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ABSTRACT

A techniqué for obtaining approximate periodic solutions
to nonlinear ordinary differential equations is investigated. The
approach is based on defining an equivalent differential equation
whose exact periodic solution is known. Emphasis is placed on the
mathematical justification of the approach. The relationship
between the differential equation error and the solution error is
investigated, and, under certain conditions, bounds are obtained
on the latter. The technique employed is to consider the equation
governing the exact solution error as a two point boundary value
problem. Among other things, the analysis indicates that if an
exact periodic solution to the original system exists, it is always
possible to bound the error by selecting an appropriate equivalent
system.

Three equivalence criteria for minimizing the differential
equation error are compared, namely, minimum mean square error,
minimum mean absolute value error, and minimum maximum
absolute value error. The problem is analyzed by way of example,
and it is concluded that, on the average, the minimum mean square
error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic
auxiliary systems for obtaining approximate solutions. In the
examples considered, the cubic systern provides noticeable

improvement over the linear system in describing periodic response.



(iv)

A comparison of the present approach to some of the more clagsical
techniques is included. It is shown that certain of the standard
approaches where a solution form is assumed can yield erroneous

qualitative results.
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I. INTRODUCTION

The area of nonlinear ordinary differential equations has been
investigated by mathematicians for centuries. However, it has only
been in recent times that the engineer and the applied theoretician have
developed an interest in this area. One major reason for this interest
is that it is not always possible to neglect nonlinearities in many of
today's complex problems. In situations where a more detailed under-
standing of the qualitative and quantitative behavior of systems is
desired, it is often necessary to include nonlinear effects. Although
nonlinear equations have occupied the mathematician for quite some
time, the techniques available for obtaining exact closed form solutions
are rather limited. Under suitable conditions, existence and uniqueness
of solutions can be proved, but for only a relatively small numbe.r of
nonlinear equations are the exact solutions known. A good treatment
of the existence and uniqueness issue is given in reference (1).

The inability to obtain exact solutions has necessitated the
development of approximate analysis for studying nonlinear problems.
This analysis may loosely be divided into two categories: topological
methods and approximate solution methods. The former usually
involve phase plane or functional analysis methods. The Poincaré

the ory(z)

for the singular points of two-dimensional autonomous systems
and the Second Method of Liapunov (3)for the stability of nonlinear

systems are examples of topological methods. Approximate solution



methods, on the other hand, usually involve obtaining closed form
approximate solutions for the nonlinear system of interest. Typical
examples of this category are the Poincaré-Linstead perturbation

(4)

technique' ’'and the asymptotic methods of Krylov, Bogoliubov, and

Mitropolsky(s).

With the increased speed and flexibility of today's digital
computers, one might be tempted to say that the usefulness and
importance of approximate analysis have virtually been eliminated.
However, a strong case can still be made for approximate analysis.

It is true that, if accurate quantitative results are desired for specific
cases, the computer is the tool to be utilized. However, if the general
behavior of the solution is of interest, the computer can become cum-
bersome and quite expensive. It is difficult to determine trends and
the dependence of the solution on differential equation parameters
using a digital computer. It is usually necessary to calculate a large
number of casecs, and, even then, it may be difficult to determine
whether or not some phenomenon or characteristic is being overlooked
or concealed. Therefore, if it is possible to perform a meaningful
approximate analysis, the behavior of the solution is usually more
easily determined. Once the general nature of the solution is klllown,
the computer may then be used to obtain accurate quantitative results
if desired. Therefore, the importance of approximate analysis has not
been diminished by the digital computer. On the contrary, it has been
increased since a good understanding of the basic phenomenon is al-

ways desirable prior to utilizing the computer.



The present investigation involves an approximate technique
which may be classified as an approximate solution method. The

approach, called the equivalent equation approach, was presented in
(6,7)

several recent papers by Iwan and is designed to provide approxi-
mate periodic solutions to nonlinear systems. The technique is a
generalization of the method of equivalent linearization and is based on
defining an alternative or auxiliary differential system whose exact
periodic solution is known.

Most standard approximating techniques involve assuming a
certain solution form containing unspecified parameters. These param-
eters may be prescribed by minimizing, in some sense, the error
residual obtained by substituting the assumed solution into the original
differential system. Since periodic motions are of interest, the usual
solution form involves linear combinations of trigonometric functions.
Typical methods which fall into this class are: The Poincare-Linstead
perturbation technique (4), Krylov-Bogoliubov-Mitropolsky asymptotic
methods (5), Galerkin's technique (9), and the methods of collocation,
(10)

subdomain, and least squares One major limitation on most of

the above techniques is that the usual first order approximation they
provide is accurate only for equations which are nearly linear. In-
creased accuracy is possible by including more terms in the
approximation, but the additional computational effort required rapidly
becomes excessive. Therefore, there exists a need to develop tech-

niques which yield more accurate results for equations containing



moderately large nonlinearities and which, at the same time, involve
levels of computational effort comparable to the standard first order
techniques.

Various other authors have utilized non-trigonometric solution
forms in order to achieve more accuracy. Eringen postulated a gener-
alized Galerkin's procedure utilizing non-trigonometric solutions(“).
Klotter and Cobb used a polynomial approximation to represent the
quarter period wave form(lz), The parameters were determined
utilizing Galerkin's procedure. Recently, Barkham and Soudack used

solution forms which irmdve Jacobian elliptic functions(13’ 14).

Their
technique utilized the method of slowly varying parameters and enabled
transient behavior to be analyzed. However, they make several sim-
plifying assumptions which detract from the rigor of the approach.
Furthermore, their results apply only to second order equations which
are ""Duffing-like'. The equivalent equation approach is like the above
in that it represents an attempt to provide an unambiguous technique
for systematically treating equations containing moderately large
nonlinearities.

The idea of using one differential system to model another
differential system is not new. The method of equivalent linearization
has been an accepted approximate technique for quite some time.
Various authors have suggested modifications but these mainly concern
the manner in which the linear system is made equivalent to the original
system. The standard method(g)minimizes the mean square differential

equation error. Denman and Liu have suggested using an ultraspherical



polynomial approximation where the nonlinearity is expanded in a

series of ultraspherical polynomials(IS’ 16).

Only the linear term is
utilized, and, therefore, an equivalent linear system is generated.

An example of using a nonlinear auxiliary system was given by
Helfenstein(l'”. He utilized Duffing's equation with Jacobian cosine
excitation to model Duffing's equation with trigonometric cosine
excitation. However, the equivalent system is obtained by merely
equating the coefficients of all like terms. This idea of using one
nonlinear system to model another nonlinear system was the moti-
vating factor in the development of the equivalent equation approach,
By using nonlinear auxiliary systems, it is felt that better approxi-
mations could be obtained since some of the features peculiar to non-
linear problems would be incorporated into the analysis in a very
natural manner.

A complete description of the equivalent equation approach is
given in Chapter II. As stated earlier, the approach is based on de-
fining equivalent differential equations whose exact periodic solutions
are known. By developing an alternative differential equation which is,
in some sense, equivalent to the original system of interest, it is
hoped that the corresponding periodic solution will also be equivalent
to the exact solution of the original system. To illustrate the techni-
que, Section 2.2 presents an example where the equivalent equation
approach is used to obtain an approximate periodic solution to the un-

damped Duffing's equation with trigonometric excitation. The auxiliary

system utilized is Duffing's equation with Jacobian cosine excitation.
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In Chapter III, the relationship between the differential
equation error (the difference between the original system and the
equivalent system) and the solution error (the difference between the
exact periodic solution and the solution of the equivalent system) is
investigated. Under certain conditions, bounds are obtained on the
solution error in terms of the differential equation error. The tech-
nique employed is to consider the equation governing the exact solution
error as a two point boundary value problem. Rewriting the problem
as an integral equation and using the Green's function, the method of
successive approximations is applied to obtain a bound on the exact
error. Among other things, the above analysis indicates that if an
exact periodic solution to the original system exists, it is always
possible to bound the error by selecting an appropriate equivalent
system. Other authors have obtained results similar to those pre-

sented in Chapter III. Some are Cesari(lg’ 19), rabe(zo’ = 22),

(23,24) (25)

U

McLaughlin (26).

Holtzman , and Lazer Unfortunately,
most of the above consider either weakly nonlinear equations or
specific auxiliary systems. The present analysis attempts to be more
general by considering two arbitrary differential systems. That
research which seems to be most closely related to the present
work is discussed in Section 3.1.

Section 3.1 presents an error bound analysis for first order
n-dimensional vector systems. A discussion of autonomous systems

is included which shows that the successive approximations techniques

never apply to non-trivial periodic solutions of autonomous systems.



In Section 3.2, the results are specialized for the case of
second order scalar equations. Furthermore, the Green's function
used in Section 3.1 is associated with the unique linear part of the
error differential equation. In general, this equation contains periodic
coefficients which makes the determination of the Green's function
very tedious. To avoid this difficulty the problem is reformulated
utilizing the Green's function for a system with constant coefficients.
These coefficients are then selected by minimizing the resulting error
bound.

Section 3.3 presents an example where the theory of Section 3.2
is applied to the example considered in Section 2.2, i.e., the trigo-
nometrically excited undamped Duffing's equation. Bounds are
obtained for both the linear and cubic approximations.

An example of a conservative autonomous system is considered
in Section 3.4. As mentioned above, the theory of Section 3.2 yields
very little information concerning autonomous systems. Consequently,
an alternative comparison technique is developed for second order
scalar conservative autonomous systems. The autonomous example
considered is the undamped Duffing's equation.

The manner in which an alternative system is made equivalent
to the original system is examined in Chapter IV. Various equivalence
criteria are compared; namely, minimization of the mean square dif-
ferential equation error, minimization of the mean absolute value
differential equation error, and minimization of the maximum absolute

value differential equation error. The errors are minimized with



respect to parameters appearing in the auxiliary system. The above
errors were selected because of their physical relevance and their
relation to the error bound analysis performed in Chapter III.

Since it was of interest to determine which equivalence cri-
terion yielded the smallest actual solution error on the average, it
was impossible to use analytical techniques to investigate the problem.
Therefore, the problem is analyzed by way of example, and it is
concluded that, on the average, the minimum mean square error is
the most appropriate equivalence criterion to use.

In Chapter V, a comparison is made between the linear and
the cubic approximations for second order scalar systems. The
general approximations are developed, and the determining equations
are presented. The two approximations are compared by way of
example. The specific examples considered are Duffing's equation

with trigonometric excitation, and a system of the form

. < N ]
36 P ﬁic‘-m—FCOb(th). (1.1)

In both cases, the cubic approximation provides considerable
improvement in solution accuracy over the linear system. In addition,
in the second example there exists some indication that the cubic ap-
proximation, which is, primarily, a harmonic approximation, is
trying to yield some information about the ultraharmonic behavior
of (1.1).

In Chapter VI, a brief comparison is presented between the

equivalent equation approach and various other classical approximate



techniques, The techniques considered are collocation, subdomain,
least squares, and Galerkin's procedure, The relation of these tech-
niques to the general method of weighted residuals(27) is included,

In Section 6.2, some peculiarities associated with the method
of least squares are presented, Examples are considered which
illustrate that the method of least squares may generate extraneous
approximate solutions. These solutions correspond to maximums of
the mean square differential equation error instead of minimums,
Similar difficulties may arise with other techniques, such as the
equivalent equation approach, which are based on an averaging
principle, However, if the differential equation parameters appear
linearly in the differential equation error, which is often the case,
the equivalent equation approach always generates solutions which

minimize the differential equation error,
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II. EQUIVALENT EQUATION APPROACH

In this chapter, the Equivalent Equation Approach is presented.
(6)

The description closely parallels that given by Iwan An example
of the use of the technique to obtain an approximate periodic solution
for the undamped Duffing's equation with trigonometric excitation is

included.

2.1. Description of the Technique.

Consider the problem of obtaining an approximate solution for
the periodic motions of a system of ordinary differential equations.

The system of interest, called the original system, will be repre-

sented as
D(x(t),t)=0 , (2.1)

where D is a vector system which may contain differential operators
operating on the dependent vector x and functions of the independent
variable t. Furthermore, (2.1) is assumed to possess periodic
solutions with least period Ts' For nonautonomous systems, Ts may
be prescribed by the excitation, but in the case of autonomous systems,
Ts may be an unknown of the problem.

In order to obtain an approximate solution of (2.1), consider

another system of equations, the auxiliary system, represented as

D(x(t), 0 Gpreee @)= 0 (2.2)

where 0..1('1:1,..., r) are parameters of the equations. Let (2.2) have



%1 [ =

known periodic solution forms that are members of some class of

functions C having the form

_:s(t)=x(ﬁ1,---,ﬁs,t) | (2.3)

where ﬁj(jzl,..., s) are parameters which define the members of C. If
the solution of (2.2) is unique, there will exist s relations between ai
and {BJ. which come directly from (2.2) plus any periodicity and/or
initial conditions that‘may apply. Knowledge of the (xi(irl, ..., r) implies
a unique determination of the ﬁj(jzl,... , 8), but the converse is not
necessarily true.

It is possible to obtain an approximate solution of (2.1) by
using the solution of an auxiliary system (2.2) where the auxiliary
system is chosen to be as '"close'' to the original system (2.1) as
possible. By close, it is meant that the equations comprising the
original system and the auxiliary system are very similar in form.

It is then hoped that, by making the difference in the governing
equations small, the difference in their respective solutions will also
be small. In Chapter III, the nature of the relation between the dif-
ference in the governing equations and the difference in their solutions
is investigated, and the following statement is proved.

"Under certain conditions, given any bound on the difference
between the solutions of the two differential systems (2.1) and (2.2),
it is always possible to select an auxiliary system (2.2) such that the

magnitude of the actual difference between the solutions is less than

the prescribed bound."
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Motivated by the above argument, one may select certain of

the parameters OL.l(i:I,..., r) so as to make some of the terms in _12

identical in form to terms in D. Let

D (), @) eees @0 1) =Dy ((t), @

1700 ap, t) +

*
D, Gst), oy Gt (2.4)

and

D(x(t), 1) =D (x(t), t) +D, (x(), £) 2.5)
where 0:.'(1:1,..., p) are selected so that

Dy Gs(t), @ 0, 8) =D (1), 8) 2.6)

The additional c.i(i=p+l,..., r) parameters are determined in some
manner so as to minimize the remaining difference between E and D

for all members gf_the class C; i.e. for all §(t) having the form

x{t) = y(t) where y(t) is notation for z(ﬁl""'ﬁs’t)'
Define the differential equation error £(t) as the difference

obtained between D(x(t), t) and _D*(.’f(t)’ t) when both are evaluated at the

solution form y(t). Then,
() =D(y(t), t) - D (y(t), t) . 2.7)

In (2.7), P*(_y_(t), t) does not vanish since the s relations between the
cx,i(izl,..., r) and the Bj(jxl,..., s) have not been utilized. Using (2.4),

(2.5), and (2.6), equation (2.7) can be written as

3k
la e G )= Dp(y(0), 1) - Doly(tha una,t) L (2.8)

+1"°
where the explicit dependence of € on the Cti(i:p+l,..., r) is indicated.

The parameters ﬁj(jzl,..., s) are to be considered arbitrary in (2. 8).
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The cxi(i=p+1,.... r) are now selected so that (2.8) is minimized.
However, there are many ways that (2.8) could be minimized depending
on the specific type of minimization desired. For example, the maxi-
mum norm of € could be minimized, or the mean value of the norm of
€ over one cycle of the motion could be minimized, or € could be made
to vanish at certain preselected points. In Chapter IV, approximations
obtained by using these various minimization conditions are compared.
As expected, no one minimization condition gives the "'best'" approxi-
mation in all cases. However, it may be concluded, in a very broad
sense, that the optimum minimization criterion is
t,+T
1 o - ki
T I € edt = minimum . (2.9)

r [
t

where T denotes the transpose, and tl is an arbitrary time. Since the
minimization of the integral is with respect to ai(i=p+l,..., r), (2.9) is

equivalent to

tl+Ts T
L 1 I € edt| =0 , i=p+l,...,r . (2.10)
9a.| T ==
1 S t
-1
Since TS does not depend on cx_i(i=p+l,..., r) (remembering that the

ﬁj(j=1,..., s) are still arbitrary), (2.10) becomes

t,+T
1 s 3§_T Toeg
_f e StE€ Py | dt=0 , i=ptl,..,r . (2.1%)
t 1 1
1

Because the s relations between the ai(i=1, ..., r) and the ﬁj(jzl, very S)

have not yet been utilized, equations (2.6) and (2.11) provide relations



-14-

which determine the auxiliary system parameters G,_i(i 1L....,t) which ar:
valid for all members of C. If these s relations are now introduced,
equation (Z2.11) can be further reduced. Since the differentiation in

equation (2.11) is with respect to explicit o:i(i=p+1, ...,1), the derivatives
T

ke

of _ELT may be expressed, using equation (2.8), in terms of 22 (y(t),
ap+1’ cenr Qs t) only. Furthermore, € may be expressed in terms of

D(y(t)) only from equation (2.7). P_*(X(t)’t) vanishes once the s relations
are utilized. From the above considerations, equation (2.11) becomes

t1+TS T

[ 3= D5 e, e 0 @, t) [D(g(t), Nt =0 , i=p+l...,x. (2.12)
¢ i
1

It is assumed that the relations in (2.12) will be of such a form
that it is possible to determine the auxiliary system parameters
ai(i=p+1,..., r) and {3j(j=1, ...,s) so that meaningful approximate solutions
and equivalent system equations are obtained. The values of the para-
meters generated by (2.12) correspond to extremums of the mean square
error (2.9). These extremums may be either maximums or minimums.
Care must be taken to select only those values of cr.i(i=p+1, v TY and

Qj(j=l, ..., 8) which minimize (2.9). If the weight functions

0 e i T
W, (t) = »5ai|'92 (¥ @y g @) |0 12pHl, 2.13)

are independent of ai(i=p+1,..., r), it can be shown that a1l solutions
generated by (2.12) correspond to minimums of (2.9). This situation
occurs if ¢ is linear in the c,i(i:p+l,...,r), which is often the case.
Howewver, if the Wi(t) depend on some of the ai(i=p+1...., r), various

anomalies may arise. For example, 1) no approximate solution may
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be generated, even though an exact solution exists, or 2) some
extraneous approximate solutions could be introduced, or 3) a combi-
nation of 1) and 2) above could occur. This particular point is investi-
gated in more detail in Chapter VI, where the equivalent equation

approach and the method of least squares are compared. It suffices
5 3

sk

at this point to assume that —g—;: P—Z (y(t), ap"i-l""’ Ctr,t) (i=p+1,...,T) are
of a form that provide meaninglful approximate solutions.

Let g be the number of independent equations generated by the
minimization condition (2.12). Then, if q=r-p, the equations from
(2.12) plus the s relations from the auxiliary system (2.2) combined
with the p preselected parameters oi(izl,..., p) satisfying (2.6) will
determine all of the parameters cxi(i:p+1,..., r) and ﬁj(jzl,..., s). One
obtains not only an approximate solution,but also an ""equivalent"
auxiliary system. This additional information may be quite useful.
For example, it might be of interest to know the equivalent mass or
the equivalent excitation level or the equivalent stiffness of some ori-
ginal system, and the equivalent system approach would provide an
auxiliary system whose behavior, presumably would be better under-
stood. If q<r-p, it means that there are not enough independent
relations to determine all of the parameters, and that an additional
r-p-q relations have to be supplied. There are several ways in which
these additional relations may be obtained. One approach might be to
simply prescribe an additional r-p-q parameters in the auxiliary
system. However, depending on the specific parameters being pre-

scribed, fewer relations might be obtained from the minimization con-

dition (2.12), and, consequently, more auxiliary system parameters
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would have to be specified until enough independent equations were
obtained to determine all of the ct,i(i=l,..., r) and ﬁj(j=1,..., s). An
alternative approach to prescribing additional auxiliary system
parameters is to generate an additional r-p-q equations from the g
equations resulting from (2.12). Consider an alternative form of

equations (2.12),

S 1 r

P 1 s 5 G X
| 'ga—lF (2l8) &y poe ) | (Dply(8), 8
t

1

A .
—PZ(X(t),ap+1,...,ar)>dt:0 , i=ptl,..., ,  (2.14)

which is obtained by using equations (2.4), (2.5), (2.6) and the s
relations for the auxilié.ry system. In general, any differential
system D contains terms which can be put into the following
categories: 1) terms containing only the highest order derivative of
the vector function 5,(P)A; 2) terms containing only lower order deri-
vatives of 5,(2)}3; and 3) terms whichdepend only on the independent
variable t,(P_)C. If PZ and 1_); are both separated into the above terms,
equations (2.14) become

tl +Ts 5 *T . .
j T | D2 (@ 04y @) | (Dp)y - (D)4 HDp) - (D3)g

£ i
1

+(D,)s - @;)c|dt=0 , i=ptl...,r, (2.15)

where the functional dependence of QZ and Q; has been dropped for
brevity. It is now possible to generate more equations by requiring

that the individual terms in some of the equations vanish instead of the
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entire combination. Utilizing this approach, (2.15) may be decomposed

to give
' A
0tTsy [ LT
J. P | B e B pg w0 1D M =105 1, | dE=10
£ 1
1
t1+’I's 8 { s
a"q.&QZ (z,apﬂ,..., Clr) (DZ)B“(DZ)B dt:O, (2‘16)
t) . ,.
l' hE { e ; D,) .-(D}) | dt=0
< Gl[_wz s e B ( Z)C-(—-Z)C Bk
tl = J
where 1 can take on as many values in the set p-Fl,...,raéare needed to

generate enough equations so that all of the auxiliary system parame-
ters ai(iZI,..., r) and [3j(j=1,..., s) can be determined. Depending on
the specific D and 9* chosen, certain of the equations in (2.14) will
lend themselves more naturally to the type of separation given in(2.156).
Equations (2.16) have a physical interpretation as well. By separating
terms, one is attempting to represent certain types of terms in the
original system by the same type of terms in the auxiliary system;
that is, one is asking that the highest derivative terms in T_)_z mode
the highest derivative terms in D,, and that the terms depending only
on t in 2; model the terms depending only on t in I_)Z, etc. If the
separated equations (2.16) still do not provide sufficient equations to
determine the auxiliary system parameters, it is possible to further
divide the terms in D into more categories. In this way, it is always

possible to generate a sufficient number of equations to deterinine all

of the 0y and p}
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The problem of determining the solution parameters ﬁj(jfl,..., s)
is simplified considerably if _]2; is alinear function of ai(i:p+1,..., r)
and q=s. In this case, ﬁj(j:l,..., s) may be determined directly from

equations (2.12) without using the differential equations (2.2) or first
determining the parameters ui(i=p+1,..., r). This would certainly be
the case when _]2* is a set of linear differential equations with constant
coefficients ai(i:l,..., r) and the class C contains the least number of
functions necessary to describe the periodic solution. The above
formulation then becomes a generalization of the method of equivalent
linearization( & ). However, the equivalent equation approach is not
restricted to using only linear auxiliary systems. Indeed, one of the
more important aspects of the equivalent equation approach is that it
allows for the possibility of using one nonlinear system to model
another nonlinear system.

The similarity in the form of equations (2.12) to those obtained
by application of Galerkin's method is apparent( 9 ). In fact, the two
approaches can give identical approximations depending on the set of
trial functions used in Galerkin's method. This point is considered in
more detail in Chapter VI, where the two techniques are compared.
In general, however, the results of the equivalent equation approach
will differ from those of Galerkin's method. |

As noted earlier, the present approach is essentially that of
defining an equivalent system for the set D. As such, the ﬁj(j=1,..f, 8)
remain arbitrary in equation (2.8), and € has the significance of a

difference term. The functional relationship between c.i(izl,..., r) and
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[3j(j=l,..., s) is not introduced until (2.12). However, it is clear from
(2.8) that ¢ could also have been thought of as the error residual of

the set of equations D(y(t), t) if the relations between ai(izl, ..., T) and
ﬁj(jZI, ..., 8) had been used at that earlier stage of development. In

this way, € would no longer have been an explicit function of
ai(i=p+1,..., r), and, consequently, the minimization specified by (2. 9)
would have been made with respect to the solution parametersf(j=1,...,s).
This is the so called method of least squares (10). Although the two
approaches appear to be very similar, they can lead to quite different
results even for the same class of approximating functions y. In fact,
the present approach will usually result in a cleaner mathematical for-
mulation since the o,i(i:1, ..., ) normally appear quite simply in the well
behaved auxiliary equations whereas the Bj(jzl, ..., s) frequently appear
in a complicated manner in a nonlinear D(y(t),t). This complicated
nature leads to some fundamental difficulties with the method of least
squares related to generating meaningless approximate solutions as
described previously. This difficulty is investigated in more detail in
Chapter VI where the method of least squares and the equivalent

equation approach are compared.

2.2. Example.

In the previous section, the equivalent equation approach is
developed and discussed. In this section, the use of the technique is
illustrated by way of an example.

Consider the problem of finding an approximate periodic

solution to the undamped Duffing's equation with trigonometric exdtation.
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In this case, the original system may be written in the form
. 3
D(x(t),t)=x+ax+bx - Bcos(wt)=0 , (2.17)

where dots denote differentiation with respect tot, and a, b, B, and w

are constants. As an auxiliary system, choose
% v 3
D (x, 0ys Oy Ay, t) =x+a1x+o.2x - 0y cn(nt, k)=0 , (2.18)
where Qo GZ, 03s N, and k are constants and cn (u, k) is the Jacobian
elliptic cosine function with modulus k. Since the forced response of
system (2.17) is of interest, the response will possess the same period

as the excitation. Consequently, 7 is selected so that the periods of

the excitations in (2.17) and (2.18) are the same. Therefore,

2K (K)w
i (2.19)

where K(k) is the complete elliptic integral of the first kind. In an
attempt to make the original system and the auxiliary system similar

in form, prescribe a, and o, such that

1

o =a and @, =b . (2.20)

Then, the auxiliary system becomes
% . 3
D (x,q t)=x+ax+bx - acn(nt,k)=0 , (2.21)

where the subscript on ay has been dropped for convenience.

The exact steady-state solution of (2.21) is of the form

y=Ben(Nt, k) , (2.22)
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where the frequency is the same as that of the excitation. Satisfaction
of the differential equation (2.21) requires
3 2
b+ (1-n")P-a=0
2 (2.23)
2n
Referring to equation (2.8), the difference term € is

€(t, a) =B cos (wt) - acn (Nt, k) . (2.24)

Hence, minimization of € is with respect to &. Applying condition
(2.12) gives
T /4
= g 2
[, entmtwofp(a-n*1-26%) ) en(ne, x)

+ B = 290K B on (g, B) - B o8 (wt)]dt: 0, (2.25)

where t; was set to zero, and the symmetry of the integrand was used
to replace TS by TS/4. The integrals involving the cn functions are
ava.ila.ble(ZS). The integral involving the cn and the cos functions may
be evaluated by first expanding the cn function in a Fourier series(Bb)
and then using the orthogonality of the trigonometric functions to show

that only one term in the expansion makes any contribution. When

these results are substituted into (2.25), the relation becomes, for

b> 0,
B a-n+pf) (B0 - 1H) K9 )
ik
2 /
Bm TK(K)
" AgkR(K) © (ZK(k ) B s (2.26)
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where E(k) is the complete elliptic integral of the second kind and
2 1/
K =(1-k )I/Z is the complimentary modulus. Equations (2.19) and

(2.23) may be used to climinate the dependence of N and w giving

B2 (1- L)+ B2) (e - a0

Br (TrK!k’[)_
-3 sech TR(k)/ = 0 . (2.27)
When b is negative, k is pure imaginary, and the reduction of (2.25)

gives

(p3b(1 g —1—2) +pa) (K(kl )- Ek;))

2r
Bk TK(K,)
b csch(T-—K(kl)>:0 , 2.28)

where klz r(1+r2)1/2 and k=ir . The most efficient procedure for

obtaining a frequency-response curve is to first assume a value of

k (or kl’ if b is negative), then obtain B from equation (2.27) (or (2.28)
if b is negative), use equation (2.23) to determine M, and then finally
use equation (2.19) to calculate w. If b is negative, equation (2.19)

and (2.23) become
2k1K(kl)w )
ng ————— (2.19)

™

and

BB +(1-17)B - =0

5 (2.23)
2. . e’
2n”“

where kl and r are defined in (2.28).
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An indication of the accuracy of the cubic approximation may
be obtained by considering some specific examples. Figure 1 shows
the steady-state response amplitude f as a function of excitation
frequency w for B=0.1, b=0.1, and a=1.0. Also shown is the approxi-
mation obtained using equivalent linearization. Several exact solution
points were obtained using direct numerical integration of (2.17), and
these are also included in the figure. It will be noted that the cubic
approximation shows considerable improvement over the usual first
order approximation particularly for frequencies significantly different
from one. This is not surprising since most of the standard solution
techniques require b to be a small number, B to be of order b, and
l—wzalso to be of order b. On the other hand, the accuracy of the
present approach is primarily a function of the magnitude of B and
only indirectly a function of b and w. When B approaches zero, the
cubic approximation gives an exact solution of the original system
while the equivalent linearization solution obviously does not. The

(6)

cubic approximation gives similar improvements when b is negative

(7)

Recently, Iwan' 'studied Duffing's equation with linear wviscous
damping and showed that an equivalent cubic approximation describes
the steady-state behavior much more accurately than the usual

approximation obtained using equivalent linearization.
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III. ERROR BOUND ANALYSIS

In this chapter, the relationship between the difference of two
systems of differential equations and the corresponding difference in
their respective solutions is examined. The first section deals with
two first order n-dimensional vector systems, and a bound is obtained
on the norm of the difference betwecen the two solutions. The second
section treats a special subclass of vector systems, namely second
order scalar equations, where sharper estimates can be made and
better results can be obtained. Sections three and four are devoted to
examples which illustrate the use of the theory to obtain bounds for
nonautonomous systems (Section 3.3) and conservative autonomous

system (Section 3.4).

