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ABSTRACT 

This thesis is in two parts. In the first section, the operator 

structure of the singular terms in the equal-time commutator of space 

and time components of the electromagnetic current is investigat.ed in 

perturL:=>tion theory by establishing a connection· with Feynman diagrams. 

It is made v2ry plausible that the singular term is a c number. Some 

remarks are made about the same problem in the electrodynamics of a 

s pinle s s particle . 

In the second part, an SU(3) symmetric multi-channel calculation 

of the electromagnetic mass differences in the pseudoscalar meson and 

baryon octets is carried out with an attempt to include some of the 

physics of the crossed (pair annihilation) channel along the lines of 

.the recent work by Ball and Zacharia sen. The importance of the tensor 

meson Reggr~ trajectories is emphasized. The agreement with experi­

ment is poor for the isospin one mass differences, but excellent for 

those with isospin two. 
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I. CURRENT COMMUTATORS IN QUANTUM ELECTRODYNAMICS 

I. 1. INTRODUCTION 

As first pointed out by Schwinger, 
1 

singular terms must be 

expected in the vacuum expectation values of equal-time commutators 

of space and time components of the electromagnetic current. He gave 

an explicit proof of this for the case of the noninteracting Dirac field 

by defining the current operator as the limit of the product of field 

operators evaluated at noncoincident points. 
2 

Johnson demonstrated 

that this was the case for interacting fields on the basis of Lorentz 

invariance and current conservation. Since current commutators have 

been applied widely with considerable success during the last several 

years, 3 it is of more than academic interest to examine the structure 

of the singular (or Schwinger) terms. 

A .9. number Schwinger term will contribute solely to disconnected 

graphs of the type shown in Fig. 1 .1 and has no physical consequences 

since it is eliminated by subtracting from the commutator its vacuum 

expectation value. 
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F'..g. 1. 1. Contribution of a c number Schwinger term. 

In order to investigate whether the Schwinger term is an operator or a 

c number, we calculate some off-diagonal matrix elements of current 

commutators in perturbation theory in quantum electrodynamics. In 

the Appendix we discuss the electrodynamics of a spinless particle 

which is harder to interpret and of less interest than the spin-t theory 

because the current is not analogous to a quark current. The deriva­

tion of the basic relations is not meant to be mathematically rigorous; 

the order of taking limits and performing integrals is freely inter­

changed. Our object is to determine what results are obtained by 

employing the usual techniques of reduction formulas and Feynman 

diagrams . 
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I. 2 . FORMALISM 

We can calculate the equal-time commutator by writing the cur­

rent, defined by DAµ = jµ , 
4 

in terms of the renormalized Heisenberg 

fields and employing the equal-time commutation rules 

3 - -o (x-x')O a {3' 

(2. 1) 
= 0 I 

in a straightforward manner. The current is jµ (x) = Z1/z etli'Yµ t\i and 
3 

this gives immediately 

[j 6~ 1 0), j (O)] = 0. 
v . 0 

(2. 2) 

Therefore, we define the matrix element of the Schwinger term as 

(-) - (+) 
(a I [j (x 0), j (O)] I {3 ) computed from the Feynman amplitude. 

V I 0 

Without ever writing the current as a singular product of fields, 

we can establish a connection between the matrix element 

(a(-)l[j (~ 1 0),j (0)]1{3(+)) and the Feynmc-:n amplitude for the process 
v 0 

{3 - a + 'Y + 'Y in the following two different ways. 
5 

The S-matrix element is
6 

x (2. 3) 

We define the Feynman c mplitude /rG by 

(2. 4) 
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= E µ E v NG (2 . 6) 
l 2 µ v 

_ (T) (P) 
and we break up JYGµ v according t o IYGµ v = JYGµ v + !YGµ v , where 

!YG(T) = -(II2E 2E )~\d4xeik~·x(a(-) I T[j (x)j (0)]1 {3(+)), (2.7) 
µv a {3 ~ v µ 

1 ,_. ~ 

lfG (P) = -(II2E 2E )2sd3;e-lkz'X 
µv a {3 . 

x (a(-)l[A (; o) + iw
2

A (~ 1 0), j c'o)Jl/3(+)). (2.8) 
V I V µ 

-Now l e t k 2 remain fixed as w 2 - 00 a nd use th e identity 

. ( ) iHx0 . . (- O) -iHx 0 1x=e JX,e 
v v 

(2 . 9) 

= j (~, 0) + ix [H, j (~ , 0)] + 
2
\ (ix ) 

2 
[H, [H, j (;, 0)] J + 

v 0 v . 0 v 
(2. 10) 

to perform the integration over x0 in (2 . 7). A series of decreas i ng 

integra.l powers of w2 res ults with the leading t e rm _l_ X , where w 2 --µv 

(2. 11) 

Inverting the Fourier transform, we find 

= (2 . 12) 

This i s our first fu ndamenta l result. The o ther relation between 

the commutator and the amplitude is based on current conservation . 
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Applying translational invariance, 

. ( ) i p. x. (0) - i p. x 
J x =e J e , 

v v (2. 13) 

and four-momentum conservation, 

(2. 14) 

to (2. 7) yields 

(2. 15) 

(2. 1 6) 

We now integrate by parts and use current conservation, aµ jµ (x) = O, 

to obtain 

(2 . 1 7) 

(2. 18) 

Inverting the Fourier transform and employing current c0nservation , 

this time in the form k 
1
µ;YG = 0 , which i,r,plie s k µ ~ (T) = - k µ ~ (P), 

µv 1 f v 1 µv 

we get finally 
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(2. 19) 

Equation (2 .19) is the second desired formula. 

In utilizing Eq. (2. 12) or Eq. (2. 19), If(., is written down from 
µv 

the Feynman rules and its asymptotic form is compute d in the limit 

w
2 

- 00 with 'k
2 

fixed. Eq~ation (2.8) shows that M:i(P) is at most a 
µv 

linear polynomial in w 2 and is easily isolated as the part of J)'(,µv 

which does not tend to zero in this limit. 

Equation (2. 19) may puzzle the reader for two reasons. First, it 

is not obvious that it agrees with Eq. (2 .12) and , second, the right-

hand side appears to depend on w 2 , which the left-hand side clearly 

must not. According to (2. 8), /fG (P) has the form µv 

(P) - -hb = A (k
2 

,p ,Pr.)+ w
2

B (k
2 

,p ,p
1
). (2. 20) 

µv µv a t-J µ v a t-J 

-So, we have as w
2 

- 00 , k
2 

fixed, 

(2. 21) 

N · k k - k we can expand k
1
µ /fG i·n ow,us1ng i=p{3-pa- 2=q- 2' µv 

-1 powers of u.•
2 

to · obtain 
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0 = klµ If(:; = -w
2
2

B + w /q B - A + k iB \ 
µv ov 2\oov ov l iv} 

( 
i ) -1 + q A - X + k, \. + O(w

2 
) . 

0 ov ov l 1 v (2. 2 2) 

This yields , of course , 

B = 0, 
ov 

i qB -A +kB =O, 
O ov ov l iv (2 • 2 3) 

x 
ov 

i = q A + k
1

A. 
0 OV lV 

But, from (2. 20), 

k
1
µ /'/G (P) = -w

2
2B + w

2
fq B - A + k

1
iB. ) + ( q A + kliA. \. 

µv ov ~o ov ov iv ,. \o ov iv) 

(2. 2 4) 

Substituting (2. 23) into (2. 24) demonstrates immediately that 

k
1
µ hG (P) = X and this resolves both of our apparent difficulties at 

µv ov 

the same time . 

In order to apply our formalism, we must study reactions with 

two photons in the final state. Processes which can be obtained from 

the se by crossing naturally would give no new information. The 

simplest cases to consider to lowest order are pair annihilation and 

photon-photon scattering. The latter is fourth order, but converges 

without ren ·>rmalization and the entire amplitude can be calculated by 

symmetrizing the contribution of a single Feynman diagram. Only a 

very complicated operator Schwinger term might give a null result in 
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both of these situatio ns. For example, a term with the operator struc-

2- 4 2 . 
ture e ljJljJ will show up in both computations and one like e A will be 

exhibited in the second. 
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I. 3. RESULTS 

For electron-positron annihilation, the amplitude is calculated 

to lowest order from the following diagrams. 

These give 

k -p 
2 

+ 

Fig. 3 .1. Pair annihilation. 

(3 . 1) 

Equation (3 .1) clearly indicates that as w 2 - 00 , k
2 

fixed, .M:iµv -O(w2- 1 ), 

which means .M:i (P) = 0 and thus (2 .19) gives no Schwinger term. It is 
µv 

also easy to check that X = 0 so that (2 .12) gives the same result, as ov 

it must. 

For Delbrlick scat'.:ering, Eq. (2 .19) is much more convenient 

than Eq. (2 .12) because it requires only ~r1e finding of the asymptotic 

behavior of the amplitud 3. Removing all the photon polarizations, we 

can express the Feynman amplitude in the form 
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(3. 2) 

where 

X (-ie')' ) ib JI.: i R. (-ie')'11 ) ib ~ J 
CT -

3
-

4
-m r + z-m 

(3. 3) 

is twice the amplitude corresponding to the Feynman diagram below. 

p-k 
3 

Fig. 3. 2. Delbrilck scattering. 

The factor 2 occurs in (3. 3) because the six distinct graphs obtained 

by fixing one of the photons are equal in pairs related by ordering the 

photons clockwise or counterclockwise around the Fermion box. More 

physically, .this is the same as letting the electron run around the loop 

in the opposite sense, or charge conjugating the diagram. (The +l 

here becomes a -1 for closed Fermion loops with an odd number of 
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vertices and hence these diagrams vanish as d e manded by Furry's 

theorem.) 

Gauge invariance requires that J!\, depend only on the field 

7 
strengths, which implies 

/rb \ (0,0 , 0,0) = o. 
1-L VI\. CT 

(3. 4) 

In more detail, suppose that at low energies 1}t can be expanded in 

a power seriP-s in photon momenta: 

etc. in the k's). 

Then 

for all k
1 

such that k
1
2 = 0, yields at once 

klµ a \ = 0 I 

1-L VA.CJ 

(3. 5) 

(3. 6) 

(3. 7) 

for all such k
1

. By selecting suitable null vectors k
1 

it is easy to 

show that (3 . 7) implies 

a = 0, 
1-L VACJ 

which proves (3. 4). 

