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Abstract

This dissertation reformulates and streamlines the core tools of robustness analysis

for linear time invariant systems using now-standard methods in convex optimization.

In particular, robust performance analysis can be formulated as a primal convex op-

timization in the form of a semidefinite program using a semidefinite representation

of a set of Gramians. The same approach with semidefinite programming duality

is applied to develop a linear matrix inequality test for well-connectedness analysis,

and many existing results such as the Kalman-Yakubovich–Popov lemma and various

scaled small gain tests are derived in an elegant fashion. More importantly, unlike

the classical approach, a decision variable in this novel optimization framework con-

tains all inner products of signals in a system, and an algorithm for constructing an

input and state pair of a system corresponding to the optimal solution of robustness

optimization is presented based on this information. This insight may open up new

research directions, and as one such example, this dissertation proposes a semidefinite

programming relaxation of a cardinality constrained variant of the H∞ norm, which

we term sparse H∞ analysis, where an adversarial disturbance can use only a limited

number of channels. Finally, sparse H∞ analysis is applied to the linearized swing

dynamics in order to detect potential vulnerable spots in power networks.
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Chapter 1

Introduction

Convex optimization, especially Semidefinite Programming (SDP), is an essential tool

in robust control theory, from system analysis with internal and external uncertain-

ties to robust feedback controller synthesis. Many existing results can be stated as

a feasibility problem with Linear Matrix Inequality (LMI) constraints, which can

be solved via SDP. For example, the celebrated Kalman–Yakubovich–Popov (KYP)

lemma concerns the following frequency domain condition, which plays a crucial role

in robust control theory:

σmax(C(jωI − A)−1B +D) < 1, for all ω ∈ R, (1.1)

where σmax is the maximum singular value of a matrix, and (A,B,C,D) are matrices

that represent a linear time invariant system. Since the condition (1.1) consists of

an infinite number of inequalities parametrized by ω, its exact verification seems

formidable. Remarkably, the aforementioned infinite number of inequalities can be

easily checked by the following finite dimensional single LMI:

there exists P � 0 such that

A∗P + PA+ C∗C PB + C∗D

B∗P +D∗C D∗D − I

 ≺ 0. (1.2)

In other words, if one can find a positive semidefinite matrix P that satisfies (1.2),

then (1.1) is also true.

Recent advances in numerical methods for solving SDPs, especially the develop-
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ment of interior point methods in the late 1980s and early 90s, render such a feasibility

test (1.2) relatively simple. Despite the infinite dimensionality of the condition (1.1),

we can easily check it via the condition (1.2) in a tractable manner using an existing

SDP solver. This tractability is arguably the most important reason why SDPs are

so popular in robust control theory.

In order to obtain an LMI feasibility test for robustness analysis, the popular S-

procedure is often used. However, the S-procedure only provides an implication from

an LMI feasibility test to robustness of a system. For example, in the KYP lemma,

the S-procedure can only be used to prove the implication (1.2) ⇒ (1.1), although

the converse direction, (1.1) ⇒ (1.2), is also true. When an LMI feasibility test is

also a necessary condition for robustness of a system, the corresponding S-procedure

is said to be lossless. Not surprisingly, checking whether the S-procedure is lossless

or not is not a trivial task.

For Linear Time Invariant (LTI) systems, a shift-invariant quadratic form is used

to establish losslessness results. Consider the following shift-invariant quadratic form

φ : L2(−∞,∞)→ R on signals,

φ(u) =

∫ ∞
−∞

u(t)∗Hu(t),

where H is a given Hermitian matrix. It turns out that the closure of the following

set

F := {φ(u) : u ∈ L2(−∞,∞)}

is convex. Let u,v ∈ L2(−∞,∞) and φ1 := φ(u), φ2 := φ(v). Using the time delayed

version of v, vτ (t) := v(t− τ), we can show that

lim
τ→∞

(φ(u) + φ(vτ )) = φ1 + φ2,

and the above observation is an essential idea to show the convexity of cl (F).

In many cases, the convexity of cl (F) together with the separating hyperplane



5

theorem establishes a sufficient and necessary LMI condition for robustness analysis.

This gives rise to a very important question: why SDPs? There are other types of

convex programming, such as linear programing and second order cone programming,

which are more efficient in practice and can often handle more decision variables than

SDPs.

This dissertation shows that the closure of a set of Gramains, which contains all

the quadratic information of an LTI system, is semidefinite representable and has

an explicit algebraic characterization. Since any shift-invariant quadratic form φ can

be represented by a Gramian, this semidefinite representation result subsumes the

convexity of cl (F) and this fact may explain why SDPs naturally arise in many

robustness analysis results. In addition, based on this observation, this dissertation

proposes a novel mathematical foundation of robust control theory with SDPs as

a modeling tool, extends many existing results, and unifies technical proofs in an

elegant manner. More importantly, since the decision variable in this formulation, a

Gramian, contains inner products between input and internal states of a system, an

input-state signal pair that solves the corresponding robustness optimization can be

constructed.

The key contributions of this dissertation are

• Establishing a semidefinite representation of the closure of a set of Gramians

generated by a stable linear time invariant system.

• Presenting an algorithm that constructs an optimal input-state signal pair for

robustness optimization.

• Extending H∞ analysis to capture various types of disturbance models and cost

functions.

• Extending well-connectedness analysis to various types of operators.

• Presenting an SDP based method for a cardinality constrained variant of H∞
analysis, “sparse” H∞ analysis, and synthesis.
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As an example, this dissertation illustrates how to use sparse H∞ analysis to check

the stability of power networks.

1.1 Some historical remarks

This section briefly introduces relevant literature in robust control theory. Textbooks

such as [25, 95, 26] introduce basic concepts and detailed treatments of the central

subjects. Practical applications to many engineering disciplines from aerospace engi-

neering [43] to power systems [62] are also available.

Among many exciting results, arguably the most important ones are in robustness

analysis and robust controller synthesis. Robustness analysis quantifies the effect

of internal uncertainties in a system model (e.g., errors in parameters, unmodeled

dynamics, etc.) on the stability of a system and the effect of external disturbances on

the performance of a system. Robust controller synthesis designs a feedback controller

that compensates for undesirable effects from uncertainties.

There exist many robustness measures that quantify the effect of external dis-

turbances on the output. Among them, the H∞ norm stands out for many reasons

[25]. To compute the H∞ norm of a system, we assume a unit energy disturbance

and measure the output energy. However, depending on disturbance models and cost

criterions, other norms can also be considered for analysis and synthesis. For exam-

ple, the H2 norm [24] assumes a unit peak disturbance with an output energy cost,

and the L1 norm [18, 17] assumes a unit peak disturbance with an output peak cost.

More sophisticated robustness measures, such as the entropy of a system, [33, 51],

also exist and have a connection to risk-sensitive control [32]. Combinations of some

of those measures are also available, such as the mixed H2-H∞ norm [41], and mul-

tiple performance criterions [67, 71]. A sinusoidal disturbance that only contains low

frequency components is considered by Iwasaki et al. [38], and an extension of this

result with more sophisticated frequency domain descriptions appeared in [37].

The most closely related robustness measure to the one in this dissertation is

from D’Andrea [20]. D’Andrea introduces squared H∞ analysis in [19], where each
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component of disturbance has unit energy, and this result is extended to capture more

general disturbance models, as well as cost criterions [20]. This dissertation extends

these results even further to any disturbance models that can be represented by a set

of Gramians and any arbitrary cost function that is convex in Gramians.

For analysis of systems with internal uncertainties, Zames showed that the H∞
norm in conjunction with the small gain theorem can be used to verify stability of

a system with a norm bounded intrinsic uncertainty [93], and proposed a general

framework for system analysis with internal uncertainties. Safonov generalized this

concept in [70, 69]. Doyle introduced µ-analysis [56], a novel computational framework

for computing the stability margin of a system that contains internal uncertainties

in [23], and provided a scaled small gain test, which is a computationally tractable

upper bound of µ. Although computing µ is NP-complete in general [12], Shamma

proved that for a linear time varying block diagonal structure, the scaled small gain

test provides a tight upper bound [74]. Subsequently, Paganini showed that a scalar

linear time varying operator also has this tightness property [57], and Meinsma et al.

considered a scalar self-adjoint time varying operator [48].

In the robust control literature, the S-procedure [84, 64] is often used to derive a

sufficient condition for stability of a system with internal uncertainties. For the ne-

cessity of such conditions, losslessness of the S-procedure in shift invariant quadratic

forms over l2 (or L2) space in [47] plays a crucial role. Although stated in a differ-

ent way, the aforementioned papers [57, 20, 48] and system analysis using integral

quadratic constraints [46] rely on this losslessness result.

In the paper [65], Rantzer proved the KYP lemma using elementary linear alge-

bra and basic convex analysis. In addition, excellent research monograph [3] from

Balakrishnan and Vandenberghe attempted to simplify the essential mathematical

tools for systems theory. Further, Scherer pointed out that the S-procedure in robust

control theory is nothing but a Lagrangian relaxation [72, 73], and Ebihara presented

the dual of those programs in [28]. One of the difference of this dissertation is our

reinterpretation of those problems as primal problems, since those optimizations can

be directly derived from the definition of robustness analysis. The underlying philos-
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ophy of all these works is to use optimization as a main mathematical tool, and this

dissertation takes the same approach.

A covariance formulation of optimal control theory is extensively covered in [75]

and later extended in [76]. Recently, Gattami and Bamieh in [30] leveraged this

covariance formulation to derive an SDP for computing the H∞ norm, and the paper

[89] considered finite frequency disturbance models using the same approach.

This dissertation combines all these ideas to present a novel framework of robust

control theory for linear time invariant systems. In particular, Rantzer’s idea on de-

composing matrices in [65] and Shamma’s idea on padding signals in [74] are used to

construct a semidefinite representation of the closure of a set of Gramians, a deter-

ministic counterpart of covariance matrices. Based on this Gramian representation,

this dissertation shows how existing results can be elegantly stated using SDPs.

1.2 Organization of this dissertation

This dissertation is organized as follows. Chapter 2 gives the minimal background on

signals, systems, and SDPs. Chapter 3 presents key lemmas involving the semidefinite

representation of the closure of a set of Gramians. Chapter 4 extends H∞ analysis

using the key results from Chapter 3. Chapter 5 uses SDP duality theory to provide

alternative, unified arguments for well-connectedness analysis. Chapter 6 proposes

sparse H∞ analysis, and provides an SDP relaxation of analysis and synthesis. Chap-

ter 7 illustrates a potential application of sparse H∞ analysis to power networks.

Finally, Chapter 8 concludes the dissertation and proposes future research directions.

The preliminary results of Chapters 3, 4, 5 can be found in [90], and the conference

version of Chapter 6 can be found in [91].

1.3 Miscellaneous published works

• A Fast Linear Consensus Protocol on an Asymmetric Directed Graph [85]

In this paper, a linear consensus protocol design with a strongly connected
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directed communication topology is considered. A non-convex optimization

problem that minimizes the second largest eigenvalue of a system matrix is

formulated, and the cone complementary linearization method is applied to

design a procedure to find a sub-optimal solution of the corresponding non-

convex optimization. The effectiveness of the procedure is verified through

numerical simulations.

• Convex-concave Procedure for Weighted Sum-rate Maximization in a MIMO

Interference Network [87]

This paper concerns maximizing the weighted sum of communication rates in

a multi-input multi-output Gaussian communication channel subject to various

constraints, such as total power, per-link power, maximum beam power, and

condition number. Interference between channels introduces non-convexity in

the objective, and the convex-concave procedure is applied to handle this non-

convexity. The convergence of the procedure is shown by adding a damping

term, and numerical simulations show its effectiveness. In some cases, it is

shown that the damping term helps to find a solution with a better objective

value.

• Reverse and Forward Engineering of Frequency Control in Power Networks [86]

In this paper, we analyze the stability of frequency dynamics in a power net-

work. In particular, the existing frequency feedback control scheme is shown to

be a distributed algorithm that solves a well-defined global optimization prob-

lem, and a novel framework is developed to analyze the effect of a deadband in

the control scheme. In addition, a small modification to the existing control ar-

chitecture is proposed in order to unify the secondary frequency control scheme,

which brings the frequency deviation back to the nominal operating frequency

range.

• A Non-convex Alternating Direction Method of Multipliers Heuristic for Optimal

Power Flow [92]
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In this paper, an optimal power flow optimization problem that schedules

power supplies is considered. The optimal power flow problem is a non-convex

quadratic program, which is transformed to a semidefinite program with a rank

constraint. To handle the rank constraint, this paper proposes a non-convex

alternating direction method. Specifically, an iterative method, which requires

an optimal solution of a convex optimization and its projection onto a low rank

space, is proposed, and the local optimality of a stationary point is analyzed. In

addition, numerical simulations verify effectiveness of the proposed procedure.



11

Chapter 2

Preliminaries on signals, systems and
semidefinite programming

This chapter introduces notations used throughout this dissertation and provides

a brief summary of relevant materials. More in-depth treatments can be found in

[15, 55, 52, 26] for signals and systems and [4, 11] for semidefinite programs

2.1 Signals and systems

A signal x is a function that maps a non-negative integer, or a non-negative real

number to a complex vector in Cn. For a discrete time signal, we use the bracket

notation, x[k], to refer the value at time k, and for a continuous time signal, we use

the parenthesis notation, x(t), to refer the value at time t.

The Hilbert space of square summable sequences is denoted as

ln2 :=

{
x :

∞∑
k=0

x[k]∗x[k] <∞, x[k] ∈ Cn
}
,

with the inner product

〈x,y〉 =
∞∑
k=0

x[k]∗y[k],

where x∗ = (x̄)> is a conjugate transpose of x. Similarly, the Hilbert space of square
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integrable functions is denoted as

Ln2 :=

{
x :

∫ ∞
0

x(t)∗x(t) <∞, x(t) ∈ Cn
}
,

with the inner product

〈x,y〉 =

∫ ∞
0

x(t)∗y(t)dt.

We often drop the superscript n if the dimension can be easily inferred in the context.

The 2 norm of a signal is given by

‖x‖2 :=


√∑∞

k=0 x[k]∗x[k] if x ∈ l2√∫∞
0
x(t)∗x(t)dt if x ∈ L2.

In this dissertation, we consider a causal Linear Time Invariant (LTI) system with

a state space realization (A,B,C,D).

A discrete time LTI system has the following description:

x[k + 1] = Ax[k] +Bw[k]

z[k] = Cx[k] +Dw[k],

where w[k] is the input (or the disturbance), x[k] is the state, and z[k] is the output

of the system.

Similarly, a continuous time LTI system has the following description:

dx(t)

dt
= Ax(t) +Bw(t)

z(t) = Cx(t) +Dw(t).

Since this dissertation assumes that the initial condition of the state is zero, the

following relationship holds between the state and the input [15]:
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x[k] =
k−1∑
n=0

Ak−n−1Bw[n], k ≥ 1 (2.1)

x(t) =

∫ t

0

eA(t−τ)Bw(τ)dτ, t ≥ 0, (2.2)

where eA is the matrix exponential of A. The above relationship reveals the linearity

of the LTI system. Therefore, it is natural to consider a linear operator which maps

the input signal w ∈ l2 (or L2) to the state x. However, in order to determine the

co-domain of this linear operator, the notion of stability is required. For example,

the state x[k] may approach to ∞ as k → ∞, if A contains the eigenvalue of which

magnitude is larger than 1. To avoid this situation, we introduce the Schur stability

and Hurwitz stability of a matrix A:

A is Schur stable ⇔ ρ(A) < 1

A is Hurwitz stable ⇔ All eigenvalues of A have the negative real part.

A discrete time LTI system is stable if A is Schur stable. In addition, for a Schur

stable matrix A, it can be shown that ‖
∑k−1

n=0 A
k−n−1Bw[n]‖2 < ∞ for all w ∈ l2

[40, 26]. Similarly, a continuous time LTI system is stable if A is Hurwitz stable,

and x in (2.2) is in L2 for all w ∈ L2.

Therefore, for a stable LTI system, i .e., when A is stable, the following linear

operator is well-defined. For a discrete time signal, let us define a linear operator

MAB : l2 → l2 such that x = MAB(w) if

x[k + 1] = Ax[k] +Bw[k],

x[0] = 0,
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and for a continuous time signal, x = MAB(w), if

dx(t)

dt
= Ax(t) +Bw(t),

x(0) = 0.

Before concluding this section, we introduce an important concept in control the-

ory: the controllability of the system. The pair (A,B) is controllable if we can reach

an arbitrary final state xf ∈ Cn from any initial state xi ∈ Cn using the input signal

w in a finite time, where n is the dimension of the state vector. In order to check the

controllability, the controllability matrix
[
B AB · · · An−1B

]
is often used. That

is, (A,B) is controllable if and only if the controllability matrix has full row rank.

The following theorem provides equivalent conditions of the controllability.

Theorem 2.1: The following statements are equivalent.

1. (A,B) is conrollable.

2.
[
B AB · · · An−1B

]
has full row rank.

3. (TAT−1, T−1B) is controllable for some invertible matrix T .

4. (A+BK,B) is controllable for some matrix K.

5. (A,BT ) is controllable for some invertible matrix T .

Proof: The proof can be found in the standard textbook, e.g., [26, 15] except the

last condition. The controllability matrix for the pair (A,BT ) is given by

[
B AB · · · An−1B

]
T.

Since T is invertible, the controllability of (A,BT ) is equivalent to the second condi-

tion. �
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2.2 Semidefinite program

Let Hn be the Hilbert space of n-by-n Hermitian matrices with the trace inner product

〈X, Y 〉 = Tr(X∗Y ) = Tr(XY ).

The Frobenius norm is induced by this inner product

‖X‖F =
√
Tr(X∗X) =

√
Tr(X2).

A matrix X ∈ H is positive semidefinite (PSD) if all of its eigenvalues are non-

negative, and we use a generalized inequality X � 0 as a shorthand notation for X

being PSD. If all of eigenvalues of X are positive, then X is positive definite and

X � 0.

A standard semidefinite program (SDP) is a convex optimization which has the

following form [4]:

(P )

minimize
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, · · ·nc

X � 0,

(2.3)

where X,C,Ai are real symmetric matrices, and bi is a real number. The feasible set

of this optimization is a set of X such that X � 0, and 〈Ai, X〉 = bi. The above

program (P) is strictly feasible if there exists X � 0 in the feasible set.

A dual of SDP is given by

(D)

maximize
y1,··· ,ync

−
nc∑
i=1

biyi

subject to C −
nc∑
i=1

yiAi � 0,

(2.4)

where b =
[
b1, · · · , bnc

]T
. The above program (D) is strictly feasible if there exists
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(y1, · · · , ync) such that C −
∑nc

i=1 yiAi � 0.

The optimization (P) is called the primal program, and (D) is called the dual

program. An SDP conic duality theorem relates this primal-dual pair.

Theorem 2.2: Let p? be the optimal value of the optimization (P), and d? be the

optimal value of (D). Then we have,

• Weak duality: p? ≥ d?.

• Strong duality from (P): If p? is bounded by below, and (P) is strictly feasible,

then p? = d?. In addition, there exists (y?1, · · · , y?nc) in the feasible set of (D)

such that −
∑nc

i=1 biy
?
i = d?.

• Strong duality from (D): If d? is bounded by above, and (D) is strictly feasible,

then p? = d?. In addition, there exists X? in the feasible set of (P) such that

〈C,X?〉 = p?.

The proof can be found in [4]. The strictly feasibility condition is often called Slater’s

constraint qualification for strong duality.

Although we use the term minimize and maximize in the optimization, finding

an infimum/supremum is more precise since a feasible point that achieves such an

extreme value may not exist. In addition, there are primal-dual SDPs where the dual

program is solvable (there exists a dual optimal solution), but the primal program

is not solvable even though strong duality holds. Strum’s thesis [77] contains many

interesting examples on this subject and extensively studies the SDP duality.

SDP becomes an essential tool for many engineering disciplines. See [11] and

references there in for the recent progress and modern engineering applications.

Part of the reasons, if not complete, are from both practical and theoretical sides.

1. There exists a polynomial time solver for SDPs, such as the interior point

method [53], that is reliable.

2. Modeling capability of SDP is powerful enough to capture real world engineering

problems.
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3. SDP duality theorem, Theorem 2.2, often provides new theoretical insights.

In this dissertation, we use the primal-dual picture of SDP to provide interesting

theoretical insights on robust control theory.

An important remark in here is that standard SDP duality theory concerns the

real numbers, whereas our main result will rely on the complex numbers. Extending

real SDP results to the complex setting can be done by decomposing an Hermitian

matrix X = XR + iXI where XR is real symmetric and XI is a real skew-symmetric.

Since X � 0 is equivalent to

 XR XI

−X>I XR

 � 0, and we can convert any complex

SDP to the standard real SDP (2.3). This approach can also be found in [34], and

therefore we can apply the existing software package for solving real SDPs, such as

[80], to solve complex SDPs. In addition, SDP duality theory can be extended to the

complex setting by considering the set of PSD complex matrices as the underlying

convex cone. Since all the results from [4] can be applied to a convex cone, this

extension is trivial, so this dissertation uses the complex SDPs as a primary modeling

tool.

Finally, we present the theorem of alternatives for SDPs, which is a special form

of a conic duality theorem. The proofs and related concepts can be found in the

excellent monograph from Balakrishnan and Vandenberghe [3].

Let V be a finite dimensional Hilbert space with an inner product 〈·, ·〉V and W

be a finite dimensional Hilbert space with an inner product 〈·, ·〉W. In addition, let

A : V → H be a linear operator that maps an element in V to a set of Hermitian

matrices, and B : V → W be a linear operator that maps an element in V to W.

Then we have the following results:

Theorem 2.3 (ALT1): Exactly one of the following is true.

(i) There exists an x ∈ V with A(x) + A0 � 0.

(ii) There exists a Z � 0 such that A∗(Z) = 0, Tr(A0Z) ≤ 0.

Here A0 is a given matrix, and Z � 0 means Z � 0 but Z 6= 0, and A∗ is the adjoint

of A. The following results is without the matrix A0.
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Theorem 2.4 (ALT2a): Exactly one of the following is true.

(i) There exists an x ∈ V with A(x) � 0.

(ii) There exists a Z � 0 such that A∗(Z) = 0.

With an additional affine constraint from B, we have the following results.

Theorem 2.5 (ALT4): Exactly one of the following is true.

(i) There exists an x ∈ V with A(x) + A0 � 0, and B(x) = 0.

(ii) There exists a Z � 0, w ∈W, A∗(Z) + B∗(w) = 0, and Tr(A0Z) ≤ 0.

Theorem 2.6 (ALT5a): Exactly one of the following is true.

(i) There exists an x ∈ V with A(x) � 0, and B(x) = 0.

(ii) There exist Z � 0, w ∈W such that A∗(Z) + B∗(w) = 0.

We often call the above pair as a strong alternative to each other because exactly

one of each pair is true.

The above theorems may seem restrictive because only one A and B are being

used. Suppose we have multiple constraints,

Ai(x) + Ai,0 � 0 for i = 1, · · · , na (2.5)

In this case we can form a block diagonal matrix to use Theorem 2.3.

A(x) = diag (A1(x), · · · ,Ana(x)) =


A1(x)

. . .

Ana(x)



A0 = diag (A1,0, · · · , Ana,0) =


A1,0

. . .

Ana,0


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Then A(x) + A0 � 0 holds if and only if (2.5) holds. Before applying Theorem 2.3,

let us consider the adjoint operator of this block diagonal form of A(x), A0. Notice

that

Tr(ZA(x)) = Tr



Z11 · · · Z1na

... . . . ...

Zna1 · · · Znana



A1(x)

. . .

Ana(x)




=
na∑
i=1

Tr(ZiiAi(x)) =
na∑
i=1

〈A∗i (Zii), x〉 = 〈
na∑
i=1

A∗i (Zii), x〉,

where Zij are properly partitioned according to the dimensions of Ai(x) and Aj(x).

Therefore we can conclude that

A∗(Z) =
na∑
i=1

A∗i (Zii),

and a strong alternative to (2.5) is given by

Z � 0
na∑
i=1

A∗i (Zii) = 0

Tr(A0Z) =
na∑
i=1

Tr(Ai,0Zii) ≤ 0.

Notice that in the second and third inequality the non-diagonal part of Z is completely

irrelevant. Therefore the above condition is equivalent to the existence of Z1, · · · , Zna
such that

Zi � 0
na∑
i=1

A∗i (Zi) = 0

na∑
i=1

Tr(Ai,0Zi) ≤ 0,
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where at least one Zi is not zero. This is because if (Z1, · · · , Zna) exist then Z =

diag (Z1, · · · , Zna) satisfies the first condition, and for the converse, we can set Zi =

Zii. This leads us to the following corollary of Theorem 2.3.

Corollary 2.1: Exactly one of the following is true.

(i) There exists an x ∈ V with Ai(x) + Ai,0 � 0 for i = 1, · · · , na.

(ii) There exist Zi � 0 such that
∑na

i=1A∗i (Zi) = 0,
∑na

i=1 Tr(Ai,0Zi) ≤ 0 where at

least one Zi is not zero.

Similar arguments can be used to show the following corollaries of Theorem 2.5,

Thoerem 2.4, and Theorem 2.6.

Corollary 2.2: Exactly one of the following is true.

(i) There exists an x ∈ V with Ai(x) + Ai,0 � 0 for i = 1, · · · , na, Bi(x) = 0, for

i = 1, · · · , nb.

(ii) There exist Zi � 0, w ∈ Wi such that
∑na

i=1 Tr(Ai,0Zi) ≤ 0,
∑na

i=1A∗i (Zi) +∑nb
i=1 B∗i (wi) = 0 where at least one Zi is not zero.

Corollary 2.3: Exactly one of the following is true.

(i) There exists an x ∈ V with Ai(x) � 0 for i = 1, · · · , na, where at least one

Ai(x) is not zero.

(ii) There exist Zi � 0, w ∈Wi such that
∑na

i=1A∗i (Zi) +
∑nb

i=1 B∗i (wi) = 0.

Corollary 2.4: Exactly one of the following is true.

(i) There exists an x ∈ V with Ai(x) � 0 for i = 1, · · · , na, Bi(x) = 0, for i =

1, · · · , nb, where at least one Ai(x) is not zero.

(ii) There exist Zi � 0, w ∈Wi such that
∑na

i=1A∗i (Zi) +
∑nb

i=1 B∗i (wi) = 0.

The same trick will be used when we apply the theorem of alternatives to the

block diagonal form of operators in the later chapter.
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2.3 Linear matrix inequalities in linear system the-

ory

A Linear Matrix Inequality (LMI) has the following form

n∑
i=1

Fixi + F0 � 0, (2.6)

for Hermitian matrices F0, · · · , Fn and x1, · · · , xn ∈ R. Here xi’s are variables, and

the question is to find xi which satisfies the above generalized inequality. Notice that

this is nothing but a feasibility problem, and can be formulated as an SDP with the

objective function being 0. This means that a set of x that satisfies (2.6) is a convex

set, and an element in the set can be obtained by solving an SDP. Many results in

system and control theory can be written in the form of (2.6). The excellent book

from Boyd et. al. [10] contains both the historical perspective and the role of LMIs

in system and control theory.

The following results use the LMI, often called Lyapunov LMI because the results

are originated from Lyapunov stability theorem, to verify the stability of an LTI

system,

Theorem 2.7: A matrix A is Hurwitz stable if and only if there exists P � 0 such

that AP + PA∗ ≺ 0.

Theorem 2.8: A matrix A is Schur stable if and only if there exists P � 0 such that

APA∗ − P ≺ 0.

These are standard results and the proofs can be found in [3].

In Theorem 2.7 and 2.8, the matrix P itself is a variable. Although this may not

seem to be equivalent to (2.6) but we can convert it into the standard form (2.6) by

using a standard basis for Hermitian matrices. To this end, for P ∈ Cn×n, let Mij =

1
2
(eie

∗
j + eje

∗
i ) and Nij = i

2
(eie

∗
j − eje∗i ), where {e1, · · · , en} is the standard basis for

Cn. Then, we can represent any Hermitian matrix by P =
∑

i,jMijxij +Nijyij, where

xij, yij ∈ R. In addition, A∗P + PA =
∑

i,j(AMij + MijA
∗)xij + (ANij + NijA

∗)yij.
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Finally, by embedding P and AP +PA∗ to a large matrix

P 0

0 A∗P + PA

, we can

clearly see that the condition in Theorem 2.7 is equivalent to

P 0

0 AP + PA∗

 � 0.

This shows that we can treat the matrix as a variable and we can always convert the

corresponding constraint to the standard LMI by using the standard basis. Therefore

we call any expression of the form f(X) � 0, where X is a matrix variable and f(X)

is an affine operator that maps X to an Hermitian matrix, to be an LMI.

Moreover, we often encounter a non-linear version of (2.6). For example, in the

feedback controller synthesis problem, we require A∗P + PA ≺ 0, where A and P

are both variables. We call this type of constraint a Matrix Inequality (MI) since

the dependency is not linear. Unlike an LMI constraint, an optimization with ma-

trix inequality constraints is non-convex in general unless the corresponding matrix

inequality has a special structure.

The following Lyapunov equation is closely related to Lyapunov LMI in Theorem

2.7 and 2.8:

(CLE) AP + PA∗ +Q = 0 (2.7)

(DLE) APA∗ − P +Q = 0. (2.8)

Here A,Q are given matrices, and we would like to find an Hermitian P satisfies

(CLE) or (DLE). Notice that Q has to be Hermitian, since AP +PA∗ and APA∗−P

are Hermitian.

Using the vectorization operator vec (P ) =
[
[P ]11 [P ]12 · · · [P ]nn

]>
for P ∈

Cn×n, and the Kronecker product

A⊗B =


[A]11B · · · [A]1nB

... . . . ...

[A]n1B · · · [A]nnB

 ,
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where A ∈ Cn×n, we can convert (CLE) and (DLE) to the systems of linear equation.

(CLE) (In ⊗ A+ Ā⊗ In)vec (P ) = −vec (Q)

(DLE) (Ā⊗ A− In ⊗ In)vec (P ) = −vec (Q) .

