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INVESTIGATIONS IN THE THEORY OF 

ELECTROMAGNETIC SCATTERING FROM EXPANDING 

DIELECTRIC OBSTACLES 

Ronald J. Pogorzelski 

ABSTRACT 

An equation for the reflection which results when an 

expanding dielectric slab scatters normally incident plane elec-

tromagnetic waves is derived using the invariant imbedding 

concept . The equation is sol ved approximately and the character 

of the solution is investigated . Also, an equation for the 

r adiation transmitted through such a slab is similarly obtai ned . 

An alternative formulation of the slab problem is presented which 

i s applicable to the analogous problem in spherical geometry . The 

form of an equation for the modal reflections from a nonrelati-

vistically expanding sphere is obtained and some salient features 

of t he solution are described . In all cases the material is 

assumed to be a nondispersive , nonmagnetic dielectric whose rest 

f rame properties are slowly varyi ng . 
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I. INTRODUCTION 

The behavior of electromagnetic radiat i on in environments con

taining moving media with time varying constitutive parameters is a 

subject of considerable interest, both academic and practical. A common 

formulation of the problem is based on Maxwell 's equations with time 

varying constitutive parameters that describe the medium throug h which 

the waves propagate. These equations must be s o lved subject to appro

priate boundary conditions . Of particular interest is the problem of 

scattering of electromagnetic radiation by a loc alized object whose 

character is varying with time. The above approach, however, leads to 

an unnecessarily extensive calculation . That is, one must calculate 

the electromagnetic fields everywhere inside and outside the scatterer 

subject to certain conditions of cont iriui ty at the boundary. Fortunately, 

this is unnecessary because by making use of the concept of invariant 

imbedding one may circumvent calculation of the fields inside the 

scatterer and need only consider the external fields which are usually 

the ones of greatest interest in problems of this type . 

Invariant imbedding found its genesis in the now quite well

known paper by V. A. Ambarzumian on the scatter ing of light by a foggy 

medium [l]. In that paper he introduced an invariance principle to 

obtain the scattering. Similar invariance principles were later applied 

to problems of theoretic al astrophysics involving radiative tra nsfer 

in stellar atmosphe res [2]. Subsequently, a method now known. as 

invariant imbedding and based on these invariance principles was 

applied to a staggering variety o f problems [3]. Papas has applied the 

concept t o the problem of reflection of plane electromagnetic waves 
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from a nonuniform slab of dielectric material [4]. More recently, 

Latham [5] extended this to cylindrical and spherical scatterers and 

Kritikos, Lee and Papas [6] obtained the scattering of plane waves by 

nonuniform jet streams by means of invariant imbedding. 

The type of scattering problem to be considered here involves a 

nondispersive, nonmagnetic dielectric scatterer which is expanding or 

contracting (negatively expanding ) with time . The expansion need not 

be uniform. It is assumed, however, that the evolution of the scatterer 

is given beforehand and is unmodified by the presence of the electromag

netic radiation. The formulation is ~uas istatic and i s carried out to 

firs t order in the velocity of the medium. 
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2. EXPANDING SLABS 

Before considering the general slab problem, two preliminary 

problems will be discussed to provide some insight with regard to the 

effects of moving media on the propagation of electromagnet ic waves. 

The magnetic permeability of the medium will always be taken to be 

that of free space, n will always denote the index of refraction of 

the medium in the rest frame of that medium, and the velocity of the 

medium will always be referred to the laboratory frame of reference. 

In addition, it will be assumed that the index of refraction may be 

specified independent of the density of the medium. 

A. Scattering from a Shock Front 

The first situation to be analyzed is depicted in Figure l. A 

TEM wave is normally incident on a plane shock front in a gas. The 

velocities of the gas on both sides of the shock are uniform and 

normal to the shock front. Also, the indices of refraction n 
a 

and 

are uniform. The densities are assumed to be such as t o satisfy 

a relativistic continuity equation for the gas [7]. The frame of the 

shock is considered t o be the laboratory frame. 

To analyze this situation one assumes plane wave solutions in 

the rest frames of the media on both sides of the shock front. Thus 

we have 
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Viewed in the rest frame of medium a 
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The subscripts 1 and 2 in these expressions denote the frame in which 

thecµantity is viewed , 1 denoting the rest frame of medium a, and 

2 denoting the rest frame o f medium b . The associated H fields may 

be found in the rest frames of the media in which the waves are propa-

gating by making use of the rest frame characteristic i mpedances of 

the media; that is, 
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where Ea and ~ are the rest frame dielectric permittivities of 

medium a and medium b respectively. We also note that 

k = /Sil 
nawl 

wl = 
1 a o c 

k ( l1) (r) 
n w(r) 

v'Eµ = a 1 
= wl 1 a o c (2A-3a) 

k ( t) ( t) 
~= 

~w;t) 
= w2 2 b 0 c (2A-3b) 

Transforming the f ields (2A-l) and (2A-2) to the frame of the shock (the 

laboratory frame) yields 
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w = Y(l + n S ) wl o a a 

( t) 
w = 

0 

Ba k(r) 
= Y(l - -) 

n o 
a. 

(r) 
w = Y(l-nS) (r) 
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( 2A-5b) 

(2A-5c) 

(2A-5d) 

and v. 
J 

is the velocity of medium j in the labo-

ratory frame. Now, working in the frame of the boundary, Maxwell's 

two curl equations are integrated around a closed loop centered on the 

boundary and the area of the loop is reduced to zero in the usual way to 

obtain the boundary conditions on E and H It is found that tangen-

tial E and H must be continuous across the boundary. Applying these 

boundary conditions to (2A-4) at the shock in the laboratory frame 

results in 

fi- ~ n -~ 
R 

µo µo a 
(2A-6a) = = 

0 

~+ ~ 
n +~ a 

µo . µo 
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H 2n 
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( t) w w 
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where R is the ratio of the electric field of the reflected wave at 
0 

the boundary to the electric field of the incident wave at the boundary 

i n the laboratory frame , and T 
0 

is the ratio of the electric field of 

the transmitted wave at the boundary to the electric field of the inci-

dent wave at the boundary also in the l aboratory frame . That is, R 
0 

and T are the l aboratory frame reflection and transmission coeffi
o 

cients of the shock front. Note that expressions (2A- 6a) and (2A-6b) 

are independent of the velocities and are, in fact, the usual results 

for the scattering at t he interface between the same two media at rest! 

Consequently, R = 0 
0 

and T = 1 
0 

if 

It is remarked in passing that by dividing the k's given in 

(2A- 5b) by the corresponding w' s given by (2A- 5c) the wel l known 

formulas for the effective index of a moving medium can be obtained; 

that is, 

k c 
0 w = neff = 

0 

(r ) 
neff = 

n + S 
a a 

l + n S 
a a 

n - S a a 
1- n S 

a a 
(2A- 7a) 
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Ct) 
= neff = (2A-7b) 

'I'he absence of reflection when may be seen to be 

physically reasonable as follows. Consider the application of a 

Lorentz transformation to the wave impedance of a plane wave propagat-

ing through a medium of index n . In the rest frame of the medium 

+ 
the wave impedance is Z and in a frame moving with velocity v it 

z 

is z' where 
z 
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y s2 · z 
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- nS z 

J (2A-8) 

- nS z 

where Sx' Sy' and Sz represent the x,y and z components of the 

velocity. Note that if the velocity is in the z direction, the expres-

sion in brackets becomes unity and we find that for this situation the 

wave impedance is a Lorentz invariant. Since it is the wave impedance 

which is relevant in satisfying boundary conditions, and since it is 

unmodified by a Lorentz transformation, the wave of Figure 1 may 
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propagate through the shock without changing its wave impedance and 

hence without producing a reflection. Note also that if Bx and By 

are not zero, the reflection is not zero but is none the less second 

order in B • 

B. Scattering from an Expanding Slab (Special Case) 

Consider an expanding slab scattering normally incident plane 

waves. The slab is backed by a perfect absorber as shown in Figure 2. 

Suppose that the index of refraction on the right of the fixed boundary 

is somehow maintained at some fixed value ~ (always measured in the 

rest frame of the material) for all time. Based on experience from 

the shock problem one might conjecture that the reflection from this 

object will be independent of the velocity function B(z) One would 

expect that, since the effective (laboratory frame) index of refraction 

of the material on the right varies with z , the wavelength of the 

solution on the right will vary in a nearly similar manner with z . 

Recalling that the effective index is 

~ + B 

l+~B 
(2B-l) 

(see (2A-7)) we conjecture that a possible approximate solution on the 

right might be something like 

-+ 
E = e E T x 0 0 

e 

z 
i w J 

c 
0 

~+ B 
---dz 
1 +~B -iwt 

e (2B-2) 

Substitution into Maxwell's equations using the constitutive relations 

for a moving medium , 
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+ 1 + + 
n;6~ + 

+ + 
D + 2v x H = v x B) 

c 

+ 1 + + + + + 
B 2v x E = µ (H v x D) ( 2B- 3) 

0 
c 

shows (2B-2) to be the exact sol ution . Now, the expression (2B- 2) and 

i ts derivative with respect to z take on the same values at z = O as 

do the expression for an ordinary plane wave in a medium of index n at 

r est and its derivative , respectively . This means that the simultaneous 

e quations for R and T obtained by making use of the boundary condi-

tions at z = 0 are identical to those obtained in the preceding 

example (the shock front) and it is seen that here also 

n - ~ 
R 

a = n + ~ a 
( 2B- 4a) 

2n 
T 

a = 
na + ~ 

(2B- 4b) 

Thus if n a 
and are constants R and T are independent of the 

velocity of the medium in the slab. 

Recal l that in this example ~ was taken to be independent of 

time where , in general, it will not be time independent . When 

depends on time (2B- 2) represents a solution in a quasistatic sense. 

That is, it is a good approximation to the solution if 

aE I at where 
- iwt E 'V e ( 2B-5 ) 
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C. The Reflection Function Invariant Imbedding ~suation for an 

Expanding Slab 

Consider the expanding slab of dielectric fluid shovm in 

Figure 3. The slab is stratified in that t he velocity of the fluid and 

its rest frame index of refraction are functions of time t a nd posi-

tion z only. The velocity is purel y z directed. The l aboratory frame 

of reference has b een chosen such that the boundary at a is stationary. 

A unit amplitude , . linearly polarized, monochromatic , plane wave of fre-

quency w 
0 

is normally incident on the slab from the left. Since waves 

will b e reflected from index gradients moving with various vel ocit i es 

within the slab and since a moving r e flector results in a Doppler s h ift, 

we wish to allow f or a reflected wave having a frequency spectrum of 

nonzer o width. We therefore define the reflection function R to be a 

spectral density function which gives the frequency spectrum o f the 

reflected wave. It is defined to be a function of both the reflected 

frequency and the i ncident frequency. 

Let us assume that 

1
.1 aRI << w 
R at m 

for 

where w is the l owest frequency for which R is significantly 
m 

(2C-la) 

greater than zero . Having made this assumption we may make use of the 

concept of a time varying spectrum. (See Appendi~ A.) We also assume 

that 
1 an c 1 
n at « (b-a) ~ 

.l~«c 1 
8 at ~ (b-a) 

for a {; z ~ b 

for a ~ z ~ b (2C-lb) 
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where ~ is the largest index in the slab and (b-a) is the thickness 

of the slab. That is, we assume that the properties of the slab do not 

vary significantly during a time on the order of the time required for 

the incident wave to completely penetrate it (the quasistatic approxima-

tion) . 

