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ABSTRACT

Methods of filtering an n. m.r. spectrum which can improve
the resolution by as much as a factor of ten are examined. They
include linear filters based upon an information theory approach and
non-linear filters based upon a statistical approach. The appropriate
filter is determined by the nature of the problem. Once programmed
on a digital computer they are both simple to use.

These filters are applied to some examples from *C and °N

n.m.r, spectra.
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FILTERING N. M.R. SPECTRA



1. INTRODUCTION

A nuclear magnetic resonance spectrum is a plot of the
intensity of out-of-phase absorbed radiation as a function of the
frequency, v. We wish to find one or more signals (resonance lines)
in a background of noise (random fluctuations in intensity). A signal
is a set of intensities which vary in a well-defined manner given by
g(v), the line-shape function. 1 Noise is essentially all other varia-
tions of the intensity with frequency.

Since the sweep rate is held constant, the frequency is propor-

tional to the time:
v = gt (1.1)

where « is the sweep rate. We shall find it convenient to consider
the signal a function of time s(t).

A filtered or transformed spectrum is obtained from the
unfiltered spectrum by a process which can be described by an

operator H:
fo () = H[f;1], (1.2)

where f;(t) is the input spectrum and f,(t) is the output spectrum.
Filters may be divided into two general types; linear and non-linear.

A linear filter satisfies the condition:

fot), + f(t), = gﬁlfi(t)l *fi(t)z], (1.3)



while a non-linear filter does not. We shall show applications for
both types. Linear transformations are more convenient to use since
it is not necessary to know the multiplicity of overlapping peaks in
advance.

Ernst has written an excellent artic1e2 on filters. We shall
partly follow his development of linear filters, but obtain a result for
a general line shape instead of restricting ourselves to even functions.

First, we shall derive a matched filter from a simple statistical
approach. This will give us a feeling for the nature of a filtering
process. Later, we shall show that this filter is a special case of a

linear resolution enhancement filter.

1.1 Matched Filters

We shall calculate the most probable intensity of absorption at
the time t, given the input spectrum, fi(t). The line-shape function,
s(t), will typically have the form shown in Figure 1.1. We shall defihe
the zero of time as the time when s(t) is a maximum. Consider an
absorption f(t) with a maximum at the time t,, and intensity f(t,).

The simplest method of measuring f(t,) is to simply observe the

intensity at t;:
f(ty) = fi(to)- (1.1.1)

In fact, however when we record an n. m. r. spectrum we measure

f(t,) each time we measure f;(t) at any time t;:
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Figure 1.1. A typical n.m.r. signal s(t).

ft) + £,(t) gf% (1.1.2)

where s(t, -t,) is the value of s at t, -t,. This is displaced from the
maximum, s(0), by the displacement of f;(t,) from f;(t,). Since these
measurements are not all of the same accuracy, the most probable

value of f(t,) is a weighted average of the values obtained from each

of these measurements:

(0 ©
Bty = [ fi(tl)—s—l(iwal)dtl/f W(t,)dt,, (1.1.3)

~-®© Si(tl'to)



where the W(t,) are the statical weights. If the noise is random
(i.e., it has a Gaussian distribution of errors), then the proper

weights are:
W(t,) = 1/0°(t,), (1.1.4)

where 0 (t,) is the standard deviation of f;(t,). 3 The standard devi-

ation of fi(tl) is simply the inverse of the signal to noise ratio:

U(tl) = nrms/si(tl = to), (1 1. 5)

where this ratio is calculated at fi(tl). Substitution of Eqs. (1.1.4

and 1.1.5) in Eq. (1.1.3) gives:

-1
<0

folte) = 84(0) { f:sf(tl— to)dtl] f msi(tl- to) £(t,)dt,, (1.1.6)
for the most probable value of the intensity of a line with a maximum
at t,. If we compute this integral, fy(ty,) for all t,, then the output
spectrum f,(t) is a linear transformation of the input spectrum fi(t).
This transformation can be carried out if we know the line shape
si(t) of an unfiltered line. Finally, we make the substitution 7 =

t, - t, in Eq. (1.1.86) and obtain:

-1

o0

Bt} = si(O) |: f S;(T)dT:! f si(-—'r) fi(t -~ T)dT, (1.1.7

=]



where we have changed the variable of integration in the first integral.
This is the standard form of a matched filter. 4

This particular filter is normalized to be height preserving.
A matched filter is the filter which gives the maximum signal-to-
noise ratio in fy(t). . It is also the optimum filter for the determi-
nation of line positions. 4 The output spectrum at a given time f,(t’)
depends upon the input spectrum at all times fi(t'- 7). Thus, it is
known much more accurately. Measuring a property from an
unfiltered spectrum assumes that we have no knowledge of the
correlation between fi(t) and fi(t'). This is not generally true.

Both analog and digital filters can easily be constructed.
Digital filters can represent any filter arbitrarily accurately and are
more easily varied than analog devices. If a filter operates on the
spectrum while the spectrometer is in operation, it must be selected
in advance and can only use the points measured at an earlier time —
not those measured at a later time. The most powerful filter is

therefcre a digital one which is used after the complete spectrum has

been détermined.



2. THE THEORY OF LINEAR FILTERS

The intuitive concept of the resolution of a spectrum involves
the question of whether adjacent lines appear as one peak with
distorted line shape or are resolved into two discrete peaks. If the
signal is a rectangular pulse, the width of the pulse is a quantitative
measure of the resolution. Two rectangular peaks more than one
line width apart appear as separate lines (Fig. 2.1a). Two rectan-
gular signals less than one line width apart appear as a single peak

of more complex shape (Fig. 2.1b). This simple situation gives our

a
;
i S' s;
b =
S +8,
S, S,
;‘—'@m..".'

Figure 2.1. The resolution of rectangular peaks.



conceptual framework for the discussion of resolution enhancement.
We shall now seek to find a suitable definition of the line width of a
general line shape. That is, we seek a suitable rectangular model,
so that we can derive a linear transformation to improve resolution.
Although Fig. 2.1b shows only one peak, it is obvious what the
separation between the two peaks is. This is because of the dis-
continuity in the first derivative of a rectangular pulse. The deriva-
tive of the spectrum is two Dirac delta functions separated by the line
width. Unfortunately, the noise is greatly increased due to the
inherent instability of numerical differentiation. 6 Since both differen-
tiation and integration are linear processes, the optimum amount of

either is automatically included in the filter we shall derive below.

2.1 Line Width

We define the resolution line width of two peaks as the minimum

separation between them which permits their detection as discrete
signals. Figure 2.1.1 shows two peaks of the same line shape with
different amplitudes. If s, is less than s, the peaks are not resolved.
If s, is greater than s, the peaks are resolved. The resolution line
width of s, is thus a function of the size and line shape of both peaks.
The optimum process for improving resolution is therefore non-linear.
This is a serious drawback since we frequently will not know the
multiplicity of overlapping peaks. We therefore seek a property
related to the resolution line width which will lead to a linear process.

This property must be a function of the line shape of a single peak.



Figure 2.1.1, The resolution line width can be a
function of relative peak height.

So far we have only considered whether or not two overlapping
peaks have two discrete maxima. We have not discussed where the
maxima occur. In the case of two overlapping Lorentzians (Fig.
2.1.2) the maxima will not correspond to the original peak positions.
Although they are resolved, their maxima are shifted and a coupling
constant measured by the separation of the maxima will be too small.

This will occur at any separation for line shapes which do not go to
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Figure 2.1.2, Two Lorentzians separated
by their width at half height.

zero at a finite distance from the maxima. At larger separations the
distance between maxima approaches the distance between line
positions. At smaller separations the ratio of the distance between
maxima to the distance between line positions approaches zero. This
ratio equals zero at separations smaller than the resolution line
width. There is a systematic error in measuring the separation of

overlapping peaks. In order to accurately measure line separations
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we must decrease the resolution line width and make the signal

approach zero rapidly.

In the case of two triangular peaks (Fig. 2.1.3) the resolution

line width is equal to the full width at half height. Since this property

Figure 2.1.3. The resolution of triangular peaks.

is easy to measure for an experimental spectrum, it is widely used.

This line width depends upon only two points for a general line shape.
It is therefore not amenable to optimization procedures. It is also
independent of the '"tail" of a line shape and minimizing the full width

at half height could lead to increased shifts of the maxima.
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It seems reasonable to define a line width as the width of a
rectangle which has the same height as the input signal and some
other property the same. The most obvious property is the area.

The area of an odd function (e.g., a dispersion signal) is zero. A
process which minimizes the area could convert a peak to an odd
function (e. g., by differentiation) without necessarily decreasing the
resolution line width. Fully one half the area of a Lorentzian is
outside the full width at half height. The area clearly places too
much emphasis on the tail. Using the integral of the absolute value
of a function would cure the first problem but not the second. Let us
cut off a Lorentzian where it reaches half its height in such manner
that the sum of two equal peaks separated by their full width at half
height is constant between the maxima (Fig. 2.1.4). This decreases
the area by a factor of /2. The tail has been removed so well that if
two discrete maxima occur, then they correspond to the original peak
positions. Unfortunately, the resolution line width has been increased
by about 16%. The area places too much emphasis on the tail. A
filter based on the area could lead to increased rather than decreased

resolution line widths. The first moment is unacceptable since it

places even more emphasis on the tail. The second moment may even

diverge (e.g., for a Lorentzian line and therefore for an n.m. r.
signal). Higher moments offer similar problems.

A practical definition of line width is the energy width. X Energy

here refers to the signal energy and not to the absorbed energy that the

signal represents. If the signal is a voltage or current, then the
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Figure 2.1.4. Two truncated Lorentzians separated
by their full width at half height.

square of the signal is the power dissipated. Integration of this power
gives the signal energy. The energy width is the width of a rectangle

whose height and energy are the same as those of the line. That is:

b = foos(t)zdt/s(O)z, (e 11

-00

where s(0) is the height of the peak.
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Only (7-2)/2m, or about one sixth of the energy width for a
Lorentzian arises from the portion outside the full width at half
height. Truncating a Lorentzian (as in Fig. 2.1.4) decreases the
energy width by only a factor of #/(6-m), or about one sixth the
improvement calculated by area. A definition of line width based
upon the integral of higher powers of the signal will still give a
smaller line width for the truncated line than for the Lorentzian.

Only (1/2 - 4/3m), or about 7% of the width based upon s’(t) arises
from the portion of a Lorentzian which is outside the full width at half
height. This would not seem to place enough emphasis on the tail of
the line. Higher powers of s(t) aggrevate the problem still further,
The best exponent for s(t) would seem to be about two.

The energy width may not be the best definition of line width,
but we shall find that it is convenient to optimize and leads to useful
filters. When we examine how the resulting filters work we shall find
that they use the best method known for accurately measuring positions.
It will then be clear that only minor improvements could result from
modifying our definition of line width.

We shall define a process which decreases the energy width b.
In orde; to be useful the process must retain sufficient signal to noise
that we can still find the n. m. r. signal after filtering. We therefore
must consider what happens to the signal height, the energy width of
the signal, and the noise level during the filtering operation. This is

most easily done by considering the Fourier transform.
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2.2 Convolution,}\rggg};aélvswand Fourier Transforms

Y Y N N A" R AT e Ve W e W N Tt a v VL U W

A linear time-independent filter can be represented by an
integral; the convolution integral:8

o0

folt) = [ h(r) f(t-7)dr, 2.2.1)

where h(T) is called the weighting function of the filter. The
problem is to determine the optimum form for h(r). This can be
done by examining the Fourier transform. We shall define F(w) to

be the Fourier transform of f(t):

£(t) = E%f F(w) %! dqu, 2.2.2)
where:
Plw) = [ ) e ¥ at. (2.2.3)

That is, we shall use lower case for a time function and upper case
for the Fourier transform. The angular Fourier frequency w should
should not be confused with thei frequency of irradiation, v. They have
nothing to do with each other.

We note from examination of Eq. (2. 2. 3) that if s(t) is even then
S(w) is real and even. If s(t) is odd, then S(w) is imaginary and odd.

It follows that for any s(t):
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S(-w) = S*(w), (2.2.4)

where the asterisk denotes the complex conjugate. For asymmetric
s(t), S(w) is complex and asymmetric. Furthermore, the inverse
Fourier transform of S*(w) gives s(-t). That is, taking the complex
conjugate in frequency space is equivalent to reflecting about t = 0 in
time space. Finally, we note from Eq. (2.2.2) that wF(w) is the |
Fourier transform of f'(t). Multiplying by w in frequency space
provides a convenient method of numerical differentiation. This
method is considerably more accurate than simple difference tech-
niques.

Consider a product of the form of Eq. (2.2.1):

o0

So(t) = [ h(r)s(t-7) dr. (2.2.5)

-0

The Fourier transform is:

So(@) = [ [ n(m) sjt-7) dr et at, (2.2.6)
or:

So(@) = [ [ h(r) e 9T git-1 e T arat. 2.2.7)

Reversing the order of integration gives:
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So(w) = [ h(T)e_im{f si(t-T)e'iw(t'T)d(t-T)} dr. (2.2.8)

Therefore:
So(w) = H(w) §;(w) (2.2.9)

where H(w) (the Fourier transform of the weighting function h(7)) is

called the frequency response function or transfer function of the
9,10

filter. A filter simply takes a product in frequency space. This
is the first big advantage we gain by working with Fourier transforms.
A filtering process can be expressed very simply. Later, we shall
see that the properties of noise are also simplified 5y working in

frequency space.

We quote without proof the Plancherel theorem:11
o0 1 o0
2 . 2
[wf Bt = 5 LolF(wn dw. (2.2.10)

Applying this to Eq. (2.1.1) for b, the energy line width, gives:
[+ o]

by = o= [ |8 (w)|* dw/si(0). (2.2.11)

-0

Substituting the value of S (w) from Eq. (2.2.9) leads to:

bo = 5= [ [H(w)|* |8;(w)|* dw/s4(0). (2.2.12)
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Equations (2.2.9) and (2. 2. 12) give the output signal and the
output energy line width in terms of the input signal and the filter.
The properties of noise are more difficult to describe and will be

covered in the next section.

2.3 Generalized Harmonic Analysis

Wiener, by developing generalized harmonic analysis, provided
the mathematical tools for dealing with random functions. 13 This
approach yields a reciprocal relationship between frequency and time.
The frequency characteristic is called the power spectrum and the
time characteristic the correlation function. We shall use the pro-
perties of the power spectrum to develop filters.

Random noise has an infinite period. Let the noise function be
n(t). We can define a periodic function, nT(t), with period T as

follows:

np(t) = nft); It| = T/2, (2.3.1)
and:

nT(t+T) = nT(t) .
Taking the limit as T becomes arbitrarily large we obtain:

2 @) = n). (2.3.2)

We shall first determine some properties of the periodic function,

nm (t), and later take the limit to obtain the desired properties of the
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non-periodic function, n(t).

Since nT(t) is periodic we can expand it in a Fourier Series:

np(t) = jZ:';O[aj cos (wjt) e loj sin (wjt)],

where:
T2

2/T f nT(t) cos (wjt) at,
-T/2

©
il

T/2
2/T [ np() sin (wt) dt,
-T/2

o
Il

and w; = 27j/T. We shall also use the complex form:

0
1 iwit [ 2w
l'lT(t) = 'i;r‘ j:?oo NT(wj) e J ('rf’) ?
where:
T2 .
-iwst

Nolw) = [ not)e I adt.
T T

~T/2

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.86)

2.3.7)

Suppose nT(t) is a current flowing through a circuit with unit

resistance. Then a certain amount of energy, Enm, is dissipated in

each cycle. From elementary circuit theory:
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i
E. = n (t) dt. (2.3.8)
T [T e

Substitution of Eq. (2.3.3) for nT(t) gives:

T/2 © oo
= f 20 2 [a. cos (w.t) + b, sin (w.t)]
_T/2 j=0 k=0 ] J ] ]

Ep

(2.3.9)
X [ak cos (w,t) + b sin (wkt)] dt.

Rearrangement of this expression leads to:

48

20
B = 24

T
T _ :
T b a; Ay 5 [ﬂcos (j6) cos (k6) de

0 J

=
I

m
v ab 7 fﬂsin (16) cos (k6) de (2.3.10)

+ b. Db T

m
] kﬁf sin (jO) sin (k@) do
-

Integration simplifies this expression to:

ET:Z)

Z % (a2 +b7). (2.3.11)
1=

J J

We can therefore speak about the component of Ep from the

frequency w].. The total energy is the sum of these components:
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)s (2.3.12)

where:

o A 2 2
Ep(w) = 3 @7 +b), (2.3.13)

is the energy per cycle from frequency w].. The average power for a

cycle, py, is given by E,/T:

o0
1
pp = %3 E(w)) (2.3.14)
j=0
or:
2 E(w;)
o ] :
bp = 2 Aw. (2.3.15)

A very useful characterization of random functions is the

power spectral density:

i

p©) = Bpe)/an;  Wol-e) = Wile). 2.3.16)

This leads to the representation of the total power as:

pryy = 27 Wip(w) A w,. (2.3.17)

j:-OO

Substituting Eq. (2.3.13) in Eq. (2.3.16) we obtain:
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T 2 2
) o= : : & 3L
Wol(@) = g (a.] +b]), (2.3.18)
so that:
T . .
A% )y = e . dla. - .). 2.3.19
T(cu]) Py (a] + 1b])(a] 1b1) ( )

We now substitute Eqs. (2.3.4) and (2. 3.5) for aj and bj:

T2
WT(wj) = ?3% % f nT(t)[cos (wjt) + 1 sin (wjt)] dt}

-T/2
(2.3.20)
5 IT/Z
XA no(t) [cos (w.t)- i sin (w.t)] dt ),
T ~T/2 T ] J
or:
T/2 . T/2 :
i iwsit ~iw;t
Walw) = s=={ [ nnlt)e Jdt} [ nn®e ]dt}.
i 27T {_T/z T o/ T
(2.3.21)
Substitution of Eq. (2.3.7) for NT(w].) gives:
| N (w;) |*
WT(w]) = -——Z—T. (2.3.22)

The root-mean-square value of the noise is defined as:

( L f e v (2.3.23)
S, S n4(t) dt ) B
rms’T T L1/9 T
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This is simply the square root of the total power per cycle. We

therefore obtain from Eq. (2.3.17):

o0
u = 4
My = ]-:Z_;ooWT(wi) Aw; . (2.3.24)
We now examine the result of a filter on B—_ After filtering we
have:
0
3 22
= W.. (w.) A w. o D20
(nrmS)To j:-oo TO( ]) j? ( )

or, substituting Eq. (2.3.22) for W, (w.) gives:
To )

0

= B :
= - L - 2,3.2
(nrms)To j=—o (211'1‘) INTo(c"’])i Aw] @555
Since the filter is equivalent to multiplying by H(wj) in frequency

space:

)
rms’T, jomoo j

2 - 1 2
(n = 25 () | H(wy) NTi(wj)| Aw,. (2.3.27)

We again use Eq. (2.3.22) for WT_(wj) and obtain:
1

(nrms)?l‘o = E |H(“’j)(2WTi(w'

j) A wg, (2.3.28)
]:—OO

for the mean-square value of the noise after filtering. This is the

crucial relationship which shows the effect of a filter on the noise.
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We shall find the time characteristic useful for developing

filters based on probability theory. The autocorrelation function,

rp(t), is defined as:

T/2
rT(t) = -,I_I,-f nT(T) nT(t+1') dr. (2.3.29)
SPr2

This is a measure of the dependence of N (T) upon nT(t+T). 1f nT('r)
is independent of nT(t+T) for all t not equal to zero, then rT(t)
approaches a Dirac delta function. Substitution of Eq. (2.3.6) for
nT(t) into Eq. (2.3.29) gives:

T/2 o

W = i > B

i(wj+wk)-r
41TZT -T/2 j:—oo k=-

ro( NT(wj) Np(wp) e

- 2
o1kt (20) gr. (2.3.30)
Rearrangement of this expression leads to:

® @ N _(w)No(w,) j
vl = Y, 5 TN TR et

j:_co k:_oo ZWT

T/2
1
Aw,. Awk 'Z—Ef

i(w]-+wk)'r
]
-T/2

dr /. (2.3.31)

The limit as T approaches infinity of the quantity in brackets is the

Dirac delta function.14



25

We now have derived all the desired relationships for the
periodic function nT(t). We let T approach infinity and we obtain the
following relationships for the non-periodic function, n(t) from Eqgs.

(2.3.6), (2.3.7), (2.3.22), (2.3.29), (2.3.24), (2.3.28), and (2.3.31),

respectively:

n(t) = ;—ﬂf N(w) ei“)t dw, (2 3.:32)

N(@) = [ n@) et at, (2.3.33)
2

W(w) = %im;t%, (2.3.34)
T/2

r(t) = Limit~T1— [ n(1) n(t+) dr, (2.3.35)
T = s

n;m.s = fW(w)‘dw, (2.3.36)

nﬁms., = | tH(w)lzwi(w) dw, (2.3.37)

and
rt) = [ W(w) et duw. (2.3.38)

=00
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It also follows from Egs. (2.3.32), (2.3.33), and (2. 3. 38) that:

W(w) = 511?[ r(t) e 1 gt (2.3.39)

e ]

The autocorrelation function and the power spectral density are
related through a Fourier transform. This is called the Wiener-
Khinchin relation.

Finally, we note that white noise is defined as having a power
spectral density which is frequency independent. That is,

W(w) is a constant. All frequencies contribute equally to

white noise
white noise. Later we shall see that this provides an excellent

description of the noise in n. m.r. spectra under normal conditions.

The autocorrelation function for white noise is given by:

on

- w [ e = 27wa ), (2. 3. 40)

0

ol (t)white noise

so that the data points of a spectrum are completely independent for
white noise. They are statistically independent only for ergodic
Gaussian noise. We shall consider the general significance of r(t) in
a later section.

Non-white or colored noise requires assigning a functional
form to W(w) or r(t). This could be done by measuring either of the
two. The resulting filters are significantly more complicated than

those for white noise.
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This completes our excursion into generalized harmonic

analysis. We are now ready to determine H(w) for an optimum linear

filter.

2.4 ORtlmum Resolution Enhancement Fllters

The optimum resolution enhancement filter gives the minimum
energy widtn for a given signal-to-noise ratio. It is simpler to solve
for the filter which gives the maximum signal to noise ratio for a
given energy width, which is the same thing. The signal-to-noise
ratio is defined as the maximum signal voltage, s, N divided by the
root-mean-square noise voltage. Our definition of the time scale

gives the maximum signal voltage as:

Sopax = S0 (0). 2.4.1)

Taking the Fourier transform we obtain:

g 0
1 ,
By = ?Ef Sy (w) dw . (2.4.2)
-0
Substitution of Eq. (2.2.9) for S,(w) gives:
= =}
1
Somax = éFf H(w) 8;(w) dw, (2.4.3)
-00

for the maximum output signal voltage in terms of the input signal.

We maximize the signal-to-noise ratio by holding the signal constant
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and minimizing the noise.

The optimum resolution enhancement filter satisfies the

conditions:
= o)
2 e . _®
nzrms = foo|H(w)| W, (w) dw is a minimum;  (2.4.4)
1 o]
Somax = 37 me(w) 8;(w) dw is a constant; (2.4.5)
and:
a0
by, = 2w f |H(w)|2 ‘Si(w)l2 dw/s2(0) is a constant; (2.4.6)
-00

where the last condition comes from Eq. (2.2.12). Since the

denominator of Eq. (2.4.6) appears in Eq. (2.4.5), we can restate

the problem. We wish to satisfy the following conditions:

f IH(w) |2 W;i(w) dw = a minimum (2.4.17)
J H(w) 8j(w) dw = ¢, (2.4.8)
J |HW)|® |siw)]? dw = e,. (2.4.9)

- Q0
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This problem is readily solved by Lagrange's method of undetermined
multipliers. I3 The general method for an extremal problem with k
constraints is as follows;

Let:

X,

J 1lx y®), y'®]dx = an extremum, (2.4.10)
X,

under the k constraints:

X,
J ylx vy, y'@lde = ¢;  i=1,2..-k (2.4.11)
X,
and let:
k
K =1+ 271, (2.4.12)
j=1 1]

where the hj are constants. Then the solution satisfies:

9K _d 9K _ 4 (2.4.13)

When this method is applied to the above problem we obtain:
K = |H(w|*W(w) + X H(w)8;(w) + X, [H(w)|* [8(w)|*.  (2.4.14)

For this problem K ‘does not depend explicitly upon H (w). Application

of Eq. (2.4.13) therefore leads to:
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2| H(w) |[Wy(w) + A, D g (w) + 2A2|H(w)||s (W)|? =

IH( )
(2. 4.15)
where we have used |H(w)| as y(x) in Eq. (2.4. 13). We now
multiply by H*(w)/IH(w)| and obtain:
2 H¥(w)Wiw) + A, Sj(w) + 20, H*(w) |8y(w)|* = 0. (2. 4.16)
Solving for H*(w) and taking the complex conjugate gives:
. A'1 *
- 5 S (w)
H(w) e (2.4.17)

Wi(w) + X |Sy(w)|*

which_ is the frequency response function (the Fourier transform of the
weighting function) for the optimum linear resolution enhancement
filter.
We have held the line width constant by use of the parameter A,.
It is clear from its origin in the third term of Eq (2. 4.14) that if
= 0 we obtain the filter with the maximum 81gnal ~-to-noise ratio
regardless of line width, since this eliminates consideration of line
width in Eq. (2. 4.14). If A, approaches infinity we eliminate the first
two terms of Eq. (2.4.14) and obtain the minimum line width regardless
of the signal-to-noise ratio. First, we take the 1imit as XA, approaches
infinity. |
The _limit of the frequency response function as A, ipproaches

infinity is:
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Limit . ~ Ay
Amoo H@) = - 55

[Si(w)]- : (2.4.18)

We now substitute this limiting form for H(w) in Eq. (2.2.9) giving:

S, (W) = ==t (2.4.19)

Taking the Fourier transform of this we obtain:

[=e]

3 5
solt) = i J o' do. (2. 4. 20)

-C0

The integral is easily evaluatedl‘l giving:

-X
Solt) = 55 6(). (2.4.21)
7

The signal has been transformed into a Dirac delta function. This
indicates that our definition of line width was realistic, since in the
limit it leads to a peak with zero resolution line width and no shift of
adjacent peaks.

The second situation of interest is the case A, = 0. This gives:

Hw) = - 3 8;(w)/Wy(w), 2. 4.22)

which is the form for a matched filter. 4 In addition to giving the

maximum signal-to-noise ratio, the maximum of the filtered function
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is the most probable position of the line.

The parameter A, determines the emphasis of the filter on
resolution or sensitivity, while A, determines the normalization. We
now assume that the noise power spectral density is a constant (i.e.,

the noise is white or frequency independent) and rearrange Eq. (2.4.17)

to:
c(@) S;(w)
H(w) = % 8 (2. 4. 23)
1+ q|Sy(@]

where c(q) is the normalization constant and q determines the

resolving power of the filter. 1If we require that:

5(0) = 55(0), 2.4.24)

so that the filter is height preserving, then:

=]

1
cl@ = s4(0) f ‘Si(w)lz/[1+q!Si(w)|2] dw) . (2.4.25)
-l
This frequency response function [Egs. (2.4.23) and (2. 4. 25)]
defines a family of linear resolution enhancement filters which depend
only on the input line shape. In the next section we consider the

implementation of these filters.

2.5 Numerical Fourier Transforms

e A~

The Fourier transform of the weighting function for the optimum

linear resolution enhancement filter has the form given in Eq. (2. 4.23).
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The calculation of this weighting function using the I. B. M. provided

subroutine "HARM'" has been programmed. This subroutine uses the

very efficient numerical Fourier transform algorithm of Cooley and
Tukey. 1 The calculation of a Fourier transform at N points using
this algorithm requires only N log, N multiplications rather than the
N’ required by a more straightforward approach. The execution time
for the complete filtering program is about 10 seconds on an I. B. M.
360/75 computer when the H level compiler is used.

Both linear and non-linear filters require some knowledge about
the noise function n(t). We obtained the final form of the linear
resolution enhancement filters by assuming that the power spectral
density of the input noise Wi(w) was not a function of w. In order to
test the validity of this assufnption under the operating conditions of
our experiments we recorded the noise from the Varian Model DFS-60
spectrometer. The power spectral density was calculated using the
above program. The results are shown in Figure 2.5.1. The assump-
tion that the noise is white [ W(w) is constant] is clearly quite good.
There is no systematic variation of W(w) with w (Fig. 2.5.1). The
Fourier transform of an n. m. r. signal (Fig. 2.5.2, page 37) does
vary with w. The only assumption made in deriving Eq. (2.4.23) has
been verified. We now consider a numerical problem which arises in
the use of these filters.

The program requires a table of values of the line-shape
function, s(t), from which h(t) is calculated. This line shape function

is best determined experimentally. We therefore must make the
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Figure 2.5.1. The power spectral density of noise
from the DFS-60 spectrometer.

approximation:

si(t) = si(t) + ns(t), (2.5.1)

where ns(t) is the noise in the peak we are using for the line shape."

This leads to the approximation for the frequency response function:

c(@ [ 85" (w) + NFw) ]
l+q lsi(“’) +Ns(cu)|2 ]

H(w) = (2.5.2)

This approximation must be modified to eliminate the domination of
~ high frequency noise. We shall first prove that this is true in

principle and then show that it can be important in practice.
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The line-shape function at t = 0 is given by:

N
5100 = g7 J (@) dv, (2.5.3)
which implies that:
Limit
lwl—-oosi(w) = [ (2.5.4)

The noise frequency response function satisfies the limiting equation:

W (@) :I%E§1NgwnﬂﬂnT, 2.5.5)

where W S(uu) is the power spectral density of the noise. Since the
noise is white so that Ws(w) is independent of w, then |Ns(w)| is also

independent of w. Therefore the limit of the noise spectrum is:

Limit N i0(w)
weoo Nglw) = ng e = 0, (2.5.6)
wher 7, is a constant but 6 is not. The limit of the weighting

function, Eq. (2.5.2), is therefore:

. N (¢
Dimit gw) < CM)S@Z. (2.5.7)
1+q | Ng(w)]

We recall that the filtered spectrum is given by:
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tft) = o= [ H(w) Fyw) e’ do, 2.5.8)

where Fi(w) is the Fourier transform of the input spectrum.
Equations (2.5.7) and (2. 5. 8) show that the noise in the line-shape
function will dominate the output spectrum.

Cleérly, there exists an wn > 0 such that:

ng > |S(w)] ; lezwn. (2.5.9)

If we use Eq. (2.5.2) beyond wn we are mainly increasing the noise

in the output spectrum. We therefore use w,_ for a cut-off frequency

n
and redefine H(w) to be:
e(q, wp) [ 8¥(w) + Ng'(w)]
2 . w = w
1+q |S(w) +Ng(w)| n
H(w) = . (2.5.10)
‘ . .
0 : w wn

This is equivalent to replacing the limits of integration by wn in
Eq. (2.5.8).
When performing a numerical Fourier transform, Eq. (2.5. 8)

must be replaced by the approximation:

Q2

fo(t) + 5= [ H(w) Fy(w) " do, (2.5.11)
-Q

where {2 is determined by the number of data points for fj(t). The
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above discussion would be purely academic if wn. were larger than 2.
Their relative sizes must be determined experimentally.

Figure 2.5.2 shows a computer drawn plot of the modulus of
an experimentally determined line-shape tranéform [S(w)] . The

signal-to-noise ratio for s(t) was approximately 200/1. It is clear

o4

y ¥
-2 ‘ -o.)n 0 w.n

Figure 2.5.2. The modulus of the line-shape transform,
' |S(w)|, for an n.m.r. signal.

that in this case Wy is much less than Q. A frequency response
function which gives high resolution enhancement has been computed
from this line shape. The plot of the modulus, |H(w) | , is shown in

Figure 2.5. 3 and the corresponding time function, h(r), is shown in
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Figure 2.5.3. The modulus of the frequency response function,
‘H(w) | , for a high resolution weighting function,

Figure 2.5.4. It is obviously desirable to make use of the cut-off
frequency, wn .
In practice we compute ﬁs as the average value of ‘Si(w) +

Ns(w)| for the ten highest frequencies available. We then choose wn

to be the smallest positive value of w for which:

]si(w) & Ns(u.')l = 37, (2.5.12)
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Figure 2.5.4. The weighting function h(t)
corresponding to Figure 2. 5. 3.

