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ABSTRACT 

In this thesis an extensive study is made of the set f of all 

paranormal operators in B(~), the set of all bounded endomorphisms on 

the complex Hilbert space ?=t. T ~ B(?:1) is par anormal if for each z 

contained in the resolvent set of T, d (z, cr(T)) II (T-zl)- 1// = 1 where 

d(z,~(T ) ) is the distance from z to ~(T), the spectrum of T. rP 

contains the set 77 of normal operators and 6J contains the set of 

hyponormal operators. However, ~ is contained in ~. the set of all 

T € B('ft) such that the convex hull of the spectrum of T is equal to the 

closure of the numerical range of T. Thus, ll ~ fP ~ J. 

If the uniform operator (norm) topology is p laced on B('1'), then 

the relative topological properties of fl, ? , and J. can be discussed. 

In Section IV, it is shown that: 1) fl, rP, and J are arc-wise con-

nected and closed, 

when dim Fl ~ 2 , 

subset of IP when 

2) 71 , IP , and 

3) n = ~ when 

dim fl = oo 

i are nowhere dense subsets of B(U) 

dim Fl ~ 00 , 4) Jl is a nowhere dense 

5) ~ is not a nowhere dense subset of I. 

when dim Fl < oa, and 6) it is not known if fY is a nowhere dense sub­

set of "f... when dim fl = o0 

The spectral properties of paranormal operators are of current 

interest in the literature. Putnam [22, 23] has shown that certain 

points on the boundary of the spectrum of a paranormal operator are 

either normal eigenvalues or normal approximate eigenvalues. Stampfli 

(26] has shown that a hyponormal operator with countable spectrum i s 

normal. However, in Theorem 3.3, it is shown that a paranormal opera­

tor T with countable spectrum can be written as the direct sum, N ~A, 
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of a normal operator N with ~(N) = a(T) and of an operator A with 

~(A) a subset of the derived set of cr(T). It is then s hown that A 

need not be normal. If we restrict the countable spectrum of Te~ 

to lie on a c2-smooth rectifiable Jordan curve G0 , then T must be 

normal [see Theorem 3.5 and its Corollary]. If Tis a scalar paranor­

ma l operator with ~ountable spectrum, then in order to conclude that T 

is normal the condition ~(T) ~ G0 can be relaxed [see Theorem 3.6]. 

In Theorem 3.7 it is then shown that the above result is not true when 

T is not assumed to be scalar. It was then conjectured that if TE~ 

with ~(T) ~ G
0

, then T is normal. The proof of Theorem 3 . 5 relies 

heavily on the assumption that T has countable spectrum and cannot be 

generalized. However, the Corollary to Theorem 3.9 states that if 

Tc~ with ~(T) ~ G
0

, then T has a non-trivial lattice of invariant 

subspaces. Af ter the completion of most of the work on this thesis, 

Stampf li [30, 31] published a proof that a paranormal operator T with 

~(T) f G
0 

is normal. His proof uses some rather deep results concern­

ing numerical ranges whereas the proof of Theorem 3 . 5 uses relatively 

elementary methods . 
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INTRODUCTION 

In this thesis an extensive study i s made of the topological and 

spectral properties of a subset (p of B ('R') , the set of bounded 

endomorphisms on the Hilbert space 'Fl • An element T of rP , called a 

paranormal operator, is defined by the relationship 

d (z, <T(T)) II (T-zl)- 11/ = 1 for all z tp(T), where jJ(T) is the 
! 

resolvent set of T', and d(z,o-(T)) is the distance from z to 

the spectrum of T. Operators with the above growth condition on 

//(T-zl) -l )/ arise naturally in spectral operator theory [ 8]. 

<T (T), 

~is a very large set in that it contains all normal operators , 

n. and a ll hyponormal operators, yet (? is smal l enough to be con-

tained in the set f. of all T in B(?f) such that the convex hull of 

the spectrum of T is equal to the closure of the numerical range of T. 

Thus It £ (j> f. ~. If the uniform operator (norm) topology is placed on 

B&), then the relative topological propert i es of 71, fP, and J. can be 

discussed. As an illustration, it is shown [see Section IV] that Tl., 

~, and £ are arc-wise connected, closed, nowhere dense subsets of 

B(';/) when dim 71 :? 2, 7{ = (]> when dim ff < o0 , and fl is a nowhere 

dense subset of rP when dim JI = oo 

The spectral properties of paranormal and hyponormal operators 

have received considerable attent i on i n the current literature [22, 23, 

30, 31]. Stampfli [25, 26, 27] has shown that a hyponormal operator 

whose spectrum is a sufficiently "thin" subset of the complex plane, 

must indeed be normal. In particular, a hyponormal operator with 

countable spectrum is normal. On the other hand, a paranormal operator 
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T with countable spectrum can be decomposed as the direct sum, N ~ A, 

of a norma l operator N with o-(N) = 0-(T), and of an operator A with 

o-(A) a subset of the derived set of 0-(T) [Theorem 3.3]. However, A 

need not be normal. Stampfli [26, 27] has also proved that a hypo­

normal operator whose spectrum is a subset of a c2-smooth rectifiable 

Jordan curve G
0

, is in fact normal. It was then conjectured that 

this result would hold for T paranormal. This conjecture with the 

added assumption that T has a countable spectrum is proved here [see 

Theorem 3.4 and its Corollary], but the conjecture without the counta-

bility assumption on the spectrum remained unproved. However, using the 

Dunford spectral operator theory, it was shown that a paranormal 

operator whose spectrum is not countable and is a subse t of G
0

, must 

indeed have a nontrivial lattice of invariant subspaces [see Theorem 3.9 

and its Corollary] . 

After having completed most of the work for this thesis, Starnpfli 

[30] announced a solution to a problem that generalizes a result stated 

above. Namely, he proved that a paranormal operator whose spectrum is 

a subset of G
0

, is normal. In his proof [31] several rather deep 

results about numerical ranges are crucial, whereas the result proved 

in this thesis [Theorem 3 .4] uses relatively elementary metho4s which 

depend heavily on the assumption that the spectrum is countable. It 

would be interesting to see a relatively simple proof of Stampfli' s 

result. 

Orland [19 ] has characterized operators T for which the convex hull 

of ~(T), co ~(T), equals the closure of the numerical range of T by 
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the condition d(z , co tr(T))l/(T-zl) - 1// ~ 1 for all z<f co cr(T), where 

d{z, co ~(T)) is the distance from z to co ~(T). Thus, an extremal 

condition on /j (T-zl)-l/J has been characterized by an extremal 

geometric condition, namely co ~{T) is equal to the closure of the 

numerical range on T. In general [7, p . 556] d(z,~(T))fi(T-zl)- 1h ~ 1 

for each zE,t{T), so that the condition, d(z,CT (T)) /l(T-zl)-1// = 1, 

-1 
for paranormality is an extremal condition on V(T-zl) ~. Therefore, 

it seems reasonable to expect that the set of paranormal operat ors can 

be characterized by some extremal property; however, t his remains an 

open question. 
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Section I: Definitions and Basic Hilbert Space Properties 

Let 1=I be a complex Hilbert space with the i nner product of two 

elements x, ye 11 denoted by (x,y) . An operator on "fl is a con-

tinuous linear transformation mapping 11 i nto /<I • Denote the set of 

all operators on~ by B(~). B(~) will a lways be given the uniform 

operator topology.; IE B(?t) will always denote t he identity operator. 

For Tc B{'/¥), let I/Tl/= sup{l/TxJJ: x€'/:I, // xii• l} denote the norm of 

T and T* denote the adjoint o f T. T € B()I) is invert ible if and only 

if there exists S € B(U) such that ST = TS = I. In this event S is 

-1 { unique and i s denoted by S • j?(T) = zc I[ : T-zl is invertible} 

where ([ denotes the complex field. f7{T) is called the resolvent set 

of T and 0-(T) ( - jJ {T) is called the spectrum toof T. <T p (T) is the 

poi nt spectrum of T and ~ff(T) is the approximate point spectrum of T, 

[see 11] . The boundry of a set Sis denoted by d S. It is an impor­

tant fact that o cr{T) f. er 7T(T) , [ 11, problem 63]. z t=. er 
7
/T) is a 

normal approximate eigenvalue for T when: 1) //x II= 1 and n 

//{T-zl)xn// --'>- 0 as n-?oo imply //(T*-zl)xn// -+0 as n~=, and 

2) /JYnlf = 1 and //(T*-ZI)y //--) 0 as n~oa imply //(T-zl )y //~O n n 

as n~oo . z € a-P (T) is a normal eigenvalue for T when { x E i:/ : 

Tx = zx} = {xe'R': T*x = z xf . It is well known that the eigenspaces 

of distinct norma l eigenva l ues of an operat or T are orthogonal [14, 

p. 233]. If z is a normal e igenvalue f or T, then it is not necessar-

ily true t hat z is a normal approximate eigenvalue f or T. 

