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Abstract

This thesis seeks to explain how the retina satisifies both top-down constraints (func-
tional) and the bottom-up constraints (structural) by analyzing simple physical mod-
els of the retina and mimicking its structure and function in silicon. In particular, I
examine spatiotemporal filtering in the outer plexiform layer of the vertebrate retina,
and show how outer retina processing is augmented by further processing in the in-
ner plexiform layer, creating an efficient implementation that encodes moving stimuli
efficiently over a wide range of speeds.

My working hypothesis is that biological sensory systems seek to optimize both
functional and structural constraints. On the functional side, they must maximize
information uptake from the environment while they minimize redundancy in their
outputs. On the structural side, they must maximize resolving power in space and
time, by making the processing elements small and fast, while they minimize wiring
and energy consumption. If structure and function did indeed coevolve, as I assume,
studying how structural and functional contraints are optimized simultaneously is our
only hope of understanding why nature picks the solutions that we observe.

Addressing both structural and functional contraints requires combining science
and engineering. Scientists study an existing structure, and seek to understand how it
functions in an optimal or near-optimal fashion, based on theoretical grounds. Rarely
does a scientist ask: Will the structure be more cost effective, more reliable, or more
reproducible if a less-than-optimum function is chosen? Engineers, on the other hand,
design an optimal implementation for some desired function, based on an exisiting
set of standard primitives. Rarely does an engineer ask: Is this the most natural set
of primitives to use for this particular function? Thus, neither discipline attempts to
optimize both function and structure globally. In contrast, evolution, operating in a
purely opportuinistic fashion, continuously seeks increasingly elegant solutions that

meet these constraints.
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For these reasons, I have adopted a multidisciplinary engineering—science approach
that combines analysis with synthesis. When tailored synergestically, this approach
can shed light on questions about which neurobiologists care, while advancing the

state of the art in sensory-system design.
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Chapter 1 Introduction

The retina is an exquisitely evolved piece of biological wetware. The human retina—
as well as other vertebrate retinae—is sensitive to light intensities ranging from dim
starlight to direct sunlight: a dynamic range of at least 10 decades. This remarkable
ability to adapt to changes in intensity larger than those handled by any other known
sensory system is mediated by a variety of gain-control mechanisms that operate over
disparate spatial and temporal scales. The vertebrate retina has evolved specialized
pathways and elaborate network-control mechanisms that fine tune the degree of
pooling and the integration time of these pathways and share elements between them.
The existence of all these specialized pathways channels makes the retina a complex,
multifaceted structure.

I review the anatomy of the retina in Chapter 2, and, in particular, I describe five
specialized channels: a milliphoton-sensitivity channel for night vision, a minute-of-
arc acuity channel for luminance, a millisecond-acuity channel for motion, and two
channels for chrominance. In my review, the emphasis is placed on those facets of the
retina that shed light on how spatiotemporal signals are processed and how motion
is encoded.

Even this extremely truncated and oversimplified review of retinal neurobiology
makes it abundantly clear that the retina is much more complex than any sensory
system currently built by engineers. The retina’s parallel dedicated channels make
it akin to several specialized cameras coexisting on the same chip. Even if we try to
get around this multifaceted character by focusing on just one of these cameras, we
are still bewildered because the elements of the cameras are richly interconnected,
and the same element may serve several purposes at the same time, or it may be
coopted by different cameras at different times. This nonmodularity, which is a
defining characteristic of the retina—and of the rest of the brain—results in a efficient

implemetation but it makes it extremely difficult for us to understand how the system
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operates by using traditional reductionist approaches.

Having studied retinal structure, I turn my attention to retinal function in Chap-
ter 3.

The spike trains produced by the retina are converted back into continuous signals
by dendritic integration of excitatory postsynaptic potentials in the lateral geniculate
nucleus of the thalamus. For human vision, contrast thresholds of less than 1%,
processing speeds of about 20 ms per stage, and temporal resolution in the millisecond
range are achieved with spike rates as low as a few hundred per second. No more
than 10 spikes, per input, are available during this time. The retina must maximize
the amount of information carried by these spikes.

For optimum performance, the retina must efficiently encode stimuli generated by
all kinds of events, over a large range of lighting conditions and stimulus velocities.
These events fall into three broad classes: static events, punctuated events, and
dynamic events. In the absence of any preprocessing, the output activity mirrors the
input directly. Changes in lighting, which influence large areas, are reflected directly
in the output of every single pixel in the region affected. Static events, such as a stable
background, generate persistent activity in a large fraction of the output cells, which
transmit the same information repeatedly. Punctuated events generate little activity
and are transmitted without any urgency. Dynamic events generate activity over
areas far out of proportion to informative features in the stimulus, when the stimulus
sweeps rapidly across a large region of the retina. Clearly, these output signals are
highly correlated, over time and space, resulting in a high degree of redundancy.
Hence, reporting the raw intensity values makes poor use of the limited throughput
of the optic nerve.

The retina has evolved sophisticated filtering and adaptation mechanisms to re-
duce redundancy and to improve coding efficiency. These mechanisms include: Local
automatic gain control at the receptors, bandpass spatiotemporal filtering in the outer
retina, highpass temporal and spatial filtering in the inner retina, half-wave rectifi-
cation, spike frequency adaptation, and a foveated architecture. As a result activity

in the ganglion cells, which convert these preprocessed signals to spikes and transmit
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the spikes over the optic nerve, is different from the stimulus pattern. The activity
in the optic nerve is clustered in space and time (whitened spectrum): It consists of
sporadic short bursts of rapid firing, triggered by punctuated and dynamic events,
overlaid on a low, steady background firing rate driven by static events.

To unify retinal structure and function, I duplicate the retina’s spatiotemporal
dynamics with a simple physical model in Chapter 4.

My goal is to synthesize the minimal amount of machinery required to reproduce
the observed qualitative behavior, rather than to provide detailed quantitative predic-
tions of retinal responses. This approach is part of an overarching layered-complexity
strategy that I have adopted, where we reverse-engineer the retina by peeling away
one level of complexity at a time. Once we know the tradeoffs inherent in the design of
a piece of neurocircuitry, we can see how to introduce an additional layer of complex-
ity to improve its performance. Although a linear model cannot include adaptation
mechanisms, such as gain control, we can often achieve the desired result by varying
the parameters of the linear circuit, such as its gain or its time and space constants,
appropriately. Layering adaptation on top of filtering in this fashion is valid, as these
two mechanisms act on disparate spatial and temporal scales.

Models of the retina similar to the one that I study here have been proposed and
analyzed. However, none of the previous studies analyzed the effect of the model’s
spatiotemporal inseparability on motion. By studying a minimal model, and treating
space as a continuum-—using the continuous approximation—just like time, I was
able to obtain closed-form analytic solutions, and to develop a clear intuitive picture
of the spatiotemporal behavior of the retina. I show that the model’s spatiotempo-
ral inseparability has serious consequences for how information about contrast and
speed is encoded by the retina. It also results in suboptimal filtering, as the model’s
spatiotemporal behavior deviates from the optimal filter for the ensemble of natural
images.

I show how spatiotemporal inseparability goes hand in hand with local connec-
tivity. As a consequence, nature must choose between a costly spatiotemporally

separable optimal filter or a cheap spatiotemporally inseparable suboptimal filter,
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weighing coding efficiency against implementation efficiency. By unifying structural
bottom-up constraints and functional top-down constraints in this way, I provide an
explanation for two key aspects of retinal organization, which are preserved across a

large variety of species:

e The retina encodes several parallel information streams in its output that em-
phasize different aspects of a scene, such as color, edges, and movement. In
particular, it has one channel with high spatial resolution and low temporal
resolution, and another channel with low spatial resolution and high temporal

resolution.

e To a good first approximation, the retinae of all vertebrate species can be de-
scribed as a locally connected feedforward neural network with three cellular
layers that are connected by two layers of processing: the outer plexiform layer

(OPL) and the inner plexiform layer (IPL).

The unification of retinal structure and function through theoretical analysis of a
physical model concludes the first part of these thesis.

In the second part of the thesis, I switch gears and describe how to replicate neural
systems in silicon by exploiting similarities between the biophysics of nerve cells and
the physics of MOS transistors.

I begin by comparing and contrasting electrodiffusion in nerve membranes and in
MOS transistors in Chapter 5. This comparative study—which, to my surprise, has
not yet been done—shows us how best to exploit the native physics of the transis-
tor to model the biophysics of the nerve membrane. The similarities between these
two structures are most evident at the microscopic level, since the physics that gov-
erns their behavior is the same. Balancing drift and diffusion results in equilibrium
concentration profiles that decrease exponentially with potential in both devices.

At the macroscopic level, these devices are qualitatively similar. A pMOS device
reproduces the qualitative behavior of a cation channel that sees a higher concentra-
tion inside the cell, or of an anion channel that sees a higher concentration outside the

cell. And an nMOS transistor reprodces the qualitative behavior of a cation channel
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that sees a higher concentration outside the cell, or of an anion channel that sees a
higher concentration inside the cell.

However, the membrane’s current—voltage relationship has linear asymtotic behav-
ior whereas the transistor’s asymtotic behavior is exponential. This difference arises
because the concentrations of holes in the the drain-source regions of a pMOS tran-
sistor are millions of times larger than the concentration of holes in the n-type bulk.
A similar situation holds for electrons in the nMOS transistor. In contrast, the ions
that are primarily responsible for the electrical properties of the cell—namely, K* and
Nat—have concentration ratios of 1 or 2 decades. We can match the ion-channel’s
current-voltage curve quantitatively by reducing the doping of the source—drain re-
gions by four or more decades.

I show that when all the ion channels see the same voltage difference—as they
do when they are part of the same cell—the relative differences between the currents
in different ion-channel populations may be reproduced fairly well using transistors.
Thus, we can build a fairly decent single-cell model in a standard CMOS process
by using a single transistor to model each population of ion channels. In particular,
the model reproduces the behavior of the cell at equilibrium (i.e., the dependence of
the resting membrane potential on channel permeability, which is described by the
Goldman-Hodgkin-Katz equation [1, 2]).

In Chapter 6, I go beyond the single cell and present implementations for multiple-
cell networks. In particular, I propose transistor-based models for gap-junction—
coupled cell syncytia. Such syncytia are common in the retina, and they occur in
other parts of the brain as well.

I extend the device-level charge-based formulation of the MOS transistor to the
circuit level by introducing the concepts of terminal and node charges, and the equiv-
alence principle. With this formalism, we can exploit the linear current-charge rela-
tionship of the MOS transistor at the circuit level, enabling us to simulate the diffu-
sion of ions in cell syncytia, or the spread of current in resistive netorks, extremely
efficiently. When node charges stand in for membrane voltages, we may model the

linear current-voltage relationship of the gap junction with the linear current—charge
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relationship of transistors in the subthreshold regime. This analogy enables us to
simulate the spread of ions in cell syncytia extremely efficiently.

We can use these single-transistor diffusors to model the lateral spread of these
ions, as well as the loss of ions through leakage into the extracellular fluid. These
two mechanisms define a local neighborhood over which signals summate, and we can
control the size of this region by the relative strengths of the lateral coupling between
nodes in the network and the leakage path from these nodes to ground. When we use
transistors acting as diffusors, we can control the size of this region electronically, and
thereby we can actively regulate local aggregation. The extent of local aggregation
determines the extent of collective computation. Cell syncytia can regulate the extent
of local aggregation as well. The retina exploits this ability to trade off signal-to-noise
ratio for bandwidth.

In Chapter 7, I show how we can model excitatory and inhibitory chemical
synapses with single transistors. Together with the single-transistor model of gap
junctions, I use these neural analogs to morph the neurocircuitry in the outer retina
into silicon. The result is a CMOS circuit that models bandpass spatiotemporal fil-
tering in the outer retina—at the same level of abstraction as the linear electrical
circuit model that we studied in Chapter 4. In contrast to the linear physical model
in Chapter 4, the CMOS circuit includes a local gain-control mechanism. This non-
linear mechanism models the effect of shunting inhibition from the horizontal cells to
the cones.

Unlike the abstract theoretical circuit model, the actual parameters of nominally
identical circuit elements on the chip vary from location to location, due to the va-
garies of the fabrication process. Consequently, building the model in silicon helps
us to understand the effects of structural peturbations and quantum fluctuations on
performance, as well as the effects of local gain control on bandpass filtering. It
also forces us to address structural constraints, such as the energy and area costs of
communication versus computation, which I discussed briefly in the first part of this
thesis (Chapter 4).

I analyze the performance tradeoffs that must be made to get spatiotemporal
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bandpass filtering and local gain control to coexist in this minimal circuit design.
In particular, the high loop gain required to attenuate low-frequency temporal and
spatial signals in a negative-feedback circuit results in temporal instability. And con-
trolling the gain by modulating the intercone coupling conductance in proportion to
the local intensity causes the receptive field to expand alarmingly. These shortcom-
ings of the simple circuit model of the outer retina that I built forced me to review
the retina literature in search of mechanisms that decouple spatiotemporal filtering
and local gain control. I found that autofeedback in horizontal cells could provide an
elegant solution to this dilemma.

To transmit the graded signals produced by the outer plexiform circuit, I follow
the retinal model and develop an adaptive spiking neuron circuit in Chapter 8.

To impement spike frequency adaptation and membrane time-constant adapta-
tion, I introduce three simple circuit elements that model the biophysics of voltage-
and calcium-dependent potassium channels. A diode-capacitor integrator models the
accumulation and buffering of intracellular calcium. Capacitive coupling between the
membrane-voltage node and the calcium-integration node models the fast voltage de-
pendence of the potassium channels. A single transistor, with its gate tied to the
calcium-integration node, models the potassium-channel population.

I analyze the effects of these mechanisms, with emphasis on spike timing, and
compare my theoretical predictions with experimental measurements. I characterize
spike-timing precision by measuring how much time the neuron takes to respond
to a step change in its input by firing a spike. I measure the distribution of these
firing times over several trials, and define the latency as the position of the peak in
the distribution and the synchronicity as the height of the peak, normalized by the
height of the uniform distribution. For the same average steady-state firing rate, the
calcium dependence and the voltage dependence of the potassium channels improved
the adaptive neuron’s latency and synchroncity, compared with a simple integrate-
and-fire model.

These results call into question several common notions about how neurons encode

information. Neurobiologists generally believe that the mean firing rate is a valid
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measure of the eflicacy of a neuron in producing a response in its target. Furthermore,
if the target neuron listens to several neurons, they obtain the net effect by summing
their mean firing rates. For such linear summation to be valid, the postsynaptic
neuron must smooth out fluctuations in firing rates, or the presynaptic neurons must
fire at uniform rates and in an uncorrelated fashion. My measurements invalidate
both assumptions, and are in agreement with more recent physiological studies [3].

Neurons are exquisitely sensitive to small changes in their input, and can generate
a spike in response to these changes in less than 1 millisecond. Consequently, instead
of smoothing out variations in their inputs, they amplify these variations. Second,
the latencies are much shorter than the interspike interval, and so the instantaneous
firing rate that the target neuron observes when several spike trains converge in its
dendritic tree may be much higher than you would expect from simply summing the
individual rates. Neurons can use this synchronicity to amplifiy their firing rates. We
overlook this mechanism completely when we use mean firing rates and ignore spike
timing.

In the final chapter, I describe a retinomorphic vision chip that uses neurobio-
logical principles to perform all four major operations found in biological retinae:
continuous sensing for detection; local automatic gain control for amplification; spa-
tiotemporal bandpass filtering for preprocessing; and adaptive sampling for quanti-
zation. All four operations are performed right on the focal plane, at the pixel level.

The first—and only—attempt to integrate these four operations was made by Ma-
howald. The pixel that she designed, which is described in her monograph [4], used
continuous sensing for detection, logarithmic compression for amplification, temporal
highpass filtering for preprocessing, and a simple integrate-and-fire neuron for quanti-
zation. My work improves on, and extends, Mahowald’s pioneering research in three

ways:

1. By using local gain control for amplification, I extend the dynamic range without
sacrificing sensitivity; logarithmic compression, in contrast, trades sensitivity for

dynamic range.
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2. By using a spatiotemporal bandpass for preprocessing, I cut out wideband spa-
tial and temporal noise; highpass filtering, in contrast, amplifies high-frequency

signals with poor signal-to-noise ratios.

3. By using an adaptive neuron for quantization, I increase the sampling rate—
and reduce the latency—without increasing the average firing rate; a simple
integrate-and-fire neuron, in contrast, must maintain a high steady-state firing

rate to sample high-frequency signals.

Like Mahowald’s chip, my retinomorphic chip includes a random-access time-
division multiplexed communication channel that reads out asynchronous pulse trains
from a 64- x 64-pixel array in the imager chip. The communication channel transmits
these spike trains to corresponding locations on a second chip that has a 64 x 64
array of integrators. Both chips are fully functional. This VLSI chip embodies four
principles of retinal operation.

First, the imager adapts its gain locally to extend its input dynamic range without
decreasing its sensitivity and without increasing its output dynamic range. The gain
is set to be inversely proportional to the local intensity, discounting gradual changes in
intensity and producing an output that is proportional to contrast. This adaptation
is effective because lighting intensity varies by six decades from high noon to twilight,
whereas contrast varies by at most a factor of 20 [6].

Second, the imager bandpass filters the spatiotemporal visual signal to attenu-
ate low-frequency spatial and temporal signals, and to reject wideband noise. The
increase in gain with frequency, for frequencies below the peak, matches the 1/f2
decrease in power with frequency for natural image spectra, resulting in a flat output
power spectrum. This filtering improves information coding efficiency by reducing
correlations between neighboring samples in space and time. It also results in a uni-
modal distribution of pixel amplitudes which is centered on the middle of the output
range, and typically decays exponentially in either direction.

Third, the imager adapts its sampling rate locally to minimize redundant sampling

of low-frequency temporal signals. In the face of limited communication resources
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and energy, this sampling-rate adaptation has the additional benefit of freeing up the
bandwidth of the communication channel, which is dynamically reallocated to active
pixels, allowing higher peak sampling rates and shorter latencies to be achieved.

Fourth, the imager adapts its step size locally to trade resolution at high con-
trast levels, which rarely occur, for resolution at low contrast levels, which are much
more common. The proportional step size in the adaptive neuron, which results in
a logarithmic transfer function, matches an exponentially decaying amplitude prob-
ability density, making all quantization intervals equiprobable. Hence, it maximizes
the expected number of signals that can be discriminated, given their probability of
occurrence.

For independent samples, information is linearly proportional to bandwidth, and
is logarithmically proportional to the signal-to-noise ratio [8]. We increase bandwidth
by making the receptors smaller and faster, so that they can sample more frequently in
space and time. As an unavoidable consequence, they integrate over a smaller volume
of space-time, and therefore the signal-to-noise ratio degrades. There is therefore a
reciprocal relationship between bandwidth and noise power (variance) [9]. Since their
goal is to maximize information, biological sensory systems aggressively trade off
signal-to-noise ratio for bandwidth, operating at ratios close to unity [10, 9].

With this optimization principle in mind, I developed compact circuit designs
that realize local AGC, bandpass filtering, and adaptive quantization at the pixel
level. The overriding design constraints are to whiten the signal, thus making samples
independent; to minimize the pixel size, and capacitance, thus making sampling more
dense and more rapid; and to minimize power consumption, thus making it possible to
acheive very large-scale integration. Hence, all circuits use minimal-area devices and
operate in subthreshold, where the transconductance per unit current is maximum.
My work demonstrates that extremely efficient and robust information processing

systems may be realized by modeling the structure and function of neural systems.
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Chapter 2 Retinal Structure: Parallel

Pathways

The retina is an exquisitely evolved piece of biological wetware. It contains about
100 million photoreceptors. Its output—a million or so axonal fibers that make up
the optic nerve—conveys visual information to the rest of the nervous system using
an all-or-none pulse code.

The human retina—as well as other vertebrate retinae—is sensitive to light inten-
sities ranging from dim starlight to direct sunlight: a dynamic range of at least 10
decades.! This range is parceled out between the rods and the cones. Rods operate
in dim light and can sense the absorption of a single photon, but they saturate at a
100 photons per integration time [12, 13]. Cones are 70 times less sensitive than are
rods, so their range extends almost 2 decades higher [14].

To deal with the remaining 6 decades, the cones shift their 2-decade output sensi-
tivity range to match the input intensity. This remarkable ability to adapt to changes
in intensity larger than those handled by any other known sensory system is mediated
by a variety of gain-control mechanisms, ranging from adaptation by the photorecep-
tors themselves over 4 or 5 decades to adaptation at the neuronal-network level (for
reviews, see [15, 16, 17]), that operate over disparate time scales, ranging from less
than a second to several minutes.

Separate channels have evolved to handle rod and cone vision, since these photore-
ceptors operate under such drastically different conditions and have vastly different
requirements. The lower limit of light sensitivity is set by the dark light level: the
signal produced by spontaneous isomerizations of the rhodopsin molecule that medi-

ates the phototransduction process. These spurious events produce responses in the

!The energy-flux density at the earth’s surface for a dark night sky—the lower limit of scotopic
vision—is about 10714W/ cm®. At high noon—the upper limit of photopic vision—it is set by the
2
solar constant of 0.14W /cm”.
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rod that are identical to a photon response at a rate of one every 160 seconds [13]—
equivalent to a light flux of 0.003 photons per integration time per rod. By pooling
signals to detect the coincident absorption of several photons in nearby rods, the
retina achieves subthreshold sensitivity, or hypersensitivity. Thus, it is able to de-
tect the concurrent absorption of 10 photons in a pool of 5000 rods reliably [18]—a
light flux of only 0.002 photons per integration time per rod!

Cones, on the other hand, operate with flux levels of kilophotons per integration
time per receptor, so there is no need for the retina to sacrifice spatial acuity for
detectability by pooling the cone signals. The threshold of the cone is set by quantum
fluctuations in the photon flux, or shot noise: the change in mean light level must
be large enough to exceed these fluctuations. Under ideal conditions, humans can
detect an 0.5-percent change in mean intensity [19]. The absence of pooling in the
cones also explains why the highest spatial acuity is acheived for cones. Humans
can resolve 1 arc minute (1/60 degree) at the fovea, a small specialized region in the
center of the retina where the cones are extremely small and are packed densely—rods
are completely excluded from this region. |

Needless to say, the vertebrate retina has evolved elaborate network-control mech-
anisms to fine tune the degree of pooling and the integration time, and to share
elements between the rod and cone systems [20].

Our eyes and our brains are also sensitive to temporal changes in the image.
The integration time of the primate visual system—which limits the temporal acuity
of perception—is on the order of 0.1 second [21]. Thus, images flashed at rates of
50 frames per second or higher appear stable—the basis for our perceiving movies
and television as changing smoothly. Yet we can discriminate differences in timing
of much less than 0.1 second, because the retina displays temporal hyperacuity.
Psychophysicists have shown that humans can discriminate reliably the order of onset
of two small lines at the 3- to 5-msec level [22, 23]—20 to 30 times shorter than the
integration time! Temporal hyperacuity is acheived only if the spatial separation
between the two lines is in the range of 2 to 6 minutes. The lower spatial acuity

achieved for this task reveals the presence of another channel-—other than the one
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that subserves spatial acuity—specialized for temporal resolution.

The presence of two channels specialized for temporal and spatial resolution has
been confirmed both physiologically and anatomically [24, 25, 26]. Specialization is
necessary due to physical laws which dictate that the retina—and any sensory system,
for that matter—must integrate over a fixed volume of space—time to achieve a certain
signal-to-noise level. When second- and third-order neurons pool receptor signals
over a large area, they average out quantum fluctuations and can operate with a
shorter integration time without sacrificing contrast sensitivity. 2 This specialization
is carried still further in the retina; the signal space is also divided up along the
spectral dimension.

Our eyes are sensitive to the wavelength of light, due to the presence of three
different types of cone pigments, with peak absorbances at 420 nm (appears violet),
530 nm (appears yellowish green), and 560 nm (yellow). In comparison, rods are tuned
to 500 nm (blue-green). These three cone types give us the ability to discriminate
wavelengths ranging from 400 nm (violet) to 670 nm (red). In vertebrates, signals
from these three cones—incorrectly called blue (instead of violet), green (instead
of yellowish green), and red (instead of yellow)—are transmitted by two channels
that carry R — G (red minus green) and B — (R + G) (blue minus yellow). This
transformation produces a more efficient encoding since the R and G signals are
similar, and hence are largely redundant: their difference is close to 0 over most of
the retina, and their sum can be sampled less frequently.

All this specialization makes for a total of five specialized channels: one milliphoton-
sensitivity channel for night vision, one minute-acuity channel for luminance, one
millisecond-acuity channel for motion, and two nanometer-acuity channels for chromi-
nance. In addition, there are several other more specialized pathways. Among other
functions, they mediate our closed-loop optokinetic response reflex, which minimizes
image slippage on the retina; our pupillary response, which regulates the amount
of light entering the eye; our lens accommodation, which focuses the image on the

retina; the gain of our open-loop vestibular-occular reflex, which moves the eyes to

It makes no difference whether the quanta are photons, vesicles, or ion channels.
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compensate for head movements; and the rate of our biological clocks, to keep them
in phase with the day—night cycle.

Complicating matters even more, activity in each channel is encoded with two
complementary streams: one that signals increases in amplitude by increasing the
amount of neurotransmitter released and the spike-discharge rate (ON pathway),
and another that signals decreases in amplitude in a similar fashion (OFF path-
way). Thus, both polarities of change are signaled by high neurotransmitter-release
rates and high spike-discharge rates, but there is little or no activity in steady state.
Complementary signaling is used throughout the retina, except for at the very first
synapses—found in the rod and cone terminals. These sites are the only places where
the retina maintains elevated neurotransmitter-release rates to signal both increases
and decreases using a single stream.

Complementary signaling using the ON and OFF pathways compensates for the
inherent shortcomings of neural systems in three ways: (1) noise due to fluctuations
in vesicular neurotransmitter-release rates and spike rates decreases in inverse pro-
portion to the square root of the number of vesicles or spikes used to signal; (2) slow
repolarization of the synaptic membrane and removal of neurotransmitter from the
synaptic cleft does not limit transmission speed; and (3) the energy required to re-
plenish neurotransmitter supplies or to generate a spike is conserved in steady state,
when nothing is happening.

The existence of all these dedicated channels and complementary signaling makes
the retina a complex, multifaceted structure. In this review, I emphasis those facets of
the retina that shed light on how spatiotemporal signals are processed and how motion
is encoded. Retinal neurons are sensitive to spatiotemporal changes, in general, and
to the speed and the direction of motion, in particular. Nature has evolved several
different forms of eyes (e.g., compound versus camera eyes); I limit my discussion
to the literature for vertebrate eyes. Given the vagaries of experimental work and
history, the majority of the relevant work has been carried out in a few species—in
particular, in the tiger salamander, mudpuppy, catfish, skate, rabbit, and cat.

I begin this review by summarizing several salient points concerning retinal neu-
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roanatomy.

2.1 Cell Classes

Synaptic interactions in the vertebrate retina occur within two plexuses.® The more
peripheral one is called the outer plexiform layer (OPL), and the more central
one is called the inner plexiform layer (IPL). The neurons that interact in these
plexuses fall into two distinct groups: relay neurons and interneurons. A relay neu-
ron receives input in one plexus and delivers its output to another. An interneuron
remains entirely within a single plexus. The input and output neurons of the retina
are specialized relay neurons that sense incident light and that send signals to the
rest of the brain, respectively.

There is one class of interneuron for each plexiform layer in the retina, and there
are three classes of relay neurons to feed signals from the input to the OPL, from
the OPL to the IPL, and from the IPL to the rest of the brain. That makes five
topologically defined cell classes.? However, this feedforward cascade is interrupted
by the presence of a sixth class of cells; these cells pick up signals in the IPL, and
transmit these signals back to the OPL.

These six cell classes form a highly regular and densely connected topological
network, as shown in the vertical cross-section through the human retina in Figure 2.1.

The names and roles of the cell classes follow:

e Photoreceptors are the input neurons; they transduce incident light into elec-
trical signals that drive the OPL. In almost all vertebrates, they come in two
functionally and morphologically distinct types, called rods and cones due to
their shape. Their cell bodies lie in the outer nuclear layer (ONL), above the

OPL.

3The Latin plezus means braid; it is used to describe a complexly interconnected arrangement of
parts.

My convention is to use class to refer categories that are based on topology, and to use type to
refer to subcategories that are based on morphology, neurochemistry, or physiology.




16

Figure 2.1: VERTICAL SECTION THROUGH THE HUMAN RETINA

The retina is a thin sheet of brain tissue, less than 0.5mm thick, that lines the inside
of the orb of the eye. The photoreceptors sit against the eyewall, and light must
travel upward, through the entire thickness of the retina, to strike them. Visual
information flows downward, passing through at least three different cell types. This
gross anatomy is preserved in all vertebrate retinae. In the region shown—which is
about 1.25mm away from the center of the fovea—the cone, rod, and ganglion cell
densisties are 15,000mm™2, 75,000mm~2, and 40,000mm ™2, respectively. Reproduced
from [27].
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e Horizontal cells are the interneurons in the OPL; they play an inhibitory
role. Their cell bodies lie in the inner nuclear layer (INL), just beneath the
OPL. In cold-blooded vertebrates, such as the turtle and the carp, there are
three different types with different color selectivities, but such is not the case in
primates. Primates have only two horizontal-cell types with no color selectivity

whatsoever.

e Bipolar cells are the relay neurons between the OPL and the IPL. Their cell
bodies lie in the middle of the INL; a single dendritic shaft emerges on the OPL
side, and an axonal one emerges on the IPL side, giving them a distinct bipolar

structure.

e Amacrine cells are the interneurons in the IPL. Amacrine cells are generally
believed to be inhibitory, but one type has been shown to use two types of
neurotransmitter, one excitatory and the other inhibitory [28]. Amacrine cells
are found in the INL, just above the IPL, and in the ganglion cell layer
(GCL), just below the IPL.

e Interplexiform cells form a second class of relay neurons that provide a feed-
back path from the IPL to the OPL. These cells are found among the amacrine
cells in the INL; indeed, certain authors consider them a subgroup of amacrine
cells. They modulate synaptic interactions in the OPL and IPL (for reviews,
see [29, 30]), and thereby reorganize the retinal microcircuitry to optimize per-
formance in sunlight, moonlight, and starlight [20]. I will not consider them

further.

e Retinal ganglion cells are the sole output channel for the retina. In primates,
about 1 million ganglion-cell axons make up the optic nerve that projects to the
brain proper. These cells communicate by sending trains of impulses down their
axons. In contrast, the majority of other retinal neurons signal using graded

changes in the membrane potential, rather than all-or-none pulses.



Figure 2.2: SCHEMATIC DIAGRAM OF A TYPICAL VERTEBRATE RETINA
The photoreceptor terminals are enlarged to show the details of the invaginations. The
retina can be described to first order as a three-layer, feedforward neural network, with
the first level of interconnections making up the outer plexiform layer (OPL), and the

second level of connections making up the inner plexiform layer (IPL). Reproduced
from [31].

2.2 The Outer Plexiform Layer

Two morphological types of horizontal cells—the interneurons of the OPL—are
readily distinguished in all vertebrate retinae: one has a short axon and spatially
segregated dendritic and axonal fields, whereas the other is axonless. In humans
and our warm-blooded relatives, the short-axon cells occur in just one variety, la-
beled HI in Figure 2.2, and their axons branch heavily and contact rods, exclusively,
whereas their dendrites branch heavily and contact cones, exclusively [32]. The axon
connecting these two fields is so long and thin that the fields do not interact elec-

trically [33]. The dendritic field of the axonless cell, labeled HIT in Figure 2.2, also
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contacts cones exclusively. In cold-blooded vertebrates, such as fish, the short-axon
cells occur in three varieties, called H1, H2, and H3 [34], that make selective contact
with cones [35]. Unlike the primate cells, these cells show color-selective physiological
responses [36], and their axons dive down through the INL and terminate among the
amacrine cells at the INL-IPL border [34]. Another difference is that the axonless
cells of cold-blooded species contact only rods [37].

At least five morphological types of bipolar cells occur in the vertebrate retina, if
we do not distinguish the color selectivity of the cones that they contact. The most
prominent distinguishing feature of bipolar cells is the sizes of their dendritic or axonal
fields. There are two distinct clusters: cells with large dendritic and axonal fields,
called diffuse, and cells with small fields, called midgets [38, 31]. If we take into
account whether they contact rods or cones, we find that there is class of large-field
cells that contacts only rods [37]. Now, paying close attention to the type of contacts
made with receptors, we find that some bipolars enter an invagination in the rod and
cone terminals, whereas others make contact at the base of the terminal [39, 32]. An
example of each type is shown in Figure 2.2. Note that basal contacts never occur
on rods; thus, rods have only one type of bipolar (diffuse and invaginating), whereas
cones have four types (midget or diffuse, and flat or invaginating).

Horizontal cells also enter the invaginations in the rod and cone terminals, forming
a synaptic complex called a triad [32]. Bipolars terminals are always the central
element in the triad, with a horizontal-cell process on either side, for a total of three
postsynaptic processes. The horizontal-cell processes reach deeper into the cone in-
vaginations and sometimes block the bipolar terminal. On top of the invagination,
there is a flattened oblong structure, called a ribbon, surrounded by small round
pellets that contain neurotransmitter, called vesicles. This arrangement is called
a ribbon synapse and is always associated with the triad (see Figure 2.2). The
exact function of this synaptic specialization is still a mystery; the ribbon could fa-
cilitate vesicular transport [40] and the invagination might influence the diffusion of
neurotransmitter, shaping the concentration profile and controlling the amount of

neurotransmitter that reaches the elements of the triad and the basal synapses [41].
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The inhibitory action of horizontal cells on cones probably occurs in these invagina-
tions.

In addition to triad synapses and basal junctions, a third type of synaptic structure
occurs in the OPL [42]. This structure, which passes ionic currents, is called a gap
junction, or sometimes an electrical synapse, and can be thought of as a low-
resistance pathway connecting the two cells. There is an extensive network of gap
Junctions between all four classes of cells in the OPL: cone to cone, rod to rod,
horizontal to horizontal, and bipolar to bipolar (see [43] for a review). In addition,
there are gap junctions between rods and cones (see Figure 2.2).

These synaptic interactions in the OPL gives rise to the antagonistic center-
surround receptive-field organization first observed by Kuffler in the early fifties,
when he recorded spike trains from retinal ganglion cells of the cat [44]. About 1
decade later, Rodieck demonstrated quantitatively that the spatial profiles of the
center and surround components of the receptive field are well fitted by Gaussians,
and he proposed the highly influential difference of Gaussians (DOG) model of
spatial filtering in the retina [45].

2.3 The Inner Plexiform Layer

The IPL is over five times thicker than the OPL (see Figure 2.1), and its anatomy
and physiology are much less well understood. A plethora of amacrine cell types—the
interneurons of the IPL—has been described. So far, 29 types have been identified
in the turtle [46, 47], and several dozen have been found in the roach [48, 49]; re-
searchers estimate that there are over 40 types in the mammalian retina [50]. But
the purpose of all this diversity remains a mystery, since it is not reflected in the
responses that electrophysiologists have recorded from the amacrine cells [46]. Either
the physiologists are using stimuli that are too simplistic to discriminate among the
morphologically defined amacrine-cell classes, or the anatomists are assigning undue
significance to morphological differences that are of little or no consequence. The

same situation holds for ganglion cells [51, 52, 53]. There is no doubt, however, that
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amacrine cells play a critical role in detecting the speed and direction of motion, since
antagonists of known amacrine-cell neurotransmitters abolish direction selectivity and
other complex properties of rabbit ganglion cells [54].

Over the past decade, however, researchers using immunohistological markers and
improved intracellular recording techiniques have begun to demonstrate a bewildering
diversity in functional properties that is correlated with the structural diversity. These
findings have forced neurobiologists to reaccess the century-old work of Ramén y
Cajal, the preemminent neuroanatomist of his time. Cajal advocated a five-tiered
stratification of the IPL—a structural abstraction that has stood the test of time [37].
Each sublayer is demarcated by levels of dendritic arborization. Cajal referred to these
levels as simply the first through fifth strata, starting at the most peripheral one;
they are denoted S1 through S5. Strata are prominent in birds and reptiles, but are
difficult to distinguish in fishes and mammals [37, 55], because the latter’s amacrine
cells have more diffuse arborizations. For this reason, anatomists sometimes simply
divide the IPL into five sublayers of equal thickness [56].

Functional correlates underlying the stratification of the IPL have been found
recently [49]. Monostratified amacrine cells ramifying exclusively in S1 have sus-
tained OFF responses; that is, lightoff elicits an increase in membrane potential that
is maintained for the duration of the stimulus. Similarly, amacrines with arboriza-
tions in S4 and S5 have sustained ON responses. Amacrines with small, bistratified,
tristratified, or diffuse dendritic fields spanning S2, S3, and S4 have slow-decaying
transient ON-OFF responses; that is, both lightoff and lighton initially elicit an
increase in membrane potential. Monostratified amacrine cells with large dendritic
fields in S2 and S3, most often located close to the S2-S3 border, have fast-decaying,
transient ON-OFF responses; the wide-field amacrine cell shown in Figure 2.2 is an
example of this type.

Although this elegant organization of structure and function in the IPL—which
was first described in fishes—has yet to be demonstrated in mammals, it has been
shown that cat ganglion cells with processes confined to S1 and S2 have OFF center

responses, whereas those with processes confined to S3, S4, and S5 have ON center
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responses [57, 58]; the same is true in fish [59]. This observation is the basis for
coarser subdivision of the IPL into just two sublaminae, originally named a and b,
but now commonly called the OFF sublamina and the ON sublamina, respectively.

Cone and rod bipolar cells fit neatly into this picture, as shown in Figure 2.2.
Bipolars that make invaginating contacts with cones terminate in S3 and S4 (ON
sublamina), whereas those making flat contacts with cones terminate in S1 and S2
(OFF sublamina) [31]. Rod bipolars, which are of only the invaginating kind, termi-
nate in the ON sublamina, but their processes, which are found in S5, are segregated
from those of the invaginating cone bipolars, which are in S3 and S4. Since cones
and rods both have an OFF light response, the difference in bipolar cell response
polarities implies that the basal and invaginating synaptic contacts act differently.

Both photoreceptors use glutamate, a neurotransmitter that opens sodium chan-
nels, causing current to flow into the postsynaptic cell, and thus depolarizing the
cell. However, glutamate can also act through a second messenger pathway that
closes sodium channels, reducing the current flowing into the postsynaptic cell, and
thus hyperpolarizing the cell. The photoreceptors release glutamate when they are
depolarized (lightoff), so the former synaptic action is sign preserving (excitatory),
and the latter action is sign reversing (inhibitory). The net effect is sodium channels
are opened at the invaginating contacts when light increases (ON pathway) and are
opened at basal contacts when light decreases (OFF pathway). With a few exceptions
(see [60]), this correlation between structure and function is generally true.

Complementary signaling arises in the rod pathway at the IPL, where a narrow-
field, bistratified amacrine cell, labeled AII in Figure 2.2, relays the rod signal to the
same set of ganglion cells that carry cone signals. Rod bipolars make contact with AII
in S5. AIl makes a gap junction onto cone bipolar terminals in the ON sublamina,
and makes an inhibitory synapse directly onto ganglion cells in the OFF sublamina.
This microcircuit has been identified in the cat [61, 62] and the rabbit [63].

Bipolar cells form a synaptic complex in the IPL that is similar to the triad
formed by rods and cones, except that there is no invagination present and only two

postsynaptic processes occur; hence, it is called a dyad [64]. At least one of the
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processes always belongs to an amacrine cell; the other may arise from an amacrine
cell or a ganglion cell. Usually, one of the postsynaptic processes makes a synapse
back onto the bipolar process in close vicinity to the dyad; this process invariably
belongs to an amacrine cell [62]. That way, the amacrine cell can inhibit the bipolar-
cell terminal, and can terminate the release of neurotransmitter. This presynaptic
inhibition results in a transient response in the postsynaptic cells, although the
bipolar cell receives sustained inputs in the OPL [65, 66].

Another common synaptic structure consists of a chain of two or three conventional
synapses, called serial synapses [67]. The first synapse is made by an amacrine
cell onto another amacrine-cell process, which in turn makes a second synapse onto
a nearby ganglion-cell dendrite, onto a bipolar-cell terminal, or onto yet another
amacrine-cell process. This arrangement could achieve a net excitatory effect in the

third-order cell via two inhibitory synapses.

2.4 Types of Ganglion Cells

The existence of several classes of ganglion cells gives rise to parallel visual path-
ways [68]. These pathways originate in the OPL, starting with the five types of
bipolar cells. The processes of these bipolars segregate into five strata in the IPL,
and they drive five types of ganglion cells; the processes of these ganglion cells cos-
tratify with the bipolar arborizations. The five types of ganglion cells are called: ON-
and OFF-center midgets, ON- and OFF-center parasols, and rod-system ganglion
cells. Needless to say, midget ganglion cells talk to midget bipolars in S1 and S4;
parasol ganglion cells talk to diffuse bipolars in S2 and S3; and rod ganglion cells
talk to rod bipolars in S5 (Figure 2.2). The stylized circuit diagram in Figure 2.3
shows the major synaptic interactions involved in these pathways.

Several different classifications of ganglion cells are in common usage. There is the
beta (f), alpha (o), gamma () classification [25] preferred by retinal anatomists;
it is based on the cell morphology. Thus, (-cells have medium-sized cell bodies

and small dendritic trees, and are synonymous with the aforementioned midgets; -
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Figure 2.3: SIMPLIFIED CIRCUIT DIAGRAM OF THE RETINA

Three modules subserving motion («), spatial color vision (), and nocturnal vision
() are shown. The dark-shaded cells are turned off by light (OFF stream), whereas
the unshaded cells are turned on by light (ON stream). The light-shaded cells turn on
transiently at both lighton and lightoff. The rods and cones (R/C) are turned off by
light; they make an inhibitory synapse onto ON bipolar cells (BC), and an excitatory
synapse onto OFF bipolars in the outer plexiform layer (OPL). The horizontal cells
(HC) are excited by the receptors, and inhibit the receptors and the OFF bipolars.
Rods are coupled by electrical junctions, and cones are coupled as well; there are
also gap junctions between rods and cones. The inner plexiform layer (IPL) has
five sublayers (S1-S5). S1 and S4 serve the OFF and ON streams of the /3 circuit,
respectively; S2 and S3 serve the OFF and ON streams of the « circuit, respectively;
and S5 serves the rod circuit that has only an ON stream. Rod signals are carried by
the v ganglion cells and are also relayed to the 3 (and «) circuit(s) by a bistratified
amacrine cell (type AII) that makes an inhibitory synapse onto the OFF ganglion cell
in S1 and a gap junction onto the ON bipolar terminal in S4. The rod bipolar excites
another set of amacrine cells (types A13 and A17) that makes inhibitory reciprocal
synapses back onto it. The § ganglion cells are driven mainly by bipolars, whereas the
as are driven mainly by amacrines. There are complex interactions with amacrines
in the « circuit: The bipolars excite both wide-field (type A19) and narrow-field
amacrines (type A2-A3). These amacrine cells make reciprocal synapses onto the
bipolars and also feed forward onto the ganglion cells. In addition, the narrow-field
amacrine cell inhibits the wide-field cell.
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cells have huge cell bodies and large dendritic trees, and are synonymous with the
aforementioned parasols; and 7y-cells generally have tiny cell bodies and large dendritic
trees, and form a functionally heterogenous group that includes the aforementioned
rod ganglion cell. The 1 percent of cat ganglion cells that are direction selective fall
into this category [52].

