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ABSTRACT 

The microscopic properties of a two-dimensional model dense 

fluid of Lennard-Jones disks have been studied using the so-called 

"molecular dynamics" method. Analyses of the computer-generated 

simulation data in terms of "conventional" thermodynamic and distribu­

tion functions verify the physical validity of the model and the simulation 

technique. 

The radial distribution functions g(r) computed from the simula­

tion data exhibit several subsidiary features rather similar to those 

appearing in some of the g(r) functions obtained by X-ray and thermal 

neutron diffraction measurements on real simple liquids. In the case of 

the model fluid, these "anomalous" features are thought to reflect the 

existence of two or more alternative configurations for local ordering. 

Graphical display techniques have been used extensively to pro­

vide some intuitive insight into the various microscopic phenomena 

occurring in the model. For example, "snapshots" of the instantaneous 

system configurations for different times show that the "excess" area 

allotted to the fluid is collected into relatively large, irregular, and 

surprisingly persistent "holes". Plots of the particle trajectories over 

intervals of 2. 0 to 6. 0 x 10-1 2 sec indicate that the mechanism for dif­

fusion in the dense model fluid is "cooperative" in nature, and that 

extensive diffusive migration is generally restricted to groups of 

particles in the vicinity of a hole. 

A quantitative analysis of diffusion in the model fluid shows that 

the cooperative mechanism is not inconsistent with the statistical 
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predictions of existing theories of singlet, or self-diffusion in liquids. 

The relative diffusion of proximate particles is, however, found to be 

retarded by short-range dynamic correlations associated with the 

cooperative mechanism- -a result of some importance from the stand­

point of bimolecular reaction kinetics in solution. 

A new, semi-empirical treatment for relative diffusion in 

liquids is developed, and is shown to reproduce the relative diffusion 

phenomena observed in the model fluid quite accurately. When incor­

porated into the standard Smoluchowski theory of diffusion-controlled 

reaction kinetics, the more exact treatment of relative diffusion is 

found to lower the predicted rate of reaction appreciably. 

Finally, an entirely new approach to an understanding of the 

liquid state is suggested. Our experience in dealing with the simulation 

data--and especially, graphical displays of the simulation data--has 

led us to conclude that many of the more frustrating scientific problems 

involving the liquid state would be simplified considerably, were it pos­

sible to describe the microscopic structures characteristic of liquids 

in a concise and precise manner. To this end, we propose that the 

development of a formal language of partially-ordered structures be 

investigated. 
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A. Some General Comments Regarding the Liquid State 

The foundations for our physical understanding of the vapor state 

were established during the eighteenth and early nineteenth centuries. 1 

And somewhat more recently, x-ray and now thermal neutron diffraction 

measurements have provided extremely detailed information regarding 

the microscopic structures of a large number of crystalline solids. But 

the liquid state, occupying as it does a kind of "middle ground" between 

solids and gases, is undoubtedly more complex and less well under-

stood than either. 

The solid state is stable at low temperatures and/or high pres­

sures, is characterized by high cohesion and rigidity, and at the 

molecular levels exhibits a high degree of (crystalline) order and 

structure. Gases are stable at low pressures and high temperatures, 

are characterized by low cohesion, a complete lack of rigidity and 

low resistance to flow, and to a good approximation are entirely 

devoid of structure or order at the molecular level. The liquid state 

is stable over an intermediate range of temperatures and pressures, 

and is characterized by a high cohesion, a lack of rigidity, and a 

comparatively low resistance to flow. 

The microscopic structure s characteristic of the liquid state 

remain something of a mystery. The lack of rigidity and low r e sistance 

to flow suggest a disordered structure rather like that of the vapor 

state; indeed the liquid and vapor states become indistinguishable a t 

high temperatures. But a s a rule , fusion is accompanied by only a 
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relatively small increase in volume (of the order of 12% for the solid 

inert gases), and thus the spatial arrangement of the atoms or molecules 

in a liquid must--at least in the region of the melting point--bear some 

similarity to the crystalline structure of the corresponding solid. This 

proposition is also supported by the well-known experimental fact that 

the latent heat of fusion is always much smaller than the latent heat of 

vaporization; the cohensive forces between the molecules of a substance 

must not therefore change appreciably with melting. And finally, we 

note that the specific heat of condensed bodies is only slightly affected 

by fusion, indicating that thermal motion in the solid and liquid near 

the melting point must be fundamentally rather similar. 

The ambiguity implied by the macroscopic physical properties 

of the liquid state is at least partially resolved by the results of x-ray 

diffraction and thermal neutron scattering measurements. 2 These 

measurements, in addition to some spectroscopic data, 3 indicate that 

the liquid state is characterized by a microscopic structure that is 

essentially neither vapor-like nor solid-like. 4 Rather, liquids are 

"partially ordered" at the molecular level; that is, the spatial 

arrangement of neighbors around an individual molecule in a liquid is 

similar to the arrangement of molecules in the crystalline lattice of 

the corresponding solid--but the lattice "defined" by the arrangement 

of neighbors around one molecule may be inconsistent with a regular 

extension of the lattice similarly defined by the neighbors of another 

molecule only a few diameters distant. An operationally useful, 

intuitive understanding of this concept of "partial ordering" is, un­

fortunately, rather difficult to achieve. And perhaps even more 
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important, the statistical-geometric5 techniques necessary to establish 

a quantitative measure of the "degree" of order in a partially-ordered 

structure have not as yet been devised. For a more detailed discussion 

of this latter point, see the discussion in section V. 

Of all the physical sciences, classical chemistry is perhaps 

most dependent upon an intuitive understanding of the physical phenom­

ena it purports to investigate. Organic chemists tend to think of mole­

cules as real physical entities comprised of real atoms arranged in a 

reasonably well-defined spatial configuration--and of chemical reaction 

mechanisms in terms of the re-arrangement of these configurations 

during the encounter between two molecules in a reaction medium. This 

reaction medium is most frequently some liquid solvent; yet, because of 

the dirth of "practical" information regarding the microscopic processes 

characteristic of the liquid state, even very "intuitive" descriptions of 

a chemical reaction mechanism will frequently fail to consider possible 

dynamic interactions between tne activated complex and molecules of 

the surrounding solvent. It is true, of course, that the so-called 

"solvent cage effect" is occasionally called upon to explicate the 

mechanism for, e. g. , a complicated molecular rearrangement. But 

even this very simple model for solvent-solute interactions is not well 

defined, and it appears that different chemists envision the physical 

processes underlying the "effect" in different ways. Again, the 

Smoluchowski treatment of diffusion-controlled reaction kinetics in 

solution (see section IV. C, page 179) would seem to view the solvent 

as a "barrier" to encounter between reactive solute molecules, while 
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the "collision" theory of chemical reaction kinetics invokes a "solvent 

cage" model to explain the observed rates of reactions requiring a 

(supposedly) high activation energy or a specific steric orientation for 

the reactant molecules. 

Other chemico-physical phenomena are also interpreted in terms 

of "operational" models for the liquid state. For example, nuclear 

spin-lattice relaxation in solution by nuclear-spin-internal-rotation 

coupling requires a dynamic interaction between the NMR-active solute 

molecule and the molecules in the surrounding solvent environment. 

The absorption spectra of atomic mercury dissolved in a variety of 

(apparently) inert liquids is thought3 to reflect the different types of 

local solvent environment in which a ground-state solute mercury atom 

might find itself. But the physical models for these interactions and 

solvent environments must be viewed with some skepticism until a 

more definitive model is fashioned for the liquid state itself. And, as 

we shall see in the next section, present efforts to construct a good 

theory of liquids do not seem to aspire to the development of such a 

model. 

B. A Brief Outline of Theories of the Liquid State 

During the last four decades, a great deal of research effort 

has been directed toward the development and articulation of a number 

of different theories of the liquid state. The literature reporting work 

in this area is so extensive that even a superficial summary of the 

results achieved by the various theories is well beyond the scope of 

this dissertation. Instead, our purpose here is to provide a brief 
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outline of the approach taken in the development of a representative 

sampling of these theoretical treatments; this outline will then serve 

as a background against which we may contrast the direction and 

results of our own research. 

For the sake of discussion, the various theories of the liquid 

state may conveniently be divided into two groups. The "formal" 

theories of the sort pioneered by Kirkwood and Mayer offer the 

aesthetic pleasure of initial rigor. But approximations have always 

been necessary at some point in the development of these theories to 

make the mathematics tractable, and while most of the approximations 

are almost assuredly valid from a purely mathematical point of view, 

the physical implications of a given approximation are often not 

immediately obvious. 

The theories falling into the second group--the "model" theories 

- -are each based on some operational model for the microscopic struc -

ture and dynamics of the liquid state. In selecting a given model for 

study, the theoretician supposes that: (i) the mathematics deriving 

from the model will be tractable without further approximation, and 

(ii) the model is a reasonable representation of the real liquid. Some 

simplifying approximations are usually made during the mathematical 

development of a "model" theory. But these approximations are 

fundamentally different from those necessary to the development of the 

"formal" theories; they are usually more straightforward, have few if 

any physical implications (since most of the physical reasoning has 

been applied in devising the model itself), and can generally be tested, 

if necessary, by a more conscientious mathematical treatment of the 

model. 
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The "model" approach to liquid theory offers the advantage that, 

within the limits of any simplifying approximations, the theoretical 

formulations developed from a given model are at least a valid 

statistical-mechanical treatment of that model. If a "model" theory is 

capable of reproducing the thermodynamic or equation-of-state data for 

a real liquid, then it is generally assumed that the model is a reason­

ably accurate representation of reality. In fact, however, the thermo­

dynamic functions do not serve as a critical test for the validity of a 

theoretical model; the statistical averaging implicibf in any of the 

thermodynamic quantities is so extensive that even a patently "naive" 

model may experience some success in obtaining agreement with 

experimental data. The transport properties might conceivably serve 

as a medium for more severe tests of the various theoretical treatments. 

Unfortunately, most of the models that have been examined are static in 

nature and do not lend themselves to the calculation of transport­

related quantities. 

Formal Theories 
~ 

The "formal" approach to a theory of the liquid state is based on 

attempts to devise an a priori method whereby the radial distribution 

function g(r) for a liquid can be calculated. If the molecules of a liquid 

interact with pair-wise additive, central forces (possibly a rather gross 

assumption), knowledge of the radial distribution function permits us 

to calculate the equation-of-state and total energy. If cp(r12 ) is the 

interaction potential between pairs of molecules in the liquid, the virial 

theorem leads to an equation-of-state of the form: 
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PV = Nk T - W fao r g(r) o<J?(r) 47rr2 dr 
B 6V 0 ar 

The total internal energy is similarly related to g(r): 

2 ao 
E = ~ NkBT + ~ f g(r) cp(r)' 47rr2 dr 

0 

From the equation-of-state and total energy, all the thermodynamic 

properties of the system can be calculated. 

Kirkwood, 6 Born and Green, 7 Yvon, 8 and Bogoliubov9 have 

developed a number of essentially equivalent integral equations for the 

molecular-pair distribution function n<2 >(,!:.1' !;i), defined as the prob­

ability of finding an arbitrary pair of molecules in the configuration 

(.!:_~, !;i). That is, n<2 >(!j., .!:_2 ) is the probability of simultaneously finding 

a molecule in the volume element d3 r 1 around r 1 and a second molecule 
"" "" 

in the volume element d3r.:a around !;l· Higher-order correlation func­

tions n<3 >(!j., ~' .!:_3 ), n<4 >(,!:.1' ~' !:;3' .!:_4 ), etc., are similarly defined. 

For an isotrop:C fluid, n < 2 > (!j., r.:a) is dependent only upon the 

scalar distance r 12 = I !j.2 j = I .!:.i - ~I, and is directly related to the 

radial distribution function: 

2 

~ g(r) 

By a rather tedious statistical-mechanical derivation, it can be shown 

that the change in n<2 >(~p !;i) effected by moving particle 1 while holding 

particle 2 fixed is given by: 
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and similarly, that on(3)(:£.11 ~' :£_3)/0::£_1 is given by a formula involving 

the next higher correlation function n<4 >(:£_11 :£_2, :£_3, :£_4 ). Thus to calculate 

n<2>--and thence g(r)--we need n<3>; to obtain n<3 > we need n<4 >, etc. 

To break this chain of linked equations, Kirkwood proposed the 

so-called "superposition approximation": 

[ n<2>(r12). n<2>(r23). n<2>(r31)] 

Po 

where p0 = N/V is the number density of the system. Born and Green, 7 

and Yvon 8 have shown that the equation obtained by substituting the 

superposition approximation for n<3> into the equation above for 

on(2>(:£_11 ~)/o:£_1 can be integrated over :£_1 to obtain: 

(
nc_2>(r223) ) Q 2 ( )2] - 1 r13 - .r2s - r12 d d 

X 2r r23 r23 r13 
Po 23 

where cp(-r) = cp(r) and n<2>(-r) = n<2>(r), by definition. Kirkwood and 

Bogoliubov obtained slightly different equations using different 

mathematical approaches. 
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Within the limits of accuracy for the superposition approximation, 

the BGY equation above and the similar equations obtained by Kirkwood 

and Bogoliubov each constitute a rigorous (though perhaps not intuitively 

enlightening) theory of the liquid state. In fact, the BBGYK equations 

are found to reproduce the broad features of the radial distribution 

functions obtained by x-ray diffraction measurements2 on real liquids 

at moderate densities. For higher densities the superposition approxi­

mation begins to fail; in particular, the theoretical distribution functions 

begin to diverge from the experimental functions just in the regions 

where cp(r) and acp(r)/ar make the largest contributions to the inte­

grands in the formulas for the total energy and equation-of-state. 

Perkus and YeVick10 obtained a very different integral equation 

for g(r) by applying the "method of collective variables. "ll With this 

method, disorder in the microscopic structure of a liquid is repre­

sented by the superposition of a large number of acoustic waves. The 

Hamiltonian for the system is then transformed so that, to a good 

approximation, the configuration integral--and thence the partition 

function--can be calculated. 

Consider first a one-dimensional system of N particles con­

strained to move on a line of length L. An instantaneous configuration 

of this system would usually be described in terms of the coordinates 

x1' ~' x3 , ••• , xN of the particles. In the method of collective variables 

however, each "collective" coordinate depends on all the xi's and has 

the general form 
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where Xn = 2L/n and n is an integer. N of these collective coordinates, 

q 1 ... qN' are required to describe the one-dimensional system. 

For real three-dimensional liquids, 3N collective coordinates 

are used and the system is assumed to be confined to a cube with edge 

dimension L. The reformulation of the Hamiltonian requires a number 

of complex mathematical procedures; some of these procedures are 

still open to question. Suffice it to say that, using the transformed 

Hamiltonian, the partition function and thence all the thermodynamic 

properties of the liquid can be calculated. 

The Perkus-Yevick treatment leads to the integral equation: 

g(r)e q>(r)/kBT = 1 +Po J g(s) G -e q>(s)/kBJ ~(I s-r I)-~ ds 

for the radial distribution function. Broyles12 has obtained numerical 

solutions to this equation for fluids of Lennard-Jones particles at a 

number of different temperatures and densities. The resulting radial 

distribution functions compare favorably with those calculated using 

the Monte-Carlo and "molecular dynamics" simulation techniques--to 

a radius of about r = 1. 5 a. For larger r the agreement is not quite 

so satisfactory, although the results are still much better than those 

obtained using any of the BBGYK equations. The PY equation appears 

to fail at low densities. 

The "scaled particle" method developed by Reiss and co­

workers13 represents potentially yet another "formal" approach to a 

theory of the liquid state. The method is based on the idea that, as 

the volume of a void or "hole" in a liquid is increased, the number of 
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molecules that will fit into that void changes discontinuously. The 

probability of finding a spherical hole of a given radius in the liquid is 

then calculated in terms of the reversible work necessary to create 

such a hole. 

As originally formulated, the scaled particle method is directly 

applicable only to the treatment of dense fluids of rigid spherical par­

ticles. For such fluids the equation-of-state is a function only of G(a), 

the average density of particles in contact with a given particle in the 

fluid, and not the form of the radial distribution function for all r > a. 

The equation-of-state 

1 +x+x2 

(1 - x)3 
where N11a3 

x = ~ 

obtained by the scaled particle method is however in remarkably good 

agreement with the results obtained by simulation calculations on sys­

tems of "hard" spheres, 14 and has even experienced some success in 

predicting the thermodynamic properties of several real liquids. 15 

Model Theories 
~ 

The ''model" approach to a theory of the liquid state involves an 

attempt to obtain a mathematically tractable formulation for the canon­

ical partition function ZN(V, T) of a liquid by calculating instead the 

partition function for a model representing the microscopic structure 

and dynamics of that liquid. The partition function for a thermo­

dynamic system is related to the Helmholtz free energy: 
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A(N, V, T) = - kB T In ZN(V, T) 

and if the free energy is !mown as a function of temperature and density, 

all the other thermodynamic properties can be calculated. In particular, 

the equation-of-state is obtained from the relation P = -(aA/aV)T. 

The partition function for a classical system of N identical 

particles is given by the 6N-dimensional integral 

ZN = N! ~3N f. .. f exp{ -(3U{~p ... !:.N' {{11 ••• gN)} 

d!:_1 ••• d!:_N' dR_i ... dgN 

where h is Planck's constant, (3 = (kBT)-
1

, !:.i and gi are the position 

and momentum of particle i, respectively, and U(!:_1 , ••• !:.N' Ri· .. gN) is 

the total energy of the system in configuration (~ ... gN). The momenta 

may be integrated immediately to give: 

3N 

Z = (21Tm\~ Q (VT) 
N {3h2) N ' 

where m is the particle mass and QN the configurational partition 

function 

flt(!:_i- .• !:.N) is the total potential energy of the spatial configuration 

(!:_1 ••• !:.N). The various models are therefore chosen to make the cal­

culation of QN practicable. 
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The simplest theories are based on a "cell" model for the liquid 

state. The volume occupied by a system of N particles is divided into 

a lattice of N identical cells; one particle is confined to each cell, and 

thus the configurational partition function for these models factorizes 

into a product of None-particle partition functions: 

QN = exp( -{34.>0 ) v ~ 

where 4.>0 is the lattice energy when all particles lie at the centers of 

their respective cells, and the ''free volume" vf is given by: 

vf = J exP{ -/3[ l/J(r) - l/J(o)] }dr 
cell "' "' 

The quantity l/J(r) is the "cell potential"; i.e., the potential energy of a 
"' 

particle positioned at r relative to the center of its cell. 
"' 

The various cell theories differ primarily in the manner in which 

l/J(r) is calculated. In the most elementary treatment--the Lennard-,.... 

Jones-Devonshire (LJD) theory--l/J(r) is c alculated under the assumption .,.... 

that all the neighbors to the particle of interest are "localized'' at the 

centers of their respective cells. More sophisticated treatments per­

mit the neighbors to move about in their cells in response to the motion 

of the central particle; the results obtained by the se treatments do not, 

however, differ appreciably from those obtained with the simple LJD 

theory. 

It is obvious that the cell theories are, in reality, theories of 

the solid and not the liquid state. Although the cell theories do predict 

the existence of a first-order phase transition, it can be argued that 
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this transition is from a solid to an "expanded solid" configuration, and 

not from the liquid to the vapor states. The much-heralded fact that 

the simple LJD theory provides a reasonably accurate predic tion for 

the critical temperature of liquid argon--T~, LJD = 1. 30; the experi­

mental value is T~ = 1. 259 (reduced units)--can hardly be more than 

fortuitous, since the predicted critical density is a bout 80% higher than 

that observed experimentally. 

From a thermodynamic point of view, the cell theories, in all 

versions, exhibit two main defects: (i) the predicted values for the 

pressure at liquid-like densities are too low; alternatively, the pre­

dicted volumes for the liquid are too small, and {ii) the predicted 

values for the entropy of the liquid are much too low. These defects 

are the result of two fundamentally unrealistic assumptions made in 

the cell model. The first assumption is that the coordination number 

of each particle remains constant for all densities; this implie s that 

the size of the cells grows proportional to the volume allotted to the 

system. The second unrealistic assumption is that each particle 

moves about in its cell independent of the positions of the particles in 

neighboring cells. Thus the ce ll theories are essentially independent ­

particle theories. 

To relax the first a ssumption, Eyring16 introduced a "hole " 

theory for the liquid state. In this theory, the volume occupied by a 

system of N particles is divided into a virtual lattice of (N+n) ident ical 

cells. With each particle assigned to a single cell, this leaves n cells 

unoccupied, or n "holes". The number of hole s is assumed to vary 

with the density of the system. 
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Actually, a number of different hole theories exist, depending 

upon the method by which the ratio n:N is determined and the manner 

in which the holes are assumed to be distributed throughout the virtual 

lattice. Even a superficial summary of the various treatments is im­

possible here; it is found however that all of the existing versions of 

the hole theory predict n:N ratios that are too small and, like the simple 

cell theories, liquid densities that are too large. The introduction of 

holes into the cell model does not increase the predicted values for the 

entropy significantly. 

The independent-particle aspect of the simple cell theories is 

relaxed in the "cell-cluster" theory of de Boer. 17 In this treatment, 

the volume occupied by an N-particle system is again divided into N 

identical cells. But the walls separating some l adjacent cells in the 

center of the virtual lattice are removed, thus permitting the g_ particles 

contained therein to move about in one "super-cell". The (N-l) 

remaining particles are assumed to be "localized" at the centers of 

their respective cells. 

The potential field within the cell-cluster is determined by two 

factors: (i) the mutual interactions between the f particles compr ising 

the cluster, and (ii} interactions with the (N-f) surrounding neighbors. 

The partition function is accordingly written as a series of terms: the 

first term gives the contribution of one-cell clusters (from the simple 

cell theories), the second term gives the contribution from cell-clusters 

of two cells (introducing the effects of two-particle correlations), etc . 

The successive terms increase in complexity very rapidly with in­

creasing .e.; indeed, in the nine years between 1953--when the de Boer 
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treatment was proposed--and 1962, only the first and second terms in 

the series for Lennard-Jones particles were completed. 18 The 

results obtained with this two-term treatment indicate that the cell-

cluster theory, when fully developed, may provide muc11 more realistic 

estimates of the entropy of the liquid state. But like the simple cell 

theories, the cell-cluster treatment may tend to underestimate the 

volume of the liquid. A cell-cluster theory including holes has been 

worked-out by Dahler and Cohen, 19 but numerical results for any 

realistic pair potential are exceedingly difficult to obtain. 

The simple cell, hole, and cell-cluster models for the liquid 

state are all basically rather similar, and for this reason the theories 

stemming from these models exhibit similar deficiencies. The "tunnel" 

theory developed by Barker20 overcomes some of these deficiencies by 

permitting the particles comprising the liquid greater freedom of 

movement (thus allowing for more microscopic disorder in the model), 
I 

yet retains much of the computational simplicity of the more elementary 

cell treatments. 

The idea behind the tunnel theory is that, within the framework 

of classical statistical mechanics, the configurational partition function 

for a one-dimensional fluid can be solved exactly. The "tunnel" model 

is accordingly one in which the particles of a liquid are packed into a 

large number of parallel lines. The particles in one line are distri­

buted along that line completely independent of the distributions of 

particles along any of the adjacent lines; thus the relative positions of 

particles on different lines are completely disordered. If the lines 

are packed tightly together, the motion of a particle along the axis of 



I 
I 

18 

the "tunnel" formed by particles on the adjacent lines will be almost 

independent of its motion perpendicular to the axis. The configura­

tional partition function can then be factored into two terms: a one­

dimensional partition function for motion along the tunnels, and a 

two-dimensional function describing motion across the tunnels. 

Let us assume that the volume V occupied by an N-particle sys­

tem is divided into K close-packed hexagonal cylinders, each! long and 

containing M = N/K particles. The configurational partition function 

then has the form: 

where QU is the one-dimensional partition function 

M 
q><1> = ~ cp( lzi -zj I> 

i?!j 

and Q~> is the partition function describing motion in the plane per­

pendicular to the tunnel axis. Q~> is usually obtained by a two­

dimensional version of the simple LJD cell theory (see, for example, 

the Appendix to Paper No. 1, Section III. B, page 85 ), in which case 

it is of the form: 

Q~> (A, T) 
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where the "free area" af is given by: 

af = fcell exp{-~[ l/J("!) - l/J(o)]} d~ 

As described above in the discussion of the simple cell theories, the 

"cell potential" l/J(r) may be calculated under a variety of different 
"" 

assumptions, leading to "tunnel" treatments of varying degrees of 

mathematical complexity. 

Using the Lennard-Jones pair potential, the tunnel theory is 

found to reproduce the equation-of-state for liquid argon over a range 
~ .. Jr 

of moderate, liquid-like densities. Thus the theory is trucly one of 

the liquid--and not the solid--state. Although the entropy values pre­

dicted by the theory are somewhat lower than those measured experi­

mentally, the results for the entropy are superior to those obtained by 

any of the cell-like theories. The theory does not provide a good pre ­

diction for the critical properties of a liquid, apparently because the 

"tunnel" model breaks down at low densities. 

The "significant structure" theory introduced by Eyring21 

represents a radical departure from the other theories discussed 

above. According to the significant structure model, the "excess" 

volume acquired by a liquid through thermal expansion is distributed 

throughout the structure of the liquid in the form of partic le - size holes 

or "vacancies." Unlike the holes in the cell-like "hole" model (also 
'lrt. 
-Em. Eyring contribution), the vacancies in the significant structure 

model are "fluidized"--i. e., free to move about in the liquid. Thus 

the vacancies impart something of a gas-like character to the partic les 

immediately surrounding them at any instant (since any particle on the 
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edge of a vacancy may potentially "jump" into the void--permitting the 

vacancy to jump into its place); the particles not adjacent to a vacancy 

are assumed to librate in a solid-like environment. 

The partition function for the significant structure model is 

written as the weighted product of two factors: 

where z.s and zg are the partition functions for solid-like and gas-like 

degrees of freedom, respectively, and Vs is the volume of the cor­

responding solid (perhaps a poorly-defined quantity). The partition 

function for an Einstein oscillator is used for zs; zg is approximated by 

the nonlocalized ideal gas partition function. The exponents N(V s /V) 

and N(V-Vs )/Vs weigh the contributions of these two factors in terms 

of the amount of "excess" volume--and hence, the ratio of particles to 

vacancies--in the system. In fact, however, the final form of the 

partition function is not quite so simple: 

Z = {-e_E_s..,.../R_..,T~ 
N (1 - e -9/T)3 ( \ ( 0~} N Vs V - Vs \ aEs VS V ~ + n Vs ) exp - (V-Vs)tiT 

where Es is the energy of sublimation and e the Einstein characteristic 

temperature for the corresponding solid, and n and a are adjustable 

parameters. 
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The significant structure theory has achieved a measure of suc­

cess in treating a wide variety of liquids, including the liquified inert 

gases, organic and inorganic liquids, and even molten metals and 

fused salts. And because the significant structure model is dynamic in 

nature, the theory can also be extended to include a treatment of such 

macroscopic quantities as the transport properties, surface tension, 

and dielectric constant. 22 The parameterization employed in the 

mathematical development of the theory has however led to criticism 

in some circles. For example, in the formula for the partition function 

n and a are explicitely designated as "adjustable" parameters; but 

Es, 8, and V 
8 

can also be "adjusted" within not too well-defined 

limits, should the need arise. It has been said that, ''With a formula 

including mixed non-linear and exponential terms, and containing five 

disposable parameters, one should be able to 'fit' any conceivable 

function. 1123 

In summary, one might opine that the existing theories of the 

liquid state actually provide very little insight into the structures and 

dynamic processes characteristic of liquids at the molecular level. 

The mathematical complexity of the "formal" theories almost pre­

cludes the possibility that they will eventually lead to any intuitive 

understanding of the microscopic properties of liquids. On the other 

hand, most of the "model" theories have been based on manifestly 

simplistic models for the liquid state, and thus contribute little to our 

understanding of the "chemical" processes occurring in liquids. 
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C. A Review of Molecular Dynamics Studies at Other Laboratories 

The so-called "molecular dynamics" technique refers, gener-

ically, to a number of different algorithms that permit a digital com­

puter to simulate a model for a real physical system. In essence, the 

computer performs a numerical time-integration of the classical equa­

tions of motion for the perhaps several hundred particles comprising 

the model. The time-dependent position and velocity data generated by 

the calculations can then be analyzed: (i) to determine if the model is 

indeed a valid prototype for the real system, and (ii) to obtain a detailed 

description of the microscopic structures and processes occurring 

in the model ( and hence the real system, if accurately represented). 

Furthermore, the simulation data can provide for a stringent test of 

any theoretical treatments of the real system; even if the model is only 

an approximate replica of the real system, the theories can usually be 

re-worked to treat the model exactly, since the system parameters 

(e.g., inter-particle interaction potentials, etc.) for the model must 

be well-defined in the dynamics programming. 

Some of the earliest (< 1959) work with the molecular dyna mics 

technique was done by B. J. Alder and T. E. Wainwright at the 

Lawrence Radiation Laboratory. An algorithm was devised for simu­

lating dense fluids of "hard" particles, 24 and used in an extensive study 

of the thermodynamic properties of hard-sphere liquids. 25 A phase 

transition observed in the hard-sphere system was investigated in 

detail with dense fluids of hard disks. 26 

In recent years, Alder has turned his attention toward the 
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theoretical implications of his hard-sphere simulation data. The break­

down of the superposition approximation for hard-sphere fluids was 

examined, 27 and "free-path" distributions calculated from the simula­

tion data were used to refute the "jump" model for diffusion suggested 

by significant structure theory. 28 
It is rumored that Alder has now 

begun to investigate "cooperative" mechanisms for diffusion in his 

hard-sphere model, but no written reports of this work have come into 

this author's possession. 

In 1964, A. Rahman reported some preliminary results from 

molecular dynamics calculations simulating liquid argon. 29 A Lennard­

Jones pair potential was used, and the thermodynamic properties and 

self-diffusion coefficient computed from the simulation data were found 

to be in surprisingly good agreement with experimental values. As a 

staff member of the Argonne National Laboratory, Rahman has directed 

much of his effort toward calculation of the van Hove, and other cor­

relation functions of specific interest in thermal neutron scattering 

experiments. He has however--following Alder's lead--examined the 

validity of the superposition approximation and PY equation when 

applied to the radial distribution functions computed from his argon 

simulation data. 30 And more recently, he has reported the results of 

a rather novel investigation of the short-time mechanism for self­

d:iifusion in a dense fluid of particles interacting with the Buckingham 

pair potential. 31 (See also, Paper No. 3, Section IV. B, page 129.) 

Encouraged by the exceptional quality of Rahman 's initial results, 

L. Verlet has extended the simulation calculations for a Lennard-Jones 
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fluid (argon model) to a wide range of temperatures and densities. 32 

The equation-of-state, high-frequency elastic moduli, and isotopic 

separation factors computed from the simulation data are in very good 

agreement with the experimental values for liquid argon. An empirical 

method was devised for determining the melting point of the model sys­

tem, and the fusion temperature vs. density curve obtained in this 

manner was found to reproduce the experimental curve for solid argon 

quite accurately. The critical constants obtained for the model fluid 

were not, however, in good agreement with the argon values. 

Much of Verlet's work seems to have been influenced by his 

contact with J. L. Lebowitz and J. K. Perkus during his tenure at 

Yeshiva University. 33 For example, the equation-of-state data 

reported in his first paper are "corrected" to account for the "tail" of 

the truncated Lennard-Jones potential actually used in the simulation 

calculations. Again, in his second paper34--dealing with the equilibrium 

correlation functions obtained by analysis of the simulation data--the 

radial distribution functions are similarly corrected for the truncated 

pair potential, and a method based on the PY equation used to extrapo­

late g(r) outward and the direct correlation function c(r) inward. 

Verlet's research has been hindered somewhat during the last 

two years, first by his return to Paris from Yeshiva (New York City), 
~re I 

and then by a aear fatal automobile accident. He is however said to 

be presently engaged in an investigation of various (transport-related?) 

time-correlation functions computed from his argon simulation data. 
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D. An Informal Description of the Approach Taken in This Research 

In the remainder of this dissertation we describe a molecular 

dynamics study of two-dimensional model dense fluids of Lennard­

Jones disks. The primary goal of this investigation was to obtain a 

better intuitive understanding of the "chemically" important micro­

scopic processes characteristic of the liquid state. In particular, we 

were interested in the local structures that might be exhibited by the 

model, and the manner in which these structures would evolve with 

time and with the relative diffusion of individual pairs of fluid particles. 

A two-, rather than three-dimensional model was studied for 
I 

several reasons. From,. a purely economic standpoint, the dynamics 

calculations could be expected to proceed more rapidly for a two- than 

a three-dimensional model--thus permitting us to examine more 

thermodynamic states of the system or, alternatively, to observe the 

kinetic evolution of the system (in a given state) over a longer time 

interval. But per haps more important was the ease with which graph­

ical or pictorial displays of the two-dimensional simulation data could 

be generated. 

It would be difficult to overemphasize the importance of graphi­

cal display techniques to the type of investigation we orig~nalhv' en-
o/ea,--/h 

visioned. It was noted in subsection [ B] above that the EHfffl. of really 

definitive experimental information regarding the microscopic proper­

ties of dense fluids has been a serious handicap in the development of a 

i/:-;:_~y serviceable theory of the liquid state. But such information as 

does exist suggests that the liquid state is quite complex, both struc -

turally and dynamically, at the molecular level. Thus there was--and 
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still remains--good reason to believe that the old saw: "A picture is 

worth a thousand words! " would be especially applicable to a study 

aimed at achieving a better intuitive understanding of liquids. 

From an operational standpoint, the study involved a number of 

interrelated activities: 

(i) Preparation of the computer programming and generation of 

simulation data. 

(ii) Verification of the physical validity of the simulation data. That 

is, calculation of well-established distribution and correlation 

functions (e.g., speed and velocity distributions, g(r), etc.) 

from the simulation data to show that they behave in a physically 

acceptable manner. 

(iii) Examination of graphical displays of the simulation data to gain 

insight into the microscopic processes occurring in the model 

system. 

(iv) Formulation of new space- and time-correlation functions des­

cribing specific processes observed in the graphical displays. 

Analysis of the simulation data in terms of these new correlation 

functions to obtain a quantitative measure of our intuitive insight 

into the microscopic phenomena occurring in the model. 

(v) Application of our findings, where possible, to existing theo-

retical treatments of various liquid state phenomena. 