An operator T is quasi-nilpotent if cr(T) = {o}. T is a projec-

tion if T2 = T. T is an orthogonal projection if T2 T and 
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T* = T . It is well known that T is an orthogonal projection if and 

only if T
2 

= T and II T/I ~ 1. T is a positive operator, denoted by 

T ~ 0, if (Tx,x) > 0 for all xE 'J:i. Let Rsp(T) =sup {1z1: 

z E cr(T) } denote the spectral radius of an operator T. By [7, lelmlla 4, 

p. 567], 

R (T) = lim l/Tn//l/n 
sp n_,,.oo 

and 

z E /(T), R(T ,z) 
-1 

For = (T-zI) is called the resolvent of T at z. 

An operator T is normal if T*T - TT* :::: 0. It is well known that 

if T is normal then J(T{/ = Rsp(T), [11, p. 115]. T is hyponormal if 

T*T - TT* ~ 0 or if TT* - T*T ~ 0, and T is paranormal if // R(T ,z)// = 

l/d(z,cr(T)) for all zt=j'(T) where d(z,o-(T)) = inf{1z-w/: wea-(T)}. 

Let rP denote the set of all paranormal operators on fl . 

For T an operator on 7::/ the numerical range of T, W(T), is equal 

to {(Tx,x): xG.f/, 11x/I= l}. W(T) is a convex, bounded subset of the 

complex plane and cr(T) £ W(T), [see 6]. In [ 6] Donoghue proves the 

following theorem. 

Proposition 1.1 If T is an operator on a two dimensional Hilbert space 

'Ff, then W(T) is the convex hull of an ellipse whose foci are the 

eigenvalues of T. If the eigenvalues are distinct, then the eccentric-

ity of the ellipse is sin t where 0 ~ t ~ TT/2 such that cos t 

/ (x,y)/ where x and y are unit vectors in 'fl each generating a 
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dist i nct eigenspace. I f the eigenvalues are the same, say z, then 

W(T) is the closed c ircular disc about z of diameter //T-zl II . 

A. Wintner [32] has shown that // R (T ,z)I/ ~ l/d (z,W(T)) for all 

z~W(T). It is well known [ 7, corollary 3, p. 566] that //R(T,z)// ~ 

l/d(z,!T(T)) for all Z€f(T). If S is a set of complex numbers, then 

let c o S denote the convex hull of S. Let i = {TE BOf'): co o-(T) = 

W(T) }. G. Orland [19] has proved the following c haracterization of J. . 

Proposit ion 1.2 T € ;J.... if and only if /IR(T , z)I/ ~ l / d(z ,co u-(T)) for 

all z ~ co cr(T). 

If T E B(;I), then T is the d i rect sum of Ac B(M) 
.J. 

and B € B(M ) , 

written T =A e B, i f Mis a closed subspace of /'::/ that reduces T, 

MI (0) and MI fl, T restricted to M equals A, and T restricted to 

M~ equals B. The fo l l owing theorem will be used several times [see 11]. 

Proposition 1. 3 If the operator T is the direct sum of the operat ors 

A and B, then 

1. l/T// = Max{l/All, JIB!!] 

2 . cr(T) 

3. W(T) 

ll (A) V 0-(B) 

co(W(A) U W(B)). 

If T is an operator on 14 and u(z) is a rational funct ion of z 

with no poles lying i n the spectrum of T, t hen we can r e present u(T) by 
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u(T) 2~i ~S u(z)R(T,z) dz 

where S is the union of a finite number of closed rectifiable curves 

that form the boundry of an open bounded set D of complex numbers, 

where o-(T) !; D and D contains no singularities of u(z) {see 24]. 

The mapping E from the Borel sets B in the complex plane r[ into 

the set of projection operators on ti is a resolution of the identity 

for TE B('}:/) [see 8, p. 219] if and only if 

2. there exists M > 0 such that for all S € B 

II E(S)// ~ M, 

3. if { Sn} is a sequence of disjoint Borel sets, 

then for each x E fl 

4 . for each S.; B, 

TE(S) E(S)T and er (TIE (S) ) ~ S. 

An operator T is a spectral operator if T has a resolution of the 

identity. If T~ B(~) is a spectral operator with resolution of the 

l identity E, then we can form the following operator on 7::/ [8, p. 226J 

T = ( z dEZ . 
Jcr(T) 



8 

A 

A spectral operator T is scalar if and only if T ; T. If T is a 

scalar operator and if f is a rational function with no poles in 

cr(T), t hen 

f(T) = ( f(z) dEz . 
)ir(T) 

If T is a scalar operator, then f or each fixed x,y E fl there exists a 

unique complex Borel measure m such that 

(Tx,y) 1 z dm(z) 
o-(T) 

and m is given by m(S) = (E(S)x,y) for each Borel set S. We will 

need the following theorem [8 , p. 230]. 

Proposition 1 .4 T is a scalar spectral operator if and only if there 

exists a normal operator N and a self-adjoint operator Q such that 

T = QNQ-1. 

We shall always assume that the arc G
0 

is c2-smoothly imbedded 

in a one parameter family of c losed rectifiable Jordan curves Gt' 

-1 ~ t $+1. 

Let T be an operator on Fl and let x be a fixed element of fl . 

Then R(T,z)x is a vector valued analytic function of z on f (T) 

and may possible be extended analytically to a larger open set. If the 

spectrum of T is a nowhere dense set of complex numbers, then R(T,z)x 

must have unique analytic extens ions since then the resolvent set is 
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dense so that any two analytic, or even continuous, extensions must 

agree on their conunon domain of definition. Therefore, i f the spectrum 

of Tis a subset of G
0

, then R(T,z)x has unique analytic exten­

sions. By taking the union of all open se t s each of which is the 

domain of an analytic extension of R(T,z)x, we obtain a max imal open 

set on which R(T,z)x can be analytically extended. Let j1(T,x) be 

this open set and let ~(T,x) be the complement of ;O<T,x ) in the 

complex plane [8]. 

An operator T on 'i=I is said to satisfy Dunford' s Boundedness Con­

dition (B) [8, p. 226], if there exists a constant K depending only on 

T such that if x,yE ")::/ and <T(T ,x)/l <T(T ,y) = 0, then // x /{ :5 K//x+y//. 
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Section II: Basic Properties of Paranormal Operators 

An operator T on t he Hilbert space Pl is paranormal if for each 

Z €f(T), //R(T,z)// l/d(z,cr(T)). Let f denote the class of all 

paranormal operators on '):/ . Every normal operator is clearly hypo-

normal [see Section I f or definition]. Stampfli [26] has shown tha t 

every hyponormal operator is paranormal: 

Proposition 2.1 If the operator T is hyponormal, then T i s paranormal . 

Proof. The proof follows from these fac ts about hyponormal operators 

[26]: (1) If a and b are complex numbers and T is hyponor mal, then 

aT + bl is hyponormal. (2) If T i s hyponormal, then // T // = R
6

p (T). 

(3) If T is hyponormal and invertible, t hen T- l is hyponormal. 

Let z E f(T) then 

// R(T ,z)// 

1 
d(O,cr (T - zl)) 

1 
d(z ,a-('r)) 

Therefore T is paranormal . 

Theorem 2.1 If T is a paranormal operator and if a and b are 

complex numbers, then aT +bl and T* are paranor mal. 
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Proof. If a= 0, the proof is trivial. Suppose a F 0 and let 

z E f (aT + bl). Then 

I/ ((aT +bl) - zl)-l// = l /j(T - ~I)-1 // 
la/ a 

1 
/a/d((z - b)/a,O'"(T)) 

1 
d(z,cr(aT + bl )) 

Therefore aT + bl is paranormal. 

