m R/L m 2m _
2 B4 -lp-p']? 1
<|E,, |“>= e SLIEN
14, 16m° 2 PP kg 020!
o 0 00 0 0 0O
.1 = * =5 212 2] ikk(p - P (cos o pt (cos 8')cos @ cos @'
pp’ k™ 2%p%p!

x oI (P-P') (2002 0 0 in0v g 46 dp df' de’ dp'. (4.167)

Now it can be seen from these equations that as k -+ 0 while R and

2 remain constant, then

B 24v2cosze Rjg
0

]2>'b

<|E
o 16ﬂ2 r,

18

. — == ol 1
i elkﬁ(p—p') e—iﬁk'(p~p') Pl(cos Q) Pl(cos 8')

x gin P sin ¢'p2p'zsin 6 sin 0" dP d6 dp d@' de' dp' (4.168)



R ™ 21 RA m 2w _
<|E l > —— Ertety? : J e_]p"p'l2 !
16 Py R
o 0 0 O 0 0 O

— ' — _. _—— '
eikz(p ph) e ks Pi(cos 8) Pi(cos 8'")cos P cos B'

x p2p'%sin @ sin ©' dP 48 dp dp' d4e' dp'. (4.169)

Now e—|6:61|2 decreases very rapidly for IBlEWI > 1 . There-
fore most of the contribution to the integrals in equations (4.168)

and (4.169) will be obtained when IE:E]| is small., But

lo-0'| € |p-p'| and IE; *(0-0")| = |p-p'| . Then since it is given
that k& << 1 , it will be true that |k&(p-p')| << 1, |%k =+ (p-p")| << 1
in the region where most of the contribution to the integrals in (4.168)
and (4.169) is derived. Hence one can make the approximations

— ' T L ] -——.'_q. '
eikﬁ'(p p') ol eigk (p-p") ~v 1, Thus, equations (4.168) and (4.169)

become

R/

|

X Pi(cos O)Pi(cos 8')sin P sin @' sin O sin O'

BTk 2y san o, R/L Ea
& J p-p
0

2 e

oY=
o—=
oY—d
o\Y—3

<[E
e 1m2r0

x dp de dp dp' de' dp' (4.170)

™ R/L W 2mW

f J J J Bl
. e

0 0O 0 O

X Pi(cos G)Pi(cos 6'Ycos P cos P' sin & sin O

2

R/Z m
. 2 - BAERA
E | >ny
18 16ﬂ2r2
2 0 0

x dp d8 dp dp' de' dp' (4.171)
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as k>0 while R and £ remain fixed.

Returning to equations (4.163) and (4.164), let the change of

variables n==r , n' = %f;' now be made. Then the expressions

2 2
for <jEleo| > and <]Ewol > become

E2k4R4v2cos 9 L T L oA = ey D 5 2
2, _ -|n-n'|“r“/%
<|Ejq 7> 5 e
@ T 0 0 0 0 0O
1 i h 1 % SR (N= 'y 4Rke*(n-n'
bt R Pt rma g O e )
nn' ' k"R'n™m"

% Pi(cos B)Pi(cos 8')sin P sin ﬂ'nzn'zsiné)sin 8'dP de dn d@' de' dn’

(4.172)
1 w2m 1 w2wm
<,E ’2> E244\) —]T]T] lzR /,Q,
—_—a ° e
1¢o 161T2r2

o 0O 0 0 0 0 O

— ' _-I —‘_—'

><[ml]'Jr:tﬁ(zl - 12)+ 252 2]eJLkR(nn)‘,,,_iRk(nn)

nn' mn' k"R’

5 2

x Pi(cos Q)Pi(cos 6")cos B cos §'n™N'""sin O sin 8'dP 46 dn d@' de' dn'.

(4.173)

These equations suggest that as R + o while k and £ remain con-
stant, then one need only consider the 1/nn' term in the brackets.
This is because the other terms have coefficients of 1/kR or l/sz2
which tend to zero as R tends to infinity. The fact that R also

appears in the exponential complicates matters, but a careful analysis

shows that the major contribution to the integral does come from the
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1/m' term as R becomes increasingly large. Thus, as R =+ © , one

has
.E2k4R4\)20059 1 27w 1 7w 122,02
<leyg |25 [ ][] ] e
16 2
o 16% ro 000 00 O
_' —-— _. _‘_.'—-'
b eikR(n n') e iRk* (N-n") Pi(cos G)Pi(cos 8")sin @ sin @'
X mn'sin 8 sin &' dp dO dn d4d@' d8' dn'
1 w 2w 1 7 2w
7. Attt -ln—n'|2R2/22 ikR(n-n')
<|Elg [ >ny 5 2 L e e
o emr, 5 0 0 0 0 0
— _' _—_'
X e iRk* (n-n') Pi(cos O)Pi(cos 8')cos @ cos @B’

X 7n' sin © sin &' df 48 dn dp' de' dn'

or, in terms of the o and p' wvariables,
Lo R/%

711

— h—’ __""-v
% & ik (p-p') Pi(COS G)Pi(COS 6")sin @ sin @'

E2 4ok 2 R 2

]2 . k2 'Vicos 9 j
>0
0

— =12
-le-p' |7 [ik&(p-p")
161T2 r?
o

<|E e

o3

10
o

X pp'sin 6 sin &' 4P 48 dp d4dp' as8' dp' (4.174)
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—-|p=-p"' !
J o-lP-0" % ik (p-p")
0

—1{ 0T (="
e 18ke (p-p") Pi(cos 0) P%(cos e")

X cos @ cos B' sin O sin 0'dP d6 dp d@' de' dp'.

(4.175)
It should be noted that the observation point must still be in the
far-zone, i.e., r, must satisfy r, >> kR2 .

== 12
— — ' —_——
As before, since e ID P l decreases very rapidly for |p—p'| > 1

and since it is still agsumed that k& << 1 , the approximations
-n' —10%s (D-n"
eikSL(p ") vlo, e 12k (o-p") Vv 1l will be employed. Hence equations

(4.174) and (4.175) become

E2k424v2c0529 Rik w28 RL w2 T2
2 ) . ~le-p'|
<’E19 I L 2 2 €
o 16w ro 0 0 0 0O 0 O

X P}(cos 8) Pi(cos 0') sin P sin @'pp'sinB sin 6'dP d6 dp d@'de'dp’

(4.176)
R/2 w 2m L mow
2.4 4 2 T—
2 - Bty ~[p=p"
<fmyg 1P B [ [ [ ] [l
° lerr, 5 0 0 0 0 0

X Pi(cos G)Pi(cos 0")cos @ cos B'pp'sinBsin 6'dP dO dp dP' dO' dp'
(4.177)

as R > o while k and £ remain fixed.
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Thus the problem of finding the far-zone scattered fields when
k& << 1 has been split into two cases, the first being when k - 0
with R and £ remaining constant, the second being when R-> with
k and £ remaining constant.

Now the integrals in equations (4.170), (4.171), (4.176) and

(4.177) will be evaluated. It is noted that

P12 =p%+ 0%+ 255" .

Hence
2
I

== Cen2 a2y o= - s g
o007 L % 0" 200t |~ ) _i(-i20p")

But equation (A.20) gives the expansion of a plane wave of the form
e:Lk £ Equating —126-3' with k+*r and using the aforementioned
equation, one has
P
o1 (=120-p") _

i . 0 s (n-m)!
n-_z:o i"(2nt1) 3 (-i2pp )[ mZO % Cm) 1

X Pz(cos Q)Pﬁ(cos 8")cos m(G—ﬁ'):I (4.178)

1 m=0
where okm = .
2 m#0
When this is substituted into equations (4.170), (4.171), (4.176) and

(4.177), and when the order of summation and integration are changed,

these equations become
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Ezkzﬁzvzcoszeo f E - (n-m) !
>n i (2n+l) o —
167r2 r2 n=0 ( m=0 m (ntm) !

R/2 w2 R/L T 27

ST

0] 0 0
X jn(-i2pp')PE(cos 9')P2(cos 8"')cos m(P-@')sin O sin Q'

2 3
o i) Pi(cos Q)Pi(cos 0')sin § sin @'

x dg de dp dﬁ'dg'dp'}(4.179)

2.2.2 2 o n
E"kA%V Z in(2n+1) o (n-m) !

1612 ri s L i

2
<|E,, |“>n
lﬂo

11

0 0

R/ ©m 7 9 2
. I J J e_(p LA Pi(cos G)Pi(cos 0'")cos @ cos @'
0 0 O

x jn(—inp')pz(cos Q)P:(COS 0')cos m(P-@')sin O sin Q'
X dp de dp dg¢' de' dp} (4.180)

as k+0 with R and £ fixed, and

l | 2 Ezk_lhl’\,chSZQo b { lf n (n—m) ]

<|E >0 i"(2ntl) o -

190 16172 ri n=0\ m=0 m (mtm)!
R/ ™ 2m R/R 2 2 2
-(p™+p'")

e Pi(cos O)Pi(cos 0")sin @ sin @'

1T

0 0 O

o—=
ot

X jn(-inp')Pz(cos Q)P:(cos 9')cos_m(¢—¢')pp'sin 0 sin 0’

x d@ de dp d¢'d9'dp':} (4.181)
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2 E k .Q: \) n (n_m) 1
<|E | = Z Z i (2n+l) o >
1ﬂo 1677 rg n=0 | m=0 m (n+m) !
Lm2m R/L T 2w
“f / ~(p%0'H 1 1
X = e Pl(cos Q)Pl(cos 0")cos P cos P'
0O 0 0O 0 0 O

X jn(—iZQp')PE(cos G)Pi(cos 0')cos m(P-P')pp'sin O sin O'

X d@ de dp dap' de' dpi} (4.182)

as R+ ® while k and £ remain constant.
Performing the angular integrations in equations (4.179)- (4.182),

one finds that

2. 2.2 2 2. R/% R/L

2 iE"k"L "V cos 90 —(p2+ ,2)
<|Big 7> e P TP 5 (—i20p")dpdp’ (4.183)
18 2 1
o 3r
o 0 0
R/% R/%
2222 2 2. ,2

<[Elﬂ |2> o A7k ﬁ v J [ (P 3,(-120p")dp do" (4.186)

2 3ro 0 0

as k>0 while k and £ remain constant, and

2442 2. R/% R/L

iE"k 'L 'V cos @ 22
<|Byg 125> & 5 © J J e~(P7He )pp'Jl(—iZDO')dD dp'
o 3r
o 0 0 (4.185)
2 1E2k424v2 Rk ReE ~(pz+p'2)
By |"5% S J J e PP'3;(-120p")dp do'  (4.186)
o 3r0 0 0

as R > ® while k and £ remain fixed.
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The integrals in equations (4.183) - (4.186) will now be

evaluated. Let

R/ R/

-(pz+p'2)
Il = J J e jl(—i2pp')dp dp' (4.187)
0 0
y ke 2 —(oz+p'2)
I, = J f e 3,(-12pp") pp' dp dp’ (4.188)
0 0
so that
9 iE2k222v2c05290
<|Ele | “> 5 1 (4.189)
o) 3r
o
2. 2.2 9
<|Byy |2>n EEENY 4 (4.190)
16 2 1
o 3r

(o]

as R+ 0 while R and £ remain constant, and

, 1P eos®e
<|Elg | >n > I2 (4.191)
o 3r
o
2 b4 4 2
<t o [Pon EEE o (4.192)
19 2 2
o 3r

o
as R+« while k and £ remain fixed. Integral I1 will be con-
sidered first. To begin with, it is shown in Appendix B that the limits

on the integral in equation (4.187) may be extended to infinity with

negligible error provided that R/R >>> 1 . Thus,
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2,42
I, » J e (PTHRT)

0

l(—1200') dp dp' (4.193)

oO—— 38

Next, jl(miZQp') will be expressed as a Taylor series. Using a

formula from the N.B.S. "Handbook" [21], one can show that

N €7 N

j (z) = . (4.194)
1 2n+1 m=0 T (m+n+ %)m!
Hence,
o 2m+1 ' 2mt1
j1(=i200") = *;/F B E . (4.194")

m=0 (m-Fg) m!

