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ABSTRACT 

The principle aims of this thesis include the development of 

models of sublimation and melting from first principles and the ap

plication of these models to the rare gases. 

A simple physical model is constructed to represent the sub

limation of monatomic elements. According to this model, the solid 

and gas phases are two states of a single physical system. The nature 

of the phase transition is clearly revealed, and the relations between 

the vapor pressure, the latent heat, and the transition temperature 

are derived. The resulting theory is applied to argon, krypton, and 

xenon, and good agreement with experiment is found. 

For the melting transition, the solid is represented by an an

harmonic model and the liquid is described by the Percus-Yevick ap

proximation. The behavior of the liquid at high densities is studied 

on the isotherms kT/e = 1. 3, 1. 8, and 2. 0, where k is 

Boltzmann's constant, T is the temperature, and e is the well depth 

of the Lennard-Jones 12-6 pair potential. No solutions of the Percus

Yevick equation were found for pcr3 above 1. 3 , where p is the 

particle density and a is the radial parameter of the Lennard-Jones 

potential. The liquid structure is found to be very different from the 

solid structure near the melting line. The liquid pressures are about 

50 percent low for experimental melting densities of argon. This 

discrepancy gives rise to melting pressures up to twice the experi

mental values. 
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I. INTRODUCTION 

Phase tran1:1itions may be characterize d by the appearance of 

a discontinuity or a singularity in the equation of state of matter. A 

complete theory of a phase transition must include the isolation of the 

molecular interaction responsible for the transition and the incorpora

tion of this interaction into physical laws which permit the extraction 

of the macroscopic properties of the transition. This linking of 

molecular interactions and macroscopic properties is formed by 

statistical mechanics. 

We may justify the study of phase transitions in two ways. 

Firstly, understanding the phenome non is sufficient in its own right 

to merit such studies. Hopefully, this under standing will verify 

results of previous experiments and predict behavior which may elim

inate the need for future experiments. Secondly, the transition may 

serve as a vehicle to imply characteristics of a state which is not 

completely understood. This may be done by studying a transition to 

this state from a w e ll defined theoretical state. A classic example 

is the melting of a solid to a liquid. 

Reviews of the main aspects of the theory of phase transitions 

have been made by Brout(l) and Cohen(
2

). These authors point out 

the importance of rev iewing the various phase transitions tha t o ccur 

in nature. Such a review might include transitions in the following 

areas: ferromagne tism, antiferromagnetism, superconductivity, 

order -disorder, binary alloys, lattice gase s , conde nsation, sublima

tion, and melting. Although the advanced the ories of the s e transitions 
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may be very different, the basic phenomenon involved is often 

analogous. For this reason, the phase transitions of the relatively 

simple rare gases are ideal for the study of transition prope rties 

since their molecular structure is simple and does not add further 

complications. 

In this thesis we will develop mole cular mode ls of sublimation 

and melting (or fre e zing) for monatomic elements and apply these 

models to the rare gases. In Fig. 1 we have indicated the transition 

lines that we will study on the phase diagram of argon. 

The thesis is divided into two parts. In Part I a simple mo-

l e cular model is used to represent sublimation of a solid. With this 

model the basic mechanism of the phase transition is easily seen. 

The equilibrium vapor pressure is calculated and an estimate of the 

latent heat of the transition is made. The model is applied to argon, 

krypton, and xenon and excellent agreement with experiment is found. 

In Part II a model of melting is developed from fundamental 

principles. The molecular interaction is represented by a Lennard

Jones (3) 12-6 pair potential function. In this model the emphasis is 

placed on testing the Percus-Yevick(
4

) approximation for the liquid 

state model. This model of the liquid is matched with an anharmonic 

model for the solid . We find that the equation of state of the Percus -

Yevick liquid begins to d e viate from the experimental data when the 

particle density reaches 70 per cent of the particle density along the 

melting line. This gives rise to melting pressures which are higher 

than the experimental value s. As the particle density is inc reased 

t o values 20 to 30 per cent above the melting line, it is found that th e 
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solution of the Percus-Yevick equation will no longer converg,e . 

Although the agreement with experiment is poor, we may 

study how the properties along the melting line depend on the pair 

potential function and anharmonicity. It is demonstrated that the 

critical test of a theory of melting is not how well it predicts the 

slope or shape of the melting curve, but rather how well it predicts 

the changes of entropy and volume of the transition. 
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PART I 

SUBLIMATION OF A MONATOMIC ELEMENT 
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II. FORMULATION OF A MODEL OF SUBLIMATION 

A. INTRODUCTION 

In the past, studies of sublimation have been focused on the 

determination of the vapor pressure of the solid. By noting that the 

two physical systems, the gas state and the solid state, are in equi-

librium, a relation between the vapor pressure and the critical tem

perature may be calculated(S, 6 ). 

For a monatomic solid, the vapor pressure is given by the 

expression (S) 

.tnp dT' 

kT 12 

(II- I ) 

where Lo is the heat of sublimation per molecule at 0°K, cp is 

the heat capacity at constant pressure per molecule of the crystal, 

m is the atomic mass, k is Boltzmann's constant, and h is 

Planck 1 s constant divided by 2iT. 

Empirically, the vapor pressure may be related to the tern-

perature by a relation of the form 

1 
1n p = - z 1n T -

L +E 
0 0 

kT 
(II-2) 

where E is the lattice zero-point energy per molecule and w is 
0 g 

the "geometric mean frequency" of the lattice vibrational spectrum. 

Salter(6 ) has derived Eq. (II-2) from first principles assuming per-

feet crystal structure, quasiharmonic lattice vibrations, and a nearly 
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ideal vapor for T? (JD/2, where (JD is the Debye temperature. 

The calculations of the vapor pressure of solids as exempli-

fied by Eqs. (II-1) and (II-2) do not shed much light on the nature of 

the phase transition. In those analyses, the solid and gaseous states 

are treated as if they were different physical systems rather than 

two phases of a single element. 

It is the purpose of this Chapter to develop the theory of sub-

limation in a new manner by considering sublimat ion as a bridge be -

tween the solid and the gas states. The solid and gas phases arise 

as two components of a single particle system. A critical tempera-

ture, Tc' can be defined such that at temperatures less than Tc' 

the system behaves like a solid; and for temperatures greater than 

T, 
c 

it is a gas. As the temperature increases across T, 
c 

we find 

that a latent heat, L, will accompany the phase transition; and L 

is related to T . Moreover, the variation of the vapor pressure 
c 

with temperature can be calculated. It is found that the vapor pres -

sure is related to the environment of the particle in the gas state. 

B . THEORY 

To represent sublimation, we assume that the solid-gas 

system can b e represented by N independent particles, each in its 

own c ell . The potential, which characterizes the cell, is assumed to 

represent the aggregate interaction with all other atoms. When the 

energy of the particle is lower than a certain energy, E 
1 

we as-

sume every particle lies in a three-dimensional harmonic potential 
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E~ E 
l 

(II-3) 

where w is the Einstein frequency(?) and r is the excursion from 

the equilibrium position. 

At E • the particle suddenly experiences a free particle 
l 

potential 

V=E 
l 

E>E 
l 

(II-4) 

Each particle is confined to a cell which is shown schematical-

ly in Fig. 2. 

For energies below E • the particle energy states(S) are 
l 

with degeneracy 

e = hw(n+3/ 2) 
n 

(n+l )(n+Z} 
g = n 

(II-5) 

(II-6) 

For simplicity, we neglect the interaction of the free particle 

with the harmonic potential when the energy of the particle is greater 

than E,. This is justifiable since R
0 
»[m~' Ji for all cases under 

consideration. 

We will find that the free particle states are essentially con-

tinuous; therefore, we can express the density of energy states (the 

number of energy states between e and e + de ) in the form <9 ) 
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1 

= (2m3)2 V c (e -E )~ 
2irz h3 l 

(II-7) 

where V is the volume of the cell containing the free particles. 
c 

This density of energy states is independent of the shape of V . We 
c 

expect V to decrease with increasing pressure. The idea that 
c 

dense gas particles should be considered as confined to a volume 

much less than the total volume of the container was proposed by 

( 1 0) 
Lennard-Jones and Devonshire . 

At low temperatures, we expect the energies of most particles 

to be less than E , thus we have essentially the Einstein model(?) 
l 

which is in good agreement with experiment for temperatures above 

bw/k for a solid. At high temperatures, we have an ideal gas. 

The partition function, Zt' for the system is 

Z - ZN 
t -

where Z is the partition function for a single particle. 

exp(-e /kT)g 
n n 

alle 
n 

. where e denotes a single particle energy state. 
n 

For our model we have 

M 

(II-8) 

(II-9) 

z = l 
n 

(n+l )(n+2) 
2 exp (-( n+ i}hw/kT )+ SEoo D(e -E

1 
)exp(-e /kT)de 

l 

(II-10) 

where M is the largest integer satisfying the inequality 
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(II-11) 

We have used the discrete energy spectrum in Eq. (II-1 O) be-

cause quantum effects of the harmonic oscillators are present near 

the triple point of rare gas solids. This has been noted by Moelwyn

Hughes (l l >. If the ratio of kT and hw is large, we can use a con-

tinuous approximation for the density of states of the solid. This 

approximation is treated in Appendix A. 

Let us denote 

L
0 

= E
1 

- } hw (II-12) 

which can be interpreted as the zero-point latent heat. Also, it is 

convenient to define the new variables : 

and 

x = exp ( -nw I k T) 

v c 

A= 

n=o 

= aV s 

4 1T3/z (nw )3/z 

C =kT/hw 

(II-13) 

(II-14) 

(II-15) 

(II-16) 

(II-1 7) 

where V is the average atomic volume in the solid, which is es -s 

sentially constant. 
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With the use of Eqs. (II-7) and (II-11) - (II-17), then Eq. 

(Il-1 O) becomes 

Z = x3/z[ ~· + 2XI' +I+ aA exp(-L
0

/kT)C3h]. (II-18) 

where I' and I" are respectively the first and the second derivatives 

of I with respect to X. 

The free energy and the internal energy are given by 

F = - kT log zt (II-19) 

and 
o(F IT) 

v 
8T (II-20) 

By using Eqs. (II-8), (II-18), (II-19), and (II-20), we find the 

energy 

= ~ I"'+ µ. X' I"+ 6XI' + ~ I+aA exp(-L
0

/kT)c>'z [~ +(C+l lf] 
xz. 3/ 2 I"+2XI'+I+aAexp(-L

0
/kT)C 2 

(II-21) 

where I"' is the third derivative of I with respect to X. We note 

that 

is a, 

I = 
1-XM+l 

1-X 
(II-22) 

It is clear that the only undetermined parameter of the model 

the number of volumes V available to the free particle, 
s 

We 

also noted that V decreases with increasing pressure. Let us then 
c 

take 

a = a(p) (II-23) 
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where a(p) decreases with increasing pressure. 

It is instructive to examine Eq. (II - 21) in detail . We note 

that 

E = E(T, w, L
0

, .Aa(p) ) (II-24) 

For low temperatures, the energy is that of a collection of harmonic 

oscillators and for high temperatures, we have the energy of an ideal 

gas. In fact, for either temperature extreme, the energy is inde -

pendent of a(p). In the application of this model to argon, krypton, and 

xenon, we will demonstrate that a(p) is only important near the 

transition point, T , defined by 
c 

(II-25) 

where C is the specific heat at constant volume. For this reason, 
v 

we define the pres sure of Eq. (II-23) to be the equilibrium vapor 

pressure. From Eqs. (II-24) and (II-25), we have 

T = T (w,L ,Aa(p)) 
c c 0 

(II-26) 

For a particular solid, Eq. (II-26) becomes 

T = T (a(p) ) 
c c 

(II-27) 

Equation (II-27) yields the equilibrium vapor pressure curve, once 

a(p) is known. 

For most practical applications, T is essentially independ
c 

ent of w; therefore, Eq. (II-26} can be written more simply as 
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(II-28) 

This is exactly true for the clas.sical solid described in Appendix A 

if A is replaced by A . 
l 

Therefore, for solids with similar molecular structure, such 

as the rare gas solids, one might expect from the law of correspond -

ing states (Ref . 12,p. 19J that for some characteristic pressure 

(II-29) 

In Table I, we illustrate the experimental relationship of Tc and L
0 

for argon, krypton, and xenon at their triple point temperatures, Tf 

TABLE I 

Ratio of zero-point latent heat and kT t 

Element L
0
/kT; 

Argon 11. 08 

Krypton 11. 58 

Xenon 11. 93 

:!,c 

Calculated from values given by G. L. Pollack, Rev. Mod. Phys. 
~. 748 (1964 ). 
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c. APPLICATION TO ARGON, KRYPTON, AND XENON 

1. Preliminary Calculations 

To apply the theory, we need to calculate E(T) given by Eq. 

(II-21) and its derivatives. To calculate the constants of Eq. (II-21) 

we need the following physical constants: the zero-point latent heat, 

L
0

, the zero-point energy, E , the atomic mass, m, 
0 

and the 

average atomic volume in the solid state, Vs. Vle will also need 

the triple point pressure, Pt' and the triple point temperature, Tt' 

for future reference. These constants are given in Table II. 

