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Abstract

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue

problems on general two-dimensional domains under a variety of boundary conditions, includ-

ing non-smooth domains and certain “Zaremba” boundary conditions—for which Dirichlet

and Neumann conditions are specified on various portions of the domain boundary. The the-

oretical basis of the methods for the Zaremba problems on smooth domains concern detailed

information, which is put forth for the first time in this thesis, about the singularity structure

of solutions of the Laplace operator under boundary conditions of Zaremba type. The new

methods, which are based on use of Green functions and integral equations, incorporate a

number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm,

use of the Fourier Continuation method for regularization of all smooth-domain Zaremba

singularities, and newly derived quadrature rules which give rise to high-order convergence

even around singular points for the Zaremba problem. The resulting algorithms enjoy high-

order convergence, and they can tackle a variety of elliptic problems under general boundary

conditions, including, for example, eigenvalue problems, scattering problems, and, in partic-

ular, eigenfunction expansion for time-domain problems in non-separable physical domains

with mixed boundary conditions.
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Chapter 1

Introduction

1.1 Overview

This thesis concerns a variety of problems in PDE theory (Partial Differential Equations) and

computational science, with a focus on two closely related fields: electromagnetic scattering

and spectral theory. In a broad sense, the term scattering refers to any situation in which

a wave impinges on an obstacle and is thereby distorted, reflected, transmitted, or in some

other way scattered. Computational analyses of scattered fields can provide information

about the properties of an obstacle, can lead to improved designs for a wide variety of fields

of engineering, including antenna design, stealth, and communications, and they can provide

important insights into the phenomenology of scattering processes. Spectral theory, on the

other hand, underlies a vast range of phenomena in science and engineering, including, for

example, quantum mechanics, acoustics, and electromagnetism.

The contributions presented in this thesis include a tight characterization of the singular

structure of a range of elliptic problems under Zaremba boundary conditions as well as a

class of algorithms for the solution of scattering and eigenvalue problems on general domains

under a variety of boundary conditions. A special focus of this thesis relates to singularities of

solutions of elliptic problems at points at which either geometric singularities occur—such as

corners or edges of a PDE domain—and at certain “Zaremba points” at which the boundary

conditions change type from Dirichlet type to Neumann type. The theoretical basis of the

methods for the smooth-domain Zaremba problems rely on detailed information, which is
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put forth for the first time in this thesis, about the singularity structure of solutions of the

Laplace operator and associated integral-equation densities at and around Zaremba points.

The remainder of this chapter presents a historical perspective on theory and computa-

tion for the types of problems under consideration (Sections 1.2— 1.4) as well as an outline

of some salient points in the theoretical ideas and computational methods proposed in this

thesis (Section 1.5). Chapters 2 through 6 then present the main contents of this thesis: a

theoretical discussion and a class of efficient high-order solvers for highly-singular scatter-

ing and eigenvalue problems in two-dimensional space. In detail, Chapter 2 analyses the

singular character of PDE solutions and integral-equation densities for Zaremba problems

on smooth domains; it describes the novel Fourier Continuation method (FC) for accurate

Fourier expansion of non-periodic functions; it introduces an FC-based numerical algorithm

for regularization of all smooth-domain Zaremba singularities; and it presents novel quadra-

ture rules and an associated boundary-value solver which give rise to high-order convergence

even around smooth-domain Zaremba points. Chapter 3 introduces a more general (albeit

somewhat less efficient) boundary-value solver, which, based on use of graded meshes of the

type considered in [79, 108], is applicable to both smooth and Lipschitz domains and to the

various types of boundary conditions under consideration. Chapter 4 then presents a bound-

ary integral algorithms for the numerical solution of the Zaremba, Dirichlet and Neumann

eigenproblems, all of which include a certain regularization technique which gives rise to an

efficient eigenvalue search method, and Chapter 5 introduces corresponding solvers for the

Steklov eigenproblem for both smooth and Lipschitz domains. Chapter 6, finally, presents

conclusions along with a description of ongoing and suggested future work.
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1.2 Historical Review I: Zaremba boundary value prob-

lems

We consider the classical Helmholtz-Zaremba boundary value problem

∆u+K(x)u = 0 in Ω,

u = f on ΓD,

∂nu = g on ΓN ,

(1.1)

(K(x) > 0), where Ω is a 2-dimensional domain with boundary Γ consisting of two disjoint

portions ΓD and ΓN . Such problems were first considered in Zaremba’s 1910 contribu-

tion [130], which established existence and uniqueness of solution for the particular case

K(x) ≡ 0 (Laplace-Zaremba problem). The Zaremba problem arises in a number of impor-

tant areas, including elasticity theory (were it appears as a model in the contexts of contact

mechanics [122] and crack theory [42]); homogenization theory (as it applies to problems of

steady state diffusion through perforated membranes [42]), etc. One of the main motivations

for our consideration of this problem concerns computational electromagnetics: the Zaremba

problem serves as a valuable and virtually unavoidable stepping stone to the closely related

but more complex problem of electromagnetic propagation and scattering at and around

structures such as printed circuit-boards. (As in the Zaremba problem, where the boundary

conditions change type at the Dirichlet-Neumann boundary, the boundary conditions for the

Maxwell equations at and around circuit-boards change type—not from Dirichlet to Neu-

mann but from dielectric transmission conditions to a perfect-conductor condition—at the

edges of the perfectly conducting circuit elements.)

After the initial contribution by Zaremba, early works concerning the Zaremba boundary

value problem include contributions by Signorini [112] (1916: solution of the Zaremba prob-

lem in the upper half plane using complex variable methods); Giraud [51] (1934: existence

of solution of Zaremba problems for general elliptic operators); Fichera [44, 45] (1949, 1952:

regularity studies at Zaremba points, Zaremba-type problem for the elasticity equations in

two spatial dimensions); Magenes [94] (1955: proof of existence and uniqueness, single layer
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potential representation); Lorenzi [90] (1975: Sobolev regularity around a corner which is

also a Dirchlet-Neumann junction), and Wigley [125, 126] (1964, 1970: explicit asymptotic

expansions around Dirichlet-Neumann junctions), amongst others. More recent contribu-

tions in this area include reference [122], which provides a valuable review in addition to a

study of Zaremba singularities and computational approaches to the problem; reference [24],

which considers the Zaremba problem for the biharmonic equation; references [37, 38], which

study Zaremba boundary value problems for Helmholtz and Laplace-Beltrami equations; ref-

erence [26], which discusses the solvability of the Zaremba problem from the point of view of

pseudo-differential calculus and Sobolev regularity theory; reference [64] which introduces a

certain inverse preconditioning technique to reduce the number of linear algebra iterations

for the iterative numerical solution of this problem and which gives rise to high-order con-

vergence; and finally, reference [16], which successfully applies the method of difference po-

tentials to the variable-coefficient Zaremba problem, with convergence order approximately

equal to one.

Significant challenges arise in connection with Zaremba boundary value problems in view

of the singular character of its solutions: as first shown by Fichera [45], Zaremba solutions are

generally non-smooth even for infinitely differentiable boundary data f and g, and smooth-

ness of solutions can only be ensured provided f and g obey certain stringent relations which

generally are not satisfied in practice. As indicated above, Wigley [125, 126] provides a de-

tailed description of the singularity structure around Zaremba points. In Section 2.3 it is

shown, however, that a tighter result holds in the case the domain boundary is itself smooth.

Building upon these results, further, Section 2.5 introduces a numerical algorithm that reg-

ularizes all Zaremba singularities and yields convergence of high order. For general, possibly

non-smooth boundaries, in turn, a boundary-value solver, based on use of graded meshes of

the type considered in [79, 108], is presented in Section 3. This approach is highly robust and

accurate, and it can be applied to the various types of boundary conditions under consider-

ation for both smooth and Lipschitz domains—although when applied to smooth domains

this method is less efficient than the smooth-boundary algorithm mentioned above.
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1.3 Historical Review II: Laplace eigenvalue problems

of Zaremba, Dirichlet, and Neumann type

This thesis additionally considers Laplace eigenvalue problems of the form

−∆um = λmum, x ∈ Ω

um = 0, x ∈ ΓD

∂um
∂n

= 0, x ∈ ΓN .

(1.2)

The eigenvalues λm and eigenfunctions um are called Laplace-Dirichlet, Laplace-Neumann, or

Laplace-Zaremba depending on whether ΓN = ∅, ΓD = ∅ or both ΓD and ΓN are nonempty,

respectively. Equation (1.2) famously arises as a model for vibrating of membranes; in such

cases the eigenvalue λm corresponds to a principal frequency of vibration and the eigen-

functions um give the vibrational modes. Additionally, the Laplace-Dirichlet and Laplace-

Neumann eigenproblems provide important building blocks in models of electromagnetic

and acoustic wave propagation along waveguides. Laplace eigenfunctions under Zaremba

boundary conditions can be used to model diffusion in domains containing apertures [36].

For all the eigenproblems considered in this thesis, for which the underlying domains are of

Lipschitz type, the eigenvalues λm form a discrete set [50, Th. 8.37], but domains do exist

for which the Laplace-Neumann spectrum is continuous; see [113].

Spectral theory for the Laplace operator has a significant impact in science and engineer-

ing. Laplace eigenvalue problem for simple shapes were considered by Poisson [105]; the 1896

contribution [106] contains Rayleigh’s conjecture that the first Laplace-Dirichlet eigenvalue

is minimized by the spherical domain, a statement that was eventually proved independently

by Faber [41] and Krahn [78]. Weyl’s contributions [100, 123, 124] concerning the asymp-

totic distribution of the eigenvalues λm as m → ∞ initiated an active research area in the

field of spectral theory. A pivotal contribution [70] by Kac, “Can one hear the shape of the

drum”, epitomizes the important general area of inverse spectral problems. Laplace eigen-

value problems additionally impact on the fields of quantum chaos [8] and nuclear magnetic
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resonance [57].

Numerical approaches for the Laplace eigenvalue problems fall into three main categories.

The first class of approaches is based on use of Finite Element Methods (FEM); a useful

review in these regards is provided by Boffi [14]). Finite element approximations provide

several advantages, including generality, ease of implementation, and rigorous numerical

bounds [89]; a useful numerical package for these problems (Deal.II) is described in [6].

Recent contributions based on use of FEM include a multiscale FEM approach [25]) as well

as discontinuous Galerkin approaches for Laplace [5] and Maxwell [67] eigenvalue problems.

A second class of numerical approaches to Laplace eigenvalue problems is provided by

the Method of Particular Solutions (MPS) [49]. That early contribution utilizes approxi-

mates eigenfunctions by means of Fourier-Bessel series and it performs eigenvalue searches

via corresponding searches for zeros of a matrix determinant. Subsequently, [99] substituted

this strategy by a search for zeros of minimum singular values—an idea which, with some

variations, is incorporated as part of the algorithm proposed in this thesis as well. A mod-

ified version of the MPS, which was introduced in reference [11], alleviates some difficulties

associated with the conditioning of the method.

Finally, a class of approaches based on use the use of boundary integral equations has been

explored in a number of contributions, including methods based on collocation [29, 71] and

Galerkin [114, 115] boundary element approaches for the Dirichlet and Neumann problems.

Integral equation formulations for eigenvalue problems are advantageous as they 1) result

in a reduction in the problem dimensionality, and, as shown in this thesis, they 2) greatly

facilitate efficient treatment of the eigenfunction singularities that occur around corners and

Dirichlet-Neumann transition points. The boundary element strategy for three-dimensional

Dirichlet eigenproblems presented in [35, 114, 115], for example, yields errors that decrease

cubically with the spatial mesh-sizes. As a counterpart, however, the integral form of the

eigenvalue problem requires nonlinear searches (the eigenvalue appears as part of the integral

kernel). Indeed, as mentioned in [114], “the convergence regions for the eigenvalues are still

local” and “other techniques have to be considered and analyzed in order to increase the

robustness”. Focusing on two-dimensional Laplace eigenvalue problems, in Chapter 4 we
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present a Nyström algorithm that can achieve any user-prescribed order of convergence for

smooth and non-smooth domains alike, as well as a novel, robust, search algorithm that yields

fast eigenvalue convergence from nonlocal initial guesses. To the best of our knowledge, the

Zaremba eigenvalue algorithm presented in this thesis is the first boundary-integral method

for eigenvalue problems of Zaremba type.

1.4 Historical Review III: Steklov and sloshing eigen-

value problems

Here we consider a class of eigenvalue problems the protypical example of which is the Steklov

eigenvalue problem

∆um = 0 in Ω,

∂num = λum on Γ.
(1.3)

Here, Ω ⊂ R2 is a bounded Lipschitz open set with boundary Γ. As is known, the eigenvalues

form a discrete set, λm, m = 1, . . . ,∞. Further, the Steklov spectrum coincides with the

spectrum of the Laplace Dirichlet-to-Neumann operator.

These problems were first considered by Steklov [116] in (1902). In 1954 Weinstock [121]

proved that the disc maximizes the first non-trivial Steklov eigenvalue among all planar

domains with a given measure. In 1974, Hersch, Payne, and Schiffer [66] proved a general

isoperimetric inequality

sup{λn(Ω) · |∂Ω|} ≤ 2πn, n ∈ N, (1.4)

where the supremum is taken over bounded simply-connected domains Ω ⊂ R2 with a smooth

boundary, and where |∂Ω| denotes the length of the boundary of Ω. In 2010, Girouard

and Polterovich proved that this bound is sharp and attained by a sequence of domains

degenerating into a disconnected union of n identical balls [52, 53]. For an overview of the

recent work on Steklov eigenvalues and eigenfunctions we refer to the review papers [54]
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and [84].

Particular interest has focused on the sloshing eigenvalue problem

∆um = 0 in Ω,

∂num = 0 on ΓN

∂num = λum on ΓS

(1.5)

which, of course, is closely related to the Steklov eigenvalue problem. Studies of the slosh-

ing problem (which originally arose as a model for small-amplitude motion of an inviscid,

incompressible, and irrotational fluid within an open container) includes contributions by Eu-

ler [109] (1761), Poisson [104] (1828), Green [58, 59] (1838, 1848), Kelland [73] (1840), Airy [1]

(1845), Stokes [117] (1846), Ostrogradsky [101] (1862), Rayleigh [107] (1876), Kirchhoff [75]

(1879), Greenhill [61] (1887), Macdonald [92, 93] (1894,1896), Poincare [103] (1910), and

Hadamard [62] (1910,1916), and it is treated in Lamb’s famous text “Hydrodynamics” [85]

(1932). Aside from the hydrodynamic applications, Steklov eigenvalues relate closely to the

Dirichlet-to-Neumann map which is the centerpiece of the electric impedance tomography

problem [55, 110].

Recent contributions on Steklov and sloshing eigenvalue problems include [7] (extension of

some classic eigenvalue inequalities to cases of mixed Steklov-Neumann and Steklov-Dirichlet

eigenvalues), [81] (study of the fundamental sloshing mode of a liquid in a container and

connection to hot spots conjecture), [77] (fundamental sloshing mode and the behaviour

of its nodal line is characterized), [9] (study of the nodal sets of Steklov eigenfunctions:

measure the length as the eigenvalue goes to infinity), [88] and [43] (approximate analytical

solution for sloshing problem in containers of simple shapes), [72] (finite element modeling

of sloshing in axisymmertric containers), and [4] (the result for the general case of elliptic

equations with discontinuous coefficients in divergence form is proven).

The literature on numerical methods for Steklov problems in two dimensions include

the contributions [12] (a multiscale FEM approach), [68] (which uses cubic order boundary

element method), [87] (which utilises 3rd order finite element method), and [30] (where ap-

plication of a 3rd order Nystrom method with subsequent Richardson acceleration is used
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to solve the Steklov eigenvalue problem). To our knowledge, previous contribution do not

incorporate spectrally convergent methods for smooth boundaries or high order convergent

methods for non-smooth boundaries or for the sloshing eigenvalue problem. A set of effi-

cient spectral/high-order algorithms for Steklov and sloshing eigenproblems are presented in

Chapter 5.

1.5 Overview of results

This thesis concerns a variety of problems in PDE theory (Partial Differetial Equations) and

numerical analysis, with a focus on two closely related fields: electromagnetic scattering and

spectral theory. The numerical algorithms presented in this thesis, which are based on use

of Green functions and integral equations, incorporate a number of algorithmic innovations,

including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation

method for regularization of all smooth-domain Zaremba singularities, and newly derived

quadrature rules which give rise to high-order convergence even around singular points for

the Zaremba problem. The resulting algorithms, which enjoy high-order convergence for

both smooth and Lipschitz domains, can tackle a variety of elliptic problems under general

boundary conditions, including, for example, eigenvalue problems and scattering problems

in smooth and non-smooth domains, as well as eigenfunction expansion for time-domain

problems in non-separable physical domains under general boundary conditions.

The creation of these algorithms has required relevant studies of solution singularities for

both boundary-value problems and eigenvalue problems. Prototypical boundary-value prob-

lems in our context relate to problems of scattering by obstacles, while the spectral problems

we consider concern evaluation of eigenvalues and eigenfunctions for the Laplace operator.

As discussed in previous sections, both scattering and eigenvalue problems have significant

impact in a wide range of scientific and engineering applications, including acoustic, electro-

magnetic and quantum cavity resonators, vibrating membranes, modal analysis and design

of waveguides and antennas, and solution of a variety of time-dependent problems, amongst

many others.
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Prototypical problems considered in this thesis concerns solution of the Helmholtz equa-

tion and solution of eigenvalue problems for the Laplace operator under Zaremba boundary

conditions (where Dirichlet and Neumann boundary conditions are enforced on two disjoint

portions of the domain boundary) on smooth and non-smooth domains. Previously existing

algorithms for evaluation of solutions of the Helmholtz equation (for both scattering prob-

lems and Laplace eigenvalue problems) fall into two broad classes: volumetric/differential

solvers on one hand, and boundary integral solvers on the other. The main representatives

of the first class of methods rely on discretization of PDEs by means of finite elements or

finite difference methods (FDM/FEM); boundary integral methods, on the other hand, are

based on use of Green functions and discretization of domain boundaries.

The well known FDM/FEM solvers rely on discretizations of the volumetric computa-

tional domains, and thus they require use of suitable absorbing boundary conditions when-

ever infinite domains are considered. A significant advantage of such volumetric methods

is that they generally lead to sparse linear systems. Unfortunately, however, solutions pro-

duced by means of these methods give rise to significant dispersion and dissipation errors,

and treatment of singularities entails a variety of difficulties.

One of the main advantages of boundary integral methods, on the other hand, is dimen-

sionality reduction: in such methods an integral equation on the (d−1)-dimensional domain

boundary needs to be solved instead of the full PDE in fully d-dimensional domain. Addition-

ally, solutions produced by integral methods automatically satisfy the radiation condition

at infinity, so that use of large computational domains and absorbing boundary conditions

for exterior problems is unnecessary. Importantly, further, integral equation methods do not

suffer from dispersion or dissipation errors. Unlike volumetric methods, however, boundary

integral methods give rise to dense linear systems of equations. In view of the advent of fast

solvers (see, e.g., [13, 18, 60]), this difficulty has been essentially eliminated, and boundary

integral solvers, when applicable (i.e., for cases when Green functions can be used) can be

highly competitive.

As suggested above, the development of integral equation solvers of high order of accu-

racy has required a study of the singularities in the solution of Helmholtz equation subject
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to Zaremba boundary conditions. In particular, Chapter 2 shows that for smooth domain

boundaries the singularity of Zaremba solution has an asymptotic form containing only pow-

ers of
√
d (without logarithmic terms included in previous solution asymptotics [125]), where

d is the distance to the singular point. The solution of the integral equations (the integral

density) is also singular in the presence of the Zaremba boundary conditions, and the singu-

larity asymptotics are also derived in Chapter 2: as the PDE solution itself, the asymptotics

of the integral density around singular points contains only powers of
√
d. As shown in Sec-

tion 2.5, such singularity types can be successfully regularized and integrated with high-order

accuracy via an application of the novel Fourier Continuation method [21, 91]. Certain asso-

ciated integrals of products of the basic trigonometric functions and the logarithmic potential

can then be evaluated explicitly on the basis of certain closed-form expressions presented in

Appendix C. As desired, and as demonstrated in detailed Section 2.6, the resulting solvers

yield highly accurate results.

An alternative approach, which does not rely on use of the FC method, is proposed

in Chapter 3 for the numerical treatment of singularities in the integral densities arising

at points of geometric singularities (corners). Based on use of graded meshes of the type

considered in [79, 108], the algorithm is somewhat less efficient than the FC approach in ap-

plications to smooth domains, but it does give rise to high order accuracy even for challenging

Lipschitz domains and under the various types of boundary conditions under consideration.

Our application of the proposed integral equation methods to eigenvalue problems is pre-

sented in Chapter 4, including eigensolvers based on the smooth-domain FC-based method

and the graded-mesh method for Lipschitz domains. An important challenge we have found

in the context of the eigenvalue problem concerns the algorithm for search of the values of

wavenumber µ that make the relevant boundary integral operator singular and thus indi-

cate the presence of a Laplace eigenvalue. Such values are obtained as zeroes of minimum

singular value σn(µ) of the corresponding boundary integral operator. As shown in Sec-

tion 4.3.1, direct use of a descent-based approach such as the Newton method fails in this

context in view of the fact that the function σn(µ) is essentially constant away from its roots.

A modified approach based on suitable normalization of the eigenfunction at a reduced set
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of points is presented in Chapter 4 that successfully addresses this difficulty. The result-

ing eigensolver can tackle extremely challenging two-dimensional Dirichlet, Neumann, and

Zaremba eigenproblems with high accuracies (see Section 4.5.6); in fact, we believe this is

the first high-order eigensolver ever proposed for the Zaremba problem. An extension of our

eigenvalue search method applicable to spectral problem on multiply-connected domains is

introduced in Section 4.5.7: the generalized methodology can successfully eliminate spurious

resonances that originate in bounded components of the domain complement as a result of

the use of single-layer representations we use.

As discussed in previous sections, the evaluation of Laplace eigenvalues has numerous

practical applications. In an ongoing collaboration with the Electrical Engineering depart-

ment at Caltech (as well as recently started collaboration with National Radio Astronomy

Observatory), for example, the integral-equation based methods are applied to the problem

of modal analysis for the microwave-band antennas—specifically, evaluation of the Laplace

spectrum for the cross sections of QRFH antennas. The resulting algorithm exhibits high

accuracy and it significantly outperforms existing commercial EM software—in the accu-

racy of both eigenvalues and physical fields (eigenfunctions) even at and around boundaries;

Section 6.2.1 presents some details in these regards.

The methodologies considered in this thesis can also be applied to other types of boundary

value problems and eigenvalue problems, beyond the Zaremba, Dirichlet, and Neumann

problems. Chapter 5, for example, introduces integral equation methodologies for Steklov

and sloshing eigenvalue problems in general Lipschitz domains. In view of its close relation

to the Dirichlet-to-Neumann map, the Steklov spectral problem has important applications

in impedance tomography; the sloshing eigenvalue problem, in turn, has a significant impact

on the classical sloshing problem in hydrodynamics. Our numerical approaches in these

contexts are based on use of the single layer potential representation adjusted to avoid

spurious frequencies. As demonstrated in Section 5.5) the resulting solvers achieve spectral

accuracy on domains with smooth boundaries (including multiply-connected domains), and

they are also highly accurate for Lipschitz domains.

Preliminary applications of the proposed eigensolvers to time-dependent problems based
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on separation of the time variables are presented in Section 6.2.5. The desired algorithm can

solve challenging time-dependent parabolic and hyperbolic problems with regular or singular

boundaries and boundary conditions (e.g., Zaremba) while allowing for arbitrarily long-time

integration without dissipation or dispersion errors.

This thesis thus presents a variety of solvers for boundary value problems and eigenvalue

problems associated with the Laplace and Helmholtz operator, with applicability in a number

of important fields of science and engineering. Plans for future research, which are presented

in Chapter 6, include development of iterative eigensolvers for high frequency eigenfunc-

tions (large eigenvalues) in two- and three-dimensional domains, application to transmission

eigenvalue problems [23] (and, thus, potential application of such algorithm to the inverse

scattering problems; see Section 6.2.4) and extension to full electromagnetic problems with

mixed transmission/perfect-conductor boundary conditions.
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Chapter 2

Integral equation solvers for the
Zaremba boundary value problems on
smooth domains

2.1 Preliminaries

We consider interior and exterior boundary value problems of the form

∆u(x) + k2u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ ΓD,

∂u(x)

∂nx
= g(x) x ∈ ΓN

(2.1)

for u ∈ H1
loc(Ω) (with a Sommerfeld radiation condition in case of exterior problems), where

Ω ⊂ R2 denotes either a bounded open simply-connected domain with a smooth boundary

(which we will generically call an “interior” domain) or the complement of the closure of such

a domain (an “exterior” domain), where the Dirichlet and Neumann boundary portions ΓD

and ΓN (Γ = ΓD ∪ ΓN) are disjoint relatively-open subsets of Γ of positive measure relative

to Γ. Here H1
loc(Ω) denotes the Sobolev space of functions u defined in the domain Ω such

that u ∈ H1(Ω ∩ BR) for any ball BR of radius R and centered at the origin; of course

H1
loc(Ω) = H1(Ω) for bounded sets Ω. The Dirichlet and Neumann data f and g, in turn,

are elements of certain Sobolev spaces (cf. Remark 2.1.1 item ii) which we define in what

follows.
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Figure 2.1: Domain Ω.

