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ABSTRACT
Consider the Royden compactification RB* of a Riemannian
n-manifold R, [ = &%\ R its Royden boundary, A its hammonic boundary

and ths elliptic differential eguation Av = ru, & >0 on R, A
regvlar zZorel measure mf can be constructed on [T with support equal to
the closure of A = {q € A : g has a neighborhood U in i* with

J <o }, svery energy-finite solution u (i.e. =(u) = Uu) +
un g

i -~

b9 ~7 g . ) . . N
Jutr <eo, where D(u) is the Jirichlet integral of uw, can be represented
Itd

by ufzj) = lJ_‘u(q)K(z,q)de(q) where a(z,q) is a continuous function on

P
@x[7, A ri-function is a nonnegative solution which is the infimum of
a downward directed family of energy-finite solutions, A nonzero i i-

o~

function is called PB-minimal if it is a constant multiple of every
nonzero Pi-function dominated by it, THIORZ. There exists a Po-
minimel function if and only if there exists a point q € [T such that
mt'(q) > 0, THEORMY, For g ¢ A‘: . mE (q) > 0 if and only if

mO(q} >0,
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INTRODUCTION

The notion of fll-minimal functions was first introduced by
C. Constantinescu and A, Cornea in 1951,

The objective of this dissertation is to give a complete
characterization of the more general class of all Fi-minimal functions
on Riemannian manifolds following the pattern that M. liakai has
established in the case of ﬁﬁ-minimal functions on Riemann surface,
and finally to show that Pi-minimal functions are closely related to
fD-minimal functions,

In finite dimensional real tuclidean space, the boundary
of a set has a strong influence over all harmonic functions on the set,
A Riemann surface generally can not be embedded in a larger surface,
and therefore it has no natural boundary, For this purpose, Royden
introduced, and Nakal developed the concept of Royden boundary for
Riemann surfaces which is suitable for the study of a2ll harmonic functions
with finite Dirichlet integral (called HD-functions), For instance,
HD=functions satisfy the maximum prineiple on the Royden boundary,

Nakai also constructed a bounded positive resular Borel

harmonic representing measure on the Royden boundary so that together

with a harmonic kernel every HD-function has an integral representation

on the boundary and can thus be characterized. Since i’-:_)-f‘xzctions. in
particular'ﬁﬁ—minimal functions, are infima of downward directed families
of nonnegative HD-functions, it is not surprising that they can also be
represented, although in a different fashion, as integrals on the

Royden boundary, One striking result is that there exists an AD-minimal

function if and only if there exists an atom on the Royvden boundary
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with respect to this harmonic representing measure,

Recently, M. Glasner and R. Katz have shown that the concept
of Royden boundary can be carried over to Riemannian manifolds, and
that the Royden boundary is suitable for the study of not only HD-
functions, but Pe-functions, i,e. the solutions of the elliptic
differential equations Au = Fu with finite energy integral,

In this thesis, we will see that a representing measure
together with a kernel for the solutions of Au = Fu can be constructed
similarly on the Royden boundary, and most resultsfor HD-, ffi- and
fD-minimal functions can be seneralized to k-, i1~ and Pi-minimal

functions, The first main result is that there exists a (E-minimal

function if and only if there exists an atom on the Royden boundary

with respect to the solution representing measure,

wWhat is more significant is that under certain circumstances

there exists a Pi-minimal function if and only if there exists an

ﬁB—minimal function,

In Chapter I, some preliminaries about Hiemannian manifolds
are given, We will prove that the family of all solutions of Au = ru on a
Riemannian manifold forms a harmonic class in Chapter II. Although the
procedure has been referred to, this is the first systematic exposition
which brings the local properties of solutions of elliptic differential
equations in fuclidean space up to a Riemannian manifold,

In Chapter III, the Royden compactification and the Hoyden
boundary are described, Several maximum and minimum principles are
given in Chapter IV. The representing measures on the Hoyden boundary

are constructed in Chapter V. Pi- and [I-functions are carefully
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studied in Chapter VI. Finally, the two main results are pgiven in

Chapter VII.



I, ERELIMINARIRS

In this chapter the definition of a Riemannian manifold is
given, The calculus of exterior differential forms is also sketched., We
shall see that the equation Au = Pu on a Riemannian manifold, where
¥ is a Cl n-form, in terms of local coordinates is a self-adjoint

uniformly elliptiec second order differential equation, For a Cl-fUnction
:the Uirichlet integral as well as the energy integral with respect to a
n-form P are introduced.Finally, Green's formula and the Dirichlet

principle are derived from Stokes' theorem,

Ia. DEFINITIONS, Let K be a connected Hausdorff space, A
family A = { WUaidal 2 aei[} , where 1 is some index set, is an atlas
for R if

1) for each a, U, is an open relatively compact subset of R
and ¢, : U—$,(0,)C E"  is a homeomorphism, where E” denotes
n-dimensional EBuclidean space,

2) {Ua :ael } covers R,

3) Af (U1’¢l)’ (Uz,dz)e A, then élfégl is a Cz-function
whenever it is defined,

2

The space R, with A, is called a C  n-manifold, The homeomor-

phism ¢ associated to each open set U is called a system of local

coordinates on U, and the open set U is called a parametric regzion,

U is called a parametric ball if #(U) is the open unit ball in 2", U is

also called a parametric cube if ¢(U) is a n-dimensional cube

(a,by)% + ++x(ap,by) in B,



4 @ m-submanifold (m <n) Mof R is a connected subset such

that for 21l x € M, there is a pair (U,4d) € A with xe U and

¢(Uf\DD is an open subset of an medimensional subspace of Bt
Tb, DEFINITION. A C° n-manifold R is orientable if there is
-1
an atlas A on R such that det(dyo¢, ) > 0 for any ¢1f¢2 €A
whenever ¢J?¢E} is defined,

Ic. THEOR®, Every CZ n-manifold is arcwise connected,

Id, THEOREM, A 02 n-manifold is separable if and only if it

has countable base of parametric balls,

These theorems are analogues of Theorems 2-17, 2-18 of [18].

Ie., DEFINITION, A Riemannian manifold R is a connected,

orientable, separable, noncompact (for our purpose) C2 n-manifold with

a fundamental tensor gij yielding a positive definite form
g .rirj where g,6 . = g, are Cl-Hﬁlder continuous,
ij ij i

From now on, R will always denote a Riemannian manifold.

If, Ve denote inverse matrix of (gij) by (glJ) and the

determinant of (gij) by g. If we denote the local coordinates of R by

xl,..,,xn, then the arc element ds in each parametric region is given
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by ds<= ¢. .dx:idxj,
1)

A (diemannian) metric can be defined on R in terms of the

arc element ds in a natural way,

REMARK., R is a metric space where the metric topology of R

is eguivalent to the locally Euclidean topology of R,

Indeed, if we take a countable base B = {U] of parametric
balls for & (see Id). Note that B’ = {u} , which is the family of
parametric balls having same centers and 1/2 radii as those in B,
covers R, Then on each U€B’ in terms of local coordinates there is a

constant ¢ such that for every vector (yl, ,,,,y‘“) € % we have

. B o} e e
(1/c) Z(yl) < Zgijylﬂs c Ziyl)

because ).._:1 _‘ylyJ is continuous on U x 3, where 5 is the unit ball in ="
o

L.

Iz, Let AP be the set of all differentiable p-forms

), l<coa

) g 2 T o
£ o= zfad): , where a (al,.._,ap <ay <

8541 <0 fa is a covariant

a a
tensor of rank p and dx® = dx 1pA-«+Adx P, 4n inner oproduct is

determined for A by ths rule
a.b.
€1) dx® ax® = det(z * 7).

In the l-dimensional space A" this product gives the volume element

wby ww=1,

The Hodge star operator x 2 AP A"P 45 defined as




follows, If f € Ap. then *f € A™P is determined by its exterior
products
h A*f = (f-h)w

for all h € AP, This gives an isomorphism between AP and s

Ih, The exterior derivative df of a p-form f = %fadxa is

the (p+l)-form

(2} df = E:dfa A dx?
a
vhere df = £(Of, /v )dxt,
.

The Laplacian of a function (O-form) u is Au = *d*du,

Ii, To determine Au in local coordinates, we tesin by compu-

ting the local expression of *f for an arbitrary p-form f, Let

a
Zfadxal/\ « s « Adx P,
a

f—b
1]

(3) *f

b
Z(*f)bdxblj\ . o« o Adx =P,
b

For a given b = (bl,...,bn p), take the complement b= (bi,...,b;) of
il s

’ I3

<.

, b
b and left multiply both sides of (3) by dx *A . . .Adx P. On the

-

left we obtain

/ ’ 4 /

b b B ;
dx Ia. . +Adx B p*E ((dxblt\- o Adx P)efu

i

s
asb:
Zfadet(g i dw,
a

while on the right we have



Eb' b(*f).bdxln .. .adx" = Eb' b(*f)bhf-‘:

where Eb'b is the signature of the permutation b b, uwe conclude that
Z asb
* = R et (v b e
( f)b - Eb b\’f{) 4 fa det‘(u )-

3inee we shall only deal with functions (O-forms) u on R, we

proceed as follows,

Au = *d*du ,
4) du = ._él:l. dxi,

dxi

(5)  waw= ) (DINEY B gNada. . aaxdla e, paxn,
.3 T Oxt

atdu= 5.2 /z Z du_  Hyaxly . . . pdx"
1
3 O xJ I ox*

= )0 (el Bu) w
AxJ Oxli T

. . K"
1,J R

(44
-

Mu=_1 Y O (/ig?d Qu
1

15 ———

VE §5on) &

In this thesis, we shall study the solutions of the eguation

Au = *Pu, where P is a nonnegative n-form, Locally it is a self-adijoint

elliptic second order differential equation as we have just shown.

Furthermore, we shall see that, locally Au= *iu is a

uniformly elliptic differential equation,

Take a countable base B = {0} of parametric balls for R

(ef, 1d), Let B = [U'} be the family of parametric balls which have



by Pa . . . 4 vy '\' L
same centers and 1/8 radii as those in B. Note that I covers X, In
has the

sach U€ 53, by the previous result, the equation Au = *Pu

form
1 VO (yveg?d Bu) = L py,
Ve OxJ Oxt e

where pdxlA. . .adx? is a local representation for i, If vled’

which has same center as U but 1/2 radius, then there exists a

such that

o 2 Yty 202
E:g/c_. 6y, 2R )

on U where (¥L""’$1)€Ep is an arbitrary point. This was

constant e¢=1

5 | and

i
i
-

established in If,
Au = *Pu is a wiformly elliptic second order

Thus
differential equation, Hence, in particular, the results in

tl?] can be applied in parametric balls U ,
A subset  of R is said to have a piecewise

Ij. DEFINITION.
smooth boundary bG if bG consists of a countable number of C~ {(n-1)-

end C% (n=2)-submanifolds which do not accumulate in R,

e |
n = }

DEFINITION. An exhaustion of R is a family {2
RnCIRn+l for all n and

of relatively compact open sets such that

LJ{rH1:

of ® such that

THIOREM, There exists an exhaustion an]

each R, is a region with pilecewlse smooth boundary.
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Proof, By 1d, we can choose a countable base {Ui] of parametric
balls for R which covers R, Let Rl = Ul' and define inductively R to
be a connected open set which is a finite union of U's such that k% D

R,.qu Uy Clearly {R ] meets the requirement.

