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ABSTRACT

Interest in the possible applications of a priori inequalitics in
lincar elasticity theory motivated the present investigation. Korn's
incquality under various side conditions is considerced, with emphasis
on the Korn's constant. In the "second casc'" of Korn's inequality, a
variational approach leads to an eigenvalue problem; it is shown that,
for simply-connected two-dimensional regions, the problem of deter-
- mining the spectrum of this eigenvalue problem is equivalent to find-
ing the values of Poisson's ratio for which the displacement boundary-
value problem of linear homogeneous isotropic elastostatics has a non-
unique solution.

Previous work on the uniqueness and non-uniqueness issue for
the latter problem is examined and the rcsults applied to the spectrum
of the Korn eigenvalue problem. In this way, further information on
the Korn constant for general regions is obtained.

A generalization of the '"main case' of Korn's inequality is in-
troduced and the associated eigenvalue problem is again related to the
displacement boundary-value problem of linear elastostatics in two

dimensions.



I1I.

11T,

Iv.

e

TABLE OF CONTENTS
Acknowledgments
Abstract
Table of Contents
INTRODUCTION
1. Description of Korn Inequalities
2. History

AN EIGENVALUE PROBLEM ASSOCIATED WITH
KORN'S INEQUALITY

3. The Eigenvalue Problem in the Second Case
4. Some Properties of the Korn Eigenvalue Problem

TRANSFORMATION OF THE KORN EIGENVALUE
PROBLEM IN TWO DIMENSIONS

5. Transformation Theorems
6. Discussion of Theorems 5.1 and 5.2

SOME RESULTS ON THE DISPLACEMENT
BOUNDARY-VALUE PROBLEM OF PLANE STRAIN

7. Differential Equation Formulation

8. Complex Variable and Integral Equation
Formulation ‘

APPLICATION OF THE RESULTS OF CHAPTER IV
TO THE KORN EIGENVALUE PROBLEM

9. The K-Spectrum

10. Upper Bounds on the Eigenvalues K

e

iv

12

12

15

26

26

30

33

33

37

47

47

58



-V=

Part Title Papge
VI. THE EXTENDED MAIN CASE OF KORN'S

INEQUALITY 67

11. Derivation of Eigenvalue Problem 67

12. Some Properties of the Eigenvalue Problem in

Two Dimensions 71
13. Transformation Theorems 76
14. Discussion of the Results of §13 88

References 91



Pl
I. INTRODUCTION

1. Description of Korn Inequalities

We begin this work by describing what is meant by a Korn in-~
equality. Let u(x) be a vector field defined and twice continuously
differentiable on the closure R+B of an open, bounded, connected
region R with boundary B, in two or three dimensions. We intro-
duce the functionals

D(u) u, .u. dV 1.1

:
S) = [ 1w, Ju, stug AV (1.2)

R
where here and throughout this work, Cartesian tensor notation is
used, Latin subscripts range from one to n, where n is the number
of dimensions, and summation over repeated subscripts is implied.
Subscripts preceded by a comma indicate differentiation with respect
to the corresponding Cartesian coordinate.

A Korn inequality states the existence of a number Kl >0,
depending only on the shape of the region R, such that

Du) s K S , (1.3)

for all vector fields u satisfying certain side conditions. Since we
get equality in (1. 3) for any K1 if u is a constant vector, we will
agree henceforth to identify vector fields differing only by a constant.

The necessity for imposing some side conditions on u in

order for (1.3) to hold can be seen from the fact that if u is a pure



i o
rotation, that is, u, = cijk xj wk, where w is a constant vector and

€. is the alternating tensor, then
1j

S(u) = 0 , D(E)>0‘
Let

R(u) =

[to, cu (e, —u v . (1.4)
R s ) Js 2 ] J: E

|

Then
D(u) = S(u) + R(u) , (1.5)
and we see that Kl is not less than one and that the inequality (1. 3)

is equivalent to either of the following two inequalities:

R(a) < (1 ~I—(1:)D(_g) ; (1.6)
R(u) = (K, - 1)S(u) . {1, 7]

K. O. Friedrichs |1] gave a comprehensive formulation and
proof of Korn's inequality in the form (1.7), under three different side

conditions on u, namely

First Case: u = 0 on boundary B of R , (1. 8)
Second Case: Jﬁ(ui .-u, i)dV = 0 , . (1. 9)
R t] 2
fta, cu. )dv = 0, (1.10)
R I b1

Main Case:

+

a, .. +tu. .. = 0 in R . (1.11)
1, 1) J, )1

(We note that the conditions (1.8), (1.9) eliminate the possibility of

pure rotations.)
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Friedrichs in [17 refers to papers by A, Korn |2, 3| in which
the inequality (1. 7) under conditions (1.8), (1.9) was treated. The
class of admissible regions R is specified by Friedrichs [1]: we
merely note here that this class includes bounded regions with cor-
ners or edges. Friedrichs shows that to prove Korn's inequality in
the second case, it is sufficient to prove the inequality in the main
case.

We introduce another case of Korn's inequality, which we call

the Extended Main Case.

There exists a Kl(o) > 0 such that
D(u) < Kl(o)S(g) ' (1.12)

for all u satisfying

ftu, .-u, Jav = 0, (L. 1)
R PR A
u + . u = 0 in R (1.14)
1,35 l=20 5Lt : :
where 0 is a real parameter such that -1 <0 <% . When o = 0, this

reduces to the main case. If the vector field u is regarded as an in-
finitesimal displacement field in an homogeneous, isotropic elastic
medium occupying R, then (1. 14) are the displacement equations of
equilibrium in the case of zero body force, where ¢ is taken to be
Poisson's ratio.

Henceforth, we take R to be an open bounded connected re-

gion, admissible in the sense of Friedrichs [1]. As shown by
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Friedrichs [17], Korn's inequality in the first case is particularly
simple, and we have
D(u) s 25(u) , (1.15)
for all u such that
u =20 on B . (1.16)
The inequality (1. 15) follows immediately from the identity

25(u) = D(u) + [ (div w?av , (1.17)
R

which in turn, follows from applying the divergence theorem and

boundary condition (1. 16) to the identity

) .~(u 5 T TR & (1.18)

- +
28laf = J Doy gty gHingss o) plags o oe ow o

R
Note that for vector fields u such that divu=0 in R and u=0 on B,
we get equality in (1.15). Thus, in the first case,
D(u) = KIS(l_J:) ; (1:19)
with Kl = 2 and this constant is the best possible.
If an isotropic homogeneous elastic medium in R is subjected
to an infinitesimal displacement u, the strain energy is proportional
to

a 2
5o ) (divu)av (1.20)
R

E(u) = S(u) +

-

where o is Poisson's ratio, which we take to lie in -1 <o <%, If
2

the inequality

D(u) € K, S(u) (1.21)
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holds under some side conditions on u, then

D(u) € K _E(u) , (1.22)
where
Kl (0 €< %)
o © 1-20
(T_H—D:Z—)a—)Kl (-1 <@ % 0) ,

and n is the number of dimensions. For 0 =0 < %, this statement is

clearly true, and for -1 <o <0, we use the inequality

2
+...+u nz)dV < nS(u) . {1.23)

0 = [(divw’av = ‘rn(ul’ ; o

R R
We now show how Korn's inequality may be used to obtain
lower bounds for the fundamental frequencies of vibration of an elastic
solid. The first non-zero frequency w of the vibration problem for an
homogeneous isotropic elastic body, occupying the region R, and

fixed on the boundary B, is such that

2 1 2 :
u[v e V(v-u)]+pw w=0 ;in R, (1.24)
- 1-20 — = !
u = 0 on B , (1.25)
where | is the shear modulus and p is the density. The parameter

w may be characterized by the minimum principle:

2 E(v)
%""— B T , (1.26)
5 v=0 [ lx|%av
on B R

where E(y_) is defined by equation (1.20).
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Now use inequality (1.22) in the form

D(v)
Ev) = & 5 (1.27)
- :
where
| K, (0sog<3) ,
K = (1.28)
© 1-20
e e -1 < =
(Tim-2i6 ' %1 (- =e=4] ;
Since we are dealing with the first case here, we take K. = 2 in
(1.28). The relations (1.26) and (1.27) give
2 1 D(z)
Bl s — i e : (1.29)
24 K 2
o X:O j‘ |X| dv
onB R

Let ?\0 be the smallest eigenvalue of the acoustic problem

Veo+ie = 0 in R , (1.30)
» = 0 on B . (1.31)
The parameter )Lo may be characterized by the minimum principle
[ lvo|®av
. R
L. B HEHE g & (1.32)
¥ =0 J' . dVv
on B R

Then relations (1.29) and (1. 32) give

pr o
P2 5 == , (1.33)
AV Ko
where 4
2 psg<d] ,
K = - (1.34)
o) 1-20
. <
1+(n2)cr)2 (-1 <o s0)
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A lower bound for the first non-zero frequency for the free
vibration problem may be obtained in a similar manner, using Korn's
inequality in the second case.

In order to illustrate another application of Korn's inequality-
one which involves the extended main case - we point out that the
question of finding a lower bound for the ratio

E(u) / flg\de (1.35)
R_ .

arises in the problem of estimating the '"characteristic decay length"
associated with Saint-Venant's principle. In this situation, the vector
field u is known to satisfy the displacement equations of equilibrium

(1.14) as well as the constraints

J‘uidV = I{(ui-j—uj

i)dV = 0 (1.36)
R

In the analysis of this issﬁe carried out by R. A. Toupin [4]
a lower bound for the ratio (1.35) was taken to be the smallest posi-
tive frequency of frce elastic vibration of R, thus making no use of
the fact that u satisfies (1. 14).

If, instead, we employ Korn's inequality (1. 12) in the ex-
tended main case, together with the definition (1. 20) of E(u), we

have

E(u) = S(u) = = D(u) , (1.37)

where use has been made of the side conditions (1. 14) and the second

sle

"In this discussion, we assume 0 < ¢ <3 for simplicity.
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of (1.36). Since u also satisfies the first of (1.36), we have

- 2
D(u) = A [ |u|®av , (1.38)
- R
where A is the smallest positive cigenvaluce of the problem
2
Vop b Agp o= 0 in R, (l.39)
9p/dn = 0 on B. (1.40)

Combining (1.37),(1.38) we obtain the alternate lower bound

E(u) X

=
[ lu|®av Sl
R

s (1.41)

for vector fields u satisfying (1. 14) and (1. 36).
It was this possible relevance of Korn's inequality to Saint-
Venant's principle which originally motivated this investigation.

In the remainder of Chapter I, we describe some of the previ-
ous work on Korn's inequality. In Chapter 1I, following an approach
used by Payne and Weinberger [5], we derive an eigenvalue problem
associated with Korn's inequality in the second case and we list some
properties of the eigenvalues and eigenfunctions. In Chapter III, we
relate this eigenvalue problem (which we call a Korn eigenvalue prob-
lem) to the displacement boundary-value problem of linear homogene-
ousisotropic elastostatics in two dimensions. Chapter IV consists of
a summary of results on the displacement boundary-value problem of
plane strain. In Chapter V, we apply these results to the Korn eigen-
value problem. Finally, in Chapter VI, we treat the extended main

case in a similar fashion.
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Friedrichs, in §7 and §8 of [1] uses the first case of Korn's
inequality to prove the existence of a solution of the displacement
boundary-value problem of linear, homogeneous, isotropic c¢lastostat-
ics. He also treats the free vibration problem and uses the second
case of Korn's inequality to show the existence of a discrete set of
frequencies of vibration which tend to infinity. S. G. Mikhlin [6]
proves Korn's inequality in the second case: he makes use of the work
of D. M. Eidus [7], which is based on Friedrichs' approach. Mikhlin
then uses Korn's inequality in the second case to prove the existence of
a solution of the traction boundary-value problem of linear anisotropic
elastostatics, and he also treats the mixed and mixed-mixed boundary-
value problems. Mikhlin's use of Korn's inequality is to prove that the
operator of elasticity theory is positive definite for the various bound-
ary conditions considered. G. Fichera [8, 9] has done work of a simi-
lar nature.

B. Bernstein and R. A. Toupin [107] in 1960 introduced the
terminology 'Korn Constant', which we define as follows: if a Korn in-
equality of the form (1.21) éxists for a given region R, under some
side conditions on u, then the set of real numbers

D(u)/S(u) (2.1)
has a 1eaét upper bound. We call this least upper bound 'Korn's Con-

stant' for the region R in the first case, second case, main case, or
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1
extended main case, and denote these numbers by KJ-{( ), Klid), Ii'gM ),

(EM) . g . (L} - :
I\R , respectively. In §1 we showed that I\R = 2 [or any region

Bernstein and Toupin [107] posed the question of obtaining ex-

(2) (M)

plicit values of the Korn constants KR . Kp

for particular regions
and considered the problem of finding upper and lower bounds for
these constants, paying special attention to the case of a sphere and a

circle. Subsequently, Payne and Weinberger [ 5], using a variational

approach which we describe in detail in Chapter II, showed that for a

sphere
(2) _ 56
KR - 13 ¢ (i )
and for the circle (two dimensions),
2) .
KR = 4 4 (2. 3

They also showed that if Korn's inequality in the second case holds
for each of the domains Rl’ p Rn’ then it holds for their union.
C. M. Dafermos [117, using the approach of Payne and Wein-
berger, considered the case of a two-dimensional circular ring and
- (2) :
determined the Korn constant KR for any fixed r = RI/RZ
(0 < Rl < Rz) . As r -0, his result checked with that of Payne and
Weinberger for a circle. He also gave an upper bound for the Korn

(2)

constant KR for the union of two regions in terms of the Korn con-

stants for the separate regions.



] 1
The present work is concerned with the question of obtaining
2 M EM
information about the Korn constants K( ), K ( ), K ( ) for gen-
R R R
eral regions. It will be seen in the sequel that for two-dimensional
regions, this question is intimately connected with the issue of

unigueness and non-uniqueness for the displacement boundary-value

problem of linecar homogeneous isotropic elastostatics.
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II. AN EIGENVALUE PRODBLEM ASSOCIA'TED
WITH KORN'S INEQUALLI'L'Y

3. The Eigenvalue Problem in the Second Case

In this section, we consider the second case of Korn's in-
equality:
D(u) € K S(u) , (3.1)
for all u satisfying

J, -u v = o . (3.2)
R. ’J J

Following Payne and Weinberger [5], we pose the following varia-

tional problem. Find
D(u)

sup S(_‘i) 5

where the supremum is taken over all vector fields u such that
S(_1_1) # 0 and (3.2) holds. We will show that the Euler equations and
natural boundary conditions associated with this problem are

2K . ~Ke . = 0 in B, (3.3)
s 1 1y 1]

T2-Klu, ., -Ku, _In,
i i i

2 2

I
o

on B , (3.4)

where n is the unit outward normal on B and K is an cigenvalue
parameter.

