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ABSTRACT 

I. Crossing transformations constitute a group of permutations 

under wh ic h the scattering amplitude is invariant. Us~ng Mande ls tem's 

analyticity, we decompose the amplitude into irreducible representa-

tions of this group. The usual quantum numbers, such as isospin or 

SU(3), are "crossing-invariant". Thus no higher symmetry is generated 

by crossing itse l f . However, elimination of certain quantum numbers 

in intermediate states is not crossing-invariant, and higher sym-

metries have to be introduced to make it possible . The current 

literature on exch ange degeneracy is a manifestation of this sta tement. 

To exemplify application of our analys is, we show how, starting with 

SU(3) invariance, one can use crossing and the absence of exotic 

channels to derive the quark-model picture of the tensor nonet. No 

de tailed dynamical input is used. 

II. A dispersion relation calculation of the real parts of forward 

± + 
rr p and K-p scattering amplitudes is carried out under the assumption 

of constant total cross sections in the Serpukhov energy range. 

Comparison with existing experimental results as well as predictions 

for future high energy experiments are presented and discussed. 

Electromagnetic effects are found to be too small to account for the 

+ expected difference between t he rr p and n p total cross sections at 

higher energies. 
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I. INTRODUCTION 

Regge pole t he ory
1

) has enabled us to understand the scattering 

process A + B -Y C + D at high energies and low momentum transfers 

- -
in terms of exchanges in the crossed channel A+ C ._yB + D. (See 

Fig . 1 for de fin it ion of kineIMtic variables.) To leading order in 

s, the contribution of an individual Regge exchange to the scattering 

amplitude is given by 

A(v, t) 
( - V)a(t) + ,-vCX(t) 

!3(t) sin na(t) r (l + a (t)) ( 1) 

A Regge pole is a pole in the j -plane a t j = a(t) with residue 

!3( t) . It corres ponds to the exchange of a whole 11 trajectory 11 of 

particles . These have iden tical quantum numbers except angular 

moment um. The exiscence of exchange forces causes even- and odd - j 

partial waves to have different analytic continuations in the j-

plane. A Regge trajectory is thus characterized by an additional 

quantum number T = ± 1 called signature, which specifies in which of 

the two amplitudes the pole appears. (1) clearly exhibits this. 

Even signature (T = 1) implies poles in A(V,t) at t values for 

which a(t) = 0,2,4, .•. Similarly, poles are inferred at a (t) = 1, 

3,5, . .. if the signature is odd (T = - 1). The absence of exchange 

forces manifests itself by the existence of two exchange degenerate 

trajectories with equal residues, but opposite signatures and 

parities. 

131 (t) = !32 (t) 

(2) 
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Their s um c ancels t he second (exchange) term in (1). 

Signature has a dd itional meaning when considering the crossed 

-
reaction A + D ~ C + B, whose amplitude is A( - V,t). We define the 

synunetric and antiSYI!lJ~etric amplitudes 

A( ±)( V,t) = t (A(V,t) ± A(- V,t)) . (3) 

Even signature contributes only to A(+), and odd one only to A<.-). 

A connection is made between the high energy Regge behavior of 

the amplitude and low energy scattering by means of analyticity in 

t he energy variable V (see Fig . 2). Each amplitude splits into a stnn 

of an amplitude with a right - hand cut, one with a left-hand one, and 

possibly a third, which is entire in V (a subtraction term). 

A (T) ( V, t) A (T)(V t) + A (T)( V t) +subtraction term. s ) u ) 
(4) 

As previously ind i cated, t he asymptotic expansion (1) is already 

split as it stands. The first term has the right-hand (direct) cut, 

while the second has the l eft-hand (exchange) one. 

a (t) 

A (T) ( V t) 
s ) t ~(t) r(l +-~(t)) sin na ( t) 

(5) 

A (T)(V t) = 
u ) 

1 va (t) 

2 T ~(t) r(l + a (t)) sin na (t) 

Dolen, Horn and Schrnid
2

) first realized that the asymptotic 

expansion (5) had to be equally good along the entire circle !V I = N. 

Th is enables explic i t integration of t he amplitude along that c~rcle. 

Consider the finite c losed contour P in Fig. 2. The amplitude 

A (T)(V t) is regular inside it, and therefore Cauchy's theorem s ) 
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gives 

0 n = 0, 1,2, ... (6) 

Evaluating the integral along the circle I VI = N expli_citly one 

ha s 

N 

J vn 
0 

A similar analysis of 

Im A(T)(V,t) 

a . (t) + n + 1 
~. (t) N i 

1. 
-(a- . -( t_)_+_n_+_ l_)_ r_(_a_. -(-t ),.-+-1_)_ n = 0 ' l, 2 ' • • • 

1. l 
i 

A(T) (Vt) gives* 
u ' 

i 

~ .(t) 
1. 

a. (t) + n 
N l 

+ 1 

(a . (t) + n + 1) r(a. (t) + 1) 
l 1. 

( 7) 

n=0,1,2, ... 

(8) 

The sum extends over all Regge trajectories with signature T . 

The values of n can be extended to negative integers, provided one 

handles t he additional singularity at V O. 

N 

J vn 1 + 1 Im A ( T) ( v' t) = L 
0 i 

~ . ( t) Na ( t) - m 
_.;;;;._1 --- + 2L (Q_.) m 
(a (t) - m) I' (a(t) + 1) m! oV 

A(7 )(V t)i 
' v = 0 

m =0,1, 2, . . . 
(9) 

Equations (8) and (9) f orm constraint s which analyticity and Regge 

asymptotics impose on t he amplitude . They are known as finite energy 

sum rules (FESR). The asymptotic Regge amp litude gains meaning also 

at low energies. It is a local average of the ampli tude. This is 

known as duality between direct channel s cattering and crossed 

* The subtraction term does not contribute to (8) because i t is 

analytic in V. 
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c hannel exchanges . If t he high energy behavior is not described 

by simple Regge po les, the right -hand side of (8) and (9) will have 

to be modified. The integration along the circle !VI = N will be 

complicated. However, there is still duality between · low and high 

energy scattering . 

h d b d d . 3) h T e next step was ma e y Freun an Harari . T ey con-

jectur ed that the amplitude may be split into a sum of a "resonating" 

amplitude and a "diffractive" one. 

(10) 

Each satisfies FESR s eparately . The diffractive comprises only 

background scattering at low energies and diffraction (Pomeron 

exchange) at high energies . The high ener gy cross s ection arising 

from t hi s amplitude is constant at h igh energies. The resonating 

amplitude consists of pure resonances without background at low 

energies, and is dual to the exchange of all usual Regge trajec-

* tories at high energies. Those lead to cross sections which fall 

like a power of V. 

