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Abstract

Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures
from the Sun. These eruptions are important because they can harm astronauts,
damage electrical infrastructure, and cause auroras. A mysterious feature of these
eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly
erupt. One model, torus instability, predicts an explosive-like transition from slow
expansion to fast acceleration, if the spatial decay of the ambient magnetic field
exceeds a threshold.

We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small,
independently-powered auxiliary coils placed inside the vacuum chamber produce
magnetic fields above the decay threshold that are strong enough to act on the plasma.
When the strapping field is not too strong and not too weak, expansion force build
up while the flux rope is in the strapping field region. When the flux rope moves to a
critical height, the plasma accelerates quickly, corresponding to the observed slow-rise
to fast-acceleration of most solar eruptions. This behavior is in agreement with the
predictions of torus instability.

Historically, eruptions have been separated into gradual CMEs and impulsive
CMEs, depending on the acceleration profile. Recent numerical studies question this
separation. One study varies the strapping field profile to produce gradual eruptions
and impulsive eruptions, while another study varies the temporal profile of the voltage
applied to the flux tube footpoints to produce the two eruption types. Our experi-
ment reproduced these different eruptions by changing the strapping field magnitude,
and the temporal profile of the current trace. This suggests that the same physics

underlies both types of CME and that the separation between impulsive and gradual



classes of eruption is artificial.
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Chapter 1

Introduction

1.1 Thesis outline

This thesis is written for two separate audiences: (i) thesis committee members who
are presumed to be interested in the results and (ii) future graduate students, who
are presumed to be interested in the details. As such, the thesis main body attempts
to be succinct with only the relevant details, whereas the appendix is lengthy. The
reader is encouraged to peruse the appendix to view useful definitions, mathematical
relationships, nuts and bolts, and an in-depth look at some of the solar models. Due
to the organization of this thesis, there will be some repetition between the main
body and the appendix.

The basic structure of the thesis is as follows. The introduction motivates the
study of the sun, presents a brief introduction to plasma, describes the experimen-
tal setup, and defines important solar terminology. Chapter 2 is dedicated to the
reproduction of the slow rise to fast acceleration of a solar eruption. This chapter
contains an overview of the debate, the set-up, a generalized implementation of torus
instability, results, and discussions addressing important questions in solar physics.
Chapter 3 gives the conclusion. The conscious decision to have a single main chapter

is due to the time restrictions for thesis writing.



1.2 The sun

It is difficult to exaggerate the importance of the Sun to life on Earth. Evidence of
the prime role of the Sun is evident in its status as a deity among human civilizations
and cultures'. With the power to sustain life comes the power to harm, and the sun
is certainly capable of violence. Large solar eruptions release energetic particles and
magnetic energy into the solar system. If these eruptions hit the Earth, the solar
magnetic field can cancel out part of the Earth’s magnetosphere, effectively lowering
the Earth’s protective shields and resulting in powerful geomagnetic storms.

Countless solar eruptions have impacted the earth since the beginnings of civiliza-
tion, but societies are increasingly susceptible to geomagnetic storms, since modern
humans depend on an always-functioning electrical infrastructure. In 1989, a solar
eruption caused a geomagnetic storm which induced large electric currents in the
long-distance electrical power transmission lines in Quebec, Canada. These currents
interacted with and overwhelmed transformers, causing catastrophic failures, and the
entire province was left without electricity for over nine hours! Another example is
the outage of two Canadian telecommunications satellites in January 1994 due to
enhanced energetic electron fluxes. Even though the first satellite recovered after a
few hours, the repair of the second satellite took 6 months and costs over 50 million
dollars [19].

A recent “near miss” event occurred in July 2012 when a coronal mass ejection
(CME) hit NASA’s Solar Terrestrial Relations Observatory (STEREO [20])-A, a satel-
lite on the same solar orbit as the Earth but during the eruption was located ahead of
the earth by about a week [21]|. Scientists used STEREO-A’s magnetic measurement
to model the theoretical impact of this CME had it struck the Earth. Their models
predicted a larger storm than the 1989 Quebec storm in the best case scenario and a
storm surpassing the largest solar storm on written record in the worst case scenario.
This “largest solar storm” is known as the Carrington event of 1859 and was reported

to have caused auroras as far south as Hawaii, and to have knocked out the global

1Solar gods include the Aztec Huitzlopochtli, the Mayan Kinich Ahau, the Egyptions Ra, the
Greek Helios, the Roman Sol, the Arabian Malakbel, etc.



telegraph network.

The close-call of July 2012 motivated question about the frequency of extreme
solar storms and the likelihood of Earth impact. Riley [22] assumed that the frequency
of occurrence scales as an inverse power of the severity? and estimated the probability
that another Carrington-like storm would occur in the next decade to be 12%. This
is comparable to the likelihood of a serious earthquake in California over the same
time interval. A 2008 National Academy report [19] estimates the cost of a “severe
geomagnetic storm scenario” to be 1-2 trillion dollars, with a recovery time of 4-10
years.

One major difference between solar storms and earthquakes is that scientists can
obtain early warning from satellites observing the sun and potentially predict oncom-
ing solar storms. Unfortunately, predictions of solar eruptions are exceedingly difficult
and the arrival times of significant space weather events have only been accurate to
+12 hours [20]. Much of the uncertainty is due to the complicated nature of erup-
tions. After leaving the solar atmosphere, erupted structures can confound simple
estimates by speeding up, slowing down, or rotating. The ambient solar field may
deflect the eruption, resulting in non-radial propagation [23]. Many models do not
consider these nuances and instead rely on nominal values to make their predictions.
The community has not agreed on the geometry of the eruptive structure, resulting
in a healthy debate between 2-D loops, spherical shells, cylindrical shells, ice-cream
cones, and graduated cylindrical shells (side view of arched structure) [4, 24].

The magnetic field orientation also plays a central role in how solar eruptions in-
teract with the earth. CMEs with a southward magnetic field can cancel the Earth’s
northward magnetic field, thereby enhancing the injection of magnetic energy into
the Earth’s magnetosphere. In contrast, northward-directed solar magnetic fields
have minimal interactions with the Earth [25]. Even though the magnetic orientation
of the eruption determines whether a storm will have a catastrophic impact, most
existing space weather models do not include information about the underlying mag-

netic structure [26, 27|. These models rely on measurements from spacecraft at the

2This is similar to the scaling of earthquake frequency and their severity.
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Figure 1.1: (From Fig. 6 of Ref. [1]) False alarm due to failed prediction about
geo-effetiveness of Jan 10 event by current NASA & NOAA models. The NASA and
NOAA predictions are of a serious solar storm whereas measurements (in green) show
little geo-consequence.

first Lagrangian position to determine the magnetic orientation. This means that
information about the magnetic field orientation is not available until approximately
1 hour before Earth impact. Unfortunately, this may not be enough time to arrive at
the correct prediction.

There are societal consequences for accurately predicting low-probability high-
damage events, as demonstrated by the I.”Aquila, Italy earthquake and corresponding
debate [28]. The trials of the Italian scientists who failed to predict this earthquake
highlight the challenges of communicating probabilistic events to the general com-
munity. Scientist must balance a 98 percent probability of a false alarm against a 2
percent chance of failing to issue a warning for a catastrophe. While the L’Aquila
event focused on the latter, there are tangible consequences associated with false
alarms. One example of a solar eruption false alarm is from Ref. [1] and shown in
Fig. 1.1. Scientists use a logarithmic Kp index to predict the severity of a solar
event where Kp > 5 is considered a solar storm and Kp = 8 represents a severe solar
storm. The latest NASA and NOAA models predicted a powerful storm but actual
Kp measurements shown in green reveal negligible consequences due to the eruption.

