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ABSTRACT

T Crossing transformations constitute a group of permutations
under which the scattering amplitude is invariant. Using Mandelstem's
analyticity, we decoﬁpose the amplitude into irreducible representa-
tions of this group. The usual quantum numbers, such as isospin or
SU(3), are "crossing-invariant". Thus no higher symmetry is generated
by crossing itself. However, elimination of certain quantum numbers
in intermediéte states is not crossing-invariant, and higher sym-
metries have to be introduced to make it possible. ' The current
literature on exchange degeneracy is a manifestation of this statement.
To exemplify application of our analysis, we show how, starting with
SU(3) invariance, one can use crossing and the absence of exotic
channels to derive the quark-model picture of the tensor nonet. No

detailed dynamical input is used.

IT. A dispersion relation calculation of the real parts of forward
s z: : .
7 p and K p scattering amplitudes is carried out under the assumption
of constant total cross sections in the Serpukhov energy range.
Comparison with existing experimental results as well as predictionms
for future high energy experiments are presented and discussed.
Electromagnetic effects are found to be too small to account for the
; = + ;
expected difference between the = p and n p total cross sections at

higher energies.
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I. INTRODUCTION

Regge pole theoryl) has enabled us to understand the scattering
process A + B - C + D at high energies and low momentum transfers
in terms of exchanges in the crossed channel A + C <38 +D. (See
Fig. 1 for definition of kinematic variables.) To leading order in
s, the contribution of an individual Regge exchange to the scattering

amplitude is given by

() ()

sin na(t) (1 + a(t))

A(v,t) = - B(E) (D

A Regge pole is a pole in the j-plane at j = (t) with residue
B(t). It corresponds to the exchange of a whole "trajectory'" of
particles. These have identical quantum numbers except angular
momentum. The existence of exchange forces causes even- and odd-j
partial waves to have different analytic continuations in the j-
plane. A Regge trajectory is thus characterized by an additiomal
quantum number 7 = * 1 called signature, which specifies in which of
the two amplitudes the pole appears. (1) clearly exhibits this.
Even signature (v = 1) implies poles in A(V,t) at t values for
which a(t) = 0,2,4,... . Similarly, poles are inferred at a(t) = 1,
3,5,... if the signature is odd (Tt = - 1). The absence of exchange
forces manifests itself by the existence of two exchange degenerate
trajectories with equal residues, but opposite signatures and

parities.

ccl(t) = az(t) Bl(t) = Bz(t) 1



Their sum cancels the second (exchange) term in (1).
Signature has additional meaning when considering the crossed
reaction A + D 5 C + B, whose amplitude is A(-V,t). We define the

symmetric and antisymmetric amplitudes

AP0 =1 @am,n a0, 3

&) )

Even signature contributes only to A , and odd one only to A
A connection is made between the high energy Regge behavior of

the amplitude and low energy scattering by means of analyticity in

the energy variabie V (see Fig. 2). Each amplitude splits into a sum

of an amplitude with a right-hand cut, ome with a left-hand one, and

possibly a third, which is entire in V (a subtraction term).

()

(V,t) + subtraction term.

(%)

(™
AS (V;t) + Au

As previously indicated, the asymptotic expansion (1) is already

split as it stands. The first term has the right-hand (direct) cut,

while the second has the left-hand (exchange) one.

c(t)
{=¥)
(1l + a(t)) sin ma(t)

a0 = - 28

(3

va(t)

(1l + a(t)) sin mcx(t)

AU(T) (V,t)y = - %T B(t)

2)

Dolen, Horn and Schmid first realized that the asymptotic
expansion (5) had to be equally good along the entire circle [V! = N.
This enables explicit integration of the amplitude along that c%rclew
Consider the finmite closed contour P in Fig. 2. The amplitude

AS(T)(V,t) is regular inside it, and therefore Cauchy's theorem



gives
4
g VnAs(T) (LEdY s 0 B = 0,1,2,... (6)
=P

Evaluating the integral along the circle iVi

N explicitly one

has
N ai(t) +n+1
i T B.(t) N
n (1) I i —
Oj" BBy R =3 2_, @@ +n+ D M@+ D " O Lt
: )
A similar analysis of A(T)u(V,t) gives*
. (t) +#n+1
N i
i B.(t) N
n (1) _ i y
d[V Im A® 7 (V,t) = :E: (ai(t) ¥4+ 1) P(&i(t) Ty °° 05152555
1
(8)

The sum extends over all Regge trajectories with signature 7.
The values of n can be extended to negative integers, provided one

handles the additional singularity at V = 0.

N a(t) - m
( 1 = A(T)(V & Bi(t) N L Q_) m
OJ + 1 g (a(t) - m) T(a(t) + 1)  m! \dV
i
A(T)(V,t)lv= o m™=0,1,2,...

(9
Equations (8) and (9) form constraints which analyticity and Regge
asymptotics impose on the amplitude. They are known as finite energy
sum rules (FESR). The asymptotic Regge amplitude gains meaning also
at low energies. It is a local average of the amplitude. This is

known as duality between direct channel scattering and crossed

* The subtraction term does not contribute to (8) because it is

analytic in V.
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channel exchanges. If the high energy behavior is not described
by simple Regge poles, the right-hand side of (8) and (9) will have
to be modified. The integration along the circle iV[ = N will be
complicated. However, there is still duality between'low and high
energy scattering.
:3)

The next step was made by Freund and Harari °. They con-

jectured that the amplitude may be split into a sum of a "resonating"

amplitude and a ''diffractive' one.
A<V)t) = AD(V:t) ol AR(V,E) 3 (10)

Each satisfies FESR separately. The diffractive comprises only
background scattering at low energies and diffraction (Pomeron
exchange) at high energies. The high energy cross section arising
from this amplitude is constant at high energies. The resonating
amplitude consists of pure resonances without background at low
energies, and is dual to the exchange of all usual Regge trajec-
tories at high energies.* Those lead to cross sections which fall
like a power of V.

A direct analysis of this assumption has been done in xilN and
KN scatteringa). However, the most convincing evidence comes from
the interesting experimental correlation, which is explained by, and
motivated this hypothesis. Experiment has so far failed to reveal
resonances whose SU(3) quantum numbers are not contained in the

5)

usual quark model °. Mesons seem to fall into 1 and 8, while. baryons

* To distinguish diffractive and non-diffractive scattering we
reserve the name Regge trajectories to those which are associated
with the known t channel resonances.
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can be classified in 1, 8, and 10 . Other representations are known
as exotic. The exotic KN and NN channels show not only a lack of
resonances at low energies, but they have constant cross sections at

high energies. On the other hand, =N, KN and NN have both low

energy cross sections which f£all approximately as

(V) = a + bAV. (11)

In an exotic channel the resonating amplitude has no right-hand

cut at low V > 0. By FESR it has none at high energies either. Thus
the total cross section, which is proportional to the imaginary part
of the amplitude, is purely diffractive, i.e., flat. It was pointed
out above how this comes about in the Regge language. The right-
hand cut of the resonating amplitude vanishes by cancellation between
pairs of exchange degenerate trajectories.

