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ABSTRACT 

A technique for obtaining approximate periodic solutions 

to nonlinear ordinary differential equations is investigated. The 

approach is based on defining an equivalent differential equation 

whose exact periodic solution is known. Emphasis is placed on the 

mathematical justification of the approach. The relationship 

between the differential equation error and the solution error is 

investigated, and, under certain conditions, bounds are obtained 

on the latter. The technique employed is to consider the equation 

governing the exact solution error as a two point boundary value 

problem. Among other things, the analysis indicates that if an 

exact periodic solution to the original system exists, it is always 

possible to bound the error by selecting an appropriate equivalent 

system. 

Three equivalence criteria for minimizing the differential 

equation error are compared, namely, minimum mean square error, 

minimum mean absolute value error, and minimum max imum 

absolute value error. The problem is analyzed by way of example, 

and it is concluded that, on the average, the minimum mean square 

error is the most appropriate criterion to use. 

A comparison is made between the use of linear and cubic 

auxiliary systems for obtaining approximate solutions. In the 

examples considered, the cubic system provides noticeable 

improvement over the linear system in describing perio dic response. 
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A con1parison of the present approach to s01ne of the more c lassical 

techniques is included. It is shown that certain o f the Htandard 

approac hes where a solution form is assumed can yield erroneous 

qualitative results. 
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I. INTRODUCTION 

The area of nonlinear ordinary differential equations has been 

investigated by mathematicians for centuries . H owever, it has only 

been in recent times that the engineer and the applied theoretician have 

developed an interest in this area. One major reason for this interest 

is that it is not always possible to neglect nonlinearities in many of 

today's complex problems. In situations where a more detailed under-

standing of the qualitative and quantitative behavio r of systems is 

desired, it is often n eces s ary to include nonlinea r effects. Although 

nonlinear equations have occupied the mathematician for quite some 

time, the techniques a vailable for obtaining exact clos e d fo rm solutions 

are rather limited. Under suitable conditions, existence and uniqueness 

of solutions can be proved, but for only a relatively small numbe r of 

nonlinear equations are the exact solutions known. A good treatment 

of the existence and uniqueness issue is given in reference (1 ). 

The inability to obtain exact solutions h a s n ece ssitated the 

development of approximate analysis for studying nonlinear problems. 

This analysis may loosely b e divided into two categories: topological 

methods and a pproximat e solution m e thods. The former usually 

involve phase plane or functional analysis methods. The Poincar~ 

theory(Z )for the singular p oints of two-dimensional autonomous systems 

a nd the S -econd M e thod of Liapunov (
3

)for the stability of nonlinear 

systems are example s of topological methods. Approximate s·:i lution 
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methods, on the other hand, usually involve obtaining closed form 

approximate solutions for the nonlinear system of interest. Typical 

examples of this category are the Poincar~-Linstead perturbation 

technique(4 )and the asymptotic methods of Krylov, Bogoliubov, and 

Mitropolsky ( 5 ). 

With the increased speed and flexibility of today's digital 

computers, one might be tempted to say that the usefulness and 

importance of approximate analysis have virtually been eliminated. 

However, a strong case can still b e made for approximate analysis. 

It is true that, if accurate quantitative results are desired for specific 

cases, the computer is the tool to be utilized. However, if the general 

behavior of the solution is of interest, the computer can become cum-

bersome and quite expensive. It is difficult to determine trends and 

the dependence of the solution on differential equation parameters 

using a digital computer. It is usually necessary to calculate a large 

nunlber of cases , and, even then, it may be difficult to determine 

whether or not some phenomenon or characteristic is being overlooked 

or concealed. Therefore, if it is possible to perform a meaningful 

approximate analysis, the behavior of the solution is usually more 

easily determined. Once the general nature of the solution is known, 

the computer may then b e us e d to obtain accurate quantitative results 

if desired . Therefore, the importance of approximate analysis has not 

been diminished by the digital computer. On the contrary, it has been 

increased since a good understanding of the b asic phenomenon is al-

ways desirable prior to utilizing the computer. 
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The present investigation involves an approximate technique 

which may be classified as an approximate solution method. The 

approach, called the equivalent equation approach, was presented in 

several recent papers by Iwan (
6

, ?)and is designed to provide approxi-

mate periodic solutions to nonlinear systems. The technique is a 

generalization of the method of equivalent linearization and is based on 

defining an alternative or auxiliary differential system whose exact 

periodic solution is known. 

Most standard approximating techniques involve assuming a 

certain solution form containing unspecified parameters. These param-

eters may be prescribed by minimizing, in some sense, the error 

residual obtained by substituting the assumed solution into the original 

differential system. Since periodic motions are of interest, the usual 

solution form involves linear combinations of trigonometric functions. 

Typical methods which fall into this class are: The Poincare'-Linstead 

perturbation technique (4 ), Krylov-Bogoliubov-Mitropolsky asymptotic 

methods (S), Galerkin's technique ( 9), and the methods of collocation, 

bd . d l (l O) 0 . i· . . su omain, an east squares . ne maJor imitation on most of 

the above techniques is that the usual first order approximation they 

provide is accurate only for equations which are nearly linear. In-

creased accuracy is possible by including more terms in the 

approximation, but the additional computational effort required rapidly 

becomes excessive . Therefore, there exists a need to develop tech-

niques which yield more accurate results for equations containing 
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m.oderately large nonlinearities and which, at the same time, involve 

levels of computational effort corriparable to the standard first order 

techniques. 

Various other authors have utilized non-trigonometric solution 

forn1s in order to achieve rr1ore accuracy. Eringen postulated a gener­

alized Galerkin 1 s procedure utilizing non-trigonometric solutions(ll). 

Klotter and Cobb used a polynomial approximation to represent the 

quarter period wave form(lZ), The parameters were determined 

utilizing Galerkin1 s procedure. Recently, Barkham and Soudack used 

solution forms which i1111dve Jacobian elliptic functions(l3, 14). Their 

technique utilized the method of slowly varying parameters and enabled 

transient behavior to be analyzed. However, they make several sim-

plifying assumptions which detract from the rigor of the approach. 

Furthermore, their results apply only to second order equations which 

are "Duffing- like". The equivalent equation approach is like the above 

in that it represents an attempt to provide an unambiguous technique 

for systematically treating equations containing moderately large 

nonlinearities. 

The idea of using one differential system to model another 

differential system is not new. The method of equivalent linearization 

has been an accepted approximate technique for quite some time. 

Various authors have suggested modifications but these mainly concern 

the manner in which the linear system is made equivalent to the original 

system. The standard method(B)minimizes the mean square differential 

equation error . Denman and Liu have suggested using an ultrasphe rical 
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polynomial approximation where the nonlinearity is expanded in a 

. f 1 h . 1 1 . 1 ( 1 5• 16 ) 0 1 h 1. series o u trasp er1ca po ynom1a s . n y t e inear term is 

utilized, and, therefore, an e quivalent linear system is generated . 

An example of using a nonlinear auxiliary system was given by 

Helfenstein (I?). He utilized Duffing' s equation with Jacobian cosine 

excitation to model Duffing's equation with trigonometric cosine 

excitation. However, the equivalent system is obtained by merely 

equating the coefficients of all like t e rms. This idea of using one 

nonlinear system to model another nonlinear system was the moti-

vating factor in the development of the equivalent equation approach. 

By using nonlinear auxiliary systems, it is felt that better approxi-

mations could b e obtained since some of the features peculiar to non-

linear problems would be incorporated into the analysis in a ve ry 

natural manner. 

A complete description of the equivalent equation approach is 

given in Chapter II. As stated earlier, the approach is based on de-

fining equivalent differential e quations whose exact periodic s olutions 

are known. B y de v e loping an alternative differential equation which is , 

in some sense, equivalent to the original system of interest, it is 

hoped that the corresponding periodic solution will also be equivalent 

to the exact solution of the o riginal system . To illustrate the t echni-

que, Section 2. 2 presents an example whe r e the equivalent equation 

approach is used to obtain an approximate periodic solution to the un-

dampe d Duffing 1 s equation with trigonometric excitation. The auxiliary 

system utilized is Duffing 1 s e quation with Jacobian cos ine excit a tion . 



In Chapte r III, the relationship be tween the differ<~ntia l 

equation error (the differe nce between the original system and the 

equivalent system) and the solution error (the difference between the 

exact periodic solution and the s elution of the equivalent system) is 

investigated . Under certain conditions, bounds are obtained on the 

solution error in terms of the differential equation error. The tech-

nique employed is to consider the equation governing the exact solution 

error as a two point boundary value problem. Rewriting the problem 

as an integral equation and using the Green's function, the method of 

succes sive approximations is applied to obtain a bound on the exact 

error. Among other things, the above analysis indicates that if an 

exact periodic solution to the original system exists, it is always 

possible to bound the error by selecting an appropriate equivalent 

system. Other authors have obtained results similar to those pre-

. .(18 19) (20 21 22) 
sented 1n Chapter III. Some are Cesari ' , Urabe ' ' , 

. (23 24) (2 5) (26) 
McLaughlin ' , Holtzman , and Lazer . Unfortunately, 

most of the above consider either weakly nonlinear equations or 

specific auxiliary systems. The present analysis attempts to be more 

general by considering two arbitrary differential systems. That 

research which seems to be most closely related to the present 

work is discussed in Section 3 . l. 

Section 3. l prese nts an error bound analysis for first order 

n-dimensional vector systems. A discussion of autonomous systems 

is included which shows that the successive approximations techniques 

never apply to non-trivial periodic solutions of autonomous systems. 
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In Section 3. 2, the results arc specialized for the case of 

second order scalar equations. Furthermore , the Green 1 s function 

used in Section .3 . 1 is associated with the unique linear part of the 

error differential equation. In general, this equation contains periodic 

coefficients which makes the determination of the Green's function 

very tedious. To avoid this difficulty the problem is reformulated 

utilizing the Green1 s function for a system with c onstant coefficients . 

These coefficients are then selected by minimizing the resulting error 

bound. 

Section 3. 3 presents an example where the theory of Section 3. 2 

is applied to the example considered in Section 2. 2, i .e. , the trigo­

nometrically excited undampe d Duffing' s equation. Bounds are 

obtained for both the linear and cubic approximations. 

An example of a conservative autonomous system is considered 

in S~ction 3. 4. As mentioned above, the theory of Section 3. 2 yields 

very little information concerning autonomous systems. Consequently, 

an alternative comparison technique is developed for second order 

scalar conservative autonomous systems. The autonomous example 

considered is the undamped Duffing' s equation. 

The manne r in which an alternative system is made e quivale nt 

to the original system is examined in Chapter IV . Various e quivalence 

criteria are compared; namely, minimization of the mean square d if­

ferential equation error, minimization of the mean absolute value 

differential equation error, and minimization of the maximum absolute 

value differential equation error. The errors are minimized with 
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respect to parameters appearing in the auxiliary system. The above 

errors were selected because of their physical relevance and their 

relation to the error bound analysis performed in Chapter III. 

Since it was of interest to determine which equivalence cri-

terion yielded the smallest actual solution error on the average, it 

was impossible to use analytical techniques to investigate the problem. 

Therefore, the problem is analyzed by way of example, and it is 

concluded that, on the averag~ the minimum mean square error is 

the most appropriate equivalence criterion to use. 

In Chapter V, a comparison is made between the linear and 

the cubic approximations for second order scalar systems. The 

general approximations are developed, and the determining equations 

are presented. The two approximations are compared by way of 

example. The specific examples considered are Duffing' s e quation 

with trigonometric excitation, and a system of the form 

~+ ~l x =F cos (wt) . 
l+a.JxJ 

( 1 . 1 ) 

In both cases, the cubic approximation provides considerable 

improvement in solution accuracy over the linear system. In addition, 

in the second example there exists some indication that the c ubic ap-

proximation, which is, primarily, a harmonic approximation, is 

trying to yield some information about the ultraharmonic behavior 

of ( 1 . 1). 

In Chapter VI, a brief comparison is presented between the 

equivalent equation approach and various other classical approximate 



-9-

techniques. The techniques considered are collocation, subdomain, 

least squares, and Galerkin' s procedure. The relation of these tech­

niques to the general method of weighted residuals (
2 7 l is included. 

In Section 6. 2, some peculiarities associated with the method 

of least squares are presented. Examples are considered which 

illustrate that the method of least squares may generate extraneous 

approximate solutions. These solutions correspond to maximums of 

the mean square differential equation error instead of minimums. 

Similar difficulties may arise with other techniques , such as the 

equivalent equation approach, which are based on an averaging 

principle. However , if the diffe rential equation parameters appear 

linearly in the differential equation error, which is often the case, 

the e quivalent equation approach always generates solutions which 

minimize the differential equation error . 
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II. EQUIVALENT EQUATION APPROACH 

In this chapter, the Equivalent Equation ~roach is presented . 

The description closely parallels that given by !wan ( 6 ) . An example 

of the use of the technique to obtain an approximate periodic solution 

for the undamped Duffing' s equation with trigonometric excitation is 

incluclcd. 

2 .1. Description of the Technique_ 

Consider the problem of obtaining an approximate solution for 

the periodic motions of a system of ordinary differential equations . 

The system of interest, called the original system, will be repre-

sented as 

D(~(t), t) = _Q (2. 1) 

where D is a vector system which may contain differential operators 

operating on the dependent vector x and functions of the independent 

variable t. F'urthcrmore, (2. I) is as sumed to possess periodic 

solutions with least period T . For nonautonomm.1s systems, T may 
s s 

b e prescribed by the excitation, but in the case of autono1nous systems , 

T may be an unknown of the problem. 
s 

In order to obtain an approximate solution of (2. I), consider 

another system of equations, the auxilia!_Y ~tern, repres e nted as 

D-:<(~(t),a1 ,az, ... ,ar,t)=_Q (2 . 2) 

where a . (i=l, ... , r) are parameters of the equations. Let (2 . 2) have 
l 
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known periodic solution forms that are members of some class of 

functions C having the form 

~(t) = y([31' ... '[3s' t) (2. 3) 

where (3 . (j=l, ... , s) are parameters which define the members of C. If 
J 

the solution of (2. 2) is unique, there will exist s relations between a. 
1 

and [3. which come directly from (2.2) plus any periodicity and/or 
J 

initial conditions that may apply. Knowledge of the a. (i=l, ... , r) implies 
1 

a unique determination of the [3.(j=l, ... , s), but the converse is not 
J 

necessarily true. 

It is possible to obtain an approximate solution of (2. 1) by 

using the solution of an auxiliary system (2. 2) where the auxiliary 

system is chosen to be as "close'' to the original system (2. 1) as 
I 

possible. By close, it is meant that the equations comprising the 

original system and the auxiliary system are very similar in form. 

It is then hoped that, by making the difference in the governing 

equations small, the difference in their respective solutions will also 

be small. In Chapter III, the nature of the relation between the dif-

ference in the governing equations and the difference in their solutions 

is investigated, and the following statement is proved . 

"Under certain conditions, given any bound on the difference 

between the solutions of the two differential systems (2, 1) and (2. 2.), 

it is always possible to select an auxiliary system (2. 2) such that the 

magnitude of the actual diffe r e nce between the solutions is less than 

the prescribed bound." 
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Motivated by the above argument, one may select certain of 

;~ 

the parameters a.(i=l, ... , r} so as to make some of the terms in D 
1 

identical in form to· terms in D. Let 

* * D (x(t}, a
1

, ... , a. , t} = D
1 
~(t}, a1 , ... , a , t} + 

- - r - p 

* .!?2 ~(t}, ap+l •. .. , ar' t) 

and 

D~(t}, t} = p
1 
~(t}, t} +p2 ~(t}, t} 

where a. (i=l, ... , p) are selected so that 
1 

' (2. 4} 

(2. 5} 

(2. 6) 

The additional a.i (i=p+l, ... , r} parameters are determined in some 

manner so as to minimize the remaining difference between D~ and D 

for all members ~the class C; i.e. for all~(t} having the form 

x(t} = y(t} . where y(t) is notation for y( f31 ' ... ' 13 ' t). - s 

Define the differential equation error 2(t) as the difference 

~'< 
obtained between D(x(t}, t} and D (x(t}, t} when both are evaluated at the 

solution form y(t}. Then, 

* ~(t} == f>(y(t), t} - Q (y(t}, t) (2. 7) 

:;::;: 

In (2. 7), Q (y(t}, t) does not vanish since the s relations betw-een the 

a..(i=l, . . . , r) and the (3.(j=l, .. . , s) have not been utilized. Using (2.4), 
l J 

(2. 5), and (2.6), equation (2. 7) can be written as 

~'< 

e:(a. +
1

, . . . ,a. ,t) = D 2 '"(t},t)- D 2 (y(t),a +
1

, ... ,a ,t). -p r _u: - p r (2. 8) 

whe r e the explicit d e pendence of e: on the a.(i=p+l, ... , r) is indicated . 
- 1 

The parame t e rs f3.(j = l, ... , s} are to be considered a rbitrary in (2.. 8) . 
J 
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The et. (i=p+l, ... , r) are now selected so that (2. 8) is minimized . 
l 

However, there are many ways that (2. 8) could b e minimized depe n d ing 

on the specific type of minimization desired . For exa mple, the maxi-

mum norm of g_ could be minimized, or the mean value of the norm of 

_£over one cycle of the motion could be minimized, or € c ould be made 

to vanish at certain preselected points. In Chapte r IV, approximations 

obtained by using these various minimization conditions are compare d. 

As expected, no one minimization condition gives the "be st" approxi-

mation in all cases . However, it may be concluded, in a very broad 

sense, that the optimum minimization criterion is 

1 
T 

s 

tl+Ts . J _?' ~dt = minimum 

tl 

(2. 9) 

where T denotes the transpose, and t 1 is an arbitrary time. Since the 

minimization of the integral is with respect to et.(i=p+l , . . . , r), (2. 9) is 
1 

equivalent to 

[ 

t +T J o I 1 s T __ I € e:dt = o 
oa. T - -

1 s t 
. 1 

i =p+l, . . . , r . 

Since T does not depend on a . (i=p+l, .. . , r) (remembering that the 
s 1 

j3.(j = l, •.. , s) are still arbitrary), (2. 10) becomes 
J 

ll+Ts[ ~~ ~+_fT~~-J dt=O, i=p+l , .. . ,r 
1 l 

t1 

(2. 1 O) 

(2 . 11 ) 

Because the s relations between the Ct.(i=l, ... , r) and the f3 . (j=l , ... , s) 
l J 

have not yet been utilized, equations (2 . 6) and (2 . 11) provide relations 
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which <h~tennine the auxiliary 1:1ystcm paran1eter1:1 a .. (i I, . . . ,r) which ar .. · 
1 

valid for all members of C. If these s relations are now introdui : .~d . 

equation (2 .11) can be further reduced. Since the differentiation in 

equation (2 .11) is with respect to explicit a.(i=p+l, ... ,r), the derivatives 
i T 

T * of £ may be expressed, using equation (2. 8), in terms of D 2 (y(t), 

a 
1

, ... ,a , t) only ·. Furthermore, E: tnay be expressed in ter1ns of p+ r -

* D(y(t)) only from equation (2 .7). D (y(t),t) vanishes once the s relations 

are utilized. From the above considerations, equation (2 .11) becomes 

J
tl+Ts 8 [ ,:;I' J . 
~ _!?2 (y(t), ap+l" .. , ar' t) D(y(t), t)dt = 0 , i =p+l_, ... , r. (2. 12) 

t 1 
1 

It is as surned that the relations in (2 .12) will be of such a form 

that it is possible to determine the a'lL"<iliary system parameters 

a.(i=p+l, ... , r) and j3.(j=l, ... ,s) so that meaningful approximate solutions 
1 J 

and equivalent system equations are obtained. The values of the para-

meters generated by (2 . .12) correspond 1o extremums of the mean square 

error (2 . 9). These extremums may be either maximums or minimums . 

Care must be taken to select only those values of er .• (i=p+l, . .. , r} and 
1 

13. (j = l, ... , s) which minimize (2. 9) . If the weight functions 
J 

ar':;r .., 
W.(t) ::: ~I D 2 (y(t), a +I' .. . , a. )j, i =p+l, ... , r , 

1 ai - p r 
(2 . 13) 

are independent of a..(i=p+l, . . . , r}, it can be shown that all solutions 
1 

generated by (2 .12) correspond to minimums of (2 .9) . This situation 

occurs if € is linear in the a.(i=p+l, ... ,r), which is often the case. 
- 1 

However, if the W.(t) depend on some of the a.(i=p +l, ... , r), various 
1 1 

anomalies may arise. For example, 1) no approximate solution may 
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be generated, even though an exact solution exists, or 2) some 

extraneous approximate solutions could be introduced, or 3) a com bi-

nation of 1) and 2) above could occur. This particular p oint is investi-

gated in more detail in Chapter VI, where the equivalent equation 

approach and the method of leasr squares are comparld. It suffices 
a ,.J' 

at this point to assume that -<:1- D
2
''' (_y(t), a 

1
, ... , Cl ,t) (i=p+l, .. . , r) are 

U(l. - p + r 
1 

of a form that provide meaningful approximate solutio::is. 

Let q be the number of independent equations gene rated by the 

minimization condition (2 .12). Then, if q =r-p, the equations from 

(2 .12) plus the s relations from the au_~iliary system (2 .2) combined 

with the p pres e lected parameters a.(i=l, . .. , p) satisfying (2. 6 ) will 
1 

determine all of the parameters a .(i=p+l, . . . , r) and P.(j=l, ... , s). One 
1 J 

obtains not only a:i:i approximate solution) but also an "equivalent" 

auxiliary system. This additional information m~y be quite usefu l. 

For example, it rriight be of interest to know the e quivalent mass or 

the equivalent excitation level or the equivalent stiffness of s01ne ori-

ginal system, and the equivalent system approach would provide an 

auxiliary system whose behavior, presu1nably would be better unde r-

stood. If q < r-p, it means that there are not enough independent 

relations to determine all of the parameters, and that an additional 

r-p-q relations have to be supplied . There are s eve r al ways in which 

these additional relations may be obtained. One approach might be to 

simply prescribe an additional r-p-q parameters in the auxiliary 

system. However , depending on the specific parameters being pre-

scribed, fewer relations might be obtained from t he minimization con -

dition (2 . 12), and, conse quently, more auxiliary syste1n paramete rs 
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would have to be specified until enough independent equations were 

obtained to determine all of the a..(i=l, ... , r) and 13.(j=l, .. ., s). An 
l J 

alternative approach to prescribing additional auxiliary system 

parameters is to generate an additional r-p-q equations from the q 

equations resulting from (2. 12) . Consider an alternative form of 

equations (2 .12), 

* ~ -Q2 (y(t), a.p+l' .. . , ar)}dt = 0 , i=p+l, ... , ' (2 . 14) 

which is obtained by using equations (2 . 4), (2 . 5), (2.6) and the s 

relations for the auxiliary system. In general, any differential 

system Q contains terms which can be put into the following 

categories: l) terms containing only the highest order derivative of 

the vector function~·(_!?~; 2) terms containing only lower order deri­

vatives of ~.(_D)B; and 3) terms which depend only on the independent 

~' 
variable t, (D)C. If Q2 and Q2 are both separated into the above terms , 

equations (2. 14) become 

where the functional 

+<!?z)c-(!?;)c]dt=O , i=p+l, . .. , r, (2 . 15) 

dependence of D 2 and n; has been dropped for 

brevity. It is now possible to generate more equations by r e quiring 

that the individual terms in some of the equations vanish instead. of t h e 
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entire combination. Utilizing this approach, (2 .15) may be decomposed 

to give 

(2. 16) 

' 
where i can take on as many values in the set p+l, ... , r as are needed to 

generate enough equations so that all of the auxiliary system p a rame-

ters a.(i=l, ... ,r) andf3.(j=l, . .. ,s) can be determined. D e pending on 
l J 

::c 
the specific D and~ chosen, certain of the equations in (2 . 14) will 

lend themselves more naturally to the type of s e paration given in(2 .16). 

Equations (2 .16) have a physical interpretation as well. By separating 

terms, one is attempting to represent certain types of tenns in the 

original system by the same type of terms in the auxiliary system; 

-·· 
that is, one is asking that the highest derivative terms in~; model 

the highest derivative terms in ~z· and that the terms depe!lding only 

>!' 
on t in D

2 
model the terms depending only on t in ~2 , e tc . If the 

separated equations (2 .1 6 } still do not provide sufficient equationa to 

determine the auxiliary system parameters, it is pos sible to further 

divide the ter1ns in D into inorc categories. In t:hi:3 way, it is always 

possible to generate a s ufficie nt nu1nber of equationd to d1 •h· rin ine <.1. I l 

of the a .. and 13 . . 
1 J 
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The problem of determining the solution parameter s f).(j :: l , . . . , s) 
J 

>!< 
is simplified considerably if Q2 is a linear function of a.i (i=p+l, ... , r) 

and q=s. In this case, (3.(j=l, ... , s) may be determined directly from 
J 

equations (2. 12) without using the differential equations (2. 2) or fir st 

determining the parameters a.. (i=p+l, ... , r) . This would certainly b e 
l 

* the case when!? is a set of linear differential equations with constant 

coe fficients o..(i=l, ... , r) and the class C contains the l e ast number of 
l 

functions necessary to describe the periodic solution. The above 

formulation then becomes a generalization of the method of equivalent 

1. . . ( 8 ) h . inear1zation . However, t e equivalent equation approach is not 

restricted to using only linear auxiliary systems. Indeed, one of the 

more important aspects of the equivalent equation approach is that it 

allows for the possibility of using one nonlinear syste m to mode l 

anothe r nonlinear system . 

The similarity in the form of equations (2 . 12) to those obtained 

by application of Galerkin's method is apparent ( 9 ) . In fact, the two 

approaches can give identical approximations de pending on the set of 

trial func tions used in Galerk.in's method . This point i s considered in 

more detail in Chapter VI, where the two technique s are compared. 

In general, however, the results of the equivalent equation approach 

will differ from those of Galerkin's method. 

As noted earlier, the present approach is essentially that of 

defining an equivalent system for the set D. As such, the j3. (j=l, ... , s) 
J 

remain arbitrary in equation (2. 8), and £has the significance of a 

difference term. The functional relationship between a..(i=l, ... , r) and 
l 
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13.(j=l, .. . , s) is not introduced until (2 .12). However, it is clear from 
J 

(2. 8) that ~ could also have been thought of as the error residual of 

the set of equations D'"(t), t) if the r elations between a.(i= l, ... , r) and _u. l 

13.(j=l, . .. , s) had been used at that earlier stage of development. In 
J 

this way, £ would no longer have been an explicit fu."lction of 

a.(i=p+l, ... , r), and, consequently, the minimization specified by (2. 9) 
1 

would have been made with respect to the solution parameters~(j=l, ... ,s). 

This is the so called method of least square s ( 1 O). Although the two 

approaches appear to be very similar, they can lead to quite different 

results even for the same class of approximating fun c tions y_. In fact, 

the present approach will usually result in a clea ner inathema.tical for-

mulation since the a. (i=l, .. ., r) normally appear quite simply in the well 
l 

behaved auxiliary equations whereas the 13.(j =l, ... , s) frequently appear 
J 

in a complicated manner in a nonlinear !2(y(t), t). This complicated 

nature leads to some fundamental difficulties with the method of least 

squares related to generating meaningless approximate solutions as 

described previously. This difficulty is investigated in lnore d e tail in 

Chapte r VI where the method of least square s and the e quivalent 

equation approach are compared. 

2 . 2 . Exal!:P. le . 

In the prev ious section, the equivalent e quation approach is 

developed and discussed. In this section, the use of the technique is 

illustrated by way of an example. 

Consider the problem of finding an a pproximate p e riodic 

solution to the undampe d Duffing 1 s e quation with trigonorn1:~tric exci ta tion. 
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In this case, the original system may be writte n in the form 

.. 3 
D~(t), t) = x +ax+ bx - B cos (wt)= 0 , (2. l 7) 

where dots denote differentiation with respect to t, and a, b, B, and w 

are constants. As an auxiliary system, choose 

(2. 18) 

where a.
1

, CXz, a..y ri. and k are constants and en (u, k) is the Jacobian 

elliptic cosine function with modulus k. Since the forced response of 

systen1 (2. 17) is of interest, the response will possess the same period 

as the excitation. Consequently, TJ is selected so that the periods of 

the excitations in (2 . 17) and (2. 18) are the same. Therefore, 

.,.., -­
• I --

2K(k)w_ 
tr 

(2 . 1 9) 

where K(k) is the complete elliptic integral of the first kind. In an 

attempt to make the original system and the auxiliary system similar 

in form, prescribe a.
1 

and o.z such that 

a.1 = a and a.2. = b (2 . 20) 

Then, the auxiliary system becomes 

>l< •• 3 
D ~. a., t) = x+a:x;+bx - a. en (TJt, k) = 0 , (2. 21) 

where the subscript on a.
3 

has been dropped for convenience. 

The exact steady- state solution of (2. 21) is of the form 

y = ~ en (7'Jt, k) (2. 22) 
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where the frequency is the same as that of the excitation. Satisfaction 

of the differential equation (2. 21) requires 

b 133 + ( 1 - r,Z )13 - a: = o 

bj32 
? 

Zr( 

Referring to equation (2. 8), the difference term t: is 

(2. 2 3) 

€(t. a:)= B cos (wt) - a: en (1lt. k) . (2. 24) 

Hence, minimization of € is with respect to a.. Applying condition 

(2. 12) gives 

T /4 

J
0 

s cn(11t.k{13(a-T)
2

(1-Zk
2

))cn('T]t.k) 

3 ") 2 3 J + (bj3 - Zr(k j3) en (T)t. k) - B cos (wt) dt = O • (2. 2 5) 

w h ere t 1 was set to zero. and the symmetry of the integrand was used 

to replace T by T /4 . The integrals involving the en functions are 
s s 

available(2 S). The integral involving the en and the cos functions may 

be evaluated by first expanding the en function in a Fourier series(3 b) 

and then using the orthogonality of the trigonometric functions to show 

that only one term in the expansion makes any contribution. When 

these results are substituted into (2.2 5 ), the relation becomes, for 

b> o. 

~(a-ri2 +bl32)(E(k)- (l-k
2

)K(k)) 
T)k 

Hrr
2 

4wkK(k) (
1TK(k') ) -

sech ZK(k) - 0 , (2. 2 6 ) 
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where E(k) is the complete elliptic integral of the second kind and 

k' = (l-k
2

)
112 

is the complimentary modulus. Equations (2. J 9) and 

(2. 2 3) may be used to eliminate the dependence of T] and w giving 

3 
~ ( 1 - 2 ~2 ) + fjz:) (E(k) - k'

2
K(k)) 

B1T (1TK(k'))-- 2 sech 2 K(k) - 0 (2. 2 7) 

When bis negative, k is pure imaginary, and the reduction of (2. 2 5) 

gives 

B1Tkl (1TK(k.'1 ) ) 
+ 2 csch lK(k ) = 0 , 

1 
(2 . 2 8) 

where k
1 

= r(l + r 2 
)112 and k = ir . The most efficient procedure for 

obtaining a frequency-response curve is to first assume a value of 

k (or k 1 , if bis negative), then obtain J3 from equation (2.27) (or(2 .28) 

if b is negative), use equation (2. 23) to determine T], and then finally 

use equation (2. 19) to calculate w . If b is negative, equation (2. 19) 

and (2. 23) become 

I 

(2 .1 9) 

and 

b 133 + ( 1 - ri
2

) J3 - a.= 0 

~2 
') 

2 Tl'-

(2 .2 3) I 
2 

r = -

where k
1 

and rare defined in (2.28) . 
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An indication of the accuracy of the cubic approximation may 

be obtained by considering some specific examples. Figure l shows 

the steady- state response amplitude f3 as a function of excitation 

frequency w for B = 0 .1, b = 0.1, and a= 1 .0. Also shown is the approxi-

mation obtained using equivalent linearization. Several exact solution 

points were obtained using direct numerical integration of (2. 17), and 

these are also included in the figure . It will be noted that the cubic 

approximation shows considerable improvement over the usual first 

order approximation particularly for frequencies significantly different 

from one. This is not surprising since most of the standard solution 

techniques require b to be a small number, B to be of order b, and 

2 
1-w also to be of order b. On the other hand, the accuracy of the 

present approach is primarily a function of the magnitude of B and 

only indirectly a function of b and w. When B approaches zero, the 

cubic approximation gives an exact solution of the original system 

while the equivalent linearization solution obviously does not. The 

b . . t' . . ·1 . - t h b . . (b) cu ic approxima ion gives simi ar improvemen s w en is negative . 

