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ABSTRACT

MAGNETIC FIELD AND PRESSURE EFFECTS IN A

SATURATED GAS LASER AMPLIFIER

Theoretical and experimental studies of a gas laser amplifier
are presented, assuming the amplifier is operating with a saturating
optical frequency signal. The analysis is primarily concerned with the
effects of the gas pressure and the presence of an axial magnetic field
on the characteristics of the amplifying medium. Semiclassical radia-
tion theory is used, along with a density matrix description of the
atomic medium which relates the motion of single atoms to the macroscopic
observables. A two-level description of the atom, using phenomenological
source rates and decay rates, forms the basis of our analysis of the
gas laser medium. Pressure effects are taken into account to a large
extent through suitable choices of decay rate parameters.

Two methods for calculating the induced polarization of the
atomic medium are used. The first method utilizes a perturbation
expansion which is valid for signal intensities which barely reach
saturation strength, and it is quite general in applicability. The
second method is valid for arbitrarily strong signals, but it yields
tractable solutions only for zero magnetic field or for axial magnetic
fields large enough such that the Zeeman splitting is much larger than
the power broadened homogeneous linewidth of the laser transition.

The effects of pressure broadening of the homogeneous spectral line-

width are included in both the weak-signal and strong-signal theories;
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however the effects of Zeeman sublevel-mixing collisions are taken into
account only in the weak-signal theory.

The behavior of a He-Ne gas laser amplifier in the presence
of an axial magnetic field has been studied experimentally by measuring
gain and Faraday rotation of linearly polarized resonant laser signals
for various values of input signal intensity, and by measuring non-
linearity - induced anisotropy for elliptically polarized resonant laser
signals of various input intensities. Two high-gain transitions in the
3.39-p region were used for study: a J =1 to J = 2 (352 > 3p4)
transition and a J =1 to J =1 (3s2 0—3p2) transition. The input
signals were tuned to the centers of their respective resonant gain lines.

The experimental results agree quite well with corresponding
theoretical expressions which have been developed to include the non-
linear effects of saturation strength signals. The experimental results
clearly show saturation of Faraday rotation, and for the J =1 to J =1
transition a Faraday rotation reversal and a traveling wave gain dip
are seen for small values of axial magnetic field. The nonlinearity in-
duced anisotropy shows a marked dependence on the gas pressure in the
amplifier tube for the J =1 to J = 2 transition; this dependence
agrees with the predictions of the general perturbational or weak signal
theory when allowances are made for the effects of Zeeman sublevel-
mixing collisions. The results provide a method for measuring the upper
(neon 352) level quadrupole moment decay rate, the dipole moment decay
rates for the 352 > 3}31l and 352 + 3p2 transitions, and the effects

of various types of collision processes on these decay rates.
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CHAPTER ONE

1.1 Introduction

In a medium which has an inverted population with respect to
two of its optically connected atomic or molecular energy levels, an
electromagnetic field which has a frequency resonant with the transition
frequency between these two levels will induce a larger number of stim-
ulated emission processes than absorption processes: hence the electro-
magnetic signal gains in strength. A resonant traveling electromagnetic
wave passing through a medium such as this will increase in intensity
exponentially with distance until the rate of stimulated emissions be-
comes large enough to influence the populations of the energy levels.
This saturation of the medium by the electromagnetic signai affects the
signal in turn, so that nonlinear processes come into existence.

We are interested in gaseous media, where the atoms have a
distribution of-velocities; hence there is a distribution of resonance
frequencies. We shall study the effects of an amplifying gaseous medium
on a monochromatic resonant signal which is traveling through the medium,
assuming the signal strength is large enough to saturate the medium.
Nonlinear effects such as harmonic generation, competition between two
frequencies in the input signal, and combination tone generation will
not be discussed. Attention will be given to gain and Faraday rotation
of a linearly polarized input signal which is tuned to the center of
the Doppler broadened resonance of the medium, varying the applied axial

magnetic field from zero to a value which is small enough so that we
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are always in the weak-field Zeeman effect regime (F 1is assumed to be a
good quantum number). We will also study the effects of a saturated
medium on an elliptically polarized signal tuned to the center of res-
onance. As such a signal passes through the amplifying medium, its
ellipticity can change as it saturates the medium, due to nonlinear
effects. This effect is called "nonlinearity induced anisotropy" (1).
These phenomena depend to varying degrees on the gas pressure used for
the amplifying medium and on the wvalues of the total angular momenta of
the energy levels involved; a discussion of these effects will be pre-
sented as we compare results of experiments on two high gain 3.39-u
transitions in a He-Ne system with the appropriate theory.

The basis of our calculations is semiclassical radiation
theory, as formulated by Kramers (2), along with a density matrix des-—
cription of an ensemble of atoms, which was developed by Lamb (3) and
is used to calculate the.induced macroscopic polarization of the medium,
The polarization is then used in Maxwell's equations to determine the
behavior of the electromagnetic fields.

Armstrong, Bloembergen, Ducuing, and Pershan (4) treated the
nonlinear interaction of traveling waves in dielectric media using a
similar formulation and the method of selecting particular Fourier
components of the response. Damping terms were not included in their
analysis, and Doppler effects were not considered. Bloembergen and
Shen (5) added damping terms to this formalism. The polarization
character of the waves was not treated in either of these papers.

Bennett (6) evoked the concept of "hole burning" in his

description of the saturation process in Doppler broadened gas lasers.
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Since a laser oscillator cavity acts as an extremely narrow-band
filter, only those atoms whose velocities cause their resonant fre-~
quencies to be within a natural linewidth of the cavity resonance
frequency will interact with the electromagnetic signal which exists
in the cavity; hence only these atoms are safurated'by the signal, and
a hole is burned in the Doppler gain curve at this cavity resonance.
(When certain allowances are made for effects of gas pressure on the
decay rates, the term "homogeneous linewidth" is used instead of natural
linewidth.) The concept of hole burning will be useful for a physical
undefstamding of several results in this work.

Gordon, White, and Rigden (7) discussed gain saturation of the
3.39~p laser transition in a He-Ne amplifier. Their analysis was based
on rate equations for the two energy levels whichvggrticipate in the
laser process. The electromagnetic signal was assumed to be a scalar
monochromatic traveling wave.

Lamb (3) treated nonlinear effects in laser oscillators in
detail, including Doppler effects in his density matrix description
of the atomic medium. Most of his results were good for the case of
strong Doppler broadening only; i.e., the natural linewidth was assumed
to be very much smaller than the Doppler width. The induced polarization
of the medium was calculated in the form of a truncated perturbation
series, valid for the mildly saturating signals that exist in a laser
which is oscillating near threshold. The electromagnetic signals were
treated as scalar waves; no polarization effects were treated. The
effects of lower level excitation by spontaneous emission from the

upper level were treated only in a rate equation approximation in which
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the atomic motion was ignored. Pressure effects were not considered.
A number of interesting results were obtained which included mode
pulling, mode competition, combination tone generation, and frequency
locking phenomena.

Close (8,9) used a similar approach for an arbitrary number
of monochromatic traveling waves passing through‘a laser amplifier. He
studied effects of intermediate Doppler broadening and integrated the
equations of motion for the macroscoplc density matrix to study special
solutions which were valid for arbitrarily strong signals. The genera-
tion of combination tones was examined in detail. An attempt was made
to treat polarization effects by using vector fields and a method of
averaging over possible atomic éipole orientations.

In order to properly account for the effects of polarized
signals, if is necessary to comnsider the degeneracy of the levels. The
above references did not treat level degeneracy effects on the polari-
zation properties of the electromagnetic waves. In atoms which have no
nuclear spin, such as Nezo, the levels should be described in terms of
their values of J, the total electronic angular momentum. For atoms
which have nuclear spin, the total angular momentﬁm F is pertinent.
Since the level degeneracy is removed by the application of a magnetic
field, it is naturél to discuss magnetic fields when considering arbi-
trarily polarized signals.

A great deal of attention has been given to this field of
study in the past few years. Culshaw and Kannelaud (10,11) made a
detailed experimental study of the output of a He-Ne laser operating

at 1.153-u (J = 1 to J = 2 transition) in the presence of an axial
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magnetic field and analyzed their results by applying Hanle effect theory
to the laser. Their theoretical analysis did not suitably describe

many of their observations, however.

To study the nonlinear propertieé of Zeeman laser oscillators,
the theory developed by Lamb was extended to include vector electro-
magnetic signals interacting with atomic levels which are total
angular momentum eigenstates. Fork and Sargent (12) considered
competition and beat frequencies between two opposite circularly
polarized standing waves operating at a single cavity resonance, assuming
a J=1toJ =0 transition in an applied axial magnetic field.

Culshaw and Kannelaud (13) considered beat frequency effects and the
behavior of the output polarization for a J = 1/2 to J = 1/2 transition
model in an axial magnetic field, including effects of cavity anisotropy.
They compared results of this theory with more experimental observations
on a single mode planar type He-Ne laser oscillating at 1.153-p in an
axial magnetic field (14). Later they extended their résults to cover
the J =1toJ =0 transition in both axial and transverse magnetic
fields (15).

Heer and Graft (16) considered an arbitrary Ja to Jb transi-
tion, arbitrary direction of the magnetic field, and both standing and
traveling waves. Although the fundamental approach was very general,
actual results were obtained only for the case of a single wave of
arbitrary polarization for special cases. Eor the case Ja =J or

b

Fa = Fb, when the signal was at line center and the magnetic field was

zero or very weak, their results indicated stable solutions only for

circularly polarized components. Recently attempts were made by Heer
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and co-workers to apply this theory to an explanation of polarization and
signal strengths of cosmic OH radiation (17-19). However, their results
are rigorous only for weakly saturating signal strengths.

D'yakonov (20) analyzed the polarization and beat frequency
behavior of the output of a laser in a weak axial magnetic field when
a linear absorption anisotropy exists in the laser cavity. D'yakonov
and Perel'(21,22) developed a general theory of a single-mode gas laser
in a magnetic field based on Lamb's theory (3), expressing the density
matrix of the atomic levels in terms of multipole moments of the levels
and including effects of a nonzero branching ratio for spontaneous
emission from the upper laser level to the lower laser level. Output
power and polarization properties were discussed for special cases.

The case of a single mode laser operating on a transition

between levels of arbitrary J wvalues was also studied by de Lang and
Bouwhuis (23), and by Polder and van Haeringen (24), who showed that the
polarization of the output in zero magnetic field depends on AJ for
the transition. Further experiments (24) verified these results.
Doyle and White (25) also analyzed the polarization and beat frequency
properties of the output of a laser oscillating on a general Ja to Jb
transition in zero magnetic field. Their discussion included two-mode
operation, and combination tone generation was briefly considered.

Recently Sargent, Lamb, and Fork (26) presented a comprehensive
theory of a "Zeeman laser oscillator" based on the general theory of
Lamb (3), valid for weakly saturating signals, including the effects of
level degeneracy and a magnetic field in an arbitrary direction. Results

for an arbitrary amount of Doppler broadening were obtained. Ixcept for
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references 8,9 and 25, the theoretical calculations previously had been
done assuming "'strong Doppler broadening", as was the case in (3). This
analysis also'handles multimode operation in the laser oscillator for a
general Fa to F.

b

tion anisotropies due to the laser cavity.

transition, and it includes linear phase and absorp-

During the same period of time Dienes (27) analyzed the be-
havior of a saturated gas laser amplifier in the presence of an axial

magnetic field. His analysis was valid for a general Ja to J transi-

b
tion and an arbitrary amount of Doppler broadening, and he treated the
case of two arbitrarily polarized signals passing tﬁrough the laser
medium. The special case of a J =1toJ =0 traﬁsition was treated
in detail, both for weakly saturating signals and for arbit;arily stroﬁg
signals. More recently Dienes has produced results applicable to a
general Ja and Jb transition for both weakly saturating signals (28)
and for strong signals (29). The strong signal results yield tractable
solutions only for the zero magnétic field case orléor the case when the
Zeeman suglevel splitting is large compared with the power broadened
homogeneous linewidth of the transition. Measurements of gain saéuration
and nonlinearity induced anisotropy for a He-Ne 3.39-uy (J =1 to J = 2)
amplifier operating in zero magnetic field are in good agreement with the
strong-signal theory (1).

Extensive experimental work done by Tomlinson and Fork (30)
_ and by Settles and Heer (31) on gas laser oscillators has been compared
with theoretical ﬁredictions based on the theory of Sargent, Lamb, and

Fork (26) with generally good agreement.

Two major sources of difficulty in comparing experimental
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results on laser oscillators with theories are gas pressure effects and
cavity anisotropy effects. Anisotropy effects are most plausibly due
to the mirrors of the laser oscillator, and detailed comments concerning
anisdtropy effects have been made by van Haeringen (32,33), Tomlinson
and Fork (30,34), and Greenstein (35), in addition to authors previously
mentioned. Theories allowing for absorption and phase anisotropies
account for many of the puzzling experimental observations on the output
of a gas laser oscillator. However, the complicating effects of mirror
anisotropies make quantitative comparisons of theory'with experiment
difficult in some cases. The use of laser amplifiers operating with
signals which were derived from laser oscillators, and whose input in-
tensities, polarizations, and frequencies can be determined and control-
led, can offer advantages of greater simplicity in comparing experimental
results with theoretical predictions.

Pressure effects are evident in most experimental attempts
to verify the existing theoretical predictions. Fork and Pollack (36)
observed collision effects in a study of mode competition in a He-Ne
laser oscillating on the 6328—3 transition. Studies made on the '"Lamb
Dip" (37) in the ﬁower output of a single-mode He-Ne laser have yielded
information about pressure effects (38).

Detailed theories involving the effects of collisions on the
spectral charac;eristiCS of gas laser oscillators have been published
by Rautian (39,40) and by Gyorffy, Borenstein and Lamb (41). These
theories do not involve the effects of magnetic fields being applied to
the laser oscillator. By comparing these theories with experimental

studies of the Lamb dip in the He-Ne laser, Gyorffy et.al. (41) have
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obtained information about the effects of various types of collisions
on the atoms which participate in the laser process.

In most cases atteﬁpts to include pressure effects in compari-
sons with Lamb's theory involve the following basic assumptions: (a)
the phenomenological decay rates assumed for the two laser levels are
composed of spontaneous decay rates plus pressure-dependent decay rates
due to effects of "hard" collisions terminating the atomic interaction
with the electromagnetic signal; (b) the decay ratejof the dipole
moment of the atom is influenced not only by these "hard" collisions,
but also by "soft" collisions which perturb the energy levels slightly,
resulting in a broédening of the atomic resonance and a shift in the
transiéion frequency; (c) since at lea;t one of th; laser levels has a
multiplet structure (which can be split with the application of a
magnetic field), there-exist cdllisions which mix the sublevel populations,
and these lead to anisotropic relaxation of the multipole moments of the
two atomic levels of interest. There is also some evidence of asymmetry
in the atomic response curve due to certain pressure effects (36,38,40,
41), but these effects seem to be quite small in the case of the He-Ne
laser. |

Tomlinson and Fork (30) noted departures from theoretical
predictions when they observed circular component coupling in single
axial mode He-Ne lasers operating at 1.52-y (J =1 to J = 0) and at

6328—3 J l to J = 2). They later used assumption (c) above and

accounted for these discrepancies by using the theory of D'yakonov
and Perel' (21) for laser oscillators and postulating different decay

rates for the various multipole moments of the atomic energy levels (42).
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Recently Wang and Tomlinson (43,44) calculated expressions for the cross
sections for collision-induced relaxation of the multipole moments of
an excited atom in a state of arbitrary angular momentum J. Experi-
ments were then performed on a He-Ne laser oscillating at 1.52-p (J = 1
to J = 0) in order to obtain numerical values for certain collision
cross sections. Decomps and Dumont (45) have also obtéined values for
multipole moment decay rates for certain excited ievels of neon by
using a laser excited Hanle effect experiment.
A recent paper by Berman and Lamb (46) éiséusseg in degail
the effects of resonant and non-resonant collisions on spectrai line
shapes, including the multiplet structure of the pertinent energy
levels. The dipole~dipole interaction potential is used, and various
decay rate parameters are computed numerically. The theory is applied
to Hanle effect experiments; however no explicit applications to laser
phenomena are presented. This paper is quite comprehensive and contains
numerous references to previous works in the pressure broadening field.
In the work that follows we will derive expressions applicable
to a laser amplifier in an axial magnetic field operating with a single
monochromatic input signal of arbitrary polarization. Our theory will
be based mainly on the work of Dienes (27-29) and Wang and Tomlinson (44).
Dienes has obtained general expressions valid for the pas laser ampli-
fier but has not included pressure effects or a complete account of
spontaneous emission. Wang and Tomlinson have developed a theory
applicable to weakly saturating éignals in a laser oscillator, includ-
ing pressure effecté on the various decay rate parameters. We will

derive a theory for a laser amplifier, applicable to weakly saturating
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signals, and including pressure effects in a manner similar to that of
Wang and Tomlinson. A strong signal theory will also be utilized which
will be the same as Dienes' theory (29). The results will be valid for
an arbitrary amount of Doppler broadening.

Our theoretical expressions will be used for comparison with
experimental results obtained by using a He-Ne laser aﬁplifier and
input signals of two ﬁypes: a 3.3913-p signal operating on‘the neon
3s2 > 3p4 (J =1 toJ=2) transition, and a 3.3903-p signal
operating on the nébn 3s, » 3p, '(J =1 to'J = l)} traﬁsition. ‘These
are ‘the most favorable transitions to use for a laser amplifier study
because both signals have high gains and easily reach saturation
strength. A J =1 to J =0 transition would be the least complicated
and most interesting case to study for certain nonlinear effects; how-
ever, there exist no readily available transitions of this'type which
have a high enough gain to be useful for study using an amplifiexr. Am
émplifier tube of several meters length would be needed for a study of
the neon 232 - 2p1 (J =1 tod =0) transition at 1.52-u, for
example. On the other hand, since the two 3.39-u signals reac£
saturation strength sé easily and normally operate under strongly sat-
urated conditions in a laser oscillator, a comparison of experiment with
the perturbational or weak-signal theory of the Zeeman laser oscillatof
would be difficult for these two cases. In addition, the "strong
Doppler broadening' approximation cannot be made when discussing the
3.39-u transitions. . The exact treatment of Doppler broadening used
by Dienes (27-29) for laser amplifiers is appropriate here.

Since the experiments relating the gain and Faraday rotation
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of a linearly polarized input signal to theoretical predictions were done
predominantly with an amplifier tube at a total gas pressure of 1.1 Torr
and agreed quite well with the theories which did pnot include modifications
accounting for Zeeman sublevel-mixing collisions, the general theory
developed in Chapter 3 will not be used for quantitative comparison with
these experimental results, It will become clear thatlthese phenomena

do not depend on gas pressure in an obvious manner after the theoretical
predictions are Qiscussed.

However, the nonlinearit? induced anisotropy for an elliptié"
ally polarized input signal passing through the amplifier iﬁ zZero mag-
netic field does show a marked dependence on pressure, and only the
general theory including Zeeman sublevel-mixing collisions can account
for experimental observations. Experiments were performed for several

values of gas pressure in order to clearly observe this effect.



-13-

THE INTERACTION OF THE FIELDS WITH THE ATOMIC SYSTEM

IN THE PRESENCE OF AN AXIAL MAGNETIC FIELD

2.1 Introduction

This chapter introduces the framework for treating the inter-
.action.of a monochromatic optical frequency electromagnetic wave, or
signal, with a dilute gaseous medium which is "population inverted"
with respect to two energy levels. We assume the electromagnetic signal
is nearly resonant with these two levels of the medium. This picture
fits an experimental situation where aﬁ output signal from a single mode
laser oscillator, which has a spectral width much narrower than atomic
linewidth parameters, enters an amplifying medium of the same type as
the laser oscillator medium. First we discuss the equations of motion
for a system consisting of a single atom and an electromagnetic signal.
The atomic motion will be described by the Schrodinger wave equation,
while the electromagnetic field is treated classically. The atomic
model is described in section 2.2, and the equations for the electro-
magnetic field are covered in section 2.3. The equation of motion for
the macroscopic density matrix, describing the atomic medium under the
influence of an electromagnetic signal, will be developed in section
2.4, Collision processes which affect the interacticn of the atomic

system with the electromagnetic signal will be discussed in section 2.5.
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2.2 The Atomic Model

We shall explicitly discuss an atomic system because the
theory will be applied to the Helium-Neon laser medium in which certain
excited levels of the neon atoms become population inverted. However the
theory can be applicable to molecular systems also, with suitable
changes in the quantum number labeling of the energy levels. We shall
also label the energy levels by their total electronic angular momentum
numbers Ja gnd be- We could just as‘well use the'quantum.numbegs
Fa and Fb’ where F denotes the total angular momentum including
nuclear spin; however the Ne20 atom used in our He-Ne laser experi-
ments has nuclear spin of zero. In any case the applied D.C. magnetic
field will be weak enough such that the degeneracy of the atomic levels
is removed according to the well known Zeeman formula:

1 ehB

AR = 5 =

2 m &rF (2.1)

where MF is the angular momentum along the direction of the magnetic
field. \

For our purposes we shall consider only two of the eigenstates
of the atom; those which are peopulation inverted and have a transition
frequency nearly resonant with the frequency of the electromagnetic
field. Let us consider an atom which is excited by some means to the
upper excited state la> at time t,- Then the wave function déS“

cribing the perturbed excited atom at later times is a linear combination

of the form
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-iE t/h -iE t/h
Pz, t) = a(t,t Ju (e &+ b(t,t Ju (De s - €2.2)

and the wave equations for a(t,to) and b(t,to) are written

1l

1 (dafar) Vab(t)eiwtb(t,to) - /2y, alt,e),  (2.32)

-iwt

Il

i(db/dt) Vba(t)e b(t,to), {(2.3b)

alt,t ) - (1/2)vy
where ﬁVab(t) ié the matrix element for the transition b > a due to
the electric-dipole interaction energy of the atom and the classical
The initial

electromagnetic signal, and w = W, =Wy = 1/h(Ea - E

b>'
conditions are a(to,to) =1, b(to,to) = 0. The radiative decay
rates Yy and Yy, are phenomenologically introduced here, but their
form can be justified by a more rigorous treatment (47). Additions
can be made to these decay rates in order to treat certain cqllision

processes which induce transitions to the ground level (48), and this

will be done later.

2.3 Equations for the Electromagnetic Field

We shall assume the electromagnetic field to be monochromatic
traveling waves propagating in the direction of the D.C. magnetic field,
which we shall call the 2z direction. The waves are considered to be
transverse and nearly plane, i.e. transverse derivatives in the region
of interest are assumed to be negligible. This assumption is reasonably

well satisfied by a typical gas laser signal which falls off in intensity
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gradualiy in the transverse direction over a distance of a few milli-
meters, and which can be made to spread in diameter no more than the
diffraction limit would allow.

The electric field of the traveling waves shall Be written

in terms of the following vector basis:

E(z,t) = E e E_(2,t) (2.4)

m=0,*
and Em(z,t) = E(z,t) . e
~ ~ . A l - ~ __.A l =A
where e, = —(eX + 1ey) .. ?Jg', e = (eX 1ey) :ii, e, e, -
%

(The dot product convention for complex vectors is a:b = % a.b, , where
% gignifies the complex conjugate.) This base system is convenient for

later calculation of matrix elements for atomic transitions.

VFor a D.C. magnetic field in the axial direction of the laser
amplifier, (i.e. the direction of propagation of the signal) the co-
ordinate system of the atoms (determined by the magnetic field direction)
and that of the signal coincide. TFor ﬁﬁher directions of the magnetic
field a rotation matrix is necessary to rotate the two coordinate
systems. (Reference 26 discusses the rotation in detail.) Assuming an
axial magnetic field, we write the electric field for several mono-

chromatic traveling waves:

i(k,z-v t4+d, (z,t))

_-_—,“ *
; - ool i\ 4 N} Jm
‘E(z,t) Re ,,..;,4 >md c.ijm(z,L)c (2.5)
]

m=1
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The electric field has no z-component, and Ejm(z,t) and ¢jm(z,t) are
slowly varying functions of position and time. Arbitrary elliptically
polarized signals result by choosing the magnitude and initial phase

of each circular component appropriately.

The positive (m = +) and negative (m = -) helicity travel-
ing waves carry angular momentum in directions paralléi and antiparallel
to their direction of bropagation, respectively.' Consider an interacting
atom at a certain point on the z-axis. If we describe the motion of the
fesonant electron in tﬁe étom as a harmonic-osciiiatég thch is‘driveﬁ
into oscillation by the dlectric field of the traveling wave, then the
positive helicity polarization causes the électron to move in a circular
path in the x-y plane which has a counterclockwise sense to the observer
looking in the nggative z direction. Thus, the atom has been given
angular momentum along the z-—axis. Similarly a negative helicity polar-
ization would give the atom angular momentum in the opposite direction.
(This topic is discussed in Chapter 17 of Reference 49). The positive
helicity polarization is called left-circular polarization in optics (50).

The electromagnetic field is governed by Maxwell's equations,

which for a nonmagnetic medium can be written (in MKS units):
a &)
v X E = ol B (2.6a)

£ &g % B =a= (g E + BY 4yl - (2.6b)
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EVeRBm§ &P - (2.6¢c)

V-B=0 o (2.64d)

where P is the macroscopic polarization of the medium; and J = cE
is the macroscopic current due to free electrons and ions in the laser
medium, which usually consists of the positive coluﬁn of a glow dis-
charge (o has both real and imaginary parts). This form of Ohm's Law
is Aot valid if a D.C. magnetic field Bo is appligd to the medium of
strength such that wg = eBo/m is comparable to the other frequencies
involved in the problem. However, we shall show in the next paraéraph
that the opticai frequency is much larger than w_.