Substituting equation (4.194') into equation (4.193) and changing the

order of summation and integration, one has

© 2 .

. W -i/7 7 i o P p2m+1 do [ P p,2m+1 o
L £ m=0 [ T (m +-§)m!
2 0 0
or
- 2 3

I, ~ :%Zi 7 W_._l?r___ J R

m=0 F(m-FEQm! 0

But again from the N.B.S. '"Handbook'" [22] , one finds that

T .7
<! 1
J e P p2m+l dp = L (4.195)
0
Hence,
r w W 3 L (4.196)

1 8 =0 r(m+%)
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The infinite sum in equation (4.196) may be evaluated with the
aid of some properties of the hypergeometric function. From the N.B.S,

"Handbook'" [23], one finds that

Z I (wta) T (mtb) ,m
I‘(a) I‘(b) T (mtc) m! ’

F(a,bjciz) = (4.197)

and

iy _ I(c) T(c-b-a)
F(a,b;c;1l) = T'(c-a) TI'(c-b)

(4.198)

provided c¢ # 0,-1,-2,:++, Re(c-a-b) > 0 . When 2 = 1, equation

(4.197) becomes

I'(c) Z I'(mt+a) T (mtb)
T'(a) T'(b) D I'(m+c) m!

F(a,b3c3l) =

Utilizing equation (4.198), one finds that

T'(c) T(c=b-a) _  T(c) Z T (w+a) T (mtb)
T(c-a) I(e-b) ~T(a) I'(®) 4, T(wte) m!
Hence,
Y T(mta) T(m+b) _ TI(a) T'(b) T(c-a-b)
L Ty m! T T(ea) I(e-b) Ll

provided that c¢ # 0,-1,-2,<++, Re(c-a-b) > 0 .
Noting that TI'(mt+l) = m!, equation (4.199) can be applied to
equation (4.196) to show that

5 1

A ray ra) rg-1-1) _ -i/m I
1 8 8 2.3
r (53

r(% -1) I’(%—l)
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But

T =V , T =3T@ =1/
Hence,

. ~-§ . (4.200)

Now integral I2 will be evaluated. Using equation (A.6),

the explicit formula for jl , and noting that

sin(-iz) = -i sinh =z
(4.201)
cos(-iz) = cosh z |,
one finds that
R/ R/Z 2 2
_ ' s v '
I = o (p™4p'")| i sinh 2pp' 1 cos? 2p0p ]pp' dp dp’
2 402 o2 2pp ]
0 0
or
R/% R/ 2 2
= = v '
I, =2k e PP D [ cosh 2ppr - E1BR 2007, 45 4o
2 2 2pp
0 0

With the aid of equations (A.5) and equations (4.201) it can be seen

that

sinh 20p' _ B .
pp " i (-1200")

Hence,



-108-

R/% R/% 9 9
L, = -% I J oY e 20p' dp dp'
0 0
R/% R/% 2 2
+ 2 J J ef(p 8 )jo(—inp')dp do'. (4.202)
0 0

The second integral on the right hand side of equation (4.202) can be
evaluated by the same method that was employed in evaluating integral
Il . First, the limits are extended to infinity. Then jo(—iZDp') is

expressed as a Taylor series by means of equation (4.194). Thus,

R/2 R/2

bt 2. |2
I J ~(p%40"?) 3 (-120p")dp dp' ~ J G N W
e [a) 7
0 0

0

o——38

5 oo

o 2m_,2m /T o 2 2

il 1 = 2

X Z_E.»_p?'—u—dpdp' =2—Z '———?,—-“Ueppmdp] }
m=0 T(m-+§)m! m=0 P(m4-§0m! 0

Now from the N.B.S. "Handbook" [24], one finds that
(=]
—pz 2m 1 1
j e 0 dp ="2—I'(m+5). : (4.203)
0

Hence,

AR e 5% = % @+
J J e 1, (-1%p" Mp dp" W 5= ] ———tSo
0 0 m=0 I'(m +—2~)m!

Next, utilizing equation (4.199), one finds that

R/% R/L ' 5.1
P R I ) 2
J 'J o BT i (-12pp")dp dp'N-Zi E Ew (4.204)
0 O
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Thus, equation (4.202) becomes

R/% R/%

I, ~ --% J J e—(p2+p'2) cosh 2pp' dp dp‘-ki%é . (4.205)
0 0
But
RILR/IE  , R/% R/% 5
J j Tia e S 2pp'dp dp' =-% J J g~p=p") dp dp'
0 0 0 0
R/% R/ 3
3 I J PN 0 g
0 0

1 = '
where the fact that cosh 2pp' --12'-[e200 + e 200 ] has been employed.

Now
R/% R/% 9 R/% 9 R/% 2
—_— ' —
j J RGP I ¥ 2 J &P g
0 0 0 0
(e} [s0]
2 il .
= J e P dp J e P dp = %
0 0
Next, assuming R/% >>>1 , one has
e eme? o
J e ‘PP dp I e dp = V/m
0 -0

except when p' is very close to 0 or R/% (e.g., p' <5 or

p' >-% -~ 5) which is a negligible part of the interval [0,R/%].

Thus
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But if R/ >>> 1, then RV/T/& >>> w/4 , and hence

R/% R/% 2 9

- v
J f e (p™e" ) cosh 2pp' dp dp' ~v Rng .
0 0

Thus, equation (4.205) becomes

2
-R /T im
L, ¥ % * 716

But since RVT/4% >>> ﬂ2/16 , one has

- -iRVT

2 ix (4.206)

Substituting equations (4.200) and (4.206) into equations (4.189) -

(4.192), one finds that

9 EZkZRZvZCOSZQO
<|E19 [F > & 5 (4.207)
o 6r
o
2.2.2 2
<|El¢ |2> n, -E—E—&EE— (4.208)
o 6r0

as k=0 while R and £ remain constant, and

2 EzkAQBsz/F cosZGO
<|E19 | © 5 W > (4.209)
o 12r0




-111-

E21 % 3rv2/m
12¢2
(]

<|E1¢ ]2> N (4.210)
)

as R > ® while k and £ remain fixed.

(ii) Discussion of results

Equations (4.207), (4.208), and (4.209), (4.210), together
with the fact that <:E190E;¢0> = 0 , represent the results of the
examination of the far zomne scattered field with the magnetic dipole
for k& << 1 . Comparing equations (4.207) and (4.208) with equations
(4.209) and (4.210), one finds that the ratio of the magnitudes of the
former to the latter is of the order l:(k,@)2 %—. Thus, if
-%(ki)z << 1 , equations (4.207) and (4.208) must be used to characterize
the field, while if -%(kl)z >> 1 , then equations (4.209) and (4.210)
are employed. If -%(kﬂ)z v 1 , then neither set of equations would be
reliable. This is due to the fact that they are asymptotic approxima-
tions and in their derivation terms were neglected whose magnitudes
would be significant if -%(kk)z N1

Further examination of equations (4.207) and (4.208) or (4.209)
and (4.210) reveals that the mean square values of the two components
of the scattered field are of the same magnitude, unlike the case of
k% >> 1 where the magnitudes differed by a factor of (kﬂ,)2 . It is
also significant to note that the mean square value of Elﬂ is inde-

pendent of 90

The condition required to insure the validity of the Born

approximation will be different now than for the case where k& >> 1 .
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Recall that it is assumed that in order for the Born method to give
reliable results, the inequality |E;|2 >> <[Ei|2> should hold.
R 2 = 2 2, 2
Assuming that g(kﬁ) >> 1 , and noting that ‘Eol vES/ET  the
o

condition becomes

£Z . £2v2i%.3r
2
5 o9 r
o
or
Ve << 413 (4.211)
k9 R

Since k& << 1 , this is a much weaker condition than in the previous
case where k& >> 1 . Hence, for a given value of v2 , the Born
method will be valid for much greater values of R than previously.
Now it may happen that l/k423R > 1 , but nevertheless the derivation
of the Born approximation in Section 2.3 still requires that uz << 1.
The polarization of the scattered field may be analyzed by means
of the Stokes parameters just as in the case of k% >> 1 . It is not

difficult to show that the degree of polarization m is given by

1
B rmu® @ A
(o]

m v

and that the polarization (of the polarized part of the wave) is linear

and in the @ direction.
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B. Scattering with the Electric Dipole

(i) Derivation

The electric field of the electric dipole in a homo-

geneous medium was given by equation (4.16 ):

E;(?) e —-% itk {ZhO(kr)cos 90+ hz(kr)[sin QoPé(COS 8)cos @

+ 2P2(cos Q) cos 90}} ero

1 . i i
+-§»1Ek {Zho(kr)sin 90— hz(kr)[cos Qon(cos B)cos P

- 2P2(cos 9)sin Qo]} e90

- %—iEk hz(kr)P%(cos Q)sin @ Ebo

Utilizing the derivation in Section 4.2B, the expression for

the ensemble average of two field components is given by equation

(4.108):
e ghrat T [ 2 .8 o, BEnednshea® F s o
lo 18" 22 a o B "o R‘E
lém’r
o VYV
ikro == =
Ek”e sin QoeB- ego f.— o T
-+ e *E (r)R (r)e dr
127 2 ¢ 0 Ré.‘
o)
—ikr - -
Ekx“e sin 8 e _*e
o Q 0 _ _ _........__' =7
+ 5 2 J eB -E:(r')RE(r')elk o odr
127 r
o) \Y
Ezvzsinzg
b o R
+ e e