A direct analysis of this assumption has been done i n nN and 

. 4) 
KN scattering • However, the most convincing evidence comes from 

the interesting experimental correlation, which is explained by, and 

motivated t h is hypothesis. Experiment has so far failed to reveal 

resonances whose SU(3) quantum numbers are not contained in the 

usual quark model
5
). Mesons seem to fall into 1.,and ~·whi le. baryons 

* To distinguish d i ffr active and non-diffractive scattering we 
res erve the name Regge trajectories to those which a re associated 
with the known t channel resonances. 
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can be classified in l • ~· and 1Q • Other representat i ons are known 

as exotic. The exotic KN and NN channels show not only a l ack of 

res onances at low energies, but t hey have constant cross sections at 

-* hi gh energies. On .t he other hand, nN, KN and NN have both low 

energy cross sections which fall approx imately as 

cr( V) a + b/._fv . (11) 

In an exotic channel the resonating amplitude has no right-hand 

cut at low V > 0. By FESR it has none at high energies either. Thus 

t he total cross section , which is proportional to the i maginary part 

of the amplitude , is purely diffractive, i.e., f lat . It was pointed 

out above how t hi s comes about in t he Regge language. The right-

hand cut of the resonating amplitude vanishes by cancellation between 

pairs of exchange degenerate trajectories. 

Veneziano
7

) has meantime written down an explicit example of a 

function which has Regge asymptotics at high energies, and shows 

resonance behavior at low energies. 

The division into resonating and diffractive amplitudes is 

clearly only a first approximation. For one thing, unitarity, being 

a nonlinear relation, is bound to mix the two. Secondly, this 

approximation ignores Regge cuts
8

) . The latter have a logarithmic 

dependence on energy , and complicated FESR. In fact the two ob

jections are related. Absorption corrections9) correspond to . Regge 

~'( The NN channel is also considered exotic . The cross section is 
not real!y absolutely flat, but slowly varying in comparison with 
that of NN . 
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cuts, and are mixed amplitudes consisting of double exchanges of an 

ordinary trajectory and a Pomeron. Thus one expects this hypothesis 

to hold only at low t, where Regge poles are a good approximation to 

the data, and provided that cuts are not strong. Throughout this 

thesis we will work in that limit. 

In Part I we offer a different mathematical treatment of the 

Freund-Harari conjecture in meson-meson scattering leading to known 

results. We investigate the consequences of crossing symmetry and 

Mandelstam's analyticity in both kinematic variableslO). Our 

analysis is independent of the Regge pole hypothesis, or any other 

dynamical scheme, except the Freund-Harari assumption . 

Crossing symmetry means invariance of the amplitude, up to a 

sign, under the formal permutation of the quantum numbers of 

ioentical particles. If their energies have the same sign, the 

physical channel is unaltered, and we have the Pauli principle . If 

they have opposite signs we are transformed into another physical 

channel. Crossing symmetry then gains meaning only when we specify 

how to continue the amplitude through the unphysical region, i.e., 

when we invoke analyticity. If there are k identical particles, the 

crossing transformations will form the group of permutations on k 

objects, sk. 

Now, in addition we may have conservation of internal quantum 

numbers such as I-spin or SU(3). Particles belonging to a given 

multiplet will then be considered identical, and crossing will apply 

to them . Of course, one has to permute the internal quantum numbers 

too. If the internal symmetry is approximate, we can assume 



- 7 -

crossing to be good to the same extent. By this generalization the 

internal quantum numbers become "crossing invariant". To be sure, 

selection rules are obtained from the generalized Pauli principle 

(for instance an I = . 1 resonance in a :rr:rr channel must have odd j.) 

But no higher symmetries are generated by crossing. (The existence 

of an I = 1 resonance tells us nothi ng about possible I = 0 

resonances . ) The elimination of the right-hand cut for an exotic 

s channel is a statement on the analytic structure of the amplitude . 

It means that there is only a third double spectral function F(t,u). 

However, this constraint i s not "crossing invariant". To make it so, 

one has to introduce higher symmetries. Exchange degeneracy in 

1 1) 
Regge theory is a manifestation of this statementL . In another 

1 ' · h JPC O+t- 2++ 4+t- f examp e we prove t nat resonances wit = , , • • • orm 

degenerate nonets whose couplings to the pseudoscalars are exactly 

12) 
those of the quark model • This result comes about in the 

limit of exact SU(3), without the need for detailed dynamical 

. 13) 
assumptions • 

Using Mandelstam's analyticitylO)' we decompose the amplitude 

into irreducible representations of the symmetric group s
3

• Our 

genera lized approach makes the elimination of exotic channels very 

transparent . We apply this method to the SU(2) invariant :rr:rr 

scattering amplitude, and show how exchange degeneracy comes about. 

Next we treat pseudoscalar - pseudoscalar scattering i n the limit of 

exact SU(3). In addition to generalizing exchange degeneracy, we 

derive the previously mentioned results for the even-j resonances . 

We also briefly discuss the possible use of larger symmetric groups 
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in analyzing the general n-point function. Although our formalism 

can be easily genera lized, it is not a useful approach to multi-

body dyn amics because most resonances decay via two particle 

intermediate states. The physics is already conta ined i n the four -

point f unction. 

The recent Serpukhov
14

) experiments at energies of 30 - 70 BeV 

show t hat all measured meson-nucleon total cross sections stay 

constant above 30 BeV . This contradicts previous expectations from 

Regge pole theory. The expansion (1) is clearly in trouble above 

30 BeV . Three main lines of t hought have emerged to deal with this 

"catastrophe:". 

1) The experiment is wrong. This possibility is not very l ikely, 

since the statistics are good and considerable care was taken to 

minimize systematic errors . 

2) Regge cuts are strong, and t he logarithmic dependence on V is 

sufficiently rapid to create a swift flattening of the total cross 

section. 
15) 

There are several versions of this approach • 

3) A new physics sets in around 30 Bev, and the Regge approximation 

is no longer valid. This may or may not be combined with the 

second possibility (or even with the first!). 

The attractiveness of such suggestions depends on 

a) The t heoretical ideas underlying each explanation. 

b) The number of parameters needed to fit the data. 

c) The ability of the theory to predict correctly future experiments. 

Two features of Regge theory have to be modified to 
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accormnodate the new data. The first is the Pomeranchuk theorem16). 

This states , under very general assumptions, that if in an elastic 

process A + B ~A + B 

Re A( V, O) /[Im A (V,O) log V] --..... v ~ 00 
0 (12) 

then 

6) 
Below 30 BeV the data looked as though t he total cross sections 

approached each other , with cr( -) fa.lling like a power of V. The 

~·( 

Serpukhov data seem to upset this • Theories invoking Regge cuts 

have cr( -) fall loga r ithmically with v. In addition they have crT(V) 

approach its asymptotic value extremely slowl y . Barger and Phillips15) 

in t heir fi t state t hat the 1lN total cross section will reach 

asymptotia, to within the exper imental error ± 0.2 mb, only at 

98 
V = 10 BeV . By that time we lose our interest in religiously pre-

serving the Pomeranchuk theorem. One realizes that there is nothing 

holy about a ssumpt ion (12), and hence the conclusion (13) need not 

hold . In f act, it is quite compat i ble to have Re A(V,t) grow loga-

rithmically, while Im A(V,t) approaches a constant. 
17) 

Some authors 

have investigated the consequences of this rise in the real part of 

t he amplitude and its fina l dominance . It will be pointed out that 

t h is is again a very academic question . The logarit hmi c growth is 

so slow that we are pushed to tremendous energies before tha t stage 

* There is not yet a positively charged meson beam at Serpukhov . In 
order f or crT(M-p ) - crT(~p) to continue fal l ing like a power , 
crT (M1"°p) will have to start rising. ot (1Cn), which equals crT (1l+p) 
by I -sp i n invar i ance , does not seem to do this, a lthough there is 
some uncertainty about the Glauber shadow corrections. 
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is attained. It is very naive to assume that we understand physics 

throughout this range, and can extrapolate our results all the way 

to infinite energies. 