3.1. Error Bounds for General Vector Systems.

Before entering into the details of formulating the problem
and deriving bounds, it is convenient to introduce some notation which
will prove useful throughout the analysis.

Notation

The norm of a vector x, denoted by ||x||, is a scalar function

that provides a measure of the magnitude of x. A valid norm is any
scalar function of x satisfying the following conditions:
i) |[x|l=0 , forall x€ E",

3. 1)
ii) llxll=0 , iffx=0
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iid) ||xtyll s || x|l +llgll . for all x,yeE"™,
(3.1)

w) lex|| = |el ||x|| , for any real scalar ¢ SR

and all xeE™ i
where E" denotes n-dimensional Euclidean space. Corresponding to
each valid vector norm is an associated matrix norm. The norm of
a matrix A, denoted by ||A||, is a scalar function that indicates the

magnitude of A. A valid vector along with an associated matrix norm

satisfy the following relations (2'9):
\\
i) ||A+B|| <||A]|| +]|| B]|, for all nxn matricies A and B,
ii) ||AB| <||A| |IB]] , for all nxn matricies A and B,
(3.2)
iii) |[cA| = |¢] ||A|l , for any real scalar c and any
matrix A,
) ||Ax|| < ||A] || x| . for any nxn matrix A and any
vector g{_EEn 5 _J

It should be noted that the appropriate matrix norm associated
with any specific vector norm is not necessarily unique. For any

valid vector norm “E“ , an associated matrix norm may always be

defined by = )
| All'= max || Ax||,
I =lf=1 e
for all vectors _:_g(:En satisfying || x|| =1. Examples of valid vector

norms and associated matrix norms are:

n n
i) |Ixl|l= y Ixi| and | Al = Z |a,ij | (Taxicab norm);
i=1 i, 3=1
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n n
S - R
ii) ”1_5“ = ( in ) and ]|A|[= ( Z|aij|2>1/2 (Euclidean norm);
i=1 . ij=1
n
jii) ||x||= max |x,| and ||A]/= max (Z Iai.l) (Maximum modulus
i 1 i 3=1 J norm),

The following analysis is done using general vector and matrix norms,

the only requirement being that they satisfy (3.1) and (3.2).

Formulation

Let R be é domain in E™ and L be the real line. Consider the

problem of finding an approximate periodic solution for the system

-%‘=F(§, T (3.4)

where x and F are n-dimensional vectors, F is periodic with period
T0 for fixed x, and F(x, 1) is Cl for x€R and CO for T€L. (Actually,
this condition can be relaxed to F being CO for x€R and T€L and ¥
satisfying a modified Lipschitz condition in x. This point is discussed
in the section on g.eneralizations following the basic analysis.) The

period T, need not be the least period of F(x7). In general, (37. 4)

0

possesses a periodic solution with period T,, but it may also possess

0,

other periodic solutions having periods different from T,. Assume

0
that the periodic solution of (3.4) with period Ts is of interest. For

x(T1) to actually exist, 'I‘S cannot be completely independent of T

Since x(T) has period Ts’ -d%;%ﬂ also has period TS, and, consequently,

F(x, 1) is periodic with period T, Therefore, _Ij‘(ﬁ_:('r), '1') =

0"

E(g(TfTs), T+Ts) :_E( x(7, 'H-Ts) ;i.e. E( x(7), T) is periodic in T for
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fixed x with period TS. From above, it must happen that Ts: nTO for
n=1,2,... . If n=1, the solution is called the harmonic solution; the
solution having the same period as the least period of the excitation.
In n=2, the solution is called a subharmonic solution of order n.
From the periodicity requirement on F(x, T), it is clear that there

exist no solutions with periods satisfying T :jTS for j=2, 3, ...

0
Therefore, no periodic solution exists hé.ving a period less than the
least period of the differential equation. If F(x, T) is an autonomous
system, it possesses all periods in T, and consequently it may possess
solutions with all periods. For example, if there exists a constant
vector ¢ such that ¥F(c)=0, then x(7) =c is a solution possessing all
periods.

It is possible to obtain an approximate periodic solution by

considering an auxiliary system which is represented as

dy
_—:G(Y,CL J---sa,:'r) ’ (35)
ar — — 1 o

where ai(izl,..., r) are parameters of the system, yand G are

n-dimensional vectors, and G is periodic in T and is C1 for y€R and
C0 for 7€ L. It is assumed that (3.5) has known exact periodic solutions
X(Bl,...,ﬁs, T), where Bj(j=1,..., s) are solution parameters. Since v will
ultimately be the approximate solution, the period of y is required to
be the same as the period of the desired solution x. Therefore,
X(T+Ts) = Z(T)' Depending on the system (3.5) chosen and on the parti-
cular exact solution y that is known, the period of G will be'dete rmined

once the period of the solution is specified. Therefore. G will be
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periodic in T with period 'T‘A, such that ’.'['S 'm'TA for m=1; or Z,... .
Again TA need not be the least period of G. The equivalent equation
approach may now be used to determine all of the cxi(izl,..,, r) and
ﬁj(j:l, o = i B

Having found an approximate solution, it is desirable to obtain
some indication of its accuracy. For practical purposes, any com-
parison between the exact solution and the approximate solution must
involve only those quantities which are accessible; specifically the
differential equations, periodicity conditions, and the approximate
solution. Thus, one is motivated to obtain differences in solutions by
considering differences in the corresponding differential equations.
To this end, normalize the independent variable T in the following
manner. Since F(x, 1), G(y, 7), x(7) and y(7T) are all periodic with
period TS, let

T= T : (3.6)

Then all derivatives with respect to T can be written in terms of t as

() . (3.7)

e

L
T
s

d,.) -
L =

Using (3.7), equation (3.4) becomes
= =f(x;t) , (3.8)

where f(x, t) = TSE(E’ Tst), and f(x, t) is periodic in t with period 1.

Equation (3.5) becomes

d
__‘\E:_E(I,U-lg-u.ar,t) » (39)
dt
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where g_Iq(_'r, and g is periodic in t with period 1. It is clear that
and g possess the same continuity and differentiability properties as
do F and G respectively. The approximate solution y is now periodic
in t with period 1.

Denoting the difference between x(t) and y(t) by z(t), then
z(t) =x(t) - y(t) . (3.10)
Differentiating (3.10) and using equations (3.8), (3.9) and (3.10), the
equation for the exact solution error z(t) is

_(_1% = f(z+y,t) - gly,t) . (3.11)
dt

In general, it will not be possible to solve (3.11) exactly. Therefore,
it seems reasonable to try to obtain a bound on || z|| in terms of
known quantities, specifically the differential equation error e(t) as
defined by (2. 9). Since x(t) and y(t) are both periodic with period 1,
z(t) is also periodic with period 1. Therefore, the problem for z can

be recast in terms of a two point boundary value problem over the

interval 0 <t <1 with mixed boundary conditions

z(0) = z(1) . (3.12)
The problem for z(t) then consists of equation (3.11) subject to the
boundary conditions (3.12).
In order to proceed further, it is convenient to reformulate
the problem for z in terms of an integral representation. Consider

the following homogenous problem
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- A
dt
(3.13)
©(0)=p(l) ,

where pis a n-dimensional vector and A(t) is a nxn coefficient matrix
which is c% in t and is chosen such that the only solution of (3.13) is
the trivial solution =0. A(t) could be the Jacobian matrix -gf:(z' t)
evaluated at the approximate solution y if it possessed the ab;-ve pro-

perty of having only the trivial solution. Related to (3.13) is an

A ssociated Matrix Equation

—3—? = A(t)Z , (3.14)

where Z is a nxn matrix. Let Z(t) be the principal matrix solution of
(3.14) satisfying Z(0) =1, the identity matrix. System (3.13) will have

only the trivial solution if and only if the matrix Q,
Q=2Z(0)-2Z(1)=I1I-Z(1) , {3.15)

is non-singular. Since (3.13) has only the trivial solution, it posseses
a Green's function G(t, s) defined as

1 1

Z(t)Q "Z(1)Z" "(s) , fort<s
Gl(t, 8) = ' (3.16)

Z(t)Q_IZ-l(s) , for tzs,

where in denotes the inverse of Q, and Z-l(s) is the inverse of Z(s),
which is non-singular since it is a principal matrix solution. G(t, s)

is a matrix which is continuously differentiable except at the point t=s.



= AP -

Consider now the following inhomogenous problem

do
- = Al +8(t)

{3.17)
(0) =ep(1) ,

where A(t) is the same matrix as in (3.13) and §(t) is a continuEOus
vector function. Using the Green's function defined in (3.16), the
unique solution of (3.17) can be written as

1
olt) = IOG(t, s)B(s)ds . (3.18)

The reader interested in proofs of the above statements concerning
the existence of the Green's function and the validity of the represen-
tation (3.18) is referred to reference (30).

The problem for z(t) can now be written as an integral equation.

Equation (3.11) may be written as

dz

3r = Alt)z+ g(t)+f*(_z_,t) ; (3.19)

where A(t) is the same matrix as in (3.13), €(t) is the differential
equation error

e(t)=£(y, t) - g(y, t) , (3.20)
and

£z ) =fzty, t) - £y, t) - A(t)z . (3.21)

Equation (3.19) is still subject to the boundary conditions (3.12). As

mentioned earlier, A(t) could be the Jacobian matrix -g;%(!’ t) if it
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possessed a Green's function . It would be desirable to use this matrix
for A(t) since all linear terms in z would then be eliminated from
_f_*(_g_, t), and, consequently, “i*(_g, t)“ would be d|z| as “_z_“ -=0. Using
the Green's function (3.16) and applying (3.18), where €(t) and _f_*(E, t)
are considered inhomogenous terms, the integral equation determining
zis 1

2(t) = IOG(t,s)(g(s)+£*(_§(s), 5))ds . (3.22)

It is possible to prove the existence of a solution to (3.22) using the
method of successive approximations and, as a consequence, a bound
on ||_zJ| is obtained. These results are presented in the form of a

Lemma.

Lemma 1
Consider the integral equation (3.22). If the following conditions

are satisfied:
i) €(s) is a continuous vector function for s€ fe. 1],

ii) _fz't(E(s), s) is a continuous function of s for s€[0,17 and of z for z
such that ”E” < § and satisfies a modified Lipschitz condition of

the following form,
IE*(EI(S), s) -i*(EZ(S), s)|| = k(s)|lz,(s) - z, ()l {3.23)

for all z; and z, such that ||_§1 I <& and ”.Z.z || = 8 where k(s) is a

positive continuous function of s for s€ [0,17.
iii) The kernel G(t, s) in (3.22) can be bounded by

llG(t, s)|| < p(t) a(s) (3.24)
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for all t€ [0, 1] and s€ [0,1], where p(t) is a bounded non-negative
integrable function for t€[0, 1], and q(s) is a positive continuous

function for s€ [0, 1].

1

iv) sz k(s)p(s)q(s)ds <1 . (3.25)
0

v) p)| T =5 (3.26)
max

~where §is defined in ii) and

1
£= [a(s)|efs) || ds
0

Then (3.22) possesses an exact unique solution z(t) and

1
] < pwa-8)"" [ a(s)ets)llas . (3.27)
0

Proof: FExistence of a solution is shown using the method of successive

approximations. Consider an iteration scheme

1
25= | Glt, s)&(s) ds
0
1
2z =Zgt IOG(t, s)fk(gn_l(s), s)ds . (3.28)

It is first necessary to show that every iterate satisfies
H_z_n(t)lls 5 n=0,1,... . (3.29)

Taking norms of the first of (3.28) and using (3.24), the initial guess
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satisfies

”..Z_O(t)” < p(t) E , (3.30)

where E is defined in (3.26). But since K <1,

2@l <p®)] (1-K) ' E
max

(3.26) implies that |_|50(t) < a. To prove the general case, it is only

necessary to show that

n -
lz Il < p(t)E YR, (5.51)
i=0
where K is given in (3.25). Then since K < 1, the properties of
n

geometric series may be utilized to show that E K < (l-K)-1 :

i=0
Consequently, ”En” < §. To prove (3.31) use induction. Taking norms

of the second relation in (3.28), ”EnH satisfies
1 3K
lz_ 1< izl + pit) joq(s>\\3 (2, s)|lds

Since Z.1 is assumed to satisfy (3.31), it is permissible to use the

Lipschitz condition (3.23). This, combined with (3.30)and(3.31), gives

1 1
”En” < p(t) jOQ(s)]]g(s)1|ds+p(t) r Q(S)k(s)‘p(s) ¢
0

1 n-1 .
[a(r)lle(r) Nl ar S & s
® $= 10

Combining terms and noting the definition of K and E, Iz llis bounded
n
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as
n -
i
lz Il < p(t) E z k', (3.32)
i=0
which is the desired result. Therefore, (3.32) shows that the use of
the Lipschitz condition (3.23) is valid for any pair of iterates. Before
proving that the sequence of functions {gn(t)} is uniformly convergent
for t€[0,17, it is necessary to determine bounds on the difference

between successive iterates. Consider the difference

1
%
PIEY j'oc(t, $)f (2 8)ds

Taking norms and using (3.23), (3.24), and(3.32) for n=0, the above

relation becomes

' 1 1
|z~ 24!l = p(t) joq(s)k(s)p(s)ds joq(s)ﬂ_@(s)llds

or

11_z_1-50]|s p(t) KE . (3.33)
Use induction to show that

lzy-2, 1l = pYERT (3.34)

A ssume that (3.34) is valid for n-1 and consider the norm of ZocZ g

From (3.28), the difference may be written as

-n —n-1

1 ES B
lz -2z = JOG(t,s)(;f_ (2,9 -1 (2 50 8) )ds]| .
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Taking norms under the integral and using the Lipschitz condition and
the bound on G(t, s), the above equation becomes

1
lz -z _,ll< p(t) joq(s)k(sHLz_n_l-.z.n-zH iz

However, by the inductive hypothesis,

lz, -2, =pls) gl

Therefore, using the definition of K, the bound on successive iterates

is
< p(t) K"E

lz, -2z ;|

Returning to the task of showing that {z.n} is uniformly

convergent, consider z_ -z for two integers m and n such that m>n.

Writing this difference as a collapsing sum,

Taking norms and using the triangle inequality,

m
“E.m—._%n“ = Z “ﬁJ‘E_]_IH
j=n+l

Using (3.34), the above relation becomes

m

|z 2,ll < POOE ) K
j=n+l1
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But by assumption p(t) is bounded for t€ (0,17, and K<1 which
implies that the sequence Lz_n(t)} of continuous functions converges
uniformly to a continuous function z(t) for t€ [0,1] by Cauchy's
criterion. z(t) satisfies (3.22), since the limit as n =00 can be taken
in (3.28). A bound is obtained on ||z(t)]| by taking the limit as n —co

in (3.32). Consequently,

2 < pt) (1-K) ' E

Showing that the solution z(t) is unique is relatively straight-
forward. Assume there exists two solutions _z_l(t) and _z_z(t) satisfying

(3.22), and consider their difference
1 L *
lzy-2, 1l < IO Gt s)| L (2, (s), 8) - £ (2 (s), 5)| ds

Since the limit function z must also satisfy ||z| < 8, the Lipschitz

condition (3.23) and (3.24) may be used to obtain

1
Zip- 2 || = p(t) jOQ(S)k(S)|IzZ-_1|Ids

Multiplying by q(t), k(t), and integrating, this relation becomes

1 1
I q(t)k(t) || z,- z, [|dt = K f a(s)k(s)||z,- 2, ||ds
0 0

Since K<1, and the integral is non-negative, the only possibility is

1
qu(t)k(t) lz,-z,[|dt=0
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Since the integrand is continuous and non-negative, it must vanish
everywhere. But by assumption q(t) and k(t) are positive for t€ [0, 1],

therefore

lz,-z, =0

which implies z, =z for t€ [0,1]. Q.E.D.

1
In Lemma 1, the integral equation (3.22) is considered as a
separate entity. However, in the present analysis, (3.22) is related

to the differential system (3.19). Therefore, the following theorem

applies to system (3.19).

Theorem 1
Let R be a domain in En, and let L. be the real line. Consider

the original system

dx
q =i v
(3.35)
x(0)=x(1) ,

where f(x, t) is Cl for x€R and CO for t€1, and fix,t)=f(x, t+1) for

fixed x. Consider also the auxiliary system

dy
5 = gy, t)
(3.36)
y(0)=y(1) ,

L 0
where g(y,t) is C for y€R and C for t€L, and g is periodic in t with

period 1 for fixed y. If the difference z is formed

ZEX-Yy o, (3.37)
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then the differential system governing z is

dz

= = Az + &) +1 (2, 1)

(3.38)
z(0)=z(1) ,
where { (z,t) =£(z+y, t)-£(y, t)-Alt)z, &(t) =£(y, t)-g(y, t) , and A(t) is a
continuous matrix function of t. If the homogenous problem

dp
= A(t)o

(3.39)
(0) =ep(1)

has only the trivial solution, it possesses a Green's function defined

by (3.16). Furthermore, if

nl

K :J k(s)q(s)p(s)ds <1 , (3.40)
0

“z7 )N, pe) =l z(s)]
(Q and Z are defined in (3.14) and (3.15)), and k(s) is a Lipschitz

where g(s) =max (1Q" z()yz" (),

constant for i:.:(_%: t), and if

p(t) | 1-K)'E<s , (3.41)
max

where E = J a(s)||le(s)||ds and & defines a region lz||< & for which

f (z t) is L1psch1tz1an, then the following conclusions may be reached.

The original system possesses an exact unique periodic solution for

x€R. Furthermore, the norm of the error z(t) can be bounded as

=] < pw)(1-K) ' E (3.42)
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If, in addition, f (z,t) satisfies

max || %*(E, t) || = k(t) (3.43)

JEAER:
the exact unique solution x(t) is an isolated solution. (Anisolated
periodic solution x is one such that the equation of first variation
associated with it possesses no non-trivial solution with the same
period as x.)

Proof: Differentiating (3.37) and using (3.35), (3.36), and (3.37), the

governing equation for z(t) is found to be

dz
3r - Hzty, t) - gy, t)

z(0) =z(1)
Adding and subtracting A(t)£+£(z, t) to the right hand side, (3.38) is
obtained. However, by assumption, the homogenous problem (3.39)

possesses a Green's function. Therefore, by (3.18), the error z

satisfies

1
2(t)= [ Gt s)(e(s) +£%(z(s), s))ds (3.44)
0
where G(t, s8) is
'2'.(t)Q_1 Z(l)Z_l(s) , for t< s
G(t, s) = oL wl
Z(t)Q " Z " (s) , for t= g

Z(t) is the principal matrix solution of (3.39), and Q is a non-singular
matrix given by Q=1- Z(1).
Define

p(t) = | Z(t) |, a(s) =max ([l

1

zmz ). a7 ze)]) -

Since f(x, t), g(y, t), and A(t) are continuous, g(t) and £*(z, t) in(3.38)



will also be continuous. Since f(x,t) is continuously differentiable with
sk
respect to x,f (z,t) will also be continuously differentiable in z.
*
Therefore, for all Hg“ < &, £ (z,t) will satisfy a modified Lipschitz

condition of the form

152y V- £ (2 pp ] < K8 |22, 0

where k(t) is continuous and positive for t€ [0,1]. Using assumptions
(3.40) and (3.41), it is clear that all of the hypotheses of Lemma 1
arc satisfied, and consequently, (3.44) has an exact unique solution
z(t) with

lz®] < p)a-K) 1 E

Since (3.44) has an exact unique solution, (3.35) must also possess
an exact unique solution. Since the solution of the original system is
x =y+z where y is a known prescribed function, z(t) existing and being
unique implies that x(t) exists and is unique.

To show that x is an isolated solution, if (3.43) is satisfied, is
straightforward. Consider the equation of first variation of (3.35),

df 9f(x, t)

i = g - (3.45)

-l

By

Adding and subtracting A(t) E to the right hand side, the representation

(3.18) can be used to obtain

1 i
gw= | Gt ) Fhexls), o) - As) a(e)as (3.46)
0 =

where G(t, s) is the Green's function for the homogenous problem (3.39).
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From (3.37) and (3.38), f(x,t) may be written as

£, t) = £ (x-y, t) +£(y, £) TA(D) (x+ y)
Noting that '_i:\:(;g, t) is continuously differentiable, the Jacobian matrix
may be formed yielding

8f(x,t) 0f
B (x-y, t) +A(t)

lt?ll

Taking norms of (3.46) and using the above relation, E£(t) satisfies

1
Iz = pt) [ ats)kis)l| &(s)flas
0

where it is assumed that “E‘XH < & so that the use of (3.43) is justified.

Multiplying by q(s) and k(s) and integrating, the above relation becomes,

1

(1-%) [ a(s)k(s)|| E(s)[as < 0,
0 ,

where the definition of K has been used. Since K< | and the integral

is non-negative, the only possibility is that the integral must vanish.

Since the integrand is assumed continuous for t€[0,1], and q(s) and

k(s) are positive, the above relation implies that

| 5(s)ll=0

Therefore, the exact periodic solution x of the original system (3.35)
is isolated. Q. E.D.
It is also possible to prove the following.

Theorem 2

Assume that the original system possesses an exact isolated
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periodic solution x with perioci 1. Then for any small number &, it
is always possible to choose an auxiliary system (3.36) with an exact
périodic solution y such that the differential equation error is
sufficiently small so that the norm of the difference between x and y
satisfies Hg—x“ <85.

Proof: Consider the integral equation

E(t)ZJJG(t,S)(g(S)Jri*(E(S).S))ds ,
0

where &(s)=p _g(gc_(s), s) and g is continuously differentiable in x for

s€[0,1] and

fk(g(S), s) = {(x, 8) - f{(x-z, s) - -g-f;(:_c, s)z -

o(gx 2) - glx-z, 9))

G(t, s) is the Green's function for the system (3.39) with A(t) = g—:‘(g_g, t)
which exists since the equation of first variation possesses no
nontrivial solution with period 1, i.e. x isisolated. For Zys Zps and
u satisfying HEI I] =nN=<3s, “EZH <=nN=< 5%, and ]u! < My where T]andul

are sufficiently small positive numbers, f*(z, s) satisfies a modified

Lipschitz condition,
£z, 8) - £ (25, 8)|| < k(t) ||z~ 2ol
such that rr}tax k(t) can be taken to be as small as desired. Seclect m

and My sufficiently small such that k(t) may be chosen small enough so

that condition (3.40) is satisfied (i.e . K< 1), where p(t) and q(s) are
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bounds on G(t, s}). Furthermore, let Mo be the small positive number

such that for |u|su2,

‘ 1 1
lulp] (1-0)7" [ o)t o)lids <

max

Then, for H;z_l] <m and |u|< min (PP uz), all the conditions of LLemma 1
are fulfilled. Therefore, the above integral equation possesses an
exact unique solution such that ||_z_|[ L < §.

However, it is shown previously that the integral equation is
equivalent to the differential system

7 e 2tEMz 0+ el

z(0)=z(1)
Using the definitions of g(t) and f*(z, t), the system becomes,

dz
p f(x,t) - f(x-2,t) tug(x-z,t)

z(0) =z(1)
Subtracting this system from the original system (3.35) and defining

y =x-%Z, one has

dy
E = gx: t) - UE_(_X: t)

y(0) =y(1)

For IMIS min (“l’ > ), the above system possesses an exact unique
solution of period 1 such that “ZS’X“ <8 Therefore, the above system

may be chosen as the auxiliary system. Q.E.D.
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§ represents a bound on the error which is uniform in t.
Usually it is desirable to obtain the smallest bound possible, therefore
the equality sign is used in equation (3.41) for determining §.

Generalizations

Some of the hypotheses in Lemma 1 and Theorem 1 can be
weakened to include more general systems. The condition that f(x, t)
be C1 in x can be replaced by assuming that f(x, t) is gy in x and
satisfies a modified Lipschitz condition in x. The proofs of LLemma 1
and Theorem 1 are only slightly modified with the exception that in
Theorem 1 it is no longer possible to conclude that the exact solution
is isolated since the equation of first variation is not defined.

The assumption in Lemma 1 that q(s) and k(s) be positive
continuous functions for s€ [0, 1] can be weakened to q(s) and k(s)
being non-negative, integrable functions for Vse (0,17 with the loss of
"strict' uniqueness. It is possible to conclude only that if there exists

two solutions to (3.22), z, and Z5s then

1

1
fo K(s)a(s)||z;- 2, [|ds =0

Therefore, the integrand vanishes everywhere except at a set of
points with zero measure. For all values of t where k(t)q(t)>0,
H_g._l-g_z |lis zero, which implies ST Consequently, uniqueness is
obtained only over a subset of t€[0, 17].

Autonomous Systems

Theorem 1 may also be applied to autonomous systems but in

a negative manner. In Theorem 1, it is shown that, if certain
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conditions are satisfied, the equation of first variation of the original
system associated with the exact periodic solution x(t) possesses no
non-trivial solution with the same period as x(t). Howewver, for auto-
nomous systems it is well known that, if the original system possesses

a non-trivial periodic solution x(t), the equation of first variation
dx(t)
dt

the same period as x(t). In this situation, hypothesis (3.40) in

associated with x(t) has a non-trivial periodic solution with
Theorem 1 can never be satisfied. Consider the following autonomous

system

= f(x) : (3.47)

dx
dt =
Assume f(x) is continuously differentiable with respect to x and that

the Lipschitz constant k(s) for f*(z, t) satisfies (3.43). Differentiating

with respect to t, (3.47) becomes

4 (dx) _ 0f(x) dx
dt(dt)“ﬁE at - B 480

Assume that (3.47) possesses a non-trivial periodic solution with
dx
period 1. Then, —a-—t: will also be periodic with period 1 and will

satisfy the equation of first variation (3.48). Adding and subtracting

dx
A(t) E;-: to (3.48), where A(t) is the same matrix that appears in
dx
(3.39), and writing this modified equation in integral form, EE
satisfies
dx I 9f(x) e
et jo Git, o) 322 -AM) | pas . (3.49)

where G(t, s) is the Green's function for (3.39). From (3.38), f*(x-y,t)
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satisfies
¥ (x-y, t) =f(x) - f(y) - AtNx+y) , (3.50)

where y is some periodic function such that for z = x-y, f*(z,t)
satisfies a modified Lipschitz condition given in (3.23) for ||z| <5.

Forming the Jacobian matrix for f*(x-y, t)

f¥(x-~y,t) 0Of(x)
5= = 5= -A®) . (3.51)

Taking norms of (3.49) and using (3.51) and the bound on ||G(t, s)||

dx
given in (3.24), H?l? | satisfies

x I ax
Il HSp(t)I a(s) k(s) ||z llds (3.52)
0

where it has been assumed that ”25‘1“ <8 so that use of (3.43) is
justified. Multiplying by q(t) k(t) and integrating, the above relation

becomes
dx

1
(1-8) [ a5 llat<o, (3. 53)
0
dx

where the definition of K has been used. But if H-aT || # 0 and
q(t) k(t) # 0, the integral is non-zero, and, consequently, (3.53)
implies K=21. Therefore, Theorem 1 will never apply to an autonomous
system whenever there exists a non-trivial periodic solution lying in

lz-yll=s.