This effectively limits the frequency response function to those
frequencies for which the signal is greater than the noise.

Figure 2. 5.5 shows the results of using this value of w_ on
|H(w)|. The effect that this has on the weighting function, h(t) is

shown in Figure 2.5.6. We have eliminated the problems caused by

high frequency noise.
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Figure 2.5.5. The modulus of the frequency response function
|H(w)| using the cut-off frequency wy -
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Figure 2.5.6. The weighting function h(t) resulting from the
frequency response function in Figure 2.5.5.
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The effects of multiple scans on the above frequency response
functions are shown in Figure 2,.5.7. Comparison with Figures 2.5.2
and 2, 5. 3 indicates that eliminating the higher frequencies from the
single scan data was quite reasonable. The weighting function calcu-
lated from the multiple scan data is shown in Figure 2.5.8. The use
of the cut-off frequency causes H(w) and h(t) to more closely
resemble the results which could be obtained by collecting additional
data. We note that the high frequency Wiggles towards the right in

h(t) have been decreased by obtaining better data.

Figure 2.5.7. Frequency response functions obtained
from a multiple scan experiment.



42

1.000

0,60
=

500

0400 e

0.200

L it

\ / \ /(\\, AV Www,ﬁw TR
|

,,w
i
—

A950APTI0N

2 0.0

\ v

-0,

-0.402

-0,60)

=1.000  -0.800

o I 1 L 1. o
0.0 1.000 2.0 3,000 [P 5.0m

.o
FREQUENCY IH HZ

Figure 2.5. 8. The weighting function resulting from
the high resolution frequency response
function shown in Figure 2.5.7,

The elimination of high frequency noise is not obviously

It would be silly to use data for s.l(t) which did not have a significantly
higher signal to noise ratio than the input speclrum f_i(t). The high
frequency noise in si(t) will therefore always be small, However,

the high frequency noise in { (t) is not necessarily small, and the
filter will take the product of the two. The more important application
of the cut~off criterion will probably be found in the study of the

1

behav of h{t). In this casge, we clearly eliminate most of the noise.
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All weighting functions discussed in the remainder of this thesis

have been computed using the above cut-off criterion.

2.6 RC Filters

These simple analog filters are of particular interest since one
is built into most commercially available n. m. r. spectrometers.

They consist of one or more pairs of resistors and capacitors

(Fig. 2.6.1).

Vi - v
DAY I >
Rl Ra
T T

Figure 2,6.1. Single and double section RC filters.

From elementary circuit theory 16 we know that:

£t) = IR + Q)/C, (2.6.1)
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where f(t) is the input voltage (signal), I(t) is the current, and Q(t)
is the charge on the capacitor. Since the current is the rate of change

of the charge:

(0 = QOUR + Q)/C. (2.6.2)

The output voltage (signal) is given by Q/C so that:

£.(t) = RCLG(H) + fo(t). (2.6.3)

The input and output voltages are connected by a first order linear

differential equation. We first put it in standard form:

: s oo
zc Dot = == 5. (2.6.4)

£y
U
The general solution is:

£ t) = ke /RC | ot/RC feTl/RC[I/RC]f.l(Tl) dr, 2.6.5)

where k is an arbitrary constant. Since this filter is a real time
device it can not use future data. Therefore, 7, =t. The case of

interest also satisfies the initial condition:

fo(-=) = fi(-%) = O. (2.6.6)

The result of using a single section RC filter is therefore:

t
fo(t) = [ e‘("”l‘t)/RC[l/Rc]fi(rl) dr,. (2.6.7)
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We now put this in the form of Eq. (2.2.1) by making the substitution

T=L=-7,:

I (ﬁ%) e T/RC ¢ (t-7)ar. 2.6.8)

(4]
This gives the weighting function:

RC e"7/RC s TE D

hRC(T) = (2.6.9)

for a single section RC filter.
When two of these filters are placed in sequence the output

function is:

0
1 -7,/RC 1 -7,/RC
{ f{—_ Tl/ f (ﬁ) e Ta/ fi(t -T,-T,) dr, dT,.

(2. 6.10)

This can be rearranged to:

f f R Tt T /Rcf[t (T,+75)] drydr,. (2.6.11)
0 0
We now make the substitution 7 = 7, + 7,, giving:

I f (ﬁ%z “T/RC ¢ (t-7)ar, ar, (2.6.12)
0 o
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where the upper limit on 7, comes from the fact that 7, can not be
negative. Integration over 7, gives:

60 = f (ge) 7eRC -1y ar. (2.6.13)
0

The weighting function for a double section RC filter is therefore:

(I%C)Z're_T/RC r v
hir)= . (2. 6.14)

0 ; 7<0

This result could also have been obtained by taking the inverse
Fourier transform of H;{C(w). That is, by working in frequency
space. We shall find this approach particularly helpful when we

consider sequences of filters in the next section.

2.7 §9\guences of Filj’gx;g

It is sometimes desirable to use a series of successive filters.
One example is the double section RC filter. A second is suggested
by the design of an n. m.r. spectrometer. An n.m.r. spectrometer
is equipped with a double section RC filter with variable capacitors. 15
We must decide how to set this device, since all data we obtain will
have been filtered by it (or not filtered by it if we decide to remove
it).

The result of two filters applied in sequence is most easily

discussed in frequency space. We therefore take the Fourier
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transform of the weighting function:

o0
1 -T/RC -iw
Hpolw) = 5= [ e B AT 5 (2.7.1)
(1]
or
1 [ —(iw+1
Hpow) = g=f e (iw+ 1/RO)T 4 2.17.2)
0
Integration yields:
He () = e (2.17.3)
RC 1 + iwRC’ T

for the frequency response function of a single section RC filter.
We shall examine single section RC filters in detail. It will be
obvious that multiple section filters behave similarly. We recall from

Eq. (2.2.9) that the result of a linear filter in frequency space is a

simple product:
SRC(w) = HRC(w) Si((-")y (2.7.4)

where SRC(w) is the result of an RC filter on the Fourier transform

of the line shape. Similarly:

Fpo@ = Hpo() Fi(w), (2.7.5)

where FRC(w) is the RC filter output signal in frequency space. If
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we use an RC filter on both our signal and our line shape function,
and then construct a matched filter [ Eq. (2. 4.22)] based upon this |

new line shape, we obtain:

Fo(w) = eSpo(w) Frolw). (2.7.6)
Substitution of Eq. (2. 7.4) for SRC(w) and Eq. (2.7.5) for FRC(w)
gives:

Fo(w) = cHpo(w) (@) Hp(w) (), 2.7.7)
or:

Fo(w) = |Hpe(@)|® Fpp(w), (2.7.8)

where Fm(w) is the result of a matched filter on the spectrum. We

see that this procedure gives the desired result if and only if:
2
|Hpo(@) | = 1. (2.7.9)
From Eq. (2.7.3) and Eq. (2.7.8) we see that:

1
Folw) = — = F . 2.7.10
(@ = s o) ( )

We could obtain the results of a matched filter by computing:

Fpo(@ = c[1+ RCw] Spo(w) Fralw), (2.7.11)
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but this is considerably more time consuming than carrying out the
integration in time space:

o0

f.t) = / sy(-7) 1;(t - 7) dr, (2.7.12)
-0
which we can do when no RC filter is used. The simplest procedure
is clearly to disconnect the RC filter (frequency response control) on
the spectrometer.

The extension of these results to multiple section filters is
obvious. We conclude that the results of an optimum filter are
recoverable after the use of any RC filter, but that the most efficient
procedure is to disconnect the RC fiiter on the spectrometef. More
generally, this is true of any filter for which the inverse exists
(i.e., H(w) = 0; for all w).

The RC filter may be disconnected from the Varian Model
DFS-60 (or HR-60) spectrometer by using the "scope' setting. The
RC filter on an A-60 type spectrometer may be effectively disconnect-
ed by setting the filter bandwidth control at 4. At this setting, RC in

Eq. (2.7.11) can be regarded as zero for most purposes.

B e e e e e T U

The most straightforward method of measuring the signal-to-
noise ratio is to take the ratio of the peak height to the rms value of
the spectrum where the signal is zero. This method works in some

cases. In many of the spectra we deal with, the value of the signal
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is greater than the noise level at all points. A less empirical method

is therefore necessary.

The output signal-to-noise ratio is given by:

(S/N)y = s,(t) max/nrms ’

(8/N)o = so(t)max/[ S

For white noise this becomes:

(8/N),

Using the Plancherel theorem

S"(t)max
(8/N), = -—\R/_l—[

So (t)m

p2x [ 10| ao |

S
W.

9

iz

o0

| H(w)

| 2

-00

-0
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an h’ (1) d‘r]

- 00
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(8/N),
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This is true regardless of whether or not h(7) is based upon the line
shape s(t). We can therefore use this relationship to compare
optimum filters with other filters assuming only that the noise is
white.

The above equation can also be derived from a statistical

approach. Consider the discrete transformation:

fo(t;) = %3 hry) B3t - 7). (2.8.7)

The classical statistical equation for the linear propagation of

errors 19 is:

of (t;) 8
2 _ 2; 0] 2

Using Eq. (2.8.7) for fo(t]-) and assuming that the noise is random we

obtain:

of = % hz('rk)of, (2.8.9)

or:
3
By = [% hz('rk)] 05 (2.8.10)
The signal-to-noise ratio is given by:

(S/N)y = s,(t) (2.8.11)

max/GO i
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The improvement in the signal-to-noise ratio is therefore:

(8/N)o  Sol)pax (93 (2.8.12)
(8/N);  8i(t) 0 190l

or finally:
(8/N)g  S0(t) oy [Z} h'(r )] B (2.8.13)
G/N),;, 50, LE L o

which is the discrete approximation to the result obtained from the
information theory approach, Eq. (2.8.5).
This relationship, Eq. (2.8.6), was used to evaluate the signal-

to-noise ratio obtained from the filters we later discuss.
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3. RESULTS OBTAINED WITH LINEAR FILTERS

The effects of several linear filters on the types of line shapes
resulting from an n. m.r. experiment have been studied. The
resolution and signal to noise of spectra can be significantly improved
with the aid of linear filters. Resolution !’énhancement requires more
detailed knowledge of the line shape than sensitivity enhancement does.

Two line shapes have been studied in detail. The first, an
experimental n. m.r. signal, was obtained from the proton-decoupled
& spectrum of carbon-1 of trans-1, 3-pentadiene using a 0.2 Hz/sec.
sweep rate. We considered this to be a representative line shape

(Fig. 3.1). The second was a Lorentzian line, the form of an n.m. r.
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Figure 3.1. The line shape of a typical n. m.r. signal.
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signal for infinitely slow pasage. =4

These line shapes are two
members of the family of possible line shapes which result from
varying the sweep rate. We shall examine the nature of resolution
enhancement by careful consideration of these two line shapes.

Since a filtering device based upon a Lorentzian line shape is
commerically available, 21 we have compared the results obtained by
using the correct line shape to filter the above experimental line with
those obtained using a Lorentzian line shape. Both these Lorentzian
filters and RC filters contain the line width as a variable parameter.

It is therefore necessary to optimize this parameter before compari-

sons can be made.

3.1 Optimum Line Widths of Weighting Functions

The line width of the weighting function, h(7) has been varied
for several combinations of line-shape function and weighting function.
The results of using an RC filter are shown in Fig. 3.1.1 for a
Lorentzian line shape and for the above experimental n. m.r. line
shape. The use of a dogble section RC filter on a Loréntzian line
can give up to 96. 1% of the signal to noise obtainable with a matched
filter. The use of a double section RC filter on the experimental
signal gave up to 97. 1% of the signal to noise obtainable with a
matched filter. In the case of an n. m.r. line shape with "wiggles"
the signal to noise peaks more sharply, indicating that setting the time

constant of the filter is somewhat more critical in this case.
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Figure 3.1.1. Signal-to-noise ratios from using a double section
RC filter. Curve A results from a Lorentzian line
shape and B results from the experimental line
shape. vj; is the input line width and « is the
sweep rate.

Whereas the double section RC {ilter with the optimum time
constant broadens a Lorentzian line by 90%, the experimental n. m.r.
signal is broadened by only 26%. This is because the optimum time
constant for filtering the experimental signal is only 42% of the
line width (full width at half height), while for a Lorentzian line it is
50% of the line width. Our results for filtering a Lorentzian agree
with those obtained earlier by Ernst. aE

We have also studied filters using Lorentzian weighting

functions of varying half width. The results of using this filter on

both the Lorentzian and the experimental line shapes are shown in



Fig. 3.1.2., The Lorentzian function achieves a maximum when the
line width of the filter function exactly equals that of the signal. This
represents a matched filter. The Lorentzian line is broadened by
100%23 and the experimental signal by 53% when the optimum line

width weighting function is used.
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Figure 3.1.2, Signal-to-noise ratios from using a Lorentzian
weighting function. Curve A is from
Lorentzian line shape and B results from an
n.m.r. line shape. v; is the input line width

and vs is the filter line width.

The Lorentzian weighting function which gives the maximum
signal-to-noise for the experimental signal had a line width which was
0.79 times the line width of the n.m.r. signal. This is the Lorentzian
line width we shall use to evaluate a resolution enhancement filter

based upori a Lorentzian line shape but applied to general n. m.r.

signals.
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3.2 Resolution Enhancement

With the signal-to-noise ratios which are experimentally
éccessible, one can achieve almost an order of magnitude reduction
in the resolution line width. This represents a substantial improve-
ment in the capabilities of the instrument. Figure 3.2.1 shows an
example of the results we have achieved in resolution enhancement.
The spectrum was obtained by adding together two slightly displaced
spectra from carbon-1 of 1, 3-pentadiene. The line shape was also
taken from pentadiene. It is clear that a high degree of resolution

enhancement is possible.

[HAY

-0.800 -0.600
i

R A e i 1 i}
2.000 3.000 4.000 5.000
FREQUENCY IN HE

Figure 3.2.1. Resolution enhancement of an n, m.r. signal.
The large peak and its "'wiggles' are an unresolved
doublet. The two smaller peaks are the same
doublet after resolution enhancement (q = 3000).
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W;e shall now consider the nature of resolution enhancement in
some detail and try to achieve a better intuitive understanding of the
process. Resolution enhancement is most easily understood in
frequency space. We consider the Fourier transform of the weighting
function, h(r), which is the frequency response function, H(w). We
recall that this function is given by:

c(q) Si*(w)

- H (w) = . | 3.2.1)
rw 1+qlsi(w)lz (

The degree of resolution enhancement increases with increasing
values of q (see section 2.4). Since c¢(q) is real and not a function of
w, the phase is unchanged from the phase of the frequency response

function for a matched filter, H_ (w). However, the amplitude is

-
modified to emphasize higher frequencies. This is clear from the
plots of |H ()| and |H.(w)| shown in Fig. 3.2.2.

‘To understand the significance of this shift to higher frequencies,
we consider the corresponding weighting functions hr('r) and hm(T),
shown in Fig. 3.2.3. In time space, the emphasis has been shifted
from the main peak to the '"wiggles' and the weighting function has
taken on the appearance of a diffraction pattern. When the frequency
response function shifts emphasis to higher frequencies, the effective
wavelength of the diffraction pattern h(7) is decreased. Thus,

resolution enhancement can be looked upon as using a higher frequency

diffraction pattern to fix positions more accurately.
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Figure 3.2.2.

The modulus of the frequency response

functions for a matched filter and for
a resolution enhancement filter.

We note from Fig. 3. 2.3 that the "wiggles" still line up
perfectly. This suggests that unlike sensitivity enhancement,
resolution enhancement requires a detailed knowledge of the line
shape. We now consider what happens if our knowledge is limited.
One method of determining the importance of the "wiggles' in
an n.m.r. line is {o eliminate them from the line-shape function and

look at the effect on filtering. The above experimental n. m.r.
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Figure 3.2.3. The weighting function for a matched
filter (bottom) and for a resolution
enhancement filter (top). The former
is the mirror image of the line shape.
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spectrum was filtered with a matched filter based upon the correct
line shape and with the corresponding filter based upon a line shape

with the "wiggles" removed (Fig. 3.2.4). The results are shown in

-6.000 0.200 0,800 0.600 0,800 1.000

ABSORPTION
~0.200

-0.400

-0.800

T

T

-1.000  -0.800

Figure 3.2.4. The weighting function for a matched
filter with the "wiggles' removed.

Figure 3.2.5. The signal-to-noise ratios differ by only 2. 6% and the
spectra look quite similar. This is not the case when resolution
enhancement filters based upon these two line shapes are used (Fig.
3.2.6). When the "wiggles' are removed from the line shape the
results of resolution enhancement are not even useful. Thus, we see

that while 97% of the signal to noise of an n. m. r. signal comes from
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Figure 3.2.5. The results of filtering an n. m. r. signal
with a matched filter which: A includes
the "wiggles'; and B does not include
the "wiggles"'.

the broad first maximl.im, the position of the signal (or resolution)
is determined almost entirely by the much narrower wiggles.

This raises the question of whether or not we can measure the
line shape sufficiently accurately‘ in practice for these techniques to
be useful. In an attempt to answer this question we compare the
above line shape from pentadiene with a proton-decoupled benzene *°C
spectrum taken under identical conditions (Fig. 3.2.7). There is

almost no difference between these line shapes; in particular, the
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q = 3000

Figure 3.2. 6.

The results of filtering an n. m.r. signal
with a resolution enhancement filter which
includes the "wiggles™ (top), and with

one which does not (bottom).
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Figure 3.2.7. The proton decoupled . o spectrum of
benzene (top) and the one carbon of
trans-1, 3-pentadiene (bottom).

"wiggles' line up perfectly. The result of filtering the benzene
spectrum with a resolution enhancement filter based upoﬁ the line
shape from pentadiene (Fig. 3.2.8) does not show any of the difficul-
ties encountered earlier. When we consider the effects of sweep rate
we shall see that line shapes generally appear to be sufficiently
predictable as to make resolution enhancement based upon the exact
line shape practical.

21

Another case of interest is to assume a Lorentzian line shape,

since this is the exact line shape for an infinitely slow sweep rate.
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Figure 3.2.8. The result of filtering the above benzene
spectrum with a resﬂutien enhancement filter
which uses the line shape from pentadiene.

That Lorentzian line width was selected which gave the maximum
signal to noise for a filter which uses the Lorentzian as the weighting
function to filter the pentadiene signal (see section 3.1). Weighting
functions based upon this Liorentzisn line shape are shown alongside
the equivalent functions based upon the above pentadiene line shape in
Fig. 3.2.9. Although both are diffraction patterns, they are

rastically different. Most notably, the Lorentzian pattern i

0}

symametric and remaing centered at t = 0. What effect the differences

will have on a filtered signal is not obvious. The results of using
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Figure 3.2.9. A comparison of weighting functions based upon the
experimental n. m.r. signal (left) with those based
upon the Lorentzian line which gives the maximum
signal to noise (right).
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these two sets of weighting functions to filter n. m. r. spectra are
shown in Fig. 3.2.10. For low resolution enhancement the filters
based upon a Lorentzian line shape give some improvement in the line
width, but for high resolution enhancement they give results which are
useless. The Lorentzian results are quite similar to those using the
correct line shape, but with the "wiggles' removed.

We should keep in mind that the sweep rate for the original
n.m.r. spectrum was only 0.2 Hz/sec. Slower sweep rates than this
are often impractical. Under normal conditions of n. m.r. spectro-
scopy the deviations of the line shape from a Lorentzian are extremely
important for resolution enhancement. These deviations are sufficient
to make a filter based upon a Lorentiian line shape of questionable
value. |

Some of the difficulties encountered in filtering an n. m.r. signal
with a Lorentzian resolution enhancement filter might be eliminated by
first filtering the spectrum with an RC filter to remove the "wiggles".
It is clear from section 2. 7 that this is not the best method of going
about things.

If for some reason (e.g., the sweep rate is sufficiently slow,
the magnetic field is inhomogeneous, etc.) the "wiggles' disappear,
the Lorentzian assumption is not too bad. Figure 3.2.11 shows the
results of using the above Lorentzian resolution enhancement filters
on a Lorentzian line. The achievable resolution is not as great as that
from fi'tering an n.m.r. signal containing "'wiggles' with the correct

filter. This is because the natural diffraction pattern of a Lorentzian

L
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The results of using the weighting functions based
upon the correct n. m.r. line shape (left) and

those based upon the Lorentzian line shape (right).
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Figure 3.2.11. Reeolution enhancement of a Lorentzian line
’ using the correct line shape function. The
inner lines represent successively higher
resolution enhancement.

line is not as good as that of an n. m.r. signal containing "wiggles".
Figure 3.2.11 aoes indicate however, that these Loventzian filters can
be quite effective if the line shape is similar to a Lorentzian.

The resulis of using a Lorentzian resolution eﬂﬁ&nﬁ@ﬂa.@ni filter
on the experimental n.m.r. signal (Fig. 3.2.10) are quite similar to
the mirror image of a weighting function based upon the same n.m.r,
signal (Fig. 3.2.9). The similarity remains even if a2 Lorentzian line
is filtered (see Figs. 3.2.11 and 3.2.92). This similarity is easy to

understand in fregrency space. The results of using a Lorentzian
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resolution enhancement filter are:

c(q,) L(w) Si(w)
So(w) = - g (3.2.2)
1+q, LY(w)

which has the same phase as H*(w), since L(w) is real and:

) c(q,) Sj(w)
1+ q,|8;(@)|*

H(w) (3.2.3)

It is quite reasonable that these two expressions should be almost
| equal for some value of q /q,.

The experimental n. m.r. signal is more closely related to a
Lorentzian line shape than the above discussion indicates. In addition
to £(t) being the limiting form of s;(t) for slow sweep rates, L(w) is
an excellent approximation to |S(w)] for any sweep rate. We shall
first demonstrate that this statement is true, and then use it to
determine some general properties of linear resolution enhancement
filters.

Consider the normalized Lorentzian function:

(mhyg)™

oy = — 20
1+ (t/bi)2

(3.2.4)

which has a full width at half height equal to 2by. The Fourier

transform of £(t) is given by:
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Figure 3.2.12. The Fourier transform of the
experimental n. m. r. line.
The curve is an exponential.
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1 e o-iwt
L(w) = 755 I > @/mp” & (3.2.5)

- 00

Integration gives the simple result:

L) = o PRI (3. 2. 6)

The modulus of the Fourier transform of the experimental n.m.r.
signal also decays exponentially (Fig. 3.2.12). We can therefore

make the approximation:

-bg lwl
EdlE (3.2.7)
+q e-2bslcu| ’

|H(w)| =

for the frequency response function. The phase of H(w) is the same
as the phase of Si*(w). This will depend upon the sweep rate, however,
the modulus, \H(;u) | , has a form which is independent of sweep rate.
The exponent, bs’ increases with increasing sweep rate, but the form
of |H(w)‘ does not change.

If q is between zero and one, this function has a single maximum

at w = 0 (Fig. 3.2.2). If q is greater than one, lH(w)I will have two

maxima at:

: e A 3.2.8
Yy iZbS fn q. (3.2.8)

If we define:
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w, = |w- wq|, (3.2.9)
then it follows from Eq. (3.2.7) that:

i .p w
<~ C 2 g sV
l+e s*1

(3.2.10)

The effect of changing q is simply to change the position of the

maximum, Each branch of |H(w)| is symmetric about this

a
maximum (Fig. 3.2.2).

We shall return to the approximation:

I5,(@)] = P! (3.2.11)
when we discuss line shapes.

Diffraction patterns have long been used to measure positions
accurately. Since the linear filters we have developed make effective
use of this technique, it seems rather unlikely that any modification
of our definition of line width would lead to a significant imprové—
ment in resolution enhancement. -

The qualitative conclusions we have reached in this section apply
to any n. m. r. signal, whereas the quantitative results are a function
of the sweep rate. The two line shapes studied above indicate the
nature of the dependence of these results upon the sweep rate. We

shall study the details of this dependence later.
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3.3 Line Shapes Resulting from Resolution Enhancement

We concluded in section 2.1 that in addition to decreasing the
resolution line width we wanted to make the signal approach zero
rapidly. Figure 3.3.1 shows the line shapes of fillered spectra for
several values of q in Eq. (3.2.1). These lines obviously have both
of the desired properties. The line shapes are similar to those result-
ing from filtering a Lorentzian with an optimum filter s (Fig. 3.2.11).
In both cases '"'wiggles'' are introduced in the tail of the line shape.

These "wiggles' grow with increasing resolution enhancement.
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Figure 3.3.1. The line shape of the experimental n. m. r. signal
after resolution enhancement. The outside line
results from a matched filter. The inside lines
result from successively higher values of ¢q in
Eq. (3.2.1),
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The general features of these line shapes are independent of the
sweep rate. The Fourier transform of the line shape resulting from
a linear resolution enhancement filter is given by:

c(a) |85(w)[

Selw) = B (3.3.1)
T 4 q[Si(w)[

The output from a matched filter (q = 0) is then:
2
Smi@) = ¢(0) |8;(w) " (3.3.2)

Substituting the approximate form of |Si(w)| given by Eq. (3.2.11) we

find:
. -2b.lwl
Sp(w) + c(0) e S . (3.3.3)
The output from a matched filter is therefore:
) 27bg)”
sll) 3 —oobe (3.3.4)

1+ (t/2by*

That is, if q equals zero, then the output line shape is approximately
Lorentzian.
If q is much greater than one, S (w) is approximately a step

function (Fig. 3.3.2). That is, one can make the approximation:

= =
Limit g (o) = cl@/q; lwl =wy

- = (3.3.5)
< A 0 lwl>wq
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Figure 3. 3.2. The Fourier transform of a filtered line.

Taking the Fourier transform gives:

—_ i sin (w.t
Limit g © = c(q)tsm t“) )

q=-w0 T Tq

q

J, (3.3.6)

for the output line shape. As q increases, so does wq. This causes
the frequency of the wiggles to increase. The full width at half
height of this line shape must be determined numerically. The

result is:

3.7910 R
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Substitution of Eq. (3.2.8) for cuq gives:

Limit . 7.5820 bg _ 1'89551/
g v -

; (3.3.8)
fn q fnq

since the output line width from a matched filter is 4bg [Eq. (3.3.4)].
As q approaches infinity, S,(t) approaches a Dirac delta function
according to Eq. (3. 3.6). If we wish to resolve two overlapping
peaks of greatly differing amplitudes, these "wiggles' may prevent

us from doing so. A method of avoiding this problem by using non-
linear filters will be discussed later. We shall use linear filters

only for lines of comparable magnitude.

A quantitative measure of the desirability of a line shape is the
ratio of the observed separation to the exact separation for two closely
spaced lines (Fig. 3. 3.3). Ideally this ratio should always be one.
In practice it is zero when the separation is less than the resolution
line width and deviates from one for larger separations. The
"wiggles" in a resolution enhancement line shape cause this ratio to
oscillate about one. The observed separation is not a lower bound
to the true separation, however the magnitude of the deviations has
‘not increased. The resolution line width therefore seems to be an
adequate measure of the resolution of these types of line shapes.

The situation is somewhat more complicated for other line
shapes. Figure 3.3. 4 shows an n.m.r. spectrum of two overlapping

lines obtained by adding together two of the above pentadiene spectra.
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Figure 3.3.3. The observed separation of a symmetric doublet as
a function of the actual separation. Curve A results
from a Lorentzian line shape. Curves B and C
result from the experimental n. m.r. signal using a
matched filter and a resolution enhancement filter
respectively.
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The n. m.r. spectrum of two overlapping lines before
(top) and after (bottom) using a matched filter.
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The raw spectrum is rather difficult to interpret. After filtering this
spectrum with a matched filter it is obvious that the spectrum
represents a symmetric doublet. The matched filter made the line
shape symmetric and easy to interpret.

In general, we obtain the Fourier transform of the output line
éhape by taking the product of the Fourier transform of the input line

shape and the frequency response function of the filter:

So(w) = H(w) Si(w). (3.3.9)

In the case of an optimum linear resolution enhancement filter based
upon the correct line shape this leads to the output function:
*
clq) Si (w) Si(w)

So(w) = : (3.3.10)
1+q [Si(w) ]2

Since S,(w) is real, the output line-shape function s,(t) is symmetrie
(see Section 2.2). Only a filter based upon the correct line shape can
lead to a symmetric filtered line. The above example indicates that
using the correct line shape can be important beyond the obvious

advantage of a decreased resolution line width.

3.4 Signal-to-Noise Ratios

PNINTNININT PN

Now we consider exactly how much signal to noise we must
sacrifice for a given improvement in resolution. The signal-to-noise

level was calculated using Eq. (2. 8. 6) and the resolution was
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measured using the full width at half height since this quantity is
casily obtained. The results for several combinations of line shape
and filter are shown in Fig. 3. 4.1. The best resolution improvement
clearly results when there are "wiggles" in both the signal and the
line shape the filter is based upon. An n.m.r. line with "wiggles"
gives considerably better results than a Lorentzian line shape when

the correct resolution enhancement filter is used for both (A and D

I I
15 2 25

1’-/‘,‘

- Figure 3.4.1. The output signal to noise as a function of the line
width, where vj is the input full width at half
height and v, is the output full width at half height.
Curves A and B result from filtering the experi-
mental n. m.r. signal with a resolution enhance-
ment filter based upon the correct and Lorentzian
line shapes respectively. Curve C results from
filtering this n. m.r. signal with an RC filter.
Curve D results from filtering a Lorentzian line
with a resolution enhancement filter based upon
the correct Lorentzian line shape.
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in Fig. 3.4.1). Enhancement of the above experimental n. m.r.
signal with "wiggles' is roughly equivalent to that of a Lorentzian line
with half the full width at half height. The results of filtering this
n.m.r. signal with a Lorentzian-based filter (B in Fig. 3.4.1) could
not be measured for high resolution enhancement since the resulting
line shape (Fig. 3.2.10) becomes too ambiguous to interpret. The
line width resulting from using an RC filter (C in Fig. 3. 4.1) is never
less than the original line width. As RC approaches zero the RC
weighting function approaches a Dirac delta function (i.e., it becomes

equivalent to not using any filter at all).

)max.

0.1

Figure 3.4.2. The relative signal-to-noise ratio as a
function of the parameter q in Eq. (3.2.1),
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In practice, the resolution enhancement and consequent loss of
signal to noise are determined by our choice of the parameter q in the
frequency response function | Eq. (3.2.1)]. The loss in signal to
noise is a smooth monotonic function of q (Fig. 3. 4.2) when the
correct line shape is used. The loss in signal to noise varies only
slightly between the Lorentzian and the experimental n.m.r. line
shapes. That is, it is independent of the sweep rate. Thus, it is
possible (and obviously desirable) to know in advance how much signal
to noise we shall lose.

