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ABSTRACT

This thesis is in two parts. In the first_ section, the operator
structure of the singular_terms in the equal-time commutator of space
and time components of the electromagnetic current is investigated in
perturtation theory by establishing a connection with Feynman diagrams.
It is made vory plausible that the singular term is a ¢ number. Some
remarks are made about the same problem in the electrodynamics of a
spinless particle.

In the second part, an SU(3) symmetric multi~channel calculation
of the electromagnetic mass differences in the pseudoscalar meson and
baryon octets is carried out with an attempt to include some of the
physics of the crossed (pair annihilation) channel along the lines of
the recent work by Ball and Zachariasen. The importance of the tensor
meson Reggn trajectories is emphasized. The agreement with experi-

ment is poor for the isospin one mass differences, but excellent for

those with isospin twoc.
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I. CURRENT COMMUTATORS IN QUANTUM ELECTRODYNAMICS
I.1. INTRODUCTION

As first pointed out by Schwinger, L singular terms must be
expected in the vacuum expectation values of equal-time commutators
of space and time components of the electromagnetic current. He gave
an explicit proof of this for the case of the noninteracting Dirac field
by defining the current operator as the limit of the product of field
operators evaluated at noncoincident points. ]ohnson2 demonstrated
that this was the case for interacting fields on the basis of Lorentz
invariance and current conservation. Since current commL;tators have
been applied widely with considerable success during the last several
years,3 it is of more than academic i_nterest to examine the structure
of the singularr (or Schwinger) terms.

A ¢ number Schwinger term will contribute solely to disconnected
graphs of the type shown in Fig. 1.1 and has no physical consequences

since it is eliminated by subtracting from the commutator its vacuum

expectation value.
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/

Fig. 1.1. Contribution of a ¢ number Schwinger term.

In order to investigate whether the Schwinger term is an operator or a
c number, we calculate some off-diagonal matrix elements of current
commutators in perturbation theory in quantum electrodynamics. In
the Appendix we discuss the electrodynamics of a spinless particle
which is harder to interpret and of less interest than the spin—% theory
becausé the current is not analogous to a quark current. The deriva-
tion of the basic relations is not meant to be mathematically rigorous;
the order of taking limits and performing integrals is freely inter-
changed. Our object is to determine what results are obtained by
employing the usual techniques of reduction formulas and Feynman

diagrams.
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I.2. FORMALISM

We can calculate the equal-time commutator by writing the cur-
.4, . i
rent, defined by OAy = jp o in terms of the renormalized Heisenberg

fields and employing the equal-time commutation rules

{¢a(§,t), lng(—X.',t%
fe 0. v 0}

in a straightforward manner. The current is j*~L x) = 21/238$7H\J‘J and

1l

53&—;')5&6,
(2.1)

0,

this gives imr_nediately
[ &,0), i (0)] = 0. @.2)

vTherefore_, we define the matrix element of the Schwinger term as
(a(_) | [jv(;:.IO) . jO(O)] IB(+)) computed from the Feynman amplitude.

Without ever writing the current as a singular product of fields,
we can establish a connection between the matrix element
(a(_) I [jv(;, 0),jo(0)] !B(+)> and the Feynmen amplitude for the process
B—=a + v+ v in the following two different ways.

The S-matrix element 156

(a;kl,el;kz,e;_)JB(Jr)) =1 —i(27r)464(pa+k1+k2—pB)

ep‘
1 . =), (+)
X (Zwl)% (a,kz,ez |]p I, {2.38]

We define the Feynman ¢ mplitude /6 by

(_\ (+)
{aik, e, "1 OIBY7) 2.4)
2 2 S8

|

S P
N6 = wdeg (ZQZHZEQZEB

h
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= et e ey ((al e ¥ Mima s 016" @)
= elpezv,%pv 2.6)

and we break up /0 wy according to M, = /Y(ap(;l:) + /Y(ai}i) , where

8D = 2 22 )? (atee™ oy poy 0018y, @)

B
(P) _ L0 3~ -ik,'x
/ch = -~(H2E02EB)2§d xe ¢
X (a(')l[Av(E, 0) + iszv(EE,o) (0)] !B(+)) (2.8)

Now let Ez remain fixed as w, = and use the identity

j ) = "0 G 0)e O 2.9)

jv(}_;,O) + ixo[H,jv(;c.,O)]+ -zll'(ixo)z[H,[H,jv(;,O)]:l + won B0

to perform the integration over Xgo in (2.7). A series of decreasing

integral powers of wg results with the leading term 7 X|.Lv’ where

-—1kz

_ g _
xw= —i(HZEQZEB)ZS.de'x ( ()l[ (x 0), j (O)]lB(+)). {2.11)

Inverting the Fourier transform, we find
@i, & 0,1, 0118%)

: a9, 5 o
_ i i S‘ 2 elkz XX (k

g ) = (2.12)
(HZEQZEB)E (2m)

le pB

This is our first fundamental result. The other relation between

the commutator and the amplitude is based on current conservation.



Applying translational invariance,

69 = &% e, (2.13)
and four-momentum conservation,
pB=pa+k1+k2, (2.14)
to (2.7) yields
1 e
#0 = e 2r )2§d4xe_lkl -
pv a” B
X (i ), C118%). (2.15)
Therefore,
p% (T)-
R, = By o ahepuata R (o Oy 3, 118%).
(12E,2E )2
(2.16)
We now integrate by parts and use current conservation, st jp x) = 0,
to obtain
R = iS‘d?’; eikl'x(a (')I[j (Q),j (—E,o)]lBH)) (2.17)
v v (&)
i §d3§<’ 1k2'x<a(‘)l[jv(E,O),jo(O)]fﬁ(”). (2.18)

Inverting the Fourier transform and employing current conservation,

(
this time in the form k"% = 0, which implies kM /0 T M (P
. 17 v 17 v 17 v

’

we get finally



@y &, 0,5 0118%)

i % F r
;S‘ 5 © 2 kl'/% £ o (2.19)
(I2E,2ER)Z v (27) wy 2 e B

Equation (2.19) is the second desired formula.
In utilizing Eq. (2.12) or Eq. (2.19), IY(D}-LV is written down from

the Feynman rules and its asymptocotic form is computed in the limit

P)

@, - with ]_<-2 fixed. Eqﬁation (2.8) shows that /YG:L is at most a

v
linear polynomial in Wy and is easily isolated as the part of %HV
which does not tend to zero in this limit.

Equation (2.19) may puzzle the reader for two reasons. First, it
is not obvious that it agrees with Eq. (2.12) and, second, the right-

hand side appears to depend on wg which the left-hand side clearly

must not. According to (2.8), %(P) has the form

TRY
(P) _ F- o
%P-V S Apv(kzlpalpﬁ) <z mZB}-L v(kZ ;pa:pB)- (2-20)
So, we have as wz =0 EZ fixed,
-1 -2
A6 - w_B +A +w. X + O, ). (2.21)
B 2 v v 2 T pv 2

. e e B e T I e Ll [
Now, using ]<:1 3 pa k2 q kz,we canexp::—mdk1 - in

powers of w{l to obtain
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0 =kM"Mm =- + = .
1 “ BOV c‘)2 (qOBOv AOv + kl Biv)
_ i A
+ (qOAOV X +k xiv\l + 0w, ). 2.22

This yields, of course,

B = 0,
ov
i _
qoBcv on + k1 Biv = 0, (2.23)
_ i
Xov - qOAOV ¥ klAlv

But, from (2.20),
b (P) 2 i ' i
" = - -+ e
kl /YGHV “2 Bov “2 qoBov Acv * k1 Biv) * (qOAOv * klAiv)

(2.24)
Substituting (2.23) into (2.24) demonstrates immediately that
kll‘L/YBP(S) = Xov and this resolves both of our apparent difficulties at
the same time.

In order to apply our formalism, we must study reactions with
two photons in the final state. Processes which can be obtained from
these by crossing naturally would give no néw information. The
simplest cases to consider to lowest order are pair annihilation and
photon-photon scattering. The latter is fourth order, but converges
without ren>rmalization and the entire amplitude can be calculated by
symmetrizing the contribution of a single Feynman diagfam. Only a

very complicated operator Schwinger term might give a null result in



both of these situations. For example, a term with the operator struc-
2= , , , , 4.2
ture e YUY will show up in both computations and one like e A~ will be

exhibited in the second.



I.3. RESULTS

For electron-positron annihilation, the amplitude is calculated

to lowest order from the following diagrams.

Fig. 3.1. Pair annihilation.
These give
He e ol i e S S v ——t oy
- V(p.S)[( lev ) K, bm (~iev,) + (-iev,) }b—szm( 1evv)}U(p,S).

(3.1)
1y

Equation (3.1) clearly indicates that as wy = %2, k

)

fixed, %P- —~Ofwy

I

2

1%

which means %}L(S = 0 and thus (2.19) gives no Schwinger term. It is
also easy to check that Xov = ( so that (2.12) gives the same result, as
it must.

For Delbriick scattering, Eq. (2.19) is much more convenient
than Eq. (2.12) because it requires only the finding of the asymptotic

behavior of the amplitudz. Removing all the photon polarizations, we

can express the Feynman amplitude in the form
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Lyho Tpv)ur(kl'kZ'kB'kll) £ Tpvcr)\(kl’kZ'kll’kS)
+Tp)\v0‘(kl'k3'k2' 4), (3.2)
where
d4g i i
T k [ Ik :k =R = -1
wo K Ky ikgik,) 2 2m)A tr L( iev ) o (~iev,) Bk, m
X (-tey ) T (-dev,) i (3.3)
o [b—}&S—l-tLl—m P 1b+k2—m '

is twice the amplitude corresponding to the Feynman diagram below.

|
o
2
S
o]

ker kz,v

Fig. 3.2. Delbriick scattering.

