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ABSTRACT

In this thesis an extensive study is made of the set £ of all
paranormal operators in B(¥), the set of all bounded endomorphisms on
the complex Hilbert space #. T ¢B@®) is paranormal if for each =z
contained in the resolvent set of T, d(z,ﬂT))l/(T-zI)‘l// = 1 where
d(z,0(T)) 1is the distance from z to ¢(T), the spectrum of T. P
contains the set » of normal operators and ® contains the set of
byponormal operators. However, # is contained in X, the set of all
T € B(H¥) such that the convex hull of the spectrum of T is equal to the
closure of the numerical range of T. Thus, /7 ¢ Fed,

If the uniform operator (morm) topology is placed on B(¥), then
the relative topological properties of 77, P, and L can be discussed.
In Sectiom IV, it is shown that: 1) 77, 49, and £ are arc-wise con-
nected and closed, 2)71, P, and X are nowhere dense subsets of B(¥)
when dim¥ 2 2, 3)72%Z = ? when dimn¥ < ¢, 4) /] is a nowhere dense
subset of P when dim} = oo s 5) g is not a nowhere dense subset of &
when dim¥ < o=, and 6) it is not known if & is a nowhere dense sub-
set of X when dim% =o°,

The spectral properties of paranormal operators are of current
interest in the literature. Putnam [22, 23] has shown that certain
points on the boundary of the spectrum of a paranormal operator are
either normal eigenvalues or normal approximate eigenvalues. Stampfli
{26] has shown that a hyponormal operator with countable spectrum is
normal. However, in Theorem 3.3, it is shown that a paranormal opera-

tor T with countable spectrum can be written as the direct sum, N @ A,
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of a normal operator N with o(N) = o(T) and of an operator A with
(&) a subset of the derived set of ¢(T). It is then shown that A
need not be normal. If we restrict the countable spectrum of T ¢ P
to lie on a Cz-smooth rectifiable Jordan curve G,, then T must be -
normal (see Theorem 3.5 and its Corollary]. If T is a scalar paranor-
mal operator with pountable spectyum, then in order to conclude that T
is normal the condition 0(T) € G, can be relaxed [see Theorem 3.6].
In Theorem 3.7 it is then shown that the above result is not true when
T is not assumed to be scalar. It was then conjectured that if Te @
with o(T) ¢ G,» then T is normal. The proof of Theorem 3.5 relies
heavily on the assumption that T has countable spectrum and cannot be
generalized. However, the Corollary to Theorem 3.9 states that if
TEP with o(T) € Go’ then T has a non-trivial lattice of invariant
subspaces. After the completion of most of the work on this thesis,
Stampfli [30, 31] published a proof that a paranormal operator T with
r(T) £ G, is normal. His proof uses some rather deep results concern-

ing numerical ranges whereas the proof of Theorem 3.5 uses relatively

elementary methods.



INTRODUCTION

In this thesis an extensive study is made of the topological and
spectral properties of a subset ® of B(Y), the set of bounded
endomorphisms on the Hilbert space H. 4n element T of (’ , called a
paranormal operator, is defimned by the relatiomnship
d(z,U(T))H(T-zI)'lﬁ =1 for all z¢eO(T), where /O(T) is the
resolvent set of T, and d(z,c(T)) is the distance from z to J(T),
the spectrum of T. Operators with the above growth condition on
ﬂ(T-zI)-IH arise naturally in spectral operator theory [8].

P is a very large set in that it contains all normal operators,
W, and all hyponormal operators, yet ? is small enough to be con-
tained in the set £ of all T in B() such that the convex hull of
the spectrum of T is equal to the closure of the numerical range of T.
Thus N& P £Z. 1f the uniform operator (norm) topology is placed on
B(¥), then the relative topological properties of 7], ﬁ), and 4 can be
discussed. As an illustration, it is shown [ see Section IV] that 71,
P, and J are arc-wise connected, closed, nowhere dense subsets of
B¢Y) when dim% 2 2, 71 = (P when dim ¥ < o0, and 7] is a nowhere
dense subset of  when dim % =-co,

The spectral properties of paranormal and hyponormal operators
have received considerable attention in the current literature [22, 23,
30, 31]. Stampfli [25, 26, 27 ] has shown that a hyponormal operator
whose spectrum is a sufficiently '"thin" subset of the complex plane,
must indeed be mormal. 1In particular, a hyponormal operator with

countable spectrum is normal. On the other hand, a paranormal operator



T with countable spectrum can be decomposed as the direct sum, N ® A,
of a normal operator N with () = ¢(T), and of an operator & with
o (A) a subset of the derived set of o (T) [ Theorem 3.3]. However, A
need not be normal. Stampfli [26, 27] has also proved that a hypo-
normal operator whose spectrum is a subset of a Cz-smooth rectifiable
Jordan curve G, , is in fact normal. It was then conjectured that
this result would %old for T paranormal. This conjecture with the
added assumption that T has a countable spectrum is proved here [ see
Theorem 3.4 and its Corollary/, but the conjecture without the counta-
bility assumption on the spectrum remained unproved. However, using the
Dunford spectral operator theory, it was shown that a paranormal
operator whose spectrum is not countable and is a subset of G,, must
indeed have a nontrivial lattice of invariant subspaces [see Theorem 3.9
and its Corollary].

After having completed most of the work for this thesis, Stampfli
[30] announced a solution to a problem that generalizes a result stated
above. Namely, he proved that a paranormal operator whose spectrum is
a subset of G,, is normal. In his proof [31] several rather deep
results about numerical ranges are crucial, whereas the result proved
in this thesis [Theorem 3.4] uses relatively elementary methods which
depend heavily on the assumption that the spectrum is countable. It
would be interesting to see a relatively simple proof of Stampfli's
result.

Orland [19] has characterized operators T for which the convex hull

of ¢(T), co o(T), equals the closure of the numerical range of T by



the condition d(z, co J{T))H(T~ZI)_1N €1 for all zé&co 0(T), where
d(z, co 0(T)) is the distance from z to co ¢(T). Thus, an extremal
condition on N(T—zl)-lﬂ has been characterized by an extremal
geometric condition, namely co ¢(T) is equal to the closure of the
numerical range on T. In gemeral |7, p. 556] d(z,7(T))I(T-z1) %) > 1
for each zE/o(T), so that the condition, d(z,U(T}}H(T~zI)'1” = i
for paranormality is an extremal conditiom on U(T-zI)-¥U. Therefore,
it seems reasonable to expect that the set of paranormal operators can
be characterized by some extremal property; however, this remains an

open question.



Section I: Definitions and Basic Hilbert Space Properties

Let B be a complex Hilbert space with the inmer product of two
elements x, ye % denoted by (x,v). An operator on % is a con-
tinuous linear transformation mapping ¥ into Y . Denote the set of
all operators on % by B{). B®) will always be given the uniform
operator topology. I¢€ B(¥) will always denote the identity operator.
For T€B@W), let ITI = sup(NTxl: =xe¥ , xl = 1} denote the norm of
T and T* denote the adjoint of T. Te& B(¥) 1is invertible if and ounly
if there exists S¢ B(%) such that ST = TS = 1. 1In this event S is
unique and is denoted by S'l. /O(T) = {zeé‘: T-zI 1is invertible}
where ( denotes the complex field. /U(T) is called the resolvent set
of T and C(T) = f--/O(T) is called the spectrum+«f T. @?{T) is the
point spectrum of T and (TW(T) is the approximate point spectrum of T,
[see 11]. The boundry of a set S is denoted by 2S. It is an impor-
tant fact that 20(T) & U}#T), [11, problem 63]. ze(TFCI) is a
normal approximate eigenvalue for T whem: 1)/x //=1 and
/}(T-—zI)an~—>O as n-»oc imply [(T*-Z1)x_[-—+0 as n-—oc, and
2) jyuk =1 and ﬂ(T*-iI)yn/ﬂ% 0 as n-»o0co imply U(T—zl)ynﬂ—?ﬂ)
as n—roo . zé'ob(T) is a normal eigenvalue for T when {xe¥ :
Tx = zx} = {x:e%#: T*x = ?x}. It is well known that the eigenspaces
of distinct normal eigenvalues of an operator T are orthogonal [14,
p. 233]. 1f z is a normal eigenvalue for T, then it is not necessar-
ily true that =z 1is a normal approximate eigenvalue for T.