Qrg o o



=138

where V 1is the volume of the randomly-inhomogeneous sphere. It should
be recalled that it is the principal value of the volume integrals that
is to be calculated (one performs the angular integrations first). By

substituting the explicit expressions for Eo and R’E\:J into this equa-

tion, it can be seen that

5 E2k6£’6\)2 R/QI R QJ 2m Ip p eikﬂ,(p—p') 3
g o g T T T e feie] s,
]
) 14472 ro 0 0 (k2) “pp
i .
_2{ '"]?: + 3; ‘2.+ 2 3:leik£'(p P )[cos Qosin 90
(k) “pp"  (kR)7pp'"" (k&) pp'

P:zL(cos 0')cos @' - 2P2(cos 9')sin290] —2[ ~1 - 31

X

) Zop’ )%

. ]

+ —-—*?’4-—3— (-1]'1(52'(0_p )[cos Qosin QOP;(cos ) cos @

(k&) ‘p7p'
- 2P2(cos Q)Sinzgo] + ; + 492 5 + 2 33

(k) “pp" (kL) p7p! (k2) "p7p'

- 2 3" 2 g e 23, - 32 i g 3,2

(kL) "pp' (k&) p7p'  (KR)™ pTp pp' (k2)"p7p
e —-—-2———) eikl(p—p') {coszg Pl(cos G)Pl(cos ©0')cos @ cos @'

ey 20203 o 2 2

- 4 cos Qosin GoPé(cos 0) P2(cos ©')cos @ - 4 cos Qosin QGP;(cos ")

X Pz(cos O)cos P'+ th(cos Q)Pz(cos 9')31;1290]} e"ﬂ'k'(p‘p )
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2..3,3 2

x p%0'%sin 0 sin @' 4@ do dp dp'de’dp' -

T2
ikr 2 iklp :
o -p —-ie _ i
X Im-{% I J J e {2[—~EEE——} sin 6 [kkp
0

0 O

E“k &7V

187r
o

3

(kL) "p

2

o e 1 eikﬂp [cos O Pl(cos Q)cos @ - 2P, (cos O)sin O ]}
33 G 2 2 o
(k) "o
AT 2 Ezvzsinzgo
X e P o°sin @ dp de dp}-+-———-—5——— (4.212)
9r
o
R/ w2 R/L w 2w L
2 EA5052 —|p~p'|2 i 3
<|Epp 17>= 2 2 ' o ) 53
9 9 3 i 3 3
+ + = + ( "
32 .2 6 3 ,3 4 3 2 2
2)20%'% %% @)% k) 0%’ oo
O )
+ 293 5= g 5 3) eik}z’(D ph) P;(cos Q)P;(cos a")
(k&) "p7p' (k%) "p7p"

X sin @ sin @'e

2

<E E b TR S
100 1Qjo l4¢ﬂ2 r2

o

R/2 R/L T 27
x 25052 f . f J
0 0 0

|

o'*—3
o3

— =2
olo-e'l

nizil(BJEW)pzp'zsin.esin 0'dp do dp dp'de'dp' (4.213)

% 1 *
X {2 sin Qoho(klp)hz(kﬂp')Pz(cos 0')sin @' - hz(kﬁp)hz(klp')

1 1 ' v o
x [cos GOPz(cos O)Pz(cos ©@'")cos @ sin @ 2 sin Gon(cos 0)



-116-

-i2k* (p-p") 2 .2
(p-p )p 5

1
x P,(cos 8')sin g'1} e '"“sin©sin 0'dP dO dp d@'de' dp'

3.5 g Sk R/L T 2

1Ezk L v%e Ogin 90 f J 2
0

_p' * 5 1 :
e hz(kkp )P, (cos ')

+

oY—3

2
36w ro 0

.
x sin p' KPP 512550 91 agr do' dp! (4.214)

where the change of variables E'= %7; ,'E' =-%'f' has been made and
where explicit expressions for the Hankel functions have been used in
equations (4.212) and (4.213).

Using the same method that was employed in Section 4.2 (replacing
the correlation function by the Fourier transform of the spectral den-

sity, etc.), one can demonstrate that <E =0 .

10 10
Asymptotic approximations for <|E19 |2> and <|E1¢ l2> will now
be found for two special cases, just as wa: done with the ;agnetic
dipole. As k + 0 while R and £ remain fixed, the only terms in
the expressions for the Hankel functions or their products which con-
tribute significantly to the integrals are those with the l/p3 or
1/p3p‘3 factors. Thus, making the additional approximations
eikl(p—p') v 1o, eiEE.(B.;E') N 1 in the first integrals on the right
in equations (4.212) and (4.213) and making the approximation e
eikkp vl e12§;5_% 1 1in the second integral in equation (4.212),

one finds that



™
[ lo (T
: (k) ®p%p 3

X [coszeoPé(cos Q)P;(cos 0')cos @ cos @'- 4 cos Qosin QOPé(cos 8)

1 - : 1 ' '
b Pz(cos 0")cos @ 4 cos 9081n OOPZ(cos (2] )Pz(cos B)cos P

]pzp'zsin 0 sin 0'd® d6 dp d@'de'dp’

2
1
+ 4P2(cos Q)Pz(cos 8')sin 90

R/& w 27

2.3.3 .2 ikr 2 .
- ELJ&JQJ&— Im<e o f e P [———;EL——][cos 8] Pl(cos O)cos 0
187 r2 (k2)3p3 o 2
fo) 0 0 O
9 Ezvzsinzgo
- 2P2(cos 8)sin Go]p sin 0 d@ de dé}-+ 5 (4.215)
9r
o

R/ 2w R/L 7 2m

— =12
J J J ' J J J PR e
0 00 00O (k) “p7p!

2k6£6v

2
<|E | “> ~
l‘Do 144W2 T

o NN

X [P%(cos Q)Pé(cos 0")sin @ sin Q']pzp'zsin 0 sin 9'dp de dp d@'de'dp’

(4.216)

as k>0 while R and £ remain constant. Next, as R =+ © while

k and £ remain fixed, the significant terms in the Hankel functions

or their products are those with the 1/p or 1/pp' factors. Again.
ik&(p-p")

using the approximations that e v 1 , etc., since it is still

assumed that kf << 1 , one finds that



5 R/& W R/% T 2m S S
<|E. . | -le o' o, 2
Ele e 7 T3
o 144ﬂ r 0 00 0 (K)7pp" (kL) “pp’!

X

i . : 2
[cos Qosin 90P2(cos ®)cos P' - 2P2(cos 8')sin 90+ cos 90s1n QO

1

(kl)zpp'

X

1 2 2 1
Pz(cos 6)cos § - 2P2(cos 0)sin 00] + [cos GOPz(cos 9)

X Pé(cos 8')cos @ cos @' - 4 cos Gosin QOPZ(cos e') P%(cos Q)cos B

4 cos Gosin QOP%(COS 9')P2(cos Q)cos P' + 4P2(cos G)Pz(cos Q")

E2 3 3 2

187 r2
o

sinzgo)pzp'zsin 0 sin 6'dP de dp d@g'de'dp’

Sty

—2P2(cos Q)sin Goap

X

2

X

e (T—— sin 90 kl [cos © P (cos Q)cos ¢

OoY—

Ezvzsinzg

9r2
o

2

sin O d@ de dp}-+ (4.217)

<|Eyy |
(o]

il

— =2

ey _n !

f e |p P | [———jir——JP%(cos G)P%(cos ")
1

0 (k&) “pp

x sin @ sin @' pzp'zsin 0 sin ©' d@ do dp d¢g' de' dp’
(4.218)

as R+ »® while k and & remain constant.

Now from equation (4.178) one obtains
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— =2 I ey Zpprey 2
B e I IR N G i B 1"(2041)3_(-120p")

n=0
n

< b o Bt nceon 0 #teon ) om0

Substitution of this expression into equations (4.215) - (4.218) makes

it possible for one to perform the angular integrations. The results

are
R/L R/%
2 2 2. 2
<|E |2>m . [3 + gin" ] e"(p +p'%) j (—inp')L, dp dp'
190 5r2 o 2 pp
o 0 0 2 2 2
E“v©sin“0
+—T—E (4.219)
9r
o
R/2 R/%
5 4 g B
<|E |2>m _3EY e (p™+p"™) j,(-i20p0") l, dp dp' (4.220)
19 2 2 pp
O 51-o 0 0

as k + 0 while R and £ remain constant, and

R/2 R/Q
2 4. 4 2 g .4
<|E |2> mg—li—'q’—l)—— [& sin29 e (p™+p )j (-i20p")pp'dp dp'
10 2 o 0
o 9r
o 0 0
R/ R/Q 9 2
1 2 - +p'! 5
- 5(3 + sin"8 ) J f e~ (PP 3,(=1i200")pp"dp dp']
0 0
2E2k2£2v2cos kr sin © Ezvzsinzg
& = 2 2 4 5 2 (4.221)
9r 9r
o o
2 E2tp 42 Reb R ~(p%+0'?)
<lE1¢ [“>~ - s J J e jz(—iZQp')pp'dp dp' (4.222)
o 15r 0 0

as R > « while k and ¢ remain constant.
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Employing the method that was used to evaluate equation (4.187)
one can show that
R/% R/%

2. . F
—(Q +Q' ) (] l
f f e i,(-1200") 557~dp dp' v -
0 0

|-

(4.223)

Furthermore, employing the method that was used to evaluate equation

(4.188), one finds that

R/% R/2 S
_—y T
j J PR 3,(-420p")pp" dp dp' L (4.224)
'l 4%,
RIAARIY 5 12
- + !
J e ) 3,(-i20p"pp" dp dp' v - Efg . (4.225)

When these values are substituted into equations (4.219) - (4.222),

the results are

2 Ezvz

<|E,q |25 [1+ 2 sinZ0 ] (4.226)
10 o
o 15r
o
2.2
<2y 1250 B (4.227)
o 151:o

as k>0 while R and & remain constant, and

2.2 2.2

2 4.3 2 2E"V k"2 cos kr sin O
<IE19 l2> e Ek % 1;\) i/TT[l_i_.l. sin290]+ 5 o o
o 60r 9r
o o
E2v251n29
TS (4.228)

9r2
o
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2, 4,3 2
<|Ey |25 o ER2RY v (4.229)
o

601:2
o

as R+ ® yhile k and £ remain constant. Since the last two
terms on the right hand side of equation (4.228) become negligible in
comparison to the first term as R = « , this equation becomes