The factor 2 occurs in (3.3) because the six distinct graphs obtained
by fixing one of the photons are equal in pairs related by ordering the
photons clockwise or counterclockwise around the Fermion box. More
physically, .this is the same as letting the electron run around the loop

in the opposite sense, or charge conjugating the diagram. (The +1

here becomes-a -1 for closed Fermion loops with an odd number of
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vertices and hence these diagrams vanish as demanded by Furry's
theorem.)
Gauge invariance requires that #&t depend only on the field
strengths, 7 which implies

mpvm(o,o,o,o) = 0. (3.4)

In more detail, suppose that at low energies 6 4can be expanded in

a power series in photon momenta:

/mpv)ur(kl ,k2,k3,k4) = ap.v?s.cr + (terms linear, quadratic,
etc. in the k's). (3.5)
Then
R =

for all kl such that klz = 0, yields at once

b _
kl aw})\(r = 0, (3.7)

for all such kl . By selecting suitable null vectors kl it is easy to

show that (3.7) implies

a}‘chr = 0y (3.8)

which proves (3.4).

©,7,0,0).8

Let us use (3.2) and (3.3) to evaluate 46
. HVAD

Notice that

asS
Sy § = - oo where Sp) = - .
B o p-m

(3.9)

Q
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Equations (3.2), (3.3) and (3.9) give

4

4 d / 9 \ ( _
- % = g o B r nYa (n+1l ) ¢ =~ )
]J.v)\ﬂ' (0:-‘2 ,-\.3 :k4) o (277')4 \ app) HLS(yJ l)\S\r'L ‘3/70_ S(p ‘SI'YV
* S(p)v)\s(p+k3)7vs(p—k4)vg}. (3.10)

At this point it is essential to observe that the bracket behaves like
p"3 as p—<«. Since the integrand is a total derivative which can be
converted to a surface integral at infinity, we need to consider only

large p. ' This permits the great simplification of setting

k2=k3=k4=0. Hence

) {2 0,k ,kz,ks) = Mo

i 1 PLW\O_(D,O,O,O) (3.11)

" :
-ty de S tr[S(p)’Y)\S(p)YUS'(p)’YVJr S(p)v)\s(p)vvs(p)vc]

@m* 8p
(3.12)
1 g 8 & B

= e B sp o —= wlpliy. ] (3.13)

(2m= 8p"~ oap~ 9p =

4. D
5 9 9

= 4e* dp4 Tl (,( 2"2\ (3.14)

(2m)* 9p~ 9p~ Ap p“-m
= (gp,vg?\cr b gp?\.gvcr & gpvgvh> s (3.15)

Equation (3.13) comes frcm repeated application of (3.9) and (3.15)
follows from the symmetr s and Lorentz covariance of /)’(aw}\cr (0,0,0,0).

Equation (3.15) gives
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N . pv :
& =os /%w (0,0,0,0) (3.16)
9 9 , Py )
- (3.17)
G (2,,4 apu op, b \ 2.2,
_ éS‘ d%p [_-48m* } (3.18)
6 (27,.)4 l_(pZ_mZ)él
= __-192 . (3.19)
127

Equation (3.19) contradicts (3.4) and thereby demonstrates that we

must use the gauge invariant amplitude

Mo, ong Ky kgrkgiky) = Mo ) Oy kyikgiky) - Mo, 0,0,0,0).
(3.20)

One has to enforce the gauge invariance of the vacuum polarization
tensor in the same manner. In this case gauge invariance fails
because the amplitudes T diverge logarithmically, even though their
sum M is convergent.

Now, in computing /b (P)

pvhcr(kl'kZ’kC’;'kll)’ we may putk,_=k =0.

3" 4
By Eq. (3.11)

Il

Mm(kl.kz,O.O) Mowm(o,o,o,o). (3.21)

Therefore,

(P) =
/ﬂgwm(kl,kz,k?),kll) = /Y(swm(o,o,o,or, (3.22)

so ‘that, due to (3.20),
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_ (P |
(kl,kz,k ,k4) = 0 (3.23)

VAT 3

and again we get no Schwinger term.
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I.4. CONCLUDING REMARKS

If we are prepared to ignore the fact that the manner in which
gauge invariance is imposed through Eq. (3.20) is purely formal and
its effect on the current is unclear, we can postulate with confidence
that tire Schwinger term is a ¢ number. By considering the limit of a
nonlocal fit 1d theory, Boulware reached the same conclusion in a paper
published very soon after the completion of this work.9 Later still,
Bra.ndt10 gave a new definition of the equal-time commutator by writing
each current in the commutator as the limit of a nonlocal product of
renormalized fields and taking the limit after employing the equal-time
commutation relations of the fields. He finds a Schwinger term with
the operator structure Az and on the basis of his work challenges our
heuristic assumption that the time-ordered product vanishes at infinity.
In that case the simple methods proposed here and by Bjorken5 are
invalid.

We could also use Eq. (2.12) for photon-photon scattering, but
since it necessitates finding the next to dominant terms of the ampli-
tude, the calculation would be much more tedious and its independence
of reguiariz ition only apparent because we must, in principle,
regularize the complete amplitude before finding its limiting behavior.

Pair annihilation to fourth order, besides being very messy, has an
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infrared divergence which cancels out in the cross section, but is not
expected to do so in the commutator. As discussed in Chapter 2, it is
very unlikely, in any case, that a Schwinger term which gives a null
result in Delbriick scattering would appear here.

Applications of equal-time commutatoré have been founded on
postulating the validity in the real world of equal-time commutatcrs
computed in some model such as the quark model. In this ménner, sum
rules, low energy theorems and Ward identities have been derived. .
After hypothesizing the commutator, the high energy behavior of various
processes can be deduced by re‘versing the arguments given in

’

Chapter 2. Radiative corrections to weak interactions5 1 and the lep-
tonic decays of the 7 meson12 have been studied using these methods.
Youngl,3 has calculated the #© lifetime and the wp# coupling constant
and Bjorken5 has obtained a lower bound for electron-nucleon inelastic
scattering at high momentum transfer. Most interesting for us, in view
of the fact that the second part of this thesis deals with electromag-
netic mass differences, is that equal-time commutators determine the

gL L el b In order to

high energy behavior of the Cottingham formula.
compute the matrix element for forward Compton scattering which
appears in the formula, the commutators are evaluatec between nucleorn

states of the same momentum. Since disconnected griiphs of the type

shown in Fig. 1.1 are specifically excluded from the Cottingham

-



5
formula, ¢ number Schwinger terms clearly do not contribute here. A
nonzero matrix element of a g number Schwinger term in the commu-
tator [j,j] would give rise to a quadratic divergence in the mass dif-
ference. Such Schwinger terms in more complicated commutators

would cause a logarithmic divergence.
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APPENDIX
THE SPINLESS THEORY

In the electrodynamics of a spinless particle, with the current

Z

1o * * 2 *
j (x)="1iel@d o -9 5 w) - 27A 979 |, A.l
1,69 = - [1e b0, RSO @.1)

the canonical commutation relations

[, ofin] = o,

l:‘\o(;‘;t t) :‘P*(Ellt):| = 0,

i} i @.2)
0 Get), 060 | = 0,
o, 1), 0 G . 0| = 163%-3",
yvield directly
o~ | 27 ZINET 3~ 4 %
[ji(x,o),jo(o)] = -2ie (2‘3‘) [5 (x%) (v aim + 93,0 )
- tp*(O)tP(O)aiés(;E)}. @.3)

We now define the matrizi element of the Schwinger term as
(o (=) | [ji(§, q) ,jo(O)] l B(-H) , computed froin Eq. (A.3), subtracted from
the same quantity calculated from Eq. (2.12) or Eq. (2.19).

The amplitude for pair annihilation written down from the

Feynman diac:;rams shown below is
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=

-

1 i [ _ |
o i B SN . _
oy [ ie (k2 2q) VJ (kZ_CI)z_p_z le (kz q+q)P_-|

— i 2
+ | ~ie(g-k,.-q) jl _t \:—ie (2g-k,) } + 2ie . (A, 4)
[ 2 VS (CI‘kz)z'Hz ARV gp.v
kl,el kzi{/ kz,ez kl,el kl,el\\/iz,ez
——— — . 7 ) \
/ _\ / _ /
,ﬁq ak 4q qx{ ar K g
\ / /
/ \ ! \ h

Fig. A.l1. Pair annihilation.

From (A.4) it is easy to see that

2

X , = 2iek, .,
oi 1li

#E = g, (a.5)
ol .

P
JYG( )= Ziezg‘.,
ji ji

so that (A.3), (2.12) and (2.19) all result in

2e2

( Ol{ji(x,O).jo(O)] lq,q) = ”

[16 - (@], 8° ). (2.6)

M

g
Photon-photon scattering is complicated by the presence of

seagull diagrams. Some of these are independent of k, and, therefore,

2
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would have to be evaluated exactly if we used Eq. (2.19). In

Fig. A.2 we display the Feynman graphs for this process.

Fig. A.2. Photon-photon scattering.

The entire amplitude can be decomposed as follows.

_ R L e, (D
}J.V)&O" - %p,y)\_g' + }J’V}U’ + }.LV)\.O" (A. 7)
(R)
%HVKG‘ RIJ.V)\O" R}J-)\.'VO’ R}J.U")\V’ (A. 8)
)
%pvka - S}.LV)\O‘ % S}.thcr i S}.Lcr)\v o Sva_
+ S + 8 : A.9)
Vo A AoV
(" _ | |
%p.v)\cr - T}.kacr + Tpva)\ + Tp,)\vg*' (A.10)

where the momenta are understood to be permuted just as the indices
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are and
E T 3
R L Fafn, B G E Gt , (A.11;
LVAo " (2m4 (pZ_HZ )[(p_kS_k4)2 _ HZ]
g 1S@ielg, ) (-1e)? (2p-k3), (2p-2k3-ky),
Spnne T 2 4 2_ 2 2_ 2 BB e 1
'* 2m*  (E"-p")[p-kg) -1 Ilp-k3-k ) “~1"] |
4 i4(-ie)? @p+k,-ka-k,)  (2p+k,)
i \"d p 2R Ryl PR,
pvhe T d am4 EZ-p2)le-kg)? - p2lllp-kyky)? - p?]
(2p-k3)y (2p-2k3-ky)s
2 2 d (A.13)
[(p+k2) -pe]
R}w}m, SPLMCF and 'I‘MW\Cr correspond to Fig. A.2(a), (b) and (¢),

respectively, and the source of the factor 2 in S and T is the same as
in Delbriick scattering for spin-3. The calculation via Eq. (2.12) is
considerably more tedious than the spin—é case and occasionally it is
necessary, in ofder to avoid spurious singularities, to break up the
region of integration over Feynman parameters and then to approximate
the integrand differently in the two regions. As an example of this, we

would write

1 1 i 1 A€ i b4
S‘ sz dx .(xdy =§ dzjv dx (-xdy + j szl de dy, (A.14)
0 z M 3 Z Yo o) o O

where 0 < e << 1. A typical denominator obtained after introducing

Feynman parameters is
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a2 = pz {1 z)1<22 - y(l—y)ks2 x(1-x)k 2 - 2z(1~ y)k k3
- Zz(l—y)kz-k4 - Zy(l—x)kB'k4. (A.15)
. . 2 2 )
In the first volume in (A.14) a~ = —z(l-~z)m2 , whereas in the second