7)

Veneziano has meantime written down an explicit example of a
function which has Regge asymptotics at high energies, and shows
resonance behavior at low energies.

The division into resonating and diffractive amplitudes is
clearly only a first approximation. For one thing, unitarity, being
a nonlinear relation, is bound to mix the two. Secondly, this

e 8) ——_—
approximation ignores Regge cuts . The latter have a logarithmic

dependence on energy, and complicated FESR. In fact the two ob-

jections are related. Absorption correctionsg) correspond to.Regge

% The NN channel is also considered exotic. The cross section is
not really absolutely flat, but slowly varying in comparison with
that of NN.



cuts, and are mixed amplitudes consisting of double exchanges of an
ordinary trajectory and a Pomeron. Thus one expects this hypothesis
to hold only at low t, where Regge poles are a good approximation to
the data, and provided that cuts are not strong.l Throughout this
thesis we will work in that limit.

In Part I we offer a different mathematical treatment of the
Freund-Harari conjecture in meson-meson scattering leading to known
results. We investigate the consequences of crossing symmetry and
Mandelstam's analyticity in both kinematic variableslo). Our
analysis is independent of the Regge pole hypothesis, or any other
dynamical scheme, except the Freund-Harari assumption.

Crossing symmetry means invariance of the amplitude, up to a
sign, under the formal permutation of the quantum numbers of
identical particles. If their energies have the same sign, the
physical channel is unaltered, and we have the Pauli principle. If
they have opposite signs we are transformed into another physical
channel. Crossing symmetry then gains meaning only when we specify
how to continue the amplitude through the unphysical region, i.e.,
when we invoke analyticity. If there are k identical particles, the
crossing transformations will form the group of permutations on k
objects, Sk'

Now, in addition we may have conservation of internal quantum
numbers such as I-spin or SU(3). Particles belonging to a given
multiplet will then be considered identical, and crossing wiil apply

to them. Of course, one has to permute the internal quantum numbers

too. If the internal symmetry is approximate, we can assume



crossing to be good to the same extent. By this generalization the
internal gquantum numbers become ''crossing invariant'. To be sure,
selection rules are obtained from the generalized Pauli principle
(for instance an I = 1 resonance in a = channel must have odd j.)
But no higher symmetries are generated by crossing. (The existence
of an I = 1 resonance tells us nothing about possible I = 0
resonances.) The elimination of the right-hand cut for an exotic

s channel is a statement on the analytic structure of the amplitude.
It means that there is only a third double spectral function F(t,u).
However, this constraint is not 'crossing invariant'. To make it so,
one has to introduce higher symmetries. Exchange degeneracy in

5 3 §
Regge theory is a manifestation of this statement }. In another

PC _ t++ 4+

example we prove that resonances with J 0 ,2 ,4 .= fOTmM

degenerate nonets whose couplings to the pseudoscalars are exactly
= 12) . 2
those of the quark model . This result comes about in the
limit of exact SU(3), without the need for detailed dynamical
; 13)
assumptions "
T 1 - s 10) .
Using Mandelstam's analyticity , we decompose the amplitude
into irreducible representations of the symmetric group S3. Our
generalized approach makes the elimination of exotic channels very
transparent. We apply this method to the SU(2) invariant =x
scattering amplitude, and show how exchange degeneracy comes about.
Next we treat pseudoscalar-pseudoscalar scattering in the limit of
exact SU(3). In addition to generalizing exchange degeneracy, we

derive the previously mentioned results for the even-j resonances.

We also briefly discuss the possible use of larger symmetric groups



in analyzing the general n-point function. Although our formalism
can be easily generalized, it is not a useful approach to multi-
body dynamics because most resonances decay via two particle
intermediate states. The physics is already containea in the four-
point function.

14)

The recent Serpukhov experiments at energies of 30-70 BeV
show that all measured meson-nucleon total cross sections stay
constant above 30 BeV. This contradicts previous expectations from
Regge pole theory. The expansion (1) is clearly in trouble above
30 BeV. Three main lines of thought have emerged to deal with this
Y"catastrophe'.
1) The experiment is wrong. This possibility is not very likely,
since the statistics are good and considerable care was taken to
minimize systematic errors.
2) Regge cuts are strong, and the logarithmic dependence on V is
sufficiently rapid to create a swift flattening of the total cross
section. There are several versions of this approachls).
3) A new physics sets in around 30 BeV, and the Regge approximation
is no longer valid. This may or may not be combined with the
second possibility (or even with the first!).

The attractiveness of such suggestions depends on
a) The theoretical ideas underlying each explanation.
b) The number of parameters needed to fit the data.

¢) The ability of the theory to predict correctly future experiments.

Two features of Regge theory have to be modified to
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16)

accommodate the new data. The first is the Pomeranchuk theorem .
This states, under very general assumptions, that if in an elastic

process A+ B A + B

Re A(V,0)/[Im A(V,0)1ogV] T 0 ‘ (12)
then
o) = 3 (a8 - o (B) —=% 0 (13)

6
Below 30 BeV the data ) looked as though the total cross sections

approached each other, with U(-) falling like a power of V. The

*
Serpukhov data seem to upset this . Theories invoking Regge cuts
i

have o fall logarithmically with V. 1In addition they have OT(V)

approach its asymptotic value extremely slowly. Barger and Phillipsls)
in their fit state that the =sN total cross section will reach
asymptotia, to within the experimental error = b.Z mb, only at

V= lOgsBeV. By that time we lose our interest in religiously pre-
serving the Pomeranchuk theorem. One realizes that there is nothing
holy about assumption (12), and hence the conclusion (13) need not
hold. 1In fact, it is quite compatible to have Re A(V,t) grow loga-
rithmically, whilé Im A(V,t) approaches a constant. Some authorsl7)
have investigated the consequences of this rise in the real part of
the amplitude and its final dominance. It will be pointed out that

this is again a very academic question. The logarithmic growth is

so slow that we are pushed to tremendous energies before that stage

* There is not yet a positively charged meson beam at Serpukhov. In
order for op(Mp) - OT(M&?) to continue falling like a power,
GT(M+p) will have to start rising. op(n™n), which equals UT(ﬂ+p)
by I-spin invariance, does not seem to do this, although there is
some uncertainty about the Glauber shadow corrections.
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is attained. It is very naive to assume that we understand physics
throughout this range, and can extrapolate our results all the way
to infinite energies.

