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ABSTRACT 

The intent of this study is to provide formal ap~atus wh~ch 

facilitates the investigation of problems in the methodology of science . 
. _;.,_------------·---------~~-·------~·---------·-----------------

The introduction contains several examples of such problems and 

motivates the subsequent formalism. 

A general definition of a formal language is presented, and this 

definition is 'l!sed to characterize an individual's view of the world 

around him. A notion of empirical observatfon is developed which is 

independent of language. The interplay of formal language and obser-

vation is taken as the central theme. The process of science is 

conceived as the finding of that formal language that best expresses the 

available experimental evidence. 

To characterize the n1anner in which a formal language irnposes 

structure on its universe of discourse, the fundamental concepts of 

elements and states of a formal language are introduced. Using these, 

the notion of a basis for a formal language is developed as a collection 

of minimal states distinguishable within the language . The relation of 

these concepts to those of model theory is discussed. 

An a priori probability defined on sets of observa.tions is postu-

lated as a reflection of an individual's ontology. This probability, in 

conjunction with a formal language and a basis for that language, induces 

a subjective probability describing an individual's conceptual view of 

admissible configurations of the universe. As a function of this 

subjective probability, and consequently of language, a measure of the 

.·' .· 
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informativeness of empirical observations is introduced and is shown 

to be intuitively plausible - particularly in the case of scientific 

experimentation. 

The developed formalism 1.s then systematically applied to the 

general problems presented in the introduction. The relationship of 

scientific theories to empirical observations is discussed and the need 

for certain tacit, unstatable knowledge is shown to be necessary to 

fully comprehend the meaning of realistic theories. The idea that many 

common concepts can be specified only by drawing on knowledge obtained 

from an infinite number of observations is presented, and the problems 

of reductionism are examined in this context. 

A definition of when one formal language can be considered to be 

more expressive than another is presented, and the change in the 

informativeness of an observation as language changes is investigated. 

In this regard it is shown that the information inherent in an observation 

may decrease for a more expressive language. 

The general problem of induction and its relation to the scientific 

method are discussed. Two hypotheses concerning an individual's 

selection of an optimal language for a particular domain of discourse 

are presented and specific examples from the introduction are examined. 
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I. IN:TRODUCTION 

The tremendous scientific advances of the last several centuries 

have resulted in a variety of new disciplines and a greater degree of 

·specialization in existing ones. In spite of this rapid growth and 

diversification, there remains a very firm belief on the part of many 

researchers in the unity of science. This view is aptly summarized 

in the following statement by Lee A. DuBridge [ 13, p. 6]. 

ir ••• science has reached a new level of attainment. Men 
now do comprehend the basic laws that enable them to 
interpret, and even in a large measure to predict, the 
behavior of the physical world-the world of the earth, 
the sun, the planets, the stars; of electricity and gravi­
tation and the forces that hold atoms and molecules 
together. We even know that the processes of life depend 
on these same physical laws; that life is, in a very deep 
sense, the ultimate proof of the quantum theory. Hence, 
man 1 s eternal quest for understanding of the world about 
him has led finally to the beginning of understanding the 
world within him. 11 

Although many philosophers and scientific historians have con-

tributed greatly to our understanding of science, there remain many 

difficult problems, and much needs to be done to fully explicate the 

scientific method and to characterize the relationship of the scientist 

to his science. In particular, the means by which a scientist becomes 

better informed, either by the gathering of experimental data or by 

communication with other researchers, is poorly understood. A 

prime task of information science should be the formulation of con-

cepts which are useful in understanding these processes. This thesis 

is directed to that task. 
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The formal apparatus which is developed in subsequent chapters 

would be barren if it did not provide insight into basic informational 

problems and, in particular, into fund;;i,mental problems in the develop-

ment and understanding of science. Therefore, in order to give per-

spective to these later quantitative chapters, we will begin by sketching 

several examples of such problems. We complete this introductory 

chapte r by identifying two, more general philosophical issues, namely 

the problem of reductionism, and the question of the relationships 

between scientific theory and empirical observations. 

The central portion of the thesis develops a mathematical 

apparatus by means of which these issues raised in the introduction 

can be formally treated. The later part of the .thesis then returns to 

the problems of the introduction, viewing them from the vantage point 

of the developed apparatus. 

Consider the r e lationship of the individual and his science as 

reflecte d in the language he uses to describe his theories and obser-

vations. As Polanyi points out , we often find that the words or con-

cepts in this language shift in meaning on the basis of new observational 

evidence [ 26, p. 111). 

"Whe n heavy hydroge n (deute rium) was dis c overed by Urey 
in 19 32, it was described by him as a n e w i s otope of hydro­
gen. At a di s cussion held by the Roya l Socie ty in 19 34 the 
discoverer of isotopy, Fre d e ric Soddy, obj e cted to this on 
the grounds tha t he had orig inally define d the isotopes of an 
ele m e nt a s chemi c a lly ins e p a r a ble from each othe r, and 
heavy hydroge n was chemica lly separable from light hydro­
gen. No atte ntion was paid to this protest and a new meaning 
of the term 1isotope 1 was tacitly accepted instead. The new 
meaning allowed heavy hydrogen to be included among the 
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isotopes of hydrogen, in spite of its unprecedented property 
of being chexnically separable from its fellow isotopes. 
Thus the statement 'There exists an element deuterium 
which is an isotope of hydrogen' was accepted in a sense 
which re-defined the term isotope, so that this statement, 
which otherwise would be false, became true. The new 
conception abandoned a previously accepted criterion of 
isotopy as superficial, and relied instead only on the 
identity of nuclear charges in isotopes. 

"Our identification of deuterium as an isotope of hydrogen 
thus affirms two things: ( 1} that there exists in the case 
of hydrogen and deuterium an instance of a new kind of 
chemical separability, pertaining to two elements of equal 
nuclear charge, (2) that these elements are to be regarded 
as isotopes in spite of their separability, merely on the 
grounds of their equal nuclear charge. The new observa­
tions referred to in ( 1} necessitated the conceptual and 
linguistic reforms decreed in ( 2). 11 

This example illustrates that scientific terms tend to be redefined 

from time to time. One obvious question is why this process of re-

interpretation takes place at all. What combination of circumstances 

necessitates such a change in language? Even more important, when 

words do change their meanings, what becomes of the theories which 

made use of them, and what is the weight of old observations on new 

enunciations of theory? 

A closely related problem concerns two observers who use the 

same tern1, but one of them has a more detailed or ramified view of 

the concept denoted by the term than the other. For instance, an 

electrical circuit designer might visualize a ''transistor" as a current-

controlled device having three terminals and functional behavior des-

cribed by a certain set of input-output equations. A solid state 

physicist, however, might very well characterize a "transistor" as a 

piece of semi-conducting material with a certain distribution of 
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impurities which determine how the electrons and "holes" will move 

through the material when a potential difference exists. He may also 

implicitly associate such concepts as the mean free path of an electron, 

or the avalanche breakdown voltage of a junction with his notion of 

transistor. 

There are clearly many circumstances when these men might 

find it advantageous or essential to converse on subjects which pre­

suppose an understanding of what a transistor is. Even if we asswne 

that their views are not fundamentally conflicting, we must admit that 

they implicitly disagree on what the relevant properties of a transistor 

are. Nevertheless, communication does take place, and presumably 

information is exchanged. But if these men both observe a transistor 

behaving in a certain novel fashion, are they equally informed by this 

observation? Will they both describe the observation in similar terms? 

Another interesting phenomenon is illustrated by a comparison 

between what might be called the explicit scope and implicit scope of 

a scientific paper. Consider a biologist who describes the response 

characteristics of some neuron in a particular nerve ganglion of an 

insect, say the wolf spider. The writer is generally very careful to 

indicate that his results apply only under a certain set of experimental 

conditions. Sometimes the experimental animals are mutants, or many 

generations of them have been bred in the laboratory. And perhaps the 

stimulus is one which the animal would not normally encounter. Re­

strictions such as these, which are obviously necessary for practical 

reasons, tend to confine the stated results to rather specific cases. 
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What is the character of the information conveyed by such a paper? 

If the article is published in a reputable journal, is thi s because the 

editors believe that the restricted results obtained for the wolf spider 

are of overwhelming interest? It would not seem so. Rather, it must 

be that the results are supposed to have implications of a more general 

nature. Indeed, it would appear that these often unstated generaliza­

tions of the conclusi ons in the . paper constitute much of its real 

significance. Writing in The American Psychologist, F. A. Beach 

emphasizes a slightly different aspect of this point in relation to the 

field of comparative psychology. [ 1, p. 119]. 

"Perha ps it w ould be appropriate to chang e the t itle of our 
journal to read 'The Journal of Rat Learning' , but there 
are many w ho would obj e ct to this proc edure b e caus e they 
appe ar to b e lie ve tha t in study ing the r at they are studying 
all or n e arly all that is important in behavior . At l e ast 
I suspe ct this is the cas e . How else c an one exp l a in the 
fact that Profe ssor Tohnan's book, 'Purpos eful Behavior 
in Animals and Men', d e als primarily with l e arning and 
is dedicated to the white rat, 'where, p e rhaps, most of 
all, the f inal cre dit or discre dit belongs'. And how else 
are we to interpret Profe ssor Skinne r's 4 57-page opus 
which is based exclusively upon the performa nce of rats 
in bar-pre ssing situations but is entitled simply 'The 
Behavior of Org anisms 1 ?" 

The s e three e x ampl e s, from many that could b e mentioned, illus-

trate problems of detail in unde rstanding the current scientific scheme. 

We discuss now two proble ms of a more gene ral nature which hav e 

loomed larg e in the conside ration of the philosophy of science. The 

first of the se is reductionism, which conce r ns the r e lationships be-

twee n one the ory a nd anothe r, and the links conne cting a theory with 

the observationa l data suppo rting it. Histoxically, the ide as of re-

ductionism h a v e b een of paramount importance in influe ncing the 

.• " . ' 
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attitudes of scientists on these questions. The re are two problems, 

each of which has gone under the name reductionism, which should 

be distinguished although they are closely related. With regard to 

theory and observations, the purest form of reductionism is sum-

marized by the view that every theoretical tern1 can be explicitly 

d efined in terms of observable quantities. That is, theories were 

considered to be simply disguised references to facts. These . 

assumptions were quite prevalent until the early part of this century. 

As an example, Russell maintained the following. [ 33, p. 146], 

"Physics cannot be regarded as validly based upon em­
pirical data until [light] waves have been expressed as 
functions of the colours and other sense-data. 11 

The theory of relativity was instrumental in the demise of this 

very restrictive viewpoint. Statements such as "Space is curved in the 

neighborhood of the sun", were easily seen to be observationally un-

verifiable, at least directly. More recently, this form of reduction-

ism was modified to allow such statements to be indire ctly verified, 

for instance, by observing that light passing n e ar the sun was de-

fleeted. However, this raises other problems since the original 

statement cannot be tested if no light is passing by the sun. Never­

theless, vestiges of these concepts are still evident today, parti-

cularly in those areas of scientific endeavor which have not proven 

amenable to the methods of formal mathen1atics. Thus, there are 

some researchers, in fields such as biology, who contend that the 

gathering of experimental data is informative in itself. That is, the 



- 7 -

mere existence of knowledge about an organism conveys information, 

even in the absence of any theoretical framework. Examples such as 

this demonstrate that the role of abstract theory as it relates to the 

acquisition of scientific knowledge remains open to question. In 

order to speak sensibly about information, therefore, it is necessary 

to examine how observational evidence and theories interact. They 

certainly appear to be independe nt in some respects, and yet our in­

tuition indicates that they normally combine to support one another. 

A second aspect of the reductionist philosophy deals with the 

problems of reducing one theory to another more basic one. For 

example, in the nineteenth century, classical mechanics was thought 

to be basic to much of science, and new theories such as thermo­

dynamics were justified in part by demonstrating that they could be 

restated in the framework of classical mechanics. Many scientists 

went so far as to propose that all scientific phenomena should be 

reducible to some universal physical science. However, biologists, 

for example, generally refuted this view by claiming that there were 

characteristics of living organisms which could not be explicated in 

· terms of atomic particles or any similar notions. These questions 

certainly bear directly on metaphysical assumptions concerning the 

unity of science . For a d e tailed historical discussion of these 

phenomena, see Nagel [ 25, chap. 11] . 

At the prese nt time, very little effort is being expe nded to 

formally reduce one scientific theory to another , although there have 
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been recent attempts to partially axiomatize biology, for example 

[ 46]. Instead, reducibility is often tacitly assumed, at least in an 

informal sense. Thus, even though physical chemistry and quantum 

mechanics are not explicitly linked by systems of axioms, they are 

treated as though intimately related. Furthermore, recent advances 

in the biological sciences have revitalized the reductionist viewpoint 

in this area, as the following· quotation from Sinsheimer indicates 

[ 38' p. 5]. 

"As we have penetrated the processes of the living cell, 
as the domains of mystery have rece ded, . it has become 
ever more clear that all the propertie s of life can be 
understood to be simply inherent in the material proper­
ties of the complex molecules which comprise a c e ll. 
And thus that s e emingly qualitative gap-se lf-evident 
to the most naive-between the living and the non-living 
has in our time b e en bridged, Life is but a property of 
matter in a certai n state of organization, and, g ive n an 
organization which can reproduce its e lf, then adaptation 
and natural sele ction and, consequently, evolution will 
be just as inevitable a process as is the action of the 
second law of thermodynamics. 11 

We now turn to the general question of the relationships between 

an abstract scientific the ory and the empirical observational evidence 

supporting it. In this connection we inquire under what conditions a 

the ory may b e conside r e d to be false. One obvious insta nce in which 

we would say that a given theory is false is if it is log ically inconsi ste nt. 

That is, the statement s which characteriz e the the ory contradict one 

another. Suppose, however, that the theory w e are considering is not 

inconsistent. In this case, there will be some mode l for which the 

statements constituting the theory are all true. This mode l thus 

repres e nts a possible reality, although it is not nec e ssa rily a plaus-

ible one from our standpoint. Therefore, given some s et of s tateme nts 

.· " . · 
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which we call a theory, if these statements are logically consistent, 

we can postulate some collection of objects ·and relationships among 

them together with some interpretation of the sentences of our theory 

so that the theory becomes true of th1s domain. As we implied, the 

interpretation necessary to make the statements of the theory true 

may not agree with our common sense or our notion of reality. The 

pertinent question here is how one is able to make a distinction between 

what is plausible and what is implausible. Our intuition suggests that 

this must depend upon our observational experience, and that even 

though an abstract theory which is logically consistent has some. model, 

this model may not conform to our empirical observations. We can 

therefore conclude that a consistent theory can not be said to .be false 

without reference to observations or some means of characterizing 

the domain to which the theory refers. 

As a simple example of this, suppose that we consider the state­

ment "l /xis a rational number" as a theory. If this statement is about 

the positive _integers it is certainly true, but if we are referring to the 

real numbers it is not universally true. Perhaps we are speaking about 

all of the intege rs and not just the positive ones; then what is the situa­

tion when x = O? We might regard the statement as false in this case, 

or we could say that it is meaningless or undefined. Notice, therefore, 

that we must be able to specifically delimit the objects to which a theory 

refers in order to be able to assert its truth or falsity. This corresponds 

to interpreting the words of the abstract statements into particular 
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entities, just as we have been concerned with the meaning of x in the 

example. These entities could be determined, in simple cases, by 

pointing to them one by one, or they might be. characterized by some 

property which they have in common; but either directly or indirectly, 

certain observational evidence will be involved. 

Now assume that we have some set of observations; can we then 

say definitely when a given theory is false of these observations? Here 

again we are faced with the dilemma of what a proper interpretation of 

the statements of the theory is to be. Thus, if we had an interpretation 

such that the statements of the theory were true of our observational 

experience, what if we then made some observation which the theory 

does not adequately explain? One possibility is that we may simply 

make the interpretation of the concepts in the theory less restrictive, 

thereby causing the theory to encompass the new observation. Con­

sequently, without changing the statement of the theory we are never­

theless able to extend it to accommodate new evidence. Even though 

this may be technically possible, it is often not esthetically pleasing, 

and rather than extending the old theory by reinterpretation, it is 

discarded and a new theoretical framework is introduced in its place. 

Under what circumstances is a theory discarded and no longer con- ,, 

sidered to be scientific, and conversely, when can it be extended to 
··,,, 

explain some new phenomenon? Describing the anomalies confronting 

the scientific historian, Kuhn [ 22, p. 2] makes the following comment 

on this difficult problem. 
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11Simultaneous ly, the s e s am e historians confront growing 
difficulties in distinguishin g the 'scientific' component of 
p a st observation a nd b e lie f from what their pre decessors 
have readily labe led ' e rror' and 'superstition 1• The more 
care fully the y study, s ay, Aristotelian dynamics, phlogistic 
chemistry, or caloric the rmodynamics, the more certain 
they feel that those once cur rent views of nature w e re, as 
a whole, neither less scie ntific nor more the product of 
human idiosyncrasy tha n those current today . If these 
out-of-date beliefs are to be called myths, the n myths 
can be produced by the same sorts of methods and held 
for the same sorts of rea sons that now lead to scientific 
knowledge. 11 

Thus, the question of what i s science and what is merely super-

stition is irrevocably bound to the notion of what constitutes a valid 

interpretation of an abstract scientific theory and thereby to the ob-

servations held to be relevant to it. 

To say this, however, is only half of the problem. The plausi-

bility or implausibility of an interpretati on of some theory presumably 

depends directly on the individual's metaphysical assumptions about 

the nature of reality. Quine [ 30, p. 17] says the following about the 

relati onship betwee n an individual's ontology and scientific theory. 

110ur acceptan c e of ·an ontolo gy is, I think, similar in 
principle to ou1· acceptance of a scientific the ory, say 
a system of physics: 'w e a dopt, at least insofar as w e 
are reasonable , the simple st conceptual sche m e into 
which the disordere d fragments of a raw e x p e rie nce can 
b e fitt e d and arranged. Our ontology is dete rmine d once 
we h a ve fixe d upon the ove r-all conceptual scheme which 
is to accommodate s cie nce in the broade st s e n se ; and the 
considerations w hich d e t e rmine a reasona b le construction 

_of a ny p a rt of tha t conc e ptua l s cheme, for example , the 
biological or t h e phys ica l part, are not diffe r e nt in kind 
from the considerations w hich d e termine a reasonable 
construction of t h e whole. To whatever extent the a dop­
tion of any syste m of s cie ntific theory may be said to be 
a matter of language, the same-but no more-may be 
said of the adoption of an ontology. 11 
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II. FORMAL LANGUAGES 

In the introduction, we broadly outline d the problem area by 

means of a numbe r of examples. This chapter will establish ·a specific 

framework within which the questions we have raised can be meaning-

fully discussed. In order to do this, we shall present a formalized 

theory. The question is, what type of theory is appropriate to the 

study and understanding of information processes. Since we are in-

tereste d prirr..arily in a description of how an individual, such as a 

scientific researcher, gains knowledge and structures the raw data 

he gathe rs, we should like to be able to characterize his personal 

view of his scienc e . Therefore, the technique s used in well-

established domains such as automata theory or information theory 

would see m to be unsuitable , at l e ast intuitively, because the y do 

not provide a n apparatus for dealing with the subj e ctive, differ-

entiating aspects of an individual 1 s understanding. Also, since 

communication by m eans of the spoken or written word is a basic 

process by which information is conveyed, our selection of a the-

oretica l framework should be guided by the the ory's ability to 

explica t e this phe nome non. Thes e conside rations suggest tha t an 

individua l 1 s l a nguag e is of prime importance in d e t e rmining how he 

becomes inform e d [ 44, p. 207]. Therefore, w e s hall forma lize 

the notion of an individual 1 s _language as !!_~~_g-~~-.!~l~!~ to __ ~<?E:l-~-- ------~ . ...---

restricted domain of dis cours e . 
----- -- -----·-----···-·---·---- -- -~ --~--- ---- --·---
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Our definition of a language will be firmly based on the notion 

of constructivity. Certain classes of constructive procedures have 

been studied in great detail. For instance, the methods of recursive 

function theory [20], Turing machines [43], the ~-calculus of 

Church [10], and Post production systems. [zs] have all been used 

to characterize what we mean by an effective process. In spite of 

the fact that the formalism underlying these methods differs widely, 

their intent is similar, and, indeed they have been shown to be mathe-

matically equivalent. We shall use the term constructive to mean that 

given certain primitives and rules for operating on them, there is a 

well-defined procedure for deriving some result. In particular, the 

structures associated with our languages will have this property. We 

shall assume that any of the above formulations of constructivity co-

incides with our intuitive meaning of this notion, a view enunciated 

by Church [IO, sec. 62]. 

We shall also be concerned with relating our definition of a 

language to modern structU;ral linguistics. In this regard, the follow­

ing statement of Chomsky's is of prime importance [ 7, p. 1] • 

"The central fact to which any significant linguistic theory 
must address itself is this: a mature speaker can produce 
a new sentence of his language on the appropriate occasion, 
and other speakers can understand it immediately, though 
it is equally new to them. 11 

The ideas expressed in this passage will be shown to relate 

directly to the question of constructivity. In addition, we shall make 

use of many of the linguistic concepts pertaining to the syntax and 

.·· 
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semantics of languages, particularly those dealing with the formal 

properties of grammars. 

At this point, we should remarkthat we are not interested in 

language per se, at least in the normal sense of languages which are 

spoken or written. Rather we are interested in language as a vehicle 

embodying certain structure, and we shall regard it as a formal 

apparatus for explicating what is going on internal to a man's 

understanding. Therefore, this chapter will be devoted primarily to 

a characterization of the structural properties of language. 

Now that we have indicated the suitability of the linguistic 

approach to the understanding of information processes, we shall 

describe precisely what we mean by a formal language. Such a 

language is to be distinguished from the natural languages, such as 

English or German, which do not have sufficiently well-defined rules 

for sentence formation, nor do they have a fixed vocabulary. However, 

as indicated by the above discussion, our definition of a formal lan­

guage will provide a reasonable approximation to certain limited kinds 

of natural language communication. Mathematicians and logicians 

have used the notion of a formal language for a nw:nber of years. Most 

often they are referring to a rigid and highly stylized language within 

which a mathematical theory is expressed, the first-order predicate 

calculus, for example. We should like to take a somewhat broader 

viewpoint and examine the minimwn conditions characterizing a for­

mal language. 
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First of all, such a langua g e should have a well-define d 

vocabulary or set of s ymbols which can be combined into meaningful 
·. . . . 

strings of the langua g e . Thus, the vocabulary of a formal language 

should be fixed, although it may be extremely large. Secondly, the 

sentences of the formal language should be c e rtain finite strings of 

vocabulary symbols. And finally, given a string of symbols which 

constitutes a sentence , we should be able to spe cify a proc e ss for 

determining the meaning of that sentence. 

Obviously, in order to be able to describe a formal language, 

we shall be forced to adopt some language, known as the meta-

language, within which we embed our description. Furthermore, to 

determine the meaning of a sentence in a formal language, we shall 

need some model or structure whi ch expresses the actual or possible 

interrelationships among the objects in the universe of discourse of 

the language. Thus, a sentence would be true of a model, if the 

objects r e ferred to by the sentence have the structure within the 

model that the sentence requires. 

The concepts developed in the area of model theory are quite 

similar to those we are seeking for this purpose [ 31]. However, in 

model the ory, the models used are specific to the language being 

conside r e d, the first-order predicate calculus, for example. These 

models are formulate d in terms bf set theory, and, indeed, set-

theoretic models comprehend those of model theory. Since we wish 

to deal with a variety of languages and to characterize a model 
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independently of them, our notion of model will be based on set 

theory. 

The decision to structure our models in this way carries 

with it certain basic metaphysical assumptions. In essence, we are 

implying that Aristotelian logic and the concept of extensionality are 

valid for the universe of discourse of formal languages. That is, 

we are as surning tl;iat what is relates to an existing external world, 

in contrast to the phenomenalistic view that physical objects are 

merely convenient myths. Extensionality dictates that distinct 

objects or things possess different properties and are sensibly 

differentiable. These assumptions seem reasonable, and they 

clearly underlie all of modern science. We the-refore make the 

basic ontological assumption that the universe of discourse of a 

formal language is set-theoretic in nature. By this we mean that 

objects and relationships denoted by the words of the language can 

be modeled by abstract sets and are expressible within set theory. 

This, of course, coincides with the practices of mathematical science 

today. Hence, the models for our formal languages will be models of 

axiomatic set theory. 

A model of set theory will be interpreted as a set S of objects 

in the universe and an associated E , which is a binary relation on S 

satisfying the axioms of set theory. We shall take as axioms those 

of Zermelo-Frankel set theory since we shall not need the class-set 

distinction of the Hilbert-Bernays system [ 11]. We assume the 
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consistency of the axioms of set theory, thereby guaranteeing the 

existence of a model. Notice that there will be many models satis­

fying the conditions we have specifie d. Therefore, for a given S , 

in addition to the model where £ is the "natural £ ", i.e. the 

standard model, and other models on S isomorphic to some stand­

ard model, . we are also allowing all non-standard models on S • 

The natural t of set theory will be denoted by E , and the collec­

tion of all models of set theory by In , where 

lh = (MIM = <s, £ > is a model of set theory.} Sis fixed. 

Fixing the set of objects S may seem arbitrarily restrictive, 

but this is not so if we assume that S is large enough to contain a 

set corresponding to every object in the universe of discourse. The 

fact that the universe of discourse can never encompass everything 

is irrelevant to this thesis and will not be further discussed. S is 

guaranteed to be at least countably infinite by the set-theoretic axiom 

of infinity. In general, of course, a given formal language will refer 

only to some subset of S • 

In order to be precise in our formulations, we shall make use 

of a special language to be used as a descriptive aid in characterizing 

the semantics of formal languages. This language will be referred to 

as the language of set theory, and it comprises the standard formula­

tion of the lower predicate calculus with an identity symbol and a 

single binary predicate £ • In addition, we shall refer to the axioms 
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of set theory as expressions within this framework. Furthermore, we 

will augment this language occasionally with a denumerable number of 

names corresponding to particular elements of S • Both this language 

and the formal languages we shall define are considered to be in the 

domain of discourse of our meta-language. That is, they are object 

languages. The meta-language itself is assumed to be normal English 

together with an embodim ent of the notion of a set. Thus, the meta­

language speaks primarily about sets and is concerne d with character­

izing the relationships among the language of set theory, other formal 

languages, and the objects and r e lations to which they refer. 