Recently, I wan (7 ) studied Duffing' s eq~ation with linear viscous 

damping and showed that an equivalent cubic approximation describes 

the steady- state behavior much more accurately than the usual 

approximation obtained using equivalent linearization. 

• 
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III. ERROR BOUND ANALYSIS 

In this chapter, the relationship between the difference of two 

systems of differential equations and the corresponding difference in 

their respective solutions is examined. The first section deals with 

two first order n-dimensional vector systems, and a bound i s obtained 

on the norm of the differe nce between the two solutions. The s econd 

s ection treats a special subclass of v e ctor systems, n a mely se cond 

order scalar equations, where sharper estimates can b e made and 

better results can be obtained . Sections three and four are devoted to 

examples which illustrate the use of the theory to obtain bounds for 

nonautonomous systems (Section 3. 3) and conservative a uton omous 

system (Section 3. 4) . 

3. 1. Error Bounds for General Vector Systems . 

B e for e e nte ring into the details of formulating the probl em 

a nd deriving bounds, it is convenient to introduce some notation which 

will prove use ful throughout the analysis . 

Notation 

The norm of a vector~· denoted by II~ 11, is a scalar function 

that provides a measure of the m a gnitude of~ . A valid norm is any 

scalar function of~ satisfying the following conditions : 

i) 11~ II~ o • 

ii) llx ll = 0 

n 
for all~E E , 

iff x = 0 
(3 . 1) 



iii) ll~+yll $II~!! + 11 yl! 

iv) llc~ll = le I 11~1! 
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n 
for all~· y_E: E , 

for any real scalar c 
n 

and all xE:E , 

(3. l) 
cont. 

where En denotes n-dimensional Euclidean space . Corresponding to 

each valid vector norm is an associated matrix norm. The norm of 

a matrix A, denoted by llA II, is a scalar function that indicates the 

magnitude of A. A valid vector along with an associated matrix norm 

satisfy the following relations (
2 9): 

i) llA+Bll s llAll +II Bil, for all nxn matricies A and B, 

ii) II AB II ~ II A II llB II for all nxn matricies A and B, 

11 cA II == lcl llA II 
(3 . 2) 

iii) for any real scalar c and any 
matrix A, 

iv) llA~ll ~ llAll II ~11 for any nxn matrix A and any 
vector xEEn , 

It should be noted that the appropriate matrix norm associated 

with any specific vector norm is not necessarily unique. For any 

valid vector norm !12£11, an associated matrix norm may always be 

defined by (2 9 ) 

II A II =max II AJEll, 

II 2!:11=1 

for all vectors xE:En satisfying II~!!= 1 . 

norms and associated matrix norms are: 

n 

i) 11.?Ell = l lxi I and 

i=l 

n 

II A II == \' I a. · I L lJ 
i, j =I 

(3 . 3) 

Examples of valid vector 

(Taxicab norm); 



ii) 11.~11 = ( 
y12 

iii) II~ II = m~x I xi I and 
l 
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(Euclidean norm); 

(Max imum modulus 
norm). 

The following analysis is done using general vector and matrix norms, 

the only r e quirement being that they satisfy (3 . 1) and (3 . 2). 

Formulation 

Let R be a domain in En and L be the real line. Consider the 

problem of finding an approximate periodic solution for the system 

dx 
-= = F(x 'T) d'T _, (3. 4} 

where x and F are n- dimensional vectors, !' is pe_riodic with period 

T
0 

for fixed x, and£(~, r) is C
1 

for ~ER and CO for TEL. (Actually, 

this condition can be relaxed to F being c 0 
for ~ER and TEL and F 

satisfying a modified Lipschitz condition in.x. This point is discussed 

in the section on generalizations following the basic a n a lysis.) The 

period T
0 

need not be the least perio4_ of F(~}T ) . In general, (3 . 4 ) 

possesses a periodic solution with period T
0

, but it may a l so possess 

other periodic solutions having periods different from T
0

. Assume 

that the periodic solution of (3. 4) with period T is of interest . For 
s 

~{ r) to actually exist, Ts cannot be completely independent of T 0 . 

Since x ('T) h as period T , dxd(T) also has p eriod T , and, consequently, 
- s 'T s 

g~, 'T) is periodic with p e riod Ts . Therefore, !' (~ ('T), 'T) = 

· F(~(r}T8 ), T+Ts) =.I ( ~( T), 'T't-Ts) i. e . .I( ~( T), r) is p e riodic in T for 

. -· . 
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fixed x with period T . From above, it rrust happen that T = n T
0 

for 
- s s 

n=l,2, . . . . If n=l, the solution is called the harmonic solution; the 

solution having the same period as the least period of the excitation. 

Inn >-2, the solution is called a subharmonic solution of order n. 

From the periodicity requirement on .f(~, T). it is clear that there 

exist no solutions with periods satisfying T
0

= j Ts for j=2, 3, .. . 

Therefore, no periodic solution exists having a period less than the 

least period of the differential equation. If!'(~, T) is an autonomous 

system, it possesses all periods in T, and consequently it may p ossess 

solutions with all periods. For example, if there exists a constant 

vector c such that!'(.£)= _Q, then ~(T) =~is a solution possessing all 

periods . 

It is possible to obtain an approximate periodi c solution by 

considering an auxiliary system which is represented as 

(3. 5) 

where a..(i=l, . . ., r) are parameters of the system, y and G are 
1 - -

n-dimensional vectors, and G is periodic in T and is c 1 for _y E R and 

CO for TEL. It is assumed that (3. 5) has known exact periodi c solutions 

y(f31 , . . .,f3, T), where f3.(j =l, ... , s) are solution parame ters . Since .Y will 
- s J 

ultimately b e the approximate solution, the period of y_ is requi red to 

be the same as the period of the desired solution x. Therefore. 

y(T+T ) =: y(T). Depending on the system (3. 5) chos e n and on the parti-
-- s -

cula. r exac t solution r_ that is known, the period nf g wil I be' dete rinincd 

o n c e the p e riod of the solution is specified . T herefor e. G will be 
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pcrh>dic in T with period TA, sur. h that T
8 

., mTi\. for n1 ·: I., or 2, .... 

Again TA need not be the least period of G. The equivalent equation 

approach may now be used to determine all of the a.(i= l, .. . , r) and 
1 

f3 . (j=l, ... ,s). 
J 

Having found an approximate solution, it is desirable to obtain 

son1e indication of its accuracy. For practical purposes, any com-

parison between the exact solution and the approximate solution must 

involve only those quantities which are accessible; spe c ifically the 

differential equations, periodicity conditions, and the approximate 

solution. Thus, one is motivated to obtain differences in solutions by 

considering differences in the corresponding differential equations . 

To this end, normalize the independent variable T in the following 

manner. Since£:'(~, T)..Q(_y, T),~(1") and _y(T) are all periodic with 

period T , let 
s 

T = tT s 
(3. 6) 

Then all derivatives with respect to T can be written in terms oft as 

d 1 
-(·) = 
dT T 

s 

d -(·) 
dt 

Using (3 . 7), equation (3. 4) becomes 

dx - = f(x; t) 
dt --

(3. 7) 

(3 . 8) 

where !_5,::_. t) =Ts!'(~, Tst), and .!J~, t) is periodic int with period 1 . 

Equation (3. 5) becomes 

d_y _ = _g(_y, a 1, ... , ar, t) 
dt 

(3. 9) 
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where .B '- '1'8~. and .8_ is pe .ri<.>dic int with period 1. It is cl<~a r that .f.. 

and ~ possess the san1e continuity and differentiability pr ope rtie s as 

do F and G respectively. The approximate solution y is now periodic 

in t with period 1. 

Denoting the difference between ~(t) and y(t) by x:_(t), th<m 

~(t) = ~(t) - y(t) (3. 1 O) 

Differentiating (3. 1 O) and using equations (3. 8), (3. 9) and (3. l 0), the 

equation for the exact solution error ~(t) is 

dz = ~~+y, t) - g(y, t) 
dt 

(3. 11) 

In general, it will not be possible to solve (3. 11) exactly. Therefore , 

it seems reasonable to try to obtain a bound on II ~II in terms of 

known quantities, specifically the differential equation error 3t) as 

defined by (2. 9). Since ~(t) and _y(t) are both periodic with period l, 

~(t) is also periodic with period 1 . Therefore, the problem for~ can 

be recast in terms of a two point boundary value problem over the 

interval 0 :5: t 5: 1 with mixe d boundary conditions 

~(O) = ~(l) (3. 12) 

The problem for ~(t) then consists of equation (3. 11) s ubject to the 

boundary conditions (3. 12) . 

In order to proceed further, it is convenient to reformulate 

the problem for~ in terms of an integral representation. Consider 

the following homogenous problem 



-31-

dSQ = A(t) _se 
dt 

SQ( 0 ) = SQ( l ) 
(3 . 13) 

where g?is an-dimensional vector and A(t) is a rum coefficient matrix 

which is c 0 
int and is chosen such that the only solution of (3.13) is 

the trivial solution SQ ::_Q. A(t) could be the Jacobian matrix ~!(_y, t) 

evaluated at the approximate solution y if it possessed the above pro-

perty of having only the trivial solution. Related to (3. 13) is an 

Associated Matrix Equation 

dZ = A(t)Z 
dt (3.14) 

where Z is a rum matrix . Let Z(t) be the principal matrix solution of 

(3 . 14) satisfying Z(O) =I, the identity matrix. System (3. 13) will have 

only the trivial solution if and only if the matrix Q, 

Q = Z(O) - Z(l) = I- Z(l) (3 . 15) 

is non- singular. Since (3. 13) has only the trivial solution, it posse se s 

a Green's function G(t, s) defined as 

t 
( t )Q - l Z ( l ) Z - l ( s) 

G(t, s) = 
Z ( t )Q - l Z - I ( s) 

, for t< s 

(3. 16) 

, for t >- s, 

-1 -1 where Q de notes the inverse of Q, and Z (s) is the inverse of Z(s), 

which is non- singular since it is a principal matrix solution. G(t, s) 

is a matrix whic h is continuously differentiable excep t at the point t =s . 
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Consider now the following inhomogenous problem 

d_se 
dt = A(t)SQ + j)(t) 

(3 . 17) 
_se( 0) = SQ(l ) ' 

where A(t) is the same matrix as in (3 . 13) and ~(t) is a continuous 

vector function . Using the Green's function defined in (3 . 16), the 

unique solution of (3. 17) can be written as 

1 

_se(t) = J G(t, s)§Js) ds 
0 

(3.18) 

The reader interested in proofs of the above statements concerning 

the e xistence of the Green's function and the validity of the r e presen-

tation (3.18) is referred to reference (30) . 

The problem for ~(t) can now be written as an integral equati on. 

Equation (3 . 11) may be written as 

d~ * dt = A(t)~+ ~t) + f (~, t) (3. 19) 

where A(t) is the same matrix as in (3. 13 ), ~(t) is the differential 

equation error 

~(t) = i(y, t) - _g(y, t) ' ( 3 . 2 O) 

and 

* .!._ (~, t) = !j~+ y, t) - _!_(y, t) - A(t)~ . (3 . 21) 

Equation (3. 19) is still subject to the boundary conditions (3 . 12) . As 

mentioned earlier, A(t) could be the Jacobian matrix ~y, t) if it 
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possessed a Green's function . It would be desirable to u::>e this mal-rix 

for A(t) since all linear terrns in~ would then l.w e liminatcd fron1 

.{\~, t), and, consequently, II{\~, t) II would be tjj~ II as 11~11-o. Using 

the Green's function (3. 16) and applying (3. 18), where _:(t) and{\~. t) 

are con side red inhomogenous terms, the integral equation determining 

z is I 

~(t) = J G(t, s)(~Js) +f (~(s), s) )ds 
0 

(3 . 22) 

It is possible to prove the existence of a solution to (3. 22) using the 

method of successive approximations and, as a consequence, a bound 

on ll3!ll is obtained. These results are presented in the form of a 
Lemma. 

Lemma 1 

Consider the integral equation (3. 22). If the following conditions 

are satisfied: 

i) ~( s) is a continuous vector function for s E [O, I J . 

ii) _{\~(s), s) is a continuous function of s for sE [O, 1 J and of~ for z 

such that ll~ II ~ o and satisfies a modified Lipschitz condition of 

the following form, 

jl{~(~ 1 (s), s>-i\~2 (s), s)!i ~k(s)\1~1 (s)-~2 (s)\I (3. 23) 

for all ~l and ~2 such that !1~1 \I ~ o and 11~2 ll ~ 5 where k(s) is a 

positive continuous function of s for s E [O, 1] . 

iii) The kernel G(t, s) in (3.22) can be bounded by 

l!G(t, s>ll ~ p(t) q(s) (3 .24) 
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for all tE [O, 1] and sE [O, 1], where p(t) is a bounded non-negative 

integrable function for tE[O, 1], and q(s) is a positive continuous 

iv) 

v) 

function for sE [O, 1]. 

1 

K=J k(s)p(s)q(s)ds<l 
0 

p(t> I 
max 

where 5 is defined in ii) and 

1 

E= J q(s>ll£.(s)\\ds 
0 

Then (3. 22) possesses an exact unique solution ~(t) and 

1 

\l~(t>ll $p(t)(l-K)-l J q(s)\l.~Js)llds 
0 

(3 . 2 5) 

(3. 26) 

(3. 2 7) 

Proof: F.xistence of a solution is shown using the method of successive 

approxiinations . Consider an iteration scheme 

z = -0 

1 

1 

r G ( t, s ) ~( s ) d s 
Lo 

~n =~ 0+ J G(t, s){""~n-l(s), s)ds 
0 

It is first necessary to show that every iterate satisfies 

II z (t) II ~ ti 
" -n .. 

n = 0, 1, ... 

(3.28) 

(3. 2 9) 

Taking norms o f the first of (3. 28) and using (3. 2 4 ), the initial guess 
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satisfies 

li~ 0 (t) II $'. p(t) E (3.30) 

where E is defined in (3. 26). But since K < 1, 

J !~0(t) 11 ~ p(t) l ( 1-K)- l E 
max 

(3 . 26) implies that 11 ~0(t) \I :s: A. To prove the general case, it is only 

necessary to show that 

n 

ll~n 11 :s; p(t) E ) Ki 
i::'O 

where K is given in (3. 2 5). Then since K < 1, the pr ope rtie s of 
n 

geometric series may be utilized to show that l, Ki < ( 1-K)- l . 

i =O 

(3.31) 

Consequently, II z II :s: r, . To prove (3. 3 1) use induc tion. Taking norms 
. -n 

of the second relation in (3 . 2 8), 11 z II satisfies 
-n 

Since ~n-l is assumed to satisfy (3. 31), it is permis s ible to use the 

Lipschitz condition (3.23). This, combined with (3.3 0)and( 3 .31), gives 

1 1 
'' ~nil $'p{t) f, q{s) 1i £(s) !!ds+p(t) r q(s)k(s)p( s ) •,• 

0 0 

1 n-1 
J0q(r)11 .~,.(r) II dr l Ki ds 

i = 0 

Combining t e rms a nd noting the definjtion of Kand E, llz II i s bounded ·n 
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n 

11 ~nll ~ p(t) E l Ki 

i = 0 

(3.32) 

which is the desired result. Therefore, (3 . 32) shows that the use of 

the Lipschitz condition (3.23) is valid for any pair of iterates. Before 

proving that the sequence of functions ~n(t)} is uniformly convergent 

for tE [ O, l], it is necessary to determine bounds on the difference 

between successive iterates. Consider the difference 

z - z = -1 -0 

l 

J G(t, s){\~0, s) ds 
0 

Taking norms and using (3. 23 ), (3. 24), and (3. 32) for n = 0, the above 

relation becomes 

l l 
11 ~1 -~0 11 ~ p(t) J

0
q(s)k(s)p(s)ds J0q(s)l~(s)\lds 

or 

11~1 - ~o II ~ p(t) KE {3. 33 ) 

Use induction to show that 

(3. 34) 

Assume that (3. 34) is va)id for n-1 and consider the norm of ~n - ~n- l . 

From (3 .28), the difference may be written as 

1 

ll~n-~n-lll = II J G(t,s)(l'(~11 _ 1 ,s)- .t (~0 _ 2 , s ))os \\ 
0 
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Taking norms under the integral and using the Lipschitz condition and 

the bound on G(t, s), the above equation becomes 

1 

ll~n- ~n-111 ~ p(t) J, q(s)k(s) l~n-1- ~n-211 ds 
0 

However, by the inductive hypothesis, 

Therefore, using the definition of K, the bound on successive iterates 

is 

Returning to the task of showing that [z } is uniformly n 

convergent, consider ~m- Zin for two integers m and n such that rn >n. 

Writing this diffe rence as a collapsing sum, 

m 

z _ z = I -m -n ( z . - z . 
1 

) 
- J - J-

j=n+l 

Taking norms and using the triangle inequality, 

m 

llz -z II~\ \~.-z . 1 11 
-m -n L J -:i-

j =n+l 

Using (3. 34), the above relation becomes 

m 

II \' Kj 11~rn -~n ~ p(t) E L 
j =n+l 
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But by assumption p(t) is bounded for tE [O, l], a nd K < l which 

implies that the sequence ~ (t)} of continuous functions conve rges 
n 

uniformly to a continuous function .!(t) for tE [O, 1] by C a uchy's 

criterion. ~(t) satisfies (3. 22 ), since the limit a s n -+ oo can be take n 

in (3 . 2 8). A bound is obtaine d on j~(t) II by taking the limit as n -+oo 

in (3 . 32). Consequently, 

l~(t)i l ~ p(t) (1-K)-l E 

Showing that the solution ~(t) is unique is relativ ely straight-

forward . Assume there exists two solutions .!i (t) and ~2 (t) satisfying 

(3 . 22), and consider their difference 

Sinc e the limit function ?; must also satisfy II~ II < 8, the Lipschitz 

c ondition (3. 2]) and (3. 24) may be used to obtain 

1 

llz2-..z.1 II~ p(t) Jo q(s)k(s>ll..z.2-£1 lids 

Multiplying by q(t), k(t), and integrating, this relation b e comes 

1 1 J q(t)k(t) 11.!z -~1 lldt s: K J q( s )k(s) \\~2 - ~1 \\ d s . 
0 0 

Since K < 1, and the integral is non-negative, the only possibility is 

1 I q(t)k(t) II~ - ~111dt=0 
0 



-39-

Since the integrand is continuous and non-negative, it n1ust vanish 

everywhere . But by assumption q(t) and k(t) arc positive for tE [O, 1 J, 

therefor e 

which implies.E.2 =.E.
1 

for tE [O, l]. Q . E.D. 

In Lemma 1, the integra 1 equation (3. 22) is considered as a. 

separate entity. However, in the present analysis, (3 . 22) is related 

to the differentia 1 system (3. 19) . Therefore, the following theorem 

applie s to system (3. 19). 

Theorem 1 

Let R be a domain in En, and l et L be the real line. Consider 

the original system 

dx 
df = £~, t) 

(3.35) 
_!(0)=_!(1) 

where .£0f, t) is c 1 
for ~ER and c 0 

for tE L, and il::lf, t) = .£0f, t + l) for 

fixed x. Consider also the auxiliary system 

d_y 
dt = _g(y, t) 

(3. 36) 
.Y( 0) = _y( 1 ) 

where _g(y, t) is C 
1 

for yE R and c
0 

for tEL, and _g is periodic in t with 

period l £.or fixed :y_. If the difference z is forrne d 

(3. 17) 
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then the diffcrentia l system governing~ is 

dz ... 
d~ = A(t)~ + £(t) + {'(~, t) 

(3.38) 

.... 
whe re {'<_~, t) = !.~+ _y, t)-i_(y, t)-A(t)~, £(t) = i_(_y, t)-_g(y, t) , and A(t) is a 

continuous matrix function oft. If the homogenous problem 

d'.SQ 
-- = A(t)rn dt ..::t: 

_sp( 0) = _sp( I ) 
(3. 3 9) 

has only the trivial solution, it possesses a Green's function defined 

by (3. 16). Furthermore, if 

,..I 
K = J k(s)q(s)p(s)ds <l 

0 
(3.40) 

(Q and Z are defined in (3 .14) and (3 .15) ), and k(s) is a Lipschitz 
... 

constant for{'·(~, t), an<l if 

p<t> I (1-K)-l Es: 5 , (3. 41) 
max 

1 
where E= J q(s)il£(s)lids and 5 defines a region 11.~l l:-;;; 5 for which 

..._ 0 
{'"(~. t) is Lipschitzian, the n the following conclusions may be reached . 

The original system possesses an exact unique periodic solution for 

~ER. Furthermore, the norm of the error ~(t) can be bounded as 

i!z(t)jj:s:: p(t)(l-K)-IE . (3 . 42) 
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>:-: 
If, in addition, .!_ ~. t) satisfies 

max II M;*(~, t) JI ~ k(t) 
1~11~ f, 

(3 . 43 ) 

the exact unique solution ~(t) is an isolated solution. (An iso l a ted 

periodic solution~ is one such that the equation of first variation 

associated with it possesses no non-trivial solution with the same 

period as~·) 

Proof: Differentiating (3.37) and using (3.35), (3 .36), and (3 .3 7), the 

governing equation for ~(t) is found to be 

dz 
dt = .!_(~+ Y.• t) - g(y, t) 

~(O)=~(l) . 

Adding and subtracting A(t)~+i_(y_, t) to the right hand side, (3. 38) is 

obtained. However, by assumption, the homogenous proble m (3 .3 9 ) 

possesses a Gre en's function . Therefore, by (3 . 18), the error z 

satisfies 1 
~(t) = J G(t, s)(~(s) +i_*(~(s), s))ds 

0 

whe r e G(t, s) is 

{
~(t)Q-l Z(l)Z-l(s) 

G(t,s) = I l 
Z(t)Q- z- (s) 

, for t < s 

, for t:<:: s 

(3 . 44) 

Z(t) is the principal matrix solution of (3. 3 9) , and Q is a non-· singula r 

matrix given by Q =I - Z(l) . 

Define 

p ( t) = II Z ( t) 11. q ( s ) = max ( II Q -
1 

Z ( I ) Z -
1 

( s ) II. II Q -
1 

Z ( s ) II ) . 

Since.!_~. t),g(y, t), and A(t) are continuous, _£(t) and .t~~. t) in (3. 3 8 ) 
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will als o be continuous. Since.£~. t) is continuously differentiable with 

"" respect to .?E•i (~, t) will also be continuously differe ntiable in~· 

~\: 

Therefore, for all II~ II:<.;; & , i (z, t) will satisfy a modified Lipschitz 

condition of the form 
., 

11.£\~2' t) - { -:< (~ l' t) II ~ k(t) 11~2 -~I Ii 

where k(t) is continuous and positive for tE [O, l]. Using assumptions 

(3. 40) and (3 . 41), it is c lear that all of the hypotheses of Lemma l 

a.re satisfied, and conse quently, (3 . 44) has an exact unique solution 

z;(t) with 

II z(t) II ~ p(t) (1-Kf 
1 

E 

Since (3. 44) has an exact unique solution, (3. 3 5) must also possess 

an exact unique solution. Since the solution of the original system is 

~ =_y+~ where .Y is a known prescribed function, ~(t) existing and being 

unique implies that ~(t) exists and is unique . 

To show that x is an isolated solution, if (3. 43) is satisfied, is 

straightforward. Consider the e qua tion of first variation of (3. 3 5) , 

d5 8f (x, t) 
dt :::~- ~ (3. 4 5) 

Adding and subtracting A(t) S,_ to the right hand side, the representation 

(3. 18) can be used to obtain 

5(t) = f G(t, s>[ ¥x(~(s), s) -A(s) ]5(s)ds 
0 -

(3. 46) 

where G(t, s) is the Green 1s function for the homogenous problem (3 .39). 
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From (3. 3 7) .and (3 . 3 8 ), .D.?E· t) may be written as 

f_(~. t) = {\.~-_y, t) + i_(_y, t) + A(t) (.?E+ _y) 

Noting that l'(~, t) is continuously differentiable, the Jacobian matrix 

may be formed yielding 

8f (x, t) 8f 
~:.! 

8x = Tz (.?E-.Y• t) +A(t) 

Taking norms of (3. 46) and using the above relation, s(t) satisfies 

I 
ll~(t)ll ,;;; p(t) J q(s)k(s)ii~Js) lids 

0 

where it is assumed that llx-y II s 5 so that the use of (3. 43) is justified. 

Multiplying by q(s) and k(s) and integrating, the above relation becomes , 

I 
(1-K) l q(s)k(s>ll.S.Js)llds s O, 

tJO 

where the definition of K has been used. Since K < l and the integral 

is non-negative , the only p o ssibility is tha t the integral must vanis h. 

S ince the integ r a nd is assumed continuous for tE [O, l], and q(s) and 

k(s) are positive , the above relation implies that 

Therefore, the e xact periodic solution x of the original system (3 .3 5) 

is isolated. Q. E. D. 

It is a lso possible t o prove the following . 

Theorem 2 

Assume that the original system p ossesses an exact isolated 
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periodic solution~ with period I. Then for any smal1 number f), it 

is always possible to choose an auxiliary system (3. 36 ) with an exact 

periodic solution y such that the differential equation e rror is 

sufficiently sma 11 so that the norm of the differ e nce between~ and y 

satisfies 1 1~-y II :;; o · 
Proo!.'... Conside r the integral equation 

where .§.(s) = µ ~(x(s), s) and~ is continuously differentiable in~ for 

sE[O, l] and 

* of £ (~(s), s) =:!_(~, s)- £(~-~· s)- ~(~, s) z 

µ(_g_(~, s) - _g(~-~· s)) 

. of 
G(t, s) is the Gree n's function for the system (3 . 39) with A(t) = 0;(~, t) 

which exists since the equation of first variation p os s e sse s no 

nontrivial solution with period 1, i . e. ~ is isolate d. For ~ 1 , ~2 , and 

µ satisfying 11~1 11 :;; 11 :;; 5, 11~2 11::;; 11 :; 5, and Iµ I :;; µ
1 

where 'lland µ
1 

a re sufficiently small p ositive numbe rs,_!::!' (~, s) satisfies a modifie d 

Lipschitz condition, 

such that max k(t) can be taken to be as small as desired. S e lect T) 
t 

and µ
1 

sufficiently small such that k(t) may be chosen s m a ll e n o ug h so 

tha t condition (3 .40) is satisfied (i. e . K < 1), whe re p(t) and q ( s ) a r e 
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bounds on G(t, s). Furthermore, let 1-lz be the small positive number 

such that for Iµ I $µ2 , 

I II lu lp(t)I (1-K)- q(s) Ii.&(~-· s) II ds $'Tl 
max 0 

Then, for 1 1 ~1 1 :;;;T) and Iµ 1$ min(µ 1, µ 2 ), all the conditions of Lemma 1 

are fulfilled. Therefore, the above integral equation poss e sse s an 

exact unique solution such that 11~11 ~ri ~ 5. 

However, it is shown pre viously that the integral equation is 

equivalent to the differential system 

dz 8f (x, t) 
dt = ii- ~+ £!'(~. t) + ~(t) 

~(O) =~(I) 

Using the definitions of ~(t) and.!.""(~, t), the syste m b e c omes, 

dz 
d~ =£(?Er t) -_!(_?E-~, t) +µg_(_?E-~, t) 

Subtracting this system from the original system (3. 3 5) and defining 

y =~-~· one has 

dy 
dt = .!_(y, t) - 1-1_g(y, t) 

,y(O)=y(l) . 

For Iµ I$ min (1-1 1 , µ 2 ), the above system possesses an e x ac t unique 

solution of period .I such that 11~-yil ~ 5. The refore , the a bove systcrn 

may be chosen a s the auxiliary system. Q. E. D. 



5 represents a bound on the error which is uniform in t. 

Usually it is desirable to obtain the smallest bound possible, therefore 

the equality sign is used in equation (3. 41) for determining o. 

Generalizations 

Some of the hypotheses in Lemma 1 and Theorem 1 can be 

weakened to include more general systems . The condition that f(~, t) 

be c 1 in~ can be replaced by assuming that !J:E., t) is c 0 
in :E. and 

$atisfies a modified Lipschitz condition in~· The proofs of Lemma 1 

and Theorem 1 are only slightly modified with the exception that in 

Theorem I it is no longer possible to conclude that the exact solution 

is isolated since the equation of first variation is not defined. 

The assumption in Lemma 1 that q(s) and k(s) be positive 

continuous functions for sE [O, I] can be weakened to q(s) and k(s) 

being non-negative, integrable functions for s E [O, 1 J with the loss of 

"strict" uniqueness. It is possible to conclude only tha t if there exists 

two solutions to (3.22), ~l and~2 , then 

Therefore, the integrand vanishes everywhere except at a set of 

points with zero measure. For all values oft where k(t)q(t)> 0, 

11!!.1 - ~2 11 is zero, which implies ~l = ~2 . Conseque ntly, uniqueness is 

obtained only over a subset of tE[O, l]. 

Autonomous Systems 

Theorem 1 may also b e applied to autonomous systems but in 

a negative manner. In Theorem 1 , it is shown that, if cert a i n 
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conditions are satisfied, the equation of first variation of the original 

syste1n associated with the exact periodic solution ~(t) possesses no 

non-trivial solution with the same period as x.(t). However, for auto-

nomous systems it is well known that, if the original system possesses 

a non-trivial periodic solution ~(t), the equation of first variation 
dx(t) 

associated with x(t) has a non-trivial periodic solution a"; with 

the same period as ~(t). In this situation, hypothesis (3. 40) in 

Theorem 1 can never be satisfied. Consider the following autonomous 

system 

dx 
_:: = f(x) 
dt -- (3 . 47) 

Assume .. H~) is continuously differentiable with respect to x and that 

the Lipschitz constant k( s) for i*(~. t) satisfies (3. 43). Differentiating 

with respect tot, (3. 47) becomes 

_E_( ~) = 8f(#$'.) ~ 
dt dt 8x dt (3. 48) 

Assume that (3. 47) possesses a non-trivial periodic solution with 
dx 

period 1 . Then, dt will also be periodic with period 1 and will 

satisfy the equation of first variation (3. 48) . Adding and subtracting 
dx 

A(t) d-: to (3. 48), where A(t) is the same matrix that appears in 
t dx 

(3. 3 9), and writing this modified equation in integral form, dt 

satisfies 

dx Jl [ Sf(x) J d~ 
dt - G(t, s) -rx- -A(t) dt ds 

0 

(3. 49) 

where G(t, s) is the Green's function for (3. 39). From (3 . 38), £~(~-_y, t) 
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satisfies 

_i'!<(~-_y, t) = _!J~) - _!_(_y) - A(t)(~+_y) (3. 50) 

where :y_ is some periodic function such that for~= .!E,-y, .£>:' (,;, t) 

satisfies a modified Lipschitz condition given in (3.23) for ll~ll::;;o . 

