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ABSTHACT 

An attempt is made to provide a theoretical explanation of the 

effect of the positive column on the voltage-current characteristic of 

a glow or an arc discharge. Such theories have been developed before, 

and all are based on balancing the production and loss of charged par­

ticles and accounting for the energy supplied to the plasma by the 

applied electric field. Differences among the theories arise from the 

approximations and omissions made in selecting processes that affect 

the particle and energy balances. This work is primarily concerned 

with the deviation from the ambipolar description of the positive 

column caused by space charge, electron-ion volume recombination, and 

temperature inhomogeneities. 

The presentation is divided into three parts, the first of which 

involves the derivation of the final macroscopic equations from kinetic 

theory. The final equations are obtained by taking the first three 

moments of the Boltzmann equation for each of the three species in the 

plasma. Although the method used and the equations obtained are not 

novel, the dcriva ti.on is carried out in detai.l in order to appraise the 

validity of numerous approximations and to jus tify the use of data from 

other sources. The equations are applied to a molecular hydrogen dis­

charge contained between parallel walls. The applied electric field is 

parallel to the walls, and the dependent variables--electron and ion 

flux to the walls, electron and ion densities, transverse electric 

field, and gas temperature--vary only in the direction perpendicular to 

the walls. The mathematical description is given by a s i x th-order 
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non.l...i.tH:ar two--poi.nt bounda ry va] 1w problem wld c h conl a1m; the app J ·f <·d 

field as a paramet e r. Tile amount of neutral gas and .Lts tempcraturt:~ 

at th e walls are held fixed, and the relation b etween the applied 

fi e ld and the electron density at the center of the dis char ge is 

obtained in the process of solving the problem. This relat ion corre ­

sponds to that between current and voltage and is used to interpret 

the effect of s pace c harge, recombination, and temperature inhomo­

geneitJes on the voltage - curr ent characteristic o f the discharge. 

The comple t e solution of the equations is impractical both 

numerically and analytically, and in Part II the gas temperature is 

assumed uniform so as to focus on the combined effects of space c h a r ge 

and r ecombination. The t e rms representing these effects are treated 

as p e rturbations to e quations that would othe r wise describe the ambi­

polar situation . Howev e r, the t e rm representing space charge is not 

negligible in a thin boundary l ayer or sheath n ear the walls, and 

conseque ntly the perturba tion problem is singular. Separate solutions 

must he obtai.ned in the sheath and in the main region of the dischar ge, 

and till' rd.a tion b e tween the e l e ctron d e nsity and the applie d f i e ld is 

not dc-tennined unt i l these solutions are matche d. 

In Part III the e lectron and ion densities are assumed equal, 

and the complicated space-charge calculation is thereby r e placed by 

the ambipolar description. Recombination and temperature inhomogenei­

ties are both important at high values of the electron density. 

However, the formulation of the problem permits a comparison of the 

relative effects, and t emperature inhomogeneities are shown to be 
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important at lower values of the electron cle nsi.ty than r ecombination. 

The e quations are solve d by a direct numerical integration and by 

treating the term r e presenting temperature inhomogeneities as a pPr­

turbation. 

The conclusions reached in the study are primarily concerned 

with the association of the relation between electron density and 

axial field with the volta.ge-current characteristic. It is known that 

the effect of space charge can account for the subnormal glow· discharge 

and that the normal glow corresponds to a close approach to an ambipo­

lar situation. The effect of t emperature inhomogeneities helps explain 

the decreasing characteristic of the arc, and the effect of recombina­

tion is not expected to appear except at very high electron densities. 
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PART I 

DERIVATION OF EQUATIONS 
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INTRODUCTION 

When a potential difference is applied between two electrodes in 

a cylindrical discharge tube, a current flows if charged particles are 

present in the gas. If the electric field is sufficiently strong, the 

electrons acquire enough energy to undergo ionizing collisions with the 

neutral molecules, and enough new charged particles may be formed to 

balance those lost to the discharge by diffusion to the walls and by 

other means. In this case a steady state may be maintained, and a glow 

or an arc discharge is established. 

The interaction between the electric field and the charged par-

ticles in such a discharge is a complex phenomenon, and a unified 

theoretical treatment of the entire discharge is not available. Near 

the electrodes there are strong axial variations in the electric field 

and in the plasma properties, and the behavior depends strongly on the 

properties of the electrodes themselves. However, a distance away from 

the electrodes the discharge is essentially uniform in the axial direc-

tion, and this region is called the positive column. Actually, axial 

nonuniformities such as striations can ofte~ be observed, but in general 

the properties of the positive column are accountable by theories 

* neglecting axial dependencies . Because of its uniformity the positive 

column is quite amenable to theoretical analysis. 

The fundamental principles basic to the various theoretical 

approaches to the positive column simply state that under steady-state 

* See, for instance, von Engel [26] or Cobine [6] 
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conditions the production and the loss of charged particles must 

balance and the energy supplied to the system through the applie d 

electric field must be dissipated. The diffenmce1::1 'among the theories 

arise from the approximations and omissions made in selecting processes 

that effect changes in particle densities and energies. Most past 

investigations have not considered electron-ion volume recombination 

and neutral temperature inhomogeneities. In this work, however, these 

phenomena and their effects are studied in detail. This work also 

differs from previous efforts by using experimental data for the plasma 

properties of a particular gas, and the resulting calculations are more 

complex than those occurring in theories using model plasmas. 

In the process of determining the effect of the various physical 

phenomena on the overall operation of the discharge, the analysis 

entails consideration of molecular processes and the mean properties of 

the various species-~electrons, ions, and neutral molecules. The 

molecular behavior is coupled with such macroscopic quantities as the 

electric field, so the analysis gives information on various levels. 

Detailed knowledge of properties such as mean electron ene rgy can be 

very important. For instance, in using discharges for purposes of 

illumination or for the study of chemical reactions, the e x citation of 

energy levels is most efficient at particular electron energies. Fur­

thermore, in the study of temperature gradients, the molecular 

properties vary across the discharge, and these variations may be of 

considerable importance in operating the discharge for particular pur­

poses. 
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In the analysis which follows, an attempt is made to determine 

the importance and effect of individual physical phenomena by comparing 

the results with the known experimental behavior. From this comparison 

comes a better understanding of the fundamental physical processes 

occurring in the positive column. Experimental results pertaining only 

to the positive column and subject to the conditions assumed in the 

analysis are not available, but such measurements could be made. In 

lieu of the data needed to make a quantitative comparison with the 

calculated results, we use information that provides a qualitative 

description of the entire discharge and shows its response to changes 

in various parameters. 

Plasma Properties and Processes 

Before describing the various theoretical approaches more 

explicitly, it is convenient to discuss briefly the physical na ture of 

the positive column. In the situation of interest the pressure in the 

discharge is of the order of mm Hg, and the gas is slightly ionized 

-5 with fraction of gas ionized less than 10 • The electron and ion den-

sities may vary over several orders of magnitude and are typically 

8 12 -3 between 10 and 10 cm in a glow discharge. The electrons are 

rapidly accelerated by the axial field and on the average gain a con-

siderable amount of energy in the course of a mean free path. This 

energy is transferred to the neutrals through elastic and inelastic 

collisions. Because of the small mass of the electrons, the much more 

numerous elastic collisions are inefficient in transferring energy. As 

a result the mean energy of the electrons is greater tha n tha t of the 
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neutrals by a factor the order of 100. The neutrals in turn transfer 

the energy out of the system, and temperature,and hence density, 

gradients are associated with this process. Since the electron mean 

free path is directly related to the neutral density, the e nergy gained 

between collisions, and thus also the mean energy of the e.lcctrons, is 

;1rfvclvd hy the ll l'ulral Lempcri.llur.e. The poHILlvl' lom; ga111 ( (~Hs 

energy from the axial flel<l and lose it more readily in colliHions; 

consequently the mean ion energy is not much higher than that of the 

neutrals. The charged-particle populations are maintained through 

ionization of neutrals by electron impact. This production is balanced 

by various loss processes, the most significant of which is diffusion 

to the wall of the column. Since the electrons tend to diffuse more 

rapidly than the ions, a charge separation is produced that results in 

a radial electric field retarding the flux of electrons and augmenting 

the flux of ions. Othe r loss processes which may affect the particle 

balance are electron-ion recombination and negative-ion formation. 

Abstract Representation of the Problem 

Among the physical quantities whose radial variations are of 

interest are the electron and ion number densities, the radial electric 

field, and the temperature of the neutral gas. The axial field, which 

is essentially constant across the column, is of fundamental importance 

in detennining the values of these variables. It affects the mean 

e lectron energy, which in turn alters such quantitie s as the ionization 

and diffusion coefficients . In fact the equations for the variables 

have solutions only for certain values of the axial field . 
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The problem can be written as a nonlinear operator equation 

F(u,A.) = 0, whe n· till' vector u r1::~prese11ts thl' phyi::lc;ll vnrinhll::.·s 

and thL' p ;1raml'Ll'r A n•prCHl'nls tl11.' 11xl11I l"ivld. Altlio11gli II I:; 110t 

strictly a norm, it is convenient to adopt as a measun• of Lh e m1.1g11.i-

tude of u , 11u11 , the electron density at the center of the disdiarge. 

The plot of II ul I versus A for the solutions u(A.) is called the 

* response diagram in the jargon of bifurcation theory . The equation 

F(u,A.) = 0 happens to have a trivial solution for all A , which with 

the proper choice of variables can be written u = 0 . This solution, 

for which 11 ul I 0 , corresponds physically to the absence of a dis-

charge; although an axial field is present, the charged particle den-

sities and the radial field are zero, and the temperature is constant. 

The bifurcation point Ab at which a nontrivial solution of infini­

tesimal magnitude llull first appears is called the free diffusion 

limit by Allis and Rose [l] and Cohen and Kruskal [7]. It is charac-

terized by the diffusion of electrons and ions to the wall in the 

absence of a significant radial electric field. Cohen and Kruskal give 

a complete analysis of the continuation of this curve to large 11 ul I 

(electron density) for a situation in which the neutral temperature is 

constant and the only electron and ion losses are by diffusion to the 

wall. The response curve for their analysis is sketched in Fig. 1. 

As 11 u 11 -+ 00 A. approaches a particular value A. 
a 

The limiting 

solution u(A. ) corresponds to the classical ambipolar approximation 
a 

* See Keller and Antman (17] pp. xi-xiv. 
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in which e l ec tron and ion numher densities arc assumed equal nncl the 

flux to the wa11 is characterizl".d solely b y the amh :lpol:1r. dl.ffuslon 

* coefficient . 

Description of Objectives 

The present work seeks to obtain a modificat ion to tl1is response 

curve hy considering the effects of volume recombination and spatial 

t emperature variations. Since both of these effects are of little 

importance at low electron density (small !lull), the primary interest 

is centered about the deviation from the ambipolar limit. In order to 

ease the mathematical difficulties and separate the two effects, two 

distinct cases are treated. In Part II temperature variations are 

neglected, and a solution is obtained that is valid over a large range 

of II ull The qualitative modification of the response curve is 

readily anticipated by physical intuition and is given by the dashed 

curve of Fig. 1. Part III is primarily concerned with the effect of 

temperature inhomogeneities. However, recombination is also considered 

and the relative importance of the two effects is investigated. The 

difference between electron and ion densities is negle cted, so the 

results are restricted to large 11u11 , where the approximation is good. 

In this case even the qualitative nature of the response curve is dif-

ficult to predict and depends strongly on the nature of the gas in the 

discharge. 

Because of the availability of data, all calculations are per-

formed for an H
2 

discharge. Experimental evidence indicates that H
2 

* See, for instance, von Engel [26) or Cobine [6]. 
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* is not formed in the discharge , so direct negative-ion formation need 

not be considered as an electron loss process. Although H is formed 

by dissociative attachment, the cross section for the reaction is very 

* s mall , anrl the process can be neglected. Furthermore, expc~rimental 

data show that very little atomic hydrogen is present at th e plasma 

** conditions considered Consequently all aspects of dissociation can 

be neglected, and only one neutral species need be considered. 

Correspondence between Theoretical and Experimental Characteristics 

Ideally the theoretical analysis would be examined by comparing 

the theoretical results with the experimental relation between the elec-

tron density and the axial electric field in the positive column. 

However, such information is not available, and in its place we use a 

qualitative description of the entire discharge. The experimental 

be havior of the discharge can be described by a plot of the potential 

difference between electrodes versus the current passing through the 

discharge. This curve is called the voltage-current characteristic of 

the discha rge and is related to the response diagram described above; 

indeed, the response diagram shall frequently be calle d the character-

istic of the positive column. To demonstrate this relationship, the 

current through the discharge can be obtained from quantities known in 

the positive column by integrating the product of electron density and 

* Se e McDaniel [19], pp. 413-414. 

*>'< 
See von Engel [26), pp.270-271; Cobine [6], pp. 337-338. 
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axial drift velocity ove r a cross section of the column. Its value ls 

roughly proportional to the electron density at the c enter of the dis­

charge. The axial field in the positive column contributes directly to 

the total potential difference, but other s ectors of the discharg~, 

such as the cathode region, also contribute . In fact von Engel [26] 

and Cobine [6] attribute the shape of the subnormal and abnormal por­

tions of the discharge characteristic to cathode effects (See Fig. 2). 

However, Cohen and Kruskal [7] have used positive column arguments to 

explain the subnormal discharge, and volume recombination and tempera­

ture effects, which are studied in Part II and Part III, may have a 

significant influence on the shape of the voltage-current characteristic 

at electron densities typical of an abnormal glow or an arc discharge. 

Basis for the Equations 

The development of the working equations that eventually yield 

the a x ial field-electron density relationship begins in kine tic theory. 

The macroscopic equations that are eventually obtained from them are not 

nove l. However, the use of the data fur an H
2 

discharge de pends 

he ctvily on tlw microscopic formulation, and for that r e ason the entire 

developme nt of the equations is carried out in detail . The equations 

that are solved are actually written not for the cylindrical discharge, 

but for the corresponding slab geometry. The purpose, of course, is to 

make the equations more tractable while retaining their basic features. 

The results in the different geometries may reasonably be expected to 

be qualita tively equivalent. 
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1. BASIS OF EQUATIONS IN KINETIC THEORY 

The developme nt of the problem begins with a Boltzmann e quation 

for the velocity distribution function that is written for each of the 

species in the plasma. The transition from kinetic theory to equations 

which d escribe macroscopically observable phenome na is accomplished hy 

multiplying the Boltzmann equations by suitable functions of velocity 

and then integrating them over all values of the velocity. The equa­

tions which result describe, after certain manipulations, the time and 

space variation of average quantities which are equivalents of the den­

sity, momentum, and energy of the various species. However, not all of 

these moment equations are destined to evolve into the final working 

equations. Some provide no noteworthy information in the situation of 

interest, and others are replaced by results from different experimen­

tal or theoretical work. The introduction of this extraneous informa­

tion involves approximations that must be justified. However, many 

other approximations must also be justified before the final equations 

are obtained. 

~reliminary Error Analysis 

The first approximation is concerned with the applicability of 

the Boltzmann equation to the situation of interest. The collision 

integral of the Boltzmann equation is capable of handling only binary 

collisions and is thus restricted to particle interactions character­

ized by s hort- range forces. Consequently the charged-particle Coulomb 

interactions cannot b e treated and are in fact neglected. This pro­

cedure is valid provided the e l ectron and ion densities are 
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sufficiently small in comparison with the neutral density. The 

criteria for neglecting Coulomb interactions are discussed by Holt 

and Haskell [14] and are satisfied in our problem except at very large 

electron densities. 

Various approximations are also involved in obtaining the final 

moment equations. In fact one is intrinsic to the use of moment 

equations in general and arises from the need to modify certain terms 

in order to obtain a well-posed problem. Errors are also introduced 

in evaluating coefficients that appear in the final equations. They 

are generally obtained as complicated expressions involving integrals 

of velocity distribution functions. However, they are usually 

evaluated with the use of theoretical and experimental data from other 

sources. Further approximations are made in neglecting various terms 

that are expected to b e small. 

Boltzmann Equations 

The Boltzmann equation as applied to the species of a glow dis-

charge can he written 

(1.1) 

Clf Clf 

( 'd~)e.c.+ ( 'd~)i.c. (1.2) 

where a is a subscript representing the species a nd equals e , i, or 

n for e l ectrons , ions , or neutrals, respectively. The ne utral par-

ticles, of course, are H
2 

molecules, and the ions are assumed to b e 
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No other s~ecies is considered. 

f (r,v ,t) is the velocity distribution function defined so that a - -i:t 

f dr dv represents the number of particles of type a. that are a. -i:t 

expected to lie in the element of phase space dr dv -a Thus the 

number density as a function of time and poslt Lon i.H oht<:dn<.•d hy lntL•-

gr.'.lting f over all vaJ.ues of the velocity: a. 

N (r,t) = f f (r,v ,t) dv a- a-~ ~ 
(1. 3) 

Since the only force field considered in our analysis of the glow 

discharge is the total electric field ~t ' 
the expression for the 

A 

force per unit mass in Eq. (1.1) is written qa ~/ma , where qa 

the electric charge and m a is the mass of a particle of type a 

The right-hand side of (1.1) represents the net rate at which 

is 

f a 

increases as a result of all processes other than the normal motion of 

particles in the force field. Actually this rate is accountable by 

interparticle collisions, and (df /at) is in fact called the collision a c 

integral. Since Coulomb interactions are neglected, only electron-

neutral, ion-neutral, and neutral-neutral collisions are considered. 

The effect of these collisions on the rate is divided into two parts, 

(df /at) and (af /at) . , representing elastic and inelastic col-a e.c. a i.e. 

lisions, respectively. The elastic collisions are much more numerous 

than the inelastic. However, the inelastic collisions cause phenomena 

such as ionization to which elastic collisions do not contribute, so 

the y must he considered . 

* See McDaniel [19], pp. 472-473; Hirshfelder, Curtiss, and Bird [13], 
p . 1095. 



-13-

2. MJ\Cl\OSCOPIC. EQUATIONS 

Tia• l '<]Uations of c hHn.gc for. such <[1tll11t:ltl<.•1:1 a s 11tm1livr. d c n~; f1 · y, 

;.iver~ll..';t. ' 1110111L•ntn111, and av0ragr• energy of the th r e l, spec I c•1; nre oh ta I n e cl 

by multiplying the Boltzmann equation by differen t powers of the veloc-

ity and integrating over velocity space. Various manipulations are 

necessary to produce the final equations with terms involving densitie s, 

f luxes, temperatures, and other macroscopic variables. Since the 

resulting equations are fewer in number than the unknowns, approxima-

Uon s must be introduced in order to obtain a well-posed problem. This 

entire procedure including the closure of the set of equations is quite 

~tan.Jard but is repented l1ere in order to present clearly the approx i-

matious i nvolved in its a pplication to the glow discharge. 

Equation of Change for < <f>a > 

Instead of multiplying the Boltzmann equation by specific func-

tions of velocity, it is e conomical to execute the proce dure once with 

a function ¢Cl(~) that may represent momentum, kinetic energy, etc. 

4' (v ) is to be understood as an extensive property whose total value a. --a 

f or the species a is the sum of that belonging to each particle. 

Multiplication of the Boltzmann equation of (1.1) by ,i, (v ) "'a -a 

; tnd s ui)S<'quen t. integration over v 
·· u rt~sulrs i.n d e riva ti.ves on the 

l c ft-hHnd side that can be simpU.fi e d by integration by parts. For the 

t i me d e rivative we have 
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f 
d 

·- (N <<fl >) 
Clt a. a. 

(2.1.) 

(2.2) 

since ¢a. is a function of velocity only and the average of a quantity 

depending on ~ is defined by 

f ¢a.fa. d:Y.a 
< ¢ > 

a. 

f f dv 
a. -a. 

1 

f <P f dv 
N a. a. -a. a. 

Similarly the spatial derivative is given by 

f ¢ v 
a. -a 

(lf 
.~ 

Clr or 
(N < v <f> >) 

a. -a a. 

and the velocity derivative by 

f 
qa. " afa. qa. " J a qa. " 
- ¢ E • ·- dv = - E • -( ¢ f ) dv - - E • 
m a. - t av -a m -t Clv a. a. -a m -t 

a. -a. a. -a. a. 

qa. " 
- - N E • m a. -t 

a. 

(2.3) 

(2.4) 

(2.5) 

f 
act> 
~f dv 
oV 0. -a 
-a (2.6) 

(2.7) 

The first integral on the right-hand side of (2.6) vanishes, since f 
a. 

is assumed to approach zero strongly as l~I -r oo • Using (2.2), (2 .. 5) 

and (2.7), Eq. (1.1) becomes, after multiplication by cf>a. and integra-

tion over 
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NCl and the various average quantities depend in general on t and r 

From the interpretation of (Clf /'dt) given in Section 1, it is 
Cl c 

apparent that the integral on the right-hand side of (2.8) is the rate 

P<' r un i.t volume at wh lch <Pa is increasing in specie s Cl as a result 

nr l11l«·rpartli:L1· col I IHJon:-;. A UC'ta.f]pc( vxprefrnlun fur tli e l·ffl!C t o[ iJ 

speclflc type of collisJon between two species is given in Eq. (J\.ll) 

of Appendix A The integral in (2.8) consists of a sum of such expres-

sions, and the sunnnation must in general be taken over the various 

combinations of species and over the different collision processes. The 

omissions and approximations that can accurately be made are discussed 

when particular forms of ¢Cl(~) are considered. 

Continuity Equations 

The continuity equations for the individual species are obtained 

by taking 

Equation (2.8) becomes 

<P (v ) 
Cl -a 1 

where the number flux ±a is defined by 

N <v > 
Cl -a 

(2.9) 

(2.10) 

(2.11) 

The right-hand side of (2.10) represents the net rate per unit 

volume at which p;irticlcs of type a arc produced by collisions. The 
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description of an H
2 

glow discharge presented in the Introduction 

leaves only two collision processes that can cause a significant change 

in the total number of particles of a species. These are ionization 

of neutrals by electron impact and recombination by electron-ion inter-

action . Ion-neutral and neutral-neutral collisions involve insuffi-

cient energy to cause ionization. Ionization occurs as a result of a 

s imple electron-neutral collision, but various recombination mechanisms 

* l1ave been proposed , which are characterized by differe nt collision 

processes. We assume that recombination occurs by means of the disso-

ciative process 

+ (2.12) 

although the amount of H present in the discharge is considered 

neglig ible. 

The rate at which ionization and recombination occur can now be 

obtained from Eq. (A.10) of Appendix A. Defining RI and RR as the 

rates per unit volume of ionization and recombination collisions, we 

have 

(2.13) 

(2.14) 

where QI is the total cross section for ionization and QR is the 

* See McDaniel [19), pp . 588 ff., for a discussion and appraisal of 
mechanisms. 
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total cross section for dissociative recombinat ion . Equations (C. 6) 

and (C.17) show that the ion and n eutral v e locit ies are small com-

pared to the e l ec tron velocity at those values for which tlw distrf.hu-

tion functions have significant magnitude . Hence g can b e accurately 

r eplaced by v 
e 

and i nte grations over v --m and can b e performe d 

to yield 

N J f (v ) v QI(v ) dv n e--e e e -e 
(2.15) 

(2.16) 

and 

Ni f f (v ) v QR(v ) dv e--e e e -e 
(2.17) 

(2.18) 

The ionization and recombination coe fficients, VI and a , are define d 

by 

vI - N < v QI (v ) > n e e 

a :: < v QR(v ) > e e 

so RI and ~ become 

a N N. e i 

VI a nd a depend in general on t, .!. a nd other para me ters which 

affect f 
e 

Although Eqs . (2.19) and (2. 20) show the origins and 

(2.19) 

(2.20) 

(2.21) 

( 2 .22) 

functional dependencies of VI and a , they are not used to obtain 
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11l11nc·rical. va~IUL'. :;. nntrt from otl1or sourc<•s art~ avnr·tnblc and llH:·J.r appl.1-

Ion lzat i.nn and r eco111bi.n:1 Llon af feet. tlw rat .cs o I rn.i11l1r· 1: !.011 

of electrons and ions :i.dentical.ly, and th:i.s rate in particles per unit: 

volume per unit time is given by 

for the two species is 

()N a ... --5:. + ar J at ---e 

()N . 
() ___ _2. + . J . 

dt ar --i 

R -
I 

A 

VI N 
e 

VI N 
e 

~ -

- Ct 

- Ct 

Equation (2.10) written 

N N. 
e l 

( 2 .23) 

N N. 
e l. 

(2.24) 

The proulll.: tion r ate of neutrals is the negative of that for 

e lectrons and i.ons. Since the production rate s have equal magnitude s, 

the fluxes of charge d particles and of neutrals whose spatial deriva-

tives apoear in (2.10) are of the same order of magnitude. However, 

because o f their much greater density, the flux of neutrals is of neg-

ligible importance and the transport of neutrals can be ignored. Since 

the equat ions obtained here are eventually applied to s teady-state 

c11nd i.1 inns , uN f'(Jt is of no importance and Eg . (2 . 10) applied to the 
11 

r1<' l1l-r:1 l ~ ; scrvl.·~.: no pur-pose . ln ·its place we make th<' approx imatio11 

t l int.. 1.l1 v av<•cag._~ veloc.i.ty of neu tral molecule s is zero : 

< v > ---n 0 ( 2 . 25) 

The momentum equations are obtained from Eq. (2.8) by t a king 

m v a -a (2.26) 
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The immediate result is 

a a 
m"' ~t (N < v > ) + m ~ • (N < v v > )- a N,.,, E 

u. a a --a Cl cir Cl ~ 'ft u. --t 
m a 

In order to interpret the averages occurring in (2. 27) as macroscopic 

state variables, it is necessary to introduce the peculiar velocity , 

which measures the deviation of the velocity from its mean value: 

v 
-a 

Using this expression 

< v v > -a-a. 

v - < v > 
-a -a. 

<v v > -a.-a. is calculated as 

< VV> + < v><v > 
-a-a. -a. -a. 

(2.28) 

(2.29) 

The pressure tensor of a component of a perfect gas is defined by 

'¥ =ex Nm <V V > a a -a.-a. (2.30) 

and its physical interpretation as the actual pressure is discussed by 

Chapman and Cowling [5], pp. 31-35. The right-hand side of (2.27) 

represents the n e t rate of increase per unit volume of the total mome n-

tum of species a as a result of collisions with other types of 

particles. Elastic collisions are as effective as inelastic collisions 

in transferring momentum between particles. Since they occur much more 

frequently, the inelastic collisions are neglected. Replacing (af /at) 
c 

by (af/at) and using (2.11), (2.29), and (2.30), Eq. (2.27) e.c. 

becomes 
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"' 
a~ a a "' 

m -- + ~ • 'l' + m · ~ • (N <v > < v >) - q N E 
C( at ar =a a. or C( -a -a a. a. ~ 

v -a 

af 
(-J!) dv at e .c. -a 

(2.31) 

ln applying Eq. ( 2 . 31) to electrons, it is possible to negle ct 

the term containing <v > <v > • Equations (C.17) and (C.21) of -a. -a. 

Appendix C show that the magnitude of < v > is much smaller than that 
-e 

of ~. so the velocity of the electr ons consists of a slow drift 
e 

superimposed on a large random motion. Equation (2.30) then shows that 

the third term of (2.31) is negligible in comparison with the second, 

and the momentum equation for electrons becomes 

a~e a J af 
m -;:;-t + ~r • 'I' + N e E = m v (--~) dv 

e o o =e e -t e -e at e.c. -e 
(2.32) 

where e is the magnitude of the electronic charge. 

Only e lastic electron-neutral interactions are considered in cal-

culating momentum transfer to the electrons by collisions. An expres-

sion for the rate per unit volume at which electrons acquire momentum 

from neutrals is available in Eq . (B.31) of Appendix B. In the 

nomenclature of this section we have 

m f v (afe) dv = - m f v f (v )v (v ) dv 
e -e at e.c. -e e -e e -e m e -e 

m N < v (v )v > 
e e m e -e 

(2.33) 

(2.34) 

A substantial simpli fication would occur if \) were independent of 
m 

v so that 
e 

< \) v > \) < v > (2.35) 
m-e m -e 
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does in fact depend on v , we seek to define a n 
e 

..;>ffect :ive v by the relation above . Such a definftion ls not :Ln 
m 

g <:'ll(•r;1l possihJ e , sjnce < v v > 
m-e 

and ..:. v > 
--c need not h:tv l~ tht• fWllW 

d in~c t ·ion. ll OWl'VCr, o nJ.y t:l1 0 radl.al components o[ tlH· mom<·ntttm vq u n-

t: ions arL' u sed in applying th em to the g low d:i.:;charg<! , and I.f only a 

p;.irticular component of (2.35) is considered , an effective \) 
m 

can 

certainly be defined. Also, f (v ) 
e --e 

is almost isotropic and v (v ) 
m e 

i s not a very strong function of v , so the particular component 
e 

us e d in the definition of an effective v has little effect on the 
m 

numerical value.. In fact we adopt (2 . 35) as the defining equation and 

regard its deviation from the truth as being of no practical import-

ance. U!3ing (2 . 35) and (2.11) in (2.34), the final form of the 

111ome n tum e quation given previously in (2 . 32) becomes 

A 

;)J 
() "· ··-e 

Ill 3t + Clr 
• iv + N eE m \) .J (2. 36) 

(' :-. :=t~ e --t e m -·e 

v as de fined by (2.35) and used in (2 . 36) depends in general 
m 

not o n v but on t, _E., and other parameters that influence f 
e e 

Blan k [4], in his analysis of the positive column, studies the effect 

of a non-constant v (v) on a transport e quation equivalent to (2.36) . m e 

He concludes that except in special cases an equation using an effective 

\I :is of no use unle ss v is known a priori . In our case, data for 
m m 

the cfrcctive v :ire provide d by the work of Frost and Phelps (11] and 
m 

i •'.ngl~ lho.rdt and Phelp8 (10 1 . The applicahiU.ty of th e ir data to our 

situation is discussed later. 

In applying Eq. (2.31) to the ions, the term containing 
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<v > < v > is also neglected. In this case, however, the omission 
-'-a -'-a 

cannot be justified quite as casually as it was with electrons. Equa-

tions (C. 6) and (C .11) of Appendix C show that the drift velocity of 

ions is not small in comparison with the random thermal motion. Self 

and Ewald [24] i:;tudy the effect of the term containing '- v >< v > --i ---i on 

the theoretical behavior of a glow discharge and conclude that it is 

not always negligible. In our application there is no axial spatial 

variation, and the momentum equations are used only in the radial 

direction, so in comparing the magnitudes of the second and third terms 

of-(2.31), only the average radial velocity need be compared to the 

random velocity. An estimate of the radial velocity is provided by 

Eq. (C.40), and it is seen to be considerably smaller. Thus Eq. (2.31) 

becomes 

(2.37) 

Only elastic ion-neutral collisions contribute significantly to 

the transfer of momentum to ions from other species. An expression 

for the rate per unit volume at which ion momentum increases is avail-

able in Eq. (B.28) of Appendix B, and in the nomenclature of this 

section is 

f df. -mi m 1 

JI mi y_i ( a~) dvi 
n 

(~- ~) fi (~) f (v ) 
mi+ m N n -n e.c. n n 

x v . (g)dv i dv (2.38) mi - -n 

where vm(g) is replaced by "mi(g) to avoid confusion with the 

electron frequency. The presence of g in the integrand introduces 
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a strong coupling between and v 
-n 

and r e nde rs further simplifi-

cation difficult. Instead of making assumptions about the dis tribution 

f unctions and continuing with tedious manipulations, it is convenient 

1·0 makl' dll appPal to intui ti.011. Such an approach is parti.cula r ly 

:1pproprin1:. l' hL'l'. ;H11ic~ till~ d:1ta tltnt: Hrl' vve 11l:u:11 ·1y u~;e d 111 t· ill' lon 111< >111t.•n-

tum vqu:il fll11 :lXL! uot cl.Lrcc tLy reJatvd to tlH: d1s trJbuti.on functto n s . [t 

I s on] y 1w cessary that Uw integral when simplified exhibit the proper 

f orm. If vmi were independent of g , the integral in (2.38) would 

b ecome 

m.m 
i n 

m.+ m 
i n 

1 
N 

n ff (v.- v) f.(v.) f (v) v .(g) d~ dv 
-1 -n i -1 n -n mi .... -n 

m. m 
i n N ( ) - - - \) . . < V__. > - < V > 

mi+ mn mi i - -.L -n 
(2.39) 

In f act v . depends only weakly on g , and the expression in (2.40) 
mi 

is regarded as a definition of an effective collision frequency \) . . 
mi 

The critical assumption in this procedure is that the term in the inte-

g rand that includes v 
-n 

as a factor vanishes when integrated over 

and v 
""11 

For a v . which depends on g , this assumption is not 
mi 

valid in g ene ral, particularly when the mean ion velo city is signifi-

··:int In c ompar.J :;; on with tile random neutra l vel ocity. In our applicati on 

t he mome ntum e ciuations are applied only in the radial direc tion, so it 

is the mean radial i on velocity that should be used in the comparison. 

Equa tion (C.40) of Appendix C shows that it is considerably less than 
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th12 random ne utral v c l oc i.ty , whic h is slightly g r ea ter t ha n the va I u e. 

f or i o ns g iven in (C.6). On tld.~ basis Eq. (2.40) i s adopt e d a s a g ood 

<1pprox im:1ti.on and is 11se<l Jn (2.38) to yic.l<l 

111 , 
l. f 

df. 
l v . (---) dv 

- 1- 3t e . c . - i 
- v N < ··> mi i . v . · 1 - 1 

\) . 
1 

replace s m v ./(m .+ m ) 
n nn i n 

Equation (2.41) can be us e d t o 

inte rpre t \). 
l 

as the effe ctive ion collision fre quency for momentum 

tra nsf er. Like v it depe nds in general on t, _£, and other factors 
m 

whi ch influence the distribution functions. Vi i s ev entually combined 

wi th other factors to yield diffusion and mobility coe fficients. Th ese 

c oefficients are evaluated with data from other source s , and hence these 

d a ta d e t e rmine v. indirectly. The applicability o f the data is dis-
1 

Cl1ss e d later . 

The final ion mome ntum e quati.on is obta i ned by s ub s titutinr, ( 2.41) 

i n t o (2.37) and introducing the ion flux: 

A 

ClJ. d 
m . -

1 + - • ljl - N. e E = -m. V. J . 
1 Clt Clr ''"'i l -t l 1-1 

(2.42) 

Tile approximations involve d in the derivatio n should be kept in mind, 

s i.nc c the apparent g e nerality of the vector notation tends to belie the 

g eometrical r e strictions on the applicability of the e quation. 

The momentum equation for the neutral species r e duces to the 

~~ imple statement that the pressure is constant. < v > 
-n = 0 , qn = 0 

a nd at ste ady state ClJ /Clt vanishes, so Eq. (2.31) applied to the 
-n 

ne utrals involves only two t e rms representing the spatial variation of 

t he prl'. S~mre t e nsor and the rate of momentum trans f e r from other 
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species. The rate of momentum transfer can be obtalned djrl'ctly rrllm 

the rates cal cu late d for the electrons and ioni:;, and in tltt' t' 1 l'c t ron 

a nd ion momentum equations the rates arc~ slgnificant terms. HOW<'VC'r, 

the pressure tensor ~ defined in (2. 30) is proportional to the den-= a 

sity Na , and N 
n 

is so much larger than N 
e 

or that the frac-

tional spatial change in given by (2.31) is negligible. If the 

neutral hydrostatic pressure pn is associated with ~ , p must be 
= n n 

constant. Because of the preponderance of neutrals the pressure p 

in the discharge is essentially equal to p . 
n 

Mechanical equilibrium 

in the system requires that p be uniform, so in place of the neutral 

momentum equation, we adopt the equation 

p 

where p is independent of r 

Energy Equations 

The energy equations are obtained from (2.8) by taking 

1 2 
- m v 
2 a a 

(2.43) 

(2.44) 

Actually only the neutral equation is used, and after various manipu-

lations and approximations it becomes an equation for the ne utral 

t e mpe r a ture . However, important quantities are defined in the process, 

so it is carrie d out in general. Substituting (2.44) into (2.8) 

.! m "'()t (N < v
2 

> ) + 1
2 m ~r • (N < v v

2 
> ) - q N E • < v > 

2 eta a. a Ci.a a -aa aa.-t -a 

1 -m 
2 ct 

(2.45) 
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2v 
~ 

Introducing the peculiar velocity from ~q. (2.28) and using the fact 

that 

< V > -a 0 

we obtain the relations 

and 

2 <v >= <v •v > =<V •V > +<v :»<v > 
Ci. -a -a -a -a -a -a 

2 < v v > -a a 
< V V • V > + 2 < V V > • <v >+ < v > < V • V > 

-a-a a -a-a -a -a a -a 

* 

+ < v> < v>- < v > 
-a -a -a 

(2.47) 

(2.48) 

(2.49) 

The kinetic-theory temperature of a species is defined by the relation 

(2.50) 

where k is Boltzmann's constant. We also define the heat- flux vector 

~ by 

_! N m <V V • V > 
2 Ci. Ci. -a-a -a (2.51) 

Its meaning in the context of our problem is discussed in detail later. 

The physical quantities 'I' , T , and 
= ct. Ci. 

tion through the expressions for < v2> 
Ci. 

and 

now enter the energy equa-

< v -a From (2.48) 

* Its definition and relation to the thermodynamic t empe rature is dis-
cussed hy Chapman and Cowling [5], pp. 37, 40-41. 



-27-

and (2.50) 

1 2 
- m <v > 
2 (l. C't 

=1.kT +lm < v > • < v > 
2 a 2 Ct \l --a. 

Using (2.30), (2.50), and (2.51) in (2.49) 

1 2 
- Nm <v v > 
2 aa-aa + '¥ • < v > + 3

2 
N,,,kT < v > =a -a -.... a -a 

1 + - N m < v > < v > • ·< v > • 
2 aa -a -a -a 

( 2 . 'l2) 

(2.53) 

Substituting (2. 52) and (2.53) into (2.45), the energy equation becomes 

a 3 a + - · ('¥ • < v > ) + - - • (N kT < v > ) ar '=a. -a 2 ar a a -a 

,, ... 
v a dv -a (2.54) 

In applying Eq. (2.54) to the neutrals, a vast s implification 

occurs because < v > 
-n 

and are zero . 

') ... 
v 
Il 

The e quation b e comes 

()f 
n 

(- "'- ) dv 
ot c -n 

" 

(2.55) 

Ev entually ( 2 .5 5 ) becomes an equation for T , but further a pproxima -
n 

tions are n ecessary and are considered later. 

Equation (2. 54) is not applied to the e l e ctrons a nd ions. The 

e lectron t emperature is de t e rmine d directly from the solution to the 

Boltzmann equation for f , which is available in the work of Frost 
e 
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and Phelps [11]. The applicabil.i ty o( t:hl'ir result s to our proh!t-111 I s 

discussed later. The ion temperature is assume d e qual to tht' nt•ut ra l 

temperature, so in place of the ion energy equation we have 

T. 
l. 

T 
n 

(2.56) 

This assumption has been used in previous treatments of the positive 

column by Ecker and Zoller [9], Blank [4], and others, and lts justi-

fication is usually given verbally: because of thelr large mass the 

ions gain energy from the applied field relatively slowly and readily 

transfer it to the neutrals through elastic collisions. A simplified 

model is set up in Appendix C to test this hypothesis, and the results 

of Eq. (C.13) show to be considerably greater than T 
n 

for con-

ditions typical of our glow discharge. Nevertheless (2.56) is adopted 

as an approximation in the work that follows. A study of the variables 

and parameters used in Part II shows that this approximation has very 

little effect on the solution for the dimensionless quantities. The 

same is probably true of the work in Part III, although the analysis 

is more difficult. 

The equations obtained above can be regarded as equations for 

the densities, fluxes, and temperatures of the three species. However, 

in the derivations other quantities were introduced, which are inde-

tenninable. In particular, the question of what to do with '¥ and =a 

~ must be confronted. The answer chosen is a standard method of 

closing the system of equations. 
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Before applying approximations to the form of the pressure ten-

sor, it is convenient to define the scalar pressure 

of its trace. Using (2.30), 

_! I 
3= 

'¥ = _! N rn < v2 > =a 3 a a a 

where ,l is the unit tensor. The interpretation of 

as one-third 

(2.57) 

as the 

* hydrostatic pressure is discussed in books on kinetic theory . The 

definition of Pa by (2.57) ignores intermolecular forces and consi-

ders only momentum transfer . Hence represents the pressure of a 

perfect gas, and in fact (2.57) and (2.50) show that 

(2.58) 

The assumption made to permit determination of is that the 

pressure is isotropic, i.e., 

'¥ =a (2.59) 

Equation (2.30) shows that this relation is certainly true when 

the distribution function f 
a is isotropic in velocity space about the 

mean velocity. In the case of the neutral mole cules the mean velocity 

is almost zero, and compared to the large number of neutral-neutral 

collisions, there is little to cause anisotropy; the approximation of 

(2.59) is surely valid. Equations (C.17) and (C.21) of Appendix C 

* See Chapman and Cowling [5], pp. 31-35. 
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show that the random the rmal velocity o f th e e l e ctrons is much larger 

than the drift velocity. On this has is th e dt~viation of the el<'c tron 

distribution function from an isotropic state is r egard e d as a small 

pe rturbation, and Eq. (2.59) is a correspondingly good approximation . 

On the other hand, (C.6) and (C.11) show that the same argume nt is not 

applicable to the ions. Nevertheless, t he momentum interchange a s a 

result of ion-ne utral collisions is cons iderable , and the distribution 

of ion velocities about the mean is expected to be primarily random. 

In any case, the approximation of (2.56) assumes such a thorough inter-

action between ions and neutrals that consistency requires !i_ to b e 

considered isotropic. 

The two terms on the left-hand s:Lde of Eq. (2. 55) r efer to 

random translational energy and its transfer. However, in a diatomic 

gas such as H
2 

where rotational and vibrational energy is also 

involved, the interchange of internal and translational energy compli-

cates the separation of the two types of energy transfer. The diffi-

culty emerges in the calculation of the integral on the right-hand 

side, since it must account for all the mecha nisms producing transla-

tional energy. On the other hand, if Eq. (2.55) had been derived by 

setting ~a i n Eq. (2.44) equal to the total e nergy of a particle, 

the i ntegral would r epr e sent the total rate of e n e r gy transfe r per 

unit volume to the neutrals and could be easily d e t e rmined. l kT 
2 n 

would then be replaced by the average total energy per neutral mole-

cule and ~ by the total energy flux. At steady state the difficulty 

i n separating internal and translational energy would occur in ~ 
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l at Jn11:1 l l'nergy. a Chapmr111-Errnkog analysts of tlw l)o l. tzmann c>C[ UlltloH 

] cads to an exnression for -9n g.iven by 

A 

3T 
n 

Clr 
(2.60) 

The analysis of "rough spherical molecules" suggests that the effect of 

ro t ational energy transfer can b e included in (2.60) by modifying the 

value of ,\ However, the work of Engelhardt and Phelps [10) shows 

th.:it ;:i large portion of the ener gy transferred to H
2 

molecules by 

,_,lectron :impact appears as vibrational energy. Nevertheless calcula­

*** tions and physJcal intuition show that conduction of internal energy 

is less efficient than conduction of translational energy, and we 

assume as an approximation that the total heat flux can be represented 

by Eq . (2.60). The assumption is particularly appropriate, since the 
A 

experimental data used in evaluating ,\ do not distinguish between 

the differerent means of ener gy transfer. 

Since we assume ~ to be the total heat flux, the right-hand 

~i rle of ( 2 . 55) represe nts the net rate per unit volume at which t he 

1wul r:t"l vncrgy i.ncr0:1sc::; as ;1 rcsu.1 t of partich~ i.ntc-·racti.ons. Ra<li.a-

t: i.on n<'<'d not he cons iderc~d as an energy loss , sln cc i.t has been found 

'/-; 
See Chapman and Cowling [5], pp. 121-122 . 

'~* Chapman and Cowling [5), pp. 210-212. 
~'~-;'(* 

Chapman and Cowling (5), pp. 236-237; Jeans [16), pp. 296-298; 
Hirschfelder, Curtiss and Bird [13), pp. 498-506. 
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* to he rwgl:lgib.le • WC' al.so nep;l ec t any l'IWrgy l .o~t hy dlrPcl· lnt<'r-

ac tion of the charg1!d particles with the wnlls of t he dl sc h arg ... Wllh 

these consider ations the r a te at which t he neutrals acquire e nergy in 

a steady state is the same as the rate at which the charge d particles 

acquire it from the appl ied electric field. For a charged particle of 

t ype a the rate per unit volume is g iven by 

R a 

N q E -<v > a a -z -a. 

. (2.61) 

(2.62) 

(2.63) 

where E is the axial electric field and w is the drift velocity. -z a 

This expression shows that the relative rates a t which electrons and 

ions transfer energy are i n the proportion of their drift velocities, 

since their densities are a pproximately equal. The ratio of drift 

velocities is given in Eq. (C.22) of Appendix C and shows the contri-

bution of the ions to the energy transfer can be neg l ected as an 

approximation. This approximation is consistent with the previous 

assumption that Ti 

1 I -m v 
2 n 

where 
A 

h 

* Cobine [6)' p. 235 . 

T 
n 

We now write 

2 
(lf 

n 
dv h (Tt) c n --n 

e E w 
z e 

N 
e (2.64) 

(2.65) 
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represents the average energy transferred per electron per unit time. 

The use of data for the evaluation of w is discussed later. 
·= 

It is of interest to calculate the rate at which neutrals gain 

translational energy directly from electron impact. In view of the 

· " A 

ambiguity involved in relating ~ to \ and T , this rate and the 
n 

one calculated in (2.63) provide bounds on the appropriate value of the 

right-hand side of (2.55). However, the interchange between internal 

* and translational energy is sufficiently rapid that the translational 

"' energy-transfer rate is not a close approximation to h unless it is 

the predominant mechanism for electron energy loss. Its calculation 

A 

below permits a comparison between its value and that of h . An 

expression for the translational energy-transfer rate from neutrals to 

electrons is available in Eq. (B.34) of Appendix B. The transfer rate 

from electrons to neutrals is just the negative of this expression and 

in the nomenclature of this section becomes 

R 
1 2 

(-- m v 
2 e e 

1 2 
< -

2 
m v >) f ( v ) v ( v ) dv 
nn e-e me -e 

We define an average or effective v by rewriting (2.66) as 
m 

R 2 
m 

e 
m 

n 
V N 

m e 
( 1 2 1 2 ) < - m v > - <-- m v > 

2 e e 2 n n 

(2.66) 

(2.67) 

A comparison of this definition of the effective v with that described m 

in the discussion following Eq. (2.35) shows that the averages involved 

* See Vincenti and Kruger [25], pp. 198-206, for a discussion of internal 
energy relaxation. 



v (v ) 
m <~ 

doei-; 110t v;iry i ~rt•; 1t.l y :.1 :-; 

l' 
d1:lll ) '. l' ~: , so Ll1<' nu111~~r i eal va1.tH:'8 of t:h r• two c~ff ( ? C l' i Vt' \) Ip. d I r r t·r 

Ill 
v 

only s ·I i f, ltl. .ly, and tht• saml"' Jata art~ used for bo th . 'l'li c• :1v<'r•I!-\" <'lH'l'" )', i<·s 

:in (2.67) can be expressed in t e rms of the tempe.ratur~s with the ust~ of 

Eq. ( 2.52). Si nce the mean velocity is much l ess than the random 

v e locity for both electrons and neutrals (compare (C . 17) and (C.21) o f 

t\ppendi x C) , Eq. (2 . 67) can b e written as 

m 
3 3 e 

kT ) l~ 2 \) N (-- kT 
2 Ill 111 e 2 (~ n 

( 2 . 68) 
n 

11 N 
0 e ( 2 . 69) 

whe re 

m 3 A l kT ) h 2 
e v (2 kT 

0 m m e 2 n 
( 2 . 70) 

n 

represents the average translational energy transferred per e lectron per 

unit time . The comparison of h and h 
0 

in Fig . 4 shows that roughly 

JO% of the e l e ctron-neutral energy transfer involves translational 

In u sJng th e r:.ite nxpressions of (2.64 ) or (2.68) in (2.55), i.t 

is impl.i.c i tly ;1ssume d that the e lectron energy is transferr ed to the 

neutra]s at the same locat ion where it is acquired from the axial fie ld. 

The accuracy of this assumption can be checked by compa ring the time 

r equ ired f or an electron t o lose its energy with the time during which 

it changes its posit ion by a repr esentative amount . Since quantities 

do not v ::r.ry in the axial direction in the positive column, it is the 

t fote r equired for movement in the radial dir ection tha t must be 
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determined. An estimate of this time is provided by T in F.q. (C.41) 

of Appendix C. The electron energy relaxation ti.m0 fo r clai::;tj c co ] -

lisions provides a measure of the time during which an e l c~ctron I oscs 

most of its energy; it can be found by dividin g the mean e n e rgy of an 

" " e l ectron 3 kT 
2 e 

by h 
0 

Since T >> T , Eq. (2 .70) shows that 
e n 

Using the value for 

T 
e 

\) 
m 

T 
e 

1 
m 

2 ~ \) 
m m 

n 

in (C.20), we obtain 

2. 90 x 10-7 
sec. 

" 

(2.71) 

(2. 72) 

and find that T << T 
e a 

Since h > h , the actual energy relaxa­
o 

tion time is less than T 
e 

Hence we conclude that the expression in 

(2.65) can accurately be used in Eq. (2.55) in an inhomogeneous 

situation . 

Final Moment Equations 

Using the approximations considered above, the continuity , 

momentum, and energy e quations can be written in their final form . It 

s hould b e remembere d that although the v ector notation appears general, 

approximations have been made that depend on the geometry of the 

application. The continuity equations can be rewritten directly from 

Eqs. (2.23) and (2.24) : 

a. N N. 
e 1 

(2.73) 
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a N N. 
e 1 (2.74) 

Equations (2.36) and (2.42) are rewritten using (2.59) and (2.58) : 

-m V J 
e m -e 

-m. vj Ii 
:t . 

(2.75) 

(2.76) 

The neutral energy equation is obtai.ned from ( 2 .55) us ing (2.43), ( 2 . .58), 

(2.60) and (2.64): 

,... 
= h N 

e (2.77) 

The use of (2.58) assumes the neutral species behaves as a perfect gas. 

Since (2.43) associates pn with the mechanical pressure p , which is 

uniform throughout the system, the equati on 

relates N 
n 

to T 
n 

p N k T 
11 ll 

i.n a simple manner. Although N 
n 

( 7.. 7 8) 

does not appear 

directly in the equations of change above, it is needed for the deter-

mination of many of the coefficients. 

Equations (2.73) - (2.77) form a system of five equations for the 
,... ,... ,... 

unknowns N , Ni, J , J . , and T e -e - 1 n Before they can be solved, boundary 

conditions appropriate to the application must be applied, and the vari-
,... ,... 

ation of ~t and the coefficients h must be deter-

mined. 
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.1. i\PPLlCATlON OF EQLJATTONS TO TllE POSlTlVI ': COi.LiMN 

Jn app1ying the equations of change to the positive co]umn 

s everal simpl i fications occur. In the first place, only the steady 

state problem is considered, so all the time derivatives disappear. 

Also, it has been mentioned that there is no variation along the 

column in the axial direction. The discussion in the Introduction 

s u1 tl'1l that in the intere st of mathematical simpJ ic:lty the a ctna 1. 

cyl ·ind1·icill geometry would he replaced hy tlie correspond.ing slah gt~Om-

In this case the discharge is contained between two paralle l 

walls, and the axial field is applied parallel to them. The discharge 

is symmetric about a plane dividing it, and the only spatial variation 

is in the direction perpendicular to the walls. 

}lg__~atjons of Chang~ 

At steady state Eqs. (2.73) and (2.74) show that J 
-e and l..i 

have equal radial components. This conclusion is easily reached by 

c ons i.d ('ring the integrat i on of both equations from a particular value 

of x • the coordinate perpend.icular to the wall. Only the "radial" 

nr x-- dcrl.vat ive s o[ the "radial" components of the f luxes appe ar in 

the equations, and these derivatives are equal. From symmetry con-

siderations there can be no flux toward the walls at the center of the 

discharge, and hence integration from the center shows the electron 

and ion "radial" fluxes to be equal everywhere. Equations (2.73) and 

(2.74) now become 
" dJ 

dx a. N N. 
e J.. 

(3 .1) 
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where J is the conunon value of the "radial" or transverse compone nts 

of J and J .• -e - 1 

The momentum equations (2.75) and (2.76) are used in the trans-

verse direction only. After a slight rearrangement, they become 

J 

and 

.J 

where 

D 
e 

µe 

D. 
1 

µ . 
. 1 

A 

and E is the 

"' 

-D 
e 

-D 
i 

dN 
e 

dx 

dNi 

dx 

"' kT 
e 

m v 
em 

e 
m V 
em 

_k_N 
m V e 

e m 

k ---- N 
11\\)i i 

dT 
e 

N E 
dx µe e 

dTi A 

Ni E __ __:__ + 
l-li dx 

transverse compone nt of the electric field. "' D 
e 

(3. 2) 

(3 .3) 

(3.4) 

(3.5) 

(3. 6) 

(3. 7) 

Di , µi are the diffusion and mobility coefficients of electrons and 

ions, and the Einstein relations follow immediately from their defi-

nitions: 
"' kT 

e 
(3. 8) e 

(3. 9) 

Equat ions (3.2) and (3. 3) are written so as to show the contribution 
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of various t erms to the flux toward the walls. The first term repre-

sents diffusion as a result o f a densi t y gradient: the seconcl i nvolves 

the effect of electron nnd ion temperature r;r adi cnts: and t h l' th I rd 

giv es the con trihuti.on from the transv"~rsc fie l d. In prPparat l nn for 

the eventual mathematical analys i s, it ts conveniPnt to rewrit e the 

momentum e qu a t ions so t hat the density gradients appear alone . Uslng 

(3.4) - (3 . 9), Eqs. (3 . 2) and (3.3) become 

dNe 1 dT 
1 e e A 

-- + -,:,-- N -- N E - ..,,,-- J 
dx A 

dx T e kT e De e e 

(3 .10) 

A 

dNi 1 dTi -+- N . E 
1 A 

d + ..,,,-- N . -- = ~ J 
x T 1 dx kT. 1 

Di i 1 

(3 .11) 

The energy equation (2 .77) i s most conveniently written in the 

form 

d 2; i ct~ dr -- + --- -- --
dx2 ~ d x dx 

wher e T has replaced T 
n 

h --- N 
A e 
;\ 

(3 .12) 

in a notat ional change. 

A 

The transverse electric field E enters rather intimately in 

Eqs. (3 . 10) and (3 .11), and a n equation for it is obtained f rom Poisson' s 

* equation for the electric field 

where p is the charge de nsity and E 
0 

(3.13) 

is the permittiv ity of free 

- ·- - ··-------- --- -------------- - ---------
* See , for ins tance, Panofsky and Phillips [20 ) , p. 11. 
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space. The equation is wrltten in ratioirnlized mk.8 units. S1 nee tliv 

char ge density is the result of electron and ion concentrations, 

Poisson's equation applied to the positive coluum becomes 

A 

dE 
dx 

Boundary Conditions 

e 
£ 

0 

(3.14) 

(3.1), (3.10)-(3.12), and (3.14) constitute a set of five equa-

A A A 

tions for the five unknowns J, N , N., T, E . TI1e other quantities 
e i 

appearing in the equations can be expressed as functions of 

A 

and Et with the use of data from other sources. 