Using the language of set theory, we shall formulate the notions 

of meaning for a formal language and completely specify the semantics 

of such a language. It should be clearly underst ood that when we say 

that we asswne the universe is set-theoretic in nature, we do not mean 

that a speaker of a formal language thinks about the universe as a col­

lection of abstract sets. Rather, we mean that some hypothetical 

omniscient being, who "speaks" the meta-language, could analyze 

such a speaker's response s to questions in terms of s e t theory. On 

the one hand, we should like to make our ontology as strong as possible, 

because to do so lends additional underlying structure to our character­

ization of formal languages. On the other hand, if our ontology is too 

powerful, the allowable models may not include some possibilities 

which we intuitively feel are reasonable. In this case, we would 

preempt some of the aspects of unde rstanding we are trying to 

.·' . · 
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explicate. Thus, our set-theoretic ontology _has been selected as 

one which has sufficient structure to permit formalization of the 
- . . . 

semantics of a formal language without excluding models or con-

figurations of the universe which are obviously plausible. 

In view of the preceding remarks, we can now specify more 

precisely the minimal constituents of a formal language: 

(i) A recursively enumerable set of symbols T. 

(ii) A set of sentences g !:: T* • (The notation T* 

designates the set of all finite strings of elements 

of T.) 

(iii) For each model M = < S, t > of set theory, and 

each sentence 'Y € g , Cfl(M, 'Y) is a function whose 

value is the truth value of the sentence 'Y for the 

model M • cp is called an interpretation [ 14]. 

These three conditions are certainly necessary for a language, 

but are there other criteria which a formal language should satisfy? 

Suppose, for instance, that we are given a string of symbols which 

is a sentence of the language. We feel intuitively that there must be 

some finite process by which we can determine this fact. [ 7, p. l]. 

That is, there should exist some algorithmic method for parsing the 

string and thu-s recognizing it as a sentence. If this were not the case, 

we would clearly be unable to ascertain the meaning of a - sentence in a 
'--

finite amount of time. Notice that we are not requiring the somewhat 

stronger condition that any string of symbols can be classified either 
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as a sentence or a non-sentence in a finite number of steps. fu swn­

mary, this additional restriction means that the set of sentences of a 

formal language must be recursively enumerable. The set of rules 

determining the process by means of which a sentence can be analyzed 

or generated is known as the grammar of the language. Properties of 

various types of grammars have been intensively studied by modern 

structural linguists. Our requirement that the set of sentences must 

be able to be enumerated recursively by the grammar is generally 

accepted as the wea kest possible condition for a formal grammar. 

Chomsky designates such grammars as Type 0 and discusses features 

of these and other more restrictive grammars in [ 6]. 

Now consider the notion of the logical consequences of s ome set 

of sentences. Following Tarski [ 39, chap. 16], we will say tha t a 

sentence 'Y is a logical consequence of some set of sentences e, if 

whenever all of the sentences of e are true, then 'Y is also true. 

We mean truth here in the sense of condition (iii) above , that is, in 

terms of the inte rpretation. cp which is defined for any sentence 'Y 

and each model .M of set theory. We remark that the concept of 

logical conseque nce as define d above does not n e cessarily embody a 

notion of proof. H e nce, knowing that 'Y is a logical consequence of 

e does not mean that 'Y is provable _from e. A more thorough dis ­

cussion of this di s tinction will be given in chapter IV. 

Suppose that we have a set of sentences e and some s entence 

'Y such that for every configuration of the universe , i. e. model, for 
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which all of the sentences of e are true, 'Y is also true. Thus 'Y is 

a logical consequence of e. Notice that thii;; relationship is independ­

ent of specific knowledge about the universe. For instance, we pre­

sumably cannot decide the truth of the sentence "All men are mortal" 

because this depends upon knowledge about the world which we are in­

capable of obtaining. But if we are told that "All men are mortal" and 

that "George is a man", we conclude that the sentence "George is 

mortal" is a logical consequence of the preceding two sentences. 

Hence, our conclusion is based not upon the specific conditions for 

the truth of each sentence, but rather on a relationship among their 

truth conditions. 

To require that we are able to decide in ·a finite number of 

steps whether or not a given sentence is true is certainly too restric­

tive. Such a position is tantamount to the strong verifiability theory 

of meaning of the logical positivists, and,. as mentioned above, this 

has been refuted. But if we are given some set of sentences e and 

a logical consequence 'Y of e, then we should have some finitary 

process for deciding that this is the case. That is, there must be a 

constructive procedure for enumerating the logical consequences of a 

set of sentences e . We now state these two additional conditions 

formally. 

Conditions of Adequacy for a Formal Language: 

(i) The set of sentences g is recursively enumer­

able over T • 

. •' . · 
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(ii} For any set of sentences e i;;; g , the logical 

consequences of e are recursively entuner-

able over e. 

At this point we shall introduce a · definition of formal language, 

and later, we will show it satisfies the conditions of adequacy. 

Definition: A language S, = <Syn, Sem, Rn> is a formal language if: 

(1) Syn=< T, P, L, G, a> is a syntax for J:, that is 

(i) T is a finite or countably infinite set, the 

referent words or terminal vocabulary of £ • 

(ii) P is a finite set and P n T = ¢ • P is the set 

of parts of speech or the non-terminal vocab- . 

ulary. 

(iii) L is a finite set of rules of the form a-13 , 

where a E P , 13 ET • L is the lexicon. 

(iv) G is a finite set of rules of the form a -13 , 
>!< 

where a , 13 E P • G is the set of grammar 

rules. 

(v) a E P • a is a preferred part of spee ch, con-

sidered to be the part of speech of sentences. 

(2) Sern = < C, -r > is a semantics for J: , that is 

(i) C assigns to each part of speech a E P , a form-

ula F(x} of the language of set theory, and C 

assigns to a t:P the formula x = Ovx= 1. We 

.·-' 
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· will typically write C (x) rather than F(x) • 
a 

C · will be called a semantic category. 
a 

(ii) T assigns to each rule of grammar R: a
1

a
2

• • • 

0:
0
-{\132• • • 13m EG, a formula of the language 

of set theory F(x
1

, · • •, xm, y 1, • • •, y
0

) such 

that F(x1, x 2 ,. • • • , xm, y 
1

, y 2 , • • • y n) is of 

such a nature that it implies c
131

cx
1

) I\••· I\ 

CR. (x ) I\ C (y
1

) I\••• /\C (y ). TR will be 
t-'m m o:l an n 

called a semantic transformation. 

(3) Rn=< J"n,~ > is a realization space for s.,, that is 

(i) rn = (Ml M = < s, E > is a model of the language 

of set theory}, where s is fixed. rn represents 

all possible configurations of the objects in the 

universe. 

(ii) cl> = (cplcp maps T into S}. ~ is the set of 

interpretations of S., • 

A number of comments need to be made to aid in the interpre-

tation of the preceding definition. Our notion of a syntax, for instance, 

is closely related to the representation of a syntax in algebraic lin-

guistics. In terms common in that field we would say that < TU P, T, 

LUG, cr > is a syntax[ 15, p. 8]. Also, the grammar G is an 

arbitrary Post production grammar or general rewrite rule grammar. 

There could obviously be special cases of a formal language where 

the grammar was context-free or some other particular form. 

· ' . ' . 
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However, we shall not be too deeply concerned with the details of the 

syntax, since the properties of grammars such as this have received 

a great deal of attention in the literature, for example [ 6, 8, 15]. 

Notice that there may be referent words, i.e. elements of T , that 

do not participate in any meaningful strings of a language, since 

they may not occur in any rule in L • Thus, by taking a suitably 

large alphabet and all finite strings over this alphabet as elements 

of T , we could presumably obtain a common T for a large class 

of formal languages. 

The most significant requirement in our definition of formal 

language concerns the interaction between the syntax and the semantics. 

We have assumed that the grammatical analysis of a sentence is not 

independent of the sentence's meaning. Therefore, in parsing a sen­

tence, when some grammar rule R applies, we can also apply the 

corresponding semantic transformation TR to determine the meaning 

of the resultant of R • In English, for example, the syntactic entities 

which we call phrases generally are meaningful strings of words. 

Thus, "the boy on the red bicycle" is a noun phrase and presurnably 

denotes some specific individual; whereas the string "boy on" which 

occurs within the preceding phrase, but is not itself a phrase, seems 

to be meaningless. Another way of looking at this condition involves 

recognizing that there are typically many different grammars which 

will generate a particular set of strings. We are insisting that the 

grammar chosen for a formal language be well-behaved in the sense 
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that the intermediate strings generated by it, which are not sentences, 

must have a sensible interpretation. The fact that a speaker of a 

natural language is able to analyze and ascribe a meaning to a sentence 

he has never heard before lends intuitive support to an analogous view 

for formal languages, since even though the complete sentence is 

novel, presumably the words are known, and they are combined in a 

manner conforming to certain familiar rules [ 42]. 

It is very important to realize that the semantic categories 

and semantic transformations of a formal language have been specified 

to be structural in nature, i.e. independent of particular objects in the 

universe. Thus, the set of objects belonging to a given semantic 

category is a subset of all of the objects of s which share certain 

common properties. For instance, we might have a part of speech 

BR which signifies that the members of the corresponding semantic 

' \ category are all to be binary relations. Thus the formula associated 

with BR would be F{x) = vy(y£x -:ii: u :ii: v {y = < u, v >)}~·and~ 
amples of grammatical strings having part of speech BR might be, 

_, l ; 
L .f-'. !!:.. r1' 

11 < 11 or "is taller than". These strings could be embedded in sen-

tences such as, 113 < 5 11
, or "John is taller than Bob". In any parti-

cular model, the objects belonging to the semantic category CBR 
.-..:_____-

would be given by 

where F M{x} denotes the relativization of the formula F{x} to the 



- 26 -

model M • Thus, the formula F(x) is expressed in terms of the 

predicate t of the language of set theory, and F M(x) indicates 

that this predicate is to be interpreted as the particular E associ-

ated with M. 

The semantic category C , corresponding to the distin­
a 

guished part of speech a , is uniquely spec;:ified for any formal 

language. That is, by convention, we always associate F(x) = x = 

0 V x = I with the part of speech corresponding to sentence, and 

we identify 0 with "false" and I with "true". Consequently, 

following Frege [ 14], a sentence of formal language denotes, or 

has as its extensional meaning, its truth value. If the set of de-

notations of the sentence is: 

(i) [O} the sentence is false;.: 

(ii) [ 1} the sentence is true; 

(iii) (0, 1} , the sentence is ambiguous; 

(iv) ¢ , the sentence is meaningless. 

We shall define the manner in which a sentence denotes its truth value 

and discuss the questions of ambiguity and meaninglessness later in 

this chapter. 

The semantic transformations of a formal language prescribe 

relations which must exist among elements of S , and the domain of a 

semantic transformation is restricted to those sets having certain 

structural properties. Thus, the semantic transformation TR(x
1

, • • •, 

x , y , • • •, y ) , corresponding to the rule of grammar 
m l n 

-f3
1

f3
2 

• • • f3m , is such that, for any model M, 

.-' . .. 
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{<xi'•••, xm•Y1••••,yn>IT~(xl'•••,xm,yl,••••Yn)} 
M M · · M M M 

!;;;; c A x c A x. • • x CA x c x ••• x c 
""l ""2 ""m al an 

We will occasionally write < x 1, x 2 , • • •, xm' y 1, • • •, Y n > € T~ to 

indicate that the elements of S identified with the x' s and y' s satisfy 

the semantic transformation TR in the model M • Therefore, the 

sets operated on by a semantic transformation must belong to the 

semantic categories specified by the parts of speech participating 

in the corresponding rule of grammar. Ji, in the course of parsing 

some sentence, we have certain elements of S identified with the ·----
variables y 

1
, y 2 , • • •, y n in the transformation TR, and there is no 

collection of elements of S corresponding to the x
1

, • • •, xrn which 

satisfies the conditions of the transformation, then that particular 

parsing of the sentence fails on semantic grounds. A special case of 

this is often called a vacuous description, as in "the present king of 

France", which, although it is a grammatical English phrase, fails 

to describe any individual. Similarly, semantic ambiguity results 

if more than one collection of elements corresponds to the variables 

x
1

, • • •, xm' as might occur in the phrase "the wife of Henry VIII". 

The syntax and semantics of a formal language are both 

abstract mathematical entities. Only when they are associated with 

some space of realizations do the meanings of strings in the language 

become concrete. Thus, the models ll\, which we have previously 

.· ' . · 
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discussed, represent various configurations of the actual objects in 

the language's universe of discourse, and the set of maps p char­

acterizes the association of these objects with words in the language. 

A particular cp E ~ will therefore assign to a word w ET , some set 

or sets in S Notice that the properties of these sets will generally 

vary from model to model, since each model has a distinct e: • In 
---- - -····- ·--··-··· · --· ----····--- ---

much of the following material, we shall assume a fixed interpretation 

cp for a given formal language and hence refer to the interpretation cp. 

Now that we have described some of the salient features of a 

formal language qualitatively, we shall state more formally the mech-

anism which associates meaning with a phrase or sentence. To do 

this, it is necessary to define the notion of a parse. 

* Definition: For 'Y E T , p = < a
0

, al' ••• , an> is a parse of -y, denoted 

by < 'Y• p >' if: 

(i) a 0 = 13 1132 .. • f3k where f3i- 'Yi E L 

and 'Y = 'Y1 'Yz• •• 'Yk • 

for i ·= 1, • • • , k 

(ii) For each i =I,·•• ,n there are µil' µiZ, µi3 , 

>!< 
µ. 4 E P such that: a. 1 = µ. 1µ. 2 µ.

3 
, a. = 

l . 1- l l l l 

µil µi4 µi3 ' and µi4 -µi2 E G • 

Utilizing this definition, we can now spe cify the interpretation 

to be assigned to a particular parse of some string 'Y. Therefore, 

let 

where 'Y· ET 
l 

\ 
\ 

\ 
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and let 

p=<ao, al' ••• , an> 

be a parse of 'Y , cp E ~ and M E Tn • 

>): * 
Definition: The interpretation cpM of < 'Y, p >, denoted by Cflvi('Y, p) 

is given by 

(i) if p = < ao > = << '3 1 · 132' ••• ' j3k >>' and if 

cp('Y. ) E CM for i = 1, • • •, k, 
l j3. 

* then cp M('Y, p) = 
l 

(ii) if p = < a 0 , a 1 , • ••,ah, ah+l > , h+l :s: n , and 

a = X.X.•••X. µ•••µ vv • ••v 
h 12 ml r12 t 

µ ' -µ • • • µ E G and 
s 1 r 

<x •••,x ,y , ••• ,y ,z
1

, ••• ,zt>E 
1' rn 1 r 

the n 

>:C 
(iii) otherwis e cpM(-y, p) = ¢ • 

We now show that it is pos s ible to as s o c i a t e a unique formula of 

the language of s e t the ory with an interpretation cp~(r,, p) • 
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>:c 
Lemma: Let 'Y = 'Yl 'Y2• • • 'Yh ET and p = < a 0 , •••,an> a parse of 

'Y , an = 13113 2 • • • 13k , ME" ll'I • Then there is a formula F(x1, • • • , ~ , 

y l' • • •, yk) of the language of set theory such that: there are 

< a 1, • • ·, ak > Ecp~( 'Y• p) if and only if F(xl' • • •, ~· y 1, • • •, yk) 

holds for < cp("(1), • • •, cp("(h)' al'•••, ak > in M. 

Proof: (i) if p = < a 0 > , then h = k and j3i -'Yi E"L • Hence, 

* { } cpM('Y, p) = < cp("fl)' • • • • cp("(h) > if and only if 

M I l3i >:C cp(')'i)E c
13

. = [ x F M(x) } , by the definition of cpM. 
1 

Now, consider the formula F(xl' • .. , ~· y l' • .. , Yh) = 

'31 132 13h 
F (x

1
) J\ F (x2) J\ ···AF ("ii) J\ (x1 =y1) A ••• /\ (~=yh). 

* . Clearly, <a1, ·••,ah> E" cpM('Y, p) if and only if F M(x1; , 

~· yl' • • •, yh) holds for < cp(')'1), • • •, cp("(h), a 1, •••,ah>. 

(ii) if p = < a 0 , • • •, ai, ai+l >, and ai = T. µ v, ai+l = A. j:;r v 
where >:, µ, µr, v EP*. R: µc...µ E G and H(x, u, y, V) is the 

formula of set theory associated with cp~(,,,<a0,. • •,ai>)' 

i. e. 
>'.c 

<a, b, c > € cpM ( 'Y, < a 0 , • • ·, ai >) if and 

only if HM(x, U:, y, v) holds for < cp(,,), a, b, c >. 
cp( 'Y) denotes cp( "(), cp( "(), • • • , cp( 'Yh) • Suppose G(z, y) 

is the formula of set theory corresponding to TR , i. e. 

T~ = [ < z, y >I Gm(z, y) ) • Now consider the formula 

F(x, _u, z, v) = ~ y (H(~, u, y, v) J\ G(z, y)) and note 
. >'< 

that <a, CI, c > E" cp~( ,,, p) if and only if there are b' 

- L" - >'.c such that <a, o, c >EcpM("f, < a0 , • • •, ai>) and 

M <CI, J) > €TR • 
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.But this is true if and only if there are b such that 

HM(x, u, y, v) /\ GM(z, y) holds when x = cp( -y), 

u = a, y = b, v = c, and z = d • And by definition 

this holds if and only if F M(x, u, z, v) holds for 

< cp(-y), a, d, c >. Therefore F is the desired 

formula, and the lemma is proved. 

>'c 
Theorem: Let 'Y = -y1 'Yz • • • 'Yh E T · , and p a parse of 'Y to a , i. e. 

p = < a
0

, a
1

, • • •, an> where a
0 

= < a> • Then there is a formula 

F(x1, x 2, • • •, ~· y) of the language of set theory such that: 

... 
a E cp~(-y, p) if and only if F M(x1, x 2, • • ·, ~· y) holds 

for <cp(-y1),•••,cp(-yh),a >where a= OM or a= lM. 

Proof: Follows directly from the preceding lemma and the fact 

that C~ = { OM, lM} , where OM and lM denote the "0" and 

11 1 11 ofthemodel M ofsettheory. 

We shall now characterize the conditions under which a sentence 

is ambiguous, either syntactically or semantically. 
>:C 

Suppose 'Y ET 

and p. , i · E I is a parse of 'Y to cr , i.e. 'Y is a sentence of the formal 
l 

language. 

Definition: The sentence 'Y is semantically ambiguous on a given 

model ME ll\, if for some . p., i E I 
. 1 
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Definition: The sentence 'Y is syntactically ambiguous for a given 

model M , if for some p., p. ; i, j € I 
1 J 

Examples of sentences which are either syntactically or seman-

tically ambiguous are easy to find. Thus, in English, "They are flying 

planes" is an often used illustration of a sentence which is syntactically 

ambiguous. Similarly, the statement 2 = ~ can be conside red to 

be semantically ambiguous since we do not know whether .r;r- denotes 

+ 2 or - 2 • When we say that the above two statements are ambiguous, 

we really mean that they are ambiguous from the standpoint of most 

English speakers. That is, they are ambiguous with respect to models 

or configurations of the universe admitted by these speakers. However, 

it should be obvious that a given sentence 'Y may be ambiguous in one 

formal language and unambiguous in another. This is certainly the 

case in natural languages, also, since ambiguity may d epend on factors 

such as the speaker's context or environment, or his previous experi-

ence. 

In .the following discussion, we shall temporarily ignore the 

question of ambiguity in order to simplify the explanations somewhat. 

* ~:c 
Under this restriction, w e have cpM('Y, p) = ~('Y) , which may as s ume 

any one of the values {o}, {l}, or¢. Thus, given a sentence 'Y and 

a model ME In , we have the following cases: 

{ i) 'Y is true for M if and only if cp~( 'Y) = { 1 } , which 

is equivalent to F M(x1, • • •, ~· y) holds for < cp('Y1), 

• • • , cp ( 'Y h) • 1 > • 
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>'c 
(ii) 'Y is false for M if and only if cp~(-y) = (0} , 

which is equivalent to F M(x1; • • •_, ~· y) holds 

for < cp( 'Y 
1
), · • • • , cp( -yh) , 0 . > • · 

. . ·>:c 
(iii) 'Y is meaningless for M, if Cj) M(-y) = ¢ , which 

is equivalent to -, :!I y F M(x1, • • •, ~, y) holds for 

. < cp( 'Y 1), • • • ' Cj) ( -yh) > • This points out a useful 

corollary to the preceding theorem. 

Corollary:: For a sentence 'Y = 'Yi 'Yz" • • 'Yh and a model M , there is 

a formula G(x
1

, •• •, ~) such that cp ~( -y) -I= </> if and only i£ GM(x
1

, 

• • •, ~) holds for < cp(-y
1

}, • • • , CJ)(-yh) >. 

Proof: G(x1, • • •, ~) = ::ily F(x1, • • •, ~· y) 

The formula GM(x
1

, • • •, ~) in the corollary holds for the sets 

denoted by Cj)(-y
1

}, • • •, Cj)(-yh) exactly in the case where 'Y is a mean-

. ingful sentence. But if 'Y is not a meaningful sentence, what then? 

The general problems caused by admitting that some grammatical 

strings of a language may fail to convey any meaning have troubled 

many logicians and linguists. As a consequence, a variety of ex-

planations and solutions have been proposed. In almost all cases, 

however, meaningless sentences are treated in a rather ad hoc 

fashion. It is our contention that such sentences may be incorporated 

within the framework of a formal language in a much more natural 

manner. Further, it is quite necessary to do so in order to explicate 

the issues raised in the introduction. The implications of our approach 
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will become more apparent in chapter IV when we discuss the question 

of probability. 

Consider the sentence, "Green ideas sleep furiously. ", an 

example proposed by Chomsky [5, p. 15] of a sentence which, although 

grammatical in English, would generally be said to be meaningless. 

Chomsky's method of handling such a sentence is to require that the 

grammar of the language be sufficiently powerful to exclude this as a 

grammatical string. [7, chap. 2] • This seems to be undesirable for 

several reasons. First of all, to attempt to eliminate all meaningless 

sentences on syntactic grounds alone will necessarily cause the grammar 

of the language to become increasingly complex, . since such strings must 

fail to parse completely. Furthermore, the syntax of a language may 

be unable to accomplish this because the exclusion of such strings may 

depend upon the specific meanings of particular words and not simply on 

grosser structural classes to which they belong. Thus, in the limit, we 

could conceivably be forced to assign a separate part of speech to every 

referent word, thereby rendering the syntax useless as a general set of 

rules for sentence formation. One form of syntactic analysis which 

inherently involves this problem is co-occurrence analysis [18] • This 

involves examining grammatical strings of the language to determine 

when one word may be substituted in a string for another without 

destroying grammaticalness of the string. 

This brief discussion does point out one particularly interesting 

fact about the structures of languages in general, and our formal 

languages in particular. That is, there will typically be a trade-off 
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between the syntactic and semantic components of a language. We 

may be able to make one more powerful while letting the other be­

come weaker and still preserve essentially the same set of meaning­

ful sentences. Within certain limits, this is certainly possible, but 

in the extreme, the language will lose its intuitive relation to reality. 

Thus, the semantic categories. of a formal language are intended to 

correspond to generic classes of perceivable entities, and the char­

acterization of these classes may depend upon non-linguistic con­

siderations involving the speaker's experience. Therefore, although 

· this trade-off may be theoretically arbitrary, in realistic situations, 

it would not seem to be so. 

In English, for example, the distinctions between an animate 

noun and an inanimate noun are extremely difficult to articulate. We 

must draw on a great deal of our knowledge about the world to char­

acterize these two classes of entities. If,· in a formal language, we 

attempt to discriminate these on a syntactic basis, then the associated · 

semantic categories will be characterized by extremely complex set­

theoretic relations, or possibly these concepts are not even struc­

turally expressible. In the latter case, they would not be appropriate 

notions for a formal language, since we demand that the syntax and 

semantics should be clearly deline ated and that the syntactic aspects 

be purely structural. It is important to realize that the semantic 

categories of a language are fundamental to the entire semantic 

structure of the language. They represent atomic classes of entities 

which share certain generic structural properties, and the semantic 
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transformations can be considered to be explicitly developed or 

constructed on them. Thus the semantic categories embody the 

deeper aspects of the semantics, and since they are in a one-to-one 

correspondence with the parts of speech, their number and com-

plexity directly affects the grammar. Additional ramification of 

semantic categories may result in a simplification of the grammar, 

but this occurs because certain relationships which were previously 

explicit in the grammar, now have become implicit in the deep 

structure of the semantics. 

Another circwnstance in which a sentence may be meaning-

less is when it contains a vacuous description, as we mentioned 

·previously, for example, "The present king of France is bald11 • 

Russell [3 2 J takes the view that such a sentence should be conside red 

meaningful but false. The difficulty with this analysis is that it is not 

clear just how negation is to be handled. ·To say that the above sen-

tence is false is to say either that there is no present king of France 

or that he is not bald. This strains normal English usage and by so 

doing confounds the very task we have set ourselves. Similar remarks 

hold for otP,er proposed solutions that make such sentences "meaningful". 