An operator T is quasi-nilpotent if o(T) = {0}. T is a projec-

tion if T2 =T, T is an orthogonal projection if T2 =T and



T* = T. 1t is well known that T is am orthogonal projection if and
only if 12 =7 and /[Tl 1. T is a positive operator, denoted by
T >0, if (Tx,x) > 0 for all xeH. Let R, (T) = sup {1z:

z € o-(T)} denote the spectral radius of an operator T. By [7, lemma 4,

p. 5677,

Rsp(f) =[%i2;urnﬁ1/“ and RSP(T) < )T,
For zeﬁ(T), R(T,z) = (T—zl)-l is called the resolvent of T at z.

An operator T is normal if T*T - TT* = 0. It is well known that
if T is normal then /Tl = Ry (T), [11, p. 115]. T is hyponormal if
T#T - TT* 20 or if TI* - T*T £0, and T is paranormal if [/ R(T,z)/l =
1/d(z,r(T)) for all zep(T) where d(z,7(T)) = inf{iz-w/: weo(D].
Let (P denote the set of all paranormal operators on # .

For T an operator on ¥ the numerical range of T, W(T), is equal
to -{(Tx,x): XxXe¥ , lxll= 1} . W(T) is a convex, bounded subset of the
complex plane and ¢(T) ¢ Wﬂ, [ see 6]. In [6] Donoghue proves the

following theorem.

Proposition 1.1 If T is an operator on a two dimensional Hilbert space

H, then W(T) is the convex hull of an ellipse whose foci are the
eigenvalues of T. If the eigenvalues are distinct, then the eccentric-
ity of the ellipse is sin t where 0 <€t < 7/2 such that cos t =

I{(x,y)] where x and y are unit vectors in H each generating a



distinct eigenspace. 1f the eigenvalues are the same, say =z, then

W(T) 1is the closed circular disc about z of diameter [/T-zI/.

A. Wintner [32] has shown that [R(T,z)| € 1/d(z,W(T)) for all
z5W(T). It is well known [7, corollary 3, p. 566 that [ R(T,z)/ 2
1/d(z,c(T)) for all zcﬁO(T). If S is a set of complex numbers, then
let co S denote the convex hull of S. Let £ = {TE BH): co o(T) =

W(T)}. G. Orland [19] has proved the following characterization of K

Proposition 1.2 T€ & if and only if [/R(T,z)l| € 1/d(z,cor(T)) for

all z &cod(T).

If TEBE), then T is the direct sum of A€B(M) and BE B(M),
written T = A ® B, if M is a closed subspace of ‘¥ that reduces T,
M# (0) and M #%, T restricted to M equals A, and T restricted to

M equals B. The following theorem will be used several times [see 11].

Proposition 1.3 If the operator T is the direct sum of the operators

A and B, then
1. T/ = Max{ilall, IB)}
2. ¢g(T) = o(A) UV 0(B)

3. W(T) = co(W(A) U W(B)).

If T is an operator on H# and wu(z) is a rational function of =z

with no poles lying in the spectrum of T, then we can represent u(T) by



u(T) = - u(z)R(T,z) dz

-
27i

S
where S5 is the union of a finite number of closed rectifiable curves
that form the boundry of an open bounded set D of complex numbers,
where 0 (T) € D and D contains no singularities of wu(z) [see 24].

The mapping E from the Borel sets B in the complex plane ({ into
the set of projection operators on # is a resolution of the identity
for TEB() [see 8, p. 219]) if and only if

1. E() =1 and E(S;/]Sy) = E(S1)E(Sp) for each
81, Sp€B,

2. there exists M > 0 such that for all S¢B
EE)I < M,

3. if {Sn} is a sequence of disjoint Borel sets,

then for each x e ¥
E(Lr{sn)x = %E(Sn)x, and
4. for each Sé€B,
TE(S) = E(S)T and ¢ (Tlgeg) )€S.

An operator T is a spectral operator if T has a resolution of the
identity. If T& B(¥) 1is a spectral operator with resolution of the

identity E, then we can form the following operator on % [8, P- 226]

/'i‘ = [ z dEz.
g(T)



A spectral operator T is scalar if and only if T = T. 1I£f T is s
scalar operator and if £ is a rational function with no poles imn
7(T), then
£(T) = £(z) dE,.
r(T)
I£f T is a scalar operator, then for each fixed x,ye¢# there exists a

unique complex Borel measure m such that

(Tx,y) = J/’ z dm(z)
a(T)

and m is given by m(S) = (E(S)x,y) f£for each Borel set S. We will

need the following theorem [8, p. 230].

Proposition 1.4 T is & scalar spectral operator if and only if there

exists a normal operator N and a self-adjoint operator Q such that

T =QNQL.

We shall always assume that the arc G, is Cz—smoothly imbedded

in a one parameter family of closed rectifiable Jordan curves Gt’
Let T be an operator on % and let x be a fixed element of # .

Then R(T,z)x 1is a vector valued analytic function of 2z on /O(T)

and may possible be extended analytically to a larger open set. Lf the

spectrum of T is a nowhere dense set of complex numbers, then R(T,z)x

must have unique analytic extensions since then the resolvent set is



dense so that any two analytic, or even continuous, extensions must
agree on their common domain of definition. Therefore, if the spectrum
of T is a subset of Go’ then R(T,z)x has unique analytic exten-
sions. By taking the union of all open sets each of which is the
domain of an analytic extenmsion of R(T,z)x, we obtain a maximal open
set on which R(T,z)x can be analytically extended. Let /ﬁ(T,x) be
this open set and let (¢ (T,x) be the complement of /O(T,x) in the
complex plane [8].

An operator T on K is said to satisfy Dunford's Boundedness Con-
dition (B) [8, p. 226], if there exists a comstant K depending only on

T such that if x,ye®d and 0(T,x)/10(T,y) = P, then Ixl < Kixtyl.
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Section I1: Basic Properties of Paranormal Operators

An operator T on the Hilbert space % 1is paranormal if for each
zE/O(T), IR(T,z)Il = 1/d(z,0(T)). Let P denote the class of all
paranormal operators on } . Every normal operator is clearly hypo-
normal [see Section I for definition]. Stampfli [26] has shown that

every hyponormal operator is paranormal:

Proposition 2.1 1f the operator T is hyponormal, then T is paranormal.

Proof. The proof follows from these facts about hyponormal operators
[26]: (1) If a and b are complex numbers and T is hyponormal, then

aT + bI 1s hyponormal. (2) If T is hyponormal, then |/ T/ = B,.,(T)-

P
(3) 1£f T is hyponormal and invertible, then 1 is hyponormal.

Let ZE/O(T) then

| R(T,z)l

Rgp ((T - 21)7H)

1
d(0,s(T - 2I}))

N S—
d(z,or(T)) ~

Therefore T is paranormal.

Theorem 2.1 1If T is a paranormal operator and if a and b are

complex numbers, then aT + bI and T*%* are paranormal.
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Proof. If a = 0, the proof is trivial. Suppose a # 0 and let

zéyﬁ(aT + bI). Then

§l {((aT + bI) - z1)" Y = 1)t - E_;_'zx)"llf

®

= 1
lald((z - b)/a,r(T))

- 1
d(z,0(aT + bl))

Therefore aT + bl is paranormal.
If Zep(T¥), then z€0(T) and [(T* - z1)" Y = T - z1)"L)] =

1/d(z,0(T)) = 1/d(Z,0(T*)). Therefore T* is paranormal.