The zero-point energy is given by 

3 
E

0 
= z hw (II-30) 

By using the physical constants of Table II and Eqs. (II-11) and (II-16), 

we may calculate M and A for each element. These constants are 

listed in Table III. 

TABLE III 

Model Constants 

Element M A 

Argon 15 921.3 

Krypton 27 2212 

Xenon 46 4472 

The energy may now be calculated from Eq. (II-21) as a func -

tion of temperature with the parameter a . The internal energies of 

argon, krypton, and xenon are shown graphically in Figs . 3, 4, and 5 

respectively, for selected values of a. The phase transition is 

obvious. We have noted the critical temperature of each curve. 
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The specific heat, 

Cv=(:~J (II-31) 
v 

may also be calculated from Eq. (II-21) by differentiation. The shape 

of the specific curve is shown in Figs. 6, 7, and 8 for argon, krypton, 

and xenon, respectively. The critical temperature of each curve is 

about 75 percent of the triple point temperature. We note that krypton 

and xenon are behaving as nearly classical solids before the transi-

tion temperature is reached, but that argon is not. 

2. Identification of the Equilibrium Vapor Pres sure 

To this point, we have been using a as a free parameter. 

As we vary a, we change the critical temperature. This is shown 

in Figs. 3, 4, and 5, This behavior was predicted by Eq. (II - 27). As 

we noted in the previous section, if we know the functional form of 

a(p) we can determine the vapor pres sure curve from Eq. (II-27 ). 

With the knowledge that a(p) is a decreasing function with pressure 

and that a(p) is proportional to the volume seen by the free particle, 

we assume 

Q = G 
p 

(II-32) 

where G is a constant and p is the equilibrium vapor pressure. 

Since our model has no provision for a third phase, the liquid state, 

we shall adjust G to the triple point data. We list in Table IV the 

values of G found for the elements studied. By numerically differ-

entiating Eq. (II-21 ), we may calculate the critical curve by using 

Eq. (II-32) in Eq . (II-25 ). These results are compared with 



50 

.le: 40 
z 
........ 
u 

t-
c:i 
w 

30 I 

u 
LL. 
u 
w 
CL 
(f) 20 

10 

0 0 .05 

-21-

0.10 

a • e,ooo 
Tc• 62.9•K 

0.15 

TEMPERATURE , kT I Lo 

Fig. 6 - Specific Heat of Argon 

0 .20 



50 

.:itt:. 40 
z 
........ 
u 
-...... 

<X 
UJ 

30 :I: 

u 
LL 

u 
UJ 
CL 
Cf) 20 

10 

0 0 .05 

-22-

a "' 8,000 

Tc• 87.4 °K 

0.15 

TEMPERATURE, kT I Lo 

Fig. 7 - Specific H eat of Krypton 

0.20 



50 

~ 40 
z 
....... 
u 

1--
<I 
w 

30 I 

u 
u.. 
u 
w 
a. 
U) 20 

10 

0 0.05 

-23-

0.10 

a = 10,000 

Tc• 121. 7 •K 

0.15 

TEMPERATURE 1 kT /Lo 

Fig. 8 - Specific H eat of Xenon 

0.20 



-24-

TABLE IV 

Product of a-p = G 

Element G(mm X 105
) 

Argon 1. 00 

Krypton 1. 08 

Xenon 1. 42 

experimental data in Fig. 9 obtained by Flubacher, et al(l
3

)•. 

(14) (15) . 
Freeman and Halsey , and Clark, et al for argon. In Fig. 10 

we compare the vapor pressure of krypton measured by Beaumont, 

(16) . (17) (14) 
et al , Fisher and McMillan , and Freeman and Halsey 

with our theoretical curve. Finally, we compare our results with 

( 14) 
the vapor pressure of xenon measured by Freeman and Halsey , 

Podgurski and Davis(lB>, and Peters and Weil(l 9 ) in Fig. 11. We 

note that Freeman and Halsey(I
4

) gave an experimental curve; the 

figures show selected points of these curves. We conclude that our 

assumed relation (II-32) is valid. 

Although a theoretical interpretation of G has not been 

found, we mention that G is the same order of magnitude as 

atkT/Vt, where atV s is the volume of the free particle cell and 

Vt is the volume per particle of an ideal gas at the triple point. We 

can see from (II-32) that G would be exactly this value if the vapor 

could be considered an ideal gas and the aggregate interactions were 

negligible. We may state this interpretation more clearly by noting 

that atV s and Vt are equal when these interactions are negligible. 



I 0
2 

E 
E 

a_ 10 

UJ 
Q:: 
::> 
CJ) 
CJ) 

UJ 
Q:: 
a_ 

Q:: 
0 a_ 
<[ 

> 

60 

0 

A 

0 

-25-

FLUBACHER et al 
FREEMAN 8 HALSEY 
CLARK et al 

THEORETICAL CURVE 

ANALYTICAL APPROXIMATION 

70 

TEMPERATURE , °K 

80 

Fig. 9 - Vapor Pressure of Argon 



· e 
E 

<l:: , 10 

w 
ex: 

.:::> 
(/) 
(/) 
w 
ex: 
a.. 

ex: 
0 
a.. 
<X 
> 

60 

o BEAUMONT et a I 
0 FISHER a McMILLAN 
A FREEMAN 8 HALSEY 

THEORETICAL CURVE 

70 80 90 100 110 120 

TEMPERATURE . ' °K 

Fig. I 0- Vapor Pres sure of Krypton 



-27-

o FREEMAN 8 HALSEY 
o PODGURSKI 8 DAVIS 
t. PETERS a WEIL 

. THEORETICAL CURVE 

E 
E - 10 a.. 

IJ.J 
a: 
::> 
(,/) 
(,/) 
IJ.J 
a: 
CL 

a: 
0 
a. 
<[ 
> 

TEMPERATURE ' °K 

Fig. 11 - Vapor Pressure of Xenon 



-28-

By taking values of a smaller than the trip l e point value, w e 

begin to trac e out the condensation curve o f Fig. 1. We can see from 

Fig. I that the sublimation line and the conde nsati on 1 ine j o in v e ry 

smoothly. This is as we would expect since these transitions are 

physically similar as long as the liquid density is near solid d e nsit ies. 

Analytically setting the second derivative o f E with r e spect 

to T equal to zero is very tedious . In Appendix 3 we calculate an 

approximate expression for the vapor pressure a~1alytically. We 

find 

L 
1 n p =-k ~ - } 1 n C + 1n[C2 {I - e - I / C ) 3 ) + 1 n [I +f ( ~w , T)] + 1 n [ GA) ,,(II - 3 3 ) 

0 

where f (~ , T )- 0 as ti.w -+ O. In deriving Eq. {II-33), we have 
o Lo 

assumed 

and 

L 
0 

ti.w » I 

(II-34) 

(II-35) 

We can not neglect f (t: , T) in Eq. {II-33) since it is as 

large as 0. 6. For . argon, we find 

= hw [.!.,l C _ 65 cz _ 9X + 81 XC _ s
2
1 X

2 J +o[(hw)
2J. 

L 0 2 8 I - X Z I - X (I _ X )2 L z 
0 

(II-36) 

This approximate solution for the e quilibrium v apor pressure 
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of argon is shown as the dashed line in Fig. 9 .. Since Eq. (II-33) is 

already more cumbersome than Eq. (II-2) no further approximations 

were attempted. 

In concluding our study of the equilibrium vapor pressure, we 

demonstrate one of the advantages of this model. As we noted, pre-

vious studies have considered sublimation as the equilibrium of two 

physical systems. We can do this by considering the solid and gas 

phases to be in equilibrium. For the partition function of the solid, 

we have from Eq. (II-18 ), 

Zs = x3
/

2 
[ X?" + 2XI' + 1] (II-37) 

and for the gas_, 

-L /kT 
z = etAe o Cl/Z Xl/Z 

g 
(II-38) 

By equating the chemical potentials of these separate systems and 

using Eq. (II-32) we find the vapor pressure is described exactly by 

Eq. (II-33) with f(~: , T) equal to zero. This leads to a large error 

in · p. With this approach we have lost the inherent corrections due 

to vacancy formations of our cell model. These corrections must be 

handled separately as Salter demonstrates. 

3. Estimate of the Latent Heat 

Finally, we want to calculate the latent heat. Since the energy 

is a continuous function of T, the beginning and end of the transition 

is not precisely defined. Therefore, the latent heat is somewhat 

arbitrary. The latent heat per molecule may be calculated from 
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L = AE + pAv 

We have found that (for a » I), 

pAv = pa V s 

By using Eq. (II-32 ), we have 

pAv = GVs 

(II-39) 

(II-4 0) 

(II-41) 

Figures 3, 4, and 5 indicate that ~E is the order of L for all T . 
0 c 

We choose to define AE by extending the "natural" tangents of the 

energy curve above and below T as shown in Fig. 12. We are in 
. C . 

part assuming that the specific heat at constant pressure and C 
v 

are nearly the same. With this definition of AE, we find by similar 

triangles 

(II-42) 

where Nk( cv) is the average specific heat at the point of inflection 

of the specific heat curve of the solid as sublimation begins and J is 

the intercept of this tangent line. 

Therefore, as an approximate expression for the latent heat, 

we have 

(II-43) 

For argon, krypton, and xenon, we find ( cv) to be 2 . 50, 2. 75, and 

2. 95, respectively, and J to be . 046, . 018, and. 005, respectively. 

We may take ( cv) to be constant over a wide range of temperatures 
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since the corrections resulting from its depe nde nce on T are small 
c 

and these corrections are less than the inherent uncertainty of 

Eq. (II-43 ). We note that an error in the estimate of ( Cv) is com

pensated for when J is calculated. For a variation of ± . 02 in 

< Cv>• we find L varies less than 1/2%. 

With this definition of L, we compare the theoretically 

estimated values with the experimental data at the triple point in 

Table V. 

TABLE V 

Latent heats at the triple point 

Element 

Argon 

Krypton 

Xenon 

>!::: 

G. L. Pollack, Rev. Mod. 

Theoretical 
(L/ L

0
) 

1. 01 

0.963 

0.948 

Phys. ~. 748 (1964). 

D. CONCLUDING REMARKS ON SUBLIMATION 

1. Summary of Results 

Experimental 
(L/ L )':c 

0 

1. 01 

. 967 

. 901 

The agreement between the theoretical and experimental 

results as shown in Figs. 9, 10, and 11, is indeed very remarkable. 

At this point, it is especially noteworthy that, for each element, the 

only unknown parameter is G, since L and E may be obtained 
0 0 

from theories of the solid state(2
0). One point on the vapor pressure 
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curve, e.g. the triple point, then determines G unequivocally. In 

this connection, we may remark that Eq. (II-2), as derived by 

Salter, consists also of one parameter, w, 
g 

which has to be deter -

mined by experiment in practice. But the range of validity of 

Eq. (II-2) is somewhat less than the present theory. For example, 

Eq. (II-2) begins to deviate from experimental data for krypton at 

about 75°K; but this rmdel is consistent with all experimental data 

available. 

The sublimation process according to the present model does 

not represent a singularly sharp phase transition. Although, whether 

the transition is in fact a sharp transition is still not a settled question, 

we do not intend to raise this issue here. We only point out that the 

energy and specific heat curves as shown in Figs. 3, 4, 5, 6, 7, and 

8 clearly reveal a phase transition across the temperature region in 

the neighborhood of T . In fact, the transition becomes sharper as c 

T becomes smaller. c 

The mechanism of the sublimation process can also be seen 

from this physical model. The tendency for the system to stay at a 

lower energy in the harmonic potential is constantly competing with 

the tendency to be in the free particle cell at higher energy. The 

Boltzmann factor will favor the lower energy states. On the other 

hand, the free particle cell provides a much larger number of avail-

able states. The sudden predominance of the large density of states 

for the free particle cell over the Boltzmann factor across a narrow 

temperature range results in the sublimation transition. This 

competition between the Boltzmann factor and the density of states, 
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we believe, underlies all the phenomena of phase transition. The 

system will change from one phase to another whe n the latter has a 

much larger density of states even at the expense of a finite jump in 

energy. This jump in energy gives rise to the latent heat. 

For the present physical model, sublimation is not a discon-

tinuous process. So there is some ambiguity in defining the latent 

heat. We have defined L as shown in Fig. 12. The inferences of 

such a definition are consistent with all experimental evidence. The 

latent heat thus defined varies slightly with Tc. From the physical 

model, we can see that it tends to L
0 

at 0° K. For the nearly 

classical solids in the temperature range where this theory is valid, 

L decreases as T increases. 
c 

We have represented the solid phase by the Einstein model <
7

) 

mainly because we are primarily interested in the problem of sub-

limation. In the temperature range in which we have been interested, 

the Einstein model gives nearly as good a representation as the De bye 

model{
2

l ). The use of the Einstein model yields a simple picture of 

a particle confined in a cell, and enables us to visualize graphically 

the process of sublimation. At low temperatures, we need to r e vise 

our representation of the solid state to accommodate the inadequacy 

of the Einstein model. Also, we may need to incorporate the an-

harmonic effects in our model to deal with the situation in the im-

mediate vicinity of the triple point. 

