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THE COMPLEX ANGULAR MOMENTUM THEORY OF THF. 

PRODUCTION OF THREE PARTICLES IN COLLISIONS OF ·rwo 

STRONGLY INTERACTING PARTICLES AT HIGH ENERGY 

Gary Luxton 

ABSTRACT 

The problem of the continuation to complex values of the angular 

momentum of the partial wave amplitude is examined for the simplest 

production process, that of two particles +three particles. The 

presence of so-called "anomalous singularities" complicates the proce-

dure followed relative to that used for quasi two-body scattering 

amplitudes. The anomalous singularities are shown to lead to exchange-

degenerate amplitudes with possible poles in much the same way as 

"normal" singularities lead to the usual signatured amplitudes. The 

resulting exchange-degenerate trajectories would also be expected to 

occur in two-body amplitudes. 

The representation of the production amplitude in terms of the 

singularities of the partial wave amplitude is then developed and 

applied to the high energy region, with attention being paid to the 

emergence of "double Regge" terms. Certain new results are obtained 

for the behavior of the amplitude at zero momentum transfer, and some 

predictions of polarization and minima in momentum transfer distribu­

tions are made. A calculation of the polarization of the p0 meson in 

the reaction - - 0 
'IT p +'IT pp at high energy with small momentum transfer 

to the proton is compared with data taken at 25 Gev by W. D. Walker and 

collaborators. The result is favorable, although limited by the statis-

tics of the available data . 
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I. INTRODUCTION 

The success in recent years in the theory of strong interactions 

of the idea (l] of Regge pole dominance of high energy elastic and 

quasi-elastic two-body collisions is well known. The idea lends itself 

to a generalization (2,3] that leads to the description of high energy 

collisions with more than two particles or resonances in the final 

state. The work of Kibble [2] and Ter-Martirosyan [3] on this problem 

is based on the theory of partial wave amplitudes with complex angular 

momentum for production processes. These papers have the unsatisfac­

tory feature that the authors assume analyticity properties for the 

amplitude that are not obvious, and which may be invalid in the unitary 

S matrix theory. In the present paper we attempt to remove this unsat­

isfactory feature of the theory. 

Chapter II is addressed to the problem of defining complex 

angular momentum partial waves in the absence of two ad hoc assumptions 

made in References [2] and (3]. The assumptions are (1) that anomalous 

(complex) singularities of the amplitude in the plane of a two-particle 

sub-energy remain bounded as the total energy goes to infinity [4], and 

(2) that a production amplitude satisfies a double dispersion relation 

in a sub-energy and a momentum transfer variable. Both assumptions are 

found to be unnecessary in the derivations (Chapters III, IV) of single 

and double Regge exchange terms for the high energy behavior of the 

2 + 3 amplitude. Attention is also given (Chapter III) to possible 

fixed singularities of the continued partial wave amplitude. 
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Assumption (1) is shown to be incorrect for a simple Feynman 

diagram for the 2 + 3 process. It is then shown (Chapter II) that if 

this result holds in the S matrix theory, there is a unique exchange­

degenerate partial wave amplitude, in addition to the usual signatured 

partial wave amplitudes. The new amplitude permits a Sommerfeld-Watson 

transformation (Chapter III), and its singularities may be significant in 

the high energy region of the crossed channel. One would expect these 

unsignatured singularities to occur also in continued two-body partial 

wave amplitudes. 

Assumption (2) is shown to be false in the equal mass case, if the 

remaining variables are held fixed at arbitrary values in the physical 

region. Without this assumption, it is shown possible in Chapter IV to 

derive double pole terms with the conventional properties. In particu­

lar, the formula obtained in Reference [2] for the "propagator" of a 

Regge particle at high energy in the crossed channel is verified [5]. The 

results are obtained for external particles with arbitrary spin. The 

remainder of Chapter IV is devoted to some technical points related t o 

the application of the model, such as factorization and t he use of a 

definite natural parity for Regge poles. The consequences of parity 

invariance and the contribution of the coupling of a pole to a J plane 

cut are written out explicitly. 

Chapter V deals with applications of the theory to data fitting at 

special values of the momentum transfers. The recent result of Tan and 

Wang [6] of the independence of the cross section on the Toller variable 

w [7], for a leading double pole term when one of the momentum transfers 

vanishes is generalized to a single pole term for helicity amplitudes 
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with external particles of arbitrary mass and spin by means of the 

introduction of Toller's quantum nwnber M [8,9]. It is found that a 

leading double pole term in the helicity amplitude has only a phase 

dependence on w in the asymptotic limit at zero momentum transfer. 

For double Toller M = 0 exchange, it is also found that the part i cle 

that couples to the two Regge (Lorentz) poles is longitudinally 

polarized when one pole couples to two spinless external particles and 

one momentum transfer vanishes in the limit of infinite energy. This 

prediction is compared with some data [10) at 25 Bev for the reaction 

7T p + 7T 
0 p p 

Minima in momentwn transfer distributions are shown to be 

expected for the reaction 7T N + TI- n°N at zero momentwn transfer for 

either the 7T • • - 7Tov_ or the nucleon, and in the reaction 7T p + .i\.ll when 

the nucleon momentum transfer t passes through a value near pn 
2 -.5(Gev) , where X is a pseudo-scalar G = +l non-strange meson 

(n or n'). 
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II . THE ANALYTIC CONTI NUATION OF THE PARTIAL WAVF.. AMPLI'['1JDF. 

FOR THE REACTION IN THE CROSSED CHANNEL 

1. Part i al Wave Decomposition i n the Crossed Channel 

We consider the strong interaction process 

a + b + 1 + 2 + 3 ( 1) 

where the particl es have general spins . 

From crossing [11,12], t he amplitu de for (1) is rel ated to the 

amplitude for the crossed channel reaction: 

1 + a + b + 2 + 3 (2) 

where 1, b are the ant i -particles of particles "l" and "b ", respec-

tively. 

From Lorentz invariance, the various helicity amplitudes [13 ] 

for (1) are each a function of 5 independent variables, which we take 

to be the Lorentz invari ant set: 

(p + 2 
(pl pa)2 s = pb) tl = a 

(p2 + )2 2 
s23 = t2 = (p - p ) . P3 3 b 

sl2 = (pl + P2)
2 ( 3) 

where p
0 

= (E
0

, q
0

) (a = 1 , 2,a,b,3) is the 4-momentum of particle "a" 

in some convenient coordinate system for reaction (1) . Crossing sym-

metry relates t he helicity ampli tudes for (1) and (2) at the s ame 

values of the Lorentz i nvariant variables, with and regarded 
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as the negatives of the 4-momenta of particles "l" and "b" respec._ 

tively in some fixed coor dinate system for reaction (2). pa, p?.' p
3

, 

are then the 4- momenta of particles "a ", "2" and "3", r espectively in 

that coordinate system. 

Now we decompose a helicity amplitude for ( 2 ) 

according to J, the angular momentum of particle pair (l + a) in its 

zero-momentum system (z .m.s .) and J', the angular momentum of particle 

pair (b + 3) in its z.m.s. It is simplest to begin by considering the 

decompos i t i on of' the amplitudes [14] ~ e )). · >.-~ which are amplitudes 
:JOJ; L • I 0.. 

for the process (2) , in which the helicities 03' ob are measured in 

t he z.m.s. of (3 + b), and the helicities A2 , Al' Aa are measured in 

t he overall z .m.s., i.e., the z.m.s. of (l +a). We refer to these 

amplitudes, first introduced by Wick [15] and Shirokov [16] as pseudo-

helicity amplitudes. We use the method of Reference [15) to form the 

state IJM, o
3
ob J'M ' ,A

2
) consisting of particles (3 + b), in a 

state of angular momentum J', and z component of angular momentum 

-+ 

M' , 

with the positive z axis taken parallel to -q2 . J, M are , respec-

tively, the total angular momentum and the z component of the total 

angular momentum of the system of particles (2 + b + 3) in the overall 

z.m.s ., and A
2 

is the helicity of particl e " 2" in this system. 

Inverting Eq . (5) of Reference [15) we obtain the two- particle 

state (3 + b) with definite relative momentum and zero tot al momentum. 

(We use the normalization of Reference [15] . ) 
00 :r :s' )'/.z... 

1 '(e" "'') d d.-) - '\ ) I 'J"'M' ~ ~-) D .<!;e; o) 11.f { 4-./t2. Pl , 'I' ) 3 b - L._, L., l I> M & p I 
:T'av' M ~•-T" J 

(4) 



-6-

n ( I J )';,_ / A '/z. f. "- 'Z.) 
where r' = ~ , and ~:: Ll ct.z.,IYlb,m, is the momentum of particle 

4rr j z v:;:_ 
2. 

-+ 
" 3" in this coordinate system. ( 9' , ¢' ) are the polar angles of p

3 
in 

a definite coordinate system that is a z.m.s. of (3 + b). 0 = 03- ob; 

v = O if 3,b are both fermions or both bosons, v = 1/2 otherwise, 

and ~l/2 (x,y,z) = (x2- y2- z2- 2xy - 2yz - 2zx)112 . The continuation 

of this function is defined in Appendix B.2. 

We complete the definition of the coordinate system by choosing 

-+ 
q

3
, the 3-momentum of particle "3" in the z.m.s., to lie in the xz 

plane with positive x component. Then by choosing the axes in the 

z.m.s. of (3 + b) to be parallel to this set, we have ¢' = 0 in Eq. 

( 4). 

The next step is to form the state of (3 + b) with total momen-

-+ -+ -+ 
tum Q.

3
b = -q2 , where q

2 
is the momentum of particle "2" in the 

overall z.m.s. By our choice of axes, this state is simply the result 

of a Lorentz velocity transformation along the positive z axis applied 

to the state defined in Eq. (4), so that 

IQ3i; ,e:~3~i;) =L. Y/.J",Z(Q~b)/J"M1b3 S;;)D;;,o,e~o) (4-P~L)YL 
~~ J 

where Z(Q
3
b) is the Lorentz transformation required to take 

Q~b = (lt2 ,o,o,o) into the 4-vector Q
3
b = (/t2+ q~,o,o,!~2 1) 

( 5) 

In Wick's helicity convention for 2 particle states of non-zero 

total momentum, the state Z(Q
3
b) IJ'M' o

3
ob"J is denoted 

!Q3b;J'M' ;o
3
ob) . Using this notation, a nd inverting Eq. (20) of 

Reference [15], one obtains 



-7-

(6) 

where the ket on the right side denotes a state of (2 + 3 + b) with 

4-momentum P0 
= (~,O) and with angular momentum quantum numbers JM, 

formed from a state of (3 + b) with angular momentum quantum numbers 

J'M' in the z.m.s. of these two particles. The argument of 
J 

DM M' -A 
' 2 

is (o,o,o) because the momentum i s the direction of the z axis . 

(v = l/2 if J =half odd integer, v = 0 if J =integer). Combining 

( 5) and ( 6) 

where M = M' - t. and 2' 

( 7) 

We consider the tra nsition to state (7) of the two particle 

-+ 
state (i + a) with the same total energy. Let the polar angles of qa 

in the z.m.s. of (l +a) defined above be (e,¢) . Then , as in Eq. (4), 

where p = A. - A. a nd 
a l 

q = D.l/2(t m2 2)/2 /t::""° 
a l' l ,ma l 

following T matrix element for reaction ( 2): 

( 8) 

This leads to the 

( <) ) 
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Cl (J,J"~lll\';t,,tL).:. (p0,,-~;t .. 'l"1M',~1S'j;,A.i \Tl ~~M;'-.. >.1) 
c.r,s b) "L' ~. ~ .. 

, which 

is independent of M by the invariance of the T operator under 

rotations, and z = cos 9, z' = cos 9', and 

I =ff t 
:r,'J'~M' ..,,~_,. "J"l,...;•fi,...&1< 

) 

Noticing that the dependence of a (:J;J'~ M' ;t,,tz.) on M' is 
«S,~) Az·,?.1 ).A. 

analogous to its dependence on A
2

, we adopt a new notation (introduc-

ing a factor ;:r;,,1nj/ for the sake of symmetry): 

b (:r,.:>'.t,,t.z) ::. a.(.:r,:r~M';t,,t..z) ft./tfl.-:s1 Then Eq. (9) may be written 
""' ( 0 1 .s-, nl., '). ,l... <.f5,,lAi_, ~,A .. 

as: 

We have written the amplitude as a function of the variable set 

{z, z', ¢, t 1 , t
2

} instead of as a function of the set {s, s
12

, s
23

, 

tl, t2} The connecting equations between these two sets are given 

in Appendix B.2. Properties of the J 
dAµ(z) functions are swnroarized 

in Appendix A. 

To obtain the partial wave decomposition of the helicity amp-

litude for (2), where all helicities are measured in the z.m . s. of 

(3 + b + 2), we must rotate the spin directions of particle s 3 and b 

in their respective rest frames relative to the directions of these 

spins in the state (7). The spin component of particle "3" in state 

(7) is measured in its rest frame along the direction of 
-+, 
-~, where 

~ is the 3-momentum of particle "x" (x = l,a,b,2,3) in this 
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coordinate system. The spin component of particle "3" in a helicity 

state in the z.m.s. of (3 + b + 2) is measured along the direction of 

To get the second from the first, we rotate the f irst state 

through positive angle about the axis " n = 
3 

/\ -+// 1-+/I "' -+ -+ I-+ -+ I A "' n1 = -qb ~ n2 = - qb + q 3 / qb + q3 and cos 83 = n1 • n2 

This rotation, applied to state (7), changes only the spin of particle 

"3", and affects no other quantities that specify the state. Similarly, 

to obtain the state in which the helici ty of particle "b" is measured 

in the z.m.s. of (3 + b + 2), one must rotate (7) in the rest frame of 

particle "b" through positive angle Bb about the axis n3 = ni x n2 , 
where ni = -q3 I lq3 I , where ~ = 3-momentum of particle "x" in this 

rest system of particle "b", n2 -+ -+ -+ -+ = ( q" + q") I I q" + q" I and 3 2 3 2 ' cos 

n.· • n., 
1 2 

Thus one obtains the helicity state in the z.m.s. of 

(3+b+2): 

B- = 
b 

ot;~"-(~b)la,j;.e: a3~t; .'J.i.) 
"' "1:> 

(11) 

and, correspondingly, the relation between the helicity amplitudes and 

the pseudo-helicity amplitudes for (2) is: 

2. Analytic Properties of the Production Amplitude 

a. Fourier decomposition in 0 

The amplitude has been written as a Fourier series in 0 

F -- ~ r- ( I t t ) ~ (>,,_-M')</> 
L, rN'( ;!,c, ,, 2. e 

( 13&) 
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where 

(13b) 

Also, from (13a) 

(13c) 

Now we assume that the . ser ies in (13a) converges when 0 is 

physical. According to the result of Appendix E, 0 ~ 0 < 2TI when the 

other vari ables are in the phys i cal region for either r eaction (1) or 

reaction (2 ) . We may thus phrase our assumption more precisely as 

follows: there exi s t s a continuat i on of FM 1 ( z , z 1 , t
1

, t
2
), defined in 

Eq. (13b), to the kinematical region of {z,z ' ,t
1
,t

2
} that is physical 

for reaction (1) , and Eq. (13a) is continuable to this region . Roughly 

speaking, it i s assumed possible to write the ampl itude in the physical 

region for the direct channel as a crossed channel helicity series. 

b . Lehmann el lipse in z 

From the definition of J 
dAµ(z), Eq . (A . 4), one may rewrite Eq . 

