
I. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS 
IN MOLECULAR CRYSTALS 

IT. AN INVESTIGATION OF DELAYED LIGHT EMISSION 
FROM Chlorella Pyrenoidosa 

Thesis by 

Eldon Bruce Priestley 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1970 

(Submitted September 8, 1969) 



ii 

To My Father and Mother 



iii 

ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to Professor G. Wilse 

Robinson, my research advisor, for his continued advice and encour.­

agement throughout the course of the research described in this thesis. 

Special thanks also goes to Drs. A. Haug and B. E. Kohler who, 

each in his own unique way, contributed so greatly to my scientific 

understanding and education. I have many fond memories of the hours 

spent in collaboration with both Alfred _and Bryan. 

I am indebted to Dr. P. L. Fehder for his expert counsel, 

always cheerfully given whenever a breakdown in communications 

occurred between myself and the computer. 

The experimental work undertaken could not have been com­

pleted were it not for the extraordinary competence of the staffs of the 

Instrument and Glassworking Shops in the Chemistry Department at 

Caltech. Particular mention must be made of Bill Scheulke, Villy 

Jorgenson and Learco Minghetti whose assistance on so many occa­

sions was absolutely indispensable. 

The superb secretarial skills of Adria Larson eased the burden 

of manuscript preparation and correspondence, for which I am indeed 

grateful. I also wish to thank Joyce Lundstedt for the splendid job she 

did of typing this thesis. 

Financial support from the California Institute of Technology 

during my four year stay is grateflllly acknowledged. 



iv 

Finally, and most important of all, I wish to-thank my wife, 

Fern, for her continual encouragement and warm affection which con­

tributed immeasurably to the success of my graduate career. 



v 

ABSTRACT 

I. PREAMBLE AND SCOPE 

Brief introductory remarks, together with a definition of the 

scope of the material discussed in the thesis, are given. 

II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN 

MOLECULAR CRYSTALS 

Phosphorescence spectra of pure crystalline naphthalene at 

room temperature and at 77° Kare presented. The lifetime of the 

lowest triplet 3 Bi_ u state of the crystal is determined from measure­

ments of the time-dependence of the phosphorescence decay after 

termination of the excitation light. The fact that this lifetime is con­

siderably shorter in the pure crystal at room temperature than in 

isotopic mixed crystals at 4. 2° K is discussed, with special importance 

being attached to the mobility of triplet excitons in the pure crystal. 

Excitation spectra of the delayed fluorescence and phosphores­

cence from crystalline naphthalene and anthracene are also presented. 

The equation governing the time- and spatial-dependence of the triplet 

exciton concentration in the crystal is discussed, along with several 

approximate equations obtained from the general equation under certain 

simplifying assumptions. The influence of triplet exciton diffusion on 

the observed excitation spectra and the possibility of using the latter to 

investigate the former is also .considered. Calculations of the delayed 
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fluorescence and phosphorescence excitation spectra of crystalline 

naphthalene are described. 

A search for absorption of additional light quanta by triplet 

excitons in naphthalene and anthracene crystals failed to produce any 

evidence for the phenomenon. This apparent absence of triplet-triplet 

absorption in pure crystals is attributed to a low steady-state triplet 

concentration, due to processes like triplet-triplet annihilation, re­

sulting in an absorption too weak to be detected with the apparatus 

used in the experiments. A comparison of triplet-triplet absorption by 

naphthalene in a glass at 77° K with that by naphthalene-h 8 in 

naphthalene-d 8 at 4. 2° K is given. A broad absorption in the isotopic 

mixed crystal triplet-triplet spectrum has been tentatively interpreted 

in terms of coupling between the guest 3 Biu state and the conduction 

band and charge-transfer states of the host crystal. 

III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM 

Chlorella Pyrenoidosa 

An apparatus capable of measuring emission lifetimes in the 

range 5 x 10-9 sec to 6 x 10-3 sec is described in detail. A cw argon 

ion laser beam, interrupted periodically by means of an electro-optic 

shutter, serves as the excitation source. Rapid sampling te chniques 

coupled with signal averaging and digital data acquisition comprise the 

sensitive detection and readout portion of the apparatus. The capa­

bilities of the equipment are adequately demonstrated by the results of 

a determination of the fluorescence lifetime .of 5, 6, 11, 12-tetraphenyl-
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naphthacene in benzene solution at room temperature. Details of 

numerical methods used in the final data reduction are also described. 

The results of preliminary measurements of delayed light 

emission from Chlorella pyrenoidosa in the range lQ-3 sec to 1 sec 

are presented. Effects on the emission of an inhibitor and of variations 

in the excitation light intensity have been investigated. Kinetic analysis 

of the emission decay curves obtained under these various experi­

mental conditions indicate that in the millisecond-to-second time inter­

val the decay is adequately described by the sum of two first-order 

decay processes. The values of the time constants of these processes 

appear to be sensitive both to added inhibitor and to excitation light 

intensity. 
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PART I 

PREAMBLE AND SCOPE 
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The first part of this thesis describes several experiments 

aimed primarily at providing a better understanding of the dynamics of 

triplet excitons in organic molecular crystals. l-4 The processes of 

particular interest are those associated either directly or indirectly 

with the existence of these mobile, neutral, electronically excited 

triplet states of the crystal. In fact, it is principally the mobility of 

triplet excitons that gives rise to much of the interesting excitation 

dynamics, unique to the crystalline state, with which we shall be con­

cerned. Consequently, considerable emphasis is placed on room tern-

perature measurements since at temperatures in this range . the 

excitons are essentially free, whereas at low temperature they are 

e:ff ectively immobilized due to complicated trapping effects. Only brief 

mention is made of the process of generating triplet excitons, the prin­

cipal concern being with what befalls them after they are already in 

existence. Specifically, the processes of first-order radiative decay 

(phosphorescence), second-order radiative annihilation (delayed fluor­

escence), absorption of additional light quanta by the triplet excitons 

(triplet-triplet absorption) and energy transfer (diffusion) are each con­

sidered at length. Also finding their way into the discussion are the 

ever-present, if somewhat less exciting, nonradiative decay mechan­

isms (quenching). 

Naphthalene was chosen as the model system for most of the 

experiments although anthracene was employed occasionally. Both 

molecules have D2h symmetry, crystallize in the monoclinic system 

with space group C~h and have two molecules per unit cell, so that 
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almost all of the concepts applicable to one apply equally well to the 

other. 

A brief summary of the basic concepts of exciton theory, as it 

applies to molecular crystals, l , 4 is presented here to provide a back­

ground for the more detailed discussions of various aspects of the 

theory that appear in subsequent sections. Molecular crystals are held 

together by weak Van der Waals forces, making it possible to regard 

the intermolecular interactions as a small perturbation on the oriented 

array of molecules. Due to these small but finite intermolecular 

forces, it is impossible to construct a stationary state for a perfect 

crystal in which one particular molecule is -excited. Rather, the cor­

rect zero-order states for a crystal with one quantum of excitation 

correspond to a delocalization of the energy over the entire crystal. It 

is convenient to describe the quantum of excitation as an exciton of 

-momentum nk which propagates through the crystal with a velocity 

determined by the magnitude of the intermolecular interactions. Also 

dependent upon the magnitude of these interactions is the extent to which 

the molecular energy levels are altered in the crystal. When the inter­

molecular interactions are weak, as they are in molecular crystals, 

the electronic energy levels of the crystal are traceable to parent 

molecular levels. Consequently, there is a one-to-one correspondence 

between the excited states of the free molecule and the neutral exciton 

states of the crystal. It is therefore a convenient and commonly 

accepted practice to labe l each of the crystal exciton states by the sym­

metry designation of the parent energy level of the fr ee molecule. 
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Using this designation we identify the ground· state (1Ag), the lowest 

excited singlet state (1B2U) and the lowest excited triplet state (3B 1u) 

of naphthalene. The 1Ag - 1B2U and 1Ag - 3B1u energy intervals, aver­

aged over the two Davydov components in both cases, are 31, 554 cni 1 

and 21, 209 cm- 1
, respectively. The corresponding energy separations, 

1Ag - 1Bm and 1Ag - 3Biu, in crystalline anthracene are 25, 400 cm-
1 

and 14, 750 cm- 1
, respectively. 

The Hamiltonian for a crystal containing N unit cells and h 

molecules per unit cell can be written in the form 

h N 
3C = I; I; H + E v 

µ.=1 k=l kµ. kµ.< Iv kµ, Iv 
(1) 

where the double indices kµ and Iv label different molecules, Hkµ is 

the Hamiltonian for an isolated molecule and Vk 11 is the pairwise · µ,LV 
intermolecular interaction. Since the coupling between molecules is 

small compared to the intramolecular interactions, the Reitler-London 

formalism may be used. The ground state of the crystal, then, has the 

form 

Nh 
¥ = .14 II ¢kµ 

kµ=l 
(2) 

where <ffk.µ are the ground state antisymmetrized wave functions of the 

individual molecules and .sl1. is the antisymmetrization operator per­

muting electrons between the molecules. 

The symmetry adapted wave functions corresponding to the fth 

excited state of the crystal are given by 



where 

and 

q,f = 
µ. 

5 

!. N 

lh)2 " ... ... f 
N LJ exp(i k · r ) l/J 

m=l mµ mµ 

q,t _ A <Pf n , ~ 
mµ - mµ .l.v-f.mµ l.v 

(3) 

(4) 

(5) 

In constructing the exciton states, Eq. (3), use has been made 

of the fact that the Hamiltonian is characterized by the full symmetry 

of the crystal, so that each of these states belongs to an irreducible 

representation of the crystal space group. The coefficients B~ can be 

found either by diagonalizing the hx h secular determinant or by using 

the symmetry properties of the group of the wave vector. The functions 

4>~ are known as one--site excitons and -; mµ is the vector from the 

origin to the center of molecule mµ. We observe that ip~µ' repre­

senting excitation localized on a single molecule mµ, are not 

eigenfunctions of the crystal Hamiltonian, Eq. (1), because of the pair­

wise intermolecular interaction term v. 
The exciton states (3) correspond to an elementary excitation 

modulated by a plane wave, or simply to an elementary excitation 

moving from site to site in the crystal. A rough estimate of the 

excitation transfer time Tt between adjacent sites, provided the 
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magnitude of V is known, can be obtained from the uncertainty prin­

ciple, 

,,. ~ ?i 
t v (6) 

Clearly, the velocity of the exciton is proportional to the pairwise 

intermolecular interaction V. Finally, we note that if the "elementary 

excitation" mentioned above happens to correspond to an electronic 

triplet state, the resulting mobile excitation is a triplet exciton whose 

dynamical properties are the subject of the first part of the thesis. 

The remainder of the thesis is concerned with an experimental 

investigation of the properties of light emitted from Chlorella 

pyrenoidosa between 10 nsec and roughly 1 sec after termination of 

the excitation light. 
5 

Emission occurring in this tii:ne interval is cus­

tomarily qualified by the word "delayed" to distinguish it from "prompt" 

fluorescence emission which is characterized by a much shorter life­

time, on the order of 1 nsec. All of this emitted light, prompt and 

delayed, represents excitation energy that is not utilized in the com­

plex photochemical transformations which together constitute the 

process known as photosynthesis. While this emitted light may be 

yiewed essentially as a u·seless by-product of photosynthesis, it has 

been shown to be intimately coupled to the photosynthetic process_. 

Thus, a detailed investigation of the behavior of the emitted light is 

almost certain to provide valuable insight into the workings of the 

photosynthet ic appar a tus. The delayed emission is especially useful 
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in this respect since much of it is emitted over periods of time char­

acteristic of photochemical reactions. The 2 to 3% total quantum 

efficiency for emission from Chlorella, though small, is of sufficient 

magnitude to permit detection of delayed emission, which constitutes 

only a small fraction of the total emitted light, even at excitation power 

densities as low as 1µ.W/cm2 • Consequently, it is possible to conven­

iently study the properties of delayed light emission using excitation 

intensities for which photosynthesis is known to proceed normally. 

The measurements described in the latter part of the thesis are 

the result of an effort to determine the complete time course curve of 

the emission decay over the region from 1 o-s sec to 1 sec. Reasonably 

sophisticated instrumentation is required for this purpose, especially 

for the measurement of emission decay components lasting less than a 

microsecond. Up to the time of writing, an apparatus having sufficient · 

time resolution to permit measurement of emission lifetimes anywhere 

in the range 5x 10-9 sec to 6x 10-3 sec has been successfully constructed 

and tested. Details of this apparatus and its operation are presented. 

In addition, the interval from 1 msec to 1 sec has been subjected to 

extensive investigation using a. standard phosphoroscope, and the 

results of these measure.ments are also discussed. 
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PART II 

A STUDY OF THE DYNAMICS OF TRIPLET 

EXCITONS IN MOLECULAR CRYSTALS 
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SECTION A 

PHOSPHORESCENCE SPECTRUM OF PURE 

CRYSTALLINE NAPHTHALENE 

The following is the text of a paper published in the 

Journal of Chemical Physics 

[ E. B. Priestley and A. Haug, J. Chem. Phys. 49, 622 (1968)] 
""' 
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1. INTRODUCTION 
~ 

It is of interest to detect phosphorescence from pure organic 

molecular crystals since it would provide essentially the first direct 

means of studying the dynamic properties of the triplet exciton in these 

systems. In the past, certain characteristics of the triplet state have 

been inferred from an analysis of the delayed fluorescence, l, 2 con­

sidered to arise primarily from the annihilation of two triplet excitons 

with the subsequent production of a fluorescing singlet exciton. How­

ever, it must be realized that at best delayed fluorescence provides 

an indirect probe, and in this respect may be less relevant than 

phosphorescence for determining the triplet-state behavior. 

Formerly, it has been possible to detect phosphorescence from . 

aromatic hydrocarbons only if the molecules were in the form of iso­

topic mixed crystals at 4. 2° K, 3 or else in rigid glasses at 77° K. 4, 5 

The apparent absence of pure crystal phosphorescence has indeed been 

the subject of considerable speculationla, 6 and, while plausible expla-

nations can be advanced to account for its weakness, there is no 

reason in principle that actually forbids phosphorescence emission 

from pure crystals. The question reduces to whether or not the slow 

phosphorescence emission is detectable in the presence of often over-

whelmingly fast processes that rapidly deplete the triplet state non­

radiatively. 

Recently, several papers have appeared in the literature 7- 9 

reporting phosphorescence from anthracene crystals at temperatures 
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ranging from 4. 2° K to room temperature'. There are, however, two 

main reasons why naphthalene is more suitable for a study of phos­

phorescence from the crystalline state than is anthracene. First of all, 

naphthalene can be highly purified by known techniques10 while no 

reliable method, aside from extensive zone melting, is known for the 

purification of anthracene. A more rigorous purUication procedure 

that reduces impurities to about 1 part in 107 has been developedlO, 11 

for benzene and naphthalene. It should be noted that for these mole­

cules even extensive zone melting by itself does not lower the impurity 

level sufficiently to permit reliable spectroscopic studies of pure 

crystals. Secondly, the ground state to first triplet state interval is 

significantly larger in naphthalene (21, 209 cm-1 ) than in anthracene 

(14, 750 cm-1 ), which, according to the theory of Robinson and Frosch, 12 

should result in considerably smaller nonradiative losses from the 

triplet state in the case of naphthalene. Consequently, one expects the 

radiative decay to be more intense in naphthalene than in anthracene. 

The purpose of this paper is to report the phosphorescence 

spectrum and also the lifetimes of the phosphorescence and delayed 

fluorescence decays from pure crystalline naphthalene both at room 

temperature and at 77° K. 

2. KINETIC ANALYSIS 

The rate equation for the concentration of triplet excitons in the 

crystal is well known1' 2 and, replacing the source by the initial value 

condition n = n0 at t = O, can be written 
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- dn/dt = f3n + r'n2 
- l ay'n2 

' (1) 

where {3 is the unimolecular decay constant ({3-1 being the triplet state 

lifetime), y' is the rate constant for triplet-triplet annihilation, and 

a is the fraction of triplet- triplet annihilation events that ultimately 

gives back triplets. 13 Rewriting Eq. (1) in a slightly different form 

yields 

-dn/dt = f3n + yn2 , (2) 

where y = (1 -av'2}y'. Solving Eq. (2) leads to a triplet concentration, 

(3) 

For long times, i.e. , for t » {3-1, 

(4) 

If a fraction A of the first-order decay is radiative, the phosphores-

cence intensity 1p is 

( 
A{3n0 ) 

)> = Af3n = 1 + (y I f3 )no exp( -,Bt) (5) 

Furthermore, assuming that a fraction B of the triplet-triplet annihi­

lation events result in the production of a fluore scing singlet exciton, . 

we can write for the intensity of delayed fluorescence, 

( · n )2 
Idf = l(By)n2 =!(By) ~l + (yl,B)no exp(-2,Bt) . (6) 
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Evidently, comparing Eqs. (5) and (6), a plot of the logarithm of inten­

sity vs time for phosphorescence and delayed fluorescence should 

yield slopes that differ by a factor of 2 for times long compared with 

fj-1 • Assuming that steady state is reached during the duration of the 

excitation interval, it can be shown that the initial concentration of 

triplet excitons n0 is given by, 

· ((1 +4ykI0 / ,82
)
1
/2 -1) 

Ilo = {J 
2y ' 

(7) 

where k is the rate constant for production of triplets and I0 is the 

incident light intensity. Combining Eqs. (3) and (5)-(7), we have for 

t= o, 

(8) 

Equation (8) reduces, in the case of low light intensity, to 

(9) 

and, in the case of high light intensity, to 

(10) 

The ratio of the delayed fluorescence intensity to the phosphorescence 

intensity is seen to be dependent on the incident light intensity in both 

limits. 
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3. EXPERIMENT AL 

Light from an Osram 6500-W xenon arc lamp was passed 

through a 5-cm quartz cell containing a NiS04 -CoS04 -water filter 

solution14 and the filtered light was used to excite the crystal, located 

at the center of a cylindrical phosphoroscope. The phosphoroscope 

was 20 cm in diameter and through reduction pulleys could be operated 

at several speeds from about 30 to 1725 rpm with less than 2% drift in 

the frequency. The excitation and observation periods were of equal 

length and ranged from 0. 9 sec at the lowest speed to 15. 9 msec at the 

highest speed. Dead time between excitation and observation varied 

from 83 to 1. 4 msec over the range of phosphoroscope speeds. For 

spectral measurements the highest speed was used, whereas in the 

case of lifetime determinations the speed was chosen so as to give 

excitation and observation intervals equal to more than three lifetimes 

in all cases. 
0 

The crystal emission in the region from 4500 to 5400 A was 

passed through Corning glass filters C. S. 3-72 and C. S. 3-73 and 

f.ocused onto the slit of a Jarrell-Ash Model 82-000, 0. 5-m Ebert 

scanning spectrometer. This ·instrument was equipped with a grating 
0 

blazed at 5000 A in first order, having a reciprocal linear dispersion 

of 16 A/ mm and effective aperture ratio of f/ 8. 6. The slitwidth was 

set at 0. 4 mm. 

Light emerging from the exit slit of the spectrometer was col­

lected on the cathode of a dry-ice cooled EMI 6256 SA photomultiplier 

by means of appropriate condensing optics. The photomultiplier out­

put was fed into a Victor een Model VTE-1 electrometer where it was 
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amplified and the spectrum was recorded · on a stripchart recorder. 

In determining the lifetime of the emission at a given wave­

length, the photomultiplier signal was first amplified to about 1 V and 

then fed into the time base unit of a Nuclear Data Model ND 180 multi­

channel analyzer system operated in the averaging mode. This unit 

was triggered synchronously with the phosphoroscope by means of the 

output from a photodiode activated once per revolution at the beginning 

of the observation period. After averaging the raw signal over 105 

counts, the resulting almost noise-free decay curve was plotted on a 

Hewlett-Packard model 7590C X-Y recorder. 

Measurements, both of the spectrum and of the lifetime, of 

delayed fluorescence were also made. For these measurements it was 

necessary only to remove the Corning glass filters C. S. 3-72 and 

c. s. 3-73. 

Great care had to be taken in all experiments to minimize 

scattered light. To this end the phosphoroscope, spectrometer, and 

photomultiplier were enclosed in a light-tight box to eliminate scattered 

light from around the room. Moreover, within the light-tight box, both 

the excitation light and the emitted light were confined inside metal 

tubes that also housed the required optics. The following independent 

checks for scattered light were made both in the presence and absence 

of the Corning glass filters C. S. 3-72 and C. S. 3-73 to ensure that the 

precautions taken were sufficient to permit detection of the weak signals. 

For these checks, an empty sample cell was substituted for the sample 

in order to simulate the actual experimental conditions as closely a s 

possible. 
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{l) Kodak 103a-0 plates, taken using the second order of a 

600-line/mm Bausch & Lomb grating in a 2-m Czerny-Turner mount 

(effective aperture ratio f/11) showed no darkening on exposures up to 

1 h. 

(2) Not even a de level was evident when 106 counts were made 

with the multichannel analyzer. 

(3) Spectrometer traces made by scanning the 0. 5-m spectro­

meter through the spectral region of interest exhibited only a straight 

baseline. 

The crystals were melt grown from naphthalene that had been 

purified by a process developed in our laboratory and described else­

where. lO, 11 Crystals from three independent purification lots all 

exhibited similar lifetime and spectral characteristics. 

The phosphorescence spectrum of pure crystalline naphthalene 

at room temperature and at 77° K is shown in Figs. 1 and 2, respec­

tively. For the purpose of comparison, the phosphorescence spectrum 

of a 7. 4x 10-3 M solution of naphthalene in 3-methylpentane at 77° K is 

presented in Fig. 3. The spectra of the glass at 77° Kand of the 

crystal at room temperature are seen to be qualitatively the same 

except that the maxima of the former are shifted to higher energy by 

about 70 cm-1 • All the spectra have been reproduced just as they were 



Figure 1. Typical phosphorescence spectrum of pure crystalline naphthalene 
(C oHa) at 300° K. The sample used in this case had been initially zone-refined 
(25 passes), twice potassium purified, and then further zone-refined (45 passes). 
The input range on the~~lectrometer was 10-9 A with a 3-sec time constant. Scan 

rate was 50 1V min and the photomultiplier was operated at 1600 V. 
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Figure 2. Phosphorescence spectrum of pure crysatlline naphthalene (C10 He) at 77° K. The 
sample that gave this spectrum had been treated as that in Fig. 1, except it was subjected to 3 
potassium treatments and 60 passes in the final zone-refiqing. Electrometer input range was 
10-0 A with a 3-sec time constant, the scan rate was 20 A/ min and the photomultiplier was oper­
ated at 1900 v. To compare with Fig. 1, peak heights in Fig. 2 must be multiplied by roughly 2. 

t-.) 

0 



0 
0 

0 
II> 

0 

"' 

21 

~ 

i 
l 
/ 
~ 
~ 

\ 
~ 

T 
f 

< "'r 

l 
-=>-

~ 
l 
~ 

} 
< 

0 .. 0 

"' 

"" 0 
0 ., 
"' 

8 
"' "' 

0 
0 
iii 

8 
([) 

" 

0 
0 ,_ 
" 

8 
"' " 

8 
o~ 



Figure 3. The phosphorescence spectrum of naphthalene in 3-methylpentane 
(7. 4 x 10-3 M solution) at 77° K. Input range OJ:\, the electrometer was 10-7 A 
with a 3-sec time constant. Scan rate was 50 A/min and the photomultiplier 

voltage was 1300 V. 
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observed and have not been corrected for photomultiplier or spectro­

meter response. 

Table I summarizes the spectral results and also presents 

isotopic mixed-crystal phosphorescence data15 and ground-state vibra­

tional frequencies as determined from gas-phase fluorescence measure­

ments. 16 In view of the fact that the position of the O, 0 transition as 

well as the vibrational frequencies are in excellent agreement with the 

isotopic mixed-crystal data, there can be little doubt that the spectrum 

is indeed due to naphthalene and not impurities. 

With regard to impurities, the position of the 0, 0 of phosphor­

escence of {3-methyl naphthalene, which is known17 to lie at 4785 A, is 

of particular interest since {3-methyl naphthalene is one of the most 

difficult impurities to remove. This is clearly in a region where little 

or no emission is observed from our crystals. See Fig. 2. One 
. 0 

sample did show an unidentified emission line at 5390 A at 77° K. 

Since this line did not appear at room temperature and since it was 

present in only one sample, it is attributed to an impurity. Lipsett and 

MacPherson17 also reported having observed emission from naphtha­

lene crystals at this wavelengt.h, and they too assigned it to an 

unidentified impurity. 

Comparing Figs. 1 and 2, it can be seen that the half-intensity 

width of the O, 0 transition is 270 cm-1 at room temperature and nar­

rows to about 75 cm-1 at liquid-nitrogen temperature. Comparable 

narrowing of the other peaks is also evident although it is difficult to 

determine a half-width for these peaks at room temperature due to 

overlap of two or more vibronic lines. It is seen that the complex 



TABLE I. Phosphorescence lines from crystalline naphthalene (C10 Rs) at 300° and 77° K. 

Pure-crystal phosphorescencea Ground-state 

Mixed-crystal phosphorescenceb 
fundamental 

300° K 77° K vibrational 
frequenciesc 

A v A vvac "vac ~v "vac 
(A) 

vac 
f (A) yd (cm-1) (cm-1) (cm-1) (cm-1) I Assignment (cm-1) 

4715 21 203 100 4714 21 207 100 21 208 0 >90 o, 0 0 
4812(?) 20 776(?) 40 . 4803 20 815 35 20 816 392 77 big 392 l 20 698 510 >90 bsg 506 
4835 20 677 50 4834 20 681 60 

20 696 512 >90 ~g 516 
5042 19 828 50 5043 19 824 . 50 19 826 1382 > 90 a1g 1380 
5060 19 757 1oe 5060 19 757 55e 19 749 1459 17 1460 t...:i a1g 01 

5091 19 637 70 5092 19 633 >100 19 631 1577 >90 ~g 1579 
5109 19 568 70 5100 19 602 45 19 579 1629 80 bsg 1624 
5130(?) 19 488(?) 30 5135 19 469 45 ... . . . . . . . . . 
5182 19 292 40 5179 19 303 40 19 312 1896 >90 1382+512 
5230 19 115 30 5230(?) 19 115(?) <20 19 120 2088 89 1577+512 

Broad emission from 18 444 2764 >90 2x1382 
5400 ~18 513 cm-1~to < lO Too weak to observe 18 254 2954 >90 1382+1577 
5500 18 177 cm-1 

a Present work. 

bl. 0% C10 H8 in C10 D~ measured at 4. 2° K; D. M. Hanson and G. W. Robinson (unpub. results). 

c See Ref. 16. dNormalized so that the intensity of the O, 0 is 100. 

eThe fact that this line is so intense compared with the 1459-cm-1 vibration in the mixed crystal 

raises some doubt as to whether it is actually the 1459-cm-1 vibration or not. 
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0 

structure extending from 5000 to 5200 A in the room-temperature 

spectrum splits into five reasonably well-defined lines at 77° K. The 

long-wavelength.tail of the delayed fluorescence is responsible for the 

rising background in the 77° K spectrum. 

In order to gain some insight into the relative intensities of 

delayed fluorescence (elf) and phosphorescence (p) in the pure crystal, 
0 

the complete emission spectrum from 5400 to 3000 A was recorded 

both at room temperature and at 77° K. The total integrated intensities, 

represented by the area under the respective portions of this spectrum, 

were determined. Under our particular experimental conditions and 

within experimental uncertainty, the ratio of df :p was found to be 

approximately 100:1 both at room temperature and at 77° K. As has 

already been pointed out, this ratio is dependent upon the exciting 

light intensity. It is apparent from the magnitude of the experimental 

ratio that the incident light intensity was in the region of applicability 

of Eq. (10). No correction has been made for photomultiplier or 

spectrometer response. 

b. Tri let Exciton Deca Characteristics 

The decays of the crystal emission at 5100 A (phosphorescence 
0 

region of the spectrum) and 3500 A (in the region of maximum delayed 

fluorescence intensity) were followed at 77° Kand at room temperature. 

The room-temperature phosphorescence and delayed fluorescence 

decay curves are exhibited in Figs. 4 and 5, respectively. It is 

apparent from Figs. 6 and 7 that for t > 150 msec (including the ....., 

83 msec dead time · between the termination of excitation and initiation 



Figure 4. Decay curve of the phosphorescence emission 
at 5100 Afrom pure crystalline naphthalene at room temper­
ature. The sample was that which gave the spectrum shown 

in Fig. 1. 
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Figure 5. Decay curve of the delayed fluorescence emission 
at 3500 A from pure crystalline naphthalene at room tempera­
ture. The sample was that which gave the spectrum shown in 

Fig. 1. 
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of observation), a plot of the logarithm of the emission intensity vs 

time becomes exponential for both types of emission. It is also evident 

from these figures that the initial second-order decay has almost com­

pletely died away during the long dead time. Within experimental 

error, the slopes of the first-order component in the semilogarithmic 

plots differ by the expected factor of 2, and the lifetime of the triplet 

exciton [ ~-1 of Eqs. (5) and (6)] evaluated from these slopes is found to 

be 130 msec. 

In order for the slope of the first-order decay component in 

these semilogarithmic plots to be clearly defined in the case of com­

bined first- and second-order kinetics, it is necessary to follow the 

decay out to two or three lifetimes. In fact, measuring the decay over 

a shorter time may result in an apparent dependence of the emission 

lifetime on the length of the observation interval. This dependence is 

such that a longer observation interval gives rise to a longer lifetime 

simply because the instantaneous slope of the semilogarithmic plots 

decreases with time. Singh et al. 2 reported seeing this effect in 

experiments on anthracene in which the observation period was con­

stant but the delay between laser excitation and observation was varied. 

Consequently, care must be exercised to ensure that the measured 

lifetime is independent of the length of the observation period~ For 

phosphoroscope speeds less than about 125 rpm, i.e., for observation 

intervals longer than approximately 225 msec, the triplet lifetime 

determined in the present experiments was constant at 130 nisec. The 

experimental error is believed to be no more than ± 15%. 



Figure 6. Plot of the logarithm of the emission intensity vs time 
for the phosphorescence decay curve shown in Fig. 4. 
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Figure 7. Plot of the logarithm of the emission 
intensity vs time for the delayed fluorescence decay 

shown in Fig. 5. 
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The lifetime measured at 77° K was not significantly different 

from the 130-msec room-temperature lifetime. There is slight indi­

cation that, if anything, the lifetime may be somewhat longer at 77° K 

than at room temperature. 

Question may be raised as to whether all the extensive purifi­

cation was really necessary in light of the relatively high temperatures 

at which the experiments were carried out. However, a crystal in 

which ,9-bromonaphthalene was known to be present as an impurity18 

gave a room -temperature spectrum that, while qualitatively the same 

as that from the pure samples, differed in several respects. In par­

ticular, the emission lines were not as well defined, being somewhat 

broader and less intense than those from the other crystals under the 

same conditions. The relative intensities of the lines were also at 

variance with what was observed from the pure samples. Further­

more, a peak was observed at 4780 A having an intensity 40% that of 
0 

. the naphthalene O, 0 band at 4715 A and is believed to be due to phos-
- 19 

phorescence from the ~-bromonaphthalene. Finally, preliminary 

results indicate that the lifetime of the triplet exciton is al§>o rather 

sensitive to impurities that may be present in crystals that have not 

been carefully purified. Lifetime measurements on. an impure 

crystal, 18 under the same conditions as used to obtain the decay 

curves shown in Figs. 4 and 5, yielded a value of 30 msec. i.e., a 

factor of about 4 shorter than the pure crystal value. 
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While these results are only qualitative, they nevertheless indi­

cate that at least in the case of naphthalene, even for room -temperature 

studies, it is necessary to purify the crystals rather extensively in 

order to obtain reliable data. Further experiments are in progress to 

determine the quantitative dependence of the triplet-state lifetime on · 

the concentration of impurities added under controlled conditions. 

5. DISCUSSION 
~ 

The analysis given iii Table I of the emission from pure crystal­

line naphthalene between 4500 and 5400 A, conclusively demonstrates 

that this emission originates from the lowest triplet state of the crystal. 
. 0 

With the possible exception of the lines at 5060 and 5135 A, agreement 

between the present results and the most intense vibronic lines ob­

served in the phosphorescence spectrum of isotopic mixed crystals at 

4. 2° K is seen to be good. The fact that the 1459-cm-1 vibration is so 

weak in the mixed-crystal phosphorescence raises doubt as to whether 
0 

the intense 5060-A line in the pure-crystal phosphorescence spectrum 

is actually the 1459-cm-1 vibration or not. The high-energy side of 
0 

the O, 0 transition lies at 4715 ·A and this position is virtually inde-

~endent of temperature. ·However, the portion of the O, 0 transition to 

longer wavelength decreases in intensity relative to the 4715-A peak at 

dry-ice temperature. At 77° K much of the red portion of the 0, 0 

emission is lost in the noise. 20 It seems reasonable to interpret this 

long-wavelength part of the O, 0 band as resulting from transitions 

involving the r adiative decay of a triplet exciton with a simultaneous 
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increase in the phonon population. This interpretation is substantiated 

when one considers that: (1) the transition probability for such a 

process, calculated from a perturbation approach, 21 is expected to 

increase with increasing temperature; (2) the temperature dependence 

of this long-wavelength portion of the 0, 0 transition follows a trend 

observed by Colson et al. 22 in their studies of exciton band ~exciton 
band transitions in benzene and naphthalene; and (3) available data23 - 25 

report optical pherion frequencies ranging from 46 to 146 cm-1 in 

crystalline naphthalene at room temperature in addition to acoustical 

phonons whose frequencies in molecular crystals are a factor of 5-10 

smaller than the optical phonon frequencies. 26 

Absence of impurity emission at 4. 2° Kin the phosphorescence 

region of the spectrum18 is further proof that the line broadening ob­

served at room temperature is due to an intrinsic property of the 

naphthalene crystal, i.e., to phonons and not to impurities. 

The value of 130 msec for the lifetime of the triplet exciton in 

pure crystalline naphthalene is considerably longer than the previously 
6 reported value of 20 msec . However, it is still roughly an order of 

magnitude shorter than the tri~let-state lifetime of naphthalene in a 

i ·ct I 5, 27 · ·· d t I 28 Th. Id b d t h . r g1 g ass or in a mixe crys a . is cou e ue o en ance-

nient of nonradiative processes in the pure crystal relative to the glass 

or mixed crystal. If this is true, the lifetime of the triplet exciton in 

pure crystalline perdeuteronaphthalene (C1 cP8 ) might be much longer 

than 130 msec. Experiments are in progress to determine whether or 

not a deuterium effect exists. 



39 

6. ADDENDUM 
~ 

Since the original work reported in the preceding paper, a 

crystal has been obtained that had a measured room -temperature 

triplet-state lifetime of 395 msec, indicating that this crystal had: 

(1) a higher degree of chemical purity29; (2) fewer physical defects; 

(3) a lower oxygen content; or, perhaps a combination of the three. 

Even at 395 msec, the lifetime of the triplet state of the pure crystal 

at room temperature is roughly a factor of 5 shorter than that of 

naphthalene in a rigid glass5 or mixed crysta128 at low temperature. 

There appears to be good reason for attributing this difference in the 

triplet-state lifetime of the crystal versus that of the isolated mole­

cule to the mobility of the triplet exciton in the pure crystal. The fact 

that the excitation can move about in the crystal enhances the 

"quenching effectiveness" of any quencher present, be it a chemical 
29 . 

impurity, oxygen or some physical defect, due simply to the in-

creased probability of the excitation "finding" a site occupied by a 

quencher. 

Results of room-temperature, triplet-state lifetime measure­

ments on a series of chemically mixed crystals of t3 - methylnaphthalene 

(BMN) impurity in naphthalene, 30 ranging in concentration from 10-s 

wt% to 10 wt %, indicate that of the-three types of quenchers mentioned 

above, oxygen is the most important. While there was a general trend 

toward a shorter triplet lifetime with increasing BMN conce~tration, 

there were large fluctua tions in the data, i.e., the measured triplet 

lifetimes did not decrease monotonically with increasing impurity 
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concentration. These fluctuations were much too large to be accounted 

for by the experimental uncertainty in BMN concentration; nor could 

they be satisfactorily explained in terms of variations in the defect 

content of the crystals. The most likely explanation, then, appears to 

be that differences in oxygen content from crystal to crystal were 

responsible for the observed fluctuations in the measured triplet-state 

lifetimes. 

This oxygen could have been introduced via the BMN, which 

. undoubtedly contained a substantial amount of oxygen since it was only 

zone-refined. One would, however, expect a correlation between the 

amount of oxygen introduced into a given sample from this source and 

the BMN concentration of that sample, assuming the oxygen to be uni­

formly distributed through the zone-refined BMN. This would cause a 

stronger apparent dependence of triplet lifetime on BMN concentration, · 

but would not cause the sort of fluctuations that were observed. A more 

likely source of random quantities of oxygen is that liberated during the 

final process of sealing the crystal tubes and pulling them off the 

vacuum line. The pressure in the vacuum system was observed to 

increase by as much as a factqr of 10 during this process, indicating 

the liberation of substantial amounts of some gas. Since it had to pass 

through a liquid nitrogen trap to reach the pressure gauge, it was 

apparently not easily condensable, which suggests that it was probably 

oxygen or perhaps air. The amount of gas liberated varied greatly 

from crystal tube to crystal tube and depended upon how long the glass 

was kept heated. In this way, varying amounts of oxygen could have 

been introduced into the samples; this oxygen then would perturb the 
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triplet state11 to a similarly varying degree and give rise to large 

fluctuations in the measured triplet lifetime. 

We conclude that even the longest lifetime measured to date, 

viz., 395 msec, still does not represent the true triplet exciton life­

time in crystalline naphthalene. Rather, the observed lifetime reflects 

the fact that the exciton mobility enhances the "quenching effectiveness" 

of all residual quenchers, of which oxygen is the most important, in 

the crystal. That °the short triplet lifetime in the crystal is not due to 

enhanced intramolecular radiationless transitions6 is evidenced by the 

fact that we observe no significant deuterium effect on the measured 

lifetime. 
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30. The naphthalene used had a room-temperature, -triplet-exciton 

·lifetime of 395 msec; the tJ-methylnaphthalene, which had been 

subjected to extensive zone-refining (80 passes) and no further 

purification, ·had a triplet-exciton lifetime of< 1 msec. The 

samples were prepared under a dry nitrogen atmosphere and 

sealed under vacuum in crystal growing tubes. All crystals were 

grown from the melt. 
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SECTION B 

DIFFUSION OF TRIPLET EXCITONS IN CRYSTALLINE 

NAPHTHALENE AND ANTHRACENE 
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There has been a great deal of experimental and theoretical 

activity during the past few years, directed toward gaining a better 

understanding of the dynamical behavior of triplet excitons in molec­

ular crystals. l-l3 As a result of these investigations, a reasonably 

complete description of triplet excitons in crystals such as naphthalene 

and anthracene has emerged. Similarities between crystalline naphth­

alene and anthracene make it possible to discuss both within the same 

general theoretical framework. Consequently, both crystals have been 

used, anthracene to a somewhat greater extent than naphthalene, in 

experiments concerned with triplet exciton behavior in organic crystals. 

A recent review by Avakian and Merrifield
14 

summarizes the work 

· done on triplet excitons in anthracene crystals. That paper, along with 

the references cited therein, provides a good survey of the present 

understanding of triplet exciton behavior in molecular crystals. 

One aspect of triplet exciton behavior that has received con­

siderable attention is their ability to move about in the crystal. This 

motion can be described by a diffusion equation, and several techniques 

have been devised to measure the diffusion constant and diffusion 

length of these mobile, neutral, electronically excited triplet states of 
15-21 15 the crystal. The work of Kepler and Switendick and that of 

Williams and Adolph16 concerning triplet exciton diffusion in crystal­

line anthracene is of specia l interest since part of the present investi­

gation overlaps their experiments. 
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In the present work the room-temperature excitation spectra22 

of delayed fluorescence and of phosphorescence have been studied both 

for naphthalene and for anthracene crystals. On the basis of simple 

theoretical considerations, one would expect a monotonic increase in 

the integrated emission (phosphorescence or delayed fluorescence) 

intensity as the wavelength of the excitation light was scanned through 

the singlet absorption toward higher energy. In contrast to this 

expectation, the intensity of both types of emission is observed to 

increase at first, reach a maximum value and then decrease as the 

wavelength of the excitation light is made shorter. Furthermore, the 

wavelength at which the maximum in the excitation spectrum occurs 

depends upon the intensity of the excitation light in the case of delayed 

fluorescence, but not in the case of phosphorescence. It is with these 

observations and .their possible interpretation in terms of the triplet 

excitons diffusing to the crystal surface and being quenched there that 

this paper is concerned. 