Following the usual procedure of the calculus of variations,
we introduce constant Lagrange multipliers K and "*13' (uij = 0 for
i=3j), and consider the functional

gTu] - D(E)-KS(_u)-uijj(ui Uy v
. R, 3 J
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A necessary condition for a stationary value of J[ a7 is that

8§J = j‘Zu_, ,Lﬁuj

)(du, .+éu, . )dV
3 i
R

: 2 2

idV . ,—Izj'(ui tu,
R v ) )

- ~du, ., )dV = 0 ,
1JR i, J Tid

where & denotes the first variation. Application of the divergence

theorem gives

63 = [ou {(K-2)u. . +Ku, . }dV+[su {(2-K,
R J Js 11 1, 1] B J Js

~Ku, +Q. .-u . IndS=0.
i T T !

Standard arguments of the calculus of variations now imply that the

extremal field u satisfies the Euler equations

(2-Eh, ..=~Kw, ., = 0 in R ,
] 145

and the natural boundary conditions

[(2-K)u, ,-Ku, .+H..-d..Tn, =0 on B
i,j i i

We show that uij = “ji and so (3.6) reduces to (3.4).

by € and integrate over R to get

ijk ™k

g{eijk)ﬁ(r(z_K)uj, —Kum,mj}dv = 0

Apply the divergence theorem to get

Je ijkka"muj oK j]nmds-_f eijkT(Z-K)uj’ -Ku

B ’ ’ R

Use the boundary conditions (3.6) in (3.7) to find

: - ds- 2 = dv =
*I[;ijkkajm Bt e lj;eijk[( )uj,k uk,j]

(3.5)

(3.6)

Multiply (3.5)

k,

0

For each [ixed i, the volume integral in (3.8) is zero,

j]dV = 0y {86 T)

(3.8)

as can be seen
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by expanding the terms and using the constraint (3.2). 'Thus, equation

(3.8) reads

- : 1S = 0 . 3.9
'}I;eijk\k(ujn*l Hm] )nm( (3. %)
Now apply the divergence theorem to obtain
_ dv = 0 3.10)
J\Eijkzskm(ujm St ‘ s &
R
where 6km is the Kronecker delta, 61(111 = 1 1f k = my, 6km =0
otherwise. Then (3.10) reads
- dv = 0 3.
55 ukj)j ; (3.11)
R
which implies that
uij = U'ji as required.
We will refer to the problem of {finding the values of K for
which there exists a non-trivial vector field u satisfying
(2-Kha, .. -Ku, .. = 0 in R, (3.12)
j, ii i, 1j
[(2-Khu., .- Ku., .In. = 0 on B, (3.13)
i i,j 1

as the Korn eigenvalue problem. It was solved explicitly for the case
of a sphere and a circle by Payne and Weinberger [57. For a sphere,
they found that the spectrum contains an infinite number of eigenvalues
whose supremum is 56/13. For a circle, they found a finite spectrum,
consisting of the values 1, 2, 4, each occurring with infinite multipli-

city. Moreover, for these cases, Payne and Weinberger proved the

"A vector field u is trivial if it is identically constant.
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completeness of the eigenfunctions of the Korn eigenvalue problem
with respect to vector fields with finite Dirichlet integrals. It follows

from this completeness result that the largest eigenvalue of the Korn

2
R( ) when R is a sphere or a

>
= 56/13 , while for a circle K};h)

problem is in fact the Korn's constant K

(2)

=4,
R

circle. Thus, for a sphere K
We remark here that there is also an eigenvalue problem asso-

ciated with Korn's inequality in the first case, namely, the differential

equations (3. 12) together with the boun_dé,ry condition u =0 on B.

Since we already know that Korn's constant is equal to two in this case,

we will not be concerned with this problem in detail in what follows.

4, Some Properties of the Korn Eigenvalue Problem

We write (3.12), (3.13) in the form
2
(2-K)V u - KV(V-u) = 0 in R, (4.1)

[(2-Ku, -Ku, In. - 0 on B . (4. 2)
js ¥ i

» »

We now observe that if we identify K with 1/v where v is Poisson's
ratio, equations (4.1) are formally equivalent to the displacement
equations of equilibrium of linear homogeneous isotropic elasticity.
This fact was also noticed by Dafermos [11]. We will return to ex-
amine the implications of this equivalence later.

~ We have the following remarks to make concerning the Korn
eigenvalue problem (4.1), (4.2):

Remark 1. K =1 is an eigenvalue of infinite multiplicity of (4. 1), (4.2)
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for any region.

When K = 1, equations (4 1) and boundary conditions (4. 2)
become 2
Vou- V(V-E) = 0 in R, (<. 3)

curluXn = 0 ‘ on B . (4. 4)
Any vector field u = V{, where { is an arbitrary smooth function on
R+B, satisfies (4.3),(4.4). Note that for this u, D(u) = S(u).
Remark 2. K = 2 is an eigenvalue of infinite multiplicity of (4. 1),
(4.2) for any region.

When K =2, (4.,1)and (4.2) read
V(V-u) = O in R, (4.5)
u, n, = 0 on B. (4. 6)
By j A

We shall show that any smooth vector field u such that

divu = 0 in R +B , (4.7)

u =0 on B, (4. 8)

satisfies (4.5}, (4. 6); this will prove the assertion concerning K = 2.
To begin with, we consider the three-dimensional case and we
suppose that u satisfies (4.7), (4. 8). Then equation (4. 5) clearly

holds, and it remains to show that the boundary condition (4. 6) is

1 2%
satislied. If 1:( ), L( ) are two lincarly independent unit vectors tan-

gent to B at x, then [rom (4. 8) we obtain

a 3% . g on B . (a=1,2) (4.9)
1,313
Let the matrix U be given by
U = (ui i . (4. 10)
*Jon B

From the boundary condition (4. 9), we obtain



ut = 1B, (1. 11)
which implies that detU = 0, since t is non-trivial. Jurthermore,
using the fact that div u = 0 in R+B, we find that Tr U = 0, where
Tr U = u, ., denotes the trace of U .

1y i
In general, the characteristic polynomial associated with a
maltrix U is given by
) _ , . T S 2 B ’
Fi) = det{Uhl) & <A~ 4% TeU+z[Te(U )}-(TeU) Jh+det U ,
so that in our case
3 g 2.,
F(A) = A +5Tr(U )X . (4.12)
L . ) (1) (2)
Now A = 0 is an eigenvalue of U, and in fact, since t 5t are two
linearly independent eigenvectors of U corresponding to the eigen-
value 0, XA = 0 must be a double eigenvalue.
Thus,
N i s 2 ;
(o) = 5Te(U ) = 0 , (4. 13)
and so, from (<. 12), we obtain
3
F(A) = det(U-\I) = XA~ . (4.14)
Therefore, A = 0 is the only eigenvalue of U; it occurs with multi-

plicity three.

We now let

v, o= oW, I on B . (4.15)
J L)1
Then, from (4.9) we find
(o) (a)

X.E. = W, .k ., = 0o . (47.16)
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This implies that there exists a scalar ¢ such that

v & en , (4.17)
that is,
W, @, = eon; , (4.18)
1,J) 1 J
or equivalently,
b3
Un = cn , (4.19)

T . ; ;
where U~ denotes the transpose of U. Equation (4.19) implies that
; s T ; ; v il
¢ is an eigenvalue of U™, but since the eigenvalues of U are the

same as those of U, we have ¢ = 0. Thus, from (4.17) and (4. 15),

we find that

Ui, jni = 0 on B, (4.20)
and so the boundary condition (4.6) is satisfied. Thus, for the three-
dimensional case, we have shown that if the vector field u satisfies
(4.7), (4.8), then u also satisfies (4.5) and (4.6). The same argu-
ment can be adapted to the two-dimensional case.

In two dimensions, however, we can prove a stronger result,
namely, that _C-:l._l_l_ eigenfunctions of (4. 5), (4. 6) may be characterized
in terms of vector fields v satisfying

divyv = 0 in R+B , (4.21)
v = 0 ol B s (4.22)
Suppose that u is a non-trivial vector field satisfying

= 0 i + .
uﬁ,ﬂ(}. in R+B , (4.23)
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uu’ﬁna 0 on 1B , (4.24)
where the Greek subscripts range over Lthe integers (1, 2). Fguation
(4.23) implies that

u = constant = a in R+13 . (4.25)
B, B
We observe that e\)ﬁnv is tangent to B, and so we have for any vector
field u defined on R+B ,
du
—-—-E = 6 2
e Vﬁup,ﬁn\) on B , (4.26)
where 6\153 is the two-dimensional alternator. Multiplying (4.26) by
& and using the identity
(o181
e B . = 8 § .%6 .8 v (4.27)
pd VB pv MB  pB v
we obtain
du
o) 2 1 n -u n (4.28
f e v ™8, 8% ’
= -an on B , (4.29)

vl
where we have used (4.24) and (4. 25). Multiplying (4.29) by eau and

using the identity

€ € = & 2 (4.30)
op pl ap
we [ind that
dua (‘lxa
s & B & & B 4.3
ds - cr.unu, ds o & ( 1)
which implies that
w. = ax_ +4d on B, (4. 32)
jo# a (o4

where da is a constant vector. We now define the vector field v by

ET I £2



v = W - X, - 4 in R+ . s 3 3)
Q. a (04 a

Then, equations (4.25) and boundary conditions (4. 32) imply that the
vector field v satisfies (4.21), (4.22).
Suppose now that v is a non-zero vector field satislying (4.21),
(+.22). Define a vector lield u by
u = v+ax +d (4. 34)
where a is an arbitrary constant scalar and d is an arbitrary con-
stant vector in R+B. From (4.34), (4.21), and (4.22) it follows that
uCL,CJ. = 8 in R4+B , (4.35)
Uy 7 axCL + dCL on B . (4. 36)
Equation (4.35) implies that u satisfies (4.23), and thus it remains to

show that the boundary condition (4.36) implies that u satisfies (4.24).

The boundary condition (4. 36) implies that

du dx
= -——B = -
—Eds a o aep)\n)\ on B . (4.37)

Multiplying (4.37) by E:p‘hl and using the identity (4.30), we obtain

du
& NN -
PH TS anL‘L on B . (4.38)

Using (4.35), we may write (4. 38) as

du

. - P
EPH o uﬁ:‘}?’npl on B . (4. 39)

From (4.28), we see that for any vector field u defined on R+4B ,

du

—P _
€ = i n =1u n on B . 4.40
pu ds Vol v B,P ( .
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Thus, (4.39) and (4. 40) imply that

u n = 0 on B ) (4'4 41 )
VOO

which is precisely the boundary condition (4.24). This completes the
proof of our assertion concerning the eigenvalue K = 2 in the two-
dimensional case.

We conclude our discussion of Remark 2 by noting that for the
particular vector field u defined by (4.7), (4.8), we obtain D(u) =
25(u), as follows from (1.17).

Remark 3. K = o is not an eigenvalue of (4.1), (4.2).

When K= oo, (4.1), (4.2) become*

VZE +9(Y-u) = 0 in R, (4. 42)

[u, .+u. ,Jn, = 0 on B. (4.43)

As we remarked at the beginning of this section, equations (4.42) co-
incide formally with the displacement equations of equilibrium of
linear isotropic elasticity when Poisson's ratio is zero. In this case,
the stress/displacement relations give
.. = e, . Fu, )
1] 1, ) Js 1 ’

where 7., is the stress tensor, i is the shear modulus. Thus, we

may interpret the problem (4.42), (4.43) as the traction boundary-

iThe case K = co for (4.1),(4.2) is understood to mean the result ob-

tained formally by dividing (4. 1), (4.2) respectively by K and letting
K = oo. An analogous interpretation applies to similar situations
arising in the sequel.
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value problem (with homogeneous boundary conditions) of linear iso-
tropic elasticity when Poisson's ratio is zero. By the classical
Kirchhoff uniqueness result, which is valid for Poisson's ratio in the
range (-1, ;l_v), we have Ti‘i = 0 in R, which implies that u is at most

a rigid body displacement field. The condition

.f(ui -u. i)dV = 0
R ?J Js

eliminates pure rotations, so that u is at most a translation and is
therefore trivial.
Remark 4. Every solution of (4.1), (4.2) satisfies the condition

[(u, ,-u, .)dv = 0 . (4. 44)
"R. l,J _],l

To prove (4. 44), multiply (4. 1) by eijkxk’ integrate over R,

and use the divergence theorem to get

e 2~ -Kut ds-| e 2o - i =
| eijkxk[(a K um’j]nm s-f ijk[( Kag o Kuk’j]dV B«
B R
The first integral is zero by (4.2). Thus,
%F{eijk[(z-x)uj’ Ky [Jav o= o (4. 45)

Expand terms in (4.45) to get (4.44).
Remark 5. If u, v are solutions of (4. 1), (4.2) corresponding to

distinct values of K, then we have the orthogonality conditions:

N

Su, v) =

[(u, +u. v, +v, )dAV = 0 5 (4. 46)
R bJd 3POLI i

D(u,v) = [u v, .dv = 0, (4.47)
R

e A i, i, ]
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Riu, v} = i.‘[‘(u‘ ~u. My, =v. )dV 0 (1.48)
== 4 R 1, )L by Js L

By hypothesis, u satisfies

(2-K )u, .. -K.u, .. = 0 in R , (4.49)
L7548 1 4, a3
[(2-K.)u, ~K.u, . In, =0 on B , (4.50)
1" 5,1 i T R |
and v satisfies
(2-K )v., .. - K. v, .. = 0 i B, (4.51)
27 3,11 2 154§
[-K)v, .- K.v, .]n, =0 on B, (4.52)
27 3,1 & &7 4

with Kl 4 KZ. )
Multiply (4.49) by Vj , (4.51) by uJ, , subtract and integrate

over R to get

[lz-K vu, . -@-KJuv, . -Kvu  +Kuv . 1dV=0.
R 179 s 08 277 .1 1 L4 T2 1 LA
Thus, [[(2-K_)v,u, .) -(2-K Jv, u. -(2-K )uv, .)