If Z"C:/(T*), then z E/(T) and l/(T* - zl)- 1// = /)(T - zl)-1// 

l/d(z,<T(T)) = l/d(Z,~(T*)). Therefore T* is paranormal. 

The fact that co ~(T) = W(T) when T is paranormal f ollows 

immediat ely from Proposition 1.2. An elementary proof, i ndependent of 

Proposition 1.2 is given below. 

Theorem 2.2 If Tis a paranormal operator, then co ff(T) = W(T). 

Proof. For any operator co ff(T) f W(T). Suppose the the or em were 

false, then ,by a translation and rotation, if necessary, we may assume 

[see Theorem 2.1] sup Re co <T(T) ~ 0 and sup Re W(T) > 0. Let 

z > 0 and x be a unit vector in 'fl. Then since d(z,CT(T))//R(T,z)// = 

1, we have 
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l/Txl/
2 

-:-
2 

z - 2zRe (Tx ,x). 

Therefore for al l z > 0, zRe(Tx ,x) ~ 0 so that Re(Tx,x) ~ 0. Hence, 

sup Re W (T) ~ 0 • Contradiction. 

The following two theorems will be useful in constructing examples . 

Theorem 2. 3 If A is any operator on "'!:/ , then there exists a Hilbert 

space 'k and a normal operator N on I< with <T (N) = W (A) such t hat 

T = A f) N € B(?(e ~) is paranormal. 

Proof. Since · W(A) is a compact set of complex numbers, there exists 

a Hilbert space ")< and a normal operator N on /< such that u(N) = W(A) 

[7, p. 581]. Let T =A ti N. Then by Proposit ion 1.3 u(T) = ~(N). 

If z f JJ(T), then 

and 

Therefore 

1 
//R(A, z)/I ~ d(z,W(A)) 

//R(N ,z)// 1 
d (z, o-(N)) 

1 
d ( z , CT (T) ) ' 

1 
d(z ,cr(T)) 
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II R(T ,z)I/ Max{//R(A,z)//, //R(N,z~Jj 1 
d (z, a-(T)) 

so that T is paranormal. 

Later on we will need the fact that the normal operator N in 

Theorem 2.3 can be chosen so t ha t CT(N) - ~(A) is a countable set . 

Theorem 2.4 If A is any operator, then there exists a normal operator 

N such that 

1. A~ N is paranormal, 

2. CT(N) 2 lr(A) , and 

3. ~(N) - u(A) is a countable set whose points 

of accumulation are contained in u(A). 

Proof. Assume //A//= 1. For n = 1,2,3, ••• , let 

Sn {z: 2/(n+l):::; d(z,~(A)) ~ 2/n}, 

Mn Maxf 4, sup {I/ R(A,z)//: z £ snJJ , 

and let B(z,r) be the open disc of radius r about z. Since Sn 

is compact and 
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there exists Zni f Sn, 1 ~ i ~ nln such that 

I ffin I 
V B(zn.' l/Mu) . 
i=l l. 

Let N be a normal operator such that [see 10, p. 5811 

a-(N) o-(A) U {zn· : 1 ~ i ~ Il\i• n = 1,2,3, • • • ] . 
l. 

Let T =A e N. If zt;f° (A) and if lz/ ~ 2, then there exists n 

and i such that zE:Sn/1B(zni' l/Mu). Hence /z - Zni/ ~ l/Mu. Then 

d(z,cr(T)) }/R(A,z)// ~ /z - z I l/M ~ 1. 
ni n 

If lz/ > 2, then 

d(z,~(T)) d(z, ~(N)) ~ d(z,W(A)). 

Therefore 

d(z,cr(T)) //R (A,z)// ~ d(z,W(A)) // R(A,z)J/ ~ 1. 

Since N is normal, //R(N,z)// = l/d(z,cr(N)) l/d(z,~(T)), for all 

z ff (T) . Let z E f1 (T) , then 

//R(T,z)j/ =Max {//R(A,z)//, // R(N,z)//] 
d (z, O""(T)) 
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Therefore T is paranormal. 

As we shall see, the class of all hyponormal operators on 'fl is 

distinct, in general, from the class ~ of paranormal opera tors. We 

know [ 25] that if T is hyponormal, then If T // = R (T) sp and if T is also 

invertible, then T- 1 is hyponormal. These properties do not gener-

alize to paranormal operators. 

Theorem 2.5 There exists an invertible paranormal operator T such that 

1. T is not hyponormal 

2. T2 is not paranormal 

3. /IT/I > Rsp (T), and 

4~ T-1 is not paranormal. 

Proof. Let 

Let N be a normal operator such that ~(N) = W(A), and let T =A e N. 

Then by Theorem 2.3, T is paranormal. We know from [25] that a hypo-

normal operator is hyponormal on invariant subspaces. Therefore, 

since A is not hyponormal, T is not hyponormal . By Proposition 1.1, 

W(A) is the closed disc of radius ~ about z = 1, and W(A2) is the 

closed disc of radius 1 about z = 1. Therefore 
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But 

Therefore, cou(T2 ) I W(T2 ) and so by Theorem 2.2 T2 is not para-

normal. Let x = (j{J then I/xii 1 and II Ax If = ,lzflO. Then 

/IT/I ) //Ax// ~fiO > 3/2 

Therefore }/ T l/) R5 p(T). If 
-1 

T were paranormal , then 

11 Tl/ = 11 R(T- 1 ,o)// 1 
a ( o, fl (r 1)) 

C t d · t · Hence T- l · t 1 on ra ic-ion. is no paranorma . 
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Section III: Spectral Properties of Paranormal Operators 

In addition to discussing the relatively elementary spectral 

properties of paranormal operators, the goal of this sect i on is to find 

out what can be said about a paranormal operator whose spectrum is a 

"thin" subset of the complex plane. In particular, if T has countable 

spectrum, then T can be decomposed as the direct sum, N ~ A, of a 

normal operator N with ~(N) = ~(T), and of an operator A with ~(A) 

a subset of the derived set of ff(T). In general the operator 

T = N ©A need not be normal, however if cr(T) lies on a c2-smooth 

rectifiable Jordan curve G0 , then T is indeed normal. I f T is a 

scalar paranormal operator with countable spectrum, then i n order to 

show that T is normal, the condition that u(T) ~ G0 can be weakened 

to the following condition: For each z E cr(T) there exists w ~f(T) 

such that lw-zl = d(w,a-(T)). An example is then given to show that a 

(non-scalar) paranormal operator T with countable spectrum satisfying 

the above property, need not be normal. 

If the assumption that the paranormal operator T has countable 

spectrum is dropped, then T has a non-trivial lattice of c losed invar­

iant subspaces when ~(T)f G
0

• I was unable to prove the more general 

statement that a paranormal operator T with er (T) ~ G 
0 

is normal. 

recently Stampf li f31) published a proof of this statement (see the 

introduction for a more detailed discussion of this). 

In ge~eral the points on the boundary of the spectrum of an 

operator T are not normal eigenvalues nor normal approximate 

Just 
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eigenvalues (although (} 0-(T) f <r
7
r(T) , [ 11]). However, certain points 

on dv(T) when T is paranormal must be either normal eigenvalues or 

normal approximate eigenvalues. The theorem i s due to Putnam [22, 23], 

but the proof given here utilizes a trick of von Neumann and is shorter. 

Theorem 3.1 If T is an operator with z an eigenvalue or approximate 

eigenvalue of T and if there exists w E j)(T) such that I w-zl l/R(T ,w)I/ = 

1, then z is a normal eigenvalue or normal approximate eigenvalue, 

respectively. 