The invariant imbedding formulation of this problem consists of 

assuming that the reflection from that portion of the slab which lies 

to the right of a given plane is known and of calculating the change in 

the reflection due to the addition of a thin layer of material at this 

pl ane . This procedure yields a difference equation which, in the limit 

of vanishing added layer thickness, becomes a differential equation for 

the reflection function R(t,w t' w. , z). This equation is to be 
OU ln 

integrated from the right boundary of the slab where the reflection is 

known to the left boundary where it is to be found. 

Before formulating this problem, let us define a Lorentz frame 

comoving with the fluid at position z and time t We define this 

frame in such a way that its position coordinate s is equal to z 

when its time coordinate T is equal to t Thus there will be an 

infinite number of such frames at any time t each corresponding to a 

particular choice of position z . 

Figure 4 shows the configuration to be used in deriving the 

invariant imbedding equation for the reflection function. It is assumed 

that the reflection function at s + 6s is known in a Lorentz frame 

moving with the fluid at s + 6s, when in this frame the space to the 

left of s + 6s is filled with a homogeneous stationary fluid of index 

A thin slab of fluid of index n(T, s+6s) having a 
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Fixed Boundary 

n = n (T, z;+t:iz;;) 

s 'V z; 

• • • 

Figure 4. Configuration for derivation of the invariant 

imbedding equation for the reflection function 
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constant velocity gradient throughout its thickness is added at 

s + 6s and extends back to s • We must calculate the reflection 

function at s in a frame moving with the fluid at s , under the 

assumption that in this frame the region to the left of s is homo-

geneously filled with a stationary f l uid of index n(T,s) . That is, 

for this calcul ation a Lorentz frame moving with the fluid at posit ion 

z and time t in the laboratory frame (or correspondingly, position 

s and time T in the c omoving frame) will be used . Figure 4 shows 

the situation as seen in this comoving frame. Since it is our intention 

ultimately to take the limit as ls approaches zero, and since when 

this is done only terms first order in ls will contribute, all subse-

quent calculations will be done only to first order in 6s . 

A unit amplitude linearly polarized monochromatic plane wave of 

frequency w. 
in 

i s assumed to be normally i nc i dent on the composite 

slab of Figure 4. is the spectral density functi on of the wave 

reflected from the outside of t he fixed boundary . R
2 

is the spectral 

dens ity function of the wave transmitted across the fixed boundary a nd 

through the added layer , reflected from the slab to the right of s + 6s 

and transmitted back through the added layer and across the fixed bound-

ary. R
3 

i s the spectral density function of the wave transmitted 

across the fixed boundary and through the added layer, reflected from 

the slab to the right of s + ls , transmitted back through the added 

layer , r efl ected from the inside of t he fixed boundary, transmitted 

through the added l ayer, refl ected from the s lab to the right of s + ls 

and transmitted back through the added l ayer and across the fixed 

boundary. Higher order R's are defined similarly . The frequency 



-18-

variable in the spectra given by the R's is wout 

Equation (2B-4a) leads immediately to the r e sult for R
1 

that is, 

2mS ( w t - w. ) 
OU in 

1 an ( ) -2 ~ 2mS w t- w. fir;; n a~ ou in 

( 2C-2) 

Similarly, 

nw ' i -- M;, 
c 

(2C-3a) 

where 

w' = w. (1- n!:i8) in 

w" = w t ( 1 + n!:iS) 
OU 

tis = ~fir;; 
ar;; 

The factors ( 1 - n!:i.S) and (1 + n!:iS) arise because R(T,w t'w. ,r;;+t:ir;;) 
OU ln 

is defined in a Lorentz frame comoving with the fluid at s+fis ,wh i le 

we are working in a frame comoving with the fluid at r;; . Thus, to 

first order in fir;;, 
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as _lB__ + in(w + W. ) R 
- win n az; aw. c out in 

. in 

as J - 2n af R t::,.z: (2C-3b) 

Similarly, 

00 

(2C-4) 

Rj for j > 3 is of second or higher order in t::,.z: and is therefore 

negligible in this calculation. Thus we have 

Substitution of (2C-2), (2C-3b), and (2C-4) into (2C-5) gives 

aR + w as aR _ W. n ~ _lB__ 
as out n az awout in as awin 

00 

f R(T,W,W. ,s) R(T,W t'W,s)d2w} in OU TI 

(2C-6) 

We now transform from the local comoving frame coordinates (-r,z;) to the 

laboratory frame coordinates (t,z). Under our quasistatic assumption 

and to first order in S this merely amounts to direct replacement of 

T with t and s with z • The final equation is then 



aR + ~ <m 
oz wout n oz aw t 

OU 
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00 

= ;n ~~ { 2mS(wout - win) - f R(t ,w , win'z) R(t,wout'w,z)~~] 
- 00 

in as ( w t + w. ) R + 2n - R 
C OU in oz (2C- 7) 

This is the quasistatic invariant imbedding equation for the refl ection 

function to first order in S . Notice that we have transformed only 

the coordinates in terms of which the functions are expressed and have 

l eft R,w t ' and w. in the reference frame comoving with the fluid 
OU in 

at z The quantities R,wout and w. have been left as t h ey were 
i n 

because we have in mind that S(a) = 0 so that at z = a (see Fi gure 3) 

the l aboratory frame and the comoving frame coincide , thus automati-

cal ly putting R,w t' and 
OU 

point of the integration . 

W. 
in 

in the l aboratory frame at the final 

The properties of (2C- 7) are most easily discussed by applying 

t he method of characteristics to it . Thi s will be done in the next sub-

section. For the moment it is remarked i n passing that under certai n 

circumstances R may be written as a function of the difference 

b etween its frequency arguments and (2C- 7) may then be simplified some-

what by Fourier transformation (See Appendix B . ) It is also remarked 

that a corresponding equation may be der ived for the transmission func-

tion of the slab (See Appendix C. ) 
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D. Approximate Solution of the Invariant Imbedding Equation 

We propose to solve (2C-7) by the method of characteristics [9] . 

. Choosing s to be the parruneter designating position along the charac-

teristic curves, we obtain the following set of four ordinary differen-

tial equations 

dz 
1 = 

ds (2D- la) 

dw 
out 

= ~ 
ds 

w 
out n dZ (2D-lb) 

dw. 
~ in 

= -w. n 
ds i n dZ ( 2D-lc) 

dR -= 
ds 

in 
c 

00 

. - - dw I -} R{t,w,w. ,z) R(t , w t'w,z)-
2 in OU TI 

( w t + w. ) R + 2n ~ R 
OU in dZ (2D-ld) 

Equation ( 2D- la) indicates t hat s may be taken equal to z . It is 

known that both and w. will be equal when 
in 

z is equal to b 

(see Figures 3 and 4). Also, equations (2D-lb) and (2D-lc) indicate 

that they wi ll differ from this initial value by an runount which is 

first order in S Therefore, consistent with calculation to first 

order in S, wout and w. on the right sides of equations (2D-l b) 
in 

and (2D- lc) may be replaced by w (the value of w. at 
o in 

z = a) • 

now have the following set of three ordinary differential equations 

We 

dwout 

dz = (2D-2a ) 



dR -= 
dz 

dW. in --= 
dz 

1 an {. ( - -· - 2mS w 
2n Cl-z out 

-w 
0 
n~ 

az 

w. ) 
in 

-22-

co 

J R(t,w,win'z) R(t,wout'w,z)~~} 
-CO 

in ao ( w t + w. ) R + 2n _µ R 
c ou in az 

Equations (2D-2a) and (2D-2b) are integrated to yield 

z 

w = w t(b) + WO f n 1@_ dz' 
out OU az' 

b 
z 

W. (b) - f 
as w. = w n -- dz' 

in in 0 az' 
b 

( 2D-2b) 

(2D-2c) 

(2D-3) 

(2D-4) 

where wout(b) is the value of wout at z = b on the characteristic 

and w. (b) is the value of w. at z = b on the characteristic. in in 

Substituting (2D-3) and (2D-4) into (2D-2c), we obtain 

z 

-= 
dz 
dR 1 an ( ) -

2 
-;:;---- 2mS [ w t b 

n oZ OU 
w. (b) + 2w 
in o f n 1@_ dz' J 

az' 
b 

in[w (b) + w. (b)] R + 2n ~R - -C out in az (2D-5) 

where it has been assumed that the slab under consideration is suffi-

ciently tenuous that the nonlinear term may b e neglected . Equation 

(2D-5) is a first order linear ordinary differential equation and may 

be easily solved. The solution evaluated at the left boundary of the 

slab (z = a) is 
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a z 

R I 1
2 

~n 2no [w t(b) 
n oz OU 

w. (b) + 2W I n as dz '] 
in o dz ' 

b b 
z 

f 2 as d , 
- n dZ ' z 

z 
i[w t(b)+ w. (b)] f n dz' 
C OU in 

x e a a 
d z e 

b 
-f 2n ~dz ' dZ 1 

b 
i[w t(b)+w. (b)] f ndz ' 
C OU in 

+ R[ t , w t(b) ,w. (b) ,b] ea 
OU in e a 

(2D-6) 

Solving ( 2D-3) and (2D-4) at z = a for w t(b) and w. (b) as 
OU in 

funct ions of w out 'win and a , we obtain 

a 

w t (b) = w - w f n ~ dz I (2D-7a) 
OU out 0 dZ 1 

b 
a 

W. (b) = W . + w f n 1§_ dz I (2D-7b) 
in in 0 dZ 1 

b 

But, since we are at z = a we know that w. is w and we will 
in o 

call j ust w. Substitution in equation (2D-6) results in 

a 

R = f 
z 

1__ an 2no [ w - w + 2w f 
2n dZ 0 0 

as 
n - · - dz '] 

oz' 
b 

z 
--f 2n ~ ~ I d Z I 

a x e 

a 

z 
i(w+w ) f n dz' 
c 0 

a 
e 

b 

J 2n lL d I 
- dZ 1 z 

+ R[t,w t(b) ,w. (b) ,b] ea 
OU in 

dz 

b 
.!.( w+w ) f n dz ' 
c 0 

a e 

( 2D-8) 

The integration from b to a in the first term of this equation may 

now be carried out and we have 
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1 an 
2n 2n ()z 

z ( w) 
-f 2n .£Ji__ dz ' ()z' 

. z(a) 
]:.( w+w ) f n dz ' 
c 0 

R(t,w,w ,a) 
0 w o 2n 

a·s 
oz z=z(w) 

a 
e e 

b 

-f 2n ~~' dz' 

x W[w;w(b) , w(a)] + R[t,w t(b),w . (b),b] ea 
OU J..n 

where 

b 
i.(w+w ) f n dz' 
c 0 

x e 
a 

z 

w( z) = w
0 

[ 1 - 2 f n ~~ dz J 
a 

a 

(2D- 9) 

( 2D- l0) 

and it has been assumed that (2D- 10) is one to one over the entire slab. 

The W function i s defined in Figure 5 and it indicates that the f i rst 

term of the solution (2D-9) is band limited. I f (2D- 10) is not one to 

one, the slab must be divided into subsl abs over which it is one to one 

and the integration performed in segments, the result of each integra-

tion being the initial condition for the next. In our case, i. e. , a 

slab over which the transformation (2D- 10) is one to one, 

R(t,w t'w. ,b) will be either zero (if there is no index discontinuity 
OU J..n 

at Z = b) . or proportional t o O(W t - W.) (i f there is an index dis -
OU J..n 

continuity at z = b) assuming that n is a constant for z > b . 

