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ABSTRACT

The intent of this study is to provide formal apparatus which

facilitates the investigation of problems in the methodology of science.

The introduction contains several examples of such problems and
motivates the subsequent formalism.

A general definition of a formal language is presented, and this
definition is used to characterize an individﬁal's view of the world
around him. A notion of empirical observation is developed which is
independent of language. The interplay of formal language and obser-
vation is taken as the central theme. The proceés of science is
conceived as the fiﬁding of that formal language that bestr expresses the

available experimental evidence.

To characterize the manner in which a formal language imposes
structure on itsruniverse of discourse, the fundamental concepts of
elements and states of a formal language are introduced. Using these,
the notion of a basis for a formal language is developed as a collection

of minimal states distinguishable within the language. The relation of

-

these concepts to those of model theory is discussed.
An a priori probability defined on sets of observations is postu-
lated as a reflection of an individual's ontology. This probability, in
conjunction with a formal language and a basis for that language, induces
a subjective probabilityl describing an individual's conceptual view of
admissible configurations of the universe. As a function of this

subjective probability, and consequently of language, a measure of the



informativeness of empirical observations is introduced and is shown
to be intuitively plausible - particularly in the case of scientific
experimentation. | . , ; < )

The developed formalism is then systematically applied to the
general problems presented in the introduction. The relationship of
scientific theories to empirical observations is discussed and the need
for certain tacit, unstatable knowledge is shown to be necessary to
fully comprehend the meaning of realistic theories. The idea that many
common concepts can be specified only by drawing on knowledge oBtained
from an infinite number of observations is presented, and the problems
of reductionism are examined in this context.

A definition of when one for'rnal 1anguage- can be considéred to be
more expressive than another is presented, and the change in the
informativeness of an observation as language changes is investigated.
In this regard it is shown that the inforl;nafion inherent in an observation
may decrease for a more expressive language.

‘The general problem of induction and its relation to the scientific
method are discussed. Two hypotheses concerning an individ;a.al’s
selection of an optimal language for a particular domain of discourse

are presented and specific examples from the introduction are examined.
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I. INTRODUCTION

The tremendous scientific advances of the last several centuries
have resulted in a variety of new disciplines and a greater degree of
‘specialization in existing ones. In spite of this rapid growth and
diversification, there remains a very firm belief on the part of many
researchers in the unity of science. This view is aptly summarized
in the following statement by Lee A, DuBridge {13, P. 6].

'*_..science has reached a new level of attainment., Men

now do comprehend the basic laws that enable them to

interpret, and even in a large measure to predict, the

behavior of the physical world-—the world of the earth,

the sun, the planets, the stars; of electricity and gravi-

tation and the forces that hold atoms and molecules

together, We even know that the processes of life depend

on these same physical laws; that life is, in a very deep

sense, the ultimate proof of the quantum theory. Hence,

man's eternal quest for understanding of the world about

him has led finally to the beginning of understanding the

world within him. "

Although many philosophers and scientific historians have con-
tributed greatly to our understanding of science, there remain many
difficult problems, and much needs to be done to fully explicate the
scientific method and to characterize the relationship of the scientist
to his science. In particular, the means by which a scientist becomes
better informed, either by the gathering of experimental data or by
communication with other researchers, is poorly understood. A
prime task of information science should be the formulation of con-

cepts which are useful in understanding these processes. This thesis

is directed to that task.
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The formal apparatus which is developed in subsequent chapters
would be barren if it did not provide insight into basic informational
problems and, in particular, into funda,rnenta»l problems in the develop-
ment and understanding of science. Therefore, in order to give per-
spective to these later quantitative chapters, we will begin by sketching

several examples of such problems. We complete this introductory
| chapter by identifying two, more general philosophical issues, namely
the problem of reductionism, and the question of the relationships
between scientific theory and empirical observations.

The central portion of the thesis develops a mathematical
apparatus by means of which these issues raised in the introduction
can be formally treated. The later part of the thesis then returns to
the problems of the introduction, viewing them from the vantage point

~ of the developed apparatus,

Consider the ‘relationship of the individual and his science as
reflected in the language he uses to describe his theories and obser-
vations. As Polanyi points out, we often find that the words or con-
cepts in this language shift in meaning on the basis of new observational
evidence [ 26, p. 111].

"When heavy hydrogen (deuterium) was discovered by Urey

in 1932, it was described by him as a new isotope of hydro-

gen. At a discussion held by the Royal Society in 1934 the

discoverer of isotopy, Frederic Soddy, objected to this on

the grounds that he had originally defined the isotopes of an

element as chemically inseparable from each other, and

heavy hydrogen was chemically separable from light hydro-

gen. No attention was paid to this protest and a new meaning

of the term 'isotope' was tacitly accepted instead. The new
meaning allowed heavy hydrogen to be included among the
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isotopes of hydrogen, in spite of its unprecedented property

of being chemically separable from its fellow isotopes.

Thus the statement 'There exists an element deuterium

which is an isotope of hydrogen' was accepted in a sense

which re-defined the term isotope, so that this statement,

which otherwise would be false, became true. The new

conception abandoned a previously accepted criterion of

isotopy as superficial, and relied instead only on the

identity of nuclear charges in isotopes.

"Qur identification of deuterium as an isotope of hydrogen

thus affirms two things: (1) that there exists in the case

of hydrogen and deuterium an instance of a new kind of

~chemical separability, pertaining to two elements of equal
nuclear charge, (2) that these elements are to be regarded

as isotopes in spite of their separability, merely on the

grounds of their equal nuclear charge. The new observa-

tions referred to in {1) necessitated the conceptual and

linguistic reforms decreed in (2). ™

This exaxnple'illustrates that scientific terms tend to be redefined
from time to time. One obvious question is why this process of re-
interpretation takes place at all. What combination of circumstances
necessitates such a change in language? Even more important, when
words do change their meanings, what becomes of the theories which
made use of them, and what is the weight of old observations on new
enunciations of theory?

A closely related problem concerns two observers who use the
same term, but one of them has a more detailed or ramified view of
the concept denoted by the term than the other. For instance, an
electrical circuit designer might visualize a '"transistor' as a current-
controlled device having three terminals and functional behavior des-
cribed by a certain set of input-output equations. A solid state

physicist, however, might very well characterize a '"transistor" as a

piece of semi-conducting material with a certain distribution of
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impurities which determine how the electrons and "holes' will move
through the‘ material vlvhen' a potential difference exists. He may also
implicitly associate such concepts as the mean free path of an electron,
or the avalanche breakdown voltage of a junction with his notion of
‘transistor.

There are clearly many circumstances when these men might
find it advantageous or essenéial to converse on subjects which pre-
suppose an understanding of what a transistor is. Even if we assu.rﬁe
that their views are not fundamentally conflicting, we must admit that
they implicitly disagree on what the‘relevant properties of a transistor
are. Nevertheless, communication does take place, and presumably
information is exchanged. But if these men both observe a transistor
behaving in a certain novel fashion, are they equally informea by this
observation? Will they both describe the observation in similar terms?

Another interesting phenomenon is illustrated by a comparison
between what might be called the explicit scope and implicit scope of
a scientific paper. Consider a biologist who describes the response
characteristics of some neuron in a particular nerve ganglion of an
insect, say the wolf spider. The writer is generally very careful to
indicate that his results apply only undex a certain set of experimental
conditions. Sometimes the experimental animals are mutants, or many
generations of them have been bred in the laboratory. And perhaps the
stimulus 1s one which the animal would not normally encounter. Re-
strictions such as these, which are obviously necessary for practical

reasons, tend to confine the stated results to rather specific cases,
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What is the c.}-xaracter of the information conveyed bjr such a paper?
If the article is published in a reputable journal, is this because the
editors believe that the restricted results obtained for the wolf spider
are of overwhelming interest? It would not seem so. Rather, it must
be that the results are supposed to have implications of a more general
nature. Indeed, it would appear tha\t these often unstated generaliza-
tions of the conclusions in the paper constitute much of its real

significance. Writing in The American Psychologist, F, A. Beach

emphasizes a slightly different aspect of this point in relation to the
field of comparative psychology. [1, p. 119].

"Perhaps it would be appropriate to change the title of our
journal to read 'The Journal of Rat Learning', but there
are many who would object to this procedure because they
appear to believe that in studying the rat they are studying
all or nearly all that is important in behavior. At least

I suspect this is the case. How else can one explain the
fact that Professor Tolman's book, 'Purposeful Behavior
in Animals and Men', deals primarily with learning and

is dedicated to the white rat, 'where, perhaps, most of
all, the final credit or discredit belongs'. And how else
are we to interpret Professor Skinner's 457-page opus
which is based exclusively upon the performance of rats
in bar-pressing situations but is entitled simply 'The
Behavior of Organisms'?"

These three examples, from many that could be mentioned, illus-
trate problems of detail in understanding the current scientific scheme.
We discuss now two problems of a more general nature which have
loomed large in the consideration of.th'e philosophy of science. The
first of these is reductionism, which concerns the relationships be-
tween one theory and another, and the links connecting a theory with
the observational data supporting it. Historically, the ideas of re-

ductionism have been of paramount importance in influencing the
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attitudes of scieﬁtists on these questiofxs. There are tv?o problems,
each of which has gone under the name reductionism, which should
be distinguished although they are closely related., With regard to
theory and observations, the purest form of reductionism is sum-
marized by the view that every theoretical term can be explicitly
defined in terms of observable quantities. That is, theories were
considered to be simply disguised references to facts. These.
assumptions were quite prevalent until the early part of this.centurjr.
As an example, Russell maintained the following, [ 33, p. 146].

"Physics cannot be regarded as validly based upon em-

pirical data until [light] waves have been expressed as

functions of the colours and other sense-data. '

The theory of relativity was instrumental in the demise of this
very restrictive viewpoint, Statements such as '""Space is curved in the
neighborhood of the sun', were easily seen to be observationally un-
verifiable, at least directly. More recently, this form of reduction-
ism was modified to allow such statements to be indirectly verified,
for instance, by observiné that light passing near the sun was de-
flected. However, this raises other problems since the original
statement cannot be tested if no light is passing by the sun. Never-
theless, vestiges of these concepts are still evident today, parti-
cularly in those areas of scientific endeavor which have not proven
amenable to the methods of formal mathematics, Thus, there are
some researchers, in fields such as biology, who contend that the

gathering of experimental data is informative in itself., That is, the
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mere existence of knowledge about an organism conveys information,
even in the absence of any theoretical framework. Examples such as
this demonstrate that the role of abstract theory as it relates to the
acquisition of scientific knowledge remains open to question. In
order to speak sensibly about information, therefore, it is necessary
to examine how observational evidence and theories interact. They
certainly appear to be independent in some respects, and yet our in-
tuition indicates that they normally combine to support one another.

A second aspect of the reductionist philosophy deals with the
problems of reduqing one theory to another more basic one. For
example, in the nineteenth century, classical mechanics was thought
to be basic to much of science, and new theories such as thermo-
dynamics were justified in pa;rt by demonstrating that they could be
restated in the framework of classical mechanics. Many scientists
went so far as to propose that all scientific phenomena should be
reducible to some universal physical science. However, biologists,
for example, generally refuted this view by claiming that there were
characteristics of living érganisms which could not be explicated in
terms of atomic particles or any similar notions. These questions
certainly bear directly on metaphysical assumptions concerning the
unity of science. For a detailed historical discussion éf these
phenomena, see Nagel [ 25, chap. 11].

At the present time, very little effort is being expended to

formally reduce one scientific theory to another, although there have
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been recent attempts to partially axiomatize biology, for example
[46]. Instead, reducibility is often tacitly assumed, at least in an
informal sense, Thus, even though physical chemistry and quantum
mechanics are not explicitly linked by systems of axioms, they are
treated as though intimately related. Furthermore, recent advances
in the biological sciences have revitalized the reductionist viewpoint
in this area, as the following quotation from Sinsheimer indicates
[ 38, p.5].

""As we have penetrated the processes of the living cell,

as the domains of mystery have receded, it has become

ever more clear that all the properties of life can be

understood to be simply inherent in the material proper-

ties of the complex molecules which comprise a cell.

And thus that seemingly qualitative gap-—self-evident

to the most naive—between the living and the non-living

has in our time been bridged. Life is but a property of

matter in a certain state of organization, and, given an

organization which can reproduce itself, then adaptation

and natural selection and, consequently, evolution will

be just as inevitable a process as is the actlon of the

second law of thermodynamlcs u

We now turn to the general question of the relationships between
an abstract scientific theory and the empirical observational evidence
supporting it. In this connection we inquire under what conditions a
theory may be considered to be false. One obvious instance in which
we would say that a given theory is false is if it is logically inconsistent,
That is, the statements which characterize the theory contradict one
another. Suppose, however, that the theory we are considering is not
inconsistent. In this case, there will be some model for which the
statements constituting the theory are all true. This model thus

represents a possible reality, although it is not necessarily a plaus-

ible one from our standpoint. Therefore, given some set of statements
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which we call a theory, if these statements are logically consistent,
we can postulate some collection of oEje_c'ts and relationships among
them together with some interpretation of tljx._e sentences of our theory
so that the theory becomes true of this dorﬁain. As we implied; the
interpretation necessary to make the statements of the theory true
may not agree with our common sense or our notion of reality. The
pertinent question heré is how one is able to make a distinction between
what is plausible and what is implausible. Our intuition suggests that
this must depend upon our observational experience, and that even
though an é.bstract theory which is logically consistent has some model,
this model may not conform to our empirical observations. We can
therefore conclude that a consistent theory can not be said to be false
without reference to observations or some means of characterizing
the domain to which the theory refers.

As a simple 'example of this, suppose that we consider the state-
ment '"1/x is a rational number'" as a theory. If this statement is about
the positive integers it is certainly true, but if we are referring to the
real numbers it is not universally true. Perhaps we a.re speaking about
all of the integers and not just the positive ones; then what is the situa-
tion wheﬁ x = 0? We might regard the statement as false in this case,
or we could say that it is meaningless or undefined. Notice, therefore,
that we must be able to specifically delimit the objects to which a theory
refers in order to be able to assert its truth or falsity. This corfesponds

to interpreting the words of the abstract statements into particular
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entitiés, just as we have been concerned with the meaning of x in the
example, These ent;lties coﬁld be determiﬁed, in simple cases, by
pointing to them one by one, or-they might be characterized by soine
property which they have in common;vbut either directly or indirectly,
certain observational evidence will be involved.

Now assume that we have some set of observations; can we then
say definitely when a given theory is false of these observations? Here
again we are faced with the dilemma of what a proper interpretation of
the statements of the theory is to be. Thus, if we had an interpretation
such that the statements of the theory were true of our observational
experience, what if we then made some observation which the theory
does not adequately explain? One possibility is that we may simply
make the interpretatioh of the concepts in the theory less restrictive,
thereby caﬁsing the theory to encompass the new observation, Con-
sequently, without changing the statement of the theory we are never-
theless able to extend it to accommodate new evidence. Even though
this may be technically possible, it is often not esthetically pleasing,
and rather than extending the old theory by reinterpretation, it is
discarded and a new theoretical framework is introduced in its place.
Under ﬁhat circumstances is a theory discarded and no longer con-
sidered to be scientific, and conversely, when can it be extended to
explain some new phenomenon? Describing the anomalies confronting
the scientiﬁq historian, Kuhn [ 22, pP. 2] makes the following comment

on this difficult problem.
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"Simultaneously, these same historians confront growing
difficulties in distinguishing the 'scientific' component of
past observation and belief from what their predecessors
have readily labeled 'error’' and 'superstition'. The more
carefully they study, say, Aristotelian dynamics, phlogistic
chemistry, or caloric thermodynamics, the more certain
they feel that those once current views of nature were, as
a whole, neither less scientific nor more the product of
human idiosyncrasy than those current today. If these
out-of-date beliefs are to be called myths, then myths

can be produced by the same sorts of methods and held
for the same sorts of reasons that now lead to scientific
knowledge. " . '

Thus, the question of what is science and what is merely super-
stition is irrevocably bound to the notion qf what constitutes a valid
interpretation of an abstract scientific theory-and thereby to the ob-
servations held to be relevant to it.

To say this, however, is only half of the préblem. The plausi-
bility or implausibiiity of an interpretation of some theory presumably
depends directly on the individual's metaphysical assumptions about
the nature of reality. Quine [30, p. 17] says the following about the
relationship between an individual's ontology and scientific theory.

"Our acceptance of ‘an ontology is, I think, similar in
principle to our acceptance of a scientific theory, say

a system of physics: we adopt, at least insofar as we
are reasonable, the simplest conceptual scheme into
which the disordered fragments of a raw experience can
be fitted and arranged. Our ontology is determined once
we have fixed upon the over-all conceptual scheme which
is to accommodate science in the broadest sense; and the
considerations which determine a reasonable construction
~of any part of that conceptual scheme, for example, the
biological or the physical part, are not different in kind
from the considerations which determine a reasonable
construction of the whole, To whatever extent the adop-
tion of any system of scientific theory may be said to be
a matter of language, the same—but no more—may be
said of the adoption of an ontology. !
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II. FORMAL LANGUAGES

In the introduction, we broadly outlined the problem area by
means of a number of examples. This chapter will establish'a specific
framework within which the questions we have raised can be meaning-
fully discussed. In order to do this, we shall present a formalized
theory. The question is, what type of theory is appropriate to the
study and understanding of information processes., Since we are in-
terested primarily in a description of how an individual, such as a
scientific researcher, gains knowledge and structures the raw data
he gathers, we should like to be able to characterize his personal
view of his science. Therefore, the techniques_used in well-
established domains‘ such as automata theory or information theory
would seem to be unsuitable, at least intuitively, because they do
not provide an apparatus for dealing with the subjective, differ-
entiating aspects of an individual's understanding. Also, since
communication by meaﬁs of the spoken or written word is a basic
process by which information is conveyed, our selection of a the-
oretical framework should be guided by the theory's ability to
explicate this phenomenon. These considerations suggest that an
individual's language is of prime importance in determining how he

becomes informed [ 44, p. 207]. Therefore, we shall formalize

the notion of an individual's language as it might relate to some _

restricted domain of discourse.
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Our definition of a language will be firmly based on the notion
of consfructivity. Certain classes of constructive procedures have
been studied in great detail, For instance, the methods of recursive
lfunction theory [20], Turing machines [43], the A-calculus of
Church [10], and Post production systems-[ZBJ have all been used
to characterize what we mean by an effective process. In spite of
the fact that the formalism underlying these methods differs widely,
their intent is similar, and, indeed they have been shown to be mathe-
matically equivalent, We shall use the term constructive to mean that
given certain primitives and rules for operating on them, there is a
well-defined procedure for deriving some result, In particular, the
structures associated with our languages will have this property. We
shall assume that any of the above formulaticns of constructivity co-
incides with our intuitive meaning of this notion, a view enunciated
by Church [10, sec. 621, |

We shall also be concerned with relating our definition of a
language to modern structural linguistics. In this regard, the follow-
ing statement of Chomsky's is of prime importance [7, p. 1].

"The central fact to which any significant linguistic theory

must address itself is this: a mature speaker can produce

a new sentence of his language on the appropriate occasion,

and other speakers can understand it immediately, though

it is equally new to them."

The ideas expressed in this passage will be shown to relate

directly to the question of constructivity. In addition, we shall make

use of many of the linguistic concepts pertaining to the syntax and
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semanﬁcs of langua‘ges, particularly those dealing with the formal
properties of grammars, | |

At this point, we should femark' that we are not interested in
language per se, at least in the normal sense of languages which are
spoken or written, Rather we are interested in language as a vehicle
embodying certain structure, and we shall regard it as a formal
apparatus for explicating what is going on internal to a man's
understanding, Therefore, this chapter will be devoted primarily to
a characterization of the structural properties of language.

Now that we have indicated the suitability of the linguistic
approach to the understanding of information processes, we shall
describe precisely what we mean by a forrﬁal language. Such a
language is to be distinguished from the natural languages, such as
English or German, which do not have sufficiently well-defined rules
for sentence formation, nor do they have a fixed vocabulary. However,
as indicated by the above discussion, our definition of a formal lan~
guage will provide a reasonable approximation to certain limited kinds
of natural language communication., Mathematicians and logicians
have used the notion of a formal language for a number of years. Most
often they are referring to a rigid and highly stylized language within
which a mathematical theory is expressed, the first-order predicate
calculus, for example. We should like to take a somewhat broader
viewpoint and examine the minimum conditions characterizing a for-

mal language.
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First of all, such a language should have a well-defined
vocabulary or set of symbols which can be cdmbined into meaningful
strings of the language. Thus, the voca;;tJﬁla;fy of a formal language
silould be fixed, although it may be extremely large., Secondly, the
sentences of the formal language should be certain finite strings of
vocabulary symbols., And finally, given a string of symbols which
constitutes a sentence, we should be able to specify a process for
deteri'nining the meaning of that sentence;

Obviously, in order to be able to describe a formal language,
we shall be forced to adopt some language, known as the meta-
language, within which we embed our description. Furthermore, to
determine the meaning of a sentence in a formal language, we shall
need some model or structure which expresses the actual or possible
interrelationsimips among the objects in the miverse of discourse of
the language. Thus, a sentence would be true of a model, if the
objects referred to by the sentence have the structure within the
model that the sentence requires.

The concepts developed in the area of model theory are quite
similar to those we are seeking for this purpose [ 31]. However, in
model theory, the models used are specific to the language being
considered, the first-order predicate calculus, for example. These
models are formulated in terms of set theory, and, indeed, set-
theoretic models comprehend those of model theory. Since we wish

to deal with a variety of languages and to characterize a model
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indepeﬁdently of them, our notion of model‘ wj.ll be based on set
theory. |

The decision to structure our m'odelé' in this way carries
with it certain basic metaphysical assﬁmptions. In essence, we are
irnplying that Aristotelian logic and the concept of extensionality are
valid for the universe of discourse of formal languages. That is,
we are assuming that what is relates to an existing external world,
in contrast to the phenomenalistic view that physical objects are
merely convenient myths, Extensionality dictates that distinct
objects or things possess different properties and are sensibly
differentiable., These assumptions seem reasonable, and they
clearly underlie all of modern science. We.the'refore make the
basic ontological assumption that the universe of discourse of a
formal language is set-theoretic in nature. By this we mean that
objects and réla.tionships denoted by the words of the language can
be modeled by abstract sets and are expressible within set theory.
This, of course, coincides with the practices of mathematical science
today. Hence, the models for our formal languages will be models of
axiomatic set theory,

A model of set theory will be interpreted as a set S of objects
in the universe and an associated ¢, which is a binary relation on S
satisfying the axioms of set theory. We shall take as axioms those
of Zermelo-Frankel set theory since we shall not need the class-set

distinction of the Hilbert-Bernays system [ 11]. We assume the

e i dhingdh — NPT So—

i b e s e e
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consistency of the axioms of set theory, thereby guaranteeing the
existence of a model., Notice fhat ‘there will be many models satis=-
fying the conditions we have specified. ‘Tl.lexr"evfore, for a given S,
in addition to the model where ¢ fs the "natural ¢', i. e, the
standard model, and other models on S isomorphic to some stand-
ard model, we are also allowing all non-standard models on S.
The natural ¢ of set theory will be denoted by €, and the collec-

tion of all models of set theory by I, where

= [MlM = <S8, ¢ > is a model of set theory. } S is fixed.

e et e

Fixing the set of objects S may seem arbitrarily restrictive,
but this is not so if we assume that S is large énough to contain a
set corresponding to every object in the universe of discourse. The
fact that the universe of discourse can never encompass everything
is irrelevant to this thesis and will notl be further discussed. S is
guaranteed to be at least countably infinite by the set-theoretic axiom
‘of infinity. In general, of course, a given formal language will refer
only to some subset of S.

