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ABSTRACT 

An experimental investigation was made of forced convection film 

boiling of subcooled water around a sphere at atmospheric pres sure. 

The water was sufficiently cool that the vapor condensed before leaving 

the film with the result that no vapor bubbles left the film. The ex

perimental runs were made using inductively heated spheres at tem

peratures above 740°C. and using inlet water temperatures _ between 

l SOC. and 27°C. The spheres used had diameters of l /2 inch, 9I16 

inch, and 3/8 inch and were supported by the liquid flow. Reynolds 

numbers between 60 and 700 were used. 

Analysis of the collected non-condensables indicated that oxygen 

and nitrogen dissolved in the water accumulated within the vapor filn1 

and that hetrogeneous chemical reactions occurred at the sphere 

surface. An iron-steam reaction resulted in more than 20% by volume 

hydrogen in the film at wall temperatures above 9oooc. At t e mpera 

tures near l lQQOC. more than 80% by volume of the film was composed 

of hydrogen. It was found that gold plating of the sphere could elimi

nate this reac tion. 

Material and energy balances were used to d e rive equations \Vhich 

n1ay be used to predict the overall average heat lransfer <:oefficients 
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for subcooled film boiling around a sphere. These equations inc lude 

the effect of dissolved gases in the water. Equations also were de

rived which may be used to predict the composition of the film for 

cases i n which an equilibrium exists between the dissolved gases and 

the gases in the film. 

The derived equations were c ompared to the experimental results. 

It was found that a correlation existed between the Nusselt number 

for heat transfer from the vapor-liquid interface into the liquid and 

the Reynolds number, liquid Prandtl number produc t. In addition, 

it was found that the percentage o f dissolved oxygen removed during 

the film boiling could be predicted to within 1 Oo/o. 

,, 
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INTRODUCTION 

Boiling is the rapid vaporization of a liquid which occurs when a 

liquid is heated to a temperature such that its vapor pressure is 

above that of the surroundings. Boiling, however, occurs in three 

characteristic forms which are nucleate, transition, and film boi,ling. 

Figure 1 is an illustration of the location of the three regimes ( 67). 

Nucleate boiling is the most common type of boiling and it is re

presented by the region A - B of Figure 1. It is characterized by 

bubbles which rise from discrete points on a surface whose tempera

ture is only slightly above the liquid's saturation temperature. The 

nucleate boiling regime has been described as consisting of four 

subregions (25). The first of these is the discrete bubble region in 

which the vapor rises in distinct bubbles. The second is a region in 

which the bubbles leave the nucleation site rapidly enough to join 

vertically into vapor columns. The third is a region in which the 

vapor columns become numerous enough to join hodzontally into 

vapor mushrooms. The last subregion is characterized by small 

vapor patches beginning to appear on the heated surface. 

In general, the number of nucleation sites are inc reased by an 

increasing surface , temperature. When the surface temperature 

reaches a maximum value, the critical superheat, vapor begin.s to 
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form at a more rapid rate than the rate at which the liquid can reach 

the surface. Thus, the heated surface suddenly becomes co _; ered 

with a vapor layer. Because of its lower thermal conductivity, this 

· vapor layer insulates the surface. This condition of a vapor film 

insulating the surface from the liquid characterizes film boiling which 

is represented by region C - D in Figure 1. 

Region B - C in Figure 1 is the transition region. Transition 

boiling may be defined as the unstable boiling which occurs at surface 

temperatures between the maximum attainable in nucleate boiling 

and the minimum attainable in film boiling. A characteristic of this 

regime is that an increase in temperature difference between the 

heated surface and the liquid results in a decrease in heat flux. 

Since nucleate boiling occurs in mo st applications, it has been 

studied in great detail. However, since the bubbles randomly leave 

the surface, nucleate boiling is by nature complex and may not be 

described by simple analytical expressions. Experimental research 

has shown that the surface characteristics are extremely important 

in nucleate boiling. Because of this, analytical investigations have 

been primarily concerned with the dynamics of single bubbles in the 

vicinity of nucleation sites (65). 

In contrast, extremely little experimental work has been done on 

transition boiling, because it cannot be maintained on a n elec tri c ally 
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or combustion heated surface. No practical applications have been 

found for transition boiling. 

Film boiling was first described by Leidenfrost in 1756 (44). 

However, it was not until 1934 that Nukiyama (67) described the 

three regimes of boiling as shown in Figure 1. The first analytical 

investigation of film boiling was published by Bromley in 1950 (9). 

Since that time, many experimental and analytical investigations of 

film boiling have been made. 

In contrast to nucleate boiling, the surface characteristics have 

been found to have little effect on film boiling. The analytical inves -

tigations of film boiling have been based on heat transfer through a 

continuous vapor film. A comprehensive survey of the analytical 

and experimental investigations of film boiling has been made and is 

presented in Appendix A. 

The previous studies of film boiling have not considered the 

effect of dissolved gases and the effect of heterogeneous chemical 

reactions on the solid surface. 

Film boiling may be accompanied by deacration and chemical 

reactions. During film boiling of a liquid containing small amounts 

of a dissolved gas, the dissolv ed gas will diffuse into the vapor filn1. 

Thus, the film boiling of water c ontaining small amounts of dissolved 

air will result in a partial deaeration of the water. A common 
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commercial method of deaeration of water involves exposing the 

water to steam and permitting the air to diffuse into the stea1n until 

an equilibrium is established (38). A similar situation will occur 

during the film boiling of aerated water. The vapor film will contain 

a much higher percentage of oxygen and nitrogen than the liquid 

originally contained. 

If the material , being film boiled decomposes at the temperature 

of the hot wall, thermal cracking may occur. Since the liquid is 

vaporized rapidly and remains in the vapor briefly, a condition of 

rapid heating and quenching results (9). If the vapor film is ric h in 

air from a deaeration of the liquid, the oxygen present may result 

in a partial oxidation of the vapor. In other words, if small quantities 

of oxygen are present in the liquid, sufficiently large quantities may 

be present in the vapor film to cause partial oxidation to occur in 

addition to the thermal cracking. 

A sec ond type of chemical reaction is possible. If the solid sur

face on which the film boiling takes place reacts chemically w ith the 

gases in the film, a heterogeneous reaction may occur on the surface 

(53). Reactions of this type possibly may be used for catalytic 

reactions in which rapid quenching occurs. 

Sinc e there ha~ been no previ ous investig ation o f the effect s o f 

gases dissolved in the liquid bei ng boiled and since there ha s b e en 
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no previous investigation of the effect of a heterogeneous chemical 

reaction on the solid surface, these problems were chosen for an 

investigation of film boiling. It was anticipated that these effects 

should greatly influence the rate of heat transfer during film boiling. 

The decision was made to use subcooled film boiling around a 

sphere because by using sufficient subcooling the vapor could be made 

to condense as it left the film. This would greatly facilitate the 

measurement of heat transfer rates. In addition, the sphere could be 

supported by the liquid flow and could be heated inductively. Since, 

in this case, no solid object would touch the sphere, a constant sur

face temperature should be maintained. 

A previous investigation of subcooled film boiling on a sphere was 

made by Witte et al (70) (71). However, they preheated the spheres 

prior to the film boiling, and consequently, the spheres did not have 

a constant surface temperature. In pne of their typical experimental 

runs, the sphere surface temperature dropped from 1400°c to 800°C. 

in 0. 15 seconds. 

It was decided to study the film boiling of water for the following 

four reasons. First, the concentration of dissolved gases could be 

determined easily. Secondly, water is widely used for electrical 

power generation. Thirdly, water is used in nuclear reactors. Lastly, 
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when stainless steel spheres were used, the water could be expected 

to react heterogeneously with the sphere surface. Thus, the film 

boiling of subcooled water around a sphere should serve perfectly to 

investigate the effects of dissolved gases and heterogeneous reactions 

on heat transfer. 
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CHAPTER I 

DESCRIPTION OF APPARATUS 

Taylor (45) (64) noted that when a denser fluid is positioned 

above a lighter fluid, tpe interface will be unstable. As a result of 

this instability, bubbles of a less dense fluid will rise into a more 

dense fluid; the instability is commonly called the Rayleigh-Taylor 

instability (29). The film boiling of a saturated liquid around a sphere 

demonstrates this phenomena. Frederking and Daniels (22) con

sidered the Rayleigh-Taylor instability while examining the film 

boiling of a saturated liquid around a sphere and noted that the fre

quenc y at which the bubbles leav e the film is inv ersely proportional 

t o the square root of the diameter of the bubbles. Hendricks a nd 

Baumeister (30) noted that as a result of the Rayleigh-Taylor in

stability, bubbles leave the film from either a sing l e dome on a small 

sphere or from several domes on larger spheres. 

H o w ever, if the liquid i s subc ooled below its b o iling point and i s 

fo r c ed to flow upward past the sphere , the bubbles c an b e made to 

c ondense as they are about to leav e the interfac e, a s r e porte d by 

Jacobson and Shair (35). Thus, the cool liqui d tends to s tabilize the 

interface with respec t to the R a yl e i g h - Taylo r instability. As a r e 

sult, no net formatio n of vapor o ccurs in the vap o r f ilm. 
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Fignre 2 illustrates the apparatus used t:o ach i1~vc these conditions 

experimentally. The sphere was 8upported by the:: upward flow of the 

l iguid through the funnel shaped tube. 

An additional advantage of using conditions under which no net 

fo rn1ation of vapor occurs was that the downstream liquid flow con

sisted of only one phase. Thus, the ra.te of heat transfer from the 

sphere to the liquid was determined by measuring the downstream 

and the upstream temperatures and the liquid flow rate. The tem

perature of the sphere was measured optically with the result that 

no contact existed between the sphere and any other solid object. 

Therefore, the sphere surface possessed a uniform temperature over 

the entire surface. 

Non-condensables may enter the vapor film in any of three ways: 

(I) gases dissolved in the liquid may diffuse into the vapo r film, 

(2) the vapor itself may be thermally decomposed, and (3) the vapor 

may react with the solid surface. As the vapor condensed in the 

upper region of the vapor film, these non-condensables present were 

not abi:;orbed into the liquid phase in the short period required for the 

condensation of the vapor. The non-condensables then appeared as 

small bubbles in the downstream liquid flow. 

The apparatus constructed for the experimental investigation of 

the preceeding phenomena consisted of a constant head tank to force 
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liquid through the test section, a test section to contain the sphere, 

an induction heating unit to heat the sphere, a temperature rec.order 

and an optical pyrometer to measure temperatures, a gas chromate-

graph to determine the composition of the non-condensables, and an 

oxygen analyzer to determine the dissolved oxygen concentration. ,, 
Table 1 lists in detail the basic components used to construct this 

apparatus which is shown in Figure 3. 

Reservoir and Constant Head Tank 

To maintain a constant liquid pressure into the test section, a con-

stant head tank was used, as shown in Figure 4. The liquid to be 

boiled was stored in a reservoir which consisted of a three liter flask 

from which the liquid was continuously pumped through the constant 

head tank. The constant head tank was constructed from a 500 milli-

liter boiling flask and was located to maintain a liquid head of 5. 5 

feet. Pressure oscillations introduced by the pump were not of 

sufficient magnitude to cause variations in the flow through the test 

section. The various componeµts were connected by 0. 5 inch 0. D. 

Tygon tubing. 

I 
The constant temperature bath used to heat or cool the reservoir 

was not temperature controlled, but was of sufficient size to remain 

within one Centigrade degree during an experimental run. In general, 
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the temperature at the inlet to the test section was not determined by 

the temperature in the constant temperature bath, but by a heat ex

changer on the inlet to the test section. The purpose of the constant 

temperature was to allow the liquid to reach an equilibrium with the 

atmosphere. In other words, the dissolved oxygen and nitrogen were 

at equilibrium with the atmosphere at the t~mperature in the reser

voir. By varying the temperature in the reservoir, the concentra

tions of the dissolved oxygen and nitrogen in the liquid could be 

varied. 

The concentration of dissolved oxygen was measured analytically 

because it was not certain that an equilibrium existed in the reservoir. 

The temperature in the reservoir was measured as a check on the 

accuracy of the analytical measurement. The constant temperature 

bath was stirred constantly and was heated by a 0 to 1. 0 kilowatt 

heater. If cooling was desired, ice wai added to the constant tern-

perature bath. The temperature in the reservoir was measured with 

an iron-Constantan thermocouple in a glass well. 

The heat exchanger was used to determine the temperature at the 

inlet of the test section. The water to be boiled flowed through the 

inner tube and the cooling or heating water flowed through the outer 

tube of the heat exchanger. A valve was located downstr e am from th e 

•'· 
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heat exchanger and was used to vary the flow rate through the test 

section. 

The flow rate of water through the test section was ineasured by 

a rotameter. The rotameter was located downstrearn from the valve 

used to vary the flow rate. The rotameter had been calibrated by 

using the constant head tank to pass water through it. The flow had 

been diverted into a graduated cylinder and timed with a stop watch 

at various flow rates. Figure 5 is a plot of the rotameter scale 

reading versus the flow rate in grams per second. It was noted 

during the calibration of the rotameter with water that the error in-

traduced by v arying the temperature of the water was negligible. 

Test Section 

After leaving the rotameter, the liquid to be boiled flowed into the 

test section diagramed in Figure 6. The test section consisted of a 

7 /8 inch I. D. glass tube with a Lavite support for the sphere as shown 

in Figure 2. Lavite was used to support the sphere because it i;> an 

insulator and, therefore, not effected by the induction heater. Lavite 

has an additionai advantage of being insensative to thermal sho c k 

which may result from sudden contact between the sphere and the 

support. The Lavite support was one inch in height and had an in -. .. 

ternal diameter of 3/8 inch and an e~ternal diameter of 7 /8 inc h. 
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Above the sphere the liquid flowed through a six inch long equili

brium section before reaching the outlet tube and the downstream 

thermocouple. The equilibrium section was insulated with Armstrong 

Armaflex insulation to prevent heat losses to the atmosphere. The 

entrance section upstream from the sphere also was insulated to 

prevent heat losses and errors in the measurement of the inlet 

temperature. 

The outlet tube was inclined downward as shown in Figure 6 pre

venting the non-condensables from being entrained in the outlet 

stream. The non-condensables were allowed to rise as bubbles into 

an inverted 50 milliliter burette located above the equilibrium 

section. At the beginning of an experimental run the burette was 

filled with water and as the run progressed the burette would fill 

with non-condensables. These non-condensables later were analyzed 

with a gas chromatograph to .determine their composition. An iron

Constantan thermocouple lo c ated in the upper end of the burette was 

used to measure the temperature of the collected gases . The 

burette was u.._sed to measure the volume of gases collected over a 

g i ven period of time. The burette was surrounded' with a cooling 

jacket which main{ained the collected gases at a constant temperature . 

A downward inclined pressure tap was locate d above the outlet. 

This pressure tap was connected by a water fi lled line to a m e r c ury 
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n~ano1neter. The pressure of the collected gases in the b11 rette was 

determined by measuring the height of the mercury column and the 

height of the water column. 

Heat transfer measurements were made by the previously men

tioned upstream and downstream thermocouples, The thermocouples 

were both iron-Constantan and were painted with Glyptol insulating 

varnish to prevent corrosion of the junction. They were located far 

enough from the induction heating coil to prevent inductive heating 

of the thermocouples. To allow visual observation of the sphere and 

to allow its temperature measurement by an optical pyrometer, the 

test section was not insulated near the sphere. 

The spheres used in the various experimental runs were ball 

bearings of several diameters. The bulk of the spheres was type 

440 stainless steel which is corrosion resistant and is easily heated 

inductively. The Handbook of Chemistry and Physics (32) reports 

that .type 440 stainless steel is composed of 0. 6% to 0. 75% carbon, 

16% to 18% chromium, 0. 75% molybdenum, less than 0. 04% phos -

phorus, less than 0. 03% sulfur, and the remaining portion iron. 

Several additional spheres were used consisting of gold plated on 

a layer of nickel which in turn was plated on stainless steel spheres 

of the above type. The nick el retarded diffusion of the gold into the 

stainless steel. 
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Induction Heating Unit 

The sphere was heated inductively with a high frequency induction 

heating unit which was used with an appropriate coil to operate at 

frequencies between 2. 5 and 5. 0 MHz. The manufacturer recom

mends a load coil of approximately 1. 5 µh. when operating in the 

2. 5 to 5. 0 Mhz. range. 

The load coil was wound from 3I16 inch 0. D. copper tubing. The 

coil had 5 1 /2 turns, had a length of 1 3/8 inches, and had a diameter 

of 1 7 /8 inches. A coil of these dimensions had a calculated induc

tance of 1. 07 µ h. The connection of the coil to the induction heating 

unit was made with two 30 inch lengths of copper tubing spaced one 

inch apart. The load coil was positioned directly around the sphere 

being heated. 

Temperature Measurement 

The temperature at the inlet and outlet of the test section, in the 

reservoir, and of the collected gas were measured with iron

Constantan thermocouples and a temperature recorder. This recorder 

was equipped with a meter and a strip chart to. measure temperatures 

over the range of 0-400°F. Because it was more a ccurate, the . 

meter rather than the strip chart was used. The instrument r ead s ix 

temperatures automatic ally and switched from one to another every 
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thirty seconds; in three minutes all six thermocouples were read. 

In addition to the four thermocouples mentioned above, a fifth thermo

couple was used in a water bath with a mercury thermometer to cali

brate the recorder. The sixth thermocouple position was not used 

during the experimental runs. All thermocouples were made from 

the same spool of thermocouple wire. 

The temperature of the surface was measured with an optical 

pyrometer which measured the brightness of emitted red light. The 

pyrometer was located 13 inches from the surface af the sphere 

which was viewed by looking into the induction heating coil at an 

angle of approximately 450 from horizontal. The optical pyrometer 

measured the black body temperature. An error in the temperature 

measurement may have been introduced because of variations in the 

emissivity of the sphere's surface. 

A test was run which indicated that the error introduced by 

absorbtion of red light by the water was negligible. A type T-24 

tungsten strip lamp was viewed directly and through various depths 

of water. It was found that the error introduced was approximately 

4° C. per inch of water. The depth of water through which the sphere 

was viewed during the experimental runs was less than one inch; 

therefore, this correction was ignored. 
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Gas Chromatograph 

To determine quantitatively the composition of the gas removed 

during the film boiling, a gas chromatograph was used. Figure 7 is 

an illustration of the gas analyzing system. The gas collection 

-· burette of the film boiling apparatus was connected by five feet of 

1 /8 inch 0. D. copper tubing to a sampling valve. 

At the completion of a test run, the collected gas was forced from 

the burette by opening the exit stopcock and pressurizing the collected 

gas. The gas was pressurized by closing the liquid exit from the 

film boiling apparatus and opening the valve between the constant 

head tank and the film boiling apparatus. The increased water pres

sure then pressurized the collected gas and forced it through the 

stopcock and the copper tube into the sampling valve. This valve 

then was used to inject a gas sample into an argon carrier. The 

volume of the gas sample injected during test runs was 0. 525 milli

liters. 

This sample injected into the carrier by the sampling valve passed 

through a packed column which separated the sample plug into three· 

plugs of hydrogen, oxygen, and nitrogen. These three plugs then 

flowed into the chromatograph detector. The column used was main

tained at room temperature and the flow rate through it was measured 

by a bubble-tube flowmeter. The column was constructed by packin~ 
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Figure 7. - -Gas <.:hromatog raph used to analyze non-condensables. 
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a tub e (8 feet 9 inches long, 1 /8 inch 0. D. , 30 gag e, 30 3 stainle ss 

ste el) with 13 X Molecular Sieve of 30 I 6 0 me s h. Prior t o its use , 

the c olumn was c onditioned by heating it for I 6 hours at 345° C. whjl e 

pas sing helium through it to remove c ontaminate s. 

The chromatograph used consisted of a bri d g e c ircuit and t wo 

thermistor detectors. The carrier gas was c onstantly f e d through 

one detector while carrier gas and sample were fed through the other. 

The bridge then measured the unbalance between the two dete c tors 

whic h responded to gases of varying thermal c onductivity. Since it 

was necessary to know the hydrogen concentration ac c urately, and 

sinc e the thermal conductivity of argon is considerably hig h e r than 

that of hydrogen, argon was chosen as the carrier gas. 

The unbalance of the bri dge was measured with a strip cha rt 

rec order set to the 5 millivolt range. The output of the recorder 

was related to the concentration of the injec ted sample . The c hro 

matograph had been calibrate d for the integrated areas u nder t he 

r ecorder trace as described in Appendix E. 

/ 

Dissolv ed O x ygen Measureme nt 

A 125 milliliter flask was located upstre am from th e inl e t o f the 

test section at the p o int la ble d "Ox yg en Meas u r e m e nt " in Fig ur e · 3. 

As an experime ntal run pro g ressed, the inc o n 1i n g w a t e r flo wed 



-27-

through this flask and at the conclusion of the run, the flask con

tained a representative sample of the incoming fluid. During an ex

perimental run approximately 2 liters of water flowed through the 

sample flask. This was enough volume to purge the 125 milliliter 

flask of its original contents. At the outlet of the test section the 

liquid flowed through a heat exchanger composed of two concentric 

tube glass ~ondensers which lowered the temperature of the outlet 

flow below 50 o C. The liquid then flowed through a second 12 5 milli -

liter flask which provided a sample of the outlet flow. The outflow 

of this flask was discarded. During an experimental run the 125 

milliliter flasks were sealed with rubber stoppers and at the com

pletion of the runs the stoppers were removed and the oxygen analyzer 

was used to determine the concentration of dissolved oxygen in each 

flask. 

The oxygen analyzer used detected the oxygen partial pres sure by 

the diffusion of oxygen through a Teflon membrane. The oxygen was 

then reduced electrochemically at a rhodium electrode when a 

potential of 0. 53 volts was applied between the rhodium cathode and 

a silver anode. The resulting current was proportional to the oxygen 

partial pres sure in the sample. 
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The oxygen analyzer was calibrated to compensate for the tem

perature of the sample in the range of 0- 50 ° C. The temperature 

of the sample was read with a mercury thermometer. Prior to each 

experimental run the analyzer was calibrated against a standard 

solution of oxygen in water. This standard solution was prepared 

by constantly bubbling air through water for at least 24 hours. After 

this period of time it safely could be assumed that the dissolved 

oxygen was at equilibrium with the atmosphere. 
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CHAPTER II 

PROCEDURE USED FOR EXPERIMENT AL RUNS 

Three different series of data were taken during various stages 

of completion of the apparatus. The first taken was a series of pre

liminary data in which dissolved gases were not collected. The main 

purpose of the first series was to investigate the heat transfer rela

tionships. However, during the experimental runs, it became 

apparent that dissolved gases might have an effect on the heat trans

fer relationships. Therefore, a second series of data was obtained 

from experimental runs during which the non-condensables were 

collected and the inlet and outlet oxygen concentrations were 

measured. Upon analysis of these data, it became apparent that a 

heterogeneous chemical reaction may have occurred at the wall. 

Therefore, a third and final series of data was obtained in which a 

gas chromatograph was used to measure the concentrations of the 

gases in the collected non-condensables. The apparatus used for the 

.final series of data is that described in Chapter I, "Description of 

Apparatus 11
• 

The experimental procedure for the first and second series of 

runs was identical to that for the third series with the exception that 

measurements of the volume and composition of the non-condensables 
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were omitted. Therefore, only a description of the procedure used 

to obtain the final series of data will be presented. 

Prior to each run, the entire flow system was filled with water 

and the water was pumped continuously through the constant head' 

tank. The pumping permitted the dissolved gases in the water to 

reach an equilibrium with the atmosphere at the temperature of the 

reservoir. To obtain the desired temperature, the constant tern-

perature bath was either heated electrically or cooled with ice. The 

pumping process was continued for a minimum of one hour to allow 

equilibrium to be reached. After pumping for one half hour at a 

given temperature, no further change in oxygen concentration 

occurred as determined by the oxygen analyzer. Thus, the concen-

tration of oxygen and nitrogen in the reservoir was set by the tern-

' 

perature in the constant temperature bath. 

The detector heaters of the gas chromatograph were turned on 

several hours prior to each run. After a two hour warm up, no 

notic eable drift of the recorde r took place. The induction heater's 

cooling water and the filament power were turned on one half hour 

prior t o each r un with the w arm up period allowing complete vapor-

i zation of the m e r c u ry in the rectifier tubes. The atmospheric pres-

sur e was m easure d w ith a mercury barometer. 
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Immediately prior to each run, the temperature recorder was 

zeroed by placing a mercury thermometer and an extra thermocouple 

in a water bath. The zero control on the recorder was varied to 

adjust the recorder temperature to equal the temperature shown on 

the mercury thermometer. 