2. 4.3_ 2
(B o EREBUVE y oy sin®0_] . (4.230)

o 6Or2
o

(ii) Discussion of results

The results of the examination of the far-zone scattered
field with the electric dipole for k& << 1 are given by equations

(4.226), (4.227), and (4.229), (4.230), plus the fact that
< ¥ o
Byg By = ™
o o
(4.229), (4.230), it can be seen that the magnitude of the latter is

on the order of k4£3R times the magnitude of the former. Thus, if

k423R << 1 , the mean square field components are given by equations

(4.226) and (4.227), while for k423R >> 1 the mean square components

are given by equations (4.229) and (4.230). If k4£3R.% 1 , then

0 . Comparing equations (4.226), (4.227) with equations

neither set of equations gives accurate values for the mean square
field components.
The condition required in order for there to be confidence
in the validity of Born method is obtained in the same way as for the
4.3

case of the magnetic dipole. Assuming that k &R >> 1 , one finds

that the requirement [E6|2 >> <fﬁil2> is equivalent to
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Ve << ———413 (4.231)
¥R

which is identical to the condition found for the magnetic dipole.
There is, however, an additional requirement here. Determination of
the mean square field components began with equation (4.108).
Reexamining the derivation of this equation in Section 4.2, it can be
seen that it was obtained in part by the use of approximate values for
the scattered fields ''close to'" the dipole. In Section 4.2, "close to"
meant distances much less than the wavelength which was much less than
the correlation distance, but in this section "close to" will be
assumed to mean distances much less than the correlation distance. The
approximate values for the fields, given by equations (4.106) and
(4.106"), were derived by assuming that %(;) could be replaced by
the spatial constant E(O) in order to determine the fields near the
dipole. This procedure is presumably valid, provided that the change
in 5 per wavelength is small, i.e., provided A|v%{ << 1 . Noting
that k = 27/) , this is equivalent to IV%|2 <<< kz . By taking the
ensemble average one then obtains the requirement

<]V%]2 > <<< kz,

vy 2 m2/2
For the purposes of estimation, one can assume that IVEl v e /L
where £ 1is the correlation distance. Thus it is required that
gy
522>/22 <<<k2 . But since <€2> = vz , the requirement becomes

vz <<< kzlz : (4.232)
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Equations (4.231) and (4.232) must both be satisfied before the Born

solution can be considered reliable.

Through the

polarization m of

The polarization of

use of the Stokes parameters, the degree of

the scattered field is found to be

———AF—E— as k>0 while R and 2 remain const.
1+ csc™ 0
o
% 5 as R » o yhile k and £ remain
1+~7 csc 90 constant.

the polarized part of the wave is found to be linear

and in the O direction.
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V. SCATTERED FIELD AT THE CENTER OF A RANDOMLY-INHOMOGENEOUS

DIELECTRIC SPHERE UPON WHICH A PLANE WAVE IS INCIDENT

This part is concerned with examining the scattered electric
field at the center of a randomly-inhomogeneous sphere when a plane
wave is incident upon it. The sphere 1s assumed to have the same
characteristics which were delineated in the beginning of Part IV.

The plane wave is taken to be linearly polarized in the x direction
and propagates in the negative z direction. The situation is illus-
trated in Figure 5.1.

The problem of finding the field will be separated into two
cases, the first being when the correlation distance is much greater
than the wavelength and the second being when the correlation distance
is much less than the wavelength. As in the previous part, it is the
mean-square values of the components and the mean of the products of any
two transverse components which will be sought. Now, however, there
will be three components to deal with, mot just two as in the last
part. It will be found that the methods needed to handle the problem

are virtually the same as those used in the previous part.

5.1 Preliminary Development

Let the incident plane wave be given by

o ke ¥
Eo(r) = Eoe e (5.1)

where E0 is taken to be real.
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RANDOMLY -INHOMOGENEOUS
SPHERE

Eo

plane wave

OBSERVATION POINT (at center)

Figure 5.1. Randomly-Inhomogeneous Sphere with
Incident Plane Wave
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Assuming the validity of the Born approximation, the scat-
tered field at an interior point of the inhomogeneous sphere is given
by equation (2.25):

E () = K f TG, D * E @ £@dr - 3 EE)E ()
v

where ;; is the observation point and where V 4is the entire volume
of the inhomogeneous sphere. It should be recalled that it is
understood that one is to find the principal value of the volume
integral.

Since the observation point is taken to lie at the center of
the sphere and since the origin of the coordinate system is also taken
to be at the center of the sphere, then ;g = 0 ., Using the preceding

equation and noting that E;(;) is given by equation (5.1), one finds

that

E (0) = E0k2 J T(0,1) * e, o LB T Rt - % %(O)Eo(o)zx . (5.2)
Vv

Now from equation (2.14) one has

1"(?,?') = (=+l—2VV) S——————
k 4ﬂ|r-—r'[

Jik|r-r']|

or, alternately,
oy k[T
I(r,r') = (I +—2— VARTAD| SR
k 4| r-x' |

Hence
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- - 1 eJ'.kr
r{o,r) = (I + —E-VV) s (5.3)
k
Straightforward computation then reveals that
= .= _1 1 34 3 itk —— L 3. & _ I ike =
r(o,r) = ZF[— > ;;§-+ ;?;g]e e e -kaﬁ[ -+;;§ -;Ezg]e I
(5.4)
But
ielkr i 3 3i ikr

ho(kr) =

Thus, after a bit of manipulation, equation (5.4) can be put into the
form

T(0,r) = i—k h (kr) e £ -——[2h (kr)- h,(kr)] T

Substitution of equation (5.5) into equation (5.2) yields

3 Eoik3 e e d
El(O) & f {hz(kr) ee ‘e +-§[2h0(kr)— hz(kr)] ex}

v

Ve ik T — 1% —
x e(r)e dr - 3 e(0) Eo e, 5 (5.6)

Now from equation (4.15) one has

e =sin O cos P e +sin O sin P e +cos O e "
T X v z
Then
Ezogx=31n9cos¢e +sin9cos(bsinﬁ)e

rr

+costin9cos¢Ez 3
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Hence equation (5.6) becomes

3
iE k | _
E,(0) = —2— J {[% h_(kr) - h, (kr) (% ~ odn"0 ens @] e,

v

4 hz(kr) sinzg cos @ sin @ E§-+h2(kr)cos 9 sin 6 cos ﬂ'gz}

x ey o TETE gp .

=

£(0) E e . £5. 7

o X

Next, from equations (A.17), (A.18), and (A.19) one finds that

1L 4 Pz(cos Q) = %{3 c0529 -1) ,

Po(cos )
1 = ’ 2 oy
Pz(cos 0) = 3 cos O sin 0, Pl(cos 8) = 3 sin"9 .
In addition, it is known that
. 38 2 1
cos @ sin @ -5 sin 20 , cos @ =-§(l + cos 29) .

Using these expressions, it is not difficult to show that equation

(5.7) can be put into the form

3
- iE 2 1
El(O) B e f {Eg ho(kr) Po(cos 9)-—h2(kr)6§ Pz(cos Q)
\'
—4% P%(cos 0)cos ZG)]E% + %-hz(kr) Pg(cos Q)sin 20

+ % b, (kr) Py(cos Ocos 08} E@e T dr - ¥(0) E T,
(5.8)

For simplicity, let
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B = [% h,(kr) P_(cos 9)-h2(kr)6% P,(cos 0)

—-% Pg(cos @) cos 2¢)]E¥ + é-hz(kr) Pg(cos 0)sin 20 E&

6
+ % h(k¥) Pi{cos Q)cos §# =
3 hy(kr o(cos cos e, - (5.9)
Then
3
iE k = e

- % — = v~ —dk+T — 1% =
El(O) s f Cc(r) e(xr) e dr - 3 £(0) EoeX . (5.10)

v

Let E}x be any of the unit vectors E%, E&, and Eé , and let

Ei(o) -E& be denoted by Ela . Then from equation (5.10) one has
o
3
iE k = =
o = e e aflgdy — A% =
Elao = f ey C(r) e(xr) e dr = = e(O)Eoex e, (5.11)
g v

Similarly, if Eé is also one of the unit vectors E%, E&, and ‘Ez .

then
1 —- =
= E(O)Eoe . (5.12)

Multiplying equation (5.11) by equation (5.12) and taking the ensemble

average, one finds that

E2k0
* 5 - = ? y—
<E E = e *C(r)e,*C (r") <e(x) (") >
lo. "1B 161r2 B
vV

2.3

= 1Bk o

ke SLE-TY) oo L 9T W | B ElEeen iy s o T gy
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2.3
iE"k pon  pn
O 5 va e s B B ik " sy
+ o % " ©q eB C (r")<e(r'") €(0)> e dr
v
1 2 2 — —= =
+ §-<E(O)> Eo e, " €58y eB . (5.713)
But
<E@) @M > = Ry (|7 ]) <E@@) €(0)> = R0
— n
<E@nH ?:’(0)>=R%(r') , <€2(0)> =v?
Hence, equation (5.13) becomes
5%
* - P ke I AN i Y e N
<Ela ElB 5 5 I e, 'C(r)eB « G (¥") RE([r-r'])e ik® (x-z') dr dr'
o o 16w
vV
S kT —
= —pR=—E eB J e, " C(r)RE(r) e dr
\'
B L e kT _
. . i/ Ll 1
+ g, Ve [ eB c (") Ra(r e dr
\'
1 22— = — =
+ ) v E0 e " ey S eB . (5.14)

Equation (5.14) will serve as the starting point for the work in the

next two sections.