We sought a simple expression for the loss of signal to noise as
a funct_ion of q. The following relationship was empirically deter-

mined:

noj-

(8/N) par/ (8/N) £ 1+ (73m)% (3.4.1)

This equation predicts signal-to-noise losses of up to one thousand to
within 30% for all sweep rates of interest. Our program requires
only the tolerable signal-to-noise loss (S/N)T as input. It then

calculates ¢ from:

q = 137(/N)g - 1)% (3.4.2)

When using the program one should keep in mind that a matched filter
can give an improvement of up to ten to one over the signal-to-noise

ratio of the raw data.
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The empirical relationship in Eq. (3.4.1) is adequate for the
ﬁseful range of q. A more accurate relationship between q and the
signal-to-noise loss can be obtained from the asymptotic behavior of
linear resolution enhancement filters. We shall use the approximate
form of [Si(w)l given by Eq. (3.2.11) and the asymptotic form of
So(w) given by Eq. (3.3.5). This leads to the approximation:

g_gg)_ebslwl- w = W

Limit lH(w)| = a q

q-ao

(3.4.3)

for the asymptotic form of the frequency response function. From
Eq. (2.8.3) we see that the loss in signal-to-noise from resolution

enhancement is given by:

* v
S.(w)|” d
(8/N)o _ So(t)max f-ml b ae (3.4.4)
/Mm SmOmax | g 2 g
L <

Integration using the above approximations for 1Si(w)| and |H(w)|

gives:
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Limit /No

1
% [C(Q)wq/ﬁg] [1/2bg] ®
- 00 - F 2
g (8/N), [1/2 7bg] ‘- C(g) (ezbswq _1)J
29 bg
(3.4.5)
Substitution of Eq. (3.2.8) for wq gives:
Limit (S/N), . Ing (
e T 3.4.6)
97 (8/N)py qz
for the asymptotic behavior of resolution enhancement filters.
This suggests the approximation:
(8/N)y ., 1+ fn(g+1) @.4.7)
(S/N)m 14 q‘é‘ T

which is accurate to within 15% for all q greater than or equal to

zero. Unfortunately, we cannot solve Eq. (3.4.7) for q as an

explicit function of the signal-to-noise loss. We therefore retain
Eq. (3.4.2) as our basis for selecting q.

We have used the full width at half height to compare several
filters. A more realistic comparison would use the resolution line
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width (sec. 2.1) for two equal lines. The resolution line widths of

some typical line shapes are given in Table 3.4.1. Although they vary

TABLE 3.4.1
Line Shape (R.L.W.)/(F.W.H.H.)
Lorentzian 0. 864
Experimental N. M. R. 0. 664
Exp. Matched Filter 0.511
Exp. Res. Enhe. (q = 3000) 0.950

by almost a factor of two, they do not effect any of the qualitative
conclusions reached on the basis of the full width at half height. The
variation of signal-to-noise ratio with line width (Fig. 3.4.1) has been
recalculated on the basis of Table 3.4.1. The two cases of principal
interest are filtefing the experimental n. m. r. line and the Lorentzihn
line with the correct resolution enhancement filters. Figure 3.4.3
shows the variations in signal to noise with resolution line width for
these two cases. The Lorentzian curve (B) is almost unchanged from
that in Fig. 3.4.1. The curve (A) for an n. m.r. line with "wiggles"
shows greater improvement for low resolution enhancement. Even a
matched filter can give an improvement in the resolution line width.

The curves shown in Fig., 3.4.3 are two members of the family of
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Figure 3.4.3. The output signal to noise as a function of
the resolution line width. Curve A results
from filtering the n. m.r. signal with "wiggles"
using the correct resolution enhancement filter.
Curve B results from filtering a Lorentzian
signal using the correct resolution enhance-
ment filter,
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possible curves for resolution enhancement in an n. m.r. experiment
with varying sweep rate. Curve B (a = 0) appears to be the limiting
worst case. Significant improvement in resolution can be achieved in
any n. m.r. experiment for which we can measure the line shape.

We shall now consider the effects of sweep rate in more detail.

3.5 The Effects of Swee RateA

Changing the sweep rate has dramatic effects upon all aspects
of an n. m.r. experiment. To understand the effects involved we
consider briefly the physical nature of a typical n. m.r. experiment.

If nuclei are placed in a homogeneous magnetic field in the z
direction, they tend to align themselves with the field and precess
about this direction with the Larmor frequency v, (Fig. 3.5.1).

A net magnetization M, develops in the z direction, with the charac-

teristic time constant T,. If the magnetic field is turnedon att = 0,
then:

t/T,

M, = Mg(1-e ), (3.5.1)

~Z
where MZ is the instantaneous magnetization in the z direction. If an
rf field, 2H,, of frequency v, is applied in the x direction, it will
have components of magnitude H, and frequency v, rotating clockwise
and counter-clockwise in the xy plane. The clockwise component is

stationary with respect to the nuclei, while the counter-clockwise
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Figure 3.5.1. Precession of a nuclear magnetic
moment pp about a magnetic field in the

z direction,
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component rotates with frequency 2 v, with respect to the nuclei and
has no effect on them. The nuclei will precess about the 'stationary"
clockwise component. This leads to an induced magnetization in the

Xy plane, M which trails the clockwise component of the rf field by

Xy’

90° (Fig. 3.5.2). If H, is turnedoff, M __ decays with characteristic

Xy
time constant T,. That is:

- =t/ T
My 1= 1My g ™™ (.5.2)

where H, was turned off at t = 0. The torque exerted by H, on %xy

leads to absorption.

If the frequency of the rf field, Vi is slightly different from

vy, H, will slowly rotate with respect to Mxy‘
increased sufficiently past v,, then H, no longer affects Mxy and

If Vg has been

Mxy will rotate at exactly v,. The rate of change of 6(Fig. 3.5.2)

is then given by:

f = 21T(Vrf - Vo), (3.5:3)

where 6 is measured in radians. If the frequency (or field) sweep

is linear and we passed through resonance at t = 0, then:

(Vrf = VO) G Ott, (3. 5. 4)

where « is the sweep rate in Hz. Combining these two equations and

integrating we obtain:
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Figure 3.5.2. The rf field leads to an induced
magnetization in the xy plane.

6 = mat® + 6,, (3.5.5)

or:

0 = Typ-v) + 6. (3.5.6)

The torque exerted by H, on Mxy depends upon the sine of 8. We

‘observe alternating absorption and emission, or "wiggles'. The
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maxima are determined by the condition sin 6 = 1. Since 6, is

approximately 7/2:
2 -9 = %(vrf- uo)2 = 2wn, (3.5.7)

where n is an integer. The maxima of the "wiggles' therefore occur

when:

(Vg -vy) = Y2no; n=0, X2, 0x., (3.5.8)

The positions of the '"wiggles' depend only upon the sweep rate and
not on the relaxation times or the magnetogyric ratio of the nuclei

(Fig. 3.5.3). Therefore, for purposes of resolution enhancement,

’—‘mm——————c—

Figure 3.5. 3. ﬂi_euapproximate positions of the maxima
in an n. m.r. experiment.
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line shapes may be measured by using standard samples. We shall
have problems only if either the standard or the unknown is suffici-
ently broadened to make the "wiggles' disappear.

The full width at half height of these "wiggles" is roughly the
time it takes for 6 to change by 27/3 (Fig. 3.5.4), so that:

v = V2m+1/3)a - Y2na; n=0,1,2,--- . el 913

n

Although this relationship is not accurate for small n, it does give a
rough approximation for the full width at half height of the first

_maximum:

v; = 0.817 Va . | (3.5.10)

Hy(t)

Figure 3.5. 4. ’i‘_ﬂemp'rojectioh of H, perpendicular to M,

»
Note that: 6(t,) - 6(t,) = 27/3.
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This approximation should be more accurate for large o, since Vit

becomes larger than v, very quickly.

Ernst and Anderson25 have solved the Bloch equations 20
numerically by the Runge-Kutta technique 26 and found that:
Limit . o g 667g. (3.5.11)

o+ 1

Our simplified model is really then not too bad in that »; turns out

' to be proportional to Va , even though with a different proportionality
constant than shown in Eq. (3.5.11). In order to determine the
detailed effects of sweep rate on filtering n. m. r. spectra, we return
to a somewhat more pragmatic approach.

We have recorded the line shape of the proton signal from
chloroform over a wide range of sweep rates. The observed line
widths are shown in Fig. 3.5.5. The asymptotic form [ Eq. (3.5.9)]
is an excellent approximation at the faster sweep rates.

This experimental curve agrees very closely with the theoretical
curve obtained by Ernst and Anderson25 if wé assume that Tl': L
3 sec. The two relaxation times will in general be equal for a non-
viscous isotropic sample, and 3 sec is a reasonable relaxation time
for protons.27 The relaxation times of other nuclei with I = £, and

whose chemical environments are comparable to those of protons are

given by:27

T/ Trg = /v’ (3.5.12)
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Figure 3.5.5. The line width of the proton signal from
chloroform as a function of sweep rate.

Thus, '°C relaxation times should be about 16 times as large as
proton relaxation times. This leads to *C line widths which would be
much narrower than the homogeneity of the magnetic field.
Fortunately, an inhomogeneous field has approximately the same
effect s decreasing the relaxation times.28 We can rationalize this
by considering an inhomogeneous field to be a random field with a long

correlation time.29

If we calibrate our sweep rates in terms of line
shapes (e.g., the number of "wiggles') rather than Hz, the ratio of
T,/ T, will have only minor effects upon these line shapes. In this

sense, the conclusions we reach below will be quite general.
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The signal-to-noise ratio of an unfiltered spectrum varies
considerably with the sweep rate. The nature of this variation depends
upon how we change the other parameters of our n. m.r. experiment.
We shall assume that we are interested in a given region of the
spectrum, from v, to v,. We therefore keep the sweep width constant
and x}ary only the sweep time. We shall also assume that we have a
constant amount of total instrument time available, so that the number
of scans we record is proportional to the sweep rate. Finally, we
aséume that we carefully adjust the strength of the rf field for the
maximum signal-to-noise ratio at each sweep rate.

Ernst and Anderson25 have determined the theoretical variation
of the signal-to-noise level with sweep rate under these conditions
{(Fig. 3.5. 6.)' For sweep rates above or below the region where
saturation varies, the signal-to-noise ratio of an unfiltered spectrum
approaches a constant value. If we calibrate the sweep rate as
discussed above, this curve shows the same geﬁeral behavior for any
ratio of T,/T,. We shall use this theoretical variation of the input ‘
signal-to-noise level since the noise produced during amplification is
strongly dependent upon instrument design.

The signal-to-noise ratio of a filtered spectrum is of consider-
ably greater interest. The signal-to-noise improvement from a
matched filter is proportional to the square root of the number of data
points under the line (Sec. 1.1). The signal-to-noise ratio resulting

from the use of a matched filter is therefore approximately:
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Figure 3.5.6. The theoretical variation of the input
signal-to-noise ratio with the sweep rate.

nof=

6/N)y, = 1k, (S/N)v

i

(3.5.13)

where k, is a constant. Although the "wiggles' will dominate the
signal-to-noise ratio at extremely fast sweep rates,‘ they do not make
an important contribution at the sweep rates available with our
spectrometers. Recalling that the input signal-to-noise ratio ap-
proaches a constant value for large sweep rates and using Eq. (3.5.11)

for the input line width we find that:
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-

(8/N), = kya®. (3.5.14)

This approximation is valid for moderately large values of «. The
general variation with sweep rate of the signal-to-noise ratio resulting
from using a matched filter was calculated from Eq. (2. 8.5) using
Fig. 3.5.6 for the input signal-to-noise ratio (Fig. 3.5. 7).

We previously observed that lines with "'wiggles' were not
broadened by matched filters as much as Lorentzian lines were. This

is essentially an artifact caused by our restriction of the definition of

100

10

(/N

001 o 1 1 10 100 1000 10000

Sweep Rate (Hz/sec.)

Figure 3.5.7. The signal-to-noise ratio resulfing from using
a matched filter on the proton signal from CHCL,.
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line width to the first maximum. As we increase the sweep rate and
more "wiggles' appear, the "average' width of a "wiggle' decreases
relative to the width of the first maximum [Eq. (3.5.9)]. Since a
matched filter uses the entire line shape, the line width resulting
from use of a matched filter depends upon the "average" line width of
the input line shape. The ratio of the width of the first maximum to
the line width after using a matched filter therefore decreases with

increasing sweep rate (Fig. 3.5. 8).

L

Yo/ Y

LU T T T
o 1 1 10 100

Sweep Rate (Hz/sec.)

Figure 3.5.8. The ratio of the full width at half height after
using a matched filter to the width of the first
maximum before filtering for the proton signal
from CHCI, as a function of sweep rate.
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The effects of sweep rate on resolution enhancement filters may
be determined by considering the filtering process in frequency space.
The Fourier transform of the line shape resulting from a resolution
enhancement filter is given by:

c(q) S;" (@) 8;(w)

So(w) = = (3.5.15)
1+ q|8;(w)|

where S-l(w) is the Fourier transform of the input line shape. Since
filters take simple products in frequency space we can easily break

this filter down into a sequence of two filters:

i

{ c(q)/c(0)
L1+q‘S (w)|

So(@) = [ 87 @ | sy, (3.5. 16

where the first filter is a matched filter. The Fourier transform of

the output line shape is therefore:

B le) = (3.5.17)

1+q|S (w)|2 J m

where Sm(w) is the Fourier transform of the line shape resulting
from using a matched filter.

The line shape resulting from a matched filter is always
symmetric (see Sec. 3. 3) and except for changes in line width shows
little variation with sweep rate (Figs. 3.2.11, 3.3.1, and 3. 3.3).

The frequency response function in Eq. (3.5.17) can also be expressed
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in terms of Sm(w). The Fourier transform of the output line shape is

then:

c(q) Sm(w)

B0l c(0) + a8, (w)

(3.5.18)

It is clear that the only effect of sweep rate on resolution enhancement
filters is through the line width obtained by using a matched filter.

If we plot the signal-to-noise ratio as a function of the line width as in
section 3. 4, but normalize the line width to that obtained by the use of
a matched filter, then the resulting curve shows no observable trend

with changes in the sweep rate (Fig. 3.5.9). The asymptotic form of

these curves is easily determined by substituting Eq. (3. 3.8) for ¢n q

in Eq. (3.4.6). We find:

Limit (8/N)o . m, -1.8955v_/2v,
Q= =5/ _ ~ 1.8955 () e (3.5.19)

which is accurate to within 30% for all g greater than or equal to zero.
| The sweep rate has an important effect on resolution enhance-
ment which does ndt explicitly involve the filtering process. Both the
signal-to-noise ratio and the line width of the input signal vary with
the sweep rate (Figs. 3.5.5 and 3.5.6). If we plot the signal-to-noise
level resulting from use of a matched filter as a function of the line
width after using a matched filter, we obtain a curve indicating how
the resolution may be enhanced by decreasing the sweep rate. At any

sweep rate the resolution may be further enhanced by filtering (Fig.
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3.5.9). The possible results of the combination of these two resolu-
tion enhancement processes is indicated in Fig. 3.5.10. The curve
which is tangent to each of the smaller curves indicates a procedure
in which we optimize both the sweep rate and the filter. First, we
estimate the line width which will permit observation of a coupling.

Then we select the sweep rate (using Fig, 3.5.10) such that a

/Yo

Figure 3.5.9. The loss in signal-to-noise ratio resulting from
resolution ehnancement. The solid line was
obtained by filtering a Lorentzian. The points
shown were obtained by filtering the above CHCI,
spectra. v, is the output full width at half height
and vy, is the width resulting from using a
matched filter,
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Figure 3.5.10. Resolution enhancement in which we vary both
the sweep rate and the filter. The numbers at
the points indicate the sweep rate in Hz. This
curve was obtained from the above CHCIl,
spectra with the exception of the point a = 0,
which was obtained from the asymptotic form.

resolution enhancement filter can bring us to the tangent curve at the
desired line width. After collecting the data we then filter the
spectrum using the proper value of q so that we achieve the desired
line width. This procedure gives the maximum signal-to-noise for a
given line width when linear filters are used for n. m. r. signals.
When we select the sweep rate we must keep in mind that it

cannot be so fast that the nuclei will not return to equilibrium for the
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next scan, nor so slow that we cannot see a peak to '"tune' on in a
single scan. The latter consideration seriously limits the use of
extremely slow sweep rates for °C n.m.r. In this case, it is
(;ritical that we can use the correct line shape for resolution enhance-
ment (see Sec. 3.2).

Although Fig. 3.5.10 was obtained from experiments using a
specific sample, the basic form of this curve is quite general. The
only important variation is in the scale for the sweep rate. This scale
can be adjusted by considering the point labeled 0.1 to represent the
minimum sweep rate for which the first downward "wiggle' goes

below zero.
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4. NON-LINEAR FILTERS

These filters are easier to describe than linear filters, but are
in general more difficult to apply. The effect of a filter on a single

line is given by:
solt) = H[s;(t)], (4.1)

where s;(t) is the input line shape and sy(t) is the output line shape.

The effect of this filter on a spectrum composed of two lines is then:
I;I[ Si(t)'1 + Si(t)z] = So(t), +84(t), + H, ol s1(), Si(t)z] ’ (4.2)

where H,, is the non-linear interaction term:. This interaction term
may be comparable to the linear terms. We therefore must know

(or assunie) the multiplicity of a spectrum before we can apply non-
linear Zilters. Although we could filter a spectrum assuming several
different multiplicities and afterwards select the best one, linear
filters are clearly sinipler to apply in this case. In the discussion

Which follows we shall assume that the numbeij of lines is known.
4.1 The Principle of Maximum Likelihood

A very useful group of filters is obtained by a statistical
approach. We seek a basis for deciding that some quantity, x, lies in

a certain interval.

X, €X €X,, (4.1.1)
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This decision is clearly valid only if:
P(x, <x <x,) > 1/2 (4.1.2)

where P(X) is the probability that X is true. Since this condition
does not uniquely define X, and x,, any method of measuring x must
include additional conditions. There is no rigorous approach to
defining the best set of additional conditions. A reasonable approach
might be to find the smallest interval which satisfies Eq. (4.1.2).
This does not appear to be very practical s'm‘ce it does not suggest
any method of finding this interval. A very common approach is the

principle of maximum 1ikelihood.30

P(xo

value of x as an estimate of the true value. We then use the limits to

We select x, such that

n

X < X, + dx) is a maximum. That is, we use the most probable

which we can determine x, for the values of x, and x,. It is only the
interval (x,, x,) that has any statistical significance. Although x, is
the most probable value of x, the interval (x,, x,) is not generally the
smallest interval satisfying Eq. (4.1.2). There is no justification for
assuming that the principle of maximum likeliilood is the most power-
ful approach to measuring x. Later, we shall examine an important‘
example for which it is not the most powerful approach.

If we wish to determine f, we can do an experiment and obtain
a value f; which will differ from f by the error or noise. The

probability that the error, f;-f, lies between f' and £+ df is given by:

’

P('<f;-f<f'+df) = o()df, (4.1.3)
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31

where ¢(f’) is the probability density function " of the noise. If we

measure f a total of NT times, then the definition of the above

probability is:

" " | NE'<f;-f<f +df
P(f <f-f<f'+df) = Limit‘_ & =5 i

!
4.1.4
[t N 1, (4.1.4)

where N(X) is the number of measurements that satisfy X. From
Eqs. (4.1.3) and (4.1.4) we see that we can measure ¢(f') by using

the following approximation:

; ’S . < f! J T<f _ < 7 )
¢(f,+%g) . LN(f f-f<f'+ Af)x VNE <f,-f f+Af)J’
N Af

(4.1.5)
if we know f. The probability density function of the noise spectrum
referred to in section 2.5 is shown in Fig. 4.1.1. The true value of
the zero point was assumed to be the average value n. The probability
density function of this noise is not distinguishable from a Gaussian.
This is the probability density function for the noise measured at
different times. In a multiple-scan experiment, the value of the signal
at any point in the spectrum is the average of measurements made at
many different times (the individual scans). The average over this
ensemble of scans is therefore in reality a time average. That is,
regardless of the nature of the noise in a single scan, the noise in a
multiple-scan experiment is effectively ergodic. We can therefore
assume that the noise at each data point of an n. m.r. spectrum has a

Gaussian probability density function:
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Figure 4.1.1. The points are the probability density
function of noise from the D¥S-60 spectro-
meter. The curve is a Gaussian.
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2T ©O

dLEi(t) -1(t)] = (4.1.6)

where o is the variance of the noise. The probability density function

for the N data points of the spectrum is thus:32

t -1
1 -~z ({-0)" CT ({1~ )
o -f) = e RIS X WY 4.1.7
calle (%ﬁNig ( )

where f is the vector with components f(t;), ,i:i is the vector with

]
components fi(tj) and ft is the transpose of f. The covariance matrix,
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C, has components:
Cik = foc!fi(tj)“f(tj)][fi(tk)'f(tk)]¢(£i'£)d£- (4.1.8)

This is an ensemble average. Since the noise is effectively ergodic

we can substitute a time average:

i f_[fi(tj)'f(tj)][fi(tk)-f(tk)]dtj, (4.1.9)
or.:
Cik = J ) - 1) 15ty - £+ 1) - £ty -ty +7)] dr. (4.1, 10)

The last expression is simply the autocorrelation function r(tk —tj)
for the noise (Sec. 2.3). In section 2.5, it was shown that the noise
in an unfiltered n. m.r. spectrum is white. The autocorrelation
function is therefore a delta function (Sec. 2. 3).

We can check this by calculating this integral using the above
experimental noise spectrum. The result (Fig. 4.1.2) clearly

indicates that the assumption that r(tk - t]-) is a delta function is quite

good. The components of the covariance matrix are simply:

and the determinant, |Cl, is equal to N,
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Figure 4.1.2. The autocorrelation function [Eq. (2.3.35)]
of noise from the DFS-60 spectrometer,

The total probabilily of the spectrum is:

N
,_y_jl[fi(tj) -1(t)]°/26°

» S - S |
= = N iy © ’

faNe]
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which is the product of the probabilities of the individual data points.
The data points are therefore independent for white ergodic Gaussian
noise. The probability is a maximum when the exponent in Eq. (4.1.12)
is a minimum. The principle of maximum likelihood leads to a simple
least-squares procedure for white Gaussian ergodic noise. We have
shown that the noise in an unfiltered n. m. r. spectrum has these
properties. The principle of maximum likelihood therefore gives the

form of i which minimizes the function:

® = 21 [£(t) - £(t)]% (4.1.13)
j=1 J ]
as the most probable form, f,, for a multiple-scan n. m.r. spectrum.
The situation is more complicated if the noise is not white.
[f an RC filter were used, the noise would still be Gaussian33 and
ergodic, but not white. We should then have to minimize the exponent

in Eq. (4.1.7). That is, we must find the minimum of the more

general function:

® = (-9 C7(4-9), | (4.1.14)

~

in order to determine f;, the most probable f. We shall limit our

discussion to the simpler case of white noise.
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4.2 Least-Squares Filters

P A P P NS AV

Let a spectrum be composed of n lines with kj variable param-
eters for the line shape of line j, where j = 1,2,---n. These param-
eters may include position, height, width, etc. There are M variable

parameters in all, where:
M = = k. . (4.2.1)

Let b be a vector of dimension M whose components are the line-shape
parameters. Then the spectrum is composed of the sum of the n lines,
f(t, b), and random noise. The function, f(t,b) may be known either

analytically or through a table of numerical values. The most probable

value of E is the value which minimizes the function:
® = [ [4(t) - £(t,0)]° dt, (4.2.2)

where f;(t) is the experimental spectrum. This is in general a non}
linear problem which is ill-conditioned. That is, the bj are strongiy |
coupled, and the problem is difficult to solve numerically. This

approach does have the advantage that there is no systematic error in

the result 34

as with linear filters (Sec. 3.3). If the signal-to-noise
ratio is sufficiently large, then the observed separation of two lines
exactly equals the calculated separation. The values of the peak

positions obtained in b are the most probable values. If the number

and relative size of the lines is known, then the statistical approach
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is feasible. We shall use two simple filters to illustrate the above
remarks.

We first examine filtering an input spectrum f;(t) composed of
a single line with known line-shape function si(t). The only unknown
parameters are the position and amplitude of the line. The theoretical

spectrum is therefore given by:

f(t, b) = as,(t-95), (4.2.3)

where as;(0) is the amplitude and 6 is the positidn of the maximum

of f(t). Substituting Eq. (4.2.3) in Eq. (4.2.2) we obtain:

P = fm[fi(t)-asi(t—ﬁ)]zdt. (4.2.4)

-0

Expansion of the integrand gives:

® = [ t(dt-2af s;t-8)f(t)dt+a’ [ s(t)dt. (4.2.5)

The value of a which minimizes ® satisfies the condition:

o =]

[w}}

d

= =0 = 2af sft)at - 2 [ s;(t-0)f(t) dt, (4.2.6)
a - -
so that:
) a0 =1 o0
Apmin = | S si®at | [ si(t-6) () dt. (4.2.7)
-0 —00
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Substituting this value of a in Eq. (4.1.5) gives:

"2

@, :f dtwa t)dtJ Lf it-0)fiMd| . (4.2.8)

min i

This function is clearly a minimum when the second term is a
maximum, but the second term is a maximum when the output from a
matched filter [Eq. (1.1.6)] is a maximum. The position of a single
line obtained by the method of least-squares is therefore identical to
that obtained with a matched filter. The amplitude obtained by the

method of least squares is given by:

<0 "1 =

fo(8) = a,.;,8;0) = s;(0) [ f msf(t) dtJ f ms {(t=80)f; (t) at, (4.2.9)
which is precisely the amplitude obtained by using a matched filter.
Since Eq. (4.2.9) gives the most probable amplitude of a line with a
maximum at §,, for anyo6,, we have simply given an alternate deri-
vation of Eq. (1.1.6).

If the input spectrum is composed of a single line (or several
lines which do not overlap), the non-linear interaction term in Eq.

(4. 2) vanishes and the method of least-squares is equivalent to using

a matched filter.
It is of interest to consider the more general case of filtering a
single line when the noise is not white. The principle of maximum

likelihood then leads to seeking the minimum of @ in Eq. (4.1.14).
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From Eq. (4.1.10), we see that if the noise is colored, but still

Gaussian and ergodic, then we must find the minimum of the function:

@ = [ [ [fi(t,) - £t ) [ £(t,) - £(t)] v 77 (- £,) dt, dt, (4.2.10)

-00 =00

rather than Eq. (4.2.2). The inverse of the autocorrelation function,

-1

r , is defined by:

fwr(f)r'l(t-f) ar = 5(t). (4.2.11)

where §&(t) is the Dirac delta function. Taking the Fourier transform

of both sides, we find:
RwR Hw) = 1 (4.2.12)

where we have used Egs. (2.2.9) and (2.3.33). Substituting Eq.
(2.3.39) for R(w) we see that:

1

Bl = 27W(w)

(4.2.13)
This suggests that these "'generalized least-squares' filters [ Eq.
(4.2.10)] are described more concisely in frequency space.

We now substitute Eq. (4.2, 3) for f(t) in Eq. (4.2.10). By the
same arguments used to obtain Eq. (4.2.9), we see that we can

determine the most probable value of 6 by finding the maximum of the

function:
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5;0) [ [ £(t) sy(t,-8) v (t,-t,) dt, at, |
fa(8) = = . (4. 2.14)
f [ sty s4(ts) r 7 k-t dt, dt,

Since the denominator is a constant, independent of 6, we can

rearrange Eq. (4. 2. 14) to give:

- o]

£2(6) = c [ s;(t,-8) [ fi(t)r (t,-t,) dt, dt,. (4. 2.15)

We define the intermediate function f,(t,) b

fi(t;) = [ £(t)r 7 (t-t,) dt, dt,, (4.2.16)
so that:
£,(8) = ¢ [ £,(t,) s3[-(6-1,)] dt.. (4.2.17)

As suggested by the properties of r~', we now take Fourier transforms
of Egs. (4.2.16) and (4.2.17) giving:
*
c §; (w)

Fo(w) = m Fi(w). : (4.2.18)

This is the general form of a matched filter [ Eq. (2.4.22)]. For

Gaussian ergodic noise, the principle of maximum likelihood leads to

a "o

generalized least-squares' procedure. In the case of
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non-overlapping lines, this procedure is equivalent to a matched
filter, regardless of the power spectral density of the noise.

We now examine filtering an input spectrum composed of two
é:losely spaced lines of equal size, such as we find in either half of

an AX spectrum. The theoretical spectrum is given by:
f(t,b) = al s, (- 8+372) + s;(t-6- J/2)] (4.2.19)

where & is the chemical shift and J is the spin-spin coupling constant.
The chemical shift can be measured by using a matched filter and so
we assume that it is known. The only unknowns are a and J.
Substituting this in Eq. (4.2.2) we obtain:

0

= [ i) dt-2a [ [sy(t-6+T/2) +s;(t-56-3/2)] (1) dt

-0

(4.2.20)

+af (t-6+3/2) + 85(t-6-3/2)]°d

The last two integrals can be expressed in terms of the convolution

integrals for a matched filter:

sm(t) = c(O)f si(—-r) syt - ) dr, (4.2.21)

- 00

and:

o0

fnt) = ¢(0) f si(-7) fi(t-7) dr. (4.2.22)
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The function we wish to minimize is then:

oq g 9
[mfi (t)dt - E;(%) [f (6+3/2)+1_(6-3/2)]

+ zaz) [sm(O) + sm(J)]. (4. 2.23)

It follows that @ is a minimum only if:

£ (6+J/2)+f 6 J/2)

a = c(0) 2 . [Sm 0 sm(J)] A (4.2.24)

Substituting this value of a in Eq. (4.2.23) we find:

[fm(es +d/2) + £_(6-3/2)]
2[5,,(0) + 5,,(]

f £(

(4.2.25)

amm

The most probable value of J is clearly the one for which the second
term on the right is a maximum. We shall call this term gz(J). The
most probable amplitude of lines with chemical shift 6 and spin-spin
coupling constant J is given by:

£ ,(6+3/2) +£ (6-3/2)

_ m
ammsl(o = ¢(0) 5;(0) - [sm(O) A sm(J)] . (4.2.26)

This function is not necessarily a maximum when g°(J) is a maximum.

Both gz(J) and a(J)

) min Were calculated for the spectrum shown in
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Fig. 3.2.1, The most probable value of a, a,, is not the maximum
value. It is the value of a(J )min which corresponds to the maximum of
g?(J) (Fig. 4.2.1). Rather than study g?(J), we shall find it more

convenient to determine the maximum of the function:

£, (5+3/2) +£,(6-3/2)

gd) = 5 (4.2.27)
\/E[sm(O) + 8, ()]2
-
= 9 .
Figure 4.2.1. The normalized functions, gz(J) and

a'(J)mi.n corresponding to the gpectrum
shown in Figure 3.2. 1.
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This function takes an average of fm(ﬁ +J/2) and fm(iS -J/2). That is,
it averages the output of a matched filter about the center (t = §).
This is because we assumed that fi(t) should be symmetric about

t = 5. If we define the '"non-averaged" function h(t) as:

s

it

ht) = V21 () {s (0] +s [2(t-8)]}2, (4.2.28)

then:
gd) = £[h(6+J/2) + h(6-3/2)]. (4.2.29)

From Eqgs. (4. 2), (4.2.9), and (4.2.19) we see that the non-linear

interaction term is given by:

D=

VZ- {Lespgl2(t-0)) /gl 0]}

le[s'(t)lss'(t)z] = 1
- ! ! {s 0]+ [2(t-6)]}z

{80(t); +so(t), } .
(4.2.30)

Least-squares filters are non-linear for the case of overlapping
lines. Interaction terms appear in both the position and the amplitude
functions. Neither is the sum of two analogous expressions involving
the individual lines.

If a closely spaced doublet is processed with a matched filter,
the maxima in the output spectrum are too close together (Sec. 3.3).
A least-squares filter multiplies the matched filter output by the

function:

x(t,8) = V2 {s,[0]+ s [2¢-8)]} 7%, (4.2.31)
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to give a spectrum with the maxima in the most probable positions.

A least-squares filter produces maxima in the most probable
positions even if a matched filter gives only one maximum at t = §.
Since x(t, 5) varies by only a factor of V2 betweent =6 and t = ®,
the maxima of the output spectrum are not much greater than the
output at t = § (Fig. 4.2.1). We would not expect the simple expedient
of multiplying the matched filter output by x(t, 6) to be as powerful a
technique as using the linear resolution enhancement filters developed
earlier. In the next section we shall make a quantitative comparison

between the two.