Forming the Jacobian matrix for f.>1' ~-y, t) 

of*(x-y, t) 8f(x) 
Bx = Bx -A(t) (3.51) 

Taking norms of (3.49) and using (3 . 51) and the bound on llG(t, s>ll 
dx 

given in (3. 24), II dt II satisfies 

dx 1 dx 
lldtll::;;p(t) J q(s)k(s>lld~llds, 

0 
(3. 52) 

where it has been assumed that 11~-yll:::;; o so that use of (3. 43) is 

justified. Multiplying by q(t) k(t) and integrating, the above relation 

1 dx 
(1-K) J q(t)k(tllldt i!dt::;;O, 

0 
dx 

where the definition of K has been used. But if II a"; II f. 0 and 

q(t) k(t) :/- 0, the integral is non-zero, and, consequently, (3. 53) 

(3 . 53) 

implies K~ 1 . Therefore, Theorem I will never apply to an autonomous 

system whenever there exists a non-trivial periodic solution lying in 

11.:E.-.Yil:::;; o. 
However, there are situations when Theorem I is applicable 

to autonomous systems. Suppose that all of the hypotheses of Theorem 

I are satisfied. Then the only solution of the e quation of first variation 

(3. 48) is the trivial solution. Therefore, 
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~(t) = £ (3. 54) 

where c is a constant vector and satisfies i._(_£) = Q_. Consequently, the 
! 

only exact solution lying in 11~-yll~ o is the degenerate solution (3. 54). 

Theorem 1 may be construed as a "non-existence" theorem when 

applied to autonomous systems. A region 11~-yll~ o is obtained where 

the only solution to the original system (3. 4 7) is the degenerate solution 

(3. 54). 

Discussion 

For nonautonomous systems, Theorem 1 provides a means for 

obtaining bounds on the norm of the e x act solution error ~(t) in terms of 

the magnitude of the differential equation error _£(t). If the philosophy 

behind the equivalent equation approach is us ed, the mean differential 

equation error E is minimized with respect to the differential equation 

parameters a'i (i= 1, ... , r). Although the form of E is not exactly the 

same as the form minimiz ed in Chapter II, it still represents a valid 

equivalence criterion. Furthermore, E can be related to the mean 

square differential equation error in such a manner that an equation 

similar to (3 . 41) may be obtained expressly in terms of the mean 

square error. Selecting a.. such that 
l 

[E(a.
1

, .. . , a. )} =minimum , 
r . 

(3. 5 5) 

equation (3. 41) implies that the error bound is also minimized with 

respect to a.i. Define o'; as the minimum value of 6 satisfying (3. 41) 

whenever the equal sign is utilized. Since p(t) and K(o';) d epend only on 
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the approximate solution form (i.e., [3.) and the Green's function, they 
J 

are independent of explicit ai. Therefore, the dependence of o'{ on ai 

may be determined from the dependence of o~' on E. 

is a monotone increasing function of o'; and vice versa (see Figure 2), 

o'; is a monotone increasing function of E. Consequently, the minimum 

value of o'; occurs whenever E is minimized. Therefore, the equivalent 

··-
equation approach implies that the error bound o'i is minimized in the 

space of the differential equation parameters a. (i= 1, ... , r). 
l 

Although the above analysis is performed within the framework 

of the equivalent equation approach, it is by no means restricted to that 

approach. The primary reason for using this approach is that it pro-

vides a convenient vehicle for carrying out the details and gives a defi-

nite approximate solution y_. However, the ana lysis still applies for 

approximate solutions obtained using other techniques, i.e. , Galerkin' s 

method, · method of least squares, etc. In the approaches where a 

solution form is assumed, the differential equation error _£(t) can be 

interpreted as an error residual obtained by substituting the approxi-

mate solution y_ into the original system (3. 8) . 

Another aspect of Theorem 1 which deserves some discussion 

is the fact that the homogenous system (3. 39) generating the Green's 

function is, in a sense, arbitrary. As pointed out earlier, if A(t) is 

chosen to be the Jacobian matrix of the original systen1 evaluated 

at the approximate solution y_, then !If':' (~, t) 11 is of a n order higher 

than l[~IJ. This is advantageous because the :Iripschitz constant k(t) 

for£':'(~, t) will have no term independent of o. However, if .A(t) is 
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any other matrix, in general f;'<(z, t) will have terms linear in z , and - - -
consequently k(t) will have terms independent of o. This increases 

k(t) and thereby increases the bound owhich in turn reduce s the region 

in the parameter space of the original syste m where Theorem 1 will 

apply. But there is one great advantage in choosing A(t) to be a matrix 

other than the Jacobian matrix. In general, the Jacobian m atrix will 

be a function oft, and determining a fundamental matrix solution for 

(3. 39) could be a most difficult, if not impossible, task. By selecting 

A(t) such that a fundamental matrix solution is known, this difficulty 

is avoided. If A(t) depends on some parameters, they can be · con-

sidered arbitrary in the analysis and then may be specified, using 

(3. 41 ), by minimizing the bound o with respect to them. In this 

manner, the homogenous system (3 . 39) is in some sense optimized . 

It is also worth noting that Theorem 1 gives no information 

concerning the stability of the exact periodic solution ~(t). Since the 

problem fur ~(t) is recast as a two point boundary value problem over 

a finite range in t, there is not sufficient time for an asymptotically 

stable or unstable perturbation to decay or grow. In gene ral, 

Theorem 1 will apply equally well to stable or unstable periodic 

solutions. The fact that the equation of first variation possesses no 

nontrivial solution of period 1 is sufficient to insure that the exact 

periodic solution x(t) varies continuously for small changes in the 

parameters of the governing original differential equation (3 . 8) (3 l). 

This is essentially the result given in Theorem 2. 

Several other authors have presented results similar to those 
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given in Lemma 1 and Theorem 1. Those works which seem r:no:.;t 

closely related to the pre sent analysis are discussed here. 

One of the most straightforward approaches is the one utilized 

by McLaughlin (Z 3 • 
24

). This work is mainly concerned with second 

order scalar equations of the type ;;+w0x = e:X(wt, x, x, e:). An approxi­

mate periodic solution is obtained using the Poincar~- Linstead 

perturbation technique. A differential equation governing the difference 

between the exact periodic solution and a truncated expansion in the 

small parameter e: is formed. The equation is transformed to an 

integral equation, and bounds on the norms of the error and its first 

derivative are obtained using a consistency argument. The error x(t) 

and the first derivative x(t) are assumed to satisfy 11x(t)11 ~u and 

II x(t) II ~v. Using standard bounds and inequalities on the integral 

representation, functions F 
1 

(u, v, €) and F2 (u, v, t:) are obtained which 

are bounds on II x II and II x II respectively . Then requiring that F 
1 

and 

F
2 

satisfy F
1 
~ u, F

2 
~ v makes the entire argument consistent. The 

equal sign is used to obtain the smallest bound. The implicit function 

theorem guarantees the existence of a unique solution of the above 

equations so long as the Jacobian matrix, 

8Fl aF1 
au av 
8F

2 
8F

2 
au av 

is non- singular. The limit of applicability is obtained by setting the 

determinant equal to zero. McLaughlin applies the above method only 
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to the approxirnation::i obtained by the perturbation tcchniqlll'. but it 

is also valid for approximations obtained by other means. Although 

the above procedure is straightforward, it suffers from the fact that 

the estimates used to get F 1 and F2 are rather poor. Consequently, the 

bound obtained is poorer and the region of applicability is smaller than 

the region obtained using Theorem I. This fact is illustrated in 

Section 3. 3 where actual comparisons are made in a specific example . 

Another approach which uses the contraction mapping theorem 

is presented by Holtzman (Z 5 ). He is primarily interested in obtaining 

bounds on the error between the exact solution and the approximate 

solution obtained from the method of equivalent linearization. The 

results obtained are similar to those of Theorem I with the major 

difference arising again in the accuracy of the bound and the region of 

applicability of the approach. Holtzman uses the unique linear part 

with constant coefficients of the error differential equation as the 

homogenous system to generate the Green' s function. Whereas in 

Theorem I, the homogenous system is left arbitrary in the analysis 

and can later be selected in such a manner so as to optimize the error 

bound. In addition, the estimates involved in applying Holtzman1s 

• 
modification of the contraction mapping principle are somewhat poorer 

than those used in Theorem 1. Also, Holtzman 1 s approach does not 

allow for the generalizations of Lemma 1 and Theorem I discussed 

earlier. Comparisons between Holtzman1s results and Theorem 1 are 

also given in Section 3. 3. 

. (2 0 21 22) 
Another approach is that presented by Urabe ' ' . 



Actually, Theorems 1 and 2 are quite similar to Urabc's work in that 

they both use the method of successive approximations. However, 

Urabe is primarily interested in Ga lerkin' s procedure and its re la ti on 

to the exact periodic solution. He shows that if there exists a Galer kin 1 s 

approximation of sufficiently high order and if there exists an exact 

periodic solution, it is always possible to obtain a bound on the magni­

tude of the difference between the exact solution and the Galerkin' s 

approximation. Urabe also proves the converse. However, in 

practice, one is usually interested in very low order approximations, 

i.e. one or two term approximations, and, therefore, it is necessary 

to make as sharp estimates as possible in any bound analysis. Since 

Urabe is not confined to low order approximations, he can afford to 

use poorer estimates in obtaining his results because he can simply 

increase the order of the approximation to where his estimates are 

sufficient. Because of the similarity between Urabe's approach and 

Theo.rem 1, no comparison between the two is included in Section 3. 3, 

although the sharper estimates in Theorem l would seem to indicate 

that the corresponding results would show some improvement. 

3. 2 Error Bounds for S econd Order Scalar Systems 

In this section some of the results presented in S ection 3 . I are 

specialized for the case of second order scalar equations. The norm 

to be used is the absolute value. The initial result is a theorem which 

is the second order scalar equivalent of Theorem I. 

Formulation 

Let R be a region in E
2 

and L b e the real line. For convenience , 
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let x denote the point (x, x). Dots over functions mean differentiation 

with respect tot . Consider the following original system 

x +f(x, x, t) f F(t) (3. 56) 

where f is c 1 
for ~ER and f and Fare CO for tEL. Furthermore, 

assume f and F are periodic in explicit t with period 1. It is of 

interest to obtain an approximate solution of (3. 56) with period 1 and 

a bound on the error associated with this approximation. Use the 

equivalent equation approach by considering the auxiliary system 

y + g(y, y, a.1, ... , a;, t) = G(a.i+l' .. . , ar' t) , 
J J 

(3.57) 

where g is c 1 for yER, g and Gare CO for tEL, and a.(i=l, .. ., r) are 
l 

differential equation parameters. g and Gare also assumed to be 

. . I 
periodic in explicit t with period 11. Assume further that (3. 57) 

possesses known periodic solutions y((31 , ... , 13 , t) of period I where 
- s 

[3.(j=l, ... , s) are solution parameters. 
J 

Define the error as 

z(t) = x(t) - y(t) (3. 58) 

Differentiating (3 . 58) and using (3. 56), (3. 57), and (3. 58), the 

equation gove rning z(t) is 

z +f(y+ z, y+ z, t) - f(y. y, t) = €(t) (3. 5 9 ) 

where e(t) is the differential equation error given by 

e:(t) = F(t) - f(y, y, t) + g(y, y, a.1 , ... , aj' t) - G(a.j+l' . . . , ar' t). (3 . 60) 

Since x and y are periodic with period 1, z will satisfy 

z(O) = z(l) z(O)=z(I). (3. 61) 
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Assume that the following homogenous problem possesses 

only the trivial solution 

cp + a(t)~ ·I· b(t)cp '" 0 
c~ . <,2) 

ep( 0) = Cp( 1 ) • 

where a(t) and b(t) are c 0 
for tE [O, 1 ]. (3. 62) will then possess a 

Green 1 s function G(t, s) which enables the two point boundary value 

problem (3. 59) and (3. 61) to be represented as 

I 
z(t) = .f

0 
G(t, s{ e:(s) +f*(z(s), z(s), s)] ds 

(3. 63) 

S
I oG(t s)[ . 1 z(t) = ot • e:(s) +f*(z(s), z(s), s) _. ds 
0 

where 

f*(z, z, t) = f(y, y, t) - f(y+ z, y+ z, t) +a(t)z + b(t)z (3.64) 

Making use of the above formulation, the following result is possible. 

Theorem 3 

If the following conditions hold: 

i) Systems (3. 56) and (3. 57) possess sufficient smoothne ss so that 

the formulation in (3 . 63) is justified. 

ii) f >:'(z, z, t) satisfies a modified Lipschitz condition 

i f ':' (z2 , z2 , s) - f>:'(z 1 , z 1• s) I s k( s) I z 2 - z 11 + 1( s) I z2 - z 1 I (3.65) 

for lz 1 I~ f:i, lz2 1 $[), lz 11:s:5, and lz2 1s:5 (f:i and 8 are constants) 

where k(s) and l(s) are positive continuous functions for sE [O, I]. 

iii) The Green's function G(t, s) can be bounded as 
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!G(t, s)I s: p(t)q(s) I~~(~ I s:m(t) q(s) (3 . 66) 

for all tE [O, 1 J and sE [O, IJ where p(t) and m(t) are non-negative 

integrable bounded functions for tE [O, 1 J and q(s) is a positive 

continuous function for tE[O, 1]. 

wht~re 

1 
K = J q(s)(p(s)k(s) +m(s) l(s)) ds<l 

0 

p(t)I (1-K)-l E s: f) 

max 

m(t)I (1-K)- l E s: 6 
max 

1 
E = r q(s) I €(s) Ids 

·'o 

(3. 6 7) 

(3 . 68) 

(3. 6 9) 

Then (3. 56) possesses an exact unique solution x(t) with period 1 . 

Also the error and its derivative, z and z, are bounded by 

lz(t)I s: p(t) (1-K)-l E 

lz(t)I s:m(t) (l-K)-
1 

E 
(3. 70) 

af* 
1
af* 

Furthermore, if lrz I s: k(s) and az. Is: I (s) for all z and z such that 

lzl s: ~ and lzl s: ~i. then the exact unique solution is an isolated solution . 

The proof of the above theorem is essentially the same as the 

proof of Theorem l except for some additional details concerning the 

convergence of two iteration schemes, one for z and another for Z. 

Because of the similarity, the proof of Theorem 3 is omitted . 

A result analogous to Theorem 2 may also be proven for the 

second order scalar case. However, no additional information o r 
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insight is ga.irwd fro1n this spociali7.a.tion since Theorern 2 a.pplio1:1 to 

second order scalar systems as well. Conseque ntly, it is n ot included. 

Discussion 

The remarks made in Section 3. I concerning generalizations 

of Theorem I also apply to Theorem 3. The restrictions on f(x, x, t), 

k(t), and q(s) can be weakened somewhat with a corresponding 

weakening of the results. Furthermore, much of the discussion 

appearing in Section 3. I concerning Theorem I is pertinent to Theorem 

3 also. In particular, the homogenous system (3. 62) generating the 

Green's function G(t, s) is essentially arbitrary, the only restriction 

being that a(t) and b(t) are such that G(t, s) indeed exists. (3.62) may 

be chosen to be either the Jacobian of f(x, x, t) evaluated at the approxi-

~ 8£(-) (}£ ( )' 
mate solution x \i.e. a(t) = ax y , b(t) =ax "Y' ) or any other system 

whose Green's function is known. The former is desirable since the 

Lipschitz constants k(s) and l(s), and correspondingly the bounds 

f) and ~, would be made small, the latter is desirable since deter-

mining the Green Is function for the system usi ng the Jacobian of f(x, x) 

may be quite difficult. The discussion concerning autonomous systems 

in Section 3 . I applies to Theorem 3 as well. Theorem 3 may be inter-

preted as a non-existence theorem when applied to autonomous 

systems . 

A Particular Green's Function 

As mentioned above, the homogenous system (3 . 62) may be 

chosen to be a system possessing a known Green's function. One 

possible system is 
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(3. 71) 
cp( 0) = cp( 1 ) tj)( 0 ) = cP( 1 ) , 

where ( and y are non-negative real constants. A necessary and 

sufficient condition for (3. 71) to possess a Green's function is that 

the only solution of (3 . 71) be the trivial solution. Therefore, in the 

following development, precautions must be taken to insure this. The 

two linearly independent solutions of (3. 71) are well know, and their 

behavior is different depending on the particular value of (;;. 

Consequently, the Green's function and bounds are obtained for C = 0, 

0 < C< l, C = l, and C>l. When C =O, it is clear that (3.71) possesses 

only the trivial solution if y is restricted such that y t 2nrr for n =O, 1,2, .. . 

For C>O, (3 . 71) possesses only the trivial solution for all y>O. 

Imposing the above restrictions, the Green's function satisfies the 

following problem, 

8
2

G(t, s) + 2 C oG(t, s) + 2G(t ) = O t -1 s 
2 ' y 8t y ' S ' T 

8t 
(3 . 72) 

G(O, s) =G(l, s) 
8G(O, s) _ 8G(l, s) 
at -at 

= 1 (3 . 7t) 

+ -G(s ,s)-G(s ,s} = O 

For (= 0, two linearly independent solutions of (3. 72) are sin( yt:) 

and cos(yt). The Green's function can be written as 

~
l sin(yt)+C2 cos(yt), 0$t$s$l 

G(t, s)= 
c 3 sin(yt) +c4 cos (yt), 0 $s $ t $} 
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The constants c 1 , c2 , C 3 , and c 4 (which depend on s) are cletermimJd 

using the four conditions in (3. 72') . Performing the algebra, G(t, s) is, 

for (=O and yl2nTT 

G(t,s) = 

sin( y(t-s+l)) - sin( y(t-s)) 

2y(l - cos y) 
O~t$"s $" l 

sin( y(t-s)) - sin (y(t-s - 1)) 
2y(l - cos y) , 0 $"S ~t $"l . 

(3 . 73) 

For 0< (:<1, two linearly independent solutions of (3 . 72) are 

- Cyt . 2 1/2 - Cyt 2 1/2 
e - srn(y(l-() t) and e · cos(y(l-C) t). Writing the Green 1 s 

function for the two regions 0 $"t $" s $"I and 0 $" s $"t $" 1, as above, a nd 

using (3. 72') to determine the coefficients, G(t, s) is found to be, for 

0<(< 1, 

G(t, s) = 

e - ( y(t- s + 1) !sin ( y(l- {) 112 (t-s+1)) 

Dl 

- c y . ( 2 1 /2 ),l - e · · s m y( 1 - ( ) ( t- s ) ~ , 

(3.74) 
-Cy(t-s) [ . ( (l C2)1/2(t ) \ e ·· sm y - _ - s ) 

Dl 

- e - Cy sin(v(l - c2 
>
112 

(t- s-1>)]. Os s $"t$"l , 

2 1/2 ( -2 r;,y - Cy 2 1/2 ) where D 1 = y(l-C) l+e · -2e - cos(y(l-C) ) . 

For C = l, two linearly independent solutions of (3. 72) are e - yt 

and te - yt. Performing the same operations as above, G(t, s) is; for (, = I, 
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-y(t-s+l) 
e _ 2 Jl+(t-s)(l-e-y)J, O~t ~ s ~ l 
( 1-e Y) l -

- y(t- s) 
e _ 2 [1+(t-s-l)(l-e-y)J, O:s:s:s:t :s: l. 
(1- e Y) 

(3. 7 5) 

For (>l, two linearly independent solutions of (3. 72) are 

-y(,.+(C2 1)1/ 2 )t -'t{C-(C2 1)1/Z)t 
e b -- - and e · ·· - . Again performing the same 

calculations as described above, G(t, s) is, for C>l, 

( e - ( '\{ t - s + l ) [ ( 2 l /2 
I D - sinh y(( -1) (t-s+l)) 

2 

I 
G(t,s) = / 

e-(:y(t-s)r ( 2 1/2 ' 
Dz [ __ sinh y( C -1) (t- s)) 

O ~ ts:s~l 

(3 . 76) 

I 
- CY ( 2 1/2 l -e sinh Y(( -1) (t-s-l))J , O:-:;;s:s:t ~ l , 

l 
2 1 /2 [ - 2 Cy - r:;, y 2 1 /2 1 where D 2 = y(( -1) l+e · -Ze · cosh(y(C -1) ) J . 

For Theorem 3, it is necessary to obtain bounds on !G(t, s)I 

and l~~(t, s)I satisfying (3 . 66). For all values of (:<:O, G(t, s) and 

~~(t, s)_is a function of the variable (t-s). For conve nience, we choo se 

I )I 1
8G(t, s) I h . l . d a s bounds for _G(t, s , and Bt t e max1murn va ue atta1ne as 

(t-s) varies over the allowable range . Consequently, the bounds will 

be independent of t and s. Obtaining this maximum is re la ti V t:! ly 

straightforward, although it tends to be somewhat l e ngthy. It i s 

nec e ssary to consider endpoints a nd all rela tive extrema. Since the 
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procedure is basically algebra, the details are bypasse d, and only 

the results are given. For (= 0 and y f. 2n;r, 

IG(t, sll < ~ 1 
)172 y2(1-cosy) 

loG(t, s)I ot ~ 
1 

·r )I 12 \2 ( 1- cos ~ 

For 0<(.<1, 

IG(t,sll< 2 J/2[" -2C 
1 

-( ( 2 1/2)] ' 
y( 1 - C ) . 1 + e - y - 2 e - y cos y( 1 - ( ) 

For C = 1, 

For (> l , 

IG(t, s )I ~ 

y -y-1 
1-e-y 

IG(t, s)I ~ _e"-----­
y( 1-e - y) 

l
oG(t, s)I 1-(l+y)e-y 

8t ~ (1-e-y? 

c 

(3 . 77) 

(3 . 7 8) 

(3.79) 

(3 . 80) 
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In the deve lopnrnnt of these bounds, ~ and y arc left unspecified . 

They may now be determined by minimizing the error bound Fi with 

respect to them . 

Particularization of Theorem 3 using (3. 71). 

The relations for determining the bounds t3 and ~ using 

Theorem 3 and the homogenous system (3. 71) are now developed. 

Consider a specific original system and let the a uxiliary system and 

approximate solution be obtained in any manner whatever. A 

corresponding differential equation error (or residual) e(t), given by 

(3. 60), will also be generated. Satisfying the postulates of Theorem 3 

will enable a bound on the error z and z to be obtained. 

Assume that f(x, x, t) satisfies the continuity conditions in 

(3. 56). The next requirement is that the homogenous system (3 . 71) 

possesses only the trivial solution. As shown previously, this is 

satisfied for all values of y(except zero) whenever <;. is non-zero and 

for all values of y, except y = 2n'IT, for n=O, 1, .. . , wherever C vanishes. 

Imposing these restrictions on C and y guarantees that the only solution 

of (3. 71) is the trivial solution. 

It is now necessary to show that f*(~) = f >:C(z , z, t), satisfies a 

Lipschitz condition (3. 6 5). From (3. 6 5 ), f~~(z) is 

• 2 
£>!<(~) = f(y) - £(x+ ~) + 2 s yz + y z 

Considering the four variables zl, Zz, zl, and Zz, the difference 

f'!'(z ) - f >!'(z ) is -2 -] 

(3 . 81) 
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Since f~) is c 1 
for lfE R, the mean value theorem may be used tn givt~ 

(3. 82) 

where ;\ satisfies O<A.< l. Using this, (3. 81) becomes 

[ 
2 off ) f':'(~z)-f':<(~1) = Y -rx\Y+~1+A.(~2-~1) J(z2-z1) + 

[ 2 (, y - ~~ ~+ ~ l + ;\ (~2 - z l ) ) J ( z2 - z 1 ) (3 . 83) 

Taking absolute values and using the triangle inequality, (3, 83) become s, 

(3 . 84) 

where 

I 2 c y - ii Ct+~ l + A (~2 - ~ 1 ) ) I 
(3 .85) 

Therefore, f*~) satisfies a Lipschitz condition with the Lipschitz 

constants being given by (3. 85). Actually, k(t) and l(t) can be any 

functions greater than or equal to the values given in (3 . 85), and the 

Lipschitz condition will still hold . This fact is used for the e xample s 

discussed in s~ ctions 3. 3 and 3. 4. 
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8G(t, s) 
Bounds on G(t, s) and 8t have already been developed in 

(3. 77) - (3. 80). Because of the particular bounds chosen, p(t), m(t), 

and q(s) appearing in (3.66) are all constants. Without loss in 

generality, choose q(s) equal to one. p(t) and m(t) are then equal to 

the expressions in (3. 77) - (3 . 80). 

The remaining hypotheses to be satisfied are (3. 67) and (3. 68), 

i.e. 

1 1 
K = p J k(s)dt +m I l(s)ds < l 

0 0 
(3. 86) 

and 

-1 -1 • 
p(l-K) E:s;5, m(l-K) E:s;5, (3.87) 

1
.1 

where E = 
0 

I e:(s)lds and p and mare the constant bounds 

and ~~t,s). If (3. 86) is true, (3. 87) may be written as 

on G(t, s) 

pE ~ 8 (1-K) (3. 88) 

and 

mE :s; ~ (1-K) (3. 89) 

. 
(3. 88) and (3 . 89) are two relations for determining the bounds Fi and 5 . . 
Since they are bounds and since p, m, and E are positive, 8 and Fi must 

. 
be positive . Therefore, if 5>0 and 5>0 can be found such that (3 . 88) . 
and (3. 89) are satisfied, Theorem 3 applies, and 5 and 5 are bounds 

on the error lzl and 1~1-
• 

In general, there may be more than one pair ( 8, 5) satisfying 

(3. 88) and (3. 89) . m, p, and E are independent of 8 and 5. Since k(t) 

and l(t) will, in general, depend on 5 and 5, K will also depend on 
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o and 0. Define 

H 1(o,6) = 0(1-K(o,6)) , H2(0,6)=~(1-K(o, 5)) 

(3. 88) and (3. 89) then become 

H1 (~.5)~pE, H2 Ui,B)~mE 

(3. 90) 

(3. 91) 

Consider H
1 

and H 2 as functions of the two variables o and ~ for 

o~O and ~ ~ O. Let s
1 

denote the set of points ( o, 5) such that 

s
1 
= {<o, 6) I H

1 
(o, 6) ~pE}, and s2 denote the set of points 

S 2 = ~o, 5) I H 2 (o, 6) ~mE}. In order to apply Theorem 3, both relations 

in (3. 91) must hold, therefore the set s3 which is the intersection of 

s 1 and s2 are points ( o, B) for which Theorem 3 a pp lies. Since s3 is a 

:::}c ·· :::~ 

closed set, there will exist a point ( o
1

, o
1

) in s
3 

where the bound on 

lzl is the smallest possible . Similarly, there will exist a point 

(o;, &;) where the bound on lzl is the largest possible . If it is of 

interest to obtain a bound on the error I z I between an approximate 

~:c • ::::< 
solution and the exact solution, the point ( o1, 81 ) would be used when 

applying Theorem 3 . However, if it is of interest to prove the exis -

tence and uniqueness (or "non-existence" in case of an autonomous 

::::< • ::::< 
system) of a solution the point ( o

2
, o

2
) would be chosen. 

In addition to having some freedom in selecting fi and 6. it is 

possible to minimize (or maximize) the bound o with respect to the 

Green's function parameters y and(;;. By varying v and t", the set S :) 

will change, and y and{'.: may be selected such that the particular s 3 
~:-:: . '~ 

is obtained which contains the p::>int ( o., 5.) for which the bound on I z I 
1 1 

attains its n1inimurn (or maxi.mum) value. Becau::ie t he re l ations 
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yielding S 3 are in the form of inequalities, it is very diffi cul t in mout 

cases to perfonn the minimization indicated above. Considerab\e 

simplification (along with some restriction) may be obtained by 

requiring that strict equality holds in (3. 91) (and, therefore , (3 . 88 

. 
and (3. 89)). The equations determining 5 and o then become 

pE = t)(l-K( 5. B)) (3. 92) 

and 

(3. 93) 

It is now relatively straightforward to perform the above minimization. 

The minimum (or maximum) obtained using (3. 92) and (3. 93) will, in 

general, be larger (or smaller) than the true minimum (or maxi.mum) 

of s3 . However, it still will be valid for applying Theorem 3. 

Dividing (3. 92) by p and (3 . 93) by m and noting that K<l, 

o and. 5 satisfy 

• m 
0 ~; - 0 

p 
(3. 94) 

This shows that 6 and ~are no longer independent, and, therefore, it 

is not possible to minimize both o and 5 with respect toy and S· 

Since the accuracy of the solution and not its time derivative is usually 

the quantity of most interest, o is minimized with respect to y and ,I). 

These two relations, combined with (3. 92) and (3 . 94), are sufficient 

to determine y, (., f,, and t). S11bstituting (3 . 94) into (3 . 92) eliminates 

B from the formulation yielding 

( 
-1 -1 m ) E = o p - p K( o, p o) (3 .9 5) 

From (3. 90), it is seen that H 1 ( o, 1; 5) is independent of 5. 
Consider H 1 ( o, r;: o) as a function of o, and let 5 be the value of o such 



-68-

" m" K( 5, po) = 1. From the definition of ~, it is clear that 

H1 (o.~I)) I = 0 and H
1

(o, ~0) l,.=O. 
p 6=0 p 0~0 

Since K( 6, ; o) is a single valued fw1ction of 6, H
1 

( 6, ; o) will also 

be single valued in 6 . H
1 

is non-negative because o > 0 and K < 1. 

Therefore H
1 

( 6, ;- 6) possesses the general character indicated in 

Figure 2. (3. 95) is satisfied for o; and o~' which, from Figure 2, are 

the minimum and maximum values fo r which Theor e m 3 applies. Any 

~:< ':< 
6 s a tisfying o

1 
~ o ~ o2 will be a valid 5 for applying The o rem 3. 

From Figure l it is possible to obtain the boundary of appli-

cability of Theorem 3. When the parameter s in the original system, 

the aux:i.liary system) and the Green's function are such that o~' and o; 
coalesce, the valid r egion in 5 d egenerates to a p oint 6 . Any change 

m 

in the parameters so as to increase pE beyond (pE) makes it 
m 

impossible to satisfy (3 . 95) for any r e al positive 0 . Consequently, 

the boundary is g ive n by 

m 
H ( o - -o ) = ( pE ) 

I rri_ p m m 

Returning to (3. 95) , the minimization of o with re spcct to 

y and C may now be performed . Assu1ning o to he a cont inuous func tion 

a0 Jo 
of y and , , a necessary condition for a minimum is 8 ::= 0 and ar== 0 . 

y ·~ 

o is first minimized with r e spect to yby implicitly differentiating 

(3. 95) and noting that E i s independent of o and y, p is inde pende n t of 

o, and K depends on o and y. Recalling the definition of K, (3 . 86 ), the 



(pE) 
m 

pE 

0 a* 
I 

K(a,f')=I ~ 

'"~ 

I 
I 
I 
I 
I 

I I 
I I 
I I 
I I 

a* 8 m 2 
" 8 

BOUND, 8 
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condition ~~ = 0 implies 

1 1 1 a ( -1) l 8k(s) a (m) r m I a1(s) - p = ds + - - 1( s )ds + - ds 
ay o a Y a Y P "o P o a Y 

(3. 97) 

Since all of the functions in (3 . 95) which depend on y also 

0() 
de pend on c and vice versa, the relation generated by OL -= 0 can be 

• ~ 0() 
obtained by replacing explicit y by C in (3 . 97) . Therefore, ~= 0 

implies 

8 (P- 1 )=fl ok(s)ds + ~ (m)j'l l(s)ds+.!!!.Jl ~l(s)ds 
~ Jo o ~ o C P o P o v C 

(3. 98) 

Equation (3. 95), (3. 97), and (3. 98) will, in general, have to be 

solved simultaneously to determine r;,, y, and o. (3. 94) is then used to 

determine 5. Expressions (3 . 97) and (3. 98) may be rewritten using 

the values of m and p for the particular Green's function discussed 

earlier':'. This operation is straightforward, and it would serve no 

useful purpose to include these calculations for all cases. However, in 

S ection 3. 3 some examples are pre sented, and it is convenient to 

simplify (3. 97) and (3. 98) for the specific cases considered there. 

The examples come from a general class of problems where 

the original system contains no dissipative terms i.e. f(x, ~. t) is 

inde pendent of :i . This being the case, the auxiliary system will 

u s ually have the same property, and therefore it seems appropriate 

.. ~ 
Equations (3. 95), (3. 97), and (3 . 98) remain valid for any Green's 
function depending on two parameters yand C such that p and mare 
constants and q is unity . 
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to consider a Green's function where C =O. Furthermore, the Lipschitz 

condition is simplified because l(t) = 0. This fact essentially uncouples 
. 

the equations (3. 88) and (3. 89) for determining f, and f> since (3. 88) c a n 

now be solved separately for ~. Therefore, the restriction imposed by 

requiring (3.92) and (3.93) is actually no restriction at all. (3.88) and 

(3. 89) being separable implies that the true minimum (or maximum) of 

s
3 

occurs when (3. 92) and (3. 93) are satisfied. 

