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THE COMPLEX ANGULAR MOMENTUM THEORY OIF THE

PRODUCTION OF THREE PARTICLES IN COLLISIONS OF TWO

STRONGLY INTERACTING PARTICLES AT HIGH ENERGY
Gary Luxton
ABSTRACT

The problem of the continuation to complex values of the angular
momentum of the partial wave amplitude is examined for the simplest
production process, that of two particles =+ three particles. The
presence of so-called "anomalous singularities" complicates the proce-
dure followed relative to that used for quasi two-body scattering
amplitudes. The anomalous singularities are shown to lead to exchange-
degenerate amplitudes with possible poles in much the same way as
"normal" singularities lead to the usual signatured amplitudes. The
resulting exchange-degenerate trajectories would also be expected to
occur in two-body amplitudes.

The representation of the production amplitude in terms of the
singularities of the partial wave amplitude is then developed and
applied to the high energy region, with attention being paid to the
emergence of "double Regge" terms. Certain new results are obtained
for the behavior of the amplitude at zero momentum transfer, and some
predictions of polarization and minima in momentum transfer distribu-
tions are made. A calculation of the polarization of the 0° meson in
the reaction T p + T p°p at high energy with smell momentum transfer
to the proton is compared with data taken at 25 Gev by W. D. Walker and
collaborators. The result is favorable, although limited by the statis-

tics of the available data.
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I. INTRODUCTION

The success in recent years in the theory of strong interactions
of the idea [1] of Regge pole dominance of high energy elastic and
quasi-elastic two-body collisions is well known. The idea lends itself
to a generalization [2,3] that leads to the description of high energy
collisions with more than two particles or resonances in the final
state. The work of Kibble [2] and Ter-Martirosyan [3] on this problem
is based on the theory of partial wave amplitudes with complex angular
momentum for production processes. These papers have the unsatisfac-
tory feature that the authors assume analyticity properties for the

amplitude that are not obvious, and which may be invalid in the unitary

S matrix theory. In the present paper we attempt to remove this unsat
isfactory feature of the theory.

Chapter II is addressed to the problem of defining complex
angular momentum partiasl waves in the absence of two ad hoc assumptions
made in References [2] and [3]. The assumptions are (1) that anomalous
(complex) singularities of the amplitude in the plane of a two-particle
sub-energy remain bounded as the total energy goes to infinity [U4], and
(2) that a production amplitude satisfies a double dispersion relation
in & sub-energy and a momentum transfer variable. Both assumptions are
found to be unnecessary in the derivations (Chapters III, IV) of single
and double Regge exchange terms for the high energy behavior of the
2 + 3 amplitude. Attention is also given (Chapter III) to possible

fixed singularities of the continued partial wave amplitude.
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Assumption (1) is shown to be incorrect for a simple Feynman
diagram for the 2 =* 3 process. It is then shown (Chapter II) that if
this result holds in the S matrix theory, there is a unique exchange-
degenerate partial wave amplitude, in addition to the usual signatured
partial wave amplitudes. The new amplitude permits a Sommerfeld-Watson
transformation (Chapter III), and its singularities may be significant in
the high energy region of the crossed channel. One would expect these
unsignatured singularities to occur also in continued two-body partial
wave amplitudes.

Assumption (2) is shown to be false in the equal mass case, if the
remaining variables are held fixed at arbitrary values in the physical
region. Without this assumption, it is shown possible in Chapter IV to
derive double pole terms with the conventional properties. In particu-
lar, the formula obtained in Reference [2] for the "propagator" of a
Regge particle at high energy in the crossed channel is verified [5]. The
results are obtained for external particles with arbitrary spin. The
remainder of Chapter IV is devoted to some technical points related to
the application of the model, such as factorization and the use of é
definite natural parity for Regge poles. The consequences of parity
invariance and the contribution of the coupling of a pole to a J plane
cut are written out explicitly.

Chapter V deals with applications of the theory to data fitting at
special values of the momentum transfers. The recent result of Tan and
Wang [6] of the independence of the cross section on the Toller variable
w [T], for a leading double pole term when one of the momentum transfers

vanishes is generalized to a single pole term for helicity amplitudes
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with external particles of arbitrary mass and spin by means of the
introduction of Toller's quantum number M [8,9]. It is found that a
leading double pole term in the helicity amplitude has only a phase
dependence on w in the asymptotic limit at zero momentum transfer.
For double Toller M = 0 exchange, it is also found that the particle
that couples to the two Regge (Lorentz) poles is longitudinally
polarized when one pole couples tc two spinless external particles and
one momentum transfer vanishes in the limit of infinite energy. This
prediction is compared with some data [10] at 25 Bev for the reaction
™ p->1m p°p .

Minima in momentum transfer distributions are shown to be
expected for the reaction m N - 7 WON at zero momentum transfer for
either the T or the nucleon, and in the reaction ﬂ—p -+ WOXn when
the nucleon momentum transfer tpn passes through a value near
—.S(Gev)e, where X 1is a pseudo-scalar G = +1 non-strange meson

fn er n').



II. THE ANALYTIC CONTINUATION OF THE PARTIAL WAVE AMPLI'TUDE

FOR THE REACTION IN THE CROSSED CHANNEL

1. Partial Wave Decomposition in the Crossed Channel

We consider the strong interaction process

a+b>1+2+3 (1)

where the particles have general spins.
From crossing [11,12], the amplitude for (1) is related to the

amplitude for the crossed channel reaction:

T+a>b+2+3 (2)

where 1, b are the anti-particles of particles "1" and "b", respec-
tively.

From Lorentz invariance, the various helicity amplitudes [13]
for (1) are each a function of 5 independent variables, which we take

to be the Lorentz invariant set:

s = (p, + pb)2 t) = (pl - pa)2
_ ) _ 2
Sp3 = (pp + 73) tp = (Py - By
_ 2
81 = (py + py) (3)

T"_n

where p_ = (Ed’qc) (0 = 1,2,a,b,3) is the L-momentum of particle "o
in some convenient coordinate system for reaction (1). Crossing sym-

metry relates the helicity amplitudes for (1) and (2) at the same

values of the Lorentz invariant variables, with Py and Py regarded
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as the negatives of the L-momenta of particles "1" and "b" respec-

tively in some fixed coordinate system for reaction (2). p

a’ p?, p33

are then the l-momenta of particles "a",

"2" and "3", respectively in
that coordinate system.

Now we decompose a helicity amplitude for (2) l:;(i:iunsks:t:ta

32pA25 Mg

according to J, the angular momentum of particle pair (1 + a) in its
zero-momentum system (z.m.s.) and J', the angular momentum of particle
pair (b + 3) in its z.m.s. It is simplest to begin by considering the
decomposition of the amplitudes [1L] F{ which are amplitudes
: &55)1‘3h1>1
for the process (2), in which the helicities 63, GB- are measured in

the z.m.s. of (3 + E}, and the helicities A A Aa are measured in

- L
the overall z.m.s., i.e., the z.m.s. of (I + a). We refer to these
amplitudes, first introduced by Wick [15] and Shirokov [16] as pseudo-
helicity amplitudes. We use the method of Reference [15] to form the
state IJM,GBSE- J'M',Aa> consisting of particles (3 + b), in a
state of angular momentum J', and z component of angular momentum M',
with the positive z axis taken parallel to “32 . J, M are, respec-
tively, the total angular momentum and the z component of the total
angular momentum of the system of particles (2 + b + 3) in the overall
z.m.s., and kz is the helicity of particle "2" in this system.
Inverting Eq. (5) of Reference [15] we obtain the two-particle

state (3 + E) with definite relative momentum and zero total momentum.

(We use the normalization of Reference [15].)

T ’ ‘4
’ Py T VN4 P 58, 0) d vt &
I p, (8,9 A 53£§> = = Z [77m 53&) DH';ﬁeo R (4""?_:1)

Tv' Ma-T”

(L)
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%
where 723-’= (?:%ﬁ.’) s, and P A ﬁz,mb,m,) is the momentum of particle
T 2V,

"3" in this coordinate system. (6',8') are the polar angles of 53 in

a definite coordinate system that is a z.m.s. of (3 + D). 6 = 63- 6E1
v=0 if 3,3' are both fermions or both bosons, v = 1/2 otherwise,
and Allg(x,y,z) = (x2~ y2— z2— 2xy - 2yz - 2zx)l/2. The continuation

of this function is defined in Appendix B.Z2.

We complete the definition of the coordinate system by choosing
aé, the 3-momentum of particle "3" in the z.m.s., to lie in the xz
plane with positive x component. Then by choosing the axes in the
z.m.s. of (3 + b) to be parallel to this set, we have @' = 0 in Eq.

().
The next step is to form the state of (3 + b) with total momen-
4 -
b Qg 9

overall z.m.s. By our choice of axes, this state is simply the result

e
= -q,, where is the momentum of particle "2" in the

of a Lorentz velocity transformation along the positive z axis applied

to the state defined in Eq. (4), so that

’ s e ’ %
00,8589 = 5 1, 200ITS55) s (55
(5)

where Z(Q —) is the Lorentz transformation required to take
Q == (/%,,0,0,0) into the l-vector AU = <¢@;:—a§,o,o,|321>

In Wick's helicity convention for 2 particle states of non-zero
total momentum, the state Z(Q —J|J'M' 6363>> is denoted

InggJ M58 6b> Using this notation, and inverting Eq. (20) of

Reference [15], one obtains



ngb s TM; SBS> z (i—&:’- )"z_nj |P%TMm; t,_TI,V]'Sg 7 D (o,o,c)

Tey M=

(6)

where the ket on the right side denotes a state of (2 + 3 + E) with
L-momentum P° = (\/tl,O) and with angular momentum quantum numbers JM,
formed from a state of (3 + 1_3-) with angular momentum quantum numbers

J'M'" din the z.m.s. of these two particles. The argument of Dg M'
2 2

.
is (0,0,0) because the momentum ng is the direction of the z axis.
(v = 1/2 4if J = half odd integer, v = 0 if J = integer). Combining
(5) and (6)

% a A
| Q5 975,55 s%z>‘1> =), Nsls 4(%) dz’;(a"leMit“TM SBSE’)‘D

b i) i

where M = M'- 2, and 3%:.4' N\Z-_G,TZ-TM " \écmu 5 6':?:(\._ = max- Sim'l, 151§ .

We consider the transition to state (7) of the two particle
— >
state (1 + a) with the same total energy. Let the polar angles of a,

in the z.m.s. of (1 + a) defined above be (8,8). Then, as in Eq. (L),

| et = 2, Nyl eTszmiddey B (#.6.9) (j__‘f_t‘.__)v‘
T.m

Ja (8)

1/2

where p = X - A_ and g, = A (t m )/21/ . This leads to the

a
1
following T matrix element for reaction (2):

<Q3; ,9’; S;S'; ,?lAz_, T l %1(9, ﬁ)’}“AQ
2 i A ] Bl
=Z ’VlTYlyS’ t.vE, ) de (E)dm,_‘?—jje a (3.3/m5 tt)

(85,5=7\ -
'J')T;M' i_ % r 3%, 13'1\,1-»

(9)
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where a(é?i:}mliti.rtl): <P°J-M,tl.3-,Ml' S;s; :xz‘ T' P)?IMI 2¢}T> s 'w‘hj_ch
3957 A2y AT Aa

is independent of M by the invariance of the T operator under

rotations, and z = cos 8, z' = cos O', and
-t

> =5 f Dy where A = s Sl o]

T,3,M’ Mz o T-;Mf"'mu.x

Noticing that the dependence of @& (J;74M';t,,t,) on M' is
{5; S;) J‘Z"’)‘ TAd_
analogous to its dependence on AQ, we adopt a new notation (introduc-

ing a factor Mtl/nJ/ for the sake of symmetry):
(B34t,t) = a(aT/M%5t, ) VE i
MOS0, s, e |/’n.3—/ Then Eq. (9) may be written
as:
n()«z_"M')¢

(2,2 t,,t) e g AW d:r’ () (E’)
Fr_s,s—nz, ?) 23_: ,bM (:,r-’);\,_,x;,\ﬁ M=A,, 0 ” d

nnnlg(l/a
%1115 (lO)

%

We have written the amplitude as a function of the variable set

{Zp A ¢s t

te} instead of as a function of the set {s, 512, 523,

t2} . The connecting equations between these two sets are given

12
tys
in Appendix B.2. Properties of the diu(z) functions are summarized
in Appendix A.

To obtain the partial wave decomposition of the helicity amp-
litude for (2), where all helicities are measured in the z.m.s. of
(3 + b+ 2), we must rotate the spin directions of particles 3 and b
in their respective rest frames relative to the directions of these
spins in the state (7). The spin component of particle "3" in state
(7) is measured in its rest frame along the direction of —aé , where

o - _—
q; is the 3-momentum of particle "x" (x = 1,a,b,2,3) in this
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coordinate system. The spin component of particle "3" in a helicity
state in the z.m.s. of (3 + b + 2) is measured along the direction of
—a;--aé . To get the second from the first, we rotate the first state
through positive angle B about the axis ﬁ3 = ﬁlx 32 , where

A

3
T R A A N e

This rotation, applied to state (T), changes only the spin of particle

A

"3", and affects no other gquantities that specify the state. Similarly,
to obtain the state in which the helicity of particle "b" is measured
in the z.m.s. of (3 + b + 2), one must rotate (7) in the rest frame of

particle "b" through positive angle &E about the axis ﬁé = ﬁi x ﬁé ,
t 2 "n_.n

Ay T ] T _ ; :
where nl = —q_ /!q | ,» Where qx = 3-momentum of particle "x" in this

"y | J— 3 + — =
rest system of particle "b", n (q3 q2) /Iq3 q2l , and cos Bb

i é ¥ Thus one obtains the helicity state in the z.m.s. of

{3+ Db+ 2):
2 S. S- 14 o S‘
4 [ - 0 -
| @59, 2505 4, 523_%‘_3_& dg, (B o{%;\scp,.)la;... L5385, 2,)
(11)

and, correspondingly, the relation between the helicity amplitudes and

the pseudo-helicity amplitudes for (2) is:

-— S-
Fx_,,m;AZ,’A,—A., - Z d (@9 dssag(@:) F—(&S;Uz,"\vla.

S!: b (12)

2. Analytic Properties of the Production Amplitude

a. Fourier decomposition in @

The amplitude has been written as a Fourier series in @

= LM
Fal Eelaz t,t) e ®™?

M =00 (138)
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where L S T
. (2)
£ 5 b S o i
T Oppay T A ma Frif (13b)
Also, from (13a)
vk g i (M=2L)
Foo=L jd.p F(z,2/8,t,,t:)e S
M’ 27 o (13c)

Now we assume that the series in (13a) converges when @ is
physical. According to the result of Appendix E, 0 € ¢ < 2r when the
other variables are in the physical region for either reaction (1) or
reaction (2). We may thus phrase cur assumption more precisely as
follows: there exists a continuation of FM'(Z’Z"tl’tE)’ defined in

(13b), to the kinematical region of {z,z',tl,tg} that is physical
for reaction (1), and Eq. (13a) is continuable to this region. Roughly
speaking, it is assumed possible to write the amplitude in the physical

region for the direct channel as a crossed channel helicity series.

b. Lehmann ellipse in =z

From the definition of diu(z), Eq. (A.4), one may rewrite Eq.

(13b) in the following form:

G'M/ = _.Fm’ (z’i,’f')tz‘
(152)iel (1rg)teidyeel ey

IM‘A LLime-a,+p00
= Z CMr (T) A z{ .

(1bp)

v
C.,.3) = Z b&f,'.!',t,,t ) n n:r’ 8 (IL_) ( ‘) baﬂ‘) s‘:_,n.(M lz:f)
N cor P4+ N(Z,3,,.) -



=1 1=

where N(J,\) = {T(J-A+1) I‘(J+>\+1)}"‘-
(—l)or'_B if a 2 |B|, or =B 2|a
and sign (o,B) = {

+1 otherwise.

Now, as shown in Appendix B.3, a necessary and sufficient condi-
(«,8)

tion for a series of Jacobi polynomials 2; Q"fi(Z) to converge
inside an ellipse in the z plane with foci at z = +1 (i.e., in a
domain that encloses the physical region) is that the power series
Z:anzn have a radius of convergence R > 1 . As a consequence of
this result, if the series (12) converges in a domain that contains
the domain of physical =z for reaction (2) (i.e., -1 £ z = 1), then
it converges uniformly inside an ellipse in the z plane, and is

therefore analytiec within that ellipse. The equation of the ellipse

is (z=x+iy)

() - (4]

¢. Real singularities in =z

The existence of such a z plane ellipse within which the
scattering amplitude is analytic has been proved in field theory for
two-body spinless scattering by Lehmann [17] and for the 2 +» 3 amp-
litude by Ascoli and Minguzzi [18]. Here we will show that the
existence of such an ellipse of convergence is consistent with all
branch points corresponding to thresholds in two-body channels. That
is, we will show that in the 8 matrix theory, there are no

thresholds in two-body invariant mass variables that generate real
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branch points in z between -1 and 1, provided that the remaining
variables (i.e., 5539 5o tl and t2), which are held fixed, are taken
to satisfy certain inequalities.