(13b) in the following form : 

Gw F. I (l,-l1, t", , t .z_) 
-M 

(14a) (!..:..!)I M'-:>11-pl (l~l) IM'_;l.i~f.! 
.2 .L - p IM'- l .z.-fl, l 1'1'- :l1 + .fl 

= L. CM' ( :r) .r-.x<z> (14b) 
T=A "'"" ........ 

(15) 
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where N(J,A) = {f(J-A+l) f(J+A+l)}~ 

__ { (-l)a-S if a ~ I Bl, or -B ~ lcil 
and sign (a,(3) 

+l otherwise. 

Now, as shown in Appendix B.3, a necessary and sufficient condi­
t•,~) 

tion for a series of Jacobi polynomials L': a." P.. <ti) to converge 
" 

inside an ellipse in the z plane with foci at z = +l (i.e., in a 

domain that encloses the physical region) is that the power s eries 

.[ a.n~" have a radius of convergence R > 1 • As a consequence of 

this result, if the series (12) converges in a domain that contains 

the domain of physical z for reaction (2) (i .e ., -1 ~ z ~ 1), then 

it converges uniformly inside a n ellipse in the z plane, and is 

therefore analytic within that ellipse. The equation of the ellipse 

is 

(16) 

c. Real singularities in z : 

The existence of such a z plane ellipse within which the 

scattering amplitude is analytic has been proved in field theory for 

two-body spinless scattering by Lehmann [17) and for the 2 ~ 3 amp-

litude by Ascoli and Minguzzi (18]. Here we will show that the 

existence of such an e llipse of convergence is consistent with all 

branch points corresponding to thresholds in two-body channels. That 

is, we will show that in the S matrix theory, there ~re no 

thresholds in two-body invariant mass variables that generate real 
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branch points in z between -1 and 1, provided that the remaining 

variables (i.e., s
23

, s, t 1 and t
2

), which are held fixed, are taken 

to satisf'y certain inequalities. 

To show this, we notice that, as there are 5 particles in the 

process (2), there are exactly 10 two-body channels, corresponding to 

10 invariant mass variables. Four are held fixed : s
23

, s, t
1 

and t
2

. 

The remaining ones are: 

(pl+ 
2 2 

sl3 = P3) = (p3- PI) 

2 2 
sl2 = (pl+ p2) = (p2- PI) 

2 
t3a = (p3- pa) 

We replace s
12 

in the variable set (3) by z according to 

Eqs. (B.3), and (B.4) of Appendix B: 

z = 

where 

(17) 

(18) 

(19) 

Two of the variables in the list (17) are not related to z at 

fixed These are : 

t 'l. ... "' t •b = Sz3. +WI, ... IV\... ... M~ -s- , 

t t t 2. l. 'l. 

zi. • • - z. - Sn + ~ + "'~ - ms 

( 20 ) 
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We now examine the branch points of F in the variables s
12

, 

s
23

, t
3
a' t

2
a corresponding to normal thresholds in the corresponding 

channels. We observe that a branch point in a. channel variable occurs 

at a value > 0 if the threshold is in that channel. 

(i) Branch points of F in s
12 

corresponding to a normal threshold in 

(12) channel: 

Since s~~ > 0, z > +l if (from (18)) 2E2El -mi- m; > 

We take t 1 , t 2 positive, and above threshold for (2). That is, 

Then 

t 1 >Max{(~+ m2 )2 , (m1+ ma)
2

} 

2 
(m3+ ll\i) 

are real and positive, and z > 1 

(21) 

if 

(22) 

Inserting the values (19) for El, E2 and simplifying, (22) becomes : 

If m
2 

> m
1 

, this can be satisfied by choosing 

2 2 

t
2 

> Max {m2 :a , m~ + m; - mi} 
ml 

(24a) 

2 2 2 m
1 

- m m ) 
2 a 

m2): 
a 

(24b) 
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Clearly, if m
2 

> m
1

, the inequality (24a) for t
2 

is consistent with 

the inequalities (21). If m
1 

> m
2

, we must check that (24b) is consis­

tent with (21). Inserting (21) for t
1 

in (24b) one obtains: 

leading to the following inequality for t 2 (if t 2 > (m~ - m~) 2/m~) 

Thus the (12) channel branch points lead to z > 1 if 

or 

and 

2 2 
m

2 
m 

{ a 
2 

ml 

if 

( 24c) 

if 

(25a) 

( 25b) 

(i i ) Branch points of F corresponding to a normal threshold in the 

(2a) channel: 

Since 2 2 2 
s12 - m1 - m = t + m - t - t 2 2 a 2a 1 

(26) 

for fixed t
1

, t
2 

that satisfy the inequalitie s (25) and (21), it 

follows from (18) that high lying thresholds in the (2a ) channel leads 

to branch points in z with large negative values. In order to keep all 

such branch points outside the interval -1 ~ z f +l , we impose the 

condition 



-l5-

(27) 

Then, substituting the values (l9) for E
2

, E1 , p
2

, pl leads 

(see Appendix B.4) to the following inequality: 

tl(t2- mi)(m~ - m!) + (t2+ m~ - mi - m~)(m~t2- mi m~) > 0 

( 28 ) 

Incidentally, one may notice the great similarity of (28) and 

( 23); they are the same except for the exchange of ml 

it is sufficient that 

{ (m3+ ~)2' 2 2 
t

2 
> Max ml + m2 - m 

or 
2 

ma 2 2 2 
t < --- ( t

2
+ m - m - m ) 

l 2 2 a l 2 
ma -m2 

2 
a' 

if 

2 2 
ml m2 

2 } 
m a 

m ~ m 
2 a 

Clearly, (25) and (29) are mutua lly consistent . 

(iii) Thresholds in the (13) channel: 

Sin ce 

and m Thus 
a 

(29a) 

( 29b) 

( 29c) 

(30) 

Eq. (27) tells us that we can insure that the resulting z plane branch 

point will occur at z < -1 if we impose the condition: 

(3l) 
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for then Since neither s nor 

have been s ubject ed t o a ny previ ou s conditions, we can satisfy ( 31 ) 

by the appropr iate choice of s23 for a r bitrary fixed s . 

(iv) 'l'hreshol ds in the (3a) channel: 

Sin ce 2 2 2 2 2 2 2 
sl2 ml m2 = s + t + t - m ~ ml m2 - m3 (32) 2 3a a 

t 'hen, by choosing 

> 2 2 2 2 
+ m~ (33) s - t + m + ~ + ml + m2 2 a 

one can insure that the resulting z plane branch poi nts a r e real and 

occur at z < - 1 . Con s i stency with (31 ) i s no prob lem; on e must simply 

have 

s < - 2t + 2m2 2 2 2 
(34) 

23 2 3 + ~ + ml + m2 + t l 

Thus we have shown that i f Eqs. (31), (33), (25), and (29) are 

satisfied, then all two- body channel nor mal threshold branch points of 

F result in real branch points in z that lie outside the interval 

- 1 ~ z ~ +l . 

We note that we may not choose s
23 

arbitrarily with both t
1 

and t 2 fixed , for then (34) imposes a lower bound. We also note in 

passing that (25), (29), (31), (33) are satisfied in a kinematical 

domain that overlaps the physical region for the reaction (2) . 

d . Compl ex singularities in z 

In production amplitudes, in addition to the real singularities 

generated by threshol ds in two- body channels, there are complex 

singularities generated by more complicated thresholds. This has been 
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shown explicitly for the 3 + 3 amplitude [19). Complex singularities 

have also been found in the 2 + 3 amplitude in the perturbation 

theory [20,21) . 

We now examine some of the properties of these singularities in 

perturbation theory for the purpose of finding a reasonable assumption 

for the analyti c propert i es of the 2 + 3 amplitu de in S matrix 

theory. Azimov et al [21 ) show that the two-pole Feynman diagram 

(Figure 1) has complex singulari ties in the z plane. The diagram of 

Figure lb is shown in Reference [21) to possess the following complex 

conjugate bran ch points (Eqs. ( 1 4a), (14b) of Reference [ 21)): 

z = 

z = 

where z = 

z23 

zl2 = 

zlO = 

and 

z23z30 ±. i [ (l -
2 2 

z23 )( z30-
1 ))1/2 

- zl2zl0 ±. i [ (l -
2 2 1/2 

zl2)(zl0- l)] 

cosine of the angle 

cosine of t he angle 

cosine of the angle 

x2 - mf - m~ + 2E
1

E
4 

2P1P4 

2 2 2 
y-m - m + 

3 5 

between II 211 a nd 

b e tween II 2 II and 

between " 2 " and 

II 5 II 

It 3" 

11 111 

where Ek,pk (k = 1,2,3,4,5) are the energy a nd momentum respectively 

of particle 11k" in the reaction 4+5 + 1+2+3 and x,y are the masses 

of the exchanged particles in Figure lb. 

We prefer to cons i der rather the labelling of Figure la to whi ch 

correspond the singularities: 
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2. 3 

(a.) 

z. 

x 

( b) 

Figure 1. A Feynman diagram with a compl ex branch 

point in z ; (a) i n the notation of 

this paper, (b) in the notation of 

Refer ence [ 21). 
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2 2 z = -z - z- + i[(l - z2b-)(z_bO 2b bO -

2 2 
- 2E

2
E

3 
z23 = 

s23- m2 - m3 

2p2 P3 

t2b 
2 2 

- 2E E-- m:?. -~ 2 b z - = 
2P2 Pb 2b 

2 2 2 
2~a 

= 
u - ~ - ma+ 

z-
bo 2Pb Pa 

2 2 2 
2E3~ v - m - m + 

= 3 1 
z30 2P3 Pi 

t2b t - t - + 2 +~ + 2 = 1 2 s23 m2 m3 

1) ]1/2 (35a) 

1) )1/2 (35b) 

Here Ek,pk are the energy and momentum respectively of particle "k" 

(k = l,a,b,2,3) in the z.m.s. of the reaction 1 + a ~ b + 2 + 3, and 

u,v are the masses of the exchanged particles in the Feynman amplitude 

represented by Figure la. 

Thus 
2 

t2 
2 

- t 2b 
E2 

tl+ m2 -
E3 

tl+ m3 
= = 

2~ 2~ 

t + 2 2 2 

E 
l ma - ml 

Es= 
tl+ ~ - 8

23 = a 
2lt1. 2~ 
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If t
1

, t
2

, s
23 

are held fixed at physical values for the reaction (2), 

and if the mass u is permitted to become arbitrarily large, then the 

branch points (35a) tend to infinity in the z plane asymptotic to the 

rays 

+ -1 
g- = ::t tan 

1 
(36a) 

If 
+ 

are physical for (2), then · gl are real. Similarly, 

if v becomes arbitrarily large, then the branch points (35b) tend to 

infinity in the z plane with the asymptotes 

(l-z2-)l/2 
2b (36b) 

and are real in the physical region for (2). 

Using the calculated branch points as a guide, one would expect 

the branch cut structure of the amplitude GM 1 (z,s
23

,t1 ,t2 ) as a func­

tion of z to be similar to that displayed in Figure 2, with t
1

, t
2

, 

s
23 

fixed in the physical region for 1 +a -+ b + 2 + 3 

It is of interest to investigate the origin of the complex singu-

larities in S matrix theory. Under the assumption of maximal 

analyticity of the first degree [22], all such singularities are 

generated by the unitarity equation . Using a simple version of the 

bubble notation of Olive [23], we write the unitarity equation for the 

2 -+ 3 amplitude in the form: 

C>isc . •F== = + l k---(F 

+--' ... es=-'---~=-
(37) 
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" )(' 

" " x ,)( 

x 

. . Ji .. .. .. -- • 
-· •• 

x 

)t • I( ,,.. 
Jt 

)( 
)I 

Figure 2. A typical singularity structure for the production 

amplitude II.(14) in the z plane. The wavy lines 

represent branch cuts. The x's represent poles. 
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We define the order of a term in this equation to mean the number of 

bubbles that appear in the corresponding graph, i.e., the number of 

times a connected part appears in the term containing the branch cut. 

The result of Sec. c is that no second order graphs contain com-

plex singularities, provided inequalities (31), (33), (25), and (29) 

are satisfied. Thus, the complex singularities arise from third and 

higher order graphs. 

If the analytic structure of GM' is not qualitatively more 

complicated (e.g., intersecting branch cuts) than that represented in 

Figure 2, then GM' satisfies a dispersion relation in z . We take 

this dispersion relation to be without subtractions, to reduce the com-

plexity of the formulas. The problem with a finite number N of 

subtractions bears the same relation to the problem with no subtractions 

as in the case of the 2 + 2 amplitude. In the case of 2 + 2, the 

continuations with N and 0 subtractions in the dispersion relation, 

respectively, are the same for Re J > N, as shown by Squires [24]. 

Thus 

GM,(i,S.:i.~·t,,tz.) =....!.. \~1 c,.,,(f,Sn,t.,ta) 
2""i. Jc -s - ~ 

(38) 

where C is the sum of the contours that enclose the br anch lines in 

Figure 2, each contour enclosing its branch line in a clockwise sense, 

and is the residue of GM' at the pole 
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3. Analytic Continuation of the Partial Wave Amplitude to Complex J 

We make use of Eq. (38) to determine the continuation of the 

partial wave amplitude to complex J , by a method based on that for 

2 + 2 amplitudes derived by Froissart and Gribov [25]. The partial 

wave amplitude may be obtained from Eq. (10) by using the orthogonality 

properties of the functions for physical J (Appendix A) , 

resulting in 

(39) 

Using GM 1 (z,s
23

,t1 ,t
2

) as defined in Eq. (14), and the definition of 

a_J (:z) 
~ 1 -A2 ,p from Appendix A, 

where }...,A.,. = 
""it\ 

Eq. (15), and 

Mc>.x f 11"1'-.i. .. 1,1 fl~ , sign (A,µ), N(J ,A) 
Ml,. 

jdo-' = 5'ti11' (2rr)Z.. .1.. ( 'h'&a.6/J~ ~~I (l') 
~1 8 ~ M'o 

"1..;a.. 

are defined below 

Then, using the relation (Reference [26], Eq. 10.8( 20)) 

[e1.,~) <>< .<!. f I ..J.ot,{I) o< ,(1 2 a ... (~") {i."-1) {1! ''.+ 1)1-::. c:h r .. (<:) (1-z) (1-+V 

_, ~" -2! (41) 

one obtains 
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At this point, and for reasons that we discuss below Eq. (51), 

and again later in connection with the Sommerfeld-Watson transformation, 

we introduce the unique decomposition: 

( 43) 

where ~' is given by the right side of (42) with C replaced with 

C , the contour that encloses the branch lines on the real axis in the 
0 

clockwise sense, and the sum over poles replaced by the sum over the 

poles on the real axis. 

Since the continuation is performed in J while J' is physi-

cal, it is convenient to introduce the function 

(44) 

and the corresponding decomposition 

(45) 

where BM 1 (J,s
23

) and CM 1 (J,s
23

,t
1
,t

2
) are each given by a formula 

of the same form as (42), with bM' (J , J ') replaced by BM' (J ,J') and 
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CM' (J ,J'), respectively. The relation between z' and is given 

in Appendix B, Eqs. (B.9), (B.10). 