2. THEORETICAL 
~ 

It has been shown18119 that the concentration n of triplet 

excitons at position x and time .!... at room temperature is governed by 

the equation 

onff' t) = S(x,t) - f3n(x, t) - y 'n2(X, t) + Dv2n(X, t) . 

The terms on the right-hand side of Eq. (1) represent the source, 

.monomolecular and bimolecular decay and diffusion of the triplet 

(1) 



49 

excitons, respectively. In the above equation1 {3 is the first-order 

decay constant, y' is the total second-order annihilation constant and 

D is the diffusion constant. Since we will not be concerned with aniso­

tropy19' 23 in the diffusion, the diffusion constant is taken to be the 

scalar D instead of a second rank tensor. In general, S(x, t) may be 

quite complicated since it includes, in additio~ to a function describing 

the incident light intensity, the effects of re-absorption of any emitted 

light whose wavelength coincides with a strong absorption. 

Since Eq. (1) is not amenable to a closed form solution, it is 

customary to make approximations that reduce it to a more tractable 

form. The physical model described by the resulting approximate 

equation depends upon the nature of the approximations made. We con­

sider next several such models, their limitations and the approxima­

tions to Eq. (1) that must be made in order to arrive at these models. 

Approximations to Eq. (1): 

(1) Steady-state excitation * (an(x, t)/at) = O, so that the triplet 

exciton density is a fundion of position only; 

(2) Re-absorption of emitted light is neglected; 

(3) S(X, t) ;;:; maI0 exp(-ax) where m is the intersystem crossing 

efficiency, a is the absorption coefficient and x is the dis­

tance into the crystal measured, from the illuminated surface, 

along the direction of propagation of the exciting light beam, 

the intensity of which is I0 ; 
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(4) The excitation light intensity is kept sufficiently low to 

ensure that y'n2 (x) can be neglected relative to ,Bn(x); 

(5) Only diffusion parallel to the x-axis is considered 

2 d2 

=> v - cJx2 

In addition to the above approximations to Eq. (1), the following 

assumptions are made: 

(1) The crystal is assumed to be semi-infinite in extent; the 

front surface, lying at x = O, is the surface upon which the 

exciting light falls. This is equivalent to requiring the 

crystal thickness to be large compared to a-1 ; 

(2) Triplet excitons are assumed to be quenched with 100% 

efficiency at the crystal surfaces. 

The re suiting diffusion equation has the form 16 

d2n(x) 
0 = mal0 exp(-ax) - ,Bn(x) + D cJx2 

with the boundary c onditions n(O) = n(oo) = 0. 

The physical model described by Eq. (2) is one in which the 

excitons are quenched at. the crystal surfaces so that if .they are 

created within a diffusion length of a surf ace they can diffuse to that 

(2) 

surface _and be quenched. Further, the model neglects triplet-triplet 

annihilation complete ly. We now proceed to see if this model can even 

qualitative ly account for a maximum in the emission excitation spectra. 

The de layed fluorescence intens ity as a function of the wave­

length of the · excitation light is given by 
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(3) 

= 
ym210 . a 

1 1 1 s 
2ff2 (132 +aD2) 

for all a (4) 

where the solution to Eq. (2) has been used together with Eq. (3) to 

arrive at Eq. (4). Since any acceptable theory must predict a peak in 

the excitation spec.trum of delayed fluorescence it is necessary that 

Eq. (4) exhibit a maximum when Idf is plotted versus a. That this is 

in fact the case, can be seen most easily by setting the derivative of 

Idf with respect to a equal to zero and solving for amax' the value of 

the absorption coefficient at the wavelength of the maximum, Xmax· 

We simply state the result, 

(5) 

Evidently, the absorption coefficient at :\max and the diffusion constant 

for triplet excitons are related in a very simple manner within the 

framework of this particular model. Insofar as the delayed fluor­

escence excitation spectrum is concerned, the model appears to have 

the correct qualitative behavior and has in fact been used to arrive at 

a value for the diffusion constant for triplet excitons in crystalline 
15 16 anthracene at room temperature. ' 

This is essentially as far as either Kepler and Switendick15 or 

Williams and Adolph16 went in their analysis. However, in view of 

the fact that the phosphor escence excitation spectrum can now be · 

measured, it is of particular interest to investigate the predictions of 
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the model in that regard. Proceeding as for delayed- fluorescence we 

have 

J
CIO 

Ip ,.,, f3 
0 

n(x) dx (6) 

mI0 = -----
1 + a-{'f57# 

for all a . (7) 

Taking the derivative with respect to a yields, 

(8) 

Inspection of Eq. (8) reveals that d1p/da approaches zero only in the 

limit as a approaches infinity. Clearly, Eq. (7) has no maximum 

and, furthermore, it predicts that the phosphorescence should attain 

its greatest intensity in the limit as a tends to zero. This means that 

when the crystal is not absorbing any excitation light it should be 

phosphorescing at a maximal rate; the phosphorescence intensity then 

decreases as the crystal begins to absorb more excitation light, that 

is, as a increases. The nature of its own predictions makes the semi­

infinite-crystal model highly suspect and one is forced to consider other 

more realistic models. 

b. The Finite -Cr stal Diffusional Model 

Approximations to Eq. (1): 

The approximations are identical to those made in Section 2a 

above. 
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Assumptions: 

(1) The crystal is required to be finite in extent; the front 

surf~ce, lying at x= O, is the surface upon which the 

exciting light impinges. The back surface lies at x= a, 

that is, the crystal thickness is ~ 

(2) As in Section 2a above. 

Since the approximations to Eq. (1) are unchanged, the appropriate 

equation is again Eq. (2). The boundary conditions however become 

n(O) = n(a) = 0 as a result of assumption (1) above. The solution under 

these conditions is of the form 

n(x) = c
1 

expr (,B/ D)t xl + c2 exp[-(,B/ D)! ) + ma Io exp(-ax) (9) 
~ ~ J {3-Da2 

with 

and 

Substituting Eq. (9) into Eq. (3) and performing the integral over the 

range from 0 to a yields the following expression for the delayed 

fluorescence excitation spectrum, 

· Idf = ye,' ./D71l sinh(2a ,//!/ D) - ye~ l ~~xp(-2aa) - ~ 
+{'Dlf,rexp(-2av',B/D)-~ .~ 4 

· [exp(-v'°/3/ Da-aa)-~l C . ~ ..mn>+aL ~ 
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· l 2 exp(-aa) ( rr>7"'n. • ( rl>T'r.) + 2yc1 c2a + 2yc1 c 3 {3/ D _ a 2 v {3; D smh av {31 D (10) 

Next, Eq. (9) is substituted into Eq. (6) to obtain an expression for the 

phosphorescence excitation spectrum, 

Both Eq. (10) and Eq. (11) exhibit maxima as a function of absorption 

coefficient. Furthermore, the phosphorescence intensity goes to zero 

as the absorption coefficient tends to zero, in contrast to the pre­

dictions based on the semi-infinite-crystal model. 

Evidently, restricting the crystal thickness to a finite value 

removes the anomalies present in the semi-infinite-crystal model and 

leads to the prediction of peaks in both the delayed fluorescence and 

phosphorescence excitation spectra. 

c. The Finite-Cr stal Annihilation Model 

Approximations to Eq. (1): 

(1) As in Section 2a; 

(2) As in Section 2a; 

(3) As in Section 2a; 

(4) The restriction that yn2 « {3n is removed and bot~ terms 

are kept in the kinetic equation; 

(5) The diffusion term in Eq. (1) is neglected. 
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Assumptions: 

(1) As in Section 2b; 

(2) Along with the explicit diffusion term, surface quenching of 

the triplet excitons is ignored. 

In this limit, Eq. (1) reduces to 

0 = maI0 exp(-ax)-{3n(x)-y'n2 (x). (12) 

Despite the lack of an explicit diffusion term in Eq. (12), diffusion has 

not been totally ignored. Noyes24 has shown that for the case of iso­

tropic diffusion, the effective second-order rate constant y' is related 

to the diffusion constant D by 

2'1TcrD 
y' = l + 21TaD/y (13) 

In Eq. (13) CJ is the collision diameter and y the second-order rate 

constant in the limit where diffusion is not rate controlling, i.e., in 

the limit where diffusion is rapid compared to the rate of bimolecular 

annihilation. We observe that for the case of diffusion controlled 

annihilation, i.e., for 21TaD « . y, 

. y 1 1=:::l 21TaD (14) 

Eq. (12) can be integrated directly to give 

ml [ exp(-aa)-1] + _j}_ L + L Idf· = 0 0 !3rad P y<i > 
(15) 

where .Brad is the rate of radiative fir sf-order decay and y<1 ) is the 
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rate of bimolecular production of fluorescing singlet excitons. Based 

on the present model, a simple relationship of the form of Eq. (15) is 

expected t~ exist between the delayed fluorescence and phosphorescence 

excitation spectra. Equation (15) represents a mathematical statement 

of the required conservation of excitons and photons. 

Approximations to Eq. (1): 

(1) As in Section 2a; 

(2) As in Section 2a; 

(3) As in Section 2a; 

(4) As in Section 2c; 

(5) As in Section 2a. 

Assumptions: 

(1) As in Section 2b; 

(2) As in Section 2a. 

With these approximations and assumptions, the diffusion equation takes 

the form 

0 = mal0 exp(-ax) - ,Bn(x) - y'n2 (x) + D d2!\x) (16) 

with n(O) = n(a) = 0. 

As mentioned in Section 2c, account must be taken of the 

relationship between y' and D since they are not independent. Although 

Eq. (16) is not the most general equation, it nevertheless contains all · 

. the terms appearing in Eq. (1). Unlike the models discussed above, 
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no assumptions have been made with regard to the relative magnitudes 

of the individual terms so that this model is physically equivalent to 

that descr~bed by Eq. (1). 

3. EXPERIMENTAL 

~ 

The experiments were conducted at room temperature using a 

phosphoroscope described in Appendix A. Light from a 6500 W xenon 

--arc lamp was passed through a 0. 5-m Jarrell-Ash Ebert scanning 

spectrometer and allowed to strike the sample, located at the center 

of the cylindrical phosphoroscope drum. The spectrometer, which 

was equipped with a grating having 1180 grooves/mm, blazed at 

5000 A in first order, had a reciprocal linear dispersion of 16 A/mm 

at the exit slit and an effective aperture ratio of f/8. 6. The slitwidth 

was set at 400 µ.. All the light emitted into the solid angle subtended 

by a lens 4 cm in diameter, located 5 cm from the sample, was col­

lected and focused onto the cathode of a dry-ice cooled EMI 6256 SA 

photomultiplier. The photomultiplier output was fed into a Victoreen 

Model VTE-1 electrometer where it was amplified and recorded on a 

strip-chart recorder. Separation of the delayed fluorescence and . 

phosphorescence light was accomplished with the aid of appropriate 

Corning glass filters. · 

Phosphorescence and delayed fluorescence are both dependent 

upon the existence of a non-negligible population of the lowest triplet 
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state of the crystal. ·The requisite triplet-state population was pro­

vided via direct excitation into the lowest singlet state followed by 

intersyste.m crossing to the lowest triplet state. The efficiency with 

which a given wavelength of excitation light excites triplet states can 

be determined by measuring the integrated emission {either phos­

phorescence or delayed fluorescence) intensity due to excitation light 

of that wavelength. By measuring the integrated emission intensity as 

the wavelength of the excitation light is scanned through the region of 

····- the singlet absorption, one obtains the so-called excitation spectrum of 

the emission. The excitation spectra reported here were recorded at 

the highest phosphoroscope speed, viz., 1725 rpm. At this speed1 the 

period of the phosphoroscope is short compared to the emission life­

time, at least in the case of naphthalene, so that the triplet-state con­

centration can be treated as being effectively constant (see Appendix B). 

The wavelength dependence of the excitation light intensity 

striking the sample was checked using rhodamine B, which has a con-
. . . 0 ° 25 

stant quantum yield from 2000 A to 6000 A, in ethylene glycol as a 

quantum counter. 

The naphthalene samples were purified by a combination of 

zone-refining and fusion with potassium metal (Appendix A). Anthracene 

was chromatographed, reacted with potassium while dissolved in ben­

zene, and finally zone-refined (Appendix A). During both purification 

processes air was rigorously exduded. All crystals were grown from 

the melt. 
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A solution of rhodamine B (3 gm/liter) in ethylene glycol was 

prepared25 for use in determining the wavelength dependence of the 

excitation.light intensity at the position of the sample. 

4. RESULTS 
~ 

Figures 1 and 2 show the measured phosphorescence and 

delayed fluorescence excitation spectra, respectively, ·of pure crystal­

line naphthalene-d 8 at room temperature. The position of the maximum 

in the delayed fluorescence excitation spectrum depends upon the inten­

sity of the excitation light; it is observed to shift to the red with 

increasing intensity. The position of the maximum in the phosphor­

escence excitation spectrum, on the other hand, is independent of 

exciting light intensity over the same range of intensities. These 

results are summarized in Table I. Naphthalene-h 8 crystals exhibit 

the same characteristics, the only difference being a slight shift in the 

peak positions. 

Figure 3 displays the triplet exciton density, calculated using 

the model described in Section 2d above, for three different values of 

the absorption coefficient a (see Table II). The three curves have been 

normalized so that their maximum values coincide. Figures 4 and 5 

-are representative of the phosphorescence and delayed fluorescence 

excitation spectra calculated from these exciton density distributions. 

It is evident that the calculated curves have the correct qualitative 

behavior. However, neither calculated excitation spectrum shows any 
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Figure 1. The excitation spectrum of the phosphorescence emission 
from pure crystalline naphthalene-d 8 at room temperature. 
The lower curve was recorded under the fol.lowing con-

- ditions: Corning glass filters, C. S. 3-70 and 3-71, were 
placed directly over the photomultiplier window, the elec­
trometer input was set at 10-7 A full sca)e with a 0. 3 sec 
time constant, and the scan rate was 50 A/ min. The upper 
curve was recorded under the same conditions except the 
electrometer input was set at 10-a A with a 1 sec time 

constant. 
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Figure 2. 
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The excitation spectrum of the delayed fluorescence emission 
from pure crystalline naphthalene-d 8 at room temperature. 
The lower curve was recorded under the following conditions: 
a Corning glass filter, C. S. 7-54, was placed directly over 
the photomultiplier window, the electrometer input was set at 
10-7 A full s~ale with a 0. 3 sec time constant, and the scan 
rate was 50 A/min. The upper curve was recorded under 
the same conditions except the electrometer input was set at 

10-s A full scale. 
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RELATIVE 
EXCITATION 

LIGHT INTENSITY 

1 

0.21 

0.05 

0.01 

TABLE I. Peak positions in the excitation spectra as a 

function of excitation light intensity. 

DELAYED RELATIVE 
FLUORESCENCE EXCITATION PHOSPHORESCENXE 

PEAK POSITION (A) LIGHT INTENSITY PEAK POSITION ( ) 

3300 1 3322 

3275 0.23 3316 

3258 0.08 3318 
.. 

3257 0.02 3320 

O> 
~ 



Figure 3. The triplet exciton density, calculated using the model described in Section 2d, for 
three different values of the absorption coefficient a. The three curves have been 
normalized so their maximum values coincide, in order to facilitate display. In 
order of increasing absorption coefficient, the calculated values of these maxima 
are in the ratio 1:9:5. The various parameters were assigned the values: f3 = 7. 69 
Sec-1 'II = 10-11 cmssec-1 m = O 3 I = 1012 cm-2 sec-1 D = 10-1 cm2 sec-1 and 'r ' •' Q · ' a = 10-7 cm. This corresponds to the limit in which diffusion is rapid and the 
effective second-order constant is just equal to the annihilation rate constant y. 
The values of a used are given in Table II. The crystal thickness was taken to 

be O. 5 cm. 
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TABLE II. The absorption coefficient for crystalline naphthalene 
at room temperature. The measurements were made using a 

1. 0 mm crystal with a Cary Model 14 spectrometer. 

WAVELENGTH 

3225.0 

3237.5 

3250.0 

3262.5 

3275.0 

3287.5 

3300.0 

3312.5 

3325~0 

3337.5 

3350.0 

3362.5 

3375.0 

3387.5 

3400.0 

3412.5 

(A) 
a 

ABSORPTION COEFFICIENT (cm-1 ) 

59.42 

59.42 

59.42 

57.94 

46.29 

32.70 

20.27 

11. 98 

8 . . 52 

5.30 

2.99 

1. 61 

1.15 

0.92 

0.46 

0.23 

aThe experimental uncertainty in these values is believed to be 

less than 10%. 



Figure 4. The phosphorescence excitation spectrum computed from the triplet exciton densities 
calculated according to the model described in Section 2d. The computed phosphor-

escence intensities are proportional to f: nA {x) dx where a is the crystal thickness 
and nA (x) is the triplet exciton density distribution (see Fig. 3) at a particular 
excitation wavelength A. A line connecting the computed points has been added to aid 

in comparing this figure with Fig. 1. 
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Figure 5. The delayed fluorescence excitation spectrum computed from the triplet exciton 
densities calculated according to the model described in Section 2d. The computed a . . 
delayed fluorescence intensities are proportional to f

0 
nA2 (x) dx where ~ is the 

crystal thickness and nA (x) is the triplet exciton density distribution (see Fig. 3) 

at a particular excitation wavelength A. A line connecting the computed points has 
been added to aid in comparing this figure with Fig. 2. 

-.;J 
0 



71 

w 
~ ::! 
w ::> 
u 0:: 
CJ) ~ 
Wu 
0:: w 
0 a._ 
::> en 
_J 
LL Z 
00 
w~ 
~~ 
_J(J 
wx ow 

(81DJS AJOJi!qJO) 

1'.llSN3.lNI 3JN3JS3t:JOnl.:l 03XV'l30 

0 
0 
~ 
r<> 

l{) 
r--
r<> 
r<> 

0 
l{) -r<> 
r<> <><! 

l{) 
N rn 
r<> 

8 
r<> 
r<> 

0 
LO 
N 
r<> 

---
:r: 
I-
<..9 
z 
w 
_J 
w 
~ 
~ 



72 

dependence upon the excitation intensity with regard to the position of 

the maximum. The excitation intensity was varied over 6 orders of 

magnitude in these calculations. 

b. Anthracene 
~ 

The delayed fluorescence excitation spectrum of crystalline 

anthracene is shown in Fig. 6. As in the case of naphthalene, the 

position of the maximum is sensitive to the excitation light intensity. 

Figure 7 shows the phosphorescence excitation spectrum of anthracene. 

A study of the excitation intensity dependence of the position of the 

maximum in this spectrum was not possible with the present experi­

mental setup because of the inherent weakness of the anthracene 

phosphorescence. 

The excitation light intensity at the p9sition of the sample, as 

a function of wavelength, was determined by replacing the sample with 

a rhodamine B solution, and recording the rhodamine B emission in­

tensity as the excitation wavelength was scanned through the region o~ 
0 0 . 

interest. From 4500 A to 3000 A, the excitation light intensity was 

found to be essentially constant; there was a slight decrease in inten­

sity with increasing energy, but certainly nothing sufficient to cause 

the observed maximum in the excitation spectra. 
0 

From 3000 A to 

higher energy, the intensity of the excitation light was observed to 

decrease somewhat more rapidly. 



Figure 6. The excitation spectrum of the delayed fluorescence emission from pure crystalline 
anthracene at room temperature. The electrometer input was set aj 10-6 A full 

scale with a 0. 1 sec time constant, and the scan rate was 50 A/min. 
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Figure 7~ The excitation spectrum of the phosphorescence emission from pure crystalline 
anthracene at room temperature. A Corning glass filter, C. S. 2-64, was placed 
directly over the photomultiplier window, the electrometer input was g;et at 10-9 A 

full scale with a 1 sec time constant, and the scan rate was 125 A/min. 
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5. DISCUSSION 
~ 

The semi-infinite-crystal diffusional model (see Section 2a) must 

be rejected since it predicts incorrect and unphysical behavior as far 

as the phosphorescence excitation spectrum is concerned. In light of 

this obvious shortcoming of the model, one is caused to question the 

validity of the diffusion constant for triplet excitons in crystalline 

anthracene, determined from the delayed fluorescence excitation spec­

trum on the basis ~f this model. 151 16 The finite-crystal diffusional 

model (see Section 2b) neglects the effects of triplet-triplet annihilation, 

ah approximation that is probably not valid for our experimental condi­

tions. Consequently, even though preliminary calculations based on 

this model were reasonably well-behaved, we have made no extensive 

·calculations using the model. The finite-crystal annihilation model 

(see Section 2c) reduces essentially to a statement of energy conserva­

tion, under ideal experimental conditions. In any real experiment there 

are always complicating factors such as scattered light and the experi­

mental geometry that must be taken into consideration. We conclude 

tJ;ien that this particular model is, practically speaking, not of very 

much use. The remainder of the discussion will therefore be concerned 

with the finite-crystal diffusional annihilation model (see Section 2d). 

We have chosen to make the majority of our calculations using 

this model since, of the four models discussed in Section 2, it most 

closely approximates the general picture of triplet exciton dynamics 

that has emerged over the past few years. All but one of our experi­

mental observations can be accounted for within the framework of this 

model. The one feature that remains unexpla ined is the dependence of 
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the peak position in the delayed fluorescence excitation spectrum on the 

intensity of the exciting light. 

At the outset, it seemed likely that inclusion of the yn2 term would 

suffice to explain this effect. However, in retrospect this appears to 

have been nothing more than a misphtced hope. Apparently, something 

else is responsible for the failure of the model. On reconsidering the 

approximations and assumptions that led to the model, the most ques -

tionable one would seem to be neglect of re-absorption of the delayed 

fluorescence emission. The results presented in Table I show that as 

the excitation intensity is increased, the peak position of the delayed 

fluorescence shifts toward the red. One might expect this sort of behav­

ior if a large fraction of the total emitted light were of an energy that 

could be strongly re-absorbed. Clearly, this could only be important 

for the shortest wavelengths of delayed fluorescence since the absorp­

tion coeffici~nt for other wavelengths is extremely small. 

Although re-absorption might be responsible for the discrepancy 

between the observed behavior and that predicted by the model, other 

possibilities must not be too hastily ruled out. For example, it may be 

necessary to include in Eq. (1) terms of higher order in the triplet 

exciton density n; these terms could conceivably become important at 

sufficiently high excitation light intensities. If the answer does not lie 

in including re-absorption and/ or these higher order terms, then it 

seems likely that something fundamental is lacking in our present pic­

ture of triplet exciton dynamics. Until the origin of the discrepancy is 

thoroughly underst ood, it will not be possible to make any meaningful 
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determination of the diffusion constant for triplet excitons from the 

excitation spectra of the crystal emissions. 

6. CONCLUSIONS 
~ 

1. The excitation spectra of phosphorescence and delayed fluores­

cence from crystalline naphthalene and anthracene have been 

presented. 

2. A model used previously15' 16 to interpret the delayed fluores­

cence excitation spectrum of anthracene has been found inadequate 

to explain the observed phosphorescence excitation spectrum. 

3. Calculations of the excitation spectra of naphthalene, based on a 

more realistic model have been compared with the experimental 

results. 

4. In its present form, the model cannot explain the observed depend­

ence of the position of the maximum in the delayed fluorescence 

excitation spectrum on excitation light intensity. 

5. Suggestions for improving the model have been discussed. 
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ABSORPTION IN PURE ORGANIC CRYSTALS 
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1. INTRODUCTION 
~ 

Triplet-triplet absorption in 1T-electron molecules has received 

considerable attention over the past_ several years. l-32 The earliest 

study of this type of absorption was made by Lewis et al.1 even before 

the states involved in the transition had been identified as triplet states 

by Lewis and Kasha. 2 Numerous other experimental investigations of 

triplet-triplet absorption have been reported3 - 23 during the years 

since this pioneering work of Lewis and his co-workers. 

Triplet-triplet absorption spectra of a large number of 'TT-

electron molecules have now been measured under a wide variety of 

experimental conditions. Perhaps the single most commonly used 

technique has been to embed the absorbing molecules in a glassy 

environment (EPA or some hydrocarbon, for example) at 77° K. 4, 16' 18 

McClure3 was the first to make extensive use of this method for 

obtaining triplet-triplet absorption spectra. The absorption by organic 

molecules in fluid solutions at room temperature and in the vapor phase 
. 5-7 9 

at elevated temperatures has also been recorded, ' and it has been 

shown lo, ll, 17' 21 that triplet-triplet absorption is observable in certain 

types of mixed molecular crystals where the guest-host energy gap is 

large. Other studies have been concerned with the pressure depen­

dence, 20 the concentration dependence15 and the polarization proper-

. 8 10 11 14 21 b . . 1 . 24-32 hes ' ' ' ' of the a sorpbon. Theoretical ca culahons 

have been found ·useful especially for predicting the number of allowed 

transitions, in addition to giving crude estimates of the transition 

energies. 
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In spite of this vast amount of activity, there has been no report 

of triplet-triplet absorption in pure crystals or even in isotopic mixed 

crystals. Although one can immediately point out some obvious reasons 

why triplet-triplet absorption would be more difficult to detect in such 

crystals, we were curious to see if there might be some more funda­

mental reason for the apparent absence of this p~enomenon. In addition, 

if the absorption could be found it would provide yet another method for 

following the behavior of triplet states in organic crystals. The present 

paper is therefore concerned with the exact nature of the differences 

between triplet-triplet absorption in a hydrocarbon gla·ss at 77° Kand in 

an isotopically mixed crystal at 4. 2° K. The case of pure molecular 

crystals is also discussed and experimental data are presented in sup­

port of the discussion. 

2. EXPERIMENTAL 

The experimental arrangement is illustrated schematically in 

Fig. 1. A rotating cylindrical drum with two opposing slots cut in its 

circumference provided alternate access to the sample by two light 

beams positioned at right angles to each other. For the measurements 

reported herein the drum was rotated at 1725 rpm corresponding to 

access intervals of approximately 8. 2 msec, the slots each subtending 

an angle of 1. 48 radians at the center of the drum. The two light 

sources were, respectively, a 6500 W xenon arc used to excite the 

necessary triplet state s and a 500 W xenon arc for measuring the 
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Figure 1. A diagram of the experimental arrangement used to 
record the triplet-triplet absorption spectra. 
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absorption. A 0. 5-m Jarrell-Ash spectrometer equipped with a grating 

having 1180 grooves/mm, blazed at 5000 A in first order, and a dry­

ice cooled. EMI 6256 SA photomultiplier was used to scan the spectrum. 

The spectrometer has a reciprocal linear dispersion of 16 A/mm at 

the exit slit and an effective aperture ratio of f/8 . 6. The slitwidth was · 

set at 15 µ. The output from the photomultiplier was fed into a 

Victoreen Model VTE-1 electrometer where it was amplified and 

recorded on a strip-chart recorder. 

The relevant energy levels of the naphthalene molecule are 

depicted in Fig. 2. Absorption into the excited singlet manifold 

(process a) is followed by rapid relaxation (process /3) to the lowest 

excited singlet 1 B.zu stat_e. Some of the molecules in this state undergo 

a radiationless transition (process y) to the lowest triplet 3Biu state 

thus providing the requisite triplet state population. Absorption from 

the lowest triplet · state to higher triplet states was studied by observing 

spectral changes correlated with the presence or absence of the · 

exciting light. 

Point-by-point determination of the spectrum was found to be 

the most sensitive method for this sort of absorption measurement. 

The spectrometer was set at a given wavelength and the photomultiplier 

output recorded for some specified length of time, alternate ly with and 

without the excitation light striking the sample. The transmission of 

the sample was observed to decrease when the excitation light was 

allowed to impinge upon it and to r eturn to its original value when the 
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Figure 2. An energy level diagram for naphthalene showing the energy 
levels of importance in triplet-triplet absorption. 
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exciting light was blocked. Three measurements of this change were 

made and the results averaged, after correcting for the wavelength 

dependence of the system response, to arrive at the magnitude of the 

ab~orption at each wavelengtho Measurements were made throughout 

the region extending from 3200 A (near the singlet absorption edge) to 

6000 A. The interval between successive measu~ement points varied 

from 10 to 100 A so that positions of peaks can be located at best only 

to within 10 A. However, since the features in the spectrum seem to 

be quite broad, this probably is not a serious limitation and will not 

influence the conclusions to be drawn later in the paper. 

Under conditions similar to the actual experimental conditions 

in all respects except that an empty sample tube replaced the sample, 

no difference was observed in the transmitted intensity with or without 

the excitation light on. 

All crystalline samples were purified by a combination of zone­

refining and potassium fusion33- 35 and grown from the melt in sealed 

quartz tubes. To ensure good thermal contact between the sample and 

the cryogenic bath when working at 4. 2° K, the crystal tubes were 

broken open by means of a break-seal while submersed in liquid helium. 

For the experiments on the glassy state at 77° K, dry 3-

methylpentane and zone ;..refined, potassium-purified naphthalene were 

used, with special care being exercised in degassing the compounds. 

The glass was obtained by simply submer sin.g this solution in liquid 

nitrogen prior to its use in the experiments. 



91 

3. RESULTS 
~ 

It was established experimentally, by scanning the region from 

4700 A to 6000 A with the exciting light on and the spectroscopic light 

off, that the phosphorescence emission from the samples was of negli­

gible intensity relative to the spectroscopic light so that the triplet­

triplet absorption spectrum is in no way complicated by phosphorescence. 

~-Qg in 3-Meth 1 entane at 77° K 

The upper curve in Fig. 3 shows the triplet-triplet absorption 

spectrum of a 7. 4 x l0-3 M solution of naphthalene-h8 in 3-

methylpentane at 77° K. The three transition maxima at 24, 089 cm-1 , 

25, 535 cm-1 and 26, 946 cm-1 correspond to previously reported transi­

tions in the triplet-triplet absorption spectrum of naphthalene in other 

enviro~ments. 36 Three new, less intense maxima are evident at 

24, 993 cm-1, 26, 308 cm- 1 and 27, 770 cm-1
• Peak positions, relative 

intensities and spacings between successive maxima in the spectrum are 

summarized in Table I. 

~-ha~-Qa~ 

The lower curve in Fig. 3 is the triplet-triplet absorption spec­

trum of an isotopically mixed crystal consisting of 1. 0 wt% naphthalene­

h8 in 99. 0 wt% naphthalene-d 8 ·at 4. 2° K. The mixed crystal spectrum 

appears qualitatively the same as the triplet-triplet spectrum of naphth­

alene in a glass, with the exception of the broad background continuum 

absorption extending both to higher and lower energy from the principal 



Figure 3. The triplet-triplet absorption spectra of n~phthalene-h8 in 3-methylpentane at 
77° Kand of naphthalene-_!!8 in naphthaleile-f!.8 at 4. 2° K. · . 
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TABLE I. The triplet-triplet absorption spectrum of 

naphthalene-h 8 in 3-methylpentane at 77° K. 

X(A)a v (cm-1 ) vac Av (cm""1 ) Intensityb 

4150 24,089 0 100 

4000 24,993 904 20 

3915 25,535 1446 55 

3800 26, 308 2219 15 

3710 26, 946 2857 20 

3600 27,770 3681 10 

aPeak positions of the three most intense transitions are 

accurate to 10 A. Positions of the other three peaks are 

accurate to 25 A. 
bNormalized so that the most intense peak has an intensity 

of 100. 
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spectral ~eatures. There is a one-to-one correspondence between the 

prominent peaks in the spectrum of the mixed crystal and that of the 

· glass. Furthermore, the widths of the features in the spectrum of the 

gla.ss and of the mixed crystal appear to be about the same. At 77° K 

the triplet-triplet absorption in the mixed crystal was so weak as to be 

virtually undetectable with the present apparatus~ Table IT summarizes 

the pertinent features in the 4. 2° K mixed crystal triplet-triplet ab-

sorption spectrum. 

c. Pure Cr stalline Na hthalene 

No triplet-triplet absorption could be detected in pure crystal­

line naphthalene at room temperature, 77° K, 4. 2° K or 1. 8° K. 

4. DISCUSSION 
~ 

Consider first the relative intensities of the spectra in Fig. 3. 

Both spectra were recorded using the same overall detection sensi­

tivity so that, if the absorbing species (triplet-state guest molecules) 

were uniformly distributed through both samples, comparison between 

the two could be made directly. However, the distribution of excited 

guest molecules is certainly not uniform in either sample, there being 

a much higher density of the metastable absorbing species produced in 

that part of the sample nearest the excitation light. The penetration 

depth of the exciting light is roughly 1000 times greater in the glass than . . 

in the mixe d crystal at the solute concentrations use d for these. experi-

ments. Since the host crystal absorbs strongly in the same spectral 
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TABLE , II. The triplet-triplet absorption spectrum of 

naphthalene-h 8 in naphthalene-d8 at 4. 2° K. 

~(A)a v (cm-1 ) vac A.v (cm-1 ) Intensityb 

4150 24,089 0 100 

4025 24,838 749 c 

3925 25,470 1381 60 

3800 26, 308 2219 c 

3725 26,838 2749 20 

3600 27,770 3681 c 

Broad absorption extending The total integrated 
. 0 1 1 

from 6000 A to the ~u - Ag intensity of this 

absorption edge. band is roughly 

equal to that of the 

discrete transitions. 

aPeak positions are only accurate to 25 A. 

bNormalized so that the most intense peak has an intensity 

of 100~ 

cit was not possible to get a reasonable estimate for the inten­

sities of these transitions. 
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region as the guest, as far as its response to the excitation light is 

concerned, the isotopically mixed crystal behaves just like a pure 

crystal and most of the light is absorbed very near the surface. At low 

temperatures a significant fraction of this host excitation is rapidly 

transferred to the guest molecules37 so that the resulting distribution 

of triplet-state guests is essentially identical to the initial host excita­

tion distribution. 

Although it is true· that the total number of guest molecules 

excited to the triplet state by the excitation light is considerably greater 

in the mixed crystal than in the glass, the distribution of these meta­

stable absorbers in the crystal is such that they present a very small 

optical density to the spectroscopic light beam. Consequently, it is not 

possible to predict which of the two samples will give rise to the more 

intense absorption on the basis of the relative numbers of absorbing 
. . 

species alone; rather, the distribution of, as well as the total number 

of absorbers must be taken into account. 38 The observed absorption 

intensity due to non-uniformly distributed absorbing species represents 

a balance between the total number of absorbers and their spatial dis­

tribution in the sample. Henc.e, direct comparison of the relative 

intensities of the spectra shown in Fig. 3 has no meaning. 

The three most intense transitions in the triplet-triplet absorp­

tion spectrum of the gla ss form a progression with spacings of 1450 cm-1 

between successiv~ bands. This energy is r e miniscent of ground-.state 

totally symmetric car bon-carbon stretching vibrational energies and is 
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suggestive that such a vibration may be participating. in the absorption. 

These bands are by now quite familiar, having been observed in the 

triplet-triplet aqsorption spectrum of naphthalene in a wide variety of 

environments and using several different experimental techniques. 3- 121 17 

Three weaker transitions39 that appear to form a similar progression 

characterized by roughly 1450 cm-1 spacings are also evident. There is 

more uncertainty in the precise positions of these bands due to a lower 

density of experimental points in the neighborhood of the peaks. This 

progression is shifted to the blue from that formed by the three most 

intense bands by some 800 cm-1 • Naphthalene is rich in vibrations having 

energies of this magnitude and it is likely that these weaker transitions 

are the result of combination tones involving a symmetric carbon-carbon 

stretching mode and some other mode, also probably totally symmetric, 

having an energy of about 800 cm-1 , built on the purely electronic transi­

tion. The complete spectrum can thus be interpreted in terms of a single 

electronic transition with its associated vibrational structure. 

The resolved structure in the isotopically mixed crystal triplet­

triplet absorption spectrum correlates well with that observed in the 

glass at 77° K so that no further discussion of this structure per se is 

needed. However, the broad background absorption in which the 

structure appears to be embedded is unique to the mixed crystal spec­

trum and does merit some additional consideration. 

We observe first of all that there are energy states of the 

crystal, v iz. , the charge"'transfer state s and the conduction band, that 

have no counterpart in the glass. Furthermore , host-guest interactions 
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are expected to be of similar magnitude to host-host interactions in 

isotopic mixed crystals since the host and guest molecules have nearly · 

degenerate energy states. Such host-guest interactions can cause 

mixing of the host and guest zero-order states, so that the correct 

states of the crystal can be viewed as being partly host and partly guest 
40 in character. Consequently, transitions originating on a purely guest 

energy level will have a non-zero probability of terminating on any 

level of the proper· symmetry that has guest character. This sort of 

mechanism is proposed to account for the observed triplet-triplet 

absorption spectrum of naphthalene-h8 in naphthalene-d8 at 4. 2° K. In 

this particular instance, mixing of the host conduction band and perhaps 

also the host charge-transfer states with the lowest 3 B1u state of the 

guest would be necessary. 

The conduction band in anthracene has been variously placed at 

energies ra~ging from 2. 6 ev41 to 4. 9 eV. 42 A value greater than 
43 44 . 

3. 5 eV, perhaps to the order of 4. 4 eV, seems to be most prob-

able. The charge-transfer state in anthracene has been reported to 
43 have an energy of 3. 45 eV. Evidently, the conduction band lies 

higher in energy than the charge-transfer state in anthracene, a trend 

that is also observed in tetracene. 43 The charge-transfer state in 

naphthalene has been placed at 4. 4 ± 0. 2 eV, 45 so that, on the basis of 

the anthracene and tetracene results, the conduction band in naphthalene 

might r easonably be expected to lie at energie s on the order of 5 to 6 

eV above the gr ound sta te. 

Recalling t hat the ground-state to . triplet-state ener gy interval 

in naphthalene is 2. 63 eV, it is evident from Fig. 3 that the continuum 
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absorption has a threshold at about 4. 6 eV and extends to higher energy. 

The threshold of the absorption lies very close to the position of the 

charge-transfer state so that participation of this state _in the mixing 

cannot be ruled out. Clearly, the predicted position of the conduction 

band coincides with the observed continuum absorption. 

hthalene 

The absence of any detectable triplet-triplet absorption in pure 

crystalline naphthalene is probably explained by the lower steady-state 

concentration of triplet states in the pure crystal compared to that in 

the mixed crystal. This decrease is due largely to the shorter triplet­

state lifetime in the pure crystal. 46 This conclusion is substantiated 

by the fact that at 77° K triplet-triplet absorption in the isotopically 

mixed crystal is extremely weak. 

5. CONCLUSIONS. 
~ 

Differences between triplet-triplet absorption in a hydrocarbon 

· glass at 77° Kand in an isotopic mixed crystal at 4. 2° K have been di~­

cussed. The principle difference is a broad continuum background 

absorption in the mixed crystal spectrum which is interpreted in terms 

of host-guest interactions causing mixing between the guest sBiu state 

and host conduction band. At 77° K the absorption in the mixed crystal 

is too weak to be detected; this is probably due to the lower ~teady­

state concentratio~ of triplet states at 77° K relative to that at 4. 2° K. 

No triplet-triplet absorption was detected in pure samples at 
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temperatures down to 1. 8 ° K presumably because of the small steady­

state triplet concentration caused by rapid processes such as triplet­

triplet annihilation. If our interpretation of the broad continuum 

absorption were correct, then for a series of mixed crystals of 

naphthalene in various host materials having progressivel)T larger 

host-guest energy separations, one would expect _the mixed crystal 

triplet-triplet spectrum to approach that of naphthalene in a glass at 

77° K as the energy separation is made very large. 
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Typical first-order triplet lifetimes observed using purified crys­

tals at room temperature are of the order of 130 msec. Recently, 

a particularly good crystal has yielded a lifetime of 395 -msec. 