To show this, we notice that, as there are 5 particles in the
process (2), there are exactly 10 two-body channels, corresponding to

10 invariant mass variables. Four are held fixed: 5 Sw by BRa

$o3 1 2

The remaining ones are:

_ 2 _ 2 _ _ 2
813 = (p1+ p3) = (p3 pI) to (P2 pa)
_ 2 p) _ _ o
8ip = (p1+ pe) = (p2— pf) t1y (pl pb)
_ 2 PR
ty, = (p3— pa) toy = (p2 pb) (17}

We replace 515 in the variable set (3) by =z according to

Egs. (B.3), and (B.k4) of Appendix B:

z = Sn."m}—M:-O-ZE-,'Ez.
2P: P (18)
where
b = AV'"(t"tl’m:)/Z\/?, E,= (pxm; )%= (t,+m:'-t;_\/z,&-‘
. _ 2 2 V,_ + T a2
b = Anemiallpyg  Ep = (et GommlDf
(19)
Two of the variables in the list (17) are not related to =z at
fixed 323, tl, t2, s . These are:

t, = S,;+m a+m, +m: —-s-t,
b 23 .

tlb = t.—tl -5.23 +m:‘+mt—m’;

(20)
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We now examine the branch points of F in the variables 810

8 t corresponding to normal thresholds in the corresponding

23? t3&’ 28
channels. We observe that a branch point in a channel variable occurs

at a value >0 if the threshold is in that channel.

(i) Branch points of F in 810 corresponding to a normal threshold in

(12) channel:

th . 2 2
. o = >
Since 515 >0, z >+1 if (from (18)) 2E2El m - my 2p2pl

We take tl’ t2 positive, and above threshold for (2). That is,
2 2
ty > Max {(Jt2 - m2) > (mp+ m_) }
b, > (m+ m ) (21)
2 3" M

Then P> Py are real and positive, and 2z > 1 if

2
at

2
- m2)%~ U(n® + m3) BB + MES m° + ME=ml > 0 (22)

(m 2™ 8 Ny 1 By

Inserting the values (19) for BT, E, and simplifying, (22) becomes:

2

2.2 2 2 2 2
by [0ty ml ) (my - m) I+ (m) t- mp mf

27 2 2
)(t2+ m - m, - ma) >0 (23)

If m,, > m, this can be satisfied by choosing
m2 m2
2 a 2 2 2
t, > Max { = s W W, - ml} (2ka)
m
1
) 2 2 " 2 2 2
If m, > m, then (23) becomes: ‘tl(ml e me)(t2 ma) < (t2 m - m, ma)
2 2 2 2
_ _ . . B ; " .
X(t2+ m - m, ma) which will be satisfied if (for t2 ma)'

2 2 2 2 2 2
tl(ml = m2) < ml(t2+ n, ~m, - ma) (2kv)
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Clearly, if m, > m, the inequality (2ba) for t,. is consistent with

2 2

the inequalities (21). If m, > m,, we must check that (2kb) is consis~-

tent with (21). Inserting (21) for t. in (24b) one obtains:

1

> > 2, 2 2 2
-my (bt my) + 2my Vi, < my(mp - 2my - m - 2w, VES)

leading to the following inequality for t, (if t. > (mi - mg)z/mg)

2
2 2 2 2
> -
t2 (m1 m, + mlma) 7 m, (2khe)
Thus the (12) channel branch points lead to 2z > 1 if
i g
2 a 2 2 2 2 .
t, > Max { »m +my - m o, (mgtm) ¥ af m, > m
m
s
or
(25a)
2 2 2 2 2 2
> ”
t, > Max {(ml m, + mlma) / m, » (m3+ mb) 5 ma}
and 5
e 2 2 2
tl < ——2;——Er-(t2+ my - m, - ma) if m > m, (25b)
(m] - m7)

(ii) Branch points of F corresponding to a normal threshold in the

(2a) channel:

) 2 2 2
Since 8,5 — Wy - m, = t2+ m - t2a - tl (26)

for fixed t.,, t, that satisfy the inequalities (25) and (21), it

1* "2
follows from (18) that high lying thresholds in the (2a) channel leads

to branch points in 2z with large negative values. In order to keep all

such branch points outside the interval -1 £ z £ +1 , we impose the

condition



it
~t.+ b+ mo + 2EE_ < -2p, p=— (21)
™ ot 2 PT
Then, substituting the values (19) for E,s Egs D,» P leads
(see Appendix B.4) to the following inequality:

2 2

£t 1 Mo

2., 2 2 2 2 2.2
(o= my)(my —m ) + (b4 m -y - mp) (- m y 8

(28)
Incidentally, one may notice the great similarity of (28) and

(23); they are the same except for the exchange of m1 and ma « Thus

it is sufficient that

m2 m2
12
2 2 2 2
t2 > Max {(m3+ mb) > M) + m, - m_, mi }
. N
if m, = m, (29a)
or m2
a 2 2
< = "
tl e (t2+ m my m2) (29b)
mn- -m
a 2
: 2 2 2 2 2 2
t, > Max {(ma - Y # mlma) / my» (m3+ mb) § ml}
if m >m, (29¢)
Clearly, (25) and (29) are mutually consistent.
(iii) Thresholds in the (13) channel:
. 2 2 _ 2
Since Sip = My - m, = s - 323 - 513 + m3 (30)

Eq. (27) tells us that we can insure that the resulting z plane branch
point will occur at 2z < -1 if we impose the condition:

s - 8 <t +F m2 -t - mg

53 oy . " (31)
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2 2
for then 512 - ml - m2 + EEEET

have been subjected to any previous conditions, we can satisfy (31)

- 2p2 PT - Since neither s nor 523

by the appropriate choice of 523 for arbitrary fixed s .
(1v) Thresholds in the (3a) channel:

Since

2 2 _ 2 2 2 2 2
8, W) ~m, =8 + t2+ t3a_ mo- W - m - W, - moy (32)
then, by choosing
2 2 2 2 3
s > ~tybmo +mo+m 4w +omg (33)

one can insure that the resulting z plane branch points are real and
occur at =z < -1. Consistency with (31) is no problem; one must simply
have
2 2 2 2
< - + + + + +
523 2t2 2m3 m o+ my +m, t1 (34)

Thus we have shown that if Eqs. (31), (33), (25), and (29) are
satisfied, then all two-body channel normal threshecld branch points of
F result in real branch points in 2z that lie outside the interval
_1£Z£+l

We note that we may not choose s arbitrarily with both t

23 1

and t2 fixed, for then (3L) imposes a lower bound. We also note in
passing that (25), (29), (31), (33) are satisfied in a kinematical

domain that overlaps the physical region for the reaction (2).

d. Complex singularities in 2

In production amplitudes, in addition to the real singularities
generated by thresholds in two-body channels, there are complex

singularities generated by more complicated thresholds. This has been
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shown explicitly for the 3 =+ 3 amplitude [19]. Complex singularities
have also been found in the 2 = 3 amplitude in the perturbation
theory [20,21].

We now examine some of the properties of these singularities in
perturbation theory for the purpose of finding a reasonable assumption
for the analytic properties of the 2 + 3 amplitude in S matrix
theory. Azimov et al [21] show that the two-pole Feynman diagram
(Figure 1) has complex singularities in the z plane. The diagram of
Figure 1b is shown in Reference [21] to possess the following complex

conjugate branch points (Egs. (1h4a), (14b) of Reference [21]):

z =z,.2z.  +i[(1 - 223)(220— l)]l/2

23 30
g = -5 g & A0 - of R . 1R
12°10 = 12 10
where 7 = cosine of the angle between "2" and "5"
Zpg = cosine of the angle between "2" and "3"
Zyp = cosine of the angle between "2" and "1"
2 e = Wme
i _ b4 ml mj, o 2E1Eh
10 2P1Ph
and 2 2 2
Yy -m; -m_ + 2E_E
Zag = 23 > 35
P3Pg

where Ek’Pk (k = 1,2,3,4,5) are the energy and momentum respectively
of particle "k" in the reaction L+5 =+ 1+2+3 and x,y are the masses
of the exchanged particles in Figure 1b.

We prefer to consider rather the labelling of Figure la to which

correspond the singularities:



o0 o

o
[
o
[

Figure 1. A Feynman diagram with a complex branch
point in =z ; (a) in the notation of
this paper, (b) in the notation of
Reference [21].
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_ 2 2 1/2
2= ZyoZa, % if(1 - z23)(z30 -1)] (35a)
_ o e-EYS - 1/2
z =~z Be + i[(1 ZEb)(zSo -1)] (35b)
where
s m. - m2 - 2E_E
" _ 23 2 3 203
23 2P2 P3
2 2
Y = Gy = Hg, = M, = 2H 0
2b 2p2 Py
u - - m2 + 2
g— = mb a, EEEB.
bo EPE pa
2 2
. _ v - m3 - ml + 2E3EE
H epry PT
and _ 2 2 2
Yoy = Yy Upm Byt Wy, v,

Here Ek’pk are the energy and momentum respectively of particle "k"
(k =‘I,a,€,2,3) in the z.m.s. of the reaction 1 + a + Db + 2 + 3, and
u,v are the masses of the exchanged particles in the Feynman amplitude

represented by Figure la.

Thus
o 2
. ='t;l+m2--t2 e _t1+m3—t2b
e Al = - ) o
" 2/t 3 o/k
2 2 2
N il Niler ; Ef=t1+mb‘523
a o/ ovk.

T 1
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I . & are held fixed at physical values for the reaction (2),

1° ®2° B3
eand if the magss u 1is permitted to become arbitrarily large, then the

brench points (35a) tend to infinity in the z plane asymptotic to the

rays
o Qo
6] =ttan Fes it (36a)
23
o
If £, t,s 8,5 &re physical for (2), then Gi are real. Similarly,

if Vv becomes arbitrarily large, then the branch points (35b) tend to

infinity in the z plane with the asymptotes
2 ,\1/2
(1- ZEE')

Z

-1

6. =3%tan (36Db)

N+

2b
+
and 95 are real in the physical region for (2).
Using the calculated branch points as a guide, cone would expect

the branch cut structure of the amplitude GM,(z,s ) as a func-

23’tl’t2

tion of 2z to be similar to that displayed in Figure 2, with t t

1> P

s23 fixed in the physical region for T+a > Db+2+3

It is of interest to investigate the origin of the complex singu-
larities in S matrix theory. Under the assumption of maximal
analyticity of the first degree [22], all such singularities are
generated by the unitarity equation. Using a simple version of the

bubble notation of Olive [23], we write the unitarity equation for the

2 » 3 amplitude in the form:

Dive,. s = —(FSI__ 4

+_—FS:-— ~+ other 374 order graphs

<+ 4'.“‘ and l\n‘,h'\- orJ.f 91“’-“!5 (37)
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[
\\H\\\\H\\\\ {f/ff;ﬁf;;//#f#”,,ﬂf’,”ﬁr
%
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x
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X
; S e s
=1 +1
x
X x x
x
» >

N

A typical singularity structure for the production

amplitude II.(1L4) in the z plane. The wavy lines
The x's represent poles.

Figure 2.

represent branch cuts.
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We define the order of a term in this equation to mean the number of
bubbles that appear in the corresponding greph, i.e., the number of
times a connected part appears in the term containing the branch cut._

The result of Sec. ¢ is that no second order graphs contain com-
plex singularities, provided inequalities (31), (33), (25), and (29)
are satisfied. Thus, the complex singularities arise from third and
higher order graphs.

If the analytic structure of GM‘ is not qualitatively more
complicated T intersecting branch cuts) than that represented in
Figure 2, then G,,, satisfies a dispersion relation in z . We take
this dispersion relation to be without subtractions, to reduce the com-
plexity of the formulas. The problem with a finite number N of
subtractions bears the same relation to the problem with no subtractions
as in the case of the 2 > 2 amplitude. In the case of 2 =+ 2, the
continuations with N and O subtractions in the dispersion relation,

respectively, are the same for Re J > N, as shown by Squires [2k].

Thus
(2,5, 6,8 =L [45 Curlomnatotd  _ F g (BuSuptinty)
GM’ Ay ® Tamde $-z g-“ 2,.-2
k
(38)

where C 1is the sum of the contours that enclose the branch lines in
Figure 2, each contour enclosing its branch line in a eclockwise sense,

and By is the residue of QM, at the pole =z = z) -
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3. Analytic Continuation of the Partial Wave Amplitude to Complex J

We make use of Eq. (38) to determine the continuation of the
partial wave amplitude to complex J , by a method based on that for
2 + 2 amplitudes derived by Froissart and Gribov [25]. The partial
wave amplitude may be obtained from Eg. (10) by using the orthogonality
properties of the diu(z) functions for physical J (Appendix A),

resulting in
( ‘¢, 5 s P
b (htd, = (2 jaejae sy g (hhke ?f) EHACE
3 2_) =1
(39)

Using GM'(Z t2) as defined in Eq. (14), and the definition of

,523 ’tlﬁ
(z)
dM'—ke,p ‘from Appendix A,
= 5(1'.0" 5'|;9n (M-, g) N(JJAM‘!K) A

N (T, dain) 2xi

1M, ~pl M2+ pl

gjdfjd; (l+a.) )?zz)'"‘*""Gm'(’ S‘n)fg (:) _5_'__.;.

' Lagp! i (ISR RIVBEIY)
+ Z:Ier jd! (_'_:__z)‘n t(,';! e Jﬂ;M: (2 SA P sz\f }( Lo)
potes -y

where Awmax = max § Im-x,, tel§ sign (A,u), N(J,A) are defined below

Min

’ - 2 ,l/ s
(15), and jda = §dvt G L (38 B)* o7
Ve,
Then, using the relation (Reference [26], Eq. 10.8(20))

w,8 i ) o
& O_L F(7.1") (2 (2P = 5‘41 Ff.dﬂ(Jz) (-z) 6+2)f
- e”" -2 (hl)

one obtains



).

= A /S n{M’—) 2 ] N[T Am-tj
b, (3 f o’/ Sig ¢ e

(Mlagpl, tmtarpl)
(O izfl L _ f he 4
"‘J-di ; "EE) e ) FGM’(E’SL QT’\

max

l IM%a (im’_p,-p) iy D)
- -2 Lfﬂ 7P P
12( ) ( ) Ay lt;_,f'i'g_w(z*,s‘“)Q_,—A[:,. j
(k2)
At this point, and for reasons that we discuss below Eq. (51),
and again later in connection with the Sommerfeld-Watson transformation,

we introduce the unique decomposition:

b (3,774t = Bu(mdhtity) + Car(BT04,1)
n‘ 3 LI )

(L3)
where By, is given by the right side of (42) with C replaced with
CO, the contour that encloses the branch lines on the real axis in the

clockwise sense, and the sum over poles replaced by the sum over the

poles on the real axis.

Since the continuation is performed in J while J'

is physi-
cal, it is convenient to introduce the function
L:T Sla:tnt:) Z (27%1) d s (2') 2 - b ,(.J;T t”-tz')
bm’(é';s-)ﬁ,_,’,‘\ Xe. T (%r%‘h M(4,8; )2, 0 A
(4k)
and the corresponding decomposition
Byr (T5853) = By (T5853) + Oy, (T58,5) (45)

where BM'(J’SQB) and CM,(J,523,tl,t2) are each given by a formula

of the same form as (L42), with bM,(J,J') replaced by B,,(J,J') and
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CM,(_J,J'), respectively. The relation between =z' and 523 is given
in Appendix B, Egs. (B.9), (B.10).
The formuls that gives the continuation of BM,(J,s23 ’tl’tz) to

complex J may be written

B (3,5,,)= I sign(m’-x,,e) NLT; Amax)
e 53 I sl i )

o ML g pl Gm-2,~ 91, M52 epl)
dz (142 LM pl im(M=Ap) o Rl ARLIE
x {go ( 53 ) (lza) Ple 2 f isc. G,.(2,5:5) Q'-""‘fni)
¥ o

T+ n . a9l ,IME \
+ Gy T, et | (M-240) reaEpnh
(22) sz azslim iy a_li:r«Gw{'?"’-“) Q;.—_;l,fj)

- i tMZA-pL s (fu'.,\r l,ln’-A+fl)
2 aign M, N dmad 17 (1-20) (102e)t ihicr e o 5.3 Q5 (B
NITA0Y (ke 2 o e R Imr e Py “TALE

MR Ciwatp gl im0 )
_ T+hmox (’*?k e "‘ﬂh!\,_ I A
R ) % - ) (!_£ k.) =™ A.fgmgz,psny Q3—1 L‘z,,‘\

max

(L6)
where disc.H(z) = H(z+ie) - H(z-ie) for real =z
%

ﬁhere z;, zz are the real branch points > +1 and < -1, respec-

tively with the smallest moduli, and =z are the poles of G on

s Z
kr kg‘

the real axis with =z >0 >z s
k k
r L
Using the functions eiu(z) of Gunson and Andrews [27] (some
properties of these functions are summarized in Appendix A), Eq. (L46)
may be written in more compact form as
= T-M Ty
BMr(:r) SZ% T - I.TT'( dg e:r, (?) d‘SC_ E\,(E,S,&\ -+ ("l) - +JLJ°‘1 e‘M'-;\(z-) d'.SC- FMI (—?,S‘,))
2: "Jm’f ] -Z; 7P -2

~-27* ( % e:,_fi;,) fw { Ty, 523 + (_')r-n'q,%: e:'-;tf-?} JCM' (%4"‘ ? 38))

(47)

where fM'(Zk’SQB’tl’tQ) = Residue of FM,(z,z',tl,te) at the pole
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We've shown in Sec. 2,.c that zg > 1. zz < =1 provided that

523, t2, tl and s satisfy the inequalities derived there. 1In that
case, Eq. (L47) would provide a unigue meremorphic continuation to com-

plex J for the function BM'(J’SE ) N(J,Amin)/N(J,Amax) for Re J > a

3
where \d£££$%%£1?')L70 for arbitrary positive € as |z| + o , except
2
for the factor (—l) . This is a consequence of Carlson's theorem [28]
% s J
and the asymptotic behavior of elu(z) as |J| >« (see Egs. (49)
and (50) below). This factor of (-1)J is familiar from the 2 + 2

)J—v (v=0 or 1/2, according as physical J corres-

problem, where (-1
-ponds to J = integer or half odd integer, respectively) is replaced by
the "signature" +1 and two separate unique continuations, corresponding

to signatures + and - , are made into the complex J plane. Clearly,

the same prescription works here also, so that the continuations are

W (T 7
BM/ (T 513) = -I-T( dz e )ta# dltc F (3,3-‘ *( &V-J;ii e':‘-if;r dfslc.e;l (-apa ))
te
~2w* (§ e (?“ ) fM'(zkv’ Sis) E u'_a;vz eT chi“'.) f ¢ (z".za :.'l))

(48)

since, as J + « (Appendix A, and Reference [27])

‘A L {1 >
e:,;(z) 'n')a- ’L'ﬂ' - [z-(a% 3/,_1'.!'4- , %= Sign (Tm2) ’
VT (0% (L49)

and [e*%E%:N"%]" o exp [Jloglz—lz'h)"‘f]eqcp(i‘l’J)

(50)

where Y = arg(z - (22-1)1/2).