In order to be precise in our formulations, we shall make use
of a special language to be used as a descriptive aid in characterizing
the semantics of formal languages. This language will be referred to
as the language of set tl:leory, and it comprises the standard formula-
tion of the lower predicate calculus with an identity symbol and a

single binary predicate ¢ . In addition, we shall refer to the axioms
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of set theory as expressions within this framework. Furthermore, we
will augment this language occasionally with a denumerable number of
names corresponding to particular elements of S. Both this language
and the formal languages we shall define are considered to be in the
&orna.in of discourse of our meta-language. That is, they are object
languages. The meta.-language itself is assumed to be normal English
together with an embodiment of the notion of a set. Thus, the meta-
language speaks primarily about sets and is concerned with character=-
izing the relationships among the language of set theory, other formal
languages, and the objects and relations to which they refer,

Using the language of set theory, we shall formulate the notions
of meaning for a formal language and complet.elry specify the semantics

of such a language. It should be clearly understood that when we say

that we assume the universe is set-theoretic in nature, we do not mean

that a speaker of a formal language thinks about the universe as a col-
lection of abstract sets, Rather, we mean that some hypothetical
omniscient being, who "'speaks' the meta-language, could analyze

such a speaker's responses to questions in terms of set theory, On

the one hand, we should like to make our ontology as strong as possible,
because to do so lends additional underlying structure to our character-
ization of formal languages. On the other hand, if our ontology is too
powerful, the allowable models may not include some possibilities
which we intuitively feel a,ré reasonable. In this casé, we would

preempt some of the aspects of understanding we are trying to

B
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explicate, Thus, our set-theoretic ontology has been selected as
one which has sufficient structure to permit formalization of the
semantics of a formal language without éiclﬁding models or con~
figurations of the universe which are obviously plausible,

In view of the preceding remarks, we can now specify more
precisély the minimal constituents of a formal language:

(i) A recursively enumerable set of symbols T. j

(ii) A set of sentences § € T* . (The notation T*
designates the set of all finite strings of elements
of T.)

(iii) For each model M = <S, ¢ > of set theory, and
each sentence vy €8, ®(M, ) is‘a function whose
value is the truth value of the sentence v for the
model M. ¢ is called an interpretation [ 14],

These three conditions are cerfainiy necessary for a language,
but are there other criteria which a formal language should satisfy?
Suppose, for instance, that we are given a string of symbols which
is a sentence of the language. We feel intuitively that t;here must be
some finite process by which we can determine fhis fact. [ 75 e 1]s
That is, there should exist some algorithmic method for parsing the
string and thus recognizing it as a sentence. If this werernot the case,
we would clearly be unable to ascertain the meaning of a sentence in g.\—

finite amount of time. Notice that we are not requiring the somewhat

stronger condition that any string of symbols can be classified either
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as a sentence or a non-sentence in a finite number of steps. In sum-
mary, this additional restriction means that the set of sentences of a
formal language must be recursively enumerable, The set of rules
determining the process by means of which a seﬁtence cah be analyzed
or generated is known as the grammar of the language. Properties of
various types of grammars have been intensively studied by modern
structural linguists, Our requirement that the set of sentences must
be able to be enumerated recursively by the grammar is generally
accepted as the weakest possible condition for a formal grammar.
Chomsky designates such grammars as Type 0 and discusses features
of these and other lﬁore restrictive grammars in [ 6].

Now consider the notion of the logical consequences of some set
of sentences., Following Tarski[39, chap. 16], we will say that a
sentence v 1is a logical consequence of some set of sentences €, if
whenever all of the sentences of € are trﬁé, then +~ is also true.
We mean truth here in the sense of condition (iii) above, that is, in
terms of the interpretation ¢ which is defined for any sentence v
and each model M of set theory. We remark that the concept of
Iogical‘ consequence as defined above does not necessarily embody a
notion of proof. Hence, knowing that 4 is a logical consequence of
€ does not mean that + is provable from €. A more thorough dis-
cussion of this distinction will be given in chapter IV,

Suppose that we havé a set of sentences € and some sentence

v such that for every configuration of the universe, i. e. model, for
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which ;3.11 of the sentences of € are true, 4 is also true., Thus +y is
a logical consequence of € .’ Notice that this relationship is independ-
ent of specific knowledge about the univ'er'se.' “For instance, we pre-
sumably cannot decide the truth of the sentence ''All men are mortal"
because this depends upon knowledge about the world which we are in-
capable of obtaining. But if we are told that '""All men are mortal" and
that "George is a man'', we conclude that the sentence "George is
mortal" is a logical consequence of the preceding two sentences,
Hence, our conclusion is based not upon the specific conditions for

the truth of each sentence, but rather on a relationéhip among their
truth conditions.

To require that we are able to decide in a finite numbef of
steps whether or not a given sentence is true is certainly too restric-
tive. Such a position istantamount to the strong verifiability theory
of meaning of the logical positivists, and, a;s mentioned above, this
has been refuted. But if we are given some set of sentences £ and
a logical consequence v of €, then we should have some finitary
procéss for deciding that this is the case. Tﬁat is, there must be a
constructive procedure for enumeratipg the logical consequences of a
set of sentences €. We now state these two additional conditions
formally.

Conditions of Adequacy for a Formal Language:

(i) The set of sentences § is recursively enumer-

able over T .
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(ii) For any set of sentences €< &, ‘the logical
consequences of & are recur.si_.ﬂrely enumer-
able over €&, |
At this point we shall introduce ‘a'd(.efinition of formal language,

and later, we will show it satisfies the conditions of adequacy.

Definition: A language & = <Syn, Sem, Rn> is a formal language if:
(1) Syn=<T, P, L, G, 0> is a syntax for £, that is
(i) T is a finite or countably infinite set, the
referent words or terminal vocabulary of £.

(i) P is a finite setand PNT =¢ . P is the set
of parts of speech or the non-terminal vocab=- .
ulary.

(iii) L is a finite set of rules of the form ao—f,

| where ae P, BeT . L is the lexicon.

(iv) G is a finite set of rules of the form o —f,
where a, e P*.' G is the set of grammar
rules, |

(v) oe P. o is a preferred part of speech, con-
sidered to be the part of speech of sentences.
(2) Sem =<C, v+ > is a semantics for &£, that is
(i) C assigns to each part of speech ¢ € P, a form-
ula F{x) of the language of set theory, and C

assigns to ¢ €P the formula x=0vx=1., We
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will typically write C,(x) rather than F(x) .
Cd will be called a semantic category.

(ii) T assigns to each rule of grammar R: « ayn e

1
an——Blﬁz' © % ﬁm €G , a formula of the language
of set theory F(xl, I I SRR yn) such
that F(xl, XZ,. RTINS ST -yn) is of

such a nature that it implies C xl) AeeeA

g
Cﬁngxm) A Cal(yl) Aseoe /\Ca’n(yn).1 TR will be
called a semantic transformation.

(3) Rn=< m,@ > is a realization space for £, that is

(i) m= { M|M = <S,e > is a.model of the language
of set theory}, where S is fixed, In represents
all possible configurations of the objects in the
universe,

(ii)(@ = {cplcp maps T into S1}. (ﬁ is the set of

interpretations of £ .

A number of comments need to be made to aid in the interpre-
tation of the preceding definition. Our notion of a syntax, for instance,
is closely related to the representation of a syntax in algebraic lin-
g\.:l.iStiCS. In terms common in that field we would say that < TUP, T,
LLUG, o> is a syntax[15, p. 8]. Also, the grammar G is an
arbitrary Post production grammar or general rewrite rule grammar.
There could obviously be special cases of a formal language where

the grammar was context-free or some other particular form.
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However, we ‘shall not be too deeply concerned with the details of the‘
syntax,. since the properﬁes of grammars such as this have received
a great deal of attention in the literature, for example [6, 8, 15].
Notice that there may be referent words, i.e. elements of T , that
do not participate in any meaningful strings of a language, since

they may not occur in any rule in L . vT’hus, by taking a suitably
large alphabet and all finite strings over this alphabet as elements

of T, we could presumably obtain a common T for a large class

of formal languages,

The most significant fequirement in our definition of formal
language concerns the interaction between the syntax and the semantics,
We have assumed that the grammatical analysis-of a sentence is not

| independent of the sentence's meaning, Therefore, in parsing a sen-

tence, when some grammar rule R applies, we can also apply the

R
of the resultant of R . In English, for example, the syntactic entities

corresponding semantic transformation 7, to determine the meaning
which we call phrases generally are meaningful strings of words.
Thus, 'the boy on the red bicycle" is a noun phrase and presumably
denotes some specific individual; whereas the string "boy on' which
occurs within the preceding phrase, but is not itself a phrase, seems
to be meaningless. Another way of looking at this condition involves
recognizing that there are typically many different grammars which
will generate a particular sét of strings. We are insisting that the

grammar chosen for a formal language be well-behaved in the sense
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that th;a jintermediate strings generated by it’, which are not sentences,
must have a sensible interpretation, Th_e fact that a speaker of a
natural language is able to analyze and ascribe a meaning to a sentence
he has never heard before lends intuitive support to an analogous view
for formal languages, since even though the complete sentence is
novel, presumably the words are known, and they are combined in a
manner conforming to certain familiar rules [ 42].

It is very important to realize that the semantic categories
and semantic transformations of a formal language have been specified
to be structural in nature, i. é. independent of particular objects in the
uﬁiverse. Thus, the set of objects belonging to a given semantic
category is a subset of all of the objects of S which share certain
common properties, For ir;stance, we might have a part of speech
BR which signifies that the members of the corresponding semantic
category are all to be binary relations. Thus the formula associated i
with BR would be F{(x) = Vy(ysx —Tudv(y=<uv>) /T“;r:&_-;: L
amples of grammatical strings having part of speech BR might be,
"< or "is taller than', These strings could be embedded in sen~
tences such as, "3 < 5", or "John is taller than Bob'. In any parti-

cular model, the objects belonging to the semantic category CBR

s s e

would be given by

where FM(X) denotes the relativization of the formula F(x) to the
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model M. Thus, the formula F(x) is expressed in terms of the
predicate e of the language of set theory, and FM(X) indicates
that this predicate is to be intérpreted as the particular ¢ associ-
ated with M.

The semantic category Co’ corresponding to the distin-
guished part of speech o, is uniqueliy specified for any formal
language. That is, by convention, we always associate F(x) = x =
0 vx =1 with the part of speech corresponding to sentence, and
we identify 0 with "false' and 1 with '"true'’. Consequently,
following Frege [ 14], a sentence of formal language denotes, or
has as its e.xtensional meaning, its truth value. If the set of de-
notations of the sentence is:

(i) {0}, the sentence is false;!

(ii) {1}, the sentence is true;

(dity {0, 1], the sentence is ambiguous;

(iv) ¢ , the sentence is meaningless.

We shall define the manner in which a sentence denotes its truth value
and discuss the questions of ambiguity and meaninglessness later in
this chapter.

The semantic -transformations of a formal language prescribe
relations which must exist among elements of S, and the domain of a
semantic transformation is restricted to those sets having certain

structural properties. Thus, the semantic transformation TR(XI, 5

xm,yl,-- X ,yn) s, corresponding to the rule of grammar R:eo,a,+v+ o

172 n
--—vﬁlﬂzv . ﬁm » i8 such that, for any model M,
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<x1, LRCI xm’yl’o-o’y’n> TR(xl'ooo'xm'yl’ono,yn)

chxch..'.xchc;‘“x---xcM )

[31 ﬁz ﬁ"m 1 %n
We will occasionally write < SEST o # X5V -'. V. > e-rM to
m’’1 n R

indicate that the elements of S identified with the x's and y's satisfy
the semantic transformation TR in the model M . Therefore, the
sets operated on by a sernantic transformation must belong to the
semaptic categories specified by the parts of speech participating

in the corresponding rule of grammar. If, in the course of parsing
some sentence, we have certain elements Vg_f__*S__~ identified with the
variables yl, Yos==*, Yn in the transformation ATR, and there is no

collection of elements of S corresponding to the Kpa X which
satisfies the conditions of the transformation, then that particular
parsing of the sentence fails on semantic grounds. A special case of
this is often called a vacuous description, as in ''the present king of
France'', which, although it is a grammatical English phrase, fails
to describe ar'ly individual. Similarly, semantic ambiguity results

if more than one collection of elements corresponds to the variables

Xysvees X, as might occur in the phrase ''the wife of Henry VIII',

1’
The syntax and semantics of a formal language are both
abstract mathematical entities. Only when they are associated with

some space of realizations do the meanings of strings in the language

become concrete. Thus, the models T, which we have previously
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discussed, :epl;esent various configurations of the actual objects in
the language's unix}erse of discourse, and the set of maps § char- |
acterizes the association of these objects with words in the language.
A particular o € § will therefore assign toa word w € T, some set
or sets in S, Notice that the properties of these sets will generally

vary from model to model, since each model has a distinct ¢ . In

much of the following ma.teﬁa‘;, we shallassumea—a.ﬁxed interpretation
¢ for a given formal language and hence refer to the interpretation o.
Now that we have described some of the salient features of a
formal language qualitatively, we shall state more formally the mech-
anism which associates meaning with a phrase or sentence. To do

this, it is necessary to define the notion of a pa>rse.

Definition: For 4 € T*, p=< @gs Qs t oy o:n> is a parse of v, denoted
by <«, p>, if:
(i) @, #[31‘82'°'ﬁk where f,—+vy, € L for i=1,*-+,k
and v = Y12 Yy -
(ii) For each i=1,++-,n there are Bi1r Mip 0 My3 0
€ P’Jf‘ such that: Qi1 T HyHio Mz @ =
Mgy Byg Byze 30d gy —pg, €GL

Hiq

Utilizing this definition, we can now specify the interpretation
to be assigned to a particular parse of some string . Therefore,

let

T:’Yl’yzo.-'}’k where 'Yi e'T )



29 =

and let

=< ] o >
P Qo, al, ’ &

be a parseof vy, ped and Melh,

e %
Definition: The interpretation Cpli/I of < v, p>, denoted by qi\/[(‘y'P)
is given by

(i) if p =< a, >=<<(31,[32,-'-,[3k>>, and if
M 5 %
cp(qri) € Cﬁi_ for i=1,¢+¢,k, then cpM(—y, P =

(<Ply) Plyy)y "Ry )>1 s
(ii) if p = <a0,a1,"',ah,ah+1>, h+1 %n, and
“h " 7\1)‘2' ';km“l- TTHe ViV 'vt.
a1 = MN T A HLT VIV Vs
R:u'1 see u;——-ul e €e G and

< x > €

1’. ’xm,y“l,nuo,yr,zl,---’zt

CPM(’Y, <Q’0,--o’ah>) and <Y1!Y2v"’:yr:}'l’"’1Y;>6Ti\{[,

: ‘ ; e

then <x13"°sxm! Ylli"'ly'sl Zl!""zt>€cpM('Ylp) ]
(iii) otherwise CP;&(% P) = ¢ .

We now show that it is possible to associate a unique formula of

the language of set theory with an interpretation Cp;':li('y. P) .
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Lemma: Let v = y;7,° " 7,€ T and P=<@qg s > aparse of
v, @ = plpz- .o |3k , Mel, 'I‘h.en therer is a formula F(xl, v s Ky
VATRRAE. yk) of the language of set theory such that: there are
<a1:"'!ak> GCPM('}”P) ﬁafld only if F(xl’..”xh’yl' 'yk)
holds for < Cp(»yl), soe ,CP('yh), agpeeraay > in M.

Proof: (i) if p =< ay >, then h =k and Bi - €. . Hence,
% . 3
CPM('Y:P) = { <CP('YI),""('P(’Yh) > } if and ODJ-Y if
M Bi o e =
©lyy)e cﬁiL = { x|F (%) }, by the definition of Pog -

Now, consider the formula F(xl, cH W ey Wy e ® ue Yh) =

B g p
F lx) AT 2(x,) Aeee AT Bix ) Axp=yy) Aeeeh (s =y,

Clearly, <a

& PR
M1
xh,yl,"_-,yh) holds for <cp(ayl),---,Cp(vyh),a,l,'-o,a

’l .
prreeray > ECP;/I('y,p) if and only if F

h>-

(ii) if p = <e *, >, and a; =ANpv,a,,, =A@V

L e T T | i+l
where X, 5, GT,VeP . R: pueG and H(x, U4, y, V) is the

; & 3
formula of set theory associated with CPM(ry, <a0, cee, ai>),‘
- = ™ — ’:( -
i. e. <a, b, ¢ > eCPM(-y, < g s @ >). if and

only if Hy (%, u§, ¥, V) holds for <%}, 2, b, T =,

CP('yf. denotes @(v), ®(y), ***, CP('yh) . Suppose G(z, y)

is the formula of set theory corresponding to t

-rlf\f ={<%Z y> ‘ Gm(E, “}_-r.) }. Now consider the formula

R’ i. e,

F(% T 7, ¥) =17 (HE T 7. ¥) A GE, 7)) and note
that<a, d, c >¢ Cp;:d( v, p) if and only if there are b

e — L
such that <a, b, c>€Cp;/I(-y, <0z0, RN ai>) and

M

<H, E>€TR o
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But this is true if and only if there are b such that

—

(% oy, V) A GM(Z’ y) holds when x = o(v) »

ar

M

W=a, y=b, v=c, and z=4d. And by definition
this holds if and only if FM('}—i, u, z, v) holds for
< ('pi'ys, a, d, ¢ >. Therefore F is the desired

formula, and the lemma is proved,

Sl
Theorem: Let = ALY Y, € i , and p a parse of 6 0, i.8.
S T Nz h Y
P @gs @ps *t s an> where @ = < 0>, Then there is a formula

F(xl, Kos s XKy y) of the language of set theory such that:

ae CP;:/I('y, p) if and only if FM(xl, YRR E N y} holds

for < @(y;),*cc,®ly),a > where a = OM or a=1y.

Proof: Follows directly from the preceding lemma and the fact
that COM = { OM’ IM} , where OM and l'M denote the "0'" and

"1" of the model M of set theory.

We shall now characterize the conditions under which a sentence
is ambiguous, either syntactically or semantically. Suppose « eTsﬁ -
and P; » iel isa parseof ¢y to 0, i,e, v is a sentence of the formal

language.

Definition: The sentence +4 is semantically ambiguous on a given

model Me n, if for some - p,, iel

cp:d(')’! pi) = [OM' lM] .
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Definition: The sentence + is syntactically ambiguous for a given

model M, if for some Py pj ;i 3l

Q7P = (01 and oy (vp) = (17,

Examples of sentences which are either syntactically or seman-
tically ambiguous are easy to find., Thus, in English, "They are flying
planes' is é.n often used illustration of a sentence which is syntactically
ambiguous, Similarly, the statement 2 =N 4 can be considered to
be semantically ambiguous since we do not know whether N4  denotes
+2 or -2, When we say that the above two statements are ambiguous,
we really mean that they are ambiguous from the standpoint of most
English speakers, That is, they are ambiguous with respect to models
or configurations of the universe admitted by these speakers. However,
it should be obvious that a given sentence ¢ may be ambiguous in one
formal language and unambiguous in another. This is certainly the
case in natural languages, also, since ambiguity may depend on factors
such as the speaker's context or environment, or his previous experi-
ence,

In the following discussion, we shall temporarily ignore the
guestion of ambiguity in order to simplify the explanations somewhat.
Under this restriction, we have CP;{(')/. p) = cpi';(y) » which may assume
any one of the values {0}, {1},0r ¢. Thus, given a sentence +« and
a model Memh, we have the following cases:

) w e s Sor M IF mud wrily CPL(V) = {1}, which

- is equivalent to FMI(xl, cw oy X v) holds for < Cp('yl),

oy @y, 1>,
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(ii) v is false for M if and only if o n = (0},
which is equivalent to 'FM(xl,;_; ., X y) holds
for < CP("Yl)r Y cp('}’h) s O3,
s %
(iii) v is meaningless for M, if CPM('y) = ¢ , which
is equivalent to Iy F, (x,,***,X ,y) holds for
M\ *1 *h
< cp('yl), ove, CP('Yh) >, This points out a useful

corollary to the preceding theorem.

Corollary: For a sentence y = yyv,°** 7, and a model M , there is
a formula G(x,-++,% ) such that @ (v) # ¢ if and only 1f7 Gyf(%qs

.;.,;;h) holds for <@(y;},==+,P(y) >.
Proof: G(Xl,'“,xh) = HYF(XI,"H Eps vy} .

The formula GM(xl, ey Xh) in the corollary holds for the sets
denoted by cP(ryl), LT CP(»Yh) exactly in thg case where ~ is a mean-
ingful sentence, But if 4 is not a meaningful sentence, what then?
The general problems caused by admitting that some grammatical
strings of a language may fail to convey any meaning have troubled
many logicians and linguists. As a consequence, a variety of ex-
plana.tions.and solutions have been proposed. In almost all cases,
however, meaningless sentences are treated in a rather ad hoc
fashion. It is our contention that such sentences may be incorporated
within the framework of a formal language in a much more natural
manner., Further, it is quite necessary to do so in order to explicate

the issues raised in the introduction, The implications of our approach
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will become more apparent in chapter IV when we discuss the question
of probability.

Consider the sentence, "Green ideas sleep furiously.', an
example proposed by Chomsky [5, p. 15] of a sentence which, although
grammatical in English, would generally be said to be meaningless.
Chomsky's method of handling such a sentence is to require that the
grammar of the language be sufficiently powerful to exclude this as a
grammatical string, U7, chap, 2] . This seems to be undesirable for
several reasons, First of all, t.o attempt to eliminate all meaningless
sentences on syntactic grounds alone will necessarily cause the grammar
of the language to become increasingly complex, since such strings must |
fail to parse completely., Furthermore, the syntax of a language may
be unable to accomplish this because the exclusion of such strings may
depend upon the specific meanings of particular words and not simply on
grosser structural classes to which they belong, Thus, in the limit, we
could conceivably be forced to assign a separate part of speech to every
referent word, thereby rendering the syntax useless as a general set of
rules for sentence forma.ti;)n. One form of syntactic analysis which
inherently AinvolwAfes this problem is co-occurrence analysis [18], This
involves examining grammatical strings of the language to determine
when one word may be substituted in a stringlfor another without
destroying grammaticalness of the string.

This brief discussion does point ocut one particularly interesting
fact about the structures of languages in general, and our formal

languages in particular. That is, there will typically be a trade-off
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between the syni:actic and semantic components of a language. We
may be able to make one mlore powerful while letting the other be-
come weaker and still preserve essentially the same set of meaning-
bful sentences. Within certain limits, this is certainly possible, but
in the extreme, the language will lose its intuitive relation to reality,
Thus, the semantic categories of a formal language are intended to
correspond to generic classes of perceivable entities, and the cha.r-
acterization of these classes may depend upon non-linguistic con-
siderations involving the speaker's experience., Therefore, although
.this trade-off may be theoretically arbitrary, in realistic situations,
it would not seem to be so.

In English, for example, the distinctions between an anima.tre
noun and an inanimate noun are extremely difficult to articulate. We
must draw on a great deal of our knowledge about the world to char-
acterize these two classes of entities. If, in a formal language, we
attempt to discriminate these on a syntactic basis, thenlthe associated
semantic categories will be characterized by extremely complex set-
theoretic relations, or possibly these concepts are not even struc-
turally expressible. In the latter case, they would not be appropriate
notions for a formal language, since we demand that the syntax and
semantics should be clearly delineated and that the syntactic aspects
be purely structural. It is important to realize that the semantic
categories of a language a:re fundamental to the entire semantic
structure of the language., They represent atomic classes of entities

which share certain generic structural properties, and the semantic
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transformations can be considered to be explicitly developed or

constructed on them, Thus the semantic categories embody the

deeper aspects of the semantics, and since they are in a one-to-one

correspondence with the parts of speech, their number and com-
plexity directly affects the grammar. Additional ramification of
semantic categories may result in a simplification of the grammar,
but this occurs because certain relationships which were previously
explicit in the grammar, now have become implicit in the deep
structure of the semantics,

Another circumstance in which a seﬁtence may be meaning-

less is when it contains a vacuous description, as we mentioned

‘previously, for example, '"The present king‘of France is bald",

Russell [32] takes the view that such a sentence should be considered
meaningful but false. The difficulty with this analysis is that it is not
clear just how negation is to be handled, To say that the above sen-~
tence is false is to say either that there is no present king of France
or that he is not bald, This strains normal English usage and by so

doing confounds the very task we have set ourselves. Similar remarks

" hold for other proposed solutions that make such sentences "meaningful'.