To do this we follow [97] and we first define, for a given relatively open subset S ⊆ Γ,

the space

H̃1/2(S) = {u|S : supp u ⊆ S, u ∈ H1/2(Γ)}.

The spaces associated with the Dirichlet and Neumann data f and g are then defined by

H1/2(S) = {u|S : u ∈ H1/2(Γ)},

and, using the prime notation H ′ to denote the dual space of a given Hilbert space H,

H−1/2(S) =
(
H̃1/2(S)

)′
,

respectively.

Remark 2.1.1. Throughout this thesis . . .

(i) . . . the term “smooth” is equated to “infinitely differentiable ” and, as indicated above,

it is assumed that the boundary of the domain Ω is smooth.

(ii) . . . it is assumed that the right hand sides in equation (2.1) satisfy f ∈ H1/2(ΓD) and

g ∈ H−1/2(ΓN) so that certain existence and uniqueness results hold. Moreover, we

assume the functions f and g are actually smooth.
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The boundary Γ can be expressed in the form

Γ =

QN+QD⋃
q=1

Γq, (2.2)

whereQD andQN denote the numbers of smooth connected Dirichlet and Neumann boundary

portions, and where for 1 ≤ q ≤ QD (resp. QD + 1 ≤ q ≤ QD +QN)) Γq denotes a Dirichlet

(resp. Neumann) portion of the boundary curve Γ (see e.g. Figure 2.1). Clearly, letting

JD = {1, . . . , QD} and JN = {QD + 1, . . . , QD +QN}

we have that

ΓD =
⋃
q∈JD

Γq and ΓN =
⋃
q∈JN

Γq

are the subsets of Γ upon which Dirichlet and Neumann boundary conditions are enforced,

respectively. Note that consecutive values of the index q do not necessarily correspond to

consecutive boundary portions.

Remark 2.1.2. In case Ω is an exterior domain, problem (2.1) admits unique solutions

in H1
loc(Ω). On the other hand, if Ω is an interior domain, this problem is not well posed

for a discrete set of real values kj, j = 1, . . . ,∞ —the squares of which are the Zaremba

eigenvalues, that is to say, the eigenvalues of the Laplace operator under the correspond-

ing homogeneous mixed Dirichlet-Neumann (Zaremba) boundary conditions (see [97, Th.

4.10], [2]).

2.2 Boundary integral equation formulation

In what follows we seek solutions of problem (2.1) on the basis of the single-layer potential

representation

u =

∫
Γ

Gk(x, y)ψ(y)dsy, (2.3)
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where Gk(x, y) = i
4
H1

0 (k|x− y|) is the Helmholtz Green function in two-dimensional space.

Taking into account well known expressions [34, p. 40] for the jump of the single layer

potential and its normal derivative across Γ, the boundary conditions for the exterior (resp.

interior) boundary value problem (2.1) give rise to the integral equations

A(1)
k [ψ](x) :=

∫
Γ

Gk(x, y)ψ(y)dsy = f(x) x ∈ ΓD,

A(2)
k [ψ](x) := γ

ψ(x)

2
+

∫
Γ

∂Gk(x, y)

∂nx
ψ(y)dsy = g(x) x ∈ ΓN

(2.4)

with γ = −1 (resp. γ = 1).

Important properties of both the interior and exterior integral equation problems (2.4)

relate to existence of eigenvalues of certain interior problems for the Laplace operator under

either Dirichlet or Zaremba boundary conditions. As shown in what follows, for example,

1. In case Ω is an exterior domain the integral equation system (2.4) admits unique

solutions if and only if k2 is not a Dirichlet eigenvalue of the Laplace operator in

R2 \ Ω.

2. For such an exterior domain Ω the PDE problem (2.1) admits unique solutions for

any real value of k2 in spite of the lack of uniqueness implied in point 1 for certain

wavenumbers k. A procedure is presented in Section B which extends applicability of

the proposed integral formulation to such values of k.

3. In case Ω is an interior domain, in turn, the integral equation system is uniquely

solvable provided k2 is not a Zaremba eigenvalue of the Laplace operator in Ω.

4. The PDE problem (2.1) in such an interior domain Ω does not admit unique solutions,

of course, for values of k for which k2 is a Zaremba eigenvalue in Ω. In this case

the eigenfunctions of the Zaremba Laplace operator can be expressed in terms of the

representation formula (2.3) for a certain density ψ which satisfies (2.4) with f = 0

and g = 0.

A detailed treatment concerning points 1, 3, and 4 above is presented in the remainder of this
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section (Theorems 2.2.3, 2.2.4 and Definition 2.2.1). A corresponding discussion concerning

point 2, in turn, is put forth in Section B.

Definition 2.2.1. Given an interior (resp. exterior) domain Ω and a solution u of (2.1) in

H1
loc(Ω), a function w ∈ H1

loc(R2 \ Ω) is said to be a solution “conjugate” to u if it satisfies

∆w + k2w = 0 x ∈ R2 \ Ω

w(x) = u(x) x ∈ Γ,
(2.5)

as well as, in case R2 \ Ω is an exterior domain, Sommerfeld’s condition of radiation at

infinity. Throughout this thesis the conjugate solution w in case R2 \Ω is an exterior (resp.

interior) domain will be denoted as w = ue (resp. w = ui).

Lemma 2.2.2. The conjugate solutions mentioned in Definition 2.2.1 exist and are uniquely

determined in each one of the following two cases:

1. R2 \ Ω is an exterior domain; and

2. R2\Ω is an interior domain and k2 is not a Dirichlet eigenvalue of the Laplace operator

in R2 \ Ω.

Proof. For both point 1 and point 2 we rely on the fact that the solution u of the problem (2.1)

is in H1
loc(Ω) (see Remark 2.1.2), and, therefore, by the trace theorem (e.g., [97, Th 3.37]),

its boundary values lie in H1/2(Γ). For point 1 we then invoke [97, Th 9.11] to conclude that

a uniquely determined conjugate solution w ∈ H1
loc(R2 \Ω) exists, as needed. Point 2 follows

similarly using [97, Th 4.10] under the assumption that k2 is not a Dirichlet eigenvalue in

the interior domain R2 \ Ω.

Theorem 2.2.3. Let Ω be an exterior domain, and let k ∈ R be such that k2 is not a

Dirichlet eigenvalue of the Laplace operator in the interior domain R2 \Ω. Then the exterior

integral equation system (2.4) (γ = −1, see also Remark 2.1.1 item ii) admits a unique

solution given by

ψ =
∂ui
∂n
− ∂u

∂n
, (2.6)
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where u is the solution of the exterior mixed problem (2.1), and where ui is the (uniquely

determined) corresponding conjugate solution (Definition 2.2.1 and Lemma 2.2.2).

Proof. Since k2 is not a Dirichlet eigenvalue for the Laplacian in R2 \ Ω, the conjugate

solution ui is uniquely defined by the boundary values of the solution u. To obtain the

expression (2.6) we first consider the Green representation formula for the functions ui and

u

ui(x) =

∫
Γ

(
Gk(x, y)

∂ui
∂ny
− ui

∂Gk(x, y)

∂ny

)
dsy, x ∈ R2 \ Ω,

u(x) =

∫
Γ

(
u
∂Gk(x, y)

∂ny
−Gk(x, y)

∂u

∂ny

)
dsy, x ∈ Ω

(2.7)

which, in view of the jump relations for the single and double layer potential operators, in

the limit x→ Γ leads to the relations

ui(x)

2
=

∫
Γ

(
Gk(x, y)

∂ui
∂ny
− ui

∂Gk(x, y)

∂ny

)
dsy, x ∈ Γ

u(x)

2
=

∫
Γ

(
u
∂Gk(x, y)

∂ny
−Gk(x, y)

∂u

∂ny

)
dsy, x ∈ Γ.

(2.8)

Since for x ∈ ΓD we have u(x) = ui(x) = f(x), the sum of the two equations in (2.8) yields

f(x) =

∫
Γ

Gk(x, y)

(
∂ui
∂ny
− ∂u

∂ny

)
dsy, x ∈ ΓD, (2.9)

and, thus, in view of (2.6),

f(x) =

∫
Γ

Gk(x, y)ψ(y)dsy, x ∈ ΓD. (2.10)

Similarly, in the limit x→ Γ the normal derivatives of the integrals in (2.7) give rise to the

relations

1

2

∂ui
∂nx

=
∂

∂nx

∫
Γ

(
Gk(x, y)

∂ui
∂ny
− ui

∂Gk(x, y)

∂ny

)
dsy, x ∈ Γ

1

2

∂u

∂nx
=

∂

∂nx

∫
Γ

(
u
∂Gk(x, y)

∂ny
−Gk(x, y)

∂u

∂ny

)
dsy, x ∈ Γ.

(2.11)
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The sum of the equations in (2.11) results in the identity

1

2

∂ui
∂nx

+
1

2

∂u

∂nx
=

∫
Γ

∂Gk(x, y)

∂nx

(
∂ui
∂ny
− ∂u

∂ny

)
dsy x ∈ Γ, (2.12)

or, equivalently,

∂u

∂nx
= −1

2

(
∂ui
∂nx
− ∂u

∂nx

)
+

∫
Γ

∂Gk(x, y)

∂nx

(
∂ui
∂ny
− ∂u

∂ny

)
dsy x ∈ Γ. (2.13)

But for x ∈ ΓN we have
∂u

∂nx
= g(x), and, thus, equation (2.13) can be made to read

g(x) = −ψ(x)

2
+

∫
Γ

∂Gk(x, y)

∂nx
ψ(y)dsy, x ∈ ΓN . (2.14)

Equations (2.10) and (2.14) tell us that the density ψ is a solution of the exterior integral

equation system (2.4), as claimed.

In order to establish the solution uniqueness let ξ be a solution of equation (2.4) with

f = 0 and g = 0. Since as mentioned above the exterior mixed problem is uniquely solvable,

the corresponding single layer potential

v =

∫
Γ

Gk(x, y)ξ(y)dsy (2.15)

is equal to zero everywhere in Ω. It then follows from the continuity of the single layer

potential that v satisfies the Dirichlet problem in the interior domain R2 \ Ω with zero

boundary values. Since by assumption k2 is not a Dirichlet eigenvalue of the Laplacian in

R2\Ω it follows that v = 0 in that region as well. Thus, both the interior and exterior normal

derivatives vanish, and therefore so does their difference ξ. The proof is complete.

Theorem 2.2.4. Let Ω be an interior domain. Then we have:

1. If k2 is not a Zaremba eigenvalue (see Remark 2.1.2), then the interior integral equation

system (2.4) (γ=1, see also Remark 2.1.1 item ii) admits a unique solution, which is
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given by

ψ =
∂u

∂n
− ∂ue
∂n

. (2.16)

Here u is the solution of the interior mixed problem (2.1), and ue is the solution con-

jugate to u (Definition 2.2.1 and Lemma 2.2.2).

2. If k2 is a Zaremba eigenvalue, in turn, any eigenfunction u satisfying (2.1) with f = 0

and g = 0 can be expressed by means of a single-layer representation

u(x) =

∫
Γ

Gk(x, y)

(
∂u

∂ny
− ∂ue
∂ny

)
dsy, x ∈ Ω ∪ Γ, (2.17)

where ue denotes the conjugate solution corresponding to the eigenfunction u (Defini-

tion 2.2.1 and Lemma 2.2.2).

Proof. We first consider properties that are common to Zaremba solutions and eigenfunc-

tions, and which therefore relate to both points 1 and 2 in the statement of the theorem.

For any given solution u of the interior mixed problem (2.1) (u can be either the unique so-

lution of the interior mixed problem in the case k2 is not an eigenvalue, or any eigenfunction

satisfying (2.1) with f = 0 and g = 0) the conjugate solution ue is uniquely defined (see

Lemma 2.2.2), and so is the density ψ given by (2.16). Letting

w(x) =

∫
Γ

Gk(x, y)

(
∂u

∂ny
− ∂ue
∂ny

)
dsy, (2.18)

using the Green representation formula for u and ue,

u(x) =

∫
Γ

(
Gk(x, y)

∂u

∂ny
− u∂Gk(x, y)

∂ny

)
dsy, x ∈ Ω,

ue(x) =

∫
Γ

(
ue
∂Gk(x, y)

∂ny
−Gk(x, y)

∂ue
∂ny

)
dsy, x ∈ R2 \ Ω,

(2.19)

and taking into account the jump relations for the double layer potential as well as the fact

that ue(x) = u(x) for x ∈ Γ we obtain

u(x) =

∫
Γ

Gk(x, y)

(
∂u

∂ny
− ∂ue
∂ny

)
dsy = w(x), x ∈ Γ. (2.20)
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Similarly, taking normal derivatives of both sides of each equation in (2.19) at a point x ∈ Γ

we obtain the equations

1

2

∂u

∂nx
=

∂

∂nx

∫
Γ

(
Gk(x, y)

∂u

∂ny
− u∂Gk(x, y)

∂ny

)
dsy, x ∈ Γ,

1

2

∂ue
∂nx

=
∂

∂nx

∫
Γ

(
ue
∂Gk(x, y)

∂ny
−Gk(x, y)

∂ue
∂ny

)
dsy, x ∈ Γ,

(2.21)

whose sum yields

∂u

∂nx
= −1

2

(
∂u

∂nx
− ∂ue
∂nx

)
+

∫
Γ

∂Gk(x, y)

∂nx

(
∂u

∂ny
− ∂ue
∂ny

)
dsy =

∂w

∂nx
x ∈ Γ. (2.22)

We now conclude the proof by applying these concepts to points 1 and 2 in the statement

of the theorem.

1. In case k2 is not an eigenvalue for the Laplace-Zaremba problem (2.1), equations (2.20)

and (2.22) evaluated for x ∈ ΓD and x ∈ ΓN , respectively, show that the density ψ

given by (2.16) satisfies the integral equation system (2.4) with γ = 1.

2. In case k2 is an eigenvalue for the Laplace-Zaremba problem (2.1), in turn, let u

denote a corresponding eigenfunction. Equations (2.20) and (2.22) along with the

Green representation formula show that u(x) = w(x) for any x ∈ Ω, that is to say,

equation (2.17) is satisfied.

The proof is now complete.

2.3 Singularities of the solutions of equations (2.1) and (2.4)

With reference to equation (2.2), let y0 = (y0
1, y

0
2) ∈ Γ be a point which separates Dirichlet

and Neumann regions Γq1 and Γq2 (q1 ∈ JD and q2 ∈ JN) within Γ. In order to express the

singular character around y0 of both the solution u(y) of problem (2.1) (y = (y1, y2) ∈ Ω)

and the corresponding integral equation density ψ(y) in equation (2.4) (y = (y1, y2) ∈ Γ) we
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Figure 2.2: Singular point y0.

consider the neighborhoods

Ω0 = Ω ∩B(y0, r), Γ0
q1

= Γq1 ∩B(y0, r) and Γ0
q2

= Γq2 ∩B(y0, r) (2.23)

of the singular point y0 relative to Ω, Γq1 and Γq2 , respectively. Here for a set A ⊂ R2, A

denotes the topological closure of A in R2, B(y0, r) denotes the circle centered at y0 of radius

r, and r > 0 is sufficiently small that B(y0, r) only has nonempty intersections with Γq for

the Dirichlet index q = q1 and the Neumann index q = q2. Additionally, we use certain

functions ûy0 = ûy0(z), ψ̂1
y0 = ψ̂1

y0(d) and ψ̂2
y0 = ψ̂2

y0(d) where the Dirichlet (resp. Neumann)

function ψ̂1
y0 (resp ψ̂2

y0) is the density as a function of the distance d to the point y0 in Γ0
q1

(resp. Γ0
q2

), and where z = (y1 − y0
1) + i(y2 − y0

2) is a complex variable (see Figure 2.2). The

functions ûy0 , ψ̂
1
y0 and ψ̂2

y0 are given by

ûy0(z) = u(y),

ψ(y) = ψ̂1
y0(d(y)) y ∈ Γ0

q1
,

ψ(y) = ψ̂2
y0(d(y)) y ∈ Γ0

q2
,

(2.24)
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where, as mentioned above

z = (y1 − y0
1) + i(y2 − y0

2) ; d(y) =
√

(y1 − y0
1)2 + (y2 − y0

2)2. (2.25)

It is known [125, 126] that, under our assumption that the curve Γ is piecewise smooth,

for any given integer N the function ûy0(z) can be expressed in the form

ûy0(z) = log(z)P 1,N
y0 + log(z)P 2,N

y0 + P 3,N
y0 + o(zN ) (2.26)

for all z in a neighborhood of the point, where P 1,N
y0 , P 2,N

y0 and P 3,N
y0 are N -dependent poly-

nomial functions of z, z, z1/(2α), z1/(2α), z log(z), zq log(z).

Remark 2.3.1. In the asymptotic expansion (2.26), and, indeed, in all similar asymptotic

expansions in this thesis, it is assumed that none of the right hand side polynomials contain

terms that, multiplied by the relevant factors, could be included in the error term.

Under our standing assumption of smoothness of the domain boundary the following two

theorems provide 1) Finer details on the asymptotics (2.26) as well as 2) A corresponding

asymptotic expression around y0 for the solutions ψ̂1
y0(d) and ψ̂2

y0(d) of the integral-equation

system (2.4).

Theorem 2.3.2. Let y0 be a Dirichlet-Neumann point as described above in this section.

Then, given an arbitrary integer N , the function ûy0(z) can be expressed in the form

ûy0(z) = PNy0 (z1/2, z1/2) + o(zN ) (2.27)

around y0, where PNy0 is an N -dependent polynomial function of its arguments; see Re-

mark 2.3.1.

Theorem 2.3.3. Let y0 be a Dirichlet-Neumann point. Then given an arbitrary integer N

the functions ψ̂1
y0(d) and ψ̂2

y0(d) can be expressed in the forms

ψ̂1
y0(d) = d−1/2Q1,N

y0 (d1/2) + o(dN−1) and

ψ̂2
y0(d) = d−1/2Q2,N

y0 (d1/2) + o(dN−1)
(2.28)
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around d = 0, where Q1,N
y0 and Q2,N

y0 are N -dependent polynomial functions of their argu-

ments; see Remark 2.3.1.

Note in particular that Theorem 2.3.2 shows that, under our assumptions of boundary

smoothness, all logarithmic terms in equation (2.26) actually drop out. The proofs of these

theorems (which are given in Sections 2.3.2 and 2.3.3, respectively) utilize a certain conformal

map introduced in Section 2.3.1 that transforms Ω0 into a semicircular region.

2.3.1 Conformal mapping

Following [125], in order to establish Theorem 2.3.2 we identify R2 with the complex plane

C via the aforementioned relationship z = (y1 − y0
1) + i(y2 − y0

2) ↔ (y1 − y0
1, y2 − y0

2),

and we utilize a conformal map z = w(ξ) which maps the semi-circular region DA =

{ξ ∈ C : |ξ| ≤ A and Im(ξ) ≤ 0} ) in the complex ξ-plane (Figure 2.3) onto the domain Ω0

(equation (2.23)) in the complex z−plane. We assume, as we may, that w maps the origin to

itself and that the intervals {Im(ξ) = 0, 0 ≤ Re(ξ) ≤ A} and {Im(ξ) = 0,−A ≤ Re(ξ) ≤ 0}

are mapped onto the boundary portions Γ0
q1

and Γ0
q2

, respectively.

Figure 2.3: Semi-circular and semi-annular Green-identity regions.

Letting

U(ξ) = ûy0(w(ξ)) (2.29)

we note that, in view of the relation ∆ξU(ξ) = ∆zûy0(w(ξ)) · |w′(ξ))|2 satisfied by a complex
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analytic function w (see [46, eq. 5.4.17]), U satisfies the second order elliptic equation

∆U +K(ξ)U = 0 for ξ ∈ int(DA), (2.30)

U(ξ) = F (ξ) for Im(ξ) = 0,Re(ξ) > 0, (2.31)

∂U(ξ)

∂n
= G(ξ) for Im(ξ) = 0,Re(ξ) ≤ 0, and (2.32)

U(ξ) = M(ξ) for |ξ| = A. (2.33)

Here F (ξ) = f(w(ξ)), G(ξ) = g(w(ξ)) and M(ξ) = u(w(ξ)). (The function M is thus

obtained from the restriction of the solution u to the set ∂Ω0 \(Γ0
q1
∪Γ0

q2
); see equation (2.23)

and Figure 2.2).

2.3.2 Proof of theorem 2.3.2

The proof of this theorem, which, under the present scope of smooth-domain problems

establishes a result stronger than [125, Th. 3.2], does incorporate some of the lines of the

proof provided in that reference. In what follows we use the Laplace-Zaremba Green function

H(t, ξ) = − 1

2π

{
log |t− ξ|+ log |t− ξ| − 2 log

∣∣∣√t+
√
ξ
∣∣∣− 2 log

∣∣∣∣√t−√ξ

∣∣∣∣} (2.34)

for the lower half plane with homogeneous Dirichlet (resp. Neumann) boundary conditions

on the positive (resp.negative) real axis in terms of the complex variables t = t1 + it2 =

(t1, t2) and ξ = ξ1 + iξ2 = (ξ1, ξ2). The branches of the square roots in (2.34) are given by
√
t =

√
ρteiθt =

√
ρte

iθt/2 and
√
ξ =

√
ρξeiθξ =

√
ρξe

iθξ/2, where (ρt, θt) and (ρξ, θξ) denote

polar coordinates in the complex t- and ξ-plane respectively (−π ≤ θt, θξ < π). Note that,

with these conventions the domain DA in the t variables is given by ρt ≤ A and −π ≤ θt ≤ 0.

The following Lemma establishes certain important properties of the aforementioned Green

function.

Lemma 2.3.4. The function H = H(t, ξ) (equation (2.34)) is indeed a Laplace-Zaremba

Green function for the lower half plane with a Dirichlet-Neumann junction at the origin,
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that is we have ∆tH(t, ξ) = −δ(t− ξ) and H satisfies

H(t, ξ) = 0 for θt = 0 and
∂H

∂nt
(t, ξ) = 0 for θt = −π. (2.35)

In addition, for a certain constant C we have

∫ A

0

∣∣∣∣ ∂∂nt (H(t, ξ))

∣∣∣∣ dt ≤ C (2.36)

for all ξ ∈ C.

Proof. The function H(t, ξ) can be re-expressed in the form

H(t, ξ) = − 1

2π
log
|
√
t−
√
ξ||
√
t+
√
ξ|

|
√
t+
√
ξ||
√
t−
√
ξ|
. (2.37)

The first statement in equation (2.35) follows from the relations |
√
t−
√
ξ| = |

√
t−
√
ξ| and

|
√
t+
√
ξ| = |

√
t+
√
ξ|, which hold for θt = 0 (t > 0) since, in view of our selection of branch

cuts we have √
ξ =

√
ξ. (2.38)

In order to establish the second statement in (2.35) and equation (2.36) we consider the

relations

∂

∂t2
log |
√
t− (z1 + iz2)| = z1

2
√
−t1

(
z2

1 + (
√
−t1 + z2)2

) for θt = −π, and

∂

∂t2
log |
√
t− (z1 + iz2)| = − z2

2
√
t1
(
(z1 −

√
t1)2 + z2

2

) for θt = 0,

(2.39)

which are valid for all complex numbers z = z1 + iz2, and since on the axis t2 = 0 we have

∂
∂nt

= ∂
∂t2

, the second statement in (2.35) follows from (2.38). In order to establish a bound

of the form (2.36), finally, we use (2.39) to obtain the expression∣∣∣∣ ∂∂nt (H(t, ξ))

∣∣∣∣ =
|Im(
√
ξ)|

2π
√
t

(
1

(
√
t+ Re(

√
ξ))2 + Im(

√
ξ)2

+
1

(
√
t− Re(

√
ξ))2 + Im(

√
ξ)2

)
(2.40)
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for the absolute value of the derivative of (2.37) with respect to t2. It is then easy to check

that

∫ A

0

∣∣∣∣ ∂∂nt (H(t, ξ))

∣∣∣∣ dt =
|Im(
√
ξ)|

πIm(
√
ξ)

(
arctan

√
A− Re(

√
ξ)

Im(
√
ξ)

+ arctan

√
A+ Re(

√
ξ)

Im(
√
ξ)

)
(2.41)

for all ξ ∈ C \ [0;A]. Since the right-hand side of equation (2.41) is uniformly bounded for

ξ ∈ C \ [0;A] and since for ξ ∈ [0;A] the integrand in (2.36) vanishes (in view of the second

expression in (2.39)), we see that there exists a constant C such that equation (2.36) holds

for all ξ ∈ C, as needed, and the proof is thus complete.