The formula that gives the continuation of BM 1 (J,s23 ,t1 ,t2 ) to 

complex J may be written 

where disc.H(z) = H(z+iE) - H(z-iE) for real z 
z 

(46) 

where 0 0 
zr, zt are the real branch points > +l and < -1, respec-

tively with the smallest moduli, and zk , zk are the poles of G on 
r t 

the real axis with > 0 

Using the functions of Gunson and Andrews [27] (some 

properties of these functions are summarized in Appendix A), Eq. (46) 

may be written in more compact form as 

( 47) 
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We've shown in Sec. 2. c that 0 0 
zr > +l, z~ < -1 provided that 

s satisfy the inequalities derived there . In that 

case, Eq. (47) would provide a unique meremorphic continuation to com-

plex J for the function BM 1 (J,s23 ) N(J,A.. )/N(J,A. ) for Re J > a 
min max 

where \d i .sc.1='..,,(i,i!') l~o for arbitrary positive E: as I z I + 00 , except 
~ ol+f 

for the factor (-1)3 . This is a consequence of Carlson's theorem [28] 

J 
IJI (see Eqs. (49) and the asymptotic behavior of eA.µ(z) as + 00 

and (50) below). This factor of (-l)J is familiar from the 2 + 2 

problem, where )J-v (-1 (v=O or 1/2, according as physical J corres-

· ponds to J =integer or half odd integer, respectively) is replaced by 

the "signature" ±.1 and two separate unique continuations, corresponding 

to signatures + and - , are made into the complex J plane. Clearly, 

the same prescription works here also, so that the continuations are 

B ~ (:r: s J -~tr fiJ.:il! er, (it) disc. F,.,c~,i'J :. (-t)M'->.~-v r.;: e.'3",(~) di.Sc:.F,...C-1,i!'J) 
Ml' > a,~ :a \·~o M·~a.f ~ J' M·:Ao. ,., -t 

~ -~ 

-2ir,_ (Z e.~'--.t~ .... ) fM,<~1c .. , su)-t:c-d"~i:"l: e~.-lc-'!,..) f w <~ .. " .su~ 
le., -a.,f' ~ ~, f 

since, as J + oo (Appendix A, and Reference [27]) 

J' ( ( )'l's. i..·'t;rr;.tl-p) [ '2. '/a.J'J'+
1
/-i.. el,,...~) !:!::: t e. .i. ?-Cc-•) >1Z.ss•, ... l:x:. ..... -a) 

V'3 ( -a'-1)'/'\ 

and r~·-c~-i._,')'"a]:r ~exp [3103 li.-l~~•)'"&f]e,,c.pfi.11-:T) 

where 2 1/2 1jJ = arg( z - ( z -1) ) • 

(48) 

(49) 

(50) 

At every point 

of the type 

z on the right side of (48) at which a function 

is to be evaluated, 1jJ = 0 and loglz- (z
2
-1)

112l<O 
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so that l~,(J,s23)1 < K/ /J as J + co , Re J > (). , for some positive 

+ 
K, and the continuation of BM' (J) to complex J is unique. Of 

course the integral in (48) does not converge for Re J < (). where 

Cclisc.FM,{?.,1!'){-oo for arbitrary positive E: as lzl +co, so that 
l ~--' 

in this case the continuation formula, Eq. (48), is valid in a right 

half plane only. 

CM 1 (J) may also be continued uniquely to complex J. From (45), 

(47), (44) and (42), one obtains 

(51) 

where C' encloses in a clockwise sense all the branch lines in Figure 

2 except those on the real axis and is the sum over all the poles 
poles 

indicated in Figure 2 except those on the real axis. 

At all points z on the right side of (51) at which the func­

tions e ~ <-c> are to be evaluated, we have l1JJI < 7T and 
M-:\1,,f 

lz - (z
2

- 1)
1

/
2

1 < 1, where 1jJ is defined in Eq. (50) (see Appendix 

B-.3 for some of the properties of [z - (z2- 1)112J in the complex 

plane), and so from the asymptotic behavior in J of 

we have the result 
\ CM' (::r, Su)! 

~o e. <~-'-) 13') 

for some positive E: , and some real J 
0 

z 

Thus, from Carlson's theorem [28], CM' (:r,Sz.~)N{J",l,..;.)/rJ(:r,~ .... ) 

is uniquely continued to a meremorphic function of J in a right half 

plane by Eq. (51). Thus, there is no need to introduce signature to 
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obtain a unique continuation of CM 1 (J,s
23

) and this amplitude is 

exchange degenerate [29], s i nce the continuations from even and odd 

(J-v) coincide. Another way of putting this i s to state that the con-

tributions of the continued CM 1 (J,s
23

) are the same to both 

+ 
signatured continued partial wave amplitudes bM 1 (J,s

23
) where 

4. The Continuation to Complex J' 

It is not possible to continue Eq. (42) to complex J' by 

(52) 

introducing a dispersion relation in z' for FM 1 (z,z 1 ,t1 ,t
2

) (with 

the appropriate kinematic al factor, viz. , (.!.:!:3') '"'.: t'/ (~)'""~~I 
2- a. 

removed). This is so because threshold branchl points, for fixed t
1

, 

t~ and s can occur in the domain -1 ~ z' ~ +l , when z is 

allowed to vary over the domain of integration in (42). Explicitly, 

consider the branch points due to thresholds in the (13) channel. Now 

where is the value of 

at which the threshold branch point occurs. In Eq. (42), z and 

therefore s12 can assume arbitrarily large positive and negative 

values, so that for sufficiently large (and branch points 

occur at arbitrarily large value s), s
23 

can assume arbi-

trary real values, and corresponding branch points in z' occur 

everywhere in -1 ~ z ~ +l , as z varies over the domain of inte-

gration of Eq. (40) . This argument is valid when t 1 and t 2 are 

fixed at physical values for any 2 + 3 reaction related to (l) by 

crossing, at least for the case of all masses being equal. The 
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denominator in (18) is real in this case for all possible values of 

t 1 and t 2 

On the other hand, we may evidently continue bM' (J ,J') in J' 

when J is held fixed at a physical value in a manner identical with 

that used to continue bM,(J,J') in J with J' physical. It is 

most convenient to perform this continuation in J/ by exploiting the 

formal equivalence of J and J' in Eq. (39). In order to make use 

of a dispersion relation for GM 1 (s12 ,z 1
) = ~,(i,2')/c~i')'M;+fl(•-"l')'~'"I 

.2. :&. 

in z', we must first continue (39) to an appropriate kinematical 

region in t
1 

and t 2 . 

The appropriate kinematical region is given by inequalities (25), 

(29), (31), and (33) when the replacements 

2 2 2 2 
(ml,m3,ma,~) 

+ 

are made. With this prescription, the inequalities correspond to keep-

ing the branch points in z
1 

for the class of singularities considered 

in Sec. 2.c outside the line -1 ~ z
1 

~ +l , where z
1 

is the angle 

between the momentum of particle 2 and particle 3 in the z.m.s. of 

3 + b for the reaction 

3 + b + l + a + 2 

From invariance under crossing [30], the helicity amplitude 

F. l'l-,,~.L.¢~t-2;t,) 
().'i Aa,)A:i, I :\~").b 

analogously to (z,z',0) 

for (53), with (z
1

,z2 ,0 1
) defined for 

F. l ~. 'l~ "'· t, ,t~ ') 
for (2), is given by c~3A.~)).,_ i~jA.., 

(53) 

(53) 
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up to a phase that is a matter of convention, where rJ. I = rJ. Z = - z I 
VJ VJ ' 1 ' 

z2 =-z, A.- = - A. 
2 2 

. Thus the inequalities leading to the branch points 

in zl with lz1 l > 1, then correspond to branch points of the ampli-

tu de in z I with I z I I > 1 . 

Then, in this kinematical region in t
1
,t

2 
the continuation of 

t h e partial wave amplitude in J ' follows the same lines as the con-

tinuation in J . In particular, we make a decomposition similar to 

(52) for the partial wave amplitude , i.e., 

+ 
where the continuation of BM1 (s

12
,J 1

) is given by: 

(55) 

o ' o ' o' 
with the quantities [ z , z z.k , 

r Q, ' r 

I 

zk, f , (z,zk' )] defined 
Q, M 

a nalogously 

to [z
0

, z~, zk. , zk. , f, (zk,z') ] 
r ;v r ·Q, M 

that appear in Eq. (48) for the 

+ 
continuation of BM1 (J,s

23
) to complex J . 

continued to complex J' by a formula that is the analogue of E~ . (51): 
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III. SOMMERFELD-WATSON TRANSFORMATION 

1. Transformation of the Sum to an Integral 

We follow the usual procedure [24] for transforming the partial 

wave series into a sum over J plane singularities of the partial wave 

amplitude, together with background terms. We start with Eq. II.(10), 

(1) 

(2) 

where ( 3) 

In Eq. (2) T is summed over the values of the signature intro­

duced in II.(48), and b~ 1 (J) is the signatured partial wave 

amplitude continued to complex J by means of Eq. (52), (51), and (48) 

of the preceding chapter. 

Eq. (2) can be transformed to an integral in the J plane over 

a contour CJ that encloses J ~A max along the real axis. We 

choose the sense of the contour to be clockwise (Figure 3a) and obtain 

( 4) 

Using the decomposition II.(52) for 
T 

bM' (J), F is written as 

the sum of two contour integrals: 
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= 

where FB, Fe are given by the formulas of the form of (5a) with 

B~, (J) and CM' (J), respectively, appearing in the integrand. 

2. Deformation of the Integral: Singularities 

(5a) 

( 5b) 

Next, we deform the contour CJ into the contour Cj that is 

parallel to the Im J axis, crosses the Re J axis at J 
0 

A max > J > A max - 1, and is deformed to avoid any singularities of 
0 

the integrand on the line Re J = J (broken contour in Figure 3a). We 
0 

close the contour with a semi-circle in the right half plane, and we 

show that the contribution of the integral over t his semi-circle 

vanishes in the limit of infinite radius, both for FB and Fe , if 

z is taken on the negative real axis, z < -1, and within the ellipse 

II.(16). As !JI + oo , from Eq . (A.18) 

-' :r (-r) 
~ M'->.~,-f 
5 i ri TI" lr-M'+.>...i"'I 

c, 
q 

-lT I IM! I I a.:TI e e 

where is independent of J , and a= logjz + (z
2

- 1)
1

/
2

1 • 

CM 1 (J) is given by II.(51), and as !JI + 00 , each contribution 

on the right side of that equation gives a contribution to CM,(J) of 

C CJ iaJ the form 
2

e e where 

C = loglz - (z
2

- 1)1 / 2 1; a= 

c2 is independent of J 

arg[z - (z
2

- l)112 J, where 

and 

z is in the 

domain of integration and summation in (51). Since all such points 
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Figure 3. J plane contours 
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z are outside the ellipse II.(16), C < -la! and since all points z 

in Eq. I I.( 51) have a nonvani shing imaginary part , I <J I < 7T • Thus , 

exponentially as Re J ~ +oo 

or as !rm JI ~ oo 

Using the same method, a= 0 for all terms on the right side of II.(48) 

and I s:, (;r) "~,e:~~; \ _,, 0 
s;n,, (~·,....'+).~ 

exponentially as Re J or 

Thus the contribution of the integral over the contour at infinity 

vanishes for both terms in Eq. (5a). 

In deforming CJ into CJ in Eq. (5), one must add in terms to 

the right side that represent the contribution of the poles and branch 

cuts of the integrand. For simplicity, we will assume that branch lines 

are absent to the right of 

Then 

Re J = J 
0 

where f3~,(tl,t2,s23) is the residue of 

at the pole J = ai , and 

(6a) 
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and YM' is the residue of CM 1 (J) at the pole J =a~ • 

Now we deform the contour C' 
J 

into the contour c" J 
in Eq. (6) 

where C" 
J 

is the line Re J = -1/2, suitably deformed to avoid any 

singularities of the integrand on that line, and extended from -l/2 - ioo 

to -l/2 +i00 (Figure 3b). The line Re J = -l/2 is chosen by the 

criterion of the fastest decrease in the limit z + 00 of the contri-

bution of the integral over C" J • In doing this, we must add terms to 

the right side of Eq. (6) that come from the singularities of the 

integrand in the region between C' 
J 

and C" 
J 

Before discussing these contributions, we note that it is pos-

sible to deform the contour farther to the left in the J plane, and 

decrease the asymptotic contribution to the amplitude of the background 

integral by using a device due to Mandelsta.m [31) and generalized to 

2 + 2 amplitudes for particles with spin by Drechsler [32). In doing 

this, however, one obtains additional contributions that dominate the 

background integral in the asymptotic region in z • These contribu-

tions may be shown to cancel if Mandelstam symmetry is assumed. In our 

case, Mandelsta.m symmetry would read 

M'-A. -P 
bM,(J,s23'tl,t2) = (-1) 2 bM'(-J-l,s23'tl,t2) (7) 

for (J - M'+ A.
2

) = half-odd integer. 
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The symmetry has been proved in spinless potential scattering with 

Yukawa potentials by Mandelstam [31] and conditions for it to hold in 

2 + 2 scattering with general spins are discussed in Drechsler's 

paper. Corresponding conditions for 2 + 3 scattering may not exist, 

because Drechsler's conditions are based on the N/D equations which, 

in turn, are based on the existence of only a left hand cut and a 

right hand cut for the 2 + 2 amplitude. In the 2 + 3 problem, 

additional cuts also exist, as discussed earlier. To avoid the 

complication of seeking an appropriate generalization of the N/D 

equations to test Mandelstam symmetry, we extend the contour no 

farther to the left than the line Re J = -1/2 . Except for this 

feature, the treatment here for the 2 + 3 case parallels that of 

Drechsler [32] for the 2 + 2 case. 

In deforming the contour to C~ , one picks up the following 

contributions in Eqs. (6): 

(i) Moving poles -1/2 < Re a(t
1

) <\max. 

(ii) Poles due to the vanishing of sin 1T(J-M'+ \
2

) 

in the region - 1/2 < J < A max. 

(iii) Fixed "Kronecker delta" singularities of the 

partial wave amplitude. 

(iv) Branch cuts of the continued partial wave 

amplitude. 

We discuss (i) first. This presents no problem, as the sums 

~ in (6a) and (6b) are simply rewritten ~ Notice 
~e ~ )> J". ~f«.1">-!,.L 

that the trajectory J = a(t
1

) is taken to be a function of t 1 

only. This is essentially equivalent to assuming that the Regge 
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poles are the same as those that appear in 2 -+ 2 scattering. Another 

way of stating this is that the position of a pole in ttte conLinuat.ion 

in J , the angular momentum of a pair of particles in U1c'ir z .m. s., 

depends only on the invariant mass of t he pair, as is the case in 2 ->- ;~ 

scattering. 

Next, we consider (iv). For the sake of pragmatic simplic i ty, 

we assume that there are finitely many non-intersecting branch cuts Ck. 

Intersecting branch cuts, as pointed out by Drechsler, can lead to a 

complicated sheet structure for the J plane, and little is known 

about the cuts, apart from the position and energy dependence of a cer-

tain type of branch point [33 ]. 