Let us use (3. 2) and (3. 3) to evaluate, /fG "' (0, ,) , 0, 0). 
1-L V/\.CJ 

Notice that 

s ')' s 
1-L 

where S(p) = 1 
f-m 

(3. 8) 

8 

(3. 9) 
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Equations (3.2), (3 . 3) and (3.9) give 

J)(, µvA~ (0, k 2 ,k3 ,k4 ) = -e 4 S (~:~4 (- a:µ) 1{s (Ph, S(p+k3 )1'~ S(p-k/Y v 

+ S(p)'YA S(p+k3)'Y VS(p-k4ho- J. (3. 10) 

At this point it is essential to observe that the bracket behaves like 

p-3 as p- oo. Since the integrand is o. total derivative which can be 

converted to a surface integral at infinity, we need to consider only 

large p. This permits the great simplification of setting 

k
2 

= k
3 

= k 
4 

= 0. Hence 

fl& , (O,k
1

,k
2

,k
3

) =/fl:; , (0,0,0,0) 
µ. V/\.0- µ. V/\.0-

(3 .11) 

= e 
4 SA --+.- tr[s(p)"Y, s .(p)"Y S(p)"Y + S(ph, S(p) 'Y S(p)'Y J 

(217) 4 8Pr- I\ o- v /\. v o-

= 4e
4 

(3 • 12) 

(3. 13) 

(3. 14) 

(3. 15) 

Equation (3.1.3) comes frcm repeated applicdtion of (3.9) and (3.15) 

follows from the symmetr r and Lorentz covariance of !fG , (0, 0, 0, 0). , µ. V/\.0-

Equation (3 .15) gives 



__ l_ M µv 
A -

24 
;1~µv (0,0,0,0) 

. 4 
=~ 

1271"2 
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(3 . 16) 

(3. 17) 

(3. 18) 

(3 . 19) 

Equation (3 .19) contradi cts (3. 4) and thereby demonstrates that we 

must use the gauge invariant amplitude 

ffi,µvX.cr(kl ,k2,k3,k4) = ./YC:iµvX.cr (kl ,k2,k3,k4) - ffi,µvX.cr (O,O,O,O). 

(3. 2 0) 

One has to enforce the gauge invariance of the vacuum polarization 

tensor in the same manner. In this case gauge invariance fails 

because the amplitudes T diverge logarithmically, even though the ir 

sum If(., is convergent. 

Now, in computing ~µ~~cr(k1 ,k2 ,k3 ,k4), we may putk
3

=k
4

=0. 

By Eq. (3 . 11) 

(3. 21) 

Therefore, 

!fC:i ' (0 I 0 I 0 I GI I 
µVA.CT 

(3. 22) 

so that, due to (3. 20), 
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(P) 

/)'(,µvA.o-(kl ,k2 ,k3 ,k4) = 0 (3. 23) 

and again we get no Schwinger term. 
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I. 4. CONCLUDING REMARKS 

If we are prepared to. ignore the fact that the manner in which 

gauge invariance is imposed through Eq. (3. 20) is purely formal and 

its effect on the current is unclear, vie can postulate with confidence 

that e~e Schwinger term is a c number. By considering the limit of a 

nonlocal fit ld theory, Boulware reached the same conclusion in a paper 

published very soon after the completion of this work. 
9 Late~ still, 

10 
Brandt gave a new definition of the equal-time commutator by writing 

each current in the commutator as the limit of a nonlocal product of 

renormalized fields and taking the limit after employing the equal-time 

commutation relations of the fields. He finds a Schwinger term with 

the operator structure A2 and on the basis of his work challenges our 

heuristic assumption that the time-ordered product vanishes at infinity. 

In that case the. simple methods proposed here and by Bjorken 
5 

are 

invalid. 

We co.uld also use Eq. (2 .12) for photon-photon sea ttering, but 

since it necessitates finding the next to. dominant terms of the ampli-

tude, the calculation would be much more tedious and its independence 

of regulariz :i.tion only apparent because we must, in principle, 

regularize the complete amplitude before finding its limiting behavior. 

Pair annihilation to fourth order , be sides being very messy, has an 
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infrared divergence which cancels out in the cross section, but is not 

expected to do so in the commutator. As discussed in Chapter 2, it is 

very unlikely, in any case, that a Schwinger term which gives a null 

result in Delbrlick scattering would appear here. 

Applications of equal-time commutators have been founded on 

postulating the validity in the real world of equal-time commutatcrs 

computed in some model such as the quark model. In this manner, sun: 

rules, low energy theorems and Ward identities have been derived. 3 

After hypothesizing the commutator; the high energy behavior of various 

processes can be deduced by reversing the arguments give n in 

Chapter 2. Radiative corrections to weak interactions
5

' 
11 

and the lep­

tonic decays of the 11 meson
12 

have beeI1 studied using these methods. 

Young
13 

has calculated the rr0 lifetime and the wprr coupling constant 

and Bjorken 
5 

has obtained a lower bound for electron-nucleon inelastic 

scattering at high momentum transfer. Most inte res ting for us, in view 

of the fact that the second part of this thesis deals with electromag-

netic mass differences, is that equal-time commutators determine the 

f . h f l 5,11,14,15 high energy behavior o the Cottrng am ormu a. In order to 

compute the matrix element for forward Compton scattering which 

appears in. the formula, the commutators are evaluatec between nucleon 

states of the same momentum. Since disconnected gr<tphs of the type 

shown in Fig. 1. 1 are specifically excluded from the Cottingham 
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formula, c number Schwinger terms clearly do not contribute here; A 

nonzero matrix element of a g number Schwinger term in the commu­

tator [j, j] would give rise to a quadratic divergence in the mass dif­

ference. Such Schwinger terms in more complicated commutators 

would cause a logarithmic divergence. 
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APPENDIX 

THE SPINLESS THEORY 

In the electrodynamics of a spinless particle, with the current 

(A. 1) 

the canonical commutation relations 

(A. 2) 

3 - -iO (x-x'), 

yield directly 

* 3-J - 4J (0)4J (O)C\ 6 (x) . (A. 3) 

We now define the ma tri:: element of the Schwinge r term as 

(-) - (+) 
(a l[j . (x,CJ),j (O)]l/3 ) , computedfro1n Eq. (A.3), subtracted from 

1 . 0 

the same quantity calcul:l.ted from Eq. (2.12) or Eq. (2.19) . . 

The amplitude for pair annihilation written dov.m from the 

Feynman diagrams show!1 below is 
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.!Yb = [-ie(k2 -2q)vJ ~ 
2 2 [-ie(k

2
-q+q) J-. 

µv (k2-q) -µ µ 

+ [-ie (q-k
2
-q)µ] i 

2 2 
[-ie (2q-k2) J + 2ie 

2 
g . (A. 4) 

(q-k2) -µ v µ v 

I \ 
fq q~ 

I 
1/-q -~ 

q \ 

I ' I \ 
I 
I 

Fig. A. 1 . Pair annihilation. 

From (A. 4) it is easy to see tha f 

X
0

i = 2ie
2
kli, 

M (P) = )}\:) 0 I 

oi 

M (P) = 2. 2 
n1:J.. ie g .. , 

J l Jl 

so that (A.3), (2.12) and (2.19) all result in 

\ 
\ 

ze2 3 
(Ol[j.(i,o),j (O)Jlq , q} = ---1 [ia - (q+q)J . o (i). 

l O ( 4wqw.q) 2 l 

Photon-photon scattering is complicated by the presence of 

(A. 5) 

(A. 6) 

seagull diagrams . Some of these are independent of k
2 

and, the refore, 
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would have to be evaluated exactly if we used Eq. (2. 19). In 

Fig. A. 2 we display the Feynman graphs for this process. 

p-k -k J 
3 4, 

\ 

p-k3 
--<---· 

\ 
p-k -k ~ 

3 4 \ 
\ 

' 

I 
-1\ p 

I 
I 

I 
p-k -k ~ 

3 4 I 

---~--
p+k2 

(a) (b) (c) 

Fig. A. 2. Photon-photon scattering. 

The entire amplitude can be decomposed as follows. 

!fG = 
µ.VACI 

!fG (R) 
µ. v ACT 

+ !fG (S) 
µ. VACJ 

+ !fG (T) 
µ VACJ 

I 

!fG (R) = R 
µ. v ACT µvACT 

+ R 
f.lAVCT 

+ R 
µer Av I 

!fG (S) = S + S + S + S 
. µvA.o- µvA.o- µA.vo- µo-A.v vA.µo-

+ s + s I 

vcrAµ A.erµ v 

!fG (T) . = T + T + T I 

µ.vACT µvX.cr µvcrX. µX.vcr 

(A. 7) 

(A. 8) 

(A. 9) 

(A . l 0) 

wr.ere the momenta are understood to b e pe rmuted just as the indices 



are and 

R 
µvA.o-

s 
µvA.o-

T 
µvA.o-

= 

= 

Sh 
2 (27r)4 

\_s6_ 
2 " (27r)4 

x 

21 

(2p-k3) ;\ (2p-2k3-k4)0-

[ (p+ k ) 2 - µ 2 J 
2 

R , S " and T correspond to Fig. A. 2 (a), (b) and (c), 
µ vA.o- µ v AO- µ vA.o-

(
I\ l l . 

.';. ... ) 

(A.12) 

(A. 13) 

respectively, and the source of the factor 2 in S and T is the same as 

in Delbrlick scattering for spin--!-. The calculation via Eq. (2.12) is 

considerably more tedious than the spin--!- case and occasionally it is 

necessary, in order to avoid spurious singularities, to break up the 

region of integration over Feynman parameters and then to approximate 

the integrand differently in the two regions. As an example of this, we 

would write 

(A. 14) 

where 0 < e << 1. A typical denominator obtained after introducing 

Feynman parameters -is 
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- 2z(l-y)k ·k - 2y(l-x)k ·k 2 4 3 4. (A.15) 

In the first volume in (A.14) a
2 ~ -z(l-z)w;, whereas inthe second 

region a
2 ~ µ 2 - 2y(l-x)k

3 
·k

4 
- zw;. If we take k

3 
·k

4 
= 0 to save 

labor, ,'re obtain 

(A. 16) 

and hence 

1 

(A. 17) 

We have not succeeded in comparing this with Eq. (A. 3) because 

sandwiching the latter between the same states diverges. Consider, 

for example, 

= ,6 (k
3

,e
3

;k
4

,e
4

14Jln)(n14J*lo). 
n 

To lowest order In)= lq) and (ql4J*lo) = 
1 

i , 

(2wq) 2 

(A.18) 

(A.19) 

(A. 2 0) 
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2 . 
where (D + µ )<p (x) = J(x). Thus A is expressed as an integral over 

µv 

the pair anrii.hilation amplitude 

\.i:i... 21) 

(A. 22) 

which diverges. 
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II. ELECTROMAGNETIC MASS DIFFERENCES OF THE 

PSEUDOSCALAR MESON AND BARYON OCTETS 

II. 1. INTRODUCTION 

Feynman and Speisman
1 

were the first to attempt t o calculate the 

neutron-proton mass difference on the assumption that it is purely 

electromagnetic in origin. These authors obtained finite results by 

using cutoffs, which can be interpreted as electromagne tic form 

factors, to take into account some of the effects of the strong inter-

actions. Although naively one would expect the Coulomb interaction 

to dominate and the re by make the proton heavier than the neutron, 

they could obtain the correct sign for the mass splitting by taking the 

cutoffs sufficiently high. Cini, Fe rrari and Gatto 
2 

rephrased their 

argument in terms of dispersion theory and related the mass difference, 

given by the nucleon proper self-energy part evaluated on the mass 

shell, to an integral over the forward Compton sea ttering amplitude. 