There is much to be done in order to improve our space weather predictive ca-
pabilities. In theory, we should be able to predict an upcoming solar storm through

accurate modeling of the underlying physics. Unfortunately, there is no standard
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model for CMEs and much of our understanding is still empirical and based on qual-

itative arguments about magnetic field lines.

1.3 Motivating questions

There are many hotly debated solar physics questions as of the writing of this thesis
[29] and two of these will be addressed herein. The first question is most fundamental:
what causes the slow-rise to fast eruption of CMEs? The next question is ’Should fast
and slow CMEs be attributed to different models?’ In the process of addressing these

questions, we create a framework that unifies two different models of solar eruption.

1.3.1 Demonstration of slow-rise to fast eruption.

Measurements of CMEs near the earth are consistent with coherent magnetic, twist-
carrying coronal structures (i.e., flux ropes) [4, 30|, but there is debate on whether
the flux rope structure existed prior to the eruption or if it was formed during the
eruption by magnetic reconnection. Recent observations [31] and simulations [32]
suggest that the magnetic flux rope structure exists before the eruption and triggers
the eruption through a “loss of equilibrium” mechanism. One such mechanism, the
torus instability [33], occurs when a strapping field in the corona decays sharply as a
function of height, allowing a rapid acceleration of the flux rope when it rises above
a critical height.

We reproduce the slow rise to fast acceleration of laboratory flux ropes in the lab,

and our results are in agreement with the torus instability.

1.3.2 Impulsive vs Gradual CMEs.

Historically, CMEs are divided into two categories: impulsive (fast) and gradual (slow)
[29, 34]. Impulsive eruptions occur at very high speeds and decelerate while gradual

CMEs exhibit a slow acceleration®. It is thought that impulsive CMEs are tied to

3Impulsive CMEs velocities are over 750 km /s whereas gradual CMEs velocities are around 400
km/s.
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flare-associated events while gradual CMEs are associated with filament eruptions.
There is recent evidence, however, that such a distinction may be artificial. Feynman
and Ruzmaikin [35] present observations of a fast, flare-associated CME with corre-
sponding erupting filament. Statistical studies by Vrsnak et al. [36] and Yurchyshen
et al. [37] found no reason to separate the two types of CMEs. Chen & Krall [38]
and Torok & Kliem [39] numerically reproduce impulse and gradual CMEs by “flux
injection” and by “torus instability,” respectively.

We are able to produce impulsive and gradual CMEs in the laboratory by changing
the profile of the current trace (flux injection), and by changing the strapping field
(torus instability). We expect the sun to use both approaches to produce fast and

slow CMEs, so the distinction between impulsive and gradual CMEs is likely artificial.

1.3.3 Unifying flux injection and torus instability

The Kliem & Torok implementation of torus instability [33] focuses on the profile
of the strapping field interacting with a current loop. The flux injection model [40]
focuses on the applied voltage across the footpoints of a plasma arch. Chen [41] argues
that the Kliem & Torok implementation does not have footpoints, and is therefore
inconsistent with the boundary conditions. Our experiment has footpoints, adjustable
strapping field profiles, and adjustable voltage profiles, so elements from both models
are applicable.

We present a simple model for a nearly-circular plasma, with boundary conditions
determined by an adjustable power supply. This model connects flux injection and

torus instability to our experimental setup.

1.4 Introduction to plasmas

Plasmas are ionized gases and make up 99 percent of the known universe. However,
the typical human environment is too dense and too cool for plasma to exist. Figure
1.2 is a log-log plot of temperature and density; solids, liquids, and gases occupy the

lower right hand corner of the plot whereas plasma makes up the rest of the figure.
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Figure 1.2: Temperature vs density chart for plasmas. (From: Contemporary Physics
Education Project).

Plasmas can be cool and diffuse like the beautiful auroras of the polar skies or dense
and extremely hot like the center of the sun. Their ionized nature means that their
behavior is influenced by magnetic fields. The three fundamental parameters that
characterize a plasma are: temperature, number density, and magnetic field [42].
Consider plasmas with equal numbers of positive and negative charges!. Even
though the plasma is considered “neutral” as a whole, there are localized regions of
strong electric field. Within these regions, the forces due to an isothermal pressure
gradient must balance the electrostatic electric field to determine the localized density
distribution. Assuming that thermally induced perturbations are sufficient slow, the

density distribution of the electrons and ions are given by the Boltzmann relation

Ny = Ngo €Xp(—qrd/KTy)

where o € {e,i} is the particle species, T, is the temperature, g, is the charge, ¢

is the electrical potential, x is Boltzmann’s constant, and n, o represents a constant

4Non-neutral plasmas contain only a single charge and dusty plasmas also include charged “dust”
as a third type of particle.



density.

The charges self-organize because same-polarity charges repel and opposite-polarity
charges attract; this self-organization creates an effective screening effect. For exam-
ple, an ion will attract electrons around it while repelling nearby ions. The charge of
the surrounding electrons screen the charge of the ion so that an observer sufficiently
far away will not see the electric potential associated with the ion. The length scale
of this screening effect plays a fundamental role in plasma physics and is known as

the Debye length:

where n & n; is the system density and the system Debye length (\p) is approximately
the Debye length of the electrons (Ap ). This self-organization occurs for all particles
in the plasma and only makes sense if enough particles exist within a volume (\3,)
to provide screening. Thus, a criterion for an ionized gas to be considered a plasma
is nA%, > 1, where n is the number density of the ionized gas [42]. In order for the
shielding to be relevant, the plasma characteristic length must be much greater than
the Debye length so that the plasma can be considered quasi-neutral. Thus, the two

defining features of a plasma are:
L. nA} > 1
2. L> Ap

The inclusion of a steady state magnetic field introduces interesting behavior to
individual particles and to the collective plasma. A charged particle in a magnetic
field exhibits cyclotron motion by making circular or helical orbits along a guiding
center as shown in Fig. 1.3 (a). If both electric and magnetic fields are present, the
particle undergoes an E x B drift as shown in 1.3 (b). This drift is independent of
the charge of the particle, so both positive and negative charges move in the same
direction. Things get even more interesting when the particles follow curved magnetic
field lines or enter a non-uniform and/or time dependent magnetic region. Needless to

say, plasmas exhibit many complicated but interesting behaviors; the field of plasma
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Figure 1.3: (a) Particles make circular cyclotron orbits about magnetic field lines
or helical orbits along the magnetic field lines. (b) A particle experiencing both a
magnetic and electric field will tend to drift in the direction of E x B. This movement
is independent of the particle charge.

physics attempts to describe the essential concepts behind these behavior.

1.5 Magnetohydrodynamics

There are many levels of plasma description from tracking individual particles to
magnetohydrodynamics (MHD); additional information about the different descrip-
tion of the plasma can be found in Sec. B.1. MHD approximates the plasma as a
single conductive fluid and is the least accurate of all the descriptions. Nevertheless,
it is still tremendously useful because many systems do not require the additional
precision of the other descriptions and MHD provides the most efficient and intuitive
method for assessing the plasma. Complicated geometries are also difficult to model
and are often only analytically feasible in the context of MHD.

The MHD equations relevant to solar phenomena are:

e The continuity equation:

otV (pn0) =0 (1.1)
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where p,, is the mass density and U is the center of mass velocity.
e The equation of motion:

DU

where J is the current density, B is the magnetic field, P is the thermal pressure,
and p,,g is the force of gravity, which is typically important on the Sun but is

not found in standard MHD derivations.

e Ohm’s law for resistive MHD:

E+UxB=nJ (1.3)

where E is the electric field and 7 is the plasma resistivity.

e Faraday’s law:

0B
E=_—"—
V x AT

e Ampere’s law in the limit of velocities much less than the speed of light:

VxB= /LOJ
e Divergence free condition:
V-B=0
e Energy equation of state:
F = const (1.4)

where v = 5/3 for an adiabatic equation of state.