R 1 I X d i 1" jsd Jsa 2 J s X ;

+2-K_)u

v, -Kvu, K uwv, ldv=0
2° o Jed L 4 &,

1) 2 3 1,13
Use the divergence theorem and boundary conditions (4.50), (4.52) to

et
J' LE % u_ 1dv
1 351

-K 1. dS+ o
] j : }xzujvi jWni I[(Kl K'Z)uj, 5

o~ Kovoaua, K . av,
) J ) ij,i 1 ji,ij 23 4i,1j
R
= 0

Again use the divergence theorem to obtain

v, .ldv = 0,

§ DO, T bm, 1% 8 e d 2 el 5

R si 3,1



that is,

[IK (o, 4u, v, -K u, (v, +v,  )]dv = 0 . (+.53)
R 1 Ll L1 BT 2 i %] i

Interchange i and j in (4.53) to find

[TK (u, +u, v, .-K u, (v. +v, )IdV = 0 , (4.54)
R ! biRiT LI 24,5 %) i

Add (4.53) and (4.54) to get

(K. -K_) [ (a, +u, v, .4v, )V = 0 ,
i 2‘1'{ d Jed ) gyd

which implies (4.46) since Kl { K Equations (4, 47) and (4.48) may

/2 .
be verified in a similar fashion.
Remark 6. The eigenvalues of (4.1), (4.2) are real.

Suppose K, K were eigenvalues with corresponding eigen-
functions u, E, where the bar denotes complex conjugate. Then, if

K £ E, by (4.47) we have

Jo & a¥ = 0,
R l’.] 1’J

which implies ui,j = (0 in R, that is, u is a constant vector field.
This contradicts the assumption that K is an eigenvalue.
Remark 7. The eigenvalues of (4.1), (4.2) are greater than or equal
to one.

Suppose K is an eigenvalue of (4.1), (4.2). Multiplying (4. 1)
by uj and integrating over R, we obtain

fl2-Kp, . u-Ku .uldv = 0 . (4.55)
- APEE I B O N



Now (. 55) may be written as

) ~K(uu, ) -(2-Khu, v, 1Ku, . u, dv 0. (1.56)
z J

,1 JI’J,i J:1 Jrl J':llr

3

[T@-K)uu,
g § Jsd

Using the divergence theorem and boundary conditions (4.2), we find
from (4.56) that

-2, u, +Ku, w, . JdV = 0. (4.57)
2 ol Bl Gd 5]

Equation (4.57) may be written

__H ~—-—————(1“7K) (u, +u. Nu, +u )+ 3(u -u, Nu | -u, .)]dv = O ,
R - LY 31 L) hit L) )1 L) bt

that is,

-2[(1-K)S(u) + R(u)] = 0 , (4.58)
where S(}l)’ R(u) are defined by (1.2), (1.4), respectively.

Suppose that K< 1. Then, since S(u) and R(u) are non-

negative, (4.58) implies that

Slu) = 0 , R = 0 . (4.59)
But (4.59) implies that u is a constant vector, contradicting the as-
sumption that K is an eigenvalue. This verifies the assertion made

in Remark 7.
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III. TRANSFORMATION OF THE KORN EIGENVALUE
PROBLEM IN TWO DIMENSIONS

5., Transformation Theorems

As we remarked at the end of §3, there is an (.'i;__{(:l'l'V.{liLlc prob-
lem associated with Korn's inequality in the first case, nafnely, that
of finding the values of K for which the boundary-value problem

(Z—K)Vz_l_l_ - K9Y(Veu) = 0 in B , (5.1}
u =0 on B , (5.2)
has a non-trivial solution. We recall the observation made at the be-
ginning of §4, that if the vector field u is regarded as an infinitesimal
displacement field in an homogeneous isotropic elastic medium occu-
pying the region R, then (5.1) may be interpreted as the displace-
ment equations of equilibrium in the case of zero body force, if we
identify K with 1/v , where v is Poisson's ratio. Thus, the eigen-
value problem (5.1), (5.2) may be related directly to the displacement
boundary-value problem of linear homogeneous isotropic elastostatics.

In Chapters III and V, we shall be concerned mainly with the
Korn eigenvalue problem in the second case, that is, the eigenvalue
problem (4.1),(4.2). Unless we mention it explicitly otherwise, we
confine our attention to simply-connected two-dimensional regions R,
and we use the notation convention that Greek subscripts range over
the integers (1,2). In this section, we shall state and prove trans-

formation theorems which establish a relationship between the Korn
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eigenvalue problem in the second case and the displacement boundary.
value problem of plane isotropic elastostatics.

_ 2
Theorem 5.1. Suppose K# 1 and let ue C (R+B) be a non-trivial

solution of the Korn eigenvalue problem, with eigenvalue K, so that

(2-K)u = 0 in R, (5.3)

«, Bp B, Ba

{(ZFK)uO‘.,ﬁ—KHB,&]nB = 0 on B . (5.4)

2
Then there exists a non-trivial vector field _i_;_e C (R+D) such that

(i) ga’ B B K(uﬁ, a—ua’ ﬁ)+2(1-K)u.B,a—Z(l—K)ﬁaﬁuY, - (5.5)
B 2 1 g

(ii) v é + 12 V(V"_ﬁ_) = 0 in R, (5.6)
(iii) §_ = 0 on B , (5:7)
where v = 1 - Il{ 3

We also have the following converse of Theorem 5. 1.

2
Theorem 5.2. Suppose v £ 1 and let £€ C (R+B) be a non-trivial

solution of the problem

2
v _ﬁ_ * 1-2v

i
<

V(9 £)

E = B on B , (5.9)

in R , (5.8)

with eigenvalue v. Then there exists a non-trivial vector field

u € CZ(RJrB) suc_h that

e 1, (5.10)

u g e +2(1—\))§|3 ﬁ vs Y

1
o, B s Mo g B g g Pl

2

and u satisfies the Korn eigenvalue problem (5.3), (5.4) with K = _il_\_; .

"1t will be seen in Chapter IV that v = 0 is not an eigenvalue of prob-
lem (5.8), (5. 9).
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The remainder of §5 is taken up.with the proof of Theorcems
5.1 and 5.2. Some further discussion of these theorems is given in
§6.

Proof of Theorem 5.1

We first show that there is a vector field £ satisfying (5.5).

Let

H = K(u -u H2(1-K)u Ot.-z(l_K)aa. (5.11)

ap B,o o p B,

Direct calculation shows that

u .
B Y, Y

e e H = H -H = ~2(1-K)u -(2-K)u
“pi B B, A BB, 1 A, A s Vi b, AA
"|"2 —-K = e 2_ +
+Kuk’ ik (1 )67\Uu\’: o ( K)uu’ A\ Kux’ X
(5.12)
where eB)& is the two-dimensional alternator and we have used the
identity
€ € =z 0 O =6 .6 (5.13)
pH BA pB uUA ph uP
Since u satisfies (5.3), it follows from (5. 12) that
= 0 in R . (5.14)

€ € H
p BA PR, A
Multiplying (5. 14) by €U4_L and using (5. 13) contracted on u, A, we
find that

o - = 0 i : y
eﬁ)\Haﬁ,)\ H, o=He g in R (5.15)

"Equation (5.15) and the simple connectivity of R imply that there ex-
2 : o v .
ists a function ga e C (R+B), unique to within an arbitrary additive

constant, such that



A

: 11 . (' i
f“(‘x‘, B af (. 1)

In view of the definition (5.11), this is precisely (5.5).
To show that the vector field £ of (5.16) satisfics the differ-

, we proceed as follows. If

1
ential equation (5.6) with v = 1 - K

K¢ 2; (5:16)15: 11) provide

2
1
e = -Ku +—— u "
Sa, 8 1 %6,p0" MY0,p8 2K "B, pa
1-2(1 ~ )
K
and hence, by (5.3),
TN U SN 0 in R.
o pp 1_&([ _ .__L ) [.)’ [J(')l'.

Thus, (5.6) holds if K # 2. When K =2, (5.16),(5.11) yield

86,80 = %Y, pa

and hence by (5.3) with K =2 ,

%8, Ba
Thus, (5.6) holds:‘: if K = 2.

To establish the boundary condition (5.7), we obhserve that

(:Xﬁ”)\ in tangent to 13, so that by (5.16)
dg
= € .
-——Eds Hp[3 X[Snl on B (5= 1%)

We thus have, with the aid of (5.11), (5.13), and (5.4),

a

€ —E = ¢ e. H n = [2-Khu ~-Ku In, =0 on B. 5.18
o s SputapteB™A u A e B

"See footnote, p. 21.
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Multiplying (5.18) by Ecgu and using (5.13) contracted on X, |, we’
obtain

d§
2 oir B . (5. 19)

ds
Thus, by choosing the arbitrary additive constant suitably in the con-
struction of £ in (5. 16), we may arrange that the boundary condition
(5.7) holds.

IFinally, we remark that (5.5) may be uniquely inverted to
give W, 3 in terms of g)\,u. It follows that § is constant in R if
and only if u is constant in R. Thus, § is non-trivial. This com-
pletes the proof of Theorem 5. 1.

The proof of Theorem 5.2 may be carried out by using an al-

most identical argument to that used in proving Theorem 5.1, and

consequently will be omitted.

6. Discussion of Theorems 5.1 and 5.2

We recall here the boundary-value problem satisficed by the
non-trivial vector field £ appearing in the statement of Theorems 5.1

and 5.2:

1
1=2%

0 in R, (6.1)

vz_g + V(V-£)

£

0 on B . (6.2)

1

Il the vector field § is regarded as an infinitesimal displacement field
in an homogeneous, isotropic elastic medium occupying the two-

dimensional region R, then (6. 1) may be identified with the displace-
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ment equations of equilibrium in the case of zero body force, where
the parameter v is taken to be Poisson's ratio. We wish to consider
the boundary-value problem (6.1), (6.2) as an eigenvalue problem, with
v the eigenvalue parameter, and we shall be interested in the range of
values of v for which the problem (6. 1), (6.2) has a non-trivial solu-
tion. Viewed in another manner, this is equivalent to investigating
the issue of non-uniqueness for the displacement boundary-value prob-
lem of two-dimensional elastostatics. As we shall see in Chapter 1V,
this question has been considered by various authors.

Theorems 5.1 and 5,2 establish an equivalence between the
two-dimensional Korn eigenvalue problem and the displacement bound-
ary-value problem of plane elastostatics in the following sense. Ex-
cluding the exceptional values K=1 and v = 1, the problem of deter-
mining the set of eigenvalues K of the boundary-value problem (5. 3)
and (5.4) for simply-connected plane regions reduces to finding the set
of values of v for which the displacement boundary-value problem of
plane elastostatics has a non-unique solution.

We conclude this chapter by giving a brief indication of how
one may arrive at the content of Theorems 5.1 an@ 5.2. As we re-
marked at the beginning of §4, the differential equations (4. 1) of the
Korn eigenvalue problem are formally equivalent to the displacement
equations of equilibrium of linear isotropic elasticity with Poisson's

ratio v if the parameter K is identified with 1/v. Thus, in two di-
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mensions, solutions of equations (5.3) may be represented in terms of
an Airy function @, which is biharmonic in R, and auxiliary harmonic
functions. (See, for example, Muskhelishvili [127].) When substituted
into the boundary conditions (5.4), this leads to the observation that
the boundary conditions for @ are exactly the boundary conditions for
the deflection in the bending problem for an isotropic elastic plate with
a [ree edpe, when an appropriate identification is made i)(:twee‘n the
parameter K and the Poisson ratio of the plate. The bending problem
for a plate with a free edge may, in turn, be transformed to the ho-
mogeneous displacement boundary-value problem of plane elastostatics,
with an appropriate identification between the Poisson ratios of the
two problems. This was shown by S. G. Lekhnitskii [13]. Lekhnit-
skii's results are presented in English in the notes of I. S. Sokolni-
koff [147]. (See also Green and Zerna [15], page 247.) In this man-
ner, one is led to a transformation from the Korn eigenvalue problem
wii.hl eigenvalue K, to the homogeneous displacement boundary-value
problem of plane elastqstatics with v = 1 - Izl( .

It appears that there is no direct analog of Theorems 5.1 and

5.2 in the three-dimensional case.
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IVv. SOME RESULTS ON THE DISPLACEMENT BOUNDARY -VA LU
PROBLEM OF PLANE STRAIN

7. Differential Equation Formulation

We are interested in the range of values of the parameter v
for which the following boundary.value problem has a non-trivial so-

lution. Find Wi_f_, & CZ(R+B) such that

1
1-2v

vig + V(V-£) = O in R, (7.1)

1l
o
0
5
oz

g (7.2)

where R is a simply-connected region in two dimensions. Hence-
forth, the boundary-value problem (7.1), (7.2) will be called the homo-
geneous displacement boundary-value problem of plane strain. In

this chapter, we accumulate some known results from the literature
concerning this problem.

Theorem 7.1. £=0 if v<z or v>1.

Theorem 7.1 is the uniqueness theorem for the displacement
boundary-value problem of plane strain for bounded regions. The
proof given for three-dimensional bounded regions by M. E. Gurtin
and E. Stefnberg [167 is also valid in two dimensions.

Theorem 7.2. v =1 and v = 3 are eigenvalues of infinite multiplicity

3k

for (7.1),(7.2) for any region R.

When v =1, (7.1),(7.2) read

“Oof. Remasiks 1 and 2 of §4,



G

Vz_g % V(V._g) = in R, (7.3)

E =0 on B . (7. 4)
Any vector § = Vo, where ® is an arbitrary smooth function on R+B ,

such that £ = 0 on B satisfies (7.3), (77.4).
When v = i v (TeX)CT2) read

V- £)
£

Any smooth vector field £ such that V.£ =0 in R, £ = 0 on B

I

0 in R, (7.5)

0 on B. (7.6)
satisfies (7.5), (7.6). Theorem 7.2 is also proved by S. G. Mikhlin
in [17], for the three-dimensional analog of (7.1), (7.2).