However, even in the event that the first-orde r triplet lifetime is 
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long in the crystal, second-order effects play a -dominant role in · 

establishing the steady-state concentration of triplets in a pure or 

isotopic mbced crystal. Thus, even though few triplets are lost 

via first-order decay, the steady-state concentration of triplets 

can be very low due to rapid second-order depletion of the triplet 

population. 
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PART III 

AN INVESTIGATION OF DELAYED LIGHT EMISSION 

FROM Chlorella Pyrenoidosa 
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SECTION A 

MEASUREMENT OF RAPID PHOTOPROCESSES USING 

A MODULATED cw LASER 

The following is the text of a paper accepted for publication in the 

Review of Scientific Instruments 

[ B. E. Kohler, A. Haug, E. B. Priestley and G. W. Robinson, 

Rev. Sci. Instr. 40, 0000 (1969)] 
-..;-... 
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L INTRODUCTION 
~ 

The fluorescence lifetimes of electronic transitions in mole-

cules fall in the range between 10-9 sec and about 10-6 sec. Several 

methods have been used for measuring such short times. The phase 

fluorometric technique1 - 3 requires that the intensity of the excitation 

light be modulated periodically at a frequency comparable to the decay 

constant of the excited state. As a consequence, the resultant emitted 

light intensity is modulated at the same frequency as the exciting light 

but delayed by a phase angle {3 . Under the assumption of an exponen­

tial decay, the lifetime T is given by tan f3 = wr, where w is the 

modulation frequency. Lifetimes between 10-7 sec and 10-9 sec can 

be investigated with ultrasonic modulators operating in the MHz 

region. l, 2, 4 Unfortunately, no simple relationship exists between the 

phase angle f3 and the decay constants of interest when the decay is non­

exponential. Although it is possible to determine these constants from 

measurements of the phase angle as a function of frequency, 5 the prob­

lems associated with making the measurements as well as with inter­

preting the results tend to limit the usefulne ss of the method. This 

technical limitation, which hampers the study of non-exponential 

processes as, for example, the annihilation of excitons in molecular 

crystals6 and the delayed emission in photosynthesis, 7 is a serious 

handicap to the phase fluorometric tec hnique. 

The other c ommonly used tec hnique for measur ing r apid decay 
. 7 8 

proce sses utilizes pulsed excitation, e. g. , la se r pulses, ' incoherent 
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9 . 10 11 . light flashes, or electron bursts. Ultra-short laser pulses having 

a peak power of about 1010W and lasting approximately 10-13 sec can be 

produced by mode locking, while subnanosecond incoherent light 

flashes12 can be generated by means of electrical discharges in gaseous 

media. The study of decay processes based on such pulsed excitation 

suffers from several drawbacks. Firstly, use of low intensity pulses 

usually limits the time range over which the decay can be recorded to 

about a decade, simply due to the lack of signal amplitude. Since 

measurements over several decades are required for a reliable kinetic 

analysis in all but the simplest case of purely exponential decay, this 

presents a serious problemo This difficulty can sometimes be avoided 

by application of signal-averaging techniques, provided the pulse rate 

is high enough to make this practicable. 13 Secondly, application of 

high intensity pulses to organic and inorganic matter may result in 

complex photodecomposition as well as in nonlinear effects that can 

induce higher-order decay mechanisms, which in certain instances are 

irrelevant and unwanted. Thirdly, it is not known, ~ priori, whether 

pulsed excitation leads to the establishment of steady-state conditions, 

an essential requirement when. measuring the decay of delayed .emission 

. during photosynthesis. 

A system that circumvents the above-mentioned disadvantages 

has been developed for the study of optical decay processes occurring 

between 5 x 10-9 sec and 6 x 10-3 sec. With it, a heretofore practically 

unexplored region of the properties of the light emitted from photo­

synthetic systems is now accessible to detailed investigations. An 
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attractive feature in the construction of the apparatus is the avail­

ability of recently developed commercial components. The necessary 

instrumentation is described in detail in sections 3 and 4. 

A block diagram of the apparatus is shown in Fig. 1. Light 

from a cw argon ion laser traverses the electro-optic shutter and 

impinges on the sample for a time that is greater than or approximately 

equal to one-half of each period depending upon the repetition rateo 

Figure 2 illustrates the way in which each cycle is divided between 

excitation and observation at the highest and lowest shutter repetition 

rates. Because of the long irradiation time of the sample (up to 0. 25 

sec), steady-state conditions are established during each cycle of the 

modulator. A sampling oscilloscope samples at successive points along 

the decay curve the amplitudes of the incoming pulses from a fast 

photomultiplier that views the exit slit of a monochromator used to 

analyze the emitted light. The time interval between samples is 

selected by means of a control on the sampling oscilloscope and the 

entire decay curve is progressively and cyclically sampled, the latter 

process being synchronous with the laser modulator cycle. A multi­

channel analyzer digitally stores the vertical output of the sampling 

oscilloscope. Operating the analyzer in the signal-averaging mode and 

periodically exciting the system under investigation thus leads to a time 

integration of the signals and extracts them from any random back­

ground noiseo The data stored in the memory can be read out either in 



Figure 1. Block diagram of an apparatus for use in measuring nanosecond lifetimes. A detailed 
description of the operation is given in the text. 
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Figure 2. Distribution of the cycle time between excitation and 
observation at the highest repetition rate (upper curve) 

and the lowest repetition rate (lower curve). 
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analogue or in digital form thus providing _a faithful display of the decay 

process over several decades, even with weak signal amplitudes. 

The present light source consists of a water-cooled cw argon 

ion laser (Model No. LG12, Raytheon Corporation, Waltham, Massa­

chusetts) with a total power output of 1 W distributed over several wave­

lengths. 14 Approximately 80% of the total power is shared equally by 
0 

the 4880 and 5145 A lineso Shock-free mounting of the laser head is 

necessary for reproducible performance. When desirable, a prism 
0 

may be used to isolate the 4880 A line from the other laser lines. 

Having traversed the modulator and a lens, positioned so as to produce 

a beam cross-section of roughly 1 cm2 at the sample, this monochro­

matic, chopped light beam is used as the excitation source. The laser 

modulator (Model Noo EOLM 400, Isomet Co.rporation, Palisades Park, 
0 

New Jersey) passes all wavelengths from 2000 A to 1. 8 µ and according 

to the manufacturer's specifications can handle optical powers up to 

100 W cw in the visible and near infrared. The 1 nsec inherent rise 

time of the modulator is degraded to about 30 nsec (Figo 3) by its 

associated driving electronics (Model No. HVQ-2X4105, Isomet Corp­

oration, Springfield, Virginia). This value is by no means limiting 

and could in principle be reduced significantly by use of more sophisti­

cated electronic circuitry. Its relatively low operating voltage ("' 500 V 

compared to "'15-.30 kV necessary for operation of a Kerr cell) makes 

the crystal modulator desirable from the standpoint of shielding the 



Figure 3. Typical time course curves for the closure of the laser modulator (Q) and the com­
posite of the laser modulator Closure plus emission from a solution of rubrene in 
benzene (+ ). The calculated composite curve is also shown (-). See the text for 

details of the calculation. 
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sensitive detection equipment from electrical noise. The contrast ratio 

(the ratio of the transmission in the "closed" condition to that in the 

"open" co:µdition) is of the order of 10-4 • For roughly 6 msec of each 

cycle the KD*P crystal has no voltage applied to it so that the modulator 

is in the "closed" condition (Fig. 2), during which time, lifetime or 

spectral measurements can be performed. Th~ remainder of each cycle 

is divided between recovery time ("' 3 msec) of the modulator and exci­

tation time. Since the argon ion laser is operated at low power output, 

power densities at the sample are of the order of 10 mW/cm2 and can 

be easily measured with a calibrated Eppley thermopile. 

To minimize scattered light, the sample, monochromator, and 

photomultiplier were enclosed in a light-tight housing (Fig. 1). Con­

fining both the laser beam and the emitted light inside metal tubes con­

taining the necessary optics further reduced stray light inside this 

housing. 

A 0. 5 m Ebert scanning spectrometer (Jarrell-Ash Division, 

Fisher Scientific Company, Waltham, Massachusetts) was positioned 

at an angle of 180° with respect to the direction of propagation of the 

excitation beam (Fig. 1). The photomultiplier, coolable to dry-ice 

temperature, was mounted at the exit slit of the monochromator by 

means of a short metal pipe~ One of two Amperex photomultiplier 

tubes (Amperex Electronic Corporation, Hicksville, Long Island, New 

York) was used, viz. , the 56 UVP and 56 TVP. Both photomultipliers 
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are characterized by short time spread (O. 5 x 10-9 sec), fast rise time 

(2 x 10-9 sec) and high gain. According to the manufacturer's specifi­

cations the 56 UVP has a type 813 spectral response (maximum sen-
o - 0 

sitivity at 4200 A, extending into the red to 6500 A), and the 56 TVP 
. 0 

has a type S20 spectral response (maximum sensitivity at 4100 A, 

extending into the red to 8200 A). The main advantage of the 56 UVP is 

that it has lower dark current than the 56 TVP and is therefore prefer-
. 0 

able when sensitivity to the red of 6500 A is not required. 

The negative output signal from the photomultiplier was taken 

through a short 50 n coaxial cable directly to the vertical amplifier 

(Type 4Sl, Tektronix, Beaverton, Oregon) of a sampling oscilloscope 

· (Type 661, Tektronix, Beaverton, Oregon). Weak photomultiplier 

pulses may be conveniently amplified in fast broad-band amplifiers, 

such as the AN 101 dual amplifier module (Edgerton, Germershausen 

and Grier, Salem, Massachusetts) that have a rise and fall time of less 

than 2. 5 x 10-9 sec. The timing unit (Type 5T3, Tektronix, Beaverton, 

Oregon) of the sampling oscilloscope was externally triggered by a 

synchronous pulse provided by the laser modulator control unit. The 

signal, amplified in the sampling oscilloscope, was fed into the inte ­

grator and time base unit of the multichannel analyzer (Model ND 180, 

Nuclear Data, Palatine, Illinois) oper ated in the s ignal- averaging mode 

(Fig. 1). The time base of the oscilloscope15 is proportional to the 

channel addresse s of the multichannel analyzer, each channel corre­

sponding the r efore to a definite time after triggering the eleetronic 

system. 

Readout from the m emor y was accomplished either by a digita l 
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printer (Mode l 5050 B, Hewlett-Packard, Palo Alto, ·California) or by 

an X-Y plotter (Type 7590 CM, Hewlett-Packard, Moseley Division, 

Pasadena, California). 

Since the lase r sometimes shows variations due to vibrations 

and thermal changes, a drift compensation can be accomplished in the 

following way. 16 A second sampling oscilloscope is introduced that 

does not scan the decay curve sequentially in time but is locked to one 

definite point in time just prior to the start of the decay process to be 

investigated. The output of this second sampling oscilloscope is sub­

tracted from that of the first and thus compensates for systematic 

variations in the laser output. 

Occasionally, a long-lived weak emission must be measured in 

the presence of a short-lived intense component of emission. For a 

sufficiently large difference between the two intensities, it becomes 

necessary to gate the photomultiplier so that it comes on only after the 

intense "prompt" emission has decayed away. This permits the sen­

sitivity to be increased sufficiently to detect the weak emission while 

preventing damage to the photocathode by the "prompt" emission. · 

Several scheme s have been reported in the literature, 17 slight ~odifi­
cations of which can be made to suit the particular tube being gated. 

5. PERFORMANCE 

To demonstra te the oper ation of the instrument, the decay of 

fluor escenc e emission from rubrene (5, 6, 11 , 12-tetraphenylnaphtha­

cene) dissolved in benzene has been m easured at r oom te mper a ture . . 

Three sa mple s were used in the experiments. 
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Sample No. 1 

Commercial grade rubrene (Eastman Organic Chemicals, 

Rochester, New York) without further purification, and analytical 

reagent grade benzene (Mallinckrodt Chemical Works, St. Louis, 

Missouri) were used to prepare the first sampleo A 1-cm pathlength 
0 

of the solution had· an optical density of Do 40 at 4880 A. No attempt was 

made to remove air from the sampleo This sample was not used im­

mediately after preparation but stood for several days in a closed 

vessel with no effort being made to shield it from room light. 

Sample No. 2 

Analytical thin-layer chromatography (tlc) showed the commer-

cial grade rubrene to contain at least four components besides rubrene 

itself. Consequently, the crude material was chromatographed on a 

silica gel column (E. Merckag silica gel, distributed by EM reagents 

Division, Brinkmann Instruments, Inc., Westbury, New York) and 

recrystallized from a benzene-methylcyclohexane solution. The 

resulting crystals were found ·to be free from all contaminants present 

in the starting material, ·as evidenced by tlco Sample No. 2 was pre­

pared by dissolving the chromatographed, recrystallized rubrene in 

Phillips' research grade benzene (Phillips Petroleum Company, 

Bartlesville, Oklahoma; minimum purity set at 990 91 % by manufac-

turer), the optical density of 1-cm pathlength of the resulting solution 
. 0 

being 0. 58 at 4880 A. No effort was made to degas the sample. 
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Sample No. 3 

Sample No. 3 was prepared from the same solution as sample 

No. 2. However, it was carefully outgassed on a vacuum line 

(limiting pressure < 10-s Torr with the sample at 77° K) in a series of 

freeze-pump-thaw cycles. 

b. Lifetime Determination 

Figure 3 shows the result of a typical lifetime determination. 

The modulator closure was first measured by scattering a small 

fraction of the incident laser light onto the photomultiplier tube. The 

scatterer was then replaced by a rubrene sample, a Corning Glass 

filter C. S. 3-68 was placed over the photomultiplier window to block 

the exciting laser light and the measurement was repeated. The re­

sulting curve is a composite of the modulator closure and the rubrene 

emission, thus necessitating numerical analysis of the data in order to 

extract the lifetime of the rubrene emission. 

In the following brief description of the numerical analysis four 

quantities are to be distinguished. The functions s(t) and c(t) represent, 

respectively, the true time course curves of the laser modulator 

closure in the absence of a sample, and the composite of the laser 

modulator closure plus emission from a sample. S(t) and C(t) denote 

the measured values of s(t) and c(t), respectively, and reflect the fact 

that the detector response is non-ideal, Le. , the detector response to 

a o -function input at the time t is the somewhat de localized function 

R(t-t') rather than o(t-t'). From the superposition theorem18 it follows 

that, 
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S(t) = J00 
s(t-t")R(t")dt" 

0 

and 

C(t) = J00 
c(t-t")R(t")dt" 

0 

We wish to establish a theoretical relationship between S(t) and C(t) 

given Eqs. (1) and (2) and the fact that s(t) and c(t) satisfy 

d~tt) = Ks(t) - Jk(t) 

where fJ is the total first-ord~r decay constant (the reciprocal of the 

measured lifetime of the sample emission) and K is a scaling factor 

(2) 

(3) 

between the excitation and emission intensities. K represents the 

product of the absorption coefficient, the reciprocal of the radiative 

lifetime, the volume of the sample that is excited and a geometrical 

factor associated with the experimental setup. Equation (3) has been 

written to include first-order decay only, anticipating the kinetic form 

of the fluorescence emission of rubrene. The analysis for arbitrary 

kinetic decay is treated in Section 6. 

Solving Eq. (3) for c(t) yields 

. t 
c(t) = exp(-,Bt)K J s(t')exp(,Bt')dt' -oo (4) 

From Eqs. (1)-(4) it follows by straightforward manipulations that 

t 00 . 

C(t) = exp(-.Bt)K J_co {f s(r-t")R(t' ')dt"} exp(,Br)dr . (5) 
0 . 
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Identifying the expression in braces in Eq. (5) as S(r) gives as a final 

result 

' . t 
C(t) = exp(-,Bt)K f S(r)exp({3r)dT . -oo 

(6) 

Comparison of Eqs. (4) and (6) shows that C(t) and S(t) satisfy an equa­

tion analogous to Eq. (3), namely 

d~~t) = KS(t) - {3C(t) (7) 

Thus . the measured curves are related by precisely the same equation 

as are the true curves so that C(t) and S(t) can be used directly in 

Eq. (7) to determine Kand {3, with no loss in accuracy due to the non­

ideality of the detection system response. This result has the impor­

tant consequence that the signal-to-noise ratio alone sets the experi­

mental limitation on the shortest lifetime measurable. In other words, 

the shortest lifetime measurable is that which just results in an exper­

imentally detectable difference between S(t) and C(t). 

Since S(t) and C(t) are known only in numerical form, Eq. (7) 

must be solved by numerical methods. The Runge -Kutta technique19 

was used for this purpos.e and the solution fitted, within the frame -
20 work of least squares, to the experimentally measured curve. Six 

separate lifetime determinations were made for each of the three 

sampleso The mean value of the emission lifetime for each of the 

three sample s is tabulated in Table I. Since sample No. 1 was allowed 

to stand in a closed vessel, unshielded from room light for s everal 

days prior t o use , it i s probable tha t some of the oxygen present 
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TABLE I. Results of lifetime determinations of fluorescence from 

three samples of rubrene in benzene. The results show the effects 

of impurities and oxygen on the fluorescence lifetime. 

Sample Mean Lifetime Estimated Uncertainty 
T 

la 11. 3 ± 2. 0 

'2b 9.5 ± 2. 0 

3C 16.3 ± 2. 1 

aimpure rubrene; Mallinckrodt reagent grade benzene; sample 

not outgassed. 

bChromatographed, recrystallized rubrene; Phillips' research 

grade benzene; sample not outgassed . 

. cChr_omatographed, recrystallized rubrene; Phillips' research 

grade benzene; sample carefully outgassed. 
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·initially would have been consumed in the known photochemical oxida­

tion of rubreneo 21 Sample No. 2 on the other hand was used immedi­

ately after preparation so that the difference in the emission lifetime 

of samples 1 and 2 may be due simply to a difference in their oxygen 

content. The increase in the emission lifetime of sample No. 3 com­

pared to that of sample No. 1 appears to be attributable almost 

entirely to removal of oxygen, other impurities seeming to be of neg­

ligible consequence to the overall lifetime of the excited state. 

A data reduction scheme applicable to emission governed by 

arbitrary kinetics is presented in this section. Jusf as for purely 

exponential decay, the finite response time of the detector cannot 

limit the accuracy of the decay constants determined from the 

measurements. Furthermore, the true time course curve of the 

emission is obtained explicitly during the calculation. 

In addition to the four functions defined previously, the true 

time course curve of the emission, i.e., the curve that would be 

observed if in fact the modulator closure and detector response were 

infinitely fast, is represented by f(t). It follows from the super­

position theorem18 that 

ao 
c(t) = f f(t')s(t-t')dt' . (8) 

0 

Together with Eqs" (1) and (2), Eq. (8) leads in a straightforward 

manner to 
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co 
C(t) = f f(t' )S(t-t' )dt' . (9) 

0 

S(t) and C(t) are the experimentally determined laser modulator closure 

and composite curve so that Eq. (9) can be solved numerically for f(t). 

Having f(t) explicitly, it is a simple matter to least squares fit the data 

to whatever model seems most physically justified. The validity of the 

model will be evidenced by the quality of the fit. 

In practice the integration in Eq. (9) can be truncated as soon as 

the integrand becomes negligible. Thus the upper limit on the integral 

poses no obstacle to the numerical calculation. 

7. CONCLUSIONS 
~ 

1. A versatile apparatus for measuring short emission lifetimes has 

been described. Steady-state conditions in the sample are estab­

lished before the lifetime measurement is begun. 

2. Signal averaging makes possible use of low intensity excitation with­

out significant degradation in the quality of the signal. 

3. Careful analysis of the data permits measurement of lifetimes that 

are much shorter than the time required to switch off the excitation 

light, the minimum being set by the signal-to-noise ratio alone. 

4. Since an explicit decay curve is obtained from the measurements, 

no assumptions need be made about the decay kinetics. See 

Section 6. 

5. With sufficient improvement in the electronic driving circuitry 

associated with the crystal modulator, and some increase in the 

signal-to-noise ratio, lifetimes of 1 nsec or less could be 

measured using the apparatus described. 
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SECTION B 

THE DECAY KINETICS OF DELAYED EMISSION FROM 

Chlorella Pyrenoidosa IN THE MILLISECOND­

TO-SECOND TIME INTERVAL 



132 

1. INTRODUCTION 
~ 

Light emission from illuminated green plants was first reported 
1· . . . 

by Stokes a little over 100 years ago. The emission that Stokes 

observed has now come to be known as fluorescence, or "prompt" 

emission since it is characterized by a lifetime on the order of a few 

nanoseconds in all systems investigated to date. It was not until the 

relatively recent discovery by Strehler and Arnold2 in 1951, however, 

that it was realized that in addition to fluorescence green plants also 

emit light for up to several minutes after termination of the excitation. 

This delayed light, as it is commonly ref erred to, is believed to be 

somehow associated with one or more steps in the photosynthetic 

process, subsequent to the primary acts of light harvesting and transfer 

of energy to the reaction centers. It has been variously suggested that 

it could result from: reversal of certain steps along the chain of events 

that together constitute photosynthesis, 3 electron-hole recombinations 

occurrin~ in quasi-crystalline regions of the photosynthetic unit, 4, 5 or 

perhap·s from slow release of energy from unidentified shallow, 
. 6 

electron-~rapping levels. 

Similarities between prompt and delayed emission have been 

noted in several instances. The spectra of the two types of emission 

from Chlorella pyrenoidosa are quite similar; both have maxima at 

685 nm, suggesting that the emissions probably originate fro;ID electron-
. 7 8 

ically excited chlorophyll molecules. There is strong evidence that 

fluoresc ence from green plants comes primarily from pigment system 
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2. 9 This same conclusion appears to be true for delayed emission as 

well, since a Scenedesmus mutant lacking functional system 2 reaction 

centers does not exhibit delayed emission. lO Furthermore, 3-(3, 4-

dichlorophenyl )-1, 1-dimethylurea (DCMU), which inhibits the oxygen 

evolving capabilities of photosystem 2, also markedly reduces the 

intensity of delayed emission. 11 It has even been suggested by Arnold 

and Davidson12 that a large part of fluorescence in vivo may in fact be 

nothing more than a fast component of delayed emission. Their original 

suggestion was based on an extrapolation of the known delayed fluore s­

cence intensity, measured at times longer than 10-5 sec, backward in 

time to a fow nanoseconds after cessation of the exciting light. This 

extrapolation showed that it would be reasonable to expect delayed 

emission occurring on the same time scale as fluorescence to have an 

intensity comparable to that of fluorescence. 

Despite numerous experiments designed to study various aspects 

of the problem (kinetics, quantum yields, biochemical alterations, etc. ), 

-very little is presently known about the inter-relationship between 

fluorescence and delayed light, nor is much understood abotit their 

quantitative involvement in photosynthesis. In order to obtain quantita­

tive information about the behavior of fluorescence and delayed emis-

sion, accurate measure ments of the time-course curve over the entire 

. .range between 10-9 sec and roughly 1 sec are required. Such data, if 

- subjected to rigorous kinetic analysis, may help not only to elucidate the 

early physical processe s taking place in the photosynthetic unit, but may 

also provide deeper insight into the nature of the subsequent light­

driven biochemical transformations that occur during photosynthesis. 
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As part of the larger effort, directed at obtaining the complete 

time-course curve of delayed emission from Chlorella, careful 

measurements of the decay kinetics of the emission between 10-3 sec 

and 1 sec have been made. Although similar studies have been under­

taken in the past, 2, 6, 13 the measurements reported herein are believed 

to be more conclusive, largely due to the fact . that we have used signal 

averaging to improve the quality of the raw data. A further improve­

ment in the pre sent experiments is the use of digital data acquisition, 

which facilitates numerical analysis of the data. The dependence of the 

decay kinetics on the excitation light intensity has been investigated, 

and delayed emission from cells inhibited with DCMU has also been 

studied. 

2. EXPERIMENTAL 

a. Materials 
~ 

Cells of the Emerson strain of Chlorella pyrenoidosa were grown 

in test-tube cultures in Knop's medium at 26. 5° C. · The algal cultures 

. were continuously aerated with a mixture of 5% C02 in 95% air. Cell 

suspensions from the exponential growth phase (k ·~ 1. 3 per day) were 

adjusted to an optical density of 0. 9 at 488 nm prior to their use in the 

experiments. Measurements were made using fully illuminated 1 ml 

samples in a quartz cuvette maintained at 26. 5° C. Continuous aeration 

with 5% C02 in 95% air was provided so as to ensure conditions as near 

normal as possible during the measurements. Since a period of roughly 

two hours was requir.ed to collect the data for a single decay curve, it 
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was necessary to stir the cells to avoid settling. Negligible changes in 

emission due to changes in the excitation light intensity or cell concen­

tration occurred during the measurement interval. 

The experiments were made using a phosphoroscope described 

in detail in Appendix A. Light from a 500 W xenon arc lamp, suitably 

filtered and focused, provided a broad band (""' 80 nm) of exciting light 

centered at 488 nm. Excitation power densities, measured with a 

calibrated Eppley thermopile, ranged from 10 mW/cm2 down to 0. 1 

mW /cm2 • A Bausch and Lomb 0. 25 m ''High Intensity" monochromator 

with a reciprocal linear dispersion of 64 A/ mm at the exit slit (slit­

width 3 mm) served to isolate the light emittBd at 685 nm. This emitted 

light was detected by a dry-ice cooled EM! 9558 photomultiplier. A 

Nuclear Data model ND 180 multichannel analyzer was used to average 

the output of the photomultiplier over many repetitions of the decay. 

The decay curve was ultimately read out in digital form onto a Hewlett­

Packard model 5050B digital printer. Numerical analysis of the data was 

accomplished using the techniques described in Appendices Band C. 

3. RESULTS AND DISCUSSION 

Figures 1 and 2 show the decay curves at each of 3 excitation 

power densities in the absence, and in the presence of DCMV, respec­

tively. A brief d~scription of these curves is given in the accompanying 

captions. In each case , the decay curve can be adequately described by 



Figure 1. Decay of delayed emission from Chlorella pa;renoidosa cells excited by 488 nm 
light. The three ·curves correspond to inci ent power densities at the sample 
of: 10 mW/cm2 (top), 1 mW/cm2 (center) and 0.1 mW/cm2 (bottom). The 
filled circles represent the experimental data points; the least-squares fit of 
the function I(t) =A exp(-t/r1 ) + B exp( --t/r1) to these points is shown as a solid 

line .. The values of the lifetimes T1 and T 2 are summarized in Table I. 
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Figure 2. Decay of delayed emission from Chlorella R!rinoidosa cells inhibited with 
3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (D MU). Tlie wavelength of the 
exciting light was 488 nmj the incident power densities at the sample were: 
10 mW/cm2 (top), 1 mW;cm2 (center) and 0.1 mW/cm2 (bottom). The filled 
circles represent experimental data points; the least-squares fit of the function 
I(t)=A exp(-t/r1 )+ Bexp(-t/r1 ) to these points is shown as a solid line. The 

values of the lifetim~s r 1 and r2 are summarized in Table II. 
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the sum of two exponential decays, i.e., by an expression of the form 

I(t)= A exp(-t/r1 ) + B exp(-t/r2 ). Tables I and II summarize the results 

of the analysis of the data shown in Figs. 1 and 2, respectively. 

It is seen that the lifetimes, 7"1 and -r2 , are both dependent upon 

the intensity of the excitation light whether or not the cells have been 

inhibited with DCMU; the effect is, however, more pronounced in the 

absence of the inhibitor. r 1 shows the stronger dependence on excita­

tion light intensity in both cases, varying by more than a factor of 4, 

compared to somewhat less than a factor of 2 variation in 7"2 , for unin­

hibited cells. The variation in r 1 for inhibited cells amounts to more 

like a factor of 2. 5, whereas r 2 changes by less than 25% in this case. 

In general, both lifetimes increase with decreasing excitation light 

intensity. This interesting observation, not entirely understood at 

present, indicates that some light-driven changes internal to the cell, 

such as light-induced shrinkage of the chloroplasts, effectively alter 

the rates of the underlying reactions. If the delayed light were indeed 

associated with some of these reactions, then one might expect changes , 

in the reaction rates to be reflected in the behavior of the delayed 

emission. 

To say more without the complete time course curve having been 

measured would be foolhardy. However, what has been described in 

this part of the thesis forms a solid basis upon which future work can 

be founded. The equipment has been assembled, the necessary pro­

grams for data analysis written and a start made toward collecting the 

data required to construct the complete emission decay curve for 
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TABLE I. Analysis of the decay curves shown in Fig. 1. 

Delayed emission from Chlorella pyrenoidosa at 26. 5° C-­

no inhibitor. 

EXCITATION LIGHT POWER COMPONENT LIFETIMES 
DENSITY 

(mW/cm2 ) - 1'1 (msec) 1'2 (msec) 

10 5.4 452 

1 23.4 666 

0.1 17._1 839 

TABLE II. Analysis of the decay curves shown in Fig. 2. 

Delayed emission from Chlorella pyrenoidosa at 26. 5° C-­

OCMU added as an inhibitor. 

EXCITATION LIGHT POWER COMPONENT LIFETIMES 
DENSITY 

(mW/ cm2 ) 1'1 (msec) r 2 (msec) 

10 21. 6 175 

1 38.3 217 

0.1 53.5 216 
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Chlorella. If these few preliminary data .are any indication, there may 

be some unexpected results awaiting thgse who carry on the work. 

Hopefully, this type of experiment will lead to a better understanding 

of the photosynthetic process--.a process crucial to life on our planet. 
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APPENDIX A 

EXPERIMENTAL 

This Appendix contains a more complete description of some of 

the experimental equipment and procedures than has been given pre­

viously. For the most part the discussion is simply an enlargement 

upon earlier mention of the particular procedure or piece of apparatus, 

although in one or two cases it is concerned with a description of equip­

ment that was constructed but which for various reasons never found 

its way into any of the experiments. It is hoped that by including a 

brief description of these items, what might otherwise be relegated to 

a dusty corner in some cabinet may instead be utilized in the experi­

ments _of future generations of graduate students. The material com -

prising the· Appendix falls logically into one of two categories, viz., 

"Equipment" and "Procedures". 

Equipment described in this section was included either because 

it was used extensively in the experiments described in this thesis or 

else it is of sufficiently general applicability in optical spectroscopic 

experiments to warrant some comment. 

· A variable spe ed phosphoroscope, consisting of a rotating 

cylindrical drum with a slot cut in its circumference, was mounted in 

the top of a wooden table as shown in Figs. Al and A2. · The angle 
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Figure A2. A drawing of the mounting table for the variable speed phosphoroscope. 
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subtended at the center of the drum by the slot was 165 °, corresponding 

to excitation and observation periods ranging from 0. 9 sec at the 

lowest speed to 15. 9 msec at the highest speed. Because the slot 

extended less than half way around the drum, a dead time existed 

between excitation and obse rvation which varied from 83 to 1. 4 msec 

depending upon the phosphoroscope speed. On the basis of these time 

characteristics one concludes that this phosphoroscope should be use­

ful in the study of optical emissions having lifetimes between 2 msec 

and roughly 1 sec. 

The experimental arrangement illustrated in Fig. A3 can be 

exploited for measurements of emission and excitation spectra as well 

as for lifetime determinations. Emission lifetimes can be studied 

most reliably by collecting data at different phosphoroscope speeds, 

chosen. so that sufficient time overlap exists between successive speeds, 

and then fitting these data together to obtain a decay curve extending 

over several lifetimes. This procedure was facilitated by digital data 

acquisition which made numerical reduction of the data particularly 

~traightforward. A discussion of the numerical techniques can be 

found in Appendix C. The best spectral measurements were obtained 

using the highest phosphoroscope speed together with a 1-3 sec time 

constant in the de tection electronics. This served to average out fluc­

tuations in the photomultiplier output due to the phosphoroscope 

rotation. 

Replacing the cylindrical drum having the 165° slot by another 

having two opposing slots, each subtending an angle of 85 ° at the center, 

provided alternate access to the sample by two light beams at right 
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Figure A3. An illustration of the experimental arrangement 
used to measure emission lifetimes and spectra or excitation spectra, 
depending upon the position of the monochrometer. For .lifetime 

. measurements the photomultiplier output was amplified and averaged 
over a long period of time by the multichannel analyzer. Either 
analog or digital readout could be selected. In the recording of 
.spectra, the photomultiplier output was fed directly into an electro-

meter and recorded on a strip-chart recorder. 
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angles to each other. The experimental arrangement shown in Fig. A4 

was used to study triplet-triplet absorption spectra of several samples. 

As the drum rotates, the molecules are alternately excited (some to 

their lowest excited triplet state) by a 6500 W Xenon arc lamp and then 

subjected to a spectroscopic continuum light beam, thus permitting 

observation of absorptions within the triplet manifold. 

b. Coolable Photomulti lier Housin 

Many of the experiments involved detection of weak emission 

signals, necessitating low detector noise. EMI 6256 photomultiplier 

tubes, selected for low noise, were cooled to dry ice te:mperature 

(-78. 5° C) in housings like the one illustrated in Fig. A5. · Cooling the 

tubes reduces the rmionic emission since the latter is proportional to 

T2 exp(- K/ T), T being the absolute temperature and K a constant. 

Reductions of one to two orders of magnitude in dark current could be 

achieved by cooling, indicating that thermionic emission contributes 

substantially to the dark current. The main features of the housing 

shown are its ability to hold dry ice for up to 24 hours and complete 

elimination of condensation around the base and voltage divider network. 

ort Assembl 

Figures A6 through A9 exhibit details of an optical bench sup-
. '-. 

port assembly that was mounted on a 1. 8 m Jarrell-Ash spectrometer. 

These supports mount rigidly on the front of the instrument, providing 

a sturdy base upon which optical components for a variety of experi­

mental arrangements can be mounted. Provision is made for double­

beam operation using the light tunnel described below. Figures A6 and 
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Figure A4. An illustration of the experimental arrangement 
for recording triplet-triplet absorption spectra~ The sample was sub­
jected alternately to light from the 6500 W xenon arc lamp used to 
create triplet-states and the continuum provided by the spectroscopic 
xenon lamp. Triplet-state lifetimes could be determined by measuring 

the rate of disappearance of the transient absorption. 
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Figure A5. A drawing of the coolable photomultiplier housing designed for use 
with an EMI 6256 photomultiplier tube. 
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A7 show the left and right supports, respectively, when facing the 

instrument. These are constructed of 8" aluminum channel and are 

designed to support Ealing aluminum triangular optical benches as well 

as a Dewar mount (Fig. A8), coolable photomultiplier housings (Fig. 

A5) and a mount for a PAR model BZ-1 chopper suitable for use with a 

PAR model HR-8 lock-in amplifier. An extension, which mounts at 

right angles to the right-hand bench (Fig. A9), makes possible simul­

taneous utilization of the double-beam capability and the rotatory 

refractor plate assembly described in sub-section e. Details of the 

metal, liquid-he lium Dewar compatible with this system have been 

described previously in a thesis by E. R. Bernstein, California Institute 

of Techriology, 1968. 

A light-tight system containing lenses, polarizers {before and 

after the sample), a beam splitter, variable apertures and two coolable 

EM! 6256 photomultiplier tubes is shown in Fig. A10. This system 

bolts directly over the exit slit of a 1. 8 m Jarrell-Ash spectrometer to 

provide double-beam capability. The monochromatic light beam 

emerging from the exit slit of the spectrometer is split into reference 

and sample beams, the sample beam containing roughly 95% of the total 

intensity. The outputs from the two photomultiplier tubes are fed into 

a differential amplifier (Tektronix, type 1A7 or PAR type A pre-amp) 

which amplifies the difference signal. Nulling of the signal prior to 

beginning an experiment cart be accomplished by adjustment of the two 

variable apertures, one of which is situated in each light beam. 
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Figure A6. A drawing of the left optical bench support (when facing the instrument) 
mounted on a 1. 8 m Jarrell-Ash spect~ometer. 
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Figure A 7. A drawing of the right optical bench support (when facing the instrument) 
mounted on a 1. 8 m Jarrell-Ash spectrometer. 
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Figure AS. A drawing of a helium Dewar support weldment used to mount a metal helium 
Dewar on either of the optical bench supports shown in Figs. A6 and A 7. · 
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Figure A9. A drawing of a lateral extension to the optical bench support 
shown in Fig. A 7. 
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Figure AlO. An assembly drawing of a light tunnel mounted on a 1. 8 m Jarrell-Ash 
spectrometer. This assembly provides for double-beam operation and can be used in conjunction 
with a rotary refractor plate assembly (Figs. All and A12) to give simultaneous rapid scan of a 

limited spectral region. 
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The numbers 1-23 on the assembly drawing {Fig. AlO) corre­

spond with numbers stamped on the individual sections of the tunnel to 

facilitate assembly. Although the system as shown was designed for 

use on a Jarrell-Ash 1. 8 m spectrometer in conjunction with the 

optical bench support assembly described in subsection c, it has also 

been found useful in part with a Jarrell-Ash 0. 5 tn spectrometer, pro­

viding coupling between the spectrometer exit slit and a coolable 

photomultiplier housing (Fig. A5). 

Figures All and A12 are drawings of a rotary refractor plate 

installation in a 1. 8 m Jarrell-Ash spectrometer. This device utilizes 

the refractive properties of a quartz prism to provide a repetitive 

rapid scan of a small region of the spectrum centered at an arbitrary 

wavelength,· dependent upon the position of the grating. Light striking 

the prism, of refractive index n, at an angle e to the normal, suffers 

a linear displacement proportional to sine (1 - cose) as it traverses . n 

the prism. Thus, if the pdsm is positioned inside the spectrometer 

directly behind the exit slit, as the prism rotates, the wavelength of 

the light intercepted by the exit slit is a function of the rotation. It 

can easily be shown that an observer looking into the exit slit from 

outside the spectrometer would see a repetitive unidirectional wave­

length scan. The prism can be rotated at frequencies up to 10 KHz, 

making signal averaging a feasible part of data acquisition. · 

· .The extent of the spectral region scanned depends upon the 

reciprocal linear dispersion of the spectrometer in which the device is 



Figure Al 1. A drawing of a rotary refractor plate assembly mounted in a 1. 8 m Jarrell- · 
Ash spectrometer (viewed from inside the inst~ument). This device provides for rapid scan of 
approximately 15 A of the spectrum (which 15 A interval depends upon the position of the grating) 

when used in conjunction with a 600 grooves/mm grating. 

..... 
-:J ..... 



r.--- -·----
1: 

'I 

--------~-·------.--

ROTARY R£FRACTOF/ ~ 

f-----l--4.250---~ 

__ ___ :\ 
? - ---•l <'. o'j-·-~----~ 

3.500 

I 1; J 

~ I 1
1 I 

i I 1
1 I 

~ I II I 
~ I [1 I 

~--ttr 

# IO-J2 < ~ PAN HD 
MACH se ws - 4 REQD 

.2SO OD X ./ 90 ID X 

. 24 0 LG COP. SPACERS 
4 RfQ

1
D 

'I · ' ' I' 
i 
.I • 

' 

~ 
-1"' 
"' 

INSTALLATION ROTARY R EFRACTOR IN 
JARRE.LL-ASH 'SP£CTRO!v/£TER 7677 

..... 
~ 
~ 



• 

Figure A12. Details of the adapter block used fo. mounting the 
rotary refractor plate assembly. 
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mounted. For a 1. 8 m Jarrell-Ash spectrometer, using the first order 

of a 600 grooves/ mm grating (reciprocal linear dispersion of 

13 A/mm), an interval of approximately 15 A is swept past the exit slit 

repetitively. Unfortunately, the reciprocal dispersion within the 15 A 
interval is no longer linear, being most distorted near the extremities 

of the sweep (corresponding to large angles e between the normal to 

the prism face and direction of propagation of the light striking it). It 

is advantageous therefore to use only the central portion of the sweep 

near () = 0 where sin 8 ~ (). However, if this is not possible and it 

becomes necessary to use more of the sweep, corrections for the non­

linearity can easily be made since the exact form of the distortion is 

known. The device should be particularly useful for studying line­

shapes in view of the fact that the signal can be averaged over long 

. periods of time and stored digitally. 

2. PROCEDURES · 
~ 

a. Purification of .Anthracene 

Attempts to purify anthracene by fusion with an alkali metal, a 

technique found to be effective in the purification of benzene and naph­

thalene, have met with failure largely because of the relatively high 

melting point of anthracene (217° C). At temperatures in this range , 

reaction between the alkali metal and anthracene is so vigorous that it 

results in nothing but de gradation products. Consequently, purification 

of anthracene has been r e stricted to eXtensive zone-refining, column 

chromatography or a combination of the two. A modification of the 

fusion pr ocess has been applied to lOg of anthracene. Preliminary 
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spectroscopic purity checks indicate that the impurity. concentration is 

reduced substantially during the process. 

Basically, the method consists of initial zone-refining followed 

by column chromatography on alumina. The purest fraction from the 

column is dissolved in benzene and subsequently treated with potassium 

metal at 80° C. Dissolving the anthracene in-benzene provides the 

requisite mobility for effective contact with the potassium metal while 

obviating the need for working at temperatures near 220° C. In a final 

step the anthracene is once again zone-refined, care being exercised 

to maintain darkness around the molten zone. Since the zone -refining 

and chromatographic procedures are straightforward, attention will be 

focused on the details of the potassium treatment. 

A diagram of the purification manifold is shown in Fig. A13. 

After initial outgassing of the manifold (limiting pressure ,..., 4 x 10-7 

'!brr), high purity potassium is introduced at E from a previously 

prepared break-seal tube. Constriction J is sealed and a potassium 

mirror formed on the walls of the reaction vessel. The initially zone­

refined and chromatographed anthracene is introduced through C under 

a helium gas purge to avoid contaminating the potassium surface with 

air. Constriction I is sealed and the anthracene outgassed. Carefully 

dried, degassed benzene is then distilled from another part of the 

vacuum system into the reaction vessel through B and break-seal G. 