In our scheme, however, if a sentence is true of some model, then the 

negation of that sentence is false of that model, provided that the 

negation of the sentence is expressible within the formal language. In 

a similar fashion, the negation of a meaningless sentence will also be 

>!< 
meaningless. Recall that the extended interpretation cp M of a string 

which is not meaningful is null, i.e. denotes the empty set of the model 

.• ' . · 
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of set theory M • This is related to the approaches adopted by 

Quine, Frege, and Carnap. For a discussion of their viewpoints 

on this problem, see Carnap [4, chap. rl 

One very important distinction inherent in our method is that 

we explicitly deal with a collection of models In • Thus a sentence 

may be meaningless for one model but meaningful for another. For 

instance, in the previous example, if it is not "known" whether or 

not France currently has a king then there will presumably be ad­

missible models for which the sentence asserting that the king is 

bald is meaningless and other models for which the sentence is 

true or false. This question of "knowing" some fact will be expli­

cated by our notion of observation which is discussed in the following 

chapter. However, it is sufficient at this point to realize that sen­

tences of a formal language will generally be true of some models, 

false of others, and meaningless or ambiguous on still others. A 

further difference is that if a description or phrase of the language 

does not denote a unique entity, we consider the sentence in which 

the description is embedded as ambiguous, whereas Carnap, for 

example, says that .such a sentence is meaningless. Thus for a 

model possessing two kings of France both of whom were bald, we 

would say that the sentence "The present king of France is bald" is 

true of the model, assuming the sentence has only two distinct inter­

pretations. 

The use of quantification in the statements of a language raises 

some rather subtle problems, as indicated by Quine [30, p. 13] • 
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For instance, if V x P(x) is a statement of the predicate calculus, 

then the range of the bound variable x is assumed to be over all 

objects in the universe of discourse. In this case, the world which 

the language speaks about is essentially homogeneous, i.e. all 

objects belong to the same structural class. In our formal languages, 

as in all natural languages, the total collection of entities referred to 

does not have this property. In a formal language, the semantic 

categories partition the universe of discourse into distinct classes. 

Consider the statement "There is an x such that x is red". What 

objects are potentially represented by x ? Certainly not every 

element of the universe of discourse, since things like "ideas" are 

rneaningles s in this context. How are such things excluded? By the 

definitions of semantic categories and transformations for a formal 

language, the range of a quantifier is over exactly those entities in 

some semantic category. Thus, in the preceding example, x might 

denote any object whose part of speech was concrete noun. Observe 

that there may still be many objects in the semantic category which 

are not in the range of cp , i.e. are not named in the language, al­

though they possess the generic structural properties of the objects 

which do have names. A similar situation exists for negative state­

ments such as "That is not a book". Here again, the object referred 

to is not completely arbitrary but must belong to the same semantic 

category as books do. Thus many of the problems associated with the 

range of quantifiers are handled simply by formalizing the notion that 

the universe of discourse of a language is not homogeneous. 
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We roentioned briefly in the precedin& discussion that a language 

might not be able to express both a sentence and its negation. That is, 

the language may not include any symbol or string of symbols which 

are always interpreted as "not". In general, the set of referent words 

T of a language may be quite arbitrarily mapped by an interpretation 

cp into the elements of S • Therefore, if the symbol "-,'' appears in 

T , there may be interpretations cp which do not associate the cus­

tomary meaning of "not" with this symbol. In the case of this parti­

cular symbol, however, we have already impl1citly presumed an 

understanding of its meaning in our basic ontological assumptions. 

The reason for this is that we formulated the axioms of set theory, 

which define the admissible models in terms of the first-order 

predicate calculus. Thus, symbols such as 11
1

11
, 

11
/\ ", "v11

, 
11 V'', 

and 11 :3: 11 appear in the underlying axioms of our system of models, 

and we have tacitly assumed that, for example, in the set-theoretic 

formula F(x} = G(x} /\ H(x} , the symbol 11/\" has a well-defined 

interpretation. As a consequence, if we have a formal language 

which is incapable of expressing these basic logical concepts, then 

this language would seem to be somewhat pathological. Of course, a 

formal language which does include a logical notion such as "not" 

will not necessarily associate this with the symbol 11
1

11
• In English, 

for example, we can generally negate a sentence 'Y by saying "It is 

not the case that 'Y 11
• 
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One other minor point regarding our formal language definition 

is that we have assumed that the entire terminal vocabulary T con­

sists of referent words. Note, however, that the entities denoted by 

the interpretations of the words are not required to participate mean­

ingfully in the semantic transformations. For instance, the elements 

associated with words such as "the" or "an" could act essentially as 

dwnmy argtunents, and their semantic categories would possess some 

correspondingly trivial properties. Words of this character are some­

times called function words and treated in a special fashion, but there 

is no reason for doing this in our formalization. 

At this time, we return to the conditions of adequacy for a for­

mal language, which were stated earlier in this chapter, and show 

that our concept of a formal language satisfies them. 

Theorem: A formal language S., satisfies· the conditions of adequacy: 

(i) The set of sentences g of S., is recursively 

entunerable over T • 

(ii) For any set of sentences e of S.,, e !;;;; g , the 

logical consequences of e are recursively 

entunerable over e . 

Proof: (i) The quadruple < TU P, T, LUG, CJ > is a syntax for 

£ • It is equivalent to an unrestricted rewriting 

system and therefore the set of strings of sentences 

generated by it is recursively entunerable. [ 6, p. 358 J. 
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(ii} Suppose we have a set of sentences e of £ and 

a sentence 'Y which is a logical consequence of 

>:< I [ } e , i. e. for every M E th , if cp M( 'Y ) = 1 for 

'Y' E e,, then cp,~(')') = [ l } •· We must show that 

there is a constructive procedure by which we 

can prove y starting with the set of sentences 

e. We have previously demonstrated that for 

any sentence 'Y , there is a formula F'Y of the 

language of set theory which holds if and only if 

'Y is true, i. e. when cp ~( ')') = [ l } • A careful 

review of that proof will establish that the passage 

from 'Y to F'Y is constructive, indeed depending 

entirely on the constructive character of the 

grammar. Let :J, be the set of such formulas 

corresponding to e, and let F'Y be the formula 

corresponding to 'Y • By the definition of logical 
I 

consequence, for every ME In , if Fi..i holds for 
I 

F'Y E S<, then Fi holds. Therefore by virtue of 

· the Godel completeness theorem for the first 

order predicate calculus, F'Y is provable from 3--. 

{See Lyndon [2~, p. 56] , for an appropriate form 

of this theorem.) Consequently, ther e is a con-

structive procedure which determines that 'Y is a 

logical consequence of e, and the log ical con-

sequences of e are thus recursively enwnerable 

with respect to e . 
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Notice that the preceding the orem does not yield a method of 

proof for the language S.. in general, since the procedure for enu­

merating the logical consequences of a set of sentences e may de-

pend upon the nature of e . The following corollary shows that we 

can obtain a procedure which is independent of e . 

Corollary: For any formal language £ , there is a method of proof 

for S, , i.e. a procedure such that for any set of sentences e , the 

logical consequences of e are recursively enumerable with respect 

to e , using this procedure. 

Proof: The requirement here is that the enumeration procedure ob-

tained in the preceding theorem be wiiformly recursive over the set 

of s e ntences g , in the sense of Kleene [20, p. 233] • To s e e this, 

note that the method for deriving the set of formulas :ft from e. is 

independent of the constituents of e . That is, for a string 'YET , 

){c 'Y 
the derivation of cp ( ')') and hence F is constructive and does not 

depend upon the properties of e. Furthermore, if a sentence 'Y is 

a logical consequence of e, i.e. F'Y is provable from f by our 

theorem, the n this proof procedure uses only the rules of inference of 

the predicate calculus, and consequently is independent of the nature 

of ::f-t and F'Y • Therefore, the complete procedure for making the 

passage from e and 'Y to ~ and F'Y, and the subsequent proof of 

F'Y from 3' is independent of e. Hence, the enumeration procedure 

is uniformly recursive ove r g and thus the logica l cons e quences of a 

set of sentences . e are r e cursively enum e rable by it. 
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Even though a method of proof for a language exists, there 

may be no constructive procedure for determining the actual rules of 

interference which it comprises. That our proof does not give a 

constructive way to find such procedures results from the use of 

the axiom of choice in the proof of Godel's completeness theorem. 

Furthermore, the method n e ed not involve any of the commonly 

accepted rules, such as modus ponens1 which are associated with 

ordinary logic. Nevertheless the notions of provability and logical 

consequence become synonymous, even though in any particular case 

one may not be able to find them. 
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III. OBSERVATIONS 

A basic concept of science is that of an observation. Obser-

. vations are the means by which scientific theorie s are either confirmed 

or refuted; they provide the connection between the reality of the world 

around us and the abstract statem ents of our theories. In science, we 

often think of observations as resulting from the performance of some 

experiment. More generally, however, individuals make observations 

of the events and phenomena they continually perceive, not necessarily 

in connection with some well-defined experiment. We shall be con­

cerned with characterizing observations in this broader s ens e , and in 

this chapter we will develop a precise notion of observation and conside r 

its relationship to formal languages. 

Suppose, for example, that an indivi dual points to some collection 

of physiCal objects and exclaims, "Look, the cup is on the table". Is 

this what we mean by an observation? Although it may be tempting to 

say yes, more careful examination indicates that this is merely the 

observer's interpretation of the relationship existing among certain 

objects which he perceives. The words the observer uses to express 

what he sees are determined by his language. We shall treat obser­

vations as extra-linguistic phenomena, and therefore they will b e in­

dependent of any particular formal language. Notice that this permits 

two individuals to observe the same event and each describe the 

occurrence differently. 
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We have made the basic ontological assumption that the 

universe is set-theoretic in nature, and we will make further use of 

this assumption in formulating our definition of observation. Thus, 

we shall presume that any perceivable relation among objects in the 

universe can be expressed within the language of set theory. This 

is not to say that an individual translates what he sees, either con­

sciously or unconsciously, into set-theoretic notions, but rather that 

his perception can be expressed in these terms at the meta-level. 

Now, assuming that observations can be defined somehow within the 

framework of set theory, are there any restrictions on the character 

of this definition? One reasonable constraint is to require that a 

single observation include only a finite number of objects. Notice 

that this does not presuppose anything about the complexity of the 

relationships that may be perceived among these objects. 

Before presenting our definition of observation, let us briefly 

examine some of the conditions which have traditionally been accepted 

as restrictions on what is ~ctually observable. Russell [ 34], for 

example, maintains that it is impossible to perceive that "one of these 

roads leads to Rome", or that "either John or Bob is over six feet 

tall". The problem here is the disjunction implicit in these obser­

vations; thus, in the first case, we can only perceive that some 

specific road leads to Rome. Similarly, quantification and negation 

appear to introduce problems. · To observe that "the book is not red", 

for instance, would not be possible since in order to do this we must 

.· ' .· 
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perceive that the book is, say, blue. Also, the observation "all men 

are mortal 11 would be ruled out on the grounds that we can never 

actually observe all men. We do not wish to. take direct issue with 

these arguments of Russell 1 s, since they are intuitively plausible, at 

least in the case of normal human observers. On the other hand, 

they are not germaW to the analysis we sh~ll present. Therefore, we 

shall not be bound by these restrictions, and we will consider obser-

vations as a somewhat more general phenomenon. By so doing, we 

leave open the possibility that an observer could make an "observ-

ation" by receiving a communication from some individual whan he 

considers to be very reliable. Also, we might visualize some non-

human observer such as a computer whose sensory inputs and per-

ceptive capabilities are different from those of humans. 

The following definition associates a formula and a collection 

of objects with an observation, and these, in conjunction, act to char-

acterize a set of models. 

Definition: An observation 0 = <F(x1, • • •, xn)' a 1 , •••,an> where 

F(x1, • • •, xn) is a formula of the language of set theory and a
1

, •••,an 

are objects, i. e. • a. E S. 
1 

futuitively we think of the observation < F(x
1

, • • •, xn) , 

a 1 , •••,an> as the perception that the objects a
1

, •••,an are in the 

relationship specified by the formula F(x
1

, • • ·, xn). For a given 

model or configuration of the universe, either the objects a
1

, •••,an 

... 
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will have the structure required by F(x
1

, • • •, x ) or they will not, . n 

according as the relativized formula F M(x1, • • •, xn) holds or does 

not hold for · a
1

, ·••,an. Therefore, let 

be the set of models, rn 0 k; lh ,· associated with the observation . 0 • 

Note particularly that the formula F(x1, • • •, xn) may contain other 

variables y 
1

, • • •, yk which are not free in F but are bound by 

quantifiers. Thus, the x' s correspond explicitly to specific objects, 

while the y' s are implicitly associated with related objects, not ex-

plicitly perceived. We emphasize that lh
0 

is not identical to the set 

of models satisfying the formula :Hx
1 

:Hx2• • • :il:xn F{x1, • • •, xn) • For 

any model, this formula merely asserts the existence of some arbitrary 

collection of objects in that model related in the manner specified by 

F(x
1

, • • •, xn) • The models in l'T\o, on the other hand, are required to 

have this relationship among particular objects, which themselves may 

not be able to be characterized set-theoretically • . Thus, it is only the • 

relationship that is observed to exist among objects which is set-

theoretically specified. The objects actually observed in that relation-

ship are a quite separate aspect of the observation. 

Suppose M
0 

E lh is the true model, i.e., M 0 represents the 

actual configuration of the objects in S. Normally, we would expect 

that for an observation O, M
0 

Etn
0

; however, this is not guaranteed 

in any way by our definition since we have not required that every 

J' •. 
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observation be true of the real world. We are thus free to speak of 

possible observations, as for example in considering the possible 

outcomes of.an experiment. 

If we have several observations, then under what circumstances 

would we say that they are consistent? Intuitively we feel that this is 

so if there are possible configurations of the universe for which every 

observation is true. We state this condition formally. 

Definition: A set of observations n is consistent if 

Suppose that an observer makes a very large number of obser-

vations which are consistent. Each new observation he makes, which 

is consistent with his previous experience, delimits a smaller set of 

models or possible configurations of the universe. Eventually, at 

least in this hypothetical case, he arrives at a single model M E in· 

If this is the true model M
0 

, then he "knows" the complete structure 

of S. 

Theorem: A maximal set of consistent observations n defines a 

unique model M E In. 

Proof: Suppose this is not the case, i.e., let n define h !;;;; in where 

M, M 1 Eh • Thus, M = < S, E > and M' = < S, E' > , where the binary 

relations E and E 1 are not identical. Hence, there are objects a, 

b E S such that "a E b" and "•a £ 1 b" • Therefore the observation 

.·' . · 
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O = < F(x
1

, x
2

) , a, b > where F(x1, x 2) = x 1 £ x 2 is such that ME tn
0 

and M 1 Elho. Clearly, the set of observations n U [ 0} is consistent. 

This is a contradiction, therefore n defines a unique model. 

If we have two sets of observations, perhaps associated with 

different observers, we would like to know under what conditions 

these two sets of observations can be considered to be related. The 

concept of relatedness is independent of consistency and only depends 

upon whether the two sets of observations have in common some 

specific objects, together with particular structural relations among 

them. 

Definition: Two sets of observations n
1

, n2 , are related if either 

(i) The set of observations n1 U n2 is not consistent. 

(ii) There are non-empty n~, n~, such that n~ k n
1 

, 

n~ k n2 and 

or vice-versa. 

Condition (i) of this definition states that two sets of observations are 

related if they are in basic conflict. This seems intuitively reasonable 

since they will not disagree unless one requires the existence of a 

structure among some set of objects which the other refutes. Thus, 

they will be related by virtue of the common objects they reference, 
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even though they may not agree on the structural interrelationships 

among them. Condition (ii) says that if two sets of observations are 

consistent, they are related only if some subset of one necessarily 

implies that certain of the observations of the other are valid. Notice 

that this concept is very similar to that of logical consequence. How­

ever, since we know nothing about whether these observations are 

expressible in a language, that terminology is inapplicable. Suppose 

we observed that "grass is green" and that "snow is white". These 

two observations are clearly consistent but are unrelate d and might 

be said to be independent of one another. This suggests that independence 

of sets qf observations is the converse of relatedness. It is worth men­

tioning that if the sets of observations each consist of many distinct 

elements, then they may either be related in a trivial way or a large 

percentage of the individual observations may be correlated. 
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IV. PROBABILITY AND INFORMATION 

Using the concept of an observation, together with our defi­

nition of formal language, we shall now develop an information 

measure. As previously indicated, a formal language will be con­

sidered to characterize an individual 1 s view of some particular 

domain, and thus the information measure we obtain will be sub­

jective in nature. This notion of a non-objective definition of in­

formation is in sharp contrast with the classical information the­

oretic approach in which the purpose is to develop methods for 

studying the problems of communication networks and the coding of 

signals [3 7, 19 J. Thus, in information theory, the informational 

content of a sentence from today's newspaper might be equal to that 

of a sentence stating Fermat's last theorem on the basis that the 

relative probability of occurrence of the groups of letters contained 

in each was the same. Nevertheless, we shall make use of many 

of the criteria established by information theory in formulating our 

definition of a subjective measure of information. The fundamental 

difference in our approach involves the characterization of the 

probability. We shall be concerned with probability primarily in 

the sense of degree of belief, and we will demonstrate that such a 

probability arises naturally from considerations of .. the manner in 

which a formal language structures its universe of discourse. 

We have previously introduced the notion that In , the col­

lection of models of set theory, represents all possible configurations 

•• -1 
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of the universe. That is, given only the basic ontology of set theory, 

each model ME th expresses a possible structure among the objects 

of the universe, i.e. the elements of S • However, a given formal 

language will impose additional structure on th in a manner reflect­

ing the logic of that language. Suppose, for example, that two mod­

els M
1 

, M
2 

Eth differ only wi:th regard to the properties of some 

object b . Then if S, is a formal language which does not refer to 

b , either explicitly or implicitly, we expect that M 1 and M
2 

will be identified as equivalent configurations of S relative to S., • 

At this point, it would perhaps be useful to clarify the notion 

of the "logic" of a language and its relation to provability. A funda­

mental concept in this regard is that· of implication. Unfortunately, 

however, this seemingly intuitive idea has been modified, extended, 

and restricted in a myriad of differing ways in the literature. Part 

of the confusion is due to the fact that we are dealing with several 

languages-namely the meta-language, the language of set theory, 

and our object languages or formal languages- each of which may 

possess a different kind of implication. Suppose, for example, that 

the symbol "~" occurs in the object language. That is, A::::::> B is 

a legitimate sentence of the object language, where A and B are 

also sentences. Then, ":::>" is material implication if the sentence 

A ::::::> B is true if and only if either B is true or A is false. Another 

possibility is that ":::>" is strict implication. This notion is not well 

defined in the literature but is generally associated with modal logic • 

. . ~ . ' 
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It is usually construed to mean that the interpretation of A::::> B in­

volved some substantive relation between the interpretations of A 

and B . Thus, one can not decide the interpretation of A:::> B by 

examining either A or B alone. In English, we might say that, 

"Grass is green" materially implies "Snow is white", but this 

would not be an example of strict implication since these are pre­

sumably unrelated truths. 

Now consider the meta-linguistic statement A "implies" 

B , where A and B are sentences of the object language. We 

stress that this in no way presupposes the existence of an object 

language symbol for implication of any kind. Again, there are 

several possible interpretations of this statement. One of the 

most common is analogous to our definition of logical consequence; 

that is, B is true of all models where A. is true. This is frequent­

ly written as A I= B • However, we might also mean that B is some­

how provable from A . The notion of proof is generally assumed to be 

syntactic in nature and con~equently only involves some process of 

symbol manipulation. The proof procedure must be specified by some 

set of inference rules describing how a proof may be constructed, but 

these rules need not be based on implication, or such familiar in­

ference rule s as m o dus ponens. The statement A 11i.J.nplies 11 B in 

this sense of proof is often written as A I- B . Our second condition 

of adequacy for a form a l language es sentially requires that these two 

notions of implica tion coincide relative to the meta-language. Hence, 

for our formal l a n g uages, A I= B if and only if A\- B • 
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. Since these two notions are thus equivalent for formal lan­

guages, one can characterize the logic of a formal language either 

semantically or syntactically. Notice that a rich interrelationship 

structure may exist among the sentences of a language independent 

of which possible state of the universe entails. Implication of the 

type A F= B embodies these relationships. Formal languages then 

are precisely those languages where this underlying logic is con­

structively definable in terms of symbol manipulation, or formal 

syntaxes. 

We now wish to investigate in detail how a formal language 

imposes structure on its universe of discourse. The fundamental 

idea here is that the syntax and semantics of the language together 

with the interpretation cp establish a correspondence between sen­

tences of the language and certain sets of models contained in th • 

The result of this is a partitioning of th into disjoint subsets each 

of which is definable by some collection of formulas of set theory. 

These partition sets, however, do not have equivalent status with 

respect to the formal language, even though they are all equally 

well-defined at the meta-level. To explicate this distinction, we 

introduce the two basic notions of an element and a state of a for­

mal language. Our definitions are given in terms of the meaning 

or truth value of a sentence on a model ME In • Recall that given 

a sentence 'Y € g ' then fo1· any rriodel ME rn, 'Y is either true, false 

or meaningless on M • 
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Definition: Given a set 8 1 ~ g of sentences of s,, the element 

h determined by g• is the maximal set of models such that for 

Ml' M
2 

E h, 'Y E g• either: 

( 1) 'Y is true for both ~ and M 2, 

(2) 'Y is false for both M1 and M 2, 

(3) 'Y is meaningless for both M1 and M 2 • 

Definition: Given a set g• ~ g of sentences of J:, the state h 

determined by gt is the maximal set of models such that for ~, · 

M
2 

E h, 'Y E g• either: 

( i) 'Y is true for both ~ and M 2 , 

(2) 'Y is false for both ~ and M 2 

We will say that the set of sentences g• defines the state h. 

It follows immediately from these definitions that each state 

is also an element, but in general not every element is a state. This 

fundamental distinction will be discussed in detail subsequently, but 

first we identify two common instances of a state. 

Lemma: For any language S, , the entire set of models In is a state, 

and if negation is expressible within S, , the empty set~£ models q, 

is also a state. 

.· ' . · . 
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Proof: In the definition of a state let g• = ¢ , the null set of sen­

tences. &' clearly defines Ill. Hence h\ is a state. Now assume 

that if 'Y is a sentence of S, , then ''Y (the negation of 'Y) is also 

a sentence of S,. Let g' = [..,,, ''Y} • Obviously, g' defines the 

empty state ¢ • 

The concepts of element and state are fundamental to an 

understanding of the material that follows. We will therefore at­

tempt to conve y their intuitive meanings. The speaker of a formal 

language deals exclusively with states. A state is a collection of 

models which can be directly characterized or defined by enunci­

ating some set of sentences of the language. These sentences there­

by specify a configuration of the universe which can be recognized or 

described within the speaker's language, and for any given model 

M E lh , either the structure specified by the sentences exists in that 

model or it does not. Consider the set consisting of all the states 

of a language; it defines every configuration of the universe which 

the language can express. 

Notice that it is possible that two distinct s e ts of sentences, 

g' and g•' define the same state h. In order to characterize this 

case conveniently, we introduce the notion of logical equivalence. 

Thus, two sets of s entences g• and g• 1 will be said to be logically 

equivalent if they define the same state. Recalling our previous 

discussion of implication, this clearly means that every sentence 

·" 
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of g• is a logical consequence of g• ', and vice-versa. Further­

more, our second condition of adequacy for a formal language 

requires that the sentences of either set be provable from the sen­

tences of the other. 

An element of a language is an extra-linguistic concept, 

since in general the speaker of the language has no precise way of 

characterizing it. This is because some of the sentences which 

are used to define the element may be meaningless on all of the 

models which constitute the element. At the meta-level, of course 

elements and states are both defined by formulas of extended set 

theory and are therefore conceptually the same. But the speaker 

of a formal language can only assert the truth or falsity of a sen­

tence, not that a sentence is meaningless. We shall make use of 

the definition of the elements of a language to simplify the notions 

of probability and information, but it is important to bear in mind 

that elements are not generally describable within the formal lan­

guage. 

Suppose we now consider two states of some formal language 

S, • That is, we enunciate the sentences g ' and gr 1 , where g• de­

fines the state h 1 and g" defines the state h" • We then ask a 

speaker of the language S., which of these two configurations of the 

universe, or states, he considers most likely to describe the actual 

situation. His answer to this question should reflect his subjective 

view of the relative probabilities of the two states. If we imagine 

that we could continue this process for all pairs of states describable 
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in his formal language, it seems that we would then have char­

acterized, at least roughly, his view of the world relative to the 

formal language. Savage [35] approaches the question of prob­

ability in a similar fashion and defines what he calls a personalistic 

probability, which is used to formulate a theory of decision making. 

Now what is the basis for our speaker's answers? Certainly they 

are affected by previous experience or observations, but we shall 

be most interested in his answer to questions for which he has no 

directly applicable observational data. His assignment of a degree 

of belief or probability to two states which can not be discriminated 

on the basis of previous observations will be indicative of his meta­

physical asswnptions about the world. 

In general we can conceive of a set of observations which 

would be true on exactly those models which are defined by some 

set of sentences of a formal language. That is, the models satis­

fying the observations coincide with some state. It therefore seems 

quite natural to assume that an observer can assign some probability 

to an observation. This can be interprete d in the sense of expecta­

tion, i. e. the likelihood of observing a certain structure among ob­

jects in the universe. We have stressed that an observation is in­

dependent of language. Hence, the as signrnent of a probability to an 

observation is not directly related to the observer's ability to express 

that obse1·vation in some formal language. Rather, it specifies the 

observer's metaphys ics and could be considered to be a part of his 
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ontology. We shall now state in precise terms our assumption that 

an observer can assign some probability to an observation. 

Let a be the class of all observations, that is, the class 

of all sets definable by formulas of extended set theory. For 

lno Ea, lno = (MI for some formula F(xl, ••• , xn) of extended 

set theory and some collection of objects a · · · , a ES l' n ' 

F M{x
1

, • • •, xn) holds } • 

Given the class of sets a , consider the a-algebra gen­

erated by a , denoted by u . a is closed under the formation of 

countable unions and complements, and therefore is also closed 

under the formation of countable intersections. a is a a-algebra 

on ln , since In E Q by taking as the formula F some theorem of 

set theory. We then postulate the probability P as a measure on 

the a-algebra (2, such that P(ln) = 1 • The requirement that P 

be a measure means that: 

{ 1) P{¢) = 0 , 

{3) For any sequence of sets (h.} such that 
l 

h. n hk = ¢ for j "f k, p(O hi)= f' P(hi) 
J . l=l ~ 

Thus, P satisfies the axioms of classical probability theory. 