They demonstrated that the experimental form factors fell off t oo 

rapidly at high momentum transfer to yield the required sign reversal. 

Therefore , it became imperative to search -ior other rel<~vant conse­

quences of the strong interactions. 

The first advance in this direction was made by Harari, 
4 

who, 

because of the work- of Cini, et al. and that of Co ttingham, 3 
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studied the high energy behavior of the forward spin-nonflip Compton 

scattering amplitude. He observed that, according to the Regge pole 

theory, at high energies this amplitude is proportional to /=<' (o), where 

v is the customary direct channel energy variable and a (0) is the t = 0 

intercept of the leading Regge trajectory with the appropriate quantum 

numbers. For I= l, these quantum numbers are I= l, C = l, G = -1 

and P = (-1:I. This is the trajectory of the A
2 

meson which has5 

a A
2 

(0) ~ 0. 4 > 0. Hence the dispersion relation for this amplitude 

requires a subtraction and a Feynman-Speisman type computation, 

being based on its saturation with low mass intermediate states, is 

not expected to work. On the other hand, for isospin two, no mesons 

have been observed with (mass)
2 :S 2 (Bev)

2
_ and this lead de Alfaro, 

Fubini, Rossetti and Furlan 
6 

to conclude that a
1
=

2 
(0) < 0. Harari, 

then, could assert that low-lying intermediate states should dominate 

the I= 2 mass differences and the usual simple-minded estimates 

ought to be reasonably .accurate. This, in fact, is the case. 

The next physical effect to be stressed was the feedback on the 

electromagnetic self mass of the electromagnetic mass shifts internal 

to various Feynman diagrams. 
7 

This was then related to the existence 

of a nucleor.t-antinucleon bound state with zero residue-a ghost-with 

JP = o+ , r8 1 - h h f h A h = w ere t e traj ectory o t e 
2 

meson crosses t e 

8 
t-axis at negative mass squared. This idea is illustrated 
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schematically in Fig. 1 .1. The details of the extinction of the bound 

+ 

I 
(a) (b) 

Fig. 1.1. Born approximation, (a), and re scattering, (b), 

contributions to the mass difference. 

state and the connection of the specific ghost-killing mechanism with 

the sign reversal will be discussed in the fourth chapter. We may 

interpret the ghost as the "tadpole" which Coleman and Glashow
9 

postulated !n order to propose a successful phenomenological explana-

tion of the correct octet mass shifts. The SU (3) properties of the 

tadpole model follow because the A
2 

is a member of the octet which 

also comprises the f
0 

and the K(l420). So, the octet of extinct bound 

states is a consequence of strong interaction dynamics rather than a new 

elementary '.)article. These concepts are amplified in a single-channel 

calculation of the neutron-proton mass difference by Ball and 

Z h 
. 10 

ac anasen. 
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- i+ We shall perform a multichannel computation of the 0 and 2 

electromagnetic mass differences relying heavily on the apparatus 

developed in Reference 10. The next section recapitulates the 

required results of Ball and Zachariasen and describes the rest of 

the essential physics of the calculation. The Born approximation 

and the D-function, by means of wh~r:;h we include some of the strong 

rescattering effects, are treated in Chaptrrs 3 and 4, respectively. 

The last two parts combine these in order to deduce the mass dif-

ferences in our model and discuss the implications of the results. 
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II. 2 . METHOD 

Ball and Zachariasen (hereinafter denoted by BZ) commence by 

writing the Cottingham
3 

formula for the electromagnetic mass shift of 

a nucleon (which is exact to first order in the fine structure constant a) 

. crossed into the pair annihilation cham.~l. Including the factor t, 

which comes from the fact that the right han.j side of Eq. (2 .1) 

includes both Fig . 2 . 1 (b) and (c), while either one is sufficient to 

yield Fig. 2. 1 (a), omitted by BZ, this reads 

S d4 ( . ) - .!. _g__:.g_ ..=_!__ µ . oM - 2 4 2 
T (q,-q,p,-p). 

(27T) q µ 
(2. 1) 

(BZ make a cancelling error of a factor 2 in the Born term, so all their 

numerical results are unaffected.) T (q, q;p, p) is the covariant 
µv 

T-matrix for the process NN - 'Y'Y, for virtual photons of mass 

(a) (b) (c) 

Fig. 2. 1. Crossed channel Cottingham formula . 
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2( -2) -q = q , where p and p are the .nucleon and antinucleon four-

momenta, q and q are the photon four-momenta and T is normalized µv 

so that the S-matrix is given by 

- µv 
4 4 vpT up 

S = 1 - i (211') O (q + q - p - p) e e 
µ v .Ji 6EEww 

(2. 2) 

Naturally, the Fermions are on the mass shell. 

Bl sandwich (2. 1) between the spinors v (p, -CT) and u (p, CT), which 

are written dnwn explicitly in Appendix A, and sum over Fermion 

helicity CT. With 

and 

there results 

where 

and 

1 

~ 
A.=-1 

-2 - 2 
t = (q + q) = (p + p) 

v = 

"'M2 i s~ _L 2 u = 2 4 2 T (0 Iv ;q ) I 

(211') q 

- - _£_ 
2M 

(2. 3) 

(2. 4) 

(2. 5) 

(2. 6) 

(2. 7) 

As Wc.S first done by Cottingham I 
3 

one can rotate the contour of 

integration over q
0 

in (2. 5) and perform the integration over the 

direction of q. Thus, one finds 
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- _l_ so~ s~ 2 l = dv(-q -v2) 2 T(O,iv;q2). 
1 3 2 r---z: 
~ 61T -C() q -"../-qG 

(2. 8) 

Each of the helicity amplitudes TA.A. has an especially simple 
. ,µµ 

h 1 . 1 . 11 1 t-c anne part1a wave expansion, name y, 

2 
TA.'\ (t, v;q ) /\.,µµ 

(2. 9) 

where z is the cosine of the center of mass scattering angle for 

NN - 'Y'Y, so that 
l 

t 
v =-

4M 
[{t - 4M2) (t - 4q2)] 2 

4M 
z . (2. 10) 

Equation (2. 6) implies at once that T(t, v;q2) has the same partial wave 

expansion, 

T(t,v;q2) = ~ (2J+ l)PJ(z)TJ(t;q2). 
J 

(2 • 11) 

BZ now define in the physical region for NN - 'Y'Y, the quantity 

2 s1 
2 .!. 2 X(t;q) = dz(l-z ) 2 T(t,v;q) 

-1 
(2. 12) 

and prove by analytic continuation to t = 0 that 

. -.l-qZ l 
2 ls 2 22 . 2 X(O;q)=-2 ,.--Z dv(-q-v) T(O,iv;q). 

q -'J-q"' 
(2. 13) 

Substituting (2. 13) into :2. 8) gives 

2 1 ('
0 

2 
OM = ·--3. j dq X(O;q 2) I 

1671 -00 

(2. 14) 
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so that substituting (2 . 11) into (2 . 12) and this into (2.14) presents us 

with the grand result, the t-channel partial wave expansion of the 

mass shift, 

2 1 s0 
2 J . 

OM = --3 ~ CJ dq T (O;q2) I 

l67r J -00 

where 

Obviously, CJ:.: 0 for odd J. For J even we find 

- 2J+ 1 27r l l 2 3 l 2 l 2 
CI - 1 _ J (!J) ! (~'J + 1) ! (2 - 2 J) (2 - 2J) • · · (2) . 

The first four C/ s are the following: 

c 
0 

c2 

c4 

c6 

7r 
= 2 = l, 57 / 

= 5 7r ::::: -0.98, 
16 

97r 
-0.22, = = 128 

= 657r = -0.10. 
2048 

(2. 15) 

(2. 16) 

(2 • 1 7) 

(2. 18) 

Hence, even without reference to the low energy approximations used 

later, we see there is a measure of reason for keeping only low partial 

waves. 

It is through Eq. (2.15) that the attempt is made to include the 

relevant phenomena of the NN system at zero total energy. 
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Equation (2 . .15) holds unaltered for the pseudoscalar mass 

sh if ts with the def ini ti on 

2 T(t, v;q ) = 
1 
\' 2 L.J TA.A.(t,v;q) 

A.=-1 

= -T µ(q,q;k,k) I 

µ. 

(2. 19) 

(2. 2 0) 

where k and k are the meson momenta. To obtain mass differences, 

we have me ·ely to subtract the mass shifts for appropriately chosen 

particle-antiparticle pairs. 

The whole analysis explicated above g e neralizes straightfor-

wardly to the multichannel case. Letting each Latin index denote a 

particle, t he basic formula (2 .15 ) becomes 

S
o 

. 2 - _l_ 2 J . 2 
OM,, - 3 L CJ dq T .. (0,q ) . 

lJ 167T J -00 lJ 
(2. 21) 

Equation (2.21) can be employed to compute the transition masses 

d m (corresponding to terms -m
2

0 tp 0 tr and m7To11 an ~o A 1T 11 1T 11 

-m~0A 4i~04i A in the effective Lagrangian), but since these particles 

are not degenerate, in a lowest order perturbation calculation in a, 

it suffices to evaluate the diagonal elements of the mass-shift 

matrix . The modification of the masses arising from diagonalizing 

that matrix . ~s second order in a . Using the experimental values, 
12 

the contributions to the ~o and 7To shifts are 0 . 06 Mev and less 

than 1 o-4 Mev I re spectively . 
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The first approximation made in applying Eq. (2. 21) has been 

mentioned already: we shall keep only the first few partial waves, 

specifically, J = 0, 2 , 4, 6. The negligible contributions of the 

' 
J = 4 and J = 6 partial waves will demonstrate that this simplification 

is justified. Beyond that, vve shall replace TJ by the Born approxi-

mation BJ (Fig. l.l(a)) for all partial waves other than J=O. Otht:r 

than the obvious desire to save labor, we have three reasons for 

this . The first is the low energy approximation we are going to make; 

second, there is no known physical phenomenon, corresponding to the 

vanishing of the A
2 

trajectory for the J= 0 channel, in the higher 

partial waves which would give significant deviations from this sub-

stitution; and lastly, the CJ' s are decreasing in size as J increases. 