One of the nice features of Regge theory and the expansion (1) 

is that it gives both the magnitude and the phase of the amplitude 

at high energies in a manner that is compatible with dispersion 

theory. The reason is, of course, simple. Expression (1) is an 

analytic function of V with the correct cut structure. In fact, it 

was precisely this analyticity which was used to derive t he FESR. 

What effect does the new asymptotic amplitude have, through 

analy ticity, on the amplitude below the Serpukhov range? The former 

can be described by means of an additional cut starting at some V = A· 

For positive n there is no change in the FESR for N <A. To see this 

note that the amplitude is linear in the various cuts contributing 

to it. Recalling our previous derivation, we see that the new cut 

starting at V = A cannot contribute to the FESR, since the amplitude 

* it generates is analytic for \v\ $ N <A 

However, the real part of the amplitude is modified by the new 

cut. If we are to preserve analyticity, the real part of the ampli-

tude can no longer be described by the Regge approximation (1). 

Furthermore, breaking the Pomeranchuk theorem necessitates an 

additional subtraction term in the odd amplitude. 

We conclude that Regge theory can still be maintained as a 

* For n < 0 one has contributions from the singularity at V = O. 
Similarly the new cut affects the continuous moment sum rulesl8), 
which we have not considered. 
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parameter ization of the imaginary part of the amplitude below 

30 BeV) but not of t he real part. In addition) the positive 

moment FESR continue to hold. 

19 ) 
Horn has come up with a specific suggestion . Following the 

Freund-Harari hypothesis) he conj ectured that possibly we have 

reached an ionization point beyond which t here are no more reson-

ances. The situation above that point is analogous to that in an 

exotic channel. The i maginary part of the amplitude is purely 

diffrac t i ve . The limit ation of t his picture is that it has not 

offered an alternative dynamics . It is mere l y an intuition) which 

may serve as a basis for a search of the underlying the ory . 

We do not attempt such an invest i gation . In Part II we 

address ourselves to a simpler question. We take the new Serpukhov 

data at face value) and look for their effect on the real parts of 

forward meson-nucleon scattering amplitudes via dispersion relations. 

I t should be emphasized that) in order to evaluate t he real part, it 

is only ne cessary to speculate on the behavior of the total cross 

sections up to energies which ar e , say, an order of magnitude greater. 

A different extrapolation beyond there does not necessarily affect 

the dispersion calculation) unless the change is very dras tic. 

± We discuss the phase of t he forward n p scattering amplitudes, 

as well as t he f orward differentia l cross s ec tion of nN charge 

exchange ( CEX) . We find an es timate for the upper limit of e lectro-

magne tic effects in thes e amplitudes) and conclude that it is too 

small t o account f or t he expected difference between crT(n-p) and 

crT (n+p) at t he higher energies. We discuss t he fi ts to available 
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data) and make predictions f or f uture high ener gy experiments. We 

+ 
treat the K-p scattering in a similar way. Although the experi -

+ 
mental data on t he real parts of the K-p amplitudes are not very 

accurate) t hey favor the existence of an addit ional non-Regge term. 

This could be the subtraction constant needed if the difference 

between crT(K-p) and crT(K+p) persists at higher energies . 
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I. CROSSING AS A GROUP AND ELIMINATION OF EXOTIC CHANNELS 

1. General Formalism 

Consider meson-meson scattering in which at least three of the 

particles are identical. The three channels -- s, t, and u -- all 

transform into each other under crossing. These transformations com-

prise the symmetr ic group s3. The invariant amplitudes A. (s,t,u) 
l. 

are a basis for a representation of s
3

, because crossing synnnetry 

implies a linear relation of the type 

A. (p(s,t ,u)) 
l. 

~ -1 
= L D(p ) .. A .(s,t,u) 

Jl. J 
j 

(1) 

for each permutation p E s3 . Note that t he symmetry group is not 

enlarged if all four particles are identical. A priori the 

symmetry group is s
4

• However, certain crossing transformations do 

not cross any channels, e.g., the simultaneous interchange of 

particles A and B and C and D. Thus this subgroup of transformations, 

n2, is always represented by the identity transformation on the 

invariant ampl itudes. We are interested only in investigating 

inequivalent transformations, and therefore consider only the 

quotient group s4 /n2, which is s
3

• To put it more physically : you 

cannot do better than permute all three channels. Note, however, 

t hat t h is equivalence subgroup is a special feature of the four -

point function. It does not exist for the general n-point function . 

As pointed out before, in order to explore t he consequence of 

crossing symmetry, one has to invoke analyticity. We write each 

invariant amplitude in a Mandelstam formlO) 
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(2) 

+ a
1
(s,t-u) + a

2
(t,·u-s) + a

3
(u,s -t ). 

The a -type functions have a cut from threshold to infinity in the 

first variable, and are entire in the second. The F-type functions 

have the cuts in both variables, but we have subtracted fr om them all 

parts that can be stacked on to t he a-type functions . There is a 

question whether t he decomposition (2) is unique. We have not been 

able to find the weakest assumptions needed to imply thi s , but guess 

that they may be rather general, because of the different cut struc 

ture of each function in the product of the complex s and t planes . 

The decomposition is certainly unique if each function can be written 

in the form of a dispersion integral. Without further ado, we accept 

t he assumption of uniqueness. We confine our attention to F-type 

functions only. Our work carries through whether a-type functions are 

added or not. Note,however, that the latter can give only f i xed poles 

in the j-plane. 

It is worth looking for the mos t general basis of F- type 

functions for the three irreducible represent a tions of s
3

• We will 

identify these representations by means of their Young tableaux. 

We refer the reader to Ref . 20 for a review of the properties of finite 

groups and their representations , with particula r emphasis on s3 • We 
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u se t he cycle notation to refer to elements of Sn. A cycle (a
1

a 2 ... am) 

in Sn is a chain of permutations as follows: put a
1 

in the position 

of a2} a 2 in that of a
3

} and so on} and finally am back in that of a
1

. 

Each permutation is a combination of cycles. we -do not write one-

element cycles . Thus (st) is a shorthand notation for (st)(u). 

In explicitly reducing a representation it is useful to consider 

the generators of the group. These are a subset of the group generating 

all other elements by closure. Therefore} a representation is com-

pletely determined -by the mapping of the generators on matr ices. 

s3 is generated by two elements (not any two!)} say} (st) and (su) . 

For the sake of a unified notation we envelop all three irreducible 

representations of s
3 

in a single reducible four - dimensional one} thus 

defining- "standard" representations. We map the generators as follows 

D((st)) 

0 
1 
0 
0 

0 
0 
0 
1 

D((su)) 

0 
-1 
0 
0 

0 
0 
0 
w 

( 3) 

2rci/3 
where w = e and w w 

2 -1 
w It is seen that the spaces spanned 

and fP } respectively. 