In our scheme, however, if a sentence is true of some model, then the
negation of that sentence is false of that model, provided that the
negation of the sentence is expressible within the formal language. In
a similar fashion, the negation of a meaningless sentence will also be
meaningless, Recall that the extended interpretation q;:;\/i of a string

which is not meaningful is null, i. e. denotes the empty set of the model
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of set fheory M . This is related to the approaches adopted by
Quine, Frege, and Carnap. >For a discussiox.l of their viewpoints
on this problem, see Carnap [4,7 chap.‘ 11,

One very important distinction inherent in our method is that
we explicitly deal with a collection of models M. Thus a sentence:
may be meaningless for one model but meaningful for another, For
instance, in the previous example, if it is not '""known' whether of
not France currently has a king then there will presumably be ad-
missible models for which the sentence asserting that the king is ,
bald is meaningless and other models for which the sentence is
true or false. This question of ""knowing'" some fact will be expli-
cated by our notion of observation which is discussed in the following
chapter. However, it is sufficient at this point to realize that sen-
tences of a formal language will generally be true of some models,
false of others, and meaningless or ambiguous on still others., A
further difference is that if a description or phrase of the language
does not denote a unique entity, we consider the sentence in which
the description is embedded as ambiguous, whereas Carnap, for
example, says that such a sentence is meaningless., Thus for a
model possessing two kings of France both of whom were bald, we
would say that the sentence '""The present king of France is bald' is
true of the model, assuming the sentence has only two distinct inter-
pre_tations.

The use of quantification in the statements of a language raises

some rather subtle problems, as indicated by Quine [30, p. 13].
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For instance, if ¥ x P(x) is a statement of the predicate calculus,
then the range of the bound variable x is assumed to be over all
objects in the universe of discourse. In this case, the world which
the language speaks about is essentially homoageneous, i.e. all
objects belong to the same structural class. In our formal languages,
as in all natural languages, the total collection of entities referred to
does not have this property. In a formal language, the semantic
categories partition the universe of discourse into distinct classes.,
Consider the statement "There is an x such that x is red', What
objects are potentially represented by x ? Certainly not every
element of the universe of discourse, since things like '"ideas'' are
meaningless in this context. How are such thinés excluded? By the
definitions of semantic categories and transformations for a formal
language, the range of a quantifier is over exactly those entities in
some semantic category. Thus, in the pr'eceding example, x might
denote any object whose part of speech was concrete noun. Observe
that there may still be many objects in the semantic category which
are not in the range of ® , i,e. are not named in the language, al-
though they possess the generic structural properties of the objects
which do have names. A similar situation exists for negative state-
ments such as "That is not a book'. Here again, the object referred
to is not completely arbitrary but must belong to the same semantic
category as bocks do. Thus many of the problems associated with the
range of quantifiers are handled simply by formalizing the notion that

the universe of discourse of a language is not homogeneous.,
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We mentioned briefly in the preceding discussion that a language
might not be able to express both a sentence and its negation. That is,
the language may not include any symbol or string of symbols which
are always interpreted as '"'not’’, In general, the set of referent words
T of a language may be quite arbitrarily mappgd by an interpretation
¢ into the elements of S, Therefore, if the symbol """ appears in
T , there may be interpretations @ which do not associate the cus~
tomary meaning of '""not'" with this symbol., In the case of this parti-
cular symbol, however, we have already implicitly presumed an
understanding of its meaning in our basic ontological assumptions.
The reason for this is that we formulated the axioms of set theory,
which define the .a.d.missible models in terms of the first-order
predicate calculus. Thus, symbols such as "', A", 11y 11y,
and "4 appear in the underlying axioms of our system of models,
and we have tacitly assumed that, for ex.ai‘nple, in the set—theoretic
formula F(x) = G(x) N H(x) , the symbol "A'" has a well-defined
interpretation., As a consequence, if we have a formal language
which is incapable of expressing these basic logical concepts, then
this language would seem to be somewhat pathological. Of course, a
fdrma.l langua;ge which does include a logical notion such as '"not"
will not neceésarﬂy associate this with the symbol "', In English,
for example, we can generally negate a sentence v by saying "It is

not the case that ',
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One other minor point regarding our formal language definition
is that we have assumed that the entire terminal vocabulary T con-
sists of ;referent words., Note, however, that the entities denoted by
the interpretations of the words are not required to participate mean-
ingfully in the semantic transformations. For instance, the elements
associated with words such as ''the'" or "an'' could act essentially as
dummy arguments, and their semantic categories would possess some
correspondingly trivial properties. Words of this character are some-
timmes called function words and .trea,ted in a special fashion, but there
is no reason for doing this in our formalization,

At this time, we return to the conditions of adequacy for a for-
mal language, which were stated earlier in this-cha.pter, and show

that our concept of a formal language satisfies them.,

Theorem: A formal language £ satisfies the conditions of adequacy:
| (i) The set of sentences 8 of £ is recursively
enumerable over T,
(ii) For any set of .sentences e -of £, €8, the
_ logi(;al consequences of € are recursively

enumerable over £,
Proof: (i) The quadruple < TUP, T, LUG, 0> is a syntax for

& . It is equivalent to an unrestricted rewriting

system and therefore the set of strings of sentences

generated by it is recursively enumerable. [ 6, p. 358 ].
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(ii) Suppose we have a set of sentences € of £ and
a sentence +~ which is a logical consequence of
€, i.e. for every Me, if Cpa;d('y') ={1} for
'y'e € , then cpa:;w('y) = {13}. We must show that
there is a constructive procedure by which we
can prove « starting with the set of sentences
€ ., We have previously demonstrated that for
any sentence ~ , there is a formula FY of the
language of set theory which holds if and only if
v is true, i.e. when cp>;/[(fy) ={1}. A careful
review of that proof will establish that the passage
from v to F7 is constructive, ind.eedldepending
entirely on the constructive character of the
grammar, Let Z be the set of such formulas
corresponding to €, and let LR
corresponding to « . By the definition of logical
consequence, for every Me M, if F'Y| holds for

M
1
F7 e ..‘—Jr‘, then FY_ holds. Therefore by virtue of

M
‘the Gddel completeness theorem for the first
order predicate calculus, FV is provable from J,
(See Lyndon [23, p. 56], for én appropriate form
of this theorem.) Consequently, there is a con-
structive procedﬁre which determines that 4 is a
logical consequence of €, and the logical con-

sequences of € are thus recursively enumerable

with respect to €,
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Notice that the preceding theorem does not yield a method of
proof for the language & in general, since fhe procedure for enu-
merating the logical consequences of a set of sentences € may de-
pend upon the nature of €, The following corollary shows that we

can obtain a procedure which is independent of &,

Corollary: For any formal language &, there is a method of proof
for £, i.e. a procedure such that for any set of sentences &, the
logical consequences of € are recursively enumerable with respect

. to €, using this procedure,

Proof: The requirement here is that the enumeration procedure ob-
tained in the preceding theorem be uniformly recursive over the set
of sentences &, in the sense of Kleene [20, p. 233]. To see this,
note that the method for deriving the set of formulas J from € is
independent of the constituents of €., That is, for a string yeT,
the derivation of cp*('y) and hence F7 is constructive énd does not
depend upon the properties of €. Furthermore, if a sentence v is
a logical consequence of €, i.e. F7Y is provable from F by our
theorem, then this proof procedure uses only the rules of inference of
the predicate calculus, and consequently is independent of the nature
of a.x.nd FY . Therefore, the complete procedure for making the

' passage from € and 4 to F and FY, and the subseéuent proof of
FY from F is independent of €, Hence, the enumeration procedure
is uniformly recursive over 8 and thus the logical consequences of a

set of sentences € are recursively enumerable by it,
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Even though a method of proof for a la_mguage exists, there
may be no constructive procedure for determining thg actual rules of
interference which it comprises., That our proof does not give a
constructive way to find such procedures results from the use of
the axiom of choice in the proof of Gddel's completeness theorem.
Furthermore, the method need not involve any of the commonly

accepted rules, such as modus ponens, which are associated with

ordinary logic. Nevertheless the notions of provability and logical
consequence become synonymous, even though in any particular case

one may not be able to find them.
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III. OBSERVATIONS

A basic concept of science is that of an observation. Obser-
“vations are the means by which scientific theories are either confirmed
or refuted; they provide the connection between the reality of the world
around us and the abstract statements of our theories. In science, we
often think of observations as resulting frém the performance of some
experiment. More generally, however, individuals make observations
of the events and phenomena they continually perceive, not necessarily
in connection with some well-defined experiment. We shall be con-
cerned with characterizing observations in this broader sense, and in
this chapter we will de.velop a precise notion of observation and consider
its relationship to formal languages.

Suppose, for example, that an individual points to some colléction
of physical objects and exclaims, '"Look, the cup is on the table!, Is
this what we mean by an observation? Although it may be tempting to
say yes, more careful examination indicates that this is merely the
observer's interpretation c;f the relationship existing among certain
objects which hé perceives, The words the observer uses to express
what he sees are determined by his language. We shall treat obser-
vations as extra-linguistic phenomena, and therefore they will be in-
dependent of any particular formal language. Notice that this permits
two individuals to observe the same event and each describe the

occurrence differently.
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We have made the basic ontological assumption that the
ﬁniverée is set-theoretic in nature, and we vﬁll make further use of
this assumption in formulating our definition of observation. Thus,
we shall presume that any perceivable relation among objects in the
universe can be expressed within the language of set theory. This
is not to say that an individual translates what he sees, either con-

' sciously or unconsciously, into set-théoretic notions, but rather that
his perception can be expressed in these terms at the meta-level.
Now, assuming that observations can be defined somehow within the
framework of set theoz;y, are there any restrictions on the character
of this definition? One reasonable constraint is to require that a
single observation include only a finite number of objects. Notice
that thié does not presvuppose anything about the complexity of the
relationships that may be perceived among these objects.

Before presenting our definition of observation, let us briefly
examine some of the conditions which have traditionally been accepted
as restrictions on what is actually observable. Russell [ 34], for
example', maintfa,ins that it is impossible to perceive that "one of these
roads leads tc Rome', or that "either John or Bob is over six feet
tall"., The problem here is the disjunction implicit in these obser-
vations; thus, in the first case, we can ohly perceive that some
specific road leads to Rome. Similarly, quantification and negation
appear to introduce problen":s.' To observe that '""the book is not red,

for instance, would not be possible since in order to do this we must
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perceive that the book is, say, blue. Also, the observation '"all men
are mortal' would be ruled out on the gréﬁnd; that we can never
actually observe all men. We do not wish to take direct issue with
these arguments of Russell's, since they are intuitively plausible, at
least in the case of normal human observers, On the other hand,
they are not germa;%f"i:o the analysis we shall present., Therefore, we
shall not be bound by these restrictions, and we will consider obser-
vations as a somewhat more general phenomenon. By so doing, we
leave open the possibility that an observer could make an ""observ-
ation'' by receiving a communication from some individual whan he
considers to be very relia;ble. Also, we might visualize some non-
human observer such as a computer whose éens‘ory inputs and .per-
ceptive -capa.bilities are different from those of humans.

The following definition associates a formula and a collection
of objects with an observation, and thése, in conjunction, act to char-

acterize a set of models.

Definition: An observation O = <F(x1, sy Xn), ap,- .. an> where
F(xl, cee, xn) is a formula of the language of set theory and ars e sa
are objects, i.e., a, € S.

Intuitively we think of the observation <F(x1, LRI xn) R
ays°ccsa > as the perception that the objects ajs**°,a  are in the
relationship specified by the formula F(xl, e, xn) . For a given

model or configuration of the universe, either the objects a,,+««,2a

1’ n
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will have the structure required by F(xl’ . oiny xn) or they will not,
according as the relativized formula FM(xl, oos ¥ xn) holds or does

not hold for a,,***, a . Therefore, let

1

moz._ {MlFM(Xl'---,Xn) holds for al’...,an}

be the set of models, . €M , associated with the observation O.

O
Note particularly that the formula F(Xl’ cue ’ xn) may contain other
variables Yqe** e ¥y which are not free in ¥ but are bound by
quantifiers. Thus, the x's correspond explicitly" to specific objects,
while the y's are implicitly associated with related objects, not ex-
plicitly percéived. We emphasize that Tﬁo is not identical to the set
of models satisfying the formula Hxl Exz' .o E}-cn F(xl, cee, xn) . For
any model, this formula merely asserts the existence of some arbitrary
collection of objects in that model related in the manner specified by
F(xl’ ey xn) . The models in "‘o' on theA other hand, are required to
have this relationship among particular objects, which themselves rnajr
not be able to be characterized set-theoretically, Thus, it is only the '
relationship that is observed to exist among objects which is set-
theoretically specified. The objects actually observed in that relation-
ship are a quite separate aspect of the observation, |
Suppose M, el is the true model, i.e., M, represents the
actual configuration of the objects in S. Normally, we would expect

that for an observation O, MO emo; however, this is not guaranteed

in any way by our definition since we have not required that every
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observation be true of the real world, We are thus free to speak of
possible observations, as for example in conéidering the possible
outcomes of an experiment,

If we have several observations, then under what circumstances
would we say that they are consistent? Intuitively we feel that this is
so if there are possible configilrations of the universe for which every

observation is true., We state this condition formally.

Definitidn: A set of observations 2 is consistent if

OeQ

Suppose that an observer makes a very large number of obser-
vva.tions which are consistent. Each new observation he makes, which
is consistent with his previous experien‘cev, delimits a smaller set of
models or possible configurations of the universe. Eventually, at
least in this hypothetical case, he arrives at a single model M e In.

If this is the true model M_ , then he "knows' the complete structure

0
of S.

Theorem: A maximal set of consistent observations 2 defines a

unique model M e .

Proof: Suppose this is not the case, i.e., let Q define N € where
M, M en. Thus, M =<S,e > and M'=<S, ¢! >, where the binary
relations ¢ and ¢' are not identical, Hence, there are objects a,

b € S such that "'a e b" and Y"—ae' b, Therefore the observation
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O = <F(x1, xz) , a,b > where F(xl,xz) = *; € x, is such that Memo

and M' €Mg * Clearly, the set of observations Q U { O} is consistent.

This is a contradiction, therefore Q defines a unique model,

If we have two sets of observations, perhaps associated with

different observers, we would like to know under what conditions

. these two sets of observations can be considered to be related, The

concept of relatedness is independent of consistency and only depends

upon whether the two sets of observations have in common some

specific objects, together with particular structural relations among

them.

Definition:
(1)
(ii)

Two sets of observations Ql : QZ’ are related if either

The set of ocbservations Ql U Qz is not consistent.

There are non-empty 2, , @), such that Q) c@q ,
. _

92. c Qz and

or vice-versa.

Condition (i) of this definition states that two sets of observations are

related if they are in basic conflict, This seems intuitively reasonable

since they will not disagree unless one requires the existence of a

structure among some set of objects which the other refutes, Thus,

they will be related by virtue of the common objects they reference,
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even though they may not agree on the structural interrelationships
among them. Condition (ii) says that if two sets of observations are
consistent, they are related only if some subset of one necessarily
implies that certain of the observations of the other are valid. Notice
that this concept is very similar to that of logical consequence. How-
ever, since we know nothing about whether these observations are
expressible in a language, that termiﬁology is inapplicable. Suppose
we observed that '"grass is green' and that ''snow is white'. These

two observations are clearly consistent but are unrelated and might

be said to be independent of one another. This suggests that independence
of sets of observations is the converse of relatedness. It is worth men-
tioning that ifvthe sets of observations each consist of many distinct
elements, then they may either be related in a trivial way or a large

percentage of the individual observations may be correlated,
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IV. PROBABILITY AND INFORMATION

Using the concept of an observation, _-fc‘_ogether with our defi-
nition of formal language, we shall now develop an information
measure. As previously indicated, a formal language will be con-
sidered to characterize an individual's view of some particular
.Vdomain, and thus the information measure we obtain will be sub-
jective in nature. This notion of a non-objective definition of in-
formation is in sharp contrast with the classical information the-
oretic approach in which the purpose is to develop methods for
studying the pro‘blems of communication networks and the coding of
signals [37, 19]1. Thus, in information theory, the informational
content of a sentence from today's newspaper might be equal to that
of a sentence stating Fermat's last theorem on the Basié thaf the
relative probability of occurrence of the groups of letters contained
in each was the same. Nevertheless, we shall make use of many
of the criteria established by information theory in formulating our
definition of a subjective measure of information, The fundamental
difference in our approach involves the characterization of the
probabilitir. We shall be concerned with probability primarily in
the sense of degree of belief, and we will demonstrate that such a
probability arises naturally from considerations of the manner in
which a forfnal language structures its universe of discourse.

We have previously introduced the notion that M, the col-

lection of models of set theory, represents all possible configurations
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of the universe. That is, given only the basic ontology of set theory,
each model M el expresses a possible structure among the objects
of the universe, i.e. the elements of S. However, a given formal
language will impose additional structure on M in a manner reflect-
ing the logic of that language. Suppose, for example, that two mod-
els Ml . MZ e differ only with regard to the properties of some
object b. Then if £ is a formal language which does not refer to
b, either explicitly or implicitly, we expect that M1 and MZ

will be identified as equivalent configurations of S relative to £.

At this point, it would perhaps be useful to clarify the notion
of the "logic!" of a language and its relation to provability. A funda-
mental concept in this regard is that of implicaﬁon. Unfortunately,
however, this seemingly intuitive idea has been modified, extended,
and restricted in a myriad of differing ways in the literature. Part
of the confusion is due to the fact that we ére dealing with several
languages—namely the meta-language, the language of set theory,
and our object languages or formal languages— each of which may
possess a different kind of implication. Suppose, for example, that
the symbol "D'" occurs in the object language. That is, A DB is
allegitimate sentence of the object language, where A and B are
also sentences. Then, "' is material implication if the sentence
A DB is true if and only if either B is true or A is false. Another
possibility is that "' is strict implicatic:;n. This notion is not well

defined in the literature but is generally associated with modal 1ogic..
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It is usually construed to mean that the interpretation of A B in-
volved some substantive relation between the interpretations of A
and B . Thus, one can not decide the interpretation of A D B by
examining either A or B alone. In English, we might say that,
'."Grass is green' materially implies '""Snow is white'", but this
would not be an example of strict implication since these are pre-
sumably unrelated truths,

Now consider the meta-linguistic statement A '"implies"
B, where A and B are sentences of the object laqguage. We
stress that this in no way presupposes the existence of an object
language symbol for implication of any kind. Again, there are
several possible interpretations of this statement. One of the
most common is analogous to our definition of logical consequence;
that is, B is true of all models where A is true. This is frequent-
ly written as A= B . However, we might also mean that B is some-
how provable from A . The notion of proof is generally assumed to be
syntactic in nature and consequently only involves some process of
symbol manipulation. The proof procedure must be specified by some
set of inference rules describing how a proof may be constructed, but
these rules need not be based on implication, or such familiar in-

ference rules as modus ponens. The statement A ''implies" B in

this sense of proof is often written as Al B . Our second condition
of adequacy for a formal 1aﬁguage essentially requires that these two
notions of implication coincide relative to the meta-language. Hence,

for our formal languages, AF B if and only if A+ B.
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Since these- two notions are thus equivalent for formal lan-
guages, one can characterize the logic of a formal language either
semantically or syntactically. Notice that a rich interrelationship
structure may exist among the sentences of a language independent
of which possible state of the universe entails. Implication of the
type A F B embodies these relationships. Formal languages then
are precisely those languages where this underlying logic is con=-
structively definable in terms of éymbol manipulation, or formal
syntaxes.

We now wish to investigate in detail how a formal language
imposes structure on its universe of discourse. ' The fundamental
idea here is that the syntax and semantics of the language together
with the interpretation ® establish a correspondence between sen-
tences of the language and certain sets of models contained in .
The result of this is a partitioning of I i.nto disjoint subsets each
of which is definable by some collection of formulas of set theory.
These partition sets, however, do not have equivalent status with
respect to the formal language, even though they are all equally
well-defined at the meta-level. To explicate this distinction, we
introduce the two basic notions of an element and a state of a for-
mal language. Our definitions are given in terms of the meaning
or truth value of a sentence on a model Melh . Recall that given
a sentence ¢S, then for any model Meh, v is either true, false

or meaningless on M.
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Definition: Given a set &' £ & of sentences of £, the element
N determined by $' is the maximal set of models such that for

M

M, € n, 4 € 8' either:

(1) v is true for both M, and M,,
(2) « is false for both 1\/1',1 and MZ'

(3) 'y is meaningless for both My and M,.

Definition: Given a set 8' € § of sentences of ¥, the state N

determined by &' is the maximal set of models such that for ML,'

M, € I, vy €8 either:

(1) 4 is true for both M, and M,, -

(2) + is false for both Ml and 1\/12

We will say that the set of sentences 8' defines the state N,

It follows immediately from these definitions that each state
 is also an element, but in general not every element is a state. This
fundamental distinction will be discussed in detail subsequently, but

first we identify two common instances of a state,

L.emma: For any language £, the entire set of models I is a state,
and if negation is expressible within &£ , the empty set of models ¢

is also a state.
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Proof: In the definition of a state let 8' = ¢ , the null set of sen-
tences. 8' clearly defines m. Hence N ‘is a state., Now assume
that if  is a sentence of £, then -y (the negation of ) is also
a sentence of £. Let 8 = {4, 7y} . Obviously, 8 defines the

empty state ¢ .

The concepts of element and state are fundamental to é,n
understanding of the material that follows. We will therefore at-
tempt to convey their intuitive meanings. The speaker of a formal
language deals exclusively with states. A state is a collection of
models which can be directly characterized or defined by enunci-
ating some set of sentences of the language. These sentences there~
by specify a configuration of the universe which can be recogni:zedlor
described within the speaker's language, and for any given model
M e v, either the structure specified by the sentences exists in that
model or it does not. Consider the set consisting of all the states
of a language; it defines every configuration of the universe which
the language can express.

Notice that it is possible that two distinct sets of sentences,
8' and 8§'' define the same state N. In order to characterize this
case conveniently, we introduce the notion of logical equivalence,
Thus, two sets of sentences é' and 8'' will be said to be logically
equivalent if they define the same state. Recalling our previous

discussion of implication, this clearly means that every sentence
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of 8' is a logical consequence of 8'', and vice-versa. Further-
more, our second condition of adequacy for a formal language
requires that the sentences of either set be provable from the sen-
tences of the other.

An element of a language is an extra-linguistic concept,
since in general the speaker of the language has no precise way of
characterizing it. This is because some of the sentences which
are used to define the element may be meaningless on all of the
models which constitute the element. At the meta-level, of course
elements and states are both defined by formulas of extended set
theory and are therefore conceptually the same. But the speaker
of a formal language can only assert the truth or falsity of a sen-
tence, not that a sentence is meaningless. We shall make use of
the definition of the elements of a language to simplify the notions
of probability and information, but it is important to bear in mind
" that elements are not generally describable within the formal lan-
guage, |

Suppose we now consider two states of some formal language
L. Tﬁat is, we enunciate the sentences 8' and $8'', where 8' de-
fines the state h' and 8'' definesthe state N''. We then aska
speaker of the Iangtiage £ which of these two configurations of the
universe, or states, he considers most likely to describe the actual
situation. His answer to this question should reflect his subjective
view of the relative prﬁbabilities of the two states. If we imagine

that we could continue this process for all pairs of states describable
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in his formal language, it seems that we would then have char-
acterized, at least roughly, his view of the world relative to the
formal language. Savage [35] approaches the questiﬁn of prob-
| ability in a similar fashion and defines what he calls a personalistic
érobability, which is used to formulate a theory of decision making.
Now what is the basis for our speaker's answers? Certainly they
are affected by previous experience or observations, but we shall
be most interested in his answer to questions for which he has no
directly applicable observational data. His assignment of a degree
of belief or probability to two states which can not be discriminated
on the basis of previous cobservations will be indicative of his meta-
physical assumptions about the world.

In general we can conceive of a set of observations which
would be true on exactly those models which are defined by some
set of sentences of a formal language. That is, the rno.dels satis-
fying the observations coincide with some state. It therefore seems
quite natural to assume that an observer can assign some probability
to an observation. This can be interpreted in the sense of expecta-
tion, 1 e, the likelihood of observing a certain structure among ob-
jects in the universe. We have stressed that an observation is in-
dependent of language. Hence, the assignment of a probability to an
observation is not directly related to the observer's ability to express
that observation in some formal language., Rather, it specifies the

observer's metaphysics and could be considered to be a part of his
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ontology. We sha]_.l now state in precise terms our assumption that
an observer can assign some probability to an observation.

Let a be the class of all observations, that .is, the class -
of all sets definable by formulas of extended set theory. For
mOEa’. mo = {M]| for some forrl;lula Fxg,eee, xn) of extended
set theory and some collection of ijects agstey a.neS ’

Fy %, ¢+, x ) holds }.