Some technical details of the computer programming techniques used in 

this study are described in Section II. The rather "conventional" ana ly ­

ses of the simulation data reported in Paper No. 1 (reproduced in sub­

section III. B) tend to support the physical validity of the model system. 
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Examination of graphical displays of the simulation data suggested that 

diffusion in the high-density model fluid proceeds by a mechanism that 

is primarily "cooperative" in nature. This observation was verified by 

the calculation of several new time-correlation functions discussed in 

Paper No. 3 (subsection IV. B). In Paper No. 4 (subsection IV. C), the 

results of our investigation of diffusion and relative diffusion in the 

model fluid are applied to the standard Smoluchowski treatment for 

diffusion-controlled reaction rates in solution. 
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A. The Basic Molecular Dynamics Algorithm 

The "molecular dynamics" algorithm described here permits 

a digital computer to simulate the microscopic dynamics of a model 

dense fluid by performing a simultaneous step-wise numerical time­

integration of the Newtonian equations of motion of the fluid 

particles. The algorithm is of the predictor-corrector type, and 

can be used for either two- or three-dimensional models. Although 

the formulations given below are for a fluid of particles interacting 

with the Lennard-Jones pair potential 

the algorithm can easily be modified for use with other smooth poten­

tials such as the Morse, Buckingham, Buckingham-Corner, etc. 1 

For pair potentials having discontinuous first derivatives ~·, 

Sutherland, "hard" sphere or disk, square-well, etc.) other algorithms, 

such as the one devised by Alder and Wainwright, 2 are more suitable. 

1 A number of pair-potentials are described and discussed in: 
J. 0. Hirschfelder, C. F. Curtiss, and R. B. Byrd, Molecular Theory 
of Gases and Liquids, John Wiley and Sons, Inc. , New York (1954), 
p. 31 ff. 

2B. J. Alder and T. E. Wainwright, J. Chem. Phys. ll_, 459 
(1959). 
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Let xi and vi be components of the position and velocity of 

particle i in a system of N identical particles. Then: 

dx./dt = v. 
1 1 

dv. 
_1 =a. 
dt 1 ( V 

N x. -x. 1 ~- )12 ( ) 
6 ~ = 24 ~ ~. ~ 2 r~. - r~. 

J ;:e 1 r ij IJ lJ 

(2. 1) 

(2. 2) 

It is convenient to "reduce" the dynamical variables entering into the 

calculations to units involving <J and €, the distance and energy para­

meters in the pair potential, and _!!!, the particle mass. Taking <J as 
1 

the unit of distance and (€/m)2 as the unit of velocity, and using the 

dimensionless variables x, v, p, a, and T in place of x, v, r, a, and 

t, respectively, eqns. (1) and (2) reduce to: 

dv. 
1 -= 

dT 

dx./dT = v. 1 . 1 

~ x·-x · { 2 
a = 24 Li 

1 J -i . . 2 12 
J ;:e1 Pij Pij 

(2. 3) 

(2. 4) 

The reduced time increment (AT) corresponding to the increment (At) 

employed in the dynamics integration is then given by 

1 
(AT) = (At) (E/m)2 <J-i (2. 5) 

and "logical" time (i. e. , time as defined for the model system by the 

dynamics integration) becomes quantized in units of the interval (AT). 

If we are given the positions x .(n-1) of the particles at time 
1 

T(n-1), and the positions x/n), velocities v/n), and accelerations 



34 

cri(n) of the particles at time T(n), we can predict the positions of the 

particles at time T(n+l): 

(2. 6) 

From these predicted positions we can calculate predicted accelerations 

at time T(n+l): 

aj'. (n+l} 
= 

24 
~ xj'. (n+l) - xj (n+l) { 2 

j;•d p?.(n+1)
2 

p?.(n+1)12 

IJ IJ 

1 } ' (2. 7) 
p?.(n+l)6 

IJ 

and thence new velocities and positions: 

(2. 8) 

(2. 9) 

The positions obtained by eqn. (9) may then be inserted into eqn. (7) in 

place of the predicted positions, and the steps corresponding to eqns. 

(7), (8), and (9) repeated (iterated) until the position values x/n+l) 

obtained from two successive iterations differ by less than some pre­

scribed value. In practice, it is found3 that a single iteration yields 

sufficient accuracy for our purposes if argon parameters 4 are used for 

a, e:, and m, and a time increment corresponding to (~t) = 10-14 sec is 

chosen. 

3see: A. Rahman, Phys. Rev. fil, A405 (1964). 
4The parameter values a = 3. 405 A, (e:/kB) = 119. 8° K, m = 

6. 6321 x l0-23 gr., where kB is the Boltzmann constant, were used in 
the calculations described here. 
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B. Equipment 

The basic dynamics calculations and subsequent analyses of the 

simulation data were performed using the C. I. T. -IBM 7040/7094 

Shared-file computer system. 5 The California Computer Corporation 

(CalComp) Model 763 incremental X-Y plotter incorporated into the 

7040/7094 system was used to plot functional data obtained by analyses 

of the simulation data; direct graphical displays of the simulation data 

(vide infra) were generated using a Stromberg-Carlson Model 4020 

CRT plotter operated by the North American/Rockwell Corporation. 6 

The 16 mm film processing necessary to produce motion pictures from 

the simulation data was done by Consolidated Film Industries, 959 

Seward Street, Hollywood, California. The author is especially in­

debted to Mr. Wm. Funke of the CFI Title and Optical Division for his 

patience and understanding while dealing with a novice film producer. 

C. Implementation of the Algorithm 

The procedures employed in generating the simulation data are 

described in general terms in Paper No. 1, reproduced in sect ion Ill. B 

of this dissertation. Our purpose here is to provide detailed informa­

tion regarding some of the programming techniques used in implement -

ing the "molecular dynamics" algorithm. This information is perhaps 

of little interest from a purely scientific standpoint, but is included 

5This computer system was replaced by an IBM System/ 360 
Model 75 computer in December, 1968. 

6 Access to this plotter was provided as a service by the Booth 
Computing Center. 
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for the sake of completeness and as a possible guide to others wishing 

to implement the algorithm for calculations on different fluid models. 

Except for FORTRAN-encoded auxiliary sub-programs for 

input-output operations, the bulk of the dynamics programming was 

written in the MAP assembly language for the IBM 7094 computer. 

However, since FORTRAN is a more widely recognized computer pro­

gramming language,' the MAP-encoded programs will be described here 

in terms of their FORTRAN analogues. 

At the beginning of each step or "cycle117 in the dynamics inte­

gration, the algorithm requires the component positions of the particles 

from the two preceding cycles and the component velocities and acceler­

ations at the end of the immediately preceding cycle. Since the dynamics 

program was found to require· about 8 seconds of 7094 time to 

complete a single cycle (or about 400 cycles per hour), it was not 

practical to calculate a complete set of equilibrium simulation data for 

a given temperature-density state of the model fluid during a single 

execution of the program. Instead, the necessary position-velocity­

acceleration data from the last two cycles completed during a given 

execution of the program were recorded in a reserved region of the 

IBM 1301 disk file incorporated into the 7040/7094 computer system. 

This "restart data" could then be retrieved from the disk at the begin­

ning of a subsequent execution of the program and used immediately to 

7we will use the term "cycle" hereafter to avoid confusion with 
the computatational steps necessary to advance the dynamics integra­
tion a single time increment. 
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continue the calculations for the same temperature-density state, or 

modified appropriately to start the calculations for a new state. 

The dynamics programming was written to handle systems of up 

to N = 500 particles, although the full capacity was not used in any of 

the calculations reported in this dissertation. In the programming, the 

system is confined to a square, two-dimensional "space-box" with an 

edge dimension integral in units of 0. 5 a (vide infra). Periodic bound­

ary conditions are employed, so that opposite edges of the space-box 

are logically adjacent and the density of the system remains constant 

during the course of a given calculation. The space in which the fluid 

particles move is therefore topologically equivalent to the surface of a 

torus. 

Because of complications introduced by the periodic boundary 

conditions, and for reasons of economy, the Lennard-Jones pair 

potential is truncated at r c = 2. 5 a; i.e., the actual pair-potential 

used in the calculations is, in reduced units: 

* { -12 -6} cp (p . . ) = 4 P· · - P·· for P·· :!i; 2. 5 D Q Q Q 

= 0 for p . . > 2. 5 lJ 

The summation indicated by eqn.. (7) can then be limited to the ni 

"effective" neighbors lying within 2. 5 a of a given particle .!. . 

In order to avoid having to calculate the distances between all 

pairs of particles in the system (a procedure complicated by the 

periodic boundary conditions), a "neighbor search" technique was 

devised so that the "effective" neighbors for any given partic le could 
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be determined in a more or less straightforward manner. The space­

box is divided into a grid of square sub-boxes of dimension 0. 5 a 

(hence the requirement that the edge dimension of the space-box be 

integral in units of 0. 5 a). Each sub-box is identified by the pair of 

indices LX and LY, where sub-box [ LX, LY] covers the 0. 25 <?- region 

of the space-box centered at x = (LX - i) 0. 5 a, y = (LY - -!) 0. 5 a. A 

"location matrix" LMTX is established such that LMTX (LX, LY) con­

tains the number of the particle lying in sub-box [ LX, LY] . If a 

sub-box is empty, the corresponding location in LMTX is set to zero; 

because of the repulsive r-12 "core" of the pair potential, the prob­

ability that two particles will occupy the same sub-box is negligibly 

small. 

To identify the particles that are "effective" neighbors to some 

particle i) the locations in LMTX corresponding to the pattern of 

sub-boxes shown in the diagram on the next page are examined and a 

list of the non-zero entries compiled. The pattern is centered on the 

sub-box occupied by particle_!, and special care must be taken with 

the LMTX indexing during the "search" to account for the periodic 

boundary conditions. 

In later versions of the dynamics programming an alternative 

method for neighbor identification was employed. It is assumed that 

no two particles further than 3. 5 a apart can diffuse to within 2. 5 a of 

each other during an interval of 5 x 10-1 3 sec. The neighbor-search 

pattern was therefore extended to a radius of 3. 5 a, and lists of the 

neighbors within 3. 5 a of each particle compiled only every 50 cycles. 



39 

- --.. -..... .. 1o 

/ ' ..... 

/ r-.. 
/ " . 

I \ 
I " 

I \ 
I \ 

~ I 
I I 

\ I 
\ I 
~ . I \ / 

" 
7 

" / ... • 
"" ..... ./ ,,,. 

........ .,.,, - ---
14-10- ..... 

Neighbor-search pattern for identifying the "effective" ne ighbors 

to some particle i. in the system. The lighter lines show a 

portion of the grid of 0. 5 a sub-boxes superimposed on the 

space-box; particle ..! lies in the crosshatched sub-box at the 

center. All particles lying in the pattern of sub-boxes enc losed 

by the heavy lines are assumed to be "effective" neighbors to 

particle_!_. The dashed circle i s drawn witn radius (2. 5 + t ,/2) a. 
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Between searches, the "effective" neighbors to any given particle .!. are 

determined by examining the particles cited in its "extended" neighbor 

list (taking account of the periodic boundary conditions, of course). If 

at any time one of the neighbors is found to be more than 3. 5 a from .!. , 

its number is deleted from the list; thus the number of active entries 

in the "extended" neighbor list for each particle decreases steadily 

between searches. 

This second technique for neighbor identification offers the 

advantage that the system is searched for the neighbors to each partic le 

only periodically; a great deal of additional storage space is however 

required by the programming to store the neighbor lists between 

searches. Because of hardware (principally core storage) limitations 

intrinsic to the IBM 7074 computer, the dynamics calculations were 

f Ol .. md to proceed at about the same speed when either the fir st or second 

neighbor identification techniques were employed. But if a computer 

providing more core storage is used--and especially if a three­

dimensional model system is being simulated--the second technique 

would appear to offer a more efficient means of keeping account of the 

"effective" neighbors to each particle. 

In addition to that required by the "neighbor search" operations, 

the dynamics programming use s the following indexed storage : 

DIMENSION PX(500), PY(500), X{500), Y{500), 

VX{500), VY(500), AX(500), A Y(500) , 

TEMPX(500), TEMPY(500), 

AXN(500), A YN(500) 
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Let us assume that the program has just completed the cycle for time 

r(n). Then PX(I) and PY(I) contain the x and y coordinates of particle 

I for time r(n-1), X(I) and Y(I) the coordinates for time r(n), and 

VX(I), VY(I) the velocity and AX(I), AY(I) the acceleration components 

for time r(n). The calculation for cycle (n+l) proceeds as follows: 

1. The predicted x and y coordinates of the particles at time 
I 

r(n+l} are computed according to eqn. (6). For each particle I : 

PX(I) = PX(I) + 2(.6.T) * VX(I) 

PY(I) = PY(I) + 2 (.6. T) * VY(I) 

2. The predicted accelerations for time r(n+l} are computed accord­

ing to eqn~ (7). For each particle I, set TEMPX(I) = TEMPY(I) 

= 0 and determine the list of "effective" neighbors to be included 

in the summation. Then for each neighbor J to particle I, cal­

culate the distances 

DX = PX(I) - PX{J) 

DY = PY(I) - PY(J) 

taking into account the periodic boundary conditions. 

Calculate the powers of pij (n+l): 

R2 = DX** 2 + DY**2 

R6 = R2 ** 3 

R12 = R6 ** 2 

and the force factor: 

F = (24. 0/R2) * ( (2. O/R12) - (1. 0/ R6)) . 
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Then sum the contributions of neighbor J into the component 

accelerations of particle I: 

TEMPX(I) = TEMPX(I) + DX* F 

TEMPY(I) = TEMPY(I) +DY* F 

3. The velocities for time r(n+l) are calculated according to eqn. 

(8). For each particle I: 

TEMPX(I) = VX(I) + !(.Ar)* (TEMPX(I) + AX(I)) 

TEMPY{I) = VY(!) + ~(Ar)* (TEMPY{I) + A Y(I)) 

are 
4. The data -Hr rearranged, and positions for time r(n+l) calculated 

according to eqn. (9). For each particle I: 

PX{I) = X(I) 

PY(!) = Y(I) 

X(I) = PX(I) +!(Ar)* (TEMPX(I) + VX(I)) 

Y(I) = PY(I) + t(Ar) * (TEMPY{I) + VY(I)) 

and the velocity component values in VX(I) and VY(I) are 

exchanged with those in TEMPX(I) and TEMPY(I), respectively. 

Note: At this point, PX and PY contain the particle coordinates for 

time r(n), TEMPX and TEMPY the velocity components for time r(n), 

X and Y the new particle coordinates for time r(n+l), and VX and VY 

the new velocity components for time r(n+l). 

5. The component acceleration values for time r(n) are saved 

AXN (I) = AX (I) 

A YN(I) = A Y(I) 
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and new accelerations for time T(n+l) are computed using the 

same procedure as outlined under step 2 above--except that DX 

and DY are calculated from the coordinate values in the X and Y 

vectors, and the acceleration components are summed into 

AX(I) and AY(I) instead of TEMPX(I) and TEMPY(I). 

6. "Corrected" velocities and positions for time T(n+l) are computed 

according to eqns. (8) and (9), respectively. For each particle I : 

VX(I) = TEMPX(I) + ~(AT)* (AX(I) + AXN(I)) 

VY(I) = TEMPY(I) + ~(AT)* (AY(I) +A YN(I)) 

X(I) = PX(I) + ~(AT)* (VX(I) + TEMPX(I)) 

Y(I) = PY(I) +~(AT)* (VY(I) + TEMPY(I)) 

7. "Corrected" accelerations are computed on the basis of the 

"corrected" position values using the same procedure as outlined 

under step 2--except that DX and DY are calculated from the c o ­

ordinate values in the X and Y vectors, and the acceleration 

components are summed into AX(I) and A Y(I) instead of TEMPX(I) 

and TEMPY(I). 

Steps 6 and 7 may be repeated {iterated) as m any times a s de sired. 

The calculation then returns to step 1 for time T(n+2). 

After each cycle in the dynamics integration, the positions and 

velocities of the particles are recorded on ma gnetic tape in a (4N +4)­

word logical record. The first four "tag" words in the record contain 

identifying information, while the remaining four blocks of N words 

each are written from the X, Y, VX, and VY vectors , r e spectively. 
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The first "tag0 word contains N in the decrement field and the "integer 

box dimension" (in units of 0. 5 a) in the address field; 8 the second "tag" 

word contains the "true" space-box edge dimension (in units of a) in 

floating-point format. Each cycle in the dynamics integration is 

assigned a "cycle number" (corresponding to the time-counter !!. used 

above) that is incremented after each step; this number is recorded in 

the third "tag" word. And finally, the data generated during a given 
~c 

execution of the dynamics program is assigned a six character alpha-

meric data label. This label is recorded, in BCD format, in the 

fourth "tag" word. 

D. · Auxilliary Procedures 

The calculations for the model fluid were started with a system 

of 364 particles symmetrically arranged in four 91-particle hexagonal 

ncrystals" in a space-box with edge dimension 25. 0 a. The particles 

in each crystal were placed in a perfect two-dimensional hexagonal 

closest-packed configuration with a lattice spacing of 21
/

6 a; the 

crystals were centered in each of the four quadrants of the space-box. 

To obtain a randomized thermal motion in the fluid, a value of 0. 33389 

was randomly assigned, either positive or negative, to the x and y 

velocity components of each of the particles. Center-of-mass motion 

was then eliminated by, for example, summing the x-velocity compo­

nents, dividing the sum by 364, and subtracting the resulting "error 

component" from the x-velocity of each of the particles. 

8The terminology here is specific to the storage configuration 
of the IBM 7094 computer. 
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As shown by Fig. 1 in Paper No. 1 (page 58 ), the component 

velocities were found to achieve an equilibrium Gaussian distribution 

very quickly after the start of the dynamics calculations. The hexa­

gonal closest-packed configuration with lattice spacing 21
/

6 a (the 

potential minimum distance for the Lennard-Jones pair potential) was 

used so that the temperature of the fluid after equilibration could be 

predicted on the basis of the initial value assigned to the velocities. 

The symmetric disposition of particles within the space-box was 

required to prevent center-of-mass motion from being introduced 

through potential interactions between the particles. But because the 

system was found to achieve an equilibrium spatial configuration only 

rather slowly, the particles were initially arranged in a number of 

quick-melting "crystals" rather than a space-filling lattice. 

Following the format developed in subsection C above, let us 

assume that the assigned particle coordinates for r(O) are stored in 

the X and Y vectors and the assigned velocity components in the VX and 

VY vectors. Component accelerations for r(O) can be computed from 

the assigned positions using the procedure described under step 2 in 

the outline flow diagram, except that DX and DY are calculated from 

the coordinate values in the X and Y vectors and the acceleration con-

tributions are summed into AX(I) and AY(I) instead of TEMPX and 

TEMPY. Then for the first cycle in the dynamics calculation, the pre­

dicted positions for time r(l) are computed according to the formula: 

x~ (1) = x-(O) + v. (O) (A:r) + ~ a.(O) (~r)2 
1 1 1 1 



46 

or, for each particle I: 

PX(I) = X(I) + VX(I) *(Ar) + 0. 5 * AX(I) *(AT)** 2 

PY(I) = Y(I) + VY(I) *(Ar) + 0. 5 *A Y(I) *(AT)** 2 

From this point, the calculations proceed as indicated by step 2 in the 

outline flow diagram. 

In practice, it is necessary to start a dynamics calculation with 

the system in an entirely artificial configuration only once. Subsequent 

calculations for different temperature-density states can then be 

started from the appropriately modified "restart data" generated by 

some previous execution of the dynamics program. 

An isochoric change in the temperature of the model fluid can be 

effected by either of two procedures: (1) the component velocities of all 

the particles in the system may be multiplied by some constant factor 

near unity (~., 1. 0005 for "warming, " or 0. 9995 for "cooling") after 

each cycle in a special dynamics calculation, or (2) the velocity c om­

ponent values in, for example, a set of "restart data" from a previous 

calculation may be multiplied by the factor required to change the tem­

perature of the system to the desired new value at once. Both pro-

, cedures entail certain advantages a nd disadvantages. Because of the 

statistical temperature fluctuations intrinsic to an isola te d system of 

relatively so few particles, it is possible with neither procedure to 

predict accurately what the final equilibrium temperature of the new 

state will be. But since the system has been found to r e main near 

equilibrium during even a relative ly rapid change in temperature 
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(e.g., 20° K in 10-12 seconds), the first procedure provides a more 

practical means of achieving a specific temperature if the "special" 

dynamics calculation is continued until the temperature of the fluid 

reaches the desired new value. The second procedure is definitely 

more economical than the first, but may force the system into a meta ­

stable non-equilibrium state if the initial temperature -density stat e 

lies in or near a phase-transition region. Although the system ideally 

has no net center-of-mass velocity in either the x or y directions, 

small fluctuations may combine with computer round-off errors to 

produce a net component along either or both axes in the velocity dat a 

for any given step in the dynamics integration (even though the time­

average center-of-mass velocity may vanish). Either temperature­

modification procedure may serve to amplify these small errors, but 

the problem is particularly serious with the second procedure since i t 

works with only a single set of velocity values. 

As a result of the programming constraint that the space-box 

edge dimension be integral in units of 0. 5 a (a constraint that may be 

relaxed if other "neighbor-searching" techniques are employed), the 

density of the model system can only be changed "instantaneously"--

i. e., between two cycles in the dynamics integration. For r educed 

densities below about 0. 6, the system can be expanded or contracted by 

changing the space-box edge dimension and then multiplying the 

particle coordinates by the factor: 

(
new edge dimension) 
old edge dimension 
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This procedure is equivalent to changing the size of the particles rela­

tive to the available area of the space-box, and has been found to work 

well if the initial and final densities do not differ greatly. Some dif­

ficulty was encountered however in obtaining a rapid re-equilibration 

of the system after an expansion to very low densities (see Paper No. 1, 

section III. B, page 57 ), and compressions from initial densities above 

about 0. 5 are frequently accompanied by an undesirably large increase 

in temperature. No technique for accurately predicting the change in 

temperature that will accompany a given expansion or contraction of the 

system has been found. 

From initial densities above about 0. 6, further increases in 

density are best effected by inserting additional particles into the sys­

tem. If the new particles are placed in "holes" in the system micro­

structure and located at a distance of 21
/

5 a from the centers of two 

neighboring particles, a significant increase in the system density can 

be obtained with little change in temperature. This procedure has, for 

example, been used to raise the density of the system from 0. 6319 to 

0. 7014 to 0. 7708 by successive additions of 40 particles each to a sys­

tem initially containing 364 particles and confined to a space-box with 

edge dimension 24. 0 a. 
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SECTION III 

CONVENTIONAL ANALYSES OF THE SIMULATION DATA 
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A. Introductory Comments 

In this section we reproduce two papers dealing with the results 

obtained by some rather conventional analyses of the simulation data. 

The first paper [since published in J. Chem. Phys. ~' 2617 (1969)] 

contains a brief description of the computational techniques employed 

in generating and analyzing the simulation data and reports equilibrium 

thermodynamic data for eighteen temperature-density states of the 

model fluid. Some qualitative observations regarding the microscopic 

structures and mechanisms for diffusion noted in graphical displays 

of the simulation data are discussed at length, and a Lennard-Jones­

Devonshire (theoretical) treatment of the model fluid is developed in an 

appendix. A number of the qualitative observations have since found 

support in quantitative measurements made on the simulation data, and 

are discussed in greater detail in the two papers reproduced in 

Section IV of this dissertation. 

The second paper [to be published in the. Journal of Chemical 

Physics] reports the appearance of some interesting subsidiary struc­

ture in the radial distribution functions for the model fluid. Similar 

structure have been observed in the distribution functions obtained by 

experimental x-ray or neutron diffraction measurements on real liquids, 

but has generally been attributed to experimental errors or to practical 

limitations on the experimental technique. Since the distribution 

functions computed directly from the simulation data are not subject to 
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these errors and limitations, our results may shed some light on the 

controversy regarding the nature and authenticity of the subsidiary 

features appearing in the experimental data. 

Notes and addenda amplifying various statements made in the 

two papers are proffered in subsections following each of the manu­

scripts. These comments are for the most part parenthetic in nature, 

and were omitted from the manuscripts for publication in an attempt to 

achieve some semblance of conciseness. Each comment is keyed to 

the text of the preceding manuscript by a superscript lower-case Roman 

character enclosed in parentheses. 
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B. Paper No. 1 

Paul L. Fehder 

Arthur Amos Noyes Laboratory of Chemical Physics, t 

California Institute of Technology, Pasadena, California 91109 

Abstract. Molecular dynamics calculations have been performed on a 
~ 

two-dimensional system of Lennard-Jones disks. Equilibrium thermo­

dynamics data for eighteen temperature-density states of the system 

are presented and compared with values obtained from a simple 

Lennard-Jones-Devonshire treatment. Three types of graphical dis­

plays of the data have been examined: "snapshots" of the system con­

figuration at some instant of time, motion pictures of the system 

dynamics created from sequences of snapshots, and plots of the tra­

jectories of particle centers over v~rious time intervals. The snap­

shots reveal the presence of the relatively large vacancies in the 

spatial distribution of particles in the system, and the trajectory plots 

and motion pictures show that these vacancies may persist in the · same 

region for times in excess of 10-12 sec. The trajectory plots also indi-

cate that cooperative motion is very important in the self-diffusion 

process. The nature of the vacancies and the diffusive motion suggest 

a more than passive role of the attractive interparticle potential in 

determining the micro-structure and micro-kinetics of the liquid state. 

*This work was supported in part by a grant from the National 
Science Foundation, No. GP-7258. 

t Contribution No. 3758. 
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I. INTRODUCTION 

Beginning with the first papers by Alder and Wainwright, 1 

an increasing amount of information concerning computer calcula-

tions on various models for dense fluids has been published. While 

early work in this area dealt almost exclusively with s ystems of 

hard disks and spheres;-
4 

the increased sophistication of modern 

computer hardware has made possible the treatment of models 

involving more complex, and physically more realistic inter-
5 6 

particle inter a ction potentials. The more recent papers by Rahman ' 
7 

and Verlet, for example, report the results of calculations on 

models in which Lennard-Jones and Buckingham potentials were · 

employed. 

To date, much of the published work in this area has b een 

concerned with the calculation of thermodynamic quantities and 

certain familiar correlation functions. The results of these calcu-

lations are important in that they provide for a comparison 

between the models and real fluids. But perhaps more significantly, 

such data may also serve as the basis for a critical e va luation of 

the various existing theoretical treatments of the liquid state, 

since the inter-particle interactions and other system pa rameters 

are well-defined for the computer models. (a) 

Future work on this type of calculation is expected 

to branch- out in many new dire ctions. Rahman, 6 for example, 

has recently examined the short-time mechanism of s elf-diffus ion 

in dense fluids in terms of instantaneous fluctuations in local 
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particle distributions. Molecular dynamics calculations may 

also provide a source of detailed information regarding the charac ­

teristic microscopic properties of liquids important to chemical 

processes. For example, the true nature of the microscopic local 

structures and dynamics associated with reactant diffusion and 

encounter, and with the so-called "sol vent cage effect" might be 

elucidated. Non-equilibrium processes such as photoclissociation 

and recombination of molecular solutes in liquid solvents could 

also be modeled. (b) 

In a "chemical" approach to the analysis of molecular 

dynamics data, graphical displays of the micro-processes ·in the 

model systems should be of great intuitive value. Even a "pictorial" 

interpretation of the characteristic local behavior of liquids, as 

might be exhibited by a solvent about a reaction site, could prove 

a valuable adjunct to the understanding of the detailed mechanisms 

of more complex molecular rearrangement reactions. It is 

furthermore likely that the extraction of quantitative information 

of a chemical nature from the computer data will require the 

definition of new correlation functions encompassing the spatial 

distributions and relative motions of comparatively large numbers 

of particles. Graphical displays, taken in conjunction with the 

established intuition about chemical reaction kinetics, may well 

provide valuable insight toward the formulation of such functions . 

In preparation for such an investigation of the chemical 

aspects of dense fluid dynamics, a series of calculations on a 



55 

two-dimensional model system of 364 Lennard-Jones disk-particles 

has been performed. In this paper we briefly review the computa­

tional techniques employed, comment on the general behavior of 

the system, present some thermodynamic data for the states of 

the system examined thus far, and exhibit some of the graphical 

di.splay techniques to be used in future investigations. In particular, 

discussion of the microscopic configurations and motions associated 

with diffusion processes in the model system will be emphasized. 

II. THE DYNAMICS CALCULATIONS 

The algorithm for the dynamics calculations was taken, with 

minor modification, from the Appendix of Ref. 5 . As described 

there, all dynamical variables entering into the calculations are 

reduced in units involving!!:!,, the particle mass, and ~and ~ the 

distance and energy parameters in the Lennard-Jones pair potential. 
1 

Distances are expressed in units of a, velocities in units of ( ~ )2 , m 

and the reduced time increment D. T corresponding to time increment 

D.t is given by: 

The pair potential is truncated at a "cut-off" radius r c = 2. 50 a, 

beyond which it is set equal to zero. A time increment equivalent 
-14 

to 10 sec was used in the dynamics integration. 

The system is confined to a square ''space-box"; periodic 

boundary conditions are employed in the computational algorithm 



56 

so that opposite edges of the box are logically contiguous and the 

system density remains constant during the course of a calculation. 

The space in which the particles move is therefore topologically 

equivalent to the surface of a torus, with the result that the time­

average angular momentum of the system about any point in the 

space remains uniformly zero. Alternatively, the space-box may 

be regarded as a single cell in an infinite square lattice of identical 

cells, a conceptualization preferable when considering diffusion 

and related transport processes. (c) 

B. Fluctuations · 
~ 

Lebowitz, Perkus, and Verlet 8 have recently examined the 

theoretical significance of fluctuations of thermodynamic quantities 

in the microcanonical ensemble with particular application to 

molecular dynamics calculations. The computational model is iso­

choric and adiabatic, and hence isoenergetic. In practice, however, 

numerical round-off errors may introduce variations in the total 

system energy on the order of ± 1 % during the course of a calculation 

spanning 10-
11 

sec, or instantaneous errors in the kinetic or potential 

energies of apporximately 0. 3% of the average statistical fluctuations 

in these quantities. 

C; Initial Conditlons 

It is nece ssary to start the dynamics calculations 1.vith the 

system in an entirely artificial configuration only once . Subsequent 
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calculations for different thermodynamic stales may be started by 

modifying the conditions existing at the end of some prior calcula­

tion. Density alterations are achieved by effectively changing the 

size of the particles relative to the area of the space-box. Since 

the particle size parameter CJ' is also employed as the unit of distance 

in the calculations, this must be clone by changing the 

numerical value of the space-box edge dimension and scaling the 

particle coordinates by the factor: new edge dimension + old edge 

dimension. Programming constraints dictate that density alterations 

be done "instantaneously"--that is, between steps in the dynamics 

integration. 

Changes in the system temperature at constant density may . 

be effected by multiplying the component velocities of all particles 

by some factor near unity. This may be done either "instantaneously", 

or after each successive step in a dynamics calculation. 

Experience has shown that the system remains near equilibrium 

during even a relatively rapid temperature alteration (e.g. 20 °K 

in 10-
12 

sec) if the latter technique is employed and if a phase transi­

tion region is not approached. Re-equilibration after an "instantane­

ous" temperature alteration is also generally quite rapid, as may 

be illustrated by the plots in Fig. 1. In contrast, an "instantaneous" 

change in density may displace the system far from equilibrium, 

and re-equilibration may proceed slowly. This is particularly 

evident at lower densities, where the equilibration processes appear 

to be complicated by a clustering phenomenon discussed in Sec. IV. 
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FIG. 1. Velocity distributions showing rapid equilibration of kinetic 

energy in the system at density p* = 0. 63, nominal average 

temperature T* = 1. 05. Initial distribution obtained by 

randomly assigning, positive or negative, a value of 

1. 0263 to the x and y velocity components of each particle. 

( ) 
-13 ( ) _ 13 

Plots show distribution after A 1. 5 x 10 , B 3. 0 x 10 , 

( ) 
-12 

and C 2.0xlO sec. 
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A. Reduced Variables 
~~ 

Thermodynamic quantities computed directly from the reduced 

dynamical variables are similarly obtained in reduced units. (d) 

Temperatures are obtained in units of T € = (E/kB), where kB is the 

Boltzmann constant, pressures in units of (€/cl), and energies in 

units of E per particle. Except for dynamical variables, an asterisk 

(*) will be used to denote quantities in reduced units. 

The reduced area A* and density p* of a system are related by: 

A* = A 

Na 2 = 1 
p* (1) 

where N is the number of particles in the system and A i.s the true 

area. A second density measure, the relative density pR, may 

also conveniently be employed. The relative density is the ratio of 

the actual system density to that of closest packing, and is given by: 

N /3 2 
PR = A • 2 om in ' (2) 

where omin = 1. 1132 a is the lattice parameter found computatlonally 

to give the lowest energy for a two-dimensional hexagonal closest­

packed array of disks interacting with the truncated Lennard-Jones 

potential. 
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If Xi is the velocity of the i th particle in units of (e:/m) !, 
the two-dimensional temperature of the system is given by: 

N 
T* - _!_ \' 2 

- 2N i~ll'i · (3) 

In the reduced units, the temperature and kinetic energy K* are 

equivalent. The potential energy V* follows directly from the 

reduced pair potential 

cp*(p .. ) = 4{p:-.12 - p:-.6} 
1J 1] 1J 

N ni (4) 

* - 2 \' '\' { - 12 - 6 } v - - Li Li p. . - p.. ' 
N i=l j;ei 1J 1J 

cp* is in units of E, 

where/ pij is the distance between particles i and j in units of a, 

and the sum over j includes only the n. particles for which p .. < 2. 50. 
1 ~ 

The pressure is computed in accordance with the virial formula 

where P is in units of force per unit length, and 0 P (r) l is the 
. a r r . . 

1J 

force acting on particle i due to particle j. H cp(r} is the truncated 

Lennard-Jones pair potential, Eq. (5) takes the computational form: 

P* 

N 
= K* + __§__ L 

A* A * i = l 
(6) 
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C. Results 
~ 

The equilibrium values of these thermodynarni.c functions for 

eighteen temperature-density states of the system are 1 if:>tcd in 

Table I. In Fig. 2, the data are plotted in the form of four pressure 

vs temperature i.sochores. If argon parameters, TE= 119. 8°K, 
0 -1 

o- = 3. 405 A, are assumed, the unit of pressure is 14. 264 dynes ·cm , 

which is roughly equivalent to 4 atm if the model system is 

considered to be a a-thick slice of a three-dimensional fluid. 