However, there are situations when Theorem 1 is applicable
to autonomous systems. Suppose that all of the hypotheses of Theorem
1 are satisfied. Then the only solution of the equation of first variation

(3.48) is the trivial solution. Therefore,
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x(ty=¢ (3. 54)
where c is a constant vector and satisfies f(c)=0. Consequently, the
only exact solution lying in ||x-y||<6 is the degenerate solution (3. 54).
Theorem 1 may be construed as a '""non-existence'' theorem when
applied to autonomous systems, A region HE‘XHS 8 is obtained where
the only solution to the original system (3.47) is the degenerate solution
(3. 54).

Discussion

For nonautonomous systems, Theorem 1 provides a means for
obtaining bounds on the norm of the exact solution error z(t) in terms of
the magnitude of the differential equation error ¢(t). If the philosophy
behind the equivalent equation approach is used, the mean differential
equation error E is minimized with respect to the differential equation
parameters oci(izl, «.., ). Although the form of E is not exactly the
same as the form minimized in Chapter II, it still represents a valid
equivalence criterion, Furthermore, E can be related to the mean
square differential equation error in such a manner that an equation

similar to (3.41) may be obtained expressly in terms of the mean

square error, Selecting a, such that
{E(cel,...,ccr)}l:minimum , (3.55)

equation (3. 41) implies that the error bound is also minimized with
respect to q.. Define 6>:1< as the minimum wvalue of § satisfying (3. 41)

whenever the equal sign is utilized., Since p(t) and K(é::{) depend only on



Bl

the approximate solution form (i. e., ﬂj) and the Green's function, they
are independent of expl‘;icit Q- Therefore, the dependence of 6:; on qy
may be determined from the dependence of 61 on E, Since 5’;(1—1((6’;))
is a monotone increasing function of 6::; and vice versa (see Figure 2),
5’; is a monotone increasing function of E, Consequently, the minimum
value of 5‘"’1: occurs whenever E is minimized, Therefore, the equivalent
equation approach implies that the error bound 5:; is minimized in the
space of the differential equation parameters ai(izl, . .

Although the above analysis is performed within the framework
of the equivalent equation approach, it is by no means restricted to that
approach, The primary reason for using this approach is that it pro-
vides a convenient vehicle for carrying out the details and gives a defi-
nite approximate solution y. However, the analysis still applies for
approximate solutions obtained using other techniques, i, e,, Galerkin's
method, method of least squares, etc. In the approaches where a
solution fo?m is assumed, the differential equation error g(t) can be
interpreted as an error residual obtained by substituting the approxi-
mate solution y into the original system (3. 8).

Another aspect of Theorem 1 which deserves some discussion
is the fact that the homogenous system (3. 39) generating the Green's
function is, in a sense, arbitrary. As pointed out earlier, if A(t) is
chosen to be the Jacobian matrix of the original system evaluated
at the approximate solution y, then ”lf_’::(i, t)H is of an order higher
than ”E” This is advantageous because the Lipschitz constant k(t)

for _f_*(_zi, t) will have no term independent of 6, However, if A(t) is
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any other matrix, in general f*(z, t) will have terms linear in z, and
consequently k(t) will have terms independent of §. This increases
k(t) and thereby increases the bound §which in turn reduces the region
in the parameter space of the original system where Theorem 1 will
apply. But there is one great advantage in choosing A(t) to be a matrix
other than the Jacobian matrix. In general, the Jacobian matrix will
be a function of t, and determining a fundamental matrix solution for
(3.39) could be a most difficult, if not impossible, task. By selecting
A(t) such that a fundamental matrix solution is known, this difficulty
is avoided. If A(t) depends on some parameters, they can be con-

. sidered arbitrary in the analysis and then may be specified, using
(3.41), by minimizing the bound § with respect to them. In this
manner, the homogenous system (3.39) is in some sense optimized.

It is also worth noting that Theorem 1 gives no information
concerning the stability of the exact periodic solution x(t). Since the
problem for z(t) is recast as a two point boundary value problem over
a finite range in t, there is not sufficient time for an asymptotically
stable or unstable perturbation to decay or grow. In general,
Theorem 1 will apply equally well to stable or unstable periodic
solutions. The fact that the equation of first variation possesses no
nontrivial solution of period 1 is sufficient to insure that the exact
periodic solution x(t) varies continuously for small changes in the
parameters of the governing original differential equation (3. 8) (31).
This is essentially the result given in Theorem 2.

Several other authors have presented results similar to those
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given in Lemma 1 and Theorem 1. Those works which seem most
closely related to the present analysis are discussed here.
One of the most straightforward approaches is the one utilized

by McLaughlin (23,24) 3

This work is mainly concerned with second
order scalar equations of the type x+ Wy = e X(wt, x, X, €). An approxi-
mate periodic solution is obtained using the Poincaré- Linstead
perturbation technique. A differential equation governing the difference
between the exact periodic solution and a truncated expansion in the
small parameter € is formed. The equation is transformed to an
integral equation, and bounds on the norms of the error and its first
derivative are obtained using a consisterncy argument. The error x(t)
and the first derivative x(t) are assumed to satisfy ||x(t)| <u and

H x(t) H <wv. Using standard bounds and inequalities on the integral
representation, functions Fl(u, v, €) and Fz(u, v, €) are obtained which

are bounds on || x|| and ||x|| respectively. Then requiring that F, and

1

FZ satisfy Fls u, FZS v makes the entire argument consistent. The
equal sign is used to obtain the smallest bound. The implicit function
theorem guarantees the existence of a unique solution of the above

equations so long as the Jacobian matrix,

0
BF1 F1

Bu By
9F, OF, '
du v

is non-singular. The limit of applicability is obtained by setting the

determinant equal to zero. McLaughlin applies the above method only
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to the approximations obtained by the perturbation technique, but it
is also valid for approximations obtained by other means. Although
the above procedure is straightforward, it suffers from the fact that
the estimates used to get F; and F, are rather poor. Consequently, the
bound obtained is poorer and the region of applicability is smaller than
the region obtained using Theorem 1. This fact is illustrated in
Section 3.3 where actual comparisons are made in a specific example.
Another approach which uses the contraction mapping theorem

is presented by Holtzman (25).

He is primarily interested in obtaining
bounds on the error between the exact solution and the approximate
solution obtained from the method of equivalent linearization. The
results obtained are similar to those of Theorem 1 with the major
difference arising again in the accuracy of the bound and the region of
applicability of the approach. Holtzman uses the unique linear part
with constant coefficients of the error differential equation as the
homogenous system to generate the Green's function. Whereas in
Theorem 1, the homogenous system is left arbitrary in the analysis
and can later be selected in such a manner so as to optimize the error
bound. In addition, the estimates involved in applying Holtzman's
modification of the cor:ltra.ction mapping principle are somewhat poorer
than those used in Theorem 1. Also, Holtzman's approach does not
allow for the generalizations of Lemma 1 and Theorem 1 discussed
earlier. Comparisons between Holtzman's results and Theorem 1 are
also given in Section 3.3.

Another approach is that presented by Urabe (BB L 22).
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Actually, Theorems 1 and 2 are quite similar to Urabe's work in that
they both use the method of successive approximations. However,
Urabe is primarily interested in Galerkin's procedure and its relation
to the exact periodic solution. He shows that if there exists a Galerkin's
approximation of sufficiently high order and if there exists an exact
periodic solution, it is always possible to obtain a bound on the magni-
tude of the difference between the exact solution and the Galerkin's
approximation. Urabe also proves the converse. However, in
practice, one is usually interested in very low order approximations,
i.e. one or two term approximations, and, therefore, it is necessary
to make as sharp estimates as possible in any bound analysis. Since
Urabe is not confined to low order approximations, he can afford to
use poorer estimates in obtaining his results because he can simply
increase the order of the approximation to where his estimates are
sufficient. Because of the similarity between Urabe's approach and
Theorem 1, no comparison between the two is included in Section 3.3,
although the sﬁarper estimates in Theorem 1 would seem to indicate

that the corresponding results would show some improvement.

3.2 Error Bounds for Second Oxder Scalar Systems

In this section some of the results presented in Section 3.1 are
specialized for the case of second order scalar equations. The norm
to be used is the absolute value. The initial result is a theorem which
is the second order scalar equivalent of Theorem 1.

F ormulation

: 2 : :
Let R be a region in E~ and L be the real line. For convenience,
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let x denote the point (x,x). Dots over functions mean differentiation

with respect to t. Consider the following original system
X +f(x,%,t) =F(t) , (3. 56)

where { is C1 for x¢€R and f and Fare Co for t€L. Furthermore,
assume f and F are periodic in explicit t with period 1. It is of
interest to obtain an approximate solution of (3.56) with period 1 and
a bound on the error associated with this approximation. Use the

equivalent equation approach by considering the auxiliary system

vy +ely, v, Opseees O t)=Glo; yserna,t), (3.57)

J
where g is C1 for yeER, g and G are CO for teL, and Cr.i(izl,..., r) are
differential equation parameters. g and G are also assumed to be
periodic in explicit t with periodil. Assume further that (3.57)
i)ossesses known periodic solutions X(Bl,... ,BS, t) of period 1 where
§3j(j=l, ..., 8) are solution parameters.

Define the error as

z(t}) = x{t) - y(t) y (3.58)

Differentiating (3.58) and using (3.56), (3.57), and (3.58), the
equation governing z(t) is

z +f(y+z, y+z,t) - f(y, v, t) = e(t) , (3.59)
where e(t) is the differential equation error given by

e(t) =F(t) - f(y, ¥, t) +gly, ¥ s ..o o, t) - G(o,j o Bl 13.60)

+1°
Since x and y are periodic with period 1, z will satisfy

z(0) ==z(1) ; z(0)=z(1) . (3.61)
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Assume that the following homogenous problem possesses
only the trivial solution
G t+al(t)ptb(t)p -0

. (3.62)
o(0)=cp(l) , P(0) =e(1) ,

where a(t) and b(t) are C0 for t€[0,17. (3.62) will then possess a
Green's function G(t, s) which enables the two point boundary value

problem (3.59) and (3.61) to be represented as

1

z(t) = | G(t,s)[e<s>+f*<z(s),é(s).s)]ds
‘0
(3.63)
1
it)= | gt e(s) +£5(a(s), 5(s), ) Tds
5 ;
where
f*(z, z, t) =f(y, y, t) - f(y+z, §r+:'z,t)+a(t)i +b(t)z . (3.64)

Making use of the above formulation, the following result is possible.
Theorem 3
If the following conditions hold:

i) Systems (3.56) and (3.57) possess sufficient smoothness so that

the formulation in (3.63) is justified.

ii) f*(z, z, t) satisfies a modified Lipschitz condition

if’:‘(zzs ;52, s) - f»:«(zl, :Ll’ s)| < k(s)|z2- zll +1(s)|'zz— Ezl | 3 (3.65)

for Izll < 8§, |z2| < 8, |zl| < §, and Izzl €5 (8and § are constants)

where k(s) and 1(s) are positive continuous functions for s€ [0, 17].

iii) The Green's function G(t, s) can be bounded as
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Gt o) spats) gl | emivyq(e) (3.66)

for all t€ [0,17] and s€ [0, 1Twhere p(t) and m(t) are non-negative
integrable bounded functions for t€ [0, 17 and q(s) is a positive

continuous function for t€[0,1].

1
iv) K= [ a(s)(pls)k(s) +m(s) 1(s)) ds<l . (3.67)
0
v) pt) (1-K)'E <
P (3.68)
mt) (1-K)'E <35 ,
max
where
1
E= [ q(s)]e(s)]as . (3.69)

Then (3.56) possesses an exact unique solution x(t) with period 1.

Also the error and its derivative, z and z, are bounded by

lz(t)] <pt) 1-K)" 1B,

-1 (3.70)
|z(t)] <m(t) (1-K)" " E

£ ES
Furthermore, if I-g% | < k(s) and I%J;; Is 1(s) for all z and Zz such that

|z| < 5 and |z] < 8, then the exact unique solution is an isolated solution.

The proof of the above theorem is essentially the same as the
proof of Theorem 1 except for some additional details concerning the
convergence of two iteration schemes, one for z and another for z.
Because of the similarity, the proof of Theorem 3 is omitted.

A result analogous to Theorem 2 may also be proven for the

second order scalar case. Howewver, no additional information or
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insight is gained from this specialization gince Theorem 2 applies to
second order scalar systems as well. Consequently, it is not included.
Discussion

The remarks made in Section 3.1 concerning generalizations
of Theorem 1 also apply to Theorem 3. The restrictions on f(x, x, t),
k(t), and q(s) can be weakened somewhat with a corresponding
weakening of the results. Furthermore, much of the discussion
appearing in Section 3.1 concerning Theorem 1 is pertinent to Theorem
3 also. In particular, the homogenous system (3.62) generating the
Green's function G(t, s) is essentially arbitrary, the only restriction
being that a(t) and b(t) are such that G(t, s) indeed exists. (3.62) may
be chosen to be either the Jacobian of f(x, %, t) evaluated at the approxi-
mate solution y (i.e. a(t) = %f.—:?), b(t) = gf—{(v)) or any other system
whose Green's function is known. The former is desirable since the
Lipschitz constants k(s) and 1(s), and correspondingly the bounds
5 and &, would be made small, the latter is desirable since deter-
mining the Green's function for the system using the Jacobian of f(x, x)
may be quite difficult. The discussion concerning autonomous systems
in Section 3.1 applies to Theorem 3 as well. Theorem 3 may be inter-
preted as a non-existence theorem when applied to autonomous
systems.

A Particular Green's Function

As mentioned above, the homogenous system (3.62) may be
chosen to be a system possessing a known Green's function. One

possible system is
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&b+2€‘\(+y2cp= 0
(3.71)
o(0)=p(1) @(0)=(1) ,

where { and y are non-negative real constants. A necessary and
sufficient condition for (3.71) to posscss a Green's function is that

the only solution of (3.71) be the trivial solution. Therefore, in the
following development, precautions must be taken to insure this. The
two linearly independent solutions of (3.71) are well know, and their
behavior is different depending on the particular value of (.
Consequently, the Green's function and bounds are obtained for ( =0,
0<(C<1l, €=1, and {>1. When { =0, it is clear that (3.71) possesses
only the trivial solution if y is restricted such that y#2nw for n=0,L2,...
For (>0, (3.71) possesses only the trivial solution for all y>0.
Imposing the above restrictions, the Green's function satisfies the

following problem,

2 -
8 ZG'(tl S)+ ZCY—S—SJM) + 'YZG(t; S)z 0, t'-)é s

’ (3. 72)
ot
G(0,8)=G(1,s) , _g_?(O,s):?TS(l,sﬂ
8G(s', s) _ 3G(s ™, s) _
Bt " Bt =1 (3.72)
G(s', 8)-G(s,8)=0

v

For (=0, two linearly independent solutions of (3.72) are sin(yt)

and cos(vt). The Green's function can be written as

C1 sin (yt) -4-C2 cos(yt), O0<t<s <l
G(t, s)=
C3shﬂvﬂ+c4cos(wL O<s<t<l
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The constants Cl‘ CZ' C3, and C4 (which depend on s) are determincd
using the four conditions in (3.72%). Performing the algebra, G(t, s) is,

for (=0 and y#2nw

sin(y(t-s+1 )) - sin(y(t-s))

, O<t=<sx<l

2vy(l - cos v)
G(t,s) = (3.73)
sin(y(t—s)) - 8in (y(t—s-l))
- O<s <t<l
2vy(l - cos v) !

For 0<(<l, two linearly independent solutions of (3.72) are
e-CYt sin(y(l—cz)llzt) and e-CYt cos(y(l-C )1/2 ). Writing the Green's
function for the two regions O<t<s <1 and 0 <s <t<l, as above, and
using (3. 72') to determine the coefficients, G(t, s) is found to be, for

O<(c<1,

O W ein(y1- £/ -0 )
D

1
-e -Cy s1n\y(1»c )llz(t-s)>], O<tss<l
Git, s) = 4 (3.74)
o~ CY(t-8) sin(y(l—gz)liz(t—s)>
Dy

.e'C s1n( (1-¢ )llz(t—s—l)) , Oss<t<l

X
where D= y(1-¢ )1/2( & B B BY o npoii p )1/2))

For =1, two linearly independent solutions of (3.72) are & ¥r

and te-yt. Performing the same operations as above, G(t, s) is, for =1,
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é 'y(t s+1)
’.1+(t—s)(1 -e” -l, O<ts<ss <1
(l—e =
G(t, s) = (3.75)
o~ Y(t-58)
[1+(t s-1)(1-e V)] O<s=<tx<l
L

K_

For >1, two linearly independent solutions of (3.72) are
o~ VCHER-1)112 - (c2-1)l/2y

and e Again performing the same

calculations as described above, G(t, s) is, for >1,

( - Ct-s+1) 1/2

D [mnh(y(c -1)

: (t-s+1)>

_e—cysinh(y(('_z-l)(t-s)xl, 0<t<s <l ,

f
G(t,s) = -Cv(t s) , - . (3.76)
sinh(y(g 1) (t-5) )
|
E
k

_e-C‘r’sinh(y(czﬂl)l/z(t-s—l)/_} s D=isgtEl |

where Dy = y(¢?- 1)1/ #[14e 2 YVo2e™ Y eoshive®-1)1/2) ]

For Theorem 3, it is necessary to obtain bounds on ‘G(t, s)!

0
and ]EEC—T-G-’——S—!! satisfying (3.66). For all values of =0, G{t, s) and

—ggﬁ’—g-)- is a function of the variable (t-s). For convenience, we choose

as bounds for !G(t, s)f and l%t—’—%—) |the maximum value attained as
(t-s) varies over the allowable range. Consequently, the bounds will
be independent of t and s. Obtaining this maximum is relatively
straightforward, although it tends to be somewhat lengthy. Itis

necessary to consider endpoints and all relative extrema. Since the
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procedure is basically algebra, the details are bypassed, and only

the results are given. For =0 and y#2nm,

1
lG(t’ S)l ) y(Z(l-cos y))l /2 ’
(3.77)
19G(t, 8)) _ 1
|
ot (2(1—cos w)ﬂz
For 0< (<1,
v(1-c e 146 Y 2e™ Y cos (v(1- ) )]
(3.78)
IgGLt,s)IS o . 1 5
t (1-c%) [1+ ECY 267 Y eos (v1- ¢ )1’2)]
For C=1,
.._J.___'Y_]_
e
|G(t, s)|= = e ;
y(l-e ) -
.79
|BG(t,s)| 1-(1+y)e” Y
o (l—e~Y
For C>1, 1 C 1
G(t, s
» C_ 1.1
-2¢y - Cy 2 3 2<c2-1)_":+E
yf1+e “l.2e cosh(‘Y(C -1) ):‘ %
¢ 3.80
. g ( )

1
= 2 5 2 —3 il
|aG‘t’S!|s Ce gYsinh(Y(C -1)2 )'(C —1)2 1-e Cy Yooah Y(C *-12)>

ot
2—1)1/2[1 + e"2 EY 255 conh (Y( CZ— 1 )1/2 ) |
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In the development of these bounds, ( and vy are left unspecified.
They may now be determined by minimizing the error bound § with
respect to them.

Particularization of Theorem 3 using (3.71).

The relations for determining the bounds & and § using
Theorem 3 and the homogenous system (3.71) are now developed.
Consider a specific original system and let the auxiliary system and
approximate solution be obtained in any manner whatever. A
corresponding differential equation error (or residual) e(t), given by
(3.60), will also be generated. Satisfying the postulates of Theorem 3
will enable a bound on the error z and z to be obtained.

Assume that f(x, X, t) satisfies the continuity conditions in
(3.56). The next requirement is that the homogenous system (3.71)
possesses only the trivial solution. As shown previously, this is
satisfied for all values of y(except zero) whenever { is non-zero and
for all values of v, except y=2nmw, for n=0,1,..., wherever [ vanishes.
Imposing these restrictions on { and y guarantees that the only solution
of (3.71) is the trivial solution.

It is now necessary to show that f*(z) = f¥*(z, z,t), satisfies a

Lipschitz condition (3.65). From (3.65), f*(z) is

£x(z) = £(y) - f(y+z) +2Cv% + oz
Considering the four variables 211 29 él’ and éz, the difference

(2, ) - £%(z,) is

2
f3(zy) - £%(z)) = f(y+z;) - fly+zy) +2yC(2p-2)) +v (23-2;) .  (3.81)
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Since f(x) is Cl for x€R, the mean value theorem may be used to give
f f ‘-B—f(x
(ytzy)-flytz,) =5, +.§1+M52—51))(51-_z_2)

of .
+a—5c(1+?-1”(52-51))(z1-22) , (3.82)

where ) satisfies O<l<l. Using this, (3.81) becomes
2 Of/

af j \ - .
[Zgy--gi(‘x+_z_l+l(gz—zl))](zz—zl) . (3.83)
Taking absolute values and using the triangle inequality, (3, 83) becomes,

for Izlls 5, IZZIS{), |21|sz‘), lézlsé,

|£5(z,) - £5(z )| s k(t) [2,-2 | +100)]5,-2, |, (3. 84)

where

'\
2 of

k(t) = max Y - y+z,+Az,-2,) ;

0<r<l l E;(_ =1 2274 )I

[zll&: 72|55

|2, &]2,|<8

(3.85)

1(t) = max IZCY'%(X"'_Z.I"'A(Ez’_Z_l))l .
: 0<r<1

lzll& szﬁ
léll &li'zl(‘!’

=

Therefore, f¥*(z) satisfies a Lipschitz condition with the Lipschitz
constants being given by (3.85). Actually, k(t) and 1(t) can be any
functions greater than or equal to the values given in (3. 85), and the
Lipschitz condition will still hold. This fact is used for the examples

discussed in Sections 3.3 and 3.4.
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Bounds on G(t, s) and _g_?_@:_,_s) have already been developed in
(3.77)-(3.80). Because of the particular bounds chosen, p(t), m(t),
and q(s) appearing in (3.66) are all constants. Without loss in
generality, choose q(s) equal to one. p(t) and m(t) are then equal to
the expressions in (3.77) - (3. 80).

The remaining hypotheses to be satisfied are (3.67) and (3.68),

1 1
Ksp_[ k(s)dt-r-mj 1(s)ds<1 (3. 86)
0 0

and

= | - .
p(1-K) 'E<s , m(1-K)" 'E<5 , (3.87)

1
where E = JO IE(s)Ids and p and m are the constant bounds on G(t, s)

and —gg(iﬁ) . If (3.86) is true, (3.87) may be written as

pE < 8 (1-K) (3.88)
and

mE <§ (1-K) . (3.89)

(3.88) and (3.89) are two relations for determining the bounds § and E.S
Since they are bounds and since p,m, and E are positive, 8and ;3 must
be positive. Therefore, if §>0 and é>0 can be found such that (3. 88)
and (3.89) are satisfied, Theorem 3 applies, and § and é are bounds
on the error |z| and lz.l

In general, there may be more than one pair (8, 6) satisfying
(3.88) and (3.89). m, p, and E are independent of § and 8. Since k(t)

and 1(t) will, in general, depend on § and {.5, K will also depend on
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§ and §. Define
Hl(a.é)za(l-K(a,é)) , Hz(a,é)-:é(l-K(a, é)) , (3.90)

(3.88) and (3. 89) then become

H,(6,5)2pE , H,(5,82mE . (3.91)

Consider H1 and ‘I-I2 as functions ‘of the two variables § and # for

§=0 and 520. Let Sl denote the set of points (8§, é) such that

SI: {(6, é)[ HI(G, é) EPE} , and S2 denote the set of points

S;?.: {(5, {.5) [ H2(5_, é)ZmE} . In order to apply Theorem 3, both relations
in (3.91) must hold, therefore the set SB which is the intersection of
S1 and SZ. are points (8§, 8) for which Theorem 3 applies. Since S3 is a
closed set, there will exist a point (6?, é{) in S3 where the bound on
lzl is the smallest possible. Similarly, there will exist a point

(5:, 62) where the bound on |z| is the largest possible. If it is of
interest to obtain a bound on the error |z| between an approximate
solution and the exact solution, the point (6?, 6;) would be used when
applying Theorem 3. However, if it is of interest to prove the exis-
tence and uniqueness (or ''mon-existence'' in case of an autonomous
system) of a solution the point (6:2::, 52) would be chosen.

In addition to having some freedom in selecting & and % it is
possible to minimize (or maximize) the bound 5 with respect to the
Green's function parameters y and (. By varying v and ~, the set S3
will change, and y and { may be selected such that the particular S3
is obtained which contains the point (6::, él“) for which the bound on Iz’

attains its minimum (or maximum) value. Because the relations
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yielding 83 are in the form of inequalities, it is very difficult in most
cases to perform the minimization indicated above. Considerable
simplification (along with some restriction) may be obtained by
requiring that strict equality holds in (3.91) (and, therefore, (3.88
and (3.89)). The equations determining 8§ and ?5. then become

pEzﬁ(l-K(s,é)) , (3.92)

and
:nEz&@-K(&BO | (3.93)

It is now relatively straightforward to perform the above minimization.
The minimum (or maximum) obtained using (3.92) and (3.93) will, in
general, be larger (or smaller) than the true minimum (or maximum)
of S;. However, it still will be valid for applying Theorem 3.

Dividing (3.92) by p and (3.93) by m and noting that K<1,
§ and :5 satisfy

§=—n8 . (3.94)

This shows that §and P.‘)are no longer independent, and, therefore, it
is not possible to minimize both 8 and § with respect to y and (.

Since the accuracy of the solution and not its time derivative is usually
the quantity of most interest, § is minimized with respect to vy and 5.
These two relations, combined with (3.92) and (3.94), are sufficient
to determine v, G 5, and § Substituting (3. 94) into (3.92) eliminates

f') from the formulation yielding
-1 -1 m
E=5lp -p K(G,?b) : (3.95)

From (3.90), itisseenthat}ﬁjﬁ,%ga)isindependentofé.

Consider Hl({), %—5) as a function of 8§, and let S be the value of § such



B

K(%, —?—A) =1. From the definition of H], it is clear that
H, (8, 7-6) | =0 and H (5, 2%) | =0
P 5=0 P 5=

Since K(85, % 5 is a single valued function of §, H1(5, %1—5) will also
be single valued in §. H1 is non-negative because §>0 and K<1.
Therefore HI(B, -I—;—&) possesses the general character indicated in
Figure 2. (3.95) is satisfied for 5; and 52 which, from Figure 2, are
the minimum and maximum values for which Theorem 3 applies. Any
§ satisfying 5{ <8< 6: will be a valid 5§ for applying Theorem 3.

From Figure 2 it is possible to obtain the boundary of appli-

cability of Theorem 3. When the parameters in the original system,

2

coalesce, the valid region in 8 degenerates to a point 6. Any change

the auxiliary system, and the Green's function are such that 51 and &

in the parameters so as to increase pE beyond (pE)m makes it
impossible to satisfy (3.95) for any real positive 4. Consequently,

the boundary is given by

m e 4
H, (8 —pvém) =(pE) - (3.96)

Returning to (3.95), the minimization of & with re spect to
v and { may now be performed. Assuming § to be a continuous function-
of v and {, a necessary condition for a minimum is %: 0 and —g—gt ;
5 is first minimized with re spect to yby implicitly differentia.ting

(3.95) and noting that ¥ is independent of & and vy, p is independent of

5§, and K depends on 8 and y. Recalling the definition of K, (3.86), the
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w "
- K(3 g $y=1 —
?_‘E_ Y
I
(pE)m
pE
* * A
0 Sl Sm 82 8
BOUND, &

Figure 2: HI(R, E.!'3) versus §
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3 3 :
condition 5%2 0 implies

o 1 1
B()-] e ()]

1
9
Ws)as + 2 [ Uelgy (3.97)
P Jg 9Y
Since all of the functions in (3.95) which depend on vy also
9
depend on ( and vice versa, the relation generated by —a-ér-: 0 can be

9
obtained by replacing explicit y by C in (3.97). Therefore, T?: 0

implies

1 . 7 Bt
1(s)ds+?J0—lag dg . (3.98)

Equation (3.95), (3.97), and (3.98) will, in general, have to be
solved simultaneously to determine (, vy, and §. (3.94) is then used to
determine 6. Expressions (3.97) and (3.98) may be rewritten using
the values of m and p for the particular Green's function discussed
earlier*. This operation is straightforward, and it would serve no
useful purpose to include these calculations for all cases. However, in
Section 3.3 some examples are presented, and it is convenient to
simplify (3.97) and (3.98) for the specific cases considered there.