At every point 2z on the right side of (48) at which a function

2 1/2
of the type eiu(z) is to be evaluated, V¥ = 0 and log|z- (z°-1) / |<o
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so that |B§,(J,523)| <K/ /I as J+x ,Red >a, for some positive
K, and the continuation of Bi,(J) to complex J is unique. Of
course the integral in (48) does not converge for Re J < o where
‘disc, Far (2,2') I_..po for arbitrary positive € as |z| + @ , so that
gt
in thﬁs :ase the continuation formula, Eq. (48), is valid in a right
half plane only.

) CM'(J) may also be continued uniquely to complex J . From (L45),

(47), (44) and (L42), one obtains

/
i T 3 n o J ‘j ,(2,5
Cwe hﬁzﬂ—-tﬂjﬁ* eM,_A(;?%E,\,(?,Z) 2“1,,2.;88“""‘2’2? Fo (2, 522)
(51)

where C' encloses in a clockwise sense all the branch lines in Figure

'
2 except those on the real axis and ) is the sum over all the poles

poles
indicated in Figure 2 except those on the real axis.

At all points =z on the right side of (51) at which the func-

.2
tions €M¢{E; are to be evaluated, we have |¢| <7 and
23

|z - fn=- 1)1/2! < 1, where VY is defined in Eq. (50) (see Appendix

B.3 for some of the properties of [z - (22- 1)1/2]

in the complex =z
plane), and so from the asymptotic behavior in J of eiu(z), Eq. (L9),

we have the result

\CM’(:-)52331 _*o as ]J’]-q.oﬂa &3-73-5,
eﬂr-t—)l‘-ﬂ

for some positive € , and some real JO .
Thus, from Carlson's theorem [28], Cm- (7:5233"((3_=1n;.>/nl(3’, X
is uniquely continued to a meremorphic function of J in a right half

plane by Eq. (51). Thus, there is no need to introduce signature to
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obtain a unique continuation of CM,(J,s ) and this amplitude is

23

exchange degenerate [29], since the continuations from even and odd
(J-v) coincide. Another way of putting this is to state that the con-

tributions of the continued CM,(J,S ) are the same to both

23

+
signatured continued partial wave amplitudes bﬁ,(J,s ) where

23

Dyt (T0853) = By (Tump0) + Cyr(3,5,3) (52)

23

4. The Continuation to Complex J'

It is not possible to continue Eq. (42) to complex J' by

introducing a dispersion relation in =z’ for FM,(z,z’,tl,tE) (with

the appropriate kinematical factor, viz., (l:gvﬂggffo—gfyﬂéﬂ
2 2

removed). This is so because threshold branchipoints, for fixed tl’

t and s can occur in the domain -1 £ z' £ +1 , When =z 1is

2
allowed to vary over the domain of integration in (L42). Explicitly,
consider the branch points due to thresholds in the (13) channel. Now
2 2 _ th th
s 512 513 m:L where 513 is the value of 313
at which the threshold branch point occurs. In Eq. (42), z and

s +

therefore 515 can assume arbitrarily large positive and negative
values, so that for sufficiently large sig (and branch points sig
occur at arbitrarily large values), Sp3 mg - mg can assume arbi-

trary real values, and corresponding branch points in =z occur

everywhere in -1 £ 2z £ +1 , as 2z varies over the domain of inte-

gration of Eq. (40). This argument is valid when t; and t2 are
fixed at physical values for any 2 =+ 3 reaction related to (1) by

crossing at least for the case of all masses being equal. The
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denominator in (18) is real in this case for all possible values of

tl and t2 %

On the other hand, we may evidently continue bM,(J,J') in J°'
when J 1s held fixed at a physical value in a manner identical with
that used to continue bM,(J,J') in J with J' physical. It is
most convenient to perform this continuation in J7 by exploiting the
formal equivalence of J and J' in Eq. (39). In order to make use
of a dispersion relation for GM,(sle,z') = EV(LZQ//Hz)'M*“ﬁ !j:ﬂ
in z', we must first continue (39) to an appropriate kinematical

region in tl and t2 ¥

The appropriate kinematical region is given by inequalities (25),

(29), (31), and (33) when the replacements

(t ) > (t,,%,58,,)

1°%55803 1°512

2.2 2 2

(m m- ,m -+ (m2 m2 e m2)
L] 3! amb 39 l’:m.b’ a
are made. With this prescription, the inequalities correspond to keep-

ing the branch points in =z for the class of singularities considered

1

in Sec. 2.¢ outside the line -1 £ zy £ +1 , where 24 is the angle

between the momentum of particle 2 and particle 3 in the z.m.s. of

g sk %' for the reaction

3+b + 1+a+2 (53)

From invariance under crossing [30], the helicity amplitude

(=2
7 ;\52“9’5 t;’t) for (53), with (zl,ze,iﬁ') defined for (53)
F‘ (=2} ¢t:,tz\
analogously to (z,z',8) for (2), is given by [a;A¢ )A

2 | Y
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up to a phase that is a matter of convention, where @' = ¢ , 7y =ent

2, ="Z, l§-= —Ae . Thus the inequalities leading to the branch points

in zq with Izll > 1, then correspond to branch points of the ampli-
tude in z' with |z'| > 1

Then, in this kinematical region in tl’tg the continuation of
the partial wave amplitude in J' follows the same lines as the con-
tinuation in J . In particular, we make a decomposition similar to

(52) for the partial wave amplitude, i.e.,

-+
b + (Slz)Titn :h‘t'l.3 = BM—; (S Tl,tl:-tz_) = CM’ (Sll :T,;tn lt:j

123

B (5k)
#
where the continuation of BM,(slg,J') is given by:
t . R - T' , - 2t s 5
B, (s,,3) = -iw fdz' €, (2 )dé.rc.ﬁ;, (2,2 (13" J‘Jz’qa,_(}’)d;;,ﬁ.(z;w
z:/ ’ 3 -2

-q2/
%

J"’ y ’ LR a ’ ’
o L B S e, 5)
L <o

(55)

L

T L} 1
with the quantities [zg, 29 =

o 0 Zp o Zkz’ fM, (z,zé)] defined analogously
r
to [zi, zz, Zkr’ Zkg’ fM, (zk,z')] that appear in Eq. (L8) for the

+
continuation of B&'(J’SEB) to complex J . Similarly, CM,( J1) dg

s
12

continued to complex J' by a formula that is the analogue of Ea. (51):

s
4 « ’ i 7 ¢ T
Cor sT) = -im [dered, 2, (2,20 — 20 e, (2) £ (52,2
C/ po'l‘es

(56)
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III. SOMMERFELD~-WATSON TRANSFORMATION

1. Transformation of the Sum to an Integral

We follow the usual procedure [24] for transforming the partial
wave series into a sum over J plane singularities of the partial wave
amplitude, together with background terms. We start with Eq. II.(10),

using II.(LLk) to effect the sum over J :

F (=258, £,,6) =L Z Z: b“l (3 szzatn't::) (27r1dg C\‘-M)¢dr (a)
(553'):\;,5|Aa 2 Mot T2 e fé',&-)lz ,9\-‘ Az, P

(1)
(T seat, 0 27 e‘c"‘ M"’d C:r,z)
_,_“-.Z Xa b '(J, *3 ’\ ia_z 2 “Ar 5P

(2)

where d;},(%s) = 3’__ [6(;‘(?_)-:- T(-I)A'vd_;_j:_i)_] (3)

In Eq. (2) T is summed over the values of the signature intro-
duced in II.(L48), and bT,(J) is the signatured partial wave
amplitude continued to complex J by means of Eq. (52), (51), and (L48)
of the preceding chapter.
(2) can be transformed to an integral in the J plane over
a contour C that encloses J X max along the real axis. We

J

choose the sense of the contour to be clockwise (Figure 3a) and obtain

F =4 Z dT @7+D bM:(T)e“a-MMd"'(J’—z}
4‘“'1 Mf S:h‘l'r[:r_n...;\z*’ (L)

T
Using the decomposition II.(52) for bM,(J), F is written as

the sum of two contour integrals:
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i i r T (1,-®)
F - -:- Z et (4,"“ pY- [ Z SJ..T (27+1) BM’ (x) dM'_xlj-‘f
4’"’7' (Vg ™~ CJ’ S(nv(T_MI_’_Az\

T ¢
. J‘dJ' G340 G (T) d'M")(uz‘)_P]
CJ SEHT(T~M'+A2\

(5a)

(5b)
where Fp, FC are given by the formulas of the form of (5a) with
B;,(J) and CM,(J), respectively, appearing in the integrand.

2. Deformation of the Integral: Singularities

Next, we deform the contour CJ

parallel to the Im J axis, crosses the Re J axis at JO 5

into the contour C& that is

A max > JO > A max - 1, and is deformed to avoid any singularities of
the integrand on the line Re J = JO (broken contour in Figure 3a). We
close the contour with a semi-cirecle in the right half plane, and we

show that the contribution of the integral over this semi-circle
vanishes in the limit of infinite radius, both for FB and FC .

z 1s taken on the negative real axis, z < -1, and within the ellipse

1f

II1.(16). As |J| + » , from Eq. (A.18)

3 (-2) rl
d’M'—Al," A _C_,_ e'IT IMJ'lela_:”
Sinw{r-M%4%) 0T
e 2 1/2
where [Cl] is independent of J , and a = log|z + (2°- 1) .

CM'(J) is given by II.(51), and as |J| - @ , each contribution
on the right side of that equation gives a contribution to CM,(J) of

the form C eCJ eiUJ where C is independent of J and

2 2
C = log|z - (22— l)l/zl; g = arg[z-—(ze— 1)1/2], where z is in the

domain of integration and summation in (51). Since all such points
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2 are outside the ellipse II.(16), C < -|a| and since all points =z

in Eq. II(51) have a nonvanishing imaginary part, |0| < m . Thus,
Gy () JM,_A '*}, a
SinTr(T-M+)) exponentially as Re J > +o

or as IIm J| » e

Using the same methods 0 = 0 for all terms on the right side of II.(48)

and

T \
sinm(3-m+2A 3 exponentially as Re J or

|Im J| » =

Thus the contribution of the integral over the contour at infinity
vanishes for both terms in Eq. (5a).

In deforming C; into C} in Eq. (5), one must add in terms to
the right side that represent the contribution of the poles and branch
cuts of the integrand. For simplicity, we will assume that branch lines
are absent to the right of Re J =

Then

T ( r T -
% = .:"L- Zl (j‘ d:' lzj‘l) BH (I) dﬂ'-}‘)‘P +1“—Lz dM-A‘(“.": Z)FMI (tl ,t“’g") e (*l ! J¢
4rer MET TGS SUnT (I R S Toto S0P o)
Redy 7, £ 2

(6a)

- (T o3 stints)
where BM' (tl,t2,523) is the residue of Bﬂ’lf.d';)az,'}.—:l 2

at the pole J = aa , and
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F; i Z,,;(,\-M)é(fdr (270 Cone (T) d s, ,;'._‘F;.’P "'2""2: aL"“ c‘zl X (4,5, ,525’9

4 z M/ £ -M7
= N {T-MAAD poles Sinm (d -M7+AD

hi£>r’

(6Db)
and Y., is the residue of CM,(J) at the pole J = a, .

Now we deform the contour C& into the contour Cg in Eq. (6)

where 03 is the line Re J = -1/2, suitably deformed to avoid any

singularities of the integrand on that line, and extended from -1/2 - iw
to -1/2 +iw (Figure 3b). The line Re J = -1/2 is chosen by the

criterion of the fastest decrease in the limit 2z > © of the contri-

"
2
the right side of Eq. (6) that come from the singularities of the

bution of the integral over C In doing this, we must add terms to

integrand in the region between Cj and C} .

Before discussing these contributions, we note that it is pos-
gible to deform the contour farther to the left in the J plane, and
decrease the asymptotic contribution to the amplitude of the background
integral by using a device due to Mandelstam [31] and generalized to
2 + 2 amplitudes for particles with spin by Drechsler [32]. In doing
this, however, one obtains additional contributions that dominate the
background integral in the asymptotic region in 2z . These contribu-
tions may be shown to cancel if Mandelstam symmetry is assumed. In our

case, Mandelstam symmetry would read

M'-A_-p

b, (J,8 tl,te) = (-1) . by (=T-1,8 ) (7)

M! 23 23’t1’t2

for (J - M'+ AE) = half-odd integer.
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Thé symmetry hag heen proved in spinless potential scattering with
Yukawa potentials by Mandelstam [31] and conditions for it to hold in
2 + 2 scattering with general spins are discussed in Drechsler's
paper. Corresponding conditions for 2 =+ 3 scattering may not exist,
because Drechsler's conditions are based on the N/D equations which,
in turn, are based on the existence of only a left hand cut and a
right hand cut for the 2 -+ 2 amplitude. In the 2 =+ 3 problem,
additional cuts also exist, as discussed earlier. To avoid the
complication of seeking an appropriate generalization of the N/D
equations to test Mandelstam symmetry, we extend the contour no
farther to the left than the line Re J = -1/2 . Except for this
feature, the treatment here for the 2 =+ 3 case parallels that of
Drechsler [32] for the 2 - 2 case.

In deforming the contour to Cg , one picks up the following

contributions in Egs. (6):

(i) Moving poles -1/2 < Re a(tl) < Amax.

(i1) Poles due to the vanishing of sin mw(J-M'+ Rg)

in the region =-1/2 < J < A max.

(iii) Fixed "Kronecker delta'" singularities of the
partial wave amplitude.
(iv) Branch cuts of the continued partial wave
amplitude.
We discuss (i) first. This presents no problem, as the sums
2: in (6a) and (6b) are simply rewritten = . Notice
Re&).‘]". Rcd,)_l,’_

that the trajectory J = a(tl) is taken to be a function of ty

only. This is essentially equivalent to assuming that the Regge
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poles are the same as those that appear in 2 > 2 scattering. Another
way of stating this is that the position of a pole in the conlinuatlion
in J , the angular momentum of a pair of particles in their z.m.s.,
depends only on the invariant mass of the pair, as is the case in 2 > 2
scattering.

| Next, we consider (iv). For the sake of pragmatic simplicity,

we assume that there are finitely many non-intersecting branch cuts C

k
Intersecting branch cuts, as pointed out by Drechsler, can lead to a
complicated sheet structure for the J plane, and little is known
about the cuts, apart from the position and energy dependence of a cer-
tain type of branch point [33].
A branch cut may occur in BM'(J) or in CM,(J) . The respec-
tive contributions are
(_—Bb-c- e i ¥ e'»“g""'”ﬁjd:r disc. BLl(J;su,t,,t,J deol-% B0 -
far W 2, sin (I-M7+A )
T j A5 dise. Cone (523 10,E2) dpe 2y 470
¢ T antw ¢ S (8b)

where disc{B-,(J),C,,,(J)} are the discontinuities in B',(J),C.,(J)
T M M M M
across the branch cuts in the sense implied by Figure 3b.
The remaining contributions are of type (ii) and (iii) and we dis-

cuss them together. Equation II.(L8) is valid for Re J > N where N

may be taken to be the smallest integer > 0., where ’ Hﬂ:j?[——a-o as
Z

]z[ = © for any positive €, and we do assume the existence of a power
bound for FM,(Z), as is generally done for 2 +2 amplitudes [2h]. Bqua
tion II.(46) says that BT,(J) has a one over square root singularity,

that is, a behavior (J-~A)Hl/2 as (J-v) passes through an integer of
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the wrong signature with Amin £ J < A max. The representation II.(L48)
is no longer valid for Re J < N , but, as mentioned by Mandelstam and
Wang [34], these singularities persist in the 2 + 2 amplitude with
spin due to their occurrence in the left hand discontinuity function for
the partial wave amplitude in the presence of a third double spectral
function, as first pointed out by Gribov and Pomeranchuk [35] for the
spinless case. These singularities may also persist in the amplitudes

B;,(J) in the problem being discussed.

As J passes through such a point, called a "sense-nonsense"
point because J = A min is "sense" and J < A max is "nonsense" (we

abbreviate this by referring to it as an s-n point), the multiplying

function d;ﬂﬁFz} vanishes as (J~A)3/2 because the signature
AL
factor vanishes as (J-A) and the d:lf;:? function vanishes as

/I~ [Reference 26, Table I]. The denominator sin m(J-M' + AE) also
vanishes as (J-A), so that the integrand is finite at an s-n point of
the wrong signature, and there is no contribution from such a point
when the contour is deformed from C& to 03 .

As J passes through an s-n point of the right signature, the
continued partial wave amplitude B ,(J) vanishes as VJ-A , because
in this case the continuation reduces to an integral over a zgéi}
function as in IT.(L40) which vanishes as J-A . At such a right sig-
nature point d:zgz;z’ also vanishes as VJ-A , so that the
integrand is finite, despite the vanishing of sin n(JaM'+:\2), and no
contribution to the right side of Eq. (6a) is obtained from the vanish-
ing of the denominator at s-n values of J , when the contour C& is
shifted to the left, to the contour Cg . The same argument applies to
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the s~n points in the integrand for FC in Eq. (6b).