The proof of the theorem 2.3.2 is based on a bootstrapping argument which is initiated

by the simple but suboptimal asymptotic relation put forth in the following lemma following

lemma.

Lemma 2.3.5. The solution U of the problem (2.30)–(2.33) satisfies the asymptotic relation

U(ξ) = o (ξµ) (2.42)

for all −1
2
< µ < 0.

Proof. To establish this relation we consider the Green formula

U(ξ) =

∫ ∫
DA

H(t, ξ)∆U(t)dxtdyt +

∫
∂DA

{
U(t)

∂

∂nt
H(t, ξ)−H(t, ξ)

∂

∂nt
U(t)

}
dst. (2.43)

Since H satisifes (2.35) as it befits a Green function for (2.30)–(2.33), denoting by ΓA the

radius-A part of ∂DA it follows that

|U(ξ)| ≤
∣∣∣∣∫ ∫

DA

H(t, ξ)K(t)U(t)dxtdyt

∣∣∣∣+

∣∣∣∣∫ A

0

F (x)
∂

∂nt
H(t, ξ)dt

∣∣∣∣
+

∣∣∣∣∫ A

0

G(−t)H(−t, ξ)dt
∣∣∣∣+

∣∣∣∣∫
ΓA

{
U(t)

∂

∂nt
H(t, ξ)−H(t, ξ)

∂

∂nt
U(t)

}
dst

∣∣∣∣ . (2.44)
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For the integral over the outer arc ΓA in (2.44) we have∣∣∣∣∫
ΓA

{
U(t)

∂

∂nt
H(t, ξ)−H(t, ξ)

∂

∂nt
U(t)

}
dst

∣∣∣∣ ≤ C, for |ξ| < A/2, (2.45)

as it can be checked easily in view of the boundedness of the integrands for ξ near the origin.

Taking into account that u ∈ H1
loc(Ω) (see Remark 2.1.2), on the other hand, it easily follows

that U ∈ H1(DA), and thus, bounding the absolute value of the first integral in (2.44) by

means of the Cauchy-Schwarz inequality, for ξ near 0 we obtain the uniform estimate∣∣∣∣∫ ∫
DA

H(t, ξ)K(t)U(t)dxtdyt

∣∣∣∣ ≤ ||H||L2 ||U ||L2 max(K). (2.46)

The second and third integrals in equation (2.44), finally, may be estimated on the basis of

Remark 2.1.1, which implies that the functions F andG (defined in Section 2.3.1) are smooth.

Indeed H is clearly absolutely integrable, and the absolute integrability of ∂H/∂nt follows

from Lemma 2.3.4. The boundedness of F and G thereby implies the uniform boundedness

of the function U near the origin. The relation (2.42) thus follows for all −1
2
< µ < 0 and

the proof is complete.

Corollary 2.3.6. The derivatives of the solution U of the problem (2.30)–(2.33) satisfy the

asymptotic relation

DhU = o
(
ξµ−h

)
(2.47)

for all −1
2
< µ < 0.

Proof. See [125, Section 4]

A key element in the bootstrapping algorithm mentioned at the beginning of this section

is a representation formula for the function U that is presented in the following Lemma.
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Lemma 2.3.7. The solution U of equation (2.30)–(2.33) satisfies the representation

U(ξ) = − 1

2π
{Λ1 (−K(t)U (t) , ξ, 1) + Λ1

(
−K(t)U (t) , ξ, 1

)
− 2Λ1 (−K(t)U (t) , ξ, 2)

− 2Λ1

(
−K(t)U (t) , ξ, 2

)
− Λ3(F (t), ξ, 1)− Λ3

(
F (t), ξ, 1

)
+ 2Λ3 (F (t), ξ, 2)

+ 2Λ3

(
F (t), ξ, 2

)
− Λ2 (G (−t) ,−ξ, 1)− Λ2

(
G (−t) ,−ξ, 1

)
+ 2Λ2 (G (−t) ,−ξ, 2)

+ 2Λ2

(
G (−t) ,−ξ, 2

)
}+ p1

(√
ξ
)

+ p2

(√
ξ

)
,

(2.48)

where

Λ1(q(t), ξ, µ) :=

∫ 0

−π

∫ A

0

q(t) log
∣∣∣t 1
µ − ξ

1
µ

∣∣∣ ρtdρtdθt,
Λ2(q(t), ξ, µ) :=

∫ A

0

q(t) log
∣∣∣t 1
µ − ξ

1
µ

∣∣∣ dt,
Λ3(q(t), ξ, µ) :=

∫ A

0

q(t)
1

t

∂

∂θt
log
∣∣∣t 1
µ − ξ

1
µ

∣∣∣ dt,
(2.49)

and where p1 and p2 denote power series with positive radii of convergence.

Proof. Applying Green formula on the set

DA,δ = {ξ ∈ C : δ ≤ |ξ| ≤ A and Im(ξ) ≤ 0} (2.50)

(right portion of Figure 2.3) we obtain the expression

U(ξ) =

∫ ∫
DA,δ

H(t, ξ)∆U(t)dxtdyt +

∫
∂DA,δ

{
U(t)

∂

∂nt
H(t, ξ)−H(t, ξ)

∂

∂nt
U(t)

}
dst.

(2.51)

Further, for fixed ξ 6= 0 we have

H(t, ξ) = O
(√

t
)

as t→ 0, (2.52)
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and therefore, in view of (2.42) and (2.47),

U(t)H(t, ξ) = o (tµ) ,

U(t)
∂

∂ρt
H(t, ξ)−H(t, ξ)

∂

∂ρt
U(t) = o

(
tµ−

1
2

)
.

(2.53)

Letting Γδ denote the radius-δ arc within the boundary ∂DA,δ of DA,δ (Figure 2.3), and

noting that for t ∈ Γδ we have ∂
∂ρt

= ∂
∂nt

, in view of (2.53) we obtain

∫
Γδ

{
U(t)

∂

∂nt
H(t, ξ)−H(t, ξ)

∂

∂nt
U(t)

}
dst → 0 as δ → 0. (2.54)

Further, exploiting the fact that the Green function (2.34) is a jointly analytic function of
√
ξ and

√
ξ for t ∈ ΓA and ξ around ξ = 0, we obtain

∫
ΓA

{
U(t)

∂

∂nt
H(t, ξ)−H(t, ξ)

∂

∂nt
U(t)

}
dst = p1

(√
ξ
)

+ p2

(√
ξ

)
, (2.55)

where p1 and p2 denote power series with positive radii of convergence.

Letting δ → 0 in (2.51) and (2.54) and using (2.55) we finally obtain

U(ξ) =

∫ 0

−π

∫ A

0

H(t, ξ)(−K(t)U(t))ρtdρtdθt −
∫ A

0

F (x)
1

t

∂

∂θt
H(t, ξ)dt

−
∫ A

0

G(−t)H(−t, ξ)dt+ p1

(√
ξ
)

+ p2

(√
ξ

)
.

(2.56)

Using the definitions (2.49) for the functions Λ1, Λ2, and Λ3, equation (2.56) is equivalent

to equation (2.48) and the proof is complete.

In order to determine the singular character of U(ξ) around ξ = 0 (and therefore that

of ûy0(z) around z = 0) we study the corresponding asymptotic behavior of each one of the

Λ-terms in equation (2.48). An important part of this discussion is the following Lemma,

which presents certain regularity properties of the operators Λ1, Λ2, and Λ3.
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Lemma 2.3.8. Let α ≥ 0, β > −1 and γ > −1, and let µ = 1 or µ = 2. Then

Λ1

(
tβt

γ
, ξ, µ

)
= C1ξ

β+γ+2 + C2ξ
β+γ+2

+ C3ξ
β+1ξ

γ+1
+ p1

(
ξ

1
µ

)
+ p2

(
ξ

1
µ

)
, (2.57)

Λ2(tβ, ξ, µ) = C4ξ
β+1 + C5ξ

β+1
+ p3(ξ1/µ) + p4(ξ

1/µ
) and (2.58)

Λ3(tα, ξ, µ) = C6ξ
α + C7ξ

α
+ p5(ξ1/µ) + p6(ξ

1/µ
). (2.59)

For general functions g(t) ∈ C`(DA) and h(t) ∈ C`((0, A]) satisfying g(t) = o(tγ) and

h(t) = o(tα) as t→ 0, further, we have

Λ1 (g(t), ξ, µ) = q1

(
ξ

1
µ

)
+ q2

(
ξ

1
µ

)
+ o(ξγ+2), (2.60)

Λ2 (g(t), ξ, µ) = q3

(
ξ

1
µ

)
+ q4

(
ξ

1
µ

)
+ o(ξγ+1) and (2.61)

Λ3 (h(t), ξ, µ) = q5

(
ξ

1
µ

)
+ q6

(
ξ

1
µ

)
+ o(ξα), (2.62)

(see Remark 2.3.1). Here pi (resp. qi), i = 1, . . . , 6, are power series with positive radii of

convergence (resp. polynomials), Ci, i = 1 . . . 7 are complex constants, and the expansions are

`-times differentiable as ξ → 0—in the sense of Wigley: the derivatives of the left hand sides

in (2.60) through (2.62) are equal to the corresponding derivatives of the first two term of

the right hand sides, with error terms given by the “formal” derivatives of the corresponding

error terms—e.g. d/dξ (o(ξα)) = o(ξ(α−1)).

Proof of Lemma 2.3.8. The proof follows by specializing the proofs of Lemmas 7.1−7.2 and

8.1− 8.6 in [125].

We are now ready to provide the main proof of this section.

Proof of Theorem 2.3.2. Since the solutions ûy0 and U are related by equation (2.29), using

the classical result [120, Th. IV] (which establishes, in particular, that the conformal map-

ping w is smooth up to and including the boundary for any smooth portion of the domain

boundary; see also [119]) and expanding w(ξ) in Taylor series around ξ = 0, we see that it
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suffices to prove that for an arbitrary integer M we have the asymptotic relation

U(ξ) = QM(ξ1/2, ξ
1/2

) + o(ξM) (2.63)

for the solution U(ξ) of the problem (2.30)–(2.33), where QM = QM(r, s) is a polynomial

function of the independent variables r and s.

The proof now proceeds inductively. The induction basis is provided by the asymp-

totics (2.42) of the function U . To complete the proof we thus need to establish that provided

that for some integer L the function U can be expressed in the form

U(ξ) = PL(ξ1/2, ξ
1/2

) + o(ξL−λ) as ξ → 0, (2.64)

for some 0 < λ < 1, where PL = PL(r, s) is a polynomial function of the independent

variables r and s, then a similar relation holds for U with an error of order o(ξL+1−λ) and

for a certain polynomial PL+1(ξ1/2, ξ
1/2

):

U(ξ) = PL+1(ξ1/2, ξ
1/2

) + o(ξL+1−λ). (2.65)

To do this we apply Lemma (2.3.8) to each term on the right hand side of equation (2.48).

For the terms including the operator Λ1, for example, such an asymptotic representation

with error of the order o(ξL+1−λ) can be obtained by using the assumption (2.64) and the

L-th order Taylor expansion of the smooth function K(t) around t = 0, and by applying

equations (2.57) with β = 0, 1/2, 1, . . . ,L, γ = 0, 1/2, 1, . . . ,L and equation (2.60) with γ =

L−λ to the resulting polynomial and error terms for the product K(t)U(t). The terms that

contain the operators Λ2 and Λ3 can be treated similarly on the basis of Taylor expansions

of the functions F (t) and G(t) around t = 0 and application of equations (2.58), (2.59) with

β = 1, . . . ,L, α = 1, . . . ,L , and equations (2.61), (2.62) with γ = L−λ,α = L−λ+ 1. The

inductive step and therefore the proof of Theorem 2.3.2 are thus complete.
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2.3.3 Proof of theorem 2.3.3

The relationship between the density ψ and the PDE solution u is given by equation (2.6) if

Ω is an exterior domain and by equation (2.16) if Ω is an interior domain. Throughout this

section we assume that Ω is an interior domain, and, thus, that ψ is given by equation (2.16);

the proof for exterior domains (equation (2.6)) is analogous.

In order to establish the singular character of the density ψ we first seek an asymptotic

expression for the conjugate solution ue near z = 0 (see Definition 2.2.1). Using a conformal

mapping approach for ue similar to the one used in Section 2.3.1 for the solution u of the

problem (2.1), in this case we employ a conformal map z = v(ξ) which maps the semi-circular

region DA depicted in Figure 2.3 in the complex ξ-plane onto the domain B(y0, r) \ Ω0 in

the complex z−plane (see Figure 2.2). We assume, as we may, that v maps the origin to

itself and that the intervals {Im(ξ) = 0, 0 ≤ Re(ξ) ≤ A} and {Im(ξ) = 0,−A ≤ Re(ξ) ≤ 0}

are mapped onto the boundary portions Γ0
q1

and Γ0
q2

, respectively (see equation (2.23)).

Following Section 2.3.1 in this case we introduce the function V (ξ) = ue(v(ξ)) and we note

that V satisfies the second order elliptic problem (cf. [46, eq. 5.4.17])

∆V +K1(ξ)V = 0 for ξ ∈ int(DA), (2.66)

V (ξ) = ue(v(ξ)) for Im(ξ) = 0, and (2.67)

V (ξ) = M1(ξ) for |ξ| = A, (2.68)

where M1 is given by M1(ξ) = ue(v(ξ)).

The following Lemma parallels Lemma 2.3.5.

Lemma 2.3.9. The solution V of the problem (2.66)–(2.68) satisfies the asymptotic relation

V (ξ) = o (ξµ) (2.69)

for all −1
2
< µ < 0.
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Proof. Employing the Laplace Green function

G1(t, ξ) = − 1

2π

{
log |t− ξ| − log

∣∣t− ξ ∣∣} (2.70)

for the Dirichlet problem (2.66)–(2.68) and applying the Green formula to the functions V

and G1 on the domain DA we obtain

V (ξ) =

∫ ∫
DA

G1(t, ξ)∆V (t)dxtdyt +

∫
∂DA

{
V (t)

∂

∂nt
G1(t, ξ)−G1(t, ξ)

∂

∂nt
V (t)

}
dst.

(2.71)

Since G1(t, ξ) = 0 for Im(ξ) = 0 and since ∂DA = [−A,A]∪ΓA, the triangle inequality yields

|V (ξ)| ≤
∣∣∣∣∫ ∫

DA

G1(t, ξ)K1(t)V (t)dxtdyt

∣∣∣∣+

∣∣∣∣∫ A

−A
V (t)

∂

∂nt
G1(t, ξ)dt

∣∣∣∣
+

∣∣∣∣∫
ΓA

{
V (t)

∂

∂nt
G1(t, ξ)−G1(t, ξ)

∂

∂nt
V (t)

}
dst

∣∣∣∣ . (2.72)

For the integral over the outer arc ΓA in (2.72) we have∣∣∣∣∫
ΓA

{
V (t)

∂

∂nt
G1(t, ξ)−G1(t, ξ)

∂

∂nt
V (t)

}
dst

∣∣∣∣ ≤ C1 for |ξ| < A/2 (2.73)

where C1 is a nonnegative constant, as it can be checked easily in view of the boundedness

of the integrands for ξ near the origin. From Lemma 2.2.2, further, it easily follows that

V ∈ H1(DA), and thus, bounding the absolute value of the first integral in equation (2.72)

by means of the Cauchy-Schwarz inequality we obtain the bound∣∣∣∣∫ ∫
DA

G1(t, ξ)K1(t)V (t)dxtdyt

∣∣∣∣ ≤ ||G1||L2(DA)||V ||L2(DA) max
t∈DA

(K1(t)) (2.74)

for all ξ ∈ DA. As is well known, finally, double layer potentials for bounded densities are uni-

formly bounded in all of space (see e.g. [47, Lemma 3.20]). It follows that the second integral

in equation (2.72) is uniformly bounded for ξ ∈ R2 since, in view of (2.67), Definition 2.2.1,

and Theorem 2.3.2, V is a bounded function for t2 = Im(t) = 0. The relation (2.69) thus

follows for all −1
2
< µ < 0 and the proof is complete.
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Corollary 2.3.10. The derivatives of the solution V of the problem (2.66)–(2.68) satisfy the

asymptotic relation

DhV = o
(
ξµ−h

)
(2.75)

for all −1
2
< µ < 0.

Proof. See [125, Section 4]

We now proceed with the main proof of this section, which is based on an inductive

argument similar to the one used in the proof of Theorem 2.3.2.

Proof of Theorem 2.3.3. Applying the Green formula on the set DA,δ (equation (2.50)) and

letting δ → 0 we obtain

V (ξ) =

∫ ∫
DA

(−K1(t)V (t))G1(t, ξ)dt−
∫ A

−A
V (t)

∂

∂nt
G1(t, ξ)dt+ p1(ξ) + p2(ξ), (2.76)

where p1 and p2 denote power series with positive radii of convergence. In view of equa-

tion (2.67), Definition 2.2.1 and Theorem 2.3.2, on the other hand, we see that, for any given

integer L, the boundary values of V at ξ2 = 0 satisfy

V (ξ1, 0) = V (ξ) = ue(ξ) = PLy0(ξ
1/2, ξ

1/2
) + o(ξL) for ξ2 = Im(ξ) = 0 (2.77)

(see (2.27)). Relying on equations (2.76) and (2.77) as well as Lemma 2.3.8, an inductive

argument similar to the one used in the proof of Theorem 2.3.2 shows that for any integer

N the function V satisfies an asymptotic relation of the form

V (ξ) = PN (ξ1/2, ξ
1/2

) + o(ξN ) as ξ → 0, (2.78)

where PN is an N−dependent polynomial. In view of corollaries 2.3.6 and 2.3.10, substitu-

tion of the normal derivatives of equations (2.78) and (2.27) for Im(ξ) = 0 into equation (2.16)

yields

ψ(ξ) = ξ−1/2QN1 (ξ1/2, ξ
1/2

) + ξ
−1/2QN2 (ξ1/2, ξ

1/2
) + o(ξN−1) for ξ2 = Im(ξ) = 0, (2.79)
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where QNi are N−dependent polynomials. The desired asymptotic relations (2.28) now

follow by re-expressing (2.79) in terms of the distance function d, and the proof is thus

complete.

2.4 Parametrized Integral Operators

In view of the notations in Section 1, the operators (2.4) applied to a density ψ and evaluated

at a given point x ∈ Γ can be expressed in the form

A(1)
k [ψ](x) =

QD+QN∑
q=1

∫
Γq

Gk(x, y)ψ(y)dsy for x ∈ ΓD,

A(2)
k [ψ](x) = −ψ(x)

2
+

QD+QN∑
q=1

∫
Γq

∂

∂nx
Gk(x, y)ψ(y)dsy for x ∈ ΓN .

(2.80)

We seek expressions of these operators in terms of parametrizations of the underlying integra-

tion curves. Without loss of generality, we assume the boundary curve Γ is parametrized by a

single smooth vector function y = z(τ) = (z1(τ), z2(τ)) (a ≤ τ < b) satisfying (z′1)2+(z′2)2 > δ

for some scalar δ > 0 at each point where z is differentiable; the parametrization we use for

integration on each one of the (smooth) Dirichlet and Neumann segments Γq is then taken to

equal the relevant restriction of the function z to a certain interval [aq, bq], aq ≤ bq. Clearly,

[a, b] = ∪QD+QN
q=1 [aq, bq] where the intersection of any subintervals in this union is either the

empty set or a set containing a single point.

To evaluate each one of the integrals in (2.80) for a point x ∈ Γ we rely on the decompo-

sition

H(1)
ν (ζ) = F (0)

ν (ζ) log(ζ) + F (1)
ν (ζ)

for the Hankel function H1
ν (ν ∈ R), where F

(0)
ν and F

(1)
ν are analytic functions (cf. [32, p.

68]). For each q2 ∈ JD ∪ JN two integrals over Γq2 appear in equation (2.80). Using the

substitutions x = z(t) and y = z(τ) and assuming x = z(t) ∈ Γq1 for a certain q1 ∈ JD ∪ JN
(t ∈ [aq1 , bq1 ]), we express each one of the aforementioned integrals over Γq2 in terms of the
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operator

Ĩq1,q2 [ϕ̃](t) =

∫ bq2

aq2

{
K̃1(t, τ) logR2(t, τ) + K̃2(t, τ)

}
ϕ̃(τ) dτ, (2.81)

where

R(t, τ) := |x− y| = |z(t)− z(τ)| , ϕ̃(τ) = ψ(z(τ)). (2.82)

Here the kernels K̃1(t, τ) and K̃2(t, τ) denote functions that depend on the integral under

consideration. For the integrals included in the operator A(1)
k [ψ] these kernels are given by

the products of the arc-length
√
|z′(t)|2 and the factors F

(0)
ν and F

(1)
ν for ζ = kR(t, τ) and

ν = 0. For the integrals included in the operator A(2)
k [ψ], on the other hand, an additional

smooth factor is included, and the value ν = 1 is used; see [32, p. 68] for details. In

particular, for each t ∈ [a, b], K̃1(t, τ) and K̃2(t, τ) are smooth (resp. analytic) functions of

τ for all τ ∈ [aq2 , bq2 ] provided y(τ) is itself smooth (resp. analytic). (The notations K̃1, K̃2,

and ϕ̃ are used in connection with the basic parametrization z; corresponding kernels K1,

K2, and density ϕ, which include additional “smoothing” reparametrizations, are utilized in

Sections 2.5 and 3.3 below.)

Remark 2.4.1. Clearly the kernel in the integral operator (2.81) (the quantity in curly

brackets in this equation) is singular, smooth, or nearly singular depending, respectively, on

whether 1) q1 = q2 = q (that is, t, τ ∈ [aq, bq]); 2) q1 6= q2 and t is “far” from [aq2 , bq2 ], or

3) q1 6= q2 and t is “close” to [aq2 , bq2 ]. The significance of the terms “far” and “close” and

corresponding selections of algorithmic thresholds is taken up in Remark 2.4.2.

Remark 2.4.2. In the case q1 6= q2 point t is considered to be “far” from the interval [aq2 , bq2 ]

(case 2 in Remark 2.4.1) provided

min(|zq1(t)− zq2(aq2)|, |zq1(t)− zq2(bq2)|) > h1, (2.83)

that is, provided the minimum Euclidean distance between zq1(t) and the interval endpoints

larger than h1, where h1 is a given (user-provided) parameter which is to be selected so as to

maximize overall accuracy. Otherwise the point t is considered to be “close” to the interval

[aq2 , bq2 ] (case 3 in Remark 2.4.1).
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Remark 2.4.3. In view of (2.3.3) the the asymptotic behavior of ϕ̃ near τ = aq2 and near

τ = bq2 is given, respectively, by the relations

ϕ̃(τ) = (τ − aq2)−1/2P3((τ − aq2)1/2) +O((τ − aq2)N−1−ε),

ϕ̃(τ) = (τ − bq2)−1/2P4((τ − bq2)1/2) +O((τ − bq2)N−1−ε),
(2.84)

where, once again, for any given integer N , P3 and P4 are polynomials that depend on q2

and N .

We now turn to the design of high-order accurate quadrature rules for integrals of

the type (2.81) which, by necessity, must take into account the singular character of the

integrand—including the explicit logarithmic singularities and near singularities mentioned

above as well as the singularities that the (unknown) density function ϕ̃ possesses at Dirichlet-

Neumann junctions and corner points (Remarks 2.4.1 and 2.4.3).

2.5 Singularity resolution via Fourier Continuation

Theorem 2.3.2 tells us that the solutions of Zaremba problem (2.1) possess a very specific sin-

gularity structure near the Dirichlet-Neumann juntions—which, as shown in Theorem 2.3.3,

are inherited by the solutions of the corresponding integral equation system (2.4). In par-

ticular, equation (2.28) shows that the integral equation solutions can be expressed as a

product of the function 1/
√
d and a smooth function of

√
d, where d denotes the distance to

the Dirichlet-Neumann junction.