These equations yield a wave equation for the electric field:

2 2 :
vxyxp+—2 B gyl B LB p (2.7)
= 2 ot — 2 2= 2 2 —
eoc c ot eoc ot

Since in our case E(z,t) 1is transverse, we may set

£ (2.8)

P (2.9)
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In Lamb's theory (3) the quantity o is considered to be an Ohmic
conductivity which gives the wave a damping, in order to account for
losses at the mirrors of the laser oscillator without having to solve

a boundary value problem. Although Lamb did not explicitly discuss
losses due to free electrons and ions in the gas laservdischarge, he
neglected their contribution to ¢. Free electrons provide both loss
and phase shift to an electromagnetic wave passing through them; due

to their much larger masses the pgsitive_ions‘haye muqh less effect on
the wave. The free electrons contribute to the index of refraction of
the medium through Thomson scattering (50) in the forwara direction. If
a weak magnetic field is applied in the direction of a linearly polar-
ized traveling wave (axial direction), the free electrons produce a
clockwise Faraday rotation. Loss due to large angle Thomson scattering
of optical frequency waves is extremely small for normal gas discharges,
which are weakly ionized gases (87); however loss due to collisions of
electrons with neutral atoms should be considered.

We can ignore the free charge contribution to o altogether
in a gas laser medium such as the He-Ne system because the free charge
density is low enough so that the electron and ion plasma frequencies
are very small compared with the optical frequency of the wave. Like-
wise for the low pressures used in the gas lasers the collision fre-—
quencies for the electrons and ions are much lower than the optical
frequency. For example, in a He-Ne laser with a 10:1 ratio of He to
Ne and a total gas pressure of 1.0 Torr, a discharge current of 10
milliamps, and a tube diameter of about 3mm, the electron density is

1 -3
approximately 10 " cm (51), and the collision frequency ( ) for

wcoll
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the electrons is about lO9 sec-1 (52). The electron plasma frequency,

27 % i
s = ﬁ:-—— ' (2.10)

is about 5 x 109 sec-l. If an axial magnetic field of 100 gauss is

applied (maximum values used in the experiﬁents described later were

about 50 gauss), the gyrofrequency of the electrons is of the order of

109 sec—l. This means the contributions to the real and imaginary parts,
of o due to the free electrons are of the order of (w m2 /mz)e
= coll pe o
- 2 _ ,
~ % x 10 lsmeo and (wpe/mz)eofz 10 1080 (53) respectively, for a

wave of optical frequency. We shall see in the next chapter that even

for a very low gain laser transition such as the neon 352 -+ 2p4 tran-
(-]

sition at 6328-A wavelength, whose linear intensity gain constant is

typically .05 mflcr

10eXp(.05z)), the contribution of the resonant
neon atoms to the gain (or loss) and phase shift of the electromagnetic
signal is more than 100 times the contribution from the free electrons.
For this reason and for the reason that we do not need an effective
conductivity of the medium to take care of mirror losses when discussing
traveling waves passing through an amplifier, we will drop the g term
from equation (2.9).

We also neglect the possibility of plasma striations, or
longitudinal electron and ion waves, occuring in the laser medium.
Striations can effect the power and spectral character of the output
signal of a laser, and their occurrence depends on both laser tube
design and the external electrical circuit (54). We assume macroscopic

charge neutrality in the laser medium.
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The polarization of the medium due to resonant population invert-
ed atoms will have both real and imaginary parts. The imaginary part is
responsible for the gain in the medium, and the real part causes a phase
shift or index of refraction. Accordingly we assume the following form
for the induced polarization P:

R i (kj = Vj t+¢jm)
Plz,t) Re E E em(Pjcm - 1Pjsm)e (2.11)
j m==

I

il

" itk,z-v t+d, )
% {e (P. - iP, Je J JH
z :2 : m" jem jsm .
J

m=:

-i(k_z—v,t+¢,m)

%P, + 4P, Je - J I 1

m" jcm jsm

where the summation runs over the same set as for the expression (2.5)

for the electric field; and P, , P, , and ¢, are slowly varying
jem jsm jm

functions of =z and t.

Since the phase ¢jm is assumed to be a slowly varying
function of space and time, the complete nonlinear phase shift suffered
by the jtll wave as it travels through the amplifying medium can be
accounted for by the i¢jm term, leaving kj to be equal to the free

space propagation constant v/c. We can use as an alternative a real

index of refraction defined by

k(v) = n(v) lc)— (2.12)
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The index of refraction is a convenient concept for a linear
medium; however, for a nonlinear medium it is more advantageous to use
the accumulated phase ¢.

The effect of the other, non-resonant transitions in the atomic
medium, which we are not considering, is to contribute a very small
index of refraction which is constant throughout the small frequency
range of interest (about equal to the width of the resonance of the
_gnsemble of atoms). This can be taken into account by adding alsmall
constant term to n(v).

If we substitute equations (2.11) and (2.5) into the wave

-

equation (2.9), neglecting transverse derivatives and the terms

2 2
o, % E FE L ¥, L EH 1 IE
) = 3 3 S ] ]
oz B e 322 c2 3E:2 c2 ot ot c2 at2
(the subscripts <+ and - have been dropped for simplicity) due to

our assumptions of slow space and time variations for the quantities

E and ¢, we obtain two equations by equating real and imaginary

parts:
. 1 ab ., Vi v,
rei L e 2 g 2 il o 0 s sssmialin
[az % c ot ® c (njm = ij ZEOC chm (2.13a)
aE i, o
B . TS . R -
&z % c ot e ¢ Ijsm (2.13b)
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2 .2, 2 v Y v2

The replacements k - v/c and k"-v7/c” »> 2 E{km Ejz 2 —E(n—l)

were made in order to establish the form above for equations (2.13).
These results are also present in reference (27), and similar equations
can be found in reference (3). Lamb (3) calls these equations the
"self~consistency" equations because the time-varying induced polari-
zation of the medium sustains an electromagnetic field with the same
frequency components, according to (2.13). When éne treats terms in
the expression for P which are npnlinear with respect to the electriq
field, new fields at combination tome or harmonic frequencigs can be
obtained. We shall drop the summation over j and treat the case of

only one traveling wave passing through the medium in future analysis.

We shall not concern ourselves with harmonics either.

2.4 Equation of Motion for the Density Matrix

2.4.1 The Atom-Field Interaction

The interaction between an atom and the electromagnetic
field is commonly described in terms of the electromagnetic potentials
in the quantum theory of radiation. In semiclassical radiation theory
this interaction is‘best expressed in terms of the electric and magnetic
field strengths. It has been shown by Fiutak (55) that for classical

fields the nonrelativistic interaction:

- A - A {2 04)

of a bound electron (spin neglected) with an electromagnetic field can

be transformned canonically into an equivalent Hamiltonian which
3 q
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explicitly exhibits the various multipole moments that are present in the

interaction:

' = . - - - -
equivalent er-E - L-B - Q:VE +.... (2:15)

We will use the long wavelength or dipole approximation and keep only the

first term on the right-hand side of equation (2.15).

2.4.2 A Model For Stationary Atoms

Returning to the atomic model described by equation (2.3), we

express the interaction matrix element Vab(t) more explicitly as
hv_, (£) = <a | ex « E(t)|b> = eE(t) * (alr|b) (2.16)

The space dependence of the electric field does not enter here because
of the assumption that the Wave;ength is much longer than the size of
the atom. Proceeding in the manner of Lamb and Sanders (56), we des-—
cribe the behavior at time t of an ensemble of atoms which were ex-

cited independently to state g_-at rate r_ for all time B @ t,

(a)

—

by making use of a density matrix ¢ with elements such as

t
Urf;:) () = x, fla(t,to)|2 dt_ (2.17a)

-C0

t
crig)(t) o rafa(t,to)b*(t,to)e_iwtdto (2.17b)

-0
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The diagonal element oé:) represents the population of state
a at time t due to previous excitation of state a at rate T s

while cé:) represents the corresponding population of state b. The

time derivative of cgz)(t) is

(a)

(d/dt)oaa

E
(B) = x, + ra‘j/}d/dt)[a(t,to)lzdto (2.18)

since ‘a(to’to) = 1. The time derivatives of the other elements of the

(a)

matrix o do not have the first term of the right-hand side of
equation (2.18).
When we consider excitation of the atom to both states a

and b, we can construct a total density matrix

g=0 + 0 (2.19)

Using equations (2.3) we can write the differential equations for the

total density matrix o

(d/dt)caa - &, —iVabcba + iVbacab a7 T (2.20a)
(/dt)o, | = dwoy | + iV, (o, -0_ ) - %{ya+yb)oba (2.20b)
(@/dvo y = -iwo,, - iV, (o, ~0_ ) ~ Z(y_+y Do (2.20c)
(4/dt)o,, =, - iVbaoéb + AV o - v o, (2.20d)
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These equations can be written in the foiym:
. . 1.
g = ~i[H,o] - §{P,c]+ + R (2.21)

where H is the sum of the unperturbed Hamiltonion describing the atom,
and the interaction between the atom and the electromagnetic field; T

is the diagonal matrix

(2.22)

and the - and + subscripts denote commutator and anticommutator

respectively. R 1is the diagonal matrix representing the excitation

pumpingf

2.4.3 A Model for the Gas Laser Medium, Including Collisions and

An Axial Magnetic Field

In a description of a gas laser medium the effects of atomic
motion must be taken into account, and collision effects must also be
considered. Lamb's theory (3), (26) of the laser includes atomic motion
by using a density matrix p(x,v,t) which describes an ensemble of
atoms which arrive at position r with velocity v at time t re-
gardless of their place £ and time to of excitation. It is assumed
that the atoms maintain constant velocities when they are in the ex-—
cited states and interacting with the electromagnetic field.

Experimental observations of the output of le-Ne lasers have
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generally supported predictions based on the Lamb theory; however
noticeable deviations from theoretical predictions occur due to pressure
eféects. Studies of pressure effects have often involved the examina-
tion of the "Lamb dip" or the power dip in the output of a single-mode
laser oscillator when it is tuned through line center. This method
allows one to study collision phenomena at low pressures (.5 Torr to 2.5
Torr), even though the Doppler broadening is much larger than the
pressure broadening (38). Another method for studying collisioﬁs in
the gas laser involves the application of an axial magnetic field.
Collisions affect the coupling strength between opposite circularly
polarized waves, and in certain cases this results in observable
changes in the output polarization (42,44).

RealizingAthat some collisions will change the velocities of
certain excited atoms participating in the laser précess, we should
first consider the constant velocity assumption which was made by
Lamb (3,26) in order to greatly simplify the analysis. Interruption
theories of pressure broadening, which are applicable in a low pressure
gas such as that found in a gas iaser, commonly assume that an inter-
action strong enough to appreciably change the velocity of an atom will
also destroy its coherence (57). Using this assumption we shall consider
an interacting atom whose velocity has changed due to a collision to have
lost its coherence also, meaning that we can assume an equivalent pop-
ulation decay and a simultaneous isotropic pumping of the atom back
into one of the "laser" levels for the purposes of our discussions. The
atom after a collision of this type has lost memory of the past inter-

action with the electromagnetic signal, and it will be treated as a
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newly excited atom.

In our theoretical formulation the interacting laser atoms will
maintain constant velocities throughout the interaction, and pressure
dependent additions to the atomic level and electric dipole moment decay
rates will be made to account for the effects of vélocity—alteriqg
collisions. Gyorffy, Borenstein, and Lamb (41) studied this type of
collision efféct in detail and obtainéd expressions for the intensity
output profile of a gas laser oscillator. The major effect of velocity-
altering collisions was found to be a pressure-dependent increase of
- the atomic "homogeneous'" linewidth. This is in agreement with our
qualitative arguments above. The constant velocity approximation has
been used in the work done in references (42)-(44).

Collisions can produce many effects on the interacting laser
atom, depending on the type Qf perturber and on the dynamics of the
interaction. TFor the present we will account for collisions by making
a symbolic addition to the equations of motion for the macroscopic
density matrix. More detailed discussions concerning collision
effects will be made in section 2.5 and in the following chapter,
where a transformation to a different representation will be made in
order to aécount for most of the pressure effects.

Effects due to populating the lower laser state by the
spontaneous decay of the upper laser state will be included in the
theoretical formulation presented. This means an additional phenomolo-
gical decay rate parameter y will be added to the basic model des-
cribed in 2.4.2. vy will denote the inverse lifetime of the upper state

relative to a spontaneous decay to the lower state. Lamb (3) treated
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the effects of a non-zero value for vy (or a non-zero "branching ratio')
in the rate equation approximation for stationary atoms. The results
were a lower value for the linear gain constant and a higher value for
the saturation intensity parameter. We shall obtain these results, and
in addition we shall be able to see how a non-zero branching ratio
affects the sizes of each of the terms of third—order'in electric field
intensity.

Since the duration of a typical binary cqllision is short
compared with the natural iifetimes of the atomic-stétes,‘and siﬂce tﬁe
interaction of the atom with the electromagnetic signal is a small
perturbation on the normal Haﬁiltoniam of the atom, the collision dynamics
can be considered independently of the laser interactions. Thus we
write the equation of motion for the macroscopic density matrix des-—
cribing an ensemble of laser atoms with velocity v along the direction
of the electromagnetic signal (call this the 2z direction), at position

z and at time t, in an applied axial magnetic field:

. - . iU V'l
Qmmi(zsvst> (Ya+lQmm')pmr'(7 v 1-) f‘l [m“( ’t)ppm'(z’ st)

u

(2.23a)

- (z,v,t)V nr(z’ti] " Aa(z,v,t)é + 6 '(Z’V’t>)collision

mu mi ' mm
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TR A R N CRAC I .S“ﬁd["um(z’ﬂpmu'(z"”t)

1
mm
o pum(z’v’t)vmu'(z’ti] o g Fuulpmml(zsvst)

mm
% Ab(z’v’t)ﬁuu' = (puu'(z’v’t))coliision (2.23b)
o (z,v,t) = - (y , + 1iQ - iw)p (z,v,t) - = 5 V (z,t)p (z,v,t)
s 2 ab um [T T h Lot HEg 2 ‘mym ?
m
1
N E :puuiz’v’t)vulm(z’t) * (pum(z’v’t))collision (2.23c)

L4

Here ¢ = [9/3t + v(3/3z)]p; the symbols m,m' denote the Zeeman

sublevels of the upper state a, and U,l denote the sublevels of

the lower state b.

V(z,t) is the interaction of the optical signal with the
atom; ;9 and Y, are the spontaneous decay rates for the upper and
lower levels; P, & %(Ya + Yb) is the natural linewidth of the
transition; w 1is the transition frequency in the absence of a magnetic

1 . = —m! = i ¥ O = ek \d e
field; Qmm, (m-m )Qa, QUH' (u—u )“b’ ﬂpm qu mﬂa, where

Qa and Qb denote the Zeeman sublevel frequency splittings, Qa =

= gdeH/E, vwhere g is the g-factor of the level, My is the Bohr

mm”

magneton, and H 1s the applied magnetic field. The term FUH' de-

notes the svontanecus feeding of the lover level through spontaneous

decay of the upper level:
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I = v (25 41 Qulplnd> <t 2w >0 /1 <3 e, > 12 (2.24)

where p = er, and vy 1is the inverse lifetime of the upper state a
relative to a spontaneous transition to the lower state b. The pump-
ing into states a and b 1is assumea to be isotropic, hence the
§—functions in the equations of motion. The similarify between equa-
tions (2.23) and equations (2.20) is evident. Here we have included
splittings of level deggneracies by an axial magpgticrfield, taken into
account the velocity of the atoms, and added a term accounting for
changes in the density matrix by atomic collisions. Equations (2.23)
are in a form similar to the equations of motion found in references
(21) and (44).

To connect the macfoscobic density matrix with the assumed

polarization of the medium in section 2.3, we make use of the fact that

Pl ) ij(;race [p(z,v,t)pjd3v

5. _ |
_fd v }ml (pum(z,v,t)gmu + pmu,v,t)_pw) (2.25)

m, Y

We assume in using equations (2.23) that the atomic medium
is homogeneous and the amplitude and time dependence of the electro-
magnetic signal (apart from its explicit sinusoidal space and time
variation) are constant over the regions of space and time covered by
an interacting atom before it decays. This means the pumping rates and

the quantities E+, E , in equation (2.5) vary "slowly" with =z and
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t. Since the typical atomic‘decay time is about 10~7 sec., and ;he
typical distance traveled by an atom before it decays is roughly (10“7
sec.) v o= J_O_'4 meter, we can test the validity of our assumptions

thermal
in particular cases. TFor a small-signal or linear gain of 80 db/meter,
which is exceptionally large for a gas laser, the increase in signal
intensity in a distance of 10_4 meter is about .1%, which can be
neglected,

A more detailed discussion of the derivation of equations (2.23)

from the isolated atom model of section 2.2 can be found in reference

(27). Pressure effects and pumping of the lower laser level through

spontaneocus emission of the upper laser level are not included however.

2.5 Collision Processes

The effects of the other gas atoms and of the electrons and
ions on an excited atom interacting with the electromagnetic field are
numerous and difficult to treat in a theoretical analysis. Although
Rautian has discussed effects of electron collisions (39, 40), expe%in
mentally the effects caused by collisions of execited neon atoms witﬁ
electrons in a He-Ne laser have not been observed (58). Presumably
this is due to the fact that typical electron densities in a He-Ne

chm—B).

laser (1011cmﬁ3) are much smaller than the atomic densities (10
In a He-Ne laser the most probable collisions are with ground state
neon and helium atomns. The gas pressures are small enough so that
binary collision processes can be considered exclusively, i.e. the

cross sections are much smaller than the square of the mean distance

between atomns.



=39
In collisions with ground state atoms an excited neon atom can
suffer a phase shift, a change in velocity, or an inelastic process such
. as decay or magnetic (Zeeman sublevel) reorientation. A particular

elastic collision can slightly shift the atomic energy levels, resulting

in a phase shift

(AE —-AE )t
¢ = ——~5#;-ll-45 (2.26)

where tC is the duration of the collision. This adds to the homoc-

geneous linewidth or the electric dipole moment decay rate, A

Yab*
collision can also change the atomic velocity. Gyorffy et.al. (41)
performed a complicated analysis of pressure effects on the intensity
profile of a gas laser output by studying effects of velocity changes
combined with phase shifts in elastic collisions, and by adding pressure-
dependent parameters to account for inelastic processes. Level de-
generacy and magnetic field effects were not treated. The results were

compared with some experimental observations, revealing the fact that

one can account for most pressure effects by assuming decay rates of

the form:

Yo (Ya)spontanecus e, (2'27a)

Ty = () (2.27b)

+ P
spontaneous By o

an atomic "homogeneous' linewidth of the form:
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Y =-1-[(Y) + (v.) + g B3 (2.27¢)
ab 2 [‘'a’spont. b’ spont. ab- ? )
and a resonant frequency shift:

A = kP H (2.274d)

where P 1is the gas pressure and gab'> (ga + gb)/Z. Detailed expres-
sions for the elastic collision contributions to these pressure dependent
terms are given in the paper.
A theory which includes magnetic field effects must discuss

level degeneracies more explicitly. Several simplifying assumptions

can be made if the homogeneous linewidth is very small compared with the
Doppler linewidth. Since the electromagnetic signal is monochromatic,
only those atoms with velocities along the axial direction such that
their resonant frequencies are within a homogeneous linewidth of the
signal ffequency will interact with the signal. Let us consider é neomn
atom in an excited state which has a total angular momentum J > O,

and suppbse it is interacting with the electromagnetic signal. The
interaction results in a coherence between the two resonant states of
opposite parity (inter-coherence), which gives the atom an oscillating
electric dipole moment, and a coherence between the Zeeman sublevels

of each state (intracoherence) due to nonlinear atom-field interactions.
" A particular collision or atomic interaction process can destroy or
partially destroy the intercoherence and/or the intracoherence of the
atom. We shall discuss these effects for various types of collisions

in which the excited neon atom takes part, pointing out the simplifi-
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cations that are possible when only a small portion of the Doppler
distribute& atoms are capable of interacting with the signal.

Interactions of an excited neon atom with ground state neon
atoms can account for several distinct processes: a mixing of the ex-
cited state sublevels, which can partially destroy the intracoherence;
a spontaneous decay to the ground state with the re-absorption of the
emitted photon by a resonant neon atom in the ground state (radiation
trapping effect); and.a direct excitation transfer. (Resonant inter-
actions are discussed by Byron and Foley (59), and by Happer and
Saloman (60)). The intercoherence of the original excited atom cannot
be transferred by way of radiation trapping or excitation transfer, so
that if an atom undergoes either of these processes, it has been
effectively removed from the laser interaction. The intracoherence
can be transferred (44) since the sublevels are of the same parity.
This means that in addition to the isotropic pumping of the neon atoms
to the excited states of interest, there is an effective coherent or
anisotropic pumping contfibution from these processes when saturating
electromagnetic signals are present. However since the atom to which
the excitation is transferred very probably has a different axial
velocity component, the atom will not_be resonant with the signal if
the natural linewidth is much smaller than the Doppler linewidth, and
we can account for these types of collision processes by simply changing
the population decay rates.

Interactions of the excited neon atom with ground state helium
atoms can also mix the sublevels. Less frequently, if thg excited

neon atom is in the 352 or 2s2 state, a collision can occur which
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results . in the neon being in the ground state and the helium atom being
in one of the two metastable states, 218 or 238 respectively (61).

This clearly adds to the decay rate of the population of these parti-
cular neon excited states.

Wang, Tomlinson, and George (44) used the approximation that
the homogeneous linewidth for the nmeon 2s, > 2p; (J=1toJ=0)
laser transition (15-100 MHz) is much less than &he Doppler width
(460 MHz) to assume that sublevel mixing collisions and all excitation
1-:ransfer collisions aff.ectl the system in twé dif;f;areﬁlt ‘wéys, th‘é
latter essentially removing the atom from the interaction process. Using
this reasoning they performed experiments on this transition and obtained
separate relaxation rates due to sublevel mixing collisions and excit-
ation transfer collisions.

Unfortunately, for the 3.39-u transitions in the He-Ne laser
system, which we have studied experimentally, the ratio of the homo-
geneous to Doppler linewidths ranges from .2 to .5, depending on the
gas pressure. So the simplifying assumptions'mentioned are only rough
approximations for these cases. We will not attempt to measure cross

sections for specific types of collisions.
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CHAPTER THREE

SOLUTIONS OF THE ATOMIC EQUATIONS OF MOTION FOR WEAK SIGNALS

3.1 Introduction

In this chapter we obtain formal solutions of the atomic
equations of motion when the electromagnetic signal is of such intensity
as to be weakly saturating. This restriction on signalrstrength is
'necessary because the polarization éf éhe médium,is expreséed in the
form of a truncated perturbation series. If we consider an atom which
is excited to one of the laser levels and make use of the common pic-
torial view of the integral form of a time-dependent perturbation pro-
blem, we can say that the atom has a certain probability for inter-
acting momentarily with the field (or "scattering'), underéoing a change
of state, a given number of times before it decays. The usual pertur-—
bation theory calculations assume the probability for a certain number
of scatters decreases rapidly as the number of scatters increases; thus
only the first term (Born approximation-single scatter) or the firs%

two terms are kept for purposes of calculation. We keep the first

b "a
no single t2 two
scatters scatter -+ scatters Hi wia ain
t
1
i
E

a

Figure 1. Pictorial View of Perturbation Series
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two non-vanishing terms in our calculation of the atomic polarization;
in order for the results to be accurate, the strength of the perturb-
ation (the signal strength) must remain within certain limits.

We split the electromagnetic signal into circularly polarized
components and obtain gain and phase shift equatiéné for each component.
Three cases will be discussed in detail: the J =1 to J = 07 transition,
the J =1toJ =1 transition, and the J =1 to J = 2 transition.
Results will be compared with previous results obtained in a different
manner by Diénes (é7,28), who used é éﬁeorefical téchnique which.is

more limited in its ability to account for pressure effects.

3.2 A Glossary of Pertinent Terms

3.2.1 Orientation and Alignment

A variety of distributions of atoms among the maénetic sub—
levels of a particular state can be obtained by subjecting a gas or
vapor to a constant magnetic field and a beam of light of certain
polarization (62). The two main categories are orientation and
alignment. Orientation describes the situation in which the atoms are
pumped in one directién only with regard to the sign of M the
angular momentum in the magnetic field direction. The result is a net
component of angular momentum of the sample in the direction of the
magnetic field. Alignment describes the case in which the atoms are

pumped into the highest and lowest m levels simultaneously, giving

¥

an unequal population distribution but no net angular momentum component.
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3.2.2 Hanle Effect

Many phenomena which depend on the observation of scattered
resonance radiation from a dilute gas make possible the determination of
natural linewidths of levels. A particular Hanle effect experiment is
described as follows: atoms of a gas in a D.C. magnetic field are ex-
cited to an upper level by light which is traveling atrright angles to
the field and is polarized at right angles to the field, and the scat-
tered radiation is observed in the direction of‘the field. As the
ﬁagnetic field incréases from zeré, the degree ;f polérizatién -P df

the scattered radiation decreases according to the law (63):

P =P A1t & wmh (3.1)

where PO is the degree of polarizationAwhen there is no magnetic
field, and @ dis the splitting of the Zeeman sublevels. At very low
gas pressures vy 1s the spontaneous decay rate of the upper level.
Other phenomena, such as double resonance and level crossing,
give similar resonances. One property common to each of these resonances
is that increasing gas pressure first causes the resonance width to
narrow, due to capture of the resonance radiation by other atoms in
the groundstate (radiation trapping). A further increase in the gas
pressure causes the resonance width to broaden, due to binary collisions
of the excited atom with other atoms (64,65,66). The collisions become
important when the average interparticle separation decreases to the
point where it is comparable to the radiation wavelength (66).