The oxygen analyzer was calibrated by placing the probe in a 

. standard solution of oxygen in water. This standard solution was 

prepared by bubbling air through distilled water for at least 24 hours 

which allowed the atmospheric oxygen to be at equilibrium with the 

water. The concentration of oxygen in the water was obtained from 

equilibrium data (2) for an atmospheric pressure of 740 millimeters 

of mercury and for the temperature of the water. The apparatus 

was calibrated for 740 millimeters because it is the approximate 

atmospheric pressure in the laboratory. The atmospheric pressure 

variations in the laboratory were less than 2% of the 740 milli1neters. 

The temperature of the standard s.olution was measured by the 1ner

cury thermometer, and the oxygen analyzer temperature compen

sation control was set a cco rdingly. 

The cooling water for the heat exchanger and the burette n ext 

was turned on. The temperature of the collected n o n- condensables 

was approximately the temperature of the cooling water. 
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Each run was begun with the system con1pletel y filled with water. 

Initially, there was no water flow in the test section. The induction 

heater was turned on and a small amount of power was applied to 

the sphere. After a minute, film boiling began on the upper portion 

of the sphere and within ten seconds the film covered the entire 

sphere. There was no difficulty in starting film boiling on the sphere 

when sufficient power was used. Next, the flow control valve was 

opened and adjusted to give the desired rotameter reading. The 

power control of the induction heater was advanced to produce the 

desired surface temperature. The grid control of the induction 

heater was adjusted simultaneously to keep the grid current within 

the limi ts prescribed for th e induction heater ( 0. 4 amperes to 0. 6 

amperes). 

The surface temperature of the sphere was n1easured several 

times during each run. The surface temperature recorded was an 

a verage of readings taken. The rotameter reading was observed 

,during the experiment to ascertain that it remained constant. At, the 

lower · flow rates oscillations in the flow rate were noted, and if 

these oscillations were present, an .average flow rate. was recorded. 

These oscillations were approximately 0. 1 millilite.r per second 

from the average flow rate . 
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When ~pproximately five milliliters of the non-condensables had 

been collected in the burette, the exact volume was recorded. Also, 

the pressure on the manometer was recorded and the stopwatch was 

started. Approximately half-way through each run, the temperatures 

were recorded. These temperature measurements were taken at 

the inlet and outlet of the test section, inside the burette, and in the 

I • 

•res ervo1r. 

Prior to the termination of each run, the volume of non-conden-

sables collected was recorded along with the manometer pressure. 

Simultaneously, the stopwatch was stopped. Next, the induction 

heater was shut off. The volume collected in the burette was 

recorded. After a ten minute period this volume again was recorded. 

During the run, the non-condensables could not be expected to be at 

equilibrium with the water vapor within the burette, therefore, the 

ten minute wait was used to allow excess vapor present within the 

burette to condense and equilibrium to occur. The vo lume diffe rence 

was subtracted from the recorded volume obtained when the stop-

watch was stopped. · This correction was generally less than l % of the 

total volume. 

The oxygen analysis and the chromatographic analysis were made 

after the run. The oxygen analysis was begun by blo c king the Tygon 

tubing with clamps at the inlet and outlet of the outlet oxygen s ample 
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collection flask. The valve controlling the flow th roug h the test 

sec tion also was closed. The rubber stopper of the oxygen collection 

flask at the inlet of the test section was removed. The oxygen 

analyzer probe and a mercury thermometer were placed in the flask, 

and the oxygen concentration was measured. The oxygen concentra-

tion in the sample collection flask at the outlet of the test sec tion was 

determined by the same method. 

The non- condensables were analyzed by the gas chro matograph. 

The recorder chart paper was set to advance at 4. 0 inches per 

minute. The valve used to control the flow of liquid from the constant 

head tank through the test section was cracked which pressurized the 

g as sample in the burette. The stopcock at the top of the burette 

was opened and the collected non-condensables were forced through 

the sample valve. After the lines were purged with at least 10 n1illi-

liters of gas, the sample valve was pushed to inject a 0. 5 25 n1illiliter 

sample into the chromatograph. The pen of the recorder was then 

lowered idto position and the trace recorded. This procedure was 
'· 

repeated a second time ·to pro vide a duplicate trace. The area u nder 

" 
the chromatog ram was determined.by counting the squares under the 

cur ves, and the average for the two traces was recorded. In most 

cases , the differences i~ the chromatogram areas were less than 3 v:_, 

.' 
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of the average. The error was largely a result of inaccurate co unt

ing of the squares. 

The above procedure resulted in nineteen n1easured values which 

are listed in Table 2. This table also includes the range of these 

values and an estimation of the error in the rec orded value. 
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CHAPTER III 

DERIVATION OF HEAT TRANSFER RELATIONSHIPS 

The physical situation investigated experimentally has been 

described in Chapter I and · shown in Figure 2. By simple energy 

and material balances , equations were derived which can be used to 

predict the rates of heat transfer and the composition of the vapor 

film which were encountered in the experiments. Equations (A-27) 

and (A-31) of Appendix A which were derived by Kobayasi (39) (31) (40) 

and Witte (69) do not take into a c count the effects of subcooling of the 

liquid, mass transfer of a dissolved gas into the film, a nd che n1ical 

reactions at the wall. However, these effects were present during 

the experimental runs. 

Energy Balance 

The physical situation was modeled as shown in Figure 8. On the 

lower half of the sphere, vaporization occurred and heat w as t ran s 

f e r r ed to the liquid. ,Half of the way up the sphere~ the a v erag e tem

perature of the liquid was T 3 and the liquid mas s flo w rate w a s w y 

At this position, the vapor flow rate was w 2 . The numeric al sub

scripts r e fer to p o sitions in Figure 8. Diffusion o f disso h ,ed gases 

into the film occ urred o n the l o wer half o f th e sphere. O n the u p pe r 

half o f the s phe re, the v apor condensed and c a u s e d furth e r hea ting 
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6 

non- con densabl e s 

a 

7 

outlet liquid 

·~ · ~ 

5 4 

liq uid at T ''hot' '. wate r 
s 

-
· ~ '" 

I 
diffusion 

t I 
2 3 

fil m "warm" water 

A • I 

l 

subcooled inlet liquid 

Figure 8. - -Model of subcooled film boiling with 
no vapo r l eaving the film. 
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of the liquid. At Point Number 7 the condensed vapor and the "hot" 

liquid from Point Number 4 mixed. However, the non-condensables 

were collected and did not redissolve into the liquid. 

Two energy balances were made; the first was made between 

Points 2 and 3 and Points 4 and 5, and the second was made between 

Points 4 and 5 and Point 7. The following equation is a general state-

Jnent of an energy balance between Point A and Point B(33) : 

+ p AV A+ q - W = EB +yB + ( 3- l) 

where W represents mechanical work. Since very little c hange in 

e levation occurred in going from Point Number 2 to Point Number 7 

in the apparatus the y A term may be neglected. The velocities 

involved were small enough that the kinetic energy term also may be 

neglected. The pres sure and the density remained constant, and no 

inechanical work was done on the system. It was previously assumed 

that no heat transfer from the sphere occurred above Point Number 2 

and it may be assumed that the system was adiabatic; therefore, "q" 

is zero in the above equation. The above equation then may be re-

written as 

E = E 
A B 

( 3- 2) 
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If Point A represents Poinb:1 4 and 5 i.n the rnod<d, and ir Point 

B represents Point Nu1nber 7, Equation ( 3-2 ) niay be written for 

lh e rnixing as 

= 0 (3- 3) 

since w 
7 

equal s w 5 and w
4

. The heat capacities were assumed 

to be constant in the above equation and there was assumed to be no 

phase change. 

Before mixing, the condensed liquid was at its saturation 

temperature, there fore Equation (3-3) may be rewritten as 

whjch n1ay be rearranged as 

T 
4 

= (T - T ) + T 
7 s 7 

{3-4) 

( 3- 5) 

The above equation relates the outlet temperature to that at Point 4. 
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If the dissolved gases are present in the liquid in dilute conc entrations, 

then 

( 3 - 6) 

lh the film, 

(3-7) 

where~ is the mass fraction of water vapor present in the film. 

Then, 

( 3 -8) 

and by combining Equations (3-5) and (3-8) 

( 3- 9) 

An energy_ balance may be written for the condensation ' process 

occurring in the upper half of the sphere as follows: 

j 
·m. c . - w T 

l p, v, l 2 s 
L: m. c +mk w 2 >. 
i =k i p,v.i 

(3 - 10) 
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where the subscripts i = k + l to j refer to the spe c ies of non-

condensables and X is the latent heat of vaporization at the saturation 

temperature. The above equation may be rewritten as 

: 
2 

[ t m. c . ( T z - Ts) +. X mk] = c l ( T 4 - T 3 ) 
3 i=k . 1 p, v, 1 p , 

By combining Equations (3-9) and (3-11) 

Wz [ j ] - L m. cp v i (T 2 - T ) + Xrn.k 
w3 i=k 1 , , s 

This may be rewritten as 

= 

Now, X' is defined as 

..,,_, = j 

L: 
i =k 

c . m. (T2 - T ) I m 1 + c l (T7 - T ) p, v, 1 1 s < p, s 

(3-11) 

(3-12) 

(3 - 13) 

+ X ( 3 - 1-:l: ) 
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The "/.."used in the above e quation is sin1i.lar to the A u sed by 

Bro mley ( 9 ) in Equation (A- 3). Howeve r, the above X' co ntains an 

additional term to account for the subcooling of the liquid. The other 

terms used abo ve and also used in Bromley's X a ccount for the heat 

of vaporization and for the superheating of the vapor. 

By combining Equations (3-13) and (3-14), 

w 2 c 
1 

(T - T 3 ) 
p, 7 

m - = 
k W3 ">(' 

(3-15) 

The density in the fil m was assumed to be c onstant at the average 

temperature of the film and assumed to be defined by 

j 
p = }: X · P . 
v 1 , v 1, v ( 3 -1 6 ) 

i =k 

where x . is the mole fra c tion of the spec ies ''i 1 1 in the fi lrr1. 
1 , v 

The heat transfe r c oeffic ient was deri v ed by using t h e coord i nate s 

shown in Figure 9. It was assumed tha~ vaporization occurr ed in the 

r egion _ 8 ~ 7r/ 2 and that condensation occurred in the region 

rr / 2 ~ (J ~ rr It also was. assumed that the film thickness , o 

was constant on the lowe r half of the sphere and was muc h less than 

th e diameter of th e sphere. At 8 = rr / 2 t:he following assurnptio n 

was made 



Numbers are as used 
in Figure 8. 

I 
3 

2 
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7 

I 

0 
s 

4 

I 
1 

Figure 9. - -' Coord~nate system used fo r obtaining 
heat transfer coefficient for subcooled film boiling o n a 
sphere. 



-45-

u - 1/2 u 00 ( 3 - I 7) 

where u was the average vapor flow velocity. This assumption was 

based on the film thickness being much less than the diameter of the 

sphere; therefore, at 11' /2 the vapor flow was similar to the flow 

between two parallel plates, one of which was made in suc h a way 

that there were no free convection effects present. Now, 

Wz =u 11' D ~ p 
v ( 3- 18) 

and 

2w2 
~ = 7rD p V Uoo 

(3-1 9) 

If by definition 

' = 

T - T 
7 3 ( 3 - 20) 

T - T 
7 1 

-, 

then Equation (3-15) becomes 

= 
c T ( T7 - Tl) p, 1 

w 
2 (3-21) 
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By substituting Equation (3-21) into (3-19), 

0 = 

or 

0 = 

As an approximation, 

k = v 

2w c 
1

(T -T) 
3 p, 7 3 

2 q A r 

// 
rr AD P u

00 
m 

v k 

j 

E 
i =k 

k . x. 
1, v 1, v 

(3-22) 

(3-23) 

( 3- 24) 

where k is evaluated at the average temperature of the film and 
i, v 

h = k lo v (3-25) 

where "h 11 is the local heat transfer coefficient at fJ = 7r I 2. Since 

it has been assumed that the film thickness is constant over the lower 

half of the sphere, then 

h = k lo 
v 

(3-2 6 ) 

where h is the average heat transfer coefficient, and 
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q = h 6T 

where 

T 
s 

The area of the sphere is determined by 

A = 7r D
2 

(3-27) 

(3-2 8 ) 

(3-29 ) 

Substituting Equations (3-23), (3-27) , and (3-29) into Equation ( 3- 26) 

yields 

(3- 30) 

In terms of the a verage Nusselt nmnber, this is 

µ. 1 ((Pµ.) Pr v v v 
--= -

µl vz ( p µ.)l c p,v 

( 3-31) 
AT r 

The abqve. equation is similar to the equation 'obtained by Kobayasi 

(39) (31) (40) and Witte (69), Equation (A-31). H owever, the above 

equation contains the subcooling parameter, T , and the water con-

centration in the film, ~k. The constant in the above differ s slightly 

from that of Equation (A- 31), because of the assumption that the film 

. I 
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thickness is constant over the lower half of th e sphe re. Based on 

Bromley's data for forced .conv ection film boiling around horizontal 

cylinders, Witte suggested a constant of 2. 7. Because of the sub-

cooling, x' in the above equation also is slightly different from the x 

suggested by Witte. 

From Equation (3-21) 

Then, 

or 

= q A TI m 
k 

T = 
q - q 

1 

q 

(3-32) 

(3-33) 

( 3 - 34) 

where . q
1 

is the heat transferred frorp the liquid- v apor interface into 

the liquid. By rearranging Equation (3-34), 

If h is defined as 
1 

q
1 

= ( 1 T ) q (3-35) 
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(3-36) 

where 

= T - Tef) 
s 

(3-37) 

then 

(3-38) 

The factor of 2 is the result of the assumption that the heat transfer 

to the liquid occurred only on the lower half of the sphere; whereas, 

"q" was evaluated for the entire sphere. In terms of the a v erage 

Nus selt number this becomes: 

2(1-r)qD 

NuD,l (3-39) = 

kl .6Tl 

or 

1 -
NuD, 1 kl .6 Ti 

(3-40) T = 
2 D h AT 

The transfer of heat into the liquid from the liquid- vapor inter-

face was independent of the vapor properties and th e wall temperature.· 
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Therefore, the following could be expected: 

(3-41) 

The form of the functional relationship would be 

(3-42) 

for a situation in which the liquid extends to infinity in all directions 

as described by Garner et al. (26). The letters c, m, and n desig-

nate constants in the above expression. 

In the case investigated experimentally, the functional relation-

ship of the Reynolds and Nusselt numbers may not have been this 

simple. The addition of a geometric factor may be necessary. 

Equation (3-40) may be rearranged as 

= (3-43) 

Equation (3 - 43) expresses r as a function of Nun , and Equation 

(3-31) expresses Nu as a function of r • If these t w o equatio n s are 
n 

solved simultaneously, either Nun or r may be found as a ftmction of 

th e following v ariables: 
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µ v 
( p µ) "{/ m 

Re v Pr k Pr -, 
D ( p µ )1 

v 
AT 

l' 
µl c 

p, 1 

c AT Pr 
p, 1 1 v 

c 6T Pr 
p,v 1 

These are the same parameters used by Gess and Sparrow ( 14) to 

describe subcooled forced convection film boiling on a flat plate. An 

exception to this similarity is that the effect of dissolved gases are 

taken into account by the presence of mk. 

and 

If the degree of subcooling of the liquid is very large, then 

0 = 

0 $; 7 << l 

f (Ren, 1 , Pr1) k 1 6T1 
l -

2 h AT D 

(3- 44) 

(3-45) 

· By rearranging, 

/ 
h 
i~ = (3-4 6 ) 

2 D . AT 

In other words, heat transfer is go v erned by the liquid parameters 

and the liquid temperature difference, although a film may be present. 
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Material Balance 

A material balance may be used in detern1ining the concentration 

of the vapor film, if the assumption is made that the gases within the 

film are at equilibrium with the liquid. If the liquid is bounded as it 

was in the apparatus, an equilibrium may exist. If the liquid extends 

to infinity, the time required for diffusion of the dissolved gases to 

the liquid - vapor interface will be much greater than the time re-

quired for the liquid to move past the sphere. In this case, an 

imaginary boundary layer thickness may be used. For the purpose of 

this discussion, it will be assumed that an equilibrium exists between 

the gases in the film and their average concentrations in the liquid. 

If Henry's law applies to this equilibrium, then 

P. = x. H 
J J j 

(3-47) 

where P is the vapor pressure of the dissolved gas and H is a 
j j 

proportionality constant. The subscript ''j'' refers to the gases 

I 

other than the solvent, water. 

If 

p 
atn;i = 

j 

:E 
i=k 

P. 
l 

( 3 - 48) 

and if the mole fractions in the film are proportional to the partial 

pressures, then 
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x =x patm/H. j, 3 j, 2 J 
(3-49) 

where the numerical subscripts refer to points in Figure 8. 

I 

If none of the non-condensables in the film are redissolved into 

the liquid, then 

and 

x. 5 ], 
= 0 

N x. 4 = N x. 7 4 J, 7 J, 

where N is the molar flow rate. Since 

then 

Substituting Equation (3-53) into (3-51) yields 

x =(~+l)x. 7 j, 4 N J,. 
3 

(3-50) 

(3-51) 

(3-52) 

(3-53) 

( 3 - 54) 

If at this point there are no chemical reactions in the film or at 

the wall, then the following will be true: 
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(3-55) 

and 

(3-56) 

By substituting Equations (3-49) and (3-56) into (3-55), 

X· 2 1 - N 3 I N 2 J, 
= (3-57) 

x. 1 J, 1 + N3 patm 

N 2 Hj 

By combining Equations (3-49) and (3-57), the following is obtained: 

x 
j, 3 

= (3-58) 
x . 1 (N 3 I Nz + H. IP t ) 

J, J am 

If the equilibrium is reached on the lower half of the sphere, then 

x . 3 = x 
J, . j, 4 

If Equations (3-54) and ( 3-59) are substituted into ( 3 - 58 ), then 

X . 7 J, 
= 

x. 1 (N2 /N3 + L) (N 3 /Nz + H . /Pa tm) 
J, J 

( 3-59 ) 

( 3 - 60 ) 
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Since 

N 
2 

<< N 
3 

(3-()l) 

the following results 

x . 7 1 
J, 

(3- 62 ) = 

X. 1 
1 + 

N2 Hj 
J, 

N3Patm 

The above equation relates the inlet and outlet concentrations of a 

dissolved gas with the ratio of the molar flow rates in the vapor and 

the liquid. It has been assumed that the diffusion of d is solved gases 

is instantaneous; therefore, the gases in the vapor are in e quilibrium 

with the dissolved gases in the liquid. It also has been assumed that 

no chemical reactions took place anywhere in the system. 

The Henry's law constant in Equation (3- .62 ) depends upon the 

saturation temperature, which in turn depends upon the vapor pres -

sure of the water vapor in the film. Since gases other than wate r 

vapor may be present, the saturation temperature could be lowered. 

The total pressure is related to the 'partial pressures by 

p 
atm = 

j 

E 
i =k 

P . 
l 

(3-48) 
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If the Clausius - Clapeyro n equation appliel::l, then 

dl nP 
k .\ ---- = --- (3-63) 

o r 

.\ ( l l ) 1 n [ Pk I ( 1 atm. ) J = - -- - -
R TBP Ts 

( 3-64) 

where T BP i s the norm.al boiling point. If the total pressure in the 

film is one atmosphere and the mole fraction equals the partial pres -

s ure, then 

~. 2 = Pk I ( 1 atm. ) (3-65) 

and 

l 

T = s 1 
(3-66) 

TBP 

B ecause 

H. = f (T ) 
J s 

(3-67) 

Equations (3-48), (3-62), (3-66), and (3-67) must be solved simul-

t aneously. 
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Chemical Reactions 

Chemical reactions may o c cur either homogeneously within the 

film or heterogeneously at the wall. During the experimental runs, 

only the latter was apparent, and therefore, only the heterogeneous 

reactions will be discussed. 

Partridge and Hall (53) suggested that a steam-iron reaction may 

occur in boilers, if film boiling occurred. The reaction which they 

suggested could take place is 

Therefore, hydrogen could be produced at the wall during film 

boiling on an iron surface. 

Additional reactions could occur when large amounts of oxygen 

are present in the film. A possible reaction is 

Other iron-oxygen reactions also could be present. 

The reaction of a gas with a sphere in a similar geometry was 

investigated by Campagne ( 11 ). He suggested a system similar to 

that used here, as a reactor with rapid heating and quenching. 

However, his experiments dealt only with a single gas phase and not 

a two phase boiling situation. 
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The rates at which the reactions occur may be deterrnh\ed by 

(3-68) 

where NR is the molar quantity of component 11i 11 reacted. One 

method of incorporating the chemical reactions into the material 

balances is by assuming that the reactions occur in a narrow bound-

ary layer at the wall and that the reaction does not effect the Henry's 

law equilibrium. The following will govern the rate of collection of 

the non-condensables: 

By substituting Equation (3-62) into 

N6 x. 6 Nl X · 1 
(- I 

1 = 
J' J, Nz + 

N3 

(3-69), 

NR .A 
'J 

)- NR .A 
H· 'J 

J 

patm 

(3-69) 

(3-70) 

The preceeding energy and material balances must be combined 

with the kinetic e x pression to predict the outcome of the experimental 

runs. 
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CHAPTER IV 

RESULTS OF THE EXPERIMENTAL INVESTIGATION 

Nineteen parameters were measured during each test run of the 

final series of runs. The data were reduced to determine whether or 

not the theory outlined in Chapter III adequately described the pheno

mena. The raw experimental data for the final series of runs are 

tabulated in Appendix F. The results of the first series of runs have 

been published elsewhere (35) and are presented in Appendix J. The 

reduced final data are tabulated in Appendix G ; for convenience, 

these results are also presented graphically in this chapter. 

There were ninety - one experimental runs in the final series. 

Table 3 lists the size spheres used and other miscellaneous informa

tion regarding these runs. 

The data were reduced in three steps. First, the vo lume of the 

collected non-condensables was determined . Secondly, the composi

tion of the non- condensables was determined. Lastly, the overall 

heat transfer c oefficient was determined. Because gases other than 

water vapor were present in the film, the composition of the gases 

in the film had to be known as a prerequis i!-e to determining the h e at 

trans fe r coefficient. 



Run No. 

1-34 & 45-68 

34-44 

69-76 

77-90 

91 
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TABLE 3 

OUTLINE OF FINAL SERIES OF RUNS 

Sphere 
Diameter 

(inches) 

1/2 

1/2 

9/16 

5/8 

1/2 

Comments 

Runs were made at va rious 
conditions using stainless 
steel spheres. 

Runs were made at high 
temperatures using gold 
plated spheres. See 
Appendix D. 

Runs were made at various 
conditions using stainless 
steel spheres. 

Runs were made at various 
conditions using stainless 
steel spheres. 

Run was made using a gold 
plated sphere to determine 
the effect of gold on e limi
nating the hydrogen genera
tion. S ee Appendix C. 
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Collected Non- Condensables 

The reduction of the data was begun by d e termining the final and 

initial volumes of the gases in the burette. The burette was cali-

brated and the burette scale was found to be accurate when the burette 

reading was increased by 2. 1 milliliters. 

The final burette reading was determined by subtracting the 

following correction for non-equilibrium. Since the gases in the 

burette at the end of the run may have been supersaturated with water 

vapor, a volume reading was made at the end of the run, V H' and 

another was made 10 minutes folowing the run, V . This 10 
cool 

minute waiting period was used to allow the excess water vapor 

present to condense. The volume difference resulting from condensa-

tion was subtracted from the volume recorded when the stopwatch was 

stopped. In all cases, this correction was less than 2% of the final 

volume. The corrected initial and final volumes are tabulated in 

Table 12 as * V. 
1 

* and vf . 

The final and initial pressures of the gases in the burette were 

determined from the height of the water and mercury columns and 

from the atmospheric pressure in the laboratory. Figure 10 

illustrates the relative positions of the burette and the mercury mano-

meter. The burette s c ale r e ad in both n1illiliters and centin1et e rs. 
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water level 

/water 

I 

. 
~ 8 
...... u 

I ...,. 

...,. 
y 

Figure 10. --Relative positions of burette and 
mercury manometer. 
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Thus, the same scale was used for the determination of the volume 

and the water column height. 