4.3 Comparison of Linear and Non-Linear Filters

We shall examine non-linear filters first. The signal-to-noise
ratio of g(J) determines whether or not we can measure J and with
what accuracy. From Eq. (4.2.28) we see that the signal-to-noise

ratio of g(J) is given by:

(8/N), = V2 (8/N), (4.3.1)

where (S/N)m is the signal-to-noise ratio resulting from a matched
filter. This signal-to-noise level is a measure of the ratio of

[g(T,) - g(=0)] to the root-mean-square noise level. This is the signal-
to-noise level available to distinguish between two lines separated by
J, and two lines separated by « (or no lines at all). We are interested
in the signal-to-noise level available to measure J. That is, we wish

to distinguish between two lines separated by J, and a single line
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(J =0). From Fig. 4.2.1 it is clear that the signal-to-noise level

available to measure J is given by:

gd,) - g(0)

(S/N)J ) g(dy)

(S/N)g. (4.3.2)
The factor of V2 in Eq. (4.3.1) arises from the averaging

effect discussed in the previous section. In order to make a valid

comparison with linear filters we shall omit this factor and consider

the function:

g(Jo) - g(0)

&Mz, = =t

(S/N)m. (4.3.3)
This function has been c¢alculated for both a Lorentzian line shape

(e =0) and for the line shape shown in Fig. 3.1 (& = 0.2). The resulis
(Fig. 4.3.1) are almost identical for the two cases, if we normalize
the separation, J,, to the full width at half height resulting from a
matched filter. Just as we previously found for linear filters

(Fig. 3.5.9), non-linear resolution enhancement filters give results
which are independent of the sweep rate if we normalize to the line
width from a matched filter.

We are now ready to examine linear filters. The output of a

linear filter is given by:

-]

t,® = [ () ft-7) dr (4.3.4)

- 00
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01—
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Figure 4.3.1. The signal-to-noise ratio available to measure a
spin-spin coupling constant as a function of the
coupling, J,. The line width resulting from a

matched filter is vy, and a is the sweep rate in Hz.

where  determines the degree of resolution enhancement (Sec. 3. 4).
This function has a signal-to-noise ratio which is approximately

given by:

B/Ny + —L 1 /M), (4.3.5)

L+ (g47)®



123

where (S/N)m is the signal-to-noise ratio resulting from a matched
filter. In order to improve our accuracy, we shall determine (S/N)q
numerically (Sec. 2.8), rather than use Eq. (4.3.5). This is the
signal-to-noise ratio available to determine whether or not there are
any lines in the spectrum. We are interested in the signal-to-noise
level available to measure J. It is clear from Fig. 2.1.2 that this is

approximately given by:

[sq(0)+sq(J)] - 2[sq(J/z)]
s . (0)

(S/N)q, j = (S/N)g, (4.3.6)

where s q(t:) is the output line shape of a single line with a maximum
att = 0. This function is independent of the sweep rate, @, since the
line shape resulting from resolution enhancement is indepen;dent of
o (Sec. 3.3). We therefore computed (S/N)q,J only for the case
a = 0. The results show considerable variation with g (Fig. 4. 3. 2).
The "'wiggles' in these curves for large q result from the "wiggles"
in the line shape (Fig. 3.3.1).

The signal-to-noise ratio, (S/N)q, decreases with increasing

q [Eq. (4.3.5)]. The line width, v_, also decreases with increasing

q’
q (Fig. 3.5.9). Combining these relations, we obtain the family of
curves shown in Fig. 4.3.3. We can use Fig. 4.3.3 to determine the
optimum value of q. The signal-to-noise level available to measure
J with this optimized process is given by the envelope (the dashed

line in Fig. 4.3.3) of the family of curves, (S/N)q I
. 3
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1~
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S/NYisim),

01—

q=0 25 45000

.001 T T
1 1 10

W,

Figure 4.3.2. The fraction of the signal-to-noise level
available to measure J using linear resolution
enhancement filters. The output line width is v

a-

Finally, we are ready to compare the linear and non-linear
filters for the resolution of two identical lines separated by J (Fig.
4.3.4). We have also included the results obtainable with a matched
filter. The resolution enhancement of a filter is essentially any
improvement over a matched filter.

It seems clear that no filter can resolve two lines separated by
J, if the position of a single line cannot be measured to within +J.

We therefore include the signal-to-noise level available to measure
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Figure 4.3.3. The signal-to-noise level available to
measure J when linear resolution enhance-
ment filters are used.

a peak position of a single line to within +J in Fig. 4.3.4. This is
essentially an upper bound on the resolution which should be possible.
Linear resolution enhancement filters come very close to this upper
bound in the region of primary interest. They are more powerful than
least-squares filters for any reasonable loss in the signal-to-noiée
ratio.

- Least-squares filters perform well under two conditions. The

first is the trivial case of large separation between lines.
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Figure 4.3.4. The signal-to-noise level available to
measure J by various methods.

The least-squares filter is then a matched filter and is identical to
the linear resolution enhancement filter. The second case is of
practical importance. If we wish to resolve two lines of drastically
different size, the "wiggles' in the tail of the line shape from linear
v‘fiIters will interfere (Fig. 3.2.8). A least-squares filter does not
suffer from this problem. Resolving lines of drastically different
size is considered in the next section.

It is convenient to assign a line width to non-linear filters, in

order to discuss the effects of varying sweep rates on these filters.
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We define the effective line width as follows:

J :
Veff.x = {[—j;i] Vq} const. (S/N)/(S/N)m ’ (4_ 3. ()]

where J is the minimum separation which can be measured by

method x, J_ is the minimum separation which can be measured with

linear resolztion enhancement filters, and v q is the line width result-
iﬁg from the optimum linear filter. Suppose we have sufficient signal-
to-noise that we can afford to reduce the signal-to-noise ratio to 0.1
times that available with a matched filter. We can then measure a
coupling greater than or equal to 0.25 Vi, With linear resolution
enhancement filters. Using least-squares filters we can measure a
coupling greater than or equal to 0. 55 V- The linear resolution
enhancement filter has an output line width of approximately 0. 17 Yia

when the signal-to-noise ratio is reduced by a factor of 10. The

effective line width of the least-squares filter is therefore:

. [{0.55
VL.g, T {(m ) 0.17 vy, }(S/N) - 0.1(8/N) " ks Bia B

We have calculated Y1, 8. for several values of the available
signal-to-noise ratio and obtained a curve similar to that previously
obtained for linear resolution enhancement filters (Fig. 3.5.9). We
then determined the envelope of these curves as the sweep rate is
varied, just as we had previously done for linear resolution enhance-

ment filters (Fig. 3.5.10). This envelope (Fig. 4.3.5) gives the
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Figure 4.3.5. Resolution enhancement by various methods
in which the sweep rate is varied
(see Figure 3.5.10).

maximum signal-to-noise level available as a function of the effective
line width of a least-squares filter. The uppe:f' bound shown in Fig.
4 3.5 was obtained by performing the idénticai calculations for the
upper bound in Fig. 4. 3.4.

The time constant of an RC filter can be‘used as a resolution
enhancement parameter analogous to q (Fig. 3.4.1), however the
;output line width is never less than the input line width. We can
therefore obtain a curve similar to that in Fig. 3.5.9 for an RC filter.
Although the resultipg curve for an RC filter varies with the sweep

rate since these filters are not based upon the exact line shape, we can
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still determine the envelope of these curves as the sweep rate is
varied. The result is shown in Fig. 4.3.5.

We have also reproduced the analogous curves for matched
filters and for optimum linear resolution enhancement filters in
Fig. 4.3.5. We can now compare all the important filters that we
have discussed so far. First, we should note that our definition of
the effective line width [Eq. (4.3.7)] was somewhat arbitrary and
therefore the details of the curves for the upper bound and the least-
squares filters are also somewhat arbitrary. They are qualitatively
significant however. Least-squares filters are definitely intermediate
between optimum linear resolution enhancement filters and matched
filters. We should also keep in mind that we have no reason to believe
that the upper bound in Fig. 4. 3.5 is the smallest upper bound.

The simple RC filter which is built into most commercially
available n.m.r. spectrometers is clearly adequate for all routine
work. There are two general circumstances when it should not be
used. The first is the obvious case of the resolution of lines
separated by less than the "natural line width" [J < - (a=0)/2].
The "natural line width" is usually determined by the inhomogeneity
of the magnetic field (Sec. 3.5). The second case is that of spectra
with inherently low signal-to-noise levels, such as natural abundance
C or N spectra. For the sweep rates considered (Fig. 3.5. 10),
optimum linear resolution enhancement filters give an improvement
in the signal-to-noise level of about a factor of 2 over RC filters

(Fig. 4.3.5). This represents a reduction of the number of scans
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which must be recorded by a factor of 4. Optimum linear resolution
enhancement filters are the most powerful filters we presently have
for dealing with lines of comparable size. We now consider the

problem of filtering lines of drastically different size.
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5. RESOLUTION OF SATELLITE PEAKS

Let X be a magnetic nucleus (e. g., 13C) whose natural
abundance is small. Let Y be a nucleus which is coupled only to X.
If we measure the absorption spectrum of Y, we find a large parent
peak at 6, and two small satellite peaks at approximately Syt dyy/2.
The parent peak results from those molecules which do not contain an
X nucleus (e.g., they have a *C nucleus with spin 0 rather than a o
nucleus with spin 1/2). The satellite peaks arise from the small
percentage of molecules which contain X.

If X and Y have similar resonance frequencies, the satellites
will not be symmetric about GY' We shall therefore adopt the
following notation for spin-spin coupling constants: the upfield '"shift"

shall be labeled J,  and the downfield "'shift" J_ (Fig. 5.1). That is:

J =J -J. (5.1)

If J is large, the optimum linear filters discussed earliér give
the maximum signal-to-noise available to measure J. We shall
examine two approaches for resolving satellite peaks when J is small.
The first is a least-squares method. The second is a non-linear
method which is closely related to linear resolution enhancement
filters. The detection of satellite peaks which overlap the parent peak
requires extremely accurate knowledge of the line shape of the parent
peak. It is not practical to attempt a separate measurement of the

line shape with sufficient accuracy (Figs. 3.2.7 and 3. 2. 8) to detect
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_/ \

Figure 5.1. The definitionof J_ and J .
the small satellites. Both approaches we consider therefore
‘determine the line shape from the spectrum of the sample,

5.1 The Least-Squares Approach

e et e T e WL LR Y

The intensity of a satellite peak such as that from '*C in natural
abundance is of the order of 0.5% of the intensity of the parent peak.
To first order we can ignore the satellite and perform a least-squares
fit to the parent peak [i.e., we can minimize ® in Eq. (4.2.2) while

omitting the satellite from £(t, E)]
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The shape of a resonance signal will depend upon the sweep
rate and the relaxation times. The qualitative variation of the line
shape with the sweep rate, o, was considered in section 3. 5.
Jacobsohn and Wangsness 4B have calculated the exact line shapes of
n.m.r. absorption signals when a small rf field is applied (Fig. 5.1.1).
The asymptotic form of these line shapes is identical to the form for

adiabatic pass-;age35 (= 0). This form is:

Limit

A g(v) rlm T,
p—--x

; 5.1.1
1+ (AvT,)® ( )

where |',v\ is the absolute value of the gyromagnetic ratio, i, is the

resonance frequency, v is the frequency of the rf field, Av = v -y,

gy
Wi, Ty

I 1
4

o
£
N
o
»n
o
o
s
i<

14

AV, ‘
Figure 5.1.1. Line shapes of n. m.r. absorption signals
for varying sweep rates (Jacobsohn and
Wangsness °?).
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2H, is the amplitude of the rf field, and T, is the total relaxation
time (i.e., T, takes into account broadening due to inhomogeneity of
the strong magnetic field).

In an actual experiment it is difficult to avoid mixing in a small

amount of dispersion mode. In fact, this can be helpful, by reducing

the line width. The proper asymptotic form is therefore: 35
Limit _, || H,T,
B o(y) = —————— [1 - d(AVT,)] (5.1.2)
Ay L+ (AVT,)* o

where d determines the amount of dispersion mode. From Fig. 5.1.1

we see that this approximation is fairly good if:
AvT, < -2. (5.1.3)

We therefore make the approximation:

; a
glv) £+ ———([1-d(an)]; vsv (5.1.4)
o@D ST
where a, b, db, and v, are determined by least-squares fitting.

The value of v o chosen so that:

.05 < g(vmax)/g(v)max < 0.5. (5.1.5)

That is, we are able to fit the experimental curve with Eq. (5.1, 4)
up to the point where it reaches 0. 05 to 0.5 of the peak height. The

procedure for the least-squares fit is discussed in the next section.
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5.2 Least-Squares Fitting with Non-Linear Parameters

We wish to approximate a set of N experimental points fi(xj),
j=1,2,...N by the function f(§, b). The vector b is a set of M

parameters we shall vary so as to minimize:

® = 2 |f(x) - 1x;,D)|%. (5.2.1)
j J ¥ e
A necessary condition for ® to be a minimum is that:
= @} k=12,....M. (5.2.2
abk ’ b )

If the parameters, b, are non-linear, this problem cannot in general
‘be solved directly. The most common approach is the Taylor series
method of linear approximation. This is the method currently used by

36

most crystallographers. It consists of taking only the linear term

in the Taylor series expansion of the function {:

M

(%, by + 6) = f(x,bg) + 2 pile b 5.2.3
% ,\0+,\T) s §’,\0) o 1“(‘;1 3 by Ok (5.2.3)
This gives the approximation for &:
N M a3f(x;, by)
Y\ )’ -0 2
& = 2 {f.(x)-f(x;,by) - 24 — =" 5_} . (5.2.4)
j=1 U1 YTk abg %

The set of conditions, Eq. (5.2.2), then becomes:
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N M 5f(x;, b,) of(x;, by)
= 2224 f.(x.) - f(x. ) P B L 4 W
(5.2.5)
£=01,2:..-M.
Rearranging this, we obtain the set of linear equations:
M N 5f(x;, b,) 9f(x:,b
E E (x]’ AD) ()L‘l, ,\0) 6k _
k=1j=1 by by
(D 2. 6)
N af(x., by) :
27 [f.(x:) - f(x. M L TR O S
]':1 [fl(x]) f(X]’ 9\0)] abﬂ 3 ? - B M'

These equations can be written more concisely in the matrix form:

Abp = g | (5.2.17)

Zl‘l_l a1(x;, bo) D£(xj, bo)

Ak = e, oy (5.2.8)
and:
N 3f(x;, by)
= ]! AO
g = El[fi(xj) - 2y )] =g (5.2.9)

The solution of these equations is then:

op = AT'g. (5.2.10)
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After solving for Op, We then set b equal to by + Orps and iterate until
b converges. This set of equations can in principle be solved by
Gaussian elimination; however, in practice we find that for the

problem of interest the matrix A is ill-conditioned and the method

does not work. This is because the diagonal elements of A are small

compared to the off diagonal elements.37

Another common approach is the gradient technique which

iteratively moves in the direction of steepest descent on the & surface.

That is:

3®/db,

8, = -| 3%/ob, | . (5.2.11)

Substitution of Eq. (5.2.1) for ® gives:

L 31(x;, b)
B = 2 jE:I L£305) - 16, - —5- =1 (5.2.12)

Substituting Eq. (4.5.9) for g We find:
o = -2g, (5.2.13)

so that:

Qg = 'Zﬁ- (5.2.14)
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This method suffers from extremely slow convergence near the
minimum. The Taylor series method converges rapidly only near the
minimum. Ideally, we should use the gradient method first, and
swifch to the Taylor series method near the minimum. In order to do
this we must find a way to get around the ill-conditioning of A. The

most obvious way to make A "better conditioned" is to construct:

A+M)J = g, (5.2.15)

38

and decrease A as we approach the minimum. Marquardt has

shown that: 1) 8§, minimizes @ on the "sphere” of radius ||5,||;

2] HQO H is a continuous decreasing function of A, such that as A — =,
|6, || = 0; 3) let ¥ be the angle between 5, and 0y Theny isa
continuous decreasing function of » such that as A - %, = 0; i.e.,
0, rotates toward Qg as A —«, Hence, this method is an interpolation
between the above methods. Since Op is independent of scale, but

ig is not, we must rescale A and g to be dimensionless. A convenient
scale is the root-mean-square value of [afo(xj)/abk]. This leads to

the definition of the scaled quantities:

A* L (5.2.16)
jk ’ L.
VAjj VApic
gX = g /YA, (5.2.17)

and:

6. = 6. /VA.:, (5.2.18)
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where 6 for the rth iteration is obtained from the solution of:

(é*(r) & )t(r)‘_I\) Q*(r) - g\*(r). (5.2.19)

The only question remaining is the selection of an appropriate

value for A(r). It is clear that ®(r+1) must be less than rI)(r) or the

process will not converge. A procedure which has been found to work

well is as follows:38

Let g = 10

1 e W /g = o1, 1et A®) 221/,
2. 1 o0T /g > 30, anaan0-) < oD,

let A(r) = A(r'l).

3. If @(h(r-l)/q) > (I)(r"l)’ and @(h(r—l)) %y q)(r_]_),

increase A by successive multiplication by q until for
some smallest m, ®(T~D ™) < @(r”l)’ let

AT -1) m

4, If Eq. (4.5.19) is ill-conditioned and cannot be solved,
increase X by successive multiplication by q until for

some smallest m, we can solve Eq. (5.2.19), let
K(r) - ;\(r'l)qm'

The non-linear least-squares procedure involves the calculation
of many thousands of quantities af(x]., b) /a by. It is essential that

these quantities be calculated in a reasonably efficient manner. Let
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the function, f, be given by:

1-DB(x-x,)
1+b(x-x,)°

f(x) = ¥, + al (5.2.20)

We then calculate the necessary quantities according to the following

algorithm.
Number of Multiplications

1. B2 = b+b
2. ADB = a *DB
3. D012 j=1.2 ...
4. XJ = x(j) - %
5. BX2 = 1,/(1.+ BxXJ? 2
6. 8fj/da = (1.-DBx XJ) * BX2 2
8 f]. = a:»c(afj/aat)+y0 1
8. afj/aDB = -ax* XJ x BX2 2
9. DFF = (afj/aa)*(afj/aDB) 1
10. 3fj/db = XJ % DFF 1
11. 8f,/d9x, = ADB* BX2 - B2 x DFF 2
12. af/9y, = 1. L

11

Thus, there are a total of approximately 11N multiplications required
to evaluate these quantities. This leads to an efficient and practical
program for filtering spectra. The values of the parameters, b, which
we obtain have a high degree of uncertainty. This uncertainty results

from the ill-conditioning of A, which is caused by the large
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correlations between the parameters, b. It is irrelevant for our
present purposes, since the important point is that the deviations

between fi and f should be small. This condition can be satisfied.

5.3 Filteripﬁ the Satellite Peak

After performing the least-squares fit of the parent peak, we
are ready to search for the satellite peak. We remove the parent
peak by subiracting the Lorentzian we have determined by least-

squares fitting from the experimental spectrum:

where fi(t) is the set of data points. The line shape of the satellite
peak is significantly distorted, because the fitting procedure attempts
to remove the satellite. The least-squares fit and the resulting
distorted line shape are shown in Fig. 5.3.1 where the size of the
satellite peak is exaggerated for clarity.

This distortion caﬁ_n be eliminated. The ‘;approximate position of
the satellite can be determined from f,(t) (Fig. 5.3.1). We then

construct:

f 1) = () - £5(1), (5.3.2)

where fs(t) is the satellite. A new f,(t,b) is then determined by
least-squares fitting to fil(t-)' We remove the parent peak from f;(t)

again:
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f(t)

Figure 5.3.1. The line shape of the satellite peak is
distorted by removing the parent peak.

L) = L® - D) (5.3.3)

~!

and obtain a new spectrum of the satellite peak. Additional iterations
are possible but not necessary.
If £(t, b) fits the parent peak exactly, then the sum of the
squares of the residues, ®, is given by:
Ly
¢ = tf [ t) + ny(t)]” dt, (5.3. 4)

"\



- 143

where fg (t) is the satellite peak and ni(t) is the input noise. From
Fig. 5.3.1 we see that in practice the value of & after the first
iteration, ®, is somewhat better described by:
t, "
® = [ [+3f5(t) + ny()] at. (5.3.5)
tl
If fg (t) and n.l(t) are of the same order of magnitude, we can make the
further approximation:
t

t2 2
@ = if [f,®]%dt + [ [n,®)]°at, (5.3.6)
F, t

1

since the cross terms, fs(t) ni(t) and fs(t+1') ni(t+7’) tend to cancel when

the noise is white. We can express ®, more concisely as:

@, = 3B, + 8 (5.3.7)

where E 5 and En are the energy of the satellite peak and the noise
respectively [ Eq. (2.3.8)]. If we determine the exact position of the
satellite peak froxﬁ the first iteration, then fil(t) in Eq. (5.3.2) will
contain only the parent peak and noise. The sum of the squares 6f

the residues would then be given by:
& = B . (5.3, 8]

Combining Egs. (5.3.7) and (5. 3. 8) we obtain a useful condition for

the existence of a satellite at the position we determined from the
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first iteration:
d - P, = 0.25 Es' (5.3.9)

The only remaining problem is the determination of the position
of the satellite peak in the presence of random noise. The least-
squares position of the satellite peak can be determined by using a
matched filter (Sec. 4.2). The parent peak can frequently be used for
the line shape function. The examples we shall treat are all in this
category. This iterative procedure leads to a least-squares estimate
of the satellite and parent peak parameters. We have used what is
essentially a perturbation approach.

A very high signal-to-noise spectrum of the proton resonance
from chloroform was recorded using a Varian Associates Model A-60
spectrometer (Fig. 5.3.2). The Lorentzian least-squares function
[Eq. (5.2.20)] provides a very accurate description of this experi-
mental spectrum in the region of interest. If f;(t) = 0.5 £;(8), then
\‘fi(t) - f(t, 12)! < 0.0005 fi(ﬁ). A comparison of Figs. 5.1.1 and 5.3.2
ihdicates that the parameters, b, are not very good estimates of the
parameters in Eq. (5.1.2). In order to determine whether or not the
excellent fit we obtain using a Lorentzian is real, we have also

performed a least-squares fit of the same data using a Gaussian:

- DB(x - X,) J
b(x - x,)?

f(x) = y, +ai_1
e

(5.3.10)
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Figure 5.3.2, The least-squares fit of the proton
resonance of CHCl; (o= 1.0) using a
Lorentzian line shape function [ Eq. (5.2.20)].

The result (Fig. 5.3.3) is clearly unsatisfactory. In the region of
interest, Ifi(t) - f(t, E)I can be greater than 0. 005 fi(é) which is the
amplitude of a °C satellite. The parameters, b, are even less
realistic than those obtained using a Lorentzian line shape. The
parameter a in Eq. (5.3.10) is approximately 7.5 £;(6). Recalling
the correlation of the Lorentzian parameters, we conclude that the

asymptotic form [Eq. (5.1.2)] is a valid approximation in the region
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Figure 5.3.3. The least-squares fit of the proton resonance
of CHCl, (o = 1.0) using a Gaussian line
shape function [Eq. (5.3.10)].

of interest although the parameters are not well defined.

In order to determine the resolving power of these filters we
have artificially added satellite peaks to the spectrum shown in Fig.
5.3.2. If we set J_ equal to -1.90 Hz, the maximum of f,(t) falls at
-1.95 Hz (Fig. 5.3.4). We then set the maximum of fs(t) at -1, 95 Hz
[Eq. (5.3.2)] and calculate fil(t)' A second least-squares fit gives
£, (t) [Eq (5.3.3)]. The maximum of f,(t) falls at -1. 90 Hz and the
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Figure 5.3.4. The functions f,(t) (top) and f,(t) (bottom)
[Egs. (5.3.1) and (5. 3. 3)] resulting from the
above CHCIl, spectrum. A matched filter has
been used and the scale is such that £;(6) =
100. The error bars represent one standard
deviation (Sec. 6).

amplitude is within a few per cent of the correct value for the
satellite. The condition in Eq. (5.3.9) is approximately satisfied
(Fig. 5.3.4) and we have successfully resolved our artificial B
satellite. By varying where we place this artificial satellite, we find

that this filter can resolve a "C satellite if the spin-spin coupling is
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greater than about four times the line width of the parent peak.
When using this filter, there is some danger reporting a
satellite which is not real. In order to assess this danger we have
studied the above chloroform spectrum with no satellite added. The
initial filtered spectrum, f,(t) shows nothing remotely resembling a
satellite (Fig. 5.3.5). If however, we assume the existence of a *C
satellite with J_ equal to -1. 95 Hz, we obtain something strongly
resembling a satellite peak at approximately -1. 80 Hz in f,(t) (Fig.

5.3.95). The sum of the squares of the residues has increased

0,200

-

¢y = 0.026 Eg

ABSORPTION

~-0.000
= 8
{
H
L
H
H
Ll
H
i

o.400 0

0,200

ABSGRPTION

¢z = 0. 329 ES

0.0

Figure 5.3.5. The functions f,(t) and f,(t) [ Eqs. (5.3.1) and
(5.3.3)] in the absence of a satellite peak.
Note that f (t) (top) is almost entirely within one
standard deviation from zero.
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however, and we therefore conclude that there is no satellite peak at
-1.80 Hz in fi(t). The second output spectrum, f,(t), is useful only
for the refinement of our estimate of the exact value of J 4~ From
Fig. 5.3.4 we see that the signal-to-noise level available to measure
a small coupling constant when this least-squares filter can be used
is approximately half that available with a matched filter for an
infinitely large coupling.

A C spin-spin coupling constant greater than four line widths
can be measured using this least-squares filter based upon the
asymptotic form of the line shape. The loss in signal-to-noise from
resolution enhancement is rather modést. Since the "wiggles' in the
line shape obscure the satellite at high frequency, we must measure
J, separately by sweeping from high frequency to low frequehcy.
Although this doubles the work we must do, it does provide an

important check on the results.

5.4 The Pseudo-Linear AEEroach

PN PN SN IS NI NN SN S

We shall now con!sider a class of filters which are concejptually
derived from linear resolution enhancement filters, but are actually
non-linear. A linear filter requires an independent measurement of the
line shape. Since this is not practical for the resolution of satellite

peaks, we shall derive some pseudo-linear filters which determine

the line shape from the spectrum itself.
Consider a spectrum composed of n lines, all of which have the

same line shape. If there is no noise, the spectrum is given by:
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[
D’
’;
o:

&

fi(t) (5.4.1)

where 6] and a] sl(O) are the position and amplitude of the ]th line.

The Fourier transform of the spectrum is then:

i o -iw b,
Fi(w) = 8 (w)]Z_:1 a; e i. (5.4.2)

If ay is much greater than all the other a.

i we can make the approxi-

mation:

iw 5k

Si(w) = Sf(w)

Fy(w) & , (5.4.3)

Ak

for the Fourier transform of the line shape. The output of a matched

filter is given by:
F_ (@) = c(0) 8{'(») Fy(w). (5. 4. 4)

This suggests the construction of the self-filter:

-iw oy

Fo(w) = ¢(0) Fy (w) & = F; (w). (5. 4.5)

Substituting Eq. (5.4.2) for F;j(w), we find that:

‘ I_l‘ a. al IW(ﬁ]-Gk'aﬂ)

Fo(w) = ¢(0)8;"(w) S(w) ];112-.—.1 ak

(5.4.6)
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Taking the Fourier transform gives:

n n a.al
= 2a bi A= " = 5.4,
f,(t) ]_;/11:1 a sm(t Oy + 6] 8y)s ( 7)
where sm(t) is the line shape resulting from a matched filter. If ay

is indeed much greater than all the other a5 then a;a !Z/ a;. will be very
small unless j or £ or both are equal to k. The output of a self-filter

is therefore approximately:

n
f,(t) = jZZ_JIaj[sm(t- 8;) + Sy (t+8;-206)] - ay s (E-5y). (5.4.8)

The output spectrum is symmetric about t = bk. For each line in the
input spectrum at t = 5j there is a liné in the output spectrum at both
f = 5j and at t = & + (Gk— 6]-). These two lines are located symmetri-
cally with respect to ﬁk.

The simplest case of a self filter is thatv of a spectrum contain-
ing only one line and no:noise. The output spéctrum [Eq. (5.4.7)] is

then:

fot) = a,s (t-6,), (5. 4.9)

which is the output from a matched filter. If the input spectrum

contains two lines, the output spectrum becomes:
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az |

t(t) = |a,+ T J 8, (t-8,) + 2,5 (t-6,)

(5.4.10)
+ A Sm[t -8,-(8,- ba) 15

where a,s;(t-6,) is the larger of the two input lines. From Eq. (4.2)

we see that the non-linear interaction term is given by:

ay 2

H,x[51(0), 5,021 = (52) 800 + 80 [t-2(5, - 8,)] (5.4.11)

The self-filter is not a linear filter. The first term in Eq. (5.4.11)
may be neglected when filtering satellite peaks, however, the second
term is quite important. If J ” and J_ are unequal, the output spectrum
will have four satellite peaks locatedat 6 +J_ , 6 -J,, 6 +J_, and

60 -J_. U J, and J_ are equal, the output spectrum will have two
satellite peaks located at 6+J/2 and 6-J/2, and the output amplitudes
of the satellites will be twice the input amplitudes. If J , and J_ are
unequal we lose all information about which is larger. Although the
sign of B

18 v
These self-matched filters are interesting, but not at all useful.

is lost, we can still measure the magnitude \6

If J is large we can select the portion of the spectrum which contains
only the parent peak. Using this as the line shape we can construct a
matched filter for the satellites. This procedure permits the

determination of the sign of & which can be valuable for the

xy’
analysis of '*C spectra, If J is small, J , and J_ will be nearly equal,

and the fact that we cannot determine which is larger with a self-filter
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becomes unimportant. Unfortunately, a self-matched filter cannot
resolve the satellite peaks when J is small. We therefore examine
a self-resolution enhancement filter, which has the frequency
response function:
*
cla) S (w)

H(w) = =, (5.4.12)
1+q|Sp(w)]

where S¢(w) is defined by Eq. (5.4.3). We cannot use a very large
value of q, because:

Limit

P Folw) = it gy Fy(w), (5.4.13)

q*'OO

or, from Eqgs. (5.4.12) and (5. 4.3):

_ (q) S.F(w) F.( 3
Limitp ()~ SP5@F e - Lo

e = (5.4.14)
q QISf(w)lz 4

That is, for large q, f,(t) approaches a Dirac delta function of
amplitude ap, centered at t = O} The satellite peaks have been
removed. If we use modest values of q (<~15), the satellites will
still be present, but with decreased amplitudes.

Two °C satellite peaks were added to the chloroform spectrum
discussed in the previous section (J+ =J_=1.90 Hz). The spectrum
was then filtered using a self-resolution enhancement filter [ Eq.
(5.4.12)] in which the value of q was varied to obtain the minimum

interference from the parent peak. The resulting spectrum shows
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easily visible peaks in the positions of the satellites (Fig. 5.4.1).
The satellites are nicely resolved and their intensity is still more
than 25% of the intensity of satellite peaks filtered with a self-
matched filter. Unfortunately, the "wiggles" in the tail of the parent
peak also look like satellite peaks. A chloroform spectrum with no

satellites added has been filtered in the same manner (Fig. 5.4.2).

0.200 0.400 0.500 0.800 1.000 1.200
I

ABSORPTION

0.000

1 : 1 1
2,000 4.000 8.000
FREQUENCY IN_HZ

-0.800 -0,600 -0.400 -0.200

o
by
=]

Figure 5.4.1. Self-resolution enhancement spectrum
[Eq. (5.4.12)] with q = 12. The peaks at
1.4 Hz and 5.2 Hz are "°C satellites. The

amplitude of the parent peaks is reduced by
a factor of 100.
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Figure 5.4.2. Self-resolution enhancement in the absence
of satellites (see Fig. 5.4.1).