Given the class of sets (I , consider the o-algebra gen-
erated by ({ , denoted by . é: is closed under the formation of
countable unions and complements, and therefore is also closed
under the formation of countable intersecfions. & is a o-algebra
on M, since Me@ by taking as the formula T some theorem of
set theory. We then postulate the probability P as a measure on

the o-algebra &, such that P(M) = 1. The requirement that P

be a measure means that:
(1) P(¢) =0,
(2) P(hl) < P(i"t1 th) for hl’ N, ell,

(3) For any sequence of sets {hi} such that

hjﬂhk:qs forj;EkA, PUhi = ;Pmi)'

i=1

Thus, P satisfies the axioms of classical probability theory.
When we first introduced the notion of a probability, we referred to

the probability assigned to a state of some formal language. In the
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' course of defining this probability, we will make use of the prob-
ability P, which will be called the observer's a priori probability.
At a minimum, we would like to know that any state i.s P-measurable,
or measurable in the Carathéodory sense. Every member of a

is measurable in this sense, therefore it is sufficient to ensure that

e

any state, for an arbitrary formal language, belongs to (£ .

Lemma: Given a formal language £ and a state h of £, nel?

and hence is P-measurable.

Proof: Let 8' S8 be the set of sentences defining N, §' is clearly
countable. For each ye€ 8", let F'Y(EE, y) be the formula of extended
set theory corresponding to ~ , where X = a, the set of elements of
S denoted by the referent words of 4, and y =0 if 4 is false of
every MeNh; y =1 if 4 is true of every Me . Let

Mpy = {M | FKII(_}E, y) holds for X =a , y as above] .
By definition, mey €@ for each v €8', and therefore m mFY e .

ye§'

But h = m mF’Y by the definition of state. Hence hGCZ_ a.nd is

768'

P-measurable,

Having established the concept of an observer's a priori prob-
ability, we now wish to define a relation which is fundamental to an
understanding of the structure imposed by a formal language on its

universe of discourse., The question is, under what conditions can a
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language distinguish between two different configurations of the
universe? That is, any two distinct models actually represent
different configurations of the universe, but it need not be the case

that a given formal language can articulate this difference.

Definition: Given a formal language £, and sets of models hl 5
hz Sh, hl and h.2 are distinguishable (hllhz) if there is a sen-
tence y € 8§ such that vy is true of N, and false of nz . Other-

wise, hl and ‘nz are indistinguishable (hlllhz) .

Thus, two sets of models are indistinguishable if every sen-

~ tence of the language either has the same set of truth values on both
of them, or is true (or false) of one but meaningless on the other.
 In the same sense that a single model M € M represents a configura-
tion of the universe, an arbitrary set of models NS represents a
partially specified configuration, or algro‘up of configurations having
in common exactly those structures which occur in every M e N.
Distinguishability requires that a sentence be able to express a dif-
ference between two partially specified configurations. We now state
without proof some simple properties of distinguishability and in-
distinguishability.

' '
(1) If hI/hZ and hl ghl , then hllhz,

c 1 1
(2) ¥ Y'tl//h2 and hl Ehl , then hl//hz,

(3) Forany nh#¢, h//m,
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(4) ForAany n, n/¢,

(5) I n‘n2 # ¢, then N /M, .

Perhaps contrary to expectations, the relation of indistin-
guishability is not an equivalence relation. It is clearly reflexive—
n/n by property (5)~and just as obviously symmetric, It is not,
however, guaranteed to be transitive. That is, if hl/’/h2 and

N, /N, , then it may be the case that h1/h3 . To give a simple

3 2
example, let hz =M. By property (3), it is certain that hI//nZ
and hZ//h3 , for any hl and h3 . Thus if indistinguishability
were a transitive relation, then any two sets of models (denoted here
by hl and h3) would be indistinguishable‘, which is patently false,

We have said previously that the collection of all of the
states of a language characterizes every configuration of the uni-
verse expressible within the language. However, these configura-
tions (and the associated states) are not ir-ldependen’c of one another.

. We would like to establish an independent set of states such that the

conditions postulated by a given state preclude the possibility of being

in any other state. To this end we make the following definition.

Definition: Let © be the set of all states of a language £. A state
Ne & is a minimal state if there is no other state W € &, h' £ &

such that n* € h.,

Definition: Given sets of models hl ' hz and a set of sentences €,

€ agrees on hl’ hZ if for any y€ €, and for any M1 en; , M

. . : * *
v is meaningful on Ml and M2 , and cle('y) = CPMZ('y) :

e h

2 2"
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We now prove that given any consistent set of sentences, there

is a minimal state on which those sentences have the same truth value,

Theorem: Given a language £, and a set of sentences ¥ < 8, each
of which is meaningful for some model M€ M, then there is a mini-

mal state N, such that ¥ agrees on {M}, n.

Proof: Let t = {&l #S& € 8 and there exists an M' e h such that

ok b3 £
wMJV)#é:hrveﬂ,aminhn=¢Mdv)fm:yeﬁﬁ:

(1) t# ¢ since Het,

(2) Let C be a chain of elements of t under set

1 ]
inclusion. Consider Uﬁgf = . Clearly 3] g8,
‘ ;&f eC
We must show that there is an M € M such that
- 1
Ppl7) £ 8 for ved . |
1 ) —
For v eéb’ T A E N I there is a formula F'Y(x) such
s Y .
< v e 9 > L BN i
that CPM( 'Yi), . CPM( ’Yh) satisfies FM(XI, . Xh) if and only if
CP;/I( Y) # ¢ , by a preceding corollary.
Now, we have previously assumed that within the language of
set theory, we have a '"proper name' for each element of S in the

range of @ , i.e. for each element {®(y) I'ye T}. Let a 7”na.me”

®(v) , and



a = a y if cp('}’i) = cp('Yj)
where a Aa is J
HoY a_ ¢ a ¥ ly) # Py ’

Thus EY(a ,--+,a ) holds if and only if <@, (y,),** ">
My Th b M1

cpM(th) > satisfies F‘YM(xl, oo ’}ﬁl) . Now, let € be; the following
set of formulas of extended set theory.
g {E'Y(a. , v ,a )IYE&I} o
"1 - " _
Suppose there were no model which satisfies all of the sen-
tences (of the language of set theory) of €. Then by the complete-
ness theorem for set theory, there would be a finite subset of €,

gl

,"',E’Yk with no model, But 'yiEﬁ’leC,i:l,---,k and C
18] 1t
is simply ordered. Therefore, for some d ec s fyie‘ggf g L& 1,
.++,k and hence there is a model M' such that CP;/I;('y) # ¢ for
1 Y . :
'yet‘ﬂ . Therefore, E “(a - A - ] Yi=1,*++,k holds in
i1 Y2 Vih,

Y Yy
Thus with the interpretation of a.,Y as ofy) , these E A ke

’l‘..’ E

M
have a model M' ., This is a contradiction. Therefore, € has‘some
model, say M'.

Now, € has a model M'', but we cannot guarantee that the

interpretations of the a 's are ®(y})'s in this model. That is, we
- Y
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are only assured of this for the a.,y's occurring in E'Yl, R !
However, we can get a permutation p of S which carries the
interpretations of all a 's in M'" iﬁto ®(y)'s . Thenlet p in-
duce an ¢ corresponding to g'' of M' ; the resulting model
M=<3S, ¢ > is the desired one such that, for each 'ye;&', E'Y(Efy)

holds in M , and hence <cpM'(fyl), vee ('yh) > satisfies

’ CPM
5 1
F’YM(xl, “oey xh) . Therefore CQ;/I(—};) # ¢ for yeﬂ .
Thus, 5&1 is an upper bound in t for the chain C, and by

Zorn's lemma, t has a maximal element ;ﬁ . We now claim that
h={M ,(PI'VI:(’y) = %('y) , for ye &}

is a minimal state of £, i.e. there is no non;empty state N' of
£ suchthat W SN and n' # h. Suppose N is not a minimal state.
By the definition of state N is clearly a state; therefore N must

not be minimal. Hence, there must be a Yo ¢ # such that the set

M' |y i(y) = @y (y) for yed Uly)

is not empty. Therefore, U {'Yo} has a model, contradicting the
hypothesis that ;g is a maximal element of t, Hence,' N is a
minimal state of £, and since M < 55,74 agrees on {M}, h,
Since the set of sentences § of a formal language may be
countably infinite, the.collection of minimal states is in general
non-denumerably infinite. Thié is because any subset of § poten-

tially defines a unique state. The minimal states of a formal
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language represent the most precisely specified configurations of
the universe expressible within the language, However, it is not
the case that every minimal state is necessarily distinguishable
from every other. Consequently, the collection of minimal states
is not the independent set of states we are seeking. In order to
obtain an independent set of minimal or atomic states, we introduce

the notion of a basis for a formal language.

Definition: A set of minimal states B of a formal language £ is
a basis for & if for any hl , h?. € B, hllhz and for any element

€ of £, there is some N € B such that h/€.

Thus, the basis is a set of minimal states such that any col-
lection of models N cl is indistinguishable from at least one member
of the basis, We now prove that it is always possible to choose a

basis for any formal language £,

Theorem: Given a formal language &, for any set of minimal states

& of £ which are pairwise distinguishable, there is a basis B for

£ such that 63,

-

Proof: Let % be the set of minimal states of £. K £ ¢ by the pre-

ceding theorem. Then let
p={g|6¢c G <%, and for W, W''¢ g, m/mry o,

(1) p# ¢ since Sep .
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(2) Let C be a chain of elements of p under set

inclusion, and consider U a = C}+ . Clearly
gec

q+ c % We must now show that for N y e g+,
n'/n'' ., Suppose N'/n'. Now n' eqi € C and
e eqj € C . Hence, either C}i qu or C)j Eqi .
Assume qi Qq,j . Therefore N', n" EC),j and
n'/n' . This is a contradiction. Therefore, (}+

is an upper bound in p for C, and by Zorn's

lemma p has a maximal element B,

We claim that B is a basis for £. We must show that for

any element € of £, € is indistinguishable from some nen,

Suppose this is not the case, i. e, € is distinguishable from every

h'e®B, Let

o= {'YI vye &, for some Ne®, Vh'/{’:by-y}. _

By the definition of distinguishability, every sentence in H is mean-
ingful for any Me & .’ By the previous theorem, there is a minimal
state N such that M agrées on {M3} and Nh. Hence, n is a mini-
mal state v-vhich is distinguis-ha.ble from every N' € 8. This is a
contradiction, and therefore any element € is indistinguishable

from some N € B, Thus, B is a basis for £ and < 8,

At this point it is appropriate to indicate some general prop-

erties of a basis for a formal language, and to compare them with
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similar concepts in the literature, First of all, a formal language
is not guaranteed to have a uniqué basis. | Actually, this will only
occur in certain speciai cases. More will be said about the impli~-
cations of this fact for probability and information in a subsequent

section.

Corollarz:‘ A formal language &£ has a unique basis % if and only

if the set of all minimal states ¥ is pairwise distinguishable.

Proof: "if" - By the preceding theorem § has a basis B = .
Since % includes all minimal states 3= %. Yonly if'' - Suppose
there are minimal states Nh', n'' such that n'/n''. In the preced-
ing theorem llet e={n'}. Thus £ hasa basié containing N, but
not h'' by definition. Similarly, £ has a basis containing h'' but
not h'. These are clearly distinct bases for £ . Since this is a

contradiction, for every W', h''e%, AL

Several other important properties of a basis for a formal
language are directly related to the notion of meaninglessness, as

is shown by the following theorem and its corollaries,

Theorem: Let £ be a formal language. If a set of models Ino S

is such that for every sentence y€ 8, 7is meaningful for each

Memn , then for any basis B of £, & B.
. | °© BES
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Proof: Consider any basis B and some M € mo . Suppose that

M LJSB B . Therefore, by the definition of basis, there is some
minir:ga.el state N € B such that {M}/n. Let §' be the set (pos- |
sibly empty) of all sentences which are meaningless on N, i.e.
meaningless on some M' e n. Now, since 8" - g - g is a set
of sentences each of which is meaningful on both M and h, 8"
must clearly agree on {M} and h if nW/{M]}, and since 8§' con-
sists of all of the sentences which are meaningful on N, there is
some truth assignment to the sentences of 8'' such that 8'' de-
fines N, But 8" ag.rees on {M} and h; therefore Meh by

the definition of a state. This is a contradiction; hence

h < UB for any basis 8,
°© BeB

Corollary: Let £ be a formal language with a basis SBO . If for

every sentence y € 8§, v is meaningful for every M€ U B i
‘ Be®
o

then 580 is a unique basis for £.
Proof: In the preceding theorem, let mo = U B . Therefore,
_ BeB
o

U B < U B for any basis 8B, and since any B is a maximal
Be€B Be®

set of pairwise distinguishable minimal states, B = B .
Be ZBO BeB

Further, since the set of minimal states contained in any set of

models is unique, B, is a unique basis for £ .
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Corollary: If £ is a formal language such that for every sentence

v €8, v is meaningful for each M€ W, then £ has a unique basis

B8 such that B = h.
BeB

Proof: Immediate from the theorem and the preceding corollary.

Let us examine the condition that every sentence of a formal
language be meaningful on each model M . One possibility is to de-
mand that no sentence contain any description such as '"the present
king of France' which is vacuous. This appears to be unreasonable
since there will generally be plausible configurations of the universe
in which France has no king or perhaps has more than one king. Of
course, it is possible to define a formal Ianguége such that every
grammatical string of the language is meaningful, but languages of
this type will generally be quite_primitive and will not provide suit-
able épprcximations to the natural 1angua.lge phenomena we wish to
explicate. For example, even the commonly used computer languagés,
which tend to have very simple grammars and are certainly formal
languages in our sense, generally admit grammatical but meaning-
less sentences, Thus, in most versioné of FORTRAN we may write
the statement Y = X even though the variable X appears nowhere
else in our program. The result of this is that Y will be set to
some completely arbitrary and unknown value, thus making this
statement meaninglesé. In this case, X can be considered to be a

vacuous description since it does not denote a well~defined entity,
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Some logicians have proposed technical solutions to the
problem of vacuous or non-unique descriptions. Perhaps the most
satisfactory of these have been suggestéd. by-Quine [29], Frege [14]
| and Carnap [4]. Their methods é..re similar in that they assign to
any non-unique or vacuous description some particular entity in the
model. This has the result that sentences containing such descrip-
tions become meaningful, and thus all grammatical sentences have
some associated meaning. Unfortunately, however, the specific
meaning assigned to a sentence containing a vac‘uous description,
for example, then depends upon the properties of the entity taken
as the denotation of such descriptions. Since the properties of this
distinguished entity will vary f:rom-one model té another, the truth
conditions for a sentence are not structural. That is, the procedure
for deriving the truth value of a sentence becomes dependent on
factual information, namely the partiéulal'- attributes of the distin-
guished entity relative to the médel in question.

In our method, the truth conditions remain structural since
we explicitly allow grammatical sentences to be semantically mean-
ingless, Indeed, as we have previously mentioned, this appears to
be an essential characteristic of most commonly used languages.

By referring to our definition of semantic category, we can get a
slightly different view of this problem. If we did require that every
sentence in our formal languages was to be meaningful on each model,

then the semantic categories of the language would necessarily be
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devoid of strucfure, since if they were not, the interpretation func-
tion ¢ might assign an enf:ity of the wrong structural class to some
referent words, at least in some models., To make the semantic
categories this weak is tantamount to assuming that the universe of
discourse is homogeneous with respect to the formal language,
which contradicts the idea that there are implicit structural distinc-
tions among various classes of objects.

In Carnap's approach, he further requires that a language in
his sense be such that the atomic sentences are independent, i.e,
that no set of atomic sentences is contradictory. In our case, how=-
ever, this is much too restrictive since the non-null states of the
language exactly reflect the observer's view of consistent sets of
sentences within his language. Thus, the fact that some set of sen~
tences defines the empty state implies an inconsistency relative only
to the observeér. In a different formal language, these same strings
of words may be consistent and have a model.: Thus, in one formal
language the two sentences, "It is freezing' and ''It is not cold' may
be consistent, while in another formal language they could be incon-
sistent by virtue of the logic of the language, as reflected in the
semantic transformations,

Also important with regard to the literature is the relation-
ship of our formal la.nguagers to the concepts of model theory [21, 317 .

For example, suppose we have a formal language with referent words

n n n.
Py s 2P s where Pil is an n,-ary predicate symbol, Then if
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for some model M =<S§,e > of set theory, the interpretation of
these symbols is such that
n, ‘ - :
— :H :H & =< ) >
CP(PI ) ey lvx <X €y u]. uz uni(x ul' ’ uni )) ’
n, n

then <8S, Cp(p1 IR CP(pmm) > is a model in the sense of model
theory since it comprises some domain of objects or individuals
and a set of relations on this domain, Thus, we can easily con~
struct particular formal languages which are equivalent to the
languages of model theory—the first-order predicate calculus,
for instance—and we can then choose an interpretation @ so that
some model of set theory embodies the necessary characteristics

of a model of model theory.

Suppose that we do take the first order predicate calculus
with predicate symbols p?l, sy, pnI;n as a formal language. Then
if we consider mo ; where the interpretaﬁon function @ satisfies
the above condition for each model M emo , the sentences of this
language will all be meaningful on every model of mo . As shown
in a previous corollary, this implies that mol is contained in the
union of any basis for the language. Furthermore, as in model
theory, any distinct set of atomic sentences will define some non-
empty state, and consequently every minimal state will be contained
in mo . Thus, the basis will be unique and its union will be equal

to mo , and the minimal states are then the elementary equivalence

classes of models exactly in the sense of model theory [31, p. 55].
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Although languages of this type are not our primary concern, this
reduction to model theory is significant in view of the many powerful
results in this area which have contributed to our understanding of
the foundations of mathematics.

Having developed the idea of a basis for a formal language,
we shall now make use of this in defining a probability for such a
language. In terms of classical probability theory, the event space
will be the collection of all possible sets of observations and thus
will include the states of any given formal language., We wish tobe
able to assign to any observation a numerical value indicating its
probability relative to a formal language. ‘That is, given a language
we can determine the set of associated states, and this, together
with the a priori probability, should be sufficient to specify the ob-

server's expectation of making some observation O .

Definition: Given a formal language § having a basis 58 and an

observation O, the *-probability of O is given by

P B
B
% _ O
P B
BeS

whe_:re P is the outer measure induced by the observer's a priori

probability P .
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Note that we have used the outer measure P s rather than the
measure P, to define the *-probaiaility. -The‘ reason for this is that
if the basis is composed of a non-—denumévr.‘ablérlcollection of basis
elements, we can not in general pro;ve that the union of all basis
elements is P-measurable. Use of the outer measure P simply
ensures that the *-probability will be well-defined, For many lan-
guages, however, P and P will be identical on basis elements.
Thus, if we consider the first-order predicate calculus or other
similar languages common in model theory, where all sentences
are meaningful on the basis, it can easily be shown that the union of

all basis elements is P-measurable. It is also easily established that

if UB is P-measurable, then so is B, where O is any
Be® .

Be®
Bﬂmo

observation.

We see immediately that P=:= dépends directly upon the notion
of indistinguishability, Thus, the *-probability of an observation is
directly proportional to the measure of those basis elements from
which it is indistinguishable. Recall that the basis can be considered
as a collection of independent atomic states of the language, and if an.
observation cannot be distinguished from some basis element, it be-
comes identified with the configuration expressed by the sentences
defining that basis element. The following are easily proved properties

of the *-probability,
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(1) P U-‘f' = P = 1.

Be®
s £+ 3
(2) P )sP(h. UM_) .
Ol ol. OZ
s
(3) P(p) = 0.
However, it is not the case thatfor Mm_ Nh_ =4,
2y 9
S sk ’ £
P(h, Un,) = P (h, )+P (M, ) ,
Ol OZ O]. 02

and thus, in general P* does not satisfy the traditional axioms of
probability. Although this is at first disturbing, it is closely related
to established results in the literature. Consider the case of languages
based upon the lower predicate calculus. If we restrict the notion of
state to only those sets of models which are definable by a finite num=-
ber of sentences, then P* is additive on those states. However, in
the case of states defined by an infinite number of sentences, states
that are not 'finitely axiomatizable', it iS-kIIOWn [39, chap. 12] that
their complement is not a state, Thus, we would not expect additivity
in these situations. Therefore, even in the case of the lower predicate
calculus, when there are more than a finite number of states, P#= is
not a probability, since we are lacking the additivity property on the
sf)a.ce of models in the sense of model theory. In general, this non-
additivity is a direct result of the fact that indistinguishability is not

an equivalence relation.

sk
The possibility that P B| =0, and hence that P is un-
. Be®
defined, has been ignored on the grounds that such a language possesses
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a set of minimal states which in no way reflects the observer's ex-
pectations. The definition of the *-proba.bilﬁy was given in terms of
a single observation O . In general, however, some‘set of obser--
vations 2 will have been made prior to observing O . Providing that
the resulting set of observations, QU {0}, is consistent, we simply
take the conditional *-probability to determine the likelihood of Qb-
serving O given the set of observations 2, where this conditional

probability is given by

%
P"(monmﬂ)

F |y - P (g}

where 'm.;2 denotes I mol o
O el

Very generally speaking, the *-probability of some observation
O may be interpreted as being inversely proportional to the observer's
estimate of the rarity of O. Thus, if P*(mo) = 1, the observation
O is a certainty in terms of the observer's previous experience and
his assumptions concerning plausible configurations of the universe.
On the other hand, if the *~probability of O is very small, then O
represents to the obs-erver a significant discovery relative to his cur-
rent beliefs,

Prior to this point, we have considered an observer's forma.i
language to be static in nature, However, it is very likely that as an
observer gains experience his formal language will change in some

way which is dictated by this experience. That is, new alternatives
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or states may be introduced and old ones either eliminated or ﬁ]ade
less probable. Thus, the proces_sers of observation and language
change are strongly coupled. The mechénisrﬁ of this change and the
general problem of the dynamics of 1anguage are not explicitly
tr-eated in this thesis since many additional concepts relating to the
- rate of acquisition of observational evidence and the temporal as-
pects of language would be necessary. Névertheless, at any given
time, a formal language can be used to characterize the observer's
view of reality, and we shall later indicate that, in many instances,
this formél language is inherently quite inflexible and resistant to‘
change.

We shall now turn to the question of infbrination, or what in
our sense might more appropriately be called informativeness to
reﬂecf its suﬁjective nature. Suppose we have some observer and
a formal lapguége which expresses his éurfent viewpoint on some
domain of interest to him. In addition, we naturally presume that
he has some previous experience as characterized by a set of ob-
servations 2. He now makes a new observation, perhaps as the re-
sult of performing some experiment. We wish to know if this ob-
servation increases his information, and if it doés, by how much in
comparison with some other hypotheticai observation. We have
stressed that the *-probability completely specifies his expectations"
.with respect to all observations. Hence, the information gained
should be a function only of this probability; and we define it in a

manner analogous to information theory.
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Definition: Given a formal language £, and an associated probability
P , the information gained on observing O given the prior set of

observations 2 is

P*(mg)

KO|e) =log P'(ny) - log P*(mn nmg) = 1ogm
Q 0

Before discussing the implications of this definition, a few
comments are necessary. First, since we are interested only in
information in a relative sense, we shall not specify the base of the
logarithm. Secondly, we are assuming that the new observation O
is consistent with the previous experience £, and hence that
Mg nmo #® . Finally, we nof:e that by taking mﬂ- :Im, i.‘e. no
previous experience, vlve obtain a measure of the "absolute'" infor-
mation'in O relative to £,

The information measure has the following properties:

(1) If mOlgmoz, 10, @) 21(02| Q) ,

(2 ¥ M. Oh_ = . , then
Oy 0O, O,

I(O3|Q) = 1(01| Q) +'1(02|Q U {oi}) .

Property (1) says that if f'C)1 is a more precise observation

than O, , then the information to be gained by observing O1 is
greater than that gained by observing 02 . As used here, the
terminology ""more precise' means that the structural relations

among the objects of the universe as expreésed by Ol » necessarily

entails the existence of the structure expressed by C)z . Property (2)
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is a condition on the additivity of the information. That is, observing

O1 followed by O

taneous observation of O, and O, . Taken together, these two

2 yields the same gain in information as the simul-~

properties ensure that our notion of information conforms to the in-
fo'rmation theoretic definition of the a fortiori information, or the in-
formational gain resulting from the selection of some particular
alternative [36, p. 12].