When we first introduced the notion of a probability, we referred to 

the probability assigned to a state of some formal language. In the 

.. ~ . . 
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course of defining this probability, we will make use of the prob-

ability P, which will be called the observer's a priori probability. 

At a minimum, we would like to know that any state is P-measurable, 

or measurable in the Caratheodory sense. Every member of U 

is measurable in this sense, therefore it is sufficient to ensure that 

any state, for an arbitrary formal language, belongs to a . 

Lemma: Given a formal language s., and a state h of £, h Ea 
and hence is P-measurable. 

Proof: Let gr f;; g be the set of sentences defining h • gt is cl.early 

countable. For each 'YE gt , let F'Y (x, y) be .the formula of extended 

set theory corresponding to 'Y , where x = a, the set of elements of 

S denoted by the referent words of 'Y , and y = 0 if 'Y is false of 

every MEh; y = 1 if 'Y is true of every ME h. Let 

lhF'Y = [MI Fir(x, y) holds for x = a , y as above} • 

By definition, lhF'Y E()., for each ')' Eg' , and therefore n, lnF'Y Ea. 
')'Eg 

But h = n .lnF'Y by the definition of state. Hence h Ea and is 
'YEg' 

P-measurable. 

Having established the concept of an observer's a priori prob-

ability, we now wish to define a relation which is fundamental to an 

understanding of the structure imposed by a formal language on its 

universe of discourse. The question is, unde.r what conditions can a 



- 61 -

languag e distinguish betwee n two differ ent configurations of the 

universe? That is, any two distinct models actua lly represent 

different configurations of the universe, but if n eed not be the case 

that a given formal language can articulate this difference. 

Definition: Given a formal language S, and sets of models hl ' , 

h2 !;;;;; Ill ' hl and h2 are distinguishable (h/h2 ) if there is a sen-

tence 'Y E g such that 'Y is true of hl and false of h2 . Other-

wise, h
1 

and h2 are indisting uishable ( h
1 
//h2) • 

Thus, two sets of models are indistinguisha ble if every sen­

tence of the language either has the same set of truth values on both 

of them, or is true (or false) of one but meaningless on the other. 

In the same sense that a single model M E Ill represents a configura­

tion of the universe , an arbitrary set of models h k Ill represents a 

partially specified configuration, or a group of configurations having 

in common exactly those structures which occur in e very M E h • 

Distinguishability requires that a sentence be able to express a dif­

ference between two partially specified configurations. We now state 

without proof some simple properties of distinguishability and in­

distinguishability. 

( 1) If h 1 /h2 and h~ !;;;;; h 1 , then h~ /h2 , 

( 2) If h//h2 and h
1 

k h~ , then hi //h2 , 

(3) For any h 'f ¢ , h//lll, 
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(4) For any h, h/¢ , 

Perhaps contrary to expectations, the relation of indistin-

guishability is not an equivalence relation. It is clearly reflexive-

h//h by property (5)-and just as obviously symmetric. It is not, 

however, guaranteed to be transitive. That is, if h 1 //h2 and 

h
2

//h
3 

, then it may be the case that h/h3 • To give a simple 

example, let h
2 

= lh. By property (3), it is certain that h
1

//h2 

and h
2

//h
3 

, for any h
1 

and h
3 

• Thus if indistinguishability 

were a transitive relation, then any two sets of models (denoted here 

by h
1 

and h
3

) would be indistinguishable, which is patently false. 

We have said previously that the collection of all of the 

states of a language characterizes every configuration of the uni-

verse expressible within the language. However, these configura-

tions (and the associated states) are not independent of one another. 

We would like to establish an independent set of states such that the 

conditions postulated by a given state preclude the possibility of being 

in any other state. To this end we make the following definition. 

Definition: Let E5 be the set of all states of a language S,. A state 

h E (5 is a minimal state if there is no other state h' E E5, h' f ¢ 1 

such that h' k h • 

Definition: Given sets of models h
1

, h
2 

and a set of sentences e, 

e agrees on h
1

, h
2 

if for any 'YE e , and for any M
1 

E h 1 , M
2 

E l1
2 

, 

>:C * 'Y is meaningful on M 1 and M 2 , and cpM ( 'Y) = cpM ( "() 
1 2 
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We now prove that given any consistent set of sentences, there 

is a minimal state on which those sentences have the same truth value. 

Theorem: Given a language J: , and a set of sentences 71 k g , each 

of which is meaningful for some model ME In , then there is a mini­

mal state h, such that U agrees on [M} , h. 

Proof: Let t = f irl # t;;:. /j !:;;; g and there exists an M' E ln such that 

cp~, h') f: <f; for ')' E J1 , and cp~( ')') = cp~, ( 'Y) for ')' E 1:./-} : 

(1) t f:. ¢ since 'UEt, 

(2) Let C be a chain of elements of t under set 

inclusion. Consider Uit =Ji 1 

• · Clearly !J' i;;; g • 
/1 EC 

We must show that there is an M E rn such that 

cp~( 'Y) f: ¢ for ')' E /;/ • 

For ')' E ;J' , ')' = ')' i'Y 2 • • • 'Yh , there is a formula F 'Y (x) such 

'Y . 
that <cpM( 'Yi), • • ·, cpM( 'Y h) > satisfies F M(x1, • • •, XJi) if and only if 

'!c 
cpM( /') f. </> , by a preceding corollary. 

Now, we have previously assumed that within the language of 

set theory, we have a "proper name" for each element of S in the 

range of cp, i.e. for each element [cp(')') !'YET}. 

cp( ')') , and 

.. ~ . . . 

Let a "name" 
'Y 
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/\•••/\a />,a /\a 6a 
'Yh-2 'Yh 'Yh-1 'Yh 

., 

a = a if cp( 'Yi) = cr<1} 
'Y· 'Y· 

where !::. a is l J a 
'Y· 'Y· a "I a if cp( 'Yi) "I cp( 'Y .) l J • 'Y· 'Y· J l J 

Thus E'Y (a , ··•,a ) holds if and only if < cpM('Y
1
), • • ·, 

M 'Y1 'Yh 

cp M( 'Yh) > satisfies Fri_(x
1

, • • • , ~) • Now, let e be the following 

set of formulas of extended set theory. 

Suppose there were no model which satisfie s all of the sen-

tences (of the language of set theory) of e . Then by the complete·· 

ness theorem for set theory, the r e would be a finite subset of e, 

E 'Yl, • · •, E 'Yk with no model. But 'Y· E/1i EC , i = 1, • • •, k and C 
l 

11 II 

is simply ordered. Therefore, for some /9 E C , 'Y. E JI , i = 1, 
l 

• • •, k and hence there is a model M
1 

such that cp~,('Y) f. ¢ for 

~·· ~ 'YEP The refore, E (a , a ·- ,•••,a )i = l,···,k holds in 
'Yi! 'Yiz 'Yih. 

l 'Y1 'Yk 
M 1 

• Thus with the inte rpretation of a as cp(')') , these E , E 
'Y 

have a model M 1 
• This is a contradiction. Therefore, e has some 

model, say M 11
• 

Now, e has a model M 11
, but we cannot guarantee that the 

interpretations of the a 1 s 
'Y 

are cp( 'Y) 1 s in this mode l. Tha t is, we 
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are only as sured of this for the a 's 
'Y 

occurring in E 'Y1 • • • E'Yk 
' ' . 

However, we can get a permutation p of S which carries the 

interpretations of all a 'sin M" into q:>(')')'s. Then let p in­
'Y 

duce an E corresponding to E 11 of M 11 ; the resulting model 

' M = < S, E > is the desired one such that, for each ')'E//, E'Y(a) 
'Y 

holds in M, and hence <q:>M(,,
1
), • • ·, q:>M(')'h) > satisfies 

F'Y {x , • •• , x. ) • 
M l h 

>:< I 
Therefore q:>M( ')') f. ¢ for 'YE If . 

' Thus, IJ is an upper bound in t for the chain C , and by 

Zorn's lemma, t has a maximal element If. We now claim that 

is a minimal state of S, , i.e. there is no non-empty state h' of . 

S, such that h' !;;;; h and h' i= h • Suppose h is not a minimal state. 

By the definition of state h is clearly a state; therefore h must 

not be minimal. Hence, there must be a 'Y ¢ /J such that the set 
0 . 

is not empty. 

{ M' I cp~,{-y) = <p~( 'Y) for -y<Jf U {-y 
0
}} 

Therefore, lJ U ['Y } has a model, contradicting the 
0 

hypothesis that lJ . is a maximal element of t • Hence, h is a 

minimal state of £, and since Ff~ if1, 1:/- agrees on {M }, h. 

Since the set of sentences g of a formal language may be 

countably infinite, the collection of minimal states is in general 

non-denumerably infinite. This is because any subset of g poten-

tially defines a unique state. The minimal states of a formal 

.· ' 
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language repre sent the most precisely specified configurations of 

the universe expressible within the language. However, it is not 

the case that every minimal state is necessarily distinguishable 

from every other. Consequently, the collection of minimal states 

is not the independent set of states we are seeking. In order to 

obtain an independent set of minimal or atomic states, we introduce 

the notion of a basis for a formal language. 

Definition: A set of minimal states l8 of a formal language £ is\ 

a basis for £ if for any h
1

, h
2 

E l8, h/h
2 

and for any element ) 

e of S, ' there is some h € l8 such that h// e . 

Thus, the basis is a set of minimal states such that any col-

lection of models h ~ln is indistinguishable from at least one member 

of the basis. We now prove that it is always possible to choose a 

basis for any formal language S, • 

Theorem: Given a formal language £ , for any set of minimal states\ 

6 of S, which are pairwise distinguishable, there is a basis m for J 
S, such that <5 ~ ll3 . J 

Proof: Let 9(, be the set of minimal states of £ • 9<, -/:: ¢ by the pre-

ceding theorem. Then let 

p = { 9 I 6 !;;;; 9 ~ 9c, and for h', h" E CJ , h' /h"} . 

( 1) p f: ¢ since 6 E p • 
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(2) Let C . be a chain of elements of p under set 

and conside r U q =CJ-+ • Clearly 
(}EC 

We must now show that for h' , h" E 9+, 

inclusion, 

h'/h''. Suppose h'//h". Now h
1 E</ EC and 

h" ECJ_j EC • Hen~e, either 9 i ~ Cjj or CJ) ~ C/ . 
Assume qi ~ q) . Therefore h', h" E C)-j and 

h' / h '' • This is a contradiction. + Therefore, Cf 
is an upper bound in p for C , and by Zorn's 

lemma p . has a max imal element m. 

We claim that 58 is a basis for S.. • We must show that for 

any element e of s, , e is indistinguishable from some h' € m. 

Suppose this is not the case, i.e. e is distinguisha ble from every 

h I € m •· Let 

-U =('YI ')'E g, for some h 1 E58, h'/e by 'Y}. 

By the definition of distinguishability, every sente nce in 14 is mean-

ingful for any ME e. By the previous theorem, there is a minimal 

state h such that 'U agrees on [M} and h • H e nce, h is a mini-

mal state which is disting uishable from eve ry h' E 58. This is a 

contradiction, and therefor e any ele ment e i s indistinguishable 

from some h' E 58. Thus, 58 is a basis for s, a nd (5!;; la. 

At this point it is appropriate to indicate some g e neral prop-

erties of a basis for a formal language, and to compare them with 

.·' .· 
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similar concepts in the literature. First.of all, a formal language 

is not guaranteed to have a unique basis. Actually, this will only 

occur in certain special cases. More will b~ said about the impli-

cations of this fact for probability and information in a subsequent 

section. 

Corollary: A formal language £ has a unique basis m if and only) 

if the set of all minimal states 9c is pairwise distinguishable. 

Proof: "if" - By the preceding theo·rem S, has a basis la :::> CJ.c • . 

Since 9<, includes all minimal states l8 = 9c. "only if" - Suppose 

h .. . l t t h' h 11 t ere are m1n1ma s a es , such that h' // h 11 
• In the preced-

ing theorem let e; = [h'} . Thus S, has a basis containing h' , but 

not h 11 by definition. Similarly, S, has a basis containing h 11 but 

not h' • These are clearly distinct bases for S,. Since this is a 

contradiction, for every h', h' 1 E 9G, h' I h' 1 
• 

Several other important properties of a basis for a formal 

language are directly related to the notion of meaninglessness, as 

is shown by the following theorem and its corollaries. 

Theorem: Let £ be a formal language. If a set of models rn b rn 
0 

is such that for every sentence 'YE g , 'Y is meaningful for each 

M E h1. ' then for any bas is m of S, ' 
0 

.·' 
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Proof: Consider any basis ll3 and some M E l'n • Suppose that 
' ' 0 

M i U B . Therefore, by the definition of basis, there is some 
BEla 

minimal state h Em such that (M}//h. Let g' be the set (pos-

sibly empty) of all sentences which are meaningless on h , i.e. 

meaningless on some M 1 € h. Now, since g" = g - g• is a set 

of sentences each of which is meaningful on both M and h, g•• 
must clearly agree on [ M} and h if h// (M}, and since g" con-

sis ts of all of the sentences which are meaningful on h, there is 

some truth assignment to the sentences of g" such that g" de­

fines h • But g• 1 agrees on [M} and h ; therefore ME h by 

the d efinition of a state. This is a contradiction; hence 

for any basis m • 

Corollary: Let j, be a formal language with a basis m • Ii for 
0 

every sentence 'YE g, 'Y is meaningful for every M € U B . 
BEm 

0 

then m is a unique basis for S,, • 
0 

Proof: In the preceding theorem, let lh 
0 = u B • 

BEla 
0 

Therefore, 

u B £;. U B for any bas is 
BEla 

m, and since any m is a maximal 

0 u B=UB. 
BEm BE la 

0 

set of pairwise distinguishable minimal states, 

Further, since the set of minimal states contained in any set of 

models is unique, ~o is a unique basis for £ • 
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Corollary: If S, is a formal language such that for every sentence 

'Y E g , 'Y is meaningful for each ME ll\ , then S, has a unique basis 

m such that u B = ll\ • 
BEm 

Proof: Immediate from the theorem and the preceding corollary. 

Let us examine the condition that every sentence of a formal 

language be meaningful on each model M . One possibility is to de-

rnand that no sentence contain any description such as "the present 

king of France'' which is vacuous. This appears to be unreasonable 

since there will generally be plausible configurations of the universe 

in which France has no king or perhaps has more than one king. Of 

course, it is possible to define a formal language such that every 

grammatical string of the language is meaningful, but languages of 

this type will generally be quite primitive and will not provide suit­

able approximations to the natural language phenomena we wish to 

explicate. For example, even the commonly used computer languages, 

which tend to have very simple grammars and are certainly formal 

languages in our sense, generally admit grammatical but meaning-

less sentences. Thus, in most versions of FOR TRAN we may write 

the statement Y = X even though the variable X appears nowhere 

else in our program. The result of this is that Y will be set to 

some completely arbitrary and unknown value, thus making this 

statement meaningless. In this case, X can be considered to be a 

vacuous description since it does not denote a well-defined entity. 
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Some logicians have proposed technical solutions to the 

proble m of vacuous or non-unique descriptions. P e rhaps the most 
. . . . 

satisfactory of these have been suggested by Quine [29], Frege [ 14], 

and Carnap [ 4 J • Their methods are similar in that they assign to 

any non-unique or vacuous description some particular entity in the 

model. This has the result that sentences containing such descrip-

tions become meaningful, and thus all grammatical sentences have 

some associated meaning. Unfortunately, however, the specific 

meaning assigned to a sentence containing a vacuous description, 

for example, then depends upon the properties of the e ntity taken 

as the denotation of such descriptions. Since the .prope rties of this 

distinguished entity will vary from one model to anothe r, the truth 

conditions for a sentence are not structural. That is, the procedure 

for deriving the truth value of a sentence b e comes depe ndent on 

factual information, namely the particular attributes of the distin-

guished entity relative to the model in question. 

In our method, the truth conditions remain structural since 

we explicitly allow gramma tical sentences to be sema ntically mean-

ingless. Indeed, as we have previously mentione d, this appears to 

be an e sse ntial charac t e ristic of most commonly use d languages. 

By refe rring to our d e finition of semantic cate gory, we can get a 

slightly different view of this problem. If we did require that every 

sentence in our formal languag es was to be meaningful on each model, 

then the semantic categories of the language would neces sarily be 
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devoid of structure, since if they were not, the interpretation func-

tion cp might assign an entity of the wrong structural class to some 

referent words, at least in some models. To make the semantic 

categories this weak is tantamount to assuming that the universe of 

discourse is homogeneous with respect to the formal language, 

which contradicts the idea that there are implicit structural distinc-

tions among various classes of objects. 

In Carnap's approach, he further requires that a language in 

his sense be such that the atomic sentences are independent, i.e. 

that no set of atomic i:;entences is contradictory. In our case, how-

ever, this is much too restrictive since the non-null states of the 

language exactly reflect the observer's view of ·consistent sets of 

sentences within his language. Thus, the fact that some set of sen-

tences defines the empty state implies an inconsistency relative only 

to the observer. In a different formal language, these same strings 

of words may be consistent and have a model. · Thus, in one formal 

language the two sentences, "It is freezing" and "It is not cold" may 

be consistent, while in another formal language they could be incon-

sistent by virtue of the logic of the language, as reflected in the 

semantic transformations. 

Also important with regard to the literature is the r elation-

ship of our formal languages to the concepts of model theory [21, 31 J . 

For example, suppose we have a formal language with referent words 

nl nm 
P •••• p • 

1 ' m 

n. 
1 where p. is an n.-ary predicate symbol. 

1 1 . 
Then if 
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for some model M = < S, e: > of set theory, the interpretation of 

these symbols is such that 

cp(p~i) E{Y \vx fx EY - :tl:u :tl:u · · • :!l:u (x = <u , • · •, u >)\} 
1 \ 1 2 ni 1 ni ~ 

n
1 

n 
then < S, cp (p

1 
), · · ·, cp(pmm) > is a model in the sense of model 

theory since it comprises some domain of objects or individuals 

and a set of relations on this domain. Thus, we can easily con-

struct particular formal languages which are equivalent to the 

languages of model theory-the first-order predicate calculus, 

for instance-and we can then choose an interpretation cp so that 

some model of set theory embodies the necessary characteristics 

of a model of model theory. 

Suppose that we do take the first order predicate calculus 

nl nm 
with predicate symbols p

1 
, ·••,pm as a formal language. Then 

if. we consider Ill. , where the interpretation function cp satisfies 
0 

the above condition for each model ME lll , the sentences of this 
0 

language will. all be meaningful on every model of lll • As shown 
· O 

in a previous corollary, this implies that rn is contained in the 
0 

union of any basis for the language. Furthermore, as in model 

theory, any distinct set of atomic sentences will define some non-

empty state, and consequently every minimal state will be contained 

in In 
0 

Thus, the basis will be unique and its union will be equal 

to In , and the minimal states are then the elementary equivalence 
0 

classes of models exactly in the sense of model theory [31, p. 55]. 
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Although languages of this type are not our primary concern, this 

reduction to model theory is significant in view of the many powerful 

results in this area which have contributed to our understanding of 

the foundations of mathematics. 

Having developed the idea of a basis for a formal language, 

we shall now make use of this in defining a probability for such a 

language. In terms of classical probability theory, the event space 

will be the collection of all possible sets of observations and thus 

will include the states of any given formal language. We wish to be 

able to assign to any observation a numerical value indicating its 

probability relative to a formal language. That is, given a language 

we can determine the set of associated states, and this, together 

with the a priori probability, should be sufficient to specify the ob-

server's expectation of making some observation 0 • 

Definition: Given a formal language S, having a basis m and an 

observation 0 , the ':'-probability of 0 is given by 

= 

where P is the outer measure induced by the observer's a priori 

probability P • 
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Note that we have used the outer meas ure P , rather than the 

measure P , to define the >:<-probability. The reason for this is that 

if the basis is composed of a non-denumerable collection of basis 

elements, we can not in general prove that the union of all basis 

elements is P-measurable. Use of the outer measure P simply 

ensures that the ':'-probability will be well-defined. For many lan-

guages, however, P and P will be identical on basis elements. 

Thus, if we consider the first-orde r predicate calculus or other 

similar languages common in model theory, where all sentences 

are meaningful on the basis, it can easily be shown that the union of 

all basis elements is P-measurable. It is also easily established that 

U B , where 0 is any 
Bcm 

if U B is P-measurable, then so is 
BEm 

B//rn0 
observation. 

~:< 

We see immediately that P depends directly upon the notion 

of indistinguishability. Thus, the >:'-probability of an observation is 

directly proportional to the measure of those basis elements from 

which it is indistinguishable. Recall that the basis can be considered 

as a collection of independent atomic states of the language, and if an. 

observation cannot be distinguished from some basis element, it be-

comes ide ntified with the configuration expressed by the sentences 

defining that basis eleme nt. The following are easily proved properties 

of the >'.<-probability. 
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( 1) 
>'< 

p'(tn) = 1 • 

* (3) p (¢) = 0 

However, it is not the case that for In n In = ¢ , 
01 02 

,., 
and thus, in general P" does not satisfy the traditional axioms of 

probability. Although this is at first disturbing, it is closely related 

to established results in the literature. Consider the case of languages 

based upon the lower predicate calculus. If we restrict the notion of 

state to only those sets of models which are definable_ by a finite mun-

>,'< 
ber of sentences, then P is additive on those states. However, in 

the case of states defined by an infinite number of sentences, states 

that are not "finitely axiomatizable 11
, it is known [39, chap. 12] that 

their complement is not a state. Thus, we would not expect additivity 

in these situations. Therefore, even in the case of the lower predicate 

>',c 
calculus, when there are more than a finite number of states, P is 

not a probability, since we are lacking the additivity property on the 

space of models in the sense of model theory. In general, this non-

additivity is a direct result of the fact that indistinguishability is not 

an equivalence relation. 

The possibility that JU B) = 0 , and hence that . p* is un­
.t-'\B E l8 

defined, has been ignored on the grounds that such a language possesses 

.. 
. ·' 
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a set of minimal states which in no way reflects the observer's ex-

pectations. The definition of the ':'-probability was given in terms of 

a single observation 0 . In general, however, some set of obser- · 

vations n will have been made prior to observing 0 • Providing that 

the resulting set of observations, n U [ 0} , is consistent, we simply 

take the conditional ':'-probability to determine the likelihood of ob-

serving 0 given the set of observations n , where this conditional 

probability is given by 

>:C 
P crn 0 n tnn> 

= 

where rnn denotes n h\ o' •. 
o'En 

>:;: 

P <tnn> 

Very generally speaking, the ':'-probability of some observation 

0 may be interpreted as being inversely proportional to the observer's 

estimate of the rarity of 0 • 
):( 

Thus, if P {lh
0

} = 1 , the observation 

0 is a certainty in terms of the observer's previous experience and 

his assumptions concerning plausible configurations of the universe. 

On the other hand, if the •:<-probability of 0 is very small, then 0 

represents to the observer a significant discovery relative to his cur-

rent beliefs. 

Prior to this point, we ·have considered an observer's formal 

language to be static in nature. However, it is very likely that as an 

observer gains experience his formal language will change in some 

way which is dictated by this experience. That is, new alternatives 
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or states may be introduced and old ones eith~r eliminated or made 

less probable. Thus, the processes of observation and language 

change are strongly coupled. The mech~nism of this change and the 

general problem of the dynamics of language are not explicitly 

treated in this thesis since many additional concepts relating to the 

rate of acquisition of observational evidence and the temporal as­

pects of language would be necessary. Nevertheless, at any given 

time, a formal language can be used to characterize the observer's 

view of reality, and we shall later indicate that, in many instances, 

this formal language is inherently quite inflexible and resistant to 

change. 

We shall now turn to the question of information, or what in 

our sense might more appropriately be called informativeness to 

reflect its subjective nature. Suppose we have some observer and 

a formal language which expresses his current viewpoint on some 

domain of interest to him. In addition, we naturally presume that 

he has some previous experience as characterized by a set of ob­

servations n . He now makes a new observation, perhaps as the re­

sult of performing some experiment. We wish to know if this ob­

servation increases his information, and if it does, by how much in 

comparison with som e other hypothetical observation. We have 

stressed that the •:<-probability completely specifies his expectations 

.with respect to all observations. Hence, the information gained 

should be a function only of this probability, and we define it in a 

manner analogous to information theory • 

. · ' .· 
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Definition: Given a formal language S, , and an associated probability 

p>:' , the information gained on observing 0 given the prior set of 

observations n is 

Before discussing the implications of this definition, a few 

comments are necessary. First, since we are interested only in 

information in a relative sense, we shall not specify the base of the 

logarithm. Secondly, we are asswning that the new observation 0 

is consistent with the previous experience n , and hence that 

lnn ntn
0 

t= ¢ • Finally, we note that by taking ln0 = th, i.e. no 

previous experience, we obtain a measure of the "absolute" in.for-

mation in 0 relative to S, • 

The information measure has the following properties: 

then 

Property { 1) says that if o
1 

is a more precise observation 

than o 2 , then· the information to be gained by observing o
1 

is 

greater than that gained by observing o 2 • As used here, the 

terminology "more precise" means that the structural relations 

among the objects of the universe as expressed by o
1 

, necessarily 

entails the existence of the structure expressed by o
2 

• Property (2) 

.•' 
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is a condition on the additivity of the information. That is, observing 

o
1 

followed by o
2 

yields the same gain in information as the simul­

taneous observation of o 1 and o 2 • T~ken t~gether, these two 

properties ensure that our notion of information conforms to the in-

formation theoretic definition of the a fortiori information, or the in-

formational gain resulting from the selection of some particular 

alternative [36, p. 12] . 

Extending the analogy with information theory somewhat fur-

ther, suppose we have some finite set of observations 0 ... , 0 . 
l' n 

such that l'no. n tn
0

. = ¢ for i, j = l, • • ·, n and i 'f j • Thus the ob-
1 J 

servations are mutually exclusive or inconsistent. Also, assume that 
n 

LJtno. = lh; these observations might therefore represent the n 

i = l 
1 

possible outcomes of some experiment. We can then express the in-

formational gain which the observer expects will result from actually 

performing the experiment. 