The pres sure in the burette was equal to the atmospheric pres -

sure, plus the height of the mercury column, minus the height of the 

water column divided by the specific gravity of mercury. The height 

of the water column was y + E and the height of the mercury column 

was 2 E The total pressure inside the burette can be expressed 

by 

p = patm + ( 4-1) 
76 cm. 

where 

y = (53. 5 cm. - bu.rette reading in centimeters) (4- 2) 

The pres.sure, P, is atmospheres and the manometer reading, ~ 

is in centimeters of mercury and is listed in the data. The above 

I 

formula was used to calculate the initial and final pressures rang:fog 

from 0. 917 atmospheres to 0. 966 atmospheres which are tabulated in 

Table 12. 

The collected non-condensables contained water vapor. Assuming 
I 

that the gases were saturated with water vapor, the partial pressure 

of the water vapor depended on the te~perature of the c ollec ted gases . 
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These vapor pressures were obtained from the Handbook of Chen1istry 

and Physics (32) and are listed in Table 12. The water vapor pres

sures were in all cases approximate]y 3% of the total pressure. 

Because it was necessary to know the rate of collection of non

condensables per kilogram of water boiled, the rotameter readings 

were converted to grams per second by using Figure 5. The total 

volume of water boiled was found by multiplying the flow rate by the 

time. The rotameter reading ranging from 0. 43 grams per second 

to 3. 37 grams per second and total volumes boiled are tabulated in 

Table 12. 

The volumes were converted to a standard temperature and 

pressure (0°C and 1 atmosphere). The volume difference, final 

minus initial, was then divided by the total water flow and multiplied 

by the fraction of dry air. The resulting collected volume per kilo

gram of water boiled is listed in Table 12. These collected volumes 

per kilogram of water boiled ranged from 6. 84 milliliters to 1230. 

milliliters. 

Composition of Non-Condensables 

Since the oxygen analyzer was calibrated for an atmospheric pres

sure of 740 millimeters of mercury, a correc tion of the 1ne asured 

oxygen concentration was made. The measure d values were 
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multiplied by the atmospheric pressure and divided by 740 milliliters 

of mercury. Because the analyzer meter reading was directly pro

portional to the oxygen partial pressure and the oxygen partial pres

sure was directly proportional to the atmospheric pressure, the 

correction could be expected to yield an accurate measurement of the 

oxygen concentration. 

The concentration of dissolved air was determined by finding an 

equilibrium reservoir temperature using the inlet oxygen concentra

tion. The measured reservoir temperature was not used sinc e tem

perature variations between the reservoir and the constant head tank 

may have resulted in an equilibrium at a temperature other than that 

in the reservoir. The equilibrium temperature was found by using 

the original inlet oxygen concentration and Figure 11 ( 2). This 

equilibrium temperature was compared to the reservoir temperature 

to check for gross errors in oxygen concentration measurement. In 

all cases, these temperatures were within 5 C 0 • The equilibrium 

temperature was used with Figure 12 ( 32) to find th e concentration of 

dissolved air. The concentration of dissolved air was multiplied by 

the atmospheric pressure and divided by 740 millimeters of mercury 

to compensate for ·atmospheric pressure variations as was done with 

the oxygen measurements. The corrected air and oxygen concentra 

tions are tabulate d in Table 13. In all cases, the disso l ved air-
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consisted of approximately 1/3 oxygen by volume. 

The ratio of the molar flow rate in the film to the n10lar flow. 

rate in the liquid was determined by 

x . 7 1 J, 
(3-62) = 

x. 1 Nz H· 
1 J ], +N 

patm 3 

The use of the inlet and outlet oxygen concentrations implies that any 

chemical reaction of oxygen at the wall did not effect the equilibrium 

at the vapor liquid interface. The Henry's law constant was evaluated 

at the normal boiling point and was found to be 70, 100 atmospheres 

(54). The lowering of the boiling point did not effect the value of the 

Henry's law constant, because the constants tor oxygen, nitrogen and 

hydrogen are approximately constant over the range of 7ooc. - 100°c. 

This is evident for oxygen by examining Figure 12. 

The inlet oxygen and air concentrations and the outlet oxygen con-

centrations were converted to mole fractions. The inlet nitrogen 

mole fraction was found by subtracting the inlet oxygen mole fraction 

from the inlet air mole fraction. Thus, the nitrogen mole fraction 

actually is the mole frac tion of "atmospheric nitrogen", since it 

incl udes dissolved inerts . Next, the outlet nitrogen conc entration 

was found by Equation (3-62). 



-69-

The oxygen and 11atmospheric nitrogen 11 concentrations in the 

film were found by 

x. 3 J, = x · 2 pa tm I H · J, J 
( 3- 49) 

A value of 126, 000 atmospheres was used for HN ( 54). The deter-
2 

mination of the hydrogen concentration in the film required reduction 

of the chromatographic data. 

The composition of the collected non-condensables was calculated 

from the gas chromatogram areas using the calibration constants 

given in Appendix E. 

The number of moles of oxygen and nitrogen collected per mole of 

water which flowed through the test section during each run was cal -

culated using the ideal gas law. An oxygen balance was made by sub-

tracting the mole fraction of oxygen at the outlet and the number o f 

moles of oxygen collected per mole of wate r which passed through 

the test section from the mol~ fraction of oxygen at' the inlet, The 

difference found was the number of moles reacted per mole of water. 

It is listed in Table 14 as the number of moles reacted per mole of 

o xygen in the film. 

The molar ratio of oxygen to nitrogen in the collec ted non- con-

densable s was c alculated for eac h run using the chromatog raphic 

r es ults . This ratio also was. c al c ulated us i n g the film concentra tions 
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obtained from Eq~ation {3-49). These values are tabulated in Table 

14 as Oz/NZ {exp.) and Oz ! Nz {th.) respectively. In most cases, 

these two values were within 15% of each other. 

The mole fraction of hydrogen in the film was calculated by 

assuming that the ratio of the mole fraction of hydrogen to the mole 

fraction of nitrogen in the film was equal to the ratio of the mole 

fraction of hydrogen to mole fra c tion of nitrogen in the collected non-

condensables. The mole fractions of nitrogen and oxygen in the film 

calculated by Equation {3-49) and the mole fraction hydrogen in the 

film are listed in Table 13. The remaining mole fraction was w ater 

vapor; in most cases, this mole fraction was between 0 . 5 and 0 . 8. 

by 

The percentag e of oxygen removed by the boiling was calculated 

%Oz removed = (1 - :Oz, 
0 

) x 100% 
Oz in , 

{ 4- 3) 

The above equation conside.rs that any reaction of oxygen occurs 

after the equilibrium takes place. 

The rate of hydrogen production at the wall was calculated by 

assuming that the water at the outlet of the test section was at e quili -

brium with the hydrogen in the film. This differs from the as sump-

tion made regarding oxygen reaction at the wall. The oxygen reaction 
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was assumed to have no effect on the Henry's law eqL1ilibrium. Since 

the hydrogen generation reaction appeared to be faster than the 

oxygen reaction, since the hydrogen diffusivity is higher than the 

oxygen diffusivity, and since the diffusion driving force is greater 

for hydrogen, the hydrogen was assumed to be at equilibrium with 

the liquid phase. 

The Henry's law constant used for hydrogen was 75, 000 atmo-

spheres ( 54). The rate of production of hydrogen per mole of water 

pas sing through the test section is given by the following: 

N = N3 (N2 x2, Hz 
R,Hz A N 

3 

(4-4) 

where the subscripts 11 2 11 and 11 3 11 refer to the vapor and liquid 

phases respectively. The natural logarithm of the rate of hydrog en 

generation was calculated and is listed in Table 14 along with the 

percentage of o·x ygen removed and the perce!!_tage of o x ygen reac ted. 

The range of oxygen removed was betwe en · 3 3% and 90%. The 

natural logarithm of the hydrogen generatio n rate which ranged up to 

-10. 6 also is plotted for various condi tions in Figures 13 through t 7 

a s a func tion of th~ recipro c al of the absolute wall temperature. The 

wall t e mpe rature ranged between 743°C and L 143°C. T h ese f ig ur es 

illus trate that the logarithm of the hydrogen generation rate increase s 
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linearly with increasing temperatures. The s c atter in the data is 

discussed in Appendix B, "Error Analysis " , and in Chapter V, 

"Conclusions of Investigation". The results of the rate of hydrog en 

generation on gold plated spheres are discussed in detail in 

Appendix D. 

Data for a steam-carbon steel · reaction have been published by 

Potter et al. (56) . Their results showed that the reac tion has an 

activation energy of 23. 2 kilocalories per gram-mole. Their reaction 

rates have been plotted as a function of the reciprocal absolute tem

perature in Figure 18. In their experiments the temperature varied 

between 800°F and 1200°F. 

Data for an oxygen-mild steel reaction hav e been published by 

Potter et al. (57). These reaction rates were plott ed as a function 

of reciproc al absolute temperatures in Figure 19. The temperatures 

used in this investigation ranged from 500°C to l 200°C. These 

results indicate that this reaction has an a c tivation energy of 22. 9 

kilo c alories per gram-mole. 

Heat Transfer Coefficient 

The overall heat transfer rate conv e c tive and conduc tiv e heat 

transfe r was d e termined by the following: 
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(

w c l (T 
- p, 0 

. A 

- T. )) in 
- qr ( 4- 5) 

To find an approximation of the rate of radiative heat transfer, the 

following equation was used: 

(4-6) 

The above formula is valid if the wall of the sphere and the liquid are 

black bodies. 

The overall heat transfer coefficient for convective and conductive 

heat transfer was calculated by 

h -
T -T 

w s 

The above heat transfer rate and heat transfer coefficient are 

( 4- 7) 

tabulated for Runs Number 1 - 90 in Table 15 of Appendix G; the 

heat transfer rate for Run Number 91 is discussed in Appendix C. 

The heat transfer coefficients were found to vary from 0. 26 to 5. 3 

calories per square centimeter-second-°C. 

Next, r was found from Equation (3-30), 



where 

and 

and 
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j 

L 
i=k 

j 

I: 
i=k 

k. x . 
l, v l, v 

x. P. 
l, v l , v 

( 3 - 30) 

( 3-2·4) 

(3-16) 

(3-14) 

The constant used in Equation (3-30) was 2. 7 as suggested by Witte 

( 69 ). 

The values of k. were obtained from the following: 
l, v 

k 
i, v 

* 

:>{< 
= k 

i 
(4- 8 ) 

The v alues of k . and a. were obtained from the International 
1 l 

Critical Tables ( 51 ) and are listed in Table 4. The values of P. 
l. \" 

were obtained fron1 the ideal gas law using an average film 
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temperature. The values of cp v i used also are listed in Table 4. 
' , 

The value of u 00 was obtained from the following: 

w = 

where Dt is the diameter of the test section. 

The saturation temperature was calculated from 

T = s 
1 

TBP 

1 

R ln xk 2 , 

{ 4-9) 

(3-66) 

The values of the experimentally obtained heat transfer coefficient, 

the saturation temperature, the percentage heat trans er by radiation, 

and the subcooling parameter, r, are tabulated in Table 15. The 

-4 -2 
subcooling parameter ranged from 6 x 10 to 3 x 10 • 

The Reynolds number for the liquid flow was calculated by using 

the following approximation for the liquid viscosity { 66): 

µl = (0. 814 - 0. 0053 Ts> cp. (4-10) 

The values of the sub cooling parameter, r , have been plotted as a 

function of the Reynolds number in Figure·s 20 through 23. Th e 

points plotted are those at which the sphere surface temperature was 
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approxin1ately 750°C. It may be seen 1.hal for laJ·gu R(•ym>lclH 

nu1nbers r increases rapidly. This is a result of a hn•akdow11 in 

the model at low Reynolds numbers. There were bubbles leaving the 

film at these low Reynolds numbers because there was insufficient 

cool liquid to condense the bubbles. 

Equation ( 3- 21) was used to calculate the mass ratio vaporized; 

cp l (T - T . ) , o in 
= 

Then, the mass ratio was converted to a molar ratio. 

The Nusselt number for heat transfer from the vapor-liquid 

inter~ace to the liquid was obtained from the following: 

where 

2 (1 - r ) qc D 
= 

kl i\T1 

~T = T 
1 s 

T · 
in 

The values of k were obtained from the International Critical 
1 

Tables ( 51). 

(3-21) 

(3-39) 

(3-37) 
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The liquid Prandtl number and the Reynolds number - Prandtl 

number product were computed. These values plus the Nus selt 

nurnber for the heat transfer into the liquid, the Reynolds number for .. 

the liquid, and the fraction of the liquid vaporized are tabulated in 

Table 16. The Reynolds number varied between approximately 60 

and 700; the liquid Prandtl number varied between approximately 

1. 7 and 2. 4. 

The validity of the following relationship was checked by plotting · 

NuD, 1 as a function of the product RenPr1: 

(3-41) 

As illustrated by Figures 24, 25, and 26, a good linear correlation 

exists between NuD 
1 

and the product, ReDPr1. This correlation is 
' 

discussed in greater detail later in this chapter. 

All of the experimental data were not used in these figures, since 

many runs were made at duplicate values of the Reynolds number-

Prandtl number product. The correlation is different for the various 

diameter spheres, but no attempt was made to find a geometrical 

factor to correlate the difference. The geometry is corn pl e :,.;: an,· 

s pheres of only three diameters were used in the experiments . The 

dependence on the liquid Pran.dtl nui-nber co uld n ot be detern1in t'd 
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accurately since the Prandtl number was approximately constant in 

all cases. 

The applicability of the following equation was examined: 

x. 
J, 0 

l 

= (3-62) 
x . . ·J, in 

N2 H· 
1 + J 

N3Patm 

The above equation was rearranged to yield the percentage of oxygen 

removed, 

1 
% Oz removed = 1 - x 100% (4-11) 

Equation (4-11) resulted in the solid lines in Figures 27 through 30. 

The data points in these figures were obtained by plotting the per-

centage of oxygen removed determined by the oxygen measurements 

using Equation (4- 3) as a function of the mole ratio vaporized deter-

mined by the heat transfer measurements using Equation (3-21). 

Only the points in the region in which the .cnodel was valici w ere 

plotted. The points plotted are those on the constant r portions of 

Figures 20 through 23. For the points plotted, the percentage 

oxygen actually removed was within 20% of the theoretical perc entage, 
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and in most cases, the percentage actually removed was within I 0% 

of the theoretical percentage. Therefore, it was concluded that the 

heat transfer results may be used to give an acceptable indication of 

the quantity of oxygen removed during highly subcooled film boiling. 

Although the model considered in Chapter III was quite simple, the 

model has been shown by Figures 27 through 30 to yield consistent 

results for runs in which the vapor condensed before leaving the 

film. 

Discussion of Results 

During the experimental runs non-condensables were removed 

from the boiling water. These non-condensables were analyzed with 

a gas chromatograph and found to contain oxygen, nitrogen, and 

hydrogen. By using the equations described in Chapter III, the com

position of the film was obtained. The error analysis given in 

Appendix B indicated that the error in measuring the concentration 

of the oxygen was less than 9%; however, the error in measuring 

the concentration of the nitrogen and hydrogen in the film was as 

much as 15% and 21% respectively. 

Since the error in the calculated rate of hydrogen production may 

reach a maximum of 47%, there could be scatter of the points in a 

plot of hydrogen generation rate versns reciprocal ab::iolute 
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temperature. The rate of the surface reaction depend(~ d on the 

conditions of the surface. For example, during Run Number 77 a 

crack developed in the sphere and a local "hot spot" appeared near 

the crack. An unusually large hydrogen concentration was present 

during this run; as a result, the datum point was not used in any 

figure. The lack of accuracy in the calculation of the hydrogen 

generation rate and the dependence of this rate on surface conditions 

resulted in the scatter of the points in Figures 13 through 1 7. Runs 

14 and 34 had hydrogen generation rates which were more rapid than 

the molar flow rate in the film. In these cases, it was assumed 

that the film was composed completely of hydrogen. An exac t 

determination of the molar flow rate was difficult, since the rate of 

vaporization almost equaled the rate of reaction of the water v apor. 

The results of the investigation of the hydrogen generation using 

type 440 stainless steel spheres were used to obtain values of the 

activation energy which was defined in Equation (3-68). The a c tiv a-

tion energy had an average v alue of 85 kilocalories per g ram-mole. 

This a v erag e was weighted by the number of points in the fi g ures 

used to obtain the individual activation energies. The a c tiv ation 

I 
energy obtained from the experiments of Potter et al. ( 5 6 ) using 

c arbon s teel, Figure 18, is 23. 2 kilocalories per g ram-mole. Th e 



-100-

above difference in activation energy probably results from the 

differences in the steel type. 

Run Number 91 as discussed in Appendix C was made with a gold 

0 
plated sphere at a surface temperature of 869 C. No hydrogen was 

detected in the collected non-condensables. Since hydrogen was 

detected in all other runs made with surface temperatures in excess 

of 770°c using a stainless steel sphere, it was concluded that the 

gold prevented the formation of hydrogen. In addition, it was con-

eluded that the hydrogen generation reaction occurred heterogeneously 

at the wall, rather than homogeneously in the film. Appendix D 

discusses in detail the effect of a varying concentration of gold on the 

sphere surface. 

Table 14 indicates that there was no discernable trend in the rate 

of chemical reaction of oxygen with temperature. The error in 

measuring the amount of oxygen reacted appears to be greater than 

the amount of oxygen reacted. As a result, no plots of the rate of 

oxygen reaction as a function of reciprocal absolute temperature 

were made. 

The following relationship has been deriv ed in Chapter III: 

NuD µ.v 

2.7 [ 

( P µ.) Pr ,\' ~ rn v v 
(3-31) = 

~ReD µ.l (pµ.)l c v~T T 
p, 
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The above equation was solved for r for each of the runs. The IT1ass 

fraction of water in the film, ~, was obtained as previously dis-

cussed. The obtained values of T were plotted as a func tion of th e 

Reynolds number for several cases. At low Reynolds numbers, the 

flow rate was not rapid enough to supply cool liquid to the upper 

regions of the film. This occurred below a Reynolds number of 125 

for spheres with a diameter of 1. 27 centimeters, below a Reynolds 

number of 175 for spheres with a diameter of 1. 43 centimeters, 

and below a Reynolds number of 400 for spheres with a diameter of 

1. 59 centimeters. As a result, the vapor dome became larger and 

larger as the Reynolds number decreased until the vapor dome 

reached the burette. The resulting region of instability was approxi-

mated by a straight line in Figures 20 through 23. The region in 

which no bubbles left the film was approximated by a second straight 

line in the same figures. It was concluded that in the region in which 

no vapor left the film an accurate measurement of heat transfer was 

made. 

As illustrated by these figures, the error in r was not severe. 

The largest sources of error in the .determination of T were the 

measurement of the mass flow rate and the measurement of the sur-

face temperature. The maximum expected error in the measurement ,, 

of the mass flow rate was 17%. 
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The parameter r is related to the subcooling by 

r = ( 3 - 34) 

where q
1 

is the heat transfer from the vapor-liquid interface into the 

liquid. Thus, for a liquid at Ts' q
1 

1s zero and r is unity. 

Equation (3-31) then reduces to the equation derived by Witte (69) for 

a steam concentration in the film of unity. 

Equation (3-43) relates r to the liquid parameters: 

(3-43) 

where 

NuD l = f(ReD, Pre) , (3-41) 

Thus, if the functional relationship between the Reynolds number and 

the liquid Prandtl number is know, the subcooling parameter may be 

calculated. However, this calculation must be done simultaneously 

with Equation ( 3- 31), because both equations contain the average 

overall Nusselt number. 
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The functional r e lationship between the Reynolds nurnber-1 iq11id 

Prandtl number product and the average Nus s e lt nun1ber f o r heat 

transfer into the liquid has been investigated with the result of 

Figures 24 through 26. The correlation is linear as shown in the 

figures. However, the error analysis suggests that large errors may 

be present. 

The reason for the lack of scatter in the data is apparent by 

e x amining Equation (3-39), 

Nun 1 = , 
2 (1 - r ) q D 

c 
(3-39) 

This may be rewritten as 

(1 - r 
2 2 

(Dt - D ) 
(4-12) Nu 

D, 1 
= 

2 n 2 

Since 

the n 

( 4 -1 3) 
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Since the Reynolds number-liquid Prandtl number produc t is 

plotted on both the ordinate and the abscissa of Figures 24 lhrc>llgh ZG , 

these figures a c tually represent deviations of the following fro m 

unity: 

T - T. 
0 in 

T - T s . in 

The linear plots indicate that 

(T - T . ) a (T - T . ) 
o in s in (4-14) 

The lac k of scatter of the points in the linear plots is due to accuracy 

in temperature measurement rather than accuracy in flow rate 

measurement. 

It was concluded that the functional relationship between the 

Reynolds number, liquid Prandtl number and the Nusselt number for 

heat transfer into the liquid is not the simple relationship obtained 

by Sideman, Equation (A-36). This conclusion was reached upon 

examining preliminary data; the conclusion is discussed fully in 

Appendix J. The geometry of the test sec tion makes the actual 

Reynolds number - Nusselt number relationship difficult to obtain a nd 

of little value for other systems. A mathematical relationship 
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was not obtained; the results were left in the furn1 of Figures 24, 25, 

and 26. 
I 

The subcooling parameter is a function of the fraction vaporized 

in a bounded system. Equation (3-21) maybe used to obtain the 

fraction vaporized; 

w 
v 

= (3-21) 

In a bounded system with an equilibrium existing between the gases 

in the vapor and the gases dissolved in the liquid, the composition of 

the film is given by Equation ( 3-49) 

xj, 1 patm 
x. = -------J, v 

(3-49) 
H. 

J 

The outlet concentration is related to the inlet concentration by 

x. 1 
J, 0 

= (3-62) 

. N H. 
v J 

x 
j, in 

1 + 

Thus, r n1ay be used to determine concentratillns in t:he illrn. The 
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relationship between the fraction vaporized and the percentage oxygen 

removed has been obtained using the above equations and is plotted in 

Figures 27 through 30. The data points represent both the oxygen 

measurements and the heat transfer measurements. The oxygen 

measurements were used to determine the percentage of oxygen re

moved; the heat transfer measurements were used to determine the 

fraction vaporized. This relationship has been plotted only for the 

region in which no vapor leaves the film. The points lying outside 

of this region represent runs in which vapor left the film causing a 

breakdown of the model. Figures 27 through 30 were made for runs 

in which no vapor left the film. These figures demonstrate that the 

subcooling parameter may be used to obtain an estimate of the amount 

of oxygen removed during a run. This estimate will usually be within 

10%. Therefore, the subcooling parameter also may be used to 

obtain an estimate of the concentration in the film. 
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CHAPTER V 

. 
CONCLUSIONS OF INVESTIGATION 

Six conclusions were reached by analyzing the results of the 

experimental investigation: 

1. An experimental apparatus was designed which permitted 

steady state film boiling on a sphere supported by the liquid flow. 

The sphere temperature was varied from 740°C to l 140°C and the 

Reynolds numbers were varied from approximately 6 0 to 700. It 

was c oncluded that because the sphere temperature remained constant 

throughout an experimental run, this design is an improvement over . 

previously reported designs featuring transient systems. 

2. During the fo reed convection film boiling of a sub cooled liquid 

around a small sphere, the subcooled liquid may cause the v apor to 

c ondense before it leaves the film. Thus, the heat transfer effec ts 

c ounteract the effect of the Rayleigh-Taylor instability. This pheno-

mena was used in the film boiling of water subcooled betwe en 52 c 0 

and 72 c 0 to facilitate the measurement of heat transfer rates. 

I 

3. If dissolved gases are present in a film boiling liquid, the 

gases will ac c umulate in the film. In this inanne r film boiling w . s 

us e d to remo ve up to 90% of the dissolved o xyg en from wate r. 
I 

4. If during film boiling, the w all is c omposed o f a mate rial 

which may reac t c hemically with the vapor, a hetro g eneo us c hemic al 
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reaction may occur. When a steel wall is used in fihn boiling water, 

the steel may react with the water vapor and generate hydrogen. If 

the wall is composed of type 440 stainless steel, the activation energy 

of the above reaction is approximately 85 kilocalories per gram

mole. A chemical reaction at the wall may be eliminated by plating 

the wall with gold. 