The fact that co 0(T) = W(T) when T is paranormal follows
immediately from Proposition 1.2. An elementary proof, independent of
Proposition 1.2 is given below.

Theorem 2.2 If T is a paranormal operator, then co ¢(T) = W(T).

Proof. For any operator co ¢(T) C W(T). Suppose the theorem were
false, then by a tramslation and rotation, if necessary, we may assume
[see Theorem 2.1] sup Re co ¢(T) €0 and sup Re W(T) > 0. Let

z >0 and x be a unit vector in H . Then since d(z,0(T))/R(T,z)/ =

1, we have
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z s’d(z,a'(T))2 < (T - zI)xif2

= [ITxll” + zz - 2zRe (Tx,x).

Therefore for all =z > 0, zRe(Tx,x) £ 0 so that Re(Tx,x) £ 0. Hence,

sup Re W(T) < O. Contradiction.

The following two theorems will be useful in constructing examples.

Theorem 2.3 If A is any operator on H, then there exists a Hilbert

space k and a normal operator N on k with o(N) = W{&A) such that

T=A®Ne B(¥0%) is paranormal.

Proof. Since W(A) is a compact set of complex numbers, there exists
a Hilbert space % and a normal operator N on X such that O(N) = W(A)
[7, p. 581]. Let T = A ® N. Then by Proposition 1.3 ¢(T) = o(N).

1f ze/o(T),'then

1 _ 1
d(z,W(a)) d(z,7(T)) °’

IR(A,2)]l £

and

ﬂR(N,z)” - d(Z,G(N)) h d(zya(T))

Therefore
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IR(T,2)l| = Max{ﬁR(A,Z)ﬂ, HR(N,ZMg B E?;"%QETF >

so that T is paranormal.

Later on we will need the fact that the normal operator N in

Theorem 2.3 can be chosen so that 0(N) - ¢(A) is a countable set.

Theorem 2.4 If A is any operator, then there exists a normal operator
N such that

1. A® N is paranormal,

2. O(N)2 0(a), and

3. T(N) - 0(A) 1is a countable set whose points

of accumulation are contained in 0§ {A).

Proof. Assume /fAfl=1. For =n=1,2,3,..., Ilet

U
[l

a = {z: 2/(n+l) €d(z,0(8) € 2/n},

=
i

Max{A, sup{UR(A,Z)H: zéfSnf},

and let B(z,r) be the open disc of radius r about =z. Since S

is compact and

sa € (U B, 1y

Z€Sy
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there exists znie Sp» 1< i €my such that

Mn
S0 €\ /) Bley, 1) .
i=1
Let N be a normal operator such that [see 10, p. 581 ]
o(N) = O'(A)U{zni: 1€4i<€m, n-= i

et T =A®N. If zéﬁ(A) and if |zl €2, then there exists n

and i such that ze S,/1 B(zni, 1/M,). Hence |z - znifé 1/M,. Then
d(z,r(T)) IR@A,z)ll < Iz - znil /M < 1.
If Izl > 2, then
d(z,d(T)) = d(z,0(N)) £ d(z,W(a)).
Therefore

d(z,0(T)) IR(A,2)/| £ d(z,W(A)) [/ R(A,z))| £ 1.

Since N is normal, J[/R(N,z)/ = 1/d(z,0(N)) = 1/d(z,0(T)), for all

zgﬁ(T). Let ze/a(T), then

IRC,2)) = Max IR (8,2, IR, = gl



Therefore T is paranormal.

As we shall see, the class of all hyponormal operators on F is
distinct, in general, from the class qf paranormal operators. We
know [25] that if T is hyponormal, then T/ = Rsp(T) and if T is also
invertible, then 1 is hyponormal. These properties do not gener-

alize to paranormal operators.

Theorem 2.5 There exists an invertible paranormal operator T such that
1. T is not hyponormal

2. T2

is not paranormal
3. Tl > RSP(T), and

4. T is not paranormal.

Proof. Let

ﬂll)

A'(01'

Let N be a normal operator such that ¢(N) = W(A), and let T = A & N.
Then by Theorem 2.3, T is paranormal. We know from [25] that a hypo-
normal operator is hyponormal on invariant subspaces. Therefore,

since A is not hyponormal, T is not hyponormal. By Proposition 1.1,

W({A) is the closed disc of radius % about z = 1, and W(Az) is the

closed disc of radius 1 about 2z = 1. Therefore

0c w(a) ¢ w(r?)
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But

0& co(G‘(T)z) = coU“(Tz).

Therefore, coﬁ'(Tz) # W(Tz) and so by Theorem 2.2 T2 is not para-

normal. Let x = (g}, then lxll = 1 and [Ax/ = %/10. Then

HTll > llaxll = %/10 > 3/2 = RSP(T).

~ Therefore /Tl > Rsp(T)' If 'I'_:?L were paranormal, then

) =)JRa@ oM = ——L1 = R__(T).
: ( ooty | e ®

Contradiction. Hence 1 is not paranormal.
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Section II1: Spectral Properties of Paranormal Operators

'In addition to discussing the relatively elementary spectral
properties of paranormal operators, the goal of this section is to find
out what can be said about a paranormal operator whose spectrum is g
"thin'" subset of the complex plane. In particular, if T has countable
spectrum, then T can be decomposed as the direct sum, N @ A, of a
normal operator N with ¢(N) = ¢(T), and of an operator A with ¢ (4)

a subset of the derived set of ¢(T). In general the operator

T =N® A need not be normal, however if ¢ (T) 1lies on a CZ—Smooth
rectifiable Jordan curve G, then T is indeed normal, If T is a
scalar paranormal operator with countable spectrum, then in order to
show that T is normal, the condition that O0(T) & G, can be weakened
to the following condition: For each ze ¢(T) there exists weap(T)
such that {w-z| = d(w,0(T)). An example is then given to show that a
(non-~scalar) paranormal operator T with countable spectrum satisfying
the above property, need not be normal.

1f the assumption that the paranormal operator T has countable
spectrum is dropped, then T has a non-trivial lattice of closed invar-
iant subspaces when ¢ (T)S G,. I was unable to prove the more general
statement that a paranormal operator T with 0 (T)<¢C G, is normal. Just
recently Stampfli [31] published a proof of this statement (see the

introduction for a more detailed discussion of this).

In general the points on the boundary of the spectrum of an

operator T are not normal eigenvalues nor normal approximate



18

eigenvalues (although 0 G(T)¢ WV(T), [11]). However, certain points
on 0d0(T) when T is paranormal must be either normal eigenvalues or
normal approximate eigenvalues., The theorem is due to Putnam [ 22, 23],

but the proof givenm here utilizes a trick of von Neumann and is shorter.

Theorem 3.1 If T is an operator with 2z an eigenvalue or approximate
eigenvalue of T and if there exists we%ﬂ(T) such that |w-zl[[R(T,w))/ =
1, then z 1is a normal eigenvalue or normal approximate eigenvalue,

respectively.

Proof. Suppose 2z 1is an approximate eigenvalue of T. Let w be as
stated in the theorem. Then there exists a sequence {xn} of unit
vectors in ¥ such that [/(T-zI)x,/—>0. Let S = (z-w)R(T,w). Then

I-8

R(T,w) (T-zI) so that [/(I-8)x /—0 and /Sx |[—>1. Moreover,

s 1. Now

1]

lz=wl JR(T ,w)/

i

2

I-s®yxgl? - IE-$)x 1 = lswx? - Isx J?< 1 - ysxfi?,

so that | (I-8*)x,//—0. Then since I-S = R(T,w)(T-z21) = (T-zI)R(T,w),
(T*-zL)x J/ = [[{T*-WL) (T-8%)x ||
€ Té-will |/ (1-S*)x,/—> 0.