After admitting a few 'Ibrr of high purity, dry helium gas, constrictions 

H and R are sealed and the benzene refluxed for 24 hours. At the com- · 

pletion of the reaction the benzene is transferred, through break-seal 

F and tube A, to a vessel elsewhere on the vacuum line and 
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Figure A13. A drawing of the manifold used to purify anthra­
cene. The manifold is sealed to the vacuum system at points A and B. 
Starting material is introduced through C. High purity potassium is 
admitted from a break-seal tube through E . A receiving vessel for · 

the purified material is affixed at D. 
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constrictions K and M are sealed. The anthracene is transferred out 

of the reaction vessel through break~seal L into a receiving vessel at 

D. Should a pressure build-up occur during this transfer, due to 

liberation of trapped gases, access to the pump can be re-gained 

through break-seal N. After the gase.s . have been pumped out, con­

striction 0 is sealed to re-establish the closed system necessary for 

continuation of the transfer. When all the anthracene has been trans­

ferred into the receiving vessel (usually a zone-refining tube), break­

seal P is opened for final outgassing of the sample. A few Torr of high 

purity, dry helium gas is admitted to prevent sublimation during the 

zone-refining step, and the receiving vessel is sealed off. After the 

final zone-refining has been completed, . the zone-refining tube is 

resealed to the vacuum . .line,. access to the anthracene being through a 

break-seal at the upper end of the tube. The central fraction of pure 

anthracene is transferred under vacuum into crystal-growing tubes, 

outgassed once more and sealed off, thus completing the purification 

procedure. 

Of utmost importance is the exclusion of air during the entire 

process. This is particularly crucial during the time the anthracene 

is dissolved in benzene since anthracene is rapidly oxidized in benzene 

solution. Consequently, considerable time is required at each step 

in the purification to ensure that the system is properly degassed. 

One complete purification requires approximately six weeks· from 

start to finish. 
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b. 

A brief description of the naphthalene purification procedure is 

included here for completeness. The manifold (Fig. A14} is initially 

outgassed (limiting pressure ,.., 4 x l0-7 Torr) and a mirror of potas­

sium (admitted previously} formed on the walls of B and C. Zone­

refined naphthalene is introduced into vessel A under a helium gas 

purge and subsequently transferred into vessel B through break-seal 

D. Constriction E is sealed and the naphthalene-potassium mixture 

heated to 90° C for 12 hours. The contents of B are transferred 

through break-seals F and G into vessel C, constriction H is sealed 

and a second 12 hour fusion at 90° C follows. The naphthalene is 

transferred from C into a receiving vessel (usually a zone-refining 

tube) at J and undergoes extensive zone-refining before being trans­

ferred under vacuum into crystal-growing tubes. As in the anthracene 

purification, air is rigorously excluded during the entire process. A 

complete purification can be effected in :roughly one month. 



Figure A.14. A drawing of the manifold used to purify naphthalene. The manifold is sealed to 
the vacuum system at points K, L and M. Starting material is introduced into 

vessel A. A receiving vessel for the purified material is affixed at J. 
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APPENDIX B 

CONCERNING THE DECAY KINETICS OF EXCITED STATES 

The kinetics of excited state population and depopulation are 

discussed for the separate cases of continuous a!ld intermittent excita­

tion. A comparison is made between these two types of excitation with 

particular reference to the experimental determination of the kinetic 

constants defined by the equation governing the excited state population. 

Provided that the periodic excitation consists of well-defined "on" and 

"off" intervals and the time required to switch from the "on" to the 

"off" condition is small compared to the lifetime of the emitting state, 

these constants can be determined as well with periodic as with con­

tinuous excitation. In the following, a continuous source is taken to be 

one that provides continuous excitation for a time that is long compared 

to the lifetime of the emitting state in question. Thus, steady-state 

. conditions are reached before the source is switched off and measure­

ments of the decay begun. A periodic source, on the other hand, is one 

that provides cyclically an illumination interval followed by a dark in·­

terval and steady-state conditions may not be established during a 

single cycle. Evidently, in the limit of vanishingly small frequency a 

periodic source becomes equivalent to a continuous source. 

Consider the general equation for combined first- and second­

order kinetics, 

-dn(t)/ dt = iSn(t) + yn2(t) - S(t) , (Bi) 
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where n(t) is the excited state population as a function of time, f3 is the 

total first-order rate constant and S(t) is a term representing the 

excitation source. For a given source intensity I(t) we have 

S(t) = CI(t) , (B2) 

C being the fraction of the source intensity that is effective in producing 

the excited states of interest. In view of the fact that [3 and y may be 

composites of the decay constants for several first- and second-order 

decay channels, respectively, it is clear that Eq. (Bl) is representa­

tive of the kinetics of a large number of systems. It should be noted 

that, except in the case that the source term is constant, Eq. (Bl) 

cannot in general be solved analytically. Of course, if y = O, corre"'.' 

sponding to pure first-order decay, the equation can be solved ana-

lytically for any S(t) subject only to the evaluation of the integrals 

involved. However, even for a non-zero y, if S(t) is a square wave it 

is possible to solve Eq. (Bl) with a constant source term during the · 

illumination interval and with S(t) = 0 throughout the dark interval of 

the cycle (Fig. Bl). The two solutions must then be fitted together at 

the point in the cycle at which the illumination is jnterrupted, in order 

to obtain-the complete solution. We proceed now to establish several 

of these results in more detail. 

1. CONTINUOUS EXCITATION 

The source term is taken to be time-independent and · of magni­

tude CI/2, I0 being the source intensity. The r eason for the explicit 
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inclusion of the factor of 2 will become apparent later. With this 

source term, Eq. (Bl) becomes 

-dn(t)/ dt = ,Bn(t) + yn2 (t) - CI/2 . 

Solving Eq. (B3) for n(t) with the initial value ri(O) = 0 yields 

1 . 1 

(B3) 

_ n(t) = CI/{,B + (/32 + 2CI0y)2ctnh( (/32 + 2CI0y)2t/ 2]} • (B4) 

Equation (B4) describes the approach to steady-state of a level that is 

being pumped by a continuous source and simultaneously depopulated 

by both first- and second-order processes. We note in passing that 

in the limit as t approaches infinity, Eq: - (B4) reduces ~o a steady-

. state value of 

-
n(t = oo) (B5) 

which is just the solution of Eq; -(B3)--with dn{t)i dt ==-- o anct·n(O) = O, as 

it must be. · It is a simple matter to extract from Eq. (B4) expressions 

appropriate to pure first- and pure second-order decay by setting 

y = 0 and (3 = O, respectively. In the first case we obtain 

n(t) = (CI/2$)(1 - exp[ -,at]) , (B6) 

whereas the approach to steady-state in the case of pure second-order 

decay is governed by the equation 

l 1 
n(t) = (CI/2y)2tanh[(2CI0y)2t/ 2] . (B7) 

Having established Eqs. (B4), (B6) and (B7) under conditions of con­

tinuous excitation, we turn to an investigation of Eq. (Bl) when the 
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source term S(t) is time-dependent. 

In the following discussion, I(t) is taken to be a symmetrical 

square wave of magnitude 10 during the first half of each cycle and 0 

during the last half of each cycle {Fig. Bl). This particular form for 

I(t) is chosen because it closely approximates the actual experimental 

conditions used and because it facilitates the analysis. The square 

wave can be represented by a Fourier series 

00 

I(t) = 10 { ~ + 2/ 1T [ sin[ (2k + l)wt] / {2k + 1)} , (B8) 
k=O 

with w equal to the frequency of the square wave excitation source. 

The average value of I(t) is just I/2, suggesting that comparison 

between periodic and continuous excitation is best made for a contin­

uous source of intensity 10 / 2. Hence the factor of 2 in the definition 

of the continuous source intensity in Eq. (B3). 

Since an analytical solution to Eq. (Bl) with y = 0 and S(t) given 

by Eqs. (B2) and {B8) can be found, we consider that situation next. 

The equation to be solve.cl is 

00 

dn(t)/dt + ,Bn(t) = CI0 {l + 2/ 1T L sin[ {2k + l)wt] / {2k + 1)} , {B9) 
k=O 

the solution to which is 

n(t) = (CI0 / 2,B) + (2CI0 / 11'{3) {M(w, /3, t) + N(w, ,B)exp[ -,at]} , (BlO) 



Figure Bl. The form assumed for the source term in the analysis of the kinetics for the 
case of intermittent excitation. It need not be a symmetrical square wave but must be character­

ized by well defined "on" and "off" intervals. 
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when the initial value is taken to be n(O) ::; 0. The functions M(w, (3, t) 

and N(w, (3) are defined by 

and 

~ { f3 sin[ (2k+ l)wt] -. (2k+ 1)w Gos[(2k+ l)wt]} 
M(w, (3, t) = w 

k=O (2k+1)[{3+(2k+1)2w2 / ,B] 

ao 

N(w,,8) = [ {1/[,B/ w+ (2k+1)2w/f3]} -11'/4 
k=O 

(B11) . 

(B12} 

It is straightforward to show that Eq. (BlO) reduces to Eq. (B6) in the 

limit as w approaches zero. That is, Eq. (B10}, which contains all 

the time dependence of both the excited state build-up and decay under 

conditions of periodic excitation and fir st-order decay, has in it as a 

special case the result appropriate to continuous excitation. 

For non-zero 'Y .and S(t) defined by Eqs. (B2).and (BB), there 

exists no single analytical solution to Eq. (Bl). However, due to tlie 

square wave form of S(t), two separate analytical solutions, each valid 

in its respective half cycle, can be obtained. In the first half each 

cycle, i. e., while the excitation is "on", the appropriate equation is· 

-dn(t)/ dt = ,Bn(t) + yn2 (t) - CI0 , (B13) 

and during the latter half or "off" time of the cycle the kinetics are 

governed by 

-dn(t)/ dt = ,Bn(t) + yn2(t) (B14) 

To getthe result for the first period, Eq. (B13) is solved on the 
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interval t = 0 tot= rr/w with n(O} = 0. The value n(rr/w) becomes the 

initial value for the solution of Eq. (Bl4} on the interval t = 1T/w to 

t = 21T/w. For t between 2rr/ w and 311' / w one must again solve Eq. (B13) 

but now with an initial value given by n(27T/w) evaluated from the solu­

tion of Eq. (Bl4}, and so on. The complete result is thus generated by 

a sort of bootstrap process in which Eqs. (Bl3} and (B14) are solved 

sequentially and cyclically with different initial values for each period. 

This technique obviously applies to any decay scheme provided the 

excitation has the required wave form. 

In practice, it is just as simple to solve the complete equation 

numerically as it is to apply the bootstrap method described above. 

The Runge-Kutta scheme* was used to solve Eq. (Bl) with S(t) defined 

by Eqs. (B2) and (B8). The solution is displayed in Figs. B2-B4, the 

three curves corresponding to a source frequency less than, roughly 

equal to, and greater than the reciprocal of the lifetime of the emitting 

state, respectively. It can be seen that the approach to steady-state 

using periodic excitation parallels that for continuous excitation pro­

vided the two sources have the same average intensity. 

3. CONCLUSIONS 
~ 

(i) With the single requirement that there be well-defined "on" and 

"off" intervals during the cycle , it is evident that the kinetic 

* . . 
. See , for exa m ple , H. B. Ke ller, Nume rica l Methods for Two-
Point Boundary '.""Value Problems (Blaisdell Publishing Co., · Waltham, 
Massachusetts, 1968), Chap. 1. 



Figure B2. · Build-up and decay of excited state population under intermittent excitation 
when the frequency of the source is less than the reciprocal of the lifetime of the emitting state. 
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Figure B3. Bµild-up and decay of excited state population unde'r intermittent excitation when 
the frequency of the source is roughly. equal to the reciprocal of the lifetime of the emitting state. 
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Figure B4. Build-up and decay of excited state population under intermittent excitation 
when the frequency of the source is greater than the reciprocal of the lifetime of the emitting state. 
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constants derived from experiments utilizing periodic excitation 

are unchanged from those obtained by use of continuous illum­

ination. This is true for any kinetic decay scheme and is inde­

pendent of any asymmetry in the source term, i.e. ' the source 

term need not be a symmetrical square wave. 

(ii) For experiments in which the period of-the source ter.m is short 

compared to the lifetime of the emitting state, it is a good prac­

tice to begin making measurements only after several periods 

have elapsed. Otherwise, the build-up to steady-state will 

appear as a rising background (Fig. B4). A rough estimate of 

the number of periods necessary prior to measur~ment can be 

obtained from the expression N ~ 10wf3. 

(iii) No error is introduced into the experimental determination of 

the kinetic constants when a complete decay curve is 

"synthesized" from several pieces recorded at different fre­

quencies. 

(iv) The approach to steady-state under conditions of periodic exci­

tation parallels that with steady-state illumination by a source of 

equal average intensity. Thus, the only effect of chopping the 

excitation light is to reduce its average intensity by the ratio of 

the "off" to "on" intervals. 
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APPENDIX C 

NUMERICAL METHODS 

• , 

The present section is devoted to a discussion of some of the 

numerical methods used in analyzing various parts of the experimental 

data. Two books were found to be excellent reference sources for the 

neophyte numerical analyst. The first is ''Numerical Methods for Two­

Point Boundary-Value Problems" by Herbert B. Keller1 which con­

tains among other things very readable discussions of several methods 

for solving nonlinear differential equations. The other book is 

''Introduction to the Theory of Probability and Statistics" by Niels Arley 

and K. Rander Buch2 which presents a very compact formulation of 

the theory of adjustment. 

1. INITIALIZATION OF LIFETIME DATA 

During the course of making many lifetime measurements using 

a variable speed phosphoroscope (see Appendix A) it became apparent 

that the most reliable values were obtained from measurements extend-

ing over times long compared to the lifetime being measured. This is 

particularly true for emission decays following non-exponential kinetics. 

Consequently, the following method was adopted for collecting and 

handling the data. In the discussion, the values used are those appro­

priate to the measurement of lifetimes of the order of half a second. 

The principles behind the method are however quite general. 
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The emission decay curve (intensity vs time) was recorded at 

four different phosphoroscope speeds chosen so that sufficient time 

overlap e~isted between successive speeds, viz., 1725, 431, 126 and 

31 rpm-. Absolute t=O (the time at which the excitation light ceased to 

strike the sample) was determined at each of the four speeds. After 

making the necessary baseline corrections, the data were appropriately 

scaled so that the four individual "pieces" fit together to form a com­

plete decay curve. The scaling between any two successive "pieces" 

of the curve was accomplished by obtaining the average ratio between 

the two throughout the overlap region (which was determined from the 

known t=O) and then multiplying one of the "pieces" by the average ratio 

so as to put both "pieces" on the same scale. This procedure was found 

to result in smooth decay curves extending over the region from roughly 

2 msec to 1 sec. _ Acquisition-of the data in digital form was found to 

greatly fac_ilitate both the data initialization described above and the 

fitting of a kinetic scheme to the experimental decay curve. 

2. FITTING A KINETIC SCHEME TO THE DATA 

With the complete decay curve in hand, one is in a position to 

fit a kinetic scheme to the data as a means of extracting the decay con­

stants. The familiar method of least square s was used for this pur­

pose. Chapte r 12 of Arley and Buch2 contains an elegant presentation 

of the theory of adjustment as it applies both when the equation of con­

dition are linear and when they are nonlinear. The treatment is formal 

but at the sa me time it is easily adapted to practica l situations, the -
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_compactness of the formulation making it most appealing for computer 

application. 

A series of computer programs compatible with the IBM 360/75 

has been written, listings of which can be found in Appendix D. These 

programs are designed to effect the data initialization and least squares · 

fitting of any of five kinetic schemes to the experimental decay curve 

with a minimum of input control data. 

3. 

The equation to be solved has the form 

D d2£l2x) ( ) ( ) ( ) - {3n x - y en2 x + ma I0 exp -ax = o · (Cl) 

where (C2) 

In Eq. (Cl), Dis the diffusion constant, n(x) is the triplet exciton den­

sity as a function of position in the direction x perpendicular to the 

crystal face being irradiated, f3 and ye are the first- and effective, 

.second.,.order triplet decay constants, respectively, m is the _inter­

system crossing efficiency, a is the absorption coefficient and I0 is 

the incident light intensity. The constant a in Eq; (C2) is the exciton­

exciton "collision diameter 113 and y is the second-order rate constant 

in the lirriit when 2rraD » 1. The solutfon in required on the -interval 

0 ·~ x ~a where "a" is the crystal thickness. A uniform net 9.efined by 

x = jh' j = o, l, . 0 . 'J+l ' (C3) 
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is constructed on the interval [ O, a] and, 'Yith the aid of a centered­

finite-difference approximation to the second derivative d2n(x)/dx2 , 

Eq. {Cl) can be cast in the form 

(
n. 1 -2n. + n. 1) a 'Y maio 

- J+ l J- + ..t:!.. n. + ~ n~ - -- exp(-ajh) 
~ D l D l D 

The functional iteration is, therefore, 

Il~O) 
J = arbitrary , 1 ~j ~J 

= (~·) [.!.(n~v) + n~v) )+ wn.(v) - ,Bh2 n.Cv) 
.i+w 2 J+l J-1 J m J 

- _e_ n. Vr + exp(•ajh) · 'Y h2 ( \2 ma I0 h
2 J 

2D l 2D 

n (v) - 0 
0 - ' 

1 ~ j ~ J ; .. v = 0, 1, 2, ... 

n~v)l = 0 
J+ 

- -- - -

(C4) 

{C5a) 

(C5b) 

(C5c) 

After computing several iterates of the explicit scheme, Eqs. 

(C5), the more rapidly converging Newton iterations are used to com­

plete the solution. The initial explicit iterations provide a first Newton 

iterate "close" to the solution, a necessary requirement to ensure con-

vergence. To define the Newton iterations we first write . . 
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mal0 h2 

2
D exp(-ajh) 1 ~ j ~J 

where 

n ,.. and ~(n) = ........ ,... 

The Jacobian of ~ (n) is just the Jth-order tridiagonal matrix ,... .,,.... 

a~(n) 
A( ) = ...... "" -n - ---,.. ,... an 

where 

A.(n) = l ....... 

c.(n) = J ,... 

,... 

1 
- 2 ' 

- .!. 
2 ' 

Bi (n) C1 (n) 0 ,,.... ....... 0 

~ (£} B.z (~) C2 (~) • • • 

A J-1 (~) B J-1 (~) C J-1 (~) 

0 0 AJ(~) Bi~) 

v = 0, 1, 2, ... 

1 ~ j -~ J' v-= 0, 1, 2' ... 

l~j~J-1, v = o, 1, 2, . .. 

(C6) 

(C7) 

(C8a) 

(C8b) 

In computing <A.(£} and ¢J(~)- we use n0 = 0 and nJ+l = 0 -so that Eq. (C5c) 

is always satisfied. From Eqs. (C8) it follows that 
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v = o, 1, 2, ... (C9a) 

where .6.n(v) is the solution of 
"' . 

11 = o, 1, 2' ... (C9b) . 

A general treatment of the method outlined here can be found in refer­

ence 1, pp. 72-90. 