One of the nice features of Regge theory and the.expansion (1)
is that it gives both the magnitude and the phase of the amplitude
ét high energies in a manner that is compatible with dispersion
theory. The reason is, of course, simple. Expression (1) is an
analytic function of V with the correct cut structure. In fact, it
was precisely this analyticity which was used to derive the FESR.

What effect does the new asymptotic amplitude have, through
analyticity, on the amplitude below the Serpukhov range? The former
can be described by means of an additional cut starting at some V = A.
For positive n there is no change in the FESR for N < A. To see this
note that the amplitude is linear in the wvarious cuts contributing
to it. Recalling our previous derivation, we see that the new cut
starting at V = A cannot contribute to the FESR, since the amplitude
it generates is analytic for |V| < N <A *.

However, the real part of the amplitude is modified by the new
cut. If we are to preserve analyticity, the real part of the ampli-
tude can no longer be described by the Regge approximation (1).
Furthermore, breaking the Pomeranchuk theorem necessitates an
additional subtraction term in the odd amplitude.

We conclude that Regge theory can still be maintained as a

* For n < 0 one has contributions from the singularity at V= 0.
Similarly the new cut affects the continuous moment sum rulesls)
which we have not considered.
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parameterization of the imaginary part of the amplitude below
30 BeV, but not of the real part. In addition, the positive
moment FESR continue to hold.

Hornlg) has come up with a specific suggestion. Following the
Freund-Harari hypothesis, he conjectured that possibly we have
reached an ionization point beyond which there are no more reson-
ances. The situation above that point is analogous to that in an
exotic channel. The imaginary part of the amplitude is purely
diffractive. The limitation of this picture is that it has not
offered an alternative dymamics. It is merely an intuition, which
may serve as a basis for a search of the underlying theory.

We do not attempt such an investigation. In Part II we
address ourselves to a simpler question. We take the new Serpukhov
data at face value, and look for their effect on the real parts of
forward meson-nucleon scattering amplitudes via dispersion relatioms.
It should be emphasized that, in order to evaluate the real part, it
is only necessary to speculate on the behavior of the total cross
sections up to emergies which are, say, an order of magnitude greater.
A different extrapolation beyond there does not necessarily affect
the dispersion calculation, unless the change is very drastic.

We discuss the phase of the forward ﬂiﬁ scattering amplitudes,
as well as the forward differential cross section of =N charge
exchange (CEX). We find an estimate for the upper limit of electro-
magnetic effects in these amplitudes, and conclude that it is‘too
small to account for the expected difference between GT(ﬁ-p) and

GT(ﬁ+b) at the higher energies. We discuss the fits to available
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data, and make predictions for future high energy experiments. We
treat the Kip scattering in a similar way. Although the experi-
mental data on the real parts of the Kip amplitudes are not very
accurate, they favor the existence of an additional ndn-Regge term.
This could be the subtraction constant needed if the difference

between GT(K-p) and OT(K+p) persists at higher energies.



I. CROSSING AS A GROUP AND ELIMINATION OF EXOTIC CHANNELS

1. General Formalism

Consider meson-meson scattering in which at least three of the
particles are identical. The three chanmnels -- s, t, and u -- all
transform into each other under crossing. These transformations com=-

prise the symmetric group S The invariant amplitudes Ai(s,t,u)

3"

are a basis for a representation of S because crossing symmetry

3)

implies a linear relation of the type

A (R(s,5,w) = > D7D A (5,0 )
p

for each permutation p € S Note that the symmetry group is not

3°
enlarged if all four particles are identical. A priori the

symmetry group is 54. However, certain crossing transformations do
not cross any channels, e.g., the simultaneous interchange of
particles A and B and C and D. Thus this subgroup of transformatioms,
DZ’ is always represented by the identity transformation on the
invariant amplitudes. We are interested only in investigating
inequivalent transformations, and therefore comsider only the

quotient group Sa/Dz’ which is S To put it more physically: you

3"
cannot do better than permute all three channels. Note, however,
that this equivalence subgroup is a special feature of the four-
point function. It does not exist for the general n-point function.
As pointed out before, in order to explore the consequeﬁce of
crossing symmetry, one has to invoke analyticity. We write each

10)

invariant amplitude in a Mandelstam form
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A(s,t,u) = Fl(s,t) + Fz(t,u) - FB(u,s)
)
+ al(s,t—u) + az(t;u—s) + ag(u,s-t).
The a-type functions have a cut from threshold to infinity in the
first variable, and are entire in the second. The F-type functions
have the cuts in both variables, but we have subtracted from them all
parts that can be stacked on to the a-type functions. There is a
question whether the decomposition (2) is unique. We have not been
able to find the weakest assumptions needed to imply this, but guess
that they may be rather general, because of the different cut struc-
ture of each function in the product of the complex s and t planes.
The decomposition is certainly unique if each function can be written
in the form of a dispersion integral. Without further ado, we accept
the assumption of uniqueness. We confine our attention to F-type
functions only. Our work carries through whether a-type functions are
added or not. Note,however, that the latter can give only fixed poles
in the j-blane.
It is worth looking for the most general basis of F-type

functions for the three irreducible representations of S We will

3°

identify these representations by means of their Young tableaux.

We refer the reader to Ref. 20 for a review of the properties of finite

groups and their representations, with particular emphasis on S3. We
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use the cycle notation to refer to elements of Sn' A cycle (alaz...am)

in S_ is a chain of permutations as follows: put a1 in the position

i

a5, @, in that of as;

h

o)

and so on, and finally a_ back in that of a;

Each permutation is a combination of cycles. We 'do not write one-
. element cycles. .Thus (st) is a shorthand notation for (st)(u).

In explicitly reducing a representation it is useful to consider
the generators of the group. These are a subset of the group generating
all other elements by closure. Therefore, a representation is com-
pletely determined by the mapping of the generators on matrices.

53 is generated by two elements (not any two!), say, (st) and (su).
For the sake of a unified notation we enveiop all three irreducible
representations of S, in a single reducible four-dimensional one, thus

3

defining '"standard" representations. We map the generators as follows

1 0 0 0 1 0 0 0
0 1L 0 O 0 -1 0 O
Pléetd)y =10 @ © 2 D((su)) = | 0 O 0 w (3)
0 0 1 0 0 0 w O
where w = e2ﬁ1/3 and w = w2 = wnl. It is seen that the spaces spanned

by the basis vectors {ei}, {ez} and {63,€4} transform under S, as
. Ej and {}] , respectively.

We write each basis vector €; in the Mandelstam form (2), using
only F-type functions. When we apply the generators (3) we find
relations among F-type functions of different variables. For instance,
let

€, = Fl(s,t) + Fz(t,u) + F3(u,s) (4)

1
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From (3) we know

m
]

(st)el F. (t;5) + Fz(s,u) + F3(u,t)

; (5)
(su)e1 = Fl(u,t) + Fz(t,s) # F3(s,u).