Ik, Integration on manifolds can be defined by means of

partition of unity. For the details see [ 177,

Consider any relatively compact subset S of R, For functions

u,ve Cl(S), the Dirichlet integral of u and v over S is defined as

DS(u,v) = fdun*dv.

o

In addition, if ¥ is a n-form on R, the energy integral with respect

to f of uw and v over S is defined as

Es(u,v) = Dg(u,v) + fuvP.
If 5 is any subset of R and u,ve CL(S), the Dirichlet and
energy integrals of u,v over S are defined as

Ds(u,v)

lim D (u,
im Dn( v)

and

]

Es(u,v) 1lim Esn(u,v),

if these limits exist, where 35, = SNR, and {i%} is an exhaustion of
R,

If S = R, we simply write
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D(u,v) and E(u,v)

instead of DR(u,v) and ER(u,v).

We also denote

1

Dg(u) = Dg(u,u)

and

Es(u) Es(u,u)

and drop the letter S when S5 = R; these are the Dirichlet and energy

integrals of u over 3,

Since DS (u) and Esn(u) are monotonic, we can conclude by
n
the Schwarz inequality that the definitions of Dg(u,v), Eg(u,v) are
independent of the choice of { Rn}.

Suppose S is contained in aparametric region., We shall

calculate the expression of DS(u,v) in terms of the local coordinates.

By (4) and (5) with v in place of u we see that

du A *dv = Z,./égij Qu_oOv_ dxta...adx™,

x*+ dxJ
Thus

Dg(u,v)= fZJgjgij du dv_ dxta...nax?,

0. STOKES' THEQREM, Let G be a relatively compact open set

in R whose boundary bG is piecewise smooth, Then for all fe An'l we

ff: fdf
bG G

have
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COROLLARY (Green's formula), If ue clG) and ve 02(5),

DG(u,v) + fud*dv = Iu*dv.

G bG

then

Proof, In fact, by Stokes' theorem

j w*dv f d(u*dv)

bG G
=fdul\*dv+fud*dv
G G

DG(u,v) + fud*dv.
G

Im, DIRICHLET PRINCIPLE, Let G be a relatively compact open

set in R whose boundary bG is piecewise smooth, If u € 02(6) and
v e CHE) such that u is equal to v outside G and u satisfies the
equation d*du = uwF in G where P is a cl n-form on R, then

EG(II) < EG(V> o

Proof, By Green's formula

Eg(u - v,u) = Di(u - v,u) + f(u - V)upP
G

DG(u - v,u) + f(u - v)d*du
G

H]
g
[ =
1
<
~
2
=]
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Hence
EG(u - V,u) = EG(u) - EG(v,u),
Now
0< 'EG(u - V)
= EG(u) - ZEG(u,v) + EG(V)
= EG(V) - EG(u),
i,e

EG(U-) = EG(V).
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II. ABSTRACT HARMONIC CLASSES

Let P be a Cl n-form on a Riemannian manifold R, By
identifying n-forms and O-forms which correspond under the * isomorphism,

we can write the equation d*du = uf as

(1) Au = Fu,

Beginning with a few simple axioms, M, Brelot [1] has
developed the abstract theory of harmonic functions (also ef, [9])
which contains the classical results of the theory of certain elliptic
differential equations as special cases. In particular, the complete
presheaf of solutions of the equation (1) on open subsets of a
Riemannian manifold R satisfies the axioms as we shall see in this

chapter,

Indeed in this thesis, the concept of abstract harmonic
classes will be used as a unifying tool and also as a mean for making
the transition from a few well-known local properties of (1) to the

global properties that will be needed,

Throughout the exposition we use the following notations:
a) for any function f and G a subset of its domain,
flG
is the restriction of f on G,
b) for any functions f and g
(fug)(x) = max(£(x),e(x))
(fng) (x)

1

min(£(x), g(x)),
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and

¢) instead of TR ot s f(x), 1lim inf
L (o]

xGA.x—.xo

f(x) and

f(x), we simply write
%
li.mAf(xo), lim ianf(xo) and lim SupAf(xo)

respectively whenever no confusion arises,

ITa, M. Brelot has introduced the following definition of a
harmonic class (cf, p, 169, [9]).

Let W be a connected, non-compact, locally compact, Hausdorff
space, If G is an open subset of W, then by bG and G we mean the
boundary and the closure of G respectively.

The functions that we shall consider on W are extended real-

valued functions with the usual lattice ordering =, By an upward

directed family of functions we mean a nonempty family such that for
any two functions f and g in the family there is a third function h in

the family with h(x)=(fug)(x) for all xeW, A downward directed

family is similarly defined.

DEFINITION. Let ¥ be a class of real-valued continuous
functions with open domains in W such that for each open set GCW the
family ﬂ(G), consisting of a1l functions in H with domains equal to G,
is a real vector space, An open set G of W is said to be regular for A
or regular if for every continuous real-valued function f defined on bG
there is a unique centinuous function H(f,G), or simply H(f), defined

on G such that H(f,G)|bG = f, H(f,G)|c€ M, and H(Ff,G)=0 if f=o0,
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Moreover the class # is called a harmonic class on W if it satisfies

following thres axioms,

Axiom I, H is a complete presheaf, i.,e. (1) if h € # with
domain U, then h|V € { for a1l open subset V C U, and (2) if fha: aEI}
C K. where h, has domain Ua and I is some index set, such that
haIUaﬂUb = thUaﬂU-b for all a,b € I, then there is an h€ H with
domain (J{U, : a € I} such that h|U =h for all ace I,

Axiom II, There is a base for the topology of Vi consisting of
regular regions,

Axiom ITI, If G is a region in W, A a compact subset of G
and x a point of A, then there is a constant M > 1 such that every
nonnegative function h € H(G) satisfies the inequality h(z) < Mh(x)

at every voint =z of A,

ITb, THXORF!, Given Axioms I and I1I, the following axioms are
equivalent to Axiom III,

Axiom III,, If F is an upward directed subfamily of H(3)

1.
where G is 2 region in W, then the upper envelope of ? is either +4eo
or a function in H#(G).
Axiom IIT,. If {hn} is an increasing sequence in  H(G) where
G is a region in W, then either 1im h = 4 or 1im h, is in H(a).
Axiom 1113, If G is a region in W, then every nonnegative
function in H(G) is either identically O or has no zeros in G,
Furthermore, for any point x in G, the set

?x = {hem(ﬁ):h?_() and h(x):l}

is equicontinuous at x,
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For the proof, see p, 373 and p, 378 of [2] as well as p., 598
of [107.

IIc, THEOREM. The family ¥ = {h : h is a solution of (1)

on U and U is an open subset of R} is a harmonic class,

Proof, Obviously the set K(G) of all solutions of (1) on
an open set G is a real vector space, Axiom I is clearly satisfied. The
collection B of all parametric balls with same centers and # radii as
those in B,which is a countable base for the topology of R as in Id, is a
countable base for the topology of R, To see these parametric balls in B
are regular with respect to K it is sufficient to see the the
corresponding balls in &' are regular with respect to the corresponding
elliptic differential equations, At this point we appeal to the results in

[ﬂ. finally, K satisfies Axiom III because of the following lemma,

IId, LEMMA, Let G be any region in R and x,y € G, Then
there exist constants a and b depending on x and y such that
au(y) < ulx) < buly)

for any nonnegative solution u € K(G),

Proof, Indeed, if x and y are in a parametric ball, then the
lemma is an easy consequence of the Harnack's theorem of [5]. Otherwise,
there exists a finite number of points ZyreeerZ, € G such that =z
and Z54,7 8re in some parametric ball UiC G where i = 0,1,2,...,n

and 2z, = Xx, Zopl = Ve Hence by previous observation, there are
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constants 8y reeerd and bl' 5 .,bn such that
241 M2y ) < wlzy) S by qulz, )

i=0,1,2,...,n, Consequently

aa,...2 u(y) < u(x) < B b ...bnu(y).

Ile., Together with Axiom III3' we draw the following useful

consequence from IId,

THEOREM. Let G be any region in R, For any x,y € G, let
k(x,y) = inf { c :(1/c)uly) < ulx) < eu(y) for all nonnegative functions
u e K (G) } , then
i) k(x,y) 21,
ii) u(y)/k(x,y) < u(x) < k(x,y)u(y) for any nonnegative
function u € K(G&),
iii) k(x,y) = k(y,x) for all x,y € G,

iv) 1imx’y_.zk(x,y) =1 for all =z € G,
v) for fixed y, k(x,y) is a continuous function of x,

Proof. i) and ii) are obvious, From ii) we see that
u(x)/k{x,y) £ uly) £ k(x,y)u(x).
Thus  k(x,y) < k(y,x). By symmetry we also have k(y,x) < k(x,y).
Hence iii) follows, To prove iv), if &> 0 is any positive number, let
& be such that N = max(1l +8§,1/(1 - 8)) <1 + &, Recall Axiom III.j

asserts that the family cfz = [u/u(z) :ué€e K(G), u>0 ] is

equicontinuous at z, Thus there is a neighborhood U of z such that for
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all x €U
| u(x)/u(z) = 1 I <5,
or equivalently
(1 - 8)u(z) < ulx) < (1 + 8)u(z).
Hence
u(z) /M < u(x) < Nu(z),

Consequently,

1<k(x,z) SN<1+ £,

i,e, 1lim k(x,2z) = 1.
X—+Z

Now, from the inequalities
u(z)/k(x,2z) < u(x) < k(x,z)u(z)
u(z)/k(y,z) < u(y) < k(y,z)u(z),

we obtain

u(y)/(k(x,z)k(y,2)) < u(x) < k(x,2z)k(y,z)uly).
Thus by definition and i)
vi) 1 < k(x,y) < k(x,2)k(y,2).
Hence k(x,y) tends to 1 as x and y tend to z because k(x,z) and k(y,z)
do by the previous argument,

It remains to prove v), Note that vi) is true for all x,y and
z € G, Thus
1/x(z,x) = k(x,y)/(k(z,x)k(y,x))< k(x,y)/k(z,y) < k(x,2)k(y,2)/k(z,¥)

= k(x,z).

Hence we have 1lim _‘zk(x,y)/k(z,y) =1, or lim _ k(x,y) = k(z,y),

X

i.e. k(x,y)' is a continuous function of x,
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IIf., From now, a function uw € Y with open domain U C R

will be called a solution on U,

The particular harmonic class of harmonic functions with open
domains in R, i.e, {h : h satisfies Ah= 0 on U, U is an open subset
of R} will be denoted by I(’.

IIg, DEFINITION., A regular exhaustion of R with respect to a

harmonic class H is an exhaustion of R such that each of its members is

regular with respect to H.

THEOREM. There is a regular exhaustion on R with respect to
voth K°and K.

Proof, Consider the exhamstion {Rn} constructed in Theorem
Ij. Note that for any parametric ball U with local coordinates ¢,
$(bR, M U) satisfies the cone condition (see (8] , p.329). Hence there
exists a barrier function at every point of ¢(bR,/MN U) on ¢(R, M U).