Proof. Suppose z is an approximate eigenvalue of T. Let w be as 

stated in the theorem. Then there exists a sequence {Xu] of unit 

vectors in "!=I such that //(T-zl)Xu// -7 O. Let S = (z -w)R(T ,w). Then 

I-S R(T,w)(T-zl) so that //(I-S)xn//~O and llS~ll~l. Moreover, 

l/S II = /z-w/ //R(T ,w)// = 1. Now 

2 2 2 2 2 
//(1-S*)Xu// - i/(I-S)xn!/ = l/S*xdl - //Sx

0
// ~ l - /I SxJI , 

so that l/(I - S*)Xn//--70. Then since I -S = R(T,w)(T-zl) = (T-zl)R(T,w), 

//(T*-wl) (I-S*)Xnfl 

Therefore /I (T*-zI)xn//~ O. If { y
0
1 is a sequence of unit vectors in 

'Ft such that // (T*-zI)y
0

// --'>- 0, then by a similar argument 

//(T-zl )ynl/ ~O . Therefore z is a normal approximate eigenvalue. The 

proof for z an eigenvalue of T is similar. 
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Corollary If T is a paranormal operator with z an eigenvalue or 

approximate eigenvalue of T and if there exists w E f (T) such that 

lw-z/ = d(z,~(T)), then z is a normal eigenvalue or nor mal approxi-

mate eigenvalue , respectively. 

Proof . Let z and w be as stated. Then since T is paranormal 

J w- zl II R(T ,w)O / w- z/ 1. 
d (w, O"(T)) 

The corollary now follows from Theorem 3.1. 

If T is an operator, then in general isolated points of the spec-

trum of Tare not eigenvalues [see 11, problem 147]. If T is para-

normal, then the following is true. 

Theorem 3.2 Isolated points of the spectrum of a paranormal operator 

are normal eigenvalues. 

Proof. Let T be paranormal and let z be an isolated point of tr(T). 

Let C be a circle about z of small enough radius so that if wt C, 

then /w-z/ = d(w,cr(T)) . Since II (w-z)R(T,w)/I = 1 as w-"t- z , 

(w-z)R(T,w) is an analytic function of w at w = z. Therefore 

(w- z)R(T,w) is analytic on an open disc containing C. Let 

P - - 1-f R(T ,w) dw. 
27Ti c 
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Then 

TP - zp = - _1_ f (w-z)R(. T w) 
27Ti c ' 

dw 0, 

so t hat TP = zP. Since PF 0 [see 24, p . 421], ze ~p(T). By the 

corollary to Theorem 3.1, z is a normal eigenvalue . 

Corollary If T is a paranormal operator on a fini t e dimensional 

Hilbert space, then T is normal. 

Proof . Since the dimension of the Hi l bert space is finite , u(T) i s a 

finite set. By Theorem 3.2, each element of ~(T) is a normal eigen-

value. Recall that the eigenspaces of distinct normal eigenva lues a r e 

orthogona l [14, p. 233]. If O"(T) = {z1,z2 , ••. ,znl and if I i i s the 

identit y operator on the eigenspace of zi, i = 1,2 , .•. , n , then T can 

be wri t t en as 

Therefore T is norma l . 

Paranormal Operat ors with ~(T ) Countable 

Only paranormal operators with countable spectra will be conside r ed 

in this part. It will be shown that a paranormal operator with a 

countable spectrum i s not necessarily a normal operator. However , i n 

general we can make the following statement: 
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Theorem 3 . 3 If T is a paranormal operator on "Fl with countable 

spectrum, then either T is normal or T = A e N where N is a normal 

operator with ~(N) = ~(T) and ~(A) is a subset of the derived set 

of cr(T). 

Proof. If z is an isolated point of 0-(T), then by Theorem 3.2 z 

is a normal eigenvalue of T; let E(z) be the eigenspace of z. Let 

cr
0

(T) denote the set of all isolated points of ~(T) . Let 

M closed span lJ E(z). 
z e: U-

0
(T) 

By the definition of a normal eigenvalue [see Section I J E(z) reduces 

T and T is normal on E (z), for each z € <r
0 

(T). Consequently, M 

reduces T and T is normal on M. Since ~(T) must have at least one 

isolated point, M f (0). If M =ti , then Tis normal. 

Suppose M f ~ . Then write ~ K e M and T = A e N where A is 

T restricted to Kand N is T restricted to M. Clearly ~(N) = 0-(T) and 

N is normal. Suppose to the contrary that <:T(A) is not a subset of 

the set of all accumulation points of CT (T), then there exists wt: 0-(A) 

such that w is an isolated point of ~(T) . Then w is an isolated 

point of CT(A), so there exists a circle C about w such that if 

Zf C, then /z-w/ = d(z,O-(T)) = d(z,<T(A)). Then for z€C 

II R(A,z)IJ 6 Max {llR(A,z)I/, II R{N ,z)IJ l = II R(T ,z)// 

1 1 
d(z,o-(T)) d (z ,O'(A)) 
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Therefore we may use the method of proof of Theorem 3.2 to conclude 

that wt: up (A). But 0-p (A) f; ifp (T), so that w is a normal eigenvalue 

of T. Contradiction. 

With Theorem 3.3 we can easily classify all compact paranormal 

operators. 

Corollary If T is a compact paranormal operator, then either T is 

normal or T = A $ N where N is compact and normal and A is compact 

and quasi-nilpotent. 

Proof. The spectrum of a compact operator is countable with zero the 

only possible point of accumulation. 

To show that there exists a non-normal paranormal operator with 

countable spectrum, simply let A = (g ~) and choose a normal operator 

N with o-(N) countable as in Theorem 2.4 so that A ~ N is paranormal. 

Then A e N has countable spectrum and is not normal since A is not 

normal. 

However, if the countable set iT(T) for TE rP is further 

restricted by assuming that ~(T) lies on the c2-smooth rectifiable 

Jordan curve G
0

, then T must indeed be normal. First, a more general 

theorem will be proved. 
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Theorem 3 .4 If A is an operator on ?=I with <r(A) f G0 and with w an 

i solated point of ~(A) and if there exists an open set U containing 

G0 such that for z e U- G0 , d(z,G
0

)11R(A,z)/I ~ 1, then w i s a normal 

eigenvalue of A. 

Proof. Without loss of generality assume that w = 0. Since zero is 

an isolated point of (}(A), R(A,z) is analytic in a deleted open 

neighborhood D of zero with D f;. U. Let C be a circle about zero con-

tained in D. Then for each z ED 

R(A,z) 

where 

A = - ~1- {z-n-l R(A,z) dz. 
n 27Ti) C 

Recall that G
0 

is c2-smoothly embedded in a one parameter f amily of 

c l osed rect ifiable Jordan curves Gt, -1 ~ t ~ 1. 

For a,b E G
0 

define ca,b = c1 + c2 + C3 + C4 where the Ci's are as 

shown above and such that 
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1. for z € c2 , /z-al = d (z ,G
0
), 

2. for z € c4 , /z-b/ d (z, G
0
), and 

3. Cl f; Gt and C3f. G_t for some 0 <: t < 1. 

We shall always assume that ca,b ~ D and t ha t zero is contained in the 

interior of the re gion determined by Now define 

I(a ,b) _1_ j (z-a) (z-b)R(A, z) dz 
27Ti c b a , 

- 2 } 1 f C (z-a) (z-b)R(A,z ) dz. 

Then I(a ,b) i s independent of t and we have 

I(a,b) - A._
3 

= ~ ( (-z2 + (a+b)z - ab + z 2)R(A ,z ) dz 
27rl. ) c 

The ref ore 

(a+b) 2~1 i•R(A,z) dz - {ab) 2~1 £ R(A,z) dz. 

lim 
a,b --? 0 
a,b € G

0 

I (a,b) 

Therefore, to show A_ 3 = 0, it suffices to show 

I(a, b) o. 

Let G > 0 , and fix 0 < t < 1 so that the arcs c 2 and c4 have 

lengths less than E for every a ,b E G
0

• Let 
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p~) = sup{i/R(A,z)//: z€GVG }< 00 
t -t . . 

Then there exists q(€) > 0 such that whenever Jai,lb/ < q(€), we 

have 

1. the length o f c1 and C 3 is less than l /p (t), and 

2. if zc:Cab• then izl < 2€. , 

If zE C2 , then //R(A ,z)// ~ l /d(z ,G0 ) = l/Jz-a}. Similarly, if ztC4 

t hen /IR(A,z)// ~ 1/ I z -b I. Making the obvious est imates we obtain 

JI I(a,b)I/ (5/rr) (2€) 2 , 

whenever /al, lb/< q(t). Therefore l(a ,b) ~O as a,b~O; a,b € G0 • 

Hence A_3 = 0. Therefore A_0 = 0 for n = 3 ,4 ,5 , .•. [7, Theorem 18, 

p. 573). 

p. 573]. 