So (2.21) becomes 

with 

and 

2 
OM .. 

lJ 
= OM.~+ (oM.~)J O - (oM.~)J O' 

lJ lJ = lJ = 

2 
OM .. = 

lJ 

2 
(oM . .)J 

lJ 

~ (oM. ?)J 
J l] 

~so 2 J 2 = 
3 

dq T .. (O;q ), 
167T -oo lJ 

2 ~s0 
2 J 2 (oM .. )J= 

3 
dq B .. (O;q ). 

lJ 167T -oo l] 

(2 . 2 2) 

(2. 2 3) 

(2. 24) 

(2. 2 5) 
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The problem has been reduced to calculating T.? (0 ;q2). If we 
lJ 

restrict ourselves to two-particle intermediate states, the unitarity 

condition for this amplitude is particularly simple. This comes about 

because in the center of mass system the component of orbital angu-

lar momentum in the direction of motion of the two particles is zero, 

so that J= 0 implies the two particlt: c; must have the same helicity. 

Therefore, the JP= o+ amplitudes, obtain )d by summing over equal 

helicitie s, couple to no others. The unitarity condition, then, in 

matrix form referred to the states I ij), reads (suppressing the super-

script 0) 

(2. 2 6) 

where p (t) is the diagonal phase space matrix and h(t) is the strong 

interaction amplitude for our two-body channels with JP= o+. 

The unitarity condition for the amplitude h (t) is 

Imh (t) = h * (t) p (t) h (t), (2. 2 7) 

with the same p (t), since the latter depends solely on the intermediate 

states which are identical in (2.26) and (2.27). 

We can show easily that if we separate the left and right cuts 

of h(t) in the standard rr.anner by including them in the matrices N(t) 

d D( ) . 1 } 3 an t , respective y, 

h = ND-l I (2. 2 8) 

. 14 
then the amplitude F(t) = T(t)D(t) has no right cut. Equation (2. 26) 
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can be rewritten in the form 

* T = T (1 + 2iph) (2. 2 9) 

and (2 • 2 7) and (2 . 2 8) together give 

ImD = -p N. (2. 3 0) 

Then on the right cut 

ImF = ;i (TD-T*n*) (2. 31) 

* 1 * = T [
2
i(D-D )+phD] (2.32) 

= T* ( ImD + p N) (2. 33) 

= 0, (2.34) 

where we used successively (2 . 29), (2. 28) and (2. 30). This theorem 

permits us to write the dispersion relation 

2 
T .. (t;q ) = 

1) 
L 1 S

tkl [ ImTk1(t';q2)]D. kl (t 1)[D-l (t)] .. 
_ dt' ,mn mn,1J (2 ) 
71" t'-t ! ,35 

kl -00 

mn 

provided we assume that T(t;q2) - 0 as t- oo. Without the D-function 

in this dispersion relation we would be calculating the mass differ-

ences entirely from exchanges and finding the usual incorrect signs. 

The ·n-function takes into account the rescattering effects indicated 

in Fig. 1.1 (b). Since we believe most o-t: the contribi.:tion to (2. 35) 

comes from low energies, we shall approximate ImT by ImB under the 

integral sign. We shall discuss this in more detail in Chapter 5. 
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In any case, with this simplification, the calculation of the masses 

is direct. 

Using SU(3) symmetry will facilitate our computations tremen-

dously. W e shall take particular care in the pseudoscalar octet to 

try to assure that the errors due to this approximation should not 

exceed about 25%. The first step, then, is to expand the amplituces 

T .. in irreducible representations of SU (3). We know that 
1) 

so that 

T .. = 
1) 

.a x .a = 21., + l.Q + l.Q + g + g• + 11 

L {-yy Id v > ( d v I TI d I v > ( d I v I ij > I 
. 'Y 'Y 'Y 'Y 

d-y I dyl t V 

where d'Y and d'Y, denote the representations in (2. 36) and 

(2. 3 6) 

(2. 3 7) 

Iv) = IYII
2
). Since the photon is the U-spin singlet member of an 

octet, the state 

I 'Y'Y) = I u = 0 I u = 0 > (2. 3 8) 

= ~ ("13 I o 1 o) - I o o o)) ~ ("13 I o 1 o) - I o o o)) (2. 39) 

is symmetric in SU(3). Hence d'Y must be a symmetric re prese ntation 

of SU (3) and only the following amplitudes survive in the expansion 

(2. 3 7): 
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(llTll) = Tl, 

(8IT18) = Ta, 

(8ITl8') = Ta,, 
(2. 40) 

(27 ITl27) = T27 . 

.L•1 SU(3) symmetry these amplitudes are independent of v, the 

direction ir_ ~nitary spin space. Clearly, the singlet term contributes 

equally to all mass shifts and hence can be neglected in calculating 

the mass differences. With the help of Eqs. (2. 39) and (2. 40) and 

McNamee and Chilton's
15 

SU(3) Clebsch-Gordan coefficients we can 

write out (2. 37) explicitly for the baryon octet. We employ the same 

phase conventions as they do for physical states and display it in 

Appendix B. With those definitions, the unitary singlet is com-

pletely symmetric . 

3 1 fl 3 
TPP = - 20 T8 + 4 ' 5 T8' + 20 T27 I 

3 1 r1 
Tnn = 20 T 8 - 4 J S T 8' 

(2. 41) 
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T";:;'o";:;'o ............ = 2~ Ts + ! [i Ts, - 2
3
0 T27' 

1 

.... >;:;'-~-............ 
=-i.'T' _1-{j.T +i'T' 

20 -s 4~5 S' 20 -27· 

From (2. 41) we get the isospin amplitude.s exhibited below. 

I = 1: 

3 1 0 3 
TPP - Tnn = -10Ts + 2 Js Ts,+ 1o T27' 

T2;+2;+ - T2;-~- = [i TS,, 

(2. 42) 

I = 2: 

There is a simple partial check on Eq. (2. 41): the 2;-, 

amplitudes can be deduced from the 2;+, n, p amplitudes by means of 

the symmetry of the Clebsch-Gordan coefficients. The isospin one 

. 16 
amplitudes in (2 . 42) must, and do, satisfy the Coleman-Glashow 

relation 

(T.._. .._,- - T.._.+.._.+) + (T - - T _) = T,_,-::;_ - T,_,o ...... o . 
......,- "'-' "'-' "'-' pp nn A A A A 

(2. 43) 

Equation (2. 42) is identical for the pseudo scalar octet, except 

for the fact that Bose statistics requires TS, = 0 since with J= 0 the 

particles must be in a symmetric unitary spin state. 
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In order to keep this calculation within reasonable proportions, 

we discard a ll interme diate states other than two 0- octets and two 

i + o ctets. We shall discuss the likely validity of this drastic 

measure in view of our results in Chapter 6 . Let us , then, display 

th e matrices in the coupled many-channel formalism. The super-

s c ript s B and P s tand for the baryon-antibaryon and meson- meson 

channels, respectively. 

TS 
(T: 

B 
Tsp ) = TS , 

T2 7 = (T2~ T2~ ) ' 

\ 

h BB BB BP . 
SS hSS' hss ' 

hs BB BB BP 
(2. 44) = hs•s hs·s · hs·s 

h PB PB hpp 
SS hss• SS 

c~~ 
BP 

h27 h27 ) . 
= 

hPB hpp 
27 27 

The matrices of Eq . (2. 44) w ill be the one s app<:!aring in the 

unitarity c0 Hditions (2. 26) and (2. 27) anc..! he nce in th~? funda me ntal 

e quation, (2 . 35) , whic h will now read 
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2 \' 1 st{3 [ImB13(t';q2)JDa1 (t') . -l 
T (t·q ) = LJ - dt' I . [ D (t)J 

Q! 
1 {3 1f t I - t ')'Q' 

'Y - 00 

(2. 45) 

for both the octet and 27 amplitudes. 

In order to be specific, we shall write out explicitly the nor-

maliza tion of our amplitudes . 

T'YB = - _E__ J-z L T'YB 
.JZM 

A.,µ 
A.A.,µµ 

hpp = hpp, (2.46) 

hPB _£_ 1 L h PB
1 = - .JZM .J2 

µ 
µµ 

2 
hBB = (- -tzM Jz) L hBB 

I 

µµ' 
µµ ,µ' µ' 

where the sums are all over helicities, as before, p is the baryon 

momentum in the ce,nter of mass and M is the baryon mass. The 

same definitions (2. 46) hold with or without the partial wave analysis 

(2. 9). The amplitudes defined in (2. 46) will turn out to have no 

kinematic singularities. The baryon and meson phase space factors 

are 
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and - _1_J t-4µ 2 
Pp - l 67T t . (2. 4 7) 

The Cottingham formula includes driving terms, the effect of the 

electromagnetic shift of internal masses in Feynman diagrams and the 

effect of the electromagnetic modification of strong coupling con­

stants. In Dashen' s calculation, 
17 

the coupling constant shifts do 

not contr.:.hute to the mass difference. We give examples of diagrams 

which include internal mass and coupling constant shifts below. 

,,,.-- - -,, .... 
/ ' 

\ I .... , 
... - Q! 

(a) (b) 

Fig. 2. 2. Examples of diagrams which include mass, (a), and 
coupling constant, (b), shifts. 

We can now understand schematically why with our t-channel uni-

tarity approximation we are taking into account some internal mass 

shifts, but no coupling constant shifts. The diagrams of Fig. 2. 3 

are unitarity diagrams with the intermediate particles on the mass 

shell. 
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~ + I I + 

~\ 
n n 

\ _____ / 
I 

I 
-- - -

n 

Fig. 2. 3. Born term and internal mass shift type terms 
in mess difference computation . 