This means that d(bRnf\ U) is regular in E" for the Laplace equation

2 2
Fu/d # o o 0 o+ d%u/Ax = 0.
Hence by Theorem 10,2 of [19] 5 g‘(b&lﬂ U) is regular in B for the
elliptic equation (ef, Ii)
Z_Q._ (Vegtd ﬁ ) = pu,
dxd Oxt
bRnn U 1is thus regular with respect to both Ro and I{ by Theorem 3.3

of [9], and hence bR, is regular with respect to both XK' and K

by Brelot's comparison theorem (cf, Theorem 3.2, [9]).
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ITh. Consider again an abstract hammonic class ¥ on W as in
IXa, If G is a regular open set, let C(bG) be the set of all continuous
functions on bG, For esach f € C(bG), we consider the function H(f,G)
given in the definition of regularity (IIa). For each x € G, it is easy
to see that H(f,G)(x), as a function of f, is a positive' linear
functional, There is a positive regular Borel measure r(x,G) defined on

bG such that

H(f,G)(x) = E[i‘dr(x,G;)
G

for each f € C(bG), Since r(x,G)(bG) = H(1,G)(x) < o, this measures,

hence also the functional, are bounded,

DEFINITION., »(x,G) is called the harmonic measure with

respect to B"( for G at x,

ITi, Let f be lower semi~continuous on bG where G is as in 1Ih,

DEFINITION, f is integrable with respect to H on bG if it

is integrable with respect to r(x,G) for all x € G, i,e, [fdr(x,G)

= sup { Jegdr(x,G) : g€ C(bG), g< £ } < for all x € G, In this

case, we set

BiE Bl lx) = H(f)ix) = ffdr(x,G).
bG

IIj. Brelot ([1], p. 65) has proved the following lemma which

in fact is an easy consequence of Axiom IIIl.
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LiMiiA, Let f be lower semi-continuous on bG where G is a
regular open set, If f is integrable with respect to § on bG, then
H(E) e H(a).

IIk, THEOREM. Let G be & regular open subset of W for
H , £ a lower semi-continuous function on bG and x € bG, If f is bounded

from above, then

lim squH(f)(x) < lim sup, f(x).

If £ is bounded from below, then

lim inf, £(x) < 1im infH(L)(x).

For the proof, see [ 9] on p. 173.
IIl1., Let W be as in IIa, A family H of extended real-valued
lower semi-continuous function with open domains in W is called a

superharmonic class with respect to 3’( if

1) for all v eﬁ with domain G, v(x) < « for some x in
each component of G, and

2) for all xe G such that v(x) < «© and for any
neighborhood U of x, there is a regular region V with x€ VCVC U

such that v is integrable on bV and vw(y) > H(v,V)(y) for all v in V,

A useful observation is

LEMMA, If wu,v € M with same domain, then u A v, u+ v and

au are in H if a>0,
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Functions in H are called Superharmonic functions with
respect to .

We say an upper semi-continuous function u belongs to the

family ﬂ. the subharmonic class with respect to ¥, if -u ¢ ﬁ and

u is called a subharmonic function with respect to M.

If G is an open subset of W, we let E(G) denote the class of
functions in H with domain G and ﬂ(G) the class of functions in M
with domain G,

IIm, THEOREM. H=Hn K.

Proof, Obviously Ac ﬁ n ﬂ. Conversely, for any
u € -g N ﬁ with domain G, u being both lower and upper semi-continuous
must be continuous on &, Furthermore, for any x € G, there is a regular
open neighborhood U of x with U C G, By the super- and sub-harmonicity
of u, we have ul|U > H(u,U) > u1U, i.e. uIU = H(u,U), By Axiom I, ‘\
u € ¥(G). Hence ﬁﬁﬁ c K.

IIn, THEOREM, Assume 1 € M(W). Let G be a region in W and
a,b are constants with a <0< b,

1) If v e-ﬁ(G) and v > a, then either v > a or v

I
&

2) If ue A(G) and u < b, then either u<b or uz

l
o
.

3) A nonconstant function in ¥(G) takes neither a

nonnegative maximum nor a nonpositive minimum in G,

For the proofs of this and the next theorem, see [9], p. 178,
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ITo, THEOREM, Let G be a relatively compact open subset of W
and v a nonconstant function in HM(G). Let ¢ be a nonpositive number
such that ¢ < lim inva(x) for each x € bG, If 1 € H(G), then

v>c¢c on G,

In view of this, we shall henceforth make the assumption that
1e H(w.

IIp, Some relations between harmonic functions and solutions
on R are given below,

THEOREM, Let ?; {he ®*:h>0} anda X ={uek:

u < 0}, Then %' X and KK, In particular, 1€ K(R).

Proof, To prove the first assemtion it is sufficlient to show
that X° = fueX :u>0}lc K. Soletu e %" and any z in the
domain of u, For any regular neighborhood U of z which is contained in
the domain of u, let v be the element of X(U) such that v|bU = u|bU,
We want to show that wu(z) > v(z), If this is false, then let
V= {x € U : u(x) < v(x)} . Note that v > 0 on U by the regularity of U,
and A(v-u)= Av=Pr>0 in V, Hence v - u 1is constant on V (see
['-!-]. p. 326), which means that V is empty. Thus u> v on U, i.e, ueK,

The second assertion can be proved similarly,

Ilq. From now on, functions in ? and X° will be called

super- and sub-harmonic functions respectively, while functions in ¥

and JK will be called super- and sub-solutions respectively.
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ITr. Some classical theorems about solutions of Au = Pu

are particularly easy when viewed in terms of harmonic classes.

THEOREM. Let {un} be a sequence in H(W), If {un’] converges

uniformly on each compact subset of W to a function u, then u € H(w).

Proof., For all xe€ W, there is a relatively compact regular

open neighborhood U of x, In terms of harmonic measure r(x,U)

un(x) = fundr(x,U).
bU
Since u, converges to u uniformly on compact sets, in particular on
bU, we have
u(x) = fudr(x,U).
bU
This is true for all x € U, hence u is integrable and u € H(U).

Hence ue€ H(W) by Axiom I,

IIs. LIEMMA, Let U be any relatively compact repgular open
subset of W, For any u € Y(W), there exist nonnegative functions
ut u~ € M(U) such that u=ut - u~ on U,

Moreover, w? and u™ are continuous on .ﬁ., and u+ibU =

uv 0|bU, u”|bU = -(un 0)|by,

Froof. Let u" = H(uv 0,U) and u = H(-(un 0),0),

CORCLLARY. u" < supU[ul , and u < supulul.
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Proof, This is an application of Theorem llo.

1It, THEOREM. Let {un} be a bounded sequence of functions
in K(R) ( K°(R), resp.). Then there is a subsequence which
converges uniformly on compact subsets to a function u € K(R) (K°(R),
resp.).

Proof, Consider R as a metric space (cf. 1If). We are going
to prove that {un§ is an equicontinuous sequence of continuous functions
on any compact set., Because of the boundedness of {un}, Ascolil's
theorem asserts that {un} is a normal family, i,e, {un} has a subsequence
converging uniformly on compact subsets to a function u, By Theorem Ilr,
u e K(R).

Indeed, for any point q € R and any relatively compact

regular open neighborhood U about q, we have by Theorem Ile

ul(a)/k(p,a) £ up(p) £ kip,a)ul(a)

for all p e U, where u; (and u;'later on ) is defined in the Lemma.
Hence

(1/x(p,a) - L)ul(q) < ul(p) - upa) £ (k(p,q) - Lul(a).
Thus

u(p) - up(a)

IA

ur(a) max( k(p,a) -1, 1 - 1/k(p,q) )

< M max( k(p,q) -2, 1 - 1/k(p,q) ),

where M is a bound for {u, }, Similarly

wr(p) - upla)| £ M mex( k(p,a) - 1, 1 - 1k(p,a) ).
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As a consequence,

wp) -w ()| < 24 max( k(p,q) =1, 1 - 1/k(p,q) ),

where the right hand side tends to 0 independently of n as p tends to g
since k(p,q) is a continuous function., Hence {uns is equicontinuous at

q. Since R is a metric space, {uh } is equicontinuous on any compact

subset of R,
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IIT, ROYDEN COMPACTIFICATION

In a region of Euclidean space, the boundary of the region plays
an essential role in the study of solutions of elliptic differential
equations, The Royden compactification R* of a Riemannian manifold R is
used to give the manifold a boundary [ = R* N\ R, the Royden boundary,
with which the class of all solutions with finite energy can be analyzed,

The Royden compactification is constructed by means of Royden
algebra which is the collection of all bounded Tonelli functions with
finite Dirichlet integrals, In this chapter, we shall study the
properties of the Royden algebra and desecribe the construction of the
Royden compactificatién.

An intrinsic part of the Royden boundary is the harmonic

boundary, Its importance will be examined in next chapter.

IIIa, DEFINITION, A real-valued function f on R is a Tonelli
function if for each parametric cube U with local coordinates ¢, where

$(U) = (al,bl)x .. -x(ah,bn), f satisfies the following properties:

-1
1) for each i the function X3 —s fod (X)10000% ) is

absolutely continuous for almost all (with respect to the Lebesgue

measu-re) ()c].'.."xi—l’xi‘.'l’...'xn) € (al'.bl)x. ¥ 'x(ai_libi_l)x
(ai‘fl'bi*‘l)x. e '“(anrbn)o

2] of bxﬁ‘ are square integrable over any compact subset of
g

$(U).
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IIIb, Let M(R) be the set of all bounded Tonelli functions
on R with finite Dirichlet integrals, M(R) will turn out to be an

algebra as we shall see in the next theorem, We call M(R) the Royden

algebra,

THEOREM, M(R) is a commutative algebra with identity under
the usual algebraic operations,

For any f € M(R), 1/f € M(R) if and only if inlefl > 0,

Froof, Clearly M(R) is a real vector space, It is also clear
that the constant function 1 is also in M(R) serving as the identity.
Now we are going to show M(R) is an algebra,

For any f,g € M(R), fg is a bounded Tonelli function, Let

K be a bound for f° and gz. Then on any relatively compact 3,

Jatzer a vaczo)
S

Dy (fg)

i

f(gdf + fdg) A (g*df + f£*dg)
S

= fgzdf A *df + 2fg df A *dg + £2dg A *dg
S
< K (Dy(f) + 2D,(f,g) + D (g))

< K (D5(£) + 2/D,(£)D,(g) + D;(g))

K (/O5(D) + /D (2)),
Thus
D(fg) < K WD(T) + /D(g))° <= ,

i.e, fg e M(R). Hence M(R) is indeed an algebra,
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Finally if f€ M(R) with infR|f| > 0, Then supRIl/fl <L

for some L, Note on any relatively compact set S

f a(1/£) A *a(1/£)

S

DS(llf)

f (df A *af)/£"
3

< v,
Thus
D(1/£f) < L“D(f) <o,
i.e, 1/f € M(R).

ITIc, THEOREM., M(R) is a lattice under the usual lattice
operations v and n.

Proof. Let G={x € R: £(x) > g(x) }. Then

Xfwveg)l

DG(f Vgt DR\GD(f Ve

= Dy(f) + DR\G(g)

< D(£) + D(g)
<oo ,

Similarly,

D(f N g) < D(£) + Dig) < =

I1Id, We shall make use of the following notions of

convergence in M(R).



31
Let {fn} be a sequence in M(R), We write

1) f=Clim f if {fn] converges to f uniformly on any

compact subset of R,
2) f=Blim f, if {fn] is bounded and f = C-lim f .