Equations (2D-9) and (2D-10) indicate that this delta function becomes 

o(w-w(b)) when it appears in the solution at z =a . Its amplitude and 

phase are also modified by the presence of the exponential factors in 

the second term of (2D-9 ). The contribution of the interior of the slab 

to the spectrum of the reflected wave is given by the first term in 

( 2D-9). Because of the presence of the W function, this contribution 
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W( ~ ;p , q) 

1 

p q 

Figure 5. Definition of the W function 
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is band-limited and extends from w(b) to w where w(b) 
0 

is given 

by (2D-10). The reflection from an index gradient at a given position 

within the slab has an amplitude proportional to the gradient of the 

index and has a frequency given by (2D-10) with the position of the 

index gradient substituted for z It should be emphasized that w 

is the output frequency at z =a, i.e., w t(a) = w; therefore, 
OU 

w(b) is an output frequency at z = a and b is merely the value of 

z which must be.substituted into the variable transformation (2D-10) 

to obtain this output frequency. 

Recall that (2D-9) was derived on the assumption that the slab 

was "sufficiently tenuous" that the n onlinear term in (2D-2c) could be 

neglected in obtaining (2D-5). We may now state, somewhat more pre-

cisely, that we have found the solution.to firs t order in ( 1 an) -- and 
2n dZ 

n(z.-E) - n(z.+E) 
to first order in ( 1 1 

) at any index discontinuity. 
n(z.-E) + n(z.+E) 

l l 

By this we mean that we have neglected terms containing factors of 

or 
n(z1-E) - n(z.+E) n(z.-E) - n(z.+E) 

(n(z . -E) + n(z~+E))(n(z.-s) + n(z.+E)) which is justi-
l l . J J 

fied if the slab is "sufficiently tenuous". 

It is interesting to note what happens to our solution if 

becomes zero over a finite range of z or at a single value of z 

Considering the first term of formula (2D-8) we see that i f is 

zero over a finite range, say f rom to z
2 

, _where 

the delta function becomes independent of z and may be t aken out of 

the integral from to z
2 

(the integrals from a to and from 

z2 to b remaining as they were) . This results in a delta funct ion 

in the spectrum whose amplitude is given by the integral of t he 
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remaining integrand from to and whose frequency is given by 

w = w 
0 

[l - 2 zfl as d I J 
n dZ I z (2D-ll) 

a 

If ( . as 
zl = z2 i.e., ~ is zero at a single point) the delta function 

component in the spectrum is seen to have zero amplitude. 

At this point the possibility of an index discontinuity at 

z = a has not been accounted for. (Discontinuity at z = b is 

accounted for by the initial function R(t,w t'w. ,b) 
OU in 

in equation 

(2D-9)). Figure 6 shows the situation at the boundary z =a . Here 

our incident wave falls on the discontinuity at z = a and multiple 

reflections occur as they did in Figure 4, but in this case the 

reflection coefficients at the discontinuity for waves incident from 

the right and from the left are not infinitesimal as they were in 

Figure 4. 

In treating the boundary at z = a it is convenient to have a 

means of transforming a time varying spectrum into a static spectrum. 

A formula is now stated and verified which provides a means of perform-

ing this transformation. Let r(t) and s(t) be real valued func-

tions of time and let f[r(t),s(t)J be such that 

00 

F[w,s(t)] = f 
iwt' 

f[r(t'),s(t)] e dt' exists. 

Then, 
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0 
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n(t,a -e:) 

a-e: a 

00 

R(w,w ,a-e:) - · I R. 
o i=O i 

n(t,a+e:) 

• 
• 
• 

Figure 6. Discontinuity in n at z = a 

a+e: 
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00 00 00 

'V 
G(w) - I f [r( t) , s(t) J eiwt dt 

1 
2TI I I iw ' t 

F [ w- w' ,s(t) ] e dw'dt 

- 00 -00 

(2D-12) 

Thi s may be demonstrated as follows : 

00 00 

'V I I iwt ' 
G(w) = f[r(t '),s(t)] o( t'-t ) e dt ' dt 

- 00 -oo 

00 00 00 

I I I f[r(t'),s(t)J 
1 - iW I ( t I - t) iwt ' 

dw ' dt ' dt = -e e 2TI 
-oo - 00 -00 

00 00 

1 I I F[w-w' , s( t) ] 
iw't 

dw ' dt , q . e . d . = e 
2TI 

- oo - co 

The sol ution (2D-9) i s a function of the form F [w,s( t ) J . Applying 
'V 

(2D-12) we can obtain G(w) which we claim to be the solut i on expr essed 

as a pure (time independent ) spectrum function . This c l aim is onl y 

approximately true. The degree of validity of the claim depends upon 

just how closely f[r( t) ,s(t)J approximates the true solution of the 
00 

Problem, g(t) -- 12rr J G(w) e - iwt dw . Th " · t d d h is, in urn epen s on t e 
- oo 

validity of the fol l owing statement . 

(I ~! I I ~~ IL< ( 1 ~; 1 1 ~~1 L (2D-l 3) 

l. ~fs I and I ~rf I or, assuming that 
0 0 

a re of t he same order of magnitude, 

(and small) 

ldsl ldr l - << -dt . dt 
max · max 

That is, r ( t) must be a " rapidly varying" function of time and s ( t) 
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mus t be a "sl owl y varyi ng" f unction of time . Condition (2D- 13) is 

essentially a restatement of eQuation (2C-l ) (See Appendix A). 

Returning to Figure 6 and assumi ng that R has been transformed 

t o a t i me independent function of freQuency, i t is easil y seen that the 

limit of the expressi on for R immediately to the left of the boundary 

as E: -+ 0 i s 

lim 
E: -+ 0 

+ 

R(w, w , a - E:) = 
0 

l im 
E: -+ 0 

[
-; (w-w ) 

0 0 

co co 

I I -+ +- dw" dw ' 
t (w ' -w ) R(w" ,w' , a+E:) t (w-w" ) -- --

o 0 0 2TI 2TI 
- 00 - 00 

00 00 00 00 

+ J J J J 
-+ +-
t (w ' - w ) R(w" w' a+E:) r (w" ' - w" ) R(w"" ,w'" ,a+E: ) 

0 0 ' ' 0 

- 00 - 00 - 00 - 00 

x +- dw ' dw" dw"' dw" " ] 
t ( w- w"" ) - - ---- + · · · 

0 2TI 2TI 2TI 2TI ( 2D- 14) 

-;:: ( w) • 
-+ t (w) , t- (w) 

+- -+ 
where r

0
(w), are Fourier transforrn.s of r (x),r (x), ,.._o 0 0 0 0 

t (x) , t (x) and 
0 0 

"' +- n(x 2 a+E:) - n(x , a-E:) -+ 
r (x ) = = -r (x) 

0 n(x , a+E:) + n(x ,a-E:) 0 

+- 2n(x a+E:) 
t (x ) = n (x , a+E:) + n(x , a - E:) 0 

-+ 2n (x ,a- E:) t (x ) = n (x , a+E:) + n(x ,a- d ' and x = ct . 
0 

Th e arrows i ndicate the direction of the i nc i dent wave for each r eflec-

ti on or t ransmission . Notice now that to f i rst order in (3 the sol ution 
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(2D-9) may be written as a fUnction of W-W , the 
0 

w 's 
0 

.not asso-

ciated with w in this way bei.ng constants. This allows us to wri te 

(2D-14) in the form 
A A 

+ -+ 
A A t (y) t (y) 00 

~ ( y , a+E:) ]j R(y , a-£) r (y) + 0 0 l 
+ 

= " [ro(y) 0 1: (y) j=l 
0 

" A R(y,a+E:) 
-+ -+ + 

= ro(y) + t (y) t (y) 
A 0 0 
+ "' 

1 - r (y) R(y , a+E:) 0 

(2D-15) 

where 

w-w 
00 

-i(--0) y A 1 
J F(y) = F(w - w ) e c dw 

27T 0 
- 00 

and 
+ -+ + -+ 

F = R, r r t t o' o' o' 0 

Thus 

00 

R(w-w0 ,a-E) = 1:
0

(w -w
0

) + f t0 (y) t 0 (y ) 
R(y ,a+E:) 
" + " 

1 - r (y) R(y,a+£) 
0 

-00 

w-w 
i( o)y 

c 
x e dy (2D-16) 

This will not ordinarily be bandlimited . Consistent with dropping 

the nonlinear term in obtaining (2D-5) (assuming that the slab is suf-

ficiently tenuous to justify doing so) we need onl y have accounted for 

the first two reflections in Figure 6; i.e ., R0 and R1 , the others 

being h igher t han first order in R(w,w ,a+E) 
0 

Equation (2D-16), 

however, would hold even if the slab were not tenuous but, in that 
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case, the f'unction R to be used in ( 2n~16) would be much more dif-

ficult to obtain, as we would no l o.nger be justified in dropping the 

nonlinear t erm in (2D-2c). In such cases and in cases where more 

accuracy is required, one would have to solve equations (2D- l) (or 

some more appropriate approximat i on thereto ) for the specific cases of 

interest and this solution would probably be best done numerically 

using a computer. One might consider improving the accuracy analyti-

cally by using a p erturb ation approach to including the nonlinear term 

and in t h i s regard we remark that, since each iteration woul d doubl e 

the spectral width of the solution , the solution t o be substituted 

into equation (2D- 16) would not ordinarily be bandlimited. 

Not e , a lso, that consist ent wi th our quasistatic approach to the 

problem, we could h ave left R in its time-va rying f or m and left the 

r 's and t 's untransformed. However, the method presented is more 
0 0 

generally applicabl e . That is, given that R h as s omeh ow been 

obtained to better than full quasistatic accuracy , ( 2D-16) would main-

tain this accuracy: provided a c ondition like ( 2D-13) were satisfi ed . 

E. Comments on Brillouin Scatt ering 

Cons ider an idealized situation where a slab of fluid has in it 

a plane standi ng acoust i c wave with vari ation in the ± z direction, and 

where t he surrounding s pace is filled with the same fluid having the 

equilibrium density of the fluid in the slab [10]. A plane electr omag-

netic wave is normally incident on the slab and we wish to study the 

properties o f the refl ected electromagnetic wave. This situation is 

depicted in F i gure 7 . We assume that the acoustic wave is switched on 
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at t = 0 . so that the initial reflection is zero. The data necessary 

for solution of the equation for the reflection function are 

n = 1 + ap = 1 + ap [l - a sin k z sin w t] 
0 s s 

13 = a(l - cos k z) cos wt (2E-l) 
s s 

where c = the speed of sound = w /k s s s 

w = frequency of the sound 
s 

k = magnitude of the acoustic wave vector 
s 

Po = equilibrium density of the fluid 

a = amplitude of the sound wave 

Substituting these expressions into the variable transformation (2D-10 ), 

we find that it is badly multivalued. The slab must thereforebe divided 

into subslabs over which the transformation is one to one; i .e., subslabs 

having thickness equal to half the wavelength of the acoustic wave. 

The expressions (2E-l) are substituted into (2D-9 ) within each. sub slab 

making use of the variable transformation (2D-10) to express the 

result in terms of w . The result would be a sum of N terms, each 

being a function of time and frequency where N is the number of sub-

slabs. 

The bandwidth of the reflection is easily obtained from (2D- 9) 

and (2D-10). For a sub slab we find that to first order in a 

(2E-2) 



n = n 
0 

s = 0 

2mS ( w-w ) 
0 

~ 

R(t , w,w ,a) 
0 
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-t-z 
Figure 7. 
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a 
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z l 

~ 
a subslab 

Brillouin scattering 

b 

n = n 
0 

s = 0 
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Thus the maximum overall bandwidth is 

6w = 4w a(l + ap ) 
0 0 

and the spectrum will b e centered at w 
0 

(2E-3) 

Another easily noted property of the solution R is that it 

is periodic in time with period e~ual to t hat of t he acoustic wave. 