3 2 ~ 2 . 2 . —_
region a = 2y (1 x)k3 k4 20, . If we take k3 k4 = 0 to save

labor, .re obtain

g oo T

, e, ., (9w
oi 1872 L31 40

3'“4)*'64530(9“4'“3ﬁ (A.16)

and hence

4
(k3,53 4’ 41[1 x.,0), J ]loy = L T = l_e €. (9w _-w )
" (4wgwy)? 1872l 31407 374
+ e4ie30l(9m4—w3):| 53(;). (A.17)

We have not succeeded in comparing this with Eq. (A.3) because
sandwiching the latter between the same states diverges. Consider,
for example,

2

e — ; *
w 3 4AHV = (k3,€3,k4,€4ltp(0)kp (0)10) (A.18)
*
é(ks,es,k4,e4lwln}(nlm 10}, | (A.19)
To lowest order In) = |q} and (q!(P*IO> = L T

(k3.kq!Tlq)
2 r

(k3,k4i¢iq) = (A.20)
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where @O + pz)tp(x) = J(x). Thus Auv is expressed as an integral over

the pair anrihilation amplitude

.2 =tey - [Zg-2ka-k)en s Ba-ka)
<k3,k4mq> _ ie " { 4 3 4 23 3
(Bw wrawy)? (@-ka)” - p
g 374 3
-ieq* (2g-2k  -kq)e,* (2g-k,)
it 423 42 £ & g ] n.21)
(a-ky)® - B
N =S‘ a3 1 1 '[(ZQ—st-ka(Zq-ks)u
v (277,)3 qu 2[q~(]<3+k4)—.k'3'k4] Zq'k3
(2g-2ky-kg), (2q-k,) '
M 4’v
M 2q-k4 M zgl..l‘vj] ! (A.ZZ)

which diverges,
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II. ELECTROMAGNETIC MASS DIFFERENCES OF THE

PSEUDOSCALAR MESON AND BARYON OCTETS
II.1. INTRODUCTION

Feynman and Speismanl were the first to attempt to calculate the
neutron-proton mass difference on the assumption that it is purely
electromagnetic in origin. These authors obtained finite results by
using cutoffs, which can be interpreted as electromagnetic form
factors, to take into account some of the effects of the strong inter-
actions. Although naively one would expect the Coulomb interaction
to dominate and thereby make the proton heavier than the neutron,
they could obtain the correct sign for the mass splitting by taking the
cutoffs sufficiently high. Cini, Ferrari and Gatt02 rephrased their
argument in tefms of dispersion theory and related the mass difference,
given by the nucleon proper self-energy part evaluated on the mass
shell, to an integral over the forwafd Compton scattering amplitude.
They demonstrated that the experimental form factors fell off too
rapidly at high momentum transfer tol yield the requirec sign reversal.
Therefore, it became imperative to search ior other rele:yant conse-
quences of the strong interactions.

The first advance in this direction was made by I—Iarari,‘4 who,

because of the work of Cini, et al. and that of Cottingham, .
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studied the high energy behavior of the forward spin-nonflip Compton
scattering amplitude. He cobserved that, according to the Regge pole

a (o)

theory, at high energies this amplitude is proportional to v , where
v is the customary direct channel energy variable and « (0) is the t=0
intercept of the leading Regge trajectory with the appropriate quantum
numbers. For I =1, these quantum numbers areI=1, C=1, G= -1
and P = (—1,‘1. This is the trajectory of the Az meson which has5

@py (0)= 0.4 > 0. Hence the dispersion relation for this amplitude
requires a subtraction and a Feynman-Speisman type computation,
being based on its saturation with low mass intermediate states, is
not expected to work. On the other hand, for isospin two, no mesons
have been observed with (mass)2 =8 (Bev)z_and this lead de Alfaro,
Fubini, Rossetti and Furlan6 to conclude that g (0) < 0. Harari,
then, could as‘sert that low-lying intermediate states should dominate
the I = 2 mass differences and the usual simple-minded estimates
ought to be reasonably accurate. This, in fact, is the case.

The next physical effect to be stressed was the feedback on the
electromagnetic self mass of the electromagnetic mass shifts internal
to various Feynman diagrams .7 This was then related to the existence
of a nucleon-antinucleon bound state with zero residue—a ghost—with

+ -
IP =0, IG = 1 where the trajectory of the A2 meson crosses the

t~axis at negative mass squared.8 This idea is illustrated
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schematically in Fig. 1.1. The details of the extinction of the bound

+
=lingl
o

(a) _ (b)
Fig. 1.1. Born approximation, (a), and rescattering, (b),

contributions to the mass difference.

state and the connection of the specific ghost-killing mechanism with
the sign reversal will be discussed in the fourth chapter. We may
interpret the ghost as the "tadpole" which Coleman and Gzlashow9
postulated in order to propose a successful phenomenoclogical explana-
tion of the correct octet mass shifts. The SU(3) properties of the
tadpole model follow because the AZ is a member of the octet which
also comprises the f, and the K(1420). So, the octet of extinct bound
states isa consequence of strong interaction dynamics rather than a new
elementary .particle. These concepts are amplified in a single-channel

calculation of the neutron-proton mass difference by Ball and

Zachariasen.
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We shall perform a multi-channel computation of the 0 and §+
electromagnetic mass differences relying heavily on the apparatus
developed in Reference 10. The next section recapitulates the
required results of Ball and Zachariasen and describes the rest of
the essential physics of the calculation. The Born approximation
and the D-function, by means of whizh we include some of the strong
rescattering effects, are treated in Chapters 3 and 4, respectively.
The last two parts cdmbine these in order to deduce the mass dif-

ferences in our model and discuss the implications of the results.
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II.2. METHOD

Ball and Zachariasen (hereinafter denoted by BZ) commence by
writing the Cottingham3 formula for the electromagnetic mass shift of
a nucleon (which is exact to first order in the fine structure constant «)
crossed into the pair annihilation chani.=l. Inclll_lding the factor %,
which comes from the fact that the right hand side of Eq. (2.1)
includes both Fig. 2.1(b) and (c¢), while either one is sufficient to

vield Fig. 2.1(), omitted by BZ, this reads

5M=§ '1> — 2.1)
(277

(BZ make a cancelling error of a factor 2 in the Born term, so all their
numerical results are unaffected.) Tpv(q,_q*;p,ff) is the covariant

T-matrix for the process NN - vy, for virtual photons of mass

NN
Pp

@) (b) (c)

Fig. 2.1. Crossed channel Cottingham formula.
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%, .
g (=q

2), where p and p are the nucleon and antinucleon four-
momenta, g and q are the photon four-momenta and Tpv is normalized

so that the S~-matrix is given by
="
: 4.4 s — e
&= 1-1%) 0 @+g-p-Djk & e A 2.2
F vV N16EEww —

Naturally, the Fermions are on the mass shell.

BEZ sandwich (2.1) between the spinors ¥(p,-¢) and u(p,¢), which

are written down explicitly in Appendix A, and sum over Fermion

helicity ¢. With
x -
. t= (g+q)” = (p+Dp) (2.3)
and
y = gﬁﬂ 2.4)
there results
. 4 '
5M2 =3 y-g—*gg —15 T(0, vig?), (2.5)
(2m)* 4q
where . d
BN sy o i 2 X
T(t, viq?) — XZ Ty (B via?) (2.6)
and
b
1 2 B
E Z Tex t,viq?) = - ZV(E,—G)T”(q,q:p,ﬁ)u(p,cr). (2.7)
= =, psans M
A=-1 =—2 a

, 3 .
As wes first done by Cottingham, one can rotate the contour of

integration over g4 in (2.5) and perform the integration over the

direction of §. Thus, one finds
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2 R 2 NFeg i 2
oM™ = - 2 dv(-g”-v4)* T(0,iv;q%). (2.8)
16113 -0 —~/-q?

Each of the helicity amplitudes T has an especially simple

AN P

t-channel partial wave expansion, L namely,

J

2. "
T (t,viqa”) = ), @7+ LR EIT,,

2
L 2.
ok I ML(t q“) (2.9)

where z is the cosine of the center of mass scattering angle for

NN — ¥y, so that

o=

= 2Vt - 4g2
NS (S o TSV L 210

Equation (2.6) implies at once that T(t,v;qz) has the same partial wave
expansion,

T, viq?) = ) @]+ 1P ()T (t:q2). 2.11)

T J

BZ now define in the physical region for NN - vY, the quantity

1 1
X(t:qz) = 5 dz(1 - 22)z T(t, v:qz) (2.12)
-1
and prove by analytic continuation to t = 0 that
1 .}_qz 5 it " .
X(0;q9%) = - —ES dv(-q“-v2)2 T(0,1iv;q%). {(2.13)
q® “—nN-q?

Substituting (2.13) into 2.8) gives

(@]
GMZ s el quX(O;qz), (2.14)
3
167 —co
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so that substituting (2.11) into (2.12) and this into (2.14) presents us

with the grand result, the t-channel partial wave expansion of the

mass shift,

o
2 1 2T 2
oM”~ = CS‘ dg T (05a”) .
1673; TJ o
where
1 z
g = (2}+1)S' dz N1-2z2 P_(z).
i) L1 J
Obviously, CI= 0 for odd J. For J even we find
27+1 2m 2 2 2
= 21 G-1n°@-40°- - - »°

=711 Enigr+ !

The first four C_'s are the following:

J
c_ = -2’5 = 1.57,
c, = —?—6 = -0.98,
c, = ——19—2’% = -0.22,
C, = - 5g = =0.10.

(2.15)

(2.16)

(2.17)

(2.18)

Hence, even without reference to the low energy approximations used

later, we see there is a measure of reason for keeping only low partial

waves.