MHD focuses on low-frequency, long-wavelength, and magnetic behavior of the plasma.

The following conditions are required for MHD to be valid:
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e (QQuasi-neutrality, meaning that the characteristic length scale must be much

larger than the Debye length (Ap).

e The plasma must be collisional. This means that collision time is much less
than the time scales of interest so that the pressure can be approximated as

isotropic and the system is at a near Maxwellian.

e Characteristic velocity is much slower than the speed of light, meaning that the

displacement term is dropped from Ampere’s law.

e Characteristic time scale of phenomena is long compared to electron cyclotron

motion gB/m so that the electron inertia term can be dropped.

In the limit when resistance is negligible (n — 0), the system is known as Ideal MHD.

The concept of frozen-in flux (Sec. B.2) is important in ideal MHD. It is intuitive
to think of frozen-in flux as plasma and magnetic field lines moving as an ensemble in
order to preserve the field-line topology [42]. This is a strong topological constraint
which prevents the magnetic field lines from “tearing” and “reconnecting” even if doing
so would result in an energetically favorable configuration. Thus, even a small amount
of resistivity can have large impacts on plasma stability since it allows the plasma

field line topology to change within localized regions.

1.6 Magnetic Reconnection

Magnetic reconnection describes the topological change of a magnetic configuration
due to a “tearing” and “reconnecting” of magnetic field lines at a magnetic null point
(Fig. 1.4 (a)). The resulting change in the topology allows the system to relax to lower
energy configurations, thereby releasing free energy (Fig. 1.4 (b)). This free energy
has been attributed to many space processes, including the Earth’s magnetosphere,
solar flares, and star formation [29, 43, 44|. Reconnection has also been observed in
laboratory experiments [45-47].

The simplest reconnection model is the Sweet-Parker reconnection [48, 49|. Flows

of plasma bring magnetic field lines together so that field gradients become strong at
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i
Figure 1.4: Cartoons depicting reconnection. (a) Two field lines come together and
interact a magnetic null point. (b) The corresponding change in field topology is
associated with a release of energy. (¢) Bulk plasma flows U, carry magnetic field
lines flows towards a magnetic null. (d) The compression of field lines creates a thin

current sheet (red) where reconnection occurs. Outward plasma flow U, carries
newly reconnected flux away from the reconnection site.
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a localized region (Fig. 1.4 (c¢)). The interaction of field lines forms a thin current
sheet (Fig. 1.4 (d)) where non-ideal MHD reconnection behavior occurs. The rate of
reconnection is determined by the dimensions of the current sheet (6, L), which scale
as:
J 1

L= (1.5)

where S;, is the inflow region’s Lundquist number. The Lundquist number, a measure

of how well the magnetic field is frozen into the plasma, is

o ,UOUaJnL
n

Sin

where v, ;, = Biy/ VHopm is the Alfven velocity of the inflow, and 7 is the resistivity
of the system.

While a general Sweet-Parker reconnection model has been demonstrated in the
laboratory [50], the reconnection rate predicted by Eq. 1.5 is many orders of magni-
tude too slow to describe solar flares [51]|, which have S;, ~ 10'. This slowness in
Sweet-Parker is attributed to the pile-up of the large amount of mass that must flow
through the very narrow (~ ¢) current channel. Petschek [52] proposed that, outside
the immediate reconnection region, standing waves could drive outflows, dramati-
cally increasing the reconnection rate. The Petschek model predicts reconnections

rates that scale as
Vout 1

Vg ~ In(S;,)

which is insensitive to S;,. Nevertheless, the Petschek model has been criticized as not
being self-consistent [53] and modern researchers are looking beyond Resistive MHD
towards the smaller length scales when ions are no longer considered magnetized
[54-56]. This regime — Hall MHD reconnection — is a current topic of research and

the details can be found in Ref. [43].
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1.7 Dimensionless form

A remarkable feature of plasmas is that the same qualitative phenomena occur in
plasmas with temperatures, densities, and magnetic fields that differ by many orders
of magnitude. This scalability permits predictions about novel behavior using intu-
ition about known plasma behavior. One way to take advantage of the scalability of
plasmas is by rewriting the MHD equations in dimensionless form to extract dimen-
sionless constants. In particular, the continuity equation (Eq. 1.1) and the equation

of motion (Eq. 1.2) become

aﬁm_ — P

a%__v (me)
(2 G S T (UxB) xB— 89P 458
pm(§+U.v>U:(V><B)xB—ﬂVP+wmg (1.6)

and the induction equation is obtained by taking the curl of resistive Ohm’s law (Eq.
1.3), yielding

OB _ 1—ye
= =Vx(UxB)+ VB (1.7)

Three dimensionless constants capture the essential physics of the system:

2o P
B="0 (1.8)
L
g = Ho=ba (1.9)
U
gL
_ 9~ 1.10
= (1.10)

where L is a typical length scale and vy = B/\/liopm, is the characteristic Alfven
velocity. The plasma ( is a ratio of thermal pressure to magnetic pressure. The
Lundquist number S is a ratio of Alfven time scale to the resistive time scale. There
is no standard name for v which compares the gravity to magnetic forces.

In the solar corona, and 8 < 1 so magnetic forces dominate thermal forces. S > 1,
which means that the plasmas are highly conducting and Ideal MHD is applicable.
The magnetic energy density is 800 times more powerful than the gravitational energy

density in the solar corona [57| so v is negligible.
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1.8 Limits of observation and numerical studies

Observation of solar filaments, arched plasma structures associated with eruptions,
have various limitations. Solar observations are unable to measure the magnetic field
in the corona precisely and so solar models extrapolate the coronal magnetic field
from photospheric magnetic measurements [32, 58]. The best photospheric magnetic
measurements are obtained from filaments positioned on the face of the sun, but
observers lack the ability to determine the geometry and configuration of those fila-
ments directly; the converse is true for filaments close to the limb of the sun [59]. As
a result, eruptions with excellent imaging diagnostics are severely lacking in magnetic
information. Even when quality photospheric magnetic measurements are available,
the process of extrapolating the magnetic field into the corona has its limitations.
Extrapolation results differ depending on the underlying assumptions [30| and even
the best non-linear force-free algorithms struggle to extrapolate the force-free corona
magnetic field from the boundary measurements obtained from a “forced” photosphere
[60].

The methods of modeling the magnetic field listed in increasing levels of sophisti-
cation are potential field source surface, force-free field, non-linear force-free field
(NLFFF) employing line-of-sight magnetograms, NLFFF employ complete vector
magnetograms, and MHD models. The advantage of the field models is that they
are data-driven and constrained by observations. Unfortunately they are static, so
independent field models must be generated for each time step to evolve the sys-
tem. In contrast, MHD models are intrinsically dynamic but they are initialized by
idealized magnetic fields and are not constrained by observations. Almost all solar
eruptions models suffer from poor knowledge about the initial conditions of the mag-
netic field and this problem is unlikely to be addressed until satellites are sent to
directly probe the sun®.