A branch cut m~y occur' in BM 1 (J) or in CM 1 (J) . Th e respec -

tive contributions are 

(8a) 

f1> . .: . = i.... I e"(,\i.-"''>¢ J d.:r 
c 417'2.. to\" c 

* 

C ( ~ t t ) d:r t-z) (tJ"" ... 1) 
aiSC. M' :J, .t~• " .2. M.'-).z.,-f 

:r si .. 1T( :r-M" -r)..z.1 (8b) 

where d~dB~1 (J),CM 1 (J)} are the discontinuities in B~ 1 (J},CM 1 (J) 

across the branch cuts in the sense implied by Figur e 3b . 

The remaining contributions are of type (ii) and (iii) and we dis-

cuss them together . Equat ion II. (48) is valid for Re J > N where N 

may be taken to b e the smallest integer > a, where as 

lzl -+ 00 for any positive £ , and we do assume the existence of a powe r 

bound for FM, ( z), as i s generally done for 2 -+ 2 amplitudes [ 2ld . Equa­

tion II. (46) says that B~ , (J) has a one over square root sin[-';u1arity , 

that is, a behavior (J-.1\)-l/ 2 as (J-v) pas ses through an inte ge r o r 
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the wrong s.isnature with A . ~ J < A max. 
min 

The representation II.(48) 

is no longer valid for Re J < N , but, as mentioned by Mandelstam and 

Wang [34], these singularities persist in the 2-+ 2 amplitude with 

spin due to their occurrence in the left hand discontinuity function for 

the partial wave amplitude in the presence of a third double spectral 

function, as first pointed out by Gribov and Pomeranchuk [35] for the 

spinless case. These singularities may also persist in the amplitudes 

~,(J) in the problem being discussed. 

As J passes through such a point, called a "sense-nonsense" 

point because J ~ A min is "sense" and J < A max is "nonsense" (we 

abbreviate this by referring to it as an s-n point), the multiplying 

function vanishes as (J-A) 3/ 2 because the signature 

factor vanishes as (J-A) and the function vanishes as 

/J-A [Reference 26, Table I]. The denominator sin TI(J-M' + A
2

) also 

vanishes as (J-A), so that the integrand is finite at an s-n point of 

the wrong signature, and there is no contribution from such a point 

when the contour is deformed from Cj to CJ . 

As J passes through an s-n point of the right signature, the 

continued partial wave amplitude BM 1 (J) vanishes as /J-A , because 

in this case the continuation reduces to an integral over a 

function as in II.(40) which vanishes as /J-A • At such a right sig-

nature point also vanishes as ;J::f: , so that the 

integrand is finite, despite the vanishing of sin 1T (J-M'+ A
2

), and no 

contribution to the right side of Eq. (6a) is obtained from the vanish-

ing of the denominator at s-n values of J , when the contour C' 
J 

is 

shifted to the left, to the contour C" J • The same argument applies to 
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the s-n points in the integrand for Fe in Eq. (6b). 

When (J-v) passes through an integer of the wrong signature 

with J < A. min, referred to as a "nonsense-nonsense" (abbreviated n-n) 

point, II.(48) suggests that R1:. 1 (J) has a pole, because e:r,c~) 
~M rvt-).1.>f 

has a pole there. At an n-n point of right signature, II.(48) suggests 

that ~,(J) is regular, for the same reason that it vanishes at s-n 

points of the right signature, i.e., the continuation reduces to a 

formula of the form II.(40). This behavior persists for 2 + 2 ampli-

tudes that satisf'y the Mandelstam representation as indicated in 

Reference [32]. At n-n points cl. 7"( 7,-i!) vanishes in the case of 
M'-)lz ,f 

wrong signature because of the signature factor, and this cancels the 

zero in the denominator due to the vanishing o~ sin 7r(J-M'+ "-2)' but 

this leaves a possible pole in the integrand due to the suggested pole 

in B~, (J), since d. :r l z) 
l"f!.:i.,,r is regular at n-n points. At right sig-

does not vanish, and there is a pole in the 

integrand due to the vanishing of the denominator. There are poles 

of the integrand, then, at n-n points of both right and wrong signa-

ture, and these lead to contributions to FB, Fe, r e spectively, of 

the forms 

F."-" L I:;-le•O&M'J1'(iT+1) Res. ( fr~, (:r> o..;,~';:a~-c;) 
8 "' - ~'IT M' -:;,.,, S\ '1"TT (:T-M'-+).;:, 

(9a) 

For later applications, we note that at n-n values d.~(a) 

behaves as -J-1 for lzl + oo , so that these terms are z 
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dominated by the background integral when lzl + 00 

As a result of the discussion above, the Sommerfeld-Watson 

transformed series assumes the form 

~ - : i_ L: e i.{~~-M')tp l Jr (2T+1) 5,.,": (T, 5u) d=~~;~f 
Jhrl. M',T c; Sitt "TT (:r-M'+~) 

_, 
Jtr 

(lOa) 

(lOb) 
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Alternatively, we may perform the Sommerfeld-Watson transforma-

tion in the partial-wave series in J', by using the equations of II.4 

to continue the partial wave amplitude bM 1 (s12 ,J 1 ,t1 ,t2 ) to complex 

J', and perform the procedure corresponding to that which led to Eq. 

(lOa) and (lOb). Then we obtain 

where 

= 

-..!.. 
~:rr 

(11) 

(12a) 

LL 
M' poln,,... 

R• it,.. >-J.. 
2.. 

e.~0~-M')~ J~7' (2.T!.-1) [a-;,c. Clw'I' (S,a ,'1'')] of.~~~;;'; 
C Sit\T\(:::r'-M') 

" 

(12b) 
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IV. APPLICATIONS TO THE HIGH ENERGY REGION 

We restrict our discussion of the high energy behavior of the 

amplitude for the reaction II.(l) to the case in which the two momentum 

transfers t
1
,t

2 
(Eq. II.(3)) are held fixed, and s + 00 • Then the 

pair energy s
13 

necessarily + oo (for the proof, and for other kine­

matical relations in the asymptotic region, see Appendix C). Further-

more, it is not possible for both and to rema in bounded in 

this limit. Accordingly, we consider separately the cases in which one 

or both of these sub-energies + oo as s + oo • 

1. The Amplitude as One Pair Energy Remains Bounded 

a. The amplitude for large s
12 

The standard method [36] for obtaining the high energy behavior 

of a 2 + 2 amplitude at fixed momentum transfer is based on the assump­

tion that the crossed channel amplitude, after undergoing a Sommerfeld­

Watson transformation, may be continued in the kinematical variables to 

the physical region of the direct channel, and represents the direct chan­

nel -~pli:tµ.<l.e through .t~ crQsaing ·relations [37}, Likewise, we assume 

here that the representation III.(10) of the crossed channel amplitudes 

(i.e., the helicity amplitudes for II.(2)) may be continued to the 

physical region of the direct channel (i.e., the physical region for 

II.(l)), and represents the helicity amplitudes of the direct channel 

scattering by means of the appropriately generalized crossing relations 

[11,12]. Thus, we use III.(10) to investigate the behavior of the 

amplitude as s + oo for fixed t
1

, t 2 , s 23 and 0 · 
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Using II.(18), we note that at fixed t
1

, t
2 

(t
1 

# O), 

lzl + 00 linearly in s12 . In fact, in the physical regi on for II.(l) 

the 'denominator of II.(18) has the same sign as . t
1 

(Appendi x B), 

and t 1 < 0 when s12 is large (Appendix C), so that 

Re z + _oo as s
12 

+ oo , and sign (Im z) = - sign(Im s
12

) • The 

asymptotic forms for large lzl of the functions and 

J 'T' (el,-!) 
Q..,...,_.,.'-•-f that appear on the right side of II. (10) are found in 

Appendix A.3 to be 

~ e ~ '!.""' (t"1'-l.~+.l> rt iot + 1) 

N{ol,p) N ( t1. ,M1->.L) 

-inTia ( ) where we have used -z = e z , n = sign Im z . 

(1) 

In our case, we are interested in this physical region of II. ( 1), 

so that sign(Im s
12

) = +l and n = -1 • There are situations, how­

ever, in which the more general form (1) would be needed; for example, 

in the computation of a unitarity integral in which the amplitude on 

both sides of a cut is involved. 

From (1) it is apparent that in the limit of large s12 , the 

behavior of the amplitude is determined by those terms on the right 

side of III. (10) with the largest values of Re J If that term is a 

pole, it may occur either in FB or in Fe , and the leading term in 

these two cases of pole dominance are the following: 
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Pole Dominance 

(i) Pole in FB dominates: 

(ii) Pole in Fe dominates: 

. (>. ')¢ Y (-t,,1;~,~u) 
e" .z-fol\ rt.l.~+2.) 0 tvt'(ffI;;)J,.; l1.l .. 

S i r1ir{oC-'ll) N(oe,M,.-A~l N(ol,j') 

'"~'f+'-r"'') • e .( 

(2a) 

(2b) 

As noted before, Fe is exchange degenerate, and this is evi­

denced by the absence of the signature factor in the asymptotic 

behavior of the contribution of a pole in Fe 

The leading term with largest Re J may possibly occur in the 

integrand of the discontinuity function across a cut in the J plane. 

This may occur in applications at large momentum transfer, or at small 

momentum transfer if the Pomeranchukon is a fixed cut. The contribu-

tion of such a leading singularity at J = ac(t1 ) is of the form: 
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Cut Dominance 

(i) Cut in FB dominates: 

Fi(e <"-)'\ . '1-). ~ i.. ~ eUA.1.·M'J¢r(2~+z)e'~cp .. ~'i,,~~ el"lh .. ~.i~·t.,tz) 
O~" b l\,i 1 II. I °' - LJ • "4. 

4fll"Z. M' Si"Vfol.c-V) N(ot.c,M'->.L'> Nlotc_.f) LoJl-21 

(3a) 

(ii) Cut in Fe dominates: 

This derivation of the behavior as s
12 

+ 00 breaks down in the 

case t 1 = 0 for then lzl is bounded by unity. This situation is 

familiar from its occurrence in two-body backward scattering of unequal 

mass particles, where it was examined by Goldberger and Jones [38], and 

Freedman and Wang [39]. There it was found that when an analyticity 

requirement is imposed, either in the form of the Mandelstam represen-

tation as in Reference [38], or analyticity in the Khuri representation 

a(u) 
as in Reference [39], that the behavior s persists even at u = 0. 

We assume a similar substructure here permits us to use Eqs. (2) and 

(3) in applications in the limit t
1 

+ 0 . 

b. Factorization 

The contribution of a Regge pole to a 2 + 2 amplitude is 

generally taken to be factorizable into two parts that depend, res• 

pectively, on the variables of the two channels [40]. That is, if 
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the contribution of the Regge pole J = a(t) to the amplitude for 

a + c -+ b + d with channel energy t is written for large s in the 

form 

where 

F .• _\ .\ "- rv 
"b "J '"a. A e 

~ -== A"'--:\-c 

x = '-i; -.l..c 

l : ~i.9.,._ ( Im 2) 

Then the residue function fJ. "' I\ ,- lr, ~Jl"CL Ac is taken to factor as 

If the helici ty residue function (3, , (-t,' ti.. S'z.\) of the pole 
M rr,S'~)~, )., .A., 

(4) 

(5) 

J = ct(t
1

) in the amplitude for the reaction 1 + a-+ 2 + 'bbject"of 

helicity M' is taken to factor in the same way as if the "object" 

were a particle, we can write: 

(6) 

and identify as the same helicity residue function of the 

two-body channel (1 + a) at the pole J = a(t
1

) as occurs in two-body 

reactions of the type 1 + a -+ x + y , where (x+y) represents any two­

body channel that has this pole and that couples to (1 +a). 
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P.. {t,,tA~SzJ) may be regarded as defined by (6), and is the residue at 
l"'M' (S, s,) ~"' 

the pole associated with the coupling of the three-body channel 

b + 3 + 2 with helicity A
2 

and M' , respectively, for the particle 

112" and the two-particle subsystem ( 3 + b) in the z .m. s. of (l + a). 

signifies that 03' ob are 

the helicities of 3 and b in the z.m.s. of (3 + b) . Thus, the 

dependence of the amplitude on the helicities Al' Aa factors out of 

the sum in (2a) or (2b), and we can write it as 

(7) 

where we have taken a signatured pole, for definiteness. 

c. Poles with definite parity 

When Re(a(t)-v) passes through an integer of the correct signa-

ture, i.e., Re(a(t)-v) =even or odd integer, corresponding to even or 

odd signature, a Regge pole in a 2 + 2 amplitude gives a contribution 

that is associated with that of a particle, either a bound state or a 

resonance [36]. For this to occur, it is necessary that Re(a(t)-v) 

a "sense" integer, i.e., that Re(a(t)-v) ~ Max{l>-1 ,!>-'!} in the two-

body reaction described above by Eq. (4). Similarly, particles are 

associated with right signature integer sense values of Re(a-v) in the 

2 -t· 3 case. Bound states and resonances have definite parity, and in 

the 2 + 2 case, the trajectories couple to the following parity 
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combinations [ 4l]: 

(8) 

where nx,sx refer to the intrinsic parity and angular momentum o~ 

particle "x". Ths combination has parity P = ±.(-l)J-v, as may easily 

be seen from Eq. (41) of Reference [13). The +or - is characteris-

tic of the trajectory, and we refer to P = ±.1 as the natural parity, a 

or simply the parity of the trajectory. Exchange nondegenerate 

trajectories form particles of one parity only (which may be +P or a 

-Pa , depending on the signature), whereas exchange degenerate trajec-

tories have particles of alternating parity along the trajectory (42]. 

The pole at J = a(t
1

) that gives rise to the asymptotic term 

(7) in the 2 -+ 3 amplitude occurs in the continued angular momentum 

of the two-body state (1 +a), and so the fact that the coupling of a 

trajectory to two-body states is via one of the combinations (8) means 

f ( t,) ( ) that we must replace A-" in Eq. 7 by , 11..,. 

L [A C-t,) + ~ .,,_.,, l-1)Sr-ts.,-vA Ct,) 1 . The additional factor of 2-l/2 
2.. 1--'rlo. ' to. l~)T .-~ .. 

comes from the fact that it is the state ..!.._ [IJ"M.>- 1 )..._~ ... +l7M>.,).i)_J 
'1"i: 

that occurs in the partial wave decomposition. Thus, with signatured 

pole dominance, one has the result 

(9) 
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d. Consequences of parity invariance 

Shirokov (16] has worked out the consequences of parity invari-

ance for processes in terms of the pseudo-helicity amplitudes. From 

Eq. (12) of Reference (16], the result for the 2 + 3 amplitude is (43] 

(10) 

where s = intrinsic spin of particle ''x''= s-
x x 

This relation may be applied to obtain conditions on the residue f'unc-

tions that appear in Eq. (9). Thus, 

(11) 

or, 
(12) 

e. The amplitude for large 

To investigate the behavior of the continued helicity ampli-

tudes for II.(2) as + 00 at fixed and fixed 

one starts with III.(12) and applies essentially the same method to 

the expression for lz' I + 00 , as in Secs. a. through d. to the expres-

sion III.(10) for lzl + 00 • To make the analysis as similar as 

possible, it is convenient to introduce the second crossed channel: 

3 + b + 1 + a + 2 (13) 
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and perform the partial wave decomposition corresponding to II.(10) 

where J
1

, J
2

, z
1

, z
2 

are defined with respect to (13) in the same 

manner as J, J', z, z' are defined with respect to II.(2). That is, 

z
1 

= cos 9
1

, where 9
1 

= angle between p'2 and p
3 

3 + b . Then 

in the z.m.s. of 

2 + 2 
2! (t2+ m; - tl )(t2+ 

2 ~) s23 = m - m3 m2 3 2 

1 1/2 2 2 1/2 2 
(15) + 2t 6 (t2,m3,~) 6 (t

2
,t

1
,m

2
) zl 

2 

and comparing this with Eq. (B.9), one sees that 

= -z' (16) 

A. " Similarly, z
2 

= cos 9
2

, 9
2 

= angle between -p
2 

and pl in the z.m.s. 

of (l +a) in the reaction (13), and by analogy to Eq. (B.9) 

sl2 =mi+ m; + 2!l(t2- tl- m;)(tl+ mi - m!) 