There is also the magno—parvo classification favored by cortical primate physi-
ologists and anatomists [26]; it is based on the morphology of the target cells in the
lateral geniculate nucleus (LGN), where most ganglion-cell axons terminate:® Cell
bodies in the LGN are arranged in six layers, called laminae. Four of these laminae
contain small cell bodies, and the remaining two contain large cell bodies—hence,
the magnocellular-parvocellular terminology. Naturally, the « cells terminate in the
magnocellular layer, whereas the 4 cells terminate in the parvocellular layer. The ~y
cells are not included in this classification, since they generally project to the supe-
rior colliculus and to the brainstem. The magno—parvo pathways primarily apply to
the primate visual system, where they have been traced from the retina deep into
cortex [69].

There is yet another classification—X, Y, W—favored by retinal physiologists,
and originally elaborated in the cat [24, 70]. This scheme is based on whether a
cell responds to spatiotemporal patterns linearly (X) or nonlinearly (Y). To test for
linearity, Enroth-Cugell and Robson used an odd symmetric pattern and modulated
the luminance of one half with a square wave and the luminance of the other half
with the inverse of the square wave [24]. Thus, while the luminance in one half
increased, the luminace in the other half decreased at the same rate, keeping the
total luminance constant. They demonstrated that some cells did not respond at
all when this stimulus was centered perfectly on the receptive field, showing a null
response, whereas others responded strongly to each transition in the square wave,
showing frequency doubling. They named these cell types X and Y, respectively.

Obviously, this linearity test is generally applicable to only those cells with circularly

5The LGN is part of the thalamus, a region in the forebrain that serves as a relay station for
sensory information bound for cortex.
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symmetric receptive fields—hence, the need for a third category (W) to account for
the nonconcentric cells.

It later became clear that the X and Y classes, as defined by the linearity test,
are not homogeneous [71]. Each category has at least two subgroups characterized by
significant differences in axonal conduction velocities. This subspecialization is taken
into account by the brisk (high- or medium-velocity) and sluggish (low-velocity)
classification proposed later by Cleland and Levick [51]. All brisk Y cells have high
conduction velocity, and all brisk X cells have medium conduction velocity, and all
W cells—defined here to be synonymous with the nonconcentric units—have low
conduction velocity [71]. Since conduction velocity is correlated with cell-body size,
it was not surprising to find that brisk Y cells are synonymous with « cells, and that
brisk X cells are synonymous with § cells, whereas sluggish X, sluggish Y, and W
cells fall in to the heterogeneuos v class [53, 51].

All three classifications were developed in mammals (mainly the cat and the mon-
key) and have not been applied successfully to lower species (e.g., the mudpuppy,
salamander, and the frog), since little is known about central structures in these
species and their ganglion cells show much richer specializations [72].

Of course, these classification schemes are nonexclusive; actually, they are redun-
dant. In other words, looking at the same cell, an anatomist will identify it as a 3 cell,
a cortex expert will say it is in the parvo pathway, and a retinal physiologist will find
that it shows X-type behavior. However, the geniculate-based classification is limited
to cells that project there, and hence it can account only for the retinally-labeled o
and § cells, which are the predominant input (but see [68, 73]). And the physiological
classifications are notorious for lumping different cell types into the same group, be-
cause tests for linearity, ON-OFF behavior, or sustained-transient behavior, alone,
are too simplistic to discriminate the cells’ specializations. For these reasons, I shall
use the o, (3, v classification in this dissertation, except where history precludes my
doing so.

Physiologically, § cells always respond steadily and have small receptive fields,

whereas « cells always respond more transiently and have larger receptive fields.
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There is a continuum of receptive-field sizes and temporal characteristics within each
class, ranging from small and sustained in the fovea to large and transient in the
periphery [51]. Nevertheless, « cells are always two to three times larger and respond
more transiently than § cells at the same eccentricity [51]. The anatomy of these
cells is well correlated with the physiology. In one study where ON cells in the area
centralis of the cat retina were reconstructed from electron-microscope pictures, 3 cells
received 72 percent of their inputs from bipolar cells [74], whereas « cells received
85 percent of their inputs from amacrine cells [75]. This distribution fits well with
the notion that bipolar cells have a sustained response, whereas amacrine cells are
responsible for generating a transient response. Another study looked at OFF cells
from the periphery of the cat retina, and found that 3 cells received 38 percent of their
synapses from bipolar cells, whereas o cells received only 20 percent of their synapses
from bipolar cells [76]. Again, the cell with the more sustained response receives more
bipolar input, although these peripherally located cells are predominantly amacrine
driven. The dendritic-field sizes of these ganglion cells are also well correlated with
the receptive-field sizes.

In terms of actual numbers and sampling densities, there are about 150,000
to 200,000 ganglion cells in the cat retina [77], versus 1.5 to 1.8 million in the
macaque [78]. The « and § cells constitute 50 percent of the cat cells and 90 percent
of the monkey cells, and there is about a 9:1 ratio of 3 cells to « cells in both cases.
The sparsity of o cells reflects that nine times fewer « cells are required to tile the
retina, since the o dendritic fields are three times larger [68], compared to the 3 cells.
The remaining 50 percent of the cells in the cat, and the remaining 10 percent of
the cells in the macaque (these percentages work out to the same absolute amount
of about 100,000 in each retina) fall into the heterogeneous v class. In both species,
3 cells project to the forebrain. In the cat, a cells project to the forebrain and the
midbrain—in particular, to the superior colliculus and the pretectum—whereas «
cells in the primate project to only the LGN [79, 68]. Finally, v cells, which carry
more specialized information (e.g., they encode the direction of motion) project pre-

dominantly to the midbrain [79].
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2.5 Summary

Even this extremely truncated and oversimplified review of retinal neurobiology makes
it abundantly clear that the retina is, indeed, much more complex than is any sensory
system currently built by engineers. The retina’s parallel dedicated channels make it
akin to several specialized cameras coexisting on the same chip. Even if we try to get
around this multifaceted character by focusing on just one of these cameras, we are
still bewildered because the elements of the cameras are richly interconnected, and
the same element may serve several purposes at the same time, or it may be coopted
by different cameras at different times.

This nonmodularity, which is a defining characteristic of the retina—and of the
rest of the brain—makes it extremely difficult for us to understand how the system
operates by using traditional reductionist approaches. It is the goal of this thesis to
provide a unifying framework that accounts for the following key aspects of retinal

organization, which are preserved across a large variety of species:

e The retina encodes several parallel information streams in its output that em-

phasize different aspects of a scene, such as color, edges, and movement.

e To a good first approximation, the retina in all vertebrate species can be de-
scribed as a locally connected feedforward neural network with three cellular
layers that are connected by two layers of processing: the outer plexiform layer

(OPL) and the inner plexiform layer (IPL).
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Chapter 3 Retinal Function: Information

Encoding

The retina converts continuous spatiotemporal patterns of incident light into spike
trains. Transmitted over the optic nerve, these discrete spikes are converted back into
continuous signals by dendritic integration of excitatory postsynaptic potentials in the
lateral geniculate nucleus of the thalamus. For human vision, contrast thresholds of
less than 1%, processing speeds of about 20 ms per stage, and temporal resolution in
the submillisecond range are achieved, with spike rates as low as a few hundred per
second. No more than 10 spikes, per input, are available during this time. The retina
must maximize the amount of information carried by these spikes.

For optimum performance, the retina must efficiently encode stimuli generated by
all kinds of events, over a large range of lighting conditions and stimulus velocities.

These events fall into three broad classes, listed in order of decreasing probability

of occurrence:

e Static events: Generate stable, long-lived stimuli; examples are buildings or

trees in the backdrop

e Punctuated events: Generate brief, short-lived stimuli; examples are a door

opening, a light turning on, or a saccade

e Dynamic events: Generate time-varying, ongoing stimuli; examples are a

wheel spinning, grass vibrating in the wind, or eyes panning the scene

In the absence of any preprocessing, the output activity mirrors the input directly.
Changes in lighting, which influence large areas, are reflected directly in the output of
every single pixel in the region affected. Static events, such as a stable background,

generate persistent activity in a large fraction of the output cells, which transmit



30
the same information repeatedly. Punctuated events generate little activity and are
transmitted without any urgency. Dynamic events generate activity over areas far
out of proportion to informative features in the stimulus, when the stimulus sweeps
rapidly across a large region of the retina. Clearly, these output signals are highly
correlated, over time and space, resulting in a high degree of redundancy. Hence,
reporting the raw intensity values makes poor use of the limited throughput of the

optic nerve.

3.1 Optimal Filtering

Barlow observed over 30 years ago that it would be most efficient for the retina
to use the fewest spikes to transmit the most commmonly occuring patterns [80].
Since then, vision researchers have succeeded in formalizing this efficient-encoding
hypothesis, and have made quantitative predictions that are in good agreement with
selected experimental observations [81, 82, 83]. In this section, I adopt this formalism
and derive optimal filters for the retina, using results from communication theory.

First, I present abbreviated derivations of results that we shall need from infor-
mation theory. My main goals are to define terms and to point out the assumptions
that underpin these results, rather than to achieve mathematical rigor.

The amount of information transmitted by a communication channel is defined
as the amount by which that channel’s output, Y, reduces our uncertainity about its
input, X :

I(X;Y)= HX)- HX|Y),

where H(X) is the entropy of X and H(X|Y) is the entropy of X given Y[8]. The
quantity I(X;Y) defined above is also known as the mutual information between
X and Y. In the special case where the channel simply adds noise, NV, the information

transmitted is simply

[(X;Y)= HY) - HWN). (3.1)

The capacity of a channel is defined as the maximum rate at which that channel
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can transmit information. Equation 3.1 shows that the rate is maximized when the
entropy of the transmitted signal is maximized. If the transmitted signal is subject
to an average power constraint, P, then the ensemble with maximum entropy is the
Gaussian distribution with variance o2 = P + N, when the noise also is assumed to
be Gaussian, with variance N. If the signal is bandlimited to W, it can produce only
2W nonredundant symbols per second. This conclusion follows from Nyquist’s (and

Shannon’s) sampling theorem. And the information carried by each symbol is
1 1 1 P
Lsymp = 3 log,(2me(P + N)) — 5 log,(2meN) = 5 log, (1 + N) ;

as a Gaussian distribution with variance o2 has entropy log,(2meo?)/2. Hence, the

channel capacity is

P
— Wlog, (1
¢ °g2< +N>’

in bits per second (baud), a result that was first obtained by Shannon [8]. Notice that
the information rate is linearly proportional to the bandwidth, since every sample is
independent, but is only logarithmic in the signal-to-noise ratio (SNR), since it takes
only b bits to specify one of 2° possibilities.

We can extend this result easily to obtain the information transmitted through a
channel; given the expected power spectra of the transmitted signal and the noise.
We chop up the frequency spectrum into small bands, assign the right amount of
signal and noise power to each band, and assume that the amplitude distribution in

each band is Gaussian. This procedure yields

I= /OW log, (1 + f\;;((?)) df, (3.2)

where So(f) and Ny(f) are the expected power spectral densities of the signal and
the noise, respectively. In general, the frequency f is a vector in three-dimensional
space-time, (i.e., f = (fs, fy, ft)). For concreteness, we can think of f as spatial
frequency, without loss of generality.

I now address the efficient-encoding problem. Following a strategy similar to that
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Figure 3.1: OpTIMAL FILTER DESIGN

A filter cascade consisting of a noise-suppression filter, Fi(f), and a whitening filter,
F5(f), is used. The noise added by the input and output channels, and by the
intermediate channel between the filters, also is included in this model.

of Attick and Redlich [81], I design a filter cascade to transmit the photoreceptor
signal optimally; it consists of two filters, as shown in Figure 3.1.

The first filter’s job is to ensure that as much as possible of the channel capacity
is used by the signal, and that as little as possible is used by the input noise. To
acheive these goals, I amplify or attenuate each frequency band in accordance with
the SNR and with the absolute noise level in that band. The filter should attenuate
bands where the noise is larger than the signal; it is wasteful to transmit these bands
because the noise takes up most of the channel capacity. As information is logarithmic
in SNR, bands with vastly different SNRs contribute similar amounts of information—
as long as the SNR is greater than unity. So we should not pick the band with the
best SNR and reject the others, as we would do if we wanted to maximize the SNR.
Instead, we should amplify bands where the noise is smaller than the channel noise,
so as to preserve the SNR—but only if the SNR exceeds unity.

Once we have suppressed the noise, our next optimization is to redistribute the
energy of the signal across frequency bands to make the most efficient use of the
limited power of the transmitted signal. The second filter achieves this goal by trading
SNR for bandwidth. The large signals required to obtain a high SNR contribute
linearly to power, but contribute only logaritmically to information rate. Spreading
out the energy of the transmitted signal in frequency increases the information rate

linearly, because each frequency band provides independent information. Therefore,
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if it is about information that we care, we are better off transmitting signals that
have a low SNR but a high bandwidth.

By design, the whitening filter does not discriminate between signal and noise; it
transmits information about all its inputs equally well. The noise-suppresion filter
and the whitening filter exhibit an interesting complementarity: The former makes
the signal less noisy, and the latter makes the signal more noiselike.

The compound effect of the noise-suppression filter and the whitening filter is
illustrated in Figure 3.2 for a signal with a 1/f? power spectrum. This distribution
of spectral energy is typical of both the spatial and temporal frequency composition
of natural scenes.

To find the optimal noise-suppression filter, we maximize the functional

EI[FIUC)} = (1+B)/Ooolog2 (1.*.;(1;{])\5___(%) df

-K%&G+Mﬁ%$+%0% (3.3)

where Fi(f) is the power gain of the filter, and So(f), No, and N; are the power
spectral densities of the input signal, the noise in the input signal, and the noise
added by the channel that transmits Fi’s output signal (See Figure 3.1). The first
term measures how much information is carried in the output signal; the second term
measures how much capacity is required to transmit the signal as well as the noise.
I have included a relative cost factor, B : the excess capacity that we are willing to
use to transmit 1 baud of information about the signal. B is dimensionless because
it is the ratio.

Taking the functional derivative and equating it to zero, we find that

Em~MBWﬂ_M

 No Solf)+ Ny (3-4)

When BSy(f) > N, (high SNR), the second factor becomes unity, and filter’s gain is
set to amplify the input noise up to the noise level of the output channel; this boost

prevents channel noise from degrading the SNR. For Sy(f) < Ny/B (SNR less than
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Figure 3.2: EFFECT OF OPTIMAL FILTER

Filtering 1/f signals plus white noise (left column) using allpass or bandpass filters
(middle column) prior to transmission of output signals (right column) down a com-
munication channel that adds white noise (light grey line). Top Row: Transmitting
the raw image signal allocates too much power to low frequencies, which do not carry
any more information than do the other frequencies, and too much power to broad-
band noise, which dominates at high frequencies. Bottom Row: Bandpass filtering
optimizes the use of power by attenuating low frequencies and rejecting wideband
noise.

1/B), the power gain becomes negative. In this regime, more than B bits of noise
are transmitted for each bit of signal, and the only way that we can satisfy the cost
constraint is by making the power negative. Obviously, such values are not physically
possible; the best that we can do is to set the gain to zero in these frequency bands.

To find the optimal whitening filter, we maximize the functional

E[Fy(f)] = (P +No) /O‘”logQ <1+F2(f>(51(f)+N1(f))> o

N,
= [T RS + M), (3.5)

where F,(f) is the power gain of the filter, and Si(f) = Fi(f)So(f) and Ny(f) =
Fi(f)Ny + N; are the signal and noise power at the input. The first term is the
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information rate for the filtered signal, plus that signal’s noise, given the channel
noise Ny; the second term is the power of the transmitted signal. I have included a
relative cost factor, P, + Ny : the amount of power, per unit frequency, that we are
willing to expend, for signal plus noise, for each baud (bits/sec) of information. Note
that P, and NV, are given in units of energy, just like Si(f), Ni(f), and Ny.

Taking the derivative of this functional and equating it to zero, we obtain

— P2
CSU(f) + Nu(f)

(f) (3.6)

With this filter, the transmitted signal, F5(f)(S1(f) + N1(f)), is white, with uniform
power spectral density of P,. This signal level is expected, given the cost that we
assigned to information, because the optimization procedure equalizes the marginal
costs of information and energy. Substituting the expressions for S;(f) and Ny(f),
and using the result for Fi(f), we find that the whitening filter is related to Sy(f) by

simply
.ZVO PQ

~ BNI So(/)
When Sp(f) < No/B and Fi(f) is set to zero, there is no signal and Fy(f) = P»/Ny.

() : (3.7)

Measurements of the expected power spectral density of natural scenes yield
So(f) =~ K/f? where K has units of power times frequency[84, 85].! Noise due
to quantum fluctuations—in the photon flux from the light source, or in the ionic
flux through the photoreceptor membranes, or in vesicular neurotransmitter supply
to the synaptic cleft—is white.

Given these ensemble statistics, the optimum noise-suppression filter is

Py~ DB U/

=N IE T (3.8)

where f; = /(K /Np). This filter is lowpass, with corner frequency at the point where

1The finite-power constraint requires that this spectral density flatten out at very low frequencies.
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Figure 3.3: OPTIMAL SPATIOTEMPORAL FILTER
Surface (a) and contour (b) plots of optimal spatiotemporal filter for natural scenes
which have power spectra of the form S(f,, f;) = (1//2)(1/f?). The filter is optimized
to equalize the energy at all frequencies and to reject bands with signal-to-noise ratio
less than unity.



37
the SNR becomes 1/B. The optimal whitening filter is

K(f) = B}jih (}f:) : (3.9)

It is highpass. Hence the overall cascade is bandpass. The optimal spatiotemporal
filter for signals with expected power spectrum of the form So(f,, i) = (1/f3)(1/f?),
is plotted in Figure 3.3. The filter has low gain at low frequencies and its gain
peaks along the diagonal line (on log-log coordinates) f,f; = constant. I compare
and contrast the optimal filter with the retinal filter in Section 3.2.3, after I present
psychophisical and physiological measurements of the visual system in Sections 3.2.1

and 3.2.2.

3.2 Spatiotemporal Sensitivity

I now review measurements of the spatiotemporal-frequency sensitivity of the retina;
these measurements reveal which parts of the visual signal are transmitted down the
optic nerve and which parts are filtered out. We will consider the overall perfor-
mance of the entire visual system, as assessed by behavioral experiments, and the
performance of the retina itself, as assessed by spike-train recordings from individual
ganglion cells. The engineering-style measurements I review here reveal a great deal
about the microarchitecture of the retina, and about the mechanisms that the retina
uses to process spatiotemporal visual signals.

Physiologists and psychophysicists have measured the spatiotemporal sensitivity
of the retina using a frequency-domain approach, and have proposed fairly detailed
biophysical models to account for the data. In contrast with the flashing spots and an-
nulli much loved by physiologists for stimulating cells, this engineering-style approach
uses moving (or flickering) sinusoidal gratings. In theory, these two approaches should
vield the same information; in practice, the frequency-domain measurements are more
robust and more sensitive. The down side of frequency-domain methods is that we

must invoke linearity, space invariance, and time invariance to predict responses to
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more complex stimuli. These ideal properties hold for only low contrast levels, for a
fixed eccentricity, and for a fixed background-intensity level-—conditions under which
ON-OFF rectification, variations in sampling density, and light adaptation in the

retina are insignificant.

3.2.1 Psychophysical Measurements

Over a period of 20 years, Kelly, and other psychophysicists, obtained a complete
quantitative description of the spatiotemporal threshold surface of human vision [88,
92]. By compensating for the subject’s eye movements [91], Kelly was able to measure
responses to moving gratings. These measurements do not invoke any nonlinearities,
because the signals used are at the threshold of perception. The experiment is re-
peated at different levels of background intensity, spanning several decades, to charac-
terize nonlinear light-adaptation effects. These psychophysical experiments provide
an input-output description of the entire visual system—including the optics, vit-
reous humour, spatial sampling, and all the parallel pathways—up to the observer,
which is somewhere deep inside the cortex at an unknown location! Therefore, they
provide only a lower bound for the performance of the individual stages. Also, only
the magnitude of the response is measurable; the phase of the response cannot be
obtained with these methods. In the absence of more powerful noninvasive measure-
ment techniques, these data are all that are currently available for humans. Two sets
of these psychophysical data are shown in Figure 3.4 and in Figure 3.5.

The first data set characterizes the dependence of temporal- and spatial-frequency
selectivity on ambient light level, over 6 decades of intensity (Figure 3.4). Both
spatial and temporal responses are bandpass under brightly lit conditions, but the
sensitivity to high frequencies decreases as the lights dim, and the peak shifts to lower
frequencies. At the lowest intensity levels, the response becomes lowpass. Notice that
the transition occurs 1.5 decades earlier for the temporal response, at 3.75td versus
0.09td for the spatial response.

The second data set reveals the dependence of spatial filtering on temporal fre-
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Figure 3.4: INTENSITY ADAPTATION AND FREQUENCY SENSITIVITY OF HUMANS

In these psychophysical experiments, researchers choose a background intensity level
and modulate its amplitude sinusoidally, either in space or in time. Then they mea-
sure the modulation level, expressed as a fraction of the background intensity, required
just to exceed the perceptual threshold of the subject. The contrast sensitivity, which
is defined as the reciprocal of the threshold modulation, is plotted here. (a) Flicker
contrast sensitivity versus temporal frequency for six different background-intensity
levels: 0.375, 1, 3.75, 10, 37.5, 100, 1000, 10,000 td (from lowest curve to highest
curve). The response changes from lowpass to bandpass and shifts to higher frequen-
cies as intensity increases. (b) Grating contrast sensitivity versus spatial frequency
for seven different background intensity levels: 0.0009 to 900td, increasing in steps
of 1 decade (from lowest curve to highest curve). For intensities above 900td, the
curves are identical to the one for 900td. Again, the response changes from lowpass
to bandpass and shifts to higher frequencies as intensity increases. We can convert
the troland units (td) used for intensity to photons absorbed per second per cone by
multiplying by 10, or to photons absorbed per second per rod by multiplying by 4.
Reproduced from [86]. Original sources: a [87];b [88].

100



40

500

200

100 -

S0

20

Contrast sensitivity

10

Conast sensiivity

02 0.5 1 2 5 10 20 50
Spatial frequency (cpd)

(a)

Figure 3.5: SPATIOTEMPORAL CONTRAST SENSITIVITY OF HUMANS

Sinusoidal gratings, superimposed on a mean background level, were used and their
amplitudes were modulated sinusoidally in time to produce a contrast-reversing pat-
tern.(a) Contrast sensitivity versus spatial frequency at four different temporal fre-
quencies (in units of cps). The spatial-frequency response is bandpass at low temporal
frequencies, but becomes lowpass at high temporal frequencies. (b) Three-dimensional
plot of spatiotemporal contrast-sensitivity function. The mean intensity was 1000 td.
The curves in (a) correspond to cross-sections of this surface taken parallel to the
spatial frequency axis, at different points on the temporal frequency axis. Plotting
the measurements in three-dimensions makes it evident that the temporal frequency
sensitivity also is bandpass at low spatial frequencies and becomes lowpass at high
spatial frequencies. Reproduced from [86]. Original sources: a [89]; b [90, 91, 92].
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quency, and vice versa, at high intensity levels (Figure 3.5). Although the spatial-
frequency response is bandpass at low temporal frequencies, it does not remain so
as temporal frequency increases. Sensitivity to low spatial frequencies increases with
temporal frequency, and the spatial filter transitions gradually from bandpass to low-
pass. Sensitivity to low spatial frequencies does not increase indefinitely; it starts
decreasing for temporal frequencies above 6¢ps. Similarly, the temporal-frequency
response is bandpass at low spatial frequencies, and becomes lowpass at high spatial
frequencies.

The dependence of filtering on the frequency in the other dimension is uncannily
similar to the dependence on intensity. There is an important quantitative difference,
however. As the frequency in the other space—time dimension increases, the filter
changes from bandpass to lowpass, but the cutoff point does not shift to lower fre-
quencies as it does with decreasing intensity-—all the curves approach the same point

at high frequencies.

3.2.2 Physiological Measurements

In a remarkable series of physiological experiments, Enroth-Cugell and her cowork-
ers characterized the spatiotemporal properties of X and Y retinal ganglion cells in
the cat [94, 95, 93]. Unlike psychophysicists, physiologists usually use high-contrast
stimuli that maximally excite the cell, and, no doubt, drive it into the nonlinear
regime. Enroth-Cugell and coworkers were careful to collect data for spike rates be-
low 10 spikes/sec, because their measurements indicated that nonlinearities became
significant outside this range (this spike rate corresponds to 10 percent or lower con-
trast) [94, 93]. They also characterized the nonlinear spatial interactions in the Y
cell’s receptive field [95]; the data are shown in Figure 3.6. Most physiological stud-
ies to date provide data at only one level of adaptation (but see [93, 96]), whereas
psychophysical studies may span up to 6 decades of light intensity.

Despite species differences and measurement techniques, the physiological re-

sponses of the X cell parallel the psychophysical ones: The temporal filter is bandpass
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Figure 3.6: SPATIOTEMPORAL CONTRAST SENSITIVITY OF CAT GANGLION CELLS

In these physiological experiments, researchers use sinusoidal spatiotemporal
patterns—which they generate either by moving a grating or by modulating the light
intensity with time—to stimulate the cell; they then record the cell’s spike train. To
obtain a measure of the linear component of the response, they compute the magni-
tude and phase of the Fourier component of the average spike rate at the temporal
frequency of the stimulus. The responsitivity, which is defined as the ratio between
the amplitude of this Fourier component and the contrast of the stimulus, is plotted
here. (a) Grating-contrast responsitivity versus spatial frequency for an X cell. For
the high intensities used, the response is bandpass and is well fitted by the difference-
of-Gaussians (DOG) model. (The solid curve is obtained from the difference of the
two dashed Gaussian curves.) The experimenter measured the temporal-frequency
responses shown in the other panels at three carefully chosen spatial frequencies, la-
beled diffuse (low frequency), peak (frequency at which spatial bandpass peaks), and
center (bandwidth of center Gaussian used in DOG model). (b) Contrast sensitivity
versus temporal frequency for a X cell (diffuse = 0.01 cycles per degree, (cpd), peak
= 1.4 cpd, and center = 2.4 cpd). A bandpass response is obtained at low spa-
tial frequencies, but the response becomes lowpass at high spatial frequencies. (c).
Contrast sensitivity versus temporal frequency for a Y cell (diffuse = 0.01 cpd, peak
= 0.2 cpd, and center = 0.42 cpd). The response is always bandpass, although the
peak becomes broader at the peak spatial frequency. The phase measurements, which
have been omitted for brevity, show that, at low frequencies, the Y cells lead the X
cells by almost 90°; at higher frequencies, however, the phase changes linearly with
frequency for both cells—a characteristic of a pure delay element. The corresponding
delay—that is, the delay between the peaks in the input sinusoid and in the cell’s
firing rate—was 24 msec for X cells, and 20 msec for Y cells. Reproduced from [93].
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at low spatial frequencies, and becomes lowpass at high spatial frequencies, but the
high-frequency cutoff remains the unchanged. The same description applies to spatial
filtering vis-a-vis temporal frequency. However, the Y cell’s responses are strikingly
different; they are bandpass for all spatial frequencies.

This difference between X and Y cells is interesting as the primary difference
between these pathways is in the amount of processing that occurs in the IPL. Y
(cv) cells receive a lot of input from amacrine cells, whereas X (3) receive little input
from amacrines. Hence, the amacrine cells are probably responsible for removing the
low spatial frequencies present in the X cells’ responses at high temporal frequencies,
and the low temporal frequencies present in the X cells’ responses at high spatial

frequencies.

3.2.3 Theory and Experiment

The theory of optimal filtering qualitatively accounts for the bandpass spatial filtering
and the bandpass temporal filtering, since the power spectrum of natural scenes is
given by f~2 for both temporal and spatial frequency. However, it does not account
for the effect of temporal frequency on spatial filtering, or vice versa.

The full spatiotemporal frequency power spectrum of natural scenes is given by
f72f,72 [84, 85); it can be factored into a spatial-frequency component and a temporal-
frequency component. Therefore, increasing the frequency in the other dimension
should have the same effect as reducing the overall signal level. Hence, we would
expect the behavior to be the same as that we saw for intensity. And we do indeed
observe the same qualitative behavior. However, the high-frequency cutoff does not
shift to lower frequencies as the frequency in the other dimension increases, as we
expect from the theory (Compare Figure 3.3 and Figure 3.5b).

Bandpass behavior is optimal at high light levels, where the SNR. is high. However,
we do not expect it to be optimal when the SNR is low, simply because there is little

point in redistributing the signal energy over the spectrum when the noise is dominant

everywhere.
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SNR will decrease with intensity because the variance of the noise decreases lin-
early as the mean number of quanta integrated over a given volume of space-time
decreases. Indeed, the variance is equal to the mean for a Possion-like point process;
hence, the SNR is simply /I/I, when the light intensity is expressed as quanta per
space-time volume. Therefore, the SNR decreases as 1/1/1.

This dependence of SNR on intensity explains the shift of the cut-off frequency,
and the peak frequency, to lower frequencies. The response becomes lowpass when
the unity-SNR frequency approaches 0. The fact that the transition occurs first in
the temporal-frequency response may indicate that the pathway that carries temporal
information integrates over a smaller volume of space-time than does the pathway
that carries spatial information.

A very striking aspect of the psychophysical measurements is that the contrast
thresholds all fall within less than 2 decades, although the signals that are producing
this contrast change by 6 decades. That is, the visual system acts as though the light
has changed by only 1.5 decades, when in fact it has changed a millionfold! We know
from recording from retinal ganglion cells that this intensity normalization happens in
the retina. The retina cares less about absolute intensity, and more about how much
signals change relative to the ambient intensity level. Hence, we see the importance
of contrast in characterizing the behavior of the visual system.

The dependence of visual sensitivity on light intensity is characterized by Weber’s
law, which states that the threshold is proportional to the mean intensity level.
Weber’s law works fantastically well at high intensities, as is evident the asymtotic
behavior of the curves in Figure 3.4. However, it breaks down at low light levels, as
the curves move apart with decreasing intensity.

In the low-intensity region, the dependence of visual sensitivity on light intensity
is characterized by the de Vries—Rose law, which states that the threshold is pro-
portional to the square root of the mean intensity level. Since the noise dominates
in this regime, and the noise level is given by the square root of the intensity, the
visual system sets its gain inversely to the input level in both cases. As a result, the

output-signal falls in a limited range.
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Operation Standard Retinal

Detection Integrating Continuous
Gain control  Global Local
Filtering Allpass Bandpass
Quantization Fixed Adaptive
Architecture  Serial Parallel

Table 3.1: STANDARD VERSUS RETINAL DESIGN PRINCIPLES
3.3 Biology Versus Engineering

The functional and structural organization of the retina is radically different from that
of standard human-engineered imagers. The design principles employed by standard
imager technology are outlined in Table 3.1; the design principles of the retina are also
listed for comparison. These principles are compared and contrasted in Section 3.3.1

through Section 3.3.5.

3.3.1 Sensing: Continuous Versus Integrating

Integrating detectors (e.g., charge-coupled devices (CCDs) [97] and photogates [98])
suffer from blooming at high intensity levels and require a destructive readout (reset)
operation. Continuous-sensing detectors (e.g., photodiodes or phototransistors) do
not bloom, and can therefore operate over a much larger dynamic range [99]. In
addition, redundant readout operations can be eliminated, with considerable power
savings, because charge does not accumulate.

Continuous-sensing detectors have been shunned, however, because they suffer
from gain and offset mismatches that give rise to salt-and-pepper noise in the image.
However, Buhman and colleagues have shown that the powerful learning capabilities
of image-recognition systems can compensate easily for this fixed pattern noise [100].

The real benefit of using continuous sensors lies in the latter’s ability to perform
analog preprocessing before quantizing the signal. A signal that takes on a discrete
set of values at a discrete set of times (quantized in amplitude and time) carries

less information than does a signal that takes on the full continuous spectrum of
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Figure 3.7: INPUT-OUTPUT TRANSFER CURVES FOR LIGHT SENSORS

(a) As larger and larger input ranges are spanned, the slope decreases, and finer reso-
lution is required to detect the same percentage change in the input signal. (b) Using
transfer curves that can be centered at the local intensity level decouples dynamic
range and resolution. Each curve spans only a 20-fold input range, since local vari-
ations in intensity are due primarily to changes in reflectivity: A black sheet has a
reflectivity of 0.05, and a white sheet has a reflectivity of 0.95. These transfer curves
were measured for the cat retina, and were reproduced from [101].

amplitudes and times. For instance, graded potentials in the nervous system can
transmit information at the rate of 1650 bits per second—over four times the highest
rate measured for spike trains [10].

The analog operations described in and Section 3.3.2 Section 3.3.3 reshape the
spectral and amplitude distribution of the analog signal, to transmit information

efficiently through this bottleneck.

3.3.2 Amplification: Local Versus Global Control

Imagers that use global automatic gain control (AGC) can operate under only uniform
lighting because the 1000-fold variation of intensity in a scene with shadows exceeds
their 8-bit dynamic range.? A charge-coupled device or photogate can achieve 12

bits (almost 4 decades) [98], and a photodiode or phototransistor can achieve 20 bits

%I am assuming a linear encoding—a practice that is the standard. This assumption limits the
dynamic range to 2° for a b-bit encoding.
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Figure 3.8: BANDPASS FILTERING

The top row shows the original 512x479x8-bit image (a), that image’s autocorrelation
(b), and its amplitude histogram (¢). The bottom row shows the bandpass-filtered
image (d), that image’s autocorrelation (e), and its amplitude histogram (f). In the
original image, pixels are highly correlated, and the correlation falls off slowly with
distance. Whereas, the correlation is a lot less in the bandpass filtered image, and
falls off rapidly. The distribution of amplitudes in the original image is broad and
bimodal, due to the relatively bright overcast sky and the dark foreground objects.
In contrast, the amplitude distribution for the filtered image is clustered around 0
(119), and decays rapidly.
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(6 decades) [99, 102]—but the phototransistor’s performance in the lowest 2 decades
is plagued by slow temporal response. The dynamic range of the system’s output,
however, is limited by the cost of precision analog read-out electronics and A/D
converters, and by video standards.

When AGC acts globally, the input dynamic range matches the output dynamic
range, and the only way to extend the input range is to extend the output dynamic
range. In practice, we must reduce the noise floor to improve resolution.

As shown in Figure 3.7, local AGC decouples dynamic range and resolution, ex-
tending the input dynamic range by mapping different parts of the input range to the
limited output range, depending on the local intensity level. This solution is benefi-
cial if the resolution required to discriminate various shades of gray (1 in 100 for the
human visual system) is poorer than the resolution required to span the range of all

possible input levels (at least 1 in 100,000 for the photopic range of human vision).

3.3.3 Filtering: Bandpass Versus Allpass

On average, natural images have a 1/ f2 power spectrum for both spatial and temporal
frequency [103, 85], whereas noise, due to quantum fluctuations, has a flat spectrum.
Consequently, imagers that transmit the full range of frequencies present pass on
mainly noise at high frequencies, where the signal-to-noise is poor, and pass on re-
dundant information at low frequencies, where the signal-to-noise is good. Bandpass
spatiotemporal filtering rejects the wideband noise, and attenuates the redundant
low-frequency signals; this strategy is the optimal one for removing redundancy in
the presence of white noise [81, 83, 82].

Figure 3.8b and d illustrate the redundancy reduction that I achieved using band-
pass filtering, by computing the correlation between pixel values.? The correlation is

over 40% for pixels that are 60 pixels apart in the raw image. In the filtered image,

31 performed bandpass filtering by convolving the input image with the Laplacian of a Gaussian
with ¢ = 2.5 pixels. I calculated the autocorrelation of the images by subtracting out the mean,
shifting a copy of the image up or right by 1 to 75 pixels, multiplying corresponding pixels, and
summing; I normalized the results to yield a maximum of unity. Rightward shifts are plotted on the
positive axis (0 to 75), and upward shifts are plotted on the negative axis (0 to —75).
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pixels tha are more than 10 pixels apart have less than 5% correlation. Comparison
of the amplitude histograms before and after filtering (Figure 3.8¢,f) demonstrates
that bandpass filtering has two additional benefits.

First, bandpass filtering results in a sparse output representation. For our sample
image, 24.4% of the pixels fall within £0.39% of the full-scale range (i.e., £1LSB at
8-bit resolution); 77.5% of them fall within +5% (i.e., 13 at —127 to +127 amplitude
range). Hence, if we choose to ignore amplitudes smaller than 5%, we need to transmit
only 22.5% of the pixels. In practice, the degree of sparseness will depend on the cut-
off frequency of the bandpass filter. Although rejection of high frequencies introduces
some redundancy, this rejection is necessary to protect the signal from noise that is
introduced by the signal source or by the circuit elements.

And second, bandpass filtering results in a unimodal amplitude distribution that
falls off exponentially. For our sample image, the distribution is fit by a sum of two
exponentials that change by a factor of e = 2.72 whenever the amplitude changes
by 2.5 and by 14.0, on a 128 scale; the rapidly decaying exponential starts out 4.5
times larger. Empirical observations confirm that this simple model holds for a wide
range of images.

In contrast, the distribution of raw intensity values is difficult to predict, because
gross variations occur from scene to scene, due to variations in illumination, image-
formation geometry (surface and light-source orientation), and shadows [6]. These
slowly changing components of the image are removed by local AGC and bandpass
filtering. When the bandpass characteristics are fixed and the intensity is normalized,
the parameters of the amplitude distribution are determined mainly by reflectivity
and therefore vary much less; the quantizer can exploit this invariance to distribute

its codes more effectively.

3.3.4 Quantization: Adaptive Versus Fixed

The quantization intervals of traditional A/D converters are set to match the maxi-

mum rate of change and the smallest amplitude, as shown in Figure 3.9. This uniform



90

1 _ Raﬁgé(V} o s _ AP 1
av= 2b AV = Shrav " b

Figure 3.9: QUANTIZATION IN TIME AND AMPLITUDE

Top row: Time intervals (AT) are set to match the maximum rate of change (left
column). The signal is sampled repeatedly, even when dV/dt ~ 0—that is, when
the change is insignificant (oversampling). Instead of fixing the time step, it is more
efficient to fix the voltage step (AV'), and to adapt the time intervals dynamically
to achieve this change in voltage, as shown on the right. Bottom row: Amplitude
intervals (AV') are also uniformly distributed. The signal is sampled repeatedly, even
though dP/dV =~ 0—that is, although the probability that the input amplitude falls
in this interval is negligible. Instead of fixing the voltage step, it is more efficient
to target a certain change in the cumulative probability (AP = 27 where b is the
number of bits per sample), and to choose voltage intervals statistically to achieve
this change in probability, as shown on the right.
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quantization is optimum only when high frequencies dominate and all amplitudes are
equally likely. As we have seen, neither case applies to natural scenes: the power spec-
trum decays with frequency, as in 1/f2, and the amplitude probability density decays
exponentially—after local gain control and bandpass filtering remove variations in
illumination. Therefore, uniform quantizers produce numerous redundant samples,
because changes in the signal are relatively rare [85], and underutilize their large
amplitude codes, because these signal amplitudes occur rarely in natural scenes [6].

Assuming that temporal changes are due primarily to motion, we can estimate
the amount of redundancy from the spatial-frequency power spectrum and from the
velocity distribution. The velocity distribution, measured for movies and amateur
videos, is dominated by low velocities and falls off with a power law of 3.7 [85]. High
velocities will be even more drastically attenuated in an active vision system that
compensates for global motion, and that tracks objects [84]. After bandpass filtering,
signals that change gradually over space are eliminated and rapid changes occur only
rarely and over much more restricted areas.

Due to the absence of high speeds and of nonlocal intensity variations, the imager’s
output signals rarely change rapidly. Consequently, adapting the sampling rate to
the rate of change of the signal greatly reduces the number of samples produced.
Alternatively, this adaptation allows higher temporal bandwidths to be achieved for
a given mean sampling rate.

Using the amplitude distribution of our bandpass-filtered sample image, we can
calculate the probability of failing to discriminate between a pair of samples drawn
from that distribution: It is 0.0384 when the 2® quantization levels are uniformly
distributed-—an order of magnitude bigger than the minimum confusion rate of 1/256 =
0.0039, which occurs when we choose the quantization levels to make it equally likely
that we will draw a sample from each interval. In fact, the confusion rate of 0.0384
can be achieved with just log,(1/0.0384) = 4.7 bits per sample if the quantization
levels are optimally distributed.

A quantizer that assigns its codes to probable amplitudes, rather than to improb-

able ones, maximizes the probability of discriminating between any two amplitude
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levels drawn from the input distribution; thus, information is maximized when all

codes are equiprobable [8].

3.3.5 Architecture: Parallel Versus Serial

In addition to differing in the aforementioned design principles, biological and human-
made vision systems also use radically different architectures. The retina performs the
four operations listed in Table 3.1 in a pixel-parallel fashion, whereas most synthetic
imagers perform only detection in the pixel. The few synthetic imagers that also
amplify and quantize the signal, perform these operations pixel serially, and set the
gain, sampling rate, and step size to be the same for all pixels [98, 104, 105]. In sharp
contrast to human-engineered imagers, the retina adapts its gain, sampling rate, and
step size locally, to minimize redundancy; the retina also whitens the signal in space
and time, to make its output samples independent.

Since the work on television in the fifties, engineers have known that images, and
other naturally occuring signals such as speech, are highly redundant. They realized
that sending the raw intensity values is not the most efficient way to transmit infor-
mation about these signals; the data can be encoded much more efficiently. Indeed,
they perform such encoding routinely, after acquiring and quantizing the image, using
digital computer. However, we are now learning that the retina knows about efficient
encoding, as well, and the lesson that it teaches us is that we can make major gains
by performing these operations right up front in the pixel.

There is, however, a stiff price to pay to get pixel-parallel operation. We must add
several transistors to the pixel to perform the computations, and these transistors take
up room, increasing the size of the pixel. The wires needed to communicate between
pixels take up even more room than that alloted to the transistors! Since silicon-
based VLSI technology is two-dimensional, the pixel area must increase, and we end
up sacrificing the sampling density.

Similar structural constraints are faced by neurobiology: It can fit into a given

volume a limited number of synapses and a limited length of dendrites and axons.
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Neurites used for communication also take up much more room than do the synapses
that do the computation. These contraints are less severe for biology, but not by
much. Judging from the number of cell layers, gray matter is thick enough to stack
only two to five layers of processing. Also, the dimensions of wires and transistors
are now in the submicron range, approaching the sizes of the finests dendrites and
the smallest synapses. Thus, silicon-based VLSI is encroaching on the territory of
carbon-based VLSI.

Matching the level of integration is a necessary first step. The real challenge,
however, is figuring out how to use wires and energy efficiently, so that we can har-
ness the awesome computational power available from gigantic numbers of synapses
or transistors. Together with optimizing the functional contraints discussed in this
chapter, the retina optimizes these structural constraints as well. As we shall see
in Chapter 3, this global optimization explains the descrepancy between the optimal

theoretical spatiotemporal filter we derived and the retinal filter.