Therefore ﬂ(T*—EI)xnﬂ»% 0. IE {yn] is a sequence of unit vectors in
% such that [ (T*-z1)y,[/—>0, then by a similar argument
H(T-zI)ynH-fio. Therefore 2z 1is a normal approximate eigenvalue. The

proof for =z an eigenvalue of T is similar.
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Corollary 1If T is a paranormal operator with z an eigenvalue or
approximate eigenvalue of T and if there exists wzvﬂ(T) such that

lw-z] = d(z,0(T)), then z is a normal eigenvalue or normal approxi-

mate eigenvalue, respectively.

Proof. Let =z and w be as stated. Then since T is paranormal

-z o otz .
jw=z il R(T ,w)] 300 (D))

The corollary now follows from Theorem 3.1.

If T is an operator, then in general isolated points of the spec-
trum of T are not eigenvalues [see 11, problem 147]. If T is para-

normal, then the following is true.

Theorem 3.2 Isolated points of the spectrum of a pavanormal operator

are normal eigenvalues.

Proof. Let T be paranormal and let =z be an isolated point of 4(T).
Let C be a circle about z of small enough radius so that if weC,
then |w-z/ = d(w,ﬂ(T)). Since | (w-z)R(T,w)/l =1 as w-—>z,
(w-z)R(T,w) is an analytic function of w at w = z. Therefore
(w-z)R(T,w) 1is analytic on an open disc containing C. Let

P=--1 | R(T,w) dw.
2”1 C
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Then

TP - 2P = - -L_ | (w-z)R(T,w) dw = 0,
271 G

so that TP = zP. Since P # 0 [see 24, p. 421], z€ WP(T). By the

corollary to Theorem 3.1, 2z 1is a normal eigenvalue.

Corollary 1If T is a paranormal operator om a finite dimensional

Hilbert space, then T is normal.

Proof. Since the dimension of the Hilbert space is finite, 0(T) is a
finite set. By Theorem 3.2, each element of ¢ (T) is a normal eigen-
value. Recall that the eigenspaces of distinct normal eigenvalues are
orthogonal [14, p. 233]. If o(T) = {zl,zz,...,zn} and if I; is the

identity operator on the eigenépace of =z i=1,2,...,n, then T can

i:
be written as

T = 2111‘9 ZZIZ 9 - - B ann-

Therefore T is normal.

Paranormal Operators with ¢(T) Countable

Only paranormal operators with countable spectra will be considered
in this part. It will be shown that a paranormal operator with a
countable spectrum is not necessarily a normal operator. However, in

general we can make the following statement:
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Theorem 3.3 I1If T is a paranormal operator on % with countable
spectrum, then either T is normal or T = A @® N where N is a normal
operator with O(N) = 0(T) and 0(4A) 1is a subset of the derived set

of ¢ (T).

Proof. 1f =z is an isolated point of (¢ (T), then by Theorem 3.2 =z
is a normal eigenQalue of T; let E(z) be the eigenspace of z. Let
WO(T) denote the set of all isolated points of O0(T). Let
M = closed span L/ E(z).
2z € 0,(T)

By the definition of a normal eigenvalue [see Section I] E{z) reduces
T and T is normal on E(z), for each ze¢ UB(T). Consequently, M
reduces T and T is normal on M. Since ¢(T) must have at least one
isolated point, M # (0). If M=% , then T is normal.

Suppose M # % . Then write ¥ = K®M and T =A@ N where A is
T restricted to K and N is T restricted to M. Clearly (M) = 0(T) and
N is normal. Suppose to the contrary that ¢ (A) is not a subset of
the set of all éccumulation points of 0 (T), then there exists we(F(A)
such that w is an isclated point of ¢(T). Then w is an isolated
point of (&), so there exists a circle C about w such that if

z¢ C, then [z-w/ = d{(z,0(T)) = d(z,0(A)). Then for z¢cC

IR(A,2) < Max{IR(A,z)ll, IR(N,z)I] = IR(T,z)//

- 1 _ 1
d(z,0(T)) d(z,0(A))
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Therefore we may use the method of proof of Theorem 3.2 Lo conclude
that we;@b(é). But GF(A)QZGb(T), so that w is a normal eigenvalue

of T. Contradiction.

With Theorem 3.3 we can easily classify all-compact paranormal

operators.

Corollary If T is a compact paranormal operator, then either T is
normal or T = A ® N where N is compact and normal and A is compact

and quasi-nilpotent.

Proof. The spectrum of & compact operator is countable with zeroc the

only possible point of accumulation.

To show that there exists a non-normal paranormal operator with
countable spectrum, simply let A = (g é) and choose a normal operator
N with ¢ (N) countable as in Theorem 2.4 so that A ® N is paranormal.
Then A ©® N has countable spectrum and is not normal since A is not
normal.

However, if the countable set ¢(T) for Te® is further
restricted by assuming that ¢(T) 1lies on the CZ—SmOOth rectifiable
Jordan curve Go’ then T must indeed be normal. First, a more general

theorem will be proved.
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Theorem 3.4 If A is an operator on ¥ with 0(A)< G, and with w an
isolated point of ¢(A) and if there exists an open set U containing
G, such that for z e U-Gg,, d(z,Go)UR(A,z)ﬂ € 1, them w ig8 a normal

eigenvalue of A.

Proof. Without loss of generality assume that w = 0. Since zero is
an isolated point of 0 (4), R{A,z) is analytic in a deleted open
neighborhood D of zero with D<&U. Let C be a circle about zero comn-

tained in D. Then for each zeD

R(A,z) = 2 Az"

n:-oo
where
= o 1 -n-1
. EﬁE‘/Zz R{A,z) dz.
Recall that G is Cz-smoothly embedded in a one parameter family of

o

closed rectifiable Jordan curves Gt’ -1 € & £ 1,

For a,be G, define C, 1 = C; + Cp + C3 + G where the Cji's are as

shown above and such that
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1. for =ze CZ’ lz-al = d(z,Go),

2. for zeC,, lz=-bl d(z,G;), and
a. Clé Gt and C3<G_, for some 0 <t <1.
We shall always assume that C, < D and that zero is contained in the
3

interior of the region determined by Ca,b- Now define

(z-a) (z-b)R(A,z) dz
Ca,b

I{(a,b)

]
]

L
2ri
B - _z_lﬁ (C (z-a) (z-b)R(A,z) dz.

Then 1(a,b) is independent of t and we have

I(a,b) - A_3 = 7%5 (—z2 + (a+b)z - ab + zz)R(A,z) dz
C
= {a+b)~lﬁ- zR(A,z) dz - (ab)";— R(A,z) dz
27i 3 27i 2 :
C &
Therefore

1im I(a,b) = A_3.
a,b —0
a,b € G0

Therefore, to show A_3 = 0, it suffices to show

1im IL(a,b) = 0.
a,b—0
a,b € G,

Let € > 0, and fix O < t <1 so that the arcs C, and C, have

lengths less than € for every a,bEGO. Let
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pE) = sup{ﬂR(A,z)//: Z € GtU G-t}< "

Then there exists ¢q() > 0 such that whenever |al,lbl < q(¢), we
have

1. the length of C; and C3 is less than 1/p(€), and

2. if zéCa’b, then |zl < 26€.
If zeC,, then IR(A,2)l] € 1/d(z,G,) = 1/|z-a|. Similarly, if =ze€C4

then |(|[R(A,z)| £ 1/jz-b|. Making the obvious estimates we obtain
IT¢a,0)I  (5/m)(26)?,

whenever |al, Ibl < q(¢). Therefore 1(a,b)—>0 as a,b—>0; a,beqG,.
Hence A_3 = 0. Therefore A., =0 for n = 3,4,5,... [7, Theorem 18,
p. 573]. Thus R(4,z) has a pole at zero and hence OEFP(A) [see 7,
p. 573].