It may, therefore, be expanded in a Fourier series in time. That is, 

R(t,w,w ,a) = 
0 

Applying (2D-12) yields 

R(w,w ,a) 
0 

= 

n=-oo 
R (w,w ) e 

n o 

-inw t 
s 

R (w - nw ,w ) 
n s o n=-oo 

(2E-4) 

(2E-5) 

The usual Brillouin scattering result is obtained from this by neglect-

ing all but the terms corresponding to n=l and n=-1 and letting 

R (w,w ) ~ o(w- w ) . 
n o o 

F. An Alternative Formulat i on 

The invariant imbedding formulation presented previously depends 

for its relative simplicity upon the translat i onal form i nvariance of 

the basic wave functions used, i.e., a plane wave translated in space 

still looks like a plane wave. Spherical waves do not have this invari-

ance . This indicates that it would be of some advantage to develop a 

formulation of the plane problem which does not depend on this invariance 

in anticipation of extension of the theory to spherical s catterers. It 

is this alternative formulation which will be developed b el ow. 
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Figure 8 depicts a plane interface between two homogeneous 

dielectrics of indices n 
a 

and A monochromatic, linearly 

polarized, plane electromagnetic wave of frequency w 
0 

is assumed to 

be normally incident on the interface as shown. We wish to determine 

the reflected and transmitted waves . To calculate the reflection and 

transmission properties of this interface one would ordinarily assume 

solutions of the following form : 

n w 
. a o( ) -iw t + i-- z-z 

c 0 0 
EI = e E e e 

Incident 
x 0 

Wave 
n w 

A ff! i 
~(z-z ) -iw t + 

e E ~ e c 0 0 
HI = e 

Y o llo 

n w 

+ A -i ~(z-z ) -iw t 
c 0 0 

ER = e E R e e x 0 

Reflected n w 
Wave ~ -i 

~(z-z ) -iw t + A a c 0 0 

~ = -e E R - e e 
Y o llo 

~w 

+ i --
0

(z-z ) -iw t 
c 0 0 

ET = e E T e e 
Transmitted 

x 0 

Wave ~w 

A~ i --
0 (z-z ) -iw t 

HT 
c 0 0 = eET - e e 

Y o llo 

Requiring continuity of tangential E and H at 

familiar result 

n -~ 
R 

a = n + ~ a 

2n 
T a = 

na + ~ 

z 1[ z 
0 

z ~ z 
0 

z ~ z 
0 

(2F- la) 

( 2F- lb) 

(2F-lc) 

z = z yields the 
0 

(2F- 2a) 

(2F-2b) 



n = n 
a 

µ = µ 
2 

E: = E: = n 
a a 

INCIDENT WAVE 

REFLECTED WAVE 

Lz 
0 
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z=z 
0 

n = I\ 
µ = µo 

2 
E: = Eb = nb 

TRANSMITTED WAVE 

Figure 8. Scatte ring from a plane dielectri c interface 
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Suppose n ow that we assume , rather than (2F~l), solutions of the f or m 

n w 
i 

a o 
-iw t -+ z 

EI e E 
c 0 = e e 

Incident 
x 0 z ~ (2F-3a) z 

Wave 
n w 0 

A ~ i 
a o 

-iw t -+ z 
HI e E ~ e c 0 = e 

y 0 110 

n w 
-i 

a o -iw t -+ --z 

ER e E R e c 0 = e 
Reflected 

x 0 

Wave n w z ~ z (2F-3b) 

A ~ - i 
a o 

-iw t 0 
-+ z 

- e E R ...__.'.: e c 0 
HR = e 

y 0 110 

i 
nbwo 

- iw t -+ z 
c 0 

ET = e E T e e 
Transmitted x 0 z ~ (2F-3c) z 

Wave ~WO 0 

A !? i - iw t -+ c 0 
HT = e E T - e e 

y 0 . 110 

that is, solutions whose phase is zero at the origin of coordinates . 

Requiring continuity of tangential E and H at 

the, perhaps not so familiar, r esult 

· n w 
i a o z 

n -~ c 0 
( a e 

R = ~) n · + n w 
a 

-i 
a o z 

c 0 
e 

i 
nawo 

z 
2n c 0 

T (n 
a ) e 

= 
+ ~ ~WO a i --z 

c 0 
e 

z = z now yields 
0 

(2F-4a) 

( 2F-4b) 

This, of c ourse, contains t he same information as (2F- 2) , but here we 



-39-

have taken the origin of coordinates as a reference for phase rather 

than z = z as is usually done . 
0 

Figure 9 shows a plane interface normal to the z direction. 

The material to the left of the interface is homogeneous dielectric, 

having index n and moving to the right with velocity 
a 

B(z ) . 
0 

The 

medium to the right of the interface is homogeneous and has index ~ 

but it moves to the right with velocity B(z) , a function of z . The 

interface itself moves to the right .with velocity B(z ) 
0 

Again, a 

monochromatic, linearly polarized, plane electromagnet ic wave is 

assumed to be normally incident from the left and we wish to determine 

the transmitted and reflected waves. Let us calculate the reflection 

and transmission properties of this interface in the laboratory frame, 

taking the origin of laboratory coordinates as a reference for phase 

and using the effective index (2B-l); that is 

n + B( z ) 
+ a 0 

neff = 
a 1 + n B(z ) a o 

for the incident wave 

+ ~ + B(z) 
n = 
effb 1 + ~!3( z) 

for the transmitted wave 

n - B( z ) a 0 

neff = 
a 1 - n B( z ) .a o 

for the reflected wave 

Assuming solutions of the form (2B-2) on both sides of the boundary and 

matching at the moving boundary* the reflected and transmitted waves 

* As far as the magnitudes are concerned, this is most easily done in 
the frame of the boundary. The phases may be handled directly i n 
the laboratory frame. 
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n 