It is through Eg. (2.15) that the attempt is made to include

relevant phenomena of the NN system at zero total energy.

the
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Equation (2.15) holds unaltered for the pseudoscalar mass
shifts with the definition

1
T(t,v:qz)= Z TM(t,v;qz) (2.19)
A=-1

= —TH*‘“ (@.,q:k. %), (2.20)

where k and k are the meson momenta. To obtain mass differences,
we have me ely to subtract the mass shifts for appropriately chosen
particle-antiparticle pairs.

The whole analysis explicated above generalizes straightfor-
Wardly to the multichannel case. Letting each Latin index denote a

particle, the basic formula (2.15) becomes

o]
M = 13 )@ S aq>T. J(0:92). (2.21)
U gend T T Lo T

Equation (2.21) can be employed to compute the transition masses

2
SO (corresponding to terms —mﬁon&pwonp and

m_q and m
mOn n

_mZ:OATI;Z:OqJA in the effective Lagrangian), but since these particles
are not degenerate, in a lowest order perturbation calculation in ¢,
it suffices to evaluate the diagonal elements of the mass-shift
matrix. The modification of the masses arising from diagonalizing
that matrix.i;s second order in o . Using the experimental values, 1e

(o}

the contributions to the 5% and 7° shifts are 0.06 Mev and less

than 10”4 Mev, respectively.
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The first approximation made in applyving Eq. (2.21) has been
mentioned already: we shall keep only the first few partial waves,
specifically, T=0, 2, 4, 6. The negligible contributions of the

J=4 and J=6 partiai waves will demonstrate that this simplification

is justified. Beyond that, we shall replace TI by the Born approxi-

mation B:r (Fig. 1.1(a)) for all partial waves other than J=0. Other

than the obvious desire to save labor, we have three reasons for
this. The first is the low energy approximation we are going to make;
second, there is no known physical phenomenon, corresponding to the

vanishing of the A_ trajectory for the J=0 channel, in the higher

2

partial waves which would give significant deviations from this sub-

stitution; and lastly, the C_'s are decreasing in size as J increases.

I
So (2.21) becomes

2 2

B 2 _ 2
M, = OM,+ OM ) o - 6MD . (2.22)
with
2 _ 2 2 _ 2
oM, Z((‘SMij)I, oM, ) (6M,2), (2.23)
il J
and
2 S ° 2.7, 2
5 = d :q%), 2.24
( Mij)I Lond J__ q Tij(O a®) ( )
S s C O
oM. 2) = —L aq?B 1 0:q2). 2.25
( Mij)I e % I q Bi].(O a®) ( )
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The problem has been feduced to calculating TiJC,’(O;qz) . If we
restrict ourselves to two-particle intermediate states, the unitarity
condition for this amplitude is particularly simple. This comes about
because in the center of mass system the component of orbital angu-
lar momentum in the direction of motion of the two particles is zero,
so that J=0 implies the two particles must have the same helicity.
Therefore, the IP= 0" amplitudes, obtain :d_ by summing over equal
helicities, couple to no others. The unitarity condition, then, in
matrix form referred to the states |ij}, reads (suppressing the super-
script 0)
mT(t;q%) = T*(t;a)e WL, (2.26)
where p (t) is the diagonal phase space matrix and h(t) is the strong
interaction amlplitude for our two-body channels with IP = 0+.
The unitarity condition for the amplitude h(t) is
Imh(t) = h*(t)p ®)h(), (2.27)
with the same p (t), since the latter depends solely on the intermediate
states which are identical in (2.26) and (2.27).
We can show easily that if we separate the left and right cuts
of h(t) in the standard manner by including them in the matrices N (t)
and D(t), respectively, 13
h = ND !, (2.28)

14 ;
then the amplitude F(t) =: T(t)D(t) has no right cut. Equation (2.26)
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can be rewritten in the form
T = T"(1 + 2iph)  (2.29)

and (2.27) and (2.28) together give

ImD = -p N. (2.30)
Then on the right cut
ImF = El—i(TD—T*D*) - (2.31)
= T*[;; (D-D*) + p hD] (2.32)
= T*(ImD + p N) (2.33)
=0, (2.34)

where we used successively (2.29), (2.28) and (2.30). This theorem

permits us to write the dispersion relation

mn,ij

ty1 [ImT,.(t';q2)]ID t)ID™! @]
E ,1_§ gt kl kl, mn e

2
Tij(th ) T t' -t

k1 " e
mn
provided we assume that T(t;qz)- 0 as t—«. Without the D-function
in this dispersion relation we WOulAd be calculating the mass differ-
ences entirely from exchanges and finding the usual incorrect signs.
The D-function takes into account the rescattering effects indicated
in Fig. 1.1{b). Since we believe most of the contribt;‘tion to (2 .35)

comes from low energies, we shall approximate ImT by ImB under the

integral sign. We shall discuss this in more detail in Chapter 5.
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In any case, with this simplification, the calculétion of the masses
is direct.

Using SU(3) symmetry will facilitate our computations tremen-
dously. We shall take particular care in the pseudoscalar octet to
try to assure that the errors due to this approximation should not
exceed about 25%. The first step, then, is to expand the amplitudes

Tij in irreducible representations of SU(3). We know that

8X 8=27+10+10+8+8" +1, | (2.36)
so that
s = ) Zd vy ld v){d vITld ,v){d, vlii), (2.37)
"Yr 'YI + VvV

where d’Y and d’y' denote the representations in (2.36) and
[ v} = !YIIZ) . Since the photon is the U-spin singlet member of an
octet, the state

vy} = lU=0,U=0) (2.38)

= 3(N31010) - [000))3(N3(010) - [000)) (2.39)
is symmetric in SU(3). Hence d,y must be a symmetric representation
of SU(3) and only the following amplitudes survive in the expansion

(2.37):
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(11TI1) = Ty 2
8lTlig) = T
({27|Ti27) = T27.

£v SU(3) symmetry these amplitudes are independent of v, the
direction ir. unitary spin space. Clearly, the singlet term contributes
equally to all mass shifts and hence can be neglected in calculating
the mass differences. With the help of Egqs. (2.39) and (2?40) and
McNamee and Chilton's15 SU(3) Clebsch-Gordan coefficients we can
write out (2.37) explicitly for the baryon octet. We employ the same
phase conventicons as they do for physical states and display it in
Appendix B. With those definitions, the unitary singlet is cdm—

pletely symmetric.

_ _ 3 1 Il 3
s = ~ 20 T8+4f5 Tgr t 50 Ta7¢
_ 3 Il 3
nn 20 Ta 4[5 Ts' 20 T27'
- 1 i L
Tatst = 2 fs g = g gy (2.41)

H
I
!

|

25 T Tad 5 a4 gy



3 1 3
_— - —_— = = P S
T yogo 20 Tg 4\!—5 Tgi =50 T27"
.o .B3.. 11, .3
TETE 20 "8 -4+5 8" 20 27

From (2.41) we get the isospin amplitudes exhibited below.

i d
_ _ .3 141 3. ,
L™ e = 10T8+2f5 Tget 70 Tp7e
T T = e
i o 5 “8'’
e B Lfl _ B
Tgome ~ Tu=m== 10T "a lys 7o ~ 10 Tov* (2.42)
Ty
T t=++T - - 2T o—o-‘-‘—"Q‘T
2 % > 5 2 2 2 27"

There is a simple partial check on Eq. (2.41): the =7, E°,

InI

amplitudes can be deduced from the Z+, n, p amplitudes by means of
the symmetry of the Clebsch-Gordan coefficients. The isospin one
amplitudes in (2.42) must, and do, satisfy the Coleman—Glashow16
relation

(Tppgr =~ Tpgt) ¢ Mo =T ) = T

-5 2 _ TEOEO. (2.43)

Il
Il |

Equation (2.42) is identical for the pseudoscalar octet, except

for the facl that Bose statistics requires T_, = 0 since with J=0 the

8i

particles must be in a symmetric unitary spin state.
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In order to keep this calculation within reasonable proportio

ns,

we discard all intermediate states other than two 0 octets and two

+
% octets. We shall discuss the likely validity of this drastic

measure in view of our results in Chapter 6. Let us, then, displa
the matrices in the coupled many-channel formalism. The super-
scripts B and P stand for the baryon-antibaryon and meson-meson

channels, respectively.

8 _ B B P
T“(Ts ,Te' T8>'

27 _ (B . P
T ‘<T27 T27>'

PB PP
h27 h27

SR
h° = hg?a hgrg: thB '
Bag Pogr Bag
. <h§? hyy

B =

The matrices of Eq. (2.44) will be the ones app=aring in the

¥

(2.44)

unitarity conditions (2.26) and (2.27) and hence in th: fundamental

equation, (2.35), which will now read
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tg ImBg(t';a2)]Dg. (t)
l]y cﬂ’[ T oy el (2..45)

o2y = ¥
T, (t:a®) 2 e .

By " Y-w

for both the octet and 27 amplitudes.

In order to be specific, we shall write out explicitly the nor-

malization of our amplitudes.

1

YP YP

= ) T,
A=-1

YB_ __p_ 1 vB

i N2M N2 Z TM\,ML'
A

PP PP
h =h ", (2.46)

PB_  _p 1 PB
h T A2M N2 ? h}.Lp.’

2
hBB o H. =B 4 Z hBB
N2M N2 A TRt
P
where the sums are all over helicities, as before, p is the baryon
momentum in the center of mass and M is the baryon mass. The
same definitions (2.46) hold with or without the partial wave analysis
(2.9). The amplitudes defined in (2.46) will turn out to have no
kinematic singularities. The baryon and meson phase space factors

are
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_ M? 1 - _ 1 [t-4u?
PB T 27 it - aMm2) PP~ 167Vt

(2.47)

The Cottingham formula includes driving terms, the effect of the
electromagnetic shift of internal masses in Feynman diagrams and the
effect of the electromagnetic modification of strong coupling con-

. ' 17 . . .
stants. In Dashen's calculation, the coupling constant shifts do
not contr:hute to the mass difference. We give examples of diagrams

which include internal mass and coupling constant shifts below.

