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ABSTRACT

An attempt is made to provide a theoretical explanation of the
effect of the positive column on the voltage-current characteristic of
a glow or an arc discharge. Such theories have been developed before,
and all are based on balancing the production and loss of charged par-
ticles and accounting for the energy supplied to the plasma by the
applied electric field. Differences among the theories arise from the
approximations and omissions made in selecting processes that affect
the particle and energy balances. This work is primarily concerned
with the deviation from the ambipolar description of the positive
column caused by space charge, electron-ion volume recombination, and
temperature inhomogeneities.

The presentation is divided into three parts, the first of which
involves the derivation of the final macroscopic equations from kinetic
theory. The final equations are obtained by taking the first three
moments of the Boltzmann equation for each of the three species in the
plasma. Although the method used and the equations obtained are not
novel, the derivation 1s carried out in detail in order to appraise the
validity of numerous approximations and to justify the use of data from
other sources. The equations are applied to a molecular hydrogen dis-
charge contained between parallel walls. The applied electric field is
parallel to the walls, and the dependent variables--electron and ion
flux to the walls, electron and ilon densities, transverse electric
field, and gas temperature--vary only in the direction perpendicular to

the walls. The mathematical description is given by a sixth-order
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nonlinecar two-point boundary value problem which contains the applicd
field as a parameter. The amount of neutral gas and its temperature
at the walls are held fixed, and the relation between the applied
field and the electron density at the center of the discharge is
obtained in the process of solving the problem. This relation corre-
sponds to that between current and voltage and is used to interpret
the effect of space charge, recombination, and temperature inhomo-
geneities on the voltage-—current characteristic of the discharge.

The complete solution of the equations is impractical both
nunerically and analytically, and in Part II the gas temperature is
assumed uniform so as to focus on the combined effects of space charge
and recombination. The terms representing these effects are treated
as perturbations to equations that would otherwise describe the ambi-
polar situation. However, the term representing space charge is not
negligible in a thin boundary layer or sheath near the walls, and
consequently the perturbation problem is singular. Separate solutions
must he obtained in the sheath and in the main region of the discharge,
and the relation between the electron density and the applied field is
not determined until these solutions are matched.

In Part III the electron and ion densities are assumed equal,
and the complicated space-charge calculation is thereby replaced by
the ambipolar description. Recombination and temperature inhomogenei-
ties are both important at high values of the electron density.
However, the formulation of the problem permits a comparison of the

relative effects, and temperature inhomogeneities are shown to be
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important at lower values of the electron density than rccombination.
The equations are solved by a direct numerical integration and by
treating the term representing temperature 1lnhomogeneities as a per-
turbation.

The conclusions reached in the study are primarily concerned
with the association of the relation between electron density and
axial field with the voltage-current characteristic. It is known that
the effect of space charge can account for the subnormal glow discharge
and that the normal glow corresponds to a close approach to an ambipo-
lar situation. The effect of temperature inhomogeneities helps explain
the decreasing characteristic of the arc, and the effect of recombina-

tion is not expected to appear except at very high electron densities.
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DERIVATION OF EQUATIONS
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INTRODUCTION

When a potential difference is applied between two electrodes in
a cylindrical discharge tube, a current flows if charged particles are
present in the gas. If the electric field is sufficiently strong, the
electrons acquire enough energy to undergo ionizing collisions with the
neutral molecules, and enough new charged particles may be formed to
balance those lost to the discharge by diffusion to the walls and by
other means. In this case a steady state may be maintained, and a glow
or an arc discharge is established.

The interaction between the electric field and the charged par-
ticles in such a discharge is a complex phenomenon, and a unified
theoretical treatment of the entire discharge is not available. Near
the electrodes there are strong axial variations in the electric field
and in the plasma properties, and the behavior depends strongly on the
properties of the electrodes themselves. However, a distance away from
the electrodes the discharge is essentially uniform in the axial direc-
tion, and this region is called the positive column. Actually, axial
nonuniformities such as striations can often be observed, but in general
the properties of the positive column are accountable by theories
neglecting axial dependencies*. Because of its uniformity the positive
column is quite amenable to theoretical analysis.

The fundamental principles basic to the various theoretical

approaches to the positive column simply state that under steady-state

See, for instance, von Engel [26] or Cobine [6]
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conditions the production and the loss of charged particles must
balance and the energy supplied to the system through the applied
electric field must be dissipated. The differences among the theorles
arise from the approximations and omissions made in selecting processes
that effect changes in particle densities and energies. Most past
investigations have not considered electron-ion volume recombination
and neutral temperature inhomogeneities. 1In this work, however, these
phenomena and their effects are studied in detail. This work also
differs from previous efforts by using experimental data for the plasma
properties of a particular gas, and the resulting calculations are more
complex than those occurring in theories using model plasmas.

In the process of determining the effect of the various physical
phenomena on the overall operation of the discharge, the analysis
entails consideration of molecular processes and the mean properties of
the various species—--electrons, ions, and neutral molecules. The
molecular behavior is coupled with such macroscopic quantities as the
electric field, so the analysis gives information on various levels.
Detailed knowledge of properties such as mean electron‘energy can be
very important. For instance, in using discharges for purposes of
illumination or for the study of chemical reactions, the excitation of
energy levels is most efficient at particular electron energies. Fur-
thermore, in the study of temperature gradients, the molecular
properties vary across the discharge, and these variations may be of
considerable importance in operating the discharge for particular pur-

poses.
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In the analysis which follows, an attempt 1s made to determine
the importance and effect of individual physical phenomena by comparing
the results with the known experimental behavior. From this comparison
comes a better understanding of the fundamental physical processes
occurring in the positive column. Experimental results pertaining only
to the positive column and subject to the conditions assumed in the
analysis are not available, but such measurements could be made. In
lieu of the data needed to make a quantitative comparison with the
calculated results, we use information that provides a qualitative
description of the entire discharge and shows its response to changes

in various parameters.

Plasma Properties and Processes

Before describing the various theoretical approaches more
explicitly, it is convenient to discuss briefly the physical nature of
the positive column. In the situation of interest the pressure in the
discharge is of the order of mm Hg, and the'gas is slightly ionized
with fraction of gas‘ionized less than 10—5. The electron and ion den-
sities may vary over several orders of magnitude and are typically
between 108 and 1012 cm_3 in a glow discharge. The electrons are
rapidly accelerated by the axial field and on the average gain a con-
siderable amount of energy in the course of a mean free path. This
energy is transferred to the neutrals through elastic and inelastic
collisions. Because of the small mass of the electrons, the much more

numerous elastic collisions are inefficient in transferring energy. As

a result the mean energy of the electrons is greater than that of the
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neutrals by a factor the order of 100. The neutrals in turn transfer
the energy out of the system, and temperature,and hence density,
gradients are associated with this process. Since the electron mean
free path is directly related to the neutral density, the energy gained
between collisions, and thus also the mean energy of the electrons, is
alfected by the neutral temperature. The positlve fons gain less
energy from the axial field and lose it more readily in collisions;
consequently the mean ion energy is not much higher than that of the
neutrals. The charged-particle populations are maintained through
ionization of neutrals by electron impact. This production is balanced
by wvarious loés processes, the most significant of which is diffusion
to the wall of the column. Since the electrons tend to diffuse more
rapidly than the ions, a charge separation is produced that results in
a radial electric field retarding the flux of electrons and augmenting
the flux of ions. Other loss processes which may affect the particle

balance are electron-ion recombination and negative-ion formation.

Abstract Representation of the Problem

Among the physical quantities whose radial variations are of
interest are the electron and ion number densities, the radial electric
field, and the temperature of the neutral gas. The axial field, which
is essentially constant across the column, is of fundamental importance
in determining the values of these variables. It affects the mean
electron energy, which in turn alters such quantities as the ionization
and diffusion coefficients. In fact the equations for the variables

have solutions only for certain values of the axial field.
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The problem can be written as a nonlinear operator equation

F(u,A) = 0 , where the veetor u  represents the physical variables
and the parameter A represents the axlal Pield.  Although Tt is not
strictly a norm, it is convenient to adopt as a measurc of Lhe magni-

tude of u ,|!ui|, the electron density at the center of the discharge.
The plot of ||u|| versus A for the solutions u(\) is called the
response diagram in the jargon of bifurcation theory*. The equation
F(u,A\) = 0 happens to have a trivial solution for all A , which with
the proper choice of variables can be written u = 0 . This solution,
for which ||u|| = 0 , corresponds physically to the absence of a dis-
charge; although an axial field is present, the charged particle den-
sities and the radial field are zero, and the temperature is constant.
The bifurcation point Xb at which a nontrivial solution of infini-
tesimal magnitude |[u|| first appears is called the free diffusion
limit by Allis and Rose [1] and Cohen and Kruskal [7]. It is charac~
terized by the diffusion of electrons and ions to the wall in the
absence of a significant radial electric field. Cohen and Kruskal give
a complete analysis of the continuation of this curve to large ||ul]
(electron density) for a situation in which the neutral temperature is
constant and the only electron and ion losses are by diffusion to the
wall. The response curve for their analysis is sketched in Fig. 1.

As ||u|] =, X approaches a particular value A, - The limiting

solution u(la) corresponds to the classical ambipolar approximation

*See‘Keller and Antman [17] pp. xi-xiv.
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in which electron and ion number densities arc assumed equal and the
flux to the wall is characterized solely by the ambipolar diffusion

*
coefficient .

Description of Objectives

The present work seeks to obtain a modification to this response
curve by considering the effects of volume recombination and spatial
temperature variations. Since both of these effects are of little
importance at low electron density (small ]|u|]), the primary interest
is centered about the deviation from the ambipolar limit. In order to
ease the mathematical difficulties and separate the two effects, two
distinct cases are treated. In Part II temperature variations are
neglected, and a solution is obtained that is valid over a large range
of Ilull . The qualitative modification of the response curve is
readily anticipated by physical intuition and is given by the dashed
curve of Fig. 1. Part III is primarily concerned with the effect of
temperature inhomogeneities. However, recombination is also considered
and the relative importance of the two effects is investigated. The
difference between electron and ion densities is neglected, so the
results are restricted to large ||u|[ , where the approximation is good.
In this case even the qualitative nature of the response curve is dif-
ficult to predict and depends strongly on the nature of the gas in the

discharge.

Because of the availability of data, all calculations are per-

formed for an H2 discharge. Experimental evidence indicates that H2

*
See, for instance, von Engel [26] or Cobine [6].
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*
is not formed in the discharge , so direct negative-ion formation need
not be considered as an electron loss process. Although H  is formed
by dissociative attachment, the cross section for the reaction is very

%
small , and the process can be neglected. Furthermore, experimental
data show that very little atomic hydrogen is present at the plasma

s 3 ** 3 I

conditions considered . Consequently all aspects of dissociation can

be neglected, and only one neutral species need be considered.

Correspondence between Theoretical and Experimental Characteristics

Ideally the theoretical analysis would be examined by comparing
the theoretical results with the experimental relation between the elec-—
tron density and the axial electric field in the positive column.
However, such information is not available, and in its place we use a
qualitative description of the entire discharge. The experimental
behavior of the discharge can be described by a plot of the potential
difference between electrodes versus the current passing through the
discharge. This curve is called the voltage-current characteristic of
the discharge and is related to the response diagram described above;
indeed, the response diagram shall frequently be called the character-
istic of the positive column. To demonstrate this relationship, the
current through the discharge can be obtained from quantities known in

the positive column by integrating the product of electron density and

*
See Mchaniel [19], pp. 413-414.

Kook
’See von Engel [26], pp.270-271; Cobine [6], pp. 337-338.



axial drift velocity over a cross section of the column. 1Its value Is
roughly proportional to the electron density at the center of the dis-
charge. The axial field in the positive column contributes directly to
the total potential difference, but other sectors of the discharge,
such as the cathode region, also contribute. In fact von Lngel [26]
and Cobine [6] attribute the shape of the subnormal and abnormal por-
tions of the discharge characteristic to cathode effects (See Fig. 2).
However, Cohen and Kruskal [7] have used positive column arguments to
explain the subnormal discharge, and volume recombination and tempera-
ture effects, which are studied in Part II and Part IITI, may have a
significant influence on the shape of the voltage-current characteristic

at electron densities typical of an abnormal glow or an arc discharge.

Basis for the Equations

The development of the working equations that eventually yield
the axial field-electron density relationship begins in kinetic theory.
The macroscopic equations that are eventually obtained from them are not
novel. However, the use of the data for an H2 discharge depends
heavily on the microscopic formulation, and for that reason the entire
development of the equations is carried out in detail. The equations
that are solved are actuaily written not for the cylindrical discharge,
but for the corresponding slab geometry. The purpose, of course, is to
make the equations more tractable while retaining their basic features.

The results in the different geometries may reasonably be expected to

be qualitatively equivalent.
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1. BASIS OF EQUATIONS IN KINETIC THEORY

The development of the problem begins with a Boltzmann equation
for the velocity distribution function that is written for each of the
species in the plasma. The transition from kinetic theory to equations
which describe macroscopically observable phenomena is accomplished by
multiplying the Boltzmann equations by suitable functions of velocity
and then integrating them over all values of the velocity. The equa-
tions which result describe, after certain manipulations, the time and
space variation of average quantities which are equivalents of the den-
sity, momentum, and energy of the various species. However, not all of
these moment equations are destined to evolve into the final working
equations. Some provide no noteworthy information in the situation of
interest, and others are replaced by results from different experimen-
tal or theoretical work. The introduction of this extraneous informa-
tion involves approximations that must be justified. However, many
other approximations must also be justified before the final equations

are obtained.

Preliminary Error Analysis

The first approximation is concerned with the applicability of
the Boltzmann equation to the situation of interest. The collision
integral of the Boltzmann equation is capable of handling only binary
collisions and is thus restricted to particle interactions character-
ized by short-range forces. Consequently the charged-particle Coulomb
interactions cannot be treated and are in fact neglected. This pro-

cedure is valid provided the electron and ion densities are
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sufficiently small in comparison with the neutral density. The
criteria for neglecting Coulomb interactions are discussed by Holt

and Haskell [14] and are satisfied in our problem except at very large
electron densities.

Various approximations are also involved in obtaining the final
moment equations. In fact one is intrinsic to the use of moment
equations in general and arises from the need to modify certain terms
in order to obtain a well-posed problem. Errors are also introduced
in evaluating coefficients that appear in the final equations. They
are generally obtained as complicated expressions involving integrals
of velocity distribution functions. However, they are usually
evaluated with the use of theoretical and experimental data from other
sources. Further approximations are made in neglecting various terms

that are expected to be small.

Boltzmann Equations

The Boltzmann equation as applled to the species of a glow dis-

charge can be written

of 9f, 4, ~ of of

et Y% T B T ay, T Cade (343
Bfa Bfa
( 3t’e.c.’ ( ot’di.c. (1+2)

where o 1is a subscript representing the species and equals e, i, or
n for electrons, ions, or neutrals, respectively. The neutral par-

ticles, of course, are H2 molecules, and the ions are assumed to be
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H; *. No other species is considered.

fu(z)gd,t) is the velocity distribution function defined so that
fu dr dga represents the number of particles of type o that are
expected to lie in the element of phase space dz_d:gOt . Thus the

number density as a function of time and positlon 1s obtalned by Inte-

grating fa over all values of the velocity:
N,(x,t) = I £,V .t) dv = . (1.3)

Since the only force field considered in our analysis of the glow
discharge is the total electric field ﬁt » the expression for the
force per unit mass in Eq. (1.1) is written q, ﬁt/ma , where q, is
the electric charge and m, is the mass of a particle of type a

The right-hand side of (1.1) represents the net rate at which fa
increases as a result of all processes other than the normal motion of
particles in the force field. Actually this rate 1s accountable by
interparticle collisions, and (Bfa/Bt)c is in fact called the collision
integral. Since Coulomb interactions are neglected, only electron-
neutral, ion-neutral, and neutral-neutral collisions are considered.
The effect of these collisions on the rate is divided into two parts,
(Bfa/at)e_c. and (Bfa/at)i.c_, representing elastic and inelastic col-
lisions, respectively. The elastic collisions are much more numerous
than the inelastic. However, the inelastic collisions cause phenomena
such as ionization to which elastic collisions do not contribute, so

they must be considered.

*
See McDaniel [19], pp. 472-473; Hirshfelder, Curtiss, and Bird [13],
p. 1095.
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2 MACROSCOPIC FQUATTONS

The cquations of change for such quantitices as number denslty,
average momentum, and average energy of the three species are obtainced
by multiplyving the Boltzmann equation by different powers of the veloc-
ity and integrating over velocity space. Various manipulations are
necessary to produce the final equations with terms involving densities,
fluxes, temperatures, and other macroscopic variables. Since the
resulting equations are fewer in number than the unknowns, approxima-
tions must be introduced in order to obtain a well-posed problem. This
cuntire procedure including the closure of the set of equations is quite
standard but is repeated here in order to present clearly the approxi-

mations involved in its application to the glow discharge.

Fquation of Change for < ¢, >

Instead of multiplying the Boltzmann equation by specific func-
tions of velocity, it is economical to execute the procedure once with
a function ¢a(Xa) that may represent momentum, kinetic energy, etc.
¢a(3a) is to be understood as an extensive property whose total value
for the species 0 is the sum of that belonging to each particle.

Multiplication of the Boltzmann equation of (1.1) by ¢a(ya)
and subsequent integration over ya results in derivatives on the
left-hand side that can be simplified by integration by parts. Tor the

time derivative we have
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J % e By = J at Pafa)dY, - J ot fo Yy (2.1)

5—2— (Na<¢u>) . (2.2)

since ¢a is a function of velocity only and the average of a quantity

depending on Xy is defined by

J ¢ £ dv
oo o
< Qu> = - £2.3)
J f dv
o —o
- J b £ dv . | (2.4)
Na oo o )

Similarly the spatial derivative is given by

J _ of "
b v o+ — = —..(N <v_ 0 >) (2.5)
or or Sk

and the velocity derivative by

q of q q 30
o) N - | - _aa o
J m ¢u E oy, ¥ "o EtJ v (¢afa)d!a m St { 3. ol
o 0 o o
(2.6)
q " a9
B s v o
= n Na Et < e > (2.7)

The first integral on the right-hand side of (2.6) vanishes, since fa

is assumed to approach zero strongly as [ga[ =+ ., Using (2.2), (2.5)

and (2.7), Eq. (1.1) becomes, after multiplication by ?& and integra-

tion over Mo b
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Nu and the various average quantities depend in general on t and r
From the interpretation of (Bfa/Bt)C given in Section 1, it is
apparent that the integral on the right-hand side of (2.8) is the rate
per unit volume at which ¢a is increasing in species o as a result
of interparticle collisfons. A detalled expression for the coffect of a
specific type ol collision between two species is given in Eq. (A.11)
of Appendix A . The integral in (2.8) consists of a sum of such expres-
sions, and the summation must in general be taken over the various
combinations of species and over the different collision processes. The
omissions and approximations that can accurately be made are discussed

when particular forms of ¢a(!a) are considered.

Continuity Equations

The continuity equations for the individual species are obtailned

by taking

fled = L . (2.9)
Equation (2.8) becomes
oN of
o , d o ol
3t e "2 T I - T (2.10)

where the number flux gd is defined by

= N. %

3 >
I, LSV (2.11)

The right-hand side of (2.10) represents the net rate per unit

volume at which particles of type o are produced by collisions. The
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description of an H2 glow discharge presented in the Introduction
leaves only two collision processes that can cause a significant change
in the total number of particles of a species. These are ionization

of neutrals by electron impact and recombination by electron-ion inter-
éction. Ion-neutral and neutral-neutral collisions involve insuffi-
cient energy to cause ionization. Ionization occurs as a result of a
simple electron—neutral collision, but various recombination mechanisms
have been proposed*, which are characterized by different collision
processes. We assume that recombination occurs by means of the disso-

ciative process

H§+ e > Hy+H (2.12)

although the amount of H present in the discharge is considered
negligible.

The rate at which ionization and recombination occur can now be
obtained from Eq. (A.10) of Appendix A. Defining RI and RR as the

rates per unit volume of ionization and recombination collisions, we

have

P
1

1 ” fe(ze) fn(j_r_n) g Q;(8) dv dv (2.13)

I

” fe(y_e) fi(zi) g QR(g) dze dv, (2.14)

r

where QI is the total cross section for ionization and QR is the

*
See McDaniel [19], pp. 588 ff., for a discussion and appraisal of
mechanisms.
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total cross section for dissociative recombination. Lquations (C.6)
and (C.17) show that the ion and neutral velocities are small com-
pared to the electron velocity at those values for which the distribu-
tion functions have significant magnitude. Hence g can be accurately

replaced by v and integrations over v and v can be performed
e ~m i

1.
to yield
RI = Nn j fe(!e) veQI(ve) dze (2.15)
= Ne Nn<iveQI(ve)> (2.16)
and
R, = N I £,) v Qp(v) dv, (2.17)
= Ne Ni‘iveQR(ve)> & (2.18)
The ionization and recombination coefficients, GI and & , are defined
by
v =N <V (v)> (2.19)
o S<v Qv > > (2.20)
SO RI and RR become
R, = vy N (2.21)
R, = AN N, . (2.22)

~

Vi and o depend in general on t, r and other parameters which

affect fe . Although Egqs. (2.19) and (2.20) show the origins and

~ N
functional dependencies of v and o , they are not used to obtain

I
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numer fteal values. Data from other sources are avallable and thedir appli-
cabitity and use are djiscussed later.

lenfzation and recombinatlon affect the rates ol productfon
of electrons and ions identically, and this rate in particles per unit
volume per unit time is given by RI - RR . Equation (2.10) written

for the two species is

BNe 3 & & =
“EE"+‘§::° J, = vy N, -oNN (2.23)
N, . ~ - A
""é-g + 'é'r’ b g‘i . \)I Ne - NeNi - (2 » 24)

The production rate of neutrals is the negative of that for
clectrons and ions. Since the production rates have equal magnitudes,
tihhe fluxes of charged particles and of neutrals whose spatial deriva-
tives appear in (2.10) are of the same order of magnitude. However,
because of their much greater density, the flux of neutrals is of neg-
ligible importance and the transport of neutrals can be ignored. Since
the equations obtained here are eventually applied to steady-state
condil fons, DNHIBt is of no importance and Eq. (2.10) applied to the
neutrals serves no purposce.  [n its place we make the approximation

that the average veloclbty of neutral molecules is zero:
TR = g . (2.25)

Momentum Equations

The momentum equations are obtained from Eq. (2.8) by taking

¢y = By ¥, . (2.26)
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The immediate result is

o

o of

(&%
- < >)— b =
(Na v Vv ) anu I m [ A Y alv..

<y > o 30
m (N vy >) +m -a( Qe o o

A 9t Ua o o

L%
]

(2.27)

In order to interpret the averages occurring in (2.27) as macroscopic
state variables, it is necessary to introduce the peculiar velocity,

which measures the deviation of the velocity from its mean value:

L (2.28)

> (2.29)

Y = Namu<VV> " (2.30)

and its physical interpretation as the actual pressure is discussed by
Chapman and Cowling [5], pp. 31-35. The right-hand side of (2.27)
represents the net rate of increase per unit volume of the total momen-
tum of species o as a result of collisions with other types of
particles. Elastic collisions are as effective as inelastic collisions
in transferring momentum between particles. Since they occur much more
frequently, the inelastic collisions are neglected. Replacing (Bf/at)c
by (af/at)e'c and using (2.11), (2.29), and (2.30), Eq. (2.27)

becomes
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37
=0 ) .9 o
My ot | or L or Ny Vo™ < ™)~ 9Ny B
afa
= muj yﬁ (——a—t—)e.c. dyﬂ " (2.31)

In applying Eq. (2.31) to electrons, 1t 1s possible to neglect
the term containing <Eﬁ> <Xd> . Equations (C.17) and (C.21) of
Appendix C show that the magnitude of <ge> is much smaller than that
of \/<Vg>, so the velocity of the electrons consists of a slow drift
superimposed on a large random motion. Equation (2.30) then shows that
the third term of (2.31) is negligible in comparison with the second,

and the momentum equation for electrons becomes

Bge 5 . Bfe
& _—+—: ) le+ Ne e-gt - e Jie(ﬁ)e.c. dge ’ (e

where e is the magnitude of the electronic charge.

Only elastic electron-neutral interactions are considered in cal-
culating momentum transfer to the electrons by collisions. An expres-
sion for the rate per unit volume at which electrons acquire momentum
from neutrals is available in Eq. (B.31) of Appendix B. 1In the

nomenclature of this section we have

of
18 -
Be J Xe(Bt e.c. dze B J Zefe(ze)vm(ve) dze (2.33)

- m, Ne<ivm(ve)2e> . (2.34)

A substantial simplification would occur if v, were independent of

v so that
e

<vVvv > = v <v > . (2.35)
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Although vm(ve) does in fact depend on v, » we seek to define an
effective L by the relatiomn above. Such a definition is not in
cgeneral possible, since <vmyﬁ> and <};ﬁ necd not have the same
dircction. llowever, only the radial components of the momenbum cqua-—
tions are used in applying them to the glow discharge, and 1f only a
particular component of (2.35) is considered, an effective vm can
certainly be defined. Also, fe(ge) is almost isotropic and vm(ve)
is not a very strong function of vV, » SO the particular component
used in the definition of an effective Ve has little effect on the
numerical value. In fact we adopt (2.35) as the defining equation and
regard its deviation from the truth as being of no practical import-
ance. Using (2.35) and (2.11) in (2.34), the final form of the

momentum equation given previously in (2.32) becomes

....e Pl ”~
e w S el = - . : .
m e 3t iﬁ Ne Clt mevm le (2.36)

v, as defined by (2.35) and used in (2.36) depends in general
not on v but on t, xr, and other parameters that influence fe
Blank [4], in his analysis of the positive column, studies the effect
of a non—constant vm(ve) on a transport equation equivalent to (2.36).
He concludes that except in special cases an equation using an effective
Vi, is of no use unless Vo is known a priori. In our case, data for
the elfcctive Y are provided by the work of Frost and Phelps [11] and
ngelhardt and Phelps [10]. The applicability of their data to our
situation is discussed later.

In applying Eq. (2.31) to the ions, the term containing
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<Xa> <2a> is also neglected. In this case, however, the omission
cannot be justified quite as casually as it was with electrons. Equa-
tions (C.6) and (C.1l1l) of Appendix C show that the drift velocity of
ions is not small in comparison with the random thermal motion. Self
and Ewald [24] study the effect of the term containing T¥gT<v,> en
the theoretical behavior of a glow discharge and conclude that it is
not always negligible. 1In our application there is no axial spatial
variation, and the momentum equations are used only in the radial
direction, so in comparing the magnitudes of the second and third terms
of (2.31), only the average radial velocity need be compared to the
random velocity. An estimate of the radial velocity is provided by

Eq. (C.40), and it is seen to be considerably smaller. Thus Eq. (2.31)

becomes

97 Of
s d = i
m.—‘.§*t*+3 Y. - N,e E = miJV.

i =1 i~ =t —i" Ot'e.c. dzi ' (2.32)

Only elastic ion-neutral collisions contribute significantly to
the transfer of momentum to ions from other species. An expression
for the rate per unit volume at which ion momentum increases is avail-
able in Eq. (B.28) of Appendix B, and in the nomenclature of this
section is

i ™™ 1
T J Y. M Tapm N ” Cym ¥ £ ) )

b vmi(g)dgi dzn (2.38)

where vm(g) is replaced by Vmi(g) to avoid confusion with the

electron frequency. The presence of g 1in the integrand introduces
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a strong coupling between . 4 and 2. and renders further simplifi-
cation difficult. Instead of making assumptions about the distribution
functions and continuing with tedious manipulations, it is convenient
to make an appeal to intuition. Such an approach is particularly
appropriate becaunse the data that are eventually used In the lon momen—
tum cquat fon are not dlrectly related to the distribution functions. [t
is only nccessary that the integral when simplified exhibit the proper
form. TIf v were independent of g , the integral in (2.38) would

mi

become

m, m
imn 1
mi+ mn Nn JJ (21_ !n) fi(!i) fn(En) vmi(g) dzi dzn

m. m
i n
ST .| <y.> —<v > G
m,+ m Vmi Ni( Yy n ) (.38
m, m
S < N <v > . (2.40)
mi+ m mi 1 —i )

In fact Vi depends only weakly on g , and the expression in (2.40)
is regarded as a definition of an effective collision frequency Voo
The critical assumption in this procedure is that the term in the inte-
graﬁd that includes v, asa factor vanishes when integrated over v,
and Xn . For a vmi which depends on g , this assumption is not

valid in general, particularly when the mean ion velocity is signifi-
cant in comparison with the random neutral velocity. 1In our application
the momentum equations are applied only in the radial direction, so it

is the mean radial ion velocity that should be used in the comparison.

Equation (C.40) of Appendix C shows that it is considerably less than



the random neutral velocity, which is slightly greater than the value
for ions given in (C.6). On this basis Eq. (2.40) is adopted as a good

approximation and is used in (2.38) to yield

af,
i
S . & > 2.4
m J Xi( YL Lh?i mi\)iNi vy 5 (2.41)
where Vv, replaces m Vv . /(m,+m ) . Equation (2.41) can be used to
i n mi i n

interpret v, as the effective ion collision frequency for momentum
transfer. Like vm it depends in general on t, r, and other factors
which influence the distribution functions. vi is eventually combined
with other factors to yield diffusion and mobility coefficients. These
coefficients are evaluated with data from other sources, and hence these
data determine vi indirectly. The applicability of the data is dis-
cussed lLater.

The final ion momentum equation is obtained by substituting (2.41)

into (2.37) and introducing the ion flux:

© ¥, -N,eE = -mvJ . (2.42)

The approximations involved in the derivation should be kept in mind,
since the apparent generality of the vector notation tends to belie the
geometrical restrictions on the applicability of the equation.

The momentum equation for the neutral species reduces to the

s Q.. =0 5

simple statement that the pressure is constant. R ™ 0 -

and at steady state ain/Bt vanishes, so Eq. (2.31) applied to the
neutrals involves only two terms representing the spatial variation of

the pressure tensor and the rate of momentum transfer from other
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species. The rate of momentum transfer can be obtained dircctly from
the rates calculated for the electrons and lons, and in the celectron
and ion momentum equations the rates are significant terms. Howcever,
the pressure tensor ia defined in (2.30) is proportional to the den-
sity Nd , and Nn is so much larger than Ne or Ni that the frac-
tional spatial change in Xﬂ given by (2.31) is negligible. If the
neutral hydrostatic pressure P is associated with iin > P must be
constant. Because of the preponderance of neutrals the pressure p

in the discharge is essentially equal tc P, - Mechanical equilibrium

in the system requires that p be uniform, so in place of the neutral

momentum equation, we adopt the equation

p = p (2.43)
where p 1is independent of r .

Energv Equations

The energy equations are obtained from (2.8) by taking

1 2
¢ = Sm, v (2.44)

Actually only the neutral equation is used, and after various manipu-
lations and approximations it becomes an equation for the neutral
temperature. However, important quantities are defined in the process,

so it is carried out in general. Substituting (2.44) into (2.8)

13 2 1 9 . 2.y £ .
2 "o 3t (Na<von>)+ 2 "o, or (Nou<-—0¢v Va>) anoc—tE <—oev 9
of
_ 1 2 o
= S m I vy (at . dv (2.45)
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since

9
/o T (2.46)
Ve

Introducing the peculiar velocity from %q. (2.28) and using the fact

that

<¥> = 0 , (2.47)

we obtain the relations

2
<yi>= < vy > =< CV > <y pe<y > :
s V. 'V V.V v v (2.48)
and
2
< > = < eV > + <V > s <y >4 < > i . >
v va VvV o 2 v v v Va v
+ <y ><y ><y > )
v v v (2.49)

*
The kinetic-theory temperature of a species is defined by the relation

3.4 1 2
> k Ta =M, <Va > 5 (2.50)

where k is Boltzmann's constant. We also define the heat-flux vector
Q, by

. (2.51)

Its meaning in the context of our problem is discussed in detail later.

The physical quantities iﬂ s Ta , and Qa now enter the energy equa-

tion through the expressions for <v§> and '<gd v§> . From (2.48)

- :
Its definition and relation to the thermodynamic temperature is dis-
cussed by Chapman and Cowling [5], pp. 37, 40-41.
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1
Lk |

o | =
=
A
<
N
v
]
o
-~
=3 >

m <v >+« <y > 2.5
o o 0L (2.52)

Using (2.30), (2.50), and (2.51) in (2.49)

l‘-Nm<vv2>= Q +E-<v>+-§NkT <wv >

2 od o =0, —0O 2 o o
+1Nm TN Ay el ¥ o (2.:53)
2 Tao —o -0 —0 i

Substituting (2.52) and (2.53) into (2.45), the energy equation becomes

8 109

3 1 9 . J .,
23t M kT g my ot WXy <Yt eyt &
%+ L (¥ <y >)+ 'é‘a— = (N k% <v. > )
or G -0 2 9r oo o
-l-l (N <v><v> <y > ) - N E°<v>
2 M Br o A 9 b ¥
of
. 2 o
B J Ve C§E~)C dya g (2.54)

In applying Eq. (2.54) to the neutrals, a vast simplification
occurs because <}gi and qn are zero. The equation becomes

3

1 af
at(n -9n=5an ( )dv . (2.55)

Now

Eventually (2.55) becomes an equation for fn , but further approxima-
tions are necessary and are considered later.

Equation (2.54) is not applied to the electrons and ions. The
electron temperature is determined directly from the solution to the

Boltzmann equation for fe ,» which is available in the work of Frost
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and Phelps [11]. The applicability of thedir results to our problem I
discussed later. The ion temperature is assumed equal to the ncutral

temperature, so in place of the ion energy equation we have

Ti = Tn o (2.56)

This assumption has been used in previous treatments of the positive
column by Ecker and Zoller [9], Blank [4], and others, and its justi-
fication is usually given verbally: because of their large mass the
ions gain energy from the applied field relatively slowly and readily
transfer it to the neutrals through elastic collisions. A simplified
model is set up in Appendix C to test this hypothesis, and the results
of Eq. (C.1l3) show Ei to be comnsiderably greater than %n for con-
ditions typical of our glow discharge. Nevertheless (2.56) is adopted
as an approximation in the work that follows. A study of the variables
and parameters used in Part II shows that this approximation has very
little effect on the solution for the dimensionless quantities. The
same is probably true of the work inm Part IITI, although the analysis

is more difficult.
Closure _of Moment liquations

The equations obtained above can be regarded as equations for
the densities, fluxes, and temperatures of the three species. Howgver,
in the derivations other quantities were introduced, which are inde-
terminable. In particular, the question of what to do with =£a and
gn must be confronted. The answer chosen is a standard method of

closing the system of equations.
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Before applying approximations to the form of the pressure ten-
sor, it is convenient to define the scalar pressure P, @s one—-third

of its trace. Using (2.30),

I+ ¥ = ;'N m.‘<V2
== =0

= >
P 3 0 a ao

o (2.57)

W=

where 1 is the unit tensor. The interpretation of P, as the
hydrostatic pressure is discussed in books on kinetic theory*. The
definition of f, by (2.57) ignores intermolecular forces and consi-
ders only momentum transfer. Hence Py represents the pressure of a

perfect gas, and in fact (2.57) and (2.50) show that

Py = Na kTu . (2.58)

The assumption made to permit determination of 'ia is that the

pressure is isotropic, i.e.,
Y = p 1 . (2.59)

Equation (2.30) shows that this relation is certainly true when

the distribution function fu is isotropic in velocity space about the
mean velocity. In the case of the neutral molecules the mean velocity
is almost zero, and compared to the large number of neutral-neutral
collisions, there is little to cause anisotropy; the approximation of

(2.59) is surely valid. Equations (C.17) and (C.21) of Appendix C

%
See Chapman and Cowling [5], pp. 31-35.



show that the random thermal velocity of the electrons is much larger
than the drift velocity. On this basis the deviation of the electron
distribution function from an isotropic state is regarded as a small
perturbation, and Eq. (2.59) is a correspondingly good approximation.
On the other hand, (C.6) and (C.1l1l) show that the same argument is not
applicable to the ions. Nevertheless, the momentum interchange as a
result of ion-neutral collisions is considerable, and the distribution
of ion velocities about the mean is expected to be primarily random.
In any case, the approximation of (2.56) assumes such a thorough inter-
action between ions and neutrals that consistency requires Zi to be
considered isotropic.

The two terms on the left-hand side of Eq. (2.55) refer to
random translational energy and its transfer. However, in a diatomic
gas such as H2 where rotational and vibrational energy is also
involved, the interchange of internal and translational energy compli-
cates the separation of the two types of energy transfer. The diffi-
culty emerges in the calculation of the integral on the right-hand
side, since it must account for all the mechanisms producing transla-
tional energy. On the other hand, if Eq. (2.55) had been derived by
setting ql in Eq. (2.44) equal to the total energy of a particle,
the integral would represent the total rate of energy transfer per
unit volume to the neutrals and could be easily determined. -% kfn
would then be replaced by the average total energy per neutral mole-

cule and Qn by the total energy flux. At steady state the difficulty

in separating internal and translational energy would occur in gﬂ
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cather than in the intepral. When the gas molecules possess only Urans-
latTonal cnergy. a Chapman-Enskog analysis of the Boltzmann cquation

leads to an exoression for vgn given by

LT
Q_n = - )\th 5 (2.60)

"

The analysis of "rough spherical molecules'" suggests that the effect of

rotational energy transfer can be included in (2.60) by modifying the

A Rk
value of A . llowever, the work of Engelhardt and Phelps [10] shows
that a large portion of the energy transferred to Hz molecules by

olectron impact appears as vibrational energy. Nevertheless calcula-
tions and physical intuition*** show that conduction of internal energy
is less efficient than conduction of translational energy, and we
assume as an approximation that the total heat flux can be represented
by Eq. (2.60). The assumption is particularly appropriate, since the
experimental data used in evaluating X do not distinguish between
the differerent means of energy transfer.

Since we assume Qﬂ to be the total heat flux, the right-hand
side of (2.55) represents the net rate per unit volume at which the

neutral cnergy increases as a result of particle interactions. Radia-

tion need not he considered as an energy loss, since it has been found

"See Chapman and Cowling [5], pp. 121-122,

B

“Chapman and Cowling [5], pp. 210-212.

X hapman and Cowling [5], pp. 236-237; Jeans [16], pp. 296-298;

Hirschfelder, Curtiss and Bird [13], pp. 498-506.
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to be neglipibl e*. We also neglect any cncrgy lost by direct Inter-

action of the charged particles with the walls ol the discharge. With
these considerations the rate at which the neutrals acquire energy in
a steady state is the same as the rate at which the charged particles
acquire it from the applied electric field. For a charged particle of

type o the rate per unit volume is given by

Ry = J g, B> =, £(v.) dv, . (2.61)
= Hag B *5g> (2.62)

o 0 —z -

Na]qa|Ez Wy, (2.63)

where -Ez is the axial electric field and Wy is the drift velocity.
This expression shows that the relative rates at which electrons and
ions transfer energy are in the proportion of their drift velocities,
since their densities are approximately equal. The ratio of drift
velocities is given in Eq. (C.22) of Appendix C and shows the contri-
bution of the ions to the energy transfer can be neglected as an

approximation. This approximation is consistent with the previous

assumption that Ti = Tn . We now write
of
1 2 n 2
2 ™n J Yn ( ot’ ¢ an = h N (2+54)
where
h = eE w (2.65)

*
Cobine [6], p. 235.
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represents the average energy transferred per electron per unit time.
The use of data for the evaluation of W, is discussed later.

It is of interest to calculate the rate at which neutrals gain
translational energy directly from electron impact. In view of the
ambiguity involved in relating _Qn to X and fn , this rate and the
one calculated in (2.63) provide bounds on the appropriate value of the
right-hand side of (2.55). However, the interchange between internal
and translational energy is sufficiently rapid* that the translational
energy-transfer rate is not a close approximation to ﬁ unless it is
the predominant mechanism for electron energy loss. Its calculation
below permits a comparison between its value and that of ﬁ . An
expression for the translational energy-transfer rate from neutrals to
electrons is available in Eq. (B.34) of Appendix B. The transfer rate
from electrons to neutrals is just the negative of this expression and

in the nomenclature of this section becomes
m

IR - U (Y R S
R =2 m J (2 m v <2 mnvn>) fe(ge)vm(ve) dge 8 (2.66)

We define an average or effective Vo by rewriting (2.66) as

E]

_ - b (RPN~ S T
R = 2 = vm Ne (< 5 meve> <12 mnvn> ) s (2.67)

=]

A comparison of this definition of the effective v with that described

in the discussion following Eq. (2.35) shows that the averages involved

*
See Vincenti and Kruger [25], pp. 198-206, for a discussion of internal
energy relaxation.
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are somewhat different. llowever, \)m(ve) does not vary pgreatly as

2, changes, so the numerical values of the two effective \)m'n differ
only slightly, and the same data are used for hoth. The average eneryices
in (2.67) can be expressed in terms of the temperaturcs with the use of
Eq. (2.52). Since the mean velocity is much less than the random

velocity for both electrons and neutrals (compare (C.17) and (C.21) of

Apnendix C), Eq. (2.67) can be written as

m

Lo te 35 oE
R 2 mn vm Nu(2 ITe 5 kln) (2.68)
= b N (2.69)
where
m
~ 3 ___E é A _ ;?l ~
ho = 2 m_ vm(z kTe 5 an) (2.70)

represents the average translational energy transferred per electron per
unit time. The comparison of ﬁ and Eo in Fig. 4 shows that roughly
10% of the electron-neutral energy transfer involves translational
cnerpy.

In using the rate oxpressions of (2.64) or (2.68) in (2.55), it
is implicitly assumed that the electron energy is transferred to the
neutrals at the same location where it is acquired from the axial field.
The accuracy of this assumption can be checked by comparing the time
required for an electron to lose its energy with the time during which
it changes its position by a representative amount. Since quantities
do not vary in the axial direction in the positive column, it is the

time required for movement in the radial direction that must be
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determined. An estimate of this time is provided by Tq in Fq. (C.41)
of Appendix C. The electron energy relaxation time for elastic col-
lisions provides a measure of the time during which an electron loses

most of its energy; it can be found by dividing the mean energy of an

electron g-kT by ﬁ . Since % >> % » Eq. (2.70) shows that
2 e o e n
R
Te = m £ (2. 71)
2 —V
m m
n

Using the value for vm in (C.20), we obtain

T = 2.90 x 15" e, (2.72)

and find that Te << Ty Since h > h0 , the actual energy relaxa-
tion time is less than Te . Hence we conclude that the expression in
(2.65) can accurately be used in Eq. (2.55) in an inhomogeneous

situation.

Final Moment Equations

Using the approximations considered above, the continuity,
momentum, and energy equations can be written in their final form. It
should be remembered that although the vector notation appears general,
approximations have been made that depend on the geometry of the
application. The continuity equations can be rewritten directly from

Egqs. (2.23) and (2.24)

= VwN - o NN, (2.73)
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e tar T4 TVe 2NN (2.74)

Equations (2.36) and (2.42) are rewritten using (2.59) and (2.58):

5 . . .
= 3 _

m, 5o+ 5% (NekTe) +N,eE =-myVv J, (2.75)
W g . ’

m_[ "-(.s—t' + 3¢ (NikTi) - N,‘I, P._E_t = --'m]._\)1 J‘i (2.76)

The neutral energy cquation is obtained from (2.55) using (2.43), (2.58),
(2.60) and (2.64):

~ T .

— Iy o
(A 5t h Ne i (2.77)

33 _3
2 9t 9r

The use of (2.58) assumes the neutral species behaves as a perfect gas.
Since (2.43) associates P, with the mechanical pressure p , which is
uniform throughout the system, the equation

~

p = Nnk Tn (2.78)

A

relates Nn to Tn in a simple manner. Although Nn does not appear
directly in the equations of change above, it is needed for the deter-
mination of many of the coefficients.

Equations (2.73) - (2.77) form a system of five equations for the

~ ~

unknowns N , N.,, J , J., and T . Before they can be solved, boundary
e i7" =e” =1 n

conditions appropriate to the application must be applied, and the vari-

~

ation of _gt and the coefficients vm, Vv A, and h must be deter-

i’

mined.
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3.  APPLICATION OF LEQUATIONS TO THE POSLTLVE COLUMN

Iin applying the equations of change to the positive column
several simplifications occur. In the first place, only the steady
state problem is considered, so all the time derivatives disappear.
Also, it has been mentioned that there is no variation along the
column in the axial direction. The discussion in the Introduction
stated that in the interest of mathematical simplicity the actual
cylindrical geometry would be replaced by the corresponding slab geom-
otry. In this case the discharge is contained between two parallel
walls, and the axial field is applied parallel to them. The discharge
is symmetric about a plane dividing it, and the only spatial variation

is in the direction perpendicular to the walls.

Equations of Change

At steady state Eqs. (2.73) and (2.74) show that Ee and ii
have equal radial components. This conclusion is easily reached by
considering the integration of both equations from a particular value
of x , the coordinate perpendicular to the wall. Only the "radial"
or x—derivatives of the "radial" components of the fluxes appear in
the equations, and these derivatives are equal. From symmetry con-
siderations there can be no flux toward the walls at the center of the
discharge, and hence integration from the center shows the electron
and ion "radial" fluxes to be equal everywhere. Equations (2.73) and

(2.74) now become

= VN - a NN, (3.1)
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~

where J is the common value of the "radial" or transverse components
~ ~

of J and J. .
—e e

The momentum equations (2.75) and (2.76) are used in the trans-

verse direction only. After a slight rearrangement, they become

~ A dNe k. dTe A ~
J = —De dx mv R dx ueNe _ (3.2
e'm
and #
T % b Mk N o 0 W, N, E (3.3)
i dx m,v i dx i 1" o
i1
where

R kt?e

By, = &N e}
e m

A @

Pe T 2wy £3.57
e m

. KT,

D, = —= (3.6)

i m,V :

ii
e

B, W e (3.7)

* MYy

~ ”~ ”~
and T 1is the transverse component of the electric field. De s W
e

Bi y ﬁi are the diffusion and mobility coefficients of electrons and

ions, and the Einstein relations follow immediately from their defi-

nitions:
f)e k‘fe
i e (3.8)
He €
D KT
i i
sy m e . (3.9)

=
e
®

Equations (3.2) and (3.3) are written so as to show the contribution
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of various terms to the flux toward the walls. The first term repre-
sents diffusion as a result of a densitv gradient; the second involves
the effect of electron and ion temperature gradicents; and the third
gives the contribution from the transversc ficld. [In preparation for
the eventual mathematical analysis, it 1s convenient to rewrite the
momentum equations so that the density gradients appear alone. Using

(3.4) - (3.9), Lgs. (3.2) and (3.3) become

dNe 1 dTe & o 1 -
wrtr Ve mo g NE-5 i
e e e
dN df s P
e e T, e B Foed=d (3.11)
1

The energy equation (2.77) 1s most conveniently written in the

form
g7 0 .
1 dx d h
2L g b SLEL . . Loy (3.12)
2 dx dx e
dx A

~

where T has replaced Tn in a notational change.
The transverse electric field E enters rather intimately in
Fgs. (3.10) and (3.11), and an equation for it is obtained from Poisson's

*
equation for the electric field

) AE . (3.13)

3%

where p 1is the charge density and €6 is the permittivity of free

*
See, for instance, Panofsky and Phillips [20], p. 11.
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space. The equation is written in rationalized mks units. Since the
charge density is the result of electron and ion concentrations,
Poisson's equation applied to the positive column becomes

dE

S - g— , =H) - (3.14)
o

Boundary Conditions

(3.1), (3.10)-(3.12), and (3.14) constitute a set of five equa-

tions for the five unknowns J, Ne’ Ni’ T, E . The other quantities

~

appearing in the equations can be expressed as functions of T , Nn 5
~
and Et with the use of data from other sources.
Before the equations can be solved, boundary conditions must be

imposed upon the variables. Several are easily determined from the

symmetry about the center of the discharge. Designating the center plane

by x =0 we have

x =0 : J =0 (3.15)
E o= 0 (3.16)
%%— = 0 4 (3.17)
The boundary conditions at the wall are not as easily determined. We

assume as an approximation that the electron and ion densities are zero
* - 3 . '3 . 3
there . This condition is not exact, of course, since the equation

= Nu <Xa> would then predict a zero flux of charged particles to the

detailed discussion of the boundary conditions is given in McDaniel
19], pp. 496-497.

rﬂ»* éu>
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wall. llowever, the wall absorbs essentlally all of the electrons and
ions that strike it, and the densities are very small ncar it. The trans-
fer of heat to the wall by conduction by the neutral gas is influenced by

conditions outside the plasma. As a boundary condition we choose to

specify the temperature of the neutrals at the wall. The conditions at

the wall now become

5 = T, z Ne = 0 (3-18)
Ni = 0 (3.19)
T = Tw (3-20)

where L is the distance from the center of the discharge to the wall.
The equations are solved for 0 % x £ L. , and the solution in the other

half of the discharge can be obtained by symmetry.
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4. SOURCES OF DATA

~

The equations for l, NU, Ni_, T, and ;'\ involve coclflelents
that have to be determined from experimental data. The derivation of
the equations shows that these coefficients are or involve integrals
over cross sections and distribution functions, both of which arc

unknown. However, data are available from various sources, and their use

and applicability are discussed below.

Data for Electrons

Data for the coefficients depending on the electron distribution
function are obtained from the work of Frost and Phelps [11] and
Ingelhardt and Phelps [10] . They solve the Boltzmann equation directly
for fe(ye) in a steady-state, spatially uniform situation. There is
an applied electric field and the collision integral includes, in addi-
tion to elastic electron-neutral collisions, such inelastic effects as
ionization and rotational, vibrational and electronic excitation. The
cross sections for these processes appear in the equation and are
initially unknown. Using assumed wvalues for them, the Boltzmann equa-
tion is solved, and fe(ge) is used to evaluate such macroscopic quan-
tities as drift velocity and electron temperature. These quantities are
compared Lo experimentally determined values, and the assumed cross sec-
tions are varied and fe recalculated until agreement is reached. The
final result is a set of cross sections that can be used to calculate
drift velocities, electron temperatures, diffusion coefficients, etc.
over a wide range of the parameters appearing in the Boitzmann equation,

These parameters are the electric field and variables determining the
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~

state of the ncutral gas--p, T, and Nn (related to p  and % by

q. (2.78)). It 1is found that at constant Nn the distributlon func-
tion varics very little with % . Also, Nn and the clectrile ficld

Et always appear together in the Boltzmann equation in the form

~

Et/Nn . Comnsequently, the calculated quantities such as drilft veloci-
ties and mobilities can be expressed as functions of Et/Nn multiplied
perhaps by simple multiples of gt or Nn . Graphical results for
these quantities are presented in the publications cited above, and the
details involved in their use in our equations are discussed below.
First, however, it is necessary to consider the general applicability
of the data.

In our situation the total electric field ﬁt and the neutral
number density Nn vary with position in the transverse direction.
The variation of Et constitutes no problem and is easily disposed of.
Equations (C.2) - (C.4) of Appendix C show that the effect of a repre-
sentative value of the transverse field on Et is very small. 1In
fact, in applying the data to our problem, Et is replaced by our ﬁz
The variation of Nn , however, requires a more detailed analysis. 1In
evaluating the coefficients at a particular position we wish to use
the local value of Nn . The justification of such a procedure re-
quires that the electron distribution function fe adjust very rapidly
to a change in Nn . A criterion to establish whether the adjustment
is sufficiently rapid is discussed in Appendix C. It consists of a
comparison of the time required for fe to respond significantly to a

change in Nn with the time required for a typical group of electrons

to travel between locations of significantly different Nn . An
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estimate of the latter time is given by the ambipolar diffusion time
in Eq. (C.41). A comparison of the ambipolar diffusion time with the
response time of Eq. (C.36) shows the adjustment of fe to be faster
by several orders of magnitude. Thus we conclude that we are justi-
fied in using the local value of Nn to evaluate the coefficients in
our equations from the data.