We write each basis vector E . in the Mande lstam form (2)} using 
1. 

only F- type ·functions. When we apply the generators (3) we find 

relations among F- type functions of different variables. For instance, 

let 

( 4) 
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From (3 ) we know 

(5) 

The uniqueness of the Mandelstam decomposition allows only one 

solution 

(6) 

Other basis vectors are evaluated in the same way. The result is 

€1 f
1 
(s,t) + f 1 (t,u) + f 1 (u,s) 

€2 g1(s,t) + g
1 

(t,u) + g1 (u,s) 

€3 f 2(s,t) +w f 2(t,u) +w f 2(u,s) 
(7) 

+ g2 (s,t) +w g2(t,u) +w g2 (u,s) 

-
€4 f 2 (s,t) +w f 2 (t,u) +w f 2 (u,s) 

- g2 (s,t) - w g 2(t,u) - w g2 (u,s) 

where f. and g . are symmetric and antisymmetric, respectively, under the 
1. 1. 

interchange of their· arguments, but otherwise arbitrary F-type functions. 

A similar analysis can be done also for the a-type functions . 

The invariant amplitudes A . will in general form a reducible 
1. 

representation of s3 . We reduce them explicitly, i.e., express them 

as linear .combinations of thee: .• Using (7) we then have the most 
1. 

general F-function form for the A. . They will obey crossing synunetry 
. 1. 

by construction. In the next two sections we use this technique to 

study I-spin invariant nn scattering and SU(3) invariant pseudoscalar -

pseudoscalar scattering. 
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2 . "" Scattering 

As a first application we look at rcn ~ nn . The most general SU(2) 

. . 1. d . . 21) invariant amp itu e is written 

M 5 rva (s,t,u) 
. y J '-"t-' 

(8) 

where a) ... )5 are the SU(2) indices of the n's in the usual way. 

Crossing symmetry is seen to ensue (see Fig. 1): 

1) under the interchange of lines B and C 

A1(s)t )u) (9) 

2) under the interchange of lines B and D 

(10) 

The two transformations correspond) of cours e) to our generators 

(st) and (su). By the definition (1) we therefore have 

(: 
1 

~ ) ( ~ 
0 1 

) D((st)) ::::: 0 D((su)) ::::: 1 0 (11) 

0 0 0 

Note that (1) defines -1 equal D(p ) . In our case both generators are 

to their inverses. From the group structure we know 
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D((sut)) =D((st)(su)) D((st))D((s.u)) · (12) 

Therefore 

( 0 1 0 

) D( (sut)) = 

\ 0 0 1 

1 0 0 

(13) 

The characters of the classes are thus 

1 . (14) 

U . h h 1. 1 22) h. . . t d sing tc e ort ogona ity a\·7 , t is representation is seen o re uce 

to CI:O + BJ There is no general prescription for explicit 

r eduction. We know that Ai are linear combinations of E1, E3 and E4 , 

and look for the right coefficients to have the A. transform like 
1. 

(9) and (10). The result is 

-
Al El + w E3 + w E4 

(15) 

Using (7) one can therefore write the most general F-function form 

for the A .• After slightly renormalizing the arbitrary f unctions, 
1. 

one gets 

(16) 

This representation in itself is not very interesting, since we have 
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described three functions by three other ones. However, elimination 

of t he right -hand cut in the I = 2 channel is very restrictive. The 

project ion operators for t he SU(2) representations in a given channel, 

say the s, are: 

I = 2 1 
(5ay55f3 + 5a55f3y) 

1 
11. 2 - 3 5a13°yo yo , af3 

I = 1 1 
(5ayo513 - 5ao513) 11. 2 yo, af) (17) 

I = 0 1 
11. 3 5a13°yo · yo, af3 

The amplitude t hus decomposes as follows 

M 5 (A2 + A3) 
I = 2 

+ (A2 - A3) 
I = 1 

11. A 
Y , al3 yo , al3 yo, ap 

(18) 

+ (3A
1 

+ A2 + A3) 
I = 0 

11. yo,af3 

The amplitude to scatter in a given I spin is therefore 

As 
2 A2 + A3 I = 

As 
1 A2 - A 

I = 3 
(19) 

A~ O = 3A l + A2 + A 3 , 

According to our assumption A~ = 2 is real for physical s, i.e., 

s 
A

1 
= 2 = F ( t, u) . ( 20) 

Substituting (16) into (19) we find that (20) implies 

(21) 

But the symmetric and antisynunetric amplitudes vanish separately, 
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so that 

and g = 0 . 
2 

( 22) 

The amplitude is thus described by a single symmetr i c function. We 

get the known resuit 23) 

As = f (t, u) 
I 2 

As = f(s,t) - f(u,s) ( 23) 
I = 1 

As 3 1 
I = 0 

2 [f(s,t) + f(u,s)] - 2 f(t,u) . 

As it stands (23) does not have much physical content. This comes 

about only when a dynamical statement is made about f(s,t). Exchange 

degeneracy is derived when Regge asymptotics are introduced . For 

large x and finite y 

1 
f(x,y) = - ~(y) r (a:(y) + 1) sin 

( - v )a:(y) 
1lO:(y) y 

(24) 

Thus at high t (or u) and finite s 

- 3~ (s) /2 [(u - t) a:(s) + (~)a:(s)l 
r (a:(s) + 1) sin 1lO:(s) 4µ 4µ _J 

(25) 

f(x,y) is presumably very smal l when both x and y are very large . 

Secondly, note that the I = 1 amplitude has no contribution 

from a t hird double spectral function due to the vanishing of g2 (t,u). 

Mande ls tam's well known result about cuts in the 
. 8) 
J -plane thus pre -

elude s one for this amplitude . Fixed poles at nonsense -wrong-
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. . 24) 
signature points ar i se only when t he external particles have spin. 

The same conclusion about the t h ird double spectral function holds 

in pp scattering, and we expect no fixed pole there. 

3. Pseudoscalar-Pseudoscalar Scattering 

A similar analysis can be carried out for SU(3) invariant 

amplitudes. We seek to write the SU(3) couplings in a manner that 

exhibits transparent crossing features. There are eight independent 

couplings in ~ x ~ ~ 8 x 8 
"' 

We choose to consider nine couplings . 

1) Thr ee f•f type .c .c 
"\:t~ · l. y o ' f ay 

. fa~ and faa ·f~Y 

2) Three d ·d type d ·d 
a~ y o' day·d0~ and dao ·a~Y 

s) Three d · f type dC43 · fya· d ay·fo~ and d ·f ao ~Y 

a, . . . , o are the octet indices of the external particles. The 

couplings are scalar products of the usual f and d tensors of the SU(3) . 

algebra, e.g. 
8 8 

) =I f ·f = f f 
a~ y o ~ aj3m yom 

* ((f.. ,f..A}A. )([A. ,f..~]A. ) 
at-'ro y u m 

(26) 

m=l m= l 

We use Gell-Mann's notation25), and ( ) stands for 1/4 Tr. Note 

that we can also write 

1 (A. [A. '[t.. ,A.~]}) . 
2 a ~ y u 

(27) 

The Jacobi identity 

. (28) 

thus implies 

(29) 
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This is the desired linear relation among the nine couplings) which 

are otherwis e independent . Our couplings clearly treat all t hree 

channels on an equal f ooting . I n stead of considering all intermediate 

r epresentations in one channel, we look at octe ts only, but in all 

three channels. The projection operators for SU(3) representations 

26) 
in a given channel were worked out by Cutkosky • We list his 

results in the Appendix, and connect between t hem and Rosner's quark 

27) 
diagrams . 