The examples come from a general class of problems where
the original system contains no dissipative terms i.e. f(x, %, t) is
independent of x. This being the case, the auxiliary system will

usually have the same property, and therefore it seems appropriate

*Equations (3.95),(3.97), and (3.98) remain valid for any Green's
function depending on two parameters yand  such that p and m are
constants and g is unity.
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to consider a G reen's function where { =0. Furthermore, the Lipschitz
condition is simplified because 1(t) =0. This fact essentially uncouples

the equations (3.88) and (3.89) for determining & and F-) since (3.88) can
now be solved separately for §. Therefore, the restriction imposed by
requiring (3.92) and (3.93) is actually no restriction at all. (3.88) and

(3.89) being separable implies that the true minimum (or maximum) of
S3 occurs when (3.92) and (3.93) are satisfied.

(3.77) gives the values of m and p for the case where {=0. It

is worthwhile noting again that y is restricted such that y#2n7 to insure

the existence of a Green's function. From (3.77),

1
p= , {5 99)
y(Z(l-cos y))llz
and
1
m = . (3.100)
(2(1-cos y))”z

Substituting these values into (3.95) and rearranging, the equation

becomes

E=5[y(2(1—cos‘v))l/z- j'; k(s)ds] . (3.101)

Using (3.99) and (3.100) in (3.97) and performing the indicated
differentiation, the following relation is obtained for determining the

optimum v,

. 1

2(l-cosy)+ysiny _ 1 " 9k(s

o )1/2 YI _(“)ay ds . (3.102)
\2(1-cos v) 0

8 is determined using (3.94), (3.99), and(3.100) and is
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5= y5

The problem of applying Theorem 3 to non-dissipative systems
is reduced to solving (3.101) and (3.102) for y and § and then using the
above relation to calculate 5. Given an original system and a fully
determined auxiliary system, it is necessary to determine k(s) greater
than or equal to the one given in (3.85). Using k(s), the integrals in
(3.101) and (3.102) may be evaluated, and consequently & and 5 may
be determined. The following section uses these results for a specific

nonautonomous non-dissipative system.

3.3. Error Bounds for a Specific Nonautonomous System

The system considered is

2
51__322 +ax+;,xx3=f‘ cos (wt) . (3.103)
dr

It is of interest to determine the accuracy of the approximate periodic
solution of (3.103) obtained using the equivalent equation approach.
Two approximations are considered. The first is obtained using
equivalent linearization. The second is the approximation discussed
in Section 2.2, where an equivalent cubic equation is used.

The method of equivalent lincarization uses the auxiliary

system

2

-d—% +Ry =F cos (07) . (3.104)
dr

(3.104) has known periodic solutions of the form

y=Acos (wT) , (3.105)

where A satisfies



- T8

A

F
B, Sy # (3.106)
K-w

F and w in (3.104) are selected to have the same values asg F and w in
(3.103), and K may be determined by the method of Chapter II which

is identical to the standard method of equivalent linearization. K

satisfies
K=a+2A% . (3.107)

Given 5, ﬁ, f‘, and w, the approximate solution (3.105) is determined
using (3.106) and (3.107). If the approximation has more than one
solution, it is necessary to select a particular solution of interest.
Having obtained the approximate solution (3.105), it is of
interest to determine its accuracy. The independent variable T is
normalized so that (3.103),(3.104), and (3.105) are periodic with

period 1. Let

r=2T¢
==<t . _ (3.108)

Equation (3.103) then becomes

X +ax +ux3:F cos (2vt) , (3.109)

~2m2 a, 2m2 A 2m2
where a =a(—£') ’ H:U{”&E) , and F =F(~6J1I-) . Equation (3.104) reduces to

¥ +Ky=F cos (2rt) , (3.110)

where K =f((%r-)2 and F is the same as in (3.109). The approximate

solution is
y =A cos (2mt) . (3.111)

To use the general analysis developed in Section 3.2, it is
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necessary to determine the Lipschitz constant defined in (3. 85).
Using the notation of the general system (3.56),

. 3
f(x,x)=ax+ux , : (3.112)
and

F(t) =F cos (2nt) . (3.113)

f(x, x) is independent of x; consequently, the Lipschitz constant 1(t)
for the derivative can be taken to be zero, and the two relations (3. 92)
and (3.93) determining 8§ and §are uncoupled. § can be found first.
Furthermore, since there is no dissipation, the Green's function(3.73)
for (=0 is usaed. The bounds on |G(t, s)l and |%%£t~’—§—)| are given by
(3.99) and (3.100) respectively.

The Lipschitz constant k(t) has to be greater than or equal to

the expression given in (3.85). Therefore, for Izll<5 and |zz!<6,

k(t) satisfies

2 2 2 2
k(t)= max |y -a-3u(v+zl+>\(zz—zl)) | = [y -a-3uy"°]
[le&lzzl<6
0<x<]
2
+ max Uéuy(z +3Mzy-2z,))+ [3u +h(z5-2,) .
Q) 1 2 1) (21 2 1)U
| zyl&c| 2| <8
But if lzllsﬁ, 'zz|£5, and O< )<, !zl+l(zzwzl)}§5. Therefore
K(t) = [v*-a-3uy"]+6 |ul Iyl s +3]ul 6" =kie) . (3.114)

The Lipschitz constant may be taken to be 12(1:) defined in (3.114).

For convenience, the (A) is dropped.
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To determine the optimum v using (3.102), the integral

1
2 r Ok dt must be evaluated. Dividing the integral at the zeros of
.Y ‘-0 _g-y

the first term in k(t) eliminates the absolute value sign in the first
term., This term must contain zeros since y is restricted to the range
a<y2'<a+3u,A2, (u>0) or a+3uA2< y2<a, (L<0), so that (3.102) has a
solution. Differentiating with respect to y eliminates the remaining

terms in k(t). Performing the resulting integration yields

0

1 , 2
_I.J‘ Bk gt - _I.l-lr 2(1- 4 o5t (L'_a_)
Y dp LAY I ™ 2.7

) (3.115)
3uA

1
In order to determine §, it is necessary to compute V kkdt and
1 *0
E in (3.101). r kdt is determined by integrating (3.114) term by term.
‘0
Each resulting integral is divided at the zeros of the integrand elimi-

nating the absolute value signs. The result is

1

' 2 A 2 A l A
k(t)dt = (v -a)(1-8%) +3|u|A" (4t - 1/2 + = sin4rt)
[ tas= 2 2
12 2
+ - lulas+3]u]s (3.116)
where
2 17
t= %— cos 1(J~—%-)
L A

To compute E, it is convenient, in this example, to modify
the definition given in (3.87). Although the form given in (3.87) is
readily calculable for the present approximation, it becomes awkward
for the approximation generated using the equivalent cubic equation.
For comparison purposes, it is desirable to use the same form for &

in both approximations. From Figure 2, it is clear that if K is
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increased, the region for valid § is reduced. If E is increased but is
still required to satisfy equations (3.68), all of the arguments in
Theorem 3 remain valid. Consequently, Theorem 3 may still be used.
However, as mentioned above, increasing E increases 5:; and
decreases 6; Therefore, the error bound 6; is larger (i.e.poorer)
for the increased value of E. In the present example, the added
convenience of using an alternative form of E more than compensates
for what can be shown to be a slight (10%) increase in 5:

A convenient E to use is the following

e (]

0

1 1/2

ez(ﬂt> . {3.117)

By Schwartz's inequality,
1 1
[ |ew)at < (.[ e:2(1:)dt)1/2 ,
"0 0
so that E given by (3.117) is a valid definition to use. From (3.60),

e(t) is given by

3
3
e(t) = ay +uy -Ky=%— cos (6mt) , (3.118)
where (3.107) and (3.111) have been used. Determining E in '
(3.117) then gives

3 .
E= lmla (3.119)

4/%
Substituting (3.115) into (3.102), the relation for determining

the optimum vis
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- L : 2 i
2(l-cos y)+ ysiny _ 'ﬁ—[ 3(1_ﬁ cos_l fl_.'.'_‘}_zj"

1/2
2v(l -cos v) ™ ) ;

(3.120)
Once y is determined, 8 can be found from (3.101) using (3.116) and

(3.119). The relation for § is

1
5!—\/(2(1-(:03 y))llz . ‘['0 k(t)dt] B, (3.121)

§ is determined from (3. 94) and is given by

1
== 38 . 3.122
v ( )

Equation (3.120), (3.121), and (3.122) are the equations of
interest for the approximation obtained using equivalent linearization.
These were solved for several numerical values of 3, a, ]?‘, and w.
The results for 4=1, 1=0.1, and ¥=0.1 are given in Figures 3 and 4 in
the form of plots of § versus w. The results for a=1, (1=-0.2, and
F=0.2 are given in Figures 5 and 6.

Prior to discussing the results, it is convenient to develop
the bound for the approximation obtained using the equivalent cubic

equation. The auxiliary system is

d2x
—5~ +tay +fy
dr

Fen(fnE) (3.123)

where 3 and {1 have the same values as in (3.103), and fand X arte
related so that the period of the excitation in (3.123) is the same as
the period in (3.103), i.e. 27 /w. (3.123) has exact periodic solutions

in terms of Jacobian elliptic functions of the form

y=Acn(f, k) . (3.124)
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From Section 2.2, the approximate periodic solution for
(3.103) for d>0 is determined using (2.27),(2.23), and (2.19) once a
value k (modulus of the elliptic function) has been assumed. If 1< 0,
(2.28), (2.23)', and (2. 19)'are used once a value of T(_l is assumed.
(Kl is defined in (2.28).) It is necessary to exercise caution when
using the above equations from Section 2.2 so that the difference in
notation is correctly taken into account.

Once the approximate solution is completely determined. T
is again normalized using (3.108) so that equations (3.103), (3.123),

and (3.124) have period 1. Equation (3.123) becomes

§+ay +py’ =Flen (nt, ) , (3.125)

s g 24 . w2 "
where a and pu are given in (3.109), F=F' (T}) and m=n %ﬁ )

Equation (3.124) becomes
y=Acn(nt, k) . (3.126)

In order to apply the theory of Section 3.2, it is necessary to
determine a Lipschitz constant k{t). For the same rcasons as in the
first approximation, 1(t) is set to zero, and the Green's function for
£=0is used. Again, § and the optirnuin Yare given by (3.101) and
(3.102). Since the arguments in developing the Lipschitz constant in
(3.114) are independent of the particular approximation used, (3.114)
is also valid for the present approximation. Consequently, performing

the same operations as indicated above, k(t) is found to be, for le<5,

2 2 2
k(t) = [y -a-3uy”| +6|ul lyls +3|ul " , (3.127)

where y =A cn (nt, k).
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1
" x ¢ 0
It is now possible to determine the integral A r 'glg(ﬁlqdli
Y olg VY
necded for calculating the optimum y. Again, separating the integral

at the zeros of the first term in k(t), taking the derivative, and

evaluating the resulting integrals yields

lY [: gL;d%:z Hra-sh (3.128)
where 5 1
%:%‘ cn’l(l—f—%) , (3.129)
3uA
such that O<t<l /4.
To determine §, it is necessary to calculate Jf:]dt and E. The

integral is evaluated using the same techniques as in the earlier
approximation. The final results involve integrals of products of
elliptic functions which can be evaluated using standard reference

tables (28). Performing the algebra, the following result is obtained.

2 ~ 2 ey e WU
[01 Kk(t)dt = Til-l(y“-a)(l—St) + —‘31-%{&(% [%E(E(k)— (1-F2)R® )

+§2-(E(am(n€,i),i)-"ﬁ(£) +(1-K2)(K(E) - n%)]
. =1
volula 2B 514162, (3.130)
R (%)

where K(k) and E(k) are the complete elliptic integrals of the first and
second kind with modulus k, E(¢p, k) is the incomplete elliptic integral

of the second kind, and am(u, k) is the Jacobian amplitude function.
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Finally, it is necessary to compute E. From (3.60), e(t) is
e(t)=F cos 2nt)-F' cn (nt, k) . (3.131)

For convenience, (3.117) is used to calculate E, which gives

2 7 = 1/2
E:l:g 5. - (—5_—“_5_))] . (3.132)
2RE (K) 2R(k)

2 -

where ¥ = 1-k . In the numerical results to be presented, an
accuracy problem developed in computing E for small values of k.
Consequently, a power series in terms of k was determined, and the

first few terms were used. For k small, E was determined using

F

i —4 o
E_/z Z—I+O(k) as k-0 . (3.133)

Equations (3.120),(3.129),(3.130), and (3.132) are convenient for
numerical work only if f1>0. If i1<0, K is pure imaginary, which
necessitates some modification of these equations prior to performing
any numerical computations.

All of the quantities needed for determining the bound have
now been obtained. Substituting (3.128) in (3.102) yields an expression
for the optimum vy. Once Yy is determined, equations (3.130) and
(3.132) are substituted into (3.101), which gives a relation for deter-

mining the bound §. § is found using (3.122). Numerical results
were obtained for the same wvalues of a, E_L, and F as those values used
in the linear approximation. The results for =1, {(=0.1, and F=0.1

are given in Figures 3 and 4 in the form of plots of § versus w. The

results for 4=1, 1=-0.2, and F=0.2 are given in Figures 5 and 6.
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The exact solution errors for the linear and the cubic
approximations were obtained by numerically integrating the appro-
priate differential equations. For the linear approximation, the
equation describing the difference zL(t) between the approximate

solution (3.111) and the exact solution is

dzz

L. 3
3= = (K-aly-az; -u(z; +y)”

~

dt
where y=A cos (2wt), K, u, and a are given in (3.109). zL(t) is periodic
with period 1. The measure for the exact linear error used on
Figur2s 3 and 4 is max IzL(t)’ for t€ [0,1]. The exact error zc(t) for
the cubic approximation is determined from

z (t)=2, () +y  (8)-y (),

where Vi and y. are the linear and cubic approximations respectively.
As above, the measure used for the exact cubic error on Figures 3
and 4 is maxlzc(t)l for t€[0,1]. The curves for the exact error have
some portions which are dashed. These indicate extrapolation of the
curves. There exists some scatter in the exact solution points for
arrors smaller than 10“5. It was felt that the accuracy of the com-
putation determining the exact error was only of this order. and to
indicate this, the curves are dashed for this portion also.
Discussion

Figurass 3 and 4 give the results of the above analysis for the
values 4=0.1, d=0.1, and 1?‘=0. 1. Since 1>0, the restoring force is

termed "hardening''. Figures 5 and 6 give the results for the case
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4=1,0, (1=-0.2, and F=0.2. Since T1< 0. the restoring force is
called ""softening''.

Figur= 3 gives the bound on the magnitude of the difference
between the exact solution and the linear approximation, the bound on
the magnitude of the difference between the exact solution and the
cubic approximation, and the exact errvor for both approximations for

the upper branch of the response curve. (See Figure 1.) Figure 4

presents the same quantities for the stable portion of the lower branch

of the response curve. Figures 5 and 6 for the softening case include
the bounds for both approximations and the exact errors for the upper
branch of the response curve and for the stable portion of the lower
branch respectively.

Figures 3 through 6 indicate that it is not possible, using the
present analysis, to obtain a bound for all w. In fact, the expression
relating the parameters 3, U, F, and w specifying the boundary of
applicability of Theorem 3 could be determined using (3.96). However,
it adds nothing to the discussion to include it. From Figurss 3 through
6, it is also clear that the bound for the cubic approximation is
roughly an order of magnitude smaller than the bound for the linear
approximation. This is in agreement with the actual difference
between the exact errors for the two approximations over the range
of w where bounds are obtainable. This does not necessarily mean

that, if one approximation leads to a smaller bound than another

approximation, the first approximation is better, i.e. its actual error
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is smaller. However, withoul knowledge of the exact error, once is
usually more confident in using the approximation providing the
smaller error bound.

Figures 3 and 5 also show that a bound is obtainable over a
larger range in wfor the cubic approximation than for the linear
approximation. The primary reason is that the mean differential
equation error E for the cubic approximation is considerably smaller
than E for the linear approximation. In a sense, therefors, equation
(3.123) better models the original equation (3.103) than does
equation (3.104).

Another point worth noting in Figures 3 through 6 is that the
bound § possesses the same general dependence on w as does the exact
error. This seems to indicate that, in the present example, the
qualitative behavior of the exact error is described fairly accurately
by the qualitative behavior of the bound. Although the actual bounds
obtained are an order of magnitude larger than the exact error,
smaller bounds could be obtained by using the Green's function for
the Jacobian matrix of f(x). In addition, the original definition of E
could be used, and/or smaller bounds for the Green's function could
he obtained. These improvements would lead to closer bounds.

Comparison with Other Published Work

As mentioned earlier, other authors have obtained error
bounds using slightly different techniques. It is therefore of interest
to compare the bounds obtained by others to the bounds given by the

present approach. Such a comparison has been made for the case
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a=1, {1=0.1, and ¥etl. I for the solution corvesponding to the upper
branch of the response curve and to the stable portiou of the lower
branch. The same approximate solution, namely the linear approxi-
mation (3.104) and (3.105) was used [or computing a'l the bounds in

an attempt to compare the various approaches and not the particular

approximate solution used.

McIL.aughlin uses a consistency argument described in Section

1 S 24). Although he applies the technique exclusively to approxi-

mate solutions obtained using the Poincare’-Linstead perturbation
technique, the procedure is valid for approximations obtained by other
means as well. In reference (23), McLaughlin considers equation
(3.103). He obtains an approximate solution of the form (3.105) where
the amplitude A is determined using the perturbation techniques. If
this aspect is modified so that A (actually K) is determined using
equivalent linearization, the equations developed by McLaughlin apply
dir=ctly, since his arguments are still valid.

Assuming the error lz(t)l to satisfy ’zl <u, the eguation for u

(which is (E1.11) in reference (23)) is

-upl(u +3]alu®+34%0 + a3 I) : (3.134)
where )
q::Inax ]———jfjf} =012, a0
l-n w

u is the smallest positive real root of (3.134). Equation (3.134) was
solved for the values of a, 1. and F given above and for the frequency

range appearing in Figure 3.



-89-

The bound obtained is given in Figures 7 and 8. Figure 7 is the bound
for the solution corresponding to the upper branch of the response
curve, and Figure 8 gives the bound for the stable portion of the
lower branch. Before discussing the results, it is convenient to
present the bounds obtained by yet another investigator.

As mentioned in Section 3.1, Holtzman utilizes a modification
of the contraction mapping principle to obtain bounds. In reference
(25), he also considers equation (3.106) as an example. He uses the
approximation obtained by equivalent linearization, consequently the
relations he obtains are directly applicable to the present example.

The bound § is determined by first determining a contraction

constant a. « is a root of (equation (59) in reference (2 5)),

, (3.135)

3
3|u|T{ |A[+ T
(12| T(ll%yl)sa

where T = -21'!)—", c=3 sian 2T and A is the approximate solution

amplitude. Once a is found, the bound § satisfies

k

5= —

l-a

where k=cT li"f‘il. o is the smallest real root of (3.135) satisfying
0<a<l. Equation (3.135) and the above equation were also solved
for the hardening case of the present example, and the results are
given in Figures 7 and 8. In addition, Figures 7 and 8 include the
bounds obtained using the analysis of Section 3.2. The original
definition of E (3. 87) was used in computing §. The exact error is

also presented.
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From the figures, it is clear that the present analysis
provides a somewhat sharper bound and is applicable over a larger
range in @ than either of the alternative bounds discussed above, It

‘is interesting to note that, although Holtzman's bound is sharper than
McLaughlin's, its range of applicability in w is smaller. This results
mainly from simplifications which Holtzman introduces. Although
Holtzman's use of the contraction mapping principle is similar to the
present analysis, it differs in the manner in which the bound is
obtained. The contraction mapping principle enables him to conclude
the existence of a unique solution to the error equation, but for bound
purposes, he must, in addition, determine the region in which the
mapping is a contraction, This region constitutes the bound, The
manner in which Holtzman chooses to do this accounts for the some-
what poorer bound and the smaller range of applicability., However,
Holtzman's primary interest is not to obtain a bound but rather to
determine under what conditions does the existence of a linear
approximation imply the existence of an exact solution. No doubt, as
Holtzman points out, other methods for determining the contracting
region exist which could improve the bound and increase the range of
applicability. The figures also show that all three bounds possess the
same qualitative behavior as does the exact error.

From the standpoint of convenience, McLaughlin's and

Holtzman's bounds are easier to obtain. They both involve a cubic
y
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equation. In addition to a cubic equation, the present analysis has a
transcendental equation for determining the optimum y. However,
this relation (3.102) is not so involved since it can be put into a very
convenient form. The left hand side of (3.102) is a function of y only
and can be plotted once for all y of practical interest. Then, in a
particulaf situation, it is necessary only to compute the right hand
side —1\? ‘\0 %]T(/ dt and to locate the point of intersection on the above
plot. In the present example, the right hand side is given in (3.115),
and the range for vy is a<y2< a +3]J,.A2, (u>0), or a +3UA2< Y2<a, (u=<0).
Having determined y, the cubic equation is then solved for 5. The
additional effort needed to use the present analysis is relatively small,
consequently the present approach remains manageable and easy to
apply. Furthermore, the improvement in the accuracy and the increase
in the range of applicability of the bound obtained appear to be ample

compensation for the slight increase in effort.

3.4. Error Bounds for a Specific Autonomous System

In this section, Theorem 3 is used to determine a region on
the response diagram of an autonomous system where there exists
only the trivial solution. Since this approach yields a negative result
in that it provides a region where a non-trivial solution cannot exist,
a second approach, for conservative autonomous systems, is discussed
which yields a region where the non-trivial solution must lie.

Bounds Using Theorem 3.

The system of interest is the following



« Q4=

2 .
i—§+ax+bx3:0 : (3.136)

dr
where a and b are constants and a>0. The periodic solution of (3.136)
which is symmetric about the origin is of interest. Assuming that
(3.136) possesses a solution of period -ZG:-T—_. T is normalized so that

the solution has period 1. Consequently, using 7= -2-['5— t, equation

(3.136) becomes

C 20 \2 2
i+a(%§) x+bcgj2x3:o . (3.137)

The following comparison system is used,
V+ﬁvfy=0. (3.138)
which possesses known periodic solutions of the form
YZACOS (2wt) , (3.139)
Usually, A is assumed given and w is determined approximately
using equivalent linearization, however, it is convenient to let wand .2\
be unspecified for the present.
Using Theorem 3, a bound § on the error z =x-y can be
obtained. As mentioned previously, there exists a range of valid §

e

satisfying Theorem 3. From Figure 2, 61 represents the smallest

permissible bound, and 52 represents the largest. When determining
a bound on an error, it is clear that 5; is chosen when applying
Theorem 3. However, in the present example, an exact solution is

known (i.e. x=0). The primary interest is to determine the largest

region where there exists only the trivial solution. Consequently, 62
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is chosen when applying Theorem 3. |z]s 5; then represents a region
where there exists only the trivial solution. ?‘); still represents an
error bound, but it is not the smallest possible. Since equation (3.137)
and (3.138) are identical to equations (3.109) and (3.110) studied in the
previous section, except that the excitations are zero, equations

(3.121) and (3.120) can be employed directly to determine Sand v

with only one slight modification. Inegquation (3.121), E is calculated
using the fact that wzr a+2 bﬁz obtained from equivalent linearization.
However, in the present example, w is, as yet, unspecified. Therefore,

E must be evaluated accordingly. Using equations (3.60) to determine

E:(t) and equation (3.117), E satisfies

(211') "Z{j_mw ) (a W )bA+I6b3ﬁ4] . (3.140)

Using the above relation for E in equation (3 tlZl) gives a valid
expression for determining 8 in the present example.

w and A are now specified in the following manner. w may be
considered known; it is the frequency of the desired solution. A may
be determined by applying Theorem 3. In addition to providing an
error bound §, Theorem 3 also establishes the existence and unique-
ness of the exact periodic solution x(t). Furthermore, Theorem 3
shows that the exact solution is isolated. However, in Section 3.1, it
is shown that whenever Theorem 1 {(or its second order scalar
counterpart Theorem 3) applies to an autonomous system, there can
exist only the degenerate solution (3.54) satisfying |z| <6. In the

present example, the degenerate solution is the trivial solution.
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Consequently, since it is of interest to determine the largest possible
region where there can exist only the trivial solution, the quantity

A+ may be maximized with respect to A and 5. Since A is consi-
dered an independent variable, the maximization of A+s with re spect

to vy yields —g—f—; =0, which is the same relation obtained previously.
Therefore, equation (3.120) still represents the relation for maximizing
A+5 with respect to y. Maximizing A+8 with respect to A yields

1+g—%=o . (3.141)

9
Implicitly differentiating equation (3.121) to obtain -é-;.% , (3.141) becomes

1
B 9k Ok \ . OE
= +5I0 (85 -3 )dt-—ﬁ-a , (3.142)

where the differentiation is with respect to explicit §and A. Given w,
equations (3.120),(3.121), and (3.142) are sufficient for determining
ﬁ, v, and 8.
For convenience, in the present example equation (3.142) is
not used to determine the optimum ﬁ, but A is chosen arbitrarily to
be zero. Therefore, the exact solution is chosen as the approximation.

Taking the limit as A=0 in equation (3.120) yields the value of y to be

2
= (%’1) a (3.143)

Setting A equal to zero in equation (3.140) gives E=0. Consequently,

the equation (3.121) for determining § reduces to

2 & a(Z(l - cos Y))I/Z

o}
3y |b]

(3.144)
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Equation (3.144) represents the region in the §, w plane (actually A, w
plane, where A is the amplitude of x(t)) where there exists only the
trivial solution x(t) =0. Theorem 3 provides a region, [z| <8, where
there exists only one solution for (3.136). Since z =x-y and since y is
taken to be zero, the region reduces to lxl <§. However, an exact
solutionis known to be x=0. By invoking Theorem 3 again, x =0 is the
only solution satisfying |x] < 8. Consequently, if there exist non-
trivial solutions to (3.136), they must be exterior to the region |x| < 8.

It is convenient to define the following dimensionless parameters:

w - 2
Qz—a—a and A :g% X (3.145)

Using the above definitions, equation (3.144) becomes,

for £20,
(2(1-cos y))l/’2
£ T :
and, for £<0, (3.146)
(Z(I—COS 'y))l/z
> -
: 55 :

-1/2
where v=2m(1 +0) 1/ .

Equation (3.146) is plotted in Figure 9. Also included is the
exact non-trivial solution of (3.137) which is obtainable using
quadratures and involves elliptic integrals. The exact solution in
terms of the variables defined in (3.145), is easily found to be

2

Q= — (1+—§—)—1 ; (3.147)
a1® z
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where
1/2 1/2

/2_1_ (—?—:%-) R(\/%(—{—F_) ), for £>0

B e for -1<€<0 ,

/
o (1+k7)
and K is the complete elliptic integral of the first kind, and
1/2
k= /—2!‘* (—]:-ﬁ’_> . No exact periodic solution, symmetric about the

origin, cxists for §<-1. E<-1 represents an initial amplitude so
large that the potential energy is outside the potential well for
oscillatory motion. Figure 9 also contains bounds obtained using a
second approach to be described shortly.

Figure 9 shows that the region de.fingd by (3.146) is quite
small. The asymptotic value of the boundary as Q- is E::!:%.
In addition, the region degenerates to a point for values of Q) such
that Q= }-z-—l, n=1,2,... Practically speaking, the region in the 0, ¢
plane ex:luded using Theorem 3 is too small to provide meaningful
information for the exact non-trivial solution. However, the region
does indicate that the bifurcation points for (3.137) for |b| small are
associated with the eigenvalues of the linear problem for b=0.
Therefore, non-trivial solutions of (3.137) for Ibl small can emerge
only from the points Q= l-z--l, n:I,.... The above result is well known.

Since Theorem 3 1<;llocas not provide practical information con-

cerning bounds on the non-trivial solution of (3.137), one is motivated

to consider another approach.