Extending the analogy with information theory somewhat fur-
ther, suppose we have some finite set of observations Ol’ see, On-

such that ]'no ﬂmo =¢ for i, j=1l,+++,n and i# j. Thus the ob-

1 J
servations are mutually exclusive or inconsistent, Also, assume that
n , .

Umo = I; these observations might therefore represent the n
\ i
i=1

possible outcomes of some experiment, We can then express the in-

formational gain which the observer expects will result from actually

performing the experiment,

Definition: Let € be an experiment with possible outcomes Ol' cnny O
n

such that U mO' =M and Ino'mho. =¢ for i, j=1,+--,n and
i=1 : : J
i#j. Then the expected gain in information for an observer with

b
formal language £ and probability P . to perform the experiment

€ is
n

o e
ele = - ZP (moil M) log P (moi| m)

1=1

where € is the set of prior observations.

n
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In order 1.:0 facilitate a clearer understanding of the formal
apparatus developed in this chapter, we shall now interpret some of
the more important concepts diagrammatically. Note that the dia-
grams we shall present are intended as heuristic aids only and do
not constitute an adequate method for dealing with many of the more
complex aspects of the problem. We begin by assuming that the space
of models M of the universe of discourse is arranged on our diavgramrs
in such a way that the a priori probability P of any observation O
is proportional to the area encompassed by the set of models mo
associated with that observation. Figure 1 illustrates two strictly
consistent observations Ol and O2 such that P(Inol) > P(moz) .

i, e, O1 is more probable than OZ based on the observer's a priori

probability, The shaded area, mo nmo , represents the set of -
1 2

models for which both observations hold, and all models contained
within it cannot be discriminated from one another until further ob-~
servational evidence is obtained.

In a similar fashion, we can illustrate the way in which a sen-
tence of a formal language partitions the space of models. Therefore,
suppose that some sentence 5y is true of some models, false of others,
and meaningless on still others; the spacé M might possibly be parti-
tioned as in Figure 2. Again, interpreting the areas as being propor-
tional to the a priori probabﬂitsr, this particular sentence is most
likely to be false, in the observer's view, This diagram shows the
general case for a sentence v, but any of these three areas could

be null for some particular sentence. For inétance, there might be
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Figure 1. Two consistent observations.

i /[

/

&

y true \ y
o
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meaningless

/ vy false g |
f
f
/ |
/ l

Figure 2, Partitions induced by a sentence « .
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no models where the sentence y was false; such a sentence would be
a tautology with respect to the language since whenever it is meaning-
ful, it is also true., Notice that we have characterized an observation
by a closed curve and a sentence by lines bisecting the space M. This
is an artificial distinction for the sake of visual convenience only,
since in either case the sets of models are defined by formulas of set
theory. |

Now consider the superposition of Figures 1 and 2 as shown in
Figure 3. The observer has made the two observations O1 and O, ’
and we are interested in how the sentence 4 relates to them. Suppose
he makes observation O, first; the sentence + 1is ambiguous for
this observation since there are models contained in mol for which ,
v is true and models for which +« is false. Therefore, y does not
aid in the characterization of Ol . If he now makes observation O2 §
then, as previously pointed out, the shaded area will represent the
only models compatible w.ith both observations, The diagram shows
that + is false of all of these models, and thus + can be used to
express what has been observed. Notice that « is not ideal for this

purpose since there are many models for which ~ 1is false that are

not contained in mo n mo . That is, the observer's observational
1 2

experience is more refined or precise than the sentence + can
express.
Suppose, on the other hand, that 02‘. was the first observation;

the sentence + is clearly not true of O2 , but neither is it false,
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—Lem

Y
meaningless

Figure 3. Relationship of the sentence  to the observations

O1 and OZ . (Superposition of Figures 1 and 2)
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since OZ admits models for which +« is meaningless. The models
contained within Tnoz are equivalent to one another on the basis of
the current observational evidence, and therefore + is not useful
inr describing 02 since the observer can only assert the truth or
falsity of a sentence. Referring to our definitions of elements and
states of a formal language, we. conclude that the set of models for
which « is trué is a state, as is the set of models for which « ‘is
false, but the set of models where + is meaningless is not, al-
thoﬁgh it is an element. .
In order to clarify the notion of a basis somewhat more, con-

sider the following simple example; assume that we have a language

whose only two sentences, Y1 and Yo » are:

v, ¢ "Spiders are responsive to light",

Y, : "Spiders eat ants" .

These sentences are supposed to have been generated by some syntax
and their meanings to be expressed by an associated semantics.

Figure 4 illustrates how these two sentences might partition the model
space. To see how each of the sentences could be either true, false,
or meaningless, independent of the other, consider the word "'spiders''.
This word will be assigned some part of speech and thereby be associ-
ated with a semantic category, 'perhaps the class of animate objects.
The formula 'defining this semantic category will express the generic
structural properties which are required of animate objects. However,

it may be that in some possible configurations of the universe, the
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Figure 4. State diagram for a simple language having

two sentences.
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class of entities denoted by the word '"spiders' fails to satisfy these
requirements, i, e, the interpretation @ of '"'spiders'' does not be-
long to the appropriate semantic category. For instance, in a given
model, the class of "spiders' might include a spider which had just
been stepped on and killed, Does this entity still satisfy the struc-
tural requirements of ”spidernéss"? It might, if for example these
requirements iz_ivolved only the molecular composition of the object
in question, or it might not, in which case any sentences speaking
about spiders would be meaningless for this model. An analogous
situation holds for the other referent words in these two sentences,
and thus, in general, the implicit structuré required of the objects
in the domain of the language may be violated in éome plausible con-
figurations of the universe. If this is not the case, i.e. if the sen-
tences are meaningful, there are certainly valid interpretations of
the words in both sentences which render tﬁem either true or false,
As we have previously mentioned, the deep structural aspects of a
language, which are in part embodied by the semantic categories,
are essential to the constructive generation and analysis of strings
of words into understandable sentences. On the other hand, the very
irnpbsition of this structure dictates that these sentences are not
universally applicable to every conceivable reﬁlity.

Since the two sentences of our example language are inde-
pendent in the manner discussed above, Figure 4 shows a non-empty
element correéponding to each of the nine possible truth assign-

ments, and the symbols indicate the particular truth assignments
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defining the elem-ents. For instance, the element T¢ is the set of
models where 71 is true aﬁd Y2 is meaningless. The states of
this language are defined by the following sentence/truth value
combinations: T-, ¥-, -T, -¥, TT, TF, FT, FF, where a
Mot indicates that the corresponding sentence is not used to define
the state involved. In addition to the states defined by these sets
of sentences, M and the empty set of models are also states. Tﬁe
minimal states are those defined by TT, TF, FT, and FF, and
any one of thesé is distinguishable from each of the others. As we
have shown, in this case the basis is unique and comprises the
entire collection of minimal states.

As a final example, we illustrate a situation where the basis
is not unique. Figure 5 shows the state diagram for a hypothetical
language having three sentences Y1 Yoo and 3. FEach element
of the language is characterized by an assignment of truth values to
Y1+ Y2 and Y33 these values are specified by the sequénces of
three symbols shown on the diagram, which will be considered to |
name the corresponding elements. There are seven minimal states

which are defined by the following sets of truth values:

TTT, TFT, FTT, FFT, FFF, -TF, T-F ,
where ""-" indicates that the correponding sentence is unnecessary
to define that state. Notice that the two minimal states T@¢F and
¢TF are indistinguishable, 1 e. there is no sentence which is true
of one and false of the other. As a consequence of this, there are

two distinct bases for this language, namely,
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Figure 5. State diagram for a simple language having a

non-unique basis.
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48
i

{TTT, TFT, FIT, FFT, FFF,$TF}
and

8_ = {TTT, TFT, FIT, FFT, FFF, T¢F}.

2

I

Also significant is the fact that the logic of this simple language pre-
cludes the existence of certain states. For instance, the state de-
fined by TFF is empty, indica'ting that this is an inconsistent z-a,ssign-—
ment of truth values relative to the semantics of the language. If the |
meanings of these three sentences were completely independent of one
another, then there would be 33 = 27 non-empty elements, nine
minimal states, and thé basis would be unique, However, we empha-
size again that an essential characteristic of nearly all formal lan-~

guages is that they embody some non-trivial logic, and the sentences

of these languages are consequently not independent.
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V. EXPERIMENTAL OBSERVATIONS AND SCIENTIFIC THEORY

In this chapter, we shall utilize our formal definitions of prob-
ability, information, and language to interpret some of the problems
confronting a scientific researcher. Therefore, suppose that we are
considering a scientist who is about to perform some experiment, Let
us imagine that this man is an experimental biologist who is attempting
to study the processing of visual information in certain classes of in-
sects, Specifically, we will assume that he is interested primarily in
examining the behavior of certain types of neurons and their functional
relationship to external visual stimuli. In order to accomplish this, of
course, he must have available a certain amount of experimental equip-
ment, and he chooses some appropriate portion of this equipment té
aid him in any particular experiment. This apparatus constitutes the
experimental environment and is instrumental in determining exactly
what quantities will be measurable in the experifnent. Thus, for ex-
ample, he may be planning to insert tiny microelectrodes into one of
the insect's optic lobes and then to record the electrical signals from
nearby nerve cells. It could be that he is then interested in examining
the detailed electrical waveform of a spike discharge from these cells,
but we shall suppose that he is most concerned with the temporal be-
havior of the neurons in encoding the visual signals. Thus he will not
find the analog wave shapes as relevant as the times of discharge of

spikes from a cell, and consequently he views the neuron's output as a. ‘



-92 -

train of -essentially zero width pulses andrco_n_crentrates his attention
on the intervals between these. pulses. Of 6ourse, in order to deter-
mine exactly when a pulse occurs,r i. e. 4.W'hen ‘a'cell discharges, he
must adopt some criterion, such as the time when the voltage meas-
ured at the electrode exceeds some threshold. He might then record
the neural si.gnals, after they have been amplified and filtered suitably,
on a device like a strip chart recorder, but since the firing times of
the cells are the fundamental items of interest he can simply digitize
these times and collect these data using a small computer system.

We will suppose that he takes this latter course, thereby enabling him
to collect a large amount of data and save it for subsequent analysis.
Of course, he could also perform some analyéis in "real time" as the
experiment proceeds but this is not germain to our exal.rnple.

Now, with regard to the actual experiment he is going to per-
form, he will perhaps insert two of these microelectrodes into certain
general areas of interest{ within the insect's visual nervous system,
He then plans to dispiay to the insect, which is fixed in the center of
a large globe, some pattern consisting of alternating dark and light
stripes. This pattern will be turned on and off, and he will thus be
able to examine both the transient and steady-state responses of the
_ neurons near his probes and also the interrelationships among the
two neurons. The computer system will record the firing times of
the cells together with timing signals pertinent to the stimulus, Each

phase of the experiment will be repeated a number of times to ensure
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a statisticrally sufficient sample. Subsequent to this he will analyze
the data using varioﬁs computer algorithms which he has previously
found useful. As might be surmised, this e}cperimental description
is not hypothetical; for a more detailed discussion see McCann and
piit (2417,

The purpose of the preceding discussion has been to establish
a specific framework within which we may discuss various instances
of more general phenomena. One of the questions of interest here
concerns the possible outcomes of such an experiment, As we have ‘
indicated, the space of possible outcomes has been at least partially
determined by the selection of the apparatus and the design of the
overall experimental environment.

In terms of the diagrams introduced previously, an experiment
may be characterized by a disjoint covering of the space I, where
the members of the cover are sets of models associated with observ-
able experimental outcomes., That is, the cover comprises a set of

observations having the property that some one of them holds for any

model M elh.
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The diagram illustrates the case of an experiment that has six 7
possible observable outcomes. That is to say, the models contained
in a given Oi are all those possible configurations of the world in
wh_ich this experiment would be observed to have the same outcome.
Suppose for a moment that Ml were the actual configuration of the
world, the '"true' model. Then one could conclude as a result of this
experiment that the "true' state was in O1 » and that we were not,
for example, in the configuration M3 . However, it would remain

an open question whether we were at M, or M, .

1 2

If virtually any conceivable experiment could be performed,
then every such disjoint cover would be representative of some pos-
sible experiment. What we are saying is that the. experimental appa-
ratus, once chosen, determines some sub-collection of the collection
of all possible disjoint covers. Among the covers that are excluded
will be those which have as members some §bservation involving a
quantity which the equipment is incapable of measuring. Those which
remain are indicative of the experimenter's freedom of choice with
regard to the experimental parameters under his control. In our
example, if the amplitude of the spikes gradually decreased with time,
then because the data recorded make no dirrect allowance for this, it
can not be an observable outcome of an experiment using this equip-
ment. Consequently, the raw data collected already represent an
abstraction from what is Vpotentially available. In addition, it could
be that other unmeasured quantities, s‘uch as the ambient air temper-

ature, have some non-trivial effect, but again, correlations of this
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type aré not possiblé.observational outcomes. The selection of the
stimulus itself clearly also lir':nits what can'ber‘ directly observed.
Thus, we certainly can not obser\.re whé.t'th‘e i-‘esponse of the neurons
in question is to the appearance of another insect, say, by using a
pdttern of stripes. Notice that we are speaking now about what is
observable in this experiment, that is, what can be perceived. This
is to be interpretedr exactly in the sense that we have formally defined
an observation. Consequently, the possible outcomes are independent
of the observer's language and relate only to the configurations of the
universe which might conceivably obtain, As yet we have said nothing
about the conclusions he might draw from some given outcome, since
this will be determined by his language.

The main point of the preceding is that the observable results
of a sciegtific experiment are dictated in large measure by the specific
details of the experimental set-up. Various outcomes are thus ex-
cluded a priori, and others become not only possible but highly prob-
able. In mé.ny ways fhis point is obvious and we are certainly not say-
ing that there is any practical method for vgreatly expanding the space
of possible outcomes. For example, if a microelectrode could be
placed adjacent to every neuron in the insect's visual system, the set
of potential observables would be immense. But since there may be a
million such nerve cells, this is clearly a technical impossibility,
without even considering whether the data collected could be sensibly

analyzed. Also, it would be naive to assume that the outcomes which
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are possible for a given experiment are arbitrary, since they are
largely the result of the scientist's evaluation of what are meaning-
ful or relevant quantities to measure. This eva.luatioﬁ then results -
in‘a determination of the actual experimental conditions, within
practical limitations. However, these choices, once made, do
strictly limit the scope or range of alternative outcomes.

Now, returning to our example, we can visualize that such an -
experiment has a very large number of possible results, That is, the
set of all observations which the experimenter could conceivably make
é.s a result of performing this type of experiment, even though re~
stricted by the experimental conditions, stﬂl encompasses a virtually
unlimited number of actual possibilities. These include many uninter-
esting cases where, for example, the equipment breaks down or the
insect dies before the data can be gathered. Furthermore, the total
collection is not a mutually exclusive set of observations. Thus, one
possibility would be that the cells respond to the stimulus, whereas
two other possibilities would be that they respond to the stimulus by
increasing or decreasing their average rate of spike discharge.

These are clearly nof independent events; on the other hand the experi-
meﬁter would presumably not observe the more general of these if his
apparatus permitted the observation of one of the latter two. There-
fore, we can assume that there is some maximal set of observations
which are all mutually exclusive, where the elements of this set are
determined by the quantities he is measuring, _the precision of the

experimental apparatus, and the means available for examining the
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results. FEach possibility in this set thus represents a distinct
experimental outcome, and the set itself defines a disjoint cover of
the model space, as previously mentioned.

If we consider any such specific instance ofa; scientific
experiment, then it seems intuitively clear that there are only a
finite number of observable possible outcomes. That is, we have
no reason to believe that the cover associatéd with the experiment
has more than a finite number of cover sets. Furthermore, since
there will always be an infinite number of relationships which are
not specified by the experiment, in‘general every cover set will
contain an infinite number of models among whic.h the experiment
does not distinguish,

Recalling our definition of observation, the set of observations
which constitute a cover is inconsistent, and in addition, the union
over the set of possible configurations of the universe of discourse
‘associated with these observations includes all admissible configur-
ations or models. Thus, it is certain that one and only one of these
possibilitieé will be realized by performing the experiment. We
emphasize again that the outcomes of the experiment correspond to
observations and are not directly related to the observer's theories
as expressed by his language. Of course, the various outcomes of
the experiment are not equally likely, the probability of any one being
given by the observer'sr a priori probability P which reflects his

metaphysical assumptions about the domain he is studying.
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We now turn to the questién of how the'gxperimenter discrim-
inates these experimental outcomes, We hav_e’ already said that
certain outcomes are somehow more relévé,ntll.than others. How is
this matter of the relevance or impértance of the result of the experi-
ment to be explicated? Our first inclination is to say that this depends
upon his current theory about the domain he is studying. That is, he
would certainly like the actual outcome to be consistent with what he
now believes., Furthermore, he hopes that the result will do more than
simply confirm what he already knows, Ideally the new observation
should further reduce the set of models satisfying his total observational
experience and thereby contribute to refining his theory. In order to
say what we mean by a theory in this sense, wé utilize the notion of
states of a formal language and the sets of sentences that define them.
Prior to performing the experiment we have outlined, our experimenter
has some body of data previously gathered :;;bout the domain, in this
case data relevant to the insect visual system. These data comprise
some set of observations which we presume to be consistent, and
associated with these observations is some set of models satisfying
all of them. Now, consider the smallest state of his formal language
containing this set of quels; the sentences defining this state are
all either true or false of every observation he has previously made.
These sentences act therefore as axioms for his theory. They might
include such statements as, ""The insects studied have some neurons
which incn.rease their rate of spike discharge for approximately two

seconds after a 20° spot of light is turned on in their field of view'",
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or "The insects studied do not respond in any way to polarized light'',
In general, these axioms are subject to change since they are based
only on what he has observed, and it is possible that some subsequent
observation may contradict them,

Figure 6 shows a partial state diagram for the experimenter's
formal language. The set of models denoted by 2 represents all
those configurations of the universe which are consistent with his
previous observational experience. The state N is assumed to be
the smallest state containing 2, and thus the sentences of the lan-
guage that define 0 é.re axioms of the experimenter's current theory.
Notice that the axioms do not precisely delimit , there are models
M e N which are not rhembers of . This simply means that the for-
mal languagé he employs is not capable of expressing every detail of
his previous experience and provides only some convenient approxi-
madtion to it.

This should not, however, be viewed as necessarily negative.
The lack of refinement results from ignoring aspects specific to the
time of day, individual subject used, etc,, which are of no relevance
to the reseafcher. These he appropriately ignores if they indeed are
irrelevant, a chance he must always in some way take.

In addition to the axioms, which are either wholly true or
false of his observations, there will be other statements which repre-
sent speculations or hypotheses, Very often these will be generaliz-

ations of his previous experience: for instance, "all insects have
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Figure 6. Partial state diagram showing experimental axioms

and their relationship to prior observations.

O Hypotheses

State h

2

Figure 7. Expanded view of state N (from Figure 6) showing

experimental hypotheses and a new observation O.
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neurons which increase their rate of spike discharge in proportion

to the ambient light level'., Since he has cleé.rly not tested this for
every insect, this statement will be neither true nor false of all his
observations. There may also be other hypotheses which are com-
plétely untested, in the sense that no previous observational evidence
is related to them. These he presumably intends to either confirm or
deny by subsequent experiments, The salient point here is that the
conditional or hypothetical statements in his formal language act to
partition the state defined by the axioms into a number of smaller
states contained in it. Each of these states represents a refinement
of his theory for which insufficient evidence currently exists, More~
over, the statements characterizing these states will most likely be
experimeﬁtally verifiable, although to do so may iﬁvolve procedures
which are very complex or not technically feasible with his present
equipment, In any case, these hypotheses act as a guide to further
experimentation, since to perform an experiment whose possible
outcomes can not be discriminated by some statement of his language
would not be meaningful. Therefore, the experimental outcomes which
z;,re relevant to him are mirrored directly in the statements of his lan-
guage,

An illustration of the effect of hypotheses on the partitioning of
the model space is shown in Figure 7. The state N and the set of
models Q are the same as iﬁ Figure 6; the two dashed lines corres-
pond to sentences of the formal language whose truth or falsity is not

determined by the observations previously made. Now suppose that
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the experimenter can perform some experiment which has the
observation O as a possible outcome. If he actually does this and
observes O as the result of the experiment, then ' will char-
acterize the set of models consistent with his total experience.
Also, the two hypotheses will have been resolved, since they are
now either confirmed or denied on the basis of the new evidence O.
Consequently, observing O is informative relative to the experi-
menter's theory as expressed within his formal language.

Notice that if he has no hypotheses to be tested, that is, if
every statement of his language is either completely true or false of
all his observations, then he will do no further experiments. His
. theory is complete because he can visualize no sénsible means of
refining it., Needless to say, very few modern scientific theories
have achieved such a status.

Now, with regard to the selection of a specific experiment
to be performed, several remarks can be made in light of the pre-
ceding discussion. The choice of experiment will be based upon how
informing the experimenter anticipates the outcome will be. Since
he knowé, in principle, exactly what the potential outcomes are, and
since he also has various hypotheses which he wishes to confirm,
the combination of these will dictate that certain experiments are more
useful to him than others. ’I'_his brings us back to our definition in the
preceding chapter of thel expected informational gain for an experiment,.
If there are séveral experiments which may be performed with equal

ease, then the proper choice from the experimenter's standpoint is
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the one which has the highest expected informational payoff. In a
manner analogous to information theory, this experiment is ideally
one where the *-probabilities of the various outcomes are all equal,
and since this probability is a function of the observer's language,

the hypotheses he wishes to investigate are implicitly taken into
account. Consequently, the information_al gain referred to here is
again in the subjective sense of informativeness and the experimenter
therefore attempts to choose an experiment whose possible outcomes
coincide well with the alternatives opened by certain of his uncon-
firmed hypotheses.

To illustrate this point, consider the following example which
is represented graphically in Figure 8. Suppose that an experimenter
has some body of experimental data; @ is the set of models char-
acterized by the corresponding observations. Further, assume for
the sake of simplicity that the sentences of his formal language all
result in a horizontal cut across the space of models. That is, using
the experimental apparatus he has available together with all of the
theory he feels is in any way applicable to the domain he is consider-
ing, the‘expressible concepts within his formal language divide up the
possible worlds into collections of models like the rectangle delimited
by « and B . Thus, in the diagram, « aﬁd B correspond to pre-
viously verified statements, and 4 represents an untested hypothesis
relative to 2. Now ima.gine.that he could perform one of two possible
experiments, .say, 81 or 82 . €, and 52 each have two outcomes

which are delimited by the solid lines El and E2 , respectively,
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Figure 8, Hypothetical case showing three sentence partitions,

@, B, and v, belonging to some formal language, and

two experimental partitions, E1 and E2 . Q is the

set of models representing prior observational

experience,
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Which of these two experiments will he actually choose to perform?

If he performs experiment 51 and thus determines whether the models
below the line El or the models above the line El al;e consistent
with what he observes, then he may be able to confirm or deny the
hypothesis 4, depending on which of the results he obtains., On the
other hand, if he performs experiment 52 ,» neither of its outcomes
will confirm or deny y or any other hypothesis of his language since
they would also partition the model space horizontally.

Assume, as we have previously, that the observer's a priori
ﬁrobability is proportional to area on the diagram. Now, if experi-
ment 81 turns out successfully, the staterﬁents v and B will then
characterize, as well as possible, the resulting s.et of models Q' ,
but no matter what the outcome of 32 is, the best state description
of the resulting set of models will still be given by the statements «
and B . Consequently, the observer will gé.in no information by per-
forming 32 but can reasonably expect to be better informed by per-
forming 81 . Notice, however, that if his language could express
some statement which, for instance, coincided with the boundary EZ'
then if 82 was completely successful, he could characterize the
resulting set of models Q'' by using «, B, and the statement coin-
ciding witi1 E, . This state is clearly much smaller than the state
defined by v and B which is the most he can achieve by performing
81 . Consequently, if his language embodied the concepts necessary
to appropriately express the outcomes of 82 - _this experiment would

be seen to have a greater potential informational payoff than & But

1 .
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his inability to grasp these concepts prevents him from conceiving of
82 as a reasonable experiment, and his chbicé is necessarily 81 .
This explicates in a precise way the cha,nﬁe-liné effect of observations
and theory on further experimentation, and thus on the development of
new theory. These notions are related to those of '"normal science"
by Kuhn [22] and to the Whorfian hypothesis [44, p. 213].

The counter-argument-namely that the scientist is not con-
fined by his 1aﬁguage/theory—depends on either the existence of a
universal language or, what is tantamount to the same thing from the
point of view of this paper, his ability to mové cognitively with no
conceptual boundaries. The fact that a universal language can not
exist will be discussed subsequently. The dynam.ics of language
change are beyond the scope of this thesis. However, we can not
help but feel there are inertias involved which essentially substantiate
the above analysis.