3.4 Summary

The retina has evolved sophisticated filtering and adaptation mechanisms to reduce

redundancy and to improve coding efficiency. Six such mechanisms follow:

1. Local automatic gain control at the receptor level eliminates the dependence
on lighting intensity—the receptors respond to only contrast—extending the

sensor’s dynamic range.

2. Bandpass spatiotemporal filtering in the first stage of the retina (OPL) attenu-
ates signals that do not occur at a fine spatial or temporal scale, ameliorating
redundant transmission of low-frequency signals and eliminating noisy high-

frequency signals.

3. Highpass temporal and spatial filtering in the second stage of the retina (IPL)
attenuates signals that do not occur at a fine spatial scale and temporal scale,

eliminating the redundant signals passed by the OPL, which responds strongly
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to low temporal frequencies that occur at high spatial frequencies (sustained
response to static edge) or to low spatial frequencies that occur at high temporal

frequencies (blurring of rapidly moving edge).

4. Half-wave rectification, together with dual-channel encoding (ON and OFF
output cell types), in the relay cells between the OPL and the IPL (bipolar
cells), and between the retina and the rest of the brain (ganglion cells), elim-
inates the elevated quiescent neurotransmitter release rates and the elevated
firing rates required to signal both positive and negative excursions using a

single channel.

5. Phasic transient—sustained response in the ganglion cells avoids temporal alias-
ing by transmitting rapid changes in the signal using a brief, high-frequency
burst of spikes, and, at the same time, avoids redundant sampling by trans-
mitting slow changes in the signal using modulation of a low, sustained firing

rate.

6. Foveated architecture, with active directing of the gaze, eliminates the need to
sample all points in the scene at the highest spatial and temporal resolution,
while providing the illusion of doing so everywhere. The cells’ spatiotemporal
receptive fields are optimized: smaller and more sustained at the fovea (parvo-
cellular or X-cell type), where the image is stabilized by tracking, and larger and
more transient in the periphery (magnocellular or Y-cell type), where motion

occurs.

The resulting activity in the ganglion cells, which convert these preprocessed signals
to spikes and transmit the spikes over the optic nerve, is different from the stimulus
pattern.

For relatively long periods, the scene captured by the retina is stable. These static
events produce sparse activity in the OPL’s output, since the OPL does not respond
to low spatial frequencies, and produce virtually no activity in the IPL’s output,

since the IPL is selective for temporal frequency as well as for spatial frequency. The
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OPL’s sustained responses drive the 50,000 or so ganglion cells in the fovea, allowing
the fine details of an object stabilized by tracking to be analyzed. The vast majority
of the ganglion cells—about 1 million in all—is driven predominantly by the IPL,
and fires at extremely low quiescent rates of 10 spikes per second, or less, in response
to the static event.

When a localized punctuated event—Ilike a small light flash—occurs, the OPL
and the IPL respond strongly, since both high temporal frequencies and high spatial
frequencies are present. Thus, a minute subpopulation of OPL- and IPL-driven
ganglion cells raises its firing rates to a few hundred spikes per second. On the
other hand, if the punctuated event lights up a large area, the OPL-driven ganglion
cells still respond strongly, for a short time, due to the presence of high temporal
frequencies, whereas the response of the IPL-driven ganglion cells is attenuated, due
to the presence of low spatial frequencies. Consequently, the number of ganglion cells
that respond is miniscule.

A dynamic event—such as a spinning windmill or panning the eyes—produces
puntuated events at adjacent locations in rapid succesion. In the limit, a dynamic
event is equivalent to a punctuated event that lights up a large area. Thus, a dynamic
event can activate a large number of OP L-driven ganglion cells. However, IPL-driven
ganglion cells, which cover most of the retina, are not activated, because the low
spatial frequencies produced in the OPL’s output by dynamic stimuli are suppressed
by amacrine cells, attenuating the IPL’s response.

In effect, the activity in the optic nerve is clustered in space and time (whitened
spectrum): It consists of sporadic short bursts of rapid firing, triggered by punctuated
and dynamic events, overlaid on a low, steady background firing rate driven by static

events.
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Chapter 4 Retinal Spatiotemporal
Dynamics: A Physical Model

To discover how the retina implements bandpass spatiotemporal filtering, and to un-
derstand the tradeoffs that it makes in the face of severe wiring limitations, I analyze
the spatiotemporal behavior of a simple dynamic model of the retina. This model is
a physical one: It is built out of resistors, capacitors, and transconductances. It is
based on the neurocircuitry of the vertebrate retina; it includes several major synaptic
interactions in the outer plexiform layer (OPL). My goal is synthesize the minimal
amount of machinery required to reproduce the observed qualitative behavior, rather
than to provide detailed quantitative predictions of retinal responses.

In particular, I seek the simplest linear physical model that reproduces the salient
features of retinal spatiotemporal dynamics, and I employ circuit theory and Fourier
methods to obtain closed-form analytical descriptions of its behavior. These analytical
expressions are indispensable to understanding the tradeoffs inherent in this simplified
retina model. To the extent that these tradeoffs arise from fundamental physical
limitations—such as the inseparability of spatial and temporal processing—they carry
over to the real retina, or at least to those parts of the retinal structure that the model
includes.

This approach is part of an overarching layered-complexity strategy that I have
adopted, where we reverse-engineer the retina by peeling away one level of complexity
at a time. Once we know the tradeoffs inherent in the design of a piece of neurocir-
cuitry, we can see how to introduce an additional layer of complexity to improve its
performance. Although a linear model cannot include adaptation mechanisms, such
as gain control, we can often achieve the desired result by varying the parameters of
the linear circuit, such as its gain or its time and space constants, appropriately.

Adaptation matches the gain of the filter to the mean signal level, and matches
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the tuning of the filter to the signal-to-noise ratio. Since the linear filter’s tradeoffs
are stated in terms of these very same parameters, studying the linear case helps us
understand how adaptation affects system performance. By relating these parameters
to the values of resistors, capacitors, and transconductances in the model, the linear
analysis can guide the design of these adaptation mechanisms.

Layering adaptation on top of filtering in this fashion is valid, since these two
mechanisms act on disparate spatial and temporal scales. Filtering occurs over tens
of milliseconds of time and tens of minutes of visual angle, whereas adaptation occurs

over hundreds of milliseconds of time and degrees of visual angle.

4.1 Assumptions of the Model

I construct linear electrical-circuit models of the retinal neurocircuitry by simplifying

the latter’s biophysical elements in three ways:

1. Gap-junction—coupled cell syncytia are isotropic resistive grids. 1 abstract the
fine physical structure of these cells into a characteristic lateral resistance
and a characteristic vertical conductance. The former models the gap
junctions, and the latter models the parallel combination of synaptic and leakage
conductances; voltage dependencies, calcium dependencies, and nonlinearities

of the membrane channels are ignored.

2. Synaptic inputs are variable current sources. 1 treat chemical synapses, which
are usually modeled by conductance changes, as variable current sources. These
model synapses are characterized by a transconductance: the additional cur-
rent injected across the postsynaptic membrane per unit change in the presy-

naptic voltage.

3. Synaptic transmission is instantaneous. I ignore the time dependencies of neu-

rotransmitter release and diffusion, and those of the channel-gating mechanisms.

!Synapse models based on conductance changes are characterized by a conductance per unit
voltage. Multiplication of this parameter by the voltage across the channel gives the equivalent
transconductance.
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Hence, the model’s temporal dynamics arise solely from the membrane capaci-

tances, and are characterized by the time constants of the cells.

Ignoring the fine details of cell morphologies an treating syncitia as isotropic re-
sistive networks is justified by virtue of the dense, strong, local electrical connectivity
in these cell syncytia. As the receptive fields are larger than the extent of the cells’
dendritic arbors, the relay of signals from cell to cell across gap junctions appears to
play a dominant role in shaping the cells’ receptive fields—not the fine details of the
dendritic arbor.

Ignoring voltage and calcium dependencies, and other nonlinearities, and treat-
ing synapses as current sources, is justified because the retina responds linearly for
contrasts less than 10% [94]. Given that the threshold is 0.5% contrast, the retina
is linear over a 20-fold range. For these small signal changes, the nonlinear voltage—
current relationships of the ion channels, and of the gap junctions, can be replaced
by their slope conductances, and the conductance changes due to activating more ion
channels are negligible compared to the conductance of the cell.

Ignoring the time-course of synaptic transmission is justified because synaptic
transmission occurs much faster than the cell responds, due to the large capacitance
of the cell membrane.

Several researchers have used resistive networks to model gap-junction-coupled
syncytia, going back to the work of Torre and Owen on rod coupling [106]. Chemical
synapses have also been modeled previously as transconductances by Yagi and his
colleagues [107]. Yagi and colleagues included time dependencies in their synapse
model by using complex transadmittances, instead of real transconductances [107].

The model that they obtained by making these simplifications is discrete in space,
but continuous in time; it is described by a difference equation in space and a differ-
ential equation in time. We can analyze such discrete-continuous systems by taking
the Laplace transform in time, and obtaining a solution to the difference equation in
space in terms of geometrically weighted Laplace transforms terms, as Yagi and his
colleagues did [107]. Another approach is to work with discrete spatial frequencies

and continous temporal frequencies, using the z-transform and the Fourier transform,
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respectively, as Beaudot has shown [108]. Both of these approaches work, but they
produce unweildly solutions that are difficult to grasp intuitively.
To obtain simple and intuitive results, I analyze the model in the continuum limit,
where second-order spatial differences become second-order spatial derivatives. As
2V 1 ,d¥W
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is the Nyquist limit. It is negligible for spatial frequencies f? < (12/x?)f%,,. We
can use this expression to calculate the total error, if we know the power spectrum
of the input signal. When most of the signal energy is at low frequencies—as it is
for a step edge—the error is small. Hence, we do not lose much precision by taking
the continuous approximation, and we gain much clarity by treating space and time
uniformly.

Another concern that we have to address when we simulate a discrete network with
a continuous one is the frequency limitations imposed by Nyquist’s sampling theorem.
To prevent aliasing, the discrete network is prohibited from seeing any frequencies
higher than the Nyquist limit (fxyq). The continuous network, on the other hand,
has no such restriction, and may produce frequencies higher than the Nyquist limit.
We must filter out these frequencies before we can make valid predictions about the
discrete network that we are simulating.

The continuous-space approximation has been used previously by Chen and Free-
man [109]. They drew the analogy between gap-junction—coupled syncytia and a
cable; this insight enabled them to apply results obtained for cables by Jack and oth-

ers [110] to analyze the spatiotemporal dynamics of their retina model [109]. However,

*I obtained this result by using the Taylor series expansion for V(z) at = = €i to obtain expressions
for Vi—l and ‘/i—%-l
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their analysis focused on the overall spatiotemporal behavior of the retina, from the
cornea to the ganglion cells. My analysis is restricted to the outer retina, and re-
veals more about the contribution of the cone-horizontal-cell circuit to the retina’s

response to spatiotemporal signals.

4.2 Linear Model of the Outer Plexiform Layer

The OPL circuit model is shown in Figure 4.1. Models more or less identical
to this one have been proposed previously by Chen and Freeman, and by Yagi and
colleagues [107]. As stated in Section 4.1, I use an analytical approach that is similar
to that of Chen and Freeman by taking the continuous approximation, whereas Yagi
analyzed the discrete case.

In the continuum limit, we have

Io ~+ VQX/C/TCC - ch‘/c + CCO‘I/C + gctha (41)

9neVe + VVi/ran = gnoVi + choVi, (4.2)

where current per unit area, sheet resistance, conductance per unit area, and capac-
itance per unit area are used. The voltages V. and V}, are continuous functions of
space, (z,y), and time, ¢; V*f is the spatial Laplacian of f (i.e. 8%f/0x% + 0% f /0y?),
and f is the temporal derivative of f (i.e. Of/0t).

Assuming infinite spatial extent and homogeneous initial conditions, we can take
Fourier transforms in space and time. Transforming the equations and solving, we

obtain the following transfer functions between inputs and outputs.

z V. 1 0 +imw + e
Hc 5 = ‘~—c P — . h . ’ 43
(p w) I, Geh (52,02 + 1Tw + ec)(ﬁin + iTw + eh) +1 ( )
3 ‘7h 1 1
H , W = = — . : 7 44
o) =T S B e ) B i T en) + 1 (44)

where f(p,w) denotes the Fourier transform of f(z,y,t); p =/ (p2+p2) is the magni-

tude of the spatial frequency, and w is temporal frequency (both are in radians). Here,
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Figure 4.1: PHYSICAL MODEL OF THE OUTER RETINA

The two resistive networks model the cone and horizontal-cell syncytia. The voltages
Ve and V), represent the membrane potentials, and the current I, represents inputs
from the cone outer segment. The diamonds are symbols for current sources controlled
by voltages in another part of the circuit; they model chemical synapses. The direction
of current flow, indicated by the arrow, is into the network for an excitatory synapse.
The membrane capacitances of the cells are included to model dynamic behavior.
The parameter ¢ is a measure of cell sizes; it links the modeled quantities that are in
current per unit area, sheet resistance, conductance per unit area, and capacitance
per unit area to the physiological ones.
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1/2 and

Te = €0/ Gen and T, = ¢po/gne are the time constants of the cells; £, = (reegen)™
£y = (Thngne) "Y? are the space constants of the decoupled syncytia, with transcon-
ductances replaced by conductances to ground; and €. = g.o/gen; and €, = gno/gne are
the ratios of membrane-leakage conductance to synaptic transconductance. The re-
ciprocal of €. is equal to the change in voltage that occurs in the cone for a unit change
in voltage in the horizontal cell. I call this ratio the voltage gain from the horizontal
cell to the cone; the voltage gain from cone to horizontal is defined similarly.

The inputs to the model are currents per unit area, and the responses of the cell are
voltages, so the transfer functions have units of resistance times area, or the reciprocal
of transcondutance per unit area. To obtain a dimensionless measure of frequency
sensitivity, I shall multiply the transfer function by g¢.,. I define this dimensionless
measure as the gain: fl(p,w) = gchf//fo. That is, the gain is the ratio between the
voltage response and the input current when the transconductance g, is 1 unit.

The transfer functions H,(p,w) and Hy(p,w) give the responses of the cones and
the horizontal cells to sinusoidal spatiotemporal patterns, like the one shown in Fig-
ure 4.2. The voltage response of the model is given by H(p,w)Isin(p,z + pyy + wt);
it is simply a scaled and shifted version of the signal. The scaling is given by the
magnitude of A, and the phase shift is given by the argument of H. Since these
quantities do not depend on the orientation of the grating, the model does not have
orientation or direction selectivity.

Any moving image can be expressed as a sum of sinusoidal spatiotemporal pat-
terns. Hence, by using the frequency-response function H to shift and scale each
frequency component, we can obtain the model’s response to motion. This is our
primary motivation for studying the model’s spatiotemporal-frequency response.

For illustrative purposes, we use the following set of parameters: ¢, = 0.05°; ¢, =
0.2°; 7, = 30ms; 7, = 200ms; e, = 0.3;¢, = 0.1; 9., = 0.2pA/mV. Unless otherwise
stated, all model responses shown were obtained with these parameters.

In presenting the results from the model, I shall use typographical conventions to
distinguish between model and reality. For example, a cone is a node in the circuit

model; whereas a cone is a biological photoreceptor. The cone’s response is given by
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Figure 4.2: SINUSOIDAL SPATIOTEMPORAL SIGNALS

The values of this signal change over time and space according to the expression
Isin(p,x + pyy + wt), where I is the peak amplitude. When time is frozen, the
signal is just a sinusoidal grating, like the one shown here. The grating’s orientation,
6, is given by the direction of the spatial-frequency vector: 6 = tan™'(p,/p.). The
grating’s wavelength, A, is given by the magnitude of the spatial-frequency vector:
A = 2n/\/(p; + p}). When time is running, we can track a particular point, with
intensity /,, and find that it appears to move with speed v = w/\/(p} + p2), in a
direction opposite to the spatial frequency vector, due to the constraint that p,x +
pyy +wt = sin~}(I,/I). Because this contraint applies to all points, the whole grating
moves with the same velocity. Actually, the motion of such a pattern is ambiguous;
for example, moving the grating in the = direction at a higher speed w/p, will produce
the same spatiotemporal pattern. The model’s response to such patterns is derived
in the text.
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(a) (b)

Figure 4.3: SENSITIVITY OF CONES TO FULL-FIELD FLICKER

Amplitude (a) and phase (b) of cone responses to temporal frequency from OPL
circuit model. For the parameters values chosen, the cone’s response peaks at 10cps,
and levels off below 0.33cps.

the voltage of that node, and is the analog of the membrane potential of the cone. I
will also plot frequency responses on a logarithmic scale, in dB3; spatial frequency in
is units of cpd (cycles per degree), and temporal frequency is in units of cps (cycles

per second).

4.3 Responses to Flicker and Gratings

Full-field flicker and stationary sinusoidal gratings are used by physiologists and psy-
chophysicists to characterize the temporal and spatial responses of the visual system.
In the same vein, I present analytical expressions that describe the model’s response
to these classic stimuli. I describe the salient features of these responses, and relate
them, quantitatively, to the model’s parameters. I validate the model by comparing

1ts responses to biological measurements.

320dB is equivalent to a tenfold increase in amplitude.

160



4.3.1 Full-Field Flicker

If the spatial frequency is sufficiently low (i.e. p < \/e./%c, v/€r/lh,) we can drop the

spatial-frequency terms and obtain

~ 1 iThu) -+ €p
Hc(07 w) - . 2 . 3
Gen TeTh(1w)? + (enTe + €73 )iw + €6, + 1
~ 1 1
Hh(07 (,U) =

Gen TeTh(1w)? + (€nTe + €.7h)iw + €6, + 17

These expressions give the sensitivity of cones and horizontal cells to full-field flicker;
the magnitude and phase of H,(0,w) are plotted in Figure 4.3.

The cones have a bandpass temporal-frequency response with a distinct peak at
& =~ 1/,/7c7y; the response rolls off at 20dB per decade beyond this point. Surpris-
ingly, the peak frequency of the cone is determined not by the cone’s individual time
constant alone, but rather by the geometric mean of the time constants of the cone

and the horizontal cell. The gain reaches a maximum value of \/(7,/7.)@; at the

-1
T T,

Qt ~ (66 '“}‘L“ -+ €n _C) .
V Te V Th

These expressions for the peak frequencies and the peak gain are based on the ap-

peak, where

proximation €.6;, < 1. The cone’s response levels off for frequencies below €, /7.
Decreasing €, which increases the voltage gain from the cone to the horizontal cell,
moves this point to lower frequencies, attenuating the low spatial frequencies further.

The phase is initially 0, rises gradually as the temporal frequency increases, reaches
a maximum, and then decreases rapidly around the peak temporal frequency. The
phase passes through 0 at the peak frequency @, becomes negative, and approaches
-90°.

Compare the flicker response of the model to the flicker-sensitivity curves of hu-
mans and cats, obtained from psychophysical and physiological measurements, shown
in Figure 3.4a and Figure 3.6b,c, respectively. The model shows the same bandpass
characteristic observed for high intensities and diffuse patterns in the human mea-

surements and in the X-cell and Y-cell cat measurements.
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The main differences between the model and the biology is that the model repro-
duces neither the steepness of the high-frequency cutoff, nor the rapid phase changes
that occur there—cat X cells go out to 600° [93]. Kelly fitted this steep cutoff with a
model of the long thin process that carries signals from the outer segment of the cone
to the cone terminal; he used a continuous, passive, lossy cable model that produced
an exponential rolloff [111]. Chen and Freeman fitted the sharp cutoff in Frishman’s
X-cell data with a model of the phototransduction process that consisted of a cascade
of eight first-order reactions [109]. These high-order cascades produced a steep cutoff
and introduced a large delay, which resulted in rapid phase changes. In fact, Frishman
and her colleagues showed that their phase measurements were approximated quite
well with a pure delay of 24ms for the X cell and 20ms for the Y cell.

The simple model that I analyzed includes neither the phototransduction process
nor the cable properties of the cone. Such a simple model cannot be expected to repro-
duce the biological responses exactly. My goal is to capture the bandpass character of
the biological responses, and the model meets that goal. When the contribution of the
phototransduction cascade to the cutoff and the phase is removed, the residual gain
and phase shift look much like those of this simple model (see plots of contributions
of individual stages in Chen and Freeman’s more elaborate model [109]).

The model reproduces the rise in sensitivity before the peak, as do the models pro-
posed by Kelly and by Chen and colleagues. These models produce this behavior by
placing lowpass filters in negative-feedback loops around lowpass feedforward stages
(the feedback filters must have a frequency cutoff that is lower than that of the feed-
forward filters), just like this model does. Alternatively, the rise in sensitivity before
the peak may be obtained by introducing a parallel pathway with a lower-frequency
cutoff and subtracting that pathway’s output from the main feedforward pathway.
These two architectures are called feedback and feedforward, respectively.

Kelly used two to four feedback loops to fit the data in the region where the gain
is increasing; the number of loops needed increased with intensity [111]. On the other
hand, Chen and Freeman tried to fit both the feedforward and the feedback models
to the cat X-cell data, and found that the latter provided a much closer fit [109].



67

9.1 0.32 3.2 10 32 100 0.4

~-0.2

(a) (b)

Figure 4.4: SENSITIVITY OF CONES TO STATIONARY GRATINGS

Amplitude (a) and phase (b) responses of cones to spatial frequency from OPL circuit
model. For the parameter values chosen, the cone’s response peaks at 10cpd, and
levels off below 1.6¢pd.

Only the feedback configuration could produce the sharp resonant peak evident in
the full-field flicker responses; the gain at the peak is five or six times higher than a
feedforward scheme predicts. However, physiological measurements in monkeys [96],
and psychophysical measurements in humans [111], do not show such high resonances
and are fitted by feedforward models well. The feedback model was also the only one
of eight configurations studied by Chen and Freeman that satisfied the restrictions
placed on the relative strengths and the relative delays between the center and the
surround by the experimental measurements [109)].

In summary, a simple linear two-layer feedback model:

¢ Accounts for the bandpass responses to temporal frequency observed for high

intensities and diffuse patterns in human psychophysics and cat physiology.

e But it does not reproduce the steepness of the high-frequency cutoff, nor does

it reproduce the large phase accumulation.

o This shortcoming is, most likely, because the model does not include the cable
properties of the photoreceptor neurites, nor does it include the cascade of

chemical reactions involved in phototransduction.
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4.3.2 Stationary Gratings

If the temporal frequency is sufficiently low (i.e. w < €./7¢, €,/m), we can drop the

temporal frequency terms and obtain

T G PR T (el + nlD) P + eeen + 1
- 1 1
Hy(p,0) =

_g:,:(?gfip‘* + (€02 + € £2)p? + € + 17

These expressions give the sensitivities to stationary gratings; the magnitude and
phase of ﬁc(p, 0) are plotted in Figure 4.4.

The spatial-frequency responses parallel the temporal ones; the cones also have
a bandpass spatial response. However, the amplitude of the spatial responses rises
twice as fast as does the temporal response, on a log-log plot, and rolls off twice as
fast as well. Another difference is that the phase of the spatial response never deviates
from 0.

The cone’s response peaks at p ~ /(1 — e€x€./ln)\/(£clr), attaining a maximum

gain of (£,/¢.)Q,, where

AN
Qx:<2+ecé- ) :

.

Again, I made the approximation €., < 1. In close analogy to the temporal behavior,
the peak frequency is determined by the geometric mean of the space constants of
the decoupled syncytia. The cone response levels off for frequencies below m

Compare the grating response of the model to the grating-sensitivity curves of hu-
mans and cats, obtained from psychophysical and physiological measurements, shown
in Figure 3.4b and Figure 3.6a, respectively. The OPL model shows the same band-
pass characteristic observed for high intensities and low temporal modulation in the
human measurements and the cat X-cell measurements.

Again, the main difference between the biological responses and the model’s are

the model’s inability to produce steep rolloff. Kelly and other researchers used an
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exponentially weighted function of the form p?e™” to fit the steep rolloff found in
psychophysical measurements [112, 113, 114]. This choice is consistent with Rodieck’s
difference-of-Gaussians (DOG) model for the receptive field center and surround,
which also results in an exponential rolloff with frequency. The DoG model fits
Frishman’s cat ganglion-cell measurements perfectly. More detailed models, based on
retinal anatomy, have shown that the gaussian-like spatial profile of the receptive-
field center arises from spatial summation by the bipolar-cell dendrites [115]. Smith
showed that the gaussian-like spatial profile of the receptive-field surround arises from
the presence of two types of horizontal cells [115].

The simple model that I analyzed does not include bipolar convergence, and it
has only one type of horizontal cell. Nevertheless, the model captures the bandpass
character of the biological responses, and reproduces the increase in sensitivity before
the peak, much like the other models.

For the spatial behavior, Kelly found that a feedforward model with a single stage
in the parallel inhibitory pathway could account for increasing gain; the contribution
from the inhibitory pathway falls off as intensity decreases [112]. At extremely low
intensity levels, the response becomes lowpass and can be fitted with the exponential
cut-off function over the entire frequency range [113, 114]. Thus, the trends for
spatial and temporal frequencies are identical: The sensitivity to higher frequencies,
and the peak contrast gain, both increase with intensity. On the other hand, Chen
and Freeman used a single feedback stage to fit the spatial responses of cat X cells
measured at high intensity, just as this model does.

In summary, a simple linear two-layer feedback model:

e Accounts for the bandpass responses to spatial frequency observed for high in-
tensities and slow temporal modulation in human psychophysics and cat phys-

iology.
e But it does not reproduce the steepness of the high-frequency cutoff,

e This shortcming is, most likely, because the model does not include spatial

summation in the bipolar cell dendrites, nor does it include a second horizontal
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Figure 4.5: SENSITIVITY OF CONES TO MOVING GRATINGS

Response to gratings moving at various speeds, plotted versus (a) temporal frequency
or (b) spatial frequency. The low-speed temporal-frequency response in (a) looks
like the stationary-grating frequency response, and the high-speed spatial-frequency
response in (b) looks like the flicker-frequency response. At speeds below &/p = 1dps,
the peak in the temporal-frequency response tracks the speed; at speeds below 1dps,
the peak in the spatial-frequency response tracks the speed. As the curves shift, their
shape remain the same.

cell network.

4.3.3 Moving Gratings

A grating with spatial frequency p produces the temporal frequency w = vp when it
moves with velocity v in the direction of its orientation. Therefore, it is easy to predict
the response to such a stimulus. We simply substitute vp for w, and evaluate H (p,vp);
or, we substitute w/v for p, and evaluate H(w/v,w). The resulting expression tells
us how spatial filtering and temporal filtering, respectively, depend on speed. In fact,
we can draw salient conclusions without doing any algebra.

For slow speeds, the temporal frequencies, vp, produced by the motion are low.
Hence, the temporal terms drop out, and the response is identical to that for sta-
tionary gratings, ﬁc(p, 0), and does not depend on speed. However, if we plot the
response versus temporal frequency (i.e., H.(w/v,0)), we find that the response has

the same shape as the grating-sensitivity curve, but shifts to higher temporal frequen-
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cies as the speed increases. In particular, at each speed, v, the peak response occurs
at the temporal frequency vp.

On the other hand, for fast speeds, the spatial frequencies, w/v, produced by the
motion are small. Hence, the spatial terms drop out, and the response has the same
shape as the flicker curve, f[c(O, w), and does not depend on speed. However, if we plot
the response versus spatial frequency (i.e. H.(0, pv)), we find that the response has
the same shape as the flicker sensitivity curve, but shifts to lower spatial frequencies
as the speed increases. In particular, at each speed, v, the peak response occurs at
the spatial frequency & /v.

This behavior holds for a whole class of the spatiotemporal filters, since my ar-
gument does not depend on the detailed form of the transfer function I—L(p, w). The
argument works whenever the spatial- and temporal-frequency terms become negli-
gible at low frequencies. Consequently, for all spatiotemporal filters that satisfy this

requirement, we can state the following general results:

e Asspeed decreases, the shape of the temporal frequency sensitivity curve asymp-
totically approaches that for spatial frequency, but it shifts to proportionately

lower temporal frequencies.

o As speed increases, the shape of the spatial frequency sensitivity curve asymp-
totically approaches that for temporal frequency, but it shifts to proportionately

lower spatial frequencies.

We confirm these conclusions by computing and plotting the spatial- and temporal-
frequency responses for gratings moving at various speeds, as shown in Figure 4.5.
Compare these moving-grating responses to the psychophysical measurements
from humans shown in Figure 4.6a. The model reproduces the dependence of the
peak frequency on speed. Kelly fitted the horizontal displacement of the peak with
speed, over the range from 0.15dps to 32dps, using the expression p = 7.3/(v + 2).
This quantitative relation reveals that the peak spatial frequency is indeed inversely
proportional to speed for high speeds, as predicted by the model. This OPL circuit

model does not account for the dependence of the peak height on speed; additional
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Figure 4.6: HUMAN SENSITIVITY TO MOTION

(a) Response to sinusoidal gratings, moving at six different speeds, versus spatial
frequency. The relative amplitude of the modulation of the baseline intensity (i.e.,
threshold contrast) is plotted; the baseline intensity was 300td. The subject’s eye
movements where tracked and compensated for in these experiments. The response
was always bandpass, and its peak remained at about 5 cpd for speeds below 2 dps.
At higher speeds, the peak position shifted to lower spatial frequencies. The peak
amplitude also changed, rising rapidly initially, and then falling slowly above 2 dps.
Reproduced from [92]. (b) Contour plot of spatiotemporal-contrast-threshold surface
(same as in Figure 3.5b). Sensitivity doubles from one contour to the next. The heavy
line represents the maximum sensitivity at each velocity; a velocity axis is included
on the upper right. The surface is roughly symmetric about the line v = 2dps.
Reproduced from [92].
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spatial and temporal filtering in the inner retina could account for the dependence of
the height of the peak on speed.

The model also predicts that the peak temporal frequency is proportional to speed
for low speeds. This behavior is also evident in the psychophysical data (Figure 4.6),
although Kelly did not plot his data versus temporal frequency. The curves for 0dps,
0.012dps, and 0.15dps peak at about 6¢cpd, 4cpd, and 3cpd, respectively. We obtain
the temporal frequencies produced by these moving gratings by multiplying spatial
frequency by speed, which gives Ocps, 0.048cps, and 0.45¢ps, respectively. Hence, the
peak temporal frequency is roughly proportional to speed.

In summary, a simple linear two-layer feedback model:

o Accounts for the dependence of the peak spatial and temporal frequencies on

speed observed for high and low speeds, respectively, in human psychophysics.
e But it does not reproduce the dependence of the peak height on speed.

o This shortcoming is, most likely, because the model does not include highpass

temporal and spatial filtering in the inner retina.

This description of the locus of the peak position completes my discussion of the
model’s sensitivity to stimuli used in classic psychophysical and physiological experi-
ments. To understand exactly how these responses arise, and to extend the descrip-
tion to arbitrary dynamic patterns, we must turn to the complete three-dimensional

spatiotemporal transfer function.

4.4 Spatiotemporal Sensitivity

Plots of the magnitude and phase of the cone’s spatiotemporal-frequency transfer
function, ~Fglc(p, w), are shown in Figure 4.7. The function is more or less symmet-
ric about the 45° degree axis, because interchanging p? and iw in Equations 4.3
and 4.4 produces homomorphic equations. Consequently, everything that we say

about spatial frequency with respect to temporal frequency is still true when the two
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Figure 4.7: SPATIOTEMPORAL SENSITIVITY OF CONES

Three-dimensional plots showing (a) magnitude and (b) phase of cone responses from
OPL circuit model versus spatial and temporal frequency. At higher spatial frequen-
cies, the low-frequency temporal sensitivity increases, and vice versa. The phase
is positive for low temporal frequencies, negative for high temporal frequencies and
tends to 0 at high spatial frequencies.

are interchanged. Bear in mind this duality as we discuss the salient features of the
spatiotemporal frequency responses.

I begin the discussion by taking the cross-sections of these surfaces that correspond
to the flicker and grating curves presented in Figure 4.3a,b and Figure 4.4a.b. The
flicker and grating curves are defined by the intersections of the spatiotemporal surface
with the p = 0 and w = 0 planes, respectively. As expected, the amplitude response
(Figure 4.7a) is bandpass at these planes.

As we move the spatial-frequency plane away from the p = 0 plane, to higher spa-
tial frequencies, we observe increasingly strong responses to low temporal frequencies.
Similarly, as we move the temporal-frequency plane away from the w = 0 plane, to
higher temporal frequencies, we observe increasingly strong responses to low spatial
frequencies. Thus, the filters for temporal frequency and for spatial frequency are
letting through more low-frequency energy—they are becoming less bandpasslike and

more lowpasslike. When the planes reach the peak temporal frequency, @, and the
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peak spatial frequency, p, the transition is complete, and the filters become purely
lowpass, without any peak whatsoever. Both filters remain lowpass as the planes
move beyond the peak frequencies.

The model’s spatiotemporal frequency sensitivity mirrors that for humans, shown
as a family of curves in Figure 3.5a, as a three-dimensional plot in Figure 3.5b, and
as a contour plot in Figure 4.6b; and mirrors that of cats, shown as a family of curves
in Figure 3.6b. In particular, this simple linear two-layer feedback model shares four

salient features with human psychophysics and cat physiology:

1. Spatial filtering is bandpass at low temporal frequencies, and is tuned to a

particular spatial frequency p.

2. Temporal filtering is bandpass at low spatial frequencies, and is tuned to a

particular temporal frequency w.

3. Spatial filtering becomes lowpass at high temporal frequencies, and tuning dis-

appears completely when the temporal frequency exceeds w.

4. Temporal filtering becomes lowpass at high spatial frequencies, and tuning dis-

appears completely when the spatial frequency exceeds p

So far, we have discussed how the model’s transfer function modulates the am-
plitude of the input spatiotemporal sinusoid. Let us now consider the phase shift
introduced by the transfer function.

As usual, the flicker and grating curves are defined by the intersections of the
spatiotemporal surface with the p = 0 and w = 0 planes, respectively (see Figure 4.7).
At the p = 0 plane, the response leads for frequencies below the peak temporal
frequency, ; it lags for frequencies above @; and the phase decreases rapidly around
w, passing through 0 at w. The behavior at the w = 0 plane also is as expected, with
a phase shift of zero.

As we move the spatial-frequency plane away from the p = 0 plane, to higher
spatial frequencies, the phase lead decreases across the entire w < @ region, going

towards 0—and even changes to a small phase lag over a small subregion near (p, )
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The phase lag also decreases across the entire w > @ region, going towards 0. Both
transitions appear progressively, occuring at different spatial frequencies for different
temporal frequencies—the point at which the leads and lags disappear is roughly
proportional to the temporal frequency.

Rapid changes in phase occur roughly along a horizontal line defined by w = @, and
along a diagonal line defined w = (&/p)p. (The contour plot in Figure 4.8b shows this
clearly.) Taken together, these lines divide the phase plot into three distinct regions.
For frequencies below the diagonal line, the phase is close to 0. For frequencies above
the diagonal line and below the horizontal line, there is a large phase lead. And for
frequencies above both lines, there is a large phase lag.

In summary, the model’s transfer function, with respect to phase shift, has three

salient features:

1. There is no phase shift when the spatial frequency is above (w/@)p or the

temporal frequency is below (p/p)®.

2. A large phase lead occurs when the temporal frequency is below & and the

spatial frequency is below (w/®)p.

3. A large phase lag occurs when the temporal frequency is above & and the spatial

frequency is below (w/w)p.

Unfortunately, the detailed phase characteristics are not available for the biological
systems, so we cannot make a comparison.

A theme that unifies the amplitude and phase characteristics is the dependence of
spatial filtering on temporal frequency, and vice versa. In this model, spatial filtering
cannot be separated from temporal filtering: H,(p,w) # H,(p)H,(w). That is, we
cannot realize the filtering performed by the model by cascading a spatial filter,
H,(p), with a temporal filter, H;(w). This spatiotemporal inseparability arises
because the same elements in the circuit are used to perform both spatial filtering
and temporal filtering. A purely spatial filter cannot have any time dependencies in

its wires; a purely temporal filter cannot have any crosstalk with its neighbors. The
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OPL model adheres to neither of these edicts: Signals are spread out in time as they
are spread out in space—and vice versa—as they are passed from place to place by
the internode conductances and as they are passed from time to time by the node

capacitances.

4.5 Responses to Moving Images

To understand how the OPL model responds to motion, we will find it most in-
structive to display the three-dimensional spatiotemporal-frequency transfer function
as a contour plot, and to superimpose the input spectrum ont this plot. The transfer
function is replotted in this fashion in Figure 4.8; observe the simliarity between this
plot and the contour plot of human spatiotemporal contrast sensitivity in Figure 4.6b.

The speed © = @/p, given by the ratio between the peak temporal frequency
and the peak spatial frequency, plays a decisive role in the model. I call this speed
the pivotal speed, because it demarcates the border between the low-speed region,
where motion produces higher temporal frequencies, and the high-speed region, where
motion produces lower spatial frequencies. These two distinct behaviors arise because
the line w = p0 bisects the L-shaped ridge of the amplitude plot into two arms, one
running horizontally and the other running vertically; the ridges takes the corner
right at the pivotal speed line, w = po.

At speeds below ¢, the spectrum intersects the vertical arm, and the locus of
the peak remains at the same spatial frequency p, but it moves to higher temporal
frequencies pv with increasing speed, v. At speeds above 0, the spectrum intersects
the horizontal arm, and the locus of the peak remains at the same temporal frequency
w, but it moves to lower spatial frequencies &/v with increasing speed, v. This picture
explains the responses obtained for moving gratings plotted in Figure 4.5a,b.

We can derive the locus of the peak by differentiating |H.(p, pv)| with respect to p

and setting the derivative to 0 to find the maximum. However, a simple approximate
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Figure 4.8: MOTION AND SPATIOTEMPORAL SENSITIVITY OF CONES

Color-coded contour plots showing amplitude (a) and phase (b) of the cone responses
from the OPL circuit model. A cyclic color encoding was used, starting with red at
the bottom end of the scale, and coming back to red at the top. (a) The amplitude
plot looks like a mountain range with a sharp bend in it; the L-shaped ridge that
runs along the top is shown. (b) The phase plot looks like a plain in the area below
the w = pov line, where ¥ is the ratio between the peak temporal frequency, @, and
the peak spatial frequency, p. The area above this line is shared by a mountain and a
valley, with the w = @ line demarcating the border between them. Each diagonal bar
in these plots is the support of the input image’s spectrum, for uniform translation
at a different speeds. The support is defined by the line w = pv, where v is the
speed. On log(w)-log(p) scales, this line is always at an angle of 45°; it shifts to
higher temporal frequencies as speed increases. The three speeds shown are 0.10,
U, and 100. The intersection of these diagonal lines with the spatiotemporal surface
gives the sensitivity of the model to moving gratings, and produces the curves plotted
in Figure 4.5a,b, when projected onto the temporal-frequency axis or onto the spatial-
frequency axis, respectively.
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expression describes the locus of the peak, (p(v), ©(v)), quite well.

), 20

(0) ~ @(o0)

>

™

where p(0) = p is the peak spatial frequency for the stationary-grating sensitivity
curve, and @(0co) = O is the peak temporal frequency for the full-field-flicker sensitiv-
ity curve. This expression accounts for the peak position in both the high-speed and
the low-speed regions. To locate the peak on the temporal-frequency axis, we replace
p(v) with @(v)/v; to locate the peak on the spatial-frequency axis, we replace &(v)

with p(v)v. Making these substitutions gives

60 = o)
p) = ——p(0),

where 0 = ©(00)/p(0) is the speed at which the behavior crosses over from the low-
speed regime to the high-speed regime.

With the aid of these contour plots, it is easy to see how the model’s spatiotem-
poral inseparability shapes the model’s response to moving gratings. The amplitude
of the response to a grating changes when that grating flickers or moves, because the
gain of the spatial filter depends on temporal frequency. For temporal frequencies
below the peak temporal frequency, @, this dependence makes the response increase
with flicker rate or with speed—except when the spatial frequency of the grating is
equal to the peak spatial frequency, p. For this exceptional situation, where the spa-
tial filter is tuned to the spatial frequency of the grating, the response becomes speed
invariant for temporal frequencies below & (i.e., speeds below ©). In general, however,
the response of the OPL model is not speed invariant.

The phase of the grating response also changes drastically with increasing speed,
and the change is nonmonotonic. The phase starts increasing after the speed exceeds
the pivotal speed, U, reaches a maximum, and then starts to decrease, reaching 0 when

the speed is equal to @/p, where p is the spatial frequency of the grating. However,
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when the spatial frequency of the grating is equal to the peak spatial frequency, p = p,
the phase does not change with speed—except for a small range around 0, where a

small lag occurs.

4.5.1 Speed-Invariant Contrast Estimation

The model predicts that the amplitude and phase of the outer retina’s response de-
pends on the speed of the moving grating. Speed-dependent responses give rise to
the question: Can a speed-invariant estimate of contrast be obtained from the outer
retina’s output signals?

If the input pattern has a broad spatial-frequency spectrum (e.g. an impulse, an
edge, or a random-dot pattern), we can get a flicker- or speed-invariant estimate of
contrast by measuring the energy at the spatial frequency to which the spatial filter
is tuned. Since the response phase does not change much at this spatial frequency, we
can get away with just measuring the peak amplitude. However, this strategy works
in only the low-speed regime, where the temporal frequencies generated are below the
cutoff point. In the high-speed region, we can obtain a speed invariant estimate of
contrast by taking the dual approach.

Due to the dual relationship between spatial filtering and temporal filtering, the
response is also speed-invariant when the temporal filter is tuned to the temporal
frequency of the spatiotemporal sinusoid, and the spatial frequency is below 5 (i.e.,
speeds above ©)). Thus, for a broadband signal, we can get a flicker- or speed-
invariant estimate of contrast in the high-speed region, v > ¢, by measuring the
energy at the temporal frequency, @. Again, since the response phase does not change
at this temporal frequency, we can get away with just measuring the peak amplitude.

We should be aware that the circuit generates the energy we are measuring by
amplifying energy at the spatial frequency p = &/v. Therefore, we extract energy
from lower spatial frequencies as speed increases, so the response is speed invariant
only when the input energy is distributed uniformly across the spectrum.

In summary, we can obtain a speed-invariant estimate of contrast from the cone’s
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output by proceeding as follows:
e For low speeds, v < 0, measure the energy at the spatial frequency, p.
o For high speeds, v >> 0, measure the energy at the temporal frequency, @.

This strategy assumes that the input energy is distributed uniformly across spatial
frequency. Since natural images, and edges, have a 1/p? power spectrum, it will be
smarter to tailor the algorithm to such a colored spectrum. Additional filtering in
the inner retina could achieve this optimization.

To achieve speed-invariance in the transition region between the low-speed regime
and the high-speed regime, we must match the peak flicker sensitivity, ﬁc(07dj) =
\/ZTh/TC)Qt, to the peak grating sensitivity, H,(5,0) = (£4/£.)Q,. Equating these two

expressions, and neglecting the term ¢, (€./{;)?, we find that

Ec €n Te
—_—= = 4.5
Zh 2 Th ( )
As we want ¢, to be small, to attenuate low frequencies, we must make the space

constants of the cone and horizontal cell syncytia disparate, and the time constants

of the cone and horizontal cell similar, to satisfy this constraint.