Although we have more satellites in the sky than ever before, there are limitations

to what can be done observationally. Scientists do not have control over the behavior

5See: Solar Probe Plus mission set for 2018 launch.
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of the Sun and must wait for it to do something interesting. The sun is happy
to oblige with powerful eruptions during solar maximum but can also stubbornly
refuse to display interesting eruptions during periods of solar minimum. When an
eruption occurs, scientists hope that satellites are properly positioned to image the
event. Most satellites are along the Sun-earth axis and thus provide a single view of
eruptions. A pair of satellites (STEREO-A and STEREO-B |20]) fly ahead and behind
the earth and the additional perspective of an eruption can be used to extract 3D
information [61]. Unfortunately, STEREO satellites may not be in the best position to
capture eruption images and the satellites have “black-out” periods of several months
corresponding to when both spacecrafts are on the far side of the sun. One such
black-out period (March 2015 to July 2015) is in effect as of the writing of this thesis.
Furthermore, the STEREO mission has a finite lifetime [4], which means that future
observers may be restricted to a single viewpoint.

Much of what we know about the sun is from empirical statistical studies based on
observations and numerical models which depend heavily on information about the
magnetic field, the quality of which is lacking. This has made it difficult to effectively

predict solar weather from observations and numerical modeling alone.

1.9 Contribution of laboratory experiments

Many of the shortcomings of numerical and observational studies can be addressed by
laboratory experiments. Unlike observations, experiments provide repeatability, per-
mitting the use of statistics to investigate specific phenomena. Laboratory diagnostics
can directly measure solar-relevant laboratory plasmas and can be set up to extract
the desired spatial and temporal information about specific plasma processes. Desir-
able plasma parameters can be varied independently to extract the essential physics.
Unlike numerical studies and theoretical analysis, no “potentially unphysical” simpli-
fying assumptions are made; laboratory plasmas obey all the laws of physics.
Laboratory experiments (see Fig. 1.5) can provide some insight into the behavior

of solar-relevant plasma loops in an ambient magnetic field |2, 3]. The dimensionless
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Figure 1.5: (a) Ref. [2] showed that a strong strapping field can inhibit plasma
expansion. (b) Ref. [3] demonstrated the eruption of a solar-relevant plasma structure
by injecting hot plasma into the footpoints.
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numbers for laboratory plasmas must match the numbers for solar plasmas to take
advantage of plasma scalability (Sec. 1.7), so solar experiments have been designed
so that § < 1 and S > 1. Hansen and Bellan [2] designed such an experiment and
demonstrated that a sufficiently strong strapping field can completely inhibit plasma
loop expansion in the lab. This result is expected to scale to confined solar eruptions
— an eruption that rises rapidly from the solar surface but does not escape the solar
atmosphere.

The smaller scale separation is the main limitation of laboratory experiments.
The Lundquist number is S ~ 10% — 10! for solar plasmas due to the immense
length scale of plasma. In contrast, laboratory plasmas are more likely to have to
S ~ 10—103 since there is a restriction on the length scale of laboratory experiments®.
This inability to match the immense Lundquist numbers of astrophysical phenomena
means that not all of the relevant solar physics is captured by laboratory experiments.
Since S is found in the denominator in Eq. 1.7, however, laboratory experiments with
S = 100 capture 99% of the essential physics (instead of 99.999999999% of the physics
for S ~ 10'). Such experiments can produce powerful insights into solar eruptions,
provided that the boundary conditions and dimensionless numbers requirements are

satisfied.

1.10 Experimental set-up and useful concepts

This section outlines the most common set-up for the majority (but not all) of the
work presented in this thesis; a more in-depth discussion can be found in the Appendix
(Sec. D). This section also contains useful concepts and terminologies that are used

throughout this thesis.



19

Cathode
I-Extra BIaS 610||
Main
Bank -
J_ Gas
59 uF T Valves Strapping
pa S:\ . Bank
rapping
Bias coil ol 0.77 F

y Lintrinsic . I

m 11

z

Figure 1.6: The cathode and anode define the x — y plane of the coordinate system,
with the gap separating cathode from anode defining the origin. The bias coils (pur-
ple) generate arched magnetic fields similar to a horseshoe magnet. Strapping coils
(blue) are inside the vacuum chamber for the majority of the work in this thesis.

1.10.1 Laboratory set-up

The experimental setup is shown in Fig. 1.6. A pulsed, magnetic plasma gun con-
sisting of anode, cathode, and bias coils is mounted at the end of a 1.5 m long, 0.92
m diameter vacuum chamber with 10~7 torr base pressure. The chamber is much
larger than the plasma, thus simulating a half-infinite space, and the chamber axis
defines the z direction (height). The bias coils located behind the electrodes generate
arched magnetic fields in the y — z plane. The magnetic field is nominally 1.5 kG at
the foot points and 250 G at the apex. Fast valves puff gas through the center of
the bias coils into the vacuum chamber. High voltage applied to the electrodes by a
59 uF capacitor ionizes hydrogen gas to form an arched plasma of density n ~ 10%*
m3. The capacitor is typically charged to 2.5-5 kV driving 30-70 kA of current which
flow in the y direction at the plasma loop apex. Additional inductance (Legrq) can
be added to the intrinsic inductance of the system (Ljnirinsic) to slow down the cur-
rent pulse. The plasma temperature 7' is estimated to be 2-4 eV, corresponding to

B = 2uonkpgT/B? ~ 0.2, so magnetic forces are expected to dominate.

6Surprisingly, this restriction is often the size of the laboratory chamber door. What is the largest
vacuum chamber that can be brought into the laboratory?



20
A 0.77 F capacitor bank powers two 7.6 cm diameter strapping field coils mounted
9.5 cm in front of the electrode. The strapping coils each have 11 turns and are placed
in a coaxial configuration inside the chamber to produce a maximum 875 G strapping
field in the x direction so that the .J, x B3 force inhibits plasma loop expansion,

where J, is the electric current density in the plasma loop.

1.10.2 Diagnostics

The work in this thesis relies on three diagnostics techniques: imaging diagnostics,
magnetic diagnostics, and circuit analysis. Each technique has its own strengths and
weaknesses, but together they construct a robust picture of the plasma dynamics.

Imaging provides location-dependent scalar measure of the plasma emission inten-
sity. Imaging diagnostics are intuitive and visual information is compelling and easy to
understand. However, cameras compress 3-D information into 2-D images resulting in
ambiguities. Two cameras can resolve basic projection effects, but three-dimensional
structures are difficult to reconstruct without additional viewpoints. The plasma is
also difficult to image because it is amorphous and somewhat transparent. Thus,
imaging diagnostics normally gives qualitative information unless carefully calibrated
(Sec. G.1).

While imaging provides clues about the underlying magnetic structure, it does
not capture the magnetic information that is important in a § < 1 configuration.
Magnetic probes permit direct measurement of the magnetic field. The probe clus-
ter inside the chamber measures the magnetic field associated with the plasma while
magnetic Hall sensors (Chapter E) measure the slower magnetic field associated with
the bias coils and the strapping field. Magnetic measurements provide direct quanti-
tative insight into the dynamics of the plasma but the measurements are difficult to
analyze and are unintuitive. Magnetic information is often compared to an idealized
model in order to gain insight into the behavior of the plasma. Magnetic fields are
also a location-dependent vector quantity, meaning that magnetic probes only provide

a local description of the plasma.
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(a) Cylinder (b) Donut (Cylindrical) (c) Donut (Toroidal)
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Figure 1.7: Application of cylindrical coordinate system to (a) a cylinder of radius a
and length L and (b) a hoop of aspect ratio Ry/a. (¢) A donut expressed in toroidal
coordinates.