The relationship between the language structures and the pos-
sible experimental outcomes has another dimension which stems from
rather different considerations. We have previously mentioned that the
available experimental apparatus determines certain bounds on the set
of experimental results, for example, by limiting the degree of pre-
cision of certain measurements., In other instances, the eéuipment
may actually preclude observations of some physical quantities. Thus
in our example experiment, the microelectrodes used may only be
suitable for measuring potential changes eﬁernal to a neuron but can

not be employed to make similar measurements within such cells,
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Therefore, practical limitations on the amount of available equipmenf:
and matters of technical feasibility may impose rather arbitrary
restrictions on the potential experimental outcomes. Another way
of looking at this is to say that the apparatus acts to determine the
experimenter's '""contact points' with the rea.lity’ of his experiment.‘
If we visualize the system he is studying as a network of "black
boxes' connected in some fashion, then these '"contact points'' are
identifie_:d with the inputs and outputs to the "black boxes'!, i.e, the
set of measurable quantities,

Now, recognizing that the experimental apparatus plays an
important role in determining the character of the observable experi-
mental outcomes, we ask how this affects the observer's language.
Since the information gained by the experimenter w:hen he performs
some experiment is directly related to his ability to distinguish the
outcomes of that experiment in his languagé, it follows that the
hypotheses embedded within the language are indirectly linked to the
experimental apparatus. Thus, the experimental environment in-
fluences the observable outcomes and theyr in turn impose conditions
upon the language, if it is to be an informative language for that
experimental domain. This relationship is particularly important
because the adaptability of the experimentai -environment is typically
not great. Modern scientific practice indicates that the trend is to
more and more sophistic'a.ted-a.nd complex experimental equipment

and in many cases, once this equipment is adequately developed, it
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is used for long periods of time. The result of this is that the Ianguagg
of the experimenters also tends to stabilize for equally long periods,
and consequently the language acquires a somewhat unnatural rigidity
or resistance to change. Thus, although the formal language of an
experimentalist may not be inherently fixed in nature, it is apt to be-
come so by virtue of its necessary relationship to empirically observ-
able phenomena.

The preceding sections of this chapter have dealt with the gen-
eral relationships among formal lénguages, obsérvations, and scientific
experiments. We shall now consider, in greater detail than we have
previously, the formulation and‘interpretation of scientific theories.
Following this, we shall return to the specific examples presented in
the introduction and investigate them in the light of these discussions,
In order to get at the notion of a scientific theory, let us ask what we
can say about the meaning of a sentence of a; formal language. We
know that to each such sentence there corresponds some formula of
the language of set theory, having certain free variables. Precisely
what does such a formula express? We have said that it character-
izes a relationship among the objects which are taken as the values
of its free variables.

Now imagine some specific sentence of a formal language and
a particular model or configuration of the universe, Note that one can
not determine whether the sentence is true of that configuration without

knowing the interpretation of the referent words, Thus the meaning of
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the sentence involves the denotation of the referent words in addition
to their structural properties, as specified by the serr;antic categories,
and the interrelationships required to exist among them, as specified
by the structure of the sentence itself.

At this point in our discusgion we can not say what the refer-
ent words denote, only that once thisis knowln we can describe the
relationships existing among those things. Can this bé strengthened?
Is it possible that we can say within a formal language all that we mean
or, on the other hand, is it necessary that there be some implicit or
tacit knowledge?

What do we mean by tacit knowledge? We assume that a person
speaking a given language understands the syntax of that language and
the structural aspects of its semantics. Suppose, for example, that a
person who speaks English hears the sentence ""Bob is in Pettalle',
One expects him to know that this is indeed a sentence and that it ex-
presses the fact that someone is located in a certain place; we would
not expect him to respond "I am not sure that what you said was a sen-
tence, or the nature of the relationship it presumably g}{pressed“. He
could s‘ensibly respond '""Who is Bob and where is Pettalle ?'" The
meanings of Bob and Pettalle, unless otherwise defined, must be tacitly
known, Scientific theories that require no tacit knowledge, i.e. those
in which all concepts are completely structural, are precisely the
theories of pure mathematics. An empirical theory, however, is a

theory where such tacit knowledge is necessary. This is an obvious
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statement that simply calls attention to the fact that any empirical
theory has certain basic terms which can not be further reduced by
definition. Observe that there is no need to debate whether tacit
knowledge is required only in connection with the meanings of words.
It can easily be seen that by adding new words to a language and
giving them tacit meanings, one can reduce all tacit knowledge to
implicit understanding of the meanings of individual words.

As the next step, we inquire into the legitimate meaning of
the notion of scientific theory. Such a theory clearly concerns some
set of sentences of a formai language. These sentences, say €,
are the axioms and hypotheses of the theory, together with their
logical consequences. Furthermore, a scientific £11eory certainly
purports to say what configurations of the universe actually obtain,

i, e. something about the world around us. In view of the above dis~
cussion, however, we can not conclude that the meaning of the theory
is the set of all possible models for which the sentences of € are
true, simply because the truth or falsity of a sentence of a formal
language depends also on the interpretations of the referent words
which for an empirical theory must be essentially tacit., Thus, as a
first hypothésis, a scientific theory is a set of sentences and an inter-
pretation of the referent words of those sentences; and the meaning of
the theory is the set of all models for which those sentences, under
the given intefpretation, are.all true. |

Of course it is essential to associate the notion of a scientific

theory with observations, which we now do. Whereas a scientific
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theory depends upon an implicit understanding of the meanings of its
words, that tacit knowledge should be tied to empirical observations.
Suppose someone asks "What do you mean by a ?'"' where « is a
basic, tacitly understood word of our theory. We can not tell him.
But we certainly should be able to show him, perhaps by pointing or
suggesting to him that he perform certain experiments or examine
certain objects. Thus the tacit meanings should not be mysterious
but should arise directly from observational experience. This is
indeed the function of student laboratories in a scientific education.
One can translate this, through the definitions and theorems given
previously, into the requirements that the set of models prescribing
the meaning of a scientific theory should be definable in terms of ob-
servations in our sense. How are we to do this? Consider two pos-
sibilities:
(1) The set of models that constitute the meaning of
' the scientific theory must be associated with an
observation, or a finite number of observations.
(2) Given a set of models N which is the meaning of
a scientific theory, then for any model M¢ N
there is some observation which holds for M but
for no model in N ., Loosely speaking, if the theory
does not hold for some possible world, one can
ascertain this fact by an appropriately designed
experiment. For a similar view, see Popper [27,
sec. 6] . :
Condition (1) is clearly too strong; a useful scientific theory
obviously says more than that some finite set of objects are in a certain

fixed relationship. When we say the condition is too strong, we do not

mean to exclude scientific theories that satisfy it, but we note that the
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assumption of the condition for all theories seems to imply acceptance
of a totaliy finite universe, finite in every way, including a finite num-
ber of discrete time quanta., Consider the simplistic theory consisting
of the single sentence '"Flies respond to visual stimuli'. It seems un-
warranted to assume there will be only a finite number of instants
and/or stimuli where this could be either true or false. The second
condition, (2), is tantamount to the as su.lifnptiron that the‘ meaning of a
scientific theory is given by the intersection of the sets of models
aslsocia.ted with an infinite number of observations. To see this, let
N be the set of models which constitute the meaning of the theory. For
any model M¢ h, let OM be an observation which is valid for every
M!'en, but not for M. This corresponds to the negation of the obser-
vation stipulated in (2). N is obviously the intersection of all such
OM'S. Thus, this weaker condition seems more plausible, and we
tentatively accept (2) as the relationship between a scientific theory
and observations,

The following definition specifies the conditions which must

hold if a language is to be able to precisely delimit some observation:

Definition: An observation O is describable in a formal language §
if mo =N, where n is a state of the language. If 8}1 is a set of
sentences of &£ defining N, then En is said to describe O.

Every possible observation O is describable in some formal
language, and this can be accomplished by a single sentence. The

argument to this end is trivial:
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Lemma:- For any observation O, there is a formal language & in
—————— £

which O is describable by a éingle' sentence,

Proof: Let O =< F(xl, TEw Xn) 5 al,—’ e, a'n> where a € S. Then
let § be a formal language with the sentence v = Y1Y2** Yn such
that cp(fyi) =a; . The lexicon 1. contains the rules ﬁi-wwyi for
i=1,c0,n . Cﬁ = S, The grammar G contains the rule

i
R:ar — plﬁz- .. ﬁn and the associated semantic transformation is

:F(xl,xz,---,x i=y=1,

™R n

Therefore, the formula of set theory associated with the sentence
v is

FY( %, v)

il

(F(xl,---,xn) =y = 1) .

Hence, + is true of some model Me M if and only if Me¢ nb -

Therefore 4 describes O,

Now, a finite set of sentences together with an interpretation of
their referent words always characterizes a set of modelé which could
be considered as the meaning of some scientific theory. In fact, the
following leﬁma shows that these sentences describe some single ob-

servation.

Lemma: Any finite set of sentences £ of a formal language &, to-
gether with some truth assignment to the sentences, describes some

observation O,

R e
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Proof: suppose € consists o’_f the sentence‘s R L o ™ Let
y; = 1 if v is assigned the value true, yiA =@ if Y is to be false,

and let F'Yi( ':_ci, yi) be the formula of se,t-;chreor‘y’ corresponding to =, .

] = Y7 -
Then let F(Xlg"':xm) =F (Xlsyl) AF (Xzi Yz) GERS L (anyn) »
“where xl’ v, xm are the accumulated free variables that stand for
cp(al), sifee ,CP(Bm) ’ 61, Sy ﬁm are all the distinct referent words
appearing in the +4's, and ¥ takes the value 1 or 0 as specified
by the truth assignment. Then O =< F(xl, Sk Xm),CP(ﬁl), P(6),"" ",
cp(6m) > is an observation described by € under the given truth assign-

ment.

Note that this lemma does not imply that the models charac-
terized by € represent the actual outcome of some experiment, only
that the observation O is possible in principle. As we have previously

discussed, there is one model M_ which is the true model—the con-

0
figuration which actually holds. To verify a scientific theory is to make
the observations defining the set of models associated with it and to as~
certain that this set of models contains M0 . Obviously verification in
this manner is limited by experimental apparatus and technological
possibilities. Thus, for example, given that we tacitly know the m.ean-
ings of "life'' and '"Mars'", it is a scientific theory that there is life on
Mars. This particular theory is as yet unverifiable.

We have shown that a finite set of sentences describes some

observation; what about an infinite set of sentences? The following

theorem demonstrates that if the infinite set of sentences is recursive,
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then there is some formal language where a finite set of sentences
will characterize exactly the same configu‘rations of the uhivérse,
and therefore the infinite set describes some observation. By a
recursive set of sentences, we mean that for some Godel numbering
of the referent words of a language, then the resulting Godel numbers

- for the sentences of the language form a recursive set of integers,

Theorem: Let £ be a formal language. If € is a recursive set of
sentences of &£, then there is some formal language &' such that,

for a finite set of sentences &' belonging to &£', the set of models
defined by &€ relative to £ coincides with the set of models defined
by &' relative to S.'.‘ Hence € and €' both define some observ- |

ation O,

Proof: £ is a formal laﬁguage. Both the syntax and the semantics of
§ are formalized within set theory. Thus it is easy to see that a
meta-language for &£ could also be formalized within set theory, in-
cluding a definition of the notion ''true in language &'. Call this
formal language &£'. (Of course, in general, we can not define ''true
in language &£'", within £' itself [39, chap. 8].)

Since the set of sentences &€ is recursive, we can give a re-
cursive definition of € within &' ina fini’-ce way. Then one can
express within £', using this definition, that the sentences of & are
true, and to do this requires lonly a finite number of sentences of the

meta-language £'. As previously shown, this finite set of statements
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describes some possible observation O, and thus € also describes
O, relative to £ . To carry out this argument in all its detail would

require a great deal of space and time. '

This theorem and the preceding lemma raise the possibility
that our definition (1) of the meaning of a scientific theory may be
adequate. Do we indeed know of any set of sentences which do not
describe some observation? The answer is definitely yes; the Godel
incompleteness theorem tells us that the integers (in this case a
‘theory in which no tacit knowledge is necessary since it is purely
ma.thema.tical) can not be described in any formal language by a
finite or recursive set of sentences. More precisely, given an
object b, the set of models where b is the integers can not be
characterized by a recursive set of sentences, Thus, the meaning
of the theory of the integers does not correspond to any finite set of
observations. This extremely strong form of the Godel result is
discussed in Kleene [20; sec., 60] .

Although for most practical scientific theories, i.t is not
possible to definitely establish that definition (i) in fact does not
hold, it is 6ur feeling that this is often the case. For example, con-
sider a theory which purports to be about living organisms; it is
highly unlikely that a definition of the notion of living in terms of
a finite number of observationally specifiable objects can establish 7
precisely what we mean by this concept. Concepts like ''living'",

‘'cell", "metabolic process', etc., are learned not through language
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but become tacitly understood through years of experience and long |
hours of directed laboratory familiarization. One everyday concept
which we all take for granted is that of volume. It has been shown
that it can not be prescribed in a finite number of observations. In-
" deed, a much stronger result holds. However, this matter will be
taken up from a somew-hat different point of view.

- Let us turn to the relafed problem of reductionism. In
chapter I, we identified two forms of this problem, the first of
which will be discussed here. The second aspect of the reduction-
.ist philosophy, namely the reduction of one theory to another more
basic one, will be treated subsequently. The immediate question
is whether the truth or falsity of a theory can always be reduced to
the outcome of some experiment. More precisely, is it legitimate
to restrict the notion ''valid theory' to those theories for which the
possibility of verification or denial on the basis of experimental
evidence exists?

Consider the following statement:

(TBP): "There is a way to cut a sphere into a finite number of
pieces which can then be moved rigidly and fitted together without
deformation to form two spheres each of exactly the same volume
and size as the original, "

Suppose we have a formal language, for instance é. segment
of the language of mathematical physics, within which this statement
can be given .précise expression. That is, the language speaks about
three-dimensional Euclidian space and the notion of volume as a
measure invariant under rigid motions in that space. We then make

the following three statements:
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(1) The physicist believes that the statement TBP is false |
beca.user he assigns a zero probability to the set of models for which
it is true. This probability corresponds to the a priori probability
P and indicatgs the physicist's certainty that he wili never make an

observation which implies the truth of the meta-statement TBP .

M

Y Boundary B

TBP false

TBP true

(2) On the other hand, the mathematician says that, in the
.given formal language, the physicist can not prescribe a set of
sentences that defines the boundary B . The physicist's theory
will include an object language counf;erpa,rt of the statement TBP,
but the mathematician's result, namely the Tarski-Banach Paradox
[17, p. 511, [40, p. 244], shows that the physicist's theory must
not be commensurate with what he really 1.'neans. It must either (a)
include models where the statement TBP (at the meta-level, of
course) is true, or (b) exclu.de models where the statement is false,

which the physicist has no a priori reason to exclude, and thus go
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beyond what the physicist who believes in the first form of reductioﬁ—
ism can accept. That is to say, the theory either does not express
what the physicist believes, or it contains a metaphysical assumption
not based on experimental evidence. In the diagramk below the line
labeled X corresponds to a sentence where the first of these is the

case, and the line Y to a sentence where the second is the case,

m 6

N\

AN P
\.
TBP false /y

TBP true \\

g \X

(3) The situation would be quite different than it actually is
if the physicist could conceive of an experiment whose partitions had
boundaries coinciding with the boundary B . The fact is that the
mathematician's proof of TBP depends upon a non-constructive
argument, Clearly, it is impossible to show that the statement is
not true, and to date no one has been able to cut a sphere in such a
way as to demonstrate its truth. Thus, the physicist's a priori
assumption can have no adverse effect on the course of his science,

as guided by experimental evidence, Indeed, it is precisely the type
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of metaphysical assumption that simplifies conceptual structure in
a benign{way. Graphically, the situation for realistically possible
observations appears to be more restrictive than for sentences of
the formal language., Thus, every observation partition will in-
clude models for which TBP is true and models for which TBP

is false.

/——Observation @)

TBP false

TBP true

In the discussion on the meaning of scientific theories, we
had left open the question of whether an empirical theory required
tacit knowledge that could not be acquired by means of a finite num-
ber of observations. The above argument concerning the Tarski-
Banach Paradox indicates that volume is exactly such a notion.

We have been talking about the condition where a set of
-sentences together with interpfetations of the words constitutes a
scientific theory, and what Qe would mean by such a theory., Now,
returning to the example in the introduction concerning the relation-

ships between abstract theory and empirical observations, we ask
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similar questions about what we mean by superstitions or myths.
Again let us say that a mythology or body of superstitions partially
consists of some set of sentences of a formal language. Certainly
if such a set of sentences is strictly inconsistent, that is if the
existential closure of its formulas has no model, then the associated
state is empty. This corresponds to the case where no possible in-
terpretation can make the sentences true and is clearly too strong a
condition since for most superstitious beliefs, there is some con-
ceivable configuration of the world in which these beliefs are true,
-a.lthough ludicrous. What is implied by stating that some set of
sentences constitutes a superstition is that thé sentences do not
hold for the true state of the universe. But let us examine this
more carefully. Suppose that we consider two sets of sentences

which we will call £ and

: Envision a man
science

€ S
superstition

who has verified through observation, at least to a reasonable

degree, the theory expressed by That is, he has a

science’

tacit understanding of the meanings of the referent words; let
this be given by the interpretation @ . In terms of this, he has
made a sufficient number of observations to convince himself of

the truth of € . . We emphasize that he has carried out this
science v

verification of & . in terms of his implicit knowledge, as
science

embodied by ® . Now, holding this tacit understanding ¢, the
sentences £ ... _ are indeed irrational.
superstition
On the other hand, it is certainly conceivable that another

man at another time and in another place, having tacit understanding
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®' of the words of the language, quite different from that of our

scientis‘t, would indeed have verified by observation the truth of
snperstition’ Further, the té.citness of both @ and @' imply

that it may be impossible for either man to communicate to the

other what he has in mind, nor would this be surprising if their

experiences were vastly dissimilar. Thus, superstitions can not

be claimed to be false, but merely untrue in terms ofr our current,

tacit understanding of their referent words.

The second form of reductionism discussed in chapter I
concerns the relationships among scientific theories; the im-
portant question in this regard is when can one scientific theory be
reduced to another more fundamental theory? The analyses pre-
sented earlier in this chapter bear directly on this problem, and
we will utilize several of the key concepts from them in commenting
upon it.

In the introduction we mentioned that the theory of thermo-
dynamics was demonstrated to be restatable in the framework of
classical mechanics., We wish to examine the meaning of such a
reduction, but we propose to consider a case of greater current
interest. Suppose therefore that we are concerned with the reduction
of biology to modern physics. We can assume that both of these

theories are characterized by sets of sentences, say nd

e
biology 2
&physics’ together with appropriate interpretations of their referent

words. Since these theories are both empirical in nature, we know

that certain tacit knowledge, embodied in the interpretations, is
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necessary to fully understand what these theories are to mean, Let
us go so far as to assume that some single scientist fully grasps
the meanings of all the words germain to both domains; formally,
this understanding is embodied in a single interpretation ®. This
unrealistic assumption is made for the sake of convenience only and
is not pertinent to our argument,

Now, consider actually reducing th_e theory of biology to
physics. What does this mean? Well, if we are able to restate
sbiology in tex;:ms of 8physics and ¢ then we will have succeeded.
Thus, intuitively, we introduce a number of definitions of the ref-

erent words of characterized in terms of the words and

€
biology

relationships of Having done this, we can in principle

81:>hy'si<::s'

then translate any sentence of into some set of sentences

e .
bioclogy
of € . . But what will we have accomplished? We have re-
physics
duced the tacit knowledge necessary to the theory of biolegy, but
we are still left with the tacit knowledge inherent in physics. There-
fore, even if this process can be carried out, we have not in any
way reduced biology to absolutes as would be required by the first
notion of reductionism. Can we reasonably expect to carry out this
reduction of biology to physics? What we must do is to define all
biological concepts in terms of the tacitly understood notions of
physics, as specified by @ , and the laws and hypotheses expressed
As an example, consider the bioclogical term '‘cell'.

e
by physics’

We have previously indicated the possibility that the tacit nature of
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such concepts may require the use of an infinite, non-recursive
set of sentences to characterize them. In this case, however, we
do not need to characterize the meaning of '"cell" absolutely, but
only relative to the tacit knowledge of the theory of physics,

Because of the failure of the first form of reductionism,
there are biological concepts, say for instance ''cell", knowledge
of which can not be gained from a finite number of observations
without some prior tacit understanding. The second form of re-
ductionism, for example the view that bioclogy can be reduced to
rhysics, implies that cells can be completely characterized by
a finite number of observations, with the tacit knowledge limited
to the notions of physics.

What makes this problem particularly difficult is that if
one already has tacit knowledge of what a cell is, then statements
of physics concerning the nature of cells can be highly informing,
and one will respond to an appropriate physical description by say-
ing "Yes, cells are like that'". On the other hand, suppose one had
never looked through a microscope or seen a drawing of a cell, nor
had any knowledge of cytoplasm, cell membrane, metabolism, or
the like, It seems extremely doubtful that a notion of cell could
then be conveyed by a finite description, Certainly one could de-
scribe a somewhat more general notion, and it is tempting to say
that a finite description croul.d be constructed that would be adequate

for all practical purposes. Long before a student had digested the
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physical description, however, it would seem that the temptation
would be even stronger to send him to the microscope with the
comment, ""Once you've seen a few you'll understand''.

QOur point here is not to refute the second form of re-
ductionism, but rather to make clear the nature of the argument
against it. We have established the negess_ity of tacitly known
'concepts in science which can not be fully confined with fewer than
an infinite number of observations. The existence of such entities
clearly makes it plausible that certain concepts relevant to one
science may only be reducible to the tacitly known concepfs of a
second science through an infinite, non-recursive description or
an infinite number of observations. This would be especially so
when the laboratory experiences are as disparate as those of-

biology vis-a-vis physics, or psychology vis-3-vis biology.
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VI. INFORMATION AS RELATED TO LANGUAGE CHANGE

In the preceding chapters, we have primarily been concerned
with the characterization of a single individual's view of some domain
as reflected in the particular formal lang‘uage he employs to describe
it. Now, however, we wish to consider some of the problems in-
herent in the communication process. Since communication neces=-
sarily involves two or more individuals, we must deal simultaneously
with more than one formal language. As indicated previously, even
though two individuals may both consider a given string of words to
be grammatical, they need not assign equivalent meanings to it.

That is, the sentence may result in a totally different partitioning of
. the model space for the two individuals. Furthermore, even if they
do agree completely on the meaning of the sentence, the fact that
they may have different a priori probabilities could inducgz corres-
pondingly different *-probabilities and thereby result in‘ one of them
believing more strongly than the other in the truth of the sentence.

In order to clafify the possible relationships among differ-
ent formal languages, we will introduce several auxiliary concepts
based on our previous definitions. One of the things we would like
to know is when one formal language can be considered to be more

expressive than another. This is related to the sets of states of the

two languages.
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Definition: Let 61 * (‘52 be the sets of states of the formal languages

£1, £2, and let EBl, 532 be bases for Jll, £2 . Then £2 is at

least as expressive as 531(532 = £1) if € < ©, and if for every

2

basis element Ne 531 , there is a basis element N € B_ such that

2
h"gn,

To properly motivate tl"Lié definition, we must consider what
the intuitive meaning of expressiveness is. As we will use the term,
it is intimately linked to the commonly accepted notion of precision of
expression. That is, if two individuals are both asked to describe
some event which they both have witnessed, one of them might reply
by enunciating the statements Y1r Y2 and Y3 - The other might
then agree that those statements were indeed true of what they ob—‘
served, but might also add that Y40 Vg and Yo Were also true,
thereby presumably giving us a more refined picture of the actual
circumstances, The implication here is that even though the two in-
dividuals may have made the same observations, one of them ex-
presses details of these observations which the other considers
irrelevant. We have previouély emphasized that the individual's
formal language directly reflects not only that which he is capable
of expressing, but necessarily also that which he considers to be
relevant.