Fig. 2.2 Exafnples of diagrams which include mass, (@), and
' coupling constant, (b), shifts.
We can now understand schematically why with our t-channel uni-
tarity approximation we are taking into account some internal mass
shifts, but no coupling constant shifts. The diagrams of Fig. 2.3
are unitarity diagrams with the intermediate particles on the mass

shell.
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U 0
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aa

Fig. 2.3. Born term and internal mass shift type terms
in mess difference computation.
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II.3. BORN APPROXIMATION

First, we use Eq. (2.42), in the notation of Eq. (2.44), to
express, for the baryons, the SU(3) amplitudes in terms of the

individual particle amplitudes. We find,

4

g8 _ 10 _ i 4 -
1 = 3\nm” Top )t Totmtm 3 Tpy -t 3 Tyogmo

8 = \B (TZ+§+ - Tz_§_>, (3.1)

H
|

2
1 T3 &Tz+3:+ s o 2T2°§°>'
For each pair of particles, by writing the vertex in terms of

the standard form factors Fl(qz) and Fz(qz), we can evaluate the

contribution of Fig. 3.1.

+ l@<—>Q

Fig. 3.1. C(ontribution to the baryon Born term
) from octet exchange.
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P-=.- - =V ___i._._.._
Bp i(-1i) Fl'yp 1F2cpvq )Ii- 4 - M

fo S S T S P .
X (-i) I-'l'Y 1F2cr q)\) + {@+—a). (3.2)

This amplitude is simplified by means of the well-known rules for
manipulating v-matrices and then the helicity sum in (2.7) is per-
formed using the trick explained in Appendix A. The result, (2.6) is

then analyzéd into partial waves through (2.11). One obtains

2 4M2 2_1; '
B](t:q ) = - - QI (q Zpaq - ie)F t;q2), {(3.3)
where
§ Zl ' i ZL
p = {3t - M%)?,. q = (3t - g%)° (3.4)
and
F (¢ 2)_ 1+__CL2____£_[ (2)]2
e ( om2  2m2) 12
M "M 43/ 1 F2M
4 2 2
+(2q2+ B et —t——q—L>[F @2n?. (3.5)
aM?2 16M am2/)" 2

This agrees with the result of BZ (except for the factor two mentioned
before). We should state that in deriving Eq. (3.3) the non-pole
terms in z, were dropped. BZ calculate that these wo'1ld contribute
less than 0.2 Mev to the neutron-proton mass differerce. This does

not necessarily imply, however, that non-pole terms arising from
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other form factors, permitted by the intermediate baryon's being off
shell, are also negligible. In the dispersion .language these terms
are associated with subtraciions in v. Ignoring thém in {/iew of the
lack of experimental data will receive some justification from our
results.

With the SU(3) relations among the form factor516

: _ e o
Fpy = F  Fp = 3F, Prti = B
—— — eas —3 —L
Fuoo = P F,+F).  Fyo 2F . (3.6)
and
_ A3
Faze = 7 7 Fyo

we obtain the SU(3) decomposition of the Born term from (3.1) and

(3.3).
' 2
T 2,78 _ _ 28M br  cmab
8 (a?] = - 2500 QI - 28 - H )
T,.. 2y 8 _ 45 M2 » P
a2, = 20 Qe o F ) (3.7)
(8 (6421 27 = 2 (8 (o 2,
Where
Y
r = - ie
2pq

and M is the mean octet mass,

p
) = 1L A -
M= 3 \_gl(mN + rr}E,) + 3 (3mA+ mz)] 1.;4 Bev. (3.8)
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Since the decuplet also lies low in mass and is essential to
the understanding of low energy baryon-meson physics, we calcu-
lated the contribution of decuplet exchange. In Fig. 3.1, the
exchanged particle now is to be interpreted as a member of the
decuplet and the blch as the form factor for the photoexcitation of

the baryon octet. It is an excellent approximation to assume thau

19,20

this vertex is dominated by a magnetic dipole transition. Then
we can write it in explicitly gauge invariant form as
C3(a2) '
e T, Y5, —dg,,). ; (3.9)

where p and v are the photon and 3/2% polarizations, respectively.
The spin 3/2 propagator is given by Gasiorowicz, Al with the overall
sign wrong. Now we have

B
B}.L 1( e) kZ_M*Z

VA 1 Vv N 2 v, X 1 V. \ Roiyr
X[g +3Y Y +3M*2kk BM*(kv k")

C;(a?)
3 Kq ,-YP- = d{g ) CI‘—“q) (3.10)

where k =p - g and M"r is the mean decuplet mass,

‘1
> =Z(mA+mz*+mE*+mﬂ_> = 1.46 Bev. (3.11)

With the same manipulations as those described after Eq. (3.2),

we obtain
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dra | C, (g2) (2
B (t;q2) = - ;

3my pgq

‘where

g2 - 5t + M2 - M*2
2pq ’

X =

+1
F(tq?) = ), M*nAn(t:qz),
n=-2

2

, (qz_M*z_M2><M*2_Mz+qz> ,
L BT ol o BNEE 8 8
A_l—M<q M M)(M M+q>,

A = .—z[ZM*Z(%t-qz) + (M*2-M2) (g2 - M2 + M*Z)],

o>
i

A, =ﬁ[4(t— 3M2) Gt - q2) + t(M*? - MZ):I ;

Using the SU(3) results12

Q&) ¥ (t:92), (3

.12)

Carp = G5 Caon = C3- Cgo*go = ~Cy:
3 1
Cotrpt -Cy Cso*po 2 C3+ Cso*so 2 C37
Cy-#p =0, €t~ = 0, (3.13)

we arrive at the decomposition, analogous to (3.7), for the decuplet

contribution
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CBI(t;qz)]l8 = %Bj(t:qz),
[BI(t;qz)]§ = N5 B](t;qz), (3.14)
(87 (:a21%7 = - 2 B (t:a?),

where BI(t;qz) is given by (3.12).

Neturally, (3.7) and (3.14) must be added in order to calculate
the Born approximation to the baryon mass differences. - Equation (3.14)
does not contribute to the I=1 neutron-proton mass difference because
the only non-strange member of the decuplet, the A, has I= 3/2 and
hence cannot couple to a nucleon and an I=0 photon. Foran I=1
mass difference, one of the photons must have I=1 and the other
I=0.

i.astly, we have to evaluate the Born term for mesons. o8 Since
we are ekclud'ing non-pole terms, the seagull diagram will not con-
tribute and Fig. 3.1 yields

i

B = il-iFr(q"](2k-q), 5 [-iF, @2]0k-a" + @—a),

k-q)2 -

(3.15)

where ]<:|“L,—k_PL are the meson four-momenta. Hence

5 o
Doseneli 2112 f Zt+g? - 4pé> \
Big®) = IF, )] o ‘)QI(X), (3.16)
where 1 g L
k = (3t - p2)2 and x= T2
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Numerical investigation shows that (3.16), at low q2

and t, changes
by less than 10% as p varies from m, to mpy. So we are justified in

using a mean meson mass W =0.49 Bev, deduced from

2 1 2 . .4 2 2
V8 = 2[mK+ 4(31’1’11,] + mw)]. (3.17)

In the meson case, the Coleman-Glashow relations (3.6) reduce

to
and
Feo=Fpo=F =Fo=F =0 (3.18)
Thér‘efore, finally we obtain
[B](t;qz)]38 = - L;l‘ BI(t:qz.).
_ (3.19)
4
[E'I(t;qz)lz27 = - gBI(t;qz) .

where BI(t,'qz) is given by Eq. (3.16).
In order to arrive at the numerical values of the Born approxima-

tion to the mass differences, we employ the following experimental

form factorslzlo’lg'zo'22
Pl (@?) = eF(@?), Pl = 0,
F(q?) = 1.79<1>P(q2). FPa2) = -1.91.-5 ) (g2),
2 2M 2 M
F_(62) = eF(a?), c,(@®) = 0.37 Fa®),  (3.20)
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where

1
" qo2 = 0.72 (Bev)z.

When calculating ﬁp.i from Gpiz for mesons, it is essential,
due to the large percentage symmetry breaking, to remember that, as
stated after Eq. (3.16), 5piz is nearly independent of pz . So we use
Oy = 1/2p4 épiz, where p; is the exact mass. For the baryons (this
is only relevant if we try to get accurécy better tl;lan 20%) it turns out
that Gmiz/M is nearly independent'of M, so we take

Zmi = 2M

5 et
T M

The results of the numerical integrations are given in Table 3 l-,
below. For the baryons, the octet and decuplet contributions are
exhibited separately in the first and second lines for each splitting
and their sum is displayed in the third line. All numbers are in Mev
and the experimental column is taken frora Reference 18. The table
makes apparent the poor agreement for I=1, the good agreement

for I=2 and the excellent convergence of the partial wave analysis.
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II.4. D-FUNCTION

The last piece of information required before applying the basic
P +
result (2.45) is the J =0 D-function for our baryon-antibaryon and
meson-meson channels. We know that the A2 trajectory passes through
2 23,24 : ;
zero at t = toz -0.6 (Bev)™. In order to understand what this
implies for the D-function, suppose, for the moment, that we have only

one sense and one nonsense channel. Then, near the pole, we can

write the partial wave amplitude as

B Na B
1 S5 SN g

7l

where we extracted explicitly the Ne suggested by models, from the
‘ , . .25 .

sense~-nonsense residue. Factorization gives

wf =B R (4.2)
SN S8T NN
Equation (4.2) allows four possibilities as o —~ 0.
(i) Choosing sense mechanism:
Bgg = 1 Pyny — -
In this case the sense-sense amplitude T° has a pole and
this must be ruled out for a gkost (t < 0).

(ii) Gell-Mann mechanism :2 B

BSS-'QI B —'1-
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Thus the trajectory chooses nonsense and the sense-sense
amplitude has no singularity.
. . 27
(ii1) No compensation mechanism:

2

- o, o

BNN BSS

The trajectory couples to the nonsense-nonsense ampli-
tude with vanishing residue.

: ; 2

(iv) Chew mechanism:

2
B - o 7 Bss-.a'

NN
This is just the reverse of the no compensation mecha-
nism. Here the dynamics operates to make the residue of
- the sense-sense amplitude vanish as a - 0.