The Hanle resonance width such that radiation
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trapping and collisions are not negligible can depend on the polari-
zation of the exciting Hght beam. We know that radiation trapping

and collisions should tend to equalize the sublevel populations and
partially destroy any coherence that exists among the sublevels, and
this is verified both by theory and experiment. It can be shown by
diagonalizing the relaxation terms in the equation of hotion for the
density matrix that there are two characteristic upper level decay
times which determine the resonance width: the decay time of the plane
lpﬁlériéation, or thé alignmént deéay time, and tﬁé deéay tiﬁé of thé‘-‘
circular polarization, or the orientation decay time (64, 66). Fach
of these decay times is shorter than the decay time of the population

of the level at the corresponding pressure.

3.3 The Density Matrix in an Irreducible Tensor Operator Representation

D'yakonov and Perel' (64, 66, 21), Omont (67), and Wang and
Tomlinson (43), have shown that in a representation in terms of irreduc-
ible tensor operators the radiation trapping (in the case of complete
capture), binary collision, and spontaneous emission feeding terms in
the density matrix equation of motion are all diagonal and depend only

on the tensor order. That is, they are of the form:

b, =~ Y P ‘ (325

when we exvress the density operator p(z,v,t) as

plzi, v k) = » pg (#,v,8) T 5 (3«3)

Lot q
K,q



T

; X ; : ;
where the quantity T_q is an irreducible tensor operator (see refer-
ences 68 and 69 for a discussion of tensor operators) whose matrix

element between the states jm> and j'm'> is given by

3 .
: ) (3.4)
L7

.= j K
. K. " I=mtq ghrer
<:3m| Tiqu’nﬂ;> = (~1) 2K+1
-m *q m

where the quantity in the spherical bracket is a Wigner 3-j symbol (68).

Thus we have the transformation:

. j K 3'
K —m-+
<im|p(z,v,t)|i'm™> = 2 :p (o,8|z,v,t) (-1)37™ 9 qfor+1 , (3.5)
q I
K,q

where a,B denote the levels whose total angular momenta are j,j'.

By making use of relation (C.15a) of reference 68:

. . - . » .1
) J1 2 J3\/F1 2 I3 1
T 93 3] LY m,.m! (3:8]
o - m, m, m m, m, m! I3 Jgdg 2 2
my=-j; m,==1, 1 7273 1 2. ~3

we obtain the inverse transformation:

Il

S i i rendd A7 K
>ﬁ“ (-1) "3 gl Gmlp(z,v,0)|3'm™> (3.7)

Lol m _IU.T
m,-m' q

pi(a‘ve’!zsvst)

As an example, some of the transformation relations for a

level with j = 1 are:
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(17 * Pgo * Pog-1)

(pll - p-l—l)

$ & 4

pz = Py = 20, +0p )
0 11 - “oo -1-1
2 —

Pa e T |

K K
where pq stands for pq(l,llz,v,t) and Pom” stands for
<1m|p(z,v,t)|1 m'> ., We can see from this example that the "orientation"
and "alignment" of an atomic level are embodied in the quantities o
and pg respectively, whereas the off-diagonal or "coherence'" terms

show wup in the quantities pﬁ, where q # 0. pg denotes the total

population of the level.

3.4 Assumptions Used in Application to Laser Amplifiers

The derivationsty D'yakonov and Perel' (64-66) and Omont (67)
of equation (3.2) as a description of the effects of radiative trapping
and resonant collisions were based on a model in which all atoms could
participate in the resonance fluorescence process regardless of their
velocities. This model is directly applicable to Hanle effect experi-
ments. In this case, if the gas consists of atoms of only one kind,
neither radiation trapping nor resonant excitation transfer collisions
contribute to decay of the population (the quantity pg) because of
the inherent conservation of excited atoms in these processes. (The

"new'" excited atom very probably has a velocity different from that of



o
the "old" excited atom, however.) There is a contribution to the decay
of higher order multipole moments of the excited atom due to sublevel-
mixing resonént collisions in which no excitation transfer occurs, and
due to sublevel mixing and.incomplete transfer of intracocherence when
the excitation is passed to another atom through radiation trapping or
excitation transfer. | H

"Nonrescnant'" dipole~dipole collisions, as treated by Wang
and Tomlinson (43, 44), mix the sublevels of an excited atom but do
not lead to #opulation decay. Thesé ééllisions do-not appfeciably alter
the velocity of the excited atom. Their effects can be put in the form
of equation (3.2) also.

Collisions which alter the velocity significantly, or collisions
in which the repulsive hard-core interaction becomes important (at very
close encounters), can be treated as "hard' collisions in ﬁhich there is
no correlation between the state of the atom before and after the impact.
Thus the decay due to these impacts is assumed to be isotropic (i.e. the
quantities YK in (3.2) are equal).

In a He~Ne laser medium excited neon atoms can undergo sublevel
mixing collisions and excitation transfer collisions with ground state
helium atoms, and they may interact with ground state neon atoms via
radiation trapping, "resonant" and '"non-resonant'" sublevel mixing
collisions, and "resonant' excitation transfer collisions. (References
43 and 46 discuss the '"resonant'" and ''mon-resonant' approximations to
dipolar interactions). In addition the excited neon atoms may suffer
"hard" collisions of the type discussed in the previous paragraph.

These phenomena may be taken into account through the use of
P Y &
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equation (3.2), except for the radiation trapping and "resonant"
excitation transfer collisions. The effects of these two processes
on a laser signal differ from their effects on depolarization of
resonance radiation in a Hanle effect experiment. Since only those
atoms with resonant frequencies wifhin a natural linewidth (or homo-
geneous linewidth) of the monochromatic signal frequehéy will interact
with the laser signal, both radiation trapping ana excitation transfer
can effectively remove the excited neon from the interaction.

If the ratio §f the homogeneoué linewidfh fo thé Dopplér
linewidth is very small, one can treat these processes as isotropic
decay mechanisms; for they act as '"hard" collisions in removing the
excited, coherently interacting neon atom from the picture. Wang,
Tomlinson, and George used this approximation in their study of
collision~induced anisotropic relaxation in a He-Ne laser oscillating
at the 1.52-y ((J =1 =+ J = 0) transition (44).

If the homogeneous linewidth is appreciable when compared
with the Doppler linewidth, there is a non-negligible possibility that
the newly excited atom in these two processes can still interact with
the electromagnetic signal. Since intracoherence can be transferred
in these processes, they produce an effective coherent pumping rate
which must be taken into account in equations (2.23). We shall neglect
this attribute of radiation trapping and resonant excitation transfer
in our formalism, even though the transitions which we study experi-
mentally (the 3.39-uy transitions in the He-Ne system) do have homo-
geneous linewidths which are appreciable when compared with their

Doppler width.  The high ratio of helium pressure to neon pressure
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commonly used for the laser medium (about 10:1) tends to make resonant
excitation transfer an interaction of minor significance when compared
with other pressure dependent processes (44). Radiation trapping occurs
to a large extent, however (45); a more complete theory should include

the possibility of coherent pumping due to this process.
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3.5 The Equations of Motion

Using the transformation relations (3.5) énd (3.7), we can
obtain from equations (2.23) an equation of motion for the quantity
pﬁéa,ﬂ[z,v,t), where @ or B inde# either the upper level a or
the lower level b. This requires the use of some relations involving
the Wigner 3-j and 6-j symbols, which can be found in Appendix‘C of
reference 68. The analysis 1s greatly simplified if we assume the
g-factors of the two laser leve1§ are equal. This approximation is good
for most He-Ne laser transitions if we keep thé magnetic field strength
within certain limits. This will be discussed in more detail later.

We shall now outline the procedure. Applying (3.7) to
equation (2.23b) and using some of the symmetries and selection rules

of the 3-j symbols, we obtain the equation:
*K . K . " ;
pq(b,b) + (Yb - 1qQ)pq(b,b} = Field-Medium Interaction Term

+ Spontaneous Emission Feeding Term + Ab Zjb + 1 éxoaqo + [}i(b,b{]

coll.,
(3.9)
where
qty-j
" _ =1 _ b
Field-Medium Interaction Term = 5 Z Z(' 1) 2K+1
m H,-H
Jbp Jp K | ;
y [@'mum"mu' - b (E - -P-)mu'] (3.10)
H = q



-,

—qru-J,
Spontaneous Emission Feeding Term = E E (-1)
'

m3m' H,—H
s VZK + Y(ZJa + l) Py (_p_umgu,m.) Pom® * (3.11)

2 ; 2
with  p. = | <4 N> | .

We have assumed an implicit dependence on z,v,t in order to shorten

the notation.
Applying the Wigner-Eckart Theorem (68) to the matrix elements

Eum’ Eu'm'; and using relation (C.32) of reference 68, we can write

the spontaneous emission feeding term as

ja+jb+K+1ja la K| o
" BB T T = Y(Zja + 1) (-1) pq(a,a)
Jp dp 1
(3.12)
where the quantity in curvy brackets is a Wigner 6-j symbol (68).
Now consider the Field-Medium Interaction, first transforming

the matrix elements of E . p by making use of the vector base system

of (2.4):

| _ 1-j -u Jal 3
(E_-E)um=EEM<UIPM1m>=E(-1)  P(bsa)
M M-

M
(3.13a)
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1-3, -m hy * dy

E - Py = é Ey<m | p, | u'> =Z(~1) y P(@sB).
M

M ' M -
(3.13b)
If we use (3.5) to transform =T into pg 'andrapply
relation (C.33) of reference 68, we obtain:
. . : 1K' K
3 i : 3 . gt s R
Field-Medium Interaction = i E : ; (-1) F}w \/(21(—1—'1) (2K"+1)
K : B
i1 Er K 1. k' K
! B K-K' K'
p(b,a)e ,(a,b) + (=) p(a,b)p ,(b,a) (3.14)
q 5 a3 : q : , :
M M. T dp ) 1s

where p(b,a) =<j | 2l i >, plab) =<j | pll 3>, and
p = er. (The conjugation relation is [p(b,a)]* = (—1)jéﬁbp(a,b);
this may be deduced from (C.85) of reference 68.)

Applying the same procedure to equations (2.23a), (2.23c¢),
and a corresponding equation of motion for pmu(z,v,t), we obtain
the equations of motionvfor pg(a,alz,v,t), pi(b,a|z,v,t), and
pi(a,b[z,v,t) respectively. The form of these equations can be

written in the compact notation:



nK - 8
pq(u,B!z,v,t) = ?\a(z,v,t)xhu +1 §,.8

K K
K0 qOéaB + T pq(u,vlz,v,t)éu 8

a va

K K : K P
- 'Yquq(Ol,B!Z,V,t) = 1[0)@8- qﬂ]pq(a,ﬂlé,v,t)

(3.15)
; d oty . 1K' K
+ F(-1) -E 5 (-1)% E (z,t) Y(@ZHL) (2KTH)
A Lo M PR |
Kqu V \M g —q
1 K'K}. : 1.K'K
i d K+K' K!' 5 :
“lpla,w)esy (u,Blz,v,t) F =L p 1 (a,v]z,v,t)p(v,B)
% 4 4. 3 4 i3, 3
B o ~qu ‘ o “B
j_+3, +EK+1 (3 35 K
where % - v(2) + 1) (-1) g " e (3.16)

Iy, 3p L

In the notation for p, o and B index either the upper or lower
level, and p and v index the levels with parity opposite to that-
of ‘¢ and B respectively. Thus if o = a and B =b, then uw =5»b
and v = a. The quantity w is equal to (EG—EB)/ﬁ, where E

af

and ES are the unperturbed energies of the levels o and 8.

o
-

\\.

The first term on the right-hand side of (3.15) is the
assumed isotropic external pumping excitation to the lascr levels,
where Au(z,v,t) is the rate of excitation of atoms into state o at
time t and position =z, with velocity v. The second term denotes
the pumping of the lower level by the spontaneous decay of the upper
level, where vy, as stated previously, is the inverse lifetime of the

upper state for a spontancous transition to the lower state.
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Taking advantage of the discussion of (3.2), we have written

the third term such that

K _ . K K )
Yoo Yu ¥ (}a)coll. (3.17)

I

K kK _ 1 K L
Yab = Yba ~ Z(Ya ® Yb) bl (Yab)coll. (3.18)

Here Yy represents the total spontaneous decay rate for atoms in state
o. Collision induced relaxations are represented as shown. The
assumptions implied in applying (3.2) to this situation are discussed

K
: . 5. T srl : S
in Section 3.5 he quantity (Yab)coll. represents the collision

induced relaxation of the intercoherence, and for electric dipole

(1)

radiation only the K = 1 case is important. We shall write o Y

for simplicity.

The results of this section were also derived by Wang, Tomlinson
and George (44) for use in a description of a laser oscillator operating
in an axial magnetic field. However our expression for the field-medium
interaction differs from theirs in that expression (3.14) contains a
(—l)q' factor, whereas equation (9) of reference 44 contains an extra
(—1)q+jﬁ+j5 factor but no (—l)q‘ factor. The expressions in reference
44 result in a macroscopic polarization whose sign is dependent on
ja = jb, which is not correct.

The assumption of equal g-factors for the laser levels is
justified if the difference in the Zeeman sublevel splittings (in
frequency units) for a certain value of magnetic field is much less

than the smallest decay rate involved in the laser transition of inter-
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est, since the "level width" is, from the uncertainty principle,

AEa/B = This can be written as

K
Y

(s, = &) << =07
€y 7 8 uBH/1 ?

as was done in reference 44.

3.6 The Macroscopic Polarization
To express the macroscopic polarization in the irreducible

tensor representation, we use equations (2.25) and (3.5) to obtain

o -ubg i, 3, K
_ K b b “a
B(z,v,t) = 2 : Z; pg(bsalz,v,e) (-1) | v_zK:(l - q)gnu”r c.c.

m,i K,q

(3.20)

where c¢.c. denotes the complex conjugate. We shall see later that the
first term in the brackets is, in the rotating wave approximation,
equivalent to the second term inside the cufvy brackets of equation
(2.11). Thus we can obtain the quantitites Pcm and Pom directly
from this term after integratiné over the velocity distribution. In

the future we shall set the polarization equal to the first term inside
the brackets of (3.20), keeping in mind the fact that the physical

quantity is obtained by taking the real part of this complex quantity.

Use of the Wigner-Eckart Theorem (68) gives:

T Jy 3, K\fiy 3, 1
) ST Jﬂ Jb ¥ F)_-_,_:‘.r!/ a a \I!/ 1

P (z,v,t) =9 % (~1) o, (b,alz,v, t)y2R4] ~ S
Locd o % ) \u -m q / \1 =B g4

(3.:21)
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We now use equation (3.6) to obtain:

.3 P
Pq (Z:Vst) = T ("l) p (b,alzavat)P(a,b), (3'22>
1 v 3 Iy
and
g ;
P (z,t) = 2 -1) a ~h p(a,b{/;l (b,alz,v,t)d3v (3.23)
o \3 .

3.7 Solutions for a Laser Amplifier

3.7.1 Derivation of the Macroscopic Polarization

In this section we integrate (3.15) in order to obtain an
expression for the macroscopic polarization P(z,t) in the form of a
truncated perturbation series. We note that (3.15) denotes coupled

first-order differential equations for four types of density operator

coefficients: pg(a,a R T ) pﬁ(b,blz,v,t), pﬁ(b,a|z,v,t), and
pg(a,blz,v,t). We are interested primarily in obtaining an expression
for pé(b,a[z,v,t) so that we may use equation (3.22) to compute the
components of P(z,v,t).

Let us write the differential equation for ps(b,a]z,v,t)

from (3.15):
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. T S e 1
K _ T K ' i o, a b 1414
pq(b,a|z,v,t) = [Yab 1(ww‘qﬂ)]oq(b,a]z,v,t) +E (-1) 2,,.4( 1)

K'q'
1 K'K g 1 K'K
; EM(z,t)\[(2<+1)(2K'+1) b(b,a)p , (a,a|z,v,t)
ereed M q' —q 4 i % 1
M=+ : a*“b ~a
1 K' K
K+K' K'
+ (-1) p(b,a)pq,(b,b'z,v,t) (3.24)
W T
The integral of equation (3.24) is
K
pq(b,alz,v,t)
t
; SIROUR a - [y, =1(wtq@) ] (t"-t)
=% piy @ P J(—-l)q Jdt' g oo B (z-v(t-t'),t")
K'q' M Yoo
1K' K 1" : 1 K'K
\)3(21('4-1) ;p(b,a)pK,(a,a]z—v(t—t'),t')
M q' =g £ i, 3y
a“h “a
\\
\
L . 1 K' K
5 gyt p(b,a)pi,(b,b|z—v(t—-t'),t') (3.25)
Ip Ja Jp

In a similar manner we obtain



Bl

pﬁ(a,aIZ,v,t)

t
A (z,v,0)4/2] +1 . KN (v~ ~1q@) (£'-t)
o el 2.5 6+ (-1 de' e 22
Yain K'q' M Yoo
, 1 K'K gr 1 K'
EM(z-v(t—t'),t')\k2k+1X2Kf+l) ' p(a,b)pq.(b,al?—V(t—t'),t')
<M gt =g ; 3 3, 35
1 1 1 K'K
+ DT p 0,00l (ablzv(e-t ') e ") (3.26)
A (z,v,t)\pj +1 j _+j, HK+1 1 32 ¥
K et b a-b .
p (b,blz,v,t) = 8,08 A+ (-1) y(25 +1)
q K K0 q0 a o o
Ybb By Iy L
t K
(v =1a®) (£'-1) L T iy I
] dt' e pq(a,a|z—v(t~t‘),t') HE > (—1)q§ dE"
. i i K‘Jf‘?l"# .mﬁ?:d-
q oo
K . ' '
EM(z—v(t—t'),t')\k2K+l)(2K'+l) p(b,a)
i g" g
1 K'K 1 K
K' K4K" !
cony (asb|z-v (t-t') £ ") +(-1) % 5 (a, b5, (b,a]z-v(e-t") ")
q T | 4 b 3y 3
e b da _ Iy Iy
(3.27)

I

; K
pi(a,b]z,v,t) same as pq(b,a z,v,t), but with b and a interchanged

everywhere, and with w replaced by -w. (3.28)

The first terms on the right-hand sides of equation (3.26) and (3.27)
have already been integrated over t'.

The following prescription will now be used to obtain

&
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expressions for pé(b,a[z,v,t) to various orders of the signal amplitude:
the zero-order contributions to pz(a,alg,v,t) and pi(b,blz,v,t) will
be substituted into equation (3.25) to. obtain an expression for
pi(b,a’z,v,t) which is linearly proportiénal to the electric field of
the signal; then the expressions (3.25) and (3.28) will in turn be sub-
stituted into equations (3.26) and (3.27), and the resﬁltant second—
order. expressions. for pﬁ(a,alz,v,t) and pz(b,blz,v,t) will be sub-
stituted into equation (3.25) to ob;aip a third—order expression for
pé(b,a|z,v,t). The calculations will terminate with the third-order
expression, although one can proceed in this manner to obtain higher
order tefms. In order for this procedure to give valid results, the
signal amplitude must remain within certain bounds. We will see later
what the intensity restriction is in terms of the atomic parameters.

First let us substitute equations (3.25) and (3.28) into

equation (3.26) to obtain the following integral equation:

K(a a] £ o }\a(zav:tD VZJa'I'l £ % = .:_l'... (_.l)Ja—l-ij : (_l)q"*-q”
P vl 8Ny K K0“q0 " 42 s L \
Y_aa Klql K“q"

1 k'r\/1 x" g\ |1 x x e
5 4/ (2K+1) (2K"+1) (2K'+1) dt | dt
A— M , - M no_ 2 5 i 1 2
M,M' 4 q \ d d Ja Ja Ipllo o

kK . ;
—(Yaa—lqﬂ)tl —(yabul(m+q'ﬁ))t2

e e hM(tnt z~vtl)h (t-t ~t2,2~v(tl+t2))

g M' 1

T L K KK i E™ g’
pla,b){p,a) pq"(a,a]t—tl-tz,z»v(tl+t2))+(~l) p(b,a)
[ - b Ja Jp
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K

© o o4 i
" ]4 KAK' ~(rgamiaity
q

T °
.,(b,blt-—tl—tz,z—v(tl-l-tz)J-(—1) def de, e

(o] (o]

N AR A
e EM(t——tl,z—vtl)EM,(t—tl—t2,Z—v(tl+t2))p(b,a)

1 K" EK! ' 1 K" R
K" K4+

p(a,b) o ub,b|t-t -t,,z-v(t +t,))+(~1) p(a,b)

s & q 1 72 1 2 : g w5

Ip Ja dp Ja Ip Ja
x! ' ' i - = &8 .
pq"(a,altmtl—tz,z~v(tl+t2)) . (3.29)
where we have transformed to the new variables t1 = £~ £ and
t, = t' - t". The corresponding integral equation for pZ(b,hlz,v,t)

can be obtained from (3.29) by interchanging a and b everywhere and
by adding the second term on the right-hand side of (3.27).
The zero-order contribution to pz(a,alz,v,t) comes from the

source term on the right-hand side of equation (3.26):

Aa(z,v,t) -

[pz(a,a[z,v,t)](o) = ) : %5ja+l . (3.30)

K K0 q0
aa

K K

(The following simplifications in notation will be used: p I

when K # 0, and Ygde-Yu, where o = a,b.) Substituting (3.30) into

y . 2 K
equation (3.27), we obtain the zero-order contribution to pq(b,b]z,v,t):
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A 25, +1 vy (23 _+1)A
[pK(b,blz,v,t)] @ bl boos & & B & . (4.31)
q T K0 q0 IR K0 q0
N St Yy,

where we have used the relation (C.37) of reference (68):

L EEMRAA for |j - J|< g<I+3 (3.32)
J J* g \f(2j+1)(2J+1)
in obtaining expression (3.31).

These zero-order solutions describe the situation in which the
externally pumped atoms do not interact with the electromagnetic signal
and decay spontaneously. This would corrgspond to the '"mo scatter"
pictorial representation of section 3.1. These quantities are now sub-
stituted into (3.25) to obtain the polarization.

In the following calculations we shall evaluate several 3-]
and 6-j symbols. Reference (70) contains an extensive tabulation of
these quantities. Equation (3.32) and other special cases treated in
reference (68) are also useful.

We now assume that the electric field of the signal is due to a
single monochromatic traveling wave, so that we may use equation (2.4)
and (2.5) to express the quantities E in terms of the polarization

M

components of the traveling wave:

L ej(kZ*vt+¢H)

=i (kz-vttgp
Ll" e Hhas% x(—I')

1+

1.
- SF (3.333)

E_(z,v,t) =

N



Bl

' 1 i(kz~vt+p ) 1 —-i(kz-vt+d )
E+(z,v,t) =3 e + 5 El— e = (3.33b)

El+

where E E

142 By ¢+, and ¢_ are slowly varying functions of 2z and

t. From equations (3.13a) and (3.13b) we know that the quantities

E_ (E+) are proportional to the matrix elements for transitions in
which the final state has one less (more) unit of angular momentum along
the axial direction than the initial state. According to time-dependent
perturbation theory (with the use of the rotating-wave approximation)

~ivt ; ; ; fgord
the e = component of the perturbation induces upward transitions, or

absorptions, and the e-H"\)t component induces downward transitions, or
emissions. Thus from (3.33b) we see that the positive helicity component
of the traveling wave induces absorptions in which the atom gains a unit
of angular momentum along the axial direcfion; This is in accord with
the physical argument given in Section 2.3.

Using equation (3.25) for K = 1, equations (3.22) and (3.33),
and neglecting the antiresonant term (rotating wave approximation), we

obtain the first-order (linear) polarization due to the atoms with

velocity wv:

€ _ & W(v) 2 4 .
[%qcv)]q=i ~ 6h 1\'o Yqb—i(w+qﬂ—v+kv) I <l PI! e> I Elq’ (3.34)
where we have set

A (z,v,t) = YGNZ(Z,L‘)W(V), (3.35)

and assume the variation with =z and t is slowv enough to be considered
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negligible. The quantity N0 is the "excitation density",

. . YNZ (2ja+1)
N =N -0 - —2 (-2 (3.36)
Yy 23b+l =

The feeding of the lower state through the spontaneous decay of the
upper state reduces the zero-order population invgrsién. If the line
strength for the particular laser transition of interest is large, this
should be taken into account. Often the decay rates are not known
accurately enough for this effect to be seen, however, and thus it is
ignored for simplicity.

We now use the zero-order solutions (3.30) and (3.31) in the
expression (3.29) for pz(a,alz,v,t) and the corresponding expression
for pi(b,b]z,v,t) in order to obtain second-order solutions for these
quantities. Then, by substituting these solutions into (3.25) and using

the following definitions:

1 1 K"Y(1 o0 1 34, 1 1L 1

m = = (-1) S (3.37a)
T % i & W . \}3(2Ja+l) o [ -
I 14 =94 6 1 g +i 1 a1 x!