Our 'notion of expressiveness, however, can be considered
applicable in a somewhat broader context than the previous example

indicates, For instance, suppose the two individuals described above
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consider themselves to be in fuxﬂ;damehtél disagreement about the
event which occurred. That is, .one of thérn either can make no
sense of what the other says, or he feeié Vthé.;it is untrue of what
happened. This certainly need not‘ mean-that one of them is wrong;
it.may simply be that certain strings of words have radically differ-
ent interpretations relative to their respective formal languages.
Thus, if we were sufficiently omniscient to be able to comprehend
exactly what each observer means, then we might very well be able
to conclude not only that there was no basic disagreement, but also
that one individual had rendered a more precise description than
the other.

In view of this discussion, let us now examine the specifics
of our definition. The first requirement is that t;vei-y state of the
less expressilve language must also be a state of the more expres~
sive. Notice that this does not imply that.the same strings of words
are used to define these states in both of the languages, but in general
the more expressive language will be capable of characterizing a
greater number of states. The second condition pertains to the bases
of the two languages. The requirement here is that for each basis
element of the less expressive language there is a basis element of
the more expressive language contained in it. However, the more
expressive language may have additional basis elements which are
not contained in any of the basis elements of the less expressive lan=-

guage, Recall that the basis is a set of minimal states which are
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pairwise distinguishable and that these states represent mutually
exclusive configurations of the universe relative to the language.
The basis elements thus form what might be called a kernel set of
states for the language, and our requirement is that if one language
is to be considered more expressive than another it must be capable
of more precise expression with respect to this kernel.

The relation of expressiveness can easily be seen to be both
reflexive and transitive, and thus it induces a pre-ordering on the
set of all formal languages and their bases, and a partial ordering
of their state-partitions on the set of models. We emphasize that
expressiveness is related primarily to the semantics of formal lan-
guages since it is a condition on the state diagré.m, and it is only
indirectly tied to the syntax and the specific vocabulary of the lan-
guages, Nevertheless, our expressiveness relation is quite strong
since it demands that the state diagram fo.r one language be a proper
partitioning of the state diagram for the other. There may be some-
what weaker conditions under which one language could be said to be
more expressive than another, but even our relatively restrictive
definition has some surprising implications.

One intuitively feels that the more expressive a language is
the more suitable it is as a descriptive to‘ol. The question we wish
to consider next is whether more expressive languages are more
informative to the individuai who employs them. In other words, if

an individual makes some observation O which he can describe in



- 130 -

a formal language 531 , and the resulting information gained is I
then if he had some more expressive language £2. > 31 , would the
informativeness of the same observation O necessarily be equal
to or greater than I1 ? To aid in the investigation of this, we shall

consider an example, Figures 9, 10, and 11 show the state diagrams

for three hypothetical languages £

&2 » and &£ Each of these

3°
languages has been obtained from the preceding one by the addition of
some new sentence. Thus, £2 is the same as 51 with addition of

the single sentence Y3 and similarly £, results from adding the

3
sentence v, to -552 . This is one trivial way of obtaining a more
expressive language, as our intuition would suggest. In each case,
the basis for the language is shown by the elements with the heavy |
borders. We remark that 531 has a unique basis, whereas 532 and
£3 do not; 532 has the same state diagram as the language shown in
Figure 5. The fact that £2 and 33 do not possess unique bases is
unimportant for the present, but we will comment on the implications
of this later in the chapter. As before, we assume that the a priori
probability P is proportional to area on the diagrams., Thus, for
example, in Figure 9 the a priori probability of the minimal state
TT, P(TT), is equal to 1/9, and in Figure 11, P(T¢F¢) = 1/36.
Referring to our definition of expréssiveneés, we see immediately

L =28 =28
that 3 I I
On each diagram, we have illustrated three observations O, »
02 and 03 . These represeht typical observations which might be

made, but they are not presumed to be related to each other in any
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Figure 9.. State diagram for language £1 and three possible
| observations, Ol’ O,, and 03. The regions

with heavy borders are basis elements.
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Figure 10. State diagram for language <, showing the same
observations as in Figure 9. The regions with

heavy borders are basis elements.
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Figure 11, State diagram for language £3 showing the same
observations as in Figures 9 and 10. The regions

with heavy borders are basis elements.
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specific way. Thus, we will assume that there are three observers

whose views of some domain are characterized by £1 p .S:Z , and £3,

and we shall determine the *-probability of the observations O1 §

O,, and 03 for each language. The result of this will indicate the

2
relative informativeness of these observations with respect to the
observers. Recall that the *-probability of an observation O is

given by:

P B
B/EYS
B/
oy : O
P(mo) — =
vl ) s
BeB

We first calculate the a priori probability P (in these examples P
and P are identical) of the union of all basis elements, which we
denote as Xj for language J:j . This is done simply by inspectionv
of the three diagrams.

(1) For &, , P(x})=4/9.

1 ?
(2) For _£2 . P(XZ)

i

9/18 .

(3) For £,, P(X]) =19/36.

3 L
Now, let Yg be the union of all basis elements of language .Slj which

are indistinguishable from observation O, - We may then compute

4

P;‘c(mo‘) by the following formula:
3 '

’ J
P(Y3)

e
P.(h.) = =
J .Oi P(X‘])
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As one instance of this computation consider 03 and £, in Figure 10,

In this case Y';_ is the following:

Y§ = {TTTUFTT U T¢F} ,
and therefore.
2
P ) e — 2 =38 = srs
3 P(x9)

%
The following table summarizes the value of P for each observa-

tion and each language:

5 2 5
o, | /2 > 4/9 < 9/19
o, | 1/2 > 4/9 > 8/19 -
0, 1/2 < 5/9 < 11/19

Each of the observations thus exhibits a different behavior as
the language changes from £1 to &, to 433 . Since the informative=-
.ness of an observation relative to a language is defined in terms of
the logarithm of the *-probability, the informativeness becomes
relatively higher as the *~probability decreases toward zero. Thus,
the inequalities shown in t1.1e table among the probabilities are reversed
when we coﬁsider the associated informativeness, Observation O2 be-
haves in the manner we might at first expect, That is, as the language
changes to become more expressive the expectation, relative to the
language, of-observing O2 decreases; and hence 02 is most inform-

ative for language & On the other hand, both O1 and O, demon-

3’ 3

strate a rather surprising phenomenon, namely that it is possible for
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the information obtained from an observation to decrease as one
moves to a more expressive language. O, is particularly inter-
esting because the information is greatest relative to language

.SZZ . What this suggests is that there may be formal languages
which are optimum, in the sense of informativeness, for the des-
cription of certain classes of 'observations, and further that these
are not necessarily the most expressive languages which could be
employed. More specifically, for observation Ol , the language
£2 is such that if we employ either the more expressive language
£y or the less expressive language £1 , then the information we
obtain on observing O1 decreases.

This example again demonstrates the significant role of lan~
guage in the characterization of an individual's view of his universe.
If his language provides a rather loose or vague description of the
phenomena he observes, there will be many detailed observations he
can make which will yield little information; and conversely, if his
language is overly expressive, the additional structural complexity
of the language may diminish the informativeness of certain other
observations. The reasons for this are directly related to the notion
of meaninglessness; the fact that a formal language always makes
various implicit or unstatable assumptions about the structural
nature of its domain of discourse—as embodied in the semantic

categories, for instance—causes sentences of the language to be-

come meaningless on some models. This, in turn, means that
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indistinguishability is not an equivalence relation, as we have shown,
and consequently very expressive la.n'gua.ges may not be particularly
informative for certain classes of observations,

Languages S’Z and £3 » shown in Figures 10 and 11, do not
possess unique bases, as we mentioned previously. In addition to

the bases outlined in the diagfam, £ has another basis, namely
8= {TTT, TFT, FTT, FFT, FFF, ¢TF} ,
and similarly ,5:3 also has the basis
8= {TTTF, TFTF, FTTF, FFTF, FFFF, ¢TTT, ¢TFT, ¢TFF } >.

These can easily be shown to be the only other bases for £2 and

L The question is, what are the implications of a non~-unique

3
basis for the probability and hence the informativeness of some
observation? In the particular example we have chosen, if we
associate the two bases above with £2 aﬂd 5.‘:3 , in lieu of those
shown in Figures 10 and 11, then it can be verified that the prob-
abilities assigned to the three observations Ol " 02 , and 03 are
unchanged for both languages. Consequently, the informational
relationships among-the languages also remain the same for these
oBservations. In general, however, there will be other observ-
ations for which the choice of basis does affect the probability,
This is particularly significant since it means that the syntax and

semantics of a formal language may not be sufficient to uniquely

determine the *-probability of all observations. More specifically,
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knowledge of the truth values cﬁ all sentences on all models may not
characterize a unique basis. As a result-;, there may be situations
where a particular formal 1anguag¢ has.‘mo:-rel than one basis, and
thus different *-probabilities coulci conceivably be associated with a
single observation; and yet it would normally be assumed that a
rational individual acts as though a given observation has only a
single probability. This implies that an appropriate basis for the
language must be chosen to satisfy criteria which we have not ex~
plicitly treated. The resolution of this question seems to lie in
considerations involving the dynamics of language change., That

is, as an individual‘s language evolves or develops to reflect his
growing knowledge and changing perspective on his world, the
mechanisms which determine exactly how his language will change
presumably take into account aspects of his past experience, there~-
by causing one basis of his new language to become preferable to
others. | As we have previously indicated, an investigation into the
nature of the processes involved in language change is beyond the
scope of this thesis,

It is interesting to note that if a formal language does not
possess a unique basis, there is nevertheless a more expressive
formal language which does have a unique basis. The more expres-
sive language simply includes sentences which distinguish the pre-
viously indistinguishable minimal states o£ the less expressive

language. Of course, the converse is also true, as the previous
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example shows; that is, for a language with a unique basis there is
a more expressive language with a non-unique basis. The languages
Sz and .S‘,l in Figures 9 and 10 are related in this way. We point
this out merely to illustrate that for more realistic languages than
those used in our examples, it is not necessarily the case that they
would especially tend to have e'llther a unique basis or multiple bases,
The example of Figures 9, 10, and 11 has shown that the in-
formation content of an observation does not generally strictly in-
crease or decrease with the expressiveness of the language describ-
ing it. However, sﬁpposing that the languages we had used each pos-
sessed a unique basis, can we then demonstrate that the information
would either increasé or decrease monotonically with expressiveness ?
Again the answer is no, but rather than exhibiting further examples
we will give a detailed analysis of the conditions under which infor-

mation increases or decreases.
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Suppose that we are given two fbi-mél languages £1 and Sz y
where .S',z = S,l , and s.uppose they have ba;.rse_sj' ‘231 and 582 . The
preceding diagram shows both bases suéerifnposed on the set of
models .

The representation of the two bases is strictly schematic;
the various lettered regions indicate sets of models contained in the
basis and grouped together according to their indistinguishability or
distinguishability relative to some.set of models NS M which is
assumed to bé associated with an observation. Basis 531 consists
of the sets C, D, E, F, G, and basis 932 of the sets A, B, E, F,
G. These sets are characterized by the following relationships

with respect to the set of models h.

A: h/zA _ B: h//ZB
C: hllc | D h//lD

. h .
E: /1’21«: F: h//l’ZF

G: n//lG and ‘n/zG

The subscripts indicate for which of the two languages the relation
holds. Thus, for example, h//lD indicates that the set of models

D is indistinguishable from N in language & Also, the models

1 .
in D are not included in basis SBZ . Assuming each of these sets
is measurable, we can express the *~probabilities, PT(h) and

P’;(‘n), as follows:
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P(F) + P(G) + P(D)
P(F) + P(G) ¥ P(D) ¥ P(C) + P(E)

*
Piny =

P*(h) _ “P(F) + P(B)
2 - P(F) + P(G) + P(B) + P(A) + P(ET

P}(N) is the *-probability of h for language £, , and PL(W) is the
*-probability of N for language S’Z.' The numerator of each frac-
tion is the a priori probability. of those models in the basis which are
indistinguishable from N, and the denominator is the a priori prob-‘
ability of the union of all basis elements,

Since we wish to examine the difference in information content
of the observation coz;responding to h as the language changes from
.531 to the more expressive language S'Z » we can use the ratio
P:;(h)/P;:(h) to accomplish this. That is, if for some specific N
the ratio equals one, then the information is unc‘hanged; and if the
ratio is greater than one, 532 is more informative than &£, . Con-
versely, if the ratio is less than one, 32 is less'in_formative than
£1 » with respect to N, Notice that the sets of models E and F
are defined so that they each have the same relationship to h in
both languages; the otheré, however, namely A, B, C, D, and G,
differ in their properties of.distinguishability or indistinguishability
as the language changes. An increase in the measure of any one of

these sets, for example in P(A), affects the ratio as follows:
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Increase in... Change in ratio Pl*(h)/P:(h)
P(A) ' increase
P(B) decrease
P(C) decrease
P(D) increase

P(G) ~ increase

In each of the cases, all other quantities are assumed to re-
main fixed., The table shows that an increase in either P(A), P(D),
or P(G) causes an increase in the ratio and h'ence an increase in
the informativeness of the observation corresponding to N, Simi-
larly, increasing P(B) or P(C) results ina décrease in informa- _
tiveness. Note that N is assumed to be the same set of models in
both languages. Also, changing from some N to a different N,
will generally redistribute the sets of models among the various
categories., However, the sets corresponding to AUB, CUD, and

EUFUG are fixed by the two languages £, and .S:z and are in-

1
dependent of N .

. Before we interpret the intuitive meanings of the various
possible changes in A, B, C, D, and G, we would iike to establish
that these a.ré not interdependent., That is, in order to make this
analysis meaningful we must show that each of the sets of models
corresponding to A, B, C, D, and G may either be empty or non-

empty in any combination. The following theorem shows that this is

in general possible,
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Theorem: There exist formal languages £ such that

28

1 and £2 1
there are sets of models N (corresponding to possible observations)
for which the sets A, B, C, D, and G may be empty or non-empty

in any combination, i.e. A, B, C, D, and G are independent of one

another,

Proof: The proof is by specific examples, and because of its length .

it is contained in the appendix,

The preceding tHeorem implies that for two formal languages—
one more expressive than the other—there will generally be some
observations which are less informative relative to the stronger lan-
guage; and further that the change inrin_formativeness from one lan-
guage to another is effected by variations in the measures of the sets
A, B, C, D, and G, each of which could be large or small independ-
ent of the others. For example, considezt; the sets A and B . How
can they be interpreted? Their union, AUB contains all basis ele-
ments of the more expressive language .532 which are disjoint from
every basis element of £l . These additional minimal states there-
fore represent new theories which are alternatives to those describ-
able in .S:l . Here, we afe identifying minimal states with complete
theories within the 1anguage. That is, as we have previously dis-
cussed, the sentences defining a minimal state characterize some
configuration of the universe as precisely as the language allow-s.

The observation in question, namely the one associated with h,
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either partially confirms or denies the theories constituting A, and
hence the information gained tends to increase in this more expres-
sive language. On the other hand, the minimal states which B
‘comprises are indistinguishable from N and therefore, as theories,
are generally neither refuted nor verified by the observation. Con-
sequently, the information tends to decrease since the observation
does not aid in resolving among the additional theériés represented
by B.

Now consider the sets C and D ; CUD is composed of
models which were members of basis EBl but are not members of
basis B, . These excluded models are therefore indistinguishable
from some basis elements of SZ . The members of the set C were
previously distinguishable from the observation and thus represented
distinct alternatives within the less expressive language., Their
elimination from the basis 582 means that they are no longer con-
sidered viable alternatives, and since N is now distinguishable
from fewer models -in the basis, it becomes a less informing ob-
servation relative to ,;:2 . The converse is true of the set D ; the
models in D were not distinguishable from N in 5:1 and conse=-
quently, eliminating them from EBZ has the effect of increasing the |
informativeness of the observation. .

Finally, the set G consists of models which are members of
both bases, By and 582 . In language £ these models were indistin-

guishable from the set N and were thus considered to be equivalent to
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the associated observation. In language .‘32 , however, these same
models are distinguishable from N, and therefore £2 has sentences
which make this distinction. This means that £2 can more precisely
delimit the set of models N than £1 can. Consequently, SZ is more
informative with respect to this observation than Sl since the

*-probability of N will be less for Sz by an amouni? proportional
to the measure of G, P(G) .

The résult that incre;asing expressiveness may reduce infor-
mation is at first contrary to intuition., This appears to stem from
the fact that one considers that the conceptlial apparatus of any
reasonable language should be adequate to make all relevant distinc-
tions among configurations of the universe. If this were the case,
the only change in basis that could take place between one language
and a second more expressive language would be of type G, and
thus information would increase monotoniéally with expressiveness,
This is not so. The classic result establishing this fact is Tarski's
theorem on truth [39, p. 247], which states that the notion of truth
for a formal language of sufficient expressive power can only be

: ‘stated within another formal 1ahguage that is necessaﬁly more ex-
pressive. Once this essential inadequacy of the descriptive power of
a language is seen, the potential for other changes in basis becomes
apparent and hence the possibility for the reduction of information on
passage to a more expres si-ve language.

Havihg established some general properties of the change in

information with language, we will now re-examine the problem of
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ra.fnifica.tion of meaning which was prés'ented by an example in the
introduction. ‘ Recall that the example wér used concerned two in-
dividuals, each of whom had a cleariy different concept of the mean-
ing of the word "transistor'. In view of the appar;'a.tus we have de-
veloped we can now see that these two individuals can be considered
-to utilize two distinct, although related, formal languages. Each
language thus. embodies one individual's conceptualization of the
relevant properties of transistors. We expect that each man has
certain observational experience pertinent to transistors, and fur-
ther that these two sets of observations are related, exactly in the
sense defined in chapter III, As we have implied, we certainly can
assume that their formal languages are in some way related éince
they are both concerned with describing and understanding many of
the same basic phenomena. How might their languages be related?
One plausible relationship would be that éne language is more ex-
pressive than the other. That is, the solid-state physicist's language
£p may be strictly greater in expressive power than the language
£C of the circuit designer. In this relatively ideal case, the state
diagram for the language «Sp would properly partition the state
diagram for £c . The following two figures illustrate corresponding
portions of the total state diagrams for the languages. |

The set of models h corrésponds to the observation which
has been made by both individuals; we assume that this observation

involves some transistor which is behaving in an interesting or novel
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fashion. The dashed lines partition the model space in the usual way
and are presumed to be associated with sentences about transistors.
In this special case, we will further assume that the four sentences
shown for £c are identical, syntactically and semantically, with
the corresponding four sentences of Sp, i. e, those other than e.
Consequently, if the physicist enunciates one of these statements,
the circuit designer‘will agree that it is true of the observation, and
.vice-versa. But what of the statement o« ? « is a sentence of the
phyéicist's more expressive language .S:p , but if it is also a sentence
of Sc it does not have the same meaning and is therefore not useful
in characterizing N. Thus, the physicist assigns a meaning to «

in such a way that it is relevant to the observation, On the other
hand, the circuit designer considers o either incomprehensible or
irrelevant, i.e. meaningless on N or unnecessary to characterize

h, Nevertheless, communication still takes place on a limited basis
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1

since there is some fundamental agreement about what has been ob-
served. Even regarding o, there may be no disagreement; it is

simply a non sequitur to the circuit designer. Notice that N is

most precisely delimited by the language ‘S:p . This would indicate
that the observation that was made is of greater importance to the
physicist and presumably is more informative. As we have empha-
sized in this éhapter, howe\'rer, we can not conclude in general that
N is more informing relative to .SP without knowing something
about the other alternative theories and hypotheses within the lan-~
guage.

The preceding example is idea.lisfic in that we have assumed
complete agreement in meaning for at least some of the sentences
pertinent to the observation. Thus, with the exception of the state-
ment «, S»P and 'Sc are inter-translatable; at least‘this is true at
ther meta-level, It will generally not be t.rue, however, that either
individual "knows'' that the meaning he attaches to some sentence is
exactly the same as the meaning assigned to that sentence by the
other individual. Indeed, it is possible that there will be an apparent
agreement in concepts, but that this may break down on the basis éf
a-dditional‘ evidence, Suppose, for example, that the preceding dia-
grams were actually as shown in the following figures. Here we
as;uxne that the four sentences (ehxcluding @) in S;) are composed
of the same words as the four sentences shown for 51; » although

each individual clearly associates a somewhat different meaning
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with them. h and h' are sets of models characterized by two
distinct observations involving transistors. If both individuals
make the observation corresponding to h, then the situation is
almost exactly as before—namely there is agreemént on all of the
statements except possibly «, On the other hand, if the actual
observation corresponded instead to N', then one of the statements
which the physicist says is true of the observation, although under-
stood by the circuit designer, is not strictly true of h' in his lan-
guage lj:'c . The important point here is that as long as the obser-
vations shared by thé two individuals have the characteristics of h,
their languages will seemingly agree, in spite of the fact that the sen-
tences do not have identical meanings.. Only when some observation
- is associated with a set of models similar to "' will the actual con-
ceptual differences be made explicit. In our example, h', might

possibly be the set of models resulting from an observation of a
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peculiar type of semiconductor device which functions like a transistor
in the physicist's view, but which the circuit designer does not con-
sider to be a legitimate transistor because, for eﬁmple, it only be-
haves properly at very high temperatures.

Notice that observations which make explicit the underlying
differences in two languages can occur even when one language would
be said to more precisely specify some concept, such as transistor,
than the other. Consequently, the problem of communication between
two individuals having more or less ramified views of some domain
has two primary aépects. First, there may be statements like «
which are relevant to one observer and not to the other. These are
no fundamental barrier to communication since there may be apparent
agreement on sufficiently many other statements so that ideas may
still be adequately exchanged. Nevertheless, it is statements like «
which tend to make certain observations more informative to one in-
dividual than the other, and hence to motivate or prompt communic-
ation., Therefore, the most relevant or precise statements which can
be made are exactly those for which the communication breaks down,
forcing one individual, or possibly both, to describe the observations
in more general terms.

Secondly, this necessary abstraction from the most precise
statements that could be made, even though it enables communication,
may mask cer‘ta,in inconsistencies among the languages. These in-

consistencies may be revealed by observations which have not as yet
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been made, but it is possible that such observations will never be
made by the two individuals. In the latter case, there will always
appear to be an agreement among the individuals, in spite of the

fact that they each have a different conceptual view of the same

domain.
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VII, THE PROBLEM OF INDUCTION

_C‘ertainly one of the central problems in understandiné; sci-
ence is to comprehend the inductive procesé—namely, how one
arrives at general conclusions on the basis of specific observational
evidence. The solution to this problem is one of the ultimate aims
of this thesis, and although we have not been able to solve it directly,
we have provided mechanisms that allow us to propose two new hypoth-
eses. These hypotheses suggest directions for further research
which may prove fruitful in resolving this difficult problem of the
. modern philosophy of science. As these hypotheses are firmly
founded on our developed formalism, we considef them one of the
central results of this thesis, and this chapter will be devoted pri-
marily to a presentation of them and an investigation of their impli-
cations.

In chapter I we introduced a number of problems pertinent to
an under‘standing of the scientific method, all but two of which have
been discussed in terms of our formal apparatus. The remaining
two conéern the re‘interpretation of the words of a language and the
apparent disparity between the explicit and implicit scope of a sci-
entific paper. We first show that both of these are instances of the
general problem of induction. Thus consider the circumstances
which cause a particular word to assume some new interpretation;
this clearly comes about as a consequence of some relevant obser-

vational evidence. Suppose for example that we have observed five
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hundred white ducks and no black ducks. It is highly likely that our
definition of ”duck"' include-s the ﬁroperty of their being white., If
we now see a black duck we have two obvious choices; we must
either modify or reinterpret the meaning of the word "duck", or

\;s/e can conclude that this new creature we have seen is not a "duck"
at all. However, if we continue to observe black ducks, this latter
course will become less and less natural until finally the lack of
sensible differentiation, on some basis other than color, will cause
the term "duck" to be redefined. Thus the accumulation of obser-
vational evidence refuting our belief that "ducks' are white will
eventually induce a different meaning for the word ""duck'". The
exact moment when this occurs can be characterized only if we fully
understand the inductive process.

Now consider a scientific paper describing some experiment
and the results obtained from it. Typically, the paper will detail
the experimental apparatus, the experimenter's techniciues, and the
observed outcome of the experiment. Usually, if it is feasible, the
experiment will have been repeated a number of times in order to
reassure both the scientist and the reader that the specific outcome
of the experiment was not a fluke or chance occurrence. In si:ite of
this repetition, however, the actual circumstances under which the
experiment was performéd represent only an isolated instance out
of many which might have been chosen. Indeed, the paper will gen-
erally make clear many of the specific restrictions of the experiment,

and very often the explicitly stated conclusions will be confined to the
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most direct consequences of the observed results. However, as
time goes by, and further consist'ent evidence is obtained, some
subsequent paper may make the claim that "all entities of the type
_studied will behave in a manner consistent with the experimental
results presented'. Thus the inductive leap is made explicit,
Long before this occurs though, the dissemination of previous
results may lead others to inductively infer this same conclusion,
Such implicit generalizations are yet another example of the in-
ductive process.