When (J-v) passes through an integer of the wrong signature
with J < A min, referred to as a "nonsense-nonsense'" (abbreviated n-n)
point, II.(L8) suggests that B;,(J) has a pole, because 63;4_’\(2?}
has a pole there. At an n-n point of right signature, II.(U48) suggests
that B;,(J) is regular, for the same reason that it vanishes at s-n
points of the right signature, i.e., the continuation reduces to a
formula of the form II.(40). This behavior persists for 2 + 2 ampli-
tudes that satisfy the Mandelstam representation as indicated in
Reference [32]. At n-n points al:,fi',i? vanishes in the case of
wrong signature because of the signature factor, and this cancels the
zero in the denominator due to the vanishing of sin m(J-M'+ Ag), but
this leaves a possible pole in the integrand due to the suggested pole

J

in BY (J), since Mgg

At is regular at n-n points. At right sig-

z)

4P
. d"r'(:r..z-) . .

nature points MeaLSp does not vanish, and there is a pole in the

integrand due to the vanishing of the denominator. There are poles

of the integrand, then, at n-n points of both right and wrong signa-

ture, and these lead to contributions to FB, FC’ respectively, of

the forms

p A . L) T(r.-
F-""" -l Z. Z e»“iMJf’(r}'—n) Res. ( Bm () dm'(_i-’h.a;)

B AT M’ T=v S\‘n‘ﬂ’(?-M'-»AD
(92)
5 Azt . ' )
B 3 3 e M a3n) (74T 2) CuulD)
o = A
2T M Tsy m 29 (9b)

For later applications, we note that at n-n values GL;;(Z)

behaves as 2 L for |z| + o » S0 that these terms are
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dominated by the background integral when Izl + @ ‘
Ag a result of the discussion above, the Sommerfeld-Watson

transformed series assumes the form

FB- <= & Z Q"(’\ Hl)¢‘f 4T (ZT-H)a.J (J': 5:.:)dwf§' -!)
Cy

3;‘ MyT

o |
z_ﬂ' MT ;‘:ﬂi sinT (o _Mr_bll)
i
v O g”"*"‘"’ﬁj.d:r (27¢0 [ dige. B, et h) dM,‘:n ;)
‘-ﬁ?.' w)‘f ‘b.:::::: SinTr (:—__M +A‘)
L (agsm) T (mow
- | 2:' z e (3 #(274-:) Res. (J‘)d l:"-;_ -
I o Teo s; T (T Mr 2y
R = &+ 2 Pk )¢J-JJ' Gugwsd CorlBifead ] (—-%}
ﬁ‘- ("%4 $|h."-c:.M'+A \
L2 d-'.‘:; (D By (6,850 O™
el 0F TSIAT (k- M2
Red,,>-1
" - L(J’_-M )¢ ( J -
* -‘-,,'Z Z J-dT [duc(.'w__z_s_ﬂl_ d (-a)
4' M7 ::‘.t""L~ S‘n.'r "-M -"AD
Ami] — " |
_L Z 1.(4\3, Mo (J.J'-i-l) Co () Lot ¥ % "Cl -(;‘z)f -

2T M Juy

Z. Y d% t.(,..—z)ﬁ

Sin T (F-m%+2,)

‘ 5 -mD
(t-;tz)523§ eo QAe-m ¢

T\'
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Alternatively, we may perform the Sommerfeld-Watson transforma-

tion in the partial-wave series in J', by using the equations of II.h

to continue the partial wave amplitude bM,(slz,J' oty ,tz) to complex

J', and perform the procedure corresponding to that which led to Egq.

(10a) and (10b). Then we obtain

where

~

Fy =

AT}

F = F_ +F (11)

"t ‘-
Z 6" Oyt )¢J-d~7’ (27%1) Bnl (Sn..\_-r) dM" 7i-2%)

4“.1. M, T sinw (T M)

' ..(A ~M7)p d'?" (4‘ -2 )P fr (fz,t.>5r23

-

2 M R:a;:)iiz Sinw (L,~M)
r/ —_
b S 5 ;u;—m'»j 43 (a34i> [dise. B (50,7 d], T
b R :r_:;:" c, Sinm (T-M")
4T N i ' d (:r'—z)
;(,\1"”\ »(21 ) R s. [ M [SI;T ) ] (125-)
-L 2 }:‘ s I ¢ Snn'll'CT'—M')

2T M,T' Tav'

’ s’
S e OB 457 (2540) Copr (52, T da-s 2"

o b

4> ‘= (i SinT(T-M')
c(AM7 2@
| Z Z:\ d“m (-27) XM,{t,_,t,, S’,,_) “
21w jar poles,m A inT (S, —M)

Re Zpmy-L
Tz

. ' ¥’ -y’
.'. Z 2 g )¢JJT’ (27510 [d‘,’.‘- Cpar (Siz 2] oAl G
[+

M branch Sinw(z/-m")
cuts, n
T , T 3 g
_1 3 5 et arthn G (e, 70 TG FEY ()

2.1"1 M’ Tev
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IV. APPLICATIONS TO THE HIGH ENERGY REGION

We restrict our discussion of the high energy behavior of the
amplitude for the reaction II.(1l) to the case in which the two momentum
transfers tl,t2 (Eq. ITI.(3)) are held fixed, and s = «© . Then the

pair energy s necessarily =+ « (for the proof, and for other kine-

13
matical relations in the asymptotic region, see Appendix C). Further-
more, it is not possible for both S1o and 523 to remain bounded in
this limit. Accordingly, we consider separately the cases in which one

or both of these sub-energies =+ ® ag g > «© ,

1. The Amplitude as One Pailr Energy Remains Bounded

a. The amplitude for large 8o

The standard method [36] for obtaining the high energy behavior
of a 2 -+ 2 amplitude at fixed momentum transfer is based on the assump-
tion that the crossed channel amplitude, after undergoing a Sommerfeld-
Watson transformation, may be continued in the kinematical variables to
the physical region of the direct channel, and represents the direct chan-
nel amplitude through the crossing relations [37]. Likewise, we assume
here that the representation III.(10) of the crossed channel amplitudes
(i.e., the helicity amplitudes for II.(2)) mey be continued to the
physical region of the direct channel (i.e., the physical region for
IT.(1)), and represents the helicity amplitudes of the direct channel
scattering by means of the appropriately generalized crossing relations
[11,12]. Thus, we use III.(10) to investigate the behavior of the

amplitude as s >« for fixed t,, t and @ .

2> 523
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Using II.(18), we note that at fixed ts tz (t1 # 0),

|z] + » 1linearly in 8, - In fact, in the physical region for II.(1)

the ‘denominator of II.(18) has the seme sign as ) (Appendix B),

and t, < 0 when s,, is large (Appendix C), so that

Re z + =» ag By ™ 5 8nd sign (Im z) = - sign(Im 512) . The
asymptotic forms for large |z| of the functions d 4. A( Tf’ and
T (els 4 .
dn%qi- that appear on the right side of II1.(10) are found in
4

Appendix A.3 to be

3 Y s
d.,ql;(:_ _zr e

t'.ni_f:(l‘\’-ﬁz"f) r(2d+,) e—i’;“’d— (_!_ )"
N(et,p) N (x,M7-2,) -

AT, -2 o e ME NI (24 1 (,+rre"l'(°‘"))é"’2" g)"‘
Mg, Nla,p) N(a,m/=2p) 2 2

(1)

—-inTmo.

where we have used -z = e z , N =sign (Im z)

In our case, we are interested in this physical region of II.(1),

so that sign(Im 512) =+1 and n = -1 . There are situations, how-

ever, in which the more general form (1) would be needed; for example,
in the computation of a unitarity integral in which the amplitude on

both sides of a cut is involved.

From (1) it is apparent that in the limit of large the

-
behavior of the amplitude is determined by those terms on the right
side of III.(10) with the largest values of Re J . If that term is a

pole, it may occur either in F or in F_, , and the leading term in

B C

these two cases of pole dominance are the following:
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Pole Dominance

(1) Pole in FB dominates:

) L o , 3 t2,520) 3, g~V
Z eL(Al-M)Qe'Lil'% (M=) -P)rt'no(dﬁl)ﬁmw:{l_‘;ie_ (!)“

bW

Feas2,501, & !
330 4id5a 2T A’ SinTr (d-MaA0 N(uﬁ,M"—lz\ N (e, )

ofi - % cta .ta_ sl?) .S
=——'_ Z,E'aa Ml)(ﬂ!;‘fe“’lm&‘- r'(ldi-ljﬁml(;';'ijft";lfl‘ I‘ (%
27 M Sinmla-v) N(o,M%=2,) N (o, p)
i lof-V)
S, = L (ree” )
(2a)
(ii) Pole in FC dominates:
. ¢ (¢,,t,52¢) i rle-v)
e sdn st %L 5 et A MID () 442) Sareglsdansdrde e (1)"
319742377 T 2 o Sinmw(x-v) N(«,M=2) Nla,p) =
. eiq"%tev-%;"“')
(2p)

As noted before, F is exchange degenerate, and this is evi-

c
denced by the absence of the signature factor in the asymptotic
behavior of the contribution of a pole in FC .

The leading term with largest Re J may possibly occur in the
integrand of the discontinuity function across a cut in the J plane.
This may occur in applications at large momentum transfer, or at small

momentum transfer if the Pomeranchukon is a fixed cut. The contribu-

tion of such a leading singularity at J = ac(tl) is of the form:
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Cut Dominance

(1) Cut in FB dominates:

. LM PN ot
P, any, =i, 2 €0 TN lage2de = g Brelosug bt
M SinT(d,-V) N(uc,m’-z,_') N(d“g:) loalz\

& O [ 3%
Ee)
(32a)

(ii) Cut in FC dominates:

y = 5] (J',SJ),"-; t‘J ‘C
Fasor s, & b Seattiw el g v‘?i‘.if""“"“”"“”‘ ) (5)
323
b > am* '’ Sintr (2.-v) Nlol,,p) N, M4 loglz)
+ O( z‘:‘ )
!.,; 12l (3b)

This derivation of the behavior as 512 -+ o breaks down in the

case t, = 0 for then |z| is bounded by unity. This situation is

familiar from its occurrence in two-body backward scattering of unequal

mass particles, where it was examined by Goldberger and Jones [38], and

Freedman and Wang [39]. There it was found that when an analyticity

requirement is imposed, either in the form of the Mandelstam represen-

tation as in Reference [38], or analyticity in the Khuri representation
olu)

as in Reference [39], that the behavior s persists even at u = 0.

We assume a similar substructure here permits us to use Egs. (2) and

(3) in applications in the 1limit tl >0 .

b. Factorization

The contribution of a Regge pole to a 2 + 2 amplitude is
generally taken to be factorizable into two parts that depend, res=

pectively, on the variables of the two channels [40]. That is, if
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the contribution of the Regge pole J = at) to the amplitude for

a+c + b+d with channel energy +t is written for large s in the

form
Ly (A-2) z\%
Fat g © Ee Py e Te) 80 (3)
PR s Sintclt-v) Nl,2) N (%,
where s = (pa-ppY "
=mraem _ | l‘t’+m4,°ﬂ1¢)(f+’"1. ""d)-f-i A7, me,m ]Aa— i)
'a b :-i—t-
4 = ;\u."')‘i
1’ = ’K; "AJ
M= Sign (Im Z)

(&)

Then the residue function /315 daAadz is taken to factor as

= B, “’-’

101 1 ! ('tu tz: s:. 3
If the helicity residue function ﬁ"’(&f;)&d:z\‘ of the pole
J = Ot(tl) in the amplitude for the reaction 1 + a + 2 + 'bbject"of
helicity M' is taken to factor in the same way as if the "object"
were a particle, we can write:
+,,t Sa—g)
ﬁ (‘t,,‘tz‘Sg's) ﬁA } € /SM’(k; 2)

M0552) A5 A7 0, (6)

and identify /Sa_f_'if as the same helicity residue function of the
two-body channel (1 + a) at the pole J = a(tl) as occurs in two-body
reactions of the type 1 + a + x+y , where (x+y) represents any two-

body channel that has this pole and that couples to (1 + a).
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(*uta,ﬂg) may be regarded as defined by (6), and is the residue at
M f.s;')ﬁ,_

the pole assoclated with the coupling of the three-body channel

b+ 3+ 2 with helicity l2 and M' , respectively, for the particle
"o" and the two-particle subsystem (3 + b) in the z.m.s. of (1 + a).

Furthermore, the notation BM‘(J}S—)Q& gignifies that 63, 65' are

the helicities of 3 and b in the z.m.s. of (3 + E) . Thus, the

dependence of the amplitude on the helicities AI’ Aa factors out of

the sum in (2a) or (2b), and we can write it as

tyn (ty)
F“'zss'uz 1 A7da = --—@--"—f"'-/?’-‘r‘\a
21 N(J,P)

o) -M)¢! ux_'!‘(:l,-M’) (t,ta,523)
Z e = rze+2) P,,,a(;;&m, (gjd
S'un'n'(d-'v) Nk, M=, 2

(7)

where we have taken a signatured pole, for definiteness.

c. Poles with definite parity

When Re(a(t)-v) passes through an integer of the correct signa-
ture, i.e., Re(a(t)-v) = even or odd integer, corresponding to even or
odd signature, a Regge pole in a 2 -+ 2 amplitude gives a contribution
that is associated with that of a particle, either a bound state or a
resonance [36]. TFor this to occur, it is necessary that Re(a(t)-v)

a "sense" integer, i.e., that Re(a(t)-v) 2 Max{|A]|,|A'|} in the two-
body reaction described above by Eq. (4). Similarly, particles are
associated with right signature integer sense values of Re(a-v) in the
2> 3 case. Bound states and resonances have definite parity, and in

the 2 =+ 2 case, the trajectories couple to the following parity
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combinstions [L1]:

MY (0> ITM-‘A.;'&?

+ |
=5 (8)

where N, »S, refer to the intrinsic parity and angular momentum of
particle "x". Ths combination has parity P = i(-l)J_v, as may easily
be seen from Eq. (L41) of Reference [13]. The + or - is characteris-
tie of the trajectory, and we refer to Pa = +1 as the natural parity,
or simply the parity of the trajectory. Exchange nondegenerate
trajectories form particles of one parity only (which may be +Pa or
—Pa , depending on the signature), whereas exchange degenerate trajec-
tories have particles of alternating parity along the trajectory [L2].
The pole at J = a(tl) that gives rise to the asymptotic term

(7) in the 2 -+ 3 amplitude occurs in the continued angular momentum
of the two-body state (1 + a), and so the fact that the coupling of a
trajectory to two-body states is via one of the combinations (8) means
that we must replace ﬂg;iE? in Eq. (7) by

[/9 hE o + B 9y, 07T véaﬁ'-)l.,] . The additional factor of 2 +/2
comes from the fact that it is the state U'..,_ [t7mrin>, +|‘-"M1~\17_]

£

that occurs in the partial wave decomposition. Thus, with signatured

pole dominance, one has the result

R "
F‘(S,Sgh,;l-,l, ~ _# eu’:df/z; (Pi\f{: + B, (ST (ﬂ -) 5,
g3

o p t”t ’ D il
vZ e O ""¢f'(z¢¢D BM’(J‘:&."‘S:-, vt {z)d“‘)
Y Sinm(k-v) N{a, M2

(9)
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d. Consequences of parity invariance

Shirokov [16] has worked out the consequences of parity invari-
ance for processes in terms of the pseudo-helicity amplitudes. From

(12) of Reference [16], the result for the 2 + 3 amplitude is [43]

S3+Sp+S,+ A,-A- 4+ 85-8- -)
Frayses "u"’ft:m = Mg Ui (DT TR RASTS )T TA T

(2,2, t,,t,)
% F{-‘S’; 'J‘) "'.J A " —;

(10)

"

where s, = intrinsic spin of particle "x = s— .
X

This relation may be applied to obtain conditions on the residue func-

tions Mé?;;gfgf’-’) that appear in Eq. (9). Thus,

/ﬂ M(?;t‘-' fﬁ = P I S s 97 £ 777

v CD57 +&—Sé-£7ny€_£77rm,—m’) (t,,t;,5,,)

M’("F 8 $~)—}
? . (11)

531-5— + 5~V

Lt N = F-m’ ;
ory  Buweggnd) = 07760 T 1 L Putgana™ (12)

e. The amplitude for large 823

To investigate the behavior of the continued helicity ampli-

tudes for II.(2) as s.. > © at fixed tl’t2 (t2 # 0) and fixed s

23 A2

one starts with III.(12) and applies essentially the same method to
the expression for |z'| + o , as in Secs. a. through d. to the expres-
sion IIT.(10) for |z| + ® . To meke the analysis as similar as

possible, it is convenient to introduce the second crossed channel:

3+D + L*+at B (13)
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and perform the partial wave decomposition corresponding to II.(10)

. i 3 -
Z e:(,\;_-m )¢b (.5, t,,t) 8' ( Ve, ) ,1:- (2) dﬂ?(i,)

F, _ .. , 43, e
" 5 R A M/(Sr 8,0 D353 8 =5 r
7% 1:. JSJK,, 75, 7% "L 35 11}!%_ x

M’ (1k)
where Jl, J2, z,, Z, are defined with respect to (13) in the same

manner as J, J', z, z' are defined with respect to II.(2). That is,

zl = cos 91, where Gl = angle between p§ and p3 in the z.m.s. of

3+ b . Then

2. 2 1 2 2 2,
Bay = Wy M, < o, (b my =ty ) (b r my - m))

e g £ -
+ 2t2 A (t

tyoma,nl) A2 6 0l) 2 (15)

and comparing this with Eq. (B.9), one sees that
Z = i (16)

~
Similarly, z, = cos 92, 92 = angle between —ﬁé and p_ in the z.m.s.

of (1 + a) in the reaction (13), and by analogy to Eq. (B.9)

_ P 2 2 2 2
Bys B W) F W, ¥ 2tl(t tym m ) (4 my - m )
- 1/2 1/2
- Etl (t St ,m2) (t1 l,m ) Z (17)
Thus, from Eq. ITI.(18)
z, = -z (18)

We note that @ in Eq. (14) is the same angle that appears in
II.(10), since it is the angle between the planes of the momenta of par-
ticle pairs (1 + a) and (b + 3) in the rest system of particle 2 ,

which is the same as the rest system of particle 2 in the reaction

II.(2) with the same values of the independent varisbles.
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One then treats Eq. (14) in the same manner as II.(10) which

leads to Eq. (19) below, corresponding to Eq. (9). As Sp3 T @ s for

the case of signatured pole dominance (i.e., the pole J' = E(tg) is

the singularity farthest to the right in the J' plane)

!