B = ‘ H ] = =Ly P —“—'l“:_::‘ ‘ (3.37b)
a Ja 3 U3y 3, 3y 3(2;1b+1) dg gy
1 1 EM11 § 1 3 +] 1 1 K

a b il

P = { \ \ = (-1) @ “"‘.’.‘:::1‘::‘::{ (3.37¢)

Jb Jb Ja 'a jb Ja \f3(ZJa+l) Jb Jb Ja
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1 1 K'|{1 0 1 3 +i 1 1 K
r = ‘ l | . O i S U } (3.37d)
g S 3.0 15 3 Jbl N33+ |3y 3y 3,
, Aa\/zja+1
1 . (3.38a)
Ya
B I e 4 Y(iéa:i> i , (3.38b)
b \fiﬂ:a‘ Ya'p

we obtain the cumbersome looking third-order contribution to the macro-

scopic polarization due to the atoms with velocity wv:

[Pq(z,v,t)]éii

_ ;i'(_l)ja"jb ) |<bugn§iLi
{_13

-1 g
V3 i Lo

AT M,M' M

(l 1 K'
. -M' =M" _qn

7 1 s P |
1L ®' %X - [dt e . (Yab 1(w+qﬂ))tl
q 5 5 1 2 3
Ja Ip Jallo o) (o]

1 L
3(2K'+1)
M q' ~q

K' i, 4 1 ”
—(Ya —1qQ)12 m(Yab"l(m~M Q))LS

e e EM(tutl,z—vtl)EM,(twtl—tz,z~v(tl+t2))

(o]

K"Fl[‘
. —to=t =t ,z=v(t +t nA-nB |+ (- - fae.fd
E}I"(t tl t2 t3,z V(Ll Lz-l-ts))[nX nfa} F(-1) JdtJdtz[ctg
o o o

K!
F(Yabwi(w+q9))t1 »(ya —jq'Q)tz —(yab+i(m+M”gz))tg

e [ e N E“(tmt

: l,z~vt1)
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,(t Ly=tys2- v(tl+t ) E .1(1_ —ty-ty= 3,z—v(tl+t2+t3))[mB mA]

qi
e l .

Ja Jb

«©

@ = y Rt .
—(Yabhl(m+qﬂ))tl "(Yb —1q'Q)t2
dL 3 e e
(e} (6] (6]
-_ | __‘h_"
(Yab i(w-M Q))t3

e EM(t~—tl,z—vtl) EM.' (t—tl-—tz,z—v(tl—l-tz))

X ) ‘ T L% D
EM,,(t—tl—tz—tB,z—v(tl-l-L2+t3)) . [rB~pA]+(—1) fdtJdtz dt3
(o] o

(o]

- p— K' . 1 . " "
"(Yab 1(w+qﬂ))tl (Yb ~-iq Q)t2 (yab+1(w+M Q))L3
e e e EM(t—tl,z—vtl)

By (6t =y, 2V (e +E) VB (6t ~Ey=t 29 (b HE e 1)) [pA-rB]
1 4 KAl K iyfse & & 8
+ (-1) Ta'Th y(25 +1) °e at. Lae t o | ae
YRedy & alle @ 4 i f 9%y 3 4
Jb jb jb Ja Jb (o} o o o

. k', R ME A s
_e_(yab 1(m+qﬂ))tl . (Yb ~-iqg Q)tz . (ya iq Q)t3 . (Yab 1 (w-M Q))t4

— P n s [ o — i g e
EM(t t.y2 vtl)EM,(t z v(tll ))L‘,,(t t SIE v(tl.t +t -fLA))

LRy~ Ty 5Tty

F F T f ~(y_, —i(utqR))t
K'4+1 ab 1
[mA—nB] +(-1) [dtlfdtzfdt3f(1tl* e
(¢} (o] (e} (o]

71 1
H(Yh -iq'Q)t —(YK ~igq'Q)t = (y ,Hi ("))t
b 2 a S ab 4
e e e E {t~t.sz2=vt,)
L il ]

1’ 1234
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EM' (t—-tl~t2—t3, z—v(tl+t2-l~t3))EM” (t:—t1~~t2—t3—t:4 y 2=V (tl-l-t2+t3+t4))

.[%B = mA]

3.7.2 The General J to J
= L9

(3..39)

Transition
__b e e ——

We notice that there are six integral terms in expression

(3.39), each being third-order in the electric field.

of the summation indices, all
order polarization; for other
zero, depending on whether or

We can determine which wvalues

For certain values
six terms will coﬁtribute to the thirqf
values some or all of the terms will be
symbols are zero.

not certain 3-j and 6~j

for the summation indices contribute to

the third-order macroscopic polarization by reviewing the selection

rules for the 3-j symbols and 6-j symbols (68-70).
Jp 3p 7
(a) Selection rules for 3-j symbol
m, m, =M
(i) my + m, = M
(ii) Ijl < Jul £ & Jy ¥ 3y ("triangular inequalities')
31 35 35
(b) Selection rules for 6-j symbol
Jl JZ J3

In order for this symbol to be nonzero, it is necessary that

the elements of each of the

Ey Jg gl

triads

(Jy 3, J3) 3y 3, 35)



A
(i) Satisfy the triangular inequalities;

(ii) have an integral sum.

Using these selection rules we can determine from the two
3-j symbols multiplying the entire square bracketed quantity in (3.39)
that for [P+(z,v,t)](3) the following values for the summation in-

dices contribute nonzero terms:

(a) XK' =0, q' =0, M=-1, M' =1, M" = -1
) K'=0, g' =0, M=-1, M =1, H" = 1
(¢) XK' =1, q'=0, M=-1, M' =1, M"=-1
() K'=1, q' =0, M=-1, M =1, M = 1
() K'=2, ¢"=0, M=-1, M' =1, M'=-1
(£) R*' =2, q'=0, M=~1, M' &1, M = 1
(g) K*' =2, g'=%, M= 1, N =-1, H" = -1

By substituting into (3.39) the appropriate expressions for
the EM factors for each set of summation indices listed, and by
neglecting antiresonant terms (rotating-wave approximation), we obtain,
after a re-arrangement, the following integrated expression for the

third-order macroscopic polarization due to atoms with velocity wv:

(3) |<bupuaz]® 3.3 20]0 3“1 “%
= o hEERRUSE L. | N 1= E SR e L
[P_l_(v)} i 72&3 W (v);I0 5 El. & T
I__ w(’l YE! Ya
2 2 X 2

o T ( 1

' A T Y 2 3 v i (wH=vtky)
Tav  Ya'b :\db
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9 1 3 1 1
1 ' 1 P R o W P
vy, —i(uwtQ-vtkv) vy . +i(uH-vtkv) 2 71+ T1- 0 1 2
ab ab Y Y Y
a a a
2 A
2u0 3aq ao 20 3a? az
Y el s T 1
0 1 2 I"0 0 11 2 2 Y 1 (et-vtky)
Yb Yb Yb YaYb YaYb YaYb
0Ll
1 1 2 2
- + . - + 9E ES |—5
Yab+1(w—9~v+kv)‘ Yab i(w-Q-vtkv) 1+ 1"'Y§"i(29)
uo yaz 2 »
N 2 2 1 5 1

2, 2 2 . .
Yb—1(2Q> Ya—l(ZQ) yb—l(ZQ) Yab"l(w+Q”V+kV) yab—l(wkﬂ—vkkv)

: , (3.40)
yab+1(w~9mv+kv)

(3)

[P_(v)] is given by the corresponding expression with - and +
interchanged in the electric field subscripts. The quantities Aa(z,v,t)

have been factored into space-time and velocity dependent terms accord-

ing to (3.35), and No is given by (3.36). The coefficients ug, mi,
az are |
K (=%
td ‘7 '
1 L 1 K )12 0 1 1. K J2
a}\ = 5 Bliy = >
g g H Iy 45 Ja
) g9, ] [1d i, K [R i1 L)k 1 1
i ' (24 21) (3.41)



—65-~

The values of these quantitites for the transitions J=1 to J=0,

J=1 to J=1, and J=1 to J=2 are given in Table 1.

Oto C!O CIO CLl Cil (Xl 052 012 Cf.2
6 | %1 % |% [%1 s |%a]% )%
3 ide 12 ld
= = — ey e o — 0
a0l zlo |ol5lE 1505
i R I IR PR I P I
L dskl g 196 | 5 36| 36|09 [72]| 72
o omen] bk b Y L f EIE T AL LT
J=1 > J=21 351 20 {300| 9 |36 [000|15 |40 |3000
Table 1
. 102 .
Values of the coefficients Ops Oy O for three transitions of

interest.

3.7.3 The Maxwellian Velocity Distribution

In a gas laser the velocity distribution of excited atoms

active in the laser process iIs usually Maxwellian. This is the case
\

\

in the He-Ne laser, for example. Thus

%, 2
Wl s T B (3.42)

/T

~where u2 = 2kT/m. The half-intensity width of the Doppler line is

related to ku:

o

ry, = (}£i§%>}ul (3.43)



=

It is important to note that all frequency and decay rate
symbols used thus far denote circular frequencies; this also includes
ku. When numerical values are given for these quantities, e.g. 1000 MHz,
we are using ordinary frequency units; thus the quantities used in the
analysis should be divided by 2m before giving them numerical values.
In some publications this is implicitly understood, and the 2n factor
is not written.

Using (3.42) we can integrate (3.34) and (3.40) over the
velocity distribution. The details of the integrations for the velocity-
dependent functions which are found in these expressions will not be
given in this work. The details for functions of this type can be found
in reference 27. The results are expressed in terms of the error

function of complex argument, defined by
2 . 2 2
w(z) = exp(~z )erfe(-iz) = (2/3/M)exp(~-z") exp (-t )dt (3.44)

An integral representation which is the basis for our integrations is

w(z) == ==—25 (Imz > o) (3.45)
i
and a useful property of w(z) is
wi-x + iy) = w¥(x + iy) (3.46)

The definition, mathematical preoperties, and tables of this function can

be found in reference 71. Plots of the real and imaginary parts of
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w(z) for various values of its complex argument are given in Figure 2,

The results of the integration over velocities are:

2 2

E
“C['+](1)F(3) = qul w(x +y+ia) - b(y) 2 ]- c(y) 12
€, 2F 2E
o (o]
where
5 [(20% 3011' a;) (2'13 3“2 2)
b(y) =5 AB YEOTR ) P\ED YTE TE,
2 "oo Al Aq A, B, ‘Bl By
<2a(2) Bai OL; ):|
= B + b2 = E.Ly)
A B~ AB) AB, 1

and

}_-.I

il

2 . . l
— — X o 7 by z 4 = Re 7 > ‘i’ Al, ig
=~ - 2(a-i (x0+y))x (70 y+ia) Re v (2\0 y+ia)l,

fl(y) _\f% P

1
i

f2(y)

(3.47)

(3.48a)

(3.48b)

(3.49a)

.?:V (wix --3,11;1) - w(x —rd—la)) f 2(1111‘;)( (\ |y.1d)~\*n()\ ~y+ia))

(3.49b

~
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Figure 2
The Linear Polarization Function w(y + ia)

(a) Real Part (b) Imaginary Part
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f3(y) = [;%%;— 2(a—i(x0+y))w(xo+y+ia) & Ez; (w(xo+y+ia)+w(x0~y+ia)ﬂ .

a-iy)
(3.49¢c)
The following limiting case is necessary:
o i L ~ i B - e .
%ig 2y(w(:sco.3.7+:~_a) w(xo yt+ia)) o 2(a 1x0)w(x0+1a) (3.494)

The definitions of the new symbols are:
o =‘va\/F [(bnpna>]2/630hcku, the small signal gain parameter;

20
= 3h Yayg/|<bupﬂa>]2, the saturation signal intensity; a = Yab/ku,

K K
Ya/2ku, B, = yb/Zku, G = y/2ku, the normalized decay rates;

K

EZ
o

Ak

X

(o]

(w-v)/ku, the normalized deviation of the frequency from line
center; y = Q/ku, the normalized Zeeman splitting. The corresponding

expression for can be obtained by interchanging + and -

in all the subscripts and by replacing y by -vy.

3.7.4 Discussion of the Nonlinear Effects

The leading term in (3.47) is the linear contribution, while
the remaining terms show the lowest—-order nonlinear effects. We shall
not compute any higher order nonlinear expressions. The functions

¥ of reference 26

£ f f are similar to the functions Fl, FZ’ 3

1# T2 T

and Hl’ H6, H of reference 27, for the case of a single frequency

7
wave. They differ in two respects: (1) by multiplicative constants,
and (2) through the sign of their imaginary parts.

We shall be concerned with the case when the signal fregquency

is tumed to the line centar, i.e. x_ = 0, In this case the real parts
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of fl’ f2’ £ are symmetric about y = 0, and their imaginary parts

3
are antisymmetric about y = 0.

The function f1 describes the self saturation of the polar-
ization component. We can represent this pictorially by drawing the
Doppler gain curves of the two circularly polarized transitions, as
shown in Figure 3. The gain curve for each polarizatidn indicates the
population inversion density of the atoms which are resonant with that
polarization component of the siénal. When the rate of stimulated
emission andvabsorﬁfion becomes cémﬁa£éble ﬁith thé rates éf the-pro—
cesses which establish the unperturbed population inversion, the
populations of the two levels tend to equalize. Thus a "hole'" is burned
in the region where the atoms have the proper velocities for interaction
with the signal. This picture presupposes a Doppler width (inhomogeneous
linewidth) larger than the interaction width of the single.atoms (homo—
geneous linewidth). Figure 3 shows "holes" being burned in the gain
curves by the signal. (The gain curve for the negative polarization
component is shown as a dotted line for pictorial simplicity.) The

\

variation of fl with vy has a width roughly equal to the Doppler\

width.

The function £ describes cross saturation - due to the fact

2
that the two types of transitions have some common levels, each polar-
ization component burns a hole not only in its own Doppler gain profile,
but also in that of its counterpart, at the corresponding point in its
velocity space. Thus the additional holes shown in Figure 3 are due

to this type of interaction. The size of f2 depends more critically

on y; after y has become larger than the homogeneous linewidth a,
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Figure 3
lole Burning in the Doppler Broadened Gain Curves.
Vv is the resonant velocity for interaction with
L
A

the * polarization component of a signal of
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this type of interaction rapidly decreases in strength. In Figure 3
the Zeeman splitting is larger than the homogeneous linewidth; thus the
effects on the signal of the holes burned through interaction are
negligible.

The last term in (3.48b).describes a different sort of inter-
action. This term comes from the set of summation indices for which
K= 2, q= 2. This means it originates from thé existence of an intra-
coherence, or a coherence among the Zeeman sublevels, whereas the other
ﬁonlinear terms do not depénd on the existeﬁce ofjintfacoﬁerencet The
multiplicative factor in square brackets predominantly determines the
dependence of this type of coupling on the Zeeman splitting. We see
that the sublevel coherence drops off if the sublevel splitﬁing becomes
larger than the level widths, given by Yi and yi.

Since the maximum values of b(y) and c(y) are of the
order of unity, we see that the perturbation approach is valid only
when the signal intensity is much less than Ei, the saturation signal

intensity.

3.8 Gain and Faraday Rotation

The expression (3.47) for the polarization corresponds to the
Lon .z P 4 ; W ’
term z(lcm—lPsm) = 2(Pcm+1Psm) inside the curvy brackets of (2.11).
By equating real and imaginary parts and applying the result to the self-

consistency equations for a laser amplifier in steady state operation,

where there is no time-dependence,
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doy, v_p
dz Ei T 2¢ ¢ cx ? (3.50a)
o
dE
+ V
dz T 9% ¢ st (3.50b)
o

we obtain the following expressions for a signal tuned to line center:

d¢, E1+ Ei?
dz_ = ~gImi{w (ty+ia) - b(+y) 5 - c(+y) = ) (3.51)
2K 2%
o 7 o]
2 2
-t , Es N it
~—== = gE, ,Rejw(ty+ia) - b@Ey){—5 | - c(zy)|—= (3.52)
dz 1.£ 2 e
25 2E
o/ .. o
For a linearly polarized signal E+ = = E/VZ, and we can write the
equation for the amplification, or gain, as
dBE E2
~— = aE Redw(y+ia) - “”“{ﬁ(y) -+ c(y)] . (3.53)
dz 4E2
o

since the real parts of the functions w, b, ¢ are synmetric with

respect to y. The Faraday rotation angle is given by

¢ = (o_~ ¢.)/2 (3.54)
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P
E§'= olm{w(y+ia) - bga{b(y) + c(y)] (3.55)

E

Since Imw(y+ia) dis a linear function of y for small values of vy,

the Faraday rotation in the linear approximation is directly proportional
to the applied magnetic field for wvalues of the field such that the
Zeeman splitting is much smaller than the Doppler width. For larger values
of magnetic field the Faraday rotation ceases to bé linearly proportional-.
to the field. Note that this is true only for weak signals. If the
signal strength approaches saturation intensity the rotatien is a func-
tion of signal strength, its value at each value of magnetic field being
less than thée unsaturated rotation value. Since the signal strength
depends on =z, we must integrate (3.53) before we can evaluate ¢ as

a function of =z.

In a typical gas laser, such as the He-Ne laser, the homo-
geneous linewidth is much smaller than the Doppler width. Thus it can
be concluded,after looking at the dependence of the functions w(y)?
b(y), and c(y) on vy, that the third-order contributions to the géim
(equation (3.53))7and Faraday rotation (equation (3.55)) would be most
noticeable for small values of magnetic field; since, as the field in-
creases, c(y) reaches its maximum far sooner than the "linear"
function w(y). Particularly if the quantity a% in the f3 term (sce
expression (3.48b)) were large, the nonlinear contribution would be
quite noticeable at small values of magnetic field. This is due to the
fact that for most gas laser transitiocns the upper level decay rates

(AK) are smaller than the lower level decay rates (BK); thus the term
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with "width" equal to A, would reach its peak value at a value of ¥y

2
for which w(y) would be quite small. In this case the curves for gain
and Faraday rotation versus applied magnetic field would take forms
similar to those pictured in Figure 4.

From Table 1 we see that the value of d% depends on the J
values of the levels involved in the transition. Diénés (27, 28)
analyzed the gain and Faraday rotation of a linearly polarized signal,
using the weak-signal perturbation method, for thg_isptropic decay
limit (Yi = Yd for all K), assﬁming T = %{%a % Yb); He made a.
detailed study of the J =1 to J =0 case, which is the most favorable
transition for observance of the nonlinear "dips' shown in Figure 4, and
he predicted that these effects should be easily observable if a reason-
ably high gain J =1 to J = 0 transition could be found. The exis-
tence of a traveling wave dip for strongly Doppler broadened transitions
had previously been shown by Heer and Graft (16). It has been discussed
more recently by Sargent, Lamb, and Fork (26) in their theory of Zeeman
laser oscillators. The isotropic decay 1limit was used for thesec
analyses also.

We shall discuss in detail the dependence of these nonlineaf
characteristics upon the J values of the energy levels for the three
cases listed in Table 1. High gain J =1 toJ =2 and J =1 to J =1
transitions exist in the He-Ne laser medium - thus it is pertinent to
discuss these transitions if one desires to study these nonlinear effects
experimentally. We shall also discuss the effects of gas pressure on

the nonlinear "dips' in the gain and Faraday rotation curves.

Equation (3.53) can be written as



o

Figure 4
Gain and Faraday Rotatien for a Linsarly Po

¢ lari S
J =1 toJ = 0 transition; Ii1 = 15, a = .2, A = .03
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2 } 2

B o ppPretuty) -2 Jriy) (3.56)
dz E2
(o]

wvhere T(y) = %{b(y) + c(y)]. (We are explicitly showing only the
dependence on y for convenience.) This has the form of Bernoulli's
equation (df/dz + clf = czfz) and can be integrated by making the
substitution g = 1/f, the result being a linear first—order differential

_equation for g.- The result of this procedure is

I exp[ZaRe w(y)z]
I(z) = =

(3.57)
1+ [IORe F(y)/Re w(y)][exp(ZuRe w(y)z) —1]

2 2 3
where I = E /EO and I0 = I(z = 0). The numerator exhibits the
familiar "linear'" gain, while the denominator shows the effects of
saturation. Now we can integrate (3.55), using (3.57), to obtain the

Faraday rotation as a function of =z. After some algsbraic manipulation

we obtain

o(z) = a{Im w(y)z - [Im F(y)/Re F(y)][Re w(y)z + %a’ln

IORe F(y)/Re w(y) + (1 - IORe F(y)/Re w(y)) exp ("ZaRe'w(y)z)l]}(B.SS)
Thus if we know the values of w(y) and F(y) for certain values of vy,
the Faraday rotation can be computed from this expression, keeping in
mind the fact that this is valid only for v

reakly saturating fields.
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Figure 4 is the result 6f a computation based on these results. The

expressions (3.57) and (3.58) differ from those derived by Dienes (27)
in the same manner. His expressions are incérrect due to an improper

statement of the initial condition at z = 0.

3.9 Circular Component Coupling

The gain equations (3.52) for the circular components are
coupled‘if ¢(y) dis nonzero. "Strong coupling" occurs when
[Re C(Y)]z > [Re b(y)]z. For this case if the inteqsities are unequal
at z = 0 the gain of the weaker signal is reduced to a larger extent
than that of the stronger one by the nonlinear terms, the results being
that the amplification of the stronger signal is greater than that of
the weaker signal. Thus an elliptically polarized signal would tend to
become circularly polafized when passing through a medium with strong
éoupling. "Weak coupling" occurs when [Re c(y)]2 % [Re b(y)]z. In
this case the weaker signal amplification is greater than.that of the
stronger signal. An elliptically polarized signal would tend toward
linear polarization in this type of medium. '"Neutral coupling' is the
designation for the case [Re c(y)]2 = [Re b(y)]z. In this case the
saturated gains of the two components are equal regardless of their
relative sizes.

Since the magnitudes of b(y) and c(y) depend on the a-
coefficients given by (3.41), one would suspect that the degree of
coupling depends on the values of J for the energy levels involved in
the transition. This is indeed the case, and we shall discuss this

dependence in the following section.
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In addition the coupling strength depends on the rate of
sublevel mixing collisions - these collisions affect the sizes of the
decay rates AK and By for K> 0. Tomlinson and Fork (30) noticed
in their experiments with He-Ne laser oscillators that the observed
coupling was stronger than that predicted by the isotropic decay theory
for both J=1toJ =2 and J=1toJ =0 transitions. They
postulated that sublevel mixing collisions were the cause of these dis-
crepancies. It is evident that this type of‘cqllision process tends to
equalize the populations of the sublevels; thus the coupling would be

[-]
driven closer to mneutral. Fork andTbmlinson's 6328-A (J =1 to J

2)
observations agreed with this argument; however the 1.52-u (J =1 to
J.= 0) transition should have been neutral to begin with, according to the
isotropic decay theory; yet the coupling was strong. It is less clear
that suﬁlevel mixing collisions could cause this effect. The tentative
explanation given for this observation was that for the J =1 to J =20
transition the sublevel mixing collisions are more effective in causing
|Am] = 2 transitions (decay of orientation) than ]Am] = 1 transitions
(decay of alignment) (29). If we consider a J =1 to J =0 transition
in zero field, the degenerate sublevels can be represented in different
ways. If we quantize along the axial direction (direction of k-vector
of the signal), it is convenient to break up an elliptically polarized
signal into circular components, each operating on one of the IAml =1
. transitions. If we quantize along a transverse direction, it is con- -
venient to use as a basis two perpendicular linear polarizations, one
being parallel to the quantization axis and operating on the Am = 0

transition, and the other operating on both of the |Am| = 1 transitions.
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Now |Am| = 1 collisions would assist each of the circular components
and each of the linear components, but IAml = 2 collisions would assist
a particular circular component while having no effect on the linear
components. This physical argument is rather tenuous, but the idea
received support when it was found that a theory which allowed for
anisotropic decay could account for the J =1 to J = 0 observations

by allowing the orientation decay rate to be greater than the alignment
decay rate (42).

Another mechanism which is probably responsible for the ten-
dency toward strong coupling in these He-Ne laser transitions is trap-
ping of resomnance radiation by grqund state neon atoms. If a neon atom
in the upper laser level decays to the ground state, there is a large
probability that the emitted radiation will be trapped and excite anoth-
er neon atom to the upper laser level. If the iniﬁially excited atom
were in a coherent mixture of substates, there is a chance that this
intra-coherence would be passed on to the second atom. Since the coherence
of the atom is a result of its nonlinear interactions with both polar-
ization components of the signal, only those excited atoms within a
natural linewidth of the signal frequency will originally develop an
intra-coherence. Assuming no transfer of intra-coherence to other atoms,
the velocity dependence of the elements of the macroscopic density matrix
which reflect this coherence is a product of a Lorentzian distribution,
centered at the signal frequency with width b2 and the overall
Doppler distribution. The inclusion of the radiation trapping process
would add a Doppler-width velocity distribution term to the intra-

coherency elements. This would add to the function c(y) in (3.47),
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resulting in a stronger amount of coupling. When the Doppler width is
much 1arger than the natural linewidth, one can assume for purposes of
‘simplicity that the ground state atom which traps the resonance radiation
has a velocity such that it is outside the region of interaction. Thus

the radiation trapping process is ignored. However for the 1.52-p
transition used by Tomlinson and Fork (30), the ratio'éf the homogeneous
linewidth to the Doppler linewidth is about .2 -at the pressure indicated.
The question whether or not the intra-coherence transfer due to radiation

trapping can be ignored for this case requires further investigation.