i 
e 

-i 
Re 

± 
= eff 

a 

+ 
eff w 0 

a 
c 

c 

n = n 
a 

s = so = 

n ±. s 
a 

1 ± n s 

z 
e 

a 

- iw t 

z 

0 

- iw t 
R 

e 

S(z ) 
0 
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z 
0 

Te 

n = nb 

s = S(z) for z ~ z + 
0 

s = s for z ~ z + 
0 0 

so 
+ °b + s 

n = 
effb 1 + nbS 

+ n w z effb T 
i I dz 

c 
0 - iw t 

T e 

Figure 9. Scattering at a moving plane interface 

s t 
0 

s t 
0 



expressed in the time domain are seen to be 

.... i 
Re 

n . WR . . eff . 
a 

~~~~z 

c 

( 1 - naSo wa -"b) 
1 + n f3 n +~ a o a 

+ 
z n w 

i 
effb T 

dz 

+ 
neff w 

0 

i a (z + 8 t) 
c 0 0 

e 

n;ff w 
-i 

a R 
(z + S t) 

c 0 0 
e 

J c 
-iW t 

T 
Te 

0 
e = 

+ 
neff w 

0 

i 
a 

( z +S t) 
c 0 0 2n 

a ) e 
( z +S t) + 

+ 

e 
- i 

(l+ n S )( 

1 + ~s: na ~ J o o n Wir 
i ( effb )dz 

c 
0 

e 

where S = B(z ) 
0 0 

neff w 
R a 

-iWat z 
c 

e 

(2F- 5a) 

z + 

f 
neffbwT 

i 
dz 

c 
0 

-iw t e e 0 

(2F-5b) 

The factors of (1 ±. nB ) arise because the fields must be made continu
o 

ous across the index discontinuity in the frame of the discontinuity 

while we have calculated R and T in the laboratory frame [ 8 ] . Now 

transforming to the frequency domain gives 
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e 

+ . 
neff wo 

i -~~a- z 

-i 

i 

c 0 

---- z 
c 

c z 
0 

0 

l+ n 8 2n 
= ( a 0)( a ) _e _____ ~ o( ) 

1 + ~80 na + ~· z 2TI W-WT 

1 - n 8 

(1 
a o) 

~ = + n 8 a o 

1 + ~80 
WT = (1 + n 8 ) 

a · o 

e 

w 
0 

w 
0 

i 
c f°n+ff 

o e b 

(2F-6a) 

(2F-6b) 

The scheme for application of the invariant i mbedding concept to 

the slab of Figure 3, using the above technique, is shown in Figure 10 . 

It is assumed that the reflection function for that portion of the s l ab 

to the right of z+Lz is known. A thin layer of fluid having index 

n(t,z+ z) and having a c onstant velocity gradient throughout its thick-

ness is annexed at z+ z. The material to the left of the added layer 

is homogeneous and has zero velocity gradient throughout . A monochroma-

tic, linearly polarized, plane electromagnetic wave of frequency w
1 

is 

normally incident on the composite slab from the left and we must cal-

culate the spectrum function of the reflected wave. The frequency 

variable in the spectra given by the R's in Figure 10 is w
2 

, these 

R's being the results of multiple reflections--similar to those 



n = n (t , z) = const . 

S - S(t , z) = const . 

2mS(w2- wl )e 

.neffwl 
]. 

• 
• • 

c 
z 

z 
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n = n(t , z+t.z) = const . 

s '\, z 

S(z) 

• • • z+t.z 

Figure lO . Scheme for laboratory frame derivati on of the 

invariant i mbedding equation for the reflecti on 

funct ion 
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described in connection with Figure 4. Evaluating the three signif'icant 

reflections using (2F- 6) and summing them as before, we obtain the 

invariant imbedding equation for the reflection function expressed in 

the laboratory frame with a fixed phase reference, i.e., z = 0 . The 

r esult to f'i r st order in S is 

aR an aR + an aR a; - w2S az aw
2 

wlS az awl 

.L an { (l - nS) w2 
= cS ( l - nS 2n az l + nS 

00 

- <i + ~~) J R(t ,w,wlz) e 

where w 

- 00 

= - (l + nS) 
w l nS 

n w2 
wl 2i ( l - nS) z 

c 
l + nS) e 

(2F-7) 

This equation may be compared with (2C- 7) by means of the variable 

transformat i on 

i( - w + w ) n z c out in 
e RC ( t , w t , w . , z ) 

OU l n 

(2F- 8) 

where RC is the solution to ( 2C- 7), RF is the solution to (2F- 7) 

and 
w2 

w = out l - nS 

wl 
w. = in l + nS 
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It is this formulation which wi ll be used in studying properties of the 

scattering resulting when a plane wave is incident on a spherically 

symmetric scatterer . 
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3. EXPAJIIDING SPHERES 

The techniques deve loped and the experience gained in dealing 

with the slab case are now appl ied in an approximate quasistatic· 

analysis of the character of the scattering which results when a plane 

electromagnetic wave is incident on an expanding dielectric sphere. 

The plane wave may be written as an infinite sum of spherical waves so 

the following analysis will concentrate on the scattering of spherical 

waves. The results are then superposed appropriately to obtain the 

plane wave scattering . First, a preliminary problem will be considered. 

Then using the time varying spectrum concept introduced in Section 2, 

Part C, and assuming a radially stratified sphere, we proceed with the 

derivation of the form of the invariant imbedding equations. This form 

is then used to ascertain information regarding the character of the 

scattered wave . In particular, we study the differences and similari

ties in the solutions to this problem and that t reated by Lam [11], 

i :. e .• , scattering from an expanding conducting sphere . 

A. Eigenfunctions in a Uniform Expanding Sphere 

In order to determine the modal reflection functions for an 

expanding sphere we must firs t find the eigenfunctions in a uniform 

radially and spherically symmetrically expanding medium, i.e ., the 

eigenfunctions corresponding to the spherical Hankel functions of 

argument kr used in the static case. Since we have assumed complete 

spherical symmetry, the eigenfunctions will be associated with the 

same angular dependence as were the corresponding Hankel functions, 

i.e., the spherical harmonics Ylm . Viewed in the laboratory frame 
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(the frame of t he center of expansion) the constitutive relations to 

first order in the veloc ity of the mediUJn are 

D = E:E + L (n
2- l)(v x H) 

2 
c 

B = µ
0
H - 1

2 
(n

2- l){v x E) 
c 

The relevant Maxwell's equations are 

V x H = -iwD 

V x E = iwB 

(3A-la) 

(3A-lb) 

(3A-2a) 

(3A-2b) 

the divergence equations being satisfied automatically, since the 

region is source free. Substitution of (3A-l) and (3A-2a) into 

(3A-2b) leads to 

V x V x E - k2E = - iw (n2- 1) [v x (V x E) + V x {v x E)] 
2 

c 

Use of the vector identities 

V x V x A = V(V • A) - V2A 

V x (A x B) = A(V • B) - B(V • A) + (B • V)A - (A • V)B 

V(A • B) =(A• 'V)B + ( B • 'V)A+A x ('V x B)+ B x('V x A) 

and equations (3A-l) yield 

where 

V2E + k2E = -ik (n2- 1) [ 2 (v •V)E - (V • v) E] 

v = Sc e r 

(3A-3) 

(3A-4a) 

(3A-4b) 

(3A-4c) 

(3A-5) 
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We now assume that the radial dependence of each component of the 

solution of this equation is of the form 

where 

r 

E i = 1)J i [ f k e ff dr J 
0 

= 0 

(3A-6) 

(3A-6) is substituted into (3A-5) resulting in a differential equation 

for keff , i.e., 

dkeff 
dr 

1)J i [ 2 2 2ik 2 \I • v J . 2 = "1£ keff - k - ~c~(n - 1) 2jvj -2ik keff (n - 1) 
(3A-7) 

We assume that the solution of this equation is of the form 

where (3A-8) 

Substituting (3A- 8) into (3A- 7) gives 

This is a first order linear differential equation and may be solved 

to yield (to first order in 8) 

r 1)J r "'i 2kf 1/Jl dr -2kf ~~ r 

"'i] 
\ii' dr 

f 
i 

0 2 [ \I • v 0 

keff = k 1 -e 2ik8(n -1) l+ 2kjvj "1£ e 
0 (3A-10) 

I 

The desired eigenfunctions to first order in 8 are then, merely 
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r 
spherical Hankel functions of argument J keff dr . (It may be .shown 

0 

that H satisfies (3A-3) also .) 

B. The Invariant Imbedding Formulation for an Expanding Sphere 

The geometry of the sphere problem is shown in Figure 11, where 

it has been assumed that a spherical E type wave is incident on an 

inhomogeneous dielectric sphere having index n(t,r) and radially 

expanding with velocity B(t,r). The time dependence is again assumed 

to be slow; see conditions ( 2C-l). The invariant i mbedding formulation 

of the problem consists of assuming that the reflection from that por-

tion of the sphere inside of a given radius is known, and of calculat-

ing the change in the reflection due to addition of a thin shell of 

fluid at this r adius. This results in a difference equation which, in 

the limit of vanishing added shell thickness, becomes a differentia l 

equation for the reflection function. The resulting equation is to be 

integrated from the center of the sphere where the reflection is known 

to the surface where it is to be found. This formulation is similar to 

one carried out by Latharn5 for a static inhomogeneous dielectric sphere 

but here, of course, the effect of radial expansion is taken into 

account. 

Preliminary to finding the form of the differential equation, 

expressions analogous to (2F-5) must be found; that is, we must deter-

mine the reflection and transmission properties of a radially moving 

spherical interface between two radially moving dielectric media. We 

first define the spherical multipole fields as follows. The spherical 

components of an electric type multipole fi eld of degree t and order 
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R__ ( t ,w-w ) 
-~im 0 

Figure 11. Geometry of the general sphere 

2mSE ( w-w ) 
im 0 

(t,w-w ) 
im 

0 

2mSE ( w-w ) 
im 0 
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m are (after Papas [ l2]) 

(Eim)r = !i_hl) h (kr) YQ.m r i (3B-la) 

(Eim) 8 
l d 

hi(kr)] 
Cl = -- [r ae Yim r dr ( 3B-lb ) 

(Eim)0 . 
im d 

[r hi(kr)] Yim = r sin 8 dr (3B-lc) 

(Hi ) 0 (3B-ld) m r 

(Him\~ mwe: ( ) (3B-le ) = . g hi kr Yi sin m 

(Hi m)0 iwe: hi(kr) 
Cl (3B-lf) = (lg Yim 

Similarly the spherical components of a magnetic multipole f i eld of 

degree i and order m are (again after Papas [l2]) 

(Hi ) = i(i;l) hi(kr) YQ.m m r (3B-2a) 

(Him)8 
l d 

hi (kr)] 
Cl = -- [r ag YQ.m r dr (3B-2b) 

(H.£m) 0 
im d = 8 dr [r hi(kr)] YQ.m r sin (3B- 2c) 

(EQ.m)r = 0 (3B-2d) 

(Eim) 8 
mwµo 

hi(kr) Yim - - sin 8 (3B-2e) 

(E£m) Qj iwµ
0 

hi(kr) 
Cl - - ae- y£m (3B-2f) 
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The corresponding multipole fields :in a region of spherically expand-

ing fluid are obtained by substituting 
r 

J keff dr 
0 

for kr in the 

* arguments of these expressions . The spherical harmonics Y£m remain 

as they were. 

Now consider an E type wave of degree £ (for example) to be 

incident from without on a spherical boundary at r which is movi ng 
0 

outward with velocity S
0 

The medium inside the boundary has index 

n and moves radially with velocity S(r) . The medium outside the 
a 

boundary is homogeneous and has index ~ . It moves radially with 

velocity 8
0 

= S(r
0

) • (See Figure 12). If ~ij) [n~~~,w,r ] is defined 

to be l i_ [x h (j)(x)J \ _ rJ dr ' then the desired expressions, 
x dx £ x - keff 

0 

i. e ., those which correspond to (2F-5) , are of the form 

R = P(r ) 
0 

(2) (2) 
~o [n ff ,w ,r + 

N e b 0 0 

(1) (1) 
~n [n ff ,w ,r + 

N e b r o 

Sc6t] 

Sc6t ] 
( 3B- 3a) 

(3B-3b) 

where the superscri pt on neff indicates whether it is to be calculated 

for incoming or outgoing waves ((2) for incomi ng; ( 1 ) for outgoing) 

and neff = ckeff/w . We now proceed to determine the frequency of 

oscillation of R and T ; that is, we determine the frequencies of 

the reflected and transmitted waves . The phases of the P and Q 

functions in (3B-3) vary slowly with r and , therefore, the P and 

* These corresponding expressions must first be written in terms of k 
and kr only (rather than r and kr) . 