1]

The uniqueness of the Mandelstam decomposition allows only one
solution
F,=F,=F, and Fl(x,y) = Fl(y,x) (6)

Other basis vectors are evaluated in the same way. The result is
= fl(s,t) + fl(t,u) + fl(u,s)

€y = gl(s,t) - gl(t,u) + gl(u,s)

g, = fz(s,t) + w fz(t,u) +w fz(u,s)

C3 X
_ (7)
+ g,(s,t) +w g, (t,u) + ¥ g,(u,s)
e, = £,(s,t) +w £,(t,u) +w £,(u,s)

=

gz(s)t) gz(t:u) -w gz(uJS)

where fi and g; are symmetric and antisymmetric, respectively, under the
interchange of their arguments, but otherwise arbitrary F-type functions.
A similar analysis can be done also for the a-type functions.

The invariant amplitudes Ai will in general form a reducible
representation of S3. We reduce them explicitly, i.e., express them
as linear combinations of the € - Using (7) we then have the most
general F-function form for the Ai' They will obey crossing symmetry
by construction. In the next two sections we use this technique to
study I-spin invariant s scattering and SU(3) invariant pseudoscalar-

pseudoscalar scattering.



2. =z Scattering

As a first application we look at = — wx. The most general SU(2)

21)

invariant amplitude is written

MYS,Qﬁ(S’t’U) = Al(s’t’u)ﬁ(xﬁéya T AZ(S’t’u)Scx\(aﬁB + ABCS)t)u)BOiaaBY
(8)
where Q,...,0 are the SU(2) indices of the =n's in the usual way.
Crossing symmetry is seen to ensue (see Fig. 1):
1) wunder the interchange of lines B and C
A, (g,8,u) = A,y (s,t,u)
Az(t,s,u) = Al(s,t,u) (9)
A3(t,s,u) = A3(s,t,u)
2) wunder the interchange of lines B and D
Al(u,t,s) = A3(S;t:u)
Az(u,t,s) = Az(s,t,u) (10)

A3(u,t,s) = Al(s,t,u)

The two transformations correspond, of course, to our generators

(st) and (su). By the definition (1) we therefore have

0 i | 0 0 0 1
D((st)) = 1 0 o0 D((su)) = 0 1 0 (11)
0 0 1 1 0 0

Note that (1) defines D(p_l). In our case both generators are equal

to their inverses. From the group structure we know
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D((sut)) =D((st)(su)) = D((st))D((su)) - (12)
Therefore
/ g 1 By _
D((sut)) = | O 0 1 ) (13)
\ 1 0 0
The characters of fhe classes are thus
X(Cl) = 3 X(Cz) =0 X(C3) = 1" (14)

22)

Using the orthogonality law .

this representation is seen to reduce
to [ITI1 + EF] . There is no general prescription for explicit

reduction. We know that Ai are linear combinations of ¢ ., and &

T% =3 42

and look for the right coefficients to have the Ai transform like

(9) and (10). The result is

Al=el+147e33+'t~7€4
AZ = el + w €3+W 54 (15)
Ay = & T8, ¥y

Using (7) one can therefore write the most general F-function form
for the Ai' After slightly renormalizing the arbitrary functionms,

one gets
Al(s,t,u) = Az(u,s,t) = A3(t,u,s)
= fl(sft) k) fl(t)u) o+ fl(U,S) + fz(s)t) + fz(u’s) b= 2f2(t1u)
+ g,(s,8) - g,(u,s) (16)

This representation in itself is not very interesting, since we have
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described three functions by three other ones. However, elimination
of the right-hand cut in the I = 2 channel is very restrictive. The
projection operators for the SU(2) representations in a given channel,

say the s, are:

o= 2% 1
== (5 b 5 .8 -=5% %

As.on =2 Coy’an ¥ %%y’ ~ 3 By

I =1 1
A == (56_58_. -8 _5

vo,a8 2 ( ay OB ad Bv) a7n
I=20 1
A ==8 8 T

'v6,08 3 of yd

The amplitude thus decomposes as follows

I = 2 I=1
M = (A, + A A + (A, - A A
vo,a8 = B2 A Ayp,ep By T A Ay o
(18)
I=0
+ (3Al + A2 + A3) AYB,Gﬁ
The amplitude to scatter in a given I spin is therefore
s
AI s B A2 + A3
AS = A, - A (19)
I=1 2 3
AS =3A, +A, +A
I=20 1 2 3’
According to our assumption A; - is real for physical s, i.e.,
AS = F(t,u) (20)
R Bl b e
Substituting (16) into (19) we find that (20) implies
2E, = £, = gy = Do (21)

But the symmetric and antisymmetric amplitudes vanish separately,
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so that

26, = £, and g,=0: (22)

The amplitude is thus described by a single symmetric function. We

get the known resu1t23)
s
AI — 9= f(t,u)
A; _ 1= £(s,8) - £(u,s) (23)
S 3 1
AI ~0"- 32 [£(s,t) + £(u,s)] - > f(t,u).

As it stands (23) does not have much physical content. This comes
about only when a dynamical statement is made about f£(s,t). Exchange
degeneracy is derived when Regge asymptotics are introduced. For

large x and finite y

= L a(y)
f(X}Y) S B(Y) T(CZ(Y) g l) sin T[Q:(y) (_'Vy) (24)

Thus at high t (or u) and finite s

A8 - B(s) (u -t ads) t - u a(s)
I =1 71(ais) + 1) sin na(s) 4n - 4u

AS _ - 3B(s)/2 i:(u -t a(s)+ t - u a(s)
I 0 T'(a(s) + 1) sin =nc(s) 4u 4u =t

(25)

f(x,y) is presumably very small when both x and y are very large.
Secondly, note that the I = 1 amplitude has no contribution
rom a third double spectral function due to the vanishing of gz(t,u).

8)

Mandelstam's well known result about cuts in the j-plane thus pre=-

cludes one for this amplitude. Fixed poles at nonsense-wrong-
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signature points’ arise only when the external particles have spin.
The same conclusion about the third double spectral function holds

in pp scattering, and we expect no fixed pole there.

3. Pseudoscalar-Pseudoscalar Scattering

A similar analysis can be carried out for SU(3) invariant
amplitudes. We seek to write the SU(3) couplings in a manner that
exhibits transparent crossing features. There are eight independent

couplings in § x § — 8 x 8 . We choose to consider nine couplings.