5. Equations were developed for determining the average overall 

Nusselt number as a function of the physical properties of the vapor, 

the Reynolds number, the mass fraction water vapor in the film, the · 

temperature difference and a subcooling parameter. The subcooling 

parameter may be found from an equation as a function of the vapor 

and liquid properties, the temperature difference between the inter

face and the liquid, and the Nusselt number for the heat transfer 

from the interface into the liquid. This Nusselt number for heat 

transfer into the liquid is a function of the Reynolds number and the 

liquid Prandtl number. 

6. If the forced convection film boiling around a sphere occurs 

in a bounded system in which the gases in the film are at equilibrium 

with the dissolved gases in the liquid, the subcooling parameter may 

be used to find the amount of dissolved gases remaining after the 

film boiling and to find the concentrations in the film. 
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NOTATION 

English Symbols 

A surface area, cm. 2 

A. chromatogram area for species "i", relative scale. 
1 

c heat capacity, cal. I g. -°C. 
p 

D diameter, cm. 

f frequency, Hz. 

g acceleration of gravity, cm. /sec. 2 

h local heat transfer coefficient, cal. /sec. -cm. 2 -°C. 

Ii average heat transfer coefficient, cal. /sec. -cm. 2 - 0 c. 

H Henry's law constant, atm. 

k thermal conductivity, cal. /sec. -cm. - 0 c. 

L length, cm. 

m. mass fraction of species "i". 
1 

M. molecular weight of species "i". 
1 

N 

N 
R 

P. 
1 

p 

q 

molar flow rate, g. -moles/sec. 

molar reaction rate, g. -moles/sec. -cm. 2 

partial pres sure, atm. 

total pressure, atm. 

i 
heat transfer rate, cal. /sec. -cm. 2 

r spacial coordinate, cm. 

R radius, cm. 
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t time, sec. 

u v elocity in x direc t i on, cm. I s ec . 

u average velocity, cm. /se c . 

v velocity in y direction, cm. I sec. 

V volunie, ml. 

v* volume corrected for determinate errors, ml. 

w mass flow rate, g. /sec . 

x spacial coordinate, cm. 

xi mole fraction of species "i". 

y spacial coordinate, c m. 

Greek Symbols 

a 

e 

K 

absorptivity for radiation. 

film thickness, c m. 

error in 'Y • 

a c tiv ation energy, kcal. /g. -mole. 

wall temperature minus saturation temperature, 0 c . 

saturation temperature minus liquid tempe rature, 0 c . 

emissivity for radiation. 

angle, radians. 

chroma tograph calibra tion c ons tant. 

latent h e at of vapo r i:.~a tion, c al. /g. 
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wavele ngth, cm. 

µ viscosity, dyne -sec . / c m. 2 

manometer reading, cm. Hg. 

p density, g. /ml. 

surface tension, dyne/ cm. 

Stefan-Boltzman constant, cal. /cm. 2 _oK4 

r subcooling parameter. 

Dimensionless Numbers 

Grashof number for two phase c onv ection, 

3 2 
D gP(P.

1
-P)/µ 

v v v 

local Nusselt number, h D/k. 

a v erage Nusselt number, n D/k. 

Pr Prandtl number, c µ /k 
p 

R e ynolds number, Du P Iµ 

Subs c ripts 

air non- c ondensables 

B bulk 

BP normal boiling point 

c c onv e c tion and conduc tion 

c ool after ten minutes 
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D indicates dimensionles s num.ber i s based on c haracte risti c 
diameter. 

f final. 

h immediate. 

i initial. 

in inlet. 

j solute . 

k solvent. 

1 liquid. 

L indicates dimensionless number is based on characteristic 
length. 

o outlet. 

r radiation. 

res reservoir~ 

R reacted. 

s saturation. 

t test section. 

T total. 

v vapor. 

w wall . 

r.f.> free steam. 

NOTE: Numeri cal subs c ripts refer to points in Figure 8. 
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APP EN DIX A 

REVIEW OF. LITERATURE PERTAINING TO FILM BOILING 

Early Literature 

The first published description of film boiling was by Leidenfro st 

in 1756 (44). Leidenfrost investigated the relatively slow vaporiza-

tion of water droplets on an extremely hot metal surface and con-

eluded, 

"Therefore, it has been sufficiently shown that water 
made more volatile is increased with degrees of heat 
until it comes to that point at which water boils and 
all swiftly is evaporated. Then truly if the heat ex
cites more strongly I diminish the volatility of that 
same water and increase its fixation by the added 
heat. " 

Little more of importance was learned of film boiling until 1926 

when Moscicki and Broder (68) observed film boiling on an elec -

trically heated wire. Nukiyama (67) adapted the method described by 

Moscicki and Broder, and in 1934 published the curve shown in 

Figure 1 which is the first quantitative description of the regimes 

of boiling described by Leidenfrost ,in the above quotation. 

The early literature concerning film boiling is describ e d in 

detail in articles by Chwolson in 1909 ( 17), by Drew and Mueller in 

1937 (18), by Westwater in 1958 (67) (68), by McFadden and Grosh 

in 1959 (48), and by Gottfried et al. in 1966 (28). The early researc h 
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was entirely experimental in nature. Because film boiling was re-

garded as a condition to be avoided in practical applications, it was 

not until 1950 that an analytical investigation of film boiling was 

published. 

Free Convection Film Boiling 

The first boiling situation investigated analytically was a cylinder 

in free convection. In 1950 Bromley (9) developed an equation for 

predicting heat transfer coefficients for horizontal and vertical 

cylinders by assuming the following: 

1. The ,film is cylindrical and continuous. 

2. There is laminar flow within the film. 

3. The area from which the bubbles leave is small. 

4. The vapor velocity is zero at the wall and the 
v elocity at the interface lies between zero and 
the velocity, if the liquid were inviscid. 

5. The liquid is at its saturation temperature. 

6. The vapor-liquid interface is at the boiling point. 

7. The vapor has no kinetic energy. 

8. The film thickness is not time depen dent a t any 
point. 

9. The surface temperature is constant. 
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10. The vapor properties are assumed to be c onstant 
at an average vapor temperature. 

11. The radiation is negligible . 

Bromley reduced the general e quations for energ y and mome ntum to : 

dq = hi\T dA. (A-1) 

g 

---= (A-2) 

He used the c o o rdinate system shown in Figure 31 and the follo w ing 

boundary c onditions: 

l. at x = O· 
' 

T = T 
w 

2. at x = 0 ; v = 0 

3. at x=8; T = T 
s 

4 (a) . at x= 8; v = 0 

4 (b). at x =B (dv /dx) = (dv /dx ) 
v 1 

5. at x =8 2L q dy = 'K<lw 
. ;: 

where 

/ 
X = ,\ + l/2c i\T 

p, v 
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x 

cylindrical coordinates 

T 
w 

y 

spherical coordinates 

Figure 31. - -Spherical and cylindrical coordinate systems. 
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The fifth boundary condition represents an e nergy balance at th e 

liquid- vapor interface. The s olution resulting from the above 

simplifications is 

Gr 1/4 
D,v 

(c f Pr~T ) 1/4 = (constant) u 

p,v 

(A-3) 

where 

GrD ,v 
= _n_3_g_v __ P=-l _-_P...;v_)_ 

(A-4) 

The value of the constant is 0. 724 if boundary condition 4(b) is 

used and 0. 512 if boundary condition 4(a) is used; Bromley sug-

gested 0. 62 as a compromise. Brontl.ey obtained a similar result 

for a vertical cylinder. 

Brantley (8) later suggest a modification of the above solution 

to account more accurately for vapor superheating with the following 

result: 

G 1/4 
rD, v 

= 0. 62 [ cp, v i\T Prv ] 1/4 [ A + O. 4 r/2 
~ c i\T j p,v 

(A - 5 ) 

A more exact solution to the preceeding problem was made by 

McFadden and Grosh (48 ). They reduced the boundary l ayer 
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equations to ordinary differential equations which they solved 

nume rically for the following cases : 

1. coni.pressible flow with variable specific heat, 

2. variable specific heat with density variations 
in the film, 

3 . c onstant properties of the vapor. 

M c Fadden and Grosh considered vapor inertia and assumed the 

liquid- v apor interface to be stationary. They also showed that their 

solution was applicable to vertical plates according to 

Nun = 0 .77 NuL (A-6) 

also 

4 
Nun =-Nu 

3 n 
(A-7) 

Frederking (20) also solved the problem of free convection film 

boiling on a horizontal cylinder by using the integral method of 

von Karman to simplify the boundary layer equations. Frederking 

assumed that the properties of the vapor were constant at an average 

temperature and considered the vapor inertia term. He obtained the 

following solution for high vapor superheat: 
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[ 

99 Gr Pr >:' 2 ] 1/
4 

= 0. 802 D, v v 

5 6 0 ( Pr >:< + 3 2/3 3) 
v 

35 
+-

11 c A '1T) 
p,v 

(A-8) 

(A-9) 

Transient film boiling on a thin horizontal cylinder was investi-

gated analytically and experimentally by Pitts et al. ( 55). They 

assumed a uniform vapor film thickness which increased with time, 

and thereby, obtained a transcendental expression for determining 

the film thickness as a function of time. Their discussion includes 

a review of transient boiling studies. 

The solutions of Bromley, McFadden and Grosh (constant 

properties), and Frederking (high superheat) are compared in 

Figure 32. 

In 1954 Ellion ( 19) applied Bromley's simple solution to a 

vertical flat plate with free convection. The boundary conditions 

were the same as those used by Bromley w i th the exception that the 

vapor velocity was zero at the liquid-vapor inte rface. T h e solution 

obtained by Ell ion is 



'<
t' .....
... .....
. 

>
 .. 

Q
 

1-1
 

()
 1~Q
 ,o

 
....

.. 

N
 .....
. 

0
0

 

0 '<
t' 

0 

0
.0

1
 

-
-
-
-
-
F

r
e
d

e
r
k

in
g

, 
h

ig
h

 s
u

p
e
rh

e
a
t 

(2
0

) 

B
ro

m
le

y
 w

it
h

 v
a
p

o
r 

su
p

e
rh

e
a
t 

(8
) 

B
ro

m
le

y
, 

li
q

u
id

 

M
c
F

a
d

d
e
n

 a
n

d
 G

ro
sh

 (
4

8
) 

P
r 

v 
=

 1
. 

0 

0
. 

1 

c
p

 
v 
~
T
 I

 A
 

l.
 0

 

F
ig

u
re

 3
2

. 
-

-C
o

m
p

a
ri

so
n

 o
f 

th
e
o

re
ti

c
a
l 

re
s
u

lt
s
 f

o
r 

fr
e
e
 c

o
n

v
e
c
ti

o
n

 f
il

m
 b

o
il

in
g

 
o

n
 a

 h
o

ri
z
o

n
ta

l 
c
y

li
n

d
e
r.

 

N
 

-.
I 

I 



NuL 

Gr 1/4 
L, v 

-128-

- 0. 717( APrv )l/4 

c t'.\T p,v 

(A- I 0) 

In 1959 McFadden and Grosh (48) presented their solution for a 

vertical flat plate with free convectiop. as previously mentioned, and 

in 1962 Koh (41) extended their solution taking into account vapor 

velocity and shear stress at the liquid-vapor interfac e. He began 

with the boundary layer equations and by using a similarity trans-

formation reduced them to ordinary differential equations which he 

solved numerically. The additional parameter which is required in 

this solution is the ratio 

By using the same techniques he used for the horizontal cylinder 

solution, Frederking (20) also solved the vertical flat plate problem. 

In this c ase, his solution for high vapor superheat is 

NuL 

Gr 1/4 
L, v 

wh e r e 

-[ *5 Pr v >:< 2 ] 1/4 

Pr >:< + 80/99 
v 

{J->.-11) 
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Pr * = Pr [ 1 + ~ ( A )] 
v v 11 c £\T 

p,v 

(A- 12) 

Figure 33 is a comparison of the results of Ellion, Frederking 

(high superheat), Koh, and McFadden and Grosh ( constant properties). 

Free convection film boiling from a horizontal plate was investi-

gated in 1958 by Zuber (73) who used an analysis based on the 

Rayleigh-Taylor instability, which is an instability due to gravity 

forces acting on a more dense layer above a less dense layer. A 

detailed discussion of this instability was given by Chandrasekhar 

(15). Zuber's work was extended by Chang (1 6 ) who obtained the 

following heat transfer result for a horizontal plate: 

1/3 = 0. 234 (Pr GrL ) v ,v 
(A-13) 

Berenson (3) and Ruckenstein (59) (60) extended Chang's solution 

to include surface tension effects. Their solution is 

Gr 
L, v 

1/4 I X Pr L [ g ( p1 - p) l l/2 
= o. 425 v 

c dT g u 
p, v 0 

(A-14) 

Fre derking et a l. (24) suggested the following relationship for the 
I 

case of small viscosity and surface t ension e ff ec ts 
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>! )2/3 
cp,v ~T 

(A- 15) 

B anko££ ( l) investigated the s pecial case of a porous horizontal 

plate with all vap or being r emoved through the plate. 

A compar ison of the Cha n g, Berenson-Ruckenstein, and 

Frederking et a l. solut ions is presented in Figure 34 for a v apor 

Prandtl number of unity. Hosler and Westwater have obtained data 

which i n dicates that the relationship d eri ved by Berenson and 

Ruckenstein more accuratel y predicts th e average Nusselt number. 

F r ederking et al. (24) performed an experimental investigation 

which indicated that for c r yogenic systems their equ ation best des -

cribes the heat transfer. 

The case of natural conv ection film boiling on a sphe re was 

sol ved by Frederking and C l ark (21) using the boundary layer theory. 

The g~neral equations were first reduced to those below. The 

equations for the vapor were 

our o v r 
- - + --- - 0 (A-1 6 ) 

ox 0 y 

OU ov ( p - p) x µ 0 2 u 
1 

s in -
__ v_ 

u-- + y - - = g + 
ox OY pv R p ,:-, y 2 ,. 

(A-1 7 ) 
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Pr = l 

0. 1 

Chang ( 16) { a. 
b. 

g 

I 
c. 

Berenson ( 3) d. 
e. 

b 

B= 

1. 0 
cp ~TI A 

o. 1 
1. 0 

GrL = 0. 1; 
GrL = 1. O; 
GrL = 1. 0; 

B = 1. o 
B = 1. o 
B = 10. o 

Frederking et al. (24) { £. GrL = 0. 1 
g. GrL = 1. 0 

v 

L2g {P1 -p") 
go a 

Figure 34. --Correlations for heat trans f er on a 
horizontal plate. 

10. 0 



-133-

k 
v 

u + v ---= (A-18) 

The R term is the radius of the sphere as shown in Figure 32. 

The equations for the liquid are the same with the "v" subscript 

replaced by an 11111 subscript. The boundary conditions were 

u = v = 0 at y = 0 

and at the interface 

v 
v 

dw = dw 
v 1 

The solution to the above equations is 

= 0.586 
Gr . 1/4 

D , v 

(A - 19) 

The above result was r ecently extended by Rhea and Nevins (58) to 

cover the c ase of an oscillating sphere. An e xperi1nental inYestigation 
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of free convection film boiling on a sphere was conducted by Merte 

and Clark (4 ') ). They found an unusual gravity dependence whi c h 

they attributed to turbulence in the film. 

Frederking and Daniels (22) noted a relationship between the 

frequency of bubble removal and the bubble diameter during film 

boiling on a cylinder. They found that the product of the frequency 

and the square root of the diameter equaled a constant. 

Recently, Hendricks and Baumeister ( 30) considered a model 

consisting of a vapor dome on top of a sphere into which vapor flows 

from a thin vapor region existing on the lower portion of the sphere. 

Their analysis was based on a model similar in concept to that of 

Frederking and Clark for the lower portion of the sphere and on a 

model similar in concept to the Berenson-Ruckstein horizontal plate 

model for the vapor dome on top of the sphere. Their solution is 

=[GrD Pr 'v v 

2] 1/4 
(pl - P) g D l[ 

ugo 4 ~I 
- 2 G/3 

::~ ,.~ * 
+ l. 77 (1 +cos8) + csc8 (1 +cos(}) (A- ,:'. 0) 

where G and (}* are functions of the parameter 
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GrD Pr 
,v v c L\T 

p,v 

and have been evaluated numerically, and 

Fa reed Convection Film Boiling 

In 1953 Bromley et al. ( 10) investigated forced con vection film 

boiling. They considered a horizontal cylinder and assumed that 

for high flow rates c onduction through the film occ urs only on the 

lower half o f the cylinder. Their result is 

(A- 21) 

where 

x_:< = A(l +0.4c L\T/~.)2 p, v 

The constan t 2. 7 was adjusted experimentall y to fit th ei r d a t a . 

Forced convec tion film boiling over a flat plate was examined by 

Ces s and Sparrow ( 1 3 ) using the boundary layer theory. Their model 

and coordina t e system are shown in F igure 35. They began with the 
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uoo 

.... 

Figure 35. --Coordinate system used for forced c on 

vection film boiling on a flat plate. 
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continuity equation, 

()u o v 

+ = 0 (A- 22) 

ox ()Y 

In this case, buoyancy effects were assumed to be negligible in 

comparison to forced convection effects. Thus, 

(A-23) 

Again radiation, viscous dissipation, and kinetic energy were 

neglected. The energy equation is then 

(A-24) 

The equations for the two phases are identiCal and must be solved 

simultaneously. The boundary conditions used for the solution of the 

above equations were 

at y = 0 

1. rl r 
v 

2. ul = u 
v 

3. T = T s 



4. 

at y =0 

1. u = v = 

2. T = T 
w 

at y =CO 

1. u = u 00 

The resulting solution is 

-1 38 -

0 

= 

=[ (Pµ)l 

(pµ) 
v 

c L\T 
p,v 

Pr A 
v 

] -1/2 
{A-25) 

This is an asymptotic solution for l arge values of the term on the 

right. 

The preceeding problem also was solved for a uniform heat flux 

rather than a unifo rm surface temperature by Ces s ( 12). The result 

is 

[

(pµ)l 
= 1. 414 

{PP.) 
v 

c l\ T] -1/2 p, v 

A Pr 
v 

{A- 26) 
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Cess and Sparrow 1 s solution for forced convection was solved 

numerically and in more detail by Ito and Nishikawa ( 34). Their 

so l ution required the P µ. ratio as an additional parameter. The 

in1portanc e of this additional parameter can be seen in Figure 36 

where the solution of 9ess and Sparrow, Cess, and Ito and Nishikawa 

are plotted for a vapor Prandtl number of unity and representative 

v alues of the pJ.L ratio. 

Bromley1 s solution for forced convection on a cylinder was ex-

tended by Kobayasi (39), (31). (40) to cover the case of fo :rced con-

vection on a sphere. Kobayasi applied Bernoulli 1s theorem to obtain 

a set of equations which describe both forced and free convection 

effects. These equations are 

VB I J(J s [ i 1/3 . A = - ( 'It s in () - s in 2 () ) sin 4 (J d (J 

9 0 

13 /2 

where 

A "!_(_1 2 
µ.v 

3 Pr µ. 2 
v 1 

'It = 16 

c i\Tr pl p,v 

Pv .\. 

1 

( 1 - cos 8 ) 
2 

s 

+ 

--2 
NuD 

Ren 

(A- 27) 

(A- 28) 

(A- 29) 
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"' = -2 cos () s 
(A- 30) 

where () is the angle (coordinates in Figure 31) beyond which the 

film is sufficiently thick that heat transfer by conduction does not 

occur. For very high velocities 

--2 
Nun 

16---
1 

The above equations then reduce to 

µ 
v 

µ 
1 

~ (constant) [ Prv 

() = 90°, and also 

32 1 

>>.--
2 

9 Ren 

(A- 31) 

1/2 

(A- 32) 

which is similar to the solutions obtained by Bromley for a cylinder 

and by Gess and Sparrow for a flat plate. The abo v e equation also 

was derived in a simple manner by Witte (69). The value of the con-

stant in Kobayasi' s result may be evaluated analytically; howe v er, 

Witte suggested that an experimentally determined value be t ter 

describes the heat transfer relationships. At low velocities Equation 

(A- 27) reduces to an equation similar to that obtained by Frederking 

and Clark (21), Equation (A-19), for film boiling on a sphere. 
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Liquid Drops 

As prev·iously mentioned, in 1756 Leid enfrost investigated the 

slow evaporation of liquid drops on a hot surface. In 1966 Gottfried 

et al. {27) (28) published an analytical description of this evaporation. 

They assumed that mass was removed from the droplet by evapora-

tion on the lower surface and by diffusion from the upper surface, 

and that the droplet was supported by the excess pressure of the 

vapor in the film. The evaporation rate was determined by satisfying 

momentum, heat and mass balances . Their result fo r negligible 

radiation is 

P D 2 r ~T l 1/2 1 0 
{constant) G p,v {A-33) = 

rDo, v X Prv t µ 
v 

where 

x = 'A ( 1 + c ~T) p,v 

and D is the initial diameter of the liquid droplet. By a comparison 
0 

to experimental data, the constant was found to be 0 . 0166. 

Liquid Subcooling 

The analyses thus far discussed have made the important as sump-

tion that the liquid considered was at its saturation temperature. 
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The effect of subcooling the liquid below its saturation ten1perature 

is to decrease the film thickness and to increase the rate of heat 

transfer through the film. Much of the preceeding work on free and 

forced convection film boiling has been extended by considering the 

effect of a subcooled liquid. 

Chang (16) applied Neuman's solution for melting ice and found 

that the effect of a subcooled liquid can be introduced by using a 

"generalized 11 Prandtl number. 

* Pr 
v =Pr 

[ 

2A 

c ~T p,v 

+ (A- 34) 

This result is accurate for small degrees of subcooling and may be 

used in Chang's solution of a horizontal plate and also in Ellion's (19) 

solution for a vertical plate. 

Frederking and Hopenfeld ( 23) extended the vertical plate solution 

of Frederking to include a highly subcooled region, a moderately sub-

cooled region, and a slightly subcooled region. Their solution for a 

moderately subcooled region is 

A ]+fk1 ~T1]
4 

c ~T k ~T p,v v 
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The free convection solution of McFadden and Grosh (48) was 

extended to apply to a subcoole d liquid by Sparrow and Ces s in 19 62 

(63). They reduc ed the boundary layer equations to ordinary differ-

ential equations which they solved numerically. The additional 
I 

parameters required to describe the subcooling are 

where 

Pr , 
1 

c 
1

.1T 
p, 1 

,\ 

.::. = r. ( pµ) v] 1/2 [ ~ - pv 11/4 [ c p, 1 ]1/4 

l (Plt)l pv J /3L A J 

In 1965 Nishikawa and Ito (52) extended the solution of Koh (41) 

to apply to a subcooled liquid. Their solution involved the additional 

parameter 

~ 
~-;;: 

1 

The solutions of Chang, Sparrow and Cess, Nishikawa and Ito, 

and Frederking and Hopenfeld (mo derate subcooling) for free con-

vection film boiling on a flat plate in a subc ooled liquid are c ompared 

in Fig ure 37. This c o mparison is made with v apor and l i q u id 
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Prandtl numbers of unity. 

Gess and Sparrow (14) extended their analysis of forced convec-

tion on a flat plate ( 13) to include subcooling of the liquid. Their 

munerical solution used the additional parameter 

Pr 
v 

Ito and Nishikawa ( 34) included subcooling of the liquid in their 

analysis of forced convection on a flat plate. Their numerical result 

required the following parameter to describe the effects of the sub-

cooled liquid 

(Pl") 
v 

v'Pi-1 (Pl.t) 1 

A comparison of the results of Gess and Sparrow with those of Ito 

and Nishikawa is included in the paper by Ito and Nishikawa ( 34). The 

results correspond for a small Pl' ratio, a small degree of superheat-

ing of the vapor, and a small degree of subc ooling o f the liq u id. 

An experimental investigation of subcooled film boiling o f liquid 

sodimn on a sphere has been made by Witte et al. (70) (71). They 

c oncluded that the following equation deriv ed by Sideman ( 6 1) for 
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forced convection heat transfer with no film boiling and for slip at the 

wall described the phenomena: 

1/2 

[

u 00 ( PkDcp)l] 
q = 1. 13 ( T - ·T ) 

w B 
(A- 36) 

Jacobson and Shair ( 35) noted that subcooling of the liquid can 

result in instantaneous condensation of the vapor bubbles. A detailed 

description of the phenomena is presented in Chapter I, "Description 

of Apparatus 11 and in Appendix J. 

Radiation Effects 

The preceeding discussion of film boiling literature used the 

important assumption that radiation is negligible. During film boiling 

of cryogenic liquids, this may be the case; however, during film 

boiling of a liquid such as water, radiation will probably a c count for 

at least several per cent of the total heat .transferred, and during the 

film boiling of liquid metals, radiation may account for the bulk of 

the heat transferred. 