4.5.2 Contrast-Invariant Speed Estimation

I now turn to the question of how to estimate the speed of the motion from the outer-
retina’s response. This computation is relatively straightforward when the input
energy is distributed uniformly across frequency. In this case, the distribution of
energy in the output is determined entirely by the intersection of the support of the
input spectrum with the model’s spatiotemporal-sensitivity surface. Hence, it is easy
to see how the motion of such a broadband stimulus is encoded by the model.

The strongest spatial- and temporal-frequency components in the output are se-
lected by the bandpass filtering performed by the model. For low speeds, v < 0, a
particular spatial frequency, p, is selected, and the energy shifts to higher temporal

frequencies, w = puv, with increasing speed. For high speeds, v > 0, a particular
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temporal frequency, @, is selected, and the energy shifts to lower spatial frequencies,
p = w/v, with increasing speed.
In summary, the model predicts that we can obtain a contrast-invariant estimate

of speed from the outer retina’s response by proceeding as follows:

e For low speeds, v < U, determine which temporal frequency, wmax, has the most

energy, and compute v = wyay/p.

e For high speeds, v > 0, determine which spatial frequency, ppnax, has the most

energy, and compute v = @/ prax-

The most economical way to implement this algorithm would be to use just two
broadly-tuned bandpass filters, one tuned to the low end of the range and the other
tuned to the high end, and interpolate between these two filters to determine the
frequency of the input signal. This two channels may correspond to the magno and
parvo pathways [116].

This algorithm for computing speed will not work for an image with a 1/p? power
spectrum because the bandpass filter is intentionally designed to whiten such a spec-
trum, and it equalizes the energy for all frequencies in its passband. To make the
spatial or temporal frequency tuned in by the outer retina’s spatiotemporal bandpass
stand out, we may use a highpass temporal filter or a highpass spatial filter to flat-
ten such natural spectra. This strategy may be used by retina, since both of these

highpass filtering operations occur in the inner retina.

4.5.3 Space—Time Effects

I bring my discussion about the outer-retina’s motion responses to a close by leaving
the frequency domain to take a look at the response to a moving edge in space-time.
The pertinent question is: How does the simple intuitive picture that we have painted
in frequency coordinates translate into space—time coordinates?

The response of the model to a moving edge is shown in Figure 4.9, for five different

speeds—quarter, half, once, twice, and four times the pivotal speed. I obtained
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Figure 4.9: RESPONSE OF CONE TO MOVING EDGES

Each panel shows the responses of cones (bold line) to step edges (thin line) moving
at three different speeds, obtained from the outer-retina circuit model: (a) Speeds
equal to 0.250, 0.50, and ©. (b) Speeds equal to ¢, 20, and 4. The input goes from
1 (white) to 0 (black) as the black region invades the white region. In each row, the
edge’s speed doubles from one graph to the next, going from left to right. In each
panel, the top row shows responses plotted versus space, at a particular point in time,
and the bottom row shows responses plotted versus time, at a particular location in
space. In space coordinates, the edge moves to the right, and in time coordinates,
the edge moves to the left.
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analytical expressions for these responses by taking the inverse-Fourier transform of
the model’s frequency-transfer functions. I evaluated and plotted these expressions
for a particular choice of parameter values. No antialiasing was performed, so these
responses contain energy at all frequencies, out to infinity.

As the speed increases, the response transforms from the spatial response to a
static edge, which consists of an overshoot and an undershoot on either side of the
edge, to the temporal response to a step input, which consists of an exponentially
damped sinusoid that starts after the step occurs. By the time the speed changes by a
factor of eight, a complete transformation has occured, and the response changes from
a perfectly symmetric spatial response to a completely assymetric temporal response.

Due to causality, the temporal component of the response always trails the edge,
occuring to the right of the edge in temporal coordinates, or to the left of the edge in
spatial coordinates. Only the spatial component of the response can preceed the edge;
this effect occurs via long range transmission through the tightly-coupled horizontal-
cell network. As the horizontal-cell network produces inhibition, the spatial signal
gives rise to the overshoot to the right of the edge in space coordinates, or to the left
of the edge in time coordinates. It takes time for signals to propagate through the
network, and these inhibitory signals may be overtaken by excitatory signals from the
short-range cone network if the edge moves fast enough.

Excitation overtakes inhibition when the speed exceeds the pivotal speed. At the
pivotal speed, the time it takes for the edge to transverse the receptive filed equals
the time it takes for the cone-horizontal-cell feedback loop to settle. Therefore, for
speeds below the pivotal speed, the system settles, and the response looks like that to
a static edge—there is no evidence of temporal behavior. Whereas, for speeds above
the pivotal speed the system starts to respond after the edge has passed by, and the
response looks like that to a full-field flash—there is no evidence of spatial behavior.

Consequently, two distinct behaviors are observed above and below the pivotal
speed. Below the pivotal speed, the response is invariant with speed, when plotted
versus position, whereas it is increasingly compressed when plotted versus time (See

Figure 4.9a). Hence, the frequency responses look like the stationary grating re-
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sponse, and the energy shifts to higher temporal frequencies with increasing speed, as
shown in Figure 4.5a. Above the pivotal speed, the response is invariant with speed,
when plotted versus time, whereas it is increasingly drawn out, when plotted versus
space (See Figure 4.9b). Hence, the frequency responses look like the full-field flicker
response, and the energy shifts to lower spatial frequencies with increasing speed, as

shown in Figure 4.5b.

4.6 Discussion

A simple physical model, consisting of two reciprocally-connected diffusive (signal-
spreading) layers, captures the qualitative aspects of spatiotemporal filtering in the
retina. The model reproduces the dependence of spatial filtering on temporal fre-
quency and the dependence of temporal filtering on spatial frequency. In particular,
spatial filtering is bandpass at low temporal frequencies, but becomes lowpass at
high temporal frequencies. Conversely, temporal filtering is bandpass at low spatial
frequencies, but becomes lowpass at high spatial frequencies.

Models of the retina similar to the one that I study here have been proposed and
analyzed. However, none of the previous studies analyzed the effect of the model’s
spatiotemporal inseparability on motion. By studying a minimal model, and treating
space as a continuum-——using the continuous approximation—just like time, I was
able to obtain closed-form analytic solutions, and to develop a clear intuitive picture
of the spatiotemporal behavior of the retina.

I showed that the model’s spatiotemporal inseparability has serious consequences
for how information about contrast and speed is encoded by the retina. It also results
in suboptimal filtering, as the model’s spatiotemporal behavior deviates from the
optimal filter for the ensemble of natural images.

In following subsections, I show how spatiotemporal inseparability goes hand in
hand with local connectivity. As a consequence, nature must choose between a costly
spatiotemporally separable optimal filter or a cheap spatiotemporally inseparable sub-

optimal filter, weighing coding efficiency against implementation efficiency. I also
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provide a summary of the procedures that I proposed to extract of information about

contrast and speed from the outer retina’s outputs.

4.6.1 Spatiotemporal Inseparability and Local Connectivity

The interdependence of spatial filtering and temporal filtering is a direct consequence
of the locally connected character of the signal-spreading networks. Signals diffuse in
space as they are relayed from node to node by the internode conductances. Signals
also diffuse in time as they accumulate on the node capacitances. Consequently, the
temporal scale on which signals are processed is intimately connected with the spatial
scale at which they occur, and vice versa.

Simultaneous spatial and temporal diffusion places a constraint on the sum of
the spatial frequency and the temporal frequency. The current spreading through the
internode conductances is proportional to the second spatial derivative of the voltage,
and the current charging the node capacitance is proportional to the first temporal
derivative. Consequently, the sum of the rates at which the signal changes in space and
in time is constrained by the input current. This constraint translates into a constraint
on the sum of the spatial frequency and the temporal frequency. Therefore, all the
terms that appear in the transfer function of a locally-connected network involve sums
of spatial frequency and temporal frequency, instead of products.

Spatiotemporal separability requires a multiplicative interaction between spatial
frequency and temporal frequency, not a subtractive one. To obtain a multiplica-
tive interaction, we must put a constraint on the product of spatial frequency and
temporal frequency. Such a constraint produces frequency-sensitivity plots with con-
tours running diagonally (for log-log coordinates), as shown in the frequency-response
plot for the optimal filter (Figure 3.3b). In contrast, a sum constraint produces L-
shaped contours (for log-log coordinates), as shown in the frequency-response plot
of the model (Figures 4.7 and 4.8), and in the frequency response plot for humans

(Figure 4.6b).
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Figure 4.10: HARDWARE FOR SPATIOTEMPORAL FILTERS

Each node has the ability to form a weighted sum of its inputs and to provide a
delayed version of the sum to its output; wires communicate signals instantaneously
and do not attenuate or amplify them. Left: Separable spatiotemporal filter built
from a spatial array and a tapped delay line. This configuration can realize any
desired spatiotemporally separable filter. The number of nodes, and the number of
wires, required per output is O(n, +n;), where n, is the order of the spatial filter and
n: is the order of the temporal filter. Right: Inseparable spatiotemporal filter built
from a nearest-neighbor—connected spatial array. This configuration can realize only
those inseparable filters whose spatiotemporal impulse response falls off smoothly.
The number of nodes, and the number of wires, required per input is O(1).

4.6.2 Efficient Coding Versus Efficient Implementation

A spatiotemporally inseparable filter cannot match the spectrum of the ensemble
of natural images, which is more or less separable, over the entire range of spatial
and temporal frequencies. It is possible to match the model’s inseparable response
to the separable response of the optimal filter, but in only certain restricted regions
of the spatiotemporal frequency spectrum. We can acheive optimal spatial filtering
at low temporal frequency and optimal temporal filtering at low spatial frequency.
However, when matched to the optimal filter in these regions, the model does not filter
out signals with poor SNR that occur at high spatial frequencies and high temporal
frequencies. This mismatch between the model and the optimal filter predicts that
the outer retina devotes more of its channel capacity to noise than is optimal.
Suboptimal outer-retina performance is a small price to pay for efficient imple-
mentation. The amount of hardware required to implement these two classes of
filters—one separable and the other inseparable—is shown in Figure 4.10. By using

nearest-neighbor connections, the inseparable network can share wires and nodes,
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and thus can use the hardware efficiently. A factor of n = n, + n;, where n, (n;) is
the order of the spatial (temporal) filter, reduction in hardware translates to a sim-
ilar reduction in pixel size and to a similar reduction in power consumption. These
improvements in efficiency allow smaller and faster pixels to be used, increasing the
spatiotemporal bandwidth of the retina.

Additional spatiotemporal filtering in the inner retina may compensate for sub-
optimal behavior of the outer retina, such that excessive noise in the latter’s output
is not passed on to the optic nerve and transmitted all the way to the brain. Pos-
sibly, this result is achieved by the presence of two channels, with one tuned to low
temporal frequencies and high temporal frequencies (parvo pathway), and the other
is tuned to high temporal frequencies and low spatial frequencies (magno pathway);
neither one is tuned to the noisy signals that occur at high temporal freqencies and

high spatial frequencies.

4.6.3 Encoding of Contrast and Speed of Moving Images

Understanding how the outer retina responds to motion led me to develop a natural
set of procedures for obtaining a speed-invariant estimate of contrast and a contrast-
invariant estimate of speed from the outer-retina’s output signals.

In particular, there is a pivotal speed that demarcates the border between two
distinct regimes. An edge moving at the pivotal speed sweeps across the receptive
field in exactly the time it takes for the system to settle. Below the pivotal speed,
the response is dominated by energy at the spatial frequency to which the spatial
bandpass is tuned, and this energy moves to higher temporal frequencies as the speed
increases. Above the pivotal speed, the response is dominated by energy at the
temporal frequency to which the temporal bandpass is tuned, and this energy moves
to lower spatial frequencies as the speed increases.

We can estimate contrast by measuring the amplitude of the response at the
frequencies to which the bandpass spatial filter and the bandpass temporal filter are

tuned, and taking the larger value. To see why this strategy works, we recall that
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the response is invariant when the sum of the temporal frequency and the spatial
frequency is constant. So, by guaranteeing that the spatial frequency is high and
the temporal frequency is low, we ensure that changing the temporal frequency has
a negligible effect, making the response insensitive to speed. Making the temporal
frequency high and the spatial frequency low also works, for the same reason.

We can estimate speed by finding the dominant spectral component, and taking
the ratio between that component’s temporal and spatial frequencies. In the low-speed
regime, the dominant component occurs at the frequency where the spatial bandpass
peaks. Hence, we already know the spatial frequency, and we need to determine only
the temporal frequency. This strategy is analogous to using the spatial extent of the
receptive field as a reference, and measuring the time it takes for the stimulus to cross
the receptive field. In the high-speed regime, the strongest spectral component occurs
at the temporal frequency where the temporal bandpass peaks. Hence, we already
know the temporal frequency, and we need to determine only the spatial frequency.
This strategy is analogous to using the temporal extent of the receptive field as a
reference, and measuring how far the stimulus travels during that time.

The advantage of this biomorphic motion algorithm is that it uses signals that
occur at either the same location or at the same time—unlike other motion algorithms,
which try to match up signals that occur at different locations at different times [117,
118, 119]. In general, this correspondence problem is difficult to solve, since
there are many candidate matches and the correct one can be found only if the
features within the field of view are sufficiently distinct to disambiguate. Note that
the algorithm proposed here computes only speed—unlike these more general motion
algorithms, which compute direction as well. We can use information about speed,
however, to eliminate candidate matches, making the correspondence problem more

tractable.



90

Chapter 5 Electrodiffusion: From Nerve

Membranes to Transistors

In this chapter, I compare the nerve membrane with the MOS transistor. The nerve
membrane is a liquid-state device, with ionic species diffusing in water, whereas the
transistor is a solid-state device, with electrons and holes diffusing in a crystal. On a
microscopic scale, however, the movement of these charge carriers are the identical.
Their motion is driven by the same forces, which are either of thermal or electrical
origin. At the macroscopic scale, these forces give rise to diffusion and to drift,
respectively. Hence, the transport mechanisms found in cells and in transistors are
identical.

There are three important differences between these two devices, though.

First, the effectiveness of the transport mechanisms are drastically different. Dif-
fusion coeflicients and mobilities are six orders of magnitude smaller for ions in water,
compared to electrons and holes in crystalline silicon. But the ions travel much shorter
distances: A lipid bilayer is only 6nm thick, whereas the channel length of a typical
transistor is around 1um. Because decreasing the distance increases the driving force,
this 2-decade reduction in length reduces the transit time by 4 decades.

Second, the nerve membrane is strictly a two-dimensional structure, with the
same population of charges responsible for its electrostatics and for its electrodiffu-
sion. In contrast, a transistor is fundamentally a three-dimensional structure, with
two distinct populations of charges responsible for its electrostatics and for its elec-
trodiffusion. The transistor’s electrostatics involves primarily immobile charges on
the gate, which is placed on top of the bulk crystal to control the potential at the
surface of the crystal. And the transistor’s electrodiffusion involves mobile charges at
the surface of the bulk crystal that are totally isolated from the charge on the gate.

Third, several ionic species serve to transport charge across the nerve memebrane,



91

and selective transmembrane ion channels control the permeability of the membrane
to each ion species independently. In contrast, a transistor uses a single charged
species, and its gate potential controls the flux of this species through the channel. To
capture the function of a variety of ion channels, you have to use a separate transistor
for each channel type, and control the flux through each transistor independently
using that transistor’s gate voltage. You also have to copy the currents passed by
each transistor onto a separate capacitor if you want to keep track of the concentration
of each ionic species.

I will review electrodiffusion in nerve cells and in transistors by deriving expres-
sions for the ionic fluxes and electric currents in these devices from first principles.
The derivations are similar because the basic electrostatic and transport mechanisms
present in these two devices are identical. The nonlinear partial differential equations
that govern electrostatics and electrodiffusion cannot be solved analytically for these
devices. To obtain explicit, closed-form solutions, we must make some simplifying
assumptions. As the assumptions that hold in one case do not hold in the other case,
and vise versa, we end up with different forms of solutions for the membrane and
for the transistor. This comparative study—which, to my surprise, has not yet been
done—will help us figure out how best to exploit the native physics of the transistor

to model the biophysics of the nerve membrane.

5.1 Electrodiffusion in Membranes

The general outline of my review of electrodiffusion in nerve membranes is as follows.
I begin by studying the Nernst-Planck equation, which relates the flux to the ion
concentrations and the potential at each point within the membrane. The potential
is related to the net charge concentration by Poisson’s equation. This equation couples
together the fluxes of all the ion species present, making it difficult to solve for the flux
of each species. Assuming that the electric field in the membrane is constant allows
us to obtain the potential profile across the membrane without solving Poisson’s

equation.
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Figure 5.1: ELECTRODIFFUSION IN MEMBRANES AND TRANSISTORS

(a) Cross-section of a bilipid membrane with profiles of the ion concentration of the
nth ion species, ¢,(x), and of the potential, ¥(z). Ions diffuse down the concentra-
tion gradient and drift down the potential gradient; ¢ is the net flux through the
membrane. By definition, positive flux flows out of the cell; the z axis also points
in this direction. And, by definition, the membrane potential is the potential on the
inside minus the potential on the outside. Hence, positive current flows from inside to
outside; current and flux are in the same direction for positively charged ions. When
the ion species diffusing across the membrane are distributed such that they main-
tain charge neutrality, the electric field is constant, and the potential changes linearly.
The membrane’s behavior under this contant—electric-field assumption is derived in
the text. (b) Structure of an n-type MOS transistor, with profiles of the mobile-
charge concentration, Q)(z), and the potential gradient, 1 (z), along the surface of its
channel. Just like in the cell membrane, the gradients in the charge concentration and
in the potential make free electrons diffuse and drift across the channel; I is the net
current through the channel. By definition, charge carriers flow from source to drain;
the z axis also points in this direction. As an n-type MOS transitor uses negative
charge carriers, its current is negative. The potential along the channel surface is
determined by charges on the gate, which attract oppositely charged mobile charges
to the surface of the channel, and repel similarly charged mobile charges away from
the surface. When the charges repelled are much farther away than those attracted to
the surface, we can ignore the effect of the former. In that case, we are left with the
mobile charge at the surface and the charge on the gate, which form a parallel-plate
capacitor. The transistor’s behavior under this parallel-plate capacitor assumption is
derived in the text.
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The constant field model was proposed by Goldman over fifty years ago [1],
in a study of biological membranes. Hodgkin and Katz latter applied this model to
the giant axon of the squid [2]. This simple model treats the ions as though they
diffuse freely: In fact, they travel through a pore that confines them to one degree
of freedom, making independent movement unlikely. And it assumes that the pore
excludes all the other ionic species: In fact, real pores do not have perfect selectivity.
Nevertheless, in additon to being instructive, the Goldman model turns out to be

quite robust and useful in practice.

5.1.1 The Membrane Flux

The derivation of the ion flux across the membrane starts with the Nernst—Planck
equation, which governs the transport of ions in a solvent.! The Nernst-Planck
equation is an application of Fick’s Law, which governs diffusion, and of Ohm’s law,
which governs drift. The Nernst-Planck equation relates the molar flux, ¢,, of the
nth ion species to concentration gradient of that species, dc, /0z, and to the electrical

potential gradient, 0y /0x :

dep ()
ox

— UpzZp Fen(2) 8@(/;5:) : (5.1)

an(x) = _Dn

where D, is the diffusion coefficient of the nth ion species, u, is the molar mechanical
mobility, z, is the valence, and F'is the Faraday charge.

I am abiding by conventions used in biology and chemistry, where the charge
quantum is 1 mole—6.022 x 10%* particles! To compute the diffusion component, you
multiply the concentration gradient (in units of mol/m?®/m) by the diffusion coefficient
(m?/s), which gives you the flux (mol/m?/s). To compute the drift component, you
multiply the molar concentration (in units of mol/m?) by the Faraday charge (C/mol),
and by the valence of the nth ion (dimensionless), to obtain the charge concentration

(C/m?®). Multiplying this charge concentration by the electric field (N/C)—expressed

!The derivation of the membrane equations follows closely the treatment in Weiss’ thorough,
two-volume monograph, Cellular Biophysics [120].
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as the potential gradient—gives you the force on a unit volume of ions (N/m3).
Multiplying this force by the molar mechanical mobility (mol- m/s/N) gives you the
flux (mol/m?/s).

We can rewrite the Nernst-Planck equation in the form

(5.2)

bul2) = ~tnza FVi, (5%@) | (o) 8w<x>)

ox VT or

n

by using the chemist’s version of the Einstein relation, D, = u, RT, to express the
diffusion coefficient in terms of the molar mechanical mobility, where R is the molar
gas constant (units of J/mol/K) and T is the temperature (K). I have defined a
more appropriate unit of voltage Vr, = (RT)/(z,F), which corresponds to thermal
potential of the nth ion (units of J/C).

The Nernst-Planck equation, and its device-physics counterpart, the drift—diffusion
equation, make clear the balance of forces between drift and diffusion. At equilib-
rium, drift and diffusion cancel out each other, and the flux is 0.

We can solve the Nernst—Planck equation for the concentration profile of the nth
ion at equlibrium, ¢, (¢), by using the chain rule to express the concentration gradient

0c,/0z as dc, /O - Oy /Dx. Making this substitution gives us

(6Cg°f) “*_Cn{;iw)) Btg;x) = 0

= Cuo () = g (0)e™¥/VTn (5.3)

At equilibrium, the concentration of the nth ion e-folds every time that the potential
decreases by the thermal potential V —assuming it is positively charged. The expo-
nential form arises because, once the dependence on the potential gradient is factored
out, drift is proportional to the concentration, whereas diffusion is proportional to the
rate at which the concentration changes with potential. Therefore, we must equalize
the concentration and the derivative of the concentration to counterbalance drift with
diffusion. The exponential is the only function whose derivative is proportional to

itself.
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Factoring out the potential gradient also makes evident the relative strengths of
diffusion and drift away from equilibrium. The ratio between the fluxes caused by
diffusion and by drift is equal to the ratio between the rate at which the concentration
changes with potential and the concentration itself.

We can compute the ratio between the diffusion and drift components by taking
the derivative of the logarithm of the concentration, because the derivative of the
logarithm of a function gives the ratio between the derivative of the function and the
function itself. Making use of this observation allows us to rewrite the Nernst-Planck

equation in a simpler form:

(r/)n(l") = _unanVTnCn<x) (Z,:Ei; - EZOEZ;> aqg(;t)
= _unanVTncn(:(;)%log (Cij((“?)> : (5.4)

where f'(u) is the derivative of f with respect to u. Notice that, by taking advantage
of the equilibrium condition ¢}, (v)/cp,(¥) +1/Vp, = 0, we can express the thermal
voltage in terms of the exponential equilibrium distribution and its derivative. This
substitution makes the deviation from equlibrium explicit.

Equation 5.4 has the same form as the drift term in the electrodiffusion equation
(Equation 5.1): The flux is given by the product of the concentration and the spa-
tial derivative of a potential function. Therefore, I call Equation 5.4 the driftlike
formulation of electrodiffusion. When the effects of both drift and diffusion are
included in the potential function, it has the form of the logarithm of the ratio of the
concentration profile and the concentration profile at equilibrium, with the potential
expressed in units of the thermal potential.

The driftlike formulation provides an appealing intuitive interpretation of the
behavior away from equilibrium. The average velocity of the particles—which is equal
to the ratio between the flux and the concentration—is proportional to the rate at
which the ratio between the concentration profile and the equilibrium concentration

profile changes with position. Therefore, when the concentration decreases less than
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the equilibrium concentration (in percentages) as we move up the potential gradient,
the velocity points down the potential gradient (i.e., drift dominates). On the other
hand, when the concentration decreases faster than the equilibrium concentration
as we move up the potential gradient (in percentages), the velocity points up the
potential gradient (i.e., diffusion dominates). Thus, both drift and diffusion tend to
redistribute the particles so as to approach the equilibrium distribution, and hence
the equilibrium distribution is stable.

We can express the electrodiffusion equation in yet another simple form by dividing
Equation 5.4 by ¢,,(z). Doing the division gives us the derivative of a quotient, and

therefore the result simplifies to

(5.5)

Equation 5.5 has the same form as the diffusion term in the electrodiffusion equa-
tion (Equation 5.1): The flux is proportional to the spatial derivative of a function
of the concentration—and does not depend on the concentration itself. Therefore, I
call Equation 5.4 the diffusionlike formulation of electrodiffusion. When the
effects of both drift and diffusion are included in the concentration function, it has
the form of the ratio of the concentration profile and the equilibrium concentration

profile, with the concentration expressed in units of the equilibrium concentration.

5.1.2 The Membrane Potential

Proceeding with the derivation of the membrane current, if there are N species of
ions, we have to solve /V transport equations,
dcn () O (z)

On(z) = =Dy, e — Upzn Fen(x) pe

(either Equation 5.4 or Equation 5.5 will do too) to obtain their fluxes; N continuity

equations,
0Jy(z,t)
ox

dc (z, 1)

- - nF )
‘ ot
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to obtain their concentration profiles; and one electrostatic equation,

P(x,t) __ pla,1)

0z? €

to obtain the potential profile.

The physical significance of the last two equations is as follows: The continuity
equation relates the net flux into a region to the rate at which the particle population
there increases, ensuring that each ionic species is conserved. These currents, which
add or remove particles from a given region, are called displacement currents. In
contrast, the flux moves particles through the boundaries of that region.

The electrostatic equation, which is called Poisson’s Equation, relates the po-
tential to the net charge distribution, p(z,t), produced by all N ion species; e is
the permittivity of the membrane. The second spatial derivative of the potential is
proportional to the charge density, because you integrate the charge to obtain the
electric field (applying Gauss’s law), and then integrate the electric field to obtain
the potential.

Needless to say, it is extremely difficult to solve these coupled partial differen-
tial equations in closed form; therefore, we must find reasonable assumptions that
decouple them.

The first assumption that we make is that the membrane is in the steady state.
That is, the displacement currents are zero and the ion concentrations do not change
with timea. Hence, the fluxes do no change with position. The steady-state assump-
tion allows us to solve either Equation 5.4 or Equation 5.5 simply by integrating both
sides with respect to z, if we know the concentration profile or the potential profile,
respectively. The second assumption that we make is that the electric field is con-
stant. That is, the potential, ¢(z) — (0) = —(z/d)V},, where V,,, = ¢(0) — ¥(d) is
the voltage across the membrane, and d is its thickness.

Knowing the potential profile, we can use Equation 5.3 to obtain the equilibrium

concentration profile:

Vi
6o (&) = ens (0) exp (VT d) |
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Knowing the equilibrium concentration profile, we can integrate Equation 5.4 to ob-
tain the flux, and convert the flux to current density .J, (in units of C/m?/s) by

multiplying by the molar charge for the nth ion species, z,F:

Jn = —unZ,QLFQVT Cn(d)/Cng(d) — C"(O)/Cno(o)
" f() 1/Cno($)dx

Vin (en(d)/cny(d) — n(0)/cn, (0)

d ( 1/ ¢y (d) — 1/cny (0) ) - (5.7)

(5.6)

= u,z2F?

Substituting the expression for ¢,,(z) into Equation 5.7, and converting the molar
mechanical mobility to electrical mobility, 4 = |z,|Fu,—a quantity commonly used
by device physicists—gives us

2 Vin ¢n(d) — ¢, (0)e¥m/Vrn
d 1 — eVm/Vrn '

To(Vin) = |zn| FE

It is easier to interprete our final expression for the membrane current intuitively when
we use electrical mobility rather than mechanical mobility. Notice that, swapping
cn(0) and c,(d) is exactly equivalent to swapping the sign of Vi, ; therefore, an anion
channel that sees a higher concentration outside the cell behaves just like an cation
channel that sees a higher concentration inside the cell.

Due to the constant-field assumption, the current is proportional to the product
of the drift velocity of the ions (u,V;,/d) and the charge carried by a mole of these
ions (|z,|F'). The proportionality constant is determined by the concentration of
charge carriers; it changes with the direction of the current because of the difference
in concentrations on either side of the membrane. When the membrane voltage is
large and positive, the current is equal to the drift velocity times the concentration
at the membrane’s inner boundary. In a similar vein, when the membrane voltage is
large and negative, the current is equal to the drift velocity times the concentration
at the membrane’s outer boundary. For small membrane voltages, V,, < V., the

exponential is close to 1, and 1 — exp(V,,/Vr,) = V},,/Vr,. Therefore, we have

5o (V) = 2Ly prn @ = al0)
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Thus, the membrane passes current by diffusion when the membrane voltage is
small, and there is current flow even when the voltage is O—except in the degen-
erate case where the concentrations on either side are equal. The current goes to 0
when the the drift and diffusion components cancel each other, which happens when
Vin = log(c,(d)/cn(0)), as we would expect from the equilibrium concentration profile
(Equation 5.3).

We can express the current in terms of the ion concentrations inside and outside
the cell, ¢}, and ¢, if we know the partition coefficient k, = ¢,(0)/c, = ¢,(d) /2. We
can also make the equilibrium condition obvious by defining E,, = —Vr, log(c!,/c?);
E,, is called the reversal potential for the nth ion, because the current carried by
this ion changes sign when V,, = E,,. Making these substitutions, and referencing the
potentials inside (1}) and outside (V;) the cell to a third potential, instead of to each

other, gives us

(5.8)

Vi—V, [eVimEn)/Vr, _ oVo/Vr,
Jo(Vip) = |20 | F Poc® <8 c ) ,
Vr,

e‘/;/VTn _— eVO/VTn

where P, = k, D, /d is the permeability of the membrane to ion n.

When several ionic species are present, the current due to each species is given by
Equation 5.8, with the appropriate values of electrical mobility u,, valence z,, and
thermal voltage V. In this case, equilibrium occurs when the sum of all the currents

1s 0.

5.2 Electrodiffusion in Transistors

The general outline of my review of electrodiffusion in the MOS transistor is as follows.
I begin by solving the classical drift-diffusion equation, which relates the current to
the charges. Approximating the gate and the channel to a parallel-plate capacitor
gives us a simple, physically intuitive, closed-form description of the current in terms
of the charge concentrations at the channel boundaries. Our next task, then, is to

solve for the charge concentration in terms of the potential at the surface of the
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Figure 5.2: POTENTIAL ENERGY OF ELECTRONS IN A NMOS TRANSISTOR

Potential profile along the length (0 < z < L) and the depth (0 < y) of the channel;
the potential is assumed to be uniform along the channel width (0 < z < W). Elec-
trons enter the channel at the source end (potential Vs), where they must overcome
an energy barrier (¢(0,y) — Vs). The barrier height is lower near the surface of the
channel surface (y = 0), as positive charges on the gate (potential Vi) attract the
electrons. Thus, all the mobile charge in the channel is in close proximity to the
channel surface, dying off exponentially as the potential increases with depth. The
electrons leave the channel at the drain end, where they drop down a higher potential
barrier that excludes entry from that end.
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channel, and of the potentials at the source and at the drain. Finally, we must relate
the surface potential to the gate potential, to obtain an expression for the current that
includes only the voltages applied to the transistor’s four terminals. The structure
of a transistor, and the profiles of charge density and potential along its channel, is
shown in Figure 5.1b.

Maher and Mead proposed the parallel-plate capacitor approximation to
solve the transport problem [121, 122]. And they used the charge sheet approxi-
mation, which assumes that all the mobile charge is right at the channel surface, to
solve the electrostatic problem. My derivation of the current—charge relationship from
the transport equations follows their treatment. But my derivation of the charge-
voltage relationship from the electrostatic equations extends their derivation to take
into account the distribution of mobile charge down the depth of the channel. This
refinement is especially important at the onset of weak inversion, where the charge-

sheet approximation breaks down.

5.2.1 The Channel Current

The derivation of the channel current of a MOS transistor begins with the drift-
diffusion equation, which governs charge transport in semiconductors.? The drift-
diffusion equation relates the current density, J, to the electrical potential gradient,

O /0x, and to the charge concentration gradient, 9Q/dx :

0Q(z,y)
ox

OY(z,y)

J($7y) = —Dn —MHQ(SC7y>—-8I—a

where D, is the electron’s diffusion coefficient and p, is its electrical mobility. The
current density is assumed to be uniform along the width of the channel (2 dimension),
but it may vary along both the length (z dimension) and the depth (y dimension).
By design, the direction of the current is strictly along the length of the channel; the

components along the width and along the depth are 0.

2The derivation of the current equations closely follows the treatment in Maher’s appendix to
Mead’s book, Analog VLSI and Neural Systems [122].
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I have switched to the conventions used in physics and engineering, where the
charge quantum is one electron—as it is in reality! To compute the diffusion com-
ponent, you multiply the charge concentration gradient (in units of fC/um3/um) by
the diffusion coefficient (1m?®/ns), and that gives you the current density (uA/um?).
To compute the drift component, you multiply the charge concentration (fC/um?) by
the electric field (V/pum)—expressed as the potential gradient—and that gives you
the force on a unit volume of electrons (fC-V/um/um3). Multiplying this force by
the electrical mobility (m?/V/ns) gives you the current density (uA/pm?).

Unlike the potential profile across the membrane, which is determined entirely by
the ion flux through the membrane, the potential profile across the transistor’s channel
is controlled by charges on the gate, and by mirror charges on ionized dopant atoms
in the bulk, as well as by the electron flux. Charge separation between the channel
and the gate violates charge neutrality. Consequently, the constant-field assumption
is not applicable to the transistor.

The potential energy of electrons traveling along the channel is shown in Fig-
ure 5.2. A good first-order approximation is to assume that the mobile charge
changes with the channel potential at the same rate everywhere along the channel—
the parallel-plate—capacitor assumption [122]. When surface potential increases,
more mobile electrons enter the channel, and this charge draws more positive charges
onto the gate and screens them from the negatively-charged dopant atoms down in
the bulk. Thus, the structure is analagous to two capacitors connected in parallel—
one between the surface and the gate and the other between the surface and the edge
of the depletion layer. This analogy is perfect if, for each of these capacitors, the
charges remain at the same distance from the surface as we move along the length of
the channel. In that case, the derivative of the mobile charge with respect to potential
is the same everywhere along the channel.

At first glance, you would not expect the parallel-plate—capacitor assumption to
hold when the mobile charge concentration may change along the channel length, be-
cause more dopant atoms are ionized where the concentration is lower. Consequently,

the incremental charge comes from dopant atoms further away, as the depeletion
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layer extends down into the bulk. This process is self-limiting, however, because the
mobile charge at the surface and the fixed charge in the bulk compete to cover the
gate charge. As the depletion layer grows, the charge contributed by the depletion
layer reduces, and the charge contributed by the mobile charge increases. In other
words, the parallel-plate-capacitor assumption holds as long as the depletion-layer
capacitance is smaller than the gate-oxide capacitance. For a typical 2um process,
with a 40nm-thick gate oxide and a dopant concentration of 2.1 x 10*/um?, the gate-
oxide capacitance exceeds the depletion-layer capacitance when the surface potential
exceeds 0.23V.

Proceeding with the derivation of the current, I define the channel capacitance at

a perticular depth Y as
CY) = 0Q/0Y|,_y,

and make the substitution

v _woQ 1 0

dr ~ 0Q 9z  Cly) o

into the drift-diffusion equation. The result is

(5.9)

T(w,y) = Vi <1 . @"’f’y)) 0Q(w,y)

Qr(y) Ox

Thus, the parallel-plate capacitor assumption makes the drift term look like a diffusion
term, with diffusion coefficient proportional to the charge concentration. Compare
this equation with Equation 5.5, the diffusionlike formulation for the cell membrane.
I used Einstein’s relation between diffusivity and mobility, D = pkT/q., where k
is Boltzman’s constant, 7' is temperature, and g. is magnitude of the charge on an
electron. T also introduced appropriate units for voltage and for charge: the thermal
voltage, Vi = kT'/q., and the thermal charge, Qr(y) = C(y)Vy.

Before integrating this drift-diffusion equation along the channel (z dimension) to

get the current, let us convert the charge to units of the thermal charge, Q7 (y). The
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result is
) = V(1 + (o, ) LY,
x
where the symbols in lowercase letters represent quantities in units of the thermal
charge. Performing the integration gives us the current density at a particular depth,

y, in terms of the charge concentrations at the channel boundaries:

_#r % %
7 <D+2 =5
1% +
= —% (1+qD2qs)(QD—QS)a (5.10)

where gs(y) = ¢(0,y) and ¢n(y) = ¢(L, y) are the charge concentrations at the source
and drain ends of the channel. For clarity, I do not explicitly show the dependence of
the current and the charges on the channel depth, y. To obtain the total current in the
channel, you integrate Equation 5.10 along the depth of the channel (y dimension),
as shown in Section 5.2.2, where integrals for the charge terms are computed.

The effects of diffusion and drift are evident in Equation 5.10. Both diffusion and
drift are proportional to the charge difference, ¢n — ¢g, because the concentration
gradient is proportional to the charge difference, and the potential gradient also is
proportional to the charge difference (assuming capacitance is constant). Hence,
we can factor out the charge difference, leaving the average charge density, (gp +
gs)/2, and a constant—because the drift component is proportional to the number
of carriers, whereas the diffusion component is not. Consequently, drift dominates
when the mobile charge is large—compared with the thermal charge—and diffusion
dominates when the mobile charge is small.

The drift component and the diffusion component are equal when the mobile
charge is equal to the thermal charge, or, more precisely, when (Qp + Qs)/2 = Qr.
This point is defined as the threshold by Maher and Mead [122]. In the subthresh-
old regime, charge is transported primarily by diffusion; in the above-threshold

regime, charge is transported primarily by drift. Hence, we can obtain the current
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Figure 5.3: MOS CAPACITOR’S CHARGE VERSUS SURFACE POTENTIAL

The positions of the conduction band E., valence band E,, Fermi level Eg, and
the intrinsic Fermi level E; also are shown. We compute this plot from a closed-form
expression for the total charge given in [123], which was obtained by solving Poisson’s
equation in the y dimension. The temperature is 300K, and the acceptor-dopant
concentration is 2.1 x 10*/pum3—a typical value for a 40nm-gate-oxide process. Notice
that the charge concentration grows at one-half of the rate you would expect, taking
two thermal voltages to e-fold; this discrepancy is due to space-charge limitation
effects in the MOS capacitor structure. The situation would be different in the channel
of a transistor, because the heavily doped n-type drain and source regions would
supply electrons to the channel.

either above threshold or below threshold using the following approximations:

J(Qs,Qp) =~ “ZTQSQTQD, Qs, Qp < Qr, (5.11)
J(Qs, Qo) = ”LVTQSQQTQD, Q5. Qp > Qr. (5.12)

5.2.2 The Channel Charge

The current into the bulk (y direction) is practically 0, so we can express the electron

and hole concentrations in terms of the potential using the exponential relation be-
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tween charge concentration and potential at equilibrium. The problem of finding the
charge profile thus reduces to one of finding how the potential changes with depth,

so we solve Poisson’s equation in the y dimension:

Pip(z,y) p(z,y)

392 €si

N
3

where the net charge density is given by

,0(-73, y) = Q<p($ y) - TL(I, y) - */VA);
n(z,y) = noew(xyy)/VT7
p(z,y) = poe—w(z,y)/VT_
N, is the acceptor-dopant atom density, and ny and py are the concentrations of free
electrons and holes deep down in the p-type bulk material, where the potential is
defined to be 0, and the material is charge neutral.

It is easier to compare the relative sizes of the electron and hole populations if we

rewrite n(z,y) and p(z,y) in the following form:

p(z,y) = pe @Ev-er)/Vr), (5.14)
- 1 Ny _

where n; = p; are the electron and hole concentrations in intrinsic (undoped) silicon.
The electron and hole concentrations in the p-doped bulk material are equal to the
intrinsic concentration—and are equal to each other—when ¢ = ¢p. Therefore, ¢p
is also the potential difference between the p-doped bulk and the undoped silicon
when these two semiconductor crystals are in equilibrium. Because doping levels are
typically millions of times larger than the intrinsic concentration (n; = 0.0145/um?
at 300K), ¢r is about 0.4V—close to one-half of the bandgap of silicon.

We have to be careful not to apply Equations 5.13 and 5.14 in close proximity
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to the source and drain regions. These heavily doped regions are a rich source of
electrons, and perturb the electron and hole concentration at the ends of the channel.
Assuming quasi-static behavior, we can approximate the carrier distribution along
the channel in the vicinity of the source and drain regions with the exponential
equilibrium profile. In that case, replacing ¢ by ¢ — Vg gives the distribution at
the source end of the channel; a similar calculation gives us the distribution at the
drain end. To see why, we observe that the built-in potential makes the electron and
hole concentrations on the channel side equal to those in the bulk when the potential
difference between the bulk and the source is 0.

As we increase the surface potential, we observe three distinct regions, with one
of the three charged species in the majority in each region, as shown in Figure 5.3.
When the surface potential is negative, holes are drawn to the surface and accumulate
there, increasing exponentially as the surface potential decreases. When the surface
potential is positive, holes are repelled from the surface, and a depletion layer with
negatively charged dopant atoms develops. Electrons are drawn to the surface when
the surface potential is positive, and increase exponentially, whereas the depletion
charge increases as the square root of the surface potential. Hence, the electrons take
over when the surface potential becomes large.

The terms weak inversion and strong inversion are used to describe the size of
the invading electron population relative to the native hole population. The channel
is said to be inverted when the electrons, which are normally the minority carriers in
the p-type substrate, become the majority carriers. Inversion starts when the electron
and hole concentrations become equal; that is, when 3 equals ¢r. The channel is
said to be strongly inverted when the electron concentration exceeds the original
hole concentration—that is, when ¢ exceeds 2¢p.

The transistor has three distinct regimes of operation, depending on whether the
holes, the dopant atoms, or the electrons are the dominant charges. The first region is
known as the accumulation region (¢s — V5 < 0), and the other two correspond to
the subthreshold regime (0 < ¢s — V5 < 2¢p) and the above-threshold regime
(2¢r < 1bs — Vi), which were distinguished in Section 5.2.1 by the mode of charge



108
transport.

Unfortunately, general solutions for the concentration-versus-depth profiles of elec-
trons, holes, and dopant ions cannot be obtained in closed-form. Therefore, I use a
first-order Taylor expansion at ¢ = v to obtain an approximation for the effective
densities of states:

/ i F)e?Vedup w2 (F(ths) — ViF' (1s) ) Vipe?s/V7 . (5.16)

— 00

This approximations To use this result, we perform a change of variables from y to

(5
s ~¢r—dc)/Vr d
ws Gl 6("/) ¢F ¢c /VT> O(w)VT
= d
_ 1 L nw—er—sa/vr g
- VT( > EWCwr T "

Q

Vf(

(¥s) n C () E(Ys)C ()Y
(5.17)

) ( EWy) , (n=1Vr ') | 1) (s~ pr—c) Vi
n &

where s = 1(z,0) is the potential at the surface. The reference voltage for the
surface potential, ¢., is equal to V5 at the source end of the channel, is equal to
and Vp at the drain end, and is 0 in parts of the channel that are isolated from the
source-drain regions. £(1) is the electric field in the direction normal to the surface,
pointing away from the bulk.