T , N 
n 

Before the equations can be solved, boundary conditions must be 

imposed upon the variables. Several are easily determined from the 

synnnetry about the center of the discharge. Designating the center plane 

by x = 0 we have 

x 0 J 0 (3.15) 

E 0 (3.16) 

" dT 
0 

dx (3.17) 

The boundary conditions at the wall are not as easily determined. We 

assume as an approximation that the electron and ion densities are zero 

* there . This condition is not exact, of course, since the equation 

~ = N < v > would then predict a zero flux of charged particles to the 
"" ct -a 

* A detailed discussion of the boundary conditions is given in McDaniel 
(19), pp. 496-497. 



wall. Ilow<..!ver, the wa.l.J. absorbs es sent.Lally al 1. of tl1L~ eh•ct rons and 

ions that strike it, and the densities are very small near it. The trans-

fer of heat to the wall by conduction by the neutral gas is influ<..!nced by 

conditions outside the plasma. As a boundary condition we choose to 

specify the temperature of the neutrals at the wall. The conditions at 

the wall now become 

x L N 
e 

N. 
1 

T 

0 

0 

T 
w 

(3.18) 

(3 .19) 

(3. 20) 

where L is the distance from the center of the discharge to the wall. 

The equations are solved for 0 ~ x ~ L , and the solution in the other 

half of the discharge can be obtained by synunetry. 
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4. Sl>URCl~S OF DATA 

'i'IH.' eq11<1L.iuns fnr J, Ne' Ni' T , and T·'. JnvoiVl! coel'tJcJcnl.:·• 

L11 ~1t l1;1ve tn he <lctcnni.cwd from expei-imentn.1 J;1t;1. Tli <..· dt•rLvatlcrn of 

u,,~ equ:1lL011s shows that tl1L'!:H~ cocffi.c.ients are or invo.ivc .int:cgr;1Js 

over cross s ections and dis tri.bution. functions, Luth of whic.h are 

rn1known. However, data are available from various sources, and their use 

and applicability are discussed below. 

Data for Electrons 

Data for the coefficients depending on the electron distribution 

fun c tion are obtained from the work of Frost and Phelps [ 11] and 

EngcJ.hardt and Phelps [10] They solve the Boltzmann equation directly 

for f (v ) in a steady-state, spatially uniform situation. ·n1ere is 
e ·-·e 

an applied electric field and the collision integral includes, in addi-

tion to elastic electron-neutral collisions, such inelastic effects as 

ionization and rotational, vibrational and electronic excitation. The 

cross sections for these processes appear in the equation and are 

initially unknown. Using assumed values for them, the Boltzmann equa-

ti o n is so 1.ved, and f (v ) 
e -e is used to evaluate such macroscopic quan-

ti ties as drift velocity and electron temperature. These quantities are 

compared to experimentally determined values, and the assumed cross sec-

U uns are varied and f recalculated until agreement is reached. The 
e 

f.i.nal result is a set of cross sections that can be used to calculate 

drift ve.locities, electron temperatures, diffusion coefficients, etc. 

over a wide r ange of the parameters appearing in the Boltzmann equation. 

Th e se p arame ters are the electric fi e ld and variables determining the 
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~;t<Jtl~ nf the nL'.lltral gas--p, T, and N (related to 
11 

p ilnd T liy 

Eq. ('.~.78)). lt i.$ found t:hat at constant. N till' dJstr:lhu t"Lon f11nc -­
n 

Llon vari0s very l .ittle wllh T . Also, N nnd LIH' ('l(~ c tr'fc fi<·ld 
n 

'\~ always appear togethe r in tlH' Boltzmann equation .In the .form 

... 
E /N . Consequently, the calculated quantities sucl1 as drift v e loci­

t n 

ties and mobilities can be expressed as functions of E /N multiplied 
t n 

perhaps by simple multiples of Et or N 
n 

Graphical results for 

these quantities are presented in the publications cited above, and the 

d e tails involved in their use in our equations are discussed below. 

First, however, it is necessary to consider the general applicability 

of t h e data . 
,.. 

I n our s ituation the total electric field Et and the neutral 

number d ensity N vary with position in the transverse direction. 
n 

,.. 
The v a riation of Et constitutes no problem and is easily disposed of. 

Equations (C.2)- (C.4) of Appendix C show that the effect of a repre-

s entative value of the transversefield on Et is very small. In 

fact, in applying the data to our problem, Et is replaced by our 
,.. 
E 

z 

The variation of N , however, requires a more detailed analysis. In 
n 

l~valnating the coefficients at a particular position we wish to use 

the local value of N 
n 

The justification of such a procedure re-

qulre s that. the electron distribution function f 
e adjust very rapidly 

to a change in N 
n 

A criterion to establish whether the adjustment 

is sufficiently rapid is discussed in Appendix C. It consists of a 

comparison of the time required for f to respond significantly to a 
e 

change in N with the time required for a typical group of electrons 
n 

to travel betwe en locations of significantly different N 
n 

An 



-44-

estimate of the latter time is given by the ambipolar diffusion time 

in Eq. (C.41). A comparison of the ambipolar diffusion time with the 

r esponse time of Eq. (C.36) shows the adjustment of f 
e 

to b e faster 

by several orders of magnitude. Thus we conclude that we are justi-

fied in using the local value of N 
n 

to evaluate the coefficients in 

our equations from the data. 

Data for electron temperature, ionization coefficient, and 

drift velocity in H
2 

are presented by Frost and Phelps [11] and 

Engelhardt and Phelps [10] in the form 

kT / e 
e fE(E/Nn) 

"' "' 
aI/Nn fI(E /N ) z n 

"' w w (E /N ) 
e e z n 

a
1 

is Townsend's first ionization coefficient and represents the 

expected number of ionizing collisions an electron experiences in 

(4.1) 

(4.2) 

(4.3) 

travelling a net distance of one centimeter in the field direction. It 

is related to the ionization coefficie nt VI by 

aI we 

Graphs displaying the data for w 
e 

(4.4) 

are presented in 

Figs. 5, 6, and 7. The data are adapted to computer calculations 

through the use of least-squares polynomial fits which determine fE , 

w e as functions of E /N . z n 
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A number of the coefficients appearing in the equations of change 

can now be expressed in terms of fE , f 1 , and w 
e 

In writing the 

expressions it is convenient to use Eq. (2.78) to eliminate N 
n 

as a 

v a riable in preference to p and T . The dependence of the variables 

on E , p , and T 
z 

is written explicitly. Although E and p are 
z 

constant throughout the discharge, T is a dependent variable in the 

equations, so the coefficients vary with x 

in Eq. (4.1) is now written as 

A 

T (T;E ,p) 
e z 

A 

E A 

e f (~ kT) 
k E p 

The electron temperature 

(4.5) 

Using (4.2) - (4.4), the ionization coefficient is evaluated by the 

equation 

A 

v
1

(T;E
2

,p) 
p Ez " Ez " 
~ w (~ kT) f

1
(- p- kT) 

kt e P 
(4. 6) 

The electron mobility as defined by Eq. (3.5) can be determined from 

knowledge of v , and data for \! 
m m 

are available in Frost and Phelps 

[ 11] • Furthermore, our definition of an effective \! , as d i scussed 
m 

following Eq. (2.35), coincides with theirs. Howeve r, \! can be 
m 

related to w by applying the electron momentum equation in the 
e 

axial direction. Althoug h w e is usually defined as the magnitude of 

the mean velocity in the direction of the field, the diffe rences 

between the axial field and axial velocity and the total f ield and 

tota l v e locity are negligible (see Appe ndix C, Eqs. (C . ~, (C .4), (C. 21~ 

(C. 40)). Equation (2.7 5 ) in the axial direction now become s 
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m \! N w 
e m c e 

m w 
e e 

In e v a luating th e coe fficients i.n the equations, the <l a ta for 

(11. 7) 

11::;cd rnthe r tha n that f or \! 
lU 

From (3.5) and (4.8), µ is f ound by 
e 

" 
" 
l l (T·E p) 

e ' z' 

E A A z w (- kT) IE 
e p z 

D is now obtained from (3.8) using (4.5) and (4.9): 
e. 

A A 

" " "' D (T;E ,p) 
e z 

E A E " " 
w c-2.. kT) fE c-3.. kT) / E 

e p p z 

A A 

(4.9) 

(4 .10) 

The expres sions for h and h 
0 

in Eqs. (2.65) and ( 2 .70) become 

h er ·@ rl 
0 ' z, 

" Ez " 
e E w (- kT) 

z e p 

A 

3k e E E 
-~-z--[ ~ f c-2.. kT) 

E A k E p 
m w (-3.. kT) 

n e p 

A 

T] 

The d e rivative of T appearing in Eq. (3.10) is converted to a 
e 

" deriva tive of T with the use of Eq. (4.5) ~ 

" " dT 3T 
dT e e 

dx 
---...---
ClT dx 

A 

e E E " = __ z f ' c-2.. kT) dT 
p E p dx 

(4 . 11) 

(4.12) 

(4.13) 

(4.14) 

Th e numerLcal evalua tion of f~ b y the compute r is accomplished by 
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differentiation of the l eas t-squa res polynomial for f ' . t 
Fi~1tr<• 8 

compares this computation with an attempted direc t nume rical differen-

tia tion of the data. 

Da ta for Ions 

Data that are sufficient to determine the ion mobility and dif-

fusion coefficient for our application are given in McDaniel [19], 

p. 472. Ex perimental a nd theoretical results show that, as in the case 

of electrons, E /N is a basic parameter in determining the property 
z n 

"' of the ions. It is found that at constant E and N the ion 
z n 

* mobility is very insensitive to changes in temperature Also, at con-

* stant E /N z n it varies inversely with N 
n 

Through deference to 

tradition the neutral density is seldom mentioned in the presentation 

of mobility data, and in its place appears a "reduced" pressure p
0 

given by 

Po 

where 

To 

The r e duced mobility 

and a pressure of 

as a function of 

0 
p 

E /p z 0 

= 

To 
~p (4.15) 

T 

N kT0 

n 
(4.16) 

273°K (4 . 17) 

(mobility at a gas t empe r a ture of "'o o 
T - 273 K 

760 mm Hg) is presented by McDaniel [19], p.472, 

It is related to the mobility under other 

* McDaniel (19], pp. 427-428. 



conditions by the equat i on 

(4.18) 

(/Ll 'J ) 

'' '-9 lOlfl - ) '-· . " · x . cm ( 4 . 20) 

Ag;1.i.n we~ P l 1minat~~ N as a variable by means of th e pe rfec t gas Law 
n 

and write µi as a function of E , p , and T 
z 

A A 

µ. (T ;E , p) 
l. z 

0 A E T 
p_ T "'o z 

p ~ µi(~) 
T p T 

in the form 

The data are adapted to computer calculations by means of a least-

" " ""o 

(4.21) 

squares polynomial expressing as a function of E T/(pT ) 
z 

or 

~ 

R / 11 . A g raph of the data is given in Fig. 9 . The ion diffus i o n 
z 0 

c o (' [fi.c i .l'nt c a n now be obtained from Eq. (3 . 9). Ti has already been 

A A 

;1ss 11111e d (' C[llal. to T (Eq. (2.56)), so D. 
]_ 

b e come s 

A 

D.(T;E ,p) 
1 z 

k 0 T2 "o _ p_ _ µ 
e p "'0 i 

T 

A A 

E T 
(:2--) 

" 0 
pT 

(4 . 22) 

It is now necessary to perform an analysis similar to t hat done 

for the electrons to show that the data are applicable in a nonuniform 

s itua tion. µi is related to the ion distribution function through 

Eq. (3.7), which involves v. , and Eqs. (2.40) and (2.41), which g ive 
1 

vi a s an ave rag e quantity obtained from integrations ove r f 1 (~.1 ) 

A 

This r e l a t i on s hows th a t the time for µi and D
1 

to respond t o 
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is the same as the respons e time for Because of 

the efficient energy interchange hetween ions and neutrn l moleculPH, 

the response time for fi is essentially the same as th e e nergy r(•lnxri-

tion time given in Eq. (C.10) of Appendix C. In order to jus tify use 

of the local Nn in evaluating µi and Di , the response time must b e 

much less than the time during which the ions experience a si.gnificant 

change in N 
n 

This latter time is of the same order of magnitude as 

the ambipolar diffusion time found in Eq. (C.41). A comparison of the 

two times shows that it is indeed appropriate to express the transverse 

A 

variation of µi and Di in the positive column through use of the 

local neutral density . 

Recombination Coefficient 

The data available for the electron-ion recombination coeffici-

ent in H
2 

are scarce and unreliable. It was once thought that the 

dissociative recombination reaction of Eq. (2.12) was characterized by 

* a large recombination coefficient • In fact microwave measurements 

by Biondi and Brown [3] in the afterglow of an H
2 

plasma yielded a 

value for a of 2 x 10-
6 

cm3 /sec. However, a later paper by Persson 

and Brown [22] attributes such a high value to other factors and con-

eludes that in H
2 

the recombination coefficient is negligible within 

experimental error and is thus less than 
-8 3 

3 x 10 cm /sec. The same 

conclusion is also reached by Popov and Afanaseva (23]. Furthermore, 

* See McDaniel [19], pp. 590-591, 607-609; Hasted [12], pp. 267-268; 
Bates [2], p. 267. 
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in the afterglow the Plectron and neutr:il templ'r;1t11n"•s ar1' L'qua I. I 11 

the positive column, where the electron temperature ls mtH.: li higher , 

the recombination coefficient is expected to be less because of the 

increased difficulty in dissipating the kinetic energy of electrons. 

Nevertheless, in the absence of better data a is given the value 

Ct 
-8 3 

3.00 x 10 cm /sec (4.23) 

in studying the effect of recombination in the positive column. The 

numerical calculations which depend critically on the value of a. in 

the solution of the equations in Part II must be regarded with consi-

derable skepticism, but the qualitative nature of the solutions is 

the same as for a smaller a. • A larger value of a results in the 

effect of recombination becoming significant at lower values of the 

electron density. Although the recombination coefficient in an H
2 

plasma is small, it is considerably larger for certain other gases and 

may be an important factor in the abnormal-glow or arc regimes of the 

disc harge characteristic. 

The data used for the numerical evaluation of the the rmal con-

ductivity in H
2 

a re found in the International Critical Tables (15] 

" Vol. 5, pp. 213-214. At the conditions of interest A is essentially 

inde pendent of pressure at constant temperature, and an empirical 

" " formula is presented there for A as a function of T • A slight 

modification results in the following formula, valid in the range 

20 .8°K < T < 373°K : 



-51-

). (T) 

where 

4 -3 0 ] 1.706 x 10 gm cm sec K- . . 

A 

A moderate extrapolation by this formula is used to evaluate A for 

T > 373°K . Thennal conductivity data for gases in general are of 

rather low accuracy, and the extrapolation is not likely to cause sig­
,,.. 0 

nificant error. In fact, the value of ;\(273 K) differs from that 
A 

listed in Perry's Handbook [21], p.3-206 by roughly 10%. Data for ). 

are available there at higher temperatures, and the deviation of that 

data from the extrapolated values indicates that the extrapolation is a 

reasonable approximation. 
A 

The derivative of A appearing in Eq. (3.12) is now converted 
A 

into a. derivative of T 

A 

d). 

dx 

A A A 

A 

d). 
A 

dT 

dT 
dx 

(4.26) 

(l/A)d;\/dT is evaluated using the empirical formula for ). 

A 

1 d;\ 
A A 

A. dT 

Domain of Data 

dA .Q.n ~ 
dT 

T + 282°K 

2T(T + 94°K) 

(4.27) 

(4.28) 

Most coefficients in the equations of change are determined from 

experimental data for "'o 
µ., which are obtained as 

l. 
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r. /N for wh I c h till' 
Z II 

varlo11s q11a11tl1· lt~ s art' known d:l.ffers, and L11u data can lw u1:H.•d only J11 

the rangt' 

-15 2 A 

0.43 x 10 volt-cm < E /N 
z n 

< 1.00 < lo-15 volt-cm2 
(4.29) 

in which all coefficients can be evaluated. Although this range seems 

quite restricted, the variation of 
A 

E /N within its bounds causes VI 
z n 

to change over several orders of magnitude. The development of the 

A 

problem in Part II shows that because of the large change in VI there 

are no practical limits on E 
z 

in the interpretation of E 
z 

as the 

parameter A discussed in the Introduction. However, the bounds on 

E /N z n 
A 

do impose a limitation on the behavior of T in the temperature-

dependent studies of Part III. 
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5. DIMENSIONLESS PROBLEM 

The final working e quations are ohtaJne d by wt·H: ing lhl• t•qu;1Llon H 

for J , N , N. , T and E in dime nsionless form. They an! Lhen 
e 1 

ready for the particular applications in Part II and Part III. 

Dimensionless Coefficients and Variables 

Reference values E 
zr 

and for the axial electric field and 

the pressure are introduced in making the coefficients appearing in the 

equations dimensionless. The dimensionless coefficients are then 

defined as f o llows: 

A 

T (T;E ,p) e z 

A 

µ (T ;E , p) 
e z 

D (T;E ,p) 
e z 

A 

µ. (T;E ,p) 
1 z 

A 

D. (T;E ,p) 
1 z 

A A 

\! (T ·E p ) 
I w' zr' r 

A A A 

T (T;E ,p) 
e z 

A A A 

T (T ·E p ) 
e w' zr' r 

A 

µ (T;E ,p) 
e z 

A A A 

µ (T · E p ) 
e w' zr' r 

D (T;E ,p) 
e z 

n <T ·E P ) e w' zr' r 

A A A 

µi (Tw;Ezr'pr) 

B c-r ·E P ) 
i w' zr' r 

(5.1) 

(5.2) 

(5. 3) 

(5.4) 

(5.5) 

(5.6) 



h(T;E ,p) = 
z 

h (T;E ,p) 
0 z 

A(T) 

where 

T 
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h(T·E p) 
' z' 

h(T ;E ,p ) 
w zr r 

A A A 

h (T;E ,p) 
0 z 

A A 

h (T ·E p ) 
o w' zr' r 

A A 

A(T) 
A A 

A(T ) 
w 

T 
A 

T 
w 

(5. 7) 

(5.8) 

(5.9) 

(5.10) 

The choice of E zr 
and differs in the applications of Parts II 

and III, but in either case they are chosen so that the magnitude of 

the coefficients are of order unity throughout the discharge. 

The dependent variables of the problem are als o made dimension-

less in such a way that their magnitudes are near unity in most of the 

discharge. The proper definition of some of the dimensionless variables 

is not obvious a priori and depends on hindsight gained in solving the 

problem. For nota tional s implicity in the definitions, it is convenient 

to give a special symbol 

the discharge: 

N 
eo 

N 
eo 

to the electron density at the center of 

N (0) 
e 

(5.11) 

The dimensionless electron and ion densities .are now defined by 

n 
e 

n . 
]_ 

N /N e eo 

N . /N 
i eo 

(5 .12) 

(5 . 13) 
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The definition (5.12) artificially introduces another boundary condition 

into the problem, because n e must be unlty at the center of the dis-

charge. However, the definition also introduces the unknown N 
eo 

into 

the problem and gives the problem a desirable measure of versatility. 

The dimensioned formulation of the problem in Section 3 suggests that 

the equations are to be solved directly for J, N , N
1

, T, E 
c after 

sp1:'cify.ing values of the parameters E z 
and p Now, however, the 

explicit presence of N 
eo 

in the problem permits more flexibility. 

fact, the solutions in Parts II and III are obtained by specifying 

In 

N 
eo 

in advance and determining E 
z 

as an eigenvalue. As mentioned in the 

Introduction, one of the primary objectives of the study of the positive 

column is the relationship between the electron density and the applied 

electric field. This relationship can now be expressed quantitatively 

A 

as the relation between N and E 
eo z The remaining variables J 

and E are expressed in dimensionless form as 

J 

E 

L ----
" " " 
0. (T ;E ,p )N 

1 w zr r eo 

L e 

T 
w 

A A 

T (T ·E p ) 
e w' zr' r 

~A~-,._~-A~~~- E 
kT (T ;E ,p ) 

e w zr r 

J (5.14) 

(5.15) 

The dimensionless temperature is the T defined by Eq. (5.10), and the 

new independent variable y is defined by 

y x/L (5.16) 
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Dimensionless Equations and Boundary Conditions 

The equations of Section 3 are made dimensionless by substituting 

into them the expressions above for the variables and coef fi.cients. As 

a result of this process various constant coefficients appear in the 

equations which depend on N T E p The procedures used to eo' w' zr' r ' 
A 

solve the problem for the N -E 
eo z relationship require that the elec-

tron density N retain its identity in the equations. 
eo 

For this 

purpose and to avoid the appearance of dimensioned quantities in the 

equations , a spurious parameter N is introduced. N is a reference 

density whose value is of no essential significance and is specified 

for convenience in Parts II and III. A dimensionless electron density 

~ is defined by 

N /N 
eo 

(5 .17) 

and this equation is used to replace N wherever it appears in the 
eo 

dimensionless equations. 

With the us e of (2.56), (4.13), and (4.26), Eqs. (3.1), (3.10)-

(3.12), and (3.14) become 

(5.18) 

dn 1 3Te dT 
dye+ ___ A ___ aT- ne -dy- = 

T (T;E ,p) 
e z 

-1 
------n E 

A e 
T (T;E ,p) 

e z 

1 - OT -----J 
D (T;E ,p) e z 

(5.19) 



where 

y 

2 
d T + _1_ d;\ (dT)2 
dy2 li.(T) dT dy 

dE 
dy X l; (n. - n ) 

1 e 

2" 
L v

1
(T ;E ,p ) 

w zr r 
A A A 

D. (T ;E ,p ) 
1 w zr r 

£ = A A A 

T 

13 

x 

D. (T ;E ,p ) 
1 w zr r 

A A A 

T (T ;E ,p ) 
e w zr r 

A 

T 
w 

D. (T ; E , p ) 
1 w zr r 

A A A 

D (T ·E p ) 
e w' zr' r 

A 2 
h(T ;E ,p )NL 

w zr r 

li.(T ) T 
w w 

A A A 

£ kT (T ;E ,p ) 
o c w zr r 
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h(T ;E:~ ,p) 
-13 l; --

T 
w 

A A A 

A(T) 

T (T · E p ) e w' zr' r 

T 
w 

A A A 

T (T ·E p ) 
e w' zr' r 

n 
e 

(5.20) 

(5.21) 

(5.22) 

(5. 23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Of the constant coefficients in the equations, only l; depends on 

N ; y , c , T , o , ~, and 
co x all depend on T E w' zr and p • 

r 
These 

dL'fH'1lllcnc lt•s p I ;iy a pronli tH•nt role in till! methods U'"led to solve the 

equations. 
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The boundary conditions on J, ne, n 1 , T, and E now become 

n 1 
e y 0 

J 0 

dT 
0 

dy 

E 0 

y 1 n 0 
e 

n. 
1 

0 

T 1 

The equations are to be solved for J , ne, ni, T , and E on 

0 ~ y ~ 1 , and a relation between 

obtained. 

Solution at Neo = 0 

N (or l;) and 
eo 

E 
z 

is to be 

( 5 .29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

The discussion in the Introduction describes in a general manner 

A 

the N - E relationship. In particular it asserts the existence of a 
eo z 

trivial solution to the equations. An examination of Eqs. (3.1), (3.10)-

(3.12), (3.14) - (3.20) shows that the trivial solution is 

J N 
e 

T 

N 
eo 

and that E is arbitrary. 
z 

T 
w 

N (0) 
e 

E 0 

0 

(5.36) 

(5.37) 

(S. 38) 

However, the corresponding solution in dimensionless variables 

A 

is not trivial and E is not arbitrary. This behavior is explained 
z 
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by the transformations (5 . 12) - (5.14) and the corresponding boundary 

condition (5 . 29). The use of the dimensionless equations when N 
ea 

requires special consideration, because their derivation i .n that case 

entails division by zero . A conceptual justification for the ir us e 

0 

involves the consideration of a process l n whic h N 
co arproaches z e ro . 

fl. sclwmnt.lc reprl'S(•nl;.iti.on of this proceHs l.H ohs<~rvc•d h y fol J owi.ng th e 

curve in Fig . l to N = 0 and the conclusion so de t e rmi ned is that 
eo ' 

" E
2 

is not arbitrar y but instead corr esponds to the bifurca tion point 

" This value of E i s ob t a ined in t he cour se of solving t he 
z 

equations. For N = 0 
eo 

(5.32), (5 . 35) show that 

and 

(h ence I'; = 0) , Eqs. (5. 21) , (5. 22) , (5 . 31) , 

T 1 (5.39) 

E 0 

The e quations and boundar y conditions for .J , ne' and ni then become 

dJ " 
dy y v1 (1 ;Ez , p) n 

e (5.41) 

dn 
1 e - OT J = 

dy " D (l;E ,p) 
e z 

(5.42) 

dni 1 
.J 

dy 
- T 

" Di(l;E
2

, p) 
(5.43) 

y 0 11 l 
l ' 

.I () 
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0 

0 

Eliminating J between (5.41) and (5.42), the problem for 

d
2
n 

A 

v1 (l;Ez , p) __ e+ 
YOT A 

n 
dy2 D (l;E ,p) e 

e z 

y 0 n 1 
e 

dn 
e 

0 - dy == 

n 0 
e y 1 

The solution t o this eigenvalue problem is 

n e 

A 

1f 
cos 2 y 

v
1 

( 1 ;E , p) 'IT2 
y OT z == -

D (l;E p) e z' 
4 

0 

n 
e 

(5 . 47) 

he comes 

(5 . 48) 

(5.49) 

(5 . 50) 

(5.51) 

(5 . 52) 

(5.53) 

Using (5.1), (5.4), (5 . 10), (5 . 23), (5 .25), and (5 .26), Eq. (5.53) 

h e comes 

2"' A A 

L v1 (T ~E ,p) w · z 
A A A 

D (T ;E ,p) 
e w z 

2 
1L 
4 

(5.54) 

For specified values of L , T , and p , this equation can be solved 
w 

A 

to find the value of Ez corresponding to Ab in Fig. 1. By elimi-

nating J between Eqs . (5.42) and (5.43) and integrating the resulting 

equation us ing the boundary conditions at the wall, it i s easily s een 
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that n. is a constant multiple. of n an<l is larger by several orders 
1 e 

of magnltucle. 

Discussion of Problem 

The solution for small N 
eo 

can be found by expanding " E 
z 

and 

the dependent variables in asymptotic series consisting of powers of s, 

and this procedure is carried out by Cohen and Kruskal [7] for the case 

in which T is constant (8 = 0) and recombination is absent (€ = 0). 

Our interest, however, is in situations in which N 
eo 

is large. In 

" fact, the work in Parts II and III involves the expansions of E 
z 

and 

the dependent variables in asymptotic series whose lowest-order terms 

correspond to the ambipolar situation, in which E is represented by 
z 

A. in Fig. 1. In each case the problem is approached hy specifying 
a 

N 
eo 

in advance and determining " E 
z 

in the course of solving the dif-

ferential equations. Of course, the reasoning can be inverted after 

the solution is obtained so that J ' n 
e' ni, T 

' 
and E are regarded 

" as functions of E and y ' 
and N as a function of E 

z eo z 

In solving the problem no study is made of the response of the 

solution to changes in such parameters as L , T , and the amount of 
w 

neutral gas (or the pressure p) in the discharge. These parameters 

and the nature of the particular gas in the discharge play a critical 

role in determining even the crudest approximation to the solution, and 

hence their effects can be evaluated from a study of the ambipolar situ­

* ation . The work here analyzes the deviation of the actual solution 

from the ambipolar approximation. 

* The effects are discussed in Cobine [6] and von Engel [26). 



Until now the behavior of the pressure p has not been discussed 

except to say that it is constant throughout the discharge. Indeed, the 

pressure enters the equations as an unrestricted parameter, and it must 

be determined by the particular physical application considered. In our 

case we wish to study the behavior of a discharge containing a fixed 

amount of neutral gas as the applied electric field 
A 

E 
z 

varies. 

Although the pressure is constant across the discharge, its value 

depends upon the temperature dist.ribution and can be calculated by use 

of the perfect gas law. Since the temperature is a variable of the 

equations only in. Part III, its calculation is deferred until then. 

A 

The correspondence between the N -E 
ea · z 

relation and the voltage-

current characteristic of the discharge is described in the Introduc-

tion. The relationship of the electron density to the current can now 

be given more explicitly as 

(5.55) 

whe r e the integration extends over the cross sectional area of the dis-

charge. Equation (C.22) of Appendix C shows that w << w , so the 
i e 

contribution of the ions to the current is negligible . Using (4.3) and 

(5.12), Eq. (5.55) then becomes 

I e N J eo 
Ez "' 

n w (- kT) dA 
e e p 

The results of Parts II and III show that N varies much more 

rapidly than 

eo 
A 

E , so the current is essentiall y proportional to z 

(5.56) 

N 
eo 
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Appendix A 

EXPRESSIONS FOR COLLISION RATES 

A quantitative assessment of the collective effects of interpar-

ticle collisions requires a detailed consideration of particle inter-

actionR. The calculation of interest may seek the rate at which 

momentum or energy is transferred from one~ species in the r lasma to 

another by elastJc collisions, or it may seek the number of collisions 

causing ionization by electron impact. Although the net result of such 

calculations is statistical in nature, the statistics are provided by 

the velocity distribution function, and it is still necessary to know 

the overall kinematics of any hypothetical binary collision. This 

information is provided in very convenient form through the concept of 

a collision cross section. 

Definition of Cross Section 

Tiil' u::;e of th e cross sPct ion provid<~s a compact expression for 

tlw rate at wlllcl1 particles engage :Ln a specific class o f collisions. 

The rudiment.al physical situation through which the concept is intro-

duced consists of the scattering by a fixed center of a uniform flux 

of particles of velocity ~(see Fig. 3). The differential cross sec-

tion for the process k , which may be elastic scattering, ionization, 

etc., is defined by the equation 

R (A.l) 

_* _____ _ 
~~···· ll1•l('ndx IHI, pp.!)/ rr. 
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where sin X dX de: (A. 2) 

is an element of solid angle in the direction (X,E) X nnd E arc• 

the polar and azimuthal angles, r espectively; <I>(~) is the magnitude of 

the flux of particles with velocity v and is uniform throughout space; 

R with dimensions of collisions per unit time is the rate at which 

particles engaging in collisions of type k are scattered into the 

solid angle dS";l qk(v,X) is the differential cross section for 

process k . The symmetry suggested by Fig. 3 indicates that is 

indepe ndent of ~ 

For the s ituation in which the scatterer is a moving particle, 

the coordinate system of Fig. 3 is taken relative to the scatterer, and 

the velocities are relative velocities. Although the velocity of the 

scatterer, and hence the flux of particles relative to it, changes as a 

result of a collision, the use of cross sections in physical situations 

involves a distribution of scatterers with various velocities, and the 

concept introduced above actually pertains to the interaction of sets 

of particle s characterized by their velocities. As shown by the more 

concrete cnlculations of Appendix B, the angle X in this case is the 

deflection angle for the collision of two particles in their center-of­

mass coordinate system. Furthermore, these calculations show that the 

knowledge of X , e: , and the pre-collision velocities together with the 

laws of conservation of momentum and energy suffice to determine the 

velocities after collision. 

For some collision processes the velocities after the collision 

are not of interest . For instance, in the calculation of the rate of 
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ionization, the only object of interest regarding the outcome of n col.-

lision is whether ionization occurs. In such cases Eq. (A.l) may be 

integrated over n to yield 

R (A.3) 

where (A.4) 

is the total cross section for the process k . 

Application to Velocity Distributions 

As preparation for the use of cross sections in rate expressions 

for processes occurring in a plasma, we consider the interaction of two 

types of particles characterized by the velocity distribution functions 

f(v) and F(V) . Collisions between the particles are, of course, suf-

ficient ly localized so that the spatial variation of f and F is not 

pertinent to the calculations. In order to correlate the physical 

situation with that represented by Eq. (A.l), it is necessary to consi-

der collisions between particles whose velocities differ only infini-

t esimally from two particular velocities v and V . In this case the 

magnitude of the flux of scattered partic l es is g f (~) dv , whe re 

,, 
<> I~ - ~I (A. 5) 

is the relative speed of the particles in dv with respect to the 

scatterer with velocity V. Using (A.l), the rate at which these col-

lisions a r e occurring is giv en by 

R (A. 6) 
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nnd the total rate of deflection into d O would he found by integrat-

:Lng ove.r v . In order to include colU.s:l.ons with other scatterers , 

Eq . (A. 6) is multiplied by F(V) dJ_ , the number density of all scat-

t e rers with velocities in dV about V . R now has dimensions of 

collisions per unit time per unit volume and is given by 

(A. 7) 

Equation (A.7) i s very v e rsatile and can he use d to obtain rates 

for a wide variety of processes. If the objective i s the rate at which 

momentwn is transferred from one species to another, for instance, it 

is only necessary to multiply (A.7) by the momentum lost in a collision 

by a particle with velocity v . For generality we introduce the 

extensive property <f>(y) whose total value for the scattered species 

is the sum of that belonging to each particle. Designating the velo­

rv 
c ity after collision by v , we have 

(A.8) 

where R r e presents the rate per unit volume at which <f> is increas-

ing in the scattered species as a result of collisions between particles 

with velocities v and V such that v is deflected into an . It 

has been noted that 

x, £ • 

'\, 
v is determined uniquely as a function of y, J_, 

Values of the rates as a result of all collisions between the 

two species are found by integrating over y, J_, and n . From (A.7) 

the tota l number of collisions of type k per unit volwne per unit 
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time is 

R (A. 9) 

ff f (~) F(y)g Qk (g) d~ d_y_ (A.10) 

From (A. 8) the rate per unit volume at which <I> is increasing in the 

scattered particles is 

R 

Here immediate integration over Q 

general depends upon X and £ 

is not permissible, since 
'\, 
v 

(A.11) 

in 
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Appendix B 

EXPRESSIONS FOR ELASTIC MOMENTUM AND 

ENERGY TRANSFER RATES 

In order to obtain useful expressi.ons for the elastic collision 

integrals for momentum and energy transport between species, it is 

necessary to consider the kinematics of binary collisions in some 

detail. The general rate expressions of Appendix A are used, but it is 

necessary to substitute into them explicit forms for the velocity after 

'\, 

collision v The resulting expressions are simplified by performing 

some integrations and making approximations where appropriate. 

Basic Collision Kinematics 

Equation (A.11) of Appendix A contains velocities 
'\, 

-:!_, y_, v in 

the laboratory frame of reference and other variables g,X associated 

with the center-of-mass frame of reference. In order to transform the 

right-hand side, it is necessary, of course, to relate the two systems. 

The velocity of the center of mass W and the relative v e locity _g_ 

associated with two interacting particles are given by 

(m + M)_!i mv + MV (B . 1) 

and 

_g_ v - v (B. 2) 

where v and V are the velocities of particles with mass m and M 

respectively, in the laboratory frame. The post-collision velocities 

are distinguished from the ir pre-collision values by a tilde. The 



-69-

detailed dynamical behavior during the collision need not he considered. 

It is often convenient to measure the velocities from the center of 

mass. These expressions are easily obtained from (B.l) and (B.2) and 

are listed below: 

- w M 
(B. 3) v + M.8. m 

v - w m 
(B .4) m + M .8. 

'v 
.,, 

M 'v 
v - w ·--- - £ (JL5) 

m + M 

'V 'V m 'V 
v w + M.8. (B. 6) m 

The collision is so rapid an event that other forces have no 

significant effect on the post-collision velocities. The physical law 

for conservation of momentum then becomes 

'V 'V 
mv + MV = mv + MV (B. 7) 

or in the center-of-mass frame, 

,,, 
w w (B.8) 

Since only elastic collisions are considered, conservation of energy 

involves only kinetic energy, and the law is written as 

1:. m;; 2 + 1:. m 2 
2 2 

1 2 + _!_ MV2 2 mv 2 (B. 9) 

Using (B.l) and (B.2), the total energy of the two particles becomes, 

in the center-of-mass variables, 
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* l mv2 + _!_ MV2 
2 2 (B.10) 

(B.8), (B.9), and (B.10) now show that the conservation of energy can 

be expressed very conveniently by 

'\, 

g g (B.11) 

Expressions f or 
'\, 
v - v and 

'V2 2 
v - v in center-of-mass-variables 

are needed in order to simplify the collision integrals that occur when 

the transport of momentum and energy between species is studied. The 

expressions are obtained quite mechanically from the relations presented 

above. The form of 
'\, 
v - v is derived with particular ease from (B.3), 

(B.5), and (B.8): 

'\, 
v - v M "' m+M (g_-_g_) (B .12) 

The angle of deflection X enters (B.12) by expressing its right-hand 

side in spherical coordinates. The direction of .& is taken as the 

polar axis, so x is the polar angle when is written in these 

coordinates . The azimuthal angle £ is measured from a unit vector Q, 

representing a coordinate perpendicular to .& The direction of 

increasing £ is such that when 
/\, 

£ = X = TI/2 , .& is in the direction 

of m = _g_ x !_/ g 
'\, 

Using Eq. (B.11), _g_ is then given by 

'\, 

.& = .& cos X + _& g sin X cos £ + .!!!_ g sin X sin £ , (B.13) 

* This transformation and others of this section are given in detail by 
Holt and Haskell [14]. 
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and (B.12) becomes 

"' M v - v = - m +M [_g_(l- cos X)- !_g sin X cos £ - .!!!_g sin X sin £] • (B.14) 

The desired form of 
'V2 2 
v - v is somewhat more tedious to derive. 

'\, 
We begin by using (B.4) and (B.5) to write v - v in a more complex 

form: 

'\, 

v - v 
'\, 

(~ - W) - (':!_ - ~) 

Squaring both sides, using (B.11) and (B.13), and rearranging, 

£1. v + v2 m
2+ M

2 
2 mM 2 

--- g + 2 g cos x 
(m+M) 2 (m+M) 2 

g2 - 2 mM g
2(1 - cos X) 

(m+M) 2 

2 = v - 2v. v + v2- 2 mM g 2 (1 - cos x) 
(m+M) 2 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

Simplifying ancl using (B.14) with _g_ replaced by v - V , we obtain 

the final form: 

'V2 2 
v v 

'\, mM 2 
2(~ - ~) • V - 2 g (1 - cos X) 

(m+M)
2 

- 2 mM (v
2

- 2v • y_ + v2)(1 - cos X) 
(m+M)2 

+ 2M g sin X (_Q, • V cos £ + m • V sin £ ) 
m+M 

(B.20) 

(B. 21) 
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2M (mv2- MV2)(1 - cos X) 
(m+M) 2 

2M(M-m) v • .Y_(l - cos X) 
(m+M) 2 

2M 
+ m + M g sin X (R. • V cos e: + m • V sin e:) 

The net rate per unit volume at which the momentum of one 

(B.22) 

species is increasing as a result of elastic collisions with another is 

now obtained from Eq. (A.11) of Appendix A. In the equation q(g,X) is 

used to denote the elastic scattering cross section, and ~(v) is set 

equal to my, so the rate becomes 

R = m ff f (y - v) f(y) F(.Y_)g q(g,X) dQ dv dV (B . 23) 

Before substituting the expression for 
'V 
v - v from (B.14) into (B.23), 

it is expedi ent to note that the only dependence of the integrand on e: 

is contained in the terms of (B.14) with cos e: and sin e: • From 

(A.2) it is apparent that these terms contribute nothing when integrated 

over n , and hence the rate becomes 

R 
mM 

m+M JIJ (v - V) f(y) F(V)g q(g,x)(l- cos x)dQ dv av . (B.24) 

The cross s ection and the collision frequency for momentum transfe r are 

<lf'f lned b y 

f q(g ,x)(l - cos x) an (IL 25 ) 
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and 

v (g) 
m 

(R. 26) 

where 

N f F(y) dV (B. 2 7) 

i s the numbe r de nsity of the other species. Usi ng these , (B.24) be come s 

R 
mM 

m+M (y - y)f(~) F(y) v (g) dv dV m (B. 28) 

The dependence of g on both v and V makes furthe r simplifi-

cation difficult, but for the case in which f(y) represents electrons 

and F(Y) neutrals, good approximations are available. In this case 

mM/(m+M) ~ m , and at those values of v and V for which the factor 

f(y) F(V) contributes significantly to the integral, V << v and 

g ~ v . With these approximations R becomes 

R ~ ff (y - y) f(~) F(Y) vm(v) dv dV 

- m f (y - < y > ) f (y) v m ( v) dy 

In the glow discharge of interest, < V > is essentially zero, so 

R = - m f 
Energy Transfer 

v f(y) v (v) dv 
m 

(B.29) 

(B. 30) 

(B . 31) 

The rate per unit volume at which the energy of the ele ctrons is 

increasing as a result of elastic collisions with the neutrals is found 

by s e tting ¢(~) 
1 2 equal to the energy of an electron, 2 mv With 

f(~) representing the electrons and F(~) the neutrals, Eq. (A.11) 
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becomes 

R = ; m ff f (~2- v
2

) f(v) F(Y.) vq(v,x) dn dv dV (B. 32) 

after making the approximation g ~ v • Again it is expedient to 

examine carefully the expression for "-2 2 
v - v in Eq. (B.22) before 

substituting it into (B.32), and again the terms that depend on E 

vanish when integrated over n. The second term of (B.22), when sub-

stituted into (B.32) and integrated over Y._ , yields the average 

velocity < V > multiplied by an integral over the other variables. 

Since < V > is essentially zero in the glow discharge of interest, the 

rate of energy transfer becomes 

R 
2mM 

(m+M)
2 ff I <t mv

2
- t MV

2
) f(~) F(V) vq(v,x) (1- cos X)dn d.:!_ dY._. 

(B.33) 

~(v) and v (v) 
m 

as defined by (B.25) and (B.26) appear after inte-

grating over n We continue by making the approximations 

mM/(m+M) 2 ~ m/M and integrating over V to obtain 

R 

It is interesting to consider the form R would assume if 

(B.34) 

\) 
m 

were independent of v The integration over v in (B.34) could then 

be performed to yield 

R 2 m ( < 1. m v2 > - < 1. MV 2> ) n M 2 2 Vm (B.35) 

whe re n is the e l ectron density. Since R i s the rat e at which the 
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total electron enl'r~y lncrenscs fH:~r. unit vol.uml' and 11 LH thP numhl'r of" 

electrons per unit volrnne, treat lng V as tlH~ coll li;:l.on frequen cy 
m 

allows 
m 1 2 1 2 

2 - ( < - mv > - <-- MV >) to b e lnterpretcd as the average energy M 2 2 

lost by an electron in an elastic collision with a neutral mole cule. 

Although the dependence of v on v 
m 

same interpretation can be applied to 

complicates the situation, the 

v and 
m 

m 1 2 1 2 
2 M(2 mv - < 2 MV >) by 

considering only those electrons with velocity v and density f(v) dv 
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/\npendi.x C 

C/\LClJL/\TION OF PL/\SM/\ PROPERTIES 

FROM KINETIC THEORY 

In order to fully appreciate the kinetic-theory description of a 

plasma, it is necessary to have an understanding of the orders of mag­

nitude of the variables involved. Not only is such an understanding 

essential for an intuitive physical concept of the situation, but it is 

also needed to evaluate the accuracy of approximations that are made. 

In this appendix calculations are performed to obtain such quantities 

as meari energies, m~an free paths, and relaxation times for electrons 

and ions. Such calculations require some knowledge of the state of the 

neutral gas, the size of the discharge, and the magnitude of the elec­

tric field. Although some of these parameters depend on the solution to 

the entire problem, the estimates made here result in order of magnitude 

values for electron and ion properties. The neutral gas temperature and 

the pressure in the discharge are chosen to be 300°K and 1 nnn Hg, and 

the distance from the center to the wall of the discharge in slab geo­

metry is 

L 1 cm (C .1) 

Representative values for the axial and transverse electric fields are 

selected from the results of Part II. Values chosen for the calculations 

of this appendix are 

E z 

for the axial field and 

20 volts/cm (C. 2) 
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E 2 .88 volts/ cm (C. 3 ) 

(or the trans vers e field . However ' the V:-l lue of the tr:.lJlSVc~rse r I 1·1 d 

-Ls con siderably h ighe r in .:i thin sh e.a th by th e wal] o[ tiiC:' d:l.sch::irge . 

The values of E and E predict a total e l ectric field with magnitude 
z 

E 
t 

20 . 2 volts/ cm 

f\ ~·causl' <~ f. the s mall difference be tween E and E 
z t 

Lltl' fo 'l 1 mvln g c:1lc.:ulat:ion s . 

Behavior of Ions 

(C . 4) 

E is used in 
z 

The discussion on pp. 472-473 of McDaniel [19) indicates that the 

ion present in an n
2 

glow discharge is + H
3 

. In Section 2 the approxi-

mation is made that the ion tempera ture equ a ls the neutra l temperature, 

i. e ., "' T. 
1 

300°K. The r oot-mean-square v elocity or random thermal 

v e l ocity of the ions is calculated on the basis of this approximation 

f rom t he f onnula 

l 2 
--- m <v > 
2 i i 

The numerical r e sult is 

3 "' kT 
2 i 

5 1.57 x 10 cm/sec 

(C.5) 

(C.6) 

The mean free path of the ions is difficult to obtain directly 

because o f its critical dependence on the electrostatic dipole force 

b e tween ions and neutral molecules. However, kinetic theory provides a 

fonnula for the ion mobility that involves the mean free path A
1 

It 

was df~rived by P. Langevin and is given in Loeb [ 18] as 
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(C. 7) 

By using experimental data for 
/\ 
lli , we obtain the value 

A.. 
l. 

0.00393 cm . (C. 8) 

The concept of a mean free path in the context of (C.7) refers to col-

lisions between smooth rigid elastic spheres. The collision frequency 

is obtaine d by d i viding Ai into the average speed < V. > Since 
l. 

the value of < V. > is very close 
l. 

to that of ~ , we use the value 
l. 

in (C.6) and obtain 

\). 
l. 

7 -1 4.00 x 10 sec (C.9) 

The ion energy relaxation time pertains to a situation in which 

the mean ion energy differs from that of the neutrals. It is a measure 

of the time required for the ion energy to change significantly as a 

result of elastic collisions with the neutrals. Because of the effi-

cient interchange of energy during collisions, the relaxation time is 

* comparable in magnitude to the time between collisions , and we calcu-

l a te its value from (C.9): 

T 
r 

-8 2.50 x 10 sec (C.10) 

The ion drift velocity in the axial direction is obtained from 

" 
mobility data through the use of the equation wi = Q.E 

1 z_ For 

* See Jeans [16], p. 244. 
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E 20 volts/cm, we have 
z 

2.05 x 1.0
5 cm/sec . (C. 11) 

Th1.:' f ac t that w
1 

.''V~-~T·; casts cons1der;1hlc doubt upon tilt· 

assumption that T = T 
i n 

We now seek a n e stimate for Ti. by nwk l.ng 

a 11 erwrg y ba lance on an nveragc :i.on. The i.on gains energy from th e 

ax:i.a] field at the rate e E w = 1.26 x l0-13 ergs/sec and loses this 
z 

energy through e lastic collisions with the neutrals. If it is assumed 

that the ion loses with each collision an amount of energy equal to the 

difference between ion and neutral energies, the energy balance becomes 

(1. l T 2 < i 
1. kT ) 2 n vi 

Using (C.9) and solving for Ti , 

T. 
l 

T 
n 

e E w 
z 

(C.12) 

(C.13) 

(C.14) 

Although the value of T. 
l 

is correct only in order of magnitude, it 

is apparent that the assumption 

Behavior of Electrons 

" " T = T 
i n 

is quite poor. 

The dat a for electrons are obtained from the papers of Frost and 

Phelps [11] and Engelhardt and Phelps (10), in which they obtain the 

electron distribution function by solving the Boltzmann e quation. The 

mean e l e ctron ~nergy depends strongly on the e lectric field, and for 

" E 20 volts/cm , 
z 
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T 
e 

33400°K 

1 2 
·-· m < V > 
2 P e 

3 
l<T 

2 e 

(C.1.5) 

(C.l<i) 

we obtain 

8 
1.23 x 10 cm/sec . (C .17) 

An electron mean free path is defined by dividing the momentum 

transfer collision frequency V (g) of Eq. (B.26) of Appendix B into 
m 

the relative velocity g ~ v to obtain 

A. (v) 
e 

1 
(C .18) 

where v is the electron velocity and N is the neutral number den­
n 

sity. Evaluating ~(v) 

Phelps [11], we obtain 

A. 
e 

for v =v < v2 > from the data of Frost and 
e 

0.0194 cm . (C.19) 

Using the same value for v , the momentum- transfer collision frequency 

is 

\) 
m 

9 -1 
6.34 x 10 sec • (C.20) 

The electron drift velocity in the axial direction is obtaine d 

from Fros t and Phe lps' [11] data and is 

w = e 
6.60 x 10

6 
cm/sec (C. 21) 

Since the ele ctr on and ion densities in the dis charge are approximately 
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equal, the contribution of each to the total current is proportional to 

its drift velocity. The rate at which the particles gain energy from 
A 

the axial field equals e E w , and the ratio of these rates for the 
z 

two types of particles is 

e E w 
z e 

Response of fe to Changes in Nn 

32.2 (C.22) 

The data used in the calculations above pertain to a situation 

in which N is constant. However, the temperature gradients present 
n 

in the glow discharge cause corresponding variations in the neutral den-

sity. In that case the data at a particular location may be determined 

from the local value of N provided the electron and ion distribution 
n 

functions respond sufficiently rapidly to a change in N 
n 

The res-

ponse time for the ions is expected to be approximately the value of 

T in (C.10). The response time for the electrons is calculated below 
r 

by determining the rate at which the electron distribution function 

cl1angcs a s n result of a sudden chnngc in neutral density. 

An equation for the electron distribution function f 
e 

as a 

function of time and velocity can be obtained by expanding it in 

spherical harmonics in velocity space and substituting the expansion 

into the Boltzmann equation. The approach is standard, and if the 

higher-order harmonics are neglected, equations are obtained for the 

isotropic term f 
0 

and the coefficient of the first- order harmonic f
1

. 

The further approximations of neg l e cting ine lastic collisions and 

assunrln~~ the mean free path to h£! constant l(~<Jcl to Eqs. (.1 2 ) and (1.1) 
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of Proposition 1. The discussion in the Proposition shows that the 

term involving the neutral temperature is small if the electric field 

is so strong that the mean electron energy is much greater than that of 

the neutrals. We neglect this term and rewrite the equations in the 

notation used here: 

Clf 
0 

Tt 
eEZ l " 2 m 1 1 a 4 0 (v f ) +~ - -- -- (v f ) 
3m 2 av 1 m A. 2 av o 

e v n e v 

eE Clf 
z o - .}._ vf 

m av A. 1 
e e 

(C.23) 

(C. 24) 

The steady-state solution for f 
0 

is the well-known Druyvesteyn distri-

but ion 

f 
0 

-3m3 v
4 

C exp ( ~ _._ 2 2) 
4m e E A 

n z e 

(C.25) 

The problem of interest is one in which a sudden change in the 

neutral density upsets a steady-state situation. We must calculate the 

rate at which f then approaches the new steady state. Actually we 
0 

need calculate only the initial rate to obtain an estimate of the res-

ponse time. The neutral density enters Eqs. (C.23) and (C.24) solely 

through the mean free path A , and hence we consider an abrupt change 
e 

in A from A. to A. + OA For loA. I < A , Eq. (C.23) can be 
e e e e 

written 

af 
0 

at 

e e 

(C. 26) 
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oX 111 
c e l 1 a ( '• ) -· _'1 ___ iii·- x -2 av v f 0 (C.27) 
e n e v 

where higher powers of OA /A have been neglected. 
e e Inm.ediately after 

the change in A 
e 

f and 
0 

still possess their former steady-

state values, and the first two terms on the right-hand side of (C.27) 

cancel. Thus initially 

(C. 28) 

is a function of v , and the rate of interest is one for which 

is near the mean random velocity. Since the me an velocity is of the 

v 

same order of magnitude as those for which f varies most rapidly, a 
0 

representative velocity is chosen as one for which the exponent in 

(C.25) is unity. Thus we seek to evaluate af /at at 
0 

From (C.25) 

v 

af 
0 v-­

av 

[

4m e2 E2 x2]114 _ n z e 
vo - 3m3 

e 

3m
3 

v
4 

e f 
X2 o 

e 

- 4f 
0 

(C.29) 

(C.30) 

at v = v 
0 

Hence for v near v the order of magnitude of the v­
o 

dependence of (C.28) is 

O(v f ) 
0 0 

(C.31) 
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T 
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oA. /A. 
e e 

to be of order unity, we obtain 

cH 
0 

dt 
+ .l f 
- -· T o 

m A. 
n e 

mv e o 

m 
_..!!.A. 
m e 

e 

Using the value of A. from (C.19), we find 
e 

v 
0 

T 

2.19 x 10
8
cm/sec 

-7 
3. 26 x 10 sec 

(C.12) 

(C.33) 

(C.34) 

(C.35) 

(C. 36) 

The v a lue of T is an estimate of the time required for the electron 

distribution function to adjust to the neutral density. 

Ambipolar Diffusion Time 

In order to determine whether the local value of N suffices 
n 

to determine the electron and ion distribution functions, it is nece s-

sary to compare the r e sponse times of the particles to the time during 

which an average particle experiences a significant change in N 
n 

The neutral density v a rie s only in the radial direction, and the time 

we seek is the a pproximate length of time for a particle to diffuse 

from the center of the discharge to the wall. The results of Parts 

II and III show that the transport of charged particles to the wall 

can be approximated by ambipolar diffusion at the electron densities 

of inte rest. In such a situation the densities and mean radial 
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velocities of electrons and ions are approximately equal, and the flux 

to the wall is given hy 

Nu - D V N 
a 

(C.37) 

where u is the mean radial velocity , N the numher density, and 

n the amhipol.ar diffusion coefficient. Since N is zero at the 
a 

walls, an order- of-magnitude C!Stimate of the d e n si.ty gradient is 

VN = N/L . A repre sentative value for u is then given by 

u 
A 

D /L 
a 

and the ambipolar diffusion time is defined by 

L 
T 

L2 
A a u 
D 

a 

The numerical values are 

2 .24 x 4 
u 10 cm/sec 

T 4.47 x 
-5 

10 sec 
a 

(C.38) 

(C. 39) 

(C.40) 

(C.41) 

Since the ambipolar diffusion time is so much larger than the response 

times for ions and electrons given in (C.10) and (C.36), we conclude 

that the determination of ion and electron properties through the use 

of the local neutral density is valid. 
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NOMENCLATURE 

The number following the descriptions gives the page. on which 

the symbol first appe ars. Some symbols are used in different contexts 

in different parts of the report and have a corresponding number of 

definitions. Others, whose use is very temporary, do not a ppear here. 

Derivatives : 

cir 

dv 
~ 

d~ 

(of /ot) a c 

(of /ot) a e.c. 