Thus R(A,z) has a pole at zero and henc e OE u (A) /j,ee 7, p 

To s ee that 0 E 0- P (A) is a normal eigenvalue , we choose u t D 

such that d(u,G0 ) = lu/ = d (u,~(A)). Then since l/R(A,u)# ~ 

l/d(u,G
0

) = l/ lu/, and since 1/R(A,u)// j l /d(u , O-(A)) = 1/ Jul, we 

obtain /u/l/R(A,u)// = 1. Thus by Theorem 3.1, zero is a n ormal eigen-

value of A. 

Theorem 3.5 If T is an operator with countable spectrum and with 

cr(T) f G
0

, and if there exists an open set U containing G0 such t hat 

for z6U-G
0

, d(z,G
0

)1/R (T ,z)I/ ~ 1, then Tis a normal operator. 

Proof . Let M be the largest closed subspace of fl such that M reduces 

T and T is normal on M. By Theorem 3.4 each isolated poi nt z of 



26 

a-(T) is a normal eigenvalue. If E(z) is the eigenspace of z' then 

E (z) .f M. Hence M I (0). 

If M = 'rt then we are done, M :f ")::/ . Wri te 'Jf 
..L 

so assume = M tl M 

and T = A~ N, where A is T restricted to ~ and N is T restricted to 

M. Since o-(A) (; o-(T) [see Proposition 1.3], we know 0-(A) is 

countable and hence has an isolated point z. By Theorem 3.5, z is a 

normal eigenvalue lof A and consequently the eigenspace, E(z), of z 

reduces A. Thus E(z) reduces T and Tis normal on E(z). By the 

maximality of M, E (z) £ M. 
...L 

Contradiction, since E(z)~ M . 

Corol l ary If T is a paranormal operator with countable spectrum and if 

u(T) .s; G
0

, then T is normal. 

Proof. For zEJ°(T), llR(T,z)/I = l/d(z,a-(T)) !( l/d(z,G
0
). The corol-

lary now follows from Theorem 3.5. 

In the Corollary to Theorem 3.5 it was shown that a paranormal 

operator T with countable spectrum and with u(T)~ G
0

, must be normal. 

If it is assumed that T is a scalar paranormal operator with o(T) 

countable, then to show that Tis normal, the condition ~(T)f G0 can 

be weakened. 

Theorem 3.6 If T is a scalar paranormal operator with countable spec-

trum and if for each u E o(T) there exists such that !w-u / = 

d(w,a-(T)), then Tis normal. 
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Proof. Let u E cr(T), then there exists a sequence { ~l t;;/ (T) such 

that Un----7-U and /un-u/:::: d(~,<r(T)). Since Tis scalar 

T :::: ( z dEz. 
)cr(T) 

Therefore 

1 u-un 
(u

0
-u)R(T , u ) = -- dEz . 

n z-~ 
<r(T) 

Let x,y E fl be fixed and define m to be the complex Borel measure 

m(S) = (E(S)x,y) for each Borel set S in 0-(T). For each zE O-(T) let 

= U-\Jn 
fn(z) 

z-\ln 
and f (z) {~ if z = u 

if z I u 

Then If (z) ) ~ 1 and f (z) -~f(z). Therefore we may apply the n n 

Lebes gue dominated convergence theorem: 

Since m ( { u} ) 

jm({u})/ 

= 

/ 1 f (z) dm(z) / 
a-(T) 

lim } ( fn (z) dm(z) ) 
n~oo )u(T) 

= lim /((u-u
0

)R(T,un)x,y)/ 
n~= 

~ / u-uJ //R(T , u
0

)// //x//// y// = //x// //y//. 

(E({uJ)x,y), we have that 

/ (E((ul)x,y)) ~ l/x// )}yl/ . 
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Letting y = E({u} )x, we obtain i/E(fu])xJ/ ~ lixl/, and hence 

II E({uJ)}/ ~ 1. Therefore E( f u}) is an orthogonal projection f or each 

u E o-(T) [see Section I] . 

Let S~ ~(T) be a Borel set, then S is a countable set so write 

00 00 

(E(S)x ,y) = :z= (E({znJ )x,y) 2: (x,E({zrJ )y) 
n=l n=l 

00 

= conj L (E({z f)y,x) (E (S)y ,x) = (x,E(S)y). 
n=l 

n 

Therefore E(S) = E(S)* and hence E(S) is an orthogonal projection. 

Consequently, T i s a scalar operator with a resolution of the identity 

of orthogonal project i ons; and hence t is normal. 

To show that the condition o(T) ~ G
0 

is stronger than the condi-

tion stated i n Theorem 3.6, let C be the f ol lowing countable compact 

set of complex numbers: 

c {O} V{l!n + n = 1,2,3, ..• }. 

Then C does not lie on a c2-smooth c losed arc, but C does satisfy the 

condition in Theorem 3. 6 , i.e. for each z E C there exists w~ C such 

that /w-z/ = d(w,C) . To see this, observe that this condition is 

equivalent to the following: For each z E. C there exists an open disc 

D not intersecting C such that z f o D. 
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We will now see that the following condition on 0-(T) cannot be 

omitted from Theorem 3.6: For each z E 0-(T) there exists wC:/(T) 

such that Jw-z/ = d(w,rr(T)). Stampfli [25] has shown that a scalar 

hyponormal operator whose spectrum has zer o area in the complex plane, 

must be normal. Stampfli's result does not generalize to paranormal 

operators. 

Theorem 3. 7 There exists a non-normal, scalar paranormal operator T 

such that <T(T) is countable. Moreover, Cl(T) has exactly two points 

of accumulation. 

Proof. Let N
0 

be the normal operator (~ g), let Q be the self-

adjoint operator (i 6), - 1 and let A be the non-normal operator QN0 Q 

(8 f). By Theorem 2.4 there exists a normal operator N such that: 

1) ~(N) is countable with zero and one the only points of accumulation, 

and 2) T A e N is paranormal. Since A is not normal, T is not normal. 

Let B = Q e I. Then B = B* and 

B(N e N)B-l = QN Q-l ~ N 
0 0 

AeN T. 

Therefore, by Proposition 1.4, T is scalar. 

In light of Theorem 3.6, it seems reasonab le to conjecture the 

following theorem: If T is a paranormal operator with countable spec-

trwn such that for each ZE 11(T) there exists wcj?(T) such that 

· 1w-z/ = d(w,~(T)), then Tis normal. This conjecture is false. 
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Stampfli [25] has shown that a hyponormal opera t or with countable 

spectrum is normal, however this result does not generalize to the 

paranormal case. 

Theorem 3 . 8 There exists a paranormal operator T such that 

1. ~(T) is countable with zero the only point of 

accumulation, 

2. · if z E IJ(T), then lz-21 ~ 2, and 

3. T is not normal. 

Proof. Let Dn be the closed disc of radius n about n, for 

n = 1,2. Let V be the Volterra integration operator, i .e . for 

2 fE L (0,1 ) , 

t 
(Vf) (t) sof (x) dx. 

Let B = (I + V)- l, and let A I - B. By f 11, problem 150], <T (B) 

{ 1 J and /IB// = 1. Hence <r(A) [OJ and W(B) is cont ained in the 

closed d i sc of radius II B// = 1. Therefore W (A) f n1 • For n = 1, 2, . •• , 

let 

1. Fn = { z f o2 : 4/(n+l) ~ /z/ ~ 4/n}. 

2. ~ sup{/IR(A,z)//: z E Fnt, 

3 . dn inf{ d (z ,W(A)): Z6 (.)D2)fl Fn} > 0, 

4. Pn Max[Mu, l/dn f, and 

5. B(z,r) be the open disc of radius r about z. 

Then 
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Since Fn is compact, there exists such that 

Let N be a normal operator with o-(N) =foll) {z 1 ~ i ~ mn, 
n. 

). 

n = 1,2,3, . . . }, then ff(N) is a countable set with zero the on l y 

point of accumulation. Let T =A~ N, then ~(T) = u(N). We now 

verify that T is paranormal. 