1 1/2 2 1/2 2 2 
- 2tl 6 (tl,t2,m2) 6 (tl,ml,ma) z2 (17) 

Thus, from Eq. II.(18) 

= -z (18) 

We note that 0 in Eq. (14) is the same angle that appears in 

II.(10), since it is the angle between the planes of the momenta of par­

ticle pairs (l + a) and (b + 3) i n the rest system of particle 2 , 

which is the same as the rest system of particle 2 in the reaction 

II.(2) with the same values of the independent variables. 



-51-

0ne then treats Eq. (14) in the same manner as II.(10) which 

leads to Eq. (19) below, corresponding to Eq. (9), As for 

the case of signatured pole dominance (i.e., the pole J' = a(t2) is 

the singularity farthest to the right in the J' plane) 

(~'{lt:,) 
.2. "?..'::. s.·, .. (r,.,~') ( 19) 

The relation between the amplitudes for II.(2) and (13) assumes a 

simple form in terms of the pseudo-helicity amplitudes 

and First, according to the analyticity postulate of 

Stapp [30], the crossing relation between the amplitudes for reaction 

(13) and that for reaction · 

2+3+b-+ l+a (20) 

is 

(21) 

where A2 = -12 , and F<~;.fa>l:i. > o!t"'b is the continuation of the ampli-

tude for (20) in the 4-momentum of particle "2" from 

where is positive timelike. 

p~ to -p_ ' 
2 

Then, the amplitude for (20) is related by time-reversal to the 

amplitude for II.(2). Time reversal invariance [30) yields 

where er = ±1 
t 

r- r~.c~llS;t,,t'.J ,,. !=', ,~.~',~. t,,t .. ) 
O'e ,..~ s: . {/", ~ >' fl",&"~)Jz.; s,,r._ 

"T ... , J • ".z. 

is a phase factor that may be different for non-

interfering amplitudes. Thus, 

(22) 

(23) 
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at is a matter of convention, and we choose it to be +l in all cases. 

2. The Amplitude for Large Values of Both Pair Ener5ies 

When and are in the physical 

region for the process II.(l), the assumption we have made about the con-

tinuability of the Sommerfeld-Watson transformed amplitude states that 

III.(10) is a valid representation of the continued amplitude for II.(l). 

The corresponding assumption about the similarly treated amplitude for 

the process (13) asserts that the corresponding representation which is 

distinct is also valid in this kinematical region. Below, we examine the 

consequences of the simultaneous validity of the two continuations. 

(i) Double Pole Dominance 

Let us consider first the case in which as 8 12 
+ (X) a signatured 

pole at J = ct( tl) is the term that has the largest value of Re J on 

the right side of III. (10) and a signatured pole at J' =a(t2 ) is the 

term that has the largest value of Re J' on the right side of Eq. 

III,(12). Then, from Eqs. (19) and (23), as 8
23 

+ (X) 

(24) 

so that to begin with 

.., -1. tz.' IT"Ji-.z. 
Nf-.,S) Fu,,I;;'>l,,;$'j'So. e 

+ limit that is independent of s
23

, o
3

, 0
0 

(25) 
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Applying this to the representation III.(10), we see that each of the 

functions B~ 1 (J,s 23 ,t1 ,t2 ) , 

CM,. (J,s23'tl,t2), YM,(tl,t2,s23), and 

behavior. In some case s the limit in 

di~c . CM 1 (J,s23 ,t1 ,t2 ) have this 

(25)is zero. We now make the 

assumption that whenever the internal quantum number selection rules 

allow the coupling of a particle lying on the trajectory J' = a(t2) to 

a particle lying on the trajectory J = a(t
1

) together with the par­

ticle 2, then the residue 8M 1 (t
1
,t

2
,s

23
) does not vanish in this 

limit. None of the above functions divided by 0(. <tz) s
23 

can go to 

infinity as s -+ 00 

23 
, for cancellation of this asymptotic behavior is 

necessary and would take place in two or more terms for a range of 

values of s
12

, and so, by analyticity, the sum of these terms would 

have to vanish identically. 

Let us now suppose that the internal quantum numbers permit the 

coupling of a particle lying on the trajectory J = a(t
1

) to the 

particle "2" together with a particle lying on the trajectory 

J' = a(t2), where the two trajectories are the singularities with the 

largest real parts in the J and J' planes, respectively. Then we 

have the case of double pole dominance, and in the limit of large s12 

and large s
23

, (25) holds, and also 

Ft6,1S';;)~~;b1&"' ~(11(,p) 

-+ limit that is independent of s12 , >-y-, >.a ( 26) 

so that combining (.25) and (26) one obtains the following result for 

double pole dominance: 
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(27) 

where 

with 

(29) 

Parity invariance, as expressed in Eq. (10), when applied to 

Eqs. (27), (28) for the double pole dominance term, leads to the 

result: 

(30) 

In terms of the 

(31) 

The formula (27)forthe case of double Regge pole dominance 

of reaction II.(l) in the appropriate kinematical region was first 

obtained by Kibble [2] in one of the first papers on the extension 

of the Regge pole model to production amplitudes. The theoretical 

basis of the double Regge pole term in this work differs from the 

one in Reference [2] by the inclusion of anomalous thresholds which 
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are known to exist, in general, in the analytic structure of the produc-

tion amplitude, the knowledge of which forms the basis for the 

continuation of the partial wave amplitude. Thus, in addition to the 

usual signatured partial wave amplitude, which may have poles and cuts, 

we found an unsignatured amplitude, also with possible poles and cuts. 

In Reference [2] it was further assumed that there exists a simultane-

ous meremorphic continuation of b (J,J',t
1
,t

2
) of Eq. II.(10) 

M' (65 Si) ).J.>').l).a 

into the right half J and J' planes. We do not make that assumption 

here and, in view of the remark at the beginning of Sec. II.4, such a 

double continuation seems unlikely to exist. Eq. (27) must be regarded 

as heuristic, nonetheless, for the helicity sum has not been proved to 

converge. In Appendix F a proof is presented of the existence of a 

domain of convergence that is valid for a Regge pole term in the case 

in which the pole occurs in an unsignatured amplitude. 

Eq. (27) represents the leading term for large s12 , s 23 in 

the case in which the leading J plane singularity, which is taken to 

be a pole, can couple to the particle 2, together with the leading J' 

plane singularity, which is also taken to be a pole. Other cases are 

possible, of course. For example, the leading singularity in either 

the J or the J' plane may be a cut, rather than a pole. Further-

more, it may occur that no particle on the leading J plane 

singularity can couple to a particle on the leading J' singularity 

together with particle "2". These singularities may occur in signatured 

or unsignatured amplitudes, but the difference between the leading con-

tributions in these cases is trivial; simply the replacement of the 

signature factor I';(). by 
-imr(o.-v) e • 
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As further illustrations of the possibilities, we compute the 

leading terms for the following two examples: 

1) The leading J plane singularity is a cut, the leading 

J' plane singularity is a pole and the two can couple 

to each other via the external particle "2". 

2) The leading J and J' plane singularities are both 

poles, but the quantum numbers do not allow a coupling 

of particle "2" and the leading J' plane pole to the 

leading J plane pole. This case is f'urther defined 

by specifying that the leading singularity in the J' 

plane that, together with particle "2", can couple to 

the leading J plane pole is also a pole, and vice-

versa. 

(ii) Cut-Pole Dominance 

From (3} , and not assuming factorization for the cut, 

F, ·( 'J(,r+</J) d tz {3'";S~1Jt:,.1:.r) ~ ~,Y .t. {t) 
• "" • :>.~-M i rf.l."'-:;+2) ise. ""''{6".fr)~:Z ·,.l-,~ • .Hie e z ("').-c ' 

("j~)Az.;~;~ ~ .!:... Le :f•"c :! "' - - ~ 
+tr1- M' Sirt1T"("-t_-V) f'./(.t~,M'-l'L)/V(~,f) l•,l~l 2. 

and from ( 24) 

Using the same method as in the double pole case, one obtains 

(34) 

where 
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N lt2.,t,,S1;J) ( I I 
@.t~'-2:i.gl (A; ,l.,.)-).z 01 "L 

-4-'!T" (!)""' SiHTr{~-v) 1.J (o'(,M'->.,) 

(35) 

To motivate this calculation we point out that at large momentum 

transfers, contributions from cuts are expected to be important. As an 

example, consider the position of the AFS [33,44,45] J plane 

branch point generated by two Regge trajectories a 1 (t), a
2
(t) . The 

branch point with largest real part is shown by Rothe [46] to occur at 

J = a
1

(u) + a
2
(1t - /ii") 2

)- 1 where u is a solution to 

ai(t) - (It - ./U) a;(lt - ./U) 2 ) = o . 
ru 

The most common model used presently for Regge poles is that of 

straight-line trajectories with universal positive slope [47] and there 

is some theoretical support for this model [48]. In that model the 

branch point occurs at J = ac = a
1
(t/4) + a 2 (t/4) - 1 

t 
= a 1 ( t ) + [ a 2 ( o) - 1 - 2 al] > a 1 ( t) 

for sufficiently large negative t 

Similarly, ac > a
2
(t) for -t sufficiently large. 

In the case of two equal trajectories (e.g., p-p) with 

then, 

a 
p 

~ 1 + t 
2 

a > a 
c p 

for 
2 

t ;f, - l(Gev) 

If the pole a
1

(t) is the Pomeranchon with 0 slope, then the 

branch point is at j = ac = a
2

(o) which will dominate the pole 
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j = a
2
(t) for t < O, but will in turn be dominated by the Pomeranchon 

pole. 

(iii) In this example, we suppose that the dominant singularity in 

the J plane is the pole trajectory J = a1 (t1 ), and the singularity 

with the largest real part, apart from this one, is the pole J = a.
2 

( t
1

) . 

Likewise in the J' plane, the two singularities with largest real 

parts are the pole trajectories J' = a'1 (t2 ), J' = a;<t2 ) with 

We suppose the quantum numbers to allow the couplings 

and Cl.2 +-+- (2 + &'l) , but to not allow Cl.l +-+- (2 +al). 

As an example, one may consider the reaction TIN~ TI 1 p0 N1 

with the identifications {a,b,1,2,3} +-+- {TI,N,TI' ,p0 ,N 1
}. The leading 

singularity in the J plane (J = angular momentum of the TI - TI 

system) then corresponds to the Pomeron (P) and the next leading 

trajectory is the p among the known trajectories. Also the leading 

trajectory in the J' plane (J' = angular momentum of NN' system) is 

the Pomeron and the next leading trajectory is the p The quantum 

numbers do not allow the coupling of the P to (P+p) because 

I = 0 for the P and I = 1 for the p 

(36) 

where refers to the residue at 
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For large s
23 

(37) 

Consider now Eq. (36) for large, but finite, s
12 Dividing 

N' {t; ) 
that equation by (z'/2)~' ~ and taking the limit s23 -+ co , one 

~. (-t~) 
Comparing this with (37), also divided by (z'/2) , in the limit 

(38) 

Then from the reasoning that led to Eq. (27), one obtains that the 

i = 2 term on the right side of Eq. (36) may be written as 
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(39) 

where is given by equations analogous to (28) and (29). 

Similarly, the .1 i=l '· term on the right side of (36) may be put in this 

form, so that when and are both large, the amplitude is 

approximately given by the sum of two terms both of the form (39), 

differing only by the exchange of trajectory labels "l" and "2". 
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V. SOME EXPERIMENTAL CONSEQUENCES OF DOUBLE POLE DOMINANCE: 

DEPENDENCE OF THE AMPLITUDE ON THE TOLLER VARIABLE AND 

POLARIZATION AT ZERO MOMENTUM TRANSFER; PREDICTED MINIMA 

IN DIFFERENTIAL CROSS SECTIONS 

1. Dependence of the Amplitude on a Sub-Energy 

The most remarkable feature of the double Regge pole contribution 

Eq. IV.(27), to the amplitude for the single particle production 

process is the form of the dependence of the amplitude on the two-

particle invariant sub-energies with two momentum transfers held fixed 

as these sub-energies become large. This dependence has been tested 

against experiment, using parameters obtained from Regge pole fits to 

quasi two-body reactions [49,50,51). The results have been qualita-

tively successful, but not conclusive. The definitiveness of the com-

parison is limited most severely by the statistics of the available 

data.[49). More events, by a factor of about 5, seem to be necessary 

to significantly improve the accuracy of the comparison. 

The dependence of the double pole amplitude on the two-particle 

sub-energies is complicated by the fact that there is also a dependence 

on 0 , which is shown in Appendix E, to be the same as w , the Toller 

variable [7]. From Eq. (C.20) of the Appenaix, 

cos 0 = (1) 
2! v'tl t21 

where ,!S2 = the component of the momentum of particle "2" that is per­

pendicular to the momentum of particle "a", in the z.m.s. of the direct 

channel process II.(l). And from Eq. (C.18), 
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lim 
S',~. S'~ ~ 00 

s 
(2) 

-t_ I> t. 2. .f 1'.Kecl 

From (1) and (2), one observes that at fixed (large) s , the double poJe 

contribution to the amplitude may have a more involved dependence o n 

s
12

, s
23 

than that given by the form 
e<. (t,) ;. (t.~) 

s
12 

s
23 

. The fits to the 

data in References [ 49-51] are carried out, however, with the assumption 

that there is no dynamical dependence on r/J • The success of these fits 

therefore indicates that the dynamical dependence on r/J i s weak [ 52 ]. 

In the next section it is shown why this may be expected for small t
1 

or small t
2 

. The condition of the smallness of t
1 

or t 2 is ful ­

filled by most of the events analyzed in References [49-51] . 