Data for electron temperature, ionization coefficient, and
drift velocity in H2 are preseﬁted by Frost and Phelps [11] and

Engelhardt and Phelps [10] in the form

kTe/e = fE(Ez/Nn) (4.1)
af/N_ = £(E_/N) (4.2)
v, = w (B /N) . (4.3)

~

oy is Townsend's first ionization coefficient and represents the
expected number of ionizing collisions an electron experiences in
travelling a net distance of one centimeter in the field direction. It

is related to the ionization coefficient v_. by

I

Vo= oWy - (4.4)

Graphs displaying the data for fF ’ fI , and w, are presented in

Figs. 5, 6, and 7. The data are adapted to computer calculations

through the use of least-squares polynomial fits which determine fE .

f. , and w_ as functions of E_/N_ .
I e Z n
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A number of the coefficients appearing in the equations of change
can_now be expressed in terms of fE ~ fI , and we . In writing the
expressions it is convenient to use Eq. (2.78) to eliminate Nn as a
variable in preference to p and % . The dependence of the variables

~ ~

on EZ , p , and T 1is written explicitly. Although Ez and p arc
constant throughout the discharge, % is a dependent variable in the
equations, so the coefficients vary with x . The electron temperature
in Eq. (4.1) is now written as

~

~ ~ ~ E ~
I
T (TiE,,P) = § fg(-Z kD) . (4.5)

Using (4.2) - (4.4), the ionization coefficient is evaluated by the
equation
4 & E £
V_(T3E ,p) = 2= w (-2 kT) £ (-2 kT) . (4.6)
i § 7 kT € P I'p
The electron mobility as defined by Eq. (3.5) can be determined from
knowledge of vV, s and data for v, are available in Frost and Phelps
[11] . Furthermore, our definition of an effective vm ,» as discussed
following Eq. (2.35), coincides with theirs. However, vm can be
related to LR by applying the electron momentum equation in the
axial direction. Although v, is usually defined as the magnitude of
the mean velocity in the direction of the field, the differences
between the axial field and axial velocity and the total field and

total velocity are negligible (see Appendix C, Egqs. (C.2), (C.4), (C.21),

(C.40)). Equation (2.75) in the axial direction now becomes



N e[k = mVvV N w (h.7)
em e e

O

v o= eeEe (4.8)

In evaluating the coefficients in the equations, the data for v, are

used rather than that for Voo From (3.5) and (4.8), My is found by

~ ~ ~ I’E ~ ~
MG (TSE,,p) = w (KD /E . (4.9)

ﬁe is now obtained from (3.8) using (4.5) and (4.9):

~ ~

E ~ E ~ ~
~ ACOA _ __Z_ __E_
De(T,Ez,p) = we( " kT)fE ( < KT) /EZ . (4.10)

The expressions for h and ﬁo in Egqs. (2.65) and (2.70) become

~

E
A Y - ~ _?_ ~
h(T3E_,p) e E_w_( : kT) (4.11)
P 3k eEz 5 Ez . .
ho(l;Ez,P) = ‘““““ﬁ——““—fi fEC‘E kT) ~ T] . (4.12)

z ~
mnwe( 5 kT)

The derivative of Te appearing in Eq. (3.10) is converted to a

derivative of T with the use of Eq. (4.5):

dr 3T .
_ e ar
dx 9T dx (4.13)
oF E A
- Z cr o 2 .5y 4T
= B fE ( b kT) o (4.14)

The numerical evaluation of fé by the computer is accomplished by
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differentiation of the least-squares polynomial for fE . Figure 8
compares this computation with an attempted direct numerical differen-

tiation of the data.

Data for Ions

Data that are sufficient to determine the ion mobility and dif-
fusion coefficient for our application are given in McDaniel [19],
p. 472. Experimental and theoretical results show that, as in the case
of electrons, ﬁz/Nn is a basic parameter in determining the property
of the ions. It is found that at constant ﬁz and Nn the ion
mobility is very insensitive to changes in temperature*. Also, at con-
stant ﬁZ/Nn it varies inversely with Nn *. Through deference to

tradition the neutral density is seldom mentioned in the presentation

of mobility data, and in its place appears a "'reduced" pressure P,

given by
@o
B, = D (4.15)
T
= N k1°® (4.16)
where
t° = 273% . (4.17)

The reduced mobility ﬁ: (mobility at a gas temperature of T = 273%
and a pressure of pO = 760 mm Hg) is presented by McDaniel [19], p.472,

as a function of ﬁz/p0 . It is related to the mobility under other

*
McDaniel [19], pp. 427-428.
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conditions by the equation

s B0 a
| T L (4.18)
n
where
. (o]
N = I (4.19)
H kT
0 -
w 2,60 x 107 em > . (4.20)

Again we eliminate Nn as a variable by means of the perfect gas law

~

and write ui as a function of Ez s P s and T din the form

~ A
E T
Z

A A A o
3 = B
M, (T3E ,p) = ) . (4.21)

ﬁgkﬂ)

o)
u; (
i pTo

The data are adapted to computer calculations by means of a least-
squares polynomial expressing az as a function of ﬁz%/(pfg} or
ﬁz/po . A graph of the data is given in Fig. 9. The ion diffusion
cocfflficient can now be obtained from Eq. (3.9). fi has already been

assumed equal to T (Eq. (2.56)), so Di becomes

~ A A k o ,}:\2 r\o ﬁ? %
D.(T;E_,p) —“P-——A B, = . (4.22)
p z e pgo i pTo

It is now necessary to perform an analysis similar to that done
for the electrons to show that the data are applicable in a nonuniform
situation. ui is related to the ion distribution function through
Eq. (3.7), which involves Vo and Egs. (2.40) and (2.41), which give
v, as an average quantity obtained from integrations over fi(gi) s

~ ~
This relation shows that the time for ui and D to respond to

i
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changes in Nn is the same as the response time for fi . Because of
the efficient energy interchange hetween ions and neutral molecules,

the response time for fi is essentilally the same as the encrpy roelaxa-
tion time given in Eq. (C.10) of Appendix C. 1In order to justify use

of the local Nn in evaluating “1 and D, , the response time must he

i
much less than the time during which the ions experience a significant
change in Nn . This latter time is of the same order of magnitude as
the ambipolar diffusion time found in Eq. (C.41l). A comparison of the
two times shows that it is indeed appropriate to express the transverse

variation of W, and D in the positive column through use of the

i

local neutral density .

Recombination Coefficient

The data available for the electron-ion recombination coeffici-
ent in H2 are scarce and unreliable. It was once thought that the
dissociative recombination reaction of Eq. (2.12) was characterized by

%
a large recombination coefficient . In fact microwave measurements

by Biondi and Brown [3] in the afterglow of an H
6

2 plasma yielded a

value for o of 2 X 10 cm3/sec. However, a later paper by Persson

and Brown [22] attributes such a high value to other factors and con-
cludes that in HZ the recombination coefficient is negligible within
experimental error and is thus less than 3 X 10—_8 cm3/sec. The same

conclusion is also reached by Popov and Afanaseva [23]. Furthermore,

%
See McDaniel [19], pp. 590-591, 607-609; Hasted [12], pp. 267-268;
Bates [2], p. 267.



in the afterglow the electron and neutral temperatures are equal. o
the positive column, where the electron temperature 1s much higher,
the recombination coefficient is expected to be less because of the
increased difficultv in dissipating the kinetic energy of electrons.

Nevertheless, in the absence of better data o is given the value

@ = 3.00 X 10—8cm3/sec (4.23)

in studying the effect of recombination in the positive column. The
numerical calculations which depend critically on the value of & in
the solution of the equations in Part II must be regarded with consi-
derable skepticism, but the qualitative nature of the solutions is

the same as for a smaller o . A larger value of 0 results in the
effect of recombination becoming significant at lower values of the
electron density. Although the recombination coefficient in an H2
plasma is small, it is considerably larger for certain other gases and

may be an important factor in the abnormal-glow or arc regimes of the

discharge characteristic.

Thermal Conductivity

The data used for the numerical evaluation of the thermal con-
ductivity in H2 are found in the Internmational Critical Tables [15]
Vol. 5, pp. 213-214. At the conditions of interest i is essentially
independent of pressure at constant temperature, and an empirical
formula is presented there for i as a function of f . A slight

modification results in the following formula, valid in the range

20.8°k < T < 373%K
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Fa SN ~ 0 i
XT3 = Aoy 24K . L 432 (4.24)

T + 94°k  300%

where

~3 oKﬂl

A 300%K) = 1.706 % 107 5n em sec X 4.25)

~

A moderate extrapolation by this formula is used to evaluate A for

% > 373°K . Thermal conductivity data for gases in general are of
rather low accuracy, and the extrapolation is not likely to cause sig-
nificant error. 1In fact, the value of X(2730K) differs from that
listed in Perry's Handbook [21], p.3-206 by roughly 10%. Data for i
are available there at higher temperatures, and the deviation of that
data from the extrapolated values indicates that the extrapolation is a
reasonable approximation.

The derivative of A appearing in Eq. (3.12) is now converted

~
into a derivative of T :

d/\ dA ~
L. —é--%l . (4.26)
dr
(1/i)dX/d§ is evaluated using the empirical formula for A :
~ d =
%‘g:’ = — &n A (4.27)
A dT dT
T + 282°%K . (4.28)

A A

2T(T + 94°K)

Domain of Data

Most coefficients in the equations of change are determined from

experimental data for fE - fI s W, s and uz, which are obtained as
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~ ~
functions of R /N . lowever, the range of I /N for which the

Z n 2 [}
various quantities are known differs, and the data can be used only In
the range

15 15

0.43 x 10~ volt—cm2<Ez/Nn s 140 ¢ 10 wole-mis (4.29)

in which all coefficients can be evaluated. Although this range seems

~

quite restricted, the variation of EZ/Nn within its bounds causes VI

to change over several orders of magnitude. The development of the

~

problem in Part II shows that because of the large change in Vg there

~

are no practical limits on Ez in the interpretation of Ez as the
parameter A discussed in the Introduction. However, the bounds on
Ez/Nn do impose a limitation on the behavior of T in the temperature-

dependent studies of Part III.
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5. DIMENSIONLESS PROBLEM

The final working equations are obtained by writing the cquatlons

~

for J , N , N, , T and E 1in dimensionless form. They are then

e i

ready for the particular applications in Part II and Part III.

Dimensionless Coefficients and Variables

~

Reference values Ezr and P, for the axial electric field and

the pressure are introduced in making the coefficients appearing in the

equations dimensionless. The dimensionless coefficients are then

defined as follows:

2 I z
\’I(T;EZ:P) = A ~ ~
V(T E, »p.)
" T_(T:E_,p)
e z
TE(T;EZ’P) = ~ ~ ~
Te(TW:Ezr’Pr)
- H (Q;E »P)
e z
ue(T;Ez’p) = ~ ~ ~
ue(Tw’Ezr’pr)
~ D (:I\‘;( ’p)
D _(T;E_,p) = = z
il D (T ;E )
e\ lwizr Py
- ﬁ.($;ﬁ >P)
1 z
Ui(T;EzaP) = ~ ~ ~
. (T sE__,p )

Di(T;Ez,p)

(5.1

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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h(T;Ez,P) = T (5.7)

h CIE p) = =—x (5.8)
h (T SE, .p)
AT = —D (5.9
ACT)
where
T = (5.10)
T
w

The choice of Ezr and P, differs in the applications of Parts II
and III, but in either case they are chosen so that the magnitude of
the coefficients are of order unity throughout the discharge.

The dependent variables of the problem are also made dimension-
less in such a way that their magnitudes are near unity in most of the
discharge. The proper definition of some of the dimensionless variables
is not obvious a priori and depends on hindsight gained in solving the
problem. For notational simplicity in the definitions, it is convenient
to give a special symbol Neo to the electron density at the center of
the discharge:

Neo = Ne(O) . (5.11)

The dimensionless electron and ion densities are now defined by

B © Ne/Neo £5:12)

n, = Ni/Neo s (5.13)
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The definition (5.12) artificially introduces another boundary condition
into the problem, because n, must be unity at the center of the dis-
charge. However, the definition also introduces the unknown Neo into
the problem and gives the problem a desirable measure of versatility.

The dimensioned formulation of the problem in Section 3 suggests that

the equations are to be solved directly for J, Ne’ Ni’ T, I after
specif{ying values of the parameters Ez and p . Now, however, the

explicit presence of Neo in the problem permits more flexibility. In
fact, the solutions in Parts II and III are obtained by specifying Neo
in advance and determining Ez as an eigenvalue. As mentioned in the
Introduction, one of the primary objectives of the study of the positive
column is the relationship between the electron density and the applied
electric field. This relationship can now be expressed quantitatively

as the relation between Neo and Ez . The remaining variables J

~
and E are expressed in dimensionless form as

T
L
J

>E

- T J (5.14)
Di([@;'zr’pr)Neo 1e(Tw;hzr’pr)

L e

~

P E (5.15)
kTe(T'w;Ezr’pr)

The dimensionless temperature is the T defined by Eq. (5.10), and the

new independent variable y is defined by

v = x/L - (5.16)
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Dimensionless Equations and Boundary Conditions

The equations of Section 3 are made dimensionless by substituting
into them the expressions above for the variables and coefficients. As
a result of this process various constant coefficients appear in the
equations which depend on Neo’ iw’ Ezr’ P - The procedures used to
solve the problem for the Ned—ﬁz relationship require that the elec-
tron density Neo retain its identity‘in the equations. For this
purpose and to avoid the appearance of dimensioned quantities in the
equations, a spurious parameter N dis introduced. N is a reference
density whose value is of no essential significance and is specified

for convenience in Parts II and III. A dimensionless electron density

£ 1is defined by
c = N /N (S.173

and this equation is used to replace Neo wherever it appears in the
dimensionless equations.
With the use of (2.56), (4.13), and (4.26), Eqs. (3.1), (3.10)-

(3.12), and (3.14) become

dJ _ ' _
oy YvI(T,ﬁz,p) n, £ C n.n, (5.18)
e 1 8T,  ar _ 1
dy = A 3T "e dy ~ B E
T (T;E_,Pp) T (T3E_,p)
-t —E—— O (5.19)



where

X =

-7

1 dT
+i2 g === =n 8 -7 J
T "id T ~
g D, (T3E_,p)
b L@ ana o DOEER)
A(T) 4T ‘dy A(T) e
= X% (o -n)
125 (T :E ) T
IV w? zr’pr . \
Di(Tw;Ezr,pr) Te(IW;Ezr,pr)

L2 oN . Tw
Di(Tw;Ezr’pr) Te(Iw,Ezr,pr)
Te(TW;Ezr’Pr)

T
W
Di(Tw;Ezr,pr)
De(Tw;Ezr,pr)
h(T ;B yNL2
wizr'Pr

A(TW) T,

L2Ne2

EokTe (Tw ;Ezr’pr)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Of the constant coefficients in the equations, only ¢ depends on

co’

~

Y, £, T, 6, B, and ¥ all depend on Tw’ E

ZY

3

and

Py

These

dependencies play a prominent role in the methods used to solve the

equations.
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The boundary conditions on J, ne’ ni, T, and 1. now become

v =0 n =1 (5.29)

: e
J =0 (5.30)
dT _
ay =0 (5.31)
E =0 (5.32)

y=1©5 3 M, = 0 (5.33)
n, =0 (5.34)
T =1 (5.35)

The equations are to he solved for J , ne, n T , and E on

i’
0=y <1, and a relation between Neo (or ) and Ez is to be

obtained.

Solution at Ngo = 0

The discussion in the Introduction describes in a general manner

the N i relationship. In particular it asserts the existence of a

eo
trivial solution to the equations. An examination of Tgs. (3.1), (3.10)-

(3.12), (3.14) - (3.20) shows that the trivial solution is

J = Ne = Ni = E =0 (5.36)
T = Tw (5.37)
Neo = Ne(O) = 0 (5.38)

~

and that Ez is arbitrary.
However, the corresponding solution in dimensionless variables

is not trivial and Ez is not arbitrary. This behavior is explained
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by the transformations (5.12) - (5.14) and the corresponding boundary
condition (5.29). The use of the dimensionless equations when Neo =0
requires special consideration, because their derivation in that case
entails division by zero. A conceptual justification for their use
involves the consideration of a process in which Ncn approaches zero.
A schematic representation of this process 1s observed by following the
curve in Fig. 1 to N = 0 , and the conclusion so determined is that

eo

E, is not arbitrary but instead corresponds to the bifurcation point

Ab .
This value of Ez is obtained in the course of solving the
equations. For Neo =0 (hence T = 0), Egs. (5.21), (5.22), (5.31),

(5.32), (5.35) show that

T = 1 (5.39)

and

m
I
o

(5.40)

The equations and boundary conditions for J , n,s and n; then become

dJ i

a - 'YVI(l;EZ,P) n, (5.41)

dn

__d; S — NE— (5.42)

De(l;Ez,p)

dn

=5 == ey (5.43)
y - 0 : n‘ = ] (5-44)

N I} (5.4%)
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=L § n = 0 (5.46)

e

n, = 0 . (5.47)

Eliminating J between (5.41) and (5.42), the problem for n, hecomes

dzne VI(l;Ez’p)
2 + YST __mA ne — O (5 . 48)
dy D_(13E_,p)
y=20: n,= 1 (5.49)
dn
—== 0 (5.50)
dy :

The solution to this eigenvalue problem is

o )
n, = cos y (5.52)
v (l;ﬁ ,P) 2
phr——E =L (5.53)
De(l;Ez,p)

Using (5.1), (5.4), (5.10), (5.23), (5.25), and (5.26), Eq. (5.53)

becomes

2A ~ ~
L vI(Tw,Ez,p)

2

— = L (5.54)

D (T ;E_,p) 4
e w z

~

For specified values of L , TW , and p , this equation can be solved

to find the value of ﬁz corresponding to A in Fig. 1. By elimi-

b
nating J between Eqs. (5.42) and (5.43) and integrating the resulting

equation using the boundary conditions at the wall, it is easily seen
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that n, is a constant multiple of n and is larger by several orders
i 2

of magnitude.

Discussion of Problem

The solution for small Neo can be found by expanding ﬁz and
the dependent variables in asymptotic series consisting of powers of (,
and this procedure is carried out by Cohen and Kruskal [7] for the case
in which T 4is constant (B = 0) and recombination is absent (e = 0).
Our interest, however, is in situatiomns in which Neo is large. 1In
fact, the work in Parts II and IIT involves the expansions of ﬁz and
the dependent variables in asymptotic series whose lowest-order terms
correspond to the ambipolar situation, in which Ez is represented by
Aa in Fig. 1. In each case the problem is approached by specifying
Neo in advance and determining ﬁz in the course of solving the dif-
ferential equations. Of course, the reasoning can be inverted after
the solution is obtained so that J , n_, N, T , and E are regarded
as functions of Ez and y , and Neo as a function of Ez "

In solving the problem no study is made of the response of the
solution to changes in such parameters as L , Tw’ and the amount of
neutral gas (or the pressure p) in the discharge. These parameters
and the nature of the particular gas in the discharge play a critical
role in determining even the crudest approximation to the solution, and
hence their effects can be evaluated from a stﬁdy of the ambipolar situ-

%
ation . The work here analyzes the deviation of the actual solution

from the ambipolar approximation.

*
The effects are discussed in Cobine [6] and von Engel [26].
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Until now the behavior of the pressure p has not been discussed
except to say that it is constant throughout the discharge. Indeed, the
pressure enters the equations as an unrestricted parameter, and it must
be determined by the particular physical application considered. In our
case we wish to study the behavior of a discharge containing a fixed
amount of neutral gas as the applied electric field ﬁz varies.
Although the pressure is constant across the discharge, its value
depends upon the temperature distribution and can be calculated by use
of the perfect gas law. Since the temperature is a variable of the
equations only in Part III, its calculation 1is deferred until then.

The correspondence between the Neoaﬁz relation and the voltage-
current characteristic of the discharge is described in the Introduc-
tion. The relationship of the electron density to the current can now

be given more explicitly as

Wi) dA 5 (5.55)

I= J (e Ne LR + e Ni

where the integration extends over the cross sectional area of the dis-
charge. Equation (C.22) of Appendix C shows that Wy << W, » SO the
contribution of the ions to the current is negligible. Using (4.3) and

(5.12), Eq. (5.55) then becomes

o
, 2 1%
I= eN_ I n v (£ KD) dA . (5.56)

The results of Parts II and III show that Neo varies much more

rapidly than ﬁz , so the current is essentially proportional to N
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Appendix A

EXPRESSTIONS FOR COLLISION RATES

A quantitative aSSéssment of the collective effects of interpar-
ticle collisions requires a detailed consideration of particle inter-
actions. The calculation of interest may seek the rate at which
momentum or cnergy 1s transferred from one species in the plasma to
another by elastic collisions, or it may seek the number of collislons
causing ionization by electron impact. Although the net result of such
calculations is statistical in nature, the statistics are provided by
the velocity distribution function, and it is still necessary to know
the overall kinematics of any hypothetical binary collision. This
information is provided in very convenient form through the concept of

a collision cross section.

Definition of Cross Section

The use of the cross section provides a compact expression for
the rate at which particles engage in a specific class of collisions.
The rudimental physical situation through which the concept is intro-
duced consists of the scattering by a fixed center of a uniform flux
of particles of velocity v (see Fig. 3). The differential cross sec-
tion for the process k , which may be elastic scattering, ionization,

etc., is defined by the equation

R =0 qv,x) d2 * , (A.1)

* : = sty
Soo Doleroix |8, pp. 97 1.



o
where d? = sin X dX de (A.2)

is an element of solid angle in the direction (X,€) . X and € are
the polar and azimuthal angles, respectively; ®(v) 1is the magnitude of
the flux of particles with velocity v and is uniform throughout space;
R with dimensions of collisions per unit time is the rate at which
particles engaging in collisions of type k are scattered into the
solid angle dQ ; qk(V,X) is the differential cross section for

process k . The symmetry suggested by Fig. 3 indicates that is

I
independent of ¢

For the situation in which the scatterer is a moving particle,
the coordinate system of Fig. 3 is taken relative to the scatterer, and
the velocities are relative velocities. Although the velocity of the
scatterer, and hence the flux of particles relative to it, changes as a
result of a collision, the use of cross sections in physical situations
involves a distribution of scatterers with various velocities, and the
concept introduced above actually pertains to the interaction of sets
of particles characterized by their velocities. As shown by the more
concrete calculations of Appendix B, the angle X 1in this case is the
deflection angle for the collision of two particles in their center-of-
mass coordinate system. Furthermore, these calculations show that the
knowledge of X, €, and the pre-collision velocities together with the
laws of conservation of momentum and energy suffice to determine the
velocities after collision.

For some collision processes the velocities after the collision

are not of interest. For instance, in the calculation of the rate of
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ionization, the only object of interest regarding the outcome of a col-
lision is whether ionization occurs. In such cases Eq. (A.1) may be
integrated over  to yield

R = 0(v) Q (V) (A.3)

where Qk(v) = J qk(v,x) dQ (A.4)

is the total cross section for the process k .

Application to Velocity Distributions

As preparation for the use of cross sections in rate expressions
for processes occurring in a plasma, we consider the interaction of two
tvpes of particles characterized by the velocity distribution functions
f(v) and F(V) . Collisions between the particles are, of course, suf-
ficiently localized so that the spatial variation of £ and F is not
pertinent to the calculations. In order to correlate the physical
situation with that represented by Eq. (A.1l), it is necessary to consi-
der collisions between particles whose velocities differ only infini-
tesimally from two particular velocities v and V . 1In this case the

magnitude of the flux of scattered particles is g f(v) dv , where

g = |v -y (A.5)

is the relative speed of the particles in dv with respect to the
scatterer with velocity V . Using (A.1), the rate at which these col-

lisions are occurring is given by

R = f(We q.(g,x) A dv , (A.6)
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and the total rate of deflection into dQ0 would be found by Iintegrat-
ing over v . In order to include collisions with other scatterers,
Lq. (A.6) is multiplied by F(V) dV , the number density of all scat-
terers with velocities in dV about V . R now has dimensicns of

collisions per unit time per unit volume and is given by

R = f(® F(Vg q,(g,X) d? dv dV . (A7)

Equation (A.7) is very versatile and can be used to obhtain rates
for a wide variety of processes. 1If the objective is the rate at which
momentum is transferred from one species to another, for instance, it
is only necessary to multiply (A.7) by the momentum lost in a collision
by a particle with velocity v . For generality we introduce the
extensive property ¢(v) whose total value for the scattered species
is the sum of that belonging to each particle. Designating the velo-

n
city after collision by v , we have

R o= [ - o] ) F(Wg q, (g,X) A2 dv, dv (A.8)

where R represents the rate per unit volume at which ¢ 1s increas-
ing in the scattered species as a result of collisions between particles
with velocities v and V such that v is deflected into d2 . It
has been noted that z is determined uniquely as a function of v, V,
Xs €

Values of the rates as a result of all collisions between the

two species are found by integrating over v, V, and @ . From (A.7)

the total number of collisions of type k per unit volume per unit



Ly

time is

=
I

J” £Q(v) F(Mg q (g,X) d dv dV (A.9)

” £(v) F(Dg Q(8) dv dV . (A.10)

From (A.8) the rate per unit volume at which ¢ 1is increasing in the

scattered particles is

",
Here immediate integration over { 1is not permissible, since v in

general depends upon ¥ and € .
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Appendix B
EXPRESSIONS FOR ELASTIC MOMENTUM AND

ENERGY TRANSFER RATES

In order to obtain useful expressions for the elastic collision
integrals for momentum and energy transport between species, it is
necessary to consider the kinematics of binary collisions in some
detail. The general rate expressions of Appendix A are used, but it is
necessary to substitute into them explicit forms for the velocity after
collision E . The resulting expressions are simplified by performing

some integrations and making approximations where appropriate.

Basic Collision Kinematics

e

Equation (A.11) of Appendix A contains velocities v, V, v in
the laboratory frame of reference and other variables g,X associated
with the center-of-mass frame of reference. In order to transform the
right-hand side, it is necessary, of course, to relate the two systems.
The velocity of the center of mass W and the relative velocity g

associated with two interacting particles are given by

(m + MW mv + MV (B.1)

and

g = y-¥ (8.2)

where v and V are the velocities of particles with mass m and M
respectively, in the laboratory frame. The post-collision velocities

are distinguished from their pre-collision values by a tilde. The
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detailed dynamical behavior during the collision need not be considered.
It is often convenient to measure the velocities from the center of
mass. These expressions are easily obtained from (B.1l) and (B.2) and

are listed below:

v-¥X = gymé W)
m

_Y i K T T m+ M & (B.4)

n, n, M‘ ",

vV-W = g g (B.5)

Y mw

Y-8 =~ nt 4B

The collision is so rapid an event that other forces have no
significant effect on the post-collision velocities. The physical law

for conservation of momentum then becomes

"
+ MV = myv + MV (B.7)

|<e

m

Vo= oW (1.8)

Since only elastic collisions are considered, conservation of energy

involves only kinetic energy, and the law is written as

2

[av}
o e EayT = -]Z;mv +-§—MV ) (B.9)

Fm
2

]

Using (B.1l) and (B.2), the total energy of the two particles becomes,

in the center-of-mass variables,



e

1 1 _ 1 2,1 mM 2
& mv + E—MV = 2(m-+M)W + 5 o+ 75 5 (B.10)

(B.8), (B.9), and (B.10) now show that the conservation of energy can
be expressed very conveniently by

n
g = 8 . (3.11)

N 2 2 :
Expressions for v - v and v - v~ in center-of-mass-variables

are needed in order to simplify the collision integrals that occur when
the transport of momentum and energy between species is studied. The
expressions are obtained quite mechanically from the relations presented
above. The form of :E - v 1s derived with particular ease from (B.3),

(B.5), and (B.8):

me E-8 - (B.12)

Y
y_—

|<

The angle of deflection ¥ enters (B.12) by expressing its right-hand
side in spherical coordinates. The direction of g is taken as the
polar axis, so ¥ 1s the polar angle when E is written in these
coordinates. The azimuthal angle € 1s measured from a unit vector &
representing a coordinate perpendicular to g . The direction of
increasing € 1is such that when € =Y = m/2 , gi is in the direction

of m=g % &/g . Using Eq. (B.1l1), E_ is then given by

_%J_=g_cosx+&gsin)(cose+ggsinxsine, (B.13)

*
This transformation and others of this section are given in detail by
Holt and Haskell [14].
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and (B.1l2) becomes

_r\\r: -v =~ m-:[M [g(1-cos X)- AgsinXcose- mgsinXsin €] . (B.14)
2 2
The desired form of v - v is somewhat more tedious to derive.

n
We begin by using (B.4) and (B.5) to write v - V in a more complex

form:
V-V = §-W-@-W (B.15)
M
- m+ME"+mI-:M & (B.16)

Squaring both sides, using (B.11l) and (B.13), and rearranging,

2, .2
r\\742—2_;}’_-1+V2=31iy[-5g2+Z—m—l‘i——z-gzcos)( (B.17)
(m+M) (m+M)
= gz -2 ;nM__z_ gz(l - cos X) (B.18)
(m+M)
= vz— 2v.V + V2- 2 _mM_2 32(1 -~ cos X) . (B.19)
(m+M)

Simplifying and using (B.14) with g replaced by v - V , we obtain

the final form:

%2 - v2 = 2(3;_ - y) ¥V = 2 -;"M—-é- gz(l - cos ¥X) (B.20)
(m+M)
_ oM b o ™M 2.
s s ¥ V(1 cosx)+m+MV(l cos )
- 2—1M-—2- (v2- vV + Vz)(l - cos X)
(m+M)

+m2—$ﬁg sin X(£*V cos € + m* V sin €) (B.21)
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2M
(i) 2

]
1

(mvz— MVZ)(I - cos ¥X)

_M—_I;ly--!(l_cos X)
(m+M)

+

2M
— 5 & sin X(Z*Vcose+m*Vsine) . (B.22)

Momentum Transfer

The net rate per unit volume at which the momentum of one
species is increasing as a result of elastic collisions with another is
now obtained from Eq. (A.1ll) of Appendix A. In the equation q(g,X) is
used to denote the elastic scattering cross section, and ¢(v) is set

equal to mv, so the rate becomes

R=m JH @ - v f@) F(Wsg qlg,x) 4 dv dv . (B.23)

Before substituting the expression for _& - v from (B.14) into (B.23),
it is expedient to note that the only dependence of the integrand on €
is contained in the terms of (B.l1l4) with cos € and sin € . From
(A.2) it is apparent that these terms contribute nothing when integrated

over §) , and hence the rate becomes

mmf M JJJ (v - V) £(v) F(Wg q(g,x) (1~ cos x)d2 dv dV . (B.24)

The cross section and the collision frequency for momentum transfer are

defined by

Qm(g) = J q(g,X)(1 - cos yx) df2 . (1.25)
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and

I

vm(g) NgQ (g) (B.26)

where

N

[ F(V) dv (B.27)

is the number density of the other species. Using these, (B.24) becomes

mM
m+ M

R = -

2=

[| @-wiw rw v@ a a (B.28)

The dependence of g on both v and V makes further simplifi-
cation difficult, but for the case in which £(v) represents electrons
and F(V) neutrals, good approximations are available. In this case
mM/ (m+M) ~ m , and at those values of v and V for which the factor
f(v) F(V) contributes significantly to the integral, V << v and

g = v . With these approximations R becomes

=
]

- ” (v - ¥ £() F( v_(v) dv dv (B.29)

Il

- m J v -<¥v>) £(v) \)m(v) dv : (B.30)
In the glow discharge of interest, <V> is essentially zero, so
R=-mn J v £(v) vm(v) dv § (B.31)

Energy Transfer

The rate per unit volume at which the energy of the electrons is
increasing as a result of elastic collisions with the neutrals is found
by setting ¢(v) equal to the energy of an electron,-% mv2 " With
f(v) representing the electrons and F(V) the neutrals, Eq. (A.11)
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becomes
i = % m m V- v £(v) FO va(v,x) dQ dv dv (B.32)

after making the approximation g = v . Again it is expedient to
examine carefully the expression for %2 - v2 in Eq. (B.22) before
substituting it into (B.32), and again the terms that depend on €
vanish when integrated over {2 . The second term of (B.22), when sub-
stituted into (B.32) and integrated over V , yields the average
velocity <V> multiplied by an integral over the other variables.

Since <V > is essentially zero in the glow discharge of interest, the

rate of energy transfer becomes

R = - ﬁgmg—E-JIJ (%—m 2—-% MVZ) f(w) F(V) vq(v,x) (1~ cos x)dQ dv dv.
(m+M) ‘
(B.33)
Qm(v) and vm(v) as defined by (B.25) and (B.26) appear after inte-

grating over { . We continue by making the approximations

mM/(m+M)2 ¥ m/M and integrating over V to obtain

R=-2 %J (% o - <% Mv2> ) £(v) v (V) dv . (B.34)

It is interesting to consider the form R would assume if W
were independent of v . The integration over v in (B.34) could then

be performed to yield

m 1 2 1 2
R=—2'I:[-(<'§'mv >—<“:-Z*MV >)n\)m, (B.35)

where n 1is the electron density. Since R is the rate at which the
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total clectron energy Incrcases per unit volume and n  ©Ls the number of

electrons per unit volume, treating vm as the collision frequency

1 2 1
allows 2-% (<i5 mv > - <§-MV2>) to be interpreted as the average energy

lost by an electron 1in an elastic collision with a neutral molecule.

Although the dependence of vm on v complicates the situation, the

same interpretation can be applied to vm and 2 %-%-mvz—‘<%-MV2>) by

considering only those electrons with velocity v and demnsity f(v) dv .
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Avpendix C
CALCULATION OTF PLASMA PROPERTIES

FROM KINETIC THEORY

In order to fully appreciate the kinetic-theory description of a
plasma, it is necessary to have an understanding of the orders of mag-
nitude of the variables involved. Not only is such an understanding
essential for an intuitive physical concept of the situation, but it is
also needed to evaluate the accuracy of approximations that are made.

In this appendix calculations are performed to obtain such quantities

as mean energies, mean free paths, and relaxation times for electroms
and ions. Such calculations require some knowledge of the state of the
neutral gas, the size of the discharge, and the magnitude of the elec-
tric field. Although some of these parameters depend on the solution to
the entire problem, the estimates made here result in order of magnitude
values for electron and ion properties. The neutral gas temperature and
the pressure in the discharge are chosen to be 300°K and 1 mm Hg, and
the distance from the center to the wall of the discharge in slab geo-
metry is

L = lcm . (C.1)

Representative values for the axlal and transverse electric fields are
selected from the results of Part II. Values chosen for the calculations

of this appendix are

~

E
z

20 volts/cm (C.2)

for the axial field and
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E = 2.88 volts/cm (C.3)
for the transverse field. Nowever, the value of the transverse ficeld
is considerably higher in a thin sheath by the wall ol the discharpge.

The values of Ez and E predict a total electric field with magnitude

~

B, 20.2 volts/em . (C.4)

~ ~

Because of the small difference between E? and Et s & is used in

4

the Lollowing calculations.

Behavior of Tons

The discussion on pp. 472-473 of McDaniel [19] indicates that the

glow discharge is H; . In Section 2 the approxi-

mation is made that the ion temperature equals the neutral temperature,

ion present in an H2
1€, Ti = 300°K. The root-mean-square velocity or random thermal
velocity of the ions is calculated on the basis of this approximation

from the formula

3 .
.i,mi<:vi> . 1 (C.5)
The numerical result is
VerZs = 5
vy = 1.57 x 10° cm/sec . (C.6)

The mean free path of the lons is difficult to obtain directly
because of its critical dependence on the electrostatic dipole force
between ions and neutral molecules. However, kinetic theory provides a
formula for the ion mobility that involves the mean free path Ai « At

was derived by P. Langevin and is given in Loeb [18] as
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~ eli m
u, = 0.815 =t 1 +— . (c.7)

e m
m <V2> i
n n

A
By using experimental data for Hy » we obtain the value

Ai = 0.00393 cm . (C.8)

The concept of a mean free path in the context of (C.7) refers to col-
lisions between smooth rigid elastic spheres. The collision frequency
is obtained by dividing Ai into the average speed '<Vi> . Since
the value of <<Vi> is very close to that of \F1V§> , we use the value
in (C.6) and obtain

v, = 4.00 x Waeer . (C.9)

The ion energy relaxation time pertains to a situation in which
" the mean ion energy differs from that of the neutrals. It is a measure
of the time required for the ion energy to change significantly as a
result of elastic collisions with the neutrals. Because of the effi-
cient interchange of energy during collisions, the relaxation time is
comparable in magnitude to the time between collisions*, and we calcu-

late its value from (C.9):

T = 1/v, = 2.50 % 10 Sgec . (C.10)

The ion drift velocity in the axial direction is obtained from

mobility data through the use of the equation w, = ﬁiEz ‘ For

%
See Jeans [16], p. 244.
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~

E_ = 20 volts/cm, we have

A

W, - 2.05 % 105 cm/sec . (C.11)

_ -
The fact that Wy ‘\f\V{> casts considerable doubt upon the

~ ”~
assumption that Ti =T . We now seek an estimate for T by making
n g

i
an encergy balance on an average ion. The ion gains cenergy from the

. ~ <
axial field at the rate e Ezw = 1.26 x 10 3 ergs/sec and loses this
energv through elastic collisions with the neutrals. TIf it is assumed

that the ion loses with each collision an amount of energy equal to the

difference between ion and neutral energies, the energy balance becomes

S 3 o _ ~
(2 kTi . kln) vi = e EZ w . (C.12)
Using (C.9) and solving for Ei -
T. -T = 796°K (C.13)
il n
-~ o)
Ti = 1096 K (C.14)

Although the value of Ti is correct only in order of magnitude, it

~

is apparent that the assumption Ti = Tn is quite poor.

Behavior of Electrons

The data for electrons are obtained from the papers of Frost and
Phelps [11] and Engelhardt and Phelps [10], in which they obtain the
electron distribution function by solving the Boltzmann equation. The
mean electron cnergy depends strongly on the electric field, and for

~

E = 20 volts/cm ,
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T, = 33400°€ . (C.15)
From
> mo'iV§> = -% LQ (C.106)
we obtain
\/;v§:> = 1.23 x 10%em/sec TR kD

An electron mean free path 1s defined by dividing the momentum

transfer collision frequency vm(g) of Eq. (B.26) of Appendix B into

the relative velocity g = v to obtain

1
A (W) = ——r (C.18)
e N Q (V)
where v is the electron velocity and Nn is the neutral number den-—

sity. Evaluating Qm(v) for v =\/<<V23> from the data of Frost and

Phelps [11], we obtain

Ae = 0.0194 cm . {C.19)

Using the same value for v , the momentum-transfer collision frequency
is

vm = 6.34 % 1095ec“l

. (C.20)
The electron drift velocity in the axial direction is obtained

from Frost and Phelps' [11] data and is

w = G0 % 10°
e

cm/sec

(C.21)

Since the electron and ion densities in the discharge are approximately
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equal, the contribution of each to the total current is proportional to
its drift velocity. The rate at which the particles gain energy from
the axial field equals e Ez‘v, and the ratio of these rates for the

two types of particles is

=1

e S Ya W
— % & e E oa 2.2 . (C.22)

=1

e w

z 1

Response of f, to Changes in Nj

The data used in the calculations above pertain to a situation
in which Nn is constant. However, the temperature gradients present
in the glow discharge cause corresponding variations in the neutral den-
sity. In that case the data at a particular location may be determined
from the local value of Nn provided the electron and ion distribution
functions respond sufficiently rapidly to a change in ‘Nn . The res-
ponse time for the ioms is expected to be approximately the value of
Tr in (C.10). The response time for the electrons is calculated below
by determining the rate at which the electron distribution function
changes as a result of a sudden change in neutral density.

An equation for the electron distribution function fe as a
function of time and velocity can be obtained by expanding it in
spherical harmonics in velocity space and substituting the expansion
into the Boltzmann equation. The approach is standard, and if the
higher-order harmonics are neglected, equations are obtained for the
isotropic term f0 and the coefficient of the first-order harmonic fl'

The further approximations of neglecting inelastic collisions and

assuming the mean free path to be constant lcad to Fqgs. (32) and (33)
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of Proposition 1. The discussion in the Proposition shows that the
term involving the neutral temperature is small 1f the clectric field
is so strong that the mean electron energy is much greater than that of
the neutrals. We neglect this term and rewrite the equations in the

notation used here:

of eﬁ m
o_ P21 2 2., "1 1 3 4
SE T G 29w YRt Y e B8 (c.23)
e v n'ev
Bfl eﬁz Bfo
3t m v i—-Vfl ’ (G.24)
e e

The steady-state solution for f0 is the well~known Druyvesteyn distri-

bution
( ~3m2 v4 )
f = C exp = = (C.25)
e 4m e2 Eﬁ kz

The problem of interest is one in which a sudden change in the
neutral density upsets a steady-state situation. We must calculate the
rate at which f0 then approaches the new steady state. Actually we
need calculate only the initial rate to obtain an estimate of the res-
ponse time. The neutral density enters Eqs. (C.23) and (C.24) solely
through the mean free path Xe , and hence we consider an abrupt change

in A from A to A_ + 8\ . For |6X | < A , Eg. (C.23) can be
e e e e e e

written
of eﬁ m
_o__=z1 3 .2 _e 1 18 .4
9t  3m_ _2 av (v fl)'km A (L+6A /A ) 2 ov (v fo) (C.26)
e v n e e’ e’ v
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Ez 19 2 &

el 1 9 4
T 3m 2 dv (v fl) 5 m A 2 dv (v f0)
e v n‘ev
SA m
» e 1 10 4
& ‘—x‘q ;n‘("" g s (g ’fo) {C.27)
e n'ev

where higher powers of éke/ke have been neglected. Immediately after
the change in Re 5 f0 and fl still possess their former steady-
state values, and the first two terms on the right-hand side of (C.27)

cancel. Thus initially

P g %
ot A m A 2 ov (v fo) E (C.28)
e n e
Efo
B is a function of v , and the rate of interest is one for which v
is near the mean random velocity. Since the mean velocity is of the
same order of magnitude as those for which fo varies most rapidly, a
representative velocity is chosen as one for which the exponent in

(C.25) is unity. Thus we seek to evaluate afolat at

m_e? £2 32 /4
v = v Ef——aT ; (C.29)
3m
e
From (C.25)
of 3m3 v4
PP f = - 4f (C.30)
vV Tov 222 .2 o o Y
m e E° A
n z e

aE vEm W, o Hence for v near L the order of magnitude of the v-

dependence of (C.28) is

1 9 4 _
?g(v fo) = O(VDfO) 5 (C.31)
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and considering 6Aelle to be of order unity, we obtain

Bfo 1
T i:;—fo ‘ e
where
mnAe
T sET (C.33)
e o
m 3me E 1/4 :
= — A e . (C.34)
Me ©| 4m e2 E2 Az
n z e
Using the value of Ae from (C.19), we find
v, o= 2.19 x 108ca/sec . (C.35)
T = 3.26 x 10 'sec . (C.36)

The value of T is an estimate of the time required for the electron

distribution function to adjust to the neutral density.

Ambipolar Diffusion Time

In order to determine whether the local value of Nn suffices
to determine the electron and ion distribution functions, it is neces-
sary to compare the response times of the particles to the time during
which an average particle experiences a significant change in Nn .
The neutral density varies only in the radial direction, and the time
we seek is the approximate length of time for a particle to diffuse
from the center of the discharge to the wall. The results of Parts
IT and III show that the transport of charged particles to the wall
can be approximated by ambipolar diffusion at the electron densities

of interest. In such a situation the densities and mean radial
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velocities of electrons and lons are approximately equal, and the flux

to the wall is given by

Nu = ~-D_ VN (C.37)

where u is the mean radial velocity , N the number density, and
nq the ambipolar diffusion coefficient. Since N 1s zero at the

walls, an order-of-magnitude estimate of the density gradient is

VN = N/L . A representative value for u 1s then given by

u = Da/L (C.38)

2
I N (c.39)
D
a
The numerical values are
4
u = 2.24 X 10 cm/sec (C.40)
T = 4.47 % 1077 sec . (C.41)

Since the ambipolar diffusion time is so much larger than the response
times for ions and electrons given in (C.10) and (C.36), we conclude

that the determination of ion and electron properties through the use

of the local neutral density is valid.
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NOMENCLATURE

The number following the descriptions gives the page on which
the symbol first appears. Some symbols are used in different contexts
in different parts of the report and have a corresponding number of

definitions. Others, whose use is very temporary, do not appear here.

Derivatives:

dr volume element (12)

d!a element of velocity space (12)

dQ element of solid angle (63)

d/dr spatial gradient operator (11)

B/SEQ gradient operator in velocity space (11)
(Bfa/at)c total collision integral (11)

(afu/at)e.c_ elastic collision integral (11)

(8fu/3t)i.c. inelastic collision integral (11)

Roman:

De dimenslionless electron diffusion coecfficient (53)
I)i dimensionless ion diffusion coefficient (53)
ﬁa ambipolar diffusion coefficient (85)

Be electron diffusion coefficient (38)

ﬁi ion diffusion coefficient (38)

e magnitude of the electronic charge (20)

E dimensionless electric field (55)

=1

transverse electric field (38)

™

total electric field (11)
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axial electric field (32)
-~
reference value for Ez (53)

velocity distribution function (65)

.data for electron temperature (44)

data for ionization coefficient (44)
distribution function for species o (11)
velocity distribution function (65)

magnitude of relative velocity (16)

relative velocity (68)

relative velocity after collision (69)
dimensionless energy transfer coefficient (54)
dimensionless elastic energy transfer coefficient(54)
energy transfer coefficient(32)

elastic energy transfer coefficient (34)
current (62)

unit tensor (29)

dimensionless flux (55)

transverse particle flux (37)

total particle flux for species a (15)
Boltzmann's constant (26)

distance from wall to center of discharge (41)
mass (68)

mass (68)

mass of species o (11)

number density (74)

dimensionless electron density (54)
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dimensionless ion density (54)

number density (73)

elcctron number density at center of discharge (54)
number density of species a (12)

mechanical pressure (25)

reference value for p (53)

scalar pressure of species a (29)

reduced pressure (47)

differential cross section for process k (63)
electrostatic charge on species o (11)

total cross sectlon for process k (65)

cross section for momentum transfer (72)

total cross section for ionization (16)

total cross section for dissociative recombination (16)
heat-flux vector for species o (26)

position vector (12)

rate of ionization collisions (16)

rate of recombination collisions (16)

time (12)

dimensionless temperature (53)

dimensionless electron temperature (53)
temperature of neutral molecules (39)
temperature of neutrals at wall (41)
temperature of species o (26)

abstract representation of dimensionless variables (g)

mean radial velocity (gs5)
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Greek:

Q>

Q>

v
m
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magnitude of u (6)

velocity (63)

velocity of a particle of species o (11)

velocity after collision (66)

velocity (65)

peculiar velocity of a particle of species o (19)
velocity after collision (69)

drift velocity of species o (32)

velocity of center of mass (68)

velocity of center of mass after collision (69)
distance coordinate perpendicular to wall of discharge(37)

dimensionless independent variable (55)

recombination coefficient (17)

Townsend's first ionization coefficient (44)
dimensionless constant coefficient (57)
dimensionless constant coefficient (56)
dimensionless constant coefficient (56)

dimensionless constant coefficient (56)

azimuthal angle (g4)

permittivity of free space (39)

- dimensionless constant coefficient (56)

effective ion collision frequency for momentum transfer
24
ion collision frequency (78) s2)

offective electron colligion frequency for momentum
transfer (20)
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electron collision frequency for momentum transfer(20)
collision frequency for momentum transfer (73)
ion collision frequency for momentum transfer (22)
dimensionless ionization coefficient (53)
ionization coefficient (17)

nonlinear eigenvalue (6)

dimensionless thermal conductivity (54)
eigenvalue A at ambipolar diffusion limit (6)
eigenvalue A at free diffusion limit (6)
electron mean free path (80)

ion mean free path (77)

thermal conductivity (31)

dimensionless electron mobility (53)
dimensionless ion mobility (53)

electron mobility (38)

ion mobility (38)

reduced ion mobility (47)

dimensionless constant coefficient (56)

clectron distribution functilon response time (84)
ambipolar diffusion time (35)

electron energy relaxation time (35)

ion energy relaxation time (78)

extensive property of particles of species o (13)
flux of particles (63)

dimensionless constant coefficient (57)
polar angle (63)

pressure tensor for species o in a perfect gas (19)
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PART II

EFFECT OF RECOMBINATION AND SPACE CHARGE
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INTRODUCTION

The complete equations derived in Part I are too difficult to
solve directly and require further simplification. The simplifications
made here and in Part III correspond to the neglect of certain physical
processes and thereby serve to isolate the effect of the remaining
phenomena. Although the separate treatments of the various phenomena
cannot be combined to yield the same quantitative results as the solu~
tion of the complete equations, the qualitative and, to a good
approximation, the quantitative effects of the individual physical
processes are clearly discernible.

The basic simplification of this part is to neglect temperature
inhomogeneities and to assume the neutral temperature uniform at a
specified value. The primary purpose now becomes the study of the
effect of recombination and space charge on the Neo—ﬁz relation. The
space charge, which results from the difference between electron and
ion densities, is always important except at very small values of the
electron density (see Part I, pp. 58 ff. for the solution at N__ = 0).

eo

However, as the electron density becomes large, the effect of space
charge on the Neduﬁz relation and on the spatial behavior of the
dependent variables approaches a limit. Near this limit, Ez and the
variables are insensitive to changes in Neo , and we speak of space
charge as being 'megligible"; we consider the effect of space charge to
be "important' for those smaller values of N, at which Ez and the
dependent variables vary significantly with changes in Ne . Since

(o]

space charge is important for small Neo whereas recombination in
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hydrogen is only significant at those larger values of Neo where
space charge has little influence, the effects of space charge and
recombination are quite distinct and could be considered separately.
However, if the calculations were performed for a gas with a larger
recombination coefficient, the range of Neo in which the effects
overlap to a noticeable extent would be greater. Since the conjunction
of the separate treatments is not equivalent to the treatment of the
combined effects, the analysis which follows considers space charge and
recombination simultaneously and serves as a useful model for gases with
larger recombination coefficients. Furthermore, the analysis is an
interesting example of the application of singular perturbation tech-

niques to a complex problem.

Uniform-Temperature Approximation

The assumption of uniform temperature engenders a considerable
simplification in the equations. First, of course, the equation for
the temperaturc 1s eliminated from the problem. Also, the pressure
depends only on the neutral temperature and the amount of gas in the
discharge, so it is independent of Neo and ﬁz . Since the variable
coefficients in the equations depend only on T , E , and p , they

z

become constants and vary only with Ez (or with Neo through the
N -E relation).
eo "z
The correspondence of the resulting equations to the actual
physical situation may be rendered unreasonable by the neglect of tem-
perature inhomogeneities. The studies in Part III show that temperature

effects become important at a smaller electron density than does
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~

recombination and hence the behavior of the Ned—Ez relation at large
values of Neo may be so dominated by temperature inhomogeneities that
recombination is relatively unimportant. Furthermore, the recombination
coefficient in hydrogen is expected to be less than the value actually
used (see p. 50, Part I). However, other gases have larger recombina-
tion coefficients, and recombination in such cases may become impor-
tant at a smaller value of Neo than temperature inhomogeneities. For

such gases the calculations of this part serve as a useful model.