Circuit analysis complements imaging and magnetic diagnostics by providing a
scalar quantitative description of the system. The voltage measured across the plasma
footpoints measures the magnetic flux injected into system. The plasma current is a
fundamental MHD parameter and drives loop expansion. The plasma can be modeled
as a variable inductor and its inductance is a global measure of the plasma structure:
greater plasma expansion means increased plasma inductance. Thus, inductance
calculations can quantify whether a plasma is expanding and also the rate of that
expansion.

A more in-depth look at imaging (Secs. D.6.1 and G.1), magnetic (Secs. D.6.2
and G.2), and circuit analysis (Sec. G.3) can be found in the Appendix.

1.10.3 Axial, Poloidal, and Toroidal

Cylindrical coordinates are the natural choice for axisymmetric systems. In the case
of a cylinder of radius a and length L, the 7, qg, and Z direction are typically aligned,
as shown in Fig. 1.7 (a). It is common to align the length of the cylinder with the
Z axis, which is then called the azial direction. A donut-shaped configuration, aka
torus, is defined by its major radius R and minor radius a, and the conventional way
of applying cylindrical coordinates is shown in Fig. 1.7 (b). The z axis is aligned

with the symmetric axis of a torus.
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A useful concept in axisymmetric configuration (spheres, cylinders, and donuts) is
the concept of toroidal and poloidal. The toroidal direction refers to the ngﬁ direction
whereas the poloidal direction refers to the remaining two directions’. For describing
particles within the donut, a length p along the minor radial direction with rotation 6
is introduced and the overall geometry is called toroidal coordinates. The left-handed®
toroidal coordinate for a hoop is shown in 1.7 (c).

One useful feature of separating vectors into poloidal and toroidal components
is to simplify the mathematics into intuitive components. For example, suppose we

separated the current J = Jy,, + J,o and the magnetic field B = By, + B, then
JxB= Jtor X Bpol + Bpol X Jtor + Jpol X Bpol

where we note that J;,,. x By, = 0, since it is the cross-product of parallel vectors. It is
also easy to see that J,uxByy = (JxB),.” and similarly that Jyo, X Bpo+Bpor X Jior =

(J x B),,;- For axisymmetric systems, (J x B), = 0, so the force
J X B = Jior X Bpot + Bpor X Jior (1.11)

is purely in the r and z or poloidal direction.
Another useful intuitive concept comes from Ampere’s law V x B = ppJ which
basically states that a toroidal current produces a poloidal magnetic field and vice-

versa.

1.10.4 Solar Terminology
The following section defines common solar concepts which will be used in this thesis.

Coronal mass ejection (CMEs) are transient large-scale ejection of mass from the
sun due to magnetic eruptions. While CMEs and flares are both magnetic

disruptions, CMEs are observed by white-light emissions of erupting mass in

"This is # and 2 in cylindrical coordinates but could be p and 6 in spherical coordinates.
8The poloidal rotation is left-handed with respect to the corresponding cylindrical coordinates.
For example, Jpor X Bpoy = (J,F + J,2) X (Bt X B,z) = (J. X B, + J, x B,)¢.
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(a) Three-part coronal mass ejection (b) X3.1 flare from AR 12192 captured by SDO

Figure 1.8: (a) CME with three part structure (from Ref. [4]) The front represents
density build-up in front of the CME, the so-called “flux rope” is the CME cavity, and
the prominence is the core located at the bottom of the flux rope. (b) X-class flare
as viewed in 131 angtrom light.

the outer corona and heliosphere whereas flares are often observed in X-rays.
The arch-typical morphology of a CME has “three-part” (Fig. 1.8 (a)) structure
even though not all CMEs show this structure |4, 62]; there is typically a bright
leading edge followed by a darker cavity containing a bright core. About 70%
of CMEs are associated with an erupting filament'® [62] though fast CMEs
tend to be associated with flares. CMEs occur about 1-3 times a day and
release approximately 10'2 — 10'3 kg of mass per ejection, resulting in 10% of
the mass loss rate of the steady solar wind [63]. The interaction between the
Earth’s magnetosphere and the ionized particles and magnetic flux associated
with CMEs causes geomagnetic storms which can disrupt satellites and electrical

infrastructure back on Earth.

Prominences and filaments both refer to the cool dense plasma feature above
a magnetic neutral line in current systems that builds up over several days.
Historically, the term prominences referred to bright loops appearing on the
limb of the sun whereas filaments referred to darker loops on the face of the

sun. They are now accepted as the same structure. The existence of dense cool

1OCMEs associated with a filament often display a three part structure: a bright, high density
front moving ahead of a dark, low-density cavity, within which rests a filament.
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plasma in the corona over several days indicates that filaments are surrounded
by magnetic field. The magnetic field supports the dense plasma against the
pull of gravity and is also the only means of preventing the matter from heating
via thermal conduction [64]. The filament is the core in the three-part CME
structure of Fig. 1.8 (a).

Flux ropes are force-free 3-D magnetic structures with helical magnetic field lines
fields wrapped around a center axial field. This structure is able to store a large
amount of free magnetic energy and support filaments against the gravity of
the sun. Kuperus & Raadu [65] provided one of the first formal definitions of
a flux rope in cylindrical geometry. They permit a surface return current in
order to match the magnetic field at the boundary of the flux rope but made no
claim about whether the flux rope contains a net current. As summarized by
Bellan [66], later models diverged on the topic of net current with some authors
arguing that the current must vanish outside the flux tube (like a coaxial cable)
while others argue that net current may be finite. Regardless of the details
about the current, all parties agree on the helical nature of flux ropes and many
models now extend flux ropes to arch-shaped configurations [33, 40]. The flux

rope is the cavity in the three-part CME structure of Fig. 1.8 (a).

Flares are rapid magnetic energy releases in the corona. The energy accelerates
non-thermal particles, resulting in heating of the coronal and chromospheric
plasmas. The acceleration of these particles result in a broad-spectrum emis-
sion in X-ray, EUV, white light, and radio. Historically, they were identified
mainly by transient spikes of emissions in hard X-ray, soft X-ray, and radio.
They exist across many different energy scales and microflares and nanoflares
have approximately 107% and 107 the energy of the largest flares, respectively.
They may or may not be associated with a CME and are observed as intense

brightenings, as shown in Fig. 1.8 (b).

Open vs closed field lines: The divergence-free condition of Maxwell’s equation

states that all magnetic field lines must close upon themselves so any field line
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radiating from the sun must eventually make its way back to the solar surface.
In the solar context, open-field regions are where the plasma leaves the sun as
solar wind and closed-field regions are regions which trap pockets of plasma in

quasi-static equilibrium.

Sunspots are regions of intense magnetic field on the sun. When looking at the
sun in the visible spectrum, they are observed as dark blemishes on the solar
surface. They are often represented by a dark central umbrae feature and a

gray penumbrae feature.

Dipole, Bipole, Quadrupole are terms best understood as idealized magnetic con-
figurations, representing configurations of sunspot groups classified by the Mount
Wilson Magnetic Classification. While the original paper by [Hale and Nichol-
son, 1938] is not readily accessible, a summary of this classification can be found
in solar textbooks |67] or at solar weather websites. Classification « applies to
a sunspots group with unipolar sunspots (dipoles). Classification § applies to
sunspot groups with both positive and negative polarities, with clear division
between opposing polarities (bipoles). Classification 0 refers to a single sunspot
with two opposite polarity umbrae within the same penumbra (i.e. two oppo-
site polarity dark spots within the gray sunspot region) and is often associated
with quadrupolar field configurations. If a specific region has irregularly spaced
positive and negatively spaced polarities which are not amenable to obvious
classification, they are called ~ regions. The ~ can also be used as a qualifier
for «, B, and 7 sunspots. For example, a 8 — v sunspot region is characterized
by bipolar behavior, but without a continuous division between the polarities.