The simplest correction which can be made for radiation is to 

consider the heating surface and the liquid- v apor interface as flat 

parallel plates with a non-absorbing v apor between them. This 

method was used by Bromley (9) to describe radiation from a cyli nder 
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in free convection film boiling. He found that 

h 
r 

= 
1 
E 

1 + --1 
a 

(A-37) 

Because the liquid considered was saturated, and because radiation 

will increase the film thickness and decrease h , the coefficient for 
c 

total heat transfer is 

+h 
r 

(A- 38) 

For forced convection film boiling around a horizontal cylinder, 

Bromley ( 10) recommended that 

h =h +1.h 
c 8 r 

(A- 39) 

Ellion ( 19) also applied the above simplification to describe radiation 

during free c onvection film boiling on a vertical flat plate. Be sug -

gested 

(A-40) 
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Kobayasi (39) recommended the same approach for free and 

forced convection film boiling on a sphere. He suggested 

h = h + h 
c r 

(A-41) 

A more extensive analysis of the effect of radiation was made by 

Sparrow (62). He considered the additional problem of emission and 

absorptio,n by the vapor in the film. He concluded that the effects of 

a radiatively-participating vapor on heat transfer are negligible 

Yeh and Yang (72) recently have presented a theoretical study of 

heat transfer during free convection film boiling on a plate and a 

sphere. They began with an energy equation containing a radiation 

term, and by a similarity transformation reduced the energy and 

momentum equations to a set of ordinary differential equations. 

These can be solved numerically for either a saturated or subcooled 

liquid. 

Interfacial Waves 

In the previous analysis the interface was assumed to be smooth 

and without waves. However, as Westwater ( 68) first pointed out , 

the vapor-liquid interface may have waves. The physical situation 

of film boiling on a vertic al flat plate is similar to that of a liquid 

I 

film falling down a solid surface. Kapitza (36) (37) investigated a 
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falling liquid film. He assumed the waveleng th to be muc h g r e ater 

than the film thickness and the amplitude of the waves to be n1uc h 

smaller than the film thickness. As a first approximation, he found 

that the phase velocity equals three times the i nterfac ial velo c ity and 

3.32 
,\= (A-42) 

where A is the wav elength and v
0 

is the interface velocity. 

Bradfield (5) performed an analytical and experimental analysis 

of wave generation at a stagnation point during free conv ection film 

boiling on a vertical cylinder with a hemispheric al lower end. He 

assumed a liquid mass mo v ing against a gas l a yer spring and damper 

at the stagnation point with the wave generation and the heat pulse 

acting as a forcing function. He found the wav e frequenc y to be re

lated to the radius of the hemisphere, the v apor and liquid properties , 

and the temperature difference. 

A photographic investigation of waves on a v ertical cylinder 

during film boiling was made by Brauer (7). He also u s ed an elec

trical c ontac t device to measure the frequenc y of the wav es in the 

v apor film. 

The pre sence o f film boiling may r e sult i n larg e r e ductions in 

fr i c tion drag as pointed out b y Bradfie ld e t a l. ( 6 ). The pre s e n c e o f 
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the film results in a condition comparable to slip at the solid surface. 

Drag reduction is included in several of the preceeding discussions 

such as Cess and Spa:trow (13) and Ito and Nishikawa (52). 

Simultaneous Nucleate and Film Boiling 

In the preceeding discussion only film boiling was considered. 

Often, nucleate boiling and film boiling may be present simultaneously 

or film boiling may change to nucleate boiling and vice v ersa. The 

transition from nucleate boiling to film boiling is discussed in detail 

by McBeth (47). It also is possible for film boiling to exist along 

with nucleate boiling and non-boiling convection on the same surface. 

An investigation of simultaneous nucleate and film boiling on a 

horizontal cylinder was made by Kovalev ( 42). A similar investiga

tion was made by Lai and Hsu (43). They investigated a fin which 

was cooled simultaneously by nucleate boili ng and non-boiling c on-

vection. 

It has been noted by Bradfield (4) that the vapor film present 

during film boiling may collapse for brief periods. This liquid 

solid contact depends on the roughness of the surface, subcooling of 

the liquid, and thermal conductivity of the solid. Bradfield's photo

graphic study indicated that controlled liquid -solid contac t may be 

possible. 
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APPENDIX B 

ERROR ANALYSIS 

The nineteen measurements made during an experimental run 

may contain random error. An estimation of the maximum possible 

magnitude of this error was made and is listed in Table 2 in 

Chapter II. 

These errors in measurement will effect the calculated results. 

The relationship between the maximum error in measurement and 

the maximum error in a calculated parameter is given by the follow-

ing equation (50): 

where 

Q = q ' 
2 

. . . , 

(B-1) 

q ) ( B- 2) 
n 

Sq = the maximum expected error in measureni.ent, q 
n n 

SQ = the maximum possible error expected in the 
calculated parameter, Q. 

The above equation results in an addition of maximum possible errors, 

and therefore, it results in an upper bound on the error in the calcu -

lated parameter. Because the possibility of a simultaneous occurance 
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of several extreme errors is highly unlikely, the above equation 

yields an exaggeration of the rnaximum error. However, the equa-

tion is valuable in determining the relative magnitude of error in 

the various parameters. Equation (B-1) was applied to the various 

equations used in the reduction of data. 

The equation for determining the oxygen c oncentration in the film 

is 

x = Oz, Z 
(B- 3) 

The maximum possible error in the calculated oxygen concentration 

then is given by 

(B-4) 

The equation for computing the molar ratio vaporized from the 

oxygen measurements, Equation (3 - 62), bec omes 

x . P (:~x . Oz, in atm u Oz, in 

x HO x . 
Oz, o z Oz. m 

(B- 5) 
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The above error in the molar ratio vaporized enters into the 

cal culation of the nitrogen concentration in the film. By applying 

Equation (B-1) to Equation (3 -62), 

x 
N2 

HN2 (a N2) 

BxN in p atm N3 
__ ...;:2;..' __ + --------

HN N2 
l+ 2 

(B-6) 

Patm N3 

A simplification was made to give an approximation of the size of 

the error expected in the inlet nitrogen concentration: 

a XN2, in Bx o2, in 
~-----

x o . 
2 , in 

(B- 7) 

The assumption was made during the reduction of data that the 

molar ratio of hydrogen to nitrogen in the film was equal to the ratio 

of hydrogen to nitrogen in the collec ted non- condensables. The 

maximum error expected in the concentration of hydrogen in the film 

is then 

8 xH 2 z, 

The maximum error expected 1n 

(B - 8 ) 

II >i. may be expressed as 



k-1 
// oA = L: 

i=j 

c . p, 1 

m. 
1 

°EzO 
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+ c H 0 0 (Tz-T ) + c 1 o(T - T7) p, 2 s p, s 

+ 

The maximum error in T was estimated to be l 6°C. · This s 

(B-9) 

estimation is based on the difference between T and T in Table 15. 
s 0 

The value of Ts should be very close to T
0

, and as seen in the 

table, a discrepancy of up to 16°C exists on runs in which accurate 

data were obtained. Several of the runs had rapid hydrogen generation, 

and consequently, these runs did not have accurate oxygen concentra-

tion data. These runs were Numbers 14, 33, 34, 76, and 87. 

Equation (B-9) requires the error in the water vapor concentration in 

the film found by 

- o x = o x + oxN
2 

+ 8x
02 HzO Hz (B-10) 

The n1inus sign is nee es sary in the above equations because the 

steam concentration was obtained by subtracting the other concentra-

tions from unity. Therefore, a positive error in the other concentra-

tions results in a n egati ve error in the steam concentration. 

The error in the thermal conductivity of the gases in the film is 

related to the error in the concentrations in the film by 
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k 

Bk = 
v z: 

i:::j 
(B-11) 

The above equation assumes that a negligible error is introduced in 

the determination of the thermal conductivity by error in the measure-

ment of the film temperature. The equation also assumes that error 

introduced by error in the method of computing the thermal conduc-
1 
' 
tivity is negligible. 

The error in the density of the film is given by 

k Bx. 
BP ~ P. 

1 

"" 
= x. + v 1 1 

(B-12) 
i=j x . 

1 

The maximum error in r depends on the other computed maxi-

mum parameters a cco rding to 

[

Bk 

Br= r kvv + 
BP B X1 

v 
+------;;- + 

p 'A 
v 

Bw 28(T -T. )] + o 1n 

(T -T. ) 
o 1n 

(B-13) + 
~T w 

The error in the quantity of heat transferred by radiation is not in-

eluded in the above. 

The error in the measured value of the surface temperature is 

I 
related to the error in the rec iprocal of the absolute temperature by 
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(B-14) 

The error irt the rate of hydrogen generation is given by 

o(NR, Hz) = (N3:k2, 2) f :: c: oxH z 8 N2 /N3) 
+ z• + 

x NZ I N3 Hz. Z 

1 cw 8x )] + __ + Hz, Z {B-15) 

HH w XH z z Z• 

The percentage of error in the molar flow rate is assumed to 

equal the percentage of error in the mass flow rate. The mass 

fraction vaporized as determined from the heat transfer measure-

ments has a maximum expected error which is given by the following 

equation: 

o(:Z) = : 2 [-S-,r + _B_<_T_o_-_T_in_>_ + 8xxHz0 

3 3 
{T -T. ) H 0 

0 in 2 

a X'] +--
')(' 

(B-1 6 ) 

The percentage of oxygen removed during the film b o iling has an 

estimated maximum error which is given by the following equation: 

-- xOz, o (Bxoz, o o ( % Oz remov ed) 
x . x Oz, in Oz, o 

+ oxOz, in) 

x . Oz, in 

(B-17) 



-158-

The error in the Reynolds number depends largely on the error 

in the flow rate measurement; therefore, 

(B-18) 

The maximum expected error in the Nusselt number for heat 

transfer to the liquid depends on the following relationship: 

8Nu0 , 1 = 
[

8(1-r) 

1 - r 

8 w 8 ~ T
1 +-- +---

w ~T 
1 

8(T -T. )] + 0 In 

(T - T. ) 
0 In 

(B-19) 

The preceeding equations may be used to obtain an approximation 

of the max imum random error. They have been evaluated for two 

cases. The first was Run Number 1 which had a high liquid flow 

rate and a low surface temperature. The second was Run Number 13 · 

which had a low liquid flow rate and a high surface temperature. 

These two runs are near the two extremes over which the data were 

taken. 

The results of these calculations are presented in Table 5 which 

lists the value of the quantity, the expected maximum error in the 

value, and the percentage of maximum error. The maximum ex -

pected error ranges from zero for the thermal conduc tivity to 47% for 

the rate of hydrogen generation. 
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TABLE 5 

MAXIMUM ~POSSIBLE ERROR 

" ")' 
Quantity ' Run {, "Y 'Y 

(%) 

xoz,2 1 0.1161 0.0079 6.8 
13 0.0968 0.0079 8.2 

5 1 2.547 0.367 14.4 Nz/N3xlO 
(Oz measurement) 13 3. 613 0. 527 14. 6 

xNz, z 1 0.2484 0.0333 13. 4 
13 0.2159 0.0308 14. 3 

xHz, z 1 0.0005 0.0001 19.4 
13 0.01967 0.0040 20. 3 

x 1 0.6350 -0.0413 -6. 5 
HzO, 2 

13 0 .6677 -0.0427 -6.4 

")...'' 1 776.9 26.7 3.4 
(cal. /g. ) 13 821. 8 27.3 3. 3 

kvx 10 
4 1 1. 24 0.0003 nil 

(cal. /sec.-cm.) 13 1. 55 0.0172 1. 1 

p x 104 
v 1 3.92 0. 102 2 . 6 

(g. /cc.) 13 3.33 0.083 2. 5 

TX 10 5 1 8. 58 1. 43 16. 7 
13 88.09 25.90 29.4 

w 1 2.32 0. 1 4.3 
(g./cc.) 13 0. 61 o. 1 16.4 

8 1 0.252 0.095 4. 3 AxNR H xlO , 2 
13 3. 30 o. 155 47.0 

(g.-moles/sec.) 
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TABLE 5 (Continued) 

'; 

Quantity Run 'Y ~ 'Y oy-y 
(%) 

5 1 1. 666 0.278 16. 7 N2/N3 x 10 
(Heat trans.) 13 1. 470 0.432 29.4 

%02 removed 1 64. 1 1. 7 2.7 
13 71. 7 1. 5 2. 1 

ReD 1 318. 5 13. 7 4.3 
13 85.4 14. 0 16.4 

Nun 1 1 671. 1 210. 31. 3 , 
13 133.9 58.0 43 . 3 
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APPENDIX C 

ELIMINATION OF CHEMICAL REACTIONS 
BY GOLD PLATING OF THE SPHERE 

Hydrogen and oxygen chemically react with steel at high temper-

atures. Hydrogen was found in the collected non-condensables in all 

runs made with a steel sphere with a surface temperature above 

770°C. By coating the steel spheres used in the experimental runs 

with a non-reacting substance these reactions should be eliminated. 

To investigate this possibility, a gold plated sphere was used in 

the previously described apparatus. Since no reaction could be 

expected to occur using the gold plated sphere, no hydrogen should 

have been found in the collected non-condensables. 

There are two problems involved in the use of gold plated spheres. 

The first is that the gold readily diffuses into the steel at high tem-

peratures. To retard this diffusion the spheres were plated with a 

layer of nickel before they were plated with gold. The problem of 

the gold diffusing is discussed in detail in Appendix D. 

The second problem encountered in using gold plated spheres 

results from the low emissivity of the gold. According to the 

Handbook of Chemistry and Physics (32), oxidized steels have an 

e missivity of about 0. 9 and gold has an emissivity of about 0. 03. 

The refore, when using a gold plated sphere the optical pyrometer 
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reads a temperature which is considerably lower than the correct 

temperature; ·· the necessary correction is difficult to make. 

Run Number 91 was made using a gold plated sphere. The sphere 

remained shiny during the run indicating that little diffusion of gold 

into the steel occurred. The procedure used for this run was iden-

tical with that described in Chapter Ill. In Run Number 91 no 

hydrogen was found in the non-condensables. 

The results obtained for Runs 1 through 90 of the final series 

of runs were used to calculate the surface temperature for Run 

Number 91. The Reynolds number for this run was 250. 6. Since 

Run 91 was made under conditions identical to those of Runs 1 through 

8, Figure 20 was used to determine r for Run Number 91. The 

value of r was 

The procedure used to obtain r for Runs 1 through 90 was 

repeated for Run 91 by using various values of T . The value of 
w 

Tw which resulted in the correct value of r was 869°C. In using 

the above procedure the radiative heat transfer was assumed to be 

negligible because of the low emissivity of the gold. 

The various otper heat transfer parameters also were computed 

for Run Number 91 and they are listed in Table 6. Since a relatively 

high surface temperature was found to exist during Run Number 91 

and since no hydrogen was found in the non-condensables, it may be 
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TABLE 6 

CALCULATED HEAT TRANSFER PARAMETERS 
FOR RUN NO. 91 

Quantity Value 

84. o0 c 

-4. s0 c 

2. 21 x io- 5 

T i. 05 x io- 4 

250.6 

2.227 

558. 1 

h 0.0312 
cal. /cm. 2 -sec. 0 c 

q 2 24. 5 cal. /cm. -sec. 

621. 2 
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concluded that the gold prevented any steam-iron reaction from 

occurring at the wall. It also :may be concluded that the hydrogen 

occurs from a reaction at the wall and not from a homogeneous 

reaction; since if a 1 homogeneous reaction were present, the gold 

would not have eliminated the reaction. 
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APPENDIX D 

DIFFUSION OF GOLD INTO A STAINLESS STEEL SPHERE 

Several spheres were plated with gold to retard the iron'- steam 

reaction and the iron-oxygen reaction. Appendix C indicates that 

the gold may eliminate the iron-steam reaction. However, the gold 

will diffuse into the stainless steel spheres at high temperatures. 

Since a thin layer of gold, 0. 00010 inches, was used, iron might 

appear on the surface if the sphere was held at a high temperature 

for a long period. In an attempt to eliminate this diffusion, a layer 

of nickel was plated on the stainless steel spheres before the gold 

plating. 

Since the gold retards the steam-iron reaction, the rate of 

hydrogen production from this reaction should give an approximation 

of the concentration of iron on the surface. This is turn may be used 

to determine the rate of diffusion of the gold into the iron and of the 

iron into the gold. 

To test the above hypothesis, Runs 35 through_ 43 were made at 

temperatures exceeding 750°C with two gold plated spheres of one

half inch diameter. Table 7 lists the total time that the spheres were 

kept at a specific temperature in the apparatus at the mid-point of 

each run. Since the runs were at slightly different temperatures, the 

temperatures listed in Table 7 are average temperatures. Run 43 
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TABLE 7 

TIME-TEMPERATURE DATA FOR GOLD PLATED SPHERES 

SPHERE A 

Run 35 2041 sec. at 852oc 

Run 36 4611 sec. at 852°c 

Run 37 7104 sec. at 852°C 

SPHERE B 

Run 38 1306 sec. at 788°C 

Run 39 3811 sec. at 7880C 

Run 40 6187 sec. at 788°C 

Run 41 8706 sec . at 788°C 

Run 42 11219 sec. at 788°c 

Run 43 12480 sec . at 788°C 
and 

827 sec. at 951°C 
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was made at a considerably higher temperature than the earlier runs 

made with Sphere B and is listed accordingly in the table. 

The rates of hydrogen generation were calculated and plotted in 

Figure 38 as a function of the reciprocal of the absolute temperature. 

The runs were all made in numeric al order and are numbered in the 

fig ure. The line in the figure represents the results obtained with a 

stainle ss steel sphere under similar circumstances. 

Sphere A previously had been used for Run Number 91, which is 

discussed in Appendix C. At the conclusion of Run Number 91 the 

sphere was a shiny g old color indicating that a high concentration o f 

gold remained on the surface. However, at the conclusion of Run 

Number 35, the sphere was black indicating a large concentration of 

oxidized metals on the surface. The runs made with Sphe r e A do not 

show any correlation between the hydrogen generation rate and the 

time that the s pheres were maintained at a high tempe rature in th e 

apparatus. The runs made with Sphere B show a reduction of 

hydrogen g ene ration rate after a long .Period in the apparatus. Thi s 

trend possibly may r e sult from a thick coating of oxides on the sur

fa c e c ausing the reac tion rate to bec ome diffusion limited. 

The re are sev eral problems present in the above experiments. 

First, the nic kel and iron oxide s e ffect the rates o f diffusion; there-

fore , the diffusivitie s a r e c onc entra tio n d e p e nde nt. Seco n dly, the 
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obtained from runs Ill'\ 
26-34 57-59 \ 
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.gold sphere A (runs 35-37) 
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Figure 38. - -Experimental runs made with 
spheres partially covered with gold. 
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steam may diffuse through the gold layer and react with iron within 

the sphere. For these reasons an analytical investigation of the above 

experiments was not attempted. A further and more extensive experi

mental investigation is needed before any concrete conclusions may 

be drawn regarding the diffusion of gold into the spheres. 
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APPEND! X E 

' I 

CALIBRATION OF CHROMATOGRAPH 
I 

/ , ( 

The output of the chromatograph was a voltage versus time trace 

'"-
on a strip chart recorder. The area under the curve was propor-

tional .to the quantity of each component injected into the carrier gas. 

The maximum voltage for each component also was proportional to 

th~ quantity of each component injected, but only at a constant carrier 
I 

flow rate. 

Nine mixtures of hydrogen, nitrogen, oxygen and argon were 

· prepared for use iri the calibration. The first three mixtures were 

very rich in hydrogen; consequently, the tail of the hydrogen peak 

overshadowed the oxygen peak. Therefore, the first three mixtures 

were not used for the calibration. Table 9 lists the exact compo-

sition of these mixtures. 

The mixtures w~re prepared as follows. A pressure vessel was 
,I 

. 'I 
evacuated at room temperature for twelve hours to remove con-

taminates. The atmospheric pressure was read with a mercury 

manometer. A quantity of hydrogen was bled into the pressure 

vessel and the partial pressure was read with the manometer. Next, 

a quantity of dry air was bled into the pressure vessel and its partial 

pressure was rec orded. The composition of this air was taken as 

!/ 
78. 03% nitrogen, 20. 99% oxygen, and 0. 98% inerts. Then the 

I 



N
o

. 
H

y
d

ro
g

en
 

1.
 

11
. 2

6 
2.

 
11

. 2
6 

3.
 

11
. 2

6 
4.

 
1.

 9
1 

5.
 

].
 9

1 
6.

 
1

. 9
1 

7.
 

1.
 9

1 
8.

 
1

. 
91

 
9.

 
1

. 
27

 

T
A

B
L

E
 

8 

P
A

R
T

IA
L

 P
R

E
S

S
U

R
E

S
 

O
F

 
C

A
L

IB
R

A
T

IO
N

 M
IX

T
U

R
E

S
 

P
a
rt

ia
l 

P
re

s
s
u

re
 (

c
m

. 
H

g
.)

 
T

o
ta

l 
P

re
s
 s

u
re

 
(c

m
. 

H
g

.)
 

O
x

y
g

en
 

N
it

ro
g

e
n

 
In

e
rt

s-
A

rg
o

n
 

-· 

(a
d

d
ed

) 

9.
 1

8 
34

. 
11

 
0

.4
4

 
71

. 
0 

13
6.

 0
 

9.
 1

8 
34

. 
11

 
0

.4
4

 
9

6
.8

 
15

1.
 8

 
9.

 1
8 

34
. 1

1 
0

.4
4

 
1

4
8

.5
 

20
4.

 1
 

13
. 

12
 

4
8

.7
7

 
o.

 6
1 

61
. 6

 
1

2
6

.0
 

13
. 

12
 

4
8

.7
7

 
o.

 6
1 

8
7

.4
 

15
1.

 8
 

13
. 

12
 

4
8

.7
7

 
0

.6
1

 
11

3.
 2

 
1

7
7

.6
 

13
. 

12
 

4
8

.7
7

 
o.

 6
1 

1
3

9
.0

 
20

3.
 4

 
13

. 
12

 
4

8
.7

7
 

0
.6

1
 

1
6

4
.8

 
2

2
9

.2
 

8
.6

9
 

3
2

.3
0

 
0

.4
0

 
1

8
6

.5
 

2
2

9
.2

 

I ~
 

--
J 
~
 

I 



T
A

B
L

E
 

9 

C
O

M
P

O
S

IT
IO

N
 

O
F

 
C

A
L

IB
R

A
T

IO
N

 M
IX

T
U

R
E

S
 

N
o

. 
M

o
le

s 
In

je
ct

ed
 

x 
10

5 
M

o
le

 F
ra

c
ti

o
n

 

Hz
 

Oz
 

Nz
 

Hz
 

Oz
 

1
. 

0.
40

Z
3 

0
.3

Z
8

0
 

1
. 

Z
l 9

 
0

.0
8

2
7

9
 

0
.0

6
7

5
0

 
z. 

0
.3

6
0

5
 

O
.Z

93
9 

l.
0

9
Z

 
0

.0
7

4
1

8
 

0
.0

6
0

4
7

 
3.

 
O

.Z
68

9 
0

.2
1

9
2

 
0

.8
1

4
5

 
0

.0
5

5
3

3
 

0
.0

4
5

1
1

 
4.

 
0

.0
7

3
6

7
 

o. 
50

59
 

1
. 

88
1 

0
.0

1
5

1
6

 
0.

 1
04

1 
5.

 
0.

 0
6

1
l 3

 
0

.4
2

0
0

 
1

. 
56

1 
0

.0
1

2
5

8
 

0
.0

8
6

4
3

 
6.

 
0.

05
Z

24
 

0
.3

5
9

0
 

1.
 3

34
 

0
.0

1
0

7
5

 
0

.0
7

3
8

7
 

7.
 

0
.0

4
5

6
0

 
0

.3
1

3
4

 
1

. 
16

5 
0

.0
0

9
3

9
 

0
.0

6
4

5
0

 
8.

 
0

.0
4

0
5

0
 

O
.Z

78
2 

1
. 

03
4 

0
.0

0
8

3
3

 
0

.0
5

7
2

4
 

9.
 

O
.O

Z
68

2 
0.

 1
84

Z
 

0
.6

8
5

7
 

0.
00

55
2 

0
.0

3
7

9
1

 

S
am

p
le

 S
iz

e 
=

 
l.