Therefore the existence and uniqueness of P is completely determined by the

invertibility of In ⊗ A + Ā ⊗ In and Ā ⊗ A − In ⊗ In. By identifying ⊗ with a

tensor product, we can see that the eigenvalues of In ⊗ A + Ā ⊗ In are given by

λi(A) + λ̄j(A), where λi(A) is the ith eigenvalue of A. Therefore if A is Hurwitz

stable, i.e., Re(λi(A)) < 0 for all i, then Re
(
λi(A) + λ̄j(A)

)
< 0. This shows that

all the eigenvalues of In ⊗ A + Ā ⊗ In is not zero, and therefore In ⊗ A + Ā ⊗ In is

invertible and P uniquely exists. In fact, P =
∫∞

0
eAtQeA

∗tdt solves (CLE), and we

can easily see that if Q � 0 then P � 0.

Similarly, for (DLE), since the eigenvalues of Ā ⊗ A − In ⊗ In are given by

λ̄i(A)λj(A) − 1, if A is Schur stable, then there is no zero eigenvalue. Therefore

Ā⊗A− In⊗ In becomes invertible, and P uniquely exists. The analytical expression

of P is given by P =
∑∞

k=0A
kQ(A∗)k.

We summarize all these results in the following and the formal proof can be found

in [26].

Theorem 2.9: If A is Hurwitz stable, then there exists the unique PSD matrix P =∫∞
0
eAtQeA

∗tdt, which satisfies AP + PA∗ +Q = 0.

Theorem 2.10: If A is Schur stable, then there exists the unique PSD matrix P =∑∞
k=0A

kQ(A∗)k, which satisfies APA∗ − P +Q = 0.

Before concluding this chapter, we introduce a controllability Gramian. For a sta-

ble A, we define a controllability Gramian which gives an alternative characterization

of controllability.

Wc :=


∑∞

k=0A
kBB∗(A∗)k if A is Schur stable∫∞

0
eAtBB∗eA

∗tdt if A is Hurwitz stable.
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From Theorem 2.9 and 2.10 we can easily see that the controllability Gramian satisfies

the following Lyapunov equation:

Discrete: AWcA
∗ −Wc +BB∗ = 0

Continuous: AWc +WcA
∗ +BB∗ = 0

Notice that since BB∗ � 0, Wc � 0.

Finally, we have the following result, and the proof can be found in [26].

Theorem 2.11: The pair (A,B) is controllable if and only if the controllability Gramian

Wc � 0.

So far we present the minimal background on the concept used in this dissertation.

Complete and detail treatment of the subject can be found in the references given in

the beginning of this chapter.
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Chapter 3

A semidefinite representation of
Gramians

This chapter introduces Gramians generated by a stable LTI system which contains

complete quadratic information of the system. In turns out that these Gramians

admit a semidefinite representation. This chapter presents this result, and provides an

algorithm which constructs an input-state pair generating a Gramian. This algorithm

can be used to find the optimal solution of robustness optimization.

3.1 A semidefinite representation of Gramians: Dis-

crete time case

3.1.1 Set of Gramians

For a signal u ∈ ln2 , we define the Gramian Λ : l2 → Hn such that

Λ(u) =
∞∑
k=0

u[k]u[k]∗.

The Gramian is well-defined because each entry is finite. In addition, it should be

clear that Λ(u) � 0, for all u ∈ ln2 . For a notational convienience, we often use

Λ(u1,u2) for Λ

u1

u2

.

Consider the following stable discrete time LTI system, P, which maps an input
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w to an output z,

x[k + 1] = Ax[k] +Bw[k] (3.1)

x[0] = 0 (3.2)

z[k] = Cx[k] +Dw[k], (3.3)

where x ∈ Cnx , w ∈ Cnw , z ∈ Cnz and A is Schur stable. Since A is Schur stable, we

can consider the linear operator MAB : lnw2 → lnx2 such that x = MAB(w), where x is

the state of P, i.e.,

x[k] =
k∑
i=0

Ak−iBw[i] for k ≥ 0. (3.4)

We introduce the following set of discrete-time Gramians which is a primary object

in this dissertation.

DGram :=
{
V ∈ Hnx+nw : V = Λ (MAB(w),w) for some w ∈ l2

}
In other words, V ∈ DGram if and only if there exists an input w ∈ l2 such that

V =
∞∑
k=0

x[k]

w[k]

x[k]

w[k]

∗ ,
where the state x = MAB(w) is from (3.4). Since x ∈ l2 for all w ∈ l2, a Gramian

Λ(x,w) is well-defined for all w ∈ l2.

Notice that V contains the complete second order information of the LTI system.
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For example, since
[
0nx×nx Inw

]x[k]

w[k]

 = w[k],

‖w‖2
2 =

∞∑
k=0

w[k]∗w[k] =
∞∑
k=0

Tr(w[k]w[k]∗)

=
∞∑
k=0

Tr

[0nw×nx Inw

]x[k]

w[k]

[0nw×nx Inw

]x[k]

w[k]

∗
= Tr

([
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗)
= Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
,

where the last equality is from the cyclic property of the trace operator. The examples

of the second order information include

• The norm of the input: ‖w‖2
2 = Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
.

• The norm of the state: ‖x‖2
2 = Tr

 Inx 0nx×nw

0nw×nx 0nw×nw

V
.

• The norm of the output: ‖z‖2
2 = Tr

C∗C C∗D

D∗C D∗D

V
.

• Passivity of the system: 〈z,w〉 = 1
2
Tr

0nx×nw C∗

C D +D∗

V
.

Since the Gramians contain the quadratic information, we can use the Grami-

ans for robustness analysis. For example, the H∞ norm of P is given by ‖P‖∞ :=

sup‖w‖2=1 ‖z‖2, i.e., an l2-l2 induced gain. From the definition, we can easily see that

‖P‖2
∞ := sup

V ∈DGram

Tr
C∗C C∗D

D∗C D∗D

V
 : Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

 .

In order to compute ‖P‖2
∞ from this definition, we need to search over the infinite

dimensional space l2 to check V ∈ DGram, which is not a trivial task. In addition,
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many system analyses rely on the quadratic information of the system having the

same issue. This being said, it is desirable to find a convenient way to characterize

the set DGram.

From the equation (3.1),

x[k + 1]x[k + 1]∗ = (Ax[k] +Bw[k])(Ax[k] +Bw[k])∗.

By taking the infinite sum, we have

∞∑
k=0

x[k + 1]x[k + 1]∗ =
∞∑
k=0

(Ax[k] +Bw[k])(Ax[k] +Bw[k])∗, (3.5)

and since x[0] = 0,
∑∞

k=0 x[k + 1]x[k + 1]∗ =
∑∞

k=0 x[k]x[k]∗.

Moreover,

∞∑
k=0

x[k]x[k]∗ =
∞∑
k=0

[Inx 0nx×nw

]x[k]

w[k]

[Inx 0nx×nw

]x[k]

w[k]

∗

=
[
Inx 0nx×nw

] ∞∑
k=0

x[k]

w[k]

x[k]

w[k]

∗ [Inx 0nx×nw

]∗

∞∑
k=0

(Ax[k] +Bw[k])(Ax[k] +Bw[k])∗ =
∞∑
k=0

[A B
]x[k]

w[k]

[A B
]x[k]

w[k]

∗

=
[
A B

] ∞∑
k=0

x[k]

w[k]

x[k]

w[k]

∗ [A B
]∗
.

This shows that any V =
∑∞

k=0

x[k]

w[k]

x[k]

w[k]

∗ ∈ DGram satisfies the following
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constraints:

V � 0 (3.6)[
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
=
[
A B

]
V
[
A B

]∗
. (3.7)

By defining the set

DSDP :=
{
V ∈ H : V � 0,

[
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
=
[
A B

]
V
[
A B

]∗}
,

we can easily see that DGram ⊂ DSDP. Therefore we obtain the following upper

bound of ‖P‖2
∞ by replacing DGram with DSDP:

‖P‖2
∞ = sup

V ∈DGram

Tr
C∗C C∗D

D∗C D∗D

V
 : Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1


≤ sup

V ∈DSDP

Tr
C∗C C∗D

D∗C D∗D

V
 : Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

 .

More importantly, since DSDP is an intersection of a subspace in H and a semidefinite

cone, DSDP is a finite dimensional closed, convex cone that is SDP representable.

Therefore, computing the upper bound can be solved via finite dimensional SDP.

Based on this observation, the immediate, important question arises: Is DSDP

equal to DGram? If so, the above upper bound becomes tight, and H∞ norm can be

exactly computed using SDP. However, the answer to this question is negative. Let

us see the following example.

Example 3.1: Let A = 1
2
, B = 1, and V =

4 2

2 1

. Then V ∈ DSDP, and

rank (V ) = 1.
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Let w ∈ l2 with w[0] = 1. Then x[0] = 0, and x[1] = 1.

Λ(x,w) �

 0

w[0]

 0

w[0]

∗ +

x[1]

w[1]

x[1]

w[1]

∗ =

 1 w[1]∗

w[1] w[1]∗w[1] + 1

 � 0.

This shows for any w 6= 0, the corresponding Gramian is positive definite. Since any

non-trivial matrix in DGram is full rank, V 6∈ DGram.

Although DSDP 6= DGram, it turns out that we can go beyond the relationship

DGram ⊂ DSDP: the closure of DGram, cl (DGram), is DSDP, which is one of the main

contributions of this dissertation.

Lemma 3.1: For all V ∈ DSDP, ε > 0, there exists a Gramian Ṽ ∈ DGram such that

‖V − Ṽ ‖F < ε (3.8)[
0nx Inw

]
(V − Ṽ )

[
0nx Inw

]∗
= 0. (3.9)

The proof can be found in the Appendix A. The equation (3.9) implies that the

right bottom block of V , which corresponds to the Gram matrix of w, Λ(w), can be

matched exactly. However, as we have seen in Example 3.1, it may not be possible

to match other blocks. Nonetheless, our proof is constructive, which means that we

can always find an input w ∈ l2 whose Gramian Λ(x,w) is arbitrary close to a given

matrix V ∈ DSDP. Therefore the following consequence is immediate.

Lemma 3.2: DSDP = cl (DGram).

Proof: Since DSDP is closed and DGram ⊂ DSDP, cl (DGram) ⊂ DSDP. In addition,

from Lemma 3.1, DSDP ⊂ cl (DGram). �

The above two lemmas are the key results of this chapter.
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3.1.2 Controllability Gramian and relative interior

In this section, we investigate the relative interior of DSDP, {V : V ∈ DSDP, V � 0}.

Recall that the controllability Gramian Wc � 0 if and only if (A,B) is controllable.

Since V =

 Wc 0nx×nw

0nw×nx Inw

 ∈ DSDP, Wc � 0 implies V � 0. This means that DSDP

contains a positive definite matrix, which guarantees strict feasibility of optimization

in the later chapter. Remarkably, the converse is also true.

Proposition 3.1: There exists V ∈ DSDP such that V � 0 if and only if (A,B) is

controllable.

Proof: Suppose (A,B) is controllable, then the controllability Gramian Wc � 0.

Recall that AWcA
∗ −Wc + BB∗ = 0. Therefore V =

 Wc 0nx×nw

0nw×nx Inw

 � 0 is in

DSDP, because

[
A B

]
V
[
A B

]∗
−
[
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
= AWcA

∗ −Wc +BB∗ = 0.

Now suppose that there exists a positive definite V ∈ DSDP. Let us partition V =X R

R∗ W

, where X ∈ Cnx×nx , R ∈ Cnx×nw ,W ∈ Cnw×nw . Then, since V ∈ DSDP,

AXA∗ −X +BR∗A∗ + ARB∗ +BWB∗ = 0.

Let W = TT ∗, and B̃ = BT , K = T−1R∗X−1. Then,

(A+ B̃K)X(A+ B̃K)∗ −X + B̃B̃∗ = 0.

Since X � 0, (A + B̃K, B̃) is controllable. This is equivalent to (A, B̃) = (A,BT ) is

controllable, and therefore (A,B) is controllable. �
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3.2 A semidefinite representation of Gramians: Con-

tinuous time case

This section presents the continuous time result on Gramians.

3.2.1 Set of Gramians

For a signal u ∈ L2, we define the Gramian Λ : L2 → H such that

Λ(u) :=

∫ ∞
0

u(t)u(t)∗dt.

The Gramian is well-defined because each entry is finite.

Consider the following stable LTI system, P, which maps an input w to an output

z,

dx(t)

dt
= Ax(t) +Bw(t) (3.10)

x(0) = 0 (3.11)

z(t) = Cx(t) +Dw(t), (3.12)

where A is Hurwtiz stable, x(t) ∈ Cnx , w(t) ∈ Cnw , z(t) ∈ Cnz . Since A is Hurwitz

stable, we can consider the linear operator MAB : Lnw2 → Lnx2 such that x = MAB(w),

where x is the state of P, i.e.,

x(t) =

∫ t

0

eA(t−τ)Bw(τ)dτ. (3.13)

Consider the following set of continuous-time Gramians:

CGram := {V ∈ H : V = Λ (MAB(w),w) for some w ∈ Lnw2 }

For the semidefinite representation of continuous-time Gramians, consider the

following set:
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CSDP := {V ∈ Hnx+nw : V � 0,
[
A B

]
V

 Inx

0nw×nx

+
[
Inx 0nx×nw

]
V

A∗
B∗

 = 0}

Notice that CSDP is a closed convex cone that is semidefinite representable.

Now we have the following proposition.

Proposition 3.2: The set CGram ⊂ CSDP.

Proof: For all V ∈ CGram, there exists w ∈ L2 such that V = Λ(x,w) where

x = MAB(w). Since ẋ = Ax+Bw, we have

d

dt
(x(t)x(t)∗) = (Ax+Bw)x∗ + x(AX +Bw)∗.

By taking an integration from 0 to ∞, we have

∫ ∞
0

d

dt
(x(t)x(t)∗)dt =

∫ ∞
0

(Ax+Bw)x∗ + x(Ax+Bw)∗dt

=
[
A B

]
V

 Inx

0nw×nx

+
[
Inx 0nx×nw

]∗
V

A∗
B∗

 .
Since w ∈ L2, x ∈ L2. Therefore x(∞) = 0, and

∫ ∞
0

d

dt
(x(t)x(t)∗)dt = x(∞)x(∞)∗ − x(0)x(0)∗ = 0.

This shows
[
A B

]
V

 Inx

0nw×nx

+
[
Inx 0nx×nw

]∗
V

A∗
B∗

 = 0, and V ∈ CSDP. �

Likewise in the discrete time case, we have the converse result.

Lemma 3.3: For all V ∈ CSDP, ε > 0, there exists a Gramian Ṽ ∈ CGram such that

‖V − Ṽ ‖F < ε (3.14)[
0nw×nx Inw

]
(V − Ṽ )

[
0nw×nx Inw

]∗
= 0. (3.15)
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The proof can be found in the Appendix A.

In addition, the following consequence is immediate.

Lemma 3.4: CSDP = cl (CGram).

Proof: Since CSDP is closed and CGram ⊂ CSDP, cl (CGram) ⊂ CSDP. In addition, from

Lemma 3.3, CSDP ⊂ cl (CGram). �

3.2.2 Controllability Gramian and relative interior

As in the discrete time case, the relative interior of CSDP is not empty if and only if

when the pair (A,B) is controllable.

Proposition 3.3: There exists a positive definite V ∈ CSDP if and only if (A,B) is

controllable.

Proof: Suppose (A,B) is controllable. Since A is Hurwitz stable, the controllability

gramian Wc

AWc +WcA
∗ +BB∗ = 0

is positive definite. Let

V =

Wc
1
2
B

1
2
B∗ tI

 .
Then

[
A B

]
V
[
I 0

]∗
+
[
I 0

]
V
[
A B

]∗
= 0. Since Wc � 0, V � 0 if and only if

tI − 1
4
B∗W−1

c B � 0. Therefore, by taking sufficiently large t, we can make V � 0.

Now suppose there exists V ∈ CSDP such that V � 0. Let us partition V =X R

R∗ W

, where X ∈ Cnx×nx , R ∈ Cnx×nw , W ∈ Cnw×nw . Since V ∈ CSDP,

AX +XA∗ +BR∗ +RB∗ = 0,
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and X � 0. Let K =
(
R− 1

2
B
)∗
X−1, then (A+BK)X +X(A+BK)∗ +BB∗ = 0.

This shows that the pair (A + BK,B) is controllable, which implies that (A,B) is

controllable. �

3.3 Input construction algorithm: Discrete time case

This section provides an algorithm for constructing an l2 signal w ∈ lnw2 that ap-

proximates V ∈ DSDP. Detailed analysis can be found in the proof of Lemma

3.1 in the appendix. The first step is to decompose V in to rank one matrices

Vi ∈ DSDP. This in turn relies on the construction of an unitary matrix U which

satisfies
[
A B

]
V 1/2 =

[
Inx 0nx×nw

]
V 1/2U . To this end, we set F =

[
A B

]
V 1/2,

and G =
[
Inx 0nx×nw

]
V 1/2, then find U such that F = GU .

Suppose we have two matrices F,G ∈ Cn×(n+m) such that FF ∗ = GG∗. Now the

goal is to find U such that F = GU . From the proof of Lemma A.1, we can conclude

that the left singular vectors F,G are the same, and so are singular values. Let r be

the rank of G. Since the number of non-zero singular values of F are same as G, the

rank of F is also r. Then, from singular value decomposition,

G =
r∑
i=1

σiuiv
∗
i

F =
r∑
i=1

σiuit
∗
i ,

where σi > 0, and {u1, · · · , ur}, {v1, · · · , vr}, and {t1, · · · , tr} are orthonormal vec-

tors. Since the psuedo-inverse of G, G† =
∑r

i=1
1
σi
viu
∗
i , by multiplying it to F , we can

obtain

G†F =
r∑
i=1

vit
∗
i .

Let {vr+1, · · · , vn+m}, {tr+1, · · · , tn+m} be orthonormal bases for the null space of G

and F , respectively. Since their ranks are the same, so are the dimensions of their
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null spaces.

Then a matrix U =
∑n+m

i=1 vit
∗
i is unitary, since UU∗ =

∑
i,j vit

∗
i tjv

∗
j =

∑
i viv

∗
i =

In+m. In addition, GU = (
∑r

i=1 σiuiv
∗
i )(
∑n+m

j=1 vjt
∗
j) =

∑r
i=1 σiuit

∗
i = F . Therefore,

once we prepare G†F and orthonormal bases for null spaces, we can sum them up

to obtain a unitary U such that F = GU . We summarize this observation in the

following algorithm.

Algorithm 1: Unitary matrix construction

Input: Complex matrices, F,G such that FF ∗ = GG∗

Output: A unitary matrix U such that F = GU

1. Obtain an orthonormal basis, {vi}, for the null space of G

2. Obtain an orthonormal basis, {ti}, for the null space of F

3. U = G†F +
∑

i vit
∗
i

Notice that GU = G(G†F +
∑

i vit
∗
i ) = GG†F = F , because the left singular

vectors of F and G are the same.

Now the next step is to find a rank one decomposition of V ∈ DSDP. Since[
A B

]
V
[
A B

]∗
=
[
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
, we set F =

[
A B

]
V 1/2, G =[

Inx 0nx×nw

]
V 1/2, then find an unitary matrix U using the Algorithm 1. Using the

eigen-decomposition of U =
∑

i e
iθiuiu

∗
i , we can obtain Vi = V 1/2uiu

∗
iV

1/2. Then

we use eigen-decomposition of Vi =

xi
wi

xi
wi

∗ and use wi to construct a sinusoid.

These are the constructions in the proof of Proposition A.2. In fact, we can merge

some of these steps to obtain a simpler algorithm.

Recall that the ultimate goal of the above procedure is to find a pair (x,w) ∈ Cnx×

Cnw and θ such that eiθx = Ax + Bw. It turns out this can be done by partitioning

V 1/2ui =

xi
wi

 and setting θ = θi. Since Vk = V 1/2uiu
∗
iV

1/2, the above (xi, wi) results
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in Vk =

xi
wi

xi
wi

∗. In addition, from
[
A B

]
V 1/2 =

[
Inx 0nx×nw

]
V 1/2U , we have[

A B
]
V 1/2ui =

[
Inx 0nx×nw

]
V 1/2Uui = eiθi

[
Inx 0nx×nw

]
V 1/2ui, which shows

Axi +Bwi = eiθixi.

Therefore the following algorithm constructs the frequency of the sinusoid, θ, and the

corresponding steady state vector x, and the input vector w.

Algorithm 2: Sinusoid construction

Input: A ∈ Cnx×nx , B ∈ Cnx×nw , and V ∈ DSDP

Output: nx + nw number of triplets (θi, xi, wi) such that eiθixi = Axi +Bwi

1. Computing V 1/2 such that V = V 1/2V 1/2.

2. Using Algorithm 1, obtaining U with F =
[
A B

]
V 1/2, G =

[
Inx 0nx×nw

]
V 1/2.

3. Performing eigenvalue decomposition U =
∑nx+nw

i=1 eiθiuiu
∗
i .

4. Partitioning V 1/2ui =

xi
wi

, where xi ∈ Cnx and wi ∈ Cnw .

Now the final algorithm constructs an input w whose Gramian Λ(MAB(w),w) is

close enough to V with the desired accuracy ε.

Algorithm 3: Input construction

Input: A ∈ Cnx×nx , B ∈ Cnx×nw , V ∈ DSDP, and ε > 0

Output: A signal w such that ‖Λ(MAB(w),w)− V ‖F < ε

1. Obtaining (θi, xi, wi) using the Algorithm 2.

2. Set N = 10, T = 10.
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3. Let ŵi[k] =


1√
N
eiθikwi if 0 ≤ k < N

0 if N ≤ k

.

4. Let w[k] =



ŵ1[k] if 0 ≤ k < N + T

ŵ2[k −N − T ] if N + T ≤ k < 2(N + T )

...

ŵn+m[k − (n+m− 1)(N + T )]
if (n+m− 1)(N + T )

≤ k < (n+m)(N + T )

0 if (n+m)(N + T ) ≤ k

.

5. If ‖Λ(MABw,w) − V ‖F < ε then stop. Otherwise N ← 10N , T ← 10T , and

go to the step 3.

3.3.1 Numerical example

To verify the effectiveness of our algorithm, we present a numerical example here.

Consider

A =


0.8 0.1 0

0.1 0.8 0.1

0 0.1 0.8


B =

[
1 1 1

]>

V =


7.1020 9.0062 7.1020 0

9.0062 11.5724 9.0062 0

7.1020 9.0062 7.1020 0

0 0 0 1

 .

Since ρ(A) = 0.9414 < 1, A is Schur stable. In addition, we can check that[
A B

]
V
[
A B

]∗
=
[
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
, and rank (V ) = 3.



39

By using algorithm 2, we obtain

θ1 = 0, x1 =


2.4019

3.2026

2.4019

 , w1 = 0.1601

θ2 = 0.9147, x2 =


−0.2755− i0.7684

−0.3674− i0.7232

−0.2755− i0.7684

 , w2 = 0.6980

θ3 = −0.9147, x3 =


−0.2755 + i0.7684

−0.3674 + i0.7232

−0.2755 + i0.7684

 , w3 = 0.6980

θ4 = 0.8, x4 =


0

0

0

 , w4 = 0.

Notice that there are only 3 non-trivial (x,w) because the rank of V is 3. Since

w4 = 0, wr is not needed to approximate V . So from now on, we only consider w1, w2,

and w3.

Let Vi =

xi
wi

xi
wi

∗. Then Vi ∈ DSDP, and rank (Vi) = 1. Therefore by

using the algorithm 3, we should be able to approximate each Vi arbitrarily close.

In the proof of Proposition A.9 and in the algorithm 3, we use the construction

ŵ[k] =


1√
N
eiθikwi if 0 ≤ k < N

0 if N ≤ k

when rank (V ) = 1.

Then we claim that lim
N→∞

‖Λ(MAB(ŵ), ŵ) − V ‖F = 0. Therefore we should be

able to verify this fact in the current example. Since Λ(MAB(ŵ), ŵ) requires the

infinite summation, which is hard to obtain numerically, we use sufficiently large K

to approximate Λ(MAB(ŵ), ŵ):

Λ(MAB(ŵ), ŵ) ≈
K∑
k=0

 x̂[k]

ŵ[k]

 x̂[k]

ŵ[k]

∗ ,
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where x̂ = MAB(ŵ). Since Ak converges to zero exponentially fast, this numerical

approximation is fine.

Figure 3.1 - 3.3 shows the log-log plots of the approximation error between Vi

and Λ(MAB(ŵi), ŵi). As we can see, the error decreases as N increases. In fact, the

figures suggest that ‖Λ(MAB(ŵi), ŵi) − Vi‖F ≈ O( 1
N

), which is consistent with our

analysis in the proof of Proposition A.9.

N

10
2

10
3

10
4

10
5

10
6

‖
V

−
V̂
‖ F

10
-4

10
-2

10
0

10
2

Approximation error

Figure 3.1: Approximation of V1 using ŵ1.

N

10
2

10
3

10
4

10
5

10
6

‖V
−

V̂
‖
F

10
-5

10
0

Approximation error

Figure 3.2: Approximation of V2 using ŵ2.
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N
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3

10
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10
5

10
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‖V
−

V̂
‖
F

10
-5

10
0

Approximation error

Figure 3.3: Approximation of V3 using ŵ3.

The above construction only concerns rank one part of V . The signal for V =

V1+V2+V3 is obtained by padding ŵ1, ŵ2, ŵ3. In the algorithm 3, the spacing between

each signal is set to be T , and in the simulation we choose T = 1000. Figure 3.4 shows

the error ‖Λ(MAB(w),w)−Vi‖F ≈ O( 1
N

) which is consistent with our analysis in the

proof of Lemma 3.1.

3.4 Input construction algorithm: Continuous time

case

In the discrete time case, the goal is to find (x,w) ∈ Cnx × Cnw and θ such that

eiθx = Ax+Bw. On the other hand, in the continuous time case, the goal is to find

(x,w) and ω such that iωx = Ax+Bw. To this end, we modify the above algorithms

to accommodate the continuous time setting.

Recall that V ∈ CSDP satisfies
[
A B

]
V
[
Inx 0nx×nw

]∗
+
[
Inx 0nx×nw

]
V
[
A B

]∗
=

0, which is equivalent to

[
A+ Inx B

]
V
[
A+ Inx B

]∗
=
[
A− Inx B

]
V
[
A− Inx B

]∗
.
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Figure 3.4: Approximation of V using w

Therefore, by using the algorithm 1, we can find an unitary matrix U such that

[
A+ Inx B

]
V 1/2 =

[
A− Inx B

]
V 1/2U.

Let eiθi be the ith eigenvalue of U and ui be the corresponding eigenvector. Then by

partitioning V 1/2ui =

xi
wi

, we have

[
A+ Inx B

]
V 1/2ui =

[
A− Inx B

]
V 1/2Uui[

A+ Inx B
]xi

wi

 = eiθi
[
A− Inx B

]xi
wi

 .
This shows that

(eiθi + 1)xi = (eiθi − 1)(Axi +Bwi).

Therefore, if θi 6= 0, then we can set ωi = 1
i
eiθi+1
eiθi−1

. Since eiθi+1
eiθi−1

is purely imaginary,

ωi ∈ R, and we have iωixi = Axi +Bwi which is desired.
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If θi = 0, then this implies xi = 0. In terms of iωx = Ax + Bw, this corresponds

to ω = +∞. Therefore we will use a large enough ω to generate this type of w, but

with some abuse of notation, let us use +∞ if θi = 0.

Algorithm 4: Sinusoid construction (continuous time case)

Input: A ∈ Cnx×nx , B ∈ Cnx×nw , and V ∈ DSDP

Output: nx + nw number of triplets (ωi, xi, wi) such that iωixi = Axi + Bwi

1. Computing V 1/2 such that V = V 1/2V 1/2.

2. Using Algorithm 1, obtaining U with F =
[
A+ Inx B

]
V 1/2, G =

[
A− Inx B

]
V 1/2.

3. Performing eigenvalue decomposition U =
∑nx+nw

i=1 eiθiuiu
∗
i .

4. Let iωi = eiθi+1
eiθi−1

.

5. Partitioning V 1/2ui =

xi
wi

, where xi ∈ Cnx and wi ∈ Cnw .

Then we use these (ωi, xi, wi) to construct the signal w such that Λ(MAB(w),w)

is close enough to V .

Algorithm 5: Input construction (continuous time case)

Input: A ∈ Cnx×nx , B ∈ Cnx×nw , V ∈ CSDP, and ε > 0

Output: A signal w such that ‖Λ(MAB(w),w)− V ‖F < ε

1. Obtaining (ωi, xi, wi) using the Algorithm 4.

2. Set N = 10, T = 10, and ωc = +106.

3. If ωi 6=∞, then ŵi(t) =


1√
N
eiωitwi if 0 ≤ t < N

0 if N ≤ t

.
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If ωi =∞, then ŵi(t) =


1√
N
eiωctwi if 0 ≤ t < N

0 if N ≤ t

.

4. Let w(t) =



ŵ1(t) if 0 ≤ t < N + T

ŵ2(t−N − T ) if N + T ≤ t < 2(N + T )

...

ŵn+m(t− (n+m− 1)(N + T ))
if (n+m− 1)(N + T )

≤ t < (n+m)(N + T )

0 if (n+m)(N + T ) ≤ t

.

5. If ‖Λ(MABw,w) − V ‖F < ε then stop. Otherwise N ← 10N , T ← 10T ,

ωc ← 10ωc, and go to the step 3.
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Chapter 4

Extended H∞ analysis

4.1 H∞ analysis

4.1.1 H∞ analysis

In H∞ analysis, we would like to find the worst-case disturbance that maximizes the

output norm. Specifically consider the stable LTI system M:

x+ = Ax+Bw

z = Cx+Dw,

where x+ is x[k+ 1] for discrete time, ẋ for the continuous time with initial condition

being zero, x ∈ Cnx , w ∈ Cnw , z ∈ Cnz . Then the H∞ norm of M is given by

‖M‖∞ := sup
w
{‖Mw‖2 : ‖w‖2 = 1},

which is an l2 − l2 (L2 − L2) induced norm. Using Gramian V = Λ(x,w), we have

f0(V ) := Tr

C∗C C∗D

D∗C D∗D

V
 = ‖Mw‖2

2

g1(V ) := Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = ‖w‖2

2.
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Therefore, the square of the H∞ norm can be obtained:

Discrete time: ‖M‖2
∞ = sup{f0(V ) : V ∈ DGram, g1(V ) = 1}

Continuous time: ‖M‖2
∞ = sup{f0(V ) : V ∈ CGram, g1(V ) = 1}.

As we pointed out, obtaining the optimal solution of the above optimization is

not trivial because DGram and CGram are involved with the infinite dimensional space.