To see that 0¢ UP(A) is a normal eigenvalue, we choose ué D
such that d(u,Gy) = lu] = d(u,0(4)). Then since [[R(A,u)] <
1/d(u,G0) = 1/luj, and since [/R(A,u)// 2 1/d(u,0(A)) = 1/lul, we
cbtain [u/J/JR(A,u)/ = 1. Thus by Theorem 3.1, zerc is a normal eigen-

value of A.

Theorem 3.5 If T is an operator with countable spectrum and with
U"(T)QGO, and if there exists an open set U containing G, such that

for zeU-G,, d(z,G )/[R(T,z))/ £ 1, then T is a normal operator.

Proof. Let M be the largest closed subspace of % such that M reduces

T and T is normal on M. By Theorem 3.4 each isolated point z of
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6(T) is a normal eigenvalue. If E(z) is the eigenspace of 2z, then
E(z) <M. Hence M # (0).

If M =% then we are done, so assume M # % . Write # = M oM
and T = A® N, where & is T restricted’to M' and N is T restricted to
M. Since ¢(A)<S 0(T) [ see Proposition 1.3], we know O(A) is
countable and hence has an isolated point 2. By Theorem 3.5, 2z 1is a
normal eigenvalue !of A énd consequently the eigenspace, E(z), of =z
reduces A. Thus E(z) reduces T and T is normal on E(z). By the

L
maximality of M, E{(z)<& M. Contradiction, since E(z)& M .

Corollary I£ T is a paranormal operator with countable spectrum and if
¢{T)<G,, then T is normal.
Proof. For zeo(T), IIR(T,2) = 1/d(z,0(T)) £ 1/d(2,6,). The corol-

lary now follows from Theorem 3.5,

In the Corollary to Theorem 3.5 it was shown that a paranormal
operator T with countable spectrum and with ¢g(T)& Gy, must be normal.
If it is assumed that T is a scalar paranormal operator with ¢ (T)
countable, then to show that T is normal, the condition ¢ (T)< G, can

be weakened.

Theorem 3.6 1If T is a scalar paranormal operator with countable spec-
trum and if for each ue ¢(T) there exists we'/o(T) such that (w-u/ =

d(w,0(T)), then T is normal.
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Proof. Let ue€(¢g(T), then there exists a sequence {unfgya(T) such

that up—u and |u -u| = d{(u,,0(T)). Since T is scalar

T = /;’ Z dEz.
a(T)

(u-wIR(T,u_) = /( :::: dE, .
o(T) :

Therefore

Let x,yc ¥ be fixed and define m to be the complex Borel measure

m(S) = (E(8)x,y) for each Borel set 8 in ¢ (T). For each ze€ 0(T) let

u-uy 1 if z = u
4 = f = .
fn(z) = and (z) —{0 .

Then 1fn(z)) £ 1 and fn(z)->f(z). Therefore we may apply the

Lebesgue dominated convergence theorem:

// £(2) dn(z) [
r(T)

lim /Jf’ fn(z) dm(z) )
n—>co G(T)

lim I((u—un)R(T,un)x,y)/
. n—=>roe

It

m{{u})/

]

IN

(uuf IRCE,u W =l [yl = 1=l iy ).

Since m({u}) = (E({uf)x,y), we have that

[ E(fuddx,y) < U=l llyl.
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Letting vy = E({u})x, we obtain [[E(fu})x/l = (Ix/l, and hence
IE({u}) € 1. Therefore E({u}) .is an orthogonal projection for each
u e o(T) [ see Section 1].

Let S<¢(T) be a Borel set, then S is a countable set so write

S = {21,22,23,...}. Then for each x,ye®, we have

M

(E(S)x,y) = E((2,] )%,9) = 2 (x,E({zp])y)

n=1

[
=t

i

oo "
conj 2 (E({z })y,x) = EEYD = (,EES)).
n=1
Therefore E(S) = E(8)* and hence E(S) is an orthogonal projection,
Consequently, T is a scalar operator with a resolution of the identity

of orthogonal projections; and hence T is normal.

To show that the condition G(T)S?Go is stronger than the condi-
tion stated in Theorem 3.6, let C be the following countable compact

set of complex numbers:
c={0}U{t/n+i 820 . n-193 ]

Then C does not lie on a C%-smooth closed arc, but C does satisfy the
condition in Theorem 3.6, i.e. for each zé€ C there exists w&C such
that |w-z| = d(w,C). To see this, observe that this condition is
equivalent to the following: For each ze C there exisﬁs an open disc

D not intersecting C such that ze€?D.
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We will now see that the following condition on ¢ (T) cannot be
omitted from Theorem 3.6: TFor each =z & 0 (T) there exists wéVO(T)
such that |w-z] = d{w,0(T)). Stampfli [25]/ has shown that a scalar
hyponormal operator whose spectrum has zerc area in the complex plane,
must be normal. Stampfli's fesult does not generalize to paranormal

operators.

Theorem 3.7 There exists a non-normal, scalar paranormal operator T
such that ¢(T) is countable. Moreover, ¢ (T) has exactly two points

of accumulation.

Proof. Let No be the normal operator (é g], let Q be the self-
adjoint operator (i é), and let A be the non-normal operator QNbQ'l =
(8 %). By Theorem 2.4 there exists a normal operator N such that:

1) ¢(N) is countable with zero and one the only points of accumulation,
and 2) T = A ® N is paranormal. Since A is not normal, T is not normal,

let B=Q & 1. Then B = B* and
BN, ® B! = QNOQ'l ON=AOGN-=T.

Therefore, by Proposition 1.4, T is scalar.

In light of Theorem 3.6, it seems reasonable to conjecture the
following theorem: If T is a paranormal operator with countable spec-
trum such that for each z¢ ¢(T) there exists W£/9(T) such that

jw=z{ = d{w,0(T)), then T is normal. This conjecture is false.
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Stampfli [25] has shown that a hyponormal operator with countable
spectrum is normal, however this result does not generalize to the

paranormal case.

Theorem 3.8 There.exists a paranormal operator T such that
1. O0(T) is countable with zero the only point of
accumulation,
2. if zed(T), then |z-2/] £ 2, and

3. T is not normal.

Proof. Let Dn be the closed disc of radius n about n, for
n= 1,2, Let V be the Volterra integration operator, i.e. for
£¢ 12(0,1),

t

(VE) (£) = 5 EG=) dx.
(o]

tet B= (I + V)Y, and let 4

li

I - B. By [11, problem 150], a(B) =

{1} and /BJ = 1. Hence 0(A) = {0f and W(B) is contained in the

It

closed disc of radius [ B/f = 1. Therefore W(A)Ele. For n=1,2,...,

let
1. 7 ={zeDy: &4/(ntl) € 1zl < 4/a].
2. M = sup{uR(A,z)ﬂ: z€F,},
3. d, = inf{d(z,W(A)): ze EDYINF ]} >0,
4. P = Max{M,,1/d,f, and

5. B(z,r) be the open disc of radius r about =z.

Then
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F, € |/ BGz,1/p).

ZE Fn

Since F, 1is compact, there exists z, ¢ Fp, 1< i< m,, such that
b &

m
n
Fo €\ Bz, ,1/P).
ir..l i

Let N be a normal operator with o) = fOfU[zn.: 1= % g m,
n = 1,2,3,...}, then o (N) 1is a countable set :rith zero the only
point of accumulation. Let T = A #® N, then 0(T) = 0(N). We now
verify that T is paranormal.