In light of our previous discussions, it can easily be seen
that induction may be validly characterized as a change in language.
However, before commenting further on this, let us br‘iefly examine
the possibilities inherent in language change, First, we know that
for many concepts, such as the integers or volume, there is no for-
mal language which can constructively chéracterize them. Thus,
any mechanism describing language change will necessarily fail to
explain how suéh concepts can be sensibly interpreted, without
some reference to extra-linguistic aspects of their meanings.
Anothér salient point is that there is no most expressive language.
This results directly from the Tarski theorem on the definability of
truth for a language [39,_ p. 273], since if there were such a lan-
guage, say &£, we would be unable to specify the meaning of "true
in £" for lack of a more expressive language in which to do this.
This contradicts the fact that a meta-~language for & can be for-

malized and truth for £ defined within it. Consequently,
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continually moving from one language to another more expressive
language is a non-ferminating pfoces s. Furthermore, as we have
seen, we may actually be losing information, thereby defeating
our purpose. These basic limitations on language change suggest
t‘ha.t the forces leading to such change are the product of other con-
siderations.

One possibility is that the formal language that charactei-izes,
a person's view at a given iz’lstant is determined by his a priori
probability and the sum total of his observational evidence. In situ-
ations where the need for tacit knowledge can be limited only by an
infinite number of observations, any finite number of observations
‘will leave room for language ché.nge compatible with these obser-
vations. Thus, one would expect an adjustment of facit knowledge
to take place as a function of the a priori probability, and within
the latitude remaining over and above available observational evi-
dence. What remains is to identify the forcing functioﬁ or criterion
involved. The literature considers, for example, such forcing
functions as simplicity, though these remain ill-defined.

It is interesting to note that traditional treatments of induction
have been based primarily on a fixed language which is presumed to
be adequate to express all relevant concepts. By using a fixed lan-
guage and defining inducfion within its rigid framework, several
asi)ects we feel are basic to the inductive process have been over-

looked. For instance, this precludes changes in the meanings of
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words as a factor in explicating it}ducfién, 7' 'A_lso, if the language is
static we can not make use of shilfts in thé level of abstraction or
expressiveness relative to some conceét. Fﬁfthermore, even
though tacit knowledge—as embodied by the interpretation of refer-
ent words—has been generally accepted, its dynamic role in induc-
tion does not seem to have been recognized. As we mentioned,
tacit understanding by its very nature allows for a certain flexibility
in an observer's language. Thus linguistic changes can be made
which do not conflict with the observer's previous observational
experience, except in the limiting case of an infinite number of
observations, Because we are convinced that the essence of the
inductive process involves considerations of the temporal aspects
of language, we seek an explanation which can fully utilize changes
in the meanings of words, shifts in thg generality or abstraction

of language, and the freedom of expression resulting from the im-
plicit nature of tacit knowledge.

A related problem of the philosophy of science is that of uni-
versals [30, chap. 6] . For example, consider the concept of being
red. Clearly our knowledge of what is red is not directly related to
knowledge of what specific objects are considered to be red; this we
conclude because our concept of red obviously is not altered when,
for one reason or another, an object we are viewing changes its color.
Suppose we can acéount for tacit knowing in terms of inductive proc-

esses that determine how we exploit the leeway in the meaning of
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words above and beyond our observational evidence. If this can be
done, universals can be readily e:;cplained as the "end product' of
such processes.

Bearing in mind all of these factors, and as an outgrowth of
our developed formalism, we now propose two hypotheses as pos-
sible avenues for explication of induction.

(1) An individual seeks that language which maxi-

mizes the informativeness of his previous ob-

servational experience.
By this we mean that an individual attempts to adjust his language in
such a way that it provides him with the most informative possible
view of his observations. The inforrna.tioﬁ referred to here is to be
interpreted exactly as defined in chapter IV. In chapter VI we de-
monstrated that there may be formal languages which maximize the
information in any particular set of observations, and further that
these languages are not necessarily highly expressive languages.
This result lends credence to hypothesis (1) since it suggests the
existence of formal languages which are optimum, in the sense of
informativeness, for a given set of observations. In order to be
able to state unequivbcably that this is the case, however, we
wduld need to develop other concepts which characterized the
specific mechanisms bringing about language change. Thus, al-
though we know that for some formal language and for particular

observations there are other formal languages—both more expres-

sive and less expressive—which are less informative, we do not
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know, nor do wé suspect, that linguistic change is based purely on
expressiveness. Consequently, ‘further investigation is necessary
to establish not only that maximally informative langtiages exist
but also that, given their existence, they can be reached by the
ﬁatural processes of language change.

Many of the above points are also relevant to our second
hypothesis, which we now state: |

(2) An individual see'aks that language which

maximizes his expected gain in information

based on anticipated observational alter-

natives,
Although the first hypéthesis was clear in terms of previous dis-
cussions, this second hypothesis needs further interpretation.
Therefore, in order to gain insight into the implications of hypoth~
esis (2), we will make use of the following rather trivial but sug-
gestive example.

Suppose a scientist conceives of two experiments that he

rni‘ght perform to increase his understanding of some domain. The
following diagram indicates how these hypothetical experiments,
31 and 32 , might pé.rtition the set of models h<m. N is pre-
sumed to bé the entire set of models associated with the scientist's
previous observational experience., Also shown are two hypotheses,
" and Yo 0 of the scientist's formal language.

Eachlof the two experiments has three possible outcomes,

two of which are specifically labeled on the diagram. Thus, for
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n Y
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1/5 \ 2/5
Y2 .
/5 1/5
\
\
Case 1
example, the outcomes of & are . E1 and El' E1 and El
ple, 1 2re B By, 3 Ty 2
are delimited by ellipses on the diagram, whereas E; consists of

all those models not in either of the other two. A similar situation
holds for the second experiment 32 . The two sentences 7 and
v> partition N into four regions, eé.ch presumably a state of the
scientist's language. The numbers in these regions indicate the
*~-probabilities that the scientist associates with these states. We
have previously discussed the expected informational gain for an
experiment and developed a mathematical definition of it in terms
of the *~-probability, Suppose we now assume that the scientist
plans to perform first experimeﬁt 31

The two experiments taken together have nine possible observational

outcomes. For examplé, one of these is given by E:]l_ N EFZ, and

and then experiment 62 .

another by Eé N Eg . In this simple case we can easily compute
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his anticipated informational gain by using the following formula:

| 3
(1) 1€, and &) i Z P (E; N EJ.Z) log P*(E; N E?g) .
J:

i=1
Arbitrarily choosing the natural logarithm we obtain the numerical
answer, 1(&',1 and 52) = 2.681. The absolute value of this answer has
no particular significance, but we shall be interested in comparing
it to several other cases,
Now consider the situation where the scientist has performed

experiment € . and has found that the outcome lies to the right of the

1
line labeled vy i. e. the observed outcome was Ei .
experiment 32 , knowing the result of 51 , and determine which of

He can now do

the remaining admissible states of his language best characterizes
the actual circumstances. What is the expected gain in information
in this case? By taking the conditional *=-probabilities we may

compute the expected increase as before., The following formula,

g 1_2*21 % 2.1
(i) IE€,) lEl) == g P (E; IEl) log P (E{ |E))

yields the numerical result I(SZI Ell) = 0,.637. As we would surmise
the expected gain is less than for the previous case, since the scientist
already has knowledge of the outcome of experiment 31 .

Now we shall repr.oduce the preceding analysis with one change.
Inherent in the previous diagram is the assumption that the scientist |
has certain tacit interpretations of the words of his language. Pre-

sumably his interpretations were inductively drawn from a finite
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number of observations. However, as discussed at length in
chapter V, the meanings he has afta.ched't';o these words may not
be able to be fully delineated by any finite set of observations.
Consequently, there is a degree of.freedom remaining in the

ﬁcit meaning he associates with these words (as we have seen for
the word ''volume' ), In the preceding diagram the scientist
has exercised that freedom in a certain way. We draw the dia-
gram again as it could appe.’ar had he exercised his freedom with
regard to tacit meaning in a somewhat different way.

Y
h 2 1

7
1/2 1/10

Q) [
/ \D

3/10 / 1/10

/
‘Case I1

The salient difference between this diagram and the pre-
ceding concerns the hypothesis ‘Yl . This statement partitions the
models in a different manner because of our presumed ché.nge in
tacit meaning, and accordingly the *-probabilities of the four
states are now altered. Using formula (i) we can again compute
the expected informational gain prior to pérforming either exper-

iment. The following result is obtained: I(El and 32) = e 205:. In
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a similar fashion we use formula (ii) to calculate the increase in
information for experiment 82 , given that the outcome of experi-
ment 81 is known. Our new result is: I(e2 I Ei) = 0.. 693.

Notice first that the expected gain in information prior to
éither experiment is higher in Case I than in Case II. Thus, at
this point in time, by exercising his freedom in assigning mean-
ing to the referent words, the scientist would presume that Case I
represented the more meani'ngful position. However, the observed
outcome of his first experiment eliminates previously admissible |
models in such a way as to render the initial (Case I) meanings of
the tacit terms less useful informationally, as can be seen from the
fact that the eipected information for the second experiment is con-
siderably higher in Case II than in Case I, Under these circum-
stances the scientist could be expected to conclude that a change in
his tacitly accepted'concepts is called for in light of exgerimgnt 31 ’
which results in his modifying the meanings of the referent words.
Let us see how this might work in practice.

Suppose an ornithologist is on a field trip, and observes some
bird he has never seen before and says "That is a sparrow''. Why
does he not say instead that the bird he sees is an owl? It is tempting
to say that it looks more like a sparrow to him and so he categorizes
it as a sparrow, but that begs the question, it is not a satisfying ex-

planation of the scientist's choice. For one thing, he is differentiating

this creature he perceives not only from owls but also from a myriad
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of other possible entities. In addition, Ee 'presumably knows much
more about the properties of sparrrows than he has actually observed
of this particular bird. Thus again we are faced with a situation in-
volving inductive inference. However, our preceding example and
the second hypothesis we proposed provide one possible explanation
.of the scientist's behavior. That is, he says that he sees a sparrow
because he anticipates that this is an informing view relative to any
subsequent experiments or tests he might carry out., More precisely,
although he realizes that further examination might demonstrate that
the creature is a stuffed bird or that it might hoot like an owl, the
assumption at this point that it is an owl violates his expectations of
the bird's behavior based upon prior experience(é,nd a priori p-rob—
ability). The expected gain in informativeness will be maximized if
he regards it as a sparrow, Thus, this situation is analogous to the
hypothetical example of the two experimeﬁts, which was presented to
aid in interpreting hypothesis (2). As we pointed out there, the ex-
pected gain in information for a given experiment may be different
for distinct formal languages. In this particular case we would con-
clude that for the scientist to say that he sees a sparrow rather than
an owl is more informative to him, based on his experience and the
observational alterna.tivgs he can envision. .Note that some other
individual might well be best informed by calling the creature in
question a bird, or a wounded sparrow, or perhaps simply anani-

mal, depending on his orientation and anticipated activities.,
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Hypotflesis (2) states that the choice among these is determined by
a combination of the a priori probability, -thé sets of models to
which he is confined by prior observations, the formal language,
and the experiments or tests which the observer considers to be
relevant. |

In the discussion of the second hypothesis we have primarily
considered changes in language resulting from a change in the mean-
ing of referent words. We do not mean to suggest that all legitimate
changes are of this nature. Examples of this type were used for .
convenience only, and in reality we would expect changes in semantic
categories, semantic transformations or other aspects of the formal
language., Also, we emphasize that hypotheéis {2) does not fuliy ex-
plicate language change, just as hypothesis (1) did not, Again, we
have not accounted for the actual mechanisms of language change,
and thus we do not know that maximally informing languages, in the
sense of hypothesis (2), can always be arrived at in a natural manner,

We now wish to re-examine the two remaining examples in
the introduction in light of the two hypotheses we have proposed. As
the first of these, consider the re-definition of the term "isbtope".
Prior to the discovery of deuterium, isotopes of the same element
were held to be chemically inseparable, but deuterium was chemically
separable from light hydfogen. Clearly, once deuterium was dis-
covered, it was either to be called an isotope or it was not. What

factors aided in resolving this question? As we know, the term
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"isotope'' was tacitly re~defined to include things like deuterium, and
of course this change caused corresponding modifications of the
associated formal languages. If we take the viewpoint of hypothesis
(1), we would say that the change in meaning of the word "isotope
resulted from adopting a more informative position with respect to
the previously observed properties of deuterium. That is, the
scientists in question found that classification of deuterium as an
isotope was more informing than considering it to be in a categ‘ory
of its own. Thus deuterium was observed to be sufficiently much
like other isotopes so that a change in the concept of isotopy could
be accommodated without conflicting with knowledge of their prop-
erties.

The outlook on this problem afforded by hypothesis (2) is
slightly different. The second hypothesis suggests that to regard
deuterium as an isotope, thereby modifyiﬁg the notion of isotopy,
was more informative with respect to its potentially testable—but
as yet unverified —properties. We might say that the essential
difference between the two hypotheses is that the first relies most
heavily on previous experience while the second combines this with
anticipatory factors. This "looking ahead' of the second hypothesis
is based on the particular tests and experiments which seem plausible
and relevant to the theories to be investigated. We should mention
that Polanyi's [26, p. 111]analysis of this example states that

""isotope' was re-defined to reflect its '"truer meaning". It is
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difficult to know what basis one could have for such an absolute
judgement. If one were to construe the word "true' in the sense
of better fit with observation as in "the carpenter trues up the wall
of the house', then Polanyi's comment is directly related to the
view presented here. We would emphasize that our hypotheses do
not depend upon an absolute truth, Ra,therr. they rely oﬁ the individ-
ual's conception of what appears most informative to‘ him in the
light of previous experience' and his metaphysical assumptions,
This admits the possibility that his view is actually false of reality,
i. e. some of his assumptions are false of the true model MO i

With regard to the second example, which concerns the ex-
plicit and implicit scope of a scientific paper, we can suggest one
possible resolution of the apparent disparity. The salient point
here is that the scientist finds it most informative to employ one
formal language in writing a paper for a journal and another in
guiding his personal research. Thus, suppose that he is a biologist
studying the functions of vision in the wolf spider. For purposes of
his own research and as a means of determining appropriate experi-
ments to perform, he is likely to employ a formal language which
facilitates generalizations of the specific experimental outcomes he
perceives. That is, he may ignore certain known idiosyncrasies
of his experimental apparatus and the particular spiders he is using
as subjects on the assumption that these distinctions will eventually

be shown to be irrelevant, In the sense of our second hypothesis
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he will find it rﬁost informing—based on experiments he expects to
perform—to make use of a formal language whose states coincide
well with the scientist's loﬁg term expectations regai'ding alternative,
and as yet unproven, theories about the general phenomena he is
étudying. This may, for example, result in his ignoring the pecu-
liarities of the wolf spider sihg:e he anticipates that his conclusions
will eventually prove valid for a much broader class of animals.,

On the other hand, vc;hen the scientist is writing a paper about
his results, different considerations may motivate his choice of for-
mal language. For one thing, in contrast with his personal specu-
lations, he is now very definitely concerned with making statements
which are '"true', or hypotheses which are almost certainly correct.
But what he actually knows to be true falls .fa.r short of what he ex-
pects will later be proven true, Consequently, he will take great
care to ensure that he fully describes the specific and detailed con-
ditions of his experiment and that he does not over~-generalize the
results he has obtained. Thus, in this situation he is confronted
with the problem of communicating his results to some community
of scientists with similar backgrounds, without making the paper
either unnecessarily detailed and trivial or overly vague and
speculative, Since he generally presumes, although perhaps in-
correctly, that his readefs have a common understanding of many
of thé concepts involved in his paper, the scientist can attempt to

employ some formal language which will be most informative to
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them. Thus, even though he does not explicitly state many of the
generalizations of‘ his resuits which he personally suspects to be
true, he can tailor the language he uses to allow others to induc-
tively infer what are to them the most informative consequences
of his results. In this sense, hypothesis (1) would seem to pro-
vide the most reasonable explication of his behavior. That is, he
seeks a language which maximizes the information relative to |
his s{pecific observational e;cperience. He then can assume—
based on the presumed similarities of his readers’ languages—
that they will augment his statements with hypotheses and
generalizations analogous to those he feels will ultimately be
proven correct., In this respect, hypothesis (2) seems to be
most applicable.

Neither of the examples presented in this chapter as
characteristic of the inductive process could be considered to be
solved by our hypotheses. Nevertheless, it does appeaf that they
provide a new and useful insight into these difficult problems. As
we have mentioned, the primary missing ingredient is our current
inability to characterize the actual mechanisms of language change.
We have, however, suggested informativeness as the force under~
lying such changes, and either of our two hypotheses, or perhaps
some combination of therh, provide possible guidelines for an in-

vestigation of the dynamics of formal languages.
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Let us summarize what we have accomplished in this thesis,
A scientist tries to find structure in the world around him. He does
this by formulating and testing scientific theories. At one time it-
was thought that this could be done by the slow accretion of scientific
knowledge, by a systematic procedure often referred to as the sci-
entific method. We now know-that this is not the way science de-
velops, and that)there are many difficult and unsolved pro‘blerns in
explaining science and the scientific method. In this thesis we have
developed a formal method for attacking these problems., The con-
cept of a formal language has been introduced to explicate the notion
of structure. A clear distinction has beén made between language,
or conceptualization, on the one hand and observation on the other.
hand., We have made clear the necessity of tacit knowledge which
could not be fully delimited by any finite amount of observational
evidence. The existence of this tacit knoﬁledge provides the leeway
within which a scientist can shift his language to fit his ever in-
creasing experimental evidence, By introducing the notion of
probability we have developed a related measure of information
as a function of formal language, as well as of observation., Fi-
né.lly' we have suggé.sted that eithér information :or expected in=-
formation, or some combination of these, can bé used as a forcing
function to define the concept of an optimal formal language for a
given body of observational evidence. Thus we suggest that the

process of science is not one of discovery of structure, so much
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as it is a fitting of structure to experimental evidence; and more
importantly, we have provided a formal apparatus for making this
suggestion precise.

We have attempted to study these problems inherent in
1-;he scientific method from the point of view of the meanings of
sentences, without a correspéndingly detailed analysis of the
meanings of individual words. Such analysis we believe is a
natural extension of what we' have done and will certainly be nec-
essary in conducting further investigations of induction and other
related problems of the methodology of science, It has also be-
come apparent that the temporal processes of language change,
as wéll as the static informational aspects of language,v are in-
volved in the development of science—particularly, as we have

seen, in the problem of induction,
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APPENDIX

In this appendix, we prove the theorem stated in chapter VI
which asserts the independence of the various quantities affecting
the informativeness of an observation as the language éhanges from
less exp'ressive to more expressive. For convenience, we repeat

the following diagram.

|

;31_/

1 1 Z

532 is assumed to be at least as expressive as £1 s Be By £2 = .S:l "

The sets A, B, C, D, E, F, and G may be characterized as

B is the basis for language £, and 8, the basis for 32 . Also,

follows:
A: h/2 A B: ‘rl//2 B
-. C: h./‘1 C D: 1'1.//‘.l D
o E: hll,zE ¥ hl/l,zF

G: h//lG and n/ZG
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The _set. of models N is assumed to correspond to some
arbitrary observa.tion. Since E and F have the same properties
with respect to N in both languages, they are not of interest. The
sets A, B, C, D, and G are the ones we wish to prove independ-

ent of one another.

Theorem: There exist formal léngua.ges J.',l and £2 ’ .i'z =5 such
that there are sets of models N (corresponding to possible obsAer-
vations) for which the sets A, B, C, D, and G may be empty or
non-empty in any combination, i.e. A, B, C, D, and G are in-

dependent of one another.

Proof: We shall exhibit a language 551 and four languages corres-
ponding to Sz (this is the minimum possible number), and for each
of the 25 = 32 cases where some combination of A, B, C, D, and
G could be non-empty, we will choose an N to show that this com-
bination is actually realizable. Each of the languages \ﬁe shall illus-
trate has a unique basis, as indicated by the elements with the heavy
borders. The first figure shows the state diagram for language 'S:l ;
The next four figures show the possible cases for language £2 , and
in each case £2 = £1 . Following each of these figures is a table
designating some set of models N and, for each N, the status of
the sets A, B, C, D, >and G. In these.tables, a "ll" indicates

the corresponding set is non-empty and a ""0'" that it is empty.



If a table entry lists more than one element, where these are
separated by commas, then N is the set of models obtained by
taking the union of all elements listed.

the set N with respect to the basis for £

- 173 -

The characteristics of

and for the particular

case of SZ determine ' whether A, B, C, D, and G are empty

or non-empty.

T F ¢
T T TF T
F FT FF F¢
¢ ¢T oF ¢

Thé above figure shows the state diagram for language &£
For this and each of the subsequent figures, the truth values are

subscripted to indicate the sentence to which they correspond,

Thus, for e}iample, FZ

v is false. .

designates the region where sentence

l .
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Casel, A =B= C=D=90. Suppose £2 is —

T
5 3 T, F?; ¢,
TET
T TEFT . T¢T
TTF
FFET
1:‘1 FTF FoT
FFF
N\ 96T
¢, ¢TF ¢FF \
POF N\
h A B G D G
FTF 0 0 0 0
TTE 0o 0 0 0
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Case II. C =D =0, Suppose &

T F é T
2 2 2 F;
TOTFEF
T, TTTF TFTF
F, T¢FF
i '
FTTT F¢FF
F
1
STTT \\¢¢FF
qsl ¢FFT : \\
¢TFT ST F,
Ty
n A B & D G
STTT, $TFT, | O 1 0 0 0
TYFF, TYTF
¢TFT, TFF |0 1 0 0 1
FTTT 1 0 0 0 0
FFFT 1 0 0 0 1
T¢FF, T¢TF 1 0 0 0
TFF 11 1 0 0 1




Case IIl. A=B =0, Su‘ppjos_e £

- T76 =

is

2
Ty .
B PTT
: TFT ToT
Ty
TTF
$3\
FTEF FFT
F
1 FT¢ \&\& F¢T
&
FF¢
=
v $oT
YT
\| FETAN
§
n A B C D
FT¢, FF¢ 0 0 1
FT¢, FF¢, FFF 0 0 0 1
TFT 0 0 1 0
TP 0 0 1 0
FT¢ 0 0 1 1
FF¢, FFF 0 0 1 1
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Case IV, Supposé £';?. '.is -

3 T i R é 4
F3 2 F6/T6 - \is 2 F4

TOTTOT

\\ //

N, /g

TETTTT i

=

-

[
TEET LT TO¢TFTT

FTFTTT

FETTTT
Y F¢TFTT
FT¢TTT
| \¢¢TFTT
| $4FFTT !
N
n A B C D i
TTFTT, ¢TYFFT, 0 1 0 1 0
SITHTET, TTETTY,
TTTTTE ,
TSTTPT, THTFPT, 0 1 0 1 |
FSTFTT
TTTPT, TSTFST, 0 1 1 0 0
TTFTTE, TTTFTT,
T TTE
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Case IV (c ontin'ure. d)

h

A

B

T@TTPT, TOTFPT

PTPFFT, ¢TOTEFT,
¢TPFTT, ¢pT¢TTT,
FI4TTT, ELETTT,
TTFTTT, TTTTTT,
TTFTTF, TTTTTF

- ¢TPFFT, ¢TSTFT,

TPTTT, ¢TOFTT,

FT¢TTT, FTFTTT,
TTFTTT, TTTTTT

FTTTT, FF¢FTT,
FFOTTT

FTFTTT, FFTTTT,
FFTEFTT

TETTTT
TTTTTT
FFEOFTT, FFTITTT
FF¢FTT

$TPFTT, FFSTTT,

FETTTT, TIFTTF,

TITTTE
$TPFTT, FFGTTT

T¢TTTT, TTFTTT
TTTTTF, TTEFTTF

TOTTET

gTPTTT, $TSFTT,
D i i R e

¢FQFTT

0

1

o O o o
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