4~ CALCULATION OF THE DELAYED FLUORESCENCE 

AND PHOSPHORESCENCE EXCITATION SPECTRA 
~~~~~~~~~~~~~~~~~~~~~~ 

· To calculate the delayed fluorescence and phosphorescence 

excitation spectra exactly, it would be necessary to know n(x) at au 

wavelengths for which a is non-zero. However, since the problem 

must be solved numerically in any case, we settle for n(x) at a series 

of discrete· wavelengths chosen so that the resolution is adequate for 

the present purpose. Having solved Eq. (Cl) at each of these points by 

the method outlined in subsection iii, it remains only to determine {df 
and I~ the calculated intensities of delayed fluorescence and phos­

phorescence, respectively, caused by excitation light of wavelength X. 

This amounts simply to performing the following numerical integrations 

(ClOa) 

and 

·a 
= ~,B J ~ (x) dx 

0 
(Cl Ob) 
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where K1 and~ are constants. Plots of fdf and r; versus X represent 

a point-by-point approximation to the experimental spectra. Increasing 

the number of points used in the calculation will obviously result in a 

better approximation to the experimentally determined curve. 

5. FITTING THE CALCULATED EXCITATION SPECTRA 

TO THOSE OBT AINEn EXPERIMENTALLY 

With both the calculated and experimental excitation spectra in 

hand, it appears that a logical next step would be to fit the calculated 

curve, allowing certain parameters to vary, to the experimental curve 

in order to obtain the ' 'best estimates" of these parameters. The 

method of least squares provides a convenient ~ean~ of accomplishing 

this task. 

Suppose for example we wish to vary the diffusion constant n 

in the least squares fit of the phosphorescence excitation spectrum. 

This will require a knowledge of the derivative of Eq. (ClOb) with 

respect to n, 

~ · a anA(x) 
. an = ~/3 · ~ an dx (Cll) 

Clearly, it is necessary to know an(x)/ aD before Eq. (11) can be of any 

use. To obtain anx (x)/ aD we note that the derivative of Eq. (Cl) with 

respect to n can be written in the form 

(C12) 
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where we have replaced an~ (x)/aD by Z . . Eq. (C12) can be solved by 

straightforward numerical methods1 to obtain the required derivative. 

Eq. (Cll) .can then be integrated numerically to obtain a value for 

a~/0D, necessary in the least squares formalism. 

This same procedure is obviously applicable to other parameters 

that must be varied in executing the least squ~es fit. Details of the 

least squares formalism can be found in reference 2. 
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1. H. B. Keller, Numerical Methods for Two-Point Boundary-Value 

Problems (Blaisdell Publishing Co., Massachusetts, 1968) 

. pp. 21-27. 

2. N. Arley and K. Rander Buch, Introduction to the Theory of 

Probability and Statistics (John Wiley and Sons, Interscience, New 

York, 1950). 

3. R. M. Noyes, "Effects of Diffusion Rates on Chemical Kinetics" in 

Progress in Reaction Kinetics, G. Porter, Ed. (Pergamon Press, 

New York, 1961) Vol. 1. 
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APPENDIX D 

PROGRAM LISTINGS 

Program listings of a data fitting package used to analyze optical 

emission decay curves in the time domain from l msec to roughly 1 sec 

are included in this Appendix. Provision is made in this package for 

least squares fitting any of the five most commonly occurring kinetic 

decay schemes to the experimental data. The program can be modified 

very simply to cover any other time interval or decay scheme of inter.:. 

est. Also to be found in this Appendix is a listing of a program for 

extracting a first order rate constant from experimental data when the 

time required to switch off the excitation source is comparable to the 

lifetime (the reciprocal of the first order decay constant) of the emis­

sion under investigation. For convenience in visually judging the 

quality of the fit, the output from these programs includes a plot of the 

experimental data points with the least squares fitted curve super­

imposed. 

Specific instructions for the use of these programs, including a 

list of required input data cards, can be found at the beginning of the 

appropriate program or subroutine. Details of the numerical methods 

upon which the programs are based .have been discussed in Appendix C. 
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LEAST SQ UARES CATA FITTING FACl(AGE 

TtHS FACK AGE IS CC+IFOSEC Cf" A CC>NTi\OL FRC.C.RAM •SOL • AtlC FI VE SUS-
1\0UTWES--" ACc.NI S" FC•R FI RST ORCER l(lNETICS** "AMC.1'" FUR SECC>NC 
Ol<CER l(INETICS** "AFOLLO" Fei< THE SUM ff T\..Q FIRST ORCEi\ CECAYS*'O 
"EROS" fC>t<: CC>M61NEC FIRST ANC SECC>NC C"'CER l(!NETICS USING THE 
FIRST C>RCER FART AS FRCSE** "HEi\~lES" FOR CC>MSI NEC FIRST ANC 
SECC>NC C>i<CER l(INETICS USING THE SECC>NC Oi\CER FART AS Fi\C£E. A 
SUSRC>UTINE "!CAWS" FRC•VICES CNE ff T\.K:/ \..'EIGHT MATRICES FC>t< USE 
WITH THE CATA FITTING SUBROUTINES. INSTRUCTIC>NS FUR THE USE 
<J THIS FACKAGE , INCLUCING THE REQU!i<EC INFUT . CATA CAR.CS, CAN SE 

FOUNC IN THE FRC>C.RAM LISTIN<:.S \.tilCH FC>LL~. 
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SC>l. 1 

E. 6. Fi\IESTLEY MAY 10, 1968 
THIS Fi\C(',i<AM INITIALIZES KINETIC CATA, MAKIN(', IT REACY FO~ 
HiEATMElfl' Ill THE LEAST S'21.'Ai<ES FITTIN<; si.:el<C•UTINES. IN ACCITION, 
INFUTl(·CTi'l.'T IS HANCLEC eT THIS MAIN Ho<;RAM. 
THE MAXIM\.'M ALLC\.IAeLE SIZE FC·R THE FltlAL 'CATA" ARRAY IS 1450. 
INFUT TV TtiE CATA !NITlALIZATJ(.N SECi!Cfl Cf' THE FRO(',i<AM CAN 
CONSIST Cf' CF TC. FOUR SETS Cf' CATA EACH CCNTAININ<; 512 NUMeERS. 
USIN(', Sl$R(CTJNES "CTAFIT" I EXFCNENTIAL. ccueLE EXFONENTIAL., 
SECC~•C C.f\CEK, ANC FIRST AllC SECUlC Coi<CEi< cc.i<elNEC lllNETICS CAN 
EE LEAST Swl.'ARES FIT TO EXFERIMENiAL CATA FOINTS. 
THE N\.'MeER Cf' FAi<AMETEi<S IN THE TttEC.f\Y CAliHQT EXCEEC FOUi<. 
THE FRC-<;i\AM 1.'SES t~EWTC-NS METHC.C Cf' LINEAi\lZATION- CESCRIEEC IN 
ARLEY ANC El.'CH, 0 INTi\C.CUCTIOtl TO TH£ itiEC>i<Y a: FIKEAEILITY AHC 
STATISTICS" FF181-21Q. 

****~****~*********************~*~****~***********===*t*** 
~***********~********************~*****~*****~*******¢~*** 

REQUIREC INFUT .CATA CAi<CS 

*:C:**~ 
1. CLAEL,ICTC•A,ICCA , LCCA,TINCl\A <FC·RM.AT STATEMENT EFN 2) 
2. JC£NQ,HMSG,NCS (FC•RMAT STATEl-£NT EFN 11l 
3. ICTAFT ,IFLQT ,CC <FOi<MAT STATEMENT EFN 17) 
4. 64 CATA CAi\CS - "ACATA' CFC~M~T STATE~NT EFN 24) 
5. A CLAEL,ICTO,ICC,LCC,TllKR CARC, FC-LLC\..t:C eY 64 CATA CARCS f'Ok 

EACH ELC<ll Cf' CATA TO EE REAC IN <Fc.t<MAT STATEMENT Ef'N,S 38, 
75,112> 

g. A CARC 1.'ITH ESTIMATEC VALi.JES Cf' itiE FAi<.AMETERS IN THE Tt£0i<Y 
<SEE THE AFFi\c i' i< IA.TE SUERruTINE "CTAFIT~> . 

7. THE LAST CATA CAF.C MUST EE AN "ECTA" CARC 

****** 
*****~*~*************~~~~~.........____..~********~*****~~­

. **** ............. *··~~~··~****~~****~~~****~******~**""'~*'*** 

•:C:**** 
A-,t-,C-,CCATA 

CALCI 
CATA 
cc 
CEV 
CL A BL 
HMS<; 
ICTO 

ICC 

ICTAF'T 

CEF'INI T letlS 

=TEMFU<ARY STU<A<;E F'oK ELOCKS <F 512 CATA· 
FOINTS 

=THE CALC~~ATEP INTENSITIES 
=STOi<AGE LC.CATICU Ck ExFERIMENTAL FOlNTS 
=A MESSACE TC. EE FRINTEC .ON THE FLOT 
=CALCULATEC IrnEUSITIES - CATA FO!IHS 
=A CATA ICEllTIFICATICt< LAEEL 
=AN lCEIHIFICATIC~l MES:.Ar.E, 52 COLlltlNS 
=THE CHA:U~EL f'C;< T:Q <A,E,C,C REFER TO THE 
VAklC~S E~C<KS Cf' CATA TO EE Fi<OCESSEt:> 

=THE CHA!ll;EL f'C-R THE FIRST CATA FOINT (A,B, 
C,C REFER TC. TtiE VARIOUS ELOCKS Ck CATA 
TO 'EE FROCESSEI:l 

=A SlC'.llAL f'C R THE TYr E Ck tc.JNETIC SCHEME 
USEC IN TtiE FliTI1;c; SUEROUTI NE AS FOLLCAJS-

1 Sl<;NIFIES FIRST C.RCER ~INETICS 
2 SICN!f'IES SECONC ORCER KINETIC$ 
3 SI<;Nlf'IES TriE SUM Ck TWO FIRST Vl<CEi 

CECAY FROCESSES 
4 SlC'.tHFIES CCMEI NEC Fll<ST ANC SECC>lolC 

Oii'CEi< Ol~ETICS USIN' THE Fli\ST OfiCEi 
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Fl<<hl<AM SOL f'l<AME 2 

c 
c 
c 
c 
c 
c. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1. 
2 

c 
c 
c 
c 
c 
c 
c 

• • 

lFLOT 

JC.£NO 
JTEST 

LCC 

NCS 
STNCEV 
T 
Tl 
HNCR 

Tl 

FART AS THE EXFERIMENTAL FROBE 
5 S!GN!f'!ES COME!NEC f'lRST ANC SECONC 

ORCER l\!NETICS USING THE SECONC ORCER 
FART AS THE EXFERIMENTAL FROEE 

=A SIGNAL f'OR FLOT C,R NOFLOT AS f'OLLCWS-
1 SIGNIF'IES FLOT 
2 SIGNIF'IES NOFLOT 

:JOE NUMBER, 12 COLUMNS 
=AN ERROR CHECI\ INCEX REGISTER SET IN 

SUERC·UTINE "CTAF'IT" 
=THE CHANNEL f'C•R THE LA.ST CATA FOINT CA,S, 
C1C REF'ER TO Tt!E VARIOUS ELOCl\S Ck CATA 
TO SE FRCCESSECl 

:THE NUMEER c.f" CATA ELOCl\S Teo EE FROCESSEC 
=THE STANCARC CEVlATlC~S Ck THE FARAMETERS 
=A VECTOI< C~TAINING THE TIME 
=THE TIME CJ' THE f'!RST CATA FOINT 
=THE C\.IELL TIME FER CHANNEL QN THE NC180 

iA,6,c,c REFER TO THE VARl(~S ELOCl\S Ck 
CATA TO EE FROCESSECl 

=THE TIME Ck THE LAST CATA FOlNT 
***~ 
*************************~**************************************** 

FROGRAM INITlALlZATleti 

****** 
ClMENSI(~ CATAC2u4Sl ,ACATA(5!2) ,6CATAC512l ,CCATA(512l ,CCATAC512l 
ClMENSIC<N T(145Ul ,CALCI (1450> ,CE11(145ul ,TlTLE1 (3) ,TJTLE2<9l 
ClMENSIOI STNCEll (4) ,ACATE (2) I JC€t..:;, (3) ,HMSG<13l ,cc (3) ,CLA6LC3l 
EQUillALENCE <ACATA,CATA<1ll, <6CATA,CATA(513ll 
EQUI llALENCE <CCATA ,CATA< 1025> l , <CCATA ,CATA <15371 l 
CC+IMCt-1/CC·MFL T / l TFL T 1 XFL T 1 YFL T 
COMMC~/CC+IFLO/ITFLO,XFLO,YFLO 

CATA ENCC/4h~CTA/ 
CATA TITLE1/11HTIME (MSECl/ 
CATA TITLE2/36HEMISSIOI INTENSITY CARBIT~ARY UNlTSl/ 
CALL CATE<ACATEl 
l<EAC(5 12l <CLABL<ll ,1=1,3) ,ICTC•A,ICCA,LCCA,TINCRA 
F'ORMAT (3A4,2x.12,2x,2cl3,2Xl ,f'5.1l 
****** 
*************************~***************************~*¢********** 
*****************************************~****************~***~** 
****** 

CLEAN UF ANC QUIT 

****** 
If'<CLA6L(1l-ENCCl 10,8,10 
WI\! TE (6 ,91 
f'vRMAT -<2SH1ENC CJ' lNFUT ENCVUNTEREC/11HuENC OVTFUTl 
STOf 

c ****** C Fl<OCEEC If' CATA LAEEL COES NC.T EQUAL "ECTA"." 

c ****** Ui l<EAC(5,11) (JC•BNO<ll ,1=1,3) I (tiMSG()) ,J:1,1:s> ,NCS 
11 FORMAT C3A4 12X,13A4,2X,11l 

WI< I TE C6, 13l CJC.6Nv ( l l , I =1 ,3) , CAC:ATE C Jl , J:t ,2l , <HMS<; (ltl ,fC.:1, 13l 
13 F'Ol<MAT (1H1/1H(i/1Hu/1H0,5X,7HJC-Et~= ,3A4,1GX,6HC:ATE:= 12A411H0,5x," 

116HIC:ENTlFICATlvN: 113A4l 



15 
16 
11 

18 
22 
23 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SOL fl<AME 

IFtNCSl 15,t5,16 
IOO TO 2000 
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REAC(S,17) ICTAFT,IFLOT, <CC(ll ,J:t,3) 
Fci<MAT <1t,2x.i1.2x,2A4,11) 
IFCICTAFTl 2080,2080,18 
lF<IFLOTl 2090,2090,22 
Wit!TEC6,23l CCLAEL(1l ,l:1,3l ,ICTC'A 1 IC<:A,LCCA,TINCRA 
FCRMAT (!H1/1H0/1H0/6HGCATA ,3A4,21H ENCOUNTERED IN INFUT/25HGTHE 

1INFUT VALUES ARE •••• i1H0,2X 1 7HlCTCoA= 1 12,2X 1 6HIDCA= 1 13,2X 1 6HLCCA= 
2 , 13,2X,8HTlNCi<A: ,F8.3/36HOFROCEECIN<; 1.'ITH E:ASELINE ADJUSTMENT) 

=*** ****************************************************************** 
*~**~******~****************************************************** 

CATA INITIALIZATIC>N SECTJQtj 

****** l<EAC IN OF CATA E:EGINS AT TH!S FOINT. 
CEFENCING C>N THE VALUE Cf" NDS (NU~IEER OF CATA SETS OF 512 FOINTSl, 
Cc.NTROL FASSES SUCESSIVELY TO INITIALIZATION OF THE VARIOUS CATA 
BLCCKS. NCS CAN TAKE ON VALUES 1, 2, 3, oR 4. 
IN THE INITIALIZATIC~ OF THE DATA, THE BASELINE JS SUBTRACTEC OFF, 
THE CATA BLOCKS ARE SCALED TO EACH OTHER AND Tl"'.E CATA IS 
Ti<ANSFERREC TO LOCATIC>N "CATA" READY FC>R FURTHER CALCULATIC>NS. 

JF=-7 
JL=O 
CO 25 K:t,64 
JF:JF+8 
JL=JL+8 

****** 

l<EAC(5,24l <ACATA<J> ,J:JF',JL) 
24 FOl<HAT C8CF't0.1ll 
25 C~TINUE 

c ****** 
C CATA E:LOCK "ACATA" E:ASELINE. ACJUSTMENT F'OLL~S EEL~. 

c ****** MA=LCCA-ICCA+1 
BSUMA:Q.Q 
co 2$ J:9,32 
BSUMA=E:SUHA+ACATA(J) 

26 CONTINUE 
ABSLNE=E:SUMA/24.Q 
co 28 J:t,512 
ACATACJl=ACATA(Jl-AE:SLNE 

28 CONTINUE 
IOO TO (3Q,34,34,34l ,NCS 

c ****** C INITIAL STORAG~ OF "ACATA" IN "CATA" ANC TRANSFER TO 
C THE FITTING SUE:ROUTINE IF NCS:t. 

c ******. 
30 CO 32 K=1,MA 

MT=lt 
ltS=ICCA+K-1 
CATA<HTl=ACATACKSl 
TCHTl=FLOATCKS-ICTOAl*TINCRA 

32. CONTINUE 
GO TO 137 

34c l<EAC<S,35) CCLAE:LCll,!=1,3>,ICTOB,ICCB,Ll::cs,nNCRB 
35 FOi<MAT (3A4,2X,12,2X,2(13,2Xl,F5.1l 
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WRITE16,36l (CLA6L<I> ,I::,3> ,!CTC>E:,ICCE,LCCE,TINCRB 
36 FQi<MAT 11H1/1HD/1H0/6HOCATA ,3A•,21H ENCQUNlEREC IN INFUT/25HOTHE 

!INPUT VALUES ARE •••• /1 H0,2X,7HICT0E: ,!2,2X,6HICCE= ,!3 , 2X,6HLCCE= 
2 ,l3,2X,8HTINCRE: ,F8.3/63HOFR0CEECIN' WITH EASELINE ACJUSTMENT AN 
3C SCALIN' TO "ACATA" •••• ) 

JF:-T 
.U .. =(l 

co •Ci 11.=1,6• 
JF:JF+8 
JL=JL+8 
i<EAC <5 ,381 IECATA (J) ,J:JF ,Jll 

38 FGi\MAT 181F1u.1ll 
•Ci C001INl.IE 

c ****** 
C CATA ELOCK "ECATA" 6ASELI NE ACJUSTMENT FOLLC4o/S 6ELC4o/. 
c ****** 

M6=1..CCll-ICC6+1 
£St.'10E=O. 0 
co .C2 J=9,32 
ESCM6=ESUME+6CATA(J) 

.C2 COOTlNUE 
BBSLNE=ESUMB/24.0 
co« J=1 , 512 
ECATACJl=ECATA<Jl-EESl..NE 

44 C~TINUE 

c ****** 
C SCALIN' OF CATA ELC<KS "ACATA" ANC "ECATA" FVLLCWS EELCW. 
c ~ 

SW.li=O.O 
Sl..'f'!C=O. 0 
lICCE=ICC6 

.C6 CIA=FLOAT<IICCE-ICTC£1*1TINCRE/TINCRAl+FLOATIICTOAl 
IA=JFIX <CIA> 
IF <CIA-FLOATCIAll 48,52,50 

4& CO TO 2010 
50 1ICCE=IICC6+1 

fOO TO .C6 
52 IF <IA-LCCAI 54,S.C,56 
54 Si..~R=SUMR+ACATACIA)/ECATAIIICCBl 

SUl'!C=Sl!MC+1.0 
COO TO 50 

56 AV!iAT=SUMR/SUMC 
oo ·58 J=1,s12 
6CATA<J>=ECATACJl*AVRAT 

58 CC>HTINUE 
c ****** 
C FINAL STCRA'E Cf" "ACATA" !N "CATA" AFTER EASELI NE ACJUSTMENT 
C ANC SCALIN' OF "ECATA". 
c ****** 

CO 60 1(::1,MA 
MT=ll. 
11.S=ICCA+K- 1 
CATAIMT>=ACATAIKSl 
TlMTl=FLOAT<iS-ICTOA>*TINCRA 

10 CC>h TI NUE 
~ TO 162,66,70,70) ,NCS 

12 'O TO 2020 
c ****** 
C INITIAL STORA'E OF "ECATA" IN "CATA" ANC TRANSFER TO 
C Tt+E FI TTIN' SUERC,UTI NE IF NCS=2. 
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WL HAME 5 

c ****** 
f6 CO 68 K=1,MB 

MT=MA+K 
JS=JCCB+K-1 
CATA(MTl=BCATA(JSI 
TCMTJ =FLO.ATC JS- I CTC•BI *Tl NCRB 

68 CONTINUE 
~TO 137 

70 liEAC(S,711 CCL.ABL(ll ,I=1 13l ,ICTC>C,!CCC,LCCC,TINCRC 
71 FOl\HAT (3A4,2x.12,2x,2cI3,2Xl ,FS.1J 

WRJTEC6,73 ) (CLAE:L(ll ,!=1,31 ,ICTC>C 1!CCC,LCCC 1 TINCRC 
73 FORMAT (1H1/!H0/1H0/6HOCATA 13A4,21H ENCC•UNTEREC IN lNFUT/25HGTHE 

tINFUT VALUES A~E •••• /1H0,2X,7H!CTOC: ,I2,2X,6HlCCC= 1 l3 1 2X 1 6HLCCC: 
2 ,J3,2X,8HTINCi<C: ,F8.3/63HOFRCCEECINC". WITH BASELINE ACJUSTHENT AN 
3C SCALING TO "BCATA" •••• ) 

JF=-7 
JL=Ci 
co n K=t ,64 
JF=JF+8 
JL:JL+8 
REAC(S,751 CCCATA<JJ ,J:JF',JL.) 

75 FORM.AT (8(f'1(j.1)) 

77 CONTINUE 

c ****** 
C CATA BLOCK "CCATA" BASELINE ACJUSTMENT FOLL.~ 6EL.C4.'. 

c ****** 

80 

82 
c 
c 
c 

~ 

86 
88 

91.1 
92 

94 

96 
c 
c 
c 
c 

MC=LCCC-ICCC+1 
BSUMC=O.O 
co so J=9 , 32 
BSL~C=BSUMC+CCATA(J) 
CONTINUE 
CBSLNE=BSUMC/24.0 
CO S2 J=1,512 
CCATA<JJ=CCATACJl-CBSLNE 
CONTINUE 

****** SC.AL.INC". OF CATA BLVCKS "BCATA" ANC "CCATA" FOLL.NS BELCA>J. 

****** SUMR=o.o 
SUMC=o.o 
IICCC=ICCC 
CIB=FLOATCI!CCC~lCTC<l*CTINCRC/TINCRBl+FLOATCICTOB) 
IE:= IF IX CCIBI 
IF' ICIB-FL.OATCIBll 86 1 90 1 88 
~ TO 2030 
JICCC=I ICCC+1 
'<I TO 84 . 
IF CIB-LCCBI 92,92 194 
SUMR=SUl1ii+ECATA .<l B.l /CC.A TAC I ICCCl 
$1.:HC=SUHC+1 . 0 
'<I To 88 
AViiAT: SUHR/SUMC 
CO 96 J=1,51Z 
CCAT.ACJl=CCATA(Jl*AVR.AT 
CONTINUE 

****** 
FINAL STORAGE OF ".BC.AT.A" IN "CATA" AFTER BASELlNE 
ACJUSTMENT ANC SCALlNC". VF "CCATA". 

****** 
CO 98 lt=t,MB 
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SOL Fl<AME 6 

MT=l1A+lt 
.SS=lCCB+lt-1 
CATA!l1Tl=BCATA(JSl 
TIMTl=FLOAT<JS-lCTOBl*TlNCRB 

H CC-NTlNUE 
COCi TO (100, 100, 102 1 106) ,NC$ 

100 GO TO 2040 
c ****** 
C INITIAL STC•i<A'E OF "CCATA" IN "CATA" ANC Tl<ANSFEI< 
C Tv THE FITTlN' Sl.:E:i<OOTINE IF NCS=3. 

c ****** 102 00 1i;. K:1,HC 
MT=HA+HB+K 
JS=lCCC+K-1 
CATACHT>=CCATAIJS) 
T<HTl=FLOATCJS-lCTVC>*TlNCRC 

1&4 CUITINUE 
GO TO 137 

106 REACC5 1107l ICLABL<l> ,1:1,3> ,ICTCC 1ICCC,LCCC 1TlNCRC 
11J7 FCl\MAT (3A4;2x,I2,2x,21I3,2X> ,F5.1) 

Wi<ITE!6 1109l !CLABL!ll ,1:1,31 ,ICTC~ 1 1CCC,LCCC,TINCl<C 
109 Fei<MAT C1H1/1HQ/1HQ/6H!.iCATA ,3M,2tH ENCC.UNTEREC IN lNFUT/25HOTHE 

1INFUT VALUES ARE .••• /1H0,2X,7HICTCC= ,l2 1 2X,6HICCC: ,I3 ,2X ,6HLCCC= 
Z ,J3,2X,8HTINCRC: ,F8.3/63HQFi<OCEECINc; WITH BASELINE ACJUSTHENT AN 
3C SCALlNCO TO "CCATA" •••• ) 
JF:-7 
JL=O 
CO ·115 K:1,6.C 
JF:JF+8 
JL=JL+8 
REACC5,112l CCCATA(J),J:JF,Jll 

112 FCoi\MAT C81F10.1l) 
115 CetlTINUE 

c ~ 

C CATA BLOCK ."CCATA" BASELINE ACJUSTMENT FOLLC4-IS BEL~. 
c ·~ 

HC=LCCC-ICCC+1 
BS\JHC:o.o· 
co 116 J=9,32 
ESUHC=BSUHC+CCATA(J) 

116 CONTINUE 
CESLNE=BSUHC/24.0 
00 1t8 J=l ,512 
CCATACJl=CCATA<J>-CBSLNE 

118 CONTINUE 
c ***~ 
C SCALINc; OF CATA BLOCKS . "CCATA" ANC "CCATA" FOLL• ·.JS BEL~. 
c **"*"'* 

SIJMR=o.o 
Sl.IMC=o.o 
lICCC=ICCO 

120 CI C=f'LN. T < l ICCC-lCTOCl "°IT INCi<C/TINCl<Cl +FLOAT IICTOCl 
IC= IF IX <CIC> 

· IF CCIC-FLOATCICll 122 11261124 
122 <;O TO 2050 
124 IICCC=IIOCC+t 

G() TO 120 
126 lF<IC-LCCCl 121111.2111130 
1211 SU11i<:S!,;Mi<+CCATA !IC> /CCATA llJCCCl 

Sl.iMC:SUMC+1.0 
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SOL fkAHE 1 

'Ci TO 124 
·130 AVl<AT::SUHR/SUHC 

co 131 J::1,s12 
CCATA<Jl::CCATA!Jl:C:AVRAT 

131 CONTINUE 
C lC:lC:U** 
C flNAL STC·RA<;E C'F "CCATA" IN "CATA" Al'TER EASELINE 
C ACJUSTHENT ANC SCAL!N<; CK "CCATA" . 
c u~u 

CO 132 ir.:1,MC 
MT=MA+ME+J. 
JS=ICCC+J.-1 
CATA <HTl =CCATA<JS> 
T<HTl=FLOATIJS-lCTOCliC:TINCRC 

132 CONTINUE 

c ****** 
C FINAL STCRAC.E Cf' "CCATA" IN "CATA" AFTER EASELHIE ACJUSTMENT 
C ANC SCALIN~ TO "CCATA". 

c ****** 
CO 133 11.=1,HC 
MT=HA+ME+MC+lt 
JS=ICCC+lt-1 
CATA <MT> =CCATA (JS) 
TIMTl=FLOAT<JS-ICTOCl*TINCRC 

133 CONTINUE 
IF (1450-MT) 134,135 1 135 

13' NCF=HT-1450 
Ger TO 2G70 

135 GO TO 1136,136,136,137) ,NCS 
136 CO TO 2V60 
137 GO TO 1140,142,144,146,148l,ICTAfi 

c ~ 
c **************~*************~****~****~~*~~~~~--......~**· 
c ~**~~*~****************~~******1r~**********~~~·~·..-........-..-........**** 

c ****** 
C CALL TO fITTINC. SUEROOTINE 
c ----------
( ****** c ~ 
C FITTJN<; SUERQJTINE "CTAFIT" CALLEO AT THIS FOlNT 
C CATA LEAST SQUARES FIT TO FIRST, SEC~C, CC•UELE EXF<f.IENTIAL 1 

C Oi<. Cc+1EINEC FIRST ANC SECONC °"CER KINETIC SCHEME 
C :C::C::¢::¢:U 

140 CALL CTAFIT (CJ.,FRE::F,STNCEV,Sl<;MA,ITER,T,CATA,CALCl,CEV,HA,He,Mc, 
.1MC ,MT ,NCS, T INCRA, TINCF.E, T l!<CRC, TINCRC,RMSCV, JTEST> 

GO TO <150,1l,JTEST 
142 CALL CTAFIT ((;AMMA,XINOT ,STllCEV,Sl<;HA,lTER,T,CATA,CALCI,CEV,HA,MB, 

1MC ,MC ,HT ,NCS, T lNCRA, tltKRE, T ltlCRC, TINCRC, RMSCV, JT£ST> 
GO TO 1150,1>,JTEST 

144 CALL CT AF IT <CJ.1 ,Cl(2 ,Fi<EXFt , FRE::(FZ, STNCEV ,Sl<;HA, I TEi< 1 T ,CATA ,CALCI, 
1 CEV ,HA ,ME ,MC, HC, HT ,NCS, TINCRA, TINCRE, TINCRC, TINCi<C ,RHSCY, JTESTl 

GO TO 1150,11 ,JTEST . 
146 CALL CTAFI T (Cl( ,<;AHMA, XltlOT , STNCEV, SIC".MA 1 lTER 1 T ,CATA ,CALCI ,CEV ,HA 1 . 

1MB ,MC ,MC ,HT ,t;::;s, TINCRA, TltlCRB, T!NCi<C, TINCRC ,i<MSCV 1 JT£ST> 
GO TO 1150,1! ,JTEST . 

148 CALL CTAFlT (Cl(,C.AMHA,XlNOT,STNCEV,SlC.HA,ITEi<,T,CATA,CALCl,CEv,HA, 
1H£,MC,HC,MT, NCS,TINCRA,TINCi<E,TlNCRC,TlNCi<C,RMSCV,JTEST> 
~o TO 1150,tl,JTEST . 

c ****** 
c ***********·*************ii<***************************************** 



c 
c 
c 
c 
c 

t5u 
151 

153 

156 
157 
158 

159 
t6U 

162 

163 

166 
167 

170 
171 

174 
. 175 . 

176 

177 
179 
179 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

18Q 

Ut 

SvL fl< AME 

****** 

****** 
'WR ITEC6,1511 ITEi< 

e 

fl<INTvUT SECTION 

f C•l\11AT <1Hv 12X,6HITER: ,!3/1H0) 
WRITE 16,1531 
FORMAT 178HGTHE EEST ESTIMATES VF THE FARAMETERS, WITH THEIR STANC 

!Al<C CEVIATIC·NS, ARE •••• 11Hv,20X,9HFARAMETE1i,32X 1 
218HSTANCARC CEVIATIC~/1HO) 

GO To (157,159 , 162 1166 1170) ,ICTAFT 
WRITE16~1581 CK,STNCEVC11 ,FREXF ,STNCEV(2) 
FC~MAT (1H .1sx,4HCI(: 11FE16.S,26X,1FE16.8/1H ,12x,7HFl<ExF= • 
1~Ftt6.8,26X,1FE16.8l 

GO TO 174. 
WRITE!6,!6Gl C:.AMMA ,STNCEVC1l , XINOT,STNCEV(2) 
'Fc.i<M AT (!H .12x,7HGAMMA= 11FE16 .• S ,26X,1FE16.8/1H ,12x,7HXINOT= • 

1tFE16.8,26X,1FE16.8l 
GO TO 17' 
WRITEl6,1631 CK1,STNCEVC1l ,CK2 1STNCEVl2l ,FREXF1 ,STNCEyC31 ,Ff<EXF2, 

1$TNCEV 141 
FORMAT !1H ,14X,5HCK1= 11FE16.8,26X11FE16.8/1H ,14X,5HCK2= , 

!tFE16.8,26X,1FE16.8/1H 111X,SHFREXF1: 1!FEt6.8,26X,1FEt6.8/1H , 
211 X ,8HFREXF2= 11FE16 .. 8,26X 11FE16 .. 81 

GO TO 174 
WRITE<6,!67) CK,STNCEV<1l ,CAMMA,STNCEv <2l ,x!NOT,STNCEV(3) 
FCl<MAT (1H ,1sx·;4HCI(: , ! FE16 .8,26X , 1fE!6.8/1H ,12x ,7HGAMMA= 

1!FE16 .8,26X11FE16.8/1H 112X,7HXINOT= 11FE16.8126X,1FE16.81 
GO TO 174 . 
\JKITEC6,171l CK,STNCEv (1 ) ,CAMMA,STNDEv C2) ,XINOT,STNCEv <3l 
Fc.i<M AT (1H ;15X,4HCK= ,!FE!6 .S, 26X,1FE16.8/1H 112X,7HGAMMA= , 

UFE16. 8 , 26X 1 lfE1.6;8/1H , 12X, 7HXINOT= , 1FE16.8,26X 11FE16 .8J° 
'-"'ITE!6,17Sl SIGMA,RMSCV 
Fo;;MAT (1H0,38X·,7HSIGMA= 1F12.5/1H ,38X,7Hl<MSCV= ,r12.s1 
WIHTEC6,176l 
FC~MAi l !H1/!H0/1H0/1HG ,9X,4HTIME 115X,SHEXF. INT., 30X1 9HCALC . INT . , 

116X ,9HCEil.! Hlet-i/1H ) 
00 178 J:t,MT 
'Wl< ITE!G,1771 T<J l ,CATA CJl ,CALCI (Jl ,CEV<Jl 
FORMAT (1H ,sx, FS . 3,1GX1 1FE15.8,23X,1FE1S.8,11X11FE15.8) 
·COOTINUE 
GO TO !180 1 11 ,IFLOT 

************"""~*******~****.**************************~*:::******¢*** 
********~***************************~****************~***~****~¢· 

****** FLOTTINC:. ROOTH£ 

***:C:** 
LENCTtl ~- THE XAl:IS IS SET.1 DEFENDIN<; 00 THE VALUE ~ NCS. 

CALL SYSl:HX!70.0I 
JTFL T:t 
lTFL0:1 

****** 

YFL T=to.o 
'l'FLO=to.o 
IOV To 1181,182,183,1841 ,NCS 
XFLT=t5.G 



SOL 

XFl.0=15.0 
~TO 185 

182 XFL T=32.0 
XFL<i=32.0 
GO TO 185 

183 XFl.T=-'8.0 
XFL0=-'8.0 
'V TO 185 

184 XFL T=64 .O 
XFl.0=64.0 

217 

Fl<AME I 

c ****** ( SEARCH TO SET MIN ANC MAX VALUES CF C>l\CINATE FC>I\ FLOT 
C SU6RVUTINES "XYFLT" ANC "XYFLOT". 

c ****** 1t5 Yli!IN=100000.o 
nu.x=1.o 
C<; 200 K=1 ,MT 
IF (CATACKl-YMINl 186,186 1 187 

186 Yl'llN=CATA (Kl 
187 l F CCALCI<Kl-YMIN> 188,188 1 190 
188 YMIN=CALCltKl 
190 IF CCATA<Kl-YMAX) 19",192,192 
192 YJoll.AX=CATA (Kl 
194 lF (CALCICKl-YMAXl 198 1 196 1 196 
196 Y~..AX=CALCIIKl 

198 CCJHTINUE 
200 a:it;T 1 NUE 

c ~**** 
C CAl.L <:n "LA6EL"--LA6ELLINC Ck THE X ANC Y AXES~ THE FLOT FAFER. 

c ****** NllilTV.L:: IF! X (XFL Tl 
CALL LA6EL<v.(i,(i .(i ,u.O,T CMTl ,XFLT,NINTVL,TITLE1,11,0l 
CALL· LAEEL IU .Ci, Ci. Ci, YM!N, YMAX, 10.0,10, T ITLE2,36,1) 

c ****** 
C CALL~·. "XYFLT"--CetHENTS CF ARR AY "CATA" FOINT FLOTTEC. 

c ****** CA'LL XYFLT (MT,T,CATA,O.O,T<MT> ,YM!N,YMAx,cc,o,3> 

c ****** C CEJ.IERATIC~ Ck TEMFORARY TIME ANC CALCULATEC INTENSITY 
C A~~AYS FOR. LINE FLOTTINC 
c TtlE TIME AXlS rs !NC REMENTEC UNIFORMLY. 

c ****** COG T0 (300,215,215,215l ,NCS 
215 TI=FLC-AT <lCCA-lCTOAl *TINCRA 

C<l> 217 K::1,MT 
T l«l =O .O 
CAlCI (l(J::o.o 

217 COITINUE 
C(;i Toc2110,220,22s,230l ,NCS 

220 TL=FL0ATILCC6-ICTOSl*TlNCRB . 
Ge TO 235 

225 TL=FLOATCLCCC-ICTOC>•TINCRC 
IOC> TO 235 

230 TL=FLOAT<LCCC-ICTOCl*TINCRC 
235 Cc;JolINT= ITL-Tll /FLOAT IMTl 

c;c. T0 <2-'01250 ,260 ,270,280l ,ICTAf'T 
UO 00 245 K::t ,HT 

T l~l=Tl+FLOATCK-1l*CUHINT 

CA'LCI (10 ::FREXF•EXF 1-T <K l /CK) 
245 CONTitiUE 
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SOL Fl<AHE 10 

~O TO 3Ci0 
250 CO Z55 K=1,HT 

'7 00 =TI +FLC•AT <K-1 l *CUH I NT 
CALCI<Kl=XINOT/(1.0+XINOT*GAHHA*T(Kll 

255 CONTINUE 
GO TO 300 

260 CO 265 K:t,HT 
TtKl=TI+FLOATIK-1l*CUHlNT 
CALCllKl=FREXF1*EXF(-T(Kl/CKtl+FREXF2*EXFl-TIKl/CK2l 

265 CONTINUE 

270 

275 

280 

GO TO 300 
CO 275 K:t,HT 
T <Kl =Tl +FLC•AT IK-1 l *CU1o41NT 
CALCI 00 :x!UC•T I IEXF (T <Kl /CKl +2 .O*GAMMA*C!\*XINOT* ISINH IT (Kl I 

1<2.0*CKlll**2+GAMHA*CK*XINOT*SINHITIKl/CKl) 
CONTINUE 
GO TO 300 
CO 285 K:t,MT 

. T 110 =TI +FLOAT O~-tl *C~INT 
CALCI <Kl: (XINC•T I <EXF IT (Kl /CKl +2.1'.i*GAHHA*CHXINOH0 ISINtHT (I() I 

1C2.G*CKlll**Z+C.AMHA*CK*XINOT*SINH(T(Kl/CKlll**2 
285 

c 
CONTINUE 

c 
c 
c 

CALL ON "XYFLOT"--CC~TENTS C~ ARRAY "CALCI" LINE FLOTTEC ON SAME 
FAFER AS FOINT FLOT OF EXFEi\IHWTALLY CETEi\MINEC "CATA" FOINTS. 

30Ci CALL XYFLOT<MT 1 T,CALCJ,O.O,T<MTl,YMIN,YMAX,CC,1l 
310 GO TO 1 

c 
c 
c 
c 
c 
c 

~****************************************************************~ 

CIAC.NOSTICS 

c ****** 2et:i0 WRITE(6,200tl 
2001 F"ORMAT (!8HLiEi\RCoi< MESSAGE •••• /52HLiNCS NEC.AT IVE Ok ZERO. FROCEECIN 

1C. WITH THE NEXT Jee> 
GO TO 3000 

2010 WRITE<6,2011l 
2011 F"Oi<MAT (45HLiSCALING FRC€LEMS EETl.EEN "ACATA" ANC "ECATA"/28HO OVER 

1LAF REG!C~ lLL-CEFINEC/29H FROCEECINC. WITH THE NEXT Jee> 
GO TO 3000 

2020 Wi<ITE(6,2021l 
2GZ1 FORMAT '14HGERRC>i< MESSAC.E/55HGNCS=t, EXECUTICA-1 INCORRECTL T IN "BCA 

1TA" INIT!ALIZATIO>l/29H FROCEEC!NC. WITH THE NEXT Jeel 
GO TO 3000 

2030 WRITE<6,2031l 
2031 F"vi<HAT (45Ht.iSCALlNC. Ff<C,ELEMS EETl.£EN "ECATA" ANC "CCATA"/28HO OVEI< 

1LAF REC.!C'N ILL-CEFINEC/29H FRC>CEEC!N!; WITH THE NEXT JOB> · 
GO TO 3000 

20•0 Wi<ITE<6,21.i41l 
20<41 FCi'.HAT l14HOEi<i<.Oi< HESSACE/6GHGNCS=1 OI< 2, EXECUTION INCORRECTLT IN 

1"CCATA" !N!TIAL"!ZATIVN/29H Fi\OCEEC!N!; WITH THE NEXT JOBI 
C.O TO 3000 

2050 Wl<ITEl6,2G5tl 
2051 FCi'.MAT l45HGSCAL!NG FiKELEHS EET\.£EN "CCATA" ANC "CCATA"/28HG OVER 

1LAF RE,!C.N ILL-CEFINEC/29_H FROC.EECIN' WITH THE NEXT JOBI 
C.O TO 3000 

2060 WR1TE16 1 20611 
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SOL Fl<AHE 11 

2061 FOF.MAT !UHGEi<.i<C•i< HESSAC.E /64HOUCS=1, 2, C•I< 3, EXECUTION INCOi<RECTL 
1Y lN "CCATA" INITIALIZATIC•N/29H Fi<C>CEECINC. WITH THE NEXT JOBl 

c;o TO 3000 
2070 Wi<[TE!G,2071) NCF 
2071 FORMAT l14HGERRC>i< HESSAC.E/81HONl..'~1E:EI< Cf' CATA FOINTS AFTEi< eASELINE 

1 COi<RECTIGN, SCALI NC. ANC CC·MFACTINC., E:::CEECS/69HOTHE HAX I HUH ALLOW 
2AELE STC>i<Ac.E <1450 CATA FG!NTSl IN •cATA• Ai<.RAY SY ,I4/29H HOCEEC 
3INc; WITH THE NEXT J06l 

GO TO 3000 
2080 WRITE 16,2081) 
2081 FOi<MAT (18HGEi<RC•i< MESSAC.E •••• /55HO!CTAF"T NEC.ATlVE_c>R ZERO. FROCEE 

1CING WITH THE NEXT Joe> '° TO 3000 
2090 WRITE!G,2091) 
2091 FORMAT ! ! 8HGERi<C>R MESSAC.E •••• /54HGIFLOT NEC.ATIVE Ok ZERO. FROCEEC 

11Nc; WITH THE NEXT Joel 
c;o TO 3000 

2110 WRITE ! 6,2111) 
2U 1 FCF.MA T ! : l'HOERRC>R MESSAGE •••• /82HGMI STAICE IN GENERA TIC..i CF TEMFOl<A 

1RY Tl ~E ANC CALCULATEC INTENSITY ARRAYS FGf< NCS=1/29H Fl<OCEECI~ W 
21TH THE NEXT JOEi 

GO TO 30GG 

c *~** 
c #*~*******~***********************=**************************~ 
c *~*********~**********************~**************************~ 
c *~ 
C lNn:RNAL A&:NC 
c -------- ~---

c ****** 3000 GO TO 1 

c *~** 
( ******~*****~******~*****~**************~*****~*~********~C 
c ***************************~************~~~*****~************** 
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SUBROUrINE ACONI S Fl<AME 1 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

20 

£. B. FRIESTLET HAT 3, 1969 
THIS SUEROUT!NE LEAST SQUAi<ES FITS E:FEi<IMENTALLT CETERMINEC CATA 
FOINTS TO A SIN<;LE EXFO<ENTIAL CECJ.Y. THE LEAST SQUARES THEOl<T IS 
TH.AT OUTLINED W ARLEY AtlC £UCli "Il<Ti<C.CUCTION TO THE THEORY OF 
FKC~ABILITY ANC STATISTICS" CHAFTEk tz. 
~*******~*********~*******~***;*~;*~**************~************** 
~*****************~:**;*********~*****'******l::**************** 

liEQuIREC ltlfUT CUA CAl<CS . 

****** 1. CK,Fi<EXF 1 l~HT <FORMAT STAiEM.ENT EFN 20l 

****** 
~*********************~***~~ .......... ·~~~~·***~********************* 
~*********~***************~-**~~****~****************~** 

llEI< 
I~HT 

JTEST 
FliEXF 

CEFINITICHS 

=TtiE £EST CC~RECTIC~S TO TtiE FAl<AMETERS 
:THE RECii'iK<AL Ck TliE FIRST ORDER RATE 

CCmiTAllT CTt£ LIFETIME Ck THE STATE> 
=A C<>l .. 1lTEi< Fe« TtlE NUl1EEI\ Ck ITERATIONS 
=A SI<;t:AL FC-i< THE TYFE Ck Wf:It;.HT MA'TRIX TO 

EE USO: 
1 SJc;.i;IFIES THE UNIT lo.£1<;.HT MATRIX 
Z SlQllFIES "EQUAL-TIME-EQUAL-Wf:lt;.HT" 

\.£1c;.ttT MATRIX 
=AN Ei<~C« Ct£CK INDEX REt;.lSTEli 
:ft£ Fi<E-O::i"O<ENTIAL FACTOR 

~ 

****************~~~**~~~~*~***~'**.******************~~~* 

Ff<(A;F.AM hHTIALJZATIU. 

****** SU£i<C.UTINE CTAFIT CCK ,t=i<DF, STtH::Ev ,SICMA, ITER, T ,CATA ,CAL CI ,CEV ,MA, 
1M&,MC ,MC ,MT ,NCS, Tl NCR A, T JrKRC, Tlt.CRC, T WCl\C ,RMSCV, JTESTl 

ClMENS!Ct-1 CATA (2C48l ,F (145Gl, T C!45Gl ,CALCI <145\.il ,CEV (14501 
CIMENSION AMATRX <1450,21 ,E:MATRX <2,2l ,EINV (2,2l ,CUMMT (2) 
Cit-!ENSlOO CC·RR (2) • SWCEV C2l ,eceLt=ii. CSO,Zl 
CC~MC>N/CNCCC~/EL<50,2l 

COl.$LE FRECISIU< ECELFli,EL 
ITEl<:t 
ltCiUNT:() 
l<EAC<S,20l CK,FREXF 1 l~HT 
FC•itMAT <F5 .1 12X ,FS. t ,z:::, I U 
Wl<!TEC6,25l CK,FREXF 

25 F"C·i<MAT C1H111HG/1H0/1HG/!HG/!tiG/!7:,38H E::FCNENTIAL FITTIN« SUS!<OU 
1TINE CALLECl72HGfRC•CEECINc;. WI TH ThC: E::FCUENTIAL Fl T US!N« THE FOLL 
2CW!Nt;. TRIAL EST!MATES/22HUC~ T~.£ t'ARAMETERS •••• /1H0,2X1 
34HCK: ,F8.1,15X,7HfitE::F: ,F8.1l 

CALL llE:lt;.Hl (F ,MA ,Me ,MC ,l'.C ,MT. Tif;CRA 'Tl NC Re. TlNCl\C. TINCRC ,NCS, 
UWl;Hll 

COO To <3G ,.COl, IW«HT. 
30 WRIT£(6,35l 
35 F"vitHAT (24HGUNIT llE:l,HT HATRl::: ~SEC/!HG/1H0/1H0/1HOI 



SUBROUTINE ACONIS FRAME 2 

GO TO 50 
40 WRITE<6,4Sl 

221 

45 ro~MAT C45Hu" EQUAL-TIME-EQUAL-~~l,HT" WEl,HT MATRIX USEC/1H0/1HOr 
UH0/1H0l 

c ****** 
c ~***************************************************************~· 
c ~***********************~****~***~******************************** 
c ****** 
C MAIN SECT!C>N CK THE FRCGRAM 
c ------- --
c ****** 

50 CO 90 I=1,MT 
CALCI<ll=FREXF*EXFl-TCll/CKl 
AHA TRX CI , 1 l =CALC I (I l *T (I l / !Cl\**2l 
AHATRXCI,2l=CALCI<Il/FREXF 
CEV!I): CALCl<ll-CATA<ll 

tl.i CONTINUE 
SQcEv=o.o 
l<MSCEV=O.O 
CO 130 K=1,2 
co 120 J=1,2 
EMATRX(ll,J>=o.o 

120 CONTINUE 
130 CONTINUE 

co 160 11:1,2 
co 150 J=1.2 
CO 140 1=1,MT 
€MATRX(l\,J):£MATRX<K,Jl+AMATRXcl,l\l*F(ll*AHATRXCl,Jl 

140 CONTINUE 
ECELFR!l\,Jl=EMATRX<K,J) 

150 CONTINUE 
160 CONTINUE 

CALL ENCINV <ECELFR,2,CETERM,1.0E-G&,ITEST> 
co 180 J:1,2 
co 170 l\=1.2 
61NV(J,l\l=ECELFR<J,K) 

170 CC>NTINUE 
180 CONTINUE 

CO 190 K:t,2 
CUMMY 00 =o.o 
cai<cit>=o.o 

190 C~TINUE 

CC> 210 l\:t,2 
CO 200 l:t ,MT 
CIJMMY (I\ l =CUMMY (I() +AMATi<.X <I ,Kl *F ( Il *CEV Cl) 

2i:iu CONTINUE 
210 CC>NTINUE 

co 260 1:1,2 
CO 2Su 11.=1,2 
CORR<I>=CORR<ll - EINVCl,Kl*CUMMY<Kl 

250 CONTINUE . 
260 CONT I NUE 

CO 270 I=t,MT 
SwCEV=SwCEV+CEV(ll*CEV<I>*F(I) 
RMSCEV=RMSCEV+CEY(ll*CEV<ll 

270 CONTINUE 
SI , MA:SQRTCSQCEV/FLOAT<MT-2>1 
RMSCV:SQRT!RMSCEV/FLOAT<MTll 
Co 280 I=t,2 
STNCEVCil= !SwRT<BINV!I,l>>>•Sl,MA 
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SiJE:i<OIJTlNE ACC>N l S HAME 3 

280 

290 
310 

315 

c 
c 
c 
c 
c 
c 
c 

320 

330 
c 
c 
c 
c 
c 
c 
c 

400 .. 
405 

c 
c 
c 
c 
c 
c 

CONTINIJE 
IFIA6S<CORRl!l/STNCEVC1ll-0.01l 290,320,320 
lHA6S <CORR <21 /STNCEV C2l l -0.01l 310,320,320 
l'.OIJNT:KOIJNT+1 
lFIKOUNT-10) 320,315,315 
JTEST=1 
ITER:ITER+1 
c;o TO 330 
CK=Cl'.+CORR Ill 
FRExf:FREXF+Coti.Rl2l 
I TER=I TER+1 
IFllTER.GE . 60) c;o TO (00 
IOO TO 50 

****** 
******·***************i,.:*********~********************************** 
*****************************************************************~ 

****** 
l<ETURN 

****** 

£EAT A HASTY RETREAT 

*****************~************************************************ 
**************~*********~~~**********************************~ 

****** WRITE C6 1 405l 
FORMAT 135H1LC.:KWG HAS EXCEECEC 60 ITERATl~S/29H FRC<EECING WITH 

1 THE NEXT Jal) 
IOO TO 3000 

****** 

-- SET ERR<.O< Cl'£CK INCEX REGISTEI< 

c ****** 
3000 JTEST=2 

IOO TO 330 

c ****** 
c **********~*****************;**********************************=** 
c ****************************************************************** 

ENC 
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sue l<(;U Tl N_E_~A_M_u_l< ___ F_l<_A M_E""--'"-

c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
( 

c 
c 
c 
c 
( 

c 
c 
( 

( 

c 
c 
c 
c 
c 

20 

25 

30 
35 

****************************************************************** 
E. 6. FRIESTLEY MAY 6, 1969 
THIS SUEROUTINE LEAST SQUARES FITS EXPERIMENTALLY CETERMINEC CATA 
FOINTS TO A FURE SECCNC OfiCER CECAY. THE LEAST SQUARES THEORY IS 
THAT C•UTLINEC IN ARLEY Arlt EUCH '!NTRC.CUCTIQN TO THE THEORY a: 
FRCEAEILITY ANC STATISTICS" CHAFTER 1Z. 

****************************************************************** 
REQUIREC INFUT CATA CARCS 

****** 
t. GAMMA,XINOT,lW<".liT (FORMAT STATEMENT EFN ZOl 
****** • 
*********************************.:';*****~************************** 
***********~****************************************************** 
****** 

****** 
COl<R 
GAMMA 
ITER 
!~HT 

JTEST 
XlNVT 
:C:***** 

CEFINJTI~S 

:i:THE BEST CC•RRECT IC>NS TO THE FARAMETERS 
=THE SECC~C C~CER RATE CC>NSTANT 
=A CC~NTER FOR THE NUMBER a: ITERATIC>NS 
=A SIGNAL Fe~ THE TYFE c~ WEIGHT MATRIX TO 

EE USEC 
1 SIGNIFIES THE UNIT ·WEIGHT MATRIX 
2 SIGNIFIES "EQUAL-TIME-EQUAL-\.£1GHT" 

\£1GliT MATRIX 
=AN ERRC~ CliEC~ lNCEX REGISTER 
=THE EMISSIO>N INTENSITY AT T=O 

***************************************************************~ 
******~************~**********~*************************~***** 

FROGRAM INITIALIZATieti 

****** sueRVUTitlE CTAFIT (GAMMA,XINOT,STNCEV,SIGMA,ITER,T,CATA,CALCI,CEv, 
1MA,M6,MC,MC,MT,NCS,TINCRA,TINCR6,TINCRC,TINCRC,RMSCV 1 JTESTl 

C:IMENSION CATA <2oi.e1 ,F (1451,j) 'r (1451,j) ,CALCI (1451,j) ,CEV (14501 
C:lMENSIC~ AMAl"-XC!45G ,Zl ,EMATRX<2,2l ,EINV(2,21 ,CUMMYC2l 
CIMENSIC>N CCRR (2l, STNCEV <Zl ,6CELFR (5Q,2l 
COMMC.N/ENCCC.+1/EL ( 50·1 21 
CCU6LE FRECISIC>N 6CBLFl<,EL 
1TER=1 
KOUNT=O . 
REAC<S,ZGl GAMMA,XINOT,IWGHT 
FCRMAT (F9.1,2x~Fa.1;zx,l1> 
WRITE(6,2Sl GAMMA,XINOT 
FORMAT (1H1/1HG/1HG/!HG/!HG/!HG/17X ,39H SECC>NC C•RCER FITTINC. SUBRO 

1UTINE CALLEC/73Hwi=RC•CEEi:INC. WITH THE SECQNC C!RC(~ FIT USIHC. THE Fv 
2LLC,WING TRIAL ESTIMATES/ZZHW<F THE FARAMETERS •••• /1HO,zx, 
37HC.AHMA= ,F9.7,1SX 1 7HXIHOT= 1 F8.11 

CALL 1.£ IC.HT CF ,HA ,HE ,l'C ,MC, MT, TINCl<A, TINCR6, T IHCR.C, Tl NC RC ,NCS, 
1IWl<HTI 

IO-O TO (30,401 ,IWl<HT 
WRITE (6, 35) 
FvRMAT <Z4HOUNIT 1.tlC.HT MATRIX USEC/1HG/1H0/1H0/1HOl 
IO-O Tv 50 
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SU&l<OUTillE fliAME 2 

'0 Wl<l TE 16 ,,Sl 
•s FOR MAT (45Ht:i"EQUAL-TIME-E QUAL·~~IGHT" WEIGHT MATklX USEC/1H0/1HO/ 

11Hl.i/1Ht:il 

c ***"'"'* 
c ~***************************************************************** 
c ~~*********************~************¥***********************#*$*~* 

c ***"'"'* C MAIN SECT 100 Ck Tt'.E Fl<OGliAM 
c ------- --
c **"'*** . 50 Co 90 1=1 ,HT 

CENCM=1.0+GAMMA#XINOTiC:T(ll 
CALCl(ll=XI NOT/CENOM 
AMATliXll,11=1.0/CENVM##2 
AMATliX(l,21=-TCl)#( XlNOT/CENC+O**Z 
CEV<ll= CALCl<IJ-CATACll 

90 CWTINUE 
swcEv=o.o 
5iMSCEV=O.O 
CO 13Ci K=1o2 
cc. 12Ci J=1.2 
BHATRX(K,J>=o.o 

12.Ci CCflTINUE 
130 CWTINUE 

CC. 160 K=112 
CO 1SCi J:1,2 
CO 1'Ci 1=1,HT 
EMATliXIK,J l=EMATRXIK,Jl+AMATRXCl,K)i;:f(ll*AMATliXCl,Jl 

1•0 CQIT!NUE 
ECELFli(K,Jl::EMATRXCK,J) 

150 CWTINUE 
160 CONTINUE 

CALL ENClNVCECELFR,2,CETERM,1.GE-Ci8,ITESTl 
00 180 J:1,2 
CO 17(i K::t ,2 
BINVCJ,Kl=ECELFRCJ,K) 

170 CC+ITINUE 
sea Cet-!T lNUE 

CO 190 K=1,2 
CUHMYIKl=O.O 
ceo<i< <K> =u.o 

190 CC>NTINUE 
CC• 210 K=1,2 
CO 2CiCi 1::1,HT 
CO~MYCKl =CUMMY CKl+AMATliXll,Kl:C:l'(!):¢CEVCll 

200 CONTINUE 
210 CWTINUE 

co 260 1::1,2 
co 250 1t=1,2 
cc«!< (I ) =CORR (I) .-e INV ( l ,K) *CUHMY (It) 

250 COOTI NUE 
260 CC+! Tl NUE 

CO 270 1=1 ,MT 
S~CEV=SQCEV+CEV!lliC:CEV<ll*FCll 
liHSCEV=liMSCEV+CEVlll*CEV(ll 

270 CC>NTINUE 
SIGMA:SQRT <SQCEV/FLOATIMT-21 ) 
liHSCV=SQRT<liMSCEV/FLOATIMTll 
co 280 !=1.2 
STNCEV<l>=<SQliTISINV(l , llll*SIGMA 
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suei<OUTINE AMOI< FRAME 

zeu CONTINUE 
1F<AES < CCR~!1l/STNCEV!1ll-u.01l 29G,32Q,320 

29u lF!AES !CORR(2J/STNCEV(2ll-0.01l 31G,320,320 
310 ~OUNT=KOUNT+1 

IF!KOUNT-10J 320,315,315 
315 .ITEST=1 

ITEl<=ITEl<+1 
'O TO 330 

32u XINC>T=XINCoT+COl<R!1) 
'AMMA=GAMMA+CORR !2) 
ITER:ITEl<+1 
IF!lTER.GE.60) '° TO •oo 
'<> TO 50 

c ****** 
( S~*********~***********************************~***************~~· 
c ~***************************************************************** 
c 
c 
c 
c 

330 
c 

££AT A HASTY RETREAT 

c 
c 