We can compute the electric field at the surface, £(1)s), by applying Gauss’ law,
if we know the amount of charge between the surface and the reference point deep
down in the bulk where the field is 0. We can ignore the mobile charge both above
and below threshold when we compute the charge, because in the former case the
mobile charge is confined to a thin sheet right at the surface, and in the latter case
the mobile charge is negligible compared to the fixed charge in the depletion layer.

Ignoring the mobile charge as well as the holes, which are both negligible compared
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to the depletion-layer charge in the subthreshold region, we have £(1s) &~ —Quep/€si,

Qaep = —/ 2¢e€si Naths; (5.18)

€si is the permitivity of silicon and ¢, is the electronic charge. We obtain this ex-

where

pression by assuming that the dopant atom density, Ny, is uniform from the surface
down into the depth, and that the boundary of the depletion layer is defined sharply,
with the charge density dropping abruptly from N, to zero.

Using Equation 5.18 and Gauss’ law, we obtain the function £(vs), and we sub-
stitute this result into the expression for @™ (z) in Equation 5.17 above, with n = 1,

to obtain the mobile-charge per unit area underneath the gate:

Vir Ge€sin Vo br—b )V
Q T — ( + 1) e(ws ¢r—dc)/ T7
( ) 27‘/}8 V 2(]e€SijVAws

= <VT 4 1) /Mﬁﬁﬂ@e(ws—w—m/w
22/)8 7/)5 2]\[A ’

for 1 > Vi, where
0 1 QQESiJVA _
Cdep(@/%) = 82/1 (_Qdep) = '2“ T, (0.20)
s s

is the depletion-layer capacitance. As the surface potential increases, the depletion-

layer capacitance decreases like the square root, because the depth of the depletion

layer increases like the square-root of the surface potential. We can use Equation 5.19

to calculate the charge terms in the subthreshold current-charge relation (Equation 5.11).
The dependence of the subthreshold charge expression (Equation 5.19) on the de-

pletion capacitance results in an inverse-square-root dependence in the pre-exponential

factor. This dependence comes from integrating all the mobile charge from the sur-

face down into the bulk. On one hand, when the potential at the surface is close

to that in the bulk, the mobile charge spreads deep into the bulk. Hence, the inte-

gral is large, and it decreases rapidly as the surface potential deviates from the bulk
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potential. Therefore, we must take into account the inverse-square-root dependence
on ¥ to predict low-level currents accurately. On the other hand, when the surface
potential becomes large, the mobile charge concentration dies off rapidly away from
the surface. Hence, the integral is small, and does not change dramatically with 1.

Therefore, the square-root dependence on 1) can be ignored at high-level currents.

5.2.3 The Surface Potential

Summing all the voltage drops that we encounter as we go from the bulk to the gate,
we find that
Vap = s + Vox + dus,

where Vi is the voltage across the gate-oxide capacitor, C,y, and ¢y is the contact
potential between the gate material and the bulk material. The voltage drop across
the gate-oxide Vox = —(Qiot + Qo) /Cox; Wwhere Qo is the total charge in the bulk, and
Qo is the charge due to electrons trapped at the oxide interface and ions implanted
at the channel surface. We introduce the flat-band voltage Vig = dys — Qo/Cox to
account for the constant voltage offset due to these fixed charges and to the contact

potential. Hence,

VGB = VFB + ws - Qtot(ww ¢c)/cox- (521)

When Vi = Vip, the surface potential is 0, and the semiconductor is charge neutral.
By substituting an expression for the total charge, Qyo, which is given by the sum
of the mobile charge (Equation 5.19) and the depletion charge (Equation 5.18), into
Equation 5.21, we can obtain a relation between the gate voltage and the surface
potential.

Equation 5.21 tells us that the amount by which the surface potential changes
when we change the gate voltage depends on the amount by which the total chan-
nel charge changes. The dependence of the total charge on the surface potential
changes radically when we cross threshold. The total channel charge increases as

the square root of the surface potential when the channel is weakly inverted, and
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increases exponentially with the surface potential when the channel is strongly in-
verted. Consequently, when we are below threshold, the surface potential follows
closely changes in the gate potential because the dependence of the total charge on
the surface potential is weak. In contrast, when we are above threshold, the surface
potential stays more or less constant because the dependence of the total charge on
the surface potential is strong. The dependence transitions between these two ex-
tremes in the region 2¢p < 15 — ¢, < 2¢p + 5kT"/q., where neither the mobile charge
nor the depletion charge dominates.

In subthreshold, the total charge is approximately equal to the depletion charge.
Substituting the expression for the depletion charge from Equation 5.18 into Equation 5.21
yields

Vep = Vip + ¥s + 7/ ¥ss (5.22)

where the constant v is defined as follows. Observe that the voltage drop across the
oxide capacitor, v/, equals the surface potential, 15, when the surface potential is

equal to 2. Hence, using the expression for Qg in Equation 5.18,

V2qesiNa

. (5.23)

v =

Solving Equation 5.22 for s gives us

W (2 12\ 2
1/)5 o= <——~—21 -+ (’{4— + Vag — VFB) ) . (524)

Equation 5.24 is approximated well by a linear relation throughout the subthreshold

region. Thus, we have

ws(VGB) P (15¢F + gbc) -+ /C(VGB - VSB)? (525)

where £ is the slope at V{ip. We choose Vi such that the surface potential is in the
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Figure 5.4: TRANSISTOR CURRENT VERSUS GATE VOLTAGE

Experimental and theoretical curves confirming the exponential relationship between
the current and the gate voltage in the subthreshold region.

midpoint of the range; that is, 1;(Vig) = (1.5¢F + ¢.). From Equation 5.22,

-~ OVgs Von=Vsn = T+v/@2vis(=Végr))

(5.26)

The physical significance of « is apparent if we express this parameter in terms of
the oxide capacitance and the depletion capacitance. Rewriting Equation 5.26, using

Equation 5.20 and the definition of v (Equation 5.23), we obtain

Clox

K= —=—""——.
Cox + Cdep

It becomes clear that the oxide and depletion capacitances form a capacitive divider
between the gate and bulk terminals that determines the surface potential. Lighter
doping reduces v, reduces Cyep, and pushes the divider ratio closer to unity. A larger
surface potential also reduces Cyep.

So far, we have derived four equations that describe the transistor in all its regimes
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Figure 5.5: TRANSISTOR CURRENT VERSUS SOURCE VOLTAGE

Experimental and theoretical curves confirming the exponential relationship between
the current and the source voltage in the subthreshold region.
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of operation:

1. Equation 5.10 gives the current density, j(y), at any depth in the channel in

terms of the charge concentrations there.

2. Equation 5.17 gives the total charge and powers of the total charge, Q" (s, @.),

at any position along the channel length, in terms of the surface potential.

3. Equation 5.18 gives the charge in the depletion layer, Quep (s, ¢¢), at any po-
sition along the channel in terms of the surface potential; differentiating this

function gives the depletion-layer capacitance.

4. Equation 5.24 gives the surface potential, 15(Vgp), in terms of the the gate

voltage.

These equations give us a complete description of MOS transitor behavior—to the
extent that the numerous assumptions we made are valid.

We have also obtained simpler versions of these equations that are valid over a
limited range. Equations 5.12 and 5.11 give approximations for the current density
above threshold and below threshold, respectively. Equation 5.19 gives approxima-
tions for the mobile charge below threshold; the depletion-layer capacitance is given
by Equation 5.20. And Equation 5.25 gives an approximate value for the surface
potential below threshold.

For subthreshold operation, these approximations give

Vr

Vs — Vpp — 205
Vo ’

, s — Vg — 2
QS(wm ‘/SB) ~ _‘/Tcdep exp (u 5B ¢F> )

QD(Z/JS, VDB) ~ _V:chep €xp (
ws((bm VGB) ~ 15¢F + QSC + K;n(VGB - VgB(Cbc))v

1(Qs, @p) =~ uVT—VZ—(Qs—QD). (5.27)
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Figure 5.6: SURFACE-POTENTIAL SENSITIVITY VERSUS GATE VOLTAGE

When the current is constant, the difference between the surface potential and the
source voltage remains fixed; and hence, the source voltage tracks the surface po-
tential. Consequently, we can estimate the sensitivity of the surface potential to the
gate voltage—called k—by differentiating the Vsg-versus-Vgp curve. This curve was
measured by sweeping the gate of a transistor with a constant current supplied to the
source of the transistor.
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Thus, we obtain the familiar result for an nMOS transistor:

Ips = S]noeﬂnVGB/VT (e—VSB/VT _ e—VDB/VT)7 (5.28)

; (5.29)

Or/2 + Kk, VA
InO - ﬂVTZCdep exp (“ : F/ GB)

Vr
where S = W/L is the ratio of the channel width to the channel length. The pMOS
equation is similar except for a sign flip on the terminal voltages due to a change
in sign of the charge carriers. The experimental data plotted in Figures 5.4 and 5.5
confirm the exponential dependence of the channel current on the gate and source
voltage over at least four decades. The deviation at the low end is due to leakage
currents in the measurement setup.

The process-dependent parameters, I, and x,, can be measured experimentally.
Note that I,,, is not simply the point where a line running along the log(I) versus
Vs curve intercepts the V = 0 axis. Fitting Equation 5.28 and Equation 5.29, which
take into account the 1/,/1 pre-exponential factor, is the only way to determine I,
accurately. We must also exercise care in obtaining the subthreshold slope coefficient
K, because it depends on the surface potential. The relationship between x and the
surface potential can be measured by fixing the current passed by the device and
sweeping the gate voltage, as shown in Figure 5.6.

For submicron devices, we must adjust the drawn widths and lengths to obtain the
dimensions of the channel. These adjustments must take into account channel-length
modulation by the depletion layer at the drain end, fringing of electric field lines at
the channel boundaries, and velocity saturation at extremely high fields.

The terminal voltages can be referenced to the source, instead of to the bulk:

1— kn Ve o
Ins = ST, exp (( fin) Vs + 1 GS) (1—e7¥os/r). (5.30)
Vr

This form makes explicit the role of the bulk as a back gate. However, it obscures

the symmetry between the drain and the source.
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Ion Species Cations Anions

Zn >0 Zn <0
Higher concentration inside pMOS Transistor with nMOS Transistor with
d > Vsp=Viu; Vo =E, <0 Vsg=V,; Vop=FE, >0
Lower concentration inside nMOS Transistor with pMOS Transistor with
Cin<<C7Ol VSB:Vm; VDB:En>O /SBZVm; VDB‘-—“En<O

Table 5.1: MODELING PASSIVE PROPERTIES OF [ON CHANNELS WITH TRANSIS-
TORS

For devices that are biased with Vpg > 4 (kT/ge), the drain current becomes

independent of the drain voltage, and is simply

Ve
t GS) , (5.31)

Ips = ST, exp (
T

assuming that the source and substrate terminals at the same potential. Devices
operating in this region are said to be in saturation. However, channel-length
modulation—which we have ignored completely—causes the current to increase slowly
with the drain voltage. This effect must be included in the model if we want to predict

the output conductance accurately [122].

5.3 Discussion

We have seen that there are similarities and differences between the nerve membrane
and the MOS transistor. The similarities between these two structures are most
evident at the microscopic level, since the physics that governs their behavior is the
same. Balancing drift and diffusion results in equilibrium concentration profiles that
decrease exponentially with potential in both devices. The differences between the

two devices arise from the way in which the flux is controlled.
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Figure 5.7: CURRENT VERSUS VOLTAGE FOR MEMBRANES AND TRANSISTORS

(a) Membrane curves from Equation 5.8. The five curves correspond to different ratios
between the concentrations inside and outside the cell. The ratios (inside:outside) are
1:100, 1:10, 1:1, 10:1, and 100 : 1, going from the lowest curve to the highest
one. Voltages are in units of Vp, and currents are in units of |z, |F P,/ci 2. The ions
are cations, and they flow out of the cell (direction for positive current) when the
membrane potential is positive. Therefore, steep slopes occur for positive currents
when the concentration inside the cell is higher than that outside; the situation is
exactly reversed for anions. (b) Transistor curves from Equation 5.28. The top curve
is for a pMOS transistor and the bottom one is for an nMOS transistor. The voltage
applied to one of the source—drain terminals of the transistor is plotted; this terminal
corresponds to the inside of the cell. A voltage equal to the desired reversal potential
(£4.6Vr in this case) is applied to the other end of the channel. Voltages are in units
of Vp and currents are in units of SIgexp(kVag/Vr). For the nMOS device, which
uses electrons, the inside of the cell becomes the source when the current is negative,
and the current increases rapidly below the reversal potential. For the pMOS device,
which uses holes, the inside of the cell becomes the source when the current is positive,
and the current increases rapidly above the reversal potential.
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5.3.1 JIon Channels Versus Transistors

We can separate the properties of nerve membranes and transistors into active ones
and passive ones. Passive properties describe the behavior of the devices given a
fixed conformational state of the ion channel, or a fixed voltage applied to the gate.
And active properties describe the behavior of the devices when the conformational
state of the ion channel, or the voltage applied to the gate, are varied to modulate
the flux through the channel.

With respect to their passive properties, these devices are qualitatively similar, as
shown in Figure 5.7. A pMOS device reproduces the qualitative behavior of a cation
channel that sees a higher concentration inside the cell, or of an anion channel that
sees a higher concentration outside the cell. And an nMOS transistor reprodces the
qualitative behavior of a cation channel that sees a higher concentration outside the
cell, or of an anion channel that sees a higher concentration inside the cell. These
analogies between membranes and transistors are summarized in Table 5.1.

There is an important quantitative difference the transistor and the membrane,
however, which is obvious from the expressions for the currents in these two devices.
Exponentials of the voltages inside and outside the cell appear in the denominator as
well as the numerator or the membrane equation (Equation 5.8)-—resulting in linear
asymtotic behavior. In contrast, the transistor current is not normalized in this
fashion—resulting in exponential asymptotic behavior.

This difference arises because the concentrations of holes in the the drain—source
regions of a pMOS transistor are millions of times larger than the concentration of
holes in the n-type bulk. A similar situation holds for electrons in the nMOS transis-
tor. In contrast, the ions that are primarily responsible for the electrical properties of
the cell—namely, KT and Na™—have concentration ratios of 1 or 2 decades. We could
get the transistor to match the ion-channel’s current-voltage curve quantitatively by

reducing the doping of the source—drain regions by four or more decades.?

3The derivation of the MOS transistor current reviewed here does not apply in this low-doping
case because we assumed quasistatic behavior. This assumption does not hold when the current
levels are large compared to the doping levels, as there are large deviations from the equilibrium
charge concentration profile (so-called strong-injection effects). These effects limit the current to the
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As far as active properties go, the transistor and the cell membrane are are not
even qualitatively similar. The active gating properties of ion channels arise from
conformational changes in channel proteins that physically close or open a pore. The
pore is a microscopic device whose dimensions are matched to those of the ions, mak-
ing it selective for a particular size. The voltage dependence of the gating mechanism
comes from charged subunits on the channel protien that move from one side of the
membrane to the other to open or close the channel; going up or down in energy,
depending on the sign of the membrane voltage. In contrast, the transistor modu-
lates the current through its channel not by changing the voltage across the channel,
but rather by changing the energy barriers that the carriers must overcome to gain
entry into the channel. We need to add more circuitry to monitor the voltage differ-
ence across the channel and to modulate the gate voltage appropriately, if we wish to

model the active properties of ion channels.

5.3.2 Single-Cell Model

When all the ion channels see the same voltage difference-—as they do when they
are part of the same cell—the relative differences between the currents in different
ion-channel populations may be reproduced fairly well using transistors. This pro-
portionality arises because the exponentials in the denominator of the ion-channel
current expression are the same for all the channels, and may therefore be factored
out. As the exponentials in the numerator dominate the linear term in the membrane
equation when the concentration gradient is large, the ion-channels and transistors
behave alike. Except that as the voltage levels increase, the normalizing action of
the denominator in the membrane equation limits the current, whereas the transistor
current increases exponentially. To mimick this effect, we would have to make the
gate voltage of the transistor track the source—drain voltages.

In any case, we can build a fairly decent single-cell model in a standard CMOS

process by using a single transistor to model each population of ion channels. In

level predicted by Ohm’s law, makeing the asymtotic behavior identical to the membrane’s.
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particular, the model will reproduce the behavior of the cell at equilibrium (i.e.,
the dependence of the resting membrane potential on channel permeability, which
is described by the Goldman-Hodgkin-Katz equation [1, 2]), because scaling all the
pearmeabilities by the same factor does not change the equilibrium point—it just
scales all the currents by the same amount. But the model will not reproduce the
behavior away from equilibrium because it does not reproduce the actual current
levels in the cell. The model could be improved by going to a CMOS process with
low doping levels and adding a gate-bias circuit that senses the voltages applied to
the source-drain terminals and adjusts the voltage applied to the gate appropriately.

In Chapter 6, we go beyond the single cell to study multiple-cell networks. In
particular, we propose transistor-based models for gap-junction—coupled cell syncytia.
Such syncytia are common in the retina, and they occur in other parts of the brain

as well.
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Chapter 6 Linear Networks: By
Diffusion in MOS Transistors

In this chapter, I extend the device-level charge-based formulation of the MOS tran-
sistor to the circuit level by introducing the concepts of terminal and node charges,
and the equivalence principle. With this formalism, we can exploit the linear current—
charge relationship of the MOS transistor at the circuit level, enabling us to simulate
the diffusion of ions in cell syncytia, or the spread of current in resistive netorks,
extremely efficiently.

Ions spread from cell to cell in a syncytium through ion channels that are part of
the gap-junction synaptic complex formed between these cells. At gap junctions, the
membranes of two cells are in close juxtaposition, and pores in the two membranes
are lined up. Hence, a channel is formed, and ions cross from the intracellular fluid
of one cell directly into the intracellular fluid of another.

When the ion channel sees a small concentration gradient—as it does when a gap
junction is formed between cells of the same type—transport of ions is primarily by
drift. As we saw in Chapter 5, in the constant-field approximation, drift produces
a linear current-voltage relationship. It is difficult to reproduce this linear current—
voltage characteristic with the transistor. The transistor’s behavior is close to linear
over a range of only a few thermal voltages. For higher voltages, its current either
increases exponentially or saturates, depending on the polarity of the voltage.

I show here how we can obtain linear behavior by exploiting the inherently linear

current—charge relationship of the transistor in the subthreshold regime.
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6.1 Symmetric MOS Transistor Model

Using the charge-based formulation for the channel current in a MOS transistor, we
can develop an intuitive, physically accurate, circuit-level abstraction of this device.
The parallel-plate-capacitor approximation yields a simple and symmetric relation-
ship between the channel current and the charge at the ends of the channel. As
it turns out, this intuitively appealing model does indeed provide a good fit to the
experimental measurements [121, 122]. Thus, we can confidently use it to develop
circuit models of the transistor.

In addition to preserving our intuition about the symmetrical construction of the
MOS transistor, a symmetric model is easier to use than an asymmetric one. When
you use asymmetric models, you have to figure out which terminal is the source, and
then reference the voltages of all the other terminals to that source terminal before
you can apply the model. With a symmetric model, all voltages are referenced to
the bulk, and it is not necessary to know a priori which terminal is the drain and
which is the source. Because the roles of the channel terminals are determined by
the direction in which the charge carriers flow, source and drain can be determined
by the circuit design, by the bias conditions—and even by the input signals. Using
a symmetric model makes it easier to understand the behavior of circuits with such
flexibility, and enhances our ability to design circuits that use unidirectional currents
as well as bidirectional currents.

I adopt the conventions for voltages and currents in pMOS and nMOS transistors
shown in Figure 6.1a, to preserve symmetry between the channel terminals. For
example, in an n-well process, the local reference for the nMOS transistors is the p-
substrate Vygp (usually Vsg); for the pMOS transistors, it is the n-well Vpgp (usually
Vpp). This notation is consistent with that used by Mead [122], and also with that
commonly used in the subthreshold MOS literature [124]. Because the drain and
source terminals are treated symmetrically by these conventions, and because the
circuit model for the device is itself symmetric, we can assign labels of source and

drain to the channel terminals arbitrarily, without regard to the actual direction of
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Figure 6.1: CircUIT CONVENTIONS FOR THE MOS TRANSISTOR

(a) Adopted conventions for voltages polarities and currents directions. (b) Symmet-
ric decomposition of channel current into source and drain components.

the channel current.

6.2 Source- and Drain-Current Components

As shown in Section 5.2.1, for the parallel-plate capacitor approximation, both dif-
fusion and drift are proportional to the charge-concentration gradient. This linear
relation yields a quadratic expression for the current that consists of two symmetric,
independent, opposing components (see Equation 5.10), as has been shown by other
device physicists [125, 126, 123]. Therefore, the channel current can be decomposed
into a source component and a drain component, as illustrated in Figure 6.1b.

One component is a function of the mobile charge at the source end of the channel;
the other component is a function of the mobile charge at the drain end. Because
the charge concentrations are related to voltages applied to the source terminal and

to the drain terminal, respectively, as well as to the gate voltage, we can express the
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channel current, per unit width, of an nMOS transistor in the form
Isp = P(L)(2u(Vas, Vsa) — @u(Vas, Vog)). (6.1)

We can write a similar equation for the pMOS transistor in terms of Q,(Vgg, Vss).

As we saw in Section 5.2.2, the source component is related to the source voltage
and the gate voltage by ezactly the same function that relates the drain component
to the drain voltage and the gate voltage. Therefore, which component we call the
drain and which we call the source has nothing to do with the device—it is purely a
question of which direction we prefer for the current in the device.

As we saw in Section 5.2.2, the charge-voltage relationship, Q,(V1,V32), has a
complicated form, due to the exponential dependence of charge concentration on po-
tential, and the compressive relationship between surface potential and gate voltage.
These highly nonlinear dependencies arise because three different charged species are
involved in the electrostatics. The complexity of the electrostatics obscures the sim-
plicity of the drift—diffusion transport mechanisms that determine the charge-current
relationship (Equation 6.1).

As shown in Section 5.2.1, in the subthreshold regime, the mobile-charge concen-
tration grows exponentially as the gate voltage increases. This behavior is due to the
linear relationship between gate voltage and surface potential when the mobile-charge
concentration is much smaller than the depletion-layer charge. When the relationship
is exponential, changing the gate voltage multiplies the mobile-charge concentrations
at the source and the drain ends of the channel by the same amount. This multiplica-
tive effect, together with the strictly linear relationship between current and charge in
the diffusion-dominated subthreshold regime, allows us to factor out the dependence
on the gate voltage. Hence, we can express the channel current per unit width in the

form
K.(Vae)D

I (Qn(%B) - Qn(VDB))J (62)

Isp =

for an nMOS transistor; and similarly for a pMOS transistor in terms of K,(Vgg) and
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Q,(Veg), where

D = ubp, (6.3)
Ko(Vap) = mnoe'es/Vr, (6.4)
Kp(Vas) = poe @¥en/'7, (6.5)
Qu(Vep) = —CaepVpe er/'T, (6.6)
Q(Vos) = CaepVire'o/'r. (6.7)

6.3 Conditions for Symmetric Current Decompo-
sition

In general, current decomposition is difficult to achieve for devices whose charge
transport is governed by the drift-diffusion process. The difficulty arises because de-
composition precludes any dependence of P(L) on the terminal voltages. Integrating
the diffusionlike formulation of the Nernst-Planck equation (Equation 5.5), with the

flux held constant, tells us that

1 OC/L V&) Vi g
YRRy ndz.
Py " Jo €

Hence, P(L) is constant when the integral is constant. The preceeding integral is
independent of the voltages applied at the ends of the channel only if the dependence
of the potential profile on these voltages is constrained appropriately. This constraint
is not satisfied in general; in particular, the cell membrane does not satisfy it. The
constant-field assumption makes the potential change linearly along the channel, with
its values at the ends equal to the voltages applied there. Hence, the equivalent
permeability of the membrane is not independent of the voltages on either side of the
membrane, as is evident in the solution for the membrane current (Equation 5.8).
Any voltage dependence of the nominally constant physical and geometrical prop-

erties of the device also violates decomposition. For the transistor, the susceptible
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physical constants that are factored into P(L) and D are the mobility and the channel
length L. The mobility degrades at high electric fields due to velocity saturation, and
the effective channel length is reduced by the depletion layers at the source-bulk and
drain-bulk junctions. The widths of these depletion layers depend on the voltages
across those junctions. The channel width is also prone to modulation due to field
fringing. Both velocity saturation and channel-length and channel-width modulation
are negligible for devices with dimensions well over 1um, but they become critically
important for submicron devices.

The susceptible constant that is factored into Q,(Vgs, Vsg) and Q,(Vap, Vo) is
the depletion-layer capacitance. This voltage-dependent capacitance is fairly constant
below threshold, because the surface potential is virtually independent of the source
and drain voltages below threshold—it is determined primarily by the gate voltage.
Above threshold, the mobile-charge concentration is limited by the gate-oxide ca-
pacitance, which is constant. Therefore, the voltage dependence of the depletion
capacitance does not limit decomposition.

Symmetry is violated by any changes in doping profile along the channel, or by
differences in doping between the source-drain regions, such as in the lightly doped
drain (LDD) structure employed in submicron devices. Symmetry is also violated
by differences in area between the source and drain regions. When such differences
are present, we can no longer use the same function, Q,(Vgg,,V;), to compute the
terminal charge at both ends of the channel. Instead, we must use one function
QL. (Vag,,, Vi), for the left end of the channel, and a different function, Qr, (Vas,, Vi),

for the right end.

6.4 The Terminal Charge

I introduce the concept of terminal charge to exploit the inherent linearity of the
MOS transitor. Each drain-source terminal is assigned a fictitious charge that is given
by Qn(Ves,, Vi), where 7 is the label of the node to which the terminal is connected,

and n is the label of the transistor to which the terminal belongs. Terminal charge
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is negative for an nMOS transistor because electrons serve as charge carriers, and is
positive for a pMOS transistor because holes serve as charge carriers.
In terms of these terminal charges, the current that flows from node i to node j,

via transistor n, is in general given by
Li j = WoP(Ln)(@n(Var,, Vi) — Qu(Vas,, Vj)), (6.8)

from Equation 6.1. There is a perfectly linear relationship between the difference
in terminal charges and the current, as though terminal-charge transport occurs by
diffusion across a device with permeability P(L,) per unit width. The effective
permeability W,,P(L,,) is fixed because it depends on only physical constants, such as
mobility, thermal voltage, and the width and the length of the channel-—the designer
specifies the channel width and the channel length.

In the special case, where we restrict operation to the subthreshold regime, the

current is given by

]i,j = VVTL Ln

from Equation 6.2. Therefore, in subthreshold, the permeability can be factored into
a diffusitivity D, which is constant, and a partition coefficient K(Vgg), which
is a function of the gate voltage. Thus, we can use the gate voltage to control
how the charge concentration partitions between the source-drain regions and the
channel, and thereby we can control the permeability of the device electronically. In
contrast, the only way to change the permeability in the general case is to change the
channel length or the channel width, and we cannot do that after the device has been
fabricated.

I have shown how, in theory, we can transform the nonlinear MOS transistor
into a linear element by performing a mapping Q(Vi, V5) on the voltages applied to
its terminals. We may achieve this linearity in practice if we adhere to the design

and operation constraints under which symmetric current decomposition is valid, as
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dicussed in Section 6.2.

6.5 Diffusors, Pseudoconductances, and Ohm’s Law

I draw analogies between the MOS transistor operating below threshold and diffusion
across a permeable membrane because Equation 6.9 arises from diffusion-dominated
charge transport in the transistor. This mode of transport gives rise to an inherently
linear charge-current relationship—unlike for drift-dominated transport. Therefore,
when I use transistors that exploit this linear relationship in a circuit, I call them
diffusors [5]. The analogy with the physical process of diffusion serves our intu-
ition well, and allows us to make comparisons with neurobiology; I got the idea of
using a transistor in this inherently linear fashion by making an analogy between the
transistor and a gap junction [127].

The analogy between charge flow in a transistor and diffusion of uncharged parti-
cles across a porous membrane is perfect in the subthreshold regime, where transport
is due primarily to diffusion, and the charge on the mobile carriers is negligible com-
pared to the charge on the gate and the immobile charge in the depletion layer. Above
threshold, however, transport is primarily due to drift, and the mobile charge is the
dominant charge species. To the extent that the parallel-plate-capacitor model is
valid, the derivative of charge concentration with respect to potential is constant,
and therefore the charge-concentration profile along the channel is simply a scaled
version of the potential profile. Therefore, at a microscopic level, we can model the
charge transport as a diffusion process with a diffusion coefficient proportional to the
local charge concentration, as shown by Equation 5.9, the diffusionlike formulation
for the transistor. Therefore, the analogy is not disingenuous, as long as we bare
in mind the proportionality between permeability and charge concentration above
threshold. This dependence explains the macroscopic quadratic relationship between
current and charge above threshold.

Other researchers have proposed viewing the transistor as a pseudoconductance,

with a linear relationship between current and pseudovoltage [128, 129]. However, this
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view disconnects us from the physics of the transistor. Conductance, or resistance, is
a property of devices that obey Ohm’s law, which states that the current density is
proportional to the potential gradient. Transistors do not obey Ohm’s law because
the charge-carrier-concentration gradient along the channel is not zero. Linearity
between potential gradient and current density holds only when the concentration
is constant, and hence transport is due entirely to drift, and drift is linear at the
macroscopic level when the charge-carrier—concentration profile is flat. However, in
the above-threshold regime, where carriers drift, the concentration profile along the
channel is not flat, and, in the subthreshold regime, carriers do not drift.

Actually, it is physically impossible to achieve linearity at the macroscopic level by
satisfying Ohm’s law at the microscopic level. Constant flux and constant concentra-
tion along the length of a conductor imply constant electric field. But this uniformity
in both the charge density and the electric field is inconsistent with Gauss’ law, which
states that the electric field is the integral of the charge. Introducing an oppositely
charged species to neutralize the charge does not produce linear behavior either, as
we saw for the membrane. Carbon-film resistors, as well as other varieties of resistors,
use thousands of elements connected in series to achieve linearity, by ensuring that
the voltage drop across each element is smaller than the thermal voltage. Such small-
signal operation makes the nonlinear behavior of these element irrelevant, effectively
linearizing the element.

We can satisfy Ohm’s law at the microscopic level by introducing another pair
of terminals, in addition to the pair that conduct the current, as Tsividis and his
colleagues have shown [130]. We achieve the correct microscopic behavior by placing
voltage gradients on the gate and on the bulk that match the voltage gradient at
the channel surface, such that Co(Vi(2) — ¢5(2)) + Caep(¥s(z) — Va(z)) does not
change with z. This arrangement makes the mobile-charge concentration, as well
as the depletion charge and the hole charge, constant everywhere, thereby satisfiying
Ohm’s law for the entire range of operation of the device. The concentration of mobile
charge can be controlled linearly above threshold by the potential difference between

the gate and surface, or exponentially below threshold by the potential difference
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between the gate and the source-drains. Thus, the conductivity of the material can
be controlled electronically. We need additional circuitry, however, to make the pair
of voltages applied to the ends of the gate, and the pair of voltages applied to the
ends of the bulk, track the voltages on the source and the drain, and we must use a
highly-resistive gate layer to limit power dissipation.

By thinking in terms of terminal charges and viewing the transistor as a diffusor, I
created a simple circuit-level abstraction for the device. This viewpoint also gives us a
powerful analogy between transistors and the porous membranes found in nerve cells.
In particular, when operation is restricted to the subthreshold regime, we can control
the permeability of the device by changing the gate voltage, which modulates the
partition coefficient. Electronic control gives us the ability to model active properties
of ion channels in the cell membrane. However, we must extend this abstraction to

the circuit level, if we wish to use our abstract diffusors to build a real linear network.

6.6 The Node Charge

I introduce the concept of node charge to extend the device-level terminal-charge
concept to the circuit level. It is possible to extend the latter concept to the circuit

level if the equivalence property holds:
All terminals connected to the same node have the same terminal charge.

Equivalence between node voltage and terminal charge allows devices to communicate
their terminal charges using the voltage on the common node to which they are
connected. When equivalence holds, we can replace device-level terminal charges
with circuit-level node charges. Thus, equivalence allows us to exploit the linearity
between terminal charge and current at the circuit level.

In the general case (Equation 6.1), equivalence holds if

Vi= V} = Qn(VGBm7%> = QD(VGan‘/})) = VGBm = VGBn‘
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Therefore, equivalence limits the ways in which transistors can be connected: Tran-
sistors connected to the same node cannot have different gate voltages. When two
source—drains are connected together, the gates of the corresponding devices must be
connected together as well—as must their bulks. Thus, for transistors that are part
of the same circuit, all the gates must be connected together, and all the bulks must
be connected together. For the special case of subthreshold operation (Equation 6.2),
there is no such restriction, because @, does not depend on the gate voltage in this re-
gion. In both regions of operation, however, equivalence precludes us from connecting
together the drain—source terminals of devices of different type, and from connecting
channel terminals to gate terminals.

Equivalence implies a one-to-one relationship between node charge and node volt-
age. Such an invertible relationship requires that terminal charge, Q,(Vsg,, Vi), be a
strictly monotonic function of terminal voltage, V;. For the nMOS transistor, the mo-
bile electrons decrease with increasing source or drain voltages. Hence, —Q,(Vgg, , Vi)
is a montonically decreasing function. And, for a pMOS transistor, the mobile holes
increase with increasing source voltage. Hence, Q,(Vgg,,V;) is a monotonically in-
creasing function. These functions change either exponentially or quadratically with
the voltage on the channel terminals.

Due to the expansive nature of Q,(Vag,, Vi), we have

ViV, = [Qu(Ves,. Vi) < 1Qu(Vas,, V))]
)dQn dQ,

:

dv, dv;

The same relationships apply to the pMOS transistor when the signs of the latter’s

voltages are reversed. Hence, we have

ViV, = L;~I;=-W,P(L,)@2n(Vgs,.V;)
dv; v,

- |

‘
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Therefore, when the voltage on node 7 is much larger than that on node j, the node
charge at 1 becomes negligible, and the current asymtotically approaches I;, the value
of the component driven by node j.

In the dichotomous ohmic—saturation voltage-mode viewpoint, the device is said
to enter a different regime of operation when the current becomes independent of the
node voltage, called the saturation region. When the current is decomposed into
source and drain components, however, there is no such dichotomy. For an nMOS

transistor, we have

V;>V;‘+‘/sat = uil<<|jj‘§]i,j%]j7
‘/j>‘/i+‘/sat = |]j‘<<)]1t§12,]%]w

Vi-Vi|<Vew = LixLi=I;=1-1;

where Vi = 5Vp, below threshold, and Vi = Vg, — Vine above threshold. The
functional dependence of the current components, I; and I;, on the terminal voltage,
Vi and V}, is fixed, and remains the same throughout the ohmic and saturation re-
gions. There is no dichotomy between these two regions from the current-component
perspective: We split the current into two components, rather than split the voltage
range into two regions. I prefer to split the current because this choice preserves the
symmetry of the device, whereas splitting the voltage does not.

The linear dependence of the current on only one of the terminal charges in the
saturation region gives us the capability to measure our fictitious terminal charges and
node charges. Gaining access to the node charge is extremely important if we want to
apply external inputs to the circuit, process them using the inherent linearity of the
transistor, and read out the results from the circuit. Therefore, it is most convenient
to use currents as our inputs and outputs, if we want to exploit the inherent linearity

of the MOS transistor.
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Figure 6.2: LOCAL AGGREGATION

(a) Aggregation using voltage—current linearity and conductances. (b) Aggregation
using charge—current linearity and diffusors.

6.7 Diffusive Networks

Local aggregation—the linear summation of signals over a confined region of space—
is a computation that occurs throughout the nervous system. A voltage-mode circuit
that peforms this extremely useful computation is described by Mead (Chapter 6
of [122]); he uses this computation in several examples of neuromorphic systems pre-
sented in the book. In this section, I present a more efficient current-mode technique
for performing local aggregation. My technique exploits diffusion in subthreshold
MOS devices, much as cell syncytia in the nervous system use diffusion to distribute
and sum signals over a local neighborhood.

The diffusion of particles through a continuous medium—or of heat in a solid—is

described by the following partial differential equation:

d
d_(t: = DV?c(z,y), (6.10)

where ¢(z, y) is the concentration profile over space—it is assumed to be uniform in
the third (2) dimension. Here, V? = 9?/02% + 0?/dy? is the Lapalcian operator, and
D is the diffusion coefficient. This equation is an application of Fick’s law, which
governs diffusion, and of the continuity equation, which guarantees conservation, as
we discussed in Sections 5.1.1 and 5.1.2.

The discrete networks shown in Figure 6.2 both simulate diffusion in a continuous
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medium. The first network (Figure 6.2a) uses voltages, currents, and conductances;

its node equation is

an_£<Vj+Vk+%+Vm_v)

7 c 1 (6.11)

which is homologous with Equation 6.10. The term in parentheses is the second-
difference approximation to the Laplacian, when distance is measured in units of the
internode spacing, as we discussed in Section 4.1. This solution, however, is not
amenable to VLSI integration, because we must expend large amounts of area and
power to make the nonlinear conductances of transistors appear linear over a voltage
range larger than a few thermal voltages.

The second network (Figure 6.2b) uses charges, currents, and diffusors; its node

equation is

dQn
dt

(6.12)

:4D<Qj+Qk+Ql+Qm__Qn>.

4

Note that d@,/dt is the same as the current supplied to node n by the network.
This solution is amenable to VLSI implementation. We can realize diffusion with
diffusors—transistors operating below threshold, as described in Section 6.6. The
diffusion coefficient D is related to the diffusitivity, D, and to the partition coefficient,
K(Ves), of the diffusors by

D =WK(Vgg)D.

In both of these networks, we can set up the boundary conditions by injecting
current into the appropriate nodes. In the voltage-mode network, the solution is
the node voltages, and we can read these voltages without disturbing the network.
In the current-mode network, however, the solution is the node charges, and these
fictitious charges are not directly accessible. We can infer the node charge from the
node voltages V; if we have an accurate description of Q(V;). In practice, we can use
a transistor to compute Q(V;), by tying it to the node in question, and operating it in
saturation so that it passes a current proportional to the node charge, as we discussed

in Section 6.6. Unfortunately, this approach draws current from the node, and the



Figure 6.3: CELL-SYNCYTIA CIRCUIT MODEL

The lateral diffusors model gap junctions between cells; the vertical diffusors model
the membrane leakage. (a) Schematic representation. (b) MOS transistor implemen-
tation.

permeability of the added device must be extremely small so that the disturbance is
negligible.

Biological diffusive media, such as cell syncytia, are hardly ever isotropic (i.e.,
D varies from place to place). Nerve cells make gap junctions of varying area, and
neuromodulators such as dopamine can vary the pore permeability. Thus, nerve cells
can control actively the permeability of membranes between them and neighboring
cells or the extracellular fluid. The dependence of the diffusor’s partition coefficient
on its gate voltage (see Equation 6.2) gives us the ability to control permeability
locally in our circuit model of the diffusion network.

We can add a loss term to the diffusion equation to model the sequestering of
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Figure 6.4: CONCENTRATION DECAY RATES FOR DIFFUSION
The exponential decay rate in the discrete network, log()), is plotted versus that in a

continuous medium, 1/L = /D, /D;, with the same values of vertical and horizontal
diffusivities, D, and Dy. The decay rates are nearly equal for low decay rates—the
error is 12.5 percent when the charge density decays by a factor of e? each time that
x changes by L.

particles by buffers or the leakage of particles out of the diffusive medium:

d
E%: = D,VZc(z,y) — Dyc(z,y). (6.13)

This version of the diffusion equation is realized by the diffusor network shown in

Figure 6.3, for the one-dimensional case. Its node equation is
I;" = Lij + Iy + I; = K(VO)D(Q; + Qr — 2Q,) — K(V,)D(Q; — Qo). (6.14)

When V, > maxy;(V; + Vi), Qo is negligible and the node equation becomes the
discrete analog of Equation 6.13. In this case, we can read out the node charges
simply by monitoring the currents at the drains of the vertical elements as these
currents flow into the voltage source applying V5.

The discrete version of the lossy-diffusion equation admits solutions of the form
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D, 4Dy,
=1 1—4/1
A=t g (1oL B

and D, = DK(V;), and D, = DK(V,). The solution to the continuous lossy-diffusion

Q; = N\, where

differential equation in one dimension has the form Q(z) = exp(—z/L), where

Dy,
L= 2"
D,

Thus, the discrete simulation reproduces the exponential form of the decay; its decay
rate matches that of the continuous medium when log(A\) &~ 1/L. These quantities
are plotted against each other in Figure 6.4; the slope is close to unity for low decay
rates.

Using the exponential dependence of the partition coeflicients on the gate voltages,
we can relate the space constant to the biases voltages V; and V. applied to the

diffusors:
Nn(‘/; - ‘/r)
2Vp )

L ~ exp (
It becomes obvious why the ratio has an exponential dependence on the voltage
difference between V. and V; if you observe that M, and M, constitute a differential
pair operating in subthreshold. These devices act as a current-divider for current
driven by the charge at their common node. The divider ratio is set by their effective
widths, which depend on the geometrical width as well as on the surface potential.
Here, we have used the k approximation to relate the surface potential to the gate-
bulk voltage. The surface potential is constant as long as the gate and bulk voltages
are fixed—assuming that the mobile charge is negligible. Therefore, the divider ratio
is constant, and linear division occurs. However, as we enter the transition and
above-threshold regions, this assumption fails, and the surface potential starts to
follow the source voltage. Consequently, the divider ratio is no longer independent of
the current level. This variation of the divider ratio limits the dynamic range of the

current divider, and hence the linear operating range of the diffusor network.

The diffusor network is a particularly attractive circuit for implementing local
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aggregation because of the area efficiency that we realize by using a single device
to model a linear element, the power efficiency that we obtain by operating with
subthreshold currents, and the enhanced functionality available with electronically
adjustable coupling strength.

The diffusive network in Figure 6.3 has been described in terms of pseudoconduc-
tances [129]. T prefer the charge-based formulation using diffusors, originally proposed
in [5] and elaborated in [131, 132], because of the physically accurate intuition that
it provides. The essence of this approach is the representation of variables and pa-
rameters by charge, current, and diffusivity—voltages and conductances are not used
explicitly.

Bult and Geelen proposed an identical network for linear current division above
threshold, and used it in a digitally controlled attenuator [128]; they also analyzed
its subthreshold behaviour. However, they stipulated that all gate voltages must be
identical, and controlled the division by manipulating the geometrical factor W/L of
the devices. I showed here, and previously in [5], that this constraint can be relaxed
in subthreshold without disrupting linear operation. This flexibility is a real bonus,
because it allows us to modify the divider ratio or space constant of the network after
the chip is fabricated by varying V. —V;. Tartagni and colleagues have demonstrated a
current-mode centroid network [133] using subthreshold MOS devices whose operation

is described by the diffusors discussed here.

6.8 Test Results

In this section, I present results from experiments designed to demonstrate the lin-
earity of diffusor circuits, and to measure the dependence of diffusitivity on the gate
voltage, the dynamic range of operation, and the spread of currents in diffusor net-
works.