If zeD,, z # 0, then there exists n and i such that

z€F,/ B(zni,lan). Then
d(z,r(N))IIR@A,z) < Iz-zni! | R(A,z)

< (/B )IRA,2)

IN

AMDIR@,2)) € 1.

If =z 1is real and negative, then

1

d(z, 0 IRQA,2)] < 2l gy =

1

Suppose zéDz and that & 1is not real and negative. Let x be
the point of intersection of an2 with the shortest line segment con-
necting =z and W Observe that x # 0. Then d(z,W({A)) = [z-x| +
d{x,W{A)). There exists n and 1 such that x¢& Fn/q B(zni,lan).

Then ix—znif < 1/P,, and so
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< Jz=x[ + I/PnS ) z=x{ + d
< [z=-x] + d(x,WA)) = d(z,W(a)).
Therefore,

d(z,0(MN))IR(A,2)] < |z-z | || R(&,2)/
i

1 =
< d(z’W(A))W 1

Therefore, for each complex number z # O,
d(z, 0 (N))IIRCA,2) < 1.

Since N is normal, for each z G/O(T) =/0(N), I R(N,2z)/] = 1/d(z,0(N)) =
1/d(z,0{(T)). Hence, for zé/O(T)
| R(T,2)// = Max[[R(A,2)], IRN,2)] = A

d(z,0(1))

Therefore T is paranormal.

For the rest of this section, the assﬁmption that T has countable
spectrum will be dropped. If T is an operator on % , then T is said to
have a lattice of closed subspaces on the closed subsets of ¢g(T) if
for each closed S < (¢(T) there exists a closed subspace, M(S), of ¥
such that: 1) M(#) = 0, 2) M(o(T)) =}, and 3) if 8; and Sp are
closed subsets of ¢(T), then M(S;/]83) = M(S1)/1M(Sy). The lattice
is non-trivial if there exists a closed set SQ(T(T) such that

M(S) # O and M(S) #%¥.
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An operator T is said to satisfy Dunford's Boundedness condition
(B) [8, p. 226], if there exists a constant k depending only on T
such that if x,yc¢¥d and o(T,x)/10(T,y) =P [see Section I], then

Ixll < klix+ylf.

Theorem 3.9 I1If Te€ B(¥) with G(T)SQGO and if there exists an open
set U containing Go such that for each z¢ U-G,, d(z,GOXIR(T,z)H £ 1,
then either there exists a complex number b such that T = bl, or T
has a non-trivial lattice of invariant subspaces on the closed subsets

of d(T).

1f T is a paranormal operator with ¢(T) £ G,, then for each
2 Gy, d(z,6,)IIR(T,2)] < d(z,0(T))JR(T,2z)// = 1. Thus, as an immediate

consequence of Theorem 3.9, we have the following:

Corollary If T is a paranormal operator with ¢(T) £G,, then either
there exists a complex number b such that T = bl, or T has a non~
trivial lattice of invariant subspaces on the closed subsets of 0 (T).
-
The following lemma comes from [7, Lemma 2, p. 240; and Theorem 18,

p. 264] .

Lemma 1 (a) ¢(T,x) =@ if and only if x = 0.
(b) If TeB®) with G(T)SQGO and if there exists an open

set U containing G, such that for each zé&U-Gy,
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d(z,G,) IR(T,z)l| € 1, then T is scalar if and only if T

satisfies condition (B).

Lemma 2 If T is an operator on # with G’(T)EGO, then

r(T) = closure UU'(T,}:).
xcH

Proof. Clearly o¢(T,x) € ¢(T) for each xe¢%. Suppose the lemma to
be false, then there exists ae0(T) and € > 0 such that
N(a,é)/]/)('r,x) = @ for all x¢f, where N(a,c) = [rz: [g~al< &} .
Let £,(z) be the maximal analytic extension of R(T,z)x £for each
xe¥. Then £, 1is analytic in N(a,E)U/(T). For zE/O(T)UN(a,E),

define B,:H—>% as Byx = f4,(z). Fix x,ye¥ , then for zé/(T)

B,(x +y) = fx—i—y(z) = R(T,z)(x + y)
= R(T,z)x + R(T,z)y = B,x + B,y.

Since B is a continuous function of 2z and since 0 (¥)LG,, we have
that B, (x + y) = Byx + B,y for all ZGIO(T) UN(z,f). Similarly one
shows B, is homogenecus and B, (T-zi) = ('.T.‘-zI)Bz = 1 for all
zela(T)l/N(a,E). Therefore, B, (T-al) = (T-al)B, = I, so that T-al
is ome-to-one and onto. Thus, by [11, problem 41] , TI-al 1is invertible

and ae/a('r). Contradiction.

We now state the following lemma from [7, Lemma 4, p. 254].
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Lemma 3 If TE BY) with ¢(T) € G, and if there exists an open set
U containing G, so that for each 2z € U-G,, d{z,G,)/R(T,z)/ <€ 1, and
if S is a closed subset of 0(T), then M(S) = {xe¥: 0(T,x) & S} is

a closed subspace invariant under T.

Proof of Theorem 3.9. If 0o(T) = {b} for some complex number b, then
by Theorem 3.4 T = bl. For the rest of the proof assume that ¢ (T)
has at least two points.

Let M{S) be defined as in Lemma 3. By Lemma 1, 0(T,x) =0 if
and only if x = 0, so that M(@) = 0. Since ¢(T,x) C 0(T) for each

xecH, M(c(T))

il

%. It is obvious that M(S1/183) = M(S1)/I1M(Sy)
whenever S; and S; are closed subsets of 0 (T). Therefore, these
sets form a lattice of closed, invariant subspaces on the closed sub-
sets of ¢(T). 1If this lattice is non-trivial, then the proof is com-
plete.

Suppose that this lattice is trivial, i.e. M(S8) = 0 or M(S) = ¥
for every closed subset S of ¢(T). Then, since x€ M{0(T,x)),
M(c(T,x)) = H for every nonzero x€% . Consequently, by Lemma 2,
o(T,x) =0 (T) for all nonzero x¢# . Hence whenever ¢ (T,x)/)0(T,y) =
P, either x =0 or y = 0. Thus T satisfies condition (B) trivially
so that, by Lemma 1, T is scalar. Therefore, since O0(T) has at least
two elements, T has a non-trivial lattice (formed from the resolution
of the identity of T [see Section 1]) of closed, invariant subspaces on

the closed subsets of 0 (T).
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Section IV: Topological Properties of Paranormal Operators

Let ( denote the set of all paranormal operators on Hilbert

space N . Let
I ={TeB®): cor(T) = W(T)J,

and let 7] be the set of all normal operators on #. It will always
be assumed that B(Y¥) has the uniform operator (norm) topology. 1In
this section, the topological properties of (° relative to 7], & 5
and B¢y) will be discussed.

It will be shown that 77, P, and L are closed, arc-wise
connected subsets of B(})). In Sectiom II, it was shown that 7?9 P ;f
When the dimension of % is finite, then by the corollary to Theorem 3.2,
N = P. When dim % =0, then it will be shown that 77l is a
nowhere dense subset of . When dim % < 4, then (P = £ and when
5 <dim % <oco , then (P has a nonempty interior in £ . When
dim % =co, then (P # X and it is not known if (P is a nowhere
dense subset of ;( . Finally, it will be shown that £ is a nowhere

dense subset of B(¥), when dim¥ > 2.

The following notation will be used in this section: 1If S is a

compact set in the complex plane € and if € > 0, then let

S+ () ={ze ( : d(z,S)<5}.
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If S and Sn, n=1,2,3,... are compact sets in ¢ , then the sequence
{Snf approaches S, written S,—>8, 1if for every ¢ > 0 there
exists a positive integer N such that for mn > N, S, & 8 + (€) and
8 ¢8,+ ().