***********************************************************~*~*** 

*********~-*~***************************************************** c 
c 
c 
c 
•oo 
405 

****** WRITE (6 ,405) 
FC-RMAT !35H1LCV'ltj<;. HAS EXCEEDED 60 ITERATIWS/29H FRC,CEEDING- WITH 

1 THE NEXT JC£) 
'<> TO 3000 

c ****** 
c *:e::::*************************************************************** 
c ********************~***********~*****************************~* 
c ****** 
C SET El<R<A\ CHEC~ HICEX REG-ISTEI< 

c --- ----- --------
( ****** 

3000 .ITEST=2 
~TO 330 

c ****** 
c =~**************************************************************** 
c ~*******************************~********************************* 

ENC 



226 

$Uf:RC•UTINE AFCLLC. Fl<AME 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

****************************************************************** 
E. 6. FRIESTLEY HAT 5 1 1969 
THIS SCERCCill•E LEAST SilUAliES FITS EXFERll'.ENTALLY CETERHINEC CATA 
FvINTS TC TtiE Sl!I'. CF" Tl.'C• FIRST CRCER CECAYS. THE LEAST SilUARES 
THECRY IS THAT CCTLltlEC IN ARLEY ANC CUCH " INTRQCUCTIC>N TO THE 
THEC·RY Cf'" i=i'iCE:AE:.ILlTY ANC STATISTICS" CHAFTEI< 12. 

REQUIREC INFUT CATA CARCS 

*'***** 1. CK1,CK2,i=REXF!,FREXF2,l\..~HT <FORMAT STATEMENT EFN 20) 

****** 
***~****;********************************************************~ 

ITER= 
l\.~HT 

JTEST 
FREXF1,FREXF2 
*-=* 

CEFINIT JOOS 

=Tt£ EEST CORRECTIC~S TO THE FARAMETERS 
=THE RECIFRVCAL C~ THE T\.V FIRST ORCER RATE 

CCT>ISTANTS (THE T..C. LIF"ETIMESI 
=A CC>UNTER FOR THE NU~:EER ~ ITERATIONS 
=A SIGNAL FOi< THE TYFE ~ l.£IGHT HATRlX 

TQ EE USED 
1 SIGNIFIES THE llN IT \..'EIGHT MATRIX 
2 SIGNIFIES "EilUAL-TIME-EilUAL-l.£IGHT" 

I.EIGHT MATRIX 
=AN ERROR CHECK INCEX REGISTER 
=THE T....:. FRE-EXFC~ENTIAL FACTOl<S 

~***~*-~~******************************·***********:::::****-**30: 
~*~*~**~~~..i-...o.~~~****************~~******************************~* 

FRVGRAM INlTIALIZATICfol 

**'**'** SU£RC~TINE CTAFIT CCK1,CK2,FREXF1,FREXF2,STNCEV,SIGMA,ITER,T,CATA, 
1CALCJ,CEV,MA,ME,l'.C,l'.C,MT,NCS,TINCRA,TINCRE,T!NCRC,TINCRC,RMSCV, 
2JTESTl 

Cil'.EllSICtl CATA <2~8) ,F (1450> IT (1450> ,CALCI (1450) ,CEV (U5Ci) 
C IMEllSICt-1 Al<ATF.X 11450,4) ,EMATl\X l4 ,4) ,EINV (4 ,4) ,CUMHY (.O 
CIMEllS!Ctl C•:-i<R (4) ,STllCEV (41 ,ECELFR <50 1 4) . 
COM~lUENC:CCtUEL (50,41 
cc~tLE FRECISIC~ ECELFR,EL 
ITE1<=1 
ltOUNT=O 
l<EAC<5,2GI CK!,CK2,FREXFl 1 FREXF2 1 1WGHT 

2\j FCRMAT <2<F5.!,2XI ,Fs.1.2x,Fs.1.2x,I1> 
\.IRITEC6,~Sl CK!,CK2,~liEXP1,FREXF2 

25 FORMAT !!H!l!H0/1HO/!H0/1HG/1HG/18X 1 44HCOUELE EXPONENTIAL FITTlN(; 
1SUERCl!Tlt•E CJ.LLEC/79HuPi<.OCEEClNt; \./ITH THE COUE:LE EXPCNENTlAL FIT U 
2Slll(; THE FCLLC\.'lll(; TRIAL ESTIMATESl22HOOF THE FAl\AMETE!iS •••• /1HC, 
32X.5HCK1= ,F8.!,5X,SHCK2= ,Fa.1,sx,8HPREXP1= ~F8.1,sx,8HFl\EXF2= ' 
4F8.1> . . 

CALL \./EI (;HT 1F, ,. .. ,Me ,He, MC ,HT, TI Neu, Tl Ncl\e, T 1 Nci<c, t wci<c ,Ncs, 
11\.K;HTl 
'OTO 130,<0>,IWC.HT 
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sueFiCUTINE "AFvlLO FRAME 2 

30 WRITE 16,351 
35 FvFiMAT 124HGUNIT WEl,HT MATRIX USEC/1Hu/1Hu/1H0/1HOl 

~TO 50 
40 WRITE<6 145) 
45 FCRHAT 145H0"EQUAL-TIME-EQUAL-WEl,HT" WEl,HT MATRIX USEC/1H0/1HO/ 

UH0/1HOl 

c ****** 
c ~******************~********************************************** 
c ~~***~************~*********************************************** 
c ~·** 
C MAIN SECTfON CK THE FR(l(;RAM 
( ------- --
( ·-50 CV 90 I=t,HT 

CALCI~ll=FREXFt •EXFC -TCll/CK1l+FREXF2SEXF(-Tlll/CK2l 
AJ'.ATF.Xll 1 1l=TCll •FREXF1 *EXFC-Tlll/CK1l/CK1iC:*2 
AHATRXC l,2 l=TCll•FREXF2*EXFl -T (l l/CK2l/CK2•*2 
AHATRX C1,3l=EXFl- Tlll/CK1l 
AHATRX(l,4l=EXFl-Tlll/CK2l 
CEVll): CALCl<ll-CAiAlll 

tO C~TINLE: 
SQ!)Ev=o.o 
l\HSCEv=o . o 
CV 130 K=1,4 
CV 120 J:t,4 
EHATRX u:., J) =o.o 

120 Cc.till NUE 
130 CCtlTINl.C 

CV 160 K:t,4 
cc. 150 J=1,4 
CCI 1.¢0 1=1 1 MT 
£HATRX(K,J J:£MATRX(K 1 Jl+AHATRX<l,Kl$F(Jl*AMATRX<l , Jl 

14Ci CCtlT llllJE 
EC6LFRIK,J):£HATRXCK 1 Jl 

15ti Cc.tlTINlJE 
160 CCtiilNI£ 

CALL El<C WV CECE:LFR ,4,CETERM,1.0E-08, lTESil 
00 18G J:t,4 
00 170 K:t,4 
61NVIJ,Kl=6C6LFl<(J,Kl 

17ti CQITINUE 
180 CCflT lllUE 

CV 19!:1 K=1,4 
CL't!HT (K) =o.o 
CV<i< CKl =Ci.Ci 

19G CWT l t<L'E 
CV 2!Ci K=t ,4 
00 2GO J:t,HT 
C\."l'MY CK) =CUMHY. CK) •AMATl<X (I ,Kl •Fen •CEV Ill 

2Ci0 CCflTlNUE 
210 CUITINUE 

CCI 26u 1=1,4 
cc. 250 J=1,4 
cc«R lll=CC~Rll l -BlNV([,Jl•CUMMY<Jl 

250 CCtlT I HUE 
260 CUffltlUE 

Cv 270 l:t ,MT 
SQCEV=S,CEV+CEV Cl l•CEVlll•F<ll 
RHSCEV=RMSCEV+CEVlll •CE VCll 

270 (UjfltluE 
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$U£1<C.UT lflE A FOL LO FRAME 3 

c 
c 
c 
c 
c 
c 
c 

zeo 

290 
3!Ci 
320 
~o 

351.i 

360 
c 
c 
c 
c 
c 
c 
c 

<&00 
405 

SlGMA:SQiT!SQCEV/FLOAT!MT-4)) 
l<HSCV:SQiTl iHSCEV/FLOAT(MTll 
co zao !=1,• 
STNCEVC!l=<SQRT<BINY(i,Illl#SIGHA 
CONTINUE 
lF <AB SICOii!ll/STNCEV!lll-0.Dll 290,350,350 
lF CABS CCOiiC2l/STNCEVC2ll-O.D1l 310 1 350,350 
lFIA£SCCOi i C3l/STNCEVC3ll-0.01l 320,350,350 
lF <A£SICOiiC4l / STNCEV(4Jl-0.01l 340,350,350 
r;oUNT:KOUNT+1 
JF CllOUNT-101 350 1 345 1 345 
JTEST=1 
lTER=lTEl<+1 
GO TO 360 
CK1=Cl\1+CORRC1l 
Cll2=Cl\2+CORR C2l 
FiEXF1=FiEXF1+CORl<(3) 
FiEXF2=FiEXF2+CORRC4l 
ITEi<=lTEl<+1 
JF(JTER.GE.60) GO TO 4QQ 
GO TO 50 
~*** 

****************************************************************** 
*-*** 

£EAT A HASTY iETl<EAT 

~~**************************************************~******~* 
~***************************************************************** 

-** Wi<ITE (6 ,405l 
FC~MAT C35H1LCC~ING 

1 THE NEXT JCE:l 
GO TO 301.iO 

HAS EXCEECEC 60 ITE~ATl.CN$/29H FiC>CEECING WITH 

c ****** 
c .t:::C:-:e:-*******************************************************~******* 
c ~*************************************************************** 
c ****** 
C SET EiRVR CHECK INCEX l<EGI STEI< 
c --------
c ****** . 3(j(j(j J TE$T:2 

G<; . TO 360 
c ****** 
c ****************************************************************** 
c ~~****~*********************************************************** 

ENC 
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IU61<.0UTINE EROS FRAME 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

c 
c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c: 
c 
c 
c 
c 
c 
c 
c 
c 
c 

****************************************************************** 
E. 6. FRIESTLET AFRIL 24, 1969 
THIS SU6ROUTINE LEAST SQUARES FITS EXPERIMENTALLY CETERMINEC CATA 
FOINlS TO C0"16!NEC FlRST ANC SECCM: C'RCER l\!NETICS USING THE 

~ FIRST ORCER FA&T AS THE FR06E. THE INITIAL RAW.GUESSES ARE FIRST 
REFINEC EY FITTI NG FC,INTS FC·R T LESS THAN Cl\ ALLOWI NG C•NLY XINOT 
ANC GAMMA TO VARY ANC FC•INTS FC•R T GREATER THAN Cl\ ALLOWING 
ONLY X!NOT ANC Cl\ VA&Y . ·IF CESIREC, THIS REFINEMENT Of THE 
FARAMETERS CAN 6E SUi'RESSEC 6Y SETTING l\AFFA EQUAL TO 2 . 
IF THE REFINEMENT IS CESl&EC, l\AFFA IS SET EQUAL TO 1 ANC 
THESE REFlNEC ESTIMATES OF CK ANC GAMMA ARE THEN USEC AS THE 
INITIAL GUESSES FC.R THE CC·M61NEC KINETIC SCHEME. FOR THIS 
Sl!EROUTINE TC• lo.C•RK c.;:TIMl.LLY, THEREFC.RE, CATA FC,INTS SPANNING THE 
TIME CC.MAIN FRC~ T LESS THAN CK TO T GREATER THAN CK SHC~LC 6E 
USEC. THE LEAST SQUARES THEC•RY IS THAT OUTLINEC IN ARLEY ANC BUCH 
"lllTRC.CUCTIC>N TO THE THEC•RY Cf" FR0EA6!LITY ANC STATISTICS" Cti 12. 

*~*******~*~****************************************************** 

*********:.;:·******************************************************** 
l<EQUIREC INFUT CATA CARCS 

~ 

t. CK,GAM~tA,XlNOT,KAFPA,Il.'(;HT (FC>4<MAT STATEMENT E_FN 20) 

~*****~***********************~"********************************* 

Cll:STC>I< 
CO A MM A 
(,AMS TR 
ITERt,ITER2,ITER3 

ln'.R 

IWC.tiT 

JT£ST 
ltAFFA 

XI NOT 

CEFINITIOIS 

:THE EEST CoRRECTIVNS TO THE PARAMETERS 
:THE RECIFRc<AL OF THE FIRST C>4<CER RAT£ 

CetlSTANT (THE LIFETIME OF THE STATE> 
=VALUE Cf" CK FROM THE PREvlc~s ITERATICH 
=THE SECC~C C~CER RATE CONSTANT 
=VALUE Cf" GAMMA FRC~ THE PREVl~S lTERATICtl 
: CC•UNTERS FC>R THE NUMBER Cf-" ITERATIC"'4$ 

REGU!REC IN THE SEFARATEC THEORY 
=A COUNTER FOR THE NUMEER OF ITERATICtlS 
REGUl~EC IN THE COMPLETE THEC>4<Y 

=A SIGNAL FOR THE TYFE OF \..£1GHT MATRIX 
TO EE USEC 

1 SIGNIFIES THE UNIT \..£IGHT MATRIX 
2 SIGNIFIES "EGUAL-TIME-EQUAL-\.£1C.HT" 

\.£IC.HT MATRIX 
. =AN ERROR CHECK INCEX l\EC.ISTER 

=A SIGNAL FOR INI TIAL ESTIMATE REFINEMENT 
1 SIC.NIFIES REFINEMENT 
2 SIC.N!FIES NO REFINEMENT 

=THE INITIAL PHOSPHORESCENCE INTENSITY AT 
T=O 

****************************************************************** 
ll< .C:*******************************"'·******************************** 
****** 

l'l<C>Gi<AM IN! TIAL12A TION 

****** 
SIJERCU11NE CTAF IT <CK, GAMMA, XI NOT, STNC:EV, SIGMA, I TEI<, T, CAT A ,CALC I , -
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SUBliOUTINE EROS FRAME 2 

1CEV,MA,ME,MC,MC,MT,NCS,TINCRA ,TINCRe,TINCRC,TINCRC,RMSCV 1JTESTI 
ClMENSIC•N CATA (20481 ,F (1450), T (1.¢50) ,CALCI <145Ul ,CEV (14501 
CIMENSION AHATRX(145u,3l ,EHATl<X(3,31,EINV(3 13l ,CUMMY!31 
ClMENSIC•N CC>RR <3> ,STNCEV (3) ,ECBLFR C50 ,31 
COMHC,N/ENCCOM/El ( 50, 3) 
COUELE FRECIS!ON ECELFR,EL 
lTEl<t=1 
I TER2=1 
JT£1<3=1 
1TEl<=1 
l<EAC ( 5 , 2Ul CK, (;AHMA , XI NOT, KAFFA, IWC.HT 

20 FC·RMAT <F5 .1 ,2X ,F9.1,2X ,Fs.1.2x. 11 ,2x, IU 
WRITE<6,251 Cl'.,(;AMMA, XINOT 

25 FC•i\MAT (1H1 /1H!.i/1Hu/1Hu/1Hu/1Hu/17X ,49H FIRST ANC SECCoNC Oi\CEI< FIT 
tTIN<; SUERC•UTINE CALLEC/83Hui"RC<EECIN<; WITH THE FIRST ANC SECONC O« 
2CEi\ FIT USIN<; THE FOLLC<\JIN(; TRIAL ESTIMATES/22HV::f' THE FARAMETEl<S. 
3 ••• /1H0,2X14HCK= ,Fe.1.10x,7HCAMMA= ,F9.7,!0X,7HXINC•T= ,FS.1) 

CALL \.EI<;HT -(F ,MA ,ME ,MC ,MC ,MT, T !NCRA, TINCRE, TlNCJ;C, TlNCliC ,NCS, 
U~HTI 

'<> TO (30 1 40l ,JWC.HT 
30 Wf'1T£(6,35) 
35 FC~MAT (24HOUNIT ~EI<;HT MATl<IX USEC/1H0/1H0/1H0/1HUl 

CO TO 48 
40 WRITE<6,45) 
45 FORMAT C45HO"EQUAL-11ME-EQUAL-~El<;HT" \.EI<;HT MATRIX USEC/1H0/1HO/ 

11H0/1HU) 
48 CO 49 K=1,MT 

CATACKl=CATACKl/1000.0 
T<Kl:TCK)/1000 . 0 

49 CUITINUE 
CK=CK/1000.0 
GAMMA=1.0E 06*(;AMMA 
XINOT=XINOT/1000.0 
MST=MT/10 
GAMSTR:c;.AMMA 
CKSTOR:CK 
'<> TO C50,165) ,KAFFA 

c ****** 
c ~~**********~***************************************************** 
c ~***************************************************************** 
c ****** 
C MAIN SECTION OF THE Ff<oc;.f<AM 
c ------- --
c ****** 
c . *'I=**** 
C SECTIC~ C~E--FIT Cf' THE FIRST ONE TENTH OF THE CATA FOINTS USINc;. 
C THE CvMFLETE THEC·RY EUT FERMITTIU<; UlLY (;AMMA ANC XINOT TO VARY. 

c ****** 
50 CO 60 I:t,MST 

CALO (I I :xHK•T I <EXF IT (I l /CIO +2. Ci*CAMMA*Cl'.*XINOT* CS I NH IT Cl I/ 
1 C2 .O*CKl l I **2+(;.AHMA*CK*XINOT*SINH <T (I l iCl\I) 

AMA TRX CI , 1 l = (<CAL CI C II I X I NOTl **2l *EXF'<T CI l /CIO . 
AMATi< X ( I, 2l :- CC AL Cl (I> **2) *Cl\*2.0* <SINH CT (1) I <2 .O*Cl\l l l **2-

1 CCALCI CI I **2l *CK*SINH CT CI l /Cl\I 
CEVCil:CALCl<Il·CATACII 

Ill CC'NTlNUE 
$QCEv=o.o 
co 65 11;:1,2 
co 63 J:1,2 
BHAlf<X(ll:,J):Q.O 
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U CONTINUE 
65 CONTINUE 

co 15 tr.:1,2 
co. 73 J:1,2 
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CO 70 1=1,MST 
CMATRX<tr.,Jl:EMATRX<K,Jl+AMATRX<l,Kl*F<Il*AMATRX((,J) 

10 CONTWUE 
ECELFR(K,Jl=EMATl<X(K,Jl 

73 CONTINUE 
75 CONTINUE 

CALL ENClNV(ECELFR,2,CETERM,1.0E- 08,JTESTl 
co 80 J=1.2 
co 77 11:=1,2 
BlNV(J,Kl=ECELFl<(J,tr.) 

Tr CON Tl NI.IE 
80 CONTINUE 

co 86 K=1.2 
CUMMY<l\l=O.O 
cC>RR <K> =o.o 

16 COOTINIF-
CO 90 K=1,2 
CO 87 J=1,MST 
CUMMY <Kl =CUMMY 00 +AMATRX (J ,Kl *F <JI *CEV (J) 

'7 CONTINUE 
90 CCfllT INUE 

CO 95 1=1,2 
co 93 11::1,2 
COl<I< <I l =CORI<< I l -EINV <I ,Kl *CUMMY (11.l 

93 CONTINUE 
95 COOTINUE 

CO 98 J:1,MST 
SQCEV=SQCEV+F<Jl*CEV(Jl*'*2 

98 CONTINUE 
SIGMA:SQRT(SQCEV/F"LOAT<HST-211 
CO 100 1=1,2 
STNCEV <I>=SQl<T<ElNVCl,Ill*SIGMA 
IF"<AES <CORRlll/STNCEVllll.GT.0.01) IOC> TO 102 

100 CONTINUE 
GO TO 10.C 

102 XlNOT=XlNOT+CVl<Rl1l 
GAHMA=GAMHA+CVl<l<<2l 
ITEi< 1=ITER1+1 
IF"<ITER1.GE.20l c;v TO 410 
GO TO 50 

c ~** 
C SECT!a-1 T'•K>--F"IT CW ALL THE CATA FO!NTS USING THE Cc+tFLETE THEOl<Y 
C EUT FEi<HlTT!NG VN LY CK ANC XINOT TO VARY·. 
c ~** 

1Q.4 XINOT=X!NOT+CORR<1l 
GAHHA=GAMMA+CORR _(2) 

105 CO 106 l=t,MT 
CALCl ( ll =x l NOT I CEXF !TC! l /CK) +2. O*GAMMA*CK*X I NOH<!SINtHT (I l I 

1<2.0*Ct\ l)) **Z+GAMMA*Ct\*XlNoT*SlNH(T(ll/CKll 
AMAT RX <I , 1 l = (<CAL CI (I l / XltlOTl **Zl *EXF CT <I l /Cltl 
AMATR X< l ,Zl =CCALC! <I>**Zl*T<Il*EXFIT<ll/Ctr.ll<XlNOT*ICll.**Zll-

12.0*GAMMA *<CALCl Cl>*SINH(TCll/C2.D•Ctr.lll~*2-CCALCl <ll **Zl*GAMHA• 
2Sl NH <TC ll /Ct\l + CCALC! <l l **2l *T (! l •GA>-11,A*EXF IT <I l /CKl /C~ 

CEVCll=CALC!<ll-CATA(ll . . 
106 CONTINUE 

SQCEV=O.O 



c:o 108 «=1,2 
co 107 J: 1,2 
BHATi<X <«, J) :(i.(i 

107 CONTINUE 
108 CONTINUE 

co 112 1(:1,2 
co 111 J=1,2 
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CO 110 1=1,HT 
BMATRX(K,Jl=EMATRX<K,Jl+AMATRXll,Kl*Flll*AMATRXCI,Jl 

tto CONTINUE . 
BC6LFR(K,Jl:EMATRXCK,Jl 

111 CONTINUE 
112 CONTINUE 

CALL ENC INV ceceLFR ,2,CETERM,1.0E-08 I ITESTl 
co 118 J:1,2 . ~ 
CO 116 K=1,2 
BlNV(J,Kl=eceLFR(J,K) 

116 CUITINUE 
118 COOTINUE 

CO 123 K:t,2 
CUHMY UO :(i . (i 

COftR Cit) :(i.0 
123 COOTINUE 

co 125 1(:1,2 
CO 12• J:t,MT 
CUMMY <Kl=CUMMY (K)+AMATRXCJ,K);F(Jl*CEV!J) 

12• CUITINUE 
125 COOTINUE 

CO 130 I=1 , 2 
co 128 «=1.2 
CQ;;RCll=CC~RCll-61NVCl 1 Kl*CUMHYIKl 

128 Cet!TINUE 
130 Cet!TINUE 

CO 135 J=1,MT 
SQCEV:SQCEV+FCJl*CEVCJl~2 

135 CONTI NUE 
SIGMA=SQRTCSQCEV/tLOATCHT-2>> 
CO UO I=t,2 
STNCEV<ll=SQRTCeINVll,Ill *SIGMA 
It<AeS<CORRlll/STNCEV Clll.GT.0.01) GO TO 150 

t•O CUITINUE 
COO TO 160 

150 XlNOT= Xl NOT+COi<Rl1l 
CK=C«+CORR <21 
ITER2: I TER2+1 
Ir<ITE R2 . GE . 20l COO TO 420 
COO To 105 

160 Xl NOT=Xl NOT+CORR(1) 
CK=CK+CORRC2l 
IF" IAES ( <C:KSivR -CKl /CKSTCRl .LE . Ci . 1.ANC .AES ( CGAHSTR-GAMHAl ICAHSTRl. 

1LE.0.1l GO Tv 165 
(;AMSTR=<;AMMA 
C«STot<=C:« 
ITER3= ITER3+1 
ITEl<1=1 
ITEl<C?=t 
lF<lTER3 . (;E . 10l GO TO 430 
c;o TO 50 

c ****** 
C SECTION THREE--FIT oF ALL THE CATA FvlNTS USIN(; THE COMFLETE 
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SUBROUTINE EROS FRAME 5 

C THEORY ANC FERMITTIN' ALL THREE FARAMETERS To VARY SIMULTANEOUSLY. 
·c ****** 

165 Co 170 I=t,MT 
CALCICil=XINoT/CEXFCTCil/CKl+2.GO,AMMAOCKoXINOTOCSINH(TCil/ 

1 C2.GOCKlll002+GAMMAOCKOX!NOTOSINHCTCil/CKll 
AMATRxcI,1l=CCALC! C!) 002l•T<I>*EXFCTCil/CK)/(XlNOT*CCK•*2ll-

12.G•,AMMAOCCALCl CllOS!NH(TCIJ/ C2.GOCKlllC02-(CALCICll002lOGAMMA$ 
2SlNH (T(ll/CKl+ CCALCI Cll 002l OTCll OGAMMAOEXFCTCil/CKl/CK 

AMATRXC ! o2l=-CCALCI Cll002l OCK02.GO ISINHCTCil/(2.G*CKlll**2-
1 <CALCI CI l 002l OCKOSINH CT Cl l /CK) 

AMATl\X CI, 3l: I CCALC I C Il /XINOTl **2l oExF (T <I l /CKl 
CEVCI>= CALCI<ll-CATACll 

170 CONTINUE 
SQCEV=G.O 
l<MSCEV=G.O 
co 180 tc=t,3 
co 175 J=1,3 
EMATRXCK,Jl=o.o 

175 CONTINUE 
180 CONTINUE 

CO 195 K=t,3 
co 190 J=1,3 
CO 185 l=t ,MT 
EMATRXCK,Jl=EMATRXIK,Jl+AMATRXCl,KlOFCllOAMATRXCl,J) 

185 CONTINUE 
ECELFRCK,Jl=6MATRXCK,Jl 

190 CONTINUE 
195 CONTINUE 

CALL ENC INV CEC£LFR ,3,CETERH,1.GE-08, ITESTl 
co 215 J=t,3 
CO 210 K:t,3 
£INV.CJ ,Kl =BCELFI< CJ 1K) 

210 CONT lNUE 
215 CONTINUE 

CO 220 K=t,3 
CUMMYCKl=G.O 
COl<R CK) :c;.o 

220 CONTINUE 
CO 23Q K:t,3 
CO 226 1:1,MT 
CUMMYCKl=CUMMYCKl+AMATRX<I,KlOFCil*CEVIIl 

226 CONTINUE 
230 CC>NTINUE 

co 26Q 1=1;3 
co 25(j J=1,3 
CC•RR Cl l =CORR CI l -EINY Cl, J) *CUMMY CJ) 

25Q CONTINUE 
260 CONTINUE 

Co 270 l=t,HT 
SQCEV=SQCEV+FCl l OCEVCil002 
RMSCEV=RMSCEY+CEVCll002 

270 CON TI NUE 
SI,MA=S~RTCSQCEV/FLOATCMT-3l) 

RMSCV=SwRTCRMSCEV/FLOATCHTll 
CO 280 I:1 , 3 
STNCEVCll=swRTCE!NVCl,IllOSIGMA 

280 CONTINUE 
IFCA6SCCORRC1l-/STNCEVC1ll .GE.0.011 GO TO 320 
IF<AES CCORRC2l/STNCEV<2>>.,E.0.01l GO TO 320 
IFCABS<CCRRC3l/STNCEVC3ll ;cE.Q.Gtl GO TO 320 



J1£ST=1 
IU:i<: I TEIH1 
GO TO 36Ci 

52Ci CK=CK+CORRC1) 
'A~MA=,AMMA+COl<R<2l 

=INoT=xINOT+COl<R!3) 
I1ER=ITER+1 
[FCITER.GE.6Cil ~ TO ' ' Ci 
GO TO 165 

360 CK=CK+COi<R(1) 
'AMMA=,AMMA+CVl<Rl2) 
XINOT=XINOT+COl<R C3) 
CO 400 K=1,MT 
CAl,A (Kl =tOGG.O*CA TA CIO 
T<Kl=10GO.G*T(K) 
CALCI<K>=1GOO. G*CALCI<K> 
CEY!Kl=1GOO.O*CEV(K) 

«•oo CetlT I Nl.'E 
SIGMA=1GOO.G*SlGMA 
5~SCV=1000.0*RMSCV 
CK=1000 •. 0*CK 
'AMMA=!1.DE-06l *GAMMA 
XlNOT=1GOO.Ci*XlNOT 

234 

STNCEV Ct> =1000.G*STNCEV !1l 
STNCEV !2l=<1.DE- G6l*STNCEV<2> 
STNCEV (31 =1000 .t:l*STNCEV (3) 

c ~** 

c ~****~*****=********~********~******************************** 
c ~*******************'***************'**************************'*** 
C- . ****** 
C EEAT A HASTY RETREAT 
c 
c ~ 

405" f<ET""'N 
c *iC=C:*** 
c ***********************~****************************************** 
c ~****'*******~*****************'**************************JC:**:¢.**** " ... 
c ****** c _ 
c 
c ****** 
'10. Wl'<ITE (6,415l ITER3 

----- -~--~--- . 

415 FC~MAT C 5GHtLCC~ING IN SECTION ONE HAS EXCEECEC 20 ITERATIONS/ 
144H SECTIONS C>NE ANC Tl.O _LCU' INCEX NC.W EQUALS ,12/29H FROCEECIN' 
2WITH THE NEXT J<:el 

G<:J TO 3000 
420 WRJTE<6,425l ITER3 

_ '25 FCRMAT <SGHtLOOF!NG IN SECTION Tl.I:) HAS EXCEECEC 20 ITERATIONS/ 
144H SECTIC,NS C>NE AND Tl.O LC<Jf' INCEX NOW EQUALS ,i2/29H Fi<C•CEECINIO 
:zt.ilTH THE NEXT J<:el 

Ge. TO 3000 
'30. Wi<I TE C6 ,4351 
,35 F"C.i\MAT !64H1LVOFING EETl.'EEN SECTIONS ONE ANC TWO HAS EXCEECEC. 10 1 

tiEi<A T lvNS/29H Fi<C>CEEC I NG WI TH THE NEXT JCl6l 
COO TO 3000 

'40 WRITE!6,,,5) 
•'5 F"Ci\M AT C5 2li1 LVOF! NG IN SE CTloN THi<EE HAS EXCEECEC 60 ITERATIONS/ 

129H Fl<vCEEC!NIO WITH .THE NEXT JCl6> 
COO TO 300(; 

c -···· 
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$UE~OUT1NE El<OS F'l<AME T 

c **************************************************~*************** 
c ****************************************************************** 
c ****** 
C SET El<ROR CHEC~ INCEX REGISTEI< 
c --------
c ****** 

3CiCiCi J TES T=2 
G-0 TO 4'05 

c ****** 
c ****************************************************************** 
c ****************************************************************** 

ENI:: 
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$UCliOUT1NE HEliMES FRAME 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

- c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

**************************************************************'**** 
E. 6. FRIESTLET HAY S, 1969 
THIS SUEROUTWE LEAST SQUARES FITS EXFERl"1ENTALLY CETERMINEC CATA 
FC.l NTS TV COMEINEC FIRST ANC SECWC C•RCER f(!NETICS USING THE 
SECC•NC C>R CEi< FART AS THE FRC·EE. THE INIT I AL RAW GUESSES ARE FlliST 
kEFlNEC EY FIT TI NG FC•I NTS FC·R T LESS THAN CK ALLC•WING C•NLY XINOT 
At:C GAM~IA TO VA RY ANC FOINTS FC>R T GREATER THAN Cf( ALLOW ING 
ONLY XIN•::.T AtlC CK VARY. IF CESIREC , THIS REFINEMENT Cf' THE 
FAi<AMEIERS CAI; EE SUFRESSEC CY SETTING llAFFA EQUAL TO 2. 
IF THE REFINEMEtH IS CESIREC, HFFA IS SET EQUAL TO 1 ANC 
Tt!ESE REFINEC ESTIMATES VF Cl': ANC GAMMA ARE THEN USEC AS THE 
Je.:ITIAL GUESSES FOR THE CC•MEINEC KI HETIC SCHEME. FOi< THIS 
$ C£RC•UTINE TO I.ORK OFT ! MALLY, THEREFC>RE, CATA FOINTS $FANNING THE 
Tl~E COMAIN FROH T LESS THAN Cl': iv T GREATER THAN CK SHC~LC 6£ 
USEC. THE LEAST . Sill:ARES THEVl" Y IS THAT C•UTL.INEC IN ARLEY ANC BUCH 
•JNTi<C.CUCTIVN TO THE THEC•RY Cf' FRC.£AEILITY ANC STATISTICS " CH 12. 

~******~*************~********~***************************¢*** 
******~*********************************************************** 

l<EQUIREC INFUT CATA CARCS 

****** 
t. CK,GAMMA,XINOT,KAFFA,l~HT CFOO:M4T STATEMENT EFN 201 

*"'**** 
~******************************'*************************~******* 

CltSTOI< 
c;A~MA 

c;At4STR 
[TER1,JTER2,ITER3 

IlEI< 

IWCHT 

J TEST 
KAFFA 

XIHC>T 

CEFINITIOOS 

=TtiE £EST cc~RECTIC~S TO THE FARAMETERS 
=THE RECIFRC<AL Cf" THE FIRST Oi<CEli liATE 

CONSTANT CTHE LIFETIME Cf' THE STATE> 
=VALL~ Cf" CK FRC+1 THE FREVIC~S ITERATIVN 
=THE SECCoNC ~~CER RATE CONSTANT 
=VA.LL~ Cf" GAMMA FRC+1 THE FREVIC~S ITERATIVN 
=COUNTERS FC•R THE NUP<E:ER Cf' ITERATIONS 

REQUIREC IN THE SEFARATEC THECn<Y 
=A COUNTER FC~ THE NUMEER Cf' ITERATIONS 
liEQUI~EC IN THE CC+1FLETE THEORY 

=A SIGNAL FOR THE TYFE Cf' WEI~HT MAT RIX 
TO BE USE'C 

1 SIGNIFIES THE UNIT WEIGHT MATRIX 
2 SIGNIFIES "EQUAL-TIME-EQUAL-WEIGHT" 

ld:IGHT MATl\Ix 
=.AN Ei<RvR CHECK I NCEX i\EGI STER 
=A SIGNAL FC•R INITIAL ESTIMATE liEFINEHENT 

1 S I GNIFIES REFI NEMENT 
2 SIGNIFIES NO REFINEMENT 

=Tti£ !NI TIAL FHC•SFHCRESCENCE INTENSITY AT 
T:O 

*********************************~******************************** 
****************************************************************** 
·-*** 

Fl<~l\AM lNITIALIZATICM 

****** 
S~Ei\C>UTI NE CTAF IT (CK , GAMMA 1 XI NOT 1 S TNCEV, SIGMA 1 I. TEI\, T ,CAT A ,CALCI, 
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1CEV,1<A,1<e,MC,HC,HT,NCS,TINCRA,TINCRe,TINCRC,TINCRC,RHSCV,JTEST> 
CIMEUSIC-tl CATA <2048) ,F (1450), T (1450) ,CALCI <1'15Gl ,CEV (1'1501 
Cll<ENSKt: .AMATRXC14S0,3) ,EMATRXC3,3l ,E:!NV(3 13l 1CUHHYC3l 
C IMEt•S!C-N CC•RR (3 ) 1 STNCEV (:3) ,E:CE:LFR C5G ,3) 
CC~HC·ll/EUCCOH/EL < 50, 3l 
CCCELE FRECIS!ON eceLFR,EL 
lTER1=1 
J TER2=1 
1TER3=1 
ITER=l 
RE.AC<5,2Gl CK,GAMHA,XINOT,KAFFA,l\JCHT 

20 F'C0RH.A T (F'S. 1 '2X I F9. 1 '2X IF 8. 1 'zx ' It '2X. 11 l 
WRITE <6 ,25l CK,GAHHA,XINOT 

25 FORMAT (1H!/1H0/1Hu/1Hu/1H0/1H0/17X,49H FIRST ANC SECC~C C~CER FIT 
1TING SCER<AJTINE CALLEC/83HOFRC<EECIN~ WITH THE FIRST ANC SECONC Of< 
2CER FIT USING THE FCLLC.WING TRIAL ESTI HATES/22H0Cf" THE FARAMETERS. 
3 ••• l!HO,ZX,4HCK= ,Fe.1,1ox,7HGAHHA= ,F9.7,10X,7HXINOT= ,FS.tl 

CALL \.'EIGHT (F ,HA ,HE ,MC ,MC ,HT, T INCRA, TlNCRE:, T INCRC, TlNCRC , NCS, 
u~ttn 

'°TO 130,40),ll.l(;HT 
30 WRJT£<6,35J 
35 F'C>RMAT <24HGL~IT l.£IGHT MATRIX USEC/!H0/1H0/1H0/1HOI 

'° TO 48 
40 WRJT£(6,45) 
45 FVi'HAT l45HO"EQUAL-TIME-EQUAL-~'EIGHT" \.'EIGHT MATRIX USEC/1H0/1HO/ 

11H0/1HCil 
48 CO 49 K=t,MT 

CATACKJ:CATA1Kl*1.0E-06 
T<Kl=T<Kl/1000.0 

49 CQITif.il'E 
CK=CK/lGGG.O 
GAHH.A=l.GE 06*GAHHA 
XINOT=::IHOT/1000.0 
MST=MT/10 
GAHSTi<=GAMHA 
CKSTOi<=CK '° TO <50,165) ,KAFFA 

c *~ 

c *~*~*~******************************===********~~*~*~****** 
c *~****~******************************~*********~"""************* 
c ****** 
C MAIN SECTION CF THE FR~RAM 
c ------- --
( ****** c ****** 
C SEC TIC~ Cf~E--'-FIT Cf" THE Fl i<ST ONE TENTH Cf" THE CATA FOINTS USING 
C THE CCHFLETE THECRY EUT FEi<HITTING C~LY GAMMA ANC XINOT TO VARY. 

c ****** 50 C0 _60 1=1,MST 
TVALU=::Ir-K:.Tl<EXf(T(l)/CKl+2.0*GAMHA*CK*XINOT*<SINH(T<Il/ 

1 12.G*CKll l**2+~AMHA*CK*X INOT*SINH (Tl ll/CKll 
CALCI1Il=TVALU**2 
owALCi:llTVALU/XINOTl**2l*EXF(T(ll/C~I 

AMATkXII,!l=2.0*TVALU*TVALU1 
TYALU2=-- {CJ.LC! CI l l ;Ci<;*2. O* <SINH <T (I l / <2.0~Kl l l **2- · 

1 <CALCI Ill I '-CK*SI NH <T <I) /CK) 
AMAT~::<I,2l=2.0*TVALU*TVALU2 

CEVIIl:CALCICll-CATA(II 
IO CVHTINIJE 

SQCEV=O.G 
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co 65 1t:1,2 
co 63 J=t ,2 
6MATRXllt,Jl:Q.O 

13' Cc.t-ITINUE 
65 COtHINUE 

co 75 1t=1,2 
co 73 J=1,2 
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CO 7Ci 1=1,MST 
6MATRXIK,Jl=EHATRXIK,Jl+AMATRXll 1Kl*Flll*AHATRXl1,Jl 

1Ci CCoNTI NUE 
BCt:LFR CK, Jl =EHATRX (lt .,J) 

13. CONTINUE 
75 CONTINUE 

CALL. ENCINVCEC&LFR,2,CETERM,t.OE-08,ll£STI 
co 80 J:1,2 
con 1t=1,2 
EINV(J,ltl=&CeLFR(J,lt) 

Tr CON Tl NI.IE 
80 Cc.NT INUE 

co 86 it.:1,2 
CUMMY(l():Q.O 
ceo<R <"> =o.o 

86 CWTINUE 
co 90 1(:1,2 
CO 87 J:t ,MST 
CUMMY(Kl=CUMMY(l\l+AMATRXCJ,l(l*FCJl*CEY(J) 

87 CCiNTINUE 
90 COOTINUE 

CO 95 1=1,2 
CO 93 K=1,2 
cc~R<Il=CCRRcll-&lNV(l,Kl*CUMMY(I() 

93 CONTINUE 
95 CONTINUE 

CO 98 J:t,HST 
S~CEV=SQCEV+F(Jl*CEV(Jl*11<2 

98 Cet'IT INUE 
SI~MA:SQRT<SQCEV/FLOATCHST-2ll 

CO 100 1=1,2 
STNCEVCll=SQRTCEINVCl,lll*SlGHA 
IF<AESCCCRRC ll/STNCEV(lll .GT.0.01) (;OTO 1U2 

100 COOTINUE 
IOC> TO 1°' 

102 XINOT=XINOT+CoRI< (1) 

'AMMA:GAMMA+CC~RC2) 
1TE:R1=1TEl<1+1 
IF'< ITER t. GE. 2Gl c;o TO • 1 G 
G<:> TO 50 

c ****** 
C SECTlc+i TWO--FIT ~ ALL THE CATA POINTS USIN' THE COMFLETE THEOl<Y 
C CUT FERHlTTING ~LY CK ANC XINOT TO VARY. 
c ****** 

1Cl4 XINGT=XINOT+CORR<tl 
'AMHA=GAMMA+COi<RC2l 

105 CO 106 1:1,HT 
TVALU=XlNOT/!EXFCT(ll/CKl+Z.u*GAMMA*CK*XlNOT*<SlNH!Tlll/ 

tCZ.O*Cltlll **Z+GAMHA*CK*XINOT*SINH(l(ll/Cltll 
CALCI<ll=TVALU**Z 
TVALU1=<<TVALU/XlNOTl**Zl*EXF(Tlll/Clt) 
AMATRX~l,!>=2.0*TVALU*TV~LU1 
TYALU2=CCALCI <lll*TCll*EXFITlll/Cltl/lXINOT*CCK**Zll-
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12.0*GAMMA*CTVALU*SINHCT(ll/(2.0*CK)ll**2-(CALClll)>*GAMHA* 
2UNH CT <I) /CK l + CCALC I (Ill tT C ll *GAMMA*EXF ( T (I l /CKl /CK 

AMATRXll,2l=2.0*TVALU*TVALU2 
CEV (ll =CALCI (ll-CATA <ll 

106 CONTINUE 
. silCEv=o.o 
co 108 11::1,2 
co 107 J:1,2 
&MATRX(K,JJ:o . o 

107 CONTINUE 
1~ CONTINUE 

co 112 11:=1,2 
co 111 J:1,2 
CO 110 I=1 ,MT 
6MATRX(K,J>=EHATRX(K,Jl+AMATRX(l 1Kl*F<l)tAMATRX(l,J) 

1Hi CONTINUE 
tCELFRlK,Jl:EMATRX(K,Jl 

111 CetlTINUE 
112 CONTINUE 

CALL ENCINV(ECELFR,2,CETERM,1.0£-08,ITESTl 
co 118 J=1,2 
CO 116 K:1,2 
6INV(J,Kl=ECELFR(J,K) 

116 CONTINUE 
118 CONTINUE 

CO 123 K:1,2 
CUMMY (KJ:O.O 
CC'4<R (I() =o.o 

123 CCt.ITINUE 
CO 125 K=1 , 2 
CO 12( J=1,MT 
CUMMYCKl=CUMMYCKl+AMATRX(J,Kl*F(J)*CEV(J) 

12' CONTINUE 
1ZS CetlTINUE 

co 130 1:1,2 
CO 128 K=1,2 
CORRlll=CORRCil-EINV(I,K)*CUMMY(Kl 

128 CONTINUE 
130 CCt.iTINl . .'E 

CO 135 J=1,MT 
SQCEV=SQCEV+F(Jl*CEV(Jl**2 

135 CONTINUE 
SIGMA=SQRT lSQCEV/FLOATlMT-2>l 
CO 140 I=1,2 
STNCEV<Il=SQRTCBINVlI,I>l*SIGMA 
IF<AEStCORRtIJ/STNCEVllll .GT.0.01l 'Ci TO 150 

1.CO CCt.ITINUE 
'Ci TO 160 

150 XINOT=XINOT+CORR(1l 
CK=CK+COl<R <2l 
ITER2: ! TER2+1 
lF<ITER2.GE . 20l 'Ci TO '20 
~ TO Hi5 

160 XINOT=XINOT+CORRl1) 
:::K=CK+Cui<R C2l 
lFCABSC <CKS TCR-CKl/CKSTORl .LE.0.1.ANC.ABS<CGAMSTR-GAMMAl/GAMSTRJ. 

1lE.0. 1>-:'0 TO 165 
IOAMS'l'R=GAMMA 
Cll:STOR=CK 
l TER3= I TER3+1 
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lTEl<t=t 
I TERZ:t 

240 

IF<ITER3.GE.10l '<> TO '30 
50. TO 50 

c ****** 
C SECTIC•N THl\EE--FIT Of" ALL THE CATA FOINTS USING THE COHFLETE 
C THEORY ANC FERHITTING ALL THREE FARAHETERS TC> VARY SIMULTANEOUSLY. 
c ****** 

165 CO 170 1=1,HT 
TVALU=XINOT/ IEXFI TCil/CKl+2 .0#GAHHA#CK*X INOT*ISINH(T(ll/ 

112.0*CKlll*#Z+GAHHA*CK*XINOT*SINli(T!ll/CKll 
CALCI (ll=TVALU**2 
TVALUt:<CALCI Clll*TCll*EXFCT<ll/CKl/CXINOT*C~K**2ll-

12.0*GAHMAO(TVALU*SI NH(TC ll/IZ .O*CKlll **Z- ICALCI Clll*GAHMA* 
2SINH IT< I l /CKl + ((ALCI (I> l *T '1 l *GAHHA*EXF (T <I l /CK> /CK 

AMATRXCl,1>=2 . 0•TVALU*TVALU1 
TVALU2:- (CALCI Ill )OCK#2.0*ISINH<TCll/(2.0*CKlll**2-

. 1<CALCI <IllODK*SINH(T(ll/CKl 
AHATRX(l,2J:2.00TVALU*TVALU2 
TVALU3: < C TVALU/XINOT> 002) •EXF CT ( 1>./C:Kl 
AHATRXCl,31=2.00TVALU*TVALU3 
CEV<I>: CALCICll-CATACll 

171.l CONTINUE 
SQCEv=o.o 
l<MSCEv=o.o 
co 1eo K=1,3 
co 175 J=1,3 
E!HATRXC K,J):Q. Q 

175 CUITINUE 
180 CCtlTINUE 

CO 195 K=1,3 
cc. 190 J:1;3 
CC. 1S5 1=1,MT 
E!HATRX (K,Jl=EHATRXCK,Jl+AMATl\XCl,Kl~<llOAMATRXCl,Jl 

185 COOTlNUE 
BC6LFfi( K, J l=6HATRX(K,J) 

190 COOT!NUE 
195 CQNTINUE 

CALL BNCINV(6CBLFR,3,CETERM,1 .0£-Q8,ITESTl 
co 215 J=t,3 
CO 210 K=t,3 
BINV(J,Kl=6C6LFfi<J,Kl 

210 COOTINUE 
215 CONTINUE 

CO 220 K=1, 3 
CUHHY (Kl =o.o 
COf<l<(K)::Q.O 

220 CONTINUE 
CO 230 K:t,3 
CO 226 1=1,MT 
CUHHY(KJ =CUMHT (K l~AHATRX(l,Kl*FCll*CEVCll 

226 CC>NTINUE . 
230 CONTINUE 

co 260 l=t,3 
co 250 J=!,3 
COfifi(IJ=COl\R C ll -BI NV(~,Jl*CUHHY(JI 

250 CONTINUE 
260 CONTINUE 

CO 270 I=t , HT 
SQCEV=SQCE~+FCI>•C£Ylll**2 
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l<MSCEY:RHSCEV+CEY<ll•*2 
• 270 CONT I NUE 

SIGMA=SQRTCSQCEV/FLCATCHT-3)) 
RMSCV=SQRT<RMSCEV/FLOATCHTll 
co 280 l=t.3 
STNCEYCll:SQRTC&INV<l,I>>*SlGMA 

280 CC>NTINUE 
IF<A&SCCORRC 1l/STNC::EYC1)) .GE.0.01l GO TO 320 
IF<AESCCORR C2l /STNCEVC2ll.GE.0.01l GO TO 320 
IFC.AES CCC•RR C3l /STNCEY C3> >.GE.0 .01 ) GO TO 320 
JlEST=1 
IlEl<=ITER+1 
Kl TO 360 

320 C~=C::K+COl<R<1l 

&AMMA=GAMMA+COl<R(2) 
XINOT=xlNOT+CoRR<3l 
ITEl<=ITER+t 
IF<ITER.GE.60> GO TO 440 
GO TO 165 

360 Cll=CK+CC~R<1l 
~AMMA:GAMMA+COl<R<2l 

XINOT=XINOT+CoRRC3) 
CO 400 K:t,HT 
CATA<Kl:CATA<Kl*1 . 0E 06 
TClll=tOGO.U*T<Kl 
CALCI CKl:CALCI<Kl*1.1l:: 06 
CEV(Kl:C£V(Kl*1.1l:: 06 

400 CCtlTI NUE 
SlGMA=SIGMA*1.1l:: 06 
RMSC::V:RMSC::V*1.C£ 06 
Cll=1000.0*Cll 
GAM>IA:<t.0£-l.i6l*GAMMA 
xIN6T=1000.o*xINOT 
STNCEVCtl=1GOO.O*STNCEV<1l 
SiNCEV <2>: Ct. OC-06) >e:STNCEV C2l 
STNC::EVC3l=tGGG.O#STNCEV13l 

c ****** 
c **********************************~***~******~****************~* 
c *~*****************************~******************************** 
c ****** 
C BEAT A HASTY RETREAT 
c ----- -------
( ****** -405 l<ETURN 
c ****** 
c ***************~*#*******~*****=****************************#**~* 
c ~***~**********~****************************************#*****~· 

. c -·· C ERROi< MESSAGES 
c ----- --------
( ****** 410 w;;ITEC6,415l ITEk3 

415 FCi<MAT ISGHtLC<:ofltiG IN SECT!C>N ONE HAS EXC EECEC 20 ITEl\ATIOIS/ 
t-4-'H SECTIONS C•NE ANC TWO LCOF !NCEX NOW EQUALS tl2129H FRVCEECIN~ 
2WlTH THE NEXT J06) 

GO TO 3000 
'20 W~ITEC6,,Z5> ITER3 
'25 FCi<MAT C5GH1LOC•F!N~ · IN SECT!CN TWO HAS EXCEEC::EC:: 20 ITEl<ATIC>NS/ 

t''M SECTICNS ONE ANC TWC LCOF INCEX NvW EQUALS ,!2/29H FROCEECIN~ 
ZWITH THE NEXT J06l 



SUBoOUT[NE HE•HES fkAHE 1 

~ TO 3000 
43G w•IiE<6,435l 

242 

'35 F'Ol<MAT (64H1LOC,FING EETWEEt1 SECTICNS CNE ANC TWO HAS EXCEECEC 10 J 
tlEi<A TIC>NS/29H FROCEECING Wl TH THE NEXT JC>el 

'° iO 3000 
44G WRITE<6,445l 
445 F'C!i<MAT (52HtLC>C,FING· IN SECTIC>N THi\:::E HAS EXCEECEC 60 ITERATIONS/ 

129H FRC>CEECING WITH Tttt. NEXT JC>el 
GO TO 3000 

c *~*** 
c ***************~************************************************~* 
c ***********¢.:>:**********************************·*****************~* c ****** 
C SET ERRct< CHECK INCEX REGISTER 

c . --- ----- --------
c ******· 

3000 J TE ST =2 
GO TO 405 

c ****** c · **********~**~*********************-*****************************~* 
( , ~~~~****;***************************************~*~************* 

ENC 

• 
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SUBROUTI NE ICARUS FKAME 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c. 
c 
c 

10 
c 
c 
c 

20 

30 

c 
c 
c 

50 

so 

70 

eo 

to 

100 

110 
c 
c 
c 

****************************'"**-*********************************** 
****************************************************************** 
E . E. FRIESTLEY MAY 14, 1969 
TIH!S SUERC•UTlflE t;ENERATES ONE ff TWO FOSS!BLE WElt;HT MATi<lCES, 
CEFENC!N(; OrON THE VALUE OF ·1wc;.HT" . TO BE USEC IN THE SU£RCUTlNES 
" C1AF1T". THE ~~lt;HT MATRIX CAN BE EITHER A UNIT MATKIX C~ AN 
"EQUAL-TIME-EQUAL-~~!c;.HT" WEIGHT MATRIX (SEE THE SUBROUTINE 
"CTAFIT " FOR THE AFFRC>FRIATE VALUE c~ !IJ(;HT To BE USEC>. 

***********************~****************************************** 
""***** 

FRO(;.RAH lNITIALIZATlc+I 

"'***** 
SCtRC•UTINE J.IEIGHT CF ,!-IA ,MB ,MC 1 MC 1 MT, T!NCRA, TINCRB 1 TINCl<C 1 TlNCIW, 

ti.cs' IWGHT> 
CI~ENSIC~ F(1~50J 

IFCIWGHTJ 2010,2010,10 

-**** 

~** 
GQ TO <20,40J,Iwc:;HT 

****** UNIT WEIGHT MATRIX GENERATEC IF Jwc;HT=1. 

CC. 30 I =1 ,MT 
Flll=1 . 0 
COl-lTINUE 
GC1 To 120 

****** 

****** 
"E•QUAL-TIME-EQUAL-lo.£1GHT" 1.£IGHT MATRIX GENEl<ATEC IF IW(;HT=2. 

CO 50 I=t ,MA. 
F '1 l =1.0 
CWTINUE 
COO TO 1120,60,60,60) ,NCS 
MI =MA+1 
Hf'·=MA+MB 
00 70 l=MI ,MF' 
Flll=TINCRB/TINCRA 
COIT!NUE 
Ge. To 12000,120,eo,eo> ,NCS 
M:t =MA+MB+1 
tt.'f':HA+MEl+MC 
CO 90 !=HI ,MF' 
F l ll=TINCRC/TINCRA 
CC<NTINUE 

****** 

c;c. TO 120GG,20G0,120,100l ,NCS 
11'Jl::HA+M£+MC+1 
lt"f'-=MA+HEl+MC+HC 
CO 110 !=MI ,MF' 
F l ll=TINCl<C/TINCRA 
CC+ITINUE 

**-**** 
*"'*********'"********'"********************************************* 
***************************'"*************************'"************ 
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$UB~vUTI NE ICAl<US Fl<AHE 2 

c 
c 
( 

c 
120 

c 

****** 

****** 
RETUl<N 
****** 

BEAT A HASTY RETREAT 

c 
c 

*********************************************~****************~*· 
****************************************************************** 

c 
c 
( 

( 

****** 

****** 
2000 WRITt:C6,2001l 
2001 FC•RMA T (37HOERl<C•R 

tTECl 
GO TO 3000 

2010 Wl<ITEC6,2011l 
2011 FORMAT €23HO IWC".HT 

GO TO 3000 
c ****** 

ERl<VI' MESSAC.ES 

IN C.ENERATIUl CF !£IC.HT HATRIX/17HOEXECUTIOO HAL_ 

NEC.ATIVE VI' ZER0 /17HOEXECUTIOO HALTECl 

c ******************************************************~*********** 
c *~*******~*******~:***************************************~**** 
( ****** 
C INT£1<NAL AEENC 
( --------
( ****** 

3000 ST<K 
c ****** 
c *********~**********************'***********************~'*~~ c 
c IC::*****~*****~;¢***********************************:::***********"***~ 

ENC 
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l<UNC.E-1<.UTTA NANC•SECOIC LIFETIME FACKAC.E 

THIS FACl'.AC.E CCtlSlSTS CF A Fii:C(, f<AM "Rl'.FNCC" WHICH CAN EE USEC TO 
EXT>iACT TtlE FIRST Ci;CER RATE CCNSTANT FROM EXFER!MENTAL CATA 
VETA !NEC Fi<C>f.i MEASUi'iEMEtHS MACE \.II TH Ti-£ LASER SC>URCE NANC•SECCNC 
LIFETIME MEASURINC. AFFARATUS. SUERC.UT!NE "!NTERF" USES LAC.RANC.lAN 
lNTERFQLATKN Tv c>tTAIN FC>!NTS EET\..EEN THE CATA FOlNTS IN VRCEI< TO 
INCREASE THE ACCURACY CF THE RUNC.E-1<.UTTA SECTIVN CF "Rl<.FNCC". 
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E. ·a. FRIESTLET MAK. 31, 1969 
l'ttIS FROG.R AM CAN EE USEC Teo C•ETAIN A FIRST C•RCER RATE CONSTANT FOK 
FLUORESCENCE CECAY WHEN THE LIFETIME C~ THE EMITTING STATE IS 
SHORTER THAN THE TIME RE QUIF-EC Tv SWITCH OFF THE EXCITING LIGHT. 
lT SIMFLT SOLVES THE FIRST C·RCER ClffERENTIAL EQUATION FOR THE 
EMISSION I NTENS I TY AS I- FUNCT WN Cf" TI ME, USI NG NUMERIC.AL VALUES 
FOR THE CEC.ATI NG EXCITA TI C>N TERM. THE RUNC".E-l(UTTA SCHEME IS USEC 
TV C'6TAI N THE SC•LUTI C-N , THE RESULT BEING f"ITTEC IN A LE.AST SQUARES 
SENSE TO THE EXFEl<IMENT.AL CEC.AT CURVE. 

****************************************************************** 
****** 

liEQUIREC lNFUT CATA CARCS 

****** 
t. CLA£L IFC~MAT STATEMENT EFN 4l 
z. ~ceNO,HMSG. <tcn<MAT STATEMENT EFN Hi) 
3. TAU,SCALE,TlNCR,IFLOT (t C•RMAT STATEMENT EFN 12> 
4. EXCINT IFC~MAT STATEMENT EFN 15) 
5. EMIS (FORMAT STATEMENT EFN 20) 
6. THE LAST CATA CARC MUST EE AN "ENCCTA" CARC 

~*** 
CL A EL 
DUS 
EXCINT 
EX I NOT 
FMT1 ,FMT2 

HM$(; 

I FLOT 

JOE NO 
LF1 , LF2 

SCALE 

TAU 
TINCli 

TITLE1,TITLE2 
XN 

CEFINlTICNS 

=A CATA ICENTIFlCATlON LABEL 
=THE EXFERIMENTAL EMISSION INTENSITY 
:THE EXCITATIC~ INTENSITY 
=THE EXCITATION llHENSITY AT T=O 
=c.NE CIMENSIC~AL ARRAYS IJHERE THE FC>l<MATS 

USEC IN LABELLING THE X ANC. Y AXES, 
RESFECTIVELT, ARE STORED 

=A JC£ ICENTIFICATION MESSAGE 
=SIGNAL F"OR FLOT OR NOFLOT AS F"OLL~S •••• 

1 Slr.NIF"IES FLOT, 2 SIGNIF"IES NOFLOT 
=THE JOB NUM£ER 
=INTEGERS SFECIF"YING. THE F"IELC LENGTHS 
OF FMrt ANC FMT2 1 RESFECTIVELY 

:A SCALING FACTC~ £ET~EN EMISSION ANC 
EXCITATICH INTENSITIES 

:THE LIFETIME ~ THE EMITTING. STATE 
:THE NET SIZE <EQUI VALE NT C~~LL TIME FEli 
CHANNEL~ NC180 MULTI-CHANNEL ANALYZER> 

:THE X ANC Y LA£ELS, RESFECTIVELT 
:THE RUN~E~l(UTTA SOLUTION TO THE 

CIF"FERENTIAL EQUATION F.C•R THE FOFULATION 
OF THE EXCITEC STATE WHICH IS EMITTING. 

****************************************************************** 

****** 

****** 
CIMENSl v N ExCINT{52.0> , XN(520l ,.AMATi<XC5t2,2l ,EMIS {512l ,EMATl<x<2.2; . 
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C.I!ttENS!GN Fl5t2l ,CUHHYl2> ,CC·Ri<l2l ,CEVl512l ,B!NVl2,2l ,STNCEY(2) 
. CnlENSIC·N HHS,19) ,JC•BN0< 2> ,ACATEl2l ,CC C3) ,CLABL<4l ,CNCTl5121 

C: E!!'\ENS!C•N CNCSC (_5121 , T 15121, Tl TLE1121, Tl TLE215) 
C'E~ENSION E:CBLFk ISO ,21 
C:i3'1HON/E:NCCOM/EL <SO 1 50) 
C:Gi118 LE FREC I S!ON BCBLFii. ,EL 
CCU l=O 
CC 't3l=1 
CAiTA ENCC/6HENCCTA/ 
C:ArrA TITLE1/11HT1HE CNSECI/ 
CAiU. TITLEZ/27HINTENSI TY CARE:ITRARY l.INITSl I 
CAVA FHT1,LF1,FMT2,LF2/6HIF5.21 1 5 1 6H!F6 . 1) 1 6/ 
CA.L CATEIACATE> 
U'El<=O 
~Cl5,4) !CLABL(J) I J=t.•> 
Fo;i.MA T <•AG> 

~** 
~********~**~*************************************************~· 
~~~~*******'*~*~************************************************ 