Under certain circumstances some couplings are known not to 

contr ibute . In pseudoscalar-pseudoscalar scattering d·f couplings 

are forbidden. (In PP __, PV only d · f couplings are allowed.) The 

most general SU(3) invariant amplitude is written 

The linear relation (29) between the f·f couplings implies an 

arbitrariness in the B .• We remove this by the constraint 
l. 

The A. have t he same crossing properties as in the SU(2) case. The 
l. 

B. trans f orm as follows : 
l. 

1) under the interchange of lines B and C 
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(32) 

2) under the interchange of iines B and D: 

B
1
(u,t,s) 

B2 (u,t,s) = ( 33) 

A simple analysis, analogous to that done for the A., shows that the 
l. 

Bi span a vector space which reduces to § + HJ But 

is just B
1 

+ B
2 

+ B
3

, which we have constrained to be zero. Explicit 

reduction gives 

(34) 

One can now write the most general F- function form of the in-

variant amplitudes} and explore the consequences of eliminating exotic 

10, 10 and 27 channels. This is done precisely as i n the SU(2) case . 

The result is that all invariant amplitudes are again describable by 

a single synnnetric function 

= f(s,t) + f(tJu) + f(uJs) 

2 
f(uJs)] (35) B1(sJtJu) = 3 [f(s 1 t) 

2 
- f(s 1 t)] B2 (sJt,u) = 3 [f(tJu) 

B3 (s 1 t,u) 
2 

[f(u1 s) - f(t 1 u)] 3 



- 24 -

Leaving out contributions of the third double spectral function, we 

get the following couplings in the non -exotic channels 

M"' Q(s,t,u)8 .vu , O:~ . ' -s 

M 5 a:!3(s ,t,u) 8 y ' "'a 

MyB,czj3(s,t,u) 1 = [f(s,t) + f(u,s)] da:f30dyoO 

"' 

where 

da:~o = · <{"-a:,"-~ }"-o > =fl 5 a:~ 
25) 

and "-o is defined following Gell-Mann 

;-i 

12 "-o = ,_ 1 A/ 3 

Wherever f (s,t) + f(u,s) has a pole in s, we wil l have a 

degenerate octet and singlet forming a nonet. Thus all even-j 

resonances appear in nonets . The couplings of the octet and the 

singlet can be combined to give 

8 

Myo,a;f3(s, t,u) 9 = [f(s,t) + f(u,s)] 
,..., 

'\1 \{A. ,A.Q }A. ><{A. , A." }A. ) * L a: ~m y u m 
m=O 

(36) 

(37) 

(38) 

( 39) 

They are s een to be those of the quark model. In particular we have 

Zweig's connectedness ruleS) which imp lies that the state made of A.A 

quarks does not decay into pions. No dynamic a 1 statement concerning 

the form of f(s,t) was made here to derive this result . 

One can again use (24) to get exchange degeneracy in Regge 

theory. Our amplitude t hen becomes identical to that of Rosner
27

) . 

No te t ha t the odd signature amplitude again cannot have a t h ird 
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doub le spectral funct i on, since f (t,u) is symme tric in t and u. 

Thus t he previous result in the case of SU(2) generalizes to the 

entire octet. 

4. The N-Po i nt Function 

In discussing the four-point function, we saw that the amplitude 

was in general a mixture of representations of s
3

. Elimination of 

exotics did not change this feature. One expects the same to hold for 

the n-point function. Although we used the full s
3 

symmetry as a 

tool of investigation, our results really referred only to a given 

channel . The sing let and t he symmetric octet turn out to be degenerate 

be caus e t hey have t he same symmetry pattern, viz. they are both 

s ymmetr i c unde r t he interchange of t h e two external octets into which 

t hey decay. Similarly there is exchange degeneracy between the 

representations having one symmetry and those having the other ·one. 

In principle our method can be generalized to an ·arbitrary n-

point function, and use made of higher symmetric groups. However, we 

do not expect new physics to come out of such an approach. To il lus-

trate this point, consider the A
2 

decay into three pions. It is 

28) 
dominated by the pn mode . The states formed from three I = 1 

pions are given by the follmving decomposition 

1 x 1 x 1 = 3 + 2(2) + 1(3) + 0 (40) 

We are looking for a mode with total I = 1 and with two of the· three 

pions also in an I = 1 state . There are two such modes . However, 

t hey are physically equivalent. The Pauli principle (or crossing 
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s ym.i~etry if we are dea ling with an A
2 

exchange) allows only a 

definite combina tion of the two modes. 

The physics is contained in t he observation that the decay 

seems to proceed via a two particle intermediate state. When one of 

the latter decays, it no longer remembers the resonance from which 

it originated . There may be some final state interaction, but it 

should be viewed as a small perturbation of the two-particle decay 

scheme. Thus all n-point functions effectively reduce to a series 

of four-point funct i ons. In particular no new infonnation can be 

found about t he consequences of eliminating exotic channels. 

It may be remarked in passing t ha t, if one at t empts to describe 

29) 
baryons as bound states of physical quarks , larger synunetry groups 

are c alled in . This is because two quarks do not f orm strongly bound 

subsystems. The interaction is a three body forc e . It is not clear 

that one should believe in physical quarks . At any rate, we are very 

far f rom the sophistication of assigning analytic properties to such 

an interaction. 
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II. REAL PARTS OF FORWARD MESON-NUCLEON SCATTERING AMPLITUDES 

5 . General Formalism 

We use dispersion relations to analyze a forward scattering 

amplitude, whose discontinuity is determined by total cross sections 

+ - + of two channels related by crossing (e.g., n: p and n: p or K p and 

K p). We refer the reader to Ref. 30 for the conventional formu-

lation of dispersion relations and previous calculations. One 

usually separates t he symmetric . (+) 1 - + J amplitude A = 2(A(n: p) + A(n: p) 

from the antisyrru~etric one A 
( -) 1 - + ] = 2 [A(n: p) - A(n: p) , and writes 

the dispersion relations 

A(+) (V) 

A ( -) (V) = 

2 2 
A ( +) (µ) + ___ _.....__..__ _____ + 

M~ - (~)Jt2 - (~)2J 
00 

+ k2 JdV' 
2n:2 

V' cr (+) (V') 

µ 

2f2 v 
·+ 

v2 _ (L)2 

2M 

00 

V r dV' 
2n:2 J 

µ 

k' cr (-)(V') 

v• 2 
- v2 - iE: 

(1) 

(2) 

( +) 1 - + ] M is the nucleon mass andµ the meson mass. a - = 2[crT(n: p)± crT (n: p) 

V and k are the meson 's laboratory energy and momentum, respectively. 

f
2 

specifies the strength of the Born term, and is equal to 0.082. 