[ I‘f; (t,) = :"V

Fff;&.‘ﬁ;_;f;fg ar -4511- ,:’;1'2?; (ﬂﬁ J‘t‘) -+ F:;P ¥ 113’1;( J)’zf'(z.Tn)
% Z 30z - (E-1T) ﬁMl (:.z:tu slu.\ i, o (£)

N(Z, M0, sinm(L-v') » dz'.: S-'gnlIml') (19)

The relation between the amplitudes for II.(2) and (13) assumes a

simple form in terms of the pseudo-helicity amplitudes Er:71-6<&
94431939

and F“&&JA il * First, according to the analyticity postulate of

Stapp [30], the crossing relation between the amplitudes for reaction

(13) and that for reaction

24 3 + f -> I.p a (20)
is
e (gh-2,6,%,,¢) = (3,3 Bst,t2)
("-G-‘)zi 5’558;‘- i (6'76'._; (r! ,55321 (21)

where l2 - —XE., and Fﬁ1571—'53‘k is the continuation of the ampli-
T¥a’ A3 2

tude for (20) in the lY-momentum of particle "2" from pg_ to —pﬁ_,

where p§ is positive timelike.

Then, the amplitude for (20) is related by time-reversal to the

amplitude for II.(2). Time reversal invariance [30] yields

(3,2,6,8,8) = [, (539 fnt)
o F g, | RS )
where J, = *1 1is a phase factor that may be different for non-

i
interfering amplitudes. Thus,

F (avdtutd = q FeC-a-2.9,6,%)
B3800, 5 5580 Urdad; :8; 53

(23)
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o] is a matter of convention, and we choose it to be +1 in all cases.

2. The Amplitude for Large Values of Both Pair Energies

When 815 and 523 are large, and tl,t2 a?e in the physical
region for the process IT.(1), the assumption we have made about the con-
tinuability of the Sommerfeld-Watson transformed amplitude states that
III.(10) is a valid representation of the continued amplitude for II.(1).
The corresponding assumption about the similarly treated amplitude for
the process (13) asserts that the corresponding representation which is

distinct is also valid in this kinematical region. Below, we examine the

consequences of the simultaneous validity of the two continuations.

(i) Double Pole Dominance

Let us consider first the case in which as 815 + o g gignatured
pole at J = a(tl) is the term that has the largest value of Re J on
the right side of III.(10) and a signatured pole at J' = a(tz) is the
term that has the largest value of Re J' on the right side of Eq.

II1I.(12). Then, from Egs. (19) and (23), as s, B > « ,

23
v -
£ ; e (i @MV s eny Lp % VE ) ) I
(":33 A3 878, == (-4‘;) ——"—z(z £ (fs,r’ r; + Fa g (- é;p_;;_) M
)
"-.U;—M'J('ﬁ"?""@” (22,%:55,) 5 04,)

s r(lz"'ll Z Q "'([TJn)li _E_’}
M N(Z M) sinm(Z-v) 1

{"is—}z,) (21&)
so that to begin with
~ - 'TFJ}
N(E,8) Fegy 033,850 € © =
2/ () r SISV E ()
{I) (ﬁ‘a‘(;w * B 0 E‘fs.'i';)
+ 1limit that is independent of 8., 6 (25)

Bogr 3¢ O
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Applying this to the representation III.(10), we see that each of the

T
functions BM,(J,523,tl,t2) 5 BM'(tl’tE’

M (T's Sp30 tl te) (t 3B ,523), and dlsc CM,( 23’tl

behavior. In some cases the limit in (25)15 zero. We now make the

323), dlgc'BM'(J’523’tl’t2)’

c ’te) have this
assumption that whenever the internal quantum number selection rules
allow the coupling of a particle lying on the trajectory J' = E(tz) to
a particle lying on the trajectory J = u(tl) together with the par-

ticle 5} then the residue BM,(tl,t2,523) does not vanish in this

s
limit. None of the above functions divided by sé§(t9 can go to
infinity as 323 -+ o , for cancellation of this asymptotic behavior is

neceésary and would take place in two or more terms for a range of
values of PE and so, by analyticity, the sum of these terms would
have to vanish identically.

Let us now suppose that the internal quantum numbers permit the
coupling of a particle lying on the trajectory J = u(tl) to the
particle "2" together with a particle lying on the trajectory
J' = a(tg), where the two trajectories are the singularities with the

largest real parts in the J and J' planes, respectively. Then we

have the case of double pole dominance, and in the limit of large s

12
and large 823, (25) holds, and also
F(&:,S;)ﬁ;.s-sq, N (e5p)
ei.'lt'lir‘f Sﬂ(lt)[ ) + P (‘t) (_)S;-i-S‘ J
Bi o * B Bl
-+ 1limit that is independent of 5150 Ai“ Aa (26)

so that combining (25) and (26) one obtains the following result for

double pole dominance:
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Double Pole Dominance

in'rd ~ S, +5 -v/
F“;E:nzasr& N e'&q'lr_p/‘ i A A (P:,?;‘) + B ysyg (-2 ﬁéf_.%)w«,f)w.z‘,u

i ol (%) 7.5
(Bl Tt TR ) () (L (it )

(27)
"M@ [-'-Z-c-'t' i Oy I Y’
where 0 {t ,‘t&,¢) = Z e .y (BT € s
Ar v Ay (28)
1 ot [ (B 0B T, T
with Tanltutsd = lim _Pwtg&pdl il
Sz oo SinT (ot —v) N(o‘ M- A 3 ( ?’)ﬁl

(43,1550 [ 4n(p (&) 2
= lim ﬁ(M"—-:A:) (.;-r-?‘\'ﬁg "( bJ + "l”[ ¥ 0 Is ”‘ )]
v

L e S\nW(I-v*) N (&, M’J

(29)

Parity inveriance, as expressed in Eq. (10), when applied to

Eas. (27), (28) for the double pole dominance term, leads to the

result:
F. (=, 2.6.t,t) = %1 “’l‘"‘v 'JlWV (1)%_ Az. ( (2,2 s"f_:}nt ) P P&‘
(S,I;):\,_;STX., JJJ§>' 23070
(30)
In terms of the PM'A (t 2), one has
2
FM(—t): st = P Fy UR Gul'wve:c’mv(—l)i_"" FM,)(:- )
(31)

The formula (27) fer the case of double Regge pole dominance
of reaction II.(1) in the appropriate kinematical region was first
obtained by Kibble [2] in one of the first papers on the extension
of the Regge pole model to production amplitudes. The theoretical
basis of the double Regge pole term in this work differs from the

one in Reference [2] by the inclusion of ancmalous thresholds which
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are known to exist, in general, in the analytic structure of the produc-
tion amplitude, the knowledge of which forms the basis for the
continuation of the partial wave amplitude. Thus, in addition to the
usual signatured partial wave amplitude, which may have poles and cuts,
we found an unsignatured amplitude, also with possible poles and cuts.
In Reference [2] it was further assumed that there exists a simultane-
ous meremorphic continuation of b (0" %, 6. ) of Bag. T1.{306)
M6 Aha T 2
into the right half J and J' planes. We do not make that assumption
here and, in view of the remark at the beginning of Sec. IT. b , such a
double continuation seems unlikely to exist. Eg. (27) must be regarded
as heuristic, nonetheless, for the helicity sum has not been proved to
converge. In Appendix F a proof is presented of the existence of a
domain of convergence that is valid for a Regge pole term in the case
in which the pole occurs in an unsignatured amplitude.
Eq. (27) represents the leading term for large IPT 523 in
the case in which the leading J plane singularity, which is taken to
be a pole, can couple to the particle 2, together with the leading J°
plane singularity, which is also taken to be a pole. Other cases are
possible, of course. For example, the leading singularity in either
the J or the J' plane may be a cut, rather than a pole. Further-
more, it may occur that no particle on the leading J plane
gingularity can couple to a particle on the leading J' singularity
together with particle "2". These singularities may occur in signatured
or unsignatured amplitudes, but the difference between the leading con-
tributions in these cases is trivial; simply the replacement of the

signature factor ¢, by e-lnw(a—v) »
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As further illustrations of the possibilities, we compute the

leading terms for the following two examples:

1) The leading J plane singularity is a cut, the leading
J' plane singularity is a pole and the two can couple

to each other via the external particle "2".

2) The leading J and J' plane singularities are both
poles, but the quantum numbers do not allow a coupling
of particle "2" and the leading J' plane pole to the
leading J plane pole. This case is further defined
by specifying that the leading singularity in the J!
plane that, together with particle "2", can couple to
the leading J plane pole is also a pole, and vice-

versa.

(ii) Cut-Pole Dominance

From (3) , and not assuming factorization for the cut,

(5,525 ,C::E;)
b(x"M)(7’+¢)r’/ldc+2) dlsﬂ B ‘[‘,S':),j‘,l-‘}rl‘,fq‘e )lgzt;)
= Nlde ,M=3,) Niol,,0) log)3l %

Fagpaia, =L, Te

v SinT (d,~-V)

and from (2L4)

l

ey (A ) + P PTG (t) Sz Tad+2)
F(J,J;) Asdda = - ) m ﬂ’; & 175 ,-}';)
OB ¥yt Sn) =
x 5 & T s #/3 —zfg' 23-.1 (_z_,)aueg
MONLT, W) sieT c.'c- 3] 2

Using the same method as in the double pole case, one obtains

iy + S5 #Sc Y
F::,.s;ul-,p.,_ga N e Ty T {ﬁ (t)+&01311= (-0 (t,_)

N(&,§) ~S—
% ( )D‘ l‘h]( )l's('f; r/({f\-‘_’;l' "’L;“-M)
G = loglz!

(3k4)

where
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ot At ;trszz)
s lim Buncaay) (s A2z log 12/
MI

0adA, 5% -4 (E)% simmtd vy N (M=)

(35)

To motivate this calculation we point out that at large momentum
transfers, contributions from cuts are expected to be important. As an
example, consider the position of the AFS  [33,L4L,45] J plane
branch point generated by two Regge trajectories al(t), ug(t) . The
branch point with largest real part is shown by Rothe [h6] to occur at

o = al(u) + u2(/g - /5)2)— 1 where u is a solution to

a1 (t) - o= ) o (5 - v?) = 0 .
u 4

The most common model used presently for Regge poles is that of
straight-line trajectories with universal positive slope [4T] and there

is some theoretical support for this model [48]. 1In that model the

1]

branch point occurs at J = o

! al(t/h) + ae(t/h) S

o, (6) + [a,(0)- 1--;—oci] > a(t)

for sufficiently large negative t
Similarly, o, > u2(t) for -t sufficiently large.

In the case of two equal trajectories (e.g., p-p) with

o =L+t
o 2

then, o, > ap for t § - l(Gev)2
If the pole al(t) is the Pomeranchon with O slope, then the

branch point is at J = o, = az(o) which will dominate the pole
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J = a2(t) for t < 0, but will in turn be dominated by the Pomeranchon

pole.

(ii1) 1In this example, we suppose that the dominant singularity in
the J plane is the pole trajectory J = al(tl), and the singularity
with the largest real part, apart from this one, is the pole Jﬁ=a2(tl).
Likewise in the J' plane, the two singularities with largest real
parts are the pole trajectories J' = &;(tz), I = a;(te) with
Re &' >Re . . We suppose the guantum numbers to allow the couplings

1

2
o +> (2+ &) and a, +> (2 + &'l) , but to not allow a, +> (2 +&).
As an example, one may consider the reaction TN = H'DON'

with the identifications {a,b,1,2,3} <> {m,N,7",0°,N'}. The leading
singularity in the J plane (J = angular momentum of the T - T
system) then corresponds to the Pomeron (P) and the next leading
trajectory is the p among the known trajectories. Also the leading
trajectory in the J' plane (J' = angular momentum of NN' system) is
the Pomeron and the next leading tralectory is the p . The quantum
numbers do not allow the coupling of the P to (P+p) Dbecause

=0 for the P and I =1 for the p .

In this case for large 512 5

[‘.)
P s & = €08 (8700 2R, 780) N Tlasee
iz 21r N{dp’y d(t)
ey (*{M')@‘*,}Q) ¢) (tl lt.-' SI-I) (f)

x Z H'(-l"j] 2
- SinT (2 -v) N(A; ,MZA35) (36)
(i)
(t,,t,5, i
where fsMTﬁiﬂA 23) refers to the residue at

J = ai(tl)
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For lerge s

es
2 ok Lo
F : ~ J e (B (e, -0 (20) T
(5’!:)A:,STJ‘. e ZH,N(z JJ p& [ ) ‘PP:"?'qr I /3” ‘F

R WS-HT) 6Lt 25 52) ,
X Z F(Zdh*l) i (M~ J_z)._‘_)é}j';-.) 2;_ [g_l}d‘{t‘)
sinw (d; ~v') N, M=) 2

(37)
Consider now Eq. (36) for large, but finite, sy, + Dividing
o
o, [t
that equation by (z'/2)"" and taking the limit s, > ® , one
finds
e, Ey S;p+5v &It'f'])
F}Ezd-"uz.asr = - 6 Nt (lg (t’) * "‘3417"2“[ l) % d; -4, J_"‘l"{z.gu')
2-rrN(.!,,f)
v Z ‘(A-M)(‘i’f"' /3("( (:ufalszs) (2 sz_l‘t,)
[5Y SinTlefy ~v) N ety , O W] (g JQ’ (£
&, (t,)
Comparing this with (37), also divided by (z'/2) , in the 1limit

523 > «© , one finds
LATAMD () (¢,,2,523)
T (g (e0+ B tat R ), Mahs D &8 7 B 3.5 >5L‘

..__- e

N(lh.,?’ T Sthl'[d-‘-V) N[,{z,Mf_}?D tgl/l) ,lt,)
e MTh (Fw  NGTTEVE) S 12y @ T e
o (ﬂ'[_(t,) + By Dyig (1) A st 2)) M2 +2)
M!I g) &
N(” (tz;'ﬁ;;sn_) |
» (=220 (8-. Ja)-1, D e
SinT(d -v) NIZ, ,m=3)  (Bg)
(38)

Then from the reasoning that led to Eq. (27), one obtains that the

i = 2 term on the right side of Eq. (36) may be written as



~60=
H i ' S, tSp-v' &) /¢ Oy X (y=m')
e gy, S ( i:;:“‘) + By My (1)70"5F !é’_;"_{f;l) e T

e e, «, () g
o (Al + By R e ) () (2 )T

574 -7, da. a, (tte,®)
(39)
' 2“‘4:{’-
where r; is given by equations analogous to (28) and (29).
¢ A

Similarly, the .i=1'" term on the right side of (36) may be put in this
form, so that when 515 and 523 are both large, the amplitude is
approximately given by the sum of two terms both of the form (39),

differing only by the exchange of trajectory labels "1" and "2".
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V. SOME EXPERIMENTAL CONSEQUENCES OF DOUBLE POLE DOMINANCE:
DEPENDENCE OF THE AMPLITUDE ON THE TOLLER VARIABLE AND
POLARIZATION AT ZERO MOMENTUM TRANSFER; PREDICTED MINIMA
IN DIFFERENTIAL CROSS SECTIONS

1. Dependence of the Amplitude on a Sub-Energy

The most remarkable feature of the double Regge pole contribution
Eg. IV.(27), to the amplitude for the single particle production
process is the form of the dependence of the amplitude on the two~
particle invariant sub-~energies with two momentum transfers held fixed
as these sub-energies become large. This dependence has been tested
against experiment, using parameters obtained from Regge pole fits to
quasi two-body reactions [49,50,51]. The results have been qualita-
tively successful, but not conclusive. The definitiveness of the com-
parison is limited most severely by the statistics of the available
data.[49]. More events, by a factor of about 5, seem to be necessary
to significantly improve the accuracy of the comparison.

The dependence of the double pole amplitude on the two-particle
sub-energies is complicated by the fact that there is also a dependence
on @ , which is shown in Appendix E, to be the same as w , the Toller

variable [7]. From Eq. (C.20) of the Appendix,

2
Alt. .1, M)
+ ] >
cos P = =S ; B 22 + 1t tg— Mg} (1)
2[/1;11:2[ My + K -

where 152 = the component of the momentum of particle "2" that is per-

pendicular to the momentum of particle "a", in the z.m.s. of the direct

channel process II.(1). And from Eq. (C.18),



=6H2=

S S
(m? % KQ) = 1lim A2 23 (2)
2 -2 S'u‘fa‘-oan S
t!;tz_ ‘F;KCJ

From (1) and (2), one observes that at fixed (large) s , the double pole

contribution to the amplitude may have a more involved dependence on
()

than that given by the form S15 523 . The fits to the

fip® ®ag
data in References [L49-51] are carried out, however, with the assumption
that there is no dynamical dependence on @ . The success of these fits
therefore indicates that the dynamical dependence on ¢ is weak [52].
In the next section it is shown why this may be expected for small tl

or small t2 . The condition of the smallness of tl or t2 is ful-

filled by most of the events analyzed in References [49-51].