The question thus arises as to how to incorporate the singular characteristics of the

integral equation solutions in order to design a numerical integration method of high order

of accuracy for the numerical discretization of the integral equation system (2.4). A relevant

reference in these regards is provided by the contribution [19] (see also [129]), which provides

a high-order solver for the problem of scattering by open arcs. As is known, the open-arc

integral equation solutions possess singularities around the end-points: they can be expressed

as a product of the function 1/
√
d and a smooth function of d—or, in other words, the

asymptotics of the integral solutions are functions which only contain powers of
√
d with
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exponents equal to (2n − 1) for n ≥ 0. As shown in [19] a change of variables of the form

t = cos s, 0 ≤ s ≤ π in parameter space completely regularizes the problem, and it thus

gives rise to spectrally accurate numerical approximations of the form

ψ ∼
n∑
j=0

Cj cos(js) 0 ≤ s ≤ π (2.85)

for the integral-equation solutions ψ.

As shown in Theorem (2.3.3), on the other hand, the asymptotic expansions of the

integral-equation solutions ψ considered in this thesis contain all integer powers of
√
d, and

therefore, as established in [2], a cosine change of variables such as the one considered above

leads to a full Fourier series—containing all 2π-periodic cosines and sines,

ψ ∼
n∑
j=0

Cj cos(js) +Dj sin(js) 0 ≤ s ≤ π, (2.86)

even though values for ψ can only be determined for 0 ≤ s ≤ π. The key element that allows

such expansions in the extended interval [0, 2π] is the Fourier Continuation (FC) method

introduced in [3, 21] and first suitably generalized to the present context in [2]. This leads

to a Fourier series that converges with high-order accuracy m to the integral density ψ in

the interval [0, π]; as in reference [2], the numerical examples in the present thesis are based

on use of the value m = 5.

As mentioned above, all singularities must be taken into account in order to obtain an

overall high-order accurate solver. In what follows we describe an approach that simultane-

ously eliminates the density singularities and accounts for both the logarithmically singular

kernel K̃1 · logR2 and smooth kernel K̃2 in (2.81) and thereby results in a high-order accu-

rate method for evaluation of this integral operator. To do this we proceed by introducing

a cosine transformation for the integral in a segment Γq2—after a necessary scaling to the

interval [−1, 1].

In detail we first map each parameter interval [aq2 , bq2 ] to the interval [−1, 1] by means
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of the linear transformations

τ = ξq2(ρ) :=
(bq2 − aq2)ρ+ (aq2 + bq2)

2
. (2.87)

Clearly, values of t within [aq1 , bq1 ] are given by t = ξq1(r) for some r ∈ [−1, 1]. Denote

K̃q1,q2(r, ρ) = K̃1(ξq1(r), ξq2(ρ)) logR2(ξq1(r), ξq2(ρ)) + K̃2(ξq1(r), ξq2(ρ)).

After application of this transformation, the integral (2.81) becomes

Ĩq1,q2 [ϕ̃](r) =
bq2 − aq2

2

∫ 1

−1

K̃q1,q2(r, ρ)ϕ̃(ξq2(ρ)) dρ. (2.88)

Introducing the sinusoidal change of variables

r = cos(s) and ρ = cos(σ), (2.89)

and letting

ϕq2(σ) = ϕ̃(ξq2(cos(σ))) (2.90)

and

Kq1,q2(s, σ) = K̃q1,q2(cos(s), cos(σ)), (2.91)

equation (2.88) becomes

Iq1,q2 [ϕq2 ](s) =
bq2 − aq2

2

∫ π

0

Kq1,q2(s, σ)ϕq2(σ) sin(σ)dσ. (2.92)

Lemma 2.5.1. The product ϕq2(σ) sin(σ) is a smooth function of σ for σ ∈ [0, π].

Proof. Clearly, for any integer ` ≥ −1 for τ near aq2 (which corresponds to ρ near −1 and σ

near π), up to multiplicative constants we have

(τ − aq2)`/2 sin(σ) ∼ (ρ+ 1)`/2 sin(σ) ∼ sin(σ)`+1.
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Similarly for τ near bq2 (which corresponds to ρ near 1, to σ near zero), once again up to

multiplicative constants there holds

(τ − bq2)`/2 sin(σ) ∼ (ρ− 1)`/2 sin(σ) ∼ sin(σ)`+1.

It then follows from Theorem 2.3.3 that ϕq2(σ) sin(σ) is a smooth function of σ and the proof

is complete.

2.5.1 FC-based algorithm: Fourier Continuation

We seek to produce high order quadrature rules for evaluation of the integral operator

Iq1,q2 [ϕ](r) in equation (2.92) by exploiting existing explicit formulae for evaluation of inte-

grals of the form

∫ π

0

log |r − cos(σ)| cos(nσ)dσ and

∫ π

0

log |r − cos(σ)| sin(nσ)dσ (2.93)

for all real values of r

Remark 2.5.2. Explicit expressions for the integrals (2.93) in the case of cosine integrands

and |r| ≤ 1 can be found in [17, 96, 129]. Corresponding expressions for the sine inte-

grands and for the case |r| > 1, which are derived in Appendix C, in turn, are reproduced

in equations (2.107)-(2.108) below. Note that values |r| ≤ 1 give rise to weakly singular

logarithmic integration, while values |r| > 1 result in smooth integrands which, however, are

nearly singular for values of r close to 1 and −1.

In order to take advantage of the expressions (2.93) we need to express the integrand in

equation (2.92) in terms of the functions cos(nσ) and sin(nσ); we do this by relying on a

certain Fourier Continuation method [3, 21, 91], which we discuss in what follows.

To demonstrate the Fourier Continuation procedure as it applies in the present context

we consider the function f̃(ρ) = arccos(ρ) whose asymptotic expansions around ρ = 1 and

ρ = −1, just like those for the function ϕ̃(ξq2(ρ)), contain the singular powers (ρ− 1)n/2 and

(ρ + 1)n/2, respectively, for all positive odd values of the integer n. (Note in passing that
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the function ϕ̃(ξq2(ρ)) contains, additionally, the smooth terms (ρ−1)n/2 and (ρ+ 1)n/2 that

result for even values of n; this, however, is of no significance in the present example.) The

left portion of Figure 2.4 displays the function f̃ on the interval [−1, 1]. Under the cosine

change of variables used earlier in this section in the definition of the function ϕ̃(ξq2(ρ)),

this function becomes f(σ) = f̃(cos(σ)) = σ on the interval [0, π]. The expansion sought

above for the function f̃ , would, in this simplified example, require representation of the

function f(σ) = σ in a rapidly convergent series in cos(nσ) and sin(nσ). This objective

could be achieved by means of an adequate globally smooth and 2π-periodic continuation

of the function f . Although theoretically this does not present difficulties, a fast and stable

numerical algorithm for evaluation of such a Fourier series has been provided only recently—

this is the Fourier Continuation (FC) method mentioned above [3, 21, 91]. A brief overview

in these regards is presented in appendix A. The result of an application of the FC approach

to the function f(σ) discussed above is given in Figure 2.4: the desired globally smooth

periodic function, which is given as a rapidly convergent Fourier expansion in terms of the

functions cos(nσ) and sin(nσ), is depicted on the right portion of this figure.

Figure 2.4: A cosine change of variables on the (singular) curve displayed in the left image
produces the y = x curve between 0 and π in the right image. An application of the Fourier
Continuation method then gives rise to the dashed-line continuation to a fully 2π-periodic
globally-smooth function shown on the right image.

2.5.1.1 FC-based algorithm: Canonical kernel decomposition

This section provides canonical decompositions for the integral kernels in equation (2.92)

in terms of smooth factors and factors that explicitly display logarithmic singularities and
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near-singularities. We consider three cases that parallel those in Remark 2.4.1; in each case

the decomposition depends on the singular character of the kernel Kq1,q2(s, σ):

1) Case q1 6= q2 and t is “far” from [aq2 , bq2 ]

The kernel Kq1,q2(s, σ) is a smooth function of σ in this case (Remark 2.4.1).

2) Case q1 = q2 = q

Introducing the kernels

K1
q,q(s, σ) = 2K̃1(ξq(cos(s)), ξq(cos(σ))),

K2
q,q(s, σ) = K̃2(ξq(cos(s)), ξq(cos(σ))) +

K1
q,q(s, σ)

2
log

(
R2(ξq(cos(s)), ξq(cos(σ)))

| cos(s)− cos(σ)|2

)
,

(2.94)

(where, for s = σ, an appropriate limit as σ → s is taken for the fraction in the argument

of the logarithm in equations (2.94) and where the quantity K1
q,q used in the second

equation is defined in the first equation), the required decomposition is

Kq,q(s, σ) = K1
q,q(s, σ) log |cos(s)− cos(σ)|+K2

q,q(s, σ). (2.95)

3) Case q1 6= q2 and t is “close” to [aq2 , bq2 ]

As mentioned in Remark 2.4.1, in this case the kernel is nearly singular. A specialized

procedure is described in what follows which, using equation (2.87) beyond its domain of

definition—for values of ρ and τ for which |τ | > 1—gives rise to a useful decomposition

in the present case. In detail, taking advantage of the smoothness of the curve Γ (which

is assumed throughout this section) we use the changes of variables (2.87) and (2.89) that

relate τ to σ to also express t as a function of s. We thus define a function rout(s) by

means of the relation

t = ξq2(r
out(s)) = ξq1(cos(s)); (2.96)
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it is easy to check that, for a given s ∈ [0, π], r = rout(s) lies in the interval

[
2aq1 − aq2 − bq2

bq2 − aq2
,
2bq1 − aq2 − bq2

bq2 − aq2

]
, (2.97)

and, in particular, rout(s) is outside the interval [−1, 1]. Owing to the continuity of the

boundary parametrization z(t), further, rout(s) is close to either 1 or −1 for values of s

near 0 or π.

On the basis of the sinusoidal change of variables ρ = cos(σ) (cf. (2.89)) and the

reparametrization r = rout(s) we can now produce the desired decomposition for the

kernel (2.91): letting

K1
q1,q2

(s, σ) = 2K̃1(ξq1(r
out(s)), ξq2(cos(σ))),

K2
q1,q2

(s, σ) = K̃2(ξq1(r
out(s)), ξq2(cos(σ))) +

K1
q1,q2

(s, σ)

2
log

(
R2(ξq1(r

out(s)), ξq2(cos(σ)))

|rout(s)− cos(σ)|2

)
,

(2.98)

(where the quantity K1
q1,q2

used in the second equation is defined in the first equation)

we obtain

Kq1,q2(s, σ) = K1
q1,q2

(s, σ) log
∣∣rout(s)− cos(σ)

∣∣+K2
q1,q2

(s, σ). (2.99)

2.5.1.2 FC-based algorithm: Numerical integration

This section describes numerical methods for evaluation of the integrals Iq1,q2 (equation (2.92))

for the three cases considered in Section 2.5.1.1. In each case 2π-periodic Fourier continuation

approximations of the form

φjq1,q2(s, σ) ∼
n∑
`=0

αj` cos(`σ) + βj` sin(`σ) j = 1, 2 (2.100)

(that is, partial Fourier continuation expansions in the variable σ with coefficients αj` = αj`(s)

and βj` = βj` (s)) are used, where φjq1,q2 = φjq1,q2(s, σ) are certain smooth functions of s and
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σ for 0 ≤ s, σ ≤ π. With reference to equation (2.92), Lemma 2.5.1 and equations (2.95)

and (2.99) (and as detailed in what follows), in all three cases φjq1,q2 denotes the product

of ϕq2(σ) sin(σ) and the relevant smooth function that multiplies a singular log (which we

may call the “log prefactor”) for j = 1, and the product of ϕq2(σ) sin(σ) and the smooth

remainder term for j = 2. Note that in case 1 of section 2.5.1.1 the log prefactor vanishes.

The numerical quadrature methods for each of the three cases considered in Section 2.5.1.1

are given in what follows.

1) Case q1 6= q2 and t is “far” from [aq2 , bq2 ]

From point 1) in Section 2.5.1.1, in this case we set

φ1
q1,q2

(s, σ) = 0 , φ2
q1,q2

(s, σ) = Kq1,q2(s, σ)ϕq2(σ) sin(σ). (2.101)

The desired quadrature rule for (2.92) results from use of (2.100) and explicit evaluation

of the integrals of sines and cosines in the resulting approximate expression

Iq1,q2 [ϕq2 ](s) ∼
bq2 − aq2

2

n∑
`=0

∫ π

0

[α2
`(s) cos(`σ) + β2

` (s) sin(`σ)]dσ. (2.102)

2) Case q1 = q2 = q

Using the kernel decomposition (2.95) we set

φ1
q,q(s, σ) = K1

q,q(s, σ)ϕq(σ) sin(σ) and φ2
q,q(s, σ) = K2

q,q(s, σ)ϕq(σ) sin(σ), (2.103)

so that in view of (2.100) we have

I(q,q)[ϕq](s) ∼
bq − aq

2

n∑
`=0

∫ π

0

log | cos(s)− cos(σ)|[α1
`(s) cos(`σ) + β1

` (s) sin(`σ)]dσ

+
bq − aq

2

n∑
`=0

∫ π

0

[α2
`(s) cos(`σ) + β2

` (s) sin(`σ)]dσ.

(2.104)

Our quadrature rule for (2.92) in the present case thus results from explicit evaluation
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of integrals of sines and cosines as well as integrals of the form (2.93) with r = cos s

(equations (2.107) and (2.108) below).

3) Case q1 6= q2 and t is “close” to [aq2 , bq2 ]

Using the decomposition (2.99) and setting

φ1
q1,q2

(s, σ) = K1
q1,q2

(s, σ)ϕq2(σ) sin(σ) and φ2
q1,q2

(s, σ) = K2
q1,q2

(s, σ)ϕq2(σ) sin(σ),

(2.105)

from (2.100) we have

Iq1,q2 [ϕq2 ](s) ∼
bq2 − aq2

2

n∑
`=0

∫ π

0

log |rout(s)− cos(σ)|[α1
`(s) cos(`σ) + β1

` (s) sin(`σ)]dσ

+
bq2 − aq2

2

n∑
`=0

∫ π

0

[α2
`(s) cos(`σ) + β2

` (s) sin(`σ)]dσ.

(2.106)

A quadrature rule for (2.92) now results from explicit evaluation of integrals of sines

and cosines as well as integrals of the form (2.93) with r = rout(s) (equations (2.107)

and (2.108) below).

The integrals (2.93) can be produced in closed form for all real values of r (cf. Remark 2.5.2).

The well known expressions for the log-cosine integrals (Symms operator) [96]∫ π

0

log |r − cos(σ)| cos(nσ)dσ =
1

2n
cos(n arccos(r)) for n 6= 0,∫ π

0

log |r − cos(σ)|dσ =
log(2)

2
for n = 0

(2.107)
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are valid provided |r| ≤ 1. The recently derived expression (see Appendix C)

∫ π

0

log(r − cos(σ))einσdσ = (−i)
[
−1− ωn1

n
log |1− ω1|+

(−1)n − ωn1
n

log |1 + ω1|

+
1

n

n−1∑
j=0

(
ωj1 + ωj2

)(1− (−1)n−j)

n− j
− 1− ωn2

n
log |1− ω2|

+
(−1)n − ωn2

n
log |1 + ω2|−iπ

ωn2
n
− 1

n2
[1− (−1)n] + log(2)

1− (−1)n

n

]
,

(2.108)

where ω1 and ω2 are the roots of the polynomial

2ωr − ω2 − 1 = − (ω − ω1) (ω − ω2) , (2.109)

holds for all real values of r; the real and imaginary parts of this expression provide the

necessary log-cosine and log-sine integrals.

In view of the high-order convergence of the FC method (cf. Section 4.5 and Appendix A),

a high-order accurate algorithm for evaluation of Iq1,q2 [ϕ] (and thus Ĩq1,q2 [ϕ̃]) on the sole

basis of a uniform σ mesh results through application of equations (2.107) and (2.108) in

conjunction with equations (2.102), (2.104), and (2.106).

Remark 2.5.3. In the following chapter we propose an algorithm that is applicable in the

case Γ is a non-smooth but piecewise smooth curve Γ. While the methods of that chapter

can also be used for smooth curves Γ, the FC-based methods introduced in the present section

are generally significantly more efficient for a given prescribed error and more accurate for

a given discretization size. The improvements that result from use of the FC-based approach

are demonstrated in Section 2.6 and a comparison with more general Lipschitz-boundary

algorithm is carried out in Section 4.5.5 in the context of Zaremba eigenvalue problems.

2.6 Applications and numerical results

The present section presents results of applications of the new solvers to problems of scat-

tering of Zaremba type by smooth obstacles. This entails solution of the problem (2.1) for
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exterior domains Ω and for which the right hand sides f and g are given by

f = eikα·x = eik(cos(α)x1+sin(α)x2))

g = nx · eikα·x
(2.110)

(where α is the angle of incidence). Note, however, that as mentioned in Theorem 2.2.3

the integral equation system (2.4) is not uniquely solvable for a discrete set of values that

correspond to Dirichlet eigenvalues of the complement R2 \ Ω; the numerical approach we

use to eliminate this difficuty is discussed in Appendix B.

In our first experiment we apply our scattering solver to the kite-shaped scatterer that

is presented in Figure 2.6, whose smooth boundary is given by the parametrization

x1 = cos(t) + 0.65 cos(2t)− 0.65 and x2 = 1.5 sin(t), (2.111)

and we assume Neumann and Dirichlet boundary conditions in the interval t ∈ [π/2; 3π/2]

and its complement, respectively. In this figure and throughout this thesis Dirichlet and

Neumann boundary segments ΓD and ΓN are color-coded in red and blue, respectively. Fig-

ure 2.8 demonstrates the high-order convergence results for the value of the scattered field

u(x0) at the particular point x0 = (1, 2), which lies in the exterior of the domain. Figures 2.6

and 2.7 depict the scattering pattern for the incident wave coming at an angle α = π/8 with

wavenumber k = 40. Figure 2.5 displays the unknown current ψ (see equation (2.3)) obtained

in the course of the present experiment. Note the indication of the d−1/2 behavior of the inte-

gral density near the Dirichlet-Neumann junction. The character of the Dirichlet-Neumann

singularity demonstrated in this image is consistent with the results of Theorem 2.3.3, but

it suggests that densities on the Neumann segments may in fact be smoother than implied

by that theorem.
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Figure 2.5: Integral density along the entire boundary (top) and zoomed near the Dirichlet-
Neumann junction (bottom). The character of the singularity at the Dirichlet-Neumann
junction is consistent with the results of Theorem 2.3.3, but it suggests that densities on the
Neumann segments may in fact be smoother than implied by that theorem.
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Figure 2.6: Scattering from a kite-shaped domain under Zaremba boundary conditions.
Scattered field. In this figure and throughout this thesis Dirichlet and Neumann boundary
segments ΓD and ΓN are color-coded in red and blue, respectively.
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Figure 2.7: Scattering from a kite-shaped domain under Zaremba boundary conditions. Total
field.
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Figure 2.8: Convergence of the value u(x0) for a kite shaped domain with k = 10.

The following experiment concerns the unit disc (where Dirichlet and Neumann boundary

conditions are prescribed on the left and right halves of the disc boundary). Figures 2.9

and 2.10 demonstrate the diffraction pattern for a total field solved in the domain exterior

to the disc (incident wave angle α = π/8 and wavenumber k = 50.). Note the expected

asymmetry in the scattered field, as well as the wave patterns near both transition points.
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Figure 2.9: Scattering from a disc under Zaremba boundary conditions. Scattered field.
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Figure 2.10: Scattering from a disc under Zaremba boundary conditions. Total field.

To conclude this section we present a brief comparison of the proposed solvers with one

of the most efficient Zaremba solvers previously available [64]. The method introduced in

reference [64] is based on iterative inverse preconditioning that solves Zaremba problems for
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the Laplace and elasticity equation. This method, which applies to a variety of singular

problems, is described in detail with examples in [65], and it has been implemented in

a numerical MATLAB package which is freely available (http://www.maths.lth.se/na/

staff/helsing/Tutor/index.html). Zaremba boundary conditions are not implemented

in the package, but even for the simpler Dirichlet problem the execution time required by

this algorithm is not as favorable as those required by the solvers proposed in this thesis: a

computing time of 0.46 seconds is required for the Dirichlet problem for Helmholtz equation,

while with the FC-based solver presented in this thesis executes in 0.06 seconds for the

significantly more challenging Zaremba problem for Helmholtz equation on the same domain

(unit disc), with the same incident wave frequency k = 2 and for the same relative error 10−13

in the solution. (All the numerical results presented in this thesis were obtained on a single

core of a 2.4 GHz Intel E5-2665 processor.) Such time differences, a factor of eight in this case,

can be very significant in practice, in contexts where thousands or even tens of thousands of

solutions are necessary, as is the case in inverse problems as well as in our own solution of high-

frequency eigenvalue problems, etc. The main reason for the difference in execution times

is that even though the iterative solver requires a limited number of iterations, iteration-

dependent matrix entries occur (in view of corresponding iteration dependent discretization

points), which require large number of evaluations of expensive Hankel functions at each

iteration, and, thus, a significantly increased computing cost.

Additional results demonstrating the high-order convergence of the FC-solver when it is

applied to solve challenging eigenvalue problems are presented in Section 4.5.

61



Chapter 3

Integral equation solvers for the
Zaremba boundary value problem on
Lipschitz domains

3.1 Preliminaries

We consider interior and exterior boundary value problems of the form

∆u(x) + k2u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ ΓD,

∂u(x)

∂nx
= g(x) x ∈ ΓN

(3.1)

for u ∈ H1
loc(Ω) (with a Sommerfeld radiation condition in case of exterior problems).

Throughout this chapter Ω ⊂ R2 denotes a bounded simply-connected domain with a Lips-

chitz boundary Γ = ∂Ω and the Dirichlet and Neumann boundary portions ΓD and ΓN are

disjoint subsets of Γ.

Let the piecewise-smooth boundary Γ be expressed in the form

Γ =

QN+QD⋃
q=1

Γq, (3.2)

where QD and QN denote the numbers of smooth Dirichlet and Neumann boundary portions,

and where for 1 ≤ q ≤ QD (resp. QD + 1 ≤ q ≤ QD + QN)) Γq denotes a smooth Dirichlet
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(resp. Neumann) segment of the boundary curve Γ. Clearly, letting

JD = {1, . . . , QD} and JN = {QD + 1, . . . , QD +QN}

we have that

ΓD =
⋃
q∈JD

Γq and ΓN =
⋃
q∈JN

Γq

are the (piecewise smooth) portions of Γ upon which Dirichlet and Neumann boundary con-

ditions are enforced, respectively. Note that in view of the assumption above both Dirichlet-

Neumann junctions and non-smooth points in Γ necessarily occur at a common endpoint of

two segments Γq1 , Γq2 (1 ≤ q1, q2 ≤ QD + QN). Note, additionally, that consecutive values

of the index q do not necessarily correspond to consecutive boundary segments (see, e.g.,

Figure 3.1).

Figure 3.1: Boundary decomposition illustration. Dashed line: Neumann boundary. Solid
line: Dirichlet boundary.

Remark 3.1.1. Throughout this chapter the decomposition of the curve Γ is taken in such

a way that no Dirichlet-Dirichlet or Neumann-Neumann junctions occur at a point at which

the curve Γ is smooth. In other words, every endpoint of Γq is either a Dirichlet-Neumann

junction or a non-smooth point of Γ. Clearly this is not a restriction: two Dirichlet (resp.

Neumann) segments Γq1 and Γq2 that meet at a point at which Γ is smooth can be combined

into a single Dirichlet (resp. Neumann) segment.
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We employ the integral equation approach described in detail in Section 2.4 and write

here the integral equation system (2.4) for the problem 3.1:∫
Γ

Gk(x, y)ψ(y)dsy = f(x) x ∈ ΓD,

γ
ψ(x)

2
+

∫
Γ

∂Gk(x, y)

∂nx
ψ(y)dsy = g(x) x ∈ ΓN .

(3.3)

3.2 Singularities in solutions and integral equation den-

sities

Figure 3.2: Point y0 of singularity of the density function ψ. For α = 1 y0 may or may not
be a point at which Γ is smooth (infinitely differentiable); cf. Remark 3.1.1.

This section collects known results about the smoothness properties and singularities of

the solutions of equation (3.1) and the corresponding integral densities in equation (3.3). The

singular character of these functions is incorporated as part of the discretization strategies

we introduce in Section 3.3.

Let y0 = (y0
1, y

0
2) ∈ Γ be either a corner point (with associated corner angle απ) at

which a Dirichlet-Neumann junction may or may not occur, or a point around which the

curve Γ is smooth (α = 1) and which separates Dirichlet and Neumann regions within Γ.

In either case y0 is a singular point for the problem. Following [126] in order to express

the singular character of the solutions u(y) (y = (y1, y2) ∈ Ω) and corresponding integral
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equation densities ψ(y) (y = (y1, y2) ∈ Γ) around y0 we use certain functions ûy0 = ûy0(w),

ψ̂+
y0

= ψ̂+
y0

(d) and ψ̂−y0 = ψ̂−y0(d). Here the left (resp. right) function ψ̂−y0 (resp ψ̂+
y0

) is the

density as a function of the distance d to the point y0 in a small one-sided neighborhood

immediately before (resp. immediately after) the point y0 as the curve is traversed in the

counterclockwise direction, and w = (y1−y0
1)+i(y2−y0

2) is a complex variable (see Figure 3.2).