Production and Loss of Electrons

A considerable amount of qualitative information can be obtained
by studying the rates of production and loss of electrons. Electrons
are produced by ionization and are lost by diffusion to the walls and
by recombination. These processes depend upon the axial electric field
and the electron density, and the requirement that production and loss
balance at steady-state operation determines the Neé_ﬁz relation. The
ionization coefficient is a strongly increasing function of ﬁz , so 1if
the electron density is held fixed, the production rate increases
rapidly with ﬁz . The loss by diffusion is also affected by changes
in Ez , but its dependence on Ez is weak relative to that of ioniza-
tion. TFor lack of better data, the recombination coefficient is
assumed constant and is independent of Ez (see pp. 49 ff., Part I).

In general, however, the recombination loss rate would depend on Ez .
1f Ez is held fixed as the electron density is varied, it is observed
that the ionization rate is essentially proportional to the electron
density N__ . The rate of loss by diffusion increases as N

eo

increases, but the detailed behavior is complicated by space-charge
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effects, and a more elaborate qualitative description is postponed for
a short interval. The recombination coefficient is very small, so the
recombination loss rate is significant only for very large values of

the electron density. When it does become important, the rate increases
very rapidly, because it depends quadratically on the electron density.

It is instructive to plot the production and the loss rates as
functions of electron density for specified values of the axial elec-
tric field, and this process is carried out in Fig. 1. The production
rates are represented by the straight lines emanating from the origin,
since the rates are proportional to the electron density. The slopes
of the lines increase rapidly with Ez and thus reflect the dependence
of the ionization coefficient on the applied field. The loss rate
depends weakly on ﬁz in comparison with the production rate, and hence
for qualitative purposes it is permissible to represent the loss rate
by a single curve independent of Ez . The reasons for the shape of the
curve are explained in the subsequent discussion of the Ne6uﬁz rela-
tion.

Since the electromn prodﬁction and loss rates must be equal for
steady operation, the steady states are represented by the intersections
of the production and loss curves. The intersection at the origin of
the loss curve with production lines of arbitrary slope corresponds, of
course, to the trivial solution in which the electron density is zero
and Ez is arbitrary. The sketch also clarifies the manner in which
the restriction to steady state determines the Ned-ﬁz relation: from

a given intersection on the loss curve, the electron density can be

found immediately, and the axial field can be determined from the slope
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of the line connecting the point to the origin. It is apparent from

the sketch that the determination of the NEO—Ez relation by specify-

~

ing EZ and finding Neo is not a simple procedure. Depending on

~

the value of Ez , there may be zero, one, or two nontrivial steady
states. On the other hand, ﬁz is determined uniquely from a given

Neo , since the slopes of the production lines vary monotonically with

”~

Ez . In fact, the analytical solution for the Neo--Ez relation is
obtained by specifying Neo and calculating Ez . However, the analy-

tical proceedings are considerably more complicated than this

~

diagrammatic preseﬁtation, because Ez is only determined through the

process of solving the differential equations and the dependence of

~

all the coefficients on Ez must be taken into account.

Neo—Ez Relation

The qualitative form of the Neo—ﬁz relation can be inferred
from Fig. 1 by observing the behavior of ﬁz at steady state as Neo
increases from zero. This description is complemented here by the
corresponding discussion of the physical processes which determine the
form of the production and loss curves.

For Neo near zefo the transverse electric field, produced by
the difference between electron and ion densities, is insignificant in
affecting the diffusion of electrons and ions to the walls of the dis-
charge. Recombination, of course, is negligible except at very large
values of Neo » 80 the electron loss rate is characterized solely by

the electron diffusion coefficient and the density gradient. The loss

rate is essentially proportional to Neo in a neighborhood of
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s 0 , and this behavior is depicted in Fig. 1 by the emergence of
the loss curve from the origin with a finite slope. 1In order to obtain
a nontrivial steady-state solution in thié neighborhood, the production
curve must assume the same slope, and hence the axial electric field

must assume a particular value. This value, Ez on Fig. 1, is the

1
axial field at the free diffusion limit and is referred to in Part I,
p. 6 and Fig. 1. The analytical nature of the eilgenvalue problem

~

which determines Ezl is displayed in the discussion of the trivial
solution in Part I (pp. 58 ff.).

Since electrons and ions are produced at equal rates, they must
also diffuse to the walls at equal rates. The electron diffusion coef-
ficient is much larger than the ion diffusion coefficient, so in order
that the diffusional fluxes be equal, the ion density must exceed that
of the electrons by the corresponding factor. The positive charge in
the plasma is balanced by a negative charge on the walls, established
during transient operation, and a transverse electric field is pro-
duced. As Neo increases, the space charge also Increases, and the
transverse field so produced exerts a significant influence on the
motion of electrons and ions: it inhibits the diffusion of electrons
and augments the diffusion of ions. This regime of space-charge impor-
tance is represented in Fig. 1 by the portion of the loss curve that is
concave downward. The decrease in electron loss relative to production
by ionization requires that the ionization coefficient decrease in
order to maintain a steady state. The resulting situation is typified
by the steady-state operation at Point A in Fig. 1, where the axial

~

electric field assumes the value Ezz
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When the electron density is large, a small deviation of the
number ratio of clectrons to fons from unity produces a very large
transverse field. This force affects the motion of c¢lectrons and lons
so strongly that both diffuse at essentially the same speed and have
almost equal densities. The limiting situation is the classical ambi-
polar diffusion, in which the electron and ion loss processes can be
characterized by a single quantity, the ambipolar diffusion coeffici-
ent. The loss rate is given by the product of the ambipolar diffu-
sion coefficient and the electron density gradient and is essentially
proportional to Neo . Consequently, if recombination is ignored, the
extension of the loss curve in Fig. 1 to very large Neo would take
the form of the dashed line. The axial field in the ambipolar limit is
determined by equating the production rate to the loss rate. Since
this limit is approached only as Neo + o | the intersection of the
production and loss curves requires that the production line have the
same slope as the ambipolar extension to the loss curve. The analytical
determination of the axial field ﬁza ,» as in the free diffusion 1limit,
is a linear eigenvalue problem. This value of Ez is never actually
attained in the model considered here; in fact, Fig. 1 shows that the
smallest value the axial field can assume in steady—state operation is
EZB , corresponding to operation at Point B.

The loss curve corresponding to the physical phenomena considered
here differs from the ambipolar extension, because when recombination
becomes important, the loss rate increases strongly with electron den-

sity. Accordingly, the loss curve for very large Neo is concave

upward, and the slope of the production line (and hence Ez) must
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increase with Neo . Point C in Fig. 1 represents a steady state in
the regime where recombination is important. It should be noted that
the axial field at C 1s the same as that at A .

The form of the Neo_gz relation discussed in detaill above is
shown in Fig. 2. The lettered points and the values of ﬁz correspond
to those of the sketch in Fig. 1, and the dashed line again represents
the extension toward therambipolar limit that would arise if the consi-
deration of recombination were omitted. Eza , of course, is the value
of the axial field at the ambipolar limit.

Before associating the form of the Neo— ﬁz relation with the
experimental voltage-—current characteristic, it is convenient to com-
ment briefly on the effect of recombination on the shape of the
electron density profile. Whether or not recombination is included in
the model as a physical phenomenon, the electron density is at a
maximum at the center of the discharge and decreases to zero at the
walls. Since the loss by recombinatlion is of most significance where
the density 1s largest, the greatest relative effect of recombination
occurs at the center. If the electron density at the center were con-
strained to a particular value, the density profile would be flatter
in the center and would hence drop more steeply near the walls than if

recombination were omitted from consideration.

Interpretation of the Experimental Characteristic

The correlation between the electron density and axial electric
field in the positive column and the current through the discharge and

total voltage drop across it is discussed in Part I, pp. 8-9, 62.
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The experimental curve 1s sketched in Fig. 2 of Part I, and if the
change in axes 1s noted, the Neo_ﬁz relation in Fig. 2, Part II is
seen to possess a shape similar to that of the experimental voltage-
current characteristic in the subnormal-normal-abnormal regime. This
similarity raises the possibility that recombination may be a factor
affecting the voltage-current behavior in the abnormal regime.
However, considerable caution must be exercised in seeking con-
clusions from this comparison. As mentioned previously, the effect of
temperature inhomogeneities on the discharge characteristic is likely
to appear before (at smaller currents) the effect of recombination.
Furthermore, the uncertainty in the recombination coefficient does not
permit a rigid association of the rising portion of the calculated
positive~column characteristic with a particular portion of the experi-
mental characteristic. Also, the effect of electrode phenomena is
included in the experimental characteristic and has no counterpart in

the calculated curve.

Stability in the Positive Column

~

The stability of the steady states represented by the Neo-—EZ
relation can be inferred in a loose qualitative manner by reference to
Fig. 1. 1If, for instance, the discharge were in a transient state

with ﬁz = ﬁz at an electron density slightly larger than that corres-

2
ponding to Point C, the electron loss rate would exceed the production
rate, and the electron density would tend to decrease. On the other

hand, if the electron density were less than that at C , production

would exceed loss, and the density would tend to increase. However, a
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perturbation from Point A would result in the opposite behavior. 1If
the discharge were in transient operation with an electron density
slightly greater tham that at A , production.would exceed loss and

the density would tend to increase still further; if it were less than
that at A, it would tend to decrease. On this basis, we would call
steady state C stable and A unstable. Furthermore, all steady states
above B on the loss curve would be stable, and all those below B

except the origin would be unstable as would be all steady states along
the ambipolar extension.

These conclusions, however, must be regarded with considerable
caution. A perturbation of the electron density from its steady-state
value does not suffice to determine stability, and the transient equa-
tions must be used to predict the response to more general perturba-
tions of all the variables. Also, the overall bookkeeping of Fig. 1
cannot replace the local considerations required as a result of the
spatial dependence of the variables. Furthermore, the stability of the
positive column and of the discharge can be modified by the exterior
circuit. For example, the energy transferred to the electrons by the
applied field is limited by the exterior energy source, and hence this
energy source serves as a control to restrain the electron density
(current) from excessive values*. "It is obvious from thelconsideraw
tions above that the conclusions concerning the stability of the

positive column should be regarded as suggestive only.

*
The stability of a circuit containing an electromotive force, a
resistor, and a discharge is treated in Cobine [3], pp. 207 ff.
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Analytical Procedure

The problem to be solved 1s obtained by setting the temperature
equal to a constant in the equations of Part I. The resulting equa-
tions are still too difficult to solve even numerically, and
approximate methods must be employed. The approximations derive from
the observation that certaln of the terms in the equations are small
and can be treated as perturbations under appropriate conditions. The
propriety of the conditions depends primarily on the magnitude of the
electron density, and hence it is necessary to choose the range of
Neo in which we wish to operate. Our purpose is to investigaté the
effects of space charge and recombination on the Ned—ﬁz relation,
and consequently we must consider valuesrof Neo on either side of
Point B in Fig. 2.

Point B marks the closest approach of the discharge to the
ambipolar limit, and here the terms responsible for the effects of
space charge and recombination are both small and can be treated as
perturbations. 1In the crudest approximation these terms are neglected
and the equations become the mathematical description of the ambipolar
limit. By expanding the variables in asymptotic series which, to
lowest order, represent the ambipolar solution, approximate solutions
are obtained which incorporate the effect of space charge and recom-
bination in higher-order terms. Since the effect of space charge is
greater at small values of Neo whereas that of recombination is
greater for large Neo , some of the terms in the expansions decrease

as Neo increases, while others increase. 1In fact, each expansion is
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actually a composite of two asymptotic serles, one which Includes the
effect of space charge and another which accounts for recombination.

The analytical proceedings are gfeatly complicated by the fact
that the neglect of the space-charge term is not uniformly valid as an
approximation. Near the walls of the discharge column the space-charge
term is not small in comparison with other terms of the equations, and
its omission leads to unreasonable behavior in the solution. The problem
is actually a singular perturbation problem, and the equations must be
treated differently in two individual spatial regions. Throughout the
central region of the discharge the space-charge term can be neglected,
but near the wall in a narrow region or boundary layer called the
sheath the term must be retained in the equations. The solutions in the
two regions must be made to agree or ''match'" in some sense in an inter-
mediate region before a solution acceptable throughout the entire

positive column is obtained.

Relation to Previous Work

Cohen and Kruskal [5] dignore recombination but otherwise treat
essentially the same problem by similar means. They also assume uniform
temperature (constant coefficients) and treat the effect of space charge
by singular perturbation techniques. However, their attitude toward
the coefficients makes their work a model illustrating the basic effect
of space charge rather than an example calculation for an actual gas.
Their coefficients are all arbitrary constant parameters except one,
which is proportional to the ionization coefficient and is an eigen-

value corresponding to our Ez . In essence, they assume that only the
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~

ionization coefficient depends on Ez =

The inclusion of recombination in the problem complicates the
solution in the main region but to a good approximation does not affect
the form of the equations in the sheath. However, the effect of recom-
bination is felt in the sheath through the dependence of the coeffici-
ents on ﬁz and through the necessity of matching the main-region and
sheath solutions in an intermediate region. As a consequence, much
more computation is necessary in the sheath than would be if recombina-

tion were not considered, but the techniques are essentially the same.
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1. WORKING EQUATIONS

The equations used to study the effects of space charge and
recombination are obtained easily from those derived in Part I by
setting the temperature equal to a constant. The only basic altera-
tion necessary to secure the desired form of the working equations is
therreplacement of one dependent variable, the ion density, with

a more convenient quantity.

Equations for Dependent Variables

The uniform—-temperature approximation is equivalent to the
neglect of energy transfer from electrons to neutral molecules and
corresponds to setting B (or ﬁ) equal to zero in the equations of
Part I. Equation (5.21) for the temperature can then be solved subject

to the boundary conditions (5.31) and (5.35), and we obtain

T = 1 (1.1)
or, using (5.10),

- . : .
T = TW . (1.2)
The pressure p 1is a constant describing the state of the
neutral gas. Since the temperature is constant at a value independent
of the processes occurring within the discharge, p depends only on
the amount of gas contained in the discharge and can be treated as an
arbitrary parameter.
The variable cofficients can be eliminated from the equations by

making a judicious choice for the reference values E . and p_ .

Since T 1is constant, the coefficients, of course, are actually



constant.

and

the dimensionless coefficients in Eqgs.

reduce to unity.
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By choosing

(5.1) - (5.9) of Part I all

(1.3

(1.4)

The only other variable coefficients in the equatioms

occur in terms containing dT/dy as a factor and hence do not enter

the problem considered here.

Equations

(5.29),

(5.30),

(5.18) - (5.20), (5.22) and the boundary conditions

(5.32) - (5.34) can now be written as

Y ne - Ec;ne n
-nE-81J
e

T]HE—TJ

: (ni - ne)

i

(1.5)

(1.6)

(1.7)

(1.8)

(1..9)
(1.10)

(1.11)

(1.12)

(1.13)
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Constant Coefficients

The constant coefficients Yy , € , T , 8§ , X are defined by
Eqs. (5.23) - (5.26), (5.28) of Part I, and using the reference values
given in (1.3) and (1.4), they become
LZG (f ' P) %
2 R s

Y = ' ul (1.14)

Di(Tw;Ezsp) Te(Tw;Ez’p)

t2an T,
£ = . (1.15)

~ A ~ ~ ~

Di(TW;EZ,p) T (T 3E_,p)

(1.16)

e (1.17)

X = A AT A (1.18)
ek T (T 3E_,p)

The coefficients depend on the axial field EZ and the parameters

~

£ Tw s, b ,and N . L, TW , and p represent the adjustable struc-
ture and nature of the discharge and must be specified before numerical
results can be obtained. The dependence of the problem on these param-

eters is not studied, and for the calculations we choose the values

L = 1cm (1.19)

-
L]

300°K (1.20)



p = 1 mm Hg . (1.21)

N, on the other hand, is not a real parameter, and it cancels in
forming the products € and X{ . It is introduced into the equa-
tions for the purpose of separating the dependence of these two terms
on NeO and ‘ﬁz and can be assigned a value arbitrarily without affect-
ing the problem. XZ 1s a large quantity in the range of electron den-
sities we consider, and for convenience we choose

B e T80 (1.22)

so that the magnitude of ¥ 1s near unity.

The approach to the problem consists of specifying Ne0 (or ) in
advance and determining Ez in the course of solving the equations.
Since the constant coefficients depend on ﬁz , they are unknown until
Ez is obtained. The values which Ez can assume are limited by the
domain of the experimental data according to Eq. (4.29) of Part I.

~

Nn is easily determined from the values of p and T , and we find

~

that Ez is restricted to the range
13.83 volt/em < E, < 32.16 volt/cm (1.23)

For Ez in this range the constant coefficients are bounded by the

inequalities
0.0814 < y < 20.5 (1.24)
6.690 x 10/ < & < 1.532 x 107° (1.25)
2.355 x 1004 < & < 3.918 x 107° (1.26)

73.5 < 1T < 152.8 (1.27)
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0.458 < x < 0.953 (1.28)

2 2

2.88 x 10°° < 81 < 3.60 x 10~ : (1.29)

Since Ez is a function of Neo’ Neo cannot vary so extensively that

~ ~

Ez exceeds its bounds. However, as Ez varies over its range, Y ,
which is proportional to the ionization coefficient, changes by several
orders of magnitude. Consequently the range of ﬁz is not as limited
as it might appear and actually permits a large variation in the produc-
tion rate of electrons. Hence it happens that Ne0 is limited not by

the range of Ez but by the approximate methods employed in solving

the problem. The value of ¢ 1s roughly bounded by the inequality

102 < ¢ < 10’ (1.30)

and using the relation Neo = Nz, we find that the electron density is

restricted to the range

108em™3 < N, < 102> (1.31)

The electron density in a glow discharge is typically between 108 and

10]'2cm_3

, 50 our investigation corresponds to the proper regime of the
experimental voltage-current characteristic. Also, the values of the
coefficients presented above provide qualitative information about the
equations and about the physical processes which the various terms
represent. Since the dependent variables are made dimensionless in such
a way that their magnitudes are expected to be near unity throughout

most of the discharge, the relative importance of the terms in the equa-

tions can be roughly estimated by the size of their coefficients.
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Since Ez does not enter the equatfons explicitly, {t 1s not
conveniently determined as a function of Neo In the process of solv-
ing the problem. It is more convenient to replace it with one of the
coefficients by using the functional relationship connecting them.
Y 1is the most widely varying coefficient and is a monotonically
increasing function of ﬁz , so it is possible to solve for Ez as a
function of Y . ©Now the other coefficients can also be determined as
functions of Yy . The evaluationof € , 8§ , T , ¥x , and ﬁz as
functions of 7Yy dis adapted to computer calculations through the use
of least-squares polynomial fits; the error introduced in the process
is completely negligible. In solving the problem we now find 7Y as a

~ ~

function of ¢ and need not consider EZ . Hence the Ned—Ez relation
is replaced by the [~y relation and can be easily obtained from it

when the solution is complete.

Final Equations

At the operating conditions considered, the relative difference
between electron and ion densities is small, and it is convenient to
replace n, in the equations with the space-charge variable s , de-
fined by the equation

s = n, —n . (1.32)
When this change of dependent variables is made in Eq. (1.7), it becomes

dne ds

-d—y+dy = TnE+TsE-TJ . (1.33)

Equations (1.6) and (1.33) are now replaced by linear combinations of

themselves. One equation is obtained by eliminating the term containing
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neE between the equations, and the other 1s obtained by eliminating
J . The final set of working equations consists of these two and

Eqs. (1.5) and (1.8) with n replaced by s

i

- S 130
ig‘?-+r{++‘5';J -1 em 11,[-3—)5; (1.35)
dne 1 + 81 S ds ST

y t71-6 %"~ T-sday 1-3¢ °F —
X5 .% é% ) (1.37)

The boundary condition on s is obtained, of course, from those on n,

and n, in (1.12) and (1.13) and is

y = 1 : s = 0 . (1-38)

Relations among the Variables

A certain amount of general information about the dependent
variables can be obtained directly from the differential equations and
boundary conditions. Some information is provided in the theorems of
Appendix A, in which various bounds on fhe variables are éstablished.
For instance, it is proved using very simple but involved techniqﬁes
that under certain conditions s and E are positive on the interval
0 <y <1 and that dzni/dy2 £ 0 at y =0 . Also, upper and lower
bounds are established on n,; at y =0 din terms of the coefficients.

Some of these results may seem so obvious from physical grounds that
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any other behavior would appear to be physically unrecasonable. lHowever,
the intecraction of an electric field with mobile charged particles 1s

a complex phenomenon, particularly in the presence of other processes,
and it is gratifying to obtain the results rigorously from the cquations
as well as from physical intuition and approximate mathematical methods.
Furthermore, the proofs provide insight into the equations by showing
quite intimately the way in which the wvariables affect each other. An
understanding of the motivation behind the proofs can have such practi-
cal ramifications as showing what instabilities might be expected to

arise in a direct numerical integration of the equations.
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2. SEPARATION OF THE PLASMA COLUMN INTO MAIN
REGION AND SHEATH

The manner in which space charge and recombination are treated as
perturbations from the ambipolar situation is described generally in the
Introduction. With the equations available the terms corresponding to
these phenomena can be discussed more perceptively. The coefficient €
is proportional to the recombination coefficient and is solely respon-
sible for the representation of recombination in the equations. The
inequality (1.25) shows that € 1is very small, and the term in the
equations that contains it is unimportant except for very large values
of T . The space charge is measured by the term (1/z)dE/dy , and its
magnitude is greatest at small 7 . T 1is restricted to a certain
range of values by the validity and accuracy of the approximate proce-
dure in which the terms corresponding to space charge and recombination
are treated as perturbations. Recombination, of course, establishes the
upper limit, and the lower bound is determined by the response of the
variables to space-charge effects. The approximate numerical values for
the bounds are only discovered in the.process of solving the problem and

are presented in Eq. (1.30).

Asymptotic Expansions

The problem is attacked by expanding the variables in asymptotic
series composed of functions of Z ‘and substituting the expansions into
the equations. Terms containing the same dependence on T are asso-
ciated, and equations for the individual terms of the series are

obtained. To lowest order (1/z)dE/dy and the terms containing &£ are
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omitted, and their effects are Included only in higlhcer-order terms. The
expansions actually consist of two asymptotic series which account for
recombination and space charge, respectively. However, some terms contain
the effects of both processes, so a clean separation of the expansions
into two groups of terms is not possible. In fact, 1f the separation were
possible, this approach to the problem would be equivalent to treating
recombination and space charge separately and combining the final results.
Nevertheless, a useful conceptual division of the series into effects of
recombination and space charge can still be made and is referred to
loosely below. The portion of the expansions that comprises the effect

of recombination is a series in powers of ¢ (actually €¢Z), and these
terms provide their largest and least accurate contribution to the solu-
tion at large values of T . The effect of space charge, on the other
hand, 1is contained in terms or factors that approach zero as [ becomes
infinite. In the range of values to which T is limited, the first few
terms of both series combine to form a meaningful and accurate approxi-
mation to the solution of the problem.

The expansion of the variables in terms representing space charge
and recombination is actually applied in a particular order. First the
variables are expanded in asymptotic series whose higher-order terms
approach zero as [ * « . These series are substituted into the equa-
tions, and sets of equations are obtained for those terms whose orders
of magnitude are the same for large T . The effect of space charge is
absent in the set of lowest order, but is included in higher-order terms.
The variables in each set of equations are now expanded in series of

powers of T , and equations are obtained which relate terms containing
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the same powers. In these equations the terms representing recombina-
tion are perturbations and do not enter in the lowest-order analysis.

The first expansion is actually singular and is not valid through-
out the discharge. Its application results in the neglect of (1/r)dE/dy
to lowest order, but this term is not negligible near the wall. It is
small throughout most of the discharge because 1/7 is very small, but
as y > 1, E and dE/dy increase rapidly, while n, and n. decrease.
Consequently, the term (1/z)dE/dy in Eq. (1.8) is not small in compari-
son with Xni and Xne , and cannot be neglected. In the sheath near
the wall a separate treatment of the equations is necessary in which the
term is not considered a perturbation. 1In this domain other approxima-
tions are feasible, and separate solutions are obtained in the two
regions. The boundary conditions do not suffice to determine either
solution completely, and this indeterminacy is removed by the matching
process in which the solutions are forced to agree in some intermediate

region.

Zero—0Order Problem in the Main Region

The first asymptotic expansion of the variables is valid in the

main region and is written as follows:

J ~ JO + ul(c) Jl + uz(;) J2 s R (2.1)
b, bWy () ng b Wa(EY @y + (2.2

s vs i (R) sp F () s, o (2.4)
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where
un(c) > 0 (2.5)

and

Mg (O /0 @)+ 0 (2.6)

as [ »> © . The manner in which the solution depends on ¢ is con-
tained in the functions un(g) . The form of the dependence is unknown
now, and the un are not determined until the solution in the main
region is matched to that in the sheath. Since <Y 1is to be determined
as a function of ¢ in the course of solving the equations, it must

also be expanded. Therefore, we set
Y Vo, F @y U@ v, o (2.7)

Since € , § , T , and X are now regarded as functions of Y , this

expansion for Y dinduces expansions in the other coefficients as fol-

lows:
€ N €, + ul(?;) € + e (2.8)
§ n 60 + pl(c) 61 + e (2.9)
T % T+ ul(C) Ty # ©os (2.10)
X W X, *uL) gy oo (2.11)
where
g, = E(YO) (2.12)
e, t e = e(yo + ulyl) (2.13)

or
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etc.

If the expansions of variables and coefficients are substituted
into Eqs. (1.34) - (1.37) and if only the terms of zero order in [ as
r > © are retained, equations for the zero-order problem are acquired.
In following this procedure, EOC (also ElC, etc.) is to be regarded as

of zero order in [ . Now Eq. (1.37) immediately implies

R = 0 (2.15)

and the use of this result in (1.34) - (1.36) yields

dJD 9
—"a; - ’YO n_, + EOE n, = 0 (2.16)
dneo
T4 p, T, = 0 (2.17)
dn 1+ GOTO
o + g 60 s E0 = 0 (2.18)
1 + Go'co
where Po = Ty _T+—To_ . (2.19)

The combination of coefficients called po appears quite often in later
developments. The bounds on & and T in (1.26), (1.27), and (1.29)
show that it is neér unity in magnitude.

It should not be inferred from the expansions of variables and
coefficients that the coefficients of the un(C) are independent of
z . Indeed, [ enters the zero-order problem through the recombination

term in (2.16), and hence JO > M s Eo % Yo , and the other zero-order
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coefficients are all functions of T . The explicit form of the
dependence is obtained when the equations are solved.
The zero-order equations are prepared for solution by writing
an equation for no alone. Eliminating J0 between (2.16) and (2.17)
we obtain
d2n

eo 2
2 + Yopo Moo EoC po ne

= 0 . (2.20)
dy e

Once N, is found, Jo and Eo can be obtained from Egs. (2.17) and

(2.18) as
dn
1 eo
J = == (2.21)
o) p0 dy
1 - 60 1 dneo
B ™" 1I%8t o dy : (2.22)
o o0 eo

The formula for Eo serves to make manifest the breakdown of the
main-region solution as the wall of the discharge is approached. If
neo goes to zero at y =1 as ne must, Eq. (2.22) predicts that Eo
becomes infinite. However, the‘boundary conditions (1.12) and (1.13)
applied to Eq. (1.8) reveal that dE/dy = 0 at y =1 , and hence E
must approach a finite value at the wall. The solution to the zero-
order problem in the main‘region, which is obtained in the next section,
shows that only the behavior of Eo is obviously inappropriate near
the wall, but the electric field strongly affects the other variables
through Eqs. (1.6) and (1.7); hence the entire main-region solution

must be rejected near y =1 .

The boundary conditions (1.9) - (1.11) require the zero-order

solution to satisfy
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y =0 : n = 1 (2.23)

€eo
Jo = 0 (2.24)
E0 = 0 . (2.25)

A boundary condition on dneo/dy that must be used in solving (2.20) is
obtained by applying (2.24) to (2.17):
y =0 : dneo -
dy

0 : (2.26)
En is obtained algebraically in the zero-order solution, but Eqs. (2.26)
and (2.22) show that it satisfies the boundary condition (2.25) at
y=0.

The boundary condition on n, at y =1 belongs to the sheath
and cannot properly be applied to the problem in the main region. The
main-region solution should be obtained using only the boundary condi-
tions at y = 0 , and the integration constants should be determined by
matching with the sheath solution. In fact, this procedure, which
parallels the main development of the problem, is followed in Appendix
. llowever, there only those quantities are obtalned that would other-
wise be determined by the boundary conditlon on - at y =1 . Such
a presentation displays considerable esthetic appeal, but the mathe-
matical details are so burdensome that it is uneconomical to develop
the complete solution in this spirit. In fact, results identical to
those of Appendix E are obtained by assigning to n_, the boundary

condition

y = 1 : n = 0 - (2-27)
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The use of this condition is justified by the following discussion,
which obtains estimates for the magnitudes the variables assume in ﬁhe
sheath. The application of the condition to the zero-order problem
eliminates the need to carry several unknowns in the main-region solu-
tion. The expansion of the variables that is necessary in the matching

process would be particularly unpleasant with these unknowns present.

Breakdown of Main-Region Solution

An analysis of the main-region solution as y + 1 1is necessary
in order to ascertain the approximate boundaries of main region and
sheath and to estimate the magnitudes of the variables in the two
regions and in the transition zone. From these estimates it is also
possible to justify (2.27) as the proper boundary condition on n,, -

The approximate approach to the problem in the main region is
based on the assumption that (1/Z)dE/dy is small in comparison with
the other terms of the equations, and the asymptotic expansions in the
functions un(;) provide the formal means of neglecting (1/g)dE/dy as
a first approximation. However, E and its derivative increase
rapidly with y near the wall, and the approximation ceases to be

valid when the left-hand side of Eq. (1.8) becomes comparable in magni-

tude to n, or mn; . In fact, by equating the order of magnitude of

the left-hand side to that of n, or n; o we obtain a criterion for
distinguishing between main region and sheath. Equation (2.22) provides
a convenient means of estimating the magnitude of E and dE/dy in
terms of n , because E0 and n, . are adequate approximations to E

and n, in the main region. Since E0 and dEo/dy cannot become

large unless oo becomes small, the magnitude of n_, must be near
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zero when the main-region solution breaks down. Differentiating Eq.

(2.22), we obtain

2

dEo - 4 60 [ 1 d neo o (dneo)Z]
dy 1+8 1 "eo dy2 n2 dy
oo eo

so the estimates for E and dE/dy become

1
E = 0
e
dE 1
dy 0(n 7)o
e

(2.28)

(2.29)

(2.30)

The main-region solution becomes invalid when the orders of magnitude

of the terms in Eq. (1.8) become equal:

1 dE, _
ordCE-E;) = ord(ne) 5

Using (2.30), we find that (2.31) implies

1

n = 0(—=
1/3

eo c /

and then (2.29) and (2.30) yield

E = 0(;1/3)
dE _ 2/3
o 0(z™ ™)

Equations (2.32) and (2.33) provide estimates for n, and E

(2.31)

(2.32)

€2.33)

(2.34)

in

terms of  at the point where the main-~region solution breaks down.

These estimates do not describe sufficiently the distinction

between the main region and the sheath; it is necessary to determine
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the approximate magnitude of y at the breakdown point. Such an esti-
mate can be obtained by studying the behavior of n, In the sheath and
requiring agreement between the main-region and sheath solutions in an
intermediate (overlapping) region. It is apparent from Egs. (1.5) and

(2.21) that J 1is of order unity in £ throughout the discharge:

J = 0(1) 5 (2.35)
Then (1.6) implies
dn
— Sl =nE+81TJ= 0Q) (2.36)
dy e )
provided neE = 0(1) . It is easily seen from (2.22) that neE = 0(1)

where the main-region solution is valid. The boundary conditions at
the wall suggest that neE must rise from O at y =1 to match the
main-region behavior in the far reaches of the sheath. A rather elabo-
rate and tedious investigation of Eqs. (1.5) - (1.8) as y decreases
from 1 yields a convincing argument that neE = 0(1) throughout the
sheath. Such a prolix analysis is not included here. It is merely
assumed that neE = 0(1) , and the justification is inferred through
the consistency of the results. Using (2.36) and the boundary condi-

tion (1.12),

n,6 = 01 - ) (2.37)
throughout the sheath. Since this behavior must match with that of

. . in the main region, Eq. (2.32) implies that

1 -y = 0(—1'/—3) (2.38)

where the main-region solution breaks down.
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Validity of Boundary Condition on ngy at the Wall

Sinc% n and 1 - y are both 0(1/@1/3)- when the main-region
solution breaks down, it is reasonable to believe that the boundary
condition (2.27) yields an LI that closely approximates the correct
behavior in the main region. However, Eq. (2.20) for n,, now has
three boundary conditions, (2.23), (2.26), and (2.27), and they deter-
mine not only B but also the 7 - Yo relation. If eo were zero,
these equations and boundary conditions would determine Y, as an
eigenvalue. For small T this value of Yo 1s modified slightly by
the effect of recombination represented by the factor EOC , and s
is obtained as a function of 7 . However, this dependence of Yo on
t 1is irrelevant here; we wish to study the effect on LI and T
of an inexact boundary condition, and the error in the boundary condi-
tion is related to the space-charge expansion. Where the effect of
space charge is greatest,‘that of recombination is least, and the
qualitative effect of the boundary condition at y = 1 can be evalu-
ated without considering recombination.

Accordingly, Eq. (2.20) is replaced with the equation

2
d N, ;
5+ ¥ P n,o= 0 : (2.39)

dy

The boundary conditions‘(2.23) and (2.26) now yield

n = cos VY y . (2.40)

eo (o o]

Since Py is a function of Y, 0 the remaining boundary condition

determines Y ® The condition (2.27) would yield YR = w2/4 .
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but this condition can be replaced by a more proper, but inexact, condi-
tion based on the estimates of (2.32) and (2.38). The only requirement
we actually know now is that the behavior of n_ , must match with that

of T in the sheath where the main-region solution breaks down, and

thus we merely require that neo(y) = 0(1/21/3) when l-y = 0(1/C1/3).
Writing »/Yopo as m/2-n and 1 -y as 0(1/7;1/3), Eq. (2.40) at
breakdown becomes
n_ = cos[(F - (1 - 0(—3 (2.41)
eo 2 C1/3 *
. 1
= sin (n + 0(—'1—/—3-)) (2.42)
c
1_3 1
=z N + ese + O(C—ll—?") (2.43)
. ; 1/3
Since B itself must be of order O(l/c ), it follows that
o= G (2.44)
C1/3 )
and
"2 1
Y P, = —Z-+ 0(—33G? . (2.45)

Py Is a slowly varying function of Y, » 8° the error in ¥ incurred

/3

by the use of the boundary condition (2.27) is also of order 0(1/?;l Y

However, we will see later that the ul(C) occurring in Eqs. (2.1) -
(2.11) equals l/CllB, so corrections of this magnitude do not enter the

zero-order solution. The validity of the condition neo(l) =0 is

now established.
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Equations in the Sheath

‘The variables in the final equations of Part I are made dimen-
sionless in such a way that their magnitudes are near unity in the main
region. The estimates made above of magnitudes at breakdown of the
main - region analysis show that in the sheath the variables have vastly
different magnitudes and that these magnitudes depend strongly on ¢
In order to analyze the equations more conveniently in the sheath, it
is desirable to rescale the variables there so that their magnitudes
are near unity and independent of [

The proper scalings can be ohtained immediately from Egs. (2.32)
(2.33), (2.35), and (2.38). Equation (2.38) shows that the thickness

1/3

" of the sheath, or boundary layer, is of the order 0(1/z ), and we

define a new independent variable as

Cl/

e = ¢MPa-9n . (2.46)

It is convenient to replace y with & in studying the sheath,
because & remains finite as [ * ® provided y remains in the
sheath. The new dependent variables, appropriate for use in the

sheath, are defined by the equations

1/3

NGRS O @an
5, = (2.48)
Ny
fey = 36 (2.49)
Y 1
E(g) = =73 EG) (2.50)

4
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The magnitude of n, where the main-region analysis breaks down has not

been determined, but Eq. (2.15) shows that it 1is roughly the same as
that of n, o since they are the same to first approximation in the main
region.

The problem in the sheath can now be obtained by rewriting Egs.

(1.5) - (1.8) using the new variables. We find

n

—ji= N l;_2/3y?{ - Q—lsagrr\{

e o™i (2.51)

n
dn
e

E
a_:—= " g (2.52)

B
e
+
(7]
e

dﬁi
=T, . (2.53)

82
m e
+
,_i
oo

n

dE u N

E T X(ni - ne) 2 (2.54)
The coefficients appearing in these equations now reflect the size and
importance of the various terms. The boundary conditions (1.12) and
(1.13) are applicable to the sheath and imply

Y]
n

. 0] ' | ‘ (2.55)

%i = 0 ] (2.56)

The other conditions needed to solve the four equations arise from the
requirement of matching the sheath solution to the mgin—region solution
at large ¢ .

The magnitude estimates used in rescaling the variables are
obtained by studying the breakdown of the main-region solution. Since

we seek to apply these estimates throughout the sheath, we should
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investigate the problem there to verify that the magnitudes do not
change excessively. In particular, we want to show that E does not
continue to grow at an increasing rate as we move from the main region
into the sheath. Since [ is very large, it is apparent from Eq. (1.8)
that E and dE/dy are of order unity in the main region only because
the difference between n, and n, is very small there. However, in
order to satisfy the equations and the boundary conditions at the wall,
n, and n, must behave differently near y = 1 . As the wall is

approached, the difference between n, and n, increases and results
in a corresponding increase in dE/dy and E . However, the individual
magnitudes of n, and n, are decreasing while their difference
increases. Once dE/dy becomes comparable in magnitude to Cne or
Cni , no further significant increase is possible, and hence dE/dy
must retain the same order of magnitude. This rough relation is the
same as the criterion used to obtain the magnitude estimates and serves
to define the sheath. A crude measure of the increase in E across
the sheath can be obtained by multiplying the order of magnitude of
dE/dy by the thickness of the sheath. From (2.33), (2.34), and (2.38)
we find that O0(dE/dy) * 0(1 - y) = O(E) , so the order of magnitude of

E remains the same throughout the sheath.
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3. ZERO-ORDER SOLUTION IN THE MAIN REGION

When the electron density is large, the solution to the zero-
order problem in the main region is an excellent approximation to the
solution of the entire problem. Then the effect of space charge is
small, and the sheath is thin and of little importance. The exact
zero—-order solution for Yo and n_o is obtained here, but in the
simultaneous treatment of space charge and recombination it is more
convenient to work with an approximate solution. The approximate
solution involves trigonometric functions instead of elliptic functions
and is easier to manipulate in the matching between main region and
sheath. Also, the same procedure used to obtain it can be applied to

the first-order equatioms.

Relation to the Ambipolar Diffusion Equation

Except for the recombination term Eq. (2.20) is the same as the
*
standard ambipolar diffusion equation as can be seen by expressing its
coefficients in terms of the original dimensioned quantities. From

Egs. (1.16) and (1.17)

5 L
14 oLoe
1+60T0 D, T,
= : 3.1
1+ Lo T . ( )
1+ -=
T
w

Using the Einstein relations given in Eqs. (3.8) and (3.9) of Part I,

*
See, for instance, von Engel [11], pp. 240-241.
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u
i
1+ 68T, Y
l + T o ~ A“- (}-?)
° De ui
1+ %= =
He Dy
IR TV
= ~ /\e Ai/\ Di (3'3)
ueDi * uiDe
= 4 " (3.4)
D
a
where A A A A
~ H D, +u.D
Da - eAi‘ Ai e (3.5)
Ue + Ui

%
is the ambipolar diffusion coefficient . Using Egs. (2.19), (1.14),

(1.15), (1.16), and the relation ¢ = Neo/N , we obtain

L & Gdro LZGI

Yoo = Yols "1 + T = ~ ' (3.6)
o D
a
Lza'Neo
€. Ep. B ————= é (3.7)
o°"Fo B 4
a

Statement of Problem

In order to simplify the notation, it is convenient to relabel

some terms for the duration of this section. We let

*
'Y = ‘Y po ’ (3'8)

*
See von Engel [11], p. 144,
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*
€ = €.1p_ (3.9)
and
n = n_ . (3.10)
Now the problem of Eqs. (2.20), (2.23), (2.26), and (2.27)
becomes
dzn * * 2
——E—+ Yn-¢€n = 0 (3.11)
dy
) A n = 1 (3.12)
dn _
iy = 0 (3.13)
y = 1 n = 0 . (3'14)

%
The equation and three boundary conditions serve to determine 7Y as a

* %
function of ¢ and n as a functionof y and € .

Approximate Solution

The approximate solution to Eq. (3.11) is obtained by expanding

3 *
n and Y’ in powers of € as follows:

% B e 5*2 +
n n_ € ny n, .- (3.15)
* * * % %2
vy ey, bE Y, (3.16)
Y o 1 2 . *

The expansions are substituted into the equation and boundary conditions
* %

and terms of the same order in € are equated. € is proportional

to C, and the expansions have been referred to previously as those in

which recombination is regarded as a perturbatiom.
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After substituting these expansions into Eqs. (3.11) - (3.14)
*
and equating equal powers of € , we obtain as the first approximation

to the problem

2

d ng *

> + Yo n, = 0 (3.17)
dy
y = 0 4 ) no = ]. (3'18)
dn0

_CG = 0 (3.19)
y =1 : n, = 0 5 (3.20)

We obtain immediately from (3.17) - (3.19) that

*
o = cos \/yb v . (3.21)

=)
|

Now (3.20) implies

2
¥ 2 o
Y, = (21 - L7 , (3.22)
where j = 1,2,-** . Fach of these values must be regarded as a can-

*
didate for the correct Ty However, only for j = 1 does (3.21)
provide an electron density that is nowhere negative. Therefore on

physical grounds we choose

n = cos oy (3.23)
2

*_om

YO e 4 - (3.2!{‘)

These results are the solution to the classical ambipolar diffusion

problem and form the basic description of the positive column to which
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the effects of space charge and recombination are added as perturba-
tions. The first approximation to Yo is obtained by solving the

equation

2 ‘
o
Voo lr,d = =% (3.25)

where the subscript "a'" represents the ambipolar solution. The numer-—

ical solution for Ya yields

= = 2.4123 (3.26)

and from it Eza is found to be

1>

e ¥ 20.926 volt/cm - (3.27)

Higher-order terms of the series show the effect of recombina-

tion. Equation (3.11) and the accompanying boundary conditions to the

*
first power in € are

d™n * ~ 9 *
2 +Y nl = no -— 'Yl nQ (3.28)
dy
y =0 : n, = 0 (3.29)
dnl
Ty = 0 (3.30)
5 1 2 n, = 0 . (3.31)

The homogeneous equation associated with (3.28) has a nontrivial
solution satisfying (3.30) and (3.31). The results of Appendix B
show that the right-hand side of (3.28) must be orthogonal to this

solution if the following associations are made:



w(y)
p(y)

q(y)

*
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g X
= A
= Yo T g ot

Y, can now be obtained without solving Eq. (3.28) for

Appendix B ,

< 2 n > = 0
cos 5y, ng - Yl n
or
T 2
Y* ) <cos-§ Vv 5 n0>
T
1 <cos-§ vV 3 no>
1
3
J cos 2 Y dy
- 0
1
J cosz'%-y dy
0

Now Eq. (3.28) becomes

2
d n, 2 2

W 2 o UL
* 7 n1 cos 2 vy

N

dy

Y
3 27

(3.32)

(3.33)

(3.34)

From

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

The solution satisfying (3.29) - (3.31) can be found by standard

*
methods and is

X

4 2 m
By S (2 - cos 7 ¥ —cos” 5y - 2y sin E-y) .

3

(3.40)

*
The technique is illustrated in Appendix C for the corresponding

problem in cylindrical geometry
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. *
With ny known, Y, can be determined by the same procedure

% *2
used to obtain Yl . Equating terms of order O0(c ) In (3.11) -

(3.14) yields the problem

2
d nz * *
5 F Yy Mg ™ Faumy = YaEy * Yo By Gt
dy
= 0 3 By = 0 (3.42)
dn2
'"-(—i-; = 0 (3.43)
y=1: NG - 0 . (3.44)
The same orthogonality relationship applied in obtaining Y: now
requires as a condition for the existence of a solution n, that
< 1 2 * ’ > = 0
cos 5 ¥y » 200, - Yy = Yong = (3.45)
or
2 < o y* < >
% n_,nn.> - n_,0y
Yg - o’ o'l 1 0 (3.46)
<n ,n >
o’ o
1
= {_Ei_ [2 c032 L y —-cos3 L y - cosl' L - 2y c052 1y sin 1T‘y] dy
2 2 2 2 2 2
31
0
1
- 2B [2 cosly— coszly—cos3£y—2y cos lT—ysinly]dy}
9F3 2 2 2 2 2
0

1

™
J cos” oy dy (3.47)
0
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After a considerable amount of algebra (3.47) reduces to

*
Yy = 12 - 3§ - 62 . (3.48)
31 o1 3T

Higher-order results can be obtained with a rapidly increasing
amount of labor, but the terms already obtained are sufficient for our
purposes. The expansions of n and +Y* are given below to the number

of terms that have been calculated:

2 * 2
10 2 4y *
R i Y e s e L (&)
3m 9m 3w

n v cos %—y + “&5 [2 - cos %-y —c052 % y -2y sin %—y]e*.
= (3.50)
If the coefficients in (3.49) are evaluated numerically,
2 & %2
Y& v 2.4674 + 0.84883e + 0.004058¢ 2 (3.51)

Final Form of the Approximate Solution

Using (3.8) and (3.9) to express the [ - Yo relation in the
original nomenclature, we obtain

2
T 1 8 10 32 64
Y =—"—+ e L+ ( - - ) P
o 4 po 37 o 3w2 gTr3 3ﬁ4

2.2
EOC " (3.52)

(o]

For a given ¢, Y, must be evaluated by numerical means, but the
calculation can be easily performed by a simple iterative procedure.
(8 and e, are slowly varying functions of Y, o and a crude first

approximation to ¥ gives a reasonable estimate of their values.
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These values of po and Eo can be used in (3.52) to predict a new
s @ and this process can be repeated until Yo converges to its

correct value (within a few iterations). The YO'

s corresponding to
various values of ¢ are presented in Table 7, and a graph of the

z - Yo curve is given by one of the dashed curves in Fig. 9.

Equation (3.50) expressed in the original nomenclature is

- mw & LI 2m m
n,, T cosoy + 3'"2[2 cos 5y = cos” 5y 2y sin Zy] poeot‘; 5 (3.53)

Equations (2.21) and (2.22) can now be used to express Jo and E0 as

functions of y . TFrom (3.53)

dn
o0 _ L e Mo o T X = i L
S ik sin 5 3“;‘.2[(2 2)s:Ln Al T(y - sin 2y) cos Zy] PoEL
(3.54)
so J and E become
o o
J = E_l_si E+——4——[(2—£)sin£+ﬂ‘(--il‘lﬂ)o E]
e T Tp, FTHPIT, 2N TPER G¥T T -8 G abe G S L
(3.55)
m m 4 ™ m i AL L
1 - 50 2 i ZY+ 3n2[(2_2)Sin 2y+ o ZY)COS -2~y] pOEOC
E = :
° 1+60To cos %y+ —“%{Z—COS %y— c052 %y- 2y sin E37] PEC
i 2 oo

(3.56)

It should be realized that the zero-order solution for the dependent
variables is accurate only to order O(EOC) . The accuracy of the

*
approximate solutions for Yy and n 1is appraised by comparing them

with the exact solutions obtained below.
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Exact Solution

The problem defined by Eqs. (3.11) - (3.14) can be solved
exactly in terms of elliptic functions. In so doing Eq. (3.11) is
reduced to quadrature, and the resulting integral is expressed as an
elliptic integral of the first kind through a change of variables.