(3. 77) gives the values of m and p for the case where C = 0. It 

is worthwhile noting again that y is restricted such that y-:/2nrr to insure 

the existence of a Green's function. From (3. 77), 

and 

1 
p= 

y ( 2 ( 1 - c 0 s y)) l / 2 • 

1 
m= 

( )1/2 2(1-cosy) 

(3. 99) 

(3 .100) 

Substituting these values into (3 . 95) and rearranging, the equation 

becomes 

E = !i[ v(2(1-cos 'fl )112 - J,
1 

k(s)ds] . 
0 

Using (3. 99) and (3. l 00) in (3. 97) and performing the indicated 

(3 .101) 

differentiation, the following relation is obtained for determining the 

optimum y, 

2(1-cos y) +ysiny = .!. s1 ok(s)d 
2(2(1-cos y) ) 172 y 0 oy s 

. 
fl is determined using (3. 94), (3. 99), and (3. 100) and is 

(3 .102) 
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The problem of applying Theorem 3 to non-dissipative syste ms 

is reduced to solving (3 .101) and (3 .1 02) for y and l) and then using the 

above relation to calculate f.i. Given an original system and a fully 

determined auxiliary system, it is necessary to determine k(s) greater 

than or equal to the one given in (3 . 85) . Using k(s), the integrals in 

(3 .101) and (3 .102) may be e valuated, and consequently 5 and 5 may 

be determine d. The following section uses these results for a specific 

nonautonomous non-dissipative system. 

3. 3. Error Bounds for a Specific Nonautonomous Syste m 

The system considered is 

2 
d x " " 3 ,.. 
~ +ax+ µ.x: = F cos (WT) 
d T 

(3 .103) 

It is of interest to determine the accuracy of the approximate periodic 

solution of (3 .103 ) obtained using the equivalent equation approach . 

Two approximations are considered. The first is obtaine d u s ing 

equivalent linearization . The second is the approximation d i scus s e d 

in S e ction 2 . 2, wlrnre an c~ quivalent cubic equation is us e d. 

The method of e quiva l e nt line arization u se s the auxilia ry 

system 

d2 A A 

~ +Ky = F cos (WT) 
dT 

(3 .104) 

(3. 104) has known periodic solutions of the form 

y =A cos (wT) , (3 .105 ) 

where A satisfies 
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.... 
F 

A=-.... -2-
K-w 

.... 
F and w i.n (3 .104) are selected to have the same va lues as F and win 

(3. 103 ), and K may be determined by the m e thod of Chapter II which 

" is identical to the standard method of equivalent linearization. K 

satisfies 

.... .... "' 2 
K=a+~µ.A (3.107) 

Given .;;, µ, F, and w, the approximate solution (3. 105) is determined 

using (3.106) and (3.107). If the approximation has more than one. 

solution, it is necessary to select a particular solution of interest . 

Having obtained the approximate solution (3. 105), it is of 

interest to determine its accuracy. The independent variable i is 

normalized so that (3. 103 ), (3. 104), and (3. 105) are periodic with 

period 1 . Let 

211' 
T=-t w 

Equation (3. 103) then becomes 

x+ax+µ.x
3

= Fcos(21Tt), 

(3.108) 

(3 . 109) 

where a= a(2
1T)

2
, µ. = iJ( 2w1T>

2
, and F = F( 211')

2 
Equation (3 .104) reduces to w w . 

y +Ky= F cos (Z1Tt) , (3.110) 

.... 21T 2 
where K = K(~ and F is the same as in (3 . 109). The approximate w 

solution is 

y =A cos (21Tt) . (3. 111} 

To use the g e neral analysis developed in Section 3. 2, it is 
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necessary to determine the Lipschitz constant define d ln (3 . 85). 

Using the notation of the general system (3. 56 ), 

. ) 
f(x, x) = ax + µx , (3 .112) 

and 

F(t) = F cos (2m) (3 . 113) 

f(x, ~)is independent of~; consequently, the Lipschitz constant l(t) 

for the derivative can be taken to be zero, and the two r e lations (3. 92) 

and (3. 93) dete rmining o and 6 are uncoupled . o can be found first. 

Furthermore, since there is no dissipation, the Gree n's function(3 .73) 

for C=O is used. The bounds on IG(t, s)I and '*Jt, s)l are give n by 

(3. 99) and (3 .100) respectively. 

The Lipschitz constant k(t) has to be gr<'!ater tha n or equal to 

the expression given in (3. 85). Therefore, for lz 1 l<o and lz
2

l< o, 

k(t) satisfies 

2 2 2 A 

k(t) :-;; Iv -a-3 µy l+6 lµl !Ylo+ 3 lµI o = k(t) (3.114) 

A 

The Lipschitz consta nt may be t aken to be k (t) define d in (3. 114). 

For convenience , the (") is droppe d. 
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To determine the optimum y using (3 .102), the integral 
1 

..!_ l i-~ dt must be evaluated. Dividing the integral at the z;eros :Jf 
Y ~o Y 
the first term in k(t) eliminates the absolute value sign in the first 

term. This term must contain zeros since y is restricted to the range 

') 2 2 2 
a <y~<a+3µA , (µ>0) or a+ 3µA < y <a, (µ < 0), so that (3.102) has a 

solution. Differentiating with respe c t to y e liminates the r emai.ning 

terms in k(t). Performing the resulting integration yields 

(3 . 115) 

In order to determine 5, it is necessary to compute rl kdt and 
I Jo 

E in (3 . 101) . l kdt is determined by integrating (3 .114) term by term . 
·'o 

Each r esulting integral is divided at the zeros of the inte g rand e timi-

nating the absolute value signs. The result is 

1 I k(t)dt= -,-id.(/-a)(l-8t)+3lµIA
2

(4t- l/2 +..!.. sin4rrt) 
~Q 1µ1 TI 

12 2 
+ --lµIAti + 3 1µ111 

TI (3.11 6 ) 

where 

A - y -a \ 1 1 
( 

2 ,l/2 

t = 2'lT cos -;µA2-J 

To compute E, it is conve.nient, in this example, to modify 

the definition given in (3. 87). Although the form given in (3. 87 ) is 

readily calculable for the present approx~_mation, it becomes awkward 

for the approximation generated using the equi.valent cubic equati on . 

For comparison pu1"poses, it is desirable to use the same fol·m for E 

in both appru>drnations. Fr nm Figure 2, it is clear that if E is 
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increased, the region for valid o is reduced. If E is inc:rcased but is 

still required to satisfy equations (3. 68), all of the arg11ments in 

Theorem 3 remain valid . Consequently, Theorem 3 may still be ttsed . 
.. , 

However, as mentioned above, increasing E increases o~ and 

>!< ,~ 

decreases o2 . Therefore, the error bound o1 is larger (i.e . poorer) 

for the increased value of E. In the present example, the added 

convenience of using an alte rnative form of E more than compensates 

for what can be shown to be a slight (10%) increase in o;. 
A convenient E to use is the following 

( JI z )1/2 
E = e (t)t 

0 
(3.117) 

By Schwartz's inequality, 

1 I r I e(t)I dt ~ (I ..2 (t)dt)
112 

"o o 

so that E given by (3.117) is a valid definition to US P.. From (3 .60), 

e(t) is given by 

3 ~ e(t} = ay + µy - Ky= 4 cos (6lTt} , (3.118) 
I 

where (3. 107) and (3 . 111) have been used. Determining E in 

(3 . 117) then gives 

E = (3 . 11 9) 

Substituting (3. 115) into (3 . 102 }, the relation for determining 

the optimum y is 
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2 . 1/2 
2(1-cosy)+ ysiny _ .,Id.. z(i-.i cos-1 (.Y_-:-a~) ) 

Z y (l - cosy) 1µ1 rr \ 3 µAo c:~.120) 

Once y is determined, o can be found from (3 .101) using (3. 116) and 

(3 . 119). The re la ti on for o is 

1 
oj y(Z(l-cos y))1/Z - J

0 
k(t)dt J = E 

. 
5 is determined from (3. 94) and is given by 

• 1 
5= - 5 . y 

Equation (3.120), (3.121), and(3.122) are the equations of 

(3. 121) 

(3.122) 

interest for the approximation obtained using e quivalent linearization . 

These were solved for several numerical values of a, µ, F, and w. 

The r es ults for a = l , 0, == 0. l, and f =O. l are given in Figure s 3 and 4 in 

the form of plots of o versus w. The results for a=l, i1=-0.2, and 
A 

F=O. 2 are given in Figures 5 and 6 . 

Prior to discussing the results, it is convenient to d e velop 

the bound for the approximation obtained using the equivalent c ubic 

equation. The auxiliary system is 

d
2 

x ,. ,.. 3 " , .. -) 
~+ay+µy = F cn(T'J'T, k 
d ,. ... 

(3.123) 

where a andµ have the same values as in (3 .103 ) , and ~and k a re 

related so that the p e riod of the excitation in (3 .12 3 ) is the same as 

the period in (3 .103 ), i.e. Zrr /w. (3 .123) has exact periodic solutions 

in t e r1ns of Jacobian e lliptic functions of the form 

y = A en (TlT, k ) (3 . 124) 
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From Section 2. 2, the approximate periodic. solution for 

().103) for ~>0 is ddermine d using (2.27), (2.2 1 ), a nd (2 . 19 ) o n c e~ a 

valm~ -1( (rnodulu8 of the elliptic function) has been assumed. Ifµ < U, 

(2. 28), (2. 23 )~ and (2. 19) 1 are used once a value of 1<
1 

is assumed. 

(k
1 

is defined in (2. 2 8).) It is nee es sary to exercise caution whe n 

using the above equations from S ection 2. 2 so that the differ .::! nc<~ in 

notation is correctly taken into account. 

Once the approximate solution is completely d etermined, T 

is again normalized using (3 . l 08) so that equations (3 .103), (3 .12 3 ), 

and (3 .124) have period 1. Equation (3 . 123) becomes 

•• 3 I -
y+ay+µy = Fcn(nt,k), (3 . 125) 

d . . (3 l 09) F'--F" I ( 
2-rr )2 d where a an µ are given in . , an 
w 

Equation (3 .124) becomes 

y =A en ( Tlt, k) (3.1 26) 

In order to apply the theory of Section 3. 2, it is n ecessary to 

detennine a Lipschitz constant k(t) . For the same r c a;,;ons a;,; in the 

first approximation, l(t) is set to zero, and the Green' s function fo !' 

{; =0 is used. Again, & and the optimum ya r e given by (3 .1 01) and 

(3 .102). Since the arguments in developing the Lipschitz constant in 

(3. 114) a re inde pendent of the partic ular approximation used, (3 . 114) 

is also valid for the pre sent approximation. Consequently, p erforming 

the same ope rations as indicated above, k(t) is found to b e, for / z I<&, 

(3 .127) 

where y = A en (T')t, k). 
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. I r 1 u Id 1:;\ -It is now possible to cfoterminc the integral - avi..::..L..dl: 
y '() y 

needed for ca lculating the optimutn y. Again, separ:1ting the integ r a l 

at the zeros of the first term in k(t), taking the derivative, and 

evaluating the resulting integrals yields 

.!. f
1 

ok dt = 2 -rb!rµ (I - 8 t) , 
Y ' O 8Y lµI 

(3 . 12 8) 

where 

(3.12 9) 

" such that O<t < l /4. 
rl 

To determine o, it is nece ssary to calculate I hilt and E. The 
'O 

integ ral is evaluated using the same techniques as in the earlier 

approximation. The final results involve integrals of products of 

elliptic functions which c an be evaluated using s tandard r e ference 

tables (
2 8 ). Performing the algebra , the following r esult i s obtained. 

1 I 2 f k(t)dt = J:!..(/-a)(l-8t)+ 
3 lµA [~(E(k)-(I-k2 ) K(k)) 

·o I µI 4R(1C) k 

+ ~(E(am(Tlt, k), k )- E(k) + ( l-k2 
)(K(k) - r,t) J 

'K 

(3.1 3 0) 

where K (k) and E(k) are the complete elliptic integrals of the first and 

second kind with modulus k, E(cp, k) is the incomple t e e lliptic integral 

of the second kind, and a m(u, k) is the Jacobian a mplitude function. 
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Finally, it is necessary to compute E. From (3.60), E:(t) is 

e:(t) = F cos (2TI"t) I_ F' en (T')t, k) (3 . 131) 

For convenience, (3.117) is used to calculate E, which gives 

[ 
F

2 
FF1

TI" ( TI"K(k_'_)_Yll l/Z 
E = --. - --- se ch ) 2 2kK(k) ' 2K(k) _, 

(3.132) 

.,...,2 -2 
where K = 1-k . In the numerical results to be presented, an 

accuracy problem developed in computing E for small values of k. 

Consequently, a power series in terms of k was determined, and the 

first few terms were used. Fork small, E was deterinined using 

F k:2 
-4 

E = ./'2 4 .+ O(k ) as k-0 (3. 13 3) 

Equations (3.120), (3.129), (3 ~ 130), and (3.132) are convenient for 
I 

nu,merical work only if ~ > 0. If µ < 0, K is pure imaginary, which 

nee es sitate s some modification of these equations prior to performing 

any numerical computations . 

All of the quantities n e eded for determining the bound have 

now been obtained. Substituting (3. 12 8) in (3 .102) yields an expression 

for the optimum y. Once y is deter1nined, equations (3. 13 0) and 

(3 . 132) are sub s tituted into (3.101), which give s a relation for deter-

mining the bound 5. {)is found using (3.122) . Numeric al r e sults 
.... .... .... 

were obtained for the same values of a , µ, and F as those values used 

in the linear approximation . The results for a=l, i1:=0.l, and F=O.l 

are given in Figures 3 and 4 in the form of plots of 5 versus w. The 

r e sults for a = l, µ-~ -0.2, and F=0.2 are given in Figur es 5 and 6 . 
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The exact solution errors for the linear and the cubic 

apprv>d.mations were obtained by numerically integrating the appro--

priate differential equations. For the linear approximation, the 

equation rlescl"ibing the difference zL (t) between the approximate 

solution (3. 11 l) and the exact solution is 

2 
d ZL 3 
--, - - = (K-a)y-azL-µ(zL+ y) 

dt'"' 

where y=A cos (2Tit), K, µ, and a are given in (3 . l 09). zL (t) is pe rio<lic 

with period 1. The measure for the exact linear error used on 

Figur,~s 3 and 4 is max lzL(t)I for tE [O, l] . The exact error zc(t) for 

the cubic approximation is determined from 

z ( t) = z I ( t) + yL ( t) - y ( t) , 
c -~ c 

where yL and y c are the linear and cubic approximations respectively. 

As above, the measure used for the exact cubic errur on Figure s 3 

and 4 is max lz (t)I for tE[O, I]. The curves for the exact error have 
c 

some portions which are dashed. These indicate extrapolation of the 

curves. There exists some scatter in the exact solution points for 

-5 errors smaller than I 0 . It was felt that the accuracy of the com-

putation deterinining the exact error was only of this 01·der. and to 

indicate this, the curvr:!s are dashed for this portion aJ.so. 

Discussion 

Figures 3 and 4 give the results of the above ana lysis for the 
,,_ 

values a=O. l, )1 ::-: 0.1, and F=O . 1. Since t,t>O, the restoring for c e is 

termed "hardening". Figures 5 and 6 give the results for the case 
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.... 
a= 1 . 0, 0 '= - 0 . 2, and F = 0. 2 Since~!< 0. the ·r e storing for ce is 

called "softening". 

Figur·~ 3 gives the bound on the magnitu<lo?. of the diffe rel1ce 

between the exact solution aad the linea t" a ppr .nd rnation, the bound on 

the magnitude of the difference between the exact solution and the 

cubic approximation, and the exact error for b oth approxi lnations f o r 

the~~~ b_!.:_a.~~~ of the r e sponse c urve . (See Figur1.~ l . ) Figur'~ 1 

presents th1~ same qua ntities for the _st~b...!!:_.££t"tion_ of the I owei: ~ra~~~ 

of the r e spouse curve. Figur.e s 5 and 6 for the softening c ase includ·~ 

the bounds for both approximations a nd the exact errors for the upper 

branch of the response curve and for the stable portion of the lowe r 

branch respectively . 

Figures 3 through 6 indicate that it is not possible, using the 

present analysis, to obtain a bound for all w. In fact, the expres sion 

relating the parameters a.,~. :F, and w specifying the bounaa ry of 

applicability of Theore m 3 could be determined using (3. %) . However , 

it adds nothing to the discussion to include i t . From Figures 3 t h rough 

6, it is also clear that the bound for the cubic approxima tion is 

roughly an order of magnitude smaller than the bound fo r the linea r 

approximation . This is in agreement with the actual difference 

between the exact errors for the two approximations ove r the range 

of w where bounds are obtainable . This does not ne ces sa"t"i.ly mean 

that, if one approximation leads to a smaller bound than another 

approximation, the first approximation is better , i.e . its a c tual error 
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is sn1atler. Ilowe v ur , without k nowl <' <lgc of the ex.a.ct ('l"l" , >r, one i:-i 

usual ly rnorc confident in using the approximation providing the 

smaller e rror b o un<l. 

Figures 3 and 5 a lso show tha t a bound is obtainable over a 

large r range in wfor the cubic approximation than for the linear 

approximation. The primary reason is that the mean diffe rential 

equation e rror E for the cubic approximation is considerably smalle r 

than E for the linear approximation. In a sense, therefor':!, equation 

(3 . 123 ) better models the original equation (3.103 ) than does 

equation (3. 1 04). 

Another point worth noting in Figur•'!s 3 thr ou g h 6 is that the 

bound o possesses the same general d e pendence on was doe s the exact 

error . This seems to indicate that, in the present example, the 

qualitative behavior of the exact erro r is described fairly accurately 

by the qualitative behavior of the bound . Although the actual bounds 

obtained are an order of magnitude large r than the exact error, 

smaller bounds could b e obtained by using the Gre e n's function for 

the Jacobian matrix of f (x). In addition, the original definition of E 

could be use d, and/or smaller bounds for the Green's function could 

be o btained. Thes e improvements would lead to closer bounds. 

Comparison with Other Published Work 

As mentioned earlier, other authors h ave obtained e rror 

bounds u s ing slightly differe nt techniques. It is therefore of i nterest 

to compare the bounds obtaine d by others to the b ounds given by the 

present approach. Such a comparison ha s been made for the case 
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A 

a=l, Ci ·= O. l, and F =O. l for the solution cort·e sponding to lhc npp cr 

branch of the response curve and to the stable p o rtion of the lower 

b.ranch . The same approximate solution, namely the linea r approxi-

mation (3. 104) and (3 . 105 ) was us ed for computing all the boun•1s in 

an attempt to compare the various a pproac h es and not the p articu lar 

approxima te s olution usr:!d. 

McLaughlin u ses a consistency argmnent described in Se ction 

(2 ) 2 4) 
J .1 ' . Althou gh he applies the t echnique exclu sively to approx i-

mate solutions obta ined using the Poincare' -Linstead p erturbati on 

t echnique, the procedure is valid for approximations obtained by other 

n1eans as we 11. In r efe r e nce (2 3 ), McLaughlin con side rs equation 

(3. 103 ) . He obtains an approximate solution of the form (3. 105) where 

the amplitude A is determined using the perturbation techniques. If 

this aspect is modified so that A (actua lly K) is dete rmined using 

equivalent linearization, the equations develop ed b y McLaughlin apply 

direc tly, since his argume nt s are still valid. 

Assuming th~ error lz (t)I to sati sfy l zl ~ u. the equation for '.l 

(which is (El . 11) in r efe r e n ce (23 >) is 

where 

(
3 2 2 3 · 

u- f1p1 u +31Alu +3A u+ IA l) =O , 

Pi = max I 
n ~ O 

1
2 2 I ' 

1-n w 
n =O, 1,2, . . . 

(3 . 134) 

u i s the smallest positive real root of (3. 134 ) . Equation (3 . 134) was 
,.. 

solved for the valu e s of a, µ. and F given above and for t h e frequency 

range a ppearing in F i g ure 3. 
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The bound obtained is given in Figures 7 and 8. Figure 7 is the bound 

for the solution corresponding to the upper branch of the response 

curve, and Figure 8 gives the bound for the stable portion of the 

lower branch. Before discussing the results, it is convenient to 

present the bounds obtained by yet another investigator. 

As mentioned in Section 3 .1, Holtzman utilizes a modification 

of the contraction mapping principle to obtain bounds. In reference 

(2 5), he also considers equation (3 .106) as an example. He uses the 

approximation obtained by equivalent linearization, consequently the 

relations he obtains are directly applicable to the present example . 

The bound 5 is determined by first determining a contraction 

constant a.. O'.. is a root of &quation (59) in reference (25)), 

3 !µIT (IA!+ cT !µA3 1) 
4 ( 1 - a.) s: a. , 

2;r 1 
where T = - , c:: and A is the approximate solution w 2 J sin T /2 I ' 
amplitude. Once a. is found, the bound 5 satisfies 

k 
5 = --' 1-cx. 

(3.135) 

3 
where k = cT I~. a. is the smallest real root of (3 .13 5) satisfying 

O s:cx.< I. Equation (3 .135) and the above equation were also solved 

for the hardening case of the present example, and the results are 

given in Figures 7 and 8. In addition, Figures 7 and 8 include the 

bounds obtained using the analysis of Section 3. 2. The original 

definitkmofE (3. 87) was used in computing 5. The exact error is 

also presented . 
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.From the figures, it is clear that the present analysis 

provides a somewhat sharper bound and is applicable over a larger 

range in w than either of the alternative bounds discussed above. It 

is interesting to note that, although Holtzman' s bound is sharper than 

McLaughlin's, its range of applicability in w is smaller. This results 

mainly from simplifications which Holtzman introduces. Although 

Holtzman' s use of the contraction mapping principle is similar to the 

present analysis, it differs in the manner in which the bound is 

obtained. The contraction mapping principle enables him to conclude 

the existence of a unique solution to the error equation, but for bound 

purposes, he must, in addition, determine the region in which the 

mapping is a contraction. This region constitutes the bound. The 

manner in which Holtzman chooses to do this accounts for the some­

what poorer bound and the smaller range of applicability. However, 

Holtzman' s primary interest is not to obtain a bound but rather to 

determine under what conditions does the existence of a linear 

approximation imply the existence of an exact solution. No doubt, as 

Holtzman points out, other methods for determining the c ontracting 

region exist which could improve the bound and increase the range of 

applicability. The figures also show that all three bounds possess the 

same qualitative behavior as does the exact error. 

From the standpoint of convenience, McLaughlin's and 

Holtzn1an1 s bounds a re easie r to obtain. They both involve a c ubi c 
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equation. In addition to a cubic equation, the present analysis ha s a 

transcendental equation for determining the optimu1n y. However, 

this relation (3 .102) is not so involved since it can b e put into a very 

convenient: form . The left hand side of (3 .1 02) is a function of y only 

and can be plotted once for all y of practical. interest. Then, in a 

p a rticular situation, it is necessary only to compute the right hand 
,1 a 

side * ~ ~ dt and to locate the point of intersection on the above 

plot. In the present example, the right hand side is given in (3 .115), 

. 2 2 2 2 
and the range for y is a< y < a+ 3µA: , (µ > 0), or a+ 3µA: < y <a, (µ < 0). 

Having determined y, the cubic equation is then solved fo r o . The 

additional effort needed to use the present analy s is is re latively small, 

consequently the pre sent approach remains manageable and easy to 

apply. Furthermore, the improvement in the accuracy and the increase 

in the range of applicability of the bound obtained appear to be ample 

compensation for the slight increase in effort. 

3 . 4. Error Bounds for a Specific Autonomous System 

In this section, The orem 3 is used to d etermin e a region on 

the response diagram of an autonomous system where there exists 

only the trivial solution. S ince this approach yields a negative result 

in that it provides a r e gion where a non-t riv ial solution cannot exi.st, 

a second approach, for conservative autonomous systems, is discussed 

which yields a region where the non-trivial solution must lie . 

Bounds Using Theorem 3. 

The system of interest is the following 
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2 
d x 1 
--2 + ax +bx -= 0 (3 . 1 36 ) 
d'T 

where a and b are constants and a > 0. The p e riodic solution of (3 .136) 

which is symmetric about the origin is of interest . Assuming that 

(3.136) pos ses ses a solution of period ~1T' 'Tis nor malized so that 

. h . d l C l · 2 rr • the solution as per10 . ons e que nt y, using 'T = - I:, equation 
w 

(3 .136) becomes 

•• (. 21T )2 b (2TT )2 1 Q x+a - x+ - x = w w (3 . 137) 

The following comparison system is used, 

y + (21T )
2 

y = 0 , (3. 138) 

which possesse s known periodic solutions of the form 
,.. 

y =A cos (2Tit) (3.139) 

Usually, A is assumP.d given and w is determined approximately 
,.. 

using equivalent lineariza1:ion, howeve r, it is convenient to let wand A 

b e unspecified foJ'.' the present. 

Using Theo r em 3, a bound o on the e r ror z =x·-y can be 

obtained. As mentioned previously, there exists a range of valid 6 

satisfying Theorem 3 . From Figure 2, 0;' r e presents the smallest 

-·-
permissible bou nd, and 0; represents the largest. Whe n det e rmining 

a bound on a n e rro r, it is c lear that o'{' is c h ose n whe n applying 

Theor em 3. H oweve r, in the present example, an exact sol'.1t ion is 

known (i.e. x= O}. The primary inte r est is to d e termine the largest 
, ... 

region where there exi sts only the trivial solution. Conseque ntly, o;-
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is chosen when applying Theorem 3. * I zl $ o2 then represent s a region 

>'< 
where ther e exists only the trivial solution. &~ still r e presents an 

error bound, but it is not the smallest possible. Since equation (3. 137 ) 

and (3.138} are identical to equations (3.109) and (3 .110) studi e d i.n the 

previous section, except that the excitations are zero, equations 

(3 .121) and (3 .12 O) can be employed directly to determine 5 and y 

with only one slight modification. In equation (3 .121 ), E is calculated 

using the fact that w
2

= a+~ b~ 2 
obtained from equivalent line arization . 

However, in the present example, w is, as yet, unspecified. Therefore, 

E must be evaluated accordingly. Using equations (3 . 6 0) to determine 

e:(t) and equation (3 .117}, E satisfie s 

2 

E = ( 2 rr )' 2 AZ [ (a - w ZL + l (a - w 2 ) b/Z-+ 2._ b 3 A 4] 
w . . 2 4 16 

Using the above relation for E in equation (3 .121} gives a valid 

expression for determining o in the present example. 

(3. 140) 

wand~ are now specified in the following manner. w may be 

considered known; it is the frequency of the desired solution. ~ may 

be determined by applying Theorem 3. In addition to providing an 

error bound &, Theorem 3 also establishes the existence and unique-

ness of the exact periodic solution x(t}. Furthermore, Theorem 3 

shows that the exact solution is isolated . However, in Section 3 .1 , it 

is shown that whenever Theorem 1 (or its second order scalar 

counterpart Theorem 3} applies to an autonomous system, there can 

exist only the degenerate solution (3. 54) satisfying I zl ~ o. In the 

present example, the degenerate solution is the trivial solution. 
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C onsequently, since it is of interest to determine the largest pos sibl e 

r egion where there can exist only the trivial solution, the quantity 

A+ o may be maximized with respect to A and o. Since A is cons i -

A 

dered an independent variable, the maximization of A+o with respect 

to y yields ; ~ = 0, which is the same relation obtained prev iously. 

Therefore, equation (3 .120) still represents the relation for maximizing 

,,.._ /\. /\. 
A+ o with r e spect to y. Maximizing A+5 with respect to A yie lds 

(3.141) 

oo 
Implicitly differentiating equation (3 .121) to obtain ()A, (3 .1 41) becom es 

(3 . 142) 

where the differentiation is with respect to explicit 5 and .1\. . Given w, 

equations (3 .120), (3 .121 ), and (3 . 142) are sufficient for determining 

~ 'A, y, and o . 

For convenience, in the present example equation (3 .142) is 

/' /'. 
not used to de terinine the optimum A, but A is chos en arbitrarily to 

he zero. Therefore, the ~ solution is chosen as the approximation. 

Taking the limit as A-0 in equation (3.120) yields the value of y to be 

(
2 2 

y= : ) a (3.143) 

Setting A equal to zero in e quation (3. 140) gives E=O. Consequently, 

the equation (3 .121) for determining o reduces to 

,,,2 a(2 (1 - c os y))112 

u ~ 3 y lbl . (3 . 144) 
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Equation (3 .144) represents the region in the o, w plan'~ (actually A, w 

plane, where A is the amplitude of x(t>) where the re ex:i.sts only the 

trivial solution x(t) = 0. Theorem 3 provides a region, lzl 5 6, where 

there exj sts only one solution for (3 .136). Since z-= x-y and since y is 

taken to be zero, the region reduces to Ix! 5 o. However, an exact 

solution is known to be x = 0. By invoking Theorem 3 again, x = 0 is the 

only solution satisfying !xi $; o. Consequently, if there exist non­

trivial solutions to (3 .136), they must be exterior to the region Ix! $; o. 

It is convenient to define the following dimensionless parameters: 

2 
2 a 

O= w ;a and A = Sb 

Using the above definitions, equation (3. 144) becomes, 

for i;~o. 

and, for s $; 0, 

s >- -

where y=21T(l +0)-l/2 . 

( )1/2 \2(1-cos y) 

3y 

( 2 ( l - c 0 s y)) 12 

3y 

(3. 145) 

(3. 146) 

Equation (3. 146) is p lotted in Figure 9. Also include d is the 

exact non-trivial solution of (3 .137) which is obtainable u s ing 

quadratures and involves elliptic integrals . The exact solution in 

terms of the variables defined in (3. 145), is easily found to be 

2 
TT ( e"_ ) 0 = --2 l+z- -1 
41 

(3. 147) 
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where ,-

J_ l 2+.s__)l/2K(J...(_E __ \1/2) 
/'2 \ I+s .,f2 I l+s) , for s > O 

I = 

for -1 <s < O 

and K is the complete elliptic integral of the first kind, and 

_ l ( -C, ) I /2 . . . 
k -= ,fl 1+1;- . No exact periodic solution, symmetric about the 

origin, exists for S < -1. S < -1 r e presents an initial amplitude so 

iarge that the potential energy is outside the potential we 11 for 

oscillatory motion. Figure 9 also contains bounds obtained using a 

second approach to be de scribed shortly. 

Figure 9 shows that the region defined by (3. 146) is quite 

1 
small . The asymptotic value of the boundary as 0-oo is E = ± 3 · 

In addition, the region degenerates to a ?Oint for values of 0 such 

1 
that 0 ::-; 2 -1, n=l, 2,. .. Practically speaking, the r egion in the 0, c:' 

n 
plane excluded using The or em 3 is too small to provide m eaningful 

information for the exact non-trivial solution. However , the region 

does indic ate that the bifurcation points for (3 .137) for lbl small are 

associated with the eigenvalues of the lin.ea r problem for b -= O. 

Therefore, non-trivial solutions of (3 .137) for lb! small can emerge 

only from the p oints O= lz-1, n =l, .. . The above result is well know n . 
n 

Since Theorem 3 does not provide practical inforination con-

cerning bounds on the non-trivial solution of (3 .137), one is motivated 

to consider another approach. 
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Bounds for Conservative Autonomous Systems 

In the study of nonautonomous systems, the frequency of the 

exact periodic solution is specified by some external time varying 

mechanism. However, for autonomous systems the frequency of the 

steady-state response is not known beforehand, and most often this 

is the quantity of interest. For nonautonomous systems, a reasonable 

criterion for comparing the exact and approximate solution is the 

maximum of the absolute value of the difference between the solutions. 

However, this criterion is no longer meaningful for autonomous 

systems. In the autonomous case, the initial amplitude is usually 

prescribed, and knowledge of the frequency of the response is desired. 