A(+)(V = µ) is the only subtraction constant. It is known to be zero 

within experimental errors, in agreement with Adler's PCAC self-

. d. . 31) consistency con ition . In writing (2), one obviously makes the 
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assumption that 0( - ) goes asymptotically to zero. This is the point 

which we now want to change. Follo:wing t he approach of Ref. 19) 

- + we as sume t hat both 0T (n p) and 0T(n p) remain constant from about 

30 BeV on. This then implies that they have different values) and 

0( - ) is a non-zero constant. We want to see what the predictions 

of these assumptions for the real part are. Having to introduce a 

subtraction into (2)) we therefore replace it by 

A ( - ) (V) 2£2 v v f dV' 
k' <J(-)(V') 

= + 
v2 - (~) 2 

2 V'2 v2 . 2n - - l. E 
µ 

00 ( 3) 
. 2 r c/ - ){ V'2 v ' Vk dV' -:- -2 

.J k r (V' 2 2 + c 2 
2n - v - iE) M 

K 

Note t hat) instead of performing a subtraction on the entire 

integral) we divide it into two pa r ts. One is written in an un-

subtracted form) and t he other in a subtracted one. ·Th is is done for 

practical purposes. It avoids stressing the low-energy input and thus 

incre asing the errors in the calculation. The number c depends on 

t he choice of K· Equation (3) also demonstrates the fact that the 

real part at low energy is not necessarily affected by the new 

assumptions on the high-energy behavior. We are actually able to 

reproduce at low energies (say) below 4 BeV) the same results pre -

viously obtained by the use of (2) with any reasonably decreasing 

fit to 0 ( - ). 

To i llustrate the changes brought about by the assumptions on 

the behavior of the total cross section) let us discuss a rnathe -
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± ma tical example that is very similar to the actual situation in K p. 

Let us denote the two reactions in question by A and B (analogous 

+ -
to K p and K p, respectively). Assume first that (case I): 

Im A
1 

= a V, Im B
1 

= a V + b .{v, O<Y<oo. (4) 

It is then easy to find that 

Re A = - b .[v 
I ' 

Re B
1 

= 0 . (5) 

+ 
This is the expected result for K-p if one uses a Regge repre-

sentation with a regular Pomeron and two pairs of exchange degenerate 

trajectories with intercepts at 1/2. If we now make the analogous 

assumption to that of Ref. 19, we have (case II): 

L 
v + b .[v 0 < V < A 

Im A
11 

a v, Im B
11 

= 
b +-) v A< Y <oo 
.[A 

It is then readily established that 

2b .{v fi bV c arctan + -- log I Y + A 1-
1' 1t .JA M2 

v J 

+ £_ v 
2 . 

M 

(6 ) 

(7) 

It is now interesting to note that although Eqs. (5) and (7) are 

very different from one another, it is still possible to find a value 

of c t hat will show a similar behavior for low V , Thus it is possible 

that even though Im B
1 

i Im B
11 

for V > A,one still finds that . the 

real parts of the various amplitudes can roughly agree for V < /1 . 

To illustrate this point numerically, we choose a = b = 3.6, 

A 22. (These values are close to those indicated by experiment if 
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- 1 
V is measured in BeV and the amplitudes in BeV .) We find such an 

agreement between I and II for c = 1.1 . We present in Fig. 3 the 

results for a(A) = Re A/Im A and a(B) = Re B/Im B, since t his is the 

•k 
customary way in which the data are given in rcN experiments • 

Note t hat after the value V == 100 the logarithmic part in Re A
11 

and Re B
11 

is taking over . Nevertheless i t does not reach a sizable 

amount even at high V values. 
6 

To quote a number -- at V = 10 we find 

a(B
11

) = - 0.49 and a (A
11

) = 0 . 59. We will find a similar behavior 

in the next section when discussing the nN problem. 

6 . Real Parts 
± 

of re p Amplitudes 

I n Ref . 19, the rc±p total cross sections were f itted to a form 

(8) 

An ionization point was then assumed to appear at V = 30 BeV, 

resulting in the flattening off of the cross sections at that point. 

This meant that 2cr (-) = cr ( rc- p) - cr(rc+p) > 1 mb even at high energies. 

( - ) 
In Ref . 19, a was assumed to remain a constant for V ~ 30 BeV . 

Any bre aking of t he Pomeranchuk theorem results in a logarithmic 

rise of the real part of the amplitude, notably of A( - )(V)ll,l9) . 

Hence, a± ( V) = Re A±(V)/Im A±(V) does not tend to 0 as V ~ oo . Once 

the logarithmic behavior begins to dominate, a rises in absolute 

value , with a, and a taking opposite signs. The strength of the 
T -

* I t is un f ortunate that t he letter a is used for this rat i o . It is 
not to be confused with a Regge trajectory . 
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logarithmic term is proportional to the value of cr(-) . 

The dispersion integrals were evaluated on a computer. In 

order to do the principal part integration, it is necessary to have a 

smooth fit to the data points, since t he integral is sensitive to 

* discontinuities near V' = V For v < 4 BeV we used the fit of Ref. 

30. The data between 4 and 30 Bev
33134

) can be fitted in a var i ety of 

ways. We first fitted each cross section separately to a form 

n - 1 
"' = a ..L. b V v± ± ' ± • (9) 

In such fits, a - a+ was invariably greater than 1 mb, and the 

choice of n was a matter of taste . We then tried a fit satisfying 

the Pomeranchuk theorem, 

a + b vn-l _µi-1 
± c v • (10) 

Th is wa s done in ord e r to be able to compare the premise of a cutoff 

with the assumption that the Serpukhov data might be wrong, and that 

the Pomeranchuk theorem might be right after all. 

* The pr i ncipa l part integral is performed ~ 11 32) : as ro ows 
B B B 

P J dx 
f{x2 

= I dx f{x2 - f {y2 + f(y) pf dx 
x - y x - y x - y 

A A A 

B 

= J( dx f(x2 - f(y2 + f(y) logjB - Yj 
x - y A - y 

A 

The first integral one has a regular integrand . If A~ y ~Bone 
substitutes f ' (y) at x = y. This is easy if f(x) is given in functional 
form . If only discrete values are known, it is advisable t o have them 
equally spaced in x, s o that one can use Simpson' s formula . To that 
approximation 

f I (X ) 
n x - x n+l n-1 
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The data of Citron et al .
33

) do not seem to fit snooth ly to 

t hose of Foley et al .
34

) . We had to settle f or a slightly low value 

of n. We chose 

n = 0.25, m = 0.6 

a = 22.5 b = 18.9 c = - 2 .45 

where V is measured in BeV and 0 in mb . Applying to f it ( 10) a cutoff 

at 30 BeV, we got for V above cutoff 

1. 3 mb . 