Similarly, a § — v — 0 region is a § — 7y region with additional delta spots.
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Chapter 2

Experimental reproduction of slow
rise to fast acceleration

2.1 Introduction to solar eruptions

One of the great advances in solar physics is the Carmichael-Sturrock-Hirayama-
Kopp-Pneuman (CSHKP) model, the “standard” model for flares [68-71]. The CSHKP
model (Sec. C.1) describes most flare observations, including the power source of
the flares, the coronal streamer structure, the often-observed rising prominence, the
brightening of chromospheric footpoints, flare signatures in X-ray, EUV, and Ha,
and the increased height and footpoints separation of the magnetic structure. The
model presents the physical mechanisms behind these observations but does not spec-
ify what causes the initial magnetic arcade configuration to go unstable. Regardless,
the strength of the model drove the paradigm that reconnection rapidly evolves the
solar magnetic field, resulting in large solar flares which are the fundamental cause of
thermally driven material ejection, geomagnetic storms, auroras, interplanetary shock
disturbances in the solar wind, solar proton events, and polar cap absorption events!

(summarized in Fig 2.1).
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Classical Paradigm of Cause and Effect
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Figure 2.1: Adapted from Ref. |5]. Paradigm with flares playing a central role. Cap-
ital letters indicate observational phenomena and lowercase letters indicate physical
processes or descriptive processes.

2.1.1 Coronal mass ejections

Gosling et al. [72] are among the first to report observation of sporadic ejections of
large quantities of mass (10'°-10'® g) from the Sun at velocities ranging from 200 km /s
to 1100 km/s. These so-called coronal mass ejections (CMEs), often have material
concentrated into clearly distinguishable loops and are believed to remain connected
to the sun at their footpoints. CMEs are about 40% associated with flares and 70%
associated with eruptive prominences [62]. Even when a CME has a corresponding
filament eruption, most of the material within the CME originates from the corona
[73], suggesting that CMEs are related to but distinct from prominence eruptions.
Gosling [5] summarizes evidence against the classical flare paradigm and place CMEs
as the main driver of many geo-effective events (Fig. 2.2). He argues that flares occur
in smaller, magnetically-complex regions, and are perhaps the result of reconnection.

CMEs are associated with larger magnetic regions than flares, though the processes

!Fading of cosmic ray signature at the poles due to enhanced ionization in the D region of the
ionosphere and associated with > 20 MeV protons.
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MODERN CAUSE AND EFFECT IN SOLAR-TERRESTRIAL PHYSICS
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Figure 2.2: Adapted from Ref. [5]. Paradigm with CMEs playing a central role. Cap-
ital letters indicate observational phenomena and lowercase letters indicate physical
processes or descriptive processes.
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Parameter ‘ Value ‘
Kinetic energy (CME, prominence, shock) | 10%¢ ]
Heating and radiation 10%0 )
Work done against gravity 10% ]
Volume involved 10% m?
Energy density 10 J/m?

Table 2.1: (Reproduction) Energy requirements for a moderately large CME
| Forms of Energy | Observed Avg Values | Energy Density (J/m°®) |

Kinetic ((m,nV?)/2) | n=10"m> V =10° m/s 107°
Thermal (nkT') T=10°K 0.01
Gravitational (myngh) | h =10% m, g = 274 m/s* 0.05
Magnetic (B*/2p0) B=10"*T 40

Table 2.2: (Reproduction) Estimate of Coronal Energy Sources

that trigger the release of CMEs are not well understood.

2.1.2 Observed characteristics: nature of CMEs

Early CME models suggest that thermal pressure powers the eruption and invoke
images of bomb blasts. These “thermal blast” model are likely motivated by the flare-
centric paradigm which claims that reconnection in flares heats up nearby plasma,
producing rapid expansion of the chromosphere and the corona around the flare site
[5]. Today, better satellite evidence and energy composition studies of CMEs have
rendered thermal blast models obsolete. The basic energies for a CME have been cal-
culated by Forbes [57| and are reproduced in Table 2.1. The photospheric magnetic
field is unperturbed by eruptions, suggesting that the energy for eruptions originates
in the corona [29]. Estimates of coronal energy sources are shown in Table 2.2, and
only the magnetic energy in the corona has sufficient energy density to drive a mod-
erately large CME eruption [57]. This has lead to a consensus that eruptions are

magnetically driven, though the details are still under debate.
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2.2 Debate

A mysterious feature of many CMEs is that they remain stable in the solar atmo-
sphere for days/weeks, before rapidly erupting in the matter of minutes/hours. It is
helpful to organize the debate regarding CMEs into two stages: before eruption and
during eruption. The CME is stable for days before an eruption, and many scien-
tists believe that energy slowly builds up during this stage. Those arguing against
energy build-up argue that sufficient injected energy is injected during the eruption
to drive the eruption, so a separate build-up stage is not necessary. At the beginning
of the eruption phase, CMEs leave quasi-equilibrium and slowly rises to some critical
threshold after which they experience rapid acceleration. Once the eruptive process is

over, most CMEs propagate with nearly constant speed into the solar system system.

2.2.1 Before eruption: store and release vs dynamo

Before the eruption, most models have a slow build-up “storage” phase when free
energy is added to the system. Popular build-up methods include the slow twisting of
field lines to add free energy, the loading of mass to compress some sort of magnetic
spring, or the flow of photospheric plasma to cancel magnetic flux [74]. In contrast,
dynamo theories argue that rapid generation of magnetic flux is introduced by real-
time stressing of the magnetic field during an eruption [74]. Chen [40] introduces a
flux injection dynamo model where “flux injection” corresponds to a specified increase
in the poloidal flux ®,(¢). He argues that the dynamics of the erupting structures can
be fit to a d®,(t)/dt profile. In essence, the difference between these two classes of
models is their assumption about the energy conservation during the eruption. Stor-
age models assume that energy is held constant during the eruption, whereas dynamo

models add energy into the CMEs during the eruption.
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Pre-eruption configuration

Magnetic /Flux Rope
Arcade

———Prominence =——

Sheared arcade Flux-rope

Figure 2.3: Adapted from Ref. [6]. Over-simplified representation of pre-eruptive
configuration for sheared arcade models compared to flux-rope models. The dark
region represents the so called “core field” where energy is built up.

2.2.2 Eruption

There is a general consensus that solar eruptions expel magnetic flux ropes into the
solar system [4, 75]. The debate is whether the flux-rope exists before the eruption
[40, 76, 77|, or whether it is formed during the eruption as a result of magnetic
reconnection (Fig. 2.3). For the former, magnetic reconnection is a secondary effect
resulting from the interactions between a rising flux rope and the background ambient
field. For the latter, the initial field configuration is a magnetic arcade 78] and
magnetic reconnection creates the flux rope as part of the eruption process [8, 9, 79].
Models supporting each side have been sorted into “sheared arcade” models and “flux
rope” models in Secs. C.3 and C.4, respectively.

Much debate during the eruption phase is about the trigger. The trigger is a
mechanism that dynamically perturbs the pre-eruptive configuration and causes the
core field to erupt. This trigger can be attributed to a large injection of poloidal
flux for flux injection models [40, 80|, or attributed to the passing of some critical
threshold for storage and release models. For those in the “flux rope” camp, this
critical threshold marks of loss of equilibrium due to MHD instability |33, 65] or
MHD catastrophe [11]. The physical onset-criterion corresponds to an assumption
about the “decay index” of the overlying field [33] or changes in the strength of the
main polarities in the active region [11]. For those in the “sheared arcade” camp,

the critical threshold is the onset of “fast” arcade shearing [8] or the onset of fast(er)
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reconnection |7, 9]. There is no quantitative onset-criterion for sheared arcade models,
except arguments that the rate of magnetic reconnection must be sufficiently fast
enough to produce the observed kinetic energy of the eruption.