In general ¢(T) is not a continuous function of T in B(%)

[see 11, problem 85], but ¢(T) is continuous if we restrict T to ‘7).

Theorem 4.1 1If {Tn} is a sequence of paranormal operators approach-

ing the operator T in norm, then
0 (Tp)—>0(T) as n—soco .,

To prove this theorem we need the following lemma from [11,

problem 86].

Lerma If TEB(Y) and € >0, then there exists & > 0 such that if

SeB@) and [[T-S//<§ , them ¢(8) < g(T) + (€).

Proof of Theorem 4.1 We know by the lemma that for each & > 0 there

exists a positive integer N such that for n 2 N, o (Tp) € 0(T) + (&).

Therefore, to show J‘(Tn)—,U‘(T), it suffices to show that for each

€ >0 there exists a positive integer N such that ¢ (T) C 0(T,) + (&)

for all mn 2> N. If this does not hold, then without loss of generality
we may assume that there exists € > O and a sequence {z,} € 0(T)

such that d(z,,0(T,)) > € for all =n. Since 0(T) is compact, we
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may assume 2zp—>2€0(T). If [zp-z/< €/2, then
d(z,0(Ty)) > d(z,,0(Ty) - lz-z,/
> E - €f2
=gl

Hence

I R(Tq,2)ll = m < 2/e.

Now choose m so that [[(Tp-T)R(Ty,z) < 1, then I - (Tp-TIR(Tp,2z)

is invertible [11, problem 173]. Let

A = R(Tp,2) (I - (Tm—T)R(Tm,z))-l.
Then A(T-z1) = (T-zL)A =1 so that zeﬁ(T). Contradiction.
Theorem 4.2 (P is an arc-wise connected, closed subset of B(H).
Proof. Since Teé(® implies aT €® for every complex number a, we

see that the ray in B(¥) through T is contained in ’ . Therefore

P is arc-wise connected.
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Suppose T;— T, {Tn} a sequence of operators in 0), and

TE B@). Let ZE/D(T). By the lemma to Theorem &4.1,

1 . 1
d(z,0 (1)) - d(z,0(T))

1im sup

n—s 00
Therefore, since IIR(Tn,z)H = 1/d(z,0(T,)) whenever ze/o('l'n), there
exists a positive integer N such that the sequence {HR(Tn,z)//; n2 N}
is bounded. Then, since R(T,z) - R(I,.z) = R(T,z) (T-Tn)R(Tn,z),

/}R(Tn,z)H——/*HR(T,z)// as n-—oco . Consequently,

w
~
=3
-
N
~r

il

lim }fR(Tn,z)//
n—>oo

1

R T eI ¢ ))

n—>o0

I .
d(z,0(T))

Since in gemeral [(R(T,z)// > 1/d(z,0(T)), T is paranormal.
Theorem 4.3 Of is an arc-wise connected, closed subset of B(®).

Proof. ©Since Te gf implies that aTé,;( for every complex number a,
Jf is arc-wise connected.
Let T,—>T, {T,]<¢{ and TeB@®). Since |(Tyx,x)-(Tx,x)| €

(IT=T/ for Jixlf =1, W(T,) & W(T)+(2IT-T [) and W(T) € W(T )+

(2”’1’-—'1‘“/[). Consequently, W(Tn)—%W(T). Let & > 0, then by the
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lemma to Theorem 4.1 there exists a positive integer N such that
U(Tn) € ¢(T) + (€) for all n > N. Therefore, for n > N,
co J‘(Tn) € co 0(T) + (¢) and hence

W(T) lim W(Tn)

n—» oo

i

lim co (T )
n—>o0 n

n

co T(T) + (€).
Since € > 0 is arbitrary, W(T) € co 0(T). Since in general

co ¢(T) € W(T), TEJ.

Let 7] be the set of all normal operators on % . Since
T -T//—>0 implies [T *-T*//—0, 7] is closed in the uniform
operator topology on B(Y¥). Since Te¢7] implies aT&7] for any
complex a, 7] is arc-wise connected.

We know that
ne Pcl & pe.

Much more can be said about how the above four sets are related.
It has already been shown [see the corollary to Theorem 3.2] that
71 =% when dim%¥ < oo . When dim% =0 , then 7 is a very

"thin" subset of (P. The following theorem makes this more precise.
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Theorem 4.4 77 is a nowhere dense subset of P when dim ¥ = oo .

Proof. Since /1 is closed, to show that 77 is a nowhere dense subset
of P, it suffices to show that 7] has empty interior in P . Let
Te 77 and let € > 0.

First suppose that T has an eigenvalue of infinite multiplicity.
We may assume that the eigenvalue is zero. Let M be the eigenspace of
zero. Then dim M = oo | M reduces T, and we can write T =B @ Z

where Z is the zero operator on M. Let

be a non-normal paranormal operator [see Theorem 2.3] on M with N a

normal operator such that

0 ¢
N) = closure W "
ALY (0 0)

Then B ® S is a non-normal paranormal operator such that
/T -B®S|/=/IB®Z - B S/ =1/8)=¢€.
The last equality holds since

N = Ry (N) = €72 and | g & =¢.
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Therefore, since € > 0 is arbitrary, T is not contained in the
interior of 7] in P .

If ¢(T) 1is finite and T€ 7], then 0 (T) = O_p('I) and T has an
eigenvalue of infinite multiplicity. We therefore assume that 0 (T)
is infinite and that zero is an accumulation point of (¢(T). Let D be
the open disc about zero of radius €/2. Let E be the resolution of

the identity for T [see Section I] so that

T = j szz.
o(T)

Let M =E(@), P = o(T) - D, and let

Then M reduces T, dim M = o0, and A is a normal operator. Let Z be
the zero operator on M. Then A ©® Z is a normal operator with zero

an eigenvalue of infinite multiplicity, and
IT - A®zf = M 2dE, || < €/2.
D

By the first part of this proof, there exists a non-normal paranormal

operator S such that (A ® Z - S/ < €/2. Then

T -8l <lIT-A®Z| +)JA®Z-Sll<€ .
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Therefore, since € > 0 1is arbitrary, T is not contained in the

interior of N in ® . Hence the interior of 7] in P is empty.

Next, the relationship between P and I will be discussed. To do
this define C, to be the set of all operators Ted with W(T) a
closed line segment or a point. For k = 3,4,5,..., let Ck be the
set of all operators Te¢ X such that W(T) is the convex hull of a
polygon with k sides. If TeC., k = 2,3,..., then each vertex of
W(T) must be in the spectrum of T. S. Hildebrandt [15] has shown that
if zeo‘P(T)/l OW(T) for Tég‘f , then 2z is a normal eigenvalue of
T. Thus for Te Gy the verticies of W(T) are normal eigenvalues
of T, when dim % < oo . Hence, all the operators in Cn v C,.1 are
normal operators when dim% = n< oo,

S. Hildebrandt [15] has shown that 7] = # = £ when dim ¥ <4,
and that 77 # X for 5< dimP < o . The following theorem says
much more about how (¢ and £ are related when 5 < dim P < =,

Recall that (P = 7] for dim % <oo ,

Theorem 4.5 If 5¢ dim9% = n< oo, then the interior of # in [

equals Cn ¥ Cn-l'

Proof. Suppose TeC, U C,_ ;. Since C, v Coini €7, T is normal.
There exists ¢ > 0 such that whenever Sé&f , /IT - 8//< &, then
Se C, UV Ch-1- To show this, suppose the statement were false. Then

there would exist {Sn} ¢ £ such that |[T-8,//—0 and



Then, since W(S,)—~> W(T),
n-2
T €\ _/ €.
i=2

Contradiction. Hence, T is an interior point of # in ;f.
Let T be contained in the interior of # = 77 in Jj. Suppose

T&iCnL/Cn_l. Let € > 0. Since co o(T) = W(T), TeC,, for some
k ¢n -2. Since dim% 2> 5 and since Te;Ck, there exists a normal
operator N such that

1. #T - NJ| < €/2

2. W({N) is a polygon with at least three sides, and

3. N has at least two eigenvalues 2z, w contained in the

interior of W(N).