2. Suggestions for Further Research 

This model of sublimation has pointed out at least two: areas 
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of study where the ideas developed here may be us e d or t es ted . 

i) Formulation of a simple model may be instructive in isolating 

the principles involved in any phase transition that one is studying. 

For example, such a model of melting may be very useful in improv

ing our understanding of the liquid state. 

ii) Experimental measurements of the specific heat, as the sub

limation line is crossed, would determine how sharp the transition is. 

This data along with measurements of the latent heat as a function of 

sublimation temperature will determine to what extent our model may 

be used as a quantitative tool. 



-36 -

PART II 

THE PERCUS-YEVICK LIQUID APPLIED 
TO THE MELTING PROBLEM 
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III. INTRODUCTION TO THE THEORY OF MELTING 

A. REVIEW OF PREVIOUS WORK 

A comprehensive review of the theory of melting is not avail-

able in the literature. Reviews of selected aspects of the theory have 

been made by Ubbelohde (
22

) (for complicated molecular structures), 

Cohen (2 ) (selected mathematical models). and Brout(l) (existence 

and stability of the phases). Reviews of the melting 

(23) 
rare gases have been made by Dobbs and Jones • 

theories of the 

Pollack ( 
24

) • and 

Horton (25 ). In the following paragraphs we will give a . brief review of 

the existing theories of melting. 

A successful theory of melting does not exist at the present 

time, That is to say. there is no molecular model from which one 

can demonstrate from first principles a transition from the solid 

state to the liquid state or vice versa. This theory must predict the 

melting curve and the changes in volume, fl. v ' m 
and entropy, fl. s ' m 

of melting. The main difficulty found in formulating such a funda-

mental model of melting is the lack of a good theoretical representa-

tion of the liquid state. 

In the past, the study of melting has been concentrated in two 

areas. The first area of research deals mainly with the establish-

ment of the existence of the transition . Examples of work in this 

area includes the general study of phase transitions by Yang and 

Lee(
26

) and the studies of melting by Kirkwood and Monroe<27 ) and 

Brout(l). The second area is concerned with correlating the physical 

quantities in connection with the melting process. We will confine 
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our interest to the latter. 

Since the molecular structure of argon is relatively simple for 

theo;i:-etical calculations and a large reservoir of experimental data 

is available, it has been customary to apply melting theories to argon. 

In this thesis, we will follow this custom. 

An essential feature of any phase transition is the existence 

of a critical temperature above which the transition does not exist. 

For the melting transition the existence of a critical temperature is not 

. (28) - (30) 
a settled question . However, the general belief, based on 

the experimental results of Bridgman{3 l) and Lahr and Eversole <
3

Z )' 

is that no critical temperature exists. 

1. The Lindemann and Simon Equations 

The fir st molecular model used to explain the melting of a 

solid was formulated by Lindemann<
33

) in 1910. He assumed that 

melting occurred when the thermal vibrations of the solid molecules 

became so large that the adjacent molecules could touch. The result-

ing formula is 

(v )3/z. 
m m ez. 

T 
= constant (III-1 ) 

m 

where V is the volume and T is the temperature along the melt-
m m 

ing line. e is a characteristic temperature (not necessarily the 

De bye or Einstein temperature). Although we know that such large 

amplitudes are not found, the success of the Lindemann equation in 

predicting the form of the melting line for a large number of sub-

stances is amazing. Attempts to extend and justify Eq. (III-1) have 
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had only limited success<34 ) - <33 >. Othe r than its pheno1nen0Jogical 

nature, the majqr weakness of the Lindemann model is its inability 

to give any prediction of the change in the entropy or volume as soci-

ated with melting. Therefore, we do not have any estimate of the 

liquid properties adjacent to the melting line. 

A more useful melting equation would relat e the melting pres -

P with T • Salter<39
> has shown that the Lindemann equa-

m m 
sure 

tion may be combined with the Griineisen equation of state of a solid 

to give a melting equation in the form 

(III-2) 

where .J!.. and .£ are constants. This equation was originally 

proposed by Simon and Glatzel(4 0) from experimental observations 

and it is known as the Simon melting equation. Babb(
4

l) has listed 

the empirically determined values of i!.. and ..£.. for many sub-

stances. These constants for the rare gases are given in Table VI. 

TABLE VI 

The Simon Constants of the Rare Gases 

>:C 
Element 

Argon 

Krypton 

Xenon 

~' 

a(bar s) c 

2114 1.593 

2376 1. 617 

2610 1.589 

Neon and radon will not be considered 
in thi s thesis. 
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More recently, Gilvarry( 37 ) and Babb( 3B) have used tlwir 

quanturn-mechanically corrected versions of the Lindemann formula 

and the Murnaghan equation of state of a solid to derive the Simon 

equation in a manner similar to that of Salter. (We note that all of 

these models approach melting from the solid side of the melting 

curve.) 

2. Order -Disorder Theories 

One of the more successful theories of melting is the order

disorder theory developed by Lennard-Jones and Devonshire (42 ), (43 )_ 

They assumed that the melting system is composed of two interpene -

trating lattices. When the system is in the solid state essentially all 

molecules are on one lattice structure. After melting, the molecules 

are nearly randomly distributed on the two lattices (short range 

order may exist after melting). The formulation is based on the 

theories of binary alloys of Bragg and Williams (44 ), (45 ) and Bethe(46). 

This model is the Ising model(
47

),and it has been widely studied(4B~ (4 9). 

Although the interpenetrating lattice structure is not a physical 

reality, the qualitative agreement with experiment at low tempera-

tures is good. In Table VII the results of this order-disorder model 

are compared with experiment, for selected points near the triple 

point of argon. 
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TABLE VII 

Melting Properties of Argon 
>:< 

Derived from the Lennard-Jones and Devonshire Model 

Physical Quantity 
~ V/V ~ S/k P /dyne -c:-:n ~(~)/°K m m m 

(83. 8°K. (90. 3°K) (Liquid) 

Method of Bragg and I. 35 1.70 286X 106 0.0040 
Williams 

Method of Bethe 1.28 1. 74 294X 106 0.0049 
' 

Experimental o. 12 1.60 291X 106 0.0045 

>:< 
J. A. Barker Lattice Theories of the Liquid State (Pergamon 
Press, Oxford, 1963), p. 41. 

This apparent success of the order-disorder model is of 

limited value since it has a critical temperature. For argon, this 

critical temperature is near 130° K; however, the melting transition 

has been observed up to 360° K and, as we indicated earlier, ther e is 

no indication of a critical temperature . A second weakness of the 

order-disorder model is found when more accurate mathematical 

representations are used; it is found that the agreement between 

theory and experiment becomes poorer. This behavior indicates that 

many of the physical features have been hidden by the semiempirical 

selection of the model parameters in the less accurate representation . 

We conclude, as other have, that there is a fundamental difference 

between melting and the order-disorder transition and that further 

development of this model would not be beneficial. 



-42-

3 . Hard Sphere Models 

In recent years, some promising developments in the theory 

of melting have been made by assuming that the major contribution to 

melting comes from the hard core part of the intermolecular poten-

tial. The molecular dynamics calculations by Alder and 

Wainwright( 5 0) - (52 ) and Alder, Hoover, and Wainwright(53 ) of hard 

spheres and disks have demonstrated that a phase t ransition exists 

for this simple interaction. A typical isotherm is shown in Fig. 13. 

PV 
P.r 

V/V 
0 

Fig. 13 Phase Transition of Hard Spheres 

More recently, Longuet-Higgins and Widom (
54 ) have ap-

proximated the melting system by hard spheres plus an average 

contribution resulting from attractive forces. The average attractive 

potential is 

2a 
cJ> ATT. = - V 

And the resulting equation of state is 

P = P - a/Vz 
H.S. 

(III-3) 

(III-4) 

where PH. S. is the hard sphere pressure and 1l is a parameter. 
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By a suitable choice of _a_ , they found excellent agreement with 

experiment at the triple point. Sarne of their results are shown in 

Table VIII. 

TABLE VIII 

Melting Properties of Argon 

Derived from the Longuet-Higgins and Widom Model 

>'< 
1 n(PV1 /kT )~ '" (aS/k)~ 

>'< 
(E1 /kT )~ 

:::::: 

Theory 1. 19 

Experiment 1. 114 

-5.9 

-5.88 

1. 64 

I. 69 

-8.6 

-8 . 53 

The subscripts 11£ ", 11 s 11 , and "t" will refer to liquid, solid, and 
triple point respectively throughout the remainder of the text. E is 
the internal energy. 

The agreement between theory and experiment is impressive; 

however, for higher temperatures the theoretical predictions become 

very poor. Crawford and Daniels <
55

) have shown that this model may 

be corrected to account for this high temperature region by using 

(III-3) and (III-4) for the liquid and by calculating attractive potential 

in Eq. (III-3) from a Lennard-Jones potential for the solid. This 

assumption gives rise to a new parameter Vb ' For molecular 

volumes above Vb the liquid equation of state is used and for 

volumes less than Vb the solid equation of state is used. The result

ing model has two parameters vb and a that are determined by 

semiempirical means. 

Finally, the most elegant analysis of the melting problem, 

which uses a hard sphere model, has been made by H e nderson and 
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Barker (Sb). By using their recently developed hard sphere perturba

tion theory of liquids and the Lennard-Jones and Devonshire (l O) cell 

model for the solid, they have calculated the melting curve of argon, 

Fig. 14. The melting pressure is obtained from the slope of the 

common tangent in a plot of solid and liquid free energies versus 

volume. The change in volume and entropy of melting have not been 

calculated with this model. 

-E g 
P-t 

0 
....... 

b.O 
0 
~ 

4 

3 

0 

o Experiment 

Theory of Henderson 
and Barker 

100 200 T(OK)300 400 

Fig. 14 Melting Line of Argon 

The success of these models has lead to a general belief that 

hard sphere packing is the essential feature of melting. 

4. Other Models 

We will not attempt to list all other models; however, we 

would like to note two interesting approximations. Emtage <
57

) has 

assumed that the essential feature of melting is the mismatch of bits 

of lattice structures as the solid melts. The resulting melting curve 

and the changes in volume and entropy are in qualitative agr eement 
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with experiment. 

In the second model by Tsuzuki(
5

B), the two body distribution 

function 41Tz g(r) is assumed to be constant for r. ( l -~) ~ r ~ r. ( l +~), 
1 1 

where r. is the location of the ith shell of neig11boring molecules 
1 

in the solid, and ~ is a measure of the liquid irregularity . A free 

volume approximation is used for the entropy. With this crude model, 

the change in volume, the change in entropy, and the melting tempera-

ture are calculated for the case P :::: 0 (the triple point). The 
m 

calculated melting temperature is 0. 82 in reduced units compared to 

the experimental value, 0. 67. 

5. Summary of Existing Theories 

In the preceding paragraphs, we have tried to give a complete 

picture of the current state of the theory of melting. We would like 

to point out that none of these theories predicts from first principles 

the melting curve, the change in volume, and the change in entropy. 

(The model by Henderson and Barker is most closely aligned with 

fundamental reasoning.) We have also indicated that many models 

have been developed with semiempirical parameters. It is suggested 

that these parameters may be concealing important physical phenom-

ena. We believe that this review has demonstrated the need for a 

melting model, developed from first principles, from which a great-

er understanding of the melting transition may be obtained. 
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B. PURPOSE OF THIS STUDY 

We will develop a theory of melting from the fundamental 

point of view. By assuming microscopic models for the solid and 

liquid states, the macroscopic properties are computed with statis -

cal mechanics. The melting points are then determined in a formal 

way by equating the chemical potentials of the solid and liquid states. 

The validity of the solid and liquid models near the melting curve 

will be studied. The models selected were believed to be the best 

available at the outset of this study. 

We have made only four assumptions in formulating this melt-

ing model. 

1) The configurational energy of any collection of atoms is 

the sum of the energy of pairs of atoms. 

2) This configurational energy for two atoms a distance r 

( 3) . 
apart may be represented by the Lennard-Jones ( L.T) 12 -6 potential. 

The LJ potential is 

The pair potential is regarded as a basic physical quantity. Ideally 

the constants for u(r) would be determined from a quantum-mechan

ical calculation of the force between two atoms< 5 9). However, in 

practice these constants are determined from experimental measure

ments of the second virial coefficient of the gas(60). For argon, we 

have 

E /k = 119. 8 ° K (III-6) 
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and 

a=3.4os.A (III-7) 

Although Eq. (III-5) with the consta.nts defined above is generally 

accepted as the "best" pair potential function for argon, considerable 

effort is being made at the present time to determine u(r )( 6 l). Since 

there is some uncertainty in u{r). we will discuss the effect of slight 

shifts in E and a . 

3) We will represent the solid by an anharmonic model de-

( 62) . (63) 
veloped by Henkel and Guggenheim and McGlashan . The 

anharmonic effects ar e calculated from a perturbation theory of a 

harmonic oscillator. The oscillator frequency and the perturbation 

energy are computed directly from lattice sums of the pair potential 

function, Eq. (III-5 ). This solid model is compared with the widely 

used cell model of Lennard-Jones and Devonshire(l 0 >. 