T . tyr £ . f . £ - f
1) Three f£+f type o " Eys fay faB and B iy
2 Three d-d type d _°d d  ~d and d__"d
) o aB “y8’ “ay ‘8B od “By

s) Three d+f type dGﬂ.fYS' ay Top o5 Epy

C,..+,0 are the octet indices of the external particles. The
couplings are scalar products of the usual £ and d tensors of the SU(3)

algebra, e.

aQ

8 8
= o %*
faB-fYS = Z faBmeam = Z ([xa,xs]xm)my,xa]xm) (26)
m=1 mn=1

We use Gell-Mann's notation25>, and ( ) stands for 1/4 Tr. Note

that we can also write

! ;
The Jacobi identity
[hB,[hy,ka]] - [7\,,{}‘6’%” + [?“5,[)‘5’}‘\,” =0 (28)

thus implies

f f _+f f._ +f _*f =0. 29
of “yd cy OB ad "By (29)
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This is the desired 1linear relation among the nine couplings, which
are otherwise independent. Our couplings clearly treat all three
channels on an equal footing. 1Instead of considering all intermediate
representations in one channel, we look at octets only,.but in all
~three channels. Thg projection operators for SU(3) representations
in a given channel were worked out by Cutkosky26). We list his
results in the Appendix, and connect between them and Rosner's quark
diagramsz7).

Under certain circumstances some couplings are known not to
contribute. In pseudoscalar-pseudoscalar scattering d+f couplings

are forbidden. (In PP - PV only d-f couplings are allowed.) The

most general SU(3) invariant amplitude is written

My&,aﬁ(s’t’u) = Al(s,t,u)daﬁ'dYa + Az(s,t,u)dcw-dBB

+ A3(s,t,u)daa'd + Bl(s,t,u)f

By o ys (30)

+ Bz(s,t,u)f + B3(s,t,u)f

«E G
cy OB ad "By -
The linear relation (29) between the f.f couplings implies an

arbitrariness in the Bi' We remove this by the constraint

Bl + B2 + B3 =0 (31)

The Ai have the same crossing properties as in the SU(2) case. The

Bi transform as follows:

1) under the interchange of lines B and C

Bl(t,s,u) = - Bz(s,t,u)

Bz(t,s,u) = = Bl(s,t,u)
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33(t,s,u) = = B3(S;t;u) (32)

2) under the interchange of lines B and D:

Bl(u,t,s) = - B3(s,t,u)
Bz(u,t,s) = - Bz(s,t,u) (33)
B3(u,t,s) = - Bl(s,t,u)

A simple analysis, analogous to that done for the Ai, shows that the
Bi span a vector space which reduces to @ + E] . But B

is just Bl + B2 & B3, which we have constrained to be zero. Explicit

reduction gives

Bl = w e3 - W 54
BZ =w €y - w €, (34)
33 = 53 " eh-

One can now write the most general F-function form of the in-
variant amplitudes, and explore the consequences of eliminating exotic
10, 10 and 27 channels. This is done precisely as in the SU(2) case.

The result is that all invariant amplitudes are again describable by

a single symmetric function
Al(s,t,u) = Az(s,t,u) = A3(s,t,u)

= f(s,t) + £(t,u) + £(u,s)

[£(s,t) - £(u,s)] - (35)

wlr Wl wir

Bl(s:t;u)
Bz(s,t,u) = [£(t,u) - £(s,t)]

B3(S:t)u) = [f(u)s) = f(t,u)]
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Leaving out contributions of the third double spectral function, we

get the following couplings in the non-exotic channels

}iya)aB(s,t,u)iss = [f(s,t) + £(u,s)] daB-dY8
MYSJOﬁ(S’t’u)QE = [£(s,t) - £(u,s)] faB'fYa (36)
M’Yﬁ,OﬁB(S’t’u)’]; = [f(syt) + f<u;s)] dCZBOdY50
where ‘
2
<480 ='<{7‘a’?‘s}7“o> =£ B8 (37)
and RO is defined following Gell-Mannzs)
2
KO -/\';3 1 ’ (38)

Wherever f£(s,t) + f(u,s) has a pole in s, we will have a
degenerate octet and singlet forming a nonet. Thus all even-j
resonances appear in nonets. The couplings of the octet and the

singlet can be combined to give

8

Mya,ozﬁ(s’t’u)g= [£(s,t) + £(u,s)] Z (D‘a’KB}Xm><{?‘y’?‘5}?‘m> (39)
m=0

They are seen to be those of the quark model. 1Imn particular we have

Zweig's connectedness rules) which implies that the state made of o
quarks does not decay into pions. No dynamical statement concerning
the form of f£(s,t) was made here to derive this result.

One can again use (24) to get exchange degeneracy in Regée
27)

theory. Our amplitude then becomes identical to that of Rosner .

Note that the odd signature amplitude again cannot have a third
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double spectral function, since f£(t,u) is symmetric in t and u.
Thus the previous result in the case of SU(2) generalizes to the

entire octet.

4., The N-Point Function

In discussing the four-point function, we saw that the amplitude

was in general a mixture of representations of S Elimination of

3"
exotics did not change this feature. One expects the same to hold for
the n-point function. Although we used the full S3 symmetry as a

tool of investigation, our results really referred only to a given
channel. The singlet and the symmetric octet tu?n out to be degenerate
because they have the same symmetry pattern, viz. they are both
symmetric under the interchange of the two extermal octets into which
they decay. Similarly there is exchange degeneracy between the
representations having one symmetry and those having the other ‘one.

In principle our method can be generalized to an arbitrary n-
point function, and use made of higher symmetric groups. However, we
do not expect new physics to come out of such an approach. To illus-
trate this point, consider the A

2
dominated by the px modezs). The states formed from three I =1

decay into three pioms. It is

pions are given by the following decomposition
1 x1 x1=3+2(2)+1(3)+0 (40)

We are looking for a mode with total I = 1 and with two of the. three
pions also in an I = 1 state. There are two such modes. However,

they are physically equivalent. The Pauli principle (or crossing
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symmetry if we are dealing with an A, exchange) allows only a

2
definite combination of the two modes.
The physics is contained in the observation that the decay
seems to proceed via a two particle intermediate state. When one of
the latter decays, it no longer remembers the resonance from which
it originated. There may be some final state interaction, but it
should be viewed as a small perturbation of the two-particle decay
scheme. Thus all n-point functions effectively reduce to a series
of four-point functions. 1In particular no new information can be

found about the consequences of eliminating exotic channels.