Roman: 

n 
e 

" D a 

D 
e 

" D. 
1 

e 

E 

F. 

volume e l ement (12) 

e leme nt of velocity space (12) 

element of solid angle (63) 

spatial gradient operator (11) 

gradient operator in velocity space (11) 

total collision integral (11) 

elastic collision integral (11) 

inelastic collision integral (11) 

dimensionle ss e l ectron diffusion coeff icie nt (53) 

dimensionless ion diffusion coefficient (53) 

ambipolar diffusion coefficient (85) 

electron diffusion coefficient (38) 

ion diffusion coefficient (38) 

magnitude of the electronic charge (20) 

dimensionless electric field (55) 

trans v e rse electric field ( 38) 

t ota l e l c·ctr ic fiP ld (U) 



E 
z 

E zr 

f(v) 

f"'(r,v ,t) 
u. - --« 

F(~) 

g 

h 

h 
0 

A 

h 

"' h 
0 

I 

I 

J 

"' J 

k 

L 

m 

M 

m a 

n 

11 
( ~ 
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axial electric field (32) 
,,.. 

reference value for E (53) 
z 

velocity distribution function (65) 

.data for electron temperature (44) 

data for ionization coefficient (44) 

distribution function for species a (11) 

velocity distribution function (65) 

magnitude of relative velocity (16) 

relative velocity (68) 

relative velocity after collision (69) 

dimensionless energy transfer coefficient (54) 

dimensionless elastic energy transfer coefficient(54) 

energy transfer coefficient(32) 

elastic energy transfer coefficient (34) 

current (62) 

unit tensor (29) 

dimensionless flux (55) 

transverse particle flux (37) 

total particle flux for species a (15) 

Boltzmann's constant (26) 

distance from wall to center of discharge (41) 

mass (68) 

mass (68) 

mass of species a (11) 

number density (74) 

dimensionless electron density ( 54) 



n. 
1 

N 

N 
eo 

N 
ct 

p 

qct 

Qk(v) 

~(g) 

QI 

QR 

r 

t 

T 

T 
e 

T 

T 
w 

T 
ct 

u 
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dimensionless ion density (54) 

numbe r density (73) 

electron number density at center of dischargP (54) 

number density of species ct (12) 

mechanical pressure (25) 

reference value for p (53) 

scalar pressure of species ct (29) 

reduced pressure (47) 

differential cross section for process k (63) 

electrostatic charge on species ct (11) 

total cross section for process k (65) 

cross section for momentum transfer (72) 

total cross section for ionization (16) 

total cross section for dissociative recombination (16) 

heat-flux vector for species ct (26) 

position vector (12) 

rate of ionization collisions (16) 

rate of recombination collisions (16) 

time (12) 

dimensionless temperature (53) 

dimensionless electron temperature (53) 

temperature of neutral molecules (39) 

temperature of neutrals at wall (41) 

tempe rature of species ct (26) 

abstract representation of dimensionless variables (6) 

mean radial velocity (85) 



II u 11 

v 

v 

w 
'\, 

w 

x 

y 

Greek: 

y 

cS 

£ 

£ 
0 

\) 
Ill 

magnitude of u (6) 

velocity (63) 
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velocity of a particle of species a (11) 

velocity after collision (66) 

velocity (65) 

peculiar velocity of a particle of species a (19) 

velocity after collision (69) 

drift velocity of species a (32) 

velocity of center of mass (68) 

velocity of center of mass after collision (69) 

distance coordinate perpendicular to wall of discharge(37) 

dimensionless independent variable (55) 

recombination coefficient (17) 

Townsend's first ionization coefficient (44) 

dimensionless constant coefficient (57) 

dimensionless constant coefficient (56) 

dimensionless constant coefficient (56) 

dimensionless constant coefficient (56) 

azimuthal angle (64) 

permittivity of free space (39) 

dimensionless constant coefficient (56) 

effective ion collision frequency for momentum transfer 

ion collision frequency (78) 

p f f ec tlve 1~ lc·ctron collision frequency for moment um 
transfer (20) 

(24) 



v (v ) 
m e 

v (g) 
m 

A. a 

T 

T a 

T 
e 

'¥ =u 
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electron collision frequency fo r momentum lran::;f Pr( :l-0) 

collision frequency for momentum transfer (73) 

ion collision frequency for momentum transfer (22) 

dimensionless ionization coefficient (53) 

ionization coefficient (17) 

nonlinear eigenvalue (6) 

dimensionless thermal conductivity (54) 

eigenvalue A. at ambipolar diffusion limit (6) 

eigenvalue A at free diffusion limit (6) 

electron mean free path (80) 

ion mean free path (77) 

thermal conductivity (31) 

dimensionless electron mobility (53) 

dimensionless ion mobility (53) 

electron mobility (38) 

ion mobility (38) 

reduced ion mobility (47) 

dimensionless constant coefficient (56) 

electron distri.hutl.on function r esponse t°imP (8!1) 

ambipolar diffusion time (35) 

electron energy relaxation time (35) 

ion energy relaxation time (78) 

extensive property of particles of species a (13) 

flux of particles (63) 

dimensionless constant coefficient (57) 

polar angle (63) 

pressure tensor for species a in a perfect gas (19) 
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PART II 

EFFECT OF RECOMBINATION AND SPACE CHARGE 
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INTRODUCTION 

The complete equations derived in Part I are too difficult to 

solve directly and require further simplification. The simplifications 

made here and in Part III correspond to the neglect of certain physical 

processes and thereby serve to isolate the effect of the remaining 

phenomena. Although the separate treatments of the various phenomena 

cannot be combined to yield the same quantitative results as the solu-

tion of the complete equations, the qualitative and, to a good 

approximation, the quantitative effects of the individual physical 

processes are clearly discernible. 

The basic simplification of this part is to neglect temperature 

inhomogeneities and to assume the neutral temperature uniform at a 

specified value. The primary purpose now becomes the study of the 

effect of recombination and space charge on the N -E 
eo z 

relation. The 

space charge, which results from the difference between electron and 

ion densities, is always important except at very small values of the 

electron density (see Part I, pp. 58 ff. for the solution at N 
eo 

However, as the electron density becomes large, the effect of space 

charge on the N -E 
eo z 

relation and on the spatial behavior of the 

O). 

dependent variables approaches a limit. Near this limit, E and the 
z 

variables are insensitive to changes in N , and we speak of space 
eo 

charge as being "negligible"; we consider the effect of space charge to 

be "important" for those smaller values of N 
eo 

at which 

dependent variables vary significantly with changes in N 
eo 

E 
z 

and the 

Since 

space charge is important for small N whereas recombination in eo 
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hydrogen is only significant at those . larger values of N where 
eo 

space charge has little influence, the effects of space charge and 

recombination are quite distinct and could be considered separately. 

However, if the calculations were performed for a gas with a larger 

recombination coefficient, the range of N 
eo 

in which the effects 

overlap to a noticeable extent would be greater. Since the conjunction 

of the separate treatments is not equivalent to the treatment of the 

combined effects, the analysis which follows considers space charge and 

recombination simultaneously and serves as a useful model for gases with 

larger recombination coefficients. Furthermore, the analysis is an 

interesting example of the application of singular perturbation tech-

niques to a complex problem. 

Uniform-Temperature Approximation 

The assumption of uniform temperature engenders a considerable 

simplification in the equations. First, of course, the equation for 

the temperature is eliminated from the problem. Also, the pressure 

depends only on the neutral temperature and the amount of gas in the 

discharge, so it is independent of N 
eo 

and 

coefficients in the equations depend only on 

" E Since the variable z 

T , E , and p , they 
z 

become constants and vary only with E z 
(or with N 

eo 
through the 

N - E relation). 
eo z 

The correspondence of the resulting equations to the actual 

physical situation may be rendered unreasonable by the neglect of tern-

perature inhomogeneities. The s tudies in Part III show that tempera ture 

effects become important at a smaller electron density than does 
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recombination and hence the behavior of the N - E relation at large 
eo z 

values of N may be so dominated by temperature inhomogeneities that 
eo 

recombination is relatively unimportant. Furthermore, the recombination 

coefficient in hydrogen is expected to be less than the value actually 

used (seep. 50, Part I). However, other gases have larger recombina-

tion coefficients, and recombination in such cases may become impor-

tant at a smaller value of N than temperature inhomogeneities. For eo 

such gases the calculations of this part serve as a useful model. 

Production and Loss of Electrons 

A considerable amount of qualitative information can be obtained 

by studying the rates of production and loss of electrons. Electrons 

are produced by ionization and are lost by diffusion to the walls and 

by recombination. These processes depend upon the axial electric field 

and the electron density, and the requirement that production and loss 
A 

balance at steady- state operation determines the N - E 
eo z 

relation. The 

ionization coefficient is a strongly increasing function of E , so if 
z 

the electron density is held fixed, the production rate increases 
A 

rapidly with E 
z 

The loss by diffusion is also affected by changes 

in E , but its dependence on E is weak relative to tha t of ioniza-z z 

tion. For lack of be tter data, the recombination coefficient is 

assumed constant and is independent of E (see pp. 49 ff., Part I). z 

In general, however, the recombination loss rate would depend on 

" 

E 
z 

If E is held fixed as the electron density is varied, it is obse rved 
z 

that the ioni zation r ate is essentially proportional to the e l ectron 

density N eo The rate of loss by diffusion increases as N eo 

increases, but the detailed behavior is complicated by space-charge 
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effects, and a more elaborate qualitative description is postponed for 

a short interval. The recombination coefficient is very small, so the 

recombination loss rate is significant only for very large values of 

the electron density . When it does become important, the rate increases 

very rapidly, because it depends quadratically on the electron density. 

It is instructive to plot the production and the l oss rates as 

functions of electron density for specified values of the axial elec-

tric field, and this process is carried out in Fig. 1. The production 

rates are represented by the straight lines emanating from the orig in , 

since the rates are proportional to the electron density. The slopes 

of the lines increase rapidly with E z and thus reflect the dependence 

of the ionization coefficient on the applied field. The loss rate 

depends weakly on E z in comparison with the production rate, and hence 

for qualitative purposes it is permissible to represent the loss rate 

A 

hy a single curve independent of E 
z 

The reasons for the shape of the 

c urve are explained in the subsequent discussion of the 

tion. 

N -E 
eo z 

r e la-

Since the electron production and loss rates must be equal for 

steady operation, the steady states are represented by the intersections 

of the production and loss curves. The intersection at the origin of 

the loss curve with production lines of arbitrary s lope corresponds, of 

course, to the trivial solution in which the electron density is zero 

and E is arbitrary. The sketch also clarifies the manner in which 
z 

the r estriction to steady state dete rmines the 
A 

N -E 
eo z 

relation: from 

a given intersection on the loss curve, the electron density can be 

found immediately, and the axial field can be detennined from the slope 
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of the line connecting the point to the origin. It is apparent from 

the sketch that the detennination of the N - E relation hy specify­
eo z 

ing E 
z 

and finding N 
eo 

is not a simple procedure. n(~pend i. ng on 

the value of E , there may be zero, one, or two nontrlvial steady 
z 

A 

states. On the other hand, E is determined uniquely from a given 
z 

N , since the slopes of the production lines vary monotonically with 
eo 

E 
z 

In fact, the analytical solution for the N ·-E 
eo z relation is 

obtained by specifying N 
eo 

and calculating E 
z 

However, the analy-

tical proceedings are considerably more complicated than this 

diagrammatic presentation, because E 
z 

is only determined through the 

process of solving the differential equations and the dependence of 

all the coefficients on E must be taken into account . 
z 

The qualitative form of the N -E 
eo z 

relation can be inferred 

from Fig. 1 by observing the behavior of E 
z 

at steady state as 

increases from zero. This description is complemented here by the 

N 
eo 

corres ponding discussion of the physical processes which de t e rmine the 

form of the production and loss curves. 

For N near zero the transverse electric field, produced by 
eo 

the difference between electron and ibn densitie.s, is insignificant in 

affe cting the diffusion of electrons and ions to the walls of the dis-

charge . Recombination, of course, is negligible except at very large 

v a lues of N , so the e lectron loss rate is characterized solely by 
eo 

the electron diffusion coefficie nt and the density gradient. The loss 

rate i s e ssentia lly proportional to N 
e o in a n e i ghborhood of 
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N = 0 , and this behavior is depicted in Fig. l by the emergence of 
eo 

the loss curve from the origin with a finite slope. In order to obtain 

a nontrivial steady-state solution in this neighborhood, the production 

curve must assume the same slope, and h e nce the axial e lectric field 

A 

must assume a particular value. This value , Ezl on Fig. 1, is the 

axial field at the free diffusion limit and is referre d to in Part I, 

p. o and Fig. 1. The analytical nature of the eigenvalue problem 

which determine s Ezl is displayed in the discussion of the trivial 

solution in Part I (pp. 58 ff.). 

Since electrons and ions are produced at equal rates, they must 

also diffuse to the walls at equal rates. The electron diffusion coef-

ficient is much larger than the ion diffusion coefficient, so in order 

that the diffusional fluxes be equal, the ion density must exceed that 

of the electrons by the corresponding factor. The positive charge in 

the plasma is balanced by a negative charge on the walls, e stablished 

during transient ope ration, and a transverse electric field is pro-

duce d. As N increases, the space charge also increases, and the 
eo 

transverse field so produced exerts a significant influence on the 

motion of e l e ctrons and ions: it inhibits the diffusion of e lectrons 

and augments the diffusion of ions. This regime of space-charge impor-

tance is represented in Fig. 1 by the portion of the loss curve that is 

concave downward. The decrease in electron loss relative to production 

by ionization r e quires that the ionization coefficient decrease in 

orde r to maintain a steady state. The resulting situation is typified 

by the ste ady-state operation at Point A in Fig . 1, where . the axial 

ele ctric field as sumes the value Ez
2 

. 
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When the electron density is large, a small deviation of the 

number ratio of L~ lect.rnns to ions from unity produces a very lnrgc• 

transverse field . This force affects the motlon of vleclrons and lnn s 

so strongly that both diffuse at essentially the same speed and have 

almost equal densities. The limiting situation is the classical ambi-

polar diffusion, in which the electron and ion loss processes can be 

characterized by a single quantity, the ambipolar diffusion coeffici-

ent . The loss rate is given by the product of the ambipolar diffu-

sion coefficient and the electron density gradie nt and i s essentially 

proportional to N 
eo 

Conseque ntly, if r e combination is ignored, the 

exte n s ion of the loss curve in Fig. 1 to very l a rge N 
eo 

would take 

the form of the dashed line. The axial field in the ambipolar limit is 

determined by equating the production rate to the los s rate. Since 

this limit is approached only as N + oo , the intersection of the 
eo 

production and loss curves requires that the production line have the 

same slope as the ambipolar extension to the loss curve. The analytical 

determination of the axial field E , as in the free diffusion limit, 
za 

is a linear eigenvalue problem. This value of E is n ever actually 
z 

attained in the model considered here; in fact, Fig. 1 shows that the 

smalle st value the axial field can assume in steady-state ope ration is 

Ez
3 

, corresponding to operation at Point B. 

The loss curve corresponding to the physical phenomena considered 

here differs from the ambipolar extension, because when recombination 

becomes important, the loss rate increases strongly with electron den-

sity. Accordingly, the loss curve for very large N 
eo 

upward, and the slope of the production line ( a nd hence 

is concave 

E ) must 
z 
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increase with N 
eo 

Point C in Fig. 1 represents a steady state in 

the regime where recombination is important. It should be noted that 

the axial field at C is the same as tha t at A 

The form of the N -E relation discusse d in de tail above is 
eo z 

shown in Fig. 2. The lettered points and the values of 
A 

E 
z 

correspond 

to those of the sketch in Fig. 1, and the dashed line again represents 

the extension toward the ambipolar limit that would arise if the consi-

deration of recombination were omitted. E , of course, is the value 
za 

of the axial fie ld at the ambipolar limit. 

Before associating the form of the N - E 
eo z relation with the 

experimental voltage-current characteristic, it is convenient to com-

ment briefly on the effect of recombination on the shape of the 

electron density profile. Whether or not recombination is included in 

the model as a physical phenomenon, the electron density is at a 

maximum at the center of the discharge and decreases to zero at the 

wal.1 s . SJ.nee t lw loss by recombination i i:; of most signi.f:lcance where 

the density iH lnrp;t•st, the greatest relative ef f ec t of recombination 

occurs a t the center. If the electron density at the center were con-

strained to a particular value, the density profile would be flatter 

in the center and would hence drop more steeply near the walls than if 

recombination were omitte d from consideration. 

Interpre tation of the Experimental Characteristic 

The correlation between the electron density and axial electric 

field in the positive column and the current through the discharge and 

total voltage drop across it is discussed in Part I, pp. 8-9, 62. 
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The expe rime ntal curve is sketched in Fig. 2 o f Part I, nnci if the 

A 

change in axes is noted, the N -E relation in Fig . 2, Pa rt I I is 
eo z 

s e en to pos sess a shape similar to tha t of the expe ri.menta ] voltage -

current cha racte ristic in the subnormal-normal-abnormal r egime . This 

similarity raise s the possibility that recombination may be a factor 

affecting the voltage-current behavior in the abnormal regime. 

However, considerable caution must be exe rcised in s eeking con-

clusions from this comparison. As mentioned previously, the effect of 

temperature inhomogeneities on the discharge characte ristic is like ly 

to appe ar before (at smalle r currents) the effect of recombination. 

Furthermore, the unce rtainty in the r e combination coeffic i e nt does not 

permit a rigid association of the rising portion of the calculated 

positive-column characteristic with a particular portion of the expe ri-

mental characteristic. Also, the effect of electrode phenomena is 

included in the experimental characteristic and has no counterpart in 

the calculated curve. 

Stability in the Positiv.e Column 

The stability of the steady states repre sented by the N -E 
eo z 

r e lation can be i nferred in a loose qualitative manner by refe rence to 

Fig. 1. If, for instance, the discharge we re in a transient state 

A 

with E 
z 

A 

Ez
2 

at an electron de nsity slightly larger than that corres-

ponding to Point C, the electron loss rate would exceed the production 

rate, and the electron density would tend to decrease. On the other 

hand, if the electron density were less than that at C , production 

would e xceed loss, and the density would tend to increase . However, a 
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perturbat lon from Point A would result in the opposite helwv I or. 11' 

the discharge were in transient operation with an electron density 

slightly greater than that at A , production would exceed loss and 

the density would tend to increase still further; if it were less than 

that at A, it would tend to decrease. On this basis, we would call 

steady state C stable and A unstable. Furthermore, all steady states 

above B on the loss curve would be stable, and all those below B 

except the origin would be unstable as would be all steady states along 

the ambipolar extension. 

These conclusions, however, must be regarded with considerable 

caution. A perturbation of the electron density from its steady-state 

value does not suffice to determine stability, and the transient equa-

tions must be used to predict the response to more general perturba-

tions of all the variables. Also, the ·overall bookkeeping of Fig. 1 

cannot replace the local considerations required as a result of the 

spatial dependence of the variables. Furthermore, the stability of the 

positive column and of the discharge can be modified by the exterior 

circuit. For example, the energy transferred to the electrons by the 

applied field is limited by the exterior energy source, and hence this 

energy source serves as a control to restrain _the electron density 

* (current) from excessive values . It is obvious from the considera-

tions above that the conclusions concerning the stability of the 

positive column should be regarded as suggestive only. 

* The stability of a circuit containing an electromotive force, a 
resistor, and a discharge is treated in Cobine (3), pp. 207 ff. 
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Analytical Procedure 

The problem to be solved is obtained by setting the temperature 

equal to a constant in the equations of Part I. The resulting equa-

tions are still too difficult to solve even numerically, and 

approximate methods must be employed. The approximations derive from 

the observation that certain of the terms in the equations are small 

and can be treated as perturbations under appropriate conditions. The 

propriety of the conditions depends primarily on the magnitude of the 

electron density, and hence it is necessary to choose the range of 

N in which we wish to operate. Our purpose is to investigate the 
eo 

effects of space charge and recombination on the 

and consequently we must consider values of 

Point B in Fig. 2. 

N 
eo 

A 

N -E 
eo z relation, 

on either side of 

Point B marks the closest approach of the discharge to the 

ambipolar limit, and here the terms responsible for the effects of 

space charge and recombination are both small and can be treated as 

perturbations. In the crudest approximat i on these terms are neglected 

and the equations become the mathematical description of the ambipolar 

limit. By expanding the variables in asymptotic series which, to 

lowest order, represent the ambipolar solution, approximate solutions 

are obtained which incorporate the effect of space charge and recom-

bination in higher-order terms. Since the effect of space charge is 

greater at small values of N 
eo whereas that of recombination is 

greater for large N , some of the terms in the expansions decrease eo 

a s N increases, while others increase. In f a ct, each expansion is 
e o 
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.u.: t:uaJ ly a compo~ [t c of two asymptoL:lc S(•r:l.es, OrH' wit felt .l.nc.l 11<l c•:.; tlil' 

e ff e ct of space charge and another which accounts for r e combination. 

The analytical proceedings are greatly complicated by the fact 

that the neglect of the space-charge tenn is not unifonnly valid as an 

approximation . Near the walls of the discharge column the space-charge 

term is not small in comparison with other tenns of the equations, and 

its omis sion leads to unreasonable behavior in the solution. The problem 

is actually a singular p e rturbation p rob lem , and the equations must be 

tre ated differ8ntly 111 two individual spatial regions . Throughout the 

CL~ntra:t region of the discharge the space-charge term can be neglc-~cted, 

hut near the wall in a narrow region or boundary layer called the 

sheath the term must be retained in the equations . The solutions in the 

t wo r egions must be made to agree or "match" in some sense in an inter-

mediate region before a solution acceptable throughout the entire 

positive column is obtained. 

Rd.ation to Previous Work 

Cohen and Kruskal [S] ignore recombination but otherwise treat 

essentially the same problem by similar means. They also assume uniform 

t empe rature (constant coe fficients) and treat the effec t of s pace charge 

by singular pe rturbation techniques. However, their attitude towa rd 

the coefficients makes the ir work a model illustrating the basic effect 

of space charge rather than an example calculation for an actual gas. 

Their coefficie nts are all arbitrary constant parameters except one, 

which i s proportional to the ionization coefficient and is an eigen-

value corresponding to our 
A 

E 
z In essence, they assume that only the 
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ionization coefficient depends on E 
z 

The inclusion of r e combination in the problem complicates the 

sol ut i on in the mai n r e gion but to a g ood approxi.mation doc' s not afft~ct 

the form o f the e qua tions in the she ath. Howe v e r, the e f fec t of reco m-

bina tion is f e lt in the sheath through the dependence of the coe f f ici-

" ents on E and through the necessity of matching the main-reg ion and 
z 

sheath solutions in an intermediate region. As a consequence , much 

more computation is necessary in the sheath than would be if recombina-

tion were not considered, but the techniques are essentially the s ame. 
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1. _WORKING EQUATIONS 

The equations - used to study the effects of space charge and 

recombination are obtained easily from those derived in Part I by 

setting the tempe rature equal to a constant. The only basic altera-

tion necessary to secure the desired form of the working equations is 

the replacement of one dependent variable, the ion density, with 

a more convenient quantity. 

Equations for Dependent Variables 

The uniform-temperature approximation is equivalent to the 

neglect of energy transfer from electrons to neutral molecules and 

corresponds to setting S (or h) equal to zero in the equations of 

Part I. Equation (5.21) for the temperature can then be solved subject 

to the boundary conditions (5.31) and (5.35), and we obtain 

or, using (5.10), 

T 1 

"' "' T = T w 

The pressure p is a constant describing the state of the 

(1.1) 

(1.2) 

neutral gas. Since the temperature is constant at a value independent 

of the processes occurring within the discharge, p depends only on 

the amount of gas contained in the discharge and can be treated as an 

arbitrary parameter. 

The variable coff icients can be eliminated from the equations by 

making a judicious choice for the reference values E zr and 

Since T is constant, the coefficients, of course, are actually 
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p 

the dimensionless coefficients in Eqs. (5.1) - (5.9) of Part I all 

( 1 • ·1) 

(1.4) 

reduce to unity. The only other variable coefficients in the equations 

occur in terms containing dT/dy as a factor and hence do not enter 

the problem considered here. 

Equations (5.18) - (5.20), (5.22) and the boundary conditions 

(5.29), (5.30), (5.32) - (5.34) can now be written as 

dJ - e: r;; n ni dy 
y n 

e . e 

dn 
e n E OTJ -

dy e 

dn. 
1 

dy = T niE - TJ 

1 dE (n. - n ) --- = x r;; dy 1 e 

y 0: n 1 e 

J 0 

E 0 

y 1: n 0 e 

ni 0 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 



-120-

Cons~ant Coefficients 

The constant coefficients y , c , T , 6 , X are defined by 

Eqs. (5.23) - (5.26), (5.28) of Part I, and using the reference values 

given in (1.3) and (1.4), they become 

A 

y 

x 

2A A A 

L v
1 

(T ;E ,p) w z 

ni<T ;E ,p) w z 

A A 

Di(T ;E ,p) w z 

A A A 

T (T ;E ,p) 
e w z 

T 
w 

A A A 

Di(T ;E ,p) w z 
A A A 

D (T ;E ,p) 
e w z 

L 
2 

Ne2 

e: k ! c! ;E ,p) 
o e w z 

A 

T 
w 

! er ;E ,p) 
e w z 

T 
w 

T (T ;E ,p) 
e w z 

The coefficients depend on the axial field 
A 

E 
z 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

and the parameters 

L, T , p , and N 
w 

L , T , and p represent the adjustable struc­
w 

ture and nature of the discharge and must be specified before numerical 

results can be obtained. The dependence of the problem on these param-

eters is not studied, and for the calculations we choose the values 

L 

A 

T 
w 

1 cm (1.19) 

(1. 20) 
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p l mm Hg (l. ?I) 

N, on the other hand, is not a real parameter, and it cancels in 

forming the products £s and Xs . It is introduced into the equa-

tions for the purpose of separating the dependence of these two terms 

" on N and E and can be assigned a value arbitrarily without affect-eo z 

ing the problem. Xs is a large quantity in the range of electron den-

sities we consider, and for convenience we choose 

N (1. 22) 

so that the magnitude of X is near unity. 

The approach to the problem consists of specifying N (or ' s) in 
eo 

advance and determining E 
z 

in the course of solving the equations. 

Since the constant coefficients depend on E , they are unknown until z 

E is obtained. The values which E can assume are limited by the 
z z 

domain of the experimental data according to Eq. (4.29) of Part I. 

N is easily determined from the values of p and T , and we find 
n 

that E is restricted to the range 
z 

A 

13.83 volt/cm < E < 32.16 volt/cm z (1.23) 

For E in this range the constant coefficients are bo'unded ·by the 
z 

inequalities 

0.0814 < y < 20.5 (1.24) 

6.69 x 10-7 < £ < 1.532 x 10-6 
(1.25) 

2.355 x 10-4 < 0 < 3.918 x 10-4 (1. 26) 

73.5 < T < 152.8 (1. 27) 
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0.458 < x < 0.953 

2.88 X 10-2 < 6T < 3.60 X 10-2 

Since Ez is a function of Neo' N eo 

E exceeds its bounds. 
z 

However, as 

(J.. 28) . 

(1. 29) 

cannot vary so extensively that 

E varies over its range, 
z y ' 

which is proportional to the ionization coefficient, changes by several 

orders of magnitude. Consequently the range of E 
z 

is not as limited 

as it might appear and actually permits a large variation in the produc-

tion rate of electrons. Hence it happens that N eo is limited not by 

the range of E but by the approximate methods employed in solving 
z 

the problem. The value of t is roughly bounded by the inequality 

(1.30) 

and using the relation N = N l; , we find that the electron density is eo 

restricted to the range 

(1.31) 

The electron density in a glow discharge is typically between 108 and 

10
12 -3 cm , so our investigation corresponds to the proper regime of the 

experimental voltage-current characteristic. Also, the values of the 

coefficients presented above provide qualitative information about the 

equations and about the physical processes which the various terms 

represent. Since the dependent variables are made dimensionless in such 

a way that their magnitudes are expected to be near unity throughout 

most of the discharge, the relative importance of the terms in the equa-

tions can be roughly estimated by the size of their coefficients. 
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" Since E doe's not enter the e qunUons Pxpl:!c:l.t.ly . • 1.t J.s 1101 
z 

conveniently determined as a functi.on of N 
eo i.n tile' prOCl'Sn of so lv-

ini;i; the problem. It is more convenient to replace it with one of the 

coefficients by using the functional relationship connecting them. 

Y is the most widely varying coefficient and is a monotonically 

" " increasing function of E , so it is possible to solve for 
z E 

z 
as a 

function of y . Now the other coefficients can also be determined as 

functions of y The evaluation of £ , o , T , X , and E as 
z 

functions of y is adapted to computer calculations through the use 

of least-squares polynomial fits; the error introduced in the process 

is completely negligible. In solving the problem we now find y as a 

function of " and need not consider E 
z 

Hence the N - E 
eo z relation 

is replaced by the s-Y relation and can be easily obtained from it 

when the solution is complete. 

Final Equations 

At the operating conditions considered, the relative difference 

between electron a nd ion densities is small, and it is convenient to 

replace n i in the equations with the space-charge variable s , de­

fined by the equation 

s (1.32) 

When this change of dependent variables is made in Eq. (1.7), it becomes 

dn 
~+ ds 

dy dy 
TnE+TsE-TJ 

e 
(1.33) 

Equations (1.6) and (1.33) are now replaced by linear combinations of 

themselves. One equation is obtained by eliminating t he term c ontaining 
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n E between the equations, and the other is obtained by eliminating 
e 

J . The final set of working equations consists of these two and 

Eqs. (1. 5) and (1.8) with 

dJ 
Yn + £7;; dy n e 

dn l+ OT __ e + T J 
dy l + T 

dn 
__ e + 

dy 

Xs 

1 + OT 
n E 

1- 0 

1 dE 
l;; dy 

e 

2 
e 

ni replaced by s : 

- e:r;; n s e 

1 ds T 
sE - l 1 + T + T dy 

0 ds OT 

0 sE 
1 - 0 dy 1 -

(1.34) 

(1.35) 

(1.36) 

(1. 37) 

The boundary condition on s is obtained, of course, from those on n 
e 

and n. in (1.12) and (1.13) and is 
]. 

y = 1 : s = 0 

R~lations among the Variables 

(1.38) 

A certain amount of general information about the dependent 

variables can be obtained directly from the differential equations and 

boundary conditions. Some infonnation is provided ,in the theorems of 

Appendix A, in which various bounds on the variables are established. 

For instance, it is proved using very simple but involved techniques 

that under certain conditions s and E are positive on the interval 

0 < y < 1 and that 
2 2 

d ni/dy ~ 0 at y = 0 Also, upper and lower 

bounds are established on ni at y = 0 in terms of the coefficients. 

Some of these. results may seem so obvious from physical grounds that 
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any other b e havior wou] d appear to be physically unreasonab 1 P. Howt.•V<·'r, 

the interaction of an electric field with mobile charged pnrticlf's Ls 

n complex phcnomc~non, particularly :f.n th e prese nce of othe r processPs, 

and it is gratifying to obtain the results rigorously from the c q11ation8 

as well as from physical intuition and approximate mathematical methods. 

Furthermore, the proofs provide insight into the equations by showing 

quite intimately the way in which the variables affect each other. An 

understanding of the motivation behind the proofs can have such practi­

cal ramifications as showing what instabilities might be expected to 

arise in a direct numerical integration of the equations. 
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2. SEPARATION OF THE PLASMA COLUMN INTO MAIN 

REGION AND SHEATH 

The manner in which space charge and recombination are treate d as 

perturbations from the ambipolar situation is described generally in the 

Introduction. With the equations available the terms corresponding to 

these phenomena can be discussed more perceptively. The coefficient £ 

is proportional to the recombination coefficient and is solely respon­

sible for the r e presentation of recombination in the equations. The 

inequality (1.25) shows that £ is very small, and the term in the 

equations that contains it is unimportant except for very large values 

of s . The space charge is measured by the term (l/s)dE/dy , and its 

magnitude is greatest at small s . s is restricted to a certain 

range of values by the validity and accuracy of the approximate proce­

dure in which the terms corresponding to space charge and recombination 

are treated as perturbations. Recombination, of course, establishes the 

upper limit, and the lower bound is determined by the response of the 

variables to space-charge effects. The approximate numerical values for 

the bounds are only discovered in the process of solving the problem and 

are presented in Eq. (1.30). 

Asymptotic Expansions_ 

The problem is attacked by expanding the variables in asymptotic 

series composed of functions of s and substituting the expansions into 

the equations. Terms containing the same dependence on s are asso­

ciated, and equations for the individual terms of the series are 

obtained. To lowest order (l/s)dE/dy and the terms containing £ are 
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omitted, and their effects are i.ncluded only in higher-order terms. Tile• 

expansions actually consist of two asymptotic series which account for 

recombination and space charge, respectively. However, some terms contain 

the effects of both processes, so a clean separation of the expansions 

into two groups of terms is not possible. In fact, if the separation wer~~ 

possible, this approach to the problem would be equivalent to treating 

recombination and space charge separately and combining the final r esults . 

Nevertheless, a useful conceptual division of the series into effects of 

recombination and space charge can still be made and is referred to 

loosely below. The portion of the expansions that comprises the effect 

of recombination is a series in powers of l;; (actually E: l;;) , and these 

terms provide their largest and least accurate contribution to the solu­

tion at large values of l;; • The effect of space charge, on the other 

hand, is contained in terms or factors that approach zero as l;; becomes 

infinite. In the range of values to which l;; is limited, the first few 

terms of both series combine to form a meaningful and accurate approxi­

mation to the solution of the problem. 

The expansion of the variables in terms representing space charge 

and recombination is actually applied in a particular order . First the 

variables are expanded in asymptotic series whose higher-order terms 

approach zero as s + 00 • These series are substituted into the equa­

tions, and sets of equations are obtained for those terms whose orders 

of magnitude are the same for large l;; The effect of space charge is 

absent . in the set of lowest order, but is included in higher-order terms. 

The variables in each set of equations are now expanded in series of 

powers of l;; , and equations are obtained which relate terms containing 
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the same powers. In these equations the terms r epresenting recombi na -

t i on are perturba tions and do not enter in the lowest-orde r analysis . 

The first expansion is actually singular and is not val i d t hrough-

out the discha r ge . Its application r esult s i n the neg l ec t of (1 /r,) dE /cly 

t o lowes t order, but this t e rm is not negligible near the wall. It i s 

sma ll throughout most of the discharge becaus e l/r, is very small, but 

as y + 1 , E and dE/dy increase rapidly, while n 
e 

arid n. decrea se. 
l. 

Consequently, the term (l/r,)dE/dy in Eq. (1.8) is not small in compari-

son with Xni and Xn , and cannot be neglected. 
e 

In the sheath near 

the wall a separa te treatment of the equations is necessary in which the 

t erm is not considered a perturbation. In this domain other approxima-

tions are f easible , and separate solutions are obtained in the two 

regions. The boundary conditions do not suffice to determine either 

solution completely, and this indeterminacy is removed by the matching 

proce ss in which the solutions are forced to agree in some int e rmediate 

region. 

Zero-Order Problem in the Main Region 

The first asymptotic expansion of the variable s is valid in the 

main region and is written as follows: 

J '\, J + µl Cr,) 3 1 + µ2(r,) 3 2 + . . . ( 2 .1) 
0 

n '\, n + µl(r,) nel + µ2 (1;) ne2 + ... (2.2) e eo 

E '\, E + µ1 (r,) E + µ2 (r,) E + ... (2 . 3) 
0 1 2 

s '\, s + µ1(1;) sl + µ2(1;) s + ... (2. 4) 
0 2 
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where 

(2.5) 

and 

(2.6) 

as z;; -+ 00 The manner in which the solution depends on z;; is con-

tained in the functions µn(z;;) • The form of the dependence is unknown 

now, and the µn are not determined until the solution in the main 

region is matched to that in the sheath. Since y is to be determined 

as a function of z;; in the course of solving the equations, it must 

also be expanded. Therefore, we set 

y (2.7) 

Since £ , o , T , and X are now regarded as functions of y , this 

expansion for y induces expansions in the other coefficients as fol-

lows: 

£ '\, £ + µl (I;;) £1 + ••• 
0 

(2.8) 

0 '\, 0 + µl (I;;) 01 + 0 
(2.9) 

T '\, T + µl ( I;; ) T + ••• 
0 1 (2.10) 

x '\, x +µ( I;;) x + ••. 
0 1 1 (2.11) 

where 

£ = E:(y ) 
0 0 

(2.12) 

£ + µ1£1 £(Yo + µlyl) 
0 

(2.13) 

or 
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etc. 

If the expansions of variables and coefficients are substituted 

into Eqs. (1.34) - (1.37) and if only the terms of zero order in s as 

r, + 00 are retained, equations for the zero-order problem are acquired. 

In following this procedure, £
0

r, (also £1~, etc.) is to be regarded as 

of zero order in i;; • Now Eq. (1.37) inunediately implies 

s 
0 

0 

and the use of this result in (1.34) - (1.36) yields 

where 

dn 
~ + p J = 0 

dy 0 0 

dn 1 + 0 T 
~+- oon E 

dy 1 - o eo o 

1. + 0 T 
0 0 

p = T -
o o l + T 

0 

0 

= 0 

0 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The combination of coefficients called p
0 

appears quite often in later 

developments. The bounds on o and T in (1.26), (1.27)~ and (1.29) 

show that it is near unity in magnitude. 

It should not be inf erred from the expansions of variables and 

coe fficients tha t the coe fficients of the µ
0

(s) are independe nt of 

r, Indeed, i;; e nters the z e ro-order proble m through the r e combination 

term in (2.16), and h e n ce J , n , E , y , and the othe r zero-orde r o e o o o · 
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coefficients are all functions of l;; • The explicit form of tlw 

dependence is obtained when the equations nre !:IOlved. 

The zero-order equations are prepared for solution by wrjting 

an equation for n 
eo 

alone. Eliminating J 
0 

between (2.16) and (2.17) 

we obtain 

= 0 (2.20) 

Once n is found, J and E can be obtained from Eqs. (2.17) and 
eo o o 

(2.18) as 

dn 
1 

J 
eo 

(2. 21) 
0 po dy 

1 - 0 dn 
1 

E 
0 eo 

(2.22) l+ 0 T 
-----

0 n dy 
0 0 eo 

The formula for E serves to make manifest the breakdown of the 
0 

main-region solution as the wall of the discharge is approached. If 

n goes to zero at y = 1 as n must, Eq. (2.22) predicts that E 
eo e 0 

becomes infinite. However, the boundary conditions (1.12) and (1.13) 

applied to Eq. (1.8) reveal that dE/dy 0 at y = 1 , a nd hence E 

must approach a finite value at the wall. The solution to the zero-

order problem in the main region, which is obtained in the next section, 

shows that only the behavior of E 
0 

is obviously inappropriate near 

the wall, but the electric field strongly affects the other variables' 

through Eqs. (1.6) and (1.7); hence the entire main-region solution 

must be rejecte d near y = 1 • 

The bounda ry conditions (1.9) - (1.11) require the zero- orde r 

solution to satisfy 



y 0 n 
eo 

J 
0 

E 
0 

·- 1 'l/--

.l ( 2 . 2"3) 

0 (2.24) 

0 (2.25) 

A boundary condition on dn /dy eo that must be used in solving (2.20) is 

obtaine d by applying (2.24) to (2.17): 

y = 0 dn eo 
dy 0 (2.26) 

E ls ohtninecl a lgebraically in the zero-order solution, but Eqs. (2.26) 
() 

and (2.22) show that it satisfies the boundary condition (2.25) at 

y = 0 

The boundary condition on n 
e 

at y = 1 belongs to the sheath 

and cannot properly be applied to the problem in the main region. The 

main-region solution should be obtained using only the boundary condi-

tions at y = 0 , and the integration constants should be determined by 

matching with the sheath solution. In fact, this procedure , which 

parallels the main development of the problem, is followed in Appendix 

E. llow C'ver , t.hl'rc only tho:;e qunntlties are obtai .. ne d that would other-

wt::;0 be dett~rm lned by the houndnry -condit:lon on n 
eo 

at y = 1 . Such 

a presentation displays considerable esthetic appeal, but the mathe-

matical details are so burdensome that it ·is uneconomical to develop 

the complete solution in this spi'rit. In fact, results identical to 

those of Appendix E are obtained by assigning to 

condition 

y = 1 : n eo 
0 

n 
eo 

the boundary 

(2.27) 
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The use of this condition is justified by the following discussion, 

which obtains estimates for the magnitudes the variables assume in the 

sheath. The application of the condition to the zero-order problem 

e liminates the need to carry several unknowns in the main-region solu-

tion. The expansion of the variables that is necessary in the matching 

process would be particularly unpleasant with these unknowns pre sent. 

Breakdown of Main-Region Solution 

An analysis of the main-region solution as y + 1 is necessary 

in order to ascertain the approximate boundaries of main region and 

sheath and to estimate the magnitudes of the variables in the two 

regions and in the transition zone. From these estimates it is also 

possible to justify (2.27) as the proper boundary condition on n 
eo 

The approximate approach to the problem in the main region is 

based on the assumption that (l/~)dE/dy is small in comparison with 

the other terms of the equations, and the asymptotic expansions in the 

functions µn(~) provide the formal means of neglecting (l/~)dE/dy as 

a first approximation. However, E and its derivative increase 

rapidly with y near the wall, and the approximation ceases to be 

valid when the left-hand side of Eq. (1.8) becomes comparable in magni-

tude to n 
e 

or In fact, by equating the order of magnitude of 

the left-hand side to that of ne or ni ", we obtain a criterion for 

distinguishing between main region and sheath. Equation (2.22) provides 

a convenient means of estimating the magnitude of E and dE/dy in 

terms of n , because E 
0 

and n 
eo are adequate approximations to 

and n in the main region. Since E and dE /dy cannot become 
e o o 

large unless n becomes small, the magnitude of 
ea n must be near 

eo 

E 
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zero when the main-region solution breaks down. Differentiating Eq . 

(2.22), we obtain 

l - 0 
0 

l+ 0 T 
0 0 

1 
2 

n 
eo 

so the estimates for E and dE/dy become 

E = o(L) 
n e 

dE 
dy 

0(-1-) 
2 

n e 

(2.28) 

(2.29) 

(2.30) 

The main-region solution becomes invalid when the orders of magnitude 

of the terms in Eq. (1.8) become equal: 

1 dE 
ord(-~) = ord(n) 

/;; dy e 

Using (2.30), we find that (2 .31) implies 

n 
e o 

and then (2.29) and (2.30) yie ld 

dE 
dy 

Equations (2.32) and (2.33) provide estimates for n 
e 

and E 

(2.31) 

(2 . 32) 

(2.33) 

(2.34) 

in 

t e rms of ~ a t the point where the main- r egion solution breaks down. 

These estimates do not describe sufficie ntly the dist i n c tion 

bet~een the main region a nd the sheath; it is necess a r y to de t e rmine 
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the approximate magnitude of y ut the breakdown po.int. Such nn eH tJ-

mate can be obtained by studying the behavior o( n 
e 

ln the sheath and 

requiring agreement between the main-region and sheath solutions in an 

intermediate (overlapping) region. It is apparent from Eqs. (1.5) and 

(2 . 21) that J is of order unity in s throughout the discharge: 

Then (1.6) implies 

provided 

l d:; I 
n E = 0(1) . 

e 

J 0 (1) 

nE+OTJ 
e 

0 (1) 

It is easily seen from (2.22) that 

(2.35) 

(2.36) 

n E = 0 (1) 
e 

where the main-region solution is valid. The boundary conditions at 

tl1e wall suggest that n E must rise from 0 
e 

at y = 1 to match the 

main-region behavior in the far reaches of the sheath. A rather elabo-

rate and tedious investigation of Eqs. (1.5) - (1.8) as y decreases 

from 1 yields a convincing argument that n E = 0(1) e throughout the 

sheath . Such a prolix analysis is not included here. It is merely 

assumed that n E = 0(1) , and the justification is inferred through 
e 

the consistency of the results. Using (2.36) and the boundary condi-

tion (1.12), 

n = 0(1 - y) e (2. 37) 

throughout the sheath. Since this behavior must match with that of 

n in the main region, Eq. (2.32) implies that 
eo 

1 - y = (2.38) 

where the main-region solution breaks down. 
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Validity of Boundary Condition on neo at the Wall 

Since n and 1 - y are both O(ltz:;113) · when the main-region 
e 

solution breaks down, it is reasonable to believe that the boundary 

condition (2. 2 7) yi.elds an n eo that closely approximates the correct 

behavior in the main region. However, Eq. (2.20) for n now has 
eo 

three boundary conditions, (2.23), (2.26), and (2.27), and they deter-

mine not only n but also the 
eo 

r; - y 
0 

relation. If e: 
0 

were zero, 

these equations and boundary conditions would determine y
0 

as an 

eigenvalue. For small r; this value of y
0 

is modified slightly by 

the effect of recombination represented by the factor e: r; , and y 
0 0 

is obtained as a function of r; • However, this dependence of y
0 

on 

is irrelevant here; we wish to study the effect on n 
eo 

and 

of an inexact boundary condition, and the error in the boundary condi-

ti on is related to the space-charge expansion . Where the effect of 

space charge is greatest, that of recombination is least, and the 

qualitative effect of the boundary condition at y = 1 can be evalu-

ated without considering recombination. 

Accordingly, Eq. (2.20) is replaced with the equation 

0 (2. 39) 

The boundary conditions (2.23) and (2.26) now yield 

n cos ./ yopo y (2.40) eo 

Since po is a function of yo ' the remaining boundary condition 

determines yo . The condition (2.27) would yield YOPO 
2 = 7T /4 

' 



-137-

but this condition can be replaced by a more proper, but inexact, conc.li-

tion based on the estimates of (2.32) and (2.38). The only requirement 

we actually know now is that the behavior of n eo must match with that 

of n in the sheath where the main-region solution breaks down, and 
e 

thus we merely require that ne
0

(y) 0(1/1;;
1

/
3

) when 1-y = O(l/z:;
113). 

Writing ly
0

p
0 

as rr/2 - n and 1 - y as O(l/z:;1 / 3), Eq. (2.40) at 

breakdown becomes 

n 
eo 

1r 1 
cos[(2 - n)(l - O( 

113
))] 

sin 

1 3 n - - n + 6 

z:; 

Since n itself must be of order O(l/z:;113), it follows that 
eo 

n 

and 

ls a slowly varying function ·of Y , so the error in y 
0 0 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

incurred 

by the use of the boundary condition (2.27) is also of order O(l/z:;113). 

However, we will see later that the µ
1

(z:;) occurring in Eqs. (2.1) -

(2.11) equals l/z:;113 , so corrections of this magnitude do not enter the 

zero-order solution. The validity of the condition n (1) = 0 eo is 

now established. 
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Equations in the Sheath 

The variables in the final equations of Part I are made dimen-

sionless in such a way that their magnitudes are near unity in the main 

region. The estimates made above of magnitudes at breakdown of the 

main - region analysis show that in the sheath the variables have vastly 

different magnitudes and that these magnitudes depend strongly on s . 

In order to analyze the equations more conveniently in the sheath, it 

is desirable to rescale the variables there so that their magnitudes 

are near unity and independent of s . 
The proper scalings can be ohtained immediately from Eqs. (2.32) 

(2.33), (2.35), and (2.38). Equation (2.38) shows that the thickness 

of the sheath, or boundary layer, is of the order 1/3 0(1/s ), and we 

define a new independent variable as 

s1/3c1 - y) 

It is convenient to replace y with s in studying the sheath, 

because s remains finite as s + 00 provided y remains in the 

sheath. The new dependent variables, appropriate for use in the 

sheath, are defined by the equations 

'\, 

n (s) e 
sl/3 n (y) 

e 

J(y) 

(2.46) 

(2 .47) 

(2.48) 

(2.49) 

(2.50) 



-139-

The magnitude of ni where the main-region analysis breaks Jown has not 

been determined, but Eq. (2.15) shows that it ii-:; roughly the same as 

that of n , since they are the same to first approximation in the matn 
e 

region. 

The problem in the sheath can now be obtained by rewriting Eqs. 

(1. .5) - (1. 8) using the new variables. We find 

"' dJ 
di; 

'\., 

dn 
e ar-

'\., 

dn. 
1 

~ 

'\., '\., '\., 

n E + OT J 
e 

'\., '\., '\., 

- T n.E + TJ 
1 

'\., 
x(n. 

1 
~ ) 

e 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

Tile coefficients appearing in these equations now reflect the size and 

importance of the various terms. The boundary conditions (1.12) and 

(1..13) are applicable to the sheath and :i,mply 

0 il = 0 
e 

(2.55) 

0 (2.56) 

The other conditions needed to solve the four equations arise from the 

requirement of matching the sheath solution to the main-region solution 

at l arge l; 

The magnitude estimates used in rescaling the variables are 

obtained by studying the breakdown of the main-region solution. Since 

we see k to apply these estimates throughout the sheath, we should 
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investigate the problem there to verify that the magnitudes do not 

change excessively. In particular, we want to show that E does n o t 

continue to grow at an increasing rate as we move from the main region 

into the sheath. Since s is very large, it is apparent from Eq. (1.8) 

that E and dE/dy are of order unity in the main region only bec ause 

the differe nce b e tween n 
e 

and is very small there. However, in 

order to satisfy the equations and the boundary conditions at the wall, 

n e and ni must behave differently near y = 1 As the wall is 

approached, the difference between n 
e 

and increases and results 

in a corresponding increase in dE/dy and E ·. However, the individual 

magnitudes of n e 
and are decreasing while their difference 

increases. Once dE/dy becomes comparable in magnitude to sn or 
e 

s n. , no further significant increase is possible, and hence dE/dy 
i 

must retain the same order of magnitude. This rough relation is the 

same as the criterion used to obtain the magnitude estimates and s e rves 

to define the sheath. A crude measure of the increase in E across 

the she ath can be obtained by multiplying the order of magnitude of 

dE/dy by the thickne ss of the sheath. From ( 2 .33), (2.34), and ( 2 .38) 

we find that O(dE/dy) • 0(1 - y) = O(E) , so the order of magnitude of 

E remains the same throughout the sheath. 
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3. ZERO-ORDER SOLUTION IN THE MAIN REGION 

When the ele ctron densi.ty is large, the soluti.on to the zero-

order problem in the main region is an excellent approximation to the 

solution of the entire problem. Then the effect of space charge is 

small, and the sheath is thin and of little importance. The exact 

zero-order solution for y and n is obtained here, but in the o eo 

simultaneous treatment of space charge and recombination it is more 

convenient to work with an approximate solution. The approximate 

solution involves trigonometric functions instead of elliptic functions 

and is easier to manipulate in the matching between main region and 

sheath. Also, the same procedure used to obtain it can be applied to 

the first-order equations. 

Relation to the Ambipolar Diffusion Equation 

Except for the recombination term Eq. (2.20) is the same as the 

* standard ambipolar diffusion equation as can be seen by expressing its 

coefficients in terms of the original dimensioned quantities. From 

Eqs. (1.16) and (1.17) 

D. T 
1 + 

l. e --
A A 

l+ 0 T D T 
0 0 e w 

(3.1) 
1 + T A 

0 T 
1 +~ 

A 

T 
w 

Using the Einstein relations given in Eqs. (3.8) and (3.9) of Part I, 

* See, for instance, von Engel (11], pp. 240-241. 
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l 
µi 

1 + 0 +-T ll 
0 0 e = -----·--

1 + T A A 

0 D µi 
1 + -,.._ e 

A 

(J . 2 ) 

µe Di 
A 

µe + µi A 

µeDi + µiDe 
Di (3.3) 

A 

Di (3 .4) 
A 

D a 

where 
" A 

" µeDi + µiDe 
D 

A a 
µe + µi 

(3.5) 

* is the ambipolar diffusion coefficient • Using Eqs. (2.19), (1.14), 

(1.15), (1.16), and the relation 

Statement of Problem 

A 

D a 

s = N /N , we obtain eo 

1 + 0 T 
0 0 

A 

D 
a 

(3.6) 

(3. 7) 

In order to s implify the notation, it is convenient to relabel 

some terms for the duration of this section. We let 

* 

* y 

See von Engel (11], p. 144. 

. I 

(3. 8) 



and 

* E: 

n 

-143-

c Z:P 
0 0 

n 
eo 

Now the problem of Eqs. (2.20), (2.23), (2.26), and (2.27) 

becomes 

2 
* * 2 d n + 

dy2 
y n - E: n 0 

y 0 n 1 

dn 
0 

dy 

y 1 n = 0 

(J. 9) 

Cl. J.O) 

(3 .11) 

(3 .12) 

(3.13) 

(3 .14) 

* The equation and three boundary conditions serve to determine y as a 

* * function of e:: and n as a function of y and E: 

Approximate Solution 

The approximate solution to Eq. (3.11) is obtained by expanding 

>'< * n and y in powers of E: as follows: 

* *2 
n '\, n + E: nl + E: n2 + ... (3.15) 

0 

* * * * *2 * 
y '\, yo + E: y 1 + E: y2 + ... (3.16) 

The expansions are substituted into the equation and boundary conditions 

* * and terms of the same order in E: are equated. E: is proportional 

to Z: , and the expansions have been referred to previously as those in 

which recombination is regarded as a perturbation. 
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After substituting these expansJons lnto Eqs. (3.11) - (3.14) 

* and equating equal powers of £ , we obtai.n us the first approximation 

to the problem 

d
2

n 
* __ o + 

yo n = 0 
dy2 0 

(3 .17) 

0 n = 1 
0 

y (3 .18) 

dn 
0 

0 dy (3.19) 

n = 0 
0 

y = l (3. 20) 

We obtain immediately from (3.17) - (3.19) that 

Now (3.20) implies 

2 
(2j - 1) 2 .1L_ 

4 

(3. 21) 

(3. 22 ) 

where j = 1,2,··· . Each of these values must be regarded as a can-

didate for the correct However, only for j = 1 does (3.21) 

provide an electron density that is nowhere negative. Therefore on 

physical grounds w~ choose 

= 1T n cos 2 y 
0 

(3.23) 

* 
2 

1T 
Yo 4 (3.24) 

These results are the solut ion to the classical ambipolar diffusion 

problem and form the basic description of the positive column to which 
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the effects of space charge and recombination are added as perturba-

tions . The first appr oximation to y
0 

is obtained by solving t he 

equation 

(3 . 25) 

where the subscript "a" represen ts t he ambi polar solution. The numer-

ical solution for ya yields 

2 . 4 1 23 

and f r om it E is found to be 
za 

" E 
za 

20.926 vol t /cm 

(3. 26) 

(3 . 27) 

Higher- order terms of the series show the effect of r ecombina-

tion. Equation (3.11) and the accompanying boundar y conditions to the 

* first power in £ are 

2 
d n1 * 
--+y 

dy2 0 

y 0 

nl 

nl 

dn
1 

dy 

y 1 nl 

= 

= 

2 * n - y n 
0 ' 1 0 

(3 . 28) 

0 (3. 29) 

0 (3.30) 

0 (3.31) 

The homogeneous equation associated with (3 . 28) has a non t r ivial 

solution sat isfying (3.30) and (3 . 31) . The results of Appendix B 

show that the right-hand side of (3 . 28) must be orthogonal to this 

solution if the following associations are made: 
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w(y) - 1 (3.32) 

p(y) - 1 (3. 33) 

* 
2 

'IT 
q(y) - yo =1; (3.34) 

* y
1 

can now be obtained without solving Eq. (3.28) for n
1 

. From 

Appendix B , 

'IT 2 * < cos 2 y n Y1 n > = 0 
0 0 

or 

'IT 2 

* 
<cos 2 y , n > 

0 

yl 'IT , n > <cos 2 y 
0 

1 

f 
3 1T cos - y dy 

2 
0 

= 1 

J 
2 1T dy cos 2Y 

0 

8 
3'1T 

Now Eq. (3. 28) becomes 

' 2 'IT 8 'IT 
cos 2 y - 3'JT cos 2 y 

The solution satisfying (3.29) - (3.31) can be found by standard 

* methods and is 

4 (2 - TT 2 'IT 2 i 'IT ) n1 """
3

'1T 2 cos 2Y - cos 2 y - y s n 2" y 

* The technique is illustrated in Appendix C for the corresponding 
problem in cylindrical geometry. 