3.10 The Isotropic Decay Limit

3.10.1 Introduction

Isotropic decay implies equal decay rates for the various
multipole moments of an energy level, i.e. Y§ o for all K. Thus
far the theoretical studies of the gas laser oscillator and amplifier
have assumed isotropic decay, with the exceptions of references (42) and
(44), which deal with a He-Ne laser oscillating on the 1.52-p (J =1
to J = 0) transition. We shall describe -the weak-signal nonlinear
effects in this limit in order to perceive the regions of applicability
of this theory when it is compared with experimental data for wvarious
ranges of gas pressure. Chronologically, the experimental information
we obtained from a study of the 3.3%9-p transitions in the He-Ne system
was first compared with the isotropic decay theory, and not until then
did the need for a more general theory for a laser amplifier become
evident. This parallels the chronological development of an anisotropic

decay theory in order to explain results obtained from the 1.52-u laser
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oscillator, as related in references (30) and (42)-(44). The results
of oﬁr investigations showed that certain nonlinear phenomena could be
matched quite well using the isotropic decay theory if the gas pressure
remained within certain bounds, while the anisotropic theory provided
good fits to the experimental data over a wider range Qf pressﬁres. The
pressure range for which the iéotroPic decay theory ig adequate depends
on the parficular phenomenon under investigatién. These results will be
discussed in the succeeding chapters.

In the isotropic decay limit we can use (3.40) to write

[P+(v)}(3) for the J =1 to J = 0 transition in the form:

2 2
2 E
(3) . |<bupia > e 2 1
[2 0] @ = s lsbme oL gy b v B )

ok i qb—i(w+ﬂ~v+kv)

% i . 1 e~ (Y g%
Yab—l(w+ﬂﬁv+kv) yab+1(w+9*v+kv) i 3

1 1 El Ak
g e * - Fr ¥, Y
Yab+1(w—9~v+kv) Yab—l(m~d~v+kv) ) b/y —1(29)
o

2
/ 1 7 %
) (o =tk + By I o e (3.59)
\yab"l(MFﬁ V+LV)> Y 3 (0 -vike) o+ (0-Q-viky)

When the integration over velocities is performed, the result is

2 2
E E
23?1?4'](l+3):iuﬂl {w(x +y+ia) - b(y)(};kt> - c(v) "k%> l (3.60)
o 2F, 70 l

(e] (e]
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where

b)) = A+ B-20) £ () .(3.61a)

2 AB
(A-36) £,() + e £,() (3.61b)

1}

c(y)

If we neglect G and apply the condition a = A+ B, then b(y) and
c(y) respectiyely become equal to Dienes' functions Hl(y) and Hé(y)
+ H7(y) for the case of a single frequency inqu signal (28).

We can apply these ralatiops for>the J=1toJ=0 tran-
sition to more complicated transitions by treating the sublevel structure
as a composition of J =1 to J =0 substructures. To help picture
this construction, Figure 5 shows the three transitions witﬁ which we
are primarily concerned; The J =1 toJ =1 transition can be split
iﬁto two independent basic sublevel structures, a J =1 to J =0
substructure and a J =0 to J = 1 substructure. The J =1 toJ = 2
transition can be split into four basic sublevel structures: three J =0
toJ =1 éubstructures, two of which have a common level as shown, and
one J =1 toJ =0 substructure. In each case the relative component
strengths for the left and right circular polarizations are given in
the figure, in units of ]<bﬂp”a>|%/é. (A component of a line results
from a radiative transition between two states of an atom; a line
results from the totality of transitions between two levels. Component
strength is the absolute square of the matrix element for that tran-
sition (72).)

Since we assume incoherent pumping to each of the levels of

a transition, the first-order contribution to the polarization is a



=8l=

, Figure 5
Sublevel Structures for Three Transitions.
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result of the atom interacting once with the signal during its inter-
action period; and the third order contribution to the polarization is
a result of three interactions with the signal during the atom's inter-—

action period. The contributions to £, (H

1 result from multiple

D
transitions between the same two sublevels, whereas the contributions
to f2 and f3 (H6 and H7) result from transitions inﬁolving three
sublevels. With this in mind, using (3.60) as our basic expression
for a J=1toJ =0 building block, we can write down by inspection

Afhe co?reSpondiné e%pressioﬁs forrthe J % 1 o j ; d énd J =.l to JT:-Q
transitions. Allowing for different g-values in this case"by calling

the upper level splitting P and the lower level splitting o = F, &,

we obtain for a line-centered signal operating on the J =1 teo J =1

transition:
¥ stl) _ s , ' _ g

5 P+ = 10LE+ .5W(ya+1a) + .5w(3b+1a) (3.62a)
v (3 ¥y o

—— P = e 7 e 5 - 5 i 5 i = ! ~7

L pt saE = [ 2500y ) + .2Jb(>bﬂ + = [.25c(ya) % 2B (,bﬁ
o 2Eo QEO

(3.62b)

or on the J =1 to J = 2 transition:

v_ ()
£ C P+

x & ioLE+ .lw(y8+1a) + .BW(bela) -+ .6w(yb»6+1a)l (3.63a)



&

0 —hi— 0lb(y ) + .09b(y.) + .36b(y, —8)

e c + ek 2F2 ; Va ' b * 7

"0

E? -
S . A 1 1 1

+ =5 [-0le(y,) + .09¢' () + .06c' (v,) + .06¢c (yb)‘ ] ,(3.63b)
2Eo x0=5 x0=-6

where the symbol | -g means to evaluate the function at xo=6
instead of x0=0. Here c¢'(y) is obtained by intercﬁanging A and B
in c(y). (b(y) 1is invariant with réspect to thié interchange.) This
interchange is necessary because these functions result from the "in-
verted" J =0 to J = 1 substructures.

These results can also be obtained from (3.4), using the values

for the a's 1listing in Table 1, if we assume T &9 in the express-

b
ions (3.62) and (3.63). The difference in g-factors for the two levels

of a general transition can be taken into account much more easily in

the isotropic decay theory.

3.10.2 Linearly Polarized Signal-Gain and Rotation \

We are now in a position to determine the size of the function
F(y) (defined folléwing equation (3.56)), which determines the entire
thivd-order contribution to the polarization for a linearly polarized
signal, for these three transitions. Figures 6 through 11 depict the
real and imaginary parts of the nonlinear polarization function F(f) in
comparison with the linear function w(y), for each of the three tran-
sitions. It is evident that the relative size of F(y) decreases as

we go from the J =1 to J = 0 transition to the J =1 to J =1
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transition and finally to the J =1 to J = 2 transition.

The function c(ya) contains a term with a linewidth equal
to A, as shown in (3.61b). It was stated previously that this
function peaks most sharply at low values of magnetic field, since A
is the smallest of the decay rates involved in the transition. If the
coefficient of c(ya) is large, one would expect "dibé" to appear
in the gain and Faraday rotation curves for magnetic field near zero.
For the J =1 toJ =0 transition, the cogfficigpt pf c(ya) is
unity; for the J =1 to J = 1 transition, the coefficient of é(ya)'
is .25; and for the J =1 to J = 2 transition, the coefficient is
.01. These marked differences are clearly portrayed in the small field
regions of Figures 6 through 11.

Thus for a J =1 to J =1 transition we would expect a small,
narrow dip in the rotation curve at low magnetic field values (where
y £ A). If the signal strength increases beyond the region of validity
for the weakly saturating signal theory, the dip should increase, al-
though not as much as predicted by (3.57) and (3.58), and a reversal of
the rotation might actually occur. A detectable dip in the gain at zero
magnetic field should also occur.

Fora J =110 J =2 transition the effect of the c(ya)
term is so small that we do not expect to observe a dip in the Faraday
rotation, and for analogous reasons we would not expect to see the very
small dip in the gain curve. However the other nonlinear terms contribute

to the saturation for larger values of the magnetic field.
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3.10.3 Elliptically Polarized Signal - Nonlinearity-Induced

Anisotropy

Circular component coupling has been discussed by Dienes (27)-
(29), by Sargent, Lamb and Fork (26), and by Tomlinson and Fork (30).
The isotropic decay theories used by these authors predict that at zero
magnetic field the coupling strength depends only on the J wvalues of
the transition: for AJ = *1 transitions the coupling is weak, and
for AJ = 0 transitions the coupling is strong, excepting the cases
J=1toJ ; 0 aﬂ& J=1tod =.l; zfor which thé coubling is geutral.

Let us write the expression for the positive component of the

induced polarization for the general Ja to J transition, assuming the

b

signal is at line center:

J 1 J 2

7 ) a b
o P_ﬁl)'(g’) = LgB.; § 3 w(y, HMé+ia)
T eed \af  —1 — (M-1)
M
2 J 1 J 4 2 ) 4 J 213 1 +J 2
E+ e a b . E- a b a \ b
- 49 ' b(yb+M6) = =g 19
26 W -1 - (M-1) . 2E_TI WM -1 ~M+1)/ 1 - (1)
Ja 1 Jb 2 Ja 1 Jb 2
o (yb+M§) + 9 c(yb-mﬁ) (3.64)
Mo -1 -(M-1) -2 1 -(QI-1)

If we examine the values of the 3-j symbols for the various sublevel
transitions between levels, we find that for a AJ = %1 transition

the outer sublevel transitions (i.e. Mr1 = + Ja = Mb = * Jb) are
<
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strong and the inner transitions (e.g. Ma = Ja ¥ Mb = Jb -2) are weaker.
The J =1 to J = 2 fransition piétured in Figure 5 is a good example

of this. As we can see from(3.63), this results in weak coupling for
J=1¢toJ =2, and with the help of (3.64) we can reason that this will
be the case for all AJ = + 1 transitions. For the J = 2 to J = 2

and higher AJ = 0 transitions, the sublevel transitions are of more
equal strengths, and the outer transitions are not the strongest. For
»ghese cases the coefficients of c' and ¢ add up to a larger value than
the coefficient of b, resulting in strong coupling.

Since the nonlinear terms in the polarization are responsible
for the coupling, the change in the ellipticity of the signal as it
passes through the amplifier is called nonlinearity-induced anisotropy.
Heer and coworkers invoked this phenomenon in an attempt to describe the

polarization and relative intensity properties of the cosmic OH radi-

ation lines (17)-(19).

3.11 Pressure Effects

Lamb's theory for nondegencrate energy levels (3) can include
the effects of "hard" collisions which cause the atom to decay or lose
memory of its previous interaction with the signal. These collisions
cause Yy Y., and vy = l{y + v, ) to become pressure dependent,

a’ b ab 2 'a b
but no further changes are necessary.

One of the earliest modifications of Lamb's theory to account
for other effects of atomic interactions was a relaxation of the condi-
1
Ay, ). One e

. 1/
o o

is the work of Fork and Pollack

in fitting experimental results on mode cowmpetition to Lamb's theory
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(36). This allows for effects of "soft" collisions which slightly
perturb the energy levels of the atom that is interacting with the
sig;al. The result is a time varying shift in the atomic resonant
frequency, which broadens the natural linewidth of the atomic resonance.
Gyorffy, Borenstein, and Lamb (41) discuss in detail this type of
pressure effect on the spectral profile of the output intensity versus
cavity tuning curve for a single mode laser oscillator.

The "hard" collisions evidently increase the.saturatién
signal intensity, Ei, by increasing the level decay rates. The "soft"
collisions make the value of a = Yab/ku larger; and this makes the
gain of a signal of given input intensity saturate to a greater extent
as it passes through the amplifying medium. The reason for this lies
in the fact that Re w(0+ia) decreases faster with increasing a
than the sum of the‘nonlinear polarizations functioﬁs Re b(y=0) and
Re c(y=0), assuming the other decay rates are kept constant. Since
the;e two types of collisions seem to have opposite effects on the gain
saturation of a signal, it is not clear what the overall effect will be
unless an experimental study is made. '

Increasiné Yap® Ya and Y will broaden the "dips" in
the gain and rotation versus magnetic field curves for a linearly
polarized signal. The effects on the size, or depth, of these dips are
strongly dependent on the relative sizes of M and Yy and this will
not be affected a great deal by varying the gas pressure. Changing
the values of Yot Ya and Yy, will have no effect on the nonlinearity-
induced anisotropy of an elliptically polarized signal.

The collision-induced anisotropic decay of degenerate levels
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has a marked effect on the zero field circular component coupling for
the J =1 toJ = 2 transition. In the expressions for b(y) and c(y)

given in (3.48), the sign of the «, term is positive in the coeffi-

1
cient of fl(y) but negative in the coefficient of fz(y). £ A

K
and BK for K # 0 are allowed to become larger than Ao and Bo
respectively, in order to account for sublevel mixing'éollisions, the
size of the function b(y=0) decreases, while tﬁe size of the first
.term of c(y=0) increases. The second term in the expression for
é(y=0) decreases also; h&wever the overall.effeéf ié.aﬁ increaéé in fhe‘
ratio of c¢(y=0)/b(y=0), with a resultant increase in the strength of
the coupling. This effect implies a pressure dependence of the non-
linearity induced anisotropy of an elliptically polarized signal.
N The zero fleld goupling for the I = L xw J=4 End J=1
toJ =1 transition§ is neutral in theisotropic decay limit. If the
decay rates for orientation and alignment are equal but larger than
the decay of the population, the coupling remains neutral. If, however,
the orientation decay rate is larger than the alignment decay rate, the
coupling becomes strong; if the opposite is true, the coupling becomes
weak. These results are obtained from expressions (3.40) or (3.48),
setting § and w-v equal to zero, and using Table 1. Hence the over-
all effect of anisotropic decay on zero-field coupling strength is not
likely to be as large for these two transitions as it is for the J =1
to J = 2 transition.

The width of the nonlinear dips in the curves for Faraday
rotation and gain versus magnetic fiela is equal to A2, the quad-

rupole monment (aligument) decay rate of the upper level, since the



-98-
dominant mnonlinear term for small values of field is the first term in
the coefficienf of f3(y), given by (3.48b). Thus the dip width is
influenced not only by '"hard" collisions but also by sublevel mixing
collisions, and it should show a marked dependence on gas pressure, al-

though at higher pressures the dip would not be as noticeable.

3.12 Extension of Theory to Two Signals

The analysis presented in section-3.7 can be extended to the
éase of two monochromatic éignals of arbitréry péiariéatién paséing
through the amplifying medium. The equations corresponding to (3.33a,b)
would each include two more terms, and these would be substituted into
the appropriate integral expressions in order to obtain fhe macroscopic
polarizatiog. Functions in addition to .f1,2,3 would be obtained in
the third-order expressién for the polarization. These functions would
be the same as the H-functions in Dienes' work (28) with respect to their
dependence on the sublevel splitting and the signal frequencies. The
coefficients of the functions, which involve the decay rates, would be
different. Combination tones would be generated from the thirﬂworder
polarization expression.

The theory presented here is more comprehensive than the
theory developed by Dienes in that it includes the effects of spontaneous
feeding of the lower level by the upper level in addition to the effects
of anisotropic decay. However its use is restricted to transitions in

which the g-factors of the levels are nearly the same.
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CHAPTER FOUR

SOLUTIONS OF THE ATOMIC EQUATIONS OF MOTION FOR STRONG SIGNALS

4.1 Introduction

The low-pressure equations of motion for the density matrix,
namely equations (2.23) without the collision terms, can be integrated
exactly for simple transitions which consist of noninteracting 3-level
'éubéysfems, such as the J =1 to'J = 1 .tranéigibn pictured in Figure
5. For each 3-level subsystem one has three equations with three un-
knowns, and these equations can be solved in principle, the solutions
being valid for all values of signal strength. Dienes (27,29) has
carried out this procedure and has found that tractable solutions can
be obtained only for special cases. ﬁor our purposes these special
cases are: (1) zero magnetic field, and (2) large values of magnetic
field, such that the Zeeman splitting is much larger than the power
broadened natural linewidth for the transition.

Dienes (29) has found that strong signal solutions can also
be obtained for more complicated transitions in these special cases, by
relying on the process of induction. These results are useful for a
study of gain saturation and its dependence on signal polarization,
and nonlinearity-induced anisotropy (1), if the gas pressure is low
enough such that the neglect of collision contributions is justifiable.

In this chapter some of these theorvetical results for strong
signals will be developed in order to apply them to the experimental

results obtained for the 3.39-p transiiions in He-Ne. Expressions
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will be presented which describe gain saturation, nonlinearity-induced

anisotropy, and Faraday rotationm.

4.2 Solutions for Simple Transitions

The equations (2.23), excluding the collision terms, can be
written in the following manner for a simple J = 1 to J =0 transition:

L i u
el = Yap__ * (Vb—pﬁb y—bpb—) + A Fé.la)

a -

) + A (4.1b)

) i
Pt = VP T REVpiPn — Vo a

1 i
P = Ypfpb T R b-Pen T VebPu) T R UbiPan T VapPuedt By

(4.1c)
; i i '
= 1 o — Ve
P (Ya i 21Q)p+_ = Bvb—p+b hv+bpb~ (4. 1d)
A 2 e 4 1 A -]:17 — ‘_:];7
by Gy T 1Cw-00)p_ + 5V (o _ = o) V0 (4:1e)
\
L] N l 3 1 _:.i:_f - .1_17
Pip gy, ¥ LA0t0)0p0, + 2l Loy = Pp) FEV 0. W16
1 . .
where Voir, B i{ya ofs yb), and where each element of the density matrix

is a function of z,v,t. These equations can be integrated to form a

set of integral equations. Defining the gquantities

N =0 } = £, g (/;_?.a)
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= -_— '2
b T Pt T Phb ke i

we can substitute the integrated expressions for e b and CITS into
the integrated expressions for wa’ N+b’ and Py After performing

the integrations and manipulating, we obtain the following (assuming

a monochromatic signal at frequency v = w as the perturbation):

9,2, 9 2 1
Ny = Mo = ChfE/EY oy ot tmvhen “17, = o2 /ey,

. vy 270N, ZofL, o . .
[ropt (@-R-vHen) T} N, - C+bc_b(E_E+/EO){2Yab[D+_(Yab+1(w+ﬂ—v+kv))
* - -1, 1 . ~q
+ py_ (L)) ] gy [ef (Y - (0-0-vikv))
+ p;_*(Yab + i (w-Q—v+kv))_1]} (4.3)

N_b = same as N+b with the + and - subscripts interchanged, and

with @ replaced by -Q.

1 _____]_-_ . '—l 2 . T e _1
Pl = =y v ) [r, + 1029)] { nCop (BB JED[N,, (v 1 (ork2-vHew))
. -1 2 2 2 . -
+ N—b(Yab - i (w-R-vt+kv)) ] + C_b(L_/LO)(Yab + i (wtR-vtkv))
2 2.2 T s A }
C+b(L+/EO)(Yab i(~-0-vtkv)) Py (5.5

Using the integrated forms for (4.le) and (4.1f), we can write the

macroscopic polarization components in terms of these three



-102~

quantities:

. = o 2 : 1o
x T ) = et 0 JW e {Yab (o By, + Bl BuPg
Y., — i(wt-vtkv)] -1 (4.6)
[ ab ; )
"2—'P”(v) = game as (4.6) with subscripts + and - interchanged, ®

£ .G
o
.replaced by -Q, and p' * replaced by p' , 'where.
+- +-

p+_exp[1(¢+—¢_)], and C+b’ C_b are the normalized component

1
R
strengths for the sublevel transitions. The same equations describe
a J =0 toJ =1 structure if the subscripts *b are replaced by
at, and if Ky and Yy, are interchanged. When there is more than

one of these 3-level structures, their contributions add.

These expressions are equivalent to equations (1) to (3) in

reference 29 when v, = v v in that paper. Differences in

+ —
notation exist, however; the expressions written in this section are
in accord with the notation used in Chapter 2, and our expressions for
Pi(v) are equal in the rotating wave approximation to %(Pcm - iPSm}*
in expression (2.11). This is the complex conjugate of the quantities
defined in equations (3a,b) of reference 29. In addition Dienes'
vector base system for the components of E and P is obtained by
interchanging the -+ and - subscripts in our system. Our system is in
accord with the physical convention that a traveling wave with positive

helicity polarization carries positive angular momentum in its direction

o i e e s
oL pPropagacloll.
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When & = 0, the results, after integration over velocities,

are:
2
v “b -
—— P, = 10F, (2b) 7T [ (atb)w (0+ib) + (a-b)w™(0+ib)) (4.7)
o B .2
C—b
where

2
o}

: S . R T T N T '
b o= (y, /ku)[1 + C (E/E)) + C2, (E_/E)] (4.8)
and w(z) is the error function for complex argument, defined in
reference 71 and discussed in Chapter 3. We see that the homogeneous
linewidth of the transition is power broadenéd.
Applying these results to the J =1 to J =1 transition,

we obtain:

T gon Lstn + saliedy + salhi® x (o+1b) } 4.9)
T = 20E 4 S(EL/E . JB e w{0+i %
\
dE_/dz = same as (4.9) with + and - subscripts interchanged, and

b = af[l + .S(EE/ES) -+ .S(EE/EE)]. Setting

2. e - E ' e
o o " 7 s — = B = 2 ) ‘: = E 7 E
ESMT =« 1, BIE = I 4 I I, + I, and =t (B )/ (E_ 1): v
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can write the equations for gain and change of ellipticity of a line-

centered signal passing through the amplifier. These are

dI/dz

-1 L
2a1{(1 + .5I)2 Re w(0 + ib)} , b=all+ .51]° (4.10)

2E+(dE_/dz) - 2E_(dE+/dz) ‘
dr/dz 5 5 =0 . (4.11)
E, +E_ + 2E B,

]

Thus for a J =1 to J =1 transition the gain sgturgtion does not
depend on the ellipticity of the signal, and the ellipticity doeé not.
change. This agrees with the isotropic decay theory for weakly saturat-
ing signals discussed in Chapter 3, where the zero field coupling was
found to be neutral for a J =1 to J =1 transition.

2 e .
When Q >> yab(l + Ei/Eo) and Ty >> Y, such that

YabN ]/2 ‘Ybb

the contribution of the il

term to the macroscopic
polarization (4.6) is negligible; and the integration over velocities
can be carried out. The resulting expressions for the gain and Faraday
rotation of a linearly polarized signal (I+ = 1 = 1/2) interacting

with a J =1 to J =1 transition are

- L
i l(dI/dz) = 2&{.5(1 + 0.25I) ° Re w(ya + ib)

3z
+ .5(1 ++ 0.25I) © Re w(yb + ib)}, (4.12)
-d®/dz = a'{S Im w(yé + ib) + .5 Im w(yb + ib)}, (4.13)

1
where b = all + .25%]°.
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These expressions for the J =1 to J =1 transition will be

compared with experimental results in the appropriate regions of validity.

4.3 Solutions for the J =1 to J = 2 ‘Transition

The more complicated transitions prove to be exceedingly
difficult to handle. The special case of degenerate levels (zero-
magnetic field) and an arbitrarily polarized signal tuned to line center
has been treated by integrating the density matrix equations of motion |
to obtain exact solutions for increasingly complicated transitions.

The general result is then found by induction (29). Dienes has developed
a clever physical interpretation of the resulting expressions, which are
written in the form of continued fractions (see reference 29). Only

the final results for the J =1 to J = 2 transition gain equations

will be written here. These are

-1 1 =5 )
I "di/dz = 2u St R w(0 + ibl) +--—————~jg Re w(0 + 1b2)
(14+c. 1) (1+c,I)
1 y:
3
+ —2— Re w(0 + iby){, (4.14)
(1+c3I)2 1

2
dr/dz = —ar[l_rq] c'iz { 1 i Re w(0 + ibl)
1+r° ] "2 71 (1+c11)2

1
- ———— Re w(0 + ib,) ¢, (4.15)
(1+c21)% . }
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where

1
_ %
b, = (Yab/ku) (1. ciI) 3 A (4.16)

ep 5= +35F 5449 - 2401 4 5 , €, = .3

The wvalues of

Il
-

o) for r =0 (linear polarization) and r

(circular polarization) are:

1l

Using these values for ¢ 1 in (4.14) results in an
expression similar to that for the J =1 to J =1 case (4.10). The
representation of the (degenerate) energy sublevels given in Figure 5
gives the proper noninteracting sublevel transitions for a circular
polarization, along Vith their relative component strengths; and these
match the values for the cy coefficients given here. In this casé
the circularly polarized signal saturates each of its allowed sublevel
transitions independently; since there is only one polarization component,
there is no interaction.

The form for (4.14) when = = 0 can be understood by consider-
ing the normalized strengths for the sublevel transitions -1 - -1,
0-+0, 1-1 din the J =1 to J = 2 scheme. These component strengths
are .3, .4, .3 vrespectively. In this case if we pick the quantization

axis in the direction of the polarization of the signal, then the
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allowed transitions would be these three, and each would saturate
according to (4.14) for r = 0.

A similar picture can be given for a linearly polarized signal
interacting with a J =1 to J = 1 transition. In this case the
component strengths for the -1 > -1, 0> 0, and 1 -+ 1 sublevel
transitions are .5, 0, and .5. So for linear polarization we would
expect the same form for the gain equation as for circular polarization.
Actually equation ﬁé.lO) is valid for polarization of arbitrary
ellipticity, whereas the fofm of (4;145 depénds on r.

The preceeding results for the J =1 to J = 2 transition
can be found in reference 1. DNote that equation (4.15) predicts a
negative value for dr/dz, which agrees with the weak coupling results
of Chapter 3.

A look at the J =1 to J = 2 transition in Figure 5 shows
that the component strengths for the sublevel transitions #*1 = O
are quite small. Based on this fact, we can approximately describe the

transition as a sum of three independent J = 0 to J = 1 substructures
\

\
. . ] . \
by ignoring the 1 -+ 0 sublevel transitions. Use can then be made

of the formulation outlined in section 4.2 for simple transitions. By

making the approximation >> i.e. ~ L the p!*
<ing Py é Y Y, T ™ s pi¥
contribution to the expression (4.6) for the polarization can be ignored.