2. Dependence on the Toller Variable at Zero Momentum Transfer

Tan and Wang [6] have shown that in the case of the scattering of
equal mass, spinless particles, the leading double pole term for the

2 » 3 amplitude is independent of @ = w in the limit tl = L iy

t. >0 as s + o agnd

> 12 523 + o , TIn that paper, it is also stated

that the spin-averaged cross section is independent of w in this limit
with the average being taken over the helicity of particle "2". Below,
we prove a generalization of the result of Tan and Wang based on the
introduction of Toller's quantum number M [8]. The contribution of a
pole term to an arbitrary helicity amplitude, for external particles

of any mass, is shown to depend on w only through a phase factor, in
the 1limit ti -+ 0 , where the pole occurs in the J plane of the two-
particle system with invariant (mass)2 = iy (i=1,2). This result
does not depend on the existence of a leading double pole term, but

holds for each single Lorentz pole contribution to the amplitude for
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asymptotic values of the sub-energy 815 in the limit tl + 0, or 853

when t2 + 0

The demonstration is based on the result of Appendix D. Let the

t channel be

' ty : 1+a+Y+2 (3)
and let the s and 1o channels be:
s Y At b3 %2 F 3 (Lka)
Byy # THa+142 (kb)

where Y is the two-particle system (b + 5) with invariant

(mass)® = t, . We consider (3) and (L4) in the 1limit s

t2 bounded (t2 # mg) and tl -+ 0 . As shown in Appendix D, if the

limit is taken with the s channel scattering restricted to the

’slz+°°,

forward cone (more precisely, if g = 1+ O(m?/sh as s +> ®

where zg = cosine of the angle between 31 and Ea in the z.m.s. of
reaction (Lka)),then in this limit Iztl + 1 where z, = cosine of the
angle between Ei and ;2 in the z.m.s. of reaction (3).

Now suppose that in this limit the amplitude for (Ub) is
dominated by a Lorentz pole in the tl channel. As shown by Le Bellac
[9], if the Lorentz pole has Toller quantum number M , then in the
limit t, + 0, the s,, channel helicity amplitude vanishes [53] unless
IAl - Aal = M , where Al’la are the helicities of "1" and "a" in the
I channel (Lb). According to the Trueman-Wick two-body crossing

relations [37], the amplitude for the s channel process with par-

12
ticle helicities '{Ay,la,kl,ka} is equal (up to a phase factor of #1)

to the continued amplitude of the tl channel with particle helicities



vy 1oy (- ' . .
{A_Jka,l_ﬁkg} where A' Al > AL ” FAd " 3 , » since

i) v L y
all the angles in the crossing relation (Eq. (L42) of Reference [57])

vanish in this limit. Thus, the residue of a pole term for (3) vanishes

unless A_ - A =0(A - A_) = M , wvhere o =-1 if m = m_ and
a y a 1

; 2 2 2 i
o = sign (ma - ml) (m2 - tp) otherwise.

2

Any particular t, channel helicity amplitude for (3) has

(A - xa) =+M or -M, so that A_ - A, = *oM in order that the pole
¥y
may give a nonvanishing contribution to that helicity amplitude.

Referring to Eq. IV.(2), and noticing that A_ = M' in the expression
Y

on the right side for the contribution of a pole, one has the result

that the helicity series Z collapses to a single term: M' = Agi oM
M'
for a Lorentz pole with Toller quantum number M in the limit

tl + 0 . Thus, the dependence of a pole term in Eq. IV.(2) on w

is simply that of the phase factor elGMw , Where M_ - Aa = #M , and
Xz

M 1is the Toller quantum number of the pole.

It is clear that an analogous result holds in the limit +t. = 0,

2
523 + o for a Lorentz pole in the J plane of particle pair (3 + E)_
We may also consider the more general case of a sum of poles in the J
plane of, say, the particle pair (b + 3). Then, the analysis above
allows us to conclude that each Lorentz pole has a simple phase
dependence on ® in the limit t2 -+ 0 and 523 + o , and if there are
non-dominating poles with different Toller quantum numbers, the non-
leading behavior has a more complicated w-dependence. In the case in
which both "3" and "b" have zero spin, M = 0 for any Lorentz pole

that couples to (b + 3) and then it is only the contribution of cuts

and background terms in III.(10) that have a more complicated w-
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dependence. The contribution of the sum of pole terms to the amplitude

is in that case independent of w .

3. Polarization of the Particle at the Central Vertex at Zero Momentum

Transfer

Congider the case of double pole dominance of the reaction
a+b + 1+2+3 (5)

in the 1limit s P, O . That is, consider the case of

-

12°%28 T % sy BaBp ™
reaction (5) in which the leading term has a pole in the J plane of
the (3 + b) system, and also a pole in the J plane of the (1 + a)

system. Then a pseudo-~helicity amplitude FY§&>J for the
B

A, FJT;‘&

channel reaction
l1+a - b+2+3 (6)

will receive a non-vanishing contribution in the above limit from the

leading double pole term only if

)Ll.—k = o.M (7)
and

63 - 6,5 = oM, (8)

where Ml,M2 are the Toller quantum numbers of the two poles, and 01,
Oé may assume the values +1. The first condition, Eq. (7), follows
from the discussion in Sec. 2, and the second condition, Eq. (8),

follows from the corresponding discussion for the reaction

1+a+2 + b+3 (9)

and the crossing relation, Eq. IV.(23).
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The angles 83, BB' that appear in Eq. II.(1l) which relate the
helicity and the pseudo-helicity amplitudes for (6) are computed in
Appendix B.2, and in the limit considered here, tend to 0 or T

according as m_ = my , Or my > m

Thus, the leading double pole term contributes to a helicity amp-

litude nghgld?)a for (6) if
= G’
A3 Ab + 5 M2
and (10)
Ai-= ka + 01 Ml
" A . $ v N
(52 = _+_62 with the + sign used, if my = mb)

Since all the momenta are collinear in this limit (Appendix D),

angular momentum conservation states that

0’3(?\3— Aﬁ_) * o), = ?\_f = R (11)
so that
- ’ (12)
Ay = U3UM(0’1M1 -0 0M,)
where o, = sign(m2 -t ),0.=-11if m. =m and O _ = sigm(m2 - m?)
L 2 2 ) a a 3 a 1,
if my # m, - Thus, the possible values of ]Agf are |M1 i_MQI . In

the special case of both Lorentz poles being single Regge poles, i.e.,

M1 = M2 = Q0 , this gives the unique value Ag = 0

If the particles "3" and "b" are spinless, one may obtain the

polarization under a less stringest limit, viz., 512 + oo tl =+ 0 4 t2

bounded. For then (11) reads
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00N, = AI =N (13)
Equation (11) may be used since the particle momenta in the t, channel
(6) still tend to a collinear limit if, as discussed in Appendix D,
g2, =1+0 (m?/sh) as s * ® , where z  is defined below Eq. (4).

Furthermore, from Eq. (T7)
A, = M (14)

which gives the polarization. Equation IV.(12) may be then used to

obtain the relative phase of the A, = +M. and 12 = =M, amplitudes.

2 1 1

Application: Comparison with experiment for the reaction m p =+ w—p9p

Consider the reaction

- - O
T, Dy * T.P D, (15)

in the kinematical region of large SpP = (p+pf)2 and vanishingly
i
small tp = (pf = p.)z. (Here we use the particle name to denote the

3
h-momentum of the particle in a convenient z.m.s. for the reaction.)

The spin component of the p-meson in its rest frame along the
direction [54] n =(§;-—;{;/|3%— §£| taken as the z axis is +M
where M is the Toller quantum number of the leading trajectory in the
angular momentum plane of the (5& + pf) system, and ;;, ;; are the
momenta of the initial and final proton, respectively, in this reference
system. Since the leading trajectory in p - p elastic scattering is

the vacuum (Pomeron) trajectory, and this is also the leading trajec-

+
tory in T - p elastic scattering [55], M = 0 if the Pomeron is a
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Lorentz pole, since a Lorentz pole that occurs in the J plane of a
palr of spinless perticles necessarily has Toller M = 0 .

We test M = 0 for the Pomeron by examining approximately 2000
events [56] for the following reaction, at the incident n~ laboratory

energy of 25 Gev:

- +
TP > M T, P (16)

We scan the events subject to the following criterion to obtain

p-meson events:

(A)  Either  0.49 (Gev)Z < 8 0.68 (Gev)?

ot
L

or 0.49 (Gev)2 B _ L% 0.68 (Gev)2
LA

but not both.

Denoting by ﬂf the final state negative pion that does not
form a state with ﬂ+ that is in the p band, and denoting the other

negative pion as ﬂ; , the following events are excluded:

(8) 1.42 (Gev)? <5 _ , < 1.72 (Gev)?
'ﬂ'f'ﬂ'

2.53 (Gev)® < 5 _ , < 2.92 (Gev)®
TaT
£

(]

which eliminates possible f and ﬂ§ (1650) events. Furthermore,

events which lie in any of the following kinematical regions are also

excluded:
1.03 (Gev)2 < 83“ < 1.23 (Gev)2
(c)
1.58 {Gev)® < Sy < 1.6W (Gev)2
1.69 (Gev)? < Sgp < 177 (Gev)?

2.55 (Gev)? < Syp < 2.91 (Gev)Z
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end these criteria eliminate possible Al, A2H, A2_  and T, (16L0)

_ L
events.

To eliminste interference from resonance formation in the 7N

end T7NWN systems, we further exclude events lying in the following

regions:
2
(D) S, _ <T.0 (Gev)
il )
g . < 3.0 (Gev)2
™D
2
S _ors _ < 3.0 (Gev)
ﬁpp e

The first condition in (D) is the high energy condition for the (p+p)
system.
The last condition to be imposed is that of the smallness of the

proton momentum transfer, and the boundedness of the pion momentum

transfer:

(E) lt_| < .067 (Gev)?

‘2

[z - 7)< 1.5 (Gev)®

After all these cuts, there are 109 remaining events.

These cuts eliminate interference from the formation of reson-
ances, but do not eliminate interference from non-resonant (N+3m)
background. Thus one would expect the sample of events to arise
primarily from the intermediate states (ﬂ; + p+p) and
(W; + (ﬂ; + ﬂ+)+ p) where (ﬂ; + ﬁ+) has an invariant mass in the p
region. Now, recent phase sﬂift analyses [57] indicate that w-7

scattering in the p band is dominated by S and P waves, with

negligible contributions from D and higher waves. Using this
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result, the events consist primarily of intermediate states (ﬂ;'+po+p)
and (F; + (ﬂ; + o)+ p) with (ﬂ; + w+) in an S wave in the energy
region of the p .

These intermediate states may interfere. Let o, B, Y, § be
the amplitudes respectively for ﬂ; ﬂ+ in an S wave, in a P wave with
Jz = 0, in a P wave with Jz= +1, and in a P wave with JZ = -1. The
distribution as a function of cos 8, where © = the angle that the

momentum of the positive pion makes with the z axis is then given by

N(0) = N(|a]?+ |8|%cos®e+2 Re & B cos @+ (|Y|%+ |8|%in®e)  (17)

where N is a constant of proportionality. There is no interference
between the Jz = +1 states with either the S wave or the Jz =0 2

wave state, because the interference terms sum to zero upon integration

over the azimuthal angle.

The 109 events satisfying (A) and (E) and not (B), (C), or (D)
. are plotted as a histogram in the variable cos & in Fig. 4, The
asymmetry between the number of events with positive and negative values
of cos 8 1is a clear indication that not all the events involve p-meson
production.

The theory of this section states that if M = 0, then
vy =6 = 0, so that a two-parameter fit to the shape of the distribution

is suggested

2

NA(G) = W'(1 + a°cos°0 + b cos 8) (18)

where N' 1is a normalization constant chosen so that the area under

the curve is equal to the total number of events. A least squares fit
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Fig. 4. The distribution of 7' moments in the rest frame of

+ -
the (T + 7 ) system relative to the axis
(3' - 3') I IB' - E'l where 5' P! are the momenta
£~ P/ 1Pp =Py 1°Pp ,
of the initial and final proton in this reference system.
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with
N' = L.63
a = -1.57
b = 3.51

consistent with the condition |b| € 1 + ae, necessary for a fit with
S and P wave interference only, is drawn as Curve A in Fig. 5. Also
shown in Fig. 5 as a broken curve is Ny (e) = 16.3 sin29 which is
similarly normalized. If there were Jz = +1 P wave states, one would
have the resulting curve N(9) = uNB(G) + (1-0) NA(Q), and it is clear
from Fig. 5 that the best fit to the data suggests that o is small,
and is consistent with O , thus indicating that M = 0 for the

dominant part of the vacuum singularity.

L. Minima ("Dips") in Momentum Trensfer Distributions: Examples

a. Zero Momentum Transfer

Consider the reaction

m.N, + 7W_.XN (19)

where X is a non-strange pseudo-scalar meson (W, n, or n') . Let

us introduce the variables tl’ t2, 512, 523, s by means of the iden-

tifications:

O A

. 3 (20)
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Fig. 5. The data of Fig. 4 with two curves: (A) AE = 0 + S wave;

(B) non-interfering AQ = +1 background.
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We will now show that in the limit of large s and bounded

12
t2 one would expect a dip in the cross section for (19) as tl + 0 ,
Since AE = 0, it follows from Eq. (13) that Ai-= Aa in this limit
for the contribution of a pole in the J plane of the (1 + a)

system to the amplitude for the process (19) to be nonvanishing. Thus
only the term M' = A2 = 0 survives in the helicity series, Eq.IV.(T7),
for the contribution of a pole in the (I + a) system, since

M= |d-A] =0, and from the discussion in Sec. 2, M' = A, FM=0 .

From parity invariance, Eg. IV.(12), one has the result

ﬁatfnta,gzﬂ = —E,_‘go/tt“t"sn)

(s,0)0 opla (21)
where Pu is the nstural parity of the pole in the J plane of the
(Nf+ Ni) system.

Thus, only odd natural parity trajJectories in the N N channel

1l

can contribute at ¢ t.. = 0 . Since the odd natural parity trajec-

1 N

tories lie lower in the J plane than the even natural parity ones,
one would expect & minimum in the cross-section at tN = 0 in the

limit 512 = BXN + o , gince trajectories with even natural parity

can contribute away from tN =0 .

b. A Charge Exchange Reaction at a Nonsense, Wrong Signature

Point

Consider the reaction (19) where the nucleon undergoes a change

of charge. That is, consider

T, P * T, Xn (22)
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Now the highest lying known trajectories that can occur in the J plane
of the (p n) system are the p and the A2, which pass through the value
“1iqy = o1

. (0) = 0,,(0) . If X has

G parity + 1, the p can contribute, but A2 cannot, whereas if X

0 at approximately the same point to =0

has G parity - 1, the A2 can contribute, but the p cannot. Consi-
der the case of positive G parity, i.e., X =n or n' .

Then, as tl passes through to which is a nonsense point of
wrong signature for the p trajectory, one would expect the p pole
terms in Eq. IIT.(10) with M' # AE to give no contribution of the
form z° , in the absence of Mandelstam-Wang fixed singularities [34].
Even in the presence of these singularities, because of the approximate
degeneracy of the couplings of the p and A2 trajectories to the
N-N system [58], one would expect, following Finkelstein [58], that the

terms in Eq. ITI.(10) of IV.(7) with M' # A2 will give a negligible

1

contribution. Since AE = 0, M' = 0 also, and the only possible honm
vanishing coupling of the p trajectory occurs through B;T;E:fZQ
2
= . . i i = i
at t to Eq (21), however, implies that BO(O,O)O 0 or the

p trajectory, since it has even natural parity. Thus, the contribution
of the p trajectory is expected to vanish at tl = to , resulting in a
minimum for the cross section for (22), with X =n or n' . There arec
no data as yet to confirm or contradict this prediction of a minimum in

the differential cross-section.
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APPENDIX A. Some Properties of the Rotation Functions

The results of this section of this appendix are not new, but
are included here for ease of reference. The same comment applies to

most of the results in Appendices B.1l and C.

1. The rotation functions of the first kind

diu(e) are defined in terms of the Jacobi polynomials [59] by
means of the following formula [60] (J - A, J = u, and 2J are

integers), for A 2 |y

d:r (er26) = NTA) (cne) (“"9/.. oy CosRE] (A.1)
N(ﬂj&)
= 1/2
where N(J,A) = {T(J - A+ 1) T(J+ X+ 1)} (A2}
The other cases are given by the symmetry conditions [60]:
AT
T ooy YT e) = AT (8 =07 T, (8
dy (87 = 07T Ak i (4.3)
These formulas may be combined to yield
— Qa-pudy (2 4pal]
i, B e)
47 (6) = sign 0o NIT, dna) (costy) () " B e
N(I)mm\ (A.L)
D = g LWL W)
where sign(A,u) = {+l . if Azlul,or - ZIN
fy otherwise
L yassben
T e J-A
Also, dy L2 = d3,.(®) 3
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This leads to the following orthogonelity relation for the

& (z) when J- A, 27, J=-u are all integers:

/ ’
[dz A @ dj ) =2
~ i o 2T+1 (a.6)
Equation (A.L) may be continued to complex J and complex
z = cos 8 by using the representation of the Jacobi polynomial in

terms of the hypergeometric function [61]

El(d,p()z) = lnsasd) (,—_;:.u)" F(’n,‘h-ﬂ;d-\‘l,&g—::)

Pen+d Fla+1) (A.T)

Considered as a function of J and 2z , the diu(z) may then be

written

AT () = sign o) NTAoad [ (T-dnaer h-p*1)
* N (j)}mhﬂ F(.'T"\mq.ﬂ ré+a —/u.l)

2

= | 'A- ‘ — - -
* (H-'?)T Amqg"'@;;ﬁ'.(' EJ —-A-z F(‘T‘f‘)m“ ;—]‘.,.;\ A /J.I ,l-i-h\-yi) :+: )
2

(A.8)

Thus, diu(z) has a branch cut extending from -« to -1 , due

to that in the hypergeometric function, as well as a possible branch
A-p)

cut from - to =1 due to the factor G%FJ £ and a branch cut
from +1 to += due to the factor (th)JZAMN:{AE&l % As a func-
-3

tion of J , iu(z) is seen to have square root branch points at
"sense-nonsense" values of J . These branch points at J = J, are
of the Vﬁ_:_gg type.