The functions ûy0 , ψ̂
+
y0

and ψ̂−y0 are given by

ûy0(w) = u(y),

ψ(y) = ψ̂+
y0

(d(y)) y ∈ Γq1,

ψ(y) = ψ̂−y0(d(y)) y ∈ Γq2,

(3.4)

where, as mentioned above

w = (y1 − y0
1) + i(y2 − y0

2) ; d(y) =
√

(y1 − y0
1)2 + (y2 − y0

2)2. (3.5)

It is known [125, 126] that, under our assumption that the curve Γ is piecewise smooth,

for any given integer N and any given positive number ε the eigenfunctions in equation (4.1)

can be expressed in the form

ûy0 = log(w)P 1
y0

+ log(w̄)P 2
y0

+ P 3
y0

+O(wN−ε) (3.6)

for all w in a neighborhood of the point, where P 1
y0
, P 2

y0
and P 3

y0
are polynomials in w, w̄,

w1/(2α), w̄1/(2α) if α is irrational; P 1
y0
, P 2

y0
and P 3

y0
are polynomials in w, w̄, w1/(2α), w̄1/(2α),

wq log(w), w̄q log(w̄) if α = p/q for certain relatively prime integers p and q where q is

odd, and P 1
y0
, P 2

y0
, and P 3

y0
are polynomials in w,w̄,w1/(2α),w̄1/(2α),wq/2 log(w), w̄q/2 log(w̄) if

α = p/q for relatively prime integers p and q where q is even. (In fact, for Dirichlet-Dirichlet

and Neumann-Neumann corners some of the coefficients in the asymptotic expressions above

vanish and weaker singularities—polynomials in powers of 1/α instead of 1/(2α) in equa-

tion (3.6)—thus result; see [125] for details. This point is not of any practical significance in

the context of this thesis, however.)
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The singular character of the density ψ plays a fundamental role in our proposed nu-

merical strategy for discretization of the system of integral equations (3.3). To determine

the singularities of the function ψ we assume without loss of generality that Ω is an interior

domain and we let ue denote the conjugate solution of an auxiliary Dirichlet problem out-

side Ω with Dirichlet boundary values given by the boundary values of the solution u (see

Definition 2.2.1). In view of Theorem 2.2.4, which shows that the solution ψ of the integral

equation system (3.3) is given by

ψ =
∂ue
∂n

∣∣∣∣
Γ

− ∂u

∂n

∣∣∣∣
Γ

, (3.7)

it can then be shown that around the point (y0
1, y

0
2) the functions ψ̂+

y0
and ψ̂−y0 of equation (3.4)

are given in terms of the distance function (3.5) by

ψ̂+
y0

(d) = d1/(2α)−1Q1
y0

(d, d1/(2α), log(d)) +O(dN−1−ε),

ψ̂−y0(d) = d1/(2α)−1Q2
y0

(d, d1/(2α), log(d)) +O(dN−1−ε)
(3.8)

for all N ∈ N. For the sake of conciseness we do not present a proof of this result here, and

we merely point out that the proof is entirely analogous to the one presented in Section 2.3.3

in a slightly different context. (Note that, while correct, the boundary expressions (3.8)

are less detailed than the corresponding volumetric expression (3.6). In our context the

additional detail provided by equation (3.6), which shows that the logarithmic terms are

always accompanied by a wr factor for an integer r equal to either q or q/2, do not carry

any particular significance.)

3.3 Graded-mesh algorithm

As can be seen by consideration of equations (3.8), the presence of corners in the domain

boundary affects significantly the singular character of the Zaremba integral density. In or-

der to accurately approximate our integral operators for domains with corners we utilize a

quadrature method [34, 79, 83, 95, 108] which, based on changes of variables that induce
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graded meshes and vanishingly small Jacobians, regularize the associated integrands at cor-

ners and thus enable high order integration even in presence of density singularities. To

describe the proposed graded mesh algorithm, here we re-express the boundary integrals in

the system (3.3) in terms of the operators

Ĩq1,q2 [ϕ̃](t) =

∫ bq2

aq2

{
K̃1(t, τ) logR2(t, τ) + K̃2(t, τ)

}
ϕ̃(τ) dτ ; (3.9)

cf. Section 2.4

3.3.1 Graded-mesh algorithm: Polynomial change of variables

A set of quadrature weights similar to those given in [34, p. 75] are incorporated in the

present context to account accurately for the logarithmic singularity of the kernel and the

singularities of the integral density at corners. As in [34] a graded mesh on each of the

intervals [aq, bq], q = 1, . . . , QD+QN is induced by means of a polynomial change of variables

of the form τ = wq(σ), where

wq(σ) = aq + (bq − aq)
[v(σ)]p

[v(σ)]p + [v(2π − σ)]p
, 0 ≤ σ ≤ 2π,

v(σ) =

(
1

p
− 1

2

)(
π − σ
π

)3

+
1

p

σ − π
π

+
1

2
,

(3.10)

and where p ≥ 2 is an integer. Each function wq is smooth and increasing in the interval

[0, 2π], and their k-th derivatives satisfy w
(k)
q (0) = w

(k)
q (2π) = 0 for 1 ≤ k ≤ p− 1.

Remark 3.3.1. In addition to change of variables (3.10) and associated graded meshes,

the method [34] for domain with corners (which is only applicable to the Dirichlet problem)

relies on a certain subtraction of values of the integral density at corner points times a Gauss

integral to provide additional regularization of the integration process. The algorithms in this

thesis, which can be used to treat all three, the Dirichlet, Neumann, and Zaremba boundary

value problems, do not incorporate any such subtraction; however, see Remark 3.3.3 for a

brief discussion in these regards.)

In detail, the integrand in equation (3.9) contains singularities of various types, namely
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1. Singularities that result solely from corresponding singularities in the density ϕ̃—in

the term K̃1(t, τ) logR2(t, τ)ϕ̃(τ) for q2 6= q1 and in the term K̃2(t, τ)ϕ̃(τ) for both

q2 6= q1 and q2 = q1; and

2. Combined singularities induced by the density and the logarithmic factor—in the term

K̃1(t, τ) logR2(t, τ)ϕ̃(τ) for q1 = q2.

Remark 3.3.2. Concerning point 1 above note that, although for q1 6= q2 the factor logR2(t, τ)

is smooth, this term does give rise to a logarithmic near-singularity for t close to either aq2

or bq2. It is easy to check, however, that the approach provided below for treatment of the

singular character of ϕ̃ suffices to account with high-order accuracy for the near-logarithmic

singularity as well.

Using the change of variables (3.10) for both integration and observation variables, that is,

setting t = wq1(s) and τ = wq2(σ), the integral (3.9) can be re-expressed in the form

Iq1,q2 [ϕ](s) =

∫ 2π

0

K̃1(wq1(s), wq2(σ)) logR2(wq1(s), wq2(σ))ϕq2(σ)w′q2(σ) dσ+∫ 2π

0

K̃2(wq1(s), wq2(σ))ϕq2(σ)w′q2(σ) dσ,

(3.11)

where ϕq2(σ) = ϕ̃(wq2(σ)). This procedure effectively treats the density singularities men-

tioned in point 1 above. Indeed, since values p ≥ 2 are used for the parameter p in equa-

tion (3.10) and given the singular character (3.8) of the density ϕ̃, the product ϕ(σ)w′q2(σ)

is smoother than ϕ̃: this product can be made to achieve any finite order of differentiability

by selecting p large enough.

To deal with the singularities mentioned in point 2 above, on the other hand, we utilize

the following notations: for q1 = q2 = q, we let

K1
q,q(s, σ) = K̃1(wq(s), wq(σ)),

K2
q,q(s, σ) = K̃1(wq(s), wq(σ)) log

(
R2(wq(s), wq(σ))

4 sin2 s−σ
2

)
+ K̃2(wq(s), wq(σ)).

(3.12)

Note that the “diagonal term” that occurs in the kernel K2
q,q for s = σ is given by K2

q,q(s, s) =
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2K̃1(wq(s), wq(s)) log(w′q(s)|z′(wq(s))|) + K̃2(wq(s), wq(s)). Using these transformations the

integrals (3.11) for q1 = q2 = q can be re-expressed in the form

Iq,q[ϕq](s) =

∫ 2π

0

K1
q,q(s, σ) log(4 sin2 s− σ

2
)ϕq(σ)w′q(σ) dσ +

∫ 2π

0

K2
q,q(s, σ)ϕq(σ)w′q(σ) dσ.

(3.13)

3.3.2 Graded-mesh algorithm: Discretization and quadratures

In view of the discussion presented in Section 3.3.1 our overall numerical algorithm for

evaluation of the integrals (3.11) (and thus (3.9)) proceeds through separate consideration

of the cases q1 = q2 = q and q1 6= q2. In the case q1 = q2 = q we utilize the expression (3.13):

the first (resp. second) integral in this equation is evaluated by means of the logarithmic

quadrature (3.14) below (resp. the spectrally accurate trapezoidal rule (3.15) below). For

the case q1 6= q2, on the other hand, we use the expression (3.11) directly: we combine

both integrals into one which is then evaluated by means of the trapezoidal rule (3.15). The

logarithmic and trapezoidal rules mentioned above proceed as follows:

• Logarithmic quadrature (q1 = q2 = q).

We consider integrals whose integrand, like the one in the first integral in equa-

tion (3.13), consists of a product of a smooth 2π-periodic function f times the log-

arithmic factor log
(
4 sin2 s−σ

2

)
. Such integrals are produced with spectral accuracy by

means of the rule

∫ 2π

0

f(σ) log

(
4 sin2 s− σ

2

)
dσ ∼

2n∑
j=1

R
(n)
j (s)f(σj), (3.14)

where σj = (j−1)π/n, n ∈ N and where the quadrature weights Rj(s) are given by [32,

p. 70]

Rj(s) = −2π

n

n−1∑
m=1

1

n
cosm(s− σj)−

π

n2
cosn(s− σj).
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Following [19] we note that, letting

Rk = −2π

n

n−1∑
m=1

1

n
cos

mkπ

n
− (−1)kπ

n2

we have Rj(σi) = R|i−j|—so that the weights Rj(σi) can be evaluated rapidly by means

of Fast Fourier Transforms.

• Trapezoidal rule.

As is well known, spectrally accurate integrals of smooth 2π-periodic functions f can

be obtained by means of the trapezoidal rule

∫ 2π

0

f(σ) dσ ∼ π

n

2n∑
j=1

f(σj), (3.15)

where again σj = (j − 1)π/n.

Remark 3.3.3. With reference to Remark 3.3.1, subtraction of a certain multiple of a Gauss

integral can be used in the case of the Dirichlet problem to somewhat mollify corner singular-

ities and thereby enhance the convergence of the numerical integration method. Considering

the expressions (3.8) for the singularities in the density functions, even without the subtrac-

tion the method described above in this section is easily checked to be consistent with the

system (3.3) of integral equations for sufficiently large value of p. Although a proof of the

stability of the method is left for future work, the numerical results in this thesis strongly

suggest that stability results from this approach. As the value of α grows, however, the mini-

mum required value of p grows as well, thereby increasing the condition number of the system.

This difficulty can alternatively be addressed by means of a singularity resolution methodology

introduced in [22]—a full development of which is beyond the scope of this thesis and which

is thus left for future work.
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3.4 Applications and numerical results

In this section we present a few results on solution of scattering problems (2.110) for the cases

1) Ω is a trapezoid with corners (0,0), (1,1), (2,1), and (2,0) (Neumann data is prescribed

along one side of length
√

2, and Dirichlet data is prescribed along the other sides) and

2) Ω is an isosceles triangle with corners (0,0), (0,1), and (1,0) (Neumann data is prescribed

along one side of unit length, and Dirichlet data is prescribed along the other two sides).

Figures 3.3, 3.4, 3.5, and 3.6 depict the scattering pattern for the incident wave coming at

an angle α = π/8 and frequency k = 200.

Additional results demonstrating the high-order convergence of the graded-mesh algo-

rithm when it is applied to solve challenging eigenvalue problems are presented in Section 4.5.
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Figure 3.3: Scattering from a trapezoidal domain under Zaremba boundary conditions. Scat-
tered field.
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Figure 3.4: Scattering from a trapezoidal domain under Zaremba boundary conditions. Total
field.
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Figure 3.5: Scattering from a triangular domain under Zaremba boundary conditions. Scat-
tered field.
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Figure 3.6: Scattering from a triangular domain under Zaremba boundary conditions. Total
field.
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Chapter 4

Laplace-Zaremba eigenvalue problems
and novel search method

4.1 Integral formulation of the eigenvalue problem

The results in this Chapter were obtained in collaboration with professor Nilima Nigam

in addition to professor Bruno, and mostly follow the contribution [2]. In this chapter we

consider the eigenvalue problem

−∆u = λu, x ∈ Ω (4.1a)

u = 0, x ∈ ΓD (4.1b)

∂u

∂n
= 0, x ∈ ΓN . (4.1c)

Introducing the Helmholtz Green function Gµ(x, y) := i
4
H1

0 (µ|x − y|) and the associated

single-layer potential

u(x) :=

∫
Γ

Gµ(x, y)ψ(y) dsy (x ∈ Ω) (4.2)

with surface density ψ, and relying on well known expressions [33] for the values of the

single layer u and its normal derivative
∂u

∂n
on Γ, we define the operators A(1) : H−1/2(Γ)→
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H1/2(ΓD) and A(2) : H−1/2(Γ)→ H−1/2(ΓN) by

A(1)
µ [ψ](x) =

∫
Γ

Gµ(x, y)ψ(y)dsy for x ∈ ΓD, (4.3a)

A(2)
µ [ψ](x) = −ψ(x)

2
+

∫
Γ

∂

∂nx
Gµ(x, y)ψ(y)dsy for x ∈ ΓN , (4.3b)

and we then define

Aµ =: H−1/2(Γ)→ H1/2(ΓD)×H−1/2(ΓN) by Aµ[ψ] = (A(1)
µ [ψ],A(2)

µ [ψ]). (4.4)

Problem (4.1) is equivalent to the nonlinear problem of finding µ > 0 for which there

holds:

“The linear system Aµψ = 0 admits non-trivial solutions ψ”. (4.5)

To see this, let u be given by equation (4.2). Note that u does not vanish identically unless

ψ does—as can be established by using uniqueness results for the Dirichlet exterior problem

and the jump relations satisfied by the single layer potential and its normal derivative. Since,

clearly, −∆u = µ2u throughout Ω, further, it follows that for each µ satisfying (4.5) the real

number

λ = µ2

is an eigenvalue of (4.1). Further, as established in Chapter 2 (cf. also [40] for corresponding

results for the pure Dirichlet problem), every eigenvalue λ equals µ2 for some µ ∈ R satis-

fying (4.5), and the solutions ψ of (4.5) are related to the corresponding eigenfunctions u

of (4.1) via the relation (4.2). It follows that, as claimed, the eigenvalue problem (4.1) and

problem (4.5) are equivalent.

Remark 4.1.1. As is known [40], complex values of µ do exist for which the integral form

of the eigenvalue problem admits non-trivial solutions—although, they do not correspond to

eigenvalues of the Laplace operator in the bounded domain Ω. These values of µ do correspond

to complex eigenvalues µ2 (also called “scattering poles”) of the Laplace operator: they satisfy

the Laplace eigenvalue equation outside Ω along with certain radiation conditions at infinity
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which allow for growth. The determination and study of these scattering poles, which is

interesting in its own right [86, 98], does not fall within the scope of this thesis. A numerical

method for evaluation of such poles for the Dirichlet exterior problem can be found in [115].

In fact, we suggest that the stabilization strategy proposed in Section 4.3 should be useful in

the context of [115] as well.

Upon discretization of the problem (4.5) (Section 4.2) we are lead to the nonlinear prob-

lem of locating µ ∈ R and c ∈ RN which satisfy a discrete linear system of equations of the

form

Aµc = 0. (4.6)

This problem is tackled in Section 4.3 by consideration of the minimum singular value

η̃n(µ) (and corresponding right singular vector) of a certain augmented linear system re-

lated to (4.6): the quantities µ and c that satisfy (4.5) are obtained, simply, as a zero of the

function σ = η̃n(µ) and the corresponding singular vector. The vector c provides a discrete

approximation for the unknown density ψ; the eigenfunction u itself can then be obtained

by means of a corresponding discrete version of the representation formula (4.2).

4.2 Discrete boundary integral operator

This section presents the main algorithm for evaluation of the discrete version of the form (4.6)

of the boundary operator (4.4); the discretization procedure relies on use of the high-order

quadrature methods described in Sections 2.5 and 3.3.

We denote by nq the number of discretization points used on the boundary segment Γq,

q = 1, . . . , QD +QN and we call

n =

QD+QN∑
q=1

nq (4.7)

the number of discretization points used throughout Γ. The discrete algorithms introduced

in this chapter rely on use of the uniform grids

σjq = (j − 1)γπ/nq , j = 1, . . . , nq (4.8)
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in the interval 0 ≤ σ ≤ γπ, where γ = 1 for the FC-based algorithm (Section 2.5) and γ = 2

for the graded-mesh algorithm (Section 3.3). The corresponding points τ jq in the parameter

space are given by τ jq = ξq(cos(σjq)) in the FC-based algorithm (see equation (2.87)), and by

τ jq = wq(σ
j
q) in graded-mesh algorithm.

Remark 4.2.1. The following procedure is suggested for determination of the values of the

parameters nq mentioned above. Given a desired meshsize h ∈ R (which should be selected

so as to appropriately discretize the highest spatial oscillations under consideration) we take

nq = max{nh, n0}, where nh is the smallest integer for which the distance between any two

consecutive points in Γq is not larger than h, and where n0 is an integer whose role is to

ensure that the number of discretization points in each boundary segment is not less than

the minimum number of discretization points required by the method used (either the Fourier

Continuation method, see Appendix A, or the graded-mesh algorithm, cf. equation (3.10))

to guarantee the desired convergence rate takes place.

Remark 4.2.2. We point out that in both the FC-based and graded-mesh algorithms (Sec-

tions 2.5 and 3.3, respectively) the approximations of the values Iq1,q2 [ϕq2 ](σjq1) used by our

algorithms only depend on values of ϕq2 at the points σjq2, j = 1, . . . , nq2. In the smooth

domain case this indeed results from the fact that an m-th order Fourier continuation f c

of a function y = f(x) only depends on the values of f at the discretization points xi (see

Appendix A and take into account equations (2.100), (2.102), (2.104), and (2.106)). For the

graded-mesh case, in turn, this follows from the fact that the quadrature rules (3.14), (3.15)

only use values of the density ϕq2 at the points σjq2.

In view of Remark 4.2.2 and equation (4.7) and associated text, a discrete version of the

integral density ψ can be obtained in the form of an n-dimensional vector of unknowns

c =


c1

. . .

cQN+QD


where cq is a sub-vector of length nq which contains the approximate unknown density values
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at the points σjq : c
j
q ∼ ϕq(σ

j
q). An approximate boundary operator (4.6) based on either the

FC method (for smooth curves Γ) or the graded mesh method (for smooth or non-smooth

curves Γ) can thus be obtained in the form of a matrix

Aµ =


(Aµ)1,1 (Aµ)1,2 . . . (Aµ)1,Qd+Qn

. . .

(Aµ)QD+QN ,1 (Aµ)QD+QN ,2 . . . (Aµ)QD+QN ,QD+QN

 . (4.9)

Here the sub-blocks (Aµ)q1,q2 are discrete operators which for q1 = q2 = q ∈ JN approximate

the continuous operators −I/2 + Iq,q (where I is the identity operator):

−ϕq
2

+ Iq,q[ϕq](σjq) ∼
∑
j=1,nq

(Aµ)i,jq,qc
j
q, i = 1, . . . , nq, (4.10)

and which for all other pairs of indexes q1, q2 = 1, . . . , QD +QN approximate the continuous

operators Iq1,q2 :

Iq1,q2 [ϕq2 ](σjq2) ∼
∑

j=1,nq2

(Aµ)i,jq1,q2c
j
q2
, i = 1, . . . , nq1 .

In cases in which an overall FC-based method is used the blocks (Aµ)q,q are matrices which

encapsulate the various integration methods described in Section 2.5; if the graded-mesh

method is used instead then the blocks (Aµ)q,q collect the contributions produced by the

quadrature methods presented in Section 3.3.

Details of the algorithm used to produce the blocks (Aµ)q1,q2 are given in Algorithms 1

and 2 below. The input parameters in these algorithms are to be selected in accordance with

Remarks 2.4.2 and 4.2.1.

4.3 Eigenvalue search

This section presents an efficient algorithm for eigenvalue search—which, in the context of

the present chapter, amounts to search for values of µ in a given range [µmin, µmax] for which
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Algorithm 1 Construction of the matrix block (Aµ)q1,q2 for the FC-based algorithm

1: Input q1, q2, nq1 and nq2 (Section 4.2).
2: for j2 = 1 : nq2 do
3: Let cj2q2 = 1 and cjq2 = 0 for j = 1, nq2 , j 6= j2 (cf. Remark 4.2.2).
4: for j1 = 1 : nq1 do
5: With reference to Cases 1 through 3 in Section 2.5.1.1, calculate φ1

q1,q2
(σj1q1 , σ

j2
q2

)
and φ2

q1,q2
(σj1q1 , σ

j2
q2

) using eq. (2.101) in case 1, eq. (2.103) in case 2 and eq. (2.105) in
case 3.

6: Calculate the coefficients α1
` , β

1
` , α

2
` , β

2
` of the Fourier Continuation expan-

sions (2.100) using the FC algorithm (see Appendix A).
7: if q1 = q2 =: q then
8: Evaluate (Aµ)j1,j2q,q using the approximation in eq. (2.104).
9: if q ∈ JN and j1 = j2 then
10: Add the identity part corresponding to the jump of the density (eq. (4.10)).
11: end if
12: else
13: if τ j1q1 is “far” from the interval [aq2 , bq2 ] (condition (2.83)) then
14: Evaluate (Aµ)j1,j2q1,q2

using the approximation in eq. (2.102).
15: else
16: Evaluate (Aµ)j1,j2q1,q2

using the approximation in eq. (2.106).
17: end if
18: end if
19: end for
20: end for

the statement (4.5) is satisfied. The search algorithm presented below can be utilized in

conjunction with any numerical discretization of the operator (4.4) and, indeed, it can be

applied to integral formulations of more general eigenvalue problems. Naturally, however, in

this chapter we apply our search algorithm in combination with the discrete version Aµ of

the operator Aµ (cf. equations (4.4) and (4.9)) which results from suitable applications of

the quadrature rules presented in Sections 2.4, 3.3, and 4.2 to the operators (2.81).

4.3.1 Discussion

In view of (4.5) and associated text, the eigenvalues λ in equation (4.1) can be approximated

by the squares of the values µ for which the corresponding matrix Aµ is not invertible. Thus

all approximate eigenvalues λj = µ2
j of the problem (4.1) in a given interval [λmin, λmax] can

be obtained from the values of µ ∈ [
√
λmin,

√
λmax] for which the minimum singular value
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Algorithm 2 Construction of the matrix block (Aµ)q1,q2 for graded-mesh algorithm

1: Input q1, q2, nq1 and nq2 (Section 4.2).
2: for j2 = 1 : nq2 do
3: Let cj2q2 = 1 and cjq2 = 0 for j = 1, nq2 , j 6= j2 (cf. Remark 4.2.2).
4: for j1 = 1 : nq1 do
5: if q1 = q2 =: q then
6: Evaluate (Aµ)j1,j2q,q using the decomposition (3.13) via combination of the loga-

rithmic quadrature (3.14) and the trapezoidal rule (3.15).
7: if q ∈ JN and j1 = j2 then
8: Add the identity part corresponding to the jump of the density (eq. (4.10)).
9: end if
10: else
11: Evaluate (Aµ)j1,j2q1,q2

using the decomposition (3.11) and the trapezoidal
rule (3.15).

12: end if
13: end for
14: end for

ηn(µ) of the matrix Aµ equals zero—or is otherwise sufficiently close to zero.

Unfortunately, this approach presents significant challenges in practice—as was noted

in [39, 114] in connection with applications to related Dirichlet problems for the Laplace

equation (but cf. Remark 4.3.1). The difficulty is demonstrated in Figure 4.1 (solid curve)

which displays the function ηn(µ) for values of µ in the interval [0, 20] for the Zaremba

eigenproblem (4.1) on a unit disc (where Dirichlet and Neumann boundary conditions are

prescribed on the upper and lower halves of the disc boundary). Clearly, the function ηn(µ)

stays at a nearly constant level except for narrow regions around minima. This makes the

derivative of ηn(µ) nearly 0 throughout most of the search domain, and, thus, renders efficient

application of root-finding methods virtually impossible.