5.2 Scattered Field for the Case of k& >> 1

Expressing the correlation function as the Fourier transform of

the spectral density, one finds that equation (5.14) becomes
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2.6
<E E_> P I f I 5,(<)e. *T(r)e, - T ()
= s e *C(r)e, * e
loLo lBo l6T1r2 € o B
VvV
2.3
= iE "k
-ike(r-r') — . ot — =
X d< dr dr' - Tom ©x eg S’éj(
v
Al o iEikS _ _
X de dr + Tom ex ea JJ S%
v
iker' — — , 1 22— — — —
X e dk dr +9\)E0eX eaex eB

where the K integration is performed over all K

()eg * e

ik (r-1')

e, M o i

e
(5.15)

space. By changing

the order of integration in equation (5.15) and rearranging terms, one

can show that

22k® e
* o J _ — == _i(k-k)r —
< E E, > = —F S(K){Je-c(r)e dr
]ao ]‘80 l6'rr2 % v &
2.3
_ P S _ iE k™
XJ S B ek dr'}_dK - T %" % j 5% ()
\Y%
2.3
_ e TN - _ iE"k™ _
X {J e C(r) 1(e-k)+r dr}d + 1(2) B, " € J S%‘(K)
4 :
X{T%-aalw**r£}£+%v%§§-€E{Eé ) (5.16)
\'
Letting
L {5 = [ P T I G (5.17)
o o
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with an analogous definition for LB(K—) , equation (5.16) becomes

<E. E > Eikﬁ S (k) L.(<) La(k) dec
]ﬂ'o 180 16'rr2 ¥ o B
ig2kd _

Tom ©x © g j S?:_,(K) La(K‘) de

B #— — 1 22— —— —
+ Tom ex . ea j SE(K) LB(K) dk + 9 vV EO ex° eaex' eB. (5.18)

Using equation (5.17) and the explicit expression for c(r) given in

equation (5.9), one finds that

R m 2n
= _ 2 _ 1

LX(K) = [ J J [3 ho(kr)Po(cos 8) hz(kr)(3 Pz(cos 8)

0 0 O
- 2 P2(cos @)cos 2p)lel )T 2 40048 do dr (5.19)

R w7 2w ety S

Ly(l—c—) = f J J % hz(kr)Pg(cos Q)sin 2¢ ei(K_k)'r rzsinG dg de dr
0O 0 O (5.20)
R m 21 e

LZ(E) = J J J % hz(kr)Plz'(cos B8)cos @ el(K—k).r rzsine dg de dr
0 0 0 (5.21)
Equations (5.19) - (5.21) can be evaluated by the same tech-

niques used in Section 4.2. Let k' =k - k , and let

k' = k' siny cosYu_a-x+l<'sind)sinyzy+|<'coslp_e_z

where Y and Y correspond to the angles 6 and @ , respectively,
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in spherical coordinates. Then

i(k-k)*r iK' T
o (k-k)*r _ k' ,

— =
and using equation (A.20), eiK ¥ can be expressed as a sum of spheri-

cal waves:

ik'er
e =

Pﬁ(cos G)Pz(cos V)

Il o~1 8

P antly ('ry[ ] o Soomt
n m=0 ™ (nt+m)!

n=0

X  cos m(f-7Y)]
Substitution of this expression into equations (5.19) - (5.21) and
reversal of the order of summation and integration yields

2m
[t
0

- hz(kr)(% P, (cos 0)- % P;(cos 0)cos 2013_(<'r)

w|r

@ n
L () = ] { ] [in(2n+l)amg—2:+i3—:l?l:(cos V)

h (kr)P (cos @)
n=0 Lm=0 ¢ 0

oY
o—3

X Pz(cos 0)cos m(ﬂ-—Y)rzsin 0 dg de d?]}- (5.22)

=) n
Ly(E) = 3 3 [in(2n+1)am %ﬁiﬁ%% Pi(cos )

g h,, (kr)
n=0 L m=0

6

or—x=
ot———3
= 5

X Pg(cos 8)sin 20 jn(m'r)Pz(cos 8)cos m(ﬂ-—y)rzsin e do de dr]}'

(5.23)
R T 2w
[ee] n e
LZ(E) = L ZD [in(2n+l)am %ﬁ;ﬁ%%-P:(cos V) j J J'% hz(kr)
n=0 L m= 000

x P;(cos 8)cos @ jn(K'r)Pz(cos ) cos m(ﬂ-—y)rzsiné)dﬂ de dr]}'

(5.24)
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Performing the angular integrations by using the orthogonality relations

for the Legendre polynomials and the trigonometric functions, one finds

that
R
LX(E) = §§>J ho(kr) jo(K'r)rzdr + %g{Pz(cos Uv)- %'Pg(cos P)cos 2Y]
0
R
X J hz(kr) jz(K'r)r2 dr (5.25)
0
R
L, () = :%1 Pg(cos P)sin 2Y J h,(kr) 3,0c's) £ dr (5.26)
0
R
LZGZ) = :%E-P;(cos P)cos Y J hz(kr) jZ(K'r) r2 dr . (5.27)
0

The integrals in equations (5.25) - (5.27) are evaluated in equations

(4.121) and (4.122). Let

114

F_(k') = j h (ke) §_(<'r) 2 ar (5.28)
0
R

F,") = J h,(kr) 3,(c') 2 ar . (5.29)
0

When this notation is employed in equatioms (5.25), (5.26), and (5.27),
and when the explicit expressions for the Legendre polynomials in terms

of sin and cos functions are used, the results are

L (<) =.%} F_(k')+ o[ cos?Y - %—sinzw cos 2Y1F, (k") (5.30)



~135~

L () = -2m sinoy sin 2V P, (k") (5.31)

LZ(E) -4T cos V¥ sin Y cos Y FZ(K') 5 (5.32)

Using equation (5.18) and the explicit expressions for the
spectral density (equation (4.47)), the following equations for the
mean-square components and the mean of the products of the transverse

components can now be obtained:

2.64,3 2

E"k"27v 252
2, _ 0o -Kk“°14 (16 P2 4 ) A 4
<|ElX | > = 372 J e { 9|F0(|< )| + [cos U + 94-sin
o] 32m
X cosZZY - %-coszw - 2 coszw sinzw cos 2Y +-% sinzw cos 2Y]
312 4 Hreosy - 1 - 2 T
X le(K )y ° o+ 3lcos™ - 5 - sin™ cos 2Y][F_(k')F, (k")
9: 353 2
E<k™87V 2. 2
* . —~ o -k /4 4 . 2
+ F_(K")F, (< )1} de + e T {le [3 F (k")+ (cosy
24T
- B + L g2 32
-3 - sin® cos 2V)1F,(x ydc} + 5 Eq V (5.33)
2.6.3 2
Ek &7V 2.2 .
<|E |2>=i-m—— e'K£/451n4¢ sin22'y |F (K')lsz (5.34)
1y 3/2 g
o 32m
2.6,3 2
E-k 47V 2.2 _
<|E |2> s e | g T 4D coszw sinzw coszy |F (K')l2 dk
1z 8ﬂ3/2 2

(5:35)
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2.6,3 2
<E E* > = - EQE;E;:L-J ewKZ‘q’z/4 Eé sinzw sin 2y F (K')F*(K')
x, 1, 3213/ 2 : ¥ <

+ (coszw sinzw sin 2y - %—sinzw sin 2y - sinhcos 2y sin 2y)

2;3:3 2

1241303y 2,2
% [P "2 dR - =B | g F LR o By et oy P lGYEE (5.36)
2 3/2 2
48T
: 2 > - E§k623v2 _K222/4 4 . .
o T il v 0 S [5 cos¥ sind cos Y F  (<")F, (k")

+ (cos3w sind)cosw’—-% cosy siny cosy - cosy sin3¢ cosy cos 2Y)

X

2139,3,)2
1E21323y f e—22K2/4

s * =
IFZ(K')IZ dk + cosy siny cosy FZ(K')dK (5.37)

24ﬂ3/2
« e 202, 3 B
< E E > = —————— | e cos PUsin™Y cos Y sin 2y |F (K')I dk .
ly0 lz0 16TT3/2 2

(5.38)

It will now be demonstrated that the mean of the products of

the transverse components vanish. Changing the integration variables in

equations (5.36) - (5.38) from K to k' , where it is recalled that

K' =k - k , and noting that 2 = IE“—'EIZ = k% 2k T+ k2 = kP ?

+ 2¢'k cos ¥ , yields

2.6,3 2 0 27
%* Eok ks —[K'2+ k2+ 2k'k cos w322/4
By >t | e
XO yo 32“
000

Y
X [% sinzw sin 2y FO(K')FZ(K')+ (coszw sinzw sin 2y -



=137~

--% afn® sin 2y - sinP cos 2y ain 2vy) ¥, (") | Pk *siny dy ap ac’

23,3 20127
e &Y “[k'%+ K%+ 2k cos w1RZ/a L 2. .
- e sin Y sin 2y
3/2
000
*
x Fz(K')K'zsind)dY d de (5.39)
2.6,3 2 m 271
e E* . - - E k27 —[K'2+ k2+ 2<'k cos 11)]9,2/4
= - — e
lx0 lz0 16ﬁ3/2
000

%
X [% c051bsinlbcos”YFO(K')FZCK')+ (cos3w siny cos v

- % cos Psin Y cos Y~ cos lbsin31p cosy cos 2y) |F2(K')|2s<'2sin Y
x dy dy dk'
2.3,3 20T 27
L E o b ¥ e—[n'2+ K24+ 2k’ cos 112274
3/2
000
. * ] 12 . ]
X cos¢151n¢1cosy'F2(K JK'"sin P dy dP dk (5.40)
26,3 2 00271
<k g >=Ek£\) e--[l( +k+2|<kcosUJ]2/4
1y “lz o 372
e ° 000
3 ) . .
X cos Psin”Y cos ysin 2ylF2(|< )| k' siny dy dy dc' . (5.41)

Integration of equatioms (5.39) - (5.41) with respect to Y vyields
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*
< E E >= 0
lxo lyo
< E *>—O
ig By T % (5.42)
(o] o
<E. EX >=0
ly "1z =~
(o] o

It should be observed that no use was made of the fact that k& >> 1
in deriving eqﬁations (5.42). Hence they are valid for both k& >> 1
and kf << 1 .