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n = nb 

(3 = (3 = f3(r ) 
0 0 

Figure l2 . Scattering at a moving spherical interface 



Q functions will not substantially affect the following (see Appendix 

D). Expressions (3B-3) may be rewritten as 

(l) (l) -iw0 Lit 
R~1 [n ff ,w ,r] e = 

e b r 

(2) (2) 
~1 [n ff ,w ,r ] 

e b o o 
p ( r o) -( 1-)--( l_) ____ e 

~1 [n ff ,w ,r ] 

x 

x 

e 

. e b r o 

(2) ( 2) 
~1 [n ff ,w ,r] a e b o 

i Im ar in (l) (l) 
~1 [n ff ,w ,r] 

e b r 

(1) (1) -iw
0
6t 

~1 [n ff ,w ,r] e 
e b r 

= 

r=r 
0 

S clit 
0 

(2) (2) 

d 
Re ar 1n 

~1 [ n ff ,w ,r] 
e b o 

x e 

x 

e 

(2) (2) 
~1 [n ff ,w ,r] a e b o 

i Im ar 1n (2 ) (2 ) 
~1 [neff ,wt,r] 

a r=r 
0 

S clit . 
0 

So lit 

r=r 
0 

r=r 
0 

(3B-4a) 

S clit 
0 

(3B-4b) 
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However, we know that the form of R and T must be 

(l) (l) -iwrlit 
R = ( • · · ) l/J £ [ n -Pf , w , r] e 

e ... b r 

( 2) (2) 
T = (···) ¢£ [neff ,wt,r ] 

a 

(3B-5a) 

(3B-5b) 

Equating the imaginary part of the exponents in the corresponding 

expressions in (3B-4) and (3B-5) yields the following equations for the 

transmitted and reflected frequencies. 

d { (1) (1) } w - 8 c Im a-- £n 1jJ [n ff ,w ,r ] 
r o r e b r r=r 

0 

(3B-6a) 

(3B-6b) 

Solving these equations to first order in 8
0 

we obtain 

(2) 
d ¢£ [n ,w ,r] 

{£n 
a o } w = w 8 elm a (1) r 0 o r 

ijJt [ ~,wo,r] r=r 

(3B-7a) 

0 

(2) 
d ¢£ [I\,w ,r] 

wt = w - 8 c Im - { £n ( 2) o } 
0 0 3r 

¢£ [n ,w ,r] a o r=r 

(3B-7b) 

0 

These are the frequencies of the waves reflected from and transmitted 
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through the moving boundary of Figure l2. In the invariant imbedding 

formulation of the sphere problem there arises a situation where 

n = n(r- l.r) 
a 

w r 

wt 

and 

= w 
0 

= w 
0 

~ .= n(r) . Under these circumstances 

a 
1jJ ( 2) 

- 8 c Im- {Q,n ~l) } 
0 ar 

1jJ Q, 

( 2) I 

+ w 8 an Im L {r 
ljJ Q, 

} t.r 
iµ< 2) 0 0 ar ar 

Q, 

where 
( 2) I 

ijJQ, = 
l d ( 2 ) I ( Illllr ) r ar r h,Q, c 

(3B-8a) 

(3B- 8b) 

and the prime indicates differentiation of the Hankel function with 

respect to its argument. 

We now have sufficient information to obtain the differential 

operator and the form of the invariant imbedding equation . In analogy 

with (2F- 7), using (3B-8), we obtain (to first order in S) 

where 

( ) nw r 
1jJ 2 (- 0-) 

Q, c 
,1,(1) nw r 
'l'Q, (- 0-) 

c 

(3B- 9) 
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1jJ(j) 1 d [r h~j)(kr)] for an E = ;:- <3r wave £ 

11>( j) 
£ = h(j)(kr) 

£ . 
for an H wave 

This equation is to be integrated from the center of the sphere where 

Ri(t,w
2

,w
1

,o) = 2Tio(w
2

- w
1

) out to the surface of the sphere where R£ 

is to be found*. Since the initial value of R£ is of order unity 

(a unit delta function) we are not justified in dropping the nonlinear 

term in (3B- 9) even if the sphere is very tenuous. However , the equa-

tion may be linearized as follows. First, we write the nonlinear term 

in more explicit form : 

CX> 

(3B-10) 

where 

11>(1) (nwr) 
o I d on £ c w = w - µC m <3r N 

We then rewrite this t erm in the form 

CX> 

(3B- ll) 

where the quantity in square brackets is small (of order A) . Writing 

* Actually, the integration may be started at any radius at which R 
is known . 
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this term to first order in A, then, results in 

( ) nw r 
1jJ l (-0-) 

SI, c 

( ) nw r 
1jJ 2 (-9-) 

SI, c 

} (3B-l2) 

Equation (3B-9) may now be written in the following l inearized form 

(for a tenuous scatterer). 

( 2)' nwor 
iJ.151, (-c-) } ClRSI, 

( ) nw r awl 
1jJ 2 (-0-) 

SI, c 

( nw r 

d 
1jJ 2)(_o_) } =A 0 {w - w

1
+ Sc Sl,n SI, c 

Im -
1 2 Clr nw r 

ij.1(2) (-0-) 
SI, c 

+ A20 {w2- w1+ Be d 
ijJ( l) (nw0r) 

}+BR£ 
Sl,n SI, c 

(3B-l3) Im --Clr nw r 
ij.1( 2 ) (-0-) 

SI, c 
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c. Salient Features of the Solution 

In view of the fact that the continuous part of the spectrum of 

the reflected wave will be extremely complicated due to overlap of the 

' various contributions from multiple reflections and due to the compli-

cated nature of the eigenfunctions, and in view of the fact that there 

is no convenient way to sum the continuous spectrum contributions from 

the various spherical harmonics in the incident plane wave , we submit 

that the most informative features of the reflection are the delta 

function components. That is , it is these discrete components which 

give the most easily discernable information about the scatterer. Let 

us, then, study the properties of some of these components and the 

dependence of the properties on the character of the scatterer. To 

make this dependence evident we handle (3B- 13) by the method of 

characteristics . This results in the following set of four ordinary 

differential equations : 

dr 
1 - = 

ds 

dw
2 an a Im = - woS ar ds ar 

-- = 
ds 

-w s an Im L 
0 ar ar 

(l), nw r 

1 {r ljJ (_O_) 
£ c 

( ) nw r 
ljJ 1 ( - 0- ) 

£ c 

{

r ljli2) I(~)} 
( ) nw r 

ljJ 2 (-0-) 
£ c 

(3C- la) 

(3C-lb) 

(3C-lc) 
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dR - = A cS 
ds 1 

(3C- ld) 

Equation (3C-la) indicates that we may take s equal to r . We thus 

r educe the problem to solution of the following three ordinary differ-

ential equations: 

dR 
-= 
dr 

where 

t, ( 2 ) 

Be Ini L ar 

(2)' nwor 
1jJSI, (-c-) ] 

( ) nw r 
1jJ 2 (-0-) 

SI, c 

[ rijJil) ' (~) ] 
( ) nw r 

1jJ 1 (-0- ) 
SI, c 

nw r 

[ 

1jJ(2)(_o )] 
£n SI, c 

( ) nw r 
1jJ 1 (-0-) 

SI, c 

(3C-2a) 

(3C-2b) 

(3C-2c) 
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nw r 

l 1/J(l )(_o ) J a i c 
62 = Sc Im -;:;----- 9-n 

or ( 2 ) nw r 
1fJ (- 0- ) 

. 9, c 

Equations (3C- 2a) and (3C- 2b) are now integrated to yield 

r 

w2 = w
2

(o ) - w 
J 

6 ( 2 ) dr 
0 

( 3C- 3) 

0 

r 

wl = w1 (o ) + w J 
6(l) dr 

0 
(3C-4) 

0 

where w1 (o) and w2 (o) correspond to r = 0 on t he characteristic . 

Sub st i t uting ( 3C-3) and (3C- 4) i nto (3C- 2c) gives 

0 

+ A
2

0 { w
2

(o ) - w
1 

(0) - w
0 
f (l ( 2 )+ l ( l ) )dr + l

2
} + BR

1 
0 

or simpl y , 

d.R 

--ax-= Al ol + A2o2 + BR9, 

(3C- 5) 

(3C- 6) 

The s olut ion of (3C- 6) evaluat ed at the surf ace of t he sphere (r=r ) i s 
s 

r 
s 

+ J (A101 + A202) 
0 

r r 

-f Bdr ~ f 
e 

0 

dJe
0 

Bdr 

(3C- 7) 



-62-

Solving (3C- 3) and (3C-4) at r = r for w
1

(o) and w
2

(o) in terms s 

of wl' w
2

, and r we have 
s 

r 

w
2

(o ) = w + w r 6( 2 )dr (3C- 8a) 
0 

0 

r 

w
1

(o) = w w r 6(l)dr (3C-8b) 
0 0 

0 

Now the solution ·(3C-7) may be rewritten in the form 

rs 
r J B dr 

RQ, 2rro w - w + r (6( 2 )+ 6(l))dr 0 = w e 
0 0 

0 
rs r s 

A Al B dr A J B dr (3C- 9) 
Al(rl) rl A2(r2) "" r2 

+ 
A e + A 

e. 
J l (rl) 32(r2) 

where J
1 

and J
2 

are the appropriate Jacobians of the variable 

transformations defined by the corresponding delta functions in the 

int egrand of (3C- 7) and 

r 
s 

w - w+w f 
0 0 

and 

with 

and 

are such that 

j = 1,2 

LA 
0 - r. ~ r 

J s 

0 

This immediatel y determines the position and width of the spectrum of 

the reflected wave; that is 
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r 

s 

[ w - ( -1 ) j 6 . ( r ) ]( -1 ) j ~ ( -1 ) j w = ( -1 ) j w
0 

[ 1 - J ( 6 ( 1 ) + 6 ( 2 ) dr ] 
0 J s 

0 (3C-10) 

where, when j = 1, (3C-10) gives the contribution from o
1 

and when 

j = 2, it gives the contribution from o
2 

and S is assumed positive. 

The solution (3C-9) also contains a delta function at 

r 

WO= W
0 

[ l - ((6( 2 )+ 6(l» dr J 
0 

(3C-ll) 

Expressions (3C-10) and (3C- ll) give the salient features of the 

modal reflection spectrum represented by (3C-9). That is, they describe 

the important properties of the spherical wave reflected from a radi-

ally expanding sphere of nonconducting fluid containing no discontinui-

ties in index of refraction. The incident wave in this case is a 

monochromatic spherical wave of degree 1 and order m of either E or 

H type having frequency w 
0 

The reflected wave will be of the same 

type, the same degree, and the same order but will have a frequency 

svectrum of width given by (3C-10) and will have a discrete frequency 

component at w0 given by (3C-ll) . 

At this point t he possibility of a sharp discontinuity in n at 

the surface r = r has not been accounted for. This possibility may 
s 

be handled in a manner similar to that used in handling the discontinu-

ity in n at z = a in the slab of Figure 6. However, in the present 

formulation the boundary is moving and consequently associated with 

each transmission and reflection there will be a frequency shift given 

by (3B-\). This treatment will deal only with those reflections 
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corresponding to R 
0 

and the delta f unction component in the 

reflection corresponding to R
2 

i n Figure 6. In particular, we are 

interested in determining the frequencies of the delta functions and 

the spectral width and pos ition of the t erm corresponding t o R
1 

The frequency of the delta function corresponding to 

e asi ly seen to be (see (3B-7a)) 

R : 
0 

R 
0 

is 

(3C-12a) 

Using ( 3B-7b) with r eplaced by t/J( 1) 
Q, and (3C-ll) we find that 

the delta function in the spectrum corresponding to R
1 

is at 

- ·S(r )c 
s 

0 

{ 

t/Ji
2

)[n(r +E) , w , r]} 
x Q, s 0 

n tjJ~ 2 ) [n (r - E) , w r] 
)(, s 0 

r=r 
s 

~ 
(1) } a t/JQ, [ n(rs-E) , w

0
,r] 

Im a £n (l) 
r t/Jn [n(r +E),w , r] 

)(, s o r=r 
s 

(3C- 12b) 

Similarly, the frequency of the delta function in the spectrum corres-

ponding to R
2 

is 
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R
2

' "'~ = w
0 

[ 1- 2 Js (6(
2

)+ 6(l))dr] 

0 

{ 

(2) } d ljJQ, [n( r s + E) ,w0 ,r) 
- S(r )c Im a- !Ln ( 2 ) 

s r lJJn [n(r -E) , w , r ] 
x, s 0 

{i (1) } d lJJQ, [n(r s -E) , W
0 

,r ] 
- S(rs)c Im ar !Ln ( 2 ) 

lJJ n [n(r - E) ,w ,r ] 
x, s o r=r 

s 

r=r 
s 

- S(r )c s 
(3C- 12c) 

The variou s frequency shift terms in (3C-12) are easily associated 

with physical phenomena and were , in fact, obtained by such associa-

tion. The shift in (3C-12a) is merely the Doppler shift due t o 

reflect ion from the moving boundary at r =r 
s 

The first term in 

(3C-12b) accounts f or the shift during propagation from t he surface at 

r=r to the center of the sphere and back out again . The second and 
s 

third terms in (3C-12b ) account for the shift in crossing the boundary 

at r=r on t he way in and on the way out, respectively . Similarly, 
s 

the first term of (3C- 12c) accounts for the shift during propagation 

from the surface in to the center, back out t o t h e surface , back in to 

the center, and back out to the surface again . The t hird term accounts 

for the shift on reflection from the inner side of the surface at r =r 
s 

and the second and fourth terms again account for the shifts on trans-

mission in through and out through the boundary at r=r 
s 
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These t erms take on somewhat more f amili ar f orms i n the far zone, 

i.e., 

R : 
0 

Rl: 

R2: 

large r 
s 

That is, 

WO ~ w [ l + 2n(r +E:) S(rs)] ( 3C- 13a) 
0 s 

r 

WO ~ w [1 - r (6 (2 )+ 6 (l) )dr] {1 - 2S(r )[n(r -s) - n(r +E:)]} 
0 s s s 

0 

(3C- 13b) 

r 

WO ~ w [1 - 2 r (6 ( 2 )+ 6(l))dr] {1 - 2S(r ) n(r -€) } 