® 
\ 
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II. 3. BORN APPROXIMATION 

First, we use Eq. (2. 42), in the notation of Eq. (2. 44), to 

express, for the baryons, the SU(3) amplitudes in terms of the 

individual particle amplitudes. We find, 

For each pair of particles, by writing the vertex in terms of 

the standard_ form factors F 
1 

(q 2) and F 
2 

(q2), we can evaluate the 

contribution of Fig. 3. 1. 

p-q 
+ (q ~ q) 

fig. 3 . 1 . C :ontribution to thE:.' baryon Born term 
from octet exchange. 

(3. 1) 

.· 
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(3. 2) 

This amplitude is simplified by means of the well-known rules for 

manipulating -y-matrices and then the helicity sum in (2. 7) is per-

formed using the trick explained in Appendix A. The result, (2. 6~ . is 

then analyzed into partial waves through (2. 11). One obtains 

B (t·q ) = - -- Q - ie rr.' ·(t ·q2) J 2 4M2 (g2 - -h v 
I pq J 2 pq . O' I I 

(3. 3) 

where 
1 

p = ch - M 2) 2 
, (3. 4) 

and 

di" (t;q2) = (1 + ~ - _t_) [F (q2)]2 
\ 2M2 2M2 1 

( 
2 ~ t

2 ~) 2 + 2q + 2 + 2 - t - 2 [F 2 (q2)] . 
4M 16M 4M 

(3. 5) 

This agrees with the result of BZ (except for the factor two mentioned 

before). We should state that in deriving Eq. (3. 3) the non-pole 

terms in z. were dropped. BZ calculate that these wo· 1ld contribute 

less than 0. 2 Mev to the neutron-proton mass differe r ce. This does 

not necessarily imply I however I that non-pole terms nrising from 



47 

other form factors, permitted by the intermediate baryon's being off 

shell, are also negligible. In the dispersion language these terms 

are associated with subtractions in v. Ignoring them in view of the 

lack of experimental data will receive some justification from our 

results. 

and 

. 16 
With the SU(3) relat10ns among the form factors 

F~+ = Fp, F ...... o = F , 
~ n 

1 
F~0 = - 2F n' 

F =-..J3F 
f\L,o 2 n, 

we obtain the SU(3) decomposition of the Born term from (3. 1) and 

(3. 3). 

2 
= _ 2 8 M Q (r )~ __ za:· __ . ~ -) 

3pq J \ nn pp pn 

[BJ(t· 2)] 8 = 4..JS M2 Q (r)((}f - + ·(ji -) 
,q 2 pq J \: nn pn 

where 

g 2 - t t . 
r = - lE 

2pq 

18 
and M is the mean octet mass, 

(3. 6) 

(3. 7) 

(3. 8) 
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Since the decuplet also lies low in mass and is essential to 

the understanding of low energy baryon-meson physics, we calcu-

lated the contribution of decuplet exchange~ In Fig. 3 .1, the 

exchanged particle now is to be interpreted as a member of the 

decuplet and the blob as the form factor for the photoexcitation of 

the baryon octet. It is an excellent approximation to assume that 

h . . d . t d b t' d' 1 t ' t' 19 
I 
20 Th t is vertex is omina e y a magne ic ipo e ransi ion. en 

we can write it in explicitly gauge invariant form as 

(3. 9) 

where µ and v are the photon and 3/2+ polarizations, respectively . 

Th . 3/2 t . . b G . . 21 . h h 11 e spin propaga or is given y asiorowicz, wit t e overa 

sign wrong. Now we have 

C3 (q2) , ) . (1~ M*) 
- i -e 1' q 'Y - IJJ.g B µ - · . ( ) (- ,I. i.I\.. + 

µ m7i 5 v µ µv k2-M*2 

X [ vA. .1 v A. 2 kvkA. _l_ (kv""A. _ kA.""v)J 
-g + 3 'Y 'Y + 3M*2 - 3M* I I 

C3 (q2) J 
x (-e) 'Y \. q -yf.l. -drnµ + (q-q) 

m 5 A. A. ' 
1f ' 

(3 . 10) 

* where k = i:· - q and M is the mean dec:uplet mass, 

* · 1 ) M = 4 (mD. + m L:* + mE* + mr.l_ = 1.46 Bev. (3. 11) 

With the same manipulations as those described after Eq. (3. 2), 

we obtain 



where 
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x = g2 - h + M2 - M*2 
2pq 

+l 
if (t;q2) = L M*nAn (t;q2), 

n=-2 

A_2 = (q2 - M*2 - M2)(M*2 - M2 + q2)2, 

A_l = ~ (q2 - M*2 - M2)(M*2 - M2 + q2), 

A
0 

= .-2 [2M*
2 <h- q 2) + (M*2 - M2) (q2 - M2 + M*2) J, 

A+l = ~ [ 4(t- 3M2)(~t- q2) + t(M*2 - M2)] . 

Using .the SU(3) resu1ts 12 

C'::<'o* ·';:;'O = -c3, ..... ..... 

(3. 12) 

(3. 13) 

we arrive at the decomposition, analogous to (3. 7), f.Jr the decuplet 

contribu tio:i 
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(3 . 14) 

where BI(t;q2) is given by (3 .12). 

Ne:. t:urally, (3. 7) and (3. 14) must be added in order to calculate 

the Born approximation to the baryon mass differences. Equation (3 .14) 

does not contribute to the I= 1 neutron-proton mass difference because 

the only non-strange member of the decuplet, the D.., has I= 3/2 and 

hence cannot couple to a nucleon and an I= 0 photon . For an I= 1 

mass difference, one of the photons must have I= 1 and the other 

I= 0. 

Lastly, we have to evaluate the Born term for mesons. 38 Since 

we are excluding non-pole terms, the seagull d iagram will not con-

tribute and Fig. 3. 1 yields 

B µ = i[-iF 7f{q 2)J (2k-q) 
µ µ 

i [-iF.,.(q2)] (k-k-q)µ + (q-q) I 

(k-q)2-µ2 II 

(3 • 15) 

where kµ, kl-1 are the me son four-momenta. Hence 

(3. 16) 

where 
and 

g2-·h 
x= 

2kq 



51 

Numerical investigation shows that (3 .16), at low q 2 and t, changes 

by less than 10% as µ varies from m1r to mK. So we are justified in 

using a mean meson mass µ = 0. 49 Bev, deduced from 

2 l[ 2 l 2 2] µ = 2 m K + 4(3m11 + m1r) • (3. 17) 

In the meson case, the Coleman-Glashow relations (3. 6) reduce 

to 

F~ = = -F = -F K- 11'-

and 

(3. 18) 

Therefore , finally we obtain 

(3. 19) 
J 2 27 4 J 2 . [B (t;q )] 

2 
. = - 3 B (t;q ) 

where BT(t;q 2) is given by Eq. (3.16). 

In order to arrive at the numerical values of the Born approxima-

tion to the mass differences, we employ the f ollowing experimental 

f f 
10,19,20,22 

orm actors: 

F:(q2) = l.79~~)F(q2), n 2 - I_§._ "\F 2 
F 2 (q ) - -1 . 91.\.2 M .r (q ) I 

-
F (q2) = eF (q 2), 

1r 
c

3
(q2) = 0.37 F(q2), (3.20) 
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where 

2 2 
q

0 
= 0. 72 (Bev) . 

When calculating Oµi from 6µi
2 

for mesons, it is essential, 

due to the large percentage symmetry breaking, to remember that, as 

stated after Eq. (3 .16), 6µi
2 

is nearly independent of µ 2 . So w~ use 

Of.Li = l/2µi 6µi2 , where µi is the exact mass. For the baryons (this 

is only relevant if we try to get accuracy better than 20%) it turns out 

2 that 6mi /M is nearly independent of M, so we take 

2 2 
mi 6mi = 6mi 

om = 
i M 2mi 2M 

The results of the numerical integrations are given in Table 3. l, 

below. For the baryons, the octet and decuplet contributions are 

exhibited separately in the first and second lines for each splitting 

and their sum is displayed in the third line. All numbers are in Mev 

and the experimental column is taken fron Refe rence 18. The table 

makes apparent the poor agreement for I= I, the good agreement 

for I= 2 and the excellent convergence of the partial wave analysis. 
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II. 4. D-FUNCTION 

The last piece of information required before applying the basic 

result (2. 45) is the JP= O+ D-function for our baryon-antibaryon and 

meson-meson channels. We know that the A
2 

trajectory passes through 

zero at t = t :::::: -0. 6 (Bev)
2

. 
23 

'
24 

In order to understand what this 
0 

implies for the D-function, suppose, for the moment, that we have only 

one sense and one nonsense channel. Then, near the pole, we can 

write the partial wave amplitude as 

I (3 
J 1 SS 

T = J-a '\fa (3 
SN 

(4. 1) 

where we extracted explicitly the '\fa , suggested by models, from the 

'd F t . t ' 25 . sense-nonsense resi ue. ac onza ion gives 

(4. 2) 

Equation (4. 2) allows four possibilities as a - 0. 

(i) Choosing sense mechanism: 

f3ss - 1 ' 

In this case the sense-sense amplitude T0 has a pole and 

i:his must be ruled out for a grost (t < 0). 

. 26 
(ii) Gell-Mann mechanism: 
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Thus the trajectory chooses nonsense and the sense-sense 

amplitude has no singularity. 

( ) N . h . 21 iii o compe nsa t10n mec amsm: 

13ss -
2 

a . 

The trajectory couples to the nonsense-nonsense ampli-

tude with vanishing residue. 

(iv) Chew mechanism:
28 

2 
f3NN - a ' f3ss - a. 

This is just the reverse of the no compensation mecha-

nism. Here the dynamics operates to make the residue of 

- the sense -sense amplitude vanish as a - 0. 

BZ observe that, in the single channel case, if the sense D-

function had a zero at t 0 , then over most of the range of integration in 

(2.45) D(t)/ D(O) would be negative and the correct sign would be ob-

tained for the neutron-proton mass difference. We shall see that the 

zero occurs only if the ghost killing mechanism is that of Chew. For 

this purpose , we employ the N/ D equations in the form
29 

N(t) = B(t) + .1 s ~t' [B(t') - B(t)]p (t')N(t') I 

1T t -t 

D(t) = 1 - .1 s ...fil.'._ p (t')N(t'). 
1T t '-t 

The essential structure of Eq. (4. 3) is the following. 

(4. 3) 
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(1 + X)N = B, (4. 4) 

D = 1 + YN I (4. 5) 

where X and Y are integral operators, X being "proportional" to B and 

Y being diagonal. 