2. Dependence on the Toller Variable at Zero Momentum Transfer 

Tan and Wang [6] have shown that in the case of the scattering or 

equal mass, spinless particl es, the leading double pole term for the 

2 + 3 amplitude is independent of r/J = w in the limit t + 0 
l 

or 

t + 0 
2 

as s + 00 

12 
and In that paper, it is a lso stated 

that the spin-averaged cross section is independent of w in this limit 

with the average being taken over the helicity of particle "2". Below, 

we prove a generalization of the result of Tan and Wang based on the 

introduction of Toller ' s quantum number M [8]. The contribution of a 

poJ.e term to an arbitrary helici ty amplitude, for external particles 

of any mass, is shown to depend on w only through a phase factor, in 

the limit t. + 0 , where the pole occurs in t he J plane of the two-
1 

particle system with invariant (mass)
2 

= t. (i= 1,2). 'I'his result 
l 

does not depend on the existence of a leading double pole term, but 

holds for each single Lorentz pole contribution to the amplitude 1'or 
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asymptotic values of the sub-energy s12 in the limit t 1 + 0 , or s 23 

when t 2 + 0 • 

The demonstration is based on the result of Appendix D. Let the 

t 1 channel be 

tl 1 + a+ y + 2 

and let the s and sl2 channels be: 

s a + b + 1 + 2 + 3 

sl2 Y + a + 1 + 2 

where Y is the two-particle system (b + 3) with invariant 

2 (mass) = t
2 

. We consider (3) and (4) in the limit s , s
12 

+ oo , 

and t 1 + 0 • As shown in Appendix D, if the 

limit is ta.ken with the s channel scattering restricted to the 

forward cone (more precisely, if as s + 00 

(3) 

(4a) 

( 4b) 

where z = cosine of the angle between 
s 

and in the z.m.s. of 

reaction (4a)) ,then in this limit lztl + 1 where z = cosine of the 
t 

angle between and in the z.m.s. of reaction (3). 

Now suppose that in this limit the amplitude for (4b) is 

dominated by a Lorentz pole in the t
1 

channel. As shown by Le Bellac 

[9], if the Lorentz pole has Toller quantum number M , then in the 

limit t 1 + O, the s12 channel hel icity amplitude vanishes [53] unless 

j),1 A.al = M , where A.1 ,A.a are the helicities of "l" and "a" in the 

s12 channel (4b). According to the Trueman-Wick two-body crossing 

relations [37], the amplitude for the s12 channel process with par­

ticle helicities {A. ,A. ,A.
1

,A.
2

} is equal (up to a phase factor of ±1) 
Y a 

to the continued amplitude of the t
1 

channel with particle helicities 
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A' = A A' = A 
- 1 ' a a 
1 

A' =A , 
y y 

A' = A 
2 2 

since 

all the angles in the crossing relation (Eq. (42) of Reference [~7]) 

vanish in this limit. Thus, the residue of a pole term for (3) vanishes 

unless A_ A = cr(A - A ) = ±M , where 
1 a 2 y 

a = sign (m~ - mi) (m~ - t 2 ) otherwise. 

a = -1 if m 
a 

and 

Any particular t
1 

channel helicity amplitude for (3) has 

(A - A ) = +M or -M, so that 
1 a 

A_ - A
2 

= ±aM in order that the pole 
y 

may give a nonvanishing contribution to that helicity amplitude. 

Referring to Eq. IV.(2), and noticing that M' in the expression 
y 

on the right side for the contribution of a pole, one has the result 

M' 
collapses to a single term: M' = A

2
± crM that the helicity series 

for a Lorentz pole with Toller quantum number M in the limit 

tl + 0 . Thus, the dependence of a pole term in Eq. IV. ( 2) on w 

is simply that of the phase factor icrMw 
, where A__ A = ±M and e 

1 a 

M is the Toller quantum number of the pole. 

It is clear that an analogous result holds in the limit t
2 

+ 0, 

s
23 

+ oo for a Lorentz pole in the J plane of particle pair (3 + b). 

We may also consider the more general case of a sum of poles in the J 

plane of, say, the particle pair (b + 3). Then, the analysis above 

allows us to conclude that each Lorentz pole has a simple phase 

dependence on w in the limit t
2 

+ 0 and s
23 

+ 00 , and if there are 

non-dominating poles with different Toller quantum numbers, the non-

leading behavior has a more complicated w- dependence . In the case in 

which both "3" and "b" have zero spin, M = 0 for any Lorentz pole 

that couples to (b + 3) and then it is only the contribution of cuts 

and background terms in III.(lO) that have a more complicated w-



dependence. The contribution of the sum of pole terms to the amplitude 

is in that case independent of w . 

3. Polarization of the Particle at the Central Vertex at Zero Momentum 

Transfer 

Consider the case of double pole dominance of the reaction 

a + b + 1 + 2 + 3 ( 5) 

in the limit That is, consider the case of 

reaction (5) in which the leading term has a pole in the J plane of 

the (3 + b) system, and also a pole in the J plane of the (l + a) 

system. Then a pseudo-helicity amplitude for the 

channel reaction 

1 + a + b + 2 + 3 (6) 

will receive a non-vanishing contribution in the above limit from the 

leading double pole term only if 

and 

A__-;\= crM 
1 a 1 1 

(7) 

(8) 

where M1 ,M2 are the Toller quantum numbers of the two poles, and 0'
1

, 

o'2 may assume the values ±.l. The first condition, Eq. (7), follows 

from the discussion in Sec. 2, and the second condition, Eq. (8), 

follows from the corresponding discussion for the reaction 

l+a+2 -t- b+3 (9) 

and the crossing relation, Eq. IV.(2~}. 
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The angles B
3

, B
0 

that appear in Eq. II.(11) which relate the 

helicity and the pseudo-helicity amplitudes for (6) are computed in 

Appendix B.2, and in the limit considered here, tend to 0 or n 

according as 

Thus, the leading double pole term contributes to a helicity amp-

li tude F " " , "' ?,&Jib A_i i.t;..tia. 

and 

for (6) if 

+ <:r' M 
2 2 

(10) 

Since all the momenta are collinear in this limit (Appendix D), 

angular momentum conservation states that 

l 
;>.. 

a (ll) 

so that 

(12) 

where a 
4 

= sign(~ - t
2

), Cf 
3 

= -1 if m = m 
1 a 

and d . ( 2 2) = sign m - mJ 3 a -

the special case of both Lorentz poles being single Regge poles, i.e., 

M
1 

= M2 = 0 , this gives the unique value ;..2 = O . 

If the particles "3" and "b" are spinless, one may obtain the 

polarization under a less stringest limit, viz., s 12 

bounded. For then (ll) reads 

-+ 00 
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1 
A. 

a 
(13) 

Equation (11) may be used since the particle momenta in the t
1 

channel 

(6) still tend to 

zs = 1 + 0 (m~/s4 ) 

a collinear limit if, as discussed in Appendix D, 

as s + ~ where z is defined below Eq. (4). 
s 

Furthermore, from Eq. (7) 

= 

which gives the polarization. Equation IV.(12) may be then used to 

(14) 

obtain the relative phase of the A. = +M 
2 1 

and A. = -M 2 1 
amplitudes. 

Application: Comparison with experiment for the reaction 

Consider the reaction 

+ 

in the kinematical region of large 2 s = (p+pf) 
ppf 

and vanishingly 

(15) 

small (Here we use the particle name to denote the 

4-momentum of the particle in a convenient z.m.s. for the reaction.) 

The spin component of the j'-meson in its rest frame along the 

[ 4] A -(+,. +,. l:t/ .. , I direction 5 n - pf -piJ I .1:-'f- pi taken as the z axis is ±. M 

where M is the Toller quantum number of the leading trajectory in the 

angular momentum plane of the (pi + pf) system, and are the 

momenta of the initial and final proton, respectively, in this reference 

system. Since the leading trajectory in p - p elastic scattering is 

the vacuum (Pomeron) trajectory, and this is also the leading trajec-

+ 
tory in ~- - p elastic scattering [55], M = 0 if the Pomeron is a 
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Lorentz pole, since a Lorentz pole that occurs in the J plane of a 

pair of spinless particles necessarily has Toller M = O . 

We test M = 0 for the Pomeron by examining approximately 2000 

events [56] for the following reaction, at the incident n- laboratory 

energy of 25 Gev: 

iT, p -+ 
1 

(16) 

We scan the events subject to the following criterion to obtain 

p-meson events: 

(A) 2 2 Either 0.49 (Gev) < s 
- + 

0.68 (Gev) 
iT l iT 

2 2 or 0.49 (Gev) < s + 
< 0.68 (Gev) -

iT2 1T 

but not both. 

Denoting by iTf the final state negative pion that does not 

form a state with + that is in the band, and denoting the other 1T p 

negative pion as iTP , the following events are excluded: 

(B) 1.42 2 2 (Gev) < s 
- + 

< 1.72 (Gev) 
iTfiT 

2 2 
2.53 (Gev) < s 

- + 
< 2.92 (Gev) 

iTf iT 

which eliminates possible f 0 and iT~ (1650) events. Furthermore, 

events which lie in any of the following kinematical regions are also 

excluded: 
2 2 

1.03 (Gev) < s31T < 1.23 (Gev) 
(C) 

2 2 
1.58 (Gev) < s31T < 1.64 (Gev) 

1.69 (Gev) 2 < s31T < 1.77 (Gev)2 

2.55 (Gev) 2 
< 83;r < 2.91 (Gev) 2 
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and these criteria eliminate possible Al, A2H, A2L and 7TA (1640) 

events. 

To eliminate interference from resonance formation in the TIN 

and 7T'ITN systems, we further exclude events lying in the following 

regions: 

(D) s + - < 7.0 (Gev)2 

7T 7T pP 

s + < 3.0 (Gev)2 

if p 

s or s < 3.0 (Gev) 2 
-if pp iffp 

The first condition in (D) is the high energy condition for the (p+p) 

system. 

The last condition to be imposed is that of the smallness of the 

proton momentum transfer, and the boundedness of the pion momentum 

transfer: 

(E) It I < .067 (Gev) 2 
p 

= 2 1. 5 ( Gev) 

After all these cuts, there are 109 remaining events. 

These cuts eliminate interference from the formation of reson-

ances, but do not eliminate interference from non-resonant (N+37T) 

background. Thus one would expect the sample of events to arise 

primarily from the intermediate states (if; + p+p) and 

(if; + (7T- + 7T+)+ p) (if- + where + 7T ) has an invariant mass in the p p 

region. Now, recent phase shift analyses [57) indicate that 'IT-7T 

scattering in the p band is dominated by s and p waves, with 

negligible contributions from D and higher waves. Using this 

p 
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result, the events consist primarily of intermediate states (7T; +p0 +p) 

( - ( - +) ) (7T- + 7T+) and 7Tf + 7Tp + 7T + p with p in an S wave in the energy 

region of the p • 

These intermediate states may interfere. Let a, B, Y, o be 

the amplitudes respectively for + 
7T p 7T in an S wave, in a P wave with 

J = O, in a P wave with J = +l, and in a P wave with J = -1. The z z z 

distribution as a function of cos Q, where Q = the angle that the 

momentum of the positive pion makes with the z axis is then given by 

where N is a constant of proportionality. There is no interference 

between the J = ±.1 states with either the S wave or the J = 0 P z z 

wave state, because the interference terms sum to zero upon integration 

over the azimuthal angle. 

The 109 events satisfying (A) and (E) and not (B), (C), or (D) 

are plotted as a histogram in the variable cos Q in Fig. 4. The 

asymmetry between the number of events with positive and negative values 

of cos Q is a clear indication that not all the events involve p-meson 

production. 

The theory of this section states that if M = 0, then 

y = o = O, so that a two-parameter fit to the shape of the distribution 

is suggested 

2 2 NA(Q) = N'(l +a cos Q + b cos Q) (18) 

where N' is a normalization constant chosen so that the area under 

the curve is equal to the total number of events. A least squares fit 
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; 

I 

0 

cos 8 

I 

+ momenta iT 

I I 

in the rest 

( iT -+: iT-) system relative to the axis 
_.. ,.... -+ I -+, .... , - P') I p' - p' where pi ,pf are the i f i 

I 

1.0 

frame of 

momenta 

of the initial and final proton in. this reference system. 
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with 

N' = 4.63 

a = -1.57 

b = 3.51 

consistent with the condition ~ 1 + a 2 
' 

necessary for a fit with 

S and P wave interference only, is drawn as Curve A in Fig. 5. Also 

shown in Fig. 5 as a broken curve is NB (Q) = 16.3 sin2G which is 

similarly normalized. If there were J = :!:_ l P wave states, one would 
z 

have the resulting curve N(Q) = a.NB(Q) + (1-a) NA(Q), and it is clear 

from Fig. 5 that the best fit to the data suggests that a is small, 

and is consistent with 0 , thus indicating that M = 0 for the 

dominant part of the vacuum singularity. 

4. Minima ("Dips") in Momentum Transfer Distributions: Examples 

a. Zero Momentum Transfer 

Consider the reaction 

(19) 

where X is a non-strange pseudo-scalar meson (n, n, or n') . Let 

us introduce the variables t 1 , t 2 , s12 , s 23 , s by means of the iden­

tifications: 

N. 
1 

++ a 

7T . ++ b 
1 

Nf ++ 1 

x ++ 2 

3 (20) 
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Fig. 5. The data of Fig. 4 with two curves: (A) A2 = 0 + S wave; 

( B) non-interfering A.2 = ±.1 background. 
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We will now show that in the limit of large and bounded 

t 2 one would expect a dip in the cross section for (19) as t
1 

+ O . 

Since A2 = 0, i t follows from Eq. (13) that A- = A in this limit 
1 a 

for the contribution of a pole in the J plane of the (l + a) 

system to the amplitude for the process (19) to be nonvanishing. Thus 

only the term M' = A = 0 
2 

survives in the helicity series, Eq.IV.(7), 

for the contribution of a pole in the (l + a) system, since 

M = !Al - A.al = 0 , and from the discussion in Sec. 2, M' = A2 +M= 0 . 

where 

From parity invariance, Eq. IV.(12), one has the result 

p 
ex is the natural parity of the pole in the J 

( 21) 

plane of the 

(Nf+ Ni) system. 

Thus, only odd natural parity trajectories in the N N channel 

can contribute at t 1 - tN = 0 . Since the odd natural parity trajec­

tories lie lower in the J plane than the even natural parity ones, 

one would expect a minimum in the cross-section at t = 0 N 
in the 

limit s12 = sXN + ~ , since trajectories with even natural parity 

can contribute away from tN = 0 • 

b. A Charge Exchange Reaction at a Nonsense, Wrong Signature 

Point 

Consider the reaction (19) where the nucleon undergoes a change 

of charge. That is, consider 

7Tf Xn (22) 
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Now the highest lying known trajectories that can occur in the J plane 

of the (p n) system are the p and the A2, which pass through the value 

0 at approximately point -1 -1 the same t = a (0) "' aA2 (0) If x has 
0 p 

G parity + 1, the p can contribute, but A2 cannot, whereas if x 

has G parity - 1, the A2 can contribute, but the p cannot. Consi-

der the case of positive G p a rity, i.e., X = n or n' . 

Then, as t
1 

passes through t 
0 

which is. a nonsense point of 

wrong signature for the p traj ectory, one would expect the p pole 

terms in Eq. III.(10) with M' # A. 
2 

to give no contribution of the 

form 
a 

z , in the absence of Mandelstam-Wang fixed singularities [34]. 

Even in the presence of these singularities, because of the approximate 

degeneracy of the couplings of the p and A2 trajectories to the 

N - N system [ 58 ] , one would expect, following Finkelstein [ 58] , that the 

terms in Eq. III.(10) of IV.(7) with M' # t..
2 

will give a neglig ible 

contribution. Since t..
2 

= O, M' = 0 also, and the only possible non-

vanishing coupling of the p trajectory occurs through 

Eq . (21), howeve r, implies that 80(0,0)0 = 0 for the 

p trajectory, since it has eve n natural parity. Thus , the contribution 

of the p trajectory is expected to vanish at t = t , r e sul ting in a 
1 0 

minimum for the cross section for ( 22 ), wi th X = n or n' . Th e re a r e 

n o data as yet to confirm or contra dict thi s prediction o f a mi nimum i n 

the differential cross-section. 
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APPENDIX A. Some Properties of the Rotation Functions 

The results of this section of this appendix are not new, but 

are included here for ease of reference. The same comment applies to 

most of the results in Appendices B.l and C. 