Summing the results for three 3-level substructures, we obtain:
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1) q1/dz 4+ 21 do/de

% Z ci[a-i(y+€)][a2+(y—£)2] exP(—E)z dg
" | [a2(1+0.5ciI)+(y+£)2][a2(1+0.SdiI)+(y—£)2]+0.25cid13412

where c = 0.6, 0.1, and 0.3 ,

1,2,3

]

d

1,2,3 = -1 0.63 and 0.3 (4.18)

In this approximation the left and right circular components interact
via the upper sublevels only. Expression (4.18) was first developed
by Dienes during a joint discussion; we have made use of a numerical
integration of (4.18) in order to compare strong-signal Faraday
rotation results for the 3.39-uy J =1 to J = 2 laser transition with
the strong signal theory.

In the region where there is no interaction between the
opposite circular compoﬁents Q >> Y.p a + It)’ an extension of
the equations of type (4.12) and (4.13) to more complicated transitions
can be made by the process of induction (28). 1In this case each sub-
level transition saturates independently of the others. We can write

for the general Ja to Jb transition

Cyp 2

v M, M+1

—— P = 2 w(y, + M§ + ib_ ) , (4.19)
+ E : ] )
%% * [1+ C‘I-I,Mii(Ei/Eo)fi ° e

M

where
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AP

by, @ (v, /k) [1 + C (B /E )]

M,M+1

are the power broadened linewidth parameters, and

are the normalized line strengths for the sublevel transitions. Then
for a linearly polarized signal, we can write thé‘gaih and Faraday

rotation equations as follows:

Tdr . 2 23% - e
ol 20[ CM,Mwl(l + O'sch,M—l) Re w(y + 1bM) . (4.20)
M '
dd 2 :
€2 2 4.21
Az~ &) Sy WmYG Y iby) (4,2L)
M
where
_ 2,7
by = a(l+ 0.5 1 ¢\ D

il

For a J =1 to J 2 transition these equations are

N

1 41 _ S _ g ’ 35
I dz = 20 Re[0.6(l + .31) w(yb § + 1bl) + 0.3(1 + .151)

2s

©wly, + ib,) + 0.1(1 + 05D P wly + ibg)], (4.22)
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de _ : 7
az = Im [0.6 u(yb -8 + lbl) + 0,3 w(yb + 1b2)

+ 0.1 w(ya + 1b3)] 5 (4.23)
where

Xy L , e B Yy
By = all + .31]173, b, = a[l+ .15117%, by = all % JUETT,
These expressions for the J =1 to J = 2 transition will
be utilized in Chapters 6 and 7, where experimental results are

discussed.
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CHAPTER FIVE

AN EXPERTMENTAL TEST: THE 3.39 MICRON TRANSITIONS IN THE HE-NE SYSTIM

5.1 Introduction

In this chapter we first discuss some of theAsalient char-
acteristics of the He-Ne medium‘when it is used for laser purposes.
‘Methods for enhancement of power output at 6328-4 wavelength will be
dealt with. -We shéll then focus atfeﬁfion én two ﬁigh gaiﬁ transitions
at 3.39-u in the infrared; these prove to be suitable for the study
of saturation effects in a gas laser amplifier. Since these two tran-
sitions have a common upper level and easily saturate the population
inversion, they compete with each other inside a laser cavity. We
shall discuss the use of methane as a selective absorber of the stronger
of the two lines, thereby providing a means of eliminating the oscilla-
tion of the stronger line in the laser cavity.

Finally we describe the experimental facility, including the

\
\

\

basic setup and appartus necessary to perform studies of Faraday
rotation, gain, and nonlinearity-induced anisotropy. Results of the use
of a single-mode 3.39-u laser to probe a methane vibration-rotation

absorption line will complete the chapter.

5.2 The Common Transitions in the He-Ne Laser

Figure 12 shows the energy levels of neon which are involved
in the common visible and near infrared laser transitions, Also shown

are the helium metastable states which play an important role in ex-
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citation of the upper laser levels. Tables of the helium and neon
energy levels, along with their designations and electron configurations,
are found in reference 73. Paschen notation will be used in our dis-
cussions of the neon levelé} and values for wavelengths in air will be
used in discussing the transitions.

In a typical He-Ne laser tube the pressure ratio of He-Ne is
about 10:1. The electrons of the gas discharge collide inelastically
with hglium groupd state atoms and populate the.helium metastable levels.
.fhen excitation transfer collisioﬁs between the metasﬁable helium atoﬁé
and ground state neon atoms populate some of the 2s and 3s ievels of
neon. The levels 352 and 252,3,4’5 are particularly populated as a
result, and population inversion is created between these levels and the
3p and 2p levels.

The strongest emission line of the first He-Ne laser was the
1.1523-p radiation from the 282 ¥ 2p4 transition; laser oscillation
was obtained on other 2s - 2p transitions at the same time (74).

Visible red output can also be obtained; the most common line is at
6328-4 wavelength, from the 332 # 2p£i transition. The transition with
by far the highest gain has been found to be the 352 > 3p4 transition
at 3.3913-u. This transition and the similar high gain 382 +_3p2
transition at 3.3903-p are easily saturated, however. These properties
make the 3.39-p lines useful for studies of saturation effects in a
laser amplifier.

If we disrvegard saturation effects for the present, we can

write the cain equation for signal intensity in the form
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di/dz = 201 , (5.1)
which results in the COmmoﬁ exponential gain behavior
I(z) = IO exp (20z) = IO exp (2aRe w(0+i%)z) 5 (5.2}

We defined the linear gain parameter o« din Chapter 3, following

(3.49); we write it again for convenience:

o = vNO\/ﬂ ]<prNa>]2/6£Ohcku _(5.3)

The only parameters in this expression that depend on the particular
transition are: No - the population inversion, |<prHa> & o the line
strength, v - the frequency, and ku - the Doppler width. Since the
Doppler width is proportional to the frequency of the radiation, the
latter two quantities cancel each other, and we are left with two
quéntities which depend on the transition: the population inversion and
the line strength.

The experimentally determined gain parameters for the three

transitions mentioned previously are

5% €5, 5008y~ & @
20 (1.1523~-p) ~ .12 g

95 ¢ JETIB) = 0F B
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when the discharge current is 10 ma., which is near the optimum current
value for the 6328-A oscillation when our lab processed tubes are used.
(The gain value for the 1.1523—u transition was obtained from reference
75; the other wvalues were aetermined in the lab using a laser tube with
gas pressure of 1 Torr and a ratio He:Ne = 10:1.) To obtain corresponding
values for «, we must know the value for a = Yab/ku' for each
transition. From our measurements, the value for the 3.3913-u transition
is a = 0.3 at the gas pressure given above. Comparing our measurements
.of the-decay ratés (describéd in the followiné ;Béptefs) witﬁ thoserbf-
Decomps and Dumont (45), we conclude that the decay rate of the 3p4 level
is about twice as large as that of the 2p4 level. Thus the value of
a = Yab/ku for the 6328-A line should be about .03. The corresponding
value of a for the 1.1523-u transition ghould be about 0.1, according
to the decay rate resultsin (45). We can now compute values for

Re w(0 + ia) and obtain the following values for a:

0(3.3913-u) ~ 4.0
@(l.1523-1)~.07

o .6328-p)~ .03

Faust and McFarlane (75) discussed the relative gains of these
three transitions and calculated their line strengths, based on the j-1
coupling scheme of Racah (76) and the Coulomb approximation method of
Bates and Damgaard (77). Their results gave a 352 +’3p4 (3.3913-1)

line strength about 5.5 times that of the 252 + 2p, (1.1523-H) line

4

strength and slightly more than 100 tiwmes that of the 382 =¥ 21)4 (.6328-11)

line. The reasons lay in the facts that the spatial overlap for tran-
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sitions between states with the same principal quantum number is much
larger, resul£ing in larger values for the overlap integrﬁls; and
that the larger spatial extent of the higher excited levels leads to
larger values for these overlap integrals.

On the basis of these line strength calculations we conclude
from looking at equation (5.3) that the measured‘valués for o at
3.3913-p and at 6328—2 are much different mainly because the line
strengths for the two transitions are much differentr. Sipce the ratio
of the measured values is 4.0/.03 =~ 130, the calculated line strengths
do not quite account for the entire difference. Possibly the line
strength calculations are slightly inaccurate, or possibly the remainder
is due to differences in population inversion, NO. The latter reason
is possible since the 3p4 level decay rate is larger than that of the
2p4 level, meaning the steady-state population of the 3p4 level could_
be significantly less than that of the 2p4 level.

Faust and McTFarlane did not allow for a non-negligible wvalue
of Yab/ku when making comparisons of gain measurements with line
strengths; i.e., they set o6 = o, using our notation. Thus their con-
clusions are not completely correct.

These results are in accord with the observations that the

saturation signal intensity,

! 200 2
E- = 3h%y_v /| bipra>|”, (5.4)

. ! . 2 "y )
as defined following (3.49), is about 50 mw/em” for the 3.3913-p line
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and a few watts/cm2 for the 6328-& line (78). (We should note here that
the discussion of gain constants for the 3.3913-u and 6328~R transitions
in the introduction to reference 7 is misleading. The authors stated
that one reason for the larger gain parameter at the longer wavelength

transition was due to the smaller Doppler width; this is incorrect.)

5.3 Competition Effects in the He-Ne Laser

5.3.1 Effect 3£_3.39~u Oscillation on Visible Qutput

Probably the most popular‘l;ser iﬁ the past decaae has been
the 6328~K He-Ne laser. Since the 3.39-u and visible transitions,
such as the 6328-4 transition, have a common upper level, a He-Ne laser
which is designed to oscillate at the 6328~R,wavelength will suffer due
to the presence of 3.39-u oscillation, since this tends to deplete the
upper level population. Oscillation occurs at 3.39-u even.thaugh the
mirrors (which are dielectric coated for very high reflectance at
6328-1) may reflect only 20%Z of the 3.39-u radiation; the gain of this
particular transition is high enough to overcome these large cavity
losses. \
Various methods of eliminating this 3.39-u oscillation have
been devised. One method of impeding 3.39-p oscillation and simul-~
taneously enhancing the 6328-A output involves the use of magnetic
fields. Experiments on this subject were first reported by Bell and
Bloom (79), and as a result of these observations many commerical
6328~R lasers now have small alnico magneté placed near the discharge
tube to enhance the output.

A He-Ne laser tube with Brewster angle windows allows one
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linear polarization component to pass through the window with no re-
flection losses, while the orthogonal component suffers fairly large
reflection losses; hence the laser radiation is linearly polarized.
This type of configuration is especially important for the visible
output, since the low gain transition demands a low loss cavity in
order to oscillate. Experience with laser tubes processed in the
laboratory has shown that those tubes with Brewster angle windows
which are slightly misaligned will allow the 3.39-p line to oscillate
more sgrongly, at the expense of the 6328—R oscillation, due to the
fact that the low gain transition is affected to a much greater degree
by slight cavity losses. '

When axial magnetic fields exist in the region of a laser
discharge tube with Brewster angle windows, the 3.39-uy oscillation is
selectively impeded due to two characteristics: the Doppler width at
3.39-p is 5.5 times smaller than at 6328—5, leading to a much more
pronounced splitting of the gain curves for the circular polarization
components; and the much higher gain of the 3.39-u line means corres-
ponding larger Faraday rotation of a linearly polarized signal. it has
been shown theoretically (20, 35) that if a linearly polarized mode is
oscillating at line center in a cavit& with x-y anisotropies (due to the
Brewster angle windows in our case), it will remain linearly polarized
for values  applied axial magnetic field up to a certain critical value.
(For 1arggr fields this mode will split into circularly polarized
components at slightly different frequencies.) However the polarization
direction rotates as the field increases; the angle between the polar-

ization direction at the critical field value and the original low-loss
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polarization direction will be between 45° and 90°, depending on the
amount of anisotropy in the cavity (35). This rotation occurs because
the opposite effects of Faraday rotation and rotation at the anisotropy
surfaces must balance each other in order for the condition of resonance
to be met. As a consequence of this rotation, the cavity losses rise
due to reflections at the Brewster angle windows. The polarization
rotation of a 3.39-u mode is much greater than that of a 6328—& ﬁode at
a given value of axial field because Fa;aday rotation is proporﬁional
to o and is a monotonically increasing function of-)'(Q/ku) fér thése
transitions (see equation (3.55) and the following discussion). Hence
the losses for the 3.39-p mode are correspondingly larger than those of
the 6328-A mode. Bell and Bloom found that these loss effects on the
6328-8 radiation are more than offset by the beneficial effects of
eliminating the 3.39-p competition (79). If the magnetic field is
larger than the critical value for the 3.39-u mode but much lower than
the critical value for the 6328-A mode, the circular polarizations of
the 3.39~p radiation will suffer large losses at the Brewster angle
windows, and the result will again be enhancement of the visible radia-
tion. These ideas should remain valid for modes which are displaced
slightly from line center because Faraday rotation is insensitive to
this type of deviation.

For short laser cavities, such that the spacing of the cavity
resonances is about the same as the 3.39-u Doppler width, transverse
magnetic fields can‘also be effective in reducing the effect of 3.39-u
competition on the Qisible output. If we call the direction of the

magnetic field the y-direction, then the Brewster angle windows should
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be set to pass x-polarized radiation with no reflection losses. The
gain curves for the 3.39-p x-polarization will split as the maggetic
field increases, and the total gain for a cavity resonance near line
center will decrease. Since the Doppler width for the 6328—R tran-
sition is much larger, the Zeeman splitting will have an insignificant
effect on its gain. Laboratory experiments with a 55 cm. laser cavity
have shown that the use of small alnico magnets arranged to give in-
homogencous transverse and axial fields will reduce the amount of
.3;39—plpower outﬁut-to a gféater extent.if thé B}éwstér angié windoﬁs'
are set to pass x-polarization with no losses, as described above,
rather than being set to pass y-polarization with no losses.

Another method of eliminating 3.39-u oscillation in a 6328-A
laser involves the use of methane gas in the cavity. The peak of the
P7 branch of the ) vibration-rotation absorption band of methane
is within .01 cm.il of the neon 382 > 3p4 transition (81, 82). This
coincidence allows one to use a methane absorption cell of short
length (1 em.) in the laser cavity to completely eliminate 3.39-yu
oscillation. If the absorption cell is made with Brewster angle win-
dows, it will pass the 6328-A radiation with no significant losses;
hence the overall effect is an enhancement of the visible output. A
more detailed discussion of this methane absorption line will be given

in section 5.5.

5.3.2 The Effect of Methane Gas on the 3.39-u Laser

Optimum power output at 3.39-u calls for a pair of mirrors

with reflectance product equal to about .5 - higher than the reflect-
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ances that the mirrors which are dielectric coated for use at 6328-4
happen to give, yet much lower than the required reflectances for 6328-A
oscillation. When methéne gas is introduced into this type of cavity,
the 352 4’3p4 oscillation is quenched, as expected; however Moore (80)
first noticed that, as a consequence, another line oscillates: the
382 & 3p2 line at 3.3903-u, about 1 cm.—l higher than the dominant
3.3913-y line. The linear gain parameter, o, for this transition was
estimated to be 1/3 that of the 352 -+ 3p4 transition (80). This is
-quite high compared with other transitions, but mot high enough to
oscillate in the usual visible laser cavity with mirrors coated for
high reflectance at the red wavelengths.

When the stronger 352 -> 3p4 line is allowed to oscillate, it

saturates the transition quite easily, reducing the 3s, level population

. 2
and raising the Spa and 3p2 level populations (the latter effect is due
to collisions - the extent of this collision induced transfer is not
known). This prevents oscillation on the 352 > 3p2 transition. The use
of higher reflectance mirrors would require less gain at the 3.3903-u
line in order for it to oscillate, but this also would cause the 3.3913-p
oscillation to saturate the transition to a greater extent, and the re-
sult is the same - no 3.3903-U oscillation. Only the introduction of
the selective absorber methane changes the picture.

We have studied this 3.39-U competition effect by placing a
1 cm. methane absorption cell in a He-Ne laser cavity with mirror
reflectances at 3.39-1 of 997 and 507%, and discharge tube measurements

m

of 50 c¢m. length and 2.6 mm. diameter. he total pressure in the tube

was 1.5 Tory, with a He:Ne ratie of 14:1. The laser output was passed

ik

throuch a Spex spectrometer with a resolution of .2 cm in order to
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"observe . the relative intensities of the_two 3.39-y lines for wvarious
pressures of methane in the absorption cell. The intensities of the
two. lines were almost equal when the pressure was about 7 Torr, and
above 10 Torr the 3.3913-u line was eliminated, léaving only the
3.3903-p line. The results were substantially the same for pressures
ranging from just above 10 Torr to about .5 atmosphere. At atmospheric
pressure the 3.3903-p power output was slightly lower, due most likely

to pressure broadening of the methane absorption peak.

5.4 The Experimental Facility

The experimental apparatus for the study of saturation effects
in a 3.39-p laser amplifier was assembled on a heavy steel table whose
surface dimensions are 260 cm. by 120 cm, This table rests on a con-
crete slab in a sub-basement laboratory. Most of the apparatus was
bolted to the table for long-—term stability. Power supplies for the
apparatus resided in a rack beside the table.

Figure 13 depicts schematically the basic setup for the mea-
surements of gain, Faraday rotation, and nonlinearity-induced anisotropy.

The abbreviations in the Figure are

A - analyzer MG - magnet

BS - beam splitter Pl’ P2 - attenuating polarizers
C - chopper PZT ~ piezo-electric tuner

Dl’ D2 — InAs detectors QWP - quarter wave plate

I - iris R - one-ohm resistor

L L L., - lenses

¥ 2> 3
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The length of the He-Ne laser oscillator cavity was 55 cm.,
which produced a longitudinal cavity resonance spacing of about 275 Miz.
This was sufficient spacing to obtain single TEMOOq mode output at
either of the 3.39-p wavelengths. The spherical ﬁirror which was con-
nected to the PZT had a reflectance of nearly 100%, while the reflect-
ance of the flat output mirror was 50%. This reflectaﬁce was low
enough such that only the 352 -+ 3p4 line at 3.3913-p could oscillate
under normal conditions. By placing a 1rcm. 1epgﬁh methane absorption
cell in the cavity, with methane ﬁressure above 10 To?r, we couid
quench the 382 - 3p4 oscillation and obtain oscillation oﬁ the
352 +—3p2 line at 3.3903-p. The He-Ne discharge tube used in the laser
cavity was 45 cm. long with a bore diameter of 2.6 mm., and it had
Brewster angle windows.

The laser oscillator output was passed through a variable
attenuator consisting of two calcite polarizers and given the desired
polarization ellipticity with the quarter wave plate. (The measurements
cf gain and rotation versus magnetic field for a linearly polarized
signal were conducted without the quarter wave plate.) The beam was
collimated with a quartz lens and then passed through a He-Ne amplifier
tube with a discharge length of 50 cm. and a bore diameter of 3.8 mm.
The beam diameter was slightly greater than 2 mm. throughout the length
of the tube. The amplifier tube was first filled to a pressure of 1.0
Torr with a 9:1 mixture of‘He3 and Nezo and sealed off. For later mea-
surements it was connected to a vacuum station so that the pressures
of the Ho3 and N02O could be varied. The tube was centered in a mag-

netic field solenoid which coverad the entire section of the discharge
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that took part in the laser process. The normals to the plane windows
of the amplifier tube were tilted about 2° from the axial direction in
order to reduce reflection instabilities.

The amplifier output beam was chopped ét a frequency of
220 Hz; and then it passed through an iris, which blocked almost all
of the axially directed spontaneous emission from the émplifier. In
later experiments the chopper was placed in front of the amplifier
tube, the result.being that only the chopped 1asgr signal could be
&etected by the AC detection systém. This method is ﬁore effective in
eliminating spontaneous emission '"noise"; however, for our éxperiments
both methods proved to be adequate.

The beam was then split by a silicon flat whose normal was
placed at a small angle with respect to the beam direction. The trans-
mitted portion was analyzed with a calcite analyzer and detected with
an indium arsenide photodiode. The reflection channel was focused
directly onto another InAs photodiode. The photodiode signal outputs
were fed into separate detector meters, each having a DC output pro-
portional to its meter deflection. (The PAR phase~lock detector is
supericr in sensitivity to the signal, since it can reduce the noise
bandwidth to a few hertz or less. It was used alone when making gain
saturation measurements.)

For most of the measurements the DC outputs of the AC
detection channels were each connected to a Y channel of an XY two-
channel recorder. When the magnetic field was a variable, the x-axis

channel was connected as shown in Figure 13, so that the X-axis de-

et

flection was proportional to the axial magnetic field. When the mea-
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surements of zero-field nonlinearity-induced anisotropy were made, the
x—axis was swept at a low rate of 50 sec./in. by an internal sawtooth
signal. More detailed accounts of the detection methods pertinent to
each experiment will be given in the following chépters.

In order to tune the signal from the laser oscillator to line
center, the signal was attenuated and passed through tﬁe amplifier tube
in the presence of an axial magnetic field of approximately 60 gauss.
Then the PZT voltage was varied (this changes the mirror separation,
or cavity leﬁgth, ;ver a distance.of ; few ﬁicronss to tuné the $scilla—
tor signal to the point at which the ellipticity of the amplifier output
decreased to zero. Since the amplifier input signal was linearly

\
polarized, it would remain linearly polarized under these conditions
only if it were at line center. The high gains of the 3.39-p signals
make this method of tuning to line center quite effective.A The maxi-
mum drift encountered during the observation periods was about +2 MHz.
VThese results were obtained when the mirror connected to the PZT unit
was shielded from air currents, due mainly to the chopper. The shield-
iﬁg was effected by placing a glass slide or the absorption cell diéect—
ly in front of the mi;ror holder, or by placing a cyvlindrical plexiglass
sheath between the mirror holder and the discharge tube.

Magnetic field measurements were made using a Bell Model 120
Gaussmeter with an axial probe. Effects of Fhe steel tabie on the mag-
netic field produced at the position of the amplifier tube were found
to be negligible., The axial component of the earth's field could be

balanced out by the solenoid, leaving a residual transverse magnetic

field of .38 gauss. The effects of this residual transverse field and
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the effects of the slight inhomogeneities in the axial field produced

by the solenoid will be discussed in chapter 8.

5.5 A Study of the Methane Absorption Line at 3.3913-u
By placing an absorption cell of 15 cm. length in the path
of the reflected beam of Figure 13, we were able to scén the absorption

profile of the P_ branch of the v absorption band of methane at

7 3

3.3913-p. A short (32 cm. length) laser tube was placed in a cavity of
40 cm. length for use as é single-mode laser osciilatér, funeabié over au
300 MHz region. The discharge current of the laser oscillator tube was
set at a low value (about 4 to 5 ma) in order to reduce the gain of the
oscillating 352 > 3p4 line and the consequent mode pulling effect.
The PZT voltage was varied over a finely controlled range by a Helipot,
and the voltage was monitored with a Darcy 440 Voltmeter, so that voltage
precision of one part in 500 could be attained - the limit was set by
the output fluétuations of the Hewlett-Packard Model 712A voltage supply.
The voltage precision meant a 1 MHz frequency tuning precision capability
for the laser oscillator.

The line center was first determined by the method discussed
in the previous section. Using the 3.3913-p line, we were able to
determine line center to within +1 MHz in this mammer. TFolleowing this
determination the amplifier tube was turned off, and a calibration plot
of the channel sensitivities was taken. Then the methane was introduced
into the absorption cell, and the laser tuning voltage was varied in
order to scan the methane absorption peak. After each run at a particular

pressure of methane, a line center determination was made in order to
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take slow drifts into account.

Due to the high gain of the 3.39-u laser (o= 1.0 m—l for
the low values of discharge current used), there was appreciable mode
pulling toward line center. Calculations based on Bennett's analysis
(6) show that the mode pulling for this case is about 6% of the
separation from line center for a frequency separation between cavity
resonanée and line center of less than .5 times the Doppler width. The

~methane peak occurs barely within'this interval, and we have_correctedv
our results to account for this effect. This mode pulling phenomenon
reduces our accuracy, though; our calculated distance of the methane
peak from the neon 352 > 3p4 line center could be off by a few MHz.
For this reason we have rounded off the result to the nearest 5 MHz.

Our results for three pressures of methane are shown in
Figure 14. The absorption peak is displaced 125 MHz higher than the
352 > 3p4 line center, which is at 2947.902 cm._l (73). The line
half-width increases at higher pressures due to pressure broadening.
The low pressure half-width is 130 MHz, which corresponds very well
with the Doppler half-width at half-maximum intensity of 130 MHz for
methane at 290°K. The values for the peak absorption at the three
pressures correspond to an absorption coefficient of about 0.12 cmfl
Torrml. This wvalue is consistent with our experimental studies involv-
ing the use of the 1 cm. length intracavity absorption cell, discussed
in section 5.3.

The 3.39-p laser has been used Lo scan this methane absorption
line in a different manner by Gavvitsen and Heller (82), and by Goldring

et.al. (83). They tuned the output of a multi-mode 3.39-p laser over a
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much larger range by applying an axial magnetic field and eliminating
one polarization component. They assumed that the spectral output of
the laser could be approxzimated by a continuous Doppler lineshape
whose center frequency was tuned by the mégnetic field. Aside from the
questionable accuracy of this approximation, this puts a limitation

on the "slitwidth" of the laser spectrometer of about 100 MHz (82),
which is about four orders of magnitude larger than the resolution ob-
tained through the,use of a singlgumode output scan. This method also
suffers from mode pulling effects, thch woﬁld weight the center of
the assumed "Doppler lineshape' more than the wings. The mode pulling
effects probably do not play as significant a part as they do in the
single-mode method, however. The main advantage of the method of
Gerritsen and Heller is the capability of a larger tuning range.