 2
 c

. 
c.

 

~
z
 

O
.Z

50
8 

0
.2

2
4

7
 

o.
 1

67
6 

0
.3

8
7

0
 

0
.3

2
1

3
 

0
.2

7
4

6
 

O
.Z

39
8 

O
.Z

l2
8

 
0.

 1
40

9 

I ,_
 

...
_J

 

N
 

I 



pressure vessel was pressurized to various pressures using argon. 

Each pressure was measured with the meter on the pressure regu-

lator. This procedure was used first to prepare samples one, two 

and three and then repeated for mixtures four through eight. Mix-

ture nine was prepared by reducing the total pres sure on mixture 
I 

number eight and rep res surizing it with argon. 

Since the mole fractions of nitrogen and oxygen encountered 

during a film boiling experiment could be expected to be greater 

than those of Table 9, two injection volumes were selected. First, 

a large injection volume of 1. 2 milliliters was used to check the 

linearity of the voltage-time area to quantity injected proportionality 

over a wide range. A smaller injection volume used in the film 

boiling experiments. The quantity of each component injected into 

the chromatograph using the 1. 2 milliliters injection volume was 

calculated by the ideal gas law. The results are presented in 

Table 9. 

The mixtures were passed through the chromatograph using the 

larger injection volume and a carrier gas flow rate of 26. 1 milliliters 

per minute and a chromatograph atte.nuation of 100. At all times the 

flow through the second column and detector was maintained at 13. 3 

milliliters per minute. The relative areas under the curves were 

recorded and the results are plotted in Figures 39, 40, and 41. 
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Figure 41. -- Gas chromatograph c alibration for oxygen. 
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These figures indicate that the chromatograph response was linear 

for the injection quantities expe cted in the experimental runs. 

The volume of the small injection volume was determined as 

follows. Sample number four was passed through the chromatograph 

using the small injection volume and a carrier gas flow rate of 26. l 

milliliters per minute. The area under the nitrogen curve was found 

to be 23. 20 on the previous relative scale. This corresponded to 

8. 23 x io- 6 per gram-mole of nitrogen. From the ideal gas law 

this corresponded ,to an injection volume of 0. 525 milliliters. 

Since the ratio of the chromatogram area to quantity injected was 

constant, the following proportionality factors were used: 

. Area o
2 K-----

Area. N
2 

1
Area H

2 K-----
Area N 

2 

= 

= 

g. -moles o
2 

injected 

g. -moles N 2 injected 

g. -moles H
2 

injected 

g. -moles N injected 
2 

The values for K and K'were determined from Figures 39, 40, and 

41 and are: 

K = 0. 9983 

K
1 = 0. 1151 
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APPENDIX F 

TABULATED DATA 
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TABLE 13 

CONCENTRATIONS IN LIQUID AND COMPOSITION OF FILM 

Dissolved Gases at P t 
am Composition of Film 

No. air . 02 . 0 XH XO XN lil ( , 10 2,o 
(cc/kg) ppm (ppm) 2 2 2 

1. 16.07 1 8.20 2.94 .0005 • l lb 1 .2484 
2. 16. 5 7 7.94 2. 72 .oooo • 10 74 .2509 
3. 17.32 8.41 2.32 .0000 • 0913 .2021 
4. 16.76 8.06 2.68 .oooo • 10 5 6 .2443 
5. 16.44 8.45 2.88 • 0010 • 1134 .2378 

6. 16.59 7.94 l. 75 .0001 .0690 • 1516 
7. 17.22 8.34 2.85 .oooo • 1125 .2587 
8. 16. 7 7 8. 15 l. 86 .oooo .0733 • 1582 
9. 16. 12 7.73 1. 74 .oooo .0635 .1505 

10. 16.82 8. 17 2.72 .oooo • lG 7 3 .2447 

11. 16.82 8. 17 2.92 .oooo .1152 .2657 
12. 16.77 8.07 2.09 .oooo .0822 • 1828 
13. 17. 91 8. (j 7 2.45 .0197 .09G8 .2159 
14. 17.44 8.47 .oo .0291 .0000 .0001 
15. 16.83 8.13 l. 42 .DOGS .0558 • 1184 

16. 18. 7 8 9.20 2. 12 .2434 .0835 .1781 
17. 17.15 8.26 2.66 .0091 • 104 7 .2400 
18. 16.91 8.13 l. 48 .0225 .0582 • 124 7 
19. 16.39 8.48 2.94 .0037 . • 1161 • 2418 
20. 17.40 8.42 2.91 • 0104 .1149 .2651 

21. 16.31 8.36 3.03 • 0019 • 1195 .2542 
22. 16.92 8. 11 2.22 .0123 .0876 .1975 
23. 17.34 8.41 2.83 .0052 • 1114 .2549 
24. 16.14 8.22 2.20 .0002 .08b8 • 17 7 7 
25. 16. 9 7 8. 18 2.15 .0039 .0850 • 18 90 

26. 14. 61 7. 12 2. 41 .004C .0950 • 2160 
27. 14.82 7.29 2. 05 .0007 .0807 .1756 
28. 14.82 7.30 1.97 • 0016 .0775 .1673 
29. 14.51 7.06 1. 61 .0072 .063b • 1368 
30. 14.34 I 7. 02 1. 79 .0243 .0704 • 1522 
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TABLE 1 3 (Continued) 

Dissolved Gases at P atm Composition of Film 

No. airin 0 z in Oz o XH XO XN 
(cc /kg) (ppm) (ppm) z z z 

31. 14. 29 7. 00 1. 58 • 1907 .0625 • 1331 
32. 14. 84 7.29 1.32 • 12b2 .0522 • 1U8 3 
33. 14.84 7.29 4.31 ***** • 17 0 l .4397' 
34. 14. 19 7.40 4. 91 ***** • 19 38 .4775 
35. 14. 54 7.12 2. 10 • 0 18 b .08 2 7 • 18 2 2 

36. 14.54 7.09 3.41 .0311 • 1345 .3303 
37. 14.64 7. ~3 1. 95 .0609 .0770 • 1692 
38. 14.79 7.17 3.44 .0048 • 135 7 .3353 
39. 14. 91 7.21 3.06 • 0133 • 1206 .2900 
40. 14. 74 7. 14 2.92 .0074 • 1150 .2737 

41. 15.57 7.54 3.50 • 0017 • 13 79 .3386 
42. 14.36 7.04 2.96 ' .0003 • 1169 .2753 
43. 15.12 7.34 1. 54 .0024 .Ob08 • 1303 
44. 16.81 8.20 3.54 .0004 .1397 .3335 
45. 14. 18 6.94 3.50 • 000 l • 138 l • 3419 

46. 14.79 7. 19 3.42 .0001 • 1350 .3318 
47. 15.48 7.47 2.40 .oooo .0946 • 2162 
48. 14. 77 7. 12 2. 12 • oouo .0835 • 18 89 
49. 14.98 7.26 2.94 .oooo • llbl .2757 
50. 15.03 7.27 2.59 .oooo • 1022 .2370 

51. 14. 71 7. 14 2.21 .oooo .0871 • 19 73 
52. 14. 51 7.09 2.72 .oooo • 10 7 4 .2489 
53. 14.47 7~07 2.68 .oooo .1058 .2447 
54. 14.57 7.48 2. 14 .oooo .0843 • 17 2 0 
55. 14. 72 7. 16 3.74 .0001 • 14 7 5 .371 9 

56. 15.17 7.34 2.40 .0000 .0946 • 2161 
57. 14.77 7. 14 2.04 .0025 .0803 • 179 8 
58. 14. 7 7 7. 14 2.39 .2266 .0942 • 2164 
59. 15.38 7.44 l. 61 .2895 .0636 • 13 74 
60. 19.31 9.78 3.71 .oouo • 146 3 .3202 



-197-

TABLE 1 3 (Continued) 

Dis solved Gases at P atm Composition of Film 

No. air. Oz . 0 XH XO XN lil , 1n 2,o 
{cc/kg ) (ppm) (ppm) 2 2 2 

61. 22.58 11. 5 7 3.73 .oooo • 14 71 • 30ti 7 
62. 21. 83 10. :19 3.83 .oooo • 1511 .3284 
63. 22.16 11. 19 3.68 .0002 • 14 51 .3lOG 
64. 22.21 11. 31 3.48 .0009 • 13 73 .2 8 73 
65. 22.51 11. 41 3.84 .0002 • 1513 .3233 

66. 22. 61 11. 46 2. 12 .0059 .0836 • 1656 
67. 23.10 l l. 73 3.64 • 0152 • 1435 • 3019 
68. 20.42 10.21 2.43 • 1241 .0957 .198b 
69. 16.68 7.99 3.25 .OObo • 12 8 3 • 3108 
70. 16.80 8.23 2.83 .oouo .1116 .2524 

71. 16. 9 7 8.21 3.87 .0000 • 15 2 7 .3771 
72. 16. 6 8 7.99 2. 61 .oooo • 102 8 .2386 
73. 17.39 8.32 2.32 .0000 • 0917 .2078 
74. 16.35 7.81 2.99 .oooo • 118 0 .2827 
75. 17.98 8.50 2.98 .0084 • 1176 .2814 

76 . 17.12 8.26 2.53 .3290 .0997 .2262 
77. 17.10 8.25 4.03 • 0419 • 1589 .3977 
78. 16.92 8.15 3.73 .0002 • 14 7 0 .3624 
79. 18. 74 9. 17 2.91 .oooo • 1146 .2560 
80. 16.92 8.16 2.34 . oooo .0921 .2071 

81. 16.52 7.89 l. 71 .oooo .Ob75 • 148 8 
82. 17.88 8.68 1. 55 .0000 .0612 • 1290 
83. 17.62 8.54 1.49 .oooo .0588 • 1241 
84. 16. 61 7.93 2.31 .oooo .0909 .2077 
85. 16.29 7.87 1. 91 .oooo .0754 .1655 

86. 16.82 8. 10 1. 82 .oooo .0719 • 15 71 
87. 16.97 8.17 1. 85 .oooo .0731 .1599 
88. 16.29 7 . 77 1. 01 .oooo .0397 .0840 
89. 16. 19 7.7 3 .91 .052 5 .0357 • 0 7 !>O 
90. 16. 19 7.73 .82 .003G .0322 • 06 7 2. 

91. 17.81 8.69 3.27 ***** • 12 b 8 .2983 
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TABLE 14 

RATIO VAPORIZED, RATIO OXYGEN TO NITROGEN IN FILM, 
PERCENTAGE O X YGEN REMOVED, AND KINETI C RESULTS 

INo. Nz xoz xoz % oz Oz lnNR 

N3 XNz XN 
removed 1 e acted 

m o lar (Hz) 
x 10 5 (e xp) (th1 ratio) 

1. 2.547 .4376 .4671 b4. 1 .0852 -21.42 
2. 2.732 .4848 .4279 65.7 • 0150 ****** 
3. 3.752 .4786 • 4519 72.5 • 02 8 3 ****** • . 
4. 2.864 • 5010 ,4323 66.7 -.0724 ****** 
5. 2.763 .4493 .4770 66.0 -.0488 -22.01 

· . 
6. 5.050 .4653 • 4551 78.0 -.1849 -24.44 
7. 2.743 • 4616 .4348 65.8 .0509 ****** 
8. 4.827 .5032 .4631 77.2 -.0211 ****** 
9. 4.923 • 5122 .4553 77.5 -.0365 ****** 

10. 2.853 .4949 .4387 66.7 .0082 ****** 

11. 2.563 .4535 .4335 64.2 . 09 63 ****** 
12. 4.094 .4792 . 4498 74.2 .0 880 ****** 
13. 3. 613 .4656 .4484 71. 7 -.0304 -18.85 
~4. ****** .4852 .5154 **** .7368 -10.66 
15. 6.766 .4765 .4714 82.6 .0642 - 21. 9 6 

16. 4.773 .3943 .4687 77.0 .05 42 -16. 12 
17. 3.012 .4115 .4365 67.9 .0536 -19.75 
18. 6.434 .4303 .4666 81. 9 .0667 -18.26 
19. 2.681 .5010 .4801 65.3 -.1185 -20.74 
t2 0. 2.695 .3755 .4333 65.4 • 1535 -19.6 9 

tz l. 2.511 .4648 .4700 63.8 -.1517 -21.46 
22. 3.780 .4502 .4437 72.6 -.0367 -19.29 
23. 2.818 . 4871 .4371 66.4 -.0743 -20.36 
24. 3.902 • 5003 .4887 73.2 -.1873 -23.3 2 
25. 3.986 .4890 .4494 73.6 -.1059 -20.40 

26. 2.788 .4529 .4399 66. 1 -.0775 -20.63 
~7. 3.654 .4840 .4595 71. 9 - • 14 16 -22.21 
~8. 3.870 .4686 .4631 73.1 -1.0 0 87 -21. 34 
~9. 4.823 .4783 .4648 77 . 2 -.0738 -19.6 3 
130. 4.183 .4496 .4627 74 . 6 - • lb 14 -18.5 3 
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TABLE l 4 (Continued) 

No. Nz ~ X02 % 02 02 lnNR 

N3 XN2 xNz removed reacted 
(molar (Hz) 

x io 5 (exp) (th) ratio) 

31. 4.875 .2788 .469() 77.4 .2557 -16.35 
32. 6.430 .3703 .4821 81. 8 • 2418 -16.5l! 
33. .985 .4244 .3868 40.9 -3.6267 -15.0B 
34. .722 .6557 .4058 33.6 -7.1813 -14.20 
35. 3.420 .4354 .4536 70.G .0386 -18. 9 5 

36. l. 536 .5063 .4073 51. 9 -.3531 -19. 04 
37. 3.787 . 5331 .4547 72.6 -.1602 -17 •. 69 
38. 1. 547 .4091 .4046 52.0 -.0016 -20.81 
39. l. 9 38 .4363 .4158 57.6 -.0246 -19.65 
40. 2. 066 .4563 .4203 59.2 -.09G5 -20.20 

41. 1. 649 .4564 .4073 53.6 -.1051 -21.79 
42. 1. 960 .4955 .4245 57.9 -.2139 -23.33 
43. 5.361 .5095 .4666 79.0 -.1082 -20.67 
44. 1.874 .5004 .4190 56.8 -.1295 --tl.81 
45. 1. 398 .4836 .4041 49.5 -.1535 -23.71 

-· 
46. 1. 570 .4731 .4068 52.4 -.2478 -24.06 
47. 3.015 .4794 .4378 67.9 -.0980 ****** 
48. 3.369 .5335 .4422 70.3 -.2489 ****** 
49. 2. 091 .5053 • 4212 59.4 -.2211 ****** 
50. 2.576 .5255 .4312 64.4 -.5!172 ****** 

51. 3.185 .5076 .4414 69. 1 -.2104 ****** 
52. 2.288 .5069 • 4313 61. 6 -.2921 ****** 
53. 2.333 .5217 .4323 62. 1 -.2048 ****** 
54. 3.566 • 5104 .4903 71.4 .38 27 ****** 
55. 1. 303 .4899 .3967 47.7 -.2809 -23.96 

56. 2.937 .4888 • 4 3 7!:! 67.3 -.2371 ****** 
57. 3.573 .4672 .446u 71. 5 -.1599 -20. 93 
58. 2.835 I .4065 .4354 bG.5 -.1315 - lb • . 5 8 
59. 5.153 .2957 .4b29 78.3 • 2 18 4 -15.89 
60. 2.334 .4833 .4569 62.l - • 114 1 -23.91 
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TAB LE I 4 (Continued) 

No. 

~~ . xo2 XQ2 % 02 0 lnNR 
reac ted XN2 XN2 removed 
(molar (H2) 

x 10 5 (exp) (th) ratio) 

61. 3.000 • 4916 .4797 67.8 .0398 ****** 
62. 2.665 • 4949 .4601 65. l -.0437 ****** 

. 63. 2. 912 .5087 .4671 67.l -.0026 -22.58 
64. 3.205 • 5118 .4781 b9.2 -.0694 -21.8~ 
65. 2.816 • 5160 .4679 66.4 .0680 -23.40 

66. 6.284 .4972 .5048 81. 5 • 014 3 -19.62 
67. 3.170 .4593 .4753 69.0 • 0199 -19.20 
68. 4.577 .4709 • 4817 76.2 -.2075 -16.83 
69. 2.073 .4823 • 4130 59.2 -.1Gl6 -19.27 
70. 2. 721 .5039 .4421 (i 5. 6 - • lll 5 8 ****** 

71. 1. 598 .4447 .4048 52.8 -.0752 ****** 
72. 2.942 .4980 .4311 67.3 -.2796 ****** 
73. 3. 6 78 ~5036 .4411 72. l -.250b ****** 
74. 2.299 • 4910 • 4174 61. 7 -.1387 ****** 
75. 2.641 .4834 .4178 64.9 • 0193 -20.lb 

76. 3.234 .4294 .4408 69.4 -.3172 -16.35 
77. 1.494 .5081 .3995 51. 2 -.2229 -17.39 
78. 1. 693 .5170 .4055 54.3 -.1977 -22.59 
79. 3.074 • 5199 .4475 68.3 .0266 ****** 
80. 3.554 .5024 .4449 71. 4 -.0954 ****** 

81. 5. 144 .5207 .4537 78.3 -.1462 ****** 
82. 6.558 .5450 .4743 8 2. l -.1721 ****** 
83. 6.747 .5072 .47?>7 82.5 -.1321 ****** 
84. 3.482 .4621 .4377 70.9 -.0492 ****** 
85. 4.440 .4985 .4557 75.7 -.0799 ****** 

86. 4.910 .5236 .4574 77.5 -.0534 ****** 
87. 4.861 .4943 .4569 77.3 -.0253 -23.98 
88. 9.586 • 5110 .4728 87.0 -.3006 -25.l& 
89. 10.747 .3329 .4762 88.3 .0761 -17.42 
90. 12.099 .4530 .4789 89.5 - • 0418 -19.99 

9 1. 2.366 .4518 .4319 62.4 .0654 ****** 
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TABLE 15 

HEAT TRANSFER RESULTS 

- 2 
TX10

4 No. qr hxlO qc Ts T -T s 0 

qc+qr ( c'al ) ( cal ) (%) cm2 - 0 c cm2 (OC) (oC) 

1. 5.0 4. UJ3 27.6 86.8 -.7 3.58 
2. 5.8 3.646 24.2 8 7. l -3.2 9.b2 
3. 7.0 3.056 :£0.5 89.L -4.0 11. 74 
4. 16. 5 1. 2 74 !j. l 87.4 -2.9 31. 74 
5. 22.8 .842 6.0 87.3 -.5 54. 12 

6. 27.8 • G 10 4.1 92.3 • l 84.57 
7. 4.0 5.326 35. l 8b.5 -3.5 fj. 2 7 
8. 8.2 2.518 lu.6 ~ 1. 9 -3.9 14. 7 4 
9. 8.4 2.484 16. 5 92.4 -4.0 l~. 2 5 

10. 8.9 2. 318 15. ti b7.3 -4.b 15. 2 l 

11. 9.G 2. 184 14. 9 86. l -3 . 9 115.47 
12. 8.3 2.427 15. 8 90.7 - 2. fj 15.4~ 
13. 32.4 .683 5.7 88. 1 -S.5 83.09 
14. **** -.520 -5.4 98.4 7 b. 1 18 5. 5 b 
15. 21. 8 .958 7.0 9 3. !:! -4.5 4 8. 12 

16. 35.5 .623 5.4 80.3 **** 170.30 
17. 23.8 • 819 !;) • 9 87.2 -2.5 58.7'6 
18. 23.5 .911 ti. 8 92.8 -5.2 57. 00 
19. 24.0 .833 b. 1 86.9 -2.5 54.20 
20. 23.9 • 816 5.9 85.7 -3.8 5 7. 10 

21. 2 2. 1 .855 b.O 86.3 -.3 51. 82 
2 2. 23.0 .7bl ti. 0 ~9.5 -3.4 1:>9.45 
23. 19. 2 .938 b.2 3 f;. 5 -.2 45. 61 
24. 18. 2 1. 007 6. li 90.7 -1. 5 43.03 
25. 18. 4 l. 02 7 6. 9 90.2 -5.9 4U.80 

2q. 18. 8 .~b6 b.4 88.8 -1. 2 45.26 
27. 18. 2 1. 028 ti • !:) ~ l. 0 -3.4 41. 14 
28. 19. 7 .984 l> • 8 !:.I l. 4 -4.7 44.b3 
29. 20.2 .994 7.0 ~2.7 -s.o 4b.05 
30. 20.7 .992 7. l 91. 4 -7.2 48.0l 
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TABLE 1 5 (Continued) 

No. qr hx10 2 
qc Ts Ts-To TX 104 

qc+qr 
(%) 

( cal ) 
cm2 - 0 c 

(cal ) 
cm2 (OC) (OC) 

31. 28.0 .808 6.6 85.9 **** 104.97 
32. 23.3 .917 6.9 89.9 -9.0 78.64 
33. 42.l .442 4.4 **** **** 402.87 
34. 61. 0 .2b2 2.9 **** **** ****** 
35. 25.S • 791 5.9 ~o.o 1. l 70. lU 

3b. 38.0 .521 4.3 80.7 -7.9 113.58 
37. 22.2 .903 b.5 8 ~ . l -4.2 ll4.83 
38. 22.3 .84b ti. 0 81. 8 -b.3 4 7. 2":J 
39. 23.5 • 8 17 5.9 84.2 - :::> .9 :.>G.05 
40. 23.2 .842 b. 1 (j 5. 4 -4.S 52.L~b 

41. 20.2 • l.l 93 ti. l ~ 1. (; -5. 9 42.77 
42. 21. 3 .868 b.O 85.b -2.2 4~.40 
43. 34.9 .b59 5.7 93.2 -5.5 ~U.84 
44. s.o 4.269 29.0 81. 9 -5. l 7.33 
45. 5.0 4.326 29.3 81. 5 - b. (J 7.74 

46. 6.7 3.091 20.7 82.2 -7. 5 lU. 70 
47. 8.3 2.499 Hi.6 39.0 -4.8 14. 5 1 
48. 12. 2 1. 640 11. 0 ~0.4 -4.6 2 3. lo 
49. 19. 9 .905 ti. l 85.b -.8 46.20 
so. 26.7 .624 4.2 87.8 -.5 75.8 9 

51. 10. 0 2.032 13.5 90.0 -5.0 18. 14 
52. 16. l l. 170 7.8 8 7. l - 2 .0 33.95 
53. 7. l 2. 965 19.9 87.4 -b.O 11. 88 
54. 14.6 l. 337 8.9 91. 0 -6.2 28.63 
SS. 5.8 3.680 25. l 79.5 **** 8. l~ 

56. 19.9 .97b b.8 8~.o -S.5 41. 96 
57. 21. 6 .935 G.7 !:jQ. 8 -4. 8 47.53 
58. 2 9. 7 .730 5. SI S4.b - 'o. 7 138.4b 
5 !:l. 33.8 • lib 4 5.7 81. u **** 169.54 
60. 4.8 4.368 2 9. 1 82.2 -5.b 6.5U 
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TABLE 1 5 (Continued) 

No. hx10 2 T T -T 4 
qr qc s s 0 

rxlO 
qc+qr ( cal ) (~) 

(%) cmz_oc cm2 (oC) (OC) 

bl. 4.6 4.500 29.8 82.8 -5.2 l>. ~ti 
62. 4.9 4.355 2 !.1. 3 81. L -b.2 ti. 3 ~ 
63. 4.8 4. 4 59 29.9 82.. 7 -t:.. 2 o.29 
64. 17.3 1. 031 7.3 8 4. l -3. 1 34.7b 
65. 20.3 .911 b.3 81. 8 -5.4 40.59 

66. 25.0 .894 7.0 91. 1 -8.4 50.37 
67. 26.0 .785 l). 0 82.5 -b.7 56.53 
6 8. 30. l .767 ti. 4 84.5 -15.S 90. 2 (j 
69. 6.3 3.277 2. 1. 9 83.2 -~.o 12. 4 7 
70. 7.9 2.629 17.S bb.8 -7.9 16.2Li 

71. 4.6 4.577 30.9 79.0 -8.0 &.31 
72. 11. 4 1.807 12.3 i.)7. 7 -11. l 23.78 
73. 15.3 1. 209 7.9 aJ.4 -8.4 38. 9t:i 
74. 25.2 .672 4.5 BS.2 -2.3 84.42 
75. 25.7 • 7 3 'J 5.4 85.0 -14. 2 u8.0b 

76. 3 9 • l) .507 4.4 71. 3 -2d.7 255.(:;9 
77. 5.4 3 .857 2 ti. l 75.0 - 1L. 5 14. 5 2 
78. 5.5 3.789 25.3 8u.li -10. 0 13. 4 7 
79. 7.4 2. 7 7 0 UL3 86.5 -5. 1 20.5u 
() 0. c: • b 2. 383 15. 7 8 !:) • 4 - l). 4 :L4.S7 

81. 10. 7 l. 834 11. 9 ~2.4 -iJ. 4 34. 3 4 
82. 15.0 1. 314 8.8 ~3.3 -5.7 51. 77 
83. 17.0 1. 0 7 8 7.0 9 3. lo -5.8 uS.24 
84. 8. 8 2. 3t:i9 15. ~ 89.4 -8 • l> 24.97 
85. 9.6 2.271 15. 7 91. G -li. 2 2 8. 2 l 

86. 10. 7 2. 17 5 15. 7 92.0 - Li. 1 :.s 0. 1::; 
8 7. 9.0 2.376 lb. 1 ::; l. ~ -L.5 2Li.3lJ 
88. 32.3 .547 3.9 95.5 -4.7 170.59 
89. 3o.8 • L~ 6 u 3. Li ::; 4. 3 -l, • 3 L. 7-:;. 3L. 
~ 0. 34.0 .52~ 3.9 ~b.2 -4.4 lob.S t 



No . 