It may be remarked in passing that, if one attempts to describe
baryons as bound states of physical quarkszg), larger symmetry groups
are called in. This is because two quarks do not form strongly bound
subsystems. The interaction is a three body force. It is not clear
that one should believe in physical quarks. At any rate, we are very

far from the sophistication of assigning analytic properties to such

an interaction.
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II. REAL PARTS OF FORWARD MESON-NUCLEON SCATTERING AMPLITUDES

5. General Formalism

We use dispersion relations to analyze a forward scattering
'amplitude, whose discontinuity is determined by total cross sections
3 + - -
of two channels related by crossing (e.g., w p and w p or K p and
K_p). We refer the reader to Ref. 30 for the conventional formu-

lation of dispersion relations and previous calculatioms. One

usually separates the symmetric amplitude A(+) = %{A(ﬂ-p) + A(ﬂ+p)]
from the antisymmetric one A(-) = % [A(xp) - A(ﬁ+p)}, and writes
the dispersion relatioms
2.2
- +
AP = 2P+ v 7o
T\ e (nf)?
Ml - Kp_ [v - (&
0
2 )
V' VI ;
25 k'(V'T - Vv - ig)
B
[ee]
(-) 25% v v k' ol v
AY TV = 55t ——E‘J dav' 5 5 ’ (2)
2 _ (un7) 25 v! Voo~ de
2/ H
5 (%) 1 - +
M is the nucleon mass and p the meson mass. O = E[GE(ﬁ p) UT(K p)]

V and k are the meson's laboratory energy and momentum, respectively.
f2 specifies the strength of the Born term, and is equal to 0.082.
A(+)(V = nu) is the only subtraction constant. It is known to be zero
within experimental errors, in agreement with Adler's PCAC self-

31)

consistency condition . In writing (2), one obviously makes the
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assumption that G(_) goes asymptotically to zZero. This is the point

which we now want to change. Following the approach of Ref. 19,

- . + 3 =
we assume that both GT(ﬂ p) and GT(K p) remain constant from about
30 BeV on. This then implies that they have different values, and
G(_) is a non-zero constant. We want to see what the predictions

of these assumptions for the real part are. Having to introduce a

subtraction into (2), we therefore replace it by

2 7

- V) LV, 1 (") V!
A vy = 2 P’ b T * )
P 22 2 , 2 2 .
V2 _ _p_) 2% v -V - ie
M B
® (3
: vkz {‘ dv! G(->(v’) »
2 f 2 7 * & 7 -
’ 11 A3t 3
2 J k'(V -V - ig) M
K

Note that, instead of performing a subtraction on the entire
integral, we divide it into two parts. One is writtenm in an un-
subtracted form, and the other in a subtracted one. This is done for
practicél purposes. It avoids stressing the low-energy input and thus
increasing the errors in the calculation. The number c depends on
the choice of k. Equation (3) also demonstrates the fact that the
real part at low energy is not mecessarily affected by the new
assumptions on the high-energy behavior. We are actually able to
reproduce at low energies (say, below 4 BeV) the same results pre-
viously obtained by the use of (2) with any reasonably decreasing
fit to ol

To illustrate the changes brought about by the assumptions on

the behavior of the total cross section, let us discuss a mathe-
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matical example that is wvery similar to the actual situation in K p.
Let us denote the two reactions in question by A and B (analogous

to KTp and K-p, respectively). Assume first that (case I):

ImAI=aV) Im.BI=aV+b'J~V, 0« V&, (4)

It is then easy to find that

ReAI=-b~/-V, Re B, = 0 . (5)

+
This is the expected result for K p if one uses a Regge repre-
sentation with a regular Pomeron and two pairs of exchange degenerate
trajectories with intercepts at 1/2. If we now make the analogous

assumption to that of Ref. 19, we have (case II):

fa V+bAV O Vi
= v = .
Im AII a v, Im BII ih N (6)
R -l A< V<w
N\
It is then readily established that
AY Vv
Re AII - 2B 3 arctanVﬂ§<+ ﬁb logIV + Al‘ EE ¥
% JA M
(7)
[v [v -
Re BTI = hjL— log X VA - zv 1og|V 2 Al + 35 v
* JV + A JA M

It is now interesting to note that although Eqs. (5) and (7) are
very different from one another, it is still possible to find a value
of ¢ that will show a similar behavior for low V. Thus it is possible
that even though Im BI # Im BII for V > A,one still finds that‘the
real parts of the various amplitudes can roughly agree for V < A.

To illustrate this point numerically, we choose a = b = 3.6,

A = 22. (These values are close to those indicated by experiment if



V is measured in BeV and the amplitudes in BeV-l.) We find such an
agreement between I and II for ¢ = 1.1. We present in Fig. 3 the
results for c(A) = Re A/Im A and a(B) = Re B/Im B, since this is the
customary way in which the data are given in =N experiﬁents*.
Note that after the value V = 100 the logarithmic part in Re AII

and Re BII is taking over. ©Nevertheless it does not reach a sizable
amount even at high V values. To quote a number -- at V = 106 we find

a(BII) = - 0.49 and a(AII) = 0.59. We will find a similar behavior

in the next section when discussing the zN problem.

6. Real Parts of 7w p Amplitudes

In Ref. 19, the = p total cross sections were fitted to a form

o,=a, +b AV . (8)

An ionization point was then assumed to appear at V = 30 BeV,
resulting in the flattening off of the cross sections at that point.
- - + i .
This meant that 20( ) - o(xx p) = o(x p) > 1 mb even at high energies.
=3

In Ref. 19, ¢ was assumed to remain a constant for V > 30 BeV.

Any breaking of the Pomeranchuk theorem results in a logarithmic
rise of the real part of the amplitude, notably of A(-)(V)17’19>.
Hence, a+(V) = Re A _(V)/Im A_(V) does not tend to 0 as V o3 ». Once

the logarithmic behavior begins to dominate, @ rises in absolute

value, with G, and ¢_ taking opposite signs. The strength of the

*# 1t is unfortunate that the letter & is used for this ratio. It is
not to be confused with a Regge trajectory.
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logarithmic term is proportional to the value of o
The dispersion integrals were evaluated on a computer. Imn
order to do the principal part integration, it is necessary to have a

smooth f£it to the data points, since the integral is sensitive to

: *
discontinuities near V' = V. For V < 4 BeV we used the fit of Ref.

33, 34)

30. The data between 4 and 30 BeV can be fitted in a variety of

ways. We first fitted each cross section separately to a form

n=-1

(9

g, = ai + bi v

In such fits, a = a, was invariably greater than 1 mb, and the
choice of n was a matter of taste. We then tried a fit satisfying

the Pomeranchuk theorem,
n-1 =1
o,=a+bV T xc VT, (10)
This was done in order to be able to compare the premise of a cutoff

with the assumption that the Serpukhov data might be wrong, and that

the Pomeranchuk theorem might be right after all.

* The principal part integral is performed as follows32):
B B B
PfdxM=]dxM+f(y)Pf
X -y X -y X =y
A A A

B

_ £(x) - £(y)
]ﬂ dx g + £(y) log
A

The first integral ome has a regular integrand. If A <y < B one
substitutes f£'(y) at x = y. This is easy if £(x) is given in functional
form. If only discrete values are known, it is advisable to have them
equally spaced in x, so that one can use Simpson's formula. To that
approximation )

-—XB-‘ .
A -y

flx . .) = £(x
f'(xn) e n+1 n-1 )
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33)

The data oi Citron et al.