0 s s 

0 

x {1 - 2S(r )[n(r -E:}- n(r t €) J} 
s s s (3C-13c) 

The spectral width and position of the ·spectrum corresponding to R
1 

is a l so easily found using (3C- 10 ) together with the appr opriate bound-

ary ef fect terms; that is 

< { (2) } . . a !JJQ, [n(r +€ ) ,w ,r] 
(- l)J WO- (-l)J 6j(rs)- S( rs)c I m ar 9,n (2) s 

0 

· IJJn [n(r - E:),w,r] )(, s 0 

- 8(r )c 
s { 

(1) } d !JJQ, [n(r
8

- t: ),w
0

,r ] 
Im a 9,n (l) 

r IJJn [n(r +t:) ,w ,r ] 
x, s o r=r 

s 

~ 
( 2) ]} a !JJQ, [n(r +€ ) ,w ,r 

6( 2 ))dr]· - 8(r
8

)c Im ar 9,n ( 2 ) s 
0 

IJJn [n( r - € ) ,w ,r] 
x, s o r =r 

9,n (l) (-1) 

r=r 
s 

s 

{ 

iJJil)[n(rs-E) , wo ,r]} . ) j 

!JJQ, [n(r +t:) ,w ,r] 
s 0 r=r (3C- 14) 

s 
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The spectrum of the reflection resulting from a typical inci-

dent spherical mode is shown in Figure 13. Assuming that the surface 

r=r 
s 

is moving outward, the delta function corresponding to R 
0 

is 

shifted up in frequency, the one corresponding to R
2 

is shifted down, 

and the position of the one corresponding to R
1 

depends in a compli

cated way on the detailed variation of the velocity and index with 

radius. The bandwidth and position of the continuous part of the spec-

trum is given by· (3C-14) and this continuous part is seen to lie 

entirely between the delta functions corresponding to R 
0 

The overall modal spectrum is narrow, since its width is linear in 

S(r ) (to first order in 8). 
s 

This completes the study of the individual modes. We now pro-

ceed to study how these modal reflections combine to produce the 

reflection due to an incident plane wave. 

Consider a plane wave propagating in the positive z direction 

incident on a sphere in a spherical coordinate system having the z axis 

as its polar axis. Let the E field of the incident wave be in the x 

direction. We wish to expand thi s incident wave i nto spherical wav es 

of the form given by (3B-l) and (3B- 2) . Let 

a spherical E wave and let X(j) be the E 
irnH 

wave. j=l implies an outgoing wa ve and j=2 

The desired expansion is 

E e e 
ikz l A(l) x<1) + l A(2) = 

0 x 
~ 

~ £mE 
~ 
~ 

be the E field of 

field of a spherical H 

implies an incoming wav e . 

x(2) 
£mE 

+ l B(l) 
~ 

x(l) 
£mH + l B(2) X(2) 

£m £mH (3C-15) 
~ ~ 
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RR, 

w 
0 

Figure l 3 . A typical modal reflection spectrum 

w 
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where 

A(l) ±(i)t l4:rr 2£+1 c = A(2) = ( £ ( £+ i) ) 2W E o t,±l £ ,±1 
0 

B(l) (i)t fu 2£+1 1 = B(2) = ( £(£+l)) E t,±1 2µ w 0 £,±1 
0 0 

A = B = 0 for m :f ±l 

The total reflection function will then be 

E = I Ai!) [R£mE - 2rr o(w - w
0

)] xi~ 
£ 

m=±l 

+ I 
£ 

m=±l 

B( 2 ) [R
0
_u - 2TI o(w- w )) X(l) 

£m Mlill. 0 £mH (3C-l6) 

We are now faced with the task of summing these series which are 

very slowly convergent under ordinary circumstances. The technique to 

be applied is as follows. We first make a Watson transformation 

transforming the sum to a contour integral in the complex 1 plane [18). 

We then evaluate the integral approximately by the method of steepest 

descent [14) . This technique will be applied to the three discrete 

components in the solution of Figure 13 . It will be found that the 

three sums have a very satisfying physical interpretation. 

Consider first the sum of the terms having frequencies given by 

(3C-l2a) . This sum may be written in the form 



-+ 
E 

0 

+ l 
t 

m=±l 

x 

x 
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( 2£+l~)(slowly varying function) 
£(£+1 ) of r and £ 

r=r 
s 

1jJ~E2 En(r +€) ,w ,r +86t J -iw 6t ~N-,.-__ S ___ O __ S __ ~ x(l) e 0 

ijJ~El)[n(r +E),w ,r +S6t] £mE 
N S 0 S 

( 2£+1 )(slowly varying function) 
£(£+1) of r and £ 

r=r 
s 

1jJ~H2 )[n(r +E),w ,r +86t] - iw 6t 
_;_;N..::..:_ __ ~S __ ~O-~S ___ x(l) e 0 

ijJ~Hl)[n(r +E),w ,r +S6t] £mH 
N S 0 S 

(3C-17) 

The similarity of these series with those treated by Honl, Maue, and 

Westpfa~l [15] and by Lam [11] is now evident and, using their results, 

we may write the sum for large r 
s and very large r by inspection to 

within a multiplicativ e constant. That is, 

- iw l'lt 
-+ 
E 

0 

G 
eikr -2ikrssin 2 -v--e 

r 
e e 

0 
[(cos 0)eG+(sin 0)e

0
J 

(3C-1 8) 

and again we have an angle dependent frequency as did Lam . That is, 

(3C-18) may be written 

G 
-+ ikr -2ikr sin 

2 e s 
Eo "' --r - e 

-iw(G)l'lt ~ 
e [(cos ¢)eG+ (sin 0)e

0
J 

where 

1T - G ] w(G) = w [l + 2n(r +E) ~(r ) cos(-2~) 0 s s 

which is consistent with geometrical optics . 

(3C-l9) 
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Now consider the sum of the terms havi_ng frequencies given by 

(3C-12b). We note that these frequencies depend on £ in a rather 

complicated way due to the integral term in (3C-12b). This implies 

that the sum we seek will have an angle dependent frequency whose 

angular dependence is determined in an extremely complicated way by the 

detailed variation of n and B within the sphere. The theory is 

quite capable of determining this angular dependence; however , in this 

presentation we will make a simplifying assumption in order to demon-

strate the physical interpretation of' the sums without unnecessary 

complication. We assume that the sphere is homogeneous, which implies 

that the integral term in (3C-12b) is zero. We also assume , as we did 

in dealing with ( 3C-l 7) , that r 
s 

is large. We may now write (3C-12b) 

as follows: 

w0 = w {l + 2B(r )[n(r +s) - n(r - s)]} 
0 s s s (3C-20) 

This is independent of £ which implies that the sum R
1 

is zero. 

Had we not made the above assumption, the sum would have been first 

order in B(r ) 
s 

The other two sums with which we are dealing--

those corresponding to R 
0 

and R
2
--are zero order in 

therefore dominate the spectrum. 

13(r ) 
s 

and 

Finally, consider the sum of those terms with frequencies given 

by (3C-12c). Using our assumptions on n, 13, and 

w
0 

= w + 13 ( r ) c Im L 
s ar 

r 
s 

we may write 

(3C-21) 
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where 

w = w {l + 2S(r )[n(r +€)- n(r -€)]} 
0 s s s 

This is identical with (3C-12a) except for a change in the sign of the 

second term and the replacement of n(r +€) 
s 

with n(r -€} 
s 

and 

with w • In analogy with ( 3C-·19), then, the sum is 

ikr 2 .k . g 
A A 

w 
0 

e --e 
r 

i rssin -2 ( 
-iw G)~t[( e cos 0)e

9
+ (s in 0)e

0
J (3C-22) 

where 

w(e) = w[l - 2n(r -€) S(r ) cos(TI -2 e)] 
s s 

This corresponds to reflection from the inside of the surface of the 

sphere and agrees with geometrical optics: 

The physical interpretation of R 
0 

and the delta function 

contributions to R
1 

and R
2 

are shown in Figure 14. 
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a = n- G 
2 

Figure l4 . Physical inte rpre tation of discrete spectral 

components 
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4. CONCLUDING REMARKS 

Thi~ thesis presented a method of calculating the scattering 

which results when a plane electromagnetic wave falls on an expanding 

nonconducting obstacle. In particular, it dealt with scattering from 

expanding dielectric slabs and spheres. The problem was formulated by 

means of the invariant imbedding concept thus circumventing calcula

tion of the fi elds inside the scatte rer. 

In deal ing with the slab it was found that motion of the medium 

parallel to the direction of propagation of the wave is insufficient to 

cause a r e flect ion in that a n associated index gradient is necessary. 

This was found to be due to the fact that the wave impedance of a plane 

wave is invariant under Lorentz transformation parallel to the direction 

of propagation of the wave. The equations resulting from the invariant 

imbedding formulation of the problem were solve d approximately to obtain 

explicit formulas for the spectra of the refle cted waves. As an 

example, the width of the spectral lines produced in Brillouin scatter

ing was computed. It was found tha t the formulation which was most 

. convenient in the slab geometry was not easily extendable to the 

spherical geometry, so a second formulation of the slab probl em was 

presented--a formulation more suitable for use in the sphere problem. 

The invariant imbedding formulation was the n appl i ed to deter

mine some of the properties of the scattered wave resulting when a 

plane electromagnetic wave falls on an expanding spherical scatterer . 

It was found that the salient features of the scattered spectrum and 
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those features which give the most easily discernable information 

about the scatterer are the discrete components (delta functions). 

The frequenc ies of two of these components were calculated quasi

statically and to first order in the surface velocity for a large 

homogeneous expanding sphere, and it was shown that the frequencies 

have a physical interpretation which agrees with results from geo

metrical optics. 

It is expected that the techniques presented here will prove 

to be of value in analyzing the data obtained in radar studie.s of the 

ionosphere and disturbances in the atmosphere . The spherical analysis 

may be of particular value in studying the dynamics of explosions by 

radar as there the motion is primarily radial. The presentation has 

been aimed at calculating the scattering given the evolution of the 

scatterer; however, the results were presented in a manner that gives 

some understanding of the inverse problem. 
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APPENDIX A 

In this appendix the approximations i nvolved in the time vary-

ing spectrum concept are discussed further . 

In this treatment we are dealing with t wo essentially distinct 

time scales. The scale on which the fields oscillate, a scale largely 

determined by the frequency of the incident wave, and the scale on 

which the parameters of the scatterer vary , a scale independent of t h e 

frequency of the incident wave . Thus, it is reasonable to assume that 

the s olution will vary on two time scales and that it may be written i n 

the form 

f[r(t),s(t)] (A-1) 

If we wish to describe this solution as a time varying spectrum 

f'unction, we proceed as follows. First, expand f[r(t),s(t)] in a 

Taylor series about a fixed point t ; that is, 
0 

f[r(t),s(t)] = f[r(t ) s(t )] + {.£!. dr + .£!. ds}( t-t )+· •• 
0 ' 0 ar dt as dt 0 

(A-2) 

Now, assume tha t the function s(t) is associated with the parameter 

variation time scale and that it, therefore, varies much more slowly 

than does r(t). Derivatives of s(t) may then be neglected in 

favor of derivatives of r(t). That is, f may be written approxi-

mately as 
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f [r(t),s(t) J ~ f[r(t ) , s(t ) ] + :f ddtr (t - t) + · •• o o ar o 

= f[ r(t),s(t )] 
0 

Fourier transformation of (A- 3) results i n 

CX> 

f [r(t) , s(t ) ] e - iwt dt 
0 

(A-3 ) 

(A-4) 

which is a "time varying spectrum" . It has been stated that the condi-

t i on for validity of this concept is 

1 ~~ 1 « 1:1 
max max 

(A-5) 

Technically thi s is not ~uite correct because i t admits the cases 

where r (t) varies slowly everywhere but in a few isolated regions 

where it changes rapidly. (Since in our case r(t) is more or less 

uniformly oscillatory, the above situation does not ar ise.) To account 