Theorem 7.3. Suppose 3 <v < 1. Then there exists a region R,

boundary B such that a non-trivial vector field £ exists satisfying
(7 L) (Tad)s

This result was proved by J. L. Ericksen [18] for the n-
dimensional case. For our purposes, it is convenient to outline here
the argument in two dimensions. It may be verified by direct substi-

tution that

2 2(1-v) 2
gl = Xy g o %, - €, gz 5 (7.7)
where € is an arbitrary positive constant, satisfies equation (7. 1).

The curve gl = 0 has the form

2 2(1-v) 2

o aw % g 4 Ffats
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which may be written as

‘(2 XZ
1 2

5 * e(2v-1)/2(1-v)

L (7.9)

When é— <v<1l, (2v-1)/1-v >0 and (7.9) describes an ellipse with
1

2v-1 \2
axes in the ratio (2

--(—1—\-)—) . Thus, we have shown that Theorem 7. 3

holds with the two-dimensional region R consisting of the interior of
the ellipse (7. 9), where € is an arbitrary positive constant.

Theorem 7.4. If v =3/4 + & is an eigenvalue of (7.1), (7.2) for some

region R, then v = 3/4 - § is also an eigenvalue for R, where
D<d<1/4.

By hypothesis, £ is non-trivial and satisfies

1
£6, pa

ga = 0 on B. (7.11)

+ (-3-28)"

£ = 0 in R, (7.10)

o PP

The function ga defined by éa: €. is non-trivial and satisfies

85p
gﬁ. = 0 on B . (7- 12)

We now verify that ga satisfies

~

1 -1z _ :
gon,ﬁﬁ+ (-5+28) gﬁ,pa = 0 in R (7.13)

Using the definition of é(l’ we have

oL 428y

~ -1 a
+(-z +28) = € € ; (7.14)
ga,ﬁﬁ i %3,Ba @vgv,ﬁﬁ 6vgv,ﬁ&
Multiplying (7. 14) by € and using the identities
e .6 =206 (7. 15)

oy T Oy 0 Can’py T Captiy Sy Oip
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we find

+{-L428) +(-3+26) )

o 14 i 1 |
“ar (6, pp .80’ “ Expp €88 500

= (-3 428)" e T ) (7.16)

+28)E, 5p~5p,pn

having used equation (7.10). Multiplying (7.16) by € and using the

pA
first of (7. 15), we find

+(_—§;+26)'1€ = 0 4 17=1%)

& B,Bp

P, PP
which is exactly equation (7.13). (We note that a similar proof may
be given for the case & = 1/4, in which case Theorem 7.4 agrees
with Theorem 7.2.)

S. G. Mikhlin in [17] and [19] examines the eigenvalue prob-
lem (7. ‘1 ), (7. 2) for three-dimensional regions, referring to the pa-
pers of E. and ¥F. Cosserat [20,21,227 on this subject. By using
general methods of functional analysis, Mikhlin proves certain re-
sults, of which we note here the following:

(i) Problem (7.1),(7.2) has a countable set of eigenfunctions
orthogonal under the scalar products D(u,v) and fdiv_t_l_divzdv. A

- R
completeness result for these eigenfunctions is also established.
(See also Chapter V of this work. )

(ii) The eigenvalues are real and may accumulate only at

v =1, 3/4, 1/2.

(iii) Eigenvalues not equal to (1, 3/4, 1/2) have finite multi-
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plicity.

For the two-dimensional eigenvalue pl;oblem (7.1), (7.2) we
are considering in the present work, further information on the spec-
trum may be obtained by using the formulation of (7. 1), (7.2) in terms
of regular functions of a complex variable. This will be presented in
the next section.

8. Complex Variable and Integral Equation Formulation

As is well known, the fundamental boundary.value problems of
plane elastostatics may be reduced to boundary-value problems in the
theory of functions of a complex variable. (See, for example,
Muskhelishvili [127.) The problem of finding a vector field

2
£eC (R+B) satisfying

1
1-2v

Vz_g_ + v(v-£) = O in R, (8.1)
£ =0 on B, (8..2.)
is equivalent to a boundary-value problem in complex variable theory,
which we state as follows. -
Let v be a real parameter, and define the complex variable z

by =z = xl-!-ix Find functions ®(z), ¥(z) regular in R, such that

5
the function

V(z) = (3-4v)yz) -2z @ (z) - V(z) (8.3)
satisfies

V(z) = 0 on B . (8.4)
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Assuming the origin is contained in R, we may subject ©(z) to the
normalization condition ®(0) = 0. By a non-trivial function V(z) we
shall mean a function V(z) not identically zero in R, and by a non-
trivial vector field £ we shall mean a vector fiel‘d £ not identically
zero in R. The equivalence between the problem of finding a non-
trivial vector field _g_ satisfying (8.1),(8.2) and the problem of find-
ing a non-trivial function V(z) satisfying (8.3),(8.4), is established
by the following theorems.

Theorem 8.1. Let V(z) be non-trivial and satisfy (8.3), (8.4). Let

2(g1+ig2) = V(z). Then g = (gl, gz) is non-trivial and satisfies (8. 1),
(8. 2).

The statements concerning non-triviality and the satisfaction
of boundary conditions follow immediately. It may be verified by di-
rect substitution of the real and imaginary parts of V(z) in equation
(8.1), and using the Cauchy-Riemann equations for the real and im-
aginary parts of ®(z), y(z) respectively, that § satisfies equation
(8.1}

Theorem 8.2. Suppose V #%, 1 and let £ be a non-trivial vector

field satisfying (8.1),(8.2). Then there exists a non-trivial function
V(z) satisfying (8.3),(8.4).
Theorem 8. 2 may be proved by observing that equation (8. 1)

may be written as



.1

, « 1 ,
(l-v) & ”w} F(1-2v)(1- A1 p i ™ 0 in R . (8.

Rewriting equation (8. 5) in the form

1

2 3 0 .6
2(1-2v) gﬁ,ﬁ F(1-v)" (&a’ﬁﬁ ﬁﬁ [30!. > (8.6)
and using the identity
= (6,,6 -6_ & e - 3
“aonubu,ap = et Oeutan B, 08 = Ba, pe 58, op
we may write (8.6) as
2(1-2v)" gB Bo +(l v)~ ﬁaelugu,XB =0 ,
that is,
P,U.+ eﬁGf.Q,@ = 0 in R, (8.7)
where
-1 -1
P(xl,xz) = 2(1-2v) gﬁ’ﬁ . Q(xl,xz} = (1-v) E:)\ug“’)\ . (8.8)

Equations (8. 7) are the Cauchy-Riemann equations for P and
Q and imply that in a simply-connected region R, there exists a
regular function £{(z) such that
flz) = P +iQ in R . (8.9)
Let

(=) =

A

j pdp = p+iq . (8.10)
0

Then ®(z) is regular in R, ®(0)= 0, p and ¢q are related through

the Cauchy-Riemann equations, and

(P+iQ) . (8.11)

N

Pz)=p ¥ y = q ,-Ip , =

2
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We define the functions U(xl, xz) 3 W(xl, xz) by

2 = (B-dilp - ;i— (Px, +0Qx,) , (8.12)
2W = (3-4v)q - 31; (Px, - Qx ). (8.13)

By using the Cauchy-Riemann equations for P, Q and for p,q, it
may be shown that

Z(U, ] + W’z)

2W | - U )

(1-2v)P , (8.14)

]

2(1-v)Q . (8.15)

We define the functions r(xl, xz) ; s(xl,xz) by

ro= .26, +2U , (8.16)

0]
1

2¢, - 2W . (8.17)

Using (8. 14), (8. 15) and (8. 8), it may be shown that r and s are re-
lated by the Cauchy-Riemann equations .

r +e.s8 = 0  in R . (8.18)

Equations (8. 18) imply that in a simply-connected region R, there
exists a regular function Y(z) such that
(z) = r + is in R . (8.19)

Equations (8.16), (8.17), (8.12), (8.13) now imply that

1

zgl (3-4v)p - % (le + sz) - T in R, (8.20)

(3-4v)q - -;11- (sz = Qxl) + s in R, (8.21)

zgz

that is,
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2 (€. +1i;.d) s (3-4vxpz) - 2P (z) - Y(z) in R . (8.22)

Now defining V(z) by -

Viz) = 2(&, +1iE,) in R, (8.23)
it follows that V(z) is non-trivial and satisfies (8. 3), (8.4). 'I'his
completes the proof of Theorem 8. 2. |

Theorem 8.3. Let V(z) satisfy (8.3) and (8.4). I vs<% or v=1,

then V(z)=0 in R .

The proof of the uniqueness theorem given by Muskhelishvili
on pages 156 - 158 of [12] may be readily adapted to supply a proof
of Theorem 8. 3.

We note that the equivalence between the differential equation
formulation of the eigenvalue problem and the complex variable
formulation does not hold when v = -;15 , 1.

We turn now to the reduction of the boundary-value problem
(8.3),(8.4) to a Fredholm integral equation of the second kind. We
refer the reader to Muskhelishvili [12] for details and we merely
record here the final results.

Let the bounded, simply-connected region R have a boundary
B with continuous curvature and suppose R is mapped conformally
onto the unit disc in the complex p-plane by z = w(p). Denoting the
circumference of the unit circle by y, we have w'(p) # 0 inside and

on v. (See 8§47 of [12].) Assume, without loss of generality, that
N g Vs
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w(0) = 0. Then, the boundary-value problem (8.3), (8.4) can be re-
duced to the following problem.

Find a regular function L‘P:)(p) in lp‘ <1 such that "P:)(p)
satisfies

1 9 utc)—w(co) CP'O(G)

: - =
ncpo(oo) 2mi 'rac g-0 B do o, (8.24)
Y o} o w'(o)

where % = 3-4v £ 0, and O, o, are arbitrary points on the unit cir-
cle y : ‘O‘ = 1. The derivation of the integral equation (8.24) may
be found in [127]. (See also S. G. Mikhlin [23].) By a non-trivial
function Cp'o(p) we shall mean a function Pp'o(p) not identically zero.

We state the following theorems establishing the equivalence
between the integral equation (8.24) and the boundary-value problem
(8.3), (8.4).

Theorem 8. 4. Let L‘p:)(p) be non-trivial and satisfy (8.24). Then

there exists a non-trivial V(z) satisfying (8. 3), (8. 4).

Theorem 8.5. Let V(z) be non-trivial and satisfy (8. 3), (8. 4) with

v £ 3/4. Then there exists a non-trivial function CP:)(p) satisfying
(8.24).

Theorems 8.4 and 8.5 may be established by suitably adapt-
ing the material of Chapter XIV of [12]. We remark here that the
equation (8.24) is not valid when v = 3/4. The special value v=3/4

will be discussed later in this section. The integral equation (8. 24)

may be written
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)\' ] i
© (0 ) -5=[Tlo 0l (c)do = 0, (8.25)
-1 -1
where A = u = (3-4v) and
. w(o)-w(o )
1 3] o)
w' (o) o o

Separating T(Oo, o) and Cp;(o) into real and imaginary parts and sub-
stituting into (8. 25), one obtains two real Fredholm cquations, which
may be reduced to a single Fredholm integral equation of the second
kind. We have the following theorems concerning the integral equa-
tion (8.25).

Theorem 8. 6. The eigenvalues A of the integral equation (8.25) are

real, have finite multiplicity, and may accumulate only at infinity.

The fact that the eigenvalues-of (8.25) are real is proved by
Mikhlin in 847 of [237, where he uses the work of D. I. Sherman
1247. The remainder of Theorem 8.6 for general I'redholm integral
equations is proved in §8 of (23]

In terms of the eigenvalues Vv, Theorem 8.6 says that eigen-
values of problem (8.1),(8.2) not equal to 1, 3/4, 1/2 have finite
multiplicity, which is the two-dimensional apalog of Mikhlin's re-
sult given in (iii), §7 here. The assertion concerning the eigenvalues
A possibly accumulating only at infinity says that the eigenvalues of
problem (8.-1), (8.2) may accumulate only at v = 3/4. Thus, in two

dimensions, one obtains a stronger result than that of Mikhlin for
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three dimensions, which says that the eigenvalues Vv may accumulate
only at v =1, 3/4, and 1/2. (See result (ii) at end of §7 herec. )

Theorem 8. 7. If the region R can be mapped conformally by a

rational function onto the unit disc, then the kernel T(Uo, 0) of (8.25)
is degenerate and the spectrum is finite.
The proof of this result may be found in §44 and §4 of [23].
For our purposes, it is convenient to outline part of the proof here.
As shown in §44 of [23], if w(u) is rational, the kernel
T(Ob, o), given by (8.26), may be expressed as
N

T(o ,0) = 2 a
(o)

(o )b (o) , (8.27)
k=1 o k

k

which shows that the kernel is degenerate. Substitute from (8.27)

into the integral equation (8.25) to get

N
! - -
P (0 ) - 52 a (o) [b (@ ©) Fide = 0 . (8.28)
Y
Let the complex constants e be defined by
J'b (@ (0)do , (8.29)
¢
and write (8.28) as
X N
1 o s B
A e 2 (0,) - (8.30)

Take the complex conjugate of equation (8. 30), multiply both sides of
the resulting equation by bj(oo), and integrate with respect to 0 to
o

find



B

A

N
-==—2c [b(o)a (o )do . (8.31)
2wi k=1 "k j o k o o

Ib_(()’ yept (o ) do =
. j o o o

Recall the definition (8.29) of Cj and write (8. 31) as

N

c; = A@lck Vi o (j=1,...,N) (8.32)

where the complex constants ij are known and are gi{ren by

Yo = - 'é}'lr—l j‘bj(oo)_a;(?:) do . (jk=1...,N)(8.33)
Y

Equation (8.30) gives the solution Cp:)(co) of (8.25), once the constants
¢, are known. The lconstants ¢ are determined from the system of
linear equations (8. 3:2), which, when separated into real and imagi-
nary parts, yields a system of 2N equations for the 2N unknowns
Re Cy s Im e * The necessary condition to be satisfied by the coef-
ficients of this system for a non-trivial solution to exist is that a
ZN X 2N determinant of the form laij")\aij‘ should vanish, implying
that the spectrum of equation (8.25) is finite.

To conclude this section, we return to the basic eigenvalue
problem (8.1), (8.2) and state the following theorem concerning the

value v = 3/4.