3) £ = U-lim £, Af {f } converges to f uniformly,

n
L) £ = D-lim fn if 1im D(f - fn) = 0,
5) £ = B-lim f, if 1lim E(f - fn) = 0,

6) f = XD=lim A (or £ = Xf=lim fn) if f = D-lim £ (or

f= E-lim f ) and f = X-lim f , where X can be C, B or U,

IIle, THEOREM, M(R) is BD-complete, i,e, complete with

respect to the BD-convergence,

Cf. [12], Lemma 1.5, This theorem means, in part, if £ € u(R),

].-.}
i

B-lim f, and lim D(f_-f,, ) = 0 for all p, then f € M(R) and

p

H
1}

BD-lim £,.
TIIf, THEOREM. C (R) M M(R) is dense in M(R) with respect
to the UD-convergence,

In fact, this is Theorem 1 of [12]. We are more interested

in the followling corollaries,

COROLLARY (Green's formula), Let G be a relatively compact
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open subset of R with piecewise smooth boundary bG, If u € M(R) and

v e 02(5), then

DG(u,v) + fud*dv = fu*dv .
G bG

CORCLLARY (Dirichlet Principle), Let G be a relatively
compact open subset of R with piecewise smooth boundary bG, If
u,v € M(R) such that u= v on R\G and u satisfies Au= Pu in G,

then EG(u) < EG(V).

IIIg. The Royden compactification of R is a compact Hausdorff

space R* such that

1) R is open and dense in R*,

2) functions in M(R) can be extended as continuous functions
to R*, and

3) M(R) separates points of R*.

The compactification is unique up to homeomorphism fixing R

elementwise,

We shall give a description of the construction of the Royden
compactification in section IIli, For the details, see p, 184 of [14]

and p, 159 of [13] or cf, any exposition on the Gelfand representation,

IITh, For all functions f € M(R), we define a norm

"f" = JD(T) + supR|f| .

Then

THEORMM, M(R) with the norm ” ” is a Banach algebra,
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Cf, IIlb and Iile.

I1Ti, We denote the dual space of M(R) by M(K)* and consider
the weak* topology of M(R)*, Let us consider the set H* of all
multiplicative bounded linear functionals L with L(L) = 1, 1t can be
proved that R* is a subset of the closed unit ball and is closed in the
weak* topology of M{(R)*, Furthermore R* is compact and Hausdorff, We
define a mapping g from R to R* such that for every p € R we have
o(p)(f) = f(p) for all f € M(R), It is easy to see that g is oﬁe-to-
one and continuous, Moreover g(R) is open and dense in R*, We now
identify R with o(R). We can see that the topology of R is the same as
the relative topology of R in R*, Now we are ready to extend every
function in M(R) to R* continuously. For every f € M(R), we set
f(L) = L(f) for all L € R*, In particular if pe R, then
f(o(p)) = o(p)(f) = £(p). It turns out that the function f is indeed a
continuous extension of f, That M(R) separates points of R* is
immediate.

R* constructed above is the Royden compactification of R,

From now on, if G is any subset of R or R*, 5 always means

the closure of G in R*,

IITj, THEOREM. M(R) is dense in C(R*) with respect to the

wniform norm,

Indeed, the proof is an application of Stone-Welerstrass

theorenm,



34
IIIk, This and the Urysohn lemma lead to the following

consequence,

THEOREM, (Urysohn property) Let K and K, be any two

disjoint compact subsets of R¥, For any two distinct real number ry, ro,

ry < Ty, there always exists a funetion f € 1(R) such that
nsfsr, and glg, =%« A= L2,

Proof, By Urysohn lemma, there is a function g e C(R*) with
glKl =1 -2 and g|k, = r, + 2, By IIIj, there exists a function
h€ M(R) with h|Kj <r -1 and h|K; > r, + 1. Then the function

f=(hvu rl) N r, € M(R) meets the requirement,

IITI1, DEFINITION. [ = R*\R is called the Royden boundary

of R,

The following proposition is due to Nakai (Proposition 6,

[167].
PROPOSITION. GN\bG is open in R* for any open subset G of R,
IIIm, If we let MO(R) be the set of functions in M(R) with
compact support in R, then we have the following theorem.
THROR®M. [* = {q € R* : f(q) = 0 for all f € K (R) }.

Proof, If ge M (R), then f|[(= f|R*\R= 0 because the

support of f is in R,

On the other hand, for any q € R, there is a relatively



35

compact open neighborhood U of q in R, Note that R*~U is compact in
R*, By virtue of Theorem IITk, there is a function g € M(R) with
g(q) =1 and g|R*\U= -1, Let f= gu 0€ M(R), Note that

supp CUCR and f(qg) > 0, Thus f € MOCR).

IIIn, Let Mp(R) be the BD-closure of MO(R) in M(R), then
A ={ae B* : £(q) =0 forall fe My(R)}

is called the harmonic boundary of R,
The following is obvious,

LEMMA. A is a compact subset of I e

I1Jo. Now we consider the Royden compactification of

subregions,

Given any region G in R, G itself is a Riemannian manifold,
Hence we can consider the Royden compactification G* of G. It is not
surprising that there is a canonical relation between the Royden

boundaries of G and R,

The next two theorems are Propositions 7 and 8 of [167],
IIIp, THEOREM. There exists a unique continuous mapping j
from G* onto G fixing G elementwise, where G* is the Royden compactif-

ication of G and G the closure of G in R*,

IIIq, Clearly G\G = b6\ ((G\BGHN[ ). If we let
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_—e Y pre— -1, .,
B(G) = (G\BG)M [, then G*\G= j (bG)yw J (B(&)). Moreover

THEOREM, J is a homeomorphism of G j'l(B(G)) onto

G B(G).

Later on (cf, VIIe) we shall talk about representing measures
on the Royden boundaries, and shall show that a Borel subset E of B(G)
-1
has positive measure with respect to R* if and only if j ~(E) has

positive measure with respect to G*,



IV, HARMONIC PBOUNDARY

We now change to the following more traditional notations,
For any open subset G of R, we consider the sclutions of Au = Pu, and
let
PX(G) = {u € K(G) : u satisfies the property X on G}
where X can be a boundedness property like K (nonnegative), B (bounded),
D (finite Dirichlet integral), E (finite energy integral) or combinations
of these,
Also for harmonic functions, we let
BX(G) = { u € X°(G) : u satisfies the property X on G }
where X can be N, B, D or combinations of these,
We say that u is a PX-function on G if u € PX(G), or u is an

Hi~-function on G if u € HX(G).

As we shall see, A will play a significant role in
determining the energy-finite solutions, Indeed, in this chapter, we
shall state that energy-finite solutions, in particular Dirichlet~finite
harmonic functions satisfy the maximum principle on A . Moreover, an
energy-finite Tonelli function f can be uniquely decomposed into a sum
as f=u+g where u € PE(R), uja= fla, BE(u) < 5{f) and
faf < max, [£].

Glasner and Katz [6J have proved the following result for the

harmonic boundary A :

A = ¢ if and only if K is parabolic (i.e, there is no hamonic

Green's function on R),
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Since we want to study the Riemannian manifolds with nontrivial energy-
finite solutions which are always nonparabolic [?], we shall always have
nonempty harmonic boundaries,

At the end of this chapter, we shall introduce a subset AP

of A which will eventually determine all re-functions,

IVa, LEMA. Let M(R) = {f : f is Tonelli and D(f) < w}.
Then M(R) is a lattice with respect to the usugl lattice operations v
and N ., Moreover, functions in N(R) have continuous extended real-

valued extension to R*,

The proof is simple, for if f is a nonnegative function in E:l'(ﬂ).
then h= £/(1 + f£f) is a nonnegative function in M(K) which has a
continuous extension h to R* by IIIg, It is easy to see that
T = -1';/(1 = h) (f(q) = © if h(q) = 1) is the continuous extension of
f on R*, In general if f is not nonnegative, then f is a difference of

two nonnegative ones in M(R), i.e. f= (fu 0) - ((~f) u 0).

IVb, Clearly, HD(R) and PD(H) are subsets of E(R). Furthermore

we have the following theorems,

THEOREM (1~1axi~_rgum and minimum principles). &very HD-function

on R takes its maximum and minimum on A.

cf. [14], p. 192,

IVe. THEOREM (Maximum principle), 1). fvery nonnegative
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PD-function on R takes its maximum on A.

2). A PD-function on R is nomnegative if it is nonnegative

on A.

cf, [71, Theorem 2,

IVd, Let &(R) = {f : f is Tonelli on R and E(f) < }.
Sinee E(R) € H(R), functions in L(R) have extended real-valued

continuous extension to R*,

THEOREM (Royden-Nakai decomposition theorem). Every function

f € fi(R) has the unique decomposition f = u+ g with
1) uweprE(R), geBR and f-ul|A=o0,
2) |u| < supAIfl,
3) if v is a supersolution on R and v > f, then v2>u,

L) B(w) < E(f).

For the proof, see Theorem 3 of [ 7] and of, p. 190 of [14],

IVe, DEFINITION. A compact set K C R* is a distinguished

compact set if b(KMR) is piecewise smooth and KM R = K,
A useful generalization of the previous theorem is

THEORHEM, Let K be a distinguished compact set in R*. Lvery
function f € B(R) has the unique decomposition f = u+ g with
1) u€ PE(R\K)N E(R), £ & BE(R) and f - ulAUK = 0,

2) ol £ swa g)u nxn ) L,
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3) if v is a supersolution on RNK and v > f on R\K,
then v > u on R\K,

By E(u) < B(£).

ct, [7} p. 350,

IVf, Let us denote by T the correspondence which assoclates
to every f € Z(R) the unique u e FE(RNK) in the decomposition
theofem IVe, i,e. we have

an=u.

We denote
m= TT¢

where § is the empty set, m, is called the solution projection on R with

K
respect to K (or simply the solution projection on R if K = @),

When P z 0, the corresponding projection is denoted by TTK .

and is called the harmonic projection on R with respect to K (or simply
the harmonic projection on R if K= @ and denoted by n°).

It is worthwhile to note that projections are linear mappings.

IVg, LEMMA, If F is a closed subset of I NA , then

there is a positive superharmonic function v which is in M(R) such that

v=0 on A and v=e onF,

cf. [3], Hilfsatz 9.1, p, 101,

IVh, MINIMUM PRINCIFLE, Let G be an arbitrary region in R

and u a2 supersolution on G bounded from below, If for some nonpositive
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number ¢, lim inqu(q) >c forall qe GV (ANT), then u2 c,

Proof, We extend u to u’ as a lower semi-continuous function

on G by defining
u'(p) = lim inqu(p)
for all pe E\G. Note u'IG = u, For any b < c, let
U= {peG\G:u(p)>b},

U is open in G\G since u’ is lower semi-continuous, and
G (AN TG)C U, Note F= (GNG)N\U is a compact subset in R*, in
particular, F is a closed subset of TNA. By the lemma, there is a
nonnegative superharmonic function v € M(R) such that v[F = 0
Since v is also a supersolution by IIp, the function w= v + v/n
is a supersclution on G by Lemma II1l, where n is a positive integer.
Observe that w> b on G\G, Being a lower semi-continuous function
w takes its minimum a on G. By minimum principle IIn, w can only take
its minimum on the boundary GN\G, Hence w 2 a> b, and indeed
w>Db on G. Consequently w2 c on G, As n tends to © , we see that

u>c onG,

IVi, We have seen that the harmonic boundary A plays a
significant role determining the energy-finite solutions, and hence
‘Dirichlet-finite harmonic functions, However, in L7} it is shown that
for energy-finite sclutions, A is too big, More precisely, an open
subset AP of A to be given below has a strong influence on

solutions,

DEFINITION. The n-form P is said to have finite integral at
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p €A if there is a neighborhood U C R* of p such that UJ'n RP < %, The
set of all such points pe A will be denoted by AF.

An immediate observation is

Lama, A is open in A,

IVj., LBMA. If f 6 B(R), then f|ANAF = 0.