BZ observe that, in the single channel case, if the sense D-
function had a zero at t,, then over most of the range of inteérration in
(2.45) D(t)/D(Q) would be negative and the correct sign would be ob-
tained for the neutron-proton mass difference. We shall see that the

zero occurs only if the ghost killing mechanism is that of Chew. For

2
this purpose, we employ the N/D equations in the form 3

N(t)

I

B + L (85 (3 - Ble o),

(4.3)

D) =1-1 S‘fi—t o (LN ().

The essential structure of Eq. (4.3) is the following.
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(1 +X)N = B, (4.4)
D =1+ YN, (4.5)
where X and Y are integral operators, X being "proportional" to B and
Y being diagonal.

If B has diagonal elements vanishing like N, (1 +X), therefore
(1+X) " and, by Eq. (4.4), N will have the same property. Equa-
tion (4.5) then implies that D will, as well. Putting such an N and
D into Eq. (4.1) yields a set of four equations. If we demand
Dll —- 0 as @ - 0, these equations éelect choosing sense—unaccepta-
ble for a ghost—or the Chew mechénism.

In the multichannel case the source of the sign change in (2.45)
is not so perspicuous, but we must have det D(to) = 0 if the Chew
mechanism does indeed apply.

Chu and lRoy,23 by considering finite energy sum rules for a
sense-nonsense amplitude in photoproduction, are able to rule out the

Gell-Mann mechanism for the coupling of the A_ trajectory to NN.

2
Such an amplitude, of course, does not distinguish between the no

. . . . 27,30
compensation and Chew mechanisms. Fits to 7N scattering
seem to indicate that the P" trajectory chooses no compensation and,
on the basis of SU(3) symmetry, this would compel us {0 assume the

same dynamical ghost killing mechanism for the AZ. Tl is conclusion

receives further support from the recent application of finite energy
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. ‘ 31
sum rules to KN scattering by Graham and Hug. These authors deal
with the AZ trajectory directly and find that the no compensation

mechanism is present. On the other hand, the reaction 7 p— Mn

appears to require the A, to couple via the Chew mechanism.

2
Thus, the experimental evidence seems to favor nc compensation,
but not conclusively. If the applicacion of the Chew mechanism by BZ
" turns out to contradict experiment, the oririnal, single channel,
physical understanding of the sign reversal will disappear and we
shall have considerably less confidence that the tensor meson trajec-
tories suffice to explain the mass differences. |
In order to find a simple model for the D-function which satisfies
unitarity, analyticity and the symmetry of the T-matrix, we shall employ
the Balazs method?’2 with a single pole. The residue matrix will be
determined by matching to single particle exchanges. Assuming that
the amplitude is dominated by the "tadpole," due to thel vanishing of
the tensor meson trajectory, not only at el W but even at t=0, we
shall fix the pole position and the three matching points, one each for
BB — BB, BB — PP and PP — PP, by requiring, at t=0, that

1_1BB /hBB - hBB /hBB ~ hBP /h?P ~

gg/ Ngg ~ Pgiq/Bgge ® hg.g/hyy = =2, (4.6)

the F/D ratio of the A_ coupling to baryons determined from high energy

2

scattering data.33 This value is well-known to be consistent with
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that necessary to fit the observed electromagnetic mass differences
with the tadpole model.34

Demanding even a crude simulation of (4.6) in our model leaves
no freedom. The determinant of the octet D—function automatically
develops a zero around t = -0.2 (Bev)z, so that we are not forced to
employ the Chew mechanism as a fitting criterion. The experimentai
data determine only the product of the Az couplings to baryons and
mesons.z‘1 Since the t-dependence of the Baldzs method is completely
different from the Regge form, the extrapclation of the couplings from
ty to 0 is dubious. For these reasons, as well as the lack of leeway
left after attempfing to match the D/F ratios, we did not try to force
our residues to agree with the magnitude of the AZ couplings.

We proceed to evaluate rough estimates of the amplitudes h,
denoted by B, defined in Eqs. (2.44) and (2.46). The SU(3) phases,
projection operators and crossing matrices are defined in Appendix B.
PP - PP;

The S-wave interaction may be replaced by the exchange of a
scalar meson o, assumed to be a unitary singlet.35 The direct channel
diagram, then, will not alter the mass differences. The effective
Lagrangian, .in the eight-component formalism, is

R 2
& = Lo ;, Pi . (4.7)
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The results of Furlan and Rossetti, based on the saturation of
current algebra with a few single particle states, agree with those of

Brown and Singer, who fit three pion m and K decays. These authors

quote35

2
Yorr
a7

m_ = 400 Mev and ~ 0.108 (Bev)z. (4.8)

I, Fig. 4.1 we show the Feynman diagrams for o exchénge,

writing expl.citly the octet indices of the mesons.

\ /
kN %
: /
g F k'K — &1
/ \
k A rk
/ \
/ \
i j

Fig. 4.1. o exchange.

Separating out the singlet projection operator, using the SU(3)
octet-octet crossing matrix, and analyzing into partial waves, we get

the o contribution

2 2
8 27 Jorm Mg
B8, = g% - -1, (1 =Y. (4.9)
33 ~ "2z £2 <o . |

The otner obvious force is provided by the exchange of the octet
of vector mesons coupling to the unitary spin current. Bose statistics

forbid the singlet vector meson from coupling to a psevdoscalar pair.
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The Lagrangian is

c=1if v*PFs P, (4.10)
prw i ip
13 = M d = 1 M '
where m, = 765 Mev an Tomnr = 30 Mev give
fezﬂ'ﬂ'
el 2:5. (4.11)

With V exchange in Fig. 4.1, this yinlds, as above,

Bgs = 2B,
(4.12)
where
+ &
= _3fF2>7r7r<2t mV & >Q0<1 + ey
and my is the mean octet vector meson mass
m, = m_ 4 = 6.890 Bev. (4.13)

A K

Owing to ¢ -w mixing, here we do not a;ferage the two sides of the
mass formula as we did for the pseudoscalar and spin % octets. In the

|
calculations leading to (4.12) we dropped all non-pole terms in order to
be consistent with the prescription used in the evaluation of the Born
terms. This is also in accord with the no subfraction idea in dispersion
theory and the fact that . omp051teness and Regge poles exclude

Kronecker deltas in the angular momentum from appearing in the

amplitude.
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Numerical comparison of (4.9)and (4.12) demonstrates that, at
t=0, the vector contribution is at least four times larger than that of the
o and, for t#0, much larger than that. In view of the roughness of our

computations, this justifies neglecting ¢ exchange.

BB ~ PP:
Here the dominant low energy processes are baryon octet and
decuplet exchange. For octet exchange, the Lagrangian is
£ = —ZlgB’YS[afDi + (1 - a)Fi]BPi, (4.14)
withl2

2 _
9- =15 and a=0.7.
aT

The Feyhman diagrams are drawn in Fig. 4.2.

k, m
v /
\ /

» B
\ /

) X $ e x) = .1
jo! -

Fig. 4.2 Baryon exchange.

After the usual prescription is followed, we obtain
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827 527 (142 -q - oz)z]B,

12

o8 R g B e
BIS—BSI—-[Za 2L~ &) 1B, (4.15)
.8 _ .8 _ _

823,—_332—~Jéa(1 «)B,

where
2
B = 8g"xQ,(x),

2 _ 1,
2pk °

The amplitude in (4.15) is symmetric by time reversal invariance. Com-
puting PP— BB checks this part of the calculation independently.

Decuplet exchange is easily formulated in terms of quark indices.
The coupling is unique and the coupling constant can be deduced from
the width of the 33 resonance. 2

S ade— p b (o
£ o= Xe AabCBdapPe'+h'C" (4.16)

where Agbc represents the 3/2+ decuplet field and
% = 15,4 {Bev] T, (4.17)

We find, for the decuplet term,

a7 _ R27 g
BlZ = 821 == i3 B/
8 _ 8 _ .
B, g = By, = &5, (4.18;
B = 8% = «En,
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where
2
_ A 2 _nk2 _ a2 *ole ar2
B 3Mpk QO(X){[M(}L M M¢4) + 2M™ (gt - M#4)
i 2 1 1
o Dt B0 o 2 - 2 g 2 ] L e o L
[(zt ji*} 4M*2(M M+ pf)" + S M+ s

X [(M*z —p2)yM*2 4+ M2 -02) - M2(3M*2 - M2 + ..LZ)D},

w2 -3t + M2 - M*2
2pk

X =

O 0

a c
b d
Fig. 4.3. Decuplet exchange.

BB - BB:
The calculation for this part of the amplitude is 1he same as
before except for the fact that performing the spin sums requires a

generalization of the previous technique. This is explained in
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Appendix A. Ball, Scotti, and Wong ' fit nucleon-nucleon scattering
for sZ-’-le and t< 0—precisely the region of interest to us—by
means of single meson exchanges. We take their values of the
coupling constants and of the o mass. For o, P and V exchange, the

Feynman diagrams look like Fig. 4.4.

k 1
p' -p’
p -p

i '
Fig. 4.4. Baryon-antibaryon interaction.
Even though Ball, et al., deal only with the nucleon-nucleon

system, we know that the ¢ meson they use must be an SU(3) singlet

since if it were a member of an octet, they would be forced to include

a IP = 0+, I=1, S =0 meson in their calculations. The Lagrangian is
L = -gUNNBBcr, (4.19)
where 2
g
m = 530 Mev and <0 = 4.15.
o ; 47

The o, then, contributes
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2
g .
27 _ .8 _ .8 _ _ZoNN RN T . S S
Hyo = By = By Iv2E2 [(M +am i)t - M”(4M mcr)J
n?
X Qg (1 + 5 ) (4.20)
2p
8 8 _
812‘321"0'

Since (:"1T/2M)2 = 1/16, this can be approximated to read

2
27 _ .8 _ .8 _ 2 m
By = Byy = Byy ® gcrNNQO<1 * 7 ) (4.21)
P
8 8
g ® By = T

For pseudoscalar exchange, the Lagrangian is just given by

(4. 14) and the result is

27 A7 . 3
B, [3a (1-«)71B,
8 .l 2. dm a9 |
Bll—[za +z(l @)¢]B,
(4.22)
8 _ 5 2,3, 2
B,,= [6a +2(1 a)”]B,
8 8 _ _
Blz— B21 =5 (1l -a)B,

where

2, 2 2
w GERCT 51 L i
B = 2 Qo(l+2-—z

In Reference 36 on octet of vector mesons is used with an electric
coupling which is pure F. The magnetic coupling, on the other hand,

has a D/F ratio roughly identical to the one for the PBB coupling.
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This value vields a weak coupling to the isoscalar member of the octet,
which agrees, using vector dominance, with the smallness of the iso-

scalar nucleon anomalous moment. Then the Lagrangian is

- _ = B PNN— _ By Vo qV M
& f vaPtii 2 M ngv[aDi+ (1 a)Fi:l B(a vi 9 vi>.

pNN
{4.23}
From the fit of Ball, et al.,
¢ 2
-PHR 5.64, (4.24)
a7

and assuming that the p dominates the isovector electric and magnetic

form factors of the nucleon leads to

2

g
—Pﬁﬁ = 9.5, (4.25)

With (4.23) one finds the results

27 _ - 2 2
Bll—A —ZY[ —(l~a)]z},

?1 { %x+3y [ ;a2+%(1—a)2:|2},

B = A
8 3 E B 8.
BZZ_A 2X.+3Y [Ga +2(l a)}Z},
8 _ .8 _ Y. _
1321--1312 «/BaAl (1 a)Z},
where . (4.26)
" .
i
A=—"—70Q <1+'—— ;
aM-p2 O 252
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2 —*4‘ 2, =2 2
Gl &
fp [4;3 + M™(2D mv)] .