Once the eruption has been triggered, there are two suggested driver mechanisms:
(i) the Lorentz force or (ii) increasingly fast magnetic reconnection. Models which
permit net current cite the Lorentz force for driving plasma loop expansion. Mod-
els without net current cite the formation of a large current sheet where magnetic
reconnection can drive the eruption. Lynch at al, [81] presents simulations demon-
strating eruptive flare reconnection driving the eruption, though the authors note
that their magnetic structures are artificial and their numerical simulations do not

have sufficient spatial resolution.

2.2.3 Caltech experiment overview

The Caltech experiment features an arched plasma loop connected to a current source
power supply as described in Sec. 1.10.1 and in Fig 2.4. A current source powers
the setup by injecting poloidal flux into the system. By modifying the profile of the
current, the rate of poloidal flux injection can be adjusted to reproduce a strongly
driven (dynamo) configuration or a slow build-up configuration.

A capacitor bank powers two strapping field coils mounted in front of the elec-
trode. The strapping coils produce magnetic field oriented so the J x Bgq, force
inhibits plasma loop expansion, where J is the electric current density in the plasma
loop. The plasma represents a pre-existing flux-rope structure that expands due to
the presence of arched currents. The plasma apex expands into a region of strong
strapping field and is slowed down. In the limit of No Strapping field (NS), the hoop
force dominates expansion dynamics [82| and the apex accelerates and erupts. In
the limit of Large Strapping (LS) field, the plasma apex is completely inhibited from
expanding. A customized Intermediate Strapping (IS) field has been found which
captures the essential physics of the torus instability and reproduces the slow rise

to fast acceleration associated with the majority of coronal mass ejections [83]. The
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Figure 2.4: Schematic representation of experiment. The cathode and anode define
the x —y plane of the coordinate system, with the gap separating cathode from anode
defining the origin. The bias coils (purple) generate arched magnetic fields similar
to a horseshoe magnet. Independently powered coils (blue) produce strapping field
(green arrows) and the plot in the upper part of the side view shows how the strapping
field magnitude varies along the z axis. In the plot, the up-sloping dashed line (red)
shows the calculated decay index of the strapping field and the horizontal dotted line
(red) shows the calculated instability threshold. Additional inductance (L) can
be added to the intrinsic inductance of the system (Ljptrinsic) to slow down the current
pulse. The plasma (red) starts small but grows to many times its original size as it
expands into the vacuum chamber.
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IS configuration slows plasma expansion at early times, allowing expansion forces to
build up and contribute to the rapid acceleration of the plasma when it moves past
the strapping field peak. The sudden rapid acceleration also comes from the steep
spatial decay of the strapping field, a feature that is not present in Ref. [2] which
employs a uniform strapping field.

Plasma dynamics are captured by two fast cameras and by magnetic probe clusters
placed at 17.5 ¢cm, 19.5 cm, 21.5 ¢m, and 25.5 cm in front of the electrode along the
chamber axis. One camera is a movie camera with line of sight perpendicular to the
side view and provides the primary means of measuring plasma dynamics. The other
camera faces the electrode from the opposite end of the vacuum chamber and provides
disambiguation of projection effects. The strapping coils block viewing of the early
plasma evolution so imaging-based analysis is restricted to z > 11 cm. The magnetic
probes provide localized, in situ measurements and can precisely time the plasma
motion. Information about the overall plasma structure is obtained by measuring the
voltage and current across the electrodes and calculating the inductance of the plasma.
The experiment is reproducible and shots can be repeated every two minutes. High

resolution data are obtained by averaging repeated shots with the same parameters.

2.3 Theory

We now discuss the relevant MHD theory describing the plasma. In Ideal MHD, the

equation of motion is given by Eq. 1.2:

DU
—— = B-VP
Y J %

where for a plasma with § < 1, the force corresponding to the pressure term VP —
the so-called “tire tube force,” — can be neglected, so we consider only the J x B

forces. These forces are normally separated into toroidal and poloidal components
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®

Figure 2.5: Depiction of the hoop force.

(Sec. 1.10.3) and the relevant forces in the major radial direction are

DU

D_t = Jtor X Bpol + Jpol X Btor + Jtor X Bstrap

Pm

which are the hoop force, tension force, and strapping force, respectively. Each force

will be discussed separately.

2.3.1 Hoop Force

The hoop force is a manifestation of the idea that anti-parallel currents repel, so that
a ring of current will tend to get larger. There are three intuitive ways to see this
(Fig. 2.5): (i) repulsion of anti-parallel currents J; and Js, (ii) greater density of B,
inside the ring results in a magnetic pressure that pushes the loop outwards, and (iii)
the toroidal current J,, produces a poloidal magnetic field B,,;, which in turn results
in a net outward J x B force.

Instead of directly evaluating J,,, x B,, over the entire volume, the standard
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approach is an energy argument using a virtual displacement. This was first demon-
strated by Shafranov [84] and reproduced by many others [33, 85, 86]. The energy

associated with a loop of current-carrying plasma is:

1
U= LI
2

where L is the loop inductance and I is the current. The hoop force is obtained by
making a virtual radial displacement to the loop and looking at how the energy of

the loop changes:

ou

Fhoop = _@

The poloidal flux through the loop is given by ® = LI so U = ®*/(2L). The loop
is modeled as a perfect conductor, so the poloidal flux through the loop is constant.

The hoop force can be rewritten as:

_ e 2_
x SEL(R) = SPos. (2)

F - — — _—
hoop OR2L 2 ORL 2 0L

oo 291 I2L2a(1) 0 1 ,0L
L

The inductance of a loop of major radius R, and minor radius a, is a standard
calculation which can be found in Jackson [87]. The solution in the limit of large
aspect ratio (R/a > 1) is

L= R {m (%) o4 %] (2.2)

where [; is a term of order unity which captures the internal current distribution. For
example, [; = 0 if the current is strictly on the skin of the loop whereas [; = 1/2 if
the current is uniformly distributed through the loop. Assuming a uniform current

distribution, the hoop force is obtained by plugging Eq. 2.2 into Eq. 2.1, yielding:

2 SR\ 7
Fhoop = MOT (1 +1n (-) - Z) (2.3)

a

so the force per unit length is given by
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el [ (SR 3
fhoop - m (ln (7) - Z) (24)

which depends quadratically on the current.

While this derivation of the hoop force relies on the inductance of a perfectly
circular loop, the hoop force for a non-circular object is quite similar. For example,
the inductance of a square with wire radius p and length L can be found in [88]. In

the limit where [ > p, the solution is

AL AL
L= Ho Pn(—)—Lm@.
2m p

If we approximate the perimeter of the square (4L) as the circumference of a circle

with radius R = L/2, then the expression simplifies to:

L~ R {ln (%> — 1.910}
P

which is very similar to Eq. 2.2. A similar study by Cooke [89] for elliptical loops
finds that the Eq. 2.2 is 90% accurate even when the ratio of the major radius to the
minor radius is greater than a factor of 2. Ref. [89] finds that inductance is about 5/6
that of the circular loop, even for highly eccentric ellipse. Thus, the inductance of
large aspect ratio (“skinny”) circular loop is robust and can be applied to non-idealized
situations.