The accuracy of an approximate frequency cannot be estimated by 

considering differences between the exact and the approximate 

solutions. If both solutions have the same initial conditions (i.e. , 

x(O) =A ; x(O) = 0 ), then since the two frequencies presumably would 

not be ide ntical, the two solutions would be completely out of phase 

after a sufficient length of time. At this point, the magnitude of the 

difference between the two solutions would be 2A regardless of the 

manner in which the approximate solution is obtained. Therefore, for 

autonomous systems, it seems more meaningful to seek differences 

between the exact frequency (or period) and the approximate frequency 

(or period), given that both solutions started with the same initial 

conditions. 

Consider the conservative autonomous system of the form 
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x+f(x) = O, (-S.14:{) 

where f(x) is CO for all x and is an odd function nf x. The n on·-t rivial 

p e riodic solution of (3. 148) that is symmetric about x ·-= O is of inte t"est. 

In principle, (3 .148) can be solved by quadr.atur~s using the initial 

conditions 

x(O)=A , x(O)=O 

Performing the algebra, the exact period T is 
e 

(3 . 149) 

(3.150) 

In many situations, (3 .150) can only be solved numerically. It is of 

interest, howeve r, to be able to d etermine bounds on T without 
e 

having to resort to numerical computation. For this reason, one is 

motivated to consider an auxiliary system whose pe"t"iod T is 
a 

d e t e rminable in closed f o rm. Hopefully, bound s o n the differe nce 

between T and T will be obtaine d in terms of the difference between 
a e 

the corresponding differe ntial equations . 

As sume the auxiliary system to be of the form 

y+g(y) = O , 

where g(y) is c0 
for all y and is an odd function of y. (3. 1 51) is 

selected so that its p e d o d T , given by 
a 

r.A ,A -1/2 
T = 2 /2 L ( J g (v ) dv) ds , 

a 0 s 

(3 . 151) 

(3. 1 52} 

is known. The initial conditions (3 .149) have been utilized in obtai ning 

(3 .154) . The differ e nce between T a nd T is 
a e 



T -T --: 2/l 
e a 

Define 

-1 02-

A J g(v)dv 1/2 A -1/2 

[ ( - -i~ - --) -1 J ( J g < v) d v) d !3 

J f(v)dv - s 
s 

t\( 11) = 

A r g(v)dv 
u.A 

l f(v)dv 
UA 

Taking a bsolute values of (3 . 153 ), the differe n cP. satisfies 

1/2 
IT-TI ~ max IA (u)-llT 

e a 0 :<;; u ~l a 

(3 .153) 

(3. l 54) 

(3. 155) 

Equation (3 . 15 5) represents a bound on t h e magnitude of T -T in 
e a 

t e rms of T and the ratio of the potential energies associated with 
a 

g(y) and f(x). From the form of the bound, it is clear that as g(v) 

and f(v) tend to the same function, f\ tends to 1, and the bound tends 

to zero. This implies that the c loser in form g (v) and f( v) a re, the 

·more accurate the bound is . Further1nor.a, as the d ifference between 

g(v) and f(v) tends to zero, so does the difference between their 

corresponding periods . 

w 2 w 2 3 
In the pre sent exa mple, f(x) =a ( Z·rr ) x+b ( l·iT) x It is again 

convenient to use (3. 13 8) as the auxiliary system. In addition, let w 

be determined using equivalent linearization . w is given by. . 

2 3 2 
w = a +4 b A , ( 3 . 1 56 ) 



where A is in initial amplitude. In order that a periodi c apprln imate 

solution exists, u/' must be positive. Using the variable s d e fin e d in 

(3 .145), (3 .156) becomes 

3 
O = 4 i; ' (3.157) 

where 0 > -1 so that periodic solutions exist. Equation (3 . 1 57) is also 

included on Figure 9. 

To determine the bound, it is necessary to compute f\ . Using 

(3 .154), A is easily found to be 

(3 . 158) 

It is convenient to rewrite the bound given in (3. 155) in terms of the 

variables defined in (3 .145) . First, note that, if M = max I f\112
(u)-l I 

O~u:s;; 1 
~ 1, equation (3 .155) implies that 

w 
w :s;; a 

e 1-M 

or, in terms of the dimensionless variables 0 and s, 
1+ 0 

0 :-; --a -1 
e (l-M7 

Similarly, equation (3 .155) implies that 

M can be written in terms of 0 and S to give 

M = max 
O:c;;u :s:l 

( 
1+ 0 1/2 

a ) - I I 
·, 1 + f-o +u

2
) 

(3 . 159) 

(3.1 60) 

(3.161) 
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It is easily shown, usjng (3 .157), that 

M == (3.162) 

for s ~ o 

The bounds on 0 given in equations (3 .159) and (3 .16 0) are included 
e 

in Figure 9. 

It is clear from Figure 9 that the bounds obtained using the 

comparison approach are much more meaningful than those obtained 

using Theorem 3. The bounds from the comparison approach can be 

determined over the entire .range in sand 0 where there exists an 

exact periodic solution. As s approaches -1, the upper bound goes 

to infinity. This occurs since there exists no exact periodic solutio n 

for s = -1. Consequently, in the present example, the bound going to 

infinity indicates the non-existence of an exact periodic solut ion. This 

fact is important since the approximate analysis implies the e x istence 

of a periodic solution for all s>-i . However, since no bound js 

obtainable for s ~ -1, the bound analysis indicates that the region f o r 

existence of an exact periodic solution is actually s > - 1. P re s uin a b ly, 

there exist other techniques which give c l oser bounds than t h e app roach 

describe d above. However, the above approa ch is conceptually simpl e 

and eas y to apply. 
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IV. COMPARISON OF DIFFERENT 

EQUIVALENCE CRITERIA 

In the description of the equivalent equation approach given in 

Chapter II, two differential systems are said to be equivalent when the 

mean square of the difference between them is minimized. The mini­

mization is performed with respect to certain parameters contained in 

the auxiliary system. However, there is no a priori assurance that 

minimizing the mean square differential equation error will lead to the 

smallest solution error. There are many other possibilities for mini­

mizing the differential equation error. The purpose of the present 

chapter is to study the relationship between the solution error and the 

manner in which the differential equation error is minimized. The 

investigation is concerned exclusively with second order scalar equa­

tions. Three minimization schemes are considered, namely, mean 

square error minimization, mean absolute value error minimization, 

and maximum absolute value error minimization. Only the case of 

periodic motions is considered, therefore, the interval used for the 

above schemes is one period of the solution. The p r oblem d o es not 

appear to be amenable to analytical approaches, therefore, examples 

will be used to indicate the major results. 

The first section presents some preliminary considerations and 

a formulation of the problem. Section 4. 2 gives a description of the 



three m.inimization schemes to be used. Sections 4. 3 through 4. 6 

present specific examples. Section 4. 7 contains the results and con-

clusions of the analysis. 

4. 1 Preliminaries. 

In Chapter II, it is shown that the equivalent equation approach 

can be used to obtain approximate periodic solutions for equations of 

the following form 

d
2 x 

- 2 + f(x, x, t) = F(t) (4. 1) 
dt 

where f(x, x, t) and F(t) are periodic in explicit t with period one. This 

represents no loss in generality since the independent variable may 

always be normalized so that (4. 1) has period one. The procedure is 

based on considering an auxiliary system having known periodic solu-

tions. This system can be represented as 

2 4 + g(y, y, t, al' ... , a..)= G(t, a..+l' ... , a. ) 
dt J J r 

(4. 2) 

where g and G are periodic in explicit t with period one, and °'i (i=l, . . . , r) 

are parameters which are selected so that equations (4. 1) and (4. 2) are, 

in some sense, equivalent. 

The manner in which equation (4. 2) is made equivalent to (4. 1) 

is of primary interest in the present chapter. Equivalence is based on 

making the difference between (4. 1) and (4. 2) small. Specifically, the 

differential equation error E:(t), given by 

e(t) = F(t)-f(y, y, t) + g(y, y, t, a.1, . .. a.j)-G(t, a.j+ 1 , ... a.r ) (4. 3) 
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is minimized, in some manner, with respect to the parameters 

a..(i=l, ... r). By making equations (4.1) and (4.2) similar, it is assun1ed 
1 

that the corresponding periodic solutions will also be similar. The 

relationship between the differential equation e rror and the solution 

error is investigated in Chapter III. It is shown that, under certain 

conditions, the above assumption is justified. 

When obtaining an approximate solution for any system, the 

prilnary objective usually is to make the error z(t) between the approx-

imate solution y(t) and the exact solution x(t) as small as possible. The 

ideal situation would be to minimize z(t) with respect to a.. (i= l, .. .,r). 
1 

However, z(t) is not known exactly. In general, the only information 

available concerning the error is that it satisfies lz(t)I~ 6, where o is 

a bound. The next alternative is to minimize o with respect to 

a.(i=l,. . . ,r). In Sec tion (3.2), it is shown that, under certain c ondi -
1 

tions, o satisfies 

-1 
O=maxp(t)(l-K) E (4.4) 

\It 

where p(t) and K(o) are defined in (3. 66) and (3. 67 ). Eis a n average 

differential e quation error given by 

I 
E =I I €(t)ldt 

0 

From the Cauchy-Schwartz inequality, it is clear that 

fr 1 L\ 1/2 
E ~ \fo e2 (t)d/ 

(4. 5) 

(4 . 6 ) 
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Furthermore, from (4. 5) E also satisfies 

E ~max le(t)j 
\jt 

(4. 7) 

From the arguments presented in Section 3. 3 concerning various defi-

nitions of E, it is evident that the definitions given in (4. 5 ), (4. 6) and 

(4. 7) are all valid. Consequently, a bound 6 can be obtained using (4.4) 

and any of the above definitions. 

For a particular definition of E, it is possible to minimize 6 

using (4. 4). If the differential equation parameters a. (i= 1, ... , r) are 
1 

considered independent of the solution parameters f3.(j=l, ... ,s), 6 can 
J 

be minimized with respect to explicit a... After the minimization has 
1 

been performed, the s relations can then be used to completely deter-

mine the a.. and {3 • • Since p(t) and K(o) depend only on the approximate 
1 J 

solution y and the Green's function G(t, s ), the minimization of o with 

respect to explicit a. . implies 
1 

(4. 8) 

where use has been made of (4. 4). Hence, minimizing 6 leads one, 

very naturally, to a condition of the form (4. 8). Furthermore, the 

differential equation error is independent of 6 which enables the 

approximation to be obtained independent of the bound. This is advan-

tageous since the conditions necessary for the existence of a bound are 

not satisfied in general. Therefore, an approximate solution may be 

obtained even though the bound analysis of Chapter III does not apply. 

In addition, the minimization procedure (4. 8) is unambiguous and, 
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usually, easy to implement. Since a . very often appear linearly in 
1 

e(t), the relations resulting from (4. 8) are quite simple mathematically. 

Although the above arguments provide motivation for taking 

(4. 8) as the appropriate condition for determining a.(i=l, ... ,r), they do 
' 1 

not indicate which definition of E yields the smallest actual solution 

error. Selecting E so that the smallest bound is obtained does not 

necessarily mean that the smallest actual error is obtained. Since it 

is of interest to determine the particular form of E which provides the 

smallest actual error, it is necessary to consider the exact error and 

and not a bound. Since the exact error is, in general, unobtainable 

using analytical techniques, the only recourse is to consider specific 

examples where the exact error can be dete rmined numerically. 

4. 2 Description of the Minimization Procedure. 

In the examples to follow, three specific definitions of E are 

considered, namely (4. 5), (4. 6), and (4. 7). The corresponding mini-

mization conditions are 

and 

f11 )1/2 \t e
2

(t)dt "minimum 

I J j e(t)ldt =minimum 
0 

max I e(t) I= minimum . 
\It 

(4. 9) 

(4. 10) 

(4 . 11) 
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The above equations are minimized with respect to a.i(i = l, . .. r) to 

generate relations for determining a... As discussed i n Chapter II, all 
1 

of the relations resulting from the minimization procedure may not be 

independent. If this occurs, certain of the a. must be specifi°ed , or 
1 

the independent relations must be specified, or the independent rela-

tions have to be separated, so that a sufficient number of independent 

relations are generated. A necessary condition for a relative mini-

mum is equation (4. 8 ). Throughout this chapter, the three conditions 

(4. 9), (4. 10), and (4. 11) will occur frequently. It is convenie nt to 

define the following shorthand notation. ASE, symbolizing Average 

Square Error minimization, is used to represent (4. 9). AAVE, 

symbolizing Average Absolute Value Error minimization, is used to 

represent (4. 10). MAVE, symbolizing Maximum Absolute Value Error 

minimization, is used for condition (4. 11 ). 

ASE 

ASE is one of the most common techniques used. It is easy to 

apply, and the resulting relations are usually quite simple in form. 

Using (4. 8) and the condition (4. 9), an alternative form of ASE is 

or 

1 

I 8 e:(t) e:(t)dt = o 
0 aa.i 

i=l, ... ,r 

i=l, ... ,r 

Equations (4. 13) determine a..(i=l, ... ,r). 
1 

(4. 12) 

(4. 13) 
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AAVE 

AAVE is a somewhat more complicated technique than ASE. 

The condition in (4. 10) may be written as 

1 2 1/2 J (e (t)) dt =minimum (4. 14) 
0 

Minimizing (4. 14) with respect to °'i. using (4. 8) yields 

i=l, .•• ,r (4. 15) 

Assuming that E:(t) vanishes for only a finite number of tE [O, 1 ], (4. 15) 

can be written as 

J1 
sgn ( E:(t) ) ~~~t) dt = 0 i=l, .. .,r 

0 1 

where 

{

l ' 
sgn(z)= 0 , 

-1 ' 

for z>O 
for z=O 
for z<O 

Let tj (j = 1,. . .,N) denote the zeros of E:(t) whe re 0<t 1 <t2 ... <tN$" 1. 

Then, (4. 16) becomes 

tl t2 1 

J ~dt-J £.£.dt ... + (-l)NJ ~dt 8a.. 8a.. 8et. 
0 1 t 1 t 1 

1 N 

i = 1, ... ,r 

(4. 16) 

(4.17) 

Since the analysis is primarily concerned with periodic motions, E:(t) 

is periodic with p e riod one. Therefore, there can exist only an even 

number of z eros of E: (t). Adding and subtracting the second, the fourth, 

the sixth, etc. , integrals to (4. 17), one obtains 
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1 t2 t4 tN 
1 f ae: J ae: J ae: f -2 ~ dt = ~dt+ ~dt+ .•. + 

, oO.. oa.. ua.. .. 
0 1 t 1 t 1 t 

1 3 N-1 

~dt 
8a.. 

1 

i= 1, ... , r • (4. 18) 

Equations (4. 18) determine a.i(i=l, ... ,r). It is interesting to note the 

increased complexity of (4. 18) compared with equations (4. 13 ). 

MAVE 

MAVE is an extremely simple minimization scheme conceptually. 

However, practically speaking, it is the most tedious of the three 

schemes considered. MAVE minimizes the maximum error for all 

time. Since e:(t) is periodic, its absolute maximum can occur only at a 

relative extremum. Define the set of points <I> as 

8e(t.) '\.. 
<I> = { t j I o ~ \s: 1 and at J = o 5 • 

<I> contains all the possible points where e:(t) could attain an absolute 

maximum. a..(i=l, ... ,r) are selected such that 
1 

max !t=:(t)I =minimum 
tE <I> 

(4. 19) 

(4. 19) can become very involved especially if r is large r than Z or 3 or 

if <I> contains more than 2 or 3 points where !e:(t)j possess es different 

values. The difficulties in applying (4. 19) are better illustrated in the 

examples. 

4. 3 Example 1. 

In this example, the following autonomous system is of interest. 

2 
d x -1 
--2 + tan (x) = 0 
dT 

(4. 20) 
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An approximate amplitude-frequency relation for periodic oscillations 

symmetric about x=O is desired. The initial conditions are 

x (O) =A (4.21) 

The equivalent equation approach is used with the auxiliary system 

(4. 22) 

(4. 22) is made equivalent to (4. 20) by determining K such that the dif-

ferential equation error is minimized. The periodic solution of (4. 22) 

is 

y =A cos (W'T) (4. 23) 

which satisfies the initial conditions (4. 21 ). Normalize 'T, using 

t = 2~ 'T, so that the solution has period one. Equations (4. 20), (4. 21 ), 

and (4. 22) become respectively, 

2 2 
d x (2'TT) -1 ~ + - tan (x) = 0 
dt w 

(4. 24) 

2 2 4 + (2'TT '\ Ky= 0 
dt w) 

(4.25) 

and 

y = A cos (2'TTt) (4.26) 

Using (4. 3), the differential equation er ror s(t) is 

2 
s(t) = (

2
; J [ta n -l (A cos (2'TTt))- KA cos (2rrt)J (4.27) 

The three e quiva l ence criteria are now used to detern1ine K gener a t ing 

amplitude - frequency relations. These r e lations are then compared to 

the exact relation obtained by numerically integrating (4. 20). 
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ASE 

The minimization condition using ASE is (4. 13 ). In the pre sent 

example, there is only one parameter, K. Using (4. 2 7), (4. 13) reduce 

to 

K = ~ I 1 
tan -l ~cos (2Tl't)) cos (21Tt)dt 

0 
(4. 28) 

The integration may be evaluated by parts. For (4. 23) to be a solution 

2 
of (4. 22), K must equal w • Therefore, the amplitude-frequency rela-

tion generated by ASE is 

(4. 29) 

AAVE 

The minimization condition generated by AAVE is (4. 18). It is 

neces~ary to determine the zeros of e:(t). From (4. 27), e:(t) is zero 

whenever 

(4. 30) 

Letting s =A cos (2Tt't), (4. 30) becomes 

-1 
tan (s) =Ks (4.31) 

where S is restricted to -A~ s ~A. s=O is one root of (4. 31 ). Under 

further inspection, it is seen that (4. 31) possesses two non-trivial 

roots of equal magnitude and opposite sign if K< 1. K is expected to be 

less than one for A f. 0 because (4. 20) is a softening system, and one 

typical feature of softening systems is that the response frequency 
_,_ 

decreases with increased initial amplitude. Let s''' denote the positive 
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root of (4. 31 ). Because of the symmetry of the cosine function, the 

zeros of E:(t) may be written as 

t3 = 1/2 -t* 

(4.32) 

where 

':< 1 -1 s. ( ,,.. \ 
t = 2;r cos A.) for O<t'l<<l/4 

Returning to (4. 18), there is only one minimizing parameter, 

i.e., K. Using (4. 32), (4. 18) reduces to 

(4. 33) 

For E:(t) given in (4. 27), it is easily shown that the first integral in 

(4. 33) vanishes. Using (4. 32) and performing the remaining integra-

tions, (4. 33) reduces to 

sin (2;rt *) = 1/2 

This implies that t* = l/12. ~<is found to be s*=./'3/2A. (4. 31) then 

determines K. 
. 2 

For (4. 23) to be a solution of (4. 22 ), K must equal w 

Therefore, the amplitude-frequency relation is 

2 2 -1 (A/3\ w =--tan - 2--; • 
/TA 

(4. 34) 

MA.VE 

The remaining minimization condition MAVE is given in (4. 19). 

It is first necessary to determine the members of the set 4>. E:(t) h a s 

relative extrema at t satisfying 
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21T'A sin (21T't)[K- 2 l 2 ]= 0 
l+A cos (21T't) 

(4. 3 5) 

Roots of (4. 35) occur at 

t3 = 1/2-t* ) 

t
5 

= 1/2 +t* t
6 

= 1-e:< , 
(4. 3 6) 

where 

>:c 1 -1 fcpK-1) l/2 ) 
t = 21T' cos \ A for O<t* < 1 /4 

In obtaining (4. 36), it is again expected that K will b e less than one. 

(4. 36) comprises the set <I>. However, not all of the points in 

cI> generate different values of leCt. )I. There exists only two d istinct 
J 

maximums, and these are 

(4.37) 

and 

(4 . 38) 

K is selected such that 

Max (le<t 1 >I. le<t2 >I) = minimum (4. 39) 

It can be shown, by considering the behavior of (4. 3 7) and (4. 38) as 

functions ofK, that {4.39) is satisfied whenever je{t1 >l = le<t 2 )!. 
Furthermore, for (4. 23) to be a soluti on of {4. 22), K must equ a l w2 . 

Therefore, equating (4. 3 7) and {4. 38), the a mplitude - freque ncy r e l a-

tion generated using MAVE is 

{4. 40) 
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Discussion 

The three approximate amplitude-frequency r elations (4. 29), 

(4. 34), and (4. 40) are given in Figure 10. It is convenient to plot 

the variable T':', defined as 

T* = l/w- 1 (4. 41) 

as a function of initial amplitude A, Also included in the figure is the 

exact amplitude -frequency relation obtained by numerically integrating 

(4. 20). 

It is clear from Figure 10 that ASE gives the closest approxi­

mation of the three considered. All of the schemes give amplitude -

frequency relations which possess qualitative behavior similar to the 

exact relation. Since the approximations appear to be diverging for A 

between 4 and 5, it seems unlikely that A.AVE or MA.VE would give an 

approximation better than ASE for some larger value of A. 

In addition to providing the best results in this particular 

example, ASE is the simplest approach to apply. The manipulations 

necessary to obtain (4. 29) involve only a simple integration. Whereas , 

AA.VE and MA.VE require the location of the zeros of E:(t) and ~:(t) 

respectively. Furthermore, except for a very small number of mini­

mizing parameters, MA.VE becomes exceedingly laborious . 

4. 4 Example 2. 

In this section, another conservative autonomous system is 

considered, namely, 
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0.4 

I 0.3 
I:: 

C\I ....... 
I-~ 
II 

* 1- 0.2 

0.1 

0 
0 

AAVE~ 
'·, 

EXACT SOLUTION--,_ 

'\_ MAVE 

--:x. 
I 

1.0 2.0 3.0 4.0 
INITIAL AMPLITUDE , A 

F igur e 10: A pproximations for ~+tan - l (x) = 0 
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where a
1

, a
3

, and a
5 

are constants satisfying a
1
>0 and a

5
fo. (4. 42) 

is subject to the initial conditions 

x(O) =A 
dx(0)_

0 dT - (4. 43) 

It is again of interest to determine approximate amplitude -frequency 

relation for (4. 42) for the periodic solution symmetric about x=O. The 

auxiliary system used is 

which possesses periodic solutions satisfying (4 . 43) of the form 

y =A cos (wT) 

( 4. 44) 

(4 . 4 5 ) 

Again normalizing T, using 1' = 2Tit/w, equations (4. 42), (4. 44), and 

(4. 45) become 

(4.46) 

2 2 y + (2iT) y = 0 
dt w 

(4. 4 7) 

and 

y = A cos (2Tit) (4. 48) 

Using (4. 3), the differential equation error is 

(4.49) 

ASE, AAVE, MAVE are now used to determine the parameter 

K, generating approximate amplitude -frequency relations. These 
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relations are then compared to the exact relation obtained by 

quadratures. 

ASE 

Using (4. 49), the minimization condition (4. 13) reduces to 

z 2 r1 r. 3 3 5 5 J w = A , La 
1 

A cos (21Tt) + a
3 

A cos (2rrt) + a 5 A cos (21Tt) cos (2TTt)dt 
0 

(4. 50) 

2 
where the fact that K equals w has been utilized after performing the 

minimization. The integral is easily evaluated to give 

( 4. 5 1 ) 

where w2 must be positive so that periodic solutions do exist. 

It is convenient to define the following dimensionless variables 

for the present example. For a
3 

.Jo, let 

( 4. 52) 

(4. 53) 

and 

(4. 54 ) 

Using these definitions, (4. 51) becomes, for a
3 

=to, 

O = ~A.+~A.2 (4 . 5 5) 

where 



and 

1 0>-­
µ 

1 
0<-­

µ 
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If a
3 

=0, it is convenient to define 

and 

(4. 51) becomes, for a 3 =0, 

(4. 56) 

(4. 57) 

where d'> -1 for periodic solutions to exist. Equations (4. 5 5) and 

(4. 58) give the approximate amplitude-frequency relations gener ated 

using ASE. 

AAVE 

To apply AAVE, it is necessary to locate the zeros of E:(t). 

From (4. 49), e(t) is zero when 

cos (21Tt) = 0 

or (4. 59) 

where i; =A
2 cos2 (21Tt). The first relation is satisfied for t=l/4 and 

t=3/ 4. The second relation is satisfied for 
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and (4. 6 0) 

From the definition given in (4. 59), s must satisfy 

(4. 61 ) 

Depending on the specific values of the parameters a
1

, a
3

, a
5

, and A , 

one or both of the roots in (4. 60) may satisfy (4. 61 ). It can be shown 

that, for a
5

>0, if A2 s.-4/7 (a3 /a5 ), only s2 satisfies (4. 61) , if 

-4/7 (a
3

/a
5

)s.A
2 

s.-4/3 (a
3

/a5 ), both i;
1 

and s
2 

satisfy (4 . 61), if 

-4/3 (a
3 

/a5 ) s. A
2

, only i; 1 satisfies (4. 61), For a 5<0, the a bove state-

ments are still valid except that s1 and s2 are interchanged. The 

approximate amplitude -frequency relation has to be determined i n 

parts. 

If i;1 is the only root satisfying (4. 61), the z e ros of e(t) o ccu r at 

t 2 = 1 / 4 t3=1/2-t 
>l< 

>!< 
t 4 = 1 /2 + t 

(4. 62) 

where 

1/ 2 1/2 

>:< 1 _1[ -a3 +[a~ -4a5 (a 1 -K) J J 
t = 21T cos 2 

2A a 5 
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If i;
2 

is the only root satisfying (4. 61), the zeros of e(t) occur 

at 

t2 = 1/4 

(4 . 63) 
t
4 

= 1/2 + e:.::.: 

where 

1/2 112 

:!<>!< 1 _1 [-a3 -[a~ -4a5 (a 1 -K) J J 
t = 2'IT cos 2 

2A a
5 

If both s
1 

and s
2 

satisfy (4. 61), the zeros of e(t) occur at, fo r 

t - 1/2 -t':' 5 - J 

I >!< t6 = 1 2 + t J t - 1-t* 10 - J 

(4. 64) 

where e:c and t':":' are defined in (4. 62) and (4. 63) . For a
5

<0 , the zeros 

of e(t) are the same as (4. 64) except that t* is replaced by t*>'.c and vice 

versa. 

The amplitude-frequency relation can now be obtaine d for each 

of the above cases using equation (4. 18). Again there is only one 

minimizing parameter, i.e., K. It is easily shown that 

so that (4. 18) reduces to 

I1 a e 
aK dt = 0 

0 

(4. 65) 
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where t. are g ive n in (4. 62), (4. 6 3) , and (4. 64). 
1 

For the cas e where i::
1 

is the only root s a t i sfying (4 . 61 ), (4. 65 ) 

r e duces to 

sin {2rr t ':' ) = 1/2 

which implies thatt'l:= l/12. The c orr espon ding value of S1 is s1 = 3/ 4A
2

. 

Substituting i;
1 

into the first of (4 . 6 0) the amplitude - freque n c y r e labon 

is 

(4. 6 6 ) 

whe r e the fa c t that K must e qual ru2 h as b een u sed . 

For the c a s e whe re c,
2 

is the o n ly r oot s ati s fyin g (4 . 6 l ), (4 . 65) 

r e d u ces to 

sin (Zrrt':<':< ) = 1/ 2 

i rnply ing that e:" :'= 1/12. F.2 then has the value Sz =3/ 4 A2 . U s i n g th e 

s ec o n d e x pres s i on in (4. 60) and the fa ct that K_ e quals w2 , the ampli tude-

f r e quency relation is 

T l1 i s i s the same rela tion a s (4. 66 ). T here for e , the amplitude -fre q uenr. y 

r <d;ci. tions for A2 ~ -4/7(a3 /a5 ) a nd fo r A
2

"2-4/ 3 (a.:J a 5 ) i s g i ven b y (4. 6 6 ). 

For the c ase where i:: 1 a nd s2 both s a tis fy (4 . 61) , fo r a
5

>0, 

(4. 65) reduces to 

For a
5

<0, t ':: is replaced bye:" :' a nd vi c e ve r s a . Usi ng the d e fini ti ons 

oft':< and t ':< ':: and trigonom.etric identi t i e s, (4. 67) c an b e sim plifie d 

yielding 
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(4. 68) 

where K has been set equal to w2. (4. 68) is valid for all non-zero a
5 

and is the amplitude-frequency relation for - ~ (a3 /a5 ) s; A 
2 

s; - i (a
3 

/a 5 ). 

Note that (4. 66) and (4. 68) are continuous at the boundaries of A 2 . 

It is convenient to rewrite (4. 66) and (4. 6 8) in terms of the 

dimensionless variables defined in (4. 52), (4. 53), and (4. 54). For 

a
3

:,to, the amplitude-frequency relation becomes 

and 

where 

and 

1 0>-­
µ 

1 
0<-­

µ 

4 4 
for A. s; - 3 and A.~ - 7 

4 4 for - - ~ A_s; - -
3 7 

(4. 69) 

If a
3 

is zero, s1 and i;2 can never both satisfy (4. 61). Conse­

quently, the amplitude-frequency relation is (4. 66) with a
3 

=0. Using 

the variables defined in (4. 56 ), and (4. 57), the amplitude -freque ncy 

re la ti on for a
3 

=0 is 

where d:<>-1 for a periodic solution to exist. Equations (4. 69) and 

(4. 70) are the appropriate expressions generated using AAVE. 
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MAVE 

To apply MAVE, it is first necessary to determine t h e member s 

of the set <I>. E:(t) has relative extrema at t satisfying 

(4. 71) 

2 2 2 
where i; =A cos (2rrt). Two roots of (4. 71) are always t=O and t= 1 /2 . 

D epending on the particular values of a 1, a 3 , a 5 , and A , the bracketed 

tcrin may contain one or two roots in i;. 

must satisfy 

2 
O~ i;.~A 

1 

For a root s. to be valid, it 
·1 

(4. 72) 

The bracketed term in (4. 71) vanishes for 

( 
2 )1/2 3a

3 
9a

3 
K-a

1 s - ---+ +--
1 - 10a5 lOOa; 5a5 

(4. 73 ) 

and 

(4. 74) 

The set <I> will consist of the points 

t 0 t t * t3 = t >!<>'o< 1 = , 2 = ' 

(4. 75 ) 

where 
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>i< 1 -1 1 ) >!c 1 -1 2 
(

i;l/2 ) (i;l/2) 
t = 2 TT cos -p;_- . and t:.: ' = 2 TT cos ---p;-

Corresponding to the above set of points, there exist only three distinct 

values of I e{tj) I, and these may be taken to occur at t 1, t 2 and t
3

. 

From considerations of !e(t.)I (j=l, 2, 3) as functions of K, it can be 
J 

shown that the maximum , error is minimized whenever two of the above 

three errors are equal, and the third error is less than or equal to the 

two equal errors. Therefore, there exists only three possibilities, and 

these are 

le(O)I = le(t*)I 

!e{O)I = lde''°'")I 

(4.76) 

(4. 77) 

or 

(4. 78) 

For various values of the parameters a
1

, a
3

, a
5

, and A, one of the 

above possibilities will hold, and the appropriate K will be determined 

from that relation. 

If a
3

/a5 is positive, i;2 will never satisfy (4. 72). In this case, 

the approximation will be given by (4. 76). If a
3

/ a 5 is negativ e, the 

situation becomes very complicated. Performing a very lengthy 

analysis of le(O)I, le(t'l<)j, and le<t*>!' )I as functions of K, the following 

results can be obtained. 

is generated from (4. 77). 

mation is given by (4. 78). 

given by (4. 76). 