1 =~ plm e ,

Y = 3f v

pNNIpNN
gpzNNm\% I — 2 g B
L =—éM—2—[:p (8p +mv)+2M mv] :

The total BB = BB amplitude, of course, is the sum of (4.21),
(4.22) and (4.26).

Having the amplitudes B(t), we approximate them by a one-pole
form. As before, the same equations hold for the 2X2 27 amplitudes
and the 3X3 8 amplitudes.

B(t) = ;'Tl (4.27)

In order to determine R27 and R8 , we use three different matching points
tmy - tmé,. and tmg for PP~ PP, BB— PP, and BB- BB, respectively. In
each case, the matching point must be to the right of the right end of
the left cut for the reaction in question. From (4.12), (4.15), and
(4.22), this implies |

2 2
tmy > 4p - my = 0.17 (Bev)™,
4

2 2
t > 4" - = 0.92 (Bev)”, (4.28)
mz =T M2
tmg * AM° - p? = 5.0 (Bew)®.

Then the standard Ealazs method32 yields the D-function. N and

D are defined.by (2.28), so that, on the left cut,
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Im N(t) = Im h{t)D(t) (4.29)
= Im B(t)D(t) (4.30)
= -ﬂRD(tl)é(t—tl). (4.31)
Therefore,
; RD (t;)
N(t) = ey (4.32)
and (no subtraction is required)
_dt'
D(t) = S. p(t Ni'), (4.33)
where p(t) is the symmetric matrix given by
pij = piéije(t - ti)' (4.34)

The phase space factors Py and pp are given by (2.47) and the
thresholds are obviously TB = 4M2 and t—P = 492. There is an apparent

difficulty here insofar as the tip of the left cut for BB — BB, 4M2 - p.z,

is to the right Qf the two-meson threshold 4p.2 . For this process,
however, only the 4M? threshold matters in Eg. (4.33) and this gives
no trouble. This phenomenon is discussed in more detail by Kayser.g7

Equation (4.33) can be written much more simply by separating
out the trivial t-dependence:

D) =1+ I{t)C, (4.35)

where 1 .
C = - pe RD(tl) (4.36)

and
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1(t) = S‘ —ut—)ﬁ'— (4.37)

(t'-t) '~ tl

Equation (4.35) evidently determines

y 4.
D(tl) = L I(tl)RD(tl).. (4.38)

Hence

: =1
)= [1 +;lr‘i(t1)R} : | (4.39)

In order to avoid any possible confusiorn owing to the omission of

indices, we display the matrices I(t).

IB(t) 0 0
8 r—
It = 0 IB(t) 0
0 0 IP(t)
and ‘ (4.40)
I_(t) 0
. (B ) |
0 IP(t)
where
_ oo Pg (t")dat'
Ip® = S‘ (t'-t) t'-t;)
4 M2
2 b,+1
W A . b+1\ __1 1
T2r 1t [tb tog p—l) tyBq 1°9<b1_1>:[ (4.41)

and
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= ppldt
Ipt) = S. : (t'-t) (t'-t;)

A

) D] e
- 7Tlt l—l ‘

a; b; a, bl are defined below.

_ 4u® -t . _ |4AM*-t
d = ’ g = ’
-t -t ‘
N— S (4.43)
_ [Py _ f‘iM -t
By = j = i bl = .

Parenthetically, we observe a useful partial check on our
numerical calculations. By considering the matrix (use (4.36) and

(4.39))

= -n[D@)] R

Q
|

(4.44)
R I(t;), : (4.45)

and noting that R, and hence R_1 , are syrﬁ*netric, we see at once that
C is symmetric.
The fitting procedure was described above. In Eq. (4.6) we
employ
RD(t1)[D(0)] "1

h(0) = . . (4.46)
1

The matching points are varied as permitted by Eq. (4.28) and, in

order to avoid a spurious singularity in (4.33), the pole position ty
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must be restricted to the left of the lower threshold, i.e.,
2

t, <4p® = 0.96 (Bev)®, (4.47)

All the fits had the same qualitative features and gave very
similar answers for the mass splittings. We exhibit two of the fits.
The difference between them gives a fair picture of the amount of varia—
tion present.

t is the location of the zero of the determinant of the octet D-

function. The parameters of (4.6) are, all at t=0,

.8 , 8
x = h/h,
.8 , 8
y = hzz/hlz‘ (4.48)
.8 ,8
z = h, /h,.
Fit I:
t, = 0.9, tp = 2.2, tm, = 1.3, fng = ¥s0
t= -0.2, % = ~1.10, y ==1,27, z = -3.12.

-8.47 0.19
Q.18 807
207 99 23

c = - 99 168 20 . (4.49)
23 20 16



72
Fit II:

t, =0.9 ity =1.4, ey = Laills tmg = 6.9.

+l
I
|
o
ro
X
I

-1.18, V4

I

-1.71, y = -4.17.
-8.15 0.28
27 ( )
- 0.28 -7.35
114 18 6

cC = - 18 98 5 . (4.50)
6 5 15

The ghost-killing should come from the dynamics, but, since our
calculation is so crude, we attempted also to put it in by hand by sub-
tracting the numerator matrix at ty. The Baldzs method can still be
employed (with a subtraction of which the results are independent), but

now the’A2 parameters could not be fitted at all.
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II.5. RESULTS

In this chapter we insert the results of the last two sections into
Eq. (2.45) to calculate the pair annihilation amplitudes and hence the
mass differences. In the interest of clarity, let us ignore the decuplet

exchango Born term for the moment. We define, -referring to (3.7) and

(3.19),
bia(t;qz) = 'éQo(r), for o =8,i=1,2
and o =27, i=1
(5.1)
ba(t'qz) = 'I—Q (x) for w=8,1=3
i kg @ !
and a =27, i= 2.
Then we can rewrite the Born term
Bia (t:q?) = bia (t:qz)%ia (t:q?). (5.2)

Since we are dealing only with J = 0, we suppress the J superscript.

So the absorptive parts are

o) F 5 (t:a?)

5.3)
(ea) T ¥ (0%,

m
g B 2
ImBi(t,q)— -
2

The ia (t;q2) are polynomials in t and the functions (pq)“:L and

(kq)_1 are sharply peaked at the right extremity of the left cut,
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4q2 — a-
M2
(04
t, = x (5.4)
4CI2 & -qz— 7
Y8

as long as g2 is small. @ and i are always defined as in (5.1). If
the unsubtracted dispersion relation were valid for the real amplitude,

2

we could assume that most of the contribution, for low g, which domi-

nates owing to the form factors, comes from low t. Then we could
approximate (2.45) by evaluating the polynomial 87‘11 and the slowly-
varying D(t') at the tip of the left cut, (5.4), and performing the inte-
gral over the remarinder of the in.tegra-nd. If Im_Bia is a good approxi-
mation to ImTia at low energies, this is still a valid rough estimate, in

spite of the divergence of Eq. (2.45). This reasoning yields

a.

t .
: i [Imb,%(t';q2)1F %(t';q%)
o . 2 _ _1_ i J o, ., (¢4 -1
T (0:q?) = T g_m : r Djk(t){[D ()] }ki
(5.5)
- o, 2. o, o 1
};{y] (t5a“)Dy (&, ){[D (0)] }kl
ta Ot( 2)
i Imb;%thq |
=) b."(o;qz)%.‘"(t"f,-qz)n-ﬁ(t."ﬂ{lna(o)rll - (5.7)
K i ik i

To (5.7) must be added the contribution of decuplet exchange,

(3.14), with-.the same D--function. It is handled in precisely the same
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manner and we note only that the left cut here extends to (using (3. 12))

2 22 4
2/1+M \qz— 1-——M :/1*2--9—, (5.8)
N MR/ M*2 M*2

It is interesting, but quite disagreeable, to observe that, since

laritiec. So, ImB # ImT, even close to the tip of the left cut. To
understand this, suppose a mass squared s is exchanged in the s-
channel. (The u—chanﬁel gives the same result by crossing symmetry.)
Then (5.8) gives the position c-)f the tip of the left cut with M*% - 5,

Therefore, it is located at

. _ 2 _,2y2 ,
t_ ) =-s-LM—§LL +2(M2 + q2). (5.9)
This is a maximum when
s=%, =M -4, (5.10)
Then
= 2
to(s) = 4q . (5.11)

For very low qz, this is just slightly to the right of
4g2 4, 2 1+ : A
q“ - q /M”, the end of the 3" exchange cut. This can happen if

5 = 1 -5 B depl.  (5.12)

For the actual nucleon and pion masses, the catastrophe can occur if
-q2 >0.26 (Bev)z. In the next section we shall discuss the possible

significance of this phenomenon.
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Before quoting the results of the final numerical integration for

the J=0 term in the mass differences, we notice in (5.4) that, con-

sistent with our continually used assumption that small t and small
q2 dominate,

lqzl << 4M2

= B0 (Hewl. 5.13)
Therefore,
2
41q?| > —qE (5.14)
M

and we can replace the tip of the baryon octet exchange cut by 4q

2. In
the same way, we neglect q4/M"‘2 in (5.8). These approxima\tions are

necessary for the convergence of the integral (2.15) for the masses.