Before proceeding it is convenient to introduce a new indepen-

dent variable x given by

x =Yy (3.57)

and rewrite the problem as

a? * 2
SS+n-5n" =0 (3.58)
dx Y

x =0 : n = 1 (3.59)
dn _
w -0 (3.60)

=y g o= D (3.61)

In order to integrate Eq. (3.58) once, the independent variable

is eliminated by 1ntroducing p defined by

dn :
P g (3.62)

and writing the second derivative as

dn _ dp_ dndp _ _dp
2 dx (3.63)

Now (3.58) becomes



-151-

. (3.64)

Integrating and using the boundary conditions at x = 0 (or n = 1)

* %
pP+n’ - 2520 1- 25 (3.65)
Y Y
or
* *
2 € 2 2 € 1/2
p = +{1- 3 % -0 Q-3 5Fn) } / (3.66)
Y Y

[ %
Since 1n must decrease to zero at x =\/Y , the negative sign
is obviously the one desired. Also, p must be real, and (3.66) thus
* %k * %
provides a condition on € /y — € /y = 3/2 . However, a more
restrictive condition is obtained by studying the differential equation

in the form

2.+ . (3.67)
dx Y

At x =0,
d? *
_121 =-a-5 . (3.68)
dx Y

Thus if é*/y* > 1 , the graph of n versus x 1s concave ﬁpward ini-
tially, and n begins to increase from unity. Equation (3.67) then
shows that the concavity is enhanced and the behavior of n 1is defi-
nitely not what is desired. On the other hand, if E*/Y* <1, n is
concave downward initially; dn/dx becomes negative; the term -n on
the right-hand side of (3.67) becomes ever more dominant; and n

decreases monotonically to zero. Thus we pose the condition

*

0 5 < 1

y

. (3.69)
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Using (3.62) an integral relation between n and x is

obtained. If p 1is replaced by dn/dx , Eq.‘(3.66) becomes

*

*

dn 2 € 3 2 2 € 1/2
H§=—{§Fn—n +.l-—"3—;';} (3.70)
and using (3.59)
1 =
dn
x = = (3.71)
hets 2, 288
n 3 %0 -0 ~3°F
Y Y

* .k
The relation between Y and € = 1is obtained by applying condition

(3.61)

%

1
* dn
VYy = J (3.72)
0

2e* 3 —2 2 €
\/3—*“ -m+1-3%5

The solution to the original problem is completed by relating y and

n . Using (3.57) in (3.71)

y_]_! dn
= * = * . (3.73)
VY nﬂM/g-g— n3 - n2 + 1 - 28
3 %
Y _ i ]
Although the solution to the problem is given implicitly by
(3.72) and (3.73), the integrals can be expressed as standard elliptic

integrals by a suitable change of variables. Before proceeding we

define
*

a = 25 (3.74)

<

to simplify the notation. Now (3.72) and (3.73) become



l —
Vr© = J dn : (3.75)
0

\/dﬁa —'Ez + (1 - a)

y = =i J dn (3.76)
x - S
\/Y n \/an3 - n2 + (1 - a)
The transformation necessary to achieve the standard form for

elliptic integrals depends on the roots of the polynomial in the inte-

grands. It is immediately observed that n=1 4is a root, so we have

an’ -n+ (-a)=(@-Dan- 1L-a)n-(1-al (3.7

Let the roots of the quadratic be n§1> and néZ) with
(1 - a) + \/1 + 2a - 3a2
n(l) = (3.78)
[o] 2a .
(2) (1 - a) - \/i + 2a - 3a2
n = ; (3.79)
o 2a

It is essential to determine the values these roots assume with respect

to n as a varies. From (3.69) and (3.74)

osa<§ ‘ (3.80)

(1)

o with respect to a ,

Differentiating =n

ey B[t bt e I T L ) YL T 3570
o = Y1+ 2a - 3a2
o 4a2
- T 1+ a >
_ /1;—23 - 3a & . (3.81)

2a
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(1)

Therefore ng increases monotonically from 1 to ® as a decreases

from 2/3 to 0, so for a as specified by (3.80)

nél) 2N (3.82)

Since 1 + 2a - 3a2 = (1 - a)2 + 4a(l - a) , it is apparent from (3.79)
(2)

that n "7 < 0 for 0< a< 2/3 . It is also easy to determine that
ngZ) + -1 as a-+ 0 . We have now arrived at the following set of
inequalities:

0@ 0 20 g 1<a® (3.83)
(o] (o]
for a satisfying (3.80). (3.77) can now be written
and - A2+ (1 -4) = a(l -'E)(nil) - @ - n'?) (3.84)

where each factor is greater than or equal to zero. Substituting (3.84)
into (3.75) and (3.76),

1

7L - J g (3.85)

Va 54/a -ma® -D@E - D)

1

1 dn
y =
Ve pVa - ma®-Da - o @)

(3.86)

The integrals are obtained in standard form by changing wvariables

from n to =z , where

2 1 (L - n)
. e (3.87)
kz (nél)

- n)

and
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1 - n(z)
k = -_-____—9-....—--.-—
DD

(3.88)
Differentiating this expression,
@iP- (=) - @ - ) (-am)
Y . ai
2z dz = 7 (nél) =Y
1 “cgl)' e
= - —— ——-—-——-——_——-—- d'n (3-89)
2 - m?
o
so _ _
B (1 - n)llz (nél)_ o372
dn = -2k dz - (3.90
n(l) -1 )
o
Rearranging (3.87)
5 1 (1‘1(1)— -I—l-) _ (n(l)_ l)
_ o o
2 = = U (3.91)
k n - n
o
SO
(1)
24 T m i,,;_; : (3.92)
= 1-k“z
Again rearranging (3.87),
(2, _ ~_ (2
zz=1_(1““o)'(n‘“o) (3.93)
2 (W_ (2 = (2)
7 k (n0 - ng ) -(n - ng )
Solving for (n - néz)) and using (3.88),

a- néz)) - kz(nél)— néz))z2

1 - k222

2 ~nl?) .
o
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2
L, S

= (1 (3.94)
o] 1 - k222

Using (3.88), (3.90), (3.92), and (3.94)

o n(l)— n
= = =2k 2 (3.95)
Va - aP-DaE - o) @D- 1@ - 2212
= o0 g
- (3.96)
a - néZ))l/Z (1 - Y2 (1 _ 12 5102
=2 dz
R O o (3.97)
(7= 2" N1 - 2Dy a - 1Pad)

Using (3.87) to determine the proper limits of integration, (3.85) and

(3.86) now become

1
KVn(L)
i o
\/y* = z dz (3.98)
\/a(nél)w néz)) 0 \/(1 - 22)(1 - kzzz)
1, 1-n 1/2
= 2 o dz
\/ay*(ngl)— 2?0 a-z22ya - k222
(3.99)
The elliptic integral of the first kind is defined by
x
F(x,k) = J dz (3.100)

0 Va-Ha - kD
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or equivalently,

o
F(g,k) = J « (3.101)

0 V1 - k251n29
2

for kW < 1 . The second equation is derived from the first by the

change of wvariables

sin © (3.102)

N
]

"
I

sin ¢ . (3.103)

It is obvious from (3.88) and (3.83) that kz < 1 . In this notation

(3.98) and (3.99) become

V¥ - = F—a—, k)
(3.104)
\] a(nél)— néz) k nél)
2
= F(o,,k) (3.105)
\/a(ngl)— néz))
where
¢, = i o (3.106)
k n(l)
o
and

2 ﬂ 1 1l -mn
¥ = F(E"\:(l) , k) (3.107)
\/aY*(n§1)~ n§2)) n, -0

F(¢n,k) (3.108)

2
\/%Y*(nél)n ngz))

where



b = s;l,n']‘(::;-ﬁ f—«‘}%—‘l~—~ (3.109)
n - n

If u = F(x,k) as defined by (3.100), the inverse relationship is con-
ventionally written x = sn(u,k). In this manner Eq. (3.107) can be

solved for n :

snz(\/aY*(nél)— néz)) %,k) = —12-——%—1-;—9-— (3.110)
k no - n

or

1 - kznél)snz("JaY*(nél)— néz)) %sk)
n= (3.111)
"o 2 T 1

L = kzsnz( ay (no

* %
€ — Y Expansion Derived from the Exact Results

The first two terms of the series in Eq. (3.49) relating Y* and
E* are easily confirmed correct by expanding the quantities appearing
in Eq. (3.105) for small E* . Equation (3.74) shows that a is small
for small e* , and it happens that k dis small for small a , so F
can be written as a power series in k . When the entire right-hand
side of (3.105) is expressed in terms of a , Eq. (3.74) defining a is
used to write the result as an expression in Y* and e* . The equation

* *
that is acquired is solved to give vy as a series in ¢

The radical appearing in (3.78) and (3.79) can be approximated by

Vi ga =232 = 1 +-%(2a = Tty —~%(2a = 332 # 0(a)  (3.112)

§ 4+ 8 — 25 + Ol (3.113)

£L)

for small a . Then ng and n

(2)

become



Now

L@

o

e
(o)

L _
(8]

i
o
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1

2
ke a+ 0(a”)

1+ a+ O(az)

2) _ 1
a

so the coefficient in (3.105) becomes

and from (3.88)

2

2

24~ 284 Das)

\/;(nél)— néz))

P
1

]

\/l + a + O(az)

2 - a+ 0(a2)

=

2 ~ a & 0Cad)
§-+ 1 -~ 2a + 0(a2)

2 - a+ O(a2

)

1+ a+ 0(32

)

Ja \/2 - 3a + O(az)

/I (1 -2 a+ 0(a))

Using (3.114) and (3.122)

&

so Eq.

B 1
nél) T - %-a + 0(ad)) ‘i - a + 0(a®)
. wde g +,% g % Gtaty)
V2
(3.106) becomes

(3.

(3.

(3.

(3

(3

3

(3.

(3

(3.

3

(3.

114)

115)

116)

sl 1 7)

.118)

.119)

120)

.121)

122)

.123)

124)
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o = sin—l(—l;'+ = a + 0(32))
© Y2 42
We now wish to expand the inverse sine about 1/v2 . If
f(z) = sin—lz
£Yz) = -

V1 - 22

so a Taylor's series expansion gives

Flie e &) = ity w2 b S5 B 4 00D
V2 V2
Now ¢O becomes
_n,3 2
¢o - + 2 @ + 0(a”)

Using (3.118), (3.122), and (3.129) in (3.105),

Vy* = @2 - avo@nrd@ + 2at 0tad), v -2 atoad)).

' *
The following expansion for F(¢,k) is found in Davis :

Z
2K y k 4
F(¢,k) == ¢ - sin ¢ cos ¢(=3) + O(k)) ,
where K 1is the complete elliptic integral of the first kind:

/2
de

0 V1 - k251n29

K= FE&,k) =

(]

(3.

(3.

(3

(3.

(3.

(3.

(3.

.125)

126)

127)

.128)

129)

130)

131)

132)

*
See Davis [7], pp. 133-136.
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An expansion for K 1is also given by bavis [7]:

2
% 1+ X +o0a) . (3.133)

K = A

Using (3.122), (3.129), and (3.133)

K = 2a(l -2 a+ 0@’ (3.134)

= 2a + 0(a®) (3.135)
K = Z+7a+0@) (3.136)
sin ¢ = Lz + 0(a) (3.137)
cos ¢_ = -—-1/_—_2— + 0(a) (3.138)

Expanding (3.130) as illustrated by (3.131) and using (3.135) - (3.138),

A= 2-a+0@)) ZG+Ta+o0@Md+2a+ o)
- <--/1—§ * o(a))&-l/-_; + 0(a) & + 0(a?)} (3.139)
- 2 -a+0@) T+ G+ Pa+o@Eh) (3.140)
- T4a+ 0% . (3.141)

Squaring the equation

* 1T2 2
Y = — +ma+0@@") . (3.142)
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Using equation (3.74) to eliminate a , we obtain an expression

* *
relating Y and €

2 * 2
% 2 *
=B E e (3.143)
¥
or
2 2 2
* * * %
Y _TT4Y ___2_73£€ +0( ) = 0 . (3.144)

The positive root of this equation is approximated by

2
" l;— \] = e* + 0(€ )
Y = (3.145)

“2 2 64 2

=—12-{—4+—(1+---§e* +0(e* N} (3.146)
3m

or finally,

- 2
“—4+—g + 0" ) . (3.147)

=<
]

*
This expression for Y  possesses the same filrst two terms as does

Eq. (3.49), which is obtained by perturbation methods.

Comparison of Exact and Approximate Solutions

Since it is more convenient to work with the approximate solu-
tion than with the exact, it is compared numerically with the exact
results to determine the range of E* over which reasonable accuracy
is obtained. The series expansion for Y* is found to be very accurate
even for large €*. For instance, for e* = 11 the perturbation calcu-

* *
lation of <Y is in error by roughly 0.5%. Since the € appearing in
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Eq. (3.11) must be compared with Y* rather than unity, accurate results
for such large values of E* are not completely unexpected. Indeed,
E*/Y* is the basic parameter appearing in the formulation of Eq. (3.58).
Results of the approximate and the exact calculations of Y* are
listed in Table 1. The approximate solution for n 1s quite good for
e* < 5. For E* = 11 it is in error by about 2.5%. Detailed results
are presented in Tables 2, 3, and 4. Figures 3 and 4 show the behavior
of Y* and n , but it is not possible to distinguish between the per-
turbation and the exact solutions on the graph.

The numerical results establish the accuracy of the perturbation
solution in slab geometry. A perturbation solution in cylindrical geo-
metry is obtained by the same method in Appendix C . In this case the

exact solution is not available, but the results are assumed accurate

on the basis of analogy with the work of this section.
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4. FIRST-ORDER SOLUTION IN THE MAIN REGION

The next approximation to Eqs. (1.34) - (1.37) involves terms
of order ﬂl(c) as g *+ « ., Substitution of the asymptotic series
for the variables and the coefficients into the equations results in
equations for Jl, n g El’ and 8y - Solution of these equations again
requires a second asymptotic expansion regarding recombination as a per-
turbation. This time, however, Yl cannot be determined in the course
of solving the problem, and it remains unknown until the main-region

solution is matched to the sheath solution.

First-Order Problem in the Main Region

The desired equations are obtained by substituting the asymp-
totic series of (2.1) - (2.11) into Egs. (1.34) - (1.37) and neglecting

terms of higher order than ul(c) . From equation (1.34)

2

d
E;(Jo+ uljl) - (Yo+ ulyl)(neo+ 11lnel)-i_(go+ 11181)C(neo+ ulnel)

w =fe ulel)c(neo+ uyn ) (st ulsl) (4.1)

Using Egs. (2.15) and (2.16) for s, and JO and neglecting terms of

order ui ’
dJl ‘ 2
Tdy Yole1* ZEOC Peoel = Y1eo” €1% Meo T %o° Meo®1 e

Substituting the expansions into Eq. (1.35)
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1+ (60+ uldl) (‘I'0+ ulTl)

d =
Dt ByBald ¥ AT Uy T
I T &P T
o 11
T.F W, T
0 11 1 d
(8. F Hi.8, JIE + RB, Yo wvmsmmnne: we (g .8, )
i i g e ¥ G © i1 i LB 1~t~'r+u'rdy © K
o 11 o 11 (4.3)

The expressions for the coefficients must be simplified.

1 1

L+T T 1+ T )+

e N
1+T
(o]

LT
1 11 2
T+, $-Ter) H oM

g 1

2
- = Yy ===, () (4.4)
1471 =~ "1 (1+T0)2 1

1+ (60+ uldl) ('ro+ ulrl)
(To+ UlTl) = (To+ 1‘llTl)[H- 50To+ ul(60T1+61T0)]
1+ 'co+ ul'rl

T

. 1 2
[ - ] G
l+To 1 (l+T0)2 +

1+8 T 1+8 T § 1.+ 6. T 1+68 1T
00 o1 lo 0 0

o 0
=T—-————-+u[‘r —_— T ——————-—-———TT———-——]
o) 1+'r0 1|1 1+"r0 o 1+’I.'O o'l (l-l—'ro)z

+ 0(11]2_)

§ 1.t 64T 1+8 T
o1l 1o 00 2
o (1+To)
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’I.'O-l- M Ty T
et (T T )(1+T -, ———+ o))
1+To+ul*rl (1+T )

Ty T T T
_ 1 __ o1 2
‘1+r Uy {1+r 2]+°(”1)
o (l+To)
T T
o 1 2
1+To 1 (1+To)2 1

Using (4.4), (4.5), (4.6), (2.15) and (2.17) in (4.3),

dnel 60T1+ alTo 1+6oTo

—= 4+ p J =—[T ———‘-+T—:IJ

dy ol o 1+'C0 1 (1+T0)2 o
T 1 dsl

ST AT TEE T et

Equation (1.36) becomes

- L+ (8 + ulél)(To+ M)

d
i (neo+ Mym g (neo+ Mol ) (E_+ u i) -

L= 8= Uydy
§ + 1,8 (§ +u.8.)(t + yu,t,)
0 171 d [} 11 0 11
5o (Bt u.e, )= o (s +U,8.)(E + WE.).
1—50— ulal dy "o 171 1 60 ul(Sl o "Il Ye TET

(4£.8)

Simplifying the coefficients

1 1

§
1-8 - .8 1
o "1°1 (1’50)(1"“1—1—60)

R . —1 2
—1_60(14‘1111_60)‘}'0(111)



-167-

§

1 1 2
- o + Y, =t 0(-“ ) (.’4..9)
1 GO 1 (1_\60)2 1

1+ (60+,u161) ('r0+ ul'rl)

1
Ay [1+ 50T0+ u1(60T1+ GlTo)][——l ey
o” 1% e

51 2 1+6 T 60T1+ 611'0 61(1+ cSo'to)

o 0
Yy gl 0ldy) = g+ 53—+
(1"50) o o

2
(1 -236))

2
) 1+c30'r0+u 601'1+ 611'0— 50 'rl+ 51
1 - 60 1 a - 50)2

+ O(ui) (4.10)

1
(1-68))

S +u.8 §
o 171 1
(6,+ w813~ 5, 1y

2} + O(ui)
e
B 1 65,01

e e T e ]
1-8 1 T=8, " 5 )

o

60 61

o 1 (1- 60)2

+ 0(@) (4.11)

(60+ ulél)(TO+ “1T1>
L= 60— ulél

)
——1+ oud)
(1-8,)

_ 1
= Gt u ST+ uTIT 5. iy

60T0 6011+ 6iTo 6061T0

2
1-¢ W335+ 71+ 0Quy)
8 (1-86))

2
§ T S T.+8.T - 871
171 1 2
w i gy e gtl] & G . (4.12)

-8
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Using (4.10), (4.11), (4.12), (2.15) and (2.18) in (4.8)

2
dne'1 1+ GOTO 1+§ (7 6011+ 611:0 60 Ty 61
+ n . E+-————pin E == n E
dy 1-68 el™o 1-8 "eol 2 eo o
o o (1 - 60)
60 dsl GOTO
+ 1= 35 iy " 1-60 Eos1 . (4.13)

Expanding Eq. (1.37)

1
(XO+ ulxl)(so+ ulsl E'dy (E0+ ulEl) g (4.14)

Using (2.15) and retaining the lowest-order terms on each side

X = 5 "I ¢ (4.15)

Equation (4.15) depends critically on ul(;) « If My o= 1/fe

then Xosl = dEo/dy . However, if ul(g) > 1/t , then the association

of terms with the same orders of magnitude in T requires 81 =0

ul(g) is not determined until the main-region solution is matched with

the sheath solution in some intermediate region. An attempt to match

using W = 1/r fails, and success requires ul = 1/§1/3-

ul is left
unspecified here in order to see more clearly how it is determined.

However, it is necessary to use the fact ord(ul) > 1/t so that
s, = 0 . | '(4.16)

Now Egs. (4.2), (4.7), and (4.13) simplify considerably and are

rewritten below.
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dJl 2
HE; - Yonel ta s n onel Y1 eo €8 neo (4.17)
dnel 60T1+ 6110 14-60T0
+pJ, =~ [t + T, ——=] J (4.18)
dy o'l o 1+ L 1 (14-T0)2 o
2
dnel . 1+6 T L na 1+6 T o 6011+ cSl-ro— 5011+6l
dy 1-8 "el'o 1-8 ‘eol (1 -5)2 "eo 0
& (4.19)

Substitution of the asymptotic expansions

boundary conditions (1.9) - (1.11l) yields

y=0: n,= 0
I, =0
E, = 0

for the variables into the

(4.20)

(4.21)

(4.22)

Actually (4.17) and (4.18) are differential equations for n and

Jl , and E is determined algebraically

1

the boundary conditions on the zero-order

el
from (4.19). (4.21) and

solution applied to (4.18)

show that dnel/dy =0 at y =0, and hence from (4.19) it is

apparent that (4.22) is automatically satisfied.

Jl can be eliminated between (4.17)

second-order equation for n

and (4.18) to produce a

el -
dznel
dy2 * Yoponel - 2Eo?;poneonel = - Ylponeo
§ T+ 8.1 1+6 T dJ
2 ol lo o0 o
+egpa = [T s ] (4.23)
1°"o eo o 1+ Ty 1 (1-*10)2 dy
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with boundary conditions

y=0: n,q = 0 (4.24)
dn
el _
& - 0 . (4.25)

One might expect Yl to be determined by requiring n 1) = 0 as in

el(
the case of the zero-order solution. However, the problem (4.23) - (4.25)
has no nontrivial solution for which nel(l) =0 , for any Yy o An
indication of the reason appears in the approximate solution to the equa-
tion. Since the boundary condition at y = 1 cannot be applied, Yl

must be determined in the process of matching the main-region solution to

that in the sheath.

Approximate Solution for mngj

An approximation to n.q is acquired by the same perturbation

method used to determine N, * An expansion for n.q in powers of
EOC is assumed. Yo Peo’ and Jo already possess such expansions,
so equations for the various contributions to n,, are obtained by

equating terms of the same order in Eog . Introducing notation similar

to that of Section 3

e* = eol; P (4.26)

n = 0, ‘ C(4.27)
and expanding n ,

noaom tem ko . (4.28)

From (3.52), (3.53) and (3.55),



2
L) 8 * ‘
Yopo v 4 +'§F - (423}
n, v COS%Y +-4—2— [2 - cos —g-yu c032 %y- 2y sin %y] E* (4.30)
3m
5 %“ { sin -—y+ 2 [(2-%)9111 -g-y+ m(y - sin —-y) cos --y]e }
o 3m
(4.31)
dJ 2 2
o 1 il ™ 4 . T m 2 2T
—_— v {—*— cos —y+ —=[— +(27-—=)cos -y- mcos” —+y
dy Py L4 2 a2 4 ] 2
TT2 ™
= S sin E-y]e* ¥ . (4.32)

Making the appropriate substitutions in Eq. (4.23) and using Eq. (2.19)

for pO "
2 2
d —~— 8 % — R
—-—2(n0+€ n)+( +3’1T€)(no+€nl)
dy
% T oy = i b s T cos?2 T
- 2 (cos 2 y)n0 = Ylpo(cos 5 ¥ + 3"T2[2 cos 5y- cos” oy
£ § 1,46, T i 2
1 * 2T ol 1o 1 1 T il
- 2y sin y]€)+€€cos Zy_[1+61' +'r 1+T](4cos§
o oo o
2 2 2 2
* *
+ . [lT—— + (27 - Ir——)cos I y —'rrzcc»s2 lT-y-— L y sin i yvle )+ 0(e ).
e B 4 2 BT 2 2
(4.33)
The equation for Ho now becomes
dZEQ ﬂz = ™
dy2 + S, (Ylpo + q) cos T ¥ (4.34)

where



m o1l lo 1 1
9=z 35 YTt - (%4.33)
oo o o
Conditions (4.24) and (4.25) imply
y=0: -1_{0= 0 (4-36)
dn
____9.= 0 (437)
dy ' .
The solution is easily obtained as
no=-%(y,p+q)ysinl 4.38
ng m WPt d) ¥ A (4.38)

It is apparent from this expression that the requirement nel(l) =0
is not a legitimate way to determine Yl . Hence Yl must remain an
unknown until the main-region solution is matched to that in the sheath.

*
Terms of order € in (4.33) yield an equation for n

1 ¢
2_
d™n 2
o W22 L B T2 s o I
5 + S T (y1p0+ qQ)y sin 5 ¥ 1T(Ylpo+ q)y cos 7Y sin 5y
dy 3m
4 ™ 2T i, o1 “1 2m
e Ylpo[Z - €os Sy~ €Os8” Ty~ 2y sin 2y]+ cocosT 5y
3
2 2 2
16 ™ m m 2 2T m P i
- 3174 ql 2+(21T— 4)cos 7Y~ T cos 3 ¥-—3ysin g v (4.39)
- 5 - 8 _ s
= -5 (Pt O+ —5 [yyp,- € - 1ql cos 5y
37 3
€
+ € -—43 Y1P,t -1—6-§q+ El)cos2 %y+ —1-6—2(\(1DO+ )y sin % y
3 3 o 3
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2 m m
2 CYlpo+ q)y cos 5 Y sin 5y . (4.40)

Conditions (4.24) and (4.25) again imply

y=0": 'Hl = 0 (4.41)
dHl
—H§'= o . (4.42)

The solution is laboriously obtained by standard techniques and is

€ €

8 1 16 4 1 il
ny = -(———324 Yo~ T3 T ) + (—-—4 YiPm 5 T Ycos 5
3m 3m o 3w 3w o

+ @+ Dyp - G - Dal y sin Ty

3T|'3 i 3m
8 8 2 T 16 4 1. a2
- (5 Y P, T 3 Dy cos s y+H (T YP - —5 g)cosT Ty
3T 3m 3mr 3m o
+ (—§‘§ Y,P,*t L Dy cosTyeinly . (4.43)
o 3 2 2
3w 3w

Using (4.27) and (4.28), we obtain

2

= K %
ngy = nyten +0(e ), (4.44)

where E; and n, are given by (4.38) and (4.43). J1 and E1 can
now be obtained algebraically from equations (4.18) and (4.19), respec-

tively.
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Lowest-0Order Contribution to s

Since U, (Z) is such that s, 0, Eq. (4.15) should actually
1 1

be written

1 dEo
Xo(8oF HySyH Hosot ==) = F 4 (4.45)
and for some n
@ = % (4.46)
‘Jn C -
so
dE
1 0
Sn = X dy (4.47)
o
and
g, = 0 4, j =0,1,***,;n=1 " (4.48)

Equation (3.56) for EO can be changed to a form that is more

easily differentiated. Using (4.26),

B Bk e T T o T T g
i 1 60 5 sin 5 y4-3ﬂ2 [(2 - 2)sin # T(y - sin 2y)cos > yvle
o l+-50T0

m 4 Ll m m, *
wszy{1+ ﬂZsm:zy—l-cmszy—Zytmlﬁg}

3 (4.49)
= i 60 1 {-TL sin 1y+ M [(Z—E)sin £y+ m(y - sin 1T-)c:os s le *}
1+68 1 m_ 12 2 2 2 2 2 2¥

0 0 cos ;¥ 3m
4 m m m * 2
X {1 - —2[2 sec Ey—l— cos 5y - 2y tan Ey]&: }+ 0(e ) (4.50)

3w
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1 -8

= Bk {‘T[ sin "Tr-y+ ~-—£~'—~[(2-H-)si,u I\;y + My cos “"-y
1+8 1T cos LA % 3ﬂ2 8 % 2
0o o0 weY
m m m n m LR I U
- cos zysin 2y—'n' tan 2y+‘2 sin 2y+ 5 cos 2ysin R4
%
+ Ty sec %yw Ty cos %y]t—: } (4.51)
1 -6
o[ m ™ 4 ) i) il
T { 5 tan 5y + 5 [2 tan A sin 5 &
oo 3m
*
- T sec %ytan %y+ Ty ser:2 % yvle } . (4.52)
Then
dE=l—6° 2sec21+—i-[‘rrsec——ﬁcos1
dy " 1+6 1 U4 R 277 7% 2 ¥
oo 3m
- EE-sec _“_E sec s tan2 1 + 7T s c2 bL!
2 27772 2 7 3¢ s 1
m m *
- ﬁzy sec2 5 ¥ tan 3 vle } (4.53)
S0
s _1_1—50 {ﬂzsec2£+-—-—['n secz— ta1
n_ x 1+86 7T V4 27 g & 7 g F AR ¥
o 3m
2
2 il 2w 2T i m
- T sec 5 Y tan 5 Y + 2T sec 7Y -5 secyy
ﬂz T ’
- T cos Tyl et po} . (4.54)

Except for ul(;) and Y1 and the corresponding corrections to
the other coefficients, all the terms of the main-region solution written

below are known or can be easily calculated.



n, onon U (@ g (4.55)
I n J o+ gt 3 (4.56)
E "N EO + ].11(?;) El (4.57)
g %sn (4.58)
n, = ne+ s (4.59)

In order to complete this approximation to the solution, it is necessary
to solve the original equations in the sheath where the representations
above break down. ”1 and Yl are then determined by comparing the two

solutions in some intermediate regiom.
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5. APPROXIMATE ASYMPTOTIC SHEATH SOLUTION

The complete equations for J, n,, ng and L[ are written in
(2.51) - (2.54) in a form suitable for use in the sheath. The terms on
the right-hand side of the equation for } are small for large ¢, and
approximate methods, in which these terms are regarded as perturbations,
are available. However, even the lowest-order equations are too diffi-
cult to solve analytically. In order to obtain expressions that can be
matched to the solution in the main region, the equations are solved
asymptotically for large £ . Nevertheless the entire boundary layer
must ultimately be considered in order to relate the asymptotic form
for large & to the boundary conditions at & = 0 , and some numerical
work is necessary.

In this section only the lowest-order equations are considered,
and an approximate solution is obtained by expanding the variables in
asymptotic series in the large coefficient T . By this method it is
possible to express ge and n, 1in terms of E , and a first-order

i

differential equation in alone is obtained. The first terms of the

n,
E
o ", v
asymptotic forms of n_, n, and E for large £ are obtained, and

e
they show the behavior of the sheath solution in the region where it is
to be matched with the main-region solution. Because of the expansion
in T the asymptotic forms are not precisely correct, and the matching
cannot be accomplished until the exact asymptotic solution is obtained
in Section 6. However, the numerical integration of the equatiomn for

v n, n a¥}
E provides estimates of ne, n and E throughout the sheath that are

i

not obtainable in Section 6. Furthermore, the trial-and-error work
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associated with the numerical integrations of Section 6 1s reduced by

using the estimates obtained here.

Validity of the Fquations in the Sheath

Before solving the equations in the sheath, we wish to examine
their validity and accuracy there. Quantities vary more rapidly with
position in the sheath than they do elsewhere, and some of the assump-
tions used in deriving the equations must be reexamined. In fact, the
basic process of obtaining the macroscépic equations must be questioned.
The use of macroscopic equations requires meaningful averages over the
particle distribution functions, and such averages are only meaningful
in the context of the equations if the particles experience a large
number of cqllisions while diffusing through the sheath. As a criterion
for this situation we require that the mean free paths of ions and elec-
trons be less than the sheath thickness. Values for these mean free
paths are available in Appendix C of Part I, and they show that the
criterion is not well satisfied. When the particles travel too far
between collisions, the coefficients appearing in the equations are no
longer determined solely by local conditions. The discussion on
pp. 43 £ff and 48 ff of Part I establishes a criterion for the depend-
ence of the coefficients on the local values of ﬁt and Nn . In the
sheath the transverse electric field is so large that Et is not well
approximated by ﬁz » and hence the coefficients actually are not con-
stants. Furthermore the spatial variations in the sheath are so large
that it is doubtful whether the local value of Et could properly be

used.
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Despite the fact that kinetilc-theory methods may be nccessary for
an accurate investigation of the physics in the sheath, we use the
macroscopic equations, and their use may be regarded as an approximate
means by which to extend the description of the plasma to the wall of
the discharge. Since the sheath may not be described very accurately,
it is comforting to realize that the genmeral behavior of the discharge
is relatively insensitive to the detailed features of the sheath. The
analysis in the sheath is only necessary in order to account for the

~

higher-order effects of space charge on the Ned_ Ez relation and on
the dependent variables in the main region. These higher-order effects
are represented by the higher-order terms of the asymptotic expansions,
and these terms provide reasonably accurate values for the complete
expressions if only their orders of magnitude are correct. However, the
orders of magnitude can be determined by observing the breakdown of the
main-region solution, and the sheath calculations only serve to refine
the values. Furthermore, the size of the sheath and the magnitudes of
the higher—-order terms 1lncrease whereas the spatial variations across

the sheath decrease as Neo decreases, and hence the results of the

sheath calculations are most important where they are most accurate.

Zero—-0rder Equations

The sheath problem of Eqs. (2.51) - (2.56) 1is rewritten below in
approximate form by retaining only the terms of order unity in g for
r large. Only the zero-order terms of the expansions of the coeffici-
ents in the un(c) are retained, and the dependent variables for this

approximate problem are designated by a subscript zero. We obtain
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n,
dJo
—2 = 0 (5.1)
dn
n n n,
= = " E +8T1J (5.2)
= eo o 00O
n
dn
io n, v n,
dg - To(— nioEo ¥ Jo) (5.3)
N ,
dE ) "
dg T Xo(nio - neo) (5.4)
A
£E=0: n,= 0 a5
oV
Bio ™ 0 . (5.6)

These equations actually depend on [ , because the coefficients
depend on Yo , which in turn depends on ¢ as shown by Eq. (3.52).
However, § , T, and X all depend weakly on Y , so the equations

are affected only weakly by changes in L

The behavior of variables in the sheath is easily observed by
making one further approximation. Before formally doing so, an
indication of the behavior and the motivation for the approximation
are seen by considering Egs. (5.2) and (5.3) for £ idincreasing from
zero. Since %eo and gio are zero initially, their relative rates
of increase depend on the coefficients multiplying }o . (1.29) and
(1.27) show that GOTO is small and T is large, so kio grows
rapidly as £ increases from zero. However, the terms on the right-
hand side of (5.2) add to yield dn__/df whereas those in (5.3) sub-

n,

N ) v n
tract. As N, increases, the difference between JO and nioE



-181-

n
decreases, and the growth of 0o is retarded. Since TO is a large

r\l ,\J
parameter, a moderate value of dniD/dE requircs that JD and

n

" v
nioE0 differ by only a small amount. Hence n, . s approximatcely

I\J /f\:
equal to J0 L0

Approximation for Large T,

The situation just described is ideally suited for a singular
perturbation treatment with l/T0 as the small parameter. The deri-
vative in Eq. (5.3) is negligible except in a small region near
£ = 0 . This boundary layer within the sheath is called the '"skin"
by Allis and Rose [2]. A solution to (5.1) - (5.4) is sought by
expanding the variables in asymptotic éeries in powers of 1/‘ro S
Since only the lowest-order contribution is of interest, new notation

is not introduced, and the equations in the main region of the sheath

become
v
I, = J,(0) (5.7)
n
dn
eo 3 m
dg = Meo o E 60T0Jo<0) (5.8)
n,
" JO(O) —_
n, = — <
io B
n, (o]
dE
[ — _ Uy _ v
—aE = Xo(n:l.o neo) " (5.10)

A
A separate treatment is necessary near £ = 0 , where n, o
changes rapidly and its derivative is large. An examination of Eq.
n
(5.3) leads one to expect the large change in n, ~ to occur as £

increases from zero to a magnitude of order l/T0 . We therefore
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introduce a new boundary-layer coordinate

and rewrite Egs. (5.1) - (5.4)

"
dJ0
_dﬁ=0
dn
n n "\
88 _ L. g dxT)
dn TO eo o 00 O
n
dn
io_ t\'r\l ny
dn B nioEo # Jo
N
dE0 xo (m i
_9 — 4 -
dn To io eo
To lowest order in 1/t
n "
JO = JO(O)
" N
Teo ~ eo(o) = 0
", N
E0 = EO(O)
"
dﬂ n, N
io Y
___.+ =
dn Eo(o) nio Jo(o)

in the skin. (5.19) is easily solved using the boundary condition (5

o yheld
T (0) E (0)
= n
%io = mo (1L -e s )
EO(O)
T (o) T E_(O)E
- 2 fi-g T° )

E_(0)

(5.11)

(5.12)

(5.13)

(5.14)

{5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

.6)
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Since
7 (0
J (0
n
lim gi () = 1lim nio(n) = R;L-“ (5.22)
E—+0 2 n + o EO(O)

the solutions in the two regions are said to match in an intermediate
zone*. The essential point is that the exponential term of (5.21)
becomes negligible before EO(E) in (5.9) deviates significantly from
EO(O) . The formal limiting process above expresses this situation
provided such an intermediate region exists. It obviously does for a
sufficiently large T, - An expression for %10 that is uniformly
valid in E 1s obtained by adding the two solutions and subtracting

from the sum this common limit in the intermediate region. We obtain

4] Y
J @ J (0) -t E (0)¢
n, 0= % = = e . (5.23)
E () E_(0)

Since the validity of this expression depends upon the exponential
term;s decaying while %o(g) is still approximately equal to EO(O) Y
%O(O) can be replaced by %0(5) in the coefficient without introducing
further error. Then (5.23) becomes

(0)g

T (0 E
-t E
2 e ) . (5.24)

= (1 - e
f\J
EO(E)

o

%o

This form is more convenient in the following manipulations.

a N
By making appropriate substitutions, n, 2as well as n; o
~

be expressed in terms of Eo . These expressions can then be used to

can

*
See Cole [6], pp. 11 ff. for a discussion.
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a
obtain a single nonlinear differential equation for EO . Solving (5.4)

X
for n.. oo using (5.24), and substituting into (5.2)

oV N Y
n dE J (0) T E_(0)§
_d§£= [§l<_75+"’%‘— (1-e °%  HIE_+8_1 J 5@ (5.25)
9 0
E_(0)F
-T_E (0)¢
= 2)1( fw (F‘ )+(1+<S T )J (0)-—J e °° - (5.26)

Integrating and using the boundary condition (5.5),

n 1 By Vg b
B ™ (F - EO(O)) + (1 + GOTO)JO(O)E
n n,
J (0) -T E _(0)E
= %_ mo (]_ - e S ) » (5-27)
o EO(O)

Since terms of order O(l/To) have already been neglected in obtaining

v
n

io ° it may appear consistent to neglect the last term of (5.27).

However, the source of this term is in the rapidly changing behavior of

N
n. in the skin, and its omission would be equivalent to assuming the

outer solution for gio valid to & = 0 in the derivation of (5.27).

Furthermore, without this term the differential equation for L

would not be uniformly satisfied to lowest order in l/‘r0 . Such an

omission would clearly be a needless introduction of error. 1In fact,

numerical results show that the term is quite essential, particularly
N

N
for small £ where N, is small. An equation for Eo is obtained

by substituting (5.23) and (5.27) into (5.4):
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n, s
dE X J (0) -T E (0)&
—d—g s —(?52 EZ(O))+X (1+86 ).J (OVE ~ B fna B8y
i E (0)
3 () x.J.(0) -TE (0)E
0] X J (0 -T E (O
_ Xo 3 & 3 o e ©O (5.28)
E E (0)
(0]
] nT (0)
-1 2 L H2 00 +x (@ + 8,7 )T (O - Yoo
E
()

ny n, L2 V)
i XOJO(O) . (1+-T0)X0J0(0) e—ToEo(O)g
") "y
TOEO(O) TOEO(O)

. (5.29)

Again terms of order 0(1/T0) are retained even though the possible

error is also O(l/TO) :

If Eq. (5.29) could be solved, kio and %eo could be found
from (5.23) and (5.27). However, Eq. (5.29) requires numerical treat-
ment. The asymptotic forms of the variables for large £ are obtained
without difficulty, but the unknowns }0(0) and EO(O) enter rather
intimately into the final expressions. Since }0 is constant, }O(O)
is determined quite easily by matching with the main-region solution,

but Eq. (5.29) must be solved for all & to relate the initial value

"
of E0 to its asymptotic form. This problem is deferred until the

asymptotic solution is obtained.

Asymptotic Solution to the Approximate Zero-Order Equations

) ;
The behavior which E0 must exhibit for large & is determined
"
quite easily from Eq. (5.29). The term xo(l + GOTO)JO(O)E becomes

large as & 1increases, so there must be at least one other term that
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v
grows with it. Since EO(E) must approach the outer solution Ee(y)
o ny
in some manner as & becomes large, the magnitude of Eo and dEO/dE
"
cannot be permitted to increase in an unbounded manner. Hence EO and
o,
dEO/dE become negligible in asymptotic considerations, and ILiq. (5.29)
becomes
n N
v N X, J (0) x_J_(0)
0~ =2 EA(0)+X, (148 T )T (0 - —S%— -2 (5.30)
o o oo o
E T E_(0)
o oo
or
v 1
E n Ly . €5.31)
o E2(O)
o 1

A L
2x I (0)  T_E_(0)

The dominant contributions to geo and gio are now found from (5.27)
and (5.24).
T (0
n n
5 & {1 %8 T I ANE =2 ) - (5.32)
eo o0 © 2y o
o T E (0)
oo
"
v L 3o
i L) (5.33)
°  E(®)
n,
2 n, ]. '\,2 JO(O)
" 1+68T1)J (0 - — E7(0) - 5.34
( oo o )E ZXD o i E 0) ( )
oo
n
These expressions serve to indicate the manner in which EO(O)

enters the asymptotic sheath solution. However,

it is not involved in

the largest contribution to any of the variables, and thus may not be

involved in matching the main-region and sheath solutions to lowest
order. Since the equations from which these expressions are derived

involve various approximations, only the highest-order terms are
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retained, and the variables are rewritten as

n v

J,on~ I (0) (5.35)
n, v

n, v @+ r)I (0)E (5.36)
n ny

n,ov 1+ 6§ T ) (0)E (5.37)
s 1 il

Bs * T% 817 E : (358

0 O

Comparison of the Approximate Sheath Solution with the Main-Region

Solution

The realization of obtaining an approximation to J, n_, ny and
E that is valid for all y requires a consideration of the intermedi-
ate zone in which the main region and the sheath blend together. The
validity of the perturbation procedure depends on the existence of such
a zone in which the main-region and sheath solutions agree in some
sense. Although the sheath equations are solved asymptotically as
£ » o , the magnitude of & in the context of matching the two solu-
tions is actually limited. In fact, in this context £ can be assigned
an approximate order of magnitude in T , since the location of the
sheath, and hence also the transition zone, depends on 7 . The situa-
tion is clarified by reconsidering the relation between y and §&

introduced in Eq. (2.46),

g o YR sy (5.39)

Since 1 - y is of order unity in the main region and & is of order

unity in the sheath, 1 < ord £ < [ 1/3 in the transition zone. In
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order to represent the magnitudes of the variables more clearly, the
independent variable is rescaled by
x = X (5.40)

where xn is order unity in z 1in the transition zone, and

€1/3 < ord n(g) <1 é (5.41)

Since the solution is assumed to depend analytically on T ,
the matching is accomplished by equating terms of the main-region and
sheath solutions with the same T dependence in the transition zone
This dependence is made explicit by converting y and & in the two

solutions to Xﬂ by

L =% n(z) X (5.42)

Ell

liaat
I

3 n(zg) X, (5.43)

The main-region solution must be expanded for y near 1 before
it is in a form convenient for matching. Since a more refined treat-
ment of the sheath is presented later, only the most primitive approxi-
mation to the main-region solution is considered. Neglecting terms of

order 0(50;), Egqs. (3.53), (3.55), (3.56) imply for y near 1 ,

Tl

Jo "N 9 o0 (5.44)
m

s N 5{1 - vy) (5.45)
1 - 60 1

Be " 1T¥81 1-7" (5.46)
0o o
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Substituting from (5.42)

(main region): Jo %‘E-%~ ‘ (5.47)
o

(main region):  n__ %n(c) x (5.48)
1 -6

(main region): E n 2 1 X, ) (5.49)

o 1+ GOTO n{(z) xn

If Eqs. (5.35), (5.36), (5.38) are rewritten in terms of X and

if the dependent sheath variables are returned to their original forms

via (2.47), (2.49), and (2.50), we obtain

" "
Jo = J0 n JO(O) (5.50)
or
n
(sheath): Jo n Jo(O) (5.51)
N 1/3 g L/3
B ™t n,, v @+6§ 1 )JI (0)¢ n() X (5.52)
or
n,
(sheath): n, " (ls+60To)Jo(0) n(z) 8 (5.53)
Y 1 1 1 1
E = ———E n (5.54)
1+ 1
0 Cl/3 o 60T0 r /3n(§) X
or
1 1 1
s E == . -
(sheath) o e A 50T0 ) xn (5.55)
If }0(0) is selected so that Jo (main region) and J0 (sheath)
match,
¥ - Tl
J, 0 = ¥ * (5.56)

the comparison of main-region and sheath solutions is as written below:



(main region): Jo Y %-BL (5.57)
o
fhaathy g %;— (5.58)
o
(main region): 0, " %‘ﬂ(C) xn (5.59)
(sheath): B, %(1 + %—) n(z) X (5.60)
. o]
1 -6
o 1 1
(main region): E0 Y TES T e x (5.61)
oo n
1 T 1
(sheath): E (5.62)
o 1+ 50T0 n(g) xn

where Eq. (2.19) for po has been used. Except for the choice of
}O(O), there is nothing to vary in order to effect matching, and the
main-region and sheath variables must agree identically. It is apparent
that the two neo's and Eo's do not agree exactly but differ by
amounts proportional to 1/T0 and 50 , respectively. However, it can
be shown that these discrepanciles gre caused by the asymptotic expansion
in l/T0 used to obtain the zero-order sheath solution. In any case,

the two solutions exhibit similar behavior in the transition zone.

n,
Numerical Calculation of E,(0)

Although EO(O) is not needed for the matching above, its
appearance in (5.31) and (5.32) suggests that it may be needed in
higher-order matching. In the more complete treatment of the sheath
that follows, it is helpful to know its approximate wvalue.

The behavior of E; for various choices of EO(O) is illus-

n
trated by the sketch in Fig. 5. The dashes represent slopes of the E0
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versus & curves and are calculated from the right-hand side of (5.29).
The slopes depend on EO(O), of course, but for § large, onc ol the
12 2 ; g 5 3

three terms, E-EO(E) ” xo(l + SOTO)JO(O)E 5 -XOJO(U)/EO(R), s
dominant. Figure 5 is intended to show only the essential hehavior,
and so contributions from terms other than these three are neglected.
The relation of %O(O) to the dgsired asymptotic behavior is seen by
observing Eq. (5.29) as & increases from zero. If too small an EO(O)
is chosen, the term —XOEO(O)/EO causes the derivative dEO/dE to
become increasingly negative. The further decrease in Eo exacerbates
the situation, and the integration terminates when the magnitude of the
derivative becomes infinite at Eo = 0 . On the other hand, if EO(O)
is too large, the term —xo};(O)/EO fails to prevail over the term

N n )
Xo(l + 60T0)J0(0)£ , and EO(E) begins to grow. The term 5 Eo(g)
eventually dominates, and EO(E) increases rapidly to infinity. The
curve which separates these two distinctive classes of solutions is the
special solution with the required asymptotic properties. As shown by
the derivation of REq. (5.31), the large terms x0(14-60T0)}0(0)g and
—XOEO(O)/EO(E) essentially balance, and the magnitudes of Eo and
d%o/dg decrease gradually to zero.

A means of calculating EO(O) numerically is made apparent by a
study of Fig. 5. Since the behavior of r]\EJo for large & appears to
be quite sensitive to the choice of EO(O), it seems reasonable to
evaluate EO(E) for a large & from the asymptotic formula using an

N N
assumed EO(O). Integration to & = 0 then provides a new EO(O) with

which to develop an iterative procedure.
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Unfortunately the asymptotic representation of EO in Eq. (5.31)
is not sufficiently accurate to initiate the integration at large ¥
The reason is that in the derivation of (5.31) from (5.29) the terms
involving d%o/dg and Eg are neglected. Thus if the asymptotic
evaluation of go is used in (5.29) to determine the value of dgo/dE
in the initial step of the numerical integration, the result possesses
an error the order of dEO/dE itself. 1In order to obtain an asymptotic
Eo that is capable of determining &EO/dE to sufficient accuracy, we

begin again from Eq. (5.29). Neglecting only the term containing the

exponential and rearranging,

"y 4] av
x J _(0) % s x J (0) it dE
o = e g _ "o o 12 b &
,_TI‘?T__——— = X0(1+60T0)J0(0)E 2 EO(O) :—rg’z}—*f’ 5 EO —mdg (5.63)
‘o o0
or
E _ 1
- V] Y] 0y
& Ei (0) 1 Eg . CE, (5.64)
(1+ (SOTO)E,' - ™ s + S s remmnl ax
ZXOJO (0) TDEO (0) 2)(0.30 (0) XoJo (0)
Differentiating (5.64)
2’\:
( " ; n (dm /dE) ( N ( )) 1 d E0
1+8 T )+ E _(dE / x . J (0)) -
", > N
dE 0o o0 o o o o x J_(0) d€2
o _ _ 0 0
: N ~ n
dz, Ez(o) 7 rg i dE 2
[(1+ 60T0)£ e o .. V] < U - n, dgo]
ZXOJO(O) TOEO(O) ZXOJO(O) XOJO(O)
(5.65)

The dominant terms in these equations provide the following order-of-

magnitude estimates for large £;
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n,
B, o= 06 (5.66)
B = oy (5.67)
o EZ
v
dE_ 1
g = 06g§> (5.68)
2’\4
d°E, ol
5 * 6—5) . (5.69)
dg 3

Using (5.64), Eq. (5.65) can be rewritten retaining only the highest~

order term in the numerator.

n,
dF &
“E% = [+ 8T )+ océgo] Eg (5.70)
o 1
= - (1 + GOTO) EO + Ofgg) . (5.71)

With this result Eq. (5.64) now becomes

¥ 1
= ~ n,
° E§<°> ¥ 3 E§ 1
1+ 601'0)5; - ~ — i # (’2'+50T0)——“*—r\, +0(—5)
&
2x,3,(0) T _E_(0) X3 (0 &
(5.72)
or
"\ 1
E = ™ Y]
° E¢ (0) 1 3 Ei 1
(L+ 8T )E - —2m— - —mt—+ (3+8,1) —mZ—+0)
2x,3,(0) T_E_(0) X3, () 3
(5.73)

",
For a specified £ and an EO(O) not too far from the correct value,

n
an accurate numerical value for EO(E) is easily obtained using the
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iterative scheme described by the equations below:

9 - o (5.74)
[e]
Y(ntl) _ z -
u

° Eg(o) 1 3 Eén)z
(1 + GOTO)E - R - —% + c§-+60T0) —w—— (5.75)

2x,J (0) T _E_(0) Xy, (0)
n = 0,1,2,-+- . {5.76)

The convergence is rapid, and the resulting value, when used in Eq.
(5.29), provides an accurate estimate of the derivative dEO/dE .

The iterative method by which EO(O) is determined can now be
employed. An assumed value of EO(O) is used in (5.75) to obtain Eo
at a particular £ . 1In the numerical work performed, Eo is evaluated
at & = 10, and using that as the initial value, Eq. (5.29) is inte-
grated to & = 0 . The value of Eo there provides a new estimate to
E;(O), and the entire process is repeated once. In order to present
the method more clearly, we let g(x) represent the solution to (5.29)

LA
evaluated at & = 0 with x as the estimate for EO(O) used in the

right-hand side. Thus we seek a solution z of the equation

z = g(z) (5.77)

n

and such a 2z 1is the correct value for EO(O) . The solution of (5.29)
n

using this value in its right-hand side yields the function EO(E) for

0 €£E £ 10 . The first two steps toward the solution are described

(o)

verbally above. =z is chosen arbitrarily, and (5.29) is solved to
1

generate 2z
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ed ON

= g(z . (5.78)

 (otl)

The iterative procedure described by = g(z(n)) converges to

the solution z too slowly to be of practical value, but the two

L@ eb

values and

permit the initiation of the method of false

*
position . We define

f{x} = glx) - = (5.79)
and determine the succeeding z(n) by the recursion formula,
k) ) 2™ - D g™y (5.80)

- f(z(n)) - f(z(n'_l))

n = 1,2,*** . (5.81)

The sequence '{z(n)} converges rapidly to a solution z of Eq. (5.77)

yielding

y
ED(O) = z ; (5.82)

An example of a typical sequence 1s given in Table 5.

Since ¢ enters into Eq. (5.29) through the coefficients T ,
60, Xo? and }O(O), the EO(O) obtained is a function of ¢ , and a
separate calculation must be performed for each numerical value of
considered. Also, }0(0) is given by Eq. (5.56), but this expression
is not used in the numerical calculations. One of the main purposes of

the approximate sheath solution is to provide a good estimate to the

n
solution of the exact sheath equations. In order to make EO(O) the

*
See Isaacson and Keller [9], pp. 99-102.
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n n

best possible estimate of E(0) , we take as JO(O) the expression

obtained by matching the exact asymptotic solutions, which are presented
"

later. J(0) 4is given by Eq. (7.5), and hence for the numerical inte-

gration of (5.29) we use

n
J ) =

IE |

1 4 m
—+— (2 -3%) e . (5.83)
po 3F2 2 &

The integration is performed using a fourth-order Runga-Kutta method.

EO(O) is obtained for a number of values of ¢ , and the results
are tabulated in Table 6 along with the exact values E(O), which are
obtained later. It is apparent that the approximate solution is quite
close to the exact solution with the most common difference EO(O)-E(O)
being 0.002. This accuracy is quite pleasing because the right-hand
side of (5.29) can have an error of order 0(1/TO). When integrated
from £ = 10 to &£ = 0 , an error can be introduced whose magnitude
approaches 0.1 . It is possible that a significant portion of the
error involved in the derivation of Eq. (5.29) cancels when calculating
the difference %10 - %eo in Eq. (5.4). In any case, it is clear that
the omission of the terms éf order 0(1/To) in (5.29) would yield much
less accurate results.

During the integration of (5.29) values for o and %eo are

io

ATV n
obtained from the expressions in (5.24) and (5.27). Eo’ n; s and o

all behave as expected. Graphical results are presented in Figs. 6 and

7. The latter shows the rapid variation in gio
. . .

N n, y .
values for Eo’ Do and n_, are in quite accurate agreement with the

near § = 0 . The

numerical solution to the exact zero-order sheath equations, which ig

obtained in Section 6 over a more limited range of £.
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6. EXACT ASYMPTOTIC SHEATH SOLUTION

The determination of the asymptotic forms of the variables in
the sheath for large £ parallels the development by Cohen and Kruskal
[5]. The approach differs from that of Section 5 by including in the
equations some higher-order terms in C and by refraining from approxi-
mations based on the magnitude of T . E(O) again enters the

asymptotic expressions and must be calculated numerically.