If z €Dz , z 'I 0, then there exis t s n and i such tha t 

d (z, <r(N)) l/R(A,z )// ~ /z-zn./ //R(A,z)// 
1 

~ (l/Mn)// R(A,z)// ~ 1. 

If z is real and negative, t hen 

1 
d(z,u(N))/IR(A,z)// ~ lzld(z,W (A)) = 1. 

Suppose z ~Dz and that z is not real and negative. Let x be 

the point of intersection of 0 Dz with the shortest line segment con-

necting z and W(A). Observe that x 'I 0. Then d(z,W(A) ) = / z-x / + 

d(x,W(A)). Thereexists n a nd i suchthat x EFnflB(zn.,l/Pn) . 
1 

Then /x-znJ ~ 1/Pn, and so 
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~ lz-x/ + d(x,W(A)) = d(z,W(A)). 

d(z,0-(N))//R(A,z)// ~I z-z I I/ R(A,z)// 
ni 

~ d(z,W{A))d(z,~(A)) 1. 

Therefore, for each complex number z ; 0, 

d{z,CT(N))// R(.A, z)// 6 1. 

Since N is normal, for each z t=j{T) = j7(N), // R(N,z)// 

l / d (z, a-(T)). Hence, for z </' (T) 

1 

l/d(z ,<T(N)) 

/! R(T,z)// = Max{J/R(A,z)ij, //R(N,z)//} 
d (z ,<T(T)) 

Therefore T is paranormal. 

For the rest of this section, the assumption that T has countable 

spectrum will be dropped. If T is an operator on Fl , then T is said to 

have a lattice of closed subspaces on the closed subsets of CT(T) if 

for each closed S .S 0-(T) there exists a closed subspace, M(S), of 'fl 

such that: 1) M(~) = 0, 2) M(~(T)) =fl, and 3) if S1 and S2 are 

closed subsets of o-(T), then M(S1/J 82) M(S1)fl M(S2). The lattice 

is non- trivial if there exists a closed set S £ 0-(T) such that 

M(S) I 0 and M(S) f fl. 
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An operator T is said t o satisfy Dunford's Boundedness condition 

(B) [8 , p . 226], if there exis t s a constant k depe nding only on T 

such that if x ,y E Ff and a-(T ,x) 17 o-(T ,y ) = 0 [see Section I] , then 

/l x//5; kl/x+y//. 

Theorem 3. 9 If TE B('H) with (J (T) .f G
0 

and i f there exists an open 

set U containing G
0 

such t hat f or each z f U-G
0

, d (z ,G
0

)1! R(T ,z )I/ ~ 1, 

then either there exists a complex nwnber b s uch that T = bl, or T 

has a non-tr ivial lat t i ce of invariant subspaces on the closed subse ts 

of <T(T). 

If T is a paranormal operator with cr(T) f G0 , then f or each 

z~G0 , d(z,G0 )//R(T,z)/I ~ d(z,<T(T))J/R(T,z)// = 1. Thus , as an immediate 

consequence of Theorem 3.9 , we have the following: 

Corollary If T is a paranormal operator with <T(T) f G
0

, then either 

there exists a complex number b such that T = bl, or T has a non­

trivia l lattice of invariant subspaces on t he closed subsets of 0-(T) • 

.. 
The following lerruna comes from [7, Lenuna 2, p. 240; and Theorem 18, 

p. 264]. 

Lemma 1 (a) 0-(T,x) = 0 if and only if x = 0 . 

(b) I f T €. B('W) wit h a-(T) .f G
0 

and if there exists an open 

set U containing G
0 

such t hat f or e ach z E. U-G0 , 
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d (z ,G0 ) /IR(T ,z)/I ~ 1, then T is scalar if and only if T 

~atisfies conditiori (B). 

Lemma 2 If T is an operator on fl with q' (T) f G
0

, then 

o-(T) = closure U CT(T ,x). 
x~'JI 

Proof. Clearly ~(T,x) ~ ~(T) for each XE?i . Suppose the lemma to 

be false, then there exists a f o-(T) and €: > 0 such that 

N(a,f)/l/(T,x) = 0 for all X€ '}/, where N(a,E) = [z: J z-a/< €} 

Let f x(z) be the maximal analytic extension of R(T,z)x for each 

xE/:/. Then fx is analytic in N(a,E)l//(T). For z e(J(T)UN(a,t) , 

define Bz:fl~"):/ as Bzx = fx(z). Fix x,yEJ/, then for z E/(T) 

Bz(x + y) = fx+y(z) = R(T,z)(x + y) 

= R(T,z)x + R(T,z)y 

Since Bis a continuous function of z and since ~(T)~G0 , we have 

that Bz(x + y) = Bzx + Bzy for all Z€,P(T)VN(z,E). S i mi larly one 

shows Bz is homogeneous and Bz(T-zl) = (T-zl)Bz = I for al l 

zEf7(T)VN(a,E'). Therefore, B8 (T-al) = (T-al)Ba =I , so that T- al 

is one-to-one and onto. Thus, by [11, problem 41] , T-al is invertible 

and a fj7 (T). Contradiction. 

We now state the following lemma from [7, Lemma 4, p. 254]. 
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Lemma 3 If TE BO¥) with cr(T) S G0 and if there exists an open set 

U containing G0 so that for each z e U-G0 , d(z,G0 )//R(T,z)// ~ 1, and 

if Sis a closed subset of lf(T), then M(S) = {xt:'f/: 0-(T,x) f s} is 

a closed subspace invariant under T. 

Proof of Theorem 3.9. If cr(T) = {b} for some complex number b, then 

by Theorem 3.4 T = bl. For the rest of the proof assume that ff(T) 

has at least two points. 

Let M(S) be defined as in Lemma 3. By Lemma 1, ~ (T,x) = 0 if 

and only if x 

x tf/, M(a-(T)) 

0, so that M(~) = 0. Since O" (T ,x) f;- IT(T) for each 

fl. It is obvious that M(S1 fl Sz) = M(s1) II M(Sz) 

whenever S1 and s2 are closed subsets of ~(T). Therefore, these 

sets form a lattice of closed, invariant subspaces on the closed sub­

sets of O-(T). If this lattice is non-trivial, then the proof is com­

plete. 

Suppose that this lattice is trivial, i.e. M(S) = 0 or M(S) 'jc/ 

for every closed subset S of cr(T). Then, since xf M(cr (T,x)), 

M(o-(T,x)) ='fl for every nonzero xE1t'. Consequently, by Lemma 2, 

cr(T,x) = <l(T) for all nonzero xE/I. Hence whenever cr(T,x)()O-(T,y) 

~, either x = 0 or y = 0. Thus T satisfies condition {B) trivially 

so that, by Lenuna 1, T is scalar. Therefore, since ~(T) has at least 

two elements, T has a non- trivial lattice {formed from the resolution 

of the identity of T [see Sect ion I]) of closed, invariant subspaces on 

the c losed subsets of ~(T). 
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Section IV: Topological Properties of Paranormal Operators 

Let (j> denote the set of all paranormal operators on Hilbert 

space fl . Let 

;[ = {T eB('R'): col.f(T) W(T) } , 

and let 71 be the set of all normal operators on 'JI. It will always 

be assumed that B(~) has the uniform operator (norm) topology. In 

this section, the topological properties of rP relative to I/, '!.. , 

and B('?f) will be discussed. 

It will be shown that 7/, fP and ;J are closed, arc-wise 

connected subsets of B(fl). In Section II, it was shown that /f <;_ (f> [:_ / . 

When the dimension of 1/ is finite, then by the corollary to Theorem 3 . 2 , 

f? = (fJ • When dim 'ii = o0 , then it will be shown that /l_ is a 

nowhere dense subset of fP. When dim 11 ~ 4, t he n <P = f and when 

5 ~ dim Pl< DO , then <P has a nonempty interior i n J. . When 

dim ~ = oo, then (}J I / and it is not known if (fJ is a nowhere 

dense subset of ;j. Finally, it will be shown that J.. is a nowhere 

dense subset of B("t{J, when dim i::/ ~ 2. 