for this we state that (A-5) must hold on every interval of time longer 

than a few cycles of input. signal--say five cycl es. 

By a property of Fourier transforms we find that 

CX> 

(A- 6) 

That is , 
CX> 

aF J 21_ ds - iwt 
dt as dt e 

at 0 
0 - CX> 

= 
CX> 

(A- 7) 
iwF 

f 
af dr - iwt ar dt e dt 

CX> 
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Since s(t) is slowly varying compared to r(t), the expression on 

the right side of (A- 7) is very small and we have 

l. dF I << F at w 
0 

(A-8) 

In this presentation the problem was sol ved for each fixed 

value of the parameters of the scatterer and each of the solutions 

thus obtained was cal led the solution at the time when the parameters 

of the scatterer took on the values used to obtain it (necessitating 

conditions (2C-lb)) . This is the fully quasistatic approach, a first 

approximation . The corresponding second approximation is known as the 

WKB approximation [14] and these two approximations are the first two 

terms of a series which could , in principle, be carried to any desired 

degree of accuracy [16]. The exact solution is that whi ch was called 

g( t) . 

Thus we see that (2C- la) , (2C- lb), and (2D-13) all have essen-

tially the same meaning. 
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APPENDIX B 

In this appendix equation (2C-7) is simplified somewhat by 

Fourier transformation. 

We note that the solution ( 2D-9) can be written as a function 

of w-w and we redefine R(t,w t'w. ,z) to be R(t,w t - w. ,z). 
0 OU in OU in 

Equation (2C-7) then becomes 

aR -+ az 
(w t+ w. ) n ~ aR 

OU in az awOUt 

- CO 

in as (w t+ w ) R + 2n ~ R 
C OU in az 

Fourier transformation with respect to wout yields 

aR 
az 

where 

A 

R( t ,y, z) 

as + [3n - -
az 

co 

2iw. 
in 

c 
as A 

n(l+yaz))R 

w -w . 
. ( out in) 

-i c y 
R(t,w t-w . ,z) e dw t OU in OU = ~n J 

-co 

(B-1) 

(B-2) 

This is the simplified invariant imbedding equation for the reflection 

function to first order in S • 
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We now apply this equation to the slab of Figure 3. Handling 

(B-2) by the method of characteristics and assuming that the slab under 

consideration is sufficiently tenuous to permit neglecting the nonlinear 

term, we obtain the following two ordinary differential equations : 

~ - - n(l + as) dz - y az 

dR 1 a as 2 iw · as A 

- n+[3n - - inn(l+y -az)]R 
dz - 2n az az c 

Solving (B-3a) yields 

z 

y( z ) 
= [- I 

b 

z 
I 
b 

ne 

z 
as d I -I n ~dz' 

n az> z dz +y(b)] e b Oz ' 

(B-3a) 

(B-3b) 

( B-4) 

where y(b) is the value of y corresponding to b on the charac-

teristic. Substituting (B- 4) into (B-3b) gives 

dR 1:__ an + {3 as 
2

iwin as A 

dz= 2n az n az - c n[l + y(z) az]} R (B-5) 

Equation (B-5) is a first order linear dif ferential equation which can 

be easily solved. The solution evaluated at the lef't boundary of the 

slab z = a is 
z a 

a -I Idz I I dz 
A 

J 
1 an a A b 

R(t,y,a) = -- e dz + R[t,y(b),b] e 
2n az 

(B-6) 

b 

wher e 



I - 3n ~ -az 

z 

2i:o n{l + 

z 

I n _as_ dz I 
. az ' 
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z 
~J n~ dz ' az 1 

as b 
y(b) ~ e 

b 
n e dz ~ f az e 

-Jz n ~dz '} az ' 
b 

b 

Solving (B- 4) at z = a for y(b) as a function of y and a yields 

y(b) 

z 
I as d , 

nazt z ] 
n ea dz 

Substituting in (B- 6) we obtain 

a 

I n~ az' 
b 

e 

dz I 

z as 
a 

R( t ,y,a) = f 
1 an -- e 

2n az 

z 

I 3 as d t - nazt z 
a 

2 i w -J 
o [ a - c- 1- e 

n - dz ' 
az ] Y 

e 

b 

z 
n ~dz ' 

z 
n ~dz' I -J z az' az' 

2i w I a 
d z 

a 
0 n e e / 

c a A 

e + R[t,y (b),b] 

We now make the following change of variable : 

2w 
0 

a 

J I dz 
b 

e 

Thi s necessitates d i vision of the slab into regions in which this 

(B-7) 

(B- 8) 

(B- 9) 

t rans f ormation i s one to one . For simpli c i ty in this d i scussion , l et us 

consider a slab in which the transformation is one to one over i t s 

ent ire thickness . Proceeding with the change of vari able and maki ng 
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use of the W funct ion defined in Figure 5, we obtain 

1 
R(t,y,a) = 27T 

00 

i(w+w ) z(w) 
0 J 

-1 an 

e 

z(w) as -J 2n-- dz' az' 
a 2n az 

2n ~ 
az z=z(w) 

z 

J n~ az' a 
n e dz _l(w-w )y 

x e 
c a c 0 [ e W w;w(b),w(a)]dw 

b as 
A -J 3n az;-

+ R[t,y(b),b] ea 
- l[w(b)-w ]y c 0 

x 

e 

b 
l[w(b) + w ] J n 
c 0 

a 
e 

z 
J n~ dz' 

az ' 
a 

e 

Comparison with therefinit i on of R in (B- 2) shows 

R(t,w-w , a ) 
0 

= 

. z(w) 
~(w+w ) J 

. C 0 

x e a 

-
1 an --27T 2n az 

z(w) 
-J 2n ~~ ' dz' 

a 
w as e 

0 2n az z=z (w) 

z 

I n~ dz' 
az' 

a 
n e 

b 
~ 

b 
J n -J az ' 

dz 

W(w;w(b) ,w(a) ] 

2n as d , 
az ' z 

+ R[t,( w-w(b))ea ,b] a e 

dz 

z 
n 2.§__ dz' 

b J az' 
l[ 2w(b )-w +w ] J 

a n e 
c 0 a x e 

dz 

(B-10) 
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which is identical (to first order in S) with (2D-9) except for 

discrepancies in the phase of the two t erms, discrepancies which 

are first order in S • These discrepancies represent the error 

in assuming that the solution depe ndsmly on the difference between 

the input and output freque ncies . 

Thus the condition under which this approach is applicable is 

that accuracy to first order in S in the phase of the solution be 

unnecessary . 
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APPENDIX C 

In this appendix the invariant imbedding equation for the 

transmission function of an expanding slab is derived. 

Figure 15 depicts the transmission problem. The laboratory 

frame here is associated with the right boundary of the slab rather 

than with the left boundary as in the derivation of the equation for 

the reflection function. It is assumed that the transmission through 

that portion of the slab to the left of s -~s is known in a Lorentz 

frame moving with the fluid at s-~s when in this frame the space to 

the right of s-~s is filled with a homogeneous stationary fluid of 

index n(T,s-~s) . A thin slab of fluid of index n(T,s-~s) having a 

constant velocity gradient throughout its thickness is added at s-~s 

and extends to s We must calculate the transmission function at s 

(i.e., the transmission through the composite slab) in a frame moving 

with the fluid at s under the assumption that in this frame the region 

to the right of s is homogeneously fil l ed with a stationary fluid of 

index n(T,s) . That is, for this calculation a Lorentz frame moving 

with the fluid at position z at time t (or correspondingly position 

s and time T in the comoving frame) will be used. Figure 16 shows 

the situation as seen in this comoving frame. Again, it is our inten

tion to take the limit as ~s approaches zero so again calculations 

will be done only to first order in ~s . 

A unit amplitude, linearly polarized, monochromatic, plane wave 

of frequency w 
0 

in the frame of the boundary at z = a is assumed to 
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a b 

Figure 15. Transmi ssion through the general slab 

T(t ,w,b) 

~ 

Fi xed Boundary 

[i. e . ,f3(t,b)=O ] 
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n = n(T,1;;) 

s = 0 

Fixed Boundary 

~T 
1 

TIME = T 

r; 
z 

• • 
• 

Figure 16. Configuration for derivation of the invariant 

imbedding equati on for the transmission function 
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be normally incident from the left on the composite slab of Figure 16. 

It is transmitted through the slab to the lef t of s-6s and when it 

appears at s-6s it fu described in the local comoving frame by the 

spectral density function T(t,w t's-6d . It is then transmitted 
OU 

through the added layer and across the boundary at s to become T
1 

Part of it is reflected by the b oundary at s , transmitted back 

through the added layer, reflected from the slab to the l eft of s-6s 

-+ 
(whose reflection function has been calculated to be R(T,w t'w. ,s-6s)), 

OU ln 

transmitted back through the added layer and across the boundary at 

to become T2 . Higher order T's are defined similarly. 

Equation (2B-4b) leads to 

w'n 
i -- 6s 

T
1 

= T(T,w ' ,s-6s)e c [ 2n(T,~-6s) ](l - n6S) (C-la) 
n(T,s) + n(T,s-6s) 

where 

Thus 

Tl 

(J) I = ( 1 + n6 S ) W t 
OU 

to first order in 

aT = T = [~ - nw 
out 

6s 

~ 
al; 

and 

we have 

aT T an 
iw outn 

T + n ~~ T] +-- 6s (C-lb) 
aw 

out 
2n as c 

Again the factors (l-n6S) and (l+n6SJ arise b ecause T1 and T are 

defined in different Lorentz frames. In a similar manner we obtain 

co 

1 an --
2n as 

(C-2) 
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+ .. 
In the above expression R(t,w t'w. ,s-&s) is the reflection function 

OU ln 

for that portion of the slab to the left of the plane s-6s for waves 

incident from the right and it is defined in a Lorentz frame comoving 

with the fluid at s-6s . Tj for j > 2 is of second or higher order 

in 6s and is therefore negligible in this calculation . Hence 

( C- 3) 

Substitution of (C-lb) and (C-2) into (C-3) yields 

dT as aT iw outn as 1 an a;: - w n- = [ - n a;: 2n az-J T out az aw 
out c 

00 

1 an f - R(t,w t,w,z) 
dw 

2n az T(t,w,z) 
OU 2TI (c-4) 

- 00 

where we have transformed as before from local comoving coordinates to 

laboratory frame coordinates. This is the invariant imbed.ding equation 

for the transmission function to first order in S • + 
Assuming that R 

is a known function, this equation is a first order linear partial dif-

ferential equation . It is to be integrated from the left boundary of 

the slab where the transmission is known to the right boundary where it 

is to be found. 
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APPENDIX D 

In this appendix the relevant properties of the functions P 

and Q in equations (3B-3) are discussed. 

First, we note that P and Q must reduce to the correspond-

ing expressions R
11 

and R
12 

given by van der Pol and Bremmer [17 ] 

when S + 0 . Hence, we may write to first order in 

P(r + Sc6t) (D-la) 

(D-lb) 

The second term in each of these expressions is time independent and 

so to study the time dependence of R and T in (3B-3) we need only 

study the time dependence of R
11 

and R
12 

with the argument r + Set • 

Now the van der Pol and Bremmer expressions involve only the logarithmic 

derivatives of the Hankel functions. These logarithmic derivatives 

vary much more slowly than do the Hankel functions themselves, except 

near the origin for small values of ~ • However, near the origin the 

~elocity is nearly zero so this does not pose a problem. The radial 

dependence of the logarithmic derivatives for v I r + Sc6t may be 

ascertained by making use of the asymptotic expressions for the Hankel 

functions [15] which are 

cos -1 !.) 

v < x 

j ~ 2 2 -1/4 v+Vv2-x2 
~ (-1) V TI (v - x ) exp v ~n x 

v > x 

x 

2 2 v - x 

TI 
4 

(D-2a) 

(D-2b) 



-90-

where v is a half integer. We find that 

1 x 
-[ 2 (x2-v2)5/4 

+ i(-l)j 
1---::2 yl - ~] 

-[1- - 1. x + 
x 2 ( 2 2)5/4 v - x 

r 

x + 
2 2 

v - x 

x 
v < x 

x 

v > x 

where x = J 
k(j) dr 
eff 

and For v < x (D-3a) varies 

(D-3a) 

slowly comp~red with (D-2a). For v > x both the logarithmic derivative 

and the Hankel function vary slowly (i.e., are not oscillatory) and hence 

neither will affect the Doppler .shift in our analysis. 
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