A clever means of studying the "phase-memory" linewidth of
this methane line involves the saturation of its absorption by the
intracavity 3.39-u laser signal (84). This is similar to the study of
the homogeneous linewidth ©f a laser transition by observing the 'Lamb
dip". Both methods succeed in being able to study pressure broadening
of the natural linewidth even though the pressure broadening is much
smaller than the Doppler broadening.

Gerritsen and Heller (82) concluded that the peak of the
methane line was about 120 Milz blue of the neon 352 + 3p4 litie center,
which agrees fairly well with our results. Their estimated value for
the absorption coefficient, based on measufements taken at a methane
pressure of 0.7 Torr, was 0.18 cmnl Torrml. Thig is quite a bit higher

: -1 -1
than our value of 0.12 cm TorT «
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Now let us consider the amount of pressure broadening which
we observed. References 82 and 84 report a pressure broadening half-
width coefficient of about 8§ MHz/Torr for pure self-broadening. Using
this value, we would expect to observe a slight bfoadening of the
Doppler lineshape at the wings of the line when the methane pressure
is 1 to 2 Torr. The lineshapes would be broadened in'é manner similar
to those shown in Figure 2. The lineshape for low pressures corresponds
to a = 0, and the lineshape for 2.0 Torr pressure_would correspond to
a value of a=.125. (Thig is based on a Doppler ﬁalfwidtﬂ of léb MHZ;)
Our experimental lineshape for a methane pressure of 2.0 Torr corres-
ponds to a value of a=.25, however. This discrepancy is probably due
to an incomplete compensation for the effect of mode pulling in our

analysis.
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CHAPTER SIX

APPLICATION OF LOW PRESSURE THEORIES TO THE

3.39 MICRON TRANSITIONS OF He-Ne

6.1 Introduction

Our first experimental studies of saturation effects were
performed with an amplifier tube which was filled ta a pressure of 1.0
Torr, with a 10:1 ratio of He:Ne. The tube was sealed off, so there
was-no way of varying the gas pressure and observing effects on the
amplifier characteristics. The experimental data were compared with the
existing low pressure theories: the weak signal isotropic decay tﬁeory
of Chapter 3 and the strong signal theory of Chapter 4. It was felt at
the time that the gas pressure for this tube was low enough so that
these theories would be applicable.

The results of these experiments are presented in this chapter.
The gain and Faraday rotation data for a linearly pélarized input signal
correspond quite well with theoretical curves, assuming certain values
for the decay rates and linewidths. The nonlinear "dips" for low values
of magnetic field are observable for the (J =1 to J = 1) 3.3903-u
line but not for the (J =1 to J = 2) 3.3913-p line. The nonlinearity-
induced anisotropy data for an elliptically polarized input signal
operating on the J =1 to J = 2 transition deviate from the theoretical
predictions, however. The deviation is slight, so that one could
logically blame this on some sort of systematic error. However we shall

see in the following chapter that this type of deviation should be ex-
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pected when pressure effects are considered.

6.2 Linearly Polarized Input Signal: Gain and Faraday Rotation

The basic setup for the gain ;nd Faraday rotation measurements
is described in Section 5;4 and pictured in Figure 13. The quarter
wave plate shown in Figure 13 wa§ not used for these experiments, so
that the input signal to the amplifier was linearly polarized.

First the magnetic field was set at zero while the gain was
measured for input signals of various intensities. Care was taken to
keep the signal at line center by monitorirg the signal in the manner
described in Section 5.4. It was also important to wait until the
amplifier tube was warmed up before taking gain measurements. The
experimental results for each of the 3.39-py signals are shown in Figures
15 and 16, along with theoretical curves which are based on the strong
signal equations (4.10) and (4.14), for r = 0. These data demonstrate
the previously mentioned fact that the small signal gain for the
352 -> 3p4 (J =1 toJ = 2) transition is significantly larger than that
for-the 352 -+ 3p2 (J =1 toJ = 1) transition. The degree of gain
saturation at high signal strengths depends on, the value of the normal-
ized homogeneous linewidth, a. For a given value of the parameter a,
the saturated gain remains relatively constant even though the small
signal gain varies over a certain range; this is demonstrated in Figure
16 by the two gain curves for a = 0.3. The data for both tranéitions
fit the gain saturation curves when a = 0.3. Further measurements of
gain saturation yielded values for a which were consistently between

0.3 and 0.35. We used these results to assume for purposes of later
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calculations that the decay rates of the 3p2 and 3p4 levels are equal,
and that the homogencous linewidths were 0.3 times the Doppler width
parameter, ku.

Measurements of Faraday rotation and gain versus axial mag-
netic field were then taken, making use of the two-channel XY recorder
shown in Figure 13. The x-axis deflection was arranged to be pfopor—
tional to the axial field. Then the analyzer A in the transmission
channel (channel 1) was set at 45° with respect to the plane of polar-
‘izatioﬁ of the signél when fhe magnetic field-wés‘zeré. If Qe éall.
the output signal intensity at zero magnetic field Io’ and the output
gsignal intensity at a non-zero value of magnetic field 1I(y), then the
two recorder plots simultaneously yielded the quantities
I(y)cosZG/Iocosz(nlé) and I(y)/Io. Thus the gain variation with mag-
netic field was obtained directly, and the Faraday rotation angle,
¢ = e—(ﬁ/A), was obtained through simple calculations. Féur plots were
taken for each vdlue of input signal intensity, and the process was
repeated for various values of input signal intensity.

The results of these measurements are shown in Figures 17
through 20. 1In these figures each experimental point represents an
average from four successive measurements taken under the same conditions.
The error brackets represent plus and minus one standard deviation based
on these measurements. With the values of o = 1.76 m_l and a = 0.3,
determined from the gain saturation data, and with Qa/2ﬁ=l.82 MHz/gauss,
Qb/zﬂ“1-97ﬁﬁz/gauss, good fits to the experimental points of Figures 17
through 19 were obtained for A = 0.05, B = 0.25, and ku = 165 MHz. The

discharge current was 12 wma. during the course of these measuremcnts.
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Figure 17 shows the traveling wave gain dip at small values
of magnetic field for the J =1 to J =1 signal. The solid lines
were obtained from equation (3.57), using the isotropic decay limit.
According to this theory the dip width depends on the value of A, since
it occurs because of the effects of coherence existing among the upﬁer
sublevels. This gives a good method of determining thé upper level
decay constant.

Figure 18 shows the Faraday rotation for the J =1toJ =1
signal, and Figure i9 is a more détailed view o£ the iow magﬁetic fiei&
region of Figure 18. It is obvious that a dip in the Faradéy rotation
occurs at small values of magnetic field for sufficiently strong signal
intensities. The long dashed curve is the unsaturated Faraday rotation
obtained by assuming the polarization of the medium to be linearly de-

pendent on signal strength:

Qﬁ = oz Im W(y) (6.1)
where
Wy) = § :cz w(y, + M§ + ia)
M,M~-1 b
M
= .5 w(yb + 9a) + 5 1;-.7(ya + Fa) (6.2)
The solid curves in Figures 18 and 19 are theoretical curves
obtained by using equation (3.58), assuming isotropic decay. We see
that the weakly saturating signal thecory gives good fits to experimental

points in dits region of wvalidity. We observe a reversal of the Faraday
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rotation at small magnetic fields when Iin = 1.2, as predicted in
Chapter 3, although the weak signal theory ceases to be quantitatively
valid for such signal strengths. (The dotted curve is merely a line
joining the experimental points.) Piesumably larger signals would
produce a larger dip in the rotation; thus our theoretical predictions
are qualitatively accurate for strong signals.

The short dashed line in Figure 18 is a theoretical curve
qsing equations (4.12)‘and (4.13). Since the va}ug oﬁ v, at SQ gauss
is 0.55, the condition of validity of (4.12) and (4.13) is not qﬁite |
satisfied for magnetic fields of this size. The effects of the coherent
interactions are not quite negligible in this region, as is assumed in
the derivation of (4.12) and (4.13); thus we expect the experimental
points to be a little lower than the dashed curve.

Figure 20 shows the Faraday rotation for the J =1 to J = 2
signal. The discharge current was 14 ma during the course of these
measurements, The long dashed curve is once again the unsaturated or
linear rotation, for a value of a = 4.96 m—l and for Qb/2ﬂ=l.67 MHEz/
gauss. Comparison of Figures 18 and 20 supports our argument .that the
effects of the coherent interaction terms are much stronger for a J =1
to J = 1 transition than for a J = 1 to J = 2 transition. There are
no dips in the curves shown in Figure 20, even for large values of in-
put signal strength.

The weak signal theory presented in Chapter 3 was not very
useful when applied to this transition. TFor signal strengths which
are low enough such that the perturbational results are valid, the

degree of saturation is so small that the difference between unsaturated
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and saturated Taraday rotations is within the error limits for the
experimental points. The gain for the case Iin = 0.07 in Tigure 20
was 26, which means that near the output end of the amplifier the signal
strength was too large for the wezak signal theory to be applicable;
and the results for this case indicate only a slight decrease in Faraday
rotation from that predicted by the linear theory.

The short dashed lines in Figure 20 were obtained from
equations (4.22) and (4.23). These equations assume the circular
Qémponent interactions are ﬁegligible, and the commengs made.fof the
short dashed line in Figure 18 hold here also.

Equation (4.18) was used to obtain the solid lines of Figure
20. (This involved an extensive numerical integration first over
velocities and second over the axial distance z. Thanks go to A. Dienes
and M. Sargent III of Bell Telephone Labs for developing the computer
programs and performing this numerical integration.) In deriving
equation (4.18) we assumed the left and right circular components
interact via the upper sublevels only, and that B = a = 0.3. Actually
B is smaller than this value; since the nonlinear interaction terms
are proportional to B, this probably results in predicting too much
saturation. We see that the experimental points are slightly higher
than the solid curves, but the overall fit is good.

In general, good agreecment between experiment and the pre-
dictions of the low pressure theories was found. Although there was
reason to believe that the assumption Ya + Yy, = 2Yab’ which these

pressure of 1.0 Torr

theories contain, was not strictly valid for a eas

(30), the relaxzation of this condition was not necesgsary for the gain
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and Faraday rotation experiments presented in this section. The experi-
mental points for the J = 1 to J = 1 signal were found also to agree
with weak signal theoretical predictions (at signal strengths for which
the weak signal theory was valid) assuming 2Yab > Y, +'Yb and iso-
tropic decay. The values of the homogeneous linewidth parameter for
which good fits were made were 0.3< a < 0.35, gnd the corresponding
range for the lower level decay rate parameter was .25 2 B 2 .20. The
value of the upper levgl decay rate parameter, which is given by the
dip width, remained at A = .05. The values A = 0.5, B = .20, é = .35
are probably closer to the actual decay rates. Thus these experiments
yielded an accurate value for A Dbut only approximate values for B

and a.

6.3 Elliptically Polarized Input Signal: Nonlinearity-Induced

Anisotropy
For measurements of zero field nonlinearity-induced anisotropy,

or the change in ellipticity of a signal as it passes through the
amplifier when no axial magnetic field is applied, the arrangement in
Figure 13 was used, with the exception that the x-axis of the XY re-
corder was disconnected from the mégnetic field solenoid and allowed
to sweep at a slow (50 scc./in.) rate. The signal was tuned to line
éenter while the quarter wave plate (QWP) was removed; then the QWP
was placed in its position, and measurements of intensity and ellipticity
of the output signal were made for various values of input signal in-
tensity. Channei 2 in Figure 13 measured the intensity, while the

analyzer in chamnel 1 was rotated manually to read the maximum and
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minimum of the signal polarization ellipse. The slowly sweeping re-
corder pens plotted this information. In this manner slight fluctuations
in output signal intensity could be taken into account when computing
the ellipticity of the signal, because the two pieces of information
were recorded simultaneously on paper. The accuracy necessary to detect
the nonlinearity-induced anisotropy with reasonable error limits re-
quired the use of this method of measurement.

When the measurements were complete, the amplifier tube was
turned off, énd meésurements of the.eiiiptiéity aua the intensit& at
the same settings of the attenuator were then made. This information
was enough to determine gain saturation and ellipticity change at
various input signal strengths, which were given in terms of the sat-
uration intensity parameter, Ez.

The results for the J =1 to J = 2 signal at 3.3913—u are
shown in Figure 21. The small signal gain constant for these results
was a = 3.1 (o = o Re w(0 + i.3)), which corresponds to a linear
gain of 22. The amplifier tube discharge current was 12ma. The input

signal ellipticity, \

was set at .600 % .002. The reading error for the ellipticity mea-
surements was better than * .002. This kind of accuracy necessitates
calibrations of the nonlinearities of the detection equipment responses.

ents about them

These calibraticns were performed, and more detailed com

are in Chapter 8.
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The solid curve in Figure 21 was obtained using equations
(4.14) and (4.15), and the dashed curve was obtained from the gain
equations resulting from (3.63) and its counterpart for the negative
helicity component. The atomic parameters used for these theoretical
curves were a = 0.3, A = 0.05, B = 0.25, ku = 165 MHz, Qb/2ﬂ=l.67 MHz/
gauss. The figure shows that the weak signal theory bgedicts too much
ellipticity change when the signal strength goes'beyond its limits of
validity. This type of behavior was first noticed'by.Dienes (.
However even the strong signal theory seems to prediét toé much éllip;
ticity change in this case. Since both of these theories are valid
only for very low pressures, this deviation is most likely due to
pressure effects.

Experiments studying a laser excited Hanle effect in a He-Ne
discharge had shown that the decay of the common laser levels was
slightly anisotropic at the pressures used in our amplifier tube (45).
Tomlinson and Fork (30, 42) first noted that anisotropic decay would
influence the coupling strength of the transition, and this, of course,
directly affects the nonlinearity induced anisotropy (see the pertinent
discussion in Chapter 3). Our results with the sealed-off tube with a
‘gas pressure of 1.0 Torr did not dispel doubts that this deviation
could be ascribed to pressure effects - it was plausible to argue that
soﬁe systematic error could have been the source of our small dis-
crepancy. However further experiments at other gas pressures ére pre-
sented in the next chapter, and they clearly show the influence of gas
pressure on nonlinecarity-induced anisotropy.

Since, according to the low pressurc theories, the J = 1 to
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J = 1 transition is a "neutral coupling" transition, there should be
no nonlinearity-induced anisotropy for the 3.3903-p (J =1to J = 1)
signal. Measurements taken with this signal did not show any evidence
of deviation from this theoretical prediétion. The small gain of this
line, when compared with the gain of the 3.3913-u line, would reduce
the effect of any deviation due to gas pressure to a point such that it
would be swamped by the random error brackets. Thus we cannot draw

any conclusions based on these results.

6.4 Spontaneous Feeding Effects

The preceeding analysis.in this chapter neglects the effects
of spontaneous feeding of the lower laser level. Let us return to
equations (3.47) through (3.49) in order to evaluate the accuracy of
this approximation. The theoretical line stréngths for the tramsitions
332 - 3pa and 352 - 3p2 give.values for (y/2n) of 2.8 MHz and
1.1 MHz, respectively (85). If we assume that the zero-pressure value
for (Ya/ZW) is 10 MHz (45) and that Yy = SYa, then we can calculate
the effects of the spontaneous feeding terms in (3.48) at.the low
pressure limit. At higher pressures the effects should be less due
to the increases in the value of AK’ BK'

Assuming the zero pressure values for G, A, and B (zero
pressure decay is isotropic), and using Table 1, we calculate a 2% to
- 3% decrease in the sizes of the coefficients of fl(y) and fz(y) for
the J =1 to J = 2 transition; and we calculate a 1% decrease in the
corresponding coefficients for the J = 1 to J = 1 transition. The

effects on the f3(y) coefficients are even less. We have been pri-
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marily interested in the nonlinear dips at small magnetic field values,
which is mainly due to the contribution of the first term inside the
square brackets multiplying f3(y) in (3.48b). For the J =1 to J = 2
transition this term is negligibly small to begin with, and the spon-
taneous emission feeding term decreases its contribution by about 10%
in the small magnetic field region. For the J =1 to.J = 1 transition
the dip size is decreased about .5% by the spontaneous emission feeding
term. In addition, in the isotropic decay limit there is no effect of
the spontaneéus emiésion feeding £efmé'on the zero;field cdupling
strengths of the transitions. Thus we can safely neglect these terms

entirely in our analyses.
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CHAPTER SEVEN

PRESSURE EFFECTS ON THE 3.39 MICRON TRANSITIONS

7.1 Introduction

By attaching the laser amplifier tube to a gas-handling
station, wé were able to study saturation effects for various gas
pressures. This chapter discusses the results of ‘these measurementsj .
namely, the dependence on the amplifier gas pressure of gain saturation,
nonlinearity induced anisotropy, and gain and Faraday rotation versus
axial magnetic field. .

The experimental gain saturation curves fit strong-signal
theoretical curves quite well when the hdmogeneous linewidth parameter,

a = Yab/ku, and the saturation signal intensity, Ei = 3h27ayb/|<bﬂpﬂa>
are allowed to become monotonically increasing functions of pressure.

The use of these curves, along with unsaturated Faraday rotation curves
for various pressures, allows the determination of the pressure-dependent
homogeneous linewidths for both 3.39-p transitions. The results of these
measurements are presented. Another useful result of these.measurements
is the determination of the ratio of the small signal gain constants for
the two transitions. This wvalue is quite close to the theoretical ratio
of the line strengths.

Tge dip width in the gain and Faraday rotation versus axial
field curﬁes for the 3.3903-u (J = 1 to J = 1) signal is observed to
increase with increasing gas pressure, as predicted. Resulting values

for the neon 352 level quadrupole moment decay rate are given for a
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limited range of pressures.

The nonlinearity-induced anisotropy measurements strongly
indicated the presence of anisotropic decay at high gas pressures. The
coupling strength of the ‘J =1 to J =2 transition increases with
increasing pressure, while no detectable change in the coupling strength

of the J =1 toJ =1 transition is observed.

7.2 Gain Saturation

When the gas pressure in éhé lasef amplifier tube is increased,
the gain saturation curves for the two 3.39-p signals are affected in
two ways. First, the form of the saturation cﬁrve changes - the gain
decreases faster for increasing signal intensity at higher pressures.
This characteristic is consistent with a.larger value of the homogeneous
linewidth parameter (a = yab/ku) at higher pressures. As £he gain line
becomes more homogeneously broadened (a - «), the gain saturates as
(1 + I)_l, whereas for small values of a {(a + 0 is called inhomogeneous
broadening) the gain saturates as (1 -+ I)—%. (Discussions of these

\
gain saturation characteristics can be found in references 7,8 and éZ.)
Second, the saturation signal intensity increases with increasing
pressure. According to the strong signal theory of Chapter 4, the
saturation signal intensity is Ei, and it is proportional to the product
of the monopole (population) decay rate; of the two levels of the
transition. These decay rates do increase with increasing pressure.
However the weak signal theory of Chapter 3, which is more capable of
handling pressure effects, demonstrates that the increase of the higher

moment level decay rates and the dipole moment decay rate also influence
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the saturation process; and even if the monopole decay rates increase
only very slightly with pressure, the saturation (or the size of the
nonlinear contribution to the gain) will become significantly smaller at
a given signal strength if the other decay rates increase substantially.
Since these decay rates are influenced to a much greater extent by "soft"
collisions, they should play a greater role in causiné the saturation
signal intensity to increase with increasing pressure.

Regardless of the sizes of the level decay‘rates, the shape
of the gain saturation curve depends almost exclusively on the homogencous
linewidth (dipole moment decay rate). Experimental curves were obtained
for five total gas pressures, each having a He:Ne ratio of 10:1. (For
all of our pressure measurements the ratio of He:Ne was kept at 10:1.)
Each curve could be fitted quite well with a theoretical curve based on
equation (4.14). Figure 22 depicts the fits for the J =1 to J = 2
transitions, for the lowest and highest values of total pressure. The

2 5 , ’ . :
value of EO was allowed to increase with increasing pressure in order

2
to obtain the best fits. The value of Eo for PT = 2.2 Torr is almost
2 :
twice the value of Eo for PT = 0.6 Torr. The homogeneous linewidth
increases from 0.25 to 0.5 over this pressure interval, according to

these fits.

The gain saturation plots in Figure 22 were obtained with a
linearly polarized signal. Gain saturation varies with the ellipticity
of the signal; according to equations (4.14) and (4.15) a circularly
polarized signal saturates more than a linearly polarized signal. Re-
ference 1 discusses this phenomenon and contains an experimenteal

verification. We also plotted gain saturation curves using a signal with
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r = 0.6, which was alsoc used for a study of nonlinearity-induced
anisotropy. The small signal gains were too low for us to observe this
polarization effect unambiguously, however.

Gain saturation curves were also plotted for the J = 1 to
J =1 transition. The signal input intensities were not as larée,
though; only intensities which were about equal to E§~ were obtained,
due to less power output from the laser oscillator and the greater
absolute value of Ez for this transition. Th;s causes some difficulty
in assigning properAvalues of a,.the homogeneoﬁs 1inéwidth,-to the’
various saturation curves. (Another method, based on Faraday rotation,
was used to obtain these values with greater accuracy. This will be
discussed in the following section.)

From the gain data for the two 3.39-uy transitions, we obtain-
ed the ratio ef the two linear gain parameters for various values of
discharge current and gas pressure. The ratio did not seem to depend
on either gas pressure or discharge current for the ranges in which we
operated (PT = 0.6 Torr to 2.2 Torr, i = 10 ma to 20 ma); any pressure
or discharge current dependence would be within our accuracy limits.

OQur results are

$(3.3913-1)

= 2.6 * .1 (713
%(3.3903-1)

This is very close to the theoretical ratio of line strengths, which

is 2.55 (85). Since a depends on the pumping and decay rates for

o)
)
6
w;
j )
b
o
f—t
e
rt
i
{2
~+
-

ranaition (see the definiton following Equation (3.49d)),

these results are in accord with the assumption that the upper level
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(352) population is much greater than the lower level (2p2, 2p4)
populations when the amplifying medium is unsatﬁrated and in a steady-
staté situation. Concomitant with this assumption we can attest to the

accuracy of the theoretical calculations in Reference 85.

7.3 Linearly Polarized Signal: Gain and Faraday Rotation

Small signal or "linear" Faraday rotation is useful in deter-
mining relative sizes of homogeneous linewidths at various pressures.
fhese measurements ﬁust be used iﬁ conjunction Qith géin safﬁraﬁionl
measurements in order to establish an absolute scale for the linewidths.

It is difficult to determine the value of the homogeneous
linewidth of a transition from gain saturation data. In the first
place the strong signal theory, which is used to give gain saturation
curves for comparison with experimental observations, has been derived
assuming e + Yy = zYab; and this is not true for the intermediate
and high pressure regions in He-Ne. It was stated previously, however,
that the shape of the experimental gain saturation curves seemingly
depends only on the homogeneous linewidth and not on the level decay
rates, regardless of whether or not the condition ¥, P Yy T ZYab is
valid. A more troublesome characteristic cf gain saturation is the
relative insensitivity of the shape of the curve to changes in the
value of a in the region of interest, i.e. 0.2 <a < 0.6. This can
be observed in Figure 22; the shapes of the curves for a = 0.25 and
for a = 0.5 are not much different, although it is noticeable. This
characteristic makes it difficult for us to determine values for the

-

homogeneous linewidth, a, which ave accurate to less than 20.05. It
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would probably help matters to have a longer amplifier tube and/or
larger input signal strengths available. However addea problems with
reflection and other instabilities are inherent in this regime.

A novel method of determining'relative linewidths involves
the unsaturated, or "linear" Faraday rotation of a linearly polarized
input signal. Our apparatus was designed to detect this phenomenon
with high accuracy. If a signal has a given unsaturated gain as it
passes through the tube, its Faraday rotation angle will depend on the
homogeneous linewidth of the transition. Recall the appropriate
expressions for unsaturated gain and Faraday rotation from Chapter 3

- (equations (3.57) and (3.58)):

(=1

I

%:E;'= 2a Re w(y + ia) : (7.2a)
I(z) = I(0) exp [20zRe w(y + ia)] (7.2b)
L = o I wly + ia) (7.3a)
¢ = az Im w(y + ia) ‘ (7.3b)

These equations are true regardless of the sizes of the level decay
rates; hence they are strictly valid over the entire pressure range of
interest. Now if the quantity 2az Re w(0 + ia) 1is a known number
(known from a gain measurement), the value of the quantity az Im w(y+ia)
for a particular value of y will depend on the size of a (=Yab/ku)

used. For example, the Faraday rotation for a linewidth a = 0.2 is
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about 6% higher than the rotation for a linewidth a = 0.3 in the range
0 <y < .5, given the same linear gains. Of course the value of ku

must be known in order to determine absolute values for y and a.

n

Usiﬁg the J 1 to J =2 transition gain saturation results
for P = 0.6 Torr, shown in Figure 22, we determined an absolute scale
for a. Comparison with the unsaturated Faraday rotation results at

the same pressure yielded a value of (ku/2w) = 165 MHz. Unsaturated
Faraday rotation curves for various values of discharge current in the
fange 10 to 20 ma. were studied tovdeterminé a cﬁ%?eﬁt—ﬁebendenf'changé
in the value of ku. No variation of ku was observed. Then similar
Faraday rotation curves were plotted for various pressures and for both
3.3913-p (J =1 toJ = 2) and 3.3903-p (J =1 to J = 1) signals. These

measurenents yielded homogeneous linewidth wvalues for both transitions.