Comparing the two makes it clear that our interpretation of Fig,
5.4.1 was correct. In practice, we will not have Fig. 5.4.2
available for comparison and we will not know J in advance. The
"wiggles' in the tail of the output line shape destroy the usefulness of
these filters.

The "wiggles' in the tail of an output line shape are easily
understood by considering the limiting form [Eq. (5.4.14)]. Taking

the Fourier transform of this equation gives:
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- ... sin[(t- 6, )w]
leltfo(t) — Limit k

ol e L= 1 (5.4.15)

which is the well known oscillatory form of the Dirac delta function.
In order to remove the "wiggles' we must convert the output line
shape to some non-oscillating form. We can convert an arbitrary

input line shape to any output line shape by setting:
Hw) = ¢ So(w)/Si(w), (5.4.16)

39 points out that

if Sy(w) exists and S;(w) is never zero. Ernst
such filters exist for the conversion of a Lorentzian line to a
Gaussian line of reduced line width. This Lorentzian to Gaussian

filter has the frequency response function:

BTol ; (5.4.17)
where b describes the line width of the Lorentzian input line shape.
The line shape of a typical n. m.r. signal is not Lorentzian and the

filter which converts it to a Gaussian:

AL
e 4ﬂn2(V'1) @
H(w) = g (5.4.18)

Si(“’)

does not necessarily exist. Even if it does exist, the self-filter:
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2
b (Foy?
o T2l ¢

H(w) Sf(w)

; (5.4.19)

leads to a single output peak centered at t = Op- The Gaussian modifi-

cation of Eq. (5.4.12) is given by:
_lff__(”_t*)z 2

clg) e 4V g (w)

H(w) = -
1+ q|Sg(w)]

(5. 4.20)

This frequency response function will exist for any value of q, and if
q is not too terribly large, it will not remove the satellite peaks.

As g approaches infinity, the output line shape from this filter will
approach a Gaussian of line width v,.

The parameters Vs Vo, and b must now be determined. We
can consider these Gaussian self-filters to be a sequence of two
filters. The first is a matched filter and the second has the form of
Eq. (5.4.18) with the denominator equal to Sm(w). We therefore set
v; in Eq. (5.4.20) equal to v the line width resulting from a
matched filter. From Figs. 5.4.1 and 5. 4.2, we see that our
problem is not to narrow the output line shape, but only to remove
the "wiggles'. Since a reduction of the output line width would .feduce
the signal-to-noise ratio, we set v, equal to the output line width we

would have if b = 0. This will be a function of q. A sufficiently



158

accurate empirical estimate of this dependence is given by:

a9 % . 1
(Fm_ ) ~ 1+0.53 fn(g+1) (B iy

which is independent of the sweep rate (see Sec. 3.3).

We shall now estimate the proper value of b. The quantity
| S¢(w) F in Eq. (5.4.20) has the line shape which results from a
matched filter. Since sm(t) looks very much like a Lorentzian
function regardless of the sweep rate (Fig. 3. 3.1), one could make
the approximation:

2 . —bf!wl
|Sg(w)|” = age , (5. 4.22)

where a; and by may be determined by a least-squares procedure.
Substituting our estimates of the parameters v., v,, and b in

i
Eq. (5.4.20) we obtain:

w?

53 In(g+1

2 ' *
-[0.36b¢ T )]Sf (w)

H(w) = @ e (5.4.23)

1+ q|Sg(w)|®

for the frequency response function of a Gaussian self-filter.

This Gaussian self-filter has been applied to the above chloro-
form spectrum with satellites. In order to check our estimates of
the parameters in H(w), we varied the output line width, v,. As we

predicted above, the optimum value of v, is approximately Vq



(Fig. 5.4.3). That is, v  is the minimum output line width which will

a
eliminate the "wiggles”. The signal-te-noise ratio of the spectrum
without "wiggles™ in Fig. 5.4.3 (q = 12) is 96% of that resulting from
a self-matched filter, however, the size of the éatel].ite. peaks has
been reduced by a factor of four. 'This difficulty is easily avoided

by using the approximation given by Eq. (5.4.22) for the denominator

ABSORAPTION .
-0.200 -0,000 0,200 000 0600 0,80 1,000 1,200

-0,100

~0,700  =0.500

) L L
0.0 2.000 .03 5.0
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Figure 5.4.3. Resolution enhancement of the chloroform
spectrum (Fig. 5.3.2) with satellites added at
J. = £1,90 Hz. The Gaussian self-resolution
enhancement filter [ Eq. (5.4.20)] gives the best
results when v, is approximately equal to v
[ Bq. (5.4.23)]. -
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of Eq. (5.4.23). The frequency response function of this filter is
given by:

0.36 bf2 w? |
clq) e 1+.53 fn(q+1) Sf*(w)

H(w) = (5.4.24)
1+qa; e bflwl

where ag and bf are determined by a least-squares procedure
(Sec. 5.2.). The above chloroform spectrum with satellites has been

filtered using this frequency response function (Fig. 5.4. 4).
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Figure 5.4.4. Resolution of the chloroform spectrum
using Eq. (5. 4. 24).
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The amplitude of the satellite peaks is independent of q. We now have
a very useful pseudo-linear resolution enhancement filter for satellite
peaks.

The exponential approximation [Eq. (5.4.22)] is valid for large
w only if all "wiggles' in the input line shape are included in the
spectrum. Therefore, these filters should not be used with large
values of q for a spectrum such as that shown in Fig. 5.3.2. If all
"wiggles' are included in the spectrum, we can achieve substantial
resolution enhancement (Fig. 5.4.5). In this case, large values of q
simply reduce the signal-to-noise ratio. They do not introduce any
fluctuations which have the appearance of a satellite.

In practice, it is difficult to obtain a spectrum of the quality .of
Fig. 5.4.5 when studying (*°C, *C) coupling constants with natural
abundance samples. Several hundred scans are necessary in order to
achieve an adequate signal-to-noise ratio. With presently available
spectrometers, this introduces a broadening due to the drift of the
field (Fig. 5.4.6). When large values of q are used in Eq. (5.4.24),
these spectra tend to produce minima adjacent to the parent peak
(Fig. 5.4.7). Although this limits the resolution which is possible,
there is no problem of producing spurious "'satellite' peaks. When the
input line shape is determined primarily by field drift, the exponential
approximation [ Eq. (5.4.22)] breaks down for large w. The slow
drift of the field limits the resolution, however, we can still obtain

very useful spectra when small values of q are used (Fig. 5.4.8).
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The proton resonance of CHCl, (o= 2.5) with
satellites added (J, = 4. 75 Hz, J_ = -3.29 Hz).
The frequencies are scaled by a factor of 10.
Note that the upfield satellite is easily resolved
even though it is completely buried in the
"wiggles'' before filtering.
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Figure 5.4.6. The natural abundance *C spectrum of carbons two
and three from cyclopropyl chloride (925 scans),
courtesy of F. J. Weigert,
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Figure 5.4.7. The resolution enhancement of the spectrum in
(Fig. 150.144). 6. using Eq. (5. 4.24) for the filter
q-= .
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The resolution enhancement of the spectrum in
Fig. 5.4.6 using Eq. (5. 4. 24) for the filter

(g =1.4). The observed value of J (14.0+0.1 Hz)
compares favorably with the value (13.9+0.2 Hz)
obtained after 2, 600 scans without resolution
enhancement.

In principle we could measure an arbitrarily small spin-spin

coupling constant using the pseudo-linear filter given in Eq. (5. 4. 24).

Unfortunately, the signal-to-noise level available to measure J falls

off extremely rapidly for couplings smaller than about twice the full

width at half height resulting from a matched filter (Fig. 5. 4.9).

This is about the limit of the region which is accessible with least-

squares filters (Sec. 5.3).

The asymptotic behavior of these pseudo-linear filters can be

determined by the techniques used in section 3. 4 for linear filters.

We find that:
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. 2, (Vm)’®
Limit 8/N)o (Tdn2 ) (in_l)w e_(—%—) (_’3?) (5. 4.25)
q=ce (S/N), 2 Yo . o

The signal-to-noise level falls off much more rapidly than it does with

optimum linear resolution enhancement filters [ Eq. (3. 5. 19)]. 40

The point at which the signal-to-noise level begins to fall off is

roughly the same as the point at which "wiggles' begin to appear in

the tail of the output line shape. These "wiggles' are not important

1
%
g
_E
Z
~
2 I
N
Z
~
L
.01 T 1
1 2 4 8 18
Y Y
Figure 5.4.9. rel a

The signal-to-noise level available to measure
the position of a '’C satellite using the
pseudo-linear filter given in Eq. (5. 4. 24).
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when filtering lines of comparable magnitude since the amplitude of
the largest "wiggle' is always less than 12. 8% of the amplitude of the
peak [Eq. (5.4.15)]. We cannot afford to sacrifice much signal-to-
noise when filtering satellite spectra. The importance of removing
these "wiggles' by transforming to a Gaussian output function is
therefore somewhat questionable, since in practice we can achieve
approximately the same resolution without this transformation.

If the spin-spin coupling of the satellite peak is greater than
eight times the natural line width [Vm(a = 0)/2], we can increase the
signal-to-noise level by increasing the sweep rate. The maximum
signal-to-noise ratio is achieved when Vi 18 approximately 4J.
These filters permit the practical measurement of spin-spin coupling
constants as small as 0.5 Hz for both (**C, H) and (**C, "°C) using

natural abundance samples.

5.5 Spectral Analysis Using Satellites

Pseudo-linear and least-squares filters are complementary
rather than competitive procedures. Pseudo-linear filters can be
used to measure both J_andJ_, however théy cannot distinguish
between the two. Least-squares filters can be used to measure J _
(or J, if we sweep downfield). By using both pseudo-linear and
least-squares filters one can obtain separate measurements of J_and
J_ from a single spectrum. If J is large, this can be accomplished
by using a linear filter (Sec. 5.4). The knowledge of I, and J_ can be

valuable for the analysis of spectra.
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Natural abundance '*C spectra are much simpler than equivalent
proton spectra. If the protons are decoupled, the '*C spectrum
consists of single lines centered at the resonance frequencies of the
various carbons. The chemical shifts can be measured directly,
however the assignments of these shifts is not necessarily trivial. (L

Let us assume that the chemical shift of carbon A is known.

It is then possible to assign carbon B based upon the measured values

of J, and J_ for the (A, B) coupling. The energy levels for an AB

system 42 are shown in Table 5.5.1. Using these values we find that

TABLE 5.5.1 Energy Levels for an AB System

State Transitions Energy
1 'y +J/4 + (¥Hy/2) (2 - 0p - 0p)
BZI AZ
2 . - J/4 - (1/2) V3% +52 HE (0 - 0p)°
Al
v
3 7 = J/4 + (172) J2+4£H5(0A_GB)2
B; ‘
4 ; +J/4 - (#Hy/2) @ - 0y - 0p)

the transition energies are given by:

AEA1 = ] /2 -5 ‘/J2+¥H02(UA-— CIB)2 + (quO/Z)(Z—GA—O‘B);

{5, 5. 1)
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+3/2 - V3P 4y HE(op- 0p)° + (Hy/2)(2 - 0, - Op)

AEA2 =
(5.5.2)

‘we now define:
X* = J*/¥Hy(0y - o), (5.5.3)

and assume that X? << 1. The transition energy is then:

~J/2 - (¥He/2)(0p - og)V1+X® + (xHy/2)(2 - 0p - OR).

AEA]_ =
(5.5.4)

We can expand the square root in a Taylor's series:

VieX? = 1+ 4%% - X4+ (5.5.5)

Substituting this in Eq. (5.5.4) gives:

AEA, T -J3/2 + 3Hy(1-0,) - (¥H/2)(0p - o) (3X° - 5X%). (5.5.6)

Using the definitions of J_ and 65 g this becomes:

I_ = -3/2-5[@%/8,p) - 5@ /05p)]. (5.5.7)

Treating Eq. (5.5.2) similarly, we find:
(5.5.8)

I, % +3/2 -5 [0%/6pp) - 3@/04p)]-
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Therefore:

I, +3_ % 2[@%/85p) - 50054 5)]. (5.5.9)

Finally, we rearrange this expression and obtain:

er J?
5 = 9 11 (5.5.10)
AB ~ 2(J J 2 ,

J,+J) 4635

This relationship can be quite useful in the assignment of the resonance

line of a carbon which is directly bonded to another carbon whose
chemical shift is known. When A and B are directly bonded, J AB and

(J o ¥ J_) are both large and can therefore be measured with reasonable

accuracy.
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6 ERROR ESTIMATES

The techniques discussed in this thesis all involve the measure-
ment of line positions. It is obviously desirable to have realistic
estimates of the errors in these measurements. If we consider the
derivation of a matched filter given in Section 1.1, a suitable method
immediately suggests itseli.

The output spectrum f,(t) is the weighted average of the values:
fo(t, 7) = f;(t-7) 5;(0)/8;(-7). (6.1)

We can therefore calculate the standard deviation of f,(t). This
serves several very useful purposes. The points of the ""base line"
should all be within about one standard deviation of a straight line.
If a point rises two standard deviations above the base line, the
probability is 0.954 that it is a peak (the filtered noise is Gaussian,
since each filtered point is a linear combination of points with

Gaussian distributions 33

). If a point rises three standard deviations
above the base line, the probability is 0. 997 fhat it is a peak.

The standard deviations also provide a method of estimating
the error in a measurement of a peak position. Let f(t) be the "true"
value of f,(t). The upper and lower ends of the error bars (which
indicate one standard deviation) constitute an envelope around f,(t).
We shall call the upper curve f, (t) and the lower curve f, (t). The
probability that any point of £(t) lies within these curves is 0. 683.

Therefore, 68.3% of {(t) lies within this envelope. This is true
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whether we consider £(T)) in Fig. 6.2 to be above £o(T}) or to the left
of f,(T,). Therefore, the interval of t with a probability of 0. 683 that
f(t) takes on a particular value is the horizontal distance to f;(t) or

f, (t). Lett, andt, (Fig. 6.1) be chosen such that:
£.h(t) = f£,(t) : (6.2)
¢ 0 max* ‘

These points will then satisfy:

Pit, <86 <t) = .683, (6.

(@2
(V)
~—

where § is the position of the peak. We therefore estimate the error

in the peak position to be =(t, ~t,)/2.

B e
e e —

Figure 6.1. The standard deviations of f,(t).
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7 5m

Figure 6.2. The standard deviations of t.

It can be shown that a maximum-likelihood estimate is normally
distributed.®3 A peak position obtained with a matched filter is there-
fore normally distributed with standard deviation (t,-t)/2. Peak
positions which are méasured with resolutioﬁ enhancement filters é.re
not necessarily normally distributed, however the output from any

linear filter will satisfy Eq. (6.3). Since an RC filter is linear, this

provides a convenient error estimate for routine work.,
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7. APPLICATIONS

The filtering techniques discussed in this thesis are useful for
improving the signal-to-noise ratio and the resolution of any spectrum
where one or both present a problem. Although Fourier transform
specfroscopy promises to provide additional sensitivity enhancement,44
this new technique is not in competition with linear filtering. On the
contrary, Fourier transform spectroscopy will make linear filters
even easier to apply. One must simply multiply the spectrum by the
frequency response function of the filter before taking the Fourier
transform.

A set of instructions for the filtering program is included as
Appendix A and a complete FORTRAN listing as Appendix B. We
shall briefly discuss some experiments which were done with the
intention of using this program, since they illustrate the kind of results

one can expect.

7.1 Smme Egh&ncement

Dr. Robert L. Lichter has found the filtering program developed
in this thesis useful for natural-abundance "N studies of substituted
hydrazines. Although the double section RC filter built into the
spectrometer gives near optimum results, the extreme signal-to-
noise problem inherent in natural-abundance N work justifies the
use of a matched filter. The resonance from nitrogen-2 of 1, 1-

dimethyl hydrazine can be observed only after 1300 scans (Fig. 7.1.1).
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The error bars constitute a valuable indication of the statistical
significance of the peak. In general it would be desirable to obtain a
better signal-to-noise ratio for the line shape than that shown in

Fig. 7.1.1, however, the above spectra are quite acceptable.

>
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20.0 0.0 20.0 c.0 20.0

Figure 7.1.1. Natural-abundance N spectrum showing the
resonance from nitrogen-2 of 1, 1-dimethyl
hydrazine, courtesy of Robert L.. Lichter.
Trace A is the experimental spectrum, B is
the line shape (*N enriched nitric acid), and
C is the filtered spectrum.
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7.2 Resolution Enha.ncemeng\

Pt atae’

- Dr. Robert L. Lichter has measured the directly bonded
(®N, 13C) spin-spin coupling in pyridine. Using a 98. 9% N labeled
‘sample, he found the proton-decoupled C spectrum of carbon-1 to be
a singlet when the sweep rate was 1.0 Hz/sec (Fig. 7.2.1). Usinga
line shape from the cyclopentane solvent (Fig. 7.2.2), he was able to
resolve this singlet into a doublet with a linear resolution enhancement
filter (Fig. 7.2.3). The observed coupling Wé,s 0.45+0.1 Hz. He
then recorded the spectrum with a sweep rate of 0.1 Hz/sec and
directly observed a coupling of 0.42 +0.05 Hz (Fig. 7.2.4).

In the above example we could verify the coupling measured with
resolution enhancement by direct observation. If the coupling were
smaller than the natural line width (or inhomogeneity in the magnetic
field), direct observation would not be possible. However, it might
still be possible to measure such a coupling using linear resolution
enhancement filters. The spectra shown in Figs. 7.2.1 and 7.2.2
were recorded with the RC filter conneg:ted (frequency response
setting = 5 Hz). This improved the signal-to-noise of the unfiltered
spectra, and in this case did not interfere with the resolution enhance-

ment. It would be a safer practice to disconnect the RC filter

completely.
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Fig. 7.2.1. The natural abundance *C spectrum from
carbon-1 of *N labeled pyridine, courtesy of
Robert L. Lichter (o = 1.0 Hz/sec).
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Fig. 7.2.2. The natural abundance ">C spectrum of cyclo-
entane, courtesy of Robert L. Lichter
a =1.0 Hz/sec).
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The pyridine spectrum in Fig. 7.2.1 has been
resolved with a linear resolution enhancement
filter based upon the line shape in Fig. 7.2.2,

The natural-abundance '°C spectrum from

carbon-1 of "N labeled pyridine, courtesy of
Robert L. Lichter (¢ = 0.1 Hz/sec).
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e et atates

7.3 Filtering Satg}\lite Peg.\]ig\

The pseudo-linear filter given by Eq. (5.4.24) permits the
observation of ’C satellites which cannot be observed with conven-
tional filters. We shall use the natural-abundance *C spectrum of
.2, 3-dimethyl-2-butene to illustrate this point. The proton decoupled
spectrum of this molecule consists of two singlets from the vinyl and
methyl carbons (Fig. 7.3.1). The methyl resonance was recorded
with a reduced sweep rate (Fig. 7.3.2)., This spectrum was then
filtered with a double section RC filter, the time constant of which
was varied in order to maximize the visibility of the “C satellites.
Even with the optimum time constant the satellite peaks remain buried
in the noise (Fig. 7.3.3). If, however, we use a pseudo-linear filter,
the *C satellites resulting from the directly bonded coupling are
clearly visible (Fig. 7.3.4). The pseudo-linear filter has taken full
advantage of the symmetry in this "AX" system. For the rather
modest resolution required to observe this coupling, the field drift
indicated in this spectrum (Fig. 7.3.2) did not present any problems.
We shall now demonstrate the kind of results which are possible in
the absence of significant field drift.

The natural-abundance *C spectrum of trans-1, 3-pentadiene
(Fig. 7.3.5) provides examples of applications for several of the
filters discussed above. Although the assignment of the methyl
resonance is trivial, the assignment of the vinyl carbon resonances is
quite difficult. The off-resonance decoupled45 spectrum (Fig. 7.3.6)

indicates that the line at -46.9 ppm results {rom a carbon directly
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Fig. 7.3.1. The proton decoupled “C spectrum of
2, 3-dimethyl-2-butene (o = 100 Hz/sec).
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Fig. 7.3.2. The methyl *C resonance from 2, 3-dimethyl-
2-butene (a = 4 Hz/sec). The spinning rate
was 30+2 Hz.
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3.3. The spectrum shown in Fig. 7.3.2 has been filtered
with a double section RC filter and the vertical
scale has been atenuated by a factor of 100.
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3.4. The spectrum shown in Fig. 7.3.2 has been filtered
with a pseudo-linear filter [ Eq. (5.4.24)].
J =43.9 +1 Hz.
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Fig. 7.3.5. The noise decoupled natural-abundance **C
spectrum of trans-1, 3-pentadiene.
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Fig. 7.3.6. The off-resonance decoupled spectrum of the
vinyl carbons of trans-1, 3-pentadiene.
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bonded to two protons, ‘hence this line results from carbon-1. The
resonance from carbon-1 was then recorded at a reduced sweep rate
(Fig. 7.3.7). This high resolution spectrum was used to observe the
“C satellites.

A small portion of the spectrum (Fig. 7.3.8) was used to
calculate the weighting function for a pseudo-linear resolution enhance-
ment filter., This made the filter pseudo-linear only in the region
immediately surrounding the parent peak and linear everywhere else.
The asymmetry of the directly bonded (**C, *C) spin-spin coupling
satellites could therefore be measured (Fig. 7.3.9). The observed
values of J andJ_ were 31.1+1.0 Hz and -38.8+£0.7 Hz, respective-
ly. Substituting these values in Eq. (5.5.10) one calculates that the
chemical shift of carbon-2 relative to dioxane is -68.0+3 ppm. The
directly observed chemical shift of carbon-2 relative to dioxane is
therefore either -70.4+0.1 ppm or -65.8+0.1 ppm (Fig. 7.3.6),
since hoth of these peaks fall within the calculated interval. The
analysis of this spectrum could be completed by scanning the region
surrounding these peaks. ‘
| In addition to the large directly bonded coupling, Fig. 7.3.9
also indicates the presence of a smaller coupling (J = 9.8+0.6 Hz).
In order to demonstrate that these peaks represent real and
reproducible satellites, a slow sweep rate spectrum was recorded
(Fig. 7.3.10). This spectrum was then filtered with a least-squares
satellite filter (Sec. 5.3). The resulting filtered spectrum (Fig.

7.3.11) clearly indicates the presence of a long range spin-spin
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Fig. 7.3.7. The natural-abundance *C spectrum from
carbon-1 of trans-1, 3-pentadiene (a = 10 Hz/sec).
The spinning rate was 15+5 Hz.
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Fig. 7.3.8. The line shape (left) and weighting function (right)
used to filter the spectrum in Fig. 7.3.7.
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Fig. 7.3.9. The spectrum in Fig. 7.3.7 has been filtered with
the weighting function shown in Fig. 7.3. 8.
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Fig. 7.3.10. The natural-abundance “’C spectrum from carbon-
1 of trans-1, 3, -pentadiene (a = 0.4 Hz/sec).

The spinning rate was 15+5 Hz.
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Fig. 7.3.11. The spectrum shown in Fig. 7.3.10 has been
filtered with a least-squares satellite filter.

coupling of 9.5+0.3 Hz. The origin of this satellite is not important
for our present interests. The significant point is that the satellite
is consistently observed.

The directly bonded (*C, °C) spin-spin couplings we have
measured are consistent with the general trend of the variation of
these couplings with the percent S hybridization (Fig. 7.3.12). If we
base our prediction on the observed coupling in ethylene, the
measured values are smaller than the predicted ones for small
percent S and larger for large percent S. This has been rationalized

in terms of the contraction of the carbon S orbitals as the multiplicity

of the bonding increases. 4
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Fig. 7.3.13. Directly bonded (**C, *C) spin-spin couplings as

a function of the values calculated by extended
Hiickel theory.
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If we compare the experimental spin-spin couplings with those
obtained from extended Hiickel theory (see Appendix C), the general
behavior is unchanged (Fig. 7.3.13). It would seem reasonable to
use the calculated spin-spin couplings to select more realistic
éxponents for the 2S orbitals of extended Hiickel calculations. These

calculations should then give a better description of the effects of

hybridization.
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8. EXPERIMENTAL

The 2, 3-dimethyl-2-butene was purchased from Aldrich
Chemical Co., and the trans-1, 3-pentadiene from Matheson Coleman
and Bell. These samples were then sealed in 10-mm n. m. r. tubes.

The **C and "N spectra were determined with the DFS-6C
spectrometer discussed by Weigert and Roberts, 40 and the proton
spectra were determined with a Varian Associates A-56/60 spectro-
meter. The spectra were accumulated on a Varian C-1024 computer
and later transferred to cards with a Varian C-1001 coupler interface
to an I. B. M. 526 printing summary punch. The data were then
processed using the program SNARE on an I. B. M. 360/75 computer.

The spinning rates of the sample tubes were measured with a
General Radio Co. model 631-B Strobotac which had been calibrated
using the spinning side bands from the A-56/60 spectrometer.

Finally, we note that our experimental spectra were really
filtered. A completely unfiltered spectrum, fi(t), would have zero
Signal—to—noise ratio, because the measurement at each frequency
must be accomplished in zero time. All n.m.r. spectrometers involve

an approximation of the form:

T/2
t + f / h(r) £;(t - 7) dr. (8.1)
-T/2

If T is much smaller than the narrowest "wiggle" in the spectrum,

this will have negligible effect on the line shape.so A digital sweep
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spectrometer generally uses 2 weighting function which is constant.
That is, it simply takes the average of the measured signal over a
small frequency range, Av, and uses this for a data point. Continuous
sweep spectrometers generally use an RC filter. If we had used it,
the recording device on the spectrometer would have introduced
additional filtering depending upon the response time of the pen.

The exact form of h(7) is unimportant, provided that T is sufficiently
small (Sec. 2.7). We are not faced with the question of whether or

not a spectrum should be filtered, but rather how it should be filtered.
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APPENDIX A

USING THE PROGRAM SNARE
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If one knows the line shape of an n. m. r. signal, it is possible
to distinguish between one or more absorption lines and random noise.
Given the line shape of a nuclear magnetic resonance signal as input,
the program SNARE will remove most of the random noise in a
spectrum or redﬁce the width of the lines, depending upon the options
specified. In these instructions we shall not attempt to discuss the
theory of filtering n. m.r. spectra, but limit ourselves to the use of
the filtering program SNARE. We strongly recommend that the user
of SNARE become moderately acquainted with the theory of filtering
so that he may use the program to maximum advantage and avoid
incorrect interpretation of the results. We shall begin by describing

the types of filtering available with SNARE,

%nal—to—Noise Enhancement

The filter which gives the maximum signal-to-noise ratio for a
given spectrum is called a matched fili_:er. SNARE provides a
matched filter as one option. The signal-to-noise ratio of a
fnultiple-scan n.m.r. experiment can be furfher improved by
increasing the sweep rate. The maximum signal-to-noise ratio
available for measuring the position of a single line is obtained by
using the fastest sweep rate available (i.e., with due consideration
for the relaxation times of the nu.clei and instrument limitations).
The dependence of the signal-to-noise ratio upon the experimental

parameters is approximately:

S/N = k(sweep rate)* (sweep width)™ 2.

1
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One should therefore use the fastest sweep rate and the smallest
sweep width which is practical. However, one should also keep in
mind that increasing the sweep rate will increase the line width,
although this does not necessarily decrease the accuracy with which
the position of a line can be measured.

A matched filter requires an independent measurement of the

line shape.

Resolution Enhancement for Lines of Comparable Magnitude

Y T N N e P WV Tt ettt

The program SNARE includes an optimum linear resolution
enhancement filter., The capabilities of this filter are indicated in
Fig. 1. These filters "trade off" signal-to-noise for resolution.
Decreasing the sweep rate will also trade signal-to-noise for

resolution. The optimum procedure is to combine the two as

! o £ SR =+ SRS P S,
2.0 32000 (=) S
FREQUFNCY 1N H2

Figure 1. Resolution enhancement of an n. m.r. signal.
The large peak and its ""wiggles' are an unresolved
doublet. The two smaller peaks are the same
doublet after resolution enhancement (q = 3000).
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indicated in Fig. 2. The curve which intersects all the points

~ represents the result; of varying the sweep rate and using a matched
filter. The curves which intersect only one point represent the effect
of using a linear resolution enhancement filter and the indicated sweep
rate. The point labeled 0.1 should be interpreted as the minimum
sweep rate for which the first downward "wiggle' goes below zero.
The numerical value of the sweep rate at which this occurs will
depend upon the sample used. The optimum process varies the
sweep rate and uses a linear resolution enhancement filter. This
gives the maximum signal-to-noise for a given line width and is
represented by the envelope of the curves in Fig. 2. To use this
optimum process one preselects the sweep rate and resolution
enhancement filter such that one obtains the desired line width after
resolution enhancement, and the signal-to-noise ratio is a maximum
for this line width.

We shall illustrate the use of this optimum process with an
example. Let us assume that we wish to measure the separation
between two closely spaced lines (approximately 0.5 Hz separation)
of a natural abundance '*C spectrum. We therefore decide that v,
should be 0.2 Hz in order to provide adequate resolution. We find
that the minimum sweep rate for which the first downward "wiggle"'
for a sample of CS, crosses zero is 0.05 Hz/sec, and that the matched
filter line width for this sweep rate is 0.27 Hz. We then modﬁy
Fig. 2 as indicated in Fig. 2a and find the point on the horizontal

scale corresponding to 0.2 Hz. We see from Fig. 2a that we will
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obtain the maximum output signal-to-noise by using the following
procedure: first collect data using a sweep rate of 0.5 Hz/sec, then
use a linear resolution enhancement filter to reduce the line width to
0.2 Hz.

Several filters are compared in Fig. 3. The optimum linear
filter discussed above gives the highest signal-to-noise ratio for a
given line width of any filter presenting known. The instrument RC
filter is clearly adequate for routine work. The curve representing
this filter may be somewhat optimistic, however, because it assumes
that the optimum time constant was used at each sweep rate. This is
not generally done in practice. If either signal-to-noise or resolution
is a problem, one should use the optimum linear filter. If one wishes
to resolve lines differing in amplitude by more than a factor of five,
a pseudo-linear filter, which is described in the next section, should

be used.
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Figure 3. Resolution enhancement by various methods
in which the sweep rate is varied.



A linear resolution enhancement filter requires an independent

measurement of the line shape.

ngudo—Linear Filters

These filters are similar to linear filters except the spectrum
itself is used for the line shape. They produce a symmetric output
spéctrum regardless of the nature of the input spectrum. If a péir
of satellites are not symmetric about the parent peak, the output

spectrum will contain four satellites (Fig. 4).

Figure
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The proton resonance of CHCl, (a = 2.5) with
satellites added (J, = 4.75 Hz, J_ = -3.29 Hz).
The frequencies are scaled by a factor of 10.
Note that the upfield satellite is easily resolved
even though it is completely buried in the
"wiggles'' before filtering.

If the satellites are
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symmetric in the input spectrum, their intensity will be doubled in
the filtered spectrum.

Pseudo-linear filters are the most powerful presently known
for resolving satellite peaks which are close to the parent peak.
They should not be used to resolve lines which differ in amplitude by
less than a factor of five. |

If one wishes to determine whether the closer or farther
satellite, of those on one side of the parent peak, is actually to the
left of the parent peak, the least-squares satellite filter described in

the next section can be used.

Filtering Satellite ng\l/g/s\ with Least-Sguares Filters

The usefulness of these filters is described in the preceding
section. This procedure approximates the parent peak by the
Lorentzian asymptotic form (Fig. 5). The pararheters in the
Lorentzian are determined by performing a least-squares fit up to
the point where the parent peak reaches "FIT" (a fraction which
Should be set between 0. 05 and 0. 5) of its maximum value. The
resulting least-squares function f(t, E) is then subtracted from the
input spectrum fi(t), leaving the satellite spectrum f,(t) (Fig. 6).