Working Fquations

The sheath problem of Eqs. (2.51) - (2.56) is rewritten below
with the desired degree of accuracy by retaining only the largest of

the higher-order terms in ¢ . Using the first two terms of the

expansions (2.9) (2.11), we obtain

n
a1 _ 1 v
& 3 Tole Gt
V]
dn N
e _ N v
E neE + [tSo'r0 + ul(60T1+ 61TO)] J (6.2)
L4 V]
dni n v LaV]
= - (T + ulrl)(—niE + J) (6.3)
dE V] n
G = O uxg) (8- B (6.4)
E =0 }‘{e = 0 (6.5)
Y
n, = 0 . (6.6)

By appropriate manipulations (6.1) - (6.4) are converted to

integral equations which are solved asymptotically by an iterative
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procedure. One integration is performed by making suitable climinations
between Eqs. (6.2), (6.3), and (6.4). Dividing both sides of (6.3) by

(TO + ulTl) and adding to (6.2),

" n,
P 1 Y B - B )+ [1+8 T+ n (5Tt 6 7
d§ TO+ MiTy dg i~ fe o'o ul( o'l lTo)] 4 4
(6.7)
NN
ng,- oo is eliminated by using Eq. (6.4):

n,
1 i 1 v dE Y
+ = E-—F=+[1+8 1T +u S 1, +61T)] J.
d§ T0+ M Ty df x0+ HiXq dg oo 1" o1 1o

(6.8)
The coefficients can be expressed 1n a more appealing form by
1 1 1
= L (6.9)
T& 4Ty T, 1+ ulTl/TO
T
N TR 2
o T
and
N O e oy . (6.11)
X0+ ulxl Xo 1. 2 1
o

Since the equations are only accurate to order O(ul) , MO accuracy is
lost by the above substitutions. If Eq. (6.8) is integrated from 0

to & wusing (6.5) and (6.6),

T, . X
n 1 v _11 X3 oy a
n,+ G- Y oy o= 2(X My 2)(E ET(0))
o T o X
o o
gm
+ [1-%6010+ u1(60T1+ 6110)] J J(&) d& . (6.12)

o

n
An integral equation for J 1is obtained directly from (6.1):



3
) - 1 e g e ,
I = J0) - 573 Y, | n () dE . (613
¢ 0
Asymptotic Solution
The determination of the asymptotic expresslons [rom Eqs. (6.12)

and (6.13) requires a careful assessment of the orders of magnitude of
the various terms. In particular, powers of £ must be compared with
functions of Z . Since the asymptotic solution is to be used for

matching, the discussion centering around Eq. (5.39) is pertinent, and

Cl/Bn(C) as indicated by Eq. (5.43).

¢ idis assumed to be of order
n

Using the estimate for n given by (5.36), the second term on the

right-hand side of (6.13) is of order nz , 50 the lowest-order contri-

o
bution to J is again

N Ny
J ~ J(0) . (6.14)

v
Equation (6.12) is used to determine n, to lowest order, but it

N
is first necessary to eliminate n; . The approximate results of Eq.

(5.38) can be used in (6.4) to conclude that

o, n 1
n, =n_ = 07 (6.15)
4! 2 2
e r /3 -
so ﬁi = g to lowest order. Also,
V9 1
E- = 0/ (6.16)
2/3 2
4 / n
g
ET(0) = 0(1) (6.17)
and

£
I?fc") dE = ot 3n) (6.18)
0
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so the retention of only the largest terms in Eq. (6.12) yields

€
N 1 _ "\ =
e HT i, ™ 1+ GOTO) J J(0)dE (6.19)
e}
0
or, using Eq. (2.19) for P,
n, v )
n, v B J(0)e . (6.20)

The substitution of this expression for %e into (6.13) yields
a better approximation to } . Since only the asymptotic form of g
for large & 1is known, the integral fgﬁéfg) dE cannot be evaluated.
However, the asymptotic expression canobe integrated to yield the
asymptotic form of the integral. The integral of the deviation of %e

from its asymptotic value can be written as an "integration constant"

that depends only weakly on & for & 1large. Thus,

E
Ry o= 1 - 2
J ng@® d€ = 5 p JO) E° +c; (6.21)
0
where actually
3
_ G TT \ -
Cy = f [n (€) - p  J(O) E] dE . (6.22)
0
For large & the variation of C1 with. £ 1is negligible compared to
EZ y SO

c, = o??nd (6.23)

and (6.13) becomes
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n Y P

T~ J(o) - °2‘;3 J)E? . (6.24)
2

n
This expression for J can be used in (6.12) to provide a

"
better approximation to n, -

gm e e v Yopo L 3
J(E)dE = J(O)E - J(0)g™ + C (6.25)
2/3 2
6T
0
where, by the same reasoning as before, C2 is of lower order than the
other terms and
gm._ = ~n YoPs " 5
J(E)AE ~ J(OE - —%77 J(O)E : (6.26)
2/3
0 6%

It is now necessary to make an assumption on ul(c) in order‘to com—
pare the relative magnitudes of terms in (6.12). The term involving
E(O) is of order unity, and all lesser terms may be neglected. How-
ever, the substitution of (6.26) into (6.12) results in the term
ul(6011+ 5110) }(0)5 , which has order ulcl/3n . In order to neglect

this term, we assume

1
2373——”“) , (6.27)

ord(u;(z)) < ord( -
n(g

The validity of this inequality is established when ul(c) is deter-

mined. Now all terms involving U, can be neglected, and from (6.15)
n

and (6.16) it is seen that gi - ge and E2 are also insignificant in

A,
comparison with E2(0) . Equation (6.12) now becomes
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i 1 v 1 mz YoPs o 3
bt LR = e B0+ QST OE - 25 T0E% 6.29)
o o 6z
or "
N i Yo pz 1 TOEZ(O)
n, N poJ(O)E - 2/3 J(O)E XO _I:jﬁ:“ : (6.29)

The second term is of order 1/3 3

() , but it need not be compared
with the third, because both can be matched to terms of the main-region

solution. However, if (6.29) is to represent the dominant contributions

to %e , the second term must be larger than the term of order £1/3n
that 1s neglected. In thils case we must have
ord(cl/3 Ay ord(u1c1/3n) . (6.30)

173

It is seen later that ul must equal 1/t , so (6.30), together with

the previous bounds on n implies that

1

El/6

< ord(n) < 1 . (6.31)

However, it is not necessary that the terms shown in (6.29) be the
dominant contributions to ge . The matching of sheath and main-region
solutions proceeds by equating terms of the two solutions that have the
same functional dependence on Z . In principle each term of the asymp-
totic sheath solution is to be matched individually, and it is not
necessary to determine relative magnitudes except for purposes of
numerical estimation; it is only necessary that the dependence of each
term on T be different from that of any other. Since the dependence

of n on ¢ is arbitrary within a certain range, the functional
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dependence of two terms on U 1is the same only if thelr explicilt
dependence on 7 and their dependence on n are the same. The rela-
tive magnitudes of terms depends on the functional form of n , i.e.,
on the precise location between main region and sheath.

The asymptotic form of E is obtained from Eqs. (6.2) and (6.3).
Subtracting (6.3) from (6.2) and neglecting terms of order ul .

d gV " _ N NV "

aE (ne - ni) = (ne + Toni)E - To(l - 50) J . (6.32)
n n

From (6.15), n, - n, and its derivative are negligible with respect to

n n
J , and (6.32) can be solved for E :

ny
L. 2% & 23
ol+T "~ E (6.33)

on

e

Using (6.24) and (6.29)
" Y. P
1§ 0 [L--222E%)
b o 28 (6.34
B % Ty T# T " Y 0.2 n T, F2(0) =24
? PgI (O ~—Z5m TN~ = g
6C Xo o
or, using Eq. (2.19) for Py »
¥ D
1 - o o 52

o L=®. 3 2(:2/3

E ™ 195x, ©° i
o o o Ny
1 - Yo% £2_ 1 E“(D) 1
y
61;2/3 2, (1+ GOTO) 10y £
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1 -6 o Y P
P - N P o= Mc o rz] - [1 + el O R!
+c‘30“r0 3 2(:2/3 652/3
1 B200) 1
+ 0) i (6.36)

- - s W]
1 60 Y.T 1 -6 1 60 E2(O) 1

2

To % (1+6 1 )72 }(o) £
o oo Z
(6.37)
Various terms have been neglected in obtaining this equation, and if
we were to insist that the terms presented be the terms of largest
orders in T , we would have to confine n within narrower limits.
The first nonzero contribution to the space-charge density is

calculated using only the first term of (6.37). Defining 5 by

SV, . s
s £ ny n, (6.38)
and using (6.4), we obtain
1 a8
v
YRy aF .
s X. aE (6.39)
1 -9
1 o 1
W e e (6.40)
X 1+d§01:O 52
Since ord(g) = l/(52/3n2), %i = k to the accuracy exhibited by Eq.

(6.29) provided n 1is restricted as shown in (6.31).

",
Numerical Calculation of E(O)

v
As in the approximate case considered in Section 5, E(0)
appears in the asymptotic expression and must be calculated by a

L
numerical integration of the sheath equations. Since L(0) appears
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in a higher—order term, the equations need be considered only to lowest
order in & . The lowest-order equations can be transformed to o probh-
lem treated by Cohen [4], but here we proceced using manipulations
already carried out.

In their lowest-order form one integration of the sheath equa-
tions can be performed, and this integral can be obtained directly by
simplifying Eq. (6.12). If the largest contribution to } in (6.13)
is used in (6.12), and if higher-order terms in ¢ are neglected, we
obtain

Y]
n
e

5, o (E2- Ez(o))+-(1+-5 T )J(O)g (6.41)

1
E By 2x

o

; oy
It is convenient at this time to make a change of variables from n,

n n " v
to s =mn, - n, - Then Eq. (6.41), when solved for E , becomes
V] ZX 1/2
E = [B2(0) +-2 [Q+T, )n + 81~ 2x,(1+ 68 1 )J(O)E} . (6.42)
To

Equations (6.2) and (6.3) become, to lowest order in [,

ny

dn ¥
mag.= EeE +6,T, T (6.43)
ds v e 3

o -[@+ T, + 1 8] E+ T (1= 8) J0) (6.44)

y
with E given by (6.42). The boundary conditions are

Y
n
e

£=0 = 0 (6.45)

s =0 . (6.46)
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The problem is now reduced to a system of two differential equations for

r\J l\.’ '\J r\l
n. and s and an algebraic equation for E . E(0) enters the cqua-

C

tions as an unknown. It 18 determined by requiring that the solutions
to (6.42) — (6.44) behave for large & as the corresponding asymptotic
formulas just obtained. It is for this reason that %i is replaced by
g . Equation (6.40) shows that g decreases and becomes quite small
as & becomes large. If an incorrect g(O) is selected, g as
obtained from Eq. (6.44) either becomes negative or begins to grow for
large &£ . The reason for such behavior is readily seen by a study of
Eqs. (6.42) - (6.44). If too large an E(O) is chosen and the equa-
tions are integrated from & =0 , E as determined by (6.42) is too
large. The term involving E on the right-hand side of (6.44) thus
becomes too large in magnitude, and g becomes negative. If too small
an E(O) is chosen, the magnitude of the first term on the right-hand
side of (6.44) is too small, and g increases at large & . This
observation forms the basis for the trial-and-error solution of the
equations. An E(O) is selected arbitrarily, and Eqs. (6.43) and
(6.44) are integrated numerically from £ = 0 . The behavior of g
tells whether the assumed E(O) is too large or too small, and further
values are selected on the basis of the results. The two types of
behavior are quite distinctive, and an example of the numerical inte-
gration for slightly different values of E(O) is presented in Fig. 8.
The results determine E(O) correctly to three decimal places. The
graph also shows that g experiences the same rapid increase near

£ = 0 as does %i 5
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The numerical integration of Eqs. (6.43) and (6.44) is compli-
cated somewhat because the right-hand side of (6.44) involves the large
constant Ts and results in the system's possessing a large Lipschitz
constant. Such systems are commonly called "stiff" and cause stability
problems with the use of explicit numerical integration algorithms
unless very small step sizes are employed*. The trapezoidal rule does
not suffer from such instability and is chosen as the method of integra-

tion. For the system of differential equations

i = EGey) (6.47)

the algorithm is

z(n"'l) = X(n) + %[f(x(n+1’)l(n+l)) +f(X(n) !l(n))] (6.48)
Applying this scheme to Eqs. (6.42) - (6.44),
pletl) _ wm) 4 b o) Sk, Sl g0, o5 ¢ Feoy) (6.49)
e e 2 e e oo
V(mtl) =gﬁﬂ+g_b “1+T)mhﬁh T 8 y(otl); F Y(nt+l)
A+t )R M 1 5™ ™+ 20 (1-6) J(0)} (6.50)
2X
O _rE20y 4700 e )n<n+1) ol g, 2x (1 + 5010)3(0)
0

«  glmt) 4172 (6.51)

*
For a discussion of the problem see, for instance, Seinfeld, Lapidus,
and Hwang [10].
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for n=10,1,2,""*, where

4L S (6.52)

The initial values are obtained from (6.45) and (6.46) :

V(o)

ng = 0 (6.53)
i) 0 (6.54)
p@ ?.5{0) . (6.55)

The difficulty now is that a system of nonlinear algebraic equations
must be solved at each step. Newton's method is employed'for this

task. In order to simplify the notation, the definitions below are

introduced:
u g(n+l)
e
@z | w| =] PR . (6.56)
n
v E(n+1)

Equations (6.49) - (6.51) are now written in the form

g(u) = 0 (6.57)
where N o
Lt By B RO, g o J(0)
2 e 2 e oo
w = —v—%(l+'ro)uw-% TOVW+"§(H)— %[ (l-l’ro)%én)+ 'EO{;(H)]E(n)
gl =

n
+ hTO(l— 60)J(0)

N 2y
- + {E2(0)+ —T—Z— [(1+ To)u+ v]- 2X0(1+ SOTO):\I’(O)E(I‘H—I)}l/Z

(6.58)
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Equation (6.57) is solved by obtaining a sequence {Ei} which converges

to the solution u . -3(2i+1) can be expressed as the Taylor series

gl ) =g) +J@)@,  —u)+ - (6.59)

where J(Ei) is the Jacobian matrix

g
J) = — @) - (6.60)
ou
Newton's method determines Wi from uy by equating the truncated
series to zero:
gl) + I, ~uw) =0 (6.61)
or
Ju)) @ - u) =-gl) (6.62)
for i=0,1,2,"°" . (6.62) is solved as a linear equation in L
~
gén+1), :(n+1)’ and E(n+l) are thus determined by solving a sequence

of linear algebraic systems. However, the convergence is rapid and

only a few iterations are necessary. For our equations the Jacobian

matrix is
-1 +-% w 0 %—u

g = —'%(li_To)w _1'_'% ?ow - %{1+To)u_“% ™
xo(l*'To) Xo 1
T,E (u) T, € ()

(6.63)
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where

1

2X
e = (B2+ =2 [+ )u+vl- 2 (1+8 T )T(0)E ™D 172

2 (6.64)

The first approximation u, used to start the iteration is obtained by

applying Euler's method to Eq. (6.47):

uo= 3™ 4G,y ™) (6.65)
or, more explicitly,

T i S 8.7, 10y} (6.66)

v, o= (o h{—[(lq-To)ké“)+ TOE(“)]E(“)+ To(l-ﬁo)}(O)}
(6.67)

2X

5, ™ {EZ(O)-F;EE-[(1-+TO)UO+ vl- 2x (1+6 T )T (0yg (M2

(6.68)

The approximate solution %0(0) provides a good estimate to the
correct value E(O) . Accuracy to three decimal places is quickly
achieved by trial and error. Although 3(0) is unknown at this stage,
it is determined by matching independently of the value of E(O) . Thus
in the numerical work we use the expression for }(O) given by Eq. (7.5):

i T 1 4 s
JO) = - —+—F (2 -3 e 5 (6.69)
2 Do 3"2 2 o

"\
Since [ enters the equations through J(0) and the coefficients T _,

LAV}
60, Xo? and €, E(0) depends on { . The numerical integration is

performed for a number of values of g, and the results are tabulated in

Table 6.
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7. MATCHING MAIN-REGION AND SHEATH SOLUTIONS

Several terms of the main-region and sheath solutions are now
available. However, certain quantities remain unknown, and thej must be
determined by matching the two solutions in an intermediate region. The
items of primary interest are ul(c) and Yy - Until they are known,
corrections to the lowest-order results in the main region and to the
relation between ionization coefficient and electromn density are unde-
termined. }(O) and E(O) are found by matching to lowest order.

}(O) is obtained directly and easily. Although E(O) has been
obtained by a numerical integration of the sheath equations, its evalu-
ation is indirectly due to zero-order matching; it is the initial value
of E necessary to produce the only asymptotic behavior capable of
matching with the main-region solution. Many terms do not contain un-
specified parameters, and these must match identically. The technique
and philosophy of matching is the same as that considered in Section 5
in comparing the approximate sheath solution with the main-region

solution.

a,
Matching J and J

Before the solution in the main region can be matched with that
in the sheath, it must be expanded for y near 1 . Using the formulas
of Appendix D in Eq. (3.55) for JO .

2

2
il 2 4 ™ m 2
0(l =55 a-y)7) + -—‘3“2[(2 —5)(1 = —8(1—y) )

1
P

&
1]
NE

=20 - »Hle g+ 00 - (7.1)
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T 1 4 T
=— ==+ — (2 -=) e

2 po 3ﬂ2 2 .

1\'3 1 w0 2 1 3 9
- [—i‘g-p—o-'F (JF"i‘é‘)EoE](l = V) + (X( = Y) ) . (7.2)

The order of magnitude of the contribution to J from Jl can be

determined by observing Eq. (4.18) and the limiting behavior of N,

as y * 1 . We conclude that

ord(Jl) = 1 (7.3)

in (1 - y) as y > 1 . Although this term is not calculated, there is
no need to show that its contribution to J 1is smaller in order of mag-
nitude than that of the term containing (1 - y)z. Each term is to be
matched individually to a term in the sheath solution, and except for
the numerical calculations, in which only the largest term is used,
there is no need to insist that the terms presented be those of the
greatest orders of magnitude. We can now write the main-region expres-
sion for J 1in a form suitable for matching in the intermediate region.
In the expressions the terms omitted are represented by order-of-
magnitude estimates. Since 1 -y 1is of order 0(n) in the inter-
mediate region and since the main-region solution for J is known
only to order O(EOC) in EOC , we write J as
1, 4 * 3

2

r-Der- M=+ a-Toe 1 a-p?

J = — —=
2p0 31 o]

+ We D w @, @) . (7.4)
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n
The two dominant terms of J are given by Eq. (6.24). From

", Y
Eq. (2.49), which relates J and J , it is apparent that J(0) must

v
be given as follows if the lowest-order terms of J and J are to

match:
n
I = Letgedo mayer | (7.5)
o} 2 2 o
o 3w

N

If the term from J1 that is of order ul(g) were calculated for the
main-region solution, it would also appear on the right-hand side of

(7.5). Yo o which appears in the second term on the right-hand side of

(6.24), is expanded as in Eq. (3.52):

1,8

w B - 2
Ty ™= " a T 5 B0+ RE . (7.6)

"
Using (7.5) and (7.6) in (6.24), J becomes

(V]
I %~%— + —ﬁi-(z -3 et
o 3
P 1.8, L I 7.7
2C2/3 4 po 37 o 2 po 3,”2 2’7o
T 1 4 il
ingess g me (0 = 5 BLG
2 po 3H2 2 o
T EE- L 1 -1 ezl 52 (7.8)
2/3 16 p, 17¢ “o g .

where terms of order 0((602)2) are neglected.

e
The expressions for J and J are written as functions of the

intermediate variable Xﬂ through the use of (5.42) and (5.43). From
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(7.4),
(main region): J g'}—-+ —ﬁi-(Z - g) g
po 3n ©
ﬂ3 1 i) 2 2
~ [13'5;'+ (1 - 73 COCJH L (7.9)
From (2.49) and (7.8),
(sheath) : J n g-—l + e (2 -9 ec
P 2 o
o 3m
'FT3 1 m 2 2
[1—6E+ (1 -3 g zhnx, . (7.10)

It is apparent that the main-region and sheath solutions for J match

identically to the orders considered.

v
Matching ne and ng : Determination of u3 and 7Yq

In order to obtain the desired results, it is necessary to con-

sider contributions to n from both n and n . n is given
e eo el eo

by Eq. (3.53), and it is expanded below for y near 1 using formulas

of Appendix D.

S PR A PNNE USSR R

Peo 2 y 48 y 3TT2 2 y
3 2 2
2
F - a -t 2e2a -+ a - p?
ﬂz 3 4
- -y lpe +01-y)) (7.11)
[T+ -0 oe 1A~y
3w
ﬂ3 1

I G -Dieecla - aa - nh (7.12)
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Only the largest contribution to n_q need be calculated. From (4.44)

el & 1 (7.13)

where n_ and n, are given by (4.38) and (4.43), respectively.

Expanding E; with the use of (D.5),

n = ;lT_ ('Ylp0 +q) +0(01 - vy) 3 7. 14)

The smallest terms in ny for y near 1 are

£

; R (.g.g__. Y p = _._8..._ _._:!'.)
1 3ﬂ4 1o 3ﬂ2 eo
4 4 4 L4
+ [ =it & WP~ g T2~ DAl + 601 ~ 75 (7.15)
3m 3w
4 4 g8 &1
= - ——FC-1D,p+ P+ ——+ 01 - y) (7.16)
3\ 1%o 2 e .
3T 3w o

Using (7.14), (7.16), (4.26), and (4.35), (7.13) becomes

U 4 4 .
Ne1 = T 7 [1+ 31T2 (ﬂ 1) B oo:I [ Y1Po

8

00 o o 3m

7 &150,

+ O(1 ~ ¥), (eoa)z) : (7.17)

ord(l - y) = ord(n(Z)) in the intermediate zone between the main region

and the sheath, so when o, and n,, are added as in (2.2), we obtain

=2 - D p ezl - 3)

™
n =[5+
e 2 3
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ﬂ3 1

™ 3
-lzgt (3'- 339 PLELC 1 -y

1 4 4
- ) {= 01+ —5 &~ 1) pg £]-[ve,

3m
2 8§ 1.+6,1 T
™ ol lo 1 1 8
MG s el R RS
oo o o 3
4 2
+0Mm", py (@ , (e D7) . (7.18)

n
The asymptotic form of the sheath solution for o, is given

n,
by Eq. (6.29). If Egqs. (7.5) and (7.6) for J(0) and Y, are used

in (6.29), we obtain

u i 4 il
o v[5+—52~3 perlt
3m
2
o @I LB @1, b Ty o
6C2/3 bp " 3mort2p o402 5 B
n
" TOEZ(O)
T2y 1+ (7.19)
(8] o]
nl L=t it -DperlE
2 2 2’ o0
3n
3 2 (0)
T,
1 m 1 m 3 1 o
- ;573-[25 + (3 - 3)P,E, JE- 5};‘ AT (7.20)

where terms of order 0((805)2) are neglected.

0
The main-region and sheath solutions for n, and n, are now

written as functions of xn . (7.18) becomes
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A
(main region): n, v [—12-[ + ~3—1;—2->(2 - ;,g-) pocor,] n xn
113 1 m 3 3
- [Zg + (3 —'53) PLELE In X
1 4 4
= J (e = [1-F3“2(ﬂ-l)poeoc 1 «lyyp,
248 1.+ 6,1 T
il ol 1l o 1 1 8
t Ty troTen ol TRt ) Fatlp
oo o o 3w
From (2.47), (5.43), and (7.20),
i 4 ]
(sheath) : a, %[5+ - (2-3) petln X
T
LI B PR
48 7 V3 7 367 PofetdM Xy
w2
T E7(0)
- 1}3 2; . . (#.22)
4 o o

The first two terms of the main-region and sheath solutions are iden-

tical in the intermediate zone, and the third terms also match provided

we choose

1
W@ = 173 (7.23)
and
28 1.+ 8.1 T
4 4 i1 ol 1l o i 1
[1+ Z(F"l)poeo“':’:“:Ylpo+ T( 1+6 T +7r— 1+ )]
3T oo o le]
T
8 k) o V2
- poelC = Eih-iﬁ;qT-E (0) . (7.24)
o o



-218-

These two equations are among the most important results of
the entire perturbation procedure. ul(C) is at last known, and the
orders of magnitude of terms containing it are now known explicitly as
functions of ¢ . In particular, the inequality (6.27) is established
and Eq. (4.16) for S1 is verified. Yy is determined by Eq. (7.24)
and its solution is considered in detail later. Now that ul(;) and
Y, are available, the solution to the problem is essentially known to

order O(l/CllB)

. The matching is completed by showing that the main-
region and sheath solutions for E and s agree in the intermediate

zZone.

n
Matching E and E

Only the contribution to E from Eo in the main region is
considered. It is given by Eq. (4.52), and Eqs. (D.8), (D.2), (D.9),

and (D.11) of Appendix D are used in expanding the expression for vy

near 1
foos_ ol w4 bl T, om 41
o 1+8 T x 12 3ﬂ2 T X 3 2 n‘XZ
™, 41 41 m _w * 2
+ s E“;Z 3= t3 -3 X le'} + 0x%) . (7.25)
%

Substituting for € from Eq. (4.26), for x from (D.1), and re-

arranging,

1= 6o 1! & = 60 ﬂz 8 2
Eo T 146 T 1-y 1+68r1 [iiufgﬁ-poeog](lh‘Y)+ 0™ .
o o oo
(7.26)
Bquation (4.19) for I 1s considerced In order to obtaln an cstimate

1

of its magnitude. The term involving nelEo becomes dominant as
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y + 1 , so the solution of (4.19) for E would involve a term of

1
order O(1 - y)_z). Thus the term neglected has order ord(ulE]) =
l/(gl/3n2), and E dis written as
o 2 i o 2 ;
E = LO + 0(n ,_§1/3n2 5 (e:ol,) ) (7.27)

where E0 is given by (7.26).
KA
The asymptotic solution for E in the sheath is given by Eq.

(6.37). Substituting for Yo from (7.6) and using Eq. (2.19) for

N
po , E becomes

1 -6 1-96 2
r]::m (0] 1 o) [TT 8

1
T8 T E- 23175t L12 T o7 PoSob ! &
o 0 £ 0o o0

— uv]
1-8, Wy 1

+ e P 3 (7.28)
2x,(1+68 1 )" J(0) ¢

The main-region and sheath solutions are expressed in terms of
the common intermediate variable xn through the use of (5.42) and

(5.43). (7.26) and (7.27) become

t-8, z21 1% P2 8
Gmate xeglon)s B g a ~ 1764 L1 * by PoSeb
(o Js) n 0o
% 0(—1%5—59 . (7.29)
[

Using (2.50), (7.28) becomes
1-6 1 -6 2

) __ o 11 _~ "o rm _, 8
(sheath): E " 146 T nx 1+68 T £12 * om poeog ]n xn
00 n oo
+ =48, EZ(O) 1

1
7 1732 2 - (7.30)
2X0(1-+60T0) J() ¢ n xn
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A comparison of (7.29) and (7.30) reveals that the first two terms of
the main-region and sheath solutions match identically and that the
third term of the sheath solution is of the same order as the neglected
contribution from El to the main region. The second and third terms
of the sheath solution for E originate in the expression for He of
Eq. (6.29). The discussion following that equation emphasizes that a
comparison of the magnitudes of those two terms need not be made. A
more complete representation of the main-region solution in the inter-
mediate region requires that the neglected term be calculated. Since
it must match identically with the corresponding term of the sheath
solution, no new information would be acquired, and the computation is

not carried out here.

’\J
Matching s and s

The main-region solution for s 1is obtained from Eqs. (4.54)
and (4.58). The formulas of Appendix D are used to expand it for vy

near 1 . Only the largest terms are retained.

1 7% f1 4 81 81,
®n X 1+8 1 2 2 3 9w 2
o 3 x
81 ™ 8 1 il
+(-F“§+;)+F7—§]EOC DO}+ 0(1) (7.:31)
X X
S0
1 =8
11 o 1 1 2
s = = = + 0(=, (e 0)7) 3 (7.32)
& Xo l+6oTo (1-~y)2 & ©

The asymptotic sheath solution is given by Eq. (6.40) and is

rewritten below:
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1 -6
N 1 o 1 .
s " E;-I::s;ﬁ; gz . (7.33)

Expressing main-region and sheath solutions in terms of the

intermediate variable x

n
1 -6
(main region): s v i?‘iﬁ;g*%*'_lf %z (7.34)
o o o In n
and
1 -6
1 o 1 1
(sheath) : s v X I¥6 T > 5 - (7.35)
(o] o 0o Un xn

Equations (6.38), (2.47), and (2.48) are used in obtaining (7.35). The
two expressions are identical, and hence all the dependent variables

match in the intermediate zone between the main region and the sheath.

Numerical Calculation of 73

Equation (7.24) for Y1 is quite complicated and must be
solved numerically by an iterative procedure. €15 Ty» and 61 are

all functions of Y, as illustrated by Eq. (2.14):

"
e, = o3 [ey, + 1,3) - ey)] (7.36)

etc. However, € , T, and & are rather slowly varying functions of
Y , and an iterative scheme is easily established in which €5 Tyo
and 61 are evaluated using the previous estimate for Yl i The
method is explained sufficiently by the equations below.

First Eq. (7.24) is rewritten in slightly different form using

Eq. (2.19) for Po
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EZ(O) 8
m
X, (1 + 8 1) + 37 &5

Y1=
L. C“ -1p ezt
3ﬂ2 m oo

2 8 T + 8. T T

i 1 1o 1
T4(1+ 6 oTo) = o, * ;50 . (7.37)

(e]

The successive approximations to Yl are designated Y(o),Yil),Yiz),"'
and the notation adopted for the corresponding values of the other

parameters is

(n)
(n) _ /3 a1
= E(Y + 1/3 - s(YO)] (7.38)
Y(n)
T(n) = / [T( e e o) S il 4
o= i 1/3 T(Y,)] (7.39)
Y(n)
6 = Msey L) - syl (7.40)
N

The iteration scheme is now written as

Ly
TE~ (0) + B 8 (n)C
(n+1) _ 2x0(l + soTo) 31 ©1
E La bk
2% pOEOC
3w
(n) (n) (n)
2 St '+ 68T T
B il o1 1 o, 12 ] (7.41)
4L + 8 1) Po T
(o] (o]

(o)

An initial estimate Yl = 0 is chosen to start the iteration.
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In order to continue the expansion of variables and coefficients

in the two asymptotic series, Yl would have to be obtained as a sum

of terms of order 0(l) and O(EOC) in EOC . However, E(O) is
obtained by a numerical integration and depends rather intimately on

EOC , so such a division is not really feasible. Since the work is
numerical at this stage, there is no purpose in separating terms of
various orders in EOC . However, in a theoretical sense the solution
can still be regarded as a combination of two asymptotic expansions--

one for ¢ large and the other for EOC small.

Numerical results for Yl and Yy = Y0+ i/S Yl are presented

g
in Table 7 for a number of different values for ¢ . Y 1is plotted

as a function of ¢ in Fig. 9.
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8. SUMMARY

The preceding results are obtained by a sequence of rather dis-
tinct operations. In order to unify the concepts and techniques
involved, a recapitulation of the objectives and the procedures is

presented below.

Objectives and Techniques

The primary purpose of the work is to obtain approximations to
Jeq n_s Ny (or s), E, and, most importantly, to the relation between
Neo and Ez . In the analytical procedures the Neo—ﬁz relation is
replaced by the [ - Y relation; it is obtained from the [ -y
relation when the calculations are complete. The results are
attained by a combination of two asymptotic expansions, one in which
z 1is a large parameter and the other im which EOE is small. The
lowest—order component of the composite expansion corresponds to the
classical ambipolar situation. The relative importance of the devia-
tions from this behavior caused by the two expansions depends on
whether ¢ is '"large" or "small". For large [ recombination is
more important and the correction to ambipolar behavior comes princi-
pally from the expansion in Eog . For small [ , on the other hand,
space—-charge effects become important, and contributions from the
expansion for small ¢ dominate. The ambipolar situation is most
closely approached at some intermediate ¢ . The expansion for large
t is the more complicated, because the assumption upon which it
depends breaks down near the wall of the discharge, and a separate

boundary-layer treatment must be undertaken.
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Distinct solutions must be obtained in the boundary layer or
sheath and in the main region, and it is not until these solutions arc
matched that the second term of the expansions is completely determined
anywhere. The expansion in EOC enters as the technique by which the
equations are solved in the main region, and it is introduced into the
sheath solution through the expansion of the coefficients in the equa-
tions and through the matching process. Expressions for the wvariables
in the sheath can only be obtained in the asymptotic limit of large
£ . However, E(O) is involved in the matching, and it is calculated
by solving the lowest-order sheath equations numerically. Yl , and
hence the entire first-order correction to the solution in the main
region, is then obtained from the matching, using this estimate of

n
E(0) . The algebraic equation for Y, must also be solved numerically.

Results

The solutions for J, ne, ni, and E are now known to several
terms. However, the behavior of these variables is well approximated
by the zero-order solution and further refinements are not really
essential. On the other hand, v as a function of ¢ is a constant
to lowest order, and corrections are critical. The calculated ¢ -y
relation is presented in Fig. 9. The vertical line represents the
ambipolar value of <y , and the two dashed curves show the deviations
from the ambipolar value caused by the expansions in EOC and 1/51/3.

The solid curve includes both corrections and shows the final numerical

results of the g -7Y relation.
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The value of Ez can be determined from that of Yy, and Neo

is obtained trivially from g , so the numerical values of the

~

N -E relation are available. The values arc tabulated, along with
z
the corresponding values of Ez/Nn , 1n Table 8, and the N06"E?

curve is graphed in Fig. 10.

Interpretation of Results

It is one of the basic objectives of this work to relate the
Ned"ﬁz relation to the experimental voltage-current characteristic.
This correspondence is discussed in the Introduction, and little more
need be said except to reemphasize the caution that should be exer-
cised in interpreting the similarities in the two curves. The
subnormal regime of the discharge characteristic seems to be definitely
related to the space-charge effect in the positive column, but the
voltage rise in the abnormal regime is a cathode phenomena and is not
likely to be related to electron-ion recombination. Figure 10 shows
that recombination is of little significance until the electron den-—
sity Neo approaches a value of about lOlzcm—3, and the calculations of
Part IIT show that the effect of temperature Inhomogeneities appears

at a smaller value and hence obscures the interpretation of the effect
of recombination. Furthermore, the discussion of the recombination
coefficient in Part I reveals that its correct value is likely to be
smaller than the one used in the calculations. These considerations
leave the effect of recombination subject to doubt, and more definite
conclusions are not offered until temperature inhomogeneities have been

discussed. The interpretation of the discharge characteristic is consi-

dered again in the Summary of Part III.
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Appendix A

PROOFS OF RELATIONS AMONG THE VARIABLES J, n, n E

i)

In this appendix Eqs. (1.5) - (1.13) are used to establish certain
relations of physical interest among the variables. The equations are

rewritten below for reference.

dJ

d_y =Y n, - € Cneni (A.1)

dne
—a; = - neE -8TJ (A.2)

dni
'—d‘; = T niE -TJ (A.3)

dE _ -

4y - K& (n;- n) =XCs (A.4)
vy = 0: J =0 (A.5)
E = 0 (A.6)
% = 1 (A.7)
y = 1: n,6 = 0 (A.8)
n, = 0 . (A.9)

The following relations are assumed true throughout the appendix:

§ < 1 (A.10)
ez < Y (A.11)
n = 0 on 0y 1 (A.12)
n; E on 0Dy <1 i (A.13)

Results based on the assumptions and equations above are pre-

sented in the following theorems. The lemmas contain hypothetical
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results that are needed in the proofs of the theorems. The theorcms
generally depend on the assumption that a solution satisfying the above

conditions exists.

Lemma 1

*
If s =0 at y =0, there exists a y > 0 1in a neighborhood

of y = 0 such that

s < 0 (A.14)
ds
E-'; < 0 (A.15)
2
51—% 2 g (A.16)
dy
E < 0 (A:1.7)
dE
% < 0 (A.18)
J > 0 (A.19)
dJ
= B
T 0 (A.20)
n, < 1 (A.21)
dni
““*a“;; < 0 (A.22)
2
d n,
" 5 < 0 (A.23)
dy
*
at y =y .
Proof:
We assume
s €0 at y=0 i (A.24)
Since s = n., - n
i e
n, = ] at vy =0 . (A.25)
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From (A.1),
J
ar = ne(Y - € Cni) (A.26)

so (A.11) and (A.25) imply that

— 2 0 at y =0 % (A.27)
From (A.4) and (A.24),

da& "
dy = 0 at y O - (A. 28)

We now investigate the behavior of the derivatives of s at v =0 .

Subtracting (A.2) from (A.3),

ds _ _ _

e (T ni+ ne) E T(1 §)J (A.29)
2 dn dn
d’s _ i e dE _ _ aydJ

dy2 = (T —5; + —E;)E-+ (t ni+ ne}a; T(1 6)55-(A.30)

Substituting the conditions at y = 0 into Eqs. (A.2), (A.3) and
(A.29), we find dne/dy = dni/dy = ds/dy = 0 there. Then using (A.27)

and (A.28) in (A.30)

dzs
e 0 at y =0 . (A.31)
dy
Also,
dzn dn
i = - dE _d4J
3 = Ty By G % (4.32)
dy
SO
dzni
5 < 0 at y =0 : (A.33)
dy

By continuity dJ/dy > 0 , dZS/dy2 €0 dzni/dy2 < 0 in some
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neighborhood of y = 0 . By integrating these derivatives with respect

to y from y = 0 through a portion of this neighborhood, we estahlish

the conclusions of the lemma for the variables J, s, and n, (A.17)
and (A.18) follow immediately using (A.4) and (A.6).
Theorem 1
s > 0 at y=20 s (A.34)
Proof:
We prove the theorem by assuming
s £ 0 at y =0 (A.35)

and obtaining a contradiction. The results of Lemma 1 can now be
applied. The boundary conditions require that s =0 at y =1 .
Since s < 0 at y = y* (as defined in Lemma 1), s must rise to zero.
The mean value theorem of calculus then requires that the derivative
ds/dy be positive somewhere on the interval between y = y* and the
y > y* at which s first equals zero. Since by (A.15) ds/dy is

*
y , 1t must pass through zero in this dinterwval.

also negative at vy

% B
Let the smallest y > y for which ds/dy = 0 be denoted by y .

Then we have

ds _ -
i 0 at y =y (A.36)
* *%
gﬁ < 0 for ye (¥.7 ) (A.37)
y
E &k
s < 0 for vye (y ,vy ) (A.38)

*
Since E < 0 at y =1y by (A.17), it follows from (A.38) and Eq.

(A.4) that



From (A.2) and (A.3)

ds
dy

w23 L=

0 for

(T n,

so (A.36) and (A.39) imply

J <

But (A.19) and (A.20) of Lemma 1 show that J > 0 and dJ/dy >

*
y =y . Hence there must exist a ¥y

a7
dy

dJ
dy

J >

aJ
dy

]

But

and (A.42) implies

From (A.43) and (A.45)

Thus we must have

dn,
i

dy

T

for some v € (y*,y Yo

0 at

0 at
0 for
0 for

ne(Y - € Cni)

X

er at
h

e at
0

However,

y €

y=

kkk

€

* .
(y,y 1 .

+ ne)E -1(1 -8)J

¥y .

% k%
(y .y ) such that

Kok
Yy

* Xkk
¥ =% 2

& KRk
[y -y ) .

*ik

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)
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dn

*“EI‘}}' = T[niE = J] ([\_49)

so (A.49), (A.39), and (A.44) show that

dn, * k%
—E§- < 0 for ve (y,y ) " (A.50)

(A.50) conflicts with (A.48). Since both follow from (A.35), this
assumption must be rejected and the theorem is proved.
Lemma 2

If dJ/dy >0 on [0,1) and s> 0 at y =0 but s =0 for

*
some y € (0,1), then there exists a vy € (0,1) where

s < 0 (A.51)
ds
& < 0 (A.52)
2
51—; < 0 (A.53)
dy
E > 0 s (A.54)

Proof:
Let ¥ be the first y measured from y = 0 for which s = 0.

Clearly we also have ds/dy £ 0 at y = Yo - Since s > 0 for

y < iy o (A.4) implies E > 0 at y = ¥ Using Eq. (A.2) and the

behavior of ds/dy and E at Y, » We conclude that

dni/dy = dne/dy < 0 there. The first two derivatives of s are given
by Egqs. (A.29) and (A.30) in the proof of Lemma 1. Equation (A.30) now
implies that dzsldy2 <0 at y = ¥y = By continuity there exists a

%*
y >y, ina neighborhood of ¥, at which dzs/dy2 <0 and E > 0 .
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3
The integration of dzs/dy2 with respect to y from Y, to ¥

*
ghows that ds/dy < 0 and s <0 at y =y and thus completes the

proof,
Theorem 2

If dJ/dy > 0 for vy e [0,1) , then

s > 0 (A.55)

at all vy e [0,1) .

Proof:

We know from Theorem 1 that s > 0 at y =0 . We proceed
with the proof by assuming that s € 0 at some y € (0,1) and prov-
ing that such an occurrence is impossible. Lemma 2 now establishes

%
the existence of a point y € (0,1) at which s < 0 , ds/dy < 0,
dzs/dy2 < 0 . Since conditions (A.8) and (A.9) require s = 0 at
%
y = 1, we must have ds/dy = 0 for some y € (y ,1). Let the smallest
*& & k%
such y be denoted y so that ds/dy < 0 for v e [y ,vy ) . The
* k%
hypothesis of the theorem that dJ/dy > 0 dimplies J > 0 on [y ,¥ 1.
We now use the formulas for ds/dy and dzs/dy2 presented in the
proof of Lemma 1. (A.29) and the fact that ds/dy =0 at y =7y
&% * dek
shows that E >0 at y=vy . Since s<0 on [y .,y 1, Eq. (A.4)
* k&
implies that E > 0 for all y € (y .,y ). We already know that
ds/dy < 0 on this interval, so (A.2) shows that dni/dy < dne/dy <0
there. Thus each term on the right-hand side of (A.30) is negative,
s 2 kX

and we conclude that d°s/dy”" < 0 on (y ,vy ). However, since

* k%
ds/dy < 0 at y =1y and ds/dy = 0 at y =y , the mean value

2 *

* %
theorem of calculus requires dzs/dy >0 for some ye {(y ,v¥y ) .
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The contradiction shows that the hypothesis s € 0 for some yrt(O;l)

is untenable and proves the theorem.

Corollary

If dJ/dy > 0 for vy e [0,1) ,

E > 0 (A.56)

at all vy e (0,1]

Proof:
The result follows trivially from Lgs. (A.4) and (A.6) and

Theorem 2.

Lemma 3
Assume
g = 0 for y € (¥57,) (A.57)
dni
—Eg- > 0 for v € (yl,yz) (A.58)
s > 0 at ¥ =¥ (A.59)
Then for all vy ¢ (yl,yz)
E > 0 (A.60)
dE
e > 0 (A.61)
2
9—-% > 0 - (A.62)
dy
s > 0 (A.63)
ds
£ > 0 (A.64)
dne -
—-57' < 0 " (A.65)
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Proof:

Equations (A.57), (A.58), and (A.3) immediately imply

E > 0 for y € (yl,yz) . (A.66)
Using (A.57) and (A.66), Eq. (A.2) shows that

dn
e

—E§- < 0 for y € (yl,yz) . (A.67)

Since ds/dy = dni/dy - dne/dy , it follows from (A.58) and (A.67) that

ds

& 0 for ¥y € (yl,yz) . (A.68)

The remaining conclusions of Lemma 3 now follow trivially from (A.59)

-and (A.4).

Theorem 3

2 0 at y=0 (A.69)

Proof:

We assume

2 > 0 at vy =0 (A.70)

and seek a contradiction. Since dni/dy =0 at y =0 , it becomes

positive as y increases from zero. However, ni(l) =0, so n,
%

must eventually decrease. Let vy be the smallest y > 0 at which

== = 0 at y =y . (A.71)
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dn
7 *
Then -d—; > 0 for ve (0,9) (A.72)

The proof is divided into four cases depending on the behavior of J

*
on [0,y ] . Since

aJ _
'a‘}—" = ne("( = ECni) ’ (A'73)

(A.72) shows that if dJ/dy ever becomes negative on the interval
%
[0,y ] , it remains negative for larger y on the interval. We now

consider four separate cases that comprise all possible behavior of J

—_ & =
I. dy 0 at y 0 5 (A.74)
aJ ~
II. dy > 0 at y =20 (A.75)
aJ %
dy < 0 at y=yY (A.76)
*
J < 0 at vy =1y (A.77)
dJ ~
IIT. "&; > 0 at y=0 (A.78)
aJ I |
e < 0 at y =y (A.79)
*
J 2 0 at y =y (A.80)
a1 i 2
Iv. gy 0 at vy=y P (A.81)
Case I.
a1 . =
& = 0 at y=0 (A.82)

It is apparent from the comment following (A.73) that
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%*

J < 0 for vy e (0,y ] (A.83)
*

g% < 0 for y e (0,y 1 5 (A.84)-

Equations (A.3), (A.71), and (A.83) now imply
E < 0 at y =y . (A.85)

However, Theorem 1 shows that s > 0 at y =0 , so from Eq. (A.4) it

is seen that E and dE/dy become positive as y increases from zero.
% %k

Therefore E must decrease somewhere on the interval (0,y ). Let vy

denote the smallest vy for which

dE _ _ = *%k
el 0 at y =y . (A.86) .
We now have
%k
E > 0 for v € {0,y ) (A.87)
ok
s > 0 for v e (0,y ) . (A.88)

From (A.2) and (A.3)

ds

3y = (Tni+ ne)E -1(1 - 8)J 5 (A.89)

(A.83) and (A.87) now imply

ds

Tk
3 > 0 for vy e (0,y ) . (A.90)

*k
But s must decrease to zero at y =y . Hence we arrive at a contra-

diction, and the theorem is proved for the hypothesis of Case I.
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Case 1I.
L.i.‘]. > - "
ds 0 at y 0 (A.91)
dJ *
dy < 0 at y =y (A.92)
*
J < 0 at y=y (A.93)

By the same reasoning used in Case I, we conclude that

%
E < 0 at y=y (A.94)

and that E > 0 and dE/dy > 0 for y > 0 in a neighborhood of

Rk
y =0 . Again let vy denote the smallest y for which

dE *k

= = 5 = 0 at y=y (A.95)
so that
%k
E > 0 for ye (0,y ) (A.96)
*%
s > 0 for ye (0,y ) . (A.97)
*kk
Now let y denote the point at which J = 0 . Then the comment

following (A.73) shows that

*kk
J > 0 for y € (0,y ) (A.98)

kkk %k
J € @ for v e (y YV ) . (A.99)

Skt
Lemma 3 can now be applied on the interval (0,y ), so from (A.60),

(A.63), and (A.64) we have

Kok
E > 0 for y € (0,y ) (A.100)

k%
s > 0 for y £ (0,y ) (A.101)
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kX
a8 5 5 . for Y i (A.102)

From (A.95) and (A.101) we conclude that

K% *k%
y >y . (A.103)

Hence (A.96) and (A.99) imply

khk kK
E > 0 for v e (y Y ) (A.104)
*kk ke
J < 0 for v € (y vV ) . (A.105)
Since
ds _ _ _
G = (Tni+ ne) E-1(lL-28)J (A.106)
(A.104) and (A.105) require
kkk K%k
a8 5 3 for ye (y .y ) . (A.107)

dy

However, (A.101) and (A.95) require that ds/dy £ 0 somewhere on the

kkk k&
interval (y ,¥ ) . This requirement cannot be reconciled with

(A.107), and we again arrive at a contradiction.

Case III.
dJ
Al % = .
-+ 0 at vy=0 (A.108)
dJ — ¥
s < 0 at vy =y (A.109)
*

From (A.110) and the comment following (A.73) it is apparent that

*
J > 0 for y e (0,y ) . (A.111)
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*
Now Lemma 3 can be applied on the interval (0,y ), so from (A.60) and

(A.61) we obtain

*

E > 0 for vy e (0,y) (A.112)
dE *
E;» > 0 for ye (0,y ) . (A.113)

ook
We now designate the point at which dJ/dy = 0 by y , so we obtain

k%
%1- < 0 for vye {y sv) (A.114)
54
From (A.3)
2
d™n dn
1 . i dE _ dJ
dyz = T[ pos E+ny T ay ] . (A.115)

The use of (A.72), (A.112), (A.113), and (A.114) in (A.115) yields the

result

i k% %
5 > 0 for ve (y ,vy) . (A.116)

However, (A.71) and (A.72) require that dni/dy decrease to zero as
* %
y » v , and hence dzni/dy2 £ 0 for y <y 1in some neighborhood of

*
y=y . (A.116) shows that Case III leads to a contradictionm.

Case 1IV.

[<NEN ..
T 0 at y vy . (A.117)

It follows from (A.117) that
*
J > 0 for vy e (0,y ) (A.118)

%
and hence Lemma 3 applies on the interval (0,y ) . From (A.60), (A.61),
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(A.62), and (A.65),

*
E > 0 for vy € (0,y ) (A.119)
dE *
a > 0 for y e (0,y ) (A.120)
y

sz *

-—-5 > 0 for ye (0,y) (A.121)

dy

dn %

Iy < 0 for v e (0,y) . (A.122)

We now consider the sign of dzJ/dy2

From (A.73),

2 dne dni
i = *E;‘(Y -€C ni) - € Ene —E; . (A.123)

*
Since dJ/dy > 0 on O,y ) , Y - € Zni > 0 there. (A.72) and (A.122)
now show

*
dJ < o for ye (0,y) . (A.124)

(A.71) and (A.72) show that dni/dy must decrease to zero as y

*
approaches y . Since dzni/dy2 >0 at y =0, it must change signs

* T
on the interval (0,y ) . We let vy be the smallest y for which
dzn. Kk ®
1
o = 0 at y =y . (A.125)
dy
Then 2
d n, Kk
5 > 0 for ve (0,y ) . (A.126)
dy .

We now consider the sign of dBni/dY3 . From (A.3)
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3 2
d™n d"n dn 2
i i dE d'E dJ
= T[ E+ 2 ——"—+n -—=1 . (A.127)
dv dy2 dy dy i 2 2

(A.126), (A.72), (A.119), (A.120), (A.121), and (A.124) show that cach
Kok
term of (A.127) is positive on (0,y ), and hence

3
d ng * %k
3 > 0 for ve (0,y ) . (A.128)

dy

However, from (A.125) and (A.126) it is obvious that dzni/dy2 must
decrease to zero as y i1ncreases to y**, and therefore (A.128) is
impossible.

We have now achieved a contradiction for each case of Theorem 3.

Thus the hypothesis of (A.70) is untenable and the theorem is proved.
Theorem 4

ni(O) is bounded by

e L o - 1 ~e) 2y HYX
1 <n,(0) = 7 o —~ EXF 2X“J(X €) "+ c ‘ (A.129)
If ¥ >€ , and ¢ >_ﬁIX__2 , an approximate bound is
(x-€)
1
£ g 00 B L B e = BT 4 _
1 ni( ) C(x-2) X ( 2 (A.130)

Proof:

The lower bound on ni(O) follows immediately from (A.7) and
Theorem 1. The upper bound is obtained by evaluating dzni/dy2 at

y =0 . From (A.3),



d™n dn
i i dE dJ
e = T[> E + n, 5o - . "
e My iy Ay "ty w111 D
dni/dy, dE/dy, and dJ/dy are evaluated at y = 0 using (A.3), (A.4)
and (A.1). Thus at y =0
d2ni
2= T[n (0) X&(n (0) =~ 1) = (y - €50, (0))] .  (A.132)
dy
Theorem 3 now implies
2
TIXEni(0) - (x-€)t n,(0) ~y] = 0 (A.133)
The roots of the quadratic in ni(o) are
e 1 - &Y
ry =5 X-€M 3 'J(x e)? + r (A.134)
r, =i x-e)- Tafex - 02 + AX (A.135)
2 2x 2y z ' ’
Now (A.133) becomes
- = <
TX&(n;(0) - r)(n (0) - r,) 0o . (A.136)
Clearly r2 < 0, so (A.136) holds only if
ni(O) £ r; (A.137)
and (A.129) is established. If ¥ > € , (A.134) can be written
) =g (- ——{x-—a)(l +-——4IX——— ytz (A.138)

gy - 6)
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If ¢ > AYxl(x-—e)z, the square root can be expanded as a convergent

binomial series, and we obtain from the first two terms

¥ == & Y 1
= + + 0(—= .
ry - el ~E) (cz) (A.139)
1
=1+ —JX _ _EFO0FH (A.140)
Ly =gl ¥ C
where the error is expressed as O(l/Cz) » since we are primarily

interested in large ¢ . (A.137) now shows that (A.130) is established.