This n~~ber is consistent with the result of Ref. 14. In doing the 

( -) 
same with fit_ (9) , we got 20 above cutoff to depend on t he fit . 

o ( rt p) is, of course, determined by t he Serpukhov data, but there is 

a slight freedom of p l ay in 0(rt+p). First one has to choose the 

cutoff point. We assumed it to be the same as in rt p (30 BeV). Since 

t his is 8 BeV higher t han the last data point, the extrapolation 

depends on the fit . It was pointed out above that the strength of the 

logarithmic term in the real part of t he amplitude is proportional 

to 0( - ). If we constrained fit (9) to satisfy 20( -) = 1. 3 mb, our 

numer ical d ispersion calculat ions with it gave the same re sults f or 

the rea l pa r ts a s fit (10) . We adopted the latter for the purpose 

of testing the sens itivity of the calculation to the possible breaking 

o f the Pomeranchuk theorem . We called case I that which assumes 

(10) to be good for all v. In cas e II we applied the cutoff, ~o t hat 

for V ~ 30 BeV both cross sections were cons t ant. The two cases are 

illus t rated in Fig . 4 . Note that if f urther structure appears in 0T 

at much higher energies, it may have negligible effects on our 
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ca l culation. 

± 
The ca l cul ated ratios a ±(V) = Re A± ( V) / Im A± (V) for the n p 

amp litudes are plotted in Fig . 5} together wi t h t he data
35

). In 

case I t here is no free parameter in the dispersion relations (1) 

and (2). In case II there is the arbitrariness of c in (3)J which 

can be chosen to best fit the data. (We used K = 4 BeV.) 

If one assUi~es exact charge independence} one can evaluate the 

forward CEX differential cross section . The predictions are plotted 

36) 
together with the data in Fig . 6 and Fig. 7. We note that in case 

I the prediction seems to be too high by about 30 percent at} say} 

20 BeV. If we attribute the d iscrepancy to I-sp i n violation of the 

e lectromagne tic amplitude} we find it to be 20 percent of the total 

A( - ) amp litude. With 2cr ( - ) ( V = 20) ,..,,. 1.5 mb} we would thus have 

2cr (-) < 0 3 b 
EM ""' • m • Since we do not expect the electromagnetic effects 

to vary strongly with energy} we may conclude that t he ansatz of the 

Pomeranchuk theorem is good only up to 2cr(~)(oo) < 0 . 3 mb. ,..., 

In case II we can adjust c so as to get a very good fit to the 

CEX data (c = 0 . 35). Alternatively} we can fix c to fit the a 
± 

data . Choosing here c = 0 . 35} we find a good fit to a+ but a poor 

one to a . This is an improvement over case I. A change to c = 0.25 

results in an equivalent over-all fit to a±} with a poorer fit to a+ 

and a better one to a . Note that such a change contributes oppo-

site ly to a+ and a . Checking t he CEX prediction with c = 0.25, we 

find it too low by about 40 percent. This corresponds to 

2~ ( - ) < 0 5 b 
vEM rJ • m • 
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Note that the small deviations that we found are a feature of our 

calculated real parts. Point by point) the experimental a±(V)) 

within their errors, are consistent with the CEX data without any 

I-spin violation . 
35) 

This was already pointed out by Foley et al. . 

. Although we can fit the data with no I-spin breaking, we cannot rule 

out 2a (-) < 0 5 b 
EM ,.., ' m ' However, this is still too small to account 

for the expected constant difference between crT(rt-p) and crT(rt+p). 

We have to cortclude, then) that this difference is a genuine strong 

interaction effect. 

The main difference between the two dispersion calculations I 

and II sets in around 100 BeV. At that point) the logarithmic part of 

Re A(-) in case II begins to dominate. Instead of going to zero, 

a ( V) becomes positive and increases, while a ( V) turns over and 
+ 

becomes more negative. The CEX forward cross section begins to rise 

again. On an absolute scale, both effects are small. We should be 

able to see the CEX forward cross section flattening, but for the real 

part to dominate the amplitude we will need fantastically high 

energies. By that time, a new physics may very well set in. It was 

pointed out in Ref. 19, as well as in Ref. 17, that if Re A/Im A 

grows logarithmically, then one has to have the forward elastic peak 
2 . 

shrink like log s to avoid a conflict with unitarity. Strictly 

speaking) such a conflict would arise only at such large values of V 

that the whole problem looks rather academic. Nevertheless, tµe same 

conclusion about the shrinkage arises of course from the assumption 

that crel does not rise with energy, which might very well be the case. 
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Finally) a word about errors and low- energy behavior. The 

cross sections are accurate to about 1 percent . This leads to errors 

of approximately ± 0.003 in a (V). A change in o ( - ) above cutoff 
± 

causes a bigger correction. Varying the high-energy cross sections 

above 30 BeV does not change the low-energy (V S. 4 BeV) dispersion 

calculations. There) our results agree with those of Ref . 30. 

7. Rea l Pa r ts of K~p Amp l i tudes 

+ 
We calculate9 the real parts of K-p forward scattering amplitudes 

-L 

in the same way as for "~p . The data between threshold and V; 3.3 

Bev
37

) were slightly smoothed. Above that. point ) the following fit 

was made: 

+ cr(K p) ; a 
(11) 

a; 17.2 b ; 17.4 

The dispers ion relations were evaluated for cases I and II as 

in "P' with the cutoff in case II taken at 20 BeV. The errors involved 

he r e are much bigger than in " P · The uncertainties in the subthreshold 

singularities do not allow a good determination of the real parts at 

i: 
low energies. In particular) the Y (1405) is an S-wave) and thus is 

not quenched kinematically . We estimate its effect to be six times 

* as big as the Born term in rtN. This would be approximately 5 - 10 

percent of the real part at V ; 5 Bev. An additional unknown is the 

* 
. 2 We approximated the resonance by a pole. The coupling g /4rt ; 0.32 

is estimated from the Dalitz-Tuan mode138). 
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subtraction term of the symmetric amplitude, A(+)(V = µ). However, 

t he i r comb i ned effect remains constant, while the imaginary part 

+ 
g rows like v, so that t he ir contribution to o;(K-p) should fall like 

l/ V. In case II there is the further difficulty of evaluating the 

b t . . h . . 1 . t d A ( - ) Th su raction constant c in t e antisymmetric amp i u e • e 

CEX reactions are not related by a simple I - spin rotation. Nor has 

a direct experimental determination of a± ( V) by Coulomb interference 

been done. The only ex isting test is the forward elastic dif-

ferentia l cross s e ction. 
2 

This is a measurement of 1 + a . 

If a is small , its 

becomes diff icult. 

K+p 39) 
data , which 

The error in o; was 

d (j 

dt 
t = 0 

determination 

Fortunately there 

sugges t s jo:(K+p)j 

2 
GT 2 

(1 + o; ) 
16rc 

exists relatively 

,..,, 0 . 55 ± 0 . 15 for 

evaluated by allowing the dcr/ dt data 

accurate 

v ~ 7 -

to vary 

(12) 

15 

wi thin their error bars, and evalua t ing the var i ation in Cl through 

(12). I f we allow a further variation of one standard deviation on 

d cr/dt, we can set a lower limit on a of,...., 0 . 25. 
- 40) 

The K p data is 

Bev. 

consistent wi th jo:(K-p) j = O, but an upper limit of "' 0.3 has to be 

allowed within error bars . An additional standard deviation in-

crease s this limit to,.,,, 0 .5. The calculated values of o;(K±p), 

toget her with t he experimental limits are plotted in Figure 8 . 