If B has diagonal elements vanishing like .JG , (1 + X) , therefore 

-1 
(l+X) and, by Eq. (4.4), N will have the same property. Equa-

tion (4. 5) ·then implies that D will, as well. Putting such an N and 

D into Eq. (4 .1) yields a set of four equations . If we demand 

D
11 

- 0 as a - 0, these equations select choosing sense-unaccepta-

ble for a ghost-or the Chew mechanism. 

In the multichannel case the source of the sign change in (2. 45) 

is not so perspicuous, but we must have det D(t0 ) = 0 if the Chew 

mechanism does indeed apply. 

Chu and Roy, 
23 

by considering finite energy sum rules for a 

sense-nonsense amplitude in photoproduction, are able to rule out the 

Gell-Mann mechanism for the coupling of the A
2 

trajectory to NN. 

Such an amplitude, of course, does not distinguish between the no 

compensation and Chew mechanisms. Fits to 1TN scattering27 ' 3o 

seem to indicate that the P' trajectory chooses no compensation and, 

on the basis. of SU(3) syr:ametry, this would compel us ~o assume the 

same dynamical ghost kUling mechanism for the A
2

. Tl is conclusion 

receives further support from the recent application of finite energy 
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sum rules to KN scattering by Graham and Huq . 
31 

These authors deal 

with the A
2 

trajectory directly and find that the no compensation 

mechanism is present. On the other hand, the reaction 7r-p- rin 

appears to require the A
2 

to couple via the Chew mechanism. 
24 

Thus, the experimental evidence seems to favor no compensation, 

but not conclusively. If the applicai:ion of the Chew mechanism by BZ 

turns out to contradict experiment, the ori ;inal, single channel, 

physical understanding of the sign reversal will disappear and we 

shall have considerably less confidence that the tensor meson trajec-

tories suffice to explain the mass differences. 

In order to find a simple model for the D-function which satisfies 

unitarity, analyticity and the symmetry of the T-matrix, we shall employ 

the Balazs method
32 

with a single pole. The residue matrix will be 

determined by matching to single particle exchanges. Assuming that 

the amplitude is dominated by the "tadpole, " due to the vanishing of 

the tensor meson trajectory, not only at t=t
0

, but even at t=O, we 

shall fix the pole position and the three matching points, one each for 

BB - BB, BB - PP and PP - PP, by r e quiring, at t= 0, that 

(4. 6) 

the F/D ratio of the A
2 

c ,mpling to baryons determined from high energy 

scatte ring data. 33 This value is we ll-known to be consistent with 
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that necessary to fit the observed e lectromagnetic mass differences 

34 
with the tadpole model. 

Demanding even a crude simulation of (4. 6) in our model leaves 

no freedom. The determinant of the octet D-function automatically 

2 
develops a zero around t ~ -0. 2 (Bev) , so that we are not forced to 

employ the Chew mechanism as a fitting criterion . The experimental 

data determi •e only the product of the A
2 

couplings to baryons and 

mesons. 
24 

Since the t-dependence of the Balazs method is completely 

different from the Regge form, the extrapolation of the couplings from 

t 0 to 0 _is dubious. For these reasons, as well as the lack of leeway 

left after attempting to match the D/F ratios, we did not try to fo~ce 

our residues to agree with the magnitude of the A
2 

couplings. 

We proceed to evaluate rough estimates of the amplitudes h, 

denoted by B, defined in Eqs. (2.44) and (2.46). The SU(3) phases, 

projection operators and crossing matrices are defined in Appendix B. 

PP-PP: 

The S-wave interaction may be replaced by the exchange of a 

scalar meson CJ, assume d to be a unitary s~nglet. 35 
The direct channel 

diagram, then, will not alter the mass differences. The effective 

Lagrangian,. in the eight-component formaHsm, is 

l 
£, = - 2g (J 

0- 1T"Tr 
I: P.2. 

l 
i 

(4. 7) 
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The results of Furlan and Rossetti, based on the saturation of 

current algebra with a few single particle states, agree with those of 

Brown and Singer, who fit three pion ri and K decays. These authors 

35 
quote 

m ::::: 400 Mev 
(j 

and 

2 
go-rrrr 2 

4
rr ::::: 0 .108 (Bev) . 

ll. Fig. 4. l we show the Feynman diagrams for o- exchange, 

writing expl:..citly the octet indices of the mesons. 

k \ I 1 
\ I 

k'~ "'k' 
\ I 
\ 

I 
k A( 

I 
I 
i 

}-----{ 

' ~k 
\ 
\. 
j 

+ (k I / k) - (k I / l) 

Fig. 4. 1. o- exchange. 

(4 . 8) 

Separating out the singlet projection operator, using the SU(3) 

octet-octe t crossing matrix, and analyzing into partial waves, we get 

the o- contribution 

8
27 
22 

g
2 m2 . 
crrrrr ( er ) = - -2 Oo 1 + -2 . 
k 2k 

{4. 9) 

The ofner obvious force is provided by the exchange of the octet 

of vector mesons coupling to the unitary spin current. Bose statistics 

forbid the sir:glet vector meson from coupling to a psevdoscalar pair. 
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The Lagrangian is 

µ T r., = if v. P F. a P, 
p 7r7r l l p. 

(4. 1 O) 

18 
where mp= 765 Mev and rP7r7r = 130 Mev give 

2. 5. (4. 11) 

With V exchange in Fig. 4. 1, this y:i~lds, as above, 

8 l 
B

33 
= 2B, 

(4. 12) 

where 

and mv is the mean octet vector meson mass 

mV = mK* = 0.890 Bev. (4.13) 

Owing to cp - w mixing, here we do not average the two sides of the 

mass formula as we did for the pseudoscalar and spin ~ octets. In the 

calculations leading to (4. 12) we dropped all non-pole terms in order to 

be consistent with the prescription used in the evaluation of the Born 

terms. This is also in accord with the no subtraction idea in dispersion 

theory and the fact that .:ompositeness and Regge poles exclude 

Kronecker deltas in the c.ngular momentum from appearing in the 

amplitude . 
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Numerical comparison of (4.9)and (4.12) demonstrates that, at 

t= 0, the vector contribution is at least four times larger than that of the 

er and, for trfO, much larger than that. In view of the roughness of our 

computations, this justifies neglecting er exchange. 

BB - PP: 

Here the dominant low energy processes are baryon octet and 

decuplet exchange. For octet exchange, the Lagrangian is 

.L = -2igB'Y
5
[aD. + (1 - a)F.]BP., 

l . l l 
(4. 14) 

~= 411' 15 and a::::: 0. 7. 

The Feynman diagrams are drawn in Fig. 4. 2. 

k, ,1 
\· I 
\ I 

k
)l-. 1-
\ I k 
\ I 
'1-------l + (k,k) - (k,l) 

Fig. 4. 2 Baryon exchange. 

After the usual prescription is followed, we obtain 
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27 27 1 2 2 B
12 

= B = -[a a - (1 - a) ] B, 

(4. 15} 

8 8 
B

23 
- B

32 
=.JS a(l - a)B, 

where 

2 
B = 8 g x Q 0 (x) , 

µ2 - ~t 
x = 2pk 

The amplitude in (4 .15) is symmetric by time reversal invariance. Com-

puting PP- BB checks this part of the calculation independently. 

Decuplet exchange is easily formulated in terms of quark indices. 

The coupling is unique and t he coupling constant can be deduced from 

20 
the width of the 33 resonance. 

· ade- µ b c 
£, = AE A b Bd 8 p ' + h. c . I a c µ e 

where A~bc represents the 3/2+ decuplet field and 

-1 
A.= 15.4 (Bev) . 

We find, for the decuplet term, 

B27 = B27 = i 

12 21 38
' 

8 
B31 = 2B I 

(4. 16) 

(4.17) 

(4 .1 s:. 
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where 

B = 3~:k Q0 (x{[ M(µ 2 - M*2 - M2) + 2M*(tt- Mz)J 

.\ 
k~ 

\ 

BB - BB: 

x = µ2 - * t + M2 - M*2 
2pk 

I 

(~) 
I 

I 
-ti.­
I k 

(~) 

Fig. 4. 3. Decuplet exchange. 

The cc.lculation for this part of the a:nplitude is t'.'le same as 

before except for the fact that performing the spin sum~ require s a 

generalization of the previous technique. This is e xpLline d in 
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Appendix A. 
36 . 

Ball, Scotti, and Wong . fit nucleon-nucleon scattering 

for s ~ 4M2 and t < 0-precisely the region of interest to us-by 

means of single meson exchanges . We take their values of the 

coupling constants and of the a- mass. For a-, P and V exchange, the 

Feynman diagrams look like Fig. 4. 4. 

Fig. 4. 4. Baryon-antibaryon inte raction. 

Even though Ball, et al. , deal only with the nucleon-nucleon 

system, we know that the a- meson they use must be an SU(3) singlet 

since if it were a member of an octet, they would be forced to include 

p + . 
a J = O , I= l, S = 0 meson in their calculations. The Lagrangian is 

£, = -go-NNBBo- I 
(4. 19) 

where 2 

530 Mev and 
go-NN 

4.15. m :::::: 
a- 47T 

The a-, then , contribute s 



8 27 = 
11 

65 

Since (~ .• ./2M) 2 ~ 1/16, this can be approximated to read 

For pseudoscalar exchange, the Lagrangian is just given by 

(4. 14) and the result is 

8 8 
B

12 
= B

21 
= .JS a (1 - a)B, 

where 

-~ ~ 2-) B - 2 Q o 1 + -2 • 
M 2p 

(4.20) 

(4. 21) 

(4. 22) 

In Reference 36 on octet of vector mesons is used with an electric 

coupling which is pure F. The magnetic coupling, on the other hand, 

has a D/F ratio roughly U.e nti cal to the one for the PBB coupling. 12 
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This value yields a weak coupling to the isoscalar member of the octet, 

which agrees , using vector dominance , with the smallness of the iso-

s calar nucleon anomalou s moment. Then t he Lagrangian is 

From the fit of Ball, et al. , 

2 
f pNN 

= 5 • 64 / 
47r 

(4. 23) 

(4. 24) 

and assuming that the p dominates the isovect or e lectric a nd magneti c 

form factors of the nucleon leads to 

19 . 3. (4 . 25) 

With (4; 23) one finds the results 

B27 { [ 1 2 (1 -a)
2
]z} = A X - . 2Y - 3 a -11 

8 { 3 [ 1 2 3 2] } Bll = A - z-x + 3Y - - z a + z (1 - a) Z , 

8 { 3 [ 5 2 3 2] } 8
22 = A - z-x + 3Y - 6 a + z (1 - a) Z , 

8 8 
..JS a A{l=a - (1 - a)z} , 82 1 = 8

1 2 = 

where (4 . 26) 
2 . 