The following notation will be used in this section: If S is a 

compact set in the complex plane ([ and if E 7 0, then let 

s + (6) d(z,S) <: 6]. 
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If Sand Sn, n = 1,2,3, ... are compact sets in {, then the sequence 

{Sn I approaches S, written Sn ~S, if for every ,;. /' 0 there 

exists a positive integer N such that for n ~ N, Sn f S + (~) and 

S .S Sn + (E ) . 

In general (}(T) is not a continuous function of T i n B(~) 

[see 11, problem 85], but ~(T) is continuous if we restrict T to rP. 

Theorem 4. 1 If {Tn} is a sequence of paranormal operators approach­

ing the operator T in norm, then 

Cf (Tu)~ 0-(T) as n~=. 

To prove this theorem we need the following lenuna f r om [11, 

problem 86] . 

Lenuna If T f B(P/) and E > 0, then there exists 6 > 0 such that if 

Sf B('11') and II T-S}/< S' , then o-(S ) f: cr(T) + (€). 

Proof of Theorem 4.1 We know by the lemma that for each E > 0 there 

exists a positive integer N such that for n ~ N, o-(T0 ) f; O-(T) + {€). 

Therefore, to show (}(Tn)___,.CT(T), it suffices to show that for each 

t- > 0 there exists a positive integer N such that u(T) ~ 0-(Tn) + (t::) 

for all n ¢ N. If this does not hold, then without loss of generality 

we may assume that there exists E > 0 and a sequenc.e {Zn 1 ~ (}(T) 

such that d(zu,<f(Tn))~ E for all n. Since o-(T) is compact, we 



38 

may assume Zn-~ z E cr(T) . If I Zn-Z / < € /2, then 

~ E - E/2 

-:;::::. <; /2. 

Hence 

Now choose m so that J/{Tm-T)R(Tm,z)I/ < 1, then I - (Tm- T)R(Tm,z) 

is invertible [11, problem 173]. Let 

A 

Then A (T- z I) (T-zl)A I so that z E:f(T). Contradiction. 

Theorem 4 .2 ~is an arc-wise connected, closed subset of B('P{). 

Proof. Since T f (J> implies aT E <P for every complex number a, we 

see that the ray in B(~) through T is contained in cP . Therefore 

CP is arc-wise connected. 
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Suppose Tn---+ T, { Tn f a sequence of operators in rP, and 

T~ B('W) . Let By the lennna to Theorem 4.1, 

li 1 :; 1 
m sup d (z, cr(Tn)) d (z, (}(T) ) 

n --7 00 

Therefore, since II R(Tn,z)/I = l/d(z,O-(Tn)) whenever there 

exists a positive integer N such that the sequence { /IR(T0 ,z)//: n .:f N} 

is bounded. Then, since R(T,z) - R(Tn,z) = R(T,z)(T-Tn)R(Tn,z), 

//R(T ,z )}j---71/R(T , z)// as n~oo . Consequently, 
n 

// R(T ,z)J/ = lim fl R(Tn ,z)// 
n--?C>O 

lim 
1 

n-C)oo d (z , a-(Tn)) 

~ 
1 

d (z , cr(T)) 

S ince in general //R(T,z)// ~ l/d(z,(J(T)), T is paranormal. 

Theorem 4.3 I. is an arc- wise connected , closed subset of B(i=f). 

Proof. Since T E: J:. implies that aTE/ for every complex number a, 

J is arc- wise connected. 

Let Tn -7T, {TnJ s;.£ and TEB(y). Since /(Tnx ,x) -(Tx,x) ) ~ 

l/Tn-T // for //xi/= 1, W(Tn) ~ W{T)+(2/IT-Tnl/) and W(T) f W{Tn)+ 

(2/(T-Tn//). Consequently, W{Tn)~W{T). Let E- > 0, then by the 
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lemma to Theorem 4.1 there exists a positive integer N such that 

lf(Tn) ~ <r(T) + (E) for all n ~ N. Therefore, for n ~ N, 

co o-(T ) ~ co <J(T) + (E) and hence n 

---
W(T) lim W(Tn) 

n~= 

lim co !T(T ) 
n 

n~oo 

~ co 0- (T) + (E ) • 

Since 6 / 0 is arbitrary, W(T) ~co ~(T). Since in ge ner al 

co o-(T) S W(T), T G ;A_. 

Let 7l be the set of all normal operators on fl Since 

// Tn -T // ~ 0 implies I/ Tn *-T* If ~O, 7l. is closed in t he uniform 

operator topology on B(f{). Since T 6 /{ implies aT GIJ. f or any 

complex a, /{, is arc-wise connected. 

We know that 

7( c (p c t_ f_ B ('fl) • 

Much more can be said about how the above four sets are related. 

It has already been shown [see the corollary to Theorem 3.2] that 

n = rP when dim 11 .::: 00 When dim 11 = o<:> , then I( is a very 

"thin" subset of rP . The f ollowing theorem makes this more precise. 
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Theorem 4 .4 ft. is a nowhere dense subset of (P when dim 'fl co 

Proof. Since 77. is closed, to show that 77 is a nowhere dense subset 

of fP , it suffices to show that ?? has empty interior in r? . Let 

Tf 77. and let €: > 0. 

First suppose that T has an eigenvalue of infinite multiplicity. 

We may assume that the eigenvalue is zero. Let M be the eigenspace of 

zero . Then dim M = oo M reduces T, ~nd we can write T = B ~ Z 

where Z is the zero operator on M. Let 

be a non-normal paranormal operator [see Theorem 2.3] on M with N a 

normal operator such that 

~(N) = closure w(~ ~)· 

Then B ~ S is a non-normal paranormal operator such that 

II T - B ~ S II = II B e Z - B -e SI/ /IS // ~ . 

The last equality holds since 

l/N// f/2 and /} ( g ~) JJ = 6 . 
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Therefore, since E > 0 is arbitrary, T is not contained in the 

interior of 77 in rP o 

If IT (T) is finite and Tc 17 , then () (T) = 0-P (T) and T has an 

eigenvalue of infinite multiplicity . We therefore assume that (J(T) 

is infinite and that zero is an accumulation point of ~(T). Let D be 

the open disc about zero of radius €/2. Let Ebe the resolution of 

I 
the identity for T [see Section I] so that 

T = ( zdEz. 

) tr(T) 

Let M = E(D), P ~(T) - D, and let 

A = fp zdEz• 

Then M reduces T, dim M = oo and A is a normal operator. Let Z be 

the zero operator on M. Then A e Z is a normal operator with zero 

an eigenvalue of infinite multiplicity, and 

I/ T - A $ Z II 

By the first part of this proof, there exists a non-normal paranormal 

operator s such that fl A e z - SI} < €I 2. Then 

(j T - S // ~ /IT - A e Z// + }J A e Z - S JI< € • 
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Therefore, since ~ > 0 is arbitrary, Tis not cont ained in the 

interior of fl in tP • Hence the interior of 7( in (J> is empty. 

Next, the relationsh ip between rP and 1. will be discussed. To do 

this define c2 to be the set of al l opera tors T €J with W(T) a 

closed line segment or a point. For k = 3,4,5, .•. , let ~ be the 

set of all operators Te J: such that W(T) is the convex hull of a 

polygon with k sides . If TE Ck, k = 2,3 , ... , then e a ch vertex of 

W(T) must be in the spectrum of T . S. Hildebrandt [15] has shown that 

if z E a-p (T) (\ () W(T) for T f ;1. , then z i s a normal eigenvalue of 

T. Thus for TE Ck the verticies of W(T) are normal eigenvalues 

of T, when dim °JI < OCJ Hence, all the operators in Cn V Cn-l are 

normal operators when dim f:I = n < 00 
• 

S. Hildebrandt [15] has shown that 1( = fP = f when dim 'N ~ 4, 

and that 7? -/: '£ for 5 ~ dim Pl < o0 • The fo llowing theorem says 

much more about how rY and t._ are related when 5 ~ dim Pl ..=: = 

Recall that [P = 7/_ for dim ?¥ < oo . 

Theorem 4. 5 If 5 ~ dim °):/ = n c: = then the interior of (p in :J. 

Proof. Suppose T t. Cn V Cn-l • Since Cn U Cn-l f 7J, T is nor mal. 