1 . The rotation functions of the first kind 

d~µ(g) are defined in terms of the Jacobi polynomials [59] by 

means of the following formula [60) (J - A, J - µ, and 2J are 

integers), for A~ lµI 

(A. l) 

where N(J,A) = {f(J - A+ 1) f(J +A+ 1)}1 / 2 (A. 2) 

The other cases are given by the symmetry conditions [60]: 

(A. 3) 

These formulas may be combined to yield 

where sign(A,µ) = 
{ 

-+I ' 
(-1)').-,.... othe r wi se 

cc-M)-1>.-,...1 
= (-0 2. 

Also, 
( A. 5 ) 
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This leads to the following orthogonality relation for the 

J dA.µ ( z) when J - A., 2J, J - µ are all integers: 

(A.6) 

Equation (A.4) may be continued to complex J and complex 

z = cos 9 by using the representation of the Jacobi polynomial in 

terms of the hypergeometric function (61] 

Considered as a function of J and z , the 

written 

= s'-j..., o.,f4-) N < ~ ;.,....,.) 
Nl:r,}Mlll) 

r {~-).,.,.,.+ ll-141 ... 1) 
T" (j-~""'"') r {1 +1.l -f"I) 

(A. 7) 

may then be 

(A. 8) 

J 
Thus, dA.µ(z) has a branch cut extending from -oo to -1 , due 

to that in the hypergeometric function, as well as a possible branch 

cut from -oo to -1 due to the factor 
I~\ 

(•..:..!) z. and a branch cut 
2. 

from +l to +00 due to the factor ( ':~)T->.,..,_+l>.~~I As a func-

tion of is seen to have square root branch points at 

"sense-nonsense" values of J • 

of the /J - J type . 
0 

These branch points at J = J 
0 

From (A.8), one can determine the asymptotic behavior of 

are 

for large lzl • The use of Eq. I.2.8(26) of Reference [26] results in 
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F ( -J' ... ,\ -:T +A -1.A+ul, 1-f. I A -!'L , !::J ) 
r ,.,,-.,, ' """" ,-- a+• 

r {1+ ll-,-..1) r{2:r-t1) a.S' 1-ll ~ oa 

rt1+'J"-+ 1>.-f"'I -).MAJ<) rt:r ... r +).'""""/ 

Defining the principal sheet of so that -7T ~ arg z :6 7T , 

1 - z = e-in7T(z-l), where n =sign (Im z) . Then 

Now sign 

so that 

~s 1~1- 00 

~ e-'tt~t...t-14)rt2:r-H) (~fr 
N(=1,l-.a) N l~..\,..i,,) 

(A.9) 

a result which agrees with that obtained by Kibble [2] and which dis-

agrees with that obtained by Omnes and Alessandrini [62]. 

2. The rotation functions of the second kind 

These are defined in Eq. (3.1) of Reference [27] by the 

relation: 

'J" ( -hl..11' {:r-J.) I -S J :T (- ~)} e ( 'l) = 1!..- 1. e °"-'1...l i!) - o. >., .,... 
AfA- .l Sl .,11(3"·.\' (A . 10) 

They are related to Jacobi functions of the second kind by Eq. (A.9) 

of Reference [32 ] : 

(A.11) 
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There are also the following useful relations (27] with functions 

of the first kind: 

(A.12) 

and for -1 < z < +l 

e~µ(z-iO) = -i'll"d~µ(z) (A. 13) 

3. Asymptotic behavior 

For large Iµ I [ 63] 

'.>.-Ys. ! ~f'-X \~r,...t~)I !:!:: co"s-t . • lr-l ::! 1 2-

\o..r3- <1-t~)\ c:..11"-E:. , \Ref-ll - oe (A.14) 

and 

(A.15) 

For large lzl (27] 

(A . 16) 

J 
dAµ(z) for large (z) is given by Eq. (A. 9) . 

For large !JI [ 27 ] 

(/\.17) 

where the last term is cut along the negative z ax:is only n.nd taken 

positive for z > 0 . 
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dfµ(z) for large jJj is given by (12) and (17) [64]: 

d.~ll) ·~ {Z.)~ .. I ~p(-wlimJ"l-t-ll.T+\l'&.Yt\) 'f:::-locdt+(~"-1>-...~) 
!r. hJ'/ -.cJO - ---;,, I ; 

r•l'\'IT{:T-)1) O<!o.r,:f(<.11' TT' fa-s.-1) + ./'i {A.18) 

APPENDIX B. GENERAL KINEMATICS AND DERIVATIONS OMITTED IN THE TEXT 

1. Choice ·of variables for the 2 + 3 process 

As in the text, we designate the direct channel as 

a + b + 1 + 2 + 3 (B.l) 

and the crossed channel as 

l + a + b + 2 + 3 (B.2) 

Then the two sets of variables used in the text are 

defined in Eq. II.(3) and the variables 

(B) 

defined in Chapter II in relation to reaction (B.2). 

+ + 
z is the cosine of the angle between ~ and p2 in the z.m.s. 

for (B.2). 

where 

So that, evaluating 

z = s,iL - M~-,,j~ + 2.E"i E:z. 

z.. PT r~ 

A'/, ( "1.. 2. Pa -::. Ll:. -t.,., IV!, ,M6) 
.2. v:t, 

= 6li-(t.,m~,t.2.') 
2. 'ff', 

2 
(~ - p2 ) , one obtains 

(B. 3) 

(B.4) 
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In order to continue z to the physical region of (B.l) from the 

physical region of (B.2), we must use a definite continuation of 

1/2 2 2 1/2 r,--
6 (t

1
,m

1
,ma), 6 (t

1
,t

2
,m

2
) and vt

1 
. Now 

for y ,z > 0 (B. 5) 

The form (B.5) indicates that as a function of x for positive 

1/2 2 y and z , 6 (x,y,z) has two branch points at x = (./i ± /Z) . 

1/2 We define 6 (x,y,z) to be positive for x > (./i + /Z) , and draw 

the branch cuts along the real x axis from (./Y + /Z) 2 to +oo 

and from -00 Then for x real and < (./i - /Z) 2 

1/2 6 (x,y,z) is real and negative. 

Now we impose the following symmetry properties for the con-

tinuation: 

1/2 1/2 
~ (x,y,z) = ~ (-x,-y,-z) (B.6) 

1/2 
~ (x,y,z) = 6112(Px,Py,Pz) (B.7) 

where (Px,Py,Pz) is any permutation of (x,y,z) when two of the 

variables are real and positive and the third is complex. Consider 

the case in which y and z are both negative. Then (B.6) provides 

the continuation of the function to complex x In fact, (B.6) and 

(B.7) give the continuation of the function to arbitrary real values 

of (x,y,z) and these comprise the cases of interest. To complete 

the definition of the continuation of the momenta, we define 

be positive for t. > O, Im t . > 0 
1. 1. 

and to possess a branch cut ex-

tending from O to oo 
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N ow we proceed to the definition and continuation of z' and 

cos ¢ . z I is the negative of the cosine of the angle 
+ 

between P3 and 

+ in the z.m.s. P2· of (3 + b) for the reaction (B.2). This is the same 

the cosine of the + + 
(3 +b) as angle between -p

3 
and p2 in the z.m.s. of 

in the crossed reaction: 

3 + b + 1 + a + 2 (B.8) 

+ 
for the momentum P- in the z.m.s. of (B.8) is in the same direction as 

2 

p2 in (B.2) in the z .m. s. of (3 + b). This may most easily be seen by 

crossing particle "2" in its rest frame to relate the reactions (B. 2) 

2 and (B .8). We obtain z" by evaluating s = (p -23 ~ 
p

3
) for this re-

action in its z.m.s. Then, 

z" :::. -
(B.9) 

where 

/ ,.1 '1.& { t,.. t,. m~> £{ t .... m:- ~ Px = z:: 

2 rt;: zvt; 

"3' fl'/,..( "L. 'L) £, t a ~ 

= t J.. "'!,IV),. = ,.. "'m, -m. 
.t Vt; 2. Vt"" 

(B.10) .a. 

To obtain cos ¢ we note that ( '1T - Q' '1T + ¢) are the polar 

angles of p_ in the z.m.s. of (l + a) for reaction (B.2) with the 
1 

coordinate system defined in Chapter II of the text (i.e., positive z 

axis along 
+ + 

-p2 , and p
3 

in the x-z plane with positive x component ) . 

Setting z~ = ~· PE in this coordinate system, one has 

t (ti P)~ _.a ~ 1,...,.. +2R...f)r /r-.,_.,. .. r,:,_.:a•.&,,._s.J. +i!""~) /#.: ,,.-/j •m1+>tl1t - c:T7 ITfl.\Yl-l' "'"< __.,... ..-.. 

This equation determines cos ¢ in terms of the variables (A) for 
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and 

z is given by (B.3) a.nd (B.4) so that 

a.nd 

or 

~ = 2.t,(s,1 -M;-m!> + lt,+m~-M!,)(t, .. ~-tJ.) 

6:ir...£1: 1>t,:.,tti!) .£lY•('t,,M-:-,n'i!,) 

-= -tz.b +m:-+m;;.+2.Ea.t;• 

Z fla.P"b 

~~ = 2t, (--t,-,.,;-+t.z.+so') + <-t; .. ~-Sa~ {t,+m!"-ta) 

!l.'la.(t.,,t.J.,,.,~) Llv~rt.,,ni~, s.o) 

and the equation for cos ¢ is 

where K = v-i~ Vl - z 12 cos ¢ + zz' c c 

B.2 Com12utation of the Cosines of the Angles 

Eq. II. (ll) 

that 

63 
-+ -+ 

(p2 + 11;-) = the angle between the vectors 

the rest system of Particle 3 . 

(B.11) 

(B.12) 

(B.13) 

A1212ear in 

-+ 
and 

~ 
in 
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Ta.ke p_ in the z direction. Then in the z.m.s. of (3 + b), 
b 

= -z' 
I\ A = -p • P-

2 b 
so that the z component of in this 

coordinate system 

and 

P2 ( z-component) = p2z' , where p' = momentum of "2" in the 
2 

p..!_( z-component) = p..!_ = 
b b 

z.m.s. of (3 + b) 

dYL{t~.m£,m~) 
z~ 

, denoting particle 
momenta in this system 
by primes 

The rest frame of particle 3 is obtained from the z.m.s. of 3 + b 

by a velocity transformation along the z axis. Then, denoting the 

momenta in this coordinate system by the superscript "o", one has 

p~(z-component) = y ( p I z I + VE I ) 
2 2 

where 

and 
I L ..._ 

v ( ... )- ,.,., t._+ m. -m., 
0 "' 1-'I/ = - !!!! 

2.M&~ 

-+ 
Taking p2 in the x-z plane with positive x-component 

and 

Then 

y(p_ + vE ) 
b o 

(B.14) 

(B.15) 

(B.16) 



To compute p~(z) 

(B.10) 

p/ 

also 

-::: 6'1•{t,,tz,1'>1~) 
.z Vt.i. 
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p' 
2 

is the same as 

Thus "' tl.+m,1-1>1~ (a' .a'~{t.,-t..,m~) + £lY•ltJ.1rn),~ )(-t,-rn~-'t.a) ) 
.21>13 ~ ;). ..rt>- (t.a. +m;- n1\;) 2. lffz 

in 

(B.17) 

(B.18) 

'&. ~ : t1+M1-M~ 
-+ma fi:.a. 

(
i' ti'~(t,;t ... ,m~) -t a'.la.(t,,,wi:,m~)(t,-w\-t).') ) 

Cf.a..+ Mj-rn;) 

and 

Now 

AV..,(t ...,. 'I.) u ~,1111,, I)). 

; ~ '/ ... {-t.z ,m;-' tr!:) 

2. rn3 

E0 = Y(E' + v p'z') 2 2 2 

so that, using Eqs. (B.9) and (B.10) for z' this last equation 

(B.19) 

becomes 
E. ~ -=- tz.-+ m:-Mt [ t, -rrr-:--tz. -+ 2. t:L (s23 -m~ - m~) - tt, - ti.-rn~ ~ 

~m3t2 -{,_+Y!1~-"1~ 

: (Sz.~ - rn~-W>~) /2 MJ 
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thus, 

~sf3!> = 

A'1a{t ... ,,.,~,M~) + (+1+m£-rtii;)(~1-r"7~-rnjJ + il-t-2..+~-t,) m;-
6'1• (t,., rr1j ,M~) a'l' ... (t,.,~, ~~) 

In the limit as s
23 

+ oo for fixed t 1 ,t2 # 0 , 

Similarly, one may compute cos e_ with the result that 
b 

(B.20) 

(B.21) 

cos 

is given by an expression of a form similar to (B.20) arising from 

the replacements z' + -z' Since for 

tl,t2 fixed, as s23 + 00 ' t2b ~ -s23' in this limit cos eo is given 

by (B.21) with the exchange of the labels "3" and "b", and an overall 

minus sign. 

B.3 A Lemma Concerning the Lehmann Ellipse 

Consider the series of Jacobi polynomials: 

F(z) = l (B.22) 

n=O 

and the associated power series 



G( z) 
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00 

= l 
n=O 

n 
a z 

n (B.23) 

We will show in this appendix that the power series (B.23) con-

verges for lzl < R, R > 1 if and only if the series (B.22) of Jacobi 

polynomials converges within the ellipse 

lz + ll + lz - ll = (R + ~) (B.24) 

First, suppose that (B.23) converges for lzl < R, R > 1 • Then 

from the ratio test 

lim 
n + oo 

la:+ll 
n 

< 1 
R 

(B.25) 

Then, applying the ratio test to the series of Jacobi polynomials, one 

observes that the series is convergent if 

(B.26) 

For R > 1, the closed curve 

(B.27) 

is the ellipse (B.24), and points that satisfy (B.26) are all interior 

to the ellipse . 

That (B.27) and (B.24) represent the same ellipse may be seen as 

follows: (B.27) is equivalent to 

1 
R 

(B.28) 
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Adding the two equations, squaring both sides, and simplifying, one 

obtains 

(B . 29) 

and this is the same equation that one obtains from squaring both 

sides of (B.24). 

Conversely, suppose the series (B.22) converges within the 

ellipse (B.27), where R > 1 . Then from the ratio test, it follows 

that (B.25) is valid, which in turn implies that the power series 

(B.23) converges for lzl < R . 

B. 4 Derivation of the Inequality Eq. II . ( 28) 

We start from Eq. II.(27) 

and insert the values II.(19) for E2 , ET, p2 , pl to obtain 

x < 0 

or 

Squaring both sides 
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< t4 - 2t3(t 2 + 2 + 2)+ t2(t + 2 + 2 + 2)2 1 1 2+ ml ma m2 1 2 ml ma m2 

The terms in cancel, as does the constant term. This leaves 

Dividing by t
1

(>0) and simplif'ying, 

< 2[2m2 t2 +t (-2m2(m2 +m2)+ 2m 4_ 2ml2 ma2)+ 2m24 ml2 
a2 2 21 a a 

This simpliries rurther into 

< 

which leads directly to 
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which is the desired result. 