Definition: Let e be an experiment with possible outcomes o1 , •••,On 
n 

such that u mo. = rn and l'no. nrno. = ¢ for i, j = 1, ••• , n and 
i=l l l J 

i -f j • Then the expected gain in information for an observer with 

>:< 
formal language S, and probability P to perform the experiment 

e is 

r(e In) = 

where n is the set of prior observations. 



- 81 -

In order to facilitate a clearer understanding of the formal 

apparatus developed in this chapter, we shall now interpret some of 

the more important concepts diagrammatically. Note that the dia-

grams we shall present are intended as heuristic aids only and do 

not constitute an adequate method for dealing with many of the more 

complex aspects of the problem_. We begin by assuming that the space 

of models tn of the universe of discourse is arranged on our diagrams 

in such a way that the a priori probability P of any observation 0 

is proportional to the area encompassed by the set of models tn 
0 

associated with that observation. Figure 1 illustrates two strictly 

consistent observations o
1 

and o
2 

such that P(tn
0 

} >. P(tn 
0 

} , 
l 2 

i.e. o
1 

is more probable than o2 bc;tsed on the observer's a priori 

probability. The shaded area, tn 
0 

n tn 
0 

, represents the set of 
1 2 

models for which both observations hold, and all models contained 

within it cannot be discriminated from one · another until further ob-

servational evidence is obtained. 

In a similar fashion, we can illustrate the way in which a sen-

tence of a formal language partitions the space of models. Therefore, 

suppose that some sentence 'Y is true of some models, false of others, 

and meaningless on still others; the space tn might possibly be parti-

tioned as in Figure 2. Again, interpreting the areas as being propor-

tional to the a priori probability, this particular sentence is most 

likely to be false, in the observer's view. This diagram shows the 

general case for a sentence 'Y , but any of these three areas could 

be null for some particular sentence. For instance, there might be 
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Figure 1. Two consistent observations. 

ll'I I I 
I ' 

\ y true 

I y 

\ meaningless 

I y false 
\ I 
\ I 
\ I 1 

I \ 

Figure 2. Partitions induced by a sentence 'Y • 
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no models where the sentence 'Y was false; such a sentence would be 
. . 

· a tautology with respect to the language since whenever it is meaning-

ful, it is also true. Notice that we have characterized an observation 

by a closed curve and a sentence by lines bisecting the space Tn • This 

is an artificial distinction for the sake of visual convenience only, 

since in either case the sets of models are defined by formulas of set 

theory. 

Now consider the superposition of Figures 1 and 2 as shown in 

Figure 3. The observer has made the two observations o
1 

and o
2 

, 

and we are interested in how the sentence 'Y relates to them. Suppose 

he makes observation o
1 

first; the sentence 'Y is ambiguous for 

this observation since there are models contained in rn
0 

for which 
1 

'Y is true and models for which 'Y is false. Therefore, 'Y does not 

aid in the characterization of o 1 • If he now makes observation o
2 

, 

then, as previously pointed out, the shaded area will represent the 

only models compatible with both observations. The diagram shows 

that 'Y is false of all of these models, and thus 'Y can be used to 

express what has been observe d. Notice that 'Y is not ideal for this 

purpose since there are many models for which 'Y is false that are 

not contained in In O n tn
0 

• That is, the observer's observational 
1 2 

experience is more refined or precise than the sentence 'Y can 

express. 

Suppose, on the other hand, that o2 was the first observation; 

the sentence 'Y is clearly not true of o 2 , but neither is it false, 

.· ' . · 
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rn 

y true I 
\ meani~gless 

y false \ 

Figure 3. Relationship of the sentence "I to the observations 

o
1 

and o2 • (Superposition of Figures l and 2) 
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since o
2 

admits models for which 'Y is meaningless. The models 

contained within mo are equivalent to one another on the basis of 
2 

the current observational evidence, and therefore 'Y is not useful 

in describing o
2 

since the observer can only assert the truth or 

falsity of a sentence. Referring to our definitions of elements and 

states of a formal language, we. conclude that the set of models for 

which 'Y is true is a state, as is the set of models for which 'Y is 

false, but the set of models where 'Y is meaningless is not, al-

though it is an element. 

In order to clarify the notion of a basis somewhat more, con-

sider the following simple example; assume that we have a language 

whose only two sentences, -y1 and 'Yz , are: 

'Yl "Spiders are responsive to light11 
, 

'Yz 11Spiders eat ants•• • 

These sentences are supposed to have been gene rated by some syntax 

and their meanings to be expressed by an associated semantics. 

Figure 4 illustrates how these two sentences might partition the model 

space. To see how each of the sentences could be either true, false, 

or meaningless, independent of the other, consider the word ••spiders". 

This word will be assigned some part of speech and thereby b e associ-

ated with a semantic category, perhaps the class of animate objects. 

The formula defining this semantic category will express the generic 

structural properties which are required of animate objects. However, 

it may be that in some possible configurations of the universe, the 

.·' . . · · 
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\ 
T F 

T 

Figure 4. State diagram for a simple language having 

two sentences • 

.. , .· 
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class of entities denoted by the word "spiders" fails to satisfy these 

requirements, i, e, the interpretation cp of "spiders" does not be­

long to the appropriate semantic category. For instance, in a given 

model, the class of "spiders" might include a spider which had just 

been stepped on and killed, Does this entity still satisfy the struc­

tural requirements of "spiderness"? It might, if for example these 

requirements involved only the molecular composition of the object 

in question, or it might not, in which case any sentences speaking 

about spide rs would be meaningless for this model. An analogous 

situation holds for the other referent words in these two sentences, 

and thus, in general, the implicit structure required of the objects 

in the domain of the language may be violated in some plausible con­

figurations of the universe. If this is not the case, i.e. if the sen­

tences are meaningful, there are certainly valid interpretations of 

the words in both sentence s which render them either true or false. 

As we have previously mentioned, the deep structural aspe cts of a 

language, which are in part embodied by the semantic categories, 

are essential to the constructive generation and analysis of strings 

of words into understandable sente nces. On the other hand, the very 

imposition of this structure dictates that these sentences are not 

universally applicable to every conceivable reality. 

Since the two sentences of our example language are inde­

pendent in the manner discussed above, Figure 4 shows a non-empty 

element corresponding to each of the nine possible truth assign­

ments, and the symbols indicate the particular truth assignments 
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defining the elements. For instance, the element T¢ is the set of 

models where 'Yi is true and 'Yz is meaningless. The states of 

this language are defined by the following sentence/truth value 

combinations: T-, F-, -T, -F, TT, TF, FT, FF, where a 

11 - 11 indicates that the corresponding sentence is not used to define 

the state involved. In addition t.o the states defined by these sets 

of sentences, th and the empty set of models are also states. The 

minimal states are thoi:;e defined by TT, TF, FT, and FF, and 

any one of these is distinguishable from each of the others. As we 

have shown, in this cas.e the basis is unique and comprises the 

entire collection of minimal states. 

As a final example, we illustrate a situation where the basis 

is not unique. Figure 5 shows the state diagram for a hypothetical 

language having three sentences 'Yl, 'Yz, and 'Y3 • Each element 

of the language is characterized by an assignment of truth values to 

,,
1

, 'Yz, and ,..
3

; these values are specified by the sequences of 

three symbols shown on the diagram, which will be considered to 

name the corresponding elements. There are seven minimal states 

which are dE;!fined by the following sets of truth values: 

TTT, TFT, FTT, FFT, FFF, -TF, T-F, 

where "-" indicates that the correponding sentence is unnecessary 

to define that state. Notice that the two minimal states T¢F and 

¢TF ·are indistinguishable, i.e. there is no sentence which is true 

of one and false of the other. As a consequence· of this, there are 

two distinct bases for this language, namely, 
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Yz 
T / Y3 

T F <b 

IT/ F 
T TTT TFT / ;/L' T¢F 

-t-FFT / F;- <b 

Y1 F FTT 

I ~FF I ~H 
~-iL-¢TT/ ¢FF/ I 

<b<b<b /¢TF I /¢F¢ 

Figure 5. State diagram for a simple lang uage h a ving a 

non-unique bas is • 

. •' 
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ia
1 

= (TTT, TFT, FTT, FFT, FFF, ¢TF} 

and 

i82 = [TTT, TFT' FTT' FFT, FFF, T¢F}. 

Also significant is the fact that the logic of this simple language pre-

eludes the existence of certain states. For instance, the state de-

fined by TFF is empty, indicating that this is an inconsistent assign-

ment of truth values relative to the semantics of the language. If the 

meanings of these three sentences were completely independent of one 

3 another, then there would be 3 = 27 non-empty elements, nine 

minimal states, and the basis would be unique, However, we empha-

size again that an essential characteristic of nearly all formal lan-

guages is that they embody some non-trivial logic, and the sentences 

of these languages are consequently not independent. 
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V. EXPERIMENTAL OBSERVATIONS AND SCIENTIFIC THEORY 

In this chapter, we shall utilize our formal definitions of prob­

ability, information, and language to interpret some of the problems 

confronting a scientific researcher. Therefore, suppose that we are 

considering a scientist who is about to perform some experiment. Let 

us imagine that this man is an experimental biologist who is attempting 

to study the processing of visual information in certain classes of in­

sects. Specifically, we will assume that he is interested primarily in 

~xamining the behavior of certain types of neurons and their functional 

relationship to external visual stimuli. In order to accomplish this, of 

course, he must have available a certain amount of experimental equip­

ment, and he chooses some appropriate portion of this equipment to 

aid him in any particular experiment. This apparatus constitutes the 

experimental environment and is instrur.nental in determining exactly 

what quantities will be measurable in the experiment. Thus, for ex­

ample, he may be planning to insert tiny microelectrodes into one of 

the insect's optic lobes and then to record the electrical signals from 

nearby nerve cells. It could be that he is then interested in examining 

the detailed electrical waveform of a spike discharge from these cells, 

but we shall suppose that he is most concerned with the temporal be­

havior of the neurons in encoding the visual signals. Thus he will not 

find the analog wave shapes as relevant as the times of discharge of 

spikes from a cell, and consequently he views the neuron's output as a 
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train of essentially zero width pulses and concentrates his attention 

on the intervals between these pulses. Of course, in order to deter­

mine exactly when a pulse occurs, i.e. when a cell discharges, he 

must adopt some criterion, such as the time when the voltage meas­

ured at the electrode exceeds some threshold. He might then record 

the neural signals, after they have been amplified and filtered suitably, 

on a device like a strip chart recorder, but since the firing times of 

the cells are the fundamental items of interest he can simply digitize 

these times and collect these data using a small computer system. 

We will suppose that he takes this latter course, thereby enabling him 

to collect a large amount of data and save it for subsequent analysis. 

Of course, he could also perform some analysis in "real time" as the 

experiment proceeds but this is not germain to our example. 

Now, with regard to the actual experiment he is going to per­

form, he will perhaps insert two of these rriicroelectrodes into certain 

general areas of interest within the insect's visual nervous system. 

He then plans to display to the insect, which is fixed in the center of 

a large globe, some pattern consisting of alternating dark and light 

stripes. This pattern will be turned on and off, and he will thus be 

able to examine both the transient and steady- state responses of the 

neurons near his probes and also the interrelationships among the 

two neurons .. The computer system will record the firing times of 

the cells together with timing signals pertinent to the stimulus. Each 

phase of the experiment will be repeated a number of times to ensure 

.• ' 
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a statistically sufficient sample. Subsequent to this he will analyze 

the data using various computer algorithms which he has previously 

found useful. As might be surmised, this experimental description 

is not hypothetical; for a more detailed discussion see McCann and 

Dill [24] • 

The purpose of the prece.ding discussion has been to establish 

a specific framework within which we may discuss various instances 

of more general phenomena. One of the questions of interest here 

concerns the possible outcomes of such an experiment. As we have 

indicated, the space of possible outcomes has been at least partially 

determined by the selection of the apparatus and the design of the 

overall experimental environment. 

In terms of the diagrams introduced previously, an experiment 

may be characterized by a disjoint covering of the space lh , where 

the members of the cover are sets of models associated with observ­

able experimental outcomes. That is, the cover comprises a set of 

observations having the property that some one of them holds for any 

model M E lh • 
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The diagram illustrates the case of an experiment that has six 

possible observable outcomes. That is to say, the models contained 

in a given 0. are all those possible configurations of the world in 
l. 

which this experiment would be observed to have the same outcome. 

Suppose for a moment that M
1 

were the actual configuration of the 

world, the "true" model. Then one could conclude as a result of this 

experiment that the 11true" state was in o
1 

, and that we were not, 

for example, in the configuration M
3 

• However, it would remain 

an open question whethe r . we were at M
1 

or M
2 

• 

If virtually ariy conceivable experiment could be performed, 

then every such disjoint cover would be representative of some pos-

sible experiment. What we are saying is that the experimental appa-

ratus, once chosen, determines some sub-collection of the collection 

of all possible disjoint covers. Among the covers that are excluded 

will be those which have as members some observation involving a 

quantity which the equipment is incapable of measuring. Those which 

remain are indicative of the experimenter's freedom of choice with 

regard to the experimental parameters under his control. In our 

example, if the amplitude of the spikes gradually decreased with time, 

then because the data recorded make no direct allowance for this, it 

can not be an observable outcome of an experiment using this equip-

ment. Consequently, the raw data collected already represent an 

abstraction from what is potentially available. In addition, it could 

be that other unmeasured quantities, s.uch as the ambient air temper­

ature, have some non-trivial effect, but again, correlations of this 
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type are not possible observational outcomes. The selection of the 

stimulus itself clearly also limits what can be. directly observed. 

Thus, we certainly can not observe what the response of the neurons 

in question is to the appearance of another insect, say, by using a 

pattern of stripes. Notice that we are speaking now about what is 

observable in this experiment, that is, what can be perceived. This 

is to be interpreted exactly in the sense that we have formally defined 

an observation. Consequently, the possible outcomes are independent 

of the observer's language and relate only to the configurations of the 

universe which might conceivably obtain. As yet we have said nothing 

about the conclusions he might draw from some given outcome, since 

this will be determined by his language. 

The main point of the preceding is that the observable results 

of a scientific experiment are dictated in large measure by the specific 

details of the experimental set-up. Various outcomes are thus ex­

cluded a priori, and others become not only possible but highly prob­

able. In many ways this point is obvious and we are certainly not say­

ing that there is any practical method for greatly expanding the space 

of possible outcomes. For example, if a microel ectrode could be 

placed adjacent to every neuron in the insect's visual system, the set 

of potential observables would be immense. But since there may be a 

million such nerve cells, this is clearly a technical impossibility, 

without even considering whether the data collected could be sensibly 

analyzed. Also, it would be naive to assume that the outcomes which 
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are possible for a given experiment are arbitrary, since they are 

largely the result of the scientist's evaluation of what are meaning­

ful or relevant quantities to measure. This evaluation then results 

in a determination of the actual experimental conditions, within 

practical limitations. However, these choices, once made, do 

strictly limit the scope or range of alternative outcomes. 

Now, returning to our example, we can visualize that such an 

experiment has a very large nwnber of possible results. That is, the 

set of all observations which the experimenter could conceivably make 

as a result of performing this type of experiment, even though re­

stricted by the experimental conditions, still encompasses a virtually 

unlimited nwnber of actual possibilities. These include many uninter­

esting cases where, for example, the equipment breaks down or the 

insect dies before the data can be gathered. Furthermore, the total 

collection is not a mutually exclusive set of observations. Thus, one 

possibility would be that the cells respond to the stimulus, whereas 

two other possibilities would be that they respond to the stimulus by 

increasing or decreasing their average rate of spike discharge. 

These are clearly not independent events; on the other hand the experi­

menter would preswnably not observe the more general of these if his 

apparatus permitted the observation of one of the latter two. There­

fore, we can asswne that there is some maximal set of observations 

which are all mutually exclusive, where the elements of this set are 

determined by the quantities he is measuring, the precision of the 

experimental apparatus, and the means available for examining the 
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results. Each possibility in this set thus represents a distinct 

e>...rperimental outcome, and the set itself defines a disjoint cover of 

the model space, as previously mentioned. 

If we consider any such specific instance of a scientific 

experiment, then it seems intuitively clear that there are only a 

finite number of observable possible outcomes. That is, we have 

no reason to believe that the cover associated with the experiment 

has more than a finite number of cover sets. Furthermore, since 

there will always be an infinite number of relationships which are 

not specified by the experiment, in ,general every cover set will 

contain an infinite number of models among which the experiment 

does not distinguish. 

Recalling our definition of observation, the set of observations 

which constitute a cover is inconsistent, and in addition, the union 

over the set of possible configurations of the universe of discourse 

·associated with these observations includes all admissible configur­

ations or models. Thus, it is certain that one and only one of these 

possibilities will be realized by performing the experiment. We 

emphasize again that the outcomes of the experiment correspond to 

observations and are not directly related to the observer.' s theories 

as expressed by his language. Of course, the various outcomes of 

the experiment are not equally likely, the probability of any one being 

given by the observer's a priori probability P which reflects his 

metaphysical assumptions about the domain he is studying. 



- 98 -

We now turn to the question of how the experimenter disc rim-

inates these experimental outcomes. We have already said that 
·. . . . 

certain outcomes are somehow more relevant than others. How is 

this matter of the relevance or importance of the result of the experi-

ment to be explicated? Our first inclination is to say that this depends 

upon his current theory about the domain he is studying. That is, he 

would certainly like the actual outcome to be consistent with what he 

now believes. Furthermore, he hopes that the result will do more than 

simply confirm what he already knows. Ideally the new observation 

should further reduce the set of models satisfying his total observational 

experience and thereby contribute to refining his theory. In order to 

say what we mean by a theory in this sense, we utilize the notion of 

states of a formal language and the sets of sentences that define them. 

Prior to performing the experiment we have ·outlined, our experimenter 

has some body of data previously gathered about the domain, in this 

case data relevant to the insect visual system. These data comprise 

some set of observations which we presume to be consistent, and 

associated with these observations is some set of models satisfying 

all of them. · Now, consider the smallest state of his formal language 

containing this set of models; the sentences defining this state are 

all either true or false of every observation he has previously made. 

These sentences act therefore as axioms for his theory. They might 

include such statements as, "The insects studied have some neurons 

which increase their rate of spike discharge for approximately two 

seconds after a 20° spot of light is turned on in their field of view", 

.·· 
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or "The insects studied do not respond in any way to polarized light". 

In general, these axioms are subject to change since they are based 

only on what he has observed, and it is possible that some subsequent 

observation may contradict them. 

Figure 6 shows a partial state diagram for the experimenter• s 

formal language. The set of models denoted by n represents all 

those configurations of the universe which are consistent with his 

previous observational experience. The state h is as surned to be 

the smallest state containing n , and thus the s e ntences of the lan­

guage that define h are axioms of the experimenter's current theory. 

Notice that the axioms do not precisely delimit n ; there are models 

ME' h which are not members of n . This simply means that the for­

mal language he employs is not capable of expressing every detail of 

his previous experience and provides only some convenient approxi­

mation to it. 

This should not, however, be viewed as necessarily negative. 

The lack of refinement results from ignoring aspects specific to the 

time of day, individual subject used, etc., which are of no relevance 

to the researcher. These he appropriately ignores if the y indeed are 

irrelevant, a chance he must always in some way take. 

In addition to the axioms, which are either wholly true or 

false of his observations, the.re will be other statements which repre­

sent speculations or hypotheses. Very often the se will be generaliz­

ations of his previous experience: for instance, "all ins e cts have 

.· ' . · . . 
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State h 

Figure 6. Partial state diagram showing experimental axioms 

and their relationship to prior observations. 

State h 

Figure 7. Expanded view of state h (from Figure 6) showing 

experimental hypotheses and a new observation O. 
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neurons which increase their rate of spike discharge in proportion 

to the ambient light level". Since he has clearly not tested this for 

every insect, this statement will be neither true nor false of all his 

observations. There may also be other hypotheses which are com­

pletely untested, in the sense that no previous observational evidence 

is related to them. These he presumably intends to either confirm or 

deny by subsequent experiments. The salient point here is that the 

conditional or hypothetical statements in his formal language act to 

partition the state defined by the axioms into a number of smaller 

states contained in it. Each of these states represents a refinement 

of his theo_ry for which insufficient evidence currently exists. More­

over, the statements characterizing these states will most likely be 

experimentally verifiable, although to do so may involve procedures 

which are very complex or not technically feasible with his present 

equipment. In any case, these hypotheses act as a guide to further 

experimentation, since to perform an experiment whose possible 

outcomes can not be discrim.inated by some statement of his language 

would not be meaningful. Therefore, the experimental outcomes which 

are relevant to him are mirrored directly in the statements of his lan­

guage. 

An illustration of the effect of hypotheses on the partitioning of 

the model space is shown in Figure 7. The state h and the set of 

models n are the same as in Figure 6; the two dashed lines corres­

pond to sentences of the formal language whose truth or falsity is not 

determined by the observations previously made. Now suppose that 



- 102 -

the experimenter can perform some experiment which has the 

observation 0 as a possible outcome. If he actually does this and 

observes 0 as the result of the experiment, then 0 1 will char­

acterize the set of models consistent with his total experience. 

Also, the two hypotheses will have been resolved, since they are 

now either confirmed or denied on the basis . of the new evidence 0 • 

Consequently, observing 0 is informative relative to the experi­

menter's theory as expressed within his formal language. 

Notice that if he has no hypotheses to be tested, that is, if 

every statement of his language is either completely true or false of 

all his observations, then he will do no further experiments. His 

theory is complete because he can visualize no sensible means of 

refining it. Needless to say, very few modern scientific theories 

have achieved such a status. 

Now, with regard to the selection of a specific experiment 

to be performed, several remarks can be made in light of the pre­

ceding discussion. The choice of experiment will be based upon how 

informing the experimenter anticipates the outcome will be. Since 

he knows, in principle, exactly what the potential outcomes are, and 

since he also has various hypotheses which he wishes to confirm, 

the combination of these will dictate that certain experiments are more 

useful to him than others. This brings us back to our definition in the 

preceding chapter of the expected informational gain for an experiment. 

If there are several experiments which may be performed with equal 

ease, then the proper choice from the experimenter's standpoint is 
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the one which has the highest e xpected informational payoff. In a 

m a nne r analogous to informa tion theory, this experiment is ideally 

one where the ':<-probabilitie s of the various outcomes are all equal, 

and since this probability is a function of the observer's language, 

the hypotheses he wishes to inve s tigate are implicitly taken into 

account. Consequently, the informational gain referred to here is 

again in the subjective sense of informativeness and the experimenter 

therefore attempts to choose an experiment whose possible outcomes 

coincide well with the alterna tives opened by certain of his uncon­

firmed hypotheses. 

To illustrate this point, consider the following example which 

is repre sented graphically in Figure 8. Suppose that an expe rimenter 

has some body of experimental data; n is the set of models char­

acterized by the corresponding obs e rvations. Furthe r, assume for 

the .sake of simplicity that the sentences of his formal language all 

result in a horizontal cut acros s the space of models. That is, using 

the experimental apparatus lle has available togethe r with all of the 

theory he fe els is. in any way applicable to the domain h e is consider­

ing , the e xpressible conc e pts within his forma l l a n g uage divide up the 

possible worlds into colle ctions of mode l s like the rec tangle d elimite d 

by a and 13 • Thus, in the diagram, a and 13 correspond to pre­

viously v e rified statements, and "I r epresents an untested hypo thesis 

relative to n. Now imagine that he could p e rform one of two possible 

expe riments, say, el or e2 • el and e2 each have two outcomes 

which a r e d elimite d by the solid line s E
1 

a nd E
2

, r e spectively. 
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E 2 

--------- --------1!"--

Figure 8. Hypothetical case showing three sente nce partitions, 

a, j3, and 'Y, belonging to some_ formal language, and 

two experimental partitions, E 1 and E 2 • Q is the 

set of models representing prior observational 

experience. · 
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Which of these two experiments will he actually choose to perform? 

If he performs experiment el and thus determines whether the models 

below the line E
1 

or the models above the line E 1 are consistent 

with what he observes, then he may be able to confirm or deny the 

hypothesis 'Y• depending on which of the results he obtains. On the 

other h a nd, if he performs .experiment e.
2 

, neither of its outcomes 

will confirm or deny 'Y or any other hypothesis of his language since 

they would also partition the model space horizontally. 

Assume, as we have previously, that the observer's a priori 

probability is proportional to area on the diagram. Now, if experi­

ment e.
1 

turns out successfully, the statements 'Y and 13 will then 

characterize, as well as possible, the resulting set of models n• , 

but no matter what the outcome of e2 is, the best state description 

of the resulting set of models will still be given by the statements a 

and 13 • Consequently, the observer will gain no information by per­

forming e.
2 

but can reasonably expect to be better informed by per­

forming e1 . Notice, how ever, that if his language could express 

some statement which, for instance, coincide d with the boundary E
2

, 

then if e.
2 

was completely successful, he could characterize the 

resulting set of models n• 1 by using ct, {3, and the statement coin­

ciding with E 2 • This state is clearly much smalle r than the state 

d e fined by 'Y and 13 which is the most he can achieve by p e rforming 

e
1 

. Consequently, if his langua g e embodied the conce pts necessary 

to appropriately express the outcomes of e2 , . this e x p e riment would 

be seen to have a gr eater potential informational payoff than e
1 

• But 
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his inability to grasp these concepts prevents him from conceiving of 

e.
2 

as a reasonable experiment, a .nd his choice is necessarily e1 

This explicates in a precise way the channeling effect of observations 

and theory on further experimentation, and thus on the development of 

new theory. These notions are related to those of "normal science" 

by Kuhn [22] and to the Whorfian hypothesis [44, p. 213] . 

The counter-argument-namely that the scientist is not con­

fined by his language/theory-depends on either the existence of a 

universal language or, what is tantamount to the same thing from the 

point of view of this paper, his ability to move cognitively with no 

conceptual boundaries. The fact that a universal language can not 

exist will be discussed subsequently. The dynamics of language 

change are beyond the scope of this thesis. However, we can not 

help but feel there are inertias involved which essentially substantiate 

the above analysis. 