There exists ~ > 0 such that whenever S E i , fl T - SI/< e , then 

SE. Cu U Cu-l • To show this, _suppose the statement were false. Then 

there would exis t fsn} f f such that I/ T-Sn // --7 0 and 
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n-2 
l_) Ci. 
i=2 

Then, since W(Sn)-7-W(T), 

n-2 
T ~ \_) Ci. 

i=2 

Contradiction. Hence, T i s an interior point of tP in i. 

Let T be contained in the interior of fP = J7 in 'J. . Suppose 

T ~ Cn V Cn-l" Let e > 0. Since co <1(T) = W(T), TE Ck, for some 

k ~ n - 2. Since dim ?I ~ 5 and s i nce TE Ck, there exists a normal 

operator N such that 

1. /IT - N// < €/2 

2 . W(N) is a polygon with at least three sides, and 

3. N has at least two eigenvalues z, w contained in the 

interior of W(N). 

Write N = A e B where B can be written as B 

Let a > 0 and let 

then 

IJB - CJ/= //(g ~)JI a. 

Choose a > 0 small enough so that W(C) ~ W(N) and so that a< c /2. 

Then since W(A) = W(N) and cr (A e C) = CT(N), co CT(A e C) = W(A ~ C). 

Hence A e C E t. Since A e C is not normal a nd since 
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/IT - A e Cl/~ //T - N// + l/N - A~ Cf} ~ E/2 + c/2 = t' 

T is not an interior point of IP in f. . Contradiction. Hence 

It is an open question as to what t he interior of <Pini is 

when dim °JI = oo However , it can be shown that rJ> :f J when 

dim "JI = oo • 

Theorem 4. 6 /}> :f ti. when d im ?t = oo 

Proof. Write "Ji 
.L 

M ~ M where dim M 5. Let 

A and N 

where a,b,c are three complex numbers that form a tr iangle with W(A) 

contained in the interior of the triangle . Consider A e N as an 

operator on M and observe that co ~(A e N) = W(N) W(A e N). Since 

A e N is not normal and since dim M < oo, A e N is not paranormal. 

Hence there exists z E /AA e N) s uch that 

1 
l/R (A e N,z)// > d(z.~(A e N)) • 

.L 
Let I be the identity operator on M and let T A e N e al. 
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Then, cr(T) = CT(A ~ N) and W (T) W (A ~ N). Therefore T € J:. • 

Since d (z, o-(T)) 5f I z - af , 

II R(T ,z)// Max [ V R(A e N ,z)Q, _l_} 
Jz-aJ 

ff R(A ~ N ,z)// 

> 1 
d(z,<T(T)) 

Therefore T is not paranormal. 

The main result of this section is to show that if dim 11 ~ 2, 

then 1, is a nowhere dense subset of B('N) in the uniform operator 

(norm) topology. Once this is .shown, it follows iwnediately that 77.. 

and (]> are nowhere dense subsets of B(10. 

Theorem 4. 7 £ is a nowhere dense subset of B(H') when dim 'ti d3- 2. 

To prove this theorem we need the following two technical lerrm1as. 

Lemma 1 If and are distinct, normal approximate eigenvalues 

of T ~ B(?t), then there exists sequences [ x
11 

{ and { Yn} of unit 

vectors in '>I such that: 

1. (xn,yn) = 0 for all n, 

2 . //(T- z 1I)xn//~O as n--;ao and 

3. //(T- z 2I)yn//-7'0 as n~o0 
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Lenuna 2 If TE f such that there exists distinc t a,bE oW(T)/)crp(T), 

then T is not coatained in the interior of I.. . 

Proof of Theorem 4. 7 Since i. is closed [Theorem 4. 3], to show that 

~ is nowhere dense it suffices to show that :f. has empty interior. 

We first remark that if T is in the interior of I. , then cr(T) 

roust contain at least two points. Suppose Te I. and 0-(T) =[a ]. 

Then ((T-al)x,x) = 0 for all XE 11 so that T al. Since dim'fl~ 

2, 
...1.. 

write ti = M -e M where dim M = 2. 

A E B(?i) as 

A (g ~) on M, and 

Let 

A 

b > 0 and define 

j_ 
0 on M . 

Then IJ(T+A) {al and since b I 0, ~a] I W(T+A). Therefore T+A/f J.. 

Since JI A// = b > 0 is arbitrary, T ~ interior J. . 
With the above remark completed, we can now finish the proof of 

Theorem 4.7. Suppose the theorem were false and there exists T e 

interior J; . Then there exists € > 0 such that whenever VE B('f/) 

and I/ T - VII<= E, then VE cf.. From the above remark cr(T) must con-

tain at least two points. There must be at least two extreme points of 

W(T), since extreme points of W(T) for TE cf. are extreme points of 

~(T). Hence, after a rotation, if necessary, we may assume there exists 
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Jm. 

z, -vV(T) z, 

-----+-- __ ...__ ________ l __ --?> Re. 

Re z, Pie ld.. 

such that 

1. Re z.1 inf Re W(T), 

2 . Re z 2 sup Re W(T), and 

Since and are normal approximate eigenvalues 

of T [14, Theorem 2, p. 233]. By Lemma 1 there exists unit vectors 

x,yE 'ii such that (x,y) = 0, //(T-z 1I)x// < 08, and (/(T-z 2I)y// < 08 . 

Let M be the closed subspace spanned by { x,y j. Define C € B('h') as 

Cx -(r=./4)x, 

Cy = +(€ /4)y, and 

Cz 0 for all 

Since J/ CIJ::; E/2, T + C 6 ;[. Since 

J_ 
z t: M • 

((T + C)x ,x) (Tx,x) - €/4 and 

we obtain inf Re W(T + C) < Re z
1

. Since T+C E ~ , there exists 

a f 0- (TtC) / l ()W(T+C) such that Re a = inf Re W(T+C). Since C is a . 7T 

compact operator, Weyl 's spectral inclusion Theorem [11, problem 143] 

yields 



Therefore, a E IJ (T+C), 
p 
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~(T+C) - ~ (T+C) ~ ~(T). 
p 

so that 

a Eu (T+C) 11 oW (T+C). 
p 

Similarly one shows t here exists 

b t: (f (T+C) /1 o W (T+C) 
p 

such that Re b =sup Re W(T+C) >Re z
2

, and hence a f b. By 

Lemma 2, there exists SE B(FI) such that //SI!< € / 2 and T+C+S~ J. 

But // T- (T+C+S)/J ~ II CjJ + II Sii <::: ~ so by assumption T+C+S e f. 

Contradiction . 

Proof of Lerruna 1. There e x ists sequences f wn ] and { Yn t of unit 

n~o0. Then 

Therefore, /(z1 -z2) (wn , y
0

)/ - > 0 as n ~oa . Since z 1 f. z
2

, 

(w ,y ) - > 0 as n -->-oo . n n 
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There exists complex numbers an and bn and unit vectors ~ 

inc;/ such that wn = 8nYn + bnxn, /anJ
2 

+ /bn/ 2 = 1, and 

(x0 ,yn) = 0. From the above paragraph we have that an ->"0, so 

Proof of Lennna 2. Let €- / 0. Since a,bE-0-p(T)/ ) Cl W(T), a and b 

are normal eigenvalues of T [18, Theorem 2, p. 233]. Let u,v€:'t/ 

be unit vectors such t hat 

Tu = au and Tv bv 

Then (u,v) = 0 and the closed subspace N spanned by { u,v} reduces 

T. Define Se- B("fl') as 

Su = €. v 

Sv 0 

J. 
S z 0 for a 11 z E N . 

Then we may write T + S = A e B 
-1 

corresponding t o ?o/ = N ~ N 

Then the matrix representation of A relative to { u,v} is 

A= (~~)· 

Hence o-(A) {a,bf £ 0-(T). Clearly Cl(B) f. o- (T). Therefore, 

co v-(T+S) c co CT(T) W(T). 

A is not a normal operator. So by Proposition 1.1, W(A) is the 
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convex hull of a nondegenerate ellipse (i.e., not a straight line) 

with foci at a and b. Since W(A) ~ W(T+S), we must have 

co ~(T+S) F W(T+S). 

Therefore, T+S ~ /. Thus, since J/SI} 

T ~ interior J:. • 

6 > 0 is arbitrary, 
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