Write N = A & B where B can be written as B = (z 0).

0w
Let a >0 and let

_ [z a
c—(ow).
then

|B - €l = ”(g 3)” i W

Choose a > 0 small enocugh so that W(C) ¢ W(N) and so that a < €/2.
Then since W(A) = W(N) and ¢(A® C) = ag(N), coog(A®C) =WADBCT).

Hence A ® Ce¢ f. Since A ® C is not normal and since
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IT-A®CHg IT-N|+HIN-AB®CILE/2+ €E/2=¢€,

T is not an interior point of ® in ¥ . Contradiction. Hence

TeC UCq_g-
1t is an open question as to what the interior of *in fis
when dim % = ©o . However, it cam be shown that P # £ when
dim % = %0 |
Theorem 4.6 P # £ when dim¥y = oo .
AL
Proof. Write % = M® M where dim M = 5. Let

qY

where a,b,c are three complex numbers that form a triangle with W(A)

A= (0 1} and N

(=Nl
oTU O
n oo

contained in the interior of the triangle. Consider A ® N as an
operator on M and observe that co (A @ N) = W(N) = W(A ® N). Since
A ® N is not normal and since dim M < oo, A ® N is not paranormal.

Hence there exists ze/,)(A ® N) such that

1
d(z,0(a ® M) °

IR ® N,2)] >

4
Let 1 be the identity operator on M and let T = A & N & al.
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Then, 0(T) = 0(A® N) and W(T) = W(A @ N). Therefore TedS .

Since d(z,o(T)) <€ lz-a/,

IR(T,2)l] = Max {IR(A ® N,z)] , —L }

jz~al

fR(A ® N,z)

1
> T@e@)

Therefore T is not paranormal.

The main result of this section is to show that if dim% 2 2,
then f is a nowhere dense subset of B(%) in the uniform operator
(norm) topology. Once this is .shown, it follows immediately that 77

and (P are nowhere dense subsets of B(#¥).
Theorem 4.7 J is a nowhere dense subset of B(¥) when dim¥% 2 2,
To prove this theorem we need the following two technical lemmas.

Lemma 1 1If z, and z, are distinct, normal approximate eigenvalues
of Te B(®), then there exists sequences {xn] and {yn} of unit
vectors in % such that

1. (4s¥n) = 0 for all =,

2. [[(T-zq1)x />0 as n->oo, and

3. H(T-zzl)ynﬁ’—}*o as n—>ee |



)

Lemma 2 1f T& X such that there exists distinct a,be DW(T)/}(TP(‘I'),

then T is not contained in the interior of Jf .

Proof of Theorem 4.7 Since £ is closed [Theorem 4.3], to show that
£ is nowhere dense it suffices to show that £ has empty interior.

We first remark that if T is in the interior of £ , then o (T)
must contain at least two points. Suppose Teé £ and 0(T) = {af.
Then ((T-al)x,x) = 0 for all =xe % so that T = al. Since dim% >
2, write % = M ® M~ where dim M = 2. Let b >0 and define

AcB®) as
A=(Ob) on M, and A =0 onM
00

Then ¢ (T+A) {8,7 and since b # 0, ?a} # W(T+A). Therefore T+A d:of

]

Since [/A//=b >0 is arbitrary, T4 interior -

With the above remark completed, we can now finish the proof of
Theorem 4.7. Suppose the theorem were false and there exists T €
interior 5(7 . Then there exists € > 0 such that whenever V& B({)
and (|T - V/l< &€, then V& £. From the above remark 0 (T) must con-
tain at least two points. There must be at least two extreme points of
W(T), since extreme points of W(T) for T € £ are extreme points of

o(T). Hence, after a rotation, if necessary, we may assume there exists

Zq,29€ G“Tr(T)/] OW(T)
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WV (T) 7,
—

Re.

Re Z, IDN? Za

such that

]

1. Re z; inf Re W(T),

i

2. Re z, sup Re W(T), and

3. Re zq £ Re ZZ'
Since zl,zzé'BW(T), Zy and 22 are normal approximate eigenvalues
of T [14, Theorem 2, p. 233]. By Lemma 1 there exists unit vectors

X,y¢ % such that (x,y) = 0, U(T-zll)xﬂ < €/8, and [[(T-z,1)yll< €/8.

Let M be the closed subspace spanned by {x,y/. Define C€B() as

Cx = -{e/4)x,
Cy = +(€/4)y, and
Cz = 0 for all =ze¢ Mil

Since |[/CH £€/2, T+ Cef . Since
({T + C)x,x) = (Tx,x) - €/4 and
J(Tx,x) - z,] < [/(T-zll)xﬂ & €18,

we obtain inf Re W(T + C) < Re z Since T+C ¢4 , there exists

X
ar;’O*Tf(Ti»C)/] IW(T+C) such that Re a = inf Re W(T+C). Since C is a
compact operator, Weyl's spectral inclusion Theorem |11, problem 143

yields



49
7 (T+C) - 7, (T+C) < 0(T).
Therefore, aéffb(T+C), so that
ae 0’p (T+C) /1 W (T+C) .
Similarly one shows there exists
b eO‘p (T+C)/1 2 W(T-+C)

such that Re b = sup Re W(T+C) > Re z and hence a # b. By

2)
Lemma 2, there exists Se€ B()) such that /S/ < £/2 and T+C+S& .
But || T-(T+C+S))] € /IC)] + 1ISl] € € so by assumption T+C+Se J.

Contradiction.

Proof of Lemma 1. There exists sequences {wn} and [yn} of unit

vectors in % such that H(T-zll)wn/ﬁ—%O and !KTszI)yn}%~70 as

n—>o0 . Then
[(z1-29) Gy ) = [(zywp,yy) - G5y )
€ J(T-z Dw v+ (w5 (T*-2,1)y )]
< INT-z 1w jf + [(T*-Z,1)y .
Therefore, [(z1-2;) (W,,¥y) —>0 as n-»eco . Since z; # z,,

(wn,yn)—~>0 as n-»oco .
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There exists complex numbers a, and b, and unit vectors x,
in % such that w_ = a,y, + byx,, ]anjz + lbnjz = 1, and
(xn,yn) = 0. From the above paragraph we have that a, —0, so
Ibnj ~>1. Therefore, H(T-zll)xnﬁ~m>0 as n-—>o0 .
Proof of Lemma 2. Let & > 0. Since a,beJTP(T)/)BW(T), a and b
are normal eigenvalues of T [18, Theorem 2, p. 233]. Let u,ve ¥

be unit vectors such that
Tu = au and Tv = bv

Then (u,v) = 0 and the closed subspace N spanned by {u,v} reduces

T. Define SeB(%) as

Sv =0

4

Sz = 0 for all zeN .

. ol

Then we may write T + S = A ® B corresponding to % = N & N .

Then the matrix representation of A relative to {u,v} is

s=(G%)

Hence ¢(A) = {a,bf{ C 0(T). Clearly G(B) € 0(T). Therefore,

]

co UC(T+8) ¢ co T(T) W{T).

A is not a normal operator. So by Proposition 1.1, W(4) 1is the
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convex hull of a nondegenerate ellipse (i.e., not a straight line)

with foci at a and b. Since W(A) € W(T4+S), we must have
co o(T+S) # W{T+S).

Therefore, T+8¢ £. Thus, since IS/ = € > 0 1is arbitrary,

T & interior £ .
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