The relationship between the language structures and the pos­

sible experimental outcomes has another dimension which stems from 

rather different considerations. We have previously mentioned that the 

available experimental apparatus determines certain bounds on the set 

of experimental results, for example, by limiting the degree of pre­

cision of certain measurements. In other instances, the equipment 

may actually preclude obs e rvations of some physical quantities. Thus 

in our example experiment, the microelectrodes used may only be 

suitable for measuring potential changes external to a neuron but can 

not be employed to make similar measurements within such cells • 

. ·· .· 
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Therefore, practical limitations on the amount of available equipment 

and matters of technical feasibility may impose rather arbitrary 

restrictions on the potential experimental outcomes. Another way 

of looking at this is to say that the apparatus acts to determine the 

experimenter's "contact points•• with the reality of his experiment. 

If we visualize the system he is studying as a network of "black 

boxes 11 connected in some fashion, then these "contact points" are 

identified with the inputs and outputs to the "black boxes", i.e. the 

set of measurable quantities. 

Now, recognizing that the experimental apparatus plays an 

important role in determining the character of the observable experi­

mental outcomes, we ask how this affects the observer's language. 

Since the information gained by the experimenter whe n he performs 

some experiment is directly related to his ability to distinguish the 

outcomes of that experiment in his language, it follows that the 

hypotheses embedded within the language are indirectly linked to the 

experimental apparatus. Th,us, the experimental environment in­

fluenc e s the observable outcome s and they in turn impose conditions 

upon the language, if it is to b e an informative lang uage for that 

experimental domain. This relationship is particularly important 

because the adaptability of the experimental environm e nt is typically 

not great. Modern scientific practice indicates that the trend is to 

more and more sophisticated and complex experime ntal equipment 

and in many cases, once this equipment is adequately developed, it 



- 108 -

is used for long periods of time. The result of this is that the language 

of the experimenters also tends to stabilize for equally long periods, 

and consequently the language acquires a somewhat unnatural rigidity 

or resistance to change. Thus, although the formal language of an 

e:h.-perimentalist may not be inherently fixed in nature, it is apt to be­

come so by virtue of its necessary relationship to empirically observ­

able phenomena. 

The preceding sections of this chapter have dealt with the gen­

eral relationships among formal languages, observations, and scientific 

experiments. We shall now consider, in greater detail than we have 

previously, the formulation and interpretation of scientific theories. 

Following this, we shall return to the specific examples presented in 

the introduction and investigate them in the light of these discussions. 

In order to get at the notion of a scientific theory, let us ask what we 

can say about the meaning of a sentence of a formal language. We 

know that to each such sentence there corresponds some formula of 

the language of set theory, having certain free variables. Precisely 

what does such a formula express? We have said that it character­

izes a relationship among the objects which are taken as the values 

of its free variables. 

Now imagine some specific sentence of a formal language and 

a particular model or configuration of the universe. Note that one can 

not d e termine whether the sentence is true of that configuration without 

knowing the interpretation of the referent words. Thus the meaning of 
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the sentence involv es the d e notation of the referent words in addition 

to their structura l prope rtie s, as spe cified by the s e mantic categories, 

and the interrelations hips required to exist among them, as specified 

by the structure of the sente nc e itself. 

At this point in our discussion we can not say what the refer­

ent words denote, only that once this i s know n we can describe the 

relationships e x isting among those things. Can this be strengthened? · 

Is it possible that we can say within a formal languag e all that we mean 

or, on the other hand, is it necessary that there be some implicit or 

tacit knowledge? 

What do we mean by tacit knowledge? We assume that a person 

speaking a given language understands the syntax of that language and 

. the structural aspects of its semantics. Suppose, for example, that a 

person who speaks English hears the sentence "Bob is in Pettalle". 

One expects him to know that this is indeed a sentence and that it ex­

presses the fact that someone is located in a certain place; we would 

not expect him to respond ''.I am not sure that what you said was a sen­

tence, or the nature of the relationship it presumably expressed". He 

could s e nsibly respond "Who is Bob and where is P e ttalle ? " The 

meanings of Bob and Pettalle, unless otherwise defined, must be tacitly 

known. Scientific theories that require no tacit knowledge, i.e. those 

in which all concepts are completely structural, are precisely the 

theories of pure mathematics. An empirical theory, however, is a 

theory where such tacit knowledge is necessary. This is an obvious 
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statement that simply calls attention to the fact that any empirical 

theory has certain basic terms which can not be further reduced by 

definition. Observe that there is no need to debate whether tacit 

knowledge is required only in connection with the meanings of words. 

It can easily be seen that by adding new words to a language and 

giving them tacit meanings, one can reduce all tacit knowledge to 

implicit understanding of the meanings of individual words . 

As the next step, we inquire into the legitimate meaning of 

the notion of scientific theory. Such a theory clearly concerns some 

set of sentences of a formal language. These sentences, say e, 

are the axioms and hypotheses of the theory, together with their 

logical consequences. Furthermore, a scientific theory certainly 

purports to say what configurations of the universe actually obtain, 

i.e. something about the world around us. In view of the above dis­

cussion, however, we can not conclude that the meaning of the theory 

is the set of all possible models for which the sentences of e are 

true, simply because the truth or falsity of a sentence of a formal 

language depends also on the interpretations of the referent words 

which for an empirical theory must be essentially tacit. Thus, as a 

first hypothesis, a scientific theory is a set of sentences and an inter­

pretation of the referent words of those sentences; and the meaning of 

the theory is the set of all models for which those sentences, under 

the given interpretation, are all true. 

Of course it is essential to associate the notion of a scientific 

theory with observations, which we now do. Whereas a scientific 

, ,· I 
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theory depends upon an implicit understanding of the meanings of its 

words, that tacit knowledge should be tied to empirical observations. 

Suppose someone asks "What do you mean by a ? 11 where a is a 

basic, tacitly understood word of our theory. We can not tell him. 

But we certainly should be able to show him, perhaps by pointing or 

suggesting to him that he perform certain experiments or examine 

certain objects. Thus the tacit meanings should not be mysterious 

but should arise directly from observational experience. This is 

indeed the function of student laboratories in a scientific education. 

One can translate this, through the definitions and theorems given 

previously, into the requirements that the set of models prescribing 

the meaning of a scientific theory should be definable in terms of ob-

servations in our sense. How are we to do this? Consider two pos-

sibilities: 

( 1) The set of models that constitute the meaning of 
the scientific theory must be associated with an 
observation, or a finite number of observations. 

(2) Given a set of mpdels h which is the meaning of 
a scientific theory, then for any model Mi h 
there is some observation which holds for M but 
for no model in h • Loosely speaking, if the theory 
does not hold for some possible world, one can 
ascertain this fact by an appropriately designed 
experiment. For a similar view, see Popper . [27, 
sec. 6] • 

Condition ( 1) is clearly too strong; a useful scientific theory 

obviously says more than that some finite set of objects are in a certain 

fixed relationship. When we say the condition is too strong, we do not 

mean to exclude scientific theories that satisfy it, but we note that the 
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assumption of the condition for all theories seems to imply acceptance 

of a totally finite universe, finite in every way, including a finite num-

ber of discrete time quanta. Consider the simplistic theory consisting 

of the single sentence "Flies respond to visual s timuli". It seems un-

warranted to assume there will be only a finite number of instants 

and/ or stimuli where this could be either true or false. The second 

condition, (2), is tantamount to the assumption that the meaning of a 

scientific .theory is given by the intersection of the sets of models 

associated with an infinite number of observations. To see this, let 

h be the set of models which constitute the meaning of the theory. For 

any model M ¢ h, let OM be an observation which is valid for every 

M' Eh, but not for M • This corresponds to the negation of the obs er-

vation stipulated in (2). h is obviously the intersection of all such 

OM1 s. Thus, this weaker condition seems more plausible, and we 

tentatively accept (2) as the relationship between a scientific theory 

and observations. 

The following definition specifies the conditions which must 

hold if a language is to be able to precisely delimit some observation: 

Definition: An observation 0 is describable in a formal language S, 

if lno ::: h J where h is a state of the language. If eh is a set of 

sentences of £ defining h J then e is said to describe 0. 
h 

Every possible observation 0 is describable in some formal 

language, and this can be accomplished by a single sentence. The 

argument to this end is trivial: 



- 113 -

Lemma: For any observation 0 , there is a formal language S, in 

which O is describable by a single sentence. 

Proof: Let 0 = < F(x
1

, • • •, x ) , a 1, ·••,a > where a. ES • Then n · n 1 

let s, be a formal language with the sentence 'Y = 'YI 'Yz ••• 'Yn such 

that cp(,,.) = a. • The lexicon L contains the rules j3. -Y· for 
1 1 1 1 

i = 1, • • ·, n • Cj3. = S • The grammar G contains the rule 
1 

R:a - 13
1

13
2

• • • j3n and the associated semantic transformation is 

T :F(x , x , • • ·, x } = y = 1 R 1 2 n 

Therefore, the formula of set theory associated with the sentence 

'Y is 

Hence, 'Y is true of some model ME l'n if and only if ME ~ • 

Therefore 'Y describes 0 . 

Now, a finite set of sentences together with an interpretation of 

their referent words always characterizes a set of models which could 

be considered as the meaning of some scientific theory. In fact, the 

following lemma shows that these sentences describe some single ob-

servation, 

Lemma: Any finite set of sentences e, of a formal language J: , to-

gether with some truth assignment to the sentences, describes some 

observation O • 
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Proof: suppose e consists of the sentences -y1, -y2 , • · ·, 'Yn. Let 

y. :: 1 if 'Y· is assigned the value true, y. = 0 if 'Y· is to be false, 
l l l l 

and let F 'Yi( xi, y i) be the formula of settheo;y corresponding to 'Yi • 

'Y1 - · 'Yz - · 'Yn 
Then let F(x1 , • • ·, xm) = F (x1, y 1) AF (x2 , Yz) A··· AF (xn, yn) , 

where x · • •, x are the accumulated free variables that stand for 
l' m 

cp(o
1
), · • • , cp(om) o 1 , ···,om are all the distinct r eferent words 

appearing in the -y's, and y. takes the value 1 or 0 as specified 
1 

bythetruthassignment. Then O=<F(x
1
,···,xm),cp(o

1
), cp(o),·••, 

cp ( o ) > is an observation described by e under the given truth as sign­
m 

rnent. 

Note that this lemma does not imply that the models charac-

terized by e represent the actual outcome of some experiment, only 

that the observation 0 is possible in principle. As we have previously 

discussed, there is one model M
0 

whieh is the true model-the con­

figuration which actually holds. To verify a scientific the ory is to make 

the observations defining the set of models associated with it and to as-

certain that this set of models contains M
0 

• Obviously verification in 

this manne r is limite d by experimental a pparatus and technological 

possibilities . Thus, for e xample , given that we t a citly k now the mean-

ings of "life '' and "Mars'', it is a scie ntific theory that there is life on 

Mars. This particular the ory i s as yet unverifiable. 

We have shown that a finite set of sente n ce s describes some 

observation; what about an infinite set of sentences? The following 

the o rem d emonstrate s tha t if the infinite set of s e nte nc e s is r e cur s ive, 
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then there is some formal language where a finite set of sentences 

will characterize exactly the same configurations of the universe, 

and therefore the infinite set describes some observation. By a 

recursive set of sentences, we mean that for som.e Godel nurribering 

of the referent words of a language, then the resulting Godel numbers 

for the sentences of the language form ·a recursive set of integers. 

Theorem: Let £ be a formal language. If e is a recursive set of 

sentences of S,-, then there is some formal language S, 
1 such that, 

for a finite set of sentences e' belonging to £ 1 
, the set of models 

defined by e relative to S., coincides with the set of models defined 

by e' relative to s,'. Hence e and e• both define some observ­

ation 0 • 

Proof: S., is a formal language. Both the syntax and the semantics of 

S, are formalized within set the ory. Thus it is easy to see that a 

meta-language for S, could also be formalized within set theory, in­

cluding a definition of the notion "true in language S, "· Call this 

formal language S,'. (Of course, in general, we can not define "true 

in language S,' ", within S-1 itself [39, chap. 8 ]. ) 

Since the set of sentences e is recursive, we can· give a re­

cursive definition of e within £' in a finite way. Then one can 

expr eSS Within J:' I USing this definition, that the Sentences Of e are 

true, and to do this requires only a finite nurn ber of sentences of the 

meta-language S.' • As previously shown, this finite set of statements 
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describes some possible observation 0' and thus e also describes 

O , relative to S, • To carry out this arg·ument in all its detail would 

require a great deal of space and time._ 

This theorem and the preceding lemma raise the possibility 

that our definition ( 1) of the meaning of a scientific theory may be 

adequate. bo we indeed know of any set of sentences which do not 

describe some observation? The answer is definitely yes; the Godel 

incompleteness theorem tells us that the integers (in this case a 

· theory in which no tacit knowledge is necessary since it is purely 

mathematical) can not be described in any formal language by a 

finite or recursive set of sentences. More precisely, given an 

object b , the set of models where b is the integers can not be 

characterized by a recursive set of sentences. Thus, the meaning 

of the theory of the integers does not correspond to any finite set of 

observations. This extremely strong form of the Godel result is 

discussed in Kleene [20, sec. 60] • 

Although for most practical scientific theories, it is not 

possible to definitely establish that definition ( l} in fact does not 

hold, it is our feeling that this is often the case. For example, con­

sider a theory which purports to be about living organisms; it is 

highly unlikely that a definition of the notion of living in terms of 

a finite number of observationally specifiable objects can establish 

precisely what we mean by this concept. Concepts like "living", 

"cell", "metabolic process", etc., are learned not through language 
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but become tacitly understood through years of experience and long 

hours of directed laboratory familiarization. One everyday concept 

which we all take for granted is that of volume. It has been shown 

that it can not be prescribed in a finite number of observations. In-

deed, a much stronger result holds. However, this matter will be 

taken up from a somewhat different point of view. 

Let us turn to the related problem of reductionism. In 

chapter I, we identified two forms of this problem, the first of 

which will be discussed here. The second aspect of the reduction-

ist philosophy, namely the reduction of one theory to another more 

basic one, will be treated subsequently. The immediate question 

is whether the truth or falsity of a theory can always be reduced to 

the outcome of some experiment. More precisely, is it legitimate 

to restrict the notion "valid theory" to those theories for which the 

possibility of verification or denial on the basis of experimental 

evidence exists? 

Consider the following statement: 

(TBP): "There is a way to cut a sphere into a finite number of 
pieces which can then be moved rigidly and fitted together without 
deformation to form two spheres each of exactly the same volume 
and size as the original. " 

Suppose we have a formal language, for instance a segment 

of the language of mathematical physics, within which this statement 

can be given precise expression. That is, the language speaks about 

three-dimensional Euclidian space and the notion of volwne as a 

measure invariant under rigid motions in that space. We then make 

the following three statements: 
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( 1) The physicist believes that the statement TBP is false 

because he assigns a zero probability to the set of models for which 

it is true. This probability corresponds to the a priori probability 

p and indicates the physicist's certainty that he will never make an 

observation which implies the truth of the meta-statement TBP • 

Boundary B 

TBP false 

TBP true 

(2) On the other hand, the mathematician says that, in the 

given formal language, the physicist can not prescribe a set of 

sentences that defines the 'Qoundary B • The physicist's theory 

will include an object language counterpart of the statement TBP , 

but the mathematician's result, namely the Tarski-Banach Paradox 

[17, p. 51], [40, p. 244], shows that the physicist's theory must 

not be commensurate with what he really means. It must either (a) 

include models where the statement TBP (at the meta-level, of 

course) is true, or (b) exclude models where the statement is false, 

which the physicist has no a priori reason to exclude, and thus go 
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beyond what the physicist who believes in the first form of reduction-

ism can accept. That is to say, the theory eithe r does not express 

what the physicist believes, or it contains a metaphysical assumption 

not based on experimental evidence. In the diagram below the line 

labeled X corresponds to a sentence where the first of these is the 

case, and the line Y to a sentence where the second is the case. 

\. y 

" / 
TBP£a1se /V 

/ 
/ 

/ true'\. 

x 

(3) The situation would be quite different than it actually is 

if the physicist could conceive of an experiment whose partitions had 

boundaries coinciding with the boundary B . The fact is that the 

mathematician 1 s proof of TBP depends upon a non-constructive 

argument. Clearly, it is impossible to show that the statement is 

not true, and to date no one has been able to cut a sphere in such a 

way as to demonstrate its truth. Thus, the physicist's a priori 

assumption can have no adverse effect on the course of his science, 

as guided by experimental evidence. Indeed, it is precisely the type 

.·' 
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of metaphysical assumption that simplifies conceptual structure in 

a benign way. Graphically, the situation for realistically possible 

observations appears to be more restrictive than for sentences of 

the formal language. Thus, every observation partition will in­

clude models for which TBP is true and models for which TBP 

is false. 

Observation 0 

TBP false 

TBP true 

In the discussion on the meaning of scientific theories, we 

had left open the question of whether an empirical theory required 

tacit knowledge that could not be acquired by means of a finite num­

ber of observations. The above argument concerning the Tarski­

Banach Paradox indicates that volume is exactly such a notion. 

We have been talking about the condition where a set of 

· sentences together with interpretations of the words constitutes a 

scientific theory, and what we would mean by such a theory. Now, 

returning to the example in the introduction concerning the relation­

ships between abstract theory and empirical observations, we ask 
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similar questions about what we mean by superstitions or myths. 

Again let us say that a mythology or body of superstitions partially 

consists of some set of sentences of a formal language. Certainly 

if such a set of sentences is strictly inconsistent, that is if the 

existential closure of its formulas has no model, then the associated 

state is empty. This corresponds to the case where no possible in-

terpretation can make the sentences true and is clearly too strong a 

condition since for most superstitious beliefs, there is some con-

ceivable configuration of the world in which these beliefs are true, 

although ludicrous. What is implied by stating that some set of 

sentences constitutes a superstition is that the sentences do not 

hold for the true state of the universe. But let us examine this 

more carefully. Suppose that we consider two sets of sentences 

which we will call e . 
science 

and e . . . 
superstition Envision a man 

who has verified through observation, at least to a reasonable 

degree, the theory expressed by e . . That is, he has a 
science 

tacit understanding of the meanings of the referent words; let 

this be given by the interpretation cp • In terms of this, he has 

made a sufficient number of observations to convince himself of 

the truth of e . . We emphasize that he has carried out this 
science 

verification of e . in terms of his implicit knowledge, as science 

embodied by cp • Now, holding this tacit understanding cp, the 

sentences e t"t" are indeed irrational. supers i ion 

On the other hand, it is certainly conceivable that another 

man at another tim e and in another place, having tacit understanding 

.' ' .· . 
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cp' of the words of the language, quite differ ent from that of our 

scientist, would indeed have verified by observation the truth of 

e . . . Further, the tacitness of both cp and cp' imply 
superstition 

that it may be impossible fo r either man to communicate to the 

other what he has in mind, nor would this be surprising if their 

experiences were vastly dissimilar. Thus, superstitions can not 

be claimed to be false, but merely untrue in terms of our current, 

tacit understanding of their r eferent words. 

The second form of reductionism discussed in chapter I 

concerns the relationships among scientific theories; the im-

portant question in this regard is when can one scientific theory be 

reduced to another more fundamental theory? The analyses pre-

sented earlier in this chapte r bear directly on this problem, and 

we will utilize several of the key concepts from them in commenting 

upon it. 

In the introduction we m e ntioned that the theory of thermo-

dynamics was demonstrated to be restatable in the framework of 

classical mechanics. We wish to examine the meaning of such a 

reduction, but we propose to consider a case of greater current 

interest. Suppose therefore that we are concerned with the reduction 

of biology to modern physics. We can assume that both of these 

theories are characterized by sets of sentences, say eb . 1 and 
io ogy 

e h . • together with appropriate interpretations of their referent p ys1cs 

words. Since these theories are both ernpirical in nature, we know 

that certain tacit knowledge, embodied in the interpretations, is 
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necessary to fully understand what these theories are to mean. Let 

us go so far as to assume that some single scientist fully grasps 

the meanings of all the words germain to both domains; formally, 

this understanding is embodied in a single interpretation cp. This 

unrealistic assumption is made for the sake of convenience only and 

is not pertinent to our argument. 

Now, consider actually reducing the theory of biology to 

physics. What does this mean? Well, if we are able to restate 

e in terms of e h . and cp then we will have succeeded. 
biology p ysics 

Thus, intuitively, we introduce a number of definitions of the ref-

erent words of eb. 
1 

characterized in terms of the words and 
10 ogy 

relationships of e h . . 
p ysics 

then translate any sentence 

Having done this, we can in principle 

of eb. 1 into some set of sentences 
io ogy 

of e h . . But what will we have accomplished? We have re­
p ys1cs 

duced the tacit knowledge necessary to the theory of biology, but 

we are still left with the tacit knowledge inherent in physics. There-

fore, even if this process c;an be carried out, we have not in any 

way reduced biology to absolutes as would be required by the first 

notion of reductionism. Can we reasonably expect to carry out this 

reduction of biology to physics? What we must do is to define all 

biological concepts in terms of the tacitly understood notions of 

physics, as specified by cp , and the laws and hypotheses expressed 

by e h . . As an example, consider the biological term 11 cell 11
• 

p ys1cs 

We have previously indicated the possibility that the tacit nature of 
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such concepts may require the use of an infinite, non-recursive 

set of sentences to characterize them. In this case, however, we 

do not need to characterize the meaning of 11cell" absolutely, but 

only relative to the tacit knowledge of the theory of physics. 

Because of the failure of the first form of reductionism, 

there are biological concepts, say for instance 11cell", knowledge 

of which can not be gained from a finite number of observations 

without some prior tacit understanding. The second form of re­

ductionism, for example the view that biology can be reduced to 

physics, implies that cells can be completely characterized by 

a finite number of observations, with the tacit knowledge limited 

to the notions of physics. 

What makes this problem particularly difficult is that if 

one already has tacit knowledge of what a cell is, then stat ements 

of physics concerning the nature of cells can be highly informing, 

and one will respond to an appropriate physical d e scription by say­

ing "Yes, cells are like that". On the other hand, suppose one had 

never looked through a microscope or seen a drawing of a cell, nor 

had any knowledge of cytoplasm, cell membrane, metabolism, or 

the like. It seems extremely doubtful that a notion of cell could 

then be conveyed by a finite description. Certainly one could de,.. 

scribe- a somewhat more general notion, and it is tempting to say 

that a finite description could be constructed that would be adequate 

for all practical purposes. Long before a student had digested the 

· '' . · 
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physical d e scription, however, it would seem that the temptation 

would be eve n stronger to send him to the microscope with the 

comment, "Once you've seen a few you'll unde rstand". 

Our point here is not to refute the second form of re­

ductionism, but rather to make clear the nature of the argument 

against it. We have established the necessity of tacitly known 

concepts in science which can not be fully confined with fewer than 

an infinite number of observations. The existence of such entities 

clearly makes it plausible that c e rtain conc epts relevant to one 

science may only be reducible to the tacitly known concepts of a 

second science through an infinite, non-recursive description or 

an infinite number of observations. This would be especially so 

when the laboratory experiences are as disparate as those of 

biology vis-a-vis physics, or psychology vis-cl-vis biology. 

·· ' ' 
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VI. INFORMATION AS RELATED TO LANGUAGE CHANGE 

In the preceding chapters, we have primarily been concerned 

with the characterization of a single individual 1 s view of some domain 

as reflected in the particular formal language he employs to describe 

it. Now, however, we wish to consider some of the problems in­

herent in the communication process. Since communication neces­

sarily involves two or more individuals, we must deal simultaneously 

with more than one formal language. As indicated previously, even 

though two individuals may both consider a given string of words to 

be grammatical, they need not assign equivalent meanings to it. 

That is, the sentence may result in a totally different partitioning of 

. the model space for the two individuals. Furthermore, even if they 

do agree completely on the meaning of the sentence, the fact that 

they may have different a priori probabilities could induce corres­

pondingly different ':'-probabilities and thereby result in one of them 

believing more strongly th~n the other in the truth of the sentence. 

In order to clarify the possible relationships among differ­

ent formal languages, we will introduce several auxiliary concepts I 
based on our previous definitions. One of the things we would like 

to know is when one formal language can be considered to be more 

expressive than another. This is related to the sets of states of the 

two languages. 

.. . 
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Definition: Let 5
1

, 5
2 

be the sets of states of the formal languages 

.£
1

, s,
2

, and let ia 1, m2 be bases for .L
1

, £
2

• Then .£
2 

is at 

least as expressive as £
1
(£

2 
~ £

1
) if e;

1 
!;;;; <5

2 
and if for every 

basis element h € ml ' there is a basis element h' € m2 such that 

h' !;;::; h. 

To properly motivate this definition, we must consider what 

the intuitive meaning of expressiveness is. As we will use the term, 

it is intimately linked to the commonly accepted notion of precision of 

expression. That is, if _two individuals are both asked to describe 

some event which they both have witnessed, one of them might reply 

by enunciating the statements -y1, 'Yz• and -y
3 

. The other might 

then agree that those statements were indeed true of what they ob­

served, but might also add that -y4 , 'Ys• and -y6 were also true, 

thereby presumably giving us a more refined picture of the actual 

circumstances. The implication here is that even though the two in-

dividuals may have made the same observations, one of them ex-

presses details of these observations which the other considers 

irrelevant. We have previously emphasized that the individual's 

formal language directly reflects not only that which he is capable 

of expressing, but necessarily also that which he considers to be 

relevant. 

Our notion of expressiveness, however, can be considered 

applicable in a somewhat broader context than the previous example . 

indicates. For instance, suppose the two individuals described above 
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consider themselves to be in fundamental disagreement about the 

event which occurred. That is, .one of them either can make no 

sense of what the other says, or he feels that it is untrue of what 

happened. This certainly need not mean that one of them is wrong; 

it may simply be that certain strings of words have radically differ­

ent interpretations relative to their respective formal languages. 

Thus, if we were sufficiently omniscient to be able to comprehend 

exactly what each observer means, then we might very well be able 

to conclude not only that there was no basic disagreement, but also 

that one individual had rendered a more precise description than 

the other. 