Application of the requirement ry > 1 to (A.140) implies

X =5

> €
X c X ;

(A.11) shows that this relation is satisfied.
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Appendix B
ORTHOGONALITY REQUIREMENT

Consider the problem of finding the solution to the nonhomo-

geneous linear differential equation

Lu = f (B.1)
when the homogeneous equation
Lu = 0 (B3.2)

has a solution satisfying the same boundary conditions. This problem
is treated in standard texts on differential equations*, and the
results are repeated below in a somewhat more specific form for con-
venience.

Let L be given by

% o 3-3; o) %) + q(y) u (B.3)

and define the scalar product
1

<u,v> = I w(y) u(y) v(y) dy . (B.4)
0

With the initial conditions
du

u(l)

n

0 (B.6)

%
See, for instance, Friedman [8], pp. 169-171.
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the differential operator is self-adjoint, since

<wv,Lu> = [v(ipu')' + wvqu] dy

= O

i
= [-u'pv' + wuqv] dy + pvu’

o
o

: 1
= [u(pv')' + wuqv] dy + p(vu' - v'u)

= <Lwv,u> (B.7)

if both u and v satisfy (B.5) and (B.6).

If uh

and up satisfies (B.1l) with the same conditions, we have

satisfies (B.2) with boundary conditions (B.5) and (B.6)

< T > = < > . .
uh, L up I uh,up uh,f (B.8)
But from (B.7) we obtain the desired result

<u,Lf> = 0 . (8.9)

We have shown that if the homogeneous problem has a nontrivial solution,
a solution to (B.l) with the same boundary conditions can exist only if
f 4is orthogonal to the homogeneous solution. It can also be shown that

*
if (B.9) is satisfied, a solution does exist .

*See Friedman [8].
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Appendix C

THE ZERO-ORDER SOLUTION IN CYLINDRICAL GEOMETRY

In cylindrical geometry the analogue to Egqs. (3.11) - (3.14) is

the problem

%-Eg~( %ﬁ‘ +Yyn= €*n2 = 0 (c.1)

p= 0 n = 1 (c.2)
% = 0 {C.3)

p=1: n = 0 . {(C:4)

%
Here also the recombination term is regarded as a perturbation, and 7y
*
and n are written as asymptotic series in powers of € :
e

*
nd+ € ny + € n, + e (C.5)

=}
]

2

* L
T TE Y TE Ay . (C.6)

v

]

%
Substitution of these expansions for n and Yy yield as the

problem to lowest order,

dn

1 d [o) * _
E— d—p— (O —d—p- + YO ﬂo = 0 (C-7)
p =20 : B, = 1: (C.8)
dno
s 0 (c.9)
p=1: n = 0 . ’ (C.10)
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The solution to (C.7) satisfylng the condltlons at p = 0 (s tho

zero-order Bessel function of the first kind:

n, = Jo(\/Y: p) . * (€.1L)

%
The boundary condition at y = 1 determines Yo H

E3
JOG\fYO) = 0 . (C.12)

As concluded in the discussion following Eq. (3.22), only the funda-

%
mental diffusion mode can be present, so'dyo is set equal to the

first zero of Jo. Then

*
Y, Y (2.405)% . (C.13)

*
To the next order in € the problem becomes

dn
1d 1 * e *
= (p dp) +Y, 0y T 0, - Y (C.14)
dn1
—aE = 0 (€.16)
p=1: n, = 0 s _(C.l?)

Here the results of Appendix B can be invoked to acquire an expression
*
for Yl from Eq. (C.14) and the zero-order solution. The present

situation is seen to be equivalent to that treated there by making the

*
See Handbook of Mathematical Functions [1].
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identifications,

y = p (C.18)
wip) = p (C.19)
p(p) = p (C.20)
q(p) = Y: ’ (€.21)

Since JO( Y,P) 1is a solution to the homogeneous equation associated

with (C.14) and satisfies the conditions (C.16) and (C.17), Appendix B

implies that the existence of a solution ny requires
<J ( 2 » > = 0
5 1/YOD), n -y, n> = (C.22)

or

L 2
@ <J Oy p)s n >
By = (‘\/—; (C.23)
<J &YoP)s n >

L E3
[ 032 6lv p)dp
= 2 ; (C.24)
*
[ paZaly,p)dp
0

%
With this value for Yl the equation for n, is solved by

the method of variation of parameters. Assume

nl(p) = A(p) Jo(\/YT;p) + B(p) Yo(\/;r—z p) . (C.25)

YO is the zero-order Bessel function of the second kind, and
* %
JOCJYOQ) and YO(\/yop) are selected as the two linearly independent

solutions of the homogeneous differential equation
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Differentiating (C.25)

We now impose upon A and B the condition
' i ' * _
A'(p) JO(\/YOD) + B (p) YD(\/YOD) = 0 .

Differentiating a second time,

2
d™n

l=* " " " 1Tt e
dpz Yo AJO +-Yo BYO + \{Yo A JO-FﬂYO B YO

Now,
dn d2n dn

14 1,, % 9™ 19
S @ aptt Yo M ” i te T tVe ™

ey * " * " * A ] * A 13

=Y AJo L BYo \d J'Yo fodey TR, B T

+ H ;'AJ' + d * l-BY"‘?‘ . A + * BY
VYo o o Yo p o Yo ™o T Ya ™o

* [ *
Since JO(Wryop) and Yo( Yop) satisfy the equations

J;;(\[wzpn\/%p safie+s o = o
(o}

Tyfyged + \/_i /Y + Y0 fvpe = 0
YoP

Eq. (C.31) becomes

_._..__!'_ = A\l A v T
5 1/y0 AT} +-w/yo BY) + A'J_+ B'Y, .

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(Cc.31)

(C.32)

(6.33)
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dn :
id 1 * o o Tat Nt g e .
o dp (p dp) + Y, 04 o A JO 03 Y= B Yo , (C.34)

Equation (C.28), together with the result of substituting (C.34) and

(C.11) into (C.14), yields a system of equations for A' and B’

A'J (/Y e) +B'Y (\/yp) = 0 (C.35)
AT +BY G fYie) = j_—*- 2= Vi3 afviml.

Yo {(C.36)

The determinant of the coefficients is the Wronskian of JO and YO

and is given in the Handbook of Mathematical Functions [1], p. 360:

33
SN QAR Yo('\/YOD)
*x 2
wlI_ /YeP) Y, (\YoP)} = = —\/“—;—*— )
, * , * TN Yy P
SBRQVAN:Y EQVA7Y)
(c.37)
The system (C.35) and (C.36) is now solved to yield
0 p
*
A' = %'\/YOD (C.38)
1 2 % '
Wf—§ [Jo YlJo] Yo
Yo

= - % P Yo('\/Y:D)[Jg(‘\/Y:D) = Y: JO(W/Y:D)] (C.39)

and
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1 ] T TT *
B = 21/70p (C.40)
1 2
o

Vv®
N %’p Jo(\/Yop)[Jz(\onp) - Y:JOC\/TZD)] (C.41)

*
' —
I [J YlJO]

50

p_ . : -2 -
A(p) = —‘% J p JOC\/YOD)YOC\/YOD)[Jax/yop)- y;] dp {(C.42)

0

P
B(p) = 1 J 5 32ahe e -y d . (C.43)
0

From (C.25) the solution for n, becomes

P
n e = -3 [ 53,0/ v, oM w0/ - vl é@ 3 afvie

0

o _ s -
+ %-J o Jg(\/;fp) [JO(\/YSE)— YI] dp YO(\/Y:p) . (C.44)
0

That nl(p) satisfies the proper boundary conditions can be
seen by using the limiting forms of the Bessel function for small
arguments. For small z , JO and Yo and their derivatives behave as

follows:

Jo(z) AV %~z (C.45)

Yo(z) N n z (C.46)



Then

Similarly,

nl(O) =

dn
1!
30 (©

I

1 = z
Jo(z) Jl(z) v 5
' - _ 21
Yo(z) h Yl(z) V=
1im nl(p)
pr0

T

&
Lin { [5¢ smlpra -+ dﬁ}

p>0 Ly

p>0

P
- ;TR [ %
lim {;I p(l - Yl) dp %'Qn YOD}
0

2
64 ¢l - yi) Lim {2 en/y o}

p+0
0
dn
lim _Ei
p>o0 P
o] *
— 2 H— R Y P
- % lim {J pes ﬂn\[Yoo)(l - v de (- —3—)}
p~>0 0
2 % %
7 lm {pG amyiea - yD}
p>+0
o}
i %
% lim {j p(1 - y{)dp (f;—)}
p
pP>0 Lj
3 1m {pa - YDE Wy e}
5 o
p+0
0

(C.

{3

(c.

(c

(c.

47)

48)

49)

.50)

.51)

.52)

53)

(C.54)

(C.55)
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The boundary condition at p = 1 1is satisfied because of the choice

L.

of YI ‘
1.
- e “de— -
) = -5 [ 5,6/ v, 1,0/ ve- i1 d g v
0
1
L Mae® } T
+3 [ B2afe wafe- i e ol o e
0
But ' JO(\/YO) = 0 (C.57)
and
1 _x B
1 i pJo(\/§fE)dp 4
s * * _ -
J pJf(\/;fﬁ)[Jo(\/;fE)— Y,1dp = 2 n ~Yq J oJi(\/Yop)dp
0 ! p32(\/v.0)dp 0
(C.58)
= 0 (C.59)

by Eq. (C.24). Thus the conditions (C.15) - (C.17) are satisfied, and
nl(p) as given by (C.44) is the desired solution.

*
An integral expression for Yz can now be obtained from ng
2

and the equation for n The contribution of E* terms to (C.1) -

9
(C.4) yields the problem

dn

1d 2 £ X 5 % 3
p dp(p dp) Yoy ™ 2085 = Ty ~ X% (6. 603
o =0 : n, = 0 (C.61)
dn2
- = 0 (C.62)
p=1: n = 0 . (C.63)
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*
JO(\/YOQ) is again a solution of the homogencous cquatlon assoclated

with (C.60) and satisfies the boundary conditions (C.62) and (C.63),

so the results of Appendix B again apply. A solution n, exists 1if
and only if
* * o 0

< Jo(\/Yop), 20 n, = Yqny = Y0 > = (C.64)

or
<J (\/Y*p) 2 Yyn,>
& » 2n.n. — Y.n
Y2 - o o o 1 11 ) (C.65)

*
x Jo(\/:{—;p) > 0>

Using (C.11) and (C.44) ,

1
P
Y; - 1 j DJO(‘\/Y:D) [2J0(\/sz)— Yi] {- % J EJO(\/YZE)
J pJg(\/Y:p)dp o 0

0
% Yo(\/YzB)[JO(\/YzE) - Y:]dE Jo(‘\/Y:p)
p
+5 I oI, \/YZE)[JO(\/EEP v,1dp Yo('\/Y:D)} do - (C.66)

0

%*
The approximations to Y and n are now available in integral

form to the extent shown below:

* % " % % " %2 % -
Y Yo € Yl € YZ (C.67)

*
n v n0+8nl . (C.68)
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Appendix D

EXPANSTIONS OF TRIGONOMETRIC FUNCTIONS

In expanding the main-region solution for y near 1, it is
convenient to have available series for the various terms which occur.

Thesc series are listed below for reference.

Let
x = 1-y 3 (D.1)
Then
sin I y = cos Ty=1- EE.XZ + 0(x4) (D.2)
2 2 8 :
T . _ o . . T g 3 5
cos 5y = singx = 5 X -5X + 0(x7) (D.3)
cosz-% vy = Cg X - %E-x3 + O(xs))2
2
= ﬂz-xz + 0(x4) (D.4)
2
v sin-g y = (1 -x)(1 - ﬂ§ xz + O(xA))
2 2
= 1 -x _.E§ x2 + Eg'XB + 0(x4) (D.5)
(y-sin L y)cos Ty = (1 -x - 1 +ﬁx2+ oty § T - it = 0g="))
y g 2 R 8 2%7 48
T2, ™ 3 4
= - 7%+ 7z x +0(x) (D.6)
sec I y = ——— = 2 2
. sin B X L wz 2 4
2 1 =25 X + 0(x)

= -2— L + jﬁ":' x + 0(x3) (D'7)
m X »



m
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- us (L
tan 2 ¥ = sin 5 ¥ 8ec 5 ¥
1’ 2 4y,21 3
= (1 - B Xt 0(x »QE-;-+ 17 *t 0(x™))
_ 21 m 3
= I 5 ¥ + 0(x7) Q)
m il 21 7 35221 T 3
seciytanzy ('"'X+12X+O(X))(1TX 6X+0(x))
- 2 L 1 2
= 55 6+0(X) (D
T x
21 _ 21,1 o2
sec” 5y = (1T < P xt 0(x7))
- W - ©)
2 2 3
™ X
m 4 1 1 2
Yy sec Sy = (1~X)(-—2"—2-+—3-+ 0(x7))
i m X
- 4.1 _ 42 .1 1 -
= 5 5 > x + 3 3 X + 0(x7) (D
T x T
m Mmoo Al 1 21 _w 3
sec” yytangy = (755 +3+ 0k ))(Tr =~ Xt 0ixT))
m X
=%%+O(X) (D
™ x
. 8 1
y sec g-y tan %»y = (1 - X)(*g‘*§'+ 0(x))
™ %

- 8 1 8 1
S sg 33+ 0(x) (D.
T X m™ X

.8)

+9)

.10)

.11)

1.2}

13)



' 2 4 1 : ’ i <
sec “': y tan 1: y = (Hi —]--.-)— =~ =% ()(xz))(»_%—]‘{ - :' X+ ()(xJ))
2 2 - 3
8 1 1 1
iR e gy o 8 /)
i et g £ 1 (0. 14)



Appendix E

* *
DETERMINATION OF Yo AND Y1 BY MATCHING

The zero-order problem for N, is solved in Section 3 using
the condition neo(l) = 0 . Here the same equations are solved once
more, but without applylng any boundary conditions. The solution con-—

* *
tains the constants Y., and Y, and these are determined by matchling
n, o to the asymptotic expression for n, in the sheath. The results

are the same as those obtained in Section 3.

The problem is represented by Egs. (3.11) - (3.13) and is given

below:
2
‘ Teo + Y*n - E*nz = 0 (E.1)
2 eo eo '
dy
y =0 : neo = 1 (E.2)
dneo
o = 0 (E.3)
*

o, and the parameter Yy are expanded as in (3.15) and (3,16):

*
n,, = n +ten; + - (E.4)

* * %
.Y = YO+EY1+..- (E.S)

*
To lowest order in powers of € the problem becomes

dn *
= = 0 (E.6)
dyz b Yo no :
y =0 : n o= 1 (E.7)
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- (E.8)

and has the solution

*
n = cos\/Y y (E.9)

(8] (o]

*
wvhere Yy is unknown.
o

The equation for nl is

2
d ny " ~ 2 & 2
—‘;y—z G YO nl = l'lo & Yl no (E.10)
_ 2 * * % i
= cos W/YO Y- Y, COSW/YO v (E.11)
y =0 : n, = 0 (E.12)
dnl
*a; = 0 X (E.13)

The solution to (E.11) - (I.13) is easlly obtained as

%
2 1 [ 1 2 \/"*' Yy . [F ,
aliis 4 % cos\JY ¥ - = cus ¥, ¥ - y sin\Jy_ vy (L.14)
3y 2

3y 3y
o o ) ;
so
/ % 9 /
neo = cos\/Yy vy + € [—;;-— Y* cos Y.V
o o -
* Y *
- ~l;-coszwfy - x y sin\/y .y 1 . (E.15)
3y o \/—; o
o 2

Before this expression can be compared with the sheath solution,

it is necessary to expand it for y near 1 . The expansions are
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carried out and the matching is performed only as far as is necessary
* %
to determine Yo and Yy o Taylor series expansions of the trigono-

metric functions occurring in (E.15) are listed below:

2 % * T * . '
cos™\[y_ ¥y = cos\[y_ +'\/Y0(Sln'\/Y.O)(1 = y¥* (E.16)
2 [ % 2 L% [* * . [ %
cos \/Yo y = cos YO-+2 YO(COS\/;;)(Sln YO)(l-y)‘f-.. (E.17)
* * % % %
y sin\)yo y = sin\/Yo-(sin\/;;-+VYo cos\/Yo)(l - y) - (E.18)

Substituting these results into (E.15) and rearranging,

_ * + * [ 2 1 * 1 2\/"?
B ™ cos\/yo € o = = cos\/Yo - 3Y* cos Y
o}

3y 3y

(0] (o]

*

22/v, VY,

*
- Yl* sin\/;j 1+ {\/;: sin\/;§>+ g* [ ;}__ sin\/;:

* *
- £ cos\/Y* Sin\/Y* + ( ! sin\/Y*'+zl-cos\/Y )]} (1 -1y
0 o] 0 2 0
3 \/Y* 2 \/Y*

o] (o]

T (E.19)

From the sheath we need only the largest contribution to the

asymptotic solution in Eq. (6.29):

N N
n, v poJ(O) £ 5 (E.20)

The main-region and sheath solutions are written in terms of the

intermediate wvariable Xn through the use of (5.42) and (5.43). Using
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also (2.2), (E.19) becomes

o
Yo o

% * * 4 *
(main region): n 3" cos\/Y; + B [—igi—-—l; cos\/;;——dig-cosi\/;
3y 3
e}

*

(o] o]

*
= Yl sin\/?f]-+{\f§§ sin\/;§-+€* [ wlggysin\/;f

* *
: Y Y
Zon A N BRI A B g, sy P
= cos\[Y, sin\fy +( *-F 5~ cos YO)]}n X

3W/;§ ZW/YO (E.21)

Using (2.47) in (E.20)

"
(sheath): n, v poJO(O) n xn 2 (E.22)

In order that these two expressions agree, the constant term in (E.21)

must equal zero:

%
£ * [ % % Y *
cos\/;u el [-g;-— “i; cos YO—— l* cos2 YO—A 1 sin\/;o] = 0
g *
on Mg 3Y0 2\/;;

(E.23)

%
Since FEq. (E.23) must be an identity in € , both terms must vanish.

Then

%
cos‘\/YO = 0 (E.24)

implies 2

- T o (E.25)
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Using (E-25) in (E.23), the equation for the quantity in brackets

becomes
*
Y.
8 1
—5 - = 0 (E.26)
3
or
* 8
¥y = I . (E.27)

% *
It should be observed that the expressions for Yo and Y1 in (E.25)
and (E.26) are the same as those in (3.24) and (3.38). Using these
results, (E.21) becomes

: i 2 AP N S -
(main region): n, u {2 +e [ I + 3ﬂ2] }n xn . (E.28)

The main-region and sheath solutions now agree provided

"y *
p J(0) = 12T~+ € [;8—2 = ‘g—ﬁ i (E.29)
m

"
Using (3.9), Eq. (E.29) for J(0) becomes

LA S _ﬁ_.(z - er . (E.30)
25 3 2
o 3

N
J(o) =

This result is the same as that obtained in Eq. (7.5). If (E.25) and

(E.27) are used in (E.15), we obtain

%
n =coslzT—y+—é'—é~[2--cos;'lymo::os2 lzly_ 2y sin-g—y]e - (E.31)

3m 4
This result is also the same as that obtained previously.
It is clear that the method employed here leads to results iden-

tical to those obtained in the main body of Part II.
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NOMENCLATURI
The number following the descriptlons gives the page on which

the symbol first appears. Symbols whosce use iIs very temporary and those

which have been defined previously in Part I usually do not appear here.

Roman :
x %

a = (2/3)(e /Y ) in Section 3 (152)

En nth term of the expansion for E (128)

R ambipolar value of the axial electric field (111)
N
E electric field in the sheath (138)
’\J r\l

Eo zero—-order approximation to E (180)

F(x,k) elliptic integral of the first kind (156)

F(¢,k) elliptic integral of the first kind (157)
JO zero-order Bessel function of the first kind (248)
Jn nth term of the expansion for J (128)
N
J electron and ion flux in the sheath (138)
N \

Jg zero-order approximation to J (180)

k modulus of the elliptic integral (154)

L; linear differential operator (245)

n = n in Section 3 (143)

o

n nth term of the series for n in Section 3 (143)
it nth term of the expansion for n, (128)
ngl) root of a cubic algebraic equation in Section 3 (153)
néz) root of a cubic algebraic equation in Section 3 (153)
n =n in Section 4 (170)

el
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nth term of the series for n 1in Section 4 (170)

electron density in the sheath (138)

ion density in the sheath (17138)
zero—order approximation to u: (180)
zero-order approximation to gi (180)
introduced for notational simplicity (171)
space-charge variable (123)

nth term of the expansion for s (128)
space-charge variable in the sheath (204)

*
=4/Y y in Section 3 (150)

1 -y din Appendix D (256)

intermediate variable used in matching (188)
zero—order Bessel function of the second kind (249)

variable used in Section 3 (154)

ambipolar value of Yy  (145)
nth term of the expansion for vy (129)

= Yp, in Section 3 (142)

%
nth term of the series for ¥y in Section 3 (143)

nth term of the expansion for § (129)

nth term of the expansion for € (129)

= eoc P, in Sections 3 and 4 (143)

provides a measure of the location of the zone between main
region and sheath (188)

Asymptotic sequence of functions used in expansions (128)

independent variable in the sheath (138)
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independent variable in eylindrical geometry (247)

introduced for notational simplicity (130)

nth term of the expansion for 1T (129)

sin"l(l/ (K nc(’l)) ) (157)

sl Vi ISR '\‘nél)-—n)) (157)

th : y
n term ol the expansion tor x  (129)

1]
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Table 1

* *
COMPARISON OF APPROXIMATE AND EXACT € -Yy RELATIONS

ek Y* gk /yx
exact perturbation exact perturbation
0.128842 2.576833 2.576833 0.05 0.05
0.269659 2.696589 2.696590 0.100 0.100
1.499793 3.749483 3.749592 0.400000 0.399988
4.385418 6.264882 6.267893 0.700000 0.699664

11.100918 12.334353 12.390164 0.900000 0.895946
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Table 2

COMPARTSON OF APPROXIMATE AND EXACT SOLUTIONS FOR n.,

e* = 0.269659

Y* (exact) = 2.696589

Y* (perturbation) = 2.696590
g*/y* (exact) = 0.100000

g*/y* (perturbation) = 0.100000

¥ n (exact) n (perturbation)

0. 1.000000 1.000000
0.090847 0.990000 0.990001
0.128572 0.980000 0.980002
0.157586 0.970000 0.970003
0.182102 0.960000 0.960004
0.223366 0.940000 0.940006
0.258315 0.920000 0.920007
0.289250 0.900000 0.900009
0.317351 0.880000 0.880010
0.343316 0.860000 0.860011
0.367602 0.840000 0.840011
0.390524 0.820000 0.820012
0.412312 0.800000 0.800012
0.462871 0.750000 0.750012
0.509182 0.700000 0.700011
0.552349 0.650000 0.650010
0.593094 0.600000 0.600009
0.631924 0.550000 0.550007
0.669208 0.500000 0.500006
0.705229 0.450000 0.450004
0.740214 0.400000 0.400002
0.774343 0.350000 0.350001
0.807770 0.300000 0.300000
0.840625 0.250000 0.249999
0.873023 0.200000 0.199999
0.905068 0.150000 0.149999
0.936854 0.100000 0.099999
0.968469 0.050000 0.050000
1.000000 0. 0.
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Table 3

COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS FOR - -

e* = 1.499793

v* (exact) = 3.749483

v* (perturbation) = 3.749592
e*/y* (exact) = 0.400000

e*/y* (perturbation) = 0.399988

y n_(exact) n (perturbation)
0. 1.000000 1.000000
0.094314 0.990000 0.990039
0.133418 0.980000 0.980075
0.163450 0.970000 0.970108
0.188792 0.960000 0.960140
0.231361 0.940000 0.940195
0.267320 0.920000 0.920242
0.299065 0.900000 0.900281
0.327827 0.880000 0.880312
0.354336 0.860000 0.860337
0.379068 0.840000 0.840355
0.402354 0.820000 0.820368
0.424435 0.800000 0.800376
0.475463 0.750000 0.750376
0.521938 0.700000 0.700355
0.565021 0.650000 0.650318
0.605478 0.600000 0.600272
0.643842 0.550000 0.550221
0.680508 0.500000 0.500170
0.715778 0.450000 0.450120
0.749893 0.400000 0.400076
0.783049 0.350000 0.350038
0.815411 0.300000 0.300008
0.847123 0.250000 0.249988
0.878309 0.200000 0.199977
- 0.909086 0.150000 0.149973
0.939559 0.100000 0.099978
0.969830 0.050000 0.049987
1.000000 0. 0.
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Table 4

COMPARLSON OF APPROXIMATE AND EXACT SOLUTIONS FOR n.s

e* = 4.385418

Y* (exact) = 6.264882

y* (perturbation) = 6.267893

e *A* (exact) = 0.700000

t*/y* (perturbation) = 0.699664

.y n_ (exact) n (perturbation)
0. 1.000000 1.000000
0.103043 0.990000 0.990383
0.145568 0.980000 0.980735
0.178095 0.970000 0.971057
0.205433 0.960000 0.961352
0.251095 0.940000 0.941863
0.289376 0.920000 0.922280
0.322928 0.900000 0.902612
0.353115 0.880000 0.882869
0.380750 0.860000 0.863059
0.406365 0.840000 0.843191
0.430331 0.820000 0.823270
0.452918 0.800000 0.803305
0.504595 0.750000 0.753228
0.551024 0.700000 0.702982
0.593531 0.650000 0.652628
0.632988 0.600000 0.602215
0.670011 0.550000 0.551783
0.705053 0.500000 0.501360
0.738464 0.450000 0.450970
0.770521 0.400000 0.400628
0.801452 0.350000 0.350344
0.831448 0.300000 0.300125
0.860672 0.250000 0.249973
0.889273 0.200000 0.199884
0.917383 0.150000 0.149853
0.945127 0.100000 0.099871
0.972625 0.050000 0.049926
1.000000 0. 0.
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Table 5

N
CONVERCGENCE OF THE I1TERATION TOR ]']0 (0)

r = 0.997823 x 106

s 2 () (z(n))_
0 2.00000 2.00220
1 2.00220 2.00431
2 2.05348 2.05372
3 2.06013 2.06016
4 2.06114 2.06114
5 2.06116
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Table 6

¥ N
EO(O) AND E(0) AS

oY

1.000 X

3.162 x

1.000 X

3.162 %

1.000 X

3.162 x

5.991 x

1.214 x

4,540 x

9.978 x

4.792 x

1.094 x

10

10

10

10

10

10

10

10

10

10

10

10

E_(0)
(o]
2.071
2.071
2.071
2.071
2.071
2.070
2.070
2.069
2.065
2.061
2.063

2.099

FUNCTIONS OF

n
E(0)

2.068
2.068
2.068
2.068
2.068
2.068
2.067
2.067
2.063
2.059
2.061

2.097

C



1.000
3.162
1.000
3.162
1.000
3.162
5.991
1.214
4.540
9.978
4.792

1.094

Ly Yl, AND <Yy AS FUNCTIONS OF

¥

4.7458

4.0021
3.4959
3.1524
2.9228
2.7799
2.7366
2.7278
2.9112
3.2923
5.8654

9.6857
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Table 7

Yo

2.4123

2.4125
2.4131
2.4148
2.4204
2.4379
2.4608
2.5103
2.7732
3.1881
5.8072

9.6430

(8

10.831

10.830
10.828
10.827
10.824
10.815
10.793
10.768
10.608
10.414

9.821

9.497

2.3334
1.5896
1.0828
0.7376
0.5024
0.3420
0.2758
0.2175
0.1380
0.1042
0.0583

0.0428



z

O

cm

1.000

3.162

1.000

3.162

1.000

3.162

5.991

1.214

4,540

9.978

4.792

1.094

X 108

X 108

X 109

x 107

" lO10

” 1010

" 1010

- 1011

- 1011

" 1011

” 1012

x 1017
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Table 8

o

1
z
volt/cm

23.44
22.73
22.19
21.80
21.53
21.35
21.29
21.28
21.51
21.97
24 .40

27.02

F  AND ﬁz/Nn AS FUNCTIONS OF

i’E'{./Nn

vu'Tt-—-(:m2
0.7289 x 107"
0.7067 x 107>
0.6901 x 10712
0.6779 x 101>
0.6693 x 1071°
0.6638 x 101>
0.6621 x 101>
0.6617 x 10712
0.6689 x 107>
0.6830 x 107 1>
0.7586 x 10717
0.8402 x 10717



10.

-276-

LIST OF FIGURES

Electron Production and Loss Rates as Functions of Electron Density

Sketch of N =-E Relat Lon
co 7

x * i
E =Y Relation

J

n,, asa Function of vy for Different Values of ¢

n "
Behavior of EO(E) for Various Eo(O)

v v Q"

E,n , and n as Functions of £
fo] eo io

N
n

s for Small §&

v
Behavior of g in Numerical Calculation of E(0)

C-Y Relation and the Relations Obtained by Separate Treatments

of Recombination and Space Charge

~

N -E Relation
eo z



PRODUCTION AND LOSS RATES

=LLT—

A A A A
Ezq4 <Ez3<E;p <Ey

STRAIGHT LINES ARE
PRODUCTION CURVES

ELECTRON DENSITY Neo

Figure 1: Electron Production and Loss Rates as Functions of Electron Density



Neo

-278-

| #C

oy ‘ ¥
/—AMb.F‘OLA? EXTENSION

~ ~
e Ezs Ezz
Ezo
A
Ez

Figure 2: Sketch of N -E
eo "z

Relation



EXACT AND PERTURBATION
6 SOLLUTIONS COINCIDE

* %
Figure 3: € =Y Relation

-6LC-



-280-
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PART III

EFFECT OF TEMPERATURE INHOMOGENEITIES
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INTRODUCTION

The primary purpose of the succeeding work is to isolate the
effect on the Ne0~ﬁz relation of the transverse neutral-temperature
variations across the positive column. In order to facilitate the
study, the equations obtained in Part I are simplified by neglecting
the slight deviation of the column from charge neutrality. This
approximation is the same as that made by neglecting the term involving
dE/dy in Eq. (1.8) of Part II and becomes better as the electron density
Neo increases. Temperature variations, like recombination effects, are
of significance only for large values of Neo’ and numerical results
show that such values are sufficiently large so that corrections arising
from consideration of the nonzero space charge are relatively unimpor-
tant. Although temperature variation and recombination may both be
important at large electron densities, attention is focused on tempera-
ture effects by setting the recombination coefficient equal to zero in
the numerical calculations. 1In the case of an H, plasma this procedure

2

is also a reasonable approximation, because the temperature variation
affects the Nedéi relation at a considerably smaller value of Neo
than does recombination. Even though recombination may not substanti-
ally alter the numerical results here, it is nevertheless ignored in

the numerical calculations so as to eliminate all speculation concern-
ing the cause of the results. However, the term in the equations that
represents recombination is included in the development of the problem,

because it is easy to do so and because its effect on the results can

be readily ascertained from the form of the solution.
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The effect and, indeed, the very existence of temperature inhomo-
geneities have usually been ignored in investigations of the positive
column. A publication by Ecker and Zoller [2], however, studies tem-
perature effects using basically the same equations that are used here,
but the forms of the coefficients in their equations are very question-
able. Furthermore, they treat the pressure of the discharge as an
arbitrary parameter. The physical situation investigated here consists
of a glow discharge containing a fixed amount of neutral gas. As the
axial electric field (or, equivalently, the electron density) 1s varied,
the neutral temperature profile changes. The pressure changes accord-
ingly and hence is actually a function of the axial field or electron
density. The dependence of the various quantities in the problem on
the electron density is so complicated that the qualitative nature of
the Ned_ﬁz relation cannot be determined without a detailed quantita-
tive investigation of the experimental data. A discussion of the
various qualitative aspects of the problem and the corresponding
physical interpretations is postponed until the working equations are
available.

The equations are solved by two different methods. The first is
a regular perturbation process in which the term responsible for the
nonuniformity in the temperature profile is treated as the perturbation.
This term is proportional to the electron density Neo’ and the variables
of the problem are expanded in asymptotic series in powers of Neo . The
first two terms of the series for Ez’ p, and the dependent variables
are calculated and used as an approximation to the solution. The

truncated series are most accurate for small values of Neo’ but, of
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course, the adjective "small" must be interpreted in a relative sense.
P

Here a value of Neo = 1010cm is considered small.

The equations are also solved by numerical integration, and

~

points on the Ne6~EZ curve are calculated. The results show that the
perturbation solution is accurate only for a rather limited range of
Neo . However, the perturbation procedure serves a useful purpose in
providing valuable insight into the nature of the problem. 1In fact,
the iterative process used in the numerical method closely parallels
the mechanics of the perturbation technique, and the perturbation
results are used as the first estimate in the iteration. The range of
Neo is rather restricted even in the numerical method, because the

variation of the neutral temperature across the discharge causes the

variables to exceed the domain of the experimental data.
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1. WORKING EQUATIONS
The equations used to study neutral temperature inhomogeneltles
are obtained quite easily from those derived in Part I. The only

assumption in the process is to regard ., G5 in Eq. (5.22) as being

Xt dy

negligible compared to n, and n, . The omission of this term is
considered extensively in Part II. There the approximation leads to a
description of the main region of the positive column given by the
lowest-order term in the singular perturbation expansion. Although the
temperature is assumed uniform in that development, the validity and

the qualitative nature of the approximation are unaffected by tempera-
ture variations. Imn particular, the order of magnitude of the first-
order correction found in Part II is applicable to the present
situation; it shows that the corrections to the Neo—ﬁz relation and

to the dependent variables decrease as Neo increases and are of little
importance at sufficiently large values of Neo . However, the term
containing dE/dy 1s necessary for an accurate description of the
positive column in the sheath, a thin region near the wall in which the
transverse electric field is large and electron and ion densities are
small. The neglect of dE/dy here is, of course, completely unjusti-
fiable, but the sheath is small and of no essential importance to the
study of temperature effects. Furthermore, the discussion on p. 136 in
Part II shows that the boundary conditions on n, and n, at y = 1}
can be applied even when the sheath is neglected; no error is introduced

into the Neo—Ez relation or the dependent variables in the main region

other than that caused by neglecting dE/dy there.
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Equations for Dependent Variables

The neglect of dE/dy in Eq. (5.22) of Part T results in the

simple algebraic equation

(1.1)

Denoting the common value of the electron density n, and the ion

density n, by n, Egs. (5.18) - (5.21) of Part I become

J = 2
%}7 = YV (T3E_,p)n - €Cn
d ~ oT & d ~
YT (T5E,,p) Y T_(TE_,p)
- By s
De(T;EZ’P)
dn , 1 _dr _ _1 _ 1
dy+Tndy_TTnE T_D(T-ﬁ )J
i 3 z!p
dr, 1 a ara o BIELE)
dyz A(T) dT ‘dy A(T)

The appropriate boundary conditions from Eqs. (5.29) - (5.35) are

y =0 : n=1
J=0
dT _
dy ak

y:.-l: '[1=0
T = A

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)
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There is no longer a differential equation for the transverse clectric
field W . L caun now be ohtained algebraically from Fg. (1.3) or (1.4),
aind 10 these two equations are  subtracted so as to eliminate dn/dy
uze of the boundary conditions for the remaloing dependent varlables
shows that E satisfies the condition E =0 at y = 0 . However,
the use of condition (1.9) on n in either equation shows that E » o
as v > 1 . This behavior is familiar from the study of Part II. When
L becomes sufficiently large as y approaches unity, the approxima-
tion neglecting dE/dy breaks down, and an accurate solution for E
in this region requires a special treatment of the entire problem in
the sheath. In the present study, however, the solution for E is of
no importance and is never actually obtained. In fact, E is elimi-
nated from Lgs. (1.3) and (1.4) to produce a single differential
cquation for n and is never seen again.

The final working equations for the variables are obtained by
eliminating E from the problem. Multiplying Eq. (1.3) by TTe and

Lg. (1.4) by T and adding the results yields

aT
o4 op 5 40 ey dr T e
(T + Tle) i + (1 + T Ap) 1 s T(Di-+6T De) F (1.11)

The final result is expressed more compactly by the introduction of new
pnomenclature. First the expression is simplified by the use of the
dimensionless linstein relations. Using Eqs. (2.56), (3.8), (3.9),

(5.2) ~ (5.6), and (5.10) of Part I,

KT (T;E ,p) D (T:E ,p)
e z - _e z (1.12)

W, (T5E_,P)
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~ ~ ~

De(TW;EZr,pr)De(T;EZ,p)

& = (1.13)
M (T 5E, »p U (TSE ,p)
K (T ;E_,p) D_(TE_,p)
- we zr’’r’ e Az , (1.14)
ug (T3E,_,p)
so
De(T;Ez,P) ~
———— = T (T;E_,p) . (1.15)
M (T3E,5P)
Similarly, the dimensionless Einstein relation for the ions is
Di(T;Ezap)
Z =T . (1.16)
M, (T3E_,p)
We now define the coefficients A and B by
BTe N
A(T;EZ,P) ™ (1.17)
T + TTe(T;EZ,p)
lA +31 1 %
n U, (T3E_,p) u_(T;E_,p)
B(T;E_,p) = T ——2 S : (1.18)
T + TTe(T;Ez,p)
Using (1.15) ~ (1.18), Eq. (1.11) now becomes
dn “ dT 2 _
E§'+ A(T,Ez,p) D 3y + B(T,EZ,P) J =0 . (1.19)

The final set of equations now consists of (1.2), (1.19), (1.5), and

the boundary conditions (1.6) - (1.10).
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Fquation for Pressure

It is mentioned in Part I and in the Introduction that the physi-
cal situation we wish to consider consists of a gas discharge contain-
ing a fixed amount of gas independent of the axial electric field or
the electron density. In the slab geometry for which the equations are
written, the dependent variables do not change except in the y-direc-
tion. Hence the requirement of a fixed amount of gas implies that the
number of neutral molecules across the column in a unit area of the
plane perpendicular to the y~direction remains constant. Denoting this

number by 26 » we obtain as the equation representing this statement,
L

20 = J Nodx . (1.20)
-L

Using the symmetry of the plasma column and the perfect gas law,

p=N_ kT (Eq. (2.78), Part I), Eq. (1.20) becomes

L
= 2
k

0

From the definitions (5.10) and (5.16) of Part I the dimensionless form

>

(1.21)

H>!&

of (1.21) is

fo bl
E>}c
g i

1
dy

J T (1.22)

0

This equation serves to determine p from the temperature distribution.

Discussion of Problem

A determination of the qualitative behavior of the Ned—ﬁ rela-
Z

tion in response to temperature inhomogeneities is not available.
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However, a qualitative investigation of the problem is capable of des-
cribing the general behavior of the dependent variables and leads to a
better understanding of the problem. 1In addition, the effect of tem-

perature on the coefficients, notably v. , 1s analyzed to some extent

I

and in the process the considerations necessary to the determination of
ﬁz become evident and reveal why a conclusion is unobtainable without
detailed numerical estimates. In order to orient the discussion, the
physical situation in which temperature inhomogeneities are present is
contrasted to the situation that would exist if the neutral temperature
were constant. The electron density Neo assumes the same value in_
the two situations. The term containing £ in Eq. (1.5) represents
the transfer of energy from electrons to neutrals and is solely respon-
sible for the departure from a uniform temperature distribution. Hence
the mathematical representations of the nonuniform- and uniform-
temperature situations are characterized by the respective inclusion

or omission of this term in the equations. For clarity, recombination
is ignored; a detailed qualitative description of its effect on the

~

Neo"Ez relation is presented in the Introduction to Part II.
The general form of the temperature distribution is easily
ascertained either from physical considerations or from a simple analy-

sis of Eq. (1.5). Heat is transferred to the neutral species by
interactions with electrons throughout the positive column and is lost
by conduction to the walls. The neutral temperature is largest at the
center of the column, where its gradient is zero, and decreases mono-

tonically with increasing steepness to satisfy the boundary condition

at the wall. The value of the temperature increases as the electron
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density increases. The pressure increases as the temperature increases
and is greater than in the uniform-temperature situation, where the
temperature is constant at its wall wvalue.

The effect of a temperature gradient on the electron density

profile n can be determined by a study of Eq. (1.19). The term

An %% is negative and acts as a positive contribution to the density
gradient dn/dy . However, certain conditions were incorporated into
the equations in the nondimensionalization process. 1In particular, n
must decrease from unity at y = 0 to zero at y = 1 whether a tem-
perature gradient is present or not. In order that the average value
of dn/dy remain constant, the presence of the term Arr%% in the
case of a nonuniform temperature must be compensated by an increase in
BJ over the value it assumes in the uniform-temperature situation.
Examination of Eq. (1.2) shows that J can increase only as a result
of an increase in V; or n or both. It is known that Vi varies
much more with a change in parameters and variables than do the other
coefficients, and that a change in B would be accompanied by a much
greater change in vI . Therefore the increase in BJ is ascribed to
an increase in J , and changes in coefficients other than VI can be
ignored. Since the value of J at a particular location in the dis-
charge is found by integrating Eq. (1.2) from y = 0 , where J = 0,
the greatest increase in J over its value in the uniform-temperature
situation occurs near the wall. n decreases to zero as y *+ 1 , so
the term containing dT/dy in Eq. (1.19) loses its influence near the

wall, where the increase in J is most pronounced. A study of this

equation for the density gradient discloses the approximate form of the
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electron density across the plasma column: the density profile is
flatter over the central portion of the discharge and decreases morc
rapidly near the wall than in the uniform-temperature case. It is now
apparent that the change in the shape of the density distribution con-

tributes to the increase in vIn in the equation for J . Since Neo

is the same in both cases, the physical variables for the electron den-

sity and the flux also increase.

The spatial variation of V across the plasma column as the

I

result of a nonuniform temperature can be determined by an examination

of the experimental data. The dependence of v and hence of v

I°’ I?
on the variables and parameters of the problem is given in Eq. (4.6) of

Part I. If p and T are eliminated in favor of Nn by the perfect

gas law, Nn = p/(k%), it is seen that vI depends only on E!Z/Nn ex—

cept for a factor Nn . However, v, varies so rapidly with ﬁZ/Nn

I
that the effect of the factor Nn can be ignored. Eq. (1.20) shows

that the average value of Nn is independent of the temperature dis-
tribution, but its local value across the column varies inversely with
the temperature T according to the perfect gas law. Consequently

Nn is greater necar the walls than in the center when the temperature

>

is nonuniform. Since vI is a rapidly increasing function of ﬁz/ﬂn

vI is larger in the center. The ionization rate, which appears in

Eq. (1.2), is obtained by multiplying the ionization coefficient Vi

by the electron density mn . Since =n is greatest in the central

portion of the column and decreases to zero at the walls, the greater

values of v, occur where the electron density is greatest and
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therefore have a greater effect on the ionization rate (and hence the

behavior of J) than do the smaller values near the walls. Hence, if

~

Ey were to assume the same value with a uniform- as with a nonuniform-

temperature distribution, the value of J 1n the nonuniform situation
would be greater.

It is shown above that at the same value of Neo the ionization
rate vIn must be greater if the temperature distribution is nonuniform
than if it is uniform in order to satisfy the boundary conditions on n.

It is further shown that the effect of temperature inhomogeneities on

the spatial variations of n and vI tend to increase the ionization

~

rate. EZ is the parameter that must vary in order to establish the
ionization rate at the precise value needed to satisfy the boundary
conditions. If the increase in vIn over its value in the uniform-
temperature case is too émall, ﬁz must increase so as to cause a fur-
ther increase in Vi o if the increase in vIn is too large, ﬁz must
decrease. Since the temperature distribution and its effect on vI and
n depend on Neo , the considerations above show how ﬁz 1s deter-
mined theoretically as a function of Neo . Without detailed quanti-
tative estimates it is not possible to determine whether ﬁz increases

or decreases. The numerical results show Ez to be less when the tem-—

perature distribution is nonuniform.
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2o SOLUTION WHEN ¢ = 0

When 7. 1s set cqual to zero in Fgs. (1.2) and (1.5), the terms
responsible for recombination and spatial temperature variations dis-
appear. Superficially ¢ = 0 dimplies that the clectron density is
zero, but such a physical situation is not represented by the resulting
equations. In fact, the electron density was specifically restricted
to values greater than zero in assuming the effects of space charge to
be negligible, and the corresponding modification of the basic equa-
tions gives T = 0 a different interpretation. Here [ = 0
represents a situation, possibly hypothetical, in which space charge,
recombination, and temperature inhomogeneities are negligible. It is
the situation characterized by the standard ambipolar diffusion equa-

tion, which is discussed in Part II on p. 111.

Reference Values for T and p

&

The solution to the equations when ¢ = 0 plays a special role
in the ensuing development of the problem and is distinguished by
special nomenclature. The values that J, n, T, ﬁz, and p assume

~

when ¢ = 0 are designated by Jo’ nos To’ E , and P, - The nomen-

zo
clature is quite appropriate, because these quantities constitute the
first terms of an eventual expansion of the variables in powers of [ .

The reference values Ezr and P introduced in Section 5 of

Part I in the nondimensionalization process are now defined as

Ezr = Ezo (2.1)

P, = P . (2.2)
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Unlike the definitions adopted in Part II, Ezr and p. are here
independent of Neo (or £). Consequently the constant coefficients
are also independent of Neo’ and the definitions of Eqs. (5.23) -

(5.27) of Part I become

2,\ ~ ~ ~
L™V (T _;E__,p_) T
I w zo’Fo W
o e ¥ v — (2.3)
Di(Tw;Ezo’po) Te(Tw;Ezo’Po)
2 A T
B o g S “R—_ (2.4)
Di(Tw,Ezo,po) Te(Tw;Ezo,po)
T ('f ;ﬁ sP.)
— e Y Zo "o (2.5)
T
w
D, (T ;E D)
De(Tw;Ezo,po)
~ ~ ~ 2
h(Tw,E 0P INL
B = ~ A~ n (2-7)
A(TW)TW

Sotution for T, and Py

The equation for T0 , obtained by setting ¢ = 0 in (1.5), is

dT

T 0.2
(To)(—ag) = 0 (2.8)

o, 1 di
2 A(To) dT

dy
and the boundary conditions, from (1.8) and (1.10) are

0 : o _
> " 0 (2.9)

~
I

y =12z T = 1 (2.10)
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The solution is trivial:
T = 1 . (2.11)

Equation (1.22) for P, becomes

1
- p L p_L
Q = — J X - = ' (2.12)
kT o k T
w 0 w
so p, can be determined from a specified value for a . However, it

is more convenient to regard p, as a parameter whose value is to be

specified arbitrarily and rewrite Eq. (1.22) for p as

—qz- =
= (2.13)

o
ovY—-H

The values for four parameters must be selected before numerical
calculations can proceed. The values chosen for the gas temperature at

the wall , the pressure Py s and the half-width of the discharge are

T, = 300°k (2.14)
p, = 1 mmHg (2.15)
L = 1 cm. (2.16)

The fourth parameter N is artificially introduced into the problem for
convenience. Its numerical value is selected so as to set the value of

B near unity. The appropriate value is found to be

N o= T a2 {2,175
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As a result, the order of magnitude of the coefficient Rf in Eq.

is approximately the order of magnitude of T .

Solution for J, , n, , and Lo

(o]

Using the definitions (2.1) and (2.2) for ﬁzr and P >
Egs. (5.1) - (5.9) of Part II for the variable coefficients, when

evaluated at

(T,EzsP) s (1,E__,p ) s

all reduce to unity. The coefficients Vi o

(1.5)

(2.18)

A , and B appear in the

equations for J and n , and special nomenclature is used for their

]

values when (G 0 . From (1.17) and (1.18) we have

<
|

10 = Vp(1iE,ep,) = 1

BTe N
1+T —EE(l;Ezo,po)

A = A(L;E_,p) =
o zo’ o 14T
4 1+ 6t
B = B(]-;E » P ) =
o Z0 O 1 + T 9,

Using (2.11), Egs. (1.2) and (1.19) for J and n at ¢

become

dJ0

_d_y_‘. e -Yno = 0
dn

—=+BJ = 0
dy oo

The boundary conditions obtained from (1.6), (1.7), and (1.9) are

(2.19)

(2.20)

(2.21)

=0

(2.22)

(2.23)
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y=Q: g = 1 (2.24)
g, =0 (2.25)
y=1": & 0 (2.26)

Eliminating J_ between Egs. (2.22) and (2.23), we obtain a single

equation for ng

— +YBa = D (2.27)

An additional boundary condition on n_ is obtained from Egs. (2.23)

and (2.25):

y = 02 dn
. o

2= 0 (2.28)

The problem for n, is an eigenvalue problem. Physical consi-
derations require n to be nonnegative and therefore restrict YBO

to the lowest eigenvalue. The solution is

™

n, = cosy (2.29)
2
- 14+6r m°
YBO = Y1 TR (2.30)
Observation of the expressions for Y, T, and &§ in (2.3), (2.5) and
(2.6) shows that (2.30) is an equation for Ezo . It is solved

numerically by a simple iterative procedure, and once the value of EZO
is available, all the constant coefficients can be evaluated. The
numerical values of EZo and the constant coefficients are presented

in Table 1. The quantity BO appearing there is B evaluated with



» Ezo,po) replaced by ho(

The expression for Jo

(2.25), and (2.29). It is giv

2
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~ ~

Tw;Ezo,po), the elastic energy-transfer

is easily obtained from Eqs. (2.22),

en by

m
Jo ol sin-E y a (2.31)
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3. PERTURBATION SOLUTION

An approximate approach to the problem involves an expansion of
the variables in powers of 7 . The first two terms of the expansions
are readily obtained by a regular perturbation procedure. In fact, the
first terms are the results presented in the previous section. C
occurs as a factor in the terms of Eqs. (1.2) and (1.5) that contain
€ or B , and hence these terms contribute only to higher-order
results. Table 1 shows that £ > € , and hence the accuracy of the
expansions is limited by the magnitude of B . € represents recom-
bination and its effect is quite small. It is retained in the equa-
tions because it is possible to do so conveniently, but it is set equal
to zero in all numerical calculations so as to separate completely its

effect from that of temperature inhomogeneities.

Expansions of Variables and Coefficients

Expansions for the variables of the problem are given by

J = J0 + CJl 4w ane (3.1)
n o= n + Cnl s R (3.2)
T = T_ ¥ BL, 4 wae (3.3)
P = P, ¥ELp, tor (3.4)
E, = B, + B+ o (3.5)

Since equations for terms of different orders in ¢ are obtained by
substituting the expansions into the problem and equating equal powers

of r , the zero-order terms represent the solution when 7 = 0 .
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These terms have been obtained in the previous section, and the first-
order terms are obtained here to complete the calculation.