A I ( mv ) = --Q l +--
2M'.:-p2 0 2-p2 I 
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2 [-4 2-2 2] X = f p NN 4p + M (2p + my) 

2 m 2 [ J 
Z = gpNN V -2 (B-2 2) + 2 M2 2 

2 p p + mv mv . 
2M 

The total BB - BB amplitude, G~ course, is . the sum of (4. 21), 

(4.22) and (4.26). 

Having the amplitudes B(t), we approximate them by a one-pole 

form. As before, the same equations hold for the 2X 2 Z:Z amplitudes 

and the 3X3 g amplitudes. 

B(t) = _lL 
t-t1. (4.27) 

In order to determine R
27 

and R
8

, we use three different matching points 

tm
1

, tm
2

, and tm
3 

for PP- PP, BB- PP, and BB- BB, respectively. In 

each case, the matching point must be to the right of the right end of 

the left cut for the reaction in question. F..:om (4 . 12), (4.15), and 

(4. 22), this implies 

2 2 2 
tml > 4µ -m = 0.17 (Bev) , v 

tm2 > 4µ 
2 ~ 2 - = 0.92 (Bev) , 

M2 
(4.28) 

t ·, 4M2 2 2 
m3 - µ = 5.0 (Bev) . 

Then the standard Ealazs method
32 

yields the D-function. N and 

Dare defined.by (2. 28), .30 that, on the left cut, 
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Im N(t) = Im h(t)D(t) 

= Im B{t)D(t) 

Therefore, 

N(t) = 

and (no subtraction is required) 

1 s dt' D(t) = 1 - ; t' - t p (t')N~t 1 ) I 

where p (t) is the symmetric matrix given by 

p .. = p . o .. e (t - ti). 
lJ l lJ 

(4.29) 

(4. 3 0) 

(4. 31) 

(4.32) 

(4. 33) 

(4. 34) 

The phase space factors PB and Pp are given by (2. 4 7) and the 

- 2 - 2 
thresholds are obviously tB = 4M and tp = 4µ There is an apparent 

difficulty here insofar as the tip of the left cut for BB ..... BB, 4M2 - µ2, 

is to the right of the two-meson threshold 4µ 2 . For this process, 

however, only the 4M2 threshold matters in Eq. (4.33) and this gives 

no trouble. This phenomenon is discussed in more detail by Kayser .
37 

Equation (4. 33) can be written much more simply by separating 

out the trivial t-dependence: 

D(t) = 1 + I(t)C I (4. 35) 

where 
(4. 3 6) 

and 
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S p (t')dt' 
I(t) = 

(t 1-t)(t'-t1). 

Equation (4. 35) evidently determines 

1 
D(t

1
) = 1 - 7r I(t1 )RD(t1 )'. 

Hence 

(4.37) 

(4.38) 

(4.39) 

In order to avoid any possible confusior~ owing to the omission of 

indices, we display the matrices I(t). 

and 

where 

1
8 

(t) = S
eo 

4M2 

and 

127 (t) = 

PB (t')dt' 

(t'-t) (t 1 -t1) 

0 

0 

0 

0 

(4.40) 

(4.41) 



Pp (t ')dt I 

(t'-t)(t'-t1) 
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a , b, a 1 , b 1 are defined below. 

a = ~ J~' 
__ J 4M

2
- t i:-

- t 

f 4M2
- t b = 1 

l -ti 

Parenthetically, we observe a useful partial check on our 

numerical calculations. By considering the matrix (use (4. 36) and 

(4. 39)) 

-1 -1 -1 
C = -1T [D ( t l ) ] . R 

-1 
= -?TR - I(tl) I 

(4.42) 

(4.43) 

(4. 44) 

(4.45) 

-1 . 
and noting ttat R, and hence R , are sym-netric, we s ee at once that 

C is symmetric. 

The fitting procedure was describe d above. In Eq. (4. 6) w e 

employ 

h(O) = 
RD(t1)[D(o)r 1 

-tl 

The matching points are ,·aried as permitted by Eq. (4. 28) and, in 

(4.46) 

order t o avoid a spurious singularity in (4. 33), the pole position t 1 
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must be restricted to the left of the lower threshold, i.e. , . 

2 2 
t
1 

< 4µ = 0. 96 (Bev) . (4.47) 

All the fits had the same qualitative features and gave very 

similar answers for the mass splittings. We exhibit two of the fits. 

The difference between them gives a fair picture of the amount of varia-

tion present. 

t is the location of the zero of the dsterminant of the octet D-

function. The parameters of (4.6) are, all at t=O, 

Fit I: 

t
1 

= 0 • 9 / 

t = -0 • 2 / 

tm
1 

= 2.2, 

x = -1.10, 

c21 = 

tm
2 

= 1. 3, 

y =-1.27, 

c-B.47 
0.19 

0.19) 

-9 . 07 

(

207 

99 

23 

99 

~68 

20 

23) 
20 . 

16 

(4. 48) 

z = -3.12. 

(4. 49) 
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Fit II: 

tl = 0.9 tml = 1.4, tm2 = 

t= -0.2, x = -1.18, y = 

c27 =c-8.15 
0.28 

1. 0 I tm3 

-1.71, y 

0.28) 
-7.35 

18 

98 

5 

:). 
15 

= 6.9. 

= -4.17. 

(4. 50) 

The ghost-killing should come from the dynamics, but, since our 

calculation is so crude, we attempted also to put it in by hand by sub-

tracting the numerator matrix at t 0 • The Balazs method can still be 

employed (with a subtraction of which the results are independent), but 

now the A
2 

parameters could not be fitted at all. 
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II. 5. RESULTS 

In this chapter we insert the results of the last two sections into 

Eq. (2. 45) to calculate the pair annihilation amplitudes and hence the 

mass differences. In the interest of clarity, let us ignore the decuplet 

exchang..:- Born term for the moment. W e define, referring to (3. 7) and 

(3 .19) I 

Ct 2 
b. {t;q ) . = 

l 

for et=8,i=l,2 

and a = 2 7, i = 1 

for et=8,i=3 

and a = 2 7, i = 2. 

Then we can rewrite the Born term 

Ct 2 - Q' 2 r.vet 2 
B. (t;q ) = b . (t;q ) di. (t;q ) . 

l l l 

(5. 1) 

(5. 2) 

Since we are dealing only with J = 0, we suppress the J superscript. 

So the absorptive parts are 

[

. 1r -1 Ct 2 
- (pq) 1:. (t;q ) 

Cl! 2 2 . u · l 
Im B. (t;q ) = 

l 1r -1 Ct 2 2 (kq) a: i (t;q ) . 

The d1 .a (t;q2) are polynomials in t and the functions (pq)-l 
. l 

(kq)-l are sharply peaked at the right extremity of the left c ut, 

(5 . 3) 

and 
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{ 
4q2 - ~ 

M2 
Ct 

t . = (5. 4) 
1 

2 4 g_ 
4q -

µ2 
I 

as long as q 2 is small. a and i are always defined as in (5 .1). If 

the unsubtracted dispersion relation were valid for the real amplitude, 

we cot,;.1.d assume that most of the contribution, for low q 2 , which domi-

nates owing to the form factors, comes from low· t. · Then we could 

approximate (2. 45) by evaluating the polynomial (JC: and the slowly-
1 . 

varying D (t') at the tip of the left cut, (5. 4) , and performing the inte-

gral over the remainder of the integra.nd. If ImB.a is a good approxi-
. . 1 . . 

mation to lmT.a at low energies,· this is still a valid rough estimate, in 
1 

spite of the divergence of Eq. (2. 45). This reasoning yields 

= I: i 
jk 7r 

[ Im.b . a(t' ·q2)]6 c:1' (t' ·q2) 
1 

1 
1 

1 

a { a -1} ·_ t' Djk(t') [D (O)] ki 

(5. 5) 

(5 • 6) 

_ y a . 2 "-t".a a. 2 a a~ a -fl 
- ·_J b. (O,q )O'. (t .,q )D.k (t . ) [D (O)] >-- • 

Jk J J J J J J ki . 
(5. 7) 

To (5. 7) must b e added the contribution of decuplet exchange, 

(3 .14), with .the s ame D·-function . It is handled in pn:.cise ly the same 



75 

manner and we note only that the l e ft cut here extends to (using (3 .12)) 

(5. 8) 

It is interesting, but quite disagreeable, to observe that, since 

q 2 ~ 0, the lowes t mass exchanges do not yield all the nearest singu-

laritie..:. So, Im BI Im T, even close to the tip of the left cut. To 

understand t1.is, suppose a mass squared s is exchanged in the s-

channel. (The u-channel gives the same result by crossing symmetry.) 

Then (5. 8) gives the position of the tip of the left cut with M*2 - s. 

Therefore, it is located at 

t (s) = -s -
0 

This is a maximum when 

Then 

s = s 
0 

t (s) = 4q
2 

0 

For very low q2, this is just slightly to the right of 

(5. 9) 

(5. 10) 

(5 .11) 

1+ the end of the 2 exchange cut. This can happen if 

- 2 2 > ( )2 s = M - q = M+µ . 
0 

(5. 12) 

For the actui..=tl nucleon and pion masses, the catastrophe can occur if 

-q2 > 0. 26 (Bev)
2

. In the next section we shall discuss the possible 

significance ?f this phenomenon . 
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Before quoting the results of the final numerical integration for 

the J = 0 term in the mass differences , we notice in (S . 4) that, con-

sistent with our continually used assumption that small t and small 

q2 dominate, 

Therefore, 

2 
S. 2 (Bev) . {S. 13) 

(5. 14) 

and we can ·replace the tip of the baryon octet exchange cut by 4q2. In 

the same way, we neglect q4/M*2 in (5. 8). These approxima.tions are 

necessary for the convergence of the integral (2.15) for the masses. 

J = 0 Mass Differences (Mev) 

I= 1: 

m m = -3.90 p n 

m + - mL:_ = -3.3v 
2:: 

m,...o - m"M'_ = +0.55 
,..... ,..... 

mK_+ - mKo = +1.20 

I= 2: 

=-tl.98 

mn+ - m1T'0 
= +3.60. 
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Fit II: 

I= 1: 

m - m = -3.50 
p n 

m~+ - m~- = -3.61 

m..,.o - m':t- = -0.11 - -
mK+ - mKo = +1. 35. 