In view of this discussion, let us now examine the specifics 

of our definition. The first requirement is that every state of the 

less expressive language must al.so be a state of the more expres­

sive. Notice that this does not imply that the same strings of words 

are used to define these states in both of the languages, but in general 

the more expressive language will be capable of characterizing a 

greater number of states. The second condition pertains to the bases 

of the two languages. The require ment here is that for each basis 

element of the less expressive language there is a basis element of 

the more expressive language contained in it. However, the more 

expressive language may have additional basis elements which are 

not contained in any of the basis elements of the less expressive lan­

guage. Recall that the basis is a set of minimal states which are 
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pairwise distinguishable and that these states represent mutually 

exclusive configurations of the universe relative to the language. 

The basis elements thus form what might be called a kernel set of 

states for the language, and our requirement is that if one language 

is. to be considered more expres.sive than another it must be capable 

of more precise expression with respect to this kernel. 

The relation of expressiveness can easily be seen to be both 

reflexive and transitive, and thus it induces a pre-ordering on the 

set of all formal languages and their bases, and a partial ordering 

of their state-partitions on the set of models. We emphasize that 

expressiveness is related primarily to the semantics of formal lan­

guages since it is a condition on the state diagram, and it is only 

indirectly tied to the syntax and the specific vocabulary of the lan­

guages. Nevertheless, our expressiveness relation is quite strong 

since it demands that the state diagram for one language be a proper 

partitioning of the state diagram for the other. There may be some­

what weaker conditions under which one language could be said to be 

more expressive than another, but even our relatively restrictive 

definition has some surprising implications. 

One intuitively feels that the more expressive a language is 

the more suitable it is as a descriptive tool. The question we wish 

to consider next is whether more expressive languages are more 

informative to the individual who employs them. In other words, if 

an individual makes some observation 0 which he can describe in 

.•" .. 
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a formal language .r.
1 

, and the resulting information gained is I
1

, 

then if he had some more expressive language £
2 

::::: .£
1

, would the 

informativeness of the same observation 0 necessarily be equal 

to or greater than r
1 

? To aid in the investigation of this, we shall 

conside r an example. Figures 9, 10, and 11 show the state diagrams 

for three hypothetical languages £
1 

, £
2 

, and £
3

• Each of these 

languages has been obtained from the preceding one by the addition of 

some n e w sentence. Thus, £
2 

is the same as .£
1 

with addition of 

the single sentence 'Y
3 

, and similarly .£
3 

results from adding the 

sentenc e 'Y
4 

to £
2 

• This is one trivial way of obtaining a more 

expressive language, as our intuition would suggest. In each case, 

the basis for the language is shown by the elements with the heavy 

borde rs. We remark that .£
1 

has a unique basis, whereas £
2 

and 

.£
3 

do not; .r.
2 

has the same state diagram as the language shown in 

Figure 5. The fact that £
2 

and £
3 

do not possess unique bases is 

unimportant for the present, but we will comment on the implications 

of this later in the chapter. , As before, we assume tha t the a priori 

proba bility P is proportional to area on the diagrams. Thus, for 

example , in. Figure 9 the a priori probability of the minimal state 

TT, P(TT), is equal to 1/9, and in Figure 11, P(T¢F¢ ) = 1/36. 

Referring to our definition of e xpres s ivene ss, we s ee imme dia t e ly 

that £. ~ £ ~ £ 3 2 . 1 • 

On each diagram, we have illustrated three observations o
1 

, 

0 2 and o
3 

• These rep resent typical observ ations which might b e 

made, but they are not presume d to b e r e l a t e d to each othe r in any 

-·' . ' . 
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F 

F<b 

Figure 9. State diagram for language J:
1 

and three possible 

observations, o 1 , o 2 , and o
3

• The regions 

with heavy borders are basis elements • 

. •' . . 
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Figure 10. State diagram for language .£
2 

showing the same 

observations as in Figure 9. The regions with 

heavy borders are basis elements. 
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c/>FFF / 
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/ 
/ 

/ 
/ Fc/>c/>F 

T 

F 

Figure 11. State diagram for language £ 3 showing the same 

observations as in Figures 9 and 10. The regions 

with heavy borders are basis elements • 

. •' 
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specific way. Thus, we will asswne that there are three observers 

whose views of some domain are characterized by £
1

, £
2

, and .£
3

, 

and we shall determine the >:< -probability of the observations o
1

, 

o
2

, and o
3 

for each language. The result of this will indicate the 

relative informativeness of these observations with respect to the 

observers. Recall that the *-probability of an observation 0 is 

given by: 

We first calculate the a priori probability P (in these examples P 

and P are identical) of the union of all basis elements, which we 

denote as Xj for language £. . This is done simply by inspection 
J 

of the three diagrams. 

( 1) For .£1 I 

1 
P(X ) == 4/9 • 

(2) For £2 , P( X
2

) == 9 I 18 • 

( 3} · For £ 3 , P(X
3

) == 19/3 6 • 

Now, let Y~ b e the union of all bas is elements of language £ . which 
1 J 

are indistinguishable from observation o . . We may then compute 
l 

>:C 
p. (mo ) by the following formula: 

J i 

>:< 
PJ. ( l'no_> == 

' l 

P(Y~) 
1 
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As one instance of this computation consider o
3 

and Sz in Figure 10. 

In this case Yj is the following: 
i 

Y~ = {TTT U FTT U T¢F} 

and therefore . 

2 
* P{Y3) 5/18 

P . < tho ) = ----z-<- = 9'"'°18 = s I 9 • 
2 3 P(X) 71io . 

>',c 
The following table smnmarizes the value of P for each observa-

tion and each language: 

01 1/2 > 4/9 < 9/19 

02 1/2 > 4/9 > 8/19 

03 1/2 < 5/9 < 11/19 

Each of the observations thus exhibits a different behavior as 

the language changes from .r.
1 

to .r.
2 

to .S:
3 

• Sine e the informative­

. ness of an observation relative to a language is defined in terms of 

the logarithm of the >!'-probability, the informativeness becomes 

relatively higher as the * -probability decreases toward zero. Thus, 

the inequalities shown in the table among the probabilities are reversed 

when we consider the associated informativeness. Observation o
2 

be­

haves in the manner we might at first expect. That is, as the language 

changes to become more expressive the expectation, relative to the 

language, of observing o
2 

decreases; and hence o
2 

is most inform­

ative for language .r.
3 

~ On the other hand, both o
1 

and o
3 

demon­

strate a rather surprising phenomenon, namely that it is possible for 
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the information obtained from an observation to decrease as one 

moves to a more expressive language. o 1 is particularly inter­

esting because the information is greatest relative to language 

£
2 

, What this suggests is that there may be formal languages 

which are optimum, in the sense of informativeness, for the des­

cription of certain classes of observations, and further that these 

are not necessarily the most expressive languages which could be 

employed, More specifically, for observation o
1 

, the language 

£
2 

is such that if we employ either the more expressive l anguage 

£
3 

or the less expressive language s.
1 

, then the information we 

obtain on observing o
1 

decreases. 

This example again demonstrates the significant role of lan­

guage in the characterization of an individual 1 s view of his universe. 

If his language provides a rather loose or vague description of the 

phenomena he observes, there will be many detailed observations he 

can make which will yield little information; and conversely, if his 

language is overly exp res s,ive, the additional structural complexity 

of the language may diminish the informativeness of certain other 

observations. The reasons for this are directly related t o the notion 

of meaninglessness; the fact that a formal language always makes 

various implicit or unstatable assumptions about the structural 

nature of its domain of discourse-as embodied in the semantic 

categories, for instance-causes sentences of the language to be­

come meaningless on some models. This, in turn, means that 
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indistinguishability is not an equivalence relation, as we have shown, 

and consequently very expressive languages may not be particularly 

l.nformative for certain classes of observations. 

Languages £
2 

and .s:
3 

, shown in Figures 10 and 11, do not 

possess unique bases, as we mentioned previously. In addition to 

the bases outlined in the diagram, .1:
2 

has another basis, namely 

18 = (TTT, TFT, FTT, FFT, FFF, ¢TF} , 

and similarly ,s:
3 

also has the basis 

18=(TTTF, TFTF,FTT~1 FFTF,FFFF,¢TTT,¢TFT,~FF}. 

These can easily be shown to be the only other bases for .£
2 

and 

.s:
3 

• The question is, what are the implications of a non-unique 

basis for the probability and hence the informativeness of some 

obs e rvation? In the particular e xample we have chosen, if we 

associate the two bases above with £
2 

and .s:
3 

, in lieu, of those 

shown in Figures 10 and 11, then it can be verified that the prob-

abilities as signed to the three observations o
1 

, o
2 

, and o
3 

are 

unchanged for both languages. Consequently, the informational 

relationships among the languages also remain the same for these 

observations. In general, however, there will b e other observ-

ations for which the choic e of basis does affect the probability. 

This is particularly significant since it means tha t the syntax and 

semantics of a formal language may not be sufficient to uniquely 

determine the >!<-probability of all observations. More specifically, 
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knowledge of the truth values of all sentences on all models may not 

characterize a unique basis. As a result, there may be situations 

where a particular formal language has more than one basis, and 

thus different ""-probabilities could conceivably be associated with a 

single observation; and yet it would normally be assumed that a 

rational individual acts as though a given observation has only a 

single probability. This im.plies that an appropriate basis for the 

language must be chosen to satisfy criteria which we have not ex­

plicitly treated. The resolution of this question seems to lie in 

considerations involving the dynamics of language change. That 

is, as an individual's language evolves or develops to reflect his 

growing knowledge and changing perspective on his world, the 

mechanisms which determine exactly how his language will change 

presumably take into account aspects of his past experience, there­

by causing one basis of his new language to become preferable to 

others. As we have previously indicated, an investigation into the 

nature of the processes involved in language change is beyond the 

scope of this thesis. 

It fa interesting to note that if a formal language does not 

possess a unique basis, there is nevertheless a more expressive 

formal language which does have a unique basis. The more expres­

sive language simply includes sentences which distinguish the pre­

viously indistinguishable minimal states of the less expressive 

language. Of course, the converse is also true, as the previous 

_,., , · · 
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example . shows; that is, for a language with a unique basis there is 

a more expressive language with a non-unique basis. The languCt.ges 

~Z and J:
1 

in Figures 9 and 10 are related in this way. We point 

this out merely to illustrate that for more realistic languages than 

those used in our examples, it is not necessarily the case that they 

would especially tend to have either a unique basis or multiple bases. 

The example of Figur~s 9, 10, and 11 has shown that the in­

formation content of an observation does not generally strictly in-

crease or decrease with the expressiveness of the language describ-

ing it. However, supposing that the languages we had used each pos-

sessed a unique basis, can we then demonstrate that the information 

would either increase or decrease monotonically with expressiveness? 

Again the answer is no, but rather than exhibiting further examples 

we will give a detailed analysis of the conditions under which infor-

rnation increases or decreases. 

A 

.. : . E .· 
·.~ ... ~ ... ~ ...... , .. 

.· _F_~ __ _j 
C D 
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. . . ' 

Suppose that we are given two formaLlanguages £ 1 and .S:
2 

, 

The where .s:
2 
~ .s:

1 
I and Suppose they have bases·. m1 and m2 o 

preceding diagram shows both bases superimposed on the set of 

models th. 

The representation of the two bases is strictly schematic; 

the various lettered regions indicate · sets of models contained in the 

basis and grouped together ~ccording to their indistinguishability or 

distinguishability relative to some set of models h ~ th which is 

assumed to be associated with an observation. Basis !8
1 

consists 

of the sets C, D, E, F, G, and basis mz of the sets A, B, E, F, 

G. These sets are characterized by the following relationships 

with respect to the set of models h. 

A: h/ 2 A B: h// 
2

B 

C: h/ l c D: h// 1D 

E: h/ 1 2 E F: h// 1, 2F 
I 

G: h// l G and h/ 2 G 

The subscripts indicate for which of the two languages the relation 

holds. Thus, for example, h// 
1 

D indicates that the set of models 

D is indistinguishable from h in language £.
1 

• Also, the models 

in D are not include d in-basis mz • Assuming each of these sets 

is measurable, we can express the * -probabilities, P.~(h) and 
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* P(F) + P(G) + P(D) 
Pl(h) · = P(F) + P(G) + P(D) + P(C) + P(E) 

* · P(F) + P(B) 
P2(h) = P(F) + P(G) + P(B) + P(A) + P(E) 

* * P 
1 
(h) is the *-probability of h for language .s:

1 
, and P 

2
(h) is the 

*-probability of h for language .£
2 

." The nwnerator of each frac­

tion is the a priori probability of those models in the basis which are 

indistinguishable from h, and the denominator is the a priori prob-

ability of the union of all basis elements. 

Since we wish to examine the difference in information content 

of the observation corresponding to h as the language changes from 

.s:
1 

to the more expressive language .s:
2

, we can use the ratio 

* >?: P1(h)/P~(h} to accomplish this. That is, if for some specific h 

the ratio equals one, then the information is unchanged; and if the 

ratio is greater than one, .S:
2 

is more informative than .c
1 

• Con­

versely, if the ratio is less than one, .C
2 

is less informative than 

.s:
1 

, with respect to h • Notice that the sets of models E and F 

are defined so that they each have the same relationship to h in 

both languages; the others, however, namely A, B, C, D, and G, 

differ in their properties of distinguishability or indistinguishability 

as the language changes. An increase in the measure of any one of 

these sets, for example in P(A}, affects the ratio as follows: 



Increase in ••• 

P(A) 

P(B) 

P(C) 

P(D) 

P(G) 
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Change in ratio 

increase 

decrease 

decrease 

increase 

increase 

In each of the cases, all other quantities are asswned to re-

main fixed. The table shows that an increase in either P(A), P(D), 

or P(G) causes an increase in the ratio and hence an increase in 

the informativeness of the observation corresponding to h. Simi-

larly, increasing P(B) or P(C) results in a decrease in informa-

tiveness. Note that h is asswned to be the same set of models in 

both languages. Also, changing from some h to a different h' , 

will generally redistribute the sets of models among the various 

categories. However, the sets corresponding to AU B, CUD, and 

EU FU G are fixed by the two languages ~l and J:
2 

and are in­

dependent of h • 

Before we interpret the intuitive meanings of the various 

possible changes in A, B, C, D, and G, we would like to establish 

that these are not interdependent. That is, in order to make this 

analysis· meaningful we must show that each of the sets of models 

corresponding to A, B, C, . D, and G may either be empty or non­

empty in any combination. The following theorem shows that this is 

in general possible. 
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Theorem: Ther~ exist formal languages £
1 

and £
2 
~ .L

1 
, such that 

there are sets of models h (corresponding to possible observations) 

for which the sets A, B, C, D, and G may be empty or non-empty 

in any combination, i.e. A, B, C, D, and G are independent of one 

another. 

Proof: The proof is by specific examples, and because of its length . 

it is contained in the appendix. 

The preceding theorem implies that for two formal languages­

one more expressive than the other-there will generally be some 

observations which are less informative relative to the stronger lan­

guage; and further that the change in informativeness from one lan­

guage to another is effected by variations in the measures of the sets 

A, B, C, D, and G , each of which could be large or small independ­

ent of the others. For example, consider the sets A and B • How 

can they be interprete d? Their union, AU B contains all basis ele­

ments of the more expressive language .L2 which are disjoint from 

every basis element of .L
1 

• These additional minimal states there­

fore represent new theories which are alternatives to those describ­

able in .s:
1 

• Here, we are identifying minimal states with complete 

theories within the language. That is, as we have previously dis­

cussed, the sentences de fining a minimal state characterize some 

configuration of the universe as precisely as the language allows. 

The observation in question, nam ely the one associated with h, 

.-' .. 
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either partially confirms or denies the theories constituting A , and 

hence the information gained tends to increase in this more expres­

sive language. On the other hand, the minimal states which B 

comprises are indistinguishable from h and therefore, as theories, 

are generally neither refuted nor verified by the observation. Con­

sequently, the information tends to decrease since the observation 

does not aid in resolving among the additional theories represented 

by B. 

Now consider the sets C and D ; CUD is composed of 

models which were members of basis m
1 

but are not members of 

basis m
2 

• These excluded models are therefore indistinguishable 

from some basis elements of £
2 

• The members of the set C were 

previously distinguishable from the observation and thus represented 

distinct alternatives within the less expressive language. Their 

elimination from the basis m
2 

means that they are no longer con­

sidered viable alternatives, and since h is now distinguishable 

from fewer models in the basis, it becomes a less informing ob­

servation relative to s_
2 

• The conv~rse is true of the set D ; the 

models in D were not distinguishable from h in s:.
1 

and conse­

quently, eliminating them from m
2 

has the effect of increasing the 

informativeness of the observation. 

Finally, the set G consists of models which are members of 

both bases, m1 and ~ • Ill language s:,1 these models were indistin­

guishable from the set h and were thus considered to be equivalent to 
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the associated observation. In language s,
2 

, however, these same 

models are distinguishable from h , and therefore £2 has sentences 

which make this distinction. This means that £
2 

can more precisely 

delimit the set of models h than s,
1 

can. Consequently, .i2, is more 

informative with respect to this observation than S-
1 

since the 

*-probability of h will be less for s,
2 

by an amount proportional 

to the measure of G, P(G) • 

The result that increasing expressiveness may reduce infor­

mation is at first contrary to intuition. This appears to stern from 

the fact that one considers that the conceptual apparatus of any 

reasonable language should be adequate to make all relevant distinc­

tions among configurations of the universe. If this were the case, 

the only change in basis that could take place between one language 

and a second more expressive language would be of type G , and 

thus information would increase monotonically with expressiveness. 

This is not so. The classic result establishing this fact is Tarski's 

theorem on truth [39, p. ~47], which states that the notion of truth 

for a formal language of sufficient expressive power can only be 

· stated within another formal language that is necessarily more ex­

pressive. Once this essential inadequacy of the descriptive power of 

a language is seen, the potential for other changes in basis becomes 

apparent and hence the possibility for the reduction of information on 

passage to a more expressive language. 

Having established some general properties of the change in 

information with language, we will now re-examine the problem of 
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ramification of meaning whi_ch was presented by an example in the 

introduction. Recall that the example we used concerned two in-
. - . . . 

dividuals, each of whom had a clearly different concept of the mean-

ing of the word ''transistor". In view of the apparatus we have de-

veloped we can now see that these two individuals can be considered 

to utilize two distinct, although related, formal languages. Each 

language thus embodies one individual's conceptualization of the 

relevant properties of transistors. We expect that each man has 

certain observational experience pertinent to transistors, and fur-

ther that these two sets of observations are related, exactly in the 

sense defined in chapter III. As we have implied, we c e rtainly can 

assume that their formal languages are in some way related since 

they are both concerned with describing and unde rstanding many of 

the same basic phenomena. How might their languages be related? 

One plausible relationship would be that one language is more ex-

pressive than the other. That is, the solid-state physicist's language 

S, m a y be strictly greater in expressive power than the language 
p 

S, of the circuit d e signer. In this relatively ide al cas e, the state 
c 

diagram for the language S, would. properly partition the s tate 
p 

diagram for S, 
c The following two figures illus trate corre sponding 

portions of the total s tate diagram s for the languages. 

The· set of models h corresponds to the observation which 

has b een made by both individuals; we assume that this observation 

involve s som e tra nsis tor which is b eh a ving in an interest ing or novel 
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S, 
c 

fashion. The dashed lines partition the model space in the usual way 

and are presumed to be associated with sentences about transistors. 

In this special case, we will further assume that the four sentences 

shown for S, are identical, syntactically and semantically, with c . 

the corresponding four sentences of S, , i.; e. those other than a. 
p 

Consequently, if the physicist enunciates one of these statements, 

the circuit designer will agree that it is true of the observation, and 

vice-versa. But what of the statement a ? a is a sentence of the 

physicist's more expressive language £ , but if it is also a sentence 
p 

of S, it does not have the same meaning and is therefore not useful 
c 

in characterizing h. Thus, the physicist assigns a meaning to et 

in such a way that it is relevant to the observation. On the other 

hand, the cir.cuit designer considers et either incomprehensible or 

irrelevant, i.e. meaningless on h or unnecessary to characterize 

h. Nevertheless, communication still takes place on a limited basis 
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since there is some fundamental agreement about what has been ob-

served. Even regarding a , there may be no disagreement; it is 

simply a !!.2!! sequitur to the circuit designer. Notice that h is 

most precisely delimited by the language S,p • This would indicate 

that the observation that was made is of greater importance to the 

physicist and presumably is more informative. As we have empha-

sized in this chapter, however, we can not conclude in general that 

h is more informing relative to S, without knowing something 
p 

about the other alternative theories and hypotheses within the lan-

guage. 

The preceding example is idealistic in that we have assumed 

complete agreement in meaning for at least some of the sentences 

pertinent to the observation. Thus, with the exception of the state-

ment a, S, and S, are inter-translatable; at least this is true at 
p c 

the meta-level. It will generally not be true, however, that either 

individual "knows" that the meaning he attaches to some sentence is 

exactly the same as the meaning assigned to that sentence by the 

other individual. Inde ed, it is possible that there will be an apparent 

agreement in concepts, but that this may break down on the basis of 

additional evidence. Suppose, for example, that the pre ceding dia-

grams w ere actually as ·show n in the .follow ing figures. .Here we 

assume that the four sentences (excluding a) in .L' are composed 
. p 

of the same words as the four sentences shown for .L' , although 
c 

each individual clearly associates a somewhat different meaning 

.•. ,, 
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with them. h and h 1 are sets of models characterized by two 

distinct observations involving transistors. If both individuals 

make the observation corresponding to h, then the situation is 

almost exactly as before-namely there is agreement on all of the 

statements except possibly a. On the other hand, if the actual 

observation corresponded instead to h', then one of the statements 

which the physicist says is true of the observation, although under-

stood by the circuit designer, is not strictly true of h' in his lan-

guage S, 1 
• The important point here is that as long as the obser­

c 

vations shared by the two individuals have the characteristics of h, 

their languages will seemingly agree, in spite of the fact that the sen-

tences do not have identical meanings. Only when some observation 

is associated with a set of models similar to h' will the actual con-

ceptual differences be made explicit. In our example, h' might 

possibly be the set of models resulting from an observation of a 
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peculiar type of semiconductor device which functions like a transistor 

in the physicist's view, but which the circuit designer does not con­

sider to be a legitimate transistor because, for example, it only be­

haves properly at very high temperatures. 

Notice that observations which make explicit the underlying 

differences in two languages can occur even when one language would 

be said to more precisely specify some concept, such as transistor, 

than the other. Consequently, the problem of communication between 

two individuals having more or less ramified views of some domain 

has two primary aspects. First, there may be statements like a 

which are relevant to one observer and not to the other. These are 

no fundamental barrier to communication since there may be apparent 

agreement on sufficiently many other statements so that ideas may 

still be ade quately exchanged. Neve rtheless, it is state ments like a 

which tend to make certain observations more informative to one in­

dividual than the other, and hence to motivate or prompt communic­

ation. Therefore, the most relevant or precise statements which can 

be made are exactly those for which the communi cation breaks down, 

forcing one individual, or possibly both, to describe the observations 

in more general terms. 

Secondly, this necessary abstraction from the most precise 

statements that could b e ma,de, even though it enables communication, 

may mask c e rtain inconsistencies among the languages. These in­

consistencie s may be r e vealed by observations which have not as y e t 
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been made, but it is possible that such observations will never be 

made by the two individuals. In the latter case, there will always 

appear to be an agreement among the individuals, in spite of the 

fact that they each have a different conceptual view of the same 

domain. 

.·' 
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VII. THE PROBLEM OF INDUCTION 

Certainly one of the central problems in understanding sci­

ence is to comprehend the inductive process-namely, how one 

a .rrives at general conclusions on the basis of specific observational 

evidence. The solution to this problem is one of the ultimate aims 

of this thesis, and although we have not been able to solve it directly, 

we have provided mechanisms that allow us to propose two new hypoth­

eses. These hypothe ses suggest directions for furthe r research 

which may prove fruitful in resolving this difficult problem of the 

modern philosophy of science. As these hypotheses are firmly 

founded on our developed formalism, we consider them one of the 

central results of this the sis, and this chapter will be devoted pri­

marily to a presentation of them and an investigation of their impli­

cations. 

In chapter I we introduced a number of problems pertinent to 

an understanding of the scientific m e thod, all but two of which have 

been discussed in t e rms of 'our formal apparatus. The remaining 

two concern the reinterpreta tion of the words of a language and the 

apparent disparity betwe e n the explicit and implicit scope of a sci­

entific paper. We first show that both of the se are instances of the 

g e nera l proble m of induction. Thus consider the circumstance s 

which cause a particular word to assume some new interpretation; 

this clearly com e s about as a consequence of some relevant obser­

vational evidence. Suppose for example that we have observe d five 
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hundred white ducks and no black ducks. It is highly likely that our 

definition of "duck" includes the property of their being white. If 

we now see a black duck we have two obvious choices; we must 

either modify or reinterpret the meaning of the word "duck", or 

we can conclude that this new creature we have seen is not a "duck11 

at all. However, if we contim.~.e to observe black ducks, this latter 

course will become less and less natural until finally the lack of 

sensible . differentiation, on some basis other than color, will cause 

the term "duck" to be redefined. Thus the accumulation of obser­

vational evidence refuting our belief that "ducks" are white will 

eventually induce a different meaning for the word "duck". The 

exact moment when this occurs can be characterized only if we fully 

understand the inductive process. 

Now consider a scientific paper describing some experiment 

and the results obtained from it. Typically, the paper will detail 

the experimental apparatus, the experimenter's techniques, and the 

observed outcome of the experiment. Usually, if it is feasible, the 

experiment will have been repeated a number of times in order to 

reassure both the scientist and the reader that the specific outcome 

of the experiment was not a fluke or chance occurrence. In spite of 

this repetition, however, the actual circumstances under which the 

experiment was performed represent only an isolated instance out 

of many which might have been chosen. Indeed, the paper will gen­

erally make clear many of the specific restrictions of the experiment, 

and very often the explicitly stated conclusions will be confined to the 
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most direct consequences of the observed results. However, as 

time goes by, and further consistent evidence is obtained, some 

subsequent paper may make the claim that "all entities of the type 

studied will behave in a manner consistent with the experimental 

results presented". Thus the inductive leap is made explicit. 