The celebrated Kalman–Yakubovich–Popov (KYP) lemma shows that computing the

H∞ norm can be done via SDP. In this section, we leverage the results from Chatper

3, Lemma 3.1 and 3.3, to show how to use SDP to compute the H∞ norm without

relying on the KYP lemma.

Indeed, from Lemma 3.1 and 3.3, we have the following result.

Proposition 4.1: Let F = {V ∈ H : g1(V ) = 1}. Then cl (DGram ∩ F) = DSDP ∩F ,

and cl (CGram ∩ F) = CSDP ∩ F .

Proof: Since F is closed, and cl (DGram) = DSDP, cl (DGram ∩ F) ⊂ DSDP ∩ F .

Consider V ∈ DSDP ∩ F . From Lemma 3.1, for any ε > 0, there exists Ṽ ∈ DGram

such that ‖V − Ṽ ‖F < ε, and

0nx×nx 0nx×nw

0nw×nx Inw

 (V − Ṽ ) = 0, which shows g1(V ) =

g1(Ṽ ) = 1. This shows Ṽ ∈ DGram ∩ F . For CGram, we can apply similar arguments,

and this concludes the proof. �

The above proposition has a great implication onH∞ analysis. Since the objective

f0(V ) is a continuous function, we can replace the feasible set by its closure, which

leads us to following optimizations.

(Discrete-time)

maximize
V�0

Tr

C∗C C∗D

D∗C D∗D

V


subject to
[
A B

]
V
[
A B

]∗
=
[
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1.

(4.1)
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(Continuous-time)

maximize
V�0

Tr

C∗C C∗D

D∗C D∗D

V


subject to
[
A B

]
V
[
Inx 0nx×nw

]∗
+
[
Inx 0nx×nw

]
V
[
A B

]∗
= 0

Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

(4.2)

Clearly, the above optimizations are SDPs, and therefore we can solve them very

efficiently. In addition, once we obtain the optimal solution, Algorithm 3 and 5 in

Chapter 3 can be used to construct an optimal input w, which achieves the optimal

value asymptotically. This is very different with the KYP lemma based approach,

where an optimal input is hard to find.

Since we have an SDP, it is natural to derive the SDP dual of the problem. Before

deriving the dual, let us firstly unify the discrete-time H∞ analysis (4.1), and the

continuous-time H∞ analysis (4.2) using the following observation:

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ =

 [
A B

]
V
[
A B

]∗ [
A B

]
V
[
Inx 0nx×nw

]∗[
Inx 0nx×nw

]
V
[
A B

]∗ [
Inx 0nx×nw

]
V
[
Inx 0nx×nw

]∗
 .

Therefore, the linear equality constraint in (4.1) can be written as

Πd

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0,

where Πd

X Y

Y ∗ Z

 = X − Z, X ∈ Cnx×nx , Y ∈ Cnx×nx , Z ∈ Cnx×nx . In the

continuous time case,

Πc

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0,
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where Πc

X Y

Y ∗ Z

 = Y +Y ∗. This shows that by defining appropriate linear map

Π : H2nx → Hnx of

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ we can unify the optimizations

(4.1) and (4.2) in the following form.

maximize
V�0

Tr

C∗C C∗D

D∗C D∗D

V


subject to Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

(4.3)

Here we choose Π = Πd for the discrete time case, and Π = Πc for the continuous

time case. Since Π is a linear operator, the optimization (4.3) is still an SDP.

To derive the SDP dual of (4.3), we need the adjoint of Π, Π∗. For the discrete-

time case,

Tr

PΠd

X Y

Y ∗ Z

 = Tr(P (X − Z)) = Tr

 P 0nx×nx

0nx×nx −P

X Y

Y ∗ Z

,

which shows the adjoint Π∗d(P ) =

 P 0nx×nx

0nx×nx −P

. We can further simplify the

notation using the Kronecker Product. Notice that

 P 0nx×nx

0nx×nx −P

 =

1 0

0 −1

⊗
P , and therefore Π∗d(P ) =

1 0

0 −1

⊗ P .
For the continuous-time case,

Tr

PΠc

X Y

Y ∗ Z

 = Tr(P (Y + Y ∗)) = Tr

0nx×nx P

P 0nx×nx

X Y

Y ∗ Z

,
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Π

([
X Y
Y ∗ Z

])
Ψ

Discrete-time X − Z
[
1 0
0 −1

]
Continuous-time Y + Y ∗

[
0 1
1 0

]
Table 4.1: The linear operator Π and its adjoint Π∗(P ) = Ψ⊗ P for H∞ analysis.

which shows Π∗c(P ) =

0 1

1 0

⊗ P .
Therefore the adjoint operator is given by Π∗(P ) = Ψ ⊗ P with the appropriate

choice of Ψ. We summarize this result in Table 4.1.

Now from the following Lagrangian,

L(V, P, t) = Tr

C∗C C∗D

D∗C D∗D

V
+ Tr

PΠ

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗
+t

1−Tr

0nx×nx 0nx×nw

0nw×nx Inw

V


= t+ Tr

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − tInw

V

,
we can conclude that the SDP dual of (4.3) is given by

minimize
P=P ∗,t

t

subject to

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − tInw

 � 0.

(4.4)

For the discrete time case, the above optimization becomes

minimize
P=P ∗,t

t

subject to

A∗PA− P A∗PB

B∗PA −tInw

+

C∗C C∗D

D∗C D∗D

 � 0,
(4.5)
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which is the same optimization derived from the KYP lemma. This shows that the

KYP lemma is not the only way to obtain the SDP representation of H∞ analysis,

and it is also a dual of our well-defined primal optimization (4.1).

Moreover, we can show that the dual program, (4.4), is strictly feasible, and strong

duality holds.

Proposition 4.2: (4.4) is strictly feasible.

Proof: The upper left block of LMI constraint in (4.4) is given by A∗PA−P+C∗C �

0 for the discrete time case, A∗P + PA+C∗C � 0 for the continuous time case. For

the discrete time case, since A is Schur stable, P = τ
∑∞

k=0(A∗)kAk � 0 satisfies

A∗PA − P = −τInx . For the continuous time case, P = τ
∫∞

0
eA
∗teAtdt � 0 satisfies

A∗P +PA = −τInx . Therefore, by taking sufficiently large τ and t, we can make the

LMI strictly feasible. �

As a result, we have the following corollary from the Conic duality theorem [4].

Corollary 4.1: The duality gap between (4.3) and (4.4) is zero, and the primal prob-

lem (4.3) is solvable.

However, this does not guarantee the solvability of the dual program (4.4). Consider

the following example.

Example 4.1: Let A = 1
2
, B = 0, C = 1, D = 1. Then the optimal solution of (4.1)

is given by V ? =

0 0

0 1

, and the corresponding optimal value is +1. The optimal

value of the dual (4.5) is also +1, by taking λ? = 1, and P ? →∞. Clearly, the dual

optimum is not attained.

The pair (A,B) in the above example is not controllable, and this phenomena is

closely related to the controllability assumption in the KYP lemma. In order to ensure

the existence of a multiplier P (a dual optimal solution), we need the controllability

assumption.
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Proposition 4.3: The primal program (4.3) is strictly feasible if and only if (A,B)

is controllable.

Proof: From Proposition 3.1, there exists V ∈ DSDP such that V � 0 if and only

if (A,B) is controllable. Also, from Proposition 3.3, there exists V ∈ CSDP such that

V � 0 if and only if (A,B) is controllable. �

As a corollary, we have the following result on strong duality.

Corollary 4.2: Suppose (A,B) is controllable. Then both the primal (4.3) and dual

program (4.4) are solvable, and strong duality holds.

4.1.2 A proof of bounded real lemma

Bounded real lemma is the special form of the KYP lemma which states the H∞ norm

of the system is less than 1. Recall that the H∞ norm is from the primal optimization

(4.3), whereas the KYP lemma based optimization is the dual of (4.3). Therefore it

is easy to prove the bounded real lemma using SDP duality.

Theorem 4.1 (Bounded real lemma, strict inequality): For the stable LTI sys-

tem M whose state space form is (A,B,C,D), ‖M‖∞ < 1 if and only if there exists

P ∈ H such that A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − Inw

 ≺ 0. (4.6)

Proof: In order to use the theorem of alternatives, let us consider

A(P ) = −

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

 ,
A0 = −

C∗C C∗D

D∗C D∗D − Inw

 .
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Then Tr(VA(P )) = Tr

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗P

, which shows

A∗(V ) = Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗.

From Theorem 2.3, there exists P with (4.6) if and only if there is no V � 0 such

that Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0,Tr

C∗C C∗D

D∗C D∗D − Inw

V
 ≥ 0.

Since any feasible point in (4.3) satisfies Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1, we have

Tr

C∗C C∗D

D∗C D∗D

V
 ≥ Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1.

Therefore, there is no V in the feasible set of (4.3) such that the objective value

f0(V ) ≥ 1. Since the primal program (4.3) is solvable, this shows that the optimal

value of (4.3) is less than 1 so as ‖M‖2
∞. By reversing the argument, we can conclude

that proof. �

The corresponding non-strict inequality version is easier to prove thanks to the strong

duality.

Theorem 4.2 (Bounded real lemma, non-strict inequality): For the stable LTI

system M whose state space form is (A,B,C,D) with controllable pair (A,B), ‖M‖∞ ≤

1 if and only if there exists P ∈ H such that

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − Inw

 � 0. (4.7)

Proof: If ‖M‖∞ < 1, them from Theorem 4.1 the result is obvious. Suppose

‖M‖∞ = 1. Then the optimal value of (4.3) is 1. From strong duality, Corollary

4.2, the optimal value of (4.3) is 1 if and only if there exists a dual optimal solution

(t?, P ?) with t? = 1. �
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4.2 Extended H∞ analysis

In H∞ analysis, a disturbance w is assumed to have an unit energy, ‖w‖2 = 1.

Suppose more information about a disturbance is known beforehand. Then H∞ norm

becomes conservative since the analysis does not exploit this additional information.

Therefore, it is natural to ask the question of whether we can capture more general

disturbance sets beyond ‖w‖2 = 1, and formulate appropriate H∞ optimization.

The same argument may apply to the robustness measure. In H∞ analysis, we

seek the maximum output norm ‖z‖2
2 in order to measure the impact of the worst-case

disturbance. However, suppose we would like to measure the minimum level of each

output channel ‖zi‖2
2 instead of the lumped sum ‖z‖2

2 =
∑

i ‖zi‖2
2, which allows us to

measure the worst-case simultaneous excitation of the output channel.

Finally, we may also want to include the correlation-like information between the

state x and the input w. For example, the passivity 〈x,w〉 ≤ 0 implies that the

disturbance is not supplying the energy to the system, which allows us to model the

passive type disturbance.

In this chapter, we make an extension of H∞ analysis to capture various dis-

turbance models as well as cost criterions when such a model and criterion can be

expressed in terms of the Gramian V = Λ(x,w). Some of these results are known from

[19] in the form of the scaled small gain test. On the contrary, we explicitly propose

a well-defined optimization problem that can handle various disturbance models/ In

addition, the optimal input can be constructed using algorithms in Chapter 3.

Specifically, let us consider the following optimization with a continuous convex

function f0(V ), and affine functions fi : H→ H, for i = 1, · · · , n1.

minimize
V

f0(V )

subject to fi(V ) � 0, i = 1, · · ·n1

V ∈ DGram (or CGram).

(4.8)

As in the H∞ analysis case, it may be natural to replace DGram with DSDP to
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obtain a convex program. However, the following example shows that this procedure

can be problematic.

Example 4.2: Consider the LTI system with A = 1
2
, B = 1. Let V0 =

4 2

2 1

, and
consider the following optimization:

minimize
V

0

subject to V = V0

V ∈ DGram.

(4.9)

Clearly, the constraint V = V0 can be represented by two affine function; f1(V ) =

V − V0, and f2(V ) = −V + V0, and the objective is trivially continuous and convex.

Therefore it is in the form of (4.8). In Example 3.1, we show that V0 6∈ DGram, which

shows the optimal value is +∞ because the feasible set is empty. However, since

V0 ∈ DSDP, if we replace DGram by DSDP then the optimal value becomes 0. In fact,

if we perturb the optimization (4.9)

minimize
V

0

subject to V0 − εI � V � V0 + εI

V ∈ DGram,

(4.10)

then the optimal value becomes 0, because we can arbitrarily approximate V0 ∈ DSDP

by V ∈ DGram.

The difference between the above example and H∞ analysis, where replacing

DGram with DSDP is not an issue, is that the optimization (4.9) specifies entire com-

ponents of V . According to Lemma 3.1, only the right bottom block of V , which

corresponds to Λ(w), can be exactly matched, and not the entire component. In

order to avoid this situation, we need constraint qualification for the feasible set.
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To this end, let us modify the extended H∞ analysis as the following optimization:

minimize
V

f0(V )

subject to fi(V ) � 0, i = 1, · · ·n1

gi

([
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗)
� 0, i = 1, · · · , n2

V ∈ DGram (or CGram),

(4.11)

where f0(V ) is a continuous, convex function and fi : Hnx+nw → H and gi : Hnw → H

are affine functions. Here gi is used to model the disturbance information which is

not related to the state or the output. For example, in H∞ analysis, only g1(W ) =

Tr(W )− 1 and g2(W ) = 1−Tr(W ) are used, and there are no fi.

The following examples illustrate the problems that can be handled using the

above optimization (4.11).

Example 4.3 (H∞ analysis): In the H∞ analysis, the disturbance model is given

by ‖w‖2 = 1. Therefore, by setting

f0(V ) = −Tr

C∗C C∗D

D∗C D∗D

V


g1(W ) = Tr(W )− 1

g2(W ) = 1−Tr(W ),

H∞ analysis can be represented as (4.11).

Example 4.4 (Square H∞ analysis): In squareH∞ analysis [19], the disturbance

model is given by ‖[w]i‖2 ≤ 1, for i = 1, · · · , nw, where [w]i is the ith component of

w. Therefore,

f0(V ) = −Tr

C∗C C∗D

D∗C D∗D

V


gi(W ) = [W ]ii − 1, for i = 1, · · · , nw.



56

Example 4.5 (Grouped square H∞ analysis): Suppose w ∈ l42, and the distur-

bance model is given by ‖[w]1‖2
2 + ‖[w]2‖2

2 ≤ 1, ‖[w]3‖2
2 + ‖[w]4‖2

2 ≤ 1. In this case,

we have

f0(V ) = −Tr

C∗C C∗D

D∗C D∗D

V


g1(W ) = [W ]11 + [W ]22 − 1

g2(W ) = [W ]33 + [W ]44 − 1.

Example 4.6 (Principal component bound): Suppose we know that the maxi-

mum eigenvalue of the Gramian Λ(W) is bounded by one. Then, we have

f0(V ) = −Tr

C∗C C∗D

D∗C D∗D

V


g1(W ) = W − Inw .

See [58] and references therein for the application of this disturbance model.

Example 4.7 (Minimum gain): In H∞ analysis, one would like to maximize the

output norm. Instead, if we want to find a minimal gain of the system, then we have,

f0(V ) = Tr

C∗C C∗D

D∗C D∗D

V


g1(W ) = Tr(W )− 1

g2(W ) = 1−Tr(W ),

Example 4.8 (Simultaneous excitation): Suppose we have multiple output chan-

nel, zi = Cix + Diw, for i = 1, · · · , no, and would like to measure the impact of
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disturbance on the minimum level of output. In this case, we can use

f0(V ) = − min
i=1,··· ,no

Tr

C∗i Ci C∗iDi

D∗iCi D∗iDi

V


g1(W ) = Tr(W )− 1

g2(W ) = 1−Tr(W ).

By replacing DGram and CGram with DSDP and CSDP, respectively, we obtain the

following convex program, which provides the lower bound of (4.11), since the feasible

set of the following program is larger than (4.11).

minimize
V�0

f0(V )

subject to fi(V ) � 0, i = 1, · · ·n1

gi

([
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗)
� 0, i = 1, · · · , n2

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0,

(4.12)

where Π is from Table 4.1,

Π

X Y

Y ∗ Z

 =

X − Z Discrete time case

Y + Y ∗ Continuous time case.

Let

F :=

{
V : fi(V ) � 0, for i = 1, · · ·n1,

gi

([
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗)
� 0, for i = 1, · · · , n2

}
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F◦ :=

{
V : fi(V ) ≺ 0, for i = 1, · · ·n1,

gi

([
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗)
� 0, for i = 1, · · · , n2

}
.

Notice that F◦ requires fi(V ) to be strictly feasible. Then the following result provides

a sufficient condition for the exactness of relaxation (4.12).

Proposition 4.4: Suppose F◦ ∩DSDP is not empty. Then cl (DGram ∩ F) = DSDP ∩

F . Similarly, if F◦ ∩ CSDP is not empty, then cl (CGram ∩ F) = CSDP ∩ F .

Proof: It is clear that cl (DGram ∩ F) ⊂ DSDP ∩ F , since F is closed. Let V0 ∈

DSDP ∩ F◦. Since DSDP ∩ F is convex, for any V ∈ DSDP ∩ F , 0 < θ ≤ 1, V̂ =

(1−θ)V +θV0 ∈ DSDP∩F◦. Let us pick θ such that ‖V − V̂ ‖F < ε
2
. In addition, from

Lemma 3.1 and continuity of fi, we can find Ṽ ∈ DGram such that ‖V̂ − Ṽ ‖F < ε
2
,

and Ṽ ∈ F◦. Therefore, ‖V − Ṽ ‖F ≤ ‖V − V̂ ‖F +‖V̂ − Ṽ ‖F < ε, and Ṽ ∈ DGram∩F

because F◦ ⊂ F , which shows DSDP ∩ F ⊂ cl (DGram ∩ F). For CSDP, we can apply

the same argument and this concludes the proof. �

Since f0(V ) is continuous, we obtain the following corollary.

Corollary 4.3: If F◦∩DSDP (or CSDP) is not empty, then the optimal value of (4.12)

is equal to (4.11).

Recall that our proof of Lemma 3.1 and 3.3 explicitly constructs l2 (L2) signal ap-

proximates the optimal solution V ? of (4.12). Therefore we can easily construct the

optimal disturbance and check whether the resulting disturbance is reasonable or not.
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4.2.1 Dual problem

In this section, we derive the Conic dual program of (4.12). Let us consider the

Lagrangian

L(V, P, Si, Yi) := f0(V ) +

n1∑
i=1

Tr(Sifi(V )) +

n2∑
i=1

Tr
(
Yigi

([
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗))

+Tr

PΠ

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗,
where P = P ∗, Si � 0, Yi � 0. Since fi is affine, let f̃i(V ) = fi(V ) − fi(0), so that

f̃i becomes linear. Like-wise, for gi, let g̃i(W ) = gi(W ) − gi(0), so that g̃i is linear.

Then,

L(V, P, Si, Yi) = f0(V )−
n1∑
i=1

Tr(Sifi(0))−
n2∑
i=1

Tr(Yigi(0))

+ Tr

 n1∑
i=1

f̃ ∗i (Si) +

n2∑
i=1

0nx×nx 0nx×nw

0nw×nx g̃∗i (Yi)

+

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

V

.
Therefore, the dual problem of (4.12) is given by

maximize
P=P ∗,Si�0,Yi�0

−
n1∑
i=1

Tr(Sifi(0))−
n2∑
i=1

Tr(Yigi(0))

− f ?0

 n1∑
i=1

f̃ ∗i (Si) +

n2∑
i=1

0nx×nx 0nx×nw

0nw×nx g̃∗i (Yi)

+

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

 ,

(4.13)

where

f ?0 (U) = sup
V�0
{Tr(UV )− f0(V )},

the convex conjugate of f0 over the domain V � 0.

In addition, using this dual program, it is possible to derive an LMI test for

bounding the optimal value of (4.12). That is, if there exists a dual feasible point
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(P, Si, Yi) such that the objective function in the dual program (4.13) is greater than α,

then the optimal value of (4.12) is also greater than α from weak duality. Furthermore,

if strong duality holds between the dual program (4.13) and the primal program (4.12),

then this LMI test provides a tight lower bound.

4.2.2 Examples

In this section, we provide some specific examples of the extended H∞ analysis, both

the primal (4.12) and the dual (4.13).

4.2.2.1 Squared H∞ analysis

In the square H∞ analysis, we assume the two norm of the each disturbance channel

is independently bounded by a certain amount
√
ci. In addition, the cost criterion is

the output norm. Let nx be the dimension of the state x, and nw be the dimension

of the disturbance w. Then, SDP version of square H∞ analysis can be formulated

as

maximize
V

Tr

C∗C C∗D

D∗C D∗D

V


subject to Vi+nx,i+nx ≤ ci, i = 1, · · · , nw,

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0,

V � 0.

(4.14)

Here all the constraints can be represented by gi(W ), and therefore this SDP relax-

ation is exact.
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The SDP dual of (4.14) is as follows:

minimize
P=P ∗,y

nw∑
i=1

ciyi

subject to

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw


+

C∗C C∗D

D∗C D∗D − diag (y1, · · · , ynw)

 � 0,

yi ≥ 0, i = 1, · · · , nw,

(4.15)

where Ψ is from Table 4.1,

Ψ =



1 0

0 −1

 Discrete time case

0 1

1 0

 Continuous time case.

Notice that the LMI constraint is very similar to the bounded real lemma case

(4.4), except the identity block is replaced by the diagonal matrix. In addition, strong

duality holds because the dual program (4.15) is strictly feasible. This can be easily

checked by choosing P so that the upper left block of the LMI is strictly feasible and

choosing yi = τ , where τ is sufficiently large.

From strong duality, the following LMI test from the dual program (4.15) can be

used to bound the optimal value of (4.14).

There exists (y1, · · · , ynw , P ) such that
nw∑
i=1

ciyi < 1 (4.16) A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − diag (y1, · · · , ynw)

 ≺ 0.
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Proposition 4.5: The optimal value of the primal program (4.14) is strictly less than

1 if and only if (4.16) holds.

Proof: Suppose (4.16) holds. Then the optimal value of the dual program (4.15) is

strictly less than 1, and from weak duality, the optimal value of the primal program

is also strictly less than 1. Now suppose the optimal value of the primal program is

strictly less than 1. From strong duality, the optimal value of the dual program is

also strictly less than 1.

Therefore, there exists (y1, · · · , ynw , P ) such that
∑nw

i=1 ciyi < 1, and

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − diag (y1, · · · , ynw)

 ≺ 0.

In addition, since the dual program has a strictly feasible point, by taking a convex

combination of (y1, · · · , ynw , P ) and the strictly feasible point of the dual program,

we can conclude the proof. �

The above proposition in the discrete time case firstly appeared in [19], but the

proof is significantly simplified in here, and the above proposition contains the con-

tinuous time result.

4.2.2.2 Principal component bound

Suppose we have the bound on the Gramian, Λ(w) � Inw . Then we have,

maximize
V

Tr

C∗C C∗D

D∗C D∗D

V


subject to
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
� I

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

V � 0.

(4.17)
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Here all the constraints can be represented by gi(W ), and therefore this SDP relax-

ation is exact.

The SDP dual of (4.17) is as follows:

minimize
P=P ∗,Y

Tr(Y )

subject to

C∗C C∗D

D∗C D∗D − Y

+

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

 � 0

Y � 0.

(4.18)

4.2.2.3 Simultaneous excitation

Suppose we have multiple output variables, zi = Cix +Diw, for i = 1 · · · , no. In this

case, the extended H∞ analysis is given by,

maximize
V

min
i=1,··· ,no

Tr

C∗i Ci C∗iDi

D∗iCi D∗iDi

V


subject to Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

V � 0.

(4.19)

Here the objective function is continuous and all the constraints can be represented

by gi(W ), and therefore this SDP relaxation is exact. By introducing a slack variable
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t, we have

maximize
V,t

t

subject to Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

t ≤ Tr

C∗i Ci C∗iDi

D∗iCi D∗iDi

V
, for i = 1, · · · , no

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

V � 0.

(4.20)

The SDP dual of (4.20) is as follows:

minimize
P=P ∗,si,y

y

subject to

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

0 0

0 −yI


+

no∑
i=1

si

C∗i Ci C∗iDi

D∗iCi D∗iDi

 � 0

si ≥ 0,
no∑
i=1

si = 1.

(4.21)

4.2.2.4 Minimal gain

The H∞ norm can be seen as the maximum gain of the LTI system. Instead, suppose

we would like to compute

min
‖w‖2=1

‖z‖2.
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In this case, we have

minimize
V

Tr

C∗C C∗D

D∗C D∗D

V


subject to Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 = 1

Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

V � 0.

(4.22)

The dual problem is given by

maximize
P=P ∗,t

t

subject to

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − tInw

 � 0.

(4.23)
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Chapter 5

Robust stability analysis

5.1 Well-connectedness analysis with uncertain sys-

tems

5.1.1 Well-connectedness

In this chapter, we would like to investigate when

I−M∆

is invertible for all ∆ ∈ ∆. Here M is a stable LTI system that has a state space

realization (A,B,C,D), ∆ is a bounded linear operator such that ∆ : l2 → l2 (or

L2 → L2), and I is the identity operator. Consider the following quantity:

η∆(M) := inf
∆∈∆,‖p‖2=1

‖p−M(∆(p))‖2.

Since M,∆ are linear operators, I −M∆ is invertible if η∆(M) > 0. Therefore, we

say M is robustly well-connected with ∆ if η∆(M) > 0. 1

In fact, robust stability with an intrinsic uncertainty can be checked using robust

well-connectedness. For example, consider the following feedback configuration in
1If M,∆ are matrices, then well-connectedness is equivalent to the invertibility of I − M∆.

However since M,∆ are linear operators in an infinite dimensional space, the well-connectedness is
stronger than the invertibility of I −M∆. See [60], and Chapter 8 in [26]. Our definition is in fact
uniform robust well-connectedness in [74].
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Figure 5.1: Feedback configuration with an uncertain block ∆.

Fig. 5.1.

From the configuration we have

q = ∆pp

z

 =

M11 M12

M21 M22

q

w

 .
We use nq, np, nz, nw for the dimension of signal q,p, z,w, respectively.

Observe that if I−M11∆ is non-singular, then the map from w to z is given by

M22 + M21∆(I−M11∆)−1M12,

which shows the map w to z is well defined. In addition, since all operators are

bounded, we can conclude that the system remains stable for ∆. This shows that if

we can prove I −M11∆ is non-singular for all ∆ ∈ ∆, then we can ensure that the

system M remains stable for all ∆ ∈ ∆. Chapter 8 and 9 of the standard textbook

[26] covers this topic and presents a systematic way to convert questions in robust

control theory to the above well-connectedness question.

5.1.2 An SDP for well-connectedness analysis

In order to check well-connectedness of a system, we need a method for checking

η∆(M) > 0. One direct way is to sample many ∆ ∈ ∆ and compute η∆(M). This

approach provides an upper bound of η∆(M), but this straightforward approach has
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two challenges:

1. It may not be clear how to choose ∆ among ∆, especially, when there are an

infinite number of ∆ in ∆.

2. Computing η∆(M) is not trivial because the underlying space is infinite dimen-

sional.

Instead, we use our key lemmas (SDP representation of a set of Gramians) to

show that the optimization η∆(M) becomes an SDP if ∆ can be specified by a

Gramian, Λ(p,q), where p is the input of ∆ and q is the output of ∆. The underlying

assumptions in this section are

1. A system M has a state-space representation (A,B,C,D).

2. A system M is stable.

3. There exists a constant α∆ such that ‖∆‖2,2 ≤ α∆ for all ∆ ∈∆.

Since many engineering system models have a state-space representation, the first

assumption is not restrictive. The second assumption states that the nominal system

without the uncertainty is required to be stable. Otherwise, since the nominal system

is already unstable, it may not make sense to discuss the robustness of the system.

The third assumption restricts the size of the perturbation from the uncertainty ∆.

Recall that we would like to ensure I−M∆ to be invertible for all ∆ ∈∆. If there is

no bound on ∆, it is always possible to find ∆, which makes I−M∆ singular, unless

the range space of ∆ is a subset of the kernel of M, a very exceptional case.

The first step is to eliminate dependency on ∆ by providing an equivalent char-

acterization of q = ∆p. To this end, let

R∆ := {(p,q) : q = ∆p, for some ∆ ∈∆},

which is a subset of lnp2 × l
nq
2 (or, Lnp2 ×L

nq
2 ). From linearity of ∆, it should be obvious

that (0,q) ∈ R∆ implies q = 0.
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Using this set notation, the infimum can be restated as

η∆(M) = inf
(p,q)∈R∆,‖p‖2=1

‖p−Mq‖2.

Further, suppose that the relationship (p,q) ∈ R∆ can be completely character-

ized by a Gramian Λ(p,q) in the following form:

R∆ := {(p,q) : Ai∆(Λ(p,q)) � 0, for i = 1, · · ·na,

Bi∆(Λ(p,q)) = 0, for i = 1, · · · , nb},

where Ai, Bi are linear operators such that Ai∆ : Hnp+nq → H and Bi∆ : Hnp+nq → V,

for some Hilbert space V. In addition, since (Λ(p) = 0) ⇒ (p = 0) ⇒ (q = 0) from

q = ∆p, if the (1,1) block of Λ(p,q), Λ(p), is zero then it should imply that the (2,2)

block of Λ(p,q), Λ(q), is zero.

Since we often rely on the partition of Λ(p,q) to describe Ai∆ and Bi∆, let us

denote a partition of Λ(p,q) by

Λ(p,q) = Z =

Z11 Z12

Z∗12 Z22

 ,
where Z11 ∈ Cnp×np , Z12 ∈ Cnp×nq , Z22 ∈ Cnq×nq so that Z11 = Λ(p), Z22 = Λ(q) and

[Z12]ij = 〈[p]i, [q]j〉. Using this notation, it should be obvious that if Z has the form

Z =

0np×np 0np×nq

0nq×np Z22

 then

Ai∆

0np×np 0np×nq

0nq×np Z22

 � 0,Bi∆

0np×np 0np×nq

0nq×np Z22

 = 0 ⇒ Z22 = 0,

(5.1)

from the fact that q = ∆p.

The following example shows how to use Ai∆ to describe ∆.

Example 5.1: Let ∆ := {∆ : ‖∆‖2,2 ≤ 1}. Later, we will show that R∆ = {(p,q) :
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‖p‖2 ≥ ‖q‖2}. In this case, using the Gramian Λ(p,q), we can easily see that

A∆

Z11 Z12

Z∗12 Z22

 = Tr(Z11 − Z22).