In Table II, the pressures of the states 1 istecl in Table I are 

compared with those predicted by the two-dimensional Lennard­

Jones-Devonshire theory. In all instances the L-J-D values are 

somewhat larger than those obtained directly from the dynamics 

data although, as might be expected from the solid-like nature of 

the L-J-D model, the differences are relatively smaller for the 

higher-density states. 

D. Relation to Critical Point 
~~ 

The reduced temperature and density of the triple and critical 

points of real liquid argon are, respectively, T{p = O. 699, 

Ptp = 0. 8387, T~ = 1. 259, and p~ = 0. 3164. 9 Evidence i.ndicates 

however, that the critical point for the two-dimensional model sys­

tem lies at a much lower temperature. For example, the (pseudo) 

critical temperature for an argon monolayer adsorbed on graphite 

is approximately T2~ = 0. 57. lO The curvature of the isochorc s in 

Fig. 2 for T* < 0. 9 is consistent with a critical temperature on the 
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TABLE I. Thermodynamic s tate da ta from molecular dyna mics 

calculations. 

PR p* T *= K* P* V* U* 

1. 0.6781 0.6319 1. 436 2.110 -1. 544 -0.109 

2. 0.6781 0 . 6319 1.067 1. 328 -1. 669 -0.603 

3. 0.6781 0.6319 0.927 0.990 -1. 750 -0.823 

4. 0.6781 0.6319 0.896 0.888 -1.716 -0.820 

5. 0.6508 0.6064 1. 645 2.280 -1. 434 +0.211 

6. 0. 6250 0.5824 1. 558 1. 849 -1. 437 +0.122 

7. 0. 6250 0.5824 1.175 1. 212 -1. 503 - 0.327 

8. 0. 6250 0.5824 1. 015 o. 923 -1. 561 -0.546 

9. 0.6250 0.5824 0.845 0.594 -1. 580 -0. 735 

10. 0. 6250 0. 5824 { 0. 792 0.434 -1.716} -0.925 0.763 o. 510 - 1. 688 

11. o. 5358 0.4993 1. 441 L 145 -1.231 +0.211 

12. 0. 5358 0.4993 1. 099 0.759 -1. 292 - 0. 193 

13. 0. 5358 0.4993 0.880 0. 474 -1. 406 - 0. 526 

14. 0.5358 0.4993 0.838 0.411 -1. 361 -0.523 

15. 0. 4645 0.4328 1. 339 0. 800 -1. 090 +0.249 

16. 0.4645 o.4328 1.145 0. 625 -1. 162 -0.017 

17. 0.4645 0.4328 0.850 0.326 -1.216 -0.366 

18. 0.4645 0.4328 0. 815 0.285 -1. 179 - 0.365 



64 

f 
* a... 

2.0 

1.5 

1.0 

0.5 

T*---

0.8 1.0 1.2 1.4 

FIG. 2. Equilibrium thermodynamic data plotted as reduced 

pressure-temperature isochores. Off-isochore point 

may be related to a phase transition (see text). 
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TABLE II. Comparison of Molecular Dynamics and 

L ennard-Jones-De vons hire Theory State Data 

A* p* T* PtJD PMD P* P* LJD- MD 

1. 1. 5824 0.6319 1. 436 2.272 2.110 0.162 

2. 1.5824 0.6319 1. 067 1.397 1. 328 0.069 

3. 1. 5824 0. 6319 0.927 1. 052 0.990 0.062 

4. 1.5824 0.6319 0.896 0.975 0.888 0.087 

5. 1.6490 0. 6064 1. 645 2.514 2.280 0.234 

6. 1. 7170 0.5824 1. 558 2.143 1.849 0.294 

7. 1. 7170 0.5824 1. 175 1. 411 1. 212 0. 199 

8. 1. 7170 0. 5824 1. 015 1. 096 0. 923 0. 173 

9. 1. 7170 0.5824 0.845 o. 757 0.594 0. 163 

0.792 0.650 0.434 0.216 
10. 1. 7170 0.5824 

0.763 o. 591 0.510 0.082 

11. 2.0027 0. 4993 1. 441 1. 403 1. 145 0. 258 

12. 2.0027 0.4993 1. 099 0.936 0.759 o. 177 

13. 2.0027 0.4993 0.880 o. 635 0.474 0.161 

14. 2.0027 0.4993 0. 838 o. 577 0.411 0.166 

15. 2.3104 0.4328 1. 339 0.957 0.800 0.157 

16. 2.3104 0.4328 1.145 0.757 0.625 o. 132 

17. 2.3104 0.4328 0. 850 0.450 0.326 o. 124 

18. 2.3104 0.4328 0.815 0.414 0.285 0.129 
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order of 0. 7 for our two-dimensional system. A two-dimensional 

Lennard-Jones-Devonshire calculation (see Appendix) predicts a 

critical state T~,LJD = 0. 699, P~,LJD = 0. 644 for the system. The 

three-dimensional L-J-D theory11 predicts a critical temperature 

of 1. 30 for argon, which is surprisingly close to the observed 

value. The predicted critical density of 0. 5656 is, however, about 

80% larger than that observed experimentally. 

E. Possible Phase Transition 

In Table I, pairs of values are given for the temperature, 

pressure, and potential energy of state number 10. This is reflected 

in. Fig. 2 as a pair of points connected by a dashed line. During an 

extended dynamics calculation for this "state", the thermodynamic 

functions exhibited a long-period, large amplitude oscillation super­

imposed upon the usual higher-frequency statistical fluctuations. 

The values given in the table are the approximate mean values of 

the maxima and minima of the long-period oscillation. ·while such 

behavior on the part of the thermodynamic functions is similar to 
. 1 

that observed by Alder. and Wainwright during calculatio11s in the 

· phase transition region for hard spheres, it is probable that the 

oscillations observed here are more closely related to critical 

phenomena. (e) 
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IV. MICRO-STRUCTURE AND LOCAL ORDERING 
"""-'"'-"-'"'-""'-"~"'-"'"""~"""'..,..._,.~~~.,;~ 

Much of the existing quantitative information regarding lhc 

microscopic characteristics of dense fluids takes the form of correla-

tion functions obtained by mathematical transformation of scatter-

ing intensity data for electromagnetic radiation or thermal neutrons. 
12

, 
13 

Unfortunately, these correlation functions are primarily of a macro­

scopic nature, and the statistical averaging implicit in the scattering 

data may mask important details of the microscopic properties of 

the system under investigation. The scalar pair correlation function 

g(r), for example, provides no indication of the nature of the local 

micro-structures thought to be responsible for the pecularities 

observed in the absorption spectra of mercury d issolved in various 

simple liquids (vi de infra). In contrast, graphical ct i.sp lays of 

computer -generated dynamics data permit the detailed examination 

of the microscopic structures and kinetics characteristic of the 

mode 1 flu ids. 

Three types of graphical di.splays have been investigated: 

static plots or "snapshots" of the system configuration at some 

instant of time, dynamic plots in the form of motion pictures 

created from sequences of snapshots for successive times, and 

plots of the trajectories of particle centers over selected time 

intervals. Figures 3-5 are snapshots of the system in states 

[T * = 0. 927, PR= 0. 6781], [T* ::: 1. 436, Pn = 0. 6781], and 
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FIG. 3. Snapshot of instantaneous system configuration in state 

T* = 0. 927, PR o. 6781. 
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FIG. 4. Snapshot of instantaneous system configuration in 

state T* = 1. 436, pR = 0. 6781. 
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FIG. 5. Snapshot of instantaneous system configuration in 

state T* = 1. 145, pR = 0. 4645. 
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[T* = 1. 145, pR = 0. 4645], respectively (states 3, 1, and 16 of 

Table I, respectively). The circles representing the disk-particles 

are drawn with relative diameter a, and the superimposed numbers 

serve to identify the particles for purposes of comparison between 

snapshots for different times during the same calculation. 

B. Holes or Vacancies 

The presence of ''holes" or "vacancies" in the particle distri­

butions, even at the temperatures and densities shown in Figs. 3-4, is 

perhaps the most striking feature of the system micro-structures. 

Comparison of the g(r) functions from liquid argon at several den-

sities between the triple and critical point has indicated14 that thermal 

expansion of the real simple liquids must be accompanied by the for -

mation of vacancies. But the phenomenon we observe here differs 

somewhat from that envisioned by the "fluidized vacancy" model for the 

liquid state. The vacancies appearing in the figures are quite irregular, 

and many encompass areas of several a 2 • Furthermore, comparison 

of snapshots at various times during the same calculations has shown 

that many vacancies persist in the same region for times in excess of 

3 x 10-12 sec. 

Examination of plots of particle trajectories and dynamic 

plots of the system micro-kinetics has indicated that two factors 

are associated with the persistence of the vacancies: the attract­

ive inter-particle potential and geometric effects. Attractions 
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between particles near the edge of a vacancy create, in essence, 

a "microscopic surface tension" that effectively prevents individual 

edge particles from moving out into the unoccupied area. Further­

more, single particles mi.grating into a vacancy several a in 

diameter encounter a potential surface with a steep positive gradient 

·toward the center of the vacancy; their subsequent motion is then 

largely restricted to migration along the edges. The disappearance 

of a larger vacancy is therefore usually associated with the concerted 

movement of a number of adjacent particles. At liquid-like densities, 

however, geometric effects--i. e. "jamming"--hinder the relative 

motion of local groups of particles and consequently motions of the 

type involved in the collapse of a vacancy. 

The degree and stability of local ordering in the system is 

qualitatively a much stronger function of density than of temperature. 

More precisely, the disordering effect of thermal motion is diminished 

by increasing density. At low densities, the available void area 

permits the rearrangement of local micro-structures to proceed 

relatively unimpeded- -whereas at higher, liquid-like densities 

geometric effects play a predominant role in the system micro­

ki.netics. This is further illustrated in Figs. 6-8 to be discussed 

in the next section. 
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Vacancies of the sort observed here have also been postulated 

in conjunction with an explanation of the spectral features of mercury 

atoms dissolved in nonpolar fluids. The appearance of a maximum 

in the absorption spectrum of Hg in high density fluid argon15 very 

near the position of the Hg absorption line in crystalline argon was 

thought
16 

indicative of the presence of local solid-like regions 

or clusters in the fluid. A second component, resolved from the 

first and shifted to lower energy, was thought to arise from Hg atoms 

at cluster interfaces or near vacancies . The relative intensities 

of the two components change in a qualitatively expected way, the 

lower energy component becoming relatively more intense and the 

higher energy "solid-like" component gradually fading away with 

decreasing fluid density. At very low argon densities, neither 

component is present. 

The two-dimensional snapshots obtained from the molecular 

dynamics data are consistent with this explanation for the mercury 

spectrum. The actual presence of solid-like regions and tl~e large 

and persistent vacancies, the increased prevalence of vacancies 

vs solid-like regions with decreasing density (compare Figs. 3 and 5), 

and the lack of success in finding alternative explanations 17 for 

the spectra all point to the plausibility of the original explanation. 

A quantitative description of the line shape is, however, still 

lacking. 
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In Sec. II a clustering phenomenon was mentioned with respect 

to the time required for re-equilibration of the system after an 

"instantaneous expansion". Dynamic plots of the data from calcula­

tions for several different density states show that immediately 

after an expansion the particles in the system collect into 

numerous small clusters. If the final density is not too low, these 

clusters remain in contact through the pair potential and re­

equilibration of the system occurs rapidly. At very low densities, 

however, the clusters may first equilibrate within themselves to 

produce a pseudo-equilibrium that may p ersist for times on the 

order of 2 x 10-
12 

sec before collisions between clusters 

permit the redistribution of energy over a significant fraction of 

the total system. Even in an equilibrium low-dens ity state the 

contact between groups of particles may remain tenuous, resulting 

in occasional transient large-amplitude fluctuations i.n the instan­

taneous temperature and pressure of the system occurring when 

clusters collide. 
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V. SOME COMMENTS ON DIFFUSION PH.OCESSES(f) 
"'"""~ 

Figures 6-8 show plots of particle trajectories for periods 

of 2 x 10-
12 

sec. The small circles mark the initial positions of the 

particle centers, and the irregular lines extending from the circles 

represent the paths of the centers during the remainder of the 

2 x 10-12 sec interval. The dashed lines enclose regions to be noted 

specifically below. 

The snapshots in Figs. 3-5 show the initial system configura­

tions for the trajectory plots in Figs. 6-8, respectively. 

Comparison of the trajectory plots with the corre ­

sponding snapshots provides some indication of correlations between 

local particle distributions and characteristic thermal motion. 

B. Microdiffusive Motions 

The particle motions exhibited in Figs. 6-8 may be qualitatively 

grouped into two modes: crystalline-like vibration and diffusive 

migration. The diffusive motion might further be divided into 

single-particle migration and cooperative "chain" or "cluster" 

diffusion. Comparison of Figs. 6-8 with the corresponding snapshots 

shows that vibration-like motions occur primarily in regions of 

high local density, while the more extensive diffusive motions are 

generally associated with vacancies or regions of low local density. 

Regions 3 in Fig. 6 and 1 in Fig. 8 show examples of cluster-

diffusion into vacancies, while the indicated region in Fig. 7 shows 
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FIG. 6. Particle trajectories over a 2 x 10-12 sec interval in 

the system in state T* = 0. 927, pR = 0. 6781. 



77 

FIG. 7. Particle trajectories over a 2 x 10-12 sec interval in 

the system in state T* = 1. 436, pR = 0. 6781. 
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FIG. 8. Particle trajectories over a 2 x 10-12 sec interval in 

the system in state T* = 1. 145, pR = 0. 4645. 
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cluster-diffusion resulting in vacancy formation. Chain-diffusion is 

evident in regions 1 and 2 in Fig. 6; in region 2, the migration is along 

the edge of a vacancy. Region 4 in Fig. 6 shows a complex mixture of 

chain and cluster-diffusion in a region of low local density. Single­

particle, uncorrelated migration of the sort executed by the particles in 

regions 2 and 3 in Fig. 8 is not conspicuous in the plots from the higher 

density states. Indeed, such uncorrelated motion is common only in the 

highest temperature, lowest density states examined. 

C. Relation to Diffusion Theories 

The micro-kinetics exhibited in the trajectory plots differ in 

various respects from those envisioned by existing theoretical models 

for diffusion in dense fluids. The cooperative nature of the motion-­

even at high temperature--is particularly striking, and could not be 

adequately described by a random-walk or Brownian-motion mechan­

ism. While vacancies and regions of low local density appear to be 

intimately associated with diffusion processes, the motions exhibited in 

the trajectory plots would seem to be poorly described by a "jump­

diffusion" model. Specifically, jump-diffusion implies a mechanism in 

which diffusion proceeds by the independent step-migration of single 

particles. Dynamic plots of the data from which the trajectors plots 

were created show, however, that the local groups of long trajectorie-s 

in Figs. 6-8 arise from the concerted migration of the participating 

particles, rather than by successive jumps or knock-on collisions. We 

believe the system accomplishes this type of diffusive motion through 

the attractive inter-particle potential--groups of particles pulling each 
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other along--combined with the constraints imposed by the repulsive 

interactions in a crowded environment. 

D. Micro-structure and Diffusion 

Rahman 6 has recently shown that the direction of displacement 

of a particle over short times is correlated with instantaneous distor­

tions in the symmetry of its local environment; that is, an asymmetry 

in the spatial distribution of neighbors about a particle imposes a pre­

ferred direction on its subsequent thermal motion. Correlations of this 

sort would be expected to decay rapidly after times of the order of the 

characteristic relaxation time for the system, due to both thermal re­

arrangement of the local environment and motion of the particle itself. 

This idea is substantiated by a comparison of the 0. 5 x 10-12 sec value 

given by Rahman for the "time of maximum correlation" with the 

velocity autocorrelation function presented in the same paper. 

At first glance, the almost continuous diffusive migration indi­

cated by some of the 2 x 10-12 sec particle trajectories shown in Figs. 

6-8 would appear to be inconsistent with the short-time mechanism for 

micro-diffusion described by Rahman. Similarly, the rapid decay of 

the velocity autocorrelation function 6 indicates that, on the average, the 

instantaneous direction of motion of a particle will change significantly 

several times during a 2 x 10-1 2 sec interval. Examination of the tra­

jectory plots shows, however, that: (1) over any short-time interval, 

. only a small fraction of the particles in a high-density system attain any 

appreciable diffusive displacement, and (2) migrating particles are gen ­

erally associated with a group, all members of which 
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are diffusing in roughly the same direction. In a cooperative mech­

anism, then, the thermal motions of lhc neighbors about a diffusing 

particle are such as to maintain a continuous, or nearly continuous, 

environmental distortion in the same general direction as lhat in 

which the particle is migrating. That is, the particle executes 

micro-diffusive displacements in accordance with the short-time 

mechanism described by Rahman, but in a local environment 

which is itself involved in diffusive migration. 

The cooperative nature of diffusive motion in dense 

fluids is particularly important from the standpoint of chemical 

reaction kinetics since, within the framework of such a mechanism, 

a particle may undergo a relatively large diffusive displacement 

while encountering few, i.f any, "new" particles. A theoretical treat­

ment of reaction kinetics based on a random walk model for 

diffusion and employing bulk diffusion coefficients for the reactants 

might then be expected to predict reaction rates (or more precisely, 

reactant encounter frequencies) in excess of those obse rved experi­

mentally. Noyes 
18 

has discussed this aspect of theoretical rate 

calculations in conjunction with a detailed analysis of kinetic data 

for iodine atom recombination in CCl,11 drawing the conclusion that 

the microscopic anisotropy of the solvent may play an important 

role in the overall mechanism of even simple "diffusion- controlled" 

reactions • . In particular, such would be the case when the rea ctant 
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and solvent molecules arc of comparable size and mass since, under 

those conditions, the mcch::rnism for reactant encounter would differ 

most markedly from that suggested by the random-walk model 

for reactant diffusion. A detaUed analysis of particle encounter 

mechanisms in the molecular dynamics model will be the topic of 

a following paper. 

VI. DISCUSSION 
~ 

Several aspects of the microscopic properties of dense fluids 

have been discussed. Of these, the observations that: (1) the sys­

tem micro-structure includes relatively large and persistent vacan­

cies, and (2) cooperative mechanisms appear to be the dominant mode 

in diffusion processes, are perhaps most important. In evaluating 

the evidence presented for these qualitative observations, several 

factors must be considered. In particular, the densities and 

temperatures of the states examined thus far, and the dimension­

ality of the model deserve special comment. 

While the relative densities of the states listed in Table I are 

all essentially liquid-like, they are somewhat lower than tf10se of 

solvents generally employed in chemical reaction systems at STP 

conditions. From a "chemical" viewpoint, then, the amount of 

void area evident in Figs. 3 and 4 may be somewhat overempha­

sized. The apparent concentration of much of this void area into 

persistent vacancies--as opposed to a more random distribution of 

particles throughout the available space--is nonetheless 
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striking, especially when it is realized that the temperatures of all 

the states studied are very likely super-critical. The clustering in 

the high temperature, low density state shown in Figs. 5 and 8 is also 

rather surprising, and is indicative of the importance of the attractive 

inter-particle potential in determining the micro-structure of the 

flu id state. 

The densities of the states examined are particularly important 

with respect to the discussion of diffusion mechanisms. Considering 

the high temperatures, one would expect the low density states to 

exhibit a high degree of structural disorder accompanied by a large 

amount of uncorrelated "free" particle motion, while at very high densi-

ties, one might conclude that there would be insufficient void area 

available to permit the concerted transit of clusters of more than 

a very few particles. Preliminary analysis of data from calculations 

for a 404-particle system in s everal states with p* = 0 . 7014 indi-

cates, however, that cooperative mechanisms remain the dominant 

mode for diffusion even at this higher density, ---- -----

although chain-diffusion becomes considerably more prevalent 

than cluster-diffusion as the available void area is de creas ed. (h) 

It is conceivable that single-particle (jump-diffusion) me chanisms 

might become more importa nt a t ve ry high d e nsities and lower 

temperatures. However, our observation that the correlations in 

the particle motions appear to be strongly ass ociated with the 

attractive inter-particle potential would indicate that uncorrelated 

migr ation s hould become less rathe r than more important with 

decr easing temperature. 
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19 
Futrelle has suggested certain simple relationships 

between thermodynamic quantities in two and lhree dimensio ns. 

For m i.croscopic processes, the absence of a third degree of 

freedom could have a signi.fi.cant effect. In particular, 

"geome tric effects" should be relative ly more important in two 

dimensions than in three. With respect to the formation and 

persistence of vacancies, howeve r, the "microscopic surface 

tension" due to the attractive inte r -particle potential appears to 

be much more important than any geometric factor--ancl the 

potential energy contributing to this effect would be enhanced in 

three dimensions. 
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APPENDIX 

Calculations base d on a two-dime nsional Lcnnard-.Jones-

Devonshire theory have been performe d to oLlain some purely 

theoretical thermodynamic data Cor comparison with the molecular 

dynarnics res ults. In this Appendix, we briefly describe the manner 

in which these calculations were performed. The ---------

comparison of the L-J-D results with the molecular dynamics data 

is presented in Table II in the main body of this paper. 

The canonical partition function ZN for a two-di.mens ional 

system of N disk-particles of mass m confined to area A is related 

to the configurational partition function QN by: 

Z (A T) = (
2'/Tm) N Q (A T) 

N ' 2 N ' ' h [3 
(Al) 

where h is Planck's constant and {3 = (1 / k.B T). Within the framework 

of the Lennard-Jones-Devonshire cell theory, QN has the form: 

(A2) 

where <I>0 is the lattice e nergy when all pa rticles lie at the cente rs 

of their r espective cells, and the free area af i.s g iven by: 

af = {ell exp { - [3 [if!(~) - if!(o)] } d~ . (A3) 

In Eq. (A3), if!(r) is the energy of a particle at r relative to the center 
~ ~ 

of its cell, and the integration is over the interior of the cell. 
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In computing <1>0 and af, it is conve nient to group togethe r the 

energy contributions of successive "shells" of neighboring particles 

(near est, second-nearest, e tc., ... neighbors). The formulations 

are also simplified by transformation to reduce d units , as described 

in Sec. III. The reduced lattice e ne r gy is then given by: 

* cI>a '\' { - 12 -6 
<I>o = - = 2 L1 m a - a } 

NE n n n n ' 
(A4) 

where m is the number of particles in the nth ne ighbor s he ll, a n n 

the distance between nth -nearest neighbors in units of u, ancl whe re, 

for the truncated pair potential, the summation is over only those 

shells for which a ~ 2. 5. In this calculation, we assume the centers 
n 

of the cells to lie at the vertices of a r eg·ular two-dimens ional 

hexagona l lattice. 

The free area integral af is calculated using a "s m eared fi e ld" 

approximation 20 to obt a in an angle - independent ave r age ce ll p ote ntial. 

In this two-dimensional theory, the "smear e d" ce ll pote nt ia l 

* ( tf/(p) - tf/(o)) may be ca lculated from the formula 
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< tf/(p) - tf/(o)) * = 6 mn(}) f { <p*( [an + p
2 

- 2allp cos or}) 
n 

- cp * (a ) } c!O , 
11 

(A5) 

* where ( tf-1( p) - tf/(o)) , in uni.ts of E, is now a fund inn only of cl isplacc-

mcnt p in units of a, and cp* is the truncated reduced pair potential. 

Integration of Eq. (A5) yields 

~ { -12 - 6 } -4L;m a -a 
n n n n ' 

where the P . are Legendre polynomials, and x is given by: 
l 

2 2 I 2 2 x = (a + p ) (a - p ) . n n 

(A6) 

The cell potential is plotted as a function of p for several reduced 

areas A* in Fig . A-1. As in the case of the three -dimensional L-J-D 

theory, 21 the minimum of the cell potential docs not lie at the center 

of the cell for densities lower than about 0. 7 . This problem is not 

so s.~rious in the two-dimensional theory, since the central 

"hump" in the cell potential is relatively lower i.n two dimensions 

than in three . In particular, the total cell energy at the two-dimensional 

critical point (vi.de infra) is posi.ti.ve, which is not the case in thr ee 

di.mens i.ons. 

Wi.th the cell fi.e ld formulated as i.n Eq. (A6), the reduced free 

area integral becomes 

p 
in ax * 2 

a; = Ia exp { - {3 E ( tf,;(p) - tf/(o)) } a 27T p dp, (A 7) 
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FIG. A-1. Plots of the "smeared" cell potential for several 

reduced lattice areas. 
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2 
where p may be chosen so that rrp lX ::.: A*. In practice , the 

m<lX m< 

integral in Eq. (A 7) is computed numerically, and in all cases 

discussed here the integrand was found to approach '.lero rapidly 

for values of p somewhat less than p ax· m, 

The canonical partition function ZN is related to the Helmholtz 

free energy F by the well-known equation: 

F = -kT f.n ZN . 

In reduced units, 

(A8) 

In Fig. A-2, F* is plotted as a function of A* for s everal temp­

eratures. The pressure isotherms in Fig. A-3 are obtained from the 

F* isotherms by numerical differentiation. While the pressure iso­

therms for lower temperatures exhibit the familiar sigmoid shape, 

the negative slope of the isotherms at large values of A* is insuffi-

cient to permit the dete rmination of an approximate coexistence 

region. A "critical point" may, however, be determined fro.m the 

conditions 

faP*) = (:a 2 P*) = 0 \aA* oA*2 
T * T * 

which are found numerically to hold for the state 

T* = 0. 699 c 

p* = 0.474 c 

A* = 1. 552 c 

(p~ = 0. 644) 
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FIG. A-2 . Plots of reduced free energy isotherms for several 
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FIG. A-3. Plots of reduced pressure isotherms for several 
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C. Notes and Addenda to Paper No. 1 

a. Papers dealing with purely theoretical treatments of the liquid state 

have in recent years begun to show an increasing consciousness of 

the results obtained through computer calculations of the sort des­

cribed here. To date, comparisons between computer and theo­

retical results have largely been limited to such quantitie s as the 

equation-of-state or radial distribution function. But as informa­

tion regarding the computer simulation techniques becomes more 

widely disseminated, it is expected that theoreticians will also 

begin to look to the computer results for guidance in the develop­

ment of new theoretical models. 

b. Further analysis indicates that, at least for the present, simulation 

studies of a monatomic solute-solvent system are not practical. 

That is not to say that the basic simulation calculations could not be 

performed using existing computer hardware. Rather, the infor­

mation one might hope to acquire from such an investigation would 

not seem to justify the necessary expenditures of programming 

effort and computer time. 

c. The periodic boundary conditions can indeed interfere with the cal­

culation of transport-related time-correlation functions from the 

simulation data. In particular, the analysis programming must be 

provided with a facility to check for the migration of partic les 

across adjacent edges of the space-box. 
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d. The "reduced" thermodynamic quantities defined here are the two­

dimensional analogues of the reduced quantities described by 

J. M. H. Levelt and E. G. I. Cohen in Studies in Statistical 

Mechanics, J. De Boer and G. E. Uhlenbeck, Eds. (North-Holland 

Publishing Co., Amsterdam, 1964), Vol. II, p. 144 ff, and are 

compatable with the so-called ''theory of corresponding states." 

e. At first sight, this possible phase transition might seem to offer an 

interesting opportunity for further study. The experience reported 

by Alder and Wainwright indicates however that the molecular 

dynamics technique is not well suited to an investigation of the 

phase transition region for a model fluid. It is difficult to achieve 

a genuine separation of phases in a system of (relatively) so few 

particles; instead, the system as a whole oscillates between the 

two alternative phases as the dynamics calculation proceeds. The 

systems of "hard" particles studied by Alder and Wainwright were 

found to transit from phase to phase in the space of a single thermal 

oscillation, thus yielding well-defined intervals during which the 

system was in one phase or the other. But there is reason to 

believe that a system of particles interacting with a "softer", 

attractive potential would shift from phase to phase much more 

slowly, making it difficult to determine even equilibrium thermo­

dynamic properties for either of the phases. 

f. A more detailed analysis of diffusion in the model fluid is pre­

sented in Paper No. 3, the manuscript for which is reproduced in 

subsection IV. B, page 129. 
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g. A quantitative analysis of the effect of a cooperative diffusion 

mechanism upon the kinetics of a "diffusion-controlled" reaction 

in solution is provided in Paper No. 4, the manuscript for which 

is reproduced in subsection IV. C, page 1 79. 

h. A graphic display of diffusion in the high density model fluid is 

provided by the trajectory plot reproduced as Fig. 2 in Paper No. 

3, page 133. 
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D. Paper No. 2 

"Anomalies" in the Radial Distribution Functions 

Paul L. Fehder 

Arthur Amos Noyes Laboratory of Chemical Physics, t 

California Institute of Technology, Pasadena, California 91109 

Abstract. Subsidiary features appearing in the radial distribution 
~ 

functions obtained by x-ray or neutron diffraction measurements on a 

number of simple liquids have long been the object of speculation and 

some controversy. Distribution functions calculated from the config­

uration data for a computer-simulated model of a dense fluid of 

Lennard-Jones disks show similar additional structure. In the case of 

the model system, this additional structure may reflect an alternative 

configuration for local ordering within the fluid. 

*This work was supported in part by a grant from the National 
Science Foundation, No. GP-7258. 

t Contribution No. 3928. 
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I. INTRODUCTION 

Since publication of the early results by Eisenstein and 

Gingrich, 1 small subsidiary features appearing in the experimentally 

measured radial distribution functions g(r) for a number of simple 

liquids have been the object of speculation and some controversy. 

These subsidiary features usually take the form of sub-peaks or 

shoulders superimposed upon the otherwise smooth undulations of 

the "principal" structure of the distribution function, and most 

frequently appear in the region of the first principal minimum. 

The controversy surrounding these "anomalous" features in 

g(r) encompasses a number of different factors. From a theoretical 

standpoint, the existence of such sub-structure in the radial distri-

bution functions for the simplest of liquids (~ the liquified 

noble gases) could have serious implications with respect to the 

statistical mechanics of dense fluids. The additional structure 

might for example be considered indicative of the importance of 

many-body potentials at liquid-like densities. Or alternatively, 

the subsidiary structure might be attributed to correlations in the 

spatial distributions of particles in a liquid spanning greater dis­

tances and many more particles than is presently suspected. 
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Unfortunately, the issue is clouded by the complexity of the 

analytical procedures that must be e mployed to obtain g(r) from 

expe rimental diffraction data. 2 Se ve ral authors have , on 

the basis of the folding theorem, 3 a ttributed the subsidiary features 

appearing in their published radial distribution functions to finite 

truncation of the Fourier inversion integral. In a recent study of 

the data from liquid krypton, Khan 4 however has concluded that the 

principal source of these irregularities lies in the experimental 

data the ms elves rather than in the truncation error. This view is 

also supported by Mikolaj and Pings, 5 although they suggest that the 

irregularities are probably due to errors in the experimental meas­

urements while Khan is of the opinion that the features appearing in 

the krypton data reflect actual structure in the liquid. The effe ct on 

the resultant g(r) of systematic errors in the experimental intensity 

measurements has been examined by Finbak. 6 

Another factor contributing to the controversy is that 

------ some measurements have shown subsidiary struc-

ture while others have not. Subsidiary features appeared in the 

functions obtained by x-ray measure ments on neon, 7 argon, 
1 

and 

xenon, 8 and by neutron measurements on krypton, 9 but were absent 

in the data from neutron measurements on neon lO and argon, l l and 
5 12 from two more recent x-ray measurements on a rgon. ' Some 

new measurements by Smelser, 13 extending the work of Mikolaj 

and Pings to higher densities, indicate that these features may 

appear in the distribution functions for only a relatively narrow 
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range of thermodynamic states having densities somewhat higher 

than the critical density but lower than that of the triple point. Thus 

the scarcity of data for "intermediate" densities may provide a 

partial explanation for the apparent inconsistency of the experimental 

results reported thus far. 

In a recent paper 14 this author reported some preliminary 

results from a series of computer calculations simulating the 

microscopic dynamics of a two-dimensional dense fluid of Lennard­

Jones disks. The radial distribution functions computed directly 

from the time-dependent particle positions exhibit subsidiary 

features similar to those appearing in some of the experimentally 

determined functions reported in the literature. Since the system 

parameters are well defined in the simulation calculations and the 

microscopic structure of the model fluid can be examined in great 

detail, it is felt that our findings may shed new light on the nature 

and authenticity of the features in real liquids. 
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II. METHOD OF CALCULATION 

The computational algorithm and techniques used in performing 

the simulation calculations have been described in detail in our pre­

vious paper14 and the earlier paper by Rahman. 15 In essence, the 

computer programs perform a simultaneous step-wise numerical 

time-integration of the equations of motion of the several hundred 

particles comprising the model fluid. Reduced variables 16 are 

employed, and the positions and velocities of the particles are 

recorded on magnetic tape after each step in the integration for 

subsequent analysis. 

Since preparation of the manuscript for Ref. 14, calculations 

simulating five additional temperature-density states of the model 

fluid have been completed. Thermodynamic data for these five states 

are presented in Table I. 

For two dimensions the radial distribution function is given by: 

g(r) = (A) [ n(r) ] 
N 27rr.6.r 

where A and N are the area and number of particles in the system, 

respectively, and n(r) is the time-average number of particles situ­

ated at a distance r ± (Ar / 2) from a given particle. In practice, n(r) 

is averaged over the distribution of neighbors around each of the N 

particles in the system, and then over the configurations of the 

system for a large number of successive times. The functions were 

computed to a radius r = 3. 5 with an incremental .6.r value of 0. 025, 
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TABLE I. Thermodynamic state data from additional molecular 

dynamics calculations. a 

N PR p* T * =K* P* V* U* 

404 0.7527 0.7014 0.982 1.736 -1. 898 -0.917 

404 0.7527 0.7014 0.766 1. 004 -1. 999 -1. 233 

404 0. 7527 0.7014 0. 676 0.834 -2.008 -1. 332 

444 0.8272 0 . 7708 1.341 4.386 -1. 888 -0. 546 

444 0.8272 0.7708 0.904 2. 635 -2.093 -1. 189 

aThis table is an addendum to Table I in Ref. 14. The entries 
in the table are: N is the number of particles in the system. p and 
p* are the relative and reduced densities of the thermodynamicRstate. 
T* is the temperature, K* the kinetic energy, P* the pressure, V* the 
potential {internal) energy, and U* the total energy of the thermody­
namic state, all expressed in reduced units. lo 
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and averaged over times that varied between 0. 5 and 1. 4 x 10-
12 

sec 
-H 

with calculations at intervals of either 3. 0 or 5. 0 x 10 sec. 