The expressions for the mean-square components of the scattered
field will now be obtained. Drawing on the development of Section 4.2,
it is known that the K integration in equations (5.33) - (5.35) can

be restricted to the region where |-E -k |= K! é~% k with negligible

error, provided k& >> 1 . By restricting the K integration in this
manner and then changing the variables of integration from K to w 5

where w = £(K - k) , one finds that equations (5.33) - (5.35) assume

the following form:

2.6 2 © T 2T
,  EKV v+ k2% 20l cos 1/4
<!Elx | 312 ©
o 32m7" k720 0

x {1815 @[ % [eos™h + & + sin'd coszy - 2 cosy

-2 coszw sinzw cos 2y + %—sinzw cos 2Y]|F2(%)|2 + %{coszw _.%

— sin’y cos 2y][FO(%bF;(%b+ F:(%onc%p]}wzsinu)dy dp dw

2.3 2 © T 2T
E7k™v 2,.2,2
- e-[w +k“L+2wks cos Pl/4 Pi F (k') +
241T3/2 3 o

k2/2 0 O
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+ (coszlp - % - sinzlb cos 2Y)F2(%)w251n1}} dy dy dk '}

=2 E

2 2
Y (5.43)

Ol

2.6 2 ™

o T 2
<|E |2> _ Eok s J J f e-[w2+k222+2Wk2 cos Yl/4
1y - 3/2
o 32m KL/2 0 0
X sinaw sin22Y|F2(%)|2 wzsin Y dy dy dw (5.44)
262 o 7 T
<|E |2> _ Eok ¥ e—[w2+ k2£2+2wk£ cos Yl/4
lzo 8ﬂ3/2
k%/2 0 0
X cos %Psinzw coszy lee%olz - Y dy dy dw . (5.45)

Performing the <Yy integrations in equations (5.43) - (5.45) and making

the change of variables t = cos Y, one finds that

2, _ BtV ~f B kL] e 52 W, |2
By | 8 =5 |7, @I
L
4 10 2 11 8 .2 8, . *w W Wy ¥ W 2
+ (3= =5 ][FZ(EQ| + I3 t°= GlIF_GDE,CPHF (E, @ I}w dt dw
2.3 2 © 1
Ejk™V 2 2,2

+_”____~_Im{— R e S P

kL/2 -1

& (= 1) F,CD1 W it dw-} y %-Ei g | (5.46)
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E kv 2. ,2,2
<y, 12 = —© f J o[RS 2wie] /4 ), 2, 4y
o 32/ K72 -1
x |7, @]?% w? at dw (5.47)
2'2 :
262 © 1
ETk OV
<IE12 l2> _ Yo j J ~[wo+ k2% 2wk2t]/4 2. 4]|F C*)l 1
8/

k(2 - (5.48)

By employing equations (4.77), (4.78), and (4.147), one can perform the
t dintegrations in equations (5.46) - (5.48). Keeping only the highest

order terms in w , the following asymptotic expressions are obtained :

g 5,2 5
<|Ep, | " J LA (e @2 4 |p (|2
© 18/T 2 KL/2
2.2 3 oo
E"k™v 2
+ 21, G, D+ F_EF @l aw + —______.Im,{ J la-ke1/4
/T %
5]
x [ZFO(%)+ Fz(%)]w dw} + %‘- Ei V2 (5.49)
32 o
2E7Kk7V 2
2 [o) -[w-k2]°/4 w12 1
S e e |F, (|7 = dw (5.50)
ly 3 J 2% W
o /TR KL
2.4 2
E“K 'V 2
<JEy, |5 ~v 2 e IwbI/4 e #)12 gu (5.51)
i K/2

Again drawing on the development in Section 4.2, it is known
that the major contribution to the.integrals in equations (5.49) - (5.51)

is derived from a relatively small neighborhood of w = k& , and one
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can use the same type of approximation for Fo(%) and FZ(%) that

was used for F(%) in that section. In fact, the approximations for

FO(%) and FZ(%) are both given by equation (4.151):

G ol &

2 {sin[(w—kﬁ,)%] . [w-—kﬁ)%]- 1}
2 w - k& w - k&

F@E VE G N -
o'R 22 2k

Using the additional approximations

2 2 1 2 1 2
v[FE @~ r|F @I, ZIF, |7 v gl P, D%, ete.,

one finds that equations (5.49) - (5.51) become

© R
2.2 9 2 2 1 - cos[ (w-k2)=]
<IE1 |2>mEk2,\) e-[W—kQ,] /4 - Q.} i
%o e k872 (w-k%)
2 2 o R R
E"kv 2 sin[ (w-k%)=] cos[(w-k®)=]-1
_0__Im{ J g Tl . Sl O
%0 1872 (w-k2) (w-k)
1 .2 2
) 3 EO Vv (5.52)
2.2 0 R
ESV 2 1 - cos[(w-k)=1]
<|El |2> ,\J_i_z__z_ J e"[W—kﬂ:] /4 5 L } Aii (5.53)
Yo VK 4 K72 (w-k&)
2 2 R
E7v k212 1 - cos[(w-k&)7F]
<]E1z |2> 8 e [l I™ /4 5 & } o (5.54)
o 2y K2/ 2 (w-k%)

The lower limits on the integrals in equations (5.52) - (5.53)
may be extended to -*® without causing any appreciable error. Then

making the change of variables T = (w—kﬂ,)% , one obtains
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2,2 2
E"k"2Rv 22 2
<IE1X [2> P - J e—T 2°/4R {l - EOS "['} A
A 2 T
2 2 cos T-1
E kv 2.2 2 1 .2 2
_ o f L LS | == fdn g B ¥ {5.55)
6vm
2. 2 o
E“RV 2.2, 3 |
<|El |2> N 3 5 J Pl L7/4R {l - ;os T} - -
Yo kOR, /TT_OO T
2.2
E"RV 2.2 2 S
<|E]_z |2> N _O J‘ ST AT/4R { 1—-co; T} oar . (5.57)
o 20V b T
Now from equations (4.154) and (4.155) one has
v 2.9...32
j T R7/4R {l;;;i%?iLE} dv . w for R/L >> 1,
-—00 T
T 9, 7
f o 2°/4R {cos i - l} gt = B
Thus, equations (5.55) - (5.57) become
9 /EEikZJLsz 1.2 2
<|E._ |>v—"— + T E° v (5.58)
1x 4 9 o
|2 ;/-.r_rE(Z)R\)“Z
<[E > N —— (5.59)
ly k2 23
o
2 /FEiRvZ
<|E1z | “> v ———— . (5.60)
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Since k2£R = (kl)z-% >>> 1 , the second term on the right in equation

(5.58) should be dropped so that the equation becomes

9 vy EszER\)Z

<|E
lXo 4

: (5.61)

Equations (5.59), (5.60), and (5.61) give the final expressions
for the mean-square field components. These equations, together with
equations (5.42), represent the results of the examination of the scat-
tered field at the center of the randomly-inhomogeneous sphere.

Comparing the magnitudes of the field components, it can be seen

that the magnitude of <|Elx |2> is greater than that of <lEly |2> by
o

a factor of (kl)a, and furthermore that the magnitude of

<|ElX |2> is greater than that of <|E ]2> by a factor of (kl)z.

1z
o o

The Born approximation is assumed to yield reliable results

|2 2 2

provided IE; >> <1Ei(0)|2> . Since |E;l = E_ , and since

<[El(o)|2> v <|E |2>, this implies that

1x
o

kzﬂR
This inequality is identical to the one which was derived in Section

4.2A.

5.3 Scattered Field for the Case of k& << 1

The mean-square components of the scattered field will now be
determined for the case where the correlation distance of the inhomo-
geneous dielectric is much less than the wavelength (it was shown in

the previous section that the ensemble averages of all the products of
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pairs of transverse components vanish). Asymptotic expressions for
the mean-square components will be obtained for two cases, one being
for k>0 as R and £ remain fixed, and the other being for
R+ as k and & remain fixed.

Using equations (5.14), (5.9), and the explicit expression for
the correlation function, the following expressions can be obtained
for the mean-square field components:

E2k626v2 R/& m2m R/L W 2
SRR ing
0 0

- oot 1?1k Go-p)
)
l44m
{4h_(KRO)h' (kLp")P (cos B)P" (cos 8')+ = h, (KLp)ha(kLp)[4P, (cos @
o AP, (AP TJE, (cos B)F, (cos g By LekpIh (ka4 (cos B)

<|E

o——3

1x
a 0 0 0

X

bd

Pz(cos 0"+ Pg(cos Q)Pg(cos 0")cos 20 cos 2¢' - 2P2(cos G)P%(cos oY)

X

cos 2p' - 2P2(cos 9')P§(cos B)cos 201~ ho(klp)h;(klp')[ZPo(cos 0)

X

Pz(cos ')~ Pb(cos Q)Pg(cos 8'")cos 20']- hZ(klp')hz(klp)[ZPo(cos e')

X

Pz(cos )~ Po(cos 9')P§(cos 8) cos Zﬂﬂpzp'zsin 0 sin ©'dpded dp'de'dp’

T % 40k-p
J J e P 5P [2n (10)P (cos 6)- h. (kip)
[o} o 2
0 0

b3 (Pz(cos 9)—-% Pg(cos Q) cos 29)]pzsin 0 dp de d%}+ %-Ezvz (5.62)
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- k 26 2R/ T2 R/ T i o
= - ' e s e
2T ] o
Yo 576m° .
0 0 O 0
2 o2

x h (klp)h (klp')P (cos Q)P (cos B'")sin 20 sin 20'p

x sin 0 sin O' df do dp d@' de' dp' (5.63)

6,6 2 R/Z T2 R/L T 27
27V —_— S
<|e |2>_L BEBE je-lp—p'lze—izk-(p—o')

i L4t 0 00 0D 0O

X hz(kﬂp)h;(klp')Pé(cos G)P;(cos 8")cos @ cos ﬁ'pzp'z

X sin O sin ' df d6 dp dp' de' dp'.(5.64)

It should be noted that in using equation (5.14) the change in variables

p = %~;-, p' == T' was made.

|

Now

i 3 31 k&p
Py h (MD) = [ - = ]e .
2 Ko (0)? (o)

-1 eikzp
kLp

ho(klp)

Then in a manner similar to that used in Section 4.3, it can be shown
that as k »> 0, while R and & remain constant, the major contribu-

tion to the integrals in equations (5.62) - (5.64) is obtained from the

_naz . . : 1
___§l§ elklp, ———21—3 elkip terms of the second order Hankel function.
(kLp) . (k2p')

On the other hand, as R = «© while k and £ remain constant, the

. 1
major. contribution to the integrals comes from the i%E eikﬁp, 1%57 elkﬁp

terms in the first and second order Hankel functions. Thus,
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£2,2 R/&7 2m R/& m 2m — o
) -l =" e fnen! -n"'
12 n —2 5 J . J J J olo-e' |7 itk (o-p") _ikh(p-p")

o 64

|E1x

0 0 O 0O 0 O
X [4P2(cos 9)P2(cos 8"+ Pg(cos G)Pg(cos ©')cos 20 cos 20°'
- 2P2(cos 9')P§(cos 8')cos 20' - 2P2(cos 9')P§(cos 8)cos 26 ]

2 E%T-sin 0 sin 0'dP do do dg' do' dp'

2.2 R/ T 2T

E™V 2 o comm
) -p~ _ifkep dikip A
+ s Re{ j J J e e e [Pz(cos 0)- > Pz(cos 8)cos 20]
0 0 O
x <% sin 0 dff 4@ dé}+-% Eg v2 (5.65)

£2y2 R/ m2r R/&mW2m 5 o
: Ty Ci0T. ol
e, % a0 . olo-0' |7 —itke (o-p") _ik&(p-p")
1y 2
0 0 0 0 0 O

o 64T

1, sin © sin o'

2 2 ' 1
% Pz(cos G)Pz(cos 0")sin 2p sin 2¢ 5

X d@ de dp d@' de' dp'(5.66)

phe® R/& m 2r R/ T 2w s o
= =y - e -n! -p'
<|E, [ 2 2 I J ) J [ J S

x P%(cos G)P;(COS 8")cos # cos @' 1, sin 6 sin 6'df dO dp d@'de'dp’
pp
(5.67)

k >0 while R and £ remain constant, and
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X elkl(p p") {4PO(COS O)Po(cos 9')+'%[4P2(COS 9)P2(C°5 ")