From (A.8), one can determine the asymptotic behavior of diu(z)

for large |z| . The use of Eq. I.2.8(26) of Reference [26] results in
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F (=T 5 T4 A= il 14 Lol 221°)

Ep P G+ Depd) T 2T as lgj—» o2
CLH+T 4 1a-pml = Amax) MCT+! +A pan?

Defining the principal sheet of diu(z) so that -m € arg z £ 7 ,
l-2-= e"in“(z—l), where n = sign (Im z) . Then
upr A-pl J
;r (z) ~ Sign(2,) (Q2TH) e (%)

N[T, )«m,ﬂ N(Tramm
as lz|—°°

iy 1A ~pel -y T (A=ps)
Now sign (A,u)e 3 =e "=

so that

A = LEECEmD (5
N{T X mmes) N LT, Apin)
(A.9)

a result which agrees with that obtained by Kibble [2] and which dis-

agrees with that obtained by Omnes and Alessandrini [62].

2. The rotation funetions of the second kind

These are defined in Eq. (3.1) of Reference [27] by the

relation:

o A)
e ( = { i, i o) - al: (-2)}
+ 2 SinT(F-2) (A.10)

They are related to Jacobi functions of the second kind by Eq. (A.9)

of Reference [32]:

'ﬁﬁ‘ ".‘_E! (a-pd siaepl
eizz\ Xy s‘jn(xp);l_(_ﬁj_w_-_u) (t+z) (1-2 2) x ‘2‘ (A.11)
N(Txn\in\
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There are also the following useful relations [27] with functions

of the first kind:

(z) e__i-‘ () --rrc,n't'-:rt:r-).)o( lz)

(B.12)
and for -1 < z < +1
eJAu(Z‘in) - eiu(z—io) = -iT dill(z) (A.13)
3. Asymptotic behavior
For large ]u] [63]
A% py
\o\,f‘\;‘_(:)l & const. , [ml [HJ
\a-rg,(Hal\t”ﬂ'—C ,\Re,‘*i—’"’o (A.1L)
and \e/\plz)\ ~ Max. {,P‘Aé_‘, z\f*/;-_ l \2 !H—ZIF/"}
(A.15)
For large |z| [27]
¢ {A-pad T
e,f\r (2) o | N(ZDN(T e TN (2) 1
e 2 M(27+2) - (A.16)
diu(z) for large (z) is given by Ea. (A.9).
For large |J| [27]
)
Ve b wla-p) _(arn) Fe
83’_._(2) i (1_.1.)/ P % : 1[2‘/ (221
VT 2=1)a 7]

—Tr+& <chI <=

where the last term is cut along the negative z axis only and taken

positive for =z > 0 .
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aiu(z) for large |J| is ziven by (12) and (17) [64]:

d3 () W%M ( z )'/., 1 e,q,(m IImTl-rICT-b'/,)T\)’ 'f:loj(!-&(i"—l)"")
FIRTLT-3) 0 darg (< T (D% v

(A.18)

APPENDIX B. GENERAL KINEMATICS AND DERIVATIONS OMITTED IN THE TEXT

1. Choice of variables for the 2 -+ 3 process

As in the text, we designate the direct channel as
a+b =+ 1+2+3 (B.1)

and the crossed channel as

T+a >+ b+2+3 (B.2)
Then the two sets of variables used in the text are

{s, s tys t2} (a)

12° ®23°
defined in Eq. II.(3) and the variables

t.} (B)

{z, z', 8 5 £, t,

defined in Chapter II in relation to reaction (B.2).

z 1is the cosine of the angle between 55. and 52 in the z.m.s.

for (B.2). So that, evaluating s.,. = (pI - p2)2, one obtains

12

% slz_"'m}—m-: + 2LESE, (B,3)
2 P\‘ Pa.
where Pr = A, mi,m%) E- -A(t,-rmf'-m:)/;_ VE,
2%
'
p = OCE,MELED E, =hri-t)/2 &7,
2vg,

(B.4)
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In order to continue =z to the physical region of (B.l) from the

physical region of (B.2), we must use a definite continuation of

1/2( 2 2)’ A1/2

A Wy L (tl’tE’mE) and vt, . Now

1

f \ \/‘—
A%y, ) [ x2%y™ 2%-Zxy ~2y2 -2xa]

[ (x=0Vg+VE)™) (v (W5~ vE))]"™

"

for y,z >0 (B.5)

The form (B.5) indicates that as a function of x for positive

Al/z(x

y and z ., ,¥,z) has two branch points at =x = (Vy * /5)2 "

We define Al/g(x,y,z) to be positive for x > (Vy + Vz) , and draw

the branch cuts along the real x axis from (/y + /;)2 to 4+

and from (/v - JE)Q to - . Then for x real and < (Vy - /;)2 -

Al/2(x,y,z) is real and negative.

Now we impose the following symmetry properties for the con-

tinuation:
Al/e(x,y,Z) = Al/g(—x,—y,—Z) (B.6)
82z y,2) = 4Y2(Px,Py .P2) (B.7)

where (Px,Py,Pz) is any permutation of (x,y,z) when two of the
variables are real and positive and the third is complex. Consider
the case in which y and =z are both negative. Then (B.6) provides
the continuation of the function to complex x . In fact, (B.6) and
(B.T) give the continuation of the function to arbitrary real values
of (x,y,z) and these comprise the cases of interest. To complete
the definition of the continuation of the momenta, we define JE;' to
be positive for ti >0, Im ti > 0 and to possess a branch cut ex-

tending from 0 +to o« .,
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Now we proceed to the definition and continuation of 2z’ and

cos @ . z’ 1s the negative of the cosine of the angle between ;3 and
32, in the z.m.s. of (3 + b) for the reaction (B.2). This is the same
as the cosine of the angle between —53 and 55 in the z.m.s. of (3 +E)
in the crossed reaction:

3+b » 1+a+2 (B.8)
for the momentum 55 in the z.m.s. of (B.8) is in the same direction as
;2 in (B.2) in the z.m.s. of (3+b). This may most easily be seen by
crossing particle "2" in its rest frame to relate the reactions (B.2)

and (B.8). We obtain z’ by eveluating 85y = (p_ - P

- 3)2 for this re-

action in its z.m.s. Then,

/
- S, Sps =My -m; +2 E{ E,
zpp’ -
B.9
where
' T
Pi-l - A% (£ .t,,m) Ez/ L teemPot
2 v, 2/,
Pa’ i A‘é-(tz:m':a”l:) 53 - t"_‘”";_m:-
* ta (B.10)

To obtain cos § we note that (m - 6, m + @) are the polar

angles of ET in the z.m.s. of (I + a) for reaction (B.2) with the
coordinate system defined in Chapter II of the text (i.e., positive z

axis along -32, and ;3 in the x-z plane with positive x component).

Setting zé = fb-ﬁ% in this coordinate system, one has

ty=(B-p) ariemy -266 +2RK (Fe/m 2 cosp +27L)

This equation determines cos @ in terms of the variables (A) for
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S
Ty =M m: + m -t +5,,-5

e
and FT - A"‘(t.,m?’,m:)/zﬁ' ET =(f.+mf'-Mp )/1@‘

S
P _ AV‘_ (t“m:‘,sla)/lﬁ E-G = ('ﬁ.-tmb—gz:ﬂ/l\/%-,
; 2 1

z is given by (B.3) and (B.4) so that

2= 25,(5a-miml) + (Barmr-mg )t amE-t,)
A""Ch,h,mt) Ay'(t,,nf,",m:)

(B.11)

and

22 = Fz.?; = .-.'tz_b + m:'-tm:.q» 7.E,_E-5-
2 Pz
or
2, = 2t Ctiomata s + (Gam-s) (bomi-t)
A'V‘-(*" 5 Jm:.) Avl-(t| > m; -7 !\

(B.12)

and the equation for cos @ is

My-t+S533-5 = -1 (t+mi-m) (trmy—=Sy3) o) A%t m] "":3Ay"(tur":x LK

2, 2¢

(B.13)

where K = \/l - z2 I/l = zc':e cos @ + zzé

B.2 Computation of the Cosines of the Angles that Appear in

Eq. II.(11)

83 = the angle between the vectors (;2 + —f%) and -I:E in

the rest system of particle 3.
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Take 5_ in the z direction. Then in the z.m.s. of (3 + b),
b
B b = -z' = -p -A' that the z component of D in this

coordinate system

pé(z—component)==péz', where pé = momentum of "2" in the
z.m.s, of (3 + b)

\ T T
and  p'(z-component) =pl = A2, mMime) | genoting particle
b b Ve, momenta in this system
by primes

The rest frame of particle 3 is obtained from the z.m.s. of 3 + b

by a velocity transformation along the z axis. Then, denoting the

momenta in this coordinate system by the superscript "o", one has

pg(z—component) = Y(péz' + vEé) = pg(z) (B.1k4)
where v= p A‘/‘(tum;>m:)
&y tyemy-my
sk Y = (v = taemi-mp

2 mg vt

+
Taking P, in the x-z plane with positive x-component

po(x-component) = p! /1 - 712
< 2
and
>0 o A ~
=p - z =72 Y(p_+ vE ) (B.15)
R 5 7F
Then cos@y = ——  (pg+pl(®)

(B.16)

IPe+PS
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To compute po(z) we require p!,E' . p! is the same as in
2 2 2 P

2
(B.10)
p’ = ARt t,,m))
g ZVt, (B.17)
also E; _ _Eﬁ ot ity
2VE,
(B.18)
" >, % my) . A%, mE,me )t —mE-1,)
Thus | (2) = ta+my-1y (Z-’A (t,,ts, M & 2,Ma My (—m,
2my e, Ve, (ta+mP-my) 2 VE,
= ,tl+m:.-m:- (2’ A‘A(tl’ta_jm:) -+ Ay"(tum;,mt)(t,—n_o:—t;3 )
4my VE, (4, + mp-ri})
» 2 V4 ~ T A‘h"(f' m‘l. m‘!.) (‘t +m:-_m;-)
and F‘; = tz."'mj"mb A"(t,_,m,.m,) 3 2™y » My 2
2myVE, 2VE, AVE, (tavmi-my)
L AR,
2m3
(B.19)
Now Eo = Y(E!, + v plz')
2 2 2

toarifny (4,-miot, + ATy, mimy) B 0520 )
4mgt, to+m3-ni}

so that, using Eqs. (B.9) and (B.10) for =z' +this last equation
becomes

ES = tatrgony [ 4 —mit, 4+ 2ty (5,-miom) - (ti-ty-n))
4myty {:.H";'— M:‘

z
= (S35 mz-7%) /2. m,

and therefore

P

. 3 T
= [E:"-m:')h = A‘/“{stamx. 7m5)/2m3
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thus,
Do,
)M .M, ) tams-my [ 27 p% : -
Cosﬁs = 2mMg - —3}'—”‘%‘! (zd (f.,t',,m;") +AA(-M-"_'"_:‘)_&';@::£_L7>
A{ A 2 . *L+%l— s
S23 .M ,M3) 4 A G, mi 250 e 1'%
- i R R |

V<
A "(t,_,M;,M: ) + lfﬁm;'-m;_)(s;,-m:—m;‘) + 2(’t’;+ﬂ:-—tt7 m;
A‘/‘-ltl'lm‘;'mt) A\fl-(t‘,ru;’,mtu

" A A T T T B e 'z
{ A(s,., my ,mg) +Al‘t..'ﬂ;,m,,)+7.{$z,-mrm, )({ldm,-mb).L#m‘s' (ti""’:-tl}}‘

(B.20)
In the limit as &, + o for fixed tl,t2 £0 ,
o 5 kS
cosp, —r TatMsMe
A%ty My, ™)) (B.21)

Similarly, one may compute cos &E with the result that cos &B
is given by an expression of a form similar to (B.20) arising from
= ' —_r ! ]
the replacements Ly -+ m3, m3 Fm o, Spg tzb’ z' *+ -2 . Since for
tl,t2 fixed, as 523 + © t2b = —523, in this limit cos QB_ is given
by (B.21) with the exchange of the lebels "3" and "b", and an overall

minus sign.

B.3 A Lemma Concerning the Lehmann Ellipse

Consider the series of Jacobi polynomials:

F(z) = } anpr(l“’s)(z) (B.22)
n=0

and the associated power series



G(z) = ) az (B.23)

We will show in this appendix that the power series (B.23) con-
verges for |z] < R, R > 1 if and only if the series (B.22) of Jacobi

polynomials converges within the ellipse
3k
lz. + 1| + |z - 1| = (R + =) (B.2k)

First, suppose that (B.23) converges for |z| < R, R > 1 . Then

from the ratio test

a
n+l

a
n

lim
n >

(B.25)

o=

Then, applying the ratio test to the series of Jacobi polynomials, one

observes that the series is convergent if

S &, p)

hM PAHP (i) = I =TI E {E-L— n‘/"-‘ < E

n—s o0 #:-ﬁ)(a) (B 26)
For R > 1, the closed curve

2 + (6% 1772 = B (B.27)

is the ellipse (B.24), and points that satisfy (B.26) are all interior
to the ellipse.
That (B.27) and (B.2L4) represent the same ellipse may be seen as

follows: (B.27) is equivalent to

|z - (22_ l)l/2| = %' (B.28)



-88-~

Adding the two equations, squaring both sides, and simplifying, one

obtains

|2]% + |2°- 1] = (8% + &) (8.29)
R

and this is the same equation that one obtains from squaring both
sides of (B.2h).

Conversely, suppose the series (B.22) converges within the
ellipse (B.27), where R > 1 . Then from the ratio test, it follows
that (B.25) is valid, which in turn implies that the power series

(B.23) converges for |z| < R .

B,4 Derivation of the Inequality Eq. II.(28)

We start from Eq. II.(27)

_tl + t2 + mi + 2E2 EI < - 2p2 PT
and insert the values II.(19) for Eys EI, Pps pT to obtain
2ty (<t + byt m2) + Cegh mg - ) (b my’ - mg )+ Al/z(tl my'm)
X 1/2(t t2,m2) < 0
or
1/2&1 uf m?) Al/g(t tysmg) < b = Bty b (md +md +md)

o

2 2
+ (t2— me)(ml - m

Squaring both sides
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2 2 2 2 2.8, B 2 e
[’ol - 21:l(ml + ma)+ (ml - m&) ][t1 i 2tl(t2+ m2)+ (t2- m2) ]
N 3 2 2 2 2 2 2 D0
< tl - 2t1(t2+ m; +m + m2)+ tl(t2+ my +m o+ m2)
3.8 2.2 8., B B B g 4 A
* (- my)™ (my - w)® + 2(b,- mp)(m) - m )[6] -ty (0 my +m+m))]

The terms in tu, t3 cancel, as does the constant term. This leaves

L 1
2 2,2 2.2 2 2] 2 2 2 2
by [ (65~ m)™+ (m - m )"+ W(e g+ mp)(m) + mp)- 2(t,- my) (m] - m)
2 2 2,2 2 2 2,2 2 2,2 2
- < - -
(t2+ my +m + m2) ] 2t1[(m1 + ma)(t2 m, )"+ (ml ma) (t2'+m2)
2 2 2 2 2 2
= (tm mp)(my - m)(b ¢ m] 4 m +m)]
Dividing by t1(>0) and simplifying,
2 2 2
1;1[1;’02(111.a - )+ hme l hml ma]
< elen’ +2 +t,(-2n5(nd +n°)+ 2m Yo on? nZ)+ 2m)
a 2 2 21 a 2 l
oy 2 L4 L
+ mg[(ml - m ) + (m = ma)]
This simplifies further into
2 2 2.2 2 2
tylt (- m)e o ) — w) w]
2 .2 2 2 2 2 2 2,2 2 2
< [m. t +1t ( -m, my -m, m_ -m; m_+m )+ m] mg(me-rml-ma)]

which leads directly to

2., 2 2 2 2 2 2 2
ty(tm m))(m, -mp) < (mp tp- my mp) (b4 m —my —m,
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which is the desired result.