Finally, let us find an expression for Mq−p. Recall that M is a stable LTI system

with the state space realization (A,B,C,D). Consider the following artificial stable

LTI system:

(Discrete time)
x[k + 1] = Ax[k] +

[
B 0nx×np

]q[k]

p[k]


x[0] = 0,

(Continuous time)
ẋ = Ax(t) +

[
B 0nx×np

]q(t)
p(t)


x(0) = 0,

where nx is the dimension of x. Here we augment the signal p as an input that has

no effect on the state x.

From the following Gramian

V := Λ(x,q,p),

we have

‖Mq− p‖2
2 = Tr

([
C D −Inp

]
V
[
C D −Inp

]∗)
Λ(p,q) =

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ .
Therefore, using the above Gramian, η∆(M) can be computed by

(Discrete time) η∆(M)2 = inf
V

{
Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
: V ∈ DGram,0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆

}
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(Continuous time) η∆(M)2 = inf
V

{
Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
: V ∈ CGram,0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆

}

where

F∆ = {Z ∈ H : Ai∆(Z) � 0, i = 1, · · · , na,

Bi∆(Z) = 0, i = 1, · · · , nb,

Tr(Z11) = 1}.

Here, F∆ is being used for the constraint (p,q) ∈ R∆ and ‖p‖2
2 = Tr(Z11) = 1.

Notice that we only have the constraint on

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ,
and this constraint does not contain x. Therefore, from Proposition 4.4, we can

conclude that the closure of the above set is given by replacing DGram by DSDP, and

CGram by CSDP, respectively.

Proposition 5.1: The closure of the set

{V : V ∈ DGram,

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆}

is given by

{V : V ∈ DSDP,

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆}
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Similarly, the closure of the set

{V : V ∈ CGram,

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆}

is given by

{V : V ∈ CGram,

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆}

Proof: Let us partition V =

X R

R∗ W

 where X ∈ Cnx×nx , R ∈ Cnx×(nq+np), W ∈

C(nq+np)×(nq+np). Then the constraint0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ ∈ F∆

can be modeled using gi(W ) = Ai∆

0np×nq Inp

Inq 0nq×np

W
0np×nq Inp

Inq 0nq×np

 for i =

1, · · · , na, and gj+na(W ) = Bi∆

0np×nq Inp

Inq 0nq×np

W
0np×nq Inp

Inq 0nq×np

, gj+na+nb =

−Bi∆

0np×nq Inp

Inq 0nq×np

W
0np×nq Inp

Inq 0nq×np

 for j = 1, · · · , nb. Since there is no

fi in this modeling, from Proposition 4.4, we can conclude the proof. �

This remarkable feature allows us to compute η∆(M)2 using the following SDP.
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minimize
V�0

Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
subject to Π

 A B 0nx×np

Inx 0nx×nq 0nx×np

V
 A B 0nx×np

Inx 0nx×nq 0nx×np

∗ = 0,

Tr

0(nx+nq)×(nx+nq) 0(nx+nq)×np

0np×(nx+nq) Inp

V
 = 1,

Ai∆

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ � 0, for i = 1, · · ·na

Bi∆

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ = 0, for i = 1, · · ·nb,

(5.2)

where Π is from Table 4.1 in Chapter 4,

Π

X11 X12

X∗12 X22

 =

X11 −X22 Discrete time case

X12 +X∗12 Continuous time case

with X11 ∈ Cnx×nx , X12 ∈ Cnx×(nq+np), X22 ∈ C(nq+np)×(nq+np).

Therefore, if the optimal value of (5.2) is greater than 0, we can conclude that

M is robustly well-connected to ∆. In addition, η∆(M) can be obtained using SDP,

and η∆(M) quantifies the distance from not being robustly well-connected. In other

words, if η∆(M) is not zero, but very small, then we may conclude that the feedback

configuration is practically fragile, because there exists ∆ ∈ ∆ that makes I −M∆

almost singular.

In summary, our argument shows that if the relationship q = ∆(p) can be com-

pletely characterized by the Gramian Λ(p,q), then the corresponding well-connectedness

problem becomes an finite dimensional SDP (5.2), although the original problem,

η∆(M), is seemingly impossible to solve.
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5.2 LMI test for well-connectedness

Recall that η∆(M) can be exactly computed using the optimization (5.2). In this

section, we derive an LMI test for checking η∆(M) > 0 using SDP duality.

5.2.1 SDP dual problem

Let us derive the SDP dual of (5.2). Firstly, from the Lagrangian

L(P, t, Yi, Si) = Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
+t+ Tr

0(nx+nq)×(nx+nq) 0(nx+nq)×np

0np×(nx+nq) −tInp

V


+Tr

PΠ

 A B 0nx×np

Inx 0nx×nq 0nx×np

V
 A B 0nx×np

Inx 0nx×nq 0nx×np

∗
−

na∑
i=1

Tr

YiAi∆
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗
−

nb∑
i=1

Tr

QiBi∆

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗
= t+ Tr

([
C D −Inp

]∗ [
C D −Inp

]
V
)

+Tr

0(nx+nq)×(nx+nq) 0(nx+nq)×np

0np×(nx+nq) −tInp

V


+Tr

 A B 0nx×np

Inx 0nx×nq 0nx×np

∗ (Ψ⊗ P )

 A B 0nx×np

Inx 0nx×nq 0nx×np

V


−
na∑
i=1

Tr

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗Ai∗∆(Yi)

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V


−
nb∑
i=1

Tr

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ Bi∗∆(Qi)

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
,
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where Ψ is from Table 4.1 in Chapter 4,

Ψ =



1 0

0 −1

 (Discrete time case)

0 1

1 0

 (Continuous time case),

and Yi � 0. This shows that the dual problem of (5.2) is given by,

maximize
t,P=P ∗,Yi�0,Qi=Q∗i

t

subject to
[
C D −Inp

]∗ [
C D −Inp

]
+

0(nx+nq)×(nx+nq) 0(nx+nq)×np

0np×(nx+nq) −tInp


+

 A B 0nx×np

Inx 0nx×nq 0nx×np

∗ (Ψ⊗ P )

 A B 0nx×np

Inx 0nx×nq 0nx×np


−

na∑
i=1

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗Ai∗∆(Yi)

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq


−

nb∑
i=1

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗ Bi∗∆(Qi)

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

 � 0.

(5.3)

Suppose there exists a dual feasible point (t, P, Y1, · · · , Yna , Q1, · · · , Qnb) of (5.3)

such that t > 0, then the optimal value of (5.3) is greater than 0. From weak

duality, we can immediately conclude that η∆(M) > 0 and a system M is robustly

well-connected to the uncertainty ∆. Since finding a dual feasible point is an LMI

problem, we have a sufficient LMI test for the well-connectedness analysis. However,

this is not in the usual form, e.g., a scaled small gain test such as [74, 19, 57, 48],

and the dimension of this LMI test is larger than the usual scaled small gain test.

Moreover, this LMI test is only sufficient, not necessary. In the following section,

we derive a sufficient and necessary LMI test for η∆(M) > 0 using the theorem of

alternatives, and this recovers the scaled small gain test in [74, 19, 57, 48].
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5.2.2 An LMI test for well-connectedness

Although (5.3) provides an LMI test for η∆(M) > 0, using the theorem of alternatives,

we can simplify the LMI test even further. Firstly, let us consider the following result.

Proposition 5.2: η∆(M) = 0 if and only if there exists V in the feasible set of (5.2)

such that

Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
= 0. (5.4)

The proof can be found in the appendix, and the underlying idea is to show the

compactness of the feasible set. The above proposition states that the optimization

(5.2) is solvable. Based on this result, we can find a low dimensional representation

of V which achieves η∆(M) = 0, since (5.4) introduces the redundancy in V .

Proposition 5.3: For all V in the feasible set of (5.2) such that (5.4) holds, there

exists W � 0 in Hnx+nq such that

V =


Inx 0nx×nq

0nq×nx Inq

C D

W


Inx 0nx×nq

0nq×nx Inq

C D


∗

.

The proof can be found in the appendix. Using this representation of V , we have

 A B 0nx×np

Inx 0nx×nq 0nx×np

V
 A B 0nx×np

Inx 0nx×nq 0nx×np

∗

=

 A B 0nx×np

Inx 0nx×nq 0nx×np




Inx 0nx×nq

0nq×nx Inq

C D

W


Inx 0nx×nq

0nq×nx Inq

C D


∗  A B 0nx×np

Inx 0nx×nq 0nx×np

∗

=

 A B

Inx 0nx×nq

W
 A B

Inx 0nx×nq

∗ .



770nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

V
0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗

=

0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq




Inx 0nx×nq

0nq×nx Inq

C D

W


Inx 0nx×nq

0nq×nx Inq

C D


∗ 0nq×nx 0nq×np Inq

0np×nx Inp 0np×nq

∗

=

 C D

0nq×nx Inq

W
 C D

0nq×nx Inq

∗ .

[
0np×(nx+nq) Inp

]
V
[
0np×(nx+nq) Inp

]∗

=
[
0np×(nx+nq) Inp

]
Inx 0nx×nq

0nq×nx Inq

C D

W


Inx 0nx×nq

0nq×nx Inq

C D


∗ [

0np×(nx+nq) Inp

]∗

=
[
C D

]
W
[
C D

]∗
.

Therefore, η∆(M) = 0 if and only there exists W � 0 such that

Π

 A B

Inx 0nx×nq

W
 A B

Inx 0nx×nq

∗ = 0 (5.5)

Ai∆

 C D

0nq×nx Inq

W
 C D

0nq×nx Inq

∗ � 0, for i = 1, · · · , na (5.6)

Bi∆

 C D

0nq×nx Inq

W
 C D

0nq×nx Inq

∗ = 0, for i = 1, · · · , nb (5.7)

Tr
([
C D

]
W
[
C D

]∗)
= 1. (5.8)

Recall that our goal is to find a condition for η∆(M) > 0. Since existence of

W satisfying (5.5) - (5.8) guarantees η∆(M) = 0, if one can prove that there exists

no such W , then η∆(M) > 0, i.e., the system M is robustly well-connected to the

uncertain set ∆. Therefore it is natural to apply the theorem of alternative to find
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a condition for non-existence of W . Before applying the theorem of alternative, let

us firstly replace the condition (5.8) with more appropriate form. Notice that all

conditions (5.5) - (5.7) are homogeneous in W . Therefore if there exists W � 0 such

that Tr
([
C D

]
W
[
C D

]∗)
> 0 then we can rescale W so that W satisfies (5.5)

- (5.8). On the contrary, if Tr
([
C D

]
W
[
C D

]∗)
= 0, then W has to be zero

according to the following proposition.

Proposition 5.4: IfW � 0 satisfies (5.5) - (5.7) and Tr
([
C D

]
W
[
C D

]∗)
= 0,

then W = 0.

Proof: Since W � 0 and Tr
([
C D

]
W
[
C D

]∗)
= 0, we can easily see that

[
C D

]
W = 0,

which implies

 C D

0nq×nx Inq

W
 C D

0nq×nx Inq

∗ =

0nx×nx 0nx×nq

0nq×nx W22

 ,
where W22 is the (2,2) block of W . Since

Ai∆

0nx×nx 0nx×nq

0nq×nx W22

 � 0,Bi∆

0nx×nx 0nx×nq

0nq×nx W22

 = 0

and from the requirement on the operators (Ai∆,Bi∆), (5.1), we have W22 = 0.

Moreover since W � 0, from Schur complement, we can easily see that W should

have the form W =

 W11 0nx×nq

0nq×nx 0nq×nq

. For the discrete time case, since W satisfies

(5.5), AW11A
∗ − W11 = 0. Notice that W11 = 0 is the unique solution for this

Lyapunov equation, since A is Schur stable. Similarly, for the continuous time case,

we have AW11 + W11A
∗ = 0, and W11 = 0 is the unique solution for this Lyapunov

equation since A is Hurwitz stable. �
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The above proposition states that Tr
([
C D

]
W
[
C D

]∗)
= 1 is essentially

equivalent to the condition W 6= 0, which is the following result.

Proposition 5.5: There exists W � 0 such that (5.5) - (5.8) if and only if there

exists W � 0 such that (5.5) - (5.7).

Proof: Suppose there existsW � 0 such that (5.5) - (5.8). From Proposition 5.4, we

can conclude thatW 6= 0. For the converse direction, suppose there existsW � 0 such

that (5.5) - (5.7). Since W 6= 0, from Proposition 5.4, Tr
([
C D

]
W
[
C D

]∗)
=

α > 0. Then 1
α
W � 0 satisfies (5.5) - (5.8). �

Now we are ready to apply the theorem of alternative to derive an LMI test for

η∆(M) > 0.

Proposition 5.6: Exactly one of the following is true.

(i) η∆(M) = 0

(ii) There exist Y1, · · · , Yna � 0, Q1, · · · , Qnb, and P such that

 C D

0nq×nx Inq

∗( na∑
i=1

Ai∗∆(Yi) +

nb∑
i=1

Bi∗∆(Qi)

) C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

(5.9)

Proof: From Proposition 5.5, η∆(M) = 0 if and only if there exists W � 0 such

that (5.5) - (5.7). This is equivalent to A(W ) � 0, and B(W ) = 0 where

A(W ) =


W 0

0 A∆

 C D

0nq×nx Inq

W
 C D

0nq×nx Inq

∗


B(W ) =


Π

 A B

Inx 0nx×nq

W
 A B

Inx 0nx×nq

∗ 0

0 B∆

 C D

0nq×nx Inq

W
 C D

0nq×nx Inq

∗

 ,
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and

A∆(X) = diag (A1∆(X), · · · ,Ana∆(X))

B∆(X) = diag
(
B1∆(X), · · · ,Bnb∆(X)

)
.

Since the adjoints of A∗,B∗ are given by

A∗(S, Y1, · · · , Yna) = S +

 C D

0nq×nx Inq

∗( na∑
i=1

Ai∗∆(Yi)

) C D

0nq×nx Inq


B∗(P,Q1, · · · , Qnb) =

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq


+

 C D

0nq×nx Inq

∗( nb∑
i=1

Bi∗∆(Qi)

) C D

0nq×nx Inq

 ,
from the theorem of alternative, Corollary 2.4, the strong alternative of (i) is that

there exist S � 0, Yi � 0, and P,Qi such that

S +

 C D

0nq×nx Inq

∗ (
na∑
i=1

Ai∗∆(Yi) +

nb∑
i=1

Bi∗∆(Qi))

 C D

0nq×nx Inq


+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 = 0.

By eliminating S, we obtain (ii). �

Since M is not robustly well-connected with ∆ if (i) holds and vice versa, we have

the following consequence on robust well-connectedness.

Corollary 5.1: The system M is robustly stable with respect to ∆ if and only if there

exist Y1, · · · , Yna, Q1, · · · , Qnb, and P satisfying (5.9).

Unlike the SDP dual approach in the previous section, the above LMI test (5.9)

is sufficient and necessary. In addition, the total dimension of LMI is smaller than
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the test from the dual program (5.3). More importantly, the LMI test (5.9) includes

the existing results as a special case, as we will see in the following examples.

5.3 Examples of ∆

In this section, we provide examples of ∆ and how A∆, B∆ is being used to describe

this set. All the proofs can be found in the appendix. In addition, we also derive

the LMI test (5.9) to illustrate the procedure. Some of these results turn out to be

the scaled small gain test [74, 19, 57, 48], a well-known LMI test for robust well-

connectedness analysis. In this point of view, Proposition 5.6 provides the proof of

well-known results while making a greater extension to the general ∆ that can be

expressed using Gramians.

5.3.1 Full block Linear Time Varying Uncertainty

Consider the case when ∆ = {∆ : ‖∆‖2,2 ≤ 1}, i.e., arbitrary uncertain linear

operator with the norm condition. Here ‖∆‖2,2 = sup
‖x‖2=1

‖∆(x)‖2.

The following proposition provides the set description of ∆.

Proposition 5.7: [26] There exists ‖∆‖2,2 ≤ 1 such that q = ∆p if and only if

‖q‖2 ≤ ‖p‖2.

In fact, the convolution operator can be used to describe ∆. For simplicity, consider

the discrete time case with ‖p‖2 = 1. Let s = ∆(r) = 〈p, r〉q. Then

s[k] =
∞∑
i=0

p[i]∗r[i]q[k] =
∞∑
i=0

q[k]p[i]∗r[i] =
∞∑
i=0

H[k, i]r[i],

where H[k, i] = q[k]p[i]∗. Unlike the time invariant convolution kernel which only

depends on the difference, k − i, the kernel H[k, i] depends on k and i. This is the

reason why such ∆ block is called the Linear Time Varying (LTV) uncertainty block,

because its convolution kernel is time-varying.
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Now,A∆(Z) = Tr(Z11)−Tr(Z22), and the adjoint is given byA∗∆(y) =

 yInp 0np×nq

0nq×np −yInq

.
The LMI test (5.9) becomes

 C D

0nq×nx Inq

∗  yInp 0np×nq

0nq×np −yInq

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0,

for some y > 0, and P = P ∗.

By dividing y both sides and expanding the first term, we obtain

C∗C C∗D

D∗C D∗D − Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0,

which is precisely the H∞ norm condition, ‖M‖∞ < 1. This connection is pointed

out in the seminal paper from Zames [93].

5.3.2 Self-adjoint LTV

Consider ∆ = {∆ : ∆ = ∆∗, ‖∆‖2,2 ≤ 1}. Here ∆ is a self-adjoint operator, and the

following proposition provides a set description of ∆.

Proposition 5.8: There exists ‖∆‖2,2 ≤ 1,∆ = ∆∗ such that q = ∆p if and only if

‖q‖2 ≤ ‖p‖2 and 〈p,q〉 = 〈q,p〉.

From the above proposition,A∆(Z) = Tr(Z11 − Z22), and B∆(Z) = Tr(Z12 − Z∗12),

and A∗∆(y) =

 yInp 0np×nq

0nq×np −yInp

 and B∗∆(q) =

0np×nq iqInp

−iqInq 0nq×np

, where y, q ∈ R and

y > 0. Therefore, the LMI test (5.9) becomes

 C D

0nq×nx Inq

∗  yInq iqInq

−iqInq −yInq

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.
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By expanding the first term and dividing y, we have

C∗C C∗D

D∗C D∗D − Inq

+ iq

0nq×nq C

−C∗ D∗ −D

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

5.3.3 Skew-Hermitian LTV

Consider ∆ = {∆ : ∆ + ∆∗ = 0, ‖∆‖2,2 ≤ 1}. Here ∆ is a skew-Hermitian operator,

and the following proposition provides a set description of ∆.

Proposition 5.9: There exists ‖∆‖2,2 ≤ 1,∆+∆∗ = 0 such that q = ∆p if and only

if ‖q‖2 ≤ ‖p‖2 and 〈p,q〉+ 〈q,p〉 = 0.

Now, A∆(Z) = Tr(Z11 − Z22), and B∆(Z) = Tr(Z12 + Z∗12), and A∗∆(y) = yInp 0np×nq

0nq×np −yInp

 and B∗∆(q) =

0np×np qInp

qInq 0nq×nq

, where y, q ∈ R and y > 0. There-

fore, (5.9) becomes

 C D

0nq×nx Inq

∗ yInq qInq

qInq −yInq

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

By expanding the first term and dividing y, we have

C∗C C∗D

D∗C D∗D − Inq

+ q

0nq×nq C

C∗ D∗ +D

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

5.3.4 Scalar LTV

Consider the scalar uncertainty structure ∆ = {∆ : ∆ = δI, ‖∆‖2,2 ≤ 1}. Here δI

is a shorthand notation for [q]i = δ([p]i) for all i, where δ is a linear operator which

maps l12 → l12 or L1
2 → L1

2.

Proposition 5.10: There exists ‖δ‖2,2 ≤ 1 such that q = δI(p) if and only if Λ(q) �

Λ(p).
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Now since Λ(p) � Λ(q), A∆(Z) = Z11 − Z22. Since the adjoint is given by

A∗∆(Y ) =

 Y 0np×nq

0nq×np −Y

, the test (5.9) becomes

 C D

0nq×nx Inq

∗  Y 0np×nq

0nq×np −Y

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0,

where Y � 0. By left and right multiplying

 Inx 0nx×nq

0nq×nx Y −1/2

, we can conclude that

‖Y 1/2MY −1/2‖∞ < 1,

which is the scaled small gain test with a full complex matrix Y . This result can be

found in [59].

5.3.5 Scalar self-adjoint LTV

Consider ∆ = {∆ : ∆ = δI, δ = δ∗, ‖∆‖2,2 ≤ 1}. Here δ is a self-adjoint operator.

Proposition 5.11: The following conditions are equivalent:

(i) Λ(q) � Λ(p), 〈[q]i, [p]j〉 = 〈[p]i, [q]j〉 for all (i, j).

(ii) There exists ‖δ‖2,2 ≤ 1, δ = δ∗ such that q = δI(p)

Now,A∆(Z) = Z11 − Z22, and B∆(Z) = Z12−Z∗12, andA∗∆(y) =

 Y 0np×nq

0nq×np −Y


and B∗∆(Q) =

0np×np Q

−Q 0nq×nq

, where Y � 0, and Q is a skew-Hermitian matrix.

Therefore, the LMI test (5.9) becomes

 C D

0nq×nx Inq

∗  Y Q

−Q −Y

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.
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This result in the infinite dimensional form is appeared in [48]. In contrast, the

above LMI contains the finite dimensional matrices.

5.3.6 Scalar pure imaginary LTV

Consider ∆ = {∆ : ∆ = δI, δ + δ∗ = 0, ‖∆‖2,2 ≤ 1}. Here δ is a skew-Hermitian

operator. In this case, (p,q) ∈ R∆ if and only if Λ(q) � Λ(p), 〈[q]i, [p]j〉+〈[p]i, [q]j〉 =

0 for all (i, j). This can be shown by Proposition 5.10 with the pair (p, iq). Now,

A∆(Z) = Z11 − Z22, and B∆(Z) = Z12 + Z∗12, and A∗∆(y) =

 Y 0np×nq

0nq×np −Y

 and

B∗∆(Q) =

0np×np Q

Q 0nq×nq

, where Y � 0, and Q is Hermitian.

Therefore, (5.9) becomes

 C D

0nq×nx Inq

∗ Y Q

Q −Y

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

5.3.7 Integral Quadratic Constraints

Consider the case where (p,q) ∈ R∆ can be represented by the integral quadratic

constraints

(Discrete-time):
∞∑
k=0

p[k]

q[k]

∗H
p[k]

q[k]

 ≥ 0

(Continuous-time):
∫ ∞
t=0

p(t)
q(t)

∗H
p(t)
q(t)

 dt ≥ 0

for some constant matrix H and the norm bound condition, ‖q‖2 ≤ ‖p‖2. The latter

requirement is not severely restrictive, since one can always rescale p and H appro-

priately to make ‖∆‖2,2 ≤ 1. In this case, A∆(Z) = diag (Tr(HZ),Tr(Z11 − Z22)),
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and A∗∆(y1, y2) = y1H + diag (y2I,−y2I). Therefore, (5.9) becomes

 C D

0nq×nx Inq

∗y2Inp 0

0 −y2Inq

+ y1H

 C D

0nq×nx Inq


+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

By dividing y2, and re-label y1 by y > 0 we have

C∗C C∗D

D∗C D∗D

+ yH +

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

5.3.8 Block-diagonal structure

Let us consider the block diagonal structure, that is ∆ = {∆ : diag (∆1, · · · ,∆n) , i =

1, · · · , n}. Here all of the previous modeling on ∆ can be used, for example ∆i = ∆∗i ,

or ∆i = δiI to name a few. Let Ei be the projection matrix such that ∆i = Ei∆E
∗
i .

Then (p,q) ∈ R∆ if and only if (Eip, Eiq) ∈ R∆i
.

For example, if

∆ =

δ1 0

0 δ2

 ,
where δ2 = δ∗2, then (p,q) ∈ R∆ if and only if ‖[q]1‖2 ≤ ‖[p]1‖2, ‖[q]2‖2 ≤ ‖[p]2‖2,

and 〈[q]2, [p]2〉 = 〈[p]2, [q]2〉. In this case,

A∆(Z) =

[Z]11 − [Z]33 0

0 [Z]22 − [Z]44

 ,B∆(Z) = [Z]24 − [Z]24,

and the test (5.9) becomes

 C D

0nq×nx Inq

∗  Y Q

−Q −Y

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0,
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with Y =

y1 0

0 y2

 where y1 > 0, y2 > 0, and Q =

0 0

0 q

 for some imaginary q.

In the general case,A∆(Z) = diag

A∆i

Ei 0

0 Ei

Z
E∗i 0

0 E∗i

, and B∆(Z) =

diag

B∆i

Ei 0

0 Ei

Z
E∗i 0

0 E∗i

.

Therefore,

A∗∆(y1, · · · , yn) =
n∑
i=1

Ei 0

0 Ei

∗Ai∗∆(yi)

Ei 0

0 Ei


B∗∆(q1, · · · , qn) =

n∑
i=1

Ei 0

0 Ei

∗ Bi∗∆(qi)

Ei 0

0 Ei


and the test (5.9) becomes

 C D

0nq×nx Inq

∗ (A∗∆(y1, · · · , yn) + B∗∆(q1, · · · , qn))

 C D

0nq×nx Inq


+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0.

For example, assume ∆ = {∆ : diag (∆1, · · · ,∆n) , ‖∆i‖ ≤ 1, i = 1, · · · , n}, i.e.,

the repeated full blcok LTV structure in [74]. Then

A∗∆(y1, · · · , yn) =
n∑
i=1

yiE∗iEi 0

0 −yiE∗iEi

 ,

since A∗∆i
(yi) =

yiI 0

0 −yiI

. Therefore the test (5.9) is given by

 C D

0nq×nx Inq

∗  Θ 0np×nq

0nq×np −Θ

 C D

0nq×nx Inq

+

 A B

Inx 0nx×nq

∗ (Ψ⊗ P )

 A B

Inx 0nx×nq

 ≺ 0,
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where Θ =
∑

i yiE
∗
iEi. Since yi > 0, clearly Θ � 0.

By left and right multiplying

 Inx 0nx×nq

0nq×nx Θ−1/2

 to the above LMI and expanding

the first term, we can obtain

 C∗ΘC C∗ΘDΘ−1/2

Θ−1/2D∗ΘC Θ−1/2D∗ΘDΘ−1/2 − Inq

+

 A BΘ−1/2

Inx 0nx×nq

∗ (Ψ⊗ P )

 A BΘ−1/2

Inx 0nx×nq

 ≺ 0.

From the bounded real lemma, this is equivalent to

‖Θ1/2MΘ−1/2‖∞ < 1,

the famous scaled small gain test with the form Θ =
∑

i yiEiE
∗
i = diag (y1I, · · · , ynI),

where yi > 0.

Similarly, for the repeated scalar block LTV structure in [57],

∆ = {∆ : diag (δ1I, · · · , δnI) , ‖∆i‖ ≤ 1, i = 1, · · · , n}

we have

A∗∆(Y1, · · · , Yn) =
n∑
i=1

EiYiE∗i 0

0 −EiYiE∗i

 ,

since A∗∆i
(Yi) =

Yi 0

0 −Yi

.
Using the similar argument, we can obtain

 C∗ΘC C∗ΘDΘ−1/2

Θ−1/2D∗ΘC Θ−1/2D∗ΘDΘ−1/2 − Inq

+

 A BΘ−1/2

Inx 0nx×nq

∗ (Ψ⊗ P )

 A BΘ−1/2

Inx 0nx×nq

 ≺ 0.

From the bounded real lemma, this is equivalent to

‖Θ1/2MΘ−1/2‖∞ < 1,
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the famous scaled small gain test with the form Θ =
∑

iEiYiE
∗
i = diag (Y1, · · · , Yn)

where Yi � 0.

5.4 Numerical example

We consider the following dynamics from Example 5.4 in [43]

A0 =



0 1 0 0 0

0 −1.3046(1± δ1) 1 −0.2142(1± δ2) 0

0 47.7110(1± δ3) 0 −104.83(1± δ4) 0

0 0 0 0 1

275100 49059 3753 −16861 −163


,

where each δi is a fixed but unknown real parameter. In [43], the author tries to verify

stability of an autonomous dynamics d
dt
x = A0x, but here we modify this example to

illustrate how to use well-connectedness analysis.

Consider the following autonomous system

ẋ = A0x.
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By introducing additional variable p, q, we have

ẋ =



0 1 0 0 0

0 −1.3046 1 −0.2142 0

0 47.7110 0 −104.83 0

0 0 0 0 1

275100 49059 3753 −16861 −163


︸ ︷︷ ︸

A

x

+



0 0 0 0

−1.3046 −0.2142 0 0

0 0 47.7110 −104.83

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

B

q

p =


0 1 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 1 0


︸ ︷︷ ︸

C

x+ 0︸︷︷︸
D

q

q =


δ1 0 0 0

0 δ2 0 0

0 0 δ3 0

0 0 0 δ4


︸ ︷︷ ︸

∆

.p

Although in [43], δi is assumed to be a fixed but unknown real number, but we assume

that each δi is an operator which maps L1
2 → L1

2 to illustrate how to use our analysis

tool. It should be clear that the above representation of autonomous dynamics is
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Structure µ∆(M)
Full block LTV 0.3427

Full block self-adjoint LTV 0.3427
Scalar block diagonal LTV 0.4644

Scalar self-adjoint block diagonal LTV 0.4644

Table 5.1: µ∆(M) for various structures. If we assume δi are real numbers, µ∆(M) =
0.5381 is given by the exhaustive search [43].

a feedback connection between p and q. As we discussed in the beginning of this

chapter, stability of this feedback connection is equivalent to well-connectedness of M,

which has a state representation (A,B,C,D) with respect to the uncertain operator

δ. Further, we would like to obtain the allowable size of uncertainty

µ∆(M) = inf{‖∆‖2,2 : I−M∆,∆ ∈∆}.

Recall that in all previous examples, we assume ‖∆‖2,2 ≤ 1, but the above quantity

requires to handle different norm bound ‖∆‖2,2. This can be easily done by rescaling

C,D matrices.

Suppose ‖∆‖2,2 ≤ µ. Since well-connectedness only concerns the product (or

cascading)M∆, (M,∆) is robustly well-connected if and only if (µM, 1
µ
∆) is robustly

well-connected. Therefore, in order to check that M is robustly well-connected to ∆

with ‖∆‖2,2 ≤ µ, it suffices to check µM is robustly well connected to
∥∥∥∆̃
∥∥∥

2,2
=∥∥∥ 1

µ
∆
∥∥∥

2,2
≤ 1,

Since µM can be easily obtained by scaling (C,D) by (µC, µD), in order to find

µ∆(M) = inf{‖∆‖2,2 : I −M∆,∆ ∈ ∆}, it suffices to find the minimum µ such

that µM is not robustly well-connected to ∆ assuming the norm bound ‖∆‖2,2 ≤ 1.