The circuit designed to test the functionality of the current divider and the diffusor
is shown in Figure 6.5. The measurements obtained from this test circuit are shown

in Figures 6.6 and 6.7. These measurements demonstrate the linearity of the current
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Figure 6.5: CURRENT DIVIDER AND DIFFUSOR TEST CIRCUIT

Using this test circuit, I measured current division in the differential pair formed by
transistors ()7 and ()2 when ()3 is shorted, and the linear dependence of the current,
I3, in transistor ()3 on the current differential, Iy —1I,, between transistors Q; and Q5. I
have plotted the current-divider measurements, taken for various voltage differentials
(Vi = V3), in Figure 6.6, and the diffusor measurements, taken for various voltage
differentials (VR — VG, where VR = V3, VG =V} = V2), in Figure 6.7.
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100 mV: 0.042, b=-0.5 pA

>

12 (A)

Figure 6.6: CURRENT-DIVIDER CURRENTS

These measurements, obtained from the test circuit shown in Figure 6.5, demonstrate
that the differential pair splits its tail current between its two arms according to a fixed
ratio, and this ratio depends on the voltage differential. The ratios I1/12 obtained
from the slopes of these curves are plotted against the voltage differentials V1 — V2
in Figure 6.8.
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Figure 6.7: DIFFUSOR CURRENT VERSUS CURRENT-DIFFERENCE

These measurements, obtained from the test circuit shown in Figure 6.5, demonstrate
that the current in the horizontal diffusor is directly proportional to the current dif-
ferential in the vertical diffusors, and the ratio I3/(I1 — I2) depends on the voltage
differential VR — VG between the horizontal and vertical diffusors. The ratios ob-
tained from the slopes of these curves are plotted against the voltage differential in
Figure 6.9.
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m=a*exp(b*x}, a=0.94, b=-30.97 I/V
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Current Divider Ratio (11/12)
S
T
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Figure 6.8: CURRENT-DIVIDER RATIO VERSUS VOLTAGE DIFFERENTIAL

These measurements demonstrate an exponential dependence of the current-divider
ratio on the voltage differential, just as predicted by the theory.

m=a*exp(b*(VR-VG)), a=0.901, b=29.7 I/V
kappa=0.743 (Assuming kT/q=235 mV)

m (13/12-11)
S
:

10, .
-0.05 0 0.05
VR-VG (V)

Figure 6.9: DIFFUSOR PERMEABILITY VERSUS GATE VOLTAGE

These measurements demonstrate an exponential dependence of permeability on gate
voltage, just as predicted by the theory.
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Figure 6.10: DynaMIC RANGE OF CURRENT DIVIDER CIRCUIT

These measurements, which I took by sweeping the voltage applied to pin NBIAS of
the test circuit shown in Figure 6.5, and taking the ratio between the currents in Q1
and ()2, with @3 shorted, for various voltage differentials V1 — V2, show the limited
range of operation of current divider, and diffusor, circuits.
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Figure 6.11: LINEAR AND NONLINEAR DIFFUSOR CIRCUITS

The vertical elements in the ideal diffusor network shown in (a) can be replaced by
diode-connected complementary devices, as shown in (b). Measurements from these
two circuits are shown in Figure 6.12.

divider and the diffusor, thereby confirming the basic functionality of these circuits.
The dependence of the current-divider ratio and of the diffusor’s permeability on the
gate voltages is characterized by the plots in Figures 6.8 and 6.9, which confirm the
exponential dependence predicted by the theory.

Finally, to check the range of current levels over which the operation of these
circuits is linear, I swept the tail current of the differential pair and measured the
ratio of the currents in its two arms, at three different voltage differentials. These
data are plotted in Figure 6.10; the ratio was constant for bias voltages ranging from
0.45V to 0.70V, correspond to about two decades of current. Outside this range,
the ratio approached unity, due to current levels approaching the leakage levels in
the experimental set up, at one extreme, and approaching above-threshold levels, at
the other extreme. When the voltage differential was zero, however, the ratio was
constant over the entire range. In this degenerate case, current division is determined
entirely by the device geometries.

Experimental data from diffusor networks are shown in Figure 6.12, for the two
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Figure 6.12: CURRENT SPREADING IN DIFFUSOR NETWORKS

The curves on the left and on the right are for ideal and nonideal diffusor networks,
respectively. The ideal network (shown in Figure 6.11a) is built entirely out of nMOS
transistors; the nonideal network (shown in Figure 6.11b) uses nMOS transistors for
the horizontal-spreading elements and diode-connected pMOS devices for the vertical-
leakage elements. (a, b) The exponential decay of an input current applied to the
center node of a one-dimensional network. The space constant increases as V, —
V; increases by 26mV from one curve to the next. The deviations at larger space
constants are due to boundary effects. (c, d) The effect of varying the input level
with V. —V; constant. The source diffusor network’s space constant is independent of
input level—the hallmark of a linear circuit—except when currents approach above-
threshold levels. In the second network, the space constant inceases with input level,
because the currents in the horizontal nMOS transistors increase more rapidly with
voltage than do the currents in the vertical pMOS transistors, due to the effect of &
on the gate voltages of the pMOS devices.
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kinds of networks shown in Figure 6.11. The first network (Figure 6.11a) shows
linear behavior for subthreshold current levels, as we expect from the equivalence
of the terminal charges of the source~drain terminals of the vertical and horizontal
elements. The second network (Figure 6.11b) shows weakly nonlinear behavior; its
space constant increases slowly as the current levels increase. This nonlinear behavior
arises because equivalence is violated. The terminal charges of the gate terminals of
the vertical pMOS transistors are not equivalent to the terminal charges of the source-
drain terminals of the horizontal nMOS transistors.

Using the subthreshold current—voltage relationships, and assuming that the pMOS

device is in saturation, we can show that [5]
Ipg = e™Ve Vs (1" — 1/, (6.15)

Hence, there is an expansive relationship between the horizontal current Ipg and the
vertical currents /p and Ig. Expansion occurs because, as we change the voltages Vp
and Vp, the currents in the horizontal elements increase faster than do the currents
in the vertical elements, as the source is more effective at changing the current than
the gate is—by a factor of 1/k on a log plot. When « is close to unity, the gate
and source terminals are nearly equivalent, and the behavior becomes almost linear.
As we shall see in Chapter 7, however, we are forced to couple diffusor networks to
other networks using gates if we wish to model the effects of chemical synapses. In
such cases we can push « close to one by increasing the source-bulk voltage. This
technique can yield values close to 0.95 as shown in the experimental data plotted in

Figure 5.6.

6.9 Summary

We have seen how to extend the simple and elegant description of device operation in
terms of current and charge to the circuit level, using the equivalence principle and

the concept of node charges. When node charges stand in for membrane voltages, we
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may model the linear current-voltage relationship of the gap junction with the linear
current—charge relationship of transistors in the subthreshold regime. This analogy
enables us to simulate the spread of ions in cell syncytia extremely efficiently.

We can use diffusors to model the lateral spread of these ions, as well as the loss
of ions through leakage into the extracellular fluid. These two mechanisms define a
local neighborhood over which signals summate, and we can control the size of this
region by the relative strengths of the lateral coupling between nodes in the network
and the leakage path from these nodes to ground. When we use diffusors, we can
control the size of this region electronically, and thereby we can actively regulate
local aggregation. The extent of local aggregation determines the extent of collective
computation. Cell syncytia can regulate the extent of local aggregation as well. The
retina exploits this ability to trade off signal-to-noise ratio for bandwidth, as we

discussed in Chapter 3.
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Chapter 7 Neuromorphing: From Neural
Circuits to CMOS Circuits

In this chapter, I show how we can use neural circuits as blueprints for VLSI CMOS
circuits. By replacing each neuron with a single-cell circuit model and each synapse
with a synapse circuit model, and connecting everything correctly, we can transform
neural circuits into CMOS circuits. This process is called neuromorphing.! Once
we have silicon-based circuit modules for the single cells, and for electrical synapses
(gap junctions) and chemical synapses, neuromorphing is straightforward: We simply
replace each nerve cell by our single-cell module and connect these subcircuits together
with the appropriate synapse modules.

We already have single-transistor models of ion channels. In Chapter 5, we saw
that each ion-channel population in the cell can be modeled by a single transistor,
because the ion channel’s nonlinear current-voltage relationship, for large concen-
tration gradients, is similar to the transistor’s current versus drain-source voltage
relationship. In Chapter 6, we saw that a gap junction can be modeled with a single
transistor as well, because the gap junction’s linear current—voltage relationship is
similar to the transistor’s current—charge relationship in the subthreshold regime.

I show here how we can model excitatory and inhibitory chemical synapses with
single transistors. Together with the single-transistor model of gap junctions, I use
these neural analogs to morph the neurocircuitry in the outer retina into silicon. The
result is a CMOS circuit that models bandpass spatiotemporal filtering in the outer
retina—at the same level of abstraction as the linear electrical circuit model that
we studied in Chapter 4. In contrast to the linear physical model in Chapter 4, the

CMOS circuit includes a local gain-control mechanism. This nonlinear mechanism

'As far as I know, this verb-form of the word neuromorphic first appeared in a report written by
Muriel Ross and her coworkers on the “From Neurons to Nanotechnology” workshop sponsored by
NASA. The workshop was held at Moffet Field in October 1995.
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Figure 7.1: SINGLE-TRANSISTOR MODELS OF SYNAPSES

We model gap junctions, inhibitory synapses, and excitatory synapses by connecting
a transistor between two nodes, as shown here. The voltages on these nodes represent
the membrane potentials of the pair of cells that communicate via the synapse.

models the effect of shunting inhibition from the horizontal cells to the cones.
Unlike the abstract theoretical circuit model, the actual parameters of nominally
identical circuit elements on the chip vary from location to location, due to the va-
garies of the fabrication process. Consequently, building the model in silicon helps
us to understand the effects of structural peturbations and quantum fluctuations on
performance, as well as the effects of local gain control on bandpass filtering. It
also forces us to address structural constraints, such as the energy and area costs of

communication versus computation, which we discussed briefly in Section 4.6.2.

7.1 Modeling of Excitatory and Inhibitory Chem-
ical Synapses

By making the same simplifying assumptions that we used to obtain a linear electrical
circuit model of the outer retina in Chapter 4, we can model excitatory and inhibitory
synapses, as well as gap junctions, using a single transistor.

In particular, we assume that these ligand-gated ion channels have extremely
low conductances, compared to the combined conductance of all the other current-

conducting elements in a cell membrane. Therefore, an excitatory synapse is equiva-
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lent to a current source in the postsynaptic membrane, controlled by the membrane
voltage of the presynaptic cell; the magnitude of the current increases as the voltage
increases. Similarly, an inhibitory synapse is equivalent to a current sink in the post-
synaptic membrane, controlled by the membrane voltage of the presynaptic cell; the
magnitude of the current increases as the voltage increases.

We can realize these extremely simple abstractions of excitatory and inhibitory
chemical synapses by connecting a transistor between circuit nodes that represent the
pre- and postsynaptic cells, as shown in Figure 7.1. This figure also shows how we
model a gap junction between two cells using a diffusor.

The postsynaptic currents can be expressed in terms of the node charges as follows:

Line = Kp(Ve)D(Qp (V1) — Qp(V2)),
[inhib - ”}Cn(‘/pre)DQn( fGnd)v
]excit - ICn (Vpre>D Qn (Vpost ) ;

assuming that the synapse transistors are in saturation. We can express the partition
coeflicients in terms of the node charges using the expressions given in Section 6.2
(Equations 6.4 and 6.7); these expressions are repeated here, with all terminal volt-
ages referred to a common reference, which we call ground (Gnd), and with bulks

tied to sources (i.e., Vppg = Vpp and Vypg = Vss) :

Ka(Ve) = ngetn(Ve=Vss)/Vr (7.1)
Kp(Va) = poe »(Ve=on)/Vr, (7.2)
(Vo) = —Qre (Vertsslitr, (73)
Q,(Ve) = Qpelie—vool/Vi, (7.4)

where Qp = Caep (Vig) Vi
At the circuit level, we define the node charges to be equivalent to the source-drain
terminal charges of the pMOS transistors, and we obtain expressions for the synaptic

currents entirely in terms of these arbitrarily defined node charges. First, we express
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Ka(Vire) and Qp(Vpost) in terms of Qp(Vire) and Qp(Vpost); then, we substitute the

resulting expressions into the current equations. The results are

Gune = op(Vg) (01 — @), (7.5)
Ginib = Bp(Vop — Vss) qpie, (7.6)
fexcit = Bp(Vbp — Vas) Ghre/ Gpost (7.7)
a,(Vy) = per»Ve=Von)/Vr (7.8)
Bo(Vaa) = mg e’V (7.9)

when charge is given in units of Qr exp(—(Vpp — Vss)/Vr).

As expected, the gap-junction current is proportional to the node-charge differ-
ence. In contrast, the inhibitory and excitatory currents are a slightly compressive
function of presynaptic node charge, because «, is less than 1. The excitatory current
is also shunted (reduced) by postsynaptic activity, because it is inversely proportional
to the postsynaptic node charge.

The roles of the nMOS and pMOS transistors can be interchanged; that is, we may
use nMOS transistors for the gap junctions, pMOS transistors for chemical synapses,
and the source-drain terminal charges of the nMOS transistors for the node charges.
We can use Equations 7.5 and 7.7 for these complementary assignments by reversing
the directions of the currents, replacing x, with x,, and —x, with «,,, and interchang-

ing Vss and Vpp, and ng and pg.

7.2 Outer-Plexiform—Layer Circuit

The neurocircuitry in the outer retina that subserves the cone pathway is shown in
Figure 7.2. This simplified schematic includes only a single horizontal-cell type and a
single cone type. It is based on the red-cone system of the turtle; similar circuitry is
found in all vertebrate retinae. This simple neural circuit implements elegantly both
local gain control and bandpass spatiotemporal filtering.

We employ shunting inhibition to compute a normalized output that is pro-



153

Photo-receptors

Electrical \I\ \’\ \[\ \I\
Synapses
/ Chemical
> >

\ Synapses

Y/

Horizontal Cells

Figure 7.2: NEUROCIRCUITRY OF OUTER PLEXIFORM LAYER

The white and black circles are excitatory and inhibitory chemical synapses, respec-
tively. Electrical gap junctions occur at the points of contact between cells. The
photoreceptors are activated by light; they produce activity in the horizontal cells
through excitatory chemical synapses. The horizontal cells reciprocate by suppress-
ing the activity of the receptors through inhibitory chemical synapses. Receptors
and horizontal cells are electrically coupled to their neighbors by gap junctions; these
junctions allow ionic currents to flow from one cell to another. The junctions between
horizontal cells are larger in area than those between cones.

Figure 7.3: CMOS CircuiT MODEL OF OUTER PLEXIFORM LAYER

There are two diffusive networks coupled together by synapse transistors. The diffu-
sive networks model the syncytia formed by the cone and horizontal-cell layers, and
the synapse transistors model the excitatory and inhbitory synapses between these
two layers. Nodes in the upper layer correspond to horizontal cells; nodes in the lower
layer correspond to cones. Devices M) and Ms model chemical synapses; M, and M
model gap junctions. ); models the outer segment of the cone, and M; models a
leak in the horizontal-cell membrane.
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portional to contrast. The horizontal cells pool their signals to obtain a measure of
the local light-intensity level, and they modulate conductances in the membranes of
the cones proportionally. Because the current supplied by the cone outer segment is
divided by this conductance to produce the membrane voltage, the cone’s response
1s proportional to the ratio between its photo input and the local average. This
description is a simplified abstraction of the complex ion-channel dynamics involved.

Computing contrast at the very first cell in the retina is extremely advantageous to
the animal, because using this representation extends the dynamic range of the sensor
and removes redundant information. At any particular background-intensity level,
however, the outer plexiform layer behaves much like a linear system, and bandpass
filters the image in space and time—more or less like the linear coupled-layer network
that we studied in Chapter 4.

Neuromorphing the neurocircuitry of the outer-plexiform layer shown in Figure 7.2
into a CMOS circuit gives us the circuit shown in Figure 9.4. We have replaced each
cell with a single node, and each synaptic element with a single transistor. Devices
M, and M, model the reciprocal chemical synapses, and M, and M5 model the gap
junctions; their permeabilities are set globally by the bias voltages Vi and Vi. The
phototransistor Mg models the light-sensitive input from the cone outer segment.
Transistor Ms, with a fixed gate bias V, is analogous to a leak in the horizontal-cell
membrane that counterbalances synaptic input from the cone.

In this simple model, we reduce a single cell to a node in the electrical circuit,
ignoring the nonsynaptic membrane conductances and the effect of the cell’s mor-
phology on its electrotonic properties. This simplification is valid for the special case
where the membrane conductances are small compared to the synaptic conductances
and the cell is electrotonically compact.

The CMOS analog of the outer retina operates as follows. When the photocurrent
I increases, the excess current discharges node C; this effect represents excitation.
The decrease in voltage at C increases the current in Ms. The excess current in M,
discharges node H, so this node also is excited. The decrease in voltage at H increases

the current in M,. The excess current in M; counterbalances the excess photocurrent,
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and tends to restore node C to its original voltage. Thus, M, inhibits the effect of
the photocurrent. In short, M, mimics excitation from the cone layer (node C) to
the horizontal-cell layer (node H), and M; mimics inhibition from the horizontal-cell
layer (node H) to the cone layer (node C).

When the inhibitory network is biased such that its time constant and space con-
stant are longer than those of the excitatory network, signals that change rapidly over
time or space will escape the inhibition, resulting in a highpass frequency response.
However, the response starts to roll off when the period approaches the time and
space constants of the excitatory network, resulting in an overall bandpass response
in spatial and temporal frequency. This aspect of the circuit’s behavior is described
by the linear model that we analyzed in Chapter 4.

The lowpass-filtered version of the image from the inhibitory layer is a measure of
the local intensity level. Therefore, the OPL circuit uses this signal for gain control.
The gain is controlled by the shunting effect of the node charge at node H on the
excitatory synapse from node C to node H. This shunt makes the synaptic current /o
proportional to the ratio of the node charge at C (cone’s activity) and the node charge
at H (horizontal cell’s activity). Therefore, I is proportional to the local contrast,
and it provides a normalized signal that serves as the output of the OPL circuit.

We can write the node equations for this circuit using the continuous version of

the diffusive network given in Section 6.7 (Equation 6.13). The result is

In(z,y) + DV2Qe(2,y) = I(z,y),
]u+th2Qh(x7y) = Ic(x7y)7

in steady state. Substituting the expressions for the synaptic currents and the dif-

fusitivities given in Section 7.1 (Equation 7.5 through Equation 7.7) gives us

ﬂnq§p+accv2% = i; (710)

b+ Vi = 5ud™/n, (7.11)
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where e = 0y (Vee), amn = o (Vin); with charge expressed in the appropriate units.
Equations 7.10 and 7.11 are homologous with the equations for the linear model
that we studied in Chapter 4 (Equation 4.1) when x, = 1, except that node charges,
instead of node voltages, are used to represent the cell activities, and the signs of the
synaptic currents and the input currents have been flipped. Nevertheless, we can use

the solutions that we obtained for the linear network with

G = D,

Ghe = Bu/n,
Ure = e,
Vrp, = o

The OPL CMOS circuit is linear if ¢, is constant, and is approximately linear over
regions where g, changes slowly relative to g.. The space constant of the horizontal-
cell layer is much longer than that of the cone layer, so this assumption is reasonable.
Hence, the output current of the OPL circuit is given by the following expression:

Ge i LGp?

© ) TR T e

b = yJace/ B, (7.13)
ly = +\/omnqn/Dn,

in steady state, where (i) is the local average of the photocurrent. Notice that lo-
cal gain control actually takes out the absolute intensity, and the output current is
proportional to the ratio between the photocurrent and its local average.

The dependence of the horizontal-cell layer’s space constant ¢; on ¢, makes the
spatial filtering dependent on the intensity level. In particular, if we use the results

from Section 4.3, the position and height of the peak in the bandpass characteristic



is given by

1 /82 1/4
p = = = 7.14
P \/Ec—fh (accahh%) 7 ( )

He(p) = y/anngn/ac. (7.15)

Hence, the peak moves to lower frequencies as the coupling strengths in either network
increase. Increasing the light intensity causes g, to increase, and also makes the peak
move to lower frequencies. The height of the peak increases as the coupling strength
in the horizontal-cell layer increases; increasing the intensity also makes the height
increase. In contrast, the peak height decreases as the cone-layer coupling increases.

The local-gain-control mechanism makes the response to low and high frequencies
independent of intensity, but it is not effective at frequencies close to the peak fre-
quency. In particular, the sensitivity to these intermediate frequencies increases with
intensity. This behavior is reflected in the impulse response of the system, where we
observe a corresponding increase in the strength of the central part of the receptive
field. This effect is evident when we compute the inverse Fourier transform to obtain
the unit impulse response. For the one-dimensional case, we can obtain a closed-form

analytical solution:

: 32 ¢ (x| ow
— = -lal/e il
ic(x) - 2\/26 sin < i 4) : (7.16)

7.3 Test Results

The impulse responses of a one-dimensional outer-retina CMOS circuit are shown
in Figure 7.4. These data were measured from a VLSI chip fabricated in a 2um p-well
CMOS process. As the cone coupling increases, the gain decreases and the excitatory
and inhibitory subregions of the receptive field become larger, precisely as predicted
by the theoretical expressions obtained in Section 3.3.5. Increasing the horizontal-cell
coupling also enlarges the receptive field, but in this case the gain increases; again,

both effects are consistent with the theory. The gain increases because stronger
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Figure 7.4: IMPULSE RESPONSES OF OUTER-RETINA CMOS CIRCUIT

The receptive fields are measured for a 25 x 1 pixel chip; arrows indicate increasing
diffusor gate voltages. The inputs were 50nA at the center and 10nA elsewhere,
and the unit output current Iy was set to 20nA. (a) Increasing interreceptor diffusor
voltages in 15mV steps. (b) Increasing inter—horizontal-cell diffusor voltages in 50mV
steps.

diffusion results in weaker signals locally, so the inhibition decreases. Figure 7.5a
shows the variation of receptive field size with intensity—roughly doubling in size for
each decade. This rate indicates a one-third power dependence, which comes close to
the theoretical prediction of one-fourth from the linear model. The discrepancy is due
to the body effect on transistor M (see Figure 9.4): that effect makes the diffusor
strength increase with a power of 1/x2%.

Contrast-sensitivity measurements are shown in Figure 7.5b. The S—shaped curves
are plots of the Michaelis—Menten equation used by physiologists to fit responses of
cones [27]:

]n
V=Vihax77——,
a In -+ on

(7.17)
where o is the background intensity, and the exponent n determines the slope of the
S curve; T included a vertical offset to account for the dependence of transistor mis-

match on the intensity level. The circuit deviates at high intensities due to increasing

interreceptor coupling strength. For these fits, n is 1.2 in both cases, compared to



Output (nA)

60+ o907
50+ 404
4 ES
0 307
30+ =
2201
20+ =
O 10+
10+
O,-
- | t } ! | -10 ; + ' !
100 5 10 15 20 25 w07 1w 107 1008 1077
(a) Node Position (b) Input (A)

Figure 7.5: INTENSITY DEPENDENCE OF OUTER-RETINA CMOS CIRCUIT

(a) Dependence of receptive field on intensity; arrows indicate increasing intensity.
Center inputs were 500pA, 5nA, 15nA, 50nA, and 500nA. The background input was
always one-fifth of the center input. (b) Contrast-sensitivity measurements at two
background-intensity levels. Lines are fits of the Michaelis—Menten equation given in
the text.

the physiologically observed value of 1.0 for cones [27], and o is 1.5nA and 3.0nA; the
actual background intensities correspond to photocurrent levels of 0.56nA and 1.8nA.
Thus, the responses are centered at a higher intensity and did not shift horizontally
as much as expected with intensity. These discrepancies are due to the difference in
gain for inputs above and below the background level. As the inputs decrease the

cone coupling reduces, and so the gain increases. Hence, there is a smaller range of

operation below the background level.

7.4 Tradeoffs in Outer-Retina Design

Certain filtering characteristics promote efficient encoding in the retina, as I discussed

in Sections 3.1 and 3.2.3. Two of the most desirable characterisitcs are

1. A large attenuation of low spatial and temporal frequencies

2. A gain that is inversely proportional to intensity
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The parameters that determine these characteristics also determine the temporal
stability and the frequency tuning of the outer retina. Therefore, we must make

tradeoffs to achieve the desired behavior.

7.4.1 Low-Frequency Attenuation Versus Temporal Stability

We must trade off good temporal stability for low-frequency attenuation. We need
a high-gain cone-to-horizontal-cell synapse (i.e., small ¢,) to attenuate the cone’s
response to low spatial and temporal frequencies, since H,(0,0) = €,/gen. However,
increasing the gain of the cone—to-horizontal-cell synapse means reducing ¢, and that
makes the circuit ring. It rings because the damping factor is small when the @ is
large, and the Q is given by Q; = (ecv/2 + eh\/{—:)‘l.

To restore temporal stability, we can compensate for the reduction in the second
term of the expression for ¢, by increasing the first term, e.\/(7,/7.). To increase
it, we can make €. larger, decreasing the gain of the horizontal-cell-to—-cone feedback
synapse.

We can guarantee temporal stability, even when ¢, is set close to zero to attenuate

low frequencies, by setting e.\/(7,/7.) = 1. This condition gives 7. = €27y, or

Cho GehGhe gno |
LA = 2= Aivon, 7.18
Ceo 930 gco oop ( )

lis the loop gain. Therefore, the horizontal-cell’s membrane

where Ajoop = (€c€n)7
capacitance must grow like the loop gain. Since it is impossible to make the horizontal-
cell’s membrane capacitance arbitrarily large, maintaining temporal stability requires
keeping the loop gain in a limited range.

Smith and Sterling realized the constraint imposed by temporal stability on the
loop gain; they proposed using feedforward inhibition to second-order cells (bipolar
cells) to attenuate the DC response [115]. However, it would be better if these low

frequencies were removed at the cone, because that solution would achieve the most

efficient use of the channel capacity of the cone—to—bipolar-cell synapse.
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7.4.2 Gain Control Versus Frequency-Tuning Invariance

We must trade off frequency tuning invariance for local gain control. Equation 7.16
indicates that the most direct way to do gain control is to make the intercone gap-
junction conductance (1/r.., or ) proportional to intensity—provided that the
space constant does not change. However, changing r.. makes the space constant
grow as the fourth root of the intensity, since £ = (TecgenTangne)~/*. The change in
space contant almost entirely cancels the effect of r.. on the gain. Also, the frequency
to which the spatial bandpass filter is tuned changes like the fourth root of intensity.

Consequently, we must change another parameter to compensate for the effect
of the intercone conductance, 1/r.., on the space constant, £. One possibility is to
increase g, proportionally, as we decrease 7., with increasing intensity. Increasing g.s,
increases the gain from the horizontal cell to the cone, which has the desirable side
effect of increasing the attenuation of low-frequency energy (H.(0,0) = ¢;/g.s) as the
intensity goes up. Increasing g, achieves an identical result, since it compensates
for the effect of r.. on ¢ and reduces €, = ¢no/gne, and that reduction increases
low-frequency attenuation as well.

Increasing either g., or g, will increase the loop gain, and the gain may become
arbitrarily large as the intensity goes up. To avoid compromising temporal stability,
we must make geg X \/Iphoto- Thus, performing gain control without disturbing fre-
quency tuning (£ constant), or temporal stability (Equation 7.18), requires adjusting

at least three parameters in coordination.

7.5 Discussion

By using transistors to model gap junctions and chemical synapses, we were able
to morph the outer plexiform layer of the retina into a silicon circuit. This circuit
performed spatiotemporal bandpass filtering as well as local gain control. We had
to make performance tradeoffs to get these two functions to coexist within the same

structure. In particular, when we tried to attenuate low-frequency temporal and
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spatial signals, we found that the high loop gain required to achieve this goal in a
negative-feedback circuit resulted in temporal instability. When we then tried to
control the gain by modulating the intercone coupling conductance in proportion to
the local intensity, we observed that the receptive field expanded alarmingly.

These severe shortcomings of the simple circuit model of the outer retina that I
built forced me to review the retina literature in search of mechanisms that decouple
spatiotemporal filtering and local gain control. Ifound that autofeedback in horizontal

cells could provide an elegant solution to this dilemma.

7.5.1 Horizontal-Cell Autofeedback and Temporal Stability

Feedback of horizontal-cell signals back on to the horizontal cells was demonstrated by
Kamermans a just few years ago in the tiger salamander [134]. Horizontal cells, which
are known to use the inhibitory neurotransmitter GABA, also express GABA-gated
Cl-channels. These channels have a reversal potential of -20mV and therefore depo-
larize the cell when they are opened, forming a positive-feedback loop. Kamermans
and Werblin showed that this autofeedback loop could account for the extremely slow
dynamics of horizontal cells, increasing the time constant from 65ms to 500ms. My
analysis of the tradeoffs involved in outer-retina design has yielded further insights
into the role of autofeedback.

As we have seen, there are tradeoffs between small low-frequency response and
good temporal stability. Linear-system theory predicts that a high-gain cone-to—
horizontal-cell synapse is required to attenuate the cone’s response to low spatial
and temporal frequencies using feedback inhibition. However, increasing the gain
of cone-to-horizontal-cell synapse makes the circuit ring. To maintain stability, we
must decrease the gain of the horizontal-cell-to—cone feedback synapse and reduce
the horizontal cell’s time constant. Unfortunately, both these changes reduce the
sensitivity of the cone.

Smith recognized this tradeoff and proposed using feedforward inhibition to atten-

uate the low-frequency signals at the bipolar cells [115]. However, highly redundant
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low-frequency signals make poor use of the limited dynamic range of the cone, and
of the limited information-carrying capacity of the cone-to-bipolar-cell synapse. I
propose that we eliminate this tradeoff by using slow autofeedback in the horizontal
cells. With autofeedback, decreasing the gain of the cone-to-horizontal-cell synapse
will not reduce the attenuation of low-frequency signals. Hence, we can achieve tem-
poral stability, extend the dynamic range of the cone, increase the cone’s sensitivity,
and attenuate the low-frequency signals at the cones, making more efficient use of the

available dynamic range.

7.5.2 Horizontal-Cell Autofeedback and Receptive-Field In-

variance

We have also seen that there is a tradeoff between intensity normalization and in-
variant receptive field size. Linear-system theory predicts that the gain of the cone
is equal to the space constant divided by the intercone coupling conductance. Hence,
we can normalize the response by making the intercone conductance proportional
to intensity. The intercone coupling may change automatically in the biological
retina because gap-junction conductance is the product of permeability and ionic
concentration. Unfortunately, the space constant also depends on the gap-junction
conductances: £ = (TeeGenTnngne) /%, where 7., and ry;, are the intercone and inter—
horizontal-cell resistances and g., and gp. are the horizontal-cell-to—cone and cone—
to—horizontal-cell transconductances, respectively. Thus, as we decrease r.. to reduce
the gain, the receptive field expands because ¢ increases.

Must we forego intensity normalization for constant receptive field size? Or vice
versa? Autofeedback in the horizontal cells provides an elegant solution to this
dilemma: We make the horizontal-cell activity proportional to intensity, and mul-
tiply the cone signal by the local horizontal-cell signal to obtain the input to the
horizontal celll The effective cone—to-horizontal-cell transconductance g, is now
proportional to intensity as well, and it cancels the effect of the intensity-dependent

intercone resistance r.. on the space constant ¢. A second-messenger system, or a
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metabotropic receptor, may monitor the GABA-mediated horizontal-cell autofeed-
back pathway and modulate the glutamate-mediated feedforward pathway from the

cone to the horizontal cell appropriately.
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Chapter 8 Adaptive Quantization:
Circuit Models of Spiking Neurons

In this chapter, I discuss the properties of a compact, adaptive, spiking neuron circuit,
and I analyze its behavior. We will use this circuit to model retinal ganglion cells.
Retinal ganglion cells convert the graded signals that they receive into all-or-nothing
spikes. They transmit trains of spikes down their axons which run from the retina to
the rest of the brain.

With the exception of ganglion cells, and of a few amacrine cells with extremely
long processes, all the cells in the retina encode information using graded, continu-
ously varying signals. Thus, retinal signal processing occurs in the analog domain;
quantization—in time and in amplitude—is performed only for the purpose of trans-
mitting information over long distances.

Analog filters and amplifiers with good signal-to-noise ratios can be built with
relatively little hardware. However, analog signals are poor at carrying information,
because they trade bandwidth for signal-to-noise ratio. Since information capacity
increases linearly with bandwidth, but only logarithmically with signal-to-noise ratio,
low signal-to-noise, wide-band signals are much more effective at carrying information.

Consequently, a mixed-mode approach gives us the best of both worlds: We encode
information using narrow-band, high signal-to-noise signals for processing. And, we
encode information using wide-band, low signal-to-noise signals for transmission. Of
all the wide-band, low signal-to-noise signals we could use, we choose extremely brief
pulses. This choice allows us to conserve power, since we know how to design circuits
that dissipate power only for the duration of the pulse, and do not dissipate any

power in the quiescent state.
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8.1 Information Encoding in Spiking Neurons

We must adopt a strategy for encoding information in pulse trains, just as engineer’s
do for the analog-to-digital converters they use. The simplest possible encoding is
rate coding: The frequency of pulses is proportional to the input intensity. But
neurons do not simply integrate their input current and fire at a rate that is linearly
proportional to the input current level. They encode information differently in two
important respects.

First, neurons show spike-frequency adaptation: They give priority to changes
in the input signal, responding to increases with a high-frequency burst. Their firing
rate falls to a much lower level after they adapt to the new level of the stimulus.
Spike-frequency adaptation is due to accumulation of calcium in the cell, and to
calcium-dependent potassium channels that subtract out the short-term temporal
average of the input activity. I have reproduced this behavior by using a simple two-
transistor current-mode integrator to model the accumulation of calcium in the cell
and the calcium-dependent potassium channel.

Second, neurons show membrane—time-constant adaptation: They are exquisitely
sensitive to small changes in their inputs and can respond by generating a spike with
extremely short latency. I propose a biologically plausible mechanism for membrane
time-constant adaptation that shortens the time constant of membrane when the
voltage is far below threshold by activating fast, low-threshold, voltage-dependent
potassium channels. Hence, the membrane voltage returns rapidly to the threshold
and then sits just below the threshold, homing in slowly. I modeled this mechanism by
placing a capacitor between the membrane-voltage node and the calcium-integration
node that controls the potassium channel.

These two properties make the temporal resolution of neurons much better than
that of a simple integrate-and-fire neuron in two important respects.

First, the interspike interval of the integrate-and-fire model is proportional to the
average level of the input during that interval. This model cannot capture changes

that occur on a shorter time scale than the interspike interval. In contrast, a neuron’s
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interspike interval is proportional to the temporal derivative of the signal as a result
of spike-frequency adaptation. Therefore, the more rapidly the input changes, the
shorter the interspike interval becomes. This is exactly what an adaptive system
ought to do.

Second, the latency of the integrate-and-fire model depends on how long ago the
neuron fired, because, in general, the voltage ramps up linearly from the reset level
to the threshold. In contrast, a neuron spends most of its time extremely close to
threshold as a result of membrane-time-constant adaptation. Therefore, its latency
is largely independent of its state. Thus, neurons can signal the timing of small
brief perturbations precisely, and all the neurons that respond to this event will fire
in synchrony. Paradoxically, the conditions that make precise spike timing possible
also make the neuron highly susceptible to noise: As a result, the neuron’s interspike
intervals are highly stochastic in the absence of any input.

Real neurons show adaptation at all stages of transmission: spike frequency, trans-
mitter release, channel gating, dendritic time-constant, and soma time constant. Our
simple neuron models only spike frequency adaptation and membrane—time-constant

adaptation at the soma.

8.2 Concept and Circuit

A simplified block diagram of the adaptive neuron circuit is shown in Figure 8.1.
The spiking mechanism generates a spike whenever the membrane potential exceeds
the threshold. Each time a spike occurs, a small fixed amount of charge is added to
the leaky integrator on the right that models the intracellular calcium concentration.
We use the integrator’s output to adjust the conductance of the calcium-dependent
potassium channel, gx(Ca), accordingly.

The other loop adapts the membrane time constant. Rapid changes in mem-
brane potential are amplified by the differentiator and therefore cause a correspond-
ing change in the potassium-channel conductance. This change in conductance acts

to restore the membrane voltage, and the effective membrane conductance goes like
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Figure 8.1: BLOCK DIAGRAM OF ADAPTIVE NEURON CIRCUIT

The circuit consist of a pulse generator that models the regenerative and restorative
parts of the spiking mechanism; a variable conductance, that models the potassium
channel population; a leaky integrator, that models the accumulation and buffering
of calcium in the cell; and a differentiator, that models the fast voltage-dependence
of the potassium channels. The feedback loop on the right adapts the firing rate; the
feedback loop on the left adapts the membrane time constant.

the gain times the actual conductance. Since the gain increases with temporal fre-
quency, the time constant is shortened drastically when the membrane is hyperpolar-
ized rapidly. Consequently, the membrane repolarizes rapidly, returning close to the
threshold voltage.

In my circuit, I model the potassium channels as a single homogeneous population
with both voltage and calcium dependence. The intracellular calcium concentration
changes on a slow time scale and sets the baseline for the number of channels that
are open. The voltage dependence acts on a much faster time scale and modulates
the number of open channels around this baseline. Steady state is reached when
the growth rate of the membrane voltage just balances the decay rate of the leaky
integrator’s charge. Since the leaky integrator’s time constant is relatively long, the
membrane voltage homes in on the threshold slowly. Thus, these two adaptation
mechanisms keep the membrane voltage just below the threshold by regulating the
potassium conductance to match the input current level.

The actual circuit is shown in Figure 8.2. The behavior of this circuit is described

by two simultaneous differential equations, which I derived by applying Kirchoff’s cur-
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Figure 8.2: ADAPTIVE NEURON CIRCUIT

The high-gain noninverting amplifier, implemented by the two digital invertors, and
the positive feedback pathway, implemented by the capacitive divider C,/C;, generate
the spike. The switched current-sink tied to the input node, implemented by the two
transistors connected in series, terminates the spike. The capacitor C; accumulates
charge and the diode-connected transistor leaks charge away. We meter charge onto
Cj each time a spike occurs by turning on a switched current-source, implemented by
the p-type device whose gate is tied to Vgyanta. The remaining transistor, which turns
on slowly as charge accumulates on Cs, and turns on rapidly when Vi, increases,
due to capacitive coupling through C,, shunts the input current.
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rent law to the membrane-voltage node, labeled Vijem, and to the calcium-integration

node, labeled Vi,:

deem me
Cmem_W - [in - (1 + EX‘) [K + (rmcqa - ch)é(vmem - Vth)y

dVea 1
CCa“C_ZtC— = rcm(-[in - [K) - XIK + (Qa - rchth)é(Vmem - Vth); (81)

where Cpem and Cg, are the equivalent node capacitances (ie., Cpem = C; + Cy +
C3C4/(Cs 4+ Cy), Cea = C3 + Cy(Cy + Co)/(Cs + C1 + Cy)), and 1y and 1oy give
the fraction of the charge dumped on node Vg, that goes to node Vyem, and vice
versa (ie., rme = Cy/(Cs + Cy) and 1o = Cy/(Cy + Co + Cy)); 6(¢) is the unit
impulse. Here, Qy is the repolarization charge subtracted from the input node and
Jo is the charge increment added to the leaky integrator each time a spike occurs.
In this circuit, Q is equal to CoVgag and q, is determined by the gate bias voltage
Vquanta and by the reset voltage V,es, which sets the pulse width. The current-mirror
gain A relates the current in the diode-connected transistor to the current in the
mirror’s output transistor, which represents the potassium-channel current Ix; the
gain increases exponentially with the source bias voltage V.

The dependence of the potassium-channel current Ik on the calcium-node voltage
Vea is given by Ix = Ipexp(kVe,/Ur), if the device operates in the subthreshold
regime, where Ur = kT/q is the thermal voltage, and & is the subthreshold slope
coefficient. We can use this relationship to obtain a differential equation for Ix by

eliminating Vi, from Equation 8.1. Thus, we obtain the following system of equations:

d‘/mem I'm 4
Cmem dt = Iin - <1 + AC> IK + (rmcCIa - ch)é(‘/mem - vth)7 (82)
CceaUr dl 1 .
Ca 1 X = rcm(]in - ]K) - _]K + (qa - rchth)O(‘/mem - vth)- (83)
KZIK dt A

Now it is evident that the time scale for the potassium current is inversely proportional
to the latter’s amplitude: It changes faster when the current is larger. This scaling is
a direct result of the exponential current—voltage relationship; I say more about this

diode-capacitor-style dynamics in Section 8.3. In relation to biophysics, this variable
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time scale is analogous to a rate constant for calcium buffering that is proportional
to the intracellular calcium concentration.

The first equation captures the dependence of the membrane voltage on the input
current and on the potassium-channel current. The fast transient currents responsible
for generating and terminating the spike have been omitted intentionally. These
currents are analogous to the sodium current and the delayed-rectifier potassium
current in the Hodgkin—Huxley model. T ignore these currents because I am not
interested in reproducing the detailed profile and shape of the spike. My goal is to
reproduce the dependence of the interspike interval on the input current. Therefore,
I am modeling the slow currents that shape the membrane-voltage trajectory during
the interspike interval, such as the calcium-dependent potassium current. I have
lumped the effect of the fast currents into a net repolarization charge, Q,, that is
subtracted from the membrane capacitance after each spike, returning the membrane
voltage to the reset level.

The second equation captures the dependence of the potassium current on the
spiking activity of the cell and on the trajectory of the membrane voltage. The
qo term models calcium entering the cell through the sodium channels that rapidly
depolarize the membrane during a spike; the r.,Qi term models calcium leaving
the cell through the potassium channels that quickly repolarize the membrane to
terminate the spike. The rey(fin — Ik) term models the dependence of the potassium
current on the derivative of the membrane voltage. This term makes the rate of change
of the potassium current proportional to the rate of change of the membrane voltage,
since, from Equation 8.2, I;, — I is the net current available to charge the membrane
capacitance during the interspike interval, assuming that ry./A < 1. There is also a
leakage term Ix/A that models buffering of calcium within the cell.

Note that, as implemented in this circuit, the potassium channel does not inacti-
vate. That is, it turns on when the membrane voltage rises rapidly, and it stays on at
a steady level of depolarization—until calcium buffers reduce the intracellular-calcium
concentration. Hence, the slow calcium dependence is the analog of the inactivation

variable h used for the fast sodium conductance in the Hodgkin—Huxley model. Of
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Figure 8.3: CircUIT DIAGRAM OF DIODE-CAPACITOR INTEGRATOR

The time constant is set by the current in the diode-connected input device I4. We can
set the output-current level independently by applying an appropriate bias voltage,
Va, to this device’s source terminal. This voltage controls the gain of the current
mirror.

course, the potassium current in my circuit also can be turned off by rapid hyperpolar-
izations through the reduction of activation. A noninactivating channel is crucial for
membrane-time-constant adaptation because a steady current is required to match
the input current and to hold the membrane voltage just below the threshold.

In Section 8.3, I analyze the diode-capacitor integrator circuit used to model the
intracellular calcium concentration. In Section 8.4, I describe the axon-hillock circuit
used to generate spikes. In Section 8.5, I discuss how to quantify the timing precision
of neurons and I give definitions for latency and synchronicity. I analyze the complete
adaptive neuron circuit in Section 8.6 and present measurements of its timing precision

in Section 8.7. I close the chapter with a short discussion in Section 8.8.