~** 
lF' it'CLABL-ENCCl 9,7,9 
Wl<i TE (6,8> 

CLEAN lJF ANO QUl.T 

F~AT 125H1ENC (.F INFUT ENCC~NTEREC/11HOENC OUTFUTl •'mf 
~** 

F iU:>CEEC IF CATA LABEL CX£S NOT EQUAL "ENCCTA". 

'****** 
l<~C!5 , !0) (JC>E:NO!l), I=1,2l, (HMSGIJ), J=1,9) 
FCE~AT 12A6,2X,9A61 
l<Sl:C·<5, 12) TAU, SCALE, TI NCR, I FLOT 
FCii<MAT IF8.3 1 2Xi21F8.5 1 2XI ,11> 
JF=-7 
Jt.=:o 
00 ·1& 11'=1,6' 
JF:.JF+t 
J L=JL+8 
oiE4l.Cl5 1 15l IEXCINTCJ), J=JF,Jll 

15 Fc;;;;:MAT <8lF10.1ll 
11 COl!iT I NUE 

JF=-7 
JL=.O 
CG .z• 11'=1,6' 
JF-:JF+8 
JL=JL+t 
l<~t:(5,20l (EMIS(J) I J:Jf',JL) 

20 f'cRMAi 18(F1Q.tll 
2• COl>li I NUE 

W5"1i E l6 1 25l IJC£NOl ll, I;,1,21,CACATE(J), J:1,21 1 IHMS'llO, 11'=1,9) 
25 F"C"'MAT (1H1-/1HG/1Hu/1HG,5X,7H JOBNO= ,2A6,1UX,6HCATE= o2A6/1H(i,5X, 

1 tE.rilCENTIFlCATIVN= , 9A6l 
Wlr.!l1El6,27l CCLABLIJI, J:t,4) 

27 F Cii;MAT 11Hu/Hlu/1.HG,5X,SHCATA ,4A6,21H ENCOUNTEREC IN INFUTl 
W~J TEC6,3GI TAU , SCALE,TINCR 

30 f'CiiiMAT 11H1/1HG /tHG /1HG,65HTHE VALUES ASSl,NEC THE. T\JO FARAMETEl'.S 
t•S INITI AL 'UE~SES A~E • ••• 11HG,2GX,5HTAU= ,1FE15.8,5H NSEC/1HO, 
22~ ,7HSCALE,; ,1FE15 . 8/1HG/1HG/!HG/1"HG,36HTHE TIME I NCR EMENT HAS TH 
3£ ~ALUE • • •• /1HG,2GX,7HTiNCR: ,1Ftt5.8,5H NSECI 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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****O 
~*.~******************************************:;:******************** 
*************#*********~*******************~********************** 
****** 

MUN SECTION a' THE Fl<O<;i<AM 

****** 
THE AVERM.E eASELINE Is sueTRACTEC Fi<OM EACH CATA FOINT' THE TIME 
Ah KAT IS FILLEC ANC THE EXC!TATletl INTENSITY AT T=O IS CALCULATEC. 

BASLN=O.O 
co 35 J=472,512 
BASLN=EASLN+ExCINT(J) 
C<iNTlN\..t'. 
BASLN=&ASLN/ 40. 0 
co 38 J=1,512 
ExC!NTIJl=ExCINTIJ> - EASLN 
El<llS<J>=EMISIJl-EASLN 
Y<J>=TINCR*f"LVJ.T<J-1) 

38 COOTIN\..t'. 
EXJNOT=o.o 
00 40 J=1,40 
EXINOT=EXINOT+EXCINT (J) 

40 Cet<TJNUE 
EXINOT=EXINOT/40.0 

c ~ 

C &U'l~E-KUTTA SOLUTI~ TO THE CIFFERENTIAL EQUATION. 
c ~ 

HH=TlNCl<l10.0 
45 ITER=ITEl<+1 

XNl1l=SCALE*EXINOTC:TAU 
XX=XN(1) 

co 50 J=1,511 
Xl.NT=EXCINT (J) 

00 48 tt.:1 , 10 
1<~1=SCALE*XINT-XX/TAU 
STEF=FLC•AT <Z*IC.-1) /20.0 
CALL INTEF.F<STEF, XINT,J,EXCINT) 
kKZ=SCALE*X1NT-<XX+HH*RK1/2.0l/TAU 
w~3=SCALE*X INT- <XX+HH*RKZ/2.0l/TAU 
STEF=FLOAT <Kl/10.0 
CALL INTERFCSTEF, XINT,J,EXCINTl 
l<ll4=SCALE*XINT-< XX+HH*RK3l/TAU 
xx:xx+ <HH/6.0l*<Rlt1+2.G*RK2+2.0*R"3+Rlt4) 

48 CWTINUE 
XNIJ+1l=xx 

50 CC~TINUE 
C<J 51 J=513 , 520 
XN{J):XN(51Zl 

51 CWTINUE 
c ~-c f;£NEl<ATl0U CF THE CERIVA.TIVES \X THE EMlSS!CoN lNTENSITT WITH 
C l<ESFECT Tv THE FARAMETEi< S CEFINEC E:Y THE K!r<ETIC EQUATION. 

c ****** CNCTC1l=SCALE*EXINOT 
xx=CNCT (1) 

co 54 J=1,s11 
XHYAL=XN(J) 
co 52 1t:1,10 

.· 
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kl<1:-XX/TAU+XNVAL/CTAU**21 
ST.EF=F'LOAT C2*K-1l /2Ci.Ci 
CALL INTERF(STEF,XNVAL,J,XNI 
kl<2:-CXX+HH*RK1/2.Gl/TAU+XNVAL/CTAU**2) 
kl<3=-CXX+HH*RK2/2.Gl/TAU+XNVAL/CTAU**2l 
STEF=F'LOATCKl/10 . Ci 

" CALL IUTERFCSTEF,XNVAL 1 J,XNl 
kl<4:-(XX+HH*RK3l/TAU+XNVAL/(TAU**2l 
xx=x x+(HH/6.Gl*CRK1+2 . G*RK2+2.G*RK3+RK4) 

52 cc~TINUE 
CNCT<J+tl=XX 

~ C<CitlTINUE 
CNCSC<1l=EXINOT*TAU 
xx=CNCSC (1) 

co 58· J=t,511 
XINT=ExCJNTIJ) 
CG. 56 l(:t, 10 
kl<1=XINT-XXITAU 
STEF=F'LOATC2¥1<-1l/20.0 
CALL INTERFCSTEF,xINT,J,EXCINTl 
kl<2=XINT-<XX+HH*RK1/2.Gl/TAU 
kl<3:XINT-CXX+HH*RK2/2.Ql/TAU 
STEF=F'LOATCKJ/10.0 
CALL INTERFCSTEF,XINT,J,EXCINT) 
l<J(4:xlNT-(XX+HH*RK3l/TAU 
xx=xx+IHH/6.ul*CRK1+2.G*RK2+2.0*RK3+Rl(4) 

55 CUITINUE 
CNCSC<J+t>=xx 

58 CONTINUE 

c ****** C LEAST SQUARES FIT Cf" THE CALCULATEC TO THE EXFERIMENTAl. 
C EMISSIC~ CECAY CURVE. 
c ****** 

SQCEv=o.o 
liHSCEV=O.O 
co 60 J:t,512 
Fl~l=t.O 

6U CONTINI.'£ 
cc, 70 J:t ,2 
co 65 11:=1,z 
Ef!ATl\X(J 1 1t)::(j.(j 

65 CONTINUE 
70 CONTINUE 

co 75 1t=1,z 
CUHHY<Kl=Ci.O 
CC>i<R (10 =O. 0 

75 cc~TINUE 

cc. 80 J:t,512 
CEVCJJ:xN<Jl-EHISCJ) 
AHATR X< J,tl=CNCT(J) 
AHATRX(J,2l=CNCSC(J) 

10 CC>NTINUE 
CV 95 11:1,2 
cc. 9Ci J=1,2 
co 85 1=1,512 
B~ATRXCK ,Jl=EMATRXIK,Jl+AHATRX(l,Kl*FCll*AHATl\X(J,Jl 

15 CCNTINUE 
90· CGMTINUE 
15 CONTINUE 

co 97 1=1,2 
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co 96 J:1,2 
llC6iL FI< <I, J>:BMATl<X 11, Jl 

96 CONTINUE 
97 COtilTINUE 

CALI.. ENC I NV IECELFI< ,2 ,CE TERM, 1. OE-G8, ITESTl 
co 1Ci5 J:1,2 
CO 1GO K=1,2 
BI~V(J,~l:BCELPl<CJ,Kl 

100 CCtii llNUE 
1Ci5 COHTlNUE 

CV 115 K:1,2. 
co 111.i J=1,512 
CU~MY(Kl=CUMMY!Kl+AMATRX(J,Kl*P(Jl*CEVIJI 

110 CCJN.llNUE 
115 COIHlNUE 

co 125 J::1,2 
CO ·12Ci K=1 ,2 
COi<.k <l l :CC•RR Cll -ElNV (J ,Kl *CUMMY (Kl 

120 CCtiiTINUE 
125 CONlJNUE 

co 130 J::t,512 
Sll&EV=SQCEV+P(Jl*CEV<Jl>1:*2 
RMSCEV=RMSCEV+CEV(Jl**2 

130 CONTINUE 

t35 

1.(5 

c 
c 
c 
c 
c 
c 
c 

1"6 
1.(7 

1.(8 

150. 
152 

155 
157 

16(; 

Sic;,..,A=SQRT ISQCEV/FLOAT (510l l 
RMSCV=SQRTCRMSCEV/FLOATl512ll 
cc. :n5 1::1,2 
STt~EV CI l =SQRT <EINV <I .. I> l *Sl,MA 
lFf AESICC•Ri<lll/STNCEV<Ill .,T.0.011 <00 TO 1.(5 
ca~TINUE 
Ge> TO 150 

· TAU::TAU+CC"'R 111 
SCALE::SCALE+COl<R12l 
IFl lTER.,E.51.il <00 TO 1.(6 
GO TO .(5 

***"'** 
***************~***'**************~****************************** 

fl<INTOUT SC:CTI~ 

*~** 
WIHTE (6, U7l l Ttl< 
F"Ci<~AT (1H1////1HG,37t1THE SQLUTION HAS NOT CONVER,EC Af"TER ,13, 

166H ITERATIONS, THE PRESENT STATUS OF THE CALCULATION FOLL~S EEL 
ZC,W. } 

Wl<IT£ (6, U8l 
FCi<MAT (1HG////78HGTHE FRESENT VALLts c~ THE PARAMETERS, WITH THEI 

tit SJANCARC CEVIATIONS, ARE •••• /1HG , ZGX ,9HFARAMETER ,32X, 18HSTANCARC 
2 CEV IA TlON/1HCil 
'O TO 155 
Wl<HE 16 , 1521 
FOltMAT t1HG////78HGTHE EEST ESTIMATES CF THE FARAMETERS, WITH THEl 

11<. STANCARC CEV IA TIC•NS, ARE • • •• /1HG ,ZGX ,9HFAl<AMETER ,32X, 18HSTANCARC 
2 CEVIATION/1HGI 
W~lTE !6,157l TAU,STNCEV(ll ,SCALE,STNCEYC2l 
F"C~~AT 11H ,16X,1FE16 . 8,3(iX,1FE16.81 
WK!TE!6,16Gl SIC#MA,RMSCY 
F"Cii<MAT 11HG,3tlX,7HSIC#MA: ,Ft2.5/1H ,38 X,7HRMSCV: ,F"12.5l 
WIHTE(6,1651 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

165 

178 

18() 
185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
240 

c 
c 
c 
c 
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FC.i<1'1AT < 1 Ht II II /!HO, 9X ,AHTl HE, 1 S X, BHEXF . ·I NT. ,30X , 9HCALC. I NT. , 16X, 
19tfCEVIATION/1H I 
co 175 J=t,512 
WiffTEC6,17Gl T<JI ,EHISCJI ,XNCJI ,CEVIJI 
FC~MAT <1H ,6x,re.3,10X,1FE1S.B,23X,1FE15.8,11X.1FE15.8) 
COlTINUE 
IF'IITEf<.c;E.SOl c;o TO 2000 
GO TO 1178,11 ,!FLOT 
~**• 
~****************************~**********~************************ 

~*****************.*********************************************** 
FLOT TI Ne; l<OUT INE 

****" SE;\•f<CH THE CATA FOR THE MAXIMUM AUC MINIMUM VALUES, TO EE USEC 
IN 'ESTAELISHIN(; THE SCALE AL~c; THE Oi<ClNATE. 

ntAX=O .O 
YHlN:t .OE 20 
00 240 K:t, 512 
IF.rYMAX-XN(I()) 180,180,185 
Tl"..AX=:::N (I() 
IF(XN(Kl -YMINl 190,190,195 
TMitl=XN !Kl 

****** 

fF <YMAX-EXCINTIKll 200,200,205 
'l'Y.~X=EXC I NT CK> 
IF!EXCINTCKl-YMINI 210,210,215 
TMIN=EXCINT !Kl 
IF1YMAX-EMlSCKll 220,220,225 
Yl"..AX=EHISIKI 
lF<EMISIKl-YMINl 230,230,240 
TMlN=EMISIKI 
CONTINUE 
CA.LL LAEEL <O.G ,Q.O, T 11 I ,90. OOG, 15. ci, 15, TITLE!, 11,0,FMT1 ,LF1> 
CALL LAEEL(G.o , o.o.YMI N,rMA X,1Q.0,5,TITLE2 , 27,t,FHT2,LF2l 
CAL.L XYFLil5t2,T,EMIS,Tl1l ,9G.GOO,YH!N,YMAX,CC ,0,3l 
CA.LL XYFLT 1512' T ,Exe It;i' T ( 1 l '90 . GOG . YMIN' YMAX ,cc' (j' 1) 

CALL XYFLOT<S12, T ,XN, T 11) ,90.0GQ, YM!N, YMAX ,CC, 1) 
COO TO 1 

'****-"""* 
**********~*********************~******************************~* 
~***********~****~**********~************~~*************#**** 

C El<l«:ii< MESSAc;ES 
c --------
( -=*** 

c 
c 
c 
c 
c 
c 
c 

2000 Wit1TE16;20011 
2001 FC~MAT (1H1//////1H0,5X,61HSC~UTIC~ HAS NOT CONVE~c;Ec. FLOTS ~IF 

1FE·~, EXE.CUTI ON HAL TEC. l 

3000 

COO TO 3000 
*""**** 
****************************************************************** 
~;*********~*~************~**************~*****************~*~~-· 
·-*** 

****** 
STOF 
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c ****************************************************************** 
~ *******************************·*********************************** 

ENC 
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SUEROUTINE INTERF FRAME 1 

c ****************************************************************** 
c ****************************************************************** 
C E. 6. FR!ESTLEY AFRIL '• 1969 
c TtilS SUE:ROUT!NE IS USEC Tv INTEi<FC•LATE VALUES E:EH/'EEN l<.NOWN FvlNTS 
C ON A CUl<VE. IT IS USEC IN CC·NJUNCTlCN 'w'!TH FRO<;f<AM EEFREN TO 
C h HERFOLATE VALUES C·F THE EXCITATlC•N ANC EMISS!C•N INTENSITIES. 
c ~#************************ **************************************** 
c ~*~*************************************************************** 
c ****** C FROGRAM !NlTlALlZATletl 
c --------------
< ****** SUERO\!TlNE INTERFCXINTVL,VALUE,J,VECTC~> 

CIMENSIOO VECTOR(520l 

c ****** 
c ~*************~*************************************************** 
c ~**************************~*******************************~***** 

c ·-·-c MAIN SECTIOO ~ THE FR(.(.RAM 
c ------- -- ---
c ****** 

VALL~=<xINTVL-1.Dl*<XlNTVL-2.0l#(3.0-xINTVLl*VECTOk(J)/6.0+ 
1XlNTVL*<XINTVL-2.Dl*(XlNTVL-3. 0lOVECTOR(J+1l/2.D+XlNTVL* 
21 XlNTVL-1.DlOC3.0-XINTVLlOVECTORCJ+2l/2.D+XlNTVL*CXINTVL-1.0l* 
3<XlNTVL-2.Dl*VECTOi<<J+3)/6.0 

c ****** 
c ~*~****************************************~******************** 
c ~*;***~*********************************************************** 
c ***~ 
C £EAT A HASTY RE\REAT 
c ---- - ----- -------
c ****** I< ET URN 

c ****** 
c ***************************************************************~** 
c *~***************************************************************~ 

ENC 
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PART V 

PROPOSITIONS 
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PROPOSITION I 
~ 

It is proposed that the phonon density of states function and 

dispersion law for molecular crystals be investigated using 

neutron-scattering spectroscopy .. Naphthalene and anthracene 

are cited as examples of molecular crystals for which the 

results of such a study would be of particular interest. 

It is well-known that the motion of the particles (atoms, mole­

cules, ions) comprising a lattice can be analyzed into a set of lattice 

waves. 1 These quantized lattice waves, originally termed phonons by 

Frenkel, 2 are the fundamental entities from which sowrl waves are 

composed. Almost all of the concepts that are familiar from the study 

of photons, such as the wave-particle duality, are equally applicable to 

phonons. Thermal vibrations in crystals are thermally excited phonons 

analogous to the thermally excited photons of black-body electromag­

netic radiation in a cavity. Again, in analogy to the electromagnetic 

photon field, one customarily speaks of a phonon field which is capable 

of absorbing or emitting quanta of vibrational excitation. 

The most characteristic property of phonons is their dispersion 

law, that is, the relationship between their frequency and wavenumber. 

This relationship can be calculated from first principles in a few 

simple cases, a linear chain of atoms and simple cubic lattices being 

examples. However, for more complex crystal structures the dis­

persion law must be determined experimentally. A second important 
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characteristic of phonons is their density of states fi,.mction. The be st 

way of obtaining the dispersion curve as well as the density of states 

function experimentally has been found to be the study of inelastic 

scattering of thermal neutrons by the crystal. Unlike photons, which 

are scattered by the atomic or molecular electronic distribution (as in 

Raman scattering, for example), neutrons are predominantly scattered 

by atomic nuclei. If the nuclei are static only elastic scattering can 

occur, the frequency of the scattered wave being identical to that of the 

incident wave. If on the other hand the nuclei are moving, due to ther­

mal or some other form of excitation, . the scattered wave suffers a 

Doppler shift so that some fraction of the outgoing rieutron wave will be 

of different energy than the incident wave. Because the neutron and 

atomic masses are comparable, momentum transfers between the 

neutrons and atoms sufficient to span the entire Brillouin zone1 are 

experimentally accessible. This is in contradistinction to photon 

scattering for which momentum conservation at least in the case of 

one-phonon processes restricts the phonon frequency measurements 

to the region near the origin of the Brillouin zone. 

The basic experiment consists of measuring the energy of 

neutrons scattered at various angles out of a nearly mono- energetic 

incident beam, due to collisions with moving atomic nuclei in the 

sample. If the salilple contains strongly incoherent scattering nuclei, 

then the technique measures the uncorrelated motions of single atoms 

and this leads directly to the phonon density of states spectrum. If 

the · scattering is predominantly coherent, the scatter ed waves from 

various lattice sites may add constructively or destructively so that 
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information about the correlated motions of atoms separated in the 

lattice by some given distance, governed by the momentum tr an sf er, 

is obtained. It is thus possible to determine the frequencies and wave 

vectors of phonons throughout the energy-momentum space using 

neutron - scattering spectroscopy. 

This technique has been successfully applied to metallic crystals 

such as Al, Pb, Na; ionic crystals of which Nal and KBr are examples; 

and graphite which is a covalent crystal. 
3 

However, no work has been 

done on a large class of crystals that appears to have the requisite 

properties for such a study, viz., molecular crystals.· Typical of this 

group are benzene, naphthalene and anthracene as well as the rare gas 

solids. Recent calculations of the dispersion curves and phonon fre­

quencies for naphthalene and anthracene crystals 4 make them particu­

larly appealing samples for an experimental investigation of this sort. 

Furthermore, a great deal is known about the electronic properties of 

these crystals5 and the sort of information obtainable from neutron­

scattering spectroscopy about the lattice dynamics would be entirely 

complimentary to existing data. 

The theory of inelastic scattering of slow neutrons was first 

given in detail by Weinstock6 using the Born approximation. The theory 

has since been amplified by Cassels, 7 Waller and Froman, 8 Kothari 

and Singwi, 9 and by Van Hove. lO The first experiments which demon­

strated that the complete dispersion diagram could be constructed 

from neutron scattering data were performed by Brockhouse and 

Stewart. ll To illustrate the principles of neutron scattering, 12 we 

consider the amplitude of the total wave field scattered from a system 
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of moving nuclei, when a well collimated, mono-energetic neutron beam 

is incident. The incident neutron beam is represented by 

(PI-1} 

where ti2k~/2m = t'iw 0 is tre neutron energy, and tiko is the neutron 

momentum. In the presence of an assembly of nuclei this beam is 

acted on by the time-dependent Hamiltonian operator 

H = H0 + ~ 27Tn7 bn o{r -R {t0 )} 
n m n 

(PI-2) 

where H0 = -~ VZ, R (t) is the position of nucleus n at time t and 
~m n - -

bn is the scattering length of the nucleus at Rn (Rn is an operator and 

care must be exercised in manipulation not to violate· commutation 

properties with other nuclear co-ordinates to which the nucleus at Rn 

is dynamically coupled). The scattered wave field then develops 

according to the time-dependent Schrodinger equation 

(PI-3) 

Writing l/J(r, t) = ¢0 (-;, t) + l/J 
5
(r, t) and keeping only first order perturba­

tion terms, yields 

(PI-4) 

Thus, the total scattered wave field is the result of the superposition 
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of the solutions representing waves originating at all earlier times 

from the source terms on the right hand side of Eq. (PI-4). The solu­

tion is readily obtained using the Green's function method. 13 Re--stricting the solution to large r and Fourier transforming it with 

respect to time yields a scattering amplitude 

1 f T = rT dt0 exp[- iu.t0 ] L b 
o . n n 

x exp [ iQ· r'] (PI-5) 

where Q = k0 - k and w = w0 - w1 and where T is some long time used 

as the period for the Fourier transformation. The differential scatter-- . ing cross-section is proportional to the square of f(k, w1 ) and has the 

form 

k 1 
= ko 211' J J dr exp [ - iwr] L b* b 

m n m n 
' 

.... QC) · 

= ~ J. J dr exp [ - iwr] L b * b . 
ko 1T -oo m, n m n 

(PI-7) 

where the bar denotes the time average. This differential scattering 

cross-section describes the experimentally observable intensity dis­

tribution of the scattered neutrons,as a function of the energy trans­

ferred (n w) and the solid angle of scatter, provided the incident · neutron 

beam is nearly mono-energetic. 
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The two a-functions in Eq. (PI-6) define a space-time correla-

t .· f t• 10 ion unc 10n 

G(r, T) = Nl ~ J dr' o{r + R (0) - r'} o{r' - Rn(T)} 
mn m 

' 
(PI-8) 

where N is the number of scatterers in the sample. The sum in 

Eq. (PI~8) contains two types of terms; those for which n is equal to m 

and thoE"e fur which n is not equal to m. The correlation function can -thus be split into two parts, the "self" correlation function G
8
(r, T) con-

cerned with the positions and time-dependent motion of the same 

scatterer and the "distinct" correlation function Gd(r, T) which describes 

the time dependence of the correlated motions of two scatterers. The 

differential scattering cross-section can be separated into two terms 

which involve the double Fourier transforms of these two correlation 

functio.ns. Before displaying these equations which describe coherent 

and incoherent scattering, it seems appropriate to consider the origin 

of the two types of scattering. For nuclei without nuclear spin the 

scattering length is the same for every nucleus and neutrons incident 

on different atoms in the lattice are scattered coherently. When the 

scattering nucleus has spin, however, there are different scattering 

lengths associated with the different relative orientations of the nuclear 

and neutron spins. This can lead to amplitude differences in the 

scattering from neighboring atoms and hence to an overall iricoherent 

scattering. More generally, the interference effects giving rise to the 

coherent scattering depend only on the average scattering length 
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whereas the mean square deviation from this average governs the in­

coherent scattering. Making use of the above considerations, the dif­

ferential cross-sections for coherent and incoherent scattering can be 

written as 

(PI-9) 

and 

(PI-10) 

respectively, where be is the coherent scattering length and bi is the 

incoherent scattering length. 