The occurrence of this adverse characteristic of the function ηn(µ) can be explained easily

by consideration of (4.5) and associated text. Indeed, in view of the Riemann-Lebesgue

lemma, arbitrarily small values of Aµψ can be obtained by selecting densities ψ leading

to functions φjq1,q2 (equation (2.100)) which equal highly oscillatory functions of σ on the

Dirichlet boundary portion ΓD and which are close to zero on the Neumann boundary portion

ΓN ; see Figure 4.2. At the discrete level, further, for any given mesh-size n only oscillatory

functions up to a certain maximal oscillation level are supported. Consequently, as n (and
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Figure 4.1: Comparison between ηn(µ) and η̃n(µ).

therefore the maximal oscillation level) is increased, the minimum singular value ηn(µ) (which

equals the minimum mean-square norm of Aµc for c in the unit sphere) itself decays like 1/n,

without significant dependence on µ—except for cases that correspond to actual eigenvalues.

In order to devise a solution for this problem we note that the continuous analogue of our

minimum singular value (namely, the infimum of ||Aµψ|| over all densities ψ of unit norm)

is actually equal to zero for all values of µ. But, naturally, a minimizing sequence ψk

for which the operator values approach this infimum gives rise to single-layer potentials

uk that approach zero within Ω as well—and, thus, such sequences uk do not approach true

eigenfunctions. A solution strategy thus emerges: a normalization for the values of the single

layer potential u (eq. (4.2)) in the interior of Ω can be used to eliminate such undesirable

minimizing sequences. Details on possible implementations of this strategy are presented in

the following section.

Remark 4.3.1. From the discussion above in this section it is easy to see that difficulties

associated with highly oscillatory integrands only occur in cases in which the boundary inte-

gral operator is entirely or partially of the first kind: for second-kind integral equations such

complications do not arise [82, 131]. We note, however, that use of (partial or full) first-

kind formulations can be highly advantageous in some cases (such as, e.g., for the problems
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Figure 4.2: Densities (singular vectors) corresponding to smallest singular values for a for-
mulation without regularizing interior points. Left column, µ2 is an eigenvalue: vanishingly
small values of the singular value ηn(µ) result for densities that are not rapidly oscillatory.
Right column: µ2 is not an eigenvalue. Note the oscillations on the Dirichlet portion of the
density (lower-right image) which give rise to a small singular value ηn(µ) even in this case
in which µ2 is not a Dirichlet-Neumann eigenvalue.

considered in this thesis!) for which use of second-kind equations would necessarily require

inclusion of hypersingular operators—which are generally significantly more challenging from

a computational perspective; see e.g. [20]. The normalization techniques mentioned in Sec-

tion 1 and discussed in more detail in Section 4.3.2 completely resolves the difficulty arising

from use of first-kind formulations and enables successful use of numerically-well-behaved,

easy-to-use first-kind equations for solution of eigenvalue problems for general domains.

4.3.2 Eigenfunction normalization.

The difficulties outlined in the previous section can be addressed by consideration of a

modified discrete system of equations which, by enforcing an appropriate normalization in

the domain interior, as it befits eigenfunctions of a differential operator, prevents oscillatory

vectors c to give rise to small values of the Aµc unless µ corresponds to an actual eigenvalue;

cf. Section 4.3.1.
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Figure 4.3: Interior curve Γi. An adequate discretization of Γi, possibly significantly coarser
than the discretization on the boundary curve Γ, is used to penalize vanishingly small Laplace
eigenfunctions.

To enforce such a normalization we consider equations (4.2) and (4.3), and we define an

additional operator A(3)
µ by

A(3)
µ [ψ](x) =

∫
Γ

Gµ(x, y)ψ(y)dsy for x ∈ Γi, (4.11)

where Γi ⊆ Ω is an adequately selected set of points in the interior of Ω. A natural choice

is given by Γi = Ω, in such a way that the normalization condition becomes

∫
Ω

|u|2dx = 1.

Other normalizations can be used, however, which lend themselves more easily to discretiza-

tion. For example, letting Γi be a curve roughly parallel to Γ at a distance no larger than

λu/2, cf. Figure 4.3 (where λu denotes the eigenfunction “wavelength” λu = 2π/µ), one

might equivalently prescribe ∫
Γi

|u|2d` = 1. (4.12)

Indeed, given that Γi is at a distance no larger than λu/2 from Γ, we expect that

“The eigenfunction must be nonzero in a subset of Γi of positive measure”. (4.13)

In the case of Dirichlet boundary conditions this statement is strongly supported by the

eigenvalue bounds put forth in [15] and by the discussion in [127]. In the case of the Zaremba

Dirichlet-Neumann boundary conditions we have not as yet found a corresponding theoretical

discussion, but, in view of strong numerical evidence, throughout this chapter we nevertheless

assume (4.13) holds.
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Remark 4.3.2. It is useful to note that, assuming (4.13), there is no non-zero density ψ

for which the equations Aµ[ψ] = 0 and A(3)
µ [ψ] = 0 hold simultaneously. Indeed, if these null

conditions hold, (4.13) implies that the function u defined by (4.2) vanishes throughout Ω. In

view of the uniqueness of solution of the Helmholtz equation in a exterior domain, further,

we conclude that u vanishes throughout R2. Taking into account the jump conditions for the

normal derivative of the single layer potential this implies that ψ = 0, as desired.

A discrete version of the normalization condition (4.12) can be obtained by means of a

suitable, possibly equispaced discretization {xj, j = 1,m} ⊆ Γi together with an associated

discrete operator Bµ which, based on the quadrature rules for smooth integrands described

in Section 4.4, approximates the values of A(3)
µ at the points xj:

Bµc ∼ [u(xj)]. (4.14)

Defining the rectangular matrix

Cµ =

Aµ
Bµ

 , (4.15)

in the present discrete context (and for a sufficiently fine discretization {xj, j = 1,m} ⊆ Γi)

Remark (4.3.2) tells us that the columns of the matrix Cµ ought to be linearly independent.

The normalization condition can be enforced by utilizing a QR-factorization

Cµ = QR;

in accordance with equation (4.15), further, we express the matrix Q in terms of matrices

comprising of its first n rows and the remaining m rows:

Q =

QA

QB

 . (4.16)

(In a related but different context, a QR factorization was used in [11] to reduce or even

eliminate difficulties associated with the method of particular solution for evaluation of
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Laplace eigenvalues; see Remark 4.3.3 for details.)

The linearly independent columns of the matrix Cµ are in fact (discrete) approximate

solutions of the Helmholtz equation evaluated at the boundary points and the points on Γi.

Therefore, so are the columns of the matrix Q, since they are linear combinations of the

columns of Cµ. Thus, letting d denote a singular vector of the matrix QA (‖ d ‖= 1) corre-

sponding to a singular value equal to zero, QAd = 0 and we must necessarily have ‖ QBd ‖= 1

(this follows from the orthonormality of the columns of Q). Denoting c = R−1d, the product

Cµc = Qd is a linear combination of the columns of Cµ which vanishes on Γ and for which,

therefore, the mean square on Γi equals one. From the previous discussion in this section,

the vector c is a discrete version of the density ψ which yields an approximate eigenfunction

of the problem (4.1) (Section 4.4) via a discrete version of the representation (4.2).

Thus, relying on the Singular Value Decomposition (SVD) of the matrix QA for a given

value of µ, and calling η̃n(µ) the smallest of the corresponding singular values,

η̃n(µ) = min
b∈Rn,‖b‖=1

‖ QA(µ)b ‖=‖ QA(µ)d ‖, (4.17)

the proposed eigensolver is based on finding values of µ for which η̃n(µ) is equal to zero. A

pseudocode for this method is presented in Algorithm 3.
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Algorithm 3 Numerical evaluation of all µ ∈ [Fmin, Fmax] for which (4.5) is satisfied.

1: Read input parameters h (cf. Remark 4.2.1) and N0 (number of singular values in the

wave number search range [Fmin, Fmax] actually to be produced via SVD).

2: for j = 1 : N0 do

3: Set µ := Fmin + j Fmax−Fmin
N0

.

4: Construct the matrix of the discrete operator Aµ (Algorithms 1 and 2).

5: Construct the matrix of the discrete operator Bµ (eq. (4.14)).

6: Compute the QR-factorization of the augmented system Cµ (eq. (4.15)).

7: Compute the minimal singular value σn(µj) of QA (cf. eq. (4.16)).

8: end for

9: Utilizing the computed values of σn(µj) execute the root-finding algorithm mentioned in

Section 4.3.3 to produce approximate roots of the function σ(µ).

Remark 4.3.3. As mentioned in the introduction, the method of particular solutions (MPS)

relies on use of Fourier-Bessel series that match homogeneous Dirichlet boundary conditions

to produce Laplace eigenvalues and eigenfunctions. A modified version of the MPS, which

was introduced in reference [11], alleviates some difficulties that occur in the original version

of the method by enforcing that, as is necessary in our case as well, the proposed eigen-

functions do not vanish (and, indeed, are normalized to unity) in some finite set of points

in the interior of the domain. In fact, the QR-based normalization method we use is sim-

ilar to that introduced in [11] and referred to as GSVD in [10]. The difficulties underlying

eigenvalue search in the present integral-equation context are different from those found in

the approach [11], however. Indeed, as discussed in Section 4.3.1, in the former case a phe-

nomenon related to the Riemann-Lebesgue lemma is at work: highly oscillatory integrands

of unit norm can yield small integrals. In the latter case, in contrast, the root cause lies in

the fact that linear combinations of a number n of Bessel functions with coefficients of unit

norm (say, in the mean square sense) can be selected which tend to zero as n grows. (Notice

that, in view of the z → 0 asymptotics Jn(z) ∼ O(zn), this fact bears connections with a well

known result concerning polynomial interpolation: linear combinations of n monomials can

be made to tend to zero rapidly as n grows—for example, the monic Chebyshev polynomial
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of order n tends to zero exponentially fast as n→∞.)

4.3.3 Sign changing procedure for the minimum singular value.

Consideration of Figure 4.1 clearly suggests that the function η̃n is a continuous but non-

smooth function of µ. As is known [11, 128], however, a sign-changing methodology suffices

to produce singular values as smooth (indeed analytic) functions of µ—so that high-order in-

terpolation and root finding becomes possible. With reference to Algorithm 3, using approx-

imate values of σn(µj) at points on the uniform mesh µj, our algorithm relies on calculation

of signed singular values and subsequent polynomial interpolation to approximate the zeros

of the function η̃n(µ). The overall sign-changing/interpolation root-finding algorithm we use

is essentially identical to that presented in [11, p. 488]. To obtain the approximate roots

with prescribed error tolerance, further, we implement this procedure using nested uniform

meshes around each approximate root found.

Remark 4.3.4. The recent contribution [131] uses the Fredholm determinant to obtain an

smooth function of µ that vanishes whenever µ corresponds to an eigenvalue, and it compares

the efficiency of that solver to one based on consideration of singular values as a function of

µ for which the singular values are merely piecewise smooth functions. The sign changing

procedure described in this section, however, gives rise to smooth (analytic) dependence of the

singular values as functions of µ, and thereby eliminates the potential difficulties suggested

in [131].

4.4 Eigenfunction evaluation

After the eigenvalues are obtained, the corresponding eigenfunctions can be evaluated for

both FC-based and graded-mesh solvers using the representation (4.2). High-order approxi-

mate evaluation of this integral for points x sufficiently far from the boundary Γ, for which

the corresponding integral kernels are smooth, is performed using the quadrature (2.102) in

the case of a FC-based algorithm, and the combination of graded-mesh change of variables
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and a trapezoidal rule (3.15) in the case of a graded-mesh algorithm. Methods for the eval-

uation of the eigenfunction in case the point x is on the boundary Γ (more precisely, on the

Neumann boundary portion ΓN , since the eigenfunctions admit zero values on the Dirichlet

portion ΓD) have already been described in detail in sections 2.4–4.2. Lastly, in case the point

x is close to the boundary Γ the corresponding kernels exhibit a near-singularity. In this case

an interpolation approach is used to evaluate the eigenfunction u(x) at a point x: letting x0

denote the point in Γ that is closest to x and letting L denote a straight segment passing

through the points x and x0, the values of u at a small set of points xj ∈ L (j = 0, 1 . . . )

that, except for x0, are sufficiently far from the boundary Γ are used to produce the value

u(x) by means of an interpolating polynomial. (Typically cubic or quartic polynomials were

used to produce the images presented in this chapter.) To reach a prescribed tolerance it

may be necessary to use increasingly fine meshes {xj} for which some or all elements may

be closer to Γ than is required for accurate integration by means of the available boundary

mesh. In such cases the Chebyshev boundary expansions that produce the solution can be

oversampled (by means of zero padding of the corresponding cosine expansion) to a mesh

that is sufficiently fine to produce sufficiently accurate integrals at each one of the points

xj—and the interpolation procedure then proceeds as indicated above.

4.5 Numerical results

This section presents results of numerical experiments which demonstrate the accuracy, effi-

ciency and high-order character of the proposed eigensolver. In preparation for this discussion

we note that there are only a few Zaremba eigenproblems whose spectrum is known in closed

form: even for geometries such as a disc, which are separable for both the pure Dirichlet

or Neumann eigenproblem, no Zaremba spectra for nontrivial selections of ΓD and ΓN have

been evaluated explicitly. We thus first demonstrate the performance of our algorithms for

a Zaremba problem for which the spectrum is available: an isosceles right triangle. We next

compute the first few eigenvalues of the Zaremba problem in smooth domains (both convex

and non-convex) for which no spectra have previously been put forth—either in closed form
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or otherwise. As reference solutions for such problems we use results of computations we

produced on the basis of well-established and validated finite element codes [63]. We em-

phasize that no attempt was made to optimize these finite element computations beyond the

use of mesh adaption near singular points. In addition, for certain polygonal domains with

obtuse angles we compare our results with existing validated numerical simulations [89], and

we then demonstrate the behavior of our algorithm in a number of challenging problems.

In all, our examples include:

1) A problem on a convex polygonal domain (with a Dirichlet-Neumann junction occurring

at a vertex with angles of less than
π

2
; (Section 4.5.1).

2) An application of the FC-based solver to smooth, convex domain; (Section 4.5.2).

3) An application of the FC-based solver to smooth non-convex domain; (Section 4.5.3).

4) A problem on a polygonal domain with the Dirichlet-Neumann junction occurring at an-

gle greater than
π

2
. In this case, we set up the experiments to compare with corresponding

theoretically-identical Laplace-Dirichlet eigenvalues of a symmetry-related domain; (Sec-

tion 4.5.4).

5) A comparison of the performance of the FC-based and graded-mesh algorithms described

in Sections 2.5 and 3.3 when both are applied to a smooth domain. (The superior perfor-

mance of the FC-based algorithm dramatically improves the overall performance of the

eigensolver); (Section 4.5.5).

6) Applications concerning high-frequency eigenvalue problems (evaluating thousands of

eigenvalues and eigenfunctions, and showing, in particular, that the proposed eigen-

solver can successfully capture the asymptotic distribution of Zaremba eigenvalues); (Sec-

tion 4.5.6).

7) Eigenproblems posed in multiply connected domains; (Section 4.5.7).

8) Applications to pure Dirichlet and pure Neumann eigenvalue problems; (Section 4.5.8).
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All of the listed digits for eigenvalues produced by the various FC-based and graded-mesh

eigensolvers are significant (with the last digit rounded to the nearest decimal), while in the

values produced by the FEM methods a number of digits additional to the correct ones are

presented (to avoid rounding the first or second decimal).

4.5.1 Convex polygonal domains

In this section the performance of the graded-mesh algorithm on simple polygonal domains

is analyzed. Such domains provide instances of geometries where true eigenvalues of prob-

lem (4.1) can be computed analytically using reflection techniques. In detail, we consider

the Zaremba problem on the isosceles triangle with corners (0,0), (0,1), and (1,0). Neumann

data is prescribed along one side of unit length, and Dirichlet data is prescribed along the

other two sides. For this geometry the eigenvalues of (4.1) are a subset of the set of Neumann

eigenvalues of a square with corners (−1, 0), (1, 0), (1, 2), and (−1, 2). More specifically, if

we pick Neumann eigenfunctions of the square which have the correct symmetries, the corre-

sponding eigenvalues are the same as those of the Zaremba problem on the described triangle.

We can explicitly compute these eigenvalues on the square to be

λk,` =
(2k + 1)2 + (2`+ 1)2

4
π2, k, ` = 0, 1, 2, 3... (4.18)

The comparison of the approximate eigenvalues computed on the basis of 328 and 1200-

point boundary meshes and the exact eigenvalues is shown in Table 4.1; corresponding

eigenfunctions are depicted in Figure 4.4.
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Figure 4.4: Left: Zaremba eigenfunctions for the triangular-domain eigenproblem considered
in Section 4.5.1. Right: Zaremba eigenfunctions for the trapezoid-shaped-domain eigenprob-
lem considered in Section 4.5.4.

k ` λk,` exact λk,` (n = 328) λk,` (n = 1200)

0 1 24.6740110027234 24.67401100 24.6740110027234

0 2 64.1524286070808 64.15242861 64.1524286070809

1 2 83.8916374092595 83.89163742 83.8916374092596

0 3 123.3700550136170 123.3700550 123.3700550136170

1 3 143.1092638157957 143.1092638 143.1092638157957

2 3 182.5876814201531 182.5876814 182.5876814201531

0 4 202.3268902223318 202.3268902 202.3268902223319

Table 4.1: Eigenvalues λk,` for the isosceles triangle considered in Section 4.5.1 produced
by the proposed graded-mesh eigensolver with n = 328 and n = 1200 compared to results
produced by the closed form expression (4.18).

4.5.2 Convex smooth domains

In the case of smooth domains the Dirichlet-Neumann junction takes place at a vertex with

interior angle equal to π, and, thus, the corresponding eigenfunction of (4.1) is continuous

but not twice continuously differentiable up to the boundary; see e.g. [122]. This fact gives

rise to challenges for volumetric strategies; in particular, high-order conforming elements do
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not yield high-order accuracy for this problem. Our proposed boundary integral strategy

coupled with the high-accuracy FC discretization of integral operators, in turn, efficiently

provides high-order convergence and highly-accurate results.

These facts are illustrated in Tables 4.2 and 4.3, which present the first Zaremba eigen-

value for the unit disc as produced by the P1 and P2 FEM algorithm [63] and the FC-based

eigensolvers. Clearly the convergence resulting from the FEM methods is slow: Table 4.2

shows that, even using a mesh containing over 10,000-triangles, the FEM methods produce

results with no more than 2 digits of accuracy. The FC results displayed in Table 4.3, in

turn, demonstrate that the FC solver produces eigenvalues with 10 digits of accuracy using

a discretization containing a mere 512 mesh points.

Nt 636 2538 10120 39662

P1 1.59 1.57 1.56 1.55

P2 1.56 1.56 1.55 1.55

Table 4.2: Convergence of first Zaremba eigenvalue on the disc. P1 and P2 FEM approaches.
Here Nt is the number of triangles in the mesh.

n 64 128 256 512

λ1 1.548549 1.54854933 1.5485493331 1.548549333189

Table 4.3: Convergence of the FC-based eigensolver: first Dirichlet-Neumann Laplace eigen-
value in the unit disc.

For reference, Table 4.4 presents corresponding results produced by P1, P2, and P1 Non-

Conforming (Crouziex-Raviart) FEM methods as well as the proposed FC-algorithm for the

first 10 Zaremba eigenvalues on the disc. Once again the convergence of the FEM algorithms

is slow, and, using tens of thousands of unknowns, yield no more than 3 digits of accuracy.

The corresponding 10 eigenvalues produced by the FC method, in turn, do contain at least

a full 13 digits of accuracy.
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P1 P1 NC P2 FC eigensolver
1.55 1.54 1.55 1.548549333189
6.68 6.64 6.68 6.668097160848
8.66 8.66 8.66 8.662779904509
14.82 14.74 14.80 14.782583814100
17.86 17.83 17.85 17.848357621645
21.21 21.20 21.20 21.204559421807
25.83 25.73 25.81 25.781212572974
29.65 29.56 29.63 29.605375911651
35.93 35.90 35.92 35.914231714109
37.80 37.74 37.78 37.767236907914

Table 4.4: The first 10 Zaremba eigenvalues on the unit disc. The P1 conforming and P1
non-conforming computations are on a mesh of 40144 triangles (3 digit accuracy). The P2
conforming FEM computations are on 10136 triangles (3 digit accuracy). In contrast, 512
points suffice for the FC eigensolver (Section 2.5) to produce the eigenvalues with an accuracy
of 13 digits).

4.5.3 Smooth, non-convex domains

In this experiment we consider a non-convex kite-shaped domain with smooth boundary

parametrized by

x1 = cos(t) + 0.65 cos(2t)− 0.65 and x2 = 1.5 sin(t), (4.19)

with the Neumann and Dirichlet boundary portion ΓN and ΓD corresponding to t ∈ [π/2; 3π/2]

and its complement, respectively. No exact solution for this problem is available. We com-

pare the performance of our FC-based algorithm with the performance of three finite element

methods: a P1 conforming method, a P1 non-conforming (Crouziex-Raviart) method, and a

P2 conforming method. The convergence of the finite element methods is once again slow:

we present FEM results with three significant digits which require tens of thousands of un-

knowns. In contrast, the FC-based eigensolver yields 13 digits of accuracy on the basis of a

mere 512 points boundary discretization. These results are detailed in Table 4.5.

In Table 4.6 we list the computational times for the FC-based solver to compute first 12

eigenvalues for the geometries considered in Sections 4.5.1 and 4.5.3. All times are given on

a per-eigenvalue basis.
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Crouzeix-Raviart P1 conforming P2 conforming FC-based eigensolver
2.49 2.49 2.49 2.494957693616
6.24 6.26 6.25 6.253748349225
8.03 8.04 8.04 8.042440637044
12.03 12.08 12.06 12.053365383455
13.38 13.43 13.42 13.406406452033
18.04 18.06 18.05 18.047848229702
19.08 19.20 19.17 19.137393493839

Table 4.5: Numerical experiments for the kite-shaped domain. The P1 (both conforming
and non-conforming) FEM methods use 40144-triangle meshes, whereas the P2 method uses
a 5156-triangle mesh. The FC-based eigensolver uses 512 boundary points.

Figure 4.5: Zaremba eigenfunctions for the kite-shaped-domain eigenproblem described in
Section 4.5.3.

4.5.4 Polygonal domains with obtuse Dirichlet-Neumann junc-

tions

The L-shaped domain provides an important test case. In reference [89] a set of validated

numerical experiments is presented for the Dirichlet eigenvalue problem on an L-shaped

domain (a square of side length two with a unit square removed). These numerical results

were produced by means of finite element discretizations. For the first Dirichlet eigenvalue,

a provable interval [9.5585, 9.6699] which brackets the true eigenvalue is provided.

Using symmetry arguments it can be easily seen that some of the Zaremba eigenval-

ues for the trapezoid that results by cutting the L-shaped domain along a symmetry line

coincide with certain Dirichlet eigenvalues on the L-shaped domain. The graded-mesh algo-
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Domain Time (err. 10−5) Time (err. 10−10)
Disc 0.09 s 1.13 s
Kite 0.18 s 1.88 s

Table 4.6: FC-based eigensolver. Computational times per-eigenvalue for the first 12 eigen-
values.

i Lower bound Upper bound λi (graded-mesh eigensolver)
1 9.55 9.66 9.639723844021955
3 19.32 19.78 19.739208802178748
5 30.86 32.05 31.912635957137709

Table 4.7: Eigenvalues corresponding to the symmetric eigenfunctions for the L-shaped
domain. Comparison with table 5.5 in [89]. Eigenvalues produced by means of the graded-
mesh eigensolver are computed with at least 13 digits of accuracy (by convergence analysis).

rithm introduced in this thesis produces the approximation 9.639723844021955 for the first

eigenvalue—clearly within the guaranteed interval—and several other eigenvalues are com-

puted without difficulty (see Figure 4.4). Table 4.7 displays the eigenvalue bounds resulting

from use of the FEM algorithm from reference [89, Table 5.5] as well as those produced

by means of the graded-mesh algorithm presented in this thesis. Figure 4.4 (right) presents

depictions of several Zaremba eigenfunctions on the trapezoid mentioned above. In Table 4.8

we list the computational times for the graded-mesh solver to compute first 12 eigenvalues for

the geometries considered in Sections 4.5.2 and 4.5.4. All times are given on a per-eigenvalue

basis.