8.3 Leaky Integration with a Capacitor and a Diode

The diode-capacitor integrator is shown in Figure 8.3; it is based on the well-
known current-mirror circuit. The large capacitor at the input node accumulates
charge, and the diode-connected transistor leaks charge away. For subthreshold cur-

rent levels, the current has an exponential dependence on the gate voltage, and there-
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fore the small-signal conductance of the diode-connected transistor is proportional to
the current. Hence, the time constant will change as the current level changes. This
dependence makes the circuit nonlinear, so we cannot obtain a solution for any ar-
bitrary input waveform. However, the circuit’s dynamic behavior is described by a

simple differential equation

dV
C-Ei.%- = Ln(t) — [d = [m(t) - j/lg‘]out(t)v

where A = exp(V3 /Ur). Since the current passed by a MOS transistor is related to
the gate and source voltages by Iy = exp((kV; — V5)/Ur) for subthreshold operation,
we can eliminate the voltage V' and rewrite this equation solely in terms of the input

and output currents:

d[out

Qr dt = Iout(t)(lin(t) - ylglout(t»v (8-4)

where Qr = CUr/k is the amount of charge required to e-fold the current. We can
gain insight into the circuit’s behavior by rewriting this differential equation in the

following form:
Qr d(1/1ou) B 1 1

In(t) dt A1) ILw(t)

This equation is a simple first-order ordinary differential equation in 1/7,,; with time
constant Qr/I;,—which is fixed only if I}, (¢) is constant. Hence, for a steady nonzero
input current, 1/I,, changes exponentially with time constant 7 = Qr/[,. If the

input current is 0, 1//,,; decays linearly at the rate 1/(AQr).

8.3.1 A General Solution

In the most general case, we may write the solution in the form of the integral

equation:
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If we divide both the numerator and the denominator by the second term in the
denominator, and express the resulting numerator as an integral of its derivative, we

can rewrite this result in the following form:

G ) exp (g 12 Tn(s)ds ) du+1

Loyt (to) rt 1 qug Toui (to)-
“KQ_T“ftO exp Q;fto Iin(s)ds ) du + 1

Iout (t)

Now it is evident that the circuit computes a normalized weighted average by assigning
weights to past inputs that decay exponentially with a time constant 7 = Qr/{(Ii,)5,
for I, # 0, where (-);> is the mean value in the interval from ¢; to t,. This time
constant is equal to the time that it takes to change the output current by a factor
of e when all the input current goes to charge the capacitor C. We need the constant
offsets in the numerator and in the denominator to satisfy the boundary condition at

t = 0; they become negligible for times

t>>71n<

A(Ln(t»g
Iout(o) N 1) .

Naturally, the time over which past inputs are forgotten depends on how different they

are from the current state (1, (t) >~ Al (¢)) and on the value of the time constant 7.

8.3.2 Response to Step Changes

For a step change in the input to I} at ¢ = 0, we can obtain closed-form expressions

for the integral equation (Equation 8.5):

A
(1/1) + (1/1o = 1/1i) exp(—t/7)’

]out (t) -

where 7 = Qr /L, Iy = Lw(0)/A, and Iy # I; # 0. As expected, the reciprocal of the
output current, 1//,,(t), follows a single-exponential-decay from 1/I, to 1/1;, which
is a characteristic of first-order linear systems. Consequently, the time course of the

output current is described by a Fermi function—or by a tanh if I; is greater than I,
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current :

Figure 8.4: UNDRIVEN RESPONSE OF DIODE-CAPACITOR INTEGRATOR

The time that it takes for the current to decay by a certain fraction (50 per cent, in
this example) is inversely proportional to the current level.

or by a coth if I; is less than I,.

If I; = 0, the integral equation reduces to

Iout (O)

Tous (T I S—
() t/1o+ 1

(8.6)

and the output has a half-life of 70 = AQr /Iyt (0). The half-life is proportional to the
change in 1/, (%) (i-e., 2/Iouw(0) — 1/ 15wt (0)), because 1/1,,(t) decays at a constant
rate of 1/AQr. In general, it takes (n — 1)1 for the current to decay by a factor of
n, or n1y for it decay from I, (0)/n to I, (0)/(2n), as shown in Figure 8.4. This
behavior, which is characteristic of the diode-capacitor dynamics, arises because the

time scale is inversely proportional to the output current.
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8.3.3 Response to Spike Trains

For a sequence of current pulses at the input, the general solution (Equation 8.5)

reduces to:
Lo (T
_[Out(t):]_ Ot(o) 7
%L (Zn 1 exp(~ Cr Lij i) (t; = tj-1) + (t = tn)) + exp(—&r— Yo @)
(8.7)
for ¢, <t < tny1, where {t;}, to < t; < t3,..., are the times at which the pulses

occur, and {¢;} are the amounts of charge that each spike supplies. Assuming that

each spike adds the same amount of charge ¢, to the input, we obtain

Toue(ty
]Out(t): I = Ot(O)

out(TQ)(Z (14 @)= (8 — 4 ) + (t—tn))+(1+a)“(”+1)’

where 14+« = exp(q,/Qr) > 1 is the factor by which the output current is multiplied.

We get a less cluttered expression by breaking this equation into two parts:

[out (tn)
Lout(tn) (4

Toui (%) sty <t <tpin; (8.8)

[out (tn) — Iout (ta) . (89)

TQJ—OM 1+ )=t — ) + (14 )0+

A fixed quantity of charge increments the voltage by a fixed amount and thereby
multiplies the current by a fixed factor. Hence, the incremental change in the output
current caused by a spike is not fixed: it is proportional to the output-current level at
the time that the spike occurs. The result that we just obtained does indeed predict
that Lo () = (1+a)Lou (¢, ), as this argument leads us to expect. These multiplica-
tive increments enable the spike’s contribution to the output current to be facilitated
by spikes that arrive earlier. This effect has been seen in the excitatory postsynap-

tic potentials recorded from real neurons, where it goes by the name paired-pulse
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facilitation. Using Equation 8.8, we can show that

Iout (tl)
Lous (t1)

Al (A) = L (t1) = Tout () = ( _ 1) o) = o)

out(to At +1
T

where At = t; —t; is the time difference between the two spikes. Hence, the height of
the excitatory postsynaptic current produced by the second pulse reaches a maximum
of alous(to), when At = 0, and decays like 1/At thereafter.

If the interspike intervals are all the same, we can sum the geometric series in the

denominator of Equation 8.9 and obtain

]out (t() + TLT)

Iowi(t) = s y———t to+nT <t<ty+(n+1)T,
- AQr 01
Lowi(to +nT) = (U T(e) — /(0% a)""; n=12,..., (810)
. AQ~
Ir = a g“ : (8.11)
whereT" = ¢;—%,_1; 7 =1,2,.... Now we can see how the integrator responds to a step

increase or decrease in the frequency of input pulses: The peak output current levels
attained immediately after each spike converge to Iy when (I +a) ™ <« 1. Hence,
the time taken to reach equilibrium is independent of the change in frequency—it
depends on only the number of spikes. As the interspike intervals become shorter,
the time scales accordingly. This property enables the circuit to match the time that
it takes to do the computation to the rate at which information is supplied.

The equilibrium output-current level is proportional to the input frequency f =
1/T: Tt is aAQrf at the peaks, it is (1 4+ «) times less at the throughs, and the mean
level is Aq, f. I obtained this expression for the mean level by integrating I, (t) over
the interval T Alternatively, intuition tells us that, at equilibrium, the charge that
leaks away during the interspike interval 7' exactly matches the charge supplied by
each spike, g,. And we know that for every charge ¢ that leaks away through the input
diode, A times g flows in the output transistor, since the current-mirror integrator

has a gain of A. Hence, the mean output current level must be Aq,/T.
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Figure 8.5: MODIFIED SELF-RESETTING AXON-HILLOCK CIRCUIT

This pulse-generating circuit is identical to the one described in Mead’s mono-
graph [122], except that I have replaced the pullup of the first inverter with a fixed

current source to reduce the switching current.

A

8.4 Axon-Hillock Circuit

The axon-hillock circuit is shown in Figure 8.5. It has a high-gain amplifier with
positive feedback around it that models the thresholding and the regenerative action
of spike-generating mechanisms at the axon-hillock of a neuron. In addition, there
is a reset mechanism that terminates the spike. This circuit is described in detail
in Chapter 12 of Mead’s monograph [122]. Here, I provide a brief description of the
ciruit and reiterate salient points about its behavior that will be handy for analyzing
the adaptive neuron circuit.

The two digital invertors provide a noninverting voltage gain of about 100. I have
replaced the first CMOS invertor with a pseudo-nMOS invertor with a weak pullup,
to reduce the current passed at the switching threshold. This modification reduces
power consumption significantly because, as pointed out by Lazzaro [135], the invertor
spends most of its time close to threshold—unlike in a conventional digital circuit.

The capacitive divider adds about one-tenth of the 5V output-voltage swing back to
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the input, providing positive feedback. A switched current sink, implemented by two
transistors in series, terminates the spike by discharging the amplifier’s input node
Vinem- One transistor acts as a switch, and the other limits the rate at which the
input capacitor is discharged. The switch closes when the output Viske goes high,
and we use the bias voltage Vieser to adjust the discharge rate and, thereby, set the
pulse width.

The axon-hillock circuit makes a fixed-height, fixed-width pulse when the input
voltage reaches the switching threshold of the nMOS inverter, which is Vg — Vi,
assuming that the n- and p-type devices are matched. As V},, moves toward Vgq, the
threshold moves toward ground. However, the threshold should not be set too low,
because the delay of the inverter increases as current levels are reduced. A longer
delay will increase the pulse width, which is the sum of the repolarization time and
the propagation delay of the amplifier. The latter is not negligible if the NMOS
inverter’s pullup current becomes comparable to the reset current.

Since the input current must charge C; and Cy by VgqaCy/(Cy + Cy) to generate
a spike, the interpulse interval is given by

+ _ CQVdd
low ]in 3

as shown in Mead’s monograph [122]. The pulse width is given by

- CQVdd
hi— 777 1
‘ Ireset - ]i

assuming that the delay of the inverters is negligible. Hence, the firing frequency is

1 1 I;

f - tlow + thi - C2‘/dd 1 + ]in/(]reset - Iin) )

It is linearly proportional to [i, for I, < lieser. As I, approaches [, the pulse
width increases, limiting the firing frequency. The circuit fails to reset, and hangs,
if Ii, exceeds [ieser- 1 choose therefore to operate this circuit with Ieee; over 10 times

larger than the maximum expected input current, or Viee; > 1V for subthreshold
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Figure 8.6: MEMBRANE-VOLTAGE TRAJECTORIES

The two curves represent the trajectories for two steady input current levels, Iy and I;.
The second curve corresponds to the larger current (I;), and therefore has a steeper
slope. These curves are drawn such that they intersect at the time ¢ = 0 when the
input is stepped from Iy to I;. The membrane voltage follows the first curve before
the step, and follows the second after the step.

input currents. I set V, to about 3.5V to obtain a threshold voltage of about 1.5V

and a switching current of about 5uA.

8.5 Neuronal Latency and Synchrony

Iintroduce the techniques that we use to compute the average latency and synchronic-
ity of neuron circuits in this section. We use the axon-hillock circuit to illustrate the
procedure and to serve as our benchmark.

We have to determine the time, ¢,.1, when a neuron fires, after we step its input

current from Iy to I; at time ¢ = 0, given the previous time that it fired, ¢,,. The
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situation is depicted in Figure 8.6. The trajectory of the membrane voltage during

the interspike interval is generally determined by a differential equation of the form

d mem
c ‘;t  La(®) — It — 1) — Ve (t — 1),

where C is the membrane capacitance, ¢ is the membrane conductance, and Ik (t—1,)
is the current shunted across the membrane by active or passive potassium channels.
I am ignoring the Na-channels and all the other fast channels because the behavior
during the interspike interval is determined largely by the slow processes. Notice
that I have set up the origins for Ix(A) and Viyem(A) such that they give the values
of the potassium current and the membrane voltage A seconds after the last spike

occured—rather than at the absolute time ¢. This equation gives

L.
C

tn

+1 tn+1
AV = / (Lin(t) — It — t0) — gVimem(t — £2))dt,
tn

tn 1
= Qun = DLitas1 — oty — /t It = 1) + gVimem (t — £2))dt, (8.12)

since Vinem(0) = Vies, Vinem(tni1 — tn) = Vin, and Qu = C(Viy — Vies). Here, Vg
and Vy, are the reset voltage and the threshold voltage, respectively, and Qy is the
repolarization charge. This result allows us to compute the neuron’s latency, which is
simply ¢,,.1, since the step occurs at ¢ = 0. The latency is variable because the values
of the membrane voltage and the potassium current when the step is applied vary
from trial to trial and from neuron to neuron. These state variables are determined
by t,, the time that the last spike occurred, measured relative to the step.

If we know the distribution of spikes times, t,,, either over a set of trials or across
the neuronal population, we can compute mean latency. We can also compute the
standard deviation, which quantifies the variability in latency due to the dependence
on the initial state and provides a measure of the synchrony of the response across
the population.

Here, I choose instead to characterize the response by the synchronous firing rate.

The synchronous firing rate is defined as the instantaneous total number of spikes
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per second divided by the number of neurons or the number of trials. In other words,
the synchronous firing rate is equal to the probability density function for the distri-
bution of the first spike that occurs after the step. The delay and height of the peak in
the probability density function serve as measures of the latency and of the strength
of the neuronal responses, respectively. Furthermore, I define the synchronicity of
the response as the peak synchronous firing rate divided by the neuron’s mean fir-
ing rate immediately after the step. I believe that the normalized peak synchronous
firing rate is the most relevant measure of neuronal response, because it is the most
salient quantity from the point of view of the postsynaptic target, which must extract
stimulus-triggered activity that is superimposed on random background activity. I
denote measures of latency, peak synchronous firing rate, and synchronicity by p, f ,
and .

Given the probability density function for spiking, po(t,); —To < t, < 0, for
a period of length Ty preceeding the step, we can compute the probability density
function, pi(t,e1); 0 < ¢, < Ty, for a subsequent period of length T; following
after the step. Let Atf, be a time interval that occurs before the step, and let At,
be a time interval that occurs after the step. Let us demarcate the second interval
such that any spike that occurs in first interval is followed by a spike that falls in

second interval. Then, we must have

Atyyipi(tas1) = Atuapoltn), (8.13)
dt,

= pitnyr) = i po(tn)- (8.14)
n+1

Therefore, the time-scaling factor, dt, /dt, 1, is all that we need to know to calcu-
late the new probability density function. This function tells us exactly how much we
should shrink or stretch time intervals as we map them from the period [0, T,] before
the step to the period [—Ty, 0] after the step.

We can obtain an expression for the derivative of ¢,, with respect to ¢, as follows.
If we shift forward by dt,, the time, t,, that the previous spike occurred, we find that

the value of the membrane voltage, Viem(—t,), at the time that the step occurs,
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reduces by

deem

Dvmem = dt

X dt, = dtn(IO — Ix(~tn) — gVinem(—tn))/C.

t=0"

Making this voltage shift is equivalent to sliding the membrane-voltage trajectory

after the step to the right by

vamem

dVinem
dt

dtn—H = = D‘/memc/(ll - IK(‘tn) - gv’mem(_tn))-

t=0"F

Hence,
dtn - I1 — [K(_tn> - gvmem(""tn>
dtni1 Iy — IK(_tn) - gv}nem(_tny

When no time-dependent potassium currents or conductances are present in the mem-

(8.15)

brane, the time-scaling factor is constant; therefore, the shape of the probability den-
sity function remains unchanged—its time scale is simply rescaled by the resultant
linear relationship between ¢, and ¢,. In contrast, time-dependent potassium cur-
rents and membrane conductances can produce a variable time-scaling factor and
reshape the probability density function. Therefore, by carefully designing the time
dependence of the potassium current, we can manipulate the time-scaling factor, so
as to reshape the probability density function to reduce the latency and to increase
the synchronicity of the response.

For the simple axon-hillock circuit, Ix(¢) = 0 and g = 0, since there is no
potassium current and the devices tied to the input are current sources. Hence,
Equation 8.12 reduces to

lne1 = T, + %tm

where Ty = Qu/lo and T} = Qu,/I; are the interspike intervals for the currents Iy
and I (I am replacing I/I, everywhere with T;/Ty, for uniformity). Hence, as t,

changes from —T to zero, ¢,.; changes linearly from zero to T, as expected. Now,
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using Equations 8.14 and 8.15, the probability density functions are related by

Pr(tar) = 10P0 (12t — T1)) (8.16)

If the spikes are uniformly distributed initially, then po(t,) = 1/Ty, and we obtain
p1(tne1) = 1/T). Since py(tn+1) is also uniform, the uniform distribution will persist
indefinitely—no matter how many steps occur in the input current. Hence, the spikes
occur completely randomly, and the synchronous firing rate simply is equal to the
firing frequency of the neuron, 1/T;. Since there is no peak in the probability density
function, we have to choose a point in the distribution to obtain the latency by
some other criteria. The midpoint seems to be the most reasonable choice since it
corresponds to the mean delay. So we assign the simple integrate-and-fire neuron a
latency of u = T1/2, a peak synchronous firing rate of f = 1/T;, and a synchronicity
of A\ =1.

These results suggest that we can estimate the onset time and the strength of a
particular stimulus by determining the subset of spikes in the neuronal population
triggered by that stimulus and computing the peak synchronous firing rate for this
ensemble. For the simple axon-hillock circuit, there is no peak in the synchronous
firing rate, and we simply use the constant synchronous firing rate, f. The latency is
inversely proportional to f, and the input current level is proportional to f. Hence,
the time that the stimulus occurred is given by (t;) — 1/(2f), where (t;) is the mean
spike arrival time, and the input current supplied by the stimulus is given by CoVaq/ f.
We investigate how these measures of latency and synchronicity are affected by in-

troducing calcium-dependent potassium channels in Section 8.6.

8.6 Calcium-Dependent Potassium Channels

To obtain firing-rate adaptation, I connected the diode-capacitor integrator around
the axon-hillock circuit, as shown in Figure 8.2; the integrator’s output current is sub-

tracted from the input current. The current source tied to the input of the integrator
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is turned on when Viuike is high. Thus, a miniscule amount of charge, determined by
Vquanta and by the pulse width, is dumped on the capacitor for each spike, causing a
small increment in V,. This feedback path models the calcium-dependent potassium
channels that produce firing-rate adaptation.

In this section, I analyze the behavior of the neuron with firing-rate adaptation
in place. I start by looking at the steady state behavior, and I show that there are
two distinct regimes of operation, depending on the parameter values chosen. Then, I
obtain a relationship between the interspike interval and the input current for a step
input, and derive the probability of firing a spike, given the distribution of times at
which the previous spikes occurred. Finally, I use this probability distribution to cal-
culate the latency and synchronicity of the adaptive neuron. Before we proceed with
the analysis, we must set C; = 0 to eliminate membrane time-constant adaptation.
That mechanism is dealt with in a more complete analysis that is outside the scope
of this thesis.

With C4 = 0, the system of differential equations that describes the circuit

(Equations 8.2 and 8.3) reduces to

Cmem““c‘ﬁ’ - ]in - ]K - ché(‘/mem - \/th)y (817)
Qrdlx , 1
[K dt - QQé(Vmem vth) - XIK7 (818)

where Cpem = C; + Gy, Cea = Cs, and Qr = Cc,Up/k. Following the same pro-
cedures we used to obtain Equations 8.12 and 8.6, we integrate these equations over

the interspike interval (t,,¢,.1) to obtain
IKn
Qn = Litnir — Toty — AQrIn (—(th )+ 1) , (8.19)
AQr

Iy
Ik(t) = 7—— , (8.20)

W(t—tn)—kl

when the input current is stepped from I to I; at time ¢ = 0. That is, the step occurs

within the interval (¢,,t,.1), and these spike times are measured relative to the step.
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Ik, is the integrator’s output current at the time that the last spike before the step
occurred. Substituting the expression for Ik(t) given by the second equation into
Equation 8.12 and integrating yields the natural-log term in the second equation.
Our next goal is to solve Equation 8.19 for ¢, as a function of ¢,,,, and of the
step height I; — Ij. Then we can differentiate the result to obtain the time-scaling
factor, which gives us the probability density function for spiking. Before we proceed,

however, it is instructive to consider the steady-state behavior.

8.6.1 Effect on Steady-State Behavior

For a constant input current, Io=I,=1;,, Equation 8.19 becomes

Ix
= I, A, — A 1 A, +1 , .
Qin i Qrln (AQ + > (8 21)

T

where A, = t,y; — t, is the interspike interval. When adaptation is complete,
the interspike intervals become equal and we have Ik, = aAQr/A,, according to
Equation 8.11. Hence, substituting this expression for Ik, into Equation 8.21, we

obtain
_ ch + AQa ch

=y

An
I , [i

(8.22)

(remember that q, = QrIn(l + «)). Amazingly, this result predicts a linear rela-
tionship between spike frequency and input current. It becomes obvious why this
relationship holds if we observe that, in steady state, the input current must supply
the charge Qi = CyVyq to C; and C,, and supply the charge Aq, removed by the
integrator during the interspike interval, A,,, where q, is the quantity of charge added
to the integration capacitor by each spike. Notice that firing-rate adaptation reduces

the firing rate by a factor of
Aqa

Qin

I call this parameter the firing-rate adaptation attenuation factor.

v=1+ (8.23)

It is important to know how Ik(t) varies relative to [;,(t). Two distinct regimes

of operation are feasible. During the (n + 1)th interval:
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1. Ix(t) > Iy for t, < t < u, and Ix(t) < [ for u, < t < t,.;. That
is, the packet of charge added to Vi, is large enough to boost Ix above I,
immediately after a spike occurs, and there is therefore a net outward current
that discharges Viem. Then Ik decays, and eventually it becomes less than [,
at t = u,; now, there is a net inward current that charges Ve, and eventually

it reaches threshold at ¢t =¢,,,1.

2. Ix(t) < Iy for t, < t < t,y1. That is, the packet of charge is so small that
Ik never exceeds [j,. In that case, the net input current is always inward, and

Vinem starts recharging immediately after the spike occurs.

Equations 8.19 and 8.22 are valid over both regimes of operation, as long as the cur-
rent mirror’s output device remains saturated. The second regime is the preferred
mode of operation, because Vi stays close to the threshold, making the latency
shorter and less variable.

To guarantee that the circuit operates in regime 2, we need to show only that it is
in this regime at equilibrium. That is sufficient because any subsequent increases in
the input cannot make Ik exceed [;,. For the equilibrium condition, [k is less than
Ly, for all tif Ik, is less than [;,. Expressing Ik, in terms of the interspike interval

A, and expressing A,, itself in terms of [;,, we find that

_ (r— Do

== Iy, 8.24
"/‘IH(l -+ Ck) ( )

[Kn

Therefore, the circuit operates in regime 2 if

o v

In(1+ «) o 1

Since In(1 + @) < o and lim,—0In(1 + @)/« = 1, the acceptable values for v become
larger as oo becomes smaller. It should come as no surprise that smaller values of «
make the circuit more likely to operate in regime 2.

Given a value of «, we can use the preceding inequality to obtain a limit on the
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values of v :
et

Py u (8.25)

A/<

Smaller values of v constrain operation to regime 2 because of the concommitant re-
duction in A (see Equation 8.23) which produces faster decay rates (see Equation 8.6),
allowing larger values of a to be used. For o = 0.1, which is about the largest value
we would use, we must have v < 21.3. Since « is so small, we can use the truncated

Taylor series approximation for the log:

In(1+z) = z—12*+ Rs(z); (8.26)
Ry(z) < i2*  forz > 0. (8.27)

This approximation gives a conservative upper bound for v if we drop R3(+) : v < 2/a.
For o = 0.1, this expression gives 20, compared to the exact upper limit of 21.3. The
desire to operate in regime 2 imposes a serious tradeoff on the circuit’s performance. If
we want a large adaptation-attenuation factor, we must use a small charge quantum,

making the number of spikes required to adapt excessively large.

8.6.2 Effect on Time-Scaling Function

We are now in a position to compute the adaptive neuron’s time-scaling function.

But first, we must solve Equation 8.19 for ¢,,. We can rewrite that equation as

Kn

tn - tn
ch = Iltn+1 - Iofn - AQT In <O¢+T1— + 1) 5 (828)

where Tk, = aAQr/Ik,. When adaptation is complete, the interspike interval, A, =
tns1 — tn, becomes equal to Tk, and Equation 8.24 gives the relationship between
Ik, and the steady input [j;. But A, is always less than Tk, during the course of
adaptation. Consequently, « is an upper bound on the first term in the argument of

the log. Hence, we can use the Taylor series approximation for the log (Equation 8.26).
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Figure 8.7: SPIKE TIMING RELATIVE TO INPUT STEP

Here, —t, is the time at which the step occured, minus the time at which the last spike
occurred; t,+; is the time at which the circuit responds by emitting a spike minus the
time at which the step occurred; that is, it is the latency of the neuron. The top plot
shows the exact relationship between ¢, and t,,1 (higher curve), which I obtained by
solving Equation 8.28 numerically, and the approximate solution (lower curve) given
by Equation 8.30. The bottom plot shows the error in the approximation. This model
includes only firing-rate adaptation.
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The result is

ch — Iltn-}—l - IOtn N tn—H - tn + g_ tn+1 -
aAQr aAQr Txkn 2

where ;
2
o t —1
R3(tpsr —t,) < — (Jiﬂ___ﬁ) )

Dropping R;(-) and rearranging terms, we obtain the following quadratic equation

in tn+1 - tTL .

2
(84 (tn+1 - tn) + <TK7110 . 1) tn+1 . tn + (Il - IO)tTH—l - ch = 0.

2\ Tk, aAQr Tin aAQr

We can now solve this equation for #,,; — t,, and, use the solution to calculate ¢,,
given t,.,. First, however, we can simplify the equation by replacing aAQt with

Tk, 1k, using the defintion of Tk,,. Thus, we obtain

2
a [ther — Iy lner — tn <I1 )tn-H Qin

b e Al T n D2 -1 — -
2< Tin )“( Ten )“” )<10 Tan  Taly)

where € = Iy/Ix,, — 1. Assuming that the circuit has had time to adapt to Iy, we can

express [k, in terms of Iy using Equation 8.24, and obtain an expression for ¢ :

. vIn(1 + «)

TS (8.29)

Finally, we solve the quadratic equation and obtain

thi1 — tn e>2 2(1+¢) (1 <11 ) trat €
e S U U LG O B s _ £ 30
Tin J (5~ 7\ T ) T a (8.50)

I have replaced Qun/Tk,lo with 1/v since Tk, is equal to 7Qy, /Ip when adaptation is

complete.
Figure 8.7 compares the approximate solution with the exact solution that we
obtained by solving Equation 8.28 numerically. As you can see, the approximation is

within 2 per cent for the value of o used, which was 0.05. The other parameter values
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are Qu, = 0.1pC, Qt = 15fC, v = 40, which gave A = 5329 and € = 8.239x10~*. The
input current was stepped from Iy = 100pA to I; = 200pA, which gave Ix,, = 99.92pA,
and Tk, = 40.0ms. Thus, the interspike interval is 40ms after the circuit adapts to
the 100pA input current. If the step occurs 40ms after the last spike happened
(—t, = 40ms), the neuron responds with 0 latency, because its membrane voltage is
at the threshold. If the last spike happened earlier (—t, < 40ms), the latency will
be longer, because the neuron is further away from threshold. The latencies range
from 0 to 1ms—40 times smaller than the initial interspike interval, since v = 40 and
(I = Ip)/Ly = 1.

After the step occurs, the membrane voltage moves rapidly because all the extra
current goes to charge the membrane capacitance. The membrane voltage spends
more time on this rapid trajectory as —t, gets smaller. Hence, smaller values of —t,
map to smaller intervals on the t,, axis. This compression explains the increasing
slope of the curve as —%, gets smaller and ¢,,; gets larger. It also means that the
longer latencies are much more probable, assuming that the spikes were uniformly
distributed initially. Indeed, the probability of firing after the step goes like dt,, /dt, 1,
as I showed mathematically in Section 8.5.

The error in the approximation gets larger for large values of —t, because this
approximation essentially models the 1/(¢ + 1) decay of the potassium current with
a constant slope, as we replaced the integral of the current with a quadratic. This
linear-decay model works well if the difference between the input current and the
potassium current is large compared to the amount by which the potassium current
changes during the interspike interval—a condition that certainly holds after the step
occurs, provided Iy — Iy > Iy/7. The larger ¢, gets, the smaller ¢, gets, and the less
time we spend with a large difference between the input current and the potassium
channel current; hence, the less accurate the approximation gets.

A few sanity checks are in order at this point. When ¢,., = 0, we expect t, =

—Tx,. Equation 8.30 gives

tn \/(e)Q 2(1+¢€) ¢
Tk, o Yo o
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Solving Equation 8.29 for 1/+, and using the Taylor series approximation for the log

given in Equation 8.26, we find that

2(1+¢) (1+e)a—In(l+a)

= 2 8.31

Yo a? ’ (8:31)
2% 2R

=gk 2 (8.32)
(6 (e

Replacing R3(-) with its upper limit, substituting in the expression for ¢,, and using

a first-order Taylor series approximation for the square-root, gives

o ¢<e~+1)2 2
— — - - - —,
Tkp a 3 o’

1 «
3£41

o

~

Thus, Equation 8.30 yields —t,/Tk, close to 1 for ¢,.; = 0. The error is less than
1.640 per cent for the parameter values given; the actual error was 1.605 per cent.
The error grows as € decreases; this dependence is consistent with the argument given
in the previous paragraph.

On the other hand, when ¢, = 0, we have to set ¢, = 0 in the left-hand side of
Equation 8.30, and to solve the resulting quadratic equation to find the corresponding

value of ¢,,11. The result is

tpe1  14e (11 1 )2 201 <11 1 )
= e — = - ) 8.33
Tk, o J I 1+c¢€ +7(1+6) Ip, 1+e ( )

This value is important because it is the largest value that t,,,; can have and therefore

it determines the range over which Equation 8.30 is valid. It is also the interspike
interval immediately after the step, and therefore the firing rate of the neuron is
1/t,41. Since o/ (1 +¢€) ~ 2/, the second term in the argument for the square root

is negligible if I;/Iy — 1/(1 + €) > 2/v. In that case, we can use the first-order
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approximation for the square-root and obtain

~

Tnt1 Io 1
~ -, 8.34
TKn 11~IQ/(1+6)’)/ ( )

This estimate is reasonable because we would expect the new interspike interval to be
inversely proportional to the extra current, which is equal to I — I, = I, = I /(1 +¢),
and to be v times less than T,,, because no adaptation has taken place. We must be
careful, however: When ¢ = 0, this expression for fnﬂ gives an —t, = 0 when used
in Equation 8.30, and that result is wrong; the full-blown expression gives the right
answer.

Proceeding with the derivation, we differentiate Equation 8.30 to obtain the time
scaling factor, and we use the latter to compute the probability density function,

which is also the synchronous firing rate:

ire (L _
dt e <1 1 1
that) = ——pol(tn) = | 1 L . (835
pl( (“H) dtn—HpO( ) " \/(f_)2 e 2(1+¢€) (_1_ — (I_L — 1) tn+1> TKn ( )
\/ \e a v Io Ix,

This approximate expression for the probability density function is compared with
the exact result obtained by numerically solving and differentiating Equation 8.28 in
Figure 8.8. The error is —3 per cent or less over almost the entire range. We use
the same parameter values and a At of 0.1us to compute the derivative of the exact
solution numerically. The synchronous firing rate starts out at 526Hz, rising steadily
initially and then much more rapidly as we approach the maximum delay ¢,.;; it
reaches a maximum of 12.1KHz when t = t,,,,. Compare the synchronous firing rate

with the neuron’s firing rate immediately after the step, which is 1/, or 1KHz.

8.6.3 Effect on Latency and Synchronicity

Finally, we can write expressions for the latency, u, and the synchronicity, A, with
firing-rate adaptation. By definition, the latency is given by the delay of the peak in

the synchronous firing rate and the synchronicity is equal to the ratio between the
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Figure 8.8: FIRING PROBABILITY DISTRIBUTION

Here, t,.1 is the time at which the spike occurs relative to the input step. We
calculate the probability density function by multiplying the prior distribution by
the time-scaling factor dt, /dt, .1 obtained by differentiating the curves in Figure 8.7.
The results plotted here are for a uniform prior distribution. The values obtained
analytically from our approximate solution (Equation 8.35) and numerically from
the exact solution (Equation 8.28) are plotted in the top graph; the two curves are
virtually indistinguishable. The error is plotted in the bottom graph. This model
includes only firing-rate adaptation.
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Figure 8.9: PEAK SYNCHRONOUS FIRING RATE AND SYNCHRONICITY

The synchronous firing rate is the total instantaneous firing rate divided by the num-
ber of neurons or the number of trials; it is equal to the probability density function.
Therefore, the peak synchronous firing rate is obtained from the peak in the prob-
ability density function shown in Figure 8.8. The graph on the bottom shows the
synchronicity of the response, which is defined as the ratio of the peak synchronous
firing rate to the firing rate of the neuron immediately after the step. This model
includes only firing-rate adaptation.
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peak synchronous firing rate and the neuron’s firing rate immediately after the step.
Hence, using the approximate value for £, given by Equation 8.34 to compute 14

we have

, (8.36)

=
I

o

=

(8.37)

For the parameter values that we are using, 2/ is 5 per cent and so the approximation
Ii/Io — 1/(1 + €) > 2/~, holds for a percentage change of 25 per cent or more in the
input current. For A, we used Equation 8.30 to obtain a simpler expression for the
square-root term in the denominator, and then set ¢, = an and t,, = 0.
Substituting the approximate expression for ¢,.,/Tk, given by Equation 8.34 in
the expression for A, we obtain
1 (-1

A= + .
T(g-2) 1+2(BE-&)

We can neglect the first term if I /Ip—1/(1+¢€) > 2/+. The second term displays two
distinct behaviors. If € is zero the synchronicity increases linearly with the change in
the input current over the entire range, and the peak synchronous firing rate follows
a square law. If € is nonzero, this behavior is observed for only small changes in the
input current (i.e., I;/Ip — 1/(1 + €) < «/evy). For large changes, the synchronicity
plateaus at (1 +¢) /ey, and the peak synchronous firing rate changes linearly. For the
parameter values that we are using, the transition occurs at 31.9 per cent, and the
synchronicity attains a maximum value of 30.4.

The dependencies of the peak synchronous firing rate and the synchronicity of the
response on the step amplitude are shown in Figure 8.9 for the same parameter values
given previously. As expected, the peak synchronous firing rate follows a square-law
for changes less than 30 per cent and then becomes linear for larger changes. Hence,

the synchronicity increases initially, and then plateaus.
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Compared to the integrate-and-fire neuron, the adaptive neuron with potassium-
dependent calcium chanmnels displays much shorter latencies and much higher syn-
chronicities. For a 100-per-cent change in the input, the latency is v times less
than the interspike interval before the step, compared with only 4 times less for the
integrate-and-fire neuron. It is a factor of 4 for the integrate-and-fire neuron because
the latency is one-half of the interspike interval after the step increase in the input
current. And the interspike interval after the step is, in turn, half the interspike in-
terval before the step, since the current has doubled. Since v can be much larger than
4 if extremely small values of « are acceptable (remember that v < 2/« if the circuit
operates in regime 2), the adaptive neuron can have much shorter latencies that the
integrate-and-fire neuron. The synchronicity is also much higher for the adaptive
neuron because longer delays are much more probable. For a 100-per-cent change in
the input, the synchronicity is approximately 1/« for ¢ < /7. In this case as well

we can obtain high synchronicities if we use small values of a.

8.7 Test Results

In this section, I present measurements from the adaptive neuron circuit, with and
without membrane—time-constant adaptation. To turn off time-constant adaptation,
I inserted a device in series with the integrator’s output transistor, between the drain
of the output device and the membrane-voltage node (see Figure 8.2). By operating
this device as a current buffer (also called a cascode), I could isolate the membrane-
voltage node from the calcium-integration node, and could thus turn off time-constant
adaptation. By turning on this device hard, I could short the drain of the output
device to Viem, and could thus turn on time constant adaptation.

Figures 8.10 and 8.11 show the response of the adaptive neuron to a step change in
input current, with and without membrane-time-constant adaptation, respectively.
These figures demonstrate the integration of current pulses by the diode-capacitor
integrator, and the progressive reduction in spike frequency, as the integrator’s output

current increases. When time-constant adaptation is turned on, the spike frequency
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Figure 8.10: ADAPTIVE NEURON’S STEP RESPONSE 1
Top: The neuron’s input current and the integrator’s output current. Middle: The
neuron’s membrane voltage ramping up between the reset (1.5V) and threshold levels
(2.2V). The difference between the input current and the integrator’s output ramps up
the membrane voltage as the excess current charges the input capacitance. Bottom:
The neuron’s spike train. A spike is generated each time that the membrane voltage
reaches threshold, and the membrane voltage is reset immediately afterward. Time-

constant adaptation was turned off.
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Figure 8.11: ADAPTIVE NEURON’S STEP RESPONSE 2

This figure shows traces of the input current (top), the integrator’s output current
(top), the membrane voltage (middle), and the spike train (bottom), it is just like
Figure 8.10, except that membrane-time-constant adaptation was turned on. The
membrane voltage increases rapidly immediately after it is reset, and another spike is
generated immediately if there is excess input current. Thus, a clump of spikes is gen-
erated in response to the step, and the circuit adapts more abruptly. In steady state,
when there is no excess current, the membrane voltage homes in on the threshold
slowly.
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Figure 8.12: ADAPTIVE NEURON’S LATENCY AND SYNCHRONICITY 1

I measured the distribution of latencies by performing 1000 trials and plotting a
histogram of the results. There are 80 bins, each of size 33.3us; the longest latency
is 2.63ms. The spikes are distributed more or less uniformly, with a slight tendency
toward shorter latencies. For a uniform distribution, each bin would have 12.5 spikes.
The mean latency was roughly 1.3ms and the synchronicity was close to 1. Membrane—
time-constant adaptation was turned off.

decreases abruptly.

Figures 8.12 and 8.13 show the distribution of latencies for the adaptive neu-
ron, with and without membrane-time-constant adaptation, respectively. These fig-
ures demostrate that spikes are more or less uniformly distributed when only spike-
frequency adaptation is present, and the distribution is skewed heavily toward shorter
latencies when both spike-frequency and time-constant adaptation are present. In the
former case, the bias toward longer latencies predicted by the theory (see Figure 8.8)
is not evident in the data. There are two reasons for this discrepancy: (1) the large
bins that I used tend to smear out sharp peaks; and (2) the current buffer does not
completely eliminate capacitive coupling between the membrane-voltage node and

the calcium-integration node, so there is residual time-constant adaptation. This
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Figure 8.13: ADAPTIVE NEURON’S LATENCY AND SYNCHRONICITY 2

(a) The distribution of latencies with time-constant adaptation turned on. (b) The
distribution around the peak. I performed 1000 trials, and I distributed the results
among 700 bins, each of size 2us; the longest latency was 1.4ms. Each bin would
have 1.43 spikes if the spikes were distributed uniformly. However, the distribution
is skewed heavily toward extremely short latencies. The latency of the peak is 6us,
and the synchronicity is 39.4.
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conclusion is supported by the progressive decrease in slope in the membrane voltage
trajectories (see Figure 8.10). To model the behavior accurately, we need a complete

theory that includes time-constant adaptation

8.8 Discussion

I proposed and studied a simple adaptive spiking neuron circuit in this chapter. I
introduced three simple circuit elements to model the biophysics of voltage- and

calcium-dependent potassium channels:

1. A diode-capacitor integrator models the accumulation and buffering of intracel-

lular calcium.

2. Capacitive coupling between the membrane-voltage node and the calcium-integration

node models the fast voltage dependence of the potassium channels.

3. A single transistor, with its gate tied to the calcium-integration node models

the potassium-channel population.

I analyzed the effects of these mechanisms, with emphasis on spike timing, and
compared my theoretical predictions with experimental measurements. I character-
ized spike-timing precision by measuring how much time the neuron takes to respond
to a step change in its input by firing a spike. I measured the distribution of these
firing times over several trials, and defined the latency as the position of the peak in
the distribution, and the synchronicity as the height of the peak, normalized by the
height of the uniform distribution. For the same average steady-state firing rate, the
calcium dependence and the voltage dependence of the potassium channels improved
the adaptive neuron’s latency and synchroncity, compared with a simple integrate-
and-fire model.

Calcium-dependent potassium channels improved latency by attenuating the steady-
state firing rate, which could be over 40 times less than the firing rate immediately

after the step. With the shorter interspike intervals immediately after the step, we
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achieved shorter latencies without paying the price of a corresponding increase in
steady-state firing rate. The calcium dependence had no effect on synchronicity, since
1t more or less preserved the uniform firing-probability distribution of the integrate-
and-fire neuron.

Adding voltage-dependence improved synchronicity as well as latency by repo-
larizing the membrane rapidly, such that the membrane voltage was just shy of the
threshold voltage most of the time. The high likelihood of finding the membrane
voltage just below threshold reshaped the firing-probability distribution, skewing it
heavily toward shorter latencies. As a result, the mean latency dropped from 0.7ms
to 6us, and the synchronicity shot up from 1 to 39.

These results call into question several common notions about how neurons encode
information. Neurobiologists generally believe that the mean firing rate is a valid
measure of the efficacy of a neuron in producing a response in its target. Furthermore,
if the target neuron listens to several neurons, they obtain the net effect by summing
their mean firing rates. For such linear summation to be valid, the postsynaptic
neuron must smooth out fluctuations in firing rates, or the presynaptic neurons must
fire at uniform rates and in an uncorrelated fashion. My measurements invalidate
both assumptions, and are in agreement with more recent physiological studies [3].

First, neurons are exquisitely sensitive to small changes in their input, and can
generate a spike in response to these changes in less than 1 millisecond. Consequently,
instead of smoothing out variations in their inputs, they amplify these variations.

Second, the latencies are much shorter than the interspike interval, and so the
instantaneous firing rate that the target neuron observes when several spike trains
converge in its dendritic tree may be much higher than you would expect from simply
summing the individual rates. For example, if the presynaptic neurons fire once every
10ms, on average, but all the spikes happen to occur during the first 1ms, then the
instantaneous rate will be 10 times higher. In fact, the synchronicity tells us exactly
how many times higher the instaneous firing rate is than the rate obtained by linear

summation.
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Neurons can use synchronicity to amplifiy their firing rates. We overlook this

mechanism completely when we use mean firing rates and ignore spike timing.
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Chapter 9 Neuromorphic VLSI: A
Retina on a Chip

In this final chapter, I describe a retinomorphic vision chip that uses neurobiological

principles to perform all four major operations found in biological retinae:
1. Continuous sensing for detection

2. Local automatic gain control for amplification

w

. Spatiotemporal bandpass filtering for preprocessing
4. Adaptive sampling for quantization

All four operations are performed right on the focal plane, at the pixel level.

The first—and only—attempt to integrate these four operations was made by
Misha Mahowald. The pixel that she designed, which is described in her monograph
[4], used continuous sensing for detection, logarithmic compression for amplification,
temporal highpass filtering for preprocessing, and a simple integrate-and-fire neuron
for quantization. My work improves on, and extends, Mahowald’s pioneering research

in three ways:

1. By using local gain control for amplification, I extend the dynamic range without
sacrificing sensitivity; logarithmic compression, in contrast, trades sensitivity for

dynamic range.