Since we can easily check that whether µM is robustly well-connected to ∆ or not

using the test (5.9) for the class of structures, we combine the bisection search on µ

to provide µ∆(M).

Here ∆ has a block diagonal structure, but we apply the LMI test from the full

block LTV, full block self-adjoint LTV, scalar block diagonal LTV, and scalar self-

adjoint block diagonal LTV structures for an illustrative purpose.
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The table 5.1 shows µ∆(M) assuming various structures on ∆. Since full block

LTV does not exploit the block diagonal nature of ∆, with relatively small norm

bound 0.3427, M lost robust well-connectedness. Here since all problem parameters

are real numbers, exploiting the self-adjoint nature of ∆ does not change µ∆(M).
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Chapter 6

Sparse H∞ analysis and synthesis

This chapter proposes a new robust analysis tool motivated by large-scale systems by

leveraging a novel, primal formulation of H∞ analysis in Chapter 4. The H∞ norm

of a system measures its robustness by quantifying the worst-case behavior of a sys-

tem perturbed by a unit-energy disturbance. However, the disturbance that induces

such worst-case behavior requires perfect coordination among all disturbance chan-

nels. Given that many systems of interest, such as the power grid, the internet, and

automated vehicle platoons, are large-scale and spatially distributed, such coordina-

tion may not be possible, and hence the H∞ norm, used as a measure of robustness,

may be too conservative. We therefore propose a cardinality constrained variant of

the H∞ norm in which an adversarial disturbance can use only a limited number of

channels. As this problem is inherently combinatorial, we present a semidefinite pro-

gramming (SDP) relaxation based on the `1 norm that yields an upper bound on the

cardinality constrained robustness problem. We further propose a simple rounding

heuristic based on the optimal solution of SDP relaxation, which provides a lower

bound. Motivated by privacy in large-scale systems, we also extend these relaxations

to computing the minimum gain of a system subject to a limited number of inputs.

Finally, we also present an SDP based optimal controller synthesis method for mini-

mizing the SDP relaxation of our novel robustness measure. The effectiveness of our

semidefinite relaxation is demonstrated through numerical examples.
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6.1 Sparse H∞ norm

Consider the stable LTI system M

x+ = Ax+Bw

z = Cx+Dw,

where x+ is x[k+1] for discrete time, ẋ for the continuous time, with initial condition

being zero. In addition, x ∈ Cnx , w ∈ Cnw , z ∈ Cnz .

Recall that the H∞ norm of M is given by,

‖M‖∞ := sup
w
{‖Mw‖2 : ‖w‖2 = 1}.

The H∞ norm has well known implications on the robust stability of the system with

uncertain blocks [26], as well as many practical interpretations [25].

One such interpretation is that an attacker seeks to maximize their disruption

of the system using the disturbance w – in this case, the optimal disturbance w? is

precisely a disturbance that maximizes the attacker’s impact on the system. Taking

an opposite perspective, from the viewpoint of a system designer, the maximizing

disturbance denotes a weak point of the system that may need to be addressed.

A seemingly innocuous assumption in the above analysis is that the attacker can

simultaneously coordinate all of the disturbance channels: although reasonable in a

centralized setting, this assumption may prove to be quite conservative if M is a

distributed system. In particular, if there are many possible disturbances (B has

many columns), and these disturbances enter through channels that are physically

separated, it may be overly conservative to consider the response of the system to a

centralized attack. In order to alleviate this conservativeness, we propose a cardinality

constrained variation of H∞ analysis, (4.3), in which we assume that at most k

disturbance channels can have non-zero energy. Here we define the cardinality of the

input signal, Card (w), as the number of components that has non-zero energy, i.e.,

the number of indices i such that ‖[w]i‖2 > 0. This means the adversary can choose
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up to k number of input channels to disturb the system, which is equivalent to choose

up to k number of columns of B to form the low dimensional input in lk2 (Lk2).

µ̄k (M) := sup
w
{‖Mw‖2 : ‖w‖ ≤ 1,Card (w) ≤ k}.

We refer to µ̄k (M) as the k-sparse H∞ norm of system M.

It should be clear that µ̄k (M) ≤ ‖M‖∞ for all k, but what is not clear is whether

the gap between the two quantities can be made large. Indeed, if the gap is in general

small, then the additional effort needed to accommodate the cardinality constraint

on the disturbance may not be justified. Before elaborating on other interpretations

of the k-sparse H∞ norm of a system, we show that the gap between µ̄k (M) and

‖M‖∞ can be made arbitrarily large for a fixed k by increasing the state dimension

of the underlying system.

Example 6.1: Consider the stable discrete time system M with the state space

realization (A, In, In, 0n,n) where A = 0.99(In − 1
n
1n1

>
n ) + 0.1 1

n
11>. Thanks to the

permutation invariance of the system, ‖M‖∞ and µ̄k (M) can be easily obtained, and

it can be shown that the ratio µ̄k(M)
‖M‖∞ = O

(√
k
n

)
. Thus for a fixed k, the gap between

µ̄k (M) and ‖M‖∞ ca ben made arbitrarily large by letting n → ∞. Fig. 6.1 shows
µ̄k(M)
‖M‖∞ for k = 5, and n = 5, . . . , 30.

Example 6.1 shows the existence of systems for which standard H∞ analysis can

be overly conservative if indeed only at most k disturbances can be expected to coor-

dinate their efforts to disrupt the system. We now outline two concrete engineering

applications in which such an analysis may arise.

Robustness analysis for distributed system: Quantifying the robustness of

a distributed system, such as the power grid, allows the system designer to plan for

and mitigates the worst case effects of un-modeled dynamics and disturbances. The

need for robustness is increasingly important in the context of the power grid as it

becomes more reliant on intermittent distributed energy resources, such as renew-

ables. However, as mentioned, H∞ analysis assumes that all such distributed energy
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Figure 6.1: The ratio, µ̄5(M)/‖M‖∞ for n = 5, · · · , 30.

resources coordinate with each other to destabilize the power network, which may

be overly conservative and lead to loss of efficiency. Rather, we propose using the

k-sparse H∞ norm of the system to identify and quantify vulnerabilities of the system

to potentially more realistic disturbances.

Robustness analysis for consensus network: The well-studied problem of

consensus (or synchronization) [54, 9, 39] is one in which a set of agents seek to

converge to a common value using simple local averaging rules. When these local

rules are linear and time invariant, the consensus protocol can be modeled as an LTI

system. In this case, a system dynamics A satisfies the following properties [83]:

A1 = 1, A>1 = 1, and ρ(A − 1
n
11>) < 1, where n is the number of nodes in the

network.

Although typically considered in a disturbance free setting, it is also natural to

ask how much local disturbances applied to individual agents can affect the system’s

ability to reach consensus. Concretely, assume that each agent can be corrupted by

a separate disturbance, i.e., B = In, and we measure the effect of the disturbances

on the deviation of each state xjk from the consensus value, as encoded by zjk =

xjk − 1
n

∑
i x

i
k, such that C = In − 1

n
11>, and D = 0. Note that the marginally stable

mode of A is unobservable with respect to the measured output defined by C, and
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the system has a finite H∞ norm and k-sparse H∞ norm.

Whereas the H∞ norm of the resulting system measures the effects of a worst-

case attack on all agents, the k-sparse H∞ norm measures the effects of worst-case

attack on only k agents. From an attacker’s perspective, this may result in a more

realistically implementable strategy, and from a system designer’s perspective, this

provides valuable information as to which agents should be most closely monitored

and protected from attack.

6.1.1 The k-sparse minimal gain of a system

We can also define the minimal k-sparse gain of system M, which we denote by µ
k

(M)

as
{µ

k
(M)}2 := minimize

w,x
‖Cx +Dw‖2

2

subject to x+ = Ax+Bw

x[0] = 0

‖w‖2
2 ≥ 1

Card (w) ≤ k.

(6.1)

Privacy: An immediate interpretation of this optimization problem is in terms

of privacy. Suppose that a publicly available variable is defined by z = Cx, and that

a user wishes to transfer at least γ units of power to y = Gx +Hw while minimizing

their effect on the public variable. The optimal action for the user to take can be

determined by solving optimization problem (6.1) with the added constraint

‖Gx +Hw‖2
2 ≥ γ2. (6.2)

System security: One can also view the user in the above scenario as an attacker,

and the publicly available variable as a system monitor: in this case, the optimal

input w? corresponds to the least detectable input that still disrupts the y by γ

units of power. Allowing for sparse optimal inputs w? makes for more realistically

implementable actions by either a user or an attacker.
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6.1.2 Connections to the Restricted Isometry Property and

Regularization for Design

Our problem formulation seeks the minimal and maximal gains of a linear operator

restricted to k-sparse subspaces. When the linear operator is a static matrix D,

instead of a dynamical system (A = B = C = 0), then the cardinality constrained

optimization problems (6.3) and (6.1) compute precisely the maximal and minimal

restricted eigenvalues [6] of the matrix D>D, that is the maximal and minimal gains

of D restricted to sparse subspaces. They are also closely linked to the Restricted

Isometry Property (RIP) constant of the matrix, which can be used to state conditions

for the recovery of sparse vectors [13] via convex optimization, and can be used to

perform sparse principal component analysis (sPCA) [21]. We can therefore view

optimization problem (6.3) as a tool for bounding the restricted eigenvalues of an

infinite dimensional LTI operator acting on signals in `2 and L2.

Moreover, the k-sparse H∞ norm and the k-sparse minimal gain of a system

also have natural connections to the Regularization for Design (RFD) framework

developed in [45]. In the RFD framework, atomic norms [14] are added as convex

penalties to traditional model matching problems in order to design architecturally

simple controllers. Further, control theoretic analogs to the recovery conditions found

in the structured inference literature are stated in terms of restricted gains that are

closely related to the k-sparse H∞ norm and k-sparse minimal gain of a system.

6.2 SDP relaxation of k-sparse H∞ analysis

Although we propose k-sparse H∞ analysis µ̄k (M) in a concrete manner, the prob-

lem formulation has two intrinsic challenges. First of all, the variables are in an

infinite dimensional space, and therefore the optimization is an infinite dimensional

optimization. Secondly, the combinatorial nature of the cardinality constraint on w

may require the exhaustive search. In order to overcome these challenges, we propose

an SDP-based convex relaxation of the k-sparse H∞ analysis.



99

Since [Λ(w)]ii = ‖wi‖2
2, Card (w) ≤ k if and only if Λ(w) has up to k number

of non-zero diagonal entries. This shows that we can formulate k-sparse H∞ analysis

using Gramian

maximize
V

Tr

C∗C C∗D

D∗C D∗D

V


subject to V ∈ DGram (or CGram)

Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 ≤ 1

Card ([V ]nx+1,nx+1, · · · , [V ]nx+nw,nx+nw) ≤ k,

(6.3)

where nx is the state dimension, and nw is the input dimension. Since the cardinality

constraints only affects the right bottom block of V ,
[
0nw×nx Inw

]
V
[
0m,n Im

]∗
we

can easily see that Lemma 3.1 and 3.3 justify the replacement of DGram and CGram by

DSDP and CSDP.

maximize
V

Tr

C∗C C∗D

D∗C D∗D

V


subject to Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0, V � 0

Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
 ≤ 1

Card ([V ]nx+1,nx+1, [V ]nx+2,nx+2, · · · , [V ]nx+nw,nx+nw) ≤ k,

(6.4)

where Π

X11 X12

X∗12 X22

 = X11−X22 for DSDP, and Π

X11 X12

X∗12 X22

 = X12 +X∗12

for CSDP. The optimal value of (6.4) is equal to µ̄k (M)2.

In order to circumvent the intractability of the cardinality constraint, we use an l1

norm relaxation [79]. This approach is inspired by [21], in which the authors consider

the l1 relaxation of an analogous cardinality constraint to obtain an SDP relaxation
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of the sparse PCA problem, in which one seeks the leading sparse singular vector

of a matrix (as mentioned previously, this is closely related to the RIP constant of

a matrix and to analogous quantities in RFD). In order to adapt this idea to our

problem formulation, we need the following observation.

Proposition 6.1: Consider W ∈ Cn×n such that W � 0, Tr(W ) ≤ 1. Then,

1T |W |1 ≤ n.

Proof: Consider a Hermitian matrix H where

Hij =

1 if i = j

eiθij if i 6= j,

for some θij. If we construct H such that Hij = ei∠Wij , then 1T |W |1 = Tr(H∗W ).

This shows that 1T |W |1 ≤ supH Tr(H∗W ), and from the Von Neumann’s trace

inequality [49], we have

Tr(H∗W ) ≤
∑
i

σi(W )σi(H),

where σi is the ith singular value of the matrix. Furthermore, by definition of H we

have σ1(H) ≤
∑

i σi(H) = Tr(H) = n. Therefore,

Tr(H∗W ) ≤
∑
i

σi(W )σi(H) ≤ σ1(H)
∑
i

σi(W )

≤ nTr(W ) ≤ n,

and 1T |W |1 ≤ supH Tr(H∗W ) ≤ n. Notice that this upper bound is achieved by

W = 1
n
1nw1>nw , which shows the inequality is tight. �

Now we are ready to connect the l1 norm bound with the cardinality constraint.

Proposition 6.2: Consider a positive semidefinite matrix W with Tr(W ) ≤ 1 and

Card (diag (W )) ≤ k. Then, 1T |W |1 ≤ k.
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Proof: Without loss of generality, we can assume that W11, · · · ,Wii are not zero,

where i ≤ k. Then from the Schur complement, we can easily check that W should

have the form

W =

 W̃ 0

0 0

 ,
where W̃ is a i× i Hermitian matrix. Therefore, from the Proposition 6.1, 1T |W |1 =

1T |W̃ |1 ≤ i ≤ k, which concludes the proof. �

In the cardinality constrained problem (6.4), the right bottom part of V , W =[
0nw×nx Inw

]
V
[
0m,n Im

]∗
matrix satisfies the requirement in Proposition 6.2. This

shows that if we replace the cardinality constraint by a l1 norm bound, then we have

a larger feasible set. Although this procedure provides an upper bound of (6.4),

the resulting optimization becomes a semidefinite program, so we can solve it very

efficiently [11]. Therefore, we propose the following l1 relaxation of (6.4), µ̄sdpk (M),

which is the main optimization problem in this section.

maximize
V,W

Tr

C∗C C∗D

D∗C D∗D

V


subject to Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

V � 0

W =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
Tr(W ) ≤ 1

1T |W |1 ≤ k,

(6.5)

and we denote the square root of the optimal value as µ̄sdpk (M). It should be obvious

that µ̄k (M) ≤ µ̄sdpk (M).

A careful remark is that for a complex matrix, |W | should be treated as a second

order cone constraint, not a linear programming constraint [42].
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6.2.1 Extension to k-sparse minimal gain

In the previous section, we introduced a k-sparse minimal gain. A similar approach

can be used to obtain the following SDP relaxation of µ
k

(M).

minimize
V,W

Tr

C∗C C∗D

D∗C D∗D

V


subject to Π

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗ = 0

V � 0

W =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
(6.6)

Tr(W ) ≤ 1

1T |W |1 ≤ k,

and we denote the square root of the optimal value as {µsdp
k

(M)}.

6.2.2 Rounding heuristic for solution refinement

Let W ? be the optimal solution of (6.5). Since this matrix contains an information

on the worst-case disturbance, we can extract potential candidate for the worst case

disturbance channels that solves (6.3). The basic idea is to obtain the top k entries

in diag (W ), say {Wi1i1 ,Wi2i2 , · · · ,Wikik}, and then adjust B and D such that only

these disturbance channels can be used. Then we solve H∞ analysis with the new B

and D. Since we choose a specific disturbance channel, we obtain a lower bound of

(6.3). We summarize the procedure as follows.

Rounding heuristic:

1. Solve (6.5) to obtain W ?.
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2. Find the indices {i1, · · · , ik} such that W ?
i1i1
≥ · · · ≥ W ?

ikik
≥ · · · ≥ W ?

inin .

3. Construct E :=
[
ei1 · · · eik

]
∈ Cnw×k using a standard basis {ei} ∈ Rnw .

4. Let B̃ := BE, D̃ = DE, and the stable LTI system M̃ with the state space

realization (A, B̃, C, D̃). Then define µ̄roundk (M) := ‖M̃‖∞.

Notice that the third step chooses i1, · · · ik to be the active disturbance channels.

From this rounding procedure we obtain the inequality

µ̄roundk (M) ≤ µ̄k (M) ≤ µ̄sdpk (M)

Therefore, if the gap between µ̄roundk (M) and µ̄sdpk (M) is not large, then µ̄roundk (M)

effectively solves the k-sparse H∞ problem and returns the candidate the disturbance

channels.

6.2.3 SDP Dual problem

As optimization problem (6.5), it is natural to consider its SDP dual problem. To do

this, let us begin with the following observation.

Proposition 6.3: For w ≥ 0, λ ∈ C,

sup
x∈C
{−w|x|+ Re(λx)} =

0 if |λ| ≤ w

+∞ otherwise
.

Proof: Suppose |λ| > w. Let x = αλ∗. Then

−w|x|+ Re(λx) = α|λ|(|λ| − w).

By taking α→∞, we obtain the result.
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Suppose |λ| ≤ w. From Cauchy-Schwartz inequality,

−w|x|+ Re(λx) ≤ −w|x|+ |λ||x| ≤ (|λ| − w)|x| ≤ 0,

for all x ∈ C. Since the upper bound is achieved by x = 0, we can conclude the

proof. �

With this technical tool in hand, we may proceed to derive the dual to optimization

problem (6.5). First, we form the Lagrangian function in terms of V ,

L(V, P,Q, λ, t)

:= Tr(QV ) + Tr

C∗C C∗D

D∗C D∗D

V


+Tr

PΠ

 A B

Inx 0nx×nw

V
 A B

Inx 0nx×nw

∗
+λ

1−Tr

0nx×nx 0nx×nw

0nw×nx Inw

V
+ t

k −Tr

0nx×nx 0nx×nw

0nw×nx 1nw1>nw

 |V |
 ,

where P = P ∗, Q � 0, λ ≥ 0, t ≥ 0.

Using cyclic property of the trace operator and from Proposition 6.3, we can

obtain the dual function d(Q,P, λ, t) := supV=V ∗ L(V, P, λ, t), which becomes λ+k · t

when,∣∣∣∣∣∣Q+

C∗C C∗D

D∗C D∗D − λInw

+

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

∣∣∣∣∣∣ ≤
0nx×nx 0nx×nw

0nw×nx t1nw1>nw

 ,
(6.7)

where the inequality ≤ is a component-wise inequality, and Ψ =

1 0

0 −1

 for the

discrete-time case, and Ψ =

0 1

1 0

 for the continuous-time case. In addition,
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d(P, λ, t) = +∞ if (Q,P, λ, t) does not satisfy (6.7). By defining Y = Y ∗ to be a

right bottom block of (6.7), we obtain the following dual program of (6.5).

minimize
P,Y,λ,t

λ+ k · t

subject to

C∗C C∗D

D∗C D∗D − λIm − Y

+

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

 � 0

|Y | ≤ t1nw1>nw

P = P ∗, Y = Y ∗, t ≥ 0, λ ≥ 0.

(6.8)

Notice that if we set t = 0, then we recover the SDP derived from the bounded real

lemma which computes H∞ norm of the system. It is clear that t = 0 is a suboptimal

solution of (6.8), and therefore we can easily see that the H∞ norm is an upper bound

of (6.8), and this is consistent with the definition of k-sparse H∞ norm.

Another observation is that if we assume (A,B,C,D) are real matrices, then a

similar argument as in [88] shows that all matrices in (6.8) can be taken as real

matrices. In this case, the absolute value constraint becomes −t1nw1>nw ≤ Y ≤

t1nw1>nw , a familiar LP constraint for l1 optimization.

6.2.4 Strong duality and Lyapunov stability

In this section, we investigate strong duality between the primal (6.5) and the dual

(6.8), and modify the dual program in order to ensure the stability of A. This

modification plays an important role in the following synthesis method, in which the

optimal controller that minimizes (6.5) is to be found.

We can show that when A is stable, the dual program (6.8) is strictly feasible, and

therefore the strong duality holds between (6.5) and (6.8).

Proposition 6.4: Suppose A is stable. Then the dual program (6.8) is strictly fea-

sible.
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Proof: In the discrete-time case, the LMI constraint in the dual problem (6.8)

becomes A∗PA− P + C∗C C∗D + A∗PB

D∗C +B∗PA B∗PB +D∗D − λIm − Y

 � 0.

If A is Schur stable, P = τ
∑∞

k=0(A∗)kAk is well-defined and satisfies the Lyapunov

equation A∗PA − P = −τI. Therefore, by taking sufficiently large τ , we can make

A∗PA − P + C∗C strictly negative definite, and with sufficiently large λ, the above

LMI constraint can be made strictly feasible.

For the continuous-time case, we haveA∗P + PA+ C∗C C∗D + PB

D∗C +B∗P D∗D − λIm − Y

 � 0.

If A is Hurwitz stable, then by letting P = τ
∫∞

0
eA
∗teAtdt, together with sufficiently

large τ , we obtain the same conclusion. �

This shows that the dual program (6.8) is strictly feasible, and from the Conic

duality theorem we have the following strong duality result.

Corollary 6.1: The duality gap between the primal (6.5) and its dual (6.8) is zero,

and the primal (6.5) is solvable.

If A is Schur stable, any Hermitian P such that A∗PA − P � 0 is necessarily

positive semidefinite. Similarly, if A is Hurwitz stable, any P such that A∗P+PA � 0

is necessarily positive semidefinite. This shows that in the dual program (6.8), we

can add the constraint P � 0 without changing the problem. In fact, we can obtain

the stability of A by means of P � 0.

Proposition 6.5: The following are equivalent.

(i) A is stable, and µ̄sdpk (M) < α.
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(ii) There exist P � 0, λ, t, Y such that

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − λIm − Y

 ≺ 0

(6.9)

|Y |ij ≤ t, for all i, j (6.10)

λ+ kt < α (6.11)

Proof: Suppose (i) holds. From Strong duality, there exists P = P ∗, λ, t, Y which

satisfies (6.10)-(6.11) and

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

+

C∗C C∗D

D∗C D∗D − λIm − Y

 � 0.

Since the dual (6.8) is strictly feasible, there exists a strictly feasible point (P0, λ0, t0, Y0).

Then we can find ε > 0 such that (P̃ , λ̃, t̃, Ỹ ) = (1 − ε)(P, λ, t, Y ) + ε(P0, λ0, t0, Y0)

satisfies (6.9) - (6.11). Furthermore, for the discrete time case, the upper left block

becomes A∗P̃A − P̃ ≺ 0, and since A is Schur stable, P̃ � 0. Similarly, for the

continuous time case, we have A∗P̃ + P̃A ≺ 0, and since A is Hurwitz stable, P̃ � 0.

Now suppose (ii) is true. For the discrete-time case, since A∗PA − P ≺ 0 for

some P � 0, A is Schur stable. For the continuous-time case, since A∗P + PA ≺ 0

for some P � 0, A is Hurwitz stable. Therefore, from strong duality, µ̄sdpk (M) < α.�

From the above proposition, we have the following dual problem without the sta-

bility assumption on A.
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minimize
P,Y,λ,t

λ+ k · t

subject to

C∗C C∗D

D∗C D∗D − λIm − Y

+

 A B

Inx 0nx×nw

∗ (Ψ⊗ P )

 A B

Inx 0nx×nw

 ≺ 0

|Y | ≤ t1nw1>nw

P � 0, Y = Y ∗, t ≥ 0, λ ≥ 0.

(6.12)

Here if the optimal value of (6.12) is finite, then A is stable, and µ̄sdpk (M) is equal

to the optimal value of (6.12). This formulation is very important for the synthesis

method where the stability of A is unknown and required to be stable.

6.3 k-sparse H∞ synthesis

In this section, we consider the following system:

x+
p = Axp +B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w

with the following linear feedback controller

x+
c = AKxc +BKy

u = CKxc +DKy,

where xp ∈ Cnp is the state of the plant, w ∈ Cnw is the disturbance, u ∈ Cnu is the

control input, z ∈ Cnz is the performance output, y ∈ Cny is the measured output,

and xc ∈ Cnc is the state of the controller. Here x+ is x[k + 1] in the discrete time

case, and dx
dt

in the continuous time case.

After the closing the loop, i.e., substituting u back to x, we have the following
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closed loop system, Mcl, with the state space realization:

xp
xc

+

=

A+B2DKC2 B2CK

BKC2 AK


︸ ︷︷ ︸

Acl

xp
xc

+

B1 +B2DKD21

BKD21


︸ ︷︷ ︸

Bcl

w

z =
[
C1 +D12DKC2 D12CK

]
︸ ︷︷ ︸

Ccl

xp
xc

+
[
D11 +D12DKD21

]
︸ ︷︷ ︸

Dcl

w.

The goal in this section is to design the controller AK , BK , CK , DK such that

• Internally stabilizes Mcl, i.e., Acl is stable.

• Minimizes µ̄sdpk (Mcl).

The actual performance metric we are interested in is µ̄k (Mcl), but due to com-

binatorial nature of this performance metric, we change our attention to its upper

bound, µ̄sdpk (Mcl), which can be obtained via SDP. Using the dual formulation of

computing µ̄sdpk (Mcl), we can state this optimal control problem as follows:

minimize
AK ,BK ,CK ,DK ,Pcl,Y,λ,t

λ+ k · t

subject to |Y | ≤ t1nw1>nwAcl Bcl

In 0n,m

∗ (Ψ⊗ Pcl)

Acl Bcl

In 0n,m

+

C∗clCcl C∗clDcl

D∗clCcl D∗clDcl − λI − Y

 ≺ 0,

Pcl � 0, Y = Y ∗, t ≥ 0, λ ≥ 0

(6.13)

where n = np + nc, i.e., the total sum of number of states in the plant and the
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controller, m = nw, and

Ψ =



1 0

0 −1

 Discrete time case

0 1

1 0

 Continuous time case.

Notice that we use strictly inequality and Pcl � 0 in (6.13) to ensure the sta-

bility of Acl. As long as the optimal value of (6.13) is finite, the corresponding

(AK , BK , CK , DK) successfully stabilizes the plant. In other words, if there is no

feasible point of (6.13), then there exists no controller stabilizes the system, so the

synthesis problem makes no sense. Therefore we assume that there exists at least one

feasible point of (6.13), i.e., (A,B2, C2) is stabilizable and detectable.

The above synthesis problem (6.13) is not convex, because the matrix inequality

constraint contains many products between (Acl, Bcl, Pcl), which is not an LMI in

terms of decision variables (AK , BK , CK , DK , Pcl). In order to circumvent this diffi-

culty, we follow the LMI based approach for H∞ synthesis [29], but we use the refined

results from [26].

The first step is to eliminate AK , BK , CK , DK in the matrix inequality constraint

in (6.13).

Acl Bcl

In 0n,m

∗ (Ψ⊗ Pcl)

Acl Bcl

In 0n,m

+

C∗clCcl C∗clDcl

D∗clCcl D∗clDcl − T

 ≺ 0, (6.14)

where Pcl � 0, and T = λIm +Y . Since D∗clDcl−T ≺ 0, T � 0, so we can decompose

T = T 1/2T 1/2. By left and right multiplying

I 0

0 T−1/2

 to (6.14), we have

Acl BclT
−1/2

In 0n,m

∗ (Ψ⊗Pcl)

Acl BclT
−1/2

In 0n,m

+

 C∗clCcl C∗clDclT
−1/2

T−1/2D∗clCcl T−1/2D∗clDclT
−1/2 − I

 ≺ 0.

(6.15)
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We can easily see that the above condition is in the bounded real lemma form, and the

condition (6.15) is equivalent to the system (Acl, BclT
−1/2, Ccl, DclT

−1/2) hasH∞ norm

less than 1. Therefore, for a given T = λI+Y , there exists (AK , BK , CK , DK , Pcl) that

satisfies (6.14) if and only if there exists an H∞ suboptimal controller of which H∞
norm is less than 1, and we can use the standard suboptimal H∞ controller synthesis

results.

Let B̃1 = B1T
−1/2, D̃11 = D11T

−1/2, and D̃21 = D21T
−1/2. Then, since

BclT
−1/2 =

B1T
−1/2 +B2DKD21T

−1/2

BKD21T
−1/2


DclT

−1/2 =
[
D11T

−1/2 +D12DKD21T
−1/2

]
,

from Lemma 7.8 and Lemma 11.3 in [26] there exists (AK , BK , CK , DK , Pcl) that

satisfies (6.14) if and only if there exists (Pcl, P,Q) such that

 Nc 0

0 Inz

∗

A Inp

C1 0

 (Ψ⊗Q)

A Inp

C1 0

∗ −
0 0

0 Inw

  B̃1

D̃11


[
B̃∗1 D̃∗11

]
−Inz


 Nc 0

0 Inz

 ≺ 0

(6.16)

 Ño 0

0 Inw

∗

 A B̃1

Inp 0

∗ (Ψ⊗ P )

 A B̃1

Inp 0

−
0 0

0 Inz

 C∗1
D̃∗11


[
C1 D̃11

]
−Inw


 Ño 0

0 Inw

 ≺ 0,

(6.17)

where

Range (Nc) = Ker
([
B∗2 D∗12

])
Nc has full column rank

Range
(
Ño

)
= Ker

([
C2 D̃21

])
Ño has full column rank
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P =
[
Inp 0nc

]
Pcl

[
Inp 0nc

]∗
Q =

[
Inp 0nc

]
P−1
cl

[
Inp 0nc

]∗
Pcl � 0,

np is the dimension of the state of the plant, xp, and nc is the dimension of the state

of the controller, xc, i.e.,

Pcl =

P ∗

∗ ∗


P−1
cl =

Q ∗

∗ ∗

 .
Notice that we completely eliminate AK , BK , CK , DK , and the condition (6.17)

and (6.16) are LMIs in P and Q, respectively. However, we still have following two

challenges.

1. B̃1, D̃21 and Ño depend on T = λI + Y which is a decision variable.

2. P,Q are from Pcl, P
−1
cl which are also decision variables. Therefore an arbitrary

pair (P,Q) causes the problem because there may not exist Pcl results in P,Q.

To resolve the first part, let us find the equivalent conditions of (6.16) and (6.17).