Theorem 8.8. The value v = 3/4 is an eigenvalue of the problem

(8.1),(8.2) if and only if the region R can be mapped conformally by
a rational function onto the unit disc. If v = 3/4 is an eigenvalue, it

has infinite multiplicity.
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The proof of Theorem 8.8 may be found in §9, Chapter IV of
A. V. Bitsadze [257, on observing that the system of cquations con-
sidered by him are identical to the equations resulting from (8. 1)

here on setting v = 3/4 and replacing gz by -gz 5 y
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V. APPLICATION OF THE RESULTS OF CHAPTER 1V
TO THE KORN EIGENVALUE PROBLEM

9. The K-spectrum

(i) The circle:

Let the region R be a circle of radius r, with its center at

the origin. Then the mapping function w(p) , defined in §8, becomes

wip) = rp {9ul)
and the kernel 'T,‘(oo, U) given by cqu_at'icm. (8.26) is identically zcro.
Thus, the integral equation (8. 25) has no finite eigenvalues. In terms
of the eigenvalues v, this means that v =1, 3/4, 1/2 are the only
possible eigenvalues of (8.1), (8.2) for a circle.

Theorem 7.2 says that v =1 and W 1/2 are eigenvalues of
infinite multiplicity for any region, and so it remains to consider the
value v = 3/4. The fact that v = 3/4 is an eigenvalue of infinite mul-
tiplicity for a circle follows from Theorem 8. 8 given at the end of the
last chapter. It is of interest to give a direct verification here.

When v = 3/4, V(z) as defined by equation (8. 3) is given by

V(z) = -z9'(z) - {(z) m R, (9.2}
and V(z) must satisfy
V(iz) = 0 on B . , (9. 3)

Taking the complex conjugate of (9.2), we get

Viz) = - z9'(z)- (z) in R . (9.4)

Let g(z) be an arbitrary regular function in R, and define the regular



-48-
functions ®'(z) and {(z) by
p'(z) = =zglz) , (9.5)
Wz) = -r glz). (9. 6)

Then equation (9. 4) gives

izl = (@ = seisle) . (9.7)

and we see that

Viz) = 0 on B, (9. 8)
where zz = rz . Thus, the function V(z)} given by equation (9. 7),
where g(z) is an arbitrary regular function in R, has the required
form (9. 2) and satisfies the boundary condition (9. 3). Therefore,
v = 3/4 is an eigenvalue of infinite multiplicity for a circle.
For a circle, we have found that the spectrum of eigenvalues
v consists of the discrete set
¥ o= 1, 3/4, YZ , (9.9)
each occurring with infinite multiplicity. We now recall the trans-
formation Theorem 5.2, which says that if v is an eigenvalue for
the homogeneous displacement boundary-value problem of plane strain
for a region R, then, for v£ 1,
K = 1/1-v (9.10)
is an eigenvalue of the Korn eigenvalue problem for R. From (9.10)
with v = 3/4, 1/2, we find that K = 4, 2 are‘ eigenvalues of infinite
multiplicity for a circle. Recalling Remark 1 of §4, which says that

K = 1 is an eigenvalue of infinite multiplicity for any region, we thus
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obtain the result that the spectrum of eigenvalues K for a circle
consists of the set

K = 1, 2, 4 3 (9.11)
each occurring with infinite multiplicity. Thus, we recover the re-
sult of Payne and Weinberger [57, described at the end of §3 of this
work.

(ii) Regions mapped conformally onto the unit disc by a rational map-

ping.

Let the region R be mapped conformally onto the unit disc by

the rational function
z = wip) . (9.12)

Theorem 8.7 now says that the kernel of the integral equation (8.25)is
degenerate and that the spectrum of eigenvalues A of (8. 25) is finite.
I"he method of proof of Theorem 8.7, as outlined in §8, now affords a
means of explicit calculation of the eigenvalues A. We illustrate the
procedure in the following example.

Consider the mapping defined by

2
p + mp” (9.13)

1
N
i
=

©
N
i

xl+1x2

where the parameter m satisfies 0 Sm <3 . When the complex

variable p = els describes the unit circle y, (0 s s 27), (xl, XZ)

describes in the z-plane a curve B , with parametric representation

x, = cos s + m cos 2s ,
(9. 14)

XZ = sin s + m sin 2s .
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This curve is called Pascal's limacon. For 0 s m ‘“l , wip) is
regular in |p] <1 and w'(p) = 1+2mp £ 0 in |pl = 1. Then the rela-
tion (9. 13) gives the conformal mapping of the region inside Pascal's
limacon onto the unit disc. Notice that when m = 0, Pascal's limacon
reduces to a circle, while when m = %, the curve becomes a cardioid
with a cusp at p = -1, where w'(p) = 0.

For the mapping (9. 13), the kernel T(OO, o) given by equation
(8.26) becomes

1 2 ‘”‘Goﬂn(cz‘cf) m

Ty ;@) = { } = i (9.15)

2 e a Wl . R
® 1+2mo Uo @ U0 1+2m0o

which is independent of o - In the notation used in the proof of The-

orem 8.7, we have

T(Oo,o) = al(oo)bl(o) ; (9.16)
where
al(oo) = (9.17)
) & ot (9.18)
1t+2mo

I'rom equation (8, 32) we thus get
Gy = A SR (9.19)

where
N :-—-l—j'b (0 )a_ (o )do (9.20)
11 ZTI'i_Y 10" 170 o’ &

the latter expression coming from equation (8. 33). From equations

(9.17), (9.18), and (9. 20), using the fact that on the unit circle
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g =0 , we obtain
(8] (0]
1 meG i mO’()dO‘o
= - = %
Vit T T 2w —_ 2mi I o +2m (e
vy 1i2mo Y o
o
The integrand in (9.21) has a simple pole inside y at 0 -Z2m and
thus we find
5 T (9.22)
Ty . *
Using (9.22), equation (9.19) reads
| = A5 2t (9.23
¢; = c1 m |, 1 )
and so, if
2
L = £ 1/2m (9.24)

(9.23) admits a non-trivial solution for c¢. , that is, the integral

1

cquation (8.25) has a non-trivial solution Cp'o(p) 3

We recall from §8 that

A = K‘l = (3_4\))’1 . (9.25)

and so, from (9. 24), we find that the values

2 2

m 3 m
> Z+_ (9.26)

Vo= >

2
4
are eigenvalues for the basic problem (8.1),(8.2). Since the mapping
function w(p) in (9. 13) is rational, Theorem 8. 8 implies that v = 3/4
is an eigenvalue of infinite multiplicity for the basic eigenvalue prob-
lem (8. 1), (8. 2) for Pascal's limacon. Recalling Theorem 7.2, which
says that v = 1, 3 are eigenvalues of infinite multiplicity for any re-

gion, we have the complete spectrum



3
= ¢
1 1 (9.27T)

1 2
2’ 4 z
for Pascal's limacon, where the values 1/2, 3/4, 1 occur with in-
finite multiplicity and the other eigenvalues have finite multiplicity.
(See Theorem 8. 6. )

We now deduce the spectrum for the eigenvalues K of the
Korn problem, using relation (9.10) and the fact that K =1 is an
cigenvalue of infinite multiplicity for any region. In this manner, we
obtain the spectrum

2 (9.28)
142m 1-Z2m

where the values 1, 2, 4 occur with infinite multiplicity, and the
other eigenvalues have finite multiplicity. We note from (9. 28) that

the largest eigenvalue K for Pascal's limacon is given by

4
Krna.x = -z (2.23)
1-2m

We conclude this discussion by stating the analog of Theorem
8.8 (or the Korn cigenvalue problem: the value K = 4 is an cigen-
value of the Korn problem if and only if the region R c¢an be mapped
conformally onto the unit disc by a rational function. When K = 4 is
an eigenvalue, it has infinite multiplicity.

(iii) Some remarks on the largest eigenvalue K of the Korn problem.

The fact that the eigenvalues v of the basic problem (8.1),(8.2)

may accumulate only at v = 3/4, as shown by Theorem 8. 6, means
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that for a given region R, there exists a largest eigenvalue, say
N =W in the interval [}, 1). Relation (9.10) then implies that for
max

this R there exists a largest eigenvalue K, say K = Kmax’ given by

K 5 Teeeaemie—— . (9-30)

IFor a region which can be mapped conformally by a rational
function onto the unit disc, from the concluding remark of (ii) here

we obtain the lower bound

K z 4 (9.31)

max

for all such regions.

The example furnished by Ericksen to prove Theorem 7.3 il-
lustrates the fact that there is no universal upper bound on the largest
eigenvalue Knnax for all plane regions. To see this, we consider a
valuc of v arbitrarily close to one, say

v = 1-8 , (9. 32)
where 6 > 0 is arbitrarily small. Then, by Theorem 7.3, we can

construct an ellipse R with axes in the ratio

o i
Giv) = G -1) ©0.33)

such that v = 1-86 is an eigenvalue for R. Relation (9.10) now im-

plies that

K =

1 1
1-v ~ 8 )

is an cigenvalue for the Korn problem for this ellipse, the ratio of
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whose axes, as given by (9. 33), is arbitrarily large. Thus, for a
sufficiently long thin cllipse, the eigenvalue K given by (9. 34) is
arbitrarily large.

(iv) The relation between Korn's constant and the largest cigenvalue.

We wish to demonstrate here that the largest eigenvalue of the
Korn eigenvalue problem

(2-K)u

- = 0 i “
o, BB Kuﬁ,ﬁa in R, (9.35)

[(2-K)u =0 on B, (9.36)

Bt ﬂ_KuB, a]nﬁ

2
is in fact the Korn constant K (2)

R’ if we assume the completeness of

the eigenfunctions of (9.35), (9. 36). We recall that Payne and Wein-
berger [ 5] have established a completeness result for the special
cases of a sphere (three dimensions) and a circle.

From the previous results of this section, we know that the
eigenvalues of (9.35), (9. 36) may accumulate only at K = 4 and that
K = 1,2 are eigenvalues of infinite multiplicity for any region. For
the purposes of our subsequent discussion, it is convenient to order
the eigenvalues in the following way. Let Kn (n=1,2,...) denote the
scquence of eigenvalues ordered such that

wie i i 55 ”
K2<K4<"‘K2n 4 < KZn_1 K3<K1,(9 37)

where K, =1, K, =2, and K

5 4 is the largest eigenvalue. We let

1

1\'0 = 4 , which may or may not be an eigenvalue, depending on the

shape of the region R. (See the comment at the end of §9 (ii). ) The
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eigenfunctions corresponding to the eigenvalues Kl_ will be denoted by
N

(2) (4)

=

te) (k = 0,1,2,...) and we note that the special forms of u o,

H
are given in Remarks 1 and 2 of §4.

Let the vector field £ have square-integrable first derivatives

and satisfy the normalization condition

: ~f dA = 0 o O
1{( ap B, o’ Sate
We employ the bilinear forms
1
S(£, g) = 4l{(f0ﬁ: sty )8, gteg JAA (9.39)
(9.40)

D(iag) = J‘f g dA
. R a’!ﬁ uraﬁ

which appeared in equations (4. 46) and (4.47), respectively. We also

use the notation
(9.41)

S(£,£) = S(f) s D(f,f) = D(f)
) have the or-

According to Remark 5 of §4, the eigenfunctions u

thogonality properties ‘
s, o) = b,y = 0, 14 (9. 42)
We define the norm of f by
£l = [S(_f_)]% (9.43)
The Fourier coefficients of f are defined by
By S(_{,E(k)) (K= 0, 1,2, 0ee) 5 (9.44)
where the eigenfunctions u ) are normalized such that
(9.45)

s@™, 1) - @) -
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We adopt the convention that e, # 0, if Ko = 4 is not an ecigenvaluc

for R. The eigenfunctions E(k) are said to be complete if

(k)

n
lim S(f -2 ¢, u ') =0, (9.46)

n—aoo k=0 k

for all vector fields f with square-integrable first derivatives satis-
fying (9. 38)
Suppose now that the eigenfunctions E(k) are complete in the

sense of this definition. Equation (9. 46) implies that

= 3
S(£) = Zc (9. 47)
k=0

where we have used (9.39), (9.42), (9.44), and (9.45). Since the
(k

vector fields f and u ) satisfy the normalization condition (9. 38),

we may apply Korn's inequality in the second case to obtain

n
u(k)) < K(Z)S(f -2 c u(k)) ; (9. 48)
—. R =2 k= k_.

n
D(f -2 ¢
k= ke 0

0
@) .

where KR is the Korn constant. The inequality (9.48), in conjunc-

tion with equation (9.46), implies that

(k)

n
lsm D{f - Ded ") = 0. (9.49)

n—oo k=0

k
Equation (9.49) may be written as

n n
lim \:D(f) .20 cZD(u(k))- 22 ¢ D(f,u(k) )] = 0 , (9.50)
n-—aoo k=0 k=0

where we have used the orthogonality condition (9.42).
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To simplify (9. 50), we proceed as follows. By applying the
k
divergence theorem, we obtain, for any eigenfunction _\._1( ) with cor -

responding eigenvalue K'k y

(2-K, )D(f, Y o (i Kk)j‘f ulk gPpds-(2-K )_ff (lj)ﬁﬁdA
By (9.35), (9. 36) this reduces to

) k), (k) .. (k)

(2-K ID(£,u") = K j‘f oI, pds - 1{ Uy padh

(k)d B (k o
Kkjf o p', A = K f28(Lu 4% .7 i1
whence
pr, ™) = ks u™) = xe (9. 51)

for any f with the assumed properties. It also follows from (9. 51)

with ;f_ = _\}_(k) that

k
KkS(E( )) & Kk s (9.52)
Using (9.51) and (9.52) in (9. 50), we find that
. P
DE) = Z e K - (9. 53)
k=0

Comparing (9.47) and (9.53), we conclude that
D(f) = K,s(f) , (9.54)

since Kl is the largest eigenvalue. (See (9.37).) Thus, if complete-

ness in the form (9. 46) is assumed, it follows from (9. 54) that the
(2)

Korn constant KR coincides with the largest eigenvalue Kl
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It may be noted that Mikhlin in [19] considers the complete-
ness quc-.;tion for the cigenfunctions of the homogeneous displacement
boundary-value problem of three-dimensional, linear homogeneous
isotropic elastostatics. By adapting his analysis, it seems likely that
a completeness result for the Korn eigenvalue problérn could be es-
tablished.

{(v) The first case.