2 
For -0.52364 ~a3A /a5 ~ o. the approx imation 

For -0.8:o:;a
3

A
2

/a
5

!;. - 0,52364, the approxi ­

For a
3

A
2 

/a
5

!;.-0.8, the approx i1na tion is 
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Using expression (4. 49) for e(t) and the definitions oft':' and t':":', 

equations (4, 76) through (4. 78) may be solved for K. If the dimension-

less variables defined in (4. 52), (4. 53), and (4 . 54) are now employed, 

the following approximation is obtained, for a
3

-f;O, 

O= - ~ 

where 

for A.~ -0.52364 

for -0.8~ A.~ -0,52364 . , 

1 
0>-­

µ 

o~-l 
µ 

for A.~ -0. 8 

@(A.} is a root of the following expression, 

(4. 79) 

(4. 80) can be reduced to a fifth order polynomial in @. The appropriate 

root has to be real and has to have the proper limiting value since @(A.) 

must be continuous in the range of A. where @(A.} is defined, As ).._-0±00, 

(4. 80) reduces to 

@)is easily found to be equal to 0.67355356. It is w e ll to note that IA. I 
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going to infinity corresponds to a
3 

approaching zero. Th0reforc , the 

above value of 18 is the appropriate one to be used in the following 

special case. 

If a
3 

vanishes, s
1 

is the only root satisfying (4. 72). Therefore 

equation (4. 76) generates the approximation. Simplifying (4. 76) and 

utilizing the variables defined in (4. 56) and (4. 57) , the approximation, 

rt"= o. 67355356 A.'~ (4. 82 ) 

where d'> -1. Equations (4. 79) and (4. 82) are the approximate 

amplitude-frequency relations generated using MAYE. It is imprac -

tical to include all of the details involved in obtaining these relations. 

They are simply too laborious to describe. 

Exact Solution 

In order to have a basis for comparing the above approxi -

mations, the exact solution of (4. 42) is developed. (4. 42) can be 

reduced to quadratures using the conditions (4. 43). Since the periodic 

solution, symmetric with respect to x=O, is of interest, the p eriod is 

(4. 83) 

Using the substitution z =A/ ./X, (4. 83) reduces to 

(4. 84) 

where 
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The integral in (4. 84) can be evaluated in terms of elliptic integra ls of 

the first kind <32 ). D e note the roots of the denominator by 

2 1/2 
R3 = - ~ - ( a4 - (3 ) (4.85 ) 

If R
2 

and R
3 

are real and if R 2 < 1, the value of the integral is found to 

be 

r00 
(. 2 )-1/2 

2K(k) 
I_ \(x - 1 )(x +ax+(J) dx = 1;2 
Ll (1-R3) 

where K(k) is the complete elliptic integral of the first kind with 

modulus 

- 2 3 
(

R -R )1/2 
k = 1 R - 3 

(4. 86 ) 

If R
2 

an<l R
3 

arc real and if R
2

>1, the value of the integral is c omplex. 

This indicates that no solution, symmetric with respect to the origin, 

exists. 

If R
2 

and R
3 

are complex, the integral is evaluated using the 

following change of variables(3 z>. Let 

2 2 
(x-m) + n 

Y = x-1 

where m · - ~and n -= (~- a2 / 4 )
112

. Define 

(4. 87) 
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(. 2 2 )1/2 
y 1 = -2(m-1)+2\(m-l) +n 

( 2 2)
112 

y
3

=-'-2(tn-l)-2\(m-l) +n 

( 4. 88 ) 

and 

The value of the integral is 

(4. 89) 

where F(cp, k) is the incomplete elliptic integral of the first kind with 

and 

-1(1-xl) 
cp = cos l -x3 . 

(4. 86) and (4. 89) give the value of the integral where it exists as a real 

quantity. Using the dimensionless variables defined in (4. 52 ) through 

(4. 54 ), the exact solution for a
3 

/:0 may be written as 

(4.90) 

where 

1 Joo! 2 )-1/2 
I = 2 \(x- 1 )(x +a;x+(3) dx 

1 . 
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It is of interest to note that as µtends to zero, the exact amplitude -

frequency relation becomes identical to the approxinlation obtained 

using ASE. 

If a
3 

equals zero, the exact solution can be writte n as 

(4. 91 ) 

where rt'°'> - I and I is given in (4. 90). For the special case of a
3 

equals 

zero, I reduces to 

(4. 92 ) 

where K is the complete elliptic integral of the first kind and 

With a
1 

positive, no real solution exists for A*< - 1. 

Equations (4. 90) and (4. 91) are the exact amplitude-frequency 

relations for the equation (4. 42 ). 

Discussion 

The approximate amplitude -frequency relations obtained from 

the three minimization techniques for a
3 

non-ze ro are plotted on 

Figure 11. Specifically, equations (4. 55), (4. 69), and (4. 7 9 ) are g iven. 

It is to b e remembered that only c ertain portions of these c urves may 

be valid depending on the particular value of µ. The value of µ dictates 
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the regions where the approximations yield periodic (i. c., K>O) 

solutions syni.metric with respect to x::::O, 

The exact solution is pre sented i n Figure 12 for a
3 

non-zero 

and for various values ofµ. Throughout this section, a 1 is assumed 

positive. This also applies to the exact solution. 

One fact which is immediately apparent in Figures 11 and 12 

is that the behavior of the exact solution depends on µwhereas the 

behavior of the approximation does not. The only effect on the approx-

imations is to terminate the curves at various v a lues of 0 to insure 

that the equivalent spring constant K never becomes negative . 

It is difficult to compare the accuracy of the various approxi-

mations by considering Figures 11 and 12 , Consequently, differences 

between each approximation and the exact solution (O - 0 t) are 
approx exac 

given as a function of)._ for various µin Figures 13, 14 and 15. Figure 

13 is the error associated with ASE, Figure 14 is the error associated 

with AAVE, ·and Figure 15 is the error associated with MAVE. T he 

dashed lines appearing in the figures indicate intervals of )._ where the 

approximate techniques generated periodic solutions, but where, in 

point of fact, no exact symmetric periodic solutions existed. 

By considering Figures 13, 14 and 15, certain qualitative 

conclusions may be reached, In deciding which minimization scheme 

seems most appropriate, it is necessary to compare the schemes for 

all values of )._ and µ. Each of the schemes provides better results than 

the other two for certain specific combinations of )._ and µ. However, 

Figures 13, 14, and 15 indicate that, on the average, the error 
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associated with ASE is smaller than the errors associated with AAVE 

or MAVE. Furthermore, ASE provides an exact solution for the 

special case of µ equals zero. For no value of µ does AAVE or MAVE 

provide an exact solution. 

Similar conclusions can be reached for the case of a
3 

equals 

zero. Figure 16 illustrates the approximations generated using ASE, 

AAVE, and MAVE. Also included is the exact amplitude -frequency 

relation (4. 91 ). 

Figure 16 indicates that, for large positive values of 1'.':', AAVE 

seern.s to provide the best results. However, AA VE i s the worst 

approximation for 1'.':' negative. Similarly, MAVE seems to give the 

best r e sults for 1'.':c less than -1/2 but provides the poorest results when 

1'. ,;, is positive. ASE gives the best results for I X:'I < 1/2. Furthermore, 

for ! A.':c l>l/2, ASE lies between AAVE and MAVE. Therefore, if one 

technique were to be selected as best for all 1'.':', it seems that ASE 

would be the one chosen. In addition, ASE is, by far, the easie st of 

the three techniques to implement. 

4. 5 Example 3. 

The previous two sections are concerned with conservative 

autonomous systems. In the present section, a non-conservative, 

non-autonomous system is considered, namely 

x+ 13*+ ax+ µx3 = B cos (Z;rt) (4. 93) 

where a , 13, µ, and B are constants with Cl, 13, and B positive. The 

sym.metric periodic solution with period 1 is of interest. 
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The equivalent system approach is used with the auxiliary 

system 

y +Cy+ Ky= B cos (2-rrt) (4. 94) 

where B has the same value as in (4. 93) and C and Kare to be deter-

mined using the various equivalence criteria. (4. 94) possesses 

periodic solutions of lhe form 

y ::.: A cos (2-rrt-cp) , ( 4. 9 5) 

where A and cp satisfy 

and 2-rrC 
tan cp = 2 

K-4-rr 
(4. 96 ) 

Using (4. 3), the differential equation error is 

e(t) = 2-rr A(C-P) sin (2-rrt-cp) + A(a.-K) cos (2-rrt-cp) + µA
3 

cos
3 

(Zrrt- cp). (4. 97) 

Since the periodic solution is of interest, e(t) is periodic in t. There -

fore, a constant can be added tot without affecting the values of C and 

K. Replacing t by t + c+i/2-rr, E:(t) can be taken to be 

E:(t) = 2-rrA(C-13) sin (2-rrt) + A(a.-K) cos (2-rrt) + µA3 cos3 (2-rrt) (4 . 98) 

The three minimization schemes are now us e d to develop the approxi-

mate amplitude-frequency relations. 

ASE 

The general form of the minimization condition generated using 

ASE is given in (4.13 ). In the present example there are two minimizing 

parameters K and C. Minimizing with respect to K first, (4.13) r e duc e s 

to 

K =: 2 r1 [ - 132-rr sin (2-rrt) +a. cos (2-rrt) + µA
2 

cos
3 

(Zrrt)] cos (2-rrt)dt . 
o· 
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The integrations are easily performe d to give 

(4. 99) 

Minimizing with respect to C, (4. 13) reduces to 

1 
C = - ~ J [-21Tf3 sin (21Tt) +a. cos (21Tt) + µA

2 
cos

3 
(21Tt)J sin (21Tt)dt 

0 

Evalua ting the integral gives 

(4. 100) 

Equations (4. 99) and (4. 100) give the values of K and C for the approxi -

mation obtained using ASE. 

AAVE 

AAVE requires the location of the zeros of E:(t). From (4 . 98), 

E:(t) vanishes whenever, 

21T (C-f3 )( l -u)
112 

+ (a. - K)u 
112 

+ µJl-u
3/

2 
= O 

2 
where u =cos (21Tt). Squaring (4. 101) gives the following c ubic 

~ 2 2 2) 2 2 3 + 2(a.-K) 2 + (a.-K) +47T (C-f3) _ 47T (C-@) _ O 
u 2u 24 u 24 -

µA µA µA 

(4. 101) 

(4. 102) 

From physical considerations, i t is reasonable to exp ect that the 

coefficient of the second term in (4.102) will be negative. Therefore , 

the possibility exists for (4.102) to possess three positive real roots. 

From the definition of u, a root of (4.102) is physically meaningful only 

if it satisfies 

O:s::u:s; 1 (4. 103) 

Since C and Kare unspec ified in (4. 102), it is i mpossible to determine, 
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at this ti1ne, how many of the roots satisfy (4. 103). Therefore, 

(4. 102) is assurn.ed to possess three roots satisfying (4. 103). Frorr1 

the definition of u, this provides twelve possible values for zeros of 

e(t). However, the definition of u involves squaring the cosine function 

whic h introduces six extraneous roots . Consequently, there are six 

true zeros of e(t). Denoting the roots of (4 . 102) by decreasing numeri-

cal value as u
1

, u
2

, and u
3

, the zeros of e(t) are 

l (4. 104) 

-·· -1( 1/2) ;'<>:< -1( 1/2) d t >!<>!<>:< -1( 1/2) where t ··- = cos u
1 

, t =cos u 2 , an =cos u
3 

• 

Using (4. 104), the minimization condition (4. 18) may now be 

e mployed to determine K. It is easily shown that J
0

1 ;~(t) dt vanishes . 

Therefore, performing the remaining integrations , (4. 18) reduces to 

(4. 105) 

The condition minimizing C may be d e termined in a similar manner. 

. Jl 8 e (t) . It 1s clear that 
0 

ac-dt vanishes. Performing the remaining integra-

tions, (4. 18) reduces to 

(4. 106) 

Equations (4. 105) and (4. 106) determine the appropriate K and C. 

To determine K and C specifically, it is convenient to 

reformulate the problem. Using the definition of u, (4. 105) and (4. 106) 

can be written as 

(4. 107) 
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and 

where the appropriate sign of the cosine function has b een used. From 

the theory of cubic equations, the three roots u 1, u 2 , and u
3 

must 

satisfy 

(4. 109 ) 

(4. 110) 

and 

4n
2 

{C-f3)
2 

ulu2u3 = 2 4 
µA 

{4.111) 

Equations (4. 107) through (4. 111) and the definition of t':o:< in (4. 104) are 

six relations for determining t>!0~ , u 1, u 2 , u
3

, K, and C. Unfortunate l y, 

these relations are highly transcendental and cannot be solved by d irect 

elimination of variables. 

Assuming that the above set of equations possesses a unique 

solution, it is possible to d e termine Kand C by a fortuitous guess. 

The solution is found to be 

and C = 13 {4. 112) 

Solution (4. 112) can be verified by direct substitution into (4 . 107) 

through (4. 111) and using the definition oft':'*. Solving (4. 112) for K 

and C yields 

(4. 113) 
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3 2 
K =a.+ 4 µA (4. 11 4 ) 

Equations (4. 113) and (4. 114) are identical to equations (4. 99) and 

(4. 100). Therefore, the approximations generated by ASE and AAVE 

are identical. The only difference is in the amount of labor involve d i n 

obtaining the approximation, ASE being much simpler. 

MAVE 

The minimization condition generated by MAVE involves the 

extrema of le(t)I. In the present example there is a much more direct 

way of obtaining the approximation rather than using equation (4. 19) . 

MAVE minimizes the maximum of the absolute value of e (t) fo r 

O ~ t~ l. Using (4. 98) and trigonometric identities , E:(t) can be written 

as 

where 

a nd 

I e(tl·I = IR(K 1, K 2 ) cos (9-cp) +!cos (39)1 
µA . 

( 
2 ( 3 ) 2 )112 R(K 1, K 2 ) = 9K 1 + 

4 
-3K2 

9 = 2;rt 

K _ 2;r(C-j3) 
1 - 3µA2 

(4. 115) 

(4.1 16 ) 



-146-

K-a. 'K ---
2 - 3µA2 

(4 . 116) 
cont. 

Using (4. 115 ), it is de sir able to select R(K 1, K 2 ) and cp so that the 

maximum of I E:(t)/µA3 I is as small as possible. 

The appropriate values of R and cp are R equals zero and cp 

arbitrary. To see this, consider the following argument. (4 . 115) will 

always possess a component cos (38). Cos (38) possesses three sign 

changes and four extrema of equal magnitude in one half a cycle. 

Assume that there exists a non- zero Rand some cp such tha t all of th e 

extrema of 1/4 cos (38) are red uced. For this to be true, cos (8 -cp) must 

h ave at lea st as many sign changes in one half a cycle as cos (38). This 

is a contradic tion since cos ( 8- cp) can have a t most one s ign change in 

one half a cycle. Therefore, for a non-zero R , at l eas t o n e of t h e 

extrema of cos (38) will be increased in absolute v alue . T here fore, the 

value of R which gives the minimum I E: (t) /µA
3 I is R equal zero. From 

(4. 116), R equals zero implies K 1 equals z ero and K 2 equals 1/4. K
1 

vanishing implies that 

K
2 

equals 1/4 implies that 

3 2 
K =a+ 4 µA 

(4. 117) 

(4. 118 ) 

Hence, the a pproxim a tion gen e rated using MAVE i s identical to the one 

gen erat ed by both ASE and AA VE. 
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Discussion 

The present example is a very special case where all three 

minimization schemes generate the same approximation. It is , there-

fore, meaningless to compare accuracy. The only basis for cornpari-

son is the effort involved in obtaining each approximation. 

Again the minimization condition obtained using ASE is reduced 

to simple integrations. However, A.AVE generates a very complicated 

and highly transcendental set of equations for determining the approxi-

mation, which ultimately is solved by a lucky guess. Also, the unique -

ness of the solution must be assumed, which is in general not a justi-

fiable assumption. MA.VE leads to a very simple derivation of the 

approximation in the present example. However, if the original state-

ment of MAVE were used, the amount of labor involved would be 

increased. Even when the simple derivation is employed, the amount 

of labor involved is still comparable to that to that involved in using 

ASE. 

4. 6 Example 4. 

The system of interest in the present section is the one 

considered in Chapter II. This particular system was selected in order 

to study the effect of the various minimization schemes whenever a 

nonlinear auxiliary system is used. The original system is equation 

(2. 1 7) and is 

d
2

x 3 - 2- +ax+ bx = B cos (WT) 
d,. 

(4. 119) 

where a, b, B and w are constants. The steady-state periodic solution 
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i s of interest. The auxiliary system to be used is equation (2. 21) 

which is 

d2 3 ~+ay+by = a.cn(11T,k) 
dT 

(4. 120) 

where a and b have the same values as in (4. 119), and en (11T, k) is the 

Jacobian elliptic cosine function. 

In order that (4. 120) have the same period as (4. 119), 11 must 

satisfy (2. 19), i. e. , 

11 
= 2K(k)UJ 

Tr 

(4. 120) has known periodic solution of the form 

y = 13 en (11T, k) 

where A, 11, and k must satisfy 

and 

2 bp
2 

k = 2 
211 

(4.12 1) 

(4. 122) 

(4. 123) 

(4. 124) 

It is convenient to normalize the independent varia ble T before deter -

mining the differential equation error so that the motion is periodic 

with period 2rr. Using T = 2rrt/W, the differential equation error is 

E:(t) = B cos (2rrt) - a en (4K(k)t, k) (4. 125) 

where equation (4. 121) has been used. The various minimization 

schemes are now employed to obtain the approximations. There is 

only one minimizing parameter, i. e. , a . 
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ASE 

The approximation is obtained using ASE in S ection 2. 2. 

Consequently, the results can be used directly. From Sec tion 2. 2, 

equation (2.26) is the approximation obtained. The system to b e solved 

for b positive is equation (2. 19), (2. 23), and (2. 27). For b negative, 

the equations are (2. 28), (2. 19)', and (2. 23)' (appea ring after (2 . 28) ). 

The above system can be solved directly by assuming values for k and 

calculating corresponding values of W. 

AAVE 

To determine a using AAVE, it is first necess a ry to locate the 

zeros of e (t). From (4. 125), e(t) vanishes whenever 

cos (2;rt) = ~en (4K(k)t, k) (4. 126) 

(4. 126) is satisfied for the following values of t, 

t
1 

= e:< 1 
t3 = i-t';< } t2 = 4 

t4 = ~ + t':< 
3 -~ 

t5 = 4 t6 = 1-t"' 

(4. 127) 

where t':' is the root of (4. 126) satisfying O<t>~< ! . It is not necessary 

to determine t ':' explicitly in order to obtain the approximation. 

The minimization condition (4. 18) can now be evalua t ed. Using 

r1 8E:(t) 
reference (28), it can be shown that Jo oa dt vanishes. Therefore, 

(4. 18) reduces to 

(4. 128) 
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Using (4. 127) and reference (28), (4. 128) can be evaluated to give 

-1 
) ... ) 1 . (sin (k)) sn(4K(k t"',k = ksrn 2 (4. 129) 

where sn (u, k) is the Jacobian elliptic sine function. Equations (4. 121), 

(4. 123), (4. 124), (4. 126), and (4. 129) are sufficient to determine the 

five unknowns n, k, a, A, and t':<. 

If w is considered unknown and k as known, the above equations 

can be combined to give the following set for determining the approxi-

n•ation 

t':' = F(p, k) 
4K(k) 

where F is the incomplete elliptic integral of the first kind and 

. -1[1 . (sin-
1

(k))J' Cf)= sin k sin 2 

2 ,,, 
4rr B cos (21rt"") 

0 -1 )1/2 
1 . 2 (sin (k) ) -2s1n 2 

k 

where 

n= 2K(k)w 
lT 

and 

(4. 130) 

(4.13 1) 

(4. 132) 

(4. 133) 
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a. = _(_l ___ l_--~-c-2 o_(s_s l~~:-~-lt(-:~!l_)~-1-/~2 
- 2 Sln 

2 
k 

(4. 134) 

The above equations are convenient only for b positive. The solution 

procedure is to consider a, b, B, and k as known and use the above 

equations to calculate t"•'<, w, 13, Tl, and a.. For b negative, k is pure 

imaginary, and the above equations must be modified prior to per-

forming any numerical calculations. 

MAVE 

The approximation generated using MAVE is obtained by first 

determining the set 4>. From (4. 125), the extrema of E:(t) occur 

whenever 

sin (2'T!'t) = 2K;~)a. sn (4K(k)t, k) dn (4K(k)t, k) (4. 135) 

where sn (u, k) and dn (u, k) are Jacobian elliptic functions. Equation 

(4. 135) is satisfied for 

tl = 0, 
1 

t3 = 1 t4 = t >:< } ' t3 = 2 
(4. 136) 

t
5 

= i- -t"'~ t6 = ~ + t * t7 = 1-t* 

where t "'~ is the root of (4. 135) satisfying O<f"< 1/4. For the set of 

points in (4. 136), the re exist only two distinct values of je(tl!, and 

these may be taken to occur a t t = 0 and t = t':'. 

Applying (4. 19), the approximation is generated by 

(4. 137) 

By considering the properties of !e (O)! and je(t>:')l as functions of a , it 
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may be shown that (4. 137) is satisfied whenever the two errors are 

equal, i. e. , 

(4. 138)1 

Using (4. 125) and (4. 135), (4. 138) reduces to 

1 + cos (2irt '!< ) 
a= B 1 +en (4K(k)t*, k) (4. 139) 

(4. 139) represents the approximation generated using MAVE. 

Equations (4. 121) , (4. 123), (4. 124), (4. 135), and (4. 139) are sufficient 

for determining t~' , k, 13, a, and 11· Combining the above equations, the 

following set of equations may be obtained. 

_ir_t ( t':<) - sn(4K(k)t* ,k)dn(4K{k)t'!<, k) 
2K(k) an 1T - 1 +en (4K(k)e:' , k) 

where t':< satisfies O<t"'"< 1/4; 

( )2 2 3 2 _ 2 1 +cos {Zirt ':' ) 
s\4K(k) (Zk -1 )W t sa4ir W - 4ir B l +en (4K(k)t'~ , k) 

where 

and 

13 = SW 

2K(k)w 
11 = 1T 

(4. 140) 

(4. 141) 

(4. 142) 

(4. 143 ) 

'" 1 +c o s (21Tt") 
a = B 1 +en (4K(k)t '~ , k) <4 . 144 ) 

Equations (4. 140) through (4. 144 ) determine t':<, k, f3, a, and T]. Unlike 

the previous approximations, considering k as known does not e nable 

the above approximation to be obtained by direct substitution. (4 . 140 ) 
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is a transcendental equation fort*. Consequently, the appr oximation 

generated using MAVE must be determined numerically. The above 

set of equations is convenient only for b positive. For b negative, they 

must again be 1nodified. 

Discussion 

In order to compare the accuracy of the various approximations , 

it is necessary to consider specific numerical examples. Because of 

the large number of parameters, any comparison involving a variation 

in all of them would become too lengthy. Consequently, certain para­

meters were arbitrarily fixed. Specifically, a is chosen to be 1, and 

w is chosen to be 0.6. Furthermore, b is restricted to b e negative , 

Since b is negative, the response curve will lean to the left, and , for 

the value of w chosen, there is a possiblity of the system possessing 

three periodic solutions. The comparisons will be based on the ampli­

tudes associated with the upper branch of the response curve. To 

provide a basis for comparison, equation (4. 119) was integrated 

numerically to obtain the exact steady -state amplitude. 

Comparisons were made for various band B. However, only 

the case which exhibited the largest differences will be presented, 

This oc c urred for B equal I. 0 and for b varying from - 0. 01 to - 10 , 0. 

Figure 17 shows the normalized error in steady- state amplitude for 

the various appr oximations as a func tion of b. All of the othe r com­

pari sons for different values of B possess the same qualitative 

behavior. 
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Figure 17 indicates that the best numerical accur acy is 

obtained using AAVE. However, AAVE and ASE are so close that a 

question arises whether the slight increase in accuracy provided by 

AAVE c ompensates for the additional labor involved in its use. The 

maximum difference between ASE and AAVE is on the order of l0- 3 . 

4. 7 Conclusions. 

In the previous four sections , certain example s are presented 

where approximations are obtained using three s pecific equivalence 

criteria, ASE , AAVE, and MAVE, described in Section 4. 2. In each 

of the example s it may be concluded that ASE is, in some s e nse, the 

most appropriate equivalence criterion to use. 

In each example, ASE is the easiest technique to implement. 

It involves only simple integrations , while both AAVE and MAVE 

require the loca tion of the zeros of certain functions of t. This loca­

tion can b ecome rather involved as evidenced in Sections 4. 4 a nd 4. 6 . 

Furthermore, MAVE usually requires some analysis of the functi onal 

behavior of ce rtain expressions which can be quite tedious (cf. 

Section 4. 4 ). 

The most useful and desirable aspect of most approximating 

techniques is that they are much easier to use than ar e exact solution 

techniques. However, this advantage is essentially nullified in the 

case of AAVE and MAVE, and for this reason alone i t would seem 

justified to label AA VE and MAVE as impractical unless they provided 

a substantial increase in accuracy over ASE. 
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The exantples did not show this to be the case. In eve ry 

example, except Section 4. 6, ASE provided as good or b etter results , 

on the average, than eithe r AAVE or MAVE. In the one case where 

AAVE does provide better results, the increas e in accuracy is on the 

order of 0.1 percent. This increase hardly compensate s for the addi­

tional effort required by the AAVE technique. 

It must be pointed out that the above conclusions are based on 

a very limited analysis. It is soni.etimes dangerous to draw conclu­

sions based on certain specific examples, but an attempt was made to 

make the exa1nples repres e ntative. Both autonomous and nonautono­

mous systems were considered, and both linear and cubic auxiliary 

systems are employed. 

It is also realized that there exist many possible equivalence 

criteria other than the three considered in the present a nalysis . It 

would be impossible to compare all of them. ASE, AAVE, and MAVE 

were chosen for their physical and mathematical relevance in addition 

to their connection with the error bound as indicated in Section 4.1. 
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V. A COMPARISON OF LINEAR AND CUBIC 
APPROXIMATIONS FOR SECOND ORDER 

SCALAR SYSTEMS 

In the previous chapter, two auxi.liary systems are used for 

obtaining approximate periodic solutions for some specific second 

order scalar equations. These two systems are: 1) the linear 

system (4. 94) and 2) the cubic system (4.120). In the present chapter, 

the above two systems are compared for some further examples. It 

is shown that the cubic approximation is potentially more accurate 

than the standard linear system in predicting steady- state response 

of nonlinear systems. 

Section 5 .1 presents the linear approximation to a general 

second order scalar system. The approximation is obtained using the 

equivalent equation approach. Section 5. 2 deals with the cubic approx -

imation to a general second order scalar system. The cubic 

approximation is also obtained using the e quivalent equation approach . 

In Chapter IV some arguments are presented which indicate that 

minimizing the mean square differential e quation e rror is the most 

appropriate equivalence criterion to utilize. Consequently, the above 

two approximations are obtained by minimizing the mean square 

error (4.13). In Sections 5. 3 and 5.4 certain examples are considered, 

and the linear and cubic approximations are compared. 

5 . 1. General Linear Approximation. 

Let the system of interest be written as 
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x +f(x, x, t) = F(t) ( S. I ) 

where F(t) is continuous int and periodic int with period 1. 

Furthermore, let f(x, x, t) be continuous in x, x, and t, and periodic 

int with period 1. Assuming that (5.1) possesses periodic solutions 

with period 1, the equivalent equation approach may be employed to 

obtain an approximation. 

In the pre sent section, the au.xi.liary system is taken to be 

the linear equation 

y + cy +Ky= B cos (2irt) , (5.2) 

where the period of excitation has been taken to be the same as the 

period of the original syste1n . (5.2) possesses exact periodic 

solutions of the form 

y = A cos (2irt-cp) , (5.3) 

where A and cp1nust satisfy 

( 5 . 4) 

and 

-1 ( Zir c ) cp == tan ---2-
K- 4ir 

( 5. 5) 

In C hapter II, the equivalent equation approac h is de scribed 

for two general equations . It is stated that certain of the differential 

equation parameters inay be selected arbitrarily so t hat portions of 

the aux:iliary system would be similar to the original system. 

However, here, it is desirable to leave all of the parameters 

(c, K, and B) in (5.2) unspecified, and to determine the m using the 

minimization condition. 
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Using (2 . 7), the differential equation error is 

e(t) = F (t) - B cos (2rrt) + cy +Ky - f(y, y, t) 

c, K, and B may b e d e termined by minimizing 

I 2 J e: (t) dt . 
0 

Minimizin g (5 . 7) with respect to c, substituting (5 . 3) fo·r the 

(5. 6 ) 

( 5. 7) 

approximate solution y, and e valuating the re s ulting trigonometric 

i nteg rals, the following r e sult is easily obtained . 

1 . 
B sincp--2rrcA +2 J F(t) sin (2rrt-cp) dt + 

0 
I 

- 2 J
0 

f(y, y; t) sin (2rrt-cP dt = O , ( 5. 8 ) 

w h ere y = A cos (2rrt-cp). A second relation is generated by ininimizing 

(5 . 7) with r e spe ct to K . T he result is 

I 
KA-Bcoscp+Z r F(t)cos(2rrt-cp)dt 

~o 

where y = A cos (2irt-cp). 

I 
- 2 I f(y, y. t) cos (2rrt- cp) d t = o . 

0 

If (5. 7) is now minimized with re s p ect to B, the r e l ation 

g enerated i s 

I 
2rr Ac sin cp+ KA c os rp - B + 2 J F (t) cos (Zrrt) dt 

0 

( 5. 9) 

I 
- 2 J f(y, y, t) c o s 2rr tdt = 0, (5.1 O) 

0 

where y = A cos (2rrt-cp). 
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Upon close inspection, it is seen that (5.10) is not independent of (5 .8) 

and (5.9). Consequently, minimizing (5. 7) with respect to c, Kand B 

yields only two independent relations. As discussed in Chapter II 

there are various alternatives for eliminating this underspe cification. 

One possibility is to arbitrarily fix one parameter initially, and then 

determine the remaining two parameters using two of the above three 

relations. The major disadvantage of this approach is that it may not 

be clear which parameter to fix or what value to prescribe to it. This 

approach is the one normally utilized in the standard rnethod of 

equivalent linearization (
3

). It is assumed that F(t) is trigonometric, 

and consequently B is taken to be equal to the amplitude of the exci­

tation F(t) . If F(t) is not t r igonometric, there is some question a s to 

what to do in the m e thod of e q uivalent linearization. 

An alternative a pproach to arbitrarily selecting certain param­

eters is to divide one of the independent re l ations so that a third 

relation is g e nerated. The particular relation that is sepa-rate d and 

the manne r in which it is separate d are arbitrary . How e ve r, s ome 

physical arguments may exist f or making t h e a b ove d e cis i ons . 

It is importa nt to note tha t , in the present c ase .. l a c k of 

specifica tion occurs only in the diffe rential equation para m e t e rs 

c , K, a nd B . The solut ion paramet e rs A and cp are determine d 

uniquely by the equat ions (5. 8 ) a n d (5. 9). This happens b ecause the 

differe ntial equation e rror is linear in the minimizing paramete rs , 

and afte r the minimization is p e rforrned, the r esulting e quati ons c a n 

b e writte n e ntirely i n t e rms of the s o lution p a rame t e r s A a nd cp . 
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Conseque ntly, only two relation s ar e r e q11ir e d. lfow('vt·r , if a 11niq•JI' 

e quivalent system is desire d, it is necessary to jnitia lly specify o n n 

of the diffe rential equation parameters or t o separate tme of the abmr·~ 

eq·u a tions to a generate a third relation. 

Since in rr1any cases it is dr~s irabl e to de t e rmine a unique 

systc n1 a s Wf' 11 as a uniqut~ solution, the a ltc rnative of scpa r a ting 

certain e quations is utilized in the present situation . Equations (5 .8 ) 

a nd (5. 9) are chose n as the independent eq11ati.ons. Furthe rmor 3, i t 

seems r easonable t o separate (5 . 9) in the following manne r . Let 

a nd 

1 
B coscp -" 2 J F(t) cos (2lTt-cp)dt , 

0 

1 
KA = 2 s f(y, y, t) cos (2lTt- cp) dt 

0 

wh<'r :~ y c A <"•>S (Zrrt-cp) . 