L. 
2 . 
3 . 
4 • 
5. 

b . 
7. 
8 . 
9 . 

10 . 

11. 
12 . 
u . 
14. 
15 . 

l b. 
17. 
UL 
19 . 
20 . 

2 1. 
2 2. 
23 . 
24. 
25 . 

2b . 
27 . 
2 3 . 
29 . 
30 . 
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TABLE 1 6 

DIMENSIONLESS NUM B ERS AND FRACTION VAPORIZ ED 
AS CALCULATED FROM H EAT TRANSFER DAT A 

NV 5 Nun, 1 ReDP r 1 Ren P r
1 104 /T 

-xlO w 
N1 

(OK- 1) 

1. b 7 6 71. l 6 7 7. l 3 18. 5 :i . U ~ . 83 1 
1. 9 1 58 9 . 9 5 77.5 2 7 2 . lj L . 12 !:I . 7 5 4 
2 . 15 4 71. 9 46 3. 8 229 .5 2 . 02 !:1. b 7 9 
6 . 13 2 17. 4 2 41. lJ 11 5 . 0 2 • l Ll lj . 292 

10 . 11 14 2. 4 177. 8 8 4. 4 2 . 11 lj . 3 5 ) 

12 . 7 7 ~ 2. u l:d . ~ l.> 4 . 3 1. 9 3 lJ . 5t: G 
1. 3 0 8 4 8 . 2 811. 9 :Hs U. 2 :L . 14 9. b 12 
2 . 46 366 .7 3b u. 2 188. SJ l. 94 ~ .77 3 
2 .4 b 3 ti b . 2 3 b5 . 8 19 0 . 2 1. ~2 9 .7 2 u 
3 . 09 3 72.7 3 70 . 2 17 5 . 8 2 . 11 9 . b79 

3 . 4 l 3 67. b 3 71. 3 17 2 . b 2 • 1 5 ~ . 59 5 
2 • 6 li 3b 1. 0 3 b 7. 3 18 5. 2 1. 98 !J . 8 41 

14. 7U 13 3 . 9 17 7. 5 b 5.4 L. 0 8 8.388 
• 0 1 * ** ** 17 3 . 3 lU 1. 4 1. 7 1 7 . 0b l 

7. 15 150. 2 17 5 . 1 'j 3. 7 L. ~ 7 ~ . 12 2 

23 .4 8 14 4 .2 uw . 8 7 fj . 3 'L. 3 7 t . 209 
10 . 7 8 14 5. 1 177 .8 8 4 .3 2. 11 9 . 2 40 

8 .4S 14 8 . lj 175.5 9 2 . l 1. 9 l 8. 0 5 1 
1 0 . 59 14 4. 8 17 8 . 0 8::;. 9 i . 12 ~ . 14 7 
1 1 .34 14 8 . 3 178 .5 82 .4 2 . l7 9 . 2 1 5 

' 

10 . 14 14 3 . 7 17 8 . 2 83.2 L . 14 '.:J . 4 3 2 
11. 6 7 13 7. 9 17 b . 9 87 . 3 :i . 03 8 .7 32 

8 . 94 14 s. 5 1 7 8 . l &3 .4 L. 14 'J .7 54 
7 .20 152 . 1 l 7li . 4 8 '..) . 0 1. ~Hi ~.764 
7.25 l li 2 • 0 17 6 . 6 88 . 3 2. Liu 'J . b 32 

&.09 . 15 1. 0 17 7 . 2 3 t; . 3 2 . 0~ ~ . 7 54 
b . '.) 9 l 5b . 2 17 6.3 8 9 . 4 1. ~ 7 ~ • l> u 9 
7 . 38 15ti . 2 17 G. l b9 . ·~ 1. ~ lJ 'J . 47 7 
7. 15 15 5 . L) 175 . b ~:L . O 1. 9 1 0 . "3>2 / 
7. 8!:i 159. 4 l 7G . 1 o::i . 0 1. s lJ 9. 223 



-205-

TABLE . 1 6 (Continued) 

No. N NuD,l ReDPr1 Ren Pr1 104 /Tw _vxl0 5 
Nl 

(OK-1) 

31. 14. 2 7 lb 2. 5 l7b.4 o:L.L t.. lL 8. 5 £ ll 
32. 10. 4 3 158.ti 17 G. 7 87.b L. u l o.S43 
33. 1. (j 3 ***** 245.5 3 0. li 8.03 8.05u 
34. 4.00 ***** 245.5 3 G. t; 8.U3 7."574 
35. 10. 8 5 13 3. l 17li. 7 88. (j 2. (.; l ~.014(; 

36. 25.69 117. 7 lti2.8 b~.2 2.35 8. 4 ::> 7 
37. 10. 15 151. l 17 7. l 2b.8 2.04 ~.232 
38. 11. 4Y 159.b 180. 2 7 7. <j 2. j l :J.3~7 
39. 11. 7b 149. 9 17'.J. l bO.b 2.22 S.28) 
ll 0. 10. 8 3 152. 3 178.b d 2. 1 i.. • U:I 9. 2 4::) 

L1 l. 10. 5 2 lb 3. l usu. 2 77.8 Z.32 '::l.libS 
42. 9. ~ !:) 14Y.8 173.5 82.3 'j_. 17 ~.54~ 
43. 12 • 9 ll 127.3 175. 4 '.; 2. 7 l. :>Si 8.lli9 
44. 1. 83 749.8 705.S 30 5. u 2. 3 1 '.:J. G (; !:i 
45. l. 82 842.G 774.3 333.5 L.32 ';j.(:;7'J 

tt~: 2.7s ~84.2 5 34. l L 3 'l.. 5 2 • 3 (j 9. 745 
2. 2 3~5.8 3b9.l l'.j 0. 2 L. vS S.7Y.) 

I~ L • 4.15 249.U 257.5 li ~. 2 1. SI~ '::). b db 
4 '.) . 9. 39 148.~ 178.5 82.j :2. • l 7 s. 70/ 
Su. ll1. 08 ~9.5 131. u G2. 8 2 • (j:;; ~. b] '_, 

51. 3.31 312.4 312. 8 155.7 2 . u 1 ~. 7 h 
5 ') ... 6.ti8 18 8 ~ ~ 2 10. 0 S::J. 4 2. l 1 ~ .7l.l.J 
53. 2. 3 li 496.3 4 7 2. l 224.4 L. 1 L' ::J.t-S7 
Si1. 5. 14 200.1 201J.U 1(;5.5 1. s 7 ':J.li!:i7 
55. 2.24 732.0 b29.b 'l.G2.5 i..4U ':J.ubS 

5 li. 7. 'J 9 15 8. 4 177. l 8' . u • \J 2 • 0 :, J .441 
57. 8. 14 l!:i 2. 5 l7b. 4 b~ . 1 1. '::l 3 ':;J. 2 2 3 
53. 16. 7 4 14 7. 8 17~.u L 1. 1 :l. 2 1 l:;. 5 7 '-.; 
5~. 19. 9 7 153.3 12 u. 5 7 7. 1 L . 3 4 o . 25G 
bU. l. 7o b84.9 L43.L 2 ~ 0. 1 2.31.i S .7o 3 
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TABLE . l 6 (Continued) 

No. N Nun 1 RenPr1 Ren Pr
1 

104 /T 
2xl05 w 

' N1 (oK-1) 

61. l. 70 680.7 b42.3 282.5 2.27 9.831 
G 2. l. 81 b9 l. 6 644.2 'i..77.li 2.32 ~.726 
63. 1. 72 b88.9 642. 4 28 2. l 2.28 -:; • 7 3 5 
b4. 7.9b 178.3 UJ9. 7 :.; 9. 8 2.22 9. L 7::1 
65. 10. 30 16 l. 0 180.2 77.9 2. 3 l '::J. 56 8 

b6. 8.97 152.ti 17b.2 ti~. 5 l. 9 7 8. 7 17 
67. l3. 29 15 l. 9 179.9 78.7 :L.2~ 6.943 
b8. lb. 16 lb l. 3 179. 0 80.~ 2.21 o.34b 
69. 3. 10 634. l 828.6 3bb.8 2.2b 9. 7 7 3 
70. 3.53 480.0 6S 1. 9 306.8 2. u ~.735 

7 l. 2.33 ~75.0 12 59. 4 520.t 2.4'.L 9.735 
72. 5.20 330.l 447.5 2 14. l L.09 ~.5i>G 
73. 7.7b 2U5.4 303.4 14 9. 5 2.03 ~.841 
74. 17.b6 12 6. 5 L30.7 10 5. 7 2. 18 ~.68£ 
75. lb. 7 l 149. 5 230.9 105.3 2. 19 ':J. 2 32 

76. 44.71 16 1. 5 238.ti 87.8 2.72 S.284 
77. 4.47 977.4 1738.9 b7b.O 2. 5 7 ~. 7 L4 
7 'd • 3.7U 895.8 16 7 2. 0 703.U 2.38 9.7o3 
7'J. 4.47 541. 4 1129.3 52~.o 2. l 3 9. 783 
80. 4.85 451. 1 ":j 3 7. 2 4G l. 8 2.03 ~.773 

8 l. 5.87 324.4 693.0 361. 0 l. 92 9.841 
32. 3.3b 2 3 5. 1 533.5 282.b l. u9 S.G41 
83. lU. 32 189. 7 Li39.4 L:33.9 L 80 ~.841 
84. 4.89 464.7 'J 3 7 • 2 401. 9 2.03 :J.b7:i 
8 5. 4.83 44 l. 7 932.5 477. 9 l. 9 ~ 9.4t 8 

8b. 5.04 434.4 93 L. b 48 l. 2 l. 94 9. 18 s 
87. 4.54 1~45.5 931. 9 4l:iU.l l. 94 ::J. 5 8 b 
88. 2:1.32 10 3. 7 £99.8 lb5.li 1. i.:i l ':J.20b 
8 Y. 35.54 95.~ 300.7 lb 2. l l. Bu 8.7u3 
9U. 24.42 10 0. 3 29~.3 lG 7. ~ l. 7<;;; :J.O:,b 
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APPENDIX H 

FILM BOILING ON A VERTICAL FLAT PLATE 

An apparatus was constructed and used to investigate forced 

convection film boiling on a vertical flat plate. An attempt was made 

to measure heat transfer rates and to correlate the heat transfer 

data with the wave, length and wave frequency at the liquid-vapor inter

face. Figure 42 is a block diagram of this equipment. A two kilowatt 

115 volt heater was used to bring the liquid near to its boiling point 

and the condenser was used to condense the vapor and cool the liquid 

permitting it to be pumped by a centrifugal pump. Figure 43 is a 

diagram of the test section where the boiling occurred. D. C. electric 

current was passed through the copper and Chromel A strip. The 

resistance of the copper was sufficiently low that no film boiling took 

place on the copper portion of the strip. The resistance of the 

Chromel A was sufficiently high that boiling occurred only on that 

portion of the strip. The liquid used in this experiment was 

n-heptane. 

An optical system was constructed to measure photoelec trically 

the wave frequenc y and wave length at the liquid-vapor interface; 

however, little success was attained. Edge effects resulting from 

a meniscus at the quartz wall presented an unsoluable problem. 

Further p roblems were c aused by a warping of the Chrome l strip 
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/ h~a te,.r._ __ --1 ___ :----..... 1-----~ 

"rotameter 

test 

/section 

/ 
condenser 

/ 
cooling water 

Figure 42. - -Apparatus used to observe film boiling on a flat plate. 
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outlet 

copper strip 

brass end section 

Chromel A strip 
(2 3/4 x 5/8 x 0. 002 inches) 

quartz tube 
(2 1/2 x 5 / 8 i nches I. D . ) 

c opper strip 

brass end se c t ion 

inlet 

Fig ur e 43. --Fla t plate test s e ction. 
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when heated; the tension springs on the test section could not keep 

the strip flat. 

Some success was achieved in measuring heat transfer coeffi

cients and in exploring the nucleate boiling-film boiling transition 

point which was described by Kovalev (42). Kovalev found that an 

equilibrium heat flux exists below which both nucleate and film 

boiling regimes exist on the same surface. This work confirmed 

Kova lev' s conclusion, but this work was not pursued to the extent 

at which quantitative results could be obtained. 

A Fastex camera was used to photograph an unsteady state 

situation. Film boiling was begun on the vertical plate and the power 

then was turned off. The resulting collapse of the film was photo

graphed at 960 frames per second. The film rapidly decreased in 

thickness and the turbulent nature of the liquid-vapor interface 

diminished. However, the wave length of the waves still was non

uniform. The frequency was measured at various heights from the 

lower edge of the 2 22/32 inches by 5/8 inch Crome! strip. The film 

collapse was noted to b e c omplete in 0. 8 seconds. The frequency 

was determined from the time required for the last 40 cycles prior 

to complete collapse. The temperature of the incoming n-heptane 

was 105°F and the temperature of the strip was measured with an 

optical pyrometer to be 880°C. The power dissipated in the strip 
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was 560 watts and the liquid flow through the test section was 0. 363 

gallons per minute, as indicate d by the rotame ter. Table l 7 lists 

the frequenc y measured at various distances' from the bottom of the 

strip. It may be seen that the frequency dec reased as the measured 

distance up the strip was increas e d. The frequencies were of the 

same magnitude as reported by Bradfield ( 5) in his inv estigation of 

wave generation at a stagnation point during forced convection film 

boiling on a v ertically oriented hemisphere cylinder. In the photo

graphic investigation, it was impossible to measure the thic kness 

of the film bec ause of edge effec ts resulting from a menis c us at the 

quartz wall. Therefore, the investigation of the termination of film 

boiling was stopped at this point. 

In conclusion, the work done on the film boiling of n-heptane on a 

vertical flat plate was unsuccessful. However, work may be c on

tinued alo ng one of two paths. The nucleate boiling -film boiling 

transition interface as a function of the distance from the lowe r edge 

of the strip may be inv estigated, and the effec ts o f the sudden ter

mination of film boiling also may be investigated more e x t e nsively. 
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TABLE 17 

FREQUENCY VERSUS POSITION OF INTERFACIAL WAVES 

Distance from Bottom of 
Strip (cm.) 

6. 10 

5. 21 

4. 35 

3. 18 

2. 31 

1. 42 

Frequency 
(Hz.) 

87 

89 

98 

104 

115 

130 
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APPENDIX I 

THE FUTURE OF FILM BOILING 

In the past, film boiling has been avoided as a method of heat 

transfer. However, many practical uses of film boiling now are 

beginning to appear. 

As this investigation has shown, film boiling may be used as a 

simple means of deaerating water. This process possibly may be 

used to separate liquid-liquid solutions in which the liquids have 

widely different v olatilities. 

Film boiling has been suggested for use in thermal cracking (9). 

The high temperature~ and rapid quenching make this a definite 

possibility. One of the conclusions reached in Chapter V is that 

a hetrogeneous chemical reaction may occur at the wall during film 

boiling. Since virtually any material may be used for this surface, 

a wide variety of reactions are possible. A sphere made of a 

catalytic material may be used. The use of film boiling for these 

heterogeneous reactions has the advantage of rapid quenching . 

There are other uses for film boiling which are not related to 

the experimental investigation. For example, film b o iling may be 

used to obtain very high heat fluxes. Figure l indicates that the 

nucleate boiling has a maximum heat flux beyond whic h film bo i ling 

must be used. 



-214-

Film boiling has been shown to reduce the friction drag on a 

body moving through a liquid (6). This phenomena has potential 

uses in the propulsion of objects through liquids. 

Since in film boiling liquid-solid contac.t does not exist, film 

boiling may be used in instances in which this contact is not desired. 

An example is the possibility of the boiling of saline or sugar 

solutions. 

The above practical applications for film boiling indicate that 

further research still remains to be done on the various aspec ts 

of film boiling. 
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APPENDIX J 

FILM BOILING FROM A SPHERE DURING FORCED CONVECTION 

OF SUBCOOLED WATER 

(PRELIMINARY RESULTS) 
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R-lntod from •••c PUNDAMENTALS, Vol. II. P11111 183, February 11170 
Copyrleht 1970 by th• A.-lcan Cllomlcel Society and .._1nl8d by -mluion of tho copyright owner 

Film Boiling from a Sphere during Forced Convection 
of Subcooled Water 

Forced convection fllm bolling from a ophere wa1 lrw .. Hgated. The water wa• oubcooled1 a vapor fllm 
exl1ted In which no net formation of vapor occurred. The r....ttlng ral•• af heat lransfer were cc>nllderably 
greater than thal predicted for a 1aturated fluid or for forced convection from the c:Gnllanl lemperoture 
sphere formed by the llquld-vapor Interface. If It Is onumed that the fllm doe1 not exist, a poor correlation 
exlsb between the experimental and theoretlcal r..ulb1 this auumplion camot be justified, since a fllm was 
observed In all cases. 

FREDERXINO and Cl&rk (1963) treated the caee of a oaturated 
free convection film boiling from a ephere. Uaing a bound

ary layer analysis they found that 

q - 0.686 ["1r11k,p,(p, - p,)]'" (T. - T,) (1) 
D11,(T. - T,) 

Witte (1968) preeented an analysis for oaturated film boiling 
fn>m a •phore during forced oonveation. By U11Umlng that 
th11 volor.ity profile is linoar and thRt tho lnterfaolal volooity 
cRn 11<' clotermiHl'<I fnm1 potential ftow theory, he found that 

q • 0.6118 [ k,p,U ./a'" ]'" (T • - T J (2) 
D(T. - T,) 

Sideman (1966) uaed potential ftow theory and ~ed elip 
at the wall to develop tho following equation for nonbolling 
heat transfer during forced convection flow put a epbere. 

q. 1.1a[U-~.>•]"1 
(T - Ta) (3) 

Subcooled forced convection film boiling from a aphel'e 
baa been investigated experimentally by Witte (1968) and 
Witte d ol. (1968). They concluded from a study of liquid 

eodium that a vapor film doee not exist for large degreee of 
eubcooling of the liquid, and that the heat transfer rate may, 
therefore, be deecribed by Sideman's relationship (1966). 
However, Witte (1968) suggested that further experiments 
be performed to verify the absence of a vapor film. It is im
portant to obtain heat transfer data for forced convection 
film bolling on a sphere under conditions in which the film 
may be obeervcd. 

._.... 
A Lapel high frequ~ency 6-kw induction heater operating 

between 2.6 and 6.0 MHa WM 11-t to heat the ophere ehown 
in Figure 1. Thia dilfe"' from the experiments of Witte d al. 
(Witte, 1967; Witted al., lllel!) in th .. t the •phere wu heated 
continuouely. The liquid ueed WM water and the •phere wae 
eteel. A constant fluid velocity wae m .. intainoo by mearus of a 
oonotant head tank and the ftow rate w"" meuured hy mean• 
of a rotameter. The glAlle wool was plaud in the tube t.o 
remove any lateral temperature gradienta, and the Lavite 
diek wae ueed to prevent the hot sphere from touching the 
~ tube. The hot sphere WM supported by the liquid Sow 
itself and wu not in contact with the Lavite diek. Tbe tem
perature of the sphere WM determined with a Pyro micro

. optical pyrometer. Thie apparatu• permitted film boiling of 
eubcooled liquids and simultaneous visual obaervation of the 
film. 

VOL 9 HO. I RAUAllT 1970 IUC P\IHDAMB«ALS IU 
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Hubo<•>lin11 of thn wawr to bctwoon 10° and IKl°C reeulted 
in " eU.blc vapor film and no huhbltls left the film at flow 
ratM of l><1twoon 0.4 ar1<I 2.7 r.n J>Cr second. The oool li<1uid 
prevflnt.NI the omiH11io11 of V&JMtr from tho film due to buoy1U1t 
forOOH. Thi• 11routly •implifiol<l the onergy balanco, oinoe 
no vapor wu p1'Wlnt. cluwntttron.m. 

Tho n.~Hulling rn.tt~M or h.-nt tramtfor wem much Kre&ter than 
prodiet.•I hy ~:quatim1 :.! for u ... t.urawd liquid (J<'il(Ure 2). 
ThiK i• iu •111r.litativo Bj(roomont with tho theory developed 
by COllll and liJH\rmw (11161) for film boiling of a 1111bcooled 
liquid ma 11, vortical ftt1.t pla~. Hinnn 110 n11t fonnatiou or vapor 
o~cunt nrul thn vK1•or-li,1uitl i11tn1·r11.~o i" •J>proxlmatoly Hphuri
onl, Hitlt1mnn'H 11;quu.t.i11n a could ho expect.eel to •1•11ly if T 
itt tt0L uc1ul\I to 7' •. llowuvor, tho experimentally mea1tured 

INSULATION 

H " lO. -
~ASI .....,_ 
TUil 

IHLEf 

Figure 1 . Fiim bolling apparatw 
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0 .04 0.05 0 .06 0.07 0.08 

?69~ ('1'19 pykyU .. /D(T,. -r.f1
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Figure 2. Experimentally measured rain of heat trar11fer 
for subcooled water compared to that lhearetlcally pre
dicted for saturated water 
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figure 3. Experimentally measured rate of heal transfer 
for 1ubcooled water compared to lhol lheorelfcally pre· 
dieted by Sideman's Equation 3 

values are an order of magnitude greater than predicted 
(Figure 8). 

Witte •I al. (1968) oonr.ludod from their study of liquid 
eodium that no film w1111 p......,nt, Hince their date corr<•loted 
with Sideman's Equation 3 with T MOt equal to T ,.. If these 
&88Umptione are mado here, a not unrna..."W.mable correlation 
exists, as also Rhown in Jt .. igurc 3. However, since a film is 
visible, this 11118Umption is not jW!tifioLle in this Clllle. 

In all the casee noted abuve, the film w1111 vi81111lly oLHCrved 
to surround the ephere completely and intcrmitt.flnt liquid· 
BOlid contact W118 not visually apparent. llowcver, by i:roatly 
increaaing tho rate of liquid flow pa.Ht the Hphere, u coudition 
of Bimultanoom" nucleate and film hoili11JJ; could be rrnufo to 
exiat. Tho nucleato boilillf( ocmirrntl on the dowm1tn,.u11 Hirle 
of the ephuru, aucompanlod hy tl Hif(nifictmtly Jown Hllrl&M'.c 
temperuturo in tho nuoleo.tu hoili11K rnl(io11 of tho "Plwm. 