Domain Time (err. 10−5) Time (err. 10−10)
Triangle 0.07 s 1.19 s

Trapezoid 0.18 s 1.89 s

Table 4.8: Graded-mesh eigensolver. Computational times per-eigenvalue for the first 12
eigenvalues.
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4.5.5 Comparison of FC-based and graded-mesh approaches

Sections 2.5 and 3.3 describe FC-based and graded-mesh eigensolvers for high-order evalua-

tion of Zaremba eigenvalues on smooth and Lipschitz geometries, respectively. As indicated

in Remark 2.5.3, however, the graded-mesh algorithm can also be applied to smooth geome-

tries. Figure 4.6 compares the convergence history for both of these algorithms as they are

used to obtain the Zaremba eigenvalue λ18 = 73.1661817902 for the unit disc (where Dirichlet

and Neumann boundary conditions are prescribed on the upper and lower halves of the disc

boundary). This figure demonstrates a general fact: for smooth geometries the FC-based

approach significantly outperforms the (more generally applicable) graded-mesh algorithm.

The somewhat slower convergence of the graded-mesh solver relates, in part, to the relatively

large value α = 1 associated with the 180◦ angle that occurs at Dirichlet-Neumann junctions

on smooth curves; cf. Remark 3.3.3.

Figure 4.6: Sample convergence history resulting from the FC-based eigensolver and the
graded-mesh eigensolver for the eighteenth Zaremba eigenvalue λ18 discussed in Section 4.5.4.
The computational times required for evaluation each one of the eigenvalue approximations
by means of the FC solver and the graded-mesh solver are as follows. FC-solver times:
0.23s, 0.67s, 2.82s, 19.19s, 119.7s. Graded-mesh solver: 0.09s, 0.60s, 1.93s, 16.11s, 112.90s.
We note, for example, that an error of 10−7 results from the FC-solver in this case in a
computational time of 0.67 seconds; for the same accuracy, the computing time required by
the graded mesh solver is 16.11 seconds.
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4.5.6 High-frequency wave numbers

Figure 4.7: High frequency eigenfunctions mentioned in Section 4.5.6.

The high-order convergence of the algorithms presented in this thesis enables evaluation

of eigenvalues and eigenfunctions in very wide frequency ranges. For example, we have used

our solver to produce the first 3668 eigenvalues and eigenfunctions for the eigenproblem

mentioned in Section 4.5.4 with a full 13 digits of accuracy (the eigenvalues are displayed in

Figure 4.8 (left)). The single-core computational time required for evaluation of the first 9

eigenvalues the was 17 seconds, while for the last 9 eigenvalues (that correspond to higher

values of λ, and, therefore, finer discretization meshes required for a given accuracy) the com-

putational times was 189 minutes. In another example, Figure 4.7 shows an eigenfunction

for a unit disc corresponding to the eigenvalue λ = 10005.97294969 (left) and an eigenfunc-

tion for a trapezoid (that also corresponds to symmetric Laplace-Dirichlet eigenfunction for

L-shaped domain (cf. Section 4.5.4) corresponding to the eigenvalue λ = 40013.2312203

(right).

Our next experiment concerns the number N(x) of Dirichlet-Neumann eigenvalues λ

satisfying 0 < λ ≤ x. Since, as is known, Zaremba eigenvalues lie between corresponding

Dirichlet and Neumann eigenvalues, the Zaremba eigenvalues must obey the Weyl asymptotic

relation [100, 118, 123, 124]

lim
x→∞

N(x)

x|Ω|
= Cd. (4.20)

Here |Ω| is the volume of the domain Ω ⊂ Rd and, letting ωd equal the volume of the
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unit ball in d dimensions, Cd = (2π)−dωd denotes the Weyl constant. The right portion of

Figure 4.8 displays the ratio N(x)/(x|Ω|) as a function of x for the Zaremba case, and for all

of the geometries considered earlier in this Section: a triangle (Section 4.5.1), the unit disc

(Section 4.5.2), a kite-shaped domain (Section 4.5.3), and a trapezoid (Section 4.5.4). This

figure clearly shows that the numerical solutions satisfies the asymptotic relation (4.20).

Figure 4.8: Left: First 3668 Zaremba eigenvalues for the trapezoidal domain eigenproblem
considered in Section 4.5.4. Right: Ratio N(x)

x|Ω| (eq. (4.20)) for Zaremba eigenvalue problems
on various domains and, in red, the Weyl constant Cd.

4.5.7 Multiply connected domains

This section discusses application of the proposed eigensolver methodologies to multiply con-

nected domains—for which integral eigensolvers generally produce spurious resonances that

result from eigenvalues of the domains interior to inner boundaries [27, 28], as demonstrated

by the right image in Figure 4.9. We have found that by enforcing an additional condition

based on use of interior points in a manner related to that considered in Section 4.3—which,

in the present case, is designed to ensure that the function u in equation (4.2) vanishes in

the set Ωi consisting of all the bounded components of the complement of Ω—a new version

of the function η̃n(µ), denoted by η̂n(µ) in what follows, is obtained that equals zero only at

the true eigenvalues of the given multiply connected domain. In order to ensure vanishing

throughout Ωi the algorithm utilizes a sufficiently fine set of points interior to Ωi arranged

on a curve that is roughly parallel to the boundary of Ωi at a distance no larger than λu/2

from that boundary. An argument analogous to the one presented in Section 4.3.2 shows
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that, indeed, a prospective eigenfunction must vanish throughout Ωi provided it vanishes on

such a set of interior points.

In detail, the algorithm utilizes a certain matrix Dµ which, based on the quadrature rules

for smooth integrands described in Section 4.4, approximates the values of the single-layer

potential (4.2) at the aforementioned set of interior points. Clearly, Dµ is uniquely defined

for each given set of interior points in Ωi and for each given set of boundary discretization

points. Letting ni and n denote the numbers of interior points and boundary discretization

points, respectively, we note that the first ni columns (resp. the last n− ni columns) of the

matrix V = [v1, . . . , vn] in the SVD

Dµ = UΣVT (4.21)

of the matrix Dµ correspond to nonzero singular values (resp. zero singular values) of Dµ, and

thus, in particular, the last n−ni columns of V span the kernel of the matrix Dµ. Defining the

matrix V1 = [vni+1, . . . , vn] whose columns equal the last n− ni columns of V, the matrix Cµ

(equation (4.15)) can be restricted to the kernel of Dµ via multiplication on the right by the

matrix V1. The resulting matrix Ĉµ = Cµ · V1 can then be treated by means of the approach

described in Section 4.3.2: considering the QR-decomposition

Ĉµ = Q̂R̂, (4.22)

the algorithm finds the desired eigenvalues by seeking the zeros of the function η̂n(µ) which

is defined as the smallest singular value of the matrix Q̂A consisting of the first n rows of Q̂.

To demonstrate the multiply-connected domain methodology, we consider a domain con-

sisting of the polygon determined by the set of exterior vertices (0, 0), (0, 3), (2, 4), (3, 2),

(3, 0) and the set of interior vertices (1, 1), (1, 2), (2, 3) with Dirichlet boundary conditions

on all sides. Figure 4.9 depicts true and spurious eigenfunction for this domain correspond-

ing to the eigenvalues λ = 76.619031 and λ = 77.663162, respectively. As can be seen in

Figure 4.10, the procedure effectively screens out the spurious eigenvalue λ = 77.663162.
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Figure 4.9: True and spurious eigenfunction for multiply connected domain. Left: true
eigenfunction corresponding to λ = 76.619031. Right: spurious eigenfunction corresponding
to λ = 77.663162.

4.5.8 Pure Dirichlet and Pure Neumann eigenfunctions

As mentioned in the introduction, the methods described in this thesis can be applied to

a variety of eigenvalue problems (see Remark 4.3.1 for a discussion in these regards). In

particular, Laplace eigenfunctions for pure Dirichlet or pure Neumann boundary conditions

can be computed using the proposed eigensolver: both problems can be treated as particular

cases of the more general Zaremba problem (for which ΓD = ∅ or ΓN = ∅, respectively).

Sample eigenfunctions produced by our methods under pure Dirichlet and pure Neumann

boundary conditions are presented in Figure 4.11.
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Figure 4.10: Filtering of spurious eigenvalue. Dashed curve: function η̃n(µ); solid curve:
η̂n(µ).

Figure 4.11: Eigenfunctions for L-shaped domain with Dirichlet (left) and Neumann (right)
boundary conditions.
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Chapter 5

Steklov eigenvalue solver

The results in this Chapter were obtained in collaboration with professor Nilima Nigam in

addition to professor Oscar Bruno and Nurbek Tazhimbetov.

5.1 Preliminaries

We consider the eigenvalue problem

∆um = 0 x ∈ Ω

∂um
∂n

= 0 x ∈ ΓN

∂um
∂n

= λmum x ∈ ΓS

(5.1)

for eigenvalues λm and eigenfunction um, where Ω ⊂ R2 is a bounded domain with a Lipschitz

piecewise-smooth boundary Γ and where ΓN and ΓS are the Neumann and Steklov boundary

portions, Γ = ΓN ∪ ΓS, which are disjoint relatively-open subsets of Γ (see Figure 5.1). Of

course problems containing a Dirichlet portion ΓD are also important, but for conciseness

here we only consider cases where ΓD = ∅. In the case in which additionally ΓN = ∅

the problem (5.1) is referred to as the Steklov eigenvalue problem and λm and um are

called Steklov eigenvalues and eigenfunctions. If ΓN is nonempty, problem (5.1) is called the

sloshing eigenvalue problem—since (5.1) is the eigenfunction equation associated with small

oscillations of the free surface of an ideal fluid subject to gravity [48, 69]—and λm and um are

called the sloshing eigenvalues and eigenfunctions. Clearly, the Steklov problem coincides
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with the eigenproblem for the Dirichlet-to-Neumann operator Λ: H
1
2 (Γ) → H−

1
2 (Γ), given

by Λu = ∂n(Hu), where Hu denotes the unique harmonic extension of u ∈ H 1
2 (Γ) to Ω.

Figure 5.1: Boundary decomposition illustration. Red line: Steklov boundary. Blue line:
Neumann boundary.

In what follows we assume the piecewise-smooth boundary Γ is expressed in the form

Γ =

QN+QS⋃
q=1

Γq, (5.2)

where QN and QS denote the numbers of smooth Neumann and Steklov boundary portions,

and where for 1 ≤ q ≤ QN (resp. QN + 1 ≤ q ≤ QN + QS)) Γq denotes a smooth Neumann

(resp. Steklov) segment of the boundary curve Γ. Clearly, letting

JN = {1, . . . , QN} and JS = {QN + 1, . . . , QN +QS}

we see that

ΓN =
⋃
q∈JN

Γq and ΓS =
⋃
q∈JS

Γq

are the (piecewise smooth) portions of Γ upon which Neumann and Steklov boundary condi-

tions are enforced, respectively. Throughout this chapter it is assumed that both Neumann-

Steklov junctions and non-smooth points in Γ necessarily occur at a common endpoint of two

segments Γq1 and Γq2 (1 ≤ q1, q2 ≤ QN +QS). (Note that consecutive values of the index q do

not necessarily correspond to consecutive boundary segments; see e.g. Figure 5.1.) Without
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loss of generality we assume that the boundary curve Γ possesses a (possibly non-smooth)

2π-periodic counterclockwise parametric representation of the form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π. (5.3)

Parametrizations of the boundary portions Γq for each q ∈ JN ∪ JS are then given by the

restriction of the function x(t) to the interval [aq, bq]; in what follows it is assumed that

x(t) satisfies the regularity condition [x′1(t)]2 + [x′2(t)]2 > 0 for all t ∈ [aq, bq] and for each

q ∈ JN ∪ JS. Clearly, [0, 2π] = ∪QN+QS
q=1 [aq, bq] where the intersection of any subintervals in

this union is either the empty set or a set containing a single point.

As is well known, the eigenvalues for both the Steklov and the sloshing problems form a

a discrete set; as is common practice these are enumerated in increasing order:

0 = λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . . (5.4)

Note that for any domain Ω we have λ1(Ω) = 0 and u1 is a constant function. Steklov

eigenvalues are also characterized by the min-max formula

λk(Ω) = min

{∫
Ω
|∇v|2 dx∫
Γ
v2ds

: v ∈ H1(Ω),

∫
Γ

vuj = 0, j = 1, . . . , k − 1

}
. (5.5)

5.2 Integral equation formulation

Since for both Steklov and sloshing problem the eigenvalue condition ∂um
∂n

= λmum con-

cerns only the boundary values of the solution and its normal derivative, use of integral

equation methods for problem (5.1) lead directly upon discretization, to a matrix eigenvalue

problem. In fact, such approaches are used in [30, 68]. In order to avoid the inclusion of

hypersingular operators (which are generally significantly more challenging from a compu-

tational perspective; see e.g. [20]) we use eigenfunction representations based on single layer
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potential. Unfortunately, the simple representation

u(x) = S[ϕ] =

∫
Γ

Φ(x− y)ϕ(y)ds(y) (5.6)

(where Φ(x) = − 1

2π
log |x| is a fundamental solution of two-dimensional Laplace equation)

presents some difficulties: the single layer operator S restricted to the boundary may not be

injective. (It is injective only provided the domain Ω satisfies the following condition: there

exists a point z0 ∈ Ω such that |x−z0| 6= 1 for all x ∈ Γ (see [80, Theorem 7.38].) A modified

formulation

u(x) =

∫
Γ

Φ(x− y)(ϕ(y)−M [ϕ])ds(y) +M [ϕ] (5.7)

based on the averaging operator

M [ϕ] =
1

|Γ|

∫
Γ

ϕ(y)ds(y) (5.8)

is suggested in [80, Equation 7.58] that successfully eliminates the non-invertibility prob-

lem: as shown in [80, Theorem 7.41] the corresponding boundary operator is bijective. The

proposed Steklov and sloshing eigensolvers for (5.1) are therefore based on use of the repre-

sentation (5.7). Taking into account well known expressions (see e.g. [80]) for the jump of

the single layer potential and its normal derivative across Γ, the eigenvalue problem (5.6) is

reduced to a system of integral equations

∫
Γ

∂Φ(x− y)

∂n(x)
(ϕ(y)−M [ϕ])ds(y) +

1

2
(ϕ(x)−M [ϕ]) =

= λ

(∫
Γ

Φ(x− y)(ϕ(y)−M [ϕ])ds(y) +M [ϕ]

)
x ∈ ΓS∫

Γ

∂Φ(x− y)

∂n(x)
(ϕ(y)−M [ϕ])ds(y) +

1

2
(ϕ(x)−M [ϕ]) = 0 x ∈ ΓN

(5.9)

for λ and φ.
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5.3 Nystrom method for Steklov eigenvalue problem

on smooth domains

In cases in which the boundary Γ is smooth and ΓN = ∅, the Steklov eigenfunctions um and

the corresponding densities ϕ are smooth functions [76]. These problems can thus treated

by highly effective spectrally-accurate methods [34, 80], which, like those used in Chapters 2

and 3, are based on explicit resolution of logarithmic singularities on the bases of Fourier

analysis. In order to construct a spectral method for approximation of the integral operators

in equation (5.9) we first use the parametrization (5.3) to evaluate the point values of these

operators at a point x = (x1(t), x2(t)) (0 ≤ t ≤ 2π) by means of the parametrization

y = (x1(τ), x2(τ)) of the integration curve: using the notations ψ(τ) = ϕ(x1(τ), x2(τ))

(0 ≤ τ ≤ 2π) and letting r(t, τ) =
√

(x1(t)− x1(τ))2 + (x2(t)− x2(τ))2, the system (5.9) of

integral equations is thus re-expressed in the form

∫ 2π

0

L(t, τ)(ψ(τ)−M [ϕ])dτ +
1

2
(ψ(t)−M [ϕ]) =

= λ

(∫
Γ

K(t, τ)(ψ(τ)−M [ϕ])dτ +M [ϕ]

)
t ∈ [aq, bq], q ∈ JS∫ 2π

0

L(t, τ)(ψ(τ)−M [ϕ])dτ +
1

2
(ψ(t)−M [ϕ]) = 0 t ∈ [aq, bq], q ∈ JN ,

(5.10)

where

L(t, τ) =
1

2π

(x′2(t)[x1(t)− x1(τ)]− x′1(t)[x2(t)− x2(τ)])

r2(t, τ)

√
[x′1(τ)]2 + [x′2(τ)]2,

K(t, τ) =
1

2π
log [r(t, τ)]

√
[x′1(τ)]2 + [x′2(τ)]2 , and

M [ϕ] =

∫ 2π

0

(ψ(τ))
√

[x′1(τ)]2 + [x′2(τ)]2dτ∫ 2π

0

√
[x′1(τ)]2 + [x′2(τ)]2dτ

.

(5.11)

In view of this expression for the integral operators, in which some things are periodic,
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we employ the quadrature rule

∫ 2π

0

log

(
4 sin

t− τ
2

)
f(τ) dτ ≈

2n−1∑
j=0

R
(n)
j (t)f(tj), 0 ≤ t ≤ 2π, (5.12)

with the quadrature weights given by

R
(n)
j := −2π

n

n−1∑
m=1

1

n
cosm(t− tj)−

π

n2
cosn(t− tj), j = 0, . . . , 2n− 1, (5.13)

which result from certain explicit integrations [34] along with the trapezoidal rule

∫ 2π

0

f(τ) dτ ≈ π

n

2n−1∑
j=0

f(tj) (5.14)

to approximate the integrals in (5.10). The resulting approximation of the integral equation

system yields a generalized matrix eigenvalue problem of the form

AX = ΛBX (5.15)

which approximates spectrally the continuous eigenproblem, and which can be solved nu-

merically by means of the QZ-algorithm (see [56]).

5.4 Graded-mesh algorithm for sloshing problem and

Steklov problem on non-smooth domains

As soon as either the boundary Γ contains geometric singularities or ΓN is nonempty the

corresponding Steklov or sloshing eigenfunctions may (typically do) exhibit singularities near

the corner points or Steklov-Neumann junctions [76]. In order to enable high-order solution
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of the integral equations (5.9) we rely on the decomposition

∫
Γ

∂Φ(x− y)

∂n(x)
(ϕ(y)−M [ϕ])ds(y) =

QN+QS∑
q=1

∫
Γq

∂Φ(x− y)

∂n(x)
(ϕ(y)−M [ϕ])dsy

λ

∫
Γ

Φ(x− y)(ϕ(y)−M [ϕ])ds(y) =

QN+QS∑
q=1

∫
Γq

∂

∂nx
Φ(x− y)(ϕ(y)−M [ϕ])dsy

(5.16)

for the corresponding integral operators and we approximate each one of the integrals on

the right-hand sides of (5.16) the integrals in (5.16) over each of the portions Γq using the

change of variables of the form (3.10) (Section 3.3.1) that alleviates the singularities in the

integral densities, and use the quadrature rules described in detail in Section 3.3.2.

5.5 Numerical results

In this section we present the results of several numerical experiments for the smooth domain

and graded-mesh algorithms for Steklov and sloshing eigenvalue problems. Figure 5.2 depicts

the spectral convergence of our eigensolver as it is used to calculate the first 32 Steklov

eigenvalues of the kite-shaped domain (see equation 2.111).

The right portion of Figure 5.3 depicts sample Steklov eigenfunction for the star-shaped

domain given by parametrization x(t) = (1+0.3 cos(5t)) cos(t), y(t) = (1+0.3 cos(5t)) sin(t)

and the left portion depicts sample Steklov eigenfunction for the kite-shaped domain.

In the next experiment we demonstrate in Figure 5.4 the high-frequency Steklov eigen-

functions for the unit disc and the kite-shaped domain. Note that since the value of the

Steklov eigenfunctions decays exponentially fast with the distance of the evaluation point to

the boundary (see e.g. [54]), the absolute value of the high-frequency eigenfunction for the

unit disc on Figure 5.4 is equal to the machine epsilon for the most of the domain interior.

In the next two experiments we demonstrate the capabilities of the Steklov eigensolver

when it is applied to multiply connected domains. Weinstock [121] proved that for simply-

connected planar domains the inequality

σ1(Ω) |∂Ω| ≤ 2π (5.17)
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Figure 5.2: Maximum errors for the first 32 Steklov eigenvalues of a kite-shaped domain.

holds (cf. equation (1.4) and asoociated text). Reference [54] provides an example of the

failure of this inequality for multiply connected domain (an annulus). Figure 5.5 (bottom)

depicts the value σ1(Ω)|∂Ω| − 2π for a family of annuli Ω = ε ≤ r ≤ 1 as a function of

ε. Numerical experiments confirm that for 0 ≤ ε ≤
√

17−3
4

the inequality (5.17) does not

hold. This value can also be obtained using implicit relations for the Steklov eigenvalues

of the annuli (see [54, Section 4.2]). Figure 5.5 (top) provides a comparison of the values

σ1(Ω)|∂Ω| − 2π for the annuli as well as domains with an exterior boundary given by a unit

circle and interior boundary given by a circle of radius ε centered at point (0.4, 0).

Figure 5.6 depicts a sample Steklov eigenfunction for a multiply connected domain con-

taining 49 interior holes of randomly distributed radia. Figure 5.7, finally, displays a sample

sloshing eigenfunction for a half-ellipse shaped domain obtained with our graded-mesh eigen-

solver.
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Figure 5.3: Steklov Eigenfunction for the kite-shaped domain (left) and the star-shaped
domain (right).

Figure 5.4: High-frequency Steklov eigenfunctions.
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Figure 5.5: Failure of Weinstock inequality for multiply connected domains.
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Figure 5.6: Steklov eigenfunction for a multiply connected domain.

Figure 5.7: Sloshing eigenfunction.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has introduced a novel integral-equation methodology for solution of boundary

value problems and Laplace and Steklov eigenproblems under a range of challenging bound-

ary conditions. By precisely accounting for the singularities of the boundary densities and

kernels, the relevant boundary integral operators are discretized with accuracies of very high

order. Methods are presented for smooth domains where singularities arise from mismatch

in boundary conditions (based on Fourier Continuation techniques) and for Lipschitz do-

mains (based on use of graded meshes). A stabilization technique is used to obtain a robust

non-local eigenvalue-search method. The resulting solvers allow for highly accurate and ef-

ficient approximation of scattering solutions, eigenvalues and eigenfunctions, even for cases

that involve strongly singular solutions/eigenfunctions and/or very high frequencies; they

can tackle a variety of elliptic problems under general boundary conditions; and they can

generate eigenfunction expansions suitable for use in the solution of time-domain parabolic

and hyperbolic problems in non-separable spatial domains.
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6.2 Future work

In this section we describe a number of natural continuations of the present contributions

which, we believe, provide a broad and enriching research program in both theoretical and

computational aspects of scattering theory, spectral theory, and their applications in science

and engineering.

6.2.1 Applications to antenna problems

This section contains a brief description of the application of the eigensolvers for various

cross-sectional geometries of Quadruple Ridged Flared Horn (QRFH) antenna. The antenna

is depicted in Figure 6.1; note the presence of multiple corners in each cross-section of the

antenna structure; a typical cross-section is displayed on the left portion of Figure 6.2.

Figure 6.1: QRFH antenna.

The cross sections of the antenna are determined by two geometric parameters: thickness

and gap values; see Figure 6.2 (left). From antenna theory, TE and TM modes (or Dirichlet

and Neumann eigenvalues) of these cross sections are of particular practical significance.

Relying on integral direct and indirect formulations for Neumann and Dirichlet prob-

lems, respectively, Nystrom discretizations on graded meshes are used for each edge of the

piecewise-smooth boundary. Figure 6.2 (right) displays a sample eigenmode obtained by the

approaches under consideration (eigenvalue µ = 11.92174 for a geometry with gap 1.86 and

thickness value 0.05) (with radius normalized to one). A comparison with results provided by
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Figure 6.2: Left: QRFH antenna cross section. Right: sample TM mode.

a commercial EM software package is provided in Figure 4.1 as a function of the gap param-

eter and for thickness parameter equal to .02. The left portion of the figure demonstrates

that the modes obtained by the proposed solver (star-shaped markers) generally coincide

with the modes obtained by the commercial EM solver (circular markers). The right figure

presents a zoom-in of a portion of the left figure, which emphasizes the fact that, in view

of its limited accuracy, the commercial software does not correctly track individual eigen-

values, as antenna parameters are varied in such a way that eigenvalue branches approach

each other. As can be seen in this figure, the present solver can be used to track eigenvalue

branches effectively.

Figure 6.3: Mode tracking. Comparison with commercial solver.
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6.2.2 Fully iterative solvers for eigenvalue problems.

In Chapter 4 eigenvalue searches for the Laplace eigenvalue problems are carried out by

examining the minimum singular value σn(µ) of an appropriate discretized operator. If the

number of discretization points is large, which is the case for two- and three-dimensional

problems with high values of wavenumber µ, the direct SVD computation can become ex-

pensive. For such problems an alternative evaluation of σn(µ) based on accelerated operator

implementations and fully-iterative algorithms is currently under development.