(5.11) 

(5 . 12) 

The alHwe s e para tion is an attempt to make B m odel the excitation 

F (t) a nd K model the restoring for ce f(x, x, t). As stated prw..riously, 

(5.11) and (5 . 12) are obta ine d in an arbitrary manne r . It would b e 

equally as valid to separate (5 . 8). 

The three relations for d etermining the auxiliary e qua tion 

parameters a r e (5. 8), (5.11), and (5 .12 ) . These relations combined 

with equ a tions (5.4) and (5. 5) are sufficient fo r determining A, cp, c, K, 

and B. If for physic a l r easons, some of the parameters are pre-

scribed initially, the n certain of the above relations n o longer apply. 
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For e xample, if c js pre scribed initially, equation (5. 8) is no longer 

valid. Kand F may then be determined using (5. 9) and (5 . 10). 

As stated previously, the present app1·oximation is a genera.ti-

z c-ttion of the method nf <:'quivalent lincarization. The additional 

flexibility of being able to permit all the parameter to participate in 

the minimization process would seem to indicate a capacity for 

greater accuracy in the appraximation. Another advantage of the 

above forrnulation is that the auxiliary system is linear; consequently, 

the solution form is algebraically uncomplicated, and the integrals 

required in the approximation usually are trigonoinetric . 

5. 2. General Cubic Approximation: 

In addition to the linear auxiliary system another system has 

r e ceive d sorne con side ration in the literature r e cently (
6 ). The 

syste n1 is 

y + cy + ay + by
3 

= Ben (T]t, k{ l -k
2 

sn (cp, k) sn
2 

('l')t-cp), k J , (5.13) 

where c , a, b, B are constants, cn(u, k) and sn(u, k) are Jacobian 

e lliptic functions, and cp is defined shortly . It is d e sir able that ( 5. 13) 

pos se s s the same period of excitation as the original system (5.1}; 

conseqm~ntly, n satisfies 

Tl == 4K(k) (5. 14) 

where K(k} is the c ompl e te elliptic integral of the first kind with 

modulus k . (5.13) pos sesses exact periodic solutions of the form 

y :::: A en ('t)t-cp, k} , (5 . 15) 
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l bA
2 

k = ---r . 
Zn 

( 5. l(,) 

3 2 
bA + A(a-T] ) = B en (cp, k) , ( 5. 1 7) 

and 

cA T] = B sn (cp, k) dn (cp, k) , (5.18) 

where dn (u, k) is a Jacobian elliptic function. 

As in Section (5. 1) all of the differential equation parameters 

(c, a, b, B) are considered unspecified and are determined using the 

m ean square equivalence criteria . Using (2. 7), the differential 

e quation error is 

e:(t ) = F(t) - f(y, y, t) + cy + ay + by
3 

( 
2 2 2 " 

-B c n(T]t,k) 1-k sn (cp,k)sn (T]t-cp,k)) ( 5 . 1 9) 

where y =A en (T"]t, k). c, a, b, and B are determined by minimizing 

( 5. 7). 

Minimizing (5 . 7) with r espect to c leads to the following result. 

J1 
( F ( t) - f ( y, y, t)) s n ( rit - cp) dn ( T]t - cp) d t + 

0 

4(B sn(cp,k~dn(cp,k) _5=._A)((2k2-I)E(k)+(l-k2 )K(k)). = 0. (5.20) 
3k

2
T'] 3 k

2 

In obtaining (5 .2 0), reference (28) is used to evaluate the integrals of 

the various combinations of elliptic functions . 

Minimizing (5. 7) with respect to a, and again using reference 

(28) to evaluate the resulting elliptic integrals, the following is 

obtained. 



r1 ( F ( t) - f( y, y, t)) c n ( 1"]1 - cp, k) tl t ·I 
'O 

( ) 3 
4 ~:{\_-:_ll~n (gi, kl c + 4~~ C :: O ,, .Jz ,, .J 4 ' 

where 

and 

c -2 -
rK-cp 2 E(k) (1 k2 )K(k) 
I en (u, k)du :.: - -

2 
u k 
- rp 

lK-cp cn4(u, k)du : (2-3k2)(1:.k2)K(k1 +2(2.k2-q~_(k) 
~cp 3k 

(5 . 21) 

Minimizing (5. 7) with respect to b, and using r e ference (28), 

the following relation is obtained. 

f (F(t)-f(y,y,t))cn
3

(71t-cp,k)dt + 
0 

(, ) 
4

C4 4bA
3 

\Aa-B en (cp, k) Tl + -,,- c6 = 0, 

where C 
4 

is defined in ( 5. 21) and 

2 2 

J
K-rp 6 4(2k -l)C

4 
t-3(1-k )C

2 
en (u, k)du :: -----..,......-----

5k - cp 

Minimizing (5. 7) with r e spect to c, a, and b yields three 

(5 . 22) 

inde p e ndent r e lations (5.20), (5.21), and (5 . 22). Howeve r. mini-

rnizing (5 . 7) with respect to B does not lead to an indepenclent relation . 

If the manipulation is carried out, the expre ssion obtained is 

I 
c n(cp. k) f J

0 
(F (t) - f(y, y, t)) en {T]t- cp, k)dt 

(5.23) 

4C2 ( ) 4C 4 3 } 
+-Tl- aA-B en (cp, k) + -,,- bA - sn(cp, k)dn(cp, k) 
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{ .r1 (F(t) - f(y, y, t)) sn (11t-cpk) dn (11t-cpK.) ch + 
0 

(l> sn(rn, k)dn(rn, ]<\ cA ) (<ZJ l l) .,( ) 2 )} 4 :> --:t'..-2-· ·..%-~ - - ·-2 '- - } ..... k + ( l -k )l<(k) _: (). 
3k ,., 3k 

(I). 2.. q 
COllt. 

(5.2 .) ) is idcntica 1 ·1 y satisfied, if (5.20) and (5.21) are satisfied . 

Consequently, the system to determine c, a, b, and B is underspecified. 

However, as in the previous section, the underspecification occurs 

only in the differ e ntial equation parameters. Since the differential 

equation parameters appear linearly in the differential equation error, 

the r e lations r esulting from the minimization process may be written 

entirely in terins of the solution parameters. Therefore, equations 

(5.20), (5.21), (5 .22 ), and (5 . 14) are sufficient to uniquely determine 

the solution parameters A, cp, T), and k. 

To determine the entir e system uniquely, it is possible to 

eliminate the underspecification by 1) prescribing one of the 

parameters c, a, or B initially, and then using the appropriate remain-

ing three equations of (5 . 20) through (5.23) to determine the other 

thre e pa rarneters; or 2) separate one of the above three independent 

relations to genf~rate a fourth relation . The latter alternative is the 

one used . Before separating any relation, it is convenient to rewrite 

equations ( 5. 21)and(5. 22). It is possible to solve these equations for 

-I -1 3 
the quantities 'r] (aA-B en (cp, k)) and Tl bA , yielding 

aA- B en (cp, k) 

,., = 
C6 J~ (f(y, y, t) - F(t))cn ('l'lt-cp, k)dt -

2 
4(C2 c

6
-C

4
) 

(5.24) 
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r' . 
c4 Jo (r(y, y, 1:)-F(t))vn '~('rjt· -cp. k)cll I 

·--- ·---- -- - - ~ -

4(C2 c() - c~ > 

cont:. 

1 1 r (f(y, y, t)-F(t)Jcn
3

(rit-cp. k)dt-C4 I (F(y, y)-F(t))cn(T)t-r.p)clf .... 0 \ I ._, 
Cz 

·- ---------------4-( c_·_
2

_c_
6 

___ c_~-)~- ·- ··--·-·- ·--··--

(5 . 25) 

where c 2 , C 4 , and c 6 are given in (5 . 21) and (5.22). Equation (5.24) 

is the one that is separated. By r e quiring that the linear coefficient 

a model the restoring force only, and that B model the excitation 

only, (5.24) separates into 

aA 

and 

1 1 

C6 l f(y, y, t)cn(T)t-cp k)dt-C4 l f(y, y, t) cn
3

(71t-cp, k)dt 
= --·~O'------------~o _________ _ 

2 
4(C

2
c

6
-C

4
) 

B en (cp, k) 
----= 

(5 .26 ) 

(5.27) 

As stated in Section 5 . 1, the above separation is arbitrary, although 

the particular one chosen seems reasonable. 

Equations ( 5 . 1 4), ( 5 . 16 ), ( 5 . 1 7), ( 5 . 1 8), ( 5 . 2 0), ( 5 . 2 5), ( 5 . 2 6 ) , 

a nd ( 5. 2 7) are the equations used to determine c, a, b, B, A, cp. k, and T) . 

If some of the differential equation parameters are prescribed 

initially, then certain appropriate equations must be eliminated from 

the above list. 
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Th(~ cubic approxir:nation i s a generalization of the linca 1· 

approximation described pr <:!vi ou::;ly. In the lin1i t as k approar.:: lw s 

zero, the cuhic approximation r e d ne e s to the linear approx:in1ation. 

Since the cubic approximation contains a larger number of di ffe re n­

tial equation parameters than the linear system and sincf~ it contains 

the linear system as a limiting case, it is clear that the c ubic approxi.­

mation cannot be worse than the linear. Tht~ degree of improve ment 

provided by tlw cubic system depends on the par.ticular o riginal systern 

being co n s ide r :.: d. 

5. 1. Examp1e l: 

The original system to be considered is the same system 

consider -:! d in Chapter II, namely 

:X + ax + bx 
3 

::: F cos (wt) 

The steady-state periodic motions 0f (5.28) are of interest. 

The linear appr::>x:imation uses the following system, 

y +Ky= F cos (wt) , 

(5.28) 

(5.29} 

wher~ F . in (5 . 29) is set ·~qu~l to Fin (5.28) and K is the minimizing 

p<:tran1etc r . This appr oximation has been obtained p·r~viousl.y in 

Section 4. 5. The amplitude-frequency r·~lation is g iven by eq11ation 

\ 4 . 99) and (4.100) with Band c ~qua~ to zero . The entire appre>x:i­

mation is obtained by solving equations (4. 96) and (4. 99). with c eq11a}. 

to ze r ::>, for the unknowns K and A. 

The cubic approximation utilizes the following auxi.liary 

system, 



·3 
i/fay+by ·Bc:n(11t,k) 

where a and bare set equal to a and bin (5.28) and 13 i.s the mini-

mizing parameter. This approximation has also been obtained in 

Section 2. 2. The amplitude-frequency r<!lation is given in equation 

(2. 26). The entire approximation is solved by solving equations 

(2. 19), (2. 21), and (2. 2 7) for the unkn::wns B, A, 11, and k. The above 

set of equation ~; <tr e convenient if b is positive. For b negative the 

appropriate set of equations are (2.28), (2.19)1
, and (2.2 ·1)'. 

A comparison between the linear approximation and the cubic 

approximation for the present example has already been made in 

Chapter II. Certain values of B, b, and a were selected, and both 

approximations were presented as functions of the frequency w. It 

was shown that, for certain ranges in frequency, the cubic approxi-

mation leads to more accurate results. This conclusion is valid for 

both positive and negative b. 

In order to make the present example complementary to the 

e arlier study, a comparison is made for various values of Band b, 

while a and w are fixed. Pre scribing a to have the value one repre-

sents no loss in generality, since the original equation (5. 28) can 

always be scaled to meet this requirement . Since in Chapter II and 

reference (6) the relative accuracy of the linear and cubic approxi-

mations are roughly the same for b positive (for an appropriate 

choic e of w) and for b negative (again, for an appropriate choice of w) , 

only the ca se for b nega tive is considered. The value of frequency is 

arbitrarily s el ect e d to be 0. 6 . 



Figure 18 presents the results of the comparison. Tht~ quantity 

co1npared in both approximations is the maximun1 r e ::;ponsc. As a 

base for comparison, the exact periodic solution is obtained by 

numerically integrating equation ( 5. 2 8). Plotted on the ordinate of 

Figure 18 is the value of the difference between the approximate 

a1nplitudl' and the exa c t amplituile divided by the exac t ampli.tuile. The 

o rdina tt!, therefon~, is the fractional error in the maximum response. 

This quantity is plotted as a function of b for various B. The exact 

and approximate solutions that are compared, correspond to the upper 

branch of the response curve; (cf. Figure l) for w equal 0 . 6 . 

F igure 18 illustrates again t .hat the cubic approximation leads 

to much more accurate r esults than does the linear approximation. 

It is also noticed that the linear approximation seems to be insensi-

tive to the particular value of b or B chosen, at least for the range 

c onsidered. The linear error is on the order of 10-
1

. On the other 

hand, the cubic e rror is v e ry much dependent on the v a lues of band 

B selected. As pointed out in S ection 2. 2, the accuracy of the cubic 

approximation is primarily influenced by the value of B . As B 

approaches zero, the cubic approximation becomes exact . This fact 

is illustrated in Figure 1 8. For B equal to 0 . 01, the cubic error is 

-3 
smaller than 10 , even for quite large values of b. For B equal 

to 1. 0, the cubic error is on the order of 10-l for the larger values 

of b . The straight line behavior of the cubic error suggests that, for 

the range of parameters considered, the cubic error is proportional 

1/2 
to B(-b) . 
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- LINEAR APPROX. 

CUBIC APPROX. 
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Figure 18: Response Error for x +x + bx3 ::-: B cos (0. 6 t) 
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5. 4. Example 2 _ _: 

The system to be considered in this section is thl' fol lowing: 

2 n 
dx ~ 
dTr + 1 +~ iir = F cos <w'!") (5.30) 

where y, a, F, and ware constant and n is an odd p o sitive integer so 

~( 

that the re storing force is symmetric with respect to the origin. 

Equation (5. 30) has considerable physical interest espec ial1y for the 

cas e when n equals l. If a is positive, the restoring force has the 

property of saturation. For x small, the restoring fo-rce is nearly 

linear in x. For x large, the restoring force approaches a constant 

value. If a is negative, the restoring force becomes infinite as x 

·-1 
approaches a The restoring force then resembles the force exerted 

on an elastically restrained particle moving in a one-dimensional 

rigid box . The equivalent equation approach is used t o o btain linear 

and cubic approximations for the steady-state periodic oscillations 

of ( 5. 3 0) . 

Linear Approximation 

The linear approximation is obtained by utilizing the eq1.iations 

developed in Section ( 5. I) . Fir st, normalize 'T in ( 5 . 3 1)) so that the 

Period of the solution is one . Letting WT= t ( 5. 3 O) be c omes 
Zrr ' 

-·· .,. 

2 2 n 2 
d x + ( 2rr) __Tl!. _ ( 2rr \ 

2 -r:-=-r - 1 -w ) F cos (2Tit) 
dt w l+a. 1x1 ' 

(5.31) 

The case for n an even positive integer can also be analyzed. S01ne 
specific details change, but in general, the procedure is ide ntical . 



-172-

From (5 . 3 1), it is clear that 

' ) 

f(x, x) = ( 
2
: r l rnlx1 (5. 32) 

and 

F(t) = (; )
2 

F cos (2Tit) . (5 . 33) 

Since (5 . 3 1) contains no dissipation, it seems reasonable to 

.set c cqua l zert) in the linear approximation . The equations for 

dc~termining the a pprox imation are (5.4), (5 . 11), and (5.12). Since c 

equals zero, (5. 5) implies that cp e quals zero also. (5 . 4) reduces to 

B A=--z 
K-4TI 

Using (5 .33 ) and evaluating the trigonometric integrals , (5.11) 

reduces to 

Using (5. 32) and standard integral tables, (5.12) reduces to 

K = _iy__ 1 _ :!!. T (Aa)~\2i)! + r)_ (Aa.)2j +l 

[ 

n-1 n-1 

A 2 n+l 2 l. 2 ZJ(·') ,_ 
~-Zj~t~ 
(2j+l)!J 

lT a . o J· . O J= J= 

where 

2 - ··- ----
J1-A2a.2 

-1 1 /2 
tan ( 1 -A a \ I I 

1 +Aa ) , Aa < 1 

I 

1 
2 2 1/2 

ln( Aa + 1 +(A a. -1} ) A l 
Aa.+1-(AZa.2-1)1/2 ' a.> 

(5.34) 

(5. 3 5) 

(5. 36) 
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The case of Aa les s than minus one is unphysical, since this corre -

sponds to the particle penetrating the rigid walls of the box . 

Equations (5 .34 ), (5.35), and (5.36) consf:itute the dt~termining 

equations for the linear approximation . For the numerical example to 

b e considere d later, n is chosen to b e the one. In this case, (5.36 ) 

r e duces to 

(5. 37) 

where I is given in (5. 36). 

Cubic Approximation 

The cubic approximation is determined by utilizing the re la-

tions developed in Section 5.2. Since the original system (5.30) 

contains no dissipation>c is set to zero in (5.13). c being zero implies 

that cp vanishes through equation ( 5. 18) . The equations determining the 

cubic approximations are (5.14),(5.1 6 ),(5 . 17),(5 . 25),(5 . 2 6 ), and 

( 5. 2 7), with c and cp set equal to zero. These e quation s become : 

'Y)=4K(k) , (5 . 38) 

2 bA
2 

k = -2- (5 . 39 ) 2,, 
3 2 

bA +A(a-'I") ) = B , ( 5 . 40) 

c 2 .~ (fy. y. t)-F (t) )en 
3 

(TJt. k)dt - C 4 ~ ~(y, y, t) - F(t))cn(T]t, k)dt 

4(C2 C
6

-C
4

) 

( 5 .41) 
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and 

B 

-174-

r1 r1 
• 3 

C 6 L 0 f ( y, .Y, t ) c n ( T)t, k) d t - C 4 , 0 f ( y, y, t) c n ( r1t, k) d t 

= 

2 
4(C

2
C

6
-C

4
) 

1 I 

c
6 

SO F (t) en ('T]t, k)dt - C 
4 

JO F (t) en 
3 

(T)t , k)dt: 

2 
4(C2 C

6
-C4 ) 

(5.42) 

( 5. 4 3 ) 

In equations (5.41), (5.42), and (5.43 ) there are fou r integrals 

that must be evaluated. The first one is 

1 
L = \ F(t) en (T')t, k) dt 
~ 'O 

(5. 44) 

This integral i s e val uated by first substituting F(t) g iven in ( 5. 33 ) and 

then expanding the e lliptic fun c tion in a Fourie r s e ries (
3

b). Using the 

orthogonality of the trigonornetric functions, the only contribution 

co1nes from the first term in the expansion. Performing the algebra 

yie lds the following 

21T
3 

F (1TK(k')) 
Il = -z- kK(k} secb 2K(kf 

w 
t 2 1/2 

where k = (l-k) . 

The second integral is 

rl 3 
12 = . F ( t) c n ( rit , k ) d t 

·o 

( 5. 45) 

(5 . -k) 

( 5. 4(>) is <'Val u;1tL' d using tP c hniques ,;in1ilar t·o tlw t lw above . It rnay 
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be shown that 

where I
1 

is given in (5.45) and 

00 
-· 1\ m ( 1 1 ) l (k) = + 2 L · sinh(ms) cosh(m-1/2) s + cosh(m+l/2 )s) ' 

m=l 

i:-- TrK(k') 
where -;,- K(k) 

(5.47) 

(5.48) 

The remaining two integrals involve 'the restoring force f(y). 

The third integral is 

1 
I 3 = J, f(y, y, t) en ('l"jt, k) dt 

0 
( 5. 49) 

Substituting (5 . 3 2) for f(y), multiplying by appropriate constants, 

adding and subtracting one in the numerator of the integral, and 

making the obvious change of variables, (5. 49) becomes 

4 y f K(k) du K(k)n 

A n+l { .;
0 

1 +Aa. en (u, k) - J
0 

l 
'11 a. m=O 

m m 
(-Aa.) ( cn(u, k)) du} , (5.50) 

where the integration is over one quarter period because of the 

symmetry of the integrals. The value of the first integral in the 

brackets is (3 4 ) 

K(k) {K(k) -E(k)+k', o = 1 
I = l du 

5 ,.,0 1+ 0 en (u, k) / 2)-1 (_ ( 02 ) ) 2 
\1 - 0 \ -y- , k - 0 fl , 0 =I 1 

.. 0 -1 

(5.51) 
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? 

where ·rr(n~,k) is the complete elliptic integral of the third kind and 

f = 
1 

It is to he rt~nwn1bered that 15 haR no phyHical n1eaning for ri Let:!fi 

than 1ninus o ne . 

The remaining integrals in (5. 50) are also evaluated using 

r efe rence (2 8). Denoting C as 
m 

K(k) 
C = J cnm(u, k)du , 

m 0 

the values of the integrals are 

l . -1 c 0 =K(k), c 1 =k sm (k), 

2 ,2 
2m(2k -1 )Czrn + (2m- l )k CZm-Z 

Czm+Z = 
(Zm+l )k

2 

2 ,2 
(2m+l )(2k -1 )Czm+l + 2mk Czm- l 

c2m+3 = -------------------
2 (m+l )k 

( 5 . 52) 

( 5 . 53 ) 
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Cornbjning the above values, I :~ ina.y b e writt~ n a:> 

2 n 

I
3 

= (~) --~-y_- ~I - \ · (-Acx.)mC } 
w A n+l 5 J rn 

'Tl a m =O 
( 5. 54) 

wher e r
5 

and Cm are given in (5 . 51) and (5 . 5 3 ) . 

The final integ ral to evaluate to complete the approx ima tion i s 

1 
1

4 
= J f(y, y, t) cn

3 
('llt:, k)dt 

0 
( 5. 55) 

Utili z ing t h e same techniques as tho se employed 10 evaluating 1
3

, 

the va lue of r
4

, is found to be 

where 1
5 

and C are given in (5 . 51) and ( 5. 5 3 ). 
n1 

(5.56) 

Equations (5 . 3 8) through (5.43) may be used to dete rmine the 

un1c1owns A, 11 • k, a. b, and B . However, fo:r. numeri.cal evalu ation, it 

is mor~ convenient to conside r either A or k as known an<l to le t •11 

b e an u nknown. S 11bstituting the values of 11 thr ough r
4

, a nrl. 11sing 

e quation (5. 39), (5 . 40),(5.41),(5.42), and (5 .43 ), it i s possible to 

e liminate four of the unknowns and to obtain a .'3 ingl.e r c lati0n between 

A and k. If .e ithe r A or k is considered known, the pr.: i ~-,1ern r e<l u c es 

to d ete rmining the roots of a transcendental equation f o r the ot:1er 

variable. 

Disc ussion 

In or d<~ r to compare the approximations, it is n ecessa r y l o 

<..».1n s idt>r spc'c ific exan1ples. As indicated earlie r , the resto ·:ing 
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for c e in (5 . 30) possci:;ses two general types of behavior. If a it1 

positive, the system is softening, and without loss in generality, it 

is convenient to select y and a. equal. In this situation, the restoring 

force is asymptotic to the value lxln- l for large lxl . H a. is negative, 

the system is hardening, and without loss in generality, it is con-

venient to select a. equal to ininus one. In this case, the re storing 

force becomes infinite as lxl approaches one. The value selected 

for n is unity. 

For the hardening system, the values selected for F and y 

are F=O. I and y =O. 2 . Since the system is hardening, it is expected 

that the cubic approximation will also be hardening and, consequently, 

the equations (5.38) through (5 .43) are in the appropriate form (i.e . k 

is positive and less than one). Both approximations for the periodic 

solution of (5. 30) for the above values of the parameters are given in 

Figure 19. Also included is the exact solution (exact maximum 

amplitude of response) obtained by numerically integrating equation 

(5.30). The exact solution possesses different characteristics for 

various ranges in w, and these are indicated in the figure. 

One fact which is immediately apparent in Figure 19 is that 

the cubic approximation provides significantly better results than the 

linear system for w>O. 3. As pointed out previously, this is not 

surprising since the cubic system is a larger parameter system 

which include s the linear approximation as a limiting case. What 

might be surprising is the amount of improvement. Form large and 

A n e ar one, the c ubic system yields very good results. For these 
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values of amplitudes, equation (5. 3 0) becomes highly nonlinca r. 

However, the cubic system see1ns capable of representing the large 

nonlinearity quite well. For a frequency of 1. 2, the error in ampli­

tude for the upper branch of the response curve is less than one 

percent. 

Another interesting aspect of the cubic approximation occurs 

for ui near 0. 25. At this point, the approximate amplitude beginu to 

increas e . No such behavior is e xhibited by th~ lin~ar systc1n. 

Furthermore, the exact solution also begins to increase fo .r wnear 

0. 25 because of the influence of the ultrahar1nonic response of order 

3. Although it is pure conjecture at the present time, it appears 

that the cubic system could be trying to model the ultra harmonic 

behavior of the exact solution. As the cubic system approaches w 

equal 0 . 2 5, the modulus k is approaching 1. The limiting value of k 

equal 1 corresponds to w equal 0. For k large, the wave form of the 

approximate solution ( 5 . 15) is v ery similar to a superposition of in 

pha se cos (wt) anci cos (1w1") terms . .Furthermore, as the ultraharinonic 

response is approached by decreasing w, the exact solution pos sP.sses 

a third harmonic component which is in phase with the primary harmonic 

com.ponent. Therefore. it seems that the cubic system is following 

t he branch of the ultraharmonic where the third har1nonic is in phase 

with the first ha <monic. If the above reasoning is correct, the cubic 

approximation, which is essentially a primary response approximation, 

possesses the capability of yielding some information about the ultra·· 

ha-rmonic response of the system. Although the approximation 
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rapidly deteriorates in the r e gion of the uHraha.rrnonic , it at lea :~t 

indicates the presence of a differl;!nt phenomenon. The linear approxi.-

mation <loc s not possess such a capa1:>ility. The cubic approxi.mation 

is capable of modeling the exact solution until the mag nitude of the in 

phase third harmonic is so large that the exact solution possesses six 

sign c hanges in one period of the inotion. The value of w f o::- which 

this occurs is approxi.mately w:: 0 . 22. For 'u large ·r tha.ri 0.22, the 

cubic approximation is fairly accurate. For :.u less than 0 . 22 the 

Jacobian t~lliptic cosine function is incapable of representing the exact 

solution wave fortn since the en function possesses only two sign 

changes in one cycle for 0 ~k < 1 . For :v < 0. 22, the c ubic app~oximation 

is meaningless, but this is not su7"prising since there proba):)1y exists 
! 

an infinite nurnbe r of ultraharmonic responses for w b e tween 0 and U. 22. 

In addition, as w goes to zero, the cubic approKi.mation be c o1nes 

ambiguous and essentially undefined. 

An interesting aspect of the exact solution is that the two 

branches for the u:traharmonic of order 3 cross . This behavio1· 

occurs frequently, especially for equations possessing 1.arge no:'.1-

linearities . 

For the softening system, the values selected :::o r F and y are 

F = O. 5 and y-=10. In this case, it is expected that the c;1hi.c a?1n0x~-

mation will also be softening, and consequently e quation .:; ( 5. 3 8 ) 

through ( 5. 43) require modification . The modulus k he c orne s pnr ? 

imaginary, and 1 he above equat ion,; rnav a 11 lw transfo :·rned .so that 

they invDlV«' only l"<'al quantit i es . This in,1nip11l.1.t.1011 is pur ,•ly 
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algebraic and is omitted for the sake of brevity . The final forms a re 

easily obtainable from equations ( 5. 3 8) through ( 5. 43) . Both approxi­

mate periodic solution amplitudes for the present val.ues of the para­

meters are given in Figure 20. The exact maximum amplitude, 

obtained by numerical integration, is also included. 

F rom Figure 20, it is clear that the cubic system again yields 

better results than the linear system. One intere8ting fact is that 

the major difference occurs at the 11knee 11 of the response curve 

instead of for the larger values of amplitude. 

Unlike the hardening case, the amplitude of the cubic approxi­

mation in Figure 20 does not seem to increase in the region of the 

ultraharmonic response. The main reason is that the location where 

the c ubic approximation is no longer capable of repre senting the exact 

solution wave form occurs muc.h sooner in the softening system . As 

w is decreased and the ultraharmonic of order 3 is approached, the 

third harmonic component of the exact solution is out of phase with 

r e spe ct to t h e first harmonic component . Consequently, the exact 

solution wave fo r m looks more like a square wave. The cubic 

a pproximation also yields a sdution form which is capable of modeling 

a square wave. Since the present system is softening, the modulus 

k is pure imaginary, and the solution (5. 15) take s the form en (st, kl) 

dn (st, k 1 ) where s and k 1 are real. The above combination may be 

written as sn ( st +K, k 1 ) which approaches a square wave in t he limit 

as k
1 

approaches one . Therefore, it seems r e asonable to expect 

that the c ubic approximation c ould mode l the e xact solution so long 



1.0 ~ 

0.8 

c::{ 0. 6 

w 
0 
::> 
1-
...J 

~ 0.4 
c::{ 

0.2 

• .l 

•• • 
• • • • • -- . ----------

\ 
\ 

\ 
\ 

\ 
\ 
~ 

CUBIC APPROX . 

- - LINEAR APPROX. 

~ 
~ 
~ 
~ 
~ 
~ 

• EXACT SOLN. (WITH LITTLE 3RD HARM.) 

.l EXACT SOLN. (WITH IN PHASE 3RD HARM.} 

• EXACT SOLN. (WITH OUT OF PHASE 
3RD HARM.) 

o ...... ~~__.~~~--~~~__._~~~ ......... ~~~--~~~--~~~--~~--
o.4 0 .6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

FREQUENCY , w 

•• l Ox ( L) F ig u re 20 : Respon s e of x + T+IQfxT = 0. 5 cos w' 

-:c 
..... 



-184-

a s the third harmonic compone nt does not bec ome t oo l a rge . If the 

third h a r1nonic does get too large , the exact solution wave form 

beco1nes double peaked, and the cubic approx:mation is incapable of 

r e p r e. sc nting it . In F igure 2 0 , the value of w where the exa c t s olution 

·n ave form be c omes double peake d (in the r e gion o f the third hannonic 

r e s onance ) is w ,..., 0. 9. Cons e que ntly, if w>O. 9, it s eems rea sonable 

t o expe ct that the cubic appr oximate would b e fairly accurate. Howeve r, 

for w < 0 . 9, the cubic system is no longer capable of r e pre s e nting the 

exac t s o lution. At the value w= 0 . 9, the exact solution amplitud~ is 

still d e cre asing. It doesn't start to increase until w is approximately 

0 . 8 . The r e f ore , the ultraharmonic r e sonanc e o ccur s outside the 

r e gion whe r e the c ubic s y s t e m is appli c able , and . c on s e q u c:it·ly, the 

c ubic a pproximation doe s not increase. The soft e ning ca :~c illus trates 

that the c ubic appr vx;.mation n eed not neces s arily ind i c ate the e xistenc e 

of a third ultraharinonic re s o u a n.ce . 

The significanc e of the pre sent exampl e is threefold. It first 

shows that the c ubi c approximation c an l ea d t o a noticeable impro-;re­

m e nt ov<~ r the linear approx imation for syste1ns p o s ::>es s ing no n­

linear i tie s othe r t h a n cubic nonlinearitie s . The '~xample i n S ection 5. 3 

illustra t e s the supe riority of the c ubic s yst e 1n for m o <l.:din g D uff ing 1 s 

e qua tion. This is not s u r prising, since the o rig ina l s vs te 1n p o:; 3e s 3 e s 

a cubic nonlinearity . Howeve r in the pret> e nt e xample . it i s n ot 

obvious , initially, that the cubic systern woul d pr ov i de 11n lice a1Jle 

improvement. 
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Another aspect of the example is that, for the cubic 

appr0xin~ation, the coefficient of the cubic tenn in the r~storing 

force is allowed to vary. This tends to make the algebra somewhat 

rnor <..! c01np1icated but not UJmanageable. The: incn:a r~ed rJ.cxi.hility of 

the cubi c n1oclcling ::iy~te1n s e ems to pt·ovid•~ a n1ore acc11rate a.pproxi­

n1ation an<l allows for the: p<)Ssibility of describing so1ne !:lecon<l order 

effects. (i . e . ultraharinonic response). 