Figure 1 is a diagram of the temperature-density states of the 

model fluid for which radial distribution functions have been computed. 

Specific states will be referred to according to the numbering in 

Table II. Examples of the calculated functions are shown in Figs. 

2-5. For syntactic simplicity, the radial distribution 

functions obtained by experimental measurements on real fluids 

· will hereafter be referred to as "experimental functions, " and 

those calculated from the simulation data as "model functions." 

The principal structure of the model functions appears in all 

respects quite similar to that of the experimental functions reported 

in the literature. In general, the overall structure of the radial 

distribution function for the model fluid is a much stronger function 

of density than of temperature in the temperature and density ranges 

examined . More precisely, the sensitivity to temperature is ampli­

fied by decreasing density. This effect is illustrated, for example, 

by the average number of neighbors and peak-height data presented 

in Table II. 

The model functions for the five states with densities above O. 7 

exhibit three well-defined maxima (see, ~' Fig. 2), indicating that 

additional maxima would probably have been observed had the func­

tions been computed to large r radius. At lower densities the third 
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FIG. 1. Temperature-density states of the model system for 

which radial distribution functions were computed. 

Accents indicate states for which functions are s hown 

in accompanying figures. 
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TABLE II. g(r) Function Data Summary. 
a 

p* T* gm ax r1 rz nl n2 

0.7708 1.324 2. 96 1. 07 2.13 5.71 10.62 

0.7708 0.904 3.22 1. 09 2.15 5.73 10.78 

0.7014 0.982 2.82 1. 09 2.20 5. 46 10.72 

0.7014 0.766 3. 06 1. 10 2.20 5.37 10.38 

0.7014 0. 676 3.11 1. 12 2.20 5. 36 10.12 

0. 6319 1. 436 2.29 1. 12 2.23 4.90 9. 96 

0.6319 1. 067 2. 55 1. 12 2.20 4.93 9.80 

o. 6064 1.645 2.23 1. 12 2.23 4.75 9.42 

0.5824 1. 558 2. 25 1. 12 2. 2 5 4.54 8. 67 

0.5824 1. 175 2.46 1. 12 2.23 4. 62 8.78 

0.5824 1. 015 2.54 1. 12 2.23 4. 67 8.11 

0.5824 0.845 2. 55 1. 12 2.22 4.70 8.94 

0.4993 1. 441 2.13 1. 12 4.12 

0.4993 1. 099 2.31 1. 12 4.13 

0. 4993 0.838 2.59 1. 12 2.21 4.14 7.31 

0.4328 1. 339 2.14 1. 12 2.28 3.40 

0.4328 1.145 2.41 1. 12 3.53 

0.4328 0.844 2.60 1. 12 2.23 3.60 5.94 

aThe entries in this table are : p*, T* are the reduced density 
and temperature of the thermodynamic state, respectively. gmax is the 
value of the distribution function at the first principal maximum. ru r 2 
are the positions of the first and second principal maxima. n1 , n; are 
the average numbers of first- and second-nearest neighbors, obtaine d 
by integrating under the first and second principal maxima, r e spe ctive-
ly. The integrations were performed from minimum to minimum. 
Blank spaces in the table indicate that the second maximum was insuf -
ficiently well-defined to permit evaluation of the indicated quantity. 
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FIG. 3. Radial distribution function for the state T* = 1. 067, 

p* = 0.6319. 
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FIG. 5. Radial distribution function for the state T* = 1. 175, 

p* = 0. 5824. 
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maximum disappears with increasing temperature; for the two densi­

ties below 0. 5, weak third maxima are discernable only in the func­

tions for the lowest temperature states (states 15 and 18). 

In the functions for the five high-density (p* > 0. 7) states the 

first principal maximum exhibits a slight shift to smaller radius 

with increasing temperature. For densities below 0. 7, the position 

of the first maximum remains constant at r = 1. 12, 17 irrespective 

of temperature or density. This latter behavior is in accord with 

that observed by Mikolaj and Pings5 in their measurements on liquid 

argon. The ~hape of the small-radius edge of the first maximum in 

the model functions also appears to be relatively insensitive to 

changes in thermodynamic state; the large-radius side of the peak 

does however show noticeable temperature broadening at lower 

densities. 

For densities below 0. 65, the second principal maximum shows 

appreciable broadening and a shift to larger radius with increasing 

temperature; the magnitude of both effects is enhanced by decreasing 

density. In the functions for the three states with density 0. 7014 the 

position of the second maximum is constant at 2. 20, while in the two 

states with density 0. 7708 this maximum shows a slight shift to 

smaller radius with increasing temperature. The positions of the 

first and second maxima in the distribution functions are listed in 

Table II. 

In summary, at lower densities the position of the first princi­

pal maximum is insensitive to both temperature and density while 
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the second maximum exhibits a density-dependent shift lo larger 

radius with increasing temperature. At high densities, both maxima 

shift to smaller radius with increasing temperature. 

In addition to the principal structure, three persistent subsid­

iary features also appear in the radial distribution functions for the 

model fluid. These are described separately below: 

Feature I: This feature appears as a small shoulder at the base of 

the first principal maximum and occurs at a radius of 1. 55-1. 60. 

A slight shift to smaller radius is noted with decreasing tempera­

ture. The feature appears only very weakly in the functions for 

densities above 0. 70 (Fig. 2), and at low densities is frequently 

obscured by broadening of the first maximum. It is most prominent 

in Figs. 3 and 4. 

Feature II: This feature appears as a small shoulder at the base of 

the second principal maximum. It is generally centered at a radius 

of about 1. 85, although a shift to larger radius is observed with 

decreasing temperature. The feature is not seen for densities above 

0. 70, and at lower densities is absorbed into the second maxi.mum 

at low temperatures. The feature is most evident in Fig. 5; there 

is a slight indication of its presence in Figs. 3 and 4. 

Feature III: This feature appears as a shoulder or small sub-peak 

on the large-radius side of the second principal maximum. It is 

most apparent at a radius of 2. 4, but shifts to larger radius 

with decreasing temperature. The feature is not seen at high 

densities and may disappear with temperature broadening of the 
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second maximum at low densities. It is most prominent in Figs. 

4 and 5. 

The distribution functions shown in Figs. 2-5 have been 

selected to illustrate the positions and forms taken by the three 

features discussed above. In general, none of the features, except 

perhaps III, is particularly striking when viewed against the back­

ground of the principal structure of the distribution functions. The 

recurrent appearance of the features in the model functions, and 

the regularity of their behavior with changes in temperature and 

density suggests however that they are indeed indicative of real 

structure in the model fluid. 

IV. DISCUSSION 
~ 

The Lennard-Jones pair potential was used exclusively in the 

simulation calculations, thus precluding the possibility that complex, 

many-body potentials could be responsible for the subsidiary features 

appearing in the radial distribution functions for the model fluid. 

Furthermore, the complications introduced by the Fourier transfor-

mation required in experimental measurements of g(r) are absent, 

since the model functions were computed directly from the time­

dependent particle positions provided by the simulation data. 
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B. 

At low densities (e.g., p* < 0. 5 ), the microscopic structure of 

the model fluid might best be characterized as a loosely-connected 

"net" of small, irregular clusters. 18 Most particles are in close con­

tact with only two or three neighbors and, with the large amount of 

unoccupied area available in the system at these low densities, thermal 

motion can easily introduce disorder. Since the equilibrium hexagonal 

closest-packed configuration is both the lowest energy and the densest 

mode of packing in two dimensions, this disordering is equivalent to an 

"expansion" of the clusters and is reflected in the broadening on the 

large-radius side of the first principal maximum and the outward shift 

of the second maximum with increasing temperature. A comparable 

broadening on the small-radius side of the first maximum is pre­

vented by the repulsive "core" of the pair potential. The extensive 

broadening of the second and succeeding maxima is also indicative of 

the high degree of disorder that is possible in the presence of so much 

unoccupied space. 

As the density of the fluid is increased, the disordering effect 

of thermal motion is progressively attenuated by geometric or 

"excluded volume (area)" phenomena; that is, the motion of a given 

particle may be severely restricted by the repulsive potentials of 

other particles surrounding it. At densities such as that shown in 
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Fig. 6, for example, geometric phenomena may b(~ responsible 

for correlations in the spatial distribution of the particles within 

regions of perhaps 20-50 a
2 

in area. Although the mechanism is 

not entirely clear, we believe the temperature-dependent shift of 

the first maximum at high densities can be attributed to these 

geometrically-induced correlations. As the temperature of the 

fluid is increased, the corresponding increase in the average per-

particle kinetic energy permits neighboring particles to approach 

each other somewhat more closely during the crystalline-like 

vibrations characteristic of higher density regions of the fluid. 
19 

However, since no comparable shift in the maximum is observed for 

densities below O. 7, this "penetration" effect is not in itself suffi­

cient to explain the observed shift. (a) 

Graphical displays of the simulation data have led us to conclude 

that at least two of the subsidiary features appearing in the model 

functions may be attributed to the presence of alternative configura­

tions for local ordering within the model fluid. The two-dimensional 

hexagonal closest-packed configuration, shown in Fig. 7a for a group 

of four particles, is the most prevalent mode of ordering observed 

in the microstructure of the model. But at densities below 0. 65, 

small local groups of particles are also frequently observed in a 

square closest-packed configuration such as that shown in Fig. 7b. 

If we assume that the nearest-neighbor distance in both configurations 
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FIG 6. "Snapshot" of instantaneous system configuration in 

state T* = 0. 904, p* = 0. 7708 (state 2, Table II). 

Particles are plotted with diameter a. The radial 

distribution function for this state is shown ln Fig. 2. 
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(a) (b) 

FIG. 7. Hexagonal (a) and square (b) packing configurations 

for small local groups of particles. 
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is roughly 1. 12, the distance at which the Lennard - Jones pair 

potential is at a mini.mum, then both config·urations contribute lo 

the principal maxima in g(r). The second-nearest neighbor distances 

in the square and hexagonal configurations would then be 1. 59 and 

1. 94, respectively. These distances correspond closely to the radii 

at which Features I and II appear in the radial distribution functions. (b) 

The disappearance of Feature I at high densities can be 

explained in terms of the difference in the packing densities for the 

ideal hexagonal and square configurations, but the simila r disap-

pearance of Feature II remains something of a puzzle. As indicated 

in Fig. 8, the "second-neighbor shell" in the two-dimensional 

hexagonal closest-packed configuration is actually comprised of 

two groups of six particles each, one group at a distance of 1. 94, 

the other at 2. 25 (given a nearest-neighbor distance of 1. 12). If, 

as we have suggested, geometric constraints produce a high degree 

of order in the fluid at high densities, then one would expect the 

second principal maximum to show a progressively stronger 

splitting with increasing density. Indeed, since g(r) o:: n (r) ·r-
1

, the 

"ideal" maximum at 1. 94 should be more prominent than the one at 

2.25. 

A possible explanation for the behavior of Feature II lies in 

consideration of the form of the "average" potential field presented 

to a particle in the fluid as a function of the bulk density of the system. 

At low densities, the average particle is found to be located in a 

potential formed by the attractive and repulsive components 
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n mn rn 
I 6 1. 12 
2a 6 1.94 
2b 6 2.25 
3a 12 2 .97 
3b 6 3 .36 

FIG. 8. Ideal two-dimensional hexagonal close-packing. 

Figure shows section of ideal lattice and indicate s 

first three neighbor "shells. " Table at right give s 

distance (r ) and numbe r of particles (m ) in e ach 
n n 

"shell" n. 
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of its interaction with two or three close neighbors, while at very 

high densities a particle is largely restricted lo the stcep-sictcd 

potential "well" formed by the repulsive cores of its closely-packed 

neighbors. But over a narrow range of moderately high densities, 

the potentials of the neighbors surrounding a particle may sum 

together so as to produce a steep-sided well having a bottom that 

is essentially "flat" over a radius of perhaps 0. 2 a. As an example 

of this phenomenon we may cite the behavior of the "smeared" cell 

potential that arises in the Lennard-Jones-Devonshire theory of the 

liquid state. 
2° For reduced densities above about 0. 8, the cell 

potential increases rapidly with displacement away from the center 

of the cell, while for densities below about 0. 65 the minimum in the 

potential moves away from the center of the cell, leaving a small 

local maximum in that position. But for densities around 0. 7, the 

gradient of the potential is essentially zero out to a distance of 

~bout 0. 15 a from the center of the cell, then increases rapidly with 

further displacement. This kind of effective potential could lead to 

lesser degree of local order than that present at either higher or 

lower densities. It is interesting to note that Feature II disappears 

from the radial distribution function at some density between 0. 63 

and 0. 70. 

In summary then we suggest that, as the density of a simple 

fluid is increased, the factors contributing to ordering within the 

microstructure of the fluid may go through three distinct phases. 

At low densities the attractive component of the interparticle 
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potential is the principal ordering agent, while at very high densities 

geometric effects arising from the repulsive component of the 

potential become dominant. For a narrow range of moderately high 

densities however neither component may be effective over at least 

short distances and hence, in this narrow range of densities, the 

fluid may show a lesser degree of short-range order than for either 

higher or lower densities. 

D. Conclusions 
~ 

While the preceding interpretation of the two-dimensional radial 

distribution functions appears to be consistent with the presently 

available data, lt must nevertheless be considered "tentative" until 

methods are devised to obtain a more quantitative description of some 

of the microscopic effects suggested by our arguments. It should for 

example be possible to obtain from the simulation data an approxi-

mate measure of the time-average relative "concentrations" of 

hexagonal and square packing in the model fluid for different temp­

eratures and densities. (c) The calculations will also be extended to 

three-dimensional model systems, provided sufficient computer time 

is made available for this investigation. (d) But on the basis of the two-

dimensional data presented here, we are led to conclude that the 

subsidiary features appearing in some experimental radial distribu­

tion functions reflect actual structure in simple liquids, and that this 

structure may arise from the existence of alternative configurations 

for local ordering. 
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E. Notes and Addenda to Paper No. 2 

a. If the "penetration effect" is to play an important role in causing 

the temperature-dependent shift of the first principal maximum, 

the form of the "effective" interaction between adjacent particles-­

when the average interactions with surrounding particles in the 

fluid are taken into account--must begin to change rather rapidly 

with increasing reduced density above 0. 63. In particular, the 

repulsive r-12 core of the Lennard-Jones pair potential may be 

"softened'1 by attractive interactions with nearby particles, while 

the repulsive cores of the close-packed neighbors would tend to 

"stiffen" the attractive r-6 component of the pair potential. 

b. To date, no similar structural explanation for Feature III has been 

found. Neither the hexagonal nor square configurations, nor any 

reasonable spatial combination of the two would seem to yield a 

"pref erred'' neighbor distance of approximately 2. 4 a. 

c. It may in practice be rather difficult to calculate the "concentrations" 

of square and hexagonal packing in the model fluid. In particular, 

there exist at present no well-defined mathematical criteria for 

determining, for example, just how "square " or how "hexagonal" 

is the spatial distribution of points in a local r egion of a "partially­

ordered'1 lattice. For further discussion of this point, see 

Section V. 



125 

d. Verlet has reported the radial distribution functions for some 

twenty-five temperature-density states of a three-dimensional 

model fluid of 864 Lennard-Jones particle s [Phys. Rev . .!i§_, 201 

(1968)]. The data spanlf a range of reduced densities from 0. 450 

to 0. 880, and the functions plotted from the tabularized values 

reported in the paper are smooth and show no subsidiary structure. 

But the very lack of statistical scatter in the reported function 

values suggests that the distribution functions computed directly 

from the simulation data may have been numerically smoothed as 

an aid to the computation of the other correlation functions and 

transforms dealt with in the paper. Were Verlet unaware of the 

possible presence of subsidiary structure in his raw distribution 

functions data, small features of the sort appearing in our two­

dimensional functions or in the experimental functions measured by 

Smelser could have been removed by the numerical smoothing 

procedure. 
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SECTION IV 

DIFFUSION, RELATIVE DIFFUSION, AND CHEMICAL 

REACTION KINETICS IN DENSE FLUIDS 
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A. Introductory Comments 

The two papers reproduce d in this section deal with the results 

of a rather novel analysis of the simulation data. The qualitative ob­

servation that diffusion in the dense model fluid is a coope rative 

process was reported in Paper No. 1 (section III. B). In Paper No. 3, 

this observation is placed on a quantitative basis. 

Analysis of the simulation data shows that the coope rative 

mechanism for diffusion in the model fluid conforms to the statistical 

predictions of existing theories of singlet or self-diffusion in simple 

liquids. The singlet mean square displacement and velocity autocor­

relation functions compute d from the simulation data be have in the 

the oretically predicted manner; indeed, the calculated distributions of 

individual particle displace ments over a range of different time inter­

vals all fit quite closely the functional form predicted by the simple 

two-dimensional random-walk model. But further analysis also shows 

that short-range dynamic correlations associated with the cooperative 

diffusion mechanism retard the r e lative diffusion of proximate particle s 

in the model fluid--a fact of some significance with respect to c hemical 

r eaction kinetics in solution. A new theoretical treatme nt of r e lative 

diffusion in dense fluids, devised by Dr. C. A. Eme is, i s found to 

r eproduce the phenomena observed in the mode l fluid with surpr ising 

accuracy. 
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The first step in any bimolecular chemical reaction must ob­

viously be the encounter between the two reactant molecules. But if 

short-range "cooperative" correlations retard the relative diffusion of 

solute molecules as they approach each other in solution, the rate at 

which new reactant-pairs are formed would be reduced. In Paper 

No. 4 the Emeis treatment for relative diffusion is applied to the 

Smoluchowski theory of "diffusion-controlled" reaction kinetics in 

solution. It is found that this more accurate treatment of reactant 

encounter dynamics may effect a significant reduction in the predicted 

rate of reaction. 
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B. Paper No. 3 

P. L. Fehder, C. A. Emeis, t and R. P. Futrellet 

Arthur A. Noyes Laboratory of Chemical Physics, 

. California Institute of Technology, Pasadena, California 91109 

Abstract. 
~ 

Graphical displays of computer -generated data simulating 

the microscopic dynamics of a two-dimensional dense fluid of 

Lennard-Jones disks indicate that the microscopic mechanism for 

diffusion in simple liquids may be largely cooperative in nature. 

Although it is unlikely that this cooperative mechanism would have 

a macroscopically discernable effect upon singlet or self-diffusion 

in real liquids, short-range correlations associated with the 

cooperative processes can affect the chemically important relative 

diffusion of solute molecules separated by short distances in a 

liquid solvent. The statistical time-correlation functions describing 

self-diffusion in the model fluid are found to behave in a manner 

* This work was supported in part by a grant from the National 
Science Foundation, No. GP-7258. 

tPresent address: Koninklijke/ Shell Laboratorium, Amsterdam, 
Holland. 

tPresent address: North American/ Rockwell Science Center, 
Thousand Oaks, California 91360. 
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consistent with existing theoretical treatments of diffusion in 

simple liquids. The relative diffusion of particles separated by 

distances of 1-3 diameters is however found to proceed more 

slowly than predicted by theories that neglect correlations in the 

motions of neighboring particles at liquid-like densities. A theo­

retical formalism that permits an accurate description of relative 

diffusion in the model fluid is developed. 

I. INTRODUCTION 

In a recent paper, 
1 

one of us (PLF) discussed the initial 

results obtained from a series of computer calculations simulating 

the microscopic dynamics of a two-dimensional dense fluid of 

Lennard-Jones disks. Preliminary analyses of the simulation data 

led to several interesting observations. "Snapshots" of the instan ­

taneous configuration of the model fluid show for example that, 

even at temperatures well above critical, the microscopic struc­

ture of the fluid contains relatively large and surprisingly persistent 

"holes" (see, ~' Fig. 1). Although a number of theories of the 

liquid state
2 

have previously postulated the existence of holes or 

"vacancies" in the structure of real simple liquids, the phenomenon 

we observe differs both qualitatively and quantitatively from that 

seemingly suggested by the theoretical models. In particular, the 

holes appearing in the model fluid bear no obvious relationship to 

the size and shape of a single fluid particle. And furthermore, 

indi vi.dual holes are observed to persist in the same region of the 
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FIG. 1. "Snapshot" of an instantaneous configuration of the model 

fluid in state No. 3 (Table I). The particles are drawn 

with diameter a, the distance parameter in the Lennard-

Jones pair potential. 
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fluid for times well in excess of the characteristic kine tic relaxa-

ti on time for the system. One quantitative measure of the struc -

tural ordering within the fluid, the radial distribution function, is 

discussed in a second paper. 3 

Graphical display techniques were also used to examine the 

microscopic mechanism for diffusion within the fluid. Plots of 

the particle trajectories such as that shown in Fig. 2 

1 
-12 

indicate that, even over intervals of 6. 0 x 0 sec and longer, 

extensive diffusive migration is largely restricted to small, local 

groups or "chains" of particles situated in the vicinity of a hole. 

Furthermore, dynamic displays (motion pictures) of the simulation 

data show that the migration of these local groups of particles 

occurs in a concerted manner. That is, at liquid-like densities 

cooperative effects play an important role in the mechanism for 

diffusion in the model fluid. 

Until recently, self-diffusion in simple liquids has been 

treated in terms of theoretical models based upon some modifica­

tion of either the Brownian-motion mechanism or the jump-diffusion 

mechanism characteristic of solids. In the next section we examine 

several theoretical formulations describing diffusion in dense fluids 

and compare the behavior of the functions computed from the simu­

lation data with that predicted by various theories. Although the 

microscopic mechanism for diffusion in the model fluid appears to 

differ markedly from that envisioned by the existing theories, the 

statistically-averaged distribution and correlation functions 



FIG. 2. Trajectories of the particles in the mode l fluid in state 

No. 3 (Table I). The small circles mark the initial 

positions of the particles and the irregular lines extend­

ing therefrom the paths of the c enters during the 

remainder of a 2 x 10-12 sec interval. The initial con-

figuration also corresponds to that shown in Fig. 1. 
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computed from the simulation data are found to behave in a manner 

consistent with theoretical predictions. 

The importance of cooperative phenomena in the mechanism for 

diffusion becomes much more apparent when the relative diffusion of 

pairs of particles is investigated. Relative diffusion within the model 

fluid is examined in some detail in Sec. ID, and it is found that the 

coefficients describing the relative diffusion of particles separated by 

distances of 1-3 diameters have values significantly lower than would 

be predicted by theories that fail to take account of correlations in the 

motion of neighboring particles in a liquid. This result has important 

implications with respect to, for example, the chemical kinetics of 

very fast-- "diffusion-controlled"--reactions in solution; indeed, a 

phenomenon similar to that which we observe in the model fluid has 

previously been postulated to explain the difference between the theo­

retical and experimental rates for iodine atom recombination in 

solution. 4- 7 

There are a large number of processes in which the relative 

motion of two particles is important. Many dielectric and electro­

magnetic phenomena require knowledge of the correlation of some 

function of the relative positions of a pair of particles at time 0 and 

the relative position at a later time t. Conversely, certain light 

scattering experiments can be interpreted to yield information of rela­

tive motion. In order to understand such motion theoretically we 

must start with its simplest aspects rather than the entire time­

dependent two-particle distribution itself. The second moment or 



135 

mean square relative displacement is probably the most fundamental 

parameter describing the r e lative diffusion process which is why we 

study it in this paper (Sec. iv.). Another important process, dif­

fusion-controlled reaction rates, is treated in a forthcoming paper. 
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II. SINGLET DIFFUSION 

A. Mathematical Formulation 

Singlet8 diffusion in fluids is characterized, at the molecular 

level, by the ti.me-dependent mean square displacement of the fluid 

particles 

(1) 

where :!:.k i.s the position vector to particle !s measured in the 

laboratory coordinate system, and the ti.me .!._is measured from 

an arbitrarily selected zero. The function is symmetric and in 

simple liquids becomes linear with increasing It I after an "induc­

tion" ti.me T £. of the order of 10-
12 

sec. 

The time-dependent behavior of L<t) can be interpreted in 

terms of the familiar velocity autocorrelation function 

(2) 

where Xk(s) is the velocity of particle ~at time ~· The velocity 

autocorrelation function, like L(t), is symmetric and invariant 

with uniform ti.me translation. Since 

we have 

\' 2 t t 
l.J(t) = ( [:!:_(t) - :!:_(0)] ) = ( J

0 
~(s)ds · ~ ~(u)du) , (3) 

where the subscript k has been dropped for notational simplicity. 

The average ( x(s) ·~:_(u)) is unaffected by uni.form ti.me translation 
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(~(s)·~(u)) = <x<s+s')·~(u+s')) 

Letting s' = -u and s -u =a, we have 

t t 
l:<t) = J

0 
J

0 
(~(a)· ~(O) )ds du, (4) 

and using variables ~and ~(Jacobian unity) leads to the result 

)' t 
L;(t) = 2tj (1-~)(v(a)·v(O))da 

0 t /'- /'-

t t 
= 2t J A (a)da - 2 J A (a) a da 

0 v 0 v 
(5) 

In liquids, the ensemble-averaged velocity autocorrelation 

decays rapidly with increasing It I and essentially vanishes after times 

of the order of 10-12 sec. Either the interval Te during which the 

function decays to e - 1 of its t = 0 value, or the time T 0 required for 

the correlation to essentially vanish is generally equated with the 

kinetic relaxation time for the system. This relaxation time is also 

frequently associated with the average time required for the fluid 

particles to execute one "free path" displacement. 

Equation ( 5) can then be rewritten 

(6) 

o To o To 
where 11 = J A (a)da and 12 = J Av(a) a da are both constants. 

0 v 0 . 

It can then be seen that the "induction" time T 1 for L(t) may be 

equated with To, and that the slope of the linear portion of 

L(t > T 0 ) is given by 21~. 
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let Diffusion Data for the Model Fluid 

In two dimensions, the slope of the linear portion of the mean 

square displacement function is related to the coefficient for singlet 

diffusion D by the Einstein formulation s . 
~(t) = 4D s (two dimensions; t > T0 ) (7) 

where it is assumed that _6( 70) is small compared to molecular 

dimensions. Comparison with Eq. (6) then yields the additional 

relation 

T 
1 0 1 J 0 

Ds = 2 Ii = 2 A (a)da . 
0 v 

(8) 

A similar formulation is obtained by Zwanzig9 to describe the 

diffusion of a Brownian particle, although an additional limiting 

function is inserted in the autocorrelation integral in place of the 

assumption that _6(70) is small. 

In calculations of the two diffusion functions from the simula-

tion data, additional statistical averaging is obtained by taking 

advantage of the mathematical properties of the functions. If for 

example the equilibrium simulation data span$ an interval of 

1. 5 x 10-
11 

sec, functions can be computed to a maximum time of 

1 1 
-11 

t = • 0 x 0 sec from several zero times and then averaged 

together. The symmetry can also be exploited by calculating the 

functions for t < 0 from zero times near the e nd of the interval 

spanned by the simulation data; the functions for both t < 0 and 

t > 0 can then be averaged on the basis of absolute!_. 
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As described in Ref. 1, dynamical variables entering into 

the simulation calculations are "reduced" in units involving m 

the particle mass, and a and E, the distance and energy param­

eters in the Lennard-Jones pair potential 

<pLJ(r) = 4 E { (a/ r)
12 

- (a/ r)
6

}. 

In particular, distances are expressed in units of a, so that values 

of ,6(t) and Ds are obtained in units of a2 and a
2 

• sec-
1

, respectively. 

Reduced units consistent with those described in Refs. 1 and 10 

will be used throughout the remainder of this paper. 

Mean square displacement and velocity autocorrelation func­

tions were computed to times of 1.1 x 10-11 and 6. O x 10- 12 sec, 

respectively, from the simulation data for five equilibrium temp­

erature-density states of the model fluid. A comparison of the 

singlet (self-) diffusion coefficients obtained by least-squares 

fitting the linear portion of the l:(t) function and by Simpson's 

Rule numerical integration of the A (t) function for each state is v 
contained in Table I. Values for T , T 0 , and L( T0 ) are also listed e 
in the Table, and the mean square displacement function for the 

liquid-like state p * = 0. 7014, T * = 0. 676 (state No. 3 in Table I) 

is plotted in Fig. 5. 

The poor agreement between the two Ds values calculated for 

each state may be attributed to the relatively large thermal fluctua­

tions that can occur in a system of only 400 or so particles . The 

normalized velocity autocorrelation functions 
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A;(t) = (y_k(t) · y_k(O))/(y_k(0)
2

) 

for each of the five states were found to decay rapidly (as indicated 

by the T values) to a value of about 0. 05, but to approach zero 
e 

much more slowly thereafter with oscillations of a magnitude as 

great as ± 0. 05. Thus while the values for Te could be determined 

quite accurately, the values for T0 listed in the table are somewhat 

subjective and are truly indicative only of the upper limits applied 

to the integration specified in Eq. (8). 

C. Time-De endent Distribution of Particle Dis lacements 

Although the mean square displacement and velocity auto­

correlation functions provide a convenient statistical description 

of diffusion, the averaging implicit in the calculation of these 

functions may obscure important details of the diffusion mechanism. 

To obtain a more precise measure of singlet diffusion within the 

model fluid, distributions W(r, t)Ar of the absolute displacements 

!:_of the particles over intervals of t = 1. 0, 1. 0, 3. O, ... 6. 0 x 

10-
12 

sec were computed from the simulation data for state No. 3 

(Table I). 

In two dimensions, a random-walk mechanism for diffusion 

leads to a distribution of displacements of the form 

W(r, t)Ar = [(r ·Ar ) / 2o ]exp(-r
2 I 4o), (9) 

where W(r, t)Ar is the fraction of the particles displaced a distance 

r ±(Ar / 2) from their. initial positions after time interval l, and the 
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quantity o = o(t) is related to the singlet diffusion coefficient by 

o = D t. The six distribution functions co mputed from the s imula-
s 

tion data were found to fit the functional form in Eq. (9) quite 

closely, although o(t) must be adjusted to account for the non-zero 

" induction'' time in the model fluid. To obtain a random-walk 

diffusion coefficient, the function in Eq. (9) was least-squares 

fitted to the six distribution functions. The resulting o(t) values 

are listed in Table II, and a comparison of the computed and fitted 

distributions for t = 6. 0 x 10-12 sec is shown in Fig. 3. The four 

o(t) values fort> 3. 0 x 10- 12 sec show a linear dep endence on!_. 

A least-squares fit through the four values yields a random-walk 
. . 10 2 -1 . 

coefflc1ent of D == o(t) = 3. 74 x 10 a ·sec , wh1ch may be corn ­s 
1 10 2 -1 . pared to the values 4. 39 and 4. 20 x 0 a ·sec obtamed from t he 

L(t) and Av(t) functions for state No. 3. 

D. Com arison with Theoretical Mode ls 

As we have described in the Introduction and in R ef. 1, the 

microscopic mechanism for diffusion in the high-density model 

fluid diffe rs qualitatively from that suggested by existing theoretical 

treatments of diffusion in simple liquids. Although the "holes" 

appearing in the microstructure of the fluid play a role rather 

similar to that supposed by a jump-diffus ion mechanism, jump-

like motion is not observed in dynamic displays (motion pictures) 

of the simulation data. Rather, the migration of local groups of 

particles--see, e.g., Fig. 2--proceeds more or less continuously 
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TABLE II. Random-walk diffusion coefficient factors. 

12 
t x 10 sec 0 (t) standard deviation of fit 

1. 0 0.0268 0.0018 

2.0 0.0593 0.0020 

3.0 0.0940 0.0019 

4.0 0.1321 0.0018 

5.0 0.1695 0.0018 

6.0 o. 2063 0.0016 
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t t = 6 .0 x 10- 12 sec. 