(3.35) 

(3.36) 

(3. 37) 

(3. 38) 

(3. 39) 

(3.40) 
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* With nl known, Y2 can be 
,~ 

used to obtain Y1 Equating terms 

(3 .14) yields the problem 

2 
d n 2 * * --+y n2 2n n - ylnl 

dy2 0 0 1 

y = 0 n2 

dn
2 

= 
dy 

y 1 n2 

cletermi.nccl by thL' same prO('. l~dun~ 

*2 
of order O(c ) in (3.11) -

* - Yz n 
0 

(3. 41) 

0 (3. 42) 

0 (3. 43) 

0 (3.44) 

The same orthogonality relationship applied in obtaining now 

requires as a condition for the existence of a solution that 

or 

1 

{~ J [2 
37f 0 

< n ,n > 
0 0 

* y n > 
2 0 

0 (3. 45) 

(3. 46) 

2 7f 3 7f 4 7f 2 7f TI 
cos 2 y - cos 2 y - cos 2 - 2y cos 2 y sin 2 y] dy 

1 

323 f 
9TI O 

TI 2 TI 3 TI TI TI } [2 cos 2 y - cos 2 y - cos 2 y - 2y cos 2Y sin 2y)dy 

/! 2 7f 
cos 2 y dy (3 .47) 
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After a considerable amount of algebra (3.47) reduces to 

* 10 32 64 
Y2 = 37T2 - 9n3 - 3n4 

(3.48) 

ll:lglll' r-orde r results can be ohta:ined wi.th a rapidly increas:lng 

amount of labor, but the t e rms already obtained are sufficient for our 

purposes. The expansions of n and y* are given below to the number 

of terms that have been calculated: 

* y (3.49) 

n 
1T 4 7T 2 1T TI * 

rv cos - y + -- [ 2 - cos - y - cos - y - 2y sin -
2 

y] £ • 
2 3TI2 2 2 

If the coefficients in (3.49) are evaluated numerically, 

* y* 'V 2.4674 + 0.84883£ 
*2 

+ 0.004058£ 

Final Form of the Approximate Solution 

(3. SO) 

(3.51) 

Using (3.8) and (3.9) to express the r;; - y relation in the 
0 

original nomenclature, we obtain 

(3.52) 

For a given r;;, y
0 

must be evaluated by numerical means, but the 

calculation can be easily performed by a simple iterative procedure. 

and £ 
0 

are slowly varying functions of Y , and a crude first 
0 

approximation to y gives a reasonable estimate of their values. 
0 
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These values of and E: 
0 

can be used in (J.52) to preJict n n~w 

y
0 

, and this process can be repeated until y
0 

converges to its 

correct value (within a few iterations). The y 's corresponding to 
0 

various values of I;; are presented in Table 7, and a graph of the 

z;; - y curve is given by one of the dashed curves in Fig. 9. 
0 

n eo 

Equation (3.50) expressed in the original nomenclature is 

(3. 53) 

Equations (2.21) and (2.22) can now be used to express J 
0 

and E as 
0 

functions of y . From (3.53) 

dn 
eo 1T 1T 4 1T 1T 1T 1T 

--= 
2 

sin -
2 

y - --((2--)sin -y+ n(y-sin -y) cos -y] p E: z;; 
dy 31T2 2 2 2 2 0 0 

(3.S4) 

so J and E become 

J 
0 

E 
0 

0 0 

1Tl 1T 4 1T.1T 1T 1T 
2 P 

sin -y+ --[ (2 --)sin -y+ n(y - sin -y) cos -y] E: s 

1 - 0 
0 

l+ 0 T 
0 0 

0 2 31T2 2 2 2 2 0 

(3 .SS) 

1T 1T 4 1T 1T .TI 1T 
- sin -y+ --[(2--)sin -y+ TI(y- sin -y)cos -y] p E: s 
2 2 31T2 2 2 2 2 0 0 

1T 4 1T 2 1T . 1T 
cos -y+ --(2- cos -y- cos -2 y- 2y sin -2y] POEOs 

2 3rr2 2 

(3.56) 

It should be realized that the zero-order solution for the dependent 

variables is accurate only to order O(E l';) • 
0 

The accuracy of the 

* approximate solutions for y and n is appraised by comparing them 

with the exact solutions obtained below. 
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The problem defined by Eqs. (3.11) - (3.14) can be solved 

exactly in terms of elliptic functions. In . so doing Eq. (3.11) is 

reduced to quadrature, and the resulting integral is expressed as an 

elliptic integral of the first kind through a change of variables. 

Before proceeding it is convenient to introduce a new indepen-

dent variable x given by 

x 

and rewrite the problem as 

x = 0 

2 * d n + n E 2 
dx2 - y* n 

n 

dn 
dx 

1 

0 

n = 0 

(3 .57) 

::: 0 (3.58) 

(3.59) 

(3.60) 

(3. 61) 

J.n order to integrate Eq. (3 .58) once, the independent variable 

ls e. limlnatP<l by introducing p defined by 

p 
dn 
dx 

and writing the second derivative as 

Now (3.58) becomes 

~~ dn~ 
dx - dx dn 

~ 
p dn 

(3.62) 

(3.63) 



* ~ + e: 2 
p dn n - * n 

y 
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0 (3.64) 

Integrating and using the boundary conditions at x = 0 (or n = 1) 

* * 2 
+ 

2 2 £ 3 
1 

2 £ 
p n -3--:;; n -3--:;; 

y y 
(3.65) 

or 

* * {l 2 e: 2 2 e: }1/2 p + -3*- n (1 - - - n) 
3 * y y 

(3. 66) 

Since n must decrease to zero at x =~ , the negative sign 

is obviously the one desired. Also, p must be real, and (3.66) thus 

* * * * provides a condition on e: /y - e: /y ~ 3/ 2 • However, a more 

restrictive condition is obtained by studying the differential equation 

in the form 

(3.67) 

At x = 0 , 

(3.68) 

"* * Thus if e: /y > 1 , the graph of n versus x is concave upward ini-

tially, and n begins to increase from unity. Equation (3.67) then 

shows that the concavity is enhanced and the behavior of n is def i-

* * nitely not what is desired. On the other hand, if £ /y < 1 , n is 

concave downward initially; dn/dx becomes negative; the term -n on 

the right-hand side of (3.67) becomes ever more dominant; and n 

decreases monotonically to zero. Thus we pose the condition 

* 0 ~ e: 

* y 
< 1 (3. 69) 
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Using (3.62) an integral relation between n and x is 

obtained. If p is replaced by dn/dx , Eq. (3.66) becomes 

* * dn -{ 2 E 3 _ n2 + 1 __ 
3
2 ~* }1/2 

dx = J * n 
y y 

and using (3.59) 

dn 

- n
2 + 1 

* . * 

2 e:* ---
3 * y 

(J. 70) 

(3. 71) 

The relation between y and £ is obtained by applying condition 

(3.61) : 

1 

f 
dn 

O' /2 e:* -n3 -2 2 e:* V3 * -n + 1 -3-; 
y y 

(3. 72) 

The solution to the original problem is completed by relating y and 

n. Using (3.57) in (3.71) 

y 

1 

p ll}2L;3 
3 * y 

dn 

-2 - _2 e:* 
- n + 1 

3 *, y 

(3. 73) 

Although the solution to the problem is given implicitly by 

(3.72) and (3.73), the integrals can be expressed as standard elliptic 

integrals by a suitable change of variables. Before proceeding we 

define 

a 
* 2 e: 

3 * y 

to simplify the nota.tion. Now (3 . 72) and (3.73) become 

(3. 74) 
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1 

-J1 I 
dn 

(3. 75) 
~--3 -2 

0 an - 11 + (1 - a) 

1 
1 

J 
dn 

(J.76) y =--

-Jy* -J -3 -2 
n an - n + (1 - a) 

The transformation necessary to achieve the standard form for 

elliptic integrals depends on the roots of the polynomial in the inte-

grands. It is inunediately observed that n = 1 is a root, so we have 

an
3 

- ;-
2 + (1 - a) = (n - l)[a;-

2
- (1 - a) n - (1 - a)] (3.77) 

Let the roots of the quadratic be 
(1) 

n 
0 

and n ( 2) with 
0 

(1) 
n 

0 

(2) 
n 

0 

(1 - a) + \/1 + 2a - 3a2 

2a 

(1 - a) - \/ 1 -1- 2a - 3a2 

2a 

(3. 78) 

(3.79) 

It is essential to determine the values these roots assume with respect 

to n as a varies. From (3.69) and (3.74) 

Differentiating 

dn(l) 
0 

da 

(1) 
n 

0 

0 if: a < 

with respect to 

2 
3 

a ' 

2a[-l + 1 
- 3a J - [ (1 - a) +V 1 + 2a - 3a2 ] 2 

/1 + 2a - 3a2 

1 +a 
- 1 - -==========;;-­

/1+2a - 3a2 
< 0 

(3.80) 

(3.81) 
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Therefore 
(1) 

n 
0 

increases monotonically from 1 to 00 as a decreases 

from 2/3 to 0 , so for a as specified by (3.80) 

Since 1 + 2a -

that n (2) 
<. 0 

0 

n(2) -+ -1 as 
0 

inequalities: 

3a2 
= (1 

for 0 < 

n (l) > 1 
0 

2 - a) + 4a(l - a) , it is apparent from 

a < 2/3 . It is also easy to determine 

a-+ 0 We have now arrived at the following set 

0 n £: 1 < 
(1) 

n 
0 

for a satisfying (3.80). (3.77) can now be written 

an3 - n 2 + (1 - a) = a(l - n)(n(l) - n)(n - n(2)) 
0 0 

(3. 82) 

(3. 79) 

that 

of 

(3.83) 

(3.84) 

where each factor is greater than or equal to zero. Substituting (3.84) 

into (3.75) and (3.76), 

1 

V1 = _l_ I dn 

\[';;. 0 -J<1 - n)(n(l) - n)(n -
0 

(3.85) 

1 

y 1 I dn -----
~ n -Jc1 - n)(n(l)_ n)(n - n( 2)) 

0 0 

(3.86) 

The integrals are obtained in standard form by changing variables 

from n to z , where 

and 

2 z c1 - n) 
(n(l)_ n) 

0 

(3. 87) 
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1 - n ( 2) 
0 

(1) (2) 
n -n 

0 0 

Differentiating this expression, 

so 

2z dz - L 
- k2 ( (1) -)2 n - n 

0 

dn 

1 
- k2 • 

n(l)_ 1 
0 dn 

( (1) -)2 
n - n 

0 

(1 - n)l/2 (n(l)_ n)3/2 
-2k ------

0
---- dz 

n(l) - 1 
0 

Rearranging (3.87) 

so 

2 
z 

n(l)_ n = 
0 

(n(l)_ n) 
0 

(1) 
n 

0 

n(l)_ l · 
0 

- (n(l)_ 1) 
0 

- n 

Again rearranging (3.87), 

Solving for 

2 
z 

1 

k 2 (n(l)_n< 2»-(n-n<2» 
0 0 0 

(n - n (2)) and using (3.88), . 
0 

n - n(2 ) 
0 

(1 - n(2)) - k2 (n(l)_ n( 2))z2 
0 0 0 

(3. 88) 

(3. 89) 

(3. 90) 

(3. 91) 

(3.92) 

(3 . 93) 
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Using (3.88), (3.90), (3.92), and (3.94) 

______ d_n ______ = -2k 
(1) -

n - n 
0 

(3. 95) 

-Jc1 - n) (n (l) _ n)(n - n <2>) 
0 0 

- 2k dz 
(3. 96) 

-2 dz 

(n!l)_ n!2))1/2 -Jc1 - z2)(1 - k2z2) 
(3. 97) 

Using (3.87) to determine the proper limits of integration, (3.85) and 

(3.86) now become 

-Jy* 2 

2 
y 

1 

le 1-n )1/2 
k nCl)_ n I 0 

0 

dz 

The elliptic integral of the first kind is defined by 

F(x,k) 

(3. 98) 

(3.99) 

(3 .100) 
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or equiva lently , 

F(<ji,k) ( J .101) 

2 for k < 1 • The second equation is derived from the first by the 

change of variables 

z = sin 9 

x sin cf> 

(3 . 102) 

(3 .103) 