4) Finally, we assume that the Percus-Yevick (PY) equation 

is a valid approximation for the liquid state. Recently, Watts<64\(65) 

has shown that the thermodynamic functions predicted by the PY ap-

proximation are in e xcellent agreement with experiment for moderate 

liquid densities. Details of this assumption will be discussed in 

Chapter IV. 

Although the validity of the first three assumptions may be 

questioned, th~y are generally used in the study of the rare gases. 

There has been considerable controversy, however, concerning the 

merits of the PY equation. Therefore, a basic aim of this study is 

to test the PY equation at higher densities. We should note that once 
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we have assumed I) - 4),the properties of the systerr1 are determined. 

The liquid state properties will be studied along three iso-

therms (kT/E == 1.3, 1.8, and 2.0) above the liquid-vapor c ritical 

point. These isothcrnH> are 8hown schernaticaUy on the pha8e <lia-

gram in Fig. 15. 

Temperature 

Fig. 15 Schematic Diagram of the 
Isotherms Studied. 

Although melting may have occurred in a thermodynamic sense, the 

density will be increased until the solution of the PY equation does 

not converge. 
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IV. THEORY OF MELTING 

A. THERMODYNAMIC CONDITIONS FOR MELTING 

We may represent the equilibrium of the solid and liquid 

phases by equating their chemical potentials 

(lV-lJ 

Once we have an equation of state for each phase and Eq. (IV-1) is 

satisified, we may immediately calculate the volume change and the 

latent heat of the transition. 

For the solid, we have 

µ. = F + PV s s . s (IV-2) 

where F and V are the free energy and the volume per particle 

:i:::: 

respectively . These thermodynamic quantities will be calculated in 

a later section. 

Similarly for the liquid, we have 

(IV-3) 

We calculate the pres sure by using the relation 

P= oF) (IV-4) - av T 

We differentiate Eq. (IV-3) with respect to volume. By using Eq. 

>:::: 

We will use the value per particle for all extensive quantities unless 
otherwise stated. 
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(IV-4), we fin<l 

(IV-5) 

Integration of this relation along an isotherm from state (1) to state 

(2) gives 

(IV-6) 

By adding and subtracting the same quantity, we have 

(IV - 7) 

We rewrite this in the form 

µ1 (2) 

kT 
-s2 [VJ. 1 J µ1(1) 
- l kT - pl dP1 +1nP(2)+ kT -.lnP(l) .(IV-8) 

T=constant 

By letting P(l)-+ 0, state (1)-+ ideal gas; for an ideal monatomic 

gas (Ref. 12, p. 15), we have 

(IV-9) 

By using this relation in Eq. (IV-8 )~ we have 

µ~~) = s P(2)[l _ p1kTJ dP1 +ln [(Z-rr 3/Z h3P(Z)J 
o p1 P.tkT m) (kT )s/l 

(IV-10) 
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where 

(IV-11) 

Therefore, we may calculate the chemical potential at P(2) if we 

have an equation of state of the liquid along the isotherm for all 

pressures less than P(2 ). 

B. THE LIQUID STATE 

We shall not make an extensive review o f the theories of 

liquids. For such a review the reader may consult one of the many 

b k . th f " ld(l2), (60), (66) - (68) oo s in e ie • We shall merely outline the 

~:c 

steps leading to our representation of the liquid. 

For a liquid of N molecules, the Hamiltonian may be writ-

ten as 

(IV-12) 

where p. is the momentum of particle i, m is again the mass of a 
1 

molecule, and U(r
1
, ••• , rN) is the potential energy of the N 

molecules located at r
1 

, ••• , rN respectively. If we denote 

p~n)(~, . , r N)dr
1 
••• drN a .s the probability of finding a mole -

cule in dr 
1 

at r , another in dr at r , . . . , and another in 
l z z 

dr at r n' n 
regardless of where the remaining N-n molecules are 

:l,c 

This outline is in part a paraphrase of the representations on pp. 
41-44, 73, and 100-106 of Ref. 66 and on pp. 13-15, and 54-58 of 
Ref. 67. 
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located, then we may write 

N! S S 
-13 U(r , .. . rN) _ 

. . . Ve 1 dr n+ 1 ••• dr N 

(N-n)! ZN 

where 13 is 1 /kT, V is the total volume (NV
1 

), and 

ZN = s ... s e -13 U(r1 • 

v 

(IV-13) 

(IV-14) 

The function p~n) is known as the generic probability density. 

We introduce the fugacity, 

z = eµ/kT 

In the grand canonical ensemble, we have 
00 

l N ( ) - - 3N 
z Z p n (r , ... rn)/ (N~ A ) 

NN i 

(n) - N :.>n 
p (r , .. . r ) = ------------------

1 n oo 

l 
1 

(IV-15) 

(IV-16) 

where A is h(21TmkT)- 2 . A is called the thermal wave length of 

the molecule. 

We now assume that U is equal to the sum of potentials, 

between pairs of molecules. This is the fir st assumption 

that we discussed in the introduction. We then have 



U(r , 
l 

... ' 
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l~i<j~N 

; .1) 
J 

(IV-17) 

By usin~ this assumption and Eq. (IV-16), we find upon differentiation 

of Eq. (IV-16) with respect to the coordinates of the molecule at r 
l 

(IV-18) 

From (IV-18), we see that we have a hierarchy of equations in which 

(n) · d f" d · t f (n+ i) F th d · p 1s e 1ne 1n erms o p • or a ermo ynarn1c system, 

we have on the order of 1oz 3 equations so that an exa~t solution is 

impossible. Therefore, one of the current problems in the theory of 

liquids is the determination of a successful method of truncating this 

hierarchy of equations. We shall find that the thermodynamic proper -

ties may be determined if we know p <2
). For this reason, the most 

effir::ient way to truncate (IV -18) is to make an approximation for 

p(
3

) in the equation for n = 2. In the following paragraphs, we shall 

set up the analytic formalism necessary to understand our method of 

truncating (IV-18 ). 

Since the liquid is in thermal equilibrium and it is macro-

scopically isotropic, we may write 

(2) - ~ 
p (r , r ) = 

l z 
(IV-19) 

A more familiar form of the pair distribution is the radial distribu-

tion function defined as 
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(IV-20) 

where 

r=l;_;I 
1 2 

(IV-21) 

The function g(r) is proportional to the probability of finding a mole-

cule at a distance r if there is one at the origin; it is normalized 

to I for large r. The first equation of (IV-18) may be written with 

g(r) to give 

- kT ~ g(r) = ~ u{r)g(r) +{v_Nl 2S ~ u( I; _; I )p (
3 >(; , ; . ; )d; 

1 1 yl 1 3 1Z3 3 

(IV-22) 

The probability of a third molecule being in dr at r when two 
3 3 

molecules are at r and r may be written as 
1 z 

and we find that Eq. (IV-22) may be expressed in the form 

{ 
u(r)} I s -- ----'1 1ng(r) + kT = - kT 'Vu(jr -r !)P(r Ir, r )dr 

1 yl 13 31Z 3 

By rewritting this e quation, we have 

a f u(r)} 1 s 
Brllng(r) + kT = - kT V 

r•(r -r) 
1 3 

(IV-23) 

(IV-24) 

(IV-25) 
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This equation may be written in the form 

( 
u( r )+ W (r) 

g(r) ::. exp - kT (IV-26) 

where 

(IV-27) 

Therefore, a truncation of the heirarchy of equations, (IV-18), 

may be made by making an approximation of W(r ). 

Fir st we introduce a new function, c(r), called the direct 

correlation function. c(r) is defined by the integral equation (Ref. 67, 

p. 56) 

N s -~ -g ( r ) - 1 = c ( r ) + V c ( I r - r 1 I ) ( g ( r 1 
) - 1 )d r 1 

. v (IV -28) 

The advantage of introducing c(r) is that it is short-ranged in 

comparison with g(r ). For large r, c(r) approaches O. By using 

this fact, Baxter (69 ) hao shown that if 

c( r) = 0 , . for r>R (IV -29) 

and if the integral of (g(r) - 1) over all space is absolutely convergent, 

then Eq. (IV-28) may be written as 

g{r)-1 = c{r) + 2
1T N Sr ds S s t{g(t)- l)(t-s)(g(t-s)- l)dt 
r V o o 

41T N s R [S s s j r-s I ] + r V sc{s) t(g(t)-l)dt- t(g(t)-l)dtds 
0 0 0 

+ 
4

;
2 ~: S

0 

R s c(s>[ S
0 

r dt W(s, t)] ds (IV- 30) 
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for 0 < r < R, where W(s, t) is defined by 

W{s,t) = - W(t,s) (IV- 31) 

and for s > t, 

Ss [Ss-lt-ul J 
W(s, t) = u(g(u)-1) v(g(v)- l)dv du 

o ls-t - ul 
(IV -32) 

Of course the integral condition is satisfied for any disordered liquid. 

With this form of Eq. (IV-28), the range of integration has been 

reduced from infinity to a finite value, R, which in practice is only 

a few times the parameter cr. Therefore, Eq. (IV- 30) is very useful 

for numerical calculations. 

As we have stated, we are interested in truncating the series 

of equations, (IV-18). We also indicated that this is most efficiently 
............ 

done by approximating P(r Ir , r ) ~ which may be interpreted as an 
3" 1 z 

approximation of W(r) or vice versa. Recent calculations<64), <65) 

indicate that the most promising approximation for dense systems is 

the Percus-Yevick(4 )(PY) approximation, which may be written as 

~~) = - ln{g(r) - c{r)} (IV-33) 

This equation is found by an elegant formulation of the many body 

system in collective coordinates. Such a formulation lends itself to a 

dense system; however, it was found that the PY equation would pre-

diet the first four virial coefficients of the gas state. The implications 

of the PY equation have never been completely understood. The 

common method of illustrating this approximation is to compare the 
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cluster expansion for c(r) 

c(r) = [o-o] + ~[~]+ ~ 
(IV - 34) 

with the expansion consistent with the PY equation 

c(r) = (o-o] + ~[.6,] + ~ ~z [z D + 4 0]+ , (IV- 3·5) 

where 
-u( 1; _; i)/kT 

o-o=f =e 1 z -1 
1 z 

and 

L S = f f f dr 
V 1Z31Z3 3 

1 z 
, etc. 

The PY approximation has neglected two classes of cluster integrals 

for the higher orders of the density expansion; it is believed that 

these integrals must essentially cancel each other. 

Surprisingly, this equation has had little application at the high 

densities for which it was derived( 7 0). Therefore, an excellent test 

of this equation can be made for the densities along the melting line. 

By combining Eq. (IV-26) and Eq. (IV-33), we have the PY 

equation 

c(r) - g(r) (1-eu(r)/kT) (IV - 36) 

This equation may be used with Eq. (IV-28) or Eq. (IV-30) to form an 

integral equation for either g(r) or c(r). The resulting equation 

may then be solved by numerical means <64)' (6S)' (?O) - (78) 
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We have outlined a procedure for calculating g{r) and c{r) 

from u{r). In order to determine µ
1 

from Eq. {IV -10), we must 

compute an equation of state. We may use the compressibility equa-

ti on 

1 
kT {IV-37) 

and then integrate over the density to compute the pressure. For an 

alternate method of calculating the pressure, we could use the virial 

equation 

pl. 21Tp 2 s 00 
..e 3 du(r) ( )d ff = P J. - 5KT" r err- g r r 

0 

(IV - 38) 

We will use Eq. {IV-37) since the rapid variation of du/dr and g(r) 

· near r = cr is very significant in determining how accurately the pres-

sure may be calculated from Eq. {IV-38) with approximate express-

ions of g(r) and u(r). For the energy of the liquid, we have 

3 s 00 E 1 = 2 kT + 2 1T p J. u(r)g(r)r 2 dr 
0 ' 

(IV - 39) 

We have introduced these equations without proof. Again we refer 

the reader to Rice and Gray( 66 ) for a more detailed analysis. 

C. THE SOLID STATE 

As we have indicated in the introduction, we shall develop the 

theory of melting from first principles. We assume that the two-body 

interaction energy, Eq. (III-5), is a fundamental property of the 

molecules. It is known that the conditions of mechanical stability 
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require the crystals of the rare gases to be in a face-centered cubic 

. (79), (80) 
or a hexagonal close packed lattice structure . Although the zero 

point energy of these two structures differ by only 0. 01%, the rare 

gases are known to be in the face-centered cubic form for tempera- . 

tures as low as 4. 2 °K(24). We assume that the solid is in this form 

for our calculations. 

We will base our model of the solid on the analysis of 

Guggenheim and McGlashan <
63

). This model was introduced by 

Henke1<
62>. We may expand the 12-6 potential energy about an 

equilibrium position of the lattice in the form 

, (IV-40) 

where 

du{r) 
= 0 Cir {IV-41) 

r 
0 

and 

r = {2)1/6cr 
0 

{IV-42) 

Equation {IV-40) is the assumed interactions for nearest neighbor pairs. 

For interactions of higher order neighbors, we use 

(IV -43) 

which is the "tail" of the 12-6 potential energy. 