I= 2: 

m ~ - m 1To = + 3 • 5 2 • 

We combine these with the results of Table 3. 1 by means of 

Eq. (2. 22). The experimental values are given in Table 3. 1. 

Corrected Total Mass Splittings (Mev) 

I= 1: 

m -m = -3 .78 
p n 

m + - m = -3.46 
~ ~-

m..,. 0 - m,...-- .... 
= +.1.32 

m.te+ - mKo = +1.33. 
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I= 2: 

m2:+ + m2:_ - 2m2:0 = +2.26 

m 'ff+ -m 7ro = +4.06 . 

Fit It 

I= 1: 

m -m = -3.38 
p n 

m2:+ - m2:_ = -3.72 

m'M' 0 - m .... -...... ...... = -0.34 

mK'- - m Ko = +1.48. 

I= 2: 

m2:+ + m2:_ - 2m2:0 = +2.26 

m +-m 
7r 7ro = +3.98 
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II. 6. DISCUSSION 

The results of the calculation exhibit the ancient dichotomy be­

tween the I= 2 and I= 1 mass differences. The I= 2 2:: mass split­

ting is within the experimental error and the pion mass difference is too 

small by a mere 15%-quite understandable in view of the large 

discrepancy between the actual pion mass and the mean pse udoscalar 

octet mass. The outcome of the isospin one computation, the raison 

d'etre of the whole work, since the I= 2 mass differences are suffi­

ciently well explained by the Born approximation, is a dismal failure. 

The correct sign for the nucleon mass difference is very likely an acci­

dent in view of the extreme disagreement for the 2:: and Z, not to 

mention the kaon, for which not even the sign reversal is obtained. 

We can segregate the sources of error into two classes. The 

first kind are "technical" in nature. These include dropping of the 

non-pole terms and the method of evaluating the dispersion integral 

(2. 45). It seems highly unlikely that the way out of the predicament 

lies in this direction, however, because the isospin two mass split­

tings come out quite well and these manipulative maneuvers probably 

do not discriminate with respect to isospir .. 

As far as "physical" effects are concerned, then! are two possi­

bilities. Fir.st, the _dynrmics we hav e put in may be ir·sufficie nt to 
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explain the existence and properties of the tensor mesons. This could 

be due not only to the simplistic one-pole Balazs method, but also to 

the inclusion of too few exchanges and, possibly, not enough external 

channels. The fact that high mass exchanges in the pair annihilation 

amplitude give rise to cuts extending as far to the right as those due to 

low mass exchanges, supports this ~ypothesis. It does not imply, 

however, that better low energy approximc: tions cannot work. One may 

need a Reggeized bootstrap calculation in order to deal with the tensor 

mesons. If poor description of these particles is the chief cause of 

the random agreement, a D-function based more directly on phenome­

nology should cure the difficulty. The information on the magnitude of 

the 2+ trajectory couplings is incomplete , but one could try to employ 

the exchange degeneracy
33 

with the better known 1 trajectories . 

It is also possible, indeed , not entirely implausible considering 

the experimental evidence for the no compensation mechanism for tensor 

meson trajectories, that the 2+ mesons simply do not explain the mass 

differences. Then it is much harder to conceive of a simple, yet rea....:. 

sonable, way to parametrize the D-function. The dispersion relation 

(2. 45) itself is based on elastic unitarity and, as suggested in the 

previous pa~dgraph, this may be too crude an approximation. 
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APPENDIX A 

SPIN SUMS 

The two expressions required for the calculation of amplitudes 

in this thesis are 

X = Z: v_ Ku , 
P 1 -CT P 10 

CT 

Y= L(v- K2v-, ·)(u, ,K1u )· 
I P 1 -CT P 1 -CT P 1 CT P 1 CT 

CT I CT 

The Dirac spinors are 

v 
p ,CT 

= 

u = (E + m)i(-l -) X 
p,CT ~ CT 

·E+m 

ib-m 
I 

(E+m)2 

= 
Jb+m 

(E+m)2 

(~) 

(~) x I 
CT 

(-iCT )X * 
y CT 

(A. 1) 

(A. 2) 

(A. 3) 

(A. 4) 

(A. 5) 

(A. 6) 

where ~ is the two-coniponent Pauli spinor for spin CT along the unit 

vector p. VTe take p = t z in order to have r e al XCT· Then we have, 

as well, 



Therefore, 

v 
p,-er 
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er X = X x er -er 

= X t (ier ) (0 
-er y 

1) :rb-m i 

(E+m) 2 

..... 
= XI (0 

er 
-er ) ib-m i 

z (E+m)2 

where we used (A. 7) to obtain (A.9). 

Since 

(1 O)'y = (0 er ) , z z 

therefore, 

X = -r L X t (1 _ O)'y (ib-m)K(ih+m) 
er z 

where 
1 

r = [(E+m) (E+m)J-2 • 

Noting that 

where 

p = ~ (1 + 'Y 0) , 

and defining the four-co:nponent rest spinors 

(1 , 2) 
w = and 

(A. 7) 

(A. 8) 

(A. 9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A. 14) 



we find 

where 
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X · ~ -r L w(r)t'Y
2

(i.b-m)K(P,+m)Pw(r) 

r=l 

= - i r tr (GK) , 

In the frame pl-1 = (E, 0, 0, p), pt1 = (E, 0, 0, -p), 

and hence 

X = tr[(p+ m'Y + E'Y 'Y )K]. z 0 z . 

(A.15) · 

(A.16) 

(A. 17) 

(A.18) 

(A.19) 

(A. 20) 

In order to calculate Y, we must generalize the spin flip matrix 

er x· With ii = p', the spinors are 

and (A. 21) 

so the spin flip matrix A satisfying 

Ax , ·· x , , 
er -er 

(A. 22) 

is 

A= - ~ er· e , (A. 23) 
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where 

(A . 24) 

. - ~1 . l1Te. v 2 ... -
Notice that A=-ie and e·n = 0, meaning that A is a rotation 

matrix about an axis perpendicular to ii through 180 °, as it must be. 

We shall find it convenient to work with real spinors, so that we take, 

without lo.c:s of generality, n 2 = 0, which implies 

(A. 25) 

Now consider 

Z = L v_, , u , , . 
CT I p ,- CT p 'CT 

(A. 26) 

(A. 27) 

from (A.25). Using (A.4), (A.6), (A.27), we get 

- (po)· .t Z = r L (ib '-m) - • - X , X , (1 
CT' •CT CT CT 

O)(p'+m). (A. 28) 

Completeness gives at once 

Z = r(ih'-m)( ~·.c; ~) (P,'+m) (A. 2 9) 

= rGD'-m) ~h'° - 1) (p' ·.-:y) (ib'+m). (A. 30) 

Substituting Z into (A. 2) and using (A. 20) yields 
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(A. 31) 

(A.32) 

with 

p'µ = (E,p'), p'µ = (E,-p'). 
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APPENDIX B 

SU(3) CONVENTIONS AND RESULTS 

In the no ta ti on I YII ) we define our states to be z 

+ -­K ,p, ~ 

.-0 -o -
f\.- /~ ,n 

11 ~ ~) 

11 ~ -~) 

1-1 ~ ~) 

-1-1 ~ -~) 

+ +-= 
11' IL: IL: - I 0 1 ;l ) 

11'0 , L:0 , L:0 I 0 1 0) 

11'-,L:-,? 101-1) 

iJ,A,A 1000) 

(B. 1) 

Let us conside r ~ ® ~ - ~ ® ~ and single out the SU (3) index by 

means of a Greek letter. 

t -7 

a,a 

s 

Fig. B.l. General scattering proce ss. 
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The channels are defined below. 

s channel: a+b---?> c+d 

t channel: a+c---?> b+d (B. 2) 

u channel: a+d---?> c+b. 

The t and u channel crossing matrices are given by the relations 

= L ct ' < 'Y 6 IQ ' I Q f3) I 

µ' µ µ µ 
(B. 3) 

(B. 4) 

where µ is the SU(3) representation and Oµ is the projection operator. 

Now, 

u . 
= (-1) ({3-ylQ lao) 

µ 

= 

Above, by (-l)U and (-1)8 we mean the SU(3) symmetry of the final 

(B. 5) 

(B. 6) 

(B. 7) 

states in the u and s channels, respec tively. Equation (B. 6) comes 

from Eq. (B. 3). Comparing (B. 4) and (B. 7) we see that 

(-l) U+S Ct 
1 µ µ 

(B. 8) 

12 
These · are exactly the conventions used by Carruthers and his 

8 X 8 crossing matrix obeys (B. 8). One canno t e mploy here the 7 X 7 

. . f t d b G · · 21 · 't · crossing matrix o ten quo e , e.g. , y asiorowicz, since i is 
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obtained by treating 8
1

- 8 and 8- 8 1 as identical. As a 

matter of fact, the exchange contributions found from the 8 X 8 

crossing matrix are negatives of each other, although, naturally, the 

direct channel amplitude is symmetric as required by time reversal 

invariance. 

Keeping in mind the order of the states (B. 2) and Fig. B. l, we 

write out tl.8 s channel octet projection operators. 

s p (8 ) _ l F F p (8aa) = = 
"(O, a{3 aa 3 e'YO ea{3' 

P
8 

(8 ) = p (8 ) = ]_ D D 
SS "(0,a{3 -SS 5 e'}'O ea{3' 

(B. 9) 

s 
p (8 . ) = p {j {3 (8 ) 

sa 'Y ,a sa 
= _l_ D F ..rs E"( 0 E a{3 • 

P(8 ) and P(8 ) satisfy 
as sa 

p (8 ) p (8 ) = p (8 ) t 

as sa aa 
(B. 10) 

p (8 ) p (8 ) = p (8 ) . 
sa as ss 

In or_der to find the projection operator for the lQ, representation 

in terms of quark indices, we- calculate the SU(3) part of Fig. B.2. 



(~) 

89 

/ (~:) 
/-< 
(efg) 

(efg) 

\ 
).-.. 

\ 

' (~) 

Fig. B. 2. Direct channel lQ., contribution. 

Normalizing, we get 

i -a' c' ebd 
= 2 0 0 E E b'd' a c e 

(B. 11) 

Actually, it is necessary to symmetrize this with respect to a' and c'. 

Thus we usr-\d 

1 [l (a' c' c' a')] ebd -2 -2 . 0 0 + 0 0 E E b'd' a c a c e 
(B. 12) 

) 
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