Proof, If f(p) > 0 for some pe AN AF, then there is a
ﬁeighborhood U of p such that flU >8 >0 for some &, We have

o> E(f) > [ fZP_>_ azf E, hence [ F <o, i,e. p € AY. This
UNR UNR UNR

is, however, impossible,

IVk, As a corollary of IVc and IVj, we have

THEOREM. (Maximum principle), 1). E&very nonnegative rE-

function on R takes its maximum on AY,

2). A PE-function on R is nomnegative if it is nonnegative on

N

IVl., It is worthwhile to note that

AP = A if £P <, In particular, Af = A when F = O,
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V., REPRESENTING MEASURES

A representing measure on the fRoyden boundary for the class of
HD-functions was constructed by Nakai [14]. In this chapter we generalize
his results to the eguation Au = Fu, A relation between these two kinds

of representing measures is given in Ve,

Va, Let Z(R) be the set of all bounded, energy-finite Tonelli

functions,

THEOREM., £(R) is a subalgebra as well as a sublattice of M(R).

£(R) has identity if and only if [P <o ,
R &

Proof, For any f,gz € B(R), it is obvious that af € E(R)
for any real number a, Also by Schwarz's inequality

B(f + g)

B(f) + 2B(f,g) + E(g)

< B(f) + 2/e(£)E(g) + E(g)
< co

»

Horeover,

E(fg)

H

D(fg) + Iizgzl"

< D(fg) + supRg2 I £2p

<o .
S0 E(R) is a subalgebra, On the other hand, we let G= [x € R :
fx) > g(x)}, then

B(fue) = 8. ue)+ B G (fue)
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= E(f) + E(g)

- oo

Similarly E(f N g) <=e , Hence E(R) is also a sublattice.

Vb, THHEOREM. E(R) is BE-complete,

Proof. Let {u ] be a BE-Cauchy sequence in E(R). Clearly fu.}
is also a BD-cauchy sequence in M(R) which is BD-complete, Hence a ED-
limit u € M(R) exists, Consider a measure on R defined by

A(G) = {}P for any Borel set G and the complete space L2(R,\) of all

square integrable functions with respect to A on R. Since fuh} is
E-Cauchy, it means 1lim E(un“_m - “n> = 1im(D(un+m - un) +

I(uni-m - un)zP)= 0 for all m, In particular, lim f(un4,m - un)ZP = 0
for all m, Hence {un'; is a Cauchy sequence in LZ(R,A.). Since

lim 9 = u, we have lim f(u - uh)zP =0, i,e, u= BE-limuy.
Finally, E(u) = E(%) + E(u - uh) < e by the triangle inequality, Thus
u € E(R),

Ve, Since E(R) is a subset of M(R) whose elements are continu-
ous on R*, the restrictions of functions in E(R) on A¥ are continuous

on AP . What we have more is

THsORRY. E(R) | AP = {e]af < e B(R)}  1s dense in C,(AP)

with respect to the uniform norm.

Proof. By Lemma IVj f£= 0 on ANAY for all f € E(R).

For any positive &, the set K = {p e A : f(p) = E} is a compact
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subset of A and also a compact subset of AF ., Obviously f|AP\K <&,
Hence E(R)|Apc CO(AP). We are to show that E(R) separates points of
AF. For any two distinet points aq,,9, € AP, there is a neighborhood U

in R* of 9 which excludes 1, such that Ur{RP < o, By the Urysohn

property (IIIk), there is a function f € M(R) with 0< f <1,

f(q) =1 and supp £ CU. We have E(f) = D(f) + [£°P < D(f) + Ur{RP

<o, Hence f € E(R) and f(ql) # f(qz). As a by-product, we see that
E(R) vanishes identically at no point of AP . The Stone-Welerstrass

theorem assures the denseness of E(R)\AP in C( N).

Vd, We consider the projection 1 introduced in IVf, For a
fixed z_ € R, we define a linear functional s on E(R)lﬂp by
sf = mf(z )
for all f in E(R). By the decomposition theorem IVd and Theorem IVk,

|sf] < supAPlfl .

Hence s is a positive bounded linear functional on E.(R)iAP with norm
lsll = sup{|st] : £ € 2R), su]_:aplf|= 1} < 1, since E(R)|A is dense in
Cy AP) which is complete with respect to the sup norm, we can extend s
to Co([!;P ) by an obvious limit process, Thus s becomes a positive
bounded linear functional on C,( A ) with ||s|| < 1. By the Riesz
representation theorem, there is a unique bounded positive regular
Borel measure m on AP such that

sf = ffdm.

Ar’

We can regard m as a measure on [ by defining
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m(G) = m(G N A)
for all Gcl .
When F = 0, we denote the corresponding measure by m°,
The measures m and m® will be called the representing measure

with center z for solutions and harmonic functions respectively.

Ve, THEOREM, 1) m is a positive bounded regular Borel
measure,

2) v(z ) 2 Jvd.m for all supersolutions v € &(R),

3) suppm= AP (where support of m is considered relative to
the topology of AP and by definition m(["\AF) =0 ),
B) m, satisfying 1), 2) and 3), is unique,

5) m( AF) <1; m( Ap) =1 if and only if F = O,
cf. [14], Theorem 2.1,

Proof, 1) is true by Riesz representation theorem. For any
supersolution v in E(R), v > nv by IVd. Hence

v(zy) =mv(z,) = sv = [ vdm,

Thus 2) is proved,

Now suppose S = supp m 1is a proper subset of AP. 3ince S is
¢losed in AP, the set AP NS is open in AP. Thus for an arbitrary
qQ e AP\S, there is an open neighborhood U in R* of q such that unaf

is disjoint from 3 and ﬂnRP <o , By the Urysohn property, there is

a function f in M(R) such that 0< £< 1, supp fc U and f(q) = 1.
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Note that £(f) = D(f) + Isz < D(f) + | F <o, Thus f ¢ B(R), so
UNR

we can apply 7 to f, Note also that wf > 0 on R, in particular

sf = mf(z_.) > 0, Hence | dm>» [ fdm = sf > 0., But Un AF Py s,

Thus the contradiction establishes 3),

If m is a measure with support in AP satisfying 1) and 2),
then for all f in E(R),

ffd:g_: TTf(zo) = ffdm

AP AP
by 2) and the decomposition theorem IVd. Since E(R)IAP is dense in
Co( AP), such equalities are also true for functions in Co( AP). That
m=m 1is then a consequence of the uniqueness part of the Riesz
representation theorem, Hence 4) is true,

m( AF) = ”s“ <1 by Vd and the Riesz representation theorem,

If P=0, then AP =A and m=m® . We have
m(A) = m®(A) = fdmc‘ = 1L(z,) = 1,
A

since in this case solutions are harmonic functions, Conversely if

m( AF) = 1, then [[s”: 1. For any integer i, however large, there is
a nonnezative function fT in C( AF) such that sup f¥ = 1 and

Il = sfil< 1/i. Since E(R)IA}) is dense in Co( AP). to each i there is

a sequence {f:;} C 5(R) of nonnegative functions such that

3 i -
limn_’ w(supAP‘f = fnl ) =0,

i
sup, f- = 1
Aa'." n
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(replace by fi/(sup. f1 ) otherwise) and
n AP n
sup lfi - i‘ll < 1/i.
A? i
Note that sfl = lim sfi, {nfi} is a sequence of bounded solutions,
n—so " 'n i
By IIt, it contains a subsequence, again denoted by {nfi} .

converging uniformly on compact subsets to a solution u, Observe that

= 14 ] . i
u(zo) = 1lim ﬂfi(zo) = lim sfi
and

Il - sfil < ll - sfil + lsfi - sle

2 ] i
<1/i+ USllsugaflf - £

<1/i+ 1/i

= 2/i,
Hence u(zo) = 1, Since {nf%‘ is a sequence uniformly bounded by 1
(see IVd), wu is also bounded by 1. Thus u takes its maximum at z, € R.
Hence u = 1 by maximum principle IIn, This is possible only if

Pe=s 0,

Vf. The representing measure m is obtained with respect to a
fixed point 2z, € R, Similarly, we can construct a representing measure
with respect to any other point 2z € R and denote it by m, (mz if

r

0). It is useful to know the following theorem.

THEOREM., If f € Co( AP), then u(z) = ffdm" is a
» I

solution,
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FProof, If f is a PE=function, then f = mf and hence

f(z) = nf(z) = [fdm, by Ve,2).

Now if f € Cy( AF), then there is a sequence [fnl < B(R)
such that f = U-lim £ on AP, Note that nf, are PE-functions and

supR* nfm - nfnl < supAP[nfm - TTfnl

= sup (fm - fnl i

AP

which tends to 0 as m, n tend to © , Thus {nfni , being a
uniformly convergent sequence of continuous functions on R*, has a
limit u which is also continuous on R*, By IIr, u is a solution and

u(z) = lin wf, (2z)
lim ffndmz
AP

[em

AP
u(z) ,

]

i.e. u is a solution,

Vg. LEMMA. m, is absolutely continuous with respect to m.

Froof, For all nonnegative function f € Co( AP).

uw(z) = [fdm, is a nonnegative solution by Vf, By Ile,

ffdmz < k(z,z,) ffdm.

Since Cg( AF) is dense in both Ll( Ap.mz) and Ll(Af,m), we can
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see that m, is absolutely continuous with respect to m,

Vh, LEMMA, For any z € R, there is a Radon-Nikodym
derivative K(z,q) of m, with respect to m with the following
properties,

1) X(z,,9) =1 for all q e A,

2) K(z,q) =0 on R=(IT \ AF),

3) K(z',q)/k(z,2") < K(z,q9) < k(z,2')K(z",q) on R x pF

except on a set E(z,z’) € A¥ of m-measure zero,

Proof, 1) is satisfied because m, = m by definition. 2)
o
is obtained since m is concentrated on AP . It remains to prove 3),

For any nonnegative f € C_( AF) we have by VE and IIe,

(1/x(z,z")) fdm, sffdmz < k(z,2") ffdmzz

or
(1/k(z,2")) IE(Z’ »q)f(q)dm(q)
Sf.é(mq}f(q)dm(q)
< k(z,2") f}S.(Z’.q)f(q)dm(q).
Hence

K(z",9)/k(2,2") < K(z,q) < k(z,2")kK(z",q)

except on a set B(z,2' ) € AY of m-measure zero,

COROLLARY ., 1/k(z,zo) < Klz.q) £ k(z,zo) on K x AF  except
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for q in a set E(z,z,) of m-measure O,

Proof, Let =z’ =z, in 3) and apply 1).

Vi, THEOREM. There is a real valued function (kernel) K{z,q)
defined on' Rx*[" such that it is continuous on R, and

1) K(z,,a) =1 on AF,

2) K(z,9) =0 on Rx([\aF),

3) 1/k(z,7,) < K(z,a) < k(z,2,) on R x AF,

4) for any fixed 2z € R, K(z,q) is a nonnegative Borel
function on [ .

5) for any supersolution v € E(R),

v(z) > rfii(z,c1)1r(c4)c3:|1(q).

6) K(z,q) € FN(R) except for q in a set of m-measure O,

REMARK, When P = 0, the corresponding kernel will be

denoted by k°(z,q) and it was introduced in [14] , p. 196.