APPENDIX C. Asymptotic Kinematics with Two Fixed Momentum Transfers 

Using the method of Popova and Ter-Martirosyan [ 3 ], we decom-

pose the z.m.s. momenta of the 5 particles in the direct channel 

reaction (B.l) according to their components parallel and perpendicular 

to the momentum of particle "a". We denote the :parallel (longitudinal) 

components by 

1/2 2 2 r-= k = ~ (s,ma,~)/2 vs 

and 

We denote the transverse components by ~l' is2 , .!$"3 where 

~l + ~2 + ~3 = 0 (C.l) 

We consider the limit s + oo for fixed t
1 

(C.2) 

where 

(C.3) 

Then, in order that t 1 remain bounded as s + oo, we must have both 

p 1/k and k/p1 bounded in this limit. Also, p1 - k1 = 0(1/k), so 

t h at 



Thu s 

and 

also, 
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2 
!Si 
~-= O(l/k) which implies that 
2kl 

k ' k 
1 

are b ounded as s + oo 

2 
!51 is bounded. (C. 4) 

(C . 6) 

Similarly , if lt2 I is b ounded, 

k 
k 

2 

k3 
and --1 are bounded, and t + -K as s + 00 

k 2 - 2 
(c . 7) 

In order that t
1
,t

2 
be bounde d , it i s necessary that 

(C . 8) 

+ + 
according to whether p

2 
• pa is positive or negative . Now , 

2 2 
+ 2(mi + k2 2)1/2 ( 2 + k2 + 2)1/2 

+2k1 k2- 2E1 ".!52 8
12 = ml + m2 + !Si 1 m2 2 52 

2 + 2 + - k l 2 2 k2 2 2 
"' ml 2k1 k2 ( l + l) + k4 m2 + . is2 ) + k(ml + K )- 2251 • ..!52 m2 

2 l 
-1 

(c .9) 
and 

= m2 +m2 + 2 ( 2+k2+ 2)1/2 ( 2+k2 + 2)1/2 + 2k k 2 2 3 m3 3 E3 m2 2 ~2 - 2 3- ~2 • ~3 

(C.10) 
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From (c.9) and (C.10), 

+ 0 as k + oo , if both s
12 

and s
23 

+ 00 also. 

(C.11) 

(C.12) 

(C.13) 

so that 

~ 4k1k 3 (m; + ~;)+ (mi+ ~i)[(m; + k; + ~;) 1/2 ± k2 ] 

2 2 2 1/2 2 2 2 2 2 1/2- 2 2 2 1/2 
x (m2+k2+~2) +(m3+~3)[(m2+k2+!2) +k2][m2+k2+~2] (C.14) 

Now 

(C.15) 

so that 
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2 2 2 2 

( 8 12- ml - m2 + 2~1 • ~2)( 823- m2 - m3 + 2~2 • E3) 

= ( 8 13-
2m2 - 2m2 ~i - !S~ + 2~1 • !S3 )(m~ + ~~) 1 3 

2 K2)( 2 + k2 + K2)1/2 2 k2 + K2)1/2 ± k ) + (ml + -1 m2 2 -2 [ (m2 + 2 -2 2 

+ ( 2 + !S~) (m; + k2 + K2)1/2 2 k2 + ~;)1/2 + k2]+ 
k 

[ (m2 + o(--R) (c.16) m3 2 -2 2 k 

Inserting 

(C.17) 

then dividing by s , and taking the limit, one obtains Ter-Martirosyan's 

theorem [ 3] for the case of a three-particle final state: 

s as (C.18) 

C.2 Evaluation of cos ¢ in the asymptotic region 

We use (B.13) in the asymptotic region. Now, from (B.3) and (B.4) 

one has, for t
1 

# 0 , 

and so 

+ +co, < for t
1 

> 0 . 

Here we define Ji - z2 with branch cuts extending from ±1 

to ±co respectively, and positive for z real and -1 < z < 1 . 
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z' , defined in Eq. (B.12), is bounded in the limit s ~ 00 

c 
Then, 

dividing both sides of (B.13) by s , and taking the limit as s ~ oo , 

one obtains 

Now 

Ji 

So that 

or, 

t 1 + t 2 - m; 
z' ~ 

1/2 2 c t:. ( tl, t2 ,m2) 

l14tl t2 I +i 
z'2 = I 1/2 2 I c 

!:. (tl,t2,m2) 

(C.19) becomes 

2 
t:.(_tl, t2 ,m2) = 

2 2 
m2 +~2 

±1 
cos ¢ = ~~~~ 

211t1t 2 I 

> +l from (B.12) 

-2il ltl t2 I 
= 1/2 2 

t:. (tl,t2,m2) 

+ z'} c (C.19) 

according as (C.20) 

Consider (C.20) in the limit 

2 
!5"2 = 

2 
(-K - K ) 

-1 -3 

Now 

= -t - t + 2.r.:t. /:t"" cos ~13 1 2 1 2 

(C.21) 

where ~13 = angle between ~l and ~3 , the transverse parts of the 
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momenta of particles "l" and "3"; so that (C.20) becomes 

In the limit as t + 0-, both sides vanish (cos 0 remains physical). 
1 

Then, equating coefficients of 1(-t1 ) leads to 

so that cos 0 =-cos 1';13 

i.e., 0 = 'IT - 1';13 (C.23) 

Since in the limit 1';
13 

may assume arbitrary values between 

0 and TI, 0 is similarly unconstrained in this limit. 

APPENDIX D. The Asymptotic Kinematics at Zero Momentum Transfer 

We show that in the limit s, s
12 

+ 00 , t 1 + O, t
2 

fixed, the 

momenta of all particles in the crossed channel (B.2) are collinear. We 

show this when the limit is taken with the direct channel scattering 

angle restricted to a cone (the "forward cone") about the forward direc-

tion, the size of the cone depending on s • The angle in question is 

that between 
+ 

and p , the momenta of particles "l" and "a" in the 
a 

z.m.s. of the direct channel process (B.l). 

This is based on a corresponding result for 2 + 2 processes, 

which we describe first. 
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Consider the process 

s : a + b + 1 + 2 (D. l) 

and the process in the crossed channel 

t : 1 + a + b + 2 (D.2) 

Now 

2 2 + 2 1 2 2 2 2 t = (pl- pa) = m (s + ma - ~) (s + ml - m2) ml a 2s 

/j,1/2( 2 2) 1/2 2 2 

+ 
s ,ma,~ D. (s ,m1 ,m2 ) 

(D. 3) z 
2s s 

( )2 ~ ~ 
where s = pa. + pb and zs = p1 •Pa = cosine of the s-channel scat-

tering angle. 

Now as s + oo, !ti + oo also, unless z + +l . 
s 

We are interested in the limit t + 0 • So let I z - l I < I e::( s) I 
6 

Uniformly in t , where E(s) + 0 as s + oo for arbitrary t • 

Expanding (D.3) in powers of l/s 

t - ! 
( 'l. '\. { ' ,_) _ ni..-m~) ni, -m,_ 

2. 

(D. 4) 

Let ds) 

Then 
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..+ m-:-m!" (N\!+m;) 
SL 

Clearly, in order that t + O, = 0 . Then 

t ~ 

(D. 5) 

Now in the case in which ml = ma, m2 ;t II\, , take £2 = £3 = 0 

(£ , n ~ 4 are 
n 

still arbitrary) , then 

t 
2 2 ( 2 2)2 (D. 6) s + -ml m2 - II\, 

In the case ml ;t m 
a' m2 ;t II\,, take £2 = 0 (then £ n' 

for n ~ 3 are 

still arbitrary), and then 

(D. 7) 

Now consider the scattering in the t channel. Let 

z.m.s. of (i +a) in reaction (D.2). Then 

s 

(D.8) 
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/t- 4ml
2 

+ --- t:.l/2(t 2 2) 
2 It ·~·m2 z -t (D. 9) 

So that multiplying (D.9) by /=t, and 

taking the limit s + oo , t + O with 8 4 
zs = 1 + O(m

1
/s ), one obtains 

the result 

m lm
2 

- m.
2

1 +- m jm
2 

- m.
2

jz , and so z -+ -l 
l2 o l2 ot t (D.lO) 

For the case of unequal mass 

and taking the limit s -+ 00 

' 

ml #ma, ~ # ·m
2

, multiplying (D.8) by t 

t + O, z
6 

= l + O(m~/s3 ), the last condi-

tion allowing the use of (D.7), one obtains the result: 

2 
(D.ll) 

so that l + zt -+ 2 . We note that these results remain valid even 

if 2 
m2 -+ 00 

2 provided that m
2

/s -+ 0 . 
Turning now to the five-body case , let the s channel be 

a+b-+ l+x 

where x is the particle pair (2 + 3) with invariant (mass) 2 = 
2 

s
23

(s
23 

> ~). Let the t channel be 

1 + a + b + x = b + 2 + 3 

( D.l2) 

(D.l3) 

Let us consider the physical s channel limit tl -+ 0 , t
2 

l1ound.c<i, D, s
12

-+ m . '.l'hen s
23

/s-+ 0, and we can apply the r erJult Just 
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derived, viz., that are all parallel or antiparallel 

in the t channel z.m.s. Also, 

where 
A /'-. 

y = p • p 
b 3 

1/2 2 1/2 2 
~ (tl,~'s23) ~ (tl,m3,t2b) Y 

2tl 

in the z.m.s. of the t channel. 

(D.14) 

In order that t
2 

remain bounded in the limit being considered, 

y + -1 . And 

(D.15) 

where 

and , since 

u + ±_ l , according as 

Thus we have proved the following kinematical lemma: 

For the reaction a + b + 1 + 2 + 3, in the limit as 

s = + 00 
2 2 

' sl2 = (pl+ p 2 ) + °"• tl = ( pl- pa) + O, and 

8 4 2 
O(m1 /s ), and t

2 
= (p

3 
- pb) bounded, all particle 

momenta in the crossed channel 

1 + a + b + 2 + 3 

tend to a collinear limit. 
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APPENDIX E. The Equivalence of ¢ and w 

This appendix demonstrates that the angle ¢ appearing in the 

partial wave decomposition II.(10) is the same as the Toller angle w 

. introduced by Bali, Chew, and Pignotti [7]. As defined in Chapter II, 

is the azimuthal angle of 
-+ 
P­

l 
in the z.m.s. of the reaction II.(2) 

-+ 
with the positive z axis ta.ken along p_ taken in the x-z 

b 

'plane, with negative x component. Thus ¢ is the angle between the 

planes containing and 
-+ -+ 

(pb, p
2

) respectively in the z.m.s. 

for II. (2). 

¢ is the angle between the plane containing and 

-+ -+ -+ 
the plane containing (p2 , p

3
, p0 ) in the z.m.s. of II.(2), and it is 

-+ 
invariant under a Lorentz transformation along the direction of p2 . 

Thus, ¢ is the angle between the plane containing the momenta of 

particles "3" and "b" and the plane containing the momenta of particles 

"l" and "a" in the rest frame of particle 112". ¢ is also then the 

.· 
angle betwE7en the plane containing the momenta of "l" and "a" and the 

plane containing the momenta of "3" and "b" in the rest frame of 

particle "2" in the direct channel scattering II.(l) obtained from the 

channel II.(2) by the crossing particles 1 and b • Thus ¢ is 

the variable w introduced in Ref. [7]. 
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APPENDIX F. The Convergence of the Helicity Series for the Unsignatured 

Amplitudes. 

In this appendix we show that there exists a domain of convcr-

~cnce in z for the helicity series that represents the contribution oI' 

a pole i n J to an unsignatured amplitude. The series in question is 

the second term on the right side of Eq. III.10.b for a particular pole 

s = l 
M' 

Cl 
<J.M'-\ -p(-z) 

2' 
(F.l) 

As shown in Appendix E, the angle ¢ is physical in the physical region 
i(\

2
- M' )¢ 

for the direct channel, so that le I = 1, independent of M'. 

Now we apply the Cauchy root test [65) to demonstrate the existence of a 

domain of convergence. Noticing that for M' -+ 00 

I sin n(a - M' + A\J I l/M' -+ 1, Cl - M'+\
2 

=f:. integer 

and from Eq. (A.14) 

l a~ , (-z)Jl/M' -+ 
~ -\2,-p 1

1 + zll/2 
1 - z (F.2) 

A bound is then required for I'- (t t s )ll/M' 'where YM ' 
M' 1' 2' 23 

is the residue of CM,(J,s
23

,t
1
,t

2
), defined in Eq. II.(51), at the 

I 1
1/M' p ole J = a(t

1
). Thus we are led to consider the behavior of CM' 

as M' -+ 00 Let us suppose that the pole occurs in a contour integral 

around one branch line on the right side of Fig. 2 . Then, from II.(51) 

00 

(F'. 3 ) 
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For fixed J , we assume the integral is uniformly convergent with res-

pect to M. That is, a finite point exists on the contour z = N(J,E) 

such that 

I f dz e~-A2 ,p(z) FM(z)I< E for all M (F.4) 

c 

where E is an arbitrary positive number, and C is the contour from 

N(J ,E) to 00 

To insure the consistency of this assumption with the existence of 

a pole at J = a(t
1

), we must have N(J)-+ 00 as J-+ a(t
1

). Then 

N 

lcMI ~ I J dz e~-A2 ,p(z) FM(z)I + E 

zo 

where E is arbitrarily small, and independent of M . Then, as 

M -+ oo 

00 

If I f dz e~-A2 ,p(z) FM(z)I -+ O as M-+ oo 

then 

If 

then 

zo 

I I dz e~-A2,P(z) fM(z)I 

zo 

lim 
M -+ oo 

lim I NJ 
M -+ oo 

zo 

is bounded below as M -+ oo 

(F. 5) 

(F.6) 

(F. 7) 

Now, applying the Schwarz inequality [66] to the right side of (F.7), 



lim 
M -+ oo 

le ll/M = 
M 

lim (NJ 
M -+ oo 

z 
0 
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Then, using Eq. (A.15), one obtains 

.lim (NJ 
M -+ oo 

z 
0 

where z
1 

is some point on the contour from z
0 

to N • 

(F .9) 

Since FM is a Fourier coefficient (see Eq. II.(13.c)), from the 

Riemann-Lebesgue lemma [67'] FM( z) +O as M -+ oo so that 

N 
2 ) l/M 

J (F.10) lim ( dz IFM( z) I -+ 0 or 1 
M -+ oo 

z 
0 

Thus in the neighborhood of J = a(t), except for the point 

\ 
I y 

J=a(t), \;,.,,. lc"'(:r)"P\~l'+l-,\:::K. Since cM(J) ~ M 
Ill\ ~·oo 1-i!, J - a( t 1 ) 

near J = a(t1 ), Ml!m
00

IYMll/M = K i.e., IYMll/M is bounded as 

M + oo • 

Applying the Cauchy root test [65] to the series (F.l) results in 

absolute convergence for 

I~
+ 1/2 

K z · < 1 
1 - z 

or 

If z is real and < -1, this means 

-z - 1 < 
1 

(1 - z) K2 or 1 < -z < 
1 + L 

J<2 
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is the domain of convergence. 

The same analysis mtzy be applied to the series as M ~ - 00 to 

yield another domain of convergence that overlaps this one, and the 

analysis may also be applied to a pole arising from a contour around 

a branch line on the left side of Fig. 2 . 
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