Long before this occurs though, the dissemination of previous 

results may lead others to inductively infer this same conclusion. 

Such implicit generalizations are yet another example of the in­

ductive process. 

In light of our previous discussions, it can easily be seen 

that induction may be validly characterized as a change in language. 

However, before commenting further on this, let us briefly examine 

the possibilities inherent in lang uage change. First, we know that 

for many concepts, such as the integers or volume, there is no for­

mal language which can constructively characterize them. Thus, 

any mechanism describing language change will necessarily fail to 

explain how such conce pts can be s e nsibly interpreted, without 

some refe r ence to extra-linguistic aspects of the ir mea nings. 

Anothe r salient point is that there is no most e xpressive lang uage. 

This results directly from the Tarski theorem on the definability of 

truth for a language [39, p. 273 J, since if the re were such a lan­

guag e, say £, we would be unable to specify the meaning of "true 

in £ 11 for lack of a more expressive language in which to do this. 

This contradicts the fact that a m e ta-language for £ can be for­

maliz ed and truth for £ defined within it. Conseque ntly, 
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continually moving from one language to another more expressive 

language is a non-terminating process. Furthermore, as we have 

seen, we may actually be losing information, thereby defeating 

our purpose. These basic limitations on language change suggest 

that the forces leading to such change are the product of other con­

siderations. 

One possibility is that the formal language that characterizes 

a person's view at a given instant is determined by his a priori 

probability and the swn total of his observational evidence. In situ­

ations where the need for tacit knowledge can be limited only by an 

infinite nwnber of observations, any finite number of observations 

will leave room for language change compatible with these obser­

vations. Thus, one would expect an adjustment of tacit knowledge 

to take place as a function of the a priori probability, and within 

the latitude remaining over and above avaUable observational evi­

dence. What remains is to identify the forcing function or criterion 

involved. The literature considers, for example, such forcing 

functions as simplicity, though these remain ill-defined. 

It is interesting to note that traditional treatments of induction 

have been based primarily on a fixed language which is presumed to 

be adequate to express all relevant concepts. By using a fixed lan­

guage and defining induction within its rigid framework, several 

aspects we feel are basic to the inductive process have been over­

looked, For instance, this precludes changes in the meanings of 
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words as a factor in explicating induction. Also, if the language is 

static we can not make use of shifts in the le'vel of abstraction or 

expressiveness relative to some concept. Furthermore, even 

though tacit knowledge-as embodied by the interpretation of refer­

ent words-has been generally accepted, its dynamic role in induc­

tion does not seem to have been recognized. As we mentioned, 

tacit understanding by its v~ry nature allows for a certain flexibility 

in an observer's language. Thus linguistic changes can be made 

which do not conflict with the observer's previous observational 

experience, except in the limiting case of an infinite munber of 

observations. Because we are convinced that the essence of the 

inductive process involves considerations of the temporal aspects 

of language, we seek an explanation which can fully utilize changes 

in the meanings of words, shifts in the generality or abstraction 

of language, and the freedom of expression resulting from the im­

plicit nature of tacit knowledge. 

A related problem of the philosophy of science is that of uni­

versals [30, chap. 6 J • For example, consider the concept of being 

red. Clearly our knowledge of what is red is not directly related to 

knowledge of what specific objects are considered to be red; this we 

conclude because our concept of red obviously is not altered when, 

for one reason or another, an object we are viewing changes its color. 

Suppose we can account for tacit knowing in terms of inductive proc­

esses that determine how we exploit the leeway in the meaning of 
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words above and beyond our observational evidence. If this can be 

done, universals can be readily explained as the "end product" of 

such processes. 

Bearing in mind all of these factors, and as an outgrowth of 

our developed formalism, we now propose two hypotheses as pos-

sible avenues for explication of induction. 

( 1) An individual seeks that language which maxi­
mizes the inform'ativeness of his previous ob­
servational experience. 

By this we mean that an individual attempts to adjust his language in 

such a way that it provides him with the most informative possible 

view of his observations. The information referred to here is to be 

interpreted exactly as defined in chapter IV. In chapter VI we de-

monstrated that there may be formal languages which maximize the 

information in any particular set of observations, and further that 

these languages are not necessarily highly expressive languages. 

This result lends credence to hypothesis ( 1) since it suggests the 

existence of formal languages which are optimum, in the sense of 

informativeness, for a given set of observations. In order to be 

able to state unequivocably that this is the case, however, we 

would need to develop other concepts which characterized the 

specific mechanisms bringing about language change. Thus, al-

though we know that for some formal language and for particular 

observations there are other formal languages-both more expres-

sive and less expressive-which are less informative, we do not 
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know, nor do we suspect, that linguistic change is based purely on 

expressiveness. Consequently, further investigation is necessary 

to establish not only that maximally informative languages exist 

but also that, given their existence, they can be reached by the 

natural processes of language change. 

Many of the above point.s are also relevant to our second 

hypothesis, which we now state: 

(2) An individual seeks that language which 
maximizes his expected gain in information 
based on anticipated observational alter­
natives. 

Although the first hypothesis was clear in_ terms of previous dis-

cussions, this second hypothesis needs further interpretation. 

Therefore, in order to gain insight into the implications of hypoth-

esis (2), we will make use of the following rather trivial but sug-

gestive example. 

Suppose a scientist conceives of two experiments that he 

might perform to increase his understanding of some domain. The 

following diagram indicates how these hypothetical experiments, 

el and e 2 , might partition the set of models h k In • h is pre­

swned to be the entire set of models associated with the scientist's 

previous observational experience. Also shown are two hypotheses, 

'Yi and 'Yz , of the scientist's formal language. 

Each of the two experiments has three possible outcomes, 

two of which are specifically labeled on the diagram. Thus, for 

•. 
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h 'Y1 

2/5 

'Yz 

l/ 5 1/5 

Case I 

e 1 1 1 1 1 example, the outcomes of 
1 

are Ei, E
2

, and E
3

; E
1 

and E
2 

are delimited by ellipses on the diagram, whereas E~ consists of 

all those models not in either of the other two. A similar situation 

holds for the second experiment e 
2 

• The two sentences ,..
1 

and 

'Yz partition h into four regions, each presumably a state of the 

scientist's language. The numbers in these regions indicate the 

>:< -probabilities that the scie ntist as s ociates with these states. We 

have previously discussed the expected informational gain for an 

experim ent a nd d eveloped a mathematical definition of it in terms 

of the >!< -probability. Suppose we now assume that the scie ntist 

plans to perform fir s t e xperime nt el and then e xpe rime nt e.2 • 

The two expe rime nts taken together have nine possible observational 

outcom e s. For example, one of these is given by E~ n E; and 

1 2 another by E
2 

n E
2 

• In this simple c ase we can easily compute 



- 160 -

his anticipated informational gain by using the following formula: 

. . t 3 
>!< 1 2 * 1 

(i) r(el and ez> = - L p (E. n E.) log p (E. n E1:) • 
i= 1 J= 1 l J l J 

Arbitrarily choosing the natural logarithm we obtain the numerical 

answer, I(e 
1 

and e
2

) = 2. 681. The absolute value of this answer has 

no particular significance, but we shall be interested in comparing 

it to several other cases. 

Now consider the situation where the scientist has p e rformed 

experiment e 1 and has found that the outcome lies to the right of the 
. 1 

line labeled 'Yi , i.e. the observed outcome was E
1 

• He can now do 

experiment e2' knowing the result of el' and determine which of 

the remaining admissible states of his language best characterizes 

the actual circumstances. What is the expected gain in information 

in this case? By taking the cond,itional ':' -probabilities we may 

compute the expected increase as before. The following formula, 

3 

(ii) r(e
2

) IE~) = - fu p':'(E~ IE~) log p':' (E~ IE~) 

yields the numerical result I(e 
2 

j E 1
1

} = O. 63 7. As we would surmise 

the expected gain is less than for the previous case, s ince the scientist 

already has knowledge of the outcome of experiment e 1 . 

Now we shall reproduce the preceding analysis with one change. 

Inherent in the previous diagram i s the assumption that the scientist 

has certain tacit interpretations of the words of his language. Pre-

sumably his interpretations were inductively drawn from a finite 
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number of observations. However, as discussed at length in 

chapter V, the meanings he has attached to these words may not 

be able to be fully delineated by any finite set of observations. 

Consequently, there is a degree of freedom remaining in the 

tacit meaning he associates with these words (as we have seen for 

. the word "volume" ). In the preceding diagram the scientist 

has exercised that freedom in a certain way. We draw the dia-

gram again as it could appear had he exercised his freedom with 

regard to tacit meaning in a somewhat different way. 

h ~ 

1/2 

'Y2 

3/10 

· Case II 

The salient difference between this diagram and the pre-

ceding concerns the hypothesis 'Y • This statement partitions the 
1 

:models in a different :manner because of our preswne d change in 

tacit meaning, and accordingly the >:'-probabilities of the four 

states are now altered. Using formula (i} we can again compute 

the expected informational gain prior to performing either exper-

iment. The following result is obtained: I(e
1 

and e
2

} = 2. 205 • . In 

. •' 
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a similar fashion we use formula (ii) to calculate the increase in 

information for experiment e2 , given that the outcome of experi-
1 . 

ment el is known. Our new result is: I(e 
2

1 E
1

) = O. 693. 

Notice first that the expected gain in information prior to 

either experiment is higher in Case I than in Case II. Thus, at 

this point in time, by exercising his freedom in assigning mean-

ing to the referent words, the scientist would presume that Case I 

represented the more meaningful position. However, the observed 

outcome of his first experiment eliminates previously ad.mis sible 

models in such a way as to render the initial (Case I) meanings of 

the tacit terms less useful informationally, as can be seen from the 

fact that the expected information for the second experiment is con-

siderably higher in Case II than in Case L Under these circum-

stances the scientist could be expected to conclude that a change in 

his tacitly accepted concepts is called for in light of experiment e
1 

, 

which results in his modifying the meanings of the referent words. 

Let us see how this might work in practice. 

Suppose an ornithologist is on a field trip, and observes some 

bird he has never seen before and says "That is a sparrow". Why 

does he not say instead that the bird he sees is an owl? It is tempting 

to say that it looks more like a sparrow to him and so he categorizes 

it as a sparrow, but that begs the question, it is not a satisfying ex-

planation of the scientist's choice. For one thing, he is differentiating 

this creature he perceives not only from owls but also from a myriad 
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of other possible entities. In addition~ he presumably knows much 

more about the prope rties of spa rrows than h e has actually observed 

of this particular bird. Thus again we are faced with a situation in­

volving inductive inference. However, our preceding example and 

the second hypothesis we proposed provide one possible explanation 

. of the scientist• s behavior. That is, he says that he sees a sparrow 

because he anticipates that this is an informing view relative to any 

subsequent experiments or tests he might carry out. More precisely, 

although h e realizes that further examination might demonstrate that 

the creature is a stuffed bird or that it might hoot like an owl, the 

assumption at this point that it is an owl violates his expectations of 

the bird's behavior based upon prior experience (a nd a priori prob­

ability}. The expected gain in informativene ss will be maximized if 

he regards it as a sparrow. Thus, this situation is analogous to the 

hypothetical example of the two experiments, which was presented to 

aid in inte rpreting hypothesis (2). As we pointed out there, the ex­

pecte d gain in information for a given experiment may be different 

for distinct formal language s. In this particular case we would con­

clude that for the scientist to say that he see s a sparrow rather than 

an owl is more informative to him, based on his experience a nd the 

obs e rva tiona l alternat ives h e can e nvision. Note that some other 

individual might well be be s t informed by calling the creature in 

question a bird, or a wounded sparrow, or perhaps simply an ani­

mal, depending on his orientation and anticipated activities. 
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Hypothesis (2) states that the choice among these is determined by 

a combination of the a priori probability,· the sets of models to · 

which he is confined by prior observatiOns, the formal language, 

and the experiments or tests which the observer considers to be 

relevant. 

In the discussion of the second hypothesis we have primarily 

considered changes in language resulting from a change in the mean­

ing of referent words. We do not mean to suggest that all legitimate 

changes are of this nature. Examples of this type were used for 

convenience only, and in reality we would expect changes in semantic 

categorie s, semantic transformations or other aspects of the formal 

language. Also, we emphasize that hypothesis (2) does not fully ex­

plicate language change, just as hypothesis ( 1) did not. Again, we 

have not accounted for the actual mechanisms of language change, 

and thus we do not know that max imally informing languages, in the 

sense of hypothesis (2), can always be arrived at in a natural manner. 

We now wish to re-examine the two remaining examples in 

the introduction in light of the two hypotheses we have proposed. As 

the first of the se, consider the re-definition of the term "is~tope". 

Prior to the discovery of deuterium, isotopes of the same element 

were h eld to be chemically inseparable, but d e ute rium was chemically 

separable from light hydrogen. Clearly, once deuterium was dis­

covered, it was either to be called an isotope or it was not. What 

factors aided in resolving this question? As we know, the term 
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"isotope" was tacitly re-defined to include things like deuterium, and 

of course this change caused corresponding modifications of the 

associated formal languages. If we take the viewpoint of hypothesis 

(1), we would say that the change in meaning of the word "isotope" 

resulted from adopting a more informative position with respect to 

the previously observed properties of deuterium. That is, the 

scientists in question found that classification of deuterium as an 

isotope was more informing than considering it to be in a category 

of its own. Thus deuterium was observed to be sufficiently much 

like other isotopes so that a change in the concept of isotopy could 

be accommodated without conflicting with knowledge of their prop­

erties. 

The outlook on this problem afforded by hypothesis ( 2) is 

·slightly different. The second hypothesis suggests that to regard 

deuterium as an isotope, thereby modifying the notion of isotopy, 

was more informative with respect to its potentially testable-but 

as yet unverified -properties. We might say that the essential 

difference between the two hypotheses is that the first relies most 

heavily on .previous experience while the second combines this with 

anticipatory factors. This "looking ahead" of the second hypothesis 

is based on the particular tests and experiments which seem plausible 

and relevant to the theories to be investigated. We should mention 

that Polanyi' s [26, p. 111 J analysis of this example states that 

"isotope" was re-defined to reflect its "truer meaning". It is 

.·" .· 
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difficult to know what basis one could have for such an absolute 

judgement. If one were to construe the word "true" in the sense 

of better fit with observation as in "the carpenter trues up the wall 

of the house", then Polanyi1 s comment is directly related to the 

view presented here. We would emphasize that our hypotheses do 

not depend upon an absolute truth. Rather, they rely on the individ­

ual 1 s conception of what appears most informative to him in the 

light of previous experience and his metaphysical assumptions. 

This admits the possibility that his view is actually false of reality, 

i.e. some of his assumptions are false of the true model M
0

. 

With regard to the second example, which concerns the ex­

plicit and implicit scope of a scientific paper, we can suggest one 

possible resolution of the apparent disparity. The salient point 

here is that the scientist finds it most informative to employ one 

formal language in writing a paper for a journal and another in 

guiding his personal research. Thus, suppose that he is a biologist 

studying the functions of vision in the wolf spider. For purposes of 

his own research and as a means of determining appropriate experi­

ments to perform, he is likely to employ a formal language which 

facilitates generalizations of the specific experimental outcomes he 

perceives. That is, he may ignore certain known idiosyncrasies 

of his experimental apparatus and the particular spiders he is using 

as subjects on the assumption that these distinctions will eventually 

be shown to be irrelevant. In the sense of our second hypothesis 

.· · .· 
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he will find it most informing-based on experiments he expects to 

perform-to make use of a formal language whose states coincide 

well with the scientist's long term expectations regarding alternative, 

and as yet unproven, theories about the general phenomena he is 

studying. This may, for example, result in his ignoring the pecu-

liarities of the wolf spider sin~e he anticipates that his conclusions 

will eventually prove valid for a much broader class of animals. 

On the other hand, when the scientist is writing a paper about 

his results, different considerations may motivate his choice of for-

mal language. For one thing, in contrast with his personal specu-
. . 

lations, he is now very de finitely concerned with making statements 

which are "true", or hypotheses which are almost certainly correct. 

But what he actually knows to be true falls far short of what he ex -

pects will late r be proven true. Consequently, he will take great 

care to ensure that he fully describes the specific and detailed con-

ditions of his experiinent and tha t he does not over-ge neralize the 

results h e has obtained. Thus, in this situation he is confronted 

with the problem of communicating his r e sults t o s ome community 

of s cie ntists with similar ba ckg rounds , without m a king the pape r 

either unne cessarily d e tailed and trivial or overly v a gue and 

spe culative. Since he generally p r esume s, although per haps in-

corre ctly, that his r eade rs have a common understanding of many 

of the concepts involved in his pape r, the scie ntist can a tte mpt to 

employ s ome formal languag e which will be most informative to 
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them. Thus, even though he does not explicitly state many of the 

generalizations of his results which he personally suspects to be 

true, he can tailor the language he uses to allow others to induc­

tively infer what are to them the most informative consequences 

of his results. In this sense, hypothesis ( 1) would seem to pro­

vide the most reasonable expl~cation of his behavior. That is, he 

seeks a language which maximizes the information relative to 

his specific observational experience. He then can assurne­

based on the presumed similarities of his readers' languages­

that they will augment his statements with hypotheses and 

generalizations analogous to those he feels will ultimately be 

proven correct. In this respect, hypothesis (2) seems to be 

most applicable. 

Neither of the examples presented in this chapter as 

characteristic of the inductive process coUld be considered to be 

solved by our hypotheses. Nevertheless, it does appear that they 

provide a new and useful insight into these difficult problems. As 

we have mentioned, the primary missing ingredient is our current 

inability to characterize the actual mechanisms of language change. 

We have, however, suggested informativeness as the force under­

lying such changes, and e ither of our two hypotheses, or perhaps 

some combination of them, provide possible guidelines for an in­

vestigation of the dynamics of formal languages. 

·" 
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Let us swnmarize what we have accomplished in this thesis. 

A scientist tries to find structure in the world around hi.In. He does 

this by formulating and testing scientific theories. At one time it · 

was thought that this could be done by the slow accretion of scientific 

knowledge, by a systematic procedure often referred to as the sci­

entific method. We now know-that this is not the way science de­

velops, and that there are many difficult and unsolved problems in 

explaining science and the scientific method. In this thesis we have 

developed a formal method for attacking these problems. The con­

cept of a formal lang\iage has been introduced to explicate the notion 

of structure. A clear distinction has been made b e tween language, 

or conceptualization, on the one hand and observation on the other 

hand. We have made clear the necessity of tacit knowledge which 

could not be fully delimited by any finite amount of observational 

evidence. The existence of this tacit knowledge provides the leeway 

within which a scientist can shift his language to fit his ever in­

creasing experimental evidence. By introducing the notion of 

probability we hav e developed a related mea sure of information 

as a functi on of formal lang ua ge, as w ell as of observation. Fi­

nally we have suggested tha t e ither information or expe c ted in­

formation, or some combina tion of the se, can b e us e d as a forcing 

function to define the con c ept of an optimal formal l a nguag e f or a 

give n body of observational e vide nce. Thus w e sugge s t that the 

process of science is not one of discovery of structure, so much 

·· ' 
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as it is a fitting of structure to experimental evidence; and more 

importantly, we have provided a formal apparatus for making this 

suggestion precise. 

We have attempted to study these problems inherent in 

the scientific method from the point of view of the meanings of 

sentences, without a correspondingly detailed analysis of the 

meanings of individual words. Such analysis we believe is a 

natural extension of what we have done and will certainly be nec­

essary in conducting further investigations of induction and other 

related problems of the methodology of science. It has also be­

come apparent that the temporal processes of language change, 

as well as the static informational aspects of language, are in­

volved in the development of science-particularly, as we have 

seen, in the problem of induction. 

' ~ " ' . 
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APPENDIX 

In this appendix, we prove the theorem stated in chapter VI 

which asserts the independence of the various quantities affecting 

the informativeness of an observation as the language changes from 

less expressive to more expressive. For convenience. we repeat 

the following diagram. 

.. ·· .· 
c 

E 

. . G .·· ·· .. .· 
F 

· . 

D 

·. 

A 

B I __ J 

ml is the basis for language .s:l and m2 the basis for £2 Also • 

.£
2 

is assumed to be at least as expressive as £
1

, i.e. £
2 
~ £

1 
• 

The sets A, B, C, D, E, F, and G may be characterized as 

follows: 

A: h/
2 

A B: h// 2 B 

C: h/ G 
1 

D: h// 1 D 

E: h/1,2 E F: h// l 2 F 
} · • 

G: h// 1 G and h/ 
2 

G 
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The set of models h is assumed to correspond to some 

arbitrary observation. Since E and F have the same properties 

with respect to h in both languages, they are not of interest. The 

sets A, B, C, D, and G are the ones we wish to prove independ-

ent of one another. 

Theorem: There exist formal languages .t1 and .t
2 

, ~ :<!: .s;_ such 

that there are sets of models h (corresponding to possible obser-

vations) for which the sets A, B, C, D, and G may be empty or 

non-empty in any combination, i.e. A, B, C, D, and G are in-

dependent of one another. 

Proof: We shall exhibit a language .t
1 

and four languages corres­

ponding to £
2 

(this is the mi_nimum possible number), and for each 

of the 2
5 

= 32 cases where some combination of A, B, C, D, and 

G could be non-empty, we will choose an h to show that this com-

bination is actually realizable. Each of the languages we shall illus-

trate has a unique basis, as indicated by the elements with the heavy 

borders. The first figure shows the state diagram for language £
1 

• 

The next four figures show the possible cases for language .t
2

, and 

in each case £
2 

::?: £
1 

• Following each of these figures is a table 

designating some set of models h and, for each h , the status of 

the sets A, B, C, D, and G • In these tables, a "l" indicates 

the corresponding set is non-empty and a "0" that it is empty • 

. •' 
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If a table entry lists more than one element, where these are 

separated by commas, then h is the set of models obtained by 

taking the union of all elements listed. The characteristics of 

the set h with respect to the basis for J:
1 

and for the particular 

case of J:2 determine whether A, B, C, D, and G are empty 

or non-empty. 

T F 

T TT TF T</> 

-
F FT FF Fib 

I --

q, ¢T I ¢F I tb</> 

I I 
I I 
I I 

The above figure shows the state diagram for language .1:
1 

• 

For this and each of the subsequent figures, the truth values are 

subscripted to indicate the sentence to which they correspond. 

Thus, for example, F 
2 

designates the region where sentence 

'Yz is false. 
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Case I. A = B = C = D = O. Suppose ~2 is -

h 

FTF 

TTF 

.- .;.. 

FTF 

c/JTF 

A 

0 

0 

B 

0 

0 

TFT 

FFT 

c/JFF 

c 

0 

0 

Tc/J T 

Fc/JT 

D 

0 

0 

G 

0 

1 
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Case II. C = D = O. Suppose .£2 is -

T 

c/>l 

h A 
; 

¢TTT, ¢ TFT, 0 
T ¢ FF, T¢TF 

¢TFT, T¢FF 0 

.FTTT 1 

FFFT 1 

T¢FF, T¢TF 1 

T¢FF 1 

.' ' 

.·' .· 

F 

TFTF 

c/>FFT 

B 

1 

1 

0 

0 

1 

1 

F c/> FF 

' c/>c/> FF 

" " c/>c/>FT '\. 

c D 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

G 

0 

1 

0 

1 

0 

1 
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Case III. A= B = O. Suppose £2 is -

T3 

Tz Fz ct>z 

F3 

TFT Tc/>T 

FTc/> Fc/>T 

c/>Tc/> ¢Fe/> 

h A B c D G · 

FT¢, FF¢ 0 0 0 1 0 

FT¢, FF¢, FFF 0 0 0 1 1 

TFT 0 0 1 0 0 

TTT 0 0 I 0 I 

FT¢ 0 0 1 I 0 

FF¢, FFF 0 0 1 1 1 

.·' .· 



Case IV. 

h 

T¢TFTT, ¢T¢FFT, 
¢T¢TFT, TTFTTF, 
TTTTTF 

T¢TT¢T, T¢TF¢T, 
F¢TFTT 

T¢TT¢T, T¢TF¢T, 
TTFTTF, TTTFTT, 
TTTTTF 

.• ' . · 
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Suppose ~2 . is -

TFTTTT 

¢F¢FTT 

A B 

0 l 

0 1 

0 i 

"Tc/>TT</>T / 

" / 

Fc/>TFTT 

"¢¢TFTT 

" " " c/>c/>FFTT " 

c D 

0 1 

0 1 

l 0 

G 

0 

1 

0 
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Case IV (continued) 

h A B c D G 

T¢TT¢T, T ¢ TF¢ T 0 1 1 0 1 

¢T¢FFT, ¢T¢ TFT, 0 1 1 1 0 
¢T¢FTT, ¢ T ¢ TTT, 
FT¢TTT, FTFTTT, 
TTFTTT, TTTTTT, 
TTFTTF, TTTTTF 

¢ T ¢ FFT, ¢ T ¢ TFT, . 0 1 1 1 1 
¢ T ¢ TTT, ¢ T ¢ FTT, 
FT¢ TTT, FTFTTT, 
TTFTTT, TTTTTT 

FT¢ TTT, FF¢FTT, 1 0 0 1 0 
FF¢ TTT 

FTFTTT, FFTTTT, 1 0 0 1 1 
FFTFTT 

TFTTTT 1 0 1 0 0 

TTTTTT 1 0 1 0 1 

FF¢ FTT, FFTTTT 1 0 1 1 0 

FF¢ FTT 1 0 1 1 1 

¢ T¢FTT, FF¢ TTT, 1 1 0 1 0 
FFTTTT, TTFTTF, 
TTTTTF 

¢T¢ FTT, FF¢ TTT 1 1 0 1 1 

T ¢ TTTT, TTFTTT 1 1 1 0 0 
TTTTTF, TTFTTF 

T ¢ TTTT 1 1 1 0 1 

¢ T¢'tTT, ¢ T ¢FT T , 1 1 1 1 0 
TTTT';f'F, TTFTTF 

¢F¢FTT 1 1 1 1 1 
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