0.10 

+ 
+ + 

+ + 

+ 

0 .00 
r (o-) --

~~~·~· ............... ~·~·~·~· ·~··~· 
1.0 2 .0 

FIG. 3. Comparison of the distribution of particle displacements 

W(r, t)6.r in the model fluid after 6 x 10-12 sec and the 

functional form predicted by two-dimensional "random­

walk" theory. The distribution from the mode l fluid was 

calculated from the simulation data for state No. 3 

(Table I). 
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except for small, short-range oscillations ("jiggling") consonant 

with the rapid decay of the velocity autocorrelation function . The 

smooth W(r, t) distributions discussed above are also inconsistent 

with a jump-diffusion interpretation. 

The close agreement between the calculated displacement 

distributions and the functional form for W(r, t) predicted by 

random-walk theory is rather surprising in view of the cooperative 

phenomena exhibited in graphic displays of the simulation data. 

Diffusive motion in the model fluid could hardly be termed "random", 

since the migration of each particle is obviously closely coupled 

to the motions of the particles immediately surrounding it. Neither 

would a Brownian-motion mechanism of the sort treated by Kirkwood 
11 

seem to provide an adequate description of the microscopic processes 

observed in the graphical displays. In particular, it is difficult to 

conceive of a physical interpretation for the "friction constant" 

employed in Brownian-motion treatments if cooperative phenomena 

play an important role in the diffusion mechanism. 

In light of our observations of the model fluid, we suggest 

that the mechanism for singlet diffusion in simple liquids is more 

accurately described in terms of microscopic processes occurring 

on three different time scales: 

1. For very short times (e.g., of the order of 10- 13 sec), the 

motion of a particle is strongly correlated with the instantane-

ous positions and velocities of the particles immediately 

surrounding it. Although not accessible to direct experimental 
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measurement in real liquids, this phenomenon has been 

examined in detail by Rahman 
12 

using computer-simulation 

data for a dense, three-dimensional fluid of Lennard-Jones 

particles. The correlation is found to vanish rapidly after 

times of the order of the characteristic relaxation time for 

the fluid, and is thus in accord with the assumed relation­

ship between T 0 (or Te) and the time required for the average 

fluid particle to traverse one "free path". 

( 
-12 

2. Over longer, albeit still microscopic times 2. 0-5. 0 x 10 

3. 

sec in the dense model fluid) cooperative phenomena dominate 

the diffusion process and the migration of an individual particle 

is closely correlated with the displacements of its immediate 

neighbors. The apparent physical relationship between these 

cooperative phenomena and the "holes" in the microstructure 

of the model fluid suggests that the average time during which 

cooperative motion continues within a local region of a liquid 

be intuitively associated with the "relaxation time" for the 

redistribution of unoccupied volume ("excess volume") within 

the liquid. 
-10 -9 

After times of the order of 10 - 10 sec, the residual effects 

of the cooperative phenomena vanish and diffusion takes on the 

appearance of a more nearly "random" process. 
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There is an alternate view, an analogy that can be drawn, 

which eases the discrepancy between the cooperative motion and the 

simple diffusion models. In equilibrium statistical mechanics one 

may define one, two, ... , n-body distribution functions in a liquid. 

The one-particle distribution function is completely trivial, it is a 

constant =V-1, where V is the volume of the liquid. The two-body 

distribution function is quite non-trivial. Its correlation function 

g(r) depends on r, the interparticle separation, vanishes at r =O, 

oscillates strongly for a few molecular diameters, and then decays 

to unity for large r. Thus the one-body function contains no hint of 

the complex structure of g(r). In a quite similar way the one­

particle diffusion which behaves rather simply contains little or no 

hint of the cooperative motion in the liquid when two or more mole­

cules are viewed simultaneously. 
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III. RELATIVE DIFFUSION AND COOPERATIVE PHENOMENA 

A. Mathematical Formulation 

Within the framework of classical statistical mechanics, 

relative diffusion in dense fluids is conveniently de scribed by the 

time-dependent mean square displacement function 

A (t) = ( [r .. (t) - r .. (0)] 2
) , v ,..,_ l] ,..,_ l] 

(10) 

where r . . is the vector between the centers of two particles .land 
,..,_ l] 

j, and the time!_ is measured from an arbitrarily selected zero. 

Manipulation of the RHS of Eq. (10) yields the result 

where Ar. (t) = r . (t) - r. (0) is the vector displacement of particle 
-" l -" l ,..,_ l 

j._ after time!, measured in the laboratory coordinate system, and 

Ar . (t) is similarly defined. ,..,_ J 

Substituting from Eq. (1) yie lds 

A (t) = L· (t) + L· (t) - 2( Ar. (t) · Ar . (t)) v l ] '"'- l "' ] 
(12a) 

= 2L (t) - 2c(t) , (12b) 

where (b) is the result for a single-component fluid and C(t) repre­

sents the cross-correlation factor ( Ar. (t) · .6.r . (t) ) . ,..,_ l ,..,_ ] 

Theoretical treatments of chemical reaction kinetics in solu-

tion frequently invoke a model in which the diffusion of molecules 

of one reactant is examined in a r eference frame such that the 
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13 molecules of the second reactant are held stationary. If for 

example the reaction under consideration is represented by 

A + B ---+AB, the theory might attempt to calculate the flux of 

diffusing B molecules upon a stationary molecule of reactant A. 

In such a model, it would then be standard practice to describe 

the diffusion of the B molecules by an "effective" diffusion coefficient 

(13) 

where DA and DB are the bulk diffusion coefficients of species A 

and B, respectively. 

A simple analysis shows that the function D. (t) is equivalent v 

to the "effective" singlet diffusion function ~~ .(t) for one particle 
l, J 

of an [ i, j] pair in a coordinate system fixed to the center of the 

other particle. Comparison of Eqs. (7) and (12a) then shows that 

the formulation in Eq. (13) is equivalent to an assumption that the 

cross-correlation factor C(t) is uniformly zero; that is, that the 

relative motion of a pair of reactant molecules is uncorrelated at 

all distances. 

A quantitative measure of the short-range correlations asso-

ciated with the cooperative phenomena observed in the model fluid 

can be obtained by calculating D. (t) and C(t) functions for different v 

sets of pairs of particles, where the pairs [ i, j] comprising each 

set are selected on the basis of the scalar distance r .. (O) between 
lJ 

the centers of the two particles at the chosen zero time. This pro-

cedure can be represented mathematically by appending a "selection" 
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function h[ri/O)] to the formulations given above: 

!:::.. (t;h ) = ( [r .. (t) - r .. (0)]
2
h [r .. (O)]) 

v n ~ lJ ~ lJ n lJ (14a) 

C(t;h) = ((Ar.(t)·Ar.(t)]h (r . . (O)]), 
n ~1 ~J n lJ 

(14b) 

where the value of h[r .. (O)] is unity if r . . (O) is within the desired 
lJ lJ 

range of initial distances, and zero otherwise. The subscript !:!. on 

h will be used to specify the range of r .. (0) values "selected" by 
- lJ 

that function. 

Since "selection" of the pairs should not affect the ensemble­

averaged singlet diffusion of the particles comprising each pair, 

Eq. (12b) can be rewritten 

!:::.. (t;h ) = 2_6(t) - 2C(t;h ) . v n n (15) 

Correlations in the motions of the selected pairs are therefore 

evidenced by non-zero values for the cross-correlation factor 

C(t;h ) or alternatively, deviations of the pair displacement func-
n 

tion from twice the slope of the singlet function ~(t) computed from 

the same simulation data. 

B. Relative Diffusion in the Model Fluid 

The simulation data for state No. 3 was analyzed to obtain 

!:::.. (t;h ) and C(t;h ) functions for sets of pairs with r . . (0) distances v n n t] 

corresponding to the average first and second nearest-neighbor 

distances in the fluid at that temperature and density. In Fig. 4 the 

two r .. (0) "selection" ranges are shown in relation to the radial 
l] 
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FIG. 4. The radial distribution function g(r) for the model 

fluid in state No. 3. The h1 and ~ pair selection 

intervals are also indicated. 
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distribution function for state No. 3; the two ranges will hereafter 

be referred to as "h1 " and "h2", as indicated in the figure. 

In Fig. 5 the relative diffusion functions are shown in com­

parison to the singlet function .l:(t) for state No. 3. The greater 

degree of corre lation exhibited by the h 1 pairs is in intuitive accord 

with our description of the distance dependence of the cooperative 

processes occurring in the model fluid. More interesting however 

is the fact that the slopes of the cross-correlation fw1ctions for 

both sets of pairs remain positive over the entire 1. 1 x 10 -
11 

sec 

interval spanned by the calculations. The correlations 

associated with the cooperative processes must therefore persist 

for much longer times than suggested even by the graphical displays 

of the particle trajectories. 

Comparison of the 6. (t ;h ) and ~(t) functions plotted in Fig. v n 

5 shows that the coefficient for r e lative diffusion must decrease 

significantly for p a rticles approaching within two, and pe rhaps 

even three or four diameters of each other. The motions of parti-

cles s eparated by large distances in the fluid are totally uncorre­

lated ( C(t;h
00

) = 0]; then Eqs. (7) a nd (12b) indicate that t he "effect-

ive" coefficient describing the diffusion of one particle j_ r e lative 

to anothe r particle j must for large r . . be equal to twice the coe ffi-
- lJ 

cient for singlet (self-) diffusion. But a s two particle s approach 

each other more closely, cooperative processes slow their a ve r a ge 

r e lative motion until, as shown by compa ring t he slopes of the .l: (t) 

and 6. (t;h1 ) functions plotted in Fig . 5, the c oeffici ent de s cribing 
v 
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t 
3.0 

2 .0 

1.0 

2 .0 4 .0 6.0 8 .0 10.0 

FIG. 5. Comparison of singlet and relative mean square displace-

ment functions computed from the simulation data for 

state No. 3 of the model fluid. A: ~ (t); B: Av(t;h1 ); 

C: Av(t;~); D: C(t;h1 ); E: C(t;~). 
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their relative diffusion may fall to only approximately 65% of the 

larger- r ij value. 

The singlet diffusion of the particles "selected" for relative 

diffusion calculations cannot differ from the singlet diffusion of the 

system as a whole except through statistical fluctuations due to the 

finite sample size. Rearrangement of Eq. (15) yields 

L(t) = ! ~ (t;h ) + C(t;h ). v n n 

The relative diffusion functions computed directly from the simu­

lation data combine as indicated to reproduce the L(t) function for 

state No. 3 within 1-2%. 

In theoretical treatments of various liquid state phenomena, 

it is frequently convenient to define an "effective" pair potential or 

"potential of mean force" 1.f;(r) that describes the average interaction 

between a pair of molecules when interactions with the other, 

neighboring molecules are taken into account. To a first approxi-

mation, this "effective" potential can be obtained from the familiar 

radial distribution function g(r) 14: 

1.f;(r) = -kB T f.n g(r) , (16) 

where kB is the Boltzmann constant and T the temperature of the 

liquid. In Fig. 6 the mean potential function for state No. 3 is s hown 
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FIG. 6. Comparison of the mean potential l/J(r) for state 

No. 3 of the model fluid and the Lennard-Jones 

pair potential used in the simulation calculations. 
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in comparison with the Lennard-Jones pair potential used in the 

simulation calculations. 

Although further analysis shows (vide infra) that the mean 

potential defined by Eq. (16) is not in itself sufficient to treat the 

relative diffusion functions computed from the simulation data, 

l/J(r) can serve as a convenient intuitive device for interpreting the 

microscopic diffusion processes observed in the model fluid. 

Unlike the simple Lennard-Jones pair potential, l/J(r) exhibits 

several successive maxima and minima corresponding to the first, 

second, third, ... , etc., "shells" of neighbors around a particle 

in the fluid. A particle diffusing toward another particle must there-

fore cross several successively higher potential "barriers" before 

the two particles can come into direct contact. And conversely, a 

particle diffusing away from another particle in the fluid may become 

"trapped" momentarily in each of the successive minima in l/l(r). 

As in the case of singlet diffusion, a more detailed picture 

of the microscopic processes occurring in the model fluid i.s pro­

vided by distributions of various quantities related to the relative 

diffusion mechanism. Figures 7 and 8 show for example the distri­

butions w(r, t;hn) for the h 1 and h2 pairs "selected" in the analysis 

of the simulation data for state No. 3, where w(r, t ;hn)6.r is the 

fraction of the pairs of particles [ i, j] selected by h which at time n 

t are separated by a distance r .. (t) = r ± (6.r / 2). An incre ment 
~ l) 

6.r = 0 . 0 5 a was used in the calculations. 
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F IG. 7 . T ime-dependent distribution of pair 

separations w(r, t;h1 ).6r for the h1 

pairs in the $imulation da ta for s tate 

No. 3 of the mode l fluid. 
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FIG. 8. Time-dependent distributions of pair 

separations w(r, t;l~) for the l~ pairs 

in the simulation data for state No. 3 

of the model fluid. 
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The in tu iti ve value of l/J(r) is evidenced by the t == 1. 0 x 10 - 11 

s e c distributions shown in the Figures. Comparison of Figs. 4 

and 6 shows that the particles comprising the h 1 and h2 pairs we re 

just those particles separated by distance s r .. (0) corresponding to 
lJ 

the positions of the first and second minima in l/J(r ), r espe ctive ly. 

Figure 7 then shows that, during an inte rval of 10- 11 sec, a signifi­

cant fraction of the h 1 pairs surmounted the first local maximum in 

l/J(r) and became trapped in the second minimum; Fig. 8 shows that 

the h2 pairs become distributed between the first, second, and 

third minima during an equal time interval. 

If the motions of the two particles comprising each pair were 

uncorrelated, the contributions (Ar . (t) · Ar . (t)) to the cross-
" l ,.,._ J 

correlation function C(t;hn) from the pairs in either set would be 

distributed symmetrically about z e ro. In Fig. 9 the distributions 

of contributions to C(t;h1 ) fort = 4.0 x 10-
12 

and 1.0 x 10- 11 s ec 

are shown; the asymmetry of the distributions is obvious. 
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IV. THEORETICAL TREATMENT OF HELATIVE DIFFUSION 
..,....._,~~ ,..........,.~,.....,,.....,.,,.........,,,_,,.........,,,,,,""'-' ..... 

A. Mathematical Formalism 

The relative diffusion of two particles in two dimensions is 

conveniently described in terms of the motion of one particle in a 

coordinate system (r, 8) fixed to the center of the other particle. 

The relative diffusion tensor 2R then has the form 

2R o (D;r D:J 
where Drr and n88 are the coefficients for radial and tangential 

diffusion, respectively, and the off-diagonal elements vanish by 

symmetry. The angle (} may be measured from some fixed axis 

in the laboratory coordinate system. 

Were the diffusive motions of proximate particles in the 

fluid totally uncorrelated, the relative diffusion coefficients would 

both be constant and equal to twice the coefficient for singlet (self-) 

diffusion. The data presented in the preceding section show however 

that cooperative processes retard the relative diffusion of particles 

separated by short distances. Furthermore, solutions to the two­

dimensional diffusion equation including only the potential of mean 

force tf,;(r) defined by Eq. (16) do not reproduce the relative diffusion 

phenomena observed in the model fluid (vide infra). We therefore 

develop a formalism that incorporates both lf/(r) and r-dependent 

coefficients Drr(r) and n 80(r). 
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It is not immediately evident that this approach can be rigor ­

ously justified. But as we shall show below, the resulting formalism 

permits an accurate quantitative reproduction of the relative diffu-

sion functions computed from the simulation data. Moreove r, this 

formalism has the particular advantage that, once Drr(r) and D 
88

(r) 

have been determined, the influence of cooper ative phenomena 

upon the kinetics of very fast chemical processes in solution can 

be readily evaluated. This aspect of relative diffusion in liquids 

will be treated in a forthcoming paper . 

Consider a concentration distribution c(r, 8, t) of particles 

around a given particle in the fluid. The time-dependent behavior 

of this distribution is then given by 

ac(r,8,t) 1 _g__ {rD (r) ( ac(r, (), t) c(r, 8 , t) dv(r) ] } = + 
at r or rr ar kBT dr 

1 o2
c(r l 8! t) (17) + 2 D88(r) 

08
2 

r 

where v(r ) is the average potential interaction between two particles 

separated by distance !:._in the fluid, 15 and we have assumed the 

Einstein expression for the friction constant. It is difficult to obtain 

a direct quantitative measure of tangential relative diffusion in the 

model fluid. The scalar analogue of ~ (t; h ), 
v n 

~ (t;h ) = ( [r .. (t) - r . . (0)] 2 h lr .. (O)]), 
s n t] tJ n t] 

( 18) 

does however provide a convenient measure of radial relative diffu­

sion and can be readily computed from the simulation data. 



163 

Let c (r, t) be the average concentration of particles at a 
r 

di.stance !:.. from a given particle. Then 

1 27T 
c (r, t) = 

2
- J c(r, 8, t)d8 , 

r 1T o 

and inte gration of Eq. (17) yields 

dv(r) ] } . 
dr 

(19) 

(20) 

Consider an instance where c (r, O) is zero except for a narrow 
r 

band of neighbors at r = r 0 • The scalar mean square displacement 

of these particles at later ti.mes is given by 

J 00 
cr (r, t )(r - r 0 ) 

2 
r dr 

la 00 

cr (r, t) r dr 
(21) 

Application of iterative numerical techniques permits solution of 

Eq. (20) and then Eq. (21) for finite concentration distributions 

cr (r, O) corresponding to the sets of pairs used in calculating the 

relative diffusion functions discussed in Sec. III. Various formula-

tions for D (r) can therefore be tested until the 6. (t;h ) functions rr s n 

computed directly from the simulation data are reproduced. The 

resulting concentration distributions c (r, t) can also be converted 
r 

and compared to w(r, t;h ) distributions of the sort s hown in Figs. 
n 

7 and 8, providing an additional test of the theoretical formalism 

An approximate measure of n 88(r) within an interval r 1 ~ r 

~ r 2 is provided by the difference between the scalar and vector 



164 

functions 6. (t;h ) and 6. (t;h ) for pairs l i, j] with initial separa-s n v n · 

tions r 1 ~ rij(O) ~ .. r 2 • Let c8(o, t) be the average concentration of 

particles lying in an anbrular wedge () - • a + dO centered on a g-i ven 

particle in the fluid. Then 

ce(e, t) = f 00c(r, e, t)r dr. 
0 

(22) 

In the instances we will be treating here, c(r, e, t) and ac(r , e, t) / at 

both vanish strongly at r = 0 and r = oo • 

by !:_and integration then yields 

Multiplication of Eq. (17) 

ac 2 ( 
_() = Joo l_ D (r) a c r, e, t) r dr. 
at o r 2 e e a e 2 

(23) 

Consider a concentration distribution c(r, e, 0) that is non-zero 

for r = r 0 • For times sufficiently short that displacements in the 

radial direction can be neglected, the term n
8

e(r) / r
2 

can be 

approximated by Dee(r0 )/r~, and Eq. (23) reduces to 

(24) 

If the tangential displacements are also small, the boundary values 

of () required to normalize a solution of Eq. (24) can be taken as 

- oo and +oo , rather than 0 and 27T. We then obtain the result 

[e(t) - e(o)]
2 

= -;.neeCro)t. 
ro 

(25) 
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Subtracting Eq. (18) from Eq. (14a) and simplifying yields the identity 

t:. (t;h) - t:. (t;h) = 2(r . . (t)r .. (O)[l-cos{€1(t) - O(O)}]h ) . (26) 
v n s n l] l] n 

For short time s we may set r .. (t) ~ r . . (0) = r 0 and approximate 
l] l) 

the cosine by the first two terms of the series expansion. The 

identity in Eq. (26) then reduces to 

t:. (t;h )-!::. (t;h) ~ r~([€1(t)-€1(0)] 2 h ), v n s n · n 

and substitution from Eq. (25) yields the final expression 

t:. (t;h ) - t:. (t;h ) ~ 2n88(r 0 )t . 
v n s n 

(2 7) 

The formalism developed above was applied to further 

analysis of the simulation data for state No. 3 (Table I). For 

syntactic simplicity, functions or distributions computed from the 

simulation data will hereafter be referred to as " model" functions 

or distributions, while those calculated on the basis of the theo-

r etical formalism will be referred to as "theoretical" functions, etc. 

A final empirical formula for Drr (r ), 

D (r) = 2D {1 - (0.4/r0 · 25)} rr s 
for r ~ 3a 

= 2Ds { 1 - [O. 4/ r (O . 5r - 1. 25) ] } r > 3a (28) 

was obtained by repeated calculations, based on Eqs. (20) a nd (21) 

with v(r) set equal to tJ;(r ), until the scalar functions t:. (t;h ) s n 
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computed directly from the simulation data were reproduced. The 

final theoretical and model 6. functions computed for the h 1 and s 

h <! pairs are shown in Figs. 10 and 11, respectively. Theoretical 

functions were also computed for D = 2D (uncorrelated motion rr s 

assumption) with v(r) set equal to l/;(r), to the "soft sphere" 

potential 

( ) = 4E(a/ r)
12 

cpss r 

= 0 

for r ~ a 

r > a' 

and (for the h 1 pairs only) to the Lennard-Jones pair potential 

cpLJ(r ). These additional theoretical functions are a lso plotted in 

the two figures. 

The theoretical functions obtained with v(r) = l/;(r) and 

Drr = 2Ds (curves C in both Figs. 10 and 11) show that, at least 

within the theoretical framework established above, the mean 

potential defined by Eq. (16) does not provide an adequate measure 

of the microscopic processes hindering relative diffusion in the 

dense model fluid. The extent to which ij/(r) does retard the rela­

tive diffusion of first nearest-neighbors--represented here by the 

h 1 pairs--is illustrated by curves C and D in Fig. 10, obtained 

with v(r) = l/;(r) and v(r) = cp (r ), respectively . It is interesting to 
SS 

note however that l/;(r) does not similarly depress the rate of 

radial relative diffusion for the h2 pairs (comparing curves B and 

C in Fig. 11), probably due to the relative shallowness of the 

second minimum in the mean potential. Although the LP1mard -.Jones 
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(C) 

(8) 

1.0 

t x I012 (sec )----

2.0 4 .0 6.0 8.0 10.0 

FIG. 10. Comparison of the scalar relative diffusion function ~s(t;h1 ) 

computed from the simulation data for state No. 3 of the 

model fluid (++++) a nd theoretical functions (--) com­

puted with various combinations of v(r) and Drr(r). 

A: v(r) = lf;(r) and D (r) as given in Eq. (2 8); B: v(r) = rr 

<PLJ(r) and Drr = 2D
8

; C: v(r) = '4/J(r) a nd Drr = 2Ds; 

D: v(r) = <Pss and Drr = 2Ds. 
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4.0 6.0 

(C) 

(B) 

(A) 

t x I012 (sec)--

8.0 10.0 

FIG. 11. Comparison of the scalar relative diffusion function A 8(t;~) 
computed from the simulation data for state No. 3 of the 

model fluid (++++)and theoretical functions (--) com­

puted with various combinations of v(r) and Drr(r). 

A: v(r) = l/J(r) and Drr(r) as given in Eq. (28); B: v(r) = 

q;8 s and Drr = 2Ds; C: v(r) = l/J(r) and Drr = 2Ds . 
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potential yields even a slower rate for the relative diffusion of the 

h 1 pairs (curve B in Fig. 10) when it is assumed that D = 2D , rr s 

the predicted distributions w(r, t;h1 ) obtained with v(r) = <pLJ(r) 

are in qualitative disagreement with those calculated directly from 

the simulation data (vide infra). 

Approximate values for n 88(r) were computed, according to 

Eq. (27), from the ~ and ~ functions for the h 1 and h2 pairs and 
v s 

the set of pairs--the "h1!" pairs--with r ij (O) lying between the h 1 

and h2 selection ranges. The value of the coefficient for each range 

was obtained from the slope of the least-squares line fitted through 

the difference function { ~ (t ;h ) - ~ (t;h ) } computed at intervals v n s n 
of 3 x 10- 14 sec from t = 0. 25 x 10- 12 to 1. 75 x 10- 12 sec. In all 

three cases the rms deviation from the linear fit was less than 

1. 5 x 10-
3 a

2
, while the maximum (t = 1. 75 x 10-

12 
sec) value for 

each of the difference functions was approximately 0. 2 a
2

• The 

resulting approximate coefficient was 

Dee(r) 
~ 1. 38 D s for 0.999a .::::: r < l.368a ("h1") 

~ 1. 57 Ds 1. 368 a ..::::: r < 1. 979 a ("h1 _!") 
2 

~ 1. 54 Ds 1. 979 a .::::: r < 2. 481 a ("h2"), 

where Ds = 4. 39 x 10
10 a2 · sec is the coefficient for self-diffusion 

for state No. 3 . 

It was initially s upposed that relative diffusion in the dense 

model fluid might be a nisotropic; a pair of neighboring particles 

might for example rotate more easily than diffusing toward or 

away from each other. The results presented here indicate however 



170 

that--at least for the state of the model fluid we have examined--

cooperative processes depress the rates of radial and tangential 

relative diffusion about equally. 

It is interesting to note that the value of n 00(r) obtained 

for the h 1.!. "selection" interval is somewhat higher than the values 
2 

obtained for either the h 1 or h2 intervals. Figure 4 shows that the 

particles comprising the h 1 .!. pairs were initially separated by 
2 

r . . (0) distances lying between the average first and second nearest-
lJ 

neighbor distances in the model fluid. The higher value of Dee 
obtained for this intermediate range of separations could therefore 

indicate that a particle migrating between the first and second 

neighbor "shells" of another particle must move tangentially until 

it can find or force its way into an empty "slot" in one of the "shells". 

C. Theoretical Concentration Distributions 

Although the theoretical formalism developed in Sec. IV. A 

above permits us to reproduce quite accurately the scalar functions 

D.. (t;h ) computed from the simulation data, the empirical method s n 
whereby the functional form for D (r) is determined may cast rr 
some doubt upon the validity of the overall theoretical treatme nt. 

The concentration distributions c (r, t) obtained by nume rical 
r 

integration of Eq. (20) can however easily be converted into the 

corresponding w(r, t;h ) distributions, and thus provide a severe 
n 

text of the accuracy with which the theoretical treatment describes 

radial relative diffusion in the model fluid. 
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In Fig. 12 the theoretical w(r, t;hn) distributions obtained 

with v(r) = l.{.;(r) and the empirical coefficient D (r) given by Eq . rr 

(28) are compar~d to the corresponding model distributions for 

t = 1. 0 x 10-
11 

sec. The quantitative agreement between the theo­

retical and model distributions for both the h 1 and h2 pairs is quite 

good. 

The theoretical distributions shown in Fig. 12 are also repro­

duced in Fig. 13 for comparison with the distributions obtained with 

D = 2D and v(r) = l.{.;(r), v(r) = q> , and (for the h 1 pairs only) rr s ss 

v(r) = q>LJ(r). The "soft-sphere" and Lennard-Jones potentials 

yield distributions differing qualitatively from those computed from 

the simulation data. And while the distributions obtained with 

v(r) = l.{.;(r) but with D = 2D or D (r) as given in Eq. (28) appear rr s rr 

rather similar, the "no correlation" assumption (D = 2D ) is 
rr s 

seen to permit the initial w(r, O;h ) distribution for either set of 
n 

pairs to "decay" more rapidly than actually observed in the model 

fluid. 

V . DISCUSSION 
~ 

The motion of single particles and pairs of particles is funda­

mental to the kinetics of liquids. A proper understanding of this 

kinetics is necessary to more fully explain a large numbe r of phenomena 

including transport coefficients (the viscosity and thermal conductivity), 

diffusion controlled chemical reactions, electromagnetic scatte ring, 

diel e ctric r e la xation, etc. Us ing molecular dynamics we have studie d 
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FIG. 12. Comparison of the time-dependent distributions of pair 

separations w(r, t;hn) fort= 10-11 sec computed from 

the simulation data for state No. 3 of the model fluid 

(+++++)and the theoretical formalism with v(r) = lj;(r) 

and Drr(r) as given in Eq. (28). 
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FIG. 13. Comparison of the theore tical distributions of pair 
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nations of v(r) and Drr(r). : v(r) = lf/(r) and 

Drr(r) as given in Eq. (28); ••••: v(r) = lf/(r) a nd 

D = 2D · +++++· v(r) = rn (r) and D = 2D · rr s' · YLJ rr s' 

xxxxx: v(r) = cpss and Drr = 2Ds. 
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these kinetic properties directly from a number of points of view. 

We conclude from our study of the graphical displays that 

particle motion at liquid densities is highly cooperative; the particles 

tend to move in chains. Much the same "chain motion" has been 

observed in molecular dynamics studies of melting in two-dimensional 

liquids. The other important structural feature which we have ex­

hibited are the "holes" which appear to be different from the vacancy­

like holes postulated in certain liquid structure theories. 

Our more exacting study of relative motion starts with the 

relative diffusion of mean square relative displacement. This mean 

square displacement term decomposes simply into a singlet mean 

square displacement term and a correlation term. In addition, the 

relative diffusion depends on the set of initial (t=O) relative displace­

ment values chosen. To gain insight into the details of the process 

we chose certain ranges for the initial relative displacement which 

lay in the first few nearest neighbor shells where we expected the 

correlation term to be important. The correlation term was found to 

be significant in these regions. 

To study the nature of this significant correlation in a more 

explicit manner we then introduced two basic physical effects into a 

mathematical model for the relative diffusion process. We employed 

the Fokker- Planck equation with various potentials and various de­

pendences for the diffusion coefficient as a function of r. The long 

time behavior of the distribution function for the density of the system 

as a function of the relative coordinate is rather simple: For small r, 
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of the order of a few molecular diameters, the distribution must 

approach the equilibrium radial distribution function. This deter­

mined our choice of the potential as the potential of the mean 

force. At large distances the mean square displacements of the two 

particles are uncorrelated so that all that is required in this region 

is that the mean force vanish (which it does) and that the relative 

diffusion coefficient become twice the singlet value. With these 

features of our Fokker-Planck analysis established, the only inde­

terminant feature remaining was the dependence of the radial diffu­

sion coefficient Drr(r) on r. When Drr(r) was appropriately chosen, 

we showed that not only could we produce essential agreement with 

the mean square relative displacement calculated for the various 

regions, but also we could reproduce the molecular dynamics results 

for the time-dependent distribution function itself. 

We conclude that--since the other aspects of the Fokker-Planck 

analysis are essentially predetermined--we can fully explain the 

details of relative diffusion by a single scalar function, the radial 

component of the relative diffusion tensor DrrW. This function 

Drr(r), determined in an empirical manner to match the molecular 

dynamics results, is less than 2n8 , the value for uncorrelated 

motion, so that relative diffusion is inhibited for particle separa­

tions of a few molecular diameters. Referring to Eq. (28) we see 

that in the important region of the first few neighbor shells, Drr(r) 

is of the order of 0. 6 x 208 , an approximate 40% reduction in 



176 

diffusion in this region. Our study of angular diffusion showed that 

the diffusion tensor was essentially isotropic; no additional new 

phenomena were discovered by our study of D 88(r). 

Now that the basic details of the relative diffusion process have 

been elucidated, the major emphasis should shift to the application of 

these results to the many phenomena we have described which depend 

on the relative motion of two atoms or molecules in a liquid. These 

studies will in turn suggest further research into the fundamental 

properties of two particle motion in liquids. 
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Contribution No. 3945 from the Arthur Amos Noyes 

Laboratory of Chemical Physics, California 

Institute of Technology, Pasadena, California 91109 

Abstract. Standard theoretical treatments of chemical reaction kinetics 
~~ 

generally neglect any mean interaction potentials or "excluded volume" 

effects that might interfere with the relative diffusion of a pair of 

reactant molecules in solution. Analyses of the computer-generated 

simulation data for a model dense fluid of Lennard-Jones disks have 

shown that the microscopic mechanism for diffusion in simple liquids 

is largely "cooperative" in nature, and that short-range correlations 

associated with this cooperative mechanism tend to slow the relative 

diffusion of pairs of molecules approaching to within 3-4 diameters 

of each other. In this paper we examine the impact of these results 

upon the theoretical prediction of diffusion-controlled r eaction rates 

and the physical interpretation of several other very fast chemical 

processes in solution. 



180 

The use of diffusion mode ls lo lreal lhe kinetics of fast reactions 

in solution was first proposed by Smoluchowski 3 and has more 
. 4 

recently been reviewed by Noyes. Although this approach is 

widely used and frequently provides satisfactory order-of-magnitude 

predictions of rate constants, several fundamental difficulties remain. 

These difficulties appear to stem primarily from a lack of detailed 

information regarding the microscopic mechanism for diffusion 

in liquids. In particular, the manner in which this mechanism 

might affect the relative motions of molecules in a liquid is not well 

understood. 

In Smoluchowski-type treatments of chemical reaction kinetics, 

it is frequently assumed that the relative diffusion of molecules of 

two reactant species is described by a coefficient that is just the sum 

of the bulk diffusion coefficients for the two species in solution. This 

assumption is equivalent to a supposition that no---------

-----correlation exists between the time-dependent relative 

displacements of two solute molecules and their relative positions 

and motions at previous times. It is not altogether clear that this 

supposition is valid for molecules that are separated by only short 

distances, and indeed a deviating behavior--the so-called "solvent 

cage effect"--was long ago suggested by Rabinowitch. 5 The results 

obtained by Noyes and co-workers from their investigations of iodine 

atom recombination rates 6, 7 and the wavelength dependence of the 

quantum yield for iodine photodissociation 
8

-lOin solution also suggest 

that these short-range correlations may have a measurable effect 

upon the kinetics of certain very fast chemical processes . 
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In order lo obtain additional information regarding the micro-

scopic structure and kinetics characteristic of simple liquids, one 

of us (PLF) has recently completed a series of computer calculations 

simulating the microscopic dynamics of a two-dimensional dense 

fluid of Lennard-Jones disks. In two previous papers we have 

presented the results from some preliminary analyses of the 

simulation data 11 and a detailed investigation of the 

mechanism for diffusion and relative diffusion in the model fluid.
12 

The purpose of this paper is to examine the impact of our previous 

findings upon the treatment of diffusion-controlled reaction kinetics 

in solution. Related topics, such as the "solvent cage effect" and 

the wavelength dependence of quantum yields for photodissociation 

in solution will also be dis cussed briefly. 

Examination of graphical displays of the simulation data has 

led to several intuitively important observations regarding the 
13 microscopic character of simple liquids. For example, "snapshots" 

of the instantaneous configuration of the model system (see, ~-, 

Figure 1) provide evidence that the "excess" volume acquired by a 

liquid through thermal expansion is localized into relatively 

large, irregular "holes". Although a number of theories of the 

liquid state
14 

have postulated the existence of holes in the m icro­

structure of real liquids, the phenomenon we observe differs from 

that suggested by the theoretical mode ls in two s i gnificant ways: 
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FIG. 1. "Snapshot of an instantaneous configuration of the model 

fluid in a liquid-like state. The particles are plotted 

with a diameter (], the distance parameter in the 

Lennard-Jones pair potential. 
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(i) the holes appearing in the model fluid bear no relationship to the 

size and shape of an indi victual fluid particle; that is, the holes do 

not appear as "vacancies" in an otherwise quasi-crystalline structure, 

and (ii) comparison of snapshots for successive times shows that 

a given hole may persist in the same region of the fluid for times 

of the order of 5 x 10- 12 sec--well in excess of the characteristic 

kinetic relaxation time (ca. 2. 5 x 10-
13 

sec) for the system. A more 

detailed analysis of the microscopic structure of the model fluid, 

and the relationship between this structure and the structure of real 

simple liquids is presented elsewhere. 
15 

Plots such as those shown in Figure 2 of the trajectories of 

the particles in the model fluid provide some insight into the micro­

scopic mechanism for diffusion in simple liquids • . As 

can be seen in the figure, extensive diffusive migration is--over a 

surprisingly long time interval--largely restricted to local groups 

of particles in the region of a hole. Furthermore, motion pictures 

created from the simulation data show that the local groups of long 

trajectories arise from a concerted migration of the particles 

involved, rather than from successive "jumps" or knock-on 

collisions. Diffusion in the model fluid therefore proceeds by a 

mechanism that is largely cooperative in nature, and it is reason­

able to assume that similar cooperative phenomena occur in real 

liquids. 

Although it is unlikely that cooperative phenomena of the sort 

we observe in the model fluid would have a macroscopica lly discern-
16 

able effect upon singlet diffusion in rea l liquids, the short-range 
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FIG. 2. Trajectories of the particles in a liquid-like state of 

the model fluid. The small circles mark the initial 

positions of the particles and the irregular lines ex­

tending therefrom the paths of the centers during the 

remainder of a 2 x 10-12 sec interval. The initial 

configuration also corresponds to that shown in Fig. 1. 
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correlations associated with these phenomena become 

more important when the relative diffusion of molecules in solution 

is examined. It is convenient to describe relative diffusion in terms 

of the motion of one molecule in a coordinate system fixed to the 

center of the other; in two dimensions, the relative diffusion tensor 

!?R then has the form: 

!?R 
= (D0rr 

where Drr and D ()() are the coefficients for radial and tangential 

diffusion, respectively, and the off-diagonal elements of the tensor 

vanish by symmetry. 

Consider a solution of two solute species, X and Y, in a solvent 

S. It is easily shown12 that, if the diffusive motions of the X and Y 