-100-

Bounds for Conservative Autonomous Systems

In the study of nonautonomous systems, the frequency of the
e::;:a.ct periodic solution is specified by some external time varying
mechanism, However, for autonomous systems the frequency of the
steady-state response is not known beforehand, and most often this
is the quantity of interest, For nonautonomous systems, a reasonable
criterion for comparing the exact and approximate solution is the
maximum of the absolute value of the difference between the solutions.
However, this criterion is no longer meaningful for autonomous
systems, In the autonomous case, the initial amplitude is usually
prescribed, and knowledge of the frequency of the response is desired.
The accuracy of an approximate frequency cannot be estimated by
considering differences between the exact and the approximate
solutions., If both solutions have the same initial conditions (i. e.,
x(0)=A ; %(0)=0), then since the two frequencies presumably would
not be identical, the two solutions would be completely out of phase
after a sufficient length of time, At this point, the magnitude of the
difference between the two solutions would be 2ZA regardless of the
manner in which the approximate solution is obtained., Therefore, for
autonomous systems, it seems more meaningful to seek differences
between the exact frequency (or period) and the approximate frequency
(or period), given that both solutions started with the same initial
conditions,

Consider the conservative autonomous system of the form
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X +f(x)=0 , (3.143)
where {(x) is CO for all x and is an odd function of x. The non-trivial
periodic solution of (3.148) that is symmetric about x-0 is of interest.
In principle, (3.148) can be solved by quadratures using the initial
conditions

x(0)=A , x(0)=0 . (3.149)

Performing the algebra, the exact period Te is

A A _1/2
Te:Z\/Z_J.(Jf(C)dC) ds . (3.150)
0 s
In many situations, (3.150) can only be solved numerically. It is of
interest, however, to be able to determine bounds on Te without
having to resort to numerical computation. For this reason, one is
motivated to consider an auxiliary system whose period Ta is
determinable in closed form. Hopefully, bounds on the difference
between Ta. and Te will be obtained in terms of the difference between
the corresponding dif.l:"erantia.l equations.
Assume the auxiliary system to be of the form
y+ely)=0 , (3.151)
where g(y) is CO for all y and is an odd function of y. (3.151) is

selected so that its period Ta' given by

w22 (]

is known. The initial conditions (3.149) have been utilized in obtaining

A s
g(v) dv) ds , (3.152)

0
S

(3.154), The difference between Ta and Te is
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A
[ gleldv ;.5 A -1/2
T =% =2/ IA [(- T — -11 (I g(v)dv) ds . (3.153)
0 j fiide TR
S
Define
A
J‘ g(v)dwv
N IR N (3.154)
rqf(v)dv
HA

Taking absolute values of (3.153), the difference satisfies

|T -T | < max |A1/2
e a 0<u=xl

(w-1]T, . (3.155)
Equation (3.155) represents a bound on the magnitude of Te-Ta in
terms of Ta and the ratio of the potential energies associated with

g(y) and f(x). From the form of the bound, it is clear that as g(v)

and f(v) tend to the same function, /A tends to 1, and the bound tends

to zero. This implies that the closer in form g(v) and f(v) are, the
more accurate the bound is. Furthermore, as the difference between

g(v) and f(v) tends to zero, so does the difference between their

corresponding periods.

In the present example, f(x)=a( 21,':-)‘_—)2 x+b ( —2%)2:(3 . It is again
convenient to use (3.138) as the auxiliary system. In addition, let w

be determined using equivalent linearization. ® is given by.

w2=a+%bA2 ) | (3.156)
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where A is in initial amplitude. In order that a periodic approximate
: : 2 D .
solution exists, w must be positive. Using the variables defined in

(3.145),(3.156) becomes

Q= % g {3.157)
where (0>-1 so that periodic solutions exist. Equation (3.157) is also
included on Figure 9.

To determine the bound, it is necessary to compute A. Using
(3.154), A is easily found to be

Zw&

A=
. 2a +bAZ(I+u2)

(3.158)

It is convenient to rewrite the bound given in (3.155) in terms of the

variables defined in (3.145). First, note that, if M= max Il\l/z(u)—l |
O<ucx<l
<1, equation (3.155) implies that
Wa
We * T-M °
or, in terms of the dimensionless variables () and E,
1+Qa
Q < gl (3.159)
° (1-M)
Similarly, equation (3.155) implies that
1+Qa
Q) 2 e -1 . (3.160)
© (1+M?
M can be written in terms of () and £ to give
1+0 1/2
M = - 4] . (3.161)

max )
O<u<l ' 1+25(1+u2)
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It is easily shown, using (3.157), that

1+Q 1/2
(.__F) ~1 , for £20
1+ &
M= (3.162)
1+ 1/2
(—-—u—-»—) -1 , for £E<0
1+ E

The bounds on Qe given in equations (3.159) and (3.160) are included
in Figure 9.

It is clear from Figure 9 that the bounds obtained using the
comparison approach are much more meaningful than those obtained
using Theorem 3. The bounds from the comparison approach can be
determined over the entire range in €and () where there exists an
exact periodic solution. As E approaches -1, the upper bound goes
to infinity. This occurs since there exists no exact periodic solution
for £= -1. Consequently, in the present example, the bound going to
infinity indicates the non-existence of an exact periodic solution. This
fact is important since the approximate analysis implies the existence
of a periodic solution for all §>—§- . However, since no bound is
obtainable for E<-1, the bound analysis indicates that the region for
existence of an exact periodic solution is actually E>-1. Presumably,
there exist other techniques which give closer bounds than the approach
described above. However, the above approach is conceptually simple

and casy to apply.
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IV. COMPARISON OF DIFFERENT
EQUIVALENCE CRITERIA

In the description of the equivalent equation approach given in
Chapter II, two differential systems are said to be equivalent when the
mean square. of the difference between them is minimized, The mini-
mization is performed with respect to certain parameters contained in
the auxiliary system, However, there is no a priori assurance that
minimizing the mean square differential equation error will lead to the
smallest solution error, There are many other possibilities for mini-
mizing the differential equation error. The purpose of the present
chapter is to study the relationship between the solution error and the
manner in which the differential equation error is minimized, The
investigation is concerned exclusively with second order scalar equa-
tions, Three minimization schemes are considered, namely, mean
square error minimization, mean absolute value error minimization,
and maximum absolute value error minimization, Only the case of
periodic motions is considered, therefore, the interval used for the
above schemes is one period of the solution. The problem does not
appear to be amenable to analytical approaches, therefore, examples

will be used to indicate the major results,
The first section presents some preliminary considerations and

a formulation of the problem., Section 4.2 gives a description of the
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three minimization schemes to be used, Sections 4, 3 through 4.6
present specific examples, Section 4,7 contains the results and con-

clusions of the analysis,

4.1 Preliminaries,

In Chapter II, it is shown that the equivalent equation approach
can be used to obtain approximate periodic solutions for equations of

the following form

dZ
—2"+ f(x, %, t) = F(t)

dt

' (4. 1)

where f(x, %X,t) and F(t) are periodic in explicit t with period one, This
represents no loss in generality since the independent variable may
always be normalized so that (4. 1) has period one, The procedure is
based on considering an auxiliary system having known periodic solu-
tions. This system can be represented as

2
a .
2 et Titap e 0) = Gltagyeeay) s )

where g and G are periodic in explicit t with period one, and qi(izl,...,r)
are parameters which are selected so that equations (4. 1) and (4. 2) are,
in some sense, equivalent,

The manner in which equation (4, 2) is made equivalent to (4, 1)
is of primary interest in the present chapter. Equivalence is based on
making the difference between (4. 1) and (4. 2) small, Specifically, the

differential equation error ¢(t), given by

et} =F(t)-fly, . )+ gly, §, £, @p,...05)-GlE @ 0ene0) (4.3)
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is minimized, in some manner, with respect to the parameters
ai(i=1,...r). By making equations (4, 1) and (4. 2) similar, it is assumed
that the corresponding periodic solutions will also be similar, The
relationship between the differential equation error and the solution
error is investigated in Chapter III, It is shown that, under certain
conditions, the above assumption is justified.

When obtaining an approximate solution for any system, the
primary objective usually is to make the error z(t) between the approx-
imate solution y(t) and the exact solution x(t) as small as possible, The
ideal situation would be to minimize z(t) with respect to ai(izl,._.,r),
However, z(t) is not known exactly, In general, the only information
available concerning the error is that it satisfies |z(t)!s 8, where 8 is
a bound. The next alternative is to minimize 8§ with respect to
ai(izl,...,r). In Section (3.2), it is shown that, under certain condi-
tions, & satisfies

%
§ =maxp(t)(1-K) " E , (4. 4)
v/

t

where p(t) and K(6) are defined in (3. 66) and (3.67). E is an average

differential equation error given by
1
E:J’ le(t)|at . (4. 5)
0

From the Cauchy-Schwartz inequality, it is clear that

1 1/2
Bx j e~ (t)dt " (4.6)
0
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Furthermore, from (4, 5) E also satisfies

E <max|e(t)] . (4.7)
o let)]

From the arguments presented in Section 3, 3 concerning various defi-
nitions of E, it is evident that the definitions given in (4. 5), (4.6) and
(4. 7) are all valid, Consequently, a bound 8§ can be obtained using (4.4)
and any of the above definitions,

For a particular definition of E, it is possible to minimize §
using (4.4). If the differential equation parameters a.l(izl,...,r) are
considered independent of the solution parameters [3j(j=1,...,s), 8 can
be minimized with respect to explicit o After the minimization has
been performed, the s relations can then be used to completely deter-
mine the a, and Bj . Since p(t) and K(8) depend only on the approximate
solution y and the Green's function G(t, s), the minimization of § with

respect to explicit 0oy implies
{E(al,.,.,ar)}zminimum ; (4. 8)

where use has been made of (4.4). Hence, minimizing § leads one,
very naturally, to a condition of the form (4, 8)., Furthermore, the
differential equation error is independent of § which enables the
approximation to be obtained independent of the bound. This is advan-
tageous since the conditions necessary for the existence of a bound are
not satisfied in general, Therefore, an approximate solution may be
obtained even though the bound analysis of Chapter III does not apply.

In addition, the minimization procedure (4. 8) is unambiguous and,
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usually, easy to implement, Since a; very often appear linearly in
e(t), the relations resulting from (4.8) are quite simple mathematically,
Although the above arguments provide motivation for taking
(4. 8) as the appropriate condition for determining cx,i(izl,...,r), they do
not indicate which definition of E yields the smallest actual solution
error, Selecting E so that the smallest bound is obtained does not
necessarily mean that the smallest actual error is obtained. Since it
is of interest to determine the particular form of E which provides the

smallest actual error, it is necessary to consider the exact error and

and not a bound, Since the exact error is, in general, unobtainable
using analytical techniques, the only recourse is to consider specific

examples where the exact error can be determined numerically,

4,2 Description of the Minimization Procedure,

In the examples to follow, three specific definitions of E are
considered, namely (4, 5), (4.6), and (4, 7). The corresponding mini-

mization conditions are

1 12
J‘ e2 (t)dt = minimum 4 (4. 9)
0
1
I le(t)'dt:minimum i (4. 10)
0

and

max | e(t) | =minimum . (4.11)
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‘The above equations are minimized with respect to ogi(izl,.,,r) to
generate relations for determining Q- As discussed in Chapter II, all
of the relations resulting from the minimization procedure may not be
independent., If this occurs, certain of the o, must be specified , or
the independent relations must be specified, or the independent rela-
tions have to be separated, so that a sufficient number of independent
relations are generated. A necessary condition for a relative mini-
mum is equation (4. 8). Throughout this chapter, the three conditions
(4, 9), (4.10), and (4. 11) will occur frequently, It is convenient to
define the following shorthand notation. ASE, symbolizing Average
Square Error minimization, is used to represent (4. 9). AAVE,
symbolizing Average Absolute Value Error minimization, is used to
represent (4. 10), MAVE, symbolizing Maximum Absolute Value Error

minimization, is used for condition (4, 11),

ASE
ASE is one of the most common techniques used., It is easy to
apply, and the resulting relations are usually quite simple in form,

Using (4. 8) and the condition (4. 9), an alternative form of ASE is

1
ST(]- €2(t)di> =0 s i:l,_,_,l“ 5 (4;_ 12)
i \0

or
L gett
J'E%—le(t)dt:o o B le® (4. 13)
o 2%

Equations (4. 13) determine d,i(i-:l,...,r).
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AAVE
AAVE is a somewhat more complicated technique than ASE.
The condition in (4, 10) may be written as

1 1/2
[. ((-:2 (t)) dt = minimum . (4. 14)
0

Minimizing (4. 14) with respect to o using (4. 8) yields

1 1/2
-g-&j Qo (eZ(t) d9 =0 , i=1,...,r . (4. 15)
1

Assuming that e(t) vanishes for only a finite number of t€[0, 1], (4. 15)

can be written as

1
J. sgn (e(t)) g%ﬂdt:o - T, (4. 16)
0 i
where
1, for z>0
sgn(z)=(0 , for z=0
-1 , for z<0
Let tj (j=1,...,N) denote the zeros of e(t) where 0<t1<t2_ . <1:Ns1.
Then, (4. 16) becomes
t t
1 2 1
de e N oe :
j‘ ﬁdt-j g&'—.dt...'{‘(-l) I ﬁ.—dt 3 1:1,_,,,1‘ i (4.17)
0 £ 1 £ 1
1 N

Since the analysis is primarily concerned with periodic motions, €(t)
is periodic with period one. Therefore, there can exist only an even
number of zeros of €(t). Adding and subtracting the second, the fourth,

the sixth, etc., integrals to (4.17), one obtains
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t
1 de de .
-2—'[ —d :J —dt+I gat+. +_[' a—a—dt . i=l,....r . (4. 18)
1 t % t
N-1
Equations (4, 18) determine ai(izl,_..,r), It is interesting to note the

increased complexity of (4. 18) compared with equations (4, 13),

MAVE

MAVEis an extremely simple minimization scheme conceptually,
However, practically speaking, it is the most tedious of the three
schemes considered. MAVE minimizes the maximum error for all
time, Since €(t) is periodic, its absolute maximum can occur only at a
relative extrerhum. Define the set of points @ as

de(t.)
®= {t |0<th1 andg———l—=0}.

® contains all the possible points where €(t) could attain an absolute
maximum, qi(izl,,,.,r) are selected such that

max |e(t)] = minimum (4.19)
ted

(4, 19) can become very involved especially if r is larger than 2 or 3 or
if ® contains more than 2 or 3 points where ]e(t)l possesses different

values. The difficulties in applying (4. 19) are better illustrated in the

examples,

4.3 Example 1,

In this example, the following autonomous system is of interest.

2
é—’éﬁman“l (x)=0 . (4.20)
dr
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An approximate amplitude-frequency relation for periodic oscillations

symmetric about x=0 is desired, The initial conditions are

x(0)=A , =0 . (4.21)

dx(0)
T

The equivalent equation approach is used with the auxiliary system

dZ

——%+Ky=0 . (4.22)

dT
(4.22) is made equivalent to (4. 20) by determining K such that the dif-
ferential equation error is minimized, The periodic solution of (4, 22)
is

y =Acos (wT) , (4. 23)
which satisfies the initial conditions (4.21). Normalize T, using

t= EQJT-T-T, so that the solution has period one. Equations (4. 20), (4,21),

and (4, 22) become respectively,

2 2
e, (2—“) b e (4. 24)
dt L
2 2
d 27
Ui (“J> Ky=0 , (4.25)
dt
and
y=Acos (2wt) . (4.26)

Using (4. 3), the differential equation error €(t) is

e(t) = (‘%T)Z [tan'l (A cos (2nt)) - KA cos @nt)] . (4, 27)

The three equivalence criteria are now used to determine K generating
amplitude -frequency relations, These relations are then compared to

the exact relation obtained by numerically integrating (4. 20),
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ASE
The minimization condition using ASE is (4. 13), In the present

example, thereis only one parameter, K. Using (4.27), (4.13) reduce

to

1
. i I tan_1 Qﬁ.cos (ert))cos (2rt)dt . (4.28)
0

The integration may be evaluated by parts, For (4.23) to be a solution
of (4,22), K must equal wZ. Therefore, the amplitude-frequency rela-
tion generated by ASE is

wzz—zz((l+A2)1/2-l> . (4,29)
A

AAVE
The minimization condition generated by AAVE is (4. 18), It is
necessary to determine the zeros of €(t). From (4,27), €¢(t) is zero

whenever
ban (A cos (21rt)>:KAcos 2mrt) . (4. 30)

Letting §= A cos (2nt), (4.30) becomes

tant (E)=KE (4.31)

where € is restricted to -A<E<A, E=0 is one root of (4.31). Under
further inspection, it is seen that (4.31) possesses two non-trivial
roots of equal magnitude and opposite sign if K<1. K is expected to be
less than one for A #0 because (4, 20) is a softening system, and one
typical feature of softening systems is that the response frequency

decreases with increased initial amplitude, Let %2': denote the positive



-115-

root of (4. 31)., Because of the symmetry of the cosine function, the

zeros of e(t) may be written as

tl::t - t2=1/4 5 t3:1/2—t P

(4.32)

_ sk _ = _>:f:
t4_1/2+t : t5_3/4 ” t6_1t ,

where

L

*_ Leoa (52) .
t" = 5—cos =] s for O<t“<1/4

Returning to (4. 18), there is only one minimizing parameter,

i.e., K. Using (4.32), (4.18) reduces to

t t

=] Sgaus "
K

t t

For €(t) given in (4. 27), it is easily shown that the first integral in

N| =
t—1
Qo
Nl
:x:lm

t

9¢€

+J' a=dt (4.33)
t

(4. 33) vanishes, Using (4.32) and performing the remaining integra-
tions, (4.33) reduces to

sin (2mt™) = 1/2
This implies that t*=1/12, E* is found to be E*=/3/2 A, (4.31) then
determines K, For (4. 23) to be a solution of (4, 22), K must equal wz,
Therefore, the amplitude-frequency relation is

wZ __2 tand (Aé/g
JIA

(4. 34)

MAVE
The remaining minimization condition MAVE is given in (4, 19).
It is first necessary to determine the members of the set & ¢(t) has

relative extrema at t satisfying
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ZTrA.sin(Z'rrt)[K- 7 A 5 }:O . (4. 35)
1+ A" cos (2nt)

Roots of (4. 35) occur at
- _ _ 4%
t,=0 , ty=t* , ty=l2-¢* ,
« (4. 36)
- - _ 1%
t4_1/2 ; t5_1/2+t . téwlt .

where

1/2
o o ohopngt (BT ) . for 0<t¥<1/4
2 A

In obtaining (4. 36), it is again expected that K will be less than one.
(4. 36) comprises the set &, However, not all of the points in
® generate different values of Ie(tj)l. There exists only two distinct

maximums, and these are

2
Ie(tl)[:(%r) ltan'l(A)_KAl , (4.37)

and

let,)] = (z—w‘l)z |tan‘1((1/1<-1)1/2)-K(I/K-l)l/zl , (4.38)
K is selected such that

Max (le(tl)l, |e(t2)|)=minimum (4.39)

It can be shown, by considering the behavior of (4. 37) and (4.38) as
functions of K, that (4. 39) is satisfied whenever |e(t1)!=|e(t2)|,
Furthermore, for (4.23) to be a solution of (4, 22), K must equal wz .
Therefore, equating (4. 37) and (4. 38), the amplitude-frequency rela-
tion generated using MAVE is

/e .2

v’ tanl(A) = tan" (1768 - 1) V22 (1 /0P - 1) 2

(4. 40)
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Discussion

The three approximate amplitude -frequency relations (4. 29),
(4.34), and (4. 40) are given in Figure 10, It is convenient to plot
the variable T*, defined as

s Pl (4.41)
as a function of initial amplitude A, Also included in the figure is the
exact amplitude -frequency relation obtained by numerically integrating
(4. 20).

It is clear from Figure 10 that ASE gives the closest approxi-
mation of the three considered, All of the schemes give amplitude-
frequency relations which possess qualitative behavior similar to the
exact relation, Since the approximations appear to be diverging for A
between 4 and 5, it seems unlikely that AAVE or MAVE would give an
approximation better than ASE for some larger value of A,

In addition to providing the best results in this particular
example, ASE is the simplest approach to apply. The manipulations
necessary to obtain (4.29) involve only a simple integration. Whereas,
AAVE and MAVE require the location of the zeros of €(t) and %E-:-ﬁl
respectively, Furthermore, except for a very small number of mini-

mizing parameters, MAVE becomes exceedingly laborious,

4.4 Example 2,

In this section, another conservative autonomous system is

considered, namely,



/2w —|
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2
& Xyn wbaat bl = (4. 42)
P 5

where ap. as, and ag are constants satisfying a1>0 and a5;£(), (4. 42)
is subject to the initial conditions

dx(0)
dr

x(0)=A =0 . (4, 43)

It is again of interest to determine approximate amplitude -firequency
relation for (4. 42) for the periodic solution symmetric about x=0, The
auxiliary system used is

2
d—§+Ky=0 , (4. 44)
ar

which possesses periodic solutions satisfying (4. 43) of the form
y:A,COS (wT) . (4.45)
Again normalizing T, using T =27wt/w, equations (4.42), (4.44), and

(4. 45) become

2 2 2 2

S5 () apr () 2+ () 2=

dtz + m a x+ 5 a3x+ v ) 25% =0 (4, 46)
2 2
F+ (&) v=o (4. 47)
dt

and

v =Acos (2nt) . (4. 48)

Using (4. 3), the differential equation error is
e(t) = (?-wl)z [(a,-K)A cos (2nt) + a, & cos® (2nt) + ag A cos® (2nt) | . (4.49)

ASE, AAVE, MAVE are now used to determine the parameter

K, generating approximate amplitude-frequency relations, These
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relations are then compared to the exact relation obtained by

quadratures.

ASE

Using (4.49), the minimization condition (4, 13) reduces to

1
wZ = %— [ [alA cos (2mwt) + a3A3 C083 (2wt) + a5A5 cos5 (Znt)]cos (2rt)dt
0

(4. 50)
where the fact that K equals wZ has been utilized after performing the

minimization., The integral is easily evaluated to give

2 3 2.5 4
w za1+Za3A +§35A 5 (4. 51)

2 must be positive so that periodic solutions do exist.

where w
It is convenient to define the following dimensionless variables

for the present example, For a3¥0, let

Qs —2——-—/ s (4, 52)

(4.53)

and

(4. 54)

Using these definitions, (4.51) becomes, for aSqéO,

3 5.2
TrtgA

Q= 3

’ (4. 55)

where
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and

Q<-— , if a5<0

If a =0, it is convenient to define

3
2
gy B Ay
o = ™ . (4. 56)
and
" aE_:'A4
A = 2 . (2. 57)
(4. 51) becomes, for a3:0,
w2y
=3, (4. 58)

where Q*>-1 for periodic solutions to exist. Equations (4. 55) and
(4. 58) give the approximate amplitude -frequency relations generated

using ASE.

AAVE
To apply AAVE, it is necessary to locate the zeros of e(t).
From (4. 49), ¢(t) is zero when
cos (2wt) =0

or (4. 59)

2
a —K+a3§+a5§ =0

1

where P;:AZ cos2 (2wt), The first relation is satisfied for t=1/4 and

t=3/4., The second relation is satisfied for
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-a, + [a§—4a5(a1—K):|1/2

§1 N 2a5 :
and (4. 60)
1/2
2 ,
-ay- [:a3-4a5(a1-K):|
2 T -

From the definition given in (4. 59), E must satisfy

D2’ | (4. 61)

Depending on the specific values of the parameters a and A,

17 a'3’ a5,
one or both of the roots in (4. 60) may satisfy (4.61). It can be shown
that, for ag>0, if Azs—4/7(a3/a5), only €, satisfies (4,61), if

2 . ‘
-4/7(a3/a5)sA <-4/3 (a3/a5), both §1 and §z satisfy (4.61), if

-4/3 (a3 /as)sAZ, only El satisfies (4.61), For a_<0, the above state-

5

ments are still valid except that €1 and §2 are interchanged. The

approximate amplitude-frequency relation has to be determined in

parts,
if El is the only root satisfying (4. 61), the zeros of e(t) occur at
* *
ty=t : t2=1/4 ¢ t3:1/2-t R
3 = (4. 62)
t4=1/2+t - t5:3/4 » tg=1-t s
where
5 12 1/2
g 1 | 23t |: 3—4a5(a1-K)}
= 3-cos 5

2A ag
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1f §2 is the only root satisfying (4. 61), the zeros of e(t) occur

at
tlzt . t2:1/4 . t3:1/2-t'" .
. - (4. 63)
t4:1/2+t"" . t5=3/4 . t6:1-t"'“ ;
where
1/2 1/2
ok 1 -l "as’[a3'4a5(a1'K)]
o 2A2a
5
If both §1 and &, satisfy (4.61), the zeros of e€(t) occur at, for
a5>0,
ty =t , ty=tTT t3=1/4 , t4=1/2—t""" : t5=1/2—t .
(4. 64)
= % - sk — ] 4%k B TR
t6_1/2+t , t7_1/2+t , t8_3/4 , tg._lt » tip=1-tT

where t* and t** are defined in (4, 62) and (4. 63). For a5<0, the zeros
of e(t) are the same as (4, 64) except that t* is replaced by t¥* and vice
versa.

The amplitude-frequency relation can now be obtained for each

of the above cases using equation (4. 18). Apgain there is only one

minimizing parameter, i.,e,, K, It is easily shown that

Ja___
, 9K

so that (4. 18) reduces to

t, t,

€
j‘ —K I B T et
£y &

QJ

t
o¢ .
j! ﬁdt—o 5 (4. 65)
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where ti are given in (4, 62), (4.63), and (4. 64),
For the case where By is the only root satisfying (4.61), (4.65)
reduces to
sin (2rt™7) = 1/2

which implies that t¥=1/12, The corresponding value of Eq is @1:3/4 AZ_
Substituting if‘.,l into the first of (4. 60) the amplitude-frequency relation
is

2 .3 2., 9 4 y
1] ,»dl + 48,3.A FR—ESA , (‘-!-. ()(J)

where the fact that K must equal mz has been used,
For the case where Ez is the only root satisfying (4.61), (4.65)
reduces to
sin 2wt**)=1/2
implying that t**=1/12, £ then has the value 52:3/41‘\.‘2, Using the
second expression in (4, 60) and the fact that K equals UJB, the amplitude -
frequency relation is

z 3 2, 9 4
w _a1+4a3A + 16a5A

This is the same relation as (4.66). Therefore, the amplitude-frequency

relations for A2§—4/7(a3/a5) and for Az*e —4/3(a,,’ /aS) is given by (4. 66).

For the case where El and F‘Z both satisfy (4.61), for a5>0,
(4. 65) reduces to
sin (2wt™*) - sin 2wt¥) = 1/2 (4. 67)

For a5<0, t* is replaced by t** and vice versa. Using the definitions
of t* and t¥** and trigonometric identities, (4.67) can be simplified

vielding
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2
2 33 .1 2 15 4
W =a1—:1—é-g+§a3A +%—ZaSA 5 (4. 68)

where K has been set equal to w?. (4. 68) is valid for all non-zero ag
and is the amplitude-frequency relation for - %(a3 /a5)g Azs - %—(a3/a5).
Note that (4. 66) and (4. 68) are continuous at the boundaries of AZ.