If R is the distance between nearest neighbors, then the 

static lattice energy per molecule of the crystal is 
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[ 

(C -12) J 
U

0
=6E -1+36Az-252A3·+1113A4 

- \ (l+A)-6 

where 

A=(R-r )/r 
0 0 

(IV-44) 

(IV-45) 

C is the crystal potential constant for a potential energy of the form 
n 

r -n of the face-centered cubic lattice (8 l). 

For a small displacement of a molecule about a lattice site, 

with components x ,x , and x along the principal axes of the lat-
. 1 z 3 

tice, the increase in energy is 

AE = 12Pz E [ 12( 1+3A)-252 A(l+2A) + 2226 AZ ( 1 + S A) 
( l+.o}r z 3 

0 

5 7] 12p
4

E [ "'6 (C
8

-12)(l+A)- + -
(l+.o}r 4 

2;2 + 11;3 (l+SA) 

where 

0 

1 

p = (x z + x z + x z ) 2 
1 . z 3 

(IV-46) 

(IV-47) 

In Eq. (IV-46) the harmonic terms are exact, but the anharmonic 

terms were averaged over angles according to 

(IV-48) 

and for i t. j 

(IV-49) 
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To this approximation p 4 may be replace d by (5/3) 

(x 4 +x 4 +x 4 
). This formulation of the solid leads to a perturbation solu-

1 z. 3 

ti on of the Einstein harmonic oscillator by separation of variables. 

For this model, the energy states are 

E = (n +n +n +3/2)1\(w +w )+(n z.+n z. +n z.)hw 
nnn i z. 3 i z. i z. 3 z. 

1 z. . 3 

with n . = 0 , 1 , 2 , 
1 

(i = 1, 2, 3) and where 

wz. = 
1 

--2-4 _e __ ,12(1+3A)-252 ~ (1+2A)+2226 A 2 (1+ 5:) 
mr 2 (l+A) L 

0 5 -7] - b (C8 -12)(1+~ 

and 

(IV - 50) 

(IV -51) 

w = z. 
6he 

[ 252-1113( 1+5A)+ ~(Cl 
0

-12)( l+A)- 9 ) 

For the perturbation solution, we have assumed 

w » w 
1 z. 

w is zero in the harmonic approximation. 
z. 

For a canonical ensemble, the partition function is 

all E 
n 

e 
-E /kT 

n 

(IV - 52) 

(IV-53) 

(IV- 54) 

where E is a single particle energy state which has degeneracy g . 
n n 

By using Eq. (IV- 50) in Eq. (IV-54), we find 
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(IV- 55) 

or 

( (
h.w )) 3 hw (11.w ) ( hw '

2

) 
1n Z = - 31n 2 sinh Zk~ - 2 k.f coth 

2 Zk~ +O (kf 1 . (IV - 56) 

For the free energy per molecule, we have 

F = U - kT 1n Z s 0 
(IV-57) 

We differentiate the free energy with respect to temperature, Eq. 

(II-20h and find the internal energy 

(IV-58) 

By differentiating the free energy with respect to volume, Eq. (IV-4), 

we see that the pressure may be written as 

PV = -2E(72A(l+A)-756A2 (l+A)+4452A3 (I+A)+(C -12)(I+A)- 6
] 

s 6 

241'1.E 

w mr 2 {I+A) 
1 0 

(
'hw ) [ 11.w 

coth 2klT 1 - k~ 

(IV-59) 

We are now prepared to calculate the chemical potential of the solid, 



µ • We have 
s 
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µ = F + PV 
s s s 

(IV -60) 

where F and PV are given by Eqs. (IV-57) and (IV-59), respect-s s 

ively. Finally, the entropy may be defined by 

(IV-61) 

The Lennard-Jones and Devonshire (LJD) cell model has been 

used to represent the solid along the melting line (1 O). In Appendix C, 

we have shown how the thermodynamic properties are calculated for 

this model. In our analysis, we shall compare the behavior of the 

Henkel, Guggenheim, and McGlashan (HGM) model with the LJD model 

near the melting line. 
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V. APPLICATION OF THE PROPOSED MELTING MODEL TO ARGON 

In the first part of this chapter, we shall compare the liquid 

and solid models with experimental observations for argon. Although 

we apply the theory directly to argon, we introduce non-dimensional 

variables which would permit generalization to krypton and xenon. We 

define the variables 

* p 

v >!< 

E 
>l< 

>:C 
T 

and .... 
p 

We also use 

* r 

= P0"3 IE J 

= v /<73 

= E/ E 

= kT/e 

l/V 
>!< 

= 

= r/a 

(V- 1) 

(V-2) 

(V-3) 

(V-4) 

(V-5) 

(V-6) 

With the proper choice of e and a for argon, krypton, and xenon, 

the non-dimensional melting lines of these elements are essentially 

identical (Ref. 12, p. 21). This behavior is known as the principle 

of corresponding states. Therefore, it is easy to extend our study of 

argon to krypton and xenon. For argon, we shall use the constants 

given in Eqs. (III-6) and (III-7) . 

W e shall be e specially interested in the beha vio r of our models 

along the melting line of argon for temperatures b e twe en 155 °K and 

240°K. The lower limit, 155°K, was selected since it was slightly 

above the liquid-vapo r critical temperature, 150. 8°K. We did n o t want 

to complicate our problem by attempting to integrate o v e r the 
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liquid-vapor equilibrium curve . The number of calculations for the 

liquid model was limited by the computing c osts. Therefore, the up-

per limit, 240°K, was chosen so that the melting temperatures studied 

were not so far apart that meaningful comparisons could not be made. 

The last part of this chapter is devoted to the calculation of 

the melting properties. We shall also study the effects of the ap-

proximations that we have made. 

A. APPLICATION OF THE PERCUS-YEVICK LIQUID MODEL 

As we noted in the previous chapter, by substituting Eq. 

(IV- 36) into Eq. (IV-30), we have an integral equation for g(r) or 

c(r). Formally, the truncation of c(r). Eq. (IV-29), is the same as 

assuming that u{r) = 0 for r ~ R. This potential energy function is 

shown in Fig. 16. 

For the numerical solution of our integral equation, the range 

R is divided into N segments of width 6 = R/N. The integral equa-

tion i s approximated for this discrete mesh by the trapezoidal rule. 

By introducing a n e w variable p(r. ) where r . = io, we may write 
1 ' 1 

Eq. (IV - 36) as 
-u(r. )/kT 

c(r.) = [e 1 -l]p(r. ) 
1 1 

and 

(V-7) 

By inserting these relations in the discrete form of Eq. (IV-30), we 

obtain a system of N nonlinear simultaneous equations for the p(r.) 's. 
1 

These equations may be solved by a modified Newton-Raphson 
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Fig. 16 Truncated L e nnard-Jones Pair Pote ntial 
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p1·ocedure(Sl). For this Newton-Raphson method, we are required to 

make an initial guess of the solution. For low densities, estimates 

can be made from crude empirical data. For higher densities, we 
I 

extrapolate from the lower density solutions to obtain our initial guess. 

This Newton-Raphson method was suggested by Watts (b
4

). In Appendix 

D, the numerical method is discussed in detail. 

This scheme was chosen since only a few iterations were need-

ed to converge to the solution. For the other numerical techniques, 

studies have indicated that a very large number of iterations was 

required(? 3)_ 

One has no way of showing that any of these methods gives the 

physically unique solution. We justify our solution by comparing with 

experiment at low densities since we know that the PY equation is 

valid in this region. For the higher densities, we can only say that 

the qualitative features are consistent with experimental observations. 

1. Comparison of the Theoretical Thermodynamic Properties with 
Experiment and Known Solutions 

>'.< 
For the majority of our calculations, we have used 6 = 0. 1 

>'< • (65) 
and R' = 3. 5. In the previous calculations by Watts , the values 

>:< >',c 
6 = 0. 05 and R = 3. 5 were used and excellent agreement with 

>:< 
experiment was found for p I. ~ 0. 6. It was also shown that the PY 

equation would predict a phase change near the experimental critical 

>',c >l: 
point T = 1. 26, p = 0. 316. Watts found that the solution exhibited 

c c 
~:( ):c 

a slight dependence on R In the present study, the value of R 

was varied from 3. 5 to 4. 0 and then to 5. O. The resulting 
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solutions for g(r) and c(r) did not change. We have no explanation 

for this difference in behavior. 

To be certain, a mesh spacing of 0. 05 is more desirable than 

our spacing of 0. 1. However, we would like to point out that for 

* * R = 3. 5 and o = 0. 1 we have 35 simultaneous equations to solve. 

>'.c * For R = 3. 5 and 6 = O. 05, we have 70 such equations to solve. 

This increase in the number of equations by a factor of two gives rise 

to about a twelve - fold increase in the computing time. 

Along with his 70-point mesh, Watts has calculated the pressure 

from the relation (83 ) 

S 00 [ z c(r) 
1 + 21T p 1 r c(r) u(r )/kT 

o 1-e 
-2 J dr 

+ 1 
,.. 00 

j kz [log(l-pc(k)) + pc(k) ]dk 
0 

(V-8) 

where 

- 41T s 00 c(k) = k r c(r) sin (kr)dr 
0 

(V-9) 

In Table IX, these results are compared with the values obtained in 

this study where the pressure was calculated by integrating Eq. (IV-37) 

over the density. The integral in Eq. (IV- 37) and the integral over 

the resulting values for dP* /dp *> were computed by Simpson's rule. 
T 

We have also listed in Table IX the experimental values as a 

(84) 
reference . 
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TABLE IX 

COMPARISON OF THEORETICAL CALCULATIONS 

AND EXPERIMENTAL VALUES OF >!< * 
p J. /T 

>:C ... , .. 
= 1. 3 

... 
= 2. 0 T T 

>',c 
Pres. Cale. Watts Exptl. Pres. Cale. Watts p J. Exptl. 

35-pt. 70-pt. 35-pt. 70-pt. 

o. 1 0.072 0.071 0.070 0.090 0.090 0.089 

0.2 0.098 0.098 0.097 0. 168 o. 169 o. 167 

0.3 o. 105 o. 105 o. 106 0.251 0.254 0.250 

0.4 o. 118 o. 118 o. 115 0.363 0.369 0.362 

0.5 o. 167 0 . 172 o. 153 0.540 0.552 0.546 

0.6 0.312 0.326 o. 311 0.843 0.862 0.881 

From our definition of the chemical potential, Eq. (IV - 1 O), the 

effect of the structure of the liquid enters µ1 through the pressure 

equation of state. * For densities up to p 1 = 0. 6, the data reported in 

Table IX would indicate that our 35- point mesh is adequate. 

The configurational contribution to the energy o f the liquid is 

defined byt 

>:C * * E = E - 3T /2 c 
(V-10) 

* We have calculated E from Eq. (IV-39). In Table X, we compare 

the 35-point and 70-point mesh calculations and the experime ntal 

values of E >:C (S4 ). 
c 

twe shall drop the subscript np_n for the remainder of this section. 
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TABLE X 

COMPARISON OF THEORETICAL CALCULATIONS 

AND EXPERIMENT AL VALUES OF E 
>:C 

c 
>:c >:C 

= 2. 0 T = 1. 3 T 

>'.c 
p Pres. Cale. Watts Exptl. Pres. Cale. Watts Exptl. 

35 - pt. 70-pt. 35-pt. 70-pt. 

o. 1 -0.66 -0.78 -0.83 -0.64 -0.65 -0.66 

0.2 -1. 39 -1. 53 -1. 58 -1. 25 -1. 27 -1. 29 

0.3 -2.01 -2. 18 -2.23 -1. 83 -1. 87 -1. 88 

0.4 -2.54 -2.73 -2.79 -2.43 -2. 46 -2.46 

0.5 -3. 09 -3.32 -3. 34 -3. 00 -3.04 -3.03 

0.6 -3.67 -3.94 -3.93 -3.57 -3.61 -3. 59 

* From this table, we see that the present calculations of E are in c 

better agreement with the 70-point calculations and experiment at the 

higher temperature. By comparing Tables IX and X, we find that our 

predictions of the pressure are better than those for the energy. 

As a final example, we compare in Table XI a 35-point and a 

* * >!< 70-point solution for dP /dp )T and E c for a low temperature, 
.... >le 

high density state. This state (T"' = 0. 977, p = 0. 7144) is in the 

11 true" liquid region of the P-T phase diagram. We also list the 

solutions of a higher temperature and lower density state in the table. 
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TABLE XI 

MESH ):c ):( 
E* 

STATE SIZE dP /dp )T c 

.... >:C 
35+ 3.46+ + 

T = 0.977, p = 0.7144 -4. 51 

70+ 3.67+ -4.81 + 

T* 1. 361, * 35 = p = 0.314 0.235 -2. 13 

70 0.245 -2. 19 

+Calculated with the author's computer analysis by Smelser(S5). 

The difference in the values of the "true" liquid state should give a 

very good indication of the maximum discrepancy that we would find. 

In a later section, we shall demonstrate that even a discrepancy this 

large would not warrant the extra cost of a 70-point solution for the 

melting pro bl em. 