2. By using a spatiotemporal bandpass for preprocessing, I cut out wideband spa-
tial and temporal noise; highpass filtering, in contrast, amplifies high-frequency

signals with poor signal-to-noise ratios.

3. By using an adaptive neuron for quantization, I increase the sampling rate—

and reduce the latency—without increasing the average firing rate; a simple
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Pixel-Level Operations Pixels  Area (um?) L(um) Area (L?) Devices
Detection (CCD [97]) 962 x 654 5.05 x 5.55 — — 1
Amplification (CMD [136]) 660 x 492 7.3 x 7.6  0.4* 85.5 1
Amplification (APS [98]) 256 x 256 2020 0.9 492.8 5
Filtering and LAGC [131] 230 x 210 39.6 x 43.8 1.2 1204.5 12
Quantization (Z-A [105]) 64 x 64 60 x 60 1.2 2500 22
Quantization (PFM [137])  10x 10  104x 104 1.6 4225 17
Retinomorphic 64 x 64 106 x 98 2.0 2597 32

Table 9.1: TRENDS IN IMAGER DESIGN
L is the minimum gate length. CCD - charge-coupled device; CMD - charge-
modulation device; APS — active pixel sensing; LAGC - local automatic gain control;
¥-A - sigma-delta modulation; PFM - pulse-frequency modulation. *Estimated.

integrate-and-fire neuron, in contrast, must maintain a high steady-state firing

rate to sample high-frequency signals.

Like Mahowald’s chip, my retinomorphic chip includes a random-access time-
division multiplexed communication channel that reads out asynchronous pulse trains
from a 64- x 64-pixel array in the imager chip. The communication channel transmits
these spike trains to corresponding locations on a second chip that has a 64 x 64 array

of integrators. Both chips are fully functional.

9.1 Smart-Pixel Arrays

The primary difference between retinomorphic imagers and conventional ones is that
they perform—at the pixel level—all four operations listed in the introduction. The
migration of more sophisticated signal processing down to the pixel level is driven by
shrinking feature sizes in CMOS technology, which allows higher levels of integration
to be achieved. The representative examples listed in Table 9.1 illustrate this trend;
the pixel area, normalized by the square of the minimum gate length, is plotted versus
the number of transistors in Figure 9.1.

If this trend continues as the feature sizes shrink, it will be possible to design

pixels with 10 transistors that are 13 um per side, and pixels with 35 transistors that
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Figure 9.1: SCALING OF PIXEL AREA

The pixel area is more or less proportional to transistor count. The points plotted are
for the imagers listed in Table 9.1; the line is a linear-regression fit. The fit indicates
that the pixel area increases by 115L? for each additional transistor. Area is measured
in units of the minimum gate length (L) squared.

are 25 pm per side, in a 0.4 um process. As the size of the active devices becomes
small compared to the sensor area—which is typically about 5 pm per side—it will
become cost effective to shrink the detector area and to use lenselet arrays to focus the
light [138], freeing up that area for additional image-processing functions. Shrinking
the sensor along with the active devices would enable the scaling trend to continue
unabated. Hence, it should be feasible to build a 730- x 730-pixel imager with 10
transistors per pixel, or a 380- x 380-pixel imager with 35 transistors per pixel, on a
lem square die, with just over 5 million transistors in today’s state-of-the-art 0.4pum
CMOS process. In comparison, the human fovea has only about 200 x 200 cones, but
the density is much higher: these cones occupy an area of just 0.6 mm x 0.6 mm!

It has been clear for over 20 years that, given the rate at which feature sizes
are shrinking, CMOS technology will give us many more transistors than we know
what to do with [139, 140]. At present, we are on the verge of the billion-transistor
1Gb DRAM chip, and there is a dire need for new pixel-parallel architectures to
take advantage of the increasing numbers of transistors available [141]. T describe a

retinomorphic vision system that addresses this need by mimicking biological sensory
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Figure 9.2: RETINOMORPHIC SYSTEM CONCEPT

The retinomorphic chip acquires, amplifies, filters, and quantizes the image. All these
operations are performed at the pixel level. The interchip communication channel
reads out asynchronous digital pulses from the pixels by transmitting the location of
pulses as they occur. A second neuromorphic chip decodes these address events, and
recreates the pulses.

systems. My work was inspired by the pioneering work of Mahowald and Mead [142].

In particular, the retinomorphic approach uses the system architecture and
neurocircuitry of the nervous system as a blueprint for building integrated, low-level,
vision systems—systems that are retinomorphic in a literal sense. Morphing of bio-
logical wetware into silicon-based hardware results in sensory systems that maximize
information uptake from the environment, while minimizing redundancy in their out-
put; that achieve high levels of integration, by performing several functions within
the same structure; and that offer robust system-level performance, by distributing
computation across several pixels.

The retinomorphic system described in this chapter consists of two chips: a focal-
plane image processor and a postprocessor with a two-dimensional array of integra-
tors. The system concept is shown in Figure 9.2. Both chips are fully functional;
specifications and die photos are shown in Table 9.2 and in Figure 9.3. 1 describe the
retinomorphic pixel design in Section 9.2, and present test results from the complete
two-chip neuromorphic system in Section 9.3. The communication channel used to
transmit the pulse trains from chip to chip is described in detail a forthcoming paper;

brief descriptions aee already available [7, 143]. My concluding remarks are presented
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Figure 9.3: DIE MICROGRAPHS OF RETINOMORPHIC FOCAL-PLANE PROCESSOR
AND POSTPROCESSOR

(a) Retinomorphic focal-plane processor. The core of this chip is a 64 x 64 array
of pixels arranged on a hexagonal grid. Pixels generate pulses and communicate
the occurence of these pulses by signalling on the column and row request lines. The
arbiters ensure that pulses are read out of the array one by one, in an orderly manner,
by selecting one pixel at a time with the column and row select lines. The encoders
generate the addresses of the selected row and column; this pair of binary words
uniquely identifies the location of the pulse. (b) Postprocessor. The core of this chip
is a 64 x 64 array of diode-capacitor integrators. We can feed short current pulses to
any integrator in the array by supplying its row and column addresses to the decoders.
We use the scanners (shift registers) to read out analog currents from the array for
display on a video monitor.

in Section 9.4.

9.2 A Retinomorphic Pixel

I designed the pixel circuit shown in Figure 9.4 using the retinomorphic approach;
it senses, amplifies, filters, and quantizes the visual signal. In general terms, this
retinomorphic pixel operates as follows.

The transducer is a vertical bipolar transistor; its emitter current is proportional

to the incident-light intensity [99]. Two current-spreading networks [5, 132, 129, 128]
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Figure 9.4: RETINOMORPHIC PIXEL

The OPL (outer-plexiform-layer) circuit performs spatiotemporal bandpass filtering
and local automatic gain control using two current-spreading networks. It receives
input the bipolar phototransistor tied to node VO, which produces a current that
is proportional to the light intensity. Nodes V0 and WO are connected to their six
nearest neighbors on a hexagonal grid by the delta-connected transistors, as shown in
Figure 9.5. The outer-plexiform-layer circuit’s output current is converted to pulse
frequency by the pulse generator. The logic circuit communicates the occurrence of a
pulse (Vspk) to the chip periphery using the row and column request and select lines
(Ry/Ay and Rx/Ax), turns on Ireset to terminate the pulse, and takes Vadapt low,
to feed a current pulse to the integrator; the logic circuit is described elsewhere [7,
143]. The integrator’s output current (IK) is subtracted from the input to the pulse
generator; the device in series with the integrator’s output, whose gate is tied to a
fixed bias Vreset, is used to isolate the integrator from the rapid volatges swings that
occur at Vmem when the membrane voltage is reset after a spike occurs. The two
series-connected transistors on the right are used to scan out the integrator’s output
for display on a video monitor.
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Figure 9.5: TILING HEXAGONAL GRIDS
(a) Star elements. (b) Delta elements. The star-based network requires wires running
along three axes, whereas the delta-based network used in the retinomorphic pixel
requires wires running along only two axes. Thus, the delta-based hexagonal grid is
no more complicated than is the more traditional square grid, and yet it achieves a
33-percent improvement in peak sampling frequency, for pixels of equal area.
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diffuse the photocurrent signals over time and space, as described in Chapter 6.
The first layer (node V0) excites the second layer (node WO0), which reciprocates
by inhibiting the first layer. The result is a spatiotemporally bandpass-filtered im-
age [109, 107, 144}, as described in Chapters 4 and 7. The second layer computes
a measure of the local light intensity, and feeds back this information to the input
layer, where the intensity information is used to control light sensitivity. The result
is local automatic gain control [5], as described in Chapter 7.

A pulse generator converts current from the excitatory layer into pulse frequency.
The diode-capacitor integrator computes a current that is proportional to the short-
term average of the pulse frequency; this current is subtracted from the pulse gen-
erator’s input. The difference becomes larger as the input changes more rapidly, so
pulses are fired more frequently. Hence, the more rapidly the input changes, the
more rapidly the pulse generator fires. The result is adaptive quantization in time,
as described in Chapter 8.

Adding a charge quantum to the integration capacitor produces a multiplicative
change in current—due to the exponential current-voltage relation in subthreshold.
Hence, the larger the current level, the larger the step size. The result is adaptive
quantization in amplitude, as described in Chapter 8. I also use the diode-capacitor
integrator in the postprocessor to integrate the pulses, and to reconstruct the current

level that was encoded into pulse frequency.

9.3 Overall System Performance

The images shown in Figure 9.6 demonstrate the effects of bandpass filtering and
of local automatic gain control. These data are from the OPL (outer plexiform
layer) chip described in [5]; images of the same scenes acquired with a CCD camera

are included for comparison [100].! Bandpass filtering removes gradual changes in

'CCD camera specifications: COHU Solid State RS170 Camera (142320), auto iris, gamma
factor enabled, 512 x 480 pixels, 8-bit gray-level outputs. Lens specifications: COSMICAR TV
lens, ES 50mm, 1:1.8. This comparison, and the face-recognition studies, were done in collaboration
with Frank Eeckman, Joachim Buhman, and Martin Lades of the Lawrence Livermore National
Laboratories, Livermore, California.
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Figure 9.6: CCD CAMERA VERSUS RETINOMORPHIC IMAGER

The CCD camera (top row) has global automatic gain control (AGC), whereas the
retinomorphic imager (bottom row) has local AGC and performs bandpass filtering.
Three different lighting conditions are shown: Light source on both sides of the
subject, to the left, and to the right.
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intensity and enhances edges and curved surfaces. It also reduces the variance of the
amplitude distribution by mapping uniform areas to the center of the output range
(gray level). Local AGC extends the dynamic range by boosting the gain in the dark
parts of the scene. Thus, the retinomorphic chip picks up information in the shadows,
whereas the output of the CCD camera is zero throughout that region.

Unfortunately, the retinomorphic chip’s output is noisier in the darker parts of the
image, due to the space constant decreasing with increasing gain. When the space
constant decreases, wideband salt-and-pepper noise is no longer attenuated, because
the cutoff frequency shifts upward. This noise arises from the poor matching among
the small (4L x 3.5L; where L, the minimum feature size, is 2um) transistors used,
which dominates shot noise in the photon flux at the intensity levels that I used.
Nevertheless, when the retinomorphic imager replaced the CCD as the front-end of
a face-recognition system, the 90- x 90-pixel OPL chip improved the recognition
rate from 72.5 percent to 96.3 percent, with 5 percent false positives, under variable
illumination [100].

The output of the postprocessor—after image acquisition, analog preprocessing,
quantization, interchip communication, and integration of charge packets in the re-
ceiver’s diode-capacitor integrators—is shown in Figure 9.7. The sparseness of the
output representation is evident.

When the windmill moves, neurons at locations where the intensity is increasing
(white region invading black) become active; hence, the leading edges of the white
vanes are more prominent. These neurons fire more rapidly as the speed increases
because they are driven by the temporal derivative. The time constant of the receiver’s
diode-capacitor integrator is intentionally set shorter than that of the sender, so
temporal integration occurs at only high spike rates. This mismatch attenuates low-
frequency information, and results in an overall highpass frequency response that
eliminates the fixed-pattern noise and enhances the imager’s response to motion.
The mean spike rate was 30Hz per pixel, and the two-chip system dissipated 190mW

at this spike rate.
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Figure 9.7: VIDEO FROM POSTPROCESSOR CHIP

These video frames were culled from a sequence showing real-time temporal inte-
gration of pulses by the postprocessor chip. A rotating windmill pattern (left) was
presented to the retinomorphic chip. The response of the postprocessor was captured
for slow (middle) and fast (right) rates of counterclockwise rotation.

9.4 Discussion

I have described the performance of a retinomorphic imager. This VLSI chip embodies
four principles of retinal operation.

First, the imager adapts its gain locally to extend its input dynamic range without
decreasing its sensitivity. The gain is set to be inversely proportional to the local
intensity, discounting gradual changes in intensity and producing an output that is
proportional to contrast [5]. This adaptation is effective because lighting intensity
varies by six decades from high noon to twilight, whereas contrast varies by at most
a factor of 20 [6].

Second, the imager bandpass filters the spatiotemporal visual signal to attenu-
ate low-frequency spatial and temporal signals, and to reject wideband noise. The
increase in gain with frequency, for frequencies below the peak, matches the 1/
decrease in power with frequency for natural image spectra, resulting in a flat output
power spectrum. This filtering improves information coding efficiency by reducing
correlations between neighboring samples in space and time. It also reduces the
variance of the output, and makes the distribution of activity sparse.

Third, the imager adapts its sampling rate locally to minimize redundant sampling

of low-frequency temporal signals. In the face of limited communication resources
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and energy, this sampling-rate adaptation has the additional benefit of freeing up the
bandwidth of the communication channel, which is dynamically reallocated to active
pixels, allowing higher peak sampling rates and shorter latencies to be achieved [7].

Fourth, the imager adapts its step size locally to trade resolution at high con-
trast levels, which rarely occur, for resolution at low contrast levels, which are much
more common. The proportional step size in the adaptive neuron, which results in
a logarithmic transfer function, matches an exponentially decaying amplitude prob-
ability density, making all quantization intervals equiprobable. Hence, it maximizes
the expected number of signals that can be discriminated, given their probability of
occurrence.

For independent samples, information is linearly proportional to bandwidth, and
is logarithmically proportional to the signal-to-noise ratio [8]. We increase bandwidth
by making the receptors smaller and faster, so that they can sample more frequently in
space and time. As an unavoidable consequence, they integrate over a smaller volume
of space-time, and therefore the signal-to-noise ratio degrades. There is therefore a
reciprocal relationship between bandwidth and noise power (variance) [9]. Since their
goal is to maximize information, biological sensory systems aggressively trade off
signal-to-noise ratio for bandwidth, operating at ratios close to unity [10, 9].

With this optimization principle in mind, I have proposed compact circuit designs
that realize local AGC, bandpass filtering, and adaptive quantization at the pixel
level. The overriding design constraints are to whiten the signal, thus making samples
independent; to minimize the pixel size, and capacitance, thus making sampling more
dense and more rapid; and to minimize power consumption, thus making it possible to
- acheive very large-scale integration. Hence, all circuits use minimal-area devices and
operate in subthreshold, where the transconductance per unit current is maximum.

I realized extremely compact and robust implementations by modeling these cir-
cuits closely after their biological counterparts [5, 11}, thus reproducing their structure
as well as their function.

In earlier chapters, I described and analyzed three limitations faced by these simple

circuit designs:
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1. Attenuating low frequencies by using a high-gain receptor-to-HC synapse (ratio
of gne/gno = 1/ep) results in temporal instability. To break this tradeoff, we

must regulate the gain dynamically.

2. Controlling the gain by changing the receptor-to-receptor coupling strength
compromises the receptive field size. To decouple these parameters, we must
change one of the synaptic strengths (transconductances, g., or gp.) propor-

tionally.

3. Attenuating the firing rate by using an integrator with a long time constant re-
sults in extremely slow adaptation, because we must use a small charge quantum
to avoid sending the integrator’s output above the input level. To adapt more

rapidly, and fire fewer spikes in the process, we must adapt the time-constant.?

9.5 Conclusions

Taking inspiration from biology, I have described an approach to building machine-
vision systems that perform sophisticated signal processing at the pixel level. These
retinomorphic systems are adaptive to their inputs, and thereby maximize their
information-gathering capacity and minimize redundant information in their output
data stream.

Their optimization principles are radically different from those that drive the
design of conventional video cameras. Video cameras are designed to reproduce any
arbitrary image to within a certain worst-case error tolerance, whereas biological
systems exploit the statistical properties of natural spatiotemporal signals, giving up
worst-case performance to get better average-case performance.

Optimizing average-case performance maximizes the discrimination ability of bi-

ological systems. Consequently, biomorphic systems promise superior solutions for

2The adaptive neuron’s membrane time-constant adaptation mechanism was turned off for the
system experiments because it made the neurons highly sensitive to transitions on the row and
column lines. We must isolate the analog circuits well before we can take advantage of time-constant
adaptation.
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human-made systems that perform perceptive tasks—such as face recognition and

object tracking—energy efficiently.
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Specification Imager Postprocessor
Technology 2-pm 2-poly 2-metal p-well
Number of pixels 64 x 64

Pixel size (L?) 53 x 49 31.5 x 23
Transistors/pixel 32 8

Die size (mm?) 8.1 x 7.4 5.1 x 4.0
Supply 5V
Dissipation (0.2 MS/s) 230 mW (total)
Throughput 2 MS/s

Table 9.2: SPECIFICATIONS OF TwoO-CHIP RETINOMORPHIC SYSTEM
L is the minimum feature size, which was 2um for this process; S/s is samples per
second.



220

Bibliography

[1]

2]

[3]

[4]

D. E. Goldman. Potential, impedance, and rectification in membranes. J. Gen.

Physiol., 1943.

A. L. Hodgkin and B. Katz. The effect of sodium ions on the electrical activity
of the giant axon of the squid. J. Physiol., 1949.

Z. F. Mainen and T. J. Sejnowski. Relaibility of spike generation in neocortical

neurons. Science, 268:1503-1506, 1995.

M Mahowald. An Analog VLSI Stereoscopic Vision System. Kluwer Academic
Pub., Boston, MA, 1994.

K Boahen and A Andreou. A contrast-sensitive retina with reciprocal synapses.
In J E Moody, editor, Advances in Neural Information Processing, volume 4,

San Mateo CA, 1991. Morgan Kaufman.

W A Richards. A lightness scale for image intensity. Appl. Opt., 21:2569-2582,
1982.

K. A. Boahen. Retinomorphic vision systems ii: Communication channel design.
In ISCAS 96: IEEE Int. Symp. Circ. & Sys, volume Supplement, pages 14-17,
Piscataway, NJ, May 1996. IEEE Circ. & Sys. Soc., IEEE Press.

C E Shannon and W Weaver. The Mathematical Theory of Communication.
Univ. Illinois Press, Urbana IL, 1949.

R S Softky. Fine analog coding minimizes information transmission. Neural

Networks, 8(5), 1995.

R R de Ruyter van Steveninck. The rate of information transfer at graded-

potential synapses. Nature, 379:642-645, Feb 1996.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

221
Kwabena A Boahen. The adaptive neuron and the diode-capacitor integrator.

In preparation.

D.A. Baylor, T.D. Lamb, and K.W. Yau. Responses of retinal rods to single
photons. J. Physiol., 288:613-634, 1979.

D.A. Baylor, B.J. Nunn, and J.L. Schnapf. The photocurrent, noise, and spec-
tral sensitivity of rods of the monkey macaca fascicularis. J. Physiol., 357:575~

607, 1984.

J.L. Schnapf and D.A. Baylor. How photoreceptor cells respond to light. Sei.
American., 256:40-47, 1987.

R. Shapley and C. Enroth-Cugell. Visual adaptation and retinal gain controls.
In N. Osborne and G. Chader, editors, Progress in Retinal Research, Vol. 3,
pages 263-346. Pergamon Press: Oxford, 1984.

D. Trachina, J. Sneyd, and I.D. Cadenas. Light adaptation in turtle cones:
Testing and analysis of a model of phototransduction. Biophys. J., 60:217-237,
1991.

R. Shapley, E. Kaplan, and Purpura P. Contrast sensitivity and light adaptation
in photoreceptors or in the retinal network. In R. Shapley and D.M. Lam,
editors, Contrast Sensitivity, pages 103-116. The MIT Press: Cambridge MA,
1993.

H.B. Barlow. Dark and light adaptation: Psychopysics. In D. Jameson and
L.M. Hurvich, editors, Handbook of Sensory Physiology, Vol. I1/4: Visual Psy-
chophysics, pages 1-28. Springler-Verlag: Berlin, 1972.

H.R. Blackwell. Contrast threshold of the human eye. J. Opt. Soc. Am., 36:624—
643, 1946.



222
[20] P. Sterling, E. Cohen, M. Freed, and R.G Smith. Microcircuitry of the on-

beta ganglion cell in daylight, twilight, and starlight. Neurosci. Res. (Suppl.),
6:269-285, 1987.

[21] D. C. Burr. Motion smear. Nature, 284:164-165, 1980.

[22] G. Westheimer and S. P. McKee. Perception of temporal order in adjacent
visual stimuli. Vision Res., 17:887-892, 1977.

[23] M. Fahle. Figure-ground discrimination from temporal information. Proc. R.

Soc. Lond. B, 254:199-203, 1993.

[24] C. Enroth-Cugell and J.G. Robson. The contrast sensitivity of the retinal gan-
glion cells of the cat. J. Physiol., 187:517-552, 1966.

[25] B.B. Boycott and H. Wissle. The morphological types of ganglion cells of the
domestic cat’s retina. J. Physiol., 240:397-419, 1974.

[26] A.G. Leventhal, R.W. Rodieck, and B. Dreher. Retinal ganglion cell classes
in cat and old world monkey: Morphology and central projections. Science,

213:1139-1142, 1981.

[27] J.E. Dowling. The retina: an approachable part of the brain. Harvard University
Press, Cambridge, MA, 1987.

[28] D.M. O’Malley and R.H. Masland. Co-release of acetylcholine and gaba by a
retinal neuron. Invest. Opthalmol. (Suppl), 29:273~, 1988.

[29] J.E. Dowling. Retinal neuromodulation: The role of dopamine. Vis. Neurosci.,

7:87-97, 1991.

[30] E.C.G.M Hampson, D.I. Vaney, and R. Weiler. Dopaminaergic modulation
of gap junction permeability between amacrine cells in mammalian retina. .J.

Neurosci., 12:4911-4922, 1992.

131] R.W. Rodieck. The primate retina. Comp. Primate Biol., 4:203-278, 1988.



[32]

[36]

[37]

[38]

[39]

[40]

223
H. Kolb. Organization of the outer plexiform layer of the primate retina: Elec-

tron microscopy of golgi impregnated cells. Phil. Trans. R. Soc. Lond. (Biol.),
258:261-283, 1970.

R. Nelson, A.V. Liitzow, H. Kolb, and P. Gouras. Horizontal cells in the cat
retina with independent dendritic systems. Science, 189:137-139, 1975.

K.W. Stell. Horizontal cell axons and axon terminals in goldfish retina. J.

Compar. Neurol., 159:503-520, 1975.

K.W. Stell and D.O. Lightfoot. Color-specific interconnections of cones and
horizontal cells in the retina of the goldfish. J. Compar. Neurol., 159:503-520,
1975.

H. Spekreijse and A.L. Norton. The dynamic characteristics of color-coded

s-potentials. J. Gen. Physiol., 56:1-15, 1970.

S.R. Cajal. La retina des vertébrés. In R.-W Rodieck’s The vertebrate retina [55],
1893.

J.L. Polyak. The Retina. Univ. Chicago Press: Chicago, 1941.

H. Kolb, B.B. Boycott, and J.E. Dowling. A second type of midget bipolar in
the primate retina. Phil. Trans. R. Soc. Lond. (Biol.), 255:177-184, 1969.

H. Vongersdorff, E. Vardi, G. Matthews, and P. Sterling. Evidence that vesi-
cles on the synaptic ribbon of retinal bipolar neurons can be rapidly released.

Neuron, 16(6):1221-1227, 1996.

R. Raomirotznik, A.B. Harkins, G. Buchsbaum, and P. Sterling. Mammalian

rod terminal — architecture of a binary synapse. Neuron, 14(3):561-569, 1995.

E. Raviola and N.B. Gilula. Intramembrane organization of specialized contacts

in the outer plexiform of the retina. J. Cell Biol., 65:192-222, 1975.



[43]

[44]

[45]

[46]

[47]

[48]

[50]

[51]

224
D.I. Vaney. Patterns of neuronal coupling in the retina. In N. Osbourne and

G. Chader, editors, Progress in Retinal and Eye Research, volume 13, chap-
ter 12, pages 301-355. Pergamon Press, Oxford, 1994.

S.W. Kuffler. Discharge patterns and functional organization of mammalian

retina. J. Neurophysiol., 16:37-68, 1953.

R.W. Rodieck. Quantitative analysis of cat retinal ganglion cell response to

visual stimuli. Vision Res., 5:583-601, 1965.

H. Kolb. The morphology of the bipolar cells, amacrine cells and ganglion cells
in the retina of the turtle pseudemys scripta elegans. Phil. Trans. R. Soc. Lond.

(Biol.), 298:355-393, 1982.

H. Kolb, I. Perlman, and R. A. Normann. Neural organization of the reina of
the turtle mauremys caspica: a light microscope and golgi study. Vis. Neurosci.,

1:47-72, 1988,

H.J. Wagner and E. Wagner. Amacrine cells in the retina of a teleost fish,
the roach (rutilus rutilus): A golgi study on differentiation and layering. Phil.
Trans. R. Soc. Lond.(Biol.), 321:263-324, 1988.

J. Ammermiiller and R. Weller. Correlation between electrophysiological re-
sponses and morphological classes of turtle amacrine cells. In R. Weiler and
N.N. Osborne, editors, Neurobiology of the Inner Retina, volume H31 of NATO
ASI, pages 117-132. Springler-Verlag, Berling, 1989.

D.I. Vaney. The mosaic of amacrine cells in the mammalian retina. In N.N.
Osbourne and G.J. Chader, editors, Progress in Retinal Research, volume 9,

chapter 2, pages 49-100. Pergamon Press, Oxford, 1990.

B.G. Cleland and W.R. Levick. Brisk and sluggish concentrically organized
ganglion cells in the cat’s retina. J. Physiol., 240:421-456, 1974.



[52]

[53]

[54]

[57]

[58]

[60]

[61]

225
B.G. Cleland and W.R. Levick. Properties of rarely encountered types of gan-

glion cells in the cat’s retina and an overall classification. J. Physiol., 240:457—

492, 1974.

J. Stone and Y. Fukuda. Properties of cat retina ganglion cells: A comparision

of w-cells with x- and y-cells. J. Neurophysiol., 37:722-748, 1974.

J.H. Caldwell, N.W. Daw, and H.J. Wyatt. Effects of picrotoxin and strychnine
on rabbit retinal ganglion cells: lateral interactions for cells with more complex

receptive fields. J. Physiol., 276:277-298, 1978.

R.W. Rodieck. The vertebrate retina: Principles of structure and function.

W.H. Freeman: San Francisco, 1973.

G.D. Guiloff, J. Jones, and H. Kolb. Organization of the inner plexiform layer
of the turtle: An electron microscopic study. J. Comp. Neurol., 272:280-292,
1988.

E.V.Jr. Famiglietti and H. Kolb. Structural basis of ON- and OFF-center re-

sponses in retinal ganglion cells. Science, 194:193-195, 1976.

R. Nelson, Famiglietti. E.V.Jr., and H. Kolb. Intracellular staining reveals the
different levels of stratification for on- and off-center ganglion cells in cat retina.

J. Neurophysiol., 41:472-483, 1978.

E.V.Jr. Famiglietti, A. Kaneko, and M. Tachibana. Neuronal architecture of on
and off pathways to ganglion cells in the carp retina. Science, 198:1267-1269,
1977.

R. Nelson and H. Kolb. Synaptic patterns and response properties of bipolar
and ganglion cells in the cat. Vis. Res., 23:1183-1195, 1983.

E.V. Famiglietti and H. Kolb. A bistratified amacrine cell and synaptic circuitry
in the inner plexiform layer of the retina. Brain Res., 84:293-300, 1975.



226
[62] H. Kolb and R. Nelson. Functional neurocircuitry of amacrine cells in the cat

retina. In A. Gallego and P. Gouras, editors, Neurocircuitry of the Retina: A

Cajal Memorial, pages 215-232. Elsevier, New York, 1985.

[63] E. Strettoi, E. Raviola, and R.F. Dacheux. Synaptic connections of the narrow-
field, bistratified rod amacrine cell (aii) in the rabbit retina. J. Comp. Neurol.,

325:152-168, 1992.

[64] J.E. Dowling and B.B. Boycott. Organization of the primate retina: Electron
microscopy. Pro. R. Soc. Lond. (Biol.), 166:80-111, 1966.

[65] J. Ritcher and S. Ullman. A model for the temporal organization of x- and

y-type receptive fields in the primate retina. Biol. Cybern., 43:127-145, 1982.

[66] G. Maguire, P. Lukasiewicz, and F. Werblin. Amacrine cell interactions un-
derlying the response to change in the tiger salamander retina. J. Neurosci.,

9:726-725, 1989.

[67] M. Kidd. Electron microscopy of the inner plexiform layer of the retina of the
cat and the pigeon. J. Anat., 96:179-188, 1962.

[68] R.W. Rodieck, R.K. Brening, and M. Wantanabe. The origin of parallel visual
pathways. In R. Shapley and D.M. Lam, editors, Contrast Sensitivity, chapter 8,
pages 117-144. The MIT Press, Cambridge MA, 1993.

[69] M. Livingstone and D. Hubel. Segregation of form, color, movement and depth:
anatomy, physiology, and perception. Science, 240:740-749, 1988.

[70] J. Stone and K.P. Hofmann. Very slow-conducting ganglion cells in the cat’s

retina: a major new functional type? Brain Res., 43:610-616, 1972.

[71] W.R. Levick and L.N. Thibos. Receptive fields of cat ganglion cells: Classifica-
tion and construction. Progress in Retinal Reasearch, 2:267-319, 1983.



[72]

73]

[74]

[75]

[76]

227
H.R. Matturana, J.Y. Lettvin, W.S. McCullock, and W.H. Pitts. Anatomy

and physiology of vision in the frog (rana pipiens). J. gen. Physiol., 43 (Suppl.
2):129-171, 1960.

R.W. Rodieck and M. Wantanabe. Survey of the morphology of macaque retinal
ganglion cells that project to the pretectum, suoerior colliculus, and parvocellu-
lar laminae of the lateral geniculate nucleus. J. Comp. Neurology, 338:289-303,
1993.

M.A. Freed and P. Sterling. The oN-alpha ganglion cell of the cat and its
presynaptic cell types. J. Neurosci., 8:2303-2320, 1988.

E. Cohen and P. Sterling. Parallel circuits from cones to the on-beta ganglion

cell. Euro. J. Neurosci., 4:506-520, 1992.

H. Kolb and R. Nelson. OFF-alpha and OFF-beta ganglion cells in the cat
retina: II. neural circuitry as revealed by electron microscopy of HRP stains. J.

Comp. Neurology, 329:85-110, 1993.

A. Hughes and H. Wassle. The cat optic nerve: Fibre count and diameter

spectrum. J. Comp. Neurol., 169:171-184, 1976.

V.H. Perry, R. Oehler, and A. Cowey. Retinal ganglion cells that project to the
dorsal lateral geniculate nucleus in the macaque monkey. Neurosci., 12:1101-

1123, 1984.

Y. Fukuda and J. Stone. Retina distribution and central projections of y- x-

and w-cells of the cat’s retina. J. Neurophysiol., 37:722-748, 1974.

H. B. Barlow. In W. A. Rosenblith, editor, Sensory Commaunication. MIT Press,
1961.

Joseph Atick and Norman Redlich. What does the retina know about natural
scene. Neural Computation, 4(2):196-210, 1992.



[82]

[83]

[84]

[33]

[89]

[90]

[91]

[92]

228
J H van Hateren. A theory of maximizing sensory information. Biol. Cybern.,

68:23-29, 1992.

Dawei Dong and Joseph Atick. Temporal decorrelation - a theory of lagged and
nonlagged responses in the lateral geniculate nucleus. Network: Computation

in Neural Systems, 6(2):159-178, 1995.

Michael P Eckert and Gershon Buchsbaum. Efficient coding of natural time-
varying images in the early visual system. Phil. Trans. Royal Soc. Lond. Biol,

339(1290):385-395, 1993.

Dawei Dong and Joseph Atick. Statistics of natural time-varying scenes. Net-

work: Computation in Neural Systems, 6(3):345-358, 1995.

| B. A. Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA,

1995.

H. de Lange. Research into the dynamic nature of human fovea-cortex systems

wityh intermittent and modulated light ii. J. Opt. Soc. Am., 48:784-789, 1958.

D.H. Kelly. Visual responses to time-dependent stimuli, i: Amplitude sensitivity

measurements. J. Opt. Soc. Am., 51:422-429, 1961.

J. G. Robson. Spatial and temporal contrast sensitivity functions of the visual

system. J. Opt. Soc. Am., 56:583-601, 1966.

D. H. Kelly. Frequency doubling in visual responses. J. Opt. Soc. Am., 56:1628—
1633, 1966.

D.H. Kelly. Motion and vision i: Stabilized images of stationary gratings. J.
Opt. Soc. Am., 69:1266-1274, 1979.

D.H. Kelly. Motion and vision ii: Stabilized spatio-temporal threshold surface.
J. Opt. Soc. Am., 69:1340-1349, 1979.



[93]

[97]

[100]

229
L.J. Frishman, A.W. Freeman, J.B. Troy, D.E. Schweitzer-Tong, and C. Enroth-

Cugell. Spatiotemporal frequency responses of cat retinal ganglion cells. J. Gen.

Physiol., 89:599-628, 1987.

C. Enroth-Cugell, J.G. Robson, D.E. Schweitzer-Tong, and A.B. Watson.
Spatio-temporal interactions in cat retinal ganglion cells showing linear spa-

tial summation. J. Physiol., 341:279-307, 1983.

C. Enroth-Cugell and A.W. Freeman. The receptive-field spatial structure of
cat retinal y cells. J. Physiol., 384:49-79, 1987.

K. Purpura, D. Tranchina, E. Kaplan, and R.M. Shapley. Light adaptation in
the primate retna: Analysis of changes in gain and dynamics of monkey retinal

ganglion cells. Vis. Neurosci., 4:75-93, 1990.

K Fujikawa, I Hirota, H Mori, T Matsuda, M Sato, Y Takamura, S Kitayama,
and J Suzuki. A 1/3 inch 630k-pixel it-ccd image sensor with multi-function ca-
pability. In John H. Wuorinen, editor, Digest of Technical Papers, volume 38 of
IEEE International Solid-State Circuits Conference, pages 218-219, San Fran-
cisco, CA, 1995.

A Dickinson, B Ackland, E El-Sayed, D Inglis, and E R Fossum. Standard
cmos active pixel image sensors for multimedia applications. In William Dally,

editor, Proceedings of the 16th Conference on Advanced Research in VLSI, pages
214-224, Chapel Hill, North Carolina, 1995. IEEE Press, Los Alamitos CA.

C Mead. A sensitive electronic photoreceptor. In H. Fuchs, editor, 1985 Chapel
Hill Conference on VLSI, pages 463-471, Rockville MD, 1985. Computer Sci-

ence Press, Inc.

J Buhman, M Lades, and Eeckman F. Illumination-invariant face recognition
with a contrast sensitive silicon retina. In J D Cowan, G Tesauro, and J Alspec-
tor, editors, Advances in Neural Information Processing, volume 6, San Mateo

CA, 1994. Morgan Kaufman.



[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

230
B Sakman and 0 D Creutzfeldt. Scotopic and mesopic light adaptation in the
cat’s retina. Pfligers Archiv fur die gesamte physiologie, 313:168~185, 1969.

T Delbruck and C Mead. Photoreceptor circuit with wide dynamic range. In
Proceedings of the International Circuits and Systems Meeting, IEEE Circuits
and Systems Society, London, England, 1994.

D J Field. Relations between statistics of natural images and the response

properties of cortical cells. J. Opt. Soc. Am., 4:2379-2394, 1987.

C Jansson, I Per, C Svensson, and R Forchheimer. An addressable 256 x 256
photodiode image sensor array with 8-bit digital output. Analog Integr. Circ.
& Sig. Proc., 4:37-49, 1993.

B Fowler, A E Gamal, and D Yang. A cmos area image sensor with pixel-
level a/d conversion. In John H. Wuorinen, editor, Digest of Technical Papers,
volume 37 of IEEE International Solid-State Circuits Conference, pages 226
227, San Francisco, California, 1994.

V Torre, W. G. Owen, and G. Sandini. The dynamics of electrically interacting
cells. IEEE Trans. on Systems Man and Cybernetics, 13(5):757-765, 1983.

S Ohshima, T Yagi, and Y Funashi. Computational studies on the interaction

between red cone and hl horizontal cell. Vision Res., 35(1):149-160, 1994.

H. A. Beaudot. The Neural Information Processing in the Vertebrate Retina:
A Melting Pot of ideas for Artificial Vision. Phd thesis, Inst. National Poly-
technique de Grenoble, Grenoble, France, 1995.

P.C. Chen and A.W. Freeman. A model for spatiotemporal frequency responses

in the x cell pathway of cat’s retina. Vision Res., 29:271-291, 1989.

J. J. B. Jack, D. Noble, and R. W. Tsien. FElectric Current Flow in Ezcitable
Membranes. Clarendon Press, Oxford, England, 2nd edition, 1975.



231
[111] D.H. Kelly. Theory of flicker and transient responses, i: uniform fields. J. Opt.
Soc. Am., 16:534-546, 1971.

(112] D.H. Kelly. Spatial frequency selectivity of the retina. Vision Res., 15:665-672,
1974.

[113] F.W. Campbell and D.G. Green. Optical and retinal factors affecting visual
resolution. J. Physiol. (Lond.), 181:576-593, 1965.

[114] R.L. DeValois, H. Morgan, and D.M. Snodderly. Psychophysical studies of
monkey vision-iii. spatial luminance contrast sensitivity tests of macaque and

human observers. Vision Res., 14:75-81, 1974.

[115] R G Smith. Simulation of an anatomically defined local circuit — the cone-
horizontal cell network in cat retina. Visual Neurosci., 12(3):545-561, May-Jun
1995.

[116] W. H. Merigan and J. H. R. Maunsell. How parallel are the primate visual
pathways. Annu. Rev. Neurosci, 16:369-402, 1993.

[117] H. B. Barlow and W. R. Levick. The mechanism of directionally selective units
in rabbit’s retina. J. Physiol., 178:477-504, 1965.

[118] B. Hassenstein and W. E. Reichardt. Systemtheoretische analyse der zeit-,
reihenfolgen-und vorzeichenauswertung bei der bewegungs-perzeption der rus-

selkafers. Chlorophanus Z. Naturforsch. B., 11:513-524, 1956.

[119] E. H. Adelson and J. R;, Bergen. Spatiotemporal energy model for the percep-
tion of motion. J. Opt. Soc. Am., 2:284-289, 1985.

[120] T. F. Weiss. Cellular Biophysics. The MIT Press, Cambridge, MA, 1996.

(121} M. A. Maher. A Charge-Controlled Model for MOS Transistors. PhD thesis,
California Institute of Technology, Pasadena CA, 1989.



232
[122] Carver A Mead. Analog VLSI and Neural Systems. Addison Wesley, Reading
MA, 1989.

[123] Y. P. Tsividis. The Operation and Modeling of the MOS Transistor. McGraw-
Hill, New York, NY, 1987.

[124] E. A Vittoz. VLSI Circuits for Telecommunications, chapter Micropower tech-

niques. Prentice Hall, 1985.
[125] J E Meyer. Mos models and circuit simulation. RCA Review, 32:42-63, 1971.

[126] E. A. Vittoz and Fellrath J. Cmos analog integrated circuits based on weak
inversion operation. IEFE J. Solid-State Circ., 12:224-231, 1977.

[127] K Boahen. Toward a second generation silicon retina. Technical Report CNS-

TR-90-06, California Institute of Technology, Pasadena CA, 1990.

[128] K Bult and G J Geelen. An inherently linear and compact most-only current
division technique. IEEE J. Solid-State Circ., 27(12):1730-1735, 1992.

[129] E. A. Vittoz and X. Arreguit. Linear networks based on transistors. Electronics

Letters, 29:297-299, 1993.

[130] Y. P. Tsividis. Linear, electronically tunable resistor. Electronics Letters,

28(25):2303-2305, Dec 1992.

[131] A Andreou and K Boahen. A 48,000 pixel, 590,000 transistor silicon retina in
current-mode subthreshold cmos. In Proc. 87th Midwest Symposium on Circ.

and Sys., pages 97-102, Lafayette, Louisiana, 1994.

[132] Andreas Andreou and Kwabena Boahen. Translinear circuits in subthreshold

mos. J. Analog Integrated Circ. Sig. Proc., 9:141-166, 1996.

[133] M. Tartagni and P. Perona. Computing centroids in current-mode technique.

FElectonics Letters, 29(21):1811-1813, Oct 1993.



[134)

[135]

[136]

[137]

138]

139]

140]

141]

[142)

143]

[144]

233

M. Kamermans and F. Werblin. Gaba-mediated positive autofeedback loop

controls horizontal cell kinetics in the tiger salamander retina. J. Neurosci.,

12(7):2451-2463, 1992.

John Lazzaro. Temporal adaptation in a silicon auditory nerve. In D Tourestzky,
editor, Advances in Neural Information Processing 4, volume 4. Morgan Kauf-

mannn Pub., 1992.

M Ogata, T Nakamura, K Matsumoto, R Ohta, and R Hyuga. A smart pixel
cmd image sensor. IEEE Trans. Electron Dewv., 38(5):1005-1010, 1991.

A Mortara, E Vittoz, and P Venier. A communication scheme for analog vlsi

perceptive systems. IEEE Trans. Solid-State Circ., 30(6):660-669, 1995.

W B Veldkamp. Wireless focal planes: On the road to amacronic sensors. IEEFE

J. Quantum Electronics, 29(2):801-813, 1993.

B Hoeneisen and C Mead. Fundamental limitations in microelectronics-i: Mos

technology. IEEE J. Solid-State Circ., 15:819-829, 1972.

C Mead. Scaling of mos technology to submicrometer feature sizes. J. VLSI

Signal Processing, 8:9-25, 1994.

K Boahen. Retinomorphic vision systems. In Microneuro’96: Fifth Int. Conf.
Neural Networks and Fuzzy Systems, Laussanne Switzerland, Los Alamitos, CA,

Feb 1996. EPFL/CSEM/IEEE, IEEE Comp. Soc. Press.

M Mahowald and C Mead. The silicon retina. Scientific American, 264(5):76-
82, 1991.

K Boahen. A retinomorphic vision system. IEEE Micro Magazine, 16(5):30-39,
Oct 1996.

K Boahen. Spatiotemporal sensitivity of the retina: A physical model. Technical

Report CNS-TR-91-06, California Institute of Technology, Pasadena CA, 1991.