APPENDIX C. Asymptotic Kinematics with Two Fixed Momentum Transfers

Using the method of Popova and Ter-Martirosyan [ 3], we decom-
pose the z.m.s. momenta of the 5 particles in the direct channel

reaction (B.1l) according to their components parallel and perpendicular

to the momentum of particle "a". We denote the varallel (longitudinal)

components by

ka = kb = e = Allg(s,mi,mi)/E Vs
and

k

nE

X k3 :

We denote the transverse components by Ky Kp» K3 where
K. +kK, +K, = 0 {g.1)

We consider the limit s =+ © for fixed tl

- 2 _ 2 2

t, = (py=p, )" = m +m - 2E/E+ 2k k (c.2)
where
2 21/2 S+m§—52
By = gy # my™" . :
ovs

_ 2 2,1/2 _ 2 2

E = (x° + ma) = (s + m - mb)/ 2/s
g _ .2 2

B, =k vK {o.3)

Then, in order that tl remain bounded as s =+ ®, we must have both
pl/k and k/pl bounded in this limit. Also, p, - k, = 0(1/k), so

that
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fi 2
—— = 0(1/k) which implies that K] is bounded. (Cc.k4)
2k
1
Thus
k
L2 2 g5 . W o BT
tl “m #m - Qkkl = (ml + Kl)(kl) ma(k ) + 2k kl (c.s5)
2
and tl+-+_gl as s * ®
also,
kK 5
%  8re bounded as s > {c.6)
1

Similarly, if It is bounded,

A

K Eq 2
=— and == are bounded, and t., > -K. &as s > ® (Cc.T)
k3 k 2 ~2

In order that tl,t2 be bounded, it is necessary that

P.*p. >0 and p.*p >0 . It follows that, si P.+ p+p. =0
Py * By and P, *D_ . ollows that, since p.+ p,*+ py = 0,

k3 =k, 2k, (c.8)

> -
according to whether p2 . pa is positive or negative. Now,

B 2 2 = s e,
§ip = My +m, + 2(m + kI + Ky &y (m2 * k # 52) +2k1k2 2%, Ko
> 2 B p ¥ 5 o
= m + m + 2klk2(l F1)+ g(m2 + 52)+ q(ml + _K_l)- 2_!51 "5,
(c.9)
and
- g 8 88 8 B 9.1/ .
523 = m2 +m3 + 2(m3+k3 +53) (m2+k2+52) % 2k2k3— 252 53

2 2 k 2
= m, +m +2kk(l+l)+——(m +|<)+ (m3

+ K3 )— 2y PN (c.10)
d ko Es ol



Oy

From (C.9) and (C.10),

k
2
e - 0 as k + oo , if both 815 and 523 + c© glso.
(e.11)
Thus, if 312,523 & w,tl,tz bounded,
_ .2 2 2 2 2,\1/2 —
Sp =My Py ¥Rl vl d il TR vk
1,2 2y, 2 2 2,1/2 1.
+ k1(1111 + El)(m2 + ky + 52) * O(S) (c.12)
_ .2 2 2 2 2,1/2 .
Sgg =y g * A llmy + Ky v G)TT LK) 20 Ky
1,2 2y 2 2 2,1/2 .
i g(m3 + ) (my + Ky + k0)TT 4+ 0(2) (£.13)
so that

cK,.)

2 2 2 2
(8, - m] - m5 + 2K, 52)(523— my - mJ o+ 2K; K,

= 2 2 2 2 2 2 2,1/2
hklk3(m2 + 52)+ (m] + El)[(m2 + k, + KD + k2]
2 2 2,1/2 2 2 2 2 21 N o 2 2 2;1/2
x (m2+k2+52) +(m3+_s<_3)[(m2+k2+52) +k2][m2+k2+52] (c.1k)

Now
2 2

. 2 2 2 2 1
s —ml+m3+hklk+m oy KD Ky +0(3)  (c.15)

13 g My * By ~ Bk "E

3

so-that



Inserting

S =8 -8

13 ="

12 23

then dividing by s , and

theorem [ 3] for the case

2 2
53~ Uy - Wy + 2K, 53)
2 . 2
- 53 + 2Kl 53)(312 * 52)
K2)1/2 [(me - K2)1/2 % %]
=2 2 2 -2 2
k
2,1/2 2 2 2,1/2 T2
52) [(m2 + ky + 52) F ke l+ 0(k } {c.16)

(c.17)

m§+m§+m

taking the limit, one obtains Ter-Martirosyan's

of a three-particle final state:

S, .8
1272 2 2
-—E—é- -> (m2 - 52) a8 8yp5s8p3 ¥ @5 b,,t, fixed (C.18)
C.2 Evaluation of cos @ in the asymptotic region

We use (B.13) in the

one has, for tl #0,

asymptotic region. Now, from (B.3) and (B.hL)

2t. s
1 712 — <
z = > 400, for T 0 .,
1/2 2 2, ,1/2 2 3 2
A (tl,ml,ma) A" (% 1M t )
and so
i2¢.. B
122 e28]V1-22| =2il|z] =7 T
1/2(t ) Al/E(t 2 ¢ )
1.7 l’ 3. 2’ 2
Here we define 1 - 22 with branch cuts extending from *1

to

too  respectively, and positive for =z

real and -1 < z < 1 .
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z! , defined in Eq. (B.12), is bounded in the 1limit s + « , Then,
dividing both sides of (B.13) by s , and teking the limit as s + o ,

one obtains

(mg ca 152) _ 5
-1 = [¥i cos @1 - 2'° + z2'} (€.19)
Al/g(t ek ] % b
ik - L
Now tl + t2 - mg
gl o= > +1 from (B.12)
c 1/2 2
- S |“Et1te| _ e AR
e .l/2 2t 1B 2
[a77 (6 atpem) | AT () 51, 0m7)

So that (C.19) becomes

A(tl,tz,mg) _ : 5
— =72 | &% |cos # + ty+ ty-m
m2-+K2 11 1 2 2
2 =2
or,
+1 A(tl,tz,mg) .
cos @ = 5 5 * Eg# b m2}
elJtltel o+ 2
B2 o <
(|¢%1t2| /e t, when tyst, < 0),
according as %, i (Cc.20)
Congider (C.20) in the limit £y * 0" . Now
K> = (k.= K,)° = b = £+ 2k * k., = —t.- t + 2/=t. /=t, cos 8
-2 =1~ 3 1 2 =1 =3 1 2 1 2 13
(c.21)
where Cl3 = angle between K and K the transverse parts of the

1 =37
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momenta of particles "1" and "3"; so that (C.20) becomes

A =% ,) - 2/l () V=8 I(=E,,)
am % 115y cos @ - 2 t (%, (tl+ t o+ 2/(-t ) (-t )cos cl3)cosm

- 2 2 _ = = 2
= A(tl’tg’mz)_ (tl+ tew m2)(tl+ t2 2/( tl)( tz)cos Cl3+ m2) (Cc.22)

In the limit as tl + 0, both sides vanish (cos @§ remains physical).

Then, equating coefficients of V(—tls leads to
o _ _ - .
2m2¢2—t25 cos @ 2V—t2 tgcos g = 2/ t2ft2 m2) cos Cl3

so that cos @

1]
(2]
@]
L]

Y

1€ g=m- Cl3 (c.23)

Since in the limit tl + 0 C13

0 and 7T, @ is similarly unconstrained in this limit.

mey assume arbitrary values between

APPENDIX D. The Asymptotic Kinematics at Zero Momentum Transfer

We show that in the limit s, oo, . F 0, b

-
Py B By 2

momenta of all particles in the crossed channel (B.2) are collinear. We

fixed, the

show this when the limit is taken with the direct channel scattering
angle restricted to a cone (the "forward cone'") about the forward direc-
tion, the size of the cone depending on s . The angle in question is
that between ;i and ;; , the momenta of particles "1" and "a" in the
z.m.s. of the direct channel process (B.l).

This is based on a corresponding result for 2 + 2 processes,

which we describe first.
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Conslder the process

s : a+b+1+2 (D.1)

and the process in the crossed channel

t: l+a+b+2 (D.2)
Now
b (om0 <o el - k(o0 uE - e 4 nd - u2)
Al/e(s,mi,m%) Al/z(s,ma,mz)
+ z (D.3)

2s 5

= 2 . e g D
where s = (Pa + pb) and 2y = Pq Pa cosine of the s-channel scat

tering angle.

Now as s > o, Itl -+ o glso, unless Zg Gl i

We are interested in the limit t +0 . So let [z_ - 1] <|e(s)]
uniformly in t , where e(s) >0 as s + ® for arbitrary t .
Expanding (D.3) in powers of 1/s

% 1. -3 ‘T
t o mramy -5 - (mI-mpaniony)  — (Matmd(miom)
2

-+ S [' (WQ—M*) -— 7-%”"‘, —ﬂ.lm‘-im‘g)"kmgj
et s3

x [t _(m',‘q.m:,\ 2m, m, _2mm (rn.-t-mu.)} Z,
s s

(D.L)
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T A T+ *
£t - [m:_m-:)cm':-__m}) w & + €a — £, (mi+m, 0 amy)

2s 2, s s
2 2 2z 2
~ & (mMaempemiemy) + (anp) (ma+on) — Moy, -Mim, + &
g™ 2s s s 25

- * *_z (mrem?] meme
+ €& [(M:J-Mt)(m?'*maJ—zml‘lmb —2m ' m; = Yty } TTe Tl

zs* o=
L ;) T
- Mt (mmE) maml (mamy) 4 Mimy (ma+emy )
L i Sl pes
S5

Clearly, in order that t =+ 0, €, = 0 . Then

1
t oa (m)(mEopi)*+ S L (mrmE—miemy ) (mani-mi-m, )
s s*
+ € — €, (Mg +my = mamy ) (D.5)
Y 2 s*
Now in the case in which ml = ma, m2 # m.b , take t-::2 = 83 =0
(En, n 204 are still arbitrary), then
t % > anf (m5 - ml)? (D.6)

o &
In the case m, # m ., m, # m take €, 0 (then € for n 2 3 are

still arbitrary), and then
2 2 2 2
t s > (ml - ma)(mb - m2) (D.7)

Now consider the scattering in the t channel. Let 2z, =

z.m.s. of (1 + a) in reaction (D.2). Then
: - ) 12
S = (P'g"FaD‘ = m:'+m: +§'L-'t; Ah(t’m‘vm:')A vt my ) 2

5
L (EemE —mit) (E4m-ri)
2t

—

(p.8)
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In the case m =m , m # m,

2 2 2
o o VE-Mp 4. 5 5 (t+m - m)
s =m +m + ——= A (t,mb,m2) z, = > (D.9)
2 vt
From (p.6), sv/-t — mllmg - mil . So that multiplying (D.9) by V-t, and

teking the limit s >+« , t >0 with =z_ =1+ o(mf/sh), one obtains

the result

2 2 2 2
ml|m2 - mbl >- mllm2 - mblzt, and so z, > -1 (D.10)

For the case of unequal mass m # m , m #'me, multiplying (D.8) by +t
and teking the limit s >, t +0, 2z =1+ O(mi/SB), the last condi-
5

tion allowing the use of (D.7), one obtains the result:

(12 -n5) (n - m2)

Z
2 2 2 2 2 2 2 2 +
(my - m)my - mp) + |my - m] | mf -my | 5 - 2
(D.11)
so that 1 :-Zt + 2 . We note that these results remain valid even
if mg + o _ provided that mg/s +0 .
Turning now to the five-body case, let the s channel be
a+b > 1+x (D.12)
where x is the particle pair (2 + 3) with invariant (mass)2 &=
2
523(323 > mb). Let the t channel be
1+a > b+x= b+2+3 (D.13)

Let us consider the physical s channel 1limit t. -0 , t

1 2

bounded, o, S]P + o . Then sog/s + 0, and we can apply the result Jjust
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-+ -

derived, viz., thet E 5 Pa’ - Ex are all parallel or antiparallel
1 b
in the t channel z.m.s. Also, -

2 21 2 2
TR 2t (b +my = ) (6 + my = )

/2, 2 1205wl
- A smss ) AT (8 amlut ) Y (D.1k)

2t1

where ¥y ='8 L 55 in the z.m.s. of the t channel.
b

In order that t2 remain bounded in the limit being considered,

y+-1. And

- 2 2 2
g = T g T B (ty+ my - £ (6% w3 - )
o 1/2(t t ) Alle(t e 'ty ) u (D.15)
Etl 1’ 2’ 2 3 :
A A
. where u = p.*Dp
and t,., = -s5._. 4+ t.- t + e 3 m2 + m2 since s../s E 0 2
2b gg T BT Tt My THg Ty o 23 ’
. < 2
u * + 1, according as t2 > m2 5

Thus we have proved the following kinematical lemma:
For the reaction a + b > 1 + 2 + 3, in the limit as
2 2 2
s = (p*p)° *®,8,=(p*+p,)" > t, = (p)-p, )" >0, and

z = 61 ‘ﬁa =1 + O(mg/sh), and t

)2 bounded, all particle
8

o= (p3 =y

momente in the crossed channel
1+a + b+2+3

tend to a collinear limit.
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APPENDIX E. The Equivelence of @ &and W

This appendix demonstrates that the angle ¢ appearing in the
partial wave decomposition II.(10) is the same as the Toller angle w
~introduced by Bali, Chew, and Pignotti [7]. As defined in Chapter II,

-
# is the azimuthal angle of pi in the z.m.s. of the reaction II.(2)
-> -
with the positive 2z &axis taken along ~Py» and 1:»1_3 taken in the x-z
‘plane, with negative x component. Thus @ is the angle between the
-+ -+ > >
planes containing (pI, p2) and (p_, pe) respectively in the z.m.s.
. b
for II.(2).
> > >
@ is the angle between the plene containing (pI, P, > pE) and
> > >

the plane containing (p2, Pys PB) in the z.m.s. of II.(2), and it is
invariant under e Lorentz transformation along the direction of ;é 3
Thus, # is the angle between the plane containing the momenta of
particles "3" and "b" and the plane containing the momenta of particles
"I" and "a" in the rest frame of particle "2". @ is also then the
éngle between the plane containing the momenta of "1" and "a" and the
plane containing the momenta of "3" and "b" in the rest frame of
particle "2" in the direct channel scattering II.(1l) obtained from the
channel II.(2) by the crossing particles 1 and b . Thus @ is

the variable w introduced in Ref. [T].
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APPENDIX F. The Convergence of the Helicity Series for the Unsignatured

Amplitudes.

In this appendix we show that there exists a domain of conver-
gence in 2z for the helicity series that represents the contribution of
a pole in J +to an unsignatured amplitude. The series in question is
the second term on the right side of Eq. IIT.10.b for a particular pole

J = a(tl) i(Az— M')d

YM‘ (tth29823)e

[9)]
1

o
~ ' (-z) (F.1)
M' sin 'm(o - M'+ Ag) dM _KE’_Q

As shown in Appendix E, the angle ¢ is physical in the physical region
i(xg- M@
for the direct channel, so that !e | = 1, independent of M'.

Now we apply the Cauchy root test [65] to demonstrate the existence of a

domain of convergence. Noticing that for M' > «

’l/M'

|sin (o - M' +2Av > T ) — M'+A2 # integer

and from Eq. (A.1k)

178

‘ o (_Z)Il/M' =, [“—Z (F.Q)

= @

1/M' , where Y.,
1°%2> 23)[ M

A bound is then required for }AM,(t t,,8

is the residue of CM,(J,823,t1,t ), defined in Eq. II.(51), at the

1
pole J = a(tl). Thus we are led to consider the behavior of ICM,II/M
as M' > o ., Let us suppose that the pole occurs in a contour integral

around one branch line on the right side of Fig. 2. Then, from II.(51)

|c

ul

/M
| -

J dz eJ (z) F (2) 1/M near the pole J =o(t.) (F.3)
2:9 M il
Z

(o]
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For fixed J , we assume the integral is uniformly convergent with res-
pect to M . That is, a finite point exists on the contour 2z = N(J,E)

such that

| [ az e;_le’p(z) Fz)|<e forall M (F.1)

c

where € is an arbitrary positive number, and C is the contour from
N(J,e) to o,

To insure the consistency of this assumption with the existence of

a pole at J = a(tl), we must have N(J) +® as J -+ u(tl). Then
|C l < dz eJ (z) F (z)| + ¢
M M-, P M ’ (F.5)
2o
where € is arbitrerily small, and independent of M . Then, as
M=> ,
o0
T az e (z) Fo(z)| 0 as M=+
M—lz,p M
zZ
o
then
loy*™ >0 or 1,85 M= (F.6)
If az e (z) 7, (z)
M-AE o] "M is bounded below as M +» «
3
2o
then s o 5 1/M
1tm oM ¢ 1m j az &, (2) Fy(2) (F.7)
M+ o M+ o =P
)

Now, applying the Schwarz inequality [66] to the right side of (F.T),
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N 1
i/M _ 2 2
lim ]CMI = 1im ( f dzleM Ag,p(Z)l ) (’J dzIFM(z)l (F.8)

M - oo M = o
(o] o]

Then, using Eq. (A.15), one obtains

i 5 NiM 1+ oz
lim (J dz [eM A (z)] = l-i——-— (F.9)
M+ o = 2:p = zl
o
where 24 is some point on the contour from zZ, to N .
Since FM is a Fourier coefficient (see Eq. II.(13.c)), from the
Riemann-Lebesgue lemma [67] FM(z) +0 as M-+ o so0 that
. o\ 1/
lim I dzIFM(z)| + 0 or 1 (F.10)
M > o
o
Thus in the neighborhood of J = o(t), except for the point
Y,
J = a(t)’ lim lCM (T)\ﬁ( I+%nl K. Since ¢ (J) M( )
M 2 +00 -3, M J - 0 tl

Il/M is bounded as

near J = u(t ), lim IYM lllM

M =+ o

=K » 1.e., IYM
Mo,

Applying the Cauchy root test [65] to the series (F.1l) results in

absolute convergence for

«lotsl V2,
l-2z
or
1l + z K?
ll -2 = &

If z is real and < -1, this means

1

—z—1<;'-—(1-z) , or l<—z<__K.E
2 1

K2
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is the domain of convergence.
The same analysis may be applied to the series as M +» - +to
yield another domain of convergence that overlaps this one, and the

analysis may also be applied to a pole arising from a contour around

e branch line on the left side of Fig. 2.
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