The third a:3pect is the behavior of the cubic approximation in 

the region of the ultraharmonic of order 3. In the hardening case, 

the cubic system seems capable of yielding some information con­

cerning the ultraharinonic :response. In the softening case, the cubic 

approximation seems to ignore the ultraharmonic response entirely. 

No explanation exists at the present time for the increase in the 

response curvt~ for the hardening case in the region of the third 

nltraba rmonic other than the one given above. 
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VI. RELATION OF THE EQUIVAL~-:NT EQUATION APPHOACH 
TO OTHEH APPROXIMATE TEC:HNJQUE.:.s 

The equivalent equation approach is based on the concept of 

relating one differential equation, whose solution is known, to another 

differential equation, whose solution is desired. By making the two 

systems equivalent, it is assumed that the known solution of the first 

provides an accurate approximation to the solution of the second. 

Most other approximate techniques are based on assuming a certain 

solution form directly. The solution form contains some unspecified 

parame ters which are selected by minimizing the residual obtained 

by substituting the assumed solution into the differe ntial equation 

of interest. 

In the present chapter, the relationship between the equivalent 

equation approach and some of the more common approximate tech-

niques is examined. Section 6 .1 presents the various approaches: 

collocation, subdomain, least squares, Galerkin1s, and equiva!ent 

equation . The relationship between these techniques and the general 

method of weighted residuals is shown. In Section 6 .2, some pecu-

liarities associated with the method of least squares and the equivalent 

e quation approach are illustrated . It is shown that the method of least 

squares may yield extraneous solutions when applied to nonlinear 

systems . 

6. 1. Method of Weighted Residuals. 

The method of weighted residuals is a unification of all approxi­

mate averaging techniques which was introduced by Crandall (
2

?). 



-187-

He showed that many of the classical approx'.mate te c hniques are 

r e lated within the context of a weighted r esidua1 technique . It is 

also possible to include the equivalent equation approach in this 

classification. 

Let the differential equation of interest be written as 

x :-.: f(x, x, t) (6 . 1) 

where f(x, x, t) possesses the smoothness properties indic ated in (3 .56) 

::::~ 

and f(x, x, t) is periodic int with period 1. Most classical approximate 

techniques are based on assu1nin g a certain solution form 

x(t)=y(t,1\• ... ,f3s) , 

wherey is periodic int with period 1 andf3.(j=l, .. . , s) are un­
J 

(6. 2) 

determined parameters which at"e selected so that (6. 2) represents 

an approximate solution of (6 . I). The usu<i.1 proce dul" e is to obtain 

the en·or l"esidual by substituting (6 . 2) into (6.1) yielding 

(6. 3 ) 

The solution parameters f3.(j = l. .. . , s ) are selected so as to 
J 

minimize e:(t,f3
1

, ... ,f3s). However , one difficulty arises in that 

e:(t, [3
1

, ... , f3 ) is a function of t, which means that the f3. 's obtained by 
s J 

a dire ct minimization would also depend on t. To eliminate this 

probl em, the concept of a weighted average is intr o d11 c ,'! d. T he 

r elations deter1nining the f3/.i =l, ... , s) may be written a~ 

>:<This analysis could be perfor1ned for vector systems, but the second 
order scalar case was chosen fo r brevity and c larity. 
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l J
0 

Wj(t)e:(t,131 .... ,p8 )dt: -~ 0; j o~ l, ... , 8 , ((> . 4) 

where the average is over one cycle of the motion, and W.(t) are 
J 

certain weight functions whose purpose is to eliminate the t depen-

dence in e:(t,p
1

, . .. ,j3s). The determining equations for many of the 

more common approximate techniques based on the averaging principle 

can be expressed in the form of (6. 4) where the W.(t) depend on the 
J 

particular approximate technique utilized . 

Collocation 

The method of collocation makes the error residual small for 

tE[O, 1] by requiring that it be identically zero at certain arbitrarily 

prescribed points in [O, l] . For the method of collocation, the weight 

functions take the form 

W.(t) = &(t-t.) ; j=l, ... , s , 
J . J 

(6 . 5) 

where t.(j =l, . . ., s) are the joints in [O, I] where e:(t,131 , . .. ,13) vanishes 
J s 

identically . This method is particularly convenient be cause the 

relations generated by (6. 4) using (6. 5) are immediately alge braic 

in form . No furthe r integration is necessary. The one ma.ior dis -

advantage of collocation is that, in general, the approximation obtained 

is not as accurate as some of the other technique s . 

Subdomain 

The method of subdomain consists of requiring that integrals 

of the error residual over certain arbitrarily selected intervals in t 

vanish identically. For this method, W.(t) are of the form 
J 
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W. (t) == H(t-t. 
1
)-H(t-t.), j=l, ... ,s 

J J- J 
( (, . 6) 

and 

t .. 0 . t ... l o··· ' s -

where H(u) is the Heaviside step function . The m ethod of subdomain 

is more complicated than collocation in that the relations obtained 

fr om (6. 4) still require an integration before determining f3.(j=l, ... , s) . 
J 

However, if the solution form (6. 2) is a truncated F ourier series with 

the f3.(j =l, ... , s) as the unde termined coefficients, the resulting 
J 

integrals are usually trigonometric. 

The method of least square is based on minimizing the mean 

squar '.:! of the en·or r esidual with r·i! Spect to the f3 .(j = l, ... , s). The 
J 

quantity minimized i s 

1 r e:2 ( t, f31 , ... , f3 )dt = minimu1n 
·~ s 

(6. 7) 

A necessary condition for a relative minimum is that the first 

derivative vanish. Ther~ fore, (6. 7) becomes 

(6. 8) 

w h ere the wei g ht functions are 

0€ 
W.(t) = 0A (t,f3

1
, ... ,f3) j=l, ... , s 

J ~j s 
(6. 9) 

(At fir st glance, it would seem that (6. 8) i s ide ntical. t o the r c lationa 

generated using the e quivale nt equation approach, but this is not so 
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a s will b e seen shortly.) Althongh the weight functions for c ol location 

and subdomain are independent of the parameters 13.(j=l, .. . , s), the 
J 

weight function (6. 9) for the method of least square will in general 

depend on the 13.(j=l, ... , s) . This feature may result in undesirable 
J 

consequences in that the method of least squares is capable of yielding 

extraneous approximate solutions and /or eliminating true approximate 

solutions. This aspect is considered further in Section 6 . 2 . It may 

al so be noted that the amount of labor involved 1 n applying (6 . 8) is 

increased as compared to collocation or subdomain since the resulting 

integrations are usually 1nore difficult. 

Galerkin's Method 

Gaierkin' s method involves making the error residual 

orthogonal to a set of trial functions on the interval [O, I J . If the 

assumed solution (6 . 2) is of the form 

s 

y(t,!31, .. .,13 )= \'13.ijr.(t) ' 
s L J J 

j =I 

(6. IO) 

where ijr.(t) (j=l, .. . , s) is an arbitrarily chosen set of trial functions 
J 

d e p e nding on t only, Galerkin' s procedure is straightforward. The 

r e lations determining 13.(j =l, . .. , s) are (6 . 4) where the weight functions 
J 

are 

W.(t) = ljl.(t) , j=l, ... , s 
J J 

(6. 11) 

Higher order approximate solutions are easily obtained by simply 

taking the number of trial functions as large as desired. 
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If the as sutned solution for.rn is nonlinear in !).(j = l, ... , s ), 
.l 

Galerkin's procedure is more difficult. One suggestion is to use the 

following as weight functions (l l) 

W/t)= ;l.(t,[31, ... ,l)s), j=l, ... , s , 

J 
(6 . 12) 

where y(t,13
1

, ... ,l)s) is the assumed solution form. In general, the 

W.(t) in (6. 12) will depend on 13.(j=l, ... , s) as well as t, and the possi-
J J 

bility arises for the modified Galerkin's proced11re to yield meaning-

less approximations as is indicated in Section 6. 2. 

Equivalent Equation Approach 

The equivalent equation approach differs from the above 

techniques in that it is primarily concerned with equivalent or approx-

imate differential equations rather than equivalent solutions. The 

motivation for this approach is that the original differential equation 

of interest is immediately available, whereas the natur~ of the de sired 

solution may not be known. 

For the present approach it ts necessary to define an auxiliary 

system as 

(6. 13) 

where g(y, y, t;a
1

, ... , ar) is continuously differentiable in y, ..y-, a 1 , ... , ar 

and continuous and periodic in t with period 1. The differential equation 

parameters a.(i=l, ... , r) are selected so that the difference between 
1 

(6. 1) and (6. 13) is minimized. (6. 13) is chosen so that it is similar 

to (6.1) and so that it possesses known periodic solutions of the form 

(6.2) with period 1. In order that (6.2) be a solution of (6.13), there 
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will exists re lation s b e twe en the <\(i =l, ... , r) and the P/j ,·I, ... , 1-1). 

However, these s relations are not utilize d until aH~..!' the n1inirni:t,a-

tion of the differ e ntial equation error E:(t, a., .. . , a , [3
1

, ... , A ), 
1 r 1-"H 

e(t, a
1

, .. . , a , 13
1

, .. .• 13 ) = f(y(t,13
1
, ... , 13 ), y(l3

1
, . . . , 13 ), t) 

r s s s 

-g(y(t, 131 • . .. , 13 s ), y(t, 131 , ... , 13 s ), t;a
1
, ... , a.r) , 

(6. 14) 

h as be e n perofrmed. The a..(i=l, .. . , r) arc selected so that (6.13) is 
1 

clos~ to (6.1) for all value s ofl3.(j=l, . . . , s) . 
J 

The most appropriate equivalence criterion (cf. Chapter IV) is 

rl ') 
e"' (t, a.

1
. , ... , a. , 13

1
, . .. , 13 )dt =minimum 

Jo r s 

Minimizing with respect to a..(i=l, ... , r), (6 . 15) become s 
1 

(6.15) 

1 

S ae(t,a.1•····a. ;131, . .. ,13) ( A A )d o · 1 (6 16) 
8 -- r s e: t,a1, ... , a. ;1-"1, ... I-' t = ; 1= , . . . , r. . a. r s 

0 1 

As shown in Chapter II, the s relation between the a..' s and the p. 1 s 
1 J 

may now b e employed to obtain various other forms of the resulting 

r e lations, but the particular form given in (6. 16) is convenient in the 

p re sent situation. Furthermore, as discussed in Chapter II, only 

p of the r r e lations in (6 . 16) may be independent, and c onsequently 

ce rtain other measures must be taken to insure a unique determina-

tion of the a.. (i= l , . . . , r). (It may be noted that it is not always 
1 

n ecessary to uniquely deterinine all of the a.. (i=l, . .. , r) in order to 
1 

determine uniquely the 13.(j=l, . .. , s) ; cf. Chapter V . ) 
J 
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It is clear that (6.16) may be put into the form (6. 4) where the 

w e ight functions are 

i= 1, .. . , r (6.17) 

The re fore, it is possible to consider the equivale nt equation approach 

as a s p e cial case of the method of weighted residuals. 

Although there is a great similarity b e tween the form of (6. 9) 

and the form of (6. 17), the m e thod of least squares and the e quivalent 

e quation app r oach are in fact different approximate t echnique s. The 

weight functions for least squares are obtained by minirnizing the er ror 

r esidual (6. 3 ) with respect to the solution paramete r s [3.(j :: l, ... , s), 
.1 

whe r ea s the weight functions for the equivalent equation a pproach are 

obtaine d by minimizing the differential equation e rror (6. 14) with 

respect to the differential equation parameters a..(i = l, ... , r). Another 
1 

difference is that the a. often appear linearly in the diffe r e ntial 
1 

e quation error, and, consequ ently, the w e ight functi ons are independent 

of the a.. (i=l, ... , r). On the other hand, the weight functions for the 
1 

m e thod of least squares are almost always nonlinear in the [3. (j = 1, ... , s). 
J 

Unde r certain circumstances , Galerkin 's procedure and the 

e quivale nt equation approach may yield the same a pproximation. If 

in Gale rkin's procedure the s e t of trial func tions W_; con tains a ce r tain 

numbe r of trigonometric functions, the w e ight functions in (6 . 4) will 

b e the t rigonometric functions tjl . . If in the equivalent e quati o n 
J 

approach, the auxiliary system is chosen to b e the lin ea r approxi-

mation w ith an excitation p ropo rti.on a l t o a linea r cornbination of the 



-194:-

*" the corresponding weight functions wi11 also be*· · There for e , 
J J 

i n the pre sent situation, Galerkin's proc,~ dur L~ and the equivalent 

e qu.:..ttio n approach giv1~ t:lic san1c app·roxirnation. How1·ver, thi:-i fact 

is not true in general, e specially whe n the assume d oolution forins 

a r t:! other than trigonon1e tric . 

It should also be pointed out that the equivalent e quation 

approach is severe ly limited by the fact that, at the pre sent time, the 

class of nonlinear dHferential equations possessing known periodic 

solutions is relatively small . It would seem worthwhile to try to 

enlarge this class of equations. 

6. 2 . Anomalies Associated with the Method of Least Squares 
and Other Ave raging Techniques. 

The equivalent equation approach and the m e thod of least 

s quare s are similar in tha t they both determine unspecified para-

meters by minimizing an averaged error quantity. This aspect may 

l ead to p eculiar results if caution is not exe rcised. To illustrate this 

fact, consider the following example. 

L e t us obtain an approximate solution using the method of 

l east squar es for the Duffing 1 s equation 

3 
JC. +ax + bx = B cos (wt) 

Assume the solution form to b e 

y = A cos (wt) , 

(6 .18) 

(6.19) 

where win (6 . 18) and (6. 19) are equal and A is to b e determined. 

Using (6. 3 ), the error re s idual is 

2 3 3 
e:(t,A) = (-A(a - w ) +B) cos (wt) - bA cos (wt ) (6 . 2 0) 
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Applying (6. 8) and evaluating the resulting trigonornetric integrals, 

·the relation determining A is 

15 5 2 3 9 2 22 l 
SbA + 3b(a- w )A - 4 bBA + (a-w ) A - B(a-w ) = 0 (6 . 21) 

Immediate ly it is noticed that (6 . 21) is of fifth order in A, wherea s 

the r e la ti on gene rated in S ection 2 . 2 using equivalent lineari zation 

was onl y o f third order . The va lue of A given by (6.2 1) is p lotted as 

a function of ~in Figure 21. The values of a, b, and B use d a re a-=l . 0, 

b -=0 .1, and B=0 .1 . Also included on the figur·:! is the approximation 

obtained using e qui v a le nt line arization. S ome exact solution points 

obtained by numerical integ ratio n of (6 . 18) are a l so shown . 

From the figure, it is clear that the method of least s quares 

g ives some e rroneou s r esults. It pre dicts the exist ence of five 

periodic solutions of the form (6 . 19) for various ranges i.n w. T he 

theory of Duffing's e quation is well known, a nd it is ge ne ra.Hy accepted 

that there exist only three solutions of the form (6. 1 9) in the region of 

· (33 ) F h h . . d. primary r e sponse . urt ermor •~ . t e approx1mation pre 1cts 

the emergence of two solutions from the point :..u == l . 0 and A = O. This is 

complet ely c ontrary to the usua 1 notion of the behavior of Duffing' s 

equati on. 

To u nderstand the r e aaon fol." the multipli.city of solutions, 

con sider the minimization cond'ition (6. 7) . The rnet.h o<l o f l east squares 

is based on minimizing (6. 7) with r e s pe d to p .( j = l , ... , s ) . However, i f 
J 

e:(t, 13
1

, ... , f3 ) is nonlinear in the 13 . (whic h i s usually the c a s e for .ion -
s J 

linear differ e ntial e quations), the deterrnining eq1.iations (6. 8) may 
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yield maximums as well as minimums of (6. 7) . To investigate th e 

nature of the extremums, consider the sign of the second dP.rivatives 

of (6. 7) associated with the solutions gene rated by (6. 8). Denoting 

the second derivatives of (6. 7) with respect to j3. and f3. by K •. , the 
1 J l.J 

second derivatives are 

r
l 8W(t,(3

1
, .. .,f3) 

1 s 
K • . = B(:i-.- e(t, (31 ,. .. , 13s) dt + 

lJ "O t~J 

1 

J w. (t, 131' ... ' 13 ) w. (t, f31, ... 'f3 ) dt ' 
0 1 s J s 

(6. 22) 

where W.(t,(3
1

, .. .,(3) are the weight functions given in (6 . 9). A 
1 s 

necessary and sufficient condition for a solution to be a minimum is 

that the matrix K .. be positive definite (
3

?) . It is clear that the matrix 
lJ 

associated with the second integral in (6 .22) is always positive 

definite. Therefore , the positive definiteness of !<:.. depends on the 
lJ 

behavior of the matrix associated with the first integral in (6. 22}. 

In the m ethod of least squares, the weight functions in general depend 

o n the ~i.(j :· l, . . . , s) a nd, therefore, the matrix K . . may b e e ithe r 
J lJ 

positive definite, n egative definite, or indefinite. Consequently, the 

solutions generated hy (6. 8} may correspond to maximum~ minimums, 

or saddle points. 

In the above example, the K matrix reduces to one term. If 
ij 

8
2

E 
-- is computed fo r the various solutions, it is seen that the 
aJ!-
extraneous ones correspond to maximums of the mean square error. 

In Figur::! 21 for a frequency of 1. 05, the bottom two solutions corre-

spond to maxi.mums of the averaged e rror . The top solution 
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corresponds to a minimum. Similarly, for a frequency of 1 . 5, the 

bottom solution and the top two solutions correspond to minimums, 

whereas the middle two maximize the error . If the solutions 

generating maximums are eliminated, the respons e curve i s more 

like the usual one associated with Duffing' s equation except that the 

lower branch is discontinuous . 

It is worthwhile to note that the approximation obtained from 

least squares using the solution form 

y =A en ( 2 KJk)w t, k) (6 . 2 3) 

possesses the same general behavior as the linear approximation 

obtained using least squares. The actual numerical coefficients in 

(6. 21) are changed slightly, but the conclusions are similar . 

As another example, consider Van der Pol's equation 

.. . 2 1) 0 0 x + UlX - x +x = , (6.24) 

where it is required to obtain an approximate p eriodic solution using 

least squares and the solution form (6 . 19). Both A and :.u are to be 

determined using (6. 8). The relations obtained by minimizing with 

respect to A and w are 

2 ( 3 4 2 ( l -w
2 

)
2 

) 
uAw 3A -A +l +---zz- = 0 (6. 2 5) 

µ w 
and 

2 2 2 2 
~~ (A 

4 
- 4A 

2 + 8- 16 ( l - ~ ) ) = 0 ( 6 . 2 6 ) 
µ 

The only solution of these two equations is A == O and w arbitrary. But 

it is well known that for jµj sufficiently small, (6. 24) possesses a 

limit cycle near ~c2 cos t. In fact, for allµ, (6 .24) possesses o r11' 
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limit cycle (
35

), Again, the method of least squares yields a 

meaningless approximate solution. 

Another interesting situation is encountered if the method l)f 

least sq~ares is used to obtain the limit cycle behavior of Rayleigh's 

equation 

(6 . 2 7) 

Since Rayleigh 's equation may be transformed into Van der Pol's 

equation using a simple transformation, it might be expected that 

least squares would yield the same conclusions about the periodic 

motions of (6.27) as it did about equation (6.24) . This is not the case, 

however. Least squares for (6 . 2 7) predicts the solution A=O and two 

limit cycles: y=l. 839 cost and y=l. 191 cost. If the second derivative 

of the error is evaluated for the two nontrivial solutions, it is seen 

that the first solution corresponds to a minimum of the error, and the 

second cort·esponds to a maximum. 

As illuatrated by the above examples, it is clear that the 

method of least squares predicts some unusual results when applied 

to nonlinear systems. 

Although no specific examples where anomalies arise are 

presented for the equivalent equation approach, it is clear that similar 

difficulties could occur. Analogous to the method of least squares, the 

equivalent equation approach determines unspecified parameters by 

minimizing an averaged error. Equation (6. 22) applies also to the 

equivalent equation approach except that the solution parameters 

[3.(j =l, . . . , s) are replaced by the differential equation parameters 
J 
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a.(i -" 1, ... , r). If the weight fundiont> ((i.17) dopPnd on t:lw JMranwt:erH 
l 

a . (i = l, . . . , s) tht~ matrix K •. may be positive definite, negative definite, 
l lJ 

or indefinite. Therefore, equations (6 .16) may generate maximums, 

minimums, or saddle points. Fortunately, the a.(i=l, ... r) often occur 
l 

linearly in the auxiliary equation and, therefore, also occur linearly 

in e(t). This means that the weight functions a re independent of the 

a.(i ~~ 1, . . . , r), and, therefore, the matrix K •. is positive definite. In 
l ~ 

this situation, all of solutions generated by (6.16) correspond to 

min]mmris of ((>. 15). Consequently, once the solutions are obtained, 

they do not require further checking. 

The above analysis indicates that unusual results may occur 

using the method of least squares and the equivalent equation approach 

when the weight functions depend on the unspecified parameters. 

Similar behavior may also exist for the modified Ga lerkin' s procedure. 

Although Galerkin' s procedure is not related to minimizing an error 

quantity, the final equations determining the approximation are v·ery 

similar to those given by the method of least squares and the equiva-

lent equation approach. Furthermore, the weight functions (6 . 12) will 

in gl' n<!ral clcpen<l on the~ 13/.i =l, ... , s) if nonlinear solution forrns are 

us e <l. Therefore, it seen1s reasonable to suspect that difficulties 

could a rise in this situation. Equation (6. 22) does not apply to 

Galerkin's procedure since the technique is not related directly to any 

minimization condition. Further investigation is necessary to deter-

mine if anomalies can occur in the modified Galerkin's procedure and, 

if they can, to determine how to eliminate them. 
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VII. SUMMARY AND CONCLUSIONS 

The purpose of the pre sent investigation was to study an 

approach, suggested by W. D. !wan, for obtaining approximate 

periodic solutions to nonlinear ordinary differential equations of 

the type which arise in dynamical systems. The approach, called 

the eguivalent eguation approach, is a generalization of the method 

of equivalent linearization, and it is applicable to any differential 

system possessing periodic solutions. In the pre sent formulation, 

the equivalent equation approach treats only periodic motions, 

although there seems to be no conceptual difficulty in adapting the 

technique to treat transient problems as well. The approach is 

based on defining a differential system (linear or nonlinear) which 

is equivalent to the original system of interest. The alternative 

(auxiliary) system is selected such that it is 11close 11 or 11 similar' 1 

to the original system and such that it possesses known periodic 

solutions. By making the auxiliary system equivalent to the original 

system, it is assumed that the corresponding solution of the auxiliary 

system will represent an accurate approximation to the exact solution 

of the original system. The conditions under which the above 

assumption is justified and the manner in which the auxiliary system 

is made close to the original system are two of the main consider -

ations in this investigation. 

The equivalent equation approach is de scribed in detail in 

Chapter 11. In sec tion 2. 1, the specific example of the undamped 
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Duffing' s equation with trigonon1etric excitation is considered. It 

is shown that a c ubic. n1odelling systcn1 c an give noticeable in1provc­

ment over a linear rnodclling systen1 in pre die ting Lhe Htca.dy- stat<~ 

response a.n1plitudc. This should not be l::lurprising since the cubic 

auxiliary system can represent, exactly, the nonlinear restoring 

for ce in Duffing' s equation, whereas, the linear system cannot. 

In Chapter III, the relationship between the differential 

equation error (the difference between the original system and the 

equivalent system) and the solution error (the difference between the 

exact periodic solution and the solution of the equivalent system) is 

investigated. Under certain conditions, bounds are obtained on the 

solution error in terms of the differential equation error. The 

technique employed is to consider the system governing the exact 

solution error as a two point boundary value problem. Reformulating 

the problem in terms of an integral equation using the Green's 

function for the unique linear part, the method of successive approx­

imation is used to obtain a bound on the exact solution error. The 

analysis indi cates that if the original system possesses an exact 

unique perio dic solution, it is always possible to select an auxiliary 

system suc h that the e xac t solution error is less than any arbitrarily 

pre scribed bound. Conversely, if the original system satisfies 

certain continuity and Lipschitz conditions and if there exists an 

auxiliary system such that certain inequa lities are valid, then the 

original system possesses an exact unique solution in a region 

defined by the above mentioned inequalities. Unfortunately, the 
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above analysis gives no prior indication as to which auxiliary systern 

should be selected in order to obtain the sn1alll:!st error bound. Fron1 

the forin of the bound obtained, it docs show that, a1:1 lhc diffl-rc11lial 

equalion er ror approac hes :t.cro, tho corrc1:1ponding 1:1uJution ert·or al1:1u 

approaches zero. 

The general analysis utilizes the Green 1 s function for the 

unique linear part of differential equation de scribing the exact 

solution error. In general, the coefficients are functions of the inde­

pendent variable, and, consequently, in practical applications it 

becomes exceedingly difficult to determine the Green's function. To 

avoid this problem, the integral equation is reformulated using a 

Green's function for a system with constant coefficients whose general 

form is well known. The particular values of these constants are 

selected so as to minimize the resulting error bound. Although this 

procedur e leads to a less accurate error bound, the additional 

applicability gained seems well worth the price. 

Error bounds are obtained for the undamped trigonometrically 

e xcited Duffing' s equation for both the linear and cubic approximations. 

Where obtainable, the error bounds seem to describe, fairly well, the 

qualitative behavior of the exact error. It is also shown that the error 

bound associated with the cubic approximation is an order of magnitude 

smaller than the bound for the linear system. The same relation holds 

for the exact solution errors in the regions where bounds are obtain­

able. As expected, bounds are not obtainable using the present 

techniques for all ranges of the parameters. A comparison of the 
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present approach and approaches suggested by other investigators is 

a ls o included. 

The approach which is applied successively to non-autonon10us 

systen1s does not provide much information for the case of autonomous 

systems. It is shown that the conditions required by the approach are 

never satisfied for autonomous original systems possessing non­

trivial periodic solutions. Therefore, the above approach gives infor -

1nation com.:crni.ng the trivial i:wlution <.>nly. Consequently, an 

alternative bound is obtained for second order conservative autonomous 

systems. It involves estimating an integral for the exact period of the 

motion in terms of a known integral for the period of an auxiliary 

syste1n. An example of the autonomous Duffing' s equation modelled by 

the linear system is included to illustrate the application and the 

accuracy of the technique. 

In Chapter IV, the manner in which an auxiliary system is 

1nade equivalent to the original system is considered. Various 

equivalence criteria for minimizing the differential equation error 

are co111pared, namely, mean square error minimization, me·an 

absolute value error minimization, and maximum absolute value 

error minimization. The differential equation error is defined as 

the difference between the original system and the auxiliary system 

when both are evaluated at the auxiliary system solution. The 

minimization is performed with respect to parameters appearing in 

the auxiliar y system. It is of interest to determine which of the above 

schemes yields the smallest actual solution error. 
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Since the actual error is in general unaccessible analytically, 

examples are used to illustrate the major results. Only second order 

scalar systen1s are considered. Four exan1ple s are pre :;ented com -

prising autonomous and non-autonomous systems and including both 

linear and cubic auxiliary systems. 

The analysis indicates that, depending on the specific 

example and values of parameters considered, each of the above 

minimization schemes can yield the most accurate approximation in 

certain cases, but, on the average, the minimum mean square error 

seems to be the most appropriate criterion to use. Furthermore, it 

is, by far, the easiest of the three methods to apply. 

It is realized that the above conclusions are based only on a 

relatively few number of examples and that there exist many alterna­

tive error minimization techniques other than the ones considered in 

the analysis. However, an attempt wa s made to make the examples 

representative, and the spec ific minimization techniques considered 

were chosen because of their physical relevance and their re l a tion to 

the error bound analysis done previously. 

In Chapter V, a comparison is made between a linear and a 

cubic auxiliary system. The general second order linear and cubic 

systems for modelling an arbitrary second order or igina l system are 

developed. Several examples are presented, and the results of both 

a pproximations are compared. The first involves the trigonometri ­

c ally excited Duffing ' s equation considered in Chapter II. A 

compari son between the linear and c ubic approximations is rn a de for 
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various values of nonlinearity and excitation level. This complements 

the comparison in Chapter II which is performed as a function of 

excitation frequency. The example illustrates the degree of 

superiority of the cubic system. Furthermore, it shows that the 

solulion error associated with the linear approximation is rather 

insensitive to the value of the cubic coefficient and the excitation 

level, at least for the particular parameters considered. On the 

other hand, for the same range of parameters, the exact error for 

the c ubic system seems to be directly proportional to the excitation 

level and proportional to the square root of the cubic coefficient. 

A second example for comparing the linear and cubic 

approximations involves a saturating system de scribed in section 5. 4. 

Both linear and cubic approximations are obtained for the two cases 

of a hardening and softening re storing force, and in both cases the 

c ubic system provides more accurate results. 

In addition to being more a cc urate, the cubic system seems 

c apable of providing some information concerning the ultraharmonic 

r e sponse of the saturating system. For the hardening case, the 

c ubic s ystem seems to follow the branch of the third ultraharmonic 

where the third harmonic is in phase with the primary harmonic 

component. Although the accuracy rapidly deteriorates, the cubic 

system at least indicates the presence of a different phenomenon. 

For the softening case, the cubic approximation gives no indication 

of an ultraharmonic response. The reason for this difference in 

b e hav i o r is sus pec te d to be related to the ability of the c ubic 
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approxi1nation tu represent the exact solution wave forni. A<lclitional 

investigation is required in this area in order to obtain a better under ­

standing of the phenomenon. 

A brief comparison of the equivalent equation approach to some 

of the more classical approximate techniques where specific solution 

forms are assumed is presented in Chapter VI. The techniques con­

sider e d are collocation, subdomain, least squares, and Galer kin 1 s. 

The relation of all the above techniques to the general method of 

weighted residuals is shown. Under certain conditions, the equivalent 

equation approach and Galerkin' s procedure yield identical approxi­

mations, but in general they are different. Also, the equivalent 

equation approach and the method of least squares do not generate the 

same approximation in general. 

In section 6. 2, some peculiarities associated with the method 

of least squares is presented. For example, the method of least 

squares predicts, for certain ranges in frequency, that the undamped 

trigonometrically excited Duffing 1 s equation possesses five solutions 

of the form Acos(wt). It is shown that the extraneous solutions are 

associated with maximums of the mean square error residual. 

Similar results may possibly occur for the equivalent equation 

approach. However, if the differential equation parameters appear 

linearly in the differential equation error, the equivalent equation 

approach always generates solutions corresponding to minimums of 

the mean square error. 

The main conclusion of the investigation is that the equivalent 
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1..!quation approavh sct!n1s vapablc of pt:oviding ;.i. :·:111hstant.i.al in1prove -

inent over other low order approx.irnate te c hniques in de sc I." ibing 

periodic motions. It allows for the possibility of using nonlinear 

systems to model other nonlinear systems thus incorporating some 

of the features peculiar to nonlinear systems in a very natural manner. 

This enables one to treat equations with moderately large non­

linearities which are poorly handled by most classical approximate 

techniques. 

Areas for Further Investigation 

The major areas for further investigation associated with the 

pre sent analysis seem to be the following: 

1. A detailed analysis of the behavior of the cubic system in the 

area of the ultraharmonic response of order three is needed. 

It is of interest to determine if and when the cubic system 

is capable of providing information concerning the ultra­

harmonic behavior of the original system. 

2. A more comprehensive investigation of the anomalous 

behavior of some approximate techniques is necessary. 

Specific ally, it seems worthwhile to determine if the modified 

Galer kin 1 s procedure can yield meaningless results. 

Other areas of possible investigation not considered in any 

detail in the pre sent study are: 

1. adaption of the equivalent equation approach to model sub­

harmonic and ultraharmonic response; 
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2. determining the feasibility of obtaining (or generating) 

highct· order approx imation:; using the equivalent equation 

a.pproa.ch; 

3 . n1odific:ation of the equivalent equation approach to treat 

transient problems; and 

4. investigation of the merits of approximate stability analyses 

based on nonlinear solution forms arising from the equivalent 

equation approach. 
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