Case I seems to disagr ee with the data . In case II we can· ex-

plain the discrepancy by means of t he subt raction term. To fit 

+ a(K p), we can choose either one of two values, depending on t he sign 
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of a, which cannot be determined by this method . We find for 

K = 3.3, 

+ a(K p) > O, 

c = - 1.6 is ruled · out because it gives O(K-p),...,, 0.65. Hence we 

conclude t hat O(K+p) < 0 and a(K-p) > 0. The data points for 

a(K+p) were p l otted under this assumption in Fig. 8. The errors are 

c learly very large and allow us safely to ignore the subthreshold 

singul arities! 

The genera l features of np dispersion relations appear als o in 

Kp . 
( - ) 

The logarithmic behavior is magn ified biecause 2a -.; 4 mb . 

However, at present energies t he bulk of the real par t seems to come 

fr om the subtraction t erm; and not from t he logarithmic one. In 

fact, t hese appear to have opposite signs. Thus we expect la! 

actually to f all until very high energies, when a changes signs and 

ja I begins to grow again. As in np, the real part does not dominate 

until extremely high energie~. 

The difference between the pion and the kaon amp litudes lies 

in the energy range below the cutoff point. The usual Regge pie -

ture -- which assumes t he Pomeranchuk theorem to hold -- is compa-

table with experiment for the pions, but appears not to be so for t he 

kaons. In the latter case, the existence of an additional real term 

seems to be implied by the data. 
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APPENDIX 

26) 
In this appendix we list Cutkosky ' s results for SU(3) projec t ion 

operators, in 8 x 8 ~ 8 x 8 and relate his couplings to those of ....... ,.., ,,,..,, 

27) 
Rosner •. We use the normalization 

(1) 

4 = -
3 

5 Q + 2d Q A 
a::I-' 0:1-'Y Y 

(2) 

Repeated indices are to be sunnned from 1 to 8. In t h is normalization 

f f = 35 (3) 
anm ~nm o;~ 

d d = 2 5 (4) 
a.nm ~nm 3 o;(j 

d f = 0 (5) anm (jnm . 

We use the shorthand nota t ion fo;(3.fy 5 f or fo;~mfy5m. These scalar 

products form our couplings. They correspond to intermediate octets 

in all three channels . Projec tion operat ors for other repre -

sentations in a given channel are linear comb i nation s of these 

couplings. Our couplings satisfy the f ollowing useful identities 

f o;(j . fy5 + f av. f5(3 + fo;5·f~y = 0 (6) 

fo;~ ' dy5 + fo;y•d5(3 + fo;5·d~y = 0 (7) 

do;~'dy5 + d o;y'd5~ + do;5 · d~y 
1 

(5a!35y5 + 5ciy55~ + 5a::55~y) . = 3 
(8) 

fa~·dy5 = do;5 ·f~Y - do;y·f0~ (9) 

1 3 
5a!35yo 2 (fa5 ·f~Y - fo;y · f0~) + 2 (do;y·d 0~ + da::0 ·d~Y) . (10) 
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The projection operators for SU(3) representations in the s channel 

for an elastic process are 

8 
3 , d ~s 

(ll) A 5 °et13" yo y o ' C43 
8 

1 "'a 
(12) A 3 fa:~ · fyo yo ' a:~ 

Al = l 0 0 (13) y5, aj3 s a:~ yo 

Qyo,a:~ 
i - d • f ) (14) = - (f ·d 
.[s a:~ yo a:l3 yo . 

27 1 
8 

Al, coayo5~ oa:oopy) 
..... s 

(15) A-;5 ,ap 2 + A yo, a13 y o ,a:l3 

10 1 8 J"s (o 0 - 0 0 ) 1 ""a (16) I\ ~ = - A Qop ,ay • yo, a:~ 4 o;y op ao f3y 2 y5,Ctf3 3 

10 1 8 
+ J"s 

oa:0opy) 
1 "'a (17) f....,..., = 4 (oayoof3 - A Qo~ ,ay 'yo , a:l3 2 yo ,o:~ 3 

Qyo,a:13 is t he projection operator for an intermediate octet 

with f coupling in the initial state and d in the final or vice-

versa. For an elastic process the two are related by time reversal 

invar iance? and only the combination Qyo, a:13 is allowed. 

An alternate coup ling scheme of Rosner27 ) use s the idea that each 

meson is built of a quark and an ant iquark. His couplings are of the 

type (f...J-~f.../1. 0 ) where ( ) stands for 1/4 Tr. This means physically 

t hat t he quark of particle o: annihilates the antiquark of particle 5 , 

the qu·ark of 5 , the antiquark of y, and so on. A different coupling 

scheme has to be used in meson- baryon or in baryon-baryon scattering, 

since baryons are composed of t hree quarks. The connection between 

t he Rosner scheme and ours is straightforward with the use of the 
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following identities . 

fa~·fy5 = - t \ [Aa,A~ ] [Ay,A5]) 

ida~. fy5 = t ( (Aa,A~} [Ay'A5]) 

ifa~·dy5 = t ([Aa,A~](Ay'A5}) 
da~ · dy5 = t ((Aa,A~}{Ay'A5}) - ~ (Ac}-~)(AyA5) 

In particu lar 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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FIGURE CAPTIONS 

(Figures 3 through 8) 

Figure 3: a, the ratio of real and imaginary parts of the various 

amplitudes discussed in the mathematical example of Section 5 The 

subtraction constant c is chosen so that for V <A, a 1 ~~I' 

+ 
Figure 4: rt-p total cross sections and fit (10). Errors plotted are 

the sum of the statistical and the systematic. The statistical errors 

of Allaby et al., are also indicated. The errors of Citron et al. are 

mainly systematic, and only representative data points of this group 

have been inc l uded. 

Figure 5: Predicted a(~±p) = Re A(rt±p)/Im A ( rt±p) and experimental data 

35) 
of Fo ley et al. . I and II refer to the choice of h igh-energy cross 

sections. (See Fig. 4.) c is the subtraction constant. 

Figure 6 : Forward differential :rrN charge exchange cross sections pre-

dieted assuming exact I spin conservation, and data of Mannelli et 

36) 
al. . 

Figure 7: Blow-up of Figure 6. The discrepancy between the fit and the 

data is an indication of the amount of I-spin violating electromagnetic 

effect. On the basis of this deviation, we conclude 2aEM( -);S 0.5 mb. 

+ + + 
Figure 8: a (K-p) = Re A(K-p)/Im A(K-p) and experimental limits 

deduced from the forward elastic differential cross sections
39

,
4o). 

The sign of a(K+p) was determined from the dispersion relations. (See 

text.) 
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(pA + pB) 
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(pA + Pc) 
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(pA + pD) 
2 

s - u 
4~ 

·Figure 1: Diagram of a four - point functi on, and definition of kine

matic variables. All momenta treated on the same 'footing. Incoming 

ones have positive energies, and the outgoing negative ones . 

a, ... ,o are internal quantum numbers . 
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Figure 2: The complex V plane, and the contour P (see text). 
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