We would like to compare the theoretically calculated pressure 

with the experimental data along an isotherm at high densities. How-

ever,. experimental measurements of P, V, T data have not been 

made for high densities in the temperature range of interest. We 

>:C 
shall choose the isotherm T = 1. 3 and make an estimate of the 

experimental behavior. For the lower densities, we have the values 

given by Levelt(S
4

). And along the melting line, we may use the 

P,V,T data and compressibility data given by Lahr and Eversole(3 2.). 

Since (dP/dp)T of the liquid is a maximum at the melting line and 

since P must increase with p, we know that the actual isotherm 

must lie somewhere in the shaded region of Fig. 17. Experimental 

uncertainty and the recent P, V, T measurements of Crawford and 
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Daniels(SS) along the melting line indicate that the curv e could also 

lie in the cross-hatched region of the figur e . We compare these 

experimental estimates with the PY pressure curve in the figure. 

From this figure, we can see that the PY equation of state begins to 

deviate measurably from experiment for densities above p :::: O. 8. 

~' For completeness, we have shown the isotherms for T = 1. 8 and 2. 0 

in Figs. 18 and 19 respectively. The melting point data (
3

Z)are given 

as a reference. 

Finally, we show the behavior of the energy as a function of 
,.,. 

densi~y for T = 1. 3 in Fig. 20. The minimum corresponds to the 

configuration where essentially all molecules lie in the minimum of 

the potential energy well of their nearest neighbors. We find that the 

>:C 
energy on the isotherms T = 1. 8 and 2. 0 behaves in a similar 

manner. 

2. Structural Features 

To illustrate the increase in the structure of the liquid as the 

density (or pres sure) is increased, a sequence of solutions of g(r) 

obtained from our 35-point mesh calculations is shown in Fig. 21 for 

* * the isotherm T = 1. 3 . From this figure we can see that for p :;<t 1. 0 

the rapid variation in g(r) near r = 1. 0 can be follo wed only in a 

crude way by our numerical solution. However, we know from Fig. 

~:c 

17 that melting occurs experimentally for p between 0 . 90 and 

0. 97; therefore, these high density solutions correspond to a meta-

stable liquid. The behavior of c(r) for increasing density is shown 

in Fig. 22. Since c(r) is a much more smoothly varying function 
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than g(r), we might expect the numerical evaluation of the compres-

sibility equation (IV-37) to agree better with experiment than the 

numerical calculation of the energy equation (IV-39). This fact was 

demonstrated in Tables IX and X. 

Experimental values of g(r) and c(r) have been measured 

(61) . 
by Smelser for thermodynamic states in the "true 11 liquid region. 

In Figs. 23, 24, 25 , and 26,we show the experiment al values of g{r) 

and c{r) for two thermodynamic states along with those calculated 

with the author's computer analysis by Smelser{B
5

}. The experi-

mental lines are surrounded by an error band representing a 50% 

confidence in the experimental value. A detailed explanation of this 

band is given by Smelser (Ref. 61, pp. 43-44). We feel that these 

states give a very severe test for our solution. We note that the poor-

est agreement is near the first peak of g{r). 

If we define r , r , and r as the location of the first, 
1 2. 3 

second, and third peak of g{r), then it is instructive to examine the 

values r Ir and r Ir for the high density solutions of the PY 
2. 1 3 1 

e quation. We know that these ratios are independent o f density for 

the solid; therefore, we expect these ratios to be essentially d e ns i ty 

independent for the liquid. These ratios are shown in Table XII. 

For a face-ce ntered cubic solid, we find r /r = 1. 414 and 
2. 1 

r /r = 1. 732 and for a hexagonal close packed soli d, w e find 
3 1 

r / r = 1. 414 and r / r = 1 . 6 3 3. 
2. 1 3 1 

Our results indicate that the 

structure of the liquid is not approaching the structure of the solid 

as we increase the density. 
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TABLE XII 

COMPARISON OF PEAK LOCATIONS 

OF g(r) AT HIGH DENSITY 

;-:; ~( :::~ 

T - 1. 3 T = 1. 8 T - · 2.0 

>l< 
/r /r r /r /r /r p r /r r r r r 

z l 3 l z 1 3 1 z I 3 l 

0.9 1. 85 2 .69 1. 90 2.74 1. 89 2.74 

1. 0 1. 89 2.68 1. 88 2.73 1. 88 2.73 

1. 1 1. 89 2.67 1. 89 2.67 1. 89 2.67 

1. 2 1. 90 2.65 1. 90 2.66 1. 90 2.66 

The density was increased in increments of O. 1 until a solu-

tion of the PY equation could no longer be found. For the isotherms 

= 1.3, 1.8, and 2. 0, 
,i,: 

no solution could be obtained for p = 1. 3 . 

As before, the first guess was made by extrapolation from the lower 

density solutions. Since a poor guess might be responsible for fail-

ure of the solution to converge, every effort was made to try new 

guesses that were suggested by the first iteration of the computer 

analysis to eliminate this possibility. For each case, the solution 

diverged. Although we can not make any positive statements about 

this divergence, our solutions would suggest that the behavior of 

c(r) near r = 0 is an important factor. Since c(o) is not defined 

by Eq. (IV - 30), we may estimate it from the linear extrapolation. 

>:c >:C 
c(o) = Zc(r = . 1) - c(r = . 2) (V -11) 

We have shown the variation of c(o) with density in Fig. 27 for the 

>l< 
isotherms T = 1. 3 and 2. 0. 
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B. APPLICATION OF THE PROPOSED SOLID MODEL 

An analysis of the solid state model is limi ted by the experi-

mental data available. The solid models have been studied for 

temperatures below the triple point by several auth or :.; (bZ) ,(6 3) ,(68) ,(8 EH9~. 

However, for T = 155 °K to 240°K, no studies of molecular models 

have been made. For these temperatures, measurements have been 

made of the P, V, T data along the melting line <32>' (55>. We have 

computed the equation of state (IV - 59) of the solid model (HGM) and 

its harmonic approximation (HAR). The resulting isotherms and 

discrete points on the isotherms of the LJD solid (Appendix C) are 

>',< 
plotted in Figs. 28, 29, and 30for T = 1.3, 1.8, and 2.0 respect -

ively. In Fig. 28 we have shown the experimental P, V, T data cor-

responding to the melting point. In Figs. 29 and 30, the data of Lahr 

and Eversole(32) is shown with an extrapolated value obtained from 

the data of Crawford and Daniels (55). We note that the major differ-

ence in these models occurs for pressures less than the experimental 

melting pressure. In this low pressure range, the solid is metastable. 

Although there is a significant difference in the experimental data, it 

is clear that all of the solid models predict experimental behavior in 

the solid region better than the PY liquid does in the liquid region. 

The critical function of the solid in our melting theory is the 

chemical potential, µs, defined in Eq. (IV-60). The chemical 

potentials for the models under consideration are shown in Fig. 31 

>!< 
for the isotherm T = 1. 3. The chemical potential curve of the 

liquid crosses µ as we have indicated schematically with the large 
s 
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arrow. Therefore, if our liquid model were a good representation of 

the physical state, we would find that the harmonic model (HAR) 

would melt at a lower pressure than the HGM or LJD models. We 

also see that the melting pressure would be nearl y the same for the 

HGM and LTD models. 

The behavior of the energy (IV-58) and the entropy (IV-61) of 

the solid must be understood so that we can interpret the discontinuity 

of the thermodynamic properties at the melting point. These 

>'.c 
functions along the isotherm T = 1. 3 are shown in Figs. 32 and 

33. We note that these curves are quite different for the three models 

studied. In the next section, we shall see how this difference affects 

the melting properties. 

Finally, we are interested in the role anharmonic effects play 

in the melting model. In Fig. 34, we have shown the ratio of w I w 
z l 

}:c 
as a function of reduced volume. The value of V corresponding 

s 

to the experimental melting pressure for this isotherm has also been 

noted in the figure. We find that the condition (IV-53) is valid for 

the states in the stable solid regime. 

Again in this section, we have concentrated our study on the 

isotherm ":' T = 1, 3; the thermodynamic properties on the isotherms 

>!< 
T = 1 . 8 and 2. 0 behave in a similar manner. 
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C. DETERMINATION OF THE THERMODYNAMIC MELTING 
PROPERTIES 

I . Application of the Melting Model 

In the preceding chapters and sections of Part II, we have tried 

to present the physical models in a manner that would permit better 

understanding of the melting properties which we are now prepared to 

calculate. 

The equilibrium condition (IV-1), 

(V-12) 

may be satisfied by increasing the pressure of the liquid state along 

an isotherm until µ£ crosses as shown schematically in Fig . 28. 

Literally, this procedure corresponds to freezing rather than melting. 

We have made the computations indicated by Eqs. (IV-1 0) and (IV-60), 

where the equation of state of the liquid was determined by integrating 

Eq. (IV-37) by Simpson 1 s rule. The discrete density mesh for this 

integration was The integration in Eq . (IV-10) was then 

:::c 

made by Simpson's rule for a discrete mesh of 6 P = O. 120889 

>:< 
(6P = 50 atm. ). To minimize the error in µ£, the value of p was 

found by interpolation of the equation of state. We can see from 
>:c 

Fig. 1 7 that this is much more accurate than finding a value of P 
,., 

by interpolation from a given p'. As an example, we have shown the 

+ 
For the case 

,., 
T. = 1. 3, 

::i::: 

the final step was op = 0 , 001 leading to 

the density p 
:::<: 

= 1. 201. 
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>'< 
chemical potential curves for the isotherm T' = 2. 0 in Fig. 35. 

The melting pressures determined in this manner are corn-

pared with the experimental data in Fig. 36. We shall show that these 

high melting pressures are a direct result of the failure of the PY 

equation to predict the equation of state of the liquid which introduces 

µ
1 

through the integral in Eq. (IV-10). By translating a line drawn 

through the calculated melting points to the experimental data, we 

notice that the slope of the two curves is essentially the same 

(dashed line Fig. 36). 

OnceEq. (V-12)is satisfied,thevaluesof v: and v;' atthe 

melting points are readily available from our tabulations of the iso-

therms of the equations of state (IV-59) and the integral of Eq. (IV-371 

The entropy of the liquid was obtained from 

(V -1 3) 

where 

>',c >!< >'c 

F 1 = µ1 - PV ~ (V-14) 

Similarly for the solid, we have+ 

(V -1 5) 

We denote the discontinuities of volume, energy, and entropy by 

+The expressions for 
in Appendix C. 

s s 

:::~ ~( 

= v - v 1 s (V-16) 

are given implicitly in Eq. (IV-61) and 
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,., 
.6.E, (V-1 7) 

and 

(V-18) 

These quantities have been tabulated in Table XIII. 
,., 

The low values of V ' 
s 

,., 
and V ~ at the melting points are a 

direct result of the high melting pressures. The theoretical melting 
,., 

pressure of the isotherm T' = 1. 3 is so high that no meaningful con -

clusions can be drawn about the other . melting properties. 

By manipulating the Eqs. (V-13) - (V-18) , we find 

.6.S/k (V-19) 

* For the isotherms T = 1. 8 and 2. 0, the change in energy is very 

low; however, the relatively good agreement of the change in entropy 

>:c '!' 
is due to the high value of P .6. V . 

We believe that it is more useful to study the behavior of the 

solid and liquid models near the melting line than it is to try to find 

implications from the volume and entropy changes of these high melt-

ing pressures. 

2. Discussion of the Effects of the Approximations 

From the outset, one of our goals has been to test the PY 

equation at high densities; we shall examine the effects of this ap -

proximation first. Since we expect the discrepency in the equation of 

state to be responsible for our high melting pressures, we would 

like a rough estimate of the error in µ£ resulting from the error in 
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the PY isotherm. The chemical potential of the liquid given by 

Eq. (IV-10) may be written in the form 

(V-20) 

:i!:: ''c 
We recall that for a given P we found the value of p' along each 

isotherm by interpolation+. Let us assume that the actual density of 

the liquid is 

>:< 
= Ppy(l +a) (V-21) 

where Ppy is the density determined from the PY equation for a 

given pressure and ..5!:. is a small correction factor. We also assume 

that _g. = 0 for Pac < pb or equivalently Pac < Pb. By using Eq. 

(V-21) in Eq. (V-20), we find that at melting 

>:C 

µ/ 
p 

>',c µ
1
ac 

= a s >:C m 
dP (V-22) kT - kT - >:C ~ 

(l+a)T Pb p 

where µ
1
° is the value calculated from the 35-point PY equation of 

>:::: 
state. For T = 1. 3, we can see from Fig. 17 that the PY iso-

:i:c: ~.c 

therm agrees with experiment for p ~ O. 8 or P ~ 2. O. For a first 
... . ,. 

order approximation in Ji!., p may be removed from the integral of 

Eq. (V-22) and we have 

µ
1
ac 

~ 
(V-23) 

+Initially we calculate P,:' as the>:,dependent variable from the 
independent var~,abws ,.'f and p . Once we have thi.s relation we 
may then use p (T , P ) with greater accuracy. 
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,., 
Again from Fig. 17, we see that for T' = 1. 3 we may take ..5!. to be 

)'( >',<" ) 'C 

about -0. 05, p' to be about 0. 9, and Pm - P~ to be about 6. 0. 