The position of the satellite can be estimated from f,(t). This
estimate is then used as data ("SEPRTE”) for the second iteration.
This second iteration should remove the distortion in f,(t) indicated
in Fig. 6, and produce a new spectrum, f,(t) with a maximum in the

correct position (Fig. 7).
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Figure 5. The least-squares fit of the proton
resonance of CHCl; (o= 1.0) using a
Lorentzian line shape function,

F(t)

Figﬁre 6. The line shape of the satellite peak is
distorted by removing the parent peak.
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The sum of the squares of the residues from the least-squares
fit, ¢, should decrease by about 0.25 Eg (the output parameter Eg is
a convenient normalization for ¢) during the second iteration (Fig. 7).
If ¢ increases, the estimated position of the satellite was incorrect.
This procedure should converge after two iterations.

The "wiggles' in the line shape must be to the right when the
least-squares fit is performed. This is accomplished with the input

parameter "NRFLCT".

0.200

ABSO3PI TON
0.400 -0.000

0,200

ABSARPT]ON

0.0

Figure 7. The functions f,(t) (top) and £,(t) (bottom)
[Egs. (5.3.1) and (5. 3. 3)] resulting from the
above CHC), spectrum. A matched filter has
been used and the scale is such that fi(ﬁ) =
100. The error bars represent one standard
deviation
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Data Collfgg_:\iﬁg\rlx\

All spectra must be taken with the instrumént RC filter
disconnected. This can be accomplished by setting the "function"
switch of the DFS-60 spectrometer to "scope' or the "filter bandwidth"
of the A-60 spectrometer to "4 cps''. If the instrument RC filter is
not disconnected, the noise in the spectrum will not be white, and
using SNARE to filter spectra will not be valid.

If the line shape is determined separately, it is critical that all
experimental parameters (sweep time, sweep width, phase, rf field
strength, etc.) be as nearly identical to those for the spectrum as is
possible. In order to accomplish this one should alternately scan the
sample and the line-shape standard.

Considerable computing time can be saved by using only the
portion of the line shape which differs significantly from zero.

The number of data sets to be added to form a spectrum,
"NSTITL'", can be arbitrarily large. Each data set must be properly
f'rolled over'". Any data set in which one of t%he peaks is truncated is
ﬁseless. To add m data sets, simply set "NSTITL'" equal to m,
place a card giving "NPOINT" and "NALIGN" in front of each data set,
and place the data sets in the input data deck. The data set with the
largest peak farthest to the left must be placed first. Two data sets

should not be added unless the same setting of the '"gain control" was

used for both,
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Ihe Program

The current version of SNARE will cost between $1 and $5
per spectrum depending upon the options specified.

The program can select a portion of the input spectrum, FI(T),
to use for the line shape, S(T). This will be convenient if the
standard line shape sample and the spectrum were scanned simul-
taneously. To use this option, set '""NSIG" equal to zero and set
"FIT" slightly larger than (S/N)”!. The program will then find the
largest peak in FI(T) and use a segment of FI(T) which includes this
peak for the line shape S(T). For absolute control of the segment
used for the line shape-duplicate the cards representing this segment
and submit them as a separate signal shape. Regardless of how the
line shape is measured, the signal-to-noise ratio for the line shape
must be better (by at least a factor of two) than that for the signal.

The functions F(T), H(T), and FO(T) are the least-squares
Lorentzian, the weighting function and the output spectrum,
respectively. The weighting function is calctflated from S(T) and is
of interest when éonsidering the theory of filtering. A complete list
of the input parameters is given on the next two pages.

It is assumed that the data has been punched on cards in format

(8X, 12¢6), and that there is a maximum of 1024 data points per

scan.
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[+ DATA .. SNAROOLA

c SNAROUIR

C CTARD Ts4++oNSPECT({I5) THE NUMHBFR OF INDEPENDENT SPECTRAL PRMALFMS SNAROO]IC
r T HE CUNSIDEKFD.  THE DATA GCARDS FOK FACH  SNAR
T. PROBLEM ARE PREFACEN HMFRF RY A sAlyeeeasFTC. SNAR

€ CARD AG,...OSCRPT(2084) TITLE FUR THE PRINTED OUTPUT,. SNAROOLF

G CARD Al.eeoTITLE(A4) TITLE FOR THE PLOTS, SNARONLF
c NSWEEP(15). NUMHER OF POINTS EQUIVALENT T1) THF SWEEP SNAR
&) WIOTH.  THIS WILL GENERALLY BE 1024 F(R SMAR
SPECTRA FRUM THE a-60 AND 599 FOR SPECTRA SNAR
FROM THE DF§-60. SniAR

NSTITL{I5) NUMBER UF SPECTRA TO RE ADDED AS YAY, SEF SHAKON{H
SEPARATE INSTRUCTIONS A4S TN NATA COLLET M, §han

1PSOLITZ2Y = O PSEUDD=LINEAR EILTER SMAREN] T

«NELO LINFAR 1R |LFAST=SOUARFS ¢ 1L TR SHAROOST,

NSIG(T13) == REMUVE PAREMI BF Ak SRR 3k

0 SIGNAL SHAPE IM SEFCTRUM ERE s lar ]

+L STGMAL SHAPE SFHAKATE . ThepRE a0

NRELCTIES) ==1 NO  REFLECTINNS=1SE Fik HRF TR ““’YPA SQhbunfipn

B (M hehi) Al DELY=RE, GUboe £ G SE

0 TWO REFLFCTIANS=~ISF Fre DO ETELS CRAEO P

SPECTRA FRIONM f-00, Nohkeistiz,

+1 ONF REFLECTIMN —NISE FDR DOWNFIFLD SEAR O P

SEECTIRA FROM DFY=n1, SeAE G2 ]

NSTONETIS ) SUGNAL T NOTSE .GT.1 NeTIMige RFEEOLUT Ty GhAMGOY
FRHANCEMENT FILTHE =SEI5nak

NSTON FOUBL T (kN Slaavnnia

TIMES IHF 1L0OSS 1N SIAR GGG

SIGHAL TO NNISF THAT SNARDOIL

YOUu THINK YOU CAN SNAHOO 2

AFFORD, SHARNGER

1 MATCHFL FILIER = NN SNAKONZE

ERROR HAKS. SNARNO3L

0 MATCHED FILTER = ERR(OR SNAKON3IH

HARS . SNAROG3 ]

«LFe=1 RC FILIER SNARGO&E

SET NSTON EOUAL TO SNARONSA

=100*{THE HALF WIDTH SNAROD4AY

AT HALF HFEIGHT 0OF THE SNARONGC

NMlRUH"SY LINE) FOR TH!‘SNIHOU#D
LDhsY

ET g M}.’IJ TIM smx% OhE

THF il N4k

Rf: FILTER. SMAROOAL

SWEFP{FIL.%) SWEEP WIDTH JN HZ, & PUSTTIVE NUMKEH HHICHSNAROO 4
CORRESPINDS TO NSWERP. SHA

FITUF11.5) THE FRACTION UF THE INTENSIVY fF THE PARENT SNARNDA T
PEAK TO WHICH FITTING IS PERFURMED IN THE SNAR
REMOVAL OPERATION. -0OR- THF PARAMETER SNAR

WHTCH DETERWMINES THE SIZE OF THF SEGMENT SNAROOS A

= USED FOR THE LINE SHAPFE WHEN NSIG=0, SMARNOS R

YSCALE(F11.5) A SCALING FACTOR FOR THE FILTERED SMARNOSE
SPECTRUM, YSCALE TIMFS THE SCALE FNR THESNAR
! URIGINAL SPECTRUM 15 THE SCALF NF THE SRAK

S AR A e TUFILTRRED SBECTRUKM, =

1F YSCALF JLF.0. YSCALE 1S SMAROOSE

CALCULATED TU FIT THE FILTFRED SPECTRUM  SNAROGOSE

ON THE PLOTTING PAPFR AND THE SCALF 1§ SNARNDAL,

PRINTED, SNAKOOSH

ABNDNCIF7.5) THE FRACTIONAL NATURAL ARUNDANGE Ok TR SNARDOR |

o NOCLEUS RESPANSIRLE Fk THE SATELLITE. SNAK DAL

SEPRIE(F11.5) DISTALCE IN HERTZ ARE/WEFM THF SATFLLIIE  SMAW
PEAK aND THE PARENT PEAK. SET TO 0. 1F  SMAK

ﬂjh aam d AN NASACOADASA0NNANNO00NNNO MO COOONanAa0ndNN NN N OR NN N0 N0 ARAAAaASA
; N g g e ’ ;

LUNKNUEN, SMAH

CARD A7 4as o [FPLOTI1Y(I3) = 0 N NOT PLUT THE LFAST=SOLIARFS SNARNOAHK

DETERMINED LURENTZ [AN, SMNARDOAC

. o T PLOT THE LFAST-SOUARES FUNCTIAN. ~ ° SNAROOAD

TEPLOTE20013) = 0 DO NOT PLOT FI(T),. SHARQMNAE

1 PLOT FTIT). SNARGOAF

2 PLOT AND LABEL FIIT). © SNARNOAG

{ TEPLOTE3)(13) = 0 00 NOT PLOT $(T). SNARONEH

1 PLUT SIT). : SNAROOGT

& 2°PLOT AND TABEL S{T), SNARGNTE

TFRLNT(4)(13) = 0 DO NOT PLOT H(T). SNAROGT A

; 1 PLOT H{T). SNARONTH

2 PLOT AND LABEL H{T). SNAROOTC

[FPLOT(5)(13) = 0 DD NOT PLOT FT(T)—-F(T). SNARDOTO

1 PLOT FILTI-F(T). SNAROOTE

T e 2 PLOT AND UEBEL FITTISE(TIS T | SNAROOTF

IFPLOTI&)I(13) = 0 DD NOT PLOT FO(T). SNAROOTG

5 1 PLOT FOITI. SNAROOTH

2 PLDT AND LABEL FOIT). SNAROOT |

R e XUNGTHUET,2) THE LENGTH OF THE K=AXIS IN INCHES. _SNARQGES,

YUNGTH{FE7.2) THE LENGTH OF THE Y-AXIS IN INCHES. SNAROOBA

¢ T CRRUAIK, VL NPUINTTTST THE NUMBER UF DATA POINTS TN THIS STAN. SNARDDSE
c THERE ARE A TOTAL UF NSTITL SCANS TO BE SNAR
€ PROCESED AS 4", EACH OF WHICH TS PRECEDED SNAR
(= BY A CARD A3K. NPDINT WILL BE LESS THAN SNAR
c ‘NSWEEP [F ANY PART OF THE SPECTRUM 15 SNAR
c ARBITRARILY OMITTED OR OMITTED BECAUSE UF  SNAK

T T T “WUTSE, SPTKES; ETCY " SNAR ¢

¢ NALTGN(I5) THE NUMBER DF POINTS Tl THE LEFT THIS SCAN  SNAROORC

c 1$ TN ME SHIFTEND. THF SCAN WHDSE MAXIHUM [SSNARNOAD

C FARTHEST TU THE LEFT MUST BE RFAD IN FIRST. SNAROOHE

¢ NALIGN = 0 N0 SHIFT OR FIRAST SCAN. SNARODAE
C USE A POSITIVE VALUE FOR NALTGN WHEN THEHRE SNAKR
LT s m e e G AMBTGUTTY CARMOT WHIGH PEAKS SHOULDRE SMAR
4 AL TGNED SMAR

o NALTGN JLFu=1 THE MAXTMA WILL BE LINED 1P, SNAROOKG

5 CARDS {AL4)IKe oo AINPOIRT/ 120K a0uaaDAIA POINTS (HXg ) 2HAY SMARORH

4 THE ENLLOWING CARDS ARF USFO () 1F NSIG w 41, SNARGORT

« CARD AFKY L L JNSPIINT(15) T Nlmm-u UE DATA PUINTS IN THE STGNAL SNAKNOYE,

€ J SHARFK , . SHARIMIGA

c CARDS (ACAIKY oy g AINSPUINT /121K ) oo ua o STONAL SHART ATA BOINTS SNAHOOGK

n tH)’,]?Ilhl. SMARNOYE,

e 1 0 o e = e e o e e ———————— e ENAROOYD)

C CARDS A3K MNPUINIII.?M ARE MEPEATEL K-l.nnm. SNAKO09E

G CARDS RO, «RINPOINT/12)K ARE REPFATFD Havas 1 SNARDOYF

RE L

o e o ] e e -

SNARDOSG
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SNARE is currently on a disc library as JDR. NMRFLTR.

The necessary Job Control Language cards and sample data cards

are shown below:

o JOB  (98532,GAP,CH)+"GEORGE A, PETERSSON® MSGLEVEL=1
rf EXEC PGM=SNARE+REGION=150K,TIME=]
//STEPLIB DD OSN=JDR.NMRFLTR,VOL=SER=CITSC2sUNIT=SYSDA,DISP=SHR
//FTO6F001 DD SYSOUT=A,DCB={RECFM=FBSA,LRECL=133,BLKSIZE=1596)
//SYSPLTON DD  SYSOUT=N,UNIT=(,SEP=FT06F001)
//FT05F001 DD »

1

TRANS=-1,3-PENTADIENE CARBON-1 3710 SCANS -
6A-F 999 60 0 -1 8 250.0 0.05 0.02 0,01
1 2 2 2 2 2 12.50 10.00
998 o T

Data from C. A. T,

7

These are the only cards necessary to use SNARE.

The subroutine structure of SNARE is as follows:

SNARE

RFLCTI ‘7/ \\\\:* EBPLOT

OCTHEX VLABEL
RFLCTR ;’CPLOT FILTER

-, .
MATCH
i REMOVE \

PHICLC_ |  BNDINV x RCFLTR
GAMCLC - LSQFIT <—— RESOLY

~— NN ¥
BCALC Y PHICL2 \}\IARM
AGCALC |

EQSOLV 4.
FCALC

FCALC2
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APPENDIX B

A LISTING OF THE PROGRAM SNARE
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c ————— SNARDOOA

C *SNARE* SNAR
Crmm— e e e e e e e e e ——————— === ==SNARDOOA
[ THIS PROGRAM PERFURMS A VARIETY OF FILTERING UPERATIONS UN SNARQOOR
< NMR SPECTRA. THE DFTAILS ARE DESCRIBRED IN THE PHD THESIS OF SNARDONC
C G.ALPETERSSONy, CALIFORNIA INSTITUTE OF TECHNOLDGY {(1970). SNAROODD
c THE PROGRAM CALLS THE FOLLOWING PLOTTING SURROUTINES! SNAKOONE
« CPLUTE X4¥Y PLOTTING ROUTINE SNARNOOR
C EBPLOT: PLOTS ERROR HARS SNARDOOE
G VLAREL: LABELS THE AXES OF PLOTS. SNARNDONH
G THESF SUBROUTINES ARE NOT ITNCLUDED IN THIS PROGRAM, SHARODNL
G R e S sl o s e e i e e et v e e e e e QMAM () 1
DATA SNARDOL A
SNARDNLA

CARD 1l.aseoNSPECT(15) THE NUMBER NF YNODEPENNDENT SPECTRAL PROBLEMS SMAKOOIC
Tti BF COUNSIDERED. THE DATA CARDS FOR EACH SNAR
PROBLEM ARE PREFACED HERE BY AUsAlseaesETC. SNAR

CARD A0,...OSCRPT(20A4) TITLE FOR THE PRINTED QUTPUT. SNARQOIE

CARD Al.,..TITLE(A4) TITLE FOR THE PLOTS. SNAROO1F
g NSWEEP(15) MUMBER OF POINTS EOQUIVALENT TO THE SWEEP SMAR
WIDTH. THIS WILL GENERALLY BE 1024 FOR SNAR
SPECTRA FROM THE A-60 AND 999 FOR SPECTRA  SNAR
FROM THE DFS-60. SNAR

NSTITL(15) NUMBER UF SPECTRA TD BE ADDED AS 'A%, SEE SNARDOILH
SEPARATE INSTRUCTIONS AS TO DATA COLLECTIDN.SNAR

IPSDL(12) = O PSEULO-LINEAR FILTER SNAROOL1

WNE.O LINEAR DR LEAST-SOUARES FILTER SNAROD2ZE

NSIG(13) =-1 REMOVE PARENT PEAK e SNARDO2A

O STGNAL SHAPE TN SPECTRUM SNARDO28

+1 SIGNAL SHAPE SEPARATE. ' SNARQO2C

NRFLCT{I5) =-1 NO REFLECTIONS-USE FOR UPFIELD SPECTRA SNAR0DO2D

FROM A-50 AMD DFS~60.  SNARDOZE .

0 TWO REFLECTIONS-USE FOR DOWNFIELD SNAROO2F

SPECTRA FROM A-60. SNAROO2G

+1 ONE REFLECTION -USE FOR DOWNFIELD SNARNOZH

SPECTRA FROM DFS-60. SNAROD2]

NSTON(15) SIGNAL TO NUISE .GT.1 DPTIMUM RESDLUTION SNAROO3E
ENHANCEMENT FILTER -SETSNAR

NSTON EQUAL TO TEN SNARDO3A

TIMES THE LOSS IN SNARDO3B

SIGNAL TO NOISE THAT  SNAROO3C

YOU THINK Y0OU CAN SNAR0O3D

AFFORD. SNAROO3E

i 1 MATCHED FILTER - NO.  SNAROO3F

ERROR BARS. SNARDO3G

0 MATCHED FILTER - ERROR SNARON3H

BARS . SNAR0OO3 I

«LE.=1 RC FILTER SNAROO&E

SET NSTON EOUAL TO SNARDOA

=100%*{THE HALF WIDTH SNARQO4R
AT HALF HEIGHT OF THE SNARDO4C
NARROWEST LINE) FOR THESNAROO4D
OPTIMUM TIME CONSTANT SNARDO&GE
FOR THE DOUBLE SECTION SNAROO4F

RC FILTER. SNARDOAG
SWEEP(F11.5) SWEEP WIDTH IN HZ, A POSITIVE NUMBER WHICHSNAROD&H
CORRESPONDS TO NSWEEP. SNAR

FIT(FIL.5) THE FRACTION OF THE INTENSITY OF THE PARENT SNAROQ&T
PEAK TO WHICH FITTING IS PERFORMED IN THE SNAR

REMOVAL OPERATIDN. ~OR- THE PARAMETER SNAR
WHICH DETERMINES THE SIZE QF THE SEGMENT SNAROOS A
USED FOR THE LINE SHAPE WHEM NS1G=0. SNAROOSH
YSCALE(FL1.5) A SCALING FACTOR FOR THE FILTERED SNARDOQEL
SPECTRUM, YSCALE TIMES THe SCALE FHK THESNAR
ORLIGINAL SPECTRUM [S THE SCALE UF THE SNAR
FILTERED SPECTRUM. SNAR
IF YSCALE .LE.O. YSCALE IS SNAROOSE

CALCULATED TO FIT THE FILTERED SPECTRUM SNARDOSF
ON THE PLOTTING PAPER AND THE SCALF IS SNARDOSG

e laialatsinieisininiaiaiale il ool Nal oo s o Ra N Ra RN el R Fala Nl hc\ﬂ(ﬁ(\ﬁ(\r\ﬂ OO0 000NN OO0 0N 0N

PRINTED, SNARDOSH
ABNDNC (F7.5) THE FRACTIONAL NATURAL ABUNDANCE DOF THE SNARONS 1
NUCLEUS RESPONSIBLE FDR THE SATELLITE. SNAROOAKE
SEPRTE(F11.5) DISTANCE IN HERTZ BETWEEN THE SATELLITE SWNAR
PEAK AMD THE PARENT PEAK. SET TO 0. IF SNAR
UMKNOWN SmAR
CARD A2....1FPLOTI(1)}(F3) = 0 DO NOT PLOT THE LEAST-SOUARES SNAROOHR
DETERMINFD LORENTZIAN, SNARDOGEC
1 PLOT THE LEAST-SOUARES FUNCTINN. _ SNARODOAKD
IFPLOT(2)(13) = 0 LU MOT PLOT FII(T). SNAROOBE
I PLOT FI(1). ShARNGAE
2 PLOT AND LABEL FL{T). SNARQOBG
TFPLOT(3)(I3) = 0 O NOT PLOT SI(T). SNAK oM
1 PLOT SiT). SNLRNGH Y
s 2 rLOT AND LABREL S{T). SNAHONTT
TFPLOTI4)113) = G DO NOT PLOT H{T), SMARGOT A
1 PLOT HIT)a SMNAROOTE
2 PLDT AND LAREL MIT). SMAKNOTE
TFPLOT(S)IE3) = O DO NOT PLOT FIL(T-FUT). SMARODTH
1 PLOT FIITI=F(T}. SNAKOOTE
2 MLOT AND [ABREL FIIT)=F(T). CSNARDDTE
IFPLOTUAN(I3) = 0 DO NOT PLOT FOLT). SNAKON TG
¥ 1T PLOT FIMT)a SNAROOIH
€ 2 PLDT AND LABEL FOLT), SHARDOTI
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XLNGTHIF7.2) THE LENGTH (OF THE X-~AXIS IN INCHES.
YULNGTHIFT.2) THE LENGTH OF THE Y=-AX1IS IN INCHES.
CARD A3Kea«NPUOINT(15) THE NUMBER OF DATA POINTS IN THIS SCAN.

THERE ARE A TOTAL OF NSTITL SCANS TO BE
PROCESFD AS *A*, EACH OF WHICH IS PRECEDFD
BY A CARD A3K. NPOINT WILL BE LESS THAN
NSWEEP IF ANY PART OF THE SPECTRUM IS
AFBITRARILY NMETTED OR OMITTED BECAUSE OF
N SES SPIKES, =TC.

NALIGN(15) THE NUMBER OF POINTS TO THE LEFT THIS SCAMN

[$ 10 BE SHIFTED. THE SCAN WHOSE MAXIMUM IS

SNARQO&E
SNARDOAA
SNAROOSBS
SNAR
SNAR
SNAR
SNAR
SNAR
SNAR
SNAROOBC
SNAROOBD

AMOAOOOAOADAONAO AN S TODNNn0

FARTHESY T THE LEFT MUST BE READ IN FIRST. SNAROOBE
NALIGN = 0 NO SHIFT DR FIRST SCAN. SNARDOBF

USE A PNSITIVE VALUE FOR NALIGN WHEN THERE SNAR

IS AMBIGUITY ABOUT WHICH PEAKS SHUULD BE SNaR

ALIGNED. . SNAR
NALIGN (LE.-1 THE MAXIMA WILL BE LINEO UP. SNARDORG
CARDS (A(4)KuuwoAINPOINT/12)K)eueo.DATA POINTS (8X,1206) SNAROOBH
THE FOLLOWING CARDS ARE USED ONLY IF NSIG = +1. SNAROOS I
CARD A3K',.,.NSPOINT(15) THE NUMBER OF DATA POINTS IN THE SIGNAL  SNAROO9E
SHAPE, SNARDO9A
CARDS [A[4)K® oo dA(NSPOINT/12)K')suas.SIGNAL SHAPE DATA POINTS SNARDO9B
[BX41206). SNAROO9C
s T R A S Nt L Sl NS A0 o M i M b ==—==SNARQQOSD
CARDS A3K.,,A(NPOINT/12)K AKE REPEATED K=1,NSTITL SNARDO9F
CARDS BUsssss+BINPODINT/12)K ARF REPEATED B... NSPECT SNARDO9F
s i TR e e e e L L L LS SNAROO9G
DIMENSION TITLE (3), Y(1024), X{1024), L1024}, B{5},A(5,5), SDM{SNARDO9H
11024),5S11024)5F111024),F0(1024),H(1024),55Q01024),DSCRPT(20), SNAROOYI
2XAKIS{4) 3 YARIS(3) 4FMTHI2) 4FMTVI2),TFPLOTLS) SNARO10E
COMMON/COMCPL/TTEST s XLNGTH, YLNGTH SNARO10A
REAL LABELI(5) SNARO10B
DATA FMTV/4H{FB.,4H3) / SNARO10C
DATA FMTH/4H(FB.,4HY) / SNARO10OD
DATA LABEL/4&HSPCTy4HSGNL s 4HRMOV ¢ 4HFLTR 3 4HH( T}/ SNARO10QF
DATA XAXIS/4HFREO,4HUENC o4HY IN,4H HZ / SNARO10OF
DATA YAXIS/4HABSO, 4HRPTI,4HON / SNARO10G
Cmm o metmmm e SNARD1OH
c READ THE NUMBER OF COMPLETE CYCLES. SNARO1O]
Ermm e, e e SNARO11E
READ (5,1) NSPECT SNARO1LA
1 FORMAT (15) SNAROLLB
DO 100 1S=1,NSPECT . SNAROLLE
READ (5,102} (DSCRPT{I),1=1,20) SNARO11D
102 FORMAT (20A4}) SNAROL1E
G SNAROLLF
c " READ IN THE PARAMETERS. SNARDL1G
c —— SNAROLLH
READ(542) TITLE(2) yNSWEEP NSTITL,IPSDL4NSIG, NRFLCT+ NSTOUN, SNARG1LLT
1 SWEEP, FIT, YSCALE,ABNDNC,SEPRTE SNARO12E
2 FORMAT (A4,215912413,21543F11.5,F7.5,F11.5}) SNAROL2A
READ(5+899) {IFPLOT(I)31=1,6) XLNGTH,YLNGTH SNAROL2A
899 FORMAT(6I3,2F7.2) SNARO12C
ITEST = 1 SNARD12D
IF(XLNGTH.6T.12.5) XLNGTH=12.5 SNARO12F
IFIYLNGTH.GT.10.0) YLNGTH=10.0 SNARD12F
XLNG = XLNGTH SNARO12G
YLNG = YLNGTH SNAROL 2H
XLNGTH = 1.2#XLNGTH SNARQL2ZT
NWDTH = (6XNSWEEP)} /5 SNARO13E
D0 3 I= 1, 1024 SNARD13A
Y(1) = 0. SNARD] 3K
3 xX{Iy = 1 SNARNL3C
NREAD = 0 SNARO130
NPT = 1024 SNAROL3E
e e — SNAROL3F
(4 READ IN THE SPECTRUM, SNARDL3G
G e e i e e i i i e o —=—=——=S§NARD13H
4 READ (5+5) NPOINT, NALIGN SNARO131
5 FORMAT (215} SNAROL4E
CALL DCTHEX{L+NPOINT) SNARD14A
IFINRFLCT.EQe0) CALL RFLCTI(L4NPOINT} SNARQ14B
C 3 SNARO14C
c ALIGN THE SCANS. SNARO14D
c SNARO14E
14 IF (NALIGN)} 7,10410 SNARO14F
7 LBIG = 0 SNAROL4G
D09 1 = 1, NPOINT SNAROY&H
IF (LBIG = L{1)) 849,9 SNAROL4]
8 IBIG =1 SNAROLSE
LBIG = L(I) SNARD1SA
9 CONTINUE SNAROLSB
NALIGN = IBIG — NBIG SNAROLSC
400 FDRMATU//+5X+69HTHE SCAN WHOSE MAXIMUM IS FARTHEST TO THE LEFT MUSSNAROLSD
1T BE READ IN FIRSV.) SNAROLSE
IFINALIGN.GE.O) GO YO 1O SNARDLSE
WRITE (6¢400) SNARN1SG
GO TO 100 SNAROLSH
10 CONTINUE SNARO1S]
IMAX = NPOIMT - NALIGN SNAROY6F
Lo = 0 SNARDL16A
LOMAX = IMAX/20 SNARO168

00 80 I=1,LOMAX

SNARO16C
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80 1.0 » LOSLLID SNAROL6D
LO = LO/LOMAX SNARD)GE
C— SNARO16F
c ADD THE SCANS. SNARO16G
C-- . SNARD16H
. PO 1) I = 1, IMAX ) SNAROLGI
K = [ ¢ NALIGN SNARO17E
YL = LiK}-L0 ‘ SNAROY7A
1L Y(1) = YUI} + YL SNAROLTH
NPT = MINO(NPT, IMAX) SNAROLTC
€ - SHARO1TD
c . IFf THIS 1S THE FERST SCAN FIND THE MAXIMUN, iy SMAROLTE
€ v - SHARO1TF
IFINREAD) 15,15,18 o % o SKARDLITG
15 Y816 = 0. @ " SHAROLTH
B4 L7 1 = L.NPOINT ' SNARGLTE
IF AYBIG ~ YA1}) 16,1717 " SNARDI IR
16 NBIG = |
¥B1G = Y1) SNARO1&B
17 CONTINUE SNARD1TBC
18 NREAD = NREAD + 1 SNAROLAD
IF (NSTITL ~ NREAD) 19,19.4 SNAKO1BE
{ e m e e e e ee e ———— —————— SNAROLBF
€ ALL SCANS HAVE BEEN READ IN, ALIGNED, AND ADDED., WE NOW FINDSNAROLRG
c THE MAXIMUM OF THE COMBINED SPECTRUM, SNAROLBH
Cmmmmmm e - - SNARO1B1
19 YBIG = 0. SNAROL9F
D0 117 1=1,NPT SNARD194
IFIYBIG-Y(I)) 116,117,117 SNARD19E
116 NBIG = 1 ) SNARN19C
Y816 = Y1) SNARO19D
117 CONTINUE SNAROISE
IFINSTIG) 20,200,22 SNARO19F
e e —————————— = SNARD ] 96
c USE THE ENTIRE SPECTRUM FOR THE LINE SHAPE. SNARNL9H
[ e mmmmmmeem—= == SNARDL91
20 DO 21 I = 1, NPT SNARO20OF
21 S(I) = Y(I) SNARO20A
NSPT = NPT SNARO2DB
NSMAX = NB1G . SNARDZ0C
SMAX = Y{(NB]G) SNARD200D
G0 1o 27 ¢ SNARD20E
[4 : SNAROZOF
c SELECT PART OF THE SPECTRUM FOR THE LINE SHAPE. SNARD20G
€ : SNAROZOH
200 YFIT = FITXY{NBIG) SNARD201
DO 201 I=1,NBIG SNARQ21E
IF(YFIT=-Y(1}) 202,201,201 SNAROG21A
201 CONTINUE SNARO218
202 NFIT = | SNARO21C
NN = NBIG-NFIT ) SNAROZ10
NSFIT = NFIT-NN SNARO21E
NSFIT = MAXO(1,MSFIT)
NSPT = TonM SNARD2 LF
NTEMP = NPT-NSFIT 2
NSPT = MINOINSPT,NTEMP)
NSMAX = NBIG-NSFIT
SMAX = Y{NBIG) SNAROZ1H
0O 203 1=1,NSPT SNARD211
K = I+NSFIT : SNARD22E
203 'S(I) = Y{K) SNAROZ2A
G0 T0 27 SNARO22B
[ - SNAROZ22C
c READ IN THE LINE SHAPE. SNAR0D22D
c-- - - SNARD22E
22 READ (54+1) NSPT SNAROZ2F
CALL OCTHEX (L NSPT) SNARO22G
SMAX = 0, 7, SNARQ22H
PO 24 1 = 1, NSPT SNARNZ221
S(I) = Lil) - L) SNARN23E
IF | SMAX = S(1) ) 23,2424 SNAROZ23A
23 NSMAX = | SNAROZ23R
SMAX = S(I) SNARO23C
24 CONTINUE g SNARO23D
IF(NRFLCT.EQ.0) CALL RFLCTR{S4NSPT) ¥ SNARO23E
¢ -— SNARQ23F
c FILTER THE SPECTRUM. SNARD23G
c SNARO23H
27 IF INSIG) 28,29,29 SNARD231
28 CALL REMOVE(NBIGsXsYoFIT,FI,B,NPT,NFIT,ABNONC ,NSWEEP ,SHEEP ,SEPRTE,SNARO24E
INWDTH NRFLCT o A4 PHI , IFPLOTI1)} SNAROZ4A
CALL FILTER(NSTON,SoNSPToNFITyNSMAXsSMAXoFI4FOsHySDMsSWEEP sNSWEEP, SNARO24B
1HELP,1PSDL) SNARO24C
NFIPT = NFIT SNARQ24D
G0 TO 30 SNAROZAE
29 CALL FILTER (NSTDNyS NSPT NPToNSMAX,SMAX Y FDyH,SOMSWEEP(NSWEEPy SNAROZ&F
THELP,IPSDL} SNARO24G
C SNARO24H
[ SET THE PARAMETERS FOR PLOTTING FI(T). SNARO24]
c SNARD25E
NEIPT = NPT SNARQ25A
30 TITLELd) = ), SNARG2SE