It is obvious from (3.88) and (3.83) that k 2 
< 1 • In this notation 

(3.98) and (3.99) become 

2 1 
~~~~~~~- F( , k) 

-J a(n(l)_ n(2) k~ 
0 0 0 

(3 .104) 

2 F (cf> , k) (3 .105) 

-J a(n (l) _ n(2)) 
0 

o · 0 

where 

cf>o 
-1 1 ) (3.106) sin ( 

k ~n (l) 
0 

and 

2 1 f 1 - n k) (3 .107) y F(k V (1) -J a'./ (n (l) - n (2)) n - n 
0 

0 0 

2 F(cf> ,k) (3 .108) 
Vay*(n(l)_ n(2)) 

n 

0 0 

wher e 



-158-

(J. 109) 

If u = F(x,k) as defined by (3.100), the inverse relationship i s con-

ventionally written x = sn(u,k). In this manner Eq. (3.107) can be 

solved for n : 

2 _ / * (1) (2) 
sn ( v ay (n - n ) 

0 0 

or 

n 

~.k) 1 1 - n 
k.2 n(l)_ n 

0 

* * E - Y Expansion Derived from the Exact Results 

(3 .110) 

(3.111) 

The first two terms of the series in Eq. (3.49) relating * y and 

* E are easily confirmed correct by expanding the quantities appearing 

* in Eq. (3.105) for small E Equation (3.74) shows that a is small 

* for small E , and it happens that k is small for small a , so F 

can be written as a power series in k • When the entire right-hand 

side of (3 . 105) is expressed in terms of a ' Eq. (3.74) defining a is 

* * used to write the result as an expression in y and E The equation 

* that i s acqui red i s solved to give y as a series in 

The radical appearing in (3.78) and (3. 79) can 

\/1 + 2a - 3a
2 

1 + a - 2a2 + O(a3 ) 

for small a . Then 
(1) 

n 
0 

and 
(2) 

n 
0 

become 

* E 

be approximated by 

(3 .112) 

(3.113) 
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(1) 
n 

0 

(2) 
n 

0 
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1 
a 

2 -1 + a + O(a ) 

n(l)_ n( 2) = ..!. + 1 - 2a + O(a2) 
o o a 

so the coefficient in (3.105) becomes 

2 

and from (3.88) 

k 

2 

2 2 - a + O(a ) 

2 2 - a + O(a ) 
1 2 - + 1 - 2a + O(a ) a 

/a ,jz - a+ O(a:) 
1 + a + O(a ) 

= 128 (1 - l a + O(a2)) 
4 

Using (3.114) and (3.122) 

1 1 

k~ 
0 

3 2 -Jl 2 /Za(l - - a + O(a )) - - a + O(a ) 4 a 

= 
1 3 2 (1 + 4 a+ O(a )) 
/2 

so Eq. (3.106) becomes 

(3.11.4) 

(3.115) 

(3 .11.6) 

(3.117) 

(3 .118) 

(3.119) 

(3 .120) 

(3.121) 

(3.122) 

(3 .123) 

(3.124) 
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cj) 
0 

-1 1 3 2 sin (~-+~-a+ O(a )) 
./2 4/2. 

We now wish to expand the inverse sine about 1//2 . If 

f(z) = sin-1z 

f I (z) 1 == -----

-V1 - z
2 

so a Taylor's series expansion gives 

f(_i_ + o) 
12 

sin -l - 1- + /2 o + O(o 2) 
12 

Now </>
0 

becomes 

1T 3 2 - + - a + O(a ) 4 4 

Using (3.118), (3.122), and (3.129) in (3.105), 

-J/ 2 1T 3 2 r;:;-:- 3 2 
(2 - a+O(a ))F(4 + 4a+ O(a ), vLa(l-4 a+O(a ))) 

The following expansion for F(<f>,k) * is found in Davis 

F(<f>,k) = 2K <I> - sin 
1T 

2 
<I> cos <f>(.k_) + 0 (k 4) ' 

4 

where K is the complete elliptic integral of the first kind: 

TI/2 

K f 
0 -J 1 

* See Davis [7], pp. 133-136. 

d9 

k 2 . 29 - sin 

(3.125) 

(3 .126) 

(3 .127) 

(3 .128) 

(3 .129) 

(3 .130) 

(3 .131) 

(3.132) 
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An expansion for K is also given hy Davis [ 7]: 

Using (3.122), (3.129), and (3.133) 

2 3 2 2 
k = 2a(l - 4 a+ O(a )) 

2 2a + O(a ) 

TT TT 2 
K = 2 + 4 a + O(a ) 

sin cj> 
0 

cos cj> 
0 

-
1
- + O(a) 
ff 

-
1
- + O(a) 

.f"2 

0 .13J) 

(3.134) 

(3.135) 

(3.136) 

(3.137) 

(3.138) 

Expanding (3.130) as illustrated by (3.131) and using (3.135) - (3.138), 

~ 2 {2 TT TT 2 TT 3 2 /y = (2 - a+ O(a )) :rrC-z + 4 a+ O(a ))(4 + 4 a+ O(a )) 

1 1 a 2 } - (- + O(a))(- + O(a))(2 + O(a )) 
12 /2 

(3 .139) 

2 {TT 1 TT 2 } (2 - a+ O(a )) 4 + <2 + 3)a + O(a ) (3 .140) 

TT 2 2 + a + O(a ) (3 .141) 

Squaring the equation 

* TT
2 

2 y = ~ + TTa + O(a ) (3.142) 
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Using equation (3.74) to ellininate a , we obtain an expre ssion 

* * relating y and £ 

* 2 * *2 'IT 2'IT £ 
y =-+-.---+ 0(£ ) 

4 3 * y 
or 

*2 2 
* 2'IT * *2 'IT y -4Y -3£ + 0(£ ) 0 

The positive root of this equation is approximated by 

* y 

or finally, 

* y 

'IT2 ~'IT4 8'IT * 
4+16+3£ 

2 

1 'IT2 'IT2 64 * *2 
2 {4 + 4(1 + -3 E + O(E ) ) } 

3'IT 

* 

(3.143) 

(3.144) 

(3.145) 

(3.146) 

(3.147) 

This expre ssion for y possesses the same first two terms as does 

Eq. (3.49), which is obtained by perturbation methods . 

Comparison of Exact and Approximate Solutions 

Since it is more convenient to work with the approx imate solu-

tion than with the exact, it is compared numerically with the exact 

* resul.ts to determine the range of e: over which reasonable accuracy 
' 

* is obtained. The series expansion for y is found to be very accurate 

* * even for large e: • For ins tance, for E = 11 the pe rturbation ca lcu-

* * l a tion of y is in error by roughly 0.5%. Since the E appearing in 
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* Eq. (3.11) must be compared with y rather than unity, accurate results 

* for such large values of £ are not completely unexpected. · Indeed, 

*1 * £ y is the basic parameter appearing in the formulation of Eq. (3.58). 

* Results of the approximate and the exact calculations of y are 

listed in Table 1. The approximate solution for n is quite good for 

* £ < 5 * For £ 11 it is in error by about 2.5%. Detailed results 

are presented in Tables 2, 3, and 4. Figures 3 and 4 show the behavior 

* of y and n , but it is not possible to distinguish between the per-

turbation and the exact solutions on the graph. 

The numerical results establish the accuracy of the perturbation 

solution in slab geometry. A perturbation solution in cylindrical geo-

metry is obtained by the same method in Appendix C • In this case the 

exact solution is not available, but the results are assumed accurate 

on the basis of analogy with the work of this section. 
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4. FIRST-ORDER SOLUTION IN THE MAIN REGION 

The next approximation to Eqs. (1.34) - (1.37) involves terms 

Substitution of the asymptotic series 

for the variables and the coefficients into the equations results in 

equations for J 1 , nel' E1 , and s 1 • Solution of these equations again 

requires a second asymptotic expansion regarding recombination as a per-

turbation. This time, however, y1 cannot be determined in the course 

of solving the problem, and it remains unknown until the main-region 

solution is matched to the sheath solution. 

First-Order Problem in the Main Region 

The desired equations are obtained by substituting the asymp-

totic series of (2.1) - (2.11) into Eqs. (1.34) - (1.37) and neglecting 

terms of higher order than µ1 (s) . From equation (1.34) 

Using Eqs. (2.15) and (2.16) for 

order 

s 
0 

(4 .1) 

and J and neglecting terms of 
0 

(4.2) 

Substituting the expansions into Eq. (1.35) 
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(4.3) 

The expressions for the coefficients must be simplified. 

1 1 
lJ T 

(1 + T 0)(1 + l ~; ) 
0 

1 (1 
lJlTl 

+ O(µi) 1 + T 1 +T ) 
0 0 

1 Tl 2 = - µl + O(µl) 1 + T 
(1 + T ) 2 

0 
0 

(4.4) 

x 

1 + 0 T [ 1 + 0 T 0 T1+ o1T 1 + 0 T J 0 0 0 0 0 0 0 0 
T _l_+_T_ + µl Tl 1 + T + To 1 + - T Tl 2 

o 0 o To O (1 + T ) 
a · 

(4.5) 



To+ µlTl 

l+To+µlTl 
= 

T 
0 

1 + T 

T 
0 

l+T 
0 

+ µl 
0 

+ µl 
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[ Tl T Tl J 
O(µi) 0 + 

l+T 
(1 + T ) 2 

0 
0 

Tl 
O(µi) + 

(1 + T ) 
2 

0 

Using ( 4 . 4) , ( 4 . 5 ) , (4.6), (2.15) and (2.17) in (4 . 3), 

dn 
1 

[To 
0 Tl+ OlT l+ 0 T J __ e_ + 

poJl 
0 Q 

+Tl 
0 0 

dy 1 + T 
(1 + T ) 2 

0 
0 

T 
1 

ds
1 + 

0 
E s -

1 + T 0 1 1 + T dy 
0 0 

Equation (1.36) becomes 

Simplifying the coefficients 

1 1 

01 
(l - 0 0) (l ~ µ 1 1 - 0 ) 

0 

J 
0 

(4.6) 

(4.7) 

(4.8) 
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1 + (oo+ µ101><-ro+ µ1-r1) 

1-00~µ101 

l+oT 
0 0 +µ 

1 - 0 1 
0 

0 1" + 0 1" - 02 Tl+ 01 
0 1 1 0 0 

00+ ll181 

i- oo- µ101 

o c c1 
0 [ 1 + 0 ] 

-1---=c,.... + µ1 1 - o <1- c ) 2 
0 ° 0 

co c1 2 
+ µ + O(µl) -1---=o:-- 1 < 1 - o ) 2 

0 0 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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Using (4.10), (4.11), (4.12), (2.15) and (2.18) in (4.8) 

dn l+ 0 T l+ 0 T 
~+ 0 0 n 1E + 0 0 n E1 dy 1 - 0 e o 1 - 0 eo 

0 0 

0 ds
1 + 0 

1 - 0 dy 
0 

Expanding Eq. (1. 37) 

Using (2.15) and retaining the lowest-order terms on each side 

= 
dE 

0 

dy 

(4.13) 

(4.14) 

(4.15) 

Equation (4.15) depends critically on µ
1

(s) . If µ
1 

= l/s 

then X
0

s 1 = dE
0

/dy . However, if µ 1 (s) > 1/s , then the association 

of terms with the same orders of magnitude in s requires s
1 

= O 

µ
1

(s) is not determined until the main-region solution is matched with 

the sheath solution in some intermediate region. An attempt to match 

using µ = l/s 1 
fails, and success requires is left 

unspecified here in order to see more clearly how it is determined. 

However, it is necessary to use the fact ord(µ 1) > l/s so that 

0 (4.16) 

Now Eqs . (4.2), (4.7), and (4.13) simplify considerably and are 

rewritten below~ 



- (T 
0 
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dn 1 1 + o T 1 + o T __ e_ + ___ o_o E + ___ o~o-
dy 1 - o nel o 1 - o neoEl 

0 0 

l+ 0 "[" 
0 0 ] J 

(l+T )2 o 
0 

(4.17) 

(4.18) 

(4.19) 

Substitution of the asymptotic expansions for the variables into the 

boundary conditions (1.9) - (1.11) yields 

y 0 nel = 0 (4.20) 

Jl = 0 (4.21) 

E = 
1 

0 (4.22) 

Actually (4.17) and (4.18) are differential equations for nel and 

J 1 , and E1 is detennined algebraically from (4.19). (4.21) and 

the boundary conditions on the zero-order solution applied to (4.18) 

show that dne1/dy = 0 at y = 0 , and hence from (4.19) it is 

apparent that (4.22) is automatically satisfied . 

J 1 can be eliminated between (4.17) and (4.18) to produce a 

second-order equation for nel : 

+ y p n - 2e: rp n n o o el o' o eo el 

l+ 0 "[" 
0 0 ] 

(1 + "[" ) 2 
0 

dJ 
0 

dy (4.23) 
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with boundary conditions 

y 0 0 (4.24) 

0 (4.25) 

One might expect y 1 to be determined by requiring ne1 (1) = 0 as in 

the case of the zero-order solution. However, the problem (4.23) - (4.25) 

has no nontrivial solution for which ne
1

(1) = 0 , for any y
1 

. An 

indication of the reason appears in the approximate solution to the equa-

tion. Since the boundary condition at y = 1 cannot be applied, y
1 

must be determined in the process of matching the main-region solution to 

that in the sheath. 

Approximate Solution for nel 

An approximation to nel is acquired by the same perturbation 

method used to determine n eo An expansion for nel in powers of 

£ r; is assumed. 
0 

y , n , and J already possess such expansions, o eo o 

so equations for the various contributions to nel are obtained by 

equating terms of the same order in 

to that of Section 3 

* £ £01'; Po 

n nel 

and expanding n 

*--n I\, n + £ nl + ... 
0 

From (3.52), (3. 53) and (3 .55), 

£ I'; • 
0 

Introducing notation similar 

(4.26) 

' (4 . 27) 

(4.28) 
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'JT2 8 * -+-£ 
4 3'1T 

(4.29) 

1 {'IT 'IT 4 'IT 'IT 'IT 'IT *} 
J

0
"' po 2sin2y+ 

3
'JT 2 [(2-2)sin2y+'IT(y-sin 2 y)cos-2_Y]£ 

dJ 
0 "' dy 

(4.31) 

(4.32) 

Making the appropriate substitutions in Eq. (4.23) and using Eq. (2.19) 

for 

* 'IT - 'IT 4 'IT 2 'IT 
2£ (cos 2 y)n

0 
= -y1p

0
(cos 2 y + 

3
'1T 2 [2-cos -zy- cos 2 y 

4 2 'JT2 'IT 2 2 'IT 'JT2 'IT * *2 
+ -- [.!!:_ + (2'1T - - )cos - y-'IT cos -y- - y i ] )+ O(E: ). 

3
'JT2 2 4 2 2 2 8 n 2 Y E: -

(4.33) 

The equation for n now becomes 
0 

d~ 2 
0 'IT ---+-n 

dy2 4 0 
(4.34) 

where 
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Conditions (4.24) and (4.25) imply 

y 0 n 
0 

0 

0 

The solution is easily obtained as 

n 
0 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

It is apparent from this expression that the requirement ne
1

(1) = 0 

is not a legitimate way to determine Hence must remain an 

unknown until the main-region solution is matched to that in the sheath. 

* Terms of order £ in (4.33) yield an equation for n
1 

: 

2-
d n1 1T2 _ 
--+--n 
dy2 4 1 

4 1T . 2 1T . 1T El 2 1T 
- --2 y

1
p [2 - cos -2 y- cos -2 y- 2y sin -

2 
y] + -£ cos -

2 
y 

~ 0 0 

16 n 2 n 2 1T 2 2 1T n 2 . . 1T 
- -- q[-+ (21T --)cos -y - TI cos -

2 
y --

2 
y sin -

2 
y] 

31T4 2 4 2 
(4.39) 

- _8_ (ylpo+ q)+ _4_ [y p - c.!! - l)q] cos .'.!!.2 y 
31T2 31T2 1 o 1T 

4 16 El 2 1T 16 
+ ( --2 Y1Po+ -3 2 q+ E)cos 2y+ -3 2CY1Po+ q)y sin% y 

31T 1T 0 1T 
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Conditions (4.24) and (4.25) again imply 

y 0 nl = 0 (4. 41) 

dn
1 

0 --= 
dy (4. 42) 

The solution is laboriously obtained by standard techniques and is 

+ [~4~ci + l)y p - ~4~ci - l)q] y sin '.!!.2 y 
31T3 'IT 1 0 3'1T3 1T 

8 8 'IT 'IT 
+ (--3 Y1P

0
+ --3 q)y cos 2 y sin 2 y 

31T 31T 

Using (4.27) a nd (4.28), we obtain 

where n 
0 

n = el 

and are given by (4.38) and (4.43). 

(4.43) 

(4 .44) 

can 

now be obtained algebraically from equations (4.18) and (4.19), r e spec-

tively. 
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Lowest-Order Contribution to s 

Since µ1 (~) is such that s
1 

- 0 , Eq. (4.15) should actually 

be written 

1 dEo 
---
1',; dy (4.45) 

and for some n 

so 

and 

1 
~ 

1 dEo 
s = ---

n Xo dy 

s. 
J 

0 j 

(4.46) 

(4.47) 

0,1, · · · ,n-1 (4.48) 

Equation (3.56) for E 
0 

can be changed to a form that is more 

easily differentiated. Using (4.26), 

E 
0 

x 

1 - ,, 1T 1T 4 [ (2 'IT) 1T ( • 1T ) 'IT ) * 
u 0 z sin z y+)';2 - 2 sin zY+ 'IT y-sin zY cos 2 ye: . 

----
1 + Oo To 1T 4 1T 1T 1T * 

cos 2 y { 1 + --2 [ 2 sec 2 y - 1- cos 2 y- 2y tan -zk } 
31T (4.49) 

1 
-

6 
0 1 {'IT 1T 4 1T 1T 1T 1T * 

l+oT 1T -zsin-zy+-
32

[(2--z)sin-zy+TI(y-sin-z)cos-zyle: } 
o o cos zY 1T 

4 1T 1T 1T * *2 
{l -

3
1T2 [2 sec -zy-1- cos zY- 2y tan zY)e: }+ O(e: ) (4.50) 
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l - 0 
O 1 {7T 1T 4 1T 1T TI ----- --TI-- ·2 sin 2 y + -

3
-7T·2[(2 - 2·) stn zY + 7Ty cos -2 y 

1 + 0 T cos -
2 

y 
0 0 

1 - 0 
0 

l+ 0 T 
0 0 

1T 1T *} + 7Ty sec 2 y - 7Ty cos 2 y] £ 

{ 1T 1T + _4_ [ 2 iT iT i 1T 
2 tan 2 y 

3
TI2 tan 2 y - 2 s n 2 y 

TI TI 2 1T *} 
- ;r sec 2ytan -zy+ Tiy sec 2 y]£ 

Then 

;r
2 2 TI 4 

{-
4 

sec - y+ - [TI 
2 3TI2 

2 1T ;r
2 

1T 
sec 2 y - 4 cos 2 y 

TI2 3 TI 7T2 1T 2 1T 2 1T 
- 2 sec 21- 2 sec 2 y tan 2 y + 1T sec 2 y 

2 2 1T 1T *} + ;r y sec 2 y tan 2 y]£ 

so 

1 
1 - 0 

{ 7T: 
2 TI 4 2 2 1T 0 1T 

s =-
1+ 0 T 

sec -y+-- [TI y sec zY tan 2 y n Xo 2 3TI2 0 0 

2 2 2 
2 

1T TI + 27T TI TI 1T 
- TI sec 2 y tan 2Y sec 2Y 2 sec zY 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

Except for and and the corresponding corrections to 

the other coefficients, all the terms of the main-region solution written 

below are known or can be easily .calculated. 
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n 'V n + µl (1';) nel (!1 . 'J 'i) 
c eo 

J 'V J + µl (I;;) Jl (Li. 56) 
0 

E 'V E + µl (I;;) El (4.57) 
0 

'V 
1 (4.58) s s 
I;; n 

ni n + s (4.59) e 

In order to complete this approximation to the solution, it is necessary 

to solve the original equations in the sheath where the representations 

above break down. and are then determined by comparing the two 

solutions in some intermediate region. 
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5. APPROXIMATE ASYMPTOTIC SHEATH SOLUTION 

The complete equations for J, n, n. 
e i 

and E are written in 

(2.51) - (2.54) in a form suitable for use in the sheath. The terms on 
'\, 

the right-hand side of the equation for J are small for large i;;, and 

approximate methods, in which these terms are regarded as perturbations, 

are available. However, even the lowest-order equations are too diffi-

cult to solve analytically. In order to obtain expressions that can be 

matched to the s olution in the main region, the equations are solved 

asymptotically for large ~ . Nevertheless the entire boundary layer 

must ultimately b e cons ide red in order to relate the asymptotic form 

for large ~ to the boundary conditions at ~ = 0 , and some numerical 

work is necessary . 

In this s e ction only the lowest-order equations are considered, 

and an approximate solution is obtained by expanding the variables in 

asymptotic series in the large coefficient T 

'\, '\, '\, 

possible to express n and ni in terms of E 
e 

'\, 

differential equation in E alone is obtained. 

asymptotic forms of 
'\, '\, '\, 

n , n. , and E 
e i 

for large 

By this method it is 

, ·and a first-order 

The first terms of the 

are obtained, and 

they show the behavior of the sheath solution in the r e gion where it is 

to be matched with the main-region solution . Because of th.e expansion 

in T the asymptotic forms are not precisely correct, and the matching 

cannot be accomplished until the exact asymptotic solution is obtained 

in Section 6. However, the numerical integration of the equation for 

'\, '\, '\, '\, 

E provides estimates of ne, ni and E throughout the sheath that are 

not obtainable in Section 6. Furthermore, the trial-and-error work 
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associated with the numerical integrations of Section 6 is reduc1:' d hy 

using the estimates obtained here. 

Validity of the Equations in the Sheath 

Before solving the equations in the sheath, we wish to examine 

their validity and accuracy there. Quantities vary more rapidly with 

position in the sheath than they do elsewhere, and some of the assurop-

tions used in deriving the equations must be reexamined. In fact, the 

basic process of obtaining the macroscopic equations must be questioned. 

The use of macroscopic equations requires meaningful averages over the 

particle distribution functions, and such averages are only meaningful 

in the context of the equations if the particles experience a large 

number of collisions while diffusing through the sheath. As a criterion 

for this situation we require that the mean free paths of ions and elec-

trons be less than the sheath thickness. Values for these mean free 

paths are available in Appendix C of Part I, and they show that the 

criterion is not well satisfied. When the particles travel too far 

between collisions, the coefficients appearing in the equations are no 

longer determined solely by local conditions. The discussion on 

pp. 43 ff and 48 ff of Part I establishes a criterion for the depend-

" ence of the coefficients on the local values of Et and N 
n 

In the 

sheath the transverse electric field is so large that Et is not well 

approximated by " E , and hence the coefficients actually are not con­
z 

stants . Furthermore the spatial variations in the sheath are so large 

that it is doubtful whether the local value of Et could properly be 

used. 
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Despite the fact that kinetic-theory methods may be necessary for 

an accurate investigation of the physics in the sheath, we use the 

macroscopic equations, and their use may be regarded as an approximate 

means by which to extend the description of the plasma to the wall of 

the discharge. Since the sheath may not be described very accurately, 

it is comforting to realize that the general behavior of the discharge 

is relatively insensitive to the detailed features of the sheath. The 

analysis in tl1e sheath is only necessary in order to account for the 

higher-order effects of space charge on the N - E 
eo z 

relation and on 

the dependent variables in the main region. These higher-order effects 

are represented by the higher-order terms of the asymptotic expansions, 

and these terms provide reasonably accurate values for the complete 

expressions if only their orders of magnitude are correct. However, the 

orders of magnitude can be determined by observing the breakdown of the 

main-region solution, and the sheath calculations only serve to refine 

the values. Furthermore, the size of the sheath and the magnitudes of 

the higher-order terms increase whereas the spatial variations across 

the sheath decrease as N decreases, and hence the results of the 
eo 

sheath calculations are most important where they are ~ost accurate. 

Zero-Order Equations 

The sheath problem of Eqs. (2.51) - (2.56) is rewritten below in 

approximate form by retaining only the terms of order unity in s for 

s large. Only the zero-order terms of the expansions of the coeffici-

ents in the µn(s) are retained, and the dependent variables for this 

aµproximate problem are designated by a subscript zero. We ohtain 
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'\, 

<lJ 
0 

0 ( ''i. I ) ···a~ 

'\, 

dn '\, '\, '\, eo 
--ar- n E + 0 T J (5.2) 

eo o 0 0 0 

'\, 
dn. 

'\, '\, '\, 
10 

~ 
T (- nioEo + J ) (5.3) 

0 0 

'\, 

dE 
'\, '\, 0 

Xo(nio - n ) (5.4) 
df,; eo 

'\, 
0 s 0 n (5.5) eo 

'\, 

n. 
10 

0 (5. 6) 

These equations actually depend on ~ , because the coefficients 

depend on y
0 

, which in turn depends on ~ as shown by Eq. (3.52). 

However, o , T, and X all depend weakly on y , so the equations 

are affected only weakly by changes in ~· 

The behavior of variables in the sheath is easily observed by 

making one further approximation. Before formally doing so, an 

indication of the behavior and the motivation for the approximation 

are seen by considering Eqs. (5.2) and (5.3) for s increasing from 

zero. Since 
'\, 
n 

eo 
and are zero initially, their relative rates 

of increase depend on the coefficients multiplying 
'\, 

J 
0 

(1.27) show that 0 T 
0 0 

is small and T 
0 

is large, so 

rapidly as s increases from zero. However, the terms 

hand side of (5. 2) add to yield ail eo/d~ whereas those 

'\, '\, 

tract. As niO increases, the difference between J 
0 

(1.29) and 

'\, 

n. 
10 

on 

in 

and 

grows 

the right-

(5.3) sub-

'\, '\, 

n. E 
10 0 
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decreases, and the growth of "' nio is retarded. Since T is a large 
0 

"' parameter, a moderate value of clni
0

/dt; "' requires that J and 
0 

"' "' n. E 
10 0 

differ hy only a small amount. Hence ls approx lmnt:e I y 

equal to 'v "' J /E 
0 0 

Approximation for Large T 0 

The situation just described is ideally suited for a singular 

pe rturbation treatment with l/T 
0 

as the small parameter. The deri-

vative i n Eq. (5.3) is negligible except in a small region near 

~ = 0 • This boundary layer within the sheath is called the "skin" 

by Allis and Rose [2]. A solution to (5.1) - (5.4) is sought by 

expanding the variables in asymptotic series in powers of l/T 
0 

Since only the lowest-order contribution is of interest, new notation 

is not introduced, and the equations in the main region of the sheath 

become 

"' "' J = J (0) 
0 0 

(5. 7) 

"' dn 
"' "' "' eo 

d~ 
n E + 0 T J (0) 

eo o 0 0 0 
(5 . 8) 

"' 
}'0(0) 

n. = 
"' 10 E 

(5.9) 

"' 0 

dE 
"' "' 0 

di; Xo(nio- neo) (5.10) 

A separate treatment is necessary near ~ = 0 , where "' n. 
1-0 

changes rapidly and its derivative is large. An examination of Eq. 

(5.3) leads one to expect the large change in 

increases from zero to a magnitude of order 

"' n. 
10 

l/T 
0 

to occur as ~ 

We therefore 
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introduce a new boundary-layer coordinate 

n T S 
0 

and rewrite Eqs. (5.1) - (5.4) 

'\, 

dJ 
0 

0 
dn 

'\, 

dn 
1 '\, '\, eo (n E + 

dn T eo o 
0 

'\, 

dnio '\, '\, '\, 

= - n E + J 
dn io o 0 

'\, 

'\, 

0 T J ) 
0 0 0 

dE Xo '\, '\, 0 
(nio - neo) = dn T 

0 

To lowest order in l/T 
0 

'\, 

J 
0 

'\, 
n eo 

'\, 

E 
0 

'\, 

J (0) 
0 

'\, 
n (O) 

eo 
'\, 

E (0) 
0 

'\, 

dn "' 
__lE_ + E (0) "' dn o nio 

0 

'\, 

J (0) 
0 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5 .18) 

(5.19) 

in the skin. (5.19) is easily solved using the boundary condition (5.6) 

to yield 
'\, '\, 

'\, 
J (0) -E (O)n 

0 
(1 - e o ) n. '\, 10 E (0) 

0 

(5.20) 

'\, '\, 

J (0) -T E (O)l;, 
0 

(1 - e o o ) 
l\J (5.21) 
E (0) 

0 
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Since 

'\, 

'\, 
J (0) 

lim 
s + 0 

'\, 

n. (0 
10 

lim nio (n) 
n + "° 

0 
1\1 (5.22) 
E (0) 

0 

the solutions in the two regions are said to match in an intermediate 

* zone . The essential point is that the exponential term of (5.21) 
'\, 

becomes negligible before E (0 
0 

in (5.9) deviates significantly from 

'\, 

E (O) • The formal limiting process above expresses this situation 
0 

provided such an intermediate region exists. It obviously does for a 

sufficiently large T . 
0 

An expression for that is uniformly 

valid in s is obtained by adding the two solutions and subtracting 

from the sum this common limit in the intermediate region . We obtain 

'\, 

J (0) 
0 

'\, 

E (s) 
0 

'U '\, 

Jo(O) -TOEO(O)s 
-ru-- e 
E (O) 

0 

(5.23) 

Since the validity of this expression depends upon the exponential 

term's decaying while 
'U 
E (S) 

0 
is still approximately equal to 

'U 

E (0) , 
0 

'U 'U 
E (0) 

0 
can be replaced by E (s) in the coefficient without introducing 

0 

further error . Then (5.23) becomes 

'U '\, 

J (O) 
0 

--r E (O)t: 
0 0 ~ 

(1 - e ) 

This form is more convenient in the following manipulations. 

'V 
By making appropriate substitutions, n 

eo 
as well as 

(5.24) 

can 
'U 

b e expressed in terms of E 
0 

These expressions can then be used to 

* Se e Cole [6], pp. 11 ff. for a discussion. 
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obtain a single nonlinear differential equation for "' f. 
0 

for "' n 
eo 

, using (5.24), and substituting into (~.2) 

"' dn 
eo 
~= 

"' "' l dE J (0) 
[- - __ o + -....-o __ 
XO dt_; E 

0 

"' -T E (O)t_; rv rv 
(1-e 00 

)]E+oTJ(O) 
0 0 0 0 

"' -T E (O) E 
0 0 , 

e 

Integrating and using the boundary condition (5.5), 

"' n eo 
= _1_(~2 

2x o 
0 

"'2 "' E (0)) + (1 + o T )J (O)t_; 
0 0 0 0 

"' "' J (0) -T E (O)~ 
"'o (l _ e o o ) 

To E (0) 
0 

1 

Solving (5.4) 

(5.25) 

(5.26) 

(5.27) 

Since terms of order O(l/T
0

) have already been ne~lected in obtaining 

"' nio , it may appear consistent to neglect the last term of (5.27). 

However, the source of this term is in the rapidly changing behavior of 

"' n. in the skin, and its omission would be equivalent to assuming the 
1.0 

outer solution for valid to t_; = 0 in the derivation of (5.27). 

Furthermore, without this term the differential e quation for n 
eo 

would not be uniformly satisfied to lowest order in l/T 
0 

Such an 

omission would clearly be a needless introduction of error. In fact, 

numerical results show that the term is quite essential, particularly 

for small where "' n 
eo 

is small. An equation for 

by substituting (5.23) and (5.27) into (5.4): 

"' E 
0 

is obtained 
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'V 'V 

dE 1 rv2 rv2 rv 

d~ =-2(E -E (O))+x (l+o T )J (O)t;,-
s 0 0 0 0 0 0 

x J (0) 
0 0 (1-

T E (0) 
0 0 

'\, '\, 'V 

X J (0) X J (O) -T E (O)t;, 
~o-=-o~- + -=-o~o~- e o o 

'V 'V 
E E (0) 

0 0 

'V 

1 (~2 
'\, 'V x J (0) 
E2 (0))+X (1 + o T )J (O)t;, - o o 

2 0 0 0 0 0 0 'V 
E 

0 

'V 

XoJo(O) 
'V 

T E (0) 
0 0 

'V 
(1 + T )X J (0) 

0 0 0 + ~~--,,-'\,~~~~ 
T E (0) 

0 0 

'V 
-T E (O)t;, 

0 0 e 

'\, 

-T E (O)[ 
0 0 , 

e ) 

(5. 28) 

(5.29) 

Again terms of order 0(1/T ) 
0 

are retained even though the possible 

error is also 0(1/T ) . 
0 

If Eq. (5.29) could be solved, 
'V 
n 

eo 
could be found 

from (S.23) and (S.27). However, Eq. (5.29) requires numerical treat-

ment. The asymptotic forms of the variables for large t;, are obtained 

'V 
without difficulty, hut the unknowns J (0) 

0 

'V 
and E (0) 

0 
enter rather 

'\, 

intimately into the final expressions . 
'V 

Since J 
0 

is constant, J (0) 
0 

is determined quite easily by matching with the main-region solution, 

but Eq. (5.29) must be solved for all t;. to relate the initial value 

'V 
of E to its asymptotic form. This problem is deferred until the 

0 

asymptotic solution is obtained. 

Asymptotic Solution to the Approximate Zero-Order Equations 

The behavior which 
'V 
E 

0 

quite easily from Eq. (5.29). 

must exhibit for large is determined 

'V 
The term X (1 + o T )J (O)t;, becomes 

0 0 0 0 

large as t;, increases, so there must be at least one other term that 



grows with it. 
'V 

Since E (0 
0 
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must approach the oute r solution 

'V 
in some manner as becomes large, the magnitude of E 

0 
and 

E (y) 
0 

''-' 
dE /dt;; 

0 
'\, 

cannot be permitted to increase in an unbounded manner . He nce E a n<l 
0 

'\, 

dE /dE; b ecome n eglig ible in asymptotic considerations, and Eq. (5.29) 
0 

b ecomes 

0 

or 

1 'V2 'V 
- -

2 
E (0) + X (1 + o T )J {O)t;; -

0 0 0 0 0 

'V 
E 

0 

1 

'V 

x J (0) 
0 0 

'V 
E 

0 

1 

T E (0) 
0 0 

'V 

x J (0) 
0 0 

'V 
T E (0) 

0 0 

(S.30) 

(S. 31) 

'V 
The dominant contributions to n 

eo 
and are now found from (S. 27) 

and (S.24). 

'V 

'V 'V 
- _1_ ~2(0) 

J (0) 
0 

n 'V (1 + o T )J0 (0)f;; 'V eo 0 0 2x o 
T E (0) 0 

0 0 

(S. 32) 

'V 

'V 
J (0) 

0 
n . 'V 1\1 

10 
E ( t;; ) 

0 

(S.33) 

'V 
'\, 

- _l_ ~2(0) 
J (0) 

(1 + o T )J {O) t;; 0 'V '\, 0 0 0 2x o 
T E (0) 0 

0 0 

(S.34) 

'V 
These expressions serve to indicate the manner in which E (0) 

0 

enters the asymptotic sheath solution. However, it is not involved in 

the largest contribution to any of the variables, and thus may not b e 

i nvolved in matching the main-region and sheath solutions to lowest 

order. Since the e quations from which these expr e ssions are derived 

involve v arious approximations, only the highest - order terms are 
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retained, and the variables are rewritten as 

~ 

J 
0 

~ 
n eo 

~ 
n. 

10 

~ 

E 
0 

~ 

J (0) 
0 

~ 

(1 + o T )J (O)~ 
0 0 0 

~ 

(1 + o T )J (O)~ 
0 0 0 

1 1 
1 + 0 T °[ 

0 0 

(5.15) 

(5.36) 

(5.37) 

(5.38) 

Comparison of the Approximate Sheath Solution with the Main-Region 

Solution 

The realization of obtaining an approximation to J, n , n. 
e 1 

and 

E that is valid for all y requires a consideration of the intermedi-

ate zone in which the main region and the sheath blend together. The 

validity of the perturbation procedure depends on the ex istence of such 

a zone in which the main-region and sheath solutions agree in some 

sense. Although the sheath equations are solved asymptotically as 

~ + oo , the magnitude of ~ in the context of matching the two solu-

tions is actually limited. In fact, in this context ~ can be assigned 

an approximate order of magnitude in s , since the location of the 

sheath, and hence also the transition zone, depends on s . The situa-

tion is clarified by reconsidering the relation between y and ~ 

introduced in Eq. (2.46), 

(5.39) 

Since 1 - y is of order unity in the main region and ~ is of order 

1/3 
unity i n the sheath, 1 < ord ~ < s in the transition zone. In 
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order to represent the magnitudes of the variables more clearly. the 

independent variable is rescaled by 

where 

x 
n 

is order unity in in the transition zone, and 

1 
113 < ord n(s) < 1 (5.41) 

s 

Since the solution is assumed to depend analytically on s , 

the matching is accomplished by equating terms of the main-region and 

sheath solutions with the same s dependence in the transition zone 

This dependence is made explicit by converting y and s in the two 

solutions to by 

1 - y = n<s) x n (5. 42) 

(5.43) 

The main-region solution must be expanded for y near 1 before 

it is in a fonn convenient for matching. Since a more refined treat -

ment of the sheath is presented later, only the most primitive approxi-

mation to the main-region solution is considered. Neglecting terms of 

order 0(£ s), Eqs . (3.53), (3.55), (3.56) imply for y near 1 , 
0 

J 'V 
1T 1 

0 2 p 
0 

(5.44) 

1T 
n 'V -(1 - y) 

eo 2 
(5.45) 

1 - 0 1 
E 'V 

0 

0 1 + 0 T 1 - y 
0 0 

(5.46) 
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Substituting from (5.42) 

(main region): 

(main region): 

(main region): 

1T 1 
J "' -- -0 2 p 

0 

E "' 0 

1 - 0o 1 1 
1 + 0 T n(I';;) x 

o o n 

If Eqs. (5.35), (5.36), (5.38) are rewritten in terms of 

(5.47) 

(5. 48) 

(5.49) 

and 

if the dependent sheath variables are returned to their original forms 

via (2.47), (2.49), and (2.50), we obtain 

"' "' J - J "' J (0) 
0 0 0 

(5.50) 

or 

"' (sheath): J "' J (0) 
0 0 

(5. 51) 

"' 1/3 (1 + 0 T )~ (0)7,;l/3 n (7,;) n r; n "' x eo eo 0 0 0 n 
(5.52) 

or 

"' (sheath): n "' c1+0 T )J co) nCr;;) x 
eo 0 0 0 n 

(5.53) 

"' 1 1 1 1 
E 1/3 E "' 1+ 0 T r;l/3n Cr;;) 0 x /';; 0 0 0 n 

(5.54) 

or 

(shea th): E 
1 1 1 

"' 1 + 0 T n(r,;) xn 0 
0 0 

(5.55) 

"' If J (0) is selected so that J (main region) and J (sheath) 
0 0 0 

match, 

"' J (0) 
0 

(5.56) 

the comparison of main-region and sheath solutions is as written below: 
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(main region): J 
0 

lT 1 
2 p 

0 

(5.57) 

(sheath): J 
0 

lT 1 
2 p 

0 

(5.58) 

(main region) : n 
eo (5 .59) 

(sheath): n 
eo (5. 60) 

1 - 0 
(main r egion) : E 

0 

0 1 1 
_l_+_O_T_ n(I'; ) 7 (5.61) 

o o n 

(shea th): E 
0 

1 1 1 
1 + 0 T n(I';) 7 (5.62) 

o o n 

where Eq. (2.19) for p
0 

has been used. Except for the choice of 

'V 
J (0), there is nothing to vary in order to e ffect matching , and the 

0 

main-region and sheath variables must agree identically. It is apparent 

that the two n 's and E 's do not agree exactly but differ by 
eo o 

amounts proportional to l/T and o , respectively. 
0 0 

However, it can 

be shown that these discrepancies are caused by the asymptotic expansion 

in l/T used to obtain the zero-order sheath solution. In any case, 
0 

the two solutions exhibit similar b ehavior in the transition zone. 

'V 
Numerical Calculation of E0 (0) 

'V 
Although E (0) 

0 
is not needed for the matching a bove, its 

appearance in (5.31) and (5.32) suggests that it may be nee de d in 

higher-order matching. In the more complete treatment of the sheath 

that follows, it is helpful to know its approximate value . 

The behavior of 
'V 
E 

0 

'V 
for various choices of E (0) 

0 
is illus-

trated by the sketch in Fig. 5. The dashes represent slopes of the 
'V 

E 
0 
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versus E; curves and are calculated from tile r:lght-hand s1.de or ('i.29). 
'V 

The slopes depend on 

1 'Vz 
three terms, 2 E

0
(£;) 

E (0), of course, hut for F. l.nqw, OllL' or ll1l' 
0 

~I 1\1 '\1 

X (1 + o T )J (o)[: , -x .T (O) /Jo: (0, Ls 
0 0 0 0 . 0 0 0 

dominant. Figure 5 is intended to show only the essenu.a ·1 h e lwvlor, 

and so contributions from terms other than these three are neglec ted. 

'V 
The relation of E (0) to the desired asymptotic behavior is seen by 

0 
'V 

observing Eq. (5.29) as s increases from zero. If too small an E (0) 
0 

'V 'V 'V 

is chosen, the term -x J (O)/E causes the derivative dE /ds to 
0 0 0 0 

'V 
become increasingly negative . The further decrease in E exacerbates 

0 

the situation, and the integration terminates when the magnitude of the 

'V 'V 
derivative becomes infinite at E 0 . On the other hand, if E (0) 

0 0 
'V 'V 

is too large, the term -x J (O)/E 
0 0 0 

fails to prevail over the term 

'V 'V ~ ~2(0 x (1 + O T )J (0)£; , and E (0 begins to grow. The term 
0 0 0 0 0 2 0 

'V 

eventually dominates, and E (0 
0 

increases rapidly to infinity. The 

curve which separates these two distinctive classes of solutions is the 

special solution with the required asymptotic properties. As shown by 

'V 
the derivation of Eq. (5. 31), the large terms X (1 + 8 T )J (0) £; and 

0 0 0 0 
'V 'V 'V -x J (O)/E (£;) essentially balance , and the magnitudes of E

0 
and 

0 0 0 
'V 

dE /dE; decrease gradually to zero. 
0 

'V 
A means of calculating E (0) 

0 
numerically is made apparent by a 

study of Fig. 5. Since the behavior of 
'V 
E 

0 
for large appears to 

be quite sensitive to the choice of 

'V 

'V 
E (0), it seems reasonable to 

0 

evaluate E ( £; ) for a large E; from the asymptotic formula using an 
0 

'V 
assumed E (0). 

0 
Integration to s = 0 

which to develop an iterative procedure. 

then provides a new 
'V 
E (0) with 

0 
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'\1 

Unfortunately the asymptotic representation of E 
0 

in Eq. (5. 31) 

is not sufficiently accurate to initiate the integration at large f, 

The reason is that 

involving 
'\, 

dE /dF, 
0 

in the derivation of (5.31) from (5.29) the t e rms 

"'2 
and E are neglected . Thus if the asymptotic 

0 
'\, '\, 

evaluation of E 
0 

is used in (5.29) to determine the value of dE /dF, 
0 

in the initial step of the numerical integration, the result possesses 

'\, 

an error the order of dE /dF, itself. In order to obtain an asymptotic 
0 

'\, '\, 

E 
0 

that is capable of determining dE /dF, 
0 

to sufficient accuracy, we 

begin again from Eq . (5.29). Neglecting only the term containing the 

exponential and rearranging, 

'\, 

x J (0) 
0 0 

---~-- = 

or 

E 
0 

'\, 

X (l + O T )J (O)F, 
0 0 0 0 

'\, 

"' X J (O) "' _l_E2(0)- oo +l.E2 
2 o T E (O) 2 o 

0 0 

1 

'\, 

dE 
0 

ds 

I 

'\, 

E 
0 E

2
(0) 

(l+ O T )F, ---..-
0
--

E2 
1 0 '\, +----.,,---

1 dEo 

0 0 2 J (0) XO 0 
'[ E (0) 2X J (0) 

0 0 0 0 
X }' (O)d( 

0 0 

Diffe r e ntiating (5.64) 

2"' '\, '\, 0 '\, 1 
cl E 

(l+o T )+ E (dE /dF,) (X J (0)) 0 
'\, '\, 

dF,2 dE 
0 0 0 0 0 0 

x J (0) 
0 0 0 -- = 

~2(0) "'2 d f, 
1 

E 
1 

[ (1 + 0 T ) S 0 + 
0 

'\, '\, '\, '\, 0 0 
2x J co> T E (0) 2x J (0) x J (0) 

0 0 0 0 0 0 0 0 

(5.63) 

(5.64) 

'\, 

dE0j 2 
dF, 

(5.65) 

The dominant terms in these equations provide the following order-of-

magnitude e stimates for large F,; 
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'\, 

o(l-) E 
0 s (S.66) 

'\,2 
O(_!_) E 

0 E;,2 
'\, 

(5 . 67) 

dE 
O(_!_) 0 

ds s2 
(5.68) 

d2~ 
O(_!_) 0 --= 

ds
2 s3 

(5 . 69) 

Using (5.64), Eq . (5.65) can be rewritten retaining only the highest-

order term in the numerator. 

'\, 

dE 
0 

ds 
-((1 + 0 T ) + 0(_!_

3
)] ~2 

0 0 s 0 

'\,2 1 
- (1 + o T ) E + 0(-) 

o o o ss 

(5.70) 

(5. 71) 

With this result Eq. (5.64) now becomes 

or 

'\, 

E 
0 

'\, 

E 
0 

~2(0) 
(1 + 0 T ) S - -0~--

o o 2x J (o) 
0 0 

E
2

(0) 
c1 + o T )s - - 0

-..-­
o 0 2x J (o) 

0 0 

'V 

1 

1 

1 
'V + 

T E (0) 
0 0 

"'2 E 
(1

2
+oT) z +0(

1
5

) 
o o . J (0) F XO 0 7 

(5. 72) 

E2 

1 + (32 + 0 T ) o + 0 (17) • 
T E (O) o o X J (0) s 

0 0 0 0 

(5.73) 

For a specified s and an E (0) not too far from the correct value , 
0 . 

'V 
an accurate numerical value for E

0
(s) is easily obtained using the 
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iterative scheme described by the equations below: 

E<n+1) 
0 

"'(O) 
E 

0 
0 

~2(0) 
(1 + 0 T )f,; - - 0

--='\J--

o 0 2X J (0) 
0 0 

n 0,1,2,· ... 

1 

E(n)2 

~ +(32+01')-~--
T E (0) o o X J (0) 

0 0 0 0 

(5.74) 

(5.75) 

(5.76) 

The convergence is rapid, and the resulting value, when used in Eq. 

(5.29), provides an accurate estimate of the derivative 

"' 
"' dE /df,; 

0 

The iterative method by which E (0) 
0 

is determined can now be 

"' employed. An assumed value of E (0) 
0 

is used in (5 . 75) to obtain "' E 
0 

at a particular t,; • In the numerical work performed, E is evaluated 
0 

at t,; = 10, and using that as the initial value, Eq. (5.29) is inte-

"' grated to t,; = 0 . The value of E there provides a new estimate to 
0 

"' E (0), and the entire process is repeated once . In order to present 
0 

the method more clearly, we let g(x) represent the solution to (5.29) 
'\, 

evaluated at t,; 0 with x as the e stimate for E (0) used in the 
0 

right-hand side. Thus we seek a solution z of the equation 

z g(z) (5. 77) 

'V 
and such a z is the correct value for E (O) 

0 
The solution of (5.29) 

'V 
using this value in its right-hand side yields the function E (f,;) 

0 
for 

0 ~ t,; ~ 10 The first two steps toward the solution are described 

verbally above. z (o) is chosen arbitrarily, and (5.29) is solved to 

generate z (1) : 
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(5.78) 

The iterative procedure described by 
(n+l) (n) 

z = g (z ) converges to 

the solution z too slowly to be of practical value, but the two 

values z 
(o) 

and z 
(1) 

permit the initiation of the method of false 

* position • We define 

f(x) g(x) - x (5.79) 

and determine the succeeding z 
(n) 

by the recursion formula, 

(n+l) 
z 

(n) 
z -

(n) (n-1) f( (n)) z - z z 
f(z(n)) - f(z(n-l)) 

(5. 80) 

n 1, 2' ... (5.81) 

The sequence {z(n)} converges rapidly to a solution z of Eq. (5 . 77) 

yielding 

'V 
E (0) 

0 
z (5. 82) 

An example of a typical sequence is given in Table 5. 

Since r; enters into Eq . (5.29) through the coefficients T
0

, 

'V 'V 
o

0
, x

0
, and J (0), the 

0 
E (0) 

0 
obtained is a function of r; , and a 

separate calculation must be performed for each numerical value of 
'V 

considered. Also, J (0) 
0 

is given by Eq. (5.56), but this expression 

is not used in the numerical calculations. One of t h e main purposes of 

the approximate sheath solution is to provide a good estimate to the 

solution of the exact sheath equations. 

* See Isaacson and Keller [9], pp . 99-102. 

'V 
In order to make E (0) 

0 
the 
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'\, '\, 

best possible estimate of E(O) , we take as J (0) 
0 

th e expression 

obtained by matching the exact asymptotic solutions, which are presente d 
'\, 

later. J(O) is given by Eq. (7.5), and hence for the numerical inte-

gration of (5.29) we use 

'\, 

J (0) 
0 

(5.83) 

The integration is performed using a fourth-order Runga-Kutta method. 

'\, 

E (0) is obtained for a number of values of ~ , and the results 
0 

'\, 

are tabulated in Table 6 along with the exact values E(O), which are 

obtained later. It is apparent that the approximate solution is quite 

'\, '\, 

close to the e x act solution with the most conunon difference E (0) -E(O) 
0 

being 0.002. This accuracy is quite pleasing because the right-hand 

side of (5.29) can have an error of order 0(1/T ). 
0 

When integrated 

from s = 10 to s = 0 , an error can be introduced whose magnitude 

approaches 0.1 . It is possible that a significant portion of the 

error involved in the derivation of Eq. (5.29) cancels when calculating 

the difference 
'\, '\, 

nio - neo in Eq. (5.4). In any case, it is clear that 

the omission of the terms of order 0(1/T ) in (5.29) would yield much 
0 

less accurate r esults . 

of (5.29) values for 
'\, '\, 

During the integration nio and n are 
eo 

'\, '\, '\, 
obtained from the expressions in (S.24) and (5. 27). E 

o' nio' and n 
eo 

all behave as expecte d. Graphical results are presented in Figs. 6 and 

7. The latter shows the rapid variation in near s = 0 . The 

values for 
'\, '\, 

E , ni , and 
0 0 

'\, 
n 

eo 
are in quite accurate agreement with the 

numeric al solution to the exact zero-order sheath equations, which is 

obtained in Sect i on 6 over a more limited r a nge of S• 
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6. EXACT ASYMPTOTIC SHEATH SOLUTION 

The determination of the asymptotic forms of the variables in 

the sheath for large F, parallels the development by Cohen and Kruskal 

[5]. The approach differs from that of Section 5 by including in the 

equations some higher-order terms in ~ and by refraining from approxi-
'V 

mations based on the magnitude of T • E(O) again enters the 

asymptotic expressions and must be calculated numerically. 

Working Equations 

The sheath problem of Eqs. (2.51) - (2.56) is rewritten below 

with the desired degree of accuracy by retaining only the largest of 

the higher-order terms in ~ • Using the first two terms of the 

expansions (2.9) - (2.11), we obtain 

0 

'V 
dJ 
ds 
'V 

dn 
e 

ds 
'V 

dn. 
l. 

ds 
'V 

dE 
ds 

'V 
n 

e 

'V 
n. 

l. 

0 

0 

(6.1) 

(6.2) 

(6.3) 

(6 . 4) 

(6.5) 

(6.6) 

By appropriate manipulations (6.1) - (6.4) are converted to 

integral equations which are solved asymptotically by an iterative 
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procedure. One integration is performed by making suitahll' < ~ liminntio11s 

between Eqs. (6.2), (6.3), and (6.4). Dividing both sJcle s or (6.J) by 

'\, '\, 
n.- n is eliminated by using Eq. (6.4): 

1 e 

(6.8) 

The coefficients can be expressed in a more appealing form by 

1 1 1 
T 1 + lllTl/TO 0 

(6.9) 

1 Tl 
O(µi) T l11 -z+ (6.10) 

0 T 
and 

0 

1 X1 
O(µi) 

XO 
l11 2+ 

XO 

1 
(6.11) 

Since the equations are only accurate to order 0(µ 1) , no accuracy is 

lost by the above substitutions. If Eq. (6.8) is integrated from 0 

to ~ using (6.5) and (6.6), 

1 
T . 

1 1 X1 "'2 - 'E2(0)) 
'\, 1 '\, 
n + (- - µ1 2)ni = -(- - µ1 -zHE e T 2 x 

0 T 0 XO 0 
E,: 

+ c1+0 T + µ1 co T1+ o1T )1 J J(~) d~ (6.12) 
0 0 0 0 

0 
'\, 

An integral equation for J is obtained directly from (6.1): 



'\, 

J 

j\symptotic Solution 

-199-

(fi.11) 

The determination of the asymptotic express.tom; from l':q8. (<) .12) 

and (6.13) requires a careful assessment of the orde rs of magnitu<le of 

the various terms. In particular, powers of £;, must be compared with 

functions of z_; . Since the asymptotic solution is to be used for 

matching, the discussion centering around Eq. (5.39) is pertinent, and 

£;, is assumed to be of order z.;
113n(z_;) as indicated by Eq. (5.43). 

Using the estimate for 
'\, 

n 
e 

given by (5.36), the second term on the 

right-hand side of (6 . 13) is of order 
2 

n ' so the lowest-order contri-
'\, 

bution to J is again 

'\, '\.r 

J "' J(O) 

Equation (6.12) is used to determine 

'\, 

'\, 
n 

e 

(6.14) 

to lowest order, but it 

is first necessary to eliminate n
1 

. The approximate results of Eq. 

(5.38) can be used in (6.4) to conclude that 

'\.r '\, 1 
2) ni - n = O( 2/3 e z_; n 

(6 . 15) 

'\, '\, 

so n. n to lowest order. Also, 
1 e 

"'2 1 
2) E O( 2/3 

z_; n 
(6.16) 

~2(0) = 0(1) (6.17) 

and ~ 

f 
'\, - O(z_;l/3n) J(~) d~ (6.18) 

0 
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so the retention of only the largest tenns in Eq. (6 . 12) yields 

[, 
'\, 1 '\, 
ne +- n T e 

0 

(1 + o T ) f }(o)dC 
0 0 

(6 . 19) 

0 

or, using Eq. (2.19) for · p
0 

, 

(6.20) 

The substitution of this expression for 
'V 
n 

e into (6.13) yields 
'V 

a better approximation to J . Since 

for large [, is known, the integral 

'\, 
only the asymptotic form of n 

[, e 

J ~ (~) at cannot be evaluated. 
0 e 

However, the asymptotic expression can be integrated to yield the 

asymptotic form of the integral. The integral of the deviation of 
'\, 

n 
e 

from its asymptotic value can be written as an "integration constant" 

that depends only weakly on E, for E, large. Thus, 

[, 

J ~ <t) at 1 'V 
t,2 + 2 po J(O) cl e (6.21) 

0 

where actually 

[, 

f [~e <t) 'V at cl - p J(O) ~] 
0 

(6.22) 

0 

For larg e ~ the variation of c
1 

with ~ is negligible compared to 

2 
r;, ' so 

(6.23) 

and (6.13) becomes 
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(6.24) 

'V 

This expression for J can be used in (6.12) to provide a 

better approxinwtion to 
'V 
n 

e 

'V y p 'V 3 
J(o)s - 0 0 

J(o)s + c 
6s2/3 2 

(6.25) 

where, by the same reasoning as before, c2 is of lower order than the 

other terms and 

'V yp 'V 3 
J(o)s -

0 0 
J(o)s 

6s2/3 
(6.26) 

It is now necessary to make an assumption on µ 1 (s) in order to com­

pare the relative magnitudes of terms in (6.12). The term involving 

'V 
E(O) is of order unity, and all lesser terms may be neglected. How-

ever, the substitution of (6.26) into (6.12) r esults in the term 
'V 

µ
1 

(o
0

T
1
+ o

1
T

0
) J(O)s , which has order In order to neglect 

this term, we assume 

ord(µ 1 <s)) < 
1 

ord( l/J ) 
s n<s) 

(6.27) 

The validity of this inequality is established when µ1 (~) is deter-

mined. Now all t e rms involving µl can be neglected, and from (6.15) 

(6.16) 
'V 'V "'2 

and it is seen that n. - n and E are also insignificant in 
1 e 

comparison with ~2(0) . Equation (6.12) now becomes 
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'U 1 'U 1 'U2 'U Y op o ru 3 
n +-n - -

2
- E (0) + (l+o T )[J(O) ~ - --- J(O) E. ] 

e T e XO 0 0 6[,,2/3 , 
0 

(6.28) 

or 
2 ruz 

'U 'U YOPO }(o)~3 __ 1_ 
T E (0) 

p J(O)~ -
0 

n 'U 
6[,,2/3 l+ T e 0 2X 

0 0 

(6.29) 

The second term is of order r,,113n3 (r,,) , but it need not be compared 

with the third, because both can be matched to terms of the main-region 

solution. However, if (6.29) is to represent the dominant contributions 

"' to n , the second term must be larger than the term of order 
e 

that is neglected. In this case we must have 

> 
1/3 

ord(µ 1 r,, n) (6.30) 

It is seen later that µ1 must equal l/r,,113 , so (6.30), together with 

the previous bounds on n implies that 

1 
r,,1/6 

< ord(n) < 1 (6 .31) 

However, it is not necessary that the terms shown in (6.29) be the 

'U 
dominant contributions to n 

e 
The matching of sheath and main-region 

solutions proceeds by equating terms of the two solutions that have the 

same functional dependence on [,, • In principle each term of the asymp-

totic sheath solution is to be matched individually, and it is not 

necessary to determine relative magnitudes except for purposes of 

numerical estimation; it is only necessary that the dependence of each 

term on r,, be different from that of any other. Since the dependence 

of n on r,, is arbitrary within a certain range, the functional 
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dependence of two terms on l;; is the same only if tlioi.r explic:lt 

dependence on r, and their dependence on n arc the same. The rela-

tive magnitudes of terms depends on the functional form of n , i. e . , 

on the precise location between main region and sheath. 
'\.o 

The a symptotic form of E is obtained from Eqs. (6.2) and (6.3). 

Subtracting (6.3) from (6.2) and neglecting terms of order 

(6.32) 

'\.o '\., 
From (6.15), n. - n and i ts derivative are negligible with r e spect to 

i e 
'\., '\., 

J , and (6.32) can be solved f or E 

- 0 
'\., 

'\., 1 J 
E 

0 
T 1 + '\., 0 T 

0 n 
e 

Using (6.24) and (6.29) 

'\., yopo 2 
1 - 0 J(O) [l - 2/3 ~ ] 

'\.o 0 2?;; E '\., T 
0 1 + T 2 

0 "' YoPo }(0)~3- _l_ poJ(O) ~ -
6

7;,2 /3 2x 

or, using Eq. (2.19) for p
0 

, 

1 - 00 1 

l+o T ~ 
0 0 

yopo 2 
1 - 2/3 ~ 

27;, 

0 

(6.33) 

To~2 (o) 
(6.34) 

1 + T 
0 

(6.35) 



(6.36) 

1 - 0 
0 

1 - 0 
0 --- E; + 

1 + T 

1 - 00 ~2 (0) _!__ 
1 +o T 

0 0 0 2X (l+ 0 T )
2 

J(O) r_, 2 
0 0 0 

(6.37) 

Various terms have been neglected in obtaining this equation, and if 

we were to insist that the terms presented be the terms of largest 

orders in ~ , we would have to confine n within narrower limits. 

The first nonzero contribution to the space-charge density is 

calculated using only the first term of (6.37). 

'\J 
s 

and using (6.4), we obtain 

'\J 
s 

'\J 

'\J - L dE 
x di; 

0 

1 - 0 
1 0 1 
X 1 +o T 1:"2 

0 0 0 ., 

Defining 
'\J 
s by 

(6.38) 

(6.39) 

(6 . 40) 

Since 
'\J 2/3 2 '\J '\J 

ord(s) = l/(~ n ), ni = ne to the accuracy exhibited by Eq. 

(6 . 29) provided n is restricted as shown in (6 .31) . 

'V 
Numerical Calculation of E(O) 

'V 
As in the approximate case considered in Section 5, E(O) 

appear s in the asymptotic expression and must b e ca l c ulate d by a 

'v 
nume rical integration of the sheath equations. Since E(O) a ppears 
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i n a higher-order term, the equations need be consider ed only to lowest 

orde r in (; The lowcst~order equationi-:; can h L~ trnnsfonn('d to a proh-

lem treated by Cohen [4], but here we proceed us.lug ma rd.pula t Jon s 

already carried out. 

In their lowest-order form one integration of the sheath equa-

tions can be performed, and this integral can be obtained direc tly by 
'V 

simplifying Eq. (6.12). If the largest contribution to J in (6.13) 

i s used in (6.12), and if higher-order terms in s are neglected, we 

obtain 

'V 1 'V 1 
n +-n =-­

e T i 2X 
0 0 

"'2 "'2 'V 
(E - E ( 0) ) + ( 1 + o T ) J ( 0) s 

0 0 

It is convenient at this time to make a change of variables from 

'V 
to s 

'V 

E 

'V 'V 
n. - n 

i e 

'V 
Then Eq. (6.41), when solved for E , becomes 

rv 2X rv 
{E2(o)+-0 [(l+T )~+~l- 2x c1+0 T )J(o)s} 112 . 

T o e o o o 
0 

Equations (6.2) and (6 . 3) become, to lowest order in s , 

'V 
dn 

e 
---at = 

'V 

'V 'V 'V 
n E + o T J(O) 

e o o 

with E given by (6.42). The boundary conditions are 

s = 0 
'V 
n 

e 

'V 
s 

0 

0 

(6.41) 

'V 
n . 

l. 

(6.42) 

(6.43) 

(6 .44) 

(6.45) 

(6. 46) 
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The problem is now reduced to a system of two differential equations for 

"' "' "' "' n an<l s and an algebraic equation for E . 
e 

E(O) cntcr1:1 the cquu-

tions as an unknown. It is determined by requirJng that tlw so I ut:l.ons 

to (6.42) - (6.44) behave for large ~ as the corresponding asymptotic 

formulas just obtained. It is for this reason that is replaced by 

"' s Equation (6.40) shows that "' s decreases and becomes quite small 

"' "' as ~ becomes large. If an incorrect E(O) is selected, s as 

obtained from Eq. (6.44) either becomes negative or begins to grow for 

large ~ • The reason for such behavior is readily seen by a study of 

Eqs. (6.42) - (6.44). "' If too large an E(O) 
'\, 

is chosen and the equa-

tions are integrated from ~ = 0 , E as determined by (6 . 42) is too 

"' large. The term involving E on the right-hand side of (6.44) thus 

"' becomes too large in magnitude, and s becomes negative . If too small 

"' an E(O) is chosen, the magnitude of the first term on the right-hand 

s ide of (6.44) is too small, and "' s increases at large This 

observation forms the basis for the trial-and-error solution of the 

"' equations. An E(O) is selected arbitrarily, and Eqs. (6.43) and 

(6.44) are integrated numerically from ~ = 0 The behavior of "' s 

"' tells whether the assumed E(O) is too large or too small, and further 

values are selected on the basis of the results. The two types of 

behavior a r e quite distinctive, and an example of the numerical inte­

"' gration for slightly different values of E(O) is presented in Fig. 8 . 

"' The results determine E(O) correctly to three decimal places. The 

graph also shows that 

~ = 0 as does "' n. 
]. 

"' s experiences the same rapid increase near 
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The numerical integration of Eqs. (6.43) and (6.4lf) is compli-

cated somewhat because the right-hand side of (6.44) involves the larg e 

constant T and results in the system's possessing a large Lipschitz 
0 

constant. Such systems are commonly called "stiff" and cause stability 

problems with the use of explicit numerical integration algorithms 

* unless very small step sizes are employed . The trapezoidal rule does 

not suffer from such instability and is chosen as the method of integra-

tion. For the system of differential equations 

dy_ 

dx 

the algorithm is 

!_ (x ,y_) 

Applying this scheme to Eqs. (6.42) - (6.44), 

'V(n+l) 
n 

e 
'V(n) + .!:!. {~(n+l) ~(n+l)+ ~(n) ~(n)+ 20 T }(o)} 
ne 2 e e o o 

'V(n+l) = ~(n)+ .!:!_ {- [(l+T )~(n+l)+ T ~(n+l)] ~(n+l) 
s 2 o e o 

~(n+l) = { ~2(0) + 2Xo [(l+ T )~(n+l)+ ~(n+l)]- 2X (l+ o T )}(o) 
T o e o oo 

0 

x t,:(n+l) ll/2 

(6.47) 

(6.48) 

(6 . 49) 

(6.50) 

(6.51) 

* For a discussion of the problem see, for instance, Seinfeld, Lapidus, 
and Hwang [10]. 
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for n = 0,1,2, ... , where 

F,; (n) nh (6.52) 

The initial values are obtained from (6.45) and (6.46) 

ru (o) 
0 n 

e 
(6 . 53) 

ru(o) 
s 0 (6 .54) 

"'(o) 'V 

E E(O) (6.55) 

The difficulty now is that a system of nonlinear algebraic equations 

must be solved at each step. Newton's method is employed for this 

task. In order to simplify the notation, the definitions below are 

introduced: 

ru(n+l) u 

( ;cn+l) ) u - ( v ) -
~(n+l) w 

(6 . 56) 

Equations (6.49) - (6.51) are now written in the form 

0 (6.57) 

where 

'V 
£(~) -

h h ru(n) h <v(n) ru(n) 'U(n) 
-v--(l+T }uw-- T vw+s - -[(l+T )n + T s ]E 

2 o 2o 2 oe o 

+ hT ( 1- O ) J ( 0) 
0 0 

-w+{~2 (o)+ 2
X0 [(l+T )u+v]- 2x (l+o T )J(O)~(n+l)} 112 
T

0 
O o o o s 

(6.58) 
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Equation (6.57) is solved by obtaining a sequence {~i} which conve r ges 

to the solution u _g_(~i+l) can be expressed as the Taylor series 

(6.59) 

where J(~i) is the Jacobian matrix 

(6.60) 

Newton's method determines ~+l from ~i by equating the truncated 

s e ries to zero: 

(6.61) 

or 

(6.62) 

for i=0,1,2,··· . (6.62) is solved as a linear equation in ~+l - ui. 

~(n+l ) ~(n+l) d ~(n+l) 
ne , s , an are thus determined by solving a sequence 

of linear a lgebraic systems. However, the convergence is rapid and 

only a few iterations are necessary. For our e quations the Jacobian 

matrix is 

J(~) 

h 
- 1 + 2 w 

h - -(l+T )w 
2 0 

x (1 + 'T ) 
0 0 

'T e:(u) 
0 -

0 

h -1--Tw 
2 0 

'T e: (~) 
0 

h 
2 u 

h h 
- -(l+T )u-- 'TV 

2 0 2 0 

-1 

(6.63) 
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where 

E:(u) - {~2 (o)+ 2)(0 [(l+T )u+v]- 2)( (l+o T )}(o)~(n+l) }1 / 2 . 
T o 0 o 0 

0 
(6.64) 

The first approximation u 
-0 

used to start the iteration is obtained by 

applying Euler's method to Eq. (6.47): 

u 
--0 

or, more explicitly, 

u 
0 

~(n) + h{~(n) ~(n)+ o T ~(O)} 
e e o o 

(6 . 65) 

(6.66) 

v 
0 

~(n)+ h{-[(l+T )~(n)+ T ~(n)]E(n)+ T (1- o )}(o)} 
o e o o o 

(6.67) 

w 
0 

~2 2)( ~ 
{E (0) +~ [(l+T )u + v ]- 2x (l+ 0 T )J(O) ~ (n+l)}l/Z . 

T O O O o o o 
0 

(6.68) 
~ 

The approximate solution E (0) 
0 

provides a good estimate to the 
~ 

correct value E(O) . Accuracy to three decimal places is quickly 

achieved by trial and error. Although ~(O) is unknown at this stage , 

~ 
it is determined by matching independently of the value of E(O) Thus 

~ 

in the numerical work we use the expression for J(O) given by Eq. (7 .5): 

~ 
.:!!___! +-4- 1T 

J(O) = (2 - -) £ z: ( 6.69) 
2 po 37f2 2 0 

~ 

Since r; enters the equations through J(O) and the coefficients T 
~ 

o , X , and £
0

, E(O) depends on Z: . The numerical integration is 
0 0 

o' 

pe rformed for a number of values of r;, and the results are tabulated in 

Table 6. 
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7. MATCHING MAIN-REGION AND SHEATH SOLUTIONS 

Several terms of the main-region and sheath solutions are now 

available. However, certain quantities remain unknown, and they must b e 

determined by matching the two solutions in an intermediate region. The 

items of primary interest are and Until they are known , 

corrections to the lowest-order results in the main region and to the 

relation between ionization coefficient and electron density are unde-
'V '\, 

termined. J(O) and E(O) are found by matching to lowest order. 
'\, '\, 

J(O) is obtained directly and easily. Although E(O) has been 

obtained by a numerical integration of the sheath equations, i ts evalu-

ation is indirectly due to zero-order matching; it is the initial value 

'\, 

of E necessary to produce the only asymptotic behavior capable of 

matching with the main-region solution. Many terms do not contain un-

specifie d parameters, and these must match identically. The t e chnique 

and philosophy of matching is the same as that considered in Section 5 

in comparing the approximate sheath solution with the main-region 

solution. 
'\, 

Mat ching J and J 

Before the solution in the main region can b e matched with tha t 

in the sheath, it must be expanded for y near 1 . Using the formulas 

of Appendix D in Eq. (3.55) for J 
0 

J 
0 

~L<1 
2 p 

0 

TI
2 

2 4 
-8 (1 - y) ) + -[ (2 -~) (1 

37T2 2 

7T2 2 
-(1 -y) ) 

8 

(7.1) 
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= I!. -~- + - 4- ( 2 - !_) E l; 
2 p 3 2 2 0 

0 1T 

(7 . :>) 

The order of magnitude of the contribution to J from J
1 

can be 

determined by observing Eq. (4.18) and the limiting behavior of n 
el 

as y -+ 1 . We conclude that 

1 (7 . 3) 

in (1 - y) as y -+ 1 . Although this term is not calculate d , there is 

no need to show that its contribution to J is smaller in order o f mag­

nitude than that of the term containing (1 - y)
2

. Each term is to be 

matched individually to a term in the sheath solution, and except for 

the numerical calculations, in which only the largest term is used , 

there is no need to insist that the terms presented be those of the 

greatest orders of magnitude. We can now write the main-region expres-

sion for J in a form suitable for matching in the intermediate region. 

In the expressions the terms omitted are represented by order-of-

magnitude estimates. Since 1 - y is of order O(n) in the inter-

mediate region and since the main-region solution for J is known 

only to order O(E I;;) 
0 

in E
0

1;; , we write J as 

3 
J =.:!!.__l+-4-(2 -1T)£ I;; - (.:rr..__1_+ (1-.:!!.._)E Z';] (1- y) 2 

2 p 3 2 2 0 16 p 12 0 
0 1T 0 

(7.4) 
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'\, 

The two dominant terms of J are given by Eq . (6.24). From 
'\, '\, 

Eq. (2 . 49), which relates J and J , it is apparent that ,T (0) must 
'\, 

be given as follows if the lowest-order terms of J and J are to 

match: 

'\., 

J(O) Jl-1.+_4_ (2 - TI) El;; 
2 p 3 2 2 0 

0 1T 

(7 .5 ) 

If the term from J
1 

that is of order µ1 (r;:) were calculated for the 

main-region solution, it would also appear on the right-hand side of 

(7.5). y
0 

, which appears in the second term on the right-hand side of 

(6.24), is expanded as in Eq. (3.52): 

'\., 

Using (7.5) and (7 . 6) in (6.24), J becomes 

1 
- l;;2 /3 

n 3 1 1T 2 
[16 - + (l - -) Eol;; ) I; ' p

0 
12 

where terms of order O((E r;:)
2) are neglected . 

0 
'\, 

(7.6) 

(7. 7) 

(7. 8) 

The expressions for J and J are written as functions of the 

inte rmediat e variable x through t he use of (5.42) and (5.43). From 
Tl 
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(7.4), 

(main region): J 
1T 1 4 1T 

"' --+-- (2 - -) E I'; 2 p 2 2 0 
0 31T 

3 2 2 [2!._ _!_ + (1 
1T - -) E l;; ]TJ x 16 p 12 0 n 

0 

(7 . 9) 

From (2.49) and (7.8), 

(sheath): J "' .'.!!. _!_ + _4_ (2 - .'.!!.) £ r;; 
2 p 3 2 2 0 

0 1T 

n3 1 1T 2 2 
- [-- + (1 - -) £

0
r;;]n xn (7 . 10) 16 p 12 

0 

It is apparent that the main-region and sheath solutions for J match 

identically to the orders considered. 

"' Matching ne and ne : Determination of lll and Y1 

In order to obtain the desired results, it is necessary to con-

sider contributions to ne from both neo and nel n is given 
eo 

by Eq. (3.53), and it is expanded below for y near 1 using formulas 

of Appendix D. 

n eo 

3 
1T (1 ) 1T (1 y) 3 + - 4- [2 - ~ (1 - y) 
2 - y - 48 - 2 2 

3n 

1T3 3 1T2 2 1T2 2 
+ 48 (1 - y) - 4 (1 - y) - 2 + 2 (1 - y) +t; (1 - y) 

2 
3 4 - 1T4 ( 1 - y ) ] p £ r;; + 0(( 1 - y ) ) 

0 0 

= [ .'.!!. + -4~(2 - ~) p £ r;; ](l - y) 
2 31T2 2 0 0 

n3 1 1T 3 4 
- [ 48 + <3 - 36)po8 or;;] (l - y) + <X(l - y) ) 

(7.11) 

(7 . 12) 
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Only the largest contribution to nel need be calculated. From (4.44) 

(7.13) 

where n 
0 

and are given by (4.J8) and (4.4J), respectively. 

Expanding n with the use of (D.5), 
0 

n 
0 

The smallest terms in n
1 

for y near 1 are 

J2 8 £1 
(-4 Y1Po - -2 -) 
Jn Jn £0 

+ [ ~4~(i + l)y p - ~4~ (i - l)q] + 0(1 - y) 
JnJ n 1 o JnJ n 

Using (7.14), (7.16), (4.26), and (4.J5), (7.lJ) becomes 

2 + Q'.(l - y), (£01';,) ) 

(7 .14) 

(7.15) 

( 7 .16) 

(7 . 17) 

ord(l - y) = ord(n(s)) in the intermediate zone between the main region 

and the sheath, so when n 
eo 

and are added as in (2.2) , we obtain 

n 
e [.'.!!.+~<2 - .'.!!.) P £ sJ<1- y) 

2 Jn2 2 o o 
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3 
1 7T 3 - [~ + (- - -) p £ r J (1 - y) 

48 3 36 o o~ 

- µl (z;,) {l [l + _4_ 4 1) poe:oz;,J ·[ylpo (- -
7T 37T2 7T 

2 OoTl+ <\To Tl 1 8 1f )] + 4 <1+cST +-
l+T 

- -- p E [ 
T 2 0 1 , 

0 0 0 0 31f 

(7 .18) 

'\, 

The asymptotic form of the sheath solution for n is given 
e 

by Eq • ( 6 • 2 9) • 
'\, 

If Eqs. (7.5) and (7.6) for J(O) 

in (6.29), we obtain 

'\.. [TI 4 7T J 
ne '\.. 2 + 

3
7T2<2 - 2) poe:oz; s 

2 
po 

6z;2/3 

2 
<~ L + ~ z;> <~ ___!.. + _4_ (2 

4 p
0 

3n o 2 p
0 

Jn2 

T ~2 (0) 
1 0 

- 2X _l_+_T_ 
0 0 

'\, [ ~ + ___!!__ (2 - ~2) p £ z; ] s 
2 37T2 0 0 

where terms of order 0((£ z;,)
2

) are neglected. 
0 

The main-region and sheath solutions for 

written as functions of (7.18) becomes 

and y are used 
0 

- ~> e: z;> s3 
2 0 

n 
e 

and 
'\, 

n 
e 

(7 . 19) 

(7 . 20) 

are now 
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(main region): n 'v 
c 

[ 1T 4 1T 
-2 + ---2-<2 - -2-) P i::: r: J n >< 

31T 0 0 . J) 

J x 
11 

- µ (l;;){ l:.[1+-4-(i-l)p £ l;; ] ·[y p 
1 1T 31T2 1T 0 0 1 0 

2 0 Tl+ OlT Tl 1 8 
1T ( o O + ~ )] r +--z; l+oT T l+T ---2po£1., 

0 0 0 0 31T 
} . 

From (2.47), (S.43), and (7.20), 

(sheath): 

1 1 
- sl/3 2x

0 

T ~2 (0) 
0 

1 + T 
0 

(7 . 21) 

(7. 22) 

The first two terms of the main-region and sheath solutions are iden-

tical in the intermediate zone, and the third terms also match provided 

we choose 

and 

1 
l;;l/3 

8 1T To ~2 
- p £ r = - -- E (0) 

- 3'TT o 1., 2X 1 + T 
0 0 

(7 . 23) 

(7 . 24) 
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These two equations are among the most important results of 

the entire perturbation procedure. lJ 
1 

(z,;) is at last known, and the 

orders of magni tude of terms containing it are now known explicitly as 

functions of z.; . In particular, the inequality (6 .27) is established 

and Eq. (4.16) for s
1 

is verified. y
1 

is determined by Eq . (7.24) 

and its solution is considered in detail later. Now that µl ( z.; ) and 

Y1 are available, the solution to the problem is essentially known to 

order 0(1/z,;l/3). The matching is completed by showing that the main-

region and sheath solutions for E and s agree in the intermediate 

zone. 

'\, 

Matching E and E 

Only the contribution to E from E in the main region is 
0 

considered. It is given by Eq. (4.52), and Eqs. (D.8), ( D.2) , (D .9), 

and (D.11) of Appendix D are used in expanding the expression for y 

near 1 

E 
0 

1 - 0 
0 

= _l_+_o-=--T 
0 0 

1 TI
2 

4 4 1 TI TI 4 1 
{- - - x + - [ - - - -3 x - -2 -

x 12 3TI2 TI X TI X 2 

+ 1!. + i .!____ - i !. + 1!. - 1!. x ] £ *} + 0 (x2) 
6 TI 2 TI X 3 3 

x 

* 

(7. 25) 

Substituting for £ from Eq. (4.26), for x from (D.l), and re-

arranging, 

E 
0 

1 - 0 
0 

1 +o T 
0 0 

1 
1 - y 

1 - 0 
0 

l+o T 
0 0 

TI
2 8 2 

[l2+9TI Po£oz.;] (l-y)+ O(n) • 

(7 .26) 

1·:quntlon (4.19) for E
1 

is considered Jn orckr to obtain an t•stimate 

of its magnitude. The tenn involving n 1E e o becomes dominant as 
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y + 1 , so the solution of (4.19) for E
1 

would involve a term of 

order 
-2 CX<1 - y) ) . Thus the term neglecte d h as order 

E 

where E i s given by (7.26). 
0 

'\, 

ord(µ E ) = ]_ l 

(7 . 27) 

The asymptotic solution for E in the sheath is given by Eq. 

(6 .37). Substituting for y from (7.6) and using Eq. (2.19) for 
0 

'\, 

p , E becomes 
0 

(7.28) 

The main-region and sheath solutions are expressed in terms of 

the common intermediate variable x through the use of ( S.42) and n 
(5. 43) . (7.26) and (7.27) become 

(main region) : 
1 - 0o 1 1 

E 'V _l _+_o_T_ Tl -x- -
o o n 

Using (2 .50), (7.28) become s 

(sheath): 

1 
+ 0 ( 1/3 2) 

r;; n 

1 
2 

x 
n 

( 7 .29) 

(7.30) 
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A comparison of (7. 29) and (7.30) reveals thut the f i rs t two tC'rms of 

t he ma:in- rcgion ;:md s heath solutions mat c h _! dl'n t.l.caJ.Ly and t ha t tl 1 L~ 

th.i nl term of tile sheath solut:ion is of th e same or<lcr as t lil? nl'g.lcctt:d 

contribution f rom E1 to the main region. The second and third terms 

of the sheath s olution for E originate in the expression for 
'\, 
n 

e 
of 

Eq. (6. 29). The discussion following that equation emphasizes that a 

comparison of the magnitudes of those two terms need not be made. A 

more complete r e presentation of the main-region s olution in the inter-

mediate regi on requires that the neglected term be calculated. Since 

i t must match identically with the corresponding term of the sheath 

solution, no new information would be acquired , and the computation is 

not carried out here. 

Matching s and 
'\, 
s 

The main-region solution for s is obtained from Eqs. (4.54) 

and (4.58). The formulas of Appendix Dare used to expand i t for y 

n ear 1 . Only the largest terms are retained. 

so 

s 
n 

1 - 0 { 1 0 !_ + _4_ [ (~ .!_ 
X l+o T 2 ) 2 'IT 3 

0 0 0 x 'IT x 

+ (- ~ !_ + .:!!_) + ~ .!_ - .:!!_ J E l; p
0
}+ 0(1) 

'IT 3 x 'IT 2 x 0 x x 

1 1 1 - 0 o 
s = l; X l+ 0 T 

0 0 0 

(7.31) 

(7 . 32) 

The asymp t otic sheath solution is g iven by Eq. (6 .40) and is 

rewritten bel ow: 
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I\, 
s I\, 

1 - 8 
1 0 1 

X 1+0 T c-2 
0 0 0 .., 

(7.33) 

Expressing main-region and sheath solutions in terms of the 

intermediate variable x 
Tl 

1 1 - 8 1 1 
(main region) : I\, 

0 
s - 1 +o --2 ~ XO T 

0 0 /';Tl Tl 
(7. 34) 

and 

1 1 - 8 1 1 
(sheath) : I\, 

0 
s 

l+o 
----

XO T 2 2 
0 0 /';Tl x 

Tl 

(7.35) 

Equations (6.38), (2 . 47), and (2.48) are used in obtaining (7.35). The 

two expressions are identical, and hence all the dependent variables 

match in the intermediate zone between the main region and the sheath. 

Numerical Calculation of Y1 

Equation (7.24) for y 1 is quite complicated and must be 

solved numerically by an iterative procedure. 

all functions of y1 as illustrated by Eq. (2.14): 

1';1/3 [ E(y 
0 

(7 . 36) 

etc. However, E , T , and 8 are rather slowly varying functions of 

y , a nd an iterative scheme is easily established in which E
1

, -r
1

, 

a nd o
1 

are evaluated using the previous estimate for y
1 

The 

method is explained sufficiently by the equations below. 

First Eq. (7.24) is rewritten in slightly different form using 

Eq. (2.19) for p
0 
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(7.37) 

The successive approximations to y
1 

are designated Y
(O) y{l) y{2) • •• 
1 , 1 , 1 , 

and the notation adopted for the corresponding values of the other 

parameters is 

- E: (y ) ] 
0 

- T (y ) ] 
0 

The iteration scheme is now written as 

(n+l) 
Y1 

1 
4 4 

+-(- -
37T2 7T 

2 
7T 

4(1 + 

l)p E I';; 
0 0 

( 6 ,<nl+ o<nl, 
0 1 1 0 

0 T ) po 
0 0 

Tl (n) l 
+ --2- . 

T 
0 

An initial estima te (o) = 0 
Y1 is chosen to start the iteration. 

(7. 38) 

(7 . 39) 

(7. 40) 

(7 .41) 
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In order to continue the expansion of variables and coefficients 

in the two asymptotic series, y
1 

would have to be obtained as a sum 

'V 
of t e rms of order 0(1) and O(E: s) in E: s However, E(O) is 

0 0 

obtained by a numerical integration and depends rather intimately on 

E: s , so such a division is not really feasible. Since the work is 
0 

numerical at this stage, there is no purpose in separating terms of 

various orders in E: s . However, in a theoretical sense the solution 
0 

can still be regarded as a combination of two asymptotic expansions--

one for s large and the other for E: s small. 
0 

Numerical results for and 
1 

Y1 y = yo+ 1/3 Y1 are presented 
s 

in Table 7 for a number of different values for I'; . y is plotted 

as a function of I'; in Fig. 9. 
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8. SUMMARY 

The preceding results are obtained by a sequence of rather dis-

tinct operations. In order to unify the concepts and techniques 

involved, a recapitulation of the objectives and the procedures is 

presented below. 

Objectives and Techniques 

The primary purpose of the work is to obtain approximations to 

J, ne, ni (ors), E, and, most importantly, to the relation between 

" 
N 

eo 
and E 

z 
In the analytical procedures the N -E 

eo z 
relation is 

replaced by the l,; - y relation; it is obtained from the l,; - y 

relation when the calculations are complete. The results are 

attained by a combination of two asymptotic expansions, one in which 

l,; is a large parameter and the other in which E: l,; 
0 

is small. The 

lowest-order component of the composite expansion corresponds to the 

classical ambipolar situation . The relative importance of the devia-

tions from this behavior caused by the two expansions depends on 

whether l,; is "large" or "small". For large l,; recombination is 

more important and the correction to ambipola r behavior comes princi-

pally from the expansion in E: 0 l,; • For small l,; , on the other h and, 

space-charge effects become important, and contributions from the 

expansion for small l,; dominate. The ambipolar situation is mos t 

closely approached at some intermediate l,; • The expansion for large 

l,; is the more complicated, because the assumpt i on upon which it 

de p e nds breaks down nea r the wall of the dis charge, and a separate 

boundary- laye r treatment must be unde rtaken. 
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Distinct solutions must be obtained in the houndnry layer or 

sheath and in the main region, and it is not until these solutions are 

matched that the second term of the expansions is completely determined 

anywhere. The expansion in £ l;; 
0 

enters as the technique by which the 

equations are solved in the main region, and it is introduced into the 

sheath solution through the expansion of the coefficients in the equa-

ti.ens and through the matching process. Expressions for the variables 

in the s heath can only be obtained in the asymptotic limit of large 
'V 

E;, • However, E(O) is involved in the matching, and it is calculated 

by solving the lowest-order sheath equations numerically. y
1 

, and 

hence the entire first-order correction to the solution in the main 

region, is then obtained from the matching, using this estimate of 
'V 
E(O) . The algebraic equation for y 1 must also be solved numerically . 

Results 

The solutions for J, ne' ni' and E are now known to several 

terms. However, the behavior of these variables is well approximated 

by the zero-order solution and further refinements are not really 

essential. On the other hand, y as a function of l;; is a constant 

to lowest order, and corrections are critical . The calculated l;; - y 

relation is presented in Fig. 9. The vertical line represents the 

ambipolar value of y , and the two dashed curves show the deviations 

from the ambipolar value caused by the expansions in E l;; 
0 

and 

The solid curve includes both corrections and shows the final numerical 

results of the l;; - y relation. 
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A 

E 
z 
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can be determined from that of y , and 

is obtained trivially from l; , so the numerical values of the 

N 
co 

N -E relation aric~ available. The valut>s url' tnhulatcd , 1110111'. w11-1i 
eo z 

the corresponding values of 

curve is graphed in Fig. 10. 

Interpretation of Results 

A 

E /N , in Table 8, and the z n N -E 
co z 

It is one of the basic objectives of this work to relate the 

A 

N -E relation to the experimental voltage-current characteristic . 
eo z 

This correspondence is discussed in the Introduction, and little more 

need be said except to reemphasize the caution that should be exer-

cised in interpreting the similarities in the two curves. The 

subnormal regime of the discharge characteristic seems to be definitely 

related to the space-charge effect in the positive column , but the 

voltage rise in the abnormal regime is a cathode phenomena and is not 

likely to be related to electron-ion recombination . Figure 10 shows 

that recombination is of little significance until the electron den-

sity N 
eo 

12 -3 
approaches a value of about 10 cm , and the calculations of 

Part III show that the effect of temperature inhomogeneities appears 

at a smaller value and hence ohscures the interpretation of the effect 

of recombination. Furthermore, the discussion of the recombination 

coefficient in Part I reveals that its correct value is likely to be 

smaller than the one used in the calculations. These considerations 

leave the effect of recombination subject to doubt, and more definite 

conclusions are not offered until temperature inhomogeneities have been 

discussed . The interpretation of the discharge characteristic is consi-

dered again in the Summary of Part III. 
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Appendix A 

PROOFS OF RELATIONS AMONG THE VARIABLES J , ne , ni, E 

In this appendix Eqs. (1.5) - (1.13) are used to e stablish certain 

r elations of physical interest among the variables. The e quations are 

rewritten below for reference. 

dJ 
- e: s neni dy 

y n 
e 

dn 
e 

n E - 0 T J 
dy e 

dni 
T niE - T J 

dy 

dE 
X s (ni- n ) x s s dy e 

y 0: J 0 

E 0 

n 1 
e 

y 1 n 0 
e 

ni 0 

The followi ng r elations are assumed true throughout the appendix: 

cS < 1 

e:z:; < y 

n ~ 0 on 0 ~ y ~ 1 
e 

n. 
1. 

~ 0 on 0 ~ y ~ 1 

(A . l) 

(A. 2) 

(A . 3 ) 

(A.4) 

(A . 5) 

(A . 6) 

(A . 7) 

(A.8) 

(A.9) 

(A.10) 

(A . 11) 

(A.12) 

(A . 13) 

Results based on the assumptions and equations above are pre-

sente d in the following theorems. The lennnas contain hypothetical 
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results that are needed in the proofs of the theorems. The theorems 

generally depend on the assumption that a solution satisfying the above 

conditions exists. 

Lemma 1 

If s :!: 0 at y 

of y = 0 such that 

s 

ds 
dy 

d2s 

dy2 

E 

dE 
dy 

J 

dJ 
dy 

ni 

dni 

dy 
2 

d n i 

dy2 

* at y = y 

Proof: 

We assume 

s ~ 0 

Since s = n. n 
]_ e 

n . 
]_ 

:!: 1 

* 0, there exists a y > 0 in a neighbor hood 

< 0 

< 0 

< 0 

< 0 

< 0 

> 0 

> 0 

< 1 

< 0 

< 0 

at 

at 

y = 0 

y 0 

(A.14) 

(A . 15) 

(A. 1 6) 

(A.17) 

(A.18) 

(A . 19) 

(A .20) 

(A . 21) 

(A . 22) 

(A. 23 ) 

(A . 24) 

(A . 25) 



From (A.1), 

dJ 
<ly 

s o (A . .11) and (A. /.5) tmp.ly thnt 

dJ 
dy 

> 

From (A . 4) and (A.24), 

dE 
dy 

0 at 

0 at 
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( A. 26) 

y = 0 ( A . 27) 

y 0 (A. 28) 

We now investigate the behavior of the derivatives of s at y O • 

Subtracting (A.2) from (A.3), 

ds 
dy 

(T n .+ n ) E - T(l - o)J 
1 e (A.29 ) 

d2s dni dne dE dJ 
2 (T dy + dy) E+ (T n.+ n )-d -T(l- o )-d (A. 30) 

dy 1 e y y 

Substi tuting the conditions at y = 0 into Eqs . (A.2) , (A. 3) a nd 

(A.29), we find dne/dy = dni/dy = ds/dy = 0 there . Then using (A.27) 

a nd (A . 28) in (A.30) 

Also, 

s o 

2 
~ < 0 
dy2 

at y 0 

dni dE dJ 
T [- dy E + ni dy - dy ] 

2 
d n. 
__ 1 < 0 

dy2 
at y 0 

d /d 0 d
2
s/dy

2 
< 0 , d 2 /d 2 0 By conti nuity J y > , n. y < i n some 

1 

(A . 31) 

(A.32) 

(A. 33 ) 
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neighborhood of y = 0 . By integrating .these de rivatives with respect 

to y from y = 0 through a portion of this neighborhood, we estahlish 

the conclusions of the lemma for the variables J, s, and ni . 

and (A.18) follow immediately using (A.4) and (A.6) . 

Theorem 1 

s > 0 at y 0 

Proof: 

We prove the theorem by assuming 

s 0 at y = 0 

and obtaining a contradiction . The results of Lemma 1 can now be 

applied. The boundary conditions require that s = 0 at y = 1 . 

* 

(A . 17) 

(A. 34) 

(A. 35) 

Since s < 0 at y = y (as defined in Lemma 1), s must rise to zero . 

The mean value theorem of calculus then r equires that the derivative 

ds/dy * be positive somewhere on the interval b e tween y = y and the 

* y > y at which s first equals zero. Since by (A.15) ds/dy is 

* a lso negat i ve at y y , i t must pass t hrou gh zero in this interval . 

* ds / dy = 0 ** Let the smallest y > y for which b e denoted by y 

Then we have 

ds ** 
dy 0 at y y (A.36) 

ds * ** 
dy 

< 0 for y E: (y ,y ) (A . 37) 

* ** s < 0 for y E: (y ,y ) (A. 38) 

Since E < 0 at y y * by (A. 17) , it follows from (A . 38) and Eq. 

(A. 4) that 



E < 0 

From (A.2) and (A.3) 

ds 
dy 

so (A.36) and (A.39) imply 

J < 0 

But (A.19) and (A. 20) of Lemma 

* 

for 

a t 
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* ** y t (y ,y ] 

** y = y 

1 show that J > 0 

*** * ** y = y . Hence there must exist a y £ (y ,y ) 

dJ 
dy 

dJ 
dy > 

J > 

But 
dJ 
dy 

and (A.42) implies 

n , 
l 

From (A.43) and (A.45) 

n . < 
1 

Thus we must have 

for some 

dn. 
l 

dy > 

)~ *** y£ (y , y ). 

*** 0 at y y 

* *** 0 for y £ (y ,y 

* *** 0 for y £ [y ,y 

ne(y-£Z:ni) 

_y *** at y y 
£Z: 

L * at y y 
£1'; 

0 

However, 

(A.'.l9) 

(A. 40) 

(A. 41) 

and dJ/dy > 0 at 

such that 

(A. 42) 

) (A.43 ) 

) (A .44) 

(A . 45) 

(A.46) 

(A.47) 

(A.48) 
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(A. 49) 

so (A.49), (A.39), and (A . 44) show that 

< 0 for * *** y E (y , y ) (A . 50) 

(A . 50) conflicts with (A . 48) . Since both follow from (A .35) , this 

assumption must be rejected and the theorem is proved. 

Lemma 2 

If dJ/dy > 0 on [O,l) and s > 0 at y = 0 but s = O for 

* s ome y E (0 ,1), then there exists a y E (0,1) where 

s < 0 (A . 51) 

ds 
dy 

< 0 (A . 52) 

d2s < 0 (A.53) 
dy2 

E > 0 (A. 54) 

Proof : 

Let be the f i rst y measured from y = O f or which s = o. 

Clear l y we also have ds/dy ~ 0 at y = y
0 

• Since s > 0 f or 

Y < y (A.4) implies . 0 , E > 0 

behavior of ds/dy and E at 

at Us i ng Eq . (A. 2) and t he 

y , we conclude that 
0 

dn . /dy 6 dn /dy < 0 there. The first two deri vati ves of s a re given 
1 e 

by Eqs . (A . 29) and (A.30) in the proof of Lennna 1. Equati on (A . 30) now 

implies that 

* y > y 
0 

in a neighborhood of 

y By continuity there exi sts a 

at which and E > 0 . 
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The integration of with respect to y from 
,~ 

to y 

shows that ds/dy < 0 and * s < 0 at y = y and thus comple tes the 

proof. 

Theorem 2 

If dJ/dy > 0 for y £ [0,1) , then 

s > 0 (A. 55) 

at all y £ [O,l) • 

Proof: 

We know from Theorem 1 that s > 0 at y = 0 We proceed 

with the proof by assuming that s ~ 0 at some y £ (0,1) and prov-

ing that such an occurrence is impossible. Lemma 2 now establishes 

* the existence of a point y £ (0,1) at which s < 0 , ds/dy < 0, 

d 2s/dy2 < 0 . Since conditions (A.8) and (A.9) require s = 0 at 

y = 1, we must have ds/dy = 0 * for some y £ (y ,1). Let the smallest 

** such y be denoted y so that ds/dy < 0 * ** for y £ [y ,y ) • The 

hypothesis of the theorem that dJ/dy > 0 * ** implies J > 0 on [y ,y ] . 

We now use the formulas for ds/dy and d
2
s/dy

2 
presented in the 

proof of Lemma 1. (A.29) and the fact that ds/dy = 0 at y ** y 

** shows that E > 0 at y = y * ** Since s < 0 on [y ,y ] , Eq . (A . 4 ) 

* ** implies that E > 0 for all y E (y ,y ). We already know that 

ds/dy < 0 on this interval, so (A.2) shows that dn . /dy < dn /dy < 0 
l. e 

there. Thus each term on the right-hand side of (A.30) is negative , 

and we conclude that dss/dy2 < 0 on (y * ** ,y ) . However, since 

* ds/dy = 0 ** ds/dy < 0 at y - y and at y - y the mean value 

t heorem of calculus requires d 2s/dy2 > 0 for some y £ (y * ,y ** ) . 
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The contradiction shows that the hypothesis s ~ 0 for 1:'ome y r: (O,J) 

is untenable and proves the theorem. 

Corollary 

If dJ/dy > 0 for y E [O,l) , 

E > 0 (A.56) 

at all y E (O,l] . 

Proof: 

The result follows trivially from Eqs. (A.4) and (A.6) and 

Theorem 2. 

Lemma 3 

Assume 

J > 0 for y E (yl,y2) (A.57) 

dni 
> 0 for (yl,y2) (A. 58) 

dy 
y E 

s > 0 at y = Y1 (A.59) 

Then for all y E (yl,y2) 

E > 0 (A . 60) 

dE 
0 (A . 61) 

dy 
> 

d
2

E 
> 0 (A . 62 ) 

dy2 

s > 0 (A . 63) 

ds > 0 (A. 64) 
dy 

dn 
e < 0 (A. 65) --

dy 



-235-

Proof: 

Equations (A. 57), (A. 58), and (A. 3) immedi.ately imply 

E > 0 for y c (yl ,y 2) (A.66) 

Using (A. 57) and (A.66), Eq . (A. 2) shows that 

dn e < 0 fo r y £ (yl,y2) dy 
(A. 67) 

Since ds/dy = dn. /dy - dn /dy it follows from (A. 58) and (A.67) that 

~> 
dy 

i e 

0 for (A. 68) 

The remaining conclusions of Lemma 3 now follow trivially from (A.59) 

and (A.4). 

Theorem 3 

2 
d n

1 

" 0 
dy 2 

Proof: 

We assume 

2 
d n. 

l. 
0 2 > 

dy 

and seek a contradiction. 

positive as y increases 

mus t eventually decrease. 

dn. 
l. 

dy 0 

at y 0 (A. 69) 

at y 0 (A. 70) 

Since dn ./dy = 0 at y = 0 , it becomes 
1 

from zero . However, n. (1) 0 so n. 
l. l. 

* Let y be the smallest y > 0 at which 

* at y y (A. 71) 



Then 
dn. 

]. 

dy 
> 0 
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for * y E: (0 ,y ) (A. 72) 

The proof is divided into four cases depe nding on the hehavior of J 

* on [O,y ] • Since 

(A . 73) 

(A.72) shows that if dJ/dy ever becomes negative on the interval 

* [O,y ] , it remains negative for larger y on the interval. We now 

consider four separate cases that comprise all possible behavior of J 

I. 
dJ ~ 0 at 0 (A . 74) 
dy 

y 

II. 
dJ > 0 at 0 (A. 75) 
dy 

y 

dJ * < 0 at y y (A.76) dy 

* J < 0 at y y (A. 77) 

III. 
dJ > 0 at 0 (A. 78) y = 
dy 

dJ * < 0 at y = y (A . 79) dy 

~ * J 0 at y y (A.80) 

dJ ~ * IV. 
dy 

0 at y y (A . 81) 

Case I. 

dJ f: 0 0 (A . 82) dy 
at y = 

It is apparent from the comment following (A.73) that 
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'le 
J < 0 for y E: (O,y ] (A. 83) 

dJ - < 0 
dy 

for y E: * (0,y ] (A. 84) · 

Equations (A. 3), (A. 71), and (A. 83) now imply 

* E < 0 at y y (A.85) 

However, Theorem 1 shows that s > 0 at y = 0 , so from Eq. (A . 4) it 

is seen that E and dE/dy become positive as y increases from zero. 

* 'le* Therefore E must decrease somewhere on the interval (O,y ). Let y 

denote the smallest y for which 

We now have 

dE 
dy 

E > 0 

s > 0 

From (A.2) and (A.3) 

ds 
dy = 

s 

(A.83) and (A.87) now imply 

ds 
dy 

> 0 

0 at 

for 

for 

for 

y ** y 

** y E: (O,y ) 

>'c* 
y E: (O,y ) 

** y E: (O,y ) 

(A. 86) . 

(A. 87) 

(A .88) 

(A . 89) 

(A. 90) 

** But s must decrease to zero at y = y Hence we arrive at a contra-

diction, a nd the theorem is proved for the hypothesis of Case I . 
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Case 1.l. 

dJ > 0 at () y .. 
dy 

dJ * 
dy < 0 at y .. y (A. 92) 

* J < 0 at y c: y (A.93) 

By the same reasoning used in Case I' we conclude that 

* E < 0 at y y (A.94) 

and that E > 0 and dE/dy > 0 for y > 0 in a neighborhood of 

** y = 0 . Again let y denote the smallest y for which 

dE ** = s 0 at y y (A. 95) dy 

so that 

E > 0 for y e: (O,y ** ) (A. 96) 

s > 0 for ** y € (O,y ) (A. 97) 

*** Now let y denote the point at which J = 0 . Then the comment 

following (A. 73) shows that 

*** J > 0 for y e: (O,y ) (A. 98) 

J < 0 for y € (y *** * ,y ) (A. 99) 

Lenuna 3 can now be applied on *** the interval (O,y ) , so from (A.60), 

(A.63), and (A.64) we have 

E > 0 for y € (O,y *** ) (A.100) 

s > 0 for y € (O,y *** ) (A .101) 



ds 
dy 

> 
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0 for 

From (A.95) and (A.101) we conclude that 

** y 

Hence (A.96) and (A.99) imply 

Since 

E > 0 

J < 0 

ds 
dy 

(A.104) and (A.105) require 

ds 
dy 

> 0 

> 

for 

for 

for 

*** y 

)°(** ** 
y E: (y ,y ) 

**"' ** y E: (y ,y ) 

*** ** y € (y ,y ) 

(A . 102) 

(A..103) 

(A . 104) 

(A . 105) 

(A.106) 

(A.107) 

However, (A.101) and (A.95) require that ds/dy ~ 0 somewhere on the 

*)°(* ** 
interval (y ,y ) . This requirement cannot be reconciled with 

(A.107), and we again arrive at a contradiction. 

Case III. 

dJ > 0 at 0 (A. 108) 
dy 

y 

dJ 
dy 

< 0 at y y * (A.109) 

J ~ 0 at y = y * (A.110) 

From (A.110) and the comment following (A. 73) it is apparent that 

J > 0 for y € * (O,y ) (A.111) 



• 
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* Now Lemma 3 can be applied on the interval (O,y ), so from (A. 60) and 

(A.61) we obtain 

E > 0 for y € * (O,y ) (A .112) 

dE * > 0 for y € (0,y ) (A. llJ) dy 

*>'< 
We now designate the point at which dJ/dy 0 by y so we obtain 

dJ ** * < 0 for y E: (y ,y ) (A . ll4) dy 

From (A.3) 

2 
dni d n . dE dJ l. + (A.115) 

dy2 
T[- E n -- -

dy i dy dy 

The use of (A.72), (A . 112), (A.113), and (A.114) in (A .115) yields the 

result 

2 
d n. 
__ l. > 0 

dy2 
for ** * y E: (y ,y ) (A.116) 

However, (A. 71) and (A. 72) require that dn/dy decrease to zero as 

>'< 
d2n /dy2 ~ 0 * y -+ y , and hence for y < y in some ne ighborhood of i 

* (A.116) y = y . shows that Case III leads to a contradiction . 

Case IV. 

dJ * ~ 0 at y - y 
dy (A . 117) 

It follows from (A .117) that 

J > 0 for * y E: (O,y ) (A . 118) 

* and hence Lemma 3 applies on the interval (O,y) • From (A.60), (A .61) , 
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(A.62), and (A.65), 

E > 0 for y E * (O,y ) (A.119) 

dE * 
dy 

> 0 for y E (O,y ) (A.120) 

d
2

E * > 0 for y E (O,y ) 
dy2 

(A.121) 

dn 
* e < 0 for y E (O,y ) 

dy (A.122) 

We now consider the sign of d
2
J/dy

2 
. 

From (A.73), 

(A.123) 

Since dJ/dy > 0 on * (0,y ) ' y-Ez.;n >o 
i 

there. (A.72) and (A.122) 

now show 

< 0 for * y E (O,y ) 

(A.71) a nd (A.72) show that dn./dy must decrease to zero as y 
]. 

(A.124) 

* 2 2 approaches y Since d ni/dy > 0 at y = 0 , it must change signs 

* ** on the interval (O,y ) . We let y be the smallest y for which 

2 
d ni ** 

dy2 
0 at y y (A.125) 

Then 2 
d n. 

** ]. 

dy2 
> 0 for y E: (O,y ) (A .126) 

We now consider the sign of 
3 3 

d ni/dy From (A.3) 

• 



3 
d n. 

l. 

dy3 = 

2 
d n. 

l. 
T[--? E 

dy-
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dn 2 2 
+ 2 i dE d E _ d J ) 

dy dy + ni --2 2 
cly <ly 

(A.127) 

(A.126), (A.72), (i\.119), (A.120), (A.121), and (A. 124) show t ha t eac h 

** tt~nn of (A.127) is positive on (O,y ) , and he nce 

3 
d n. 
__ 1 > 0 

dy3 
for ** y E (O,y ) 

However, from (A.125) and (A.126) it is obvious that 

** 

(A . 128) 

2 2 
d n/dy must 

decrease to zero as y increases to y , and therefore (A.128) is 

impossible. 

We have now achieved a contradiction for each case of Theorem 3 . 

Thus the hypothesis of (A.70) is untenable and the theorem is proved. 

Theorem 4 

n.(O) is bounded by 
l. 

1 < n. (0) 6 -
1
- <x - E)+ L~cx -E)

2
+ !!::a.. 

i 2X 2X s 

If X > E , and r:, > 4YX , an approximate bound is 
(X - E) 

2 

1 < n
1

(0) 6 1 + y - ~ + O(_!_) s<x-E) x s2 

-Proof: 

(A.129) 

(A . 130) 

The lower bound on n.(O) follows immediately from (A.7) and 
l. 

Theorem 1. The upper bound is obtained by evaluating 

y = 0 . From (A . 3), 
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dE d.J 
n - - - -

i dy dy (A. lJ I ) 

dn./dy, dE/dy, and dJ/dy are evaluated nt y 
1. . 

0 using (A. J) , (A. L1) 

and (A.l) . Thus at y = 0 

(A.132) 

Theorem 3 now implies 

2 
T[X l';ni(O) - (X -£)1'; ni(O) - y] ~ 0 (A . 133) 

The roots of the quadratic in ni(O) are 

(A . 134) 

r = .!.__ (X - £)- .!.__ I (X 
2 2X 2X \) (A.135) 

Now (A.133) becomes 

(A . 136) 

Clearly r
2 

< 0 , so (A.136) holds only if 

(A . 137) 

and (A.129) is established. If X > £ , (A.134) can be written 

rl = .!._2 Cx - E)+ Lex - E) (1 + 4yx 2 ) 1/2 
x 2x r;<x-E) 

(A.138) 
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If s > 4yx/ (X - E) 
2 , the square root can be expanded as a convergent 

binomial series, and we obtain from the first two t erms 

rl 
x - E + + O(_l_) (A .139) 

x s (X - E) s2 

= 1 + E + o(L) (A. 140 ) 
s (X - E) x z-;2 

wher e the error is expressed as 0(1/z-;2) , since we are pr imarily 

i nterested in l a rge s . (A.137) now shows that (A. 130) is es t ablished . 

Application of the requirement r 1 > 1 to (A.140) implies 

y > x - e: 
E:Z'; x 

(A.11) shows that this relation is satisfied. 



Appendix B 

ORTHOGONALITY REQUIREMENT 

Consider the problem of finding the solution to the nonhomo-

geneous linear differential equation 

L u f (B.l) 

when the homogene ous equation 

L u 0 (B. 2) 

has a solution satisfying the same boundary conditions. This problem 

* is treated in standard t exts on differential equations , and the 

results are repeated below in a somewhat more specific form for con-

venience. 

Let L be given by 

L u 
1 

w(y) 
d (p(y) du) + q(y) u 
dy dy 

and define the scalar product 

1 

< u,v > f w(y) u(y) v(y) dy 

0 

With the initial conditions 

* 

du (O) 
dy 

u(l) 

0 

= 0 

See, for instance, Friedman [8], pp. 169-171. 

(B .3) 

(B.4) 

(B.S) 

(B. 6) 
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the differential operator is self-adjoint, since 

< v,Lu " 

1 

f [ v ( pu') ' + w v q u ] dy 

0 

1 I [-u' pv' + w u q v] dy + 
0 

pvu' 
1

.1 

0 

1 

f [u(pv')' + wuqv] dy + p(vu' - v'u)\
1 

0 0 

< Lv,u > (B.7) 

i f both u and v satisfy (B.5) and (B.6). 

If uh satisfies (B.2) with boundary conditions (B.5) and (B .6) 

and u satisfies (B.l) with the same conditions, we have 
p 

< uh , L u > - < L u , u > 
p h p 

(B. 8) 

But from (B.7) we obtain the desired result 

0 (B . 9) 

We have shown that if the homogeneous problem has a nontrivial solution, 

a solution to (B.l) with the same boundary conditions can exist only if 

f is orthogonal to the homogeneous solution. It can also be shown that 

>'t 
if (B . 9) is satisfied, a solution does exist . 

* See Friedman [8]. 



Appendix C 

THE ZERO-ORDER SOLUTION IN CYLINDRICAL GEOMETRY 

In cylindrical geometry the analogue to Eqs. (3.11) - (3 .14) is 

the problem 

1 d dn * * 2 
p dp (p dp) + y n £ n 0 (C . l) 

p 0 n 1 (C. 2) 

dn 
0 dp (C.3) 

p 1 n 0 (C. 4) 

* Here also the recombination term is regar ded as a perturbati on , and y 

and n are written as asymptotic series in powers of £ 

* *2 
n n + £ Ill + £ n2 + 

0 

* * * * *2 * y yo + £ Y1 + £ Y2 + ... 

Substitution of the se expansions for n 

problem to lowest order, 

1 d dn 
* 0 

p dp (p ~) +y n 0 
0 0 

n 1 
0 

p 0 

dn 
0 

0 dp 

p 1 n 0 
0 

* and y 

* 

(C . 5) 

(C.6) 

yield as the 

(C. 7) 

(C.8) 

(C.9) 

(C . 10) 
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The solution to (C. 7) suttsfying th e t:nnd:Ltl.onr; 11t p ... () l. 11 ll11· 

zero-order Bessel function of the first kind: 

n 
0 

J ( q p) • 
0 -v y 0 

* 

The boundary condition at y 1 determines 

0 

(C .11) 

(C.12) 

As concluded in the discussion following Eq . (3.22) , only the funda­

mental diffusion mode can be present, so,r;* is set e qual to the 
0 

first ze ro of J . Then 
0 

(2.405) 2 

* To the next order in £ the problem becomes 

p 0 nl 

dn
1 

dp 

p 1 nl 

0 

0 

0 

2 
n 

0 

(C . 13) 

(C . 14) 

(C . 15) 

(C.16) 

(C.17) 

Here the results of Appendix B can be invoked to acqui re an expre ssion 

* for y
1 

from Eq. (C.14) and the zero-order solution. The present 

s ituation is seen to be equivalent to that treated the r e by making t he 

* See Handbook of Mathematical Functions [l]. 



i dentifications, 

y -

w(p) -

p(p) -

q(p) -

p 

p 

p 

* yo 
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(C . 18) 

(C.19) 

(C . 20) 

(C. 21) 

Since .J (.£
0 

p) is a solution to the homogene ous e quat ion associated 
0 

with (C.llf) and s at isfi es the conditions (C.16) and (C .17), Appendix n 

implies that the existence of a solution n
1 

requires 

2 * < J c-J?op), n Y1 n > 0 
0 0 0 0 

(C .22) 

or 

* 
< J <f.l.p)' n2 > 

0 0 0 
Y1 

< J 0 (:.r;:p)' n > 
0 

(C . 23) 

1 
3 j1__ I pJ ( y p)dp 

0 
0 0 

1 2R_ I p.J ( y p)tlp 
n 0 0 

(C .24) 

1< 
With this value for Y1 the equation for nl is solved by 

the method of variation of parameters. Assume 

nl (p) A(p) Jo(~p) + BCP> Y cR p) 
0 0 

(C . 25) 

y 
0 

is the zero-order Bessel function of the secon d kind, and 

Jo(~p) and are selected as the two l i nearly independent 

solutions of the homoge neous differential equation 



1 
p 
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d du * 
dp (p dp) +yo u 0 

Differen tiating (C.25) 

= - qo AJ ' + - ~ BY' + A' J + B ' y \/Yo o \/Yo o o o 

We now impose upon A and B the condition 

A'(p) J (- (/*p) + B'(p) Y (- r;*p) o \JYo o -VYo 0 

Differentiating a second time, 

y* AJ" + y* BY"+ nY A'J' +P B'Y' o o o o ~yo o · o o 

Now , 
2 d n

1 1 
dn

1 =--+---
dp2 p dp 

= y* AJ" + y* BY" +R A'J' + v B'Y' o o o o o o ~yo o 

+ . I* l AJ I + - \* l BY I + y * AJ + y * BY 
'JYo p o ~Yo p o o o o o 

J"( flp) + 1 
J' c- r.:(p) + J c- f?p ) o VYo .., r-:1( o \/Yo o \/Yo 

V yop 
0 

0 

Eq . (C.31) becomes 

(C.26) 

(C .27) 

(C .28) 

(C. 29) 

(C .30) 

(C.31) 

(C. 32) 

(C.33) 



-251-

B'Y' 
0 

Equation (C.28), together with the result of substituting (C.34) and 

(C.11) into (C.14), yields a system of equations for A' and B' : 

A'J c- ~p) + B'Y t r:;*p) o VYo o 'JYo 0 (C.35) 

A'J' c- f?p) + B'Y c- VP> o -vro o -vyo 

The determinant of the coefficients is the Wronskian of J and Y 
0 0 

and is given in the Handbook of Mathematical Functions [1] , p . 360 : 

W{Jo(~p),Yo(~p)} 

The system (C.35) and (C.36) is now solved to yield 

and 

TI ~ 
A' = -\jY~P 2 0 

1 

~ 

0 y 
0 

Y' 
0 

2 

'TT-Ji:, p 

(C.37) 

( C . 38) 

(C.39) 



so 

J 
0 
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0 

7TR B' = - y p 
. 2 0 

A(p) 

J' 
0 

1 2 * --[J -y J ] 
--~ 0 1 0 v y~ 

-% fpp Jo(~p)Yo(~p)[Jo~p)- Y~] dp 

0 

p 

B(p) - 7T f -p J2, /1i-y -p) [Jo(- C*-yo-p) - y*l] dp - 2 o\\JYo VY'"' 
0 

(C. 40) 

(C.41) 

(C.42) 

(C.43) 

From (C.25) the solution for becomes 

- % rp Jo(~p) Yo(W) [Jo(W) - y~] dp Jo(~p) 
0 

(C. 44) 

That n
1

(p) satisfies the proper boundary conditions can be 

seen by using the limiting forms of the Bessel function fo r sma ll 

arguments. 

follows: 

For small z , J and Y and their derivatives behave as 
0 0 

J (z) 
0 

Y (z) rv I Q.n z 
0 7T 

(C.45) 

(C . 46) 



TIH'll 

Similarly, 

dn 
_ 1(0) 

dp 

JI (z) 
0 

y I (z) 
0 

lim n
1

(p) 
p + 0 

+ % lim 
p + 0 

0 

lim 
p + 0 
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- Jl(z ) 'V 
z 
2 

- Y
1

(z) 
2 1 

'V - - -
·ir z 

+ % lim { t p(l - y~) dp (~p)} 
p + 0 0 

= 0 

(C. SO) 

(C. 51) 

(C.52) 

(C. 53) 

(C.54) 

(C .55) 
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The boundary condition at p 1 is satisfied bccm1sc> of tile choicl~ 

of 

1 

n(l) - % f pJO (Gap) 
0 

But 

and 

Jo(~) 0 

0 

(C.56) 

(C. 57) 

1 

J pJ~(Cap)dp 
0 

(C. 58) 

(C.59) 

by Eq. (C.24). Thus the conditions (C.15) - (C.17) are satisfied, and 

n
1

(p) as given by (C.44) is the desired solµtion. 

* An integral expression for y
2 

can now be obtained from n
1 

and the equation for n
2 

The contribution of terms to (C.l) -

(C.4) yields the problem 

* * 2nonl - ylnl - y2no (C . 60) 

p 0 0 (C.61) 

0 (C. 62) 

p 1 = 0 (C.63) 
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J 
0 
(~p) 1.s ng;d.11 a solution of the homogl~neous equnt Jon as so(' I at vd 

with (C.60) and satisfies the boundary conditions (C.62) and (C.63), 

so the results of Appendix B again apply. 

and only if 

< J ( vp), 2n n - y*lnl o VYo o 1 

or 

Using (C.11) and (C.44) , 

* Y2 

1 

1 
1 

f 

J pJ~ c-flap)dp 
0 

0 

x 

A solution 

0 

+ % (pJ~(~p)[J0 (-Jl;,p)- y~]dp Y0(~p)} dp 

0 

* 

exists i f 

(C. 64) 

(C.65) 

(C.66) 

The approximations to y and n are now available in integral 

form to the exte nt shown below: 

* y (C.67) 

(C . 68) 
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Appendix D 

E~PANSIONS OF TRIGONOMETRIC FUNCTIONS 

In expand i ng t h e main-region s o l u t ion for y near 1, it is 

convenient to have available s er i es fo r the var ious terms which occur. 

These series are listed below for reference. 

Then 

Let 

• 7f 
sin 2 y 

cos ~ y 

2 7f 
cos 2 y 

y sin~ y 

7f 
cos 2 x 

sin ~ x 

x 1 - y 

rr2 
2 4 

1 - 8 x + O(x ) 

7f rr3 3 5 
2 x - 48 x + O(x ) 

7f rr3 3 5 2 (2 x - 48 x + O(x )) 

2 
2 4 (1 - x)(l _ .1L x + O(x ) ) 

8 

7f2 2 + 7f2 x3 O(x4) l-x-8x 8 + 

(D . l) 

(D. 2) 

(D.3) 

(D.4) 

(D. 5) 

2 
2 4 7f rr3 

3 5 (y-sin ..!!. y ) cos ..!!. y = (1 - x - 1 + _:!!_ x + O(x ))(- x - - x O(x )) 
2 2 8 2 48 

2 3 
3 O(x

4
) 7f 7f + -2x + 16 x (D. 6) 

TI 1 2 1 
sec 2 y ----= 

7f TIX 7f2 2 
O(x

4
) sin 2 x l - - - x + 24 

7. ] 7f 3 =- -- + --- x + O(x ) 
1T x 1 2 

en. 7) 
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tan 2 y 

-257-

'IT 'IT 
sin 2 y sec -2 y 

2 1 'IT ----x 
'IT x 6 

'IT 'IT 
sec 2 y tan 2 y 

2 'IT 
sec 2 y 

2 'IT 
y sec -2 y 

!±__ l_ - _!_ + O(x2 ) 
2 2 6 

'IT x 

2 1 'IT 3 2 (- - + - x + O(x )) 
'IT x 12 

!±__ l_ + _!_ + O(x2) 
2 2 3 

'IT x 

(1 - x)(!±__ _! + _!_ + O(x2 )) 
2 2 3 

7T x 

8 1 - - + O(x) 
3 3 

'IT x 

2 7T 7T 
(1 

8 1 
x)(-:J -:J + O(x)) y sec 2 y tan 2 y 

7T x 

8 1 8 1 -- - -- + O(x) 3 3 3 2 
7T x 7T x 

(D. 8) 

(D. 9) 

(D .10) 

(D.11) 

(D .12) 

(D.13) 



·11 
sec 2 y 

2 
tan 

·11 
l y 
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4 J l 2 2 j 
( - 2 --2 - -6 + O(x ))('---.,, x 

'If x 

8 l I I 
·3 J - :,1 ~- + {) ( x) 
1r x 

'II' J 
_,., x + (} ( x ) ) 
() 
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Appendix E 

DETERMINATION OF AND BY MATCHING 

The zero-order problem for n 
eo 

is solved in Section 3 using 

the condition n (1) = 0 • Here the same equations are solved once 
eo 

mnre, but wi.Llwut npp l ylng any boun<l1:1ry c ondl.tlons. Tlw solution c n n-

* * tal.ns Lh c..• cons tnn t::; y 
() 

and y
1

, uucl th c..•sc..~ are U('l.<·nni.11vd by mat c ltlng 

n to the asymptotic expression for n in the sheath . TI1e results 
eo e 

are the same as those obtained in Section 3. 

The problem is represented by Eqs . (3.11) - (3.13) and is given 

below: 

d
2

n 
* * 2 eo 

dy2 
+ y n £ n 0 

eo eo 
(E . l) 

y 0 n 1 
eo 

(E.2) 

dn 
eo 

0 
dy 

(E.3) 

* n and the parameter y are expanded as in (3 . 15) and (3,16): 
eo 

y 0 

* n n + £ Ill + ... eo 0 

* * * * y yo + £ Y1 + ... 

* To lowest order in powers of £ the problem becomes 

n 
0 

1 

0 

(E . 4) 

(E.5) 

(E.6) 

(E.7) 



dn 
0 

dy 
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0 

and has the solution 

>'< 
where yo 

The 

y 0 

is unknown. 

n 
0 

equation for nl 

2 
d n 1 * 
--+ y nl 
d/ 0 

nl = 

dn1 
dy 

cos-J/. y 
0 

is 

2 * n - Y1 0 
n 

0 

\ P o 
cos y

0 
y -

0 

0 

* cosRy Y1 

The solution to (E . 11) - (E . 13) is easlly obtained as 

.,, 
2 1 * cos~ y -

1
.,, 

3y 3y 
0 0 

cos
2
Ry- _l 

2~ 
. /i< 

y sin-Vy 
0 

y 

so 

cos~ y + * 2 1 
cos Ry n E: [-*- - * eo 3y 3y 0 

0 0 

* 
1 \fl~ Y1 sin~y] 
* 

cos y 
0

y 

2~ 
y 

3y 
0 

Befor e this expression can be compared wi th the sheath 

it is necessary to e xpand it for y n ear 1 . The expansions 

(E. 8) 

(E.9) 

(E.10) 

(E . 11) 

(E.12) 

(E.13) 

(E.14) 

(E.15) 

sol ution, 

are 
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carried out and the matching is performed only as far as ls necessary 

to dete rmine and Taylor serie s expansions of the trigon o-

me tric func tions occurring in (E.15) are liste d below: 

cosR +~ (sinR) (1 - y) + · · · 

sin- 'l - (sin-Ji..+-{?_ cos- V) (1 - y) + · · · --VYo o o 'VYo 

Substituting these results into (E.15) and rearranging, 

n 
eo cos~ + E: * [ ~ - 1 * cos-ft,_ -

1 * cos
2
-Jy: 

3y 3y 
0 

3y 
0 0 0 

* 
y 1 sin-v:;: J + {- r:( sin-v:;: + E: * [ /* o -VYo o 

2-vy: 

* ,, 

(E.16) 

(E.18) 

2 
cos-J-l sin-J-l + _ n o o 

Y1 _[* Y1 _{7< 
( s inVY~ +-cosvy~)]} (1-y) 

- I* 0 2 0 

3VY: 
0 

+ 

2vy: 
0 

2 0 ((1 - y) ) ( E. 19) 

From the sheath we need only the largest contribution to the 

asymptotic solution in Eq. (6.29): 

'\, '\, 

n "' p J(O) f;, e o 
(E.20) 

The main-region and sheath solutions are written in terms of the 

intermediate variable xn through the use of (5.42) and (5.43). Using 
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also (2.2), (E.19) becomes 

- I* * [ -1 - I* 
sin VY~ + E sin\}Y ~ 

0 -J* 0 

* * 
- [* Y1 Y1 

sin\}Y,., + (---+ -
o _I* 2 

2 VY 
0 

3 y 
0 

cos~)]}n x
11 

(E . 21) 

Using (2.47) in (E.20) 

'\, 

(sheath) : n "' p J (O) n x e 0 0 n (E.22) 

In order that these two expressions agree, the constant term in (E.21) 

must eq ual zero: 

* 
cos-J;:: + L * [ --'. - · 

1 
* cos-Ji;,- \ cos\/;';,- 2~ sin-Ji;, ]= 

Jy 3y 3y 
0 0 0 

0 

(E. 23) 

* Since Eq. (E.23) must be an identity in E , both terms must vanish. 

Then 

implies 

cosR 

2 
lf 

4 

0 (E.24) 

(E.25) 
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Using (E-25) in (E.23), the equation for the quantity in brackets 

becomes 

or 

= 

8 
3lf 

0 

* It should be observed that the expressions for y 
0 

(E.26) 

(E.27) 

and in (E.25) 

and (E.26) are the same as those in (3.24) and (3. 38). Using these 

results, (E.21) becomes 

(main region) : n rv {1!:.2 + £ * [- l_ + _8_] }n x 
e 3lf 3n2 n (E.28) 

TI1e main-region and sheath solutions now agree provided 

'V 
p J(O) 

0 
(E.29) 

'V 
Using (3.9), Eq. (E.29) for J(O) becomes 

'V 
J(O) ]l -1:. + _4_ (2 - .I!.) £ l;; 

2 p 3 2 2 0 o n 
(E.30) 

TI1is result is the same as that obtained in Eq. (7.5). If (E.25) and 

(E.27) are used in (E.15), we obtain 

n eo 
n 4 [ n 2n ir ]* cos 2 y + 

3
n2 2 - cos 2 y - cos 2 y - 2y sin 2 y £ 

TI1is result is also the same as that obtained previously. 

(E.31) 

It is clear that the method employed here leads to results iden-

tical to those obtained in the main body of Part II. 



NOMENCLATURE 

The numhcr following the descriptlons glvl~S th ... · pa~l' mi whJch 

the symbol first appears. Symbols whose use ls very temporary and those 

which have been defined previously in Part I usually do not appear here. 

Roman: 

a 

E 
n 

E 
za 

'\, 

E 

'\, 

E 
0 

F(x,k) 

F(cp,k) 

J 
0 

J 
n 

'\, 

J 

'\, 

J 
0 

k 

L 

n 

n 
n 

n en 
(1) 

n 
0 

(2) 
n 

0 

n 

* * (2/3)(E /y) in Section 3 (152) 

th 
n term of the expansion for E (128) 

ambipolar value of the axial electric field (111) 

electric field in the sheath (138) 

'\, 

zero-order approximation to E (180) 

elliptic integral of the first kind (156) 

elliptic integral of the first kind (157) 

zero-order Bessel function of the first kind (248) 

th 
n term of the expansion for J (128) 

electron and ion flux in the sheath (138) 
'\, 

zero-order approximation to J (180) 

modulus of the elliptic integral (154) 

linear diffe rential operator (245) 

= n in Section J (143) 
eo 

th n t e rm of the series for n in Section 3 (143) 

th 
n term of the expansion for n 

e (128) 

root of a cubic algebraic equation in Section 3 (153) 

root of a cubic algebraic equation in Section 3 (153) 

= n in Section 4 (170) 
el 



·n 
n 

'\, 

n 
e 

•\ , 
n . 

l 

•\, 
11 

e o 
'\, 

n . 
J.O 

q 

s 

s 
n 

'\, 

s 

x 

y 
0 

z 

Greek: 

0 
n 

E: 
n 

* E: 

n( z;; ) 
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th 
n term of the series for n in Section 4 (170) 

electron density in the sheath (118) 

ion UL'll=-> i ty In the she ath ( 1 ·w) 

•\, 

zero-onkr approximatit'lll lo II ( J 80) 
c 

zero-order approximation to 
' \, 

n . 
J. 

(180) 

introduced for notational simplicity (171) 

space-charge variable (123) 

nth term of the expansion for s (128) 

space-charge variable in the sheath (204) 

= };* y in Section 3 (150) 

= 1 - y in Appendix D (256) 

intermediate variable used in matching (188) 

zero-order Bessel function of the second kind (249) 

variable used in Section 3 (154) 

ambipolar value of y (145) 

th 
n term of the expansion for y (129) 

= yopo in Section 3 (142) 

th * n t e rm of the series for y in Sectio n 3 (143) 

th 
of the expansion for 0 (129) n term 

th 
n t e rm of the expansion for E: (129) 

= E: z;; p in Sections 3 and 4 (143) 
0 0 

provides a measure of the location of the zone between main 
region and sheath (188) 

Asymptotic sequence of functions used in expansions (128) 

indepe ndent variable in the she ath (138 ) 
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indL'pe mknt variable in cy.L.indrit·aJ ~L'OlllL'l ry (:>117) 

introduced fur notational simplicity (J30) 

th f h . f (129) n term o t e expansion or T 

sin -l (1/ (dn (l» ) (157) 
0 

-1 ;- _f (1) 
s in ( 1-n/(k~n -n)) 

0 
(157) 

l Ii 
fl lvnn or lltL' expansion l v r x (1 /.9) 
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Table 1 

* 'le 
COMPARISON OF APPROXIMATE AND EXACT £ - y RELATIONS 

Y* £*/y* 

exact perturbation exact perturhatl.on --- - ------ -

0.128842 2.576833 2.576833 0.05 0.05 

0. 269659 2. 696589 2 . 696590 0.100 0 .100 

1.499793 J.749483 3 . 749592 0.400000 0 . 399988 

4.385418 6.264882 6.267893 0.700000 0. 699664 

11.100918 12.334353 12.390164 0 . 900000 0.895946 
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Table 2 

COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS FOR n eo 

E* 0. 269659 

Y* (exact) = 2.696589 

y* (perturbation) = 2.696590 

E*/y* (exact) = 0.100000 

E*/y* (perturbation) = 0.100000 

_ _:;f_ n (exact) 

0. 1.000000 
0.090847 0.990000 
0.128572 0.980000 
0.157586 0.970000 
0.182102 0.960000 
0.223366 0.940000 
0.258315 0.920000 
0.289250 0.900000 
0.317351 0.880000 
0.343316 0.860000 
0.367602 0.840000 
0.390524 0.820000 
0.412312 0.800000 
0.462871 0.750000 
0.509182 0.700000 
0.552349 0.650000 
0.593094 0.600000 
0.631924 0.550000 
0.669208 0.500000 
0.705229 0.450000 
0.740214 0.400000 
o. 774343 0.350000 
0. 807770 0.300000 
0.840625 0.250000 
0.873023 0.200000 
0.905068 0.150000 
0.936854 0.100000 
o. 968469 0.050000 
1.000000 0. 

n (perturbation) 

1.000000 
0.990001 
0.980002 
0.970003 
0. 960004 
0.940006 
0.920007 
0.900009 
0.880010 
0.860011 
0.840011 
0.820012 
0.800012 
0.750012 
0.700011 
0.650010 
0.600009 
0 . 550007 
0.500006 
0.450004 
0 . 400002 
0.350001 
0.300000 
0.249999 
0.199999 
0.149999 
0.099999 
0.050000 
o. 
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Table 3 

COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS FOR n 
eo 

£ ,~ = 1. 499793 

y* (exact) = 3.749483 

y* (perturbation) = 3.749592 

£*/y* (exact) = 0.400000 

E*/y* (perturbation) = 0.399988 

y n (exact) 

o. 1.000000 
0.094314 0.990000 
0.133418 0.980000 
0.163450 0.970000 
0.188792 0.960000 
0.231361 0.940000 
0.267320 0.920000 
0.299065 0.900000 
0.327827 0.880000 
0.354336 0.860000 
0.379068 0.840000 
0.402354 0.820000 
0.424435 0.800000 
0.475463 0.750000 
0. 521938 0.700000 
0.565021 0.650000 
0.605478 0.600000 
0.643842 0.550000 
0.680508 0.500000 
o. 715778 0.450000 
0.749893 0.400000 
0.783049 0.350000 
o. 815411 0.300000 
0. 84 7123 0.250000 
0.878309 0.200000 
0.909086 0.150000 
0.939559 0.100000 
0.969830 0.050000 
1.000000 o. 

n (perturbation) 

1.000000 
0.990039 
0.980075 
0. 970108 
0. 960140 
0.940195 
0.920242 
0.900281 
0.880312 
0.860337 
0.840355 
0.820368 
0.800376 
0.750376 
0.700355 
0.650318 
0. 600272 
0.550221 
0.500170 
0.450120 
0.400076 
0.350038 
0.300008 
0.249988 
0.199977 
0.149973 
0.099978 
0.049987 
0. 
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Table 4 

COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS FOR 11 eo 

£ * = 4.385418 

y * (exact) = 6. 264882 

y* (perturbation) = 6.267893 

c >'<fy* (exac t) = 0. 700000 

r */y* (p<'.rturhation) 0. 699664 

__y__ n (exact) 

0. 1.000000 
0.103043 0.990000 
0.145568 0.980000 
0.178095 0.970000 
0.205433 0.960000 
0.251095 0.940000 
0.289376 0.920000 
0.322928 0.900000 
0.353115 0.880000 
0.380750 0 . 860000 
0.406365 0.840000 
0.430331 0.820000 
0.452918 0.800000 
0.504595 0.750000 
0.551024 0.700000 
0.593531 0.650000 
0.632988 0.600000 
0.670011 0.550000 
0.705053 0.500000 
0.738464 0.450000 
0. 770521 0.400000 
0.801452 0.350000 
0.831448 0.300000 
0.860672 0.250000 
0. 889273 . 0.200000 
0.917383 0.150000 
0.945127 0.100000 
0. 972625 0.050000 
1 .000000 0. 

n (perturbation) 

1.000000 
0.990383 
0.980735 
0. 9710°57 
0. 961352 
0.941863 
0.922280 
0.902612 
0.882869 
0.863059 
0.843191 
0.823270 
0.803305 
0.753228 
0.702982 
0.652628 
0.602215 
0.551783 
0.501360 
0.450970 
0.400628 
0.350344 
0.300125 
0.249973 
0.199884 
0.149853 
0 . 099871 
0.049926 
0. 
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Table 5 

'\, 

CONVERGENCE OF THE JTEHATION Fem J·: (0) 
() 

0.997823 x io6 

n z 
(n) ( (n)) g z 

0 2.00000 2.00220 

1 2 .00220 2.00431 

2 2.05348 2 .05372 

3 2 .06013 2.06016 

4 2 .06114 2 . 06114 

5 2 .06116 

'\, 

E (0) 
0 

2 . 061 
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Table 6 

'V 'V 

E (0) AND E(O) AS FUNCTIONS OF r, 
0 

'V '. '\, 

r, E (0) 
0 

E(O) 

1.000 x 102 2'.071 2.068 

3.162 x 102 2.071 2.068 

l. 000 x 103 2.071 2.068 

3.162 x 103 2.071 2.068 

1.000 x 104 2.071 2.068 

3.162 x 104 2.070 2.068 

5.991 x 104 2.070 2.067 

1.214 x 105 2.069 2.067 

4.540 x 105 2.065 2.063 

9.978 x 105 2.061 2.059 

4. 792 x 106 2.063 2.061 

l.094 x 107 2.099 2.097 
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Table 7 

yo, Y1' AND y AS FUNCTIONS OF r. 

z:; y yo 
1 

Y1 ~1 / 3 Y1 

1. 000 x 102 4.7458 2 . 41 23 10 . 831 2.3334 

3 . 162 x 102 4 . 0021 2.4125 10 . 830 1.5896 

1. 000 x 103 3 . 4959 2 . 4131 10 . 828 1.0828 

3 . 162 x 103 3 . 1524 2 . 4148 10 . 827 0. 7376 

1. 000 x 104 2 .9228 2 . 4204 10.824 0 . 5024 

3 . 162 x 104 2. 7799 2.4379 10 . 815 0.3420 

5.991 x 104 2. 7366 2. 4608 10 . 793 0 . 2758 

1. 214 x 105 2. 7278 2.5103 10.768 0 . 2175 

4 . 540 x 105 2 . 9112 2 . 7732 10 .608 0 .1380 

9.978 x 105 3.2923 3 . 1881 10 . 414 0.1042 

4 . 792 x 106 5 . 8654 5 . 8072 9.821 0.0583 

1. 0 9L1 x 107 9.6857 9 . 64 30 9 . 497 0 . 0428 
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Tabl e 8 

,, E / N E AND AS FUNCTIONS OF z:: z z n 

" N '" f<: /N 
eo E z 11 

-J 7. 
/. cm vo l t / cm vo l t-cm 

--- -- -- - - ·- -------

l.000 x 108 23.44 0.7289 x .10-1.5 

3.162 x 108 22 .73 0 .7067 x 10- 15 

1.000 x 109 22 . 19 0 . 6901 x 10-15 

3 .162 x 109 21.80 0 . 6779 x 10- 15 

1. 000 x 1010 21 . 53 0.6693 x 10-15 

3 .162 x 1010 21. 35 0.6638 x 10-15 

5 . 991 x 1010 21 . 29 0. 6621 x 10-15 

1. 214 x 1011 21.28 0.6617 x 10-15 

4.540 x 1011 21. 51 0.6689 x 10-15 

9 . 978 x 1011 21. 97 0.6830 x 10-15 

4. 792 x 1012 24.40 0 . 7586 x 10- 15 

1. 094 x 1013 27 .02 0 . 8402 x 10-15 
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PART III 

EFFECT OF TEMPERATURE INHOMOGENEITIES 
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INTRODUCTION 

The primary purpose of the succeeding work is to isolate the 

effect on the N -E relation of the transverse neutral-temperature 
eo z 

variations across the positive column. In order to facilitate the 

study, the equations obtained in Part I are simplified by neglecting 

the slight deviation of the column from charge neutrality. This 

approximation is the same as that made by neglecting the term involving 

dE/dy in Eq. (1.8) of Part II and becomes better as the electron density 

N increases. Temperature variations, like recombination effects, are 
eo 

of significance only for large values of N , and numerical results 
eo 

show that such values are sufficiently large so that corrections arising 

from consideration of the nonzero space charge are relatively unimpor-

tant. Although temperature variation and recombination may both be 

important at large electron densities, attention is focused on tempera-

ture effects by setting the recombination coefficient equal to zero in 

the numerical calculations. In the case of an H
2 

plasma this procedure 

is also a reasonable approximation, because the temperature variation 

" affects the N -E 
eo z relation at a considerably smaller value of N 

eo 

than does r e combination. Even though recombination may not substanti-

ally alter the numerical results here, it is nevertheless ignored in 

the numerical calculations so as to eliminate all speculation concern-

ing the cause of the results. However, the term in the equations that 

represents recombination is included in the development of the problem, 

because it is easy to do so and because its effect on the results can 

be readily ascertained from the form of the solution. 
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The effect and, indeed, the very existence of temperature inhomo-

geneities have usually been ignored in investigations of the positive 

column. A publication by Ecker and Zoller [2], however, studies tern-

perature effects using basically the same equations that are used here, 

but the forms of the coefficients in their equations are very question-

able. Furthermore, they treat the pressure of the discharge as an 

arbitrary parameter. The physical situation investigated here consists 

of a glow discharge containing a fixed amount of neutral gas. As the 

axial electric field (or, equivalently, the electron density) is varied, 

the neutral temperature profile changes. The pressure changes accord-

ingly and hence is actually a function of the axial field or electron 

density. The dependence of the various quantities in the problem on 

the electron density is so complicated that the qualitative nature of 

the N -E relation cannot be determined without a detailed quantita­
eo z 

tive investigation of the experimental data. A discussion of the 

various qualitative aspects of the problem and the corresponding 

physical interpretations is postponed until the working equations are 

available. 

The equations are solved by two different methods. The first is 

a regular perturbation process in which the term responsible for the 

nonuniformity in the temperature profile is treated as the perturbati on . 

This term is proportional to the electron density N , and the vari ables eo 

of the problem are expanded in asymptotic series in powers of N . The eo 
A 

first two t e rms of the series for E , p, and the dependent variables z 

are calculated and used as an approximation to the solution. The 

truncated series are most accurate for small values of Neo' but, of 
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course, the adjective "small" must he interpreted in a r e lative sense . 

Here a value of N = lo
10

cm-
3 

is considered small. 
eo 

The equations are also solved hy numerical integration, and 

points on the N -E 
eo z 

curve are calculated. The results show that the 

perturbation solution is accurate only for a rather limited range of 

N However, the perturbation procedure serves a useful purpose in 
eo 

providing valuable insight into the nature of the problem. In fact, 

the ite rative process used in the numerical method closely parallels 

the mechanics of the perturbation technique, and the perturbation 

results are used as the first estimate in the iteration. The range of 

N is rathe r restricted even in the numerical method, because the 
eo 

variation of the neutral temperature across the discharge causes the 

variables to exceed the domain of the experimental data. 
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1 • WORKING EQUATIONS 

The equations used to study neutra ·1 t(•mperntllre I 11homo gt•11t' Lt I •~H 

are obtained quite easily from those de rived in Part I. The o nly 

d 
1 dE 

assumption in the process is to regar -- -­
X s dy 

in Eq. (5.22) as being 

negligible compared to ni and n 
e 

The omission of this term is 

considered extensively in Part II. There the approximation leads to a 

description of the main region of the positive column given by the 

lowest-order term in the singular perturbation expansion. Although the 

t emperature is assumed uniform in that development, the validity and 

the qualitative nature of the approximation are unaffected by tempera-

ture variations. In particular, the order of magnitude of the first-

order correction found in Part II is applicable to the present 

s ituation; it shows that the corrections to the N -E 
eo z relation and 

to the dependent varia bles decrease as N 
eo 

increases and are of little 

importance at sufficiently large values of N 
eo 

However, the term 

conta ining dE/dy is necessary for an accurate description of the 

positive column in the sheath, a thin region near the wall in which the 

transverse electric field is large and electron and ion densities are 

smal l. The neglect of dE/dy here is, of course, c ompletely unjusti-

fiable, but the s heath is small and of no essential importance to the 

study of temperature effects. Furthermore, th e discussion on p. 136 in 

Part II shows that the boundary conditions on n 
e 

and at y = 1 

can be applied even when the sheath is neglected; no error is introduce d 

A 

into the N - E relation or the dependent variables in the main region 
eo z 

other than that caused by neglecting dE/dy there. 



-293-

Equations for Dependent Variables 

The neglPct of c\E/dy ln Eq. (5.22) of Pnrt T l'."l' Sttl 1·1-1 ·In tli(• 

simple algebraic equat ion 

(1.1) 

Denoting the common value of the electron density n 
e 

and the ion 

density n
1 

hy n, Eqs. (S.18) - (S.21) of Part I become 

dn + 
dy 

2 e: z;;n 

- OT 1 - --,...---J 
D (T;E ,p) 

e z 

dn + 1_ n dT = T 1_ nE - T 1 
dy T dy T A 

Di(T;E ,p) 
J 

z 

n 

The appropriate boundary conditions from Eqs. (5.29) - (5.35) are 

y = 0 : n = 1 

J = 0 

dT 
0 - = 

dy 

y 1 n = 0 

T 1 

(1. 2) 

(1.3) 

(1.4) 

(1. 5) 

(1. 6) 

(1. 7) 

(1. 8) 

(1. 9) 

(1.10) 



There :is no longt-~r 11 differential equation for the trans verse ele ctric 

E c an now he ohtained a lp,ebraLcally [r<1111 P:q. ("1.3) <ir (l.4), 

11sL' nf t 11<· ho11nd;11'y Cllndi Lions for till! r< ' ma.I ni11).'; df'p1•1 1<icnt var La h I <':: 

sho\v s that E satisfies the condiLion E = 0 at y "' 0 . Jl<J\vever, 

t he use of condition (1.9) on n in either equation shows that E + w 

as y + 1 . This behavior is familiar from the study of Part II. When 

E become s sufficiently large as y approaches unity, the approxima-

l:ion neglecting dE/dy breaks down, and an accurate solution for E 

in this region requires a special treatment of the entire problem in 

the. slH'!ath. In the present study, however, the solution for E i s of 

11n importance and is never actually obtained. In fact, E is elimi-

na t c d from Eqs . (1.3) and (1.4) to produce a single differe ntial 

~quation for n and is never s e en again . 

The final working equations for the variables are obtained by 

e liminating E from the problem. Multiplying Eq . (1.3) by 

Eq. (1.4) by T and a dding the results yields 

ClT 
d11 e 

(T + TT ) - - + (1 + T --) 
e d y ClT 

dT 
n ­

dy 

T T c 
-T(- + ch - ) J . 

Di De 

TT 
e 

and 

(1.11) 

The f ina l result is expressed more compactly by the introduction of new 

nomencl.:1ture. First the expression is simplified by the use. of the 

dim<~ nsionless r•:inst e in relations. Using Eqs . (2 . 56), (3 . 8), (3.9), 

(5. 2 ) -· (5.6), and (5.10) of Part I, 

A A A A A A 

kT (T;E ,p) 
e z 

D (T·E p) 
e ' z • 

e µ cr;E ,P) 
e z 

(1.12) 



so 

A 

D (T;E ,p) 
e z 

A 

µ (T;E ,p) 
e z 
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D (T ;E ,p )D (T;E ,p) e w zr r e z 
A A A A 

µ (T ;E ,p )µ (T;E ,p) e w zr r e z 

A A A 

kT (T ;E ,p ) 
e w zr r 

e 

A 

= T (T ;E , p) 
e z 

A 

D (T;E ,p) 
e z 

µ (T;E ,p) e z 

Similarly, the dimensionless Einstein relation for the ions is 

T 

We now define the coefficients A and B by 

dT e A 

1 + 1" a-r- (T;E ,p) 
A z A(T;E ,p) z 

A 

T + -rT (T ;E ,p) e z 

1 1 
~~~,..~~ +o-r ~~~,..~~ 