6.2.3 Solution of Zaremba problems for electromagnetic Maxwell

equations.

As indicated in Chapter 1 the Zaremba problem also serves as a natural stepping stone

for treatment of full electromagnetic problems with mixed transmission/perfect-conductor

boundary conditions, such as those that are found in printed circuit boards, reflectarray an-

tennas, etc. The schematic in Figure 6.4 shows a single conducting element “printed” on the

surface of a dielectric substrate. Current work suggests that some of the main methodologies

introduced in this thesis can be successfully extended to the more general dielectric/perfect-

conductor electromagnetic context.

6.2.4 Transmission eigenvalues

Consider a simply connected domain Ω with boundary ∂Ω = Γ. In the transmission

eigenvalue problem, which arises as fundamental element in the solution of inverse scat-

tering problem by means of the linear sampling method [23, 31], “transmission eigenval-

ues” k, 0 ≤ arg k ≤ π/2 are sought along with and a non-vanishing pair of functions
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Figure 6.4: Mixed boundary-value problem arising in simlation of electromagnetic fields in
and around printed circuit boards [74].

(u, v) ∈ H1(Ω)×H1(Ω) satisfying

∆w + nk2w = 0 in Ω, (6.1a)

∆v + k2v = 0 in Ω, (6.1b)

w = v on Γ, (6.1c)

∂w

∂n
=

∂v

∂n
on Γ, (6.1d)

where w, v ∈ L2(Ω), w − v ∈ H2
0 (Ω) = {u ∈ H2(Ω) : u =

∂u

∂n
= 0 on ∂Ω = Γ}, and the

refracting index n > 1 is assumed constant in Ω.
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Figure 6.5: Upper portion: Regularization of the σ(n) function for the transmission eigen-
value problem. Lower portion: Sample transmission eigenfunctions for the kite geometry.

The values of k > 0 for which the homogeneous interior transmission problem (6.1)

admits a non-zero solution (v, w) ∈ (L2(Ω))2 with w − v ∈ H2
0 (Ω), are called transmission

eigenvalues. In reference [23], it is shown that for n > 1 there exists an infinite number of

transmission eigenvalues which can only accumulate at ∞.

The upper portion of Figure 6.5 demonstrates results of an application of the trans-

mission eigensolver, including the regularization technique described in Chapter 4, to the

transmission eigenvalue problem (6.1) for the kite-shaped geometry. The lower portion of

the Figure 6.5 displays a sample pair (v, w) of eigenfunctions.
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6.2.5 Time explicit PDE solver using eigenfunction expansion and

separation of variables.

Dissipation and dispersion errors give rise to significant difficulties in numerical solutions of

time-dependent PDEs. For second-order linear equations associated with an elliptic spatial

operator L, a spectral time-domain solution based on use of eigenvalues and eigenfunctions

can be obtained numerically, even for non-separable geometries, provided the linear spa-

tial operator L possesses a complete set of eigenfunctions, and provided sufficiently many

eigenvalues and eigenfunctios can be effectively computed numerically: the time-dependent

solution can then be produced on the basis of explicit solutions of a decoupled set of ODEs.

The following example demonstrates the character of such solvers for a simple a wave

equation of the form

utt(t, x)−∆u(t, x) = 0 x ∈ Ω,

u(0, x) = h(x).
(6.2)

Approximating the initial data u0(x) by means of a finite sum of the Laplace-Dirichlet

eigenfunctions

h(x) ≈
N∑
i=1

ciui(x), (6.3)

where each eigenfunction ui satisfies the Laplace eigenvalue problem with the corresponding

eigenvalue µ2
i , the approximately solution, which yields bounded errors for infinitely long

times, is given by formula

u(x, t) =
N∑
i=1

ci cosµitui(x). (6.4)

The only unknowns in this expression are the coefficient ci—which equal, of course, the

Fourier coefficients of the initial data h (equation 6.3). The full PDE problem thus reduces

to the problem of evaluating the Fourier coefficients of the initial data function h.

Assuming the eigenfunctions ui are normalized, the coefficients ci in the expansion (6.4)

are given by

ci =

∫
Ω

h(x)ui(x)dx. (6.5)
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Figure 6.6: Integration using partition of unity.

In what follows we present an effective numerical approach for evaluation of the inte-

grals (6.5). The algorithm is based on use of an infinitely smooth windowing function η

that blends the value 1 for all points in Ω at a distance bigger than or equal to a certain

value δ to the boundary ∂Ω, to the value 0 at and outside the boundary ∂Ω (see Figure 6.6).

Using such a function the integration problem can be reduced to cases which can be

treated with high accuracy by means of tensor-product integration methods. Indeed, say

that we wish to evaluate the integral

∫
Ω

f(x, y)dxdy =

∫
Ω

f(x, y)η(x, y)dxdy +

∫
Ω

f(x, y)(1− η(x, y))dxdy (6.6)

for a given function f = f(x, y) defined in the set Ω depicted in Figure 6.6. Denoting by

f̃(x, y) the continuation by 0 of the product f(x, y)η(x, y) to the rectangular domain B (see

Figure 6.6), the first integral can be reexpressed in the form

∫
Ω

f(x, y)η(x, y)dxdy =

∫
B
f̃(x, y)dxdy (6.7)

and evaluated numerically with super-algebraic accuracy by means of the trapezoidal rule.

In order to evaluate the second integral on the right hand side of equation (6.6), and

assuming for simplicity of exposition that ∂Ω is a smooth curve, let (xb(θ), yb(θ)) (0 ≤ θ ≤ 2π)

denote a corresponding smooth parametrization of ∂Ω, and let n = [nx(θ), ny(θ)] denote the
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corresponding inner normal vector. Then, the change of variables

x(θ, s) = xb(θ)− snx(θ)

y(θ, s) = yb(θ)− sny(θ)
(6.8)

can be used to reexpress the integral in the form

∫
Ω

f(x, y)(1− η(x, y))dxdy =

∫ 2π

0

dθ

∫ δ

0

f(θ, s)(1− η(θ, s))J(θ, s)ds, (6.9)

that is, an integral along the direction normal to the curve for a small distance δ followed

by integration around the curve. For the Jacobian we have

J(θ, s) =

∣∣∣∣∣∣ −nx(θ) x′b(θ)− sn′x(θ)

−ny(θ) y′b(θ)− sn′y(θ)

∣∣∣∣∣∣ . (6.10)

The integral on the right hand side of equation (6.9) can then be approximated with su-

peralgebraic accuracy by means of the trapezoidal rule in the θ variable and Chebyshev

integration in the s variable.

Figure 6.7 demonstrates the solution obtained using equation (6.4) on the basis of the first

N = 150 Laplace-Dirichlet eigenfunctions for the wave equation on the kite-shaped domain

with Dirichlet boundary conditions for a set of times t = 1000000, t = 1000001, t = 1000002

and t = 1000003 s. The initial data h is given by a symmetric mollifier-function supported in

the interior of the domain. The accuracy of the solution does not ever deteriorate with time.

Or, more precisely, all truncations of an eigenfunction expansion give rise to errors that are

bounded, for all time, by a constant which tends to zero as the expansion truncation levels

are increased.
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Figure 6.7: Solution of the wave equation (6.2) for the kite-shaped geometry.
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Appendix A

Appendix: The Fourier Continuation
method (FC)

Given N point values f(xi) (xi = iπ
N−1

, i = 0, . . . , N−1) of a smooth function f(x) defined in

the interval [0, π], the Fourier Continuation algorithm produces rapidly convergent periodic

approximations f c of f to an interval of length larger than π. In view of the closed-form

integrals (2.107)-(2.108) used in Section 2.5.1.2, which lie at the basis of our FC-based

quadrature method, in the context of the present thesis the needed periodicity length is

2π—so that the Fourier continuation of the function f takes the form

f c(x) =
F∑

k=−F

ake
ikx (A.1)

for some value of F . (The form (A.1) applies to expansions with an odd number 2F + 1

of terms, but obvious alternative forms may be used to include expansions containing an

even number of terms.) In this thesis we use the “blending-to-zero” version of the algorithm,

which was introduced in [3], together with small additional adjustments to enable use of the

long continuation intervals required in the present thesis. For additional details, including

convergence studies of FC approximations, we refer to [3, 21, 91].

The extended periodicity interval is used in the FC method to eliminate discontinuities

that arise in a period-π extension of the function f , and thus, to eliminate the difficulties

arising from the Gibbs phenomenon. The FC representation (A.1) is based on use of a

preliminary discrete extension of f to the interval [π − L,L] (L > π) which contains [0, π]
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in its interior. This discrete extension is obtained by appending to the original N function

values an additional C > 0 function values that provide a smooth transition from fN−1 to 0

in the interval [π, L], as well as C function values that provide a smooth transition from f0

to zero in the interval [π − L, 0]. Here L = π(N + C)/(N − 1) with C small enough so that

L < 3π/2.

To obtain the function values in the extension domains [π−L, 0] and [π, L] we use a certain

FC(Gram) algorithm [21] which is briefly described in what follows. The FC(Gram) method

constructs, at first, a polynomial approximant to f in each one of the intervals [x0, xd−1]

and [xN−d, xN−1] (for some small integer number d independent of N) on the basis of the

given function values at the discretization points x0, x1, . . . , xd−1 and xN−d, xN−d+1, . . . , xN−1,

respectively; see Figure A.1. Following [21], in this thesis these interpolants are obtained as

projections onto a certain basis of orthogonal polynomials: the Gram polynomial basis of

order m. The FC(Gram) algorithm then utilizes a precomputed smooth function for each

member of the Gram basis which smoothly blends the basis polynomial to the zero function

over the distance L− π; see [3, 21, 91] for details.

In view of the large continuation intervals required in this thesis, the function values on

the interval [π−L,L] produced as indicated above are subsequently padded by an appropriate

number of zero values to produce values of a 2π-periodic smooth function (see Figure A.1).

The algorithm is completed via an application of the Fast Fourier Transform (FFT) to

the 2π periodic extended discrete function—to produce the coefficients ak of the Fourier

continuation f c shown in (A.1). Throughout this thesis we have used the parameter values

C = 27, d = 6, and m = 5.
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Figure A.1: Demonstration of the blending-to-zero FC algorithm.
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Appendix B

Solution at interior resonances

In this section we describe an algorithm for evaluation of the solution of the problem (2.1)

for an exterior domain Ω, and for a value of k2 that either equals or is close to an interior

Dirichlet eigenvalue of the Laplace operator in the bounded set R2 \ Ω. As mentioned in

Section 2.2 in this case the system of integral equations (2.4) does not a have a unique

solution. However, the solution of the PDE is uniquely solvable for any value of k.

The non-invertibility of the aforementioned continuous systems of integral equations at a

wavenumber k = k∗ manifests itself at the discrete level in non-invertibility or ill-conditioning

of the system matrix A := A(k) for values of k close to k∗. Therefore, for k near k∗ the

numerical solution of the Zaremba problems under consideration (which in what follows will

be denoted by ũ := ũk(x) to make explicit the solution dependence on the parameter k)

cannot be obtained via direct solution the linear system A(k)η = f . As is known, however,

the solutions u = uk of the continuous boundary value problem are analytic functions of

k for all real values of k—including, in particular, for k equal to any one of the spurious

resonances mentioned above—and therefore, the approximate values ũk(x) for k sufficiently

far from k∗ can be used, via analytic continuation, to obtain corresponding approximations

around k = k∗ and even at a spurious resonance k = k∗.

In order to implement this strategy for a given value of k = k0 it is necessary for our

algorithm to possess a capability to perform two steps:

1. To determine whether k0 is “sufficiently far” from any one of the spurious resonances k∗.

2a. If k0 is “sufficiently far” then simply invert the linear system by means of either an LU
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decomposition or the usually already available Singular Value Decomposition (which

is used to determine the “distance from resonance”).

2b. If k0 is not “sufficiently far” from one of the spurious resonances k∗, then obtain

the PDE solution at k0 by analytic continuation from solutions for values of k in a

neighborhood of k0 which are “sufficiently far” from k∗.

Here the terms “sufficiently far” are defined to basically mean that, at the given frequency

k, the linear system can be inverted without significant error amplifications. It has been

noticed in practice [102] that the regions within which inversion is not possible are very small

indeed, in such a way that analytic continuation from “sufficiently far” can be performed to

the singular or nearly singular frequency k0 with any desired accuracy. For full details in

these regards see [102].

The numerical results confirming highly accurate evaluation of the PDE solution even for

resonant frequencies are presented in Figure B.1 for the case of the FC-based solver applied to

the Zaremba boundary value problem on the unit disc. The convergence rates are compared

for two frequencies: k = 11 (where the solutions are obtained using an LU decomposition)

and the resonant frequency k = 11.791534439014281 (with solutions obtained by means of

analytic continuation).
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Figure B.1: Convergence comparison at a regular and a resonant frequency.
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Appendix C

Closed form expressions for integrals
with a logarithmic kernel

In this appendix we present certain closed-form expressions for integrals of trigonometric

functions multiplied by a logarithmic kernel. The results in this appendix were obtained in

collaboration with professor Fernando Reitich in addition to professor Oscar Bruno.

We consider the following integrals:

∫ π

0

log(|z − cos(θ)|) cos(nθ)dθ, (C.1)

∫ π

0

log(|z − cos(θ)|) sin(nθ)dθ, (C.2)

where z is a real number. If |z| < 1 equation (C.1) is related to eigenvalues of Symm’s

operator [111] and can be evaluated directly:

∫ π

0

log(|z − cos(θ)|) cos(nθ)dθ = λn. (C.3)

Here λn = 1
2n

for n 6= 0 and log(2)
2

for n = 0. To obtain the values of both integrals (C.1), (C.2)

for all values of z, we consider the operator

An(z) =

∫ π

0

log(z − cos(θ))einθdθ. (C.4)
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Clearly ∫ π

0

log(z − cos(θ)) cos(nθ)dθ = Re (An(z)) , (C.5)∫ π

0

log(z − cos(θ)) sin(nθ)dθ = Im (An(z)) . (C.6)

We consider the following cases:

1. Case n = 0

In this case

A0(z) =

∫ π

0

log |z − cos(θ)|dθ (C.7)

A′0(z) =

∫ π

0

1

z − cos(θ)
dθ =

π√
z2 − 1

. (C.8)

Hence,

A0(z) = π log
(
z +
√
z2 − 1

)
+ C = πAcosh|z|+ C. (C.9)

If z →∞ , A0(z) ' π log(z), ⇒ C = −π log(2), and

A0(z) = πAcosh(z)− π log(2). (C.10)

2. Case z ≥ 1, n ≥ 1

Let Γ denote the arc |z| = 1, Im(z) > 0 (see figure C.1). Then

An(z) =

∫
Γ

log

(
z −

ω + 1
ω

2

)
ωn(−i)dω

ω
=

=(−i)
∫

Γ

[
log
(
2ωz − ω2 − 1

)
− log(2ω)

]
ωn−1dω.

(C.11)
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Figure C.1: Integration contour.

Let ω1 and ω2 denote the roots of quadratic polynomial

2ωz − ω2 − 1 = − (ω − ω1) (ω − ω2) . (C.12)

It is easy to check that

ω1 = z +
√
z2 − 1 ≥ 1, ω2 = z −

√
z2 − 1 =

1

ω1

≤ 1, (C.13)

and

An(z) = (−i)
∫

Γ

[log (ω1 − ω) + log (ω − ω2)− log(2ω)]ωn−1dω. (C.14)

Applying the Cauchy residue theorem to each integral on the right-hand side of equa-

tion (C.14) we obtain

∫
Γ

log(ω)ωn−1dω = −
∫ 1

−1

log(x)xn−1dx =

−
∫ 1

−1

log |x|xn−1dx− iπ
∫ 0

−1

xn−1dx =
1

n2
[1− (−1)n] + iπ

(−1)n

n
,

(C.15)

and ∫
Γ

log (ω − ω2)ωn−1dω = −
∫ 1

−1

log (x− ω2)xn−1dx =

−
∫ 1

−1

log |x− ω2|xn−1dx−
∫ ω2

−1

iπxn−1dx.

(C.16)

133



Using integration by parts for the functions u = log |x− ω2| and v =
xn − ωn2

n
, the first

integral on the right hand side of equation (C.16) is given by

∫ 1

−1

log |x− ω2|xn−1dx =

(
xn − ωn2

n
log |x− ω2|

)∣∣∣∣1
−1

−
∫ 1

−1

xn − ωn2
n

1

x− ω2

dx =

=
1− ωn2
n

log |1− ω2| −
(−1)n − ωn2

n
log |1 + ω2|−

−
1∫
−1

1

n

(
xn−1 + xn−2ω2 + ... + xωn−2

2 + ωn−1
2

)
dx =

=
1− ωn2
n

log |1− ω2| −
(−1)n − ωn2

n
log |1 + ω2| −

1

n

n−1∑
j=0

ωj2
(1− (−1)n−j)

n− j
.

(C.17)

Then the expression (C.16) can be rewritten as

∫
Γ

log (ω − ω2)ωn−1dω = −1− ωn2
n

log |1− ω2|+
(−1)n − ωn2

n
log |1 + ω2|+

+
1

n

n−1∑
j=0

ωj2
(1− (−1)n−j)

n− j
− iπω

n
2 − (−1)n

n
.

(C.18)

Similarly

∫
Γ

log (ω1 − ω)ωn−1dω = −
∫ 1

−1

log |ω1 − x|xn−1dx =

− 1− ωn1
n

log |1− ω1|+
(−1)n − ωn1

n
log |1 + ω1|+

1

n

n−1∑
j=0

ωj1
(1− (−1)n−j)

n− j

(C.19)
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and equations (C.15), (C.16), and (C.19) yield

An(z) =

∫ π

0

log(z − cos(θ))einθdθ =

(−i)
∫

Γ

[log (ω1 − ω) + log (ω − ω2)− log(2ω)]ωn−1dω =

= (−i)
[
−1− ωn1

n
log |1− ω1|+

(−1)n − ωn1
n

log |1 + ω1|

+
1

n

n−1∑
j=0

ωj1
(1− (−1)n−j)

n− j
− 1− ωn2

n
log |1− ω2|

+
(−1)n − ωn2

n
log |1 + ω2|+

1

n

n−1∑
j=0

ωj2
(1− (−1)n−j)

n− j
− iπω

n
2 − (−1)n

n

− 1

n2
[1− (−1)n]− iπ (−1)n

n
+ log(2)

1− (−1)n

n

]
= (−i)

[
−1− ωn1

n
log |1− ω1|+

(−1)n − ωn1
n

log |1 + ω1|

+
1

n

n−1∑
j=0

(
ωj1 + ωj2

) (1− (−1)n−j)

n− j
− 1− ωn2

n
log |1− ω2|

+
(−1)n − ωn2

n
log |1 + ω2| − iπ

ωn2
n
− − 1

n2
[1− (−1)n] + log(2)

1− (−1)n

n

]
.

(C.20)

3. Case 0 < z < 1, n ≥ 1

In this case it is easy to see that in this case ω1 and ω2 are both complex, but the

formula (C.20) still holds.

4. Case z < 0, n ≥ 1

In this case it is easy to see that

An(−z) =

∫ π

0

log(| − z − cos(θ)|)einθdθ =

= |θ′ = π − θ| =
∫ π

0

log(|z − cos(θ′)|)ei(nπ−nθ′)dθ′ = (−1)nAn(z).

(C.21)

Equations (C.10), (C.20), and (C.21) provide the necessary expressions.

From a computational perspective, evaluating sum of the terms that contain (ω1)n, for
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ω1 > 1 in equation (C.20) may result in loss of accuracy due to cancellation errors, since, as

can be seen from equation (C.20), the resulting sum is bounded. Instead we use the following

expressions:

1

n

n−1∑
j=0

ωj1
(1− (−1)n−j)

n− j
= |k = n− j| = 1

n

n∑
k=1

ωn1
ωk1

(
1− (−1)k

)
k

(C.22)

=
ωn1
n

n∑
k=1

ωk2

(
1− (−1)k

)
k

=
2ωn1
n

(
ω2 +

ω3
2

3
+
ω5

2

5
+ ... +

ωn∗2

n∗

)
,

where n∗ = n if n is odd and n∗ = n− 1 if n is even. Then

Im(An(z)) =
1− ωn1
n

log |1− ω1| −
(−1)n − ωn1

n
log |1 + ω1|

− 1

n

n−1∑
j=0

(
ωj1 + ωj2

) (1− (−1)n−j)

n− j
+

1− ωn2
n

log |1− ω2| −
(−1)n − ωn2

n
log |1 + ω2|

+
1

n2
[1− (−1)n]− log(2)

1− (−1)n

n
=

log |1− ω1|
n

− (−1)n log |1 + ω1|
n

+
1− ωn2
n

log |1− ω2| −
(−1)n − ωn2

n
log |1 + ω2|+

1

n2
[1− (−1)n]

− log(2)
1− (−1)n

n
− 1

n

n−1∑
j=0

ωj2
(1− (−1)n−j)

n− j

+
ωn1
n

(
log
|1 + ω1|
|1− ω1|

− 2

(
ω2 +

ω3
2

3
+
ω5

2

5
+
ωn∗2

n∗

))
.

(C.23)

The last line in equation (C.23) still represents a challenge from the computational point

of view. However, using the fact that ω2 < 1 and the Taylor expansion of log
|1 + ω1|
|1− ω1|

near

ω1 = 0, we obtain

ωn1
n

(
log
|1 + ω1|
|1− ω1|

− 2

(
ω2 +

ω3
2

3
+
ω5

2

5
+ · · ·+ ωn∗2

n∗

))
=

2ωn1
n

∞∑
k=1

ωn∗+2k
2

n ∗+2k
. (C.24)
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Expression (C.24) is then substituted in (C.20) to obtain

∫ π

0

log(r − cos(σ))einσdσ = (−i)
[
−1− ωn1

n
log |1− ω1|+

(−1)n − ωn1
n

log |1 + ω1|

+
1

n

n−1∑
j=0

(
ωj1 + ωj2

)(1− (−1)n−j)

n− j
− 1− ωn2

n
log |1− ω2|

+
(−1)n − ωn2

n
log |1 + ω2|−iπ

ωn2
n
− 1

n2
[1− (−1)n] + log(2)

1− (−1)n

n

]
.

(C.25)
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[52] Girouard, A., and Polterovich, I. On the Hersch-Payne-Schiffer inequalities for

Steklov eigenvalues. Functional Analysis and its Applications 44, 2 (2010), 106–117.

[53] Girouard, A., and Polterovich, I. Shape optimization for low neumann and

steklov eigenvalues. Mathematical Methods in the Applied Sciences 33, 4 (2010), 501–

516.

[54] Girouard, A., and Polterovich, I. Spectral geometry of the steklov problem.

arXiv preprint arXiv:1411.6567 (2014).

[55] Gisser, D., Isaacson, D., and Newell, J. Electric current computed tomography

and eigenvalues. SIAM Journal on Applied Mathematics 50, 6 (1990), 1623–1634.

[56] Golub, G. H., and Van Loan, C. F. Matrix computations, vol. 3. JHU Press,

2012.

143



[57] Grebenkov, D. S. Laplacian eigenfunctions in nmr. i. a numerical tool. Concepts in

Magnetic Resonance Part A 32, 4 (2008), 277.

[58] Green, G. Note on the motion of waves in canals. Transactions of the Cambridge

Philosophical Society 7 (1848), 87.

[59] Green, G., et al. On the motion of waves in a variable canal of small depth and

width. Transactions of the Cambridge Philosophical Society 6 (1838), 457.

[60] Greengard, L., and Rokhlin, V. A fast algorithm for particle simulations. Journal

of computational physics 73, 2 (1987), 325–348.

[61] Greenhill, A.-G. Wave motion in hydrodynamics. American Journal of Mathemat-

ics (1886), 62–96.

[62] Hadamard, J. Sur les ondes liquides. Rend. Acad. Lincei 5, 25 (1916), 716–719.

[63] Hecht, F. New development in freefem++. J. Numer. Math. 20, 3-4 (2012), 251–265.

[64] Helsing, J. Integral equation methods for elliptic problems with boundary conditions

of mixed type. Journal of Computational Physics 228:23 (2009), 8892–8907.

[65] Helsing, J. Solving integral equations on piecewise smooth boundaries using the

rcip method: a tutorial. In Abstract and Applied Analysis (2013), vol. 2013, Hindawi

Publishing Corporation.

[66] Hersch, J., Payne, L. E., and Schiffer, M. M. Some inequalities for stekloff

eigenvalues. Archive for Rational Mechanics and Analysis 57, 2 (1974), 99–114.

[67] Hesthaven, J. S., and Warburton, T. High–order nodal discontinuous galerkin

methods for the maxwell eigenvalue problem. Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences 362, 1816

(2004), 493–524.

144
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