Proof, Let T be a countable dense subset of R containing Zoe
Set E = U{E(z,z’) : 2,2 € T} where E(z,z‘) is as in Vh, Note

that m(E) = 0, For any q € A'NE and z,2°¢ T, we have

K(z’,q) /k(z,2") < K(z,q) < k(z,2")K(z'q),
or
(1/k(z,2") - 1)K(z",q) < K(z,q9) - X(2',q9) € (k(z,2") - 1)K(z ,q);

thus
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|K(z,a) - K(2’,q)] < K(2’,q) max(k(z,2") = 1, 1 - I/k(z,2"))
< k(z',2,) mex(k(z,2’) - 1, 1 = 1/k(z,z")).
We obtain, for qe APNE |

(7) lim ) l_IS,(Z.q) —.§(Z',q)| = 0
: 2,2 € Tyz,2'—2"

for a1l z € R by ITe, Note that (7) is also true for all q e [ ~ AP
by Vh,2)., We then define

Um,, K(z,q) if qe [[NE
K(z ,q) =
1 if q € E,
For fixed q e [, K(z,q) is a continuwous function on R, To
see this let ¢ é E and 2z € R be any points, Pick any sequence {z.n}
converging to z, For each n, let x, € T such that the Riemannian
distance between x, and =z 1is less than 1/n, and
I_Ig(zh,q) - K(z-n.q)l < 1/n,
By the triangle inequality, {xn} is a sequence converging to z, Thus
K(z,q) = 1im E(xn.q)
by definition, Then
|k(z,q) - K(z_,0)| < [K(z,q) - E(zn.q)l + lﬁ(xn,q) - K(zn.q)l.
where both tefms on the right tend to 0. We have
K(z,q) = lim K(zn.q).
Thus K(z,q) is continuous on R when q ¢ E, But obviously, K(z,q) is
continuous when q € E.
1) and 2) are satisfied since K(z,q) agrees with K(z,q) when
z € T or when q¢AP.

K(z,q) satisfies 3) because of Corollary Vh and the continuity
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of k(z,z,).
4) is true by the construction of K(z,q).
To prove 5), let v be any supersolution in S(R), 2 € R and
z, € T such that =z = 1im z, . Note that
K(z,q) = lim_g(zn,q)

m a, e, and by Ve,2)

v(z)) 2 f_lg(zn,q)\r(q)dm(q).

By the continuity of v and Lebesgue'sdominated convergence theorem

v(z) > fK(Z.q)v'(q)dm(q).

Thus 5) is proved,
Now it remains to prove 6)., For any nonnegative f € C_( AF)

w(z) = ff(q)dmz(q) is a solution by Vf, and hence is continuous, Thus
w(z)

n

limT wi(z)

]

Lim ff(q)_l_g(z,q)dm(q) .

Recall K(z,q) = limT K(z,q) and apply the Lebesgue dominated

convergence theorem again, we have
w(z) = ff(q)K(Z.q)dm(q).

Now cover R by a family {Ui v i= 1,2,...} of parametric balls, fFor
any z € R, 2z € Ui for some i, Recall the harmonic messure r(z,Ui}

with respect to the harmonic class J for U; at z as defined in 1Ih,
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ff(q)K(z,q)dm(q)
r .

f ff(q)K(:c.q)dm(q)dr(z,U )(x)
bu; [

[ 2@ [ xtxiadar(a,n,) xdanta)
I bUi

by Fubini's theorem. Thus for any =z € Ui

K(z,q) = fK(x.q)dr(Z.Ui)(X)
BU,

except on a set Ai(z) c AF with m(A, (z)) = 0, Let
A = U[Ai(z) : 2 €T nUi]
and
. A = EU( U{Ai :i=1'2,-ooi )o
Note m(A) = 0, For all qe[ ~A and z'e¢ TN U,
X(z",q) = K(2',q)
= fK(x,q)dr(Z’,Ui)(X).
which is the evaluation at z’ of the ﬁnique solution on Ui with the

continuous boundary value K(x,q) (see IIh and ITk). As z' tends to 2"

for an arbitrary z"e U;, we have ¥(z",q) = 1im , _,K(z',q) and
L Z

K(z",q) = fK(X.q)dr(Z".Ui)(X)
bUy
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for all gqel ~A. Thus K(z,q) € PN(Ui) if ge [ ~ A, Since Ui

is arbitrary, K(z,q) € PN(R) m a, e,
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VI, THE CHARACTERIZATIONS OF FL. AND ﬁfLFUNCI;ONd

A PE-funection, as we defined before, is a solution of
'Au = Pu with finite energy integral., A nomnegative solution is called
a PB-function if it can be obtained as the infimum of the family of all
PE-functions above it, Both Pi- and PE-functions can be represented by

the representing measure m and the associated kernel K(z,q) as

u(z)

]

fu(q)K(Z.qu(q)
2

if u € PE(R), and

u(z)

-[klim supR u(q))K(z,q)dm(q)

7

if ue §E(R). Furthermore, for each u € ?@(R), there is an upper semi-
continuous £ on [ which is the infimum of the family of all PE-

functions above it on A such that
1im supR u(q) = £{q) m a, e,

Most of the results mentioned above are generalizations of
the work of Nakai [[14] for HD- and fiD-functions where an HD-function is
2 nonnegative harmonic function obtained as the infimum of the family of
all HD-functions above it.

VIa, For any functions W and u, on R we define the following

2
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WA, = gesam(y,u,)
= the greatest solution minorant of U and U,
and
b ovou, = losan(uy,u,)

=the least solution majorant of u and U,

THEOREM, PE(R) is a vector lattice under A, Vv ., In fact,
Vi A vzlA =vn VZIA and v v VZIA = vV vzlA for any

v,,7, € PE(R).

cf. [13], Theorem 3,11,

Proof. Obviously, PE(R) is a vector space. Note that
PE(R) € E(R) which is a lattice under N and v ., For any Uy and u,
in PE(R), AR is a supersolution by Lemma IT1 and is in E(R) by

the previous observattion, By the Royden-Nakai decomposition theorem IVd

n(uln u2) € PE(R), Tr(u.ln uz) Synuy and Tr(ul N uz)lA
(u1 n uz)lA . If v is any solution which is dominated by both o

and u,, ‘then for all qe A

1im infR (1-r(u1 n u2} - v)(q)

lma my N uy)(q) - lim sup, v(g)

Llim_ (w; N uy)(q) - Lim sup. viq)
= lim infR((uln uz) - v)(q)

= 0

by the continuities of functions in ‘E(R) on R*, Theorem IVh implies
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Tr(u1 n u2) 2 v
on R, Hence
Yy A g =T, O W,
and is in PE(R). It can be proved similarly that uw v w, = m(y U w,)

is in PE(R) by observing that -(ul v uz) is a supersolution,

COROLLARY. GBvery PB-function u is a difference of two non-

negative ones, In fact, u= (uv 0) - ((~u) v 0),

VIb, THEOREY. If wu € FE(R), then

u(z) = fu(q)K(z,q)dm(q)-
r

Proof, Note that both u and -u are supersolutions in E(R),

and apply Vi,5).

Vie. THEOREM, If u € PE(R), then ulr e M .m).

Proof, By Corollary Via, it suffices to prove the case where
u is nonnegative, Indeed

u(z) = fu(q)K(z,q)dm(q).
I

Thus

'fu(q)dm(q) = u(z ) <

1.8 u‘r e (I ,m).
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VId, THEOREM. If fe LY([,m), then

u(z) = ff(q)K(Z.q)dm(q)
I

is a solution,
cf. [14] , Theorem 2.2,

Proof, Since E(R)IAP is dense in CO(AP) in sup norm
which is in turn dense in Ll(r,m) in Llenorm, E(R)[Ap is dense in

Ll(r ,m) in L}'-norm. Let us pick a sequence [fn] c E(R) such that
lim flfn - fldm = 0,
-

Let = nf_  which is in PBE(R) and A = £ |AF by Ivd, thus
Y n %, n

w (z) = ffn(q)K(Z.q)dm(q)
I

by VIe, Now

|uCz) - u (2)] < Jlf(q) - £, (q)| &(z,q)dn(q)
< k(z,2,) f|f(q) - fn(q)] dm(q )
r

by V. 3. Hence {un} tends to u uniformly on each compact subset

of R by the continuity of k(z,zo). Thus u is a solution by IIlr,

VIe. By Axiom IIIl, the lower envelope of a downward directed

family of nonnegative PE-functions is again a nonnegative solution, We
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denote by PE(R) the collection of all nonnegative solutions obtained
in such fashion, Solutions in ﬁ(R) are called PEi-functions.

fiD-functions are defined similarly,

VIf, THEOREM. A nonnegative solution is in the family PE(R)

if and only if it is the C-limit of a decreasing sequence in PE(R),

Proof, The sufficiency is clear, To prove the necessity, let
u ¢ PE(R) such that
u(z) = inf { v(z) : ve g },
where 4 is some downward directed family in PE(R). For any fixed point
x € R, there is a sequence [un }c_g such that wu(x) = lim u (x).
Let
e Bl |
and
Vo= %A Vpo1 -
By VIa, {vn} is a decreasing sequence in PE(R), Axiom III, insures

that v = 1lim v, is a solution and Dini's theorem provides that actually

v = C-lim v . Observe that v -u> 0 and v(x) = u(x), hence
v=u by Axiom ITI, Thus u is the C~limit of a decreasing sequence in
PE(R).

Vig, THEOREM. A nonnegative function u is in FE(R) if and
only if wu(z) = inf { v(z) : v € @(u)} where @(u) = {ve FE(R) :

vzul}.

Proof, The sufficiency is obvious because g(u) is a
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downward directed family of nonnegative solutions in PE(R) by Theorem
Via,

On the other hand, being in PE(R), u = lim v,  where {vn}

is a decreasing sequence in PE(R), Clearly {vn} & Q(u), hence

u(z) = inf | v (z) : n=1,2 ,...}

> inf { viz) : v e Q(u)} .

However, we always hawe

u(z) ginf { v(z) : ve Q] .

Thus

u(z) = inf { v(z) : ve g(u)} .

REMARK, g(u)IA is closed under N.

VIh, For any nonnegative function f on the harmonic boundary
A, we define :
F&) = {verER :v2f on A},
and
UCA) = {f : £ is a nonnegative function on A and -
f(a) = inf {v(a) : ve F@O} | .

VIi, LEMMA. F(f) is a downward directed family,

Proof, For any v,,v, € F(£), AV, 2V, i=1,2.
And (vl A vz)lA = (vl N v2)|A > £ by Theorem VIa, Thus

vy AV, € F(£).
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REMARK. Certainly u(z) = inf {v(z) : v € F(£)} 1is a
f’\é-function. However, there is no guarantee that f‘E—functions are
continuous on R* or have finite energy. In particular, we can not hope
to prove that any function in U(A) is the restriction of a function

on A which is the limit of a decreasing sequence of PE-functions,

VIj. LEMMA., The characteristic function of a compact
subset of AP is in  UCA).

Proof, Let KC AP be any compact subset and x its
characteristic function, TFor any q, € AN K, we cover K by finite

number of open subsets Ul""’un of R* such that ﬁ n'R'P < o ‘and
i i

% ¢ Ui for any i = 1,2,..,n,The Urysohn peoperty guarantees the
existence of a nonnegative function f£ € M(R) such that f <1,
f|K=1 and supp f CU.(Ui : i=1.2,....n} » Observe that

e, <f and E(f) = D(£) + [ £2P < D(f) +LJ P<e , Hence
K _ U.AR

a
mf € PE(R) and uiA = f !A > Cye Now
u(qo). Also for any point q, € K,

£ € E(R), Thus u

cK(qo) = 0= f(qg )
cK(ql) =1= f(ql) = u(ql). Since q_ and q are arbitrary and
cK(q)s_inf{v(q) : vV € ?(cK)} <ulg) for all qe A , we have
c,(a) = inf {v(a) : v e Fle) } .