µi(T;Ez,p) µe(T ;Ez,p) 
B(T;E ,p) = 1" ~~~~~~~~""'--~----"'~~ 

z T + -rT (T;E ,p) 
e z 

Using (1.15) - (1.18), Eq. (1.11) now becomes 

0 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

The final set of e qua tions now cons i sts of (1.2), (1 . 19), (1 . 5), and 

the boundary conditions (1. 6) - (1.10). 
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~guation for Pressure 

It is mentioned in Part I and in the Introduction tliat the physl-

cal situation we wish to consider consists of a gas discharge contain-

ing a fixed amount of gas independent of the axial electric field or 

the electron density. In the slab geometry for which the equations are 

written, the dependent variables do not change except in the y-direc-

tion. Hence the requirement of a fixed amount of gas implies that the 

number of neutral molecules across the column in a unit area of the 

plane perpendicular to the y-direction remains constant. Denoting this 

A 

number by 2Q , we obtain as the equation representing this statement, 

A 

2Q 

L 

J 
-L 

N dx 
n 

~sing the symmetry of the plasma column and the perfect gas law, 

A 

p = N kT (Eq. (2. 78), Part I), Eq. (1.20) becomes 
n 

L 
A 

Q tf 
0 

dx -
A 

T 

(1. 20) 

(1. 21) 

From the definitions (5.10) and (5.16) of Part I the dimensionless form 

of (1.21) i.s 

A 

Q 
_Qy_ 
T 

(1. 22) 

This equation serves to determine p from the temperature distribution. 

Discussion of Problem 

A dete rmination of the qualitative behavior of the 
A 

N -E 
eo z 

tion in response to temperature inhomogeneities is not available. 

rela-
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However, a qualitative investigation of the problem is capable of des-

cribing the general behavior of the dependent vnrfuhles nnd h~nds to 1:1 

better understanding of the problem. In addition, the effe ct o f tern-

perature on the coefficients, notably VI , is analyzed to some extent 

and in the process the considerations necessary to the determination of 

A 

E become evident and reveal why a conclusion is unobtainable without 
z 

detailed numerical estimates. In order to orient the discussion, the 

physical situation in which temperature inhomogeneities are present is 

contrasted to the situation that would exist if the neutral temperature 

were constant. The electron density N 
eo 

assumes the same value in 

the two situations. The term containing S in Eq. (1 .5) represents 

the transfer of energy from electrons to neutrals and is solely respon-

sible for the departure from a uniform temperature distribution. Hence 

the mathematical representations of the nonuniform- and uniform-

temperature situations are characterized by the respective inclusion 

or omission of this term in the equations. For clarity, recombination 

is ignored; a detailed qualitative description of its effect on the 

A 

N -E r e lation is presented in the Introduction to Part II. 
e o z 

The general form of the temperature distribution is easily 

ascertained either from physical considerations or from a simple analy-

sis of Eq. (1.5). Heat is transferred to the neutral species by 

interactions with electrons throughout the positive column and is lost 

by conduction to the walls. The neutral temperature is largest at the 

center of the column, where its gradient is zero, and decreases mono-

tonically with increasing steepness to satisfy the boundary condit ion 

at the wall. The value of the t emperature increases as the e lectron 
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density increases. The pressure increases as the t emperature increases 

and is greater than in the uniform-temperature situation, whe r e th e 

t empe rature i s constant at its wall value. 

The effect of a t emperature gradient on th e e lectron dPnsity 

profile n can be determ:i_ned by a study of Eq. (l.19). The term 

dT An dy is negative and acts as a positive contribution to the density 

gradient dn/dy . However, certain conditions were i ncorporated into 

the equations in the nondimensionalization process. In particular, n 

must decrease from unity at y = 0 to zero at y = 1 whether a tern-

perature gradient is present or not. In order that the average value 

of dn/dy remain constant, the presence of the term An dT 
dy 

in the 

case of a nonuniform temperature must be compensated by an increase in 

BJ over the value it assumes in the uniform-temperature situation. 

Examination of Eq. (1 . 2) shows that J can increase only as a result 

of an increase in VI or n or both. It is known that varies 

much more with a change in parameters and variables than do the othe r 

coefficients, and that a change in B would be accompanied by a much 

greater change in VI . Therefore the increase in BJ is ascribe d to 

an increase in J and changes in coefficients other than VI can be 

ignored. Since the value of J at a particular location in the dis-

charge is found by integrating Eq. (1.2) from y 0 , where J = 0, 

the greatest increase in J over its value in the uniform-temperature 

situation occurs near the wall. n decreases to zero as y + 1 , so 

the term containing dT/dy in Eq. (1.19) loses its influence near the 

wall, where the increase in J is most pronounced. A study of this 

equation for the density gradient discloses the approximate form of the 
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f'lectron density across the plasma column: the d t•nf!i.ty prol"il<· js 

flatter over the central portion of the discharge and decreaseR mort! 

rapidly near the wall than in the uniform-temperature case . It is now 

apparent that the change in the shape of the density distribution con-

tributes to the increase in v
1

n in the equation for J . Since N 
eo 

is the same in both cases, the physical variables for the e lectron den-

sity and the flux also increase. 

The spatial variation of VI across the plasma column as the 

r esult of a nonuniform temperature can be determined by an examination 

of the experimental data. The dependence of v
1 

, and hence of v
1 

, 

on the variables and parameters of the problem is given in Eq. (4.6) of 
,... 

Part I. If p and T are eliminated in favor of N by the perfect 
n 

gas law, N = p/(kT), it is seen that 
n 

cept for a factor However, 

depends only on E /N 
z n ex-

E /N N 
n 

varies so rapidly with 
z n 

that the effect of the factor N can be ignored. Eq. (1.20) shows 
n 

that the average value of N 
n is independent of the temperature dis-

tributio_n, but its local value across the column varies inversely with 

the temperature T according to the perfect gas law. Consequently 

N is greater nPar the walls than in the center when the t empe rature 
n 

is nonuniform. Since is a rapidly increasing function of E /M 
z n 

VI is larger in the center. The ionization rate, which appears in 

Eq. (1.2), is obtained by multiplying the ionization coefficient v
1 

by the electron density n • Since n is greatest in the central 

portion of the column and decreases to zero at the walls, the greater 

values of v 1 occur where the electron density is greatest and 
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therefore have a greater effect on the ionization rate (and hence the 

behavior of J) than do th e smaller va1ues near the wa lls. llence, lf 

E were to assume th(~ same value with a uniform- as with a nonunlform-­
z 

temperature distribution, the value of J in the nonuniform situation 

would be greater. 

It is shown a love that at the same value of N the ionization 
eo 

rate VIn must be greater if the temperature distribution is nonuniform 

than if it is uniform in order to satisfy the boundary conditions on n. 

It is further shown that the effect of temperature inhomogeneities on 

the spatial variations of n and VI tend to increase the ionization 

"' rate. E is the parameter that must vary in order to establish the 
z 

ionization rate at the precise value needed to satisfy the boundary 

conditions. If the increase in vin over its value in the uniform-

"' temperature case is too small, E must increase so as to cause a fur-
z 

"' ther increase in VI ; if the increase in VIn is too large, E must 
z 

decrease. Since the temperature distribution and its effect on VI and 

"' n depend on Neo , the considerations above show how E is deter-
z 

mined theoretically as a function of N 
eo 

Without detailed quanti-

tative estimates it is not possible to determine whether 

"' 

"' E 
z 

increases 

or decreases. The numerical results show E to be less when the tem­z 

perature distribution is nonuniform. 
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2. SOLUTION WHEN r, .-= 0 

Wln' n r. ts sc t l'C(llal to zero in f•'.g s. (1 . 2) ;rnd ( 1 . ')) , th c tc•r1rn; 

r.L'sponsihl c for recombination and spatial tC:'mperntun~ vadatio1rn di s -

a npear. Supe rficially I;: "" 0 implies that the e lectron density is 

zero, but such a physical situation is not represented by the res ulting 

equations. In fact, the electron density was specifically restricted 

to values greater than zero in assuming the effects of space charge to 

he n egligi hle , and the corresponding modification of the basic equa-

tions gives s = 0 a different interpretation. Here I'; -= 0 

represents a situation, possibly hypothetical, in which space charge , 

recombination, and temperature inhomogeneities are negligible. It is 

the situation characterized by the standard ambipolar diffusion equa-

tion, which is discussed in Part II on p. 111. 