The eigenvalue problem associated with Korn's inequality in the
[irst case was described at the beginning of Chapter IIl. (See equa-
tions (5.1), (5.2). ) We noted that this problem could be directly identi-
fied with the homogeneous displacement boundary-value problem of
linear homogeneous isotropic elastostatics (in either two or three di-
mensions) if the parameter K was taken to be 1/v. Thus, the largest
eigenvalue of this problem corresponds to the smallest eigenvalue v.
Since \):é— is the smallest eigenvalue in [-é—, 1] for any region, we find
that K= 2 is the largest eigenvalue of (5.1), (5.2) for any region. As-
suming a completeness result for the eigenfunctions of (5.1), (5.2), we
rcecover the result that the Korn constant for the first casc is equal to
two for any region (see §1).

10. Upper Bounds on the Eigenvalues K

We recall here the integral equation (8.25), which reads, for

v £3/4, —
w(c)—w(co) }wo(c)

A 9 {
1
Cpo(go) T 2wi Yj' 300 0-04,

T do = 0, (10. 1)
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where
A o= (34wl . (10.2)
The uniqueness result of Theorem 8. 3 and the equivalence between
the complex variable formulation and the integral equation formula-
tion of the basic eigenvalue problem, as established by Theorems
8.4 and 8.5, now imply that the eigenvalues A of (10. 1) must satisfy
Ix] = 1. (10. 3)
We note that if A is an eigenvalue of equation (10. 1), then -X
is also an eigenvalue. This follows from the observation that if
t:p;(cro) is an eigenfunction corresponding to the eigenvalue A, then
it‘pé)(oo) is an e;igenfunction corresponding to the eigenvalue -A. The
corresponding result for the eigenvalues v of the basic eigenvalue
problem is given in Theorem 7.4, which establishes that the eigen-
values v occur in pairs of the form 3/4 £86 (0<8§<1/4).
A lower bound on the eigenvalues A, of the form
|l =242 =1, (10.4)
furnishes an upper bound on the eigenvalues K. This may be seen

from the fact that the eigenvalues v may be written as

v o= é—i L 0
Thus, from (10.4), we obtain
S 3, 1 3,1
Tatapg fita L8 d

and recalling that the eigenvalues Vv and the eigenvalues K are re-
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lated by
E = 1/l-9 ;4 (10.7)
we find that
4\
K < 2 (16, 5)
X -1 s
(o]

Some methods for obtaining lower bounds on the eigenvalues
% of the integral equation (10. 1) are given in the remainder of this
section. For this purpose, it is convenient to rewrite (10.1) as a
system of two real integral equations as follows. We introduce the
notation
; is
is o

o= e (0ss<27) , o0 = e (0ss = 2)
o o

2

. T(o ,0)0 = M(s ,s)+iN(s ,s) ,
2 o o o)

CP:)(U) = po(5)+iq0(5) : (10.9)

where T(O'O, o) is defined by equation (8.26). The integral equation

(10. 1) may then be written in the form

2
u(s )-A[ A(s ,s)u(s)ds = 0 , (10.10)
2 3 i s
where the column vector E(s) is given by
u(s) = { p_(s) ; (10.11)
qO(S)

and the matrix A(So’ s) is given by

N(s ,s) ~M(s , 8)

) (]

Als ,5) = (aﬁﬁ) (.N[(so,s) N(s , s) ) (10, 12)
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Suppose now that A is an cigenvaluce of (10.10), so that u(s)

is not identically zero and satisflies (10.10).

liet
2. 2
Hull = (p_+a_)* . (10. 13)
and
o A
Ha&ll = (T A 4AF | (10. 14)
where A~ denotes the transpose of the matrix A , that is, AT—
(aﬁa) and Tr B denotes the trace of the matrix B = (buﬁ) , that is,
Tr B = br‘fo . From equation (10.10) we have
2T
hats )1 = \xldf lacs . s)ll lus)llas (10.15)
and applying the Schwarz inequality we get
2T 2T
2 2 2 2
lats 1" = 2% ( [ llacs,, s)llas){ [lluts)||“as) . (10.16)
o fo!
0 0
If we now impose the normalization condition
2m 2
J Nus)|®as = 1, (10.17)
0
and integrate relation (10. 16) with respect to So’ we find
5 2w 2w > e ]
5% = Lj‘ j‘]]A(s ,8)||"ds ds ] . (10.18)
00 o o

Using definition (10. 14) and equation (10. 12), we may write (10, 18)
in the form
2w 2w . -1
2 2 2 g
I : s ds
A 2 ) J v+ NT)ds s

0 0

A

(10, 1))
Finally, using (10.9) to write
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‘ &l 2
M +N~ = -—1—2—11‘(5 ;81" ., (10.20)
(o]
4

we express (10.19) in the form
2m 2T |
B 2
XZ =z ZTI'ZLI ‘r ‘T(s ,s)l ds ds :l P Ll 210
5o 0 o o

If, instead of (10. 17) we impose the normalization condition

max Hus)|] = 1, (10.22)
se [0,27]

then, from (10.15) and (10.22), we find

2T 2T
HE(SO)” < |?\]j‘ ][A(so,s)\lmaxnu(s)l\ds = [7\} IHA(SO,S)HdS
" : 4 (10.23)
and using (10.22) again, we obtain
21
1 £ |A|max [||A(s ,s)||ds . (10.24)
s O .
o
Using (10. 14) and (10. 12), we may write (10.24) as
ZTI' 1 —1
|A] = [max j'[Z(M2+N2)]3ds] , (10.25)
s
o 0
or, using (10.9), as
1 2T |
2
Il = (@) Tr[msax £|T(so,s)|ds] ) (10.26)

(o]

Different lower bounds may be obtained by using iterated

kernels, as we now describe. Writing (10. 10) in the form
2T
u(s ) = kJ‘A(s , sha(s)ds , (10,
G (8] O O —

[
-1
—

it foliows that
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I r:

2m 2T
I j (s o t)A(L, S)Ll(s)ds di
0 O

that is,

21'r
E(SO) fA (s ,S)E(S)db‘ . (10, 28)
where
2T
A (s ,8) = [A(s ,t)A(t, s)dt . (10.29)
1" o 0 o}

Treating equation (10.28) in the same way as we dealt with equation

(10.10), we obtain the lower bounds

ZTr 2t 2 =1
f fHA RN dsdsojg , (10. 30)

corresponding to (10.18), and

2t -1
[max J“ 1A, (s ,s)HdsJ : (10.31)

which corresponds to inequality (10.24).

It seems difficult to evaluate the relative merits of the lower

bounds (10.21), (10.26), (10.30), and (10.31) in general, but some

indications may be found from the particular case of Pascal's lima-

con, treated in §9, for which the exact eigenvalues are known. Thus,
from (9.24) we have the eigenvalues
1
e B R esEees 5 (18, 32)
2
2m

and the kernel T(Uo, o) is given by (9. 15), which reads
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m "
T(co,cr) S . (10.33)

1+2mo
is I
where 0 = e (0 <s = 2r). Thus, the kernel is independent of ©
: o}
18

e °. We now evaluate the integral appearing on the right side of

inequality (10.21). Let

2T 2T 2 2T 5
1= [ [T ,s)|%asds_ = 2m [ |T(s ,s)|"ds . (10.34)
5 0 o o N o

We write I as a contour integral around the unit circle, that is:

= 2
2w TT m 2w - do :
L Tg o 99773 Yj‘(1+2mo)(o‘+2rn) ; I S

The integrand has a simple pole inside y at ¢ = -2m , and so, by the
Residue Theorem, we obtain

Z &

T g S ) (10.36)

2
1-4m
Recalling the definition of I from (10. 34), the inequality (10.21) be-

comes

y B e . (10.37)

The right hand side of inequality (10.26) contains the integral

2 2 ds 2 5 2
IlT(so,s)Ids :mf s = mj](1+4m +4m cos s) % ds ,
0 0 ‘1+2me 0
which may be written as
4m
i K(k) , (10. 38)

where K(k) denotes the complete elliptic integral of the first kind,
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e 2 o
K(k) = [ (1-k" sin"8) %a6 , (10. 39)
0
and k is given by

L

2(2m)?
= — v 2 )
K 1+2m (10. 40

Thus, the inequality (10.26) reads
IA] = (2)%1r(l+2m)[4mK(k)-|-1 . (10.41)
For the first iterated kernel Al(so, s) defined by equation
(10.29), it may be shown that

2
HAl(so,s)H « 2 Kl b . (10. 42)

27 (142m)  |1+2me |

for the case of Pascal's limacon, and that the inequality (10. 30) im-

plies that

=

2 2 2 ol
AT 2 (1-4m”) (1+2m)r[4m " K(k)] ; (10. 43)

Using (10. 42), it can be shown that (10.31) im’plies

l)&| z (2.)%1-r(1+2m)[4rnl§’.(k):]—1 , (10. 44)
which is the same as (10. 41).

From relation (10.4), we know that the eigenvalues ) of the
integral equation (10. 1) must be such that
]l = 3 & (10. 45)

For the particular case of Pascal's limacon which we are considering
here, the inequality (10.37) implies (10.45) only for values of the pa-

rameter, m which satisfy
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£
mz <1/6 , thatis, m < .408. (10.46)

Inequality (10. 43), which uses the first iterated kernel, implies
(10. 45) for values of m such that

m <. .42 , | (10.47)
while (10.41) [and (10. 44)] imply (10.45) for

m < .46 . (10.48)
The reason why the inequalities (10.37), (10.41), (10.43) fail to pre-
dict result (10.45) for all values of m in the interval 0 S m < 3 is
that the right hand sides of the above mentioned inequalities tend to
zero as m tends tc; 1. . The underlying reason for this behavior is
the presence of the quantity [Wc_) ]_1 in the kernel T(Uo, o). (See
equation (10.33).) As m -1, w'(g) » 0 when o= -1. Attempts to

remedy this defect and to obtain useful bounds for general classes of

regions, say, for convex regions, have so far proved unsuccessful.

"We recall from (9. 13) that m lies in the interval 0 < m < 3.

R 1, k in (10.40) tends to one and K(k) ~ oo .
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VI. THE EXTENDED MAIN CASE OF KORN'S INEQUAILI'TY

11. Derivation of Eigenvalue Problem

In this chapter, we consider the extended main case of Korn's

inequality, as formulated in §1:

D(u) € K (o) S(u) (11.1)
for all u satisfying
Ju —u yav - 0, f11.2)
R W) bl
1

, (11.3)

B = 18 o2 3, i= 1,2, 3)
where ¢ is a real paré.meter such that -1 <o <3. As we remarked
in §1, if the vector field u is regarded as an infinitesimal displace-
ment field in an homogeneous, iscotropic elastic solid occupying R,
then (11.3) are the displacement equations of equilibrium in the case
of zero body force, where 0 is taken to be Poisson's ratio.

For the special value o = 0, the extended main case reduces
to the main case which was employed by Friedrichs [17]. In the ap-
plication of Korn's inequality which motivated the present investiga-
tion (see Chapter 1), the vector field u to which an inequality of
the form (11. 1) is to be applied is known to satisfy the differential
equations (11.3). With a view to obtaining the optimum Kl in (11.1),
the side conditions (11.3) are therefore natural ones to consider.

Our reason for investigating the extended main case thus differs from
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i L“llcdrichs‘ motivation for introducing the main case in [17, where it
was employed solely as a device in the proof of Korn's inequality in the
second case.

For the extended main case, we now carry out a program
analogous to that developed in Chapters II and III for the second case.
To this end, we begin by posing the following variational problem.
Find

D(u)
sup () :

(11.4)

where the supremum is taken over all vector fields u such that S(u)
£ 0 and (11.2) and (11. 3) hold. Introducing the constant Lagrange
multipliers K and uij (uiJ = 0 for i = j), we consider the functional

Tlu) = D(u)-KS(u)-u,; [ (u, LA (11.5)
R ? ’

A necessary condition for a stationary value of J[E] is that

K
8T = J.ZL_L 6u, dV - > I(u. B ¢ 78
R 1 R 1,] J

J(du, +éu. )dV
Js Js 1 1, ]

= -6 = O . =
u,lJ 3 6uj,_i)dV (11.6)

] (6.
R

The first variation 6u must satisfy the constraints (11. 3), that is,

1
Su, ., + du, ..
1, 1] 1-20 Js )1

= 0@ in R . (11.7)

Introducing the Lagrange multipliers )\i(f) and using equations (11. 6)

and (11.7), we find that du must satisfy
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%(u tu, M 6u, | FOu, i)—p‘j_(l‘}u._ ~ou, )

f[Zu_ i&u, i i i i
] > ' ) ‘] ‘: » l-, 3 1
R J J J ] J J J J J

1 ] :
& )Li(ﬁui, jj+ 1 70 6uj,ji). dv = 0 ,

which we rewrite in the form

IlZu_ _bu, _—'—}P-{-(u_ Au,  N6u, +6u, )-pu, . (du, _-du. )
« bt i & ik Js1 ’ i ij i, 3 i
R
$ A 080, Ao Gu 46 )Jav = o (11.8)
o - e = . S
i ui, ij l-2¢0 u}, ji Je i

Applying the divergence theorem to (11. 8), we obtain

j[éu.{(K—Z)U. FEu, . Feba, A .- o du, A .-\, .bu, .]dV
j iy dd i, ij i,ji,j 1-20  3,ji,i 41,j j,1

20
AL =, s A . oF + ]
7 HJl}nl 1(5“1,J auj,i o 6uk, kéij)nj ds

+j[6u.{(2_1<:)u; -Ku,
B J J’ 1 1!

e B, {11y 9)
Applying the divergence theorem once more, we find from (11.9) that

‘J‘[au,{(K_z)u_ AR, AL, ek } ]dv
R i j, il i,1] jJ. i1 l-20 1i,ij

N 20 I
2. - Pl ol ol A0, Fop 5
igtauj{( K)uj, i Kui,j ui_} qu ()\1,3 j,i 1-20 7\k, kuij)fni

20 ]
+ s = 2
+ )\i( 6ui,j Guj’ i+ 1720 6uk’ kéij )nJ ds 0 (11.10)

We now introduce the '""'surface traction' 8T associated with 6u as

o
i = + + o e
6'1i (6ui,j 6uj’i -5 5uk, kﬁij)nj on B (11.11)

Thus, equation (11. 10) may be written
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Jilﬁu.{(KwZ)u, LAKu, A ..”*“""""1‘“_.)\_ } }dV
] j, il i, 1j j, it 1-20 4, 1j/ -

'le [ i
; . - = o (N bk,
’I\ e e e Tl W W zn )‘kk LJJ
+ éTiki]dS o B . (11.12)

Since the quantities u, and 'I‘i may be specified independently on the
boundary B, the standard arguments of the calculus of variations may
now be applied to (11. 12) to show that the extremal field u and the
Lagrange multiplier A must satisfy the Euler equations

1

. i Ky o i T .13
(2 K)uj,ii Kui’ s, i Tae )\i, i in R, (11.13)

and the natural boundary conditions

A, = 0 on B , (11.14)

and

= 20 J
- - 7 = - + =0 . .
\W(& K)uj’ i Kui,j uij Hji ()\_l’ j+>\j,i T o )\k, kaij) . on B. (11.15)

The extremal field u must also satisfy the constraints
Ju, -u, av = 0, (11.16)
R B3 Ji

and

1
+ :
ui, i Ts2@ uj, jt

= 1 in R . (11.17)
In a manner similar to that used in §3 , it can be shown that

the constant Lagrange multipliers “ij satisfy

and thus we arrive at the following Korn eigenvalue problem in the

ecxtended main case.
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Ihind a pair of vector fields u, XA , with u non-trivial, such
that
_ & 2 . :
(2-K)V u-KV(V-u)-V A- T V(v-X) = 0 in R, (1 s 1793
VZ ok L AV u) = O in R (11.20)
=" 7120 L w ? .
[, ~u, JdV = 0, (11.21)
R L) J.1
A =0 on B , (11.22)

and

\(Z«K)u, ~Kua, .-(A, +X, . =
: I, 1 ;] i, i j.1 1-20

Biikk,k)]ni =0 on B. (11.23)

By a non-trivial vector ficld u we mean u non-constant and by a non-
trivial vector field A we mean A not identically equal to zero in R.
In the next section, we shall describe some properties of the Korn
eigenvalue problem (11.19) - (11.23) for the cése of two dimensions.