For (6.16), since B̃1 = B1T
−1/2, D̃11 = D11T

−1/2, we have


A Inp

C1 0

 (Ψ⊗Q)

A Inp

C1 0

∗ −
0 0

0 Inw

  B̃1

D̃11


[
B̃∗1 D̃∗11

]
−Inz



=

 I 0

0 T−1/2

∗

A Inp

C1 0

 (Ψ⊗Q)

A Inp

C1 0

∗ −
0 0

0 Inw

 B1

D11


[
B∗1 D∗11

]
−T


 I 0

0 T−1/2

 .



113

Furthermore, using the following identity, I 0

0 T−1/2

 Nc 0

0 Inz

 =

 Nc 0

0 Inz

 I 0

0 T−1/2


together with the invertibility of T , we can conclude that the matrix inequality (6.16)

is equivalent to

 Nc 0

0 Inz

∗

A Inp

C1 0

 (Ψ⊗Q)

A Inp

C1 0

∗ −
0 0

0 Inw

 B1

D11


[
B∗1 D∗11

]
−T


 Nc 0

0 Inz

 ≺ 0.

For (6.17), let us investigate the null space of
[
C2 D̃21

]
which spans the range

space of Ño. Since D21 = D̃21T
1/2, we have

[
C2 D21

]v1

v2

 = C2v1 +D̃21T
1/2v2. This

shows that

v1

v2

 ∈ Ker
([
C2 D21

])
if and only if

 v1

T 1/2v2

 ∈ Ker
([
C2 D̃21

])
.

Therefore, for any Ño, there exists No such that

Ño =

Inx 0

0 T 1/2

No,

where Range (No) = Ker
([
C2 D21

])
, and N∗oNo = I.

Thus, (6.17) is equivalent to


Inx 0

0 T 1/2

No 0

0 Inw


∗ 

 A B̃1

Inp 0

∗ (Ψ⊗ P )

 A B̃1

Inp 0

−
0 0

0 Inz

 C∗1
D̃∗11


[
C1 D̃11

]
−Inw



Inx 0

0 T 1/2

No 0

0 Inw



=

 No 0

0 I

∗

 A B1

Inp 0

∗ (Ψ⊗ P )

 A B1

Inp 0

−
0 0

0 T

 C∗1
D∗11


[
C1 D11

]
−Inw


 No 0

0 I

 .
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In the above two expressions, T shows up in the LMI, and all other matrices are

completely determined by the problem parameters.

The second challenge is to find a condition on (P,Q) such that there exists Pcl � 0

such that P =
[
Inp 0nc,nc

]
Pcl

[
Inp 0nc,nc

]∗
and Q =

[
Inp 0nc,nc

]
P−1
cl

[
Inp 0nc,nc

]∗
.

From Lemma 7.9 in [26], a necessary and sufficient condition for this is

 P Inp

Inp Q

 � 0

rank

 P Inp

Inp Q

 ≤ nc + np

P � 0, Q � 0

Furthermore, if (P,Q) satisfies the above conditions, we can construct Pcl in a fol-

lowing manner. Since P −Q−1 � 0 from Schur complement, there exists R such that

RR∗ = P −Q−1. Then Pcl =

 P R

R∗ Inc

, and P−1
cl =

 Q −QR

−R∗Q Inc +R∗QR

.
However, the rank constraint rank

 P Inp

Inp Q

 ≤ nc + np is not a convex

constraint, and hard to handle in general.

One way to fix this is to require np ≥ nc, which makes the rank constraint trivially

hold. In other words, when the controller order, np, is greater than equal to the plant

order nc, then entire synthesis problem becomes convex. Therefore we assume that

np ≥ nc so that the resulting synthesis problem is convex.

With all these tools in hand, we obtain the following SDP, which computes the
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achievable limit of µ̄sdpk (Mcl) and constructs the corresponding Pcl:

minimize
P,Q,Y,λ,t

λ+ k · t

subject to

 P Inp

Inp Q

 � 0

 Nc 0

0 Inz

∗

A Inp

C1 0

 (Ψ⊗Q)

A Inp

C1 0

∗ −
0 0

0 Inw

 B1

D11


[
B∗1 D∗11

]
−λInz + Y


 Nc 0

0 Inz

 ≺ 0

 No 0

0 I

∗

 A B1

Inp 0

∗ (Ψ⊗ P )

 A B1

Inp 0

−
0 0

0 λInz + Y

 C∗1
D∗11


[
C1 D11

]
−Inw


 No 0

0 I

 ≺ 0

|Y | ≤ t1nw1>nw

P � 0, Q � 0, Y = Y ∗, t ≥ 0, λ ≥ 0.

(6.18)

Notice that the above optimization (6.18) is clearly an SDP. As we mentioned, the

optimal value of (6.18) is the achievable lower bound of (6.13). More importantly,

we can recover Pcl =

 P R

R∗ Inc

, where RR∗ = P − Q−1. and this choice of Pcl

guarantees the existence of controller (AK , BK , CK , DK) that achieves the optimal

value of (6.18).

In order to construct the controller (AK , BK , CK , DK) that achieves this limit, let

us revisit the problem (6.13). Recall that the matrix inequality constraint in (6.13)

is given by

Discrete time:

A∗clPclAcl − Pcl + C∗clCcl A∗clPclBcl + C∗clDcl

B∗clPclAcl +D∗clCcl D∗clDcl − λI − Y

 ≺ 0

Continuous time:

A∗clPcl + PclAcl + C∗clCcl PclBcl + C∗clDcl

B∗clPcl +D∗clCcl D∗clDcl − λI − Y

 ≺ 0.

For a given Pcl � 0, by taking Schur complement, we have the following equivalent
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LMIs:

Discrete time:


−P−1

cl Acl Bcl 0

A∗cl −Pcl 0 C∗cl

B∗cl 0 −Inw D∗cl

0 Ccl Dcl −λInz − Y

 ≺ 0 (6.19)

Continuous time:


A∗clPcl + PclAcl PclBcl C∗cl

B∗clPcl −Inw D∗cl

Ccl Dcl −λInz − Y

 ≺ 0. (6.20)

Therefore, the following SDP constructs (AK , BK , CK , DK), which achieves the

optimal value of (6.18).

Discrete time:

minimize
AK ,BK ,CK ,DK ,Y,λ,t

λ+ k · t

subject to (6.19)

Acl =

A+B2DKC2 B2CK

BKC2 AK


Bcl =

B1 +B2DKD21

BKD21


Ccl =

[
C1 +D12DKC2 D12CK

]
Dcl =

[
D11 +D12DKD21

]
|Y | ≤ t1nw1>nw

Y = Y ∗, t ≥ 0, λ ≥ 0.

(6.21)
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Continuous time:

minimize
AK ,BK ,CK ,DK ,Y,λ,t

λ+ k · t

subject to (6.20)

Acl =

A+B2DKC2 B2CK

BKC2 AK


Bcl =

B1 +B2DKD21

BKD21


Ccl =

[
C1 +D12DKC2 D12CK

]
Dcl =

[
D11 +D12DKD21

]
|Y | ≤ t1nw1>nw

Y = Y ∗, t ≥ 0, λ ≥ 0.

(6.22)

We summarize the overall synthesis procedure in which two SDPs is required to

be solved as follows:

Optimal sparse H∞ norm controller synthesis

1. Solve (6.18) to obtain P,Q.

2. Construct P ?
cl =

 P R

R∗ Inc

, where RR∗ = P −Q−1.

3. Fix P ?
cl, and solve (6.21) or (6.22) to construct (AK , BK , CK , DK).

6.4 Numerical examples

In this section, we demonstrate the usefulness of our approach on various types of

systems. As will be seen, in many cases, the gap between our upper and lower bounds
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Figure 6.2: Homogeneous chain with n = 5.

is very small, indicating that our relaxations are fairly tight. For the optimization,

we use CVX [35] with SDPT3 [80].

6.4.1 A linear chain

Here we consider a linear chain with 2n+ 1 nodes. Each subsystem has one internal

state, and these states interact with adjacent states. We assume that a disturbance

can hit each state with unity gain, and the performance is the total sum of energy in

each state. This results in B = I, C = I, and D = 0, and A ∈ R2n+1×2n+1 has the

following form:

Aij :=


a|n+1−i| if i = j

p if i = j + 1 or i = j − 1

0 otherwise

,

where we pick a = 0.8, and p = 0.1. See the Fig. 6.2.

Thanks to the system’s symmetry, we can easily obtain the k-sparse H∞ maxi-

mizing disturbance analytically. The solution is to select the center node disturbance

channel when k = 1, and as k increases, including the right (or left) closest node from

the center. See Fig. 6.3 for the result. Here the semi-definite relaxation provides an

upper bound and our rounding scheme provides a lower bound. Due to its symme-

try, the SDP relaxation has a hard time to find the actual solution, but interestingly

enough, our rounding scheme returns the true optimal value. We also compute the

H∞ norm of the system, and the ratio between 1-sparse norm and H∞ norm is around

0.85.
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Figure 6.3: Sparse H∞ norm of a linear chain computed by SDP, rounding heuristic
and exhaustive search.

6.4.2 Random dynamical system

For this example, we construct an Erdős-Renyi graph with (n, p). The weight of each

edge is drawn from the standard normal distribution to construct A. Here, B = 0.1In,

C = In, and D = 0.

After obtaining values of 20 samples, we plot the mean of the upper bound and

the lower bound (see Fig. 6.4). We also perform exhaustive searches up to k = 5

to find the true optimal value. In this case, we can see that the exact solution has

matched with our rounding scheme.

6.4.3 Synchronization network

To construct the example of a synchronization network, we choose the Petersen graph

for the graph topology.

Based on this topology, we generate two synchronization networks. The first one

is based on the maximum degree rule, and the second one is based on the fastest

protocol synthesis method via semidefinite programming [83]. See Fig. 6.6 and 6.7

for the result.
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Figure 6.4: Average of sparse H∞ norm of random LTI systems computed by SDP,
rounding heuristic and exhaustive search.

Figure 6.5: The Petersen graph.
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Figure 6.6: Sparse H∞ norm of the Petersen synchronization network with the max-
imum degree rule computed by SDP, rounding heuristic and exhaustive search.
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Figure 6.7: Sparse H∞ norm of the Petersen synchronization network with the max-
imum spectral gap computed by SDP, rounding heuristic and exhaustive search.
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k-sparse k-sparse H∞ norm
controller 1 2 3 H∞

1 1.1826 1.3939 1.5078 1.7152
2 1.2289 1.3340 1.4116 1.5258
3 1.2509 1.3539 1.4053 1.5159
H∞ 1.3832 1.4172 1.4389 1.5050

Table 6.1: The k-sparse H∞ norms of the closed loop dynamics. The controller is
constructed using proposed synthesis method. The minimum value in each column is
highlighted.

6.4.4 k-sparse H∞ synthesis

To illustrate the effectiveness of our synthesis approach, we apply our method to the

following system:

A =


0.5 0.2 0

0.2 0.5 0.2

0 0.2 0.5

 , B1 =
[
I3 03×3

]
, B2 = I3

C1 =

 I3

03×3

 , D11 = 06×6, D12 =

03×3

I3


C2 = I3, D21 =

[
03×3 I3

]
, D22 = 03×3.

Based on our approach, we obtain the controller that minimizes the SDP relaxation

of the k-sparse H∞ norm using convex optimization. Then we compute the actual

k-sparse H∞ norm via exhaustive search to compare the results; see the Table 6.1 for

the result.

Since our synthesis method is based on the SDP relaxation of the k-sparse H∞
norm, the resulting controller may not be the true optimal controller. However, as

we can see, the controllers computed with respect to relaxations of the k-sparse H∞
norm exhibit better performance with respect to k disturbances than the general H∞
optimal controller. In particular, if only k disturbances are allowed to coordinate

their attack, then we see that if a controller is designed to mitigate the worst case

effect of a larger number of disturbances, this can in fact lead to a degradation in the
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closed loop k-spare H∞ norm of the system.
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Chapter 7

Power network analysis

Power network consists of set of electrical power sources, loads and the transmission

lines connecting them. Upon successful steady-state operation, the power network

supplies the demand power from the load. The dynamics of power network has a

different notion of stability depending on the time-scale. For example, in the sub-

second scale, the voltage stability is a primary concern, whereas in the hour level

scale, the power flow balance is more important to guarantee the stability of power

network.

In this chapter, we focus on the stability of the swing dynamics which captures

the transient response of the power network in the second scale. The swing dynamics

concerns the power balance in the power network and failure of such assessment may

result in the significant impact on the power network: cascading failure, a major

source of massive black out.

The stability of the swing dynamics often relies on the large inertia in the syn-

chronous generator and local power system stabilizer, which provides a strong damp-

ing in the power network. However, due to recent integration of intermittent, low

inertia power sources such as solar panel and wind farm, the stability may be com-

promised. These sources are essentially the disturbances to the power network.

Using sparse H∞ analysis tool, we propose a method to locate the vulnerable

nodes in the linearized swing dynamics. Then we verify this result with the more

detailed nonlinear swing dynamics model.



125

7.1 System model

Consider a power network modeled by a connected graph (N , E), with a set N of

buses and a set E of power lines connecting the buses. We assume that the power

network is initially at the steady state (or equilibrium). The nominal frequency is

ω0, the voltage magnitude at the ith bus is vi, and the nominal phase angle at the

ith bus is θ0
i . All the variables introduced in the following are deviations from this

nominal steady state.

We consider the linearized swing dynamics in the following form [5, 94]. At the

ith bus,

hiω̇i = −diωi + wi +
∑
j∈E

Pji, for the generator bus (7.1)

0 = −diωi + wi +
∑
j∈E

Pji, for the load bus (7.2)

where ωi is the frequency deviation from the nominal frequency ω0, hi is the inertia

of the synchronous generator, di is a damping term from the frequency sensitive load

and power system stabilizer, and wi is the sum of active power injection at the ith

bus. If wi > 0, then ith bus has the additional power injection from renewable sources

or unplugged loads, and wi < 0, then ith bus has the excessive power consumption

due to the shortage of the renewable sources or plugged loads.

In addition, Pij is the branch power flow from the ith bus to the jth bus, which

is given by the following dynamics:

Ṗij = yij(ωi − ωj), (7.3)

where yij =
vivj
xij

cos(θ0
i − θ0

j ), vi is the nominal bus voltage at ith bus, and xij the

reactance of power line (i, j).

In order to apply our analysis method, we firstly need to eliminate the algebraic

equation (7.2). This procedure is typically done by the Kron reduction method (see

e.g., [22]) which generates a reduced, equivalent circuit model of power dynamics,
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but this reduced model does not admit the disturbance from the load side. Since we

assume that the load can also be subject to the disturbance, let us develop another

equivalent model.

Let M ∈ R|N |×|E| be the signed incidence matrix of the graph (N , E), P be the

branch power flow vector, and ωG, ωL be the frequency at the generator bus and

the load bus, respectively. Let nG be the number of generator buses, and nL be

the number of load buses. Then, by partitioning M by M1 =
[
InG 0nL×nL

]
M ,

M2 =
[
0nG×nG InL

]
M , we have

Hω̇G = −DGωG + w1 +M1P

0 = −DLωL + w2 +M2P

Ṗ = −(YM>
1 ωG + YM>

2 ωL),

where H,DG, DL, Y are diagonal matrices whose entries are given by hi, di, yij ac-

cording to the indices of ωG, ωL and P .

From the second equation, we have

ωL = D−1
L (w2 +M2P ),

and by substituting this back

Ṗ = YM>
1 ωG + YM>

2 D
−1
L (w2 +M2P )

= YM>
1 ωG + YM>

2 D
−1
L M2P + YM>

2 D
−1
L w2.

Therefore we obtain the following state space model of the linearized swing dynamics.

d

dt

ωG
P

 =

−H−1DG H−1M1

−YM>
1 −YM>

2 D
−1
L M2


︸ ︷︷ ︸

A

ωG
P


︸ ︷︷ ︸

x

+

H−1 0

0 −YM>
2 D

−1
L


︸ ︷︷ ︸

Bw

w1

w2


︸ ︷︷ ︸

w

Before presenting the output variable we use, let us investigate the stability of
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autonomous dynamics ẋ = Ax. Consider the following Lyapunov function:

V (ωG, P ) :=
1

2

ωG
P

> H 0

0 Y −1

ωG
P

 =
1

2
ω>GHωG +

1

2
P>Y −1P.

Here the first term is the kinetic energy stored in the synchronous generators, and

the second term can be seen as the potential energy in the power network. In fact,

this Lyapunov function is closely related to the energy function used in [5] to analyze

post-fault transient stability of power network. Notice that sinceH and Y are positive

diagonal matrices, the above Lyapunov function is positive definite.

By taking the time derivative of V , we have

dV

dt
=

1

2

ωG
P

>(H 0

0 Y −1

−H−1DG H−1M1

−YM>
1 −YM>

2 D
−1
L M2


+

−DGH
−1 −M1Y

M>
1 H

−1 −M>
2 D

−1
L M2Y

H 0

0 Y −1

)ωG
P


=

ωG
P

> −DG 0

0 −M>
2 D

−1
L M2

ωG
P

 ≤ 0

for all (ωG, P ), since DG, DL are positive diagonal matrices. Therefore, from LaSalle’s

invariance principle (see e.g., [40]), the autonomous system d
dt

ωG
P

 = A

ωG
P

 con-

verges to the invariance set

I := {(ωG, P ) : V̇ (ωG, P ) = 0}.

Notice that V̇ (ωG, P ) = 0 when ωG = 0 and M2P = 0. In addition, from the

dynamics, ω̇G = −DGωG +M1P = 0, we can conclude that M1P = 0 for all elements

in I. Therefore,

I = {(ωG, P ) : ωG = 0,MP = 0}.
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Since MP is the sum of the branch power flow at each node bus, in the invariant set,

the branch power flow is totally balanced at each bus.

In fact, the above invariant set is the null space of A, Ker (A), and the above

Lyapunov function proves that except this 0 eigenvalue, all other eigenvalues of A

have negative real part, i.e., A is marginally stable. Since our proposed analysis tool

assumes that stable A, it may seem prohibitive to apply our tool to linearized swing

dynamics. However it can be shown that this marginally stable mode is uncontrol-

lable. Since we assume that the initial condition is zero, a minimal representation

of linearized swing dynamics, which is stable, can be used. See the appendix of this

chapter for detailed arguments.

For the output variable, since V (ωG, P ) can be seen as the energy stored in the

power network, we use the following choice of the output:

z =

H1/2 0

0 Y −1/2


︸ ︷︷ ︸

C

ωG
P

 ,

so that

∫ t

0

z(τ)∗z(τ)dτ = 2

∫ t

0

V (τ)dτ.

7.2 Case study: New England benchmark power net-

work

In this section, we apply k-sparse H∞ analysis to linearized swing dynamics, then

identify the potential weak spots of the New England 39 bus system [2], a widely used

benchmark power network. In addition, we use Power System Toolbox [16], a more

realistic power system dynamics simulator which captures nonlinear phenomena, to

simulate the New England 39 bus system with disturbances returned by our analysis

tool.
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7.2.1 Power network data

The New England 39 bus system originally used in [2] and all the parameters can be

found online [81] or in the book [61].

Fig. 7.1, 7.2 show the configuration of the New England 39 bus system and active

power flow in MW. As the name suggests, it consists of 39 buses, and 9 of them

contain the synchronous generator, and the 39th bus is connected to the rest of the

US power grid. The totaled sum of supplied power is 61.9293 MW, and consumed

power is 61.5050 MW. Detail operating conditions, as well as system parameters, can

be found in [2], and we attach those parameters to the appendix of this chapter.

Figure 7.1: New England 39 power network configuration. Figure from [81].

7.2.2 Linearized swing dynamics

Although most of the necessary parameters for (A,Bw, C) can be found in the ap-

pendix, the damping terms in the load buses are not provided. In practice, those
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Figure 7.2: Topology of New England 39 power network and active power flow in
MW. Grey nodes are synchronous generator buses.

terms are hard to be found exactly, so we assume a small damping term at each load

bus, di = 0.1 in order to construct (A,Bw, C). All those matrices can be found in the

appendix of this chapter.

For the eigenvalues of A, see Fig. 7.3. There are 7 zero eigenvalues, and real parts

of all other eigenvalues are negative.
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(b) Top 10 eigenvalues of A.

Figure 7.3: Eigenvalues of A in the linearized swing dynamics of the New England
power network. There are 7 of zero eigenvalues coming from Ker (M), and the system
is marginally stable.

We then find the minimal realization of (A,Bw, C). The invariant subspace

Ker (A) is eliminated because it is uncontrollable, and this minimal representation is

stable. See Fig. 7.4 for the eigenvalues of this minimal representation.
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Figure 7.4: Eigenvalues of the system matrix in a minimal realization (A,Bw, C).

However, when we use a semidefinite program to compute H∞ norm, CVX [35]

together with SDPT3 [80] and MOSEK [1], the solvers fail to find a solution although

the system has the H∞ norm as 9.8383, which can be obtained other methods, e.g.,

[7]. We conjecture that this is related to the volume of the relative interior, which

is an empty set when (A,Bw) is not controllable. In order to increase numerical

stability of the interior point method, we apply the balanced model reduction [50] to

the minimal realization.

Fig. 7.5 shows the distribution of Hankel singular values of minimal realization

of (A,Bw, C). We truncate the system after the 21th Hankel singular value, and the

resulting H∞ norm is given by 9.8390. Here the relative error is given by 1%, and we

proceed with our analysis with this truncated system. After this treatment, SDPT3

is able to solve all semidefinite programs for H∞ analysis as well as k-sparse H∞
analysis successfully.

Fig. 7.6 shows the k-sparse H∞ norm obtained from rounding heuristic and H∞
norm of the system. The gap between k-sparse H∞ norm and H∞ norm is almost

negligible even with a relatively small number of disturbance channel.

We also extract the weak spots in the network based on the solution of each k-

sparse H∞ analysis and corresponding disturbance using our algorithm in Chapter 3.

Fig. 7.7 shows the time simulation with the disturbance from each analysis. Since

the extracted worst-case disturbance is always sinusoid, after a transient response,

the frequency deviation settles down to the sinusoidal steady state response.



132

n th Hankel Singular Value
0 10 20 30 40 50

0

1

2

3

4

5
Hankel Singular Values of Minimal Realization
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Figure 7.6: H∞ and k-sparse H∞ norm of the system.

7.2.3 Nonlinear system analysis

In this section, we simulate nonlinear swing dynamics, a more realistic dynamics

model for power grid, of the New England 39 bus system using the Power System

Toolbox [16]. In addition, we apply the worst-case sinusoidal disturbance from 1-

sparse and 3-sparse H∞ analysis of linearized swing dynamics to check the effective-

ness of proposed approach, locating the weak spots of the system. For comparison,
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Figure 7.7: Frequency deviation at each bus in the linearized swing dynamics with
the worst-case disturbance. In the k-sparse H∞ analysis case, the buses subject to
the disturbance are in the legend in each plot.

we also design two additional sinusoidal disturbances. All these disturbances have

the form

w(t) = β cos(θt)w0,

where β controls the size of the disturbance, w0 ∈ R39 with ‖w0‖2 = 1, and θ ∈ R.

We summarize the disturbances in the Table 7.1. Here the value in Bus i is the value

of [w0]i, otherwise [w0]i = 0.

We then apply these disturbances to the system using the Power System Toolbox
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1-Sparse 3-Sparse
θ -0.245 0.3013

Bus 37 1 0.8799
Bus 30 - -0.4593
Bus 25 - -0.1222

1-Arbitrary 3-Arbitrary
θ 0.1 0.1

Bus 1 1 0.8243
Bus 10 - -0.2085
Bus 30 - 0.5264

Table 7.1: Disturbance configurations. The bus value in the table is the value in the
vector w0, otherwise 0.

up to T = 30s. Fig. 7.8 shows the size of the output measured by
√∫ T

t=0
z(t)∗z(t)dt.

The impact of the disturbances from 1-sparseH∞ analysis and the arbitrarily designed

disturbance hitting Bus 1 is negligible compared to the disturbance from 3-sparse H∞
analysis.
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Figure 7.8: Output norm comparison with various disturbance size, β.

As we can see, the disturbance from 3-sparse H∞ analysis has the most significant

impact on the output norm which shows the great potential of proposed approach.

In fact, in the 3-sparse H∞ analysis case, for the large size of disturbance β = 10, the

Power System Toolbox stops the simulation because there is no solution of the power

flow equation. In other words, the system becomes unstable when we apply the large

size of the disturbance from 3-sparse H∞ analysis.

Fig. 7.9 shows the angular velocity of synchronous generators, ωG, and the voltage
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profile at each bus when we apply the disturbance from 3-sparse H∞ analysis with

size β = 1, 10. When the disturbance size is small (β = 1), the system remains stable,

and converges to another equilibrium point, whereas when the size is large (β = 10),

the simulation breaks down after t = 1.0s. As we can see, when β = 10, the bust

voltage starts to collapse, which causes the global instability of the power network.

This phenomena is observed that when we apply the disturbance from 3-sparse H∞
analysis but not when we apply the arbitrarily designed disturbances. This suggests

that the identified buses from 3-sparse H∞ analysis are potential weak spots in the

power network, and if this type of disturbance is expected to happen, the power

system operator should design the additional protection mechanism in order to stop

the voltage collapsing, a potential source of massive black out.
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(a) ωG with β = 1.
Time (s)

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y
 (

H
z
)

60

61

62

63

64

65

66

67

68
Rotor speed of synchronous generators

(b) ωG with β = 10.
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(c) |V | with β = 1.
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(d) |V | with β = 10

Figure 7.9: Angular velocity of synchronous generators, ωG, and the magnitude of bus
voltages, |V |, at each bus when applying the disturbance from 3-sparse H∞ analysis.
With β = 8, the system becomes unstable.

In summary, we identify the 25, 30, 37 buses as the vulnerable spots of New Eng-

land 39 power network as well as the worst-case disturbance using our proposed sparse

H∞ analysis tool, and show that with large size of disturbance, we can collapse the

voltage which may cause the global instability of the corresponding power network.
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This case study suggests that our proposed analysis tool may serve as a tool for ad-

dressing robustness of the power network by identifying vulnerable buses, although

more in-depth study with various real power network operation data is needed to

confirm the effectiveness of our approach.
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Chapter 8

Conclusion and Future work

So far we have developed a novel mathematical foundation for robust control theory.

Based on our new observation on a set of Gramians, extended H∞ analysis is pro-

posed to handle various disturbance models that can be described by the quadratic

information of a system. Moreover, this Gramian based approach is also proven to

be effective for well-connectedness analysis. An SDP duality theory together with

our key lemmas on Gramians gives us a fruitful, rich extension of existing results and

unifies the proofs in an elegant fashion. Therefore, it may be possible to open up new

research directions by leveraging this novel formulation. As one such example, sparse

H∞ analysis is proposed, and its SDP relaxation as well as an optimal controller

synthesis method is developed. Finally, sparse H∞ analysis is used to identify the

potential weak spots in the power networks, and the case study shows the potential

of this approach.

Here are possible future research directions.

• New robustness measure

In H∞ analysis, the objective function is an output norm, which is a linear

function of Gramians and this objective function results in an SDP. Since the

feasible set is convex, any convex function of Gramains results in a convex

program to solve. For example, the following objective

log det

(
∞∑
k=0

x[k]x[k]∗

)
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can be represented by a Gramian V =
∑∞

k=0

x[k]

w[k]

x[k]

w[k]

∗

log det
([
I 0

]
V
[
I 0

]∗)
.

Compared to the norm type objective such as
∑∞

k=0 x[k]∗x[k] = Tr
([
I 0

]
V
[
I 0

]∗)
,

the above log-det objective quantifies the “area” of ellipsoid spanned by the state

x, instead of focusing on the total size of each directions. With the unit norm

disturbance, ‖w‖2 = 1, the corresponding robustness analysis becomes

maximize
V

log det
([
I 0

]
V
[
I 0

]∗)
subject to

[
A B

]
V
[
A B

]∗
=
[
I 0

]
V
[
I 0

]∗
Tr
([

0 I
]
V
[
0 I

]∗)
= 1

V � 0,

(8.1)

which is a max-det optimization [82], which is a convex program that can be

solved using a polynomial time algorithm. In addition, the dual program of

(8.1) is given by

minimize
S,P,λ

λ− log det(S)− n

subject to

A∗PA− P + S A∗PB

B∗PA B∗PB − λI

 � 0

S � 0,

(8.2)

where n is the dimension of the state x. For comparison, consider the dual

program of H∞ analysis with C = In, and D = 0:

minimize
P,λ

λ

subject to

A∗PA− P + C∗C A∗PB

B∗PA B∗PB − λI

 � 0.
(8.3)
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Since C∗C � 0, we can easily see that if we choose S = C∗C in (8.2), then the

(8.2) and (8.3) are equivalent. In this point of view, the adversary not only tries

to design the disturbance to maximize the overall gain of the system, but also

design the output measurement matrix C. In terms of the primal optimization

(8.1), since the goal is to maximize the area of the ellipsoid
∑∞

k=0 x[k]x[k]∗, the

adversary does not know which output is going to be chosen, and so maximizes

the entire area, hoping that any measurements are equally bad. Depending

on the application, this new type of robustness analysis may be useful. Other

objective functions can be used, and as long as the objective is convex in terms

of a Gramian, the corresponding optimization remains as a convex program.

• Efficient algorithm for robustness analysis

Although all the optimization and LMI test in this dissertation in the form

of convex optimization, it heavily relies on the semidefinite programming. A

generic semidefinite programming solver can handle only up to hundreds of

variables. This being said, for a large scale system, the existing off-the-shelf

algorithm may not be an appropriate tool for robustness analysis. Fortunately,

in the KYP lemma case, exploiting special structures in the LMI results in

an efficient algorithm [8, 63]. Therefore, it may be possible to exploit the

structure in the LMI from extended H∞ analysis, sparse H∞ analysis, and well-

connectedness analysis, to design an efficient algorithm. More importantly, if

the system has special properties, such as positivity, it has been shown that the

variables in the LMI can be reduced significantly [78, 66]. Therefore exploiting

structure may allow us more scalable, and efficient algorithm for robustness

analysis.