Therefore, our rough estimate of µ
1 

is 

µ/ 
:::: kT + O. 26 (V-24) 

This correction to µ1 corresponds to a melting pres sure of about 

3500 atm. for the HGM solid. Thus in a rough manner we have ac-

counted for the error in our model by correcting only the liquid model. 

"' Similar improvement is found for the isotherms T' = 1. 8 and 2. 0. 

To evaluate the effect of our 35-point mesh, we may use the 

>!< 
same analysis as above by defining p in this case to be the value 

ac 
~( :::;c 

found for the 70-point mesh. Again we may take Pm - Pb to be 6. 

':' :i:c '::: 
From Table XI, we see that (dP I dp ).f.<, and therefore P • is about 

6 percent larger for the 70-point mesh. 
>',< 

For p between O. 8 and 

,,, ''c 
I. 0, (dP ' / dp') ,:, varies from 12. 6 to 41. Therefore, we have 

T 
>:C 

6P 
~c >!c 

~p /dp ) ,:, 
T 

(V-25) 

* * where 6P is the change in P due to the 70-point mesh. The 

:i::: 
maximum value of 6 p is about 0,005 . We may restate this esti-

mate by saying that the pressure found from the 35-point mesh may 

occur for a density which is about 0. 005 l ess for the 70-point mesh 

values. Thus we estimate ..a.. from 

>:< >:< - 0. 005 
Pac::::: Ppy 

(V-26) 

or with the use of Eq. (V-21 ), we have 
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)~ 

Ppy - O. 005 = 
>'< 

P~y(l +a) (V-27) 

By solving for .2,., we have 

>'< 
a :::: - o. o o 5 Ip ~y (V-28) 

>'~ 

For Ppy::::: O. 9, we have 

a::::: - 0. 006 (V-29) 

This gives an estimated correction :for the finer 70-point mesh to be 

roughly 

(P:-P~) + 0. 0 0 6 .,___ __ ..... _ 
):< ':c 

p T 
(V-30) 

and we recall that the actual correction was about 

which is nearly an order of magnitude larger. We see no advantage in 

making the expensive 70-point calculations and we conclude that the 

PY equation is not accurate enough at these high densities to predict 

the thermodynamic properties. 

For the solid models, we shall merely state some of the more 

obvious properties. We may deduce the behavior of these models for 

melting by assuming that we have a good representation of the liquid 

state. That is to say, µ
1

, P
1

, and p
1 

are in good agreement with 

experiment along the isotherms. As we have stated the harmonic 

model melts at a lower pressure than the HGM model and with a 

larger volume. We see from Figs. 32 and 33 that the other effects 
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of anharmonicity are to increase the changes in e ntropy and 

ene rgy . More qualitative sta teme nts can not b e m a d e s ince the 

e xpe rirnental data of the solid state is limited. R(~c ent studies by 

Che ll and Zucker (9 l) imply that three-body for e e s a r e important for 

the solid. Their corrections for the three -body f o rce s were the same 

order of magnitude as the anharmonic corrections and in the opposite 

direction. Since our liquid model has no provisior. for these forces, 

it would be incons i stent for us to include them in the solid model. 

Finally, we would like to examine the shift in the melting 

points due to slight changes in E or a. For the LJD solid and any 

liquid model for which µ
1 

'is calculated from Eq. (V-20), it is easy 

to show that the non-dimensional melting line is indepe ndent of 

changes in E or a. However, for the HGM model the dimension-

l e ss De Boer parameter 

l 

A= l'l./ (cr(me)2 ) (V-32) 

can not be removed from the equilibrium condition (V-12) analytically. 

This parameter was varied about ±6 percent and the r e sulting changes 

in µ for the HGM model and for the LJD model w e r e essentially 
s 

the same. Thus, the major result of a shift of e or a appears in 

the non-dimensional exp e rimental data . One c an e asily show from 

~( 

Eqs. (V-1) and (V-4) that an increase in e will d e creas e P (exptl.) 
m 

) :( 

and T ( exptl . ) while leaving the slope of the e xpe rimental curve 
m 

unchanged . An increase in a will correspond to an increase in 

>!< 
P (e xptl. ) and an inc rease in the slope of the e x p e rimental m e lting 

m 
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curve in the non-dimensional plane. However, we note that any shift 

in £ or CJ would reduce the agreement with experiment found at low 

densities in Tables IX and X. 
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VI. CONCLUSIONS 

A. SUMMARY OF RESULTS OF THE MELTING MODEL 

The melting problem was posed with four fundamental assump

tions. The melting properties were then calculated from first prin

ciples. From the beginning, the critical assumption was believed to 

be the Percus -Yevick representation of the liquid state. Therefore, 

one of the aims of this study was to test the PY equation at high 

densities. The liquid pressures computed from this liquid model were 

about 50 percent low at the experimental melting densities. These low 

pressures led to errors in the chemical potential of the liquid, which 

in turn gave rise to high melting pressures and poor estimates of the 

discontinuities in volume and entropy of melting. It was found that 

even this poor representation of the liquid would give nearly the cor

rect value of the slope of the melting curve in the P-T plane. 

By comparing the solution of the PY equation with experi

mental curves for g(r) and c(r) in the "true" liquid region, we found 

quantitative agreement with experiment at all points except near 

r =a, which is near the bowl of the pair potential well. These cal

culations indicate that our solution of the PY equation is an efficient 

way to estimate the structure of the liquid even at high densities. 

Our solution of the PY equation was suggested by Watts for a finer 

mesh. We note that our study of melting was made for temperatures 

above the critical temperature. We expect the predictions of the PY 

equation to be even poorer in the "true" liquid region. 
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The density was increased until a solution of the PY equa-

tion c<;:mld no longer b~ found. Since no effort was made to pinpoint 

the critical density, if one truly exists, we are cautious in drawing 

conclusions from this numerical instability. The liquid in the region 

of this divergence is metastable. The pressures corresponding to 

these densities would be roughly an order of magnitude larger than 

the experimental melting pressures. The divergence a.ppeared to 

arise from the large negative values of c(r) near r = O. 

The structure of the solid and the structure of the PY liquid 

are very different near the melting line. Therefore, we question the 

validity of the melting model proposed by Tsuzuki (SS), which assumed 

that these structures were similar. 

The ability of the PY equation to predict structure but not the 

thermodynamic properties at high densities is not surprising since 

the rapid variation in u(r) and g(r) near r = a is a critical factor 

in the calculation of the energy and the pressure. Thus the PY equa-

tion must give complete compatibility between g(r) and u{r) if the 

thermodynamic properties are to be correct. 

Although the numerical solutions could be improved by increas-

ing the mesh size, we have demonstrated that the change in the thermo-

dynamic proper~ies would be insignificant when compared with the 

discrepancy with experiment. 

The properties of solid model of Henkel, Guggenheim, and 
I 

McGlashan were compared with the cell model of Lennard-Jones and 

Devonshire. Insufficient experimental data are available for the solid 
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state; therefore, we could not determine which model is superior. 

We have demonstrated that these solid models would melt thermo-

dynamically at nearly the same pressure. 

B. SUGGESTIONS FOR FURTHER RESEARCH ON THE THEORY OF 
MELTING 

1. Experimental 

Additional measurements of the solid and liquid volumes along 

the melting line are needed so that the large differences in the present 

data can be reduced. The rough approximations of the P, V, T data 

that we were forced to make in Fig. 17 emphasize the need for 

measurements of selected P, V, T states on isotherms up to melting 

pressures in the liquid state. 

2. Theoretical 

With the failure of the PY equation to predict the equation of 

state at high density or the melting properties, we conclude that other 

approximations such as the perturbation liquid model of Barker and 

Henderson(9 Z) are the more promising at the present time. There-

fore, their initial study of melting should be repeated in more detail 

with the calculation of the changes in volume and entropy of melting 

included. 

A study of the possibility of incorporating the structural 

properties of the PY liquid found in our study into a model similar 

to that suggested by Tsuzuki (SS) may be useful. The need for an ad-

ditional assumption regarding the form of the free volume might be 
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eliminated by our greater knowledge of the liquid state. 

Finally, an estimate of the effect of three-body forces on the 

melting transition would be valuable. If the contribution of these 

forces is significant further studies of the two-body problem may be 

less fruitful. 

C. IMPLICATIONS FOR THE STUDY OF OTHER PHASE 
TRANSITIONS 

In this thesis, we have used two fundamentally different 

techniques to study a first order phase transition. For the sublima-

tion model, we have modeled the transition itself. In this way, one 

gains more insight into the mechanisms responsible for the transition. 

Although we have not attempted to apply a model analogous to this one 

to other phase transitions, we believe that the simple ideas developed 

here may be helpful in other studies. Normally, this type of model 

will require theoretically well-defined physical states on either side 

of the transition. 

Since no simple representation of the liquid exists, we model-

ed the two phases of the melting transition. · The transition was then 

represented by a thermodynamic equilibrium condition. (Salter(b) 

has used this approach for sublimation.) Since the properties of the 

transition are determined from the small differences in the thermo-

dynamic variables at equilibrium, this model re qui res a high degree 

of compatibility between the representations of the two phases. 

Therefore, with this model we expect that we will have difficulty 1n 

matching the calculated discontinuities of the transition with those 
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found by experiment. Thus we believe that this method may be used 

most effectively to make a concentrated study of one phase of the 

system as we have done for melting. 
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APPENDIX A 

QUASI-CLASSICAL MODEL FOR SUBLIMATION 

For the quasi-classical solid, kT » hw, one may con::;idcr the 

energy states as a continuous spectrum. That is (II-5) and (II-6) be-

come 

E ::: nnw 
n 

(A-1) 

and 

Therefore, the number of energy states between e and e +de is 

nz 
dn = Zhw de (A-3) 

For the density of states in this approximation, we have 

D(e) = ez 

2 (hw) 3 

The partition function becomes 

E 

z = s 1 

0 

1 . soo(Z 3)2aVs 
exp(-e/kT)de + E m 

2(nw) 3 21r2 h 3 

e z 

By using (II-8), (II-19), and (II-20), we find 

E 
EN 

l 

(A-4) 

1 

(e-E )2 exp(-e/k'I)de. 
l 

(A-5) 



where 

and 

From Eq. (II-16) we have, 

A = 
l 
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kT 
'( = y 

1 
3 - 3 

(2rn ) 2 V w 
s 

llT3/Z (E )3/Z 
l 

(A-7) 

(A-8) 

(A-9) 

The energy relation (II-21) is compared with the quasi-classical 

energy for argon in Fig. 37 . The critical temperature of the classical 

model is slightly higher than the critical temperature for the Einstein 

model. 
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APPENDIX B 

ANALYTIC DETERMINATION OF THE VAPOR PRESSURE CURVE 

By using (II-22), the energy in Eq. (II-21) can be written in the 

form 

where 

E Q 
Nhw = W 

Q=[xM+4( ~3 + { Mz + ¥ M+ i)+xM+3(- ~ M3 - -¥ Mz 

- 51 M-6) +xM+Z! ~ M3+ ~ Mz+ .if M+9) +xM+l (- ~3 

(B-1) 

- 11 Mz - 3: M- li)+ ~ (X+l)](l-X)-4+a.Ae -Lo/kT c*(nL: + ~ (C+l)). 

(B-2) 

and 

W=[xM+3 (- ~ -
3~ -l)+xM+Z(M 2 +4M+3)+xM+l(- ¥ - ~ M-3) 

] 

-3 -Lo/kTC~ 
+ 1 ( 1-X) +a.Ae . (B-3) 

Near the transition region that we have studied, we find that C 

varies from 1. 05 to 1. 35, 1. 23 to 2. 38, and 1. 95 to 3. 91 for argon , 

krypton , and xenon respectively. In the region where 

(B-4) 

we may approximate the energy equation by 
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E 
Nhw 

-L /kT [ L J 
~ (l+X){l-X)-

4
+aAe o c 3/z h~ + f (C+l) 

~~-----------------_=L__,/~k~T=---~-------------

(1-X)-3 +a.Ae o C3/z 

(B-S) 

Condition (B-4) is true for argon over the entire temperature range of 

interest; however, it is only valid for krypton and xenon at tempera-

tures well below the triple point. 

Setting the second derivative of Eq. (B-S) to zero, we find the 

critical curve in the form 

-3L /kT -2.L /kT - L /kT 
o. 3 A 3 e 0 B +o. z A z e 0 B +o.Ae 0 B + B = 0 

1 z 3 4 

where 

B = - :!_ {l-X)l3c 7/2.+CS/2.[- l {l-X)l3( 11 Lo + .!2.) 
1 8 4 'hw 2. 