molecules are completely uncorrelated, the coefficients describing 

the diffusion of X molecules relative to Y molecules (or vice versa) 

are just equal to the sum of the bulk diffusion coefficients for X and 

Y in S. In statistical terms, 17 this means that the average square 

of the ti.me-dependent displacements of an X molecule relative to a 

Y molecule (or vice versa) is just the sum of the time-dependent 

mean square displacements of the X and Y molecules taken separately. 

And by analogy, if no correlations exist between the motions of mole-

cules in a one-component (X = Y = S) fluid, the coefficients Drr 

and Dee describing the relative diffusion of pairs of the molecules 

would both be equal to just twice the coefficient Ds for s e lf-diffusion. 
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Molecules separated by large distances in the model 

fluid diffuse independently. But analysis of the simulation data 

has also shown12 that short-range "cooperative" correlations 

slow the relative motions of molecules approaching to within about 

3-4 diameters of each other. In terms of chemical reaction kinetics 

in solution, this result implies that the standard Smoluchowski-type 

treatments may -----------------------------------------------------------------------­

overestimate the frequency of reactant-pair encounters--and thus, 

overestimate the rates of so-called "diffusion-controlled" reactions. 

Conversely, the computer results also indicate that encounter pairs 

will remain in close proximity longer than predicted by an "independ­

ent" diffusion model. In the case of reactions having a non-negligible 

activation energy or those requiring a specific steric configuration of the 

reactant molecules, the depressed rate of reactant encounter may 

therefore be offset by an increased probability of reaction upon 

encounter . 

To a good approximation, relative diffusion in solution may 

be treated in terms of the average force F(r) acting between two 

molecules when interactions with the surrounding solvent molecules 

are taken into account. A convenient form for the mean force in a 

one-component liquid is obtained from the familiar radial distribu­

tion function g(r ): 18 

(1) 
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where 1/l(r) is the potential of the mean force, kB is the Boltzmann 

constant, and T the temperature of the liquid. In Figure 3, the mean 

potential obtained for a liquid-like state of the model fluid is shown 

in comparison with the Lennard-Jones pair potential used in the 

simulation calculations. Unlike the simple pair potential, i.f;(r) 

exhibits a number of subsidiary maxima and minima corresponding 

to the first, second, ... , etc., "shells" of neighbors surrounding a 

molecule in a liquid. Thus, in the mean force model for relative 

diffusion, a molecule diffusing toward another molecule in solution 

must cross several successively higher potential "barriers" before 

the two molecules come into direct contact. 

Numerical solutions of the two-dimensional diffusion equa­

tion including 1/l(r) have shown 
12 

however that the mean force is 

not in itself sufficient to account for the relative diffusion phenom­

ena observed in the model fluid; to obtain agreement with the simu-

lation data it was also necessary to lower the value of D for rr 

pairs of particles separated by short distances. Although the precise 

physical meaning of this empirical variation in the relative diffusaion 

coefficient is not entirely clear, we believe that it reflects the 

inability of a time-averaged function like 1/l(r) to account completely 

for the role played by transient geometric or "excluded volume" 

effects in the microscopic mechanism for diffusion at liquid-like 

densities. The two-dimensional diffusion equation including both 

if/(r) and a relative diffusion coefficient of the form, 
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FIG. 3. Comparison of the potential of the mean force lJ;(r) 

calculated for the liquid-like state of the model fluid 

shown in Figs. 1 and 2 and the Lennard-Jones pair 

potential used in the simulation calculations. 
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D (r) = 2Ds(l - O. 4/r0 · 25) rr 

= 2Ds[l - O. 4/r(O. 5r - 1. 25)] 

for r < 3a 

for r > 3a, 

where CJ is the distance parameter in the Lennard-Jones pair 

potential 

(2) 

was found to reproduce quite accurately the relative diffusion func­

tions computed directly from the simulation data. 



190 

Reaction Kinetics in Solution 

In this section we obtain expressions describing the rates of 

so-called "diffusion-controlled" reactions in two- and three-

dimensional solutions. The derivation follows closely that presented 
4 

by Noyes, but is extended to take into account both the mean force 

and the functional D (r) discussed above. The physical reasoning rr 

in support of this treatment has been discussed in detail else-
7 19-21 

where ' and will not be reproduced here. 

Three-dimensional Solution. Consider again the solution of 

two solute species, X and Y, in solvent S. Let us assume that the 

X and Y molecules exert no long-range forces on each other, and 

that initially the molecules of each species are distributed randomly 

throughout S in the way they would be if the other species were not 

present. Furthermore, let us assume that at some zero time we can 

"turn on" a diffusion-controlled reaction X + Y - products in the solu-

tion. We wish then to calculate the rate of the reaction at subsequent times. 

Very soon after the reaction is initiated, most of the X mole­

cules that were near Y molecules at t = 0 will have reacted so that 

the concentration of Y molecules near a still unreacted X will, on 

the average, be somewhat lower than the remaining bulk concentra-

ti.on of Y in the solution. This situation is then analogous to the 

existence of a concentration gradient in Y around the remaining X 

molecules. In most systems of chemical interest, a steady-state 

condition is quickly achieved such that the next flux <P of Y molecules 
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toward X molecules along this gradient is the same at all distances 

away from the centers of the X molecules and is just sufficient to 

provide for the rate at which the X molecules react. If c(r) is the 

average concentration of Y at a distance !:_from the center of an X 

molecule, the flux of Y molecules through a sphere of radius !:_about 

an Xis given by 

(3) 

where Drr(r) is the radial coefficient for the relative diffusion of X 

and Y molecules,and U(r) is the potential of the mean force acting 

on X-Y pairs in the solution. But in steady state, this net flux 

must be balanced by_ the rate at which Y molecules are depleted 

from solution by reaction: 

q, = k c(p) exp [u(p) / kB T] , (4) 

where p is the X-Y distance at which reaction can occur, and 

k is the rate constant that would be observed were an equilibrium 

distribution of solute molecules maintained in the system. 

Combining eqs(3) and ( 4) and solving for the steady-state 

concentration yields 

where the quantity (rD) * is given by: 

(rD) * = {j00
exp[U(s)/ kBT] ds V 1 

• (6) 
r Drr(s)s

2 
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The microscopic distribution c(r) is not accessible to 

direct experimental measurement. Instead, kinetics data are used 

to determine the macroscopic second-order rate constant k' based 

on the bulk concentration [ Y] of Y: 

<I> = k'[Y] . (7) 

To a good approximation, [Y] in eq (7) may be equated with c(00 ). 

Comparison of eqs ( 4) and (7) then shows that 

c( oo) = ~ c(p) exp[U(p)/kBT] . 
k' 

(8) 

Substituting this result into eq (5) with r = p and rearranging, we 

obtain the final expression 

k' = k (9) 
l+[k/41T(pD)*]' 

which differs from the expression obtained by Noyes 4 in that the 

quantity (pD)*, defined in eq (6) at r =p, is calculated with reference to the 

mean potential U(r) and an r-dependent coefficient D (r). rr 
For reactions of the type: X + X ->products, the right-hand 

sides of eqs ( 4) and (7) must be multiplied by a factor of 2, leading to: 

k' = k (10) 
1 + (k/27T(pD)*] 
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Two-dimensional solution. If we attempt to carry out a 

similar derivation for the rate of reaction in a two-dimensional 

solution, we quickly come upon a striking di.ff erence between the 

situations in two and three dimensions. For the sake of simplicity, 

let us first assume that Drr is independent of r, and 

that any interaction U(r) between X and Y molecules can be ignored. 

Then in two dimensions the steady-state condition is represented 

by: 

kc(p) = 21fr D ac(r) 
rr a r ' 

(r > p) . (11) 

Equation (11) is identical to the expression obtained for three 

dimensions by equating the r.ight-hand sides of eqs (3) and (4), 

except that the factor 21fr for the circumference of a circle appears 

in place of 41fr2
, the surface area of a sphere. 

Integration of eq (11) yields the result 

c(r) = c(p) {1 + (k/ 27TDrr) .Qn(r/p)}, (12) 

which indicates that c( 00) must be infinite if a steady-state condition 

is to be maintained. We conclude that diffusion in two dimensions 

does not provide a sufficient supply of inflowing Y molecules to 

sustain a steady-state concentration gradient.* The concentration 

* The same conclusion obtains if the mean potential U(r) and 

variations in Drr(r) can be neglected for X-Y distances greater 

than some value R. Equations (11) and ( 12) are then valid for r > R, 

requiring that c( 00) be infinite for a steady-state condition to be 

achieved. 
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c(p)--and hence the observed rate of reaction k' --must therefore 

decrease monotonically with increasing time until reaction is 

complete. 

In contrast to eq (8), the time-dependent macroscopic rate 

factor k' (t) for a diffusion-controlled reaction in two dimensions 

is given by 

(13) 

for times t sufficiently short that the bulk concentration of Y [here 

approximated by c( <X>)] does not change appreciably. Solutions to 

eq (13) can then be obtained by numerical integration of the system 

of equations 

ac(r, t) 
at 

= ! _Q_ {rD (r)[ ac(r, t) + c(r, t) dU(r)] } 
r ar rr ar kB T dr 

ac(p, t) = -k c(p, t) exp[U(p)/kBT] 
at 

from the initial condition 

c(r, o) = c(<X>) exp[ -U(r)/kB T] 

(14a) 

(14b) 

(15) 

where (14a) is the diffusion equation in two dimensions and (14b) 

accounts for the depletion of Y molecules due to reaction. 
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Results 
~ 

Rate factors k' for a diffusion-controlled reaction X + Y -

products in two- and three-dimensional solutions were computed for 

a variety of combinations of Drr(r) and U(r). It was assumed that the 

species X and Y distinguish themselves from the solvent only in their 

ability to react with each other; otherwise, the potential U(r) and the 

relative diffusion coefficient D for an X-Y pair were assumed to be rr 

the same as for a pair of solvent molecules. The "equilibrium" rate 

constants k were calculated from two- and three-dimensional kinetic 

gas theory with the assumption that every collision would result in 

reaction. The distance p at which reaction can occur was taken equal 

to the a parameter in the Lennard-Jones pair potential. 

Two-dimensional Solution. The rate calculations for two dimen-

sions were based on the liquid-like state of the model fluid shown in 

Figures 1 and 2 and examined in detail in ref 12. The value of the 

self-diffusion coefficient for this s tate is Ds = 4. 39 x 10
10 

a 2 sec-
1

; 

the potential of the mean force lf.;(r) is shown in Figure 3. 

The time-dependent behavior of k'(t) for four diffe rent D (r)-rr 
U (r) combinations is shown in Figure 4. In order to deter mine the 

effect of the interaction U(r) on the rate of reaction, k'(t) was calculated 

with a fixed value of D = 8. 78 x 10
10 

a 2 sec = 2D for U(r > p) = 0 rr s 
(curve D), U(r) = 1/J(r) (curve B), and for U(r) equal to the Lennard-

Jones pair potential <PLJ(r) (curve A). Curve C was obtained with 
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FIG. 4. Plot of the time-dependent macroscopic rate constants 

for a diffusion-controlled reaction in two dimensions. 

The mathematical assumptions leading to each of the 

four curves are identified in the text. 
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U(r) = t/l(r) and Drr(r) as given in eq (2). Curve C therefore repre-

sents the most accurate evaluation of k' (t) for a diffusion-controlled 

reaction in the model fluid. 

During the first stage of the reaction, the rate is primarily deter­

mined by the equilibrium (t < O) concentration of closely associated 

X-Y pairs provided by U(r) according to eq (15). But after a brief 

induction time these initial pairs are depleted from solution by reac­

tion, and the rate thereafter is determined by the rate at which new 

encounter-pairs are formed through diffusion. The Lennard-Jones 

potential, which provides both the highest initial concentration of 

X-Y pairs and the least resistance to relative diffusion, yields the 

highest reaction rate (curve A) over the entire 2 x 10 11 sec interval 

spanned by Figure 4. Comparison of curves A and B shows the 

effect upon the reaction rate of the "barriers" to relative diffusion 

provided by the mean potential t/l(r ), while curve C indicates the 

additional lowering of the reaction rate that is obtained when the 

"adjusted" coefficient Drr(r) is included in the calculations. 

Three-dimensional Solution. Liquid argon at a temperature 

108. 18 °K and density 1. 261 g/cm- 3 was used as a model for the reac­

tion system in the three-dimensional rate calculations. The radial 

distribution function g(r) for this state has been measured by 
22 

Smelser, and a tabulation of the function was kindly provided by 

that author. The Lennard-Jones potential parameters for argon 

are a = 3. 405 A, E/ kB = 119. 80 °K, 23 and the self-diffusion coeffi­

cient for argon in this state is D = 4. 37 x 10-5 cm2 s ec- 1
• 

24 From 
s 
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Table I. 
~ 

Calculated Steady-State Rate Constants 

for a Diffusion-Controlled Reaction in Liquid Argon 

(pD)* k' 
U(r) Drr(r) 3 -1 -1 -1 

cm ·sec £ ·mol ·sec 

0 2D s 2. 12 x 10- 12 1. 00 x 1010 

if.;(r) 2D 2. 23 x 10- 12 
1. 03 x 1010 

s 

Le nnard-Jones 2Ds 2. 67 x 10- 12 1. 14 x 1010 

0 1. 50 x 10- 12 0. 79 x 1010 

as given 
1. 60 x 10- 12 

0. 83 x 10
10 if.;(r) 

in eq (2) 
1. 96 x 10- 12 0. 95 x 1010 Lennard-Jones 
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these parameters a value k = 3. 70 x 1010 
1. / mol-

1 
s e c- 1 is obtained 

for the "equilibrium" constant. 

The predicted values fork' obtained from eqs (6) and (9) for 

several combinations of U(r) and Drr (r) are listed in Table I. Standard 

theoretical treatments of chemical reaction kinetics in solution 

generally neglect any mean pair potentials or "excluded volume" 

effects that might interfere with the relative diffusion of the reactant 

molecules. To determine the effect of including a reactant-pair 

potential in the calculations, k' was computed for U(r > p) = 0, 

U(r) = lf;(r), and U(r) equal to the Lennard-Jones potential with Drr 

constant and equal to 2Ds for all X-Y distances. Comparison of the 

values obtained for U(r) = 0 and U(r) = lf;(r) shows that the predicted 

rate of reaction in three dimensions is not changed appreciably when 

a quasi-realistic interaction like lf;(r) is incorporated into the theory. 

Although the magnitude of short-range "cooperative" correla­

tions in the relative diffusion of molecules in real liquids is not 

known a nd is not presently accessible to direct experimental meas­

urement, some estimate of the effect of these correlations would 

have upon the kinetics of diffusion-controlled reactions is obtained 

by calculating k' under the assumption that Drr(r) for the three­

dimensional solution varie s as the ratio D (r) / 20 observed in the rr s 
two-dimensional model fluid. The final three entrie s in Table I show 

the effect of U(r) when the rate constant is calculated with a coeffi -

cient D (r) that decreases for small reactant-pair separations as rr 
indicated by eq (2). For each of the three assumed forms for U(r ), 

the predicted value for k' is lowered about 20% wh~n the r-dependent 

coefficient is included in the calculations. 
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The small change ink' that is obtained when lf.!(r) is included in 

the calculations probably reflects the partial cancellation of two 

opposing effects: As in two dimensions, the ''barriers" to relative 

diffusion presented by an oscillatory potential like l/l(r) would tend 

to decrease the rate of reaction. Yet a,ny potential having an attractive 

cq~ponent extending beyond r = p would tend to increase the minimum 
c/1sfc.rr.ce 
distanct within which a pair of molecules would have to approach each 

other before reaction becomes probable, and hence would tend to 

increase the reaction rate. This latter effect is illustrated by the 

relatively large increase in k' that is obtained when U(r) is set equal 

to the Lennard-Jones pair potential and either form of D (r) is rr 
assumed. A similar effect is also observed in two dimensions, as 

may be seen by comparing curves A and D in Figure 4. 

The substantial decrease in the predicted value for k' that is 

obtained when an r-dependent relative diffusion coefficient is incor­

porated into the calculations may--within the framework of the 

Smoluchowski model for diffusion-controlled reactions in solution--

be attributed to the fact that a functional form for D (r) like that rr 
given in eq (2) tends to slow the relative diffusion of a pair of reactant 

molecules just in the region where the gradient in c(r) is greatest. 

A more thorough analysis of this phenomenon would require an 

investigation of the steady-state concentration distributions that are 

established when various combinations of U(r) and D (r) are assumed. rr 
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Discussion 
~ 

In light of the results presented here and in two previous 

papers, ll, 12we may draw several conclusions regarding the mech­

anical influence of the solvent upon the microscopic kinetics of 

simple chemical reactions in solution. Data obtained from the 

computer simulation of a model dense fluid of Lennard-Jones disks 
hc-.ve 
has shown that diffusion in simple liquids may proceed by a mech-

anism that is, at the molecular level, largely "cooperative" in 

nature; and further, that this cooperative mechanism tends to 

retard the relative diffusion of molecules separated by short distances 

in the liquid. 

For solutions in which the solute and solvent molecules are 

physically similar, the average force acting between a pair of solute 

molecules may be approximated by the mean potential tfl(r) obtained 

from the experimentally accessible
25 

radial distribution function 

g(r) for the solvent. Our calculations have shown however that this 

time-averaged mean potential does not provide a complete descrip­

tion of the transient "excluded volume" effects that apparently play 

an important role in relative diffusion .phenomena at liquid-like 

densities. A more accurate description of relative diffusion in the 

two-dimensional model fluid was obtained from a theoretical treat-

ment that included both tj;(r) and r-dependent relative diffusion 

coefficients. Unfortunately it is difficult to estimate, on the basis 

of the two-dimensional simulation data alone, the relative import­

ance of short-range "cooperative" correlations in the mechanism 
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for diffusion in real, three-dimensional liquids. The presence of 

an additional degree of freedom would be expected to decrease the 

dynamic importance of excluded volume effects; 

yet the relative diffusion of two molecules in a three-dimensional 

liquid must involve interactions with a much larger number of 

neighboring solvent molecules. Although direct experimental 

observation of relative diffusion phenomena in real liquids is not 

at present possible, analyses similar to those described in ref 12 

of existing simulation data for three-dimensional model fluid26, 27 

should yield some insight into the problem. 

The results presented in this paper indicate that the decrease 

in the coefficient describing the relative diffusion of reactant-pairs 

separated by short distances is an important factor in determining the 

steady-state rate for a diffusion-controlled reaction i.n real systems. 

The mean potential tj;(r) can nonetheless serve as a convenient intuitive 

device for interpreting a number of chemically important processes 

occurring in solution. In our investigation of diffusion in the simulated 

fluid, 12 we observed that pairs of particles diffusing away from each 

other tended to become "trapped" momentarily in first, second, and 

third nearest-neighbor positions. This phenomenon is reminiscent 

of the so-called "solvent cage effect", and can to a first approxi­

mation be ascribed to the successive potential ''barriers" to rela-

ti. ve diffusion presented by tJ;(r). 

Photodissociation of a molecular solute is another process 

that "samples" the microscopic structure and dynamics of the 
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9 solvent in local regions of a solution. Noyes and co-workers have 

investigated the wavelength dependence of the quantum yield for 

photodissociation of molecular iodine in a number of nonreactive 

solvents and determined lO that the experimental results are not 

reproduced by a theoretical model that neglects the microscopic 

structure of the sol vent surrounding the reaction site. For longer 

wavelengths--such that the excess energy over that required to 

break the iodine-iodine bond is small--the simple "solvent con­

tinuum" theory is found to predict quantum yields larger than 

those observed experimentally; yet for progressively shorter wave­

lengths the observed quantum yield is found to increase more 

rapidly than predicted by the theory. 

On the basis of the model for relative diffusion phenomena 

presented in this paper, the experimental quantum yield data can 

be interpreted in terms of transient processes dependent upon the 

iodine-solvent interaction described by tJ;(r) and longer-lived 

processes dependent upon Drr (r). Immediately after dissociation, 

the separating iodine atoms encounter the "barrier" in tJ;(r) between 

first and second nearest-neighbor positions. If the excess energy 

provided by the exciting photon is small, the atoms are reflected 

from the barrier and recombine quickly; but if the excess energy 

is sufficient to permit the separating atoms to reach second nearest­

neighbor positions, the barrier will tend to keep them apart and thus 

prevent recombination. Furthermore, if D (r) increases with rr 
increasing !:._, pairs of atoms that initially achieve a large 
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separation will diffuse away from each other more quickly, and 

thus be even less likely to recombine. In reality of course, the 

successive maxima in tf;(r) and the r-dependence of D (r) are the 
. rr 

result of interactions between the solute iodine atoms and surround-

ing solvent molecules, and are truly descriptive only of an 

equilibrium situation. Monchick28 has however presented a theo­

retical treatment of photodissociation processes that includes an 

"effective" potential much 1 ike tf;(r), although no theory in corp or -

ating both tf;(r) and an r-dependent relative diffusion coefficient 

has previously been treated. 
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SECTION V 

FORMAL LANGUAGE FOR THE DESCRIPTION 

OF LIQUID STRUCTURES--A PROPOSAL 
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A. Explanatory Comments 

In this section we discuss a proposal that a formal language for 

the description of partially-ordered structures be developed. It is felt 

that such a language would prove particularly useful as a means of 

describing and discussing the microscopic structures characteristic of 

dense fluids, and thus might provide the basis for new and more facile 

theoretical treatments of the liquid state. Much of the material pre­

sented here is reproduced from a proposal prepared in early 1967, and 

is specifically directed toward analysis of the two-dimensional simula­

tion data discussed elsewhere in this dissertation. The extension of 

many of the concepts to the treatment of real, three-dimensional dense 

fluids--or the three-dimensional simulation data accumulated by Rahman, 

Verlet, and others--is however obvious. 

B. Statement of the Problem 

During the last several decades a great deal of effort has been 

directed toward the development of an adequate theoretical treatment 

for the liquid state. Only limited success has however been achieved 

in this area of endeavor, in the sense that none of the existing theories 

yield formulations for the various measurable thermodynamic and 

statistical quantities that are valid over the entire range of liquid-like 

densities and temperatures. Furthermore, many of these theoretical 
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treatments furnish only limited insight into the microscopic processes 

underlying the macroscopic observables; even in instances where a 

given treatment does accurately predict the values of these observ­

ables, one may doubt the validity of the model for the liquid state that 

is assumed as a basis for the theoretical formulations. 

This state of affairs is indeed rather unfortunate. Most chem­

istry is observed in liquid-phase systems, and in many cases certain 

assumptions must be made regarding the role of, say, a liquid solvent 

in the mechanism of a given class of reactions. For example, the 

proposed mechanisms for many molecular rearrangements assume that 

the solvent forms a "cage" around the reacting molecule. While such 

assumptions may be considered "reliable" in the sense that they have 

found wide applicability in explicating the mechanisms of numerous 

reactions, there still exists little definitive evidence regarding the 

microscopic kinetics of liquid systems. 

The solution to many of these problems would appear to rest 

with a better under standing of the microscopic structure of liquids. 

Information of the type necessary for the development of such an 

understanding cannot be obtained by "normal" experimental methods. 

Computer calculations of the sort described elsewhere in this dis­

sertation can, however, yield information of just this nature. If the 

models employed in these calculations do indeed reflect the micro­

scopic behavior of real, simple liquids (and there is good evidence to 

indicate that they do), then we have information available regarding 

not only instantaneous structure, but also the manner in which t.his 

structure evolves with time. 



211 

If an intuitive understanding of the sort envisioned here is to 

result from an examination of the structural data generated by these 

calculations, it will be necessary to develop some convenient means of 

describing the observed structures. While a list of the Cartesian 

coordinates of all the particles in a system constitutes a detailed and 

exact description of the system structure, this description provides 

little immediately useful information. Some means must therefore be 

found for describing these structures in a more abstract manner. It 

is proposed here that the possibility of developing a well-defined for -

mal language of structure be examined. This language would have, as 

its "universe of discourse," the structures of partially-ordered arrays 

of particles. A general discussion of some of the properties of this 

language and a few of the difficulties that one might expect to encounter 

in its development is provided below. 

C. A Formal Language of Partially-Ordered Structures 

In many respects, the problem we propose to investigate is 

similar to the problems treated in the field of automatic pattern recog­

nition. The structures that we will wish to describe in the language 

are, in reality, patterns--but these "patterns" are of a sort that has 

not as yet been adequately investigated. Most of the research in 

automatic pattern recognition has involved the recognition of a certain 

well-defined set or "lexicon" of patterns in a signal containing varying 

amounts or types of noise. In some instances, as in the case of 

recognition of handwritten characters, this "noise" takes the form of 
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differences in the representation (in the signal) of the same pattern. 

In such instances it is, however, the recognition of the pattern repre­

sented by the signal--and not the analysis of the accompanying noise-­

that is important. Hence, research in this area has centered about the 

development of techniques for the elimination of such noise from the 

signal, or the selection (discovery) of recognition criteria that are 

unaffected by the type of noise encountered in the particular problem 

under investigation. 

The "patterns" that will comprise the universe of discourse of 

the language we propose to develop are not so well defined. It might be 

possible to define, for a given class of systems (partially-ordered 

arrays), a lexicon consisting of a small set of "idealized" local struc­

tures. For example, one element of a lexicon for the language 

describing two-dimensional systems of the type described elsewhere in 

this dissertation might be related to the "hexagonal closest-packing" 

structure. Such a lexicon would probably have little utility in itself, 

however, since instances of these "idealized" structures might encom­

pass only a small fraction of the total number of points in any given 

system. Furthermore, it is quite likely that the deviations from these 

idealized local structures are more important than the structures 

themselves. We therefore require that the semantics of our formal 

language be such that these deviations may be· described in an exact 

and mathematically meaningful manner. 

Our language of structure must also embody a facility for des­

cribing precisely and accurately a second characteristic property of 
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partially-ordered structures: the "decay" of the local order about 

some point in the system with displacement from that point. It is 

generally the case in partially-ordered systems that the particles adja­

cent to any given particle are distributed in an almost perfectly ordered 

manner. At larger distances from the selected particle this ordering 

becomes less and less regular, until no suggestion of the original 

local structure persists. Furthermore, the local structures about two 

points some distance from each other are often "inconsistent" in the 

sense that neither structure would be compatible with a regular exten­

sion of the other. We must therefore be able to describe, within the 

language, the extent to which any particular system exhibits this 

property. Although several methods might be considered, the mode of 

description must be mathematically meaningful, and would probably 

take the form of a "decay function. " 

The properties of formal languages in general have been inves­

tigated in the field of mathematical linguistics. In particular, applica­

tion of the techniques developed in this field of inquiry should allow us 

to determine the mathematical limitations of the formal language we 

construct and the constraints that must be placed upon the language to 

make it meaningful. We must, however, place an additional constraint 

on the language: that descriptions (of structures) rendered in the 

language be related in some precise manner to the general concepts of 

classical statistical mechanics. In practice, this constraint would 

probably take the form of a requirement that statements in the language 

be directly related to the classical configuration integral. 
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D. The Radial Distribution Function g(r) 

The radial distribution function g(r) is an empirical measure of 

the order present in a partially-ordered array of particles (points). In 

two dimensions, the function is given by the formula 

( ) _ (A) [ n{r) J gr - N 21Tr Ar 

where N is the number of particles in the system and A the area to 

which the system is confined, and n(r) is the time-average number of 

particles situated at a distance r ± (Ar/2) from a given particle in the 

system. The function therefore indicates the time-average relative 

density of the system around some given particle as a function of dis­

tance from that particle. 

The radial distribution function for a perfectly ordered lattice 

of particles consists of a series of "spikes" corresponding to the var­

ious coordination "shells" of neighbors around each particle in the 

lattice. For a partially-ordered array, such as the particles in a 

dense fluid undergoing thermal agitation, the spikes are broadened into 

overlapping peaks as is shown by the functions reproduced in section 

III. D. The first maximum is generally rather large, with succeeding 

maxima decreasing in height and increasing in breadth; the function 

approaches unity for large values of !:..· 

For a given value of (Ar), the height of the maxima and the dis­

tance to which the oscillations extend are a strong function of overall 

system density. The widths of the peaks are generally a function of 

both system and temperature. Several facts should be noted he r e : 
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1. The radial distribution function can be integrated. Thus, the area 

under the first peak of the function is a measure of the average 

coordination number of a particle in the system. Because the suc­

cessive peaks in the function overlap, some well-defined method 

must be used to distinguish between the contributions from the two 

peaks on either side of a local minimum [see, for example, P. G. 

Mikolaj and C. J. Pings, Phys. Chem. Liquids, !_, 93 (1968)]. 

2. The radial distribution function provides information regarding only 

the average spatial distributions of particles. Even rather gross 

"defects11 in the structure (such as the presence of large "holes" or 

vacancies in an otherwise tightly-packed array of particles) may be 

concealed by the averaging implicit in the computation of the n(r) 

values. 

3. It follows from (2) above that, in general, a g(r) function contains 

very little information regarding the structure of the array from 

which it is derived. While integration of a portion of the function 

can provide a value for the average number of particles situated in 

a circular band (in two dimensions) at some distance from a given 

particle, one can obtain no information from the function regarding 

the relative positions of these particles. 

4. There exists some evidence to indicate that oscillations in the 

radial distribution function may bear only a trivial relationship to 

partial ordering in a dense fluid. Functions computed from the 

spatial distributions of randomly packed steel spheres exhibit 
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oscillations rather similar to those shown in the figures in section 

III. D. Thus it is possible that these oscillations may only reflect 

the fact that the individual particles in a packed array occupy space. 

E. Geometrical Neighbors 

Let A be a set of m points ~' i = 1, 2, ... , m, randomly dis­

tributed in a (planar) two-dimensional space. For the moment, assume 

that m is sufficiently large that irregularities at the edges of the array 

of points can be ignored. Alternatively, consider the space in which 

the points are distributed to be periodic (as described in section III. B), 

and assume that the density of points in this space is not so low that 

complications arise in the procedures discussed below. 

The geometrical neighbors of a point ~EA are determined 

(defined) in the following manner: 

If one draws vectors from ~ to all the other points ~ ~k 

in the array, and the perpendicular bisectors to these 

vectors, the set y1k of points that are geometrical neigh­

bors of ak has as elements those points that are asso­

ciated with the perpendicular bisectors forming the 

smallest closed polygon about ak. (Note that ak must 

be enclosed by this polygon. ) 

Let 7T~ denote the polygon, and ,B~ the set of perpendicular bi sec tors 

forming the sides of 'TT~. Several lemmas follow: 



217 

Lemma 1. 7T~ must be convex (i.e., no interior angle of 7T~{ may be 

greater than 180° ). 

Lemma 2. y~ must include the point closest to ak in the array. Let 

17k denote this point in the following. 

Lemma 3. y~ must contain at least three members. 

Several theorems may now be stated: 

Thm. 1. The vector between ak and some ajE'Y~ need not inter­

sect its perpendicular bisector at a point on the peri­

meter of 1Tk· 
Thm. 2. The polygon 11'k encloses that region of the space that is 

nearer to ak than to any other ajE A. 

Consider now the set of polygons ;P 1
, where: 

1 

-f = {7T~ l7T~ is the geometrical neighbor-determining 

polygon for point a i E A} 

and the set of sets of geometrical neighbors,};/: 

1 

1J = {y~ IY~ is the set of geometrical neighbors to 

point aiE A} 

1 1 1 t..l 1 1 . Obviously 7TkE -p and yke: l:V , where 7Tk and yk are as defmed pre-

viously. The following theorems can then be stated: 

Thm. 3. Any point ak must be a geometrical neighbor of all the 

points that are its geometrical neighbors; 
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i.e. ' 

Thm. 4. No two elements in -p1 may enclose the same region in 

space (i.e., no two polygons in p 1 may overlap). 

Thm. 5. Taken together, the elements off 1 completely fill the 

space occupied by the array. 

Thm. 6. If ajEy~ (which implies akEyj from (3) above), the poly­

gons 7Tj and 7T~ share a common side; that is, one side of 

7Tj is identically a side of 1T~ • 

The fundamental defining concept of geometrical neighbors can be 

extended in the following manner: 

Consider again the logical "diagram" employed in our 

initial definition of the geometrical neighbors of point erk. 

Circumscribing polygon 7T~ there are numerous other 

polygons. Let us denote the smallest of these that com­

pletely encloses (does not intersect with) 7T~ by 7Tk. In a 

similar manner, we may define 7T~, 1T ~' etc. Again, we 

repeat that each succeeding polygon must completely en-
n 

close those polygons internal to it (i.e., no 11'k may 

intersect any 7T: for m < n--which implies that none of 

the polygons may intersect). 

Associated with each polygon 7T~, there will be a set of points which may 

be denoted by y~. Similarly, we may define the sets f> n and 1f 0. 

Let r k denote the set which has as elements the set of 

"extended" geometrical neighbors of point ak; 
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i.e., rk = { y~ IY~ is the set of particles associated with 

the rill! polygon, 1T~, about point ak} 

From the definition above, it is clear that for y~, y::\: rk' where 

n m r1 n ;:e m, we have yk n yk = \17. We may now state a theorem: 

Thm. 7. All a j ;:ekE A (all the other points in the array) are geo­

metrically related, in the sense of our discussion here, 

to the point ak; 

U i 
i.e., yk = A 

i 

Stated another way: Every point in the array is a mem­
i 

ber of some ykE rk. 

The concept of geometrical neighbors, in its initial and "extended" 

forms, therefore provides several new methods for describing the 

structure of a randomly-distributed array of points. It can probably 

be shown that the spatial configuration of such an array is completely 

specified by }J1 and the positions of some point ak and its nearest 

neighbor 17k. It is also probable that an array can be reconstructed on 

the basis of a knowledge of some rk and the positions of the points ~ 

and 77k in the array. Numerous other theorems and relationships 

remain to be discovered. 

F. Discussion 

Elsewhere in this dissertation we have described some computer 

calculations that simulate a two-dimensional dense fluid. The data 
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generated by these calculations should serve as an excellent basis for 

initial efforts to develop a formal language of partially-ordered struc -

tures. The ultimate goal of such an investigation should of course be 

to develop a language ~pplicable to real, three-dimensional structures. 
dear:ff;. 

But in view of the Q.H:.th of really useful background information in this 

area of inquiry, it would appear prudent to confine any initial efforts to 

less complex structures. One-dimensional structures, on the other 

hand, are rather too simple since they present no opportunity to treat 

disorder in terms of angular distributions. 

Two-dimensional structures offer a second advantage: they may 

be represented in pictorial form, and thus should be more easily con­