It is convenient to rewrite (4. 66) and (4. 68) in terms of the
dimensionless variables defined in (4. 52), (4.53), and (4. 54). For
a3¥0, the amplitude-frequency relation becomes

3,,.9,2 4 4
4“-16}‘ , for )\s-3and )Lz-,?

and (4. 69)

where
1
Q>-- , fora_.>0 -,
o) 5
and
1 :
G<<-= 3 if a_. <0
vl 5

If as is zero, gl and gz can never both satisfy (4.61). Conse-
quently, the amplitude-frequency relation is (4. 66) with a3:0. Using
the variables defined in (4, 56), and (4, 57), the amplitude-frequency

relation for a3=0 is
w9 g%
Q= 16 N 5 (4, 70)
where Q*>—l for a periodic solution to exist, Equations (4. 69) and

(4.70) are the appropriate expressions generated using AAVE,
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MAVE

To apply MAVE, it is first necessary to determine the members

of the set & €(t) has relative extrema at t satisfying

2w A sin (Zwt)[K-a1-3a3§+ 5a5§2]:0 , (4. 71)

where E‘;Z:Azcosz(Znt). Two roots of (4, 71) are always t=0 and t=1/2,
Depending on the particular values of aps a3, ag, and A, the bracketed
term may contain one or two roots in €, For a root gi to be valid, it

must satisfy

0<g,< A (4. 72)

The bracketed term in (4. 71) vanishes for

2 1/2
3a3 9a3 Kma1
B =i + + . (4. 73)
L L 100a§ %
and
2 1/2
3a3 ‘)a3 K-a1>
Bl o - + (4. 74)
27 1025 \100a; °%s '
The set & will consist of the points
_ 4k _ gk - _dkk
ty=0 , t,=t7 , ty=t , t4_1/2t
- 4 = ” * _ Sk
t5_1/2t , t6_1/2 " t7_1/2+t , t8_1/2+t (4. 75)
_ 1 4Kk _ 1 _4+%
tg =1-t » t10° 1=¢%

where
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1f2 §1/2
b3 _ __1__ -1 1 skok _ _!.__ -1 2
t" = = cos ( X )and t = cos (——-—-—A )

Corresponding to the above set of points, there exist only three distinct
values of le(tj) |, and these may be taken to occur at tl, tz and t3_
From considerations of [e(tj)| (j=1, 2, 3) as functions of K, it can be
shown that the maximum error is minimized whenever two of the above
‘three errors are equal, and the third error is less than or equal to the

two equal errors. Therefore, there exists only three possibilities, and

these are

le(0)] = let™)] (4. 76)

[e(@)] = let*®)] , (4. 77)
or

le(®™)] = let**)| . (4. 78)

For various values of the parameters ar as, ag, and A, one of the
above possibilities will hold, and the appropriate K will be determined
from that relation,

If a, /a5 is positive, §2 will never satisfy (4. 72). In this case,
the approximation will be given by (4, 76). If ::13/3.5 is negative, the
situation becomes very complicated, Performing a very lengthy
analysis of |e(0)], |e(t*)], and [e(t**)| as functions of K, the following
results can be obtained, For -0.52364 sa3A2/a550, the approximation
is generated from (4. 77). For -0.8 sa3A2 /a5£=0,52364, the approxi-
mation is given by (4, 78). For a AZ/aSS-O.S, the approximation is

3
given by (4. 76).
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Using expression (4, 49) for €(t) and the definitions of t* and t¥¥,
equations (4, 76) through (4. 78) may be solved for K, If the dimension-
less variables defined in (4. 52), (4. 53), and (4. 54) are now employed,
the following approximation is obtained, for a3;£0.

3

Zl+®()\)k , for )»=2-0.52364 ,
Bl _% , for -0.8<\<-0.52364 (4. 79)
3 2
Q= ZA+80)\" , for A<-0.8
where
Q A for a_>0
>-Ll 2 O 5 2
1
O<-— , fora_<0
U1 5
®(A) is a root of the following e.:xpression.
L [ A (2,2 )1/2]1/2
4) TOx T 100)\2 2055
1/2
3 .4 3 2 9 3 @) ]
[S+50+ a poaeidl _ (4. 80)
5L 5 2542 5]1[(100)\2 20% ' 5

(4. 80) can be reduced to a fifth order polynomial in ®. The appropriate

root has to be real and has to have the proper limiting value since ®(})
must be continuous in the range of )\ where ®()\) is defined, As )-+c0,

(4. 80) reduces to

1-0= -‘;i@(%) . (4. 81)

® is easily found to be equal to 0.67355356. It is well to note that |}
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going to infinity corresponds to ag approaching zero, Therefore, the
above value of ® is the appropriate one to be used in the following
special case,

If a, vanishes, @1 is the only root satisfying (4, 72). Therefore
equation (4. 76) generates the approximation, Simplifying (4. 76) and
utilizing the variables defined in (4. 56) and (4. 57), the approximation,
for a3=0, is

Q"= 0.67355356 2% (4. 82)
where 0*>-1. Equations (4, 79) and (4, 82) are the approximate
amplitude -frequency relations generated using MAVE, It is imprac-

tical to include all of the details involved in obtaining these relations,

They are simply too laborious to describe,

Exact Solution

In order to have a basis for comparing the above approxi-
mations, the exact solution of (4.42) is developed, (4.42) can be
reduced to quadratures using the conditions (4, 43), Since the periodic
solution, symmetric with respect to x=0, is of interest, the period is

T=4fﬂ( a (A2 )+——(A4- 4y 4 2546 6))-1/2 . (4. 83)

0
Using the substitution z = A//X, (4.83) reduces to

a3A2 a5A -1/2 fee) 2 i
T=2 a1+ > +-—-3——- ‘[1 ((x-l)(x +u,x+B)) dx , {4, 84)

where
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The integral in (4. 84) can be evaluated in terms of elliptic integrals of
the first kind(?’z). Denote the roots of the denominator by

2

L Q 1/2
Ry=t , Bym-54 (_4"?’)

If R, and R3 are real and if R2< 1, the value of the integral is found to
be
00 -1/2 = =
[ (- D6ePratp))  dax- —2EEL (4. 86)
1 (1—R3)

where R(E) is the complete elliptic integral of the first kind with

(R &, YW
S <22
1-R,

are real and if R2> 1, the value of the integral is complex.

modulus

If RZ and R3
This indicates that no solution, symmetric with respect to the origin,

exists.

If R, and R, are complex, theintegral is evaluated using the

2 3
following change of variables(32), Let
2. .2
_(x-m) +n
y= — ) (4.87)

where m - - % and nr(ﬁ—a.z /4)1/2_ Define

N
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y, = -2(m-1)+2 ((nl— 15%4n" )1/2 , \

2, 2 L
V3 = —Z(In—l)—Z((m-l) +n ) .
1 (4. 88)
x =8 jaia fyl i
and
1
Xq =m-+ 5Y3 - /

The value of the integral is

oo 2 -1/2 JZ F(op, k)
[ (- DePraxtp)  dx=—gpy (4. 89)
“1 (Xl—x3)

where F(¢, k) is the incomplete elliptic integral of the first kind with

1/2
ro (03
YI"Y3
- cos_1 1-X1
P= 1-x3

(4. 86) and (4. 89) give the value of the integral where it exists as a real

and

quantity. Using the dimensionless variables defined in (4, 52) through
(4. 54), the exact solution for a3;40 may be written as
2 2 2
1 41 Ao A
o:i——(-— i ol (4. 90)
412 o 11_2)‘ 2 3

where

fo'e) -1/2
Ta %J' ((x—l)(x2+(xx+[3) dx
1 |
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It is of interest to note that as | tends to zero, the exact amplitude -

frequency relation becomes identical to the approximation obtaincd

using ASE,
If ag equals zero, the exact solution can be written as
2 ¥
Q*: 2—2’-(14-—2")—1 4 : (4. 91)
41
where (*>-1 and I is given in (4, 90). For the special case of a, equals
zero, 1 reduces to
s 1/2 ok 1/2 =
_1_<2+>x*) gL 2 ) o ¥s0
VRN ESN /Z 1+
I= (4. 92)
*\1/2
——1—<2+_)\’.<> K —gm> , for —-1<)\*<0 :
VZ \1+2 (1+C%)

where K is the complete elliptic integral of the first kind and

1 ( )\;:: >1/2
c=—(-—2= :
JZ \ 42T

With 2, positive, no real solution exists for Ve-1,

Equations (4. 90) and (4. 91) are the exact amplitude-frequency

relations for the equation (4. 42).

Discussion

The approximate amplitude-frequency relations obtained from
the three minimization techniques for ay non-zero are plotted on
Figure 11, Specifically, equations (4.55), (4.69), and (4.79) are given,
It is to be remembered that only certain portions of these curves may

be valid depending on the particular value of u. The value of u dictates
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— FOR a <0 NOTE :
- -05+ MAVE > AAVE

Figure 11: Approximations for # ta;xtag x3+a5x5= 0
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the regions where the approximations yield periodic (i.e., K>0)
solutions symmetric with respect to x=0,

The exact solution is presented in Figure 12 for a, non-zero

3
and for various values of u. Throughout this section, ay is assumed
positive, This also applies to the exact solution,

One fact which is immediately apparent in Figures 11 and 12
is that the behavior of the exact solution depends on U whereas the
behavior of the approximation does not. The only effect on the approx-
imations is to terminate the curves at various values of () to insure
that the equivalent spring constant K never becomes negative,

It is difficult to compare the accuracy of the various approxi-

mations by considering Figures 11 and 12, Consequently, differences

between each approximation and the exact solution (Q

-0 ) are
approx exact

given as a function of ) for various | in Figures 13, 14 and 15, Figure
13 is the error associated with ASE, Figure 14 is the error associated
with AAVE, '‘and Figure 15 is the error associated with MAVE, The
dashed lines appearing in the figures indicate intervals of A where the
approximate techniques generated periodic solutions, but where, in
point of fact, no exact symmetric periodic solutions existed,

By considering Figures 13, 14 and 15, certain qualitative
conclusions may be reached, In deciding which minimization scheme
seems most appropriate, it is necessary to compare the schemes for
all values of ) and u. Each of the schemes provides better results than
the other two for certain specific combinations of ) and u. However,

Figures 13, 14, and 15 indicate that, on the average, the error
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associated with ASE is smaller than the errors associated with AAVE
or MAVE. Furthermore, ASE provides an exact solution for the
special case of y equals zero, For no value of |y does AAVE or MAVE
provide an exact solution,

Similar conclusions can be reached for the case of ag equals
zero. Figure 16 illustrates the approximations generated using ASE,
AAVE, and MAVE, Also included is the exact amplitude-frequency
relation (4. 91).

Figure 16 indicates that, for large positive values of )\*, AAVE
seems to provide the best results, However, AAVE is the worst
approximation for A negative. Similarly, MAVE seems to give the
best results for A less than -1/2 but provides the poorest results when
¥ is positive, ASE gives the best results for l)\*]<1/2_ Furthermore,
for I)\*|>1f2, ASE lies between AAVE and MAVE. Therefore, if one
technique were to be selected as best for all )\*, it seems that ASE

would be the one chosen., In addition, ASE is, by far, the easiest of

the three techniques to implement.

4,5 Example 3.

The previous two sections are concerned with conservative
autonomous systems, In the present section, a non-conservative,
non-autonomous system is considered, namely

£+ PR+ ox+ ux> =B cos (2wt) (4. 93)
where q, B3, 4, and B are constants with a, B, and B positive, The

symmetric periodic solution with period 1 is of interest,
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The equivalent system approach is used with the auxiliary

system

v+ Cy+Ky=Bcos (2nt) , (4. 94)
where B has the same value as in (4. 93) and C and K are to be deter-
mined using the various equivalence criteria, (4.94) possesses
periodic solutions of the form

y = Acos (2rt-p) , (4. 95)
where A and ¢ satisfy
B 2nC

A: 1/2 and tanCpZ 2 . (4- 96)
((K—41T2)2+ 4172(32) i

Using (4. 3), the differential equation error is

elt) = ZrAC-B) sin (Zrt-p)+ Alg-K) cos (2nt-6)+ L& cos”® Bri-g). (4, 97)
Since the periodic solution is of interest, e(t) is periodic in t, There-
fore, a constant can be added to t without affecting the values of C and
K. Replacing t by t+ /2w, €(t) can be taken to be

e(t) = 2mA(C-B) sin (2wt) + A(a-K) cos (2mt) + uA> cos3 (2nt) . (4. 98)
The three minimization schemes are now used to develop the approxi-
mate amplitude-frequency relations,

ASE

The general form of the minimization condition generated using
ASE is given in (4,13). In the present example there are two minimizing
parameters K and C. Minimizing with respect to K first, (4.13) reduces

to

1
k-2 l——ﬁZTr sin{Bnt) o cos (@rbid ua Cos3(2n‘t)]cos (2mt)dt
i
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The integrations are easily performed to give
5 .
K:q-FZpA . (4. 99)

Minimizing with respect to C, (4. 13) reduces to

1
£ 1%] [—Zﬁﬁ gin (Znt)+ Beos (Zut)+ ub> cos” (Zn't):l sin (2wt)dt
0

Evaluating the integral gives
c=p . (4. 100)
Equations (4. 99) and (4. 100) give the values of K and C for the approxi-

mation obtained using ASE,

AAVE
AAVE requires the location of the zeros of e(t). From (4. 98),
e(t) vanishes whenever,

2o (C-BIL-al 2 & {o-Eu T =4 uA2u3/2 =0 . (4. 101)

where u= cos2 (2mt). Squaring (4. 101) gives the following cubic

2 2 2 2 2
u3+2(““§<)u2+ ((cx.-K) +4m (C-B) >u_4ﬂ (C-B) _g (4. 102)

i u2A4 H2A4
From physical considerations, it is reasonable to expect that the
coefficient of the second term in (4.102) will be negative, Therefore,
the possibility exists for (4.102) to possess three positive real roots,
From the definition of u, a root of (4.102) is physically meaningful only
if it satisfies

O<u<l . (4. 103)

Since C and K are unspecified in (4. 102), it is impossible to determine,
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at this time, how many of the roots satisfy (4. 103). Thercforc,

(4. 102) is assumed to possess three roots satisfying (4, 103). From
the definition of u, this provides twelve possible values for zeros of
e(t). However, the definition of u involves squaring the cosine function
which introduces six extraneous roots, Consequently, there are six
true zeros of e(t), Denoting the roots of (4, 102) by decreasing numeri-
cal value as u;, Uy, and u3, the zeros of e¢(t) are

B s 3 G = 3 H, =0T

1 2 3
(4. 104)
= - * —l [GE o __:_l__ Sl sk
byEghE § BpEgelT ¢ MpEgds ,
where £ = cos‘1 (ui/z), R cos_l (u;/Z) and £¥%% — (u;/Z) ]

Using (4. 104), the minimization condition (4. 18) may now be
employed to determine K, It is easily shown that J‘l DElE) dt vanishes,
Tﬁerefore, performing the remaining integrations, (4. 18) reduces to

cos (2wt**) - cos (2wt¥) - cos (2wt¥**)=0 (4. 105)
The condition minimizing C may be determined in a similar manner,
It is clear that jl ae:(t)dt vanishes. Performing the remaining integra-
tions, (4. 18) reduces to

sin (2ot*¥) - sin (20t™) - sin uwt**¥)=0 (4. 106)
Equations (4. 105) and (4. 106) determine the appropriate K and C.

To determine K and C specifically, it is convenient to
reformulate the problem, Using the definition of u, (4, 105) and (4. 106)
can be written as

oo 2
cos(Z-rrt"‘*)zui/ -u?l)/z ) (4, 107)
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and

/2

sin(Zwt**):(l-ul)l +(1—u3)l/2 , (4. 108)

where the appropriate sign of the cosine function has been used, From

the theory of cubic equations, the three roots Ug, Uy, and u, must

3
satisfy
- 2(a-K
u1+u2+u3_— > . (4. 109)
uA
2 2 2
_(a-K) " + 4w (C-B)
Yy Ly FU Uy H Aty = 2 4 , (4, 110}
A
and
2 2
= il_.(g.:ﬁl_ . (4.111)

U1t243 = Zat
Equations (4. 107) through (4. 111) and the definition of t** in (4. 104) are
six relations for determining t**, Uy, Uy, Ug, K, and C, Unfortunately,
these relations are highly transcendental and cannot be solved by direct
elimination of variables,
Assuming that the above set of equations possesses a unique
solution, it is possible to determine K and C by a fortuitous guess,

The solution is found to be

=%:-K—'§, and C=p . (4.112)
A

vl

B

LS § U=,
Solution (4. 112) can be verified by direct substitution into (4, 107)
through (4, 111) and using the definition of t**, Solving (4. 112) for K
and C yields

c:ﬁ ’ (4.113)
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and
K=q+ %qu . ' (4. 114)

Equations (4. 113) and (4. 114) are identical to equations (4, 99) and
(4. 100). Therefore, the approximations generated by ASE and AAVE
are identical, The only difference is in the amount of labor involved in

obtaining the approximation, ASE being much simpler,

MAVE
The minimization condition generated by MAVE involves the
extrema of |e(t)|. In the present example there is a much more direct
way of obtaining the approximation rather than using equation (4, 19).
MAVE minimizes the maximum of the absolute value of ¢(t) for

O<t<l, Using (4. 98) and trigonometric identities, e(t) can be written

as
l_e_f:_g":’R(KI,KZ)COS(S-CD)'*‘%COS(?:B)[ s (4, 115)
u
where
1/2
iy - 6+ (o )7
g =27t

K
e :
P= 74-K,) °
(4. 116)

and
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(4. 116)
3uA cont,

Using (4. 115), it is desirable to select R(KI,KZ) and ¢ so that the
maximum of [e(t)/uA3| is as small as possible,

The appropriate values of R and @ are R equals zero and ©
arbitrary. To see this, consider the following argument., (4.115) will
always possess a component cos (36). Cos (38) possesses three sign
changes and four extrema of equal magnitude in one half a cycle.
Assume that there exists a non-zero R and some ¢ such that all of the
extrema of 1/4 cos (38) are reduced. For this to be true, cos (8-y) must
have at least as many sign changes in one half a cycle as cos (38). This
is a contradiction since cos (0-¢) can have at most one sign change in
one half a cycle, Therefore, for a non-zero R, at least one of the
extrema of cos (39) will be increased in absolute value, Therefore, the
value of R which gives the minimum |e(t)/|_1A3, is R equal zero, From

(4. 116), R equals zero implies K1 equals zero and K, equals 1/4. K

2 1
vanishing implies that
C=p . (4.117)
K, equals 1/4 implies that
K=at+yud® | (4. 118)

Hence, the approximation generated using MAVE is identical to the one

generated by both ASE and AAVE,
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Discussion

The present example is a very special case where all three
minimization schemes generate the same approximation., It is, therc-
fore, meaningless to compare accuracy. The only basis for compari-
son is the effort involved in obtaining each approximation,

Again the minimization condition obtained using ASE is reduced
to simple integrations. However, AAVE generates a very complicated
and highly transcendental set of equations for determining the approxi-
mation, which ultimately is solved by a lucky guess, Also, the unique-
ness of the solution must be assumed, which is in general not a justi-
fiable assumption. MAVE leads to a very simple derivation of the
approximation in the present example, However, if the original state-
ment of MAVE were used, the amount of labor involved would be
increased. Even when the simple derivation is employed, the amount
of labor involved is still comparable to that to that involved in using

ASE.

4.6 Example 4.

The system of interest in the present section is the one
considered in Chapter II, This particular system was selected inorder
to study the effect of the various minimization schemes whenever a
nonlinear auxiliary system is used. The original system is equation

(2. 17) and is

a 3
—325+ax+bx = Bcos (wT) , (4. 119)
daT

where a, b, B and W are constants, The steady-state periodic solution
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is of interest. The auxiliary system to be used is equation (2,21)
which is
d2 5
—-42‘£+ ay+by” = acn(nT, k) , (4. 120)
dar
where a and b have the same values as in (4. 119), and cn (NT, k) is the
Jacobian elliptic cosine function.

In order that (4, 120) have the same period as (4, 119), n must

satisfy (2. 19), i.e.,

He S, (4.121)

w
(4. 120) has known periodic solution of the form
y = Ben(nT, k) , (4. 122)

where A, m, and k must satisfy

b3+ (1-)B=a , (4. 123)
and
2 Bpl
n =L2 _ (4. 124)
2

It is convenient to normalize the independent variable T before deter-
mining the differential equation error so that the motion is periodic
with period 2w. Using T=2nt/w, the differential equation error is
e(t) =B cos (2nt) - acn (4K (k)t, k) , (4. 125)
where equation (4, 121) has been used. The various minimization

schemes are now employed to obtain the approximations, There is

only one minimizing parameter, i.e., a.
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ASE

The approximation is obtained using ASE in Section 2. 2,
Consequently, the results can be used directly., From Section 2, 2,
equation (2.26) is the approximation obtained. The system to be solved
for b positive is equation (2. 19), (2.23), and (2.27). For b negative,
the equations are (2,28), (2.19)’, and (2.23)’ (appearing after (2.28)).
The above system can be solved directly by assuming values for k and

calculating corresponding values of W,

AAVE
To determine g using AAVE, it is first necessary to locate the

zeros of ¢(t). From (4, 125), €(t) vanishes whenever
cos (27t) = %cn (4K (k)t, k) . (4. 126)

(4. 126) is satisfied for the following values of t,

1 1 3K
Z + TEges
(4. 127)
ko _3 . gk
P 3 tg=g 5 By =1-t

2

where t* is the root of (4, 126) satisfying O<t*<%. It is not necessary
to determine t* explicitly in order to obtain the approximation,
The minimization condition (4. 18) can now be evaluated. Using

1
reference (28), it can be shown that ID %ﬂdt vanishes, Therefore,

(4. 18) reduces to

t t t6
J ——dt+j‘ -——dt+I $Edt=0 . (4. 128)
t t
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Using (4. 127) and reference (28), (4. 128) can be evaluated to give

.1
sn (4K(K)t¥, k) = 1 sin (-Sin—z-ﬁl) , (4. 129)

where sn(u, k) is the Jacobian elliptic sine function, Equations (4. 121),
(4. 123), (4.124), (4.126), and (4. 129) are sufficient to determine the
five unknowns n, k, a, A, and t¥,

If wis considered unknown and k as known, the above equations
can be combined to give the following set for determining the approxi-
mation

P %%%l , ' (4. 130)

where F is the incomplete elliptic integral of the first kind and

9= st [Lain (215 09Y]

An"B cos (2wt™)

2
g(4K(k)) (2 1e 4 Eadn T =

7z (4. 131)
|
1. _12_ Sin2(51n2 (k) ))
k
where
1/2
_ 2kK (k) (2
gl (2] 3
B=EBw ; (4. 132)
- 2K(k)w (4. 133)
™

and
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B cos (Z-rrt*)

T
<1 ) ﬁi_ sinz (s1n2 (k) ))

o= (4. 134)

The above equations are convenient only for b positive. The solution
procedure is to consider a, b, B, and k as known and use the above
equations to calculate t*, w, B, M, and a. For b negative, k is pure
imaginary, and the above equations must be modified prior to per-

forming any numerical calculations,

MAVE
The approximation generated using MAVE is obtained by first
determining the set . From (4. 125), the extrema of e¢(t) occur

whenever

sin (2mt) = -@%(?—“sn (4K (k)t, k) dn (4K (k)t, k)

where sn (u, k) and dn (u, k) are Jacobian elliptic functions, Equation

: (4. 135)

(4. 135) is satisfied for

1 3k
t1=0, 5 t3='i' " t3=1 p t4:t
(4. 136)
O §p = g L
5¥Z " ¢ %R ¥ SgEETR 4

where t¥ is the root of (4. 135) satisfying 0<t*<1/4, For the set of
points in (4. 136), there exist only two distinct values of le(t)l, and

these may be taken to occur at t=0 and t=t*,

Applying (4. 19), the approximation is generated by
max(le(ml, |e(t*)|>:rninimum ) (4. 137)

By considering the properties of [e(O)l and Ie(t*)[ as functions of q, it
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may be shown that (4, 137) is satisfied whenever the two errors are
equal, i, e.,

leto)| = |e(t™)| . (4. 138)
Using (4. 125) and (4. 135), (4. 138) reduces to

1+ cos (27t¥)
1+cn (4K (k)t¥, k) -~ (4. 139)

a=B
(4. 139) represents the approximation generated using MAVE,
Equations (4. 121), (4. 123), (4.124), (4.135), and (4. 139) are sufficient

for determining t*, k, B, a, and . Combining the above equations, the

following set of equations may be obtained,

™ s« _ sn (4K(k)t*, k) dn (4K (k)t¥, k)
TR oo i) = 1+ cn (AR(K)TF, k) , (4. 140)
where t* satisfies O<t¥*<1/4;
2 .2 3 g .2 1+ cos (2wt™) .
e(sk )" @12 -1)0® + gadnPuw=4n’BLE s lEils (4. 141)
where
.- 200 (2)%
- T b ?
B=E8w ; (4. 142)
= ZK(k)w ; (4. 143)
m
and
~ 1+ cos (2mt™)
o= B IR @R MR, ) (4. 144)

Equations (4. 140) through (4. 144) determine t*, k, B, a, and n. Unlike
the previous approximations, considering k as known does not enable

the above approximation to be obtained by direct substitution. (4. 140)
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is a transcendental equation for t*. Consequently, the approximation
generated using MAVE must be determined numerically, The above
set of equations is convenient only for b positive., For b negative, they

must again be modified,

Discussion

In order to compare the accuracy of the various approximations,
it is necessary to consider specific numerical examples, Because of
the large number of parameters, any comparison involving a variation
in all of them would become too lengthy. Consequently, certain para-
meters were arbitrarily fixed, Specifically, a is chosen to be 1, and
wis chosen to be 0.6. Furthermore, b is restricted to be negative,
Since b is negative, the response curve will lean to the left, and, for
the value of w chosen, there is a possiblity of the system possessing
three periodic solutions. The comparisons will be based on the ampli-
tudes associated with the upper branch of the response curve, To
provide a basis for comparison, equation (4. 119) was integrated
numerically to obtain the exact steady-state amplitude,

Comparisons were made for various b and B. However, only
the case which exhibited the largest differences will be presented,
This occurred for B equal 1, 0 and for b varying from -0,01 to -10,0,
Figure 17 shows the normalized error in steady-state amplitude for
the various approximations as a function of b, All of the other com-
parisons for different values of B possess the same qualitative

behavior,
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Figure 17 indicates that the best numerical accuracy is
obtained using AAVE, However, AAVE and ASE are so close that a
question arises whether the slight increase in accuracy provided by
AAVE compensates for the additional labor involved in its use. The

maximum difference between ASE and AAVE is on the order of 10"3,

4.7 Conclusions,

In the previous four sections, certain examples are presented
where approximations are obtained using three specific equivalence
criteria, ASE, AAVE, and MAVE, described in Section 4,2, In each
of the examples it may be concluded that ASE is, in some sense, the
most appropriate equivalence criterion to use,

In each example, ASE is the easiest technique to implement.
It involves only simple integrations, while both AAVE and MAVE
require the location of the zeros of certain functions of t, This loca-
tion can become rather involved as evidenced in Sections 4.4 and 4. 6,
Furthermore, MAVE usually requires some analysis of the functional
behavior of certain expressions which can be quite tedious (cf.
Section 4, 4).

The most useful and desirable aspect of most approximating
techniques is that they are much easier to use than are exact solution
techniques, However, this advantage is essentially nullified in the
case of AAVE and MAVE, and for this reason alone it would seem
justified to label AAVE and MAVE as impractical unless they provided

a substantial increase in accuracy over ASE,
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The examples did not show this to be the casc, In every
example, except Section 4, 6, ASE provided as good or better results,
on the average, than either AAVE or MAVE, In the one case where
AAVE does provide better results, the increase in accuracy is on the
order of 0.1 percent, This increase hardly compensates for the addi-
tional effort required by the AAVE technique,

It must be pointed out that the above conclusions are based on
a very limited analysis, It is sometimes dangerous to draw conclu-
sions based on certain specific examples, but an attempt was made to
make the examples representative., Both autonomous and nonautono-
mous systems were considered, and both linear and cubic auxiliary
systems are employed,

It is also realized that there exist many possible equivalence
criteria other than the three considered in the present analysis, It
would be impossible to compare all of them. ASE, AAVE, and MAVE
were chosen for their physical and mathematical relevance in addition

to their connection with the error bound as indicated in Section 4.1,
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V. A COMPARISON OF LINEAR AND CUBIC
APPROXIMATIONS FOR SECOND ORDER
SCALAR SYSTEMS

In the previous chapter, two auxiliary systems are used for
obtaining approximate periodic solutions for some specific second
order scalar equations. These two systems are: 1) the linear
system (4.94) and 2) the cubic system (4.120). In the present chapter,
the above two systems are compared for some further examples. It
is shown that the cubic approximation is potentially more accurate
than the standard linear system in predicting steady-state response
of nonlinear systems.

Section 5.1 presents the linear approximation to a general
second order scalar system. The approximation is obtained using the
equivalent equation approach. Section 5.2 deals with the cubic approx-
imation to a general second order scalar system. The cubic
approximation is also obtained using the equivalent equation approach.
In Chapter IV some arguments are presented which indicate that
minimizing the mean square differential equation error is the most
appropriate equivalence criterion to utilize. Consequently, the above
two approximations are obtained by minimizing the mean square
error (4.13). In Sections 5.3 and 5.4 certain examples are considered,

and the linear and cubic approximations are compared.

5.1. General Linear Approximation.

Let the system of interest be written as
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® +f(x, x, t) = F(t) (5.1)
where F(t) is continuous in t and periodic in t with period 1.
Furthermore, let f(x, %, t) be continuous in x, x, and t, and periodic
in t with period 1. Assuming that (5.1) possesses periodic solutions
with period 1, the equivalent equation approach may be employed to
obtain an approximation.