34)

do not seem to fit smoothly to
those of Foley et al. We had to settle for a slightly low value

of n. We chose

a = 22,5 b = 18.9 c = = 2.45

where V is measured in BeV and ¢ in mb. Applying to fit (10) a cutoff

at 30 BeV, we got for V above cutoff
g7 w0 o BY ~ ot pE = 1.3 wh

This number is consistent with the result of Ref. 14. 1In doing the

(=2

same with fit (9), we got 2¢ above cutoff to depend on the fit.
a(x p) is, of courée, determined by the Serpukhov data, but there is

a slight freedom of play in G(n+p). First one has to choose the
cutoff point. We assumed it to be the same as in = p (30 BeV). Since
this is 8 BeV higher than the last data point, the extrapolation
depends on the fit. It was pointed out above thaf the strength of the
logarithmic term in the real part of the amplitude is proportiomnal

to 0(-). I1f we constrained fit (9) to satisfy 26(-) = 1.3 mb, our
numerical dispersion calculations with it gave the same results for
the real parts as fit (10). We adopted the latter for the purpose

of testing the sensitivity of the calculation to the possible breaking
of the Pomeranchuk theorem. We called case I that which assumes

(10) to be good for all V. 1In case II we applied the cutoff, so that
for V > 30 BeV both cross sections were constant. The two cases are
illustrated in Fig. 4. Note that if further structure appears in g

T

at much higher energies, it may have negligible effects on our



calculation.

The calculated ratios & (V) = Re A (V)/Im A (V) for the T p

- ; ; ; 35)
amplitudes are plotted in Fig. 5, together with the data O
case I there is no free parameter in the dispersion relations (1)
and (2). 1In case II there is the arbitrariness of ¢ in (3), which
can be chosen to best fit the data. (We used k = & BeV.)

If one assumes exact charge independence, one can evaluate the
forward CEX differential cross section. The predictions are plotted
1 a2 36) . . £ 3
together with the data in Fig. 6 and Fig. 7. We note that in case
I the prediction seems to be too high by about 30 percent at, say,
20 BeV. 1If we attribute the discrepancy to I-spin violation of the
electromagnetic amplitude, we find it to be 20 percent of the total

RS

amplitude. With 20(-)(V = 20) ~ 1.5 mb, we would thus have

2g )

EM < 0.3 mb. Since we do not expect the electromagnetic effects

to vary strongly with energy, we may conclude that the ansatz of the
Pomeranchuk theorem is good only up to 20(-)(m) < 0.3 mb.

In case II we can adjust ¢ so as to get a very good fit to the
CEX data (c = 0.35). Alternatively, we can fix c to fit the ai
data. Choosing here ¢ = 0.35, we find a good fit to a+ but a poor
one to @ . This is an improvement over case I. A change to ¢ = 0.25
results in an equivalent over-all fit to ai’ with a poorer fit to a+
and a better one to & . Note that such a change contributes oppo-

sitely to a+ and @_. Checking the CEX prediction with ¢ = 0.25, we

find it too low by about 40 percent. This corresponds to

2g. )

EM 50.5 mb.
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Note that the small deviations that we found are a feature of our
calculated real parts. Point by point, the experimental Ui(V),
within their errors, are consistent with the CEX data without any

; 3 s ; ; 35)
I-spin violation. This was already pointed out by Foley et al. :
. Although we can fit the data with no I-spin breaking, we cannot rule
&)

out 2g
EM

2 0.5 mb. However, this is still too small to account
for the expected constant difference between OT(ﬂ-p) and 0T(ﬂ+p).
We have to conclude, then, that this difference is a genuine strong
interaction effect.

The main difference between the two dispersion calculations I
and II sets in around 100 BeV. At that point, the logarithmic part of
Re A(-) in case II begins to dominate. Instead of going to zero,
G+(V) becomes positive and increases, while a_(V) turns over and
becomes more negative. The CEX forward cross section begins to rise
again. On an absolute scale, both effects are small. We should be
able to see the CEX forward cross section flattening, but for the real
part to dominate the amplitude we will need fantastically high
energies. By that time, a new physics may very well set in. It was
pointed out in Ref. 19, as well as in Ref. 17, that if Re A/Im A
grows logarithmically, then one has to have the forward elastic peak
shrink like logzs to avoid a éonflict with unitarity. Strictly
speaking, such a conflict would arise only at such large values of V
that the whole problem looks rather academic. Nevertheless, the same
conclusion about the shrinkage arises of course from the assumption

that 9, does not rise with energy, which might very well be the case.

1
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Finally, a word about errors and low-energy behavior. The
cross sections are accurate to about 1 percent. This leads to errors
of approximately * 0.003 in ai(V). A change in G(-) above cutoff
causes a bigger correction. Varying the high-energy cross sections

above 30 BeV does not change the low-energy (V < 4 BeV) dispersion

calculations. There, our results agree with those of Ref. 30.

7. Real Parts of K p Amplitudes

o+ s 5 4
We calculated the real parts of K p forward scattering amplitudes

in the same way as for ﬂzp. The data between threshold and V = 3.3

37)

BeV were slightly smoothed. Above that point, the following fit
was made;
+
g(K'p) =a ,
(11)
o(Kp) = a+ bAV .
a=17.2 b= 17.4

The dispersion relations were evaluated for cases I and II as
in np, with the cutoff in case II taken at 20 BeV. The errors involved
here are much bigger than in wp. The uncertainties in the subthreshold
singularities do not allow a good determination of the real parts at
low energies. In particular, the Y*(IAOS) is an S-wave, and thus is
not quenched kinematically. We estimate its effect to be six times
as big as the Born term in nN..* This would be approximately 5 - 10

percent of the real part at V= 5 BeV. An additional unknown is the

2
% We approximated the resonance by a pole, The coupling g /4= = 0.32
is estimated from the Dalitz-Tuan model .
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+)

subtraction term of the symmetric amplitude, A( (V= pn). However,
their combined effect remains constant, while the imaginary part
grows like V, so that their contribution to a(Kip) should fall like
1/¥. 1In case II there is the further difficulty of evaluating the
subtraction constant ¢ in the antisymmetric amplitude A(-). The
CEX reactions are not related by a simple I-spin rotation. Nor has

a direct experimental determination of a+(V) by Coulomb interference

been done. The only existing test is the forward elastic dif-

ferential cross section. This is a measurement of 1 + a2.
2
g
do . . 12
- 16::<1Ta) (12)

et
[
o

If o is small, its determination
becomes difficult. Fortunately there exists relatively accurate
K+p data39), which suggests Ia(K+p)| ~ 0.55 = 0.15 for V ~ 7 - 15 BeV.
The error in ¢ was evaluated by allowing the do/dt data to vary
within their error bars, and evaluating the variation in & through
(12). If we allow a further variation of one standard deviation on
do/dt, we can set a lower limit on @ of ~ 0.25. The K p dataao) is
consistent with Ia(K_p)i = 0, but an upper limit of ~ 0.3 has to be
allowed within error bars. An additional standard deviatiom in-
creases this limit to ~ 0.5. The calculated values of a(Kip),
together with the experimental limits are plotted in Figure 8.