The results are shown in Figure 23. These results indicate that the

zero-pressure limiting values of Ty for the two transitions are
Yab/Zﬁ (352 > 3p4) = 28 MHz
Yab/2ﬂ (352 -> 3p2) = 21.5 MHz (87 g

Since in the low pressure limit, zYab ah + Yo Ve conclude that the
2p2 level decay rate is lower than the 2p4 level decay rate. As
stated previously, the accuracy of the numerical values is limited by
the gain saturation results.

According to the weak signal theory in Chapter 3, the dip

width in the Faraday rotation and gain versus axial magnetic field
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curves is given by AZ’ the quadrupole moment or alignment decay rate
of the upper (neon 332) level. The dip can be observed only when using
the 3.3903-y (J = 1 to J = 1) signal, and only for intermediate pressures
is the gain of the signal high enough so that a reasonably accurate
measurement of the width can be made. Curves similar to those shown in
Figure 17 were obtained for three total gas pressures:-l.O Torr, 1.3
Torr, and 1.6 Torr. The unsaturated gain for each case was fixed at

1

4,25 (0, = 1.45 m ). The results of the dip width measurements are:

Yi/Zﬁ (PT = 1.0 Torr) = 15 + 2.5 MHz

Y2/ 2 (P, = 1.3 Torr) = 16 * 2.5 Miz (7.5)
2

Ya/2n (PT = 1.6 Torr) = 17 % 2.5 MHz

These values are about 407% higher than those reported by Decomps and
Dumont, who utilized a laser excited Hanle effect experiment in order
to determine population and alignment decay rates for certain excitéd
levels of neon (45).

Their results were extrapolations to zero discharge current,
and they stated that the observed decay rates increased with increasing
discharge current. Since our values for A2 were determined in thg
current range of 18-20 ma., this might account for part of the difference.
We attempted similar dip width measurements at lower discharge current
values; however the accompanying gain decrease precluded an accurate

determination of the dependence of AZ on discharge current. We con-
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clude that although this effect probably exists, it is not large enough
to fully account for the much larger values for A2 that we obtained.
Furtﬁer investigations would be helpful in clearing up this matter.
We obtained a good fit to the gain versus axial field curve for
PT = 1.6 Torr with the use of the anisotropic decay theory, assuming

certain values for the pressure dependent decay rates. This anisotropic

decay model will be discussed in the next section.

7.4 Elliptically Polarized Signal: Nonlinearityv-Induced Anisotropy

Simultaneous measurements of gain and change in ellipticity
were taken for a 3.3913-u (J = 1 to J = 2) signal which was tuned to
line center, with T T 0.6. These measurements were repeated for
various gas pressures. Gain saturation plots similar to those in
Figure 22 were obtained, and fits to these points were made with the
use of the strong signal theory. The strong signal theory was then
applied to the nonlinearity-induced anisotropy results. TFigure 24
shows the results for three gas pressures: (a) PT = 0.6 Torr, (b)

PT = 1.0 Terr, (c) Py = 2.2 Torr. The linear gains for each case

were set at 17.5, or 12.5 db. The accuracy limits due to random
fluctuations in signal intensity are about the same size as the circles
marking the experimental points. The predictions of strong signal theory
are the solid lines; we note that at low pressures the fit is good,

but at high pressures the experimental points show muéh less change in
ellipticity than that predicted by theory. Note that the three scales

for input intensity are not equivalent; a certain input signal intensity
5

might be equal to K for the PI = 0.6 Torr case, but it would then be
O
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equal to .SEE for the PT = 2.2 Torr case. Each scale is given in
terms of its own saturation signal intensity; these are obtained from
tﬁe gain saturation curves. !

The observed departure from strong signal theoretical pre-
dictions for high pressures suggests the existence of anisotropic decay.
From the discussion in Chapter 3 we know that for a ‘J‘= 1l toJ =2
transition, anisotropic decay tends to make the coupling closer to
peutral. This is what is observed in Figure 24. .Io demonstrate this
we have constructed theoretical curves valid for weakly séturatiﬁg
Vsignals — the lpng dashed curves in Figure 24 are the predictions of
weak signal theory assuming isotropic decay, and the short dashed
curves are the predictions of weak signal theory assuming anisotropic
decay. The values for the decay rate parameters used for these two
cases are given in Tables 2 and 3. The linewidths assumed are those
obtained from Figure 23. The zero pressure decay rates are assumed to
be a = .175 (Yab/Zﬂ = 29 MHz), A = .035 (Ya/2ﬂ = 11 MHz), B = .14
(vp/2m = 46 Miz).

The level decay rates for the isotropic decay case were ob-
tained by assuming B = 4A, and fixing the values of A and B such
that the magnitudes of the saturation terms correspond with the
relative saturation signal intensities obtained from the gain saturation
curves. For a gas pressure P, the smaller the values assumed for A
and B, given a certain value for a, the less saturation occurs at a
given signal intensity, according to equations (3.48) and (3.61).

This corresponds with larger values for saturation signal intensities

2 . : ; >
(EO)P. At a pressure of 2.2 Torr, the saturation signal intensity,
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(Eg 2 2.Torr is slightly more than twice the zero-pressure saturation
2
signal intensity, Eo' This means that A + B <% a for By = 2.2 Totr.

The level decay rates in Table 3, éxhibiting anisotropic decay,
were chosen on the basis of several other results. The neon 352 level
decay rates of population and alignment have been studied by Decomps and
Dumont (45), while we have studied the pressure dépeﬁdence of the
alignment decay rate over a limited range of pressure. We have assumed
a much larger pressure dependence for the populaﬁion_decay rate (AO)
than that assumed in Reference 45. Our values for this quantity are
more consistent with the results of Bennett and Kindlmann (86), who
measured pressure dependences of 2p level decay rates. The ratios of

(Al = Ao)/(A2 - AO) and (B, - Bo)/(B2 - BO) are roughly the same as

1

the theoretical values derived in Reference 43, namely 5/3 and .88

respectively.

PT = 0.6 Torr PT = 1.0 Torr PT = 2.2 Torr

R (7 a= .34 a = .55

A= .04, B= .16{f A= .045, B = .18] A = .055, B = .22

Table 2
Neon 352 > 3p4 Transition Isotropic Decay Rates for
Various Total Gas Pressures, PT. (PUe:PNe = 10:1

in all cases.)
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PT = 0.6 Torrx PT = 1.0 Torr PT = 2.2 Torr

a = ;27 a = .34 a= ;55

A =.036, B =.15 A =.,037, B =.16 A =.04, B =.18
o o o o}

A1=.044, B,=.164 Al=.050, B.=.187| A.,=.07, B.=.25

1 1 1 il
A2=.041, B2=.167 A2=.045, BZ='193 A2=.061 Bz=.26
Table 3

Neon 352 = 3p4 Transition Anisotropic Decay Rates for .
Various Total Gas Pressures, PT. (]?He:PNe = 10:1 in

all cases.).

The level structure of the J =1 to J = 2 transition is too
complex for us to individually determine the various level decay rates
with much accuracy. The primary consideration here is the fact that
experimentally observed nonlinearity-induced anisotropy strongly
suggests the existence of anisotropic decay at high pressure. It is
obvious from Figure 24 that the weak signal theory is valid only for a
limited range of signal strengths; yet this theory does account for the
pressure effects which we have observed vhen it is wvalid, and it gives
a qualitative indication of these phenomena when higher signal strengths
are used. The combination of the generalized weak signal theory and the
low pressure strong signal theory can be used to predict saturation
phenomena over a wide range of conditions.

Similar experiments were performed on the 3.3903-p (J = 1 to

J = 1) signal. The strong and weak signal isotropic decay theories
& o] &
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predict no change in ellipticify of a J=1¢toJ =1 signal which is
tuned to line center when it passes through the amplifying medium.
According to the generalized weak signal theory, the coupling will
remain neutral if the decay rates for orientation and alignment remain
equal to each other while becoming larger than the population decay
rate. However if the orientation and alignment decay rates for eagh
level become unequal, the coupling will become either strong or weak,
depending on which of the decay rates is largeri_ Tpe observation of
strong coupling in a 1.52-p (J =1 to J = 0) He-Ne laéer led Tomlinson
and Fork to postulate the existence of a larger cross section for
|am| = 2 transitions (orienfation decay transitions) than for|Am| = 1
transitions (alignment decay transitions) in order to account for this
effect (30, 42). More recently Wang and Tqmlinson developed theoretical
expressions for collision induced anisotropic relaxation in gases
which Qerified this postulate for a J = 1 level (43).

The results of our measurements on the 3.3903-p (J =1 to
J = 1) signal for two gas pressures are shown in Figure 25. The linear
gains for each case were set at 3.65, or 5.6 db. Along with the
strong signal predictions shown in Figure 25, we have demonstrated the
prediction of the generalized weak signal theory in which the decay
rate parameters are those given in Table 4. In keeping with the
theoretical results of Wang and Tomlinson (43), we have set (Al - Ao)/
(A2 - Ao) = (Bl - Bo)/(B2 - B°)33 5/3. This changes the coupling for
the transition from meutral to strong at high pressures. Our experimen-
tal results do not indicate unambiguously any departure from neutral

’ 3
coupling at PT = 2.2 Torr. Thus we cannot state that nonlinearity-
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induced anisotropy exists for this transition. Since the weak signal
theory loses validity for input signals stronger than Iin = 0.1, we
would not expect the experimental points to follow the short—-dashed
line past this point in any case. A longer amplifier tube would be

necessary in order to detect the existence of strong coupling unambig-

uously.

PT = 2.2 Torr
a = «45
A = .04, B = .12
o o
Al = .07, Bl = ,18
A2 = .06, 82 = 4155
Table 4

Neon 352 > 3p2 Transition Anisotropic Decay

Rates for PT = 2.2 Tort (PHe:PNe = 10:1).
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CHAPTER EIGHT

DISCUSSION OF SOURCES OF SYSTEMATIC ERROR

8.1 Introduction

A In this chapter we discuss the effects of éyétematic departure
from theoretical perfection on our experimental fesults. Four systematic
error sources are discussed here: residual and inhomogeneous magnetic
fields, deviations of ﬁhe 3.39-p signals from their fespeétive iine
centers; nonlinearity of photodetector response, and possible inaccuracies
in pressure gauge readings. The effects of the first three of these
sources of systematic error are well understood for our experiments,
and we will show that they either have negligible effects on our results
or are taken into account in a satisfactory manner. The pressure gauge
readings represent an unknown source of error, since the Pirani type
gauge tube which we used has not been recently calibrated against a
standard gauge; but there is reason to believe that the possible gauge

inaccuracies are small and do not affect our overall results.

8.2 Resgidual Tields and Inhomogeneities

Magnetic field measurements were made using a Bell 120 Gauss-—
meter with an axial probe, which was capable of measuring fields as
small as .0l gauss. The probe was made of InAs, and its operation was
based on the Hall effect. A zero-gauss chamber, capable of reducing

/

- : : =4 :
the ambient magnetic field by a factor of 10 ', was used in order to

correctly establish the zero field value for the probe and meter.
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Effects of the steel table on the magnetic field produced at
the position of the amplifier tube were found to be negligible. The
earth's magnetic field produced an axial (horizontal) component of .25
géuss and a transverse (vertical) component of nearly .4 gauss. The
axial component could be balanced by the solenoid; the remaining trans-
verse component is a residual field, whose effects we must consider.

When the total a%ial field is zero, we can consider the effect
of the transverse field on Faraday rotation as follows. The polgrization
of the linearly polarized input sigﬁai lies'in the horizontal plane, due
to the orientation of the laser oscillator tube and the attenuator
polarizers. We shall state that the input signal is polarized in the
X—direction. We know that the transverse field is in the vertical, or
y—-direction. Then the x-polarized signal operatesifrom Am = * 1 tran-
sitions only. Assuming the signal to be tuned to line cen?ar, when the
Doppler gain curves for the Am = * 1 transitions are split due to the
field, the total gain of the signal is reduced slightly. This could

cause a slight error in the determination of the linear gain constant.
|
We can write the linear gains of the x and y polarizations of a signal

(assuming the g-factors g,> &, are equal) as

dE
= o Re w(0 + ia) (8.1a)
dz
dE
d7x = .50 Re[w(-y + ia) + w(y + ia)]. (8.1b)

If the transverse field equals 0.4 gauss, y = Q/ku = .004. A look at
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the real parts of the complex error functions (71) for various values
of a = fab/ku will demonstrate that the difference in gains in this
case is about .17 of the total gain of either component. This is much
émaller than our experimental accuracy.

The effect on nonlinearity-induced anisotropy is also negli-
gibly small. If the difference in gains of the x and y polarization
components is only .1%, the change in r (rout —‘rin) due to this
residual field would be much less than the experimental accuracy limits.
iikewise for the phasershifts in the x and ﬁ polé;iz;tion-Compoﬁénts.A

When the axial field is not zero, we can treat the total
field (axial plus transverse residual component) as being slightly
misaligned. Borrowing some notation from the paper by Sargent, Lamb,
and Fork (26), we define the laser coordinate system as (i, i, k), and

the magnetic field (or atomic) basis as (i, i', k'), as shown in

Figure 26.
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Figure 26

The Coordinate Systems for a Misaligned Magnetic Field
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If we write the electric field of the signal in terms of the
vector basis (i, j, k), as in equation (2.4) we can define "direction

cosines" fg(m), given by

:'—A . = +'A‘ G =h il
f, (m) + e (eX + 1ey fo(m) em_ e, (8.2)

Then we can write the linear gain of a signal of polarization i as

dE, W -
L E : § : 2 a'b! }
S Re o E, fl(l) f (i) Al b +k b'w(;_ku + 13),

(8.3)

where a',b' denote the sublevels of levels a, b, w ™ (E £ b,)/h,

and o = line center frequency. For a positive helicity component and

a J=1toJ =0 transition,

_ 1 a2 o, ; N < ;
= Re uE+{4(l + cosB)” w(y + ia) + 4(l cos0)” w(-y + ia)

\

\
+'% sin26 w(0 + ia)} : (8.4)

The coefficients of the "undesirable" nonlinear (third-order) terms are
like

(1 - cos@)a, sinéﬁ, (1 + cos@)z(l - cos@)z,(l -+ COSG)ZSinza,

as compared with the "desired" coefficients,

L+ Co;—:ﬁ)4
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The experimental points at small values of axial magnetic field
were taken in order to observe the nonlinear 'dips'", which have a half-
width of y = A. The.axial magnetic field.strengths used to observe
these dips ranged from about 2.5 gauss tb 10 gauss. For an axial field
of 2 gauss, tanf = .2, sinze ~ .04, (1 - cose)z-w 4 x 10-4. Thus the
largest of the undesirable terms are only a few percent of the normal
terms, so that we are not being led astray by.ignoring these terms.

The axial magnetic field produced by the solenoid was slightly
inhomogeneous. The field at the input end of the aéplifier was about
257% low and rose to the average field value at z 5'2.5 cn. The in-
homogeneity along the rest of the axial distance was only about 5% of
the average field value. These slight inhomogeneities produced an
error which was quite small compared with experimental accuracy limits
due to random instabilities. This was determined by numerically inte-
grating equations (3.55) and (3.56) for the J =1 to J = 1 transition,
using appropriate sets of input and atomic parameters, and letting the
magentic field strength vary with distance in the axial direction\to
closely correspond with the inhomogeneous axial field. The results
were compared with corresponding results obtained by assuming a uniform
average value of field along the axial direction, an assumption we have

made for all our theoretical fits. The correspondence was very close.

" 8.3 Deviations From Line Center

The unsaturated Faraday rotation is not critically dependent
on the signal being tuned to line center. It can be seen by looking

at the dispersion curve in Figure 2, that for 1y < ku the dispersion
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curve is nearly linear; hence when the signal is not on line center,

the unsaturated Faraday rotation,

%% =-% a{Im w(xo +y + ia) - Im w(x0 -y + ia)}, (8.5)
does not change much for small values of y wuntil x_ = (v-w)/ku is

nearly equal to unity. The output signal will be elliptically polarized
with its major axis direction at an angle ¢ with respect to the ori-
ginal input signal polarization direction.

The third-order polarization functions b and ¢, defined in
Chapter 3, become asymmetric about y = 0 when X # 0, and the
interaction function ¢ becomes smaller for all values of y. Accord-
ing to the weak signal theory, the Faraday rotation for a J = 1 to

J = 1 signal is

de . 1 , . :
dz 2 GIm{[}S(W(XO+ya+1a)- w(xo—ya+1a) + w(x0+yb+1a)

w(xo—yb+ia))] - (Ez/aEi) [.25(b(x0+ya) = Bt =y 3

+ b(xo+yb) - b(xo-yb) + c(xo+ya) - c(xo—ya) + cf(xo+yb)

c'(xo-yb))}}, (8.6)

for values of x, which are small enough such that (E+)out—-(E_)out-

In our experiments the magnitude of the deviations of the

signal frequency from line center was about + 3 MHz. This gives a
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value for X of xoii .02. For this value of X, the sizes of the
nonlinear polarization functions are less than .57 smaller than at
x = 0. (This was determined by computer-calculating the sizes of these
functions for various values of xo.) Thus the saturated Faraday
rotation is hardly affected.

The nonlinearity-induced anisotropy experiments were performed
at zero axial magnetic field. Slight deviations from line center will
not affect the ellipticity of the signal if just the linear polarization
terms are included. The overall gain of the signal will decrease, but
this will be less than a 1% decrease if x, = .02. When the third
order terms are included, the ellipticity will chaqge depending on the
ratio of the sizes of the self-saturation and interaction terms. Each
of these terms decreases slightly in magnitude when x, = .02, so that
the ratio changes by less than a few tenths of a percent. Compared with
pressure—induced changes in this ratio of from 25% éo 50% for the J =1

J = 2 transition, the deviations from line center produce a negligible

effect on nonlinearity-induced anisotropy.

8.4 Nonlinearity of Detector Response

The InAs p-n junction type photodiodes do not respond
linearly to 3.39-u signal strengths of the oréer of a milliwatt. Below
this region of signal strengths the response is linear; however the
photodiode output voltage is only 2 mv. or iess at this point. It is
difficult in our experimental setup (see Figure 13) to cover a wide

range of signal strengths without entering the nonlinear region, unless

two phase-lock detectors are used to extend the lower limit of detection.
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Then a fixed attenuator could be placed in front of each photodetector
in order to reduce the incoming signal strengths, and a wide range of
signal strengths could still be detected. Attenuators other than pairs
of calcite polarizers are not very reliable at 3.4-u, however.

Due to the lack of this additiongl equipment, we calibrated
the nonlinearity of each photodiode response. The noniinearity curves
were found to depend somevwhat on the diode bias voltage; for this

region it was necessary to take all readings at the proper bias voltage.

-We placed a calcitevanalyzef in front of the photodiode in éfder to-
obtain the nonlinearity response curves, taking readings of I0 and
IO coszﬁ, at.a particular value of 0, for various values of signal
strength Io' Departures from the correct ratio for these two
quantities at high signal strengths could be ascribed to the nonlinear
photodiode response.

The diode nonlinearity curves obtained are most susceptible
to error at large values of signal strength. Tor this reason possible
errors in the gain saturation and nonlinearity-induced anisotropy
curves could result. However these curves seem to agree quite well

with theoretical predictions at high signal strengths and low gas

pressures, where the strong-signal theory is applicable.

8.5 Pressure Gauge Readings

The pressure readings were taken with a C.V.C. Autovac gauge,
using a Pirani-type gauge tube. The Pirani gauge works well in the

£~

3 .
region of pressures 10 Torr te 2 Torr for the common gases. At

higher pressures the sensitivity to pressure variations is low.
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The gauge which we used was originally calibrated at the
factory. It can be partially calibrated by setting the meter deflection
appropriately at low pressures (less than 10--4 Torr) and at atmospheric
pressure. However aging might have a slight effect on the response at
intermediate pressures.

The gauge has been used in processing He-Ne laser tubes, and
the pressure dependences on output power agree quite well with those
reported in the literaturg. There is no reason FQ~believe that.the
readings are grossly inaccurate. In any case, for mést of the pfessure
effects which we studied, only qualitative comparisons between theory
and experiment were made. Due to other sources of error or uncertainty
in the gain saturation, Faraday rotation and gain versus axial field
data, the uncertainties involved in the determinations of pressure
dependent decay rates are substantial. 1If these other sources of un-
certainty could be reduced, then it would be necessary to calibrate the
pressure gauge carefully in order to obtain valid numerical results.
The absorption coefficient of the methane line at 3,3913-p should be
measured again with a carefully calibrated gauge; our method of mea-
surement has very high inherent accuracy, and our results are quite
different from the results obtained by Gerritsen and Heller (82) with

another technique.
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" CHAPTER NINE

CONCLUSIONS

We have investigated the interaction between a gas laser
amplifier and a monochromatic resonant traveling wave, including
effects which occur because the intensity of the wave is strong enough
to saturate the population inversion of the amplifying medium. When
this occurs, we view the problem as a classical electromagnetic Qave
interacting with a nonlinear medium. The application of an external
axial magnetic field splits the degenerate energy levels of the gas
atoms and allows us to obtain more information about the characteristics
of the nonlinear interactions.

A considerable amount of theoretical effort has been devoted
to this topic by many authors; yet a theory which satisfactorily describes
the effects of nonlinear interactions for arbitrarily strong electro-
magnetic signals, and the influences of gas pressure on these interactions,
does not exist at present. Experiments which carefully test the validity
of the existing theories in their regions of applicability are generally
complex; most of the work has been dene on He-Ne laser oscillators, which
necessitates the inclusion of cavity effects in the theoretical treatments.
The study of a resonant traveling wave passing through a laser amplifier
is less complicated and portrays the interaction of the signal with the
atomic medium without the presence of cavity effects. We have carefully
performed some straightforward amplifier experiments which exhibit

some effcots of the complex nonlinecar interactions and we have developed
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a theory which explains the results quite well for weakly saturating
signals.

The nonlinear phenomena whichrwe have studied both theo-
retically and experimentally are gain satﬁration, the coupling between
circularly polarized components of a signal, nonlinear Faraday rotation
and gain as a function of axial magnetic field for a linearly polarized
signal, and the nonlinearity-induced anisotropy of the medium when it
is amplifying an elliptically polarizgd signal. The results of this
study give increased understanding to the effects of a saturated medium
on an interacting laser signal.

The character of the nonlinear effects has been observed to
be critically dependent on the total angular momenta (J values) of the
atomic laser levels. TFor example the importance of double quantum
interactions, which establish coherence between sublevels involved in
the laser process, decreases markedly as one passes from consideration of
a J=1toJ =0 transition to a J =1 to J = 1 transition and then

toa J=1+toJ=2 transition. This has been observed in the Fayaday

\
\

rotation and corresponding gain of linearly polarized 3.39-u signals
which interact with one of two He-Ne transitions; the neon 352 ¥ 3p4

(J = & B J = 2) and 352 > 3p2 (J =1 tod=1) transitions. For the

J =1 to J =1 signal, the double quantum interactions produce sizeable
nonlinear dips in the rotation and gain for small values of axial field.
The size of the dip is large enough in this region to produce a reversal
of Faraday rotation from the direction normally expected, if the incom-
ing signal strength is high. TFoxr the J =1 to J = 2 signal, the corres-

ponding dips are so small that they are unobservable. Another example
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involves the nonlinearity-induced anisotropy of the medium. The

Il
It

ellipticity of an elliptically polarized J 1 to J 2 signal is

affected much differently from that of a J

1 tod

Il

1 signal as they
pass through a saturated amplifying medium.

We have demonstrated that a theory which analyzes nonlinear
effects in a gas laser amplifier, such as the He-Ne e%ample, must pay
attention to possible influences of gas pressure on the interaction of
the light with the medium. The thgories whiéh a$§umgl Ya.+ i 2Yabf
where Y,» Yp 2Te the laser level decay rates and Yoy is the homo-
~ geneous linewidth of the transition, and do not include preésure
effects which cause this relation to become invalid or which cause
sublevel mixing, are adequate in predicting saturation phenomena only
at low gas pressures. For higher pressures, such as the pressures at
which He-Ne lasers usually operate, a more generalized theory is needed
to account for observed phenomena. We have developed a generalized
theory which is applicable to Qeakly saturating signals passing through
an amplifier in which the gas pressure effects are significant. It has
proven to be successful, especially in predicting nonlinearity-induced
anisotropy, in its range of wvalidity. The combination of this theory
and the low pressure strong signal theory previously developed by
A. Dienes can qualitatively explain all the experimentally observed
phenomena discussed in this work. Presumably other effects, such as
combination tone generation, can be explained as well.

On the basis of a firmer understanding of the pressure éffects
on various gas laser transitions, further experimentation should yield

absolute values for quantities such as the low pressure saturation
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signal intensity, Ei, which depends on the matrix element ]<anpub>]2
and the spontaneous decay rates, Ya and Y+ It should also be
possible to determine various cross sections for excitation and decay
of the atoms involved in laser processeé. This has already been done
in certain cases; however there is certainly much more work to be done,
even with the He-Ne laser discharge, which has received the greatest
amount of attention thus far.

Additional improvements in the gas laser theories would be
valuable. The most glaring weaknesses in the present theories are:
(1) the inability to treat arbitrarily strong signals in a theory
which includes the nonlinear coherence effects and also allows for
pressure effects; (2) the approximate manner in which radiation trapping
is taken into account in a laser interaction model. Advances in these
areas would allow theory and observation to be compared quantitatively

for a wider range of experimental conditions.
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