+ Pg(cos Q)Pg(cos 8')cos 2f cos 2¢' - 2P2(cos B)Pg(cos 6")cos 2¢'
- 2P2(cos 9')P§(cos 8)cos 2¢]+—[2Po(cos Q)Pz(cos e")
+ 2Po(cos 9')P2(cos G)—-Po(cos G)Pg(cos 8")cos 2¢'

- Po(cos G)Pg(cos 8')cos 2¢'}pp'sin 9 sin 6" d@ de dp d@'de'dp’

2. 2.2 2 R/2
E"k"2V 2 S
_ [o) -0 -ilkep diklp
—8r Re{: f e e e [24-Pz(cos 8)
0
- %— P;(cos 8)cos 281p sin 6 df de dp} + % E(z) v2 (5.68)
2.4 4 2 R/ T 2T R/L T 2T
Ek 2V == 2 0T
g o B P o o
Yo 576
0O 0 0 0 0 0
e
X eikR(p eh) Pg(cos B)Pg(cos 0")sin 2¢ sin 20'pp '

x sin @ sin 6'dp d6 dp dp'de' dp' (5.69)
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4 4 2 R/L T 2w R/L T 2w

£2 2ty _ 2 i

5, 1%~ J J lo-0"|* -1k (o-0")
144 00 0 0 0

- 1
X eikl(p el Pé(cos G)Pé(cos 8')cos B cos @'pp'sin 6 sin O
x dp de dp dp' de' dp’ (5.70)

as R + o while k and £ remain constant.

o5 |2 ==
Now because e decreases very rapidly for |p—p‘| 24

most of the contribution to integrals in equations (5.66), (5.67), (5.69),

(5.70) and the first integrals on the right-hand sides of equatioms

(5.65) and (5.68) will occur in the region where ISV— EWI is relatively

small. Then since k% << 1, one can make the approximations

Tee Crvagy? i
eigk (p-p") N1, eikﬁ(p ) v 1 in those equations. For similar

ikep JEACTS

reasons, one can make the approximations e jo- e v 1 in the

last integrals on the right in equations (5.65) and (5.68). Then using

the expansion (see equation (4.178))
T 2. .2, ©
e—]p_p l - e_(p +p ) z in(2n+1)jn(—i2pp')
2 (n-m)! _m m ' ¢ '
x Z s A Pn(cos Q)Pn(cos 0")cos m(P-6") 5

me0 ™ (otm) !

one finds that equations (5.65) - (5.70) become

2 2 . 7 R/2 w 2w R/L 7 2w 9 .2
<y 1B~ 14 1 ttemoe EmL [ [ [ [ [ o@D
o 64W n=0_L m=0 0 0 0 0 0 0

x jn(—inp')PE(cos Q)Pﬁ(cos 8")cos m(ﬂ—ﬁ')[éPz(cos G)Pz(cos e")
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+ Pg(cos G)Pg(cos 8')cos 20 cos 20' - 2P2(cos G)Pg(cos 8'")cos 20

- 2P2(cos 9')P§(cos B8)cos Zﬂ]B%T sin 6 sin 8' d@ de dp d¢'d9'dpi}

2 2 R/ ™ 2w
E“V 2 )
& gﬂ J J J Ea [P (cos 8) - _'P (COS ®)cos 20]

0O 0 O
- 1 .22
X 5 sin 6 dp de dp + g EJV (5.71)
2 2 R/& m 2w R/L 7 27
2 E v T (n-m)!
<|Elyo| " 64ﬂ EO mg ' (2n+1)am‘z;;557— J J J ) J J
n= 0 00 0 0 O

2 2
x o (PTHP'T) jn(_izpp')PE(cos G)P:(cos 8"')cos m(@—ﬁ')Pg(COS e)

X Pg(cos 0')sin 20 sin 2§°' E%T sin ® sin 6'd@ de dp dﬁ'de'dp{} (5.72)

2 2 R/ m 2w R/L T 27

2 (n-m) ! .
<|E1z | “> P Zo Zo i (2ntl)o v ooy J J J J J J
9 n? =0 { m= 0 00 0 0 O

~(pz+p'2). £ oty m ; s |
X e Jn(—12pp )Pn(cos G)Pn(cos 68')cos m(pP-@ )Pz(cos 9)

" P;(cos 8')cos @ cos @' 5—%—.— sin O sin ©'dp de dp dp' de’ dp'}(5.73)

as k> 0 while R and £ remain constant, and
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. E2k424v2 % s m)'RIQ m2m R/L W 2T
<IElxol " l44ﬂ nZO mzo ! (2n+l)a (ntm) ! J f J ) J f J
0O 0 0 0 o

2 . T " m m
- e—(p +p' %) Jn(—12pp')Pn(cos Q)Pn(COS 8')cos m(@-@") {4P0(cos Q)
. - ' 2 2 ' '
X Po(cos 0 )+~Z[4P2(cos G)Pz(cos (8] )4—P2(cos Q)Pz(cos 0')cos 2@ cos 2¢
- 2P2(cos Q)Pg(cos 0')cos 2¢‘-—2P2(cos 9‘)P§(cos 8)cos 20]

v 1 _ 2 L]
+ 2P0(cos Q)Pz(cos 0")+ 2Po(cos (] )Pz(cos Q) Po(cos Q)PZ(COS e")

X cos 20'- Po(cos 9')P§(cos B8)cos 2¢} pp'sin® sin 0'd@ dO dp d@'d@'dp'}-

2.2.2 2 Rih 7 2n

E K747V .2 1 2
- -—izﬁf——- J f e P [24—P2(cos 9)—~§ Pz(cos 8)cos 20]
0O 0 O
X psin © df 0 dp + 3 E. V7 (5.74)
: E2k424v2 ™ (a1 R/Z w2 R/ 7 27
<lEl%' T Tster? n-ZO mz e, Gyt f { JJ J f
0O 0 O 0 0 O

-(D2+D'2) - 1 m mn 1 1 2 2 1
X e Jn(—12pp )Pn(cos O)Pn(cos 0")cos m(@-@ )Pz(cos G)Pz(cos o)

X gin 2@ sin 2@'pp' sin O sin O' d@ 48 dp dﬁ'dQ‘dp'}p (5.75)
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, E§k4£4v2 - 5 ) —— R/% w2 R/Z T 27
<IElzo| o 14472 nZO mZO LMD i) 1 J [ j ) J J J
: D OO0 00 0

~(p%0'?) m w -
X e jn(—inp‘)Pn(cos G)Pn(cos 08")cos m(ﬁ—ﬂ')Pz(cos 8)
x P;(cos 8")cos @ cos @' pp'sin 6 sin ©' 4P de dp dﬁ'de'dp'}'(5.76)

as R+ ® while k and £ remain constant. When the angular inte-
grations are performed, equations (5.71) - (5.76) becone

52,2 R/% R/%

~4 2 .2
- -(p ') P i L o2
<|E1"o| # =g J I e 35(-12pp")o5—dp dp'+ 5 E N
0 0
(5.77)
3p2,2 R/% R/% 9 .9
2 o -(pTH+p' ) . 1y 1L 1
> . = °
0 0
-3g2y2 R/L R/L 9 .3
2. o ~LPHETY o 11 '
<fElZ | %>~ — 5 J j e J,(-12pp" )5 do dp (5.79)
= 0 0
as k =+ 0 while R and & remain constant, and
4Ezkagavz R/2 R/% 3
2 ) ~(p 4p? ™) » '
<y [ b | [ e [55,(-1200")

0 0

Ei\)z(l ~ %222y
- jzc—izpp‘)]op'dp dnt o 5 (5.80)
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2,4,4 2 R/% R/&
) 2
25 o et 7 (050" ?)

3,(=12pp0")pp"'dp dp' (5.81)
o 15

0 0

2

2. 4.4 2 R/ R/R
- 2
Eok ok e_(p +0'7)

jz(—iZDo')pp'do dp' (5.82)
15 5 @ ‘

as R =+ ® while k and & remain constant.

The integrals that appear in equations (5.77) - 5.82) were
encountered earlier and their values are given by equations (4.223),
(4.224), and (4.225). Substitution of these values into equations

(5.77) - (5.82) yields

, R
<|E > (5.83
] lxol 5 )
2 Egvz
<|E1 | > (5.84)
Y5 15
2 EE“Z
<|Elz |“> (5.85)
" 15
as k>0 while R and £ remain comnstant, and
) 27 B’ e EY (- kD)
<|E | > ~ L2 -+ (5.86)
1x
& 15 9
L e
<IE1y [“> ~ e (5.87)
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JFE§k4£3Rv2

[% e (5.88)

<|E
lzo 60

as R+« while k and % remain constant. Now the second term on
the right-hand side of equation (5.86) becomes negligible in compari-
son to the first as R + « and should be dropped. Thus,

2/ E§k4l3Rv2

> (5.89)

as R+ while k and 2 remain constant.

Equations (5.83) - (5.85) and (5.87) - (5.89) are the final
expressions for the mean-square components ét the center of the
randomly-inhomogeneous sphere for the case where k& << 1 . To com-
plete the results it should also be recalled that the ensemble average
of any pair of transverse components vanishes, which means that the
transverse components are uncorrelated.

Comparing equations (5.83) - (5.85) with (5.87) - (5.89), it
can be seen that the ratio of their magnitudes i1s on the order of

1:%%¢3R . Thus, 1f 1 >> K*

23R, one should use equations (5.83) -~
(5.85) to obtain the mean square field components, while if k4£3R >> 1
then equations (5.87) - (5.89) should be employed. Neither set of

equations will be accurate for the case where k423R ~ Lo

Finally, in order to have confidence in the reliability of

the Born approximation, one should require that IE;|2 >> |Ei(0)|2 .
Assuming k4£3R >> 1, this requirement is equivalent to
v2 << 2 5

43R
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VI. CONCLUSIONS

Using the Born approximation in solving the vector wave
equation, this work studies the far-zone scattered electric field
when electric and magnetic dipoles are surrounded by spherical
volumes of randomly-inhomogeneous dielectric media, and it also
examines the electric field at the center of a randomly-inhomogeneous
sphere when a plane wave is incident upon it.

It is found that the inhomogeneities give rise to depolarized
components in the electric field (components transverse to the origi-
nal field vector). It is also found that the transverse components of
the scattered field are uncorrelated.