In the present section, the auxiliary system is taken to be
the linear equation
¥ +cy+Ky=Bcos (2nt) , (5.2)

where the period of excitation has been taken to be the same as the
period of the original system. (5.2) possesses exact periodic
solutions of the form -

y =A cos (2rt-ep) , . (5.3)
where A and pmust satisfy

B

him e , (o4 )
((K-4c%)* +4n2c2>172
and
-1 2mwc
cp::ta.n (- 2 ) . (5 5)
K-4mw

In Chapter II, the equivalent equation approach is described
for two general equations. It is stated that certain of the differential
equation parameters may be selected arbitrarily so that portions of
the auxiliary system would be similar to the original system.
However, here, it is desirable to leave all of the parameters
(c, K, and B) in (5.2) unspecified, and to determine them using the

minimization condition.
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Using (2.7), the differential equation error is
e(t) =F(t) - Bcos (2nt) +cy +Ky - f(y, ¥,t) . (5.6)
c, K, and B may be determined by minimizing

1 2
J‘ e“(t)dt . (5.7)
0
Minimizing (5.7) with respect to ¢, substituting (5.3) for the
approximate solution y, and evaluating the resulting trigonometric
integrals, the following result is easily obtained.
1
Bsing-2mcA+2 [ F(t) sin (2rt-g) dt +
0

1
. J' f(y,y,t) sin (2rt-dt=0 ,  (5.8)
0

where y:Alcos (2wt-¢p). A second relation is generated by minimizing
(5.7) with respect to K. The result is
1
KA -Bcosgp+2 [ F(t) cos (2mt-¢p) dt
‘0

1
—ZI f(y, v,t) cos 2nt-p)dt=0 , (5.9)
0
where v =A cos (2mt-op).

If (5.7) is now minimized with respect to B, the relation
generated is
1
2rAcsingptKA cosp-~B +2 Jr F(t) cos (2mt) dt
0

1
-2 J' £(y, ¥, t) cos 2wtdt= 0, (5.10)
0

where y=A cos (2mt-o).
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Upon close inspection, it is seen that (5.10) is not independent of (5.8)
and (5.9). Consequently, minimizing (5.7) with respect to ¢, K and B
yields only two independent relations. As discussed in Chapter II
there are various alternatives for eliminating this underspecification.
One possibility is to arbitrarily fix one parameter initially, and then
determine the remainihg two parameters using two of the above three
relations. The major disadvantage of this approach is that it may not
be clear which parameter to fix or what value to prescribe to it. This
approach is the one normally utilized in the standard method of

(8)

equivalent linearization It is assumed .that F(t) is trigonometric,
and consequently B is taken to be equal to the amplitude of the exci-
tation ¥ (t). If F(t) is not trigonometric, there is some question as to
what to do in the method of equivalent linearization.

An alternative approach to arbitrarily selecting certain param-
eters is to divide one of the independent relations so that a third
relation is generated. The particular relation that is separated and
the manner in which it is separated are arbitrary. However, some
physical arguments may exist for making the above decisions.

It is important to note that, in the present case, lack of
specification occurs only in the differential equation parameters
c, K,and B. The solution parameters A and ¢ are determined
uniquely by the equations (5.8) and (5.9). This happens because the
differential equation error is linear in the minimizing parameters,
and after the minimization is perforrne.d, the resulting equatioas can

be written entirely in terms of the solution parameters A and op.
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Consequently, only two relations are required. However, if a unique
equivalent system is desired, it is necessary to initially specify one
of the differential equation parameters or to separate one of the abowva
equations to a generate a third reiation.

Since in many cascs it is desirable to determine a unique
system as well as a unigue solution, the alternative of separating'
certain equations is utilized in the present situation. Equations (5.8)
and (5.9) are chosen as the independent equations. Furthermorsz, it

seems reasonable to separate (5.9) in the following manner. Let

1
B cos =2 f F(t) cos (2mt-gp)dt , (5.11)
0

and
1
KA:ZI f(y, ¥, t) cos (2mt-c) dt (5.12)
0

where vy - A cos (2rt-o).

The above separation is an attempt to make B model the excitation
F(t) and K model the restoring force f(x, x,t). As stated praviously,
(5.11) and (5.12) are obtained in an arbitrary manner. It would be
equally as valid to separate (5. 8).

The three relations for determining the auxiliary equation
parameters are (5.8),(5.11), and (5.12). These relations combined
with equations (5.4) and (5.5) are sufficient for determining A, o, ¢, K,
and B. If for physical reasons, some of the parameters are pre-

scribed initially, then certain of the above relations no longer apply.
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For example, if ¢ is prescribed initially, equation (5. 8) is no longer
valid. K and F may then be determined using (5.9) and (5.10).

As stated previously, the present approximation is a generali-
zation of the method of equivalent lincarization. The additional
flexibility of being able to permit all the parameter to participate in
the minimization process would seem to indicate a capacity for
greater accuracy in the approximation. Another advantage of the
above formulation is that the auxiliary system is linear; consequently,
the solution form is algebraically uncomplicated, and the integrals

required in the approximation usually are trigonometric.

5.2. General Cubic Approximation.

In addition to the linear auxiliary system another system has
received some consideration in the literature rcc:ently(b). The

system is
= 5 3 2 2 B
¥ +cy tay+by =Bcen(nt, k)l_l-k sn (¢, k) sn (nt-cp),k[ 3 (5.13)

where c,a, b, B are constants, cn(u, k) and sn(u, k) are Jacobian
elliptic functions, and ¢ is defined shortly. It is desirable that (5.13)
possess the same period of excitation as the original system (5.1);
consequently, n satisfies

n=4K(k) , (5.14)
where K(k) is the complete elliptic integral of the first kind with
modulus k. (5.13) possesses exact periodic solutions of the form

y=Acn(nt-¢ k) , (5.15)
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where A, o, and 1must satisly
2
2
k ':héz'" ; (5.16)
Zn
3 2
bA"+ A(a-n )=Bcn(yp, k) , (5.17)
and
cAn=Bsn(yp, k)dn (o, k) , (5.18)

where dn(u, k) is a Jacobian elliptic function.

As in Section (5.1) all of the differential equation parameters
(c,a,b, B) are considered unspecified and are determined using the
mean square equivalence criteria. Using (2.7), the differential

equation error is

() = FE) + s b ) Fefbay by

L, |
- B en (10 (1-1% sn” (9,19 sn” (nE-0, 1) (5.19)

where y=Acn(mnt,k). c,a,b, and B are determined by minimizing
-

Minimizing (5.7) with respect to ¢ leads to the following result.

1 .
[ (P -y, 3, 0)) sn (nt-gp) dn (nt-e) dit +
0

sn (Cp, k) dn (CD, k) -
31%n

4(5 3‘::;_ )((Zkz— 1)E(k) + (l—kz)K(k)) - 0. (5.20)

In obtaining (5.20), reference (28) is used to evaluate the integrals of
the various combinations of elliptic functions.

Minimizing (5.7) with respect to a, and again using reference
(28) to evaluate the resulting elliptic integrals, the following is

obtained.
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[-1 (I~'(t) -y, v, t)) cn (Mt-cp, k)dt -

0
3
1(A-Ben(o ) . , 4bAd
- Cp+2C 0, (5.21)
where
c,= [ en’u, k)du = Bkl (-k JK()
mep k
and
K-o YT T IRY 2
C4 - [ cn4(u,k)du = =3k M1k )K(ki+2(2k -1E(k)
‘I_(:p 31(

Minimizing (5.7) with respect to b, and using reference (28),

the following relation is obtained.

1

[ (F®-tty,y,0) Jen’ (ne-, k) at +
0
4C 3
(Aa~B cn (e, k))-—ﬂijf + 2k

C=0

n . (5.22)

where C4 is defined in (5.21) and
Co = |

-

Minimizing (5.7) with respect to ¢, a, and b yields three

K-t 42K%-1)C, +3(1-K2)C
6 4 2
cn (u, k)du = )

5k

independent relations (5.20),(5.21), and (5.22). However. mini-
mizing (5.7) with respect to B does not lead to an independent relation.

If the manipulation is carried out, the expression obtained is

1
cnfep, k) { ro (F(t) - (v, ¥, t))cn (nt-¢p, k)dt
4C

(5.23)

4C4

% m

z (aA—B cn (e, k)) + bA3 }- sn(ep, Wdnp, k)
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(5. 23)
cont.

1
{ [ {F(6)- £y, 3. 1)) sn (t-eok) dn (nt-gpk) dit 4
“0

.t(_B ﬁ.ﬂ@i%?.(@_&l . ifi‘f) ((213‘- DE(K) +(1-1° )K(k))} =0,

(5.23) is identical'y satisfied, if (5.-20) and (5.21) are satisfied.
Consequently, the system to determine c¢,a, b, and B is underspecified.
However, as in the previous section, the underspecification occurs
only in the differential equation parameters. Since the differential
equation parameters appear linearly in the differential equation error,
the relations resulting from the minimization process may be written
entirely in terms of the solution parameters. Therzfore, equations
(5.20),(5.21),(5.22), and (5.14) are sufficient to uniquely determine
the solution parameters A, o, 1, and k.

To determine the entire system uniquely, it is possible to
eliminate the underspecification by 1) prescribing one of the
parameters c, a, or B initially, and then using the appropriate remain-
ing three equations of (5.20) through (5.23) to determine the other
three parameters; or 2) separate one of the above three independent
relations to generate a fourth relation. The latter alternative is the
one used. DBefore separating any relation, it is convenient to rewrite
equations (5.21)and(5.22). It is possible to solve these equations for

- -1, .3
the quantities 7 A (aA-Bcn(ep, k)) and n "bA", yielding

1
aA-B cn (o, k) ) Co j‘o (f(y, v, t) - F(t)) cn (Ne-¢p, k)dt - 5. 24)

Z
n 4(C,C,-CY)
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|
4 3" . - }
(1.£ {) Kl(y, y', t.)—l“ (1)) vn (Tll"fp. l()(l' " (()‘24)

- 2
4y Gy - 0 )
1 1
. 3
e @ Io (f(y, 7, t)—F(t))«:n (t-ep, k)dt-Cq ro (F‘(y,y)-F(t))cn(T}t-f‘p)df ,

cont.

n ‘ o e il
4(C,C, -CY)

(5.25)

where C,,C,, and C6 are given in (5.21) and (5.22). Equation (5.24)

2’ 74
is the one that is separated. By requiring that the linear coefficient

a model the restoring force only, and that B model the excitation

only, (5.24) scparates into

1 1
. . 3
al r:,(j f(y,y,t)cn(nt~cp1<)dt-c4f f(y, ¥, t) cn” (nt-ep, k)dt
e = g . (5.26)
4(C,C,-C})
and
1
Ben(p k) C Jr (Mt-ep, k)dt - C fF(t) cn3(nt o, k)dt
cn (o, K cn -, - Ca -, ;

n 4(c2C6-ci)
As stated in Section 5.1, the above separation is arbitrary, although
the particular one chosen seems reasonable.
Equations (5.14), (5.16),(5.17),(5.18), (5.20), (5.25), (5.26),
and (5.27) are the equations used to determine c,a,b,B, A, ¢ k, and n.
If some of the differential equation parameters are prescribed

initially, then certain appropriate equations must be eliminated from

the above list.
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The cubic approximation is a generalization of the linear
approximation described previously. In the limit as k approaches
zero, the cubic approximation reduces to the linear approximation.
Since the cubic approximation contains a larger number of differen-
tial equation parameters than the linear system and since it contains
the linear system as a limiting case, it is clear that the cubic approxi-
mation cannot be worse than the linear. The degree of improvement
provided by the cubic system depends on the particular original system

being considerad.

5.3. Example 1.

The original system to be considered is the same system

consider=d in Chapter II, namely

5§'+ax+bx3 =F cos (wt) . (5.28)
The steady-state periodic motions of (5.28) are of interest.
The linear approximation uses the following system,
V+Ky=F cos (wt) , (5.29)
where F in (5.29) is set equal to F in (5.28) and K is the minimizing
parameter. This approximation has been obtained previously in
Section 4.5. The amplitude-frequency relation is given by equation
{4.99) and (4.100) with B and ¢ equal to zero. The entire approxi-
mation is obtained by solving equations (4.96)and (4.99), with c equal
to zero, for the unknowns K and A.
The cubic approximation utilizes the following auxiliary

system,
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V tay + by3 "B en(nt, k)
where a and b are set equal to a and b in (5.28) and I3 is the mini-
mizing parameter. This approximation has also becn obtained in
Section 2.2. The amplitude-frequency relation is given in equation
(2.26). The entire approximation is solved by solving equations
(2.19),(2.23), and (2.27) for the unknowns B, A, n, and k. The above
set of equations are convenient if b is positive. For b negative the
appropriate set of equations are (2.28), (2. 19)', and (2.23).

A comparison between the linear approximation and the cubic
approximation for the present example has already been made in
Chapter II. Certain values of B, b, and a were selected, and both
approximations were presented as functions of the frequency w. It
was shown that, for certain ranges in frequency, the cubic approxi-
mation leads to more accurate results. This conclusion is valid for
both positive and negative b.

In order to make the present example complementary to the
earlier study, a comparison is made for various values of B and b,
while a and w are fixed. Prescribing a to have the value one repre-
sents no loss in generality, since the original equation (5.28) can
always be scaled to meet this requirement. Since in Chapter II and
reference (6) the relative accuracy of the linear and cubic approxi-
mations are roughly the same for b positive (for an appropriate
choice of @) and for b negative (again, for an appropriate choice of w),
only the case for b negative is considered. The value of frequency is

arbitrarily selected to be 0.6.
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Figure 18 presents the results of the comparison. The quantity
compared in both approximations is the maximum response. As a
base for comparison, the exact periodic solution is obtained by
numerically integrating equation (5.28). Plotted on the ordinate of
Figure 18 is the value of the difference between the approximate
amplitude and the exact amplitude divided by the exact amplitude. The
ordinate, therefore, is the fractional error in the maximum response.
This quantity is plotted as a function of b for various B. The exact
and approximate solutions that are compared, correspond to the upper
branch of the response curve; (cf. Figure 1) for w equal 0.6.

Figure 18 illustrates again that the cubic approximation leads
to much more accurate results than does the linear approximation.

It is also noticed that the linear approximation seems to be insensi-
tive to the particular value of b or B chosen, at least for the range
considered. The linear error is on the order of 10-1. On the other
hand, the cubic error is very much dependent on the values of b and
B selected. As pointed out in Section 2.2, the accuracy of the cubic
approximation is primarily influenced by the value of B. As B
approaches zero, the cubic approximation becomes exact. This fact
is illustrated in Figure 18. For B equal to 0.01, the cubic error is
smaller than 10_3, even for quite large values of b. For B equal

to 1.0, the cubic error is on the order of 10-1 for the larger values
of b. The straight line behavior of the cubic error suggests that, for
the range of parameters considered, the cubic error is proportional

to B(—b)l/z.
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5.4. Example 2.

The system to be considered in this section is the following:

n
X

;1’2 + o[ = Fcos(wn) (5.30)

where v, a. F, and w are constant and n is an odd positive integer so
that the restoring force is symmetric with respect to the origin.*
Equation (5.30) has considerable physical interest espccially for the
case when n equals 1. If o is positive, the restoring force has the
property of saturation. For x small, the restoring force is nearly
linear in x. For x large, the restoring force approaches a constant
value. If a is negative, the restoring force becomes infinite as x
approaches oc‘l. The restoring force then resembles the force exerted
on an elastically restrained particle moving in a one-dimensional
rigid box. The equivalent equation approach is used to obtain linear
and cubic approximations for the steady-state periodic oscillations

of {5.34) .

Linear Approximation

The linear approximation is obtained by utilizing the equations
developed in Section (5.1). First, normalize T in (5. 30) so that the

period of the solution is one. Letting -zu{rz =t, (5.30) becomes

2
(2W) 1+Gﬁ T})Fcoa(&rt) ; {5.31)

" The case for n an even positive integer can also be analyzed. Some
specific details change, but in general, the procedure is identical.
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From (5.31), it is clear that

f(x,i}=(%§'>2 ﬁ%r;;[ : (5.32)
and
2
F(t):(%) F cos (2mt) (5.33)

Since (5.31) contains no dissipation, it seems reasonable to

set ¢ equal zero in the linear approximation. The equations for
determining the approximation are (5.4),(5.11), and (5.12). Since ¢

equals zero, (5.5) implies that ¢ equals zero also. (5.4) reduces to

B
A=—"—3 5.34
K—ll»‘rr2 ( )
Using (5.33) and evaluating the trigonometric integrals, (5.11)
reduces to
2
2T
B = ( = ) F (5.35)
Using (5.32) and standard integral tables, (5.12) reduces to
23 2 2
4y ) om s (AgTej | s 2541 273(j1)
K2 ary itz 5 223'(.,)% * ) ) IR
j:O J* J:O
where
(- 2 tan-l(l-Aa \1 /2 IA ] 1
5 T+Aa / > £q =
1-A ¢
l:< 2 2 1/2
1 InfAo+1 +HA%a"-1) ) P
22 Naa+1-@aZane/" =
Q/A a -1



T 7 .

The case of Ao iess than minus one is unphysical, since this corve-
sponds to the particle penetrating the rigid walls of the box.

Equations (5.34), (5.35), and (5.36) constitute the determining
equations for the linear approximation. For the numerical example to
be considered later, n is chosen to be the one. In this case, (5.36)
reduces to

K=—ply {1-F+Ad} , (5.37)
TA o
where I is given in (5.36).

Cubic Approximation

The cubic approximation is determined by utilizing the rela-
tions developed in Section 5.2. Since the original system (5.30)
contains no dissipation,c is set to zero in (5.13). ¢ being zero implies
that ¢ vanishes through equation (5.18). The equations determining the
cubic approximations are (5.14),(5.16),(5.17),(5.25), (5.26), and

(5.27), with c and ¢ set equal to zero. These equations become:

n=4K(k) , (5.38)
2
k2= bAz , (5.39)
2n
bA2+AR-TT) =B , (5.40)
ba’ c, FO (£, 3 O-F (&) Jen’ (nt, 1)at - c4JJ (E(y. 7, ©) - F(®))en(nt, Wat
n o c> ’

55 %-Cg )

(5.41)
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1 1
aA Cb 0 f(y, ¥, t) ecn(nt, k)dt - C4 ro f(y, v, t) CI13(T'|t, k)dt
R v , (5.42)
i -
4(C2C6 C4)
and
1 1
B C6 IO F(t) cn (nt, k)dt - C4 .fOF(t) cr.l)(‘r]t, k)dt
i~y = . (5.43)

2
4(C2C6—C4)

In equations (5.41), (5.42), and (5.43) there are four integrals

that must be evaluated. The first one is

1

p=[ Ftyen(me 0@t (5.44)
0

This integral is evaluated by first substituting ¥ (t) given in (5.33) and
then expanding the elliptic function in a Fourier series ( 6). Using the
orthogonality of the trigonometric functions, the only contribution

comes from the first term in the expansion. Performing the algebra

yields the following

3 ¢
2w F TK(k ) i
L= Z kK(k)SeCh‘< ZKTET) ’ o5
where K'= (l—kz)llz.

The second integral is

tn
e
e

1 3
L=l Ftyen’ (nt, k)t . (
"0

(5.46) 1s evaluated using techniques similar to the the above. It mavy
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be shown that

(1__2+_E_(1L)_) 11+ 2" r Z(k ] (5.47)
¥ RS K> (k)

where I, is given in (5.45) and

1 © m ] 1
Z,(k)”é' z 'sinh(mg)(cOsh(m-1/2)g+cosh(m+1/2)g)) » (5.48)

m=1

where &= ﬁ—%—é%-) ,

The remaining two integrals involve 'the restoring force f(y).

The third integral is

I, = J‘ f(y,y,t)en (nt, k) dt . (5.49)
O 5

Substituting (5.32) for f(y), multiplying by appropriate constants,
adding and subtracting one in the numerator of the integral, and

making the obwvious change of variables, (5.49) becomes

- g = (%)2

K(k) K(k)a
n+l { r

Y 1+Aacn (u, k) J'

m=0
(-—Aa)m(cn(u,k)>mdu} . (5.50)

where the integration is over one quarter period because of the

symmetry of the integrals. The value of the first integral in the

brackets is (34)
K (k) - K(k)-E(k)+k , §=1 .
1= ——_du __ (5.51)
5 J, l4+8cn(u, k) -1 2
0 (1-52) Gr(—r‘ﬁ-vk)-sfl), 6 41
N T8 -1
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2
where m(n", k) is the complete elliptic integral of the third kind and

-
: 1/2 ;
(__1_-_@_&__\)’ tan” ((5__+_k'i_) 1) B
X +k'2'53' 1-62 k 63-1
g ol & . B 12
17\ k & .
&5 -1
l(__;f_l )1/& (1152+k252)1/2+(6 1)1/.& ) B2
AT L a4 st 51
.
It is to be remembered that I5 has no physical meaning for § less

than minus one.
The remaining integrals in (5.50) are also evaluated using

reference (28). Denoting Cm as

K (k)
5 f an Tz, e (5.52)

the values of the integrals are

1 ]

. -1
CO = K(k) , C1 =% sin (k) ,

Cg‘*i‘z(““‘k"k K(k)\ c, Zkz((zkz_z)cl+kr)

- 2 (5.53)

| 2m@K7-1)C, 4+ @m-1KC, |

Comaz Z
(Z2m+1 )k
(2m+l)(2k2—1)C +2mk’2C

- 2m+l m-1
(™ =
2m-+3

St ¥ Y
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Combining the above values, I, may be written as

: n
o= () i) eaae,) 350
l m=

whera 15 and Cm are given in (5.51) and (5.53).

The final integral to evaluate to complete the approximation is

1
Ig = J' £y, ), € en” trt, K0t . (5.55)
0

Utilizing the same techniques as those employed in evaluating 1.

3

the value of 14, is found to be

n+2
(2w Ay 1 . m_.
14'( w / T 5 1 z("AG) Con | , (5. 56)
"’lACC m=0

where 15 and Cn) are given in (5.51) and (5.53).
Equations (5.38) through (5.43) may be used to determine the
unknowns A, n,k,a,b, and B. However, for numerical evaluation, it
is more convenient to consider either A or k as known and to lat y
be an unknown. Substituting the values of I1 through 14, and using
equation (5.39), (5.40),(5.41),(5.42), and (5.43), it is possible to
e2liminate four of the unknowns and to obtain a single relation between
A and k. If either A or k is considered known, the problem readuces
to determining the roots of a transcendental equation for the other
variable.
Discussion
In order to compare the approximations, it is necessary (o

consider specific examples. As indicated earlier, the restoring
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force in (5.30) possesses two gencral types of behavior. If o is
positive, the system is softening, and without loss in generality, it

is convenient to select y and a equal. In this situation, the restoring
force is asymptotic to the value |J¢;|n"1 for large |x| If o is negative,
the system is hardening, and without loss in generality, it is con-
venient to select o equal to minus one. In this case, the restoring
force becomes infinite as |x| approaches one. The value selected

for n is unity.

For the hardening system, the values selected for F and vy
are F=0.1 and y=0.2. Since the system is hardening, it is expected
that the cubic approximation will also be hardening and, consequently,
the equations (5.38) through (5.43) are in the appropri.ate form (i.e. k
is positive and less than one). Both approximations for the periodic
solution of (5.30) for the above values of the parameters are given in
Figure 19. Also included is the exact solution (exact maximum
amplitude of response) obtained by numerically integrating equation
(5.30). The exact solution possesses different characteristics for
various ranges in w, and these are indicated in the figure.

One fact which is immediately apparent in Figure 19 is that
the cubic approximation provides significantly better results than the
linear system for >0.3. As pointed out previously, this is not
surprising since the cubic system is a larger parameter system
which includes the linear approximation as a limiting case. What
might be surprising is the amount of improvement. For y large and

A near one, the cubic system yields very good results. For these
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values of amplitudes, equation (5.30) becomes highly noalinear.
However, the cubic system seems capable of representing the large
nonlinearity quite well. For a frequency of 1.2, the error in ampli-
tude for the upper branch of the response curve is less than one
percent.

Another interesting aspect of the cubic approximation occurs
for wnear 0.25. At this point, the approximate amplitude begins to
increase. No such behavior is exhibited by the linear system.
Furthermore, the exact solution also begins to increase for wnear
0.25 because of the influence of the ultraharmonic response of order
3. Although it is pure conjecture at the present time, it appears
that the cubic system could be trying to model the ultraharmonic
behavior of the exact solution. As the cubic system approaches w
equal 0.25, the modulus k is approaching 1. The limiting value of k
equal 1 corresponds to w equal 0. For k large, the wave form of the
approximate solution (5.15) is very similar to a superposition of in
phase cos (wt) and cos (3wt) terms. Furthermore, as the ultraharmonic
response is approached by decreasing w, the exact solution possesses
a third harmonic component which is in phase with the primary harmonic
component. Therefore, it seems that the cubic system is following
the branch of the ultraharmonic where the third harmonic is in phase
with the first harmonic. If the above reasoning is correct, the cubic
approximation, which is essentially a primary response approximation,
possesses the capability of yielding some information about the ultra-

hatmonic response of the system. Although the approximation
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rapidly deteriorates in the region of the ultraharmonic, it at least
indicates the presence of a different phenomenon. The linecar approxi-
mation does not possess such a capability. The cuBic approximation

is capable of modeling the exact solution until the magnitude of the in
phase third harmonic is so large that the exact solution possesses six
sign changes in one period of the motion. The value of w for which

this occurs is approximately ¥=0.22. For » larger than 0.22, the

cubic approximation is fairly accurate. For ®» less than 0.22 the
Jacobian elliptic cosine function is incapable of representing the exact
solution wave form since the cn function possesses only two sign
changes in one cycle for 0 <k<l. For p<0.22, the cubic approximation
is meaningless, but this is not surprising since there probably exists

an infinite number of ultraharmonic responses for whetween 0 and 0. 22.
In addition, as w goes to zero, the cubic approximation hecomes
ambiguous and essentially undefined.

An interesting aspect of the exact solution is that the two
branches for the ultraharmonic of order 3 cross. This behavior
occurs frequently, especially for equations possessing large non-
linearities.

For the softening system, the values selected for F and y are
F=0.5and y=10. In this case, it is expected that the cubic approxi-
mation will also be softening, and consequently equations (5.38)
through {5.43) require modification. The modulus k becomes pura
imaginary, and the above equations mavy all be transformed so that

they involve only real quantities. This manipulation is purcely



-182-

algebraic and is omitted for the sake of brevity. The final forms are
easily obtainable from equations (5.38) through (5.43). Both approxi-
mate periodic solution amplitudes for the present values of the para-
meters are given in Figure 20. The exact maximum amplitude,
obtained by numerical integration, is also included.

From Figure 20, it is clear that the cubic system again yields
better results than the linear system. One interesting fact is that
the major difference occurs at the ""knee' of the response curve
instead of for the larger values of amplitude.

Unlike the hardening case, the amplitude of the cubic approxi-
mation in Figure 20 does not seem to increase in the region of the
ultraharmonic response. The main reason is that the location where
the cubic approximation is no longer capable of representing the exact
solution wave form occurs much sooner in the softening system. As
w is decreased and the ultraharmonic of order 3 is approached, the
third harmounic component of the exact solution is out of phase with
respect to the first harmonic component. Consequently, the exact
solution wave form looks more like a square wave. The cubic
approximation also yields a sdution form which is capable of modeling
a square wave. Since the present system is softening, the modulus
k is pure imaginary, and the solution (5.15) takes the form cn(Et, kl)
dn(gt,kl) where € and k; are real. The above combination may be
written as sn(Et+K, kl) which approaches a square wave in the limit
as k1 approaches one. Therefore, it seems reasonable to expect

that the cubic approximation could model the exact solution so long
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as the third harmonic component does not become too large. If the
third harmonic does get too large, the exact solution wave form
becomes double peaked, and the cubic approximation is incapable of
reprasenting it. In Figure 20, the value of w where the exact solution
wave form becomes double peaked (in the region of the third harmonic
resonance) is w ~ 0.9. Consequently, if ®>0.9, it seems reasonable
to expect that the cubic approximate would be fairly accurate. However,
for w<0.9, the cubic system is no longer capable of representing the
exact solution. At the value w=0.9, the exact solution amplitude is
still decreasing. It doesn't start to increase until @ is approximately
0.8. Therefore, the ultraharmonic resonance occurs outside the
region where the cubic system is applicable, and. consequently, the
cubic approximation does not increase. The softening case illustrates
that the cubic approximation need not necessarily indicate the existence
of a third ultraharmonic resonance.