The differential cross-section for incoherent scattering can be 
. -

re-written in terms of a scattering law S(Q, w) 

a2aincoh. = 
a now 

k . . -
b~ ::a::- exp [ - (Jiw/kT)] S(Q, w) 

l ko 

-
(PI-11) 

The density of states function Z (w) is related to S(Q, w) through Eq. 

· (PI-12), 

4Mw . I - I~ Z(w) = ti sinh(Ilw 2kT) ~~ [S(Q, w) ~] (PI- 12) 

where M is the mass of the scattering atom and T is the absolute tem­

perature. From Eqs. (PI-11) and PI-12) it is evident that the density 
. . 

of phonon states can be determine d directly from a measure ment of 

the differential cross-.sedion for incoherent neutron scattering. 
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To see that the dispersion law can be obtained from the differ­

. ential cross-section for coherent scattering, the nuclear position 

vectors R are written as the sum of equilibrium position vectors P . n . n -an4 small displacements lln' 

- - -R = p + µ n n n (PI-13) 

-Expansion of the µn in terms of the phonon normal modes makes it 

possible by means of some rather lengthy but straightforward manipu­

lations to write Eq. (PI-7) in the form 

coh ti b2 (211' )3 .- ·_. _ 

a
2
cr • = c L: ~ o(liw :i: nf) L: o(Q :i: q - 21TT) aOow V q k 0 T 

I- -12 ti(n+.!.±.!.) x Q · U 2:Mf 2 exp( - 2W) (PI-14) 

-where V is the crystal volume, f and q are the freq~ency and wave 

-vector of a phonon, T is a reciprocal lattice vector and W is given by 

(PI-15) 

The vectors U are polarization vectors and take account of the various 

polarizations and amplitudes of vibration for atoms excited in the 

phonon motion. The factor exp(- 2W), known a's the Debye-Waller 

factor, evidently gives the dependence of the intensity of scattering 

upon the momentum transfer and the thermal vibration amplitudes. The 

first o-function in Eq. (PI-14) is an expression of the law of conserva­

tion of energy and the second a-function defines the so-called crystal 
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momentum conservation law. Because of these stringent conditions 

for phonon excitation, it is possible· by th~ correct choice of crystal 

orientation, incident and outgoing neutron wave vectors, and hence the 

direction of ma.mentum transfer, to excite only phonons of selected 

frequencies along chosen crystallographic directions. 

Equations (PI-11) and (PI-14) apply specifically to one-phonon 

changes in the state of a crystal having a single molecule per unit cell. 

Generalizations of the equations to include multi-phonon processes in 

crystals with more than one molecule per unit cell can be made in a 

straightforward manner. The phonon spectrum in crystals having 

more than one molecule per unit cell shows some additional features. 

For each polarization in a given propagation direction the dispersion 

relation has two branches known as the acoustical and optical branches. 

Two characteristics of the spectrum are noteworthy, viz., acoustical 

branches always pass through the origin (i.e., w(O) = O) and optical 

branches always approach l q I = 0 with zero slope (i.e., 

dw(Ci)/dql lq i=O = 0). 

In conclusion, we consider the requisite properties3 that a 

crystal should have in order that it can be conveniently studied by 

neutron.,..scattering spectroscopy. 

1. Large sing le crystals (from 1 to 10 cubic centimeters in volume) 

must be obtainable. 

2. The crystal should be as free from defects as possible. 

3. It is desirable that the. melting point be high and that no low 

. temperatu re phase transitions occur. The crystal can then be 

studied at a convenient temperature and storage is no problem. 
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4. The crystal structure should be simple so that.the number of 

branches is not too large. Crystals having as many as fifteen 

branches ~ave been successfully studied in the past. 

5. The phonon frequencies should be neither too high nor too low 

compared to the mean neutron frequency. For thermal neutrons 

(- O. 025 eV in energy), v ~ 6x 1012 sec-1. 

6. The neutron capture and incoherent scattering cross-sections 

should be small compared to the coherent cross-section for dis-

persion law measurements. For density of states measurements, 

of course, a large incoherent scattering cross-section is 

desirable. 

The first two criteria in the above list can be met if sufficient care is 

exercised in growing either naphthalene or anthracene crystals. The 

third criterion presents no problem since naphthalene (m. p . 80°C) and 

anthracene (m. p. 217°C} can be conveniently handled at room tempera­

ture. With two molecules per unit cell, six branches are expected in 

the phonon dispersion relation for both crystals. Phonon frequencies 

in these crystals are lmown to lie in the range from 0. 5 - 6x 1012 sec-1 

which is very close to the frequency of thermal neutrons. Scattering 

by hydrogen is almost completely incoherent while that from deuterium 

is almost entirely coherent. 14 Carbon has a negligible incoherent 

scattering cross-section and the capture cross-section15 for all three 

atoms is very small. · It seems most practical, therefore, to use per­

deuterated naphthalene and anthracene for the dispersion law measure­

ments (coherent scattering) and the perprotonated analogs for the 

density of states determinations (incoherent scattering). 
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On the basis of the above considerations it is concluded that 

neutron-scattering spectroscopy could be used to obtain the phonon 

dispersiOJ! relation and density of states function for crystalline naphth­

alene and anthracene. In view of the importance of a good understand­

ing of phonons in these crystals, this type of experimental study is 

considered to be very worthwhile. 
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PROPOSITION II 
~ 

Conventional one-photon triplet-triplet absorption spectros­

copy has been used to study highly excited triplet ·states in most 

of the polyacenes. Several of the more interesting polyacene 

molecules are centrosymmetric so that only transitions between 

states of opposite parity are allowed. Consequently, many 

excited triplet states having the same parity as the lowest triplet 

state have not been experimentally observed. It is proposed that 

two-photon triplet-triplet absorption spectroscopy be used to 

study these states since the selection rules for two-photon ab­

sorption require that transitions occur between states of the same 

parity. 

One-photon triplet-triplet absorption has been used extensively 

to investigate the excited triplet states of many of the polyacene mole­

cules. l-ll However, in centrosymmetric molecules dipole selection 

rules require that the initial and final states in a one-photon transition 

have opposite parity. Consequently, for molecules such as benzene, 

naphthalene and anthracene many of the excited triplet states cannot be 

studied using this technique. It is proposed that these states be ob.­

served using two-photon triplet-triplet absorption spectroscopy since 

the selection rules for two-photon absorption require that transitions . 

occur between states of the same parity. · By analogy with the well 

documented one-photon transitions, these two-photon transitions should · 
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be characterized by an oscillator strength near unity and give rise to 

an intense absorption spectrum containing information that is largely 

complementary to that derived from the one-quantum spectrum. 

The areas in which this type of investigation could be of potential 

value are too numerous to enumerate here. Suffice it to cite one 

example, namely the problem of determining at what point, as one con­

siders higher and higher excited states of a molecular crystal, the 

Frenkel tight-binding approximation ceases to be a valid description of 

the exciton state. There may in fact be no sharp demarcation, but it will 

not be possible to draw any conclusion until the complete excited state 

manifold has been studied. Perhaps the most equitable way of evaluating 

the proposed experiments is to say that they have the potential of pro­

viding new input to a number of existing problems and, like any other 

untried experiment, they may even hold some unexpected surprises. 

The theory of two-photon transitions was formulated many years 

ago by GOppert-Mayer12 and has been reconsidered in light of the present 

availability of high powered lasers in two recent papers by Kleinman13 

and Braunstein. 14 The derivation, based on well-known results from 

time-dependent perturbation theory, is considered below. 

The electromagnetic field is treate.d classically and enters the 

problem only via the perturbation Hamiltonian. Consequently, as far as 

the quantum mechanical treatment is concerned, the system consists of 

the molecules of interest and perhaps their environment and, in the 

absence of the radiation field, is described by a Hamiltonian H0 and 

eigenfunctions Un' ·Which satisfy 
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(PII-1) 

In the presence of an electromagnetic field of frequency w, the system 

is perturhed so that the appropriate Hamiltonian describing the system 

is then 

H =· H 0 + H' {t) . (PII-2} 

The solution l/J(t) of the time-dependent Schrodinger equation 

(PII-3) 

can be expanded, at any time t, in terms of the complete orthonormal 

set un' which are the solutions of Eq. (PII-1), according to 

. -iE t/ti 
l/J(t) = ~ an(t)u e n . . n n {PII-4) 

Substitution of Eq. (PII-4) in Eq. (PII-3) leads straightforwardly to an 

alternate but entirely equivalent-form for the Schrodinger equation 

[ Eq. (PII-3)], given by 

(PII-5) 

where ~ stands for the time derivative of ~' Hb (t) is the matrix ele­

ment { uk I H' (t) I uJ and ~ is defined by 

· · Substitution of theusual perturbation expansion for the an into Eq. 

(PII-5) results in the. following identities: 
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-{O) 
ak = 0 

-(1) 
ak = 

( ) . iWicnt 
- i L a O H' (t)e 11 n n kn 

. (2) 
. i t 

= - .!.. E a (l) H' (t)e Wien (PII-6) 3.k: Ji n n kn 

• (S) = - _!._ L a (S-1) H' (t)e iUJrn. t 
ak !inn · kn 

Assuming a harmonic perturbation, we can write the perturbation 

matrix elements as 

(PII-7) 

Combining Eq. (PII-7) with the first two of Eqs. (PII-6), performing 

the necessary integration and substituting the. result into the third of 

Eqs. (PII-6) yields, for ai2)(t') 

. [ i(w-wmn)t' -i(wmn +w)t'] 
_ I ~ H' H' 1 - e + _1_-_e ____ _ 
- 4n2 n nm !n w - w w + w mn . mn 

iwt' -iwt' -iwnl t' 
x (e + e ) e •. (PII-8) 

Integration of Eq. (PII-8) gives numerous terms, most of which are 

negligible. Keeping only terms for which the denominator may be­

come small, we obtain for a~)(t) 
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a <2>(t) 
l 
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_ 1 , H' e - 1 
. I i(w.fn -w)t 

- 4ti2 Hmn !n (wtn -w)(w-wnm). 

e m -1 
-i(2w-w1 )t l 

+ (2w-wl.m)(w-wnm) 

w + w11 = w11 has been used. nm I.Il I.m 

(Pil-9) 

Resonant absorption occurs when 2w = wlm so that only the 

second term in Eq. (Pil-9) is important. The absolute square of this 

term, which is the probability that between t=O and t the system makes 

a transition from the state m to the state l, is 

IH' H' 12 nm tn 
= ..... 1..,...6.,,..ti..,...4 (.-w---w-n-m .... )2"""" 

sin2 ~(2w-wtm)t 

[ !(2w-wtm)]z 
(PII-10) 

Assuming that due to "smearing" of level t, m or both, only the prob­

ability of finding the difference frequency (2w-wtm) is meaningful and 

describing this probability per unit frequency interval by _p~2~w1m), it 

is easy to derive a rate expression for two-photon transitions that is 

analogous to Fermi's "Golden Rule". This expression has the form 

jH' · H' j2 

W = 7r nm tn p(2w = w ) 
"8fi4 (w-wnm)2 .tm · (PII-11) 

If both matrix elements H' and H.e.' are of the electric dipole type, nm n · 
then, for an electric field in the x direction, 

H' · - ex E nm nm 

H.fn ,...., exln E 
(PII-12) 
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where E is the amplitude of the electric .field. Consequently, according 

to Eq. (PII-11), the transition rate from m to l should be proportional 

to E4, i.e .. , to the second power of the intensity. 

We turn now to a discussion of an experimental arrangement 

suitable for performing the proposed two-photon absorption measure­

ments. In the early two-quantum absorption e?Cperiments, 15 both 

photons were obtained from a narrow-band laser source. However, 
16 . . . 

Hopfield et al. . have demonstrated that one of the photons can just as 

well come from a continuous broad-band source such as a xenon arc 

lamp. This allows for investigation of a broad spectral region. 

For the present purpose, a giant-pulse neodymium laser 

(1. 06 µradiation) is suggested since two laser photons would not pro­

vide sufficient energy to cause two-quantum absorption from the ground 

state to the lowest excited singlet state of any of the smaller polyacene 

molecules. A high intensity ultraviolet light source could be used to 

populate the lowest triplet state via intersystem crossing from the 

singlet manifold. Absorption of photons from a weak continuum light 

passing through the sample, that could be correlated with the presence 

of both the laser pulse and the xenon excitation source, would be identi­

fied as the sought after transitions. Further confirmation of the two-

photon nature of these absorptions would result from a demonstration 

that the transition rate was linearly dependent upon the intensity of both 

the laser and the spectroscopic continuum. Thus, there should be no 

problem in verifying either the triplet-triplet, or the two-photon nature 

of the . observed absorptions. 
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PROPOSITION III 
~ 

An experimental investigation of charge carrier pro­

duction resulting from direct transitions between the 

lowest triplet state and the conduction band of pure crys­

talline naphthalene is proposed. If observable, these 

direct transitions would provide the first means for making 

a detailed study of the conduction band. Furthermore, the 

results of such an investigation would be of great help in 

interpreting certain features in the triplet-triplet ab­

sorption spectrum of isotopic mixed naphthalene crystals 

at 4. 2° K. 

Certain generalizations concerning the photoconductive proper­

ties of molecular crystals may be drawn from studies of their electrical 

properties. 1 One of these generalizations is that a large photocurrent 

with a spectral response identical to the singlet absorption spectrum of 
~ 2 3 
the crystal can be generated. ' The frequency threshold for photo-

conductivity is roughly equivalent to the first singlet excitation fre­

quency of the isolated molecule. Since the lowest conduction band in 

these crystals lies at a higher energy than the first excited singlet 

state, it is apparent that light of wavelength near the photoconductivity 

threshold cannot produce charge carriers directly. It is now widely 

accepted that, in fact, this light merely produces singlet excitons and 

that exciton-exciton interactions are responsible for the ultimate 
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production of free charge carriers. 4 - 6 It is also evident that if direct 

transitions from the ground state to the conducting state did occur, 

they would be masked by the strong singlet-singlet absorption. Con­

sequently, it has not been possible to determine the width or shape of 

the conduction band in any of the molecular crystals. Clearly, what is 

needed is a method for direct photoproduction of _charge carriers using 

light of a wavelength that is too long to cause singlet-singlet transitions. 

Such a method is suggested by the results of a recent investigation of 

triplet-triplet absorption in isotopic mixed naphthalene crystals at 

4. 2° K. 7 

Except for a broad, structureless, continuum absorption, the 

triplet-triplet absorption spectrum of mixed crystals of naphthalene-!!,8 

in naphthalene- d 8 at 4. 2° K7 correlates well with that of naphthalene-!!_8 

in glassy media at 77° K. 7 - 9 The existence of this broad continuum 

absorption is of considerable interest since it seems to indicate that 

states of the host crystal may be participating in the triplet-triplet 

transition. On the basis of energy considerations, and the overall 

character of the absorption, it appears that the host states most likely 

to be involved are the conduction and charge-transfer states. If this 

were true, one would have a means of producing charge carriers by 

direct absorption of a photon and, furthermore, the energy of the 

photon necessary to produce these carriers would be too low to cause 

singlet-singlet absorption. 

It is proposed that an experimental search be made for charge 

carrier product iori as a r e sult of light absorption by triplet excitorts in 

pure crystalline naphthalene at room temperature. Since the light 
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required to effect this transition cannot cause singlet-singlet absorption, . 

the spectral response of the photocurrent thus produced would reflect 

only the structure of the initial and final states in the direct transition. 

Compared with the triplet exciton (initial state) bandwidth, the width of 

the conduction band (final state) is very large so that, to a first approxi,;. 

mation, the spectral response of the photocur:rent so generated could be 

taken as a measure of the conduction band shape. The results of such 

experiments would also be useful in interpreting the triplet-triplet 

absorption spectrum of isotopic mixed naphthalene crystals at 4. 2° K. 

The following experimental arrangement is suggested. Light 

from a continuously operated de xenon arc lamp could be used to popu­

late the lowest triplet state of the crystal via the singlet state by means 

of intersystem crossing. This light would have to be filtered so as to 

contain only wavelengths in the region of the first singlet absorption 

edge. Light from a second de xenon arc lamp (the photogeneration 

light), passed through a suitable scanning monochromator, could then 

be used to scan the region in which photogeneration of charge carriers 

is expected. The sample cell could be any of the commonly used trans­

parent electrode types. lO There would be singlet excitons generated 

in the process of populating the triplet state, and these would give rise 

to a de photocurrent through the exciton-exciton interaction mechan-
4-6 ism. Consequently, it would be necessary to chop the photogener-

ation light and use lock-in detection in order to single out the process 

of interest. As a final note we include a numerica l estimate-of the 

·number of carrier s expected and compare this t o the minimum number 

of carriers detectable. 
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The steady-state concentration of triplet excitons in the crystal 

is given by· 

(PIII-1) 

provided 

10 » f32/4may (PIII-2) 

where ·m is the intersystem crossing efficiency, a is the singlet­

singlet absorption coefficient, Io is the incident photon flux, y is the 

triplet-triplet annihilation rate constant, and {J is the reciprocal of the 

triplet-state lifetime. Photon fluxes of 1016 cm-2 sec-1 , distributed in 

a narrow band of frequencies around the singlet absorption edge, are 

readily obtainable from commercially available de xenon arc lamps. 

The values of the other parameters appearing in Eqs. (PIII-1) and 

(PIII-2) are known to be of the following order of magnitude: 

m ~ 0.25 

a ·~ 10 ' 

y ~ 10-11 

fJ ~ 10 

Substituting these value s into Eq. (PIII-1), which can be s e en to be 

valid according to the criterion set down in Eq. (PIII-2), gives a 

steady-state triplet concentration of 

n 1=::1 5 x 1013 cm -3 
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If even 1 in 101° of these gave rise to a free charge carrier during a 

1 sec time interval, the resulting. photocurrent could be detected 

using presently available lock-in amplifiers. On the basis of the iso­

topic mixed crystal triplet-triplet absorption spectrum, one would 

expect several orders of magnitude more charge carrier production by 

this sort of direct conduction band - triplet state absorption. The 

experiments therefore appear to be well within the realm of feasibility. 
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PRO POSITION IV 
~ 

Theoretical and experimental values of the Kapitza 

resistance of a wide range of solids are in disagree- · 

ment by as much as two orders of magnitude in some 

cases. Experiments are proposed that would help to 

elucidate the cause of this large discrepancy. 

When heat is conducted from a solid into a liquid, there exists 

a discontinuity in the temperature at the interface, i. e ., there is a 

small difference in temperature (AT) across the boundary. Provided 

the heat flow (Q) is small, D..T/Q is effectively a thermal resistance, 

characteristic of the boundary. Since Q is proportional to the inter­

facial area A, it is customary to define the boundary r e sistance in 

terms of the heat flow per unit area, Q/ A. Kapitza resistance (RK) is 

the thermal resistance at the boundary between a solid and liquid 

helium, l, 2 and is define d as 

(PIV-1) 

Since it provide s a prototype study in surface physics, and since it 

plays an essential role in all low-temper ature (below 1° K) experiments , 

Kapitza r e sistance has stimulated the interest of many re searchers 

since its discovery nearly 30 years a go. 1 

The presently accepted model used to expla in the phenomenon 

is based on the la r ge acoustic impedance mismatch that exi s t s at the 

. ; 
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boundary between most solids and liquid.helium. The efficiency of 

phonon transmission at an interface depends critically on how well the 

acoustic impedances of the two materials forming the interface are 

matched. A typical solid may have a density p of 5 gm/ cm3 and trans­

mit sound at a velocity v 
8 

on the order of 5 x 105 cm/ sec, whereas at 

ordinary pressures p and v for liquid helium are 0. 14 gm/cms and . s . . . 

2. 4 x 104 cm/ sec, respectively. This means that the acoustic im-

pedance, i.e., the product pv 
5

, of the solid may be two or three orders 

of magnitude greater than that of liquid helium. As a result of this 

acoustic mismatch, a large fraction of the phonons impinging on the 

interface from both sides cannot pass through. 

Khalatnikov3 was the first to develop a detailed theoretical 

treatment of Kapitza resistance, based on this model; recent theoretical 

work4' 5 has been limited mostly to refinements of Khalatnikov's 

original theory. However, it is generally found that theoretical RK 

values are from one to two orders of magnitude greater than the cor­

responding experimentally measured values. In other words, the 

energy flux across the interface that can be accounted for by the 

acoustic mismatch theory3 is much smaller than the energy flux actually 

observed: It has been suggested, 4, 5 that improved acoustic impedance 

matching would r esult if a film of dense he lium were to form at the 

interface. Theoretical estimates of the thickness of the film necessary 

to obtain reasonable agreement be tween theor etical and experimental RK 

values range from 15 A to sever al microns. The binding between the 

film and substrate ha s-been analyzed by Franchetti6 in te rms of 

van der Waals for ces . Although there is good theoretical basis for 
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suspecting such a film, there have been no reports of experiments 

designed specifically to investigate the region very near the solid­

liquid interface . . It is the purpose of this proposition to suggest two 

experiments that would help to illucidate the physical structure of the 

region hear . solid-helium interfaces. 

The first experiment utilizes optical reflectance techniques 
7 

to 

determine the thickness of the helium film. When light is reflected at 

normal incidence from ~he interface between two non-conducting media, . 

the reflection coefficient is 

where n0 and n1 are the refractive indices of the- two media. R0 is 

defined as the ratio of the reflected intensity to the incident intensity. 

If a thin film is present on a substrate, light will be reflected from 

both the film .surface and the film-substrate interface. For light of 

wavelength A, normally incident on a layer of thickness d1 and refrac­

tive index n1 which is on a substrate of refractive index ~' the reflec­

tjon coefficient is 

R-

2 . 2 
r 1 + 2r1 r 2 cos 201 + r 2 

1 + 2r1 r 2 cos 261 + r{ri (PIV-3) 

where r 1 = (n0 -n1 )/(n0 +n1 ), r 2 = (n1 -~)/(n1 +~),and o1 = 27Tn1 d1 /A. 

From a measurement of R at two different wavelengths, both_ the re-

fractive index n1 and the thickness d1 of the film can be found. 

Most experimental measurements of . RK have involved the use 
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of metals as . the solid, · and, of the metals used, copper has been by far 

the most common. However, the reflection theory outlined above is 

valid only for non-conducting media. Therefore, a non-conductor with 

an affinity for helium atoms similar to that of copper is required for the 

proposed experiment. On the basis of Franchetti's6 work, diamond is 

suggested as the best material for these reflectance measurements. It 

is expected to bind helium atoms with roughly 80% of the efficiency with 

which copper binds them, and its high index of refraction ensures rela­

tively strong reflection signals. If evidence for the helium film were 

found from these initial experiments using diamond, it would then be of · 

great interest to study other materials such as boron carbide, sapphire, 

and quartz. 

The second experiment involves measuring the Kapitza resis­

·tance of a molecular crystal like anthracene. Franchetti 's theory6 

predicts that this sort of crystal should be much less efficient than 

copper and diamond at binding helium atoms so that the helium film at 

the interface is expected to be much less significant. On this basis, 

o_ne would anticipate better agreement between the measured RK and 

that calculated from Khalatnik?v 's theory for anthracene than is 

typically obtained for metal-helium interfaces. 

These experiments are not totally without drawback. In the 

reflection coefficient measurements, the film, if it exists, would un­

doubtedly be . inhomogeneous. In this case the theory becomes some­

what more complex and interpretation of the results more difficult. 

In addition, if the helium film Were more 11liquid-like tt than "solid-like", 

the difference in the refractive indices of the film and the bulk liquid 
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helium might be small enough to cause difficulty. However, this is not 

expected to be a problem sine e the indications are that film will be 

sufficiently "solid-like". Low thermal conductivity may cause some 

difficulty in measuring ~T across the anthracene-helium interface. 

Also, since anthracene is a comparatively soft solid, it may be difficult 

to prepare good surfaces whose area can be accurately determined. 

This latter difficulty is present to some extent in all Kapitza resistance 

measurements. The results of these experiments and others of a sim­

ilar nature should help in deciding whether a "solid-like" helium film 

at the interface is in fact responsible for the anomalously large thermal 

transport across the interface, or whether some other unknown mech­

anism is operative. 
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PROPOSITION V 
~ 

Pulsed EPR measurements are proposed as a means 

_of elucidating the role of paramagnetic metal ions in the 

enzymatic activity_ of metal-containing enzymes. The 

proposed experiments would provide _a direct mea:8ure of 

T1 , the longitudinal relaxation time, and thus constitute a 

sensitive means for correlating environmental changes in 

the vicinity of the ion with changes in enzymatic behavior. 

Of all the functions performed by protein molecules in living 

systems, perhaps the most remarkable is their catalytic role in almost 

all of the biochemical reactions basic to the life process. Proteins 

. exhibiting such catalytic activity are called enzymes. l-3 

Enzymes are rather exceptional catalysts in four respects. 

First, they are extraordinarily efficient; a typical enzymatic reaction, 

under optimal conditions, will proceed at a rate as much as 108 to 1()11 

times that of the corresponding nonenzymatic reaction. Many reactions 

that ordinarily occur only under extreme conditions of temperature or 

pH proceed rapidly and quantitatively in nearly neutral solutions and at 

room temperature in the presence of the appropriate enzymes. Second, 

most enzymes are highly specific with regard to the nature of the 

reaction catalyzed and the structure of the substrate employed. Third, 

a broad spectrum of biologically important reactions is · subject to 
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enzymatic catalysis; hydrolytic reactions, polymerizations, redox 

reactions, dehydrations, aldol condensations and free radical reactions 

are examples. Evidently, proteins are exceptionally versatile cata­

lysts. Finally, enzymes are themselves subject to a variety of cellular . 

controls. The rate at which they are synthesized, the final enzyme 

concentration, presence of both active and inactiye forms of the enzyme 

as well as the rate and extent of interconversion between the two, are 

all controlled either genetically or by environmental factors. 

The unquestionable importance of enzymes to the life process 

has stimulated vigorous research activity directed toward gaining a 

greater understanding of the manner in which they perform their cata­

lytic function. The basic questions that must be answered concern the 

structure of the transition state and the nature of the intermediates 

formed during an enzymatic reaction. This in turn necessitates a 

knowledge both of the geometry of the substrate molecule and of the 

three-dimensional conformation of the enzyme. In view of the structural 

complexities of the enzymes, this appears to be a formidable task. 

However, the fact that the substrates utilized in most enzymatic re­

actions are small compared with the enzymes themselves, renders the 

problem somewhat more tractable since only a small fraction of the 

enzyme molecule can be near, or in direct contact with the substrate 

molecule in the enzyme-substrate complex. This leads to the concept 

of an active site which is envisioned as being the seat of enzymatic 

activity. 

There is a ·growing body of evidence that some, and perhaps even 
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large portions, of the protein can be removed without impairment of 

the catalytic activity. 
3 

On the other hand, it has also been shown that 

certain changes in the bulk of the protein (e.g., denaturation) can com­

pletely destroy the enzymatic activity. This suggests that although the 

major part of the enzyme molecule is not directly involved in bond­

breaking and bond-making, it is responsible for providing the "right" 

environment in the vicinity of the active site and for maintaining the 

structural integrity of the enzyme as a whole. Thus, the principal key 

to an understanding of the way in which enzymes function is a knowledge 

of the nature and behavior of the active site. · 

The remainder of the discussion will be limited to enzymes 

. having paramagnetic metal ions at their active site, and to experimental 

techniques that utilize the paramagnetism, thus making them applicable 

specifically to this group of enzymes. Included in this group are many 

· of the oxygenases, the cuproprotein enzyme·s and the metalloflavo-

proteins, to name a few. The importance of metals in enzymes has 

been recognized for many years 4, 5 and the paramagnetic nature of 

many of the fons associated with the active sites of enzymes has been 

exploited in studies of their behavior using electron paramagnetic 

res;nance spectroscopy. 6- 8 A good deal of valuable information has 

been gained from these steady-state EPR studies and undoubtedly much 

more will be learned as additional resonances are found and investi-

gated. The principal quantities available from these measurements are·· 
-

the g-value and information obtainable from the fine structure and 

hyperfine structure. It is proposed th~t additional information con­

cerning the coupling of the ion to its environment and its relationship . 
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to enzyme activity could be obtained from pulsed EPR measurements. 

These experiments would provide a direct measurement of T1 , the 

spin-lattice or longitudinal relaxation time, and would complement the 

above-mentioned steady-state experiments. 

To demonstrate the principles9- 12 involved in such a study, we 

consider the behavior of an ion, in a state of ~otal angular momentum 

J, subjected simultaneously to a static magnetic field, k H0 , and to an 

rf field, i H1 cos wt + j H1 sin wt, which corresponds to a field H1 with 

a counterclockwise circular polarization. The static magnetic field 

splits the state J into 2J+1 levels labelled by M and the rf field induces 

transitions between these levels. 

We begin by calculating the probability per second WM+.M+l 

that the rf field causes a transition between any two levels M and M+l. 

The time-dependent perturbation felt by the ion as a result of the rf 

field is given by 

with 

and 

:JC' (t) = -yJ · Hrf = -yH1 (Jx cos wt + Jy sin wt) 

yH1 
= --r [ J + exp(-iwt) + J _ exp(iwt)] 

(PV-1) 

(PV-2) 

where gJ is the· Lande' g-factor and (3 is the Bohr magneton. It follows 

from the golden rule _that the transition rate is given by 
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11 y2H12ti 
WMttM+l = 2 [ J(J+l) - M(M+l)] p(E) (PV-3) 

or, replacing p(E) by g(v-v0 }/2111i where g(v-v0 ) is the lineshape func-

ti on, 

"Y2H12 
W - [ J(J+l) - M(M+l)] g(v-v0 ) M+.M+l - 4 (PV-4) 

Equation (PV--1) has been derived for a circularly polarized 

field of the form Hrf = (H1 cos wt, H1 sin wt, 0). However, in the 

majority of experimental situations the .field is linearly polarized in the 

form Hrf = (H1 cos wt, O, 0). T?-is field can be decomposed into two 

circularly polarized fields of opposite polarization 

H-+· (H t H . t o) = 2 cos w :, 2 sm w , 

, · 

and 

ii- =(¥cos wt, -¥ sin wt, o) . 

In the presence of a static magnetic field H = k H0 , the polarization of 

-H- is opposite to the direction ·of precession of the ion's magnetic mo-

ment µ so that, if w = w0, the torque exerted by ii- or 'jI changes sign 

four times per cycle and to first order averages to zero when observed 

over times long .compared to 21T/ w. Thus, by replacing H1 by H1/2, 

Eq. (PV-4) becomes valid for a linearly polarized rf field of ~he form 

Hrf = r H1 cos wt. 

In deriving Eq. (PV-4) it has been impliCitly asst!med that the 

levels Mand M+l are homogeneously broadened. The treatment is only 
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slightly different for inhomogeneously broadened levels and, since the 

broadening mechanism is not of particular importance to the present 

discussion, we omit the details of that treatment. 

Now imagine an ensemble of ions each like the one discussed 

above. Since the induced transition rate from M to M+l is identical to 

that from M+l to M, the population densities, NM of level M and 

NM+l of level M+l, are governed by the equations 

and 

dNM 
--= 

dt 

dNM+l 
dt 

(PV-5) 

(PV-6) 

where W = WM~M+l· Combining Eqs. (PV-5) and (PV-6) and. defining 

n = NM - NM+l leads to 

dn - 2 dt - - Wn (PV- 7) 

Equation (PV-7) describes the behavior of the population density dif- · 

ference n under the influence of an applied rf field in the absence of 

any coupling between the spin system and its environment. 

Next, let us consider the effect of including some form of 

coupling between the spin system and its environment without dealing 

specifically with the mechanism by which it occurs. At thermal equi­

librium, NM and NM+l are related by 
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(PV-8) 

De~oting the probability per second that this "spin-lattice" coupling 

induces a transition from M to M+l by W+ and from M+l to M by W+, 

the rate equation for NM, in the absence of the rf field, is 

(PV-9) 

When the spin system is in thermal equilibrium with its surroundings, 

dNM/ dt = O, so that · 

NM+l w+ 
No = W+ 

M 

(PV-10) 

or, using Eq. (PV-8) for the ratio NM+l/NM, we find 

w+ I w+ = exp(-yH0 1i kT) (PV-11) 

Introducing N =NM+ NM+l' and using the previous definition .of 

n allows us to rewrite Eq. (PV-9) in the form 

~f = N(W+ - Wt) - n(W+ + w+) . (PV-12) 

Upon defining n0 and T1 as 

· (w+ -w+) 
no = N w+ ·+wt and 

1 
T1 = (W .. +Wt) ' (PV-13) 
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Eq. (PV-12) becomes 

(PV-14) 

T1 is the spin-lattice, or longitudinal, relaxation time, i.e., the time 

constant with which the population density difference n regains its 

equilibrium value n0 after the spin system has been disturbed from 

equilibrium. 

Now suppose the system is simultaneously undergoing transitions 

due to an applied rf field,_ H1 cos wt, and due to coupling with its en­

vironment. The difference in the population densities of levels M and 

M+l is then due to a competition between the thermal relaxation 

processes and the transitions induced by the applied field. This situation 

is described by the equation that results from combining Eqs. (PV -7) 

and (PV-14), viz., 

(PV-15) 

which can be solved for .n as a function of time. The solution is of the 

form 

n(t) = n(O) exp[-(2w + iJ t] 
+ 1+2\vT, ! 1 - ex{(2w + ;J~ (PV-16) 

and contains a description of both the transient and the steady-state 

behavior of the system. By transient behavior we mean the response · 
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of the system to sudden changes away from its dynamic equilibrium or 

steady-state condition. 

The steady-state solution, obtained from Eq. (PV-16} in the 

limit as t- oo, has the form 

n = Ilo l + 2WT1 
(PV-17} 

which is just the solution of Eq. (PV-15) with dn/dt = O, as it must be. 

It is easy to see that the net power density absorbed by the system is 

given by 

P(t) = n(t) Wliw v (PV-18) 

where V is the volume of the sample. Substitution of Eqs. (PV-4) and 

(PV-17f into Eq. (PV-18} yields, for the steady-state power absorption 

per unit volume, 

p 
- = v 

n0 tiwy2H/[ J(J+l) - M(M+ 1)] g(v-v0 ) 

16 + 2y H1 T1 [ J(J+l} - M(M+l)] . g(v-v0 ) 
(PV-19) 

where H1 has been replaced by H1/ 2 to be consistent with the assumed 

linear polarization of the applied rf field. We observe that as H1 is 

increase d the power absorption eventually levels off. This effect, 

known as saturation, occurs since increases in the transition rate W 

with increasing H1 [see Eq .. (PV-4)] are accompanied by decreases in 

.!! [see Eq. (PV-17)]. Another phenomenon that sets in at sufficiently 

high power levels is the so-called power broadening .of a transition. 
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As the incident rf power is increased the line begins to broaden due to 

the fact that the spins spend less and less time in the energy levels as 

a result of the greater and greater number of transitions that they make 

per second. When these two effects are combined, we conclude that 

the power absorbed at a particular value of the static field H0 must 

decrease as Hi is made larger and larger. That this is so, can be 

seen from the fact that the total power absorbed becomes constant and 

is spread over an increasingly broad line. 

From Eqs. (PV-16) and (PV-18) it is a simple matter to obtain 

an equation for the power· absorption per unit volume, including the 

transient behavior, 

Ptt) = n(O) wtiw exp ~(2w + ii1 t] 

+ t!~;, ! 1 -ex{(2w + i;)~I (PV-20) 

· where W is given by Eq. (PV-4) with Hi/2 iil place of Ru and n(O) is 

the difference in population densities of levels Mand M+l at t = 0. 

Evidently, if a perturbation is applied and then removed quickly (the 

time of removal will be designated as t = O), the system will regain its 

state of dynamic equilibriu.m with a characteristic time constant 

(2w + i.j . This suggests a good way for measuring T1 • t 3, 14 The 

resonance of interest is located and the de field held constant at the 

resonant value. With the sample receiving a steady influx of low inten­

sity microwaves at the frequency (yH0 /li), a short intense pulse -of 

microwaves of exactly the same frequency is applied. If the pulse is of 
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high enough intensity to cause saturation and power broadening of the 

transition, a sudden decrease in the intensity of the steady-state EPR 

signal will be observed. The relaxation of the system back to its 

original state of dynamic equilibrium will then result in the reappear­

ance of the steady-state EPR signal with a time constant equal to 

T1/(2WT1 +1). By keeping the steady-state microwave intensity low, 

the denominator can be made equal to unity and the time constant is 

then just T1 • 

The technique just described requires saturation of the transi­

tion of interest. The power necessary to achieve saturation depends 

upon the magnitude of T1 , more power being required when T1 is small 

than when it is large. With presently available microwave pulses14 

the technique can be straightforwardly applied to systems having spin­

lattice relaxation times down to 10-5 to 10-1 sec. Somewhat more effort 

directed toward obtaining shorter, more intense microwave pulses 

might well be repaid in terms of increased time resolution1 making it 

possible to measure even shorter T1 values. 

In general, T1 depends upon the environment of the spin system 

and is thus sensitive to enviro.nmental changes. In the case of enzymes; 

where the local environment is probably provided by the bulk of the 

protein molecule, T1 might be expected to be sensitive to changes in 

temperature, pH, ionic strength, etc. of the surrounding medium 

since these are known to change the protein conformation. Enzymatic 

activity is strongly dependent upon the conformation of the protein also 

so that the likelihood that s ome correlation could be found between the 

magnitude of T1 and enzyme behavior seems pretty high. 



298 

REFERENCES 
~ 

1. See, for example, P. D. Boyer, H. Lardy and K. Myrback, The 

Enzymes (Acadenic Press Inc., New York, 1959). 

2. H. R. Mahler and E. H. Cordes, Biological Chemistry (Harper 

and Row, Publishers, New York, 1966). 

3. J. B. Neilands and P. K. Stumpf, Outlines of Enzyme Chemistry 

(John Wiley and Sons, Inc., New York, 1955), 2nd ed. 

4. 0. Warburg, Heavy Metal Prosthetic Groups (Oxford University 

Press, Oxford, 1949). 

5. Metals and Enzyme Activity, E. M. Crook, Ed. (Cambridge 

University Press, 1958). 

6. G. Schoffa, Elektronenspinresonanz in der Biologie (Verlag G. 

Braun Karlsruhe, 1964). 

7. Magnetic Resonance in Biological Systems, A. Ehrenberg, B. G. 

Malmstrom and T. Vanngard, Eds. (Pergamon Press, Oxford, 

(1967). 

8. H. Beinert, "Complexities in Metal-:Flavoprotein Function 

Revealed by EPR Spectroscopy" in Flavins and Flavoproteins, 

E. C. Slater, Ed. (Elsevier Publishing Co., New York, 1966), 

pp. 37-48. 

9. See, for example, C. P. Slichter, Principles of Magnetic 

Resonance {Harper and Row, Publishers, New York, 1963). 

10. M. Bersohn and J . C. Baird, Ah Introduction to Electron Par.a­

magnetic Resonance 0N. A. Benjamin, Inc., New York, 1966). · 



299 

11.. A. Carrington and A. D. McLachlin, Introduction to Magnetic 

Resonance (Harper and Row, Publishers, New York, 1967). 

12. A. Yariv, Quantum Electronics (John Wiley and Sons, Inc., New 

York, 1967). 

13. K. D. Bowers and W. B. Mims, Phys. Rev. 115, 285 (1959). _....,.... 

14. O. S. Leif son and C. D. Jeffries, Phys. _Rev. ill_, 1781 (1961). 