ceptualized. This ease of conceptualization might play an important 

role in determining the success or failure of any attempt to develop a 

language of structure. Once the basic techniques have been discovered 

it should however be a simple matter to extrapolate to systems having 

a third degree of freedom. 

In subsections D and E we discussed two schemes for character-

izing the structure of a partially-ordered system. The significance of 

the radial distribution function is certainly easily grasped, and the 

function does bear a direct theoretical relationship to the statistical 

mechanical configuration integral. But it has been pointed out, this 

function provides little definitive information about structure because 

of the "averaging" implicit in its measurement (from a given structure). 

In particular, one cannot obtain from the function (except in a few very 

special cases) detailed information regarding the extent to which the 

represented structure exhibits local ordering, or the "rate" at which 
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this ordering decays with displacement. While detailed information of 

this sort is of only marginal importance from a thermodynamic point of 

view, it does find significance in the interpretation of spectroscopic and 

kinetics data from high-density systems, and thus should be treated 

adequately by any formal language of structure. 

The concepts of geometrical neighbor relationships, on the other 

hand, are perhaps rather too complex. While information regarding 

the neighbor relationships that exist in a given structure characterizes 

the structure in a detailed manner, such information is certainly not 

directly related to the general notions of local order and disorder. 

Furthermore, it would seem that such information is perhaps even 

more difficult to "understand" than is simple particle position data. 

Information regarding the polygons associated with geometrical 

neighbor relationships might however be more closely related to con­

cepts of local and long-range ordering. For example, if we consider 

systems of the sort simulated by our computer calculations, informa­

tion regarding the average shape of the polygons 7T~ might be closely 

related to the extent of local ordering. A statement to the effect that 

most of the polygons 7T~ in a given system are nearly perfect hexagons 

would indicate that the system exhibits a high degree of local ordering. 

The existence of a number of highly distorted polygons in the set -? 1 

or 
would indicate that the structure contains vacancies ef "holes. " Simi-

larly, information regarding the average shapes of the higher-order 

polygons, 7T~ (n > 1), might be related to the concept of "decay" of 

local order at larger displacements. 
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We should note however that a decision to employ such a mode 

of description in a formal language of structure merely serves to defer 

many of the difficulties that are involved in the treatment of partially­

ordered structures. That is, if this mode of description is to be 

employed, one must develop some method for describing the "amount 

of regularity" a given polygon exhibits. Nonetheless, it would seem 

that such an approach offers some basis for optimism, if only because 

of the large amount of information available regarding the mathematical 

properties of plane geometric figures . 
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SECTION VI 

PROPOSITIONS 
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PROPOSITION 1: Elucidation of the Role of SO?. in 

Atmospheric Aerosol Formation 

Abstract 

The results of an experiment involving the irradiation of arti­

ficial "polluted" atmospheres would seem to indicate that SO?. must 

necessarily be present in the urban atmosphere if the aerosol associated 

with photochemical smog is to be formed. Certain aspects of the 

experiment suggest, however, that these results may have been only an 

artifact of the physically unrealistic or "unnatural" conditions prevailing 

in the experimental apparatus. Since these results have in recent years 

been used as supporting evidence for legal action against industries 

burning high sulfur content fuels it is proposed that the experiments be 

repeated, with special care being taken to reproduce the physical con­

ditions actually existing in the daytime urban atmosphere. 
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PROPOSITION 1 

ELUDICATION OF THE ROLE OF S02 IN 

ATMOSPHERIC AEROSOL FORMATION 

Although the problems of urban air pollution have been studied 

intensively for at least a decade, few really definitive or comprehensive 

theories regarding the chemical basis for the observed phenomena have 

yet been advanced. The principal stumbling block to those who would 

devise such theories is the complexity of the chemical "system" in 

which the phenomena occur. Hydrocarbons of nearly every type 

{aliphatic, olefinic, aromatic, etc.) have been identified in mass 

spectra taken of urban atmospheric samples, and the presence of 

nitrogen oxides, sulfur oxides, and ozone is generally accepted. 
1 

Large 

numbers of experiments have shown that such mixtures are photo­

chemically active, and a number of partial mechanisms have been sug­

gested (see, for example, Ref. 1). Although it has not been con­

clusively shown that free radicals are present in the urban atmosphere, 

their presence is implied by a number of the proposed mechanisms. It 

should also be noted that, since a number of the proposed reactions are 

known to have rate constants within two or three orders of magnitude of 

each other, the "primary" reaction sequence in such a complex system 

may depend upon the relative concentrations of the various types of 

reactants. It is certainly beyond the scope of this proposal to present 

a comprehensive summary of the work in this area reported in the 
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literature. Considering the complexity of the problem though, it is 

generally conceded that a considerable amount of additional experi­

mental data must be gathered before even a partial understanding of the 

overall photochemical mechanism may be established. 

One of the primary "symptoms" of air pollution is the reduction 

of visibility by atmospheric particulates. Even when release of the 

more common types of particulates (smoke, dust, etc.) is rigidly con­

trolled, light-scattering aerosols are formed under the conditions 

under which the other prominent "symptoms" of photochemical smog 

(eye irritation, odor, and plant damage) are found to occur. Although 

a great deal of data has been amassed regarding the formation of syn­

thetic aerosols under laboratory conditions, the mechanisms by which 

the atmospheric aerosols are formed are not clearly understood. In 

particular, the role of sulfur dioxide in aerosol formation remains 

undetermined. 

Background 

Knowledge of the composition of smog-like aerosols is largely 

derived from the work of Mader and co-workers. 2 
In these experi­

ments, aerosol was collected from the Los Angeles atmosphere by 

passing large volumes of polluted air through filters consisting of two 

sheets of Whatman No. 43 filter paper. Ether extracts of the filters 

were subjected to elemental analysis, a number of chemical tests for 

specific organic functional groups, and infrared spectroscopic 

examination. 

The data obtained from samples collected on different days, and 
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different smog conditions were found to be in good agreement. It should 

be noted, however, that Goetz and co-workers3 have found organic 

aerosols to be unstable with respect to both evaporation and oxidation. 

It is therefore possible that the data reported by Mader, et al. may not 

accurately reflect the total composition of the particulates present in 

the polluted Los Angeles atmosphere. Average values for the elemental 

composition of the samples analyzed and reported in Ref. 2 are given 

below: 

element % {by wt.} atom ratios 

carbon 67.9 1. 00 

hydrogen 9.2 1. 63 

nitrogen 1. 2 0.015 

oxygen 20. 7 0.229 

sulfur 0.62 0.0034 

halogen 0.49 

The infrared absorption spectra of the ether extract solutions and the 

residues obtained by evaporation of the solvent exhibited a strong 

absorption in the 5. 8 µ {1724 cm -i) region, indicating the presence of 

organic carbonyls. Prominent bands were also observed at 2. 9, 3. 4, 

6.15, 6. 9, 7. 3, 7. 9, and 11. 4 microns. Although only a qualitative 

assignment of these bands is possible, the observed spectra would be 

consistent with the presence of aliphatic, aromatic, and olefinic com­

pounds containing carbonyl and nitrate ester functional groups. The 

possible presence of epoxides, peroxides, hydroperoxides, and com­

pounds containing the covalent sulfate and amino or amido groups is 

also indicated. These assignments are, in part, confirmed by the 
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chemical tests, specific tests for the presence of aldehydes, ketones 

(and methyl ketones), and organic acids all being positive. The 

presence of peroxidic materials in the residue was indicated by the 

liberation of iodine from buffered potassium iodide solutions. 

If the preceding data can be considered a standard, it must be 

said that little success has been achieved in attempts to produce 

"realistic" aerosols under laboratory conditions--except in cases where 

the reactants were obtained from automobile exhaust. It is known that 

the irradiation of S02 in air containing traces of water results in the 

formation of an aerosol. The kinetics and mechanism of the photo­

oxidation of S02 have been studied by Hall4 and Gerhard and Johnstone. 5 

The final product of these reactions is, however, sulfuric acid. It 

might also be noted that the fir st step in the proposed mechanism is: 

(1) 

This assumption is justified by the high dissociation energy of sulfur 

dioxide--far in excess of the energies that might be absorbed from 

solar radiation. 

Although the role of nitrogen oxides (principally NO and N02 ) in 

photochemical smog-producing reactions is thought to be at least 

partially understood, the connection between the reactions involving 

these oxides and possible reactions involving S02 is unclear. A com -

prehensive survey of the available data regarding nitrogen oxide-induced 

photochemical reactions is presented in Ref. 1. The pertinent results 

from experimentation in this area may however be briefly stated. 
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The important reaction involving nitrogen oxides is thought to 

be: 

hv N02 ----~ NO + o· (2) 

The atomic oxygen produced by this reaction may react with molecular 

oxygen to produce ozone, or organic compounds--principally olefins 

and aromatics--to produce biradicals. These products may then react 

further, with other atmospheric contaminants, to produce a complex 

mixture of products and secondary reactive species. 

Since NO is the principal nitrogen-containing compound found in 

auto exhaust, some mechanism must exist for its conversion to N02 if 

reaction (2) is to be of any importance. Although reaction schemes 

involving the nitrogen oxides and molecular oxygen have been studied, 

these have been found to produce only small steady-state concentrations 

of N02 --indicating that organics must also provide important pathways 

for this conversion. Indeed, a large amount of experimental data has 

been collected showing the effect of organic impurities on irradiated 

NO-air and N02 -air systems, and this data would tend to support the 

hypothesis that organic s play a prominent role in the initial conversion 

of NO to N02 • 

That N02 is the primary reactant in reaction schemes leading to 

the more noxious substances found in smog is indicated by a large mass 

of experimental data regarding yields of these substances vs. time of 

irradiation. In particula r it is noted that, when NO is the princ ipal 

nitrogen-containing reactant in l aboratory systems simulating polluted 
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air, induction periods of up to one-half hour are observed before 

measurable concentrations of ozone and· PAN (peroxyacyl nitrate 

compounds--thought to be the chief cause of eye irritation and plant 

damage) are formed. At the same time, it is found that this induction 

period corresponds to the time required for the almost total conversion 

of NO to N02 in the system. Similar experiments involving aerosol 

formation in NO-hydrocarbon-S02 systems have exhibited comparable 

. d t• t• 6 In UC ion Imes. 

Although a number of research groups have reported data 

regarding aerosol formation by photochemical reaction in gas phase 

systems, it would appear that the "definitive" experimental data--as 

indicated by the number of references to this work found in other 

papers--is considered to be that reported by Prager and co-workers. 6 

Summarizing briefly, Prager, et al. sought to study the formation of 

aerosols in static and dynamic gas-phase systems containing measured 

concentrations of nitrogen oxides, single hydrocarbons, and S02 • 

Oxygen containing 100 ppm water vapor was used as the diluent, and a 

General Electric AH-6 mercury lamp as the source of radiation. The 

results obtained in these experiments indicate that: 

(i) No aerosol is formed when aliphatic hydrocarbons constitute 

the organic reactant. 

(ii) Simple straight-chain monoolefins with fewer than six carbon 

atoms do not yield aerosol when irradiated with N02 alone. If 

S02 is added in small quantities, large amounts of aerosol are 

formed. 
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(iii) Higher molecular weight monoolefins, particularly those having 

highly-branched or cyclic structures, produce aerosol when 

irradiated in the presence of N02 • Addition of small quantities 

of S02 does not measurably increase the yield or rate of forma­

tion of aerosol. 

(iv) In systems requiring the presence of S02 for aerosol formation, 

the yield of aerosol is found to vary inversely with the length of 

time that the system is irradiated before S02 addition. 

(v) Irradiation of systems containing N02 and diolefins produces 

some aerosol, but the reaction is quite slow. Addition of S02 

to the initial reactants increases both the yield and rate of 

reaction. 

In "dynamic" experiments, a filter was placed in the outlet stream from 

the reactor. Aqueous extracts of the filters were found to be very 

acidic, and to form precipitates when added to solutions containing 

Ba(II). 

Analysis 

Consideration of the above information would lead one to con-

elude that: 

(i) 802 must play an important role in atmospheric aerosol forma­

tion, since a major fraction of the organic material present in 

automobile exhaust consists of compounds containing five or 

fewer carbon atoms. 7 

(ii) Reactive intermediates formed in the nitrogen ox ide s-initiate d 

photolysis mechanisms m us t also play a part in the r ea c tion 

sequences involving S02 • 
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(iii) The main constituent of the aerosol present in polluted urban 

atmospheres must be sulfuric acid. 

Conclusion (iii) is obviously incorrect, in light of the information 

reported by Mader and co-workers. The author would also contend 

that, although the data obtained by Prager and co-workers would tend 

to support conclusions (i) and (ii), certain features of their experimental 

technique might have created these effects as artifacts. Three such 

features are felt to be of particular importance: 

The use of pure oxygen as a diluent is somewhat questionable, 

particularly in light of previous statement regarding the dependence 

of the true reaction sequence on relative reactant concentrations. 

Specifically, the presence of oxygen in such large concentrations 

would tend to alter rather radically the relative importance of 

mechanisms involving atomic oxygen and ozone. 

It is quite likely that the effects involving S02 observed by 

Prader, et al. resulted from the use of a mercury arc as a source 

of radiant energy. Although these experimenters report using a 

borosilicate glass (Pyrex) filter to remove radiation with wave­

lengths shorter than 3000 A, the available transmission vs. wave­

length data for Pyrex8 indicates that nearly all of the intensity in 

the strong Hg doublet centered at 3128 A, and a large fraction of 

the intensity in the doublet centered at 3022 A passes such a filter. 

A sketch of the relevant portion of the spectral intensity distribution 

for solar radiation is provided in a recent paper by Searle and 

Hirt. 9 Examination of this distribution shows that solar radiation 
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contains very little intensity in the 3022 A region, and not a great 

deal in the 3128 A region--indicating that a mercury arc lamp pro-

vides a rather unrealistic source of illumination for such experi­

ments. In experiments involving 802 , this inaccuracy may be of 

particular importance because of the presence of a major absorp­

tion band for the molecule in the 2600 - 3200 A region. lO Thus, 

one might suspect that the photooxidation reactions studied by Hall, 

and Gerhard and Johnstone are responsible for the aerosol forma­

tion reported by Prager et al. This suspicion is further supported 

by the properties reported for the aqueous filter extracts. 

There exists some experimental evidence11 indicating that, 

while the lower molecular weight monoolefins do not produce 

aerosol when irradiated with N02 , addition of low c.oncentrations of 

these compounds to systems containing higher molecular weight 

compounds--which do exhibit aerosol formation when irradiated-­

increases the yield of particulate. This information suggests that 

the lower m. w. olefins may be important in the formation of 

aerosols even in the absence of sulfur dioxide. 

Proposal 

Examination of the above information and that presented in 

Ref. 1 indicates that additional experimental data must be obtained 

before the true role of 802 in aerosol formation can be established with 

any degree of certainty. In the collection of these data, the author feels 

that careful attention should be paid to: 
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(i) The composition of the diluent gas, with respect to both oxygen 

and water vapor content. 

(ii). The intensity vs. wavelength distribution in the output of the 

illuminating lamp. 

Specifically, it is proposed that a series of experiments similar to 

those reported by Prager and co-workers be run. In these experiments 

however, purified laboratory air containing controlled concentrations of 

water vapor would be used as a diluent, and a lamp such as a Sylvania 

"Sun Gun" (essentially a blackbody at 3400° K, with 365w power dis­

sipation) as the illumination source. A water filter could be employed 

to absorb a large portion of the infrared energy output by this source, 

and neutral density filters might be inserted between the source and 

the reaction chamber to decrease the intensity of the radiation to levels 

comparable to solar radiation. 

Initial experiments should certainly include a re-examination of 

the systems studied by Prager et al. If it is found that 802 does indeed 

induce aerosol formation in N02 -low m. w. olefin systems, a thorough 

analysis of the composition of the aerosol should be obtained using 

chemical and spectroscopic techniques. These analyses should also be 

compared with those reported by Mader and co-workers, 2 and analyses 

of the aerosols formed in systems with and without 802 should be com.­

pared in an attempt to find correlations. Experiments of the type 
11 reported by Stevenson, involving mixtures of low and high molecular 

weight olefins might also be run, and the products obtained from such 

reaction mixtures studied to discover whether or not the presence of 



235 

higher molecular weight compounds is important in determining the 

role played by lower molecular weight olefins in aerosol formation. 
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PROPOSITION 2: A Spectroscopic Search for an HgCO Complex 

Abstract 

The addition of moderate amounts of carbon monoxide to low 

pressure mixtures of mercury vapor and ethylene in a helium carrier 

has been found to increase the rate of the photoproduction of acetylene 

by a factor of 2. 5. A careful analysis of the system suggests that a 

Hg(3 P1 )-CO complex may be responsible for the observed rate in­

crease. Because of the synthetic importance of mercury-sensitized 

photochemical reactions, experiments seeking spectroscopic evidence 

for the excited Hg-CO complex are proposed. 
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PROPOSITION 2 

A SPECTROSCOPIC SEARCH FOR AN HgCO COMPLEX 

Introduction 

The ability of mercury vapor to act as a sensitizing agent in 

photochemical reactions of organic substrates has long been recognized. 

Because of the synthetic importance of such reactions, a great deal of 

experimental data has been collected in this area and published in the 

literature. Although it is beyond the scope of this proposal to provide 

even a brief review of the available literature, the book by 

Cvetanovic1 is said to contain a comprehensive summary of the avail­

able cross-section and mechanistic data. 

In a recently-published article, Homer and Lossing2 report 

having found that addition of moderate amounts of carbon monoxide to 

low pressure mixtures of mercury vapor and certain organic com­

pounds in helium increases the rate of the photolytic decomposition of 

the organic species by as much as a factor of 2. 5. Reactions run under 

both dynamic and static conditions exhibited comparable behavior, and 

mass spectrometric analysis of the reaction mixture after photolysis 

showed no anomalous products (e.g., Hg or CO addition compounds} to 

be present. After an extensive experimental study of the effect, using 

ethylene at the organic reagent, it was concluded that the observed 

results could only be explained in terms of a mechanism involving the 

forrµation of an excited HgCO complex having a lifetime or a bout 

3. 10-5 sec. 
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Background 

The apparatus used in the experiments reported by HL is des­

cribed in detail in Ref. 2. In essence, the dynamic reactor (used in 

most of the experiments) consists of a fused silica tube around which a 

water-jacketed low pressure mercury lamp is wrapped. The gaseous 

reaction mixture is passed through the tube, and a small sample 

removed directly into the ionization chamber of a mass spectrometer 

at a point a few millimeters below the end of the irradiated zone. The 

length of the irradiated zone may be varied with a metal shutter which 

is slipped over the tube, and which may be moved between the tube and 

the lamp. 

Nearly all the experimental data was collected on reaction mix­

tures containing ethylene as the organic species. LeRoy and Steacie3 

have shown the mercury-sensitized photodecomposition of this com­

pound to proceed by the mechanism: 

ls 
C2 H4 * + C2H4 ---- 2C2~ 

k4 
C2H4*-- --

(1) 

(2) 

(3) 

(4) 

HL measured an effective lifetime for a quantum of A.2537 A radiation 

to be 4. 65 · 10-6 sec. in their system, which may be compared with the 

known lifetime of the Hg(3P1 ) state: 1. 0 · 10-7 sec. No products other 

than acetylene and hydrogen could be found in the irradiated r eaction 
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mixture, and with moderate pressures of ethylene ("' 0. 02 Torr) and 

varying pressures of CO (P max = 0. 2 Torr), the additional decrease in 

ethylene caused by the addition of the CO was found to be equal to the 

increase in acetylene formed (± 2%). 

The mechanism represented by reactions (1)-(4) shows that, 

under the conditions described above, linear relationships should exist 

between AP and [ C2ILi], and AP and I(At), where AP is the amount of 

ethylene decomposed, [ C2H4 ] the ethylene concentration in the reaction 

mixture prior to irradiation, I the intensity of the radiation, and (At) 

the time of irradiation, when the amount of decomposition is small. 

These relationships were indeed found to be linear in systems containing 

no CO, and to retain their linearity upon the addition of the gas. At 

higher pressures of CO, the "special effect" of the gas was found to 

disappear due to quenching of the Hg(3P1 ) state. 4 The quenching takes 

place by the mechanisms: 

(5) 

(6) 

Comparing the efficiencies of CO and N2 as quenching agents, 4 and 

assuming that ks is negligible small, 5 the rate constants for the above 

reactions are found to be: 

10 -1 -1 
k5 = 0. 37 x 10 f. ·mole ·sec 

ks = 5. 47 x 1010 
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Metastable Hg(3 P 0 ) atoms are known to decompose ethylene, but kinetic 

arguments show that reaction (5) cannot be responsible for the observed 

rate increase when CO is added. 

Although substantial rate increases were obtained when CO was 

added to systems containing anisole or acetone as the organic reactants, 

no similar effect was observed in systems containing g-butane, propane, 

or cyclepropane. Thus it would appear that the new active species 

formed upon addition of CO has a preference for attack on 'TT-bonds. 

Additions of C02 and ~O to systems containing ethylene were found to 

produce minor effects. Because of the diminutive character of these 

effects compared to those observed with CO addition, they were not 

investigated in detail. 

Analysis 

Examination of the paper by Homer and Lossing2 leaves one 

with the impression that their investigation of the problem has been 

both complete and accurate. Although inaccuracies may have been 

present in some of the kinetic data employed in their computations, it 

would appear that the probability that an excited mercury-CO complex 

exists is sufficiently high to warrant an attempt to observe it spec­

troscopically. 

One might hope to observe such a complex in either the ultra­

violet or infrared regions. Oldenberg6 and others have shown that the 

X2537 A line of mercury is rather sensitive to the environment of the 

emitting atom. Kwok 7 has used this sensitivity to obtain information 

on the environment of Hg{3P1 ) atoms in liquid argon and other simple 
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liquids. Thus, one might expect to observe "parasite" bands asso­

ciated with the A.2537 line if HgCO complexes do indeed exist. This 

technique is not without pitfalls; the most serious of these involves the 

diffuse bands appearing in the 2537 A region that are attributed to 

Hg2 and other van der Waals molecules. These bands have however 

been studied extensively, 8 and it should be possible to distinguish 

between them and any emission due to HgCO. It is also quite possible 

that, at the low pressures which must necessarily be employed to 

avoid excessive quenching of the Hg(3 P1 ) state, these diffuse bands 

would not be seen at all. 

Several effects might be observed in the infrared region. Karl 

and Polanyi9 have shown that CO atoms are excited vibrationally by 

collision with Hg(3 P1 ) atoms; indeed, this information was obtained by 

observing CO emission in the infrared. Since complexing would cer-

tainly affect the force constant of the C-0 bond--probably by weakening 

it--one might hope to observe anomalous emission bands due to vibra-

tional transitions of the complexed CO molecules. Emission from 

uncomplexed CO might, however, obscure the much weaker emission 

from the complexed CO. Observation of anomalous CO absorption can 

probably be discarded for the same reason. 

Perhaps most promising would be the possibility of observing 

either absorption or emission by the complex itself. Because of the 

masses of the atom/molecule involved and the probable weakness of 

the interaction, one would expect the Hg-CO stretching vibration to 

appear at very low wavenumbers, thus placing it in a r egion of the 

spectrum uncluttered by other extraneous emission or absorption. 
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Proposal 

It is proposed that an attempt be made to obtain spectroscopic 

evidence for the excited HgCO complex predicted by Sheer and Fine10 

and subsequently by Homer and Lossing. 2 A simple apparatus for this 

experiment might consist of nothing more than a pyrex cell fitted with 

a quartz window to admit the exciting radiation, and a LiF window to 

allow obseruttion of the resultant emission in both the ultraviolet and 

infrared regions. A low pressure mercury lamp could be used as the 

source of exciting radiation, and a monochromator inserted between 

the lamp and the cell to isolate the 2537 A line. When using such an 

apparatus to observe emission in the ultraviolet region, a filter con­

taining mercury vapor and NO might be positioned between the cell and 

the spectrograph to absorb most of the 2537 A emission. If such a 

filter were employed, care would have to be taken to ascertain that any 

anomalous emission observed did not arise in the filter. 

For infrared absorption experiments, an apparatus of the type 

shown in the diagram on the next page might be used. In this apparatus, 

the ultraviolet exciting radiation and the infrared radiation are brought 

into co-incidence by reflecting the ultraviolet radiation off a surface 

that passes infrared (e.g., a "cold mirror 1111 ) using a specially shaped 

crystal of LiF or NaCl. A similar "cold mirror" could be employed to 

prevent the ultraviolet radiation from entering the inf rared detector by 

reflecting it back along the cell. 
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~IR detector 

Hg-CO Infrared Absorption Apparatus 
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PROPOSITION 3: Improvements on the Photochemical Space 

Intermittency Method for Measuring the 

Diffusion Coefficients of Free Halogen 

Atoms in Solution 

Abstract 

The photochemical space intermittency (PSI) effect provides the 

basis for one of the few practical methods of obtaining an experimental 

measure of the diffusion coefficients for free halogen atoms in solution. 

Instrumental deficiencies have severely limited the accuracy of pre­

vious PSI measurements, but more recent advances in spectrophoto­

meter design and in illumination sources (principally, the c. w. laser) 

may alleviate most of these instrumental difficulties. Since the chem­

ical kinetics of free halogen atoms in solution may provide a key to our 

understanding of the microscopic dynamic processes occurring in 

liquids, it is suggested that the PSI measurements on 4 in CC11 be 

repeated using apparatus of modern and more sophisticated de sign. 
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PROPOSITION 3 

IMPROVEMENTS ON THE PHOTOCHEMICAL SPACE 

INTERMITTENCY METHOD FOR MEASURING THE 

DIFFUSION COEFFICIENTS OF FREE HALOGEN 

ATOMS IN SOLUTION 

Introduction 

The chemical kinetics of reactive free radicals in solution pro­

vide one of the few conveniently accessible experimental "probes" for 

the microscopic dynamic processes occurring in real liquids. The 

free halogen atoms formed by photodissociation of the parent diatomic 

molecules are especially useful in this context because of their 

spherical symmetry. Dynamic interactions between the molecules of a 

solute and a liquid solvent are more easily envisioned--intuitively-­

when at least the solute molecules are spherically shaped. Furthermore, 

the recombination reaction for free halogen atoms in solution is, for 

all practical purposes, strictly diffusion-controlled; the reaction 

requires only a negligible (if any) energy of activation and no specific 

steric configuration for the re-combining atoms. 

Consider a solution of molecular halogen X2 in some inert sol­

vent S. If this solution is illuminated with light of frequency v, where 

hv is in excess of the dissociation energy for ~' two processes take 

place: 

~ + hv - 2X 

2X - X2 

(Pl) 

(P2) 
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Actually, three different sequences of events may follow the absorption 

of a photon by an X2 molecule. The two dissociating X atoms may 

either: 

(i) rebound from the surrounding solvent molecules and re­

combine immediately, or 

(ii) penetrate the surrounding solvent a short distance, come to 

thermal equilibrium, and then diffuse back together and re­

combine (geminate recombination), or 

(iii) penetrate the surrounding solvent and diffuse away from each 

other to combine with atoms formed at other reaction sites. 

In most liquid solvents, under conditions easily attainable in the lab­

oratory, sequences (i) and (ii) occur too rapidly to be observed experi­

mentally. By l_)rocess (Pl) then, we refer only to those dissociation 

events such that the two X atoms diffuse away from each other to a 

point at which geminate recombination or their recombination with 

atoms produced at other sites become equally probable. 

With this defined limitation, the rates for processes (Pl) and 

(P2) are given by 

d(X] 
2 --at = </XJ. and -~ = 2k[x]2 

respectively, where q is the rate of light absorption in einsteins/l. sec, 

<P the quantum yield for the photodissociation process, and k the rate 

constant, in 1. /mole sec, for the recombination reaction in S under 

the prevailing conditions of temperature, density, etc. If thermal 

dissociation is negligible, a steady-state condition such that: 



249 

cpq = k[X] 2 (1) 

is established in the illuminated solution after a macroscopically 

modest "induction" period. If r is the average lifetime of X atoms 

that re-combine with atoms from other reaction sites, then: 

T = 
[X] 
2¢q = 

1 

2k[X] 

and by re-arrangement with Eq. (1) we also have: 

k/¢ = q/[X] 2 

and k¢ = 1/4qT2 

(2) 

(3) 

(4) 

The quantities¢, k, and T all provide some insight into the 

nature of solute-solvent interactions, and a variety of experimental 

techniques have been used to obtain independent measurements of each 

of these quantities for iodine in a number of different solvents. 

Rabinowich and Wood1 measured [I] --and hence, k/ cp--in hexane and 

CC L4 by measuring the decrease in ~ absorption when the solutions 

were illuminated by an intense beam of monochromatic light perpen­

dicular to the monitoring beam. Spectrophotometric monitoring of 

[~] was also used, in combination with flash photolysis, by Marshall 
2 3 4 

and Davidson and later by Willard and co-workers ' to measure k 

directly in CCI.i, hexane, and heptane at room temperature. 

Zimmerman and Noyes5 measured -r--and hence, kcp--in hexane at 

25° by using a rotating sector technique to determine the effect of 

"chopping" the illuminating light at different frequencies on the rate 
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of the exchange reaction between isotopically labeled iodine and trans­

diiodoethylene. 

Of the three quantities cp, k, and r, the quantum yield cp, as 

defined, is perhaps most closely related to the "chemically important" 

processes occurring in solution. Taken together, the post-dissociation 

sequences (i) and (ii) described above are an instance of the so-called 

"solvent cage effect"; thus cp provides--by exclusion-- a measure of 

the ability of the solvent to encage the dissociating atoms and prevent 

them from escaping the reaction site. Lampe and Noyes6 used a 

scavenger technique with allyl iodide and oxygen to measure directly 

the quantum yield for i\4358 light in hexane, CCL:i, and hexachloro-1, 3-

butadiene at three different temperatures. The same scavenger tech­

nique was used by Booth and Noyes 7 to measure cp in six solvents whose 

relative viscosities at 25° covered a range of 103
, while Meadows and 

Noyes8 used the exchange reaction between diiodoethylene and isotopi­

cally labeled~ to measure the quantum yields for seven different 

wavelengths between 4047 A and 7350 A in hexane and hexachloro-1, 3-

butadiene at 25 ° . 

It is generally assumed that the excess energy (over that 

required to dissociate the halogen atom) provided by the exciting photon 

is converted into kinetic energy for the separating free atoms. Thus 

the wavelength dependence of the quantum yield provides some indication 

of the average rigidity of the solvent structure surrounding an un­

excited solute molecule. In some instances where the quantum yield 

has been measured at several different temperatures in the same sol­

vent, 6 Arrhenius plots of log cp vs (1/T) have been used to determine 
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an activation energy for the post-dissociation sequence (iii). The 

energy values obtained in this manner are of the order of those 

required for diffusion processes--but the entire procedure must be 

considered somewhat nieve when it is remembered that the microscopic 

structure of the solvent must itself change with temperature. 

Background 

The bulk diffusion coefficients D for reactive solute species 

provide another chemically important measure of solute-solvent dynam­

ics. But because of their very high reactivity (and hence, short life­

times), the diffusion coefficients for free halogen atoms in solution 

cannot be determined using standard experimental methods. In 1959 

Noyes9 suggested the "photochemical space intermittency" effect as a 

means of measuring D for short-lived species produced and destroyed 

in pairs, and in cooperation with Salmon10 showed the effect to exist 

for iodine in hexane. A more extensive investigation by Levison and 

Noyes11 has provided diffusion data for iodine atoms in CCli at 25 ° and 

38°. 

In essence, the photochemical space-intermittency technique is 

the space-analogue of the rotating sector (time-intermittency) method5 

for measuring T. It can be shown by intuitive argument9 (supported 

now by experimental results) that the space-average ste ady-state 

concentration of X atoms in a solution of X2 illuminated by a sharply­

defined pattern of light and dark areas is dependent not only on the 

total incident illumination, but on the size and spacing of the light areas 

as well. The local distribution of X atoms in the illuminated solution is 



252 

governed by Fick's second law of diffusion; 

in the light areas: 

a (X] 
at 

= nv2[x] + 2¢q - 2k[X]2 = o 

and in the dark areas: 

a[x] 
at 

= DV2(X] - 2k[X]
2 

= 0 

(5) 

(6) 

where it is assumed that [ X] is so low that D is constant throughout 

the system, and the quantities <f>, q, and k are as defined previously. 

For a given pattern of illumination, Eqs. (5) and (6) become a pair of 

simultaneous, geometrically coupled second-order differential equa­

tions; in general, these equations do not have an analytical solution in 

terms of known mathematical functions. Noyes9 has, however, 

obtained numerical solutions (probably by using an iterative technique 

similar to that employed by Emeis to solve the theoretical diffusion 

model discussed in Paper No. 3, section IV. B) for two regular patterns: 

the "zebra" pattern of parallel light and dark strips, and the "leopard" 

pattern of circular light spots arranged on a two-dimensional hexagonal 

grid. We describe only the solutions for the "leopard" pattern here, 

since that pattern shows the greater space-intermittency effect and was 

the pattern used by Levison and Noyes. 11 

If the origin is taken as the center of a light spot and polar 

coordinates are used, Eqs. (5) and (6) for the "leopard" pattern 

become: 



.!_ ~ (rd[ X]) 
r dr dr 

1 d?.[X] 
+- --- = 

r 2 de?. 
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2k [ X] 2 - 2<f>q 

D 
(in light) (7) 

(in dark). (8) 

It is convenient to introduce "reduced" variables similar to those used 

with the time-intermittency method;12 then: 

1 d ( ~') 1 d
2 

p dp p ap + rY- ~ = ·y2-1 (in light) (9) 

(in dark) (10) 

where: 

1 

y = (k/cf>q)2[x] (11) 

is a normalized concentration that would attain a value of unity for 

homogeneous illumination of the solution with light of the same inten -

sity as that in the individual spots, and: 

1 

p = (4cpqk/D?.)4 r (12) 

Experimentally, one measures y/y
00 

where y is the ratio of 

the space-average concentration of X atoms in the pattern-illuminated 

solution to the concentration that would be observed were the solution 

homogeneously illuminated by light of the same intensity, and y 
00 

is 

the limiting value of y for a very course pattern having the same 

fraction of the solution illuminated. Noyes calculated y/y
00 

as a 

function of Pv the reduced radius of the light spots, and f, the ratio 

of the separation of the centers of adjacent spots to the diameter of a 
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single spot, for a range of pL values between 0. 1 and 100 with 

f = 2, 3, and 5; the ratio of light to dark areas in the "leopard" pat­

tern is uniquely defined by f regardless of the size of the individual 