12. Some Properties of the Eigenvalue Problem in Two Dimensions

Ienceforth, we confine our attention to two-dimensional simply-

connected regions R and we write equations (11.19) - (11.23) as

o 1 o )
(zl—h)ucn’ I3£3“Ku{3,{fin.“xa, 8p” Ton }\B’ﬁ‘a =0 dn R, (12. 1)
e in R 12. 2
Yo, 88 T 1-20 B, Ba 5 . (Rt 22
I(ua’ﬁ—uﬁ’a)d[& = 0 , (12.3)
R
A o= O on B, (12. 4)
o, ‘
and
[(z K) Ku -0 4h, +=22_ 5 % )ln =0onB, (12.5)
BT B e e, B B, 1-20 Japly,y d g 0 TP ’



o e

where the Greek subscripts range over the integers (L, 2). We have
the following remarks to make concerning the cigenvalue problem
(12, 1) ~ (12.5)
Remark 1. If K#£1, 1/0, oo, then the vector fields u, \ satisfying
(12.1) - (12.5) are either both trivial or both non-trivial.

Suppose that u is trivial. Then from (12.1), (12.4) we find
that A satisfies

v A+

T 50 Y(i¥=x) = O in R, (12.6)
A =0 on B . (12.7)
'Thus, A satisfies the homogeneous displacement boundary-value prob-
lem of two-dimensional isotropic elastostatics. Since by hypothesis,

o lies in the interval -1 <0 <3 , the uniqueness result of Theorem
7.1 implies that A is trrivia.l.

Suppose now that the vector field A is trivial. Then, from

(12, 1),(12.2),(12.5) we find that u satisfies, for K # oo,

(z-K)v‘a_g_ KY(v-u) = 0 in R, (12. 8)
Py 4 — 9(v-u) = 0 in B 12
vty ) = in . (12.9)
and
[(Z_K)uu,ﬁ_Kuﬁ,a]nﬁ = 0 on B . (12.10)

Equations (12. 8), (12. 9) imply that

2 .
Vu-=20 and V(V-u) = 0 in R, 12, T1.)

unless
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% 2-K -K { _ 2(0-Ko) (12, 12)
l 1 1 L2 l ) t-eo ” . h

Thus, it K# 1/o, from (12.11) we obtain

(ua,@ﬂuﬁ,a) 5 s & i R,

which implies that

u -u = constant in R .
ap B, o ‘

The zero average rotation condition (12. 3) now implies that

= in R . 12.13
Y, uﬁ,o: m ( )

Using (12.13), the boundary condition (12. 10) may be written as

2(1-K)u n 0 on B . (12. 14)
o, BB ‘
Thus, if K#£ 1, 1/0 , the vector field u must satisfy
v l_{ by O in R (12. 15)
and
811&
- B ) ‘ 3
ua’ (511{3 e on B (12.16)

By the uniqueness result for the Neumann problem, we see that u
must be trivial. This completes the verification of the assertion made

in Remark 1.

Remark 2. K = 1 is an eigenvalue of infinite multiplicity of (12. 1) -

(12.5) for any region.

We take A to be identically zero and u = (ul, uz) , where o

P, u, = -y and ®, | are conjugate harmonic functions. Direct calcu-

lation shows that (12.1)-(12.5) are identically satisfied for any choice
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of 4, ¢ .
Remark 3. K = oo is not an eigenvalue of (12.1)-(12.5).

When K= oo, (12.1)-(12.5) become

’ = @ i Zow
a,ﬁﬁ+uﬁ,ﬁa in R, (1 17)

1 ) .
uﬁ-,ﬁﬁ + —~r uﬁ,ﬁ& = 0 in R, (12.18)
‘f(u&,ﬁ-uﬁ’a)dA = 0 , (12.19)
R

A= 0 on B, (12.20)
and &

["_ua, l3+uﬁ, a]nﬂ = 0 on BB . | (12.21)

If ¢ = 0, then (12.17), (12.18 ) coincide and the proof of Remark 3, §4
may be directly applied in the present case to show that u is trivial.

Suppose now that 0 # 0. Then (12.17), (12.18) imply that

=0 and u = 0 in B . 12,22
%, BB B, B ( .
Thus, we obtain
u = i) R
(o ™ U8, o madhel
» B
which implies that
um,‘_s - u.ﬁ, & = constant in R .
The zero average rotation condition (12. 19) now gives
= W in R . 1.2. 23
%a, B B, w ( )

Using (12.23), the boundary condition (12.21) becomes

8ua
auu,,{inﬁ = & e

0 on B . (12.24)

"See footnote, page 21.
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Tquations (12. 22) and the boundary conditions (12.24) imply that u s
{rivial.

Remark 4. (i) The eigenvalues K of (12.1)-(12.5) are real and K= 1.

(ii) Every solution of (12. 1), (12.2), (12.4), (12. 5) satislies
the normalization condition

ftu  L-u, )dA = 0
a, B B,a
R

The verification of the assertions made in Remark 4 presents
no difficulty and will be omitted.
Remark 5. When the parameter K = 1/0, the problem (12.1)-(12.5)
reduces fo the Korn eigenvalue problem in the second case.

When K = 1/0, equations (12.2) and (12. 1) imply that the
vector field A\ satisfies

A = 0 in R, (12.25)

a.pp T 1-20 "B, pa

A = @ on B . (12.26)

Thus, A satisfics the homogeneous displacement boundary-value
problem of plane elastostatics with -1 <0 <3 , and so by Theorem 7.1,
A is trivial. With \ trivial and K = 1/0 , the problem (12.1)-(12.5)
is exactly the Korn eigenvalue problem (5. 3), (5.4) in the second case.
Using the results obtained in Chapter V on the K-spectrum for
the second case, we may assert the following with regard to K= 1/0

in the extended main case:
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(i) If -1 <0 =0, K=1/0 is not an eigenvalue of (12. 1)-(12.5)
for any region.
(ii) If 0<o<1/4 or 1/4<0c<1/2, K=1/0 may be an eigen-
value of finite multiplicity.
(iii) If 0 = 1/4, K =4 is an cigenvalue if and only if the region
R can be mapped conformally by a rational function onto the unit disc.

When K = 4 is an eigenvalue, it has infinite multiplicity.

13. Transformation Theorems

In this section we state and prove theorems which establish an
equivalence between the Korn eigenvalue problem (12.1)-(12.5) in the
extended main case and the displacement boundary-value problem of
plane strain in linear isotropic elasticity. We first show that the
vector fields u and .)i which satisfy (12.1)-(12.5) are expressible in
(1) (2)

L

terms of vector fields u s which satisfy uncoupled homogene-

ous displacement boundary-value problems with suitable respective

(1)  (2)
B e

Poisson's ratios v,

2
Theorem 13.1. Suppose u, A e C (R+B) and satisfy
1

(Z—K)ua’ ﬁﬁ_Kuﬁ,ﬁa_)La,ﬁﬁ- T )\ﬁ, B =0 in R, (13.1)
+——1 =0 in R (13.2)

“a,pp ' 1-20 B, Ba il '
A =0 on B, (13.3)

and
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p
Fils)
(2-K - - +A e vl Y . 0 on 13, (13.4
| ( 1\){.1&"3 Kuﬁ,a (?\a’ﬁ & o 156 Q(}.ﬁ Y’\"Hnr3 50 ( )
where o0 is given, -1 <0 *’;é . Suppose K # 1, 1/0, o and define the
1 2 |
real numbers ,A( ), A( ) by
1
Z(l—Zo)(l—KU)A( ): -2(0-1)(1-Ko)-(1-20)(K-1) ~
2 2 2 2.3
+[4(0-1)"(1-Ko) +(1-20)"(K-1)"1%,
2) > (13.5)
2(1-20{1-Ko)A = -2(0-1)(1-Ko)-(1-20)(K-1)
2 2 2 &
-[4(-1)"(1-Ko) +(1_Zd)(Ksl)2]a.
. ; ‘ ——— vt o ol (1) (2) 2
'hen there exist two vectlor fields u °, u ¢ C (R+B) such that
R |-
> - _ - -
(i) 2A ua,ﬁ = K(u‘B’ a ua’ﬁ)+2(1 K)uﬁ, “ 2(1 K)e‘SC‘ﬁuY’Y
(8) 2(1-0) :
. T | S2AYTN 4 , (6=1,2
( g, a c.,ﬁ) P 1-20 P v,y ( )
(13.6)
2 (& 1 &
(ii) v u( )+—--— V(V-u( )) = 0 in R , (13.7)
= (5) e
1-2v
(i1i) _\.1(6) = 0 on B , (13.8)
whereo
l-o
WO =gt (a)) (6=1,2) (13.9)
A
Proof of Theorem 13.1
. . . {1y (2 .
We first show that there exist vector fields u ', u satisfy-

ing (13.6). For 6 =1 or 2, let



=T8=

11 K(u -u 5,HZ.([—K)U.

-2(1-K)6
ap B, o af B, ( \)‘Gl .

3 v, Y

g b8 2{1=er) ‘
“Pp, 0, 3PN et 120 Pty v (15 10)

where A(ﬁ) is defined by (13.5). Direct calculation shows that for

§ =1 o 2
& @ 11(5) :H(ﬁ) _H(ﬁ) = w2(I-Ku +[4(1-0‘) -ZA(b)J)\
prt By pB, v BB,u VM,V Ys YH 1-20 Y> YH
-(2-K)u +Ku +2(1-K)6 u —(l-ZA(G)))\ +A
Ms VYV V, UV VH Y,YV VoV, VY
& -%M & = = (2K )a +Ku +A + ) A " (13.11)
1-2¢0 VY, YV s WV VyVEL WV 1-20 Ty, v
where we have used the identity
e € = 6 & -6 & 13. 12
Pl BV PR UV pv uP ( )
Since u, A satisfy (13.1), it follows from (13. 11) that
1(6) =0 | R . (6=1,2) (13, 13}

e € =
P BV pB, v
Multiplying (13. 13) by CG-U« and using (13. 12) contracted on [, v we

find that

g8 - g8 48

= = = 0 . . )
By aB, v @¢l, 2 w2, 1 in R (13.14)

Equation (13. 14) and the simple connectivity of R imply that there

(1) (2)
=

2
exist functions u ’, e C (R+B), unique to within an arbitrary

additive constant, such that

4 A0) (8)  _.(8)
2A ua,ﬁ = HCL@ .

where foéﬁ) is given by (13.10). Thus, (13.6) holds.

(6= 12} (13.15)
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To show that the vector ficlds 2(5) of (13.15) satisfy the

equations (13.7) with \1(6) given by (13.9), we procced as [ollows.

Equations (13.15),(13.10) provide, for 6§ = 1 or 2,

, o (807, (8) (6), (5) =1 (a) . .

2A ) ,Bpi-A {A (l-2oj=2{l-0)} _l~ (2« K)up’uﬁ—i{ua’ﬂﬁ
- (6) 2(1-0)

_2(1-1\)uY’Ya+(}.—2.A ”‘c,,ﬁﬁ' 5, +—l_ZG oo

(5),  (5) -1 4(1-0) , ,(8) .
AV 1A% 20)-20-0)) [~2(1-K)uy’ya+{——-—~—-—— 2A }AY,WJ

1-20
k ~l{‘.la,{3p+[sz(_L_K)A(6}{A(6)(1~20)—2(1—%7)}_1“}“\{,\{&
+-2a'® A apt -1—_—;—5 R YOL) ‘= [(1—ZA(5)j(2‘K)"K]ua’B@
¥ [ZA({.S)K-Z(LK)A(&)[A(a)‘l‘ZO)"z(l“c)}Fl]uy, va § i

where we have used (13.1). The right hand side of equation (13. 16)

may be written as

+f(A(6),K,G)u i (13.17)

() o
[1-2A'")(2-K)-K][ o BP 8, Ba

where
f(A,K,o) -
2AKA(1-20)-2K(l-0)-(1-K)] [(l-ZA)(Z-K)-K]ﬁl[A(l-Zo )~2(l-—(5)]— . s

(13.18)

Now from the definitions (13.5), it is readily verified that A = A(l)

(2)

and A = A are the roots of the quadratic equation

A%(1-20)(1-Ko +A{2(0-1)(1-Ko )J+(1-20 (K-1)}+(0-1)K-1) = 0 .  (13.19)
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By making use of this observation, it can be shown that for 6 = 1,2 ,

! =1 .
f(A(ﬁ", K, ¢) has the value (1-20) ~, and so, by (13.17), we (ind that

the right hand side of equation (13.16) is equal to

o 6T i 1 ‘ ; o
[{1-ZA )(8-].()--1{_][_;1&’ 8p +-~—~—1_ZU uﬁ’ml (13.20)
= 0 , (13.21)

by virtue of equation (13.2). Thus, for 6§ = 1 or 2, wc have shown

. (86) ’ s 5 (6) .
that the vector fields u satisfy equations (13.7), with v given
by (13. 9).