• Extension to nonlinear systems

For the polynomial system, for example, x[k + 1] = a1x[k] + a2x
2[k] + w[k],

we can also define the Gram matrix V =


〈x2, x2〉 〈x2, x〉 〈x2, w〉

〈x, x2〉 〈x, x〉 〈x,w〉

〈w, x2〉 〈w, x〉 〈w,w〉

 � 0, and
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find a necessary condition for V . In the linear system case, this also provides

a sufficient condition, but in the nonlinear system case, we may have to go up

higher dimension including x3, x4, and so on. This may give us the natural

hierarchical approach to a nonlinear input-output analysis.
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Appendix A

Proof of Lemma 3.1 and 3.3

A.1 Useful facts from linear algebra

The first formula we need is Gelfand’s formula [31], which relates a matrix norm ‖A‖

and the spectral radius ρ(A). The proof can also be found in [44].

Theorem A.1 (Gelfand, 1941): For all A ∈ Cn×n, lim
k→∞
‖Ak‖1/k = ρ(A).

An example of a matrix norm includes the operator norm of A,

‖A‖2,2 = sup
‖x‖2=1

‖Ax‖2 = σmax(A),

where ‖x‖2 =
√
x∗x, and σmax(A) is the maximum singular value of A. Throughout

in this appendix, we shall use this norm for a matrix.

The following observation is also useful.

Proposition A.1: For x, y ∈ Cn, ‖xy∗‖F = ‖x‖2‖y‖2.

Proof: ‖xy∗‖2
F = Tr((xy∗)∗(yx∗)) = ‖x‖2

2‖y‖2
2. �

A.2 Extreme points of DSDP

The following lemma is crucial to analyze the extreme points of DSDP.

Lemma A.1 (Rantzer, 1996): Let F,G complex matrices with same dimensions.

Then FF ∗ = GG∗ if and only if there exists a unitary matrix U such that F = GU .



142

Proof: The original proof can be found in [65], but we present alternative proof

based on singular value decomposition. Since FF ∗ = GG∗, the left singular vectors of

F andG are the same and so are singular values. Therefore F = ULΣU∗F , G = ULΣU∗G,

where UL, UF , UG are unitary matrices. By setting U = UGU
∗
F , we can conclude that

F = GU . For the converse direction, FF ∗ = (GU)(GU)∗ = GUU∗G∗ = GG∗. �

From the above lemma, we can conclude that any non-zero element in DSDP can

be represented as a sum of rank one matrices in DSDP.

Proposition A.2 (Rank one decomposition): For all V ∈ DSDP ⊂ Hnx+nw , there

exists V1, · · · , Vnx+nw ∈ DSDP such that V =
∑nx+nw

k=1 Vk and rank (Vk) ≤ 1 for

k = 1, · · · , nx + nw.

Proof: Suppose V ∈ DSDP. Since V � 0, we can decompose V = V 1/2V 1/2. Then,

from

[
Inx 0nx×nw

]
V 1/2︸ ︷︷ ︸

F

V 1/2
[
Inx 0nx×nw

]∗
︸ ︷︷ ︸

F ∗

=
[
A B

]
V 1/2︸ ︷︷ ︸

G

V 1/2
[
A B

]∗
︸ ︷︷ ︸

G∗

,

there must exist a unitary matrix U such that

[
Inx 0nx×nw

]
V 1/2 =

[
A B

]
V 1/2U.

Being unitary, U =
∑r

k=1 e
iθkuku

∗
k. Let Vk = V 1/2uku

∗
kV

1/2 � 0. Clearly, rank (Vk) ≤

1. Moreover,
∑

k Vk = V 1/2
∑

k uku
∗
kV

1/2 = V 1/2V 1/2 = V .

Finally, since
[
Inx 0nx×nw

]
V 1/2uk =

[
A B

]
V 1/2Uuk = eiθk

[
A B

]
V 1/2uk,

we have
[
Inx 0nx×nw

]
Vk

[
Inx 0nx×nw

]∗
=
[
A B

]
Vk

[
A B

]∗
which shows Vk ∈

DSDP. �

Note that the eigenvalue decomposition of V may not work because there is no guar-

antee that each eigenvector of V is in DSDP.
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A.3 Extreme points of CSDP

The following lemma is crucial to analyze the extreme points of CSDP.

Lemma A.2 (Rantzer, 1996): Let F,G complex matrices with same dimension.

Then FG∗+GF ∗ = 0 if and only if there exists a unitary matrix U such that F +G =

(F −G)U .

Proof: Notice that FG∗+GF ∗ = 0 is equivalent to (F +G)(F +G)∗ = (F −G)(F −

G)∗. Invoking Lemma A.1, we can conclude the proof. �

As in the discrete time case, any element in CSDP can be expressed by a sum of

rank one matrices.

Proposition A.3 (Rank one decomposition): For all V ∈ CSDP ⊂ Hnx+nw , there

exists V1, · · · , Vnx+nw ∈ CSDP such that V =
∑nx+nw

k=1 Vk and rank (Vk) ≤ 1 for k =

1, · · · , nx + nw.

Proof: Suppose V ∈ CSDP. Since V � 0, we can decompose V = V 1/2V 1/2. Then,

from

[
Inx 0nx×nw

]
V 1/2︸ ︷︷ ︸

F

V 1/2
[
A B

]∗
︸ ︷︷ ︸

G∗

+
[
A B

]
V 1/2︸ ︷︷ ︸

G

V 1/2
[
Inx 0nx×nw

]∗
︸ ︷︷ ︸

F ∗

= 0,

there must exist a unitary matrix U such that

[
A+ Inx B

]
V 1/2 =

[
A− Inx B

]
V 1/2U.

Since U is unitary, U =
∑r

k=1 e
iθkuku

∗
k.

Let Vk = V 1/2uku
∗
kV

1/2 � 0. Clearly, rank (Vk) ≤ 1. Moreover,
∑

k Vk =

V 1/2
∑

k uku
∗
kV

1/2 = V 1/2V 1/2 = V . Finally, from

[
A+ Inx B

]
V 1/2uk =

[
A− Inx B

]
V 1/2Uuk = eiθk

[
A− Inx B

]
V 1/2uk,
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we have

([
A+ Inx B

]
V 1/2uk

)([
A+ Inx B

]
V 1/2uk

)∗
=

([
A− Inx B

]
V 1/2uk

)([
A− Inx B

]
V 1/2uk

)∗
.

By rearranging terms, we can conclude that

[
A B

]
Vk

[
Inx 0nx×nw

]∗
+
[
Inx 0nx×nw

]
Vk

[
A B

]∗
= 0,

and this shows Vk ∈ CSDP. �

A.4 Some useful bounds on the size of Ak and eAt

In this section, we will show that for all positive integers p,
∑∞

k=0

∥∥Ak∥∥p
2,2
<∞ when

A is Schur stable, and
∫∞

0

∥∥eAt∥∥p
2,2
dt <∞ when A is Hurwitz stable. These facts are

being used to control the transient error terms in the main proof.

From Gelfand’s formula, Theorem A.1, the following consequence is immediate.

Proposition A.4: Suppose ρ(A) < 1. For all integers p ≥ 1,
∑∞

k=0

∥∥Ak∥∥p
2,2
<∞.

Proof: Let ε = (1−ρ(A))/2 > 0. Then from Theorem A.1, there exists N ∈ N such

that

∥∥Ak∥∥
2,2
< (ρ(A) + ε)k,

for all k ≥ N . Then,

∞∑
k=0

∥∥Ak∥∥p
2,2

=
N∑
k=0

∥∥Ak∥∥p
2,2

+
∞∑

k=N+1

∥∥Ak∥∥p
2,2
<

N∑
k=0

∥∥Ak∥∥p
2,2

+
∞∑

k=N+1

(ρ(A) + ε)kp.

Since ρ(A) + ε < 1, the second term in the last inequality is finite. �

For the continuous time case, we need the following bound on eAt. The summary

of this type of result can also be found in [36].
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Proposition A.5: For a square matrix A, let µ = maxi{Re(λi(A))}, where Re(λi(A))

are the real part of ith eigenvalue of A. Then for any α > µ, there exists a constant

β such that

∥∥eAt∥∥
2,2
≤ βeαt.

Proof: Let the Jordan canonical form of A = TJT−1. Then eAt = TeJtT−1. Recall

that the matrix exponential of the ith Jordan block with the multiplicity k is given

by

eJit = eλit


1 · · · 1

(k−1)!
tk−1

... . . . ...

0 · · · 1

 .

Since Re(λi)−α < 0, we can conclude that lim
t→∞

e−αteJit = 0, and therefore lim
t→∞

e−αteJt =

0. Notice that

∥∥e−αteAt∥∥
2,2

=
∥∥e−αtTeJtT−1

∥∥
2,2
≤ ‖T‖2,2

∥∥T−1
∥∥

2,2

∥∥e−αteJt∥∥
2,2
.

Therefore lim
t→∞

∥∥e−αteAt∥∥
2,2

= 0, and from continuity, there exists β such that

∥∥e−αteAt∥∥
2,2
≤ β. �

The above proposition shows the exponential convergence nature of
∥∥eAt∥∥

2,2
when A

is Hurwitz stable. By leveraging this fact, we can show that
∥∥eAt∥∥

2,2
is in Lp, a set

of pth power integrable functions.

Proposition A.6: Suppose A is Hurwitz stable. For all integers p ≥ 1,
∫∞

0

∥∥eAt∥∥p
2,2
dt <

∞.

Proof: Let µ = maxi{Re(λi(A))}, where Re(λi(A)) are the real part of ith eigen-

value of A. Since A is Hurwitz, µ < 0, we can therefore find α such that µ < α < 0.
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From Proposition A.5, there exists β such that

∥∥eAt∥∥
2,2
≤ βeαt.

Then,

∫ ∞
0

∥∥eAt∥∥p
2,2
dt ≤

∫ ∞
0

βpeαptdt = −β
p

αp
,

since α < 0. �

A.5 Proof of Lemma 3.1

A.5.1 Technical lemmas

In this section, we provide technical results to find a bound on the terms appears in

the proof of our key lemma, Lemma 3.1. Since we only consider a stable LTI system,

the system dynamics A is assumed to be Schur stable. Recall that x = MAB(w), if

x[k + 1] = Ax[k] +Bw[k],

where x[0] = 0, x[k] ∈ Cnx , w[k] ∈ Cnw .

The first result concerns a finite truncation of Λ(u):

ΛN(u) =
N−1∑
k=0

u[k]u[k]∗.

Proposition A.7: Suppose w has finite number of non-zero entries. For any ε > 0,

there exists N ∈ N, such that for all n ≥ N ,

‖Λ(MAB(w),w)− Λn(MAB(w),w)‖F < ε.
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Proof: Let x = MABw, and T = argmin{T : w[k] = 0, for all k ≥ T}. Then

x[k] = Ak−Tx[T ] for all k ≥ T .

For N ≥ T , we have

‖Λ(MAB(w),w)− ΛN(MAB(w),w)‖F =

∥∥∥∥∥
∞∑
k=N

Ak−Tx[T ](Ak−Tx[T ])∗

∥∥∥∥∥
F

≤
∞∑
k=N

‖Ak−Tx[T ]‖2
2 ≤ ‖AN−Tx[T ]‖2

2

∞∑
k=0

∥∥Ak∥∥2

2,2
.

From Proposition A.4,
∑∞

k=0

∥∥Ak∥∥2

2,2
<∞. Therefore

lim
N→∞

‖Λ(MAB(w),w)− ΛN(MAB(w),w)‖F = 0,

since lim
N→∞

‖AN−Tx[T ]‖2
2 = 0. �

Recall that any signal in x ∈ l2, limk→∞ ‖x[k]‖2 = 0. Therefore, the infinity norm

‖x‖∞ = maxk ‖x[k]‖2 <∞.

Proposition A.8: Let x,w ∈ l2, and y ∈ l2 such that y[k] = Aky0 for all k ≥ 0.

Then there exists a constant C such that

‖Λ(x + y,w)− Λ(x,w)‖ ≤ C max{(|x‖∞ + ‖w‖∞)‖y0‖2, ‖y0‖2
2}.
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Proof: Notice that,

‖Λ(x + y,w)− Λ(x,w)‖F

=

∥∥∥∥∥∥
∞∑
k=0

x[k] + y[k]

w[k]

x[k] + y[k]

w[k]

∗ −
x[k]

w[k]

x[k]

w[k]

∗∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∞∑
k=0

y[k]

0

x[k]

w[k]

∗ +

x[k]

w[k]

y[k]

0

∗ +

y[k]

0

y[k]

0

∗∥∥∥∥∥∥
F

≤
∞∑
k=0

2

∥∥∥∥∥∥
y[k]

0

x[k]

w[k]

∗∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
y[k]

0

y[k]

0

∗∥∥∥∥∥∥
F

=
∞∑
k=0

2‖y[k]‖2

√
‖x[k]‖2

2 + ‖w[k]‖2
2 + ‖y[k]‖2

2.

Since x,w ∈ l2, we have

√
‖x[k]‖2

2 + ‖w[k]‖2
2 ≤ ‖x‖∞ + ‖w‖∞,

for all k. Moreover, since y[k] = Aky0, we have

‖Λ(x + y,w)− Λ(x,w)‖F

≤
∞∑
k=0

2(|x‖∞ + ‖w‖∞)‖Aky0‖2 + ‖Aky0‖2
2

≤
∞∑
k=0

2(|x‖∞ + ‖w‖∞)
∥∥Ak∥∥

2,2
‖y0‖2 +

∥∥Ak∥∥2

2,2
‖y0‖2

2

≤ C max{(‖x‖∞ + ‖w‖∞)‖y0‖2, ‖y0‖2
2},

where C =
∑∞

k=0 2‖Ak‖2+
∥∥Ak∥∥2

2,2
. From Proposition A.4, C <∞, and this concludes

the proof. �

A.5.2 Proof of Lemma 3.1

Now we are ready to prove Lemma 3.1. The main idea of the proof is as follows.

• Firstly, we will show that any rank one matrix in DSDP can be generated by a
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Input 1 State 1 Input 2 State 2

Figure A.1: Examples of inputs and states for V in Proposition A.9. By controlling
the size of the input, the contribution from the transient response can be made small.

sinusoidal input w. However since sinusoids are not in l2, we construct an l2

signal which approximates the sinusoidal input using finite number of non-zero

entries. In H∞ analysis [25], the worst case signal is sinusoid which is not in l2.

So one has to approximate this sinusoid using an l2 signal and the supremum is

not achieved. Therefore, this procedure should not be surprising.

• For a matrix in DSDP with arbitrary rank, we use Proposition A.2 to decompose

it to rank one matrices in DSDP. Since rank one matrices in DSDP can be

approximated by an input with finite non-zero entries, we pad them together to

approximate the target matrix in DSDP. This padding idea also has been used

in robustness analysis with linear time-varying uncertainty [74].

Input 1 + 2

State 1 + 2

Figure A.2: Example of inputs and states for V in Lemma 3.1. By padding inputs,
we can approximate a matrix in DSDP arbitrarily close.
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Proposition A.9: Suppose V ∈ DSDP, and rank (V ) ≤ 1. Then for all ε > 0, there

exists w with a finite number of non-zero entries such that

‖Λ(Mw,w)− V ‖F < ε (A.1)

Λ(w) =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
. (A.2)

Proof: Suppose V = 0. Then w = 0 satisfies (A.1) - (A.2).

Now, suppose V ∈ DSDP and rank (V ) = 1. Then there exists xs, ws such that

V =

xs
ws

xs
ws

∗. Since V ∈ DSDP, we have

[
A B

]xs
ws


︸ ︷︷ ︸

f

xs
ws

∗ [A B
]∗

︸ ︷︷ ︸
f∗

=
[
Inx 0nx×nw

]xs
ws


︸ ︷︷ ︸

g

xs
ws

∗ [Inx 0nx×nw

]∗
︸ ︷︷ ︸

g∗

,

and from Lemma A.1, there exists θ ∈ R such that eiθxs = Axs +Bws.

Let wN be

wN [k] =


1√
N
eiθkws if 0 ≤ k < N

0 if N ≤ k.

Then wN hasN number of non-zero entries. In addition, Λ(wN) =
∑∞

k=0wN [k]wN [k]∗ =∑N−1
k=0 wN [k]wN [k]∗ = wsw

∗
s =

[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
, and therefore wN sat-

isfies (A.2).

For x = MAB(wN), let us define the following signals, xp and xh:

xp[k] =


1√
N
eiθkxs if 0 ≤ k < N

1√
N
Ak−NeiθNxs if N ≤ k,

xh[k] = − 1√
N
Akxs,
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where xp is the particular solution due to the input wN , and xh is the homogeneous

solution due to the initial condition x[0] = 0. We can easily check x = xp + xh by

substituting it to x[k + 1] = Ax[k] +Bw[k].

Notice that

ΛN(xp,wN) =
N−1∑
k=0

 xp[k]

wN [k]

 xp[k]

wN [k]

∗ =
1

N

N−1∑
k=0

xs
ws

xs
ws

∗ = V.

Therefore,

‖Λ(xp,wN)− V ‖F =

∥∥∥∥∥∥
∞∑
k=N

 xp[k]

wN [k]

 xp[k]

wN [k]

∗∥∥∥∥∥∥
F

≤ 1

N

∞∑
k=0

∥∥∥∥∥∥
Akxs

0

Akxs
0

∗∥∥∥∥∥∥
F

≤ 1

N

∞∑
k=0

‖Akxs‖2
2

≤
∞∑
k=0

∥∥Ak∥∥2

2,2︸ ︷︷ ︸
C1

‖xs‖2
2

N
,

where C1 <∞ from Proposition A.4. Finally,

‖Λ(x,wN)− V ‖F = ‖Λ(xp + xh,wN)− V ‖F
(a)

≤ ‖Λ(xp,wN)− V ‖F + ‖Λ(xp + xh,wN)− Λ(xp,wN)‖F
(b)

≤ C1
‖xs‖2

2

N
+ C2 max{(‖xp‖∞ + ‖wN‖∞)‖xh[0]‖2, ‖xh[0]‖2

2},

for some positive constant C2 < ∞. Here (a) is from the triangle inequality and (b)

is from Proposition A.8.

Since the initial condition of the homogenous solution xh[0] = − 1√
N
xs, we have

‖xh[0]‖2 = 1√
N
‖xs‖2. In addition, from the definition of xp, we can easily see that

‖xp‖∞ ∝ 1√
N
. By combining all these bounds, we can conclude that there exists a

positive constant C which only depends on A, xs, ws such that

‖Λ(MAB(wN),wN)− V ‖F ≤
C

N
.
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Therefore, lim
N→∞

‖Λ(MAB(w)N ,wN)− V ‖F = 0. �

Now we are ready to present the proof of our key lemma, Lemma 3.1, which

considers V with an arbitrary rank.

Proof (Proof of Lemma 3.1): From Proposition A.2, V =
∑n+m

i=1 Vi where Vi ∈

DSDP, and rank (Vi) ≤ 1. Let us rearrange these terms, so that V =
∑r

i=1 Vi where

rank (Vi) = 1. We now use an induction argument on r, that is there exists w with

finite non-zero entries such that

‖Λ(MAB(w),w)− V ‖F < ε[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
= Λ(w),

for all ε > 0.

Suppose r ≤ 1, then from Proposition A.9, the proof is done.

Assume the induction hypothesis holds. Then for
∑r−1

i=1 Vi ∈ DSDP, there exists w̃

with finite non-zero entries such that∥∥∥∥∥Λ(MAB(w̃), w̃)−
r−1∑
i=1

Vi

∥∥∥∥∥
F

<
1

4
ε,

Λ(w̃) =
r−1∑
i=1

[
0nw×nx Inw

]
Vi

[
0nw×nx Inw

]∗
.

Similarly, for Vr ∈ DSDP, there exists ŵ with finite non-zero entries such that

‖Λ(Mŵ, ŵ)− Vr‖F <
1

4
ε,

Λ(ŵ) =
[
0nw×nx Inw

]
Vr

[
0nw×nx Inw

]∗
.

Let T = argmin{T : w̃[k] = 0, for all k ≥ T}. From Proposition A.7, we can find

N1 such that

‖Λ(MAB(w̃), w̃)− Λn+T (MAB(w̃), w̃)‖F <
1

4
ε,
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for all n ≥ N1.

Consider the following signal w

w[k] =

w̃[k] if 0 ≤ k < N + T

ŵ[k −N − T ] if N + T ≤ k,

where N ≥ N1. Clearly, w has a finite number of non-zero entries, and Λ(w) =

Λ(w̃) + Λ(ŵ), which shows

Λ(w) =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
.

Let x̃ = MAB(w̃), x̂ = MAB(ŵ), and x = MAB(w). Then,

x[k] =


x̃[k] if 0 ≤ k < T

Ak−T x̃[T ] if T ≤ k < N + T

x̂[k −N − T ] + Ak−T x̃[T ] if N + T ≤ k.

Notice that

Λ(x,w) = ΛN+T (x̃, w̃)

+
∞∑

k=N+T

x̂[k −N − T ] + Ak−T x̃[T ]

ŵ[k −N − T ]

x̂[k −N − T ] + Ak−T x̃[T ]

ŵ[k −N − T ]

∗
= ΛN+T (x̃, w̃) + Λ(x̂ + y, ŵ),

where y[k] = Ak+N x̃[T ].
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Therefore,

‖Λ(x,w)− V ‖F

≤

∥∥∥∥∥ΛN+T (x̃, w̃)−
r−1∑
i=1

Vi

∥∥∥∥∥
F

+ ‖Λ(x̂ + y, ŵ)− Vr‖F

≤ ‖ΛN+T (x̃, w̃)− Λ(x̃, w̃)‖F +

∥∥∥∥∥Λ(x̃, w̃)−
r−1∑
i=1

Vi

∥∥∥∥∥
F

+ ‖Λ(x̂ + y, ŵ)− Λ(x̂, ŵ)‖F + ‖Λ(x̂, ŵ)− Vr‖F

≤ 3

4
ε+ C max{(|x̂‖∞ + ‖ŵ‖∞)‖y[0]‖2, ‖y[0]‖2

2},

where the first and second inequalities are from the triangle inequality, and the last

inequality is from Proposition A.8.

Notice that x̂, ŵ do not depend on N , the spacing between w̃ and ŵ in w, whereas

‖y[0]‖2 = ‖AN x̃[T ]‖. Therefore, the second term in the last inequality goes to zero as

N →∞, and by taking sufficiently large N , we can bound the last term by 1
4
ε. Now

it is easy to see that Ṽ = Λ(x,w) gives the result. �

Remark A.1: The above proof constructs an input w which approximates V ∈ DSDP.

In terms of optimization, once we obtain the optimal solution V ? ∈ DSDP, we can

always find an input w ∈ l2 that achieves the same optimal value in the limit.

A.6 Proof of Lemma 3.3

We basically need to modify the previous result to the continuous-time setting, but

the proof strategy is identical.

A.6.1 Technical lemmas

For a Hurwtiz stable A, recall that x = MAB(w) if

dx(t)

dt
= Ax(t) +Bw(t),
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where x(0) = 0.

Likewise, the first result considers the finite truncation of Λ(u):

ΛT (u) =

∫ T

0

u(t)u(t)∗dt.

Proposition A.10: Suppose w ∈ L2 has finite support. Then, for any ε > 0, there

exists T ≥ 0, such that for all t ≥ T ,

‖Λ(MAB(w),w)− Λt(MAB(w),w)‖F < ε.

Proof: Let x = MAB(w), and τ = argmin{τ : w(t) = 0, for all t ≥ τ}. Then

x(t) = eA(t−τ)x(τ), for all t ≥ τ .

For T ≥ τ , we have

‖Λ(MAB(w),w)− ΛT (MAB(w),w)‖F

=

∥∥∥∥∫ ∞
T

eA(t−τ)x(τ)x(τ)∗eA
∗(t−τ)dt

∥∥∥∥
F

≤
∫ ∞
T

∥∥eA(t−τ)x(τ)
∥∥2

2
dt

≤
∥∥eA(T−τ)x(τ)

∥∥2

2

∫ ∞
0

∥∥eAt∥∥2

2,2
dt.

From Proposition A.6,
∫∞

0

∥∥eAt∥∥2

2,2
dt <∞. Therefore

lim
T→∞

‖Λ(MAB(w),w)− ΛT (MAB(w),w)‖F = 0,

and together with continuity, this concludes the proof. �

Recall that any signal in x ∈ L2, the infinity norm ‖x‖∞ = ess. supt‖x(t)‖2 is

finite.

Proposition A.11: Let x,w ∈ L2, and y ∈ L2 such that y(t) = eAty0 for all t ≥ 0.
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Then there exists a constant C such that

‖Λ(x + y,w)− Λ(x,w)‖

≤ C max{(|x‖∞ + ‖w‖∞)‖y0‖2, ‖y0‖2
2}.

Proof: Notice that,

‖Λ(x + y,w)− Λ(x,w)‖F

=

∥∥∥∥∥∥
∫ ∞

0

x(t) + y(t)

w(t)

x(t) + y(t)

w(t)

∗ −
x(t)

w(t)

x(t)

w(t)

∗ dt
∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∫ ∞
t=0

y(t)

0

x(t)

w(t)

∗ +

x(t)

w(t)

y(t)

0

∗ +

y(t)

0

y(t)

0

∗ dt
∥∥∥∥∥∥
F

≤
∫ ∞

0

2

∥∥∥∥∥∥
y(t)

0

x(t)

w(t)

∗∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
y(t)

0

y(t)

0

∗∥∥∥∥∥∥
F

dt

=

∫ ∞
0

2‖y(t)‖2

√
‖x(t)‖2

2 + ‖w(t)‖2
2 + ‖y(t)‖2

2dt.

Since x,w ∈ L2, we have

ess. supt
√
‖x(t)‖2

2 + ‖w(t)‖2
2 ≤ ‖x‖∞ + ‖w‖∞.

Moreover, since y(t) = eAty0, we have

‖Λ(x + y,w)− Λ(x,w)‖F

≤
∫ ∞

0

2(|x‖∞ + ‖w‖∞)‖eAty0‖2 + ‖eAty0‖2
2dt

≤
∫ ∞

0

2(|x‖∞ + ‖w‖∞)
∥∥eAt∥∥

2,2
‖y0‖2 +

∥∥eAt∥∥2

2,2
‖y0‖2

2dt

≤ C max{(|x‖∞ + ‖w‖∞)‖y0‖2, ‖y0‖2
2},

where C =
∫∞

0
2
∥∥eAt∥∥

2,2
+
∥∥eAt∥∥2

2,2
dt. From Proposition A.6, it is clear that C <∞.�
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A.6.2 Proof of Lemma 3.3

Now we are ready to prove Lemma 3.3.

Proposition A.12: Suppose V ∈ CSDP, and rank (V ) ≤ 1. Then for all ε > 0, there

exists w with finite support such that

‖Λ(MAB(w),w)− V ‖F < ε (A.3)

Λ(w) =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
. (A.4)

Proof: Suppose V = 0. Then w = 0 satisfies (A.3) - (A.4).

Now, consider V ∈ CSDP such that rank (V ) = 1. Then there exists xs, ws such

that V =

xs
ws

xs
ws

∗. Since V ∈ CSDP, we have

[
A B

]xs
ws


︸ ︷︷ ︸

f

xs
ws

∗ [Inx 0nx×nw

]∗
︸ ︷︷ ︸

g∗

+
[
Inx 0nx×nw

]xs
ws


︸ ︷︷ ︸

g

xs
ws

∗ [A B
]∗

︸ ︷︷ ︸
f∗

= 0,

and from Lemma A.2, there exists θ ∈ R such that Axs+Bws+xs = eiθ(Axs+Bws−

xs). In other words, (eiθ + 1)xs = (eiθ − 1)(Axs +Bws).

Firstly, let us consider the case where θ 6= 0. In this case, eiθ+1
eiθ−1

xs = Axs + Bws.

In addition, since eiθ+1
eiθ−1

is purely imaginary, let ω = Im
(
eiθ+1
eiθ−1

)
, then

iωxs = Axs +Bws.

Let us define wN

wT (t) =


1√
T
ejωtws if 0 ≤ t < T

0 if T ≤ t.
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It is easy to see that Λ(w) =
∫∞

0
w(t)w(t)∗dt = wsw

∗
s , and therefore w satisfies (3.15).

For x = MAB(w), let us define xp and xh such that

xp(t) =


1√
T
ejωtxs if 0 ≤ t < T

1√
T
eA(t−T )ejωTxs if T ≤ t,

xh(t) = − 1√
T
eAtxs,

then x = xp + xh. Notice that

ΛT (xp,wT ) =

∫ T

0

xp(t)
wT (t)

xp(t)
wT (t)

∗ dt
=

1

T

∫ T

0

xs
ws

xs
ws

∗ dt = V

and this shows

‖Λ(xp,wT )− V ‖F =

∥∥∥∥∥∥
∫ ∞
T

xp(t)
wT (t)

xp(t)
wT (t)

∗ dt
∥∥∥∥∥∥
F

≤ 1

T

∫ ∞
T

∥∥∥∥∥∥
eAtxs

0

eAtxs
0

∗∥∥∥∥∥∥
F

dt

≤ 1

T

∫ ∞
T

‖eA(t−T )xs‖2
2dt

≤ 1

T
‖xs‖2

2

∫ ∞
0

∥∥eAt∥∥2

2,2
dt︸ ︷︷ ︸

C1

.

Here C1 <∞ from Proposition A.6. Now we have

‖Λ(x,wT )− V ‖F = ‖Λ(xp + xh,wT )− V ‖F
(a)

≤ ‖Λ(xp,wT )− V ‖F + ‖Λ(xp + xh,wT )− Λ(xp,wT )‖F
(b)

≤ C1
‖xs‖2

2

T
+ C2 max{(|xp‖∞ + ‖wT‖∞)‖xh(0)‖2, ‖xh(0)‖2

2},
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for some positive constant C2. Here, (a) is from the triangle inequality and (b) is from

Proposition A.11. Recall that ‖xp‖∞ ∝ 1√
T
, ‖wT‖∞ = 1√

T
‖ws‖, ‖xh(0)‖2 = 1√

T
‖xs‖.

Therefore,

max{(|xp‖∞ + ‖wT‖∞)‖h0‖2, ‖h0‖2
2} ∝

1

T
.

By combining all these bounds, we can conclude that there exists a positive constant

C which only depends on A, xs, ws such that

‖Λ(x,wT )− V ‖F ≤
C

T
.

Therefore

lim
T→∞

‖Λ(x,wT )− V ‖F = 0,

and this concludes the proof for θ 6= 0.

Now consider the case θ = 0. Then, Axs + Bws + xs = eiθ(Axs + Bws − xs)

implies xs = 0. This shows the rank one matrix V =

 0

ws

 0

ws

∗ for some ws. In

fact, θ = 0 corresponds to ω = +∞. So the main idea is to choose large enough ω to

approximate +∞.