+ ~ (l-X)
1

2.(-49+11SX)]+c
3
/2.[- ~ ~~ {l-X) 13 (

1

:~0 +is) 

+ _2 ( 1-X) 12. f SL o + 7X ( 3 Lo + 1) } 
2. \nw nw 

-6X(l-X)ll(S+8X)]+clf2.[- L: (l-X)l3( Lo+ 2.3} 
(nw)2 1'1.w 

+ l {1-X) iz{ L: +x( SL: + 2.Lo -2.)) 
z \c-nwr (hw)2 hw 

+ 6X(l-X)ll -( Zh~o (1+2X}l-1)+30X
2

(1-X)
1

0(l+X) J 

(B-6) 

(B-7) 
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- ~ X{l-X}
8

{29+25X}+C-
1 
[- 3X{ 1-X} 9( :~o + 2) 

+ 3{1-X}
8

(- ~~o + 5 +3x{- ~~ + 2)) +24X
2

{1-X}
7

{2+x}J ,{B-8} 

B = 45 {l-X}7Cl/2+c-l/2[~ {l-X>7( 7Lo + 2) 
3 8 <± 'hw 2 

- _1 {l-X}6{1+13X}] +C-3/2[_!_ Lo {1 - X} 7( 5Lo + 3) 
8 2 nw 'hw 

... 2_ {l-X}6( Lo+ x( 
9

L 0 + s)) + 2_ X{l-X} 5{-13+7X}] 
2 hw 'hw 2 

+ C-5/2[L; {1-X} 7( Lo + 3)- ~ {l -X)6 (L~ 
{'hw}Z hw 2 z {tlw )2 

+ X 0 + __ o + 2 + 3X{l-X} 5 ~ + 4 
( 

SL 
2 

SL )) .( L 
{1'1.w} 2 ti.w 'hw 

+ x( :~0 + 6)) + 6Xz(l-X)
4

(4-X) J 
and 

-4 2 - 3 2 
B 4 = 3XC {1-X } - 6XC {l-X) 

We now assume that 

L 

L 
~ » 1 
1'1.w 

{B-9} 

{B-10) 

{B - 11) 

Actually for argon nwo is 15 and increases to 46. 6 for xenon. By 
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taking only the smallest order of nw/ L , the critical curve ( B -6) 
0 

reduces to 

. -L /kT I [ 
aAe 

0 c 3 2
(1-X)

3 l+fr~: (B-12) 

where f(~w , T) -+O as ~w -o. 
0 0 

We must limit any higher order approximation to argon; since 

Eq. (B-5) would not be valid for a higher order approximation in krypton 

and xenon. 

For argon, we find 

(B-13) 

By noting that Eq. (II-32) may be written in the form 

(B-14) 

we have 

-L /kT [ ] 
p = GAe ° C

312 (1-X)
3 

1 + f(t: , T) • (B-15) 

After taking the logarithm of Eq. (B-15) and rearranging terms, we 

find 

ln p = - ~~ - ~ ln C + ln[ c' (1-e - 1/C)' ]Hn [1+rf i_: , Tl]+ ln[ GA] 

(B-16) 

We note that Eq. (B-16) has roughly the same form as Eq. (II-2) since 

.ln[ C 2(1-e -l/C) 3
] i s nearly constant over the temperature range of argon. 



-113-

APPENDIX C 

THE CELL THEORY OF LENNARD-JONES AND DEVONSHIRE+ 

For the LJD theory of solids, we assume that the solid may be 

divided into identical cells and that each cell contains only one mole-

cule which moves independently of all other molecules. The center of 

each cell is assumed to lie on one of the lattice sites of the face-center-

ed cubic lattice. There are no vacancies in the lattice. Thus, the 

change in the potential energy due to the motion of the i th molecule 

from its cell center to a position r . 
1 

relative to the cell center is of 

the form 

Ali(r.) = 4-(r.) - ljJ(o) 
1 1 

(C-1) 

Since all cells are independent, the other molecules are assumed to be 

at their cell centers. It is also assumed that ljJ(r.) may be approxi-
1 

mated by ljJ ( l ;. j ~ This is done by calculating a cell field and regarding 
1 

the m neighbors in the nth nearest neighbor shell to be smeared 
n 

uniformly over a sphere of radius equal to the nth neighbor distance 

a . With the use of a canonical ensemble, the partition function for N 
n 

molecules may be written as 

(C-2) 

where U
0 

is the static lattice energy. 

+Foramoredetaileddiscussion, we refer the reader to Refs. (10) a nd(68). 
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Th~ shape of the unit cell is in the form of a Wigner-Seitz cell; 

this cell is constructed by drawing perpendicular bisector planes 

through all nearest neighbor lattice vectors. The final approximation 

of the LJD theory is to deform this cell into a spherical shape of equal 

volume. 

With the LT pair potential, Eq. (III-5), one may calculate 

.&jJ (r.) by summing all two-body interactions, u(a ), over the entire 
i n 

lattice. After computing the partition function, the result of these 

sums appears as three factors g, gL' and g in the thermodynamic 
m 

variables. These factors are a function of T and V and they are 

tabulated in the literature <93)' (94 ) . 

In the following paragraph, we list the thermodynamic variables 

found in this manner. The lattice energy is 

where V = a 3
• The free energy may be written as 

0 

k~ = k; + 31n[ h .1. ]- .en[Zir~ g VJ 
a(ZnmkT) 2 0 

(C-3) 

(C-4) 

The pressure and energy are calculated by differentiating F with 

respect to V and T respectively. The results are 

PV 12 [ ( V ) z ·. ( V )
4 J 

kT = 1 - k; 2. 4090 ~ - 2. 0219 Vo 

- t~[(~l' g;' f~r ggL J (C-5) 



and 

E 
kT 

u = 3 + 0 
2 kT" 
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+ ~[(V0 )
4 gL ( V0 )

2 gm] 
kT V g - 2 v g . 

And the entropy is determined from 

S = (E - F)/T 

(C-6) 

(C-7) 

For our computations, we have used the values of g, g L and gm 

given by Wentorf et al (93) and Dfaz Pena and Lombardero (94). Since 

these factors are calculated at given T and V, the thermodynamic 

variables of the LJ D theory appear in the text as discrete points. 
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APPENDIX D 

METHOD OF SOLUTION OF THE PERCUS-YEVICK EQUATION 

The Pe rcus -Y evick equation may be written as, Eq. (IV - 36), 

u(r) /kT 
c(r) = ( 1-e )g(r) (D-1) 

where c(r) is defined by, Eq. (IV-28), 

g ( r) - 1 = c ( r) + p S c( I ; _ ;, I )( g ( r ') - 1) d;. (D-2) 

Hence , by substitution of Eq. (D-1) into Eq. (D-2), we have an integral 

equation for either g(r) or c(r). Recently, Baxter(69) has used the 

conditions 

c(r) = 0 when r>R (D-3) 

and that the integral 

" J (g(r) - l)dr (D-4) 

be absolutely convergent to rewrite Eq. (D-2) in a form such that the 

integrals and.hence, the functions depend only on the values of g(r) 

and c(r) for r < R, Eqs. (IV-30) - (IV-32). We will not rewrite 

these equations here; we shall proceed to write them in the discrete 

form necessary for numerical solution. 

It is convenient to d efine the variables 

H(r) = r(g(r) - 1) (D-5) 

and 

C(r) = r c(r) (D- 6 ) 
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Then for a discrete mesh size 6 = R/N we define the variables 

and 

r. = i 6 
1 

H. = H(i6) 
1 

C. = C(i6} 
1 

if 

= 1 otherwise 

i = k 

for 1 ~ i ~ N. We note that C
0

, H
0

, and CN are zero. 

By using Eqs. (D- 3) and (D-4), we define a new variable 

D . = C . - H. + X l(i) + X2(i) + X3(i) 
1 1 1 

where 

and 

. N 

X2(i) = 2µ L 
j=l 

li-j I 

I 
k=l 

(D-7) 

(D-8) 

(D-9) 

(D-10) 

(D-11) 

(D- 12) 

(D-13) 

(D-14) 

N 

X3(i) = µ 2 I 
j=l 

(D-15) 

where W is antisymmetric and for J > k, 
jk 

~
. i 

2
._ lk-p I 

w. = H ~I H 
Jk p I q q 

p= i q= I j -k-p I 
(D-16) 
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E 1 is 1/2 for the end points of the sum and 1 for all interior points . 
q 

Baxter has shown that these D. 1 s may be taken to be zero, 
l 

thus this set of equations is the discrete form of Eqs. {IV-30) - {IV-32), 

whe r e the integrals are approximate d by the trapezoidal rule. WattJ 6~ 

suggested that a n e w variable, p.' 
l 

could be defined so that Eq. {D-1) 

may be written as 
-u. /kT 

c . = [e 1 
-l]p. 

l l 
{D-17} 

and 

-u. /kT 
l 

gi = e Pi {D-18) 

Where c., g., and u. are the values of c{r}, g(r}, and u{r) 
l l l 

respectively at r . . 
l 

Hence, Eq. {D-12) may be considered as a non-

linear set of equations for the p.'s and our solution corresponds to 
l 

for i = 1, • . . N {D-19) 

We have solved 

F.{pk) = - D.{pk}/r. = 0 
l l l 

(D-20) 

For the Newton-Raphson method{S 2), we are required to make 

an initial guess of the solution to start the iteration scheme. The 

succeeding iterations are m a de by solving the matrix equation 

where 

N 

"\ a >.. L Pv 
v = l 

is the previous set of pk' s 

~>._ 

+ F. (p ) = 0 
l 

(D-21) 

and the new e stimate for the 
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(D-22) 

and where 'A is the number of iterations completed. 

We have calculated the derivative matrix analytically; formal-

ly we have 

an. 
1 

8pQ 
8Xl (i) + 8X2(i) 

8p
0 

ap
0 

+ 8X3(i) 
apo (D-23) 

We shall merely write down the final expressions for these terms. 

and 

where 

and 

For the first t wo terms, we have 

ac . 
-

1
- = r.(X(i)-1 )oiQ ap
0 

1 

8H. 
--

1 = r .X(i)oiQ ap
0 

1 

X(i) = e 
-u./kT 

1 

6 . . =l if i = j lJ 
= 0 otherwise 

For simplicity, we use the notation 

CDQ 

(D-24) 

(D-25) 

(D-26) 

(D-27) 
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and 

For the third term, we have 

8Xl(i) 
8pQ 

E • . H . QHDQ 
lJ J -

Q = I, i-1 

The next term may be expressed as 

8X2(i) 
8pQ 

N 

+ 2µ l C/ jQHDQ 
j=Q 

-2µHD{·~Q C. c . -Q+ f C.c ·+Q]. ~ J J,l ~ J J,1 
j=l j=i+Q 

(D-28} 

(D-29) 

(D- 30) 

In this expression, the term is set to zero if the upper limit of the 

sum is lower than the lower limit. 

It is convenient to break the final term into four parts. We 

find 

8X3(i) 
8pQ 

(D-31) 



and 

oX3{i) 
8pQ 

z 

ax3{i)i 
8pQ 

3 

ax3{i)I 
apo 

4 
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€iQ 
- 2 - C .H . 

J J 

= 0 Q > i 

i 

= µ 2 
CQHDQ I 

k=l 

Q~i 

For the derivative of Wjk' we find for j > k, 

(D-32) 

(D-33) 

(D-34) 
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and 

>',c c = 1 if Jj-k-pl < Q<j - Jk -p I 
= 0 otherwise (D-38) 

The antisymmetry condition is used for the derivative matrix for 

k > j, and of course, we have 

8X3(i) 
apQ 

= 8X3(i)I + 8X3(i) I + 8X3(i)I + 8X3(i) 
ap

0 
ap

0 
ap

0 
ap

0 
l 2. 3 4 

Finally, we have the derivative matrix given by 

8F. 
1 

apo = 

8Xl (i) 
(HDQ - CDQ )6 iQ - opQ 

r . 
1 

8X2(i) 
apQ 

8X3(i) 
apQ 

(D-39) 

(D-40) 

As we have mentioned in the tex t, the initial guess for lower densities 

may b e made from crude e mpirical estimates and for higher densities 

we ex trapolate from the lower density solutions. It is found that in 

nearly every case the derivative matrix may assume its initial value 

throughout the calculation. For low to moderate density s o lutions, we 

have assumed the solution c onve rged if 

I F . I <; 1 0 -
5 

for all i 
l 

(D-41) 

F o r d e nsities abov e 
>!< 

p = 1. 0, the large negative v alue s of c (r) n e ar 

r = 0 made condition (D-41) unattainable, h e nc e , the c ondition was 

relaxe d to 

J F . J <; 7. 5 X 1 0 -
5 

for all i 
l 

(D-42) 
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The computer program was formulated so that the initial value 

of the derivative matrix was used £or I 0 iterations; if the solution had 

not converged to the desired conditi~n, the 
IO, 

pk s were used as the 

initial guess for a final try. This procedure was normally needed 

for p > 0.8. 

As we have noted in the text, the solution diverged for p =I. 3 

on all three isotherms. The values of the F!s 
1 

became larger than 

the computer could store, which is about 10 75 
• in less than 7 

iterations. To try to eliminate this divergence, new guesses were 

attempted and the derivative matrix was changed after the first 

iteration. The solution still diverged. It was found that the sign of 

the determinant of the derivative matrix changed from iteration to 

iteration. (The determinant was positive for p .:;;: 1. 2.) This fact 

indicates that the range of this determinant includes zero. We do not 

know if this behavior is fundamental to these equations or if it is of 

numerical origin. 
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