TITLECL) = LABEL(1) SNARDZSC
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YMIN = ~0,B%Y{NBIG) SNARD2SD
; ¥MAX = 1.2%YINBIGY SNARD2SE
NOUT = NFIPY SNARD2SF
NXO = NBIG SNARD256
IFENSTON.LT.0) GO TO 300 SNARODZ5H
c —mmm e e = SNAR 0 25 1
c CALCULATE THE AVERAGE ENHANCEMENT OF THE SIGNAL-TO-NOISE SNARD2LE
C RATIO WHICH WOULD RESULT FROM A MATCHED FILTER, SNAROZGA
c SNAROZ68
SIGMA = O, SNARDZ6C
S$SQ (1) = (S{L)Im=2 SNAROZGD
DD 46 T=2,M5PT ~ . SNARO26E
46 $S0(1) = $S0 (1-3) + {S([))=w2 SHARDZ26F
DO 44 J=) JNFLPT SNaR0266
K = NSMAX - J SNARQ26M
IMAX = NSPT - K SNARO26]T
TMAX = MEMOINFEIPT.,TMAX) SNARO2TE
ININ = 1=K SNARO2TA
IMIN = MAXOUL+TIMIN) SNARO2TR
IXK = THAXSK SNARO2TC
MK = ININK SNARO2TD
&4 SIGMA = S!HAOSGRI(SMIIXKI-SSOHNIH SMAROZTE
HINPT = NFIPT SNAROZTF
ENHCMT = SJGMAS{SMAX*FINPT) SNAROZTG
300 TFINRFLCT) BEeAT7.47
[#
<  REFLEET #ND SHIFT THE sric!khl.
L= .
; t? nulﬁ = NPTSNBIGHY . ¢
. GALL RFLCYREYNPT)
LEALL. SuMSRT §- SN
CALL RFLCIRIFOL.NFIPT) SNAROZRE
IF(MPT.EQ.NFIPT) GO TO 51 SNAROZAF
DD 501 1=1,NF1PT SHARO28G
501 FOUNPT-T1+1) = FO(NFIPT~14+1) SNARO28H
K = NPT=NFIPT SNARO2B1
BIG = L0.*YINBIG) SNARO29E
DO 502 I=1,K SNARO29A
502 FO(1) = BIG SNAR0298
NFIPT = NPT SNARD29C
c ————— SNARO2Z9D
c PLOT FHIT). SNARD29E
c SNARO29F
51 IF{IFPLOTI2).EQ.2) ’ SNARD296G
LCALL VLABEL{OeyOss=0Bylo2sYLNGy10,YAXIS,1041,FMTV,8) SNARO29H
IF(IFPLOT{2),EQ.2) SNARD291
1CALL VLABEL (043049009 SHEEPXLNG5+XAXIS,15,04FMTH.B) SNARO3OE
IFLIFPLOT(2).GEL1) SNARO30A
L1CALL CPLOT{YyNPToNWDTHyTITLE,YMAKsYMIN, L) SNARD308
IF(NSTON.LT.0) G0 TO 500 SNARO30C
[ SNARO30D
C PLOT S(T). SNARO30E
c ——= —————~—SNARO30F
TITLE(1) = LABEL(2} SNARO30G
TMIN = -0.8%SMAX SNARO3O0H
TMAX = 1.2%SMAX SNARD301
IF(IFPLOT(3).EQ.2) SNARO31SE
1CALL VYLABEL(0os0us=aByl.2,YLNG,10,YAXIS,104+1,FMTV,8) SNARO314A
TF(LIFPLOTI3).EQ.2) SNARD318B
ICALL VLABEL{0.cs0.0p00sSHEEP oXLNG ¢5,XAX1S,15,04FMTH,8) SNARO3LIC
IF(IFPLOTI3).GEal) : SNARO3LD
LCALL CPLOT(S,NSPT NWOTH,TITLE, TMAX,TMIN,1) SNARQG3I1E
IF(NSTONL.LE.O} GO TO 500 SNARO3LF
C-= SNARO31G
C PLOT HIT) , SNARO31H
[ . SNARO3 |
IFINRFLCT.GEL0) CALL RFLCTR{H,NSPT) SNARDO3Z2E
305 TITLE(1) = LABEL(5) SNARO3ZA
HMAX = 0. SNARD328
90 707 1=1,NSPT SNARD32C
ABSOL = ABS(H(I)) SNARD32D
TOT HMAX = AMAX](HMAX,ABSOL) SNARO3ZE
HMIN = —HMAX SNARO32F
[FLIFPLOT (4).EQ.2) SNARD32G
LEALL VLABEL(0490us=1.91a0+YLNGyLO+YAXIS,1051:FMTV,8) SNARO32H
1F(IFPLOT (4) 2EQa2) SNAROD2T
LCALL VLABEL{0OcyDuv0asSHEEP,XLNG,54XAXIS,15504FMTHs8)} SNARQ33E
IFUIFPLOT(4) .GELY) SNARD33A
1CALL CPLOT(HyMSPToNHDTHs TITLEsHMAX JHMIN, 1) SNARO338
508 CONTINUE SNARD33C
IF{YSCALEY31,31,33 SNARD33D
c- ———————— SNARO33E
C DETERMINE THE SCALE FUR THE INPUT AND OUTPUT SPECTRA. SNARQ33F
et s S ——— SNARGIIG
31 FOMIN = 0. SNARO33H
FOMAX = 0. SNARO331
MINEG = 1 SNARO34E
IFINRFLCT .GELO) MINI = NFIPT-NDUT+] SNARQ34A
¥ 00 32 I=MINI|NFI1PT SNAROI4B
FOMIN = AMINL{FOMIN,FO(1)) SNARO34C
32 FOMAX = AMAX1(FOMAX,FO(1)) . SNARO34D
60 TO 34 - SNARO34E
33 FOMIN = YSCALE®YMIN SNARO34F

. FOMAX = YSCALEXYMAX

SNARO34G
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34 IFINSIG) 35,36436 SNARO34H
- SNARO341
C PLOT FEIT) = F(T) : SNARO3SE
C-= —— ~SNARD35 A
35 TITLE(1) = LABEL(3) SNARO35B
FIMIN = LO.¥FOMIN . . SNARO3SC
FIMAX = 10,*FOMAX 3 i SNARO35D
{FINRFLCT .GELO) CALL RFLCTRIFINPT) SNARD3ISE
S84 AMN = FINIM/YINSIG) SNARO3SF
AMX = FIMAX/Y(NBIG) SNARO3SG
1F(IFPLOTIS)EQ.2) SNARO3SH
JCALL VLABEL (O .00 sXMNoXMKyYLNG 10, YAXIS 20,1 ,FHTV,8) SNARQ3S 1
IFIIFPLOT(5).EQ.2) SNARN36E
LICALL VLABEL(0.)00p0aoSHEEP XLNG ¢5,XAXIS¢15+0,FMTH,8) SNARO3GA
1F(IFPLOT(5).6E.11 SNARO368
1CALL CPLOTUFI NPT NWOTH,TITLE,FIMAX,FIMIN,;1) SNARO36C
c SNARQ36D
c PLOT FOU(T) WITH OR WEITHOUT ERROR BARS. SNARO3GE
c SNARO3&F
36 TITLE(L) = LABEL(4) SNARN3HG
EF(NSTON) 38,3738 SNARO36H
[ SNaRO361
c PLOT THE ERROR BARS. SNARO37E
[ SNARO37A
37 WDTH = NWOTH SNARO3TB
DO 45 J=1,NOUT,20 SNARO3TC
IFINRFLCT) 56455455 SNARQ3TD
55,K = NFIPT-J+1 SNARO3TE
60 TO 75 SNARO3TF
56 K = J SNARO3TG
5 T = & SNARO3TH
WIDE = WOTH*(15./XLNGTH) SNARO3T1
HIGHT = (FOMAX-FOMIN)#(10./YLNGTH)+FOMIN SNARO38E
45 CALL EBPLOT (T,FO(K)SDM(J) 0. 4WIDE ,FOMIN,HIGHT 0,13} SNARO3BA
38 XMN = FOMIN/Y(NBIG) SNARO388
XMX = FOMAX/Y(NBIG) SNARO3BC
IF(IFPLOT{6).EQ.2) SNARD38D
1CALL VLABEL(Oos0. o XMN XMXoYLNG,10,YAXIS,10,1,FNTV,8) SNARD3SE
IF(IFPLOT(6).€Q.2) SNARO3BF
1CALL VLABEL {04900 ¢00ySWEEP ;XLNG,5,XAX15,15,0,FNTH:8) SNARO38G
IF(IFPLOT(6).GE.1) SNARO3SH
1CALL CPLOTU(FONFIPT NWDTH,TITLE ,FDHAX.FMIN.“ o SNARO381
4 o SNARO3ITL
[ PRINT OUT THE PARANMETERS AND NUMERICAL xﬁ . SNARD3IPA
¢ : - . Bl SNARD39B
‘ WRITE (6s101) (DSCRPTII).I-I;ZN 4 SNARO39C
MRITE (6.42) T!TLE(ZI.ISHEEP-NSTIIL.NSIGrMFLC!M“.SHEEP.FIT. SNARD39D
1¥YSCALF » ENHCHT s ABNDNC o SEPRTE , 1P SIIL SNARD39E
WRITE (6,302) HELP SNARO39F
IFINSIG) 39,40,40 SNARD39G
39 AA = B(1)/Y(NBIG) SNARO39H
D = B(2)/SQRT(B(3)) SNARD39]
WDTH = NSWEEP SNARO40E
YO = (WDTH/SWEEP) SNARD4DA
BB= B(3)*(Y0**2) SNARO40B
X0 = NXO SNARO4OC
X0 = (X0-B(4))/Y0 SNARD4OD
YO = BUS)/Y(NBIG) SNARO4OE
WRITE(6,43) AA,D,BB,X0,Y0 SNARO4OF
PHI = PHI®(SMAX*¥%2)/(SSOINSPTI®((Y(NBIG)*.5*ABNDNC )¥%2)) SNARO4QG
WRITE (6,998) PHI SNARO4OH
WRITE (64999) {(Al1,4)41=1,5),J=1,5) SNARO4D I
40 CONTINUE SNARO4LE
WRITE (64,77) =N SNARO&LA
77 FORMAT(1H1) SNARO4 18
101 FORMAT (1HLl,1X,20A4) SNARO41C
42 FORMAT(1X9A%y/ s/ s 1XyIHNSWEEP = 2154/91Xs9HNSTITL = +154/43X s THNSIGSNARC410
1 = 515:/9LX+sOHNRFLCT = ,154/42X,8HNSTON = 415,/,2X,BHSWEEP = ,F11.SNARO41E
255/ v4X96HFIT = yF11.5,/41X,9HYSCALE = yF11454/+/ 91X +9HENHCMT = ,F5SNARO41F
3ala/ o/ 9 XsIHABNDNC = yF7.54/91XsIHSEPRTE = 4F11.5¢/92Xs8HIPSDL = ,SNARO41G
415} SNARD4 LH
43 FORMAT (/+24X%:3H1/2+/,15X,20H{ 1 - D*B #* (X-XO) ),/,1Xs 34HL{X) SNARO411
1= YO + A* 9/930X,1H2, /516X, 17TH{ 1 + B*(X-X0) )SNARO42&
20/ 9/ 92X y4HA = JE164By/ 92X p4HD = ,E16.8,4X91H2,/ 92X 44HB = +E16.8,4HSNARDS2A
3 /HZ+/91Xs5HXO = 4EL6.Bs3H HZe/s1X,5HY0 = 4E16.8) SNARO42B
302 FDRHAT(!X.BZHTHE IMPROVEMENT IN NOISE LEVEL =,FT.3+/,1H++31X,1H:,/SNARO4ZC
SNAROGS2D
998 FOﬂNAT(//vSvaHPHl = 4E16.B46H E(FI),//) SNAROSZE
999 FORMAT{40Xy LAHCORRELATION MATRIX,5(/41Xs5F19.61) SNARO#2F
100 CONTINUE SNARDA 2G
sTap SNARUAE2ZH
END SNARO421
SUBROUTINE REMOVE (NBIG,X,Y,FIT,FI,ByNPT,NF1T,ABHNDNC ,NSWEEP; SWHEEPREMIO00A
1, SEPRTE NWDTH  NRFLCT 4 A,PHI , IFFLDT) - REMOOONRA
c ———————————— -—REMDOOOC
c THIS SUBROUTINE REMOVES THE PARENT PEAK. REMDOODD
G i i et e - REMDOOOE
DIMENSION XllOZh!.YllOZh}.Fl(lDZkl.FPRiHEGE).xFiT(S\.YFITIi)-BIS! REMOOQOF
DIMENSION DOU3)4A1545)4SORTCIS)4DELTALS) +BFESTIS),ATEST(5,5) REMO000G
COMMON/COMCPL/ITEST y XLNGTH, YLNGTH REMODO0H
OOUBLE PRECISION CMTX REMDOOOI
DIMENSION CMTXI(5,5) REMDOOLE
REAL LAMDAZ,LAMBDA i REMDOOLA

DD{l) = 0,

REMODOLR
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DD(3) = 1. REMOOOLC
FITT = FIT#YINBIG) REMNOOLD
oL 1 o= 1, NBIG REMOOOIE
TF AYL1) = FETT) 1,142 REMOOO LF

1 CONTINUE REMNOO1G

2 NFIT = 1 REMUOOOLH

G —— REMDOO11
G SUBTRACT THE SATELLITE PEAK FROM THE PARENT PEAK FOR THE REMOOD2E
c LEAST-SQUARES FIT. REMO0OO22
Cuss - REMOCO2A
SHEEPN = NSWEEP REMD0OO02C

JHALF = SEPRTE*(SWEEPN/SWEEP) REMO002D
IF(JHALF.LE.O) GO TO 23 REMOOO2E

ADD = 0.5%ABNDNC REMO002F

IMAX = NPT-JHALF REMD0O26G

MAX = MINOINFIT,IMAX) REMOOO2H

DO 21 I=1,MAX REMDOO21

21 YUE) = Y(1)=ADD*Y(I+JHALF) i REMOOOIE

C ~——====REMUQO3A
C OBTAIN AN APPROXIMATE FIT USING ONLY FIVE DATA POINTS. REMDOO3A
Ciastsspadaaa 2 s 00 T 28 il i 08 oy ; REMDSRRE.

Z3 XFIT (1) = 1, REMDO003D
YEIT (1) = Y{(1} REMOGO3E
00 3 1 = 2,5 REMDOO3F
J = (1-1)*(NFIT/4) REMO0036G
XFIT (1) = 3 REMODOO3H

3 YFIT (1) = Y(J) REMOOOD31
fascastados Sl REMO0O04E
5 SET THE INITIAL VALUES OF THE PARAMETERS, B, REMDOO4 A
Commomm e ——————— e —————~REMO004R

B{1) = Y(NBIG) REMDO04C
B(2) = 0. REMDOOAD
Bl4) = NBIG REMODO4E
8(5) = 0. REMODO4F
B(3) = (BILIZ(YFIT(S)) =1 I /UXFIT(S) ~ Bl&) }»%2 REMO004G
PHIO = 5.%B(1)#%2 REMU0O4H
TEST = ((LOS*ABNDNC ) **2)%PHIO REMOO04 I
LAMDAZ ='0,01 REMDOOSE
CALL PHICLC(PHIZ,5,XFIT4YFIT,F1,B4+5) REMO005A
CALL LSQFIT(S5+5+XFITsYFITsF1+B+1+PHIFPRIME L AMDAZ 4PHIZ ,LAMBDA, REMOOO58
1A, SQRTC+1,ATEST,DELTA,BTEST) REMD0OSC
PHIO = PHI REMOOO5D
DO 4 1=1,5 REMDGOSE
LAMDAZ = LAMBDA REMDOOSF
PHIZ = PHI : ? REMG0QSG
CALL LSOFITIS 54 XFITyYFIT,FI,B,3,PH] FPRIME,LAMDAZ ,PHIZ ,LAMBOA, REMOOOSH
1A, SORTCs Ly ATEST,DELTALBTEST) REMODOS
DELPKI = PHIO = PHI REMOO006E
IF (TEST = DELPHI) 4.4,5 . REMOQO6A

4 PHIO = PHI 4 REMDO0&B
c —— - -~REMO006C
C FIND THE LEAST-SQUARES LORENTZIAN USING ALL DATA POINTS. REMO006D
G e e e —— REMODOGE

5 T = NEIT . REMOGO6F

PHIO = T#(Y(NRIG) ) w2 REMNO066G
TesT = ((JOSEABMNDNC ) ®%2 ) %PHI0 REMOQO6H
LAMDAZ = 0.01 REMD006 |
CALL PHICLCIPHIZWNFIT X YaF14B45) REMN007E
CALL LSOFITINFIT5,XoYsFT By 1aPHI WFPRIMEGLAMDALZPHIZoLAMBOA REMOOOT A
TALSORTC y 1, ATESTDELTALBTFST REMNNDTR
PHIO = PHI REMDNOTL
00 6 1 = 1,10 REMIODTD
LAMDAZ = LAMBDA R~MOONOTE
PHIZ = PHI LEMNOOTF
CALL CSUFITINETIT 399 XaYoFloBe3erHI JFPRIMEGLAMDAL o PHIZ oL AMRUA, 200010
1A,SORTC 1 4ATEST JDELTA,BTEST) REMINOTH
DELPHI = PHIO - PHI HEMOBO0TI
TFITEST= DELPHI )Y hs6.7 HEMONDOAE

f PHIO = PHI REMGOORA

7 1F{1.EN.10) WRITE(6,9) REMDGOAA
[ s s S e e e ~<-REM{ICOR(,
C CALGULATE THE CORRELATION MATRIX REMOODSBD
L it e e REMOQORE

DC 40 [=1,5 REMOQOSBF
DO 40 J=1,5 ReMUNDARG

40 CMTXILT1,d) = All.J) REMOO0AH
CALL BNDINMV(CMTXs5,0ETERM, 0.4 FTESD) REMON08 T
[FCTTESDONELO) WRITE(6,65) 1TESD REMUI0OYE
TFOITESHGNELO) 60 TO 44 R EMIEIOS A
DO 41 I=1,5 REMNGOOH
CMT = CMTX(I,1) REMIIONSC

41 SORTC(1) = SQRT{CMT) REMOOOSN
DB 42 1=1,5 REMODOYE
DD 42 J=1,1 REMOUOO9F

42 All4J) = CMTX(1,J)/(SQRTC(E)=SQRTC(J)) REMDOOSG
DO 43 I=1,4 REMODO9H
IPL = I+1 REMOGOY |
00 43 J=1P1,5 REMOO10E

43 AtI,J0) = AtJ,1} REMO01DA

6 CONTINUE REMOO108

[ REMOO10C
C ADD THE SATELLITE PEAK BACK TD THE PARENT PEAK AFTER THE REMOO010D
C LEAST~SQUARES FIT. REMO010E
C - - - —==-==—REMDO10F
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IF{JHALF.LE.O) GO TO 24 REMOO10G

MAXPL = MAX+1 REMOO10H

DO 22 1=1,MAX REMDO101

K = MAXP1-1 REMOOLLE

22 YUK) = Y{K)+ADD*Y (K+JHALF) REMOOLLA

24 CONTINUE REMOO11A

o e e = <=REMOO11C
o COMPLETE THE LORENTZIAN IN THE PART OF THE SPECTRUM NOT USED REMOOLLD
4 FOR THE LEAST-SQUARES FIT, REMDOLIFE
(i o e Al e e i S R R e S —-—===REMOLLF
DO 10 I=NFIT.NPT REMO0116G

X1 = X(1)-Bi4) REMOOTLH

1O FI(I)= B(5)}+B(11%=(L.—Rl2)#XL)/(1a+B(3)#X1%%2) REMOOLLT
————— ——— —mmmm e e mmee = =R EMOC | 26
[ SHEFT THE BASELINE OF THE SPECTRUM AND THE LEAST-SOQUARES REMOO12A
[ LORENTZ 14N, REMOO12R
[ e e DS R ~-==REMN012C
DO 8 I=1,NPT REMNO12D

8 Y(I) = Yd1)-8B(5) REMOO12E
YMIN = —,82Y(NBIG) * REMOO 2F

YHAX = 1.2%*Y(NBIG) REMO012G

DO 12 I=1,NPT REMDO1 2H

12 FI(1} = FI(I)=B(5) REMDO121
IFINRFLCT.GE.O) CALL RFLCTR{FI,NPT) REMDO13E

[ ~—=====REMOD13A
c PLOT THE LORENTZIAN DETERMINED BY LEAST-SOUARES. REMOO138
c - —————— e REMNO13C
15 IF{IFPLOT.EQ.1) REMOO13D
1CALL CPLOT(FINPT,NWDTH,DD,YMAX,YMIN,0} REMDO13E
IF{NRFLCT.GE.O) CALL RFLCTR(FI,NPT) REMOO13F

35 CONTINUE . REMUO136
e ~———~~REMOO13H
c REMOVE THE PARENT PEAK (I.E. SUBTRACT THE LEAST-SQUARES REMOOL31T
c DETERMINED LORENTZIAN FROM THE INPUT SPECTRUM). REMDO14E&
C —— - REMDO14A
DO 11 I=1,NPT REMOC148

L1 FI(I) = YUI)=FI(1) REMOOL4C

9 FORMAT (1X.3BHTHE LEAST~SQUARES FIT DID NOT CONVERGE./,1X+24HMORE REMOO14D
1SCANS ARE NECESSARY) REMDO14E

45 FORMAT(1X,30HCORRELATION MATRIX IS SINGULAR,/,1X,8HITEST = ,15) REMOD14F
RETURN REMOO 146G

END . REMODL 44
SUBROUTINE RFLCTRIS,NSPT) RFLRODOA

[ i RFLROOOB
e THIS SUBROUTINE REFLECTS A REAL VECTOR ABOUT THE CENTER. RFLROOOC
P e m——— —————- - RFLRO0OD
DIMENSION SINSPT)" RFLROOOE

.25 0 = NSPT/2 RELROOOF
DO 26 1=1+J RFLROOOG

K = NSPT + 1 = 1 RFLROOOH

SI = St(1} RFLROOOI

SUI) = SIK) RFLROOLE

26 S(K) = s1 RFLROO1A
RETURN RFLROO1B

END RFLROOIC
SUBROUTINE OCTHEX{LsNPOINT) 0C THOOO0A
[ e e e e e 0CTHOO0R
c THIS SUBROUTINE CONVERTS 8X,1206 INPUT TO THE PROPER VALUES OCTHOOOC
c WHEN READ 1N AS BX,721Z1, 0CTHO000
Cmmmim ——— DCTHOO00E
DIMENSION L(1024) 0CTHOOOF
INTEGER LREAD*2(72) : 0CTHOOOG

1 FORMAT - {BX,72Z1) 0CTHOOOH
NCARD = NPOINT/12 0CTHOOO0Y
IPDINT = O OCTHOOLE

DD 2 ICARD=1,NCARD OCTHOOLA

READ (5,1) (LREAD(1)4+1=1,72) : 0CTHOOL18
IDIGIT = -6 0CTHOO1C

DO 2 I=1,12 OCTHOOL1D
iDIGIT = IDIGIT+6 OCTHOOLE
IPOINT = IPOINT+1 OCTHOOLF
LOIPOINT) = LREAD(IDIGIT+1}) . 0CTHOO1G

DO 2 J=2,6 BCTHOO1H

2 L{IPOINT) = 8#L(IPOINT)+LREAD(IDIGIT+J) 0CTHOOLT
NLEFT = NPOINT-12%NCARD DCTHOO2E
IF(NLEFT) 545,3 GCTHOO2A

3 NREAD = &*NLEFT 0OC THOO2B
READ (5,1) (LREAD(I),I1=1,NREAD) 0CTHOO2C
IDIGIT = -6 0CTHOR2D

BO & 1=1,MLEFT DCTHNO2E
IDIGIT = IDIGIT+6& OCTHOO2F
1POINT = IPOINT+1 0uc THO026
LIIPOINT) = LREAD(IDIGIT+1) OCTHOO2H

DO 4 J=2,.6 NCTHOO21

4 LUIPOINT) = B#L{IPOINT)I+LREADIIDIGIT+Y) DCTHOO3E

5 RETURN OCTHOO3A

END OCTHON AR
SUBROUTINE LSQFTTINOBSyNPARM X oY o FoBeNLTERSPHE FPRIME JLAMDAZ PHIZ 1.50FN00A

Lo LAMBOA AL SURTALICALC o ATEST JBELTYALBTEST) L SUEDOOR

d : LSUFOOOC
[+ THIS SUBROUTINE FERE(IRMS A LEAST-SQUARES FIT UF THR NiN- LSOFOU0D
c LINEAR PARAMETERS,H, TO VTHE OBSERVEU QUANTLITIES Y(1} AT THE PUOINTSLSOFDOOF
C X(T)s USING THE METHOD 0F MARQUARDT ¢ J.S0CINDUST . APPL.MATH. o1 le  LSUFDOOF
c 431 (1963), L SUFOOOG
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LSOFODOH
NOBS = THE NUMBER 0OF OBSERVATIONS OF Y(X). LSOFNOOI
HiFARM = THE NUMHKER OF PARAMETFRS IN Fy WHERE Y=FIX),. LSQFOO1E
* = THF INDEPENDENT VARIABLE ~ DIMENSION X{NOBS). LSOFOO0IA

¥ = THE MEASURED VALUES OF THE DFEPENDENT VARIABLE - DIM Y(NOBS). LSQFOOILB
F = THE CALCULATED VALUES OF THE DEPENDENT YARIABLE - NIM F(NOBS).LSOFOOILC

4
c
f.
[
[
[

C B = THE PARAMETERS - DIMENSION B(NPARM), LSOF00LD

[# NITER = THE NUMBER OF ITERATIONS RFQUESTED. LSQFGO1E

r PHI = THE SUM OF THE SQUARES OF THE RESIDUES. LSOFOO1F

s FPRIME(J] = THE PARTIAL OF F WITH RESPECT TO B{J). LSQF0016

[ LAMDAZ = THE INITIAL VALUE OF LAMBDA. LSQFO01H

c PHIZ = THE INITIAL VALUE OF PHI. LSQFOO11

c LAMBDA = THE FINAL VALUE OF LAMBDA, . LSQF002&

€ ICALC = 1, PHICLC AND FCALC ARE USED, LSQFO02A

C 29 PHICLZ AND FCALCZ2 ARE USED. LSOF002B

[ A = SCRATCH LSOF002(

c ATEST = SCRATCH LSOF002D

€ LSQFDO02E

C— e o e e LSQFO02F

¢ THE SUBROUTINES PHICLC AND FCALC MUST BE PROVIDED! LSQF0026

C-mmm== ———— mmme————— ————————————— | SOF002H

Il LSOF0021

DIMENSTION A(NPARMsNPARM) +G 1 5) 4 FPRIMF (NPARM) ySORTAINPARM) 5 LSOF0036

I DELTA(NPARM)}.BTEST(NPARM] 4ATEST (NPARM,NPARM} LSOF0034

DIMENSION X(NOBS),Y(NDBS),F (NOBS?Y,BINPARM) LSOF0038

REAL LAMBDA,LAMTST,LAMDAZ £LSOFN03C

MAX = 5 LSQF003D

vV = 10.0 . LSOF003E

LAMTST = LAMDAZ LSOF003F

PHITST = PHIZ LSRF0036

DO 5 ITER=1,NITER ; LSQFDO3H

LAMBDA = LAMTST LSQF0031

PHI = PHITSY LSQF004E

CALL AGCALC{A,GyNPARMNOBS,X,8,F, Y SORTA,FPRIME,ICALC) LSOFD04 A

1F({LAMBDA.LE,0,00001) GO TO 1 LSOFD04B

LAMTST = LAMBDA/V LSOF004C

C = 1. LSQF0040

1 CALL BCALC(NPARMyAyLAMTST GoDELTAsMAX,IToBySORTASC,BTEST,ATEST)  LSQFOO4E

IFUIT.EQ.MAX} GO TO 2 LSQF004F

IF(ICALC.EQO.1} CALL PHICLCIPHITST,NOBS+XsY+F,ATEST,NPARM) LSOF 004G

IF{ICALC.EQ.2) CALL PHICL2(PHITST+NORSsXyY+FsBTEST,NPARMI LSQF004H

[F(PHITST.LE.PHI} GO ¥O & LSQF00&!