Since A is Hurwitz stable, iωI − A is invertible for all ω ∈ R. Let x̂s =

(iωI − A)−1Bws, and V̂ =

x̂s
ws

x̂s
ws

∗ � 0. Then V̂ ∈ CSDP, and rank (V ) ≤ 1.

Furthermore, there exists θ̂ 6= 0 such that ω = sin θ̂

cos θ̂−1
. Therefore, we can apply the

construction in the case θ 6= 0 (ω 6= +∞) to find w with finite support such that

‖Λ(MAB(w),w)− V̂ ‖F < ε
2
and satisfies (A.4).

Finally, notice that

‖V̂ − V ‖F =

∥∥∥∥∥∥
x̂sx̂∗s x̂sw

∗
s

wsx̂
∗
s 0

∥∥∥∥∥∥
F

≤ ‖x̂s‖2
2 + 2‖x̂s‖2‖ws‖2.
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Since lim
ω→∞

‖(iωI − A)−1‖2,2 = 0, and ‖x̂s‖2 ≤ ‖iωI − A)−1‖2,2 ‖Bws‖2, there exists ω

such that ‖V̂ − V ‖F < 1
2
ε.

Therefore, we can conclude that

‖Λ(MAB(w),w)− V ‖F ≤ ‖Λ(MAB(w),w)− V̂ ‖F + ‖V̂ − V ‖F < ε. �

Now we are ready to prove Lemma 3.3.

Proof (Proof of Lemma 3.3): From Proposition A.3, we can decompose V =∑
i=1 Vi where Vi ∈ CSDP, and rank (Vi) ≤ 1. Let us rearrange these terms, so that

V =
∑r

i=1 Vi, where rank (Vi) = 1. We now use an induction on r, that is, for any r

and ε > 0, there exists w with finite support such that

‖Λ(MAB(w),w)− V ‖F < ε (A.5)

Λ(w) =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
. (A.6)

Suppose r ≤ 1, then from Proposition A.12, the proof is done.

Now assume the induction hypothesis holds. Then for
∑r−1

i=1 Vi ∈ CSDP, there

exists w̃ with a finite support such that (A.5) with ε
4
and (A.6) hold. Similarly, for Vr

let ŵ satisfies (A.5)-(A.6). Let τ = argmax{τ : w̃(t) = 0, for all t ≥ τ}. Then from

Proposition A.10, there exists T such that for all t ≥ T ,

‖Λ(Mw̃, w̃)− Λt(Mw̃, w̃)‖ < 1

4
ε.

Consider the following signal wN :

wN(t) =

w̃(t) if 0 ≤ t < N + T

ŵ(t−N − T ) if N + T ≤ t.

Clearly, wN has finite support, and Λ(wN) = Λ(w̃) + Λ(ŵ), which shows

Λ(wN) =
[
0nw×nx Inw

]
V
[
0nw×nx Inw

]∗
.
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Now, let x̃ = Mw̃, x̂ = Mŵ, and xN = MAB(w). Then,

xN(t) =


x̃(t) if 0 ≤ t < T

eA(t−T )x̃(T ) if T ≤ t < N + T

x̂(t−N − T ) + eA
(t−T )x̃(T ) if N + T ≤ t.

Notice that

Λ(x,w)

= ΛN+T (x̃, w̃)

+

∫ ∞
N+T

x̂(t−N − T ) + eA(t−T )x̃(T )

ŵ(t)

x̂(t−N − T ) + eA(t−T )x̃(T )

ŵ(t)

∗
= ΛN+T (x̃, w̃) + Λ(x̂ + y, ŵ),

where y(t) = eA(t+N)x̃(T ).

Finally,

‖Λ(xN ,wN)− V ‖F
(a)

≤

∥∥∥∥∥ΛN+T (x̃, w̃)−
r−1∑
i=1

Vi

∥∥∥∥∥
F

+ ‖Λ(x̂ + y, ŵ)− Vr‖F

(b)

≤ ‖ΛN+T (x̃, w̃)− Λ(x̃, w̃)‖F +

∥∥∥∥∥Λ(x̃, w̃)−
r−1∑
i=1

Vi

∥∥∥∥∥
F

+ ‖Λ(x̂ + y, ŵ)− Λ(x̂, ŵ)‖F + ‖Λ(x̂, ŵ)− Vr‖F
(c)

≤ 3

4
ε+ C max{(|x̂‖∞ + ‖ŵ‖∞)‖y(0)‖2, ‖y(0)‖2

2},

where (a) and (b) are from the triangle inequality, and (c) is from Proposition A.11.

Therefore,

lim
N→
‖Λ(MAB(wN),wN)− V ‖F = 0,

and this concludes the proof. �
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Appendix B

Proof of results in Chapter 5

B.1 Proof of Proposition 5.2

The proof of Proposition 5.2 relies on the compactness of the feasible set of the

optimization (5.2). Recall that the feasible set of (5.2) is the closure of the following

set

Fgram =



{V : V ∈ DGram,

0np×nx 0np×nq Inp

0nq×nx Inq 0nq×np

V
0np×nx 0np×nq Inp

0nq×nx Inq 0nq×np


∗

∈ F∆} Discrete time

{V : V ∈ CGram,

0np×nx 0np×nq Inp

0nq×nx Inq 0nq×np

V
0np×nx 0np×nq Inp

0nq×nx Inq 0nq×np


∗

∈ F∆} Continuous time,

where

F∆ = {Z ∈ H : Ai∆(Z) � 0, i = 1, · · · , na,

Bi∆(Z) = 0, i = 1, · · · , nb,

Tr(Z11) = 1}.

Here, F∆ is being used for the constraint (p,q) ∈ R∆ and ‖p‖2
2 = Tr(Z11) = 1.

The following proposition states that Fgram is bounded.

Proposition B.1: Fgram is bounded.
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Proof: Let V ∈ Fgram. Then there exists a signal triplet (x,p,q) and ∆ ∈ ∆ such

that

V = Λ(x,q,p)

x = Mq

q = ∆p

‖p‖2 = 1.

Since ‖∆‖2,2 ≤ α∆, we have

‖q‖2 ≤ α∆.

In addition, since M is stable, ‖M‖2,2 = β <∞ (see e.g., [26]), and

‖x‖2 ≤ β‖q‖ ≤ α∆β.

Therefore,

Tr(V ) = Tr(Λ(x,q,p)) = ‖x‖2
2 + ‖q‖2

2 + ‖p‖2
2 ≤ α∆β + α∆ + 1 <∞,

which concludes the proof. �

Now we are ready to present the proof.

Proposition B.2: η∆(M) = 0 if and only if there exists V in the feasible set of (5.2)

such that

Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
= 0.

Proof: Since the feasible set of (5.2) is the closure of Fgram, the feasible set of (5.2)

is compact. Since the optimal value of (5.2) is bounded below by 0, from the extreme

value theorem (see e.g., [68]), we can conclude that (5.2) has the solution. �
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B.2 Proof of Proposition 5.3

This section contains the proof of Proposition 5.3.

Proposition B.3: For all V in the feasible set of (5.2) such that (5.4) holds, there

exists W such that

V =


Inx 0nx×nq

0nq×nx Inq

C D

W


Inx 0nx×nq

0nq×nx Inq

C D


∗

.

Proof: Recall that any V in the feasible set of (5.2) is positive semidefinite. Let us

decompose V =
∑

k


xk

qk

pk



xk

qk

pk


∗

. Here xk, qk, pk are vectors, not signals. Then from

(5.4),

Tr
([
C D −Inp

]
V
[
C D −Inp

]∗)
= 0,

we have

∑
k

‖Cxk +Dqk − pk‖2
2 = 0,

which implies Cxk +Dqk = pk. Therefore,

V =
∑
k


xk

qk

Cxk + qk




xk

qk

Cxk +Dqk


∗

=


Inx 0nx×nq

0nq×nx Inq

C D


∑

k

xk
qk

xk
qk

∗
︸ ︷︷ ︸

W


Inx 0nx×nq

0nq×nx Inq

C D


∗

. �
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B.3 Proof of Proposition 5.7

Proposition B.4: [26] There exists ‖∆‖2,2 ≤ 1 such that q = ∆p if and only if

‖q‖2 ≤ ‖p‖2.

Proof: Suppose there exists ‖∆‖2,2 ≤ 1. Then,

‖q‖2 = ‖∆p‖2 ≤ ‖∆‖2,2 ‖p‖2 ≤ ‖p‖2.

Conversely, suppose ‖q‖2 ≤ ‖p‖2. For p 6= 0, let ∆(r) = 〈p,r〉
‖p‖22

q. Then ∆(p) = q, and

‖∆‖2,2 = sup
‖r‖2=1

‖∆(r)‖2 = sup
‖r‖2=1

∥∥∥∥〈p, r〉‖p‖2
2

q

∥∥∥∥
2

= sup
‖r‖2=1

∣∣∣∣〈p, r〉‖p‖2
2

∣∣∣∣ ‖q‖2

≤ sup
‖r‖2=1

‖r‖2‖p‖2

‖p‖2
2

‖q‖2 ≤
‖q‖2

‖p‖2

≤ 1.

If p = 0, then q = 0 and ∆ = 0. �

B.4 Proof of Proposition 5.8

Firstly, let us consider the following result.

Proposition B.5: Let u, v ∈ Cn. Then the following statements are equivalent.

(i) u∗u ≥ v∗v and u∗v = v∗u.

(ii) There exists H ∈ Cn×n such that H = H∗, ‖H‖2,2 ≤ 1, and v = Hu.

Proof: (ii) ⇒ (i) is easy to check. So let us consider (i) ⇒ (ii). If u∗u = 0, then

H = 0 satisfies (ii).

Now suppose u∗u > 0. Without loss of generality, we can assume u∗u = 1.

Otherwise we can scale ũ = u
‖u‖2 , ṽ = v

‖u‖2 , and H̃ = H
‖u‖2 .

Let α = u∗v. Then ᾱ = u∗v = v∗u = u∗v = α, which shows α is a real scalar. In

addition, |α| = |u∗v| ≤ ‖u‖2‖v‖2 ≤ 1, since ‖v‖2 ≤ ‖u‖2 = 1.
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Consider r = v− αu. Clearly, r∗u = 0, i.e., r and u are orthogonal to each other.

If r = 0, then v = αu, and H := αuu∗ satisfies (ii). Suppose r 6= 0, then the following

choice of H,

H := α

(
uu∗ − rr∗

r∗r

)
+ ur∗ + ru∗,

satisfies (ii). The reason is as follows. Firstly, since α is real, H∗ = H. In addition,

since r∗u = 0, Hu = αu+ r = v. Lastly,

H2 = (αuu∗ − α

r∗r
rr∗ + ur∗ + ru∗)(αuu∗ − α

r∗r
rr∗ + ur∗ + ru∗)

= α2uu∗ + αur∗ +
α2

r∗r
rr∗ − αru∗ − αur∗ + (r∗r)uu∗ + αru∗ + rr∗

= (r∗r + α2)uu∗ +
r∗r + α2

r∗r
rr∗.

Since r∗r = (v − αu)∗(v − αu) = v∗v − α2, we have

H2 = (v∗v)uu∗ + (v∗v)
r

‖r‖2

r∗

‖r‖2

,

which shows that the maximum singular values of H is ‖v‖2
2. Since ‖v‖2 ≤ ‖u‖2 = 1,

we can conclude that ‖H‖2,2 ≤ 1. �

Now we are ready to present the proof.

Proposition B.6: There exists ‖∆‖2,2 ≤ 1,∆ = ∆∗ such that q = ∆p if and only if

‖q‖2 ≤ ‖p‖2 and 〈p,q〉 = 〈q,p〉.

Proof: Suppose q = ∆p where ∆ ∈ ∆. Then from Proposition 5.7, ‖q‖2 ≤ ‖p‖2.

Moreover, 〈q,p〉 = 〈∆p,p〉 = 〈p,∆∗p〉 = 〈p,∆p〉 = 〈p,q〉.

Conversely, consider an orthonormal basis V for T := span{p,q}, subspace of l2 or

L2. Let d = dim T ≤ 2, and LV : T → Cd be a coordinate representation of a vector

in T with respect to the basis V . For u = LV(p), v = LV(q), since V is an orthonormal

basis, we have u∗u ≥ v∗v and u∗v = v∗u. Therefore from Proposition B.5, there exists

H such that ‖H‖2,2 ≤ 1, H = H∗, and v = Hu. Then for ∆T := L−1
V HLV , we have
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‖∆T ‖ ≤ 1,∆T = ∆∗T and ∆T (p) = q. We can extend the linear operator ∆T to the

entire space using the projection operator ΠT : l2 → T . Let

∆(r) = ∆T (ΠT (r)).

It is routine to check ∆ satisfies (ii). �

B.5 Proof of Proposition 5.9

Proposition B.7: There exists ‖∆‖2,2 ≤ 1,∆ + ∆∗ = 0 such that q = ∆p if and

only if ‖q‖2 ≤ ‖p‖2 and 〈p,q〉+ 〈q,p〉 = 0.

Proof: Suppose q = ∆p. Then ‖q‖2 = ‖∆p‖2 ≤ ‖∆‖2,2 ‖p‖2 ≤ ‖p‖2. Morover,

〈p,q〉 = 〈p,∆p〉 = 〈∆∗p,p〉 = −〈∆p,p〉 = −〈q,p〉, which shows 〈p,q〉+ 〈q,p〉 = 0.

For the converse direction, suppose ‖q‖2 ≤ ‖p‖2 and 〈p,q〉+〈q,p〉 = 0. Consider

q̃ = iq. Then ‖q̃‖2 ≤ ‖p‖2, and 〈p, q̃〉 = 〈q̃,p〉. From Proposition 5.8, there exists

∆̃ such that ‖∆̃‖ ≤ 1, q̃ = ∆̃p, and ∆̃∗ = ∆̃. By setting ∆ = −i∆̃, we can conclude

the proof. �

B.6 Proof of Proposition 5.10

Like in Self-adjoint LTV case, the following auxiliary result turns out to be useful.

Proposition B.8: Let F,G ∈ Cn×m. Then the following statements are equivalent.

(i) F ∗F � G∗G.

(ii) There exists H ∈ Cn×n such that ‖H‖2,2 ≤ 1, and G = HF .

Proof: Following proof is from [65].

For (ii) ⇒ (i), notice that

‖Gx‖2 = ‖HFx‖2 ≤ ‖Fx‖2,
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for all x, which shows x∗G∗Gx ≤ x∗F ∗Fx.

For (i) ⇒ (ii), since F ∗F � G∗G, there exists a matrix X such that G∗G =

F ∗F +X∗X. This shows F
X

∗ F
X

 =

G
0

∗ G
0

 ,

and from Lemma A.1, there exists an unitary matrix U =

U11 U12

U21 U22

 such that

[
F X

]
=

U11 U12

U21 U22

G
0

 .
Therefore F = U11G, since U is unitary, ‖U11‖2,2 ≤ 1. �

Proposition B.9: There exists ‖δ‖2,2 ≤ 1 such that q = δI(p) if and only if Λ(q) �

Λ(p).

Proof: Firstly, suppose q = δI(p). Then, for any u ∈ Cn,

‖u∗q‖2 = ‖u∗δI(p)‖2 = ‖δI(u∗p)‖2 ≤ ‖∆‖2,2 ‖u
∗p‖2 ≤ ‖u∗p‖2.,

which shows u∗(Λ(p)− Λ(q))u ≥ 0. Therefore, Λ(q) � Λ(p).

Conversly, let us consider an orthonormal basis V for

T := span{[p]1, · · · , [p]n, [q]1, · · · , [q]n},

a subspace of l12 or L1
2. Let d = dim T ≤ 2n, and LV : T → Cd be a coordinate

representation of a vector in T with respect to the basis V . Define ui := LV([p]i) ∈ Cd
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and v = LV([q]i) ∈ Cd. Since V is an orthonormal basis, we have

〈[p]i, [p]j〉 = u∗iuj

〈[q]i, [q]j〉 = v∗i vj

〈[p]i, [q]j〉 = u∗i vj.

Let us define following matrices

U =
[
u1 · · · un

]
V =

[
v1 · · · vn

]
.

Then since

e∗i (Λ(p))ej =
∞∑
k=0

e∗i p[k]p[k]∗ej =
∞∑
k=0

[p[k]]j[p[k]]i

= 〈[p]j, [p]i〉 = u∗jui = (Uej)
∗(Uei) = e∗jU

∗Uei,

we have Λ(p)> = Λ(p) = U∗U . Similarly, we have Λ(q)> = Λ(q) = V ∗V . Since

U∗U � V ∗V , there exists H such that ‖H‖2,2 ≤ 1, and V = HU .

Since vi = V ei = HUei = Hui, we can easily see that δT := L−1
V HLV satisfies

‖δT ‖ ≤ 1, δ∗T = δT and δT ([p]i) = [q]i. We can extend the linear operator δT to the

entire space using the projection operator ΠT . Let

δ(r) := δT (ΠT (r)),

and it is routine to check if ‖δ‖2,2 ≤ 1. �

An alternative proof can be found in [59].

B.7 Proof of Proposition 5.11

We firstly need a matrix extension of Proposition B.5.
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Proposition B.10: Let F,G ∈ Cn×m. Then the following statements are equivalent.

(i) F ∗F � G∗G and F ∗G = G∗F

(ii) There exists H ∈ Cm×m such that H = H∗, ‖H‖2,2 ≤ 1, and G = HF .

Proof: The proof can be found in [38, 27]. �

Now we are ready to present the proof.

Proposition B.11: The following conditions are equivalent:

(i) Λ(q) � Λ(p),
∑∞

k=0 qkp
∗
k =

∑∞
k=0 pkq

∗
k.

(ii) There exists ‖δ‖2,2 ≤ 1, δ = δ∗ such that q = δI(p)

Proof: (ii) ⇒ (i) is trivial. For (i) ⇒ (ii), consider an orthonormal basis V for

T := span{[p]1, · · · , [p]n, [q]1, · · · , [q]n}, a subspace of l12. Let d = dim T ≤ 2n, and

LV : T → Cd be a coordinate representation of a vector in T with respect to the basis

V . Define ui := LV([p]i) ∈ Cd and v = LV([q]i) ∈ Cd. Since V is an orthonormal

basis, we have

〈[p]i, [p]j〉 = u∗iuj

〈[q]i, [q]j〉 = v∗i vj

〈[p]i, [q]j〉 = u∗i vj.

Let us define following matrices:

U =
[
u1 · · · un

]
V =

[
v1 · · · vn

]
.

Then since

e∗i (Λ(p))ej =
∞∑
k=0

e∗i p[k]p[k]∗ej =
∞∑
k=0

[p[k]]j[p[k]]i

= 〈[p]j, [p]i〉 = u∗jui = (Uej)
∗(Uei) = e∗jU

∗Uei,
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we have Λ(p)> = Λ(p) = U∗U . Similarly, we have Λ(q)> = Λ(q) = V ∗V , and since

Λ(q) � Λ(p), V ∗V � U∗U . In addition, from
∑∞

k=0 qkp
∗
k =

∑∞
k=0 pkq

∗
k, we have

e∗i

∞∑
k=0

q[k]p[k]∗ej = e∗i

∞∑
k=0

p[k]q[k]∗ej

〈[p]j, [q]i〉 = 〈[q]j, [p]i〉

(Uej)
∗(V ei) = (V ej)

∗(Uei)

e∗jU
∗V ei = e∗jV

∗Uei

which shows U∗V = V ∗U . Therefore, from Proposition B.10, there exists H such that

‖H‖2,2 ≤ 1, H = H∗ and V = HU . Since vi = V ei = HUei = Hui, we can easily see

that δT := L−1
V HLV satisfies ‖δT ‖ ≤ 1, δ∗T = δT and δT ([p]i) = [q]i. We can extend

the linear operator δT to the entire space using the projection operator ΠT ,

δ(r) = δT (ΠT (r)),

and it is routine to check if δ satisfies (ii).

For the continuous time case, we replace l2 by L2 and the infinite sum by the

integral to reach the same conclusion. �
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Appendix C

Appendix to chapter 7

C.1 Minimal representation of linearized swing dy-

namics

This section derives the null space of A, and A>, and show that (A,Bw) is uncontrol-

lable.

Proposition C.1: The null space of A is given by

Ker (A) :=


ωG
P

 : ωG = 0,MP = 0

 .

Proof: If

ωG
P

 ∈ Ker (A), then

−DGωG +M1P = 0 (C.1)

M>
1 ωG +M>

2 D
−1
L M2P = 0. (C.2)

From (C.1), we have ωG = D−1
G M1P . By substituting this to (C.2), we have

M>

D−1
G 0

0 D−1
L

MP = 0, (C.3)
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where we use the identity

M1 =
[
I 0

]
M

M2 =
[
0 I

]
M.

Recall that the null space of M> is spanned by 1, the all one vector, because M is

the incidence matrix. This implies thatD−1
G 0

0 D−1
L

MP = α1,

for some α, and

MP = α


d1

d2

...

dN

 ,

where di is the damping term at each bus. In order to obtain α, let us multiply 1>

to to the both sides. Then,

1>MP = α1>


d1

d2

...

dN


0 = α

N∑
i=1

di,

and since
∑N

i=1 di > 0, α = 0. ThereforeMP = 0, and ωG = 0 if (ωG, P ) ∈ Ker (A).�

Since all trajectories from the autonomous dynamics ẋ = Ax converge to Ker (A),

we can conclude that the real parts of all other eigenvalues are negative. In addition,

we can prove that the eigenspace of A corresponding to 0 eigenvalue is uncontrollable
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under Bw. To begin with, let us present the null space of Ker
(
A>
)
.

Proposition C.2:

Ker
(
A>
)

:=


0

u

 : MY u = 0

 .

Proof: Let

u1

u2

 be a vector in Ker
(
A>
)
. Then,

A>

u1

u2

 =

−DGH
−1 −M1Y

M>
1 H

−1 −M>
2 D

−1
L M2Y

u1

u2

 =

 −DGH
−1u1 −M1Y u2

M>
1 H

−1u1 −M>
2 D

−1
L M2Y u2

 = 0.

Thus u1 = −HD−1
G M1Y u2 and

(M>
1 D

−1
G M1Y +M>

2 D
−1
L M2Y )u2 = M>

DG 0

0 DL

−1

MY u2 = 0.

Since Ker
(
M>) is spanned by 1, there exists α such that

DG 0

0 DL

−1

MY u2 = α1.

Therefore

MY u2 = α


d1

...

dN

 .

Since 1>M = 0, we have

0 = α

N∑
i=1

di,
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which implies α = 0 since
∑N

i=1 di > 0. Now we can conclude that MY u2 = 0 and

u1 = 0. �

Now we have the following proposition.

Proposition C.3: Consider ẋ = Ax + Bww. Then Ker (A) is an uncontrollable

invariant subspace of A.

Proof: Using Jordan decomposition of A>, we can find a matrix J and an invertible

matrix T such that

A> = T

0k×k 0

0 J

T−1,

where k is the dimension of Ker
(
A>
)
and the first k columns of T form a basis for

Ker
(
A>
)
. In other words, if {u1, · · · , uk} form a basis for Ker (MY ), then

T

Ik
0

 =

 0 · · · 0

u1 · · · uk

 .
Therefore,

[
Ik 0

]
T>Bw = (T

Ik
0

)>Bw =


0 u>1
...

...

0 u>k


H−1 0

0 −YM>
2 D

−1
L

 = 0

since M2Y ui = 0 for all i = 1, · · · k. Therefore, using the following coordinate trans-

formation,

T>A(T>)−1 =

0 0

0 J


T>Bw =

 0

B̃w

 ,
where B̃w =

[
0 I

]
T>Bw, it is clear that Ker (A) is uncontrollable. �
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C.2 New England 39 power network data

Gen No. H Ra x′d x′q xd xq T ′do T ′qo xl
1 500.0 0 0.006 0.008 0.02 0.019 7.0 0.7 0.003
2 30.3 0 0.0697 0.170 0.295 0.282 6.56 1.5 0.035
3 35.8 0 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304
4 28.6 0 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295
5 26.0 0 0.132 0.166 0.67 0.62 5.4 0.44 0.054
6 34.8 0 0.05 0.0814 0.254 0.241 7.3 0.4 0.0224
7 26.4 0 0.049 0.186 0.295 0.292 5.66 1.5 0.0322
8 24.3 0 0.057 0.0911 0.290 0.280 6.7 0.41 0.028
9 34.5 0 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298
10 42.0 0 0.031 0.008 0.1 0.069 10.2 0.0 0.0125

Table C.1: Parameters of synchronous generators in the New England 39 power
network. 60Hz, 100 MVA base. Table is from [81]
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Line Data Transformer Tap
From Bus To Bus R X B Magnitude Angle

1 2 0.0035 0.0411 0.6987 0.000 0.00
1 39 0.0010 0.0250 0.7500 0.000 0.00
2 3 0.0013 0.0151 0.2572 0.000 0.00
2 25 0.0070 0.0086 0.1460 0.000 0.00
3 4 0.0013 0.0213 0.2214 0.000 0.00
3 18 0.0011 0.0133 0.2138 0.000 0.00
4 5 0.0008 0.0128 0.1342 0.000 0.00
4 14 0.0008 0.0129 0.1382 0.000 0.00
5 6 0.0002 0.0026 0.0434 0.000 0.00
5 8 0.0008 0.0112 0.1476 0.000 0.00
6 7 0.0006 0.0092 0.1130 0.000 0.00
6 11 0.0007 0.0082 0.1389 0.000 0.00
7 8 0.0004 0.0046 0.0780 0.000 0.00
8 9 0.0023 0.0363 0.3804 0.000 0.00
9 39 0.0010 0.0250 1.2000 0.000 0.00
10 11 0.0004 0.0043 0.0729 0.000 0.00
10 13 0.0004 0.0043 0.0729 0.000 0.00
13 14 0.0009 0.0101 0.1723 0.000 0.00
14 15 0.0018 0.0217 0.3660 0.000 0.00
15 16 0.0009 0.0094 0.1710 0.000 0.00
16 17 0.0007 0.0089 0.1342 0.000 0.00
16 19 0.0016 0.0195 0.3040 0.000 0.00
16 21 0.0008 0.0135 0.2548 0.000 0.00
16 24 0.0003 0.0059 0.0680 0.000 0.00
17 18 0.0007 0.0082 0.1319 0.000 0.00
17 27 0.0013 0.0173 0.3216 0.000 0.00
21 22 0.0008 0.0140 0.2565 0.000 0.00
22 23 0.0006 0.0096 0.1846 0.000 0.00
23 24 0.0022 0.0350 0.3610 0.000 0.00
25 26 0.0032 0.0323 0.5130 0.000 0.00
26 27 0.0014 0.0147 0.2396 0.000 0.00
26 28 0.0043 0.0474 0.7802 0.000 0.00
26 29 0.0057 0.0625 1.0290 0.000 0.00
28 29 0.0014 0.0151 0.2490 0.000 0.00
12 11 0.0016 0.0435 0.0000 1.006 0.00
12 13 0.0016 0.0435 0.0000 1.006 0.00
6 31 0.0000 0.0250 0.0000 1.070 0.00
10 32 0.0000 0.0200 0.0000 1.070 0.00
19 33 0.0007 0.0142 0.0000 1.070 0.00
20 34 0.0009 0.0180 0.0000 1.009 0.00
22 35 0.0000 0.0143 0.0000 1.025 0.00
23 36 0.0005 0.0272 0.0000 1.000 0.00
25 37 0.0006 0.0232 0.0000 1.025 0.00
2 30 0.0000 0.0181 0.0000 1.025 0.00
29 38 0.0008 0.0156 0.0000 1.025 0.00
19 20 0.0007 0.0138 0.0000 1.060 0.00

Table C.2: Parameters of transmission lines in the New England 39 power network.
60Hz, 100 MVA base. Table is from [81]
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Bus Type Voltage [p.u.] Load Generator
MW Mvar MW MVar Gen No.

1 PQ - 0.0 0.0 0.0 0.0
2 PQ - 0.0 0.0 0.0 0.0
3 PQ - 322.0 2.4 0.0 0.0
4 PQ - 500.0 184.0 0.0 0.0
5 PQ - 0.0 0.0 0.0 0.0
6 PQ - 0.0 0.0 0.0 0.0
7 PQ - 233.8 84.0 0.0 0.0
8 PQ - 522.0 176.0 0.0 0.0
9 PQ - 0.0 0.0 0.0 0.0
10 PQ - 0.0 0.0 0.0 0.0
11 PQ - 0.0 0.0 0.0 0.0
12 PQ - 7.5 88.0 0.0 0.0
13 PQ - 0.0 0.0 0.0 0.0
14 PQ - 0.0 0.0 0.0 0.0
15 PQ - 320.0 153.0 0.0 0.0
16 PQ - 329.0 32.3 0.0 0.0
17 PQ - 0.0 0.0 0.0 0.0
18 PQ - 158.0 30.0 0.0 0.0
19 PQ - 0.0 0.0 0.0 0.0
20 PQ - 628.0 103.0 0.0 0.0
21 PQ - 274.0 115.0 0.0 0.0
22 PQ - 0.0 0.0 0.0 0.0
23 PQ - 247.5 84.6 0.0 0.0
24 PQ - 308.6 -92.0 0.0 0.0
25 PQ - 224.0 47.2 0.0 0.0
26 PQ - 139.0 17.0 0.0 0.0
27 PQ - 281.0 75.5 0.0 0.0
28 PQ - 206.0 27.6 0.0 0.0
29 PQ - 283.5 26.9 0.0 0.0
30 PV 1.0475 0.0 0.0 250.0 - Gen10
31 PV 0.9820 9.2 4.6 - - Gen2
32 PV 0.9831 0.0 0.0 650.0 - Gen3
33 PV 0.9972 0.0 0.0 632.0 - Gen4
34 PV 1.0123 0.0 0.0 508.0 - Gen5
35 PV 1.0493 0.0 0.0 650.0 - Gen6
36 PV 1.0635 0.0 0.0 560.0 - Gen7
37 PV 1.0278 0.0 0.0 540.0 - Gen8
38 PV 1.0265 0.0 0.0 830.0 - Gen9
39 PV 1.0300 1104.0 250.0 1000.0 - Gen1

Table C.3: Power and voltage set points in the New England 39 power network. 60Hz,
100 MVA base. Table is from [81]
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C.3 Linearized swing dynamics of the New England

39 power network
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