A 

Reference Values for E and p 
z 

The solution to the equations when s = 0 plays a special role 

in the ensuing development of the problem and is distinguished by 

A 

special nomenclature. The values that J, n, T, E
2

, and p assume 

when s := 0 are designated by 
A 

J , n , T , E , and 
0 0 0 zo 

p • 
0 

The nomen-

clature is quite appropriate, because these quantities constitute the 

first terms of an eventual expansion of the variables in powers of z; 

The reference values 
A 

F. 
zr 

and introduced in Section 5 of 

Part I in the nondimensionalization process are now defined as 

" E 
zr 

= 

A 

E 
zo (2.1) 

(2.2) 
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A 

Unlike the definitions adopted in Part II, E and zr are here 

i ndependent of N (or l;; ). 
eo Consequently the constant coefficients 

are also independent of N , and the definitions of Eqs. (5 .23) -eo 

(5.27) of Part I become 

y 

c 

T 

2"' A A 

L VI(T ;F. ,p ) w zo 0 

n
1

<T ;E ,p ) 
. w zo 0 

L
2 ~ N -- ----

.... A A 

D (T ·E p ) i w' zo' o 

A A A 

T (T ·E p ) 
e w' zo' o 

T 
w 

" " " D.(T ;E ,p ) 
1 w zo 0 

" " " D (T ·E p ) 
e w ' zo' o 

" 2 
h(T ;E ,p )NL 

w zo 0 
"---

AlT )T w w 

Solution for T
0 

and p
0 

-

T 
w 

A A A 

T (T ·E p ) 
e w' zo' · o 

A 

T 
w 

A A A 

Te(Tw;Ezo'po) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The equation for T , obtained by setting 
0 

0 in (1.5), is 

dT 
1 dA.(T ) (-o)2 

;\(T ) dT o dy 
0 

0 

and the boundary conditions, from (1.8) and (1.10) are 

dT 
0 

0 
dy 

y = 0 : 

y l T l 
0 

(2 . 8) 

( 2 .9) 

( 2.10) 



The solution i.s trivial: 

Equation (1.22) for 

A 

Q ~ 
T 

0 

T 
0 

p L 
0 

A 
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l 

becomes 

k T 
w 

so can be determined from a specified value for 

(2. 11) 

. (2.12) 

A 

Q However, it 

is more convenient to regard p
0 

as a parameter whose value is to be 

specifie d arbitrarily and rewrite Eq. (1.22) for p as 

1 

p f ~ T 
(2.13) 

0 

The values for four parameters must be selected before numerical 

calculations can proceed. The values chosen for the gas temperature at 

the wall , the pressure p
0 

, and the half-width of the discharge are 

T 
w 

L 

(2.14) 

1 mm Hg (2.15) 

1 cm. (2.16) 

The fourth parameter N is artificially introduced into the problem for 

convenience. Its numerical value is selected so as to set the value of 

6 near unity. The appropriate value is found to be 

N (2.17) 
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As a result, the order of magnitude of the coefficient Bs in Eq. (1.5) 

is approximately the order of magnitude of s . 

Solution for J 0 , n0 , and E
20 

Using the definitions (2 .1) and (2.2) for E 
zr 

and 

Eqs. (5. l) - (5.9) of Part II for the variable coefficients, when 

evaluat e d at 

A 

(T ,E , p) 
z 

(l,F. ,p ) 
zo 0 

(2.18) 

all reduce to unity. The coefficients v
1 

, A , and B appear in the 

equations for J and n , and special nomenclature is used for their 

values when s 0 . From (1.17) and (1.18) we have 

A 

VIO v
1

( l;E ,p ) 1 (2.19) 
zo 0 

8T e A 

A 1 + T TT(l;E ,p ) 
A A(l;E ,p ) 

zo 0 
(2.20) 

0 zo 0 
1 + T 

A 1 + OT 
R B(l;E ,p ) = T (2 .21) 0 zo 0 1 + T 

Using (2.11), Eqs. (1.2) and (1.19) for J and n at s 0 

become 

dJ 
0 

0 (2.22) 
dy 

yn 
0 

dn 
~+ B J 0 (2.23) dy 0 0 

The boundary conditions obtained from (1.6), (1.7), and (1.9) are 
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n 1 (2. 2f1 ) 
0 

y 0 

J 0 (2 .25) 
0 

y 1 n 0 ( 2 .2fi) 
0 

Eliminating J between Eqs. (2 . 22) and (2.23), we obtain a single 
0 

equation for n 
0 

+ YB n 
0 0 

0 (2.27) 

An additional boundary condition on 

and (2.25): 

y = 0: 

n 
0 

is obtained from Eqs. (2 .23) 

dn 
0 

dy 0 ( 2. 28) 

The problem for n 
0 

is an eigenvalue problem. Physical consi-

derations require n 
0 

to be nonnegative and therefore restrict 

to the lowest eigenvalue. The solution is 

YB 
0 

n 
0 

7r 
cos 2 y (2.29) 

YB 
0 

1 + OT YT - - -
1 + T 

2 
7r 

4 
(2. 30) 

Observation of the expressions for Y, T , and o in (2 . 3), (2.5) and 

(2.6) shows that (2.30) is an equation for E 
zo 

It is solved 

numerically by a simple iterative procedure, and once the value of 

is available, all the constant coefficients can be evaluated. The 

"' E 

numerical values of E and the constant coefficients are presented 
zo 

in Table 1. The quantity B
0 

appearing there is B evaluated with 

zo 
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"' "' "' h (T ; E , p ) 
w zo . 0 

"' "' "' replaced by h
0

(Tw;Ez
0

,p
0
), the elastic energy-transfer 

rate. 

The expression for J 
0 

is easily obtained from Eqs. (2 .22) , 

(2.25), and (2 .29) . It is given by 

J 
0 

2 'IT rr y sin 2 y (2.31) 
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3. PERTURBATION SOLUTION 

An approximate approach to the problem involves an expansion of 

the variables in powers of I';; • The first two terms of the expansions 

are r eadily obtained hy a regular perturbation procedure . In fact, the 

first t e rms are the results presented in the previous section. I';; 

occurs as a factor in the terms of Eqs. (1.2) and (1.5) that contain 

E or 13 , and hence these terms contribute only t o higher-order 

r esults. Table l shows that 13 > c , and hence th e a c curacy o f the 

expansions is limited by the magnitude of 131';; • c represents r ecom-

b i nation and its effect is quite small. It is retaine d in the equa-

tions because it is possible to do so conveniently, but it is set equal 

to zero in all numerical calculations so as to separate completely its 

effect from that of temperature inhomogeneities. 

Expansions of Variables and Coefficients 

Expansions for the variables of the problem are giv e n hy 

.J J + s-\ + ... 
0 

(3 .1) 

n n + l';;nl + ... 
0 

(3.2) 

T T + l';;Tl + ... 
0 

(3.3) 

p po + l';;pl + ... (3.4) 

"' "' "' E E + z;;Ezl + ... 
z zo 

(3 . 5) 

Since equations for terms of different orders in I';; are obtained by 

substituting the expansions into the problem and equating equal powe rs 

of (; , the zero--order terms represent the solution when I'; = 0 
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These terms have been obtained in the previous section, and the firs t-

order t erms are obtained here to comple te the calculation. 

It is easier to e stimate the magnitudes of relative cha nges in 

E and to appraise their effects if E is expressed in dimensi onle s s 
z z 

form. For that purpose we define ljJ by 

" " E /E 
z zo 

Using (3.5), its asymptotic expansion is 

where 

and 

"'+r.;;ljJ +··· 
0 1 

1 

" " 
E 

1
/E z zo 

(3. 6) 

(3. 7) 

(3.8) 

(3. 9) 

The expansions of the variables induce similar expansions of the 

variable coefficients. For instance, VI , correct to an error of 

? 
order O(l;;-), can be written 

VI(T + 7.;;T1 ; E + 7.;;E 1 ,p + 7.;;pl) 
0 zo z 0 

(3 .10 ) 

where v10 

about r.;; = 0 

and are coefficients in a Taylor's series expansion 

v
10 

is given by Eq. (2.19), and v11 is found by dif-

ferentiating· v
1 

with respect to r.;; 

(3 . 11) 

whe re the derivatives are evaluate d at 
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(T, ~1, p) (J,l,p) 
0 

( 1. ':~) 

Equations (3.()) ancl (3.9) are usccl to rr.p:L1cc• tl11· d ·fff<>rPntln -

tion with r espect to E by differentiation with respv c t to ~ . 
z 

v
11 

depends on y through the function T
1 

; the other terms are 

constant. In the same manner B is expanded as 

(3 .13) 

where B
0 

is found in Eq. (2.21) and B1 is given as 

(3 .14) 

The de rivatives are again evaluated as in (3.12), and errors of order 

O(z;2 ) are neglected. Because T is a constant, dT/dy is order 
0 

0(1;), and the other variable coefficients occurring in Eqs. (1. 5) and 

(1.19) need not be evaluated to higher order. The term containing 

dA/dT does not contribute to the first-order equations, and to zero 

order 

A A + 0(1;) 
0 

(3 .15) 

where A is defined in Eq. (2.20). Preceding Eq. (2.18) it is noted 
0 

that h and A are unity to lowest order. Hence 

h (3.16) 

The derivatives in (3.11) and (3.13) are evaluated by numerical 

differentiation of the coefficients v
1 

and B . The technique used 

and its expected accuracy are discussed in Appendix A, and the 



-310-

numerical values of A , B , and the derivatives are tabulated in 
0 0 

Table 2. 

First-Order Problem 

Equations for the first-order corrections to the variables are 

obtained by substituting the series expansions into the problem. Using 

(2.11) and neglecting terms of order 2 
O(r, ) , Eqs. (1.5), (1.2), and 

(1.19) become 

- fi z;;n 
0 

dn
0 

dn
1 

dT
1 - + z;; - + r,A n -d + B J + r, (B J 1+ B

1
J ) = 0 dy dy 0 0 y 0 0 0 0 

(3.17) 

(3 .18) 

(3.19) 

Using (2.19) and Eqs . (2.22) and (2.23) for the zero-order problem, we 

obtain 

- Bn 
0 

- Yn 1 

dTl 
+ B J = -B J - A n ~­

o 1 1 0 0 0 dy 

(3. 20) 

(3.21) 

(3.22) 

The boundary conditions, obtained by substituting the expansions for 

the variables into Eqs. (1. 6) - (1.10), are 

y = 0 : n = 0 
1 

(3. 23) 
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Jl 0 (3. 24) 

dT
1 

0 -- -·- = 
dy 

(J. 25 ) 

y 1 nl 0 (J . 26 ) 

Tl 0 (3. 2 7) 

An e quat i on for the firs t-order correction to the pres sure i s obtain ed 

from ( 2 .13) using (2 . 11): 

1 

0 p f ~ - p 
T o (3. 28) 

0 
1 

(p + l;pl) I dy 
- po (3. 29) 

0 1 + l;Tl 
0 

1 

(po+ l;pl) f (1 - z;T
1

)dy - p
0

+ O( z; 2) (3 . 30) 

0 

1 

po+ l; (pl- Po I Tldy) - po (3 .31) 

0 
so 

1 

pl Po J T1 dy ( 3 .32) 

0 

Sol ution for T1 and P1 

The s o lution f o r T
1 

and p
1 

is obtained very easily . Using 

the f orm of n
0 

g ive n by (2.29), Eq. (3.20) for T
1 

b ecomes 

'TT - B cos 2 y (3. 33) 
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The solution, subject to the boundary conditions (3.25) and (3.27), is 

4 TI 
TI2 8 cos 2 y 

E~1ation (3.32) for p
1 

now yields 

l 

Pl = :2 13 po I 
TI 

cos - y dy 
2 

0 

Solution for Ezl and n 1 

(3. 34) 

(3. 35) 

(3. 36) 

An equation for n
1 

is acquired by eliminating J
1 

between 

(3.21) and (3.22). Using (2.30), which shows that YB 
0 

and arranging the terms in the desired manner, we obtain 

2 
d Ill ;. 
- -2- + 4 Ill 
dy 

2 
TI I 4 ' 

(3.37) 

An additional boundary condition on n
1 

is found by using the boundary 

conditions on J
0

, J
1

, and T
1 

at y = 0 in Eq. (3.22): 

y 0 0 (3. 38) 

The homogeneous equation associated with (3.37) has a solution, 

cos % y , which satisfies the boundary conditions (3. 38) and (3. 26). 

Appendix B of Part II can now be applied with the functions w(y), 

p(y), and q(y) given by w = 1, p = 1, q = TI
2
/4 • The theorem in 
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the Appendix states that the right - hand side of (3.37) must h e 

orthogonal to 
'IT 

c os 2 y if a solution for 

this sta t ement as an e qua tion, we have 

0 

is to cx i s t. Wr.i.ting 

0 . (3.39) 

All the quantities in the integrand are known excep t ~ l , which 

appears through the expressions for v
11 

and B
1 

, and hence (3.39) 

serves as the e quation for E
21 The oµerations necessary to obtain 

an explicit expression for ~l or E21 are tedious and boring, but 

since the result is v e ry important, the details are g iven in Appendix 

B. Using (3.9), E can be written from Eq. (B.21) of Appendix Bas 
z 

(3. 40) 

Several observations can be made about this expre ssion. Firs t , 

it should be noticed that if the term containing £ were omitted, 

E would be proportional to B . This result is expected, because 
zl 

if E we r e removed from the problem, the only t e rm that is treat ed 

as a per turbation in the original equations contains B and ~ as 

factors. Since there is some ambiguity involved in the definition 

of 6 (see Part I, pp. 30-34), it is reassuring to find that only the 

"' magnitude, and not the sign, of E21 depends on B • The effect of 

c on E can now be determined quantitative ly from the expression 
z 
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,... 
for E .

1 z 
An cxamtnation of Tables 1 and 2 shows th111· 11 f 1;1 v1•ry s11111.l I . 

T:ihlL' 2 a ·Jso shows thnt E 
1 

ls composl~d of il:fffe r.encvs of rntlwr lnr~1· 
z 

t e rms and rt' V<.' als quantitatJvely the cli.fficulty :.ln prc dl.ct ing thl• sign 

of Ezl . 

The terms on the right-hand side of Eq. (3. 37) are written as 

functions of y in Appendix B • Using (B.11), (B.14), (B.15), and 

(B.16), the equation for becomes 

(3. 41) 

The solution satisfying boundary conditions (3.23) and (3.38) is 

obtained by standard techniques. After eliminating ~l with Eq. (B.21) 

of Appendix B, can be written as 

4 avr 8 aB 
+ --(B - + - YB - - 28A 

Jrr2 3T rr2 uT o 

4 dVI 4 dB TI 
- --(2(3 -- + - yB - - BA - 2cB )(1 - y sin -2 y). (3.42) 

3rr2 aT rr2 3T o o 

It is apparent that by virtue of the solution for ~l' n 1 satisfies the 

boundary condition (3.26) at y = 1 • Equation (3.42) shows t ha t n
1 

, 
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like w
1 

, would be proportional to B if E were not present. n 
0 

and n
1 

are presented as functions of y in Fig. 1. The values of 

on the graph are obta:i.ned after setting E = 0 The form of 

verifies the qualitative conclusions reached in Section 1 concerning 

the shape of n : the electron density n
0 

+ sn
1 

remains flatter over 

the central portion of the discharge and drops more rapidly near the 

wall than does n , the. density profile in the absence of temperature 0 . 

gradients . 

Since the other first-order variables are known, J
1 

can be 

obtained in a routine manner from either equation (3.21) or (3.22). 

However, J
1 

is not needed and the calculation is n o t performed here. 

Numerical Results 

E is set equal to zero in all numerical calculations. Evaluat-

ing Eq. (B.21) of Appendix B for w
1 

, we find that to first order W 

is given by 

w = 1 - o.08811Bs (3.43) 

Inserting the value of B , we find 

1 o.3926s (3. 44) 

If the value of 6
0 

is used in place o f B in Eq. (3.43) , we obtain 

wls=s 
0 

1 - o.o3609s 
(3 .45) 

The discussion on pp. 30 - 34 of Part I shows that h , and hence B, 

is not a clearly defined quantity. The value selected for h (and 

B) is ac tua lly an upper bound, although it is expected to b e a good 
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estimate. Use of the value of B
0 

for B is not a good estimate, but 

it does represent a lower bound. After converting 1/1 to E and 
z 

to N , Eqs. (3.44) and (::\.45) are plotted in Fig. 2. It is obvious eo 

from equation (3.43) that the result of a lower value of B is to 

delay the onset of significant temperature-inhomogeneity effects to a 

larger value of l; Replacing ~ and s in (3.44) by the corres-

ponding dime nsioned quantities, we obtain 

E 
z 

(20.84411 volt/cm)(l - 0.3926 x lo-11cm3N ) 
eo (3. 46) 

Graphs of Eqs. (3.46) and (3.44) are presented in Figs. 3 and 4. 

The temperature at the center of the discharge provides a 

measure of the increase in temperature above its wall value, and it 

is of interest to observe this quantity as a function of electron den-

sity. From Eqs. (2.11), (3.3), and (3.34) we obtain to first order 

T{y) 4 if 
l + 2 Br; cos 2Y (3.47) 

1T 

so 

T(O) 1 + !!___ 
2 Br; (3. 48) 

1T 

A plot of r; versus T(O) is presented in Fig. 5. By eliminating ~ 

between Eqs. (3.43) and (3.48), it is possible to relate T(O) and 

~ The relationship is independent of 8 and is plotted in Fig. 6. 

The pressure, correct to first order, is obtained from Eqs. 

(3.4) and (3 . 36): 

p p Cl + ~ Sr;) 
0 'IT3 

(3.49) 

~plot of r; v ersus p is presented in Fig . 7. 
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4. NUMERICAL SOLUTION 

In this section the differential equations for J, n, and T 

(with E: set equal to zero) are integrated numerically. Before solv-

ing, s is assigned a value, so the solution corresponds to a 

particular N 
eo 

E 
z 

is determined in the process of solving the 

equations, so by repeating the procedure for various values of s 

enough points are obtained to plot the N -E 
eo z 

relation. Since r e com-
A A 

bination is ignored, the deviation of E 
z 

from E 
zo is attributable 

solely to the effect of temperature inhomogeneities. 

Outline of Procedure 

The method used to solve the equations dissects the problem into 

two two-point boundary value problems. J, n, and E z are determined 

simultaneously in one of the problems, and T is obtained from the 

other. The two nroblems are solved repeatedly in an iterative process 

which l eads to the final solution for a specific s . 

The proce dure is explained by the following outline, whi ch is in 

turn followed by a de t a iled de scription of the indiv idual ste ps: 

Ste p 1: 

Step 2: 

Step 3: 

Step 4: 

Choose s 

Obtain T(y) for this value of s from perturbation 

r e sults. 

Calculate p from the function T(y) . 

Solve for J, n, and E using the v a lue s of T(y) 
z 

and 

p . Integr a t e from y = 0 u s i ng the bounda ry c onditions 

the r e , a nd v a ry 

satisfied. 

E until the condi t ion a t 
z 

y = 1 is 
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Step 5: Solve for T using the values of p, E z' and n(y) 

Integrate from y = 0 using the boundary condition 

there, and vary T(O) unti l the conditi.on at y = 1 1::1 

satisfied. 

Step 6: Return to Step 3 {iterate). 

The vaiue of ~ is not changed in the process of solving the 

"' equations. E , p, and the dependent variables all correspond only to 
z 

the value selected . 

Step 2 

The first approximation to the temperature distribution T(y) 

is obtained from Eq . (3.47) and is denoted T(o)(y) : 

T(o)(y) 1 + _i_ B~ cos TI2 y 
'JT2 

(4.1) 

It is the quantity used to start the iterative process, and its 

accuracy as an approximation to the exact solution T(y) is primarily 

responsible for the number of iterative cycles necessary to achieve a 

satisfactory solution. 

The determination of the pressure from the temperature distribu-

tion is the first step of the iterative cycle. The superscript n 

denotes the number of the iteration, and 

(2.13): 

(n) 
p 

(n) 
p is obtained from Eq. 

(4.2) 
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where n = 1, 2, · · · . The lntegral is evaluated m1m<·r:f.ca.Lly uslng 

S"i.mpson's r ul.0 with a ste psize of 0.02. Th.ts value of tile s u •pslze 

yields very accurate results and posPs no s.f.gni(ic ant JJ.mitat:f.on on 

the convergence criteria for the iteration schemes. 

Step 4 

The differential equations for J and n are solved simultane-

ously using the most recent estimates for p and T(y) . From Eqs. 

(1.2) and (1.19) we have 

dn(n) 

dy 

dJ(n) 
---

dy 
(T (n-1) E" (n) · (n)) (n) 

yvI ; , z 'P n 

" ( ) (n-1) -A(T(n-1) ·E(n) n )n (n) _d_T __ 
, z 'p dy 

The boundary conditions corre spond to (1.6), (1.7), and (1.9): 

y = 0: n 
(n) 

1 

0 

y = 1: n 
(n) 

0 

(4.3) 

(4.4) 

(4.5) 

(4. 6) 

(4. 7) 

where n = 1,2,··· . The integration is performed by the classical 

* fourth-order Runge-Kutta method , and a stepsize of 0.02 is sufficient 

to insure the desired accuracy. The integration is begun at y = O 

,~ 

See, for instance, Henrici [3], pp. 67-68, 122. 
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using the boundary conditions (4.5) and (4.6), and the parameter 

f.Cn) is changed and the integration repeated until the condition (/•. 7) 
z 

is satisfied. 

The sequence of estimate.s of "(n) 
E 

z is determined by the method 

* of false position We let 

z 

z represent the value of 

" (n) 
E 

z 

" (n) 
E 

z 

(4.8) 

and denote the successive estimates by the sequence z(k) k=O 1 2 ··· ' ' ' ' . 
A function f(z) is defined as the value of n(n)(l) obtained by 

solving the problem (4.3) - (4.6) with z substituted as the value of 

" (n) 
E z 

f (z) n(n)(l) (4.9) 

The correct value of "(n) 
E 

z 
for which the condition (4.7) is satisfied 

is then given by the solution to the algebraic equation 

f(z) = 0 (4.10) 

The sequence z(k), which converges to the root z , is defined by 

(k+l) 
z 

(k) f(z(k)) 
= z - (k) 

m 
(4.11) 

for k 1,2,···, where 

* See Isaacson and Keller [4], pp. 99-102. 
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jf I. (k)_. <k-1) I ~ _ 
, . Z 7. I . 

m 
(k) 

f(z (i)) _ f(z(i-1)) ( ) ( ) 
- - , l < k, if I z k - 7. k - 1 

1 < f~ 
(i) (i-1) 

z - z 

(4.12) 

The conditional definition of m 
(k) 

is necessitated by the round-

off error in single-precision computer calculations. When the difference 

between the successive estimates z 
(k) 

and z 
(k-1) 

becomes small, 

round-off error can seriously alter the value of 

lz (k) _ z(k-1)1 ~- £ a value of k for which 

use d in the calculations. The first term z 
(o) 

(k) 
m . i represents 

The value £ = 0.1 is 

of the sequence is 

selecte d either from the perturbation results or as 
" (n-1) 
E , de pending 

z 

on the value of n • Using (3.5), we define 

z 
(o) { " (n-1) 

E 
z 

if n 1 

if n > 1 

( 4 .13_) 

The value of z(l) must also be specified before the recursion formula 

(4.11) can be applied. Its value is selected arbitrarily in the 

vicinity of 
(o) 

z The sequence is terminated when the fractional 

differe nce between succe ssive terms becomes less than 10-S , and the 

value of the last term is assigned to 
"(n) E . 

z 
The convergence is rapid, 

and usually Eqs. (4.3) and (4.4) have to be integrated only three or 

four times before an acceptable value of 

results are presented in Table 4. 

" (n) 
E 

z 
is determined. Typical 



-322-

Step 5 

The differential equation for the temperature is solved using the 

most recent estimates for p, E , and n 
z 

(1.10) we obtain the problem for T(n): 

0 
dT(n) 

0 y - - ·-··--·-
dy 

y 1 T(n) 1 

From (1.5), (1.8), and 

h(T(n).E(n) (n)) 
' z 'p (n) 

A(T(n» n 

(4 . 14) 

(4.15) 

(4.16) 

where n = 1,2,···. The integration is again perfonned by the classi-

cal Runge-Kutta method using a stepsize of 0.02. 

The problem for T(n) is a two-point boundary value problem 

similar to the one just discussed for J(n) and 
(n) 

n , and the solu-

tion is obtained by a similar procedure. The integration is again 

begun at y = 0, but here the value of T(n)(O) is varied and the 

integration repeated until the boundary condition at y = is satis-

fied. The correlation between the iterative orocesses of the two 

problems can be emphasized by a redefinition of z and f(z) in the 

present context. First the problem for T(n) is converted to an 

initial value problem in which the boundary condition (4.16) is 

replaced by 

y = 0 = z (4.17) 

f(z) is defined as the solution to this problem evaluated at y 1 

minus the value it should assume: 
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f (z) (4. 18) 

The value of z for which the boundary condition (4.16) is satisfied 

is now the solution to Eq. (4.10). The sequence 
(k) 

z , k=0,1,2,· ··, 

consists of successive approximations to this root of f(z) . It is 

generated by Eqs. (4.11) and (4.12), and the problem (4.14), (4.15), 

and (4.17) must be solved at each step in order to determine f(z(k)). 

f: is here g iven the value 0.005, and the initial term of the 

sequence is define d by 

z 
(o) T(n-1)(1) (4.19) 

z(l) must also be specified, and its value is selected arbitrarily in 

the vicinity of 
(o) 

z • The sequence is again terminated when the 

-5 fractional difference between successive terms becomes less than 10 . 

The r a te of convergence is similar to that of the sequence approximat­

ing E (n), and typical results are presented in Table 5. 
z Since the 

t empera ture distribution corresponding to the last term o f the seque nce 

is never found, the value of the preceding t erm is assigned to 

T(n)(O) 

This step consists of a return to Step 3 to begin anothe r cycl e 

of the iterative procedure. The value of the superscript n is 

increased by one, and in Step 3 a new pressure is calculate d from the 

new t e mperature distribution. The ite r a t ion is continued until the 

fractional difference be twee n 
" (n) 
E 

z 
and E (n- l) become s less t han 

z 
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10 in magn:ltudc. The number of lterat:lons nc• t• J c d lo s ntl s fy 1·1i1 :: 

convergence criterion dep!"-nds principally upon tlir-~ acc11n1cy of till' 

initial approximation to the temperature distrlbuti.on. For instance, 

when z;: = 0.1 , the perturbation sol ution is reasonably accurate, and 

the iteration is stopped after the variables corresponding to n = 4 

are calculated; when z: = 0.4, an acceptable solution is not obtained 

until n = 8 • Typical values of the sequences for 
"'(n) (n) 
E , p , and 

z 

T(n)(O) are presented in Table 6. 

Results 

By executing the procedure described above for a number of dif-

ferent s's, enough information is obtained to show the behavior of 

E , p, J, n, and T as functions of 
z 

z: • The effect of temperature 

inhomogeneities on the shape of n is shown in Fig. 8, where n
0

, n, 

J, and T are plotted as functions of y for a specific value of s 
A 

Graphs of E 
z 

(or ~), p, and T(O) versus I'; (or N ) 
eo 

are plotted 

along with the perturbation values in Figs. 3, 4, 5, 7, and Fig. 6 shows 

T(O) versus ¢. A comparison of the numerical and the perturbation 

results shows that the latter are not v ery accurate except for small 

values of s . Tabulated values of w , p , and T(O) for various 

s are presented in Table 7. 

Unfortunately, the numerical procedure cannot be applied at large 

value s of s , because the variation of T with y causes the domain of 

the data to be exceeded. Eq. (4.29) of Part I shows that the data for 

the coefficients of the equations can be evaluated only for a limited 

range of 
A A A 

E /N = E kT/p • z n z Since T varies more extensively between 

the wall and the center of the discharge as l'; increases, the quantity 
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E /N exceeds its limits during the integration over y if r, is too 
z n 

large. The solution to the problem whc~n z:; = 0. 4 involves a s.1 l~ht 

cxtrapolati.on of the l e ast-squares fit for the data <-tn<l l1<·nce 0.!1 

serves as an upper bound on r, This va 11w of z:: corrnsponcls to an 

e lectron d e nsity of Since tlw solutJon to th0 

problem depends qualitatively on the coefficients, the form of the 

N - E relation beyond this value cannot be predicted. 
eo z 
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5. SUMMARY 

Results of the calculations investigating effects of temperature 

inlwmogeneities, recombination, and space charge can b e inte rpreted by 

comparison with the experimental behavior of discharge columns. Calcu-

lations combining the effects of all three factors are not available, 

but qualitative conclusions can be reached from the studies of Parts II 

and III. 

Combined Effects 

Devia tions from amhipolar conditions as a result of space charge 

are most pronounced at small value s of the electron density. Calcula-

tions combining its effect with that of recombination are performed in 

Part II, and a discussion of its omission in temperature calculations 

begins on p.292. Since recombination and temperature inhomogeneities 

are only significant at large values of the electron density, the lower 

" portion of the N -E 
eo z curve is essentially the same as that shown in 

Fig. 10 of Part II. Calculations involving effects of both space 

charge and t emperature inhomogeneities would be so t e dious and involved 

as to he unprofitable. 

Recombination and temperature inhomogeneities both become impor-

tant at large values of the electron density, and the contribution of 

each to the equations is discussed on p. 307 . The perturbation 

results of Eq. (3.40) show the effect of each on the N - E relation. 
eo z 

These results, the characteristic curves of Parts II and III, and the 

relative magnitudes of S and E show that temperature inhomogenei-

ties become important at a conside rably lower value of N 
eo 

than does 
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recombination. Calculations cannot be performed at values of N 
eo 

1·.'l1cre both a.rC' i.mportant, because the large>. spatial vnrj at ·i ons c~f the 

lt'tnpP1·:it11rr• exceed tl1<· r;111gc' whc'rP c•xp1•riml'lltnl clntn nn• t1v11 [ lalil c . Tl1c 

i 11d i VJ 1l11;1:J 1.•[ f<·etS or l'. t'l'Ot11]i:f Tl<ltJ Oll Hild 1. i 'IHJH'r;1 t ·11J."< ! i 11iio111og e ne i.t ·j L':·i 011 

.... 
11i ,, N -I·: relation arc s ltown 1.n Fi.g. JO of P;1rt TT and Fig. 2 of 

eL1 z 

l'.1rt. 1 rT, hut the comh:lncd e ffect l.s left to con_il~C turc~ . f t .ls ros-

sihl e th<1t as the electron density increases , recomhinat:lon might 

eventually become more important than temperature effects . In that 

case the N -E curve would bend left and then back right with increas­
eo z 

ing N 
eo 

However, s uch qualitative behavior cannot be reliably 

pre clict0d without more data. 

In Part II the effect of space charge on the 
A 

N -E 
eo z relation 

;1 t low N is shown to correspond to the shape of the discharge 
eo 

t:haracteris tic in the subnormal-glow regime. The portion of the dis-

c harge characteristic in whi ch temperature inhomogeneities and recom-

bination are likely to be significant is that corresponding to the 

a bnormal glow or arc (see Fig. 2, Part I). 

In Part II recombination is submitted as a possible factor in 

s haping the discharge characteristic in the abnormal-glow regime. 

llowevPr, the possih.i.l.ity that recombi.nation is important here is 

ac tually quite small; the calculations above show that temperature 

inhomogeneities become important at lower values of the electron den-

s ity (or current), and their effect on the discharge characteristic 

must be accountE~d for first . Furthermore, it is known that the 
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voltage drop in the vicinity of the cathode increases with current in 

the abnonnal regime, and, in fact, this increase is considered the 

* defining prop(>.rty of the abnormal glow . The voltage coordinate of 

the discharge characteristic (Fig. 2, Part I) represents the total 

voltage drop along the discharge. It is quite possible that the rise 

of the characteristic in the abnormal regime is caused only by voltage 

changes in the cathode region and that the rise is totally unrelated 

to the behavior of the electric field in the positive column. In 

particular, the electric field in the positive column may actually 

decrease with increasing current in the manner predicted by calcula-

tions concerning temperature inhomogeneities. 

The discharge characteristic shows that the total voltage drop 

decreases markedly in the transition from the abnormal glow to the arc 

regime. It is known that the large decrease is primarily a cathode 

phenomenon and that, in general, the voltage continues to decrease 

with increasing current in the arc regime although it does so less 

** rapidly Furthennore, the electric field in the positive column 

decreases as the current (or, equivalently, the electron density) 

*** increases , so the positive column contributes to and may play a 

significant role in determining the discharge characteristic in the 

arc regime. Figures 2 and 3 show that the calculated "' N -E eo z 

* See Cobine [l], pp. 214-215, 226-228; Von Engel [5], pp. 225-234. 

** See Cobine [l], pp. 290-298, 311-312; Von Engel [5], pp. 259-263. 
*** See Cobine [l], pp. 298-299, 316-317, 327-329. 
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relations agree qualitatively with this behavior, and henc<:' the effect 

of temperature inhomogeneities as calculated here may contrihutc suh-

stantially to the form of the discharge characteristic i.n the arc 

regime. 

It would be of interest to continue the calculationR to larger 

values of the electron density, but the extent of the data limits our 

efforts. However, Ecker and Zoller [2], using their approximate 

coefficients, are able to do so, and they also find a negative voltage-

current characteristic caused by temperature inhomogeneities. Their 

concluding remark that the calculated behavior corresponds to the 

subnormal-glow regime should be reconsidered, however. 

At very high values of the electron density, recombination may 

be important. The discussion of the recombination coefficient in 

Part I shows that its actual value for hydrogen is probably consider-

ably less than the value used in the calculations of Part II, and hence 

" its effect on the N -E relation would occur at larger values of eo z 

N Although other gases possess larger coefficients, the effect of 
eo 

recombination is not likely to be felt except far into the arc regime. 

* At very large currents, the voltage drop begins to increase again , and 

the effects of recombination may help explain the behavior of the dis-

charge characteristic here. With the appropriate choice of electrodes 

and operating conditions, the discharge may remain a glow at unusually 

** high currents 

* 

In such unusual circumstances it is conceivable that 

See Cobine [l], p. 299. 

** See Cobine [l], pp. 251, 315. 
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the effect of recombination on the discharge characte rlstil' may appear 

before trans ition to an arc. 

It is perhaps useful to reiterate our final conclusions concern-

ing the relation of the calculated positive-column characte ristic to 

the discharge characteristic. The effect of space charge on the 

"' N - E relation can account for the subnormal discharge, and the eo z 

region of the N - E 
eo z curve where E z changes only slightly with N 

eo 

corresponds to the normal glow. The effect of temperature inhomogenei-

ties helps explain the decreasing characteristic of the arc, and the 

effect of recombination is not expected to appear except at very high 

e lectron densities; it is not expected to be of significance in the 

abnormal-glow regime. 
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Apl_)endix A 

NUMERICAL IHFfi'F.RENTIATION OF COEFFICIENTS 

The derivativei; of nnd R with respt~c t to T , tl1 , and 

are obtained numerically by the method descrihed here . The method is 

well illustrated by a formula for the derivative of a function of a 

single variable. 

Differentiation Formula 

The procedure by which the formula is obtained consists of ex-

panding a function f(x) in various Taylor's series about x and 

combini ng them in such a way that certain higher-order derivatives 

cancel. We begin by writing the expansions 

f(x+h) 
2 3 

f (x) +hf' (x) + h
2 

f" (x) + h
6 

f"' (x) + ~: f(iv) (x)+ O(h5) 

(A. l) 

f(x-h) 
h2 3 

f(x) - hf' (x) +2 f"(x) - h
6 

f"' (x) + ~: f(iv) (x)+ O(h5) 

(A. 2) 

f(x+2h) 

f(x-2h) f(x) - 2hf' (x) + 2h2f"(x) -1 h3f 1
" (x) +i h 4f (iv) (x) + O(h5

). 

(A.4) 

Subtracting (A.2) from (A.1), we obtain 

f(x+h) - f(x-h) 
3 

2hf' (x) + ~ f"' (x) + O(h5 ) 
3 

which can be r earranged to yield 

(A. 5) 
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_f (x+h) - f(x-h)_ + O(h2) 
2h (A.6) 

In a similar manner all four expansions are combined to produce the 

formula, 

2 1 1 4 
f' (x) = Jh[f(x+h) - f(x-h) - 8 f(x+2h) +8 f(x-2h)] + O(h ) (A. 7) 

Error Analysis 

The derivatives of the coefficients VI and B are evaluated 

hy applying formulas (A.fi) and (A. 7) for various values of h . The 

calculat:ions of the coefficients from the l east-squa r es fits for the 

experimental data is done in single-precision accuracy on the computer, 

so it is necessary to select h so as to avoid either a large trunca-

tion error or a large round-off error. An example of the accuracy of 

()B 
ap po the results is shown in Table 3, where various calculations of 

are lis ted. By observing such results, it was decided to evaluate the 

derivatives by Eq. (A.7) using 

h 0.02 (A.8) 

Tlw nnswers ohtai nL~d arc:.~ expe cted to he accurate to approx.lmat cly four 

significant digits. 
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Appendix B 

CALCULATION OF 1/1 

1J;
1 

is obtained in a straightforward manner hy 1w rfornd11g 1-IH' 

integrations in Eq . (3.39), which is r ewritte n he low: 

0 

Various derivatives of n , J , and T1 0 0 

from Eqs . (2.2Q), (2.31), and (3.34): 

n 
0 

dn 
0 

dy 

J 
0 

dJ 
0 -- = 

dy 

T 
1 

dT
1 --

dy 

d
2

T 
1 

--2 = 
dy 

'IT 
cos 2Y 

1T 1T -- sin 2 y 
2 

2 rr y 
1T 

sin 2 y 

'IT 
y cos 2Y 

4 
B 

1T 

'JT2 
cos 

2 
y 

2 
B 

'IT 
sin 2 y 

1T 

B 
'IT - cos 2Y 

0 . (B.l) 

are neede d and are ohtained 

(B.2) 

(R . 3) 

(B . 4) 

(B. 5) 

(IL6) 

(B . 7) 

(B. 8) 

The terms in the integrand are now evaluated using Eqs. (3.11) and (3.14) 

and the relat i ons above: 



dJ 
0 

dy 

4 an . 2 n 4 aB 2 n 
= - 2 yf3 dT sin 2 Y + 2 yf3 aT cos 2 Y 

1T 1T 

4 an s aB 2 n - -- YB -- - + - y8 -- cos - y 
1T2 dT 1T2 dT 2 

d dTl 
A -(n dy) 

0 dy 0 

dn
0 

dT
1 A ----+An 

2 
i::B n 

0 0 

0 dy dy 0 0 

2 1T f3A - 2f3A cos -2 y 
0 0 

2 1T 
£ B

0 
cos -2 y 

(IL 9) 

(B.10) 

(B.11) 

(B . 12) 

(B.13) 

(B.14) 

(JL 15) 

(B.16) 

The integrations can be performed most economically if a few 

definite integrals are evaluated first. They are 

1 

f cos ~ y dy = 

0 

2 
1T 

(B.17) 
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J 
1 

2 7T dy f (1 1 7Ty) dy 1 
(IL 18) cos -- v 2 + -2 cos 2 2 . 

0 0 

1 1 1 

I 3 7T 
<ly f 

7T 
dy - f 

7T 2 7T 
dy cos 2Y cos 2 y cos 2 y sin 2 y 

0 0 0 

2 2 4 
(B.19) = TI" - 37T = 37T 

Using (B.11), (B.14), (B.15), and (B.16), Eq. (B.1) becomes 

Solving for ~l and eliminating pl with Eq. (3.36), we obtain 

4 avr 1 avr 8 CJB 4 CJB 
(37T f3 ~T + -7T f3 "'p Po + -3 YB ~ + - y(3 - P 

a a )7T oT 7T3 Clp o 

(B . 21) 
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NOMENCLATURE 

The number following the descr:lptions glves the pn~c· on whld1 

the symbol first appears. Symbols whose use is ve ry temporary and 

those which have been defined previously in Part I usually do not appear 

here. 

Roman 

A variable coefficient in the equations (295) 

A A at I';; = 0 (304) 
0 

B variable coefficient in the equations (295) 

B B at I';; = 0 (304) 
0 

Bl second term in the expansion of B (309) 

E E at I';; = 0 (301) 
zo z 

E nth term of the expansion for E (307) zn z 

~(n) th approximation of E (319) n 
z z 

J J at I';; = 0 (301) 
0 

J th term of the expansion for J (307) n 
n 

J(n) th approximation of J (319) n 

n electron and ion density (293) 

n n at I';; = 0 (301) 
0 

th term of the expansion for (307) n n n n 

n(n) th approximation of (319) n n 

Po p at I';; = 0 (301) 

th term of the expansion for (307) pn n p 

(n) th approximation of (318) p n p 



T 
0 

T 
n 

Greek 
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qunntt ty of r;as in d f.Hcl1aq~l' (296) 

T at r: =< 0 (301) 

th 
of the expansion for T 11 tenn 

initial approximation of T (318) 

th 
n approximation of T (318) 

A 

S with h replaced by 

0 (304) 

A 

h 
0 

(305) 

(307) 

second term in the expansion of v
1 

(308) 

dimensionless axial. electric field (308) 

~ at s = 0 (308) 

th 
n term of the expansion for ~ (308) 
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Table 1 

VALUES OF E AND CONSTANT COEFFICI ENTS zo 

E zo 20 . 84411 volts / cm 

y 2.412279 

£ 0.09612836 

T 1 .164970 x 102 

0 2. 715121 x 10-4 

f3 4.455542 

80 0. 4095883 
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Table 2 

VALUES OF A ' l3 ' AND nmuvATIVl~S OF \)l AND II 
0 0 

Derivatives of v1 and l3 are evaluated at 

A 
0 

n 
0 

av! 
at 
av! 

(T,ijJ,p) = (1,1,p ) 
0 

= 0.860228 

1.02285 

6.42579 

Tp po -6.42542 

av I 
7.42569 aijJ = 

an -2.00052 dT 
= 

an 
1. 99178 ap Po 

an -0.968976 aijJ 
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Table 3 

CALCULATED VALUES OF ~~ p
0 

;)B 
Tlw numbers are the values of ap p 

0 
ca l.culated by tlie 

numerical differentiation formulas (A.6) and (A.7) of Appendix A. 

The headings O(h
2

) and O(h4) represent the truncation errors of 

the formulas used in the respective columns. 

h O(h2) O(h4) 

0.100 1.99651 1.99213 

0.050 1.99307 1.99193 

0.020 1. 99200 1. 99178 

0.010 1.99189 1.99186 

0.005 1. 99204 1.99208 

0.002 1. 99080 1.99064 

0.001 1.98984 1. 98952 
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Table 4 

EXAMPLES OF THE CONVERGENCE OF (k) E~(n) z TO 
z 

r, = 0.3 

n = 1 : k z 
(k) 

0 18.38934 

2 18.84865 

3 18.84923 

4 18.84923 

"(1) 
E = 18.84923 

z 

n(l)(l) = 0.7 x 10-5 

n = 2 k z (k) 

0 18.84923 

2 19. 27286 

3 19.27399 

4 19.27400 

E<2) = 19.21400 
z 

n(Z)(l) = 0.7 x 10-5 

n = 7 k z 
(k) 

0 19.19473 

2 19.19376 

3 19.19374 

~(7) = 19.19374 
z 

n(7) (1) = -0.5 x 10-5 



Table 5 

EXAMPLES OF THE CONVERGENCE OF z(k) to ;(n)(O) 

l;; = 0.3 

n = 1 : k z 
(k) 

0 1. 541728 

2 1.423100 

3 1.423812 

4 1.423805 

T(l)(O) 1.423812 

T(l) (1) 1.00001 

n = 2 k z (k) 

0 1. 423812 

2 1.457333 

3 1. 457508 

4 1.457516 

T( 2)(0) 1.457508 

T(Z) (1) 0.99999 

n = 7 k z (k) 

0 1.449483 

2 1.449376 

3 1.449377 

T (7) (0) 1.449376 

T(7)(1) = 1.00000 
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Table () 

EXAMPLE OF THE SEQUENCES ~(n)' p(n)' T(n)(O) 
z 

r; = 0.3 

~(n) (n) T(n)(O) 
n z 

p 
--·---

0 l. .5lil 728 

1 18.84923 1. 322584 1.423812 

2 19.27400 1.264105 1.457508 

3 19.16916 1.283759 1.446916 

4 19.20161 1. 277559 1.450170 

5 19.19156 1. 279457 1.449165 

6 19.19473 1.278877 1.449483 

7 19.19374 1.279060 1.449376 

8 1. 278996 

E 19.1% 
z 

p = 1. 2790 

T(O) = 1. 4494 
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Table 7 

~1 , p, AND T (O) AS FUNCTIONS OF r_; 

I';; ljJ ___E___ T(O) 

0 1 1 1 

0 . 05 0.98191 1.0549 1.0867 

0.10 0.96636 1.10 54 1.1674 

0 . 15 0.95284 1.15 25 1. 2432 

0 . 20 0 . 94094 1.1969 1.3151 

0 . 25 0.93033 1. 2389 1 . 3836 

0 . 30 0.92084 1.2790 1.4494 

0 . 35 0.91220 1.3174 1. 5127 
)~ 

0 . 40 0.90438 1.3544 1.5739 

* Values corresponding to this y involve a slight 

extrapola t i on of data. 
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Proposition 1 

REl.t\XATTON OF Tllfo: ELECTRON DISTH.ll\ll'l'TON FUNCTION TO 

Tiit-: MAXWELLIAN STATE 

In a plasma typical of the positive column of a glow discharge, 

the applied e lectric field maintains the mean e l ectron energy at a level 

much higher than that of the neutral molecules. If the field is sudden­

ly r emoved, t11e mean electron ener gy or electron temperature decreases 

until it equals the tempe rature of the neutrals at equilibrium, where 

both electrons and neutrals have Maxwellian veloc ity distributions at 

the same temperature. In the following work the response of the elec­

tron distribution function to the abrupt removal of the electric field 

is studied analytically in an attempt to determine the "relaxation 

time"--the time needed for the distribution function to evolve signifi­

cantly toward its asymptotic Maxwellian form. An estimate of the 

relaxat ion time is obtained by an approximate method based on energy­

transfe r considerations, and this value is checked by a numerical 

inte gration that yields the transient behavior of the entire distribu­

tion function. 

The anal ysis i s based on the Boltzmann equation for the electron 

distribution function. The plasma is assumed to be s patially uniform, 

and inelastic collisions a re neglected. Consequently there is no 

mechanism for production or loss of electrons, and the electron density 

remains constant . The analytical work proceeds by expanding the dis­

tribution function in spherical harmonics and substituting the expansion 

into the Boltzmann e quation. Equations are obtained for the first two 



terms of the expansion, and it is these equat-Lons that are solved 

nume rically to determine the relaxation time. 

This study of the relaxation time is prompted by the necessity of 

choosing the proper approach when solving the Boltzmann equation for 

the electron distribution function in a plasma with an alternating elec-

tric field. If the frequency of the field is very high (microwave 

frequency, for instance) so that the field completes a cycle in a time 

much less than the relaxation time, the equation can be simplified 

* g reatly by averaging it with respect to time over one cycle 

• 
On the 

other hand, if the freque ncy is low (powe r-line frequency), the distri-

hutio11 function a t a given time can be found hy solving the equation 

treating the electric field as a constant parameter and using in the 

s olution the value of the field at the time in question. Such simpli-

fying procedures are not available when the frequency is near the 

reciprocal of the relaxation time, and it is important to know the 

relaxation time in order to determine when the approximations can be 

made. Of course, knowledge of the relaxation time is also important in 

other applications involving interruption or alteration of the e l ectric 

fie ld . 

The Boltzmann gquation 

Omitting the t e rms involving spatial gradients and ine lastic 

collisions, the Boltzmann equation for the electron distribution func-

tion can be written as 

* This approach is demonstrated by Holstein [9]. 
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(1) 

f (~, t) is the distribution function normalized so that f dv 

represents the probability of an electron lying in the 

element of velocity space dv 

E is the (constant) electric field 

e is the magnitude of the electronic charge 

m is the electron mass 

(3f/3t) is the rate of increase in f caused by elastic elec-
e. c. 

tron-neutral collisions 

Although the term containing the electric field is not present when the 

equation is solved during the relaxation process, it is included in the 

derivation of the final equations in order to show the appropriateness 

of the choice of initial conditions and to demonstrate the motivation 

for exp:mding f in spherical harmonics. The collision integral can 

be written in terms of electron and neutral distribution functions and 

* the elastic-scattering cross section as 

where 

N 
n 

Nn JJ [F(y,t) f(~,t)- F(_Y.,t) f(~,t)]g q(g,x)d~dY. 

is the number density of neutral molecules 

>'< 
See, for instance, llolt and Haskell [ 10], p. 122. 

(2) 



F (_'!_. t) 

q(g,X) 

x 
dr.? 
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is the distrihut:lon function for the neutral moll'-

cules normal:lzed so that 1ts integral over a1l va]ucs 

of the velocity V is unity 

are the post--collision veloclt it's of an e.l cctron and 

a neutral molecule with pre-collision velocities v 

and V 

is the magnitude of the relative velocity, v - V 

is the differential elastic-scattering cross sec-

tion; 

is the angle of deflection in relative coordinates; 

* is an element of solid angle . 

Because the random electron velocity is much greater than the 

drift velocity, the electron distribution function is almost isotropic 

and can be represented accurately by the first few terms of a spherical-

harmonic expansion in velocity space. If the polar axis is taken in 

the direction of th e e lectric field, there is azimuthal symmetry, and 

the e xpansion in spherical harmonics reduces to an expans ion in 

Legendre polynomials. Consequently f can be written as 

00 

f (~, t) f(v,A,t) l 
n=O 

f (v,t) P (cos 9) 
n n 

(3) 

whe re P (z) 
n 

th 
is the n Legendre polynomial and 9 is the polar angle. 

* These quantities are discussed in detail in Appendices A and B of 
Part I. 
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The substitution of the spherical-hannonic expansion f or f 

··,'( 

into the Boltzmann equation is treated by various writers , hut the 

derivation of the equations for the f is al s o include d here for 
n 

completeness. Equations for the f are obtained hy expressing e ach 
n 

term of the Boltzmann equat :lon as a series expansion in spherical h:-tr-

monies. Since the spherical hannonics are linearly indepe ndent and the 

Boltzmann equation must hold as an identity in 8 , terms proportional 

to the same spherical harmonic are associated to form an equation. 

Expansion of the Left-Hand Side 

If the expansion (3) is substituted into the left-hand side of 

Eq. (1), various properties of the Legendre polynomials can be exploited 

to express the entire side as a series expansion. The gradient is 

written in spherical coordinates in velocity space with the polar 

axis taken in the direction of the electric field, and this direction 

is expressed by the unit vector k in Fig. l. Using the unit vectors 

~· ~ and ~ shown there, the gradient in spherical coordinates 

becomes 

If+ 1 (jf 1 (jf 
~ av ~ v ae- + ~ v sin e Cl¢ 

(4) 

It is apparent from Fig. 1 that k can also be expressed in terms of 

these coordinates as 

k ~ cos e - ~ sin 8 (5) 

;'(. 

See, for instance, Allis [l]. 
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From Eqs. (4) and (5) we obtain the inner produc t 

k. ~ 
;)v 

cos 
sin 8 ()f - -- - -

v ae 

Substituting the expansion (3) into (6) 

k .lf= 
a~ 

oo af f 
I [ a~ cos 8 Pn(cos 8)+ vn sin

2
8 P~(cos 9)] 

n=O 

( ()) 

(7) 

This expres sion ca n be s implifi e d using the following identi-

t ies>'< 

cos 8 p (cos 8) 
n 

sin28 P' (cos 8) 
n 

n + 1 n 
2n+l pn+l(cos 9 )+2n+l pn-l(cos 9) 

n(n+l) 
2n+l [P n-l (cos 8) - P n+l (cos 8)] 

for n ~ 0 , provided it is understood that 

P _
1 

(cos 9) 0 

Substituting these fonnulas into (7) , 

00 () f 
n [n + 1 p ( ") n ( )] 

a v 2n+l n+lcos"+2n+lpn-l cose l { 
n=O 

f 

(8) 

(9) 

(10) 

n n(n+l) n(n+l) 
+ v [2n+ 1 pn-l(cos 9 )- 2n+l Pn+l(cos 9 )1} (ll) 

~ n af n-1 
l [ 2n-l av 

n=O 

n(n-1) fn-1 n+ 1 afn+l 
~-~ -- + --- ---=--
2n - 1 v 2n + 3 av 

+ (n+;) (~+2 ) fn+l]P (cos 8) . (12) 
n+ v n 

See Sansone [13], pp . 178-179. 
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where 

H (v,t) 
n 

af 
n 

a t 

af 
at 
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00 

~E l H (v,t) P (cos B) 
JU -

af 
av 

n=O 
n n 

af 
eE n n-1 
---;; [ 2n-l av n(n-1) fn-1 n + 1 afn+l 

2n - 1 --v- + 2n+3 av 

(n+l)(n+2) fn+l 
+ 2n+3 v ] · 

Expa nsion of the Collision Integral 

(13) 

(14) 

After various manipulations the collision integral can also be 

expressed as an expansion in Legendre polynomials. Substituting (3) 

into (2) and writing the int~gration over ~ in more detail, 

00 

JJ f 
'\, '\, '\, 

[F(V,t)f (v,t)P (cos 9)- F(_V,t) f (v,t)P (cos 9)] 
- n n n n 

c1f) 
C'lt e . c. 

N l 
n n=O 

x g q(g,X) sin X <lX <l E dV (15 ) 

'\, '\, 

e is the angle he tween v and k and can he expressed in t e rms 

'\, 

of e and the angle between v and v x is the angle between 

'\, '\, '\, 

v-V and v-V and differs from the angle between v and v by a 

* term of orde r O(m/M) , where M is the mass of a neutral molecule. 

'\, 
Neg l e cting this term, v can be expressed in a spherical coordinate sys-

tern with v as polar axis and X as polar angle. If E is measured 

from ~ (see Fig. 2), 

* Sec , for instance , Delcroix [4], p. 94. 
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~ ~ ~ ~ 

v ~ v cos X + ~v sin X cos £ + ~ v sin X sin £ . (16) 

~ 

cos e can now be obtained from (5) and (16) as 

~ 

~ v 
cos e k 

~ 
(17) 

v 

cos e cos x - sin e sin x cos £ . (18) 

* The addition theorem of spherical harmonics can be used to 
~ 

writ e P (cos e) in a more convenient form : 
n 

~ 

P (cos 9) 
n 

p (cos 9 cos x - sin e sin x cos £) 
n 

P (cos 9) P (cos X) 
n n 

(19) 

n 
l (-l)m (n-m)! Pm(cos 9) Pm(cos X)cos m£ , (20) 

(n+m) ! n n + 2 
m=l 

for n ~ 1 If this expression is substituted into Eq. (15) and 

integrated over £ , a l l terms involved in the summation over m disap-

pear. Hence 

(]() 

l 
n=O 

s (v,t) p (cos e) 
n n 

(21) 

where 

S (v, t) 
n 

(22) 

* See Sansone (13], p. 268. 



-365-

In order to obtain equations for f 
0 

and f 1 , it is necessary 

to express S
0 

and s
1 

in more convenient forms. Before the inte grals 

c a n be s i mplified, it is necessary to specify the neutral distribution 

function. The neutral velocity distribution is approximately Maxwellian 

at the gas temperature T , so we write 

F (_y, t) (-M-) 3 / 2 exp [-MV2kT2] 
2rrkT (23) 

The transformations to the desired expressions involve some rather c um-

be rsome algebra a nd are not presented here . The fina l forms of 

sl are given by 

whe r e 

and 

s 
0 

af 
= m _!.__ l._ [ v3v (v)f ] + kT _!.__ l._ [v2v (v) o ] 

M 2 av m o M 2 av m av 
v v 

v (v) = Nv J (1 - cos x )q(v,x ) an m n 

N v ~(v) n 

~(v) J (1 - cos x> q(v,x ) an 

S and 
0 

( 25) 

( 27) 

( 28) 

( 29) 

(30) 

The c ollision fre qu ency Vm and the momentum-transfer cross section ~ 

are discussed i n Appendix B of Part I. 
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Derivations of the above are presented with varying degrees of 

c l a r i ty in several of the references liste<l. Perhaps the most systema-

tic method, the one:~ showing most clearly the approximations involved, 

is that of Desloge and Matthysse [5], although they begin with a some-

what different but equivalent form of the Boltzmann equation and 

proceed through some very tedious manipulations. Besides the assumption 

that F is Maxwellian, the derivation sometimes ignores the difference 

between the relative velocity and the electron velocity. Because of the 

large difference between the magnitudes of the electron and the molecu-

lar v e locities, the relative velocity can be expressed as the electron 

v e locity plus terms involving the ratio of electron mass to molecular 

mass. In the expressions for 5
0 

and s1 , terms involving higher 

relative orders in the mass ratio are neglected. 