It is easier to estimate the magnitudes of relative changes in
Ez and to appraise their effects if Ez is expressed in dimensionless

form. For that purpose we define VU by

Y = Ezlﬁzo (3.6)

Using (3.5), its asymptotic expansion is

b= Yt oo (3.7
where wo = 1 (3.8)
arid] v, - Ezl/ﬁzo . (3.9)

The expansions of the variables induce similar expansions of the
variable coefficients. For instance, V; , correct to an error of

9
order 0(Z7), can be written

~ ~ _ 2
VI(TO+ CTl’Ezo+ CEzl’po+ CPl) = vIO+ CV11+ 0(z™) (3.10)
where V1o and Vi, are coefficients in a Taylor's series expansion
about ¢ =0 . Veg is given by Eq. (2.19), and Vi, 1s found by dif-
ferentiating v; with respect to T :
v av ov
3 I I
= + -
Vi T ot it it e (3113

where the derivatives are evaluated at
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(T, v, p) = (1, 1, po) . (3.12)

Equations (3.6) and (3.9) are used to replace the differentla-
tion with respect to E? by differentiation with respcct to
depends on y through the function T1 ; the other terms are

constant. In the same manner B is expanded as

Y1

B(TO+ ch;Ezo+ CEzl’po+ Cpl) = Bo+ cBl (3.13)

where BO is found in Eq. (2.21) and B, is given as

1

_ 3, ,9B_ 3B
Bl = 37 Tl + 5p 12 + 50 wl . (3..14)

The derivatives are again evaluated as in (3.12), and errors of order
O(Cz) are neglected. Because T0 is a constant, dT/dy is order
0(z), and the other variable coefficients occurring in Egs. (1.5) and
(1.19) need not be evaluated to higher order. The term containing
d\/dT does not contribute to the first-order equations, and to zero
order

A = Ao + 0(t) s (3.15)

where A0 is defined in Eq. (2.20). Preceding Eq. (2.18) it is noted

that h and A are unity to lowest order. Hence
h = X = 1+ 0(©) : (3.16)

The derivatives in (3.11) and (3.13) are evaluated by numerical

differentiation of the coefficients Vg and B . The technique used

and its expected accuracy are discussed in Appendix A, and the
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numerical values of Ao’ Bo’ and the derivatives are tabulated in

Table 2.

First-Order Problem

Equations for the first-order corrections to the variables are
obtained by substituting the series expansions into the problem. Using
(2.11) and neglecting terms of order 0(;2), Eqs. (1.5), (1.2), and

(1.19) become

d T,
;-—~—5 = -@zn (3.17)
o
dy
aJ dJl 2
= +C ~% = Y["Iono+ z;(vmnl-h:uno)]~ €L n_ (3.18)
dno dn1 dTl
y =i '”’_d; + Z;Aono iy + BOJ0+ c(BoJ1+ BlJo) = 0 . (3.19)

Using (2.19) and Egs. (2.22) and (2.23) for the zero-order problem, we

obtain
dle
— =-8n (3.20)
o

dy

Eii -Yn, = Yv..n_ - En2 (3.21)
dy 1 Il o o :

dnl dTl

'Ty + BOJ]_ = —BlJo - AOnO —d—}; % (3.22)

The boundary conditions, obtained by substituting the expansions for

the variables into Eqs. (1.6) - (1.10), are

y=0: n, =0 (3.23)



Jl = 0 (3.24)
dTl
Md-); = 0 (3.25)
y=1z: n, = 0 (3.26)
T1 = 0 . (3.27)

An equation for the first-order correction to the pressure is obtained

from (2.13) using (2.11):

;|
- dy _
0 P J - (3.28)
0
il
— d -
= (p * Tpy) J if;ﬁﬁii P, (3.29)
0
1
= (PO+ Cpl) J (1 - ch)dy * P 0(€2) (3.30)
0
¥
= pJr E(pl— B j Tldy) ~ P, (3.31)
0
S0
1
Py = P, J T, dy . (3.32)
0

Solution for T; and pq

The solution for Tl and Py is obtained very easily. Using

the form of o given by (2.29), Eq. (3.20) for T1 becomes

— =-8 cos~% y 3 (3.33)
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The solution, subject to the boundary conditions (3.25) and (3.27), is

T1 =-£§ B cos %-y : (3.34)
™
Equation (3.32) for p, now yields
1
P=LBchoslydy (3.35)
I 2 o] 2 )
i
0
8
= "3‘8 Py . (3.36)
)

Solution for B, and ny

An equation for =n

1 is acquired by eliminating J between

1
(3.21) and (3.22). Using (2.30), which shows that YB_ = T°/4 ,

and arranging the terms in the desired manner, we obtain

2
____._ril_}._ﬂzn =—d_(BJ)—A .":]'_.(nd_Tl“_
d 2 4 1 dy 1l o ody o dy
¥y
172 2
ale - Ilno+ EBono (3.37)

An additional boundary condition on n, is found by using the boundary

conditions on Jo’ Jl, and T1 at y =0 in Eq. (3.22):
dn
y=0: "
bﬁ;‘ 0 (3.38)

The homogeneous equation associated with (3.37) has a solution,
cos %-y , which satisfies theboundary conditions (3.38) and (3.26).
Appendix B of Part II can now be applied with the functions w(y),

p(y), and q(y) given by w=1l, p =1, q = w2/4 . The theorem in
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the Appendix states that the right-hand side of (3.37) must he

m
orthogonal to cos 7 v if a solution for ny 1s to exist. Writing

this statement as an equation, we have

t i d d dTl ﬂz 2
I cos E“y[g;{BlJo)-FAO 5§{n0 ~a§)4-j;-vllno-€Bon0] dy = 0 . (3.39)
0

All the quantities in the integrand are known except wl , which

appears through the expressions for vIl and Bl , and hence (3.39)
serves as the equation for Ezl . The operations necessary to obtain
an explicit expression for wl or Ezl are tedious and boring, but

since the result is very important, the details are given in Appendix

B. Using (3.9), Ez can be written from Eq. (B.21) of Appendix B as

oV oV
e w Lo ra L 8 p9B 4 ., 0B
En="GrBar vaB 3Pt 3 art 3835, P
3 m
2 3v
2 4 0 m I , 1 _ 9B
= 3y PA - 37 €B)) Ezo/(8 w T2 Y (3.40)

Several observations can be made about this expression. First,
it should be noticed that if the term containing € were omitted,
E 1 would be proportional to B . This result is expected, because
VA

if € were removed from the problem, the only term that is treated
as a perturbation in the original equations contains B and ¢ as
factors. Since there is some ambiguity involved in the definition
of B (see Part I, pp. 30-34), it is reassuring to find that only the
magnitude, and not the sign, of ﬁzl depends on f . The effect of

A

€ on Ez can now be determined quantitatively from the expression
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~
for L P An examination of Tables 1 and 2 shows that [t {s very small.
Z

Table 2 also shows that E?l Ls composed of differences of rather large

terms and reveals quantitatlively the difficulty In predicting the sign
of EZl v
The terms on the right-hand side of Eq. (3.37) are written as

functions of y in Appendix B . Using (B.1l1l), (B.14), (B.15), and

(B.16), the equation for n becomes

1
dznl w2 4
2 + -l‘-nl —— YB = BAO [Y(_ alp ‘p )

dy

2 dv v

e Oy a8

=% &5 5y W21 cos 5y + (- 5 ¥YB 5
ov
+ 208 - B3 I+eB J)cos 2 Ty . (3.41)

The solution satisfying boundary conditions (3.23) and (3.38) is
obtained by standard techniques. After eliminating wl with Eq. (B.21)

of Appendix B, n can be written as

1
v
_ & — ﬂ__ - r
i .- B =57 AL aT +BA, ~ €B Jeos 5 ¥
v
4 I 8 0B 2w
+ 3“2(3 AT + “2 YB AT T ZBAO - eBO)cos 5
oV
4 S - 4 9B m
- 3—W2(28—3T + 2 YB 7p - BA_ - 26B ) (1-y sin 5 ¥). (3.42)

It is apparent that by virtue of the solution for wl’ n, satisfies the

boundary condition (3.26) at y = 1 . Equation (3.42) shows that n;
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like wl , would be proportional to B 1f € were not present. n,

and n

| are presented as functions of y in Fig. 1. The values of

n on the graph are obtained after setting € = 0 . The form of n

1 1

verifies the qualitative conclusions reached in Section 1 concerning
the shape of n : the electron density n cos Cnl remains flatter over
the central portion of the discharge and drops more rapidly near the
wall than does n_ o, the density profile in the absence of temperature
gradients.

Since the other first-order variables are known, J can be

1

obtained in a routine manner from either equation (3.21) or (3.22).

However, J is not needed and the calculation is not performed here.

1

Numerical Results

€ 1is set equal to zero in all numerical calculations. Evaluat-
ing Eq. (B.21) of Appendix B for ¢1 , we find that to first order

is given by

¥ = 1 - 0.08811BC ! ' (3.43)
Inserting the value of B , we find

P = 1 - 0.3926C . (3.44)

If the value of Bo is used in place of B in Eq. (3.43), we obtain

1-0.03609C

V]p=g, (3.45)

~

The discussion on pp. 30 -34 of Part I shows that h, and hence B,

~

is not a clearly defined quantity. The value selected for h (and

B) is actually an upper bound, although it is expected to be a good
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estimate. Use of the value of B0 for B 1is not a good estimate, but

it does represent a lower bound. After converting Y to E and T

" to N, » Eas. (3.44) and (3.45) are plotted in Fig. 2. It is obvious
from equation (3.43) that the result of a lower value of B is to
delay the onset of significant temperature-inhomogeneity effects to a

larger value of ¢ . Replaciné Yy and T 1n (3.44) by the corres-

ponding dimensioned quantities, we obtain

E_ = (20.84411 volt/em)(1 - 0.3926 10" Hemn_ ) (3.46)

s

Graphs of Egs. (3.46) and (3.44) are presented in Figs. 3 and 4.

The temperature at the center of the discharge provides a
measure of the increase in temperature above its wall value, and it
is of interest to observe this quantity as a function of electron den-

sity. From Egs. (2.11), (3.3), and (3.34) we obtain to first order

T(y) = 1 +—l'3 Br cos % Yy (3.47)
m
SO
4
T@) = 1+-58 . (3.48)
i

A plot of ¢ wversus T(0) is presented in Fig. 5. By eliminating ¢

between Eqs. (3.43) and (3.48), it 1is possible to relate T(0) and

Y . The relationship is independent of f and is plotted in Fig. 6.
The pressure, correct to first order, is obtained from Egs.

(3.4) and (3.36):

p= p,1+2p) . (3.49)
m

A plot of T versus p 1is presented in Tig. 7.
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4. NUMERICAL SOLUTION

In this section the differential equations for J, n, and T
(with € set equal to zero) are integrated numerically. Before solv-
ing, ¢ 1is assigned a value, so the solution corresponds to a
particular Neo . Ez is determined in the process of solving the
equations, so by repeating the procedure for various values of ¢
enough points are obtained to plot the Ned-ﬁz relation. Since recom-

bination is ignored, the deviation of EZ from Ezo is attributable

solely to the effect of temperature inhomogeneities.

Qutline of Procedure

The method used to solve the equations dissects the problem into
two two-point boundary value problems. J, n, and Ez are determined
simultaneously in one of the problems, and T is obtained from the
other. The two problems are solved repeatedly in an iterative process
which leads to the final solution for a specific T

The procedure is explained by the following outline, which is in

turn followed by a detailed description of the individual steps:

Step 1: Choose T .

Step 2: Obtain T(y) £for this value of ¢ £from perturbation
results.

Step 3: Calculate p from the function T(y)

Step 4: Solve for J, n, and Ez using the values of T(y) and
p - Integrate from y = 0 wusing the boundary conditions

there, and vary Ez until the condition at y = 1 is

satisfied.
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~

Step 5: Solve for T wusing the wvalues of p, Ez, and n(y)
Integrate from y = 0 using the boundary condition
there, and vary T(0) until the condition at y =1 is

satisfied.

Step 6: Return to Step 3 (diterate).

Step 1

The value of ¢ 1is not changed in the process of solving the
equations. Ez, p, and the dependent variables all correspond only to

the value selected.

Step 2

The first approximation to the temperature distribution T(y)

is obtained from Eq. (3.47) and is denoted T(o)(y) :

(o)

T (y) = 1+ EE Bz cos

m

(NIE]

y oo (4.1)

It is the quantity used to start the iterative process, and its
accuracy as an approximation to the exact solution T(y) is primarily
responsible for the number of iterative cycles necessary to achieve a

satisfactory solution.

Step 3
The determination of the pressure from the temperature distribu-

tion is the first step of the iterative cycle. The superscript n

denotes the number of the iteration, and p(n) is obtained from Eq.
(2.13):
1
(n) _ dy
P = Po T(n_l) (4.2)
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where n =1, 2, *++ . The integral is evaluated numerically using
Simpson's rule with a stepsize of 0.02. This value of the stepsize
vields very accurate results and poses no significant limitation on

the convergence criteria for the iteration schemes.

Step 4
The differential equations for J and n are solved simultane-

ously using the most recent estimates for p and T(y) . From Egs.

(1.2) and (1.19) we have

(n) ik 7

dey__= Y\)]:(.I,(n 1);E£n),p(n))n(n) —_—

(n) ~ (n-1)

din " s ke=l) (o) _(n), (n) dT
dy - A(T ,EZ »P )I'}. dy
_ B(T(n—l);ﬁ;n)’p(n)) J(n) (6.4
The boundary conditions correspond to (1.6), (1.7), and (1.9):

y = 0 SRS (4.5)
a0 (4.6)
& = i n™ = o (4.7)

where n = 1,2,°"° . The integration is performed by the classical
*
fourth-order Runge-Kutta method , and a stepsize of 0.02 is sufficient

to insure the desired accuracy. The integration is begun at y = 0

*
See, for instance, Henrici [3], pp. 67-68, 122,
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using the boundary conditions (4.5) and (4.6), and the parameter

Eﬁn) is changed and the integration repeated until the condition (4.7)

is satisfied.

~(n)

The sequence of estimates of E is determined by the method

* ~
of false position . We let 2z represent the value of E;n)

S ()
z

pA =

(4.8)

(k)

and denote the successive estimates by the sequence z g K=0,0,2, %89,
A function £(z) is defined as the value of n(n)(l) obtained by

solving the problem (4.3) - (4.6) with =z substituted as the value of
SO
z
£He) = a ™) ) (4.9)

B,
z

2 (n)

The correct value of Ez for which the condition (4.7) is satisfied

is then given by the solution to the algebraic equation

f(z) = 0 . (4.10)

(k)

The sequence z » which converges to the root 2z , is defined by

(k)
LD (k) f(?_k))_ _ (4.11)
m

for k= 1,2,**+, where

%
See Isaacson and Keller [4], pp. 99-102.



£z ) - £(z --;)* if lz(k)~ z(k—l)l 2

o NO IS :
m =
gy ey MO
D - » A e
(4.12)
The conditional definition of m(k) is necessitated by the round-

off error in single-precision computer calculations. When the difference

k =
between the successive estimates z( ) and z(k L becomes small,

(k)

round-of f error can seriously alter the value of m . 1 represents

a value of k for which Iz(k) - z(k_1)| 2 e The value € = 0.1 is

used in the calculations. The first term z(o) of the sequence is
selected either from the perturbation results or as Einvl) , depending

on the value of n . Using (3.5), we define

E +zE , 1if mn=1
o Z0 >zl
= (4.13)
g(n-1) , if n>1
z

The value of z(l) must also be specified before the recursion formula
(4.11) can be applied. Its value is selected arbitrarily in the
vicinity of z(o) . The sequence is terminated when the fractional

difference between successive terms becomes less than 10m5 , and the

(n) )

value of the last term is assigned to Ez

The convergence is rapid,

and usually Egs. (4.3) and (4.4) have to be integrated only three or
(n)

four times before an acceptable value of Ez

is determined. Typical

results are presented in Table 4.
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Step 5
The differential equation for the temperature is solved using the
most recent estimates for p, Ez, and n . From (1.5), (1.8), and

(1.10) we obtain the problem for T(n):

(n) Z(n) (n)
a2 ™ 1 dh ), arta RIUESTeTY e
dy AT ) AT
(4.14)
(n)
= . El_.r_._-.- =
y=0: i 0 (4.15)
v s 1 & 0 (4.16)
where =n = 1,2,***. The integration is again performed by the classi-

cal Runge-Kutta method using a stepsize of 0.02.

(n)

The problem for T is a two-point boundary value problem

(n)

similar to the one just discussed for J i , and the solu-
tion is obtained by a similar procedure. The integration is again
begun at y = 0, but here the value of T(“)(o) is varied and the
integration repeated until the boundary condition at y =1 is satis-
fied. The correlation between the iterative pnrocesses of the two
problems can be emphasized by a redefinition of z and £f(z) in the

(n)

present context. First the problem for T is converted to an
initial value problem in which the boundary condition (4.16) is

replaced by

y =0 : i+ =z . (4.17)

f(z) is defined as the solution to this problem evaluated at y = 1

minus the value it should assume:
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(n)
f(z) = T (1) -1 5 (4.18)
(™ 0y =

The value of z for which the boundary condition (4.16) is satisfied
is now the solution to Eq. (4.10). The sequence z(k), k=0,1,2,-+-,
consists of successive approximations to this root of £(z) . It is
generated by Eqs. (4.11) and‘(4.12), and the problem (4.14), (4.15),
and (4.17) must be solved at each step in order to determine f(z(k)).

¢ 1is here given the value 0.005, and the initial term of the

sequence is defined by

2(® = @1y (4.19)

(D

z must also be specified, and its value is selected arbitrarily in
the vicinity of z(o). The sequence is again terminated when the
fractional difference between successive terms becomes less than 10-5.
The rate of convergence is similar to that of the sequence approximat-
ing Eén)’ and typical results are presented in Table 5. Since the
temperature distribution corresponding to the last term of the sequence

is never found, the value of the preceding term is assigned to

T(")(o)

Step 6

This step comnsists of a return to Step 3 to begin another cycle
of the iterative procedure. The value of the superscript n is
increased by one, and in Step 3 a new pressure is calculated from the

new temperature distribution. The iteration is continued until the

fractional difference between and Ein"l)

E;n) becomes less than
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10—4 in magnitude. The number of ilterations nceded to satisly this

convergence criterion depends principally upon the accuracy of the

initial approximation to the temperature distribution. TFor instance,

wvhen ¢ = 0.1 , the perturbation solution is reasonably accurate, and

the iteration is stopped after the variables corresponding to n = 4

are calculated; when T = 0.4, an acceptable solution is not obtained
~(n) (n)

until n = 8 . Typical values of the sequences for Ez s T , and

T(n)(O) are presented in Table 6.

Results

By executing the procedure described above for a number of dif-
ferent r's, enough information is obtained to show the behavior of
Ez, py J, n, and T as functions of z . The effect of temperature
inhomogeneities on the shape of n 1is shown in Fig. 8, where n_, n,

J, and T are plotted as functions of y for a specific value of
Graphs of ‘Ez (or Y), p, and T(0) versus ¢ (or Neo) are plotted
along with the perturbation values in Figs. 3, 4, 5, 7, and Fig. 6 shows
T(0) versus Y. A comparison of the numerical and the perturbation
results shows that the latter are not very accurate except for small
values of € . Tabulated values of ¢ , p , and T(0) for various

z are presented in Table 7.

Unfortunately, the numerical procedure cannot be applied at large
values of 7 , because the variation of T with y causes the domain of
the data to be exceeded. Eq. (4.29) of Part I shows that the data for
the coefficients of the equations can be evaluated only for a limited
range of EZ/Nn = ﬁzkﬁlp . Since T varies more extensively between

the wall and the center of the discharge as ¢ increases, the quantity
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~

EZ/Nn exceeds its limits during the integration over y 1f 1 dis too

large. The solution to the problem when ¢ = 0.4 involves a slight
extrapolation of the least—squares fit for the data and hcence 0.4

serves as an upper bound on ¢ . This value of [ corresponds to an

electron density of Neo =4 x 1010 cm_3. Since the solution to the

problem depends qualitatively on the coefficients, the form of the

Neo--Ez relation beyond this value cannot be predicted.
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5. SUMMARY

Results of the calculations investigating effects of temperature
inhomogeneities, recombination, and space charge can be interpreted by
comparison with the experimental behavior of discharge columns. Calcu-
lations combining the effects of all three factors are not available,
but qualitative conclusions can be reached from the studies of Parts II

and ITI.

Combined Effects

Deviations from ambipolar conditions as a result of space charge
are most pronounced at small values of the electron density. Calcula-
tions combining its effect with that of recombination are performed in
Part II, and a discussion of its omission in temperature calculations
begins on p.292. Since recombination and temperature inhomogeneities
are only significant at large values of the electron density, the lower
portion of the Neé-ﬁz curve is essentially the same as that shown in
Fig. 10 of Part II. Calculations involving effects of both space
charge and temperature inhomogeneities would be so tedious and involved
as to be unprofitable.

Recombination and temperature inhomogeneities both become impor-
tant at large values of the electron density, and the contribution of
each to the equations is discussed on p. 307 . The perturbation
results of Eq. (3.40) show the effect of each on the Ned_ﬁz relation.
These results, the characteristic curves of Parts II and III, and the
relative magnitudes of B and € show that temperature inhomogenei-

ties become important at a considerably lower value of Neo than does
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recomhination. Calculations cannot be performed at values of NGO

wvhere both arce important, because the large spatial variations of the

Lemperature exceed the range where experimental data are avallable. The
individual effects of recombination and temperature inhomogeneitics on
the Neﬁ"ﬁy relation are shown in Fig. 10 of Part 1T and Fig. 2 of
Part T1T, but the combined effect is left to conjecture. Tt Is pos-

sible that as the electron density increases, recombination might
eventually become more important than temperature effects. 1In that

case the Neoﬂﬁz curve would bend left and then back right with increas-
ing Neo . However, such qualitative behavior cannot be reliably

predicted without more data.

Interpretation of Results

In Part II the effect of space charge on the Ned-%z relation
at low Nco is shown to correspond to the shape of the discharge
characteristic in the subnormal-glow regime. The portion of the dis-
charge characteristic in which temperature inhomogeneities and recom-
bination are likely to be significant is that corresponding to the
abnormal glow or arc (see Fig. 2, Part I).

In Part II recombination is submitted as a possible factor in
shaping the discharge characteristic in the abnormal-glow regime.
lHowever, the possibility that recombination is important here is
actually quite small; the calculations above show that temperature
inhomogeneities become important at lower values of the electron den-
sity (or current), and their effect on the discharge characteristic

must be accounted for first. Furthermore, it is known that the
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voltage drop in the vicinity of the cathode increases with current in
the abnormal regime, and, in fact, this increase is considered the
defining property of the abnormal glow*. The voltage coordinate of
the discharge characteristic (Fig. 2, Part 1) represents the total
voltage drop along the discharge. It 1s quite possible that the rise
of the characteristic in the abnormal regime 1s caused only by voltage
changes in the cathode region and that the rise is totally unrelated
to the behavior of the electric field in the positive column. In
particular, the electric field in the positive column may actually
decrease with increasing current in the manner predicted by calcula-
tions concerning temperature inhomogeneities.

The discharge characteristic shows that the total voltage drop
decreases markedly in the transition from the abnormal glow to the afc
regime, It is known that the large decrease is primarily a cathode
phenomenon and that, in general, the voltage continues to decrease
with increasing current in the arc regime although it does so less
rapidly**. Furthermore, the electric field in the positive column
decreases as the current (or, equivalently, the electron density)
increases***, so the positive column contributes to and may play a
significant role in determining the discharge characteristic in the

arc regime. Figures 2 and 3 show that the calculated Ne6—ﬁz

*
See Cobine [1], pp. 214-215, 226-228; Von Engel [5], pp. 225-234.
k%
See Cobine [1], pp. 290-298, 311-312; Von Engel [5], pp. 259-263.
*
***See Cobine [1], pp. 298-299, 316-317, 327-329.
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relations agree qualitatively with this behavior, and hence the effect
of temperature inhomogeneities as calculated here may contribute sub-
stantially to the form of the discharge characteristic in the arc
regime.

It would be of interest to continue the calculations to larger
values of the electron density, but the extent of the data limits our
efforts. However, Ecker and Zdéller [2], using their approximate
coefficients, are able to do so, and they also find a negative voltage-
current characteristic caused by temperature inhomogeneities. Their
concluding remark that the calculated behavior corresponds to the
subnormal-glow regime should be reconsidered, however,

At very high values of the electron demnsity, recombination may
be important. The discussion of the recombination coefficient in
Part I shows that its actual value for hydrogen is probably consider-
ably less than the value used in the calculations of Part II, and hence
its effect on the Ned-ﬁz relation would occur at larger values of
Neo . Although other gases possess larger coefficients, the effect of
recombination is not likely to be felt except far into the arc regime.
At very large currents, the voltage drop begins to increase again*, and
the effects of recombination may help explain the behavior of the dis-
charge characteristic here. With the appropriate choice of electrodes

and operating conditions, the discharge may remain a glow at unusually

ek
high currents . In such unusual circumstances it is conceivable that

%
See Cobine [1], p. 299.

%k
See Cobine {1], pp. 251, 315.
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the effect of recombination on the discharge characteristic may appear
before transition to an arc.

It is perhaps useful to reiterate our final conclusions concern-
ing the relation of the calculated positive~-column characteristic to
the discharge characteristic. The effect of space charge on the
Neé-ﬁz relation can account for the subnormal discharge, and the

~ ~

region of the Neo_Ez curve where Ez changes only slightly with Neo
corresponds to the normal glow. The effect of temperature inhomogenei-
ties helps explain the decreasing characteristic of the arc, and the
effect of recombination is not expected to appear except at very high

electron densities; it is not expected to be of significance in the

abnormal-glow regime.
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Appendix A
NUMERICAL DIFFFERENTIATION OF COEFFICIENIS

The derivatives of Vi and B with respect to T , ) , and p
are obtained numerically by the method described here. The method is

well illustrated by a formula for the derivative of a function of a

single variable.

Differentiation Formula

The procedure by which the formula is obtained consists of ex-
panding a function £(x) in various Taylor's series about x and
combining them in such a way that certain higher-order derivatives

cancel. We begin by writing the expansions

2 3 4
£Geth) = £G0 +hE G+ 1o+ £ o+ £ o ko)
(A.1)
2 3 B
f(x-h) = £(x) - hf'(x) +%— £ (%) —-h6— £ (%) +2—4 gliv) (x)+ 0(h°)
(A.2)
£ (x+2h) = £(x) + 2hf' (x) + 2h2f"(x)+% BIE" (x) +% w0 o+ 0¥y
(A.3)
£(x-2h) = £(x) - 2hf' (x) + 2h2E" (x) —% RIE" (x) +% b4 e oy 4 0wy .
Ch )
Subtracting (A.2) from (A.l), we obtain
' B 5
£f(x+h) - f(x-h) = 2hf' (x) + —? £ (x) + 0(h7) (A.5)

which can be rearranged to yield
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£ (xt+h) ;hf(x—h)_ T (A.6)

£'(x) =

In a similar manner all four expansions are combined to produce the

formula,

£ (x) = -%B—[f(x+h) < El=h) —-é— f(x+2h)+% f(x-20)] + 0hD . (A7)

Error Analysis

The derivatives of the coefficients vI and B are evaluated
by applying formulas (A.6) and (A.7) for various values of h . The
calculations of the coefficients from the least-squares fits for the
experimental data is done in single-precision accuracy on the computer,
so it is necessary to select h so as to avoid either a large trunca-
tion error or a large round-off error. An example of the accuracy of

the results is shown in Table 3, where various calculations of 3B

op Py
are listed. By observing such results, it was decided to evaluate the

derivatives by Eq. (A.7) using

h = 0.02 ” (A.8)

The answers obtained are expected to be accurate to approximately four

significant digits.



-333-

Appendix B

CALCULATION OF W

IJJ_L is obtained in a straightforward manncr by performing the

integrations in Eq. (3.39), which is rewritten below:

1k
dT 2
™ d d 1, ,1m" 2 _
J cos §~y[a;(B1JO)4-AO dy(no ;- + 7 vIlno EBOnO]dy = 0. (B.1)
0
Various derivatives of n.s Jo, and T1 are needed and are ohtained
from Eqs. (2.29), (2.31), and (3.34):
i
n, = cosy (B.2)
dn
m . AL
d_yg____ -5 singy (8.3)
- & .
g, = S atngy (B.4)
dJ
o] ™
dy Y cos 5 ¥ (B.5)
- m
T1 = 8 cos 5 Y (B.6)
m
dT -
I T B sin-E y (B.7)
d2T1 o
——§-=__ B Cosiy ; (B.B)
dy

The terms in the integrand are now evaluated using Eqs. (3.11) and (3.14)

and the relations above:
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1T . dJ
d ) I § )] 3B B )
8 " Hm Y STt Rt & (B9
_ 4 g 2T 4 3 2T
RepYRgrein gy b g Y gy " 5 ¥
™ m
9B 9B T
+ Y(ap Py + 30 wl) cos 7y (BR.10)
A 9B 8 B 2m
3 YBgp + 3 YR gy cost 5y
2B 9B m
+ YCEF Py + 3 wl) cos 5y | (B.11)
dT dn_ dT a’t
d Lo 0 1 1
Ao dy(no dy - Ao dy dy £ Aono dyz (B.12)
. 2% 2m
= BAosin > ¥ BAO cos” 5y (B.13)
= BA - 2BA cos’ I (B.14)
o o 2 y _ -
2 oV 2 9V oV
m - p_ L m T I S m
Z V% T B pr cos Ryt ptan g Yy) cos 5y (R 3)
- 2 2w
ﬁBono = gB cos 5 ¥ P (B.16)

The integrations can be performed most economically if a few

definite integrals are evaluated first. They ‘are

1

Moo 2
J cos 5 ¥ dy = = (B.17)
0
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1
2n . 1.1 - &
j cos” 5 v dy J (2 + 5 cos my) dy 5 (B.18)
0 0
1 1 1
38 g day = Tya Tysin2lya
cos” 5y dy = cos 5y dy - cos 5 y sin” o y dy
0 0 0
- 2.2 A
w o T (B.19)
Using (B.11), (B.1l4), (B.15), and (B.16), Eq. (B.l) becomes
8 BB Y dB B
- == ¥B B By )
1T3 BT 3“ 2 3p F1 oY "1
v 2 9V Vv
2 e n L I _ 4

Solving for wl and eliminating Py with Eq. (3.36), we obtain

avI v

_ 4 o T 4 9B
l’bl - (3ﬂ B 3T

1 I
+ m B ap By *—3 3 3 Y8 57 BT —E-YB EE'P

2 dv
2 4 Sil I Y 9B
- 37 BA, '3nEB)/(3 w T I (8.21)
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NOMENCLATTURE

The number following the descriptions gives the page on which
the symbol first appears. Symbols whose use 1s very temporary and

those which have been defined previously in Part I usually do not appear

here.

Roman
A variable coefficient in the equations (295)
A A at T =0 (304)
B variable coefficient in the equations (295)
B B at [ =0 (304)
B1 second term in the expansion of B (309)
EZO Ez at £ = 0 (301)
Ezn nth term of the expansion for Ez (307)
Ein) nth approximation of Ez (319)
Jo J at r =0 (301)
Jn nth term of the expansion for J (307)
() s approximation of J (319)
n electron and ion density (293)
n n at =0 (301)
n nth term of the expansion for n (307)
a(m) i approximation of n (319)
P p at ¢ =0 (301)
P, nth term of the expansion for p (307)

P nth approximation of p (318)



(o)
(n)

Greek

-337-
quantity of gas in discharge (296)
T at =0 (301)
nth term of the expansion for T (307)
initial approximation of T (318)

nth approximation of T (318)

B with h replaced by ﬁo (305)

V. at (¢

I 0 (304)

second term in the expansion of Vv (308)

I
dimensionless axial electric field (308)

Y at r =0 (308)

nth term of the expansion for ¢ (308)
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Table 1

VALUES OF Ezo AND CONSTANT COEFFICIENTS

L = 20.84411 volts/cm
z0o
Y = 2.412279
€ = 0.09612836
T = 1.164970 x 102
§ = 2.715121 x 1074
B = 4.455542

0.4095883

™
]
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Table 2

VALUES OF Ao, Bo’ AND DERIVATIVES OF v] AND

Derivatives of vI and B are evaluated at

(T,p,p) = (l,l,po)

A = 0.860228
(o]

B = 1.02285
o

'c)\)I

37 = 6.42579
B\JI

ﬂgg'po = =-6.42542
B\)I

—§$ = 7.42569
9B -

37 = 2.00052
oB _

Ap P, = 1.99178

28 = -0.968976
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Table 3

CALCULATED VALUES OF -gj

P Po

aB

The numbers arce the values of 7
C

P, calculated by the
numerical differentiation formulas (A.6) and (A.7) of Appendix A.
The headings O(hz) and O(ha) represent the truncation errors of

the formulas used in the respective columns.

h _om?) oy
0.100 1.99651 1.99213
0.050 1.99307 1.99193
0.020 1.99200 1.99178
0.010 1.9918%9 1.99186
0.005 1.99204 1.99208
0.002 1.99080 1.99064

0.001 1.98984 1.98952
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Table 4
EXAMPLES OF THE CONVERGENCE OF Z(k) TO Ein)

- .3

=1 : k z(k)
0 18.38934
2 18.84865
3 18.84923
4 18.84923

Eil) = 18.84923

a1y = 0.7 x 1070

2 % k z(k)

0 18.84923
2 19.27286
3 19.27399
4 19.27400

E;z) = 19.27400

a1y = 0.7 x 107>

. g 0
0 19.19473
. 19.19376
3 19.19374

E;7) = 19.19374

a1y = -0.5 x 1075
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Table 5

EXAMPLES OF THE CONVERGENCE OF Z(k) to T ™0)

- 0.3

=1: k 2 (k)
a 1.541728
2 1.423100
3 1.423812
4 1.423805

71 (0) = 1.423812

11y = 1.00001

= & X z(k)
0 1.423812
9 1.457333
3 1.457508
4 1.457516

(2 0y = 1.457508

(2 (1) = 0.99999

ey X 5 k)
0 1.449483
2 1.449376
3 1.449377

(7 0) = 1.449376

7 (1) = 1.00000
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Table 6

EXAMPLE OF THE SEQUENCES Ein), p (M (1) 6y

z=0.3
) ~(n) (@) 2™ o)
0 - - 1.541728
1 18.84923 1.322584 1.423812
2 19.27400 1.264105 1.457508
3 19.16916 1.283759 1.446916
4 19.20161 1.277559 1.450170
5 19.19156 1.279457 1.449165
6 19.19473 1.278877 1.449483
7 19.19374 1.279060 1.449376
8 - 1.278996 -
EZ = 19.194
p = 1.2790

T(0) = 1.4494
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Table 7

¥, p, AND T(0) AS FUNCTIONS OF [

>

& v P T
0 1 1 1
0.05 0.98191 1.0549 1.0867
0.10 0.96636 1.1054 1.1674
0.15 0.95284 1.1525 1.2432
0.20 0.94094 1.1969 1.3151
0.25 0.93033 1.2389 1.3836
0.30 0.92084 1.2790 1.4494
0.35 0.91220 1,814 1.5127
0.40" 0.90438 1.3544 1.5739

*
Values corresponding to this <Yy involve a slight

extrapolation of data.



~346-

LIST OF FIGURES

ng and n as Functions of vy

~

Perturbation Results for the Neé'Ez
N versus [

eo z

L versus U

t versus T(0)
T(0) versus

 versus p/p0

no, n, J, and T as Functions of ¥y

Relation for B and BO



~347-

I ‘. I T
0.8
o
0.6 N\
04+
iy
Q2
| | 1 !
0.2 0.4 0.6 0.8
y
Figure 1: and n, as Functions of vy

1




-348-

12
10 | ] T T
— -
Ezllgaﬁb
2
(& ]
o
@
=
10'0_
FROM PERTURBATION ANALYSIS
I | L I !J
4 8 12 16 20
E, VOLT/CM
Figure 2: £

and BD

Perturbation Results for the Ne-E

Relation for



3
:
3x 100} .
1
& |
A Z |
: % &
: 2 i
2 x10'0 ? -
o
3 \
I x 100 \ .
e
i
] N ! i
18 19 20

-349-

A
E, VOLT/CM

~

Figure 3: N versus E
eo z



-350~-

0.90 0.95

0.85

0.3

¢ 0.2

v

f Vversus

Figure 4:



-351-

i
g ClZ[—

O.l

Figure 5:

T (0)

C versus

T(0)




T(0)

-352-

1.4

J
0.85 0.90 0.95
14

Figure 6: T(0) wversus



~353-

0.5

[ 0.2f

]
o

1.6

r versus p/p0

Figure 7:



-354-

A 3o suotioung se I pue ‘[ ‘u %y :g 2an3Tj

A ,
60 8'0 20 90 S0 0 €0 20 0

{ i | I | I [ i !

20

$0

20

80

ol

I



-355-

BIBLIOGRAPHY

Cobine, James Dillon, Gaseous Conductors, Dover, 1958.

Ecker, G. and 0. Zoller, "Thermally Inhomogeneous Plasma Column,"

Physics of Fluids 7, 1996-2000 (1964).

Henrici, Peter, Discrete Variable Methods in Ordinary Differential

Equations, Wiley & Sons, Inc., 1962.

Isaacson, Eugene and Herbert Bishop Keller, Analysis of Numerical

Methods, Wiley & Sons, Inc., 1966.

Von Engel, A., Ionized Gases, Oxford University Press, 1965.




PROPOSITIONS

Relaxation of the Electron Distribution Function to the

Maxwellian State

Jump Discontinuities in Concentration Profiles for Fixed-

Column Adsorption

The Equations of Surface Flow in a Rotating Frame of

Reference



-357--

Proposition |
RELAXATTON OF THE ELECTRON DISTRIBUTTON FUNCTION TO

THE MAXWELLLIAN STATE

In a plasma typical of the positive column of a glow discharge,
the applied electric field maintains the mean electron energy at a level
much higher than that of the neutral molecules. If the field is sudden-
ly removed, the mean electron energy or electron temperature decreases
until it equals the temperature of the neutrals at equilibrium, where
both electrons and neutrals have Maxwellian velocity distributions at
the same temperature. In the following work the response of the elec-
tron distribution function to the abrupt removal of the electric field
is studied analytically in an attempt to determine the ''relaxation
time''--the time needed for the distribution function to evolve signifi-
cantly toward its asymptotic Maxwellian form. An estimate of the
relaxation time is obtained by an approximate method based on energy-
transfer considerations, and this value is checked by a numerical
integration that yields the transient behavior of the entire distribu-
tion function.

The analysis is based on the Boltzmann equation for the electron
distribution function. The plasma is assumed to be spatially uniform,
and inelastic collisions are neglected. Consequently there is no
mechanism for production or loss of electrons, and the electron density
remains constant. The analytical work proceeds bv expanding the dis-
tribution function in spherical harmonics and substituting the expansion

into the Boltzmann equation. Equations are obtained for the first two



terms of the expansion, and it is these cquations that are solved
numerically to determine the relaxation timec.

This study of the relaxation time is prompted by the nccessity of
choosing the proper approach when solving the Boltzmann equation for
the electron distribution function in a plasma with an alternating elec-
tric field. If the frequency of the field is very high (microwave
frequency, for instance) so that the field completes a cycle in a time
much less than the relaxation time, the equation can be simplified
greatly by averaging it with respect to time over one cycle*. On the
other hand, if the frequency is low (power-line frequency), the distri-
bution function at a given time can be found by solving the equation
treating the electric field as a constant parameter and using in the
solution the value of the field at the time in question. Such simpli-
fying procedures are not available when the frequency is near the
reciprocal of the relaxation time, and it is important to know the
relaxation time in order to determine when the approximations can be
made. Of course, knowledge of the relaxation time is also important in
other applications involving iInterruption or alteration of the electric
field.

The Boltzmann Lquation

Omitting the terms involving spatial gradients and inelastic
collisions, the Boltzmann equation for the electron distribution func-

tion can be written as

*
This approach is demonstrated by Holstein [9].
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where
f(v,t) is the distribution function normalized so that f dv

represents the probability of an electron lying in the

element of velocity space dv ;

is the (constant) electric field

S s

e is the magnitude of the electronic charge ;

3

m is the electron mass ;

(Bf/at)e " is the rate of increase in f caused by elastic elec-

tron-neutral collisions

Although the term containing the electric field is not present when the
equation is solved during the relaxation process, it is included in the
derivation of the final equations in order to show the appropriateness
of the choice of initial conditions and to demonstrate the motivation
for expanding f 1in spherical harmonics. The collision integral can

be written in terms of electron and neutral distribution functions and

the elastic-scattering cross section as*
(g—i g & B ” [F&,t) f&,t% F(V,t) f(v,t)]lg q(g,x)dQdv (2)
where
N is the number density of neutral molecules ;

“Suo, for instance, llolt and Haskell [10], p. 122.
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F(y,t) is the distribution function f[or the ncutral mole-—
cules normalized so that its integral over all values

of the velocity V ds unity ;

A

HAY) g a

v,V are the post-collision velocities of an clectron and
a neutral molecule with pre-collision velocities v
and V ;

pas is the magnitude of the relative velocity, v-V ;

qlg,X) is the differential elastic-scattering cross sec-
tion;

X is the angle of deflection in relative coordinates;

*
dQ is an element of solid angle .

Because the random electron velocity is much greater than the
drift velocity, the electron distribution function is almost isotropic
and can be represented accurately by the first few terms of a spherical-
harmonic expansion in velocity space. If the polar axis is taken in
the direction of the electric field, there is azimuthal symmetry, and
the expansion in spherical harmonics reduces to an expansion in

Legendre polynomials. Consequently f can be written as
0

f(_!,t) = f(vag9t) = Z fn(vst) Pn(COS e) (3)
n=0

where Pn(z) is the nth Legendre polynomial and 6 is the polar angle.

*
These quantities are discussed in detail in Appendices A and B of
Part I.
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The substitution of the spherical-harmonic expansion for f
into the Boltzmann equation is treated by various writers*, but the
derivation of the equations for the fn is also included here for
completeness. Lquations for the fn are obtained by expressing cach
term of the Boltzmann equation as a series expansion in spherical har-
monics. Since the spherical harmonics are linearly independent and the
Boltzmann equation must hold as an identity in 6 , terms proportional

to the same spherical harmonic are associated to form an equation.

Expansion of the Left-Hand Side

If the expansion (3) is substituted into the left-hand side of
Eq. (1), various properties of the Legendre polynomials can be exploited
to express the entire side as a series expansion. The gradient is
written in spherical coordinates in velocity space with the polar
axis taken in the direction of the electric field, and this direction
is expressed by the unit vector k in Fig. 1. Using the unit vectors
e, & and §¢ shown there, the gradient in spherical coordinates

becomes

of of 1 af 1 of
ki E¢ v sin O 3¢ ) (4)

oV &y v L9 v 20

It is apparent from Fig. 1 that k can also be expressed in terms of

these coordinates as

k = e, cos 6 - ey sin o . (5)

*
cSee, for instance, Allis [1].
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From Eqs. (4) and (5) we obtain the inner product

af of sin 8 Jf
k -y = cos @ - =00 (6)
Substituting the expansion (3) into (6)
o 3f f
. of _ n n ., 2 .
k oy HZO [—53 cos O Pn(cos G)-F:7-51n 8 Pn(cos 9)] (7

This expression can be simplified using the following identi-

cos 0 Pn(cos 0)

n+ 1 5

n
21 Tnp1(cos O +5 07 Py (cos 8)

(8)
2 ¢ _ n(n+l) _
sin“6 Pn(cos 0) = ot [Pn_l(cos 0) Pn+1(cos 8)] (9)
for n = 0 , provided it is understood that
P_l(cos 8) = 0 . (10)

Substituting these formulas into (7)

: ]

of
; _ n n+1 n
X 32,— n£0{ v 2n+1 Pn+l(cos g)+2n+1 Pn—l(COS )]

f
n n(nt+l) _ n(ot+l)
3 [T 1 PngeoR 8GR Baplees B}

(1)
_ § [ n afn—l _ n(n-1) fn—l + n+ 1 afn+l
L '2n-1 ov. 2n-1 v 2n+3  9v
n=0
(a1 (rk2) “askl
+ >3 - ]Pn(cos 0) (12)
*See Sansone [13], pp. 178-179.
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Now we can write

(o]

f e of
B = m'g r ; Hn(v,t) Pn(cos 8) 5 (13)
- n=0
where
B ey = 352__ EE[ n Bfn-l _ n(n-1) fn—l g BEL afn+l
)0 i ot m - 2n-1 ov 2n -1 v 2n+3 v
(L) (b2) Trea

¥ 2n+3 v 1. (14)

Expansion of the Collision Integral

After various manipulations the collision integral can also be
expressed as an expansion in Legendre polynomials. Substituting (3)

into (2) and writing the integration over § in more detail,

oo

f v Y LY
(— =% 3 [F(V,t)f (v,t)P_(cos 8) - F(V,t) f (v,t)P (cos 0)]
It’e.c. T =0 e i - n n
x g q(g,x) sin x dx de dV . (15)
n, 0y
® is the angle between v and k and can be expressed in terms
m
of © and the angle between v and v . ¥ 1is the angle between

n v n

v-V and v-V and differs from the angle between v and v by a
*

term of order O(m/M) , where M is the mass of a neutral molecule.

5 Y 5 .
Neglecting this term, v can be expressed in a spherical coordinate sys-

tem with v as polar axis and Y as polar angle. If € is measured

from (see Fig. 2),

25

Sec, for instance, Delcroix [4], p. 94.
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Y + o,v ai +e, v si i (16
v=ge VecosX+eywsin) cos (S g¢ v sin ¥ sin € . )
n
cos 8 can now be obtained from (5) and (16) as

n,

ny y
cos 8 = k e a7

v
= cos O cos X —-sin O sin X cos E . (18)

*
The addition theorem of spherical harmonics can be used to

n
write Pn(cos 8) 1in a more convenient form:

N
P _(cos 8) = P _(cos § cos X -~ sin 8 sin X cos €) (19)
= Pn(cos 9) Pn(cos X)
v m (n-m)! m i
4 2 mZl(-l) e P (cos 8) P (cos X)cos me , (20)

for n 21 . If this expression is substituted into Eq. (15) and
integrated over £, all terms involved in the summation over m disap-

pear. Hence

(e 0]

C%% = Z Sn(v,t) Pn(cos 9) (21)

S n=0

where

v
S (v,t) = N ” [F(l,t)fn(g,t)Pn(cos X) ~F(_\£,t)fn(v,t)]g q(g,x)dedyv.

(22)

%
See Sansone [13], p. 268.
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In order to obtain equations for fO and fl ,» 1t is necessary
to express S0 and Sl in more convenient forms. Before the integrals

can be simplified, it is necessary to specify the neutral distribution
function. The neutral velocity distribution is approximately Maxwellian
at the gas temperature T , so we write

v?

2kT

M )3/2
2mkT

F(V,t) = ( exp| (23)

The transformations to the desired expressions involve some rather cum—
bersome algebra and are not presented here. The final forms of S0 and

S are gilven by

1
n
SO = Nn JJ [F(_‘L:t)fo(,‘\;st) . F(!,t) fo(Vat)]g q(gaX)del (24)
__“l_l__a__[ 3y (v) £ ]+_1£T.l___3._[ 2, (v) _a_f£
M v2 av -V Vn'V % M v2 v U V'Y oy ] (25)
s, = N, |[ P00 Flodeos x - FEL0E (.08 a0®@a 26)
= -V () f, | @7
where
Vm(v) = Nnv J (1 - cos y)q(v,x) 42 (28)
= By @.(v) (29)
and
Qm(v) = J (1 - cos ) q(v,x) d@ s (30)

The collision frequency v, and the momentum-transfer cross section Qm

are discussed in Appendix B of Part I.
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Derivations of the above are presented with varying degrees of
clarity in several of the references listed. Perhaps the most systema-
tic method, the one showing most clearly the approximations involved,
is that of Desloge and Matthysse [5], although they begin with a some-
what different but equivalent form of the Boltzmann equation and
proceed through some very tedious manipulations. Besides the assumption
that F 1is Maxwellian, the derivation sometimes ignores the difference
between the relative velocity and the electron velocity. Because of the
large difference between the magnitudes of the electron and the molecu-
lar velocities, the relative velocity can be expressed as the electron
velocity plus terms involving the ratio of electron mass to molecular
mass. In the expressions for S0 and Sl, terms involving higher

relative orders in the mass ratio are neglected.

Equations for £, and £,

Equations for the fn are obtained by equating the Hn and the
Sn . In the following development the electron mean free path A is
assumed constant, so Um , which appears in the expressions for S0 and

S1 is replaced according to the equation

A= v/\)u1 5 (31)

From Eqs. (1l4) and (25) we now obtain

o F
¥y _em1 3 2, ,m11 3 4
t 2 T AT Hl FEE T WD
v v
Sf
kT 1 23 3 o
+ﬁ'x—za—v(v B 3 (32)
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From Eq. (14) it is seen that f appears in the expression for H1 S0

2
a closed system of cquatlions for fo and [I Ls not obtaincd by cquat-
ing ”l and Sl . Consequently it Ls neccessary to truncate Lhe system
of equations by neglecting f2 . Ginsburg and Gurevich [8] discuss the

validity of this procedure in detail and conclude that f2 is indeed

negligible except for very small and very large velocities. Equating

Hl and S1 from Eqs. (14) and (27) then yields

of en ¥ 1

1 _ o 1
Bt - “uw By "% Wy . (33)

Formulation of the Problem

In studying the relaxation of the electron distribution function,
the equations for fo and f1 are solved with E set equal to zero.
However, initial conditions on fo and fl must be prescribed, and
these initial conditions are taken to be an approximation to the steady-
state solution of the equations in the presence of an electric field.

It is easily verified that the steady-state solution to Eqs. (32) and

(33) for f0 is the Druyvesteyn distribution
go(v) = C exp[—3m3v4/(4Me2E2K2)] (34)

provided the term involving kT/M in (32) is neglected. It can be

%
shown that the term in (32) which contains m/M represents the change
in fo that would result from electron-neutral collisions if the

neutrals were stationary before collision. The term that contains kT/M

*
See Chapman and Cowling [2], pp- 346-352.
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represents the change in fo caused by energy given to electrons in
collisions because of the thermal energy of the neutrals. The relative
importance of the two terms can be determined by a study of the equa-
tion and is roughly the ratio of mean electron energy to mean neutral
energy. Actually the complete steady-state solution can be obtained

*
analytically , and it reduces to the Druyvesteyn distribution if

Mz (eil)Z >> KT . (35)

3v
Thus the term involving kT/M can be neglected when a strong electric
field is present but must be retained in studying the relaxation of the
electron temperature to that of the neutrals.
The steady-state solution of Eqs. (32) and (33) for E = 0 1is

readily seen to be the Maxwellian distribution

]

fo(v) ol exp[-mvz/(ZkT)] (36)

|
(o)

fl(V) = (37)

fo and f1 must approach these functions asymptotically in the relaxa-

tion process.

Statement of Problem

The equations to be solved following the abrupt removal of the
electric field can now be written along with the appropriate initial

and boundary conditions.

*See Mu [14]-



of of
o_ m1l1 3 & k1 3 ,3_o
Bt T M X 2 v FEIFIM T ¥ L
of
Lo .k
=AY E e
t =0 :
3 3 4
3/4
£ (v,0) =g () = —5 (—55) expl- —3—] (40)
ﬂF(Z) 4Me"E7A 4Me"ETA
3 3 4
—4  eFA 3 7/4 2
£1(vy0) = g (v) = —— == )7 e~ By )
WPCZ) 4Me"ETA 4Me“EA
v =20 Bfo
—53'(0,t) =t 0 (42)
£.(0,£) = 0 (43)
As Vv » o :
fo, f] + 0 , exponentially. (44)

The coefficient in Eq. (40) is chosen

alized:
J go(v) dv = 1
2.
where dv = v'sin 8 dv d6

in spherical coordinates. That (45) is true

using the following integration formula from

so that go(v) is norm-

(45)
dd (46)

is readily established

Dwight [6]
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LA/ me™h (47)

Qo
J xnexp[—(rx)m] dx
0

gl(v) is selected as the time-independent solution of Eq. (33) corres-

ponding to the Druyvesteyn distribution:

eEA 1 dgo

g™ = Wy (48)

The desired asymptotic form of fo is normalized to unity as written

below

o v G expl-me?/ (2] (49)

That fo remains normalized for all t can be seen from Eq. (38); if

the equation is integrated over all velocities,

o0 [oo]
F 5f
0y oy mL[2 b o 3%
J —§E'dz-_ 4 5 X J . (v'f )dv + 47 Y I av(v av)dv (50)
0 0
9f oo
= & ‘-“ﬁ% [v“f ] + 4 }f& [v:’ Tf;] (51)
0
= 0 (52)

after condition (44) is applied. If Bf /9t is continuous and if

oo Bf

f v2 Bt dv converges uniformly in t , the differentiation and inte-
0

gration can be interchanged to yield

3 -
-ﬁjfod_\_r_— 0 . (53)

From the initial conditions it follows that
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[ f0 dv. = 1 (54)
for all t .