To establish the boundary condition (13. 8), we note that ¢ _n

B v
is tangent to B so that by (13.15) we have for 6§ =1 or 2,

(6)

du
sx08) " p . (8)
2A e = HPB eYﬁnY on B. (13.22)

We thus obtain, with the aid of (13. 10) and (13. 12),

(8) ‘
du
(6) p (8) (8) .. (8)
2A = e H = (H ~H > %6
“ou ds epu B pﬁnv ( yu BB MY Y

: (2-K)u -Ku +A - - AL A

M, Y YoM YsH MY 1-20 0 p,p oy

ﬂZA(é)()\ ) n on B . (13.23)

-A 6
Y: B pop MY Y
/
Since eYﬁnY is tangent to B, for anyvector field A we have
dx
dakt. 48

€ € € A A = N n on B , 13. 24
pp ds Pl YB Y P, B ( ;

-A )
Yau BByl y
where we have used the identity (13.12). The boundary condition (13.3),

in conjunction with (13.24), implies that

(A = 0 on B. (13.25)

= § n
Y.u BB uy vy
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Thus, we may write (13.23) as

dy (8
(8) M 20 %
24%% —P . - [(2-Kju -Ku =~{A 4N +——35 )In
pu ds M, Y Yol YoM WY 1-20 uy pp Ty
o O . on 13 ’ (lj. 2.()_)

by virtue of the boundary condition (13.4). Multiplying (13.26) by

o and using (13.12) contracted on v,y we get

L ;
k du(b)
sasPd _ B o B on B (13.27)
, s 3 . %,

By choosing the arbitrary additive constants suitably in the construc-

{6) .

tion of u in (13.15), we may arrange that the boundary condition
(13.8) holds. This completes the proof of Theorem 13. 1.

We also have a converse result to Theorem 13. 1 which, when

(1) (2)
1

given two vector fields u satisfying displacement boundary-

value problems, enables us to construct vector fields u, A satisfying
the Korn cigenvalue problem (13.1)-(13.4). We statc this result as

follows.

(1)

Theorem 13.2. Let A {1) (2)

2 1. A(Z) £ 1 be real numbers (A = A )

such that

2 Z
@) 20-1)81 134018401 B 20-1)a%) +(3-40)a% (o -1)
2 B 2
~otl-20)AM 4 01-26%) A4 (6-1)  -01-20)8%7 +1-20%)a1% 1 (0-1)
(13.28)
' (6) 2 _—
(ii) For & =1 or 2, suppose that u e C (R+B) and satisfies
Vzu(ﬁ) +—1—- V(V-E(ﬁ)) = 0 imn R, (13.29)

- 1-2\)(6)
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2(6) = 0 on B , (13.30)
where
l-o .
\;(6) = 0+ “(-Tg'j-)" = (13.31)
' A
S : . : . 2 i1y ) .
I'hen there exist vector fields u, A ¢ C (R+DB) related to u ", u by

(13. 6) and satisfying equations (13. 1)-(13.4) of the Korn cigenvalue

problem with
2
(6) . (5)
% (20-1)A +(3-40)A +(c-1) . 16 = 1,2) 113,32}

2 :
-0(1-20)A Z)A(S)

Y 51130 +(o-1)

The proof of Theorem 13.2 proceeds along lines similar to
that of Theorem 13.1 and will be omitted. We return now to Theorem

13.1 and make the following remarks concerning the range of values of

\)(U) , (6 = 1 or 2) defined by (13.9). As we shall show presently, de-

: 1
pending on the location of K and ¢, one of the two parameters v( ) o

(2)

Y will always lie in the range for which the displacement boundary-

i

value problem has a unique solution. Thus, in Theorem 13.1, either

(1) (2)
u or u

will be identically zero, so that we arrive at an equiva-
lence between the Korn eigenvalue problem (13.1)-(13.4) and a single
displacement boundary-value problem. We state this result as follows.

Theorem 13.3. Let u, A be non-trivial solutions of the Korn eigen-

value problem (13.1)-(13.4) with eigenvalue K / 1/0, 1. Let the
(1) (2)

vector ficlds u 7, u be as in Theorem 13. 1.
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(i) If -1<0cs0, then L_l(z)‘-ﬁ 0 and E(l) is non-trivial.
(ii) If 0<o<} and 1<K-1/a, then }_.(2) 0 and 75._“) is non-
trivial.
(iii) If O0<o<} and K>1/0, then E(”:’"’ 0 and _Li(z) is non-
trivial.

Proof of Theorem 13.3

2
The range of values of \)(1), v( . defined by (13.9), will de-

(1) ,(2).

pend on the range of values of A respectively. We first of all

(1) ,(2)

examine the behavior of A" 7, A as functions of K for fixed 0 in

-1 <0 <}. Tothis end, we introduce the quantity

1 K-1
x =g ( l-K(J) : (13.33)
. L (1) (2)
Rccalling the definitions (13. 5) of A and A" ', we have
2 1
(1) 1-g [ 1-0 zT
AT = oo - Xt (755) + X y (13.34)
2,3
(2) l-o [ l-o 2]
= - - + = o
A 120 X ( 120 ) X (13. 35)
We set
1-20
. X , 3,3
y ( T ) (1 6)
and write (13.34), (13.35) respectively as
(1) T i 2 3
: - * 3.3
A T35 Ll-yH{lty )11, (13, 37)
(2) L& 2.3
- = e + - 3,3
A = [1-y-(14y")*] (13.38)
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The range of K of interest in (13.33)is K> 1.

From equations

1
(13.33), (13.36), (13.37) and (13. 38) it may be verified that A( ) and

(15.39)

A(l) satisfy the i'oll@wi’ng inequalitics.
1) If -1 <o £0 , then
A(Z) < 0 ,
and
i a8 A(l) & 2(1-0)

1-20

(13.40)

(ii) If 0 <o <3 and 1 <K < 1/0, then

2
A( ) < 0 ,
and
L6, o all} . 2i1=0)
| B o l-2o
(iii) 1f 0 <o <} and K> 1/0, then
_ LJ2)  1-0
h % S 1-2a
and
2(l-0) (1)
120 &
We recall now the definitions
4] 1=
8 _ g dice)
A

(13.41)

(13.42)

= (13.43)

(13.44)

(8)

(13.9) of v (6= 1 or 2) as

s (13.45)

Using the inequalities (13. 39) - (13.44), we deduce the following in-

(2)

- (1
cqualities for v and v .

(i) If -1 <o = 0, then

> (13.46)
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and
Lagitlagy | (13.47)
(ii) f 0 <o <% and 1 <K < 1/0, then
@) & 2 (13. 48)
and
i < o e s (13.49)
(iii) If 0 <o <% and K > 1/0, then
1-a < v'%) <1 . (13.50)
and
\)(1) < % (13.51)

From Theorem 7.1, we have the following conclusion with re-
gard to vector fields 2(6) satisfying the homogeneous displacement
boundary-value problem (13.7), (13. 8):
1f \;(5)<§ or \;(6)> 1 , then E(‘c’) 2 g {13.52)
The result (13.52), in conjunction with the inequalities (13.46), (13. 48),
and (13.51) establishes the statements (i), (ii), and (iii) of Theorem

5
13. 3 concerning the identically zero solutions B_( ). The relations

(13.6) of Theorem 13. 1 may be uniquely inverted to express )\rx

E3’
u in terms of u(a) . Since u, A are non-trivial, we sece that both
Y, M Ps A _ —
u(l) and u(z cannot be trivial. This concludes the proof of Theorem
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Theorem 13. 3, together with Theorem 13.1, enables us to
construct a non-trivial solution of the homogencous displacement
boundary.value problem (13.7), (13. 8) with a certain eigenvalue v,
when we are given a non-trivial pair u, A satisfying the Korn eigen-
value problem (13.1)-(13.4) with eigenvalue K. A converse to this
result may be formulated by using Theorem 13.2. Our interest in
this work is mainly concerned with the ecigenvalues and we wish to
state the following theorem, which may be established by utilizing the
preceding results of this section.

Theorem 13.4. Let v be an eigenvalue of the homogeneous displace-

ment boundary-value problem of plane strain

2 1
v
% 1-2v

V(V-w) = 0 in R , {13, 53)
w = 0 on B, (13. 54)
with $ £y <1. Then

2 2
9 28y~ -3V -
Ky, o gv-v +3v-1

> (13%.55)
(L-v)(20 -204v)

is an eigenvalue of the Korn eigenvalue problem [ (13.1)-(13.4)] in the
extended main case. Conversely, let K be an eigenvalue of (13. 1)-
(13.4).

() If -1<os0 orif 0<g<3 and 1 SK<1/0, then

2(1-0)(1-20)(1-Kag)
_2(0_1)(1—K0)—(1-20)(K-1)+[4(c-1)2 (1-Ko )2+(1—2c7)'2(K-1)2 ]%
(13. 56)

vV =0+



S T
1s an eigenvalue of (13.53), (13.54).
(b) If 0 g <4 and K> 1/0, then

2(1-0)(1-20)(1-Ko)

W s & # '

_2(0-1)(1-K& )= (1-20 (K-1)- [4(0-1)° @Ko P +0-20) 2K -1)*1°
(13.57)
is an eigenvalue of (13.53), (13.54).
(¢c) If 0<o <% and K =1/0, then
Vv = l-0 . (13.58)

is an eigenvalue of (13, 53), (13. 54).

We conclude this section by making some remarks concerning
Theorem 13.4. Further discussion of the results obtained here will
be given in the next section. When v = —é , the equation (13.55) yields
K(3,0)=1 é,nd the result checks with Remark 2 of §12. Conversely,
substitution of K =1 in (13.56) yields v = % , and the result is con-
sistent with the fact that v = 3 is an eigenvalue of (13.53), (13.54) for
any region. Assertion (c) of Theorem 13.4 states that if K = 1/0 is
an eigenvalue of (i3. 1)-(13.4), the1-'1 Y= -1—1{ is an eigenvalue of the
displacement boundary-value problem (13.53), (13.54). In view of our
Remark 5 of §12 concerning the value K = 1/0, this statement is
equivalent to Theorem 5.1 concerning the Korn eigenvalue problem in

the second case.
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14. Discussion of the Results of §13

The results of §13, which casta‘hliﬂh an equivalence between the
Korn ecigenvalue problem in the extended main case and the displace-
ment boundary-value problem of plane strain for simply-connected re-
gions, enable us to deduce properties of the K-spectrum from the
known results on the v-spectrum for the displacement boundary-value
problem, which were given in Chapter IV. We recall here equation
(13.55),

2 2
e .
By, o) = SeceDbl t2N=0 (14.1)

(1-vN202-20+v)

which relates the eigenvalues v to the eigenvalues K. It can be
shown that, for fixed ¢ in (-1,%), K(v, 0) is a monotonic increasing
function of v in [, 1). Thus, the largest eigenvalue K. of the Korn
problem is obtained by using the largest eigenvalue v in the interval
‘lj, 1) of the displacement boundary-value problem in equation (14. 1).
We consider first the case of a circle and state the following result.
(i) The circle.

From equation (9. 9) of Chapter V, we know that for a circle,
the v-spectrum consists of the discrete set v = 1, 3/4, 1/2, each oc-
curring with infinite multiplicity. Thus, from Theorem 13. 4 we de-
duce that the K-spectrum for a circle in the extended main case con-
sists of the values

1602 -240+11
80%_80+3 #

Kig, o) = 1 , Ki(83/4,0) = (14.2)
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each occurring with infinite multiplicity. The largest eigenvaluc is

2
R{3/4,0) = l6éo -240+11 ' (14.3)

802—86+3

which lies in the interval

?1/19 < K(3/4,0) = 4 , (14.4)
for -1 <g < ;: . The maximum value of K(3/4,0) is attained when
o = 1/4 , so that

K(3/4,1/4) = 4 . (14.5)

Recalling equation (9. 11), we see that the largest eigenvalue for a
circle in the extended main case is always less t‘han the correspond-
ing eigenvalue in the second case, unless 0 = 1/4 , in which event
both cigenvalues are equal. The latter observation is consistent with

Remark 5 of §12 concerning the eigenvalue K = 1/0.

(ii) Regions mapped conformally onto the unit disc by a rational

mapping.

Recalling Theorem 8. 8 regarding the eigenvalue v = 3/4, we
deduce the result that K(3/4, 0), defined by (14.3), is an eigenvalue
for the Korn eigenvalue problem in the extended main case if and only
if the region R can be mapped conformally onto the unit disc by a
rational function. Moreover, when K(3/4,0) is an eigenvalue, it has
infinite multiplicity.

In §9(ii), we found the spectrum

2
2.
2

[\SE

g 4 (14.6)

m
: 2

| w
Bl
| w

I |
W oy



-90-

tor Pascal's litnacon, where the values 1/2, 3/4, 1 occur with in-
finite multiplicity and the other eigenvalucs have finite multiplicity.
The parametler m appears in the mapping function (9. 13) and satislics
0 < m < ;_ . Using Theorem 13.4, and equation (14. 1), we find that
the largest eigenvalue for Pascal's lamacon in the extended main case
is given by

1602—0(24+16m2 )+1 l+12m2—4m4
2 2
(I—Zm2 N8c -80+3+2m )

K = 3 (14.7)
2

m
corresponding to the eigenvalue v = — + — of (14. 6).

| w

(iii) The largest eigenvalue.

As in §9 (iii), we may conclude Lhat for a given region R,
there is in fact a largest eigenvalue K in the extended main case, but
that there is no upper bound for the eigenvalues K wvalid for all re-
gions. For regions which can be mapped conformally onto the unit
disc by a rational transformation, the largest eigenvalue K in the ex-

tended main case is not less than K(3/4,0) as given in (14. 3).
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