Another potential issue is the assumption that the loop is “skinny” and how much
error is introduced when working with “fat” loops. Zic et al. [90] study the inductance
in the low aspect ratio limit by introducing the terminology n = a/R, which is the
inverse of the aspect ratio. They find that Eq. 2.2 is accurate to within 1% for
n < 0.02, but overestimate by 10% for n &~ 0.1, and by 100% for n ~ 0.55. They note
that the internal current distribution can play large role in the internal inductance [;
which becomes an important term in the fat loops approximation. For example, the

l;/2 term is approximately the same size as the other terms in the square bracket of
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Diamagnetic current
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Figure 2.6: Tension force comes from J,, X By, and is a consequence of the 1/R
dependence of By, so that J x B; # J x Bsy. The direction of the force is determined
by Jpe, i.€., by whether the plasma is paramagnetic or diamagnetic.

Eq. 2.2 when n = 0.5. Ref. |90| proposes the use of:

L) _ (log(%) _B+ 5)

Ry 2

and provides numerically determined values for constants A and B for different density
distributions. In the large aspect ratio limit, A = o and B = 2, thus matching Eq.
2.2.

After taking into account the non-circular shape and the aspect-ratio of Caltech
plasma loops, Eq. 2.2 is expected to approximate the plasma inductance to within
30%, resulting in a negligible correction to the hoop force. The hoop force depends
quadratically on the current, so errors in current measurements play a much larger
role. Stenson [82] reports as little as 10 % of the current may flow through the
cross-section of the visible plasma loop, suggesting that not all the current measured
by the Rogowski coil contributes to the hoop force?. A factor of 10 decrease in
current results in a factor of 100 decrease in the hoop force calculations, which can
significantly change the behavior of the plasma. For a thoughtful discussion about

the hoop force, see Ref. [17].
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2.3.2 Tension force

The tension force can be conceptualized by thinking of magnetic field lines as rubber
bands. If these field lines are pulled at a given point, the corresponding “tension force”
will “resist.” This behavior can be evaluated directly by considering the relevant J x B
forces. When studying forces along the R direction on a toroidal plasma, the tension
force is given by J,, X By,,. In toroidal coordinates, R = Ry+pcosf, Z = psin6, and
the poloidal current is determined by Ampere’s law applied to B, = By, yielding

Ry 0B,

Jpot = 2
Pt R 9p

where the toroidal radius p is as shown in Fig. 2.6. The tension force can be calculated

by integrating over the volume of interest:

T R? OB2\ cosf
Joo X By = ——0 ¢ dpdf)
pol X Doy 1o / ( Or ) R pap

To simplify the analysis, we assume a large aspect ratio so that

1 1 p
—~—|(1——cos#
R~ R ( R COS )
where a Taylor expansion is applied to the “small” element p/Ry. Recalling that

fo% cosfdf = 0 and B, = 0 for p > a, we are left with

27 a aB2 B2 B?
Eiension = il cos? 9d9/ (9_¢’02dp = 2722 ( grac < ¢>> (2.5)
0 P

o Jo 2410 2410

where B2 is the vacuum toroidal magnetic field at R = Ry when no plasma is

,vac

present and
2 a
2 2
<B¢> - a2/ Bypdp
0

represents the average value of B;.

2Some of the missing current may be arcing from anode to cathode instead of flowing through
the plasma.
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Figure 2.7: Depiction of strapping force and hoop force. The strapping field is oriented
into the page and interacts with Jy,,.

Equation 2.5 shows that the tension force may be described in terms of magnetic
energy: the tension force on the plasma is due to the difference between the plasma
toroidal field and the vacuum toroidal field [85]. If the plasma is diamagnetic, then
<B§> < B? . sothe tension force is oriented outwards. If the plasma is paramagnetic,

,vac

then (B3) > B2 . so the tension force is oriented inwards.

The concept of a diamagnetic tension force encouraging plasma expansion seems
counter-intuitive, but can be understood by comparing the J;, x B,y force at R =
Ry — a to at R = Ry + a. For example, assume diamagnetic plasma current (green
in Fig. 2.6) flows strictly on the skin of the plasma. The skin currents produce a
toroidal magnetic field with scaling By, ~ 1/R [91], so that the field is stronger at
R = Ry —a than at R+ a. Thus, J x B; > J x Bs, resulting in a net outwards force.
A similar argument can be used to show that paramagnetic tension force results in a

net inwards force. The plasmas in the lab are paramagnetic, so the tension force is

expected to resist the hoop force expansion.

2.3.3 Strapping force

A current carrying loop of plasma will tend to expand in vacuum unless additional

forces are introduced to “strap” it down. This external force comes in the form of a
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Jior X Bgtrqp force where the strapping field By, is created by external coils and the
orientation of the field is chosen so that J;, X Bgtrqp points in the —R direction as
shown in Fig. 2.7. For example, if the toroidal current is in the (Ab direction, then the
strapping field must be oriented in the —z direction. This field is known as a vertical
field in the tokamak literature [84-86, 92| and strapping field in the solar literature
[33, 40]. It is also possible to think of the strapping field from the perspective of
magnetic pressure. Recall that J;,. produces denser regions of poloidal field inside
the loop than outside of the loop, resulting in greater magnetic pressure inside the
loop (Fig. 2.5). The strapping field lines can be thought as decreasing pressure inside
the loop and increasing magnetic pressure outside of the loop.

The strapping force can be calculated by integrating the J x B of force over the

plasma volume:

Fstrap = /Jto’l’ X Bstrap27erS (26)

If we assume that B, is essentially constant over the cross section of the plasma

and that J;,, is uniformly distributed within the loop, then
Fstrap == _QWRIBStTap (27)

where I = ma%J,,, is the current flowing through the loop. Eq. 2.7 has the same form

as a wire of length 27 Ry, carrying a current /, in a uniform field Bgyqp.

2.3.4 Equilibrium

Combining the hoop force (Eq. 2.3), tension force (Eq. 2.5), and strapping force (Eq.

2.7) yields the following equation of motion:

PR pol? S8R\ 3 B? (B2)
_ In {22 ) =2 ) — 222 | 220 _ Y9/ ) _ 9rRIB,. 2.8
e 2 (n<a) 4) "\ 20 210 " v (25)
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Figure 2.8: Nearly-circular plasma connected to a black-box power supply. The power
supply can be (a) a short, (b) a voltage source, or (¢) a current source.

where m is the mass of the plasma ring. Thus, the strapping field required for

equilibrium is

! I 81t B3 vac B
Bstrap = — Ho In|l — | — § _ 27T2a2 ?, _ < ¢>
2RI 2 a 4 2,[10 2,“/0

2.4 Torus instability

Suppose the tension force were negligible, so that only the hoop force and strapping
force are considered. The simplified equation of motion can be expressed in terms of
force per unit volume as

d’R I? 1B,
- _ I 92} _ strap
p dt? 47202 R2 (L+ poR/2)

(2.9)

ma?

where L+ puoR/2 = poIn(8R/a) —3/4) and L is the loop inductance given by Eq. 2.2.
Equilibrium is determined by the balance between the hoop force and the strapping
field. The torus instability considers the stability of this equilibrium configuration.
The approach here is a generalization of the approach outlined by Kliem and
Torok [33]. Instead of a circular plasma loop, we consider a nearly-circular loop with

electrodes connected to a black box, as shown in Fig 2.8. The near-circular nature
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of the plasma means that the simplified equation of motion (Eq. 2.9) remains a
good approximation. The presence of the electrodes and power supply permit the

application of different boundary conditions.

2.4.1 General algorithm

We adapt the algorithm developed in Ref. [33], making an ansatz about the magnetic
field and assuming self-similar expansion to make the problem analytically tractable,
while retaining the essential physics.

The general algorithm is as follows:

1. Consider th