CALL GAMCLC (NPARMDELTA +GyGAMMA) LSQF005E

IFIGAMMA.GE.0.7854) GO TO 3 LSQF005A

C.= 0.5%C LSQFOOSH

60 TO 1 | LSOF005C

2 WRITE(6Gs6) NPARM,LAMTST LSQFNO05D

3 LAMTST = LAMTST*V LSQFQO0SE

GO TO 1 LSQFOOSF

4 CONTINUE LSOFQ056G

DO 5 1=1,NPARM ' LSORDOSH

5 B(1) = RTEST(I) LSRFOO051

PH1 = PHITST LSQFO0GE

LAMBDA = LAMTST LSOFB06A

6 FORMATI1X,14HWARNING TT=MAX,/ 41X ,6HNPARM= 1647 41X, THLAMBDA=,F15.7ILSOF006R

RETURN LSQFO06C

END L SOFO06D

SUBROUTINE PHICLCIPHI JNOBSsXeYsFaByNPARM) PHICOO0A

c PHICO00R

¢ THES SUBROUTINE CALCULATES THE SUM OF THE SOQUARES OF THE PHIC000C

4 RESINUES WHEN A LORENTZIAN IS USED. PHECONBD

c ' PHICOO0E

Cmmmmm i ———— e — e i PHICOOOF

c PHTC000G

DIMENSION X(NORS) 4 Y (NUBS) oF (NGBS ) o8 (NP AKM) PHICDOOH

PHI = 0, PHICOODT

06 1 1=1,NOBS PHICNO1E

X1 = X(1)=B(4) PHICOQLA

FITY = BIS)I+BUL)H[1.~B21%X1) /{1, +B(3)¥X1A%2) FHICDO IR

1 PHY = PHI+(Y{I)-F(1))*2 PHICOD1IC

RETURN : PHICOO1D

END PHICOOLE

SUBROUTINE FCALC(XyBsF P 4] yNOBS) FCLCOOOA

Cmmmmmm e B T -— FCLCOOOB

C THIS SUBROUTINE CALCULATES THE VALUES OF THE LORENTZIAN AND FCLCOOOC

€ 175 DERIVATIVES FOR THE LEAST SQUARES FIT. FCLCO00D

c— : FCLCOOOE

DIMENSION X(NOBS)},F{NOBS),B(5),P(5) FCLCOOOF

X1 = X{1)-Bla) FCLCOOOG

BX2 = 1./(1o4+B(3)xX1%%2) FCLCOOOH

PU1) = (1.=B(2)*X1)%BX2 FCLCOOOT

P(2) = =B{1)kXL*BX2 FCLCOO1E

PT = P{11%P(2) FCLCOO1A

PFi3) = X1%PT FCLCOO1B

Pi4) = BLIYSB(2) ¥ BR2=2 KH(B}#PT FCLCOUIC

PIB) = 1. FCLLDOID

FU1) = BOLIEPL1Y48(5) FCLCOOLE

RE TURN FCLCOOILF

EN FOLGOULG

SUBROUTINE PHICL2(PHI 4NUBS X, Y,FyH.NPARM) PHI 20004

c PHIZDOOR

¢ TH1S SUBROUTINE GCALCULATES THE SUM OF THE SOUARES OF THE PH12000C

E RESTDUES WHEN AN EXPONENTLAL 1§ USED, PHIZ000D

PHT2000E
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o= mm==m==———=—==PH] 2000F
C PHI20006G
DIMENSION XINOBS) +Y(NORS) +F (NDBS) sB(NPARM} PHI2000H
PHI = 0. PHI 20001
DO 1 1=1,NOBS PHIZ2001&
FEE) = B(L)+BI2)*EXP(=B(3)*X(1)) PHIZ0OD1A
L PHI = FHIFIY(I)-F(]))=*2 PH12001R
RETURN . PHIZ2001C
END PH120010D
SUBROUTINE FCALC2(XsBsF,P414NOBS) : FCL2000A
e ANl i1 B A R I FCL2000R
C THES SUBROUTINE CALCULATES THE VALUES OF THE EXPONENTIAL AND FCL2000C
Lol ITS DERIVATIVES FOR THE LEAST SQUARES FIT. FCL2000D
G e e ———————————— FCL 2000F
DIMENSION X(NOBS) 4F INUBS)B(3),P(3) FCL2000F
BlL) = 1. FCL2000G
P12) = EXP(-B(3)%X(I)) ° FCL2000H
FLI) = BL2)*P(2) FCL20001
PL3) = ~XITI*F(]) FCL2001E
Fil} = BU{1)+F{I) FCL2001A
RETURN FCL20018
END FCL2001C
SUBROUTINE AGCALCIA+G4NPARM,NOBS,XB4+F,Y,SORTAsFPRIME.ICALC) AGCAOOOA
¢ AGCADOOR
C THIS SUBROUTINE CALCULATES THE A& MATRIX AND THE G VECTOR. AGCADOOC
& AGCAO00D
C AGCADOOE
¢ AGCADOOF
DIMENSTON A{MPARI NPARM) 3G (MPARM) X (NOBS) o B (NPARM) oF (NOBS ) »Y (NUBS }AGCA(I00G
1, SORTAINPARM) , FPRIME INPARM) AGCAOOOH
DI} 1 J=1,NPARM AGCADONE
Gid) = O. AGCAQOLF
DO 1 K=1,J AGCAONLA
1 AlJsK) = Oa AGCADOLB
DO 2 I1=1,M0BS AGLAONLE
TF(ICALC.EQaLl) CALL FCALC(XsRsF,FPRIME I 4NOKS) AGCAODLD
IF(ICALC.EO.2) CALL FCALCZ2(XyBsF FPRIME,I NOHS) AGCAOOLE
DO 2 J=1,NPARM AGCAOGLF
GlJ) = GLIIHIY{TI=F(1))*FPRIME () AGCADOLG
DO 2 K=1.4 AGCADOLH
2 AlJsK) = AQJDWKI+FPRIME(J)RFFRIME(K) AGCADOLT
Crmmmmmr ——— e e ——e e == AGCADDZE
C SCALE A AND G AGCAQO2¢
Crmmerss—mrmremees Ty o o o . o, e e S S R S e A R e mm - AGCAOQ2R
DO 3 J=1,NPARM . AGLADOZC
3 SQRTA{J) = SQART(ALJ,J}) | AGCAOOZD
DO 4 J=14NPARM AGCADOZF
GlJ) = GIJI/SQRTALJ) AGCAQOZF
DD &4 K=1+J ALCANO2G
4 AfJsK} = ALJHK)I/(SORTALJ)*SURTAIK)) AGCADO?H
O e e e e ——— e - AGCAOO2]
C COMPLETE THE UPPER HALF OF A, AGCAQO3E
G = AGCAQO3A
JMAX = NPARM-1 AGCADO3N
00 5 J=1,JMAX AGCAQOD3C
KMIN = J+1 AGCADD3D
DN 5 K=KMIN,NPARM AGCADO3E
5 AlJyK) = AlK,J) AGCADO3F
RETURN : AGCANOAG
END AGCANOAH
SUBROUTINE BCALCINPARM Ay LAMTST 4G4DELTA¢MAXIT+B,SORTACBTEST, BCLCONOA
1ATEST) RCLCOOORM
C - BCLLODOC
C THIS SUBROUTINE CALCULATES THE NEW ESTIMAT# 0F THF BCLCOOOL
e PARAMETERS, H, ' BCLCNOOE
C
e o o s A B L L
& & i
DIMENST U AINPARN JWPARNM ) (GINPARM, \DELTAINPARM) JHINPARNY
1S TA(NPARMI oBT STIMEARK ) JATHFST (NPA-~ (A&
REAL LAMTST
DO 1 J=14NPARM
DO 1 K=1,NPARH
1 ATESTUJaK) = Al(J4K)
DD 2 Ja=1,NPARM
2 ATESTIJ,Jd) = ATEST{J4J)+LAMTST
CALL EQSOLVINPARM ATEST sGoMAX 40,001 +DELTALIT ()
IF(IT.EG.MaX) GO TO 4
DU 3 a=1,NPARM
3 BTEST{J) = BLNI+C=DELTA(J)/SORTA(S)
+ RETURK
END
SUBROUTINF GAMCLCINPARM, ,DELTA,G,GAMMA )
C
& THIS SUBROUTINE CALCILATES HAMMA, THF ANGLE e TWEEN Twb LELTAGAASOONC
C WE USE AND THE DELTA ORTAINE( “40M THE GRAGBIFNT M- THOD. AEVEON0
€ ¢ CaFLO0NE
GAELOO0F
< LR T o140 Y
DIMENSTON DELTA(NPARM) GINPARM) GLMEOOMS
DELMAG = 0. . GAMCOON)
GMAG = 0. CAMCOOLL
DELTAG = 0, GAMCOO A

DO 1 I=1,NPARM - GAMZLDOLK
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DEIMAG = NFLMAGSDELTALT ) N2 GaAMLOOIC

GMAL ® (MAGIGI] ) Re? GaMCON1D
boOELTAG n DELTAGHDELTACL) w6l amMC OOy E
NELG = DELMAGHGMAL GAMELOOTF
COSGAM = DELTAG/(SQRT(DELG) b GAMCOOT G
GAMMA = ARCHOS(CNSGAM) GAMCOOTH
RETURN GaMCoOl 1

FND GAMT 0
SUBROUTINE FILTER (NSTUNoS NSPT,NFIPT, J5MAXSMAXFI4FOHsSUMLSWEEPFILTOODA

1 NSHEEP HELP, IPSDL} FILTOOOR

G o o e et o e 0 0 O e o —————em - —eeeeeef 1) TO00C
c THIS SUBROUTINE SELECTS THE FILTER OF YUUR CHOICE. FILTO00D
G v o o e et et o e 8 ————mee—————eeee=f | LTOOOE
DIMENSION S(1024),F1(1024),FOL1024),H(1024).50M11024) FILTO0OF

IF (NSTON) 3,41.2 FILTOOOG

1 CALL MATCH (S ¢NSPT NFIPT,JSMAX,SMAX ,FI+FD+SDM,H) " FILTODOH

GO TO 4 FILTOOOI

2 CALL RESOLYV (NSTON S NSPTNFIPT,JSMAX SMAXFI+FUOsH,IPSOL} FILTOOl &

GO TO 4 FILTNO1A

3 CALL RCFLTR (NSTOMsNFIPTFI,FO4SWEEP sNSWEEP +HNSPT) FILTOO1R

C --FiLToo1lC
C CALCULATE THE MAXIMUM ENHANCEMENT DF THE SIGNAL~-TO-NOISE FiLToOo1D
C RATIO WHICH RESULTS FROM THE FILTER USED ABOVE. FILTOOLE
C FILTOOLH
4 FOMAX = 0. FILTOO1G
FIMAX = 0. : FILTOOLlH

PO 5 I=1,NFIPT FILTOOLI

FOMAX = AMAXL (FOMAX,.FO(T1)) FILTOO2E

5 FIMAX = AMAXL(FIMAX,FL(1})}) FILT0O024A
HELP = 0. = FILTODZR

DO & 1=1,NSPT FfLroo2c

6 HELP = HELP+H(I)=#%2 FiLTho20
HELP = FOMAX/{FIMAX*=SORT(HELP)) FILTOO2F
RETURN FILTOOD?F

END FILTOO20
SUBRDUTINE MATCH (SoNSPT ¢NFIFT JSMAX 2 SMAX oF T 4FI1],SDM,H) MTCHOOOA
__________ e e e e e e — = M T HO 0
THIS SUBROUTINE PERFORMS A MATCHED FILTFR OPERATION §N TiME MTCHOOGC

SPACE. MICHOOOH
________________________ —— —————— ———=—=MTCHOOOF
DIMENSION  SSQ (1024}, S(1024), FI{1024), FO(102&), SOM(1024]), HT(HO00F
1H{1024) #1CHO006

S50 (1) = (S(1))**2 MTCHODOH

DD 1 1= 2,NSPT MTLHOOOT

1 SSO(I) = SSQ (I-1) + (S{1))%*2 MICHAOLE

DO &4 0 = 1,NFIPT ) MTCHNOT A

K = JSMAX = J 4 MTCHOOL

IMAX = NSPT - K mMICHONLC

IMAX = MINO(NFIPT,IMAX) MTCHOOLD

IMIN = ]-K - MICHOOLF

ITMIN = MAXO{1l,IMIN) MICHONLF

IxK IMAX+K MICHNDLG

INK = TMIN+K MTCHOOIH

C = SMAX/ZISSOQ(IXK)I=SSQUINK)} MTCHOOLT

SIGMA = 0, MEICraQas

DG 2 1 = IMIN,IMAX MTCHDO2 &

IK = I+K MTCHOO2A

2 SIGMA = SIGMA+S{IK)}®*FI(1) MTCHO02C
FO{J) = C*SIGMA MTCHOO20

1J = 20%(J/720)-3+1 MTCHOOZE

TRIT. 4,544 MTEHANZE

R R s e S s e e e S i S R e S e S e s e e e —e=MTCHOOZG
£ CALCULATE THE SIZE OF THF ERROR HARS. MTLH002H
e e e e P T A o e e S e et e e e e MICHO0Z1
h SIGMA = 0. MTICHOO3E

DO 3 | = TMIN,IMAX : MICHEO3A

IK = I+% . MTC=003 R

3 SIGHA = SIGMA+(FOLIIES{TKI=FT1T)uSMAX ) =% MITHOOAC
SOM(J) = C*S0RT(SIGMA) ML A0 3

4 CONTINUE WL S E

C = SMAX/SSD(NSKT) MICHONRF

DR A [=) gNSPT = BILa0030

& HIT) = C*5(1) HOO3H
RETHRN MTCH003 ]

END #TOHODAF,
SUBROUTINF RCFLTR {NSTUNNFIPT F1 FileSWEFP SMSWEFP JH L NSET) FL-LNOOA

R e o HCFLOONK
L THIS SUHROUTINE DUPLICATES THE FFFFCTS UF A DOUBLE SECTINN RO LBONOG
i RE FILTER WLELOOON
f e e e e e e e — RLFLOOOE
DIMENSTUN FILL024),FOL1024),1401024) RECFLO00E

RCT = MSWEEPENSTON KCHLODOG

RCI = -100,%SWEEP/RCI RCFLOOON

EX = EXP(-RCI) KCFLNONOE

FO(1) = RCI=FIC(L} HCFLOOLE

DO 1 N=2,NFIPT RCFLNOLA

1 FOIM) EX®FOIN=L}+RCI®F] (N) HOCFLOOLR
FO(L) RCI%FO( 1) KCFLOOLC

DO 2 N=2,NFIPT RECELOOIN

? FDUEN) = EX®FO(N—1)+RCI#FIIN) KCFLOOLE

EXH = 1. ROFLOOK

NSPT = Ju2é6 RCFLOOLG

RCI2 = RCI=#xz2 RCELOOLH

N0 3 N=1,NSPT ROELOOD D
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EN = N

HIN) = RCIP*ENZEXH
4 OFXH o= FX%FXH

RFTURM

END)

SURHMNITIHE HESOLY (NSTOR & oNSET ok TR T 3 ISMAX s SMAX G F 1o Fll HL TPSDL )

i THIS SUBEMUTING PERFURFS LIMEAR AN PSEIDO=L INEAP FILTER NG
o= It LREGUINCY SEACE .
[, s S R e S 1 e e o A o B e o o

DEMENSTON STHOZG ) F1LIO26) o 00 1G24) B 1024) 4 TRV

RCFLOOZE
RCFLDOZA
RCFILOOZH
RCFLOO2C
RCFLOG2D
RSLVOOODA
RSLVOOOR
RSLVOUOC
RuLvnOng

“=RSLVOUOE
SO e MEAN I LTA( 4IRS VOGNFR

ToBEE ST g tBLZ) oMl A) oFPRIMETS) oAl 30 34) WSORTACAY 2 0B 12 JATEST Y3 )RS1LVONDNOE

MELL LAMDAZ o ILAMISDA
CliMbebx FORTFREEOZ4) $CHM)

O T Py
L CENTFR GMAX
M S e e e e e e e s o o

TREISMAXJLELSLL) GO T 2%
1SHIFT = JSHAX-%11
JSMAX = 5])
NSPT = NSPT-ISHIFT
M1 P27 I=1aNSPT

PEOSTLY = SII+ISHIFTY

25 1T = NSPT-gsMax
TFLIT.LELSYL) GO T 26
NSPT = NSPT=1T+511

26 NCENTR = 2%JSMAX-HSPT
IF{NCENTR) 3,6,1

1 MIN = NSPT#1

NSPT = NSPT+NCENTR
NO 2 T=MINyNSPT

2 Si1)y = 0.
GO 10 6

3 MAX = NSPT-NCENTR
B0 4 FT=1,NSPT
4 SIMAX=1+1) = SINSPI-1+1)

NSPT = MAX
JSMAX = JSMAX-NCENTR
MAX = =NCENTR

HaLVDONH
FSLV000]

==F S VOOIR

BsLVONTA

~=RELVONLH

RSLVONIC
RELYOOLD
HSLVOO] -
KSEL VO F
ropvpare
KSLVOO
KSLVYOU1 1l
RSLVUOZE
RSLVOOZA
RSLVOD2E
RSLVO0O2C
RSLVOO20D
RS1LVOOZE
RSLVOGZF
RSLVOOZ2G
RSLVOO2H
RSLVODZI
RSLVOO3E
RSLVDO3a
R5LVO038
RS WOHIBC
FSLVOO3N

nn & 1=1,MAX BSLVOO3E

5 5{1}) = U. RSLVOO3F

& CONTINUE RSLVO03G

o ——————————— e e m e m RELVONAH
€ NSPT MUST EQUAL 2#%*M FOUR HARM RELVOO3]
£ e e e e b e e e S e e e e i e RSLVOD4GE
mizh =0 K5LVOC4A

M(3) = 0 RSLVOO4R

NSPTT = NSPT RSLVOO4C

Mil) = 1 RSLVOUAD

M2 = 2 RSLYOO4E

7 NSPTT = NSPTT/2 RSLVNO4F
IFINSPTT.LT.l) GO TO A HSLVOD&G

M{1) = M{l)+1 RSLVON4H

M2 = 2=xM2 R5LVOOA |

GO TNt RSILLDOSE

H MNSDIFF = M2-NSPT RSLVEIOSA

MAX = M2-NSUIFF/2 RSLVDOOSA

DO 9 I=1,4NSPT RSIVOO5C

9 SIMAX-1+1) = S[NSPT-1+1} RSLVOO50
IMIN = MAX+1 RSLVOOSE

NO 10 I=1MEN,M2 HSLVOOSF

10 S41) = 0. HSLVOOSEG
MAX = MAX-NSPT RYLVOOSH

DO 11 I=1,MAX RSLVOOST

11 StI) = 0O, RSLVOO6&H
JSMAX = JSMAX+MAX RSLVODGA

NSPT M2 RSLVOO&KR

e ekttt st D o e e ey e e e R T e R e e e ==RSLVOD6(
. CALCULATE SI(OMEGA) RSLVNN6D
Commm o RSLVYOOGE
DO 12 I=14NSPT RSILVOO&F

12 FORIERLI) = S{1) RSLYNOOG
CALL HARMIFORIER M, INV4F0,1, [FERR) RSLvON&

NSPT2 = NSPT/2 RSLVOO6T
IFCIPSDL,NE.O) GN TO 21 RSLVOOTE

Cm e mm —-— ——— - ————e==R&I MONTE
G PDETERMINE THE EXPONENTIAL DECAY 0OF STIOMEGA) BY LFAST-SGUARESRSLVOOTER
e FITTINS HSLV 07
o = ~RELVONTH
DO LYT J=14NSPT2 RSLVGO(F

Zaty) = J RSLWOOTF

H{2) ABS (FORIER(J)) RSLVOOTG

117 Hid) HIEd)Y=H{J)
B(1) 0.
BI2) = H(1})
B3y = (ALOGIRIZ2}/HTT0N )Y 220410}
LAMIIAZ = 0,01
CALL PHIGLZIPHIZ WNSPTZ 4200l aF yH.3)
CALL LSOFTTINSPI23 3070 He b o Ran oy PHT VERRTME Q1AM P o LAMBD A A
ISORTA L2 G ATEST oDELTALBRIES )

U mam e s e sme m

) POITMINATE LIEE MG FREQUEMUY NS T8 ST LOMELA)

20 LIT0EE o 0,

R vANTH
weLvonii
RSLYONIE
RSLVODEA
RSLVODAR
R&EVODRC
RN T 1]
1SE s
PNl VORORE
BN VaoRG

©o= RN VON

RS Vst
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I START NSPT2-9 . RSLVOOYE

NO 103 T=1START NSPT2 . RSLVO09a
104 CUTOFF = CUTNFF+CABS(FORIER(I)) RSLVONVR
CUTOFF = CUTOFF/5. RSLVOOSC

DO 17 I=1sNSPT2 RSILVOOSD
FORI = CABS(FORIER(1)) RSLVOOSE
IF(FORI.LE.CUTOFF) GO TO 18 RSLVOO9F

17 CONTINUF ‘ R5LVN0O9G
60 Ta 20 RSLVOOYH

1 IMAX = NSPT-1+1 RSLV0OO91
DO 19 J=T,JMAX RSLVN10E

19 FORIER(J) = (0,40.) RSLVO10A
st CONTIMUE RSLYOL0H
Cmmmmm e e - A e A R e e a e e e RSLVO1OC
L8 CALCULATE HIOMEGA) RSLVOLOD
———————————————————————————————————————————————————————————— KSLVOI0F

NS TON RSLVO1OF

STOM = DG L#STHR RSLVO10G
IFUIPSDL.FQ.0) STON=EXP{STON)=-1. i RSLVOL10OH

0 = 137%([STON=L1)*=2)/((CARS(FURIER(L)))%%2) RSLVO10]

C = 0. > : RSLVOLLA
IFIIPSDL.NE.OY GO TGO 22 KSLVOL1A

Bl = Q+l. RSLVOLLH

Bl = B(3)/11.+0.5275%AL0GIRL)) RSLYOLLIC

Bl = =0.36%(B1l%%2) RSLVOLLD

0 = 0%8(2) KSLVOL1E

N0 13 J=1,4NSPT RSLVOLIF
CONJ = CONJGIFORIER{.O)) RSLVOL1G

X2 = FORIER(J)*COMJ RSLVO11H

Cd = RALVOLLET
LF{J.GTMSPT2) CJ = NSPT-J+1 & KSLVO12E

D = Q2(EXP(-B(3)%CJI))I+1. RSLVO124A

CJ = CJ-1. . RSLVO1 24

EJ = Bl#(CJ=%=2) kSLvOl2C

EJ = EXPIEJ) RSLVO1 21y

C = C+({X2/D)Y*EJ RSLVO12E

13 FORIER(J) = (CONJ/D)*EJ RSLVOL12F
6N TO 24 RSLVD126G

22 CONTINUE RSLVOIL2H
00 23 J=1,NSPT RSLVO121
CONJ = CONJGIFORIERI(J}) RSLVO13¢E

X2 = FORIER{J)I*=CONJ RSLVO13A

D = 1la+Q¥X2 RSLVO13R

C = C+X2/D | HSLVO13C

23 FORIER({J) = CONJ/D RSILVOi3D
24 RNSPT = NSPT RSLVOL3F
C = RNSPT#SMAX/C RSLVO13F

DO 14 J=1.NSPT RSLVOL3G

14 FORIER(J) = CHFORIER(J} RSLVO13H
(o e e e m e RSLVO13E
c CALCULATE H(T) RSLVO14&
C-—- e RSLVOT&A
CALL HARM(FORIER My INV,FU, -2 IFERR} ESLVO148

DD 15 1=1,NSPT KSLVO1aC

15 H{I) = FORIER{I) RSLVO 14D
RSLVO14F

RSLVOL4F

RSLV(C166

KSLYO1aH

RSLVOl6!

MAX = N-1+J5MAX RSLVOLSE
MAX = MINO{MAX,NSPT) RSLVOLS5A
MIN = N-NFIPT+JSMAX KSLvalse
MIN = MAXO{MIN,1) RSLVD15C

DO 16 1=MIN,MAX RSLVOL5D

16 FOIN} = FOUINI+H(I)*%F1{N=T+JSMAX) RSLVOLSE
RETURN . . RSLVDILSF

END: i i s g . . RSLYO15G
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APPENDIX C

A SEMIEMPIRICAL CALCULATION OF
SPIN-SPIN COUPLING CONSTANTS
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We have used this extended Hiickel theory type orbitals of
R. Hoffmann and W. M. Lipscomb51 to compute coupling constants
for e.p.r. and n.m.r. spectra. Only the e.p.r. first-order Fermi-
contact e coupling, and the n. m.r. second-order Fermi-contact
coupling are considered. The e.p.r. coupling constants of nuclei
which lie at a node of the odd electron's orbital in a m-electron
radical could not be calculated. The results for e.p.r. are similar
to those obtained by the hyperconjugation approach. The computer
programs used make the method easy to apply, and the results show
substantial agreement with experiment. A description of the calcu-
lation of the e.p.r. coupling constants has been published. 53

The semiempirical method used attempts to guess the results
which would be obtained from a single-determinant minimum basis
set Hartree-Fock calculation. The inner-shell electrons are not
explicitly taken into account in these calculations. All overlap
integrals are computed. This is quite simple, because they have been

54

evaluated analytically. Extended Hiickel theory approximates the

diagonal elements of the Hamiltonian matrix by valence-state
ionization potentials, and uses the Wolfsberg-Helmholz 55 approxi-

mation, Eq. (C1), for the off-diagonal elements.

1
Hy; = yK(H;+HS,. (C1)
The constant K, Eq. (Cl), is set equal to 1.75. Slater %6 15

orbitals are used for the hydrogens and Slater 2s and 2p orbitals are
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used for the first row elements.

These approximations give Hamiltonian matrix elements quite
different from the calculated elements for small molecules. The
resulting occupied orbitals and the associated eigenvalues are,
however, an excellent approximation to those obtained by ab initio
calculations on small molecules. The unoccupied orbitals and
associated eigenvalues bear no obvious relation to the Hartree-Fock
quantities.

Computation of the contact coupling of the first-row elements
requires a 2s function which does not have a node at the nucleus.

Since the Slater 2s function has such a node, a function of the form

25’ = (1 -89 %(2s - S-1s), (C2)

where S is the wls - lp2s overlap integral, was used. In the compu-
tation of overlap integrals the 2s overlap was substituted for the 2s’
overlap. This did not cause any serious error in the overlap

54

integrals. The value of these orbitals at the nucleus is similar to

that obtained by S. C. F. calculations for the atoms. o
The Fermi-contact operator for electron-spin resonance is

BN BN Oy - LIS Iy (C3)

SC” _ 1_6_1_7_3;;
3N

where & is the Dirac delta operator, S and Iy are electron and nuclear
spin operators, and j, By and N have their usual meanings. This

is a perturbation on the electronic Hamiltonian. By evaluating this
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perturbation to first order in terms of the above orbitals, the

coupling constant may be expressed as
B 16w 2

where qu is the value of the orbital of the unpaired electron at
nucleus N.

Although Hoffmann and Lipscomb 51 used a Slater exponent of
1.0 for hydrogen, S.C.F. calculations indicate that an exponent of
about 1.2 would be preferable. This contraction of hydrogen 1s
functions would increase (I)I\ZI in Eq. (C4) by a factor of 1. 728. The
relative sizes of the splittings are not affected, since the Hij and Sij
in Eq. (Cl) are insensitive to the exponent. The S.C. F. calculations
included first-row ls basis functions, so we varied the exponent to
obtain agreement with experiment. A value of 1.15 reproduces the
experimental results for the vinyl and 1-methylvinyl radicals
reasonably well.

Table I gives the results of this treatment of several radicals.

The values obtained by Dixon 58

are listed for comparison. Dixon

used a hydrogen exponent of 1. 20 and slightly different geometries.
We used the experimental geometry of the parent compound for the
present set of calculations except in those cases for which special

notes éppear in the Table.

Since the bond angles and bond lengths of most radicals are not

known, a useful semiempirical scheme for correlating coupling
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Tasre I. Comparison of experimental and calculated coupling constants.

A(G)
Radical Experimental Calculated Ref.
Extended Hypercon-
Hiickel jugation
Formyle 136 74.3 59
Vinylb (gem) 13.4,15.7 13.6 17.3b
(cis) 34.2 32.9 49.7v 60
(trans) 68.5 66.8 81.6b
1-Methylvinyle (CHj) 19.48 18.2
(cis) 32.92 28.4 60
(trans) 57.89 59.8
Pheny! (ortho) 18.1 12.5 23.3
(meta) 6.4 8.3 4.2 61
(para) 0.0 11.0 17.9
Cyclopropyld («) 6.51 6.5
® 23.42 16.8 24,1
Ethyle (8) 26.87 21.4 27.1
2-Propylt+ (8) 24.68 18.8 22.8
teri-Butyl! 22.72 16.8 20.3 60
Cyclobutylt:# (8) 36.66 29.6 38.2
(v) 1.12 1.46 2.9
Cyclopentyl!:s (8) ~35.16 30.4 37.2
() . 0.53 0.42 0.57
Cyclohexadienylfb (CHa) ; 47.71 42.0 54
Ethynyl 16.1 2 74 62
Nitrogen dioxide 107 74 63
* / (H-C=0)=120 deg 0% ® TThe C~CH; group is planar.
b / (H-C=C) =146 deg. 3 { The carbon skeleton is planar.
¢ £ (C-C=C) =146 deg. £ The @ hydrogen is in the carbon plane.
4 The o hydrogen is 28.6° out of the carbon plane. b The single and conjugated bond lengths are 1.51 and 1,34 A,
SR - T - respectively.
TaBLE II, Variation of parameters.
A(G)
Parameter Values Radical
' Value (1) Value (2)
Hydrogen exponent (1) 1.15 Vinyl (gem) 13.6 14.5
(2) 1.20 (eis) 32.9 35.0
(trans) 66.8 74.6
Ethyl (8) 21.4- 23.6
2-Propyl (8) 18.8 21.1
tert-Butyl (8) 16.8 19.0
(-C bond length (1) 1.54 Ethyl (8) 21.4 29.0
(2) 1.44 2-Propyl (8) 18.8 24.9
teri-Butyl (8) 16.8 21.8
Ca out of the plane of the ring (1) 0° Cyclopentyl () 30.4 29,7
(2) 10° (v) 0.42 0.40
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constants cannot be very sensitive to small changes in geometry and
hydrogen exponent. Our results in Table II show that the coupling
constants computed from extended Hiickel wave functions generally
satisfy these requirements. The coupling constants of the vinyl
radical have a strong dependence on the bond angle. However, Adrian

65 62 have also

and Karplus, "~ and Cochran, Adrian, and Bowers
obtained optimum agreement with experiment for an angle of 140° to
150° using a valence-bond approach.

The low value for nitrogen coupling is to be expected, since no
1s first-row orbitals were used. Ethynyl radical may be a 7 radical,
in which case these calculations would not apply. The complete
disagreement for the para coupling in phenyl radical is not understood
at this time.

The results obtained by computing e.p.r. spin-spin coupling
constants from extended Hiickel theory molecular orbitals show
vgeneral agreement with experiment. The theory predicts changes
within a given group of radicals very well. For example, the computed
coupling constants of aliphatic radicals are all 5.7+0.2 gauss lower

than the experimental values.

The contact operator for n.m.r. is

" _ 16w gh
= —33—%3%71\75(31{1\1)?’\1:‘11\7 (C5)

where ¥y 1s the nuclear gyromagnetic ratio. The first-order

perturbation term vanishes, and the second-order term
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5 Lot n)? (C6)
n;!O En = EO

when applied to wave functions of the type used gives

o occ. un%cc. S Pig, Py D
- B 7 il "jk "jL 7
J]I _ h( 3 ] Vi V1 - ]_J Ej TE, (CT)

where quk is the value of M.O. j at nucleus K. Because the energies
could not be evaluated by the extended Hiickel method, the molecular
orbital eigenvalues were used instead.

The coupling constants obtained by this procedure are given in
Table I1I. Fahey, Graham, and Piccioni o5 have obtained essentially
the same results using hydrogenic 2s orbitals instead of orthogonalized
Slater 2s orbitals. The approximations involved in computing the
coupling constants were evaluated by making the same approximation
for the energies, but using the Hartree-Fock orbitals and eigenvalues
for formaldehyde which were obtained by Foster and Boys. W This
gave a coupling constant for formaldehyde of 40.7 Hz
compared to an eXperimental value & of between 40. 2 and 42. 4, and
a Hiickel value of -12.7. A set of ethane orbitals and eigenvalues
similar to those of R. M. Pitzer also gave coupling constants in
agreement with experiment. On this basis, it appears that the major
error in these calculations is that the extended Hiickel method does

not reproduce the Hartree-Fock results with sufficient accuracy.
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TABLE III
J in Hz
Molecule Exp. Calc.
H - H
A, Saturated molecules
Hydrogen 280 316
Methane -12.4 -11.3
Ethane (vic) 8.0 3.3
Methanol (gem) -10.8 -14.4
B. Unsaturated molecules
Ethylene (gem) 2.3 -10.1
(cis) 11.5 4,4
(trans) 19.1 10. 7
Acetylene 9.8 5.1
Formaldehyde 40.2-42,4% -12.7(40.
c” - o
Ethane (short) 125.0 74.8
(long) -4.8 -3.2
Ethylene (short) 156.2 98.5
(long) -2.4 -6.7
Acetylene (short) 248.7 . 160. 4
(long) 49,17 -3.6
C13 _ C13
Ethane 34.6 27.7
Ethylene 67.2 60.0
Acetylene 170.6 119.1

*
Solvent dependent.
* Hartree-Fock orbitals were used.

o

Ref.

67
68
48
89, 70

48
48
48

48
71

48
48
48
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The extended Hiickel approach reproduces the general trends for
both vicinal and directly bonded couplings reasonably well. This is
hardly a triumph, because these trends are ‘easily predicted within
the framework of an average excitation energy approximation. 73 The
calculated values for geminal spin-spin couplings bear little resem-
blance to the experimental values. Because the basic purpose of this
approach was to remove the average excitation energy approximation,
we must consider it a failure.

The results of these calculations for e.p.r. coupling constants
are in excellent agreement with experiment, but the agreement for
n.m.r, is poor. In hindsight, we recall the remarks about the
accuracy of occupied and unoccupied orbitals that we made previously,
and note that we could have expected the relative accuracy of the
computed e.p.r. and n. m.r. coupling constants. We would expect
extended Hiickel theory to accurately predict n. m. r. couplings only
when the contributions from the various excited states do not involve
small differences between large numbers, and precise information
about the excited states is unimportant. Comparison with successful
applications of the average excitation energy approximation indicates
that this is the case. It appears that a method, such as Lipscomb's
N. E.M.O. calculations, which gives results similar to those from a
rigorous Hartree-Fock calculation, in those cases for which the
rigorous calculations have been done, would be successful in predict-

ing n. m. r. spin-spin couplings.
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