light spots. Thus if one measures y /y 
00 

in a solution for a number of 

patterns with differing r-values but the same f-value (the concentration 

[ Xz] and the intensity of the incident illumination are generally also 

held constant from pattern to pattern), the experimental data can be 
1 

fitted to the calculated curves to obtain the factor (4¢qk/D?.)4 relating 

p to r. Then if q is measured also, and ¢ and k are known inde­

pendently, the value of D is determined. 

Analysis 

Levison and Noyes11 (LN) used the apparatus shown schematically 

in the figure13 below to measure D for iodine atoms in cc4 at 25° and 

38° . The exchange reaction8 between isotopically labeled lz and trans­

T 

I -
o1 ~- -0- --·- -X . 

S A F L 

Fig. l .-S..· lu·111atic rcprcsl'ntation of apparatus. 

diiodoethylene was employed to 

measure [I] and hence y/y00 in 

the illuminated solution. A CC4 

solution 1. 41 x 10-4 M in lz and 

0. 107 M in diiodoethylene was 

degassed by repeated freezing 

and melting under vacuum in 

bulb B, and then transferred to the circular cell C for illumination. The 

cell was 1. 8 cm in diameter and 0. 5 cm thick. Temperature control 

was maintained by immersing the cell in constant-temperature bath T. 

Illumination was provided by a medium pressure (CH5) mercury 
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arc S surrounded by a water jacket. The light was passed tlu·ough 

circular aperture A, rendered parallel by lens L, and reflected 

vertically through pattern P and thence the cell by mirror M. Inter­

ference filter F was used to isolate the 4358 A Hg emission line, and 

the intensity of the incident beam monitored by photometric detector 

D; the detector was calibrated using the f errioxalate actinometer 

reaction of Parker and Hatchard. 14 

Measurements were made for twelve different patterns with 

spot sizes ranging from a minimum diameter of 0. 00796 cm to a 

maximum diameter of 0. 1002 cm. The patterns were made by 

photographic reduction of a mechanically drawn master pattern of 

10, 000 spots with ratio f = 3. Examination of the patterns with a 

microdensitometer showed the background areas between spots to be 

completely opaque, and the photographic density of individual light 

spots to be essentially homogeneous across a given pattern. 

The theoretical calculations completed by Noyes9 were predi­

cated on certain assumptions that cannot be met in actual laboratory 

practice. Several of the more important assumptions are: 

(i) that diffusion is the only process whereby I atoms are trans­

ported from light areas to dark areas, 

(ii) that the concentration of labeled molecular iodine is uniform 

throughout the solution during illumination, 

(iii) that there is an absolute discontinuity in the intensity of the 

illuminating light between the light and dark areas, at the edge 

of a beam, and 
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(iv) that the beam of light arising from each spot in the pattern is 

uniform in intensity and perfectly collimated. 

By a straightforward quantitative analysis, LN show that the conditions 

obtaining in their apparatus are such that assumptions (i) and (ii) were 

met within the limits of other experimental uncertainties. The optical 

properties of the apparatus were, however, found to be somewhat less 

creditable. 

The sharpness of the optical pattern emerging from the solution 

was tested by exposing films placed flush against the top of the illumin­

ated cell. Examination of these films with a microdensitometer showed 

that: (1) the transition from complete illumination to total darkness at 

the edge of each beam took place over a distance of the order of 

0. 001 cm, and (2) the emerging beams were elliptical, with major and 

minor axes 0. 0170 and 0. 0032 cm, respectively, larger than the dia­

meters of the circular openings forming them; both of these effects 

were independent of the actual size of the spots in the pattern P. 

The diffuse "transition region" at the edge of each beam is 

attributed to dispersion within the bulk of the solution, and probably 

would not be eliminated by refinements in the apparatus. Since the 

0. 001 cm width of this region was less than 20% of the r. m. s. diffusive 

displacement attained by a free iodine atom in the CC~ solution, LN 

assumed that it was not necessary to apply corrections to their data 

for this effect. Boundary sharpness might however become a signifi­

cant parameter in measurements involving more viscous solvents. 

The poor collimation of the illuminating light is somewhat more 

critical, as is evidenced by the fact that the deflection along the major 
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axis of each beam (0. 0170 cm) was more than twice the diameter of 

the spots (0. 00796 cm) in the finest pattern. The ellipticity of the 

emerging beams was nndoubtedly due to the linear nature of the mer­

cury arc source and the finite size of the aperture A; by further 

experimentation with the apparatus after the fact (after the y/y
00 

measurements had been completed) it was determined that the sizes of 

the beams emerging from the top of the cell were affected only slightly 

by the position of the lens L, but were strongly dependent upon the size 

of the aperture. Although LN applied a correction to their experimental 

data to account for the effect of poor beam collimation, this correction 

was only approximate in nature and least serviceable for the smaller 

beam diameters. And since the photochemical space intermittency 

effect is largest for very fine patterns of light and dark areas, the 

y/y o0 measurements made with these patterns are of prime importance 

in determining the "fit" between the experimental data and the calculated 

fY /Y oJ vs pL curves. 

Proposal 

Because of the potential importance 15 of the data obtained 

thereby, we propose that the photochemical space intermittency 

measurements reported by Levison and Noyes11 be repeated and 

extended using apparatus of an improved and more sophisticated design. 

The following modifications to the apparatus employed by LN are sug­

gested: 

{i) The mercury arc source should be replaced by an argon ion 

c. w. laser. 
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(ii) The optical system should be re-arranged such that the illumin­

ating light passes vertically, from top to bottom, through the 

cell. 

(iii) The cell and the surrounding temperature bath should be 

modified to permit spectrophotometric monitoring of the con­

centration of molecular iodine--and hence by exclusion, of free 

iodine atoms--in the illuminated solution. 

The argon ion laser emits highly monochromatic light at the 

following wavelengths: 4579 A, 4658 A, 4765 A, 4880 A, 4965 A, 5017 A, 
and 5145 A, with approximately 80% of the total output power being 

equally divided between the 4880 and 5145 Angstrom lines. All seven 

of these lines fall well within the range of wavelengths employed in the 

quantum yield measurements by Meadows and Noyes, 8 and thus should 

be suitable for space intermittency measurements on iodine. 

The superior optical properties of laser light are well known16 

and need not be discussed in detail here. With respect to photochemical 

space intermittency measurements, the high degree of collimation 

exhibited by laser sources is of particular importance. For example, 

the output beam of a Ratheon Model LG-12 argon ion laser measures 

2. 2 mm in diameter at the exit aperture and exhibits a divergence of 

less than 40 seconds of an arc;17 this may be contrasted with the 36' 

(major axis} and 7' (minor axis) divergences of the elliptically uncol­

limated illuminating beam employed by LN. 

If the cell containing the illuminated solution is isolated from 

mechanical disturbances (vibration, buffeting by the flow of fluid in 



259 

the temperature bath, etc. ), convection currents arising from thermal 

inhomogeneities created by absorption of energy from the illuminating 

light then become the chief mode for non-diffusive transport of iodine 

atoms. By a straightforward quantitative argument, LN have shown 

convection to be of negligible importance in their own experimental 

measurements; but with the increased usable intensities offered by 

laser sources, thermal effects from illumination may become more 

significant. Since the illuminating light is attenuated slightly by pas­

sage through the solution, modification of the optical system so that 

the light is brought into the cell from the top would create a slight 

positive thermal gradient along each beam and thus, to a limited 

extent, retard convection. 

The diiodoethylene exchange technique used by LN is perhaps 

unnecessarily complicated in terms of the number and type of mechan­

ical manipulations that must be performed external to the actual space 

intermittency apparatus. The technique also introduces additional 

empirical quantities--such as the rate constant for the exchange 

reaction itself--and their attendant uncertainties into the overall 

determination of D. Spectrophotometric monitoring of ~ absorption 

has been employed previously1 -4 to measure iodine atom concentrations 

in solution, but has the disadvantage that [I] is determined as a 

fractionally small change (frequently of the order of a few percent) in 

~ absorption intensity. 

Recent advances in split-beam spectrophotometer design18 and 

low-noise photometric detector electronics now permit changes in 

optical density of the order of 1 in 103 to 1 in 104 to be measure d; thus 
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by using spectrophotometric equipment of optimum design, it should be 

possible to increase the accuracy of the y /y 
00 

measurements by a 

factor of 10 over that estimated8 for the diiodoethylene exchange 

technique. The size of the monitoring beam would have to be large in 

comparison to the spacing of the light areas in the intermittency pattern 

if a true space-average measure of the iodine atom concentration is to 

be obtained, but this would seem to present no problem in view of the 

beam sizes employed in commercial spectrophotometers ~-, Beckman 

model DU, Cary model 14, Beckman IR-12, etc.). If an argon ion 

laser is used for illumination, a band rejection filter can be used to 

exclude scattered illuminating light from the spectrophotometer 

detector; highly efficient band rejection filters are now commercially 

available for most laser wavelengths. 
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PROPOSITION 4: A Molecular Dynamics Study of Cavity 

Formation Works in a Simple Liquid 

Abstract 

In the years since 1936, experimental evidence has collected in 

support of Eyring's original speculation regarding the presence of 

"holes" or "voids" in the microscopic structure of simple liquids. 

Several theoretical treatments of liquid state phenomena have been 

based on assumptions regarding the amount of thermodynamic work 

that must be extended to form cavities of various sizes and shapes in 

real liquids, but a direct experimental test of these assumptions is not 

at present possible. As an alternative, it is suggested that the pos­

sibility of using the molecular dynamics technique to obtain estimates 

of cavitation works in realistic model fluids be investigated. 
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PROPOSITION 4 

A MOLECULAR DYNAMICS INVESTIGATION OF CAVITY 

FORMATION WORKS IN A SIMPLE LIQUID 

Introduction 

In 1936 Eyring1 suggested that the "excess" volume acquired by 

a simple liquid through thermal expansion might be collected into indi-

victual "holes" or "voids", rather than being distributed randomly and 

homogeneously throughout the fluid structure. This suggestion was at 

the time entirely intuitive in nature, but has since found some support 

in the results obtained by x-ray thermal neutron scattering measure­

ments on simple liquids. 2 For example, the average coordination 

number of an atom of liquid argon decreases with thermal expansion 

of the liquid from between 10 and 11 at the melting point to approxi­

mately 4 at about five degrees below the critical temperature. 3 Yet 

during this expansion, the average distance between nearest neighbors 
0 

remains constant at about 3. 8 A--indicating that the atoms must 

cluster together, leaving the "excess" volume of expansion to void 

regions distributed throughout a more or less tightly packed lattice 

structure. 

The results achieved through the application of Eyring's sug­

gestion to the then existing "cell" theories4 of the liquid state--the 

so-called "hole" theory5 --were uniformly rather disappointing. 6 But 

in recent years the more sophisticated "significant structure" theory 7 

has devolved from Eyring's initial insight, and this latter theory has 
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met with surprising success in treating the physical properties of a 

wide variety of liquids. 8 

Aside from the theoretical implications, information regarding 

the size, shape, and other physical properties of the holes occurring 

in simple liquids may provide a key to our understanding of the 

dynamic processes characteristic of liquids at the molecular level. 

The "significant structure" theory, for example, envisions holes or 

"vacancies" the size of a single molecule, and thus suggests a "jump" 

mechanism for diffusion in liquids. 9 On the other hand, the results 

of some recent computer calculations simulating a dense fluid of 

Lennard-Jones disks10 indicate that the holes occurring in real liquids 

may be relatively larger and quite irregular--a notion consistent with 

a diffusion mechanism that is "cooperative" in nature. 11 It would 

seem therefore that a detailed investigation of the energies or works 

associated with the formation of cavities of various sizes and shapes 

in a physically realistic model dense fluid might serve to shed some 

light on both the equilibrium and non-equilibrium (dynamic) properties 

of the liquid state. 

Background 

In an early development of the so-called "scaled-particle" 

theory, Reiss, Frisch, and Lebowitz12 (RFL) were able to obtain an 

approximate analytical expression for the equation-of-state of a 

hard-sphere fluid. This formulation was found to reproduce the 

results of previous machine simulation calculations13 quite accurately, 

to the extent that the first five virial coefficients derived from the 
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theoretical expression were in good agreement with those obtained 

computationally. The agreement for the first three coefficients was 

in fact exact. 

The central idea of the "scaled-particle" theory is that it is 

possible to obtain a very good a priori estimate of the reversible 

work W(r) that must be extended to create a spherical cavity of radius 

r in a fluid. The incremental work necessary to expand the radius of 

the cavity from r to (r + dr) is given as a sum of volume and surface 

contributions: 

dW(r) == p · 4irr2 dr + a (r) · 811r dr (1) 

where p is the internal pressure of the fluid, and a(r) is a quantity 

like a surface tension. 

If r is sufficiently large, a(r) becomes a true surface tension 

a0 SO that 

(2) 

but for smaller r an additional term must be added to account for the 

curvature dependence of the surface work: 

(3) 

where o is a distance corresponding to the thickness of the inhomo­

geneous layer at the surface of the cavity. The first term on the RHS 

of Eqs. (2) and (3) may be thought of as the PV work necessary to 

introduce a hollow rigid sphere of radius r into the fluid; a0 then 
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becomes the interfacial tension between the fluid and a perfectly rigid 

wall, and is not the surface tension at a liquid-vapor interface. 

RFL were able to obtain an exact expression for W(r < a/2) in 

a fluid of hard spheres of diameter a by making use of the fact that a 

cavity of such small dimensions can contain at most the center of only 

one particle. The work is given by: 

(4) 

where kB is the Boltzmann constant, and T and pare the temperature 

and number density of the fluid, respectively. By matching Eqs. (3) 

and (4) at r = a/2, Reiss, Frisch, Helfand, and Lebowitz14 (RFHL) 

also obtained an extrapolation formula for W(r) valid to beyond r = a. 

This formula is of the form: 

W(r) = K0 + Ki_ r + ~r2 + °K:3r3 (5) 

where the K's are given by lengthy expressions involving temperature, 

pressure, and density. 

Using the extrapolation formula, it is possible to treat a dilute 

solution of a hard-sphere solute in a hard-sphere solvent. If the sol­

vent and solute molecules have diameters a and b, respectively, then 

introduction of a solute molecule into the solution is equivalent to the 

introduction of a cavity of radius rs = (a+b)/ 2. The chemical potential 

µh of the solute is therefore given by: 

(6) 
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where: 

1 

. Az, = (h
2 /211'~ kB T)

2 (7) 

and~ and p2 are the molecular mass and density of the solute, respec­

tively, and h is Planck's constant. The first term on the RHS of (6) is 

the free energy of mixing of the solute with the solvent. 

Equation (6) is valid only for solutions so dilute that the solute 

molecules remain independent of one another, and is limited in 

accuracy by the accuracy of the extrapolation formula (5 ). RFHL have 

however expanded upon Eqs. (5) and (6) to obtain expressions for the 

partial pressure p2 of the solute (assuming the vapor above the solution 

to be ideal) and the Henry's law constant kH = f'2/p2 • 

RFHL have also extended the theory to fluids of particles inter­

acting with physically more realistic potentials by using a simple 

modification of the coupling parameter technique. 15 The method is 

predicated on the assumption that the total interparticle potential can 

be factored into two components: a "hard" potential 

for r < a ; 
(8) 

= 0 for r > a , 

and an unspecified "soft" potential <Ps(r). The total potential is then 

written as: 

(9) 

where ~h and ~s are coupling parameters such that the hard "core" of 



269 

the potential is fully coupled to the remainder of the fluid when ,eh = a, 

and the "soft" potential is fully coupled when ~s = 1. 

The chemical potential of the fluid is calculated by introducing 

an additional particle in two stages: in the first stage, ~h is "charged" 

from 0 to a (The hard "core" of the particle is expanded to its full 

size) with ~s = O; in the second stage, the "soft" potential is intro­

duced by charging ~s from 0 to 1 . If the full chemical potential is 

represented by µ(~h' ~s), then the portion of the chemical potential 

calculated in the first stage, µh = µ(a, O), is approximated by equation 

(6)--assuming b = a, or that the solute and solvent molecules are 

identical. Calculation of the remainder of the chemical potential, 

µs = µ(a, 1) - µ(a, O) is however much more difficult, and for this 

reason applications of the "extended" theory to real liquids16 have been 

somewhat limited. 

In the course of developing a rigorous basis for the old 

Frenkel-Band equilibrium cluster theory of association, 17 Stillinger18 

has also obtained expressions relating the equation-of-state of a dense 

fluid to quantities corresponding to cavity formation works. In 

essence, the theoretical development involves a factorization of the 

grand partition function for a fluid into terms associated with the 

partition functions for clusters of different numbers of particles--a 

procedure somewhat similar to the well-known Mayer expansion tech­

nique19 for the grand ensemble, except that the interaction between 

each cluster and the remainder of the fluid is expressed in terms of 

the reversible isothermal work necessary to form the cavity in which 

the cluster resides. That is, the contribution of a c luste r of s 
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particles to the grand partition function is divided into two parts: a 

contribution due to interactions between the s particles internal to the 

cluster, and a contribution due to the work W s(~ 1 ..• ~ s) necessary to 

form a cavity in the fluid into which the cluster can be placed. 

The cavities envisioned by the Frenkel-Band theory differ 

physically from those dealt with in the "scaled-particle" theory. The 

Frenkel-Band concept of clustering is based upon the idea of particle 

"overlap"; two particles are said to overlap when their centers lie 

within some fixed distance b of each other {Stillinger18 discussed the 

criteria pertinent to the choice of an optimum value for !?_ for a specific 

application of the theory). The theory then defines a "cluster" as a 

group of geometrically related particles such that each pair of particles 

in the group either overlap themselves or are indirectly connected by 

an unbroken sequence (or chain) of overlapping particles. Since by 

definition no particle in a cluster may overlap other particles in the 

fluid external to the cluster, the cavity in which a cluster of s particles 

resides must be such that none of the other fluid particles lie within a 

distance Q of the positions ~1 .•• !'._ s occupied by the cluster particles. 

The works W s(!'._ 1 ~ •• !.s) entering into the Frenkel-Band theory there­

fore apply to the formation of possibly very irregular and convoluted 

cavities--in contrast to the smooth spherical cavities envisioned by 

the "scaled-particle" theory. 

The full mathematical development of the Frenkel-Band theory 

is quite lengthy, and to this author's knowledge, the theory has not 

actually been applied to the treatment of real fluids. The main 
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stumbling block to application of the theory would however seem to be 

the calculation of approximate values for the cavitation works; in the 

next section we describe a method whereby cavitation works in realistic 

dense fluids can be estimated. 

Analysis 

The so-called "molecular dynamics" technique for simulating 

the microscopic dynamics of a dense fluid has been discussed at length 

elsewhere in this dissertation. Of specific interest here is the fact 

that it is possible to apply a well-defined perturbation to the fluid during 

the course of the dynamics integration; in particular, it should be pos­

sible to introduce a cavity into the fluid in a nearly reversible manner, 

and to calculate the work extended in the process. 

In theory, any number of different methods might be used to 

introduce the cavity into the fluid. For example: 

(i) A repulsive potential "barrier" the size and shape of the 

desired cavity could be pushed slowly into position in the fluid 

from the outside. 

(ii) A repulsive potential could be expanded slowly around a point 

in the fluid, in a manner analogous to that envisioned in the 

development of the "scaled-particle" theory. 

(iii} A repulsive potential may be slowly "charged" throughout the 

region in the fluid to be occupied by the cavity, thus permitting 

the particles initially occupying that region to drain away. 

In practice, the first method does not seem to be well suited for use in 
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conjunction with the molecular dynamics technique. This is especially 

so because of the periodic boundary conditions most often employed in 

the dynamics calculations; with these boundary conditions, the space to 

which the simulated fluid is confined is closed upon itself so that, 

effectively, no "outside" to the system exists. 

The second method might be used to best advantage for calcula­

tions involving the formation of a spherical cavity having strictly 

repulsive boundaries (the classic "scaled-particle" model), while the 

third method could be used for the introduction of an irregular cavity 

(of the Frenkel-Band type) or a cavity surrounded by an extended 

attractive potential. In terms of the computational effort (and hence, 

computer time) required, method (ii) would probably be more econom -

ical than method (iii); on the other hand, method (iii) might prove to 

yield a more nearly "reversible" type of expansion. At present it is 

difficult to see how, in practice, method (ii) might be used to introduce 

a cavity having both attractive and repulsive potential components. 

The work extended in the formation of a cavity could conceivably 

be calculated as an integral of force over distance; that is, as a sum­

mation of the average forces acting upon the external shell of the cavity 

at each point in its incremental expansion. Noting however that 

isoenergetic models are most frequently used in conjunction with the 

molecular dynamics technique, it would seem that cavitation work 

might best be calculated as the overall change in the total energy of the 

system during introduction of the cavity. 

Finally, we note that it is not actually necessary to introduce a 

cavity into the fluid to measure formation works for cavitie s representing 
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a single particle or a cluster of particles. Rather, a selected particle 

or group of particles already extant in the fluid can be removed by first 

fixing their positions and then slowly "discharging" their potential 

interactions with other particles external to the cavity [the inverse of 

method {iii)]. 

Proposal 

It is suggested that the feasibility of using the molecular 

dynamics technique to obtain estimates of cavitation works in realistic 

model dense fluids be investigated. The practical advantages and dis­

advantages of both methods (ii) and (iii) for introduction of a cavity 

should be examined, as should the practicability of the "particle dis­

charging" method for obtaining negative cluster-cavitation works. 

An approximate measure of the statistical variation that might 

be expected in the formation work values obtained for a given cavity 

should be determined by introducing identical cavities into several dif­

ferent regions of the fluid (starting with the same initial fluid config­

uration), and by introducing the same cavity into the fluid at different 

times (i.e., starting with different fluid configurations). The 

"reversibility" of a cavity introduction method can be tested by intro­

ducing a cavity and then removing it again; the total energy of the fluid 

should return to its initial value after the cavity is removed. 

If the results of this investigation indicate that the "augmented" 

molecular dynamics technique does indeed provide a practical means of 

determining cavitation works, various aspects of the "scaled-particle" 

and Frenkel-Band theories might be examined. For example, the 
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validity of the "scaled-particle" treatment for realistic fluids could be 

tested by inserting calculated cavitation works into the theoretical 

equation-of-state formulations--and then comparing the predicted 

equation-of-state for the model fluid to that obtained computationally. 

By computing the formation works for the same cavity, first with only 

a hard "core" and then with both hard and soft potential components, 

the precision of the coupling parameter technique used to calculate µ
8 

in. the "extended" version14 of the "scaled particle" theory could be 

determined. 
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PROPOSITION 5 

AN EXAMINATION OF SOLUTE DIFFUSION AS A FUNCTION 

OF THE RELATIVE SIZES AND MASSES OF THE SOLUTE 

AND SOLVENT MOLECULES 

Abstract 
~ 

From a "chemical" point of view, the dynamic mechanism 

whereby material is transported from place to place in solution is one 

of the most important, yet least well understood processes occurring 

in nature. Unfortunately, the mathematical development of each of the 

manifold existing theories of transport in dense fluids would seem to 

adopt its own particular intuitive model for the diffusion mechanism, 

and then to make any necessary approximations in accord with some 

limiting form of that model. As a result, none of the existing theories 

is rigorously applicable to a vast majority of the solutions typically 

encountered in the laboratory. It is therefore suggested that the 

molecular dynamics technique be used to simulate a number of two­

component dense fluid systems with different solute/ solvent size and 

mass ratios, and that this simulation data then be examined in detail 

to determine the size- and mass-dependence of the solute diffusion 

mechanism. 
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PROPOSITION 5 

AN EXAMINATION OF SOLUTE DIFFUSION AS A FUNCTION 

OF THE RELATIVE SIZES AND MASSES OF THE SOLUTE 

AND SOLVENT MOLECULES 

Introduction 

The existing theories of diffusion in dense fluids are so complex 

that a series of approximations have been necessary in order to obtain 

formulations that can be numerically evaluated for comparison with 

experiment. The proliferation of transport theories is in itself 

evidence of a fundamental lack of under standing regarding the dynamic 

processes characteristic of liquids at the molecular leve l. And as a 

consequence, the mathematical development of each theory would seem 

to adopt its own intuitive model for these microscopic processes, and 

thence to make the necessary approximations in accord wit h some 

limiting form of that model. 

From a "chemical" point of view, the dynamic mechanism 

whereby material is transported from place to place in solution i s one 

of the most important, yet least well understood processes occurring in 

nature. The fir st step in any bimolecular reaction is obviously the 

encounter between two reactant molecules, and thus the frequency with 

which a solvent brings reactive solute molecules into contact ca n, to a 

large extent, determine the overall rate of the ensuing reaction in that 

solvent. On the other hand, the suggested mechanisms for some com ­

plex organic chemical reactions are predicated on the a ssumption of a 
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"solvent cage effect"; that is, it is assumed that the surrounding solvent 

can encage the segments or fragments of a re-arranging molecule to 

prevent them from diffusing away from the vicinity of a reaction site. 

Some of the existing theories of diffusion in liquids are, by 

extension, 1 applicable to chemical reaction kinetics in solution. The 

theoretical models for the "solvent cage effect"2 have however largely 

been limited to a consideration of the processes that might occur 

within a small local region of a liquid, and are not readily extensible to 

full transport theories. Furthermore, the existing transport theories 

are generally each based on some limiting assumptions regarding the 

relative sizes and masses of the solute and solvent molecules, and 

therefore are not strictly applicable to the full range of possible solute -

solvent systems. 

An application of the so-called "molecular dynamics" technique 

to an investigation of diffusion in a two-dimensional dense fluid has been 

described elsewhere in this dissertation. 3 The results obtained from 

this investigation were then applied to a simple modification of an 

existing, theoretical treatment of diffusion-controlled reaction kinetics 

in solution. 4 Although the study detailed in Refs. 3 and 4, and nearly 

all of the molecular dynamics studies performed at other laboratories 

have been limited to single-component systems, the molecular dynamics 

technique should be readily extensible for simulation studies of two-, 

and even multi-component solutions. 
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Background 

In accord with the time-correlation function approach to sta­

tistical mechanics, 5 diffusion in solution may be described in terms of 

the mean square displacement and momentum and force autocorrelation 

functions 

L:(t) == ([~k(t) - ~k(O)] 2) (la) 

Ap(t) == (gk(t). gk(O)) (lb) 

Af(t) == (!:: k(t). !:: k(O)) (le) 

where ~k(s), gk(s), and f k(s) are the position, momentum, and force 

acting upon particle ~ at time § respectively. The three functions are 

each invariant with uniform time translation[~., (gk(t+s) · gk(s)) = 

(gk(t) · gk(O)) ] ; the mean square displacement and momentum auto­

correlation functions are symmetric; the force autocorrelation function 

is anti-symmetric. 

It is generally assumed (although there is now some evidence to 

the contrary6) that the momentum autocorrelation function decays 

rapidly with increasing It I and vanishes after a macroscopically modest 

time interval t 0 • It can then be shown 7 that the mean square dis­

placement and momentum autocorrelation functions are related: 

L:'(t) == I~t - ~ (2a) 

where I~ == (!) (2b) 
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and ~ = (!) (2c) 

Thus :6(t) becomes linear with slope I~ after an "induction" time t0 • 

Einstein 8 showed that the diffusion coefficient D is given by 

1 • o; D = 0 :6 (t > t 0 ) = 11 6 (3) 

where it is assumed that :6 (t0 ) is small compared to molecular di­

mensions, and suggested that the coefficient for a solute might be 

represented as: 

(4) 

where kB and T are the Boltzmann constant and the temperature, 

respectively, and y is the "friction coefficient" acting upon an indi-

victual diffusing solute particle in the particular solvent. For a rigid 

spherical solute particle of radius r, Stokes9 found: 

y = 61T77r (5) 

and by combining equations (4) and (5), the familiar Stokes-Einstein 

equation 

(6) 

is obtained, where 77 = 77(t) is the viscosity of the solvent. 

Strictly speaking, the Stokes-Einstein equation is applicable only 

to particles that are much larger--and by implication, more massive-­

than the molecules of the solvent. For solutes of smaller spherical 
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particles, Bassett10 has found the expression: 

(
{3r + 277) 

'Y = 67T77r (3r + 311 (7) 

where (3 is an empirical factor, ranging from 0 to co, called the 

"c.oefficient of sliding friction. " The physical interpretation of these 

"friction coefficients" is however somewhat questionable when the 

solute particles are the same size as, or smaller than the solvent 

molecules. 

The Brownian Motion treatment for diffusion is predicated on 

the assumption that the autocorrelation function Af(t ) of the for ces 

acting upon a diffusing particle decays much more rapidly than the 

momentum autocorrelation function Ap(t) for the particle, and thus is 

applicable in the limit of solute particles that are much more massive--

and by implication, larger--than the molecules of the solve nt. Stated 

another way, the Brownian Motion model for diffusion is one of a particle 

moving across a potential surface that varies rapidly with displace-

ment compared to the size of the diffusing particle. This may be con­

trasted with the van der Waals model, 11 which assumes that a 

diffusing particle executes straight-line trajectories between hard 

"core" collisions with the solvent molecules. Alte rnatively, the van der 

Waals theory assumes that the force and momentum autocorre lation 

functions for a diffusing particle decay over similar time intervals, 

and thus is applicable in instances where the solute and solvent mole­

cules are of approximately the same size and mass. Both theories 

predict a "random-walk" type of motion on the part of the diffusing 
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particle, but differ in the manner in which the step length and the 

stepping frequency for the "walk" are formulated. 

Several transport theories are based on a "jump" model for 

diffusion. In this model, a diffusing particle is moved through a sol­

vent by successive repetitions of a three step mechanism: 

(i) A void is opened in the solvent adjacent to the particle, 

(ii) the particle "jumps" from its initial position into the void, 

and, 

(iii) the solvent molecules move into the void left behind by the 

particle after its "jump". 

It is generally assumed that the diffusing particle must cross a poten­

tial ''barrier" in moving from its initial position into the void. 

The "activation theory"12 of transport in dense fluids suggests 

that the diffusion coefficient of a solute be expressed as: 

(8) 

where D0 is a constant and W is the sum of the energies necessary to 

form the void in step (i) and clear the potential barrier to step (ii). 

Then if D is known as a function of temperature, W and D0 can be 

determined from the slope and intercept of an "Arrhenius" plot of 

.QnD vs. 1/T. This procedure must however be considered rather 

questionable, since the microscopic structure of the solvent--and 

hence, w--must itself be temperature-dependent. 

The "significant structure "13 theory of transport is also base d 

on a "jump" mechanism for diffusion, but differs from the "activation" 
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theory in that the "significant structure" model for the liquid state 

assumes that free-moving voids, or "fluidized vacancies", are 

naturally present in the micro-structure of simple liquids. The vis­

.cosity of a dense fluid is then formulated in terms of the resistance to 

a shear stress created by molecules jumping back and forth between 

adjacent "layers" in the fluid (essentially, the old Frenkel14 treatment), 

the number of vacancies in the fluid, and an absolute rate expression 

for the "jump" mechanism. 

Analysis 

Consider a solution of a solute A dissolved in a solvent S. Let 

r A and r 8, and mA and ms be the radii and masses of the solute and 

solvent molecules, respectively, and let us assume that the ratios 

(r A/rs)= Rr and (mA/ms) = Rm can be varied at will. Then, referring 

to the diagram on the following page, we see that the Stokes-Einstein 

equation is strictly applicable only when Rr » 1 [region (a) in the dia­

gram], while the Brownian Motion treatment is applicable when 

Rm » 1 [region (b)]. The van der Waals-Enskog treatment is valid in 

the region (c) where Rr ~ Rm ~ 1, and the "significant structure" 

transport theory--being a theory of self-diffusion--is applicable only 

for the situation where Rr = Rm= 1. The "activation" theory of solute 

diffusion is theoretically applicable to the entire range of Rr and Rm 

ratios, but is probably truely valid for none. 

Most of the solutions typically dealt with in a chemistry lab­

oratory would fall outside any of the indicated regions in the diagram. 

Unfortunately, a definitive experimental study of the size and mass 
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Diagram indicating regions of Rr -Rm space where various 

theories of solute diffusion are rigorously applicable. 
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dependence of solute diffusion in real liquids is not possible--primarily 

because groups of soluble substances having molecules of the same 

size but different masses (alternatively: molecules of the same mass 

but of different sizes) do not exist in nature. But by using the molecu­

lar dynamics technique, it should be possible to simulate, and then 

investigate in detail, the microscopic dynamic processes occurring in 

the two-component fluid systems having a wide range of solute/ solvent 

size and mass ratios. 

Proposal 

The microscopic dynamic processes associated with transport 

in dense fluids are apparently so complex that it would seem injudicious 

to suggest that the mechanism for solute diffusion in real liquids could 

be completely elucidated by the results of a single experiment or group 

of experiments. The results of our previous analysis of self-diffusion 

in a dense fluid of Lennard-Jones disks3 indicate that, even at temper­

atures well in excess of the critical temperature, both the attractive 

and repulsive components of the pair interaction potential may play an 

important role in determining the diffusion mechanism. We therefore 

suggest that the initial studies of size and mass effects in solute dif­

fusion be done with systems of hard spheres. If the results obtained in 

these studies appear promising, the investigation can then be extended 

to systems of particles interacting with a physically more realistic 

~·, the Lennard-Jones) pair potential. 

Specifically, we suggest that the molecular dynamics technique 

be used to simulate a number of dense, two-component, hard-sphere 
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fluids with solute/ solvent size and mass ratios falling on a uniform 

grid in Rr - Rm space. A simple modification of the dynamics algorithm 

devised by Alder and Wainwright15 could be used for the simulation 

calculations, and many of the techniques described in Ref. 3 would 

probably be applicable to an analysis of solute diffusion in the model 

fluids. Even information regarding the functional dependence of the 

solute diffusion coefficient DA or Rr and Rm could prove quite en­

lightening. And if this functional dependence is found to show some 

unexpected features, the actual mechanism for solute diffusion could 

be examined in graphical displays of the simulation data. 
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