Case I seems to disagree with the data. 1In case II we can ex-

plain the discrepancy by means of the subtraction term. To fit

* . ;
"a(X p), we can choose either one of two values, depending on the sign
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of @, which cannot be determined by this method. We find for

K = 3.3
+ -
[’2 G 'p) <0, G(Kp) >0
c=i
+ -
=1.6 &K p) > 0, G(K p) <0 .
"¢ = - 1.6 is ruled out because it gives G(K_p)fv - 0.65. Hence we

conclude that G(K+p) < 0 and G(K-p) > 0. The data points for
a(K+p) were plotted under this assumption in Fig. 8. The errors are
clearly very large and allow us safely to ignore the subthreshold
singularities,

The general features of 7np dispersion relations appear also in

(_)- 4 mb.

Kp. The logarithmic behavior is magnified because 2¢
However, at present energies the bulk of the real part seems to come
from the subtraction term, and not from the logarithmic one. 1In
fact, these appear to have opposite signs. Thus we expect ||
actually to fall until very high energies, when ¢ changes signs and

ia| begins to grow again. As in wp, the real part does not dominate
until extremely high energies.

The difference between the pion and the kaon amplitudes lies

in the energy range below the cutoff point. The usual Regge pic;
ture -- which assumes the Pomeranchuk theorem to hold -- is compa-
table with experiment for the pions, but appears not to be so for the

kaons. In the latter case, the existence of an additional real term

seems to be implied by the data.
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APPENDIX

26
In this appendix we list Cutkosky's results ) for SU(3) projection

operators, in 8 x 8 8 x 8 and relate his couplings to those of

27)

Rosner . .We use the normalization

Mpsho] = 2if. A 1
NpsN ) = % 5 + 24 X (2)
a*g 3 o aBy v -
Repeated indices are to be summed from 1 to 8. In this mormalization
f = 3% 3
fanm 8nm af (5
d_d -2 & (%)
cnm Bonm 3 af
dommﬁBnm gl &Y
We use the shorthand notation £ _-f for f £ . These scalar

ap yo Opm yOm

products form our couplings. They correspond to intermediate octets

in all three channels. Projection operators for other repre-
sentations in a given channel are linear combinations of these

couplings. Our couplings satisfy the following useful identities

£ _f +f f . +

a8 Ty oy Tep T o py T O ¥

£ *d  +f *d.. +f .- = 7
op vd ay 5B aaday . 7

d

1
’ +d *d +d _-d == {5 .58 + 8 b + 8 .5 8
daB vd ay o8 ad® By 3 <ocﬁ Yo oy OB b 5Y). ®)

f *d_=d _°f -d <f (9
of yd ad By ay OB

= .:—L- . " . é . . 10
%as®vs =2 Cop Ty " fay'Top) *2 Coy’lep T’y - OO
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The projection operators for SU(3) representations in the s channel

for an elastic process are

§'s 3
Ave,a8 = 5 Yop s (11)
A;;,aB = % LA (12)
A%(B,aﬁ N % 986 (13)
Ys,08 = ?"—5 Eop™dys ™ %op y6) ' (14)
f%’é}ag = 3 (8 B5g + 8,580 Afg}@g . A\%&)aﬁ (15)
\%,aﬁ ) % (8&\/655 ) 6c¢558y) ) %A;g,aﬁ ) —% QSB,Q:\( (163
1 8
‘“‘itvg,ozs B % (5@(665 i 60&663\() ) %A;g,ocﬁ +\;§ g, oy g

Qyﬁ,oﬁ is the projection operator for an intermediate octet
with f coupling in the initial state and d in the final or vice-
versa. For an elastic process the two are related by time reversal
invariance, and only the combination QY5,Oﬁ is allowed.

27)

An alternate coupling scheme of Rosmner uses the idea that each
meson is built of a quark and an antiquark. His couplings are of the
type (hO}Bkyhﬁ) where ( ) stands for 1/4 Tr. This means physically
that the quark of particle ¢ annihilates the antiquark of particle 9,
the quark of &, the antiquark of y, and so on. A different coupling
scheme has to be used in meson-baryon or in baryon-baryon scattering,

since baryons are composed of three quarks. The connection between

the Rosner scheme and ours is straightforward with the use of the
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following identities.

E e e e
o = =g <[?‘a’7‘5]{7‘y’7‘51>

e =% ({KQ,KB][?\Y,%.E])

N

%g™%ys = 2 (Dvahghhyshed? 3 Pag) Oye)

In particular
(hrghghy) + (o Py

2
— = =g 8 3 £
dag dyﬁ + 3 aﬁoya +»fCZB Iya

<%%@§W>'<Nf$§3>

= (g dyp = Y95 fye)

(18)

(19)

(20)

(2D

(22)

(23)

(24)

(25)
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FIGURE CAPTIONS

(Figures 3 through 8)
Figure 3: @, the ratio of real and imaginary parts of the various

amplitudes discussed in the mathematical example of Section 5 . The

subtraction constant c is chosen so that for V < A, aI ~ QiI'

Figure &: ﬁip total cross sections and fit (10). Errors plotted are

the sum of the statistical and the systematic. The statistical errors

of Allaby et al., are also indicated. The errors of Citron et al. are

mainly systematic, and only representative data points of this group

have been included.

Figure 5: Predicted a(ﬁip) = Re A(ﬂip)/lm A (Kip) and experimental data
35)

of Foley et al. . I and II refer to the choice of high-energy cross

sections. (See Fig. 4.) c¢ is the subtraction constant.

Figure 6: Forward differential slN charge exchange cross sections pre-

dicted assuming exact I spin conservation, and data of Mannelli et
36
al. ?

Figure 7: Blow-up of Figure 6. The discrepancy between the fit and the
data is an indication of the amount of I-spin violating electromagnetic

effect. On the basis of this deviation, we conclude ZGEM(-)< 0.5 mb.

- + +
Figure 8: (X p) = Re A(K'p)/Im A(K'p) and experimental limits
39,40
deduced from the forward elastic differential cross sectiomns Py ).

The sign of a(K+p) was determined from the dispersion relations. (See

text.)



'Figure 1: Diagram of a four-point function, and definition of kine-
matic variables. All momenta treated on the same footing. Incoming
ones have positive energies, and the outgoing negative omnes.

Q,...,0 are internal quantum numbers.
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Figure 2: The complex V plane, and the contour P

(see text).
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