The significance of the present example is threefold. It first
shows that the cubic approximation can lead to a noticeable improve-
ment over the linear approximation for systems possessing non-
linearities other than cubic nonlinearities. The example in Section 5.3
illustrates the superiority of the cubic system for modaiing Duffing’s
equation. This is not surprising, since the original svstem possesses
a cubic nonlinearity. However in the present example, it is not
obvious, initially, that the cubic system would provide noticeable

improvement.
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Another aspect of the example is that, for the cubic
approximation, the coefficient of the cubic term in the restoring
force is allowed to vary. This tends to make the algebra somewhat
more complicated but not wmanageable. The increased lNexibility of
the cubic modeling system seems to provide a more accarate approxi-
mation and allows for the possibility of describing some second order
effects. (i.e. ultraharmonic response).

The third aspect is the behavior of the cubic approximation in
the region of the ultraharmonic of order 3. In the hardening case,
the cubic system seems capable of yielding some information con-
cerning the ultraharmonic response. In the softening case, the cubic
approximation seems to ignore the ultraharmonic response entirely.
No explanation exists at the present time for the increase in the
response curve for the hardening case in the region of the third

altraharmonic other than the one given above.
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VI. RELATION OF THE EQUIVALENT EQUATION APPROACH
TO OTHER APPROXIMATE TKECHNIQUIS

The equivalent equation approach is based on the concept of
relating one differential equation, whose solution is known, to another
differential equation, whose solution is desired. By making the two
systems equivalent, it is assumed that the known solution of the first
provides an accurate approximation to the solution of the second.
Most other approximate techniques are based on assuming a certain
solution form directly. The solution form contains some unspecified
parameters which are selected by minimizing the residual obtained
by substituting the assumed solution into the differential equation
of interest.

In the present chapter, the relationship between the equivalent
equation approach and some of the more common approximate tech-
niques is examined. Section 6.1 presents the various approaches:
collocation, subdomain, least squares, Galerkin's, and equiva'ent
equation. The relationship between these techniques and the general
method of weighted residuals is shown. In Section 6.2, some pecu-
liarities associated with the method of least squares and the equivalent
equation approach are illustrated. It is shown that the method of least
squares may yield extraneous solutions when z_xpplied to nonlinear
systems.

6.1. Method of Weighted Residuals.

The method of weighted residuals is a unification of all approxi-

mate averaging techniques which was introduced by Crandall (27).
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He showed that many of the classical approximate techniques are
related within the context of a weighted residua'! technique. It is
also possible to include the equivalent equation approach in this
classification.

Let the differential equation of interest be written as

¥=flx, %1 , (6.1)

where f(x, %X, t) possesses the smoothness properties indicated in (3.56)
and f(x, %, t) is periodic in t with period 1 .* Most classical approximate
techniques are based on assuming a certain solution form

x(t) =y(t, By, .- nB)) (6.2)

wherey is periodic in t with period 1 and Bj(jzl,... ,8) are un-
determined parameters which are selected so that (6.2) represents
an approximate solution of (6.1). The usual procedure is to obtain
the ervor residual by substituting (6.2) into (6.1) yielding

0k B oo B =S8 Byacr o B T8 By B 1) = F08, By e B Y - 16.3)

The solution parameters Bj(jZI...., s) are selected so as to
minimize e(t,ﬁl, ...,BS). However, one difficulty arises in that
e(t, 331, ith BS) is a function of t, which means that the Bj‘s obtained by
a direct minimization would also depend on t. To eliminate this
problem, the concept of a weighted average is introdnced. The

relations determining the Bj(jzl, ..., 8) may be written as

"This analysis could be performed for vector systems, but the second
order scalar case was chosen for brevity and clarity.
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1
_fowj(t)e(t,p]....,ps)dt:o T (6. 4)

where the average is over one cycle of the motion, and W'j(t) are
certain weight functions whose purpose is toeliminate the t depen-
dence in e(t, Bl,... ,ﬁs). The determining equations for many of the
more common approximate techniques based on the averaging principle
can be expressed in the form of (6.4) where the Wj(t) depend on the
particular approximate technique utilized.
Lollocation

The method of collocation makes the error residual small for
te[0, 1] by rcquiring that it be identically zero at certain arbitrarily
prescribed points in [0, 1]. For the method of collocation, the weight

functions take the form

Wj(t)= é(t-tj) o o PR (6.5)

where tj(jzl,... , s) are the joints in [0, 1] where e(t,Bl,... ,ﬂs) vanishes
identically. This method is particularly convenient because the
relations generated by (6.4) using (6.5) are immediately algebraic
in form. No further integration is necessary. The one major dis-
advantage of collocation is that, in general, the approximation obtained
is not as accurate as some of the other techniques.
Subdomain

The method of subdomain consists of requiring that integrals
of the error residual over certain arbitrarily selected intervals in t

vanish identically. For this method, Wj(t) are of the form
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W, () = H(t-t, ) - Ht-t)) , j=l....,s (6.6)

and

where H(u) is the Heaviside step function. The method of subdomain
is more complicated than collocation in that the relations obtained
from (6.4) still require an integration before determining ﬁj(jzl,... , 8).
However, if the solution form (6.2) is a truncated Fourier series with
the ﬁj(jZI, ..., 8) as the undetermined coefficients, the resulting
integrals are usually trigonometric.

Least Squares

The method of least square is based on minimizing the mean
square of the error residual with reaspect to the [Sj(jzl,... ,8). The

quantity minimized is
-
r € (t,ﬁl,...,ﬁs)dt:minimmn ’ (6.7)
"0

A necessary condition for a relative minimum is that the first

derivative vanish. Theraefore, (6.7) becomes

1o
J\O *ggg(t:ﬁl,--.;ﬁs)e(tsﬂlﬁ-o-rﬁs)dt:0’ j:I""’S 2 (68)

where the weight functions are

e ;B
wj(t)=%;(t,pl,...,fss),3_1,...,5 : (6.9)

(At first glance, it would seem that (6.8) is identical to the rolations

generated using the ecquivalent equation approach, but this is not so
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as will be seen shortly.) Although the weight functions for collocation
and subdomain are independent of the parameters ﬁj(j=l, ..., 8), the
weight function (6.9) for the method of least square will in general
depend on the ﬁj(j-tl, ..., 8). This feature may result in undesirable
consequences in that the method of least squares is capable of yielding
extraneous approximate solutions and/or eliminating true approximate
solutions. This aspect is considered further in Section 6.2. It may
also be noted that the amount of labor involved in applying (6. 8) is
increased as compared to collocation or subdomain since the resulting
integrations are usually more difficult.

Galerkin's Method

Galerkin's method involves making the error residual
orthogonal to a set of trial functions on the interval [0, 17. If the

assumed solution (6.2) is of the form
s
i Prs iy = () .
0By oo B _zlﬁJ¢J( ) (6.10)
J:

where wj(t) (j=1,..., s) is an arbitrarily chosen set of trial functions
depending on t only, Galerkin's procedure is straightforward. The
relations determining ﬁj(j=1, ..., 8) are (6.4) where the weight functions
are

W)= §(t) s j=li.,s 6.11)

Higher order approximate solutions are easily obtained by simply

taking the number of trial functions as large as desired.
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If the assumed solution form is nonlinear in ﬁ_i(jzl,... , 8),

Galerkin's procedure is more difficult. One suggestion is to usge the

following as weight functions (11)
0
W.(t)=3l(t"3l""'ﬁs) y j:I,.--,S 5 (6'12)
J B

where y(t, [31,... ,ﬁs) is the assumed solution form. In general, the
VVj(t) in (6.12) will depend on Bj(jzl,..., s) as well as t, and the possi-
bility arises for the modified Galerkin's procedure to yield meaning-
less approximations as is indicated in Section 6.2,

Equivalent Equation Approach

The equivalent equation approach differs from the above
techniques in that it is primarily concerned with equivalent or approx-
imate differential equations rather than equivalent solutions. The
motivation for this approach is that the original differential equation
of interest is immediately available, whereas the nature of the desired
solution may not be known.

For the present approach it is necessary to define an auxiliary

system as

Y=gly, ¥t ap,...,a) , (6.13)
where gy, 37', t;al, I O‘r) is continuously differentiable in vy, ¥, Qysonns O
and continuous and periodic in t with period 1. The differential equation
parameters or,i(izl,... , ) are selected so that the difference between
(6.1) and (6.13) is minimized. (6.13) is chosen so that it is similar

to {(6.1) and so that it possesses known periodic solutions of the form

(6.2) with period 1. In order that (6.2) be a solution of (6.13), there
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will exist s relations between the cx,i(irl, ..., r) and the fij(j:—l S rerae iy )
However, thesc s relations are not utilized until after the minimiza-

tion of the differential equation error ©&(t, Qysvens (:JLr,ﬁ1 e BS),

e(t’ all"" arlﬁl"",ﬁs):f(y(t’ﬁl""’ﬂs)’ l;‘(61""Jﬁs)’ t)

~g(y(t, By s Bt By B B 1)
(6.14)
has been perofrmed. The ai(izl, ..., T) are selected so that (6.13) is
close to (6.1) for all values of Bj(jzl,... , 8).
The most appropriate equivalence criterion (cf. Chapter IV) is
rt 2 »
5 e (t, Oysenns u‘r'ﬁl’ ,ﬁs)dt: minimum . (6.15)

Minimizing with respect to ai(i=1,... ,r),(6.15) becomes

lae(t S) B)

I oAby Xy 0Pyl ot , ., @ By, .. B )AE=0 5 =1, ..., £ (6.16)
0 Bai 1 ] s

As shown in Chapter II, the s relation between the oni_'s and the }3j's
may now be employed to obtain various other forms of the resulting
relations, but the particular form given in (6.16) is convenient in the
present situation. Furthermore, as discussed in Chapter II, only

p of the r relations in (6.16) may be independent, and consequently
certain other measures must be taken to insure a unique determina-
tion of the ai(irl,... ,r). (It may be noted that it is not always
necessary to uniquely determine all of the ai(i:l’ ..., r) in order to

determine uniquely the ﬁj(j=1,... ,8); cf. Chapter V.)
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It is clear that (6.16) may be put into the form (6.4) where the

weight functions are

BB B e B i B ) § ARl B . (6.17)
Wi(t)—aai 1 s’ 71

Therefore, it is possible to consider the equivalent equation approach
as a special case of the method of weighted residuals.

Although there is a great similarity between the form of (6.9)
and the form of (6.17), the method of least squares and the equivalent
equation approach are in fact different approximate techniques. The
weight functions for least squares are obtained by minimizing the error
residual (6.3) with respect to the solution parameters Bi(j-:l,..., s),
whereas the weight functions for the equivalent equation approach are
obtained by minimizing the differential equation error (6.14) with
respect to the differential equation parameters ai(izl,..., r). Another
difference is that the ay often appear linearly in the differential
equation error, and, consequently, the weight functions are independent
of the oLi(iZI,..., r). On the other hand, the weight functions for the
method of least squares are almost always nonlinear in the Bj(jzl,...,s).

Under certain circumstances, Galerkin's procedure and the
equivalent equation approach may yield the same approximation. If
in Galerkin's procedure the set of trial functions ‘J,fi contains a certain
number of trigonometric functions, the weight functions in (6.4) will
be the trigonometric functions th. If in the equivalent equation
approach, the auxiliary system is chosen to be the linear approxi-

mation with an excitation proportional to a linear cormbination of the
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q;j, the corresponding weight functions will also bhe 1111.. Therefore,
in the present situation, Galerkin's procedure and 1:}';0 cquivalent
equation approach give the same approximation. ¥owever, this fact
is not true in general, especially when the assumed solution forms
are other than trigonometric.

It should also be pointed out that the equivalent equation
approach is severely limited by the fact that, at the present time, the
class of nonlinear differential equations possessing known periodic
solutions is relatively small. It would seem worthwhile to try to
enlarge this class of equations.

6.2. Anomalies Associated with the Method of I.east Squares
and Other Averaging Techniques.

The equivalent equation approach and the method of least
squares are similar in that they both determine unspecified para-
meters by minimizing an averaged error quantity. This aspect may
lead to peculiar results if caution is not exercised. To illustrate this
fact, consider the following example.

Let us obtain an approximate solution using the method of
least squares for the Duffing's equation

2+ax+bx3=Bcos (wt) . (6.18)
Assume the solution form to be
y =A cos (wt) , (6.19)
where w in (6.18) and (6.19) are equal and A is to be determined.

Using (6.3), the error residual is

et AY ={-Ala-w") + B) cos (0t} - BA ces (gt} . (6.20)
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Applying (6.8) and evaluating the resulting trigonometric integrals,

the relation determining A is

%bAS T T 749'

BBA® 4 la-or A - Bla-it) =8 . 6.21)
Immediately it is noticed that (6.21) is of fifth order in A, whereas
the relation generated in Section 2.2 using equivalent linearization
was only of third order. The value of A given by (6.21) is plotted as
a function of win Figure 21. The.values of a,b, and B used are a=1.0,
b=0.1, and B=0.1. Also included on the figur: is the approximation
obtained using equivalent linearization. Some exact solution points
obtained by numerical integration of (6.18) are also shown.

From the figure, it is clear that the method of least squares
gives some erroneous results. It predicts the existence of five
periodic solutions of the form (6.19) for various ranges in w. The
theory of Duffing's equation is well known, and it is generally accepted
that there exist only three solutions of the form (6.19) in the region of
primary response (33). Furthermor=, the approximation predicts
the emergence of two solutions from the point w=1.0 and A=0. This is
completely contrary to the usual notion of the behavior of Duffing's
equation.

To understand the rzason for the multiplicity of solutions,
consider the minimization condition (6.7). The method of least squares
is based on minimizing (6.7) with respect to Bj(jrl.... ,8). However, if
e(t, (31, ,BS) is nonlinear in the BJ. (which is usually the case for aon-

linear differential equations), the determining equations (6.8) may
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y ield maximums as well as minimums of (6.7). To investigate thc
nature of the extremums, consider the sign of the sccond derivatives
of (6.7) associated with the solutions generated by (6.8). Denoting
the second derivatives of (6.7) with respect to ﬁi and Bj by Kij’ the
second derivatives are

K . =

’ BYL(t, Bys -, B,)
ij o J

ﬁ;J Coe(t, By, B )AL+
1
Io Wi(t,ﬁl,...,ﬁs) Wj(t,ﬁl,...,ﬁs)dt : (6.22)

where Wi(t’ Bl,... ,{35) are the weight functions given in (6.9). A
necessary and sufficient condition for a solution to be a minimum is
that the matrix Kij be positive definite (37). It is clear that the matrix
associated with the second integral in (6.22) is always positive
definite. Therefore, the positive definiteness of Kij depends on the
behavior of the matrix associated with the first integral in (6.22).

In the method of least squares, the weight functions in general depend
on the ﬁj(j =1,..., 8) and, therefore, the matrix Kij may be either
positive definite, negative definite, or indefinite. Consequently, the
solutions generated by (6.8) may correspond to maximums, minimums,

or saddle points.

In the above example, the Kij matrix reduces to one term. If

2
B—-%— is computed for the various solutions, it is seen that the

oA
extraneous ones correspond to maximums of the mean square error.

In Figurz 21 for a frequency of 1.05, the bottom two solutions corre-

spond to maximums of the averaged error. The top solution
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corresponds to a minimum. Similarly, for a frequency of 1.5, the
bottom solution and the top two solutions correspond to minimums,
whereas the middle two maximize the error. If the solutions
generating maximums are eliminated, the response curve is more
like the usual one associated with Duffing's equation except that the
lower branch is discontinuous.

It is worthwhile to note that the approximation obtained from

least squares using the solution form

y:Acn(szkwt,k) (6.23)
possesses the same general behavior as the linear approximation
obtained using least squares. The actual numerical coefficients in
(6.21) are changed slightly, but the conclusions are similar.

As another example, consider Van der Pol's equation

5:'+u(x2-1):2+x=0 : (6.24)
where it is required to obtain an approximate periodic solution using
least squares and the solution form (6.19). Both A and » are to be
determined using (6.8). The relations obtained by minimizing with

respect to A and w are

uh®(3atafs1+ U5 CH ) )=o0 (6.25)
Ll LU
and
5. 3 2.2
Ji_g__@(A4_4AZ+8_16L,,f’—))=o . (6.26)
vl

The only solution of these two equations is A=0 and w arbitrary. But

it is well known that for h_l[ sufficiently small, (6.24) possesses a

limit cycle near x=2 cos t. In fact, for all y, (6.24) possesses one
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(35)

limit cycle Again, the method of least squares yields a
meaningless approximate solution.
Another interesting situation is encountered if the method of

least squares is used to obtain the limit cycle behavior of Rayleigh's

equation
.2
5e+u(1-’3‘—):z+x=o . 6.27)

Since Ravyleigh's equation may be transformed into Van der Pol's
equation using a simple transformation, it might be expected that
least squares would yield the same conclusions about the periodic
motions of (6.27) as it did about equation (6.24). This is not the case,
however. Least squares for (6.27) predicts the solution A=0 and two
limit cycles: y=1.839cost and y=1.191 cost. If the second derivative
of the error is evaluated for the two nontrivial solutions, it is seen
that the first solution corresponds to a minimum of the error, and the
second corresponds to a maximum.

As illustrated by the above examples, it is clear that the
method of least squares predicts some unusual results when applied
to nonlinear systems.

Although no specific examples where anomalies arise are
presented for the equivalent equation approach, it is clear that similar
difficulties could occur. Analogous to the method of least squares, the
equivalent equation approach determines unspecified parameters by
minimizing an averaged error. Equation (6.22) applies also to the
equivalent equation approach except that the solution parameters

[Sj(jzl ,.-.,8) are replaced by the differential equation parameters
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c(,i(i ‘1,..., r). If the weight functions (6.17) depend on the parameters
ai(i':l, ..., 8) the matrix Kij may be positive definite, negative deflinite,
or indefinite. Therefore, equations (6.16) may generate maximums,
minimums, or saddle points. F ortunately, the ai(i=1, ...r) often occur
linearly in the auxiliary equation and, therefore, also occur linearly
in ¢(t). This means that the weight functions are independent of the
(xi(i'--l,..., r), and, therefore, the matrix Kij is positive definite. In
this situation, all of solutions generated by (6.16) correspond to
minimums of (6.15). Consequently, once the solutions are obtained,
they do not require further checking.

The above analysis indicates that unusual results may occur
using the method of least squares and the equivalent equation approach
when the weight functions depend on the unspecified parameters.
Similar behavior may also exist for the modified Galerkin's procedure.
Although Galerkin's procedure is not related to minimizing an error
quantity, the final equations determining the approximation are very
similar to those given by the method of least squares and the equiva-
lent equation approach. Furthermore, the weight functions (6.12) will
in general depead on the [.Sj(j =1,..., 8) if nonlinear solution forms are
uased. Therefore, it seems reasonable to suspect that difficulties
could arise in this situation. Equation (6.22) does not apply to
Galerkin's procedure since the technique is not related directly to any
minimization condition. Further investigation is necessary to deter-
mine if anomalies can occur in the modified Galerkin's procedurs and,

if they can, to determine how to eliminate them.
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VIil. SUMMARY AND CONCLUSIONS

The purpose of the present investigation was to study an
approach, suggested by W. D. Iwan, for obtaining approximate
periodic solutions to nonlinear ordinary differential equations of
the type which arise in dynamical systems. The approach, called

the equivalent equation approach, is a generalization of the method

of equivalent linearization, and it is applicable to any differential
system possessing periodic solutions. In the present formulation,
the equivalent equation approach treats only periodic motions,
although there seems to be no conceptual difficulty in adapting the
technique to treat transient problems as well. The approach is
based on defining a differential system (linear or nonlinear) which
is equivalent to the original system of interest. The alternative
(auxiliary) system is selected such that it is "close' or "similar"
to the original system and such that it possesses known periodic
solutions. By making the auxiliary system equivalent to the original
system, it is assumed that the corresponding solution of the auxiliary
system will represent an accurate approximation to the exact solution
of the original system. The conditions under which the above
assumption is justified and the manner in which the auxiliary system
is made close to the original system are two of the main consider -
ations in this investigation.

The equivalent equation approach is described in detail in

Chapter II. In section 2.1, the specific example of the undamped
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Duffing's equation with trigonometric excitation is considered. It

is shown that a cubic modelling system can give noticeable improve-
ment over a linear modelling system in predicting the steady-state
response amplitude. This should not be surprising since the cubic
auxiliary system can represent, exactly, the nonlinear restoring
force in Duffing's equation, whereas, the linear system cannot.

In Chapter III, the relationship between the differential
equation error (the difference between the original system and the
equivalent system) and the solution error (the difference between the
exact periodic solution and the solution of the equivalent system) is
investigated. Under certain conditions, bounds are obtained on the
solution error in terms of the differential equation error. The
technique employed is to consider the system governing the exact
solution error as a two point boundary value problem. Reformulating
the problem in terms of an integral equation using the Green's
function for the unique linear part, the method of successive approx-
imation is used to obtain a bound on the exact solution error. The
analysis indicates that if the original system possesses an exact
unique periodic solution, it is always possible to select an auxiliary
system such that the exact solution error is less than any arbitrarily
prescribed bound. Conversely, if the original system satisfies
certain continuity and Lipschitz conditions and if there exists an
auxiliary system such that certain inequalities are valid, then the
original system possesses an exact unique solution in a region

defined by the above mentioned inequalities. Unfortunately, the
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above analysis gives no prior indication as to which auxiliary system
should be selected in order to obtain the smallest error bound. From
the form of the bound obtained, it does show that, as the differential
equation error approaches zero, the corresponding solution error also
approaches zero.

The general analysis utilizes the Green's function for the
unique linear part of differential equation describing the exact
solution error. In general, the coefficients are functions of the inde-
pendent variable, and, consequently, in practical applications it
becomes exceedingly difficult to determine the Green's function. To
avoid this problem, the integral equation is reformulated using a
Green's function for a system with constant coefficients whose general
form is well known. The particular values of these constants are
selected so as to minimize the resulting error bound. Although this
procedure leads to a less accurate error bound, the additional
applicability gained seems well worth the price.

Error bounds are obtained for the undamped trigonometrically
excited Duffing's equation for both the linear and cubic approximations.
Where obtainable, the error bounds seem to describe, fairly well, the
qualitative behavior of the exact error. It is also shown that the error
bound associated with the cubic approximation is an order of magnitude
smaller than the bound for the linear system. The same relation holds
for the exact solution errors in the regions where bounds are obtain-
able. As expected, bounds are not obtainable using the present

techniques for all ranges of the parameters. A comparison of the
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present approach and approaches suggested by other investigators is
also included.

The approach which is applied successively to non-autonomous
systems does not provide much information for the case of autonomous
systems. It is shown that the conditions required by the approach are
never satisfied for autonomous original systems possessing non-
trivial periodic solutions. Therefore, the above approach gives infor -
mation concerning the trivial solution only. Consequently, an
alternative bound is obtained for second order conservative autonomous
systems. It involves estimating an integral for the exact period of the
motion in terms of a known integral for the period of an auxiliary
system. An example of the autonomous Duffing's equation modelled by
the linear system is included to illustrate the application and the
accuracy of the technique.

In Chapter IV, the manner in which an auxiliary system is
made equivalent to the original system is considered. Various
equivalence criteria for minimizing the differential equation error
are compared, namely, mean square error minimization, mean
absolute value error minimization, and maximum absolute value
error minimization. The differential equation error is defined as
the difference between the original system and the _a.uxiliary system
when both are evaluated at the auxiliary system solution. The
minimization is performed with respect to parameters appearing in
the auxiliary system. It is of interest to determine which of the above

schemes yields the smallest actual solution error.
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Since the actual error is in general unaccessible analytically,
examples are used to illustrate the major results. Only second order
scalar systems are considered. Four examples are presented com-
prising autonomous and non-autonomous systems and including both
linear an'd cubic auxiliary systems.

The analysis indicates that, depending on the specific
example and values of parameters considered, each of the above
minimization schemes can yield the most accurate approximation in
certain cases, but, on the average, the minimum mean square error
seems to be the most appropriate criterion to use. Furthermore, it
is, by far, the easiest of the three methods to apply.

It is realized that the above conclusions are based only on a
relatively few number of examples and that there exist many alterna-
tive error minimization techniques other than the ones considered in
the analysis. However, an attempt was made to make the examples
representative, and the specific minimization techniques considered
were chosen because of their physical relevance and their relation to
the error bound analysis done previously.

In Chapter V, a comparison is made between a linear and a
cubic auxiliary system. The general second order linear and cubic

systems for modelling an arbitrary second order original system are
developed. Several examples are presented, and the results of both

approximations are compared. The first involves the trigonometri-

cally excited Duffing's equation considered in Chapter II. A

comparison between the linear and cubic approximations is made for
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various values of nonlinearity and excitation level. This complements
the comparison in Chapter II which is performed as a function of
excitation frequency. The example illustrates the degree of
superiority of the cubic system. Furthermore, it shows that the
solution error associated with the linear approximation is rather
insensitive to the value of the cubic coefficient and the excitation
level, at least for the particular parameters considered. On the
other hand, for the same range of parameters, the exact error for
the cubic system seems to be directly proportional to the excitation
level and proportional to the square root of the cubic coefficient.

A second example for comparing the linear and cubic
approximations involves a saturating system described in section 5. 4.
Both linear and cubic approximations are obtained for the two cases
of a hardening and softening restoring force, and in both cases the
cubic system provides more accurate results.

In addition to being more accurate, the cubic system seems
capable of providing some information concerning the ultraharmonic
response of the saturating system. For the hardening case, the
cubic system seems to follow the branch of the third ultraharmonic
where the third harmonic is in phase with the primary harmonic

component. Although the accuracy rapidly deteriorates, the cubic

system at least indicates the presence of a different phenomenon.
For the softening case, the cubic approximation gives no indication
of an ultraharmonic response. The reason for this difference in

behavior is suspected to be related to the ability of the cubic
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approximation to represent the exact solution wave form. Additional
investigation is required in this arca in order to obtain a better under -
standing of the phenomenon.

A brief comparison of the equivalent equation approach to some
of the more classical approximate techniques where specific solution
forms are assumed is presented in Chapter VI. The techniques con=
sidered are collocation, subdomain, least squares, and Galerkin's.
The relation of all the above techniques to the general method of
weighted residuals is shown. Under certain conditions, the equivalent
equation approach and Galerkin's procedure yield identical approxi-
mations, but in general they are different. Also, the equivalent
equation approach and the method of least squares do not generate the
same approximation in general.

In section 6. 2, some peculiarities associated with the method
of least squares is presented. For example, the method of least
squares predicts, for certain ranges in frequency, that the undamped
trigonometrically excited Duffing's equation possesses five solutions
of the form Acos(yt). It is shown that the extraneous solutions are
associated with maximums of the mean square error residual.

Similar results may possibly occur for the equivalent equation
approach. However, if the differential equation parameters appear
linearly in the differential equation error, the equivalent equation
approach always generates solutions corresponding to minimums of
the mean square error.

The main conclusion of the investigation is that the equivalent
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cquation approach scems capable of providing a substantial improve -
ment over other low order approximate techniques in describing
periodic motions. It allows for the possibility of using nonlinear
systems to model other nonlinear systems thus incorporating some

of the features peculiar to nonlinear systems in a very natural manner.
This enables one to treat equations with moderately large non-
linearities which are pdorly handled by most classical approximate

techniques.

Areas for Further Investigation

The major areas for further investigation associated with the
present analysis seem to be the following:
1. A detailed analysis of the behavior of the cubic system in the
area of the ultraharmonic response of order three is needed.
It is of interest to determine if and when the cubic system
is capable of providing information concerning the ultra-

harmonic behavior of the original system.

2. A more comprehensive investigation of the anomalous
behavior of some approximate techniques is necessary.
Specifically, it seems worthwhile to determine if the modified

Galerkin's procedure can yield meaningless results.

Other areas of possible investigation not considered in any
detail in the present study are:
1. adaption of the equivalent equation approach to model sub-

harmonic and ultraharmonic response;
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determining the feasibility of obtaining (or generating)
higher order approximations using the equivalent equation
approach;

modification of the equivalent equation approach to treat
transient problems; and

inve stigation of the merits of approximate stability analyses

based on nonlinear solution forms arising from the equivalent

equation approach.
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