Equations for f 0 and f 1 

Equations for the f are obtained by equating the H and the 
n n 

S In the following development the electron mean free path A is 
n 

assumed constant, so v , which appears in the expressions for 
m 

s
1 

is replaced according to the equation 

= v/v m 

From Eqs. (14) and (25) we now obtain 

S and 
0 

(31) 

(32) 
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From Eq. (14) it is seen that f 2 appears in the expression for H
1 

so 

a closed systL'lll of L'qunt ions for f 
0 

and r 
I 

ls not oh ta I 11cd by L'<p1:11. -

Jng 11
1 

and s
1 

• ConsL'c[uent.1.y i t Ls necessary to tru11caL l' Liu.· sysl:t>m 

of equations by nc.>g.lecting f
2 

. Ginsburg and Gurevich [8] discuss the 

validity of this procedure in detail and conclude that r
2 

is indeed 

negligible except for very small and very large velocities. Equating 

H
1 

and s
1 

from Eqs. (14) and (27) then yields 

E (jf 1 
e o - - vf -;a; :X. 1 (33) 

Formulation of the Problem 

In studying the relaxation of the electron distribution function, 

the equations for f 
0 

and are solved with E set equal to zero. 

However, initial conditions on f 
0 

and f
1 

must be prescribed, and 

these initial conditions are taken to be an approximation to the steady-

state solution of the equations in the presence of an electric field. 

It is easily verified that the steady-state solution to Eqs . (32) and 

(33) for f 
0 

is the Druyvesteyn distribution 

3 4 2 2 2 g (v) = C exp[ -3m v /(4Me E A )] 
0 

(34) 

provide d the term involving kT/M in (32) is neglected. It can be 

* shown that the term in (32) which contains m/M represents the change 

in f that would result from electron-neutral collisions if the 
0 

neutrals were stationary before collision. The term that contains kT/M 

* See Chapman and Cowling [2], pp. 346-352. 
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represents the change in f 
0 

caused by energy given to electrons in 

collisions because of the thermal energy of the neutrals. The relative 

importance of the two terms can be determined by a study of the equa-

tion and is roughly the ratio of mean electron energy to mean neutral 

energy. Actually the complete steady- state solution can be obtained 

* analytically , and it reduces to the Druyvesteyn distribution if 

M (eEA.) 2 » kT 
3v2 m 

(35) 

Thus the term involving kT/M can be neglected when a strong electric 

field is present but must be retained in studying the relaxation of the 

electron temperature to that of the neutrals. 

The steady-state solution of Eqs. (32) and (33) for E 

readily seen to be the Maxwellian distribution 

f (v) 
0 

2 
C' exp[-mv /(2kT)] 

0 

0 is 

(36) 

(37) 

f
0 

and f 1 must approach these f unctions asymptotically in the relaxa-

tion process. 

Statement of Problem 

The equations to be solved following the abrupt removal of the 

electric field can now be written along with the appropriate initial 

and boundary conditions. 

* See Wu [14]. 



t = 0 : 

f (v,O) 
0 

f 1 (v,O) 

v = 0 

/\s v + oo 

g (v) 
0 
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()f 
0 av (O,t) 

£
1

(0,t) 

0 

0 

f , f ] + 0 , exponentially . 
0 -

(38) 

(39) 

(40) 

(41) 

(4 2 ) 

(43) 

(44) 

The coefficient in Eq. (40) is chosen so that g
0

(v) is norm-

alize d: 

f 
g (v) dv = 1 

0 -
(45) 

where dv = v 2sin e dv ae d~ (46) 

in spherical coordinate s. That (45) is true is readily established 

u s ing the following integration formula from Dwight [ 6 ] 
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00 

f 
n m 

x exp [-(rx) ] dx (47) 

0 

g
1

(v) is selected as the time-independent solution of Eq. (33) corres­

ponding to the Druyvesteyn distribution: 

m v dv (48) 

The desired asymptotic form of f 
0 

is normalized to unity as written 

below 

f ~ (-m~) 312 exp[-mv2/(2kT)] 
o 21rkT (49) 

That f remains normalized for all t can be seen from Eq. (38); if 
0 

the equation is integrated over all velocities, 

00 00 

df 

f 
m 1 

f ~v 4 kT f d 3 afo 0 
dv = 4'1T 

dt M A (v f )dv + 4'1T - -(v ~-)dv 
0 MA av dV 

0 

m 1 
[v

4
f 0J: + 4'1T - -

M A 

0 

after condition (44) is applied. If 
00 af 

0 

4 
kT 

'IT-
MA [v3 

af0 Joo 
dV Q 

df /dt is continuous and if 
0 

(SO) 

(51) 

(52) 

J v 2 --.f!- dv converges uniformly in 
0 t 

t , the differentiation and inte-

gration can be interchanged to yield 

= 0 . (53) 

From the initial conditions it follows that 
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J f
0 

dv 1 ( 54) 

for all t • 

The boundary conditions at v = 0 are chosen by requiring the 

distribution function f(~,t) to behave well at the origin in velocity 

space. f(v,t) is approximated by 

f(v,t) (55) 

and the condJt:Lon on f 1 is obtained by r e quiring that f be indepen-

dent of R at v = 0 The condition that af /av = 0 at v 
0 

0 is 

applied in order that the distribution function be smooth at the origin. 

If the condition were not satisfied, the velocity gradient of the dis-

tribution function f would be discontinuous at v = 0 . 

The requirement that f
0 

and f
1 

exhibit exponential decay with 

increasing v is somewhat arbitrary and is not used explicitly. However, 

both the initial and the asymptotic distribution functions possess such 

behavior, and it is essential to Eq. (54) that as v -+ 00 

(see Eq. (51)). 

SoluU.on for f 1 

Equation (39) for f 1 subject to the conditions (41) and (43) 

can b e solved immediately and yields 

f
1
(v,t) g 1 (v) exp[-vt/\] (56) 

(57) 
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The latter formula shows that the reciprocal of the co 1.1 .f s lon frequency 

provides a measure of the "relaxation time" for f
1 

Sinc e the electric 

current is obtained from f
1 

by calculating the average electron velo-

city, which depends on f
1 

but not on f , it is apparent that the 
0 

current is effectively zero within a few collisions of the removal of 

the field. 

Estimate of Relaxation Time 

The equation for f 
0 

is a second-order parabolic e quation, and 

its solution shows the evolution of f with time and thus yields the 
0 

r e laxation time, the time required for the isotropic term of the dis-

tribution function to undergo an appreciable portion of the change from 

Druyvesteyn to Maxwellian. Before proceeding with a numerical solution, 

it is convenient to obtain an estimate of the relaxation time. Such an 

estimate can be obtained from Eq. (B.34) in Appendix B of Part I, which 

give s the rate per unit volume at which energy is transferred from elec-

trons to neutrals through elastic collisions. In rewriting the formula 

in the present nomenclature, f 

the e l ectron density, and 

obtain 

\) 
m 

must be replaced by N f , where e 

is eliminated by Eq. (31). Then we 

R -2 m Ne I 
M A 

1 2 1 2 
f (~) C-z mv - <-z MV > )v dv 

N 
e 

is 

(58) 

If we let v represent the electron root-mean-square velocity at 
0 

equilibrium, we must have 

(59) 

Furthe rmore, the average functions of velocity r e sulting from the 
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integration over v do not differ significantly from the same function s 

of the average speed or the root-mean-square velocity. Consequently, we 

discard the distinction between the various average speeds and write the 

functions in terms of some average speed u 

written as 

or 

d 1 2 
dt (Ne 2 mu ) 

N 
2 m e (1 2 1 2) - - - u - mu - - mv 

M A 2 2 o 

du 
dt 

m 1 (u2 _ v2) 
M X- o 

Now Eq. (58) can be 

This equation can be integrated easily as follows: 

1 
u-v 

0 

1 
u+v 

0 

du 
v 

- 2 ~ __£ dt 
MA 

Integrating from 0 to t 

11 - v u - v v 
0 0 0 m o ] 

+ 
exp [-2 - - t 

ll + v u v M A 
0 0 0 

where 11 = u a t t 0 Solving for u 
0 

u - v v 
0 0 m o 

t] 1 + 
u + 

exp[-2 - -
v M A 

0 0 
u v 

0 u - v v 
1 -

0 0 m o 
u + 

exp[-2 - - t] 
v MA 

0 0 

The fractional change in u - v is given 
0 

by 

(60) 

(61) 

(62) 

(63) 

(64) 



u -v 
0 

ll -v 
0 0 

2v 
0 ---- --------

ll + v 
0 () 

-374-

v 
m o 

exp[-2 M -X- t] 

u - v 
1 - _f!__!!.. 

ll + v 
0 0 

v 
[ m o t ] exp -2 M ),_-

(65) 

Fro~ this equation it is apparent tliat the proper choic0 for 

the r e laxation time t is 
r 

t 
r 

1 M A 
2 m v 

0 

(66) 

For a Maxwellian distribution v 
0 

is given by Eqs. (A.29) and (A.31) 

of Appendix A, and 

t 
r 

t becomes 
r 

1 M fm 
2 m -Vm A 

Dimensionless Equations 

(67) 

The relaxation time defined a bove provides a convenient unit in 

which to measure the time. In order to make the velocity dime nsionless 

also, it is necessary to select a unit v elocity. The measure adopted 

is the root-mean-square velocity of the Maxwellian distribution. The 

new indepe ndent variables are denoted by 

T tit 
r 

v/~ 

(68) 

(69) 

A dimensionless distribution function is defined so that the velocity 

distribution remains normalize d to unity: 



where 

f f 0 dv 

F(CT) 
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(3kT/m)
312 f f 0 d~ = f F rl~ 

(3kT/m) 3
/

2 
f (v, t) 

0 

In the new variables the Maxwellian distribution function is 

F "' 
(l_) 3/ 2 exp [ _ 3 t:2 ] 
2n 2 

and the Druyvesteyn is 

G (t:) 
1 27 3/4 kT 3/2 27 m k

2
T2 c4] 

(- ~) (-) exp [ - -4 -M 2 2 2 "' 
nf(t) 4 M eEA e E A 

After changing to the new variables, Eq. (38) becomes 

(70) 

(71) 

(72) 

(73) 

(74) 

This equation can be rewritten after completing the diff erentia-

tion, and the formulation of the problem in dimensionless variables 

becomes 

(75) 

for 

F(t:,O) G (t:) 

(76) 

3.588 x 10-4 exp[- 1.538 x 10-4 t:4 ] . (77) 
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()F a1° (0,T) , 
0 (78) 

As E, -+ 00 

F(E,,T) + 0 , exponentially. (79) 

From Eq. (72) the asymptotic behavior is 

F rv 0.330 exp[-% ~2 ] (80) 

The numerical values for the coefficients in (77) are obtaine d 

from Eqs. (A.41) and (A.42). Before proceeding with a numerical inte-

gration of (75), it is important to obtain some idea of the magnitude 

of the variables and parameters involved. Numerical values of quanti-

ties associated with the initial and asymptotic distributions and with 

the dimensionless variables are calculated in Appendix A. 

Numerical Solution 

The problem defined above is solved numerically for F(E,,T) by 

a finite-difference method that is described in Appe ndix B. The inte-

gration is perfonne d to T = 1 , and the form of the distribution 

function at various times is shown in Fig . 3. The form of the distri-

bution f unction a t T = 1 shows that the n•laxation time define d by 

Eq. (67) and s e l ec t e d as a result of approximate conside rations is a 

good choice. 

Figure 3 also shows that a maximum exists in the curves for 

F(E,,T) whic h is present in neither the initial nor the asymptotic dis-

tributions. However, this occurrence can be explaine d on a physical 

basis: since the collision frequency of the fast e l ectrons is much 
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higltcr than that of the slow ones, they lose t' nL·rgy 1111H.: h mon• rnpidly, 

and the concentration of electrons of intermed°i<'lt (! VL!loc.lty is grl'nt"ly 

increased. 
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Appendix A 

PRELIMINARY CALCULATIONS 

The function f (v, t) (or F(t; 9r)) is determi n ed numerically, 
0 

so it is necessary to select values for the electric field and the mean 

fr e e path. Also, in order to obtain an order of magnitude estimate for 

the behavior of f (v,t), certain quantities associated with the ini­
o 

tial and asymptotic distributions, such as root-mean-square velocities, 

are calculated. 

In order to perform physically meaningful calculations, the 

e qua t ions are applied to the positive column of a g low discharge in neon 

at a pressure of 2 mm Hg and a gas tempera ture of 300°K. Data pre sented 

* in Cobine indicate that with a discharge chamber of appropriate geo-

metry an electric field of 0 . 4 volts/cm may be sufficient to sustain 

the discharge at the assigned pressure, and that value is used through-

out the following calculations. 

Using Eqs. (29) and (31), the mean free path can b e expre ssed 

as 

A = l/(N Q ) 
nm 

The n umber den sit y of n eon a toms N 
n 

law: 

N 
n 

p/(kT) 

(A. l) 

is calculated from the ideal gas 

(A. 2) 

6 . 438 x 10
16 

atoms/cm
3 . (A.3) 

* See Cobine [3], p . 235. 
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Cross section data for ~ as a function of electron energy are avail-

able in Massey and Burhop [11), p. 15. Since a constant A. is assumed 

in the equations, a particular value must be selected as an approxim<I-

t"ion. For a given velocity distribution the mean energy cotd d he 

detc rmim'd as a function of A. • By evaluating ~ (and hence ;\) nt 

the mean cn0.rgy, an iterative procedure can he easily <lcvelope <l that 

de t e rmines both A. and the mean energy. However, the velocity dis-

tribution and the mean energy change with time, so Qm is evaluated at 

an energy that lies between the values of the mean energy for the 

Druyvesteyn a nd the Maxwellian distributions. The value adopted is 

where a 
0 

2. 57T 
2 

a 
0 

-16 2 
2.20 x 10 cm 

0. 5292 x l0-
8

cm 

is the rad i us of the first Bohr orbit. Then A. becomes 

0.0706 cm • 

(A.4) 

(A.5) 

(A. 6) 

(A. 7) 

The mass M of a neon atom is also needed and is obtained by 

dividing the atomic weight of neon by Avogadro's number: 

M (20.183)/(6.0228 x 10
23

) 

3.351 x 10-23 gm • (A.8) 

Various quantities of interest in comparing the Druyvesteyn and 

the Maxwe llian distributions are calculated below. 



-380-

Druyveste yn: 

< v > 

8.557 x 10
7
cm/sec 

< v2 > 

The root-mean-square v e locity of an electron is 

and the mean energy is 

1 2 < - mv > 
2 

The v a riance of v is 

7 9.018 x 10 cm/sec 

-12 
3.704 x 10 ergs 

2.312 eV 

(A . 9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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var(v) 

14 2 2 8.12 x 10 cm /sec 

and so a standard deviation is 

Maxwellian: 

<v> 

2 
<v > = 

0.342 < v > 

7 2.85 x 10 cm/sec 

(_m_)3/2 f [ mv
2
1 dv 

2rrkT v exp - 2kT 

4 (_m_)3/2 
7T 27TkT 

00 

2 mv 
exp[- 2kT] dv 

1.076 x 107cm/sec 

4 (--1!!__) 3 I 2 
7T 2rrkT 

3kT/m 

00 

2 mv 
exp[- 2kT] dv 

7 1.168 x 10 cm/sec 

The mean energy of an electron is 

< l m v 2 > = l kT 
2 2 

6.21 x l0-14 ergs 

0.0388 eV 

(A.20) 

(A. 21) 

(A. 2 2 ) 

(A.23) 

(A. 24) 

(A. 25) 

(A. 26) 

(A. 27) 

(A. 28) 

(A. 29) 

(A.30) 

(A. 31) 

(A. 32) 

(A.33) 

(A. 34) 
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The previous calculations provide a rough comparison of the two 

distribution functions. The ratio of root-mean-square velocities is 

If< v
2 > (Druyvesteyn) 

-V< v 2 
> (Maxwellian) 

= 7.73 

TIH' r.;1t Jo of mean el<•ctron <.~nergies is 

l 2 ( ) < 2 mv > Druyvesteyn 
59.7 

1 2 
< 2 mv > (Maxwellian) 

(A.35) 

(A.36) 

This quantity shows that the thennal energy of the atoms is virtually 

negligible compared with the energy supplied to the electrons by the 

electric field. Such relative values are necessary if the Druyvesteyn 

distribution is to provide an accurate description of the electron 

behavior. Since the root-mean-square velocity of the Druyvesteyn dis-

tribution is considerably greater than that of the Maxwellian, it is 

obvious that the coefficient of the Druyvesteyn distribution function 

must b e much smaller. Their values are listed below: 

= 

Their ratio is 

-25 3 3 2.252 x 10 sec /cm 

-22 3 3 2.071 x 10 sec /cm 

-3 1.09 x 10 . 

(A. 37) 

(A. 38) 

(A.39) 
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The calculations above also provide a means of evaluat lng tlu• 

effect of inelasti.c collisions, which are neglected 1n the equation8. 

The lowest excited state of the neon atom possesses an energy 16.61 eV 

* above the ground state, and the ionization potential is 21.56 eV. 

Since the mean energy of the Druyvesteyn distribution is 2.312 eV, we 

conclude that inelastic collisions have little effect on the form of the 

distribution function. 

Several quantities occurring in the dimensionless equations must 

also be calculated. The relaxation time of Eq. (67) has the value 

t 
r 

-4 1.112 x 10 sec. (A. 40) 

The characteristic quantity used in creating the dimensionless velocity 

is just the Maxwellian root-mean-square velocity of Eq. (A.31). The 

coefficient and the exponent of the dimensionless Druyvesteyn distribu-

tion are listed below: 

1 (2:]_ ~)3/4 ( kT)3/2 

nr(%) 4 M eEA 

-4 3. 588 x 10 

27 m k
2
T

2 

4 M e2E2A 2 
-4 1.538 x 10 

(A. 41) 

(A . 42) 

It is of interest to evaluate (u - v )/(u - v ) of Eq. (65) when 
0 0 0 

t 

* 

t 
r 

Then 

u - v 
0 

u - v 
0 0 

See Moore [12). 

2v 
0 

u + v 
0 0 

UO- VO -1 
(exp(l) - u + v ) 

0 0 

(A . 43) 



Using Eq. (A.35) for 

at t t 
r 

u /v 
0 0 

u - v 
0 

u - v 
0 0 
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0.118 (A.44) 
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Appendix B 

* TllE FINITE-DIFFERENCE CALCULATION 

l~q11ntlo11 (7'i) is solvl•d numcricaJly hy an J.mpljcl. t flnlt<·-

difference me thod. The solution proceeds ste pwise in the T direction 

with values of F being calculated at all net points in the F, direc-

tion at each step. 

If h and k represent the increments and s and n the net 

points in the F, and T directions respectively, the finite-difference 

equation corresponding to (75) can be written 

F - F 
s,n+l s,n 

k 

F - 2F + F 
sh [ s+l,n+l s,n+l s-1,n+l] 
6 h2 

F -F 
+ ~[(sh)2+ l] [ s+l,n+~h s-1,n+l] +2sh Fs,n (B.l) 

whe re the t;, derivatives have been replaced by their central difference s . 

This e quation is to be solved for quantitie s on the n+l time l ev e l in 

terms of those b e low. Stability considerations require that both the 

first and second [,-derivatives be written on the n+l l e vel. A 

rearrangement of (B.l) changes it to the usual form for a system of 

linear equations: 

[1.
4 

h(s 2h 2+ 1)- ~6 sh] F + [l + 1-
3 

sh] F 
s-1,n+l s,n+l 

- [~4 h(s
2
h

2+ l)+ ~6 sh] F 
s+l,n+l (B.2) 

* See, for instance, Forsythe and Wasow [7] for a discussion of the t ech-
niques. 



2 k/h (11.:1) 

E11uation (11.2) written for all s is a tridiagonal systPm of linear 

equ.:itions and is solved by Gaussj_an elimination. 

In order to solve (B.2) it is necessary to use finit e -diffe r e nce 

formulations of the boundary conditions at the ends of the ~ interval. 

Equation (78) implies 

F 
o,n+l 

F 
l,n+l (B.4) 

The solution of the finite-differe nce equation in the ~-direction is 

t e rminated at ~ = 12, and the boundary condition there has a consider­

able effect on the stability of the problem. The logarithm of the last 

F is obtained by a Lagrangian interpolation formula involving values 

of the three previous F ' s in the ~-direction . Following a partial 

reduction of the system (B . 2) by Gaussian elimination, the F's in the 

inte rpolation formula can be expressed in t erms of the final F . The 

solution of this equation for the final F is found by a Newton­

Raphson iteration, and once this value is obtained, (B.2) can be solved 

completely for the n+l time level. 

The sol ution of the finite-difference equation is obtained in the 

region 

The increments in the net 

0 6 ~ 6 

0 6 T 6 

spacing are 

h 0.25 

k 0.01 

12 

1 

(B. 5) 

(B. 6) 

(B. 7) 

(B. 8) 
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dv 
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Roman: 
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f 

e.c. 

f (v,t) 
n 

F(~, t) 

F(~,T) 

F 
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NOMENCLATURE 

velocity gradient of f 

time rate of change of f from elastic collisions 

volume element in velocity space 

volume element in ~-space 

element of solid angle 

radius of the first Bohr orbit 

magnitude of the electronic charge 

unit vector in the v-direction 

unit vector in the 9-direction 

unit vector in the ~-direction 

magnitude of t h e electric field 

the electric field 

electron distribution function 

coefficient of P (cos 9) in the expansion of f 
n 

distribution function for neutral molecules 

dimensionless electron distribution function 

finite-difference approximation to F(~,t) 

magnitude of the relative velocity 

isotropic term of Druyvesteyn distribution 

anisotropic term of Druyvesteyn distribut ion 

dimensionless isotropic Druyvesteyn distribution 



H (v,t) 
n 

i 

.i 

k 

k 

m 

M 

N 
n 

p (z) 
n 

q 

Qm 

S (v,t) 
n 

t 

t r 

T 

u 

u 
0 

v 

v 

'V 
v 

v 
0 

v 
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coefficient of P (cos 9) in the expansion of the 
n 

left-hand side of the Boltzmann equation 

unit vector 

unit vector 

Boltzmann constant 

unit vector in the direction of the electric field 

mass of an electron 

mass of a neutral molecule 

number density of neutral molecules 

Legendre polynomial 

associated Legendre function 

differential elastic-scattering cross section 

momentum-transfer cross section 

coefficient of P (cos 9) in the expansion of the 
n 

collision integral 

time 

relaxation time 

temperature of neutral molecules 

some average ele ctron speed 

initial value of u 

magnitude of v 

electron velocity 

electron velocity after collision 

electron root-mean-square velocity in Maxwellian 

state 

molecular v e locity 



'V 
v 

Greek: 

r 

\) 
m 

T 

x 
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moleculnr vclocitv aftt•r co I I ls i 011 

gamma function 

azimuthal angle about e 
-v 

polar angle measured from k 

9 after collision 

electron mean free path 

collision frequency for momentum transfer 

dimensionless velocity 

dimensionless time 

azimuthal angle about k 

angle of deflection in relative coordinates and 

polar angle measured from e 
-v 
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Figure 1: Spherical Coordinates and Base Vectors 
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Figure 2: Relation of 
"\, 

v to :!.._ 
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DRUYVESTEYN AT r = 0 
MAXWELL IAN 
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~ 
Figure 3: Numerical Results 
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Proposition 2 

JUMP DISCONTINUITIES IN CONCENTRATION PROFILES 

FOR FIXED-COLUMN ADSORPTION 

Exchange processes such as chromatography and ion exchange, 

which involve adsorption in fixed columns, can be described by a first-

orde r nonlinear partial differential equation if equilibrium is 

assumed. A cont inuous solution is easily obtained, but it becomes 

multiple-valued with increasing time. It can be made practicable by 

introducing a jump discontinuity. The lite rature describes a means of 

determining the size and location of the discontinuity that is usable 

only for special initial conditions. In this pre sentation equations 

are developed whose solutions provide an analytical determination of 

the size and location for arbitrary initial conditions. 

Material Balance 

The basic equation that is used in the following development 

is obtained by a material balance. The physical situation is sketched 

in Fig. 1 and consists of fluid flowing through a column containing a 

fixed bed of solid matter as in the case of chromatography or ion 

exchange. The fluid is assumed to flow with a constant velocity V 

that is uniform throughout the column. A solute is transferred 

between the liquid phase and the solid phase and its concentrations in 

the two phases are to b e found as functions of distance x along the 

column and time t The following definitions are adopted: 

p concentration of solute in liquid , based on a unit 
volume of liquid; 
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q concentration of solute on solid, based on a unit 
volume of solid; 

fraction of volume in column that is occupied by 
liquid. 

Using the ahove terms, an equation is obtained by equating the rat e of 

inc rease of solute within the region bounded by x 1 and in l"i.g. 1 

to the convective flux through the boundaries: 

x2 x2 

;, [ I ap(x,t)dx + I (1-a) q(x,t)dx] ~ aVp(x
1 
,t) - aVp(x

2
,t) . (1) 

xl xl 

Diffusion is neglected. If p and q are continuously differentiable, 

a differential equation can be obtained: 

(2) 

One of the dependent variables can be eliminated from this 

equation :lf e quilibrium between the amount of solute in solution and 

that adsorbed on the solid is assumed at each point. Then a given 

value of p dete rmines q 

q = f(p) 

Now Eq. (2) becomes 

~~ + c(p)~~ 0 

where 

c(p) 
v 

1 + 1-a f' (p) 
a 

(3) 

(4) 

(5) 
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The Continuous Solution 

Equation (4) becomes 

~ 
dt 

0 (6) 

if the differentiation is pe rformed along the characteristics de fin e d 

by 

dx 
dt 

c(p) 

With initial conditions given by 

and c defined by 
0 

p (x, O) 

c (x) 
0 

p (x) 
0 

c(p (x)) 
0 

the solutions o f (6) and (7) are 

x c (t;;) t + t;; 
0 

p 

(7) 

(8) 

(9) 

(10) 

(11) 

t;, corr esponds to the point at which the characteristic intersects the 

a b scissa. The situation is illustrated in Fig . 2. 

Equations (10) a nd (11) are capable of an instruc tive physical 

interpretation. If p is plotted against x , each point of the 

curve c an be r egarded a s moving parallel to the x-axis with a velocity 

c(p) tha t de pe nds upon its ordi nate. The situation is depicted by 

Fig. 3. These considerations show how multiple-value d solutions can 

arise with the passage of time. Two possibilities are schematically 

presented in Fig. 4. 
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Such a development is, of course, physically unreasonable and 

corresponds to a discrepancy between the mathematical model and the 

actual physical situation . It has been found that a suitable approxi-

mation to the physics and to solutions of more accurate equations is 

obtained if a discontinuity is introduced in the multiple-valued region . 

/\n illustrntion is provided by the> clashed lines in Fi~. 4. The problem 

remainin~ is to determine the size and the location of the discontinuity 

as functions of time . 

Introduction of the Discontinuity 

One relation between the quantities involved can be obtained 

from Eq. (1), which represents conservation of material. If it is 

assumed that p(x,t) has a jump discontinuity at a point s(t) between 

x
1 

and x
2 

, the integ rals can be written 

x2 s(t) x2 

J J + J (12) 

xl xl s(t) 

and the derivative of the integral becomes 

1: 
x2 

d p(x,t)dx 
ds 

(p (s ,t) - p(s+,t)) + f 
EQ 

at dt dt dx . 

xl 

(13) 

If xl and x2 are permitted to approach s , (1) becomes 

ds ds 
-a dt [p] x=s - (l-a) dt [f(p)]x=s -a V [p]x=s (14) 

whe r e (15) 



-399-

After a rearrangement we obtain 

V[p]x=s 
(16) 

ds 
dt [ ] + 1-a 

p x =s a [f(p)]x=s 

The above equation must hold when a discontinuity exists. The 

need for a discontinuity first appears when Eq. (10) cannot be solved 

for s a s a function of x and t . The analytical requirement for 

this situation is that the derivat ive of the expression in (10) with 

r espect to s be zero, i.e., 

c'(s)t+l 
0 

0 (17) 

A calculation of the partial derivatives of p(x , t) from (IO) and (11), 

regarding s as an implicit function of x and t shows that they 

are infinite whe n (17) is satisfied. 

continuity is necessary. If c'(s) 
0 

first necessary at 

t 
m 

min(-1/c' (0) s 0 

or 

c"(s ) 
o m 

0 

If c'(s) is positive , no dis­
o 

is negative, a discontinuity is 

(18) 

(19) 

This is the time at which characteristics first inters ect . The analy-

tical determina tion of the need for a discontinuity can be compared 

with the description in Fig. 4 by considering the sig n of 

c'(s) 
0 

(20) 



From (5) 

de 
clp 

Location of the Discontinuity 
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( 21 ) 

The values of p on the two sides of the discontinuity are 

determined by the intersection of the characteristics on the two sides 

with s(t) as shown in Fig. 5. A particular point along 

be described by the following equations: 

s 

s 

ds 
dt 

s(t) can 

(22) 

(23) 

(24) 

The last equation is (16) rewritten in different nomenclature. These 

three equations involve the four quantities ~1 , ~ 2 , s, and t, and 

serve to de t e rmine ~l' ~2 , and s as functions of t • In the 

process of solving, it is easier to eliminate t and s and obtain a 

relation between ~l and ~ 2 . From (22) and (23) 

t (25) 

dt 

(26) 
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Also from (22) and (23) 

Taking the average of these to maintain synunetry between .;1 and .; 2 

ds = t[co (1:,:2)+ co (.;1) ]dt + t[d.;1+ d.;21 +tt [c~ (t,:2)dt,:2+ c~ o:,:l)df,;1]. 

(29) 

Substituting from (25) and (26) and rearranging, 

(30) 

(31) 
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(32) 

From (24) and (26) 

v 

(33) 

If the expressions for ds in (32) and (33) are equated, a differen-

tial equation relating t;1 and t; 2 is obtained: 

[ 1-a f(po(I;:))- f(po(l;l)) - co(s1)]{<1;2- sl)c~(/;2) 
1 + - --"--~~--~"'7---

a po(/;2) - po(t_;l) 

- [co(/;2) - co(t_;l)l}dt;2 ~ [ 1-a f(po(I;:))- f(po(l;l)) - co(s2>] 
l+---------

a po(/;2) - po(l;l) 

(34) 
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The constant of integration is detennined by the requirement that 

r. l r. 
' m 

(3.'>) 

at the beginning of the sl versus (,2 curve. ~ is the value of 
m 

that minimizes the expression (-1/c'(s)) 
0 

in (18). It must also 

satisfy (19). The results of the integration are used to evaluate t 

from (25) and s from (22) or (23). 

Literature Treatment of the Discontinuity 

The literature on the subject treats the utilization of discon-

tinuities, but the method given for placing the discontinuity is useful 

only in special cases. Devault [2] obtains an equation involving the 

discontinuity by relating the area under the p-versus-x curve that 

contains the discontinuity to the area under the multiple-valued 

solution. Although the multiple-valued solution is physically unsuit-

able, it nevertheless r e presents conservation of solute and it is 

e sse ntial that the discontinuous solution do the same. In writing an 

integral relation for the conservation of solute, it is necessary to 

account for the solute adsorbed on the solid. The mat e rial balance, 

based on unit cross-sectional area and using the notation described in 

Fig. 6, can be written as 

or 

pl 

J (s-xb)[a+ (1--a)f'(p)]dp 

P2 

P1 

J (xf- xb) [a+ (1-a)f' (p)] dp 

P2 

(36) 
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From (10) 

c <Ot+F, 
0 

pl 

I xr[ct+ (1--a)r'(p)I dp 

p ,) 

and the expression for s becomes 

s = 

P1 
J [ c ( 0 t + ~] [a+ ( 1-a) f ' ( p) ] dp 

P2 ° 

Substituting for a+ (1-a.) f'(p) from (5) 

Vt (p
1

- p
2

) + V l 1 _s__ dp 
c(p) 

Pz 
s = 

('17) 

(38) 

(39) 

(40) 

The reason for the limited usefulness of this expression is that p
1 

and Pz are unknown. The special case considered in the literature 

has the initial condition 

~ < 0 

Po<O 
~ > 0 

In that case the integral in (40) vanishes, because F, 

between 0 and p . Then s is given by 
c 

s 
Vt 

P + 1-a f (p ) 
c a c 

(41) 

0 for p 

(42) 
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An examination of Eq. (24) shows that it re<luces to the same expression 

in this case; 1•:qs. U 2 ) ;iml (2J) are not nee ded to clet(•rmine the loca­

tion o( t:lie dJ.scontlnuity. 

The Equilihrium Assumption 

1n the preced l.ng deve] opment equi lihrf.um ls assum<>.d throughout 

thl~ column, a nd q ls writt:vn as an unspecifled function of p . 

Experime ntal s tuJie s indicat e that the assumption of equilibrium is 

frequently justified and provide adsorption rate expressions that are 

generally valid. The rate expressions for nonequilibrium situations 

are discussed by Gilliland and Baddour [3], Thomas [7], and Goldstein 

[5]. Their usual form is 

rate of adsorption (43) 

or 

rate of adsorption (44) 

where Q and C are constants. At equilibrium the rate is zero, and 

it is possible to solve (43) and (44) for q as a function of p . 

The experimental validity of the equilibrium assumption and of the 

expressions for q is discussed by Devault [2], Walter [8], and 

Goldstein [6]. 

An example of the typical behavior of a concentration profile can 

be obtained by solving (44) for q . at equilibrium: 

q f(p) (45) 
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f I (p) (/1h) 

From (5) 

v 
c(p) 

(47) 

Since f"(p) < 0 , Eq. (21) and Fig. 4 show that the discontinuity 

occurs at the front of the concentration profile. 
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Figure 1: Flow through Fixe d Column 

t 

Figure 2: Characteristic 
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C(p1)>C(p2 ) 

(c'(p)>O) 

t = t I 

_:~~'--------'---~ -~ ----_ ---.__,~;zL\ 
x 

Figure 3: p as a Function of x for Different Times 

c'(p)>O 

p ~ 
-

c' (p) <O 

~>O) 

Figure 4: Possible Behavior of p(x) with Time 
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S( t) 

e-m x. 

Figure S: Location of Discontinuity 

p 

s x 

Figure 6: Multiple-Valued and Discontinuous 
Solutions 
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Proposition 3 

THE EQUATIONS OF SURFACE Fl.OW 

IN A ROTATING FRAME OF REFERENCE 

A system of equations analogous to the continuity and Navier­

Stokes equations of fluid mechanics is presented by Scriven [4] and 

Aris [l] as a description of fluid flow in a surface or interface. 

Their development begins in a manner similar to that of ordinary fluid 

mechanics. Two coordinate systems are set up in the surface. One, 

although the surface is moving in space, is called "fixed", and the 

other, the material coordinate system, moves with the fluid particles. 

The fixed system is so defined that a point remains in a fixed location 

in the surface if its motion is entirely normal to the surface. 

However, this definition is conceptually undesirable in many cases. For 

instance, if a segment of a plane were to translate parallel to itself, 

the fixed coordinate system would remain behind. If a circular cylin­

der were to rotate about its axis, a fixed fluid particle would remain 

stationary. In these cases it would be desirable to have a "fixed" 

particle participate in the overall motion and to define fluid motion 

in the surface as motion relative to such fixed particles. With such 

considerations in mind we introduce in the three-dimensional space a 

frame of reference that is translating and rotating with respect to the 

inertial frame. Although it is actually irrelevant to the development 

that follows, we assume for concreteness that the origin of the moving 

frame is at the center of mass of the fluid and that the angular velo­

city of rotation is equal to the mass-average angular velocity of the 
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fluid about the center of mass. The fixed surface coordinate system 

ls defined as above except that it is 11 f1.xed 11 with r espect to the 

rotating frame of reference. In calculating the momentum equation 

for the surface, Newton's second law must be applied in the inertial 

frame of reference. When these equations are finally expressed in 

terms of surface quantities, fictitious forces appear as a result of 

the motion of the rotating frame of reference. 

Because of the time dependence of the surface, some of the 

equations involved in the development are somewhat more complex than 

those ordinarily encountered in differential geometry and tensor cal-

culus. For the sake of continuity, brief derivations of some of these 

are included in the various appendices. Also, quantities are not 

always defined when they are introduced, and it may be necessary to 

refer to the Nomenclature section on occasion. 

Surface Coordinates and the Velocity 

The position vector in the inertial frame of reference is 

denoted by r and is related to ! , the position vector in the 

rotating center-of-mass frame, by the equation 

r = .!'.cM + _g_ (1) 

where EcM is the location of the center of mass. The surf ace can be 

represented parametrically by 

R = 
a R(u ,t) (2) 

where the ua (a. 1,2) serve as coordinates on the surface. Base 
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vectorR tan~enti3] to the surface can be defined hy <liff erentiatin~ 

a -a 
(3) 

The 
a. 

u are used to represent the coordinate system fixed in the 

surfa ce. The convected system has coordinates and when there 

is da nger of confusion, quantities whose independent variables are 

to be r egarded as the 
a u•'< are also marked by an asterisk. Then we 

also have 

R B:(u*a., t) (4) 

and 
dR 

a* -a du*a. 
( 5) 

In order to represent general three-dimensional vectors at points of 

the surface, a third base vector is needed . The unit normal, defined 

hy 

n 
~l x a = ___ -_2_ 

1 ~1 x ~21 

serves this purpose . 

The time derivatives of 
a. 

~(u , t) and ~(u*a,t) 

(6) 

give velocities 

associated with the surface relative t o the rotating frame of reference . 

Since a point in the fixed coordina te system moves only in the normal 

direction, we have by definition 

n v(n) (7) 

whe r e v (n) i s the normal velocity of the surface. Nomenclature should 

be c onsulte d for de finitions of the various time derivatives. It 



-4:14-

follows from the definition of the convected coordinate sys t em that 

the velocity of a fluid particle in the surface is 

where 

v = 

a + (n) av nv -a 

v + nv(n) 
-II 

a 
~II= ~v 

(8) 

(9) 

(10) 

(11) 

(12) 

is the velocity component tangential to the surface. The procedure 

followed in the above sequence of equations relates the two time deri-

vatives by the operator equation 

(13) 

In all equations a repeated index (a in this case) implie s a summa~ 

tion over both its values. 

The velocity in the inertial frame of reference is r e lated to 

that above through the motion of the center-of-mass system. If w 

is adopted as the symbol for velocity in the inertial frame: 

dr 
w dt 

application of Eq. (D.4) of Appendix D yields 

w v+w x ~+~ 

(14) 

(15) 
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where w is the angular velocity of the rotating system and 

d.!:cM 
dt 

is the velocity of the center of mass. 

The Continuity Equation 

(16) 

The surface analogue of the continuity equation is obtained by 

equating the rate of change of mass in an arbitrary convected surface 

to that added from the surrounding bulk phase. If y is the surface 

density in mass per unit area and Q the amount of mass added from 

the bulk phase per unit area per unit time, we have 

dCM f dt y dS* 

S* 

f Q dS* 

S* 

(17) 

With the aid of equations developed in Appendix C, the differentiati on 

and integration can be interchanged. Using Eq. (C.14), (17) becomes 

(18) 

S* S* 

Since the surface is arbitrary, the integral sign can be removed: 

dcMY ex Y - 2H v(n) Y --a;-+ v ,ex Q (19) 

The rate of change can be expressed in the fixed surface system with 

the use of Eq. (13): 

(20) 

or 
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aCMy a (n) 
--;ft + (yv ) ,a - 2H v y "' Q (21) 

The Momentum Equation 

A differential equation expressing conservation of momentum in 

tenns of surface quantities is more difficult to obtain, because t h e 

rate of change of momentum must be expressed in the inertial frame of 

reference in order to equate it to the force acting on the surface . 

The force is divided into two terms. One , denoted !_, has units of 

force per unit area and represents forces caused by interaction with 

the bulk phase and also body forces such as gravity. It includes 

momentum convected in from outside. The other term involves forces 

associated with the surface itself, such as surfa ce tension and rate 

of strain. It can be expressed in terms of a surface stress tensor. 

The tensor is symmetric and its inner product with the unit normal to 

a curve in the surface yields the force per unit l ength of curve. With 

these considerations Newton's second law can be applied to the fluid 

in a convected portion of the surface to produce the equation 

~t f y ~ dS* 
S* 

f F dS* + f !u · m ds 

S* C* 

(22) 

Here C* is the curve bounding S* , and s is arc l engt h a long the 

curve. m is the outward unit normal to C* and is tangent to the 

surface. The stress tensor ,!
11 

can be written 

.'.ru (23) 
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In order to obtain a differential equation, it is necessary 

to express all the terms in Eq. (22) as integrals over S* . The 

term on the left-hand side is the most involved and is considered 

first. The time derivative can be expressed in the rotating frame 

of reference through the use of Eq. (D.l) with the integral as z . 

If w is written as in Eq. (15), we obtain 

~ f y w dS* dt -
S* , 

dCM f = -- y(v + w x R + w )dS* 
dt - - - ~M 

S* 

+ w x J y(~ + w x _g_ + ~) dS* 

S* 

(24) 

The first term on the right can be transformed using Eq. (C.14): 

d~ J y(~+~x!_+~)dS* 
S* 

f 
S* 

f 
d~ dCM~ dC~M 

+ y(--+-- x R+wxv + dt ) dS* 
dt dt - - -

S* 

+ f Y(~ + ~x!_+~)(- 2H v(n)+ va,a) dS* 

S* 

Equation (D.l) shows that 

= 
dt dt 

and 

(25) 

(26) 

(27) 
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Using these results and the expression for dCMy/dt given in Eq. (19), 

(25) becomes 

d~~ J y(y+~ xB:_ + ~M)dS* = J (2H v(n\ - va.,a. y+ Q)(y+~x B-.+~M)dS* 
S* S* 

+ J y(v+w x R+~M)(- 2Hv(n)+va.,a.) dS* 

S* 

= f (v + w x ~ + ~) Q dS* 

S* 

f 
drnY d~ d~ 

+ y(~ + dt xB:_ +~ xv+~ - ~x ~M) dS* 

S* 

(28) 

(29) 

The w in the last term of (24) can be taken inside the integral. If 

the expression in (29) is then substituted into (24), we obtain 

~t J y ~ dS•~ = r [y d~ + Q y +y w x (w x R) + 2 y ~ x y 

S* ~* 
~ d~ 

+y dt x~ + y dt + (!!1_ x R + ~)Q] dS* (30) 

The line integral in Eq. (22) can be transformed into a surface 

integral through the surface analogue of Green's theorem in the plane 

where 

f !u • m ds = 
C* 

J 'VII • !u dS* 
S* 

(31) 
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A proof can be found in Aris [1] . 

Substituting (30) and (31) into (22) 

f 
d v 

[y ~~ + Qy + y~ x (~ x !9 + 2Y ~ x y 

S* 

dw dw 
+ y dt x ~ + y ~M + (~ x ~ + ~M) Q] dS* 

= J [!, + \i'II •.'.!_II] dS* 

S* 

(32) 

(33) 

Since S* is arbitrary, the integrands must be equal, and the sur-

face momentum equation is obtained: 

de~ ~ 
y ~ + Q y + yw x (~ x R) + 2y w x y + y dt x R 

d.!!cM 
+ y ~ + (~ x ~ + .!!cM)Q = K + VII • 1II (34) 

Equation (D.5) shows that in the inertial frame of reference (34) 

becomes 

dw 
y dt + Q w = £. + VII • !.u ' (35) 

The Momentum Equation in Surface Coordinates 

In order to apply Eq. (34), it must be written in terms of its 

components. It is convenient first to write the acceleration terms 

caused by the rotation and translation of the surface as a fictitious 
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force. If we set 

Eq. (34) becomes 

(37) 

The time derivative in (37) can be expressed in surface coordinates 

through the use of Eq. (B.18) 

de~ dCMv 
Ct 

8 Ct 2ba v 8v(n)_ et8 (n) v(n)) --= ~ < at + v v '8 - a v , 8 dt 8 

() (n) 

+ E_( 
CMv + 2vetv(n) + bet8vetv8) dt , et 

(38) 

'VII • .'.!'.,1 I can also be expanded 

'VII • !n = (39) 

Using Eq. (A.8) 

+ [{ 0 }a~ + n b ] Tay (40) a y --u - ay II 

Scriven [4] and Aris [l] decompose into the form 
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- (l~3) 

where a is the surface tensfon and is the surface analogue of 

the viscous stress tensor and depends on velocity gradi ents. The 

differentiation then results in a large number of rather complex terms. 

This process is not repeated here. 

With the aid of (38) and (42) the tangential component of Eq. 

(37) can be written 

a 
dCMV 

!!a Y< at 

In the usual tensor notation with base vectors suppressed 

The normal component of (37) is 

~ (n) 
oCMV 

Y( at 

Conclusion 

(44) 

(45) 

(46) 

The notation used in the equations written above for y and 

v appears overwhelming, and the equations seem utterly intractable. 

Indeed, solutions cannot be obtained until such quantities as Q, !_, 
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F and J,
11 

are e ithe r sp€'cified or relate d to y ond v • llowl'vc .. •r, 

the purpose of introducing the translating and rotating frame of 

reference is to simplify the equations. Although the equations in 

their general form appear quite formidable, the description of the 

fluid behavior in special cases can be simplified considerably by 

viewing it from the proper frame of reference. The introduction of 

the translating and rotating frame of reference into the equations 

permits this flexibility and increases the number of situations to 

which the surface equations can be applied economically. 

As mentioned previously, the fact that the moving frame of 

reference is associated with the center of mass and with the mass­

average angular velocity is irrelevant to the derivation above. Any 

translating and rotating frame of reference can be employed, and a 

specific one is mentioned only because its general behavior in rela­

tion to the surface motion exemplifies the reason for introducing a 

moving frame . In a particular application !!cM and w would usually 

be selected or given a priori, but their values would generally be 

close to those for the center of mass and the mass-average angular 

velocity. 
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Appendix A 

FORMULAS FROM DIFFERENTIAL GEOMETRY 

The formulas listed below can be obtained from Sokolnlkoff [5] 

or Kreyszig [2] or some other text on differential geometry. They are 

needed for the development of the other appendices. The time depend-

ence of the quantities is irrevelant here, and the same results are 

valid in both the fixed and convected surface coordinate systems. 

The covariant metric tensor is 

a = a • a aB -a .:::a (A.l) 

and it measures distance in the surface through the first fundamental 

form: 

(A. 2) 

The set of base vectors reciprocal to a 
-a. 

(and n in three 

ex dimensions) is denoted by .!!_ (and n in three dimensions). The 

contravariant metric tensor is 

and the matrix (aaB) is the inverse of (aaB) 

aay a 
YB 

= a aya = By 

The aaB and aaB can raise and lower indices as in the following 

examples: 

aB b 
a Sy 

(A.3) 

(A.4) 

(A.5) 



a aa.B = aB 
-a. 

Cl. a 
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The surface derivative of the base vectors are denoted 

aa 
-a { y } a + b B n 

ouB a. B -y Cl. -

(A.6) 

(A. 7) 

(A. 8) 

{ y } { By a.} = ay 
a~ 

a. B . a)3 where (A.9) 

oa 
ba.B = b Ba. 

-a. 
= n 

• au8 and (A . 10) 

The quantity {a.YB} is a Christoffel symbol of the second kind, and 

ba.B dua.duB is called the second fundamental form of a surface. From 

these definitions the following equations are readily obtained: 

(A.11) 

- a -a. (A.12) 

The mean curvature of a surf ace is 

H (A.13) 

(A.14) 

where R1 and R2 are the principal radii of curvature. 
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Appendix B 

TIME DIFFERENTIATION FORMULAS 

Formulas for the time derivatives of surf ace base vectors and 

the unit normal are derived below. These formulas are needed to calcu-

late the derivatives of vectors expressed in component form. 

de~ d (d~) 
dt 

.. --
dUO. dt (B .1) 

d (.!! v (n» =--
dUO. 

(B .2) 

after using Eq. (7). From (A.12) we obtain 

de~ - a bl3 v(n) + n 
dV(n) 

dt = .:::-a 0. dUCl 
(B. 3) 

= - a 'b13 v(n) 
-13 CL 

+ n v(n) 
,a (B.4) 

An expression for de# I dt is obtained by differentiating 

n • 

.a =-n• -a (B . 5) 

(n) 
= - v ,a (B.6) 

from (B.4). Since de# I at must be orthogonal to n and hence 

tangent to the surface, 

d~ a (n) (B .• 7) ---at = - a v ,a 

= 'i/ (n) 
- II v (B. 8) 
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The formulas above can be used to obtain the derivative of any 

vector 

(B. 9) 

a. (n) (n) 
- a v z ,a. (B .10) 

dCMz 
a. 

ba. (n) ZB a.8 (n) z(n)) = a ( dt 8 v a v ,B -a 

a (n) 
CMZ + v(n) za.) (B.11) + n ( dt ,a. 

The formula for 
de# 
dt can be obtained from that above by appli-

cation of (13): 

(B.12) 

(B.13) 

Using (A.8) and (A. 12) 

ac# a c# a. a B B -- = -- + v [a _z_ + ({
0
Y ,) ~ + b 0 ,.,, £) z 

dt dt .!::f3 dU(X µ ~ I µ~ 

a (n) 8 ( ) + n z - a b z n ] 
- a -=e a au 

(B . 14) 
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ac# a a a a y a ~ (n) 
= -- + a (vi:' [~ + {a y} z ] - b v z ) 

dt ~ au6 p s 

a (n) a a s 
+ £( z a v + bas v z ) 

au 

ac# S a S (n) a (n) a S = -- + a (v za - b v z ) + n(v z + b av z ) at -a , s s - , a a.., 

where 
a 

a =~+{a} y 
z ,S aua S y z 

Substituting from (IL 11), 

+ ~ ( 

In the convected system 

= -----

av*s y * Q = a* -- + ( { } a* + b* n) v*.., ..::a au*a S a I So. -

a (n)* 
+ n v - a* 

- au*a ..:::e 

(B.15) 

(B.16) 

(B .17) 

(B .19) 

(B.20) 

(B. 21) 

(B. 22) 
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(B. 23) 

From (B.23) the derivative of the metric tensor can be obtained 

(B.24) 

(B. 25) 

v* + v* - 2b* v(n)* 
$,a a,$ a$ (B. 26) 
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Appendix C · 

TIME DIFFERENTIATION OF AN INTEGRAL 

The object here is to derive a means of interchanging differen-

tiation and integration in an expression of the form 

dCM I dt G*dS* 

S* 

where G* is an arbitrary function of t, and the area S* is 

moving with the fluid on the surface. 

An element of surface area is given in terms of the convected 

coordinates by 

dS* = la* x a*I du*
1 

du*
2 

-1 -2 

A simple calculation shows that 

There fore 

Then we have 

S* 

<lS* 

G* dS* 

a* 

1 2 Ii* du* du* 

~ 1 2 G* v a" du* du* 

S* 

= f 
d G* d a* 

( CM /8.* + G* __ l_ CM ) du*l du*2 
dt dt 218.* 

S* 

(C . l) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

( C. 7) 
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(CM + ..!. G* CM (~n a*)) dS* I 
d G* d 

dt 2 dt 
S* 

can be obtained with the aid of (B.26): 

dCMa* 
a~2 

dCMati 
+ * 

dCMa~2 
- a* 

dCMat2 
dt dt all dt 21 dt 

= -2v(n)* (a~2 b* + a* 
11 11 

b* - a* 
22 21 bt2 -

+ 2a~2 vt,l + 2a~1 v~, 2 

Since the matrix (a*aB) is the inverse to (a~8) , 

and 

d a* CM 
dt 

= -4 Hv(n) + 2va 
,a 

where (A.13) has .been applied. 

* 
dCMa~l 

-al2 dt 

a* b* ) 
12 21 

If (C.13) is substituted into (C.8), the final equation is 

obtained: 

dCM f dt G*dS* I dCMG* ( ) 
[ + G*(- 2Hv n +Va )] dS* 

dt ,a 
S* S* 

(C. 8) 

(C.9) 

(C .10) 

(C.11) 

(C.12) 

(C.13) 

(C.14) 
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Appendix D 

RELATION BETWEEN DERIVATIVES 

IN THE ROTATING AND TllE INERTIAL FRAMES OF REFERENCI~ 

The equations listed here can be found in Symon [6]. If the 

center-of-mass frame of reference is rotating with an angular velocity 

w relative to the inertial frame, the time derivatives of any vector 

z are related by 

dz de# 
dt = ~ + w x z 

If the differentiation is performed a second time, 

2 
de# de# dw 
--2 + ~x(wxz)+2wx~+ dt 

dt 
x z 

If we set 

we obtain 

and 

z r - E.cM R 

w v+w x ~+~M 

dw d~ d~ d~M 
dt -al: + ~ x (~ x !9 + 2~ x ~ + d t x R + -al: 

(D.l) 

(D. 2) 

(D. 3) 

(D.4) 

(D.5) 



Symbols 

* 

Roman 

~ 
a a 

as a 

a* -a 

a* 

C* 
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NOMENCLATURE 

convected time derivative in the inertial frame of 
r eference 

( () ) time derivative relative to the fi.xed 
= at ' surface coordinates ua 

a convected time derivative in the 
= <at) ' surface 

u*a 

the asterisk designates quantities associated with 
the convected surface coordinates 

the comma 
as 

represents covariant differentiation, 

e.g., T11 is 
,y as 

the tensor T
11 

the uy covariant derivative of 

a a = a , the surf ace gradient operator 

Christoffel symbol of the second kind 

surface base vector in the fixed coordinate system 

reciprocal base vector in the fixed coordinate system 

covariant metric tensor in the fixed surf ace coordi­
nate system 

contravariant metric tensor in the fixed surface 
coordinate system 

surface base vector in the convected coordinate 
system 

= det(a* ) as 
tensor associated with the second fundamental form 
of a surf ace (baBduC'tduS) 

surface curve bounding S* 



f 

F 

G* 

H 

m 

n 

Q 

r 

R 

s 

S* 

t 

Ci. 
u 

v 

v 
(n) 
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fictitious force arising from the rotatton of the 
center-of-mass frame of reference 

force per unit area of surface as a result of inter­
action with the bulk phase 

any quantity (scalar, vector, or tensor) with 
variables u*a. , t 

mean curvature of the surf ace 

unit normal to C* and tangent to the surf ace 

unit normal to surface 

mass per unit area per unit time added to the surf ace 
from the bulk phase 

position vector in the inertial frame of reference 

position vector to the center of mass 

position vector in the rotating frame of reference 

arc length in the surf ace 

an area in the surface which is convected with the 
fluid 

time 

surface stress dyadic 

surface stress tensor 

coordinate in the fixed surface system 

coordinate in the convected surface system 

fluid velocity in the rotating frame of reference 

component of v tangent to the surface 

component of v in the fixed surf ace coordinate 
system 

component of v normal to the surface 



-434-

w fluid velocity in the inertial frame of reference 

~M 
velocity of the center of mass 

z arbitrary vector 

Greek 

surface density in mass per unit area 

Kronecker delta 

a surface tension 

surface viscous stress tensor 

w angular velocity of the rotating frame of reference 
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