The boundary conditions at v = 0 are chosen by requiring the
distribution function £(v,t) to behave well at the origin in velocity

space. f(v,t) 1is approximated by

f(v,t) = fo(v,t) + fl(v,t) cos O (55)
and the condition on f1 is obtained by requiring that £f be indepen-
dent of ® at v =0 . The condition that Bfolav =0 at v =0 is

applied in order that the distribution function be smooth at the origin.
If the condition were not satisfied, the velocity gradient of the dis-
tribution function f would be discontinuous at v =0 .

The requirement that fo and f1 exhibit exponential decay with
increasing v 1is somewhat arbitrary and is not used explicitly. However,
both the initial and the asymptotic distribution functions possess such

4

behavior, and it is essential to Eq. (54) that v f0 + 0 as v =+

(see Lq. (51)).

Solution for f4

Equation (39) for f1 subject to the conditions (41) and (43)

can be solved immediately and yields

fl(v,t) gl(v) exp[-vt/)] (56)

gl(V) exp[-v_(v)t] . (57)
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The latter formula shows that the reciprocal of the collision frequency

provides a measure of the 'relaxation time" for fl . Since the electric

current is obtained from f1 by calculating the average electron velo-
city, which depends on fl but not on f0 ,» it is apparent that the
current is effectively zero within a few collisions of the removal of

the field.

Estimate of Relaxation Time

The equation for fo is a second-order parabolic equation, and
its solution shows the evolution of f0 with time and thus yields the
relaxation time, the time required for the isotropic term of the dis-
tribution function to undergo an appreciable portion of the change from
Druyvesteyn to Maxwellian. Before proceeding with a numerical solution,
it is convenient to obtain an estimate of the relaxation time. Such an
estimate can be obtained from Eq. (B.34) in Appendix B of Part I, which
gives the rate per unit volume at which energy is transferred from elec-
trons to nmeutrals through elastic collisions. In rewriting the formula
in the present nomenclature, f must be replaced by Nef , Where Ne is
the electron density, and vm is eliminated by Eq. (31). Then we

obtain

N
m e 1 2 1 2
R=—2-ﬁ1-—Jf(!)(-§mv—<-§MV >)v dv . (58)

If we let v, Tepresent the electron root-mean—-square velocity at

equilibrium, we must have

- et
l_m V2 = <2 MVT> 4 (59)
2 o

Furthermore, the average functions of velocity resulting from the
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integration over v do not differ significantly from the same functions
of the average speed or the root-mean-square velocity. Consequently, we
discard the distinction between the various average speeds and write the
functions in terms of some average speed u . Now Eq. (58) can be

written as

N
d 12y _ wm e L ...2 1. .32
i (NO 5 T ) = - 2 Mx u(2 mu 5 mvo) (60)
or
du _ _m1 2
el 4 i L (61)
This equation can be integrated easily as follows:
v
1 1 = m_o
[ u-v_ u+v ] du = 2 M A L : (62)
o o
Integrating from 0 to ¢t
ll"'V’D UO—VO mVO
u+ v - u +v exP[—Z-ﬁ-X* E ] (63)
0 o o
where u = u at t = 0 . Solving for u
Yo~ Vo m ‘o
l+'l—1—0—:;;'exp[—2*ﬁrt]
ST Y% Vo m o . (o)
oy v, exel-2yx ¢
o o

The fractional change in u -~ v, is given by
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v
m o
u-v 2v exp[-2 — —- t]

o _ 0 M A (65)
ESeySras ol . 8]
Yo Vo u0+ Vo Y% Vo m Vo ’

- ————— 2 e i
u+ v el M A t]
o o

From this equation it 1s apparent that the proper choice for

the relaxation time tr is

<i>

(m3
]
N
2=

. (66)

For a Maxwellian distribution %, is given by Eqs. (A.29) and (A.31)

of Appendix A, and tr becomes

M
m

aﬁ
>

- % (67)

Dimensionless Equations

The relaxation time defined above provides a convenient unit in
which to measure the time. In order to make the velocity dimensionless
also, it is necessary to select a unit velocity. The measure adopted
is the root-mean-square velocity of the Maxwellian distribution. The

new independent variables are denoted by

-
]

t/tr = t/(—— 3kT A) (68)

}3kT
v/ = & (69)

A dimensionless distribution function is defined so that the velocity

urY
|

distribution remains normalized to unity:



e P

I

J £ dv (3kr/m)>/ 2 J £ dE = J F g (70)

o ==

3/2

where F(E,T) (3kT/m) fo(v,t) : (71)

In the new variables the Maxwellian distribution function is

3 3/2 _ 3 .2
F v G exp[- 5 £7] (72)
and the Druyvesteyn is
ey = L @Im3/4 kX 3/2 . 27m 1r? gy -~
3, V4 M eEA ST TA M _2.2,2 :

WFC;)

After changing to the new variables, Eq. (38) becomes
&8+ 2L 2 g (74)
2 93& of 2 .2 93t )

This equation can be rewritten after completing the differentia-

tion, and the formulation of the problem in dimensionless wvariables

becomes
F 1, 03%F  1,.2 OF
St~ BE gt lE ¥ L g+ P (75)
of
for 0£§ <o, 0<T< >
PUE .05  GEEy » L (RmEE AT 32 . PP m W 4
, 3. o m =y eXpPl- 4y 2.2.2 &
“F(29 e“E°\
(76)
= 3.588 x 1074 exp[~ 1.538 x 1074 54] . (77)
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oF
5@'(0,T) = 0 (78)
As £ » =
F(§,T) + 0 , exponentially. (79)

From Eq. (72) the asymptotic behavior is

F ~n  0.330 exp[- % F2] . (80)

>

The numerical values for the coefficients in (77) are obtained
from Eqs. (A.41) and (A.42). Before proceeding with a numerical inte-
gration of (75), it is important to obtain some idea of the magnitude
of the variables and parameters involved. Numerical values of quanti-
ties associated with the initial and asymptotic distributions and with

the dimensionless variables are calculated in Appendix A.

Numerical Solution

The problem defined above is solved numerically for F(£,T) by
a finite-difference method that is described in Appendix B. The inte-
gration is performed to T =1 , and the form of the distribution
function at various timgs is shown in Fig. 3. The form of the distri-
bution function at T = 1 shows that the relaxation time defined by
Eq. (67) and selected as a result of approximate considerations is a
good choice.

Figure 3 also shows that a maximum exists in the curves for
F(£,T) which is present in neither the initial nor the asymptotic dis-
tributions. However, this occurrence can be explained on a physical

basis: since the collision frequency of the fast electrons is much
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higher than that of the slow onecs, they lose cnergy much more rapidly,
and the concentration of electrons of intermediate veloclity is greatly

increased.
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Appendix A

PRELIMINARY CALCULATTONS

The function fo(v,t) (or F(£,7)) is determined numerically,
so it is necessary to select values for the electric field and the mean
free path. Also, in order to obtain an order of magnitude estimate for
the behavior of fo(v,t), certain quantities associated with the ini-
tial and asymptotic distributions, such as root-mean-square velocities,
are calculated.

In order to perform physically meaningful calculations, the
equations are applied to the positive column of a glow discharge in neon
at a pressure of 2 mm Hg and a gas temperature of 300°K. Data presented
in Cobine* indicate that with a discharge chamber of appropriate geo-
metry an electric field of 0.4 volts/cm may be sufficient to sustain
the discharge at the assigned pressure, and that value is used through-
out the following calculations.

Using Egs. (29) and (31), the mean free path can be expressed
as

A= l/(Nan) ; (A.1)

The number density of neon atoms Nn is calculated from the ideal gas

law:

b=
I

p/ (KT) (A.2)

6.438 x 1016 atoms/cm3 . (A.3)

*
See Cobine [3], p. 235.
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Cross section data for Qm as a function of electron energy are avail-
able in Massey and Burhop [11], p. 15. Since a constant A is assumed
in the equations, a particular value must be selected as an approxima-
tion. Tor a given velocity distribution the mean energy could be
determined as a function of A . By evaluating Qm (and hence A) at
the mean energy, an iterative procedure can be easily developed that
determines both A and the mean energy. However, the velocity dis-
tribution and the mean energy change with time, so Qm is evaluated at
an energy that lies between the values of the mean energy for the

Druyvesteyn and the Maxwellian distributions. The value adopted is

_ 2
Qm = 2.5m a_ (A.4)
= 2.20 x 10 0cm? (A.5)
where a_ = 0.5202 x 1 e (A.6)

is the radius of the first Bohr orbit. Then A becomes

A = 0.0706 cm . (A.7)

The mass M of a neon atom is also needed and is obtained by

dividing the atomic weight of neon by Avogadro's number:

M (20.183)/(6.0228 x 10°>)

3.351 x 10> gm . (A.8)

]

Various quantities of interest in comparing the Druyvesteyn and

the Maxwellian distributions are calculated below.
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Druyvesteyn:

<v>

J v go(v) dv

4 Im> . 3/4 J 3 St
0

v
= 3. %357 v" expl- 2 2.3 1 v

I‘(Z) 4Me"E7A 4Me"E"A

. tme’5%)% 1/4
=3 ( 3 )
T 3m

]

8.557 X 107cm/sec

<ye> = j vzgo(v) dv

5
2 TR /M eEX
m m

V3 r(—Z—)

2

r(%) 1‘(—2) s

5

8.134 x 10l cm2/sec2

The root-mean-square velocity of an electron is

\/;vz > = 9,018 x 107cm/sec

and the mean energy is

<%'mV' > 3.704 x 10—12 ergs

2.312 eV

The variance of v is

(A.

(Aa.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)
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<v2> - <V>2

var (v)

1

and so a standard deviation is

Maxwellian:

<y >

o v il

<V2>

The mean energy of

M=

0.342 <v>

[

Vvar (v)

2
= (521503/2 J v exp[- 5= dv

2KT
= 4 ( 2 )3/2 v3 exp[- EIE-2—] d
oTKT PL= Zpp! @Y
0
_ ,8kT,1/2
= anﬂ
= 1.076 X% 107cm/sec
el 302 [ o mt
2TkT expl= ot W
0
= 3kT/m

1.364 x 1014 cm2/sec2

1..168 % 10° enfsen

an electron is

2, . 3
vT> = 5 kT

e 0L % 107 erps

= 0.0388 eV

8.12 x 10 4cmZ/sec2

2.85 x 107 cm/sec .

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)
33)

34)
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The previous calculations provide a rough comparison of the two

distribution functions. The ratio of root-mean-square velocities is

V<v2> (Druyvesteyn)

7.73 (A.35)
A 2
<v~> (Maxwellian)
The ratio of mean c¢lectron energles 1s
1. 2
<-§ mv~ > (Druyvesteyn)
= 59.7 v (A.36)

<-% mv2> (Maxwellian)

This quantity shows that the thermal energy of the atoms is virtually
negligible compared with the energy supplied to the electrons by the
electric field. Such relative values are necessary if the Druyvesteyn
distribution is to provide an accurate description of the electron
behavior. Since the root-mean-square velocity of the Druyvesteyn dis-
tribution is considerably greater than that of the Maxwellian, it is
obvious that the coefficient of the Druyvesteyn distribution function

must be much smaller. Thelr values are listed below:

3
L :23"‘2 3% 2 2,252 x 107 sec/en® (A.37)
ﬂr(z) 4Me“ETAT
m \3/2 _ -22 3, 3
(2nkT) = 2.071 x 10 sec” /cm (A.38)
Their ratio is

k... & T B S yFZ |y oo 1 v

2.2 9 2mkT - : (4.39)

- (%) iMe2r 2y
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The calculations above also provide a mcans of evaluating the
effect of inelastic collisilons, which are neglected In the equations.
The lowest excited state of the neon atom possesses an energy 16.61 eV
above the ground state, and the ionization potential is 21.56 eV.*

Since the mean energy of the Druyvesteyn distribution is 2.312 eV, we
conclude that inelastic collisions have little effect on the form of the
distribution function.

Several quantities occurring in the dimensionless equations must

also be calculated. The relaxation time of Eq. (67) has the value

f, = 1112 % 10"‘* sec. (A.40)

The characteristic quantity used in creating the dimensionless velocity
is just the Maxwellian root-mean-square velocity of Eq. (A.31). The
coefficient and the exponent of the dimensionless Druyvesteyn distribu-

tion are listed below:

1 m -
(27 _,)3/4 ( kT)B/Z - 3.598 % 10 4 (A.41)
3 4 M eEA
T &)
4
22
27 m kT =4
e = . X .
A M 222 1.538 10 (A.42)
e ETA

It is of interest to evaluate (u - vo)/(uo— vo) of Eq. (65) when

t =t . Then
r
u-v PAYS u-v
___ o _ o_ __o o,-1
u - v u+ v (exp (1) u+v ) (4.43)
(o} o [s} o o [s}

%
See Moore [12].
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Using Eq. (A.35) for uo/V0 .

u = Vo
——=2 = 0.118 (A.44)
L!O-‘ v
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Appendix B

*
THE FINTTE-DIFFERENCE CALCULATION

Fquat ion (75) is solved numerically by an Implicit finlte-
difference method. The solution proceeds stepwise in the T direction
with values of T being calculated at all net points in the & direc-
tion at each step.

If h and k represent the increments and s and n the net
points in the & and T directions respectively, the finite-difference

equation corresponding to (75) can be written

- _ 2F +
Pttt ~ Yo ﬂ[Fs+l,n+1 2 st T P iy

]
k 6 12

s+l,n+l_'Fs—l,n+1
2h

1 2 5
+ 3[(sh) + 11 [ ] + 2sh FS o (B.1)

3

where the ¢ derivatives have been replaced by their central differences.
This equation is to be solved for quantities on the ntl time level in
terms of those below. Stability considerations require that both the
first and second £-derivatives be written on the ntl level. A
rearrangement of (B.l) changes it to the usual form for a system of

linear equations:

A 2 2 B A
[4 h(s"™h™+ 1) 6 sh] Fs—l,n+l + [1 + 3 sh] Fs,n+l
_ A 2,2 A - 2
[4 h(s™h™+ 1)+ 6 sh] Fs+l,n+l {1+ 2)h"sh) Fs,n (8.2)

%
See, for instance, Forsythe and Wasow [7] for a discussion of the tech-
niques.
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where

A = k/h?‘ 5 (B.3)

Equation (B.2) written for all s 1is a tridiagonal system of lincar
equations and is solved by Gaussian elimination.

In order to solve (B.2) it is necessary to use finitce-difference
formulations of the boundary conditions at the ends of the & interval.

Equation (78) implies

Fo,n+l N F1,n+1 - (B.4)

The solution of the finite-difference equation in the £-direction is
terminated at & = 12, and the boundary condition there has a consider-
able effect on the stability of the problem. The logarithm of the last
F 1is obtained by a Lagrangian interpolation formula involving values
of the three previous F's in the E&-direction. Following a partial
reduction of the system (B.2) by Gaussian elimination, the F's in the
interpolation formula can be expressed in terms of the final F . The
solution of this equation for the final F 1is found by a Newton-
Raphson iteration, and once this value is obtained, (B.2) can be solved
completely for the ntl time level.

The solution of the finite-difference equation is obtained in the
region

0

IN
a4l
IN

12 (B.5)

0 £ 1 ¢ 1 . (B.6)
The increments in the net spacing are

h

0.25 (B.7)

k = 0.01 , (B.8)
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NOMENCLATURE
Derivatives:
of /v velocity gradient of f
(Bf/Bt)e.c. time rate of change of f from elastic collisions
dv volume element in velocity space
dg volume element in E-space
dq element of solid angle
Roman:
ag radius of the first Bohr orbit
e magnitude of the electronic charge
e, unit vector in the v-direction
24 unit vector in the 6-direction
§¢ unit vector in the ¢-direction
E magnitude of the electric field
E the electric field
f electron distribution function
fn(v,t) coefficient of Pn(cos @) 1in the expansion of f
F(V,t) distribution function for neutral molecules
F(E,T) dimensionless electron distribution function
Fs,n finite-difference approximation to TF(&,T)
g magnitude of the relative velocity
go(v) isotropic term of Druyvesteyn distribution
gl(v) anisotropic term of Druyvesteyn distribution

G(&E) dimensionless isotropic Druyvesteyn distribution



~-388-

Hn(v,t) coefficient of Pn(cos 8) in the expansion of the

left-hand side of the Boltzmann equation

i unit vector

J unit vector

k Boltzmann constant

k unit vector in the direction of the electric field

m mass of an electron

M mass of a neutral molecule

Nn number density of neutral molecules

Pn(z) Legendre polynomial

Pi(z) associated Legendre function

q differential elastic-scattering cross section

Qm momentum-transfer cross section

Sn(v,t) coefficient of Pn(cos 8) 1in the expansion of the
collision integral

E time

tr relaxation time

T temperature of neutral molecules

u some average electron speed

u initial value of u

v magnitude of v

v electron velocity

‘§ electron velocity after collision

v, electron root-mean-square velocity in Maxwellian
state

v molecular velocity
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E molecular velocitv after collision

T gamma function

£ azimuthal angle about e,

o polar angle measured from k

g 8 after collision

A electron mean free path

vm collision frequency for momentum transfer
£ dimensionless velocity

T dimensionless time

¢ azimuthal angle about k

X angle of deflection in relative coordinates and

polar angle measured from E.
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Spherical Coordinates and Base Vectors

Figure 1:
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Proposition 2

JUMP DISCONTINUITIES IN CONCENTRATION PROFILES

FOR FIXED-COLUMN ADSORPTION

Exchange processes such as chromatography and ion exchange,
which involve adsorption in fixed columns, can be described by a first-
order nonlinear partial differential equation if equilibrium is
assumed. A continuous solution is easily obtained, but it becomes
multiple-valued with increasing time. It can be made practicable by
introducing a jump discontinuity. The literature describes a means of
determining the size and location of the discontinuity that is usable
only for special initial conditions. In this presentation equations
are developed whose solutions provide an analytical determination of

the size and location for arbitrary initial conditions.

Material Balance

The basic equation that is used in the following development
is obtained by a material balance. The physical situation is sketched
in Fig. 1 and consists of fluid flowing through a column containing a
fixed bed of solid matter as in the case of chromatography or ion
exchange. The fluid is assumed to flow with a constant velocity V
that is uniform throughout the column. A solute is transferred
between the liquid phase and the solid phase and its concentrations in
the two phases are to be found as functions of distance x along the

column and time t . The following definitions are adopted:

p concentration of solute in liquid, based on a unit
volume of liquid;
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q concentration of solute on solid, based on a unit
volume of solid;

a fraction of volume in column that is occupied by
liquid.

Using the above terms, an equation is obtained by equating the rate of

increase of solute within the region bounded by Xy and X, in Fig. 1

to the convective flux through the boundaries:

*g %
—g—-t— J op(x,t)dx + J (1-a) q(x,t)dx| = an(xl,t)-an(xz,t). (1)
*1 =

Diffusion is neglected. If p and q are continuously differentiable,

a differential equation can be obtained:

3p 9p , 1 -a3dg _
g TY g™ B o (2)

One of the dependent variables can be eliminated from this
equation if equilibrium between the amount of solute in solution and
that adsorbed on the solid is assumed at each point. Then a given

value of p determines q :

q = f(p) s (3)
Now Eq. (2) becomes
%—E—+ c(p)%% = 0 (4)
where
(p) = - . (5)
+ £'(p)

o
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The Continuous Solution

Equation (4) becomes

g%- - 0 6)

if the differentiation is performed along the characteristics defined
by

dx

dc = c(p) . (7)

With initial conditions given by

I

o(x,0) OO(X) (8)

and c, defined by

co(X)

clp (x)) (9

the solutions of (6) and (7) are

i
]

c (Bt +E (10)

©
]

P, (&) . (11)

£ corresponds to the point at which the characteristic intersects the
abscissa. The situation is illustrated in Fig. 2.

Equations (10) and (11) are capable of an instructive physical
interpretation. If p is plotted against x , each point of the
curve can be regarded as moving parallel to the x-axis with a velocity
c(p) that depends upon its ordinate. The situation is depicted by
Fig. 3. These considerations show how multiple-valued solutions can
arise with the passage of time. Two possibilities are schematically

presented in Fig. 4.
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Such a development is, of course, physically unreasonable and
corresponds to a discrepancy between the mathematical model and the
actual physical situation. It has been found that a suitable approxi-
mation to the physics and to solutions of more accurate equations is
obtained if a discontinuity is introduced in the multiple-valued region.
An illustration is provided by the dashed lines in Fig. 4. 'The problem
remaining 1s to determine the size and the location of the discontinuity

as functions of time.

Introduction of the Discontinuity

One relation between the quantities involved can be obtained
from Eq. (1), which represents conservation of material. If it is
assumed that p(x,t) has a jump discontinuity at a point s(t) between

X and x, , the integrals can be written

[T o

and the derivative of the integral becomes

X, , Xs
9 - ds " 3p
Y l p(x,t)dx = T (p(s_,t) p(s+,t)) +J T dx . (13)
1 Xy
I1f Xy and x, are permitted to approach s , (1) becomes
ds ds - _
o e pleg - () ¢ (£ _ = —aVipl _ (14)
where [p]X=S = p(s+,t) - p(s_,t) : (15)
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After a rearrangement we obtain

L. ML (16)
dt 1 . '

-0
[o], .+ [P,

The above equation must hold when a discontinuity exists. The
need for a discontinuity first appears when Eq. (10) cannot be solved
for £ as a function of x and t . The analytical requirement for
this situation is that the derivative of the expression in (10) with

respect to & be zero, i.e.,

cé(E)t +1 = 0 . a7

A calculation of the partial derivatives of p(x,t) from (10) and (11),
regarding £ as an implicit function of x and t , shows that they
are infinite when (17) is satisfied. If cé(E) is positive, no dis-

continuity is necessary. If cg(g) is negative, a discontinuity is

first necessary at

£ = mén(—l/c;(ﬁ)) . (18)

or

cng) = 0 . (19)

This is the time at which characteristics first intersect. The analy-
tical determination of the need for a discontinuity can be compared

with the description in Fig. 4 by considering the sign of

@) = For® . (20)
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From (5)
.}‘_“_q. cn
de = v a L e (21)
2 * £
e

Location of the Discontinuity

The values of p on the two sides of the discontinuity are
determined by the intersection of the characteristics on the two sides
with s(t) as shown in Fig. 5. A particular point along s(t) can

be described by the following equations:

s = & +tc (E)t (22)
s = &)+ c (&)t {23)
Vie (&, = p(£;)]
ds _ 0’2 0°°1
ar " . (24)

1-o
[0, (E)- P (EDT+2IE(R (E,))- £(o_(E))]

The last equation is (16) rewritten in different nomenclature. These
three equations involve the four quantities El, 52, s, and t, and
serve to determine El’ Ez, and s as functions of t . In the
process of solving, it is easier to eliminate t and s and obtain a
relation between El and 62 . From (22) and (23)

275y

t = - (25)
o (E89) = ¢, (Ey)

ey (B e (BT (EE,= ) = (B £))[e)(E,)dE,~ cf(£))dE, ]

dat = 3
[e,(E,) - c (5))]

(26)
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Also from (22) and (23)

ds

e (E))dt + (1 + cl(£))E) dE) (27)

ds

e (E)dt + (L + cl(E,)E) dE, (28)
Taking the average of these to maintain symmetry between El and Ez
dg = %{Co(€2)+ Co(gl)]dt t %[d51+ dEZ]-k%t[cé(EZ)dg2+ C;(El)dgll'

(29)

Substituting from (25) and (26) and rearranging,

£, &
[co(Ez)— co(El)]

5 1 [ey(E) +e (EDTle] (E,)dE,~ c! (£ )dE, ]

- ey (&) - e (€ 1Iel (E,)dE, + ¢! (E)dE,] }

1
¢ (E)) - ¢ (E))

+
o

{= le (&) + o (B ) IE = d&;)
+ [e (€, - c (E))1(dE + dE,) |} (30)

(€)= E)[e (E)el(Ey)dAE, — e (E,)c (E;)dE, ]
[e () - e (EDT’

c, (€,)dE, - co(El)dEZ

T T &) - o (B bl
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;|
= 2
[co(éz)— co(El)]

{e (EDI(Ey= EDel(E,) - (e (E,) = (E)]GE,

~ e E T~ Byl )= to )~ c (B30 1dE; } (32)
From (24) and (26)

1 V'
; F(p, (€,)) - £ ()
[c_(E,))~c (E))] 1-o ~ 0 "2 t
A TN G I )

ds =

x {1E, EPelEy) - (e (B, ~e (E))]4E,

- [(Eym Ep) e (E)) - (e, (Bp) = e (& 14E, | (33)

If the expressions for ds in (32) and (33) are equated, a differen-

tial equation relating El and 52 is obtalned:

v '
[ 1o Ep_(E,0) - E(p_(E)) ~ °o<51)]{(52‘ £ (55

1+

a P (Ey) = o (&)
' v
- e, - e eI, = | — f(pocaz))-f<po(£1>>"Co(gz?]
1+
o P (Ex) — P (&)

x {(€,m E)el () ~[e (Ey) —e (E))1} dE, . (34)
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The constant of integration is determined by the requirement that
£.0= E. = E (35)

2

at the beginning of the El versus EZ curve. Fm is the value of
£ that minimizes the expression (—l/cé(g)) in (18). It must also
satisfy (19). The results of the integration are used to evaluate t

from (25) and s from (22) or (23).

Literature Treatment of the Discontinuity

The literature on the subject treats the utilization of discon-
tinuities, but the method given for placing the discontinuity is useful
only in special cases. DeVault [2] obtains an equation involving the
discontinuity by relating the area under the pP-versus—-x curve that
contains the discontinuity to the area under the multiple-valued
solution. Although the multiple-valued solution is physically unsuit-
able, it nevertheless represents conservation of solute and it is
essential that the discontinuous solution do the same. In writing an
integral relation for the conservation of solute, it is necessary to
account for the solute adsorbed on the solid. The material balance,
based on unit cross-sectional area and using the notation described in

Fig. 6, can be written as

°y Py
J (S—Xb)[oH' (1-a)E'"(p)ldp = J (Xf- Xb)[OH' (1-a)f ' (p)1dp (36)
Py Py

or
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Py

as(pl— 0:,_)+ (1-a) s(l”(ol_)— f(pz)) = J xplat (1-0) F'(p)| dp

Py

From (10)

xe = c (B)r+¢&

and the expression for s becomes
B
[ Te (B)t + El[a+ (1-0) £'(p)]1dp
pp O

g =
a(pl~ 02)-+(1—u)(f(pl)-f(pz))
Substituting for o + (1-a) £'(p) f£from (5)

ve (py- B )+ ¥ fpl E%ET dp
p
2

1-0
(Ol— D2) L (f(pl)— f(pz))

(37)

(38)

(39)

(40)

The reason for the limited usefulness of this expression is that Py

and p, are unknown. The special case considered in the literature

has the initial condition

]

P, (E)
o, £>0 .
In that case the integral in (40) vanishes, because

between 0 and (. Then s 1is given by

Ve p,

1-a

Pty o)

(41)

E =0 for p

(42)
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An examination of Eq. (24) shows that it reduces to the samec expression
in this case; Egs. (22) and (23) are not necded to determine the loca-

tion of the discontinuity.

The Equilibrium Assumption

In the preceding development equilibrium Is assumed throughout
the column, and q 1Is written as an unspecificed functlion of p
Experimental studies indicate that the assumption of equilibrium is
frequently justified and provide adsorption rate expressions that are
generally valid. The rate expressions for nonéquilibrium situations
are discussed by Gilliland and Baddour [3], Thomas [7], and Goldstein

[5]. Their usual form is

rate of adsorption ke p(Q-9) - k,a(C - p) (43)

or

rate of adsorption = kg p(Q-q) - k. q (44)

where Q and C are constants. At equilibrium the rate is zero, and
it is possible to solve (43) and (44) for q as a function of p .
The experimental validity of the equilibrium assumption and of the

expressions for q is discussed by DeVault [2], Walter [8], and

Goldstein [6].
An example of the typical behavior of a concentration profile can

be obtained by solving (44) for q at equilibrium:

q = £(p) = kQp / (+ kep) . (45)
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() = kg /(g krp)”‘ . (h6)
From (5)
v
c(p) =
k .k Q
1 & l;u fkb = . (47)
(kb+ kfp)

Since f"(p) < 0 , Eq. (21) and Fig. 4 show that the discontinuity

occurs at the front of the concentration profile.
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Figure 1: Flow through Fixed Column
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Figure 2: Characteristic
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clp,) >clp,)
(c’(p)>0)

t=t,

A

X

Figure 3: p as a Function of x for Different Times

c/lp)>0
(f“(p) < 0)

¢’/ (p) <O
) (f¥ (o) > 0)

Figure 4: Possible Behavior of p(x) with Time
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s(t)

X

Figure 5: Location of Discontinuity

Figure 6: Multiple~Valued and Discontinuous
Solutions
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Proposition 3

THI. EQUATIONS OF SURFACE FLOW

IN A ROTATING FRAME OF REFERENCE

A system of equations analogous to the continuity and Navier-
Stokes equations of fluid mechanics is presented by Scriven [4] and
Aris [1] as a description of fluild flow 1n a surface or interface.
Their development begins in a manner similar to that of ordinary fluid
mechanics. Two coordinate systems are set up in the surface. One,
although the surface is moving in space, is called '"fixed", and the
other, the material coordinate system, moves with the fluid particles.
The fixed system is so defined that a point remains in a fixed location
in the surface if its motion is entirely normal to the surface.
However, this definition is conceptually undesirable in many cases. For
instance, if a segment of a plane were to translate parallel to itself,
the fixed coordinate system would remain behind. If a circular cylin-
der were to rotate about its axis, a fixed fluid particle would remain
stationary. In these cases it would be desirable to have a "fixed"
particle participate in the overall motion and to define fluid motion
in the surface as motion relative to such fixed particles. With such
considerations in mind we introduce in the three-dimensional space a
frame of reference that is translating and rotating with respect to the
inertial frame. Although it is actually irrelevant to the development
that follows, we assume for concretemess that the origin of the moving
frame is at the center of mass of the fluid and that the angular velo-

city of rotation is equal to the mass-average angular velocity of the
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fluid about the center of mass. The fixed surface coordinate system
is defined as above except that it 1s "fixed" with respcct to the
rotating frame of reference. In calculating the momentum equation
for the surface, Newton's second law must be applied in the inertial
frame of reference. When these equations are finally expressed in
terms of surface quantities, fictitious forces appear as a result of
the motion of the rotating frame of reference.

Because of the time dependence of the surface, some of the
equations involved in the development are somewhat more complex than
those ordinarily encountered in differential geometry and tensor cal-
culus. For the sake of continuity, brief derivations of some of these
are included in the various appendices. Also, quantities are not
always defined when they are introduced, and it may be necessary to

refer to the Nomenclature section on occasion.

Surface Coordinates and the Velocity

The position vector in the inertial frame of reference is
denoted by r and is related to R , the position vector in the

rotating center-of-mass frame, by the equation

+ R

T= Iy +R &H)

where ECM is the location of the center of mass. The surface can be

represented parametrically by
R = R@*,t) (2)

where the o (o = 1,2) serve as coordinates on the surface. Base
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vectors tangential to the surface can be defined by differentiating
Rz
JdR

I A (3)
0 ua

a
-0
o ; 5
The u are used to represent the coordinate system fixed in the
ol
surface. The convected system has coordinates u* , and when there
is danger of confusion, quantities whose independent variables are

to be regarded as the uwt®  are also marked by an asterisk. Then we

also have

R = R@u,t) (4)
and
5R
a¥* = — - (C))
o du®

In order to represent general three-dimensional vectors at points of

the surface, a third base vector is needed. The unit normal, defined

by
By ™~ &

n
= X
Ay EZI
serves this purpose.
4 i a o ¥ 3
The time derivatives of R(u ,t) and R(u¥* ,t) give velocities
agsociated with the surface relative to the rotating frame of reference.

Since a point in the fixed coordinate system moves only in the normal

direction, we have by definition

aCME - v(n) 7
ot ==
where V(n) is the normal velocity of the surface. Nomenclature should

be consulted for definitions of the various time derivatives. It
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follows from the definition of the convected coordinate system that

the velocity of a fluid particle in the surface is

do
dt

X = (8
o
. dCMu 8_1:5 .\ BCME -
T dt o ot
ou
= a va + nv(n) (10)
8y n
- (n)
= ¥y + nv (11)
where
- 2 (12)
Iir T &Y

is the velocity component tangential to the surface. The procedure
followed in the above sequence of equations relates the two time deri-

vatives by the operator equation

d 3
M _ M o _9
dt = 5t "% u : (13)

In all equations a repeated index (o in this case) implies a summa-~
tion over both its values.

The velocity in the inertial frame of reference is related to
that above through the motion of the center-of-mass system. If w

is adopted as the symbol for velocity in the inertial frame:

dr
¥ = (14)

application of Eq. (D.4) of Appendix D yields

w o= v+teXR+w,, (15)
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where w 1s the angular velocity of the rotating system and

¥eM = Tdt (16)

is the velocity of the center of mass.

The Continuity Equation

The surface analogue of the continuity equation is obtained by
equating the rate of change of mass in an arbitrary convected surface
to that added from the surrounding bulk phase. If <Y 1is the surface
density in mass per unit area and Q the amount of mass added from

the bulk phase per unit area per unit time, we have

-_dtj y sk = f Qasx . an
S* S*

With the aid of equations developed in Appendix C, the differentiation

and integration can be interchanged. Using Eq. (C.14), (17) becomes

d oY
J [—ﬁi’— + (= 29 ™M W ayy] ds* = J WEES e

S* S*

Since the surface is arbitrary, the integral sign can be removed:

domY
dt

+ v ey -Mv® y= q . (19)

The rate of change can be expressed in the fixed surface system with

the use of Eq. (13):

oMY Y
e v 2 +v%,ay - 24 v(“) Y= Q (20)
ot Su®

or
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I, |
cM o (n) _ _
=% (yv ),a - 2Hv Y g . (21)

The Momentum Equation

A differential equation expressing conservation of momentum in
terms of surface quantities is more difficult to obtain, because the
rate of change of momentum must be expressed in the inertial frame of
reference in order to equate it to the force acting on the surface.
The force is divided into two terms. One, denoted F, has units of
force per unit area and represents forces caused by interaction with
the bulk phase and also body forces such as gravity. It includes
momentum convected in from outside. The other term involves forces
assoclated with the surface itself, such as surface tension and rate
of strain. It can be expressed in terms of a surface stress tensor.
The tensor is symmetric and its inner product with the unit normal to
a curve in the surface yields the force per unit length of curve. With
these considerations Newton's second law can be applied to the fluid

in a convected portion of the surface to produce the equation

d
a_ = % 5
at J Y w dS#* J F dS* + % TII m ds . (22)

g% g C*

Here C* 1s the curve bounding S* , and 8 18 arc length along the
curve. m 1s the outward unit normal to C* and is tangent to the

surface. The stress tensor Ei can be written

I

= of
L1 T 3T o £33}
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In order to obtain a differential equation, it is necessary
to express all the terms in Eq. (22) as integrals over S* . The
term on the left-hand side is the most involved and is considered
first. The time derivative can be expressed in the rotating frame
of reference through the use of Eq. (D.1l) with the integral as z

If w 1s written as in Eq. (15), we obtain

d

d cM
iz BN K = e x
it J Y w dS it J Y(v +w xR+ w:M)dS
S* : S*
_....(‘J X J '(..._' _UJ » .B'. _CMW) ds* » (24)

S*

The first term on the right can be transformed using Eq. (C.14):

d d Y
CM CM
_ui * =
dtJY(E“*E’-XEJ'»“ZCM)dS J de LEUXRiye g5k
S* g%
d v d.w d. w
CM— CM— CM—CM
L T S *
+JY(dt+dt X R+wxv + 7 ) dS
g%
+ J Yv + wxR+w. ) (- 28 v™4 v* ) asx . (25)
=T =TT 2o
Sk
Equation (D.l) shows that
dt dt
and
d. . w dw
CM—CM —CM
e - oAE a8 X ¥y ¢ (27)
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Using these results and the expression for d{myldt given in Eq. (19),

(25) becomes

d
CM - (n), .o .
TiEJ Y(v+wxXR +w )dS* I (2H v Y v’ay+ Q)(X+_m_XB_+ECM)d5*
S* g%
d v dw dw
= YoM
J Lirrabd-rig S Lo S garrall 46 TR RS
gk
J Y(v + wxR + Yo )(— 2H v( )+ v ) ds* (28)
0
g%
J(V+wa+ ) Q ds*
g%
d. v dw dw
CM— = —CM _ %
jY( di P R TR YARL Y F T Mgy 98 ' (29
g%

The w in the last term of (24) can be taken inside the integral. If

the expression in (29) is then substituted into (24), we obtain

d_ . v
TJYE“S“l[Y G T QY HYwx @R + 2ywxy
S* *
dw dw
+Ya—xg+y _d—CM+ (wXR-}-w )Q] ds* . (30)

The line integral in Eq. (22) can be transformed into a surface

integral through the surface analogue of Green's theorem in the plane

C* S#*

. = . *
} TII m ds J VII -III ds (31)

where



Vo = b2, (32)

A proof can be found in Aris [1].

Substituting (30) and (31) into (22)

dCHV
J Iy g t Q@+ yux@xR) + 2y wxyv
S*
dw dw
— —CM
o e *
Y ERY Yo R Ak B O] E5
= J [E + ¥y < Z..) d8% (33)
S*

Since S* is arbitrary, the integrands must be equal, and the sur-

face momentum equation is obtained:

e e
Yogr FUIFYUX(XR) + 2y Xy +¥ - %R
dw
—CM _ .
+ Y Tt + (Q_XB-FECM)Q— _F_+VII “II;II . (34)

Equation (D.5) shows that in the inertial frame of reference (34)

becomes

dw

L1 -

The Momentum Equation in Surface Coordinates

In order to apply Eq. (34), it must be written in terms of its
components. It is convenient first to write the acceleration terms

caused by the rotation and translation of the surface as a fictitious
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force. I1If we set

dw dw

£ o= - ywx @XR) - 2Y0X VoY G XR-Y —get ~@XR+w,)Q 5 (36)

Eq. (34) becomes

d. v
CM— _ .

The time derivative in (37) can be expressed in surface coordinates

through the use of Eq. (B.18)

o

d v 9.5
CM— CM
5t "By Gyt . va,B - Zb% vy (™) _ aan(n),B v(n))
(n)
Y
CM
+.EG“”“§E"_ + 2vav(n),a + banavB) . (38)
VII .E{I can also be expanded
. = o ._._a___ . BY
Yinthr T2 Tgt g Tp - (39)
Using Eq. (A.8)
T
. _ II o ) By
VII LII . EY aua + a [{Of, B}éﬁ + thBB] E’Y TII
8 oy
* [ Y}ga +nby ] Ty (40)
Y s
" 1 ¥ Bo. o BY af
- aB o.B
=2 Trr g v 2P T - (42)
0B

Scriven [4] and Aris [1] decompose T into the form

II
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TGB = cfaﬂ'B + TaB

1I I (43)

B

where 0 1is the surface tension and T?I is the surface analogue of
the viscous stress tensor and depends on velocity gradients. The
differentiation then results in a large number of rather complex terms.
This process is not repeated here.

With the aid of (38) and (42) the tangential component of Eq.

(37) can be written

3 v
a, Y ( gf + VBVQ’B— Zbg va(n)_ aan(nzs V(n))-i'_gu QVa
= Eafu +.§aFa + a, T%E g (44)

In the usual tensor notation with base vectors suppressed

3 v
Y ( gf + vaa,B— ZbEVBV(n)— amsv(n)B v(n))+ Qva
_ £0 o 0B
=f +F + T . . (45)

The normal component of (37) is

9 v(n)
YGJ%%?——- 2vav(n2a + banavB) + Q v(n)
(n) (n) 0B
= f + F + bae TSy (46)
Conclusion

The notation used in the equations written above for <Yy and
v appears overwhelming, and the equations seem utterly intractable.

Indeed, solutions cannot be obtained until such quantities as Q, f,
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T and EII are either specified or related to Yy and v . [llowever,
the purpose of introducing the translating and rotating frame of
reference is to simplify the equations. Although the equations in
their general form appear quite formidable, the description of the
fluid behavior in special cases can be simplified considerably by
viewing it from the proper frame of reference. The introduction of
the translating and rotating frame of reference into the equations
permits this flexibility and increases the number of situations to
which the surface equations can be applied economically.

As mentioned previously, the fact that the moving frame of
reference is associated with the center of mass and with the mass-
average angular velocity is irrelevant to the derivation above. Any
translating and rotating frame of reference can be employed, and a
specific one is mentioned only because its general behavior in rela-
tion to the surface motion exemplifies the reason for introducing a
moving frame. In a particular application ECM and W would usually
be selected or given a priori, but their values would generally be
close to those for the center of mass and the mass-average angular

velocity.



-423-
Appendix A

FORMULAS FROM DIFFERENTIAL GEOMETRY

The formulas listed below can be obtained from Sokolnikoff [5]
or Kreyszig [2] or some other text on differential geometry. They are
needed for the development of the other appendices. The time depend-
ence of the quantities is irrevelant here, and the same results are
valid in both the fixed and convected surface coordinate systems.

The covariant metric tensor is

%8~ 2 " 3 (A=1}

and it measures distance in the surface through the first fundamental
form:

(ds)2 = aaB du® duB " (A.2)

The set of base vectors reciprocal to a, (and n in three
dimensions) is denoted by gg (and n in three dimensions). The

contravariant metric tensor is

& - a - EB (A.3)

and the matrix (aaB) is the inverse of (auB)

oy _ YO _ g0
a aYB aBY a GB " (A.4)
The aaS and an can raise and lower indices as in the following
examples:
of o, B
a“ b, =b = a b A.5
By TPy T ys (el
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oB
a oF - P (A.6)
o =
a aaB EB . (A.7)
The surface derivative of the base vectors are denoted
Bga Y
P = + .
B {y gt a, * by n (A.8)
da
where (Y 31={ Thw gl o2 (A.9)
o B B o = 3
u
%2
and baB = bBa =n ° auB " (A.10)

The quantity {aYB} is a Christoffel symbol of the second kind, and
B

duadu is called the second fundamental form of a surface. From

baB
these definitions the following equations are readily obtained:

o
IV
EU—B' = —{Y B} a e o bB n (A.11)
an i
;_)—uTB— =-a, bB : (A.12)

The mean curvature of a surface is

= 1 _aB
H = 5 2 baB (A.13)
1 .1 1
= 2 G+ (A.14)
2 R1 R2

where R1 and R2 are the principal radii of curvature.
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Appendix B
TIME DIFFERENTIATION FORMULAS
Formulas for the time derivatives of surface base vectors and

the unit normal are derived below. These formulas are needed to calcu-

late the derivatives of vectors expressed in component form.

LI 9
du
=_3_a ta + 2%y (B.2)
du

after using Eq. (7). From (A.12) we obtain

9. ..a (n)
CM—0 B ..(n) v

=~a, b v +n (B.3)
ot - o au®

=-ag bh v 4 v® (B.4)

An expression for BCME/ ot 1is obtained by differentiating

n°a :
= e

r - P_ L] 3t (BoS)
=-v (B.6)

from (B.4). Since 39 /3t must be orthogonal to n and hence

fo )=

tangent to the surface,

b3}
2R V(“fa (B.7)
o wy S (B.8)

i



-426-

The formulas above can be used to obtain the derivative of any

vector
z = a® + nz(® (B.9)
‘o o N BB RN 2
ot -0 dt - o e sO — 0ot
- 2? v(nza z(n) (B.10)

3y ¢ ot B sB
(n)
Qa2
CM (n) «
+ n (-—-———-—at + ¥ o z ) . (B.11)
d. .z
The formula for s can be obtained from that above by appli-
cation of (13):
d. .z 0, .z 3z
o= _ Com= o =
T i 7 + v . = (B.12)
u
BCME+ vOl .. (a :»:B + n z(n)) (B.13)
ot N o ) )

B
cME _ “cME |« 9z Y B
ol Tl S [aB—-aua+ ({B a} a, +bBuB-) z
(n)
9z - B _(n)
+n O! aE bCL Z ] (B.14)
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CM— 8 .0z o Y o B (n)
=at +a ( {au+{BY}Z] bBVZ )
(n)
+ E(E—a—— Vu + bCLB 'VazB) (B.15)
du
9.2
_ _CM= B o a B (n) a_(n) a B
¥ +a (vz 8 vaz ) + n(vz ,a+ba6vz) (B.16)
@ _ Bz oy
where z 8- BuB + {B Y} z : (B.17)
Substituting from (B.11),
d_z d za
gl:l_ = éor. ( (831: + sza’B - bg v(n)zB - bg’ sz(n)_ aqu(n)’B z(n))
BCMz(n) (n)
ety n’u 2%+ v“z(nza + banazB) . (B.18)
In the convected system
*
4o _ 5 ot —
dt x4t *
= 3 (E* V*B + n* V(n)*) (B.20)
E)u"‘Ot B -

- ey oo () sy by m v

dux® Y
' 2'23:2)* - g weg v (8.21)
= g%, <§:*i + {aBY} v - pad @)%
" E-(BV(Z)* v b, v*B) .22,

ou*
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B _ paf ()%
o) o

= _a_*B (v* .

+ ™" bko why (8.23)

From (B.23) the derivative of the metric tensor can be obtained

‘oo _ Yo®e L . daf's (B.24)
dt dt —8 -0 dt :
- agY (V*Tu _ b*l V(n)*)
+ax o - bl v (8.25)
= Vh o+ VA o - b L L (B.26)
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Appendix C

TIME DIFFERENTIATION OF AN INTEGRAL

The object here is to derive a means of interchanging differen-

tiation and integration in an expression of the form

d
CM

— *dS*
o I G*dSs

S*

where G* is an arbitrary function of u*a, t, and the area 8% is
moving with the fluid on the surface.
An element of surface area is given in terms of the convected

coordinates by

ds* = Lg{ x 53| du*l du*2 . (€.1)
A simple calculation shows that
* %) + (g% %) = gk g% - g% %
(af x a3) - (af * af) = a3, ay) - &), a3, LE2)
- d t *
e (aaB) (C.3)
= gk (C.4)
Therefore
ds* = /a® durl dux® | (C.5)
Then we have
dCM dCM 4 2
— G* dS* = —— G* va* du*~ du* (C.6)
dt dt
S* S*
d__ G* d_a*
= j (—E%E-/§§'+ Gk —t Cgt ) duxl duw? (c.7)
2/a*
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dCMG* 1 dCM
= (ot TR — | el X *
f (: ac + 5 G e (&n a*)) dS 5 (C.8)
S*
d__a%*
it can be obtained with the aid of (B.26):
* * * * *
dCMa . dCMall gk dCMaZZ e dCMa12 o dCMaZI f
dt 22 dt 11 dt 21 dt 12 dt :
- G S o  BR —a% BE _ .k pB%
& (2%, bT, Taf; b3, -a5; b1, - af, by
N— * %
+ 2a22 vl,1 + 2a11 v2,2
- ok (u* * Lk ok *
a3 (V) ,0tVa 1) — Ayt ) (.10

aB

Since the matrix (a* ) 1is the inverse to (a;B) <

CM - (n)* * *ll * *22 % *12 & *21 »
o 2v a*(a bll + a b22 + a b12-+a b21)
i | 22 12 =« 21
* (g% * * * * * *

+ 2a*(a vl’l-ka v2,24-a vl,2-+a V2,1) (C.11)
*

= = 2v(™F gk ax® pr g ok ax®B gk (C.12)

af Oy
and
d . n a*
CM - (n) o
pe = 4 Hv + 2v ,a (Cc.13)

where (A.13) has been applied.

If (C.13) is substituted into (C.8), the final equation is

obtained:

d d__ G*
CM CM (n) o
i % * = . S K *

T I G*dS J [ qE + G% (- 2Hv + v , )] ds " (C.14)
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Appendix D

RELATTON BETWEEN DERIVATIVES

IN THE ROTATING AND THF INERTIAL FRAMES OF REFERENCE

The equations listed here can be found in Symon [6].

If the
center-of-mass frame of reference is rotating with an angular velocity
w

&

relative to the inertial frame, the time derivatives of any vector
are related by

dz d_z
— _ _CM—
= e + WX z § (D.1)
If the differentiation is performed a second time,
2 2
d"z d:”z d..z dw
—y = 2+_cp_><(9><5)+29>< §?+—&;XE z (D.2)
dt dt
If we set
£ =TTy~ B (D.3)
we obtain
= X
W v+wXxXR+ Wy (D.4)
and
dw d. v dw dw
e . . e e <M
&~ TRTAXRTERY g R e s

(D.5)
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NOMENCLATURE
Symbols
d_ convected time derivative in the inertial frame of
dt reference
EEM - (g*_ time derivative relative to the fixed
ot ot uo * surface coordinates
dem - 6&_) convected time derivative in the
dt ot ukO > surface
* the asterisk designates quantities associated with
the convected surface coordinates
5 the comma represents covariant differentiation,
e.g., T%g ¥ is the u.Y covariant derivative of
L]
the tensor T?? 5
o 9
v = a —— , the surface gradient operator
I1 = o
u
{BaY} Christoffel symbol of the second kind
Roman
a, surface base vector in the fixed coordinate system
ég reciprocal base vector in the fixed coordinate system
aaB covariant metric tensor in the fixed surface coordi-
nate system
ap contravariant metric tensor 1n the fixed surface
coordinate system
a* surface base vector in the convected coordinate
i system
* = *
a det (a OLB)
b 8 tensor associated with the second fundamental form
O of a surface (baBduaduB)

C* surface curve bounding S#%
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4 fictitious force arising from the rotatlion of the
center-of-mass frame of reference

F force per unit area of surface as a result of inter-
action with the bulk phase

G* any quantity (scalar, vector, or tensor) with
variables u*® ¢

H mean curvature of the surface

m unit normal to C#* and tangent to the surface

n unit normal to surface

Q mass per unit area per unit time added to the surface
from the bulk phase

T position vector in the inertial frame of reference

Tom position vector to the center of mass

R position vector in the rotating frame of reference

s arc length in the surface

S#* an area in the surface which is convected with the
fluid

t time

Irr surface stress dyadic

aB

TII surface stress tensor

uu coordinate in the fixed surface system

ur® coordinate in the convected surface system

v fluid velocity in the rotating frame of reference

Vi1 component of v tangent to the surface

v component of v in the fixed surface coordinate
system

(n)

v : component of v mnormal to the surface
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Greek

a2

™ e
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fluid velocity in the inertial frame of reference
velocity of the center of mass

arbitrary vector

surface density in mass per unit area
Kronecker delta

surface tension

surface viscous stress tensor

angular velocity of the rotating frame of reference
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