Co11clu•lona 

Forco<i conveotion film hoilin11 of water •ubcoole<l below i to 
boiling point may result in a vapor film in which no net 
formation of vapor occur.. The r,..ulti1111 rates of I.eat tran•fer 
are co1U1iderably greater than th1<t prcolicte<l for u Nlturat.ed 
liquid and for forced conv~tion from the contitant t.cm1~ra~ 
ture 8phere formed by the liquid-vapor interfat·4•. H it is 
assumed that the film clocs 11ot t•xi/"\t, t:orrr.hltiou het.wut~n 
experiment and theory iH poor; however, thiH a~umption iH 
not justified, since a film WH.H viMua.lly oLtterved. A relationHhip 
for predicting rates of heat tran•fer from a •pherc to a •ul>
oooled liquid during forced convection film boiling rmntlinM 
to be found. 
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Ne1neftcletwe 

C - Ht>Mific' }mat, c.il/K-°C il - dituuntor of Hl•h.,rc, nm 
g - Q(!Cflltmt.tion of ,.;ra.vity, om/..nc11 
la 11 - IKWllt h•~•t of v11poriMtio11, ""l/K . 
la "1, - la 11 + O.llH C • (T,. - T ,) , ofl"eot1vc latent heat of 
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- therm"I comluctivity( cal/Hl'c-cm-°C 
- hM.t tranftfcr rate, Ctl /eer.-cm1 

k 

;. - t.emperaturc, °C 
U _ - hulk flow rat.,/ annular area between opheni and gu 

tube, cm/8CC 
p - dcnoity, g/cm' 
IA - vittr.0M1ty1 «!'cm-aeo 
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PROPOSITION I 

A simple photoelectric device may be used to observe the profile 

of a surface wave and to determine its frequency. For ripples of 

small amplitude on a deep fluid, the wave profile is a linear repro

duction of the original wave. 
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Light passing through a light absorbing substance will be ct i -

minished according to Lambert's law; the intensity of light passing 

through an absorbing liquid is determined by the depth of the liquid. 

A periodic surface wave over an absorbing liquid will cause light 

of periodic intensity to leave the liquid. The light of periodic inten

sity may be conve rted to an alternating electrical current by using a 

phototube. Then, the wave form may be viewed on an oscilloscope, 

or the wave frequency may be measured by observing the Lissajous 

diagram produced by the wave form and a calibrated audio os c illator. 

This method has been used with infrared light and an electronic 

linearizing circuit ( 4). A simpler system has been built by using a 

standard incandescent bulb as a light source and by adding ink or dye 

to the liquid. The output is shown to be linear for waves of small 

amplitude over a deep liquid. The use of an audio oscillator to deter

mine the frequency of a surface wave has not been prev iously re

ported. 

Apparatus 

A periodic surface wave was produced by blowing a jet of air 

across the surface of a liquid contained in a glass tray. A small 

quantity of black ink was added to the liquid, water, to absorb light. 

The apparatus is illustrated in Figure 1. 



\ht sourc e 
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glass tray 

resistor 

7 

audio 

oscillator 

mirror 

I 

air 

photo tube 

power 
s upply 

Fig ure 1 . - -Apparatus for v iewing and measuring the frequency · 

of s u rface wav es . 
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A tungsten filament bulb fed with direct c ur rent was us ed a:; a 

light source. The light was first passed through a collin1ating l e ns, 

then through a focusing lens which focused a small image of the 

source onto the surface of the liquid. The light which passed through 

the liquid was focused by a third lens onto a photocell. 

The photocell (RCA 922) was connected in series with a 126 

megohm resistance and a 200 volt DC power supply. The y axis 

input of an oscilloscope was connected across the resistor. A 

L is sajous diagram was produced by an audio oscillate r connected 

across the x input of the oscilloscope. 

Conditions of Linearity 

Lambert's law may be stated as ( l) 

where 

I = intensity of transmitted light 
0 

I = intensity of inc ident light on surface 

k = a constant 

d = depth of liquid 
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This may be rewritten as 

r 
d = k ln I

0 
II 

If the inc ident light is held constant throughout the experiment, the 

above may be written as 

if 

d = k" ln I 
0 

I = l. 0 

Now, if the depth is large in comparison to the wave amplitude and 

the absorbancy is small, the ratio of I
0

/I will be close to unity. 

The above expression for "d" may be expanded in a Taylor series 

In this case, I -1 will be small; therefore, only the first term of 
0 

the Taylor series will need to be considered. 

d = k"(I -1) 
0 

I = d/k" + 1 
0 
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The photoelectric current will be directly proportional to the 

illumination of the cathod (3). 

where "i 11 . is the current, and S is a constant. Then, 

i = S(l + d/k
11

) 

v = RS(l + d/k 11
) 

In the above equation "v" is the voltage across the resistor in 

series with the phototube, and R is the value of the resistance. If 

''d'' is expressed as an average value, davg' and a varying value, d, 

which represents the waveform 

d = RS(l+d /k 11 )+RSd/k11 

avg 

Since the oscilloscope may be used to observe only the AC component 

of its input, then 

v = RSd/k" = k 1
" d observed 

Thus, the image observed is the true wave form and the freti.uenc y 

is the true frequency for waves of small amplitude in a deep fluid. 
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Experimental Results 

Figure 2 is a photograph taken directly from the os cilloscope. 

The sine wave which was produced by blowing a jet of air over the 

surface of the liquid may be seen. Assuming the original was a sine 

wave, it can be seen that the linearity is good. 

Figure 3 is the Lissajous diagram obtained by placing a 16. 0 

cycle per second wave across the x input of the oscilloscpoe. The 

ellipse indicates that the ratio of the two frequencies is one to one (2). 

In this manner, the frequency of the wave may be determined with a 

high degre:e of accuracy. 
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PROPOSITION II 

The surface concentration of an evaporating binary mixture may 

v ary as a function of relative volatility as well as a function of time, 

evaporation rate, initial concentration, and diffusivity. An approxi

mate solution to the g overning differential equation has been obtained 

analytic ally and compared to a numerical solution. 
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The physical situation is shown i n F igure 1 : the liquid is of in -

finite depth and local e q uilibrium exists at the interface. The entire 

gaseous phase i s assumed to be at a single uniform concentration 

whi ch varies with time. The r ate of eva poration and the diffusi v ity 

both are assumed to be constant, and the interface is stationary. 

The equations and boundary conditio ns which describe the con-

c entration as a function of time and position a re: 

d xa woxa d 2x . a 
+ = D ab 

dt p o z o z 2 
( 1) 

a t t = O· x = x , 
a a , o 

o xa 
w (ya - xa s> at z = O· D ab = , 

CJ z , ( 2) 

The {j.x/oz term is now omitted from Equation ( l ) for simplicity 

even though it n'lay be as important as the other terms in the equation. 

This omission is made solely to facilitate the solution of E quation (1). 

The term w x in E quation ( 2 ) is not omitted however . a , s At this 

point, several assumptions are made. The densities of components 

"a" and "b" are assumed to be equal and not dependent on the con-

c entration. Therefore, there is no hydr odynamic flow in the liquid. 

The Fick's diffusion coefficient was used. The definition of thi s 

c oefficient is 
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gas 

liquid 

1 z 

Coordinate system used in analytical solution 

ficticious concentration 

_\. __ -
interface I ___ __.,. ____ __!. 

z - - - - - --- - - - - - -
- - -----
-- - -e-

Grid used in numerical solution 

Figure 1. - - Coordinate systems used in investigatio n. 
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axa 
-x v /--

a a " oz 

where v is the velocity of component "a" in the liquid (3). 
a 

Since the densities of "a" and "b" are assumed to be equal 

( 3) 

and not dependent on concentration, the Chapman-Cowling and the 

Fic k diffusion coefficients ( 3) are equal. The Chapman- Cowling 

co efficient is defined as 

D = c,ab (4) 

Further assumptions of constant temperature and c onstant rela-

tive volatility are made to simplify the problem. In addition, the 

relationship between Xa s and "y" must be found to simplify 
' 

Equation (2). Because local equilibrium exists at the interface, the 

following relationship holds: 

a bx a a, s 
( 5) 

1 + ( aab - 1) x a, s 

An exact solution of the problem has been obtaine d (1) (2) for the 

two limiting c ases when the mass balanc e at th e interface i s ex-

p1·esse d as 
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-232-

dXa 
D -- = 

ab dz 

dXa 
D --= 

ab dz 

kx a 

k {y I - X ) 
a a 

where y 1 is a constant concentration in the atmosphere remote 
a 

from the interface. 

It may be noted that Equa~ion (5) may be rewritten as 

( 6 ) 

(7) 

1)2 x 2 + (" b 
a a 

3 3 ] 1) xa . . . { 8 ) 

where {"ab - 1) xa < 1. 

In fact, if 

then 

{"b-l) x <<l a a 

" x ab a 

and th e mass balance at the interface, Equation (2), becom es 

(9) 

(1 0 ) 
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( L I ) 

Using the solution 
1
to Equation ( 1) with Equation ( L 1) as a boundary 

I 

condition, one obtains the following ( 1): 

x 
a 

x 
a , o 

z 
= erf + e 

2~Dab t 

[ w(«~ -
1) z 

ab 

The surfac e c onc entration is given by 

x 
a 

x 
a , o 

= e 

2 2 
w ( «ab - 1) t 

D 
ab 

+ 
w2( « - 1)2 t] ab 

D 
ab 

] 

( 12) 

( 13) 

This relationship has not been stated previously in terms o f relative 

v olatility. 
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Numerical Solution 

It is desired to know the variation of surface composition as a 

function of the following parameters: xa, 
0

, °'ab' w /Dab' and 

Dabt. A numerical solution will give some indication of the validity 

of Equation (13). The problem was solved by a digital computer 

using the Schmidt method ( 2). A grid with a spacing of 0. 01 was 

used; either cm. -g. -sec. or ft. -lb. -sec. units may be assigned 

to the numbers obtained since the solution did not consider a specific 

case. The time increment used was 0. 00005. 

The boundary condition, Equation ( 2), requires that the c oncentr a-

tion gradient at the interface be related to the current interfacial 

concentration by the following: 

w(y - x ) 
a a, s 

(14) 
dz 

This boundary condition is maintained by a ficticious concentration 

above the interface as shown in Figure 1. 

Equation (14) may be expressed in finite difference form to obtain 

the ficticious concentration, x (1). 
a 

x ( 2) - x ( 1) 
a a w [ u b x (2) 

= Dab _l_+_(a_°'a_b_~_l_)_x_a_( 2-) 
(15) 
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A c.:omputer program was written to solve th e problcrn for x 
a,o 

0. 0 l and several values of w /Dab and «ab. Table I relates the 

notation used previously with that used within the program. The 

program is given in Figure 2, 

Results of Numerical Computations 

Figures 3, 4, and 5 contain results obtained by the computer 

program. As illustrated by these curves, the surface concentration 

foes to an asymptote of zero, if «ab is greater than unity. When 

the relative volatility is less than unity, the surface concentration 

c hanges little. This is a consequence of the small initial concentra-

tion of x , 0. 01. If the relative v olatility is equal to unity, then 
a 

the con centrations will not change as a function of time. 

Table 2 gives an indication of the size of error to be expected if 

Equation (13) is used as an approximate solution of the problem. 

For small v alues of time a value of ( « b - 1) x close to unity 
a a, o 

will introduce sizeable errors. In fact, it can be seen that the error 

is 26% when ( « b - 1) x is equal to 0. 99. However, when 
a a , o 

( « b - 1) x is equal to 0. 09 the error is less than l %. a a, o 
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TABLE 

CONVERSION OF NOTATION TO FORTRAN 

Notation in Discussion 

w/Dab 

Dabt 

Dab t 

xa 

::>ca, o 

xa,s 

Ya 

AZ 

Notation in Program 

WD(M) 

DTIME 

DDT 

X(I) 

XO 

X(2) 

y 

DZ 

ALPHA(L) 
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x =0 . 0 l a,o 

w = l. 0 
D ab 

a =100 . 0 

o. 01 
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a =2 . 0 

a = lO. 0 

a =20 . 0 

0 . 02 

Figur e 3 . - - Surface concentr ation versus diffusivity-time product. 
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a =0.0001 
4=2 . 0 
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Dab 
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F igure 4. - -Surface concentration v ersus d i ffu s i vity- time produc t. 
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Conclusions 

The relative volatility has been shown to be an in1po rlant para-

meter needed to predict the behavior of evaporating binary mixtures. 

The problem of an evaporating binary mixture with constant physical 

properties and a stationary interface has been solved numerically 

for a gas composition which is at all times in equilibrium with the 

liquid at the interface. The results compare closely with those of 

an approximate solution for small values of (a b - 1) x 
a a, o 

\ 
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NOTATION 

Symbols 

k 

t 

v 

w 

x a 

x a,o 

x 
a, s 

y' a 

z 

£\t 

Fick 1 s binary diffusivity 

a constant 

time 

velocity 

rate of evaporation 

mole fraction of 11a 11 in the liquid 

initial concentration of 11a 11 in the liquid 

concentratiin of 11a 11 at the interface in the liquid 

mole fraction "a" in the gas at the interface 

constant concentration in the atmosphere remote from 
the interface 

coordinate 

relative volatility 

time increment 

distance increment 
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PROPOSITION III 

The current selling price of the common shares of a dual closed 

end mutual fund may be determined by an analysis of current stock 

market conditions, current rates of interest, the past performance 

of the fund, and the current net asset value of the fund's investments. 

An empirical correlation provides the relationship between the past 

rate of return, current rates of interest, and the required future rate 

of return. 
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A closed end mutual fund is a holding com.pany whic h issues a 

specific number of shares to obtain capital which in turn is invested 

in other securities . The shares initially issued by the closed end 

mutual fund are then traded as the stock of any corporation would be. 

The current price of these shares does not necessarily equal the 

current value of the fund's investments, the net as set value. The 

percentage difference between the value of the fund's shares, P, and 

the value of the fund's assets, N, is the premium or discount, 8 

N-P 
8 = N x 100% ( 1) 

Profits from the fund's assets are either reinvested, or distributed 

to the holders of the fund's shares. 

A dual fund is a closed end mutual fund which enjoys a leverage 

effect from the existence of preferred shares in addition to the usual 

common shares. The price of the preferred shares is governed by 

prevailing interest rates because the preferred shares pay a fixed 

dividend. However, the current price of the common shares depends 

on several other factors including the current value of all investments 

owned by the fund, the current position of the stock market, the 

expected performance of the fund, the date at which the fund \vi.11 be 

dissolved, and the leverage introduced by the preferred shares. 
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There are seven dual funds presently in existence; all were begun 

in the spring of 1967 (2). Since then, the common shares of these 

dual funds usually have been selling at a discount, which has dis-

couraged the creation of more dual funds. 

Analysis 

Short term stock market effects should be discounted, because 

the performance of the dual funds depends on the capital apprecia-

tion over a long period of time. Market effects may be discounted 

by multiplying the current total assets of the fund; the sum of the 

face value of the preferred shares, n, and the common net asset 

value, N, by the factor 

.,, = f
t2 

--- r dt/ r 
tl 

(2) 
l 

t2 - t1 

where r is a measure of the current value of the stock market 

(Standard and Poor's 500 Stock Average) and t
2 

- t
1 

is an inter-

mediate time interval (2 years) . Capital appreciation is based on the 

total asset value multiplied by the normalizing factor, 7] 

7J (N + n) 

Since the asset value of the preferred is fixed, the t otal as set value 
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introduces leverage into the probable appreciation of the co1nn1on 

net as set value. The past rate of return is related to the initial 

total assets and the current total assets by the following compound 

interest formula: 

(11(N + n) + n P (t - t
0

)] = [11(N+n)J
0 

(1 + R)t-to (3) 

where R is the past rate of return, t-t
0 

is the time interval since 

the fund was introduced, and P is the annual rate of interest paid on 

the preferred shares. It was assumed that no dividends were paid 

on the common shares. The term 

n P (t - t 0 )<< '7(N+n) (4) 

and represents the total interest paid to date on the preferred shares 

of the fund. By simplifying Equation (3), 

At some future time, 
>!< 

t , the fund will be liquidated. 

( 5) 

The net 

asset value of the common shares at that time, N>!' : will be deter -

mined by the appreciation of the assets of both the preferred and 

common shares. The determination of the appreciation on the assets 
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of the preferred shares is discussed in the Appendix. If it is as-

sumed that the past rate of return equals the future rate of retnrn, 

then 

1.c 

Appreciation of common as sets = N ( 1 + R)t -t 

Appreciation of preferred assets " n { (! +R)t* -t_ p [< 1 
+R) t:-t - ~I 

J, * t•-t 
N = (N + n) ( 1 + R) -

* 
[

(l +R)t -t 

nP 
R 

-1] 
- n ( 6) 

If the current market price of the dual fund is governed by the esti-

>!< 
mated value at time, t , and the prevailing interest rates for a 

security with a risk equivalent to that of the fund being considered, 

r 1 , compounded annualy, then the current price of the common shares, 

P, is determined by 

* N = P(l +r') 
* t -t 

By combining Equations ( 6) and ( 7), 

p = (n+N>(l +Rr-t 

1 +r} 

, .. 
n R [( 1 + R) t' - t - 1 ) - n 

( 1 + r') 
t ,< - t 

(7) 

(8) 

If the prevailing interest rate for a given group of sec urities with a 

c ommon risk is 11 r 11 , then the interest rate, r', for the dual fund 
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being considered will be proportional to this interest r ate or 

r' :: kr (9) 

For example, if "r" is determined for a corpo rate bond rated Baa 

and a mutual fund is believed to have more risk than a corporate 

bond rated Baa, then · "k" will be greater than unity. The value of 

"k" can be expected to be related to the past performance of the 

fund. 

The current discount is related to the factor "k", the current 

interest rate, r, and the other parameters by 

8 = 
(N + n) [l+Rjt* -t 

\ 1 +krJ I
_!_(< 1 + R)t*-t 

n R -1 

+- * 
N (l+kr)t -t 

] - 1 I 
x 100% ( l 0) 1 -

N 

Comparison w ith Data 

A group of five dual purpose funds was chosen for study. The 

call dates of the funds, the initial asset value of common and pre -

fer red shares, and the yield of the preferred shares are presented 

in Table 1 (2). These funds were examined at five separate date s 

beginning one year afte r the initiation of the funds and c ontinuing 

until two years after the initiation of the funds. The dates and the 

prevailing interest rates for Moody's Baa corporate bonds on these 
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TABLE l 

INITIAL DATA ON DUAL FUNDS (2) 

Fund Call Date Initial N. A. Preferred 
Yield 

American Dual Vest 6/29 /79 $ 13. 80 5. 6% 

Gemini 12/31/84 11. 00 4. 7% 

Income and Capital 3/31/82 9. 15 5 . 0% 
Shares 

Leverage Fund of 1 I 4 /82 1 3. 73 5. 0% 
Boston 

Scudder Duo - Vest 4 I 1 I 82 9 . 15 6. 4% 
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dates are given in Table 2 ( 1). The values of r and 11 as defined in 

Equation (2), also are given for each date. The Standard and Poor's 

500 Stock Average is used for r . The time interval LlSed to deter-

mine 11 is two years ( 1). The market price of the common shares of 

each of the five funds as well as their net asset value and their pre-

mium have been found for each date (3), (4), (5), (6), and (7). These 

are presented in Table 3. 

To calculate the premium from the preceeding data, one must 

know the prevailing interest rates, r', for each of the securities. 

Thus, one must know the value of 11k 11 where 

r' = kr (9) 

and 11 r 11 is the Moody's Baa bond interest rate. 

Thus, Equation (10) may be solved for 11k 11 

1 

k = ~1-l +[ I g [N+n (l+R)t* -t 

r 1- 100\ N 

n [P t >:• t 
-- -((l+R) -

N R 
(11) 

The past rates of return and the values of 11k 11 have been found 

for each date from Equations (5) and (11) and are presented in Table 

4. The past rate of return has been plotted versus the risk factor 

in Figure 1, which shows there is a good correlation between the 

two. This correlation may be expressed as 
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TABLE 

DATA ON STOCK MARKET AND INTEREST RATES (1) 

Date 

3/22/67 

3/22/68 

6/21/68 

9/20 /68 

12/20/68 

3/21/69 

Time 
(years) 

0.00 

l. 00 

l. 25 

l. 50 

l. 75 

2.00 

Interest Rate, r 
(Moody's Baa Bond) 

(%) 

6.90 

7.05 

6.80 

7.25 

7. 63 

90 85 .2 

89 88 . 6 

100 90. 3 

103 89.5 

10 6 93.3 

100 96.0 
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TABLE 3 

PRICE DATA FOR DUAL FUNDS ( 3)' ( 4). ( 5), ((1). (7) 

Fund Date Price N.A. Premiurr 
( %) 

American 3/22/68 $10. 25 $12. 67 - 19. 1 
Dual Vest 6 /21/ 68 13.875 18. 19 -23.7 

9/20/68 15.875 19. 73 -19. 5 
12/20/68 19. 5 22.98 - 15. 1 
3/21/69 14. 5 .16. 34 -11. 3 

Gemini 3/22/68 11. 37 5 12. 21 - 6.8 
6/21/68 13.0 16. 92 -23. 2 
9/20/68 15.875 17. 75 - l 0. 5 

12/20/68 17.625 19. 61 -10 . 2 
3/21 / 69 15. 50 18.03 -14. 0 

Income and 3/22/68 9.25 10. 65 -13. l 
Capital 6/21/68 11. 37 5 14.66 -22.4 

9/20/68 14. 5 15. 98 - 9. 3 
12/20/68 17. 125 18.87 - 9.2 
3/21/69 14. 5 16. 23 -10 .7 

Leverage Fund 3/22/68 10. 0 11. 99 -16. 6 
6/21/68 10.75 14.57 -26.2 
9/20/68 11.125 15. 21 -26.8 

12/20/68 13. 0 16. 66 -22.0 
3/21/69 11. 75 14.99 -21. 6 

Scudder 3/22/68 ' 7.25 7 . 88 - 8.0 
Duo-Vest 6/21/68 8 . 375 10.93 -23.4 

9/20/68 8.75 10. 56 - l 7. 1 
12/20/68 8. 625 1 J. 41 -24.4 
3/21/69 7.75 9.42 - 17. 7 
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TABLE 4 

CALCULATED PARAMETERS - DUAL FUNDS 

Fund Date Past Return (R) k 
(%) 

American Dual Vest 3/22/68 3.99 1. 25 
6/21/68 11. 6 1. 99 
9/20/68 10. 5 1, 89 

12/20/68 16. 3 2.55 
3/21/69 7.03 1. 37 

Gemini 3/22/68 13. 6 2. 39 
6/21/68 19. 3 2.92 
9/20/68 15. 4 2. 52 

12/20/68 18. 7 2. 80 
3/21/69 16. 7 2. 39 

Income and Capital 3/22/68 16.7 2.85 
6/21/68 21. 7 3. 31 
9/20/68 19. 3 3. 1'5 

12/20/68 25. 3 3. 75 
3/21/69 19. 7 2.83 

Leverage Fund 3/22/68 1. 36 0.83 
6/21/68 1. 60 0.65 
9/20/68 0.59 0 . 52 

12/20/68 4.78 0.98 
3/21/69 4.56 0.93 

Scudder Duo-Vest 3/22/68 l. 47 0.80 
6/21/68 7. 39 1. 30 
9/20/68 2.73 0.74 

12/20/68 6. 35 1. 08 
3/21/69 3,78 0.80 
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0 American Dual Vest 

o Gemini 

o- Income and Capital 

? Leverage Fund of Boston 

-<> Scudder Duo- Vest 

1 2 
Risk Factor, k 

3 

Figure 1. - -Correlation between past rate of 
return and anticipated future rate of return. 
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k (

13. 3 R ~ 
----+ 0.43 

- 100% 
( 12) 

Conclusions 

The market value of a dual purpose mutual fund may be deter-

mined f rom its past performance, prevailing interest rates, and net 

asset value. Its past rate of return may be determined from 

Equation (5). The interest rate to be expected in the future may be_ 

determined from Equations (9) and ( 12). The current price then may 

be found from Equation ( 8). 

The effects of supply and demand on a c ommodity in a free 

market have been reduced to simple mathematical relation ships by 

a correlation between the past rate of return and the expected rate 

of return. 
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NOTATION 

Symbols 

k risk factor 

n net asset value of preferred shares 

N net asset value of common shares 

P market value 

r prev ailing interest rate 

r' expected return on common shares 

R past rate of return 

t time 

o premium 

r Standard and Poor's 500 Stock A ve rage 

TJ factor to remove effect of stock market 

P rate of interest on preferred shares 

Subscripts 

o initial 

Superscripts 

* c all date 
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APPENDIX 

The interest on the preferred shares, p , and the rate of return, 

R, on the invested preferred capital effect the preferred as sets as 

follows: 

Time Preferred As sets 

Initial n 

1 Year n (l+R-P) 

2 Years n [ ( 1 + R - p) ( 1 + R) - p] 

3 Years n { [ ( 1 + R - p) ( 1 + R) - p 1 ( 1 + R) - P} 

The above may be expressed as 

n [ (1 
t 

(1 +R)t-1 ] Preferred Assets = + R)t - P ~ 
1 

or 

- 1] l n 1(1 -pf (1 + R)t 
Preferred Assets = + R)t 

R 