Vik, In order to prove the next theorem, we have to prove a

lemma for technical purposes,
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LEMMA, X is a locally compact Hausdorff space with a bounded
positive regular Borel measure k, If F is a family of nonnegative
extended real-valued continuwous functions on X which is closed under

“n"' i.e. fln fz e (-; fOI‘ all fl'fz € ? ’ then

j:’mf{f:f e Flax = inf{ ffdk:fe "“,C}.
X A

Proof, Let £(q) =inf { £(qg) : £ € F} for all q € X,
First we shall prove that f is upper semi-continuous.

For a fixed g_ € X, there is a decreasing sequence {fn}c F
such that _i:(qo) = 1im fn(qo). Let f'= 1lim £ which is upper semi-
continuous, Clearly f < f. For any positive &, there is an open
neighborhood U of q_ such that £'(q) < £'(g ) + € = £lg ) + €
for all qe€ U, Thus f£f(q) < i(qo) + & for all q e U, Hence f is
upper semi-continuous,

In particular f is integrable. Now denote r = inf { [fdk :

f € ¥}, There is a decreasing sequence {2 ] ¥ such that

r = lim fgndk. If g=lim g, then Jedk = r by monotone convergence
theorem, Clearly £ < g, hence [fdk < [gdk = r, We claim that
actually the equality holds, |

Suppose on the contrary [fdk < r, then there is a positive
5 such that the set A(6) = {qge X : £(q) < glq) - &6} has
positive measure, By the regularity of the measure k tﬁere is a compact
subset A C A(8) with positive measure k(A) = a. The mgoroff theorem
states that there is a compact set K such that {gn} convarges uniformly
to g on K and k(X N K) < af2, Hence k(K NA) = k(A) - k(ANK)

> k(A) - k(X\K) > a - af2 = af2; in particular KN A 1is not empty.
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For any q € KN A, there is a function fq € ¥ with

fq(q) < g(q) - 8/2. Since g is continuous on KN A and fq is

continuous on X, there is an open neighborhood V(q) of ¢ in KN A

with 6/ =<g(q’) - fq(q') for all q’ € V(g). KN A is compact, so

there are finite number of such V(ql),...,V(qn) which cover KN A,

Ifweset h=f, n-.-..nfy;, then he F and g-h>5§/4 on
Q 9n

KN A, Note that gnn h € °F and gnh= 1lim gnﬂ h, However,

r= lim I(gnn h)dk = [(gn h)dk = X\(K{‘A)(g N h)dk + Kr'\fA(g N h)dk

< I gdk+ [ hdk< I gdk+ [ (g=6/8)dk
IN(KNA) KAA IN(KNA) KA A

Jgdk - (&6/8) [ dk< r - (8/4)(6/2), Hence the contradiction
X KnA

proves the lemma,

VIl. THBOREM. wu € PE(R) if and only if there is a funetion

£ e U(A) such that u(z) = {K(z,q9)f(q)dm{q). In this case,
u(z) = inf {v(z) : v e F(£) } .
cr, [14] , Lemma 3,2.

Proof, If u is any PE-function, then
w(z) = inf { v(z) : v e @ (u)]
by VIg. Let
£f(a) = inf {v{q) : v € G(w)}
for all q € A . Clearly Q(w) < F(f), hence f(q) > inf {v(q) :

v e F(£)} . But we always have that f(q) < inf {v(q) : v e F(H)}.
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Thus v = inf {v(q) : ve F(f)} and £ e U(A). By Vig
u(z) = inf {v(z) : v e g.(u)}

inf { fv(q)i{(z,q)dm(q) t V€ g(u) } v

Now observe that, by Theorem VIa, the family of all functions in g(u)

restricted on A is closed under "N", Thus the lemma VIk implies that

u(z)

Jamt {v@ v e g} sGziaramta)

ff(q)K(Z.q)dm(q).

To prove the sufficiency, let f be any function in U(A),

1

f(q) = inf {v(q) : ve F(O)} .
Note that by Theorem VIa +the family of all functions in c}(f)

restricted to A is closed under "N", Again by Lemma VIk,

ff(q)K(z.q)dm(q)

u(z)

[ane {v@) + v e FO} xa)amia)

fl

inf{ IV(q)K(z,q)dm(q) i V€ C:F(f)}

i

inf { v(z) : v € F(£)}
which is in I”\I’E(R) since “F(f) is a downward directed family of non-

negative solutions in PE(R),
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VIm. THEOREM. If ue Pu(R) such that

u(z) = [f(q)K(z,q)dm(q) for some f € L{(A), then

lim sup, u(q) € f(q) for all qe A, and moreover

1lim supR u(q) = f(q) ma.e. on A .
Proof, For any v € F(f), we have that v € PE(R) and

u(z) ff(q)K(Z.q)dm(q)

Ih

IV(q)K(Z.q)dm(q)

i

v(z).
Thus for all q € A ,

lim sup_ u(g) < lim sup_ v(q) = v(g)

by the continuity of PE~functions on R*, Hence
lim sup, u(q) < inf {v(q) : v € F(£)}
= £(q)
for all q € A .
Observe that f(q) = 0 for a1l qe€ AN AP , hence
lim sup. u(g) = £{q) = 0 for any ge AN AF , Now suppose for some
positive € and some compact subset K of AF |, 1im sup. u(q) < £(q) -
& for all q € K. We are going to show that m(K) = O,

Consider the characteristic function CK of K and

w(z) = Ech(q)K(z,q)dm(q).
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Note that w(zo) = Em(K)., We claim that w is bounded, In fact, we
can cover K by open sets Ul"“'Un 4in R* such that U{"\ RP < oo
for every 1 = 1,2,,..,,n, By the Urysohn property there is a function
g € M(R) such that 0<g< £, g[Kz £ and supp g U{Ui :

D(g) + JgF < D(g) + €2 ]
‘ U;NR

i=1,2,...,n} . Observe that i(g)

<o , Thus g e E(R), Hence mg € PBE(R) and mg|A = gla = Ecy.
As a consequence mg(z) = [ g(q)K(z,q)dm{q) > £] cK(q)K(z.q)dm(q) = w(z).
mg < supg £ €, hence w is bounded by €.

By Lemma VIjJ cx is in M(A) and therefore w is a Pi-
function, By the part of the theorem just proved, 1lim supﬁw(q) < g‘cK(q)
for all q € A , in particular

1:'Lmsupr(q)=O for a11 gqe A NK

and

lim sup w(g) < & for all q € K,

Thus no matter whether q € K or g€ A~ X,

1lim supR(u(q) + w(q)) £ lim sup, u(q) + lim sup, wiq)

< £(q).

Consequently for any v € F(f)

1im infR(v(q) - ulq) ~ wlq))
> lim infR v(g) - lim supR(u(q) + wiq))

> £(q) - £(q)
= 0.

Since Vv = u - w is bounded from below, we have v > u+ w by the



minimum principle IVh, Thus
v(zo) 2 u(z,) + w(zo) = u(zo) + £m(K).,
Now together with the previous theorem,
u(z,) = inf {v(z,) : v € F(£)}
> u(z) + €m(X),

Hence 0> m(K)., Thus m(K) = 0,
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VII. 7 oF PR NCTIONS

This chapter consists of two parts, The first is a generaliza-
tion of Nakai's work {147 on fil-minimal functions to PE-minimal
functions, The second is a new result which shows that Hnﬁ-m:lnimality is
closely related to ﬁ-min:’mality.

VIIa, DEFINITION, A nonzero Pi-funmction u is called a
FE-minimel function if for any fE-function v such that u > v we have
cu= v for some constant ¢,

AD-minimal functions are defined similarly,

VIIb. THEOREM, There exists a Pi-minimal function u on R
if and only if there exists a point q, € AP with positive m-messure,
More precisely, if u is ?E-mjnimal, then there is a point q, € AP such
that m(qo) >0 and ulz) = aK(z.qo) for some positive constant a,
Conversely, if m(qo) > 0 for some q_e N, then K(z.qo) is a

FE-minimal function.
cf, [14], Theorem 3.3,

Proof. Let u be a f’vE-ijxmaJ_ funetion and

K = [ ae N :limswpu@ =21/ }.

Since

2
i

[Cl e AP : 1im supRu(q)> 0 }

U{Ki W TR T N }

and
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m(3) > 0,
there is some n such that m(Kn) > 0, For simplicity, we denote Kn by
K. Note that K is compact, By VIj the characteristic function c
in  Y(A) and by VI1

Kis

w(z) = (1/n) [ K(z,q)c; (q)dm(q)

is a PE-function, By VIm
lim supr(q) = (l/n)cK(q)
a,e, on A ., Now we are going to show that the measure on K is
concentrated at an atom in K,
To see this, let A be any compact set in K such that

m(KNA) > 0, Again we conclude from VIj, VIL and VIm that

v(z) = (1/n) | K(z,q9)c,(q)dm(q)

ey .
is a Pi-function and

lim supRv(q) = (1/n)e,(a)
a.e. on A, Clearly u> v, If m(A) > 0, then v is a nontrivial
PE-function dominated by u. Thus there is a nonzero positive constant ¢

such that cu = v by the minimality of u, However, note that

e/n < e lim supRu(q) = lim supRv(q) =

for almost all g € K~ A, This is absurd. Hence m(A) = 0, If K has
no atomic point q such that m(X) = m(qo), then there exist subsets
B and C of K such that K= BV C with BENC=p and m(B) > 0

m(C) > 0, By the regulerity of m, there are compact subsets L and M of
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B and C respectively both with positive measure, However, the foregoing
argument implies that both m(M) and m(L) must be zero. This
contradietion establishes the existence of 9 such that m(K) = m(qo).

Since X, C Ki-l- for all j and 1lim m(l{i) = m(S), we have

J
indeed m(S) = m(q ). By VIL and VIn for some f € U(A) with

f(q) = lim supRg(q) a,e, we conclude that

u(z)

fKCZ.q)f(q)dm(q)

£(q,)mlq )K(z,q,).
To prove the sufficiency, let q, € AP such that
m(qo) = 1/k > 0, By VIj and VIl

K(z,q ) = k IK(Z.q) (q)dm(q)

.}

is a PE-function, We are going to prove that K(z,qo) is PE-minimal.
If v is a PE-function such that

v(z) < K(z,q),

then
i ‘ < 1i X(z,
lim suppv(q) < lim R et (z,q_)
= ke ( a.e, on
tag} q) A
i,e,
lim sup v(g) = 0 a.e, on A\{qo}.
We set 1lim sup v(qo) = a, Then

fK(Z.q)(lm supRV(q))dm(q)

v(z)
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a IK(Z.q)c{ qo}(q)dm(q)

]

(a/k)KCZ.qo).

Thus K(z,q ) is PE-minimal,

VIIe, THEOREM. Let q_e N . Then m(q_) > 0 if and

only if mo(qo) > 0,

Indeed, if m(qo) > 0, Let {Un} be a sequence of open
neighborhoods of g " in R* such that
Un - -ﬁn+l ?
1im m(Un) = m(qo) "
lim °(U ) = m°(q_) ,
and
P< o ..

U,NR

By the Urysohn property, there is an f € E(R) such that

R =1,
=4 =

—

fn Un+l =1

and -
supp fn C Un .

Clearly f, ¢ E(R) and f = f

o = £, 4 for all n. By the choice of [Un},

we have lim fnl A= almost everywhere with respect to both m

C
{9}
and m°, Note that n®f, € HBD(R), wf € FBE(R) and

ﬂofn\A = Tffnl A= fn[ A. By IIp Trofn is a supersolution, hence so
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o
is fn- wfn. Observe that for all qe A

1lim infRQnofh - "fh)(Q) = 1imRUn°fn - nfh)(q)

£ (q) - £ (q)

= 0,
We have n'ofn 2 i by the minimum principle IVh.
Note that [ﬂofhf and {ﬁfh} are both decreasing sequences.