J=0 Mass Differences (Mev)
Fit I:
I=1
mp -m = -3.90
mo4 - mg_ = ~3.3

3
1
O
|
=
1
[
I

mK" - mKo = 4+1.20
22
m2+—r mz_-Zm =
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Fit II:
I=1
m -m = -3.50
P n
Moy = My = =361
Bl = Me,,. = -0.11
Mpy = Meo = +1.35.
I1=2
mz:_,_+rnz_-21mz:O = +1.98

We combine these with the results of Table 3.1 by means of

Eq. (2.22). The experimental values are given in Table 3.1.

Corrected Total Mass Splittings (Mev)

I=1
mp—mn = -3.78
Mgy - My = -3.46
Mygo = Mg- = +1.32

mK"' - Mo = +1..33.



I=2
Fit II:
I=1
1=2:
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Tt 2" =0
Mo+~ Mo

m - m
P n
mZ_I_ o mz_
Mo s M-

m -~ m
Kt 42
+ _ -

mgy + m, ZmZo

m 4 - m
St 7©

+2.

+4.

+1

+2

+3

26

06.

.38

.72

.34

.48,

.26

8
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II.6. DISCUSSION

The results of the calculation exhibit the ancient dichotomy be-
tween the I =2 and I =1 mass differences. The I=2 X mass split-
ting is within the experimental error and the pion mass difference is too
small by a mere 15%—quite understandable in view of the large
discrepancy between the actual pion mass and the mean pseudoscalar
octet mass. The outcome of the isospin one computation, the raison
d'étre of the whole work, since the I = 2 mass differences are suffi-
ciently well explained by the Born approximation, is a dismal failure.
The correct sign for the nucleon mass difference is very likely an acci-
dent in view of the extreme disagreement for the £ and =, not to
mention the kaon, for which not even the sign reversal is obtained.

We can segregate the sources of error into two classes. The
first kind are "technical" in nature. Thes2 include dropping of the
non-pole terms and the method of evaluating the dispersion integral
(2.45). It seems highly unlikely that the way out of the predicament
lies in this direction, however, because the isospin two mass split-
tings come out quite well and these manipulative maneuvers probably
do not discriminate with respect to isospir..

As far as "physical" effects are concerned, ther¢: are two possi-

bilities. First, the dynemics we have put in may be irsufficient to
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explain the existence and prdperties of the tensor mesons. This could
be due not only to the simplistic one-pole Baldzs method, but also to
the inclusion of too few exchanges and, possibly, not enough external
channels. The fact that high mass exchanges in the pair annihilation
amplitude give rise to cuts extending as far to the right as those due to
low mass exchanges, supports this hypothesis. It does not imply,
however, that better low energy approxims tions cannot work. One may
need a Reggeized bootstrap calculation in order to deal with the tensor
mesons. If poor description of these particles is the chief cause of
the random agreement, a D-function based more directly on phenome-
nology should cure the difficulty. The information on the magnitude of
the 2+ trajectory couplings is incomplete, but one could try to employ
the exchange degeneracy33 with the better known 1~ trajectories.

It is also possible, indeed, not entirely implausible considering
the experimental evidence for the no compensation mechanism for tensor
meson trajectories, that the 2.+ mesons simply do not explain lthe mass
differences. Then it is much harder to conceive of a simple, yet rea-
sonable, way to parametrize the D-function. The dispersion relation
(2.45) itself is based on elastic unitarity arnd, as suggested in the

previous paragraph, this may be too crude an approximation.
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APPENDIX A
SPIN SUMS

The two expressions required for the calculation of amplitudes

in this thesis are

= 7, s : (Aa.1)
g

—U p,o

(V_ - Z D' —0‘)( p',o! lup,cr>' (A.2)

The Dirac spinors are

b B m)%<.. 4) (A.3)

.
E+m

L (E+m% E+m my)xc: (A.5)

- (E+m)2 ( ) io )X, (A.6)

where X, is the two-component Pauli spinor for spin o along the unit

vector p. We take p = ¢, in order to havea real X, Then we have,

as well,



T X, = X_,- A.7)
Therefore,
- . _b-m _
Vp,—cr X_Q_(lG‘y) (0 1) (E+m)% (A.8)
= x:f (0 ‘U'Z)_éii P A.9)
(E+m)2

- where we used (A.7) to obtain (A.9).

Since

(1 0)'1/Z = (0 "z)' (A.10)

therefore,

X = -r Z XOT 1. O)YZ(E-m)K(ﬂHLm) (é) X+ (A.11)

where

=

r = [(B+m) E+m)] 2.

Noting that
X p 8
()Y e H(Q)-e e
XO'

P=30+7), (A.13)

where

and defining the four-cornponent rest spinors

w(l'z) = (XT}L\ and w(3'4) = (O >, (A.14)
0"/ ek
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‘we find
X-= -r Z , B-m)K(p+m) Pw ) (a.15)
= -r trly, @-m)K(@b+m)3 (1+v,)] (A.16)
= -3r tr(GK), (A.17)
where
= (b+m) Q+vo)y, (b-m). (A.18)
In the frame p* = (£,0,0,p), D = (E,0,0,-p),
G = —2(E+m)(p+m‘yz+E'yo'yz), (A.19)
and hence
X = tr[(p+ m’yz+EYO'yz)K:l._ : (A.20)

In order to calculate ¥, we must generalize the spin flip matrix

Figps With n = p', the spinors are

_ ._.._.._.__1_._ n3+l
XT = N2 (ng+1) ( n1+in2>

and A.21)

l _nl ’+ 11'12
X, T N2(ng+l) ( ng+1 )
so the spin flip matrix A satisfying
o SR (A.22)
-
is

A=7-¢e, (A.23)
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where
~ ‘1+ng-nj®  -npmy
- "< 1+n3 5 1+n-» ,—n1>.

irg.%/9

Notice that A=-ie

(A.24)

and é-n = 0, meaning that A is a rotation

matrix about an axis perpendicular to n through 180°, as it must be.

We shall find it convenient to work with real spinors, so that we take,

without lozs of generality, ny = 0, which implies

e = (n3,0,—nl).

Now consider

=1

b ?.Vﬁ',—cr' p! gt

(o )X g0 = (o) Bxg1) = B-ox ,

from (A.25). Using (A.4), (A.6), (A.27), we get

Z=r ) ('-m (5%’) xcr.xj. 1 0)(p'+m).

Completeness gives at once
0 0
7 = r@'—m)( A O> (" +m)
p -0 ,

r@'-m) 3(vy°-1) B 7)) (b'+m).

I

Substituting Z into (A.2) and using (A.20) yields

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)
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i —1 . i
Y = [2(E+m)] tr{[p-é— (m+EfyO),Y3]Kz@l_m)(vyo—l)(pliy’) (Ib’+_m)K1} (A.31)

T 3 Ik r =
= trJL l_p +y (m—E'YO)JKZ Lp + (m—Evo)ﬁ'-ﬂ KIJL (A.32)

with
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APPENDIX B
SU(3) CONVENTIONS AND RESULTS

In the notation ?YIIZ> we define our states to be

+ ==
K ,p, E 153}
K°,n,E° 113 -3)
i [-141)
K_IE_IE _f—lé—_é)
. (B.1)
+ — z
w o8 B =M 1)

m©,2° =% |010)

7,27, =% o1 -1)
A, A, A 10 00)

Let us consider 88 — 8 8 and single out the SU(3) index by

means of a Greek letter.

8, d,o
t —>
a,a b.,B
I |

Fig. B.1. General scattering process.
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The channels are defined below.

s channel: a+b —> c+d
t channel: a+¢c —> b+d (B.2)
u channel: a+d —> c+ b.

The t and u channel crossing matrices are given by the relations

('YG!QH,ICEB>, ‘ (B.3)

(R81Q, lav) = ), C:up
}-L‘

(vBIQuled) = ), C/\ (v8IQ .laB), (B.4)
HI

where p is the SU(3) representation and Qp is the projection operator.

Now,
(vBIQ, led) = 1)7(BVIQ, lab) (8.5)
_ panw k
= (1) E'C“'“(ﬁvl%'lam (B.6)
_ . U+S _t
= E‘(l) ct, (v81Q,,laB). (B.7)

Above, by (-—l)U and (—l)S we mean the SU(3) symmetry of the final

states in the u and s channels, respectively. Equation (B.6) comes
from Eq. (B.3). Comparing (B.4) and (B.7) we see that

Tl kil TN . (B.8)
" i

P 12
These are exactly the conventions used by Carruthers and his

8 X 8 crossing matrix obeys (B.8). One cannot employ here the 7 X 7

; ; 21 s
crossing matrix often quoted, e.g., by Gasiocrowicz, since it is
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obtained by treating 8'-8 and 8~ 8' as identical. As a
matter of fact, the exchange contributions found from the 8 X 8
crossing matrix are negatives of each other, although, naturally, the
direct channel amplitude is symmetric as required by time reversal
invariance.
Keeping in mind the order of the states (B.2) and Fig. B.1, we

write out ti.2 s channel octet projection operators.

8 - _ 1
Prig..) = P761a5(8aa) Sl FWGPWB,
P°(8 ) =P @ )=2p .»p
‘sS vd,af3 “ss 5 Tevd eaf’
(B.9)
P°@8 ) =P B )=-s2F D
as ’Yﬁ,QB as N5 ey eaf’
s _ _ A
% (BSa) B P’Y5,Q/B(8sa) NES De'yﬁFeafB'
P(Sas) and P(8sa) satisfy
P(Bas)P(Bsa) = P(Saa)’
(B.10)

P(SSa)P(BaS) = P(8Ss .

In order to find the projection operator for the 10 representation

in terms of quark indices, we calculate the SU(3) part of Fig. B.2.
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SNEAL)

(efg)

(efg)
7 N\
a \ c
b d
Fig. B.2. Direct channel 10 contribution.

Normalizing, we get

“TTEEEE

Actually, it is.necessary to symmetrize this with respect to a' and c'.

_1.a'sc’' ebd ;
(10) = _gOa 50 eeb'd' . (B.11)

Thus we usad

b ] a' c c'.a' ebd
5 [ (6 +6° 07 ):le & i nge s (B.12)
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