For the problem in which a dipole is situated at the center
of the inhomogeneous sphere, it is shown that the magnitude of the
mean-square depolarized component (which is transverse to the direction
of propagation) is less than that of the polarized component by a
factor of (kR,)2 when k& >> 1 . When k& << 1 , the mean-square mag-
nitudes of the components are found to be nearly the same and the
mean-square @ component is found to be independent of the polar
angle 90 . In both cases, the presence of inhomogeneities results in
the elimination of nulls in the radiation pattern.

For the problem in which the scattered electric field is
being examined at the center of the sphere upon which a plane wave is
incident, two depolarized components are produced, one parallel to the
direction of propagation of the plane wave and one transverse to it.

When k& >> 1 , the magnitude of the mean-square depolarized component
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parallel to the direction of propagation is a factor of (kﬂ,)2 less
than that of the polarized component, and the magnitude of the other
mean-square depolarized component is less than that of the polarized
component by a factor of (kﬂ,)4 . When k& << 1 , all three components
have nearly the same mean-square magnitudes.

In both problems, it is found that the magnitudes of the mean-

square polarized components are greater when k& >> 1 than when

k% << 1 .



=156~

APPENDIX A

USEFUL EXPRESSIONS AND EXPANSIONS

A.1l Spherical Hankel and Bessel Functions

In the text of this work, use is made of spherical Hankel and
Bessel functions. Listed below are explicit expressions and asymptotic

approximations for some of these functions.

(i) Spherical Hankel Functions of the First Kind

_ =i dkr
h (kr) = 1= e (A.1)
hy (kr) = -%{; - o 5] g (A.2)
(kr)
hy(kr) = [ 1i<r . 5 - 3 5] o M (A.3)
(kr) (kr)
hy (k) = [ ir L 61 e 15 - 1514] ikr i 5
(kr) (kr) (kr)
(ii) Spherical Bessel Functions
j (kr) = - sin kr (A.5)
o kr
. 1 1
Jl(kr) = 3 sin kr - ¢ ©os kr (A.6)
(kr)
jz(kr) = [--%; + 3 3 ] sin kr - 3 5 cos kr (A.7)
(kr) (kr)
j40kr) = [- 6 .13 +1sin kr+[%&~- L cos kr (A.8)

kr)?  (kr) (kr)
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(iii) Asymptotic Expressions for Spherical Hankel and Bessel

Functions

l. kr > o«

__ i ik L
ho(kr) e jo(kr) = sin kr
) l_ ikr 3 =1
hl(kr) n o © Jl(kr) u r cos kr
: 1 ikr < -1
hz(kr) v T e Jz(kr) Y Tr sin kr
! ikr . 1
h3(kr) N e 33(kr) v e ¢os kr

2. kr >0
-1 s
ho(kr) N R Jo(kr) AV
-1 kr
h. (kr) ~ = 3, (kx) v =
1 (kr)2 1 3
2
hy () ~ =2 350 ~ (5
(kr)
2 3
h3(kr) n "'_ls.lz j3(kr) n (_k]l
(kr) 105

An integral involving spherical Hankel and Bessel functions

which will prove to be quite useful is

r
2
j tzan(kt)bn(klt)dt = ;71_'-;—2- [kan+l(kt)bn(klt)— klan(kt)bn_l_l(klt)]

: (A.9)

where a, and bl_1 denote any two linear combinations of spherical

Bessel or Hankel functions of order n, and where k2 # ki "
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Expression (A.9) can be verified by using the following equation

from the N.B.S. Handbook [25]:

r
2 .9 :
j (k"= k]t A\)(kt) B\)(klt)dt = r[k A\H_l(kr) B\)(klr)
= %q Av(kr) B\)ﬂ(klr)]

where Av, BU are any linear combinations of cylindrical Bessel or
Hankel functions of order wv.

Dividing this by kz— ki, assuming kz # ki , one obtains

r
J t Av(kt) Bv(klt)dt = —751—75 [k Av+l(kr) Bv(kr)~ kl Av(kr) Bv+1(k1r)].

k™- kl

(A.10)

Now spherical Bessel and Hankel functions of order n are

related to cylindrical Bessel and Hankel functions by

d (kr) = +/ 2—?{; Dn+1/2(kr) (A.11)

where dn is a spherical Bessel or Hankel function and Dn+l/2 is
a cylindrical one. Then by letting Vv = n4~% in equation (A.10) and

using equation (A.11l), one obtains

x 2k, t
f e[/ 2L a_e) 1B/ —5— bk ©)]de = 3 {kh/z}f a_,, (k)]

2 2
- kl

2k.r 2k.r
1 2kr 1
X 1’ = bn(klr)] - kl{jﬁfE— an(kr)]fjl——ar-bn+1(klr)]}— (A.12)
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or, after simplification,

z 2

J tzan(kt)bn(klt)dt - k;_kz [k a_, (k) b_(k;0)~ kja (kn)b_, (k1)
1

which is equation (A.9).

A.2 Legendre Polynomials and Associated Legendre Polynomials

A number of Legendre polynomials and associated Legendre
polynomials are used in the text. Explicit expressions for these poly-

nomials are listed here.

Po(cos 8) = 1 (A.13)
Pl(cos ) = cos O (A.14)
Pi(cos 0) = sin @ (A.15)
i 2
Pz(cos ) = 3{3 cos @ - 1] (A.16)
Pé(cos 8) = 3 sin O cos O (A.17)
2 2
Pz(cos ) = 3 sin"® (A.18)

The following orthogonality relationship for Legendre poly-
nomials is frequently employed:

2 (ntm)!

Tf 20+l (n-m)! 1 m=m
0

Pg(cos 9) Pﬂl(cos B)sin O do = (A.19)
0 if n#n
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A.3 Expansion of a Plane Wave in Spherical Waves

Consider a plane wave given by elk' T where

r=r1r sin O cos P E; + r sin O sin @ E& + r cos O E;,'E = k sin 0'
X cos @' E% + k sin 8'sin @' E; + k cos Q'E; . Then from Stratton [26]

one obtains the following expansion:

n

KT o - o |
) C- nzo in(2n+1) Jn(kr) [mZO o'm E_E%T PIII:(COS Q)P:(C(-)s ")
% ees uif- 9] (A.20)
where
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APPENDIX B

JUSTIFICATION FOR THE EXTENSION OF THE LIMITS OF A CERTAIN INTEGRAL

In evaluating the integral

R/% R/2
~(x2 v
T = J J e jl(—12xy) dx dy (B.1)
0 0

in Section 4.3A, it was asserted that the upper limits of the integral
could be extended from R/% to « without producing a significant
error, provided that R/L >>> 1 . This will now be demonstrated.

Let

T g 2, .2
I' = J f JHETF j;(-i2xy)dx dy (B.2)
0 0
and let
"= 1-1 (B.3)
so that I =1'" - I" . If it can be shown that the magnitude of I"

is negligible in comparison to that of I' , then the assertion will

be proved. To begin with, one has

—(x2+ 2)
I" = J J e y 3, (~12xy) dx dy (B.4)
S
where S is the region of the first quadrant of the x-y plane
exterior to the square whose vertices are the points (0,0), (O,R/2),

(R/L,R/), (R/2,0) . Now
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. ~4xy -4xy
. : sinh 2 Xy cosh 2xy -i 2xy . 1l+ e l1-e
Jq (~i2=y) = 1] - ] =—==8 [ = ]
1 4x2 y2 2xy 2 2xy 4X2 y2
Let
-2t -2t
gty =+L+te__1-¢e (B.5)
E 2
t
so that
i 2
jp-izxy) = - 5 e g(2xy) .
Then
. 2
ma=_41 J J e—(x—y) g(2xy)dx dy . (B.6)
2

S

Let region S be divided into three subregions as shown in Figure

B.1 . Then
w o =i ={x~y) . i ={aey) 2
I = - e g(2xy)dx dy -3 e g(2xy)dx dy
. B
i - (x-y) 2
- J I e g(2xy)dx dy
53

and hence

2 2
|1"] = _% j J e‘(X—Y) lg(ny)|dX dy +-% I I e—(x—y) Ig(ny)|dx dy

By Sy

~(x-y)?
I I e Y g(2xy) |dx ay .
S

+
N

3

Consider
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<

x=lly

R/E

& X

R/£

Figure B.1. Subregions of Integration for Integral 1”
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2 T 2
J J o (=) lg(2xy) |dx dy = e~ (x¥) |g(2xy) [ax dy .

S, R/% 0O

A few computations reveal that O € g(t) < 2 for t =0 . Hence,

2 o Oy 2
J J e~ (x7) lg(2xy)|dx dy < 2 J J I g ay
R/% O

g

Making the change of variables t .9y-x , ¥y =y , one obtains

2 o Oy 2
J J e—(XFY) |g(2xy) |dx ay < J j e—(t+ -1¥) dt dy
R/% O

2
%5
oo _Qy o) ()
2 2 2 2
£ 2 f T 4o J et ar <2 Y 5 J et dt
R/ 0 R/% 0

1 2
= /E'J e—'Oly dy .
/
Making the change of variable T =y - R/% , one has

b 2
I J e—(x—y)zlg(ny)|dx dy < /w1 I o+ 0L(T - R/L) .
0

Sy

B,.2 2 - |
¢ o-O0IR7/% J G OITT | o —DIRSARS o~ OIRS/R

20 . (B3.8)

0

In exactly the same manner, one can show that
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2 2, 2
J J VY oy i iy % BOe R X . (B.9)

Sy

Now consider

o l.1y

2 2
J J e—(x-y) f8(2xy)| F4 J J e—(x_y) IB(ZXY)IdX dy

s, .91 R/ .9y

It is apparent from examining the expression for g(t) given in equa-
tion (B.5) that O < g(t) < 2/t for t > 5 . Then since it is

assumed that R/L >> 35 , one has

2 T Al 2
f f e~ (=7) |g(2xy) |dx dy < J ey ¢, i; dx dy .
B .91'R/% .9y
But since x = .9y in S, » then 1/xy = l.l/y2 in 8, , and hence
2 0 l.1y 5

J J emCXnY) |g(2xy)|dx dy < j J e_(x_Y) li%—dx dy

s, .91 R/L .9y y

1 d T —xz
g gl I = J e™® dx = 1.21 /T L/R < 44/R | (B.10)
J91R/2 Y —eo

Substituting the values of equations (B.8), (B.9), and (B.10)

into the inequality (B.7), one finds that

~.01R% /22
[<)

"] < 20 + 28R . (B.11)

Now if R/% > 30 (and it will be assumed that this is the case), then
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-.01R%/22
e

20 < /R . Hence, from equation (B.1l), one has

' 3%
= < 5 - (B.12)

From equation (4.200) one finds that I = -1/2 . Thus 1if R/L >>> 1 ,
the magnitude of I" is negligible when compared to that of I , and
therefore the assertion on extending the limits of the integral is

proved.
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