Since

fKo(Z.q)fn(q)dm"(q)

n°fn(2)

>'nf£(z)

fK(Z.q)fn(q)dm(q).

as n tends to o , we have by the monotone convergence theorem

fK°(Z.q)c{q }(q)dm"(q) > fK(Z.q) (q)dm(q).

%]}

Setting =z = Z, gives
m>(q ) 2 m(q ) > O,
Thus the necessity is proved.

To prove the sufficiency, we need the lemmas of VIId - VIIg,

VIId, The following lemma is a modification of a result on
Riemann surface due to Nakai ([16], Froposition 9). His result does not
generalize completely to Riemannian manifolds, But the following is

sufficient for our purposes,
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LEMA, Let q_ € [ be a point such that mo(qo) >0
and U be any neighborhood of 4 in R*, Then there exists a
neighborhood V of q, in R* such that VCU and VNR is a

region in R with piecewise smooth boundary.

To prove this lemma, we simply replace the triangulations by

parametric balls in Nakai's proof; then everything follows,

VIIe. Consider a region G in R, its closure G in R* and its
Royden compactification G*, We recall (see IIIo - II1Ig) that
B(G) = (GNG)N [ and j is the unique continuous mapping from G*
onto G fixing G elementwise, We have G&* \ G = j-l(bG) v j-l((B(G)).
Moreover, by theorem IIIq, Jj is a homeomorphism of G U j_l(B(G)) to
& U B(G).

Let z, € G  which is the center of the representing
measure m on the Royden boundary [ . If we denote the iloyden boundary
of G by rG , harmonic boundary by AG and the representing

measure for solutions on I—G by m, then following is true,

LEMMA. Let G be a region inR with piecewise smooth boundary

such that JP <o , Let E be any Borel subset of B(G), then
G

m(E) > 0 if and only if mG(j"l(E)) > 0,

Nakai ([167], Proposition 8) has proved the case where F = O,

Proof, Without loss of generality we may assume that = is

compact and E < AP, Note that ENDbB: = since & < B(G).
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There exists a sequence {Vn] of open sets in R* such that

ECV 1SV, € B(G VG, / F <o for all n and
VO R

m(E) = Lin w(V, 0 ), my(57H(E)) = Lan m (577, O 7)), Take

f, € M(R) such that 0<f, <1, £|V,43=1 and
fan* \V, = 0. Thus {fn} is a decreasing sequence and £, € E(R)

for all n. If we view f, as functions on G, then £, € BE(G)

because we always have that E(R) € E(G), We denote the extension

-1,z =Ly s
of £ to G* by f*, then f;lj W ) = 1 f;lG*\J (V) =0

and 0< f‘;s 1. Now we set

w,(z) = fK(Z.q)fn(q)dm(q)
I
and
v (z) = fKG(Z.q)f,’{(q)de(q).
le

where KG(z,q) is the associated kernel of mG. Let us consider the

exhaustion { Rn} of R constructed in Theorem Ilg. We set

Y, m = nR* \(Rmn G)fn

where T is the projection defined in IVf, Then {vn m]m is a

sequence bounded by suprn and E(vn m+1) < E(vn m) < E(fn) by

the Dirichlet principle of IIIf, and thus [E(v

n,m)}m converges,

Hote that
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""(vn,m+p = vn,m * Vn,m+ p) =

by Green's formula of IIIf, Conseaquently,

E(vn,m+p = vn,m) = E‘.(vn’m) - E(vn,m+p)'

Note that v, mlR\G = 0, Also, being a bounded sequence of solutions on

a, {vn.m}m has a convergent subsequence, again denoted by {vn,m}m'

which is BE-Cauchy on G, Let

v, = lim

n m_.oovn . m*

Note that van € i(G),which is BS-complete, and vnIR\G = 0, We are
going to show that v is continuous on R and hence L € 3(R).

In fact, if x is any point on bG and N is a parametric ball

about x, we let w be the strong barrier function for x on NNG with
respect to the differential operator L=/ - F (see p. 361, [4]).
Note that L(w) < -1 and WIN(\G\{X} is strictly positive while

w(x) = 0 (see p, 31, [4]). Let ¢ be a positive constant such that

c inf{w(y) 1y € bNﬂE} > supr

n.
Then
Licw - vn,m) = Licw) - L(vn,m)
< -c
< 0.
Since oW - Vo 2 0 on b(NNG), we have
cW - V >0
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on NNG by the maximum principle (p. 326, [4]). Letting m—se

gives

on NNG, Thus

0 £ lim, vn(x) < lim, ew(x) = 0,
i,e, v, is continuous at x, Since x is arbitrary, we see that v  is

continuous at every point of bG and is continuous on R,

Now we let
&2 un,m = TRE N Rmvn'

Similarly, {un m}m has a BE-Cauchy subsequence, again denoted by

{un m}m' on R, We set

1

un = BE“_limm—oao “n,m‘

Then w, € PBI(R). Note that w|A= v [A=f[A. Thus w =u by
maximum principle IVe, Note also that {u } and {v,} are decreasing

seguences since {fn} is decreasing on A, Clearly v, is a subsolution

on R, Thus e > v, on Rm for all m, Hence u, > v, on R as well

as on R*¥, We denote the extension of to O* by v; Since

n,m m*

{vn,m}m is a BE-Cauchy sequence on G and Vym = fp =0 onbGVY B(G),

we have v - fX=10 on MG+ v, € PBE(G) and v* lAG = y* |AG

= fX lAG , where v¥ is the extension of v to «*, Therefore we have

= * * = \
vi=y*r., Also vi2>vF, . and u 2> vd = vi, Note that

mn(V, N [1) 2 9 (z) 2 v (z,)

IV

mG(j-l(Vn.,,l N I'G)).

Hence



(2)

- NG = Ths -V
vy van 1 0. s ¥
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m(i) > mG(jul (1)),

Now suppose mG(j"l(E)) = 0, Note v, - v €FN(G) and

1

- is a subsolution on R, Also note

e “,m = %nm 5 E‘N(Rm) B Vo~ Vpa® Y =T, OB RN R .

Hence ul,m - un.m > Ve o~ VY, on ®, In particular,

“om+l "~

(3)

n
n,m+ 1 =

>V, =V on bR implies that
i n m

M om+l ~ "nym+l £ “ou” Ya,m

on bl{,n. By the minimum principle ITo, (3) is true on i_, Therefore

m

(3) holds on I as well as on #*, Consequently,

(%)

for all m,

1

lim (u_L'm - un’m)

bt B
->~' u']_,m - un,m

Since O = mG(j—l(E)) = 1lim v*(z,), {v,} tends to 0 on G by

Axiom III,, Hence limv, =0 onbR. As u _|oR = v [6R by

(1), we have limn_'oo %

]

0 on R by the maximum principle, (&)

implies that

1im | o (U-l -u) 2 im o (u]_,m - un,m)

= ul.m

on R.m for all m, 3ince u.1 = limm_.oo Ul o e have

Mmoo (W = w) 2w

on R, As a result 1im w, < 0, and therefore 1lim w = 0. Consequently
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m{E) = 1im un(zo) = 0.
Together with (2), we see that m(£) > 0 if and only if

n (378 > o

VIIf, The following lemma is due to Nakal £15].

LEMNA. 1f P is any C* n-form on R such that [I' <, then

there exists an isomorphism T of HB(R) onto PB(R) with the following
properties:

1) {un] C HB(R) 4is a decreasing sequence with limit
u € HB(R) 4if and only if [Tun} is a decreasing sequence in r3(R) with
limit Tu:e FB(R).

2) Let [di} be a regular exhaustion of R, For any u € HB(«)
let Tiu be a continuous funection on R such that Tiulﬂi € HB(Ri) and
T,u[RNR; = u|RNR. Then Tu= B-lim T,u.

4

3) supR|1ul = supR|u| for all u € B,

VIIz. CORCLLARY, h € HBD(R) if and only if Th € rZi(Rj

for all h € H3(R). In this case h|A = Th|A.

Eroof, Note that the sequence {Tih} c 2(R,; converges to
Th uniformly on compact subsets,
If h € HBD(R), then by hypothesis and the Uirichlet principle
(I1If)
h(ii+_jn) 2 m(lih) < B{h) <& .

Moreover Groen's formula (111f) implies that



Thus

0= _c'.(L:.H_ ju = liu)

= ﬁ'(ri-t- ju) = u,r,u(li_i_ju . liu) + b(iil}k)
= ﬂ(‘I‘i+ju) = 'E;(Tiu).

fience [Tiu} is a BE-Cauchy sequence. Since #(R) is Bi-complete, we
have Tu € FBE(R).

Furthermore, it is clear that Tiu = A e i-io(R) by I1lm.
3ince l"IA(R) is the Ci-closure of iﬁo(R), we have Tu - . € iLA(.{L}, Hence
(Tu-u}lA: 0, d.e. u[A:TuIA.

The proof for the sufficiency is exactly the sane,

VIIh, Now we are going to complete the proof of Theorem VIIec,

Let g, € AY such that m®(q ) > 0. sy VIId, there exists a

-

neighborhood G of q, in R* [ ¥ <« and GNR is a region in R with
GNR

piecewise smooth boundary, Consider the region = U N &, its closure
T in I* and its Royden compactification G*, 'we also consider the
continuous mapping j from G* onto G given in 11I;, which fixes &
elementwise, Since j is a homeomorphism from & w 3'1(13(‘;‘:)) to

3 v B(G) by IIIg, we have qy = j-l(q_o) is a point in [, which
is the Royden boundary of G, Ly Vile, mg(ql) > 0,
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By VIIf, HBE(G) is isomorphic to FB(3) under the isomorphism

T since [P < e, lNote that
G

hiz) = 1(2(2,(11) = rfiig(z,q)c{ql}(q)dmg(qﬁ
€

is a nontrivial function in HD(G) M HB(G) since h(z_) = 1. Let

{Un} be a sequence of open sets in G* such that Un ] 3n+1 3 9,

i, N Iz € As, mg(ql) = 1im mg(Un N ru) and

It

mG(ql) 1lim mG(‘Cin N I_G). For each n, there is an fnen(;-) such
that 0<f, <1, supp £, Uy, £,|T,47 =1 by the urysohn
property of ii(G). ‘e see that {fn} is a decreasing seguence converging

o -
to C{ql} m. a.e. as well as m, a.e. on I_(‘J Let

where TT°G is the harmonic projection on G (see IVf), Thus u, € A5D(G),
u, |Ag = £, | A; and hence {wu } is a decreasing sequence by maximum

principle IVb, We have

1im un(z) = 1im E{G(z,q)uh(q)dmg(q>
G
= fii.(z,q)c (q)dm®(q)
e G {91} ¥

i

h{z)

by the monotone convergence theorem,

liote that Tw € PBI(G) and ¥ nl A= u,nl O by Vlilg. Also
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Th = 1im Tu, by ViIf, Thus

Th(z)

i

lim Tw,(2)

1im IKG(z,q)%(q)(hnG(q)
G

rfliG(Z.q)c{ql}(q')dmu(q)

=

&

]

KL}(Z;qlhﬂu(ql)
by the monotone convergence theorem again, Zince
sup, Th = sup, h > O,
G G

we have m.(q.) > 0,
G

we